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Abstract

The Linearly Constrained Minimum Variance (LCMV) beamformer is one of the most ac-

cepted techniques used to estimate the solution of the inverse problem in functional brain

dynamics studies, using magnetoencephalograms (MEG). However, since it is based on the

assumption of uncorrelated brain sources, its performance decreases in the presence of cor-

related brain activity, compromising the accuracy of estimates of brain interactions. This

problem has not stopped the use of the beamformer in techniques such as Dynamic Imaging

of Coherent Sources (DICS), which estimates the functional brain dynamics in a more direct

way than the LCMV, and with less computational cost. In this work it is proposed to use a

modi�ed version of the well known Minimum Norm Estimates (MNE) spatial �lter to esti-

mate the functional brain dynamics of highly correlated activity. This is achieved by using

the �lter to estimate the cross-spectral density matrices for the brain activity in the same way

that DICS does with the LCMV beamformer. The MNE spatial �lter is used as a basis be-

cause it is not a�ected by the presence of correlated brain activity. The results obtained from

simulations shown that it is possible to estimate highly correlated brain interactions using the

proposed method. However, additional methods and constraints need to be applied because

of the distorted and weighted output characteristic of the MNE spatial �lter. Methods such

as the FOcal Undetermined System Solution (FOCUSS) and Singular Value Decomposition

Truncation (SVDT) are used to reduce the distorted output, while the estimation of brain

dynamics is limited to cortical surface interactions to avoid weighted solutions.
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Knowing others is intelligent

Knowing yourself is enlightened

Conquering others takes force

Conquering yourself is true strength

Knowing what is enough is wealth

Forging ahead shows inner resolve

Tao Te Ching

Lao-Tzu
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Chapter 1

Introduction

1.1 Motivation

The study of the brain has been an important �eld of research motivated by the relevance

that this organ has in many aspects of our lives, from the performing of our daily tasks,

to the correct functionality of our bodies (Bear et al., 2007). However, its study has not

been an easy task, as the brain is the most complex organ that can be found in our bodies

(Zigmond et al., 1999). Nevertheless, advances in brain studies have helped to understand

the e�ects that brain diseases and conditions have on our lives. For example, damage and

functional degeneration of the brain, which are related with important problems such as

change of behaviour and physical motor limitations (Stam et al., 2006; Stam, 2010). Brain

studies have also led to developments of brain control interfaces (BCI), where the brain is

used to control robotic devices with practical applications that help people with physical

limitations to improve their quality of life (Schalk et al., 2004).

Part of the advances in brain studies have been possible because of several invasive and non-

invasive methods developed to measure the activity generated by brain processes in the form

of electric and magnetic �elds (Nunez and Srinivasan, 2006; Niedermeyer and Silva, 2005;

Sekihara and Nagarajan, 2008; Buxton, 2009). The methods developed for brain studies

have di�erent characteristics that enhance their applications for di�erent types of studies.

For example, non-invasive methods are easier to implement, but their measurements are not

as accurate as measurements obtained using invasive methods. This decrease in the accuracy

is related with external factors that reduce and distort the measurement of brain activity

outside the head, and because of assumptions used in the design of the methods (Nunez and

17
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Srinivasan, 2006; Niedermeyer and Silva, 2005; Sekihara and Nagarajan, 2008; Buxton, 2009).

This brings di�erent areas of improvements for increasing the accuracy of measurements of

brain activity using non-invasive methods.

There have been several discussions about which of the signals obtained from non-invasive

techniques is better to use for brain studies, between measured magnetic �elds known as Mag-

netoencephalograms (MEG), and measured electric �elds also called Electroencephalograms

(EEG). These two techniques measure the brain activity generated from the same underlying

brain electrical currents (Lu and Kaufman, 2003; Papanicolaou, 2009; Preissl, 2005). Both

types of signals share similar characteristics, good time resolution and poor spatial resolu-

tion, especially when compared against another common non-invasive technique known as

functional Magnetic Resonance Imaging (fMRI), used to measure the brain activity in the

form of changes of oxygen levels in the brain’s blood vessels (Buxton, 2009).

One of the main reasons for the use of EEG instead of MEG has been the expensive and

complex acquisition system used in the measurements of MEG signals, which needs a special

isolated room to avoid external artefacts that a�ects their quality. In contrast, the EEG

acquisition systems are much simpler and less expensive (Malmivuo et al., 1997). Nonetheless,

there has been a lot of research using MEG data to understand the brain, where techniques

called spatial �lters are used, these are also applied in �elds such as communications and

the oil industry (Van Veen and Buckley, 1988; Liu and Sacchi., 2004). Spatial �lters have

been used to �nd the active brain regions and to estimate, or reconstruct, the brain activity

generated in those regions from the measured magnetic �elds (Sekihara and Nagarajan, 2008;

Clarke and Braginski, 2006). The implementation of these techniques has increased the use

of MEG data for brain studies, by increasing the accuracy of brain activity measurements,

and therefore, by improving the results obtained in di�erent types of brain studies.

Two of the most used spatial �lters for estimating brain activity from MEG data are the

Linearly Constrained Minimum Variance beamformer (LCMV) (Van Veen et al., 1997), an

adaptive spatial �lter, and the Minimum Norm Estimate (MNE) (H�am�al�ainen et al., 1993),

a non-adaptive spatial �lter. These techniques have become the basis for MEG studies,

even with the limitations that both of them have (Sekihara and Nagarajan, 2008). The

LCMV beamformer has proved to be one of the most useful techniques for MEG studies as a

result of the simplicity of its implementation and its robustness. Unfortunately, the LCMV

performance is limited by the amount of correlation present between the brain activity found

in di�erent brain regions. The MNE is a spatial �lter based on the least-squares method.
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It is a useful technique and easy to implement, like the LCMV, but it has a distorted and

weighed output as the magnetic �elds measurements are more sensitive to cortical activity

(Uutela et al., 1999).

Thus, one of the main research areas for MEG studies is the improvement of the spatial

�lters. This research area can be divided in two main branches, each of them related with

improvements to the LCMV and the MNE spatial �lters. For the LCMV case, research

has focused on the �lter performance reduction due to the e�ects of correlated activity, by

reducing the spatial �lter dependence to brain activity located in multiple regions (Brookes

et al., 2007; Dalal et al., 2006; Huang et al., 2004). On the other hand, MNE research

has focused on the reduction of the distorted and weighted output of the �lter, by using

complementary regularization techniques to focus the brain activity on their correct locations

(Gorodnitsky and Rao, 1997; Pascual-Marqui, 2002; Mosher and Leahy, 1998). The results

obtained with these improvements have shown that it is possible to increase the performance

of spatial �lters, and therefore, the accuracy of brain studies.

A di�erent approach known as Dynamic Imaging of Coherent Sources (DICS) (Gross et al.,

2001) has been implemented based on the LCMV spatial �lter. This �lter is used to estimate

the covariance matrix, or the cross-spectral density matrix in the frequency domain, between

di�erent brain regions. Thus, DICS allows a more direct estimation of the functional brain

dynamics. Nevertheless, the DICS approach also has areas of improvements, especially since

it is based on the LCMV spatial �lter, which decreases its performance depending on the

amount of correlation present among the activity present in di�erent brain regions (Sekihara

and Nagarajan, 2008). However, the LCMV has proved to have good performance, especially

when prior information is available, and in the presence of not highly correlated brain activity

between distant brain regions (Sekihara and Nagarajan, 2008).

The motivation for this work is the improvement of the covariance matrix estimation, or the

cross-spectral density matrix in the frequency domain, among di�erent active brain regions

from MEG data. This relies on the previously mentioned spatial �lters as a starting point,

by using them in the same way that DICS does. Improvements in the estimation of those

matrices could help functional brain dynamics studies, not only because the approach is

more direct than the normal one followed, but also because it can increase the accuracy of

estimates. This work has also been motivated for the use of spatial �lters in di�erent �elds,

which give di�erent perspectives and tools that can be used for their improvements. A study

based on this problem can also help to increase understanding by trying di�erent approaches
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based on spatial �lters modi�cations, and, as a consequence, it could also help to increase

the understanding of the limitations of spatial �lters.

1.2 Literature review

1.2.1 Beginnings of neuroscience

Neuroscience is a very old discipline, however it started as a well organised research �eld in

the late 1960s. Nowadays, it is a discipline that unites di�erent �elds related with the study

of the brain. This synergy among di�erent brain research areas was born in order to share a

common language, common concepts and a common goal among people studying the brain

(Zigmond et al., 1999). However, the understanding of the brain as a vital organ started in

prehistoric times, as the evidence suggests with the �ndings of hominid skulls from more than

a million years old that show cranial-damage, presumable in
icted by other hominids (Bear

et al., 2007). Trephination provides more evidence from 7000 years ago, when people drilled

holes in other people skulls in order to cure brain conditions (Bear et al., 2007). Nonetheless,

even when the importance of the brain was known, the brain was not considered the most

important organ until the end of the eighteenth century.

Since the beginning of our understanding as a specie, and until the appearance of Hippocrates,

the heart was considered the place where consciousness and intelligence were generated, while

the brain was treated with complete indi�erence (Finger, 2001). In the �fth century B.C. the

perception of the brain started to change, when several Greek scholars consider the brain as

the responsible organ for sensations, to be more speci�c, when Hippocrates stated his belief

about the brain as the responsible organ for intelligence (Bear et al., 2007). However, this new

perception of the brain was not universally accepted, because other important philosophers

such as Aristotle, could not believe that the heart was not the main reason for intelligence.

Then, Aristotle proposed that the function of the brain was to cool down the blood that was

overheated in the heart, instead of being the main reason for intelligence(Bear et al., 2007).

In the second century A.D., the Roman physician Claudius Galenus, under the in
uence of

Hippocrates and Aristotle, helped with the understanding of the brain by providing direc-

tives for brain dissection (Finger, 2001). He also changed the brain perception to an organ

related with the physical sensations and with generation of movements (Finger, 2001). Galen

embraced Hippocrates vision of the brain, however, Galen did not believe that the brain

was the organ responsible for intelligence, but an organ composed of ventricles, as the heart,
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where sensations and muscle actions were stored until they were needed (Bear et al., 2007).

He stated that sensations and muscle actions were sent to the brain ventricles from the left

ventricle of the heart, and then, were sent to the muscles, through the nerves, in order to

generate movements or sensations when required (Finger, 2001).

Galen’s vision of the brain remained unchanged for almost 1500 years, until philosophers, such

as Rene Descartes, started questioning that statement (Bear et al., 2007). Descartes denied

that the ventricles were responsible for the generation of complex sensations and movements,

he also stated that non-human animals do not have any sensations in the same way that

the human mind does (Bennett et al., 2003). The sensations and movements generated

in the ventricles, and transmitted through the nerves, were called animal spirits, a term

popularized by Galen to refer to invisible entities that 
owed through the nerves to control

the body functions (Finger, 2001). Descartes proposed that the brain was in charge of human

behaviour only when this resembles the behaviour of beasts. He also believed that the mind

was a spiritual entity in charge of receiving sensations and generating movements by using

the pineal gland as a control mechanism (Bear et al., 2007), Figure 1.1. The mind was not

considered as part of the brain (Bear et al., 2007).

H

A

B

C

Figure 1.1: Illustration that describes the brain according to Descartes[1]. The �gure shows the
hollow nerves and the brain ventricles, also the pineal gland (H), used by the mind to control the
animal spirits (Bear et al., 2007).

[1]Image from http://en.wikipedia.org/wiki/Dualism (philosophy of mind)
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1.2.2 Functional localization of the brain

During the seventeenth and eighteenth centuries studies of the brain took a di�erent path from

the one established by Galen and Descartes. This change started when Thomas Willis reached

the conclusion that the physiological characteristics of humans are functionally dependent on

the brain cortex, instead of the ventricles (Bennett et al., 2003). He found the relation

between the brain function and the gyrus, or hills on the brain surface. He also compared

the number of gyri present in the human brain with the brain of animals, and stated that

the number of gyri is much more in the human brain than in animals brains because of

the superior intellectual power of human beings (Bennett et al., 2003). Another important

contribution for the brain understanding was made by Domenico Mistichelli and Francois

Pourfour du Petit, they described the crossing over nerves in the spinomedullary junction

known as the pyramid (Bennett et al., 2003).

More important discoveries were made during the 1700s and 1800s, when Antoine Charles de

Lorry and Jean-Cesar Legallois discovered the respiratory centre, and when Charles Bell and

Francois Magandie de�ned important functions for the nervous system. Charles de Lorry

challenged the predominant idea in the 1700s about the medulla and the cerebellum, when

they were considered an extension of the spinal cord and the seat for the animal spirits,

respectively. He found that the medulla is the site of vital functions, and later, Legallois

complemented Lorry’s work with the �nding of the respiratory centre, the part of the medulla

that is in charge of respiration (Finger, 2001). On the other hand, Bell and Magandie helped

with the change of the predominant perception, at that time, about the spinal nerves, when

they were considered as mixed sensory and motor structures where messages could travel in

both directions at the same time. Both of them helped brain studies by discovering that the

dorsal roots of the spinal cord are sensory, whereas the ventral roots are related with motor

actions (Finger, 2001).

By the end of the eighteenth century the nervous system was completely dissected, and its

raw anatomy was described in detail. Furthermore, scientists recognized the di�erent parts

of the nervous system, consisting of the central nervous system (CNS), or the brain and the

spinal cord, and the peripheral nervous system (PNS), composed of the network of nerves

found in the rest of the body (Bear et al., 2007). Another important discovery was the general

pattern of gyrus, or hills, and sulcus, or valleys, on the brain surface, which could be generally

identi�ed in the brain surface of every individual (Bear et al., 2007). The patterns allowed

scientists to identify the cerebrum divisions as lobes. It was the basis for the conjecture that
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di�erent brain functions are related with the gyrus of the brain (Bear et al., 2007).

Franz Joseph Gall is one of the main persons responsible for the era of cortical functional local-

ization. Gall stated that human skull features were an indication of underlying brain processes

generated in speci�c cortical regions that were correlated with speci�c talents or behaviours

(Bear et al., 2007), Figure 1.2. However, even when this theory, known as Phrenology, was

visionary, it was not well accepted among the contemporary scientist of its era. Marie-Jean-

Pierre Flourens, known for his in
uence in the development of the ablation method to study

the brain, was one of the main persons that opposed Galls phrenology theory (Finger, 2001).

Flourens argued that the cerebral cortex could not be divided into functional units. Instead,

he believed that the brain cortex functioned as a whole (Finger, 2001). As was proved later,

the Gall’s idea about the di�erent functions in the brain cortex was correct, but he did not

use the correct method to prove this theory. Nonetheless, validation of the functional brain

cortex was possible because of brain damage, and brain stimulation techniques, techniques

promoted by Flourens (Finger, 2001).

Figure 1.2: An 1883 phrenology chart[2].

Studies of localized functions in the brain cortex continued, and important contributions

were made by Paul Broca, Eduart Hitzig, Gustav Fritsch, and Sir David Ferrier (Finger,

2001). They helped in de�ning the brain cortex locations related with speci�c brain functions.

Broca’s brain study helped with the acceptance of the idea of cortical localization. This was

possible with his study of a brain in poor condition due to infractions in the left frontal

lobe, a brain that belonged to a patient that could understand language, but could not speak

because of the brain damage (Finger, 2001; Bear et al., 2007). Then, Broca concluded that

[2]Image from http://en.wikipedia.org/wiki/Phrenology
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the frontal lobe is the region of the human cerebrum that is responsible for the production of

speech (Bear et al., 2007). Eduart Hitzing and Gustav Fritsh helped with the understanding

of the di�erent functions of the cortex. They proved that cortical localization was not limited

to a single function. They discovered that part of the cortical surface was responsible for

generation of movements, by applying an electrical stimulation to a speci�c part of a dog

brain (Finger, 2001). Then, Sir David Ferrier complemented Hitzing and Fritsh’s discovery

by reproducing their work with monkeys in order to produce detailed maps of localized

cortical functions (Finger, 2001).

The acceptance of functional localization of the brain cortex was supported by the develop-

ment of cytoarchitectonic studies of the cortex, electrophysiological recordings from the brain,

and the belief that the neurons are independent entities (Finger, 2001). The functional local-

ization of the brain cortex was supported in the early twentieth century in a di�erent way from

that of Ferrier. Instead, it was supported by the physiological characterization of the brain

cortex, when the �ne anatomy of the brain was revealed following the e�orts of anatomists

Oscar Vogt, Cecile Vogt, Alfred Walter Campbell, and Korbinian Brodmann (Finger, 2001).

They discovered that there exist areas in the cortex that share similar structures and cellular

compositions, and are clearly di�erent from the characteristics found in other areas of the

brain (Finger, 2001; Pen�eld and Jasper, 1954), Figure 1.3.

Figure 1.3: Brain areas with di�erent cytoarchitectural organization de�ned by Brodmann[3].

A di�erent approach was used by Richard Caton to support functional brain localization. His

research was based on Ferrier’s description of stimulation of the brain cortex (Finger, 2001).

Caton used a mirror galvanometer to amplify very small voltage signals that were measured

on a large scale placed on a wall, in order to measure the brain activity in the form of weak

electrical currents (Niedermeyer and Silva, 2005; Green�eld et al., 2012). Caton found that

[3]Figure adapted from http://en.wikipedia.org/wiki/Korbinian Brodmann
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interrupting a light stimulus to a dog eye altered the electrical currents detected on the other

side of the dog’s head, where the measurements were made with electrodes placed at two

points of the dog head, or one electrode in the brain cortex, and the other on the surface

of the skull (Green�eld et al., 2012). Caton reported, from the results of his experiments,

that the electrical changes in the brain varied in location and with the peripheral stimulus,

supporting cortical function localization (Finger, 2001). In 1942, Hans Berger achieved the

�rst recording of electrical potential from a human brain. Nowadays, this �eld of study is

known as electroencephalography (Niedermeyer and Silva, 2005).

1.2.3 The neuron doctrine

The neuron doctrine was the last proof for cortical function localization, which presents

the neuron as the independent elementary unit for brain function. This was the last proof

because cortical localization demanded some degree of independence (Jirsa and McIntosh,

2007). The neuron doctrine was possible because of improvements in the microscope design,

which allowed scientists to obtain high magni�cation low distortion images, and therefore,

generated better images of the brain. It was also possible because of Camillo Golgi, who

improved histological techniques by developing a new silver nitrate staining method which

allowed the analysis of the elements in the nervous system with more precision than with the

available staining methods at that time (Finger, 2001).

However, Golgi stated, based on the results that he obtained with his method, that the brain

elements were not independent, but they were fused forming a complex network, opposing

the cortical functional localization theory. Santiago Ramon y Cajal obtained di�erent re-

sults based also on the Golgi method, but with the di�erence that he tried to get better

results by making thicker slides of the brain which were stained more intensively, Figure1.4.

Thus, Ramon y Cajal found the basis for the neuron doctrine, which states that neurons

are independent elements that do not form physical connections with other neurons (Finger,

2001). Then, Sir Charles Scott Sherrington found the gap between neurons, and between

neurons and muscles. He called those junctions synapses, where the communication between

neurons, and neurons and muscles, takes place in the form of a chemical process to transmit

information (Finger, 2001).
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Figure 1.4: Ramon y Cajal original draw. A section of the optic tectum of a sparrow, Madrid 1905.

1.2.4 Modern neuroscience

The increment in neuroscience developments reached its higher point around 1960, after 30

years of maintained progress. Since then, the amount of progress started to decrease, mainly

because of computers, which allowed automatic analysis of brain data, making brains studies

easy to implement reducing the necessity of developing new methods. However, this was

not the �rst time computers were used to analyse the brain. In 1932, Berger’s co-worker

Dietsch, along with other important researchers, used analogue computers for this purpose

(Niedermeyer and Silva, 2005). However, the increase of computational processing started a

second tendency for their use, reaching a point to be considered as a new �eld for brain study

known as computational neuroscience. Computational neuroscience is formally de�ned as the

theoretical study of the brain used to uncover the principles and mechanisms that de�ne the

di�erent nervous system processes (Trappenberg, 2002).

Nowadays, neuroscience is considered the �eld for the brain study, from its molecular biol-

ogy, to the biological basis for normal behaviours, cognition, diseases and brain conditions

(Zigmond et al., 1999). Neuroscience is rapidly growing and has more tools available for the

study of the brain than ever. The measurements of brain activity achieved by Richard Caton

and the increase of the computational processing available have led to the development and

implementation of di�erent ideas and techniques that have increased understanding of the

brain. Improvements in the methods used to obtain the brain activity have allowed analysis

of the brain in more scenarios and provided data with better quality than before. On the

other hand, the amount of data that can be analysed has dramatically increased because of
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the computational processing increment.

The discovery reported by Richard Caton in 1875, and the reproduction of its work in human

beings by Hans Berger in 1929, were the beginning for the development of di�erent non-

invasive techniques. These techniques made possible the measurements, outside the head, of

the three main processes that occurs inside the brain, neural signalling, the metabolism of

neurons, and brain blood 
ow (Preissl, 2005). The measurements of these processes with non-

invasive techniques allows a di�erent understanding of the brain compared with the invasive

techniques, and hence, a more wide understanding of the brain functional organization, which

has been one of the most important problems over the last 100 years (Buxton, 2009).

On the other hand, the increment of the computational precessing has allowed the analysis

of data that represents brain activity using di�erent signal processing techniques such as the

Fourier transform and spatial �lters. The use of computers has also allowed the modelling

of brain processes, like the neuronal signalling and brain interactions (Trappenberg, 2002).

Therefore, computational neuroscience has allowed di�erent ideas to be tested with simula-

tions analysis that later on are implemented in real experiments. This is in order to have

certainty that the models and methods developed work, and to know their limitations.

1.2.5 Non-invasive techniques for brain studies

Three of the most important non-invasive developed techniques to study the brain are the

Electroencephalography (EEG), the Magnetoencephalography (MEG) and the functional

Magnetic Resonance Imaging (fMRI). EEG is a technique developed from the results of

Berger’s and Caton’s work. It is a technique used to record human brain electric �elds on

the surface of the head, generated from the brain electrochemical process known as neural

signalling (Clarke and Braginski, 2006; Papanicolaou, 2009). MEG is a technique based on

the discovery made by David Cohen in 1968, who showed that it was possible to measure,

or record, magnetic �elds outside the head generated from the same processes that generate

the EEG voltages (Preissl, 2005; Baillet et al., 2001). The fMRI technique was developed by

William James in 1890, who based his work on Angelo Mosso’s work. It is a technique that

measures, or images, functional brain activity by measuring changes in the brain blood 
ow

(Buxton, 2009).

The previously mentioned techniques share similar characteristics, but also have di�erences

that determine their applications for diverse types of studies. For example, EEG and MEG

techniques have very good time resolution, but poor spatial resolution, especially when com-
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pared against fMRI, which has good spatial resolution but poor time resolution (Hansen et al.,

2010). Thus, EEG and MEG give a di�erent perspective of brain behaviour with respect to

fMRI. However, even when EEG and MEG have similar characteristics, di�erences can be

found between the performance of both of them that can enhance the use of one over the

other for speci�c studies. MEG records are not a�ected by the di�erent layers that compose

the head, in contrast to EEG, but EEG can measure brain activity in the whole cortex, while

MEG records are more sensitive to neuronal currents tangential to the surface of the brain

(Niedermeyer and Silva, 2005).

1.2.6 Magnetoencephalography

The �rst measurement of magnetic �elds outside the head generated by electric brain currents

was made by Cohen, and was achieved using a conventional induction coil of two million turns

of wire in a room temperature environment (Senior et al., 2006; Niedermeyer and Silva, 2005).

Since that event, the way that magnetic �elds are measured has changed over the last three

decades because of the development of the Superconducting QUantum Interference Device

(SQUID) sensor, that was used for the �rst time to measure magnetic �elds generated by

brain currents in 1972 (Vrba, 2002; Lu and Kaufman, 2003). Nevertheless, the use of SQUIDS

requires expensive instrumentation and, most of the time, isolated shielded rooms in order to

reduce the e�ects of external noise, which can make the cost of MEG acquisition systems at

least 25 times the cost of the EEG acquisition system (Malmivuo et al., 1997). This di�erence

in price is one of the reasons that has limited the use of the MEG technique.

Nowadays, and since the early 1990s, di�erent high-density MEG acquisition systems are able

to measure, or record, magnetic �elds in the whole head using a high-density grid composed

of more than 200 SQUID sensors (Hansen et al., 2010; Clarke and Braginski, 2006). SQUID

sensors are used because of their high sensitivity to magnetic �elds, even when these have very

small amplitudes, as is the case for the MEG signals, which have a strength in the order of

pico to femto Teslas (Clarke and Braginski, 2006; Pizzela et al., 2001). The instrumentation

required for the use of the SQUIDs sensors is expensive because it is composed of parts such as

a cooling block containing cryogenic liquid and a shielded room (Clarke and Braginski, 2004;

Pizzela et al., 2001; Vrba and Robinson, 2001), Figure 1.5. The cooling block is required to

maintain the temperature for the super conductive sensors, in order to work properly, while

the shielded room is necessary to reduce the e�ects of the external sources, which are stronger

than the brain magnetic �elds, as can be observed in Figure 1.6.



1.2. Literature review 29

MEG

a) b)

Figure 1.5: MEG acquisition system. a) Shielded room used to reduce interferences from the out-
side[5]. b) Instrumentation required for the use of the SQUIDs sensors[6].
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Figure 1.6: Range of strength of various magnetic �elds sources[5].

The SQUIDs are superconducting rings, or washers, that consist of two superconductors

separated by insulated layers that form Josephson junctions (Vrba and Robinson, 2001; Clarke

and Braginski, 2004). The sensors combine the 
ux quantization and Josephson tunnelling

e�ects to measure magnetic �elds generated by the brain activity (Clarke and Braginski,

2004). The magnetic 
ux is coupled to the SQUIDs using superconductive 
ux transformers

(Vrba and Robinson, 2001). Then, the Josephson junctions are used to quantify the 
ux

in order to measure the e�ect of the magnetic �elds on the sensors, in the form of electric

voltages that are known as MEG signals (Clarke and Braginski, 2004). Therefore, a MEG

record represents the brain activity generated by electrochemical processes known as neuronal

signalling (Papanicolaou, 2009; Hansen et al., 2010). These measurements are used to study

[5]Figure adapted from (Clarke and Braginski, 2006)
[6]Image from (H�am�al�ainen et al., 1993)
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the brain based on the Neuromagnetism principles, which is de�ned as the study of the

magnetic �elds generated from electrical currents inside the brain (Clarke and Braginski,

2006; Hansen et al., 2010; Lu and Kaufman, 2003).

1.2.7 MEG forward and inverse problems

It is necessary to solve the forward and inverse neuromagnetism problems in order to study

the brain using MEG data (Sarvas, 1987; H�am�al�ainen et al., 1993; Mosher et al., 1999). The

forward problem consists of the measurements of magnetic �elds outside the head generated

by the brain electrical activity, while the inverse problem consists in the �nding of the dis-

tribution of current inside the brain that are responsible for the generation of the measured

magnetic �elds. These problems are the core of MEG studies, and many assumptions and

constraints are used for their solutions.

The forward problem is solved with the use of the Biot-Savart law, which describes mag-

netic �elds generated by electric currents (Cheng, 1989; Gri�ths and College, 1999), that

in the brain are represented by neuronal currents generated by the neurosignalling process

(H�am�al�ainen et al., 1993; Sarvas, 1987). The Biot-Savart law estimates the three compo-

nents of the magnetic �elds, but the magnetic �elds measured by the SQUIDs are only those

components that are normal to the surface of the sensors. Then, a dot product is required

between the estimated magnetic �elds and the orientation of the SQUIDs (H�am�al�ainen et al.,

1993; Sarvas, 1987). It is possible to use the Biot-Savart law because of the characteristics

of the neuronal currents responsible for the generation of the magnetic �elds, which have

a range of frequencies below 1 kHz (Baillet et al., 2001; Vrba and Robinson, 2001). Then,

the forward problem can be seen as a magnetostatic problem, where the magnetic �elds are

generated by steady currents (Cheng, 1989; Gri�ths and College, 1999).

One of the main issues with the solution of the inverse problem is its non-unique solution, as

the problem can be seen as an undetermined system where there exist more uncertainties than

the amount of information obtained from the sensors (Clarke and Braginski, 2006; H�am�al�ainen

and Ilmoniemi, 1994). Therefore, there are always ambiguities with the estimated solutions

since these can correspond to di�erent electrical brain current distributions that generate the

same magnetic �elds as the ones that are found solving the forward problem (van Drongelen

et al., 1996; L�utkenh�oner, 2003). The inverse problem solution requires the discretization of

the space that contains the brain electrical currents in order to look for the brain activity,

where the de�ned locations are known as voxels (Clarke and Braginski, 2006). Once the
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voxels are de�ned, it is possible to estimate the solution of the inverse problem based on

regression analysis (H�am�al�ainen et al., 1993; Sekihara and Nagarajan, 2008).

1.2.8 The Biot-Savart law

The Biot-Savart law allows the estimation of magnetic �elds generated by electrical currents,

as is presented in Equation 1.1, where r and ri represent the locations where the magnetic

�elds are measured and the locations for the electrical currents, respectively. Moreover,

�0 and J represent the permeability of the free space and the continuous electrical current

distribution responsible for the generation of the magnetic �elds, respectively.

B(r) =
�0

4�

Z
J(ri)�

r� ri

jr� rij3
dv0 (1.1)

As was mentioned before, the solution of the forward problem is related with the Biot-Savart

law. Thus, in the neurogmanetism context the continuous electrical currents distributions

are represented by the electrical brain currents responsible for the generation of the brain

activity, while the measured magnetic �elds are the obtained MEG data. Therefore, the

locations where the magnetic �elds are measured are determined by the SQUIDs locations,

while the locations where the brain activity is generated are represneted by the voxels obtained

from the discretization of volume used to represent the brain.

The complexity of the Biot-Savart implementation in MEG studies is related with the way

the brain currents and the brain volume are modelled, as their characteristics a�ects the

measurements of the magnetic �elds (H�am�al�ainen et al., 1993; Sarvas, 1987; Williamson and

Kaufman, 1981). The brain currents can be modelled considering all their components, as

is explained in Chapter 3. However, this increase the complexity of the Biot-Savart law

implementation because in most cases not all the components a�ects the measurements. On

the other hand, the brain volume can also be simpli�ed in order to reduce the complexity of

the problem, for example using a spherical volume to represent the brain.

It can be said that the neuromagnetism expression for the Biot-Savart law consists of two

main parts, the sensitivity of the sensors to electrical sources located in the brain, and the

electrical brain sources responsible for the generation of the magnetic �elds. The sensitivity

pro�le of the sensors to a source located at a speci�c location is obtained using unit strength

dipoles oriented on each of the three main axes, in order to represent the e�ects of the brain

source components. Thus, the sensitivity of the sensors for that brain source is obtained by
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estimating the magnetic �elds produced for each of the three dipoles, where the e�ects can be

combined using the magnetic �elds superposition property (Malmivuo, 2000; Sekihara and

Nagarajan, 2008; Lu and Kaufman, 2003). These sensitivity components are known as the

lead�elds, and are composed of the sensitivity of M sensors to the three components of a

brain source located at a speci�c location.

1.2.9 Spatial �lters

Most approaches used to estimate the inverse problem solution are normally regression based

on the least-squares method and on Lagrange multipliers. The non-adaptive spatial �lter

Minimum Norm Estimate (H�am�al�ainen et al., 1993) and the Linearly Constrained Minimum

Variance beamformer, an adaptive spatial �lter (Van Veen et al., 1997), are the most com-

mon approaches that represent these two methods. The estimation, or reconstruction of

brain activity, is possible using a set of weights that de�ne the �lters, designed to allow the

estimation on speci�c locations while the activity located on di�erent locations is reduced.

The characteristics and mathematical expressions of the spatial �lters can be observed better

in Sections 3.3.1 and 3.3.2, for the MNE and the LCMV, respectively.

The MNE and the LCMV spatial �lters have advantages and disadvantages with respect to

each other. The MNE spatial �lter is not a�ected by the presence of correlated brain activity

as it is not adaptive (Kumihashi and Sekihara, 2010; Sekihara et al., 2005). However, since it

is based on the least-squares method, it presents a biased solution in favour of solutions near

the sensors, and a distorted output because of the the external noise e�ects (Gorodnitsky

et al., 1995; Clarke and Braginski, 2006; Kumihashi and Sekihara, 2010). On the other

hand, the LCMV has a solution that does not have a considerable bias, but its performance

decreases in terms of the amount of correlation that exists between the neuronal currents

(Sekihara et al., 2002). This decrease in performance happens because the spatial �lter was

built under the assumption that brain sources responsible for the generation of magnetic

�elds are uncorrelated (Van Veen et al., 1997; Sekihara and Nagarajan, 2008).

Therefore, the performance of MNE and the LCMV spatial �lters depends on the charac-

teristics of the brain studies, even when it is impossible to have complete certainty of how

much correlated is the activity or where this is located the brain activity (Sekihara et al.,

2002; Scho�elen and Gross, 2009). However, in auditory brain studies highly correlated brain

activity is expected, and then, it is expected that the LCMV beamformer will have a low

performance. On the other hand, the MNE should have a good performance in brain studies
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related with expected cortical brain activity, as for example studies related with the brain

motor cortex region.

The uncorrelated brain sources assumption and the weighted solution characteristic of the

MNE spatial �lter have been important issues in the research �elds of brain sources recon-

struction and imaging, and as a result important techniques have been developed for their

improvement. This has resulted in techniques such as the FOcal Undetermined System Solu-

tion (FOCUSS) (Gorodnitsky and Rao, 1997), the standardized Low Resolution Electromag-

netic Tomography (sLORETA) (Pascual-Marqui, 2002), the Multiple-Signal Classi�cation

algorithm (MUSIC) (Mosher and Leahy, 1998), the dual-core beamformer (Brookes et al.,

2007; Diwakar et al., 2011), the null-beamformer (Dalal et al., 2006), and a beamformer based

on the use of a high order covariance matrix (Huang et al., 2004).

Nonetheless, the previously mentioned techniques do not modify the design of the spatial

�lters used as a basis. The techniques unclude improvements that are related with the way

the spatial �lters are implemented, or use small additions to their design. For example, the

FOCUSS algorithm uses the MNE estimated activity as a �lter in order to reduce the �nding

of false brain estimations, while the null beamformer and the dual-core beamformer add one

more location to the LCMV �lter design in order to consider, or to remove, the e�ects present

on the extra location. More complex solutions can be found on the sLORETA and the MUSIC

algorithms, implementing a non-linear search and a search based on the standard deviation

and on the estimated activity to �nd the locations with the real brain activity, respectively.

The estimation for the inverse problem solution, in the neuroscience context, is a research

area where a lot of contributions can still be made, especially with current techniques that

have been positioned as standard tools to study the brain using MEG signals (Sekihara

and Nagarajan, 2008). These techniques are very similar, even when the methods used to

estimate the weights that de�ne the �lters look di�erent (Mosher et al., 2003). Research has

been implemented in order to reduce the e�ects of correlated brain activity and the biased

solutions on the spatial �lters. However, research has also been developed to reduce the

artefacts generated by the external noise and the linearity between the lead�elds, as these

also a�ect the performance of spatial �lters (Sekihara and Nagarajan, 2008).

The techniques presented to solve the inverse problem rely on the inversion of the product

between the lead�eld vectors, or on the expression for the covariance matrix of the measured

magnetic �elds, which in some sense also depends on the lead�eld vectors, which are used

to map the brain activity sources from the source domain to the sensor domain (Van Veen
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et al., 1997). A problem is present for the MNE when the lead�elds for di�erent locations

are linearly dependent, which causes numerical instability in the inversion of the product

between the lead�elds vectors, and hence, it requires the use of regularization techniques for

the inversion of the matrix (H�am�al�ainen et al., 1993; Sarvas, 1987). The LCMV beamformer

does not present that problem but its performance is sensitive to errors in the calculations of

the lead�elds (Sekihara et al., 2001).

The external noise is an important factor as it is not considered in the design of the spatial

�lters causing the estimation of false brain current distributions (Sarvas, 1987; Van Veen

et al., 1997). Most studies based on the spatial �lters consider the noise as Gaussian uncorre-

lated noise, which nowadays is a reasonable assumption using state-of-the-art noise reduction

methods (Imada, 2010). The MNE deals with noise by reducing the number of eigenvalues in

the inversion of the lead�elds product matrix, unfortunately this also reduces the accuracy of

the estimated brain sources time series (Sarvas, 1987). The LCMV reduces the e�ect of noise

using the matrix inversion lemma in order to �nd the form of additive noise in the output of

the �lter, and therefore, the output of the �lter is regularized to reduce the noise (Van Veen

et al., 1997; Huang et al., 2004).

The estimation of underlying brain sources from MEG data is a problem that has been im-

proved over the last four decades. However, there still exists many problems that make the

current techniques to fail, depending on the characteristics of brain studies and on environ-

mental factors. A priori knowledge of possible active brain regions can reduce the �nding of

spurious activity (Jirsa and McIntosh, 2007), also the combination of MEG, EEG and fMRI

techniques (Preissl, 2005; Handy, 2009). The inverse problem solution is used in di�erent

types of studies to have a better understanding of the brain. In brain dynamics studies the

estimated solution of the inverse problem is used in metrics such as correlation and spectral

coherence in order to �nd any relationships that exist between the di�erent brain regions.

1.2.10 Magnetoencephalography and brain dynamics

The study of brain interactions is an important �eld in neuroscience that helps to under-

stand the e�ects that di�erent brain regions have on other regions. The interactions are

possible because the brain is able to perform, at the same time, many cognitive processes

generated in di�erent brain regions that interact between them in order to achieve more

complex processes (Scho�elen and Gross, 2011; Fingelkurts et al., 2005). Thus, interactions

between brain regions are known as brain dynamics, and can be classi�ed into three dif-
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ferent categories known as the structural connectivity, the functional connectivity and the

e�ective connectivity (Sporns, 2011; Sporns and Tononi, 2007), Figure 1.7. The structural

connectivity, or anatomical connectivity, are the physical connections between neurons and

the networks of the brain, while the functional and the e�ective interactions are those gener-

ated by coordinated activity of di�erent brain regions, with the di�erence that the e�ective

connectivity also shows the direction of those interactions, often interpreted as causality.

Figure 1.7: Representation of anatomical, functional, and e�ective connectivity networks[7]. A)
Represents an anatomical network of a macaque cortex, in the form a cortical map and with a cross-
correlation matrix. B) Top, Functional connectivity network represented by a cross-correlation matrix,
in the bottom is presented the matrix thresholded to remove negative and self-self correlations. C)
Top, e�ective connectivity network, obtained with inter regional transfer entropy, in the bottom is
presented the same matrix thresholded to maintain the strongest connections.

Brain functional dynamics obtained from MEG data are normally calculated in the source

space rather than in the sensor space, because of the magnetic �elds spread e�ect (Dalal et al.,

2008). It is necessary to use the inverse problem solution in order to estimate the functional

interactions by calculating the correlation coe�cient between the estimated brain currents in

the time domain (Scho�elen and Gross, 2009), or by calculating the spectral coherences in

the frequency domain (Jerbi et al., 2007). The accuracy of the brain interactions calculations

depends on the performance of the spatial �lters to solve the inverse problem for the time

domain case, while for the frequency domain case also depends on techniques such as the

[7]Image from (Sporns, 2011)
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Welch periodograms (Welch, 1967) and the multitaper approach (Percival and Walden, 1998).

Moreover, there exist other approaches to estimate the brain dynamics using MEG data, as

the Dynamic Imaging of Coherent Sources (DICS) (Gross et al., 2001) and the use of a neural

mass model (David et al., 2004).

DICS is a technique based on the estimation of the covariance matrices of the brain sources in

the time domain, or on the estimation of the cross-spectral density matrices in the frequency

domain. It uses the estimated cross-spectral matrix to obtain metrics for brain sources

relationships using singular value decomposition, where the metrics, in combination with the

calculation of the spectral coherences, gives an estimation of the functional brain dynamics

(Gross et al., 2003). The main advantage that DICS has against the normal approach is its

computational e�ciency, if we are interested in looking for all possible interactions among

the di�erent brain regions. However, more information regarding the brain currents can be

obtained in the normal approach, as these are needed for the estimation of the brain sources

time series in order to estimate their spectrum. On the other hand, DICS only gives metrics

based on the covariance matrices between the brain sources, or on the cross-spectral density

matrix in the frequency domain case. It does not give more information about the distribution

of currents that generate the magnetic �elds (Gross et al., 2001).

The DICS approach has the same limitations as the LCMV, which is expected as it is based on

the LCMV beamformer, which decreases its performance in the presence of correlated brain

activity (Sekihara and Nagarajan, 2008). Nevertheless, it is not common in brain studies

to deal with highly correlated activity among distant brain regions (Liljestr�om et al., 2005).

This gives the use of DICS a justi�cation to be implemented, even when the assumption

used as a base for the LCMV, and then for DICS, contradict its use for brain dynamics

studies (David et al., 2003). The use of the LCMV as an independent tool from DICS to

estimate the functional brain dynamics gives the same results as DICS, if the singular value

decomposition used in DICS is implemented with the LCMV, which is expected as DICS is

a modi�ed version of the LCMV (David et al., 2003). On the other hand, the use of the

MNE spatial �lter has proved to be able to estimate the brain sources oscillatory activity,

and therefore, brain dynamics (Jensen and Vanni, 2002; Liljestr�om et al., 2005). The use

of the MNE to estimate the brain dynamics is obtained by spatial �ltering the spectrum

of the measured magnetic �elds, and then, by calculating the spectral coherences between

them, where the use of the Welch periodograms has shown to be a good tool to estimate the

spectrum of brain sources (Jensen and Vanni, 2002; Liljestr�om et al., 2005).
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The use of the previously mentioned approaches based on the MNE and the LCMV spatial

�lters have proved to be useful for the estimation of functional brain dynamics (Scho�elen

and Gross, 2011, 2009; David et al., 2003; Liljestr�om et al., 2005). However, the same studies

have also remarked that there exist many problems related with the way in which the brain

dynamics are estimated, especially because of the presence of highly spurious interactions

between di�erent brain regions (Scho�elen and Gross, 2011). Those false interactions could

originate from conditions speci�c to oscillations in the SNR of the system, due to the am-

plitude changes in the brain activity, which can cause similar 
uctuation in the sensor noise

(Scho�elen and Gross, 2009). Another reason is the symmetrical conductor geometry used to

model the brain that can result in artefact e�ects, which in connectivity studies are translated

into spurious interactions (Kujala et al., 2007). These problems are more evident in all-to-all

pairwise connectivity analysis, where the brain connectivity is estimated between voxels, or

between group of voxels, in order to generate maps of brain interactions (Kujala et al., 2008).

The problem related with �nding spurious interactions has limited the use of MEG signals

to implement brain dynamics studies between all-to-all pairwise brain locations (Scho�elen

and Gross, 2009). Di�erent techniques and methods have been presented to reduce the

�nding of false interactions, these are presented in Chapter 4. However, even when these

techniques and methods have proved in simulations that reduce the amount of detected

spurious interactions, there exist external factors that will always generate changes that cause

spurious measurements, making it di�cult to eliminate all possible false brain interactions

(Scho�elen and Gross, 2009; Kujala et al., 2007).

Functional brain interactions are normally estimated in the form of the spectral coherence

matrix, or correlation matrix in the time domain. These matrices are used to estimate the

brain networks depending on the amount of interaction between di�erent regions, which

are normally represented by the matrices o� diagonal elements. The matrices are normally

used together with the estimated brain activity in the form of power maps to represent

the synchronized activities and their locations (Lin et al., 2004; Scho�elen and Gross, 2009;

Liljestr�om et al., 2005). The representation of the power maps is possible using co-registration

techniques, where the space used to solve the inverse problem is mapped onto a brain surface

obtained with the use of the fMRI technique (Hansen et al., 2010; Fuchs, 2007). This allows

a more realistic representation of the brain dynamics, and therefore, a better understanding

of the brain regions that are interacting.

Thus, MEG brain dynamics studies are a�ected by di�erent problems related with the dif-
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ferent stages needed for their estimations. One of the main issues is found with the use of

the spatial �lters, where the LCMV shows a good performance estimating the brain sources

activity, but not when those are correlated. The MNE does not have that problem, but it is

biased to solutions near the sensors. A di�erent problem is the �nding of spurious interac-

tions, generated by the SNR of the system oscillations, and by the symmetry of the geometry

used for the volume that de�ne the brain, which can make the lead�elds more dependent.

Nevertheless, functional brain dynamics studies are an important �eld, and their estimation

needs to be improved in order to increase the con�dence of the results obtained. The im-

provement of the performance of this analysis will help gain a better understanding of the

brain. Moreover, the use of MEG data for the estimation of brain dynamics can increase to

the same level of the EEG and fMRI data. This can also help brain studies by having more

standardized tools to analyse it, and then, by having metrics to compare when each of these

technique can gives better results than the others.

1.3 Hypothesis

In this thesis, accordingly with what has been presented in this chapter so far, is proposed the

following hypothesis:\Improvements in MEG functional brain connectivity studies are possible

following the DICS approach using a spatial �lter that it is not a�ected by the presence of

correlated brain activity".

To be more speci�c, in this work are proposed two di�erent approaches to improve the

estimation of functional brain interactions from MEG data using the MNE and the LCMV

spatial �lters. The �rst approach changes the design of the LCMV spatial �lter in order

to consider the e�ect of correlated brain sources on its solution, while the second approach

explores the idea of using the MNE spatial �lter to estimate the cross-spectral density matrices

from the measured magnetic �elds in the same way that DICS does with the LCMV.

1.4 Thesis outline

This thesis is organised in seven chapters. In the �rst chapter are presented the motivation,

the literature review and the hypothesis related to this work. The second, third and fourth

chapters are used to introduce the theoretical background for the problem, and the basis

for the simulated system used to test the hypothesis. The second chapter presents the basis
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for the generation of the magnetic �elds, and how the neuronal currents that generate the

magnetic �elds originate. The third and fourth chapters are used to explain the basis for the

magnetoencephalography and for the techniques used for the measuring of functional brain

interactions, respectively. The �fth chapter presents the analysis of the results obtained

using the �rst approach presented in the hypothesis, based on the LCMV beamformer. The

sixth chapter presents the results obtained following the second approach presented in the

hypothesis, based on the use of the MNE spatial �lter. The last chapter is used to discuss

and to present the conclusions related to the results obtained in this work, also to present

future work that can be implemented based on the results obtained.



Chapter 2

Electromagnetic �elds of the brain

The brain has been the object of many studies from a long time by now, as presented in

Chapter 1. During this time, many theories have been created, changed and discarded in

order to understand its behaviour. As a consequence, the view of the brain has changed over

time, at the same time that new techniques and methods have been developed and adapted

from other �elds for its study. The �rst methods developed to analyse the brain anatomy and

its functionality were based on dissection and external electrical stimulus to the brain (Bear

et al., 2007). However, it was in 1875 when the �rst attempt to measure the brain electrical

activity generated was made by Richard Caton, providing the evidence for the existence of

electrical brain currents, and the bases for studies such as the Electroencephalograms (EEG)

and the Magnetoencephalograms (MEG) (Niedermeyer and Silva, 2005).

In this chapter are presented the bases for the generation and transmission of the brain

electrical currents related to the generation of the brain activity. The chapter is divided in

three main sections. The �rst section introduces some of the most important characteristics of

the brain related to the generation of neuronal currents, and a brief description of some of the

elements of the brain cortex. The second section introduces the brain processes that generate

the action potentials and the transmission of information between neurons, and between

neurons and the di�erent part of the human body. The last section is used to explain how

the neuronal currents and the magnetic �elds are generated by the brain activity.

40
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2.1 The human brain

The human brain has been de�ned as the most complex organ that can be found in nature.

The brain is composed of cells like the rest of the organs that can be found in the human

body, where the cells are the ones that determine the functionality of each of these organs.

Most of the brain cells are in the range of :01 � :05 mm in diameter. This was one of the

main problems for neuroscientists in the beginning of the brain study, when they were trying

to understand the brain function by analysing the structures of the cells (Bear et al., 2007).

Nowadays we know that the neuron and glia are the main structures for the brain cells, also

that there are approximately 100 billion neurons in the brain, while the glia cells outnumber

the number of neurons by tenfold (Bear et al., 2007).

Brain cells can be found in the two main components of the central nervous system, the

brain and the spinal cord, which are composed by white and grey matters. The grey matter

consists mainly of neurons, while the white matter is mostly composed of the glial cells and

myelinated axons (Chudler, 2009). The grey matter is distributed along the brain surface

or cortex, whereas the white matter provides the support for the neurons located in the

grey matter (Bear et al., 2007). Thus, the brain functionality relies on how the di�erent cell

structures interact with each other, as explained in the following subsections.

2.1.1 Neurons

Neurons are considered as the unit of brain function, as is stated in the neuron doctrine

established by Ramon y Cajal (Jirsa and McIntosh, 2007). The neurons are specialized brain

cells designed to transmit information to other neurons or to di�erent parts of the human

body (Carey and Kibiuk, 1990). This transmission of information is possible because of the

characteristics of the di�erent parts that compose the neurons, which consists of the soma,

the axon and the dendrites. In the Figure 2.1 is presented a general structure for the neuron,

composed by parts that are important to understand the generation of the action potentials

and the neuronal currents, as is explained in the next section.
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Figure 2.1: General structure and components of a neuron[1].

The soma is the main body of a neuron, it is the spherical central part which is rich in

potassium solution known as cytosol. The solution that is separated from the outside of

the cell by the neuron membrane (Bear et al., 2007). The soma also contains specialized

components called organelles, which are small structures that maintain the cell and help with

its functionality (Chudler, 2009). The nucleus, the rough endoplasmic reticulum, the smooth

endoplasmic reticulum, the Golgi apparatus and the mitochondria, are some of the most

important organelles that are found inside the soma, where each of these performs di�erent

processes in order to help with the correct behaviour of the cell (Carey and Kibiuk, 1990).

The axons and dendrites make possible the communication between neurons and between

neurons and di�erent parts of the human body, where a neuron can have many dendrites but

only one axon (Chudler, 2009). The information generated in a neuron is sent away from

the cell body, or is transmitted, by the axon, while the dendrites bring information from

other sources to the neuron. This 
ow of information is possible because of the mechanisms

provided by the di�erent parts of the neuron, where the information is generated, ampli�ed

and transmitted in the form of electrical and chemical signals (Trappenberg, 2002), as is

explained in the next section.

The axon begins with the axon hillock, and then continues through the main axon branch

until the axon terminals, the sites where the axon interacts with other neurons or cells in order

transmit information, as is presented in Figure 2.1. The junction between the axon terminal

and other neurons or cells is known as a synapse, and the sides for the interactions with the

transmitting and receiving neurons and cells can be classi�ed as presynaptic and postsynaptic

terminals, respectively. The presynaptic terminal side consists of the axon terminal, while

the postsynaptic terminal side refers to the soma or dendrites of another cell or neuron, as

[1]Figure adapted from (Chudler, 2009)
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can be seen in the Figure 2.2. The space between the presynaptic and the postsynaptic

terminals is known as synaptic cleft, and the transmission of information between them is

called synaptic transmission (Bear et al., 2007). This transmission is possible because of the

synaptic terminal vesicles, which use a special type of chemistry involving neurotransmitters

that allows the 
ux of information between the synapse terminals.

Presynaptic
axon terminal

Postsynaptic
dendrite

Synaptic
cleft

Synapse

Figure 2.2: The axon and the synapse terminals[2].

2.1.2 Glial cells

Another important component in the brain are the glial cells, which have di�erent functions

and physical properties than the neurons. The glial cells are the main support for the neurons,

and without them the neurons would not work properly. The glial cells destroy pathogens and

remove dead cells from the brain, while providing the neurons insulation and their physical

and nutritional support (Chudler, 2009). This support to the neurons is possible because of

the two di�erent structures of glial cells that can be found in the brain, the astrocytes and

the myelinating glial (Bear et al., 2007).

The astrocytes are the most common glial cells found in the brain, which are used to �ll the

spaces between neurons. The main functions for the astrocytes are the provision of nutrient

to the nervous tissue and the regulation of the chemical content of the extracellular space

(Bear et al., 2007). On the other hand, the myelinating glial, or myelin sheath, is a special

tissue produced by some glial cells that insulate sections of the axon by covering some of its

parts. The brakes in the myelin sheath insulation are called nodes of Ranvier, as can be seen

in Figure 2.1. This combination of the myelin sheath with the nodes of Ranvier increases the

[2]Figure adapted from (Bear et al., 2007)
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speed for the transmission of information down the axon (Chudler, 2009).

2.1.3 The cortex

As was mentioned before, the grey matter is distributed along the brain surface or cortex,

where are found most of the neurons responsible for the brain functionality. Moreover, the

white matter consists of the glial cells and the myelinated axons, which are surrounded by

the grey matter, providing the support required for the neurons located in the cortex (Bear

et al., 2007). The cortex is divided in two hemispheres connected by a bundle of 200 to

300 million of axons called the corpus callosum (Chudler, 2009). Each hemisphere consist of

four lobes composed of various sulcus and gyrus, or the hills and valleys of the brain surface

(Chudler, 2009). The particular pattern of sulcus and gyrus folds of the cortex hide the true

size of the brain surface, as can be seen in the Figure 2.3, where are also presented the brain

grey matter and the white matter.

Gray matter
White matter

BRAIN

Figure 2.3: The brain cortex and the gray and white matters. The �gure presents a slice of the brain,
where the grey and white matters can be observed[3].

The four lobes located on the brain surface are the frontal lobe, the parietal lobe, the temporal

lobe, and the occipital lobe, each of these performs functions related to di�erent actions and

stimulus such as speech, movement, pain and vision (Chudler, 2009). Thus, the functionality

of the four lobes, or brain cortex, rely on the neurons located in the grey matter, which are

orientated according to the brain surface characteristics. To be more speci�c, the orientations

of the neurons follows the gyrus and sulcus brain cortex pattern, as is presented in Figure 2.4.

Thereby, the generation of the brain activity follows the same orientation as the neurons, as

will be explained in the next section.

[3]Figure adapted from (Chudler, 2009)
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Gyrus

Sulcus

Brain NeuronOrientation

Figure 2.4: The orientation of neurons in the brain surface (cortex)[4].

2.2 Generation of brain activity

The human body responses to external stimulus are possible because of the brain structure

and functionality, where sensations are interpreted and processed in order to control our

actions. The external sensations are translated into our bodies as electrical signals that

travel at great speed through the di�erent parts of the peripheral nervous system. This 
ow

of electrical signals continues until the interneurons, where the signals are send to the brain

in order to be processed (Chudler, 2009). The electrical signals are known as neuronal signals

once they are in the brain, where they are directed to di�erent regions depending on the type

of the external stimulus (Bear et al., 2007; Carey and Kibiuk, 1990). This transmission of

information is known as neuronal signalling, and it is the basis for the generation of brain

activity, or neuronal currents.

2.2.1 Action potentials

The transmission of electrical signals in the brain is achieved in a di�erent way than in the

well known case of an insulated copper wire (Bear et al., 2007). In a wire, the transmission

of information is possible because of its conductivity property, allowing a 
ow of electrons

through the wire. Moreover, the wire is well insulated, increasing the 
ow of electrons instead

of their radiation away (Bear et al., 2007). Brain cells have less conductivity and insulation,

limiting the transmission of electrons. However, the transmission of signals is possible by

transmitting electrically charged atoms through the axons, also known as nerve impulses

or action potentials (Bear et al., 2007). The action potentials start on the neurons and

muscle cells with excitable membranes (Bear et al., 2007), and are characterized to have

�xed duration and to travel through the axons at speeds up to 268 miles/hr (Chudler, 2009).

[4]The neuron �gure used was adapted from (H�am�al�ainen et al., 1993)
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The normal state of the neuron membrane is present when the cytosol has a negative electrical

charge compared with the outside of the neuron body, this di�erence in electrical charges

across the membrane is known as the resting state potential. The action potential occurs

when the neuron is activated, and temporally reverses the electrical charge of the interior

of the membrane, from a negative value to a more positive one (Carey and Kibiuk, 1990).

This electrical charge can travel down the axon until it reaches the axon terminal, where the

charge is transmitted to other neurons or cells generating the brain signals.

The generation of action potentials starts with a process known as depolarization, which

changes the neuron resting state potential to a more positive value. Then, the value of the

action potential reaches a peak. After this peak, the value of the membrane potential changes

from a positive value to a more negative one, a process known as repolarization. The next

process is the hyperpolarization, where the potential of the membrane passes from a negative

value to a more negative one, until reaching the resting state potential again, where there

is a last change in the direction of the action potential value known as after polarization.

The generation of action potentials can be separated into fours main parts, the rising phase

(depolarization), the overshoot (repolarization), the falling phase (hyperpolarization) and the

undershoot (after polarization) (Bear et al., 2007), as can be seen in Figure 2.5.

Resting potential

Rising phase
Falling phase

Undershoot

Spike

0

+40mv

-70mv

Overshoot

Figure 2.5: Generation of action potentials[5].

2.2.2 Neural signalling

Signal transmission between neurons or cells in the nervous system is essential for the correct

functionality of the brain. This process is achieve by transmitting action potentials to the

di�erent parts of the nervous system. This is possible since an action potential generates a

depolarization in the potential of the neuron, generating a depolarization in the axon, where

[5]Figure adapted from (Trappenberg, 2002)
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the in
ux of positive charges depolarizes the next segment of the axon membrane until a next

action potential is generate in the axon. This process allows the transmission of the action

potential through the main axon branch until it reaches the axon terminals (Bear et al.,

2007). The propagation of the action potential through the axon is presented in Figure 2.6.

+ +

+

+ +

+

+ +

+

+ +

+

Time zero

1ms later

2ms later

3ms later

Axon
Depolarization

Depolarization due to the presence of positive charges

Hyperpolarization

Figure 2.6: Transmission of action potentials[6].

Connections between neurons are made on speci�c locations of the neurons called synapses,

which are composed by presynaptic and postsynaptic terminals in order to interact with the

transmitter and receiver neurons, respectively (Trappenberg, 2002), Figure 2.7. The e�ect

of action potentials on the synapse can be classi�ed as two di�erent types, depending on

how the postsynaptic potential a�ects the potential of the receiving neuron membrane. It

is called excitatory postsynaptic potential when it increases the potential in the receiving

neuron , while the potential is called inhibitory postsynaptic potential in the opposite case

(Trappenberg, 2002). This transmission of action potentials though the axons and between

beurois can also be seen as the generation of ionic currents, explained in more detail in the

following subsection.

[6]Figure adapted from (Bear et al., 2007)
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postsynaptic
terminal

presynaptic
terminal

Figure 2.7: Transmission of information between neurons[7].

2.3 Magnetic �elds of the brain

The neural signalling underlying brain processes are responsible for the generation of electric

currents that generate magnetic and electric �elds measurable outside the head and on the

scalp, respectively. The generation of magnetic �elds follows the neuromagnetism principle,

de�ned as the study of magnetic �elds generated from the brain activity (Lu and Kauf-

man, 2003). Neuromagnetism is based on the electromagnetism laws, to be more speci�c,

in the magnetic 
ux generated from electric currents 
owing through a conductor (Cheng,

1989). The produced magnetic �elds depend on many of the brain characteristics, from the

transmission of action potentials, to the simultaneous activation of groups of neurons that

generate currents with enough strength to generate measurable magnetic �elds. The magnetic

�elds produced by brain currents are the base for the Magnetoencephalography technique,

explained in more detail in the next chapter.

2.3.1 Neural currents

Changes in the postsynaptic potential polarizes the neuron, generating a 
ux of ions that


ows through and along the neuron membrane. These ionic currents are better known as

neuronal currents, which direction of 
ow depends on the e�ects of the postsynaptic potential,

Figure 2.8. The transmembrane currents are known as primary currents Jp, and are respon-

[7]Figure adapted from http://en.wikipedia.org/wiki/Neuron
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sible for the generation of passive currents Jv, or volume currents, which are induced as a

consequence of the conductive medium that surrounds the neuron (Niedermeyer and Silva,

2005). The volume currents are responsible for most of the generated electric potentials that

can be measured on the scalp (Nunez and Srinivasan, 2006), while the primary currents are

responsible for the generation of most of the measurable magnetic �elds outside the head

(H�am�al�ainen et al., 1993).

Inhibitory SynapseExcitatory Synapse

Volume currents

Primary currents

Figure 2.8: Neuronal currents, their directions depends on the postsynaptic potential [8].

However, even when the volume and primary currents are mostly responsible for the gener-

ation of the scalp potentials and the magnetic �elds, respectively, they also generate part of

both measurable �elds (Baillet et al., 2001). Although, the measurable magnetic �elds are

produced from combined neuronal currents generated in spatially structured arrangements

of cells, because the strength of magnetic �elds generated by a single neuron is too weak.

This is possible because of the magnetic �elds superposition property (Baillet et al., 2001).

Typically, the measurable magnetic �elds are produced by the simultaneous brain activity

generated by 104 to 105 neurons (Vrba and Robinson, 2001). Therefore, brain studies based

on the magnetic �elds are limited to the macroscopic space (Sarvas, 1987), where primary

currents are seen as currents generated inside and in the vicinity of a neuron, while the volume

currents as currents 
owing everywhere else in the medium (H�am�al�ainen et al., 1993).

[8]Figure adapted from (H�am�al�ainen et al., 1993)
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There are di�erent assumptions for the brain conductivities in order to consider the volume

currents. The two most common are the brain as a homogeneous volume conductor, and the

brain composed of regions with di�erent homogeneous conductivities. This is an important

factor to considerer, as the magnetic �elds generated by the brain activity respond to these

changes in conductivities (H�am�al�ainen et al., 1993). In the second assumption, the volume

currents that a�ect the generation of magnetic �elds are only those located on the boundaries

between regions with di�erent conductivities (H�am�al�ainen et al., 1993). However, at the

macroscopic level, the complexities added from consideration of di�erent conductivities are

ignored, as a results it is assumed that the whole brain is a homogeneous conductor where

the volume currents do not generated measurable magnetic �elds (H�am�al�ainen et al., 1993).

2.3.2 Magnetic �elds

Electric currents are always associated with magnetic �elds perpendicular to its direction

(Papanicolaou, 2009), this same principle also applies to neuronal currents. The magnetic

�elds generated from brain activity are possible in the same way that magnetic �elds are

produced from a current 
owing through a wire, but in the brain the wire is replaced by a

single neuron, or by a bundle of neurons with simultaneous activity. The direction of the

generated magnetic �elds follows the right hand rule with respect to the direction of the

neuronal currents, as is presented in Figure 2.9. The magnetic �elds generated are additive

and do not a�ect each other. Their strengths are proportional to the strength of the neuronal

currents that generate them, and their intensity decreases as a function of the square of the

distance from the neuronal currents (Lu and Kaufman, 2003), as is show in Figure 2.9.
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Primary current

Magnetic fields

Figure 2.9: Direction and strength of neuronal generated magnetic �elds. The direction follows the
right hand rule with respect to the brain currents, while its amplitude is reduced as a function of the
square of the distance from the brain activity [9].

The very small dissipation of the magnetic �elds because of the di�erent layers that compose

the head is an important characteristics that has increased their use for the study of the

brain, as is explained in the next chapter. This lack of distortion from the e�ects of the

di�erent layers that compose the head is possible because the biological tissues o�er almost

zero resistance to the 
ux of magnetic �elds (Lu and Kaufman, 2003). This means that the

magnetic permeability of the head tissues are practically the same as the empty space (Lu and

Kaufman, 2003). Magnetic permeability is used as a metric to indicate the e�ects of magnetic

�elds in the magnetization of a speci�c material (Hansen et al., 2010). However, a di�erent

scenario is presented for potentials generated in the scalp by the volume currents, which are

distorted and attenuated while they emerge to the surface of the head (Papanicolaou, 2009).

One assumption used in neuroscience for the study of the magnetic �elds generated from

the brain is the model of the head as a sphere. This modelling simpli�es their study, as

the contribution to the generated magnetic �elds from the volume currents depends on the

geometry of the head (H�am�al�ainen et al., 1993). In the spherical shape case, all the generated

magnetic �elds will be induced only by the e�ects of primary currents. The contribution of

volume currents to the generation of magnetic �elds tends to increase as the model used for

the head deviates from the spherical shape (Papanicolaou, 2009). This is one example of

an assumption used for a study of the magnetic �elds generated by the brain activity, also

known as magnetoencephalograms, which are explained in more detail in the next chapter.

[9]Figure adapted from (H�am�al�ainen et al., 1993; Clarke and Braginski, 2006)
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2.4 Summary

The generation of magnetic �elds involves many brain processes, from the receiving of the

external stimulus in the form of potentials, to their transmission to the brain in order to

generate electrical neuronal currents. However, the study of the brain magnetic �elds is not

straight forward, as are required many assumptions to have a better understanding. This

because of the brain complexity, which makes di�cult to relate the measurable magnetic �elds

with speci�c brain elements as the neurons. Instead, the brain activity responsible for the

magnetic �elds generation is considered to be generated by synchronized bundle of neurons,

which facilitate the brain understanding. Other assumption used to simplify the problem

is the discarding of the e�ects of volume currents, or passive currents, in the generation of

magnetic �elds, which can increase the complexity of the brain understanding by adding the

brain conductivities and more realistic brain volume models for the problem.



Chapter 3

Magnetoencephalography

Magnetoencephalography is a non-invasive technique that allows measurements of magnetic

�elds outside the head, generated by brain activity. This is possible using a special type

of sensor capable of sensing very small magnetic �elds (Clarke and Braginski, 2006). The

measured magnetic �elds, or MEG data, have a good time resolution and are almost undis-

torted by the di�erent layers that compose the head. These properties allow its use for brain

studies and give advantages compared against other non-invasive techniques such as Elec-

troencephalograms and functional Magnetic Resonance Imaging, which are a�ected by the

di�erent layers of the head and have a low time resolution, respectively. It also has disadvan-

tages, whereas its low spatial resolution and high sensitivity to neuronal currents tangential

to the brain surface are some of the most critical ones (Niedermeyer and Silva, 2005).

In this chapter are presented the basis to study the brain from MEG data or recordings. The

�rst section introduces the characteristics of the MEG acquisition system, while the second

and the third sections explains the measurements of magnetic �elds outside the head, and two

of the most used techniques to estimate the brain activity responsible for the generation of the

magnetic �elds, respectively, the linearly constrained minimum variance (LCMV) beamformer

and the minimum norm estimates (MNE) spatial �lter. The last section presents some of the

most known variations for the MNE spatial �lter and for the LCMV beamformer, used to

reduce their most characteristics problems.
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3.1 MEG acquisition system

The measurements of magnetic �elds generated by biochemical processes inside the brain have

been studied since 1960s, when the �rst magnetic brain recording, or magnetoencephalograms,

was published (Clarke and Braginski, 2006). However, it was not until the early 1970s when

recordings with good signal quality were available (Malmivuo, 2000), those recordings were

obtained using the Superconducting QUantum Interference Devices (SQUID). Since then, the

number of SQUIDs used in the MEG acquisition system has increased considerable, to whole

head system with more than 200 sensors (Clarke and Braginski, 2006; Baillet et al., 2001).

Nevertheless, the cost of the system has also increased since the SQUID development, which

required expensive and complex instrumentation components, such as 
ux transformers, a

cryogenic block, and a shielded room (Clarke and Braginski, 2004), Figure 3.1.

SQUID
electronics

Shielded room

SQUID

Liquid
helium

Dewar

Flux
transformer

Vacuum gap

Figure 3.1: Single channel MEG acquisition system[1].

Most of the MEG acquisition system components are needed because of the SQUIDs charac-

teristics, which require a cryogenic block to keep their temperatures, and the 
ux transformers

temperatures, which are required to be superconductors. The shielding room is necessary to

reduce the external interferences that have stronger signals than the magnetic �elds generated

by the brain activity. The MEG acquisition system components can be observed in Figure

3.1, where the dewar, or MEG 
ask, is the place where the SQUIDs, the 
ux transformers,

and the cooling block are located. The 
ask has a vacuum gap that separate the coils from

the scalp surface. The 
ux transformer can be found in the form of magnetometers, radial

or planar gradiometers, or a combination of both (Clarke and Braginski, 2004).

[1]Figure adapted from (Pizzela et al., 2001)
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The magnetic �elds are measured on the SQUIDs in the form of electric currents induced

on the 
ux transformers, which follows the right hand rule (Handy, 2009). The SQUIDs

sensitivities to the magnetic �elds generated from the brain activity depends on the con�g-

uration and design of the 
ux transformers, which pick up the magnetic �elds components

normal to its surface (H�am�al�ainen et al., 1993). This dependence on the 
ux transformer

is because of their di�erent con�gurations, which can reduce or cancel the e�ects that the

external noise and background interferences have, while at the same time improve the ac-

curacy of the measured magnetic �elds (H�am�al�ainen et al., 1993). For example, the axial

�rst order gradiometer composed of two coils is more sensitive to signals near the lower coil,

while the upper coil is used to compensate the artefacts e�ects from distant sources (Handy,

2009). The magnetometer is another example of 
ux transformers, which consist of a single

loop wire sensitive to the magnetic �eld components perpendicular to its area (Vrba and

Robinson, 2001). In Figure 3.2 are presented some con�gurations for the 
ux transformers.

Ba

Bb

Ba Ba

Bb Bb

Ba

Ia Ib+ Ia Ib+

Ia

Ia Ia Ib+

a. Magnetometer b. Axial gradiometer
(!rst order)

c. Planar gradiometer
(!rst order)

Figure 3.2: Magnetic 
ux transformers[2]. a) Magnetometer, b) Axial gradiometer, and c) planar
gradiometer. In the �gure are shown the magnetic �elds e�ects from distant sources (Ba) and for
local sources (Bb), which induce currents (Ia and Ib) on the 
ux transformers coils.

3.2 Magnetic forward problem

The forward problem in neuromagnetism consists in the measurement of magnetic �elds

outside the head, where the measured magnetic �elds are obtained from the contribution of

various magnetic �elds generated from synchronous neural activity. This is possible because

of the super imposable property that the magnetic �elds have, which are additive and do not

a�ect each other (Lu and Kaufman, 2003). The calculation of the magnetic �elds outside

the head generated by brain electrical currents is achieved using Maxwell equations in their

quasi-static approximation form (H�am�al�ainen et al., 1993), which are listed below:

[2]Figure adapted from (Handy, 2009)
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r �E = �=�o (3.1)

r�E = ��B=�t (3.2)

r �B = 0 (3.3)

r�B = �o(J + �o�E=�t) (3.4)

where B and E represent the magnetic and electric �elds generated by neuronal currents

J, respectively. Moreover, �0, �0 and � represent the permeability of the free space, the

permittivity of the free space, and the charge density, while r�, r�, and �=�t represent

the divergence, the curl, and the partial derivative operators, respectively. The Maxwell

equations are the base for the magnetostatic, which is de�ned as the study of steady magnetic

�elds generated by steady currents, currents that do not have any variation in their charge,

r�J = 0 (Gri�ths and College, 1999; Cheng, 1989). The use of the quasistatic approximation

is justi�ed because the electrical currents generated from brain activity oscillates in a range

of frequencies below 1 Khz (Baillet et al., 2001; H�am�al�ainen et al., 1993).

3.2.1 Equivalent current dipoles

The synchronous neuronal activity can be represented as equivalent currents dipoles (ECD)

(H�am�al�ainen et al., 1993), which generate electric and magnetic �elds similar to the neuronal

currents, Figure 3.3. This is under the assumption that the magnetic �elds are generated

by segment of currents that are relatively small compared with the distance from where

the �eld is measured, and because of the super imposable magnetic �elds property (Lu and

Kaufman, 2003). Then, N equivalent current dipoles can be used to represent the brain

activity generated by synchronous neuronal activity located on N di�erent regions. This also

helps to �nd a mathematical solution for the inverse problem, where the unknown locations

are limited to speci�c positions in order to look for the brain activity (Papanicolaou, 2009).
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Figure 3.3: Magnetic �elds produced by a current dipole[3]. The �gure shows the magnetic �elds
produced by a current dipole immerse in homogeneous conducting medium. It can be observed that
the magnetic �elds B are due to the current dipole q, not to the volume currents Jv.

The neuronal currents can be divided into two components, the primary currents Jp and

the volume current Jv, as was explained in the previous chapter. At the macroscopic level

the primary currents are the responsible for the generation of the magnetic �elds. Then,

the current dipole can be seen as a concentration of primary currents Jp to a single point

(H�am�al�ainen et al., 1993). In Equation 3.5 is presented the expression for the current dipole,

where q 2 R
3 is a vector that represents the strength of the dipole and its direction, q is a

scalar used for the magnitude of the positive and negative dipole charges, and r2 2 R
3 and

r1 2 R
3 are the locations for the charges that create the current dipole, Figure 3.3.

q = q(r2 � r1) (3.5)

3.2.2 Biot-Savart law

The Biot-Savart law describes the relation between an electric current at position ri 2 R
3

and the magnetic �eld at position r 2 R
3 generated by that current (Cheng, 1989). In the

neuromagnetism problem context, the Biot-Savart law is used to describe the magnetic �elds

at position r, B(r) 2 R
3, generated by electrical currents located in the brain at positions

ri, J(ri) 2 R
3, Equation 3.6 (Baillet et al., 2001; Sarvas, 1987). These currents can be

replaced, at the macroscopic level, by synchronous neural activity located on a speci�c brain

region, or by an equivalent current dipole q, which simpli�es the expression for Equation

[3]Figure adapted from (Lu and Kaufman, 2003)
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3.6 (H�am�al�ainen et al., 1993; Lu and Kaufman, 2003). However, the use of the Biot-Savart

law in the neuromagnetism context depends on factors such as the shape of the volume that

de�nes the head, and the consideration of homogeneous or non-homogeneous conductivities

for the volume conductor, which increase the complexity for the solution of the Biot-Savart

law. The density current J(ri) can be expressed by Equation 3.7, where E(ri) 2 R
3 is the

electric �eld generated in the membrane of the neuron, V is the scalar membrane potential,

and � is the brain region conductivity (H�am�al�ainen et al., 1993).

B(r) =
�0

4�

Z
J(ri)�

r� ri

jr� rij3
dv0 (3.6)

J(ri) = Jp(ri) + Jv(ri) = Jp(ri) + �E(ri) = Jp(ri)� �rV (3.7)

The inclusion of di�erent conductivities for homogeneous brain regions requires the consid-

eration of volume currents in the Biot-Savart law expression, as can be seen in Equation 3.8,

where �j is used to express the di�erent conductivities found in m brain regions Gj , while

B0(r) 2 R
3 are the magnetic �eld generate by the primary currents, or equivalent current

dipoles, as can be seen in Equation 3.9. In the case of a in�nite homogeneous conductor

the magnetic �elds are obtained only considering the primary current (H�am�al�ainen et al.,

1993; Sarvas, 1987). Another important factor to consider in the measurements of the mag-

netic �elds is the shape of the head, such as the case of a spherical symmetric conductor,

where the magnetic �elds are obtained without considering the volume currents (Sarvas, 1987;

H�am�al�ainen et al., 1993).

B(r) = B0(r)�
�0

4�

mX

j=1

�j

Z

Gj

r0V �
r� ri

jr� rij3
dv0 (3.8)

B0(r) =
�0

4�

Z
Jp(ri)�

r� ri

jr� rij3
dv0 (3.9)

Thus, the measurements of magnetic �elds generated by synchronous activity located on a

speci�c brain region, in a unbounded homogeneous medium, can be represented by Equation

3.10 (Sarvas, 1987), where t is the time instant when the magnetic �elds are measured, while

ri is the average between distances r1 and r2, or the current dipole q(ri) location, Figure

3.4. Therefore, the magnetic �elds can be calculated using Equation 3.11, where each of the



3.2. Magnetic forward problem 59

N brain sources, located in the unbounded homogeneous mediumthat de�ne the brain, are

considered for the generation of the measured magnetic �elds (H•am•al•ainen et al., 1993).

B (r ; t) =
� 0

4�
q(r i ; t) �

r � r i

jr � r i j3
(3.10)

B (r ; t) =
� 0

4�

NX

i =1

q(r i ; t) �
r � r i

jr � r i j3
(3.11)

r1

r2

r i

r

+

-

q

q

d

Figure 3.4: Equivalent current dipole representation[4] . The locations for the charges that generate
the magnetic �elds can be observed, the centre of the equivalent current dipole r i , and the location r
where are measured the magnetic �elds generated by the dipole activity.

3.2.3 Lead-�elds

As was mention in the �rst chapter, the lead�elds are de�ned as the sensitivities of the

sensors to the brain sources responsible for the generationof the magnetic �elds. These

are found by calculating the output of the sensors when a unit-magnitude brain source is

placed at a speci�c location and direction (Malmivuo, 2000). Then, the output of sensor

m to a unit-magnitude brain source located at position r i is de�ned as lxm (r i ), lym (r i ), and

lzm (r i ), when the source is oriented to thex, y and z directions, respectively (Sekihara and

Nagarajan, 2008). Hence, the sensitivity of sensorm can be expressed by the 3� 1 lead�eld

vector de�ned as l m (r i ) = [ lxm (r i ); lym (r i ); lzm (r i )] 2 R3. On the other hand, the sensitivity

of M sensors to a source located at positionr i is described by theM � 3 lead�eld matrix

L (r i ) = [ l x (r i ); l y(r i ); l z(r i )] 2 RM � 3, composed by the sensitivities of the sensors to each of

the unit-strength components of the brain source, Figure 3.5.

[4] Figure adapted from (Cheng, 1989)
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Figure 3.5: Sensitivity of M sensors to a unit-magnitude brain source located at position r i , and
oriented in the x, y an z directions[5] .

In the unbounded homogeneous conductor case, the lead-�elds are obtained using the Biot-

Savart law expressed in Equation 3.10. However, the 
ux transformer used to pick up the

magnetic �elds on the sensors are normally oriented tangentially with respect to the surface

of the volume that de�nes the head (Lu and Kaufman, 2003), and therefore, the sensors

are only sensitive to �elds that are normal to the sensors surfaces (Lu and Kaufman, 2003;

H•am•al•ainen et al., 1993). Thus, the magnetic �eld measured on the m sensor at positionr

can be expressed by equations 3.12 and 3.13, where the 3� 1 vector am (r ) 2 R3 represents

the unitary vector normal to the surface of the m sensor, as can be seen in Figure 3.6.

Bm (r ; t) =
� 0

4�
q(r i ; t) �

r � r i

jr � r i j3
� am (r ) (3.12)

Bm (r ; t) = l m (r i ) � q(r i ; t) (3.13)

Figure 3.6: Sensors distribution for the York Neuroimaging Centre. 4D Neuroimaging Magnes 3600
Whole Head 248 Channel MEG scanner[6], represented as blackrings. The orientation of the sensor
was simulated to be radial to the surface of a sphere, represented by blue arrows on the �gure.

[5] Figure adapted from (Sekihara and Nagarajan, 2008)
[6] https://www.ynic.york.ac.uk/FrontPage
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3.2.4 Measuring the magnetic �elds

The solution for the forward problem can be used to express the measurements of magnetic

�elds generated from N brain sources, or equivalent current dipoles, in a MEG acquisition

system composed byM sensors. Then, the magnetic �elds measured on the sensors can be

represented by Equation 3.14, wherex 2 RM is aM � 1 vector composed by the measurements

obtained from the sampling of all the sensors on a single timeinstant t (Van Veen and Buckley,

1988), whilen 2 RM is a M � 1 vector used to express the e�ects of the external noise in the

measurements of the magnetic �elds, which in some cases thiscan be treated as a zero mean

and uncorrelated random process (Imada, 2010).

x =
NX

i =1

L (r i )q(r i ; t) + n (3.14)

The solution for the forward problem can be expressed in the form of products between

matrices and vectors using linear algebra identities (Mosher et al., 1999; Peraza R., 2012).

Thus, Equation 3.12 can be represented as Equation 3.15, where r s 2 R3 and r i 2 R3 are the

locations for the m sensor and thei brain source, respectively, whiler si = r s � r i = [ r x ; r y ; r z],

q(r i ; t) = [ qx ; qy ; qz]T , and am = [ ax ; ay ; az].

Bm (r s; t) =
� 0

4� jr si j3

h
ax ay az

i

2

6
6
6
4

0 r z � r y

� r z 0 r x

r y � r x 0

3

7
7
7
5

2

6
6
6
4

qx

qy

qz

3

7
7
7
5

(3.15)

The composite lead-�eld matrix H = [ L (r 1); L (r 2); : : : ; L (r N )] 2 RM � 3N is presented in

Equation 3.16, whereR si 2 R3� 3 is de�ned in Equation 3.17 (Peraza R., 2012).

H =
� 0

4�

2

6
6
6
6
6
6
4

a1 0 : : : 0

0 a2 : : : 0
...

...
. . .

...

0 0 : : : aM

3

7
7
7
7
7
7
5

2

6
6
6
6
6
6
4

R 11 R 12 : : : R 1N

R 21 R 22 : : : R 2N

...
...

. . .
...

R M 1 R M 2 : : : R MN

3

7
7
7
7
7
7
5

(3.16)

R si =
1

jr si j3

2

6
6
6
4

0 r z � r y

� r z 0 r x

r y � r x 0

3

7
7
7
5

(3.17)
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Therefore, the summation in Equation 3.14 can be expressed as Equation 3.18, where the

matrix m 2 R3N is composed by theN dipole moments responsible for the generation of the

magnetic �elds at a speci�c time instant t, m = [ q1x ; q1y ; q1z; : : : ; qNx ; qNy ; qNz ]T

x = Hm + n (3.18)

Measuring the magnetic �elds in the sensors domain allows anestimation of the brain sources

locations by identifying the characteristic pattern of the magnetic �elds generated from equiv-

alent current dipoles, Figure 3.3. These patterns can be identi�ed using equations 3.14 or

3.18, for the magnetic �elds generated by one and by multiplecurrent dipoles. However, the

magnetic �elds detected on the sensors are a�ected by factors such as the external noise, the

orientation of the sources and sensors, and by the magnetic �elds spread e�ect (Scho�elen

and Gross, 2009; Lu and Kaufman, 2003). In �gures 3.7 and 3.8 are show the magnetic �elds

generated in the noiseless case by an equivalent current dipole, and by a combination of 7

equivalent currents dipoles, respectively. The magnetic �elds are measured at the surface of

a sphere, which represent the sensors domain, where only theorthogonal components of the

�elds with respect to the sphere surface are measured (H•am•al•ainen et al., 1993).

Magnetic !elds [Teslas]

Figure 3.7: Magnetic �elds generated by a tangentially oriented equivalent current dipole, with
respect to a sphere surface that represents the cortex. The sphere on the left represents the brain, while
the sphere on the right is the space where the �elds were measured. The ECD location and orientation
are represented by two points located on the brain volume. The simulation for the generated activity
and the implementation of the Biot-Savar law were made usingpython, while the display of the volume
and the measured magnetic �eld using Mayavi.
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Magnetic !elds [Teslas]

Figure 3.8: Magnetic �elds measured on the surface of a sphere, generated from 7 ECDs. On the
left is presented the sphere that de�nes the brain volume, and the locations and orientations for the
simulated ECDs, as two points per ECD. On the right is presented the measured magnetic �elds
generated from the activity of the 7 ECDs.

3.3 Magnetic inverse problem

The magnetoencephalograms are used to study the brain in �elds such as neuroimaging,

where signal processing and regression techniques are applied to the measured data in order

to understand the brain behaviour (Clarke and Braginski, 2006). However, as was mentioned

before, the study of magnetic �elds on the sensors domain is limited by factors like the �elds

spread e�ect (Scho�elen and Gross, 2009). This is one of the main reasons to use the solution

of the neuromagnetism inverse problem for the study of the brain, rather than the measured

magnetic �elds. The inverse problem deals with the estimation of brain sources time series

from measured magnetic �elds, where the main di�culty for th e �nding of the time series is

the non-unique solution characteristic for the problem (H•am•al•ainen et al., 1993; Sarvas, 1987).

Thus, the common approach followed to solve the problem is byrestricting the locations for

the brain sources responsible for the generation of the magnetic �elds, and then, by inverting

the resulting set of constrained equations (Clarke and Braginski, 2006). Two of the most used

techniques to estimate the solution of the inverse problem are the LCMV beamformer and

the MNE spatial �lter (Sekihara and Nagarajan, 2008), even when these are di�erent spatial

�lters, they share similarities as was showed by Mosher (Mosher et al., 2003), appendix C.
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3.3.1 Minimum Norm Estimate

Minimum Norm estimate is a spatial �lter used in neuromagnetism to estimate the brain

sources responsible for the generation of magnetic �elds measurable outside the head. An

important characteristic of this �lter is its non-adaptive property related to the calculation

of the �lter weights, which depend only on the lead-�eld matr icesL (r i ) (H•am•al•ainen et al.,

1993). This property helps the �lter to not be a�ected by the p resence of correlated brain

activity, which is one of the main problems that the LCMV has (Van Veen et al., 1997).

However, this property also a�ects the performance of the �lter, making it more susceptible

to the e�ects of the external noise. The MNE spatial �lter is b ased on the regression from

the forward problem using the least-squares method to builda constrained set of equations

in order to solve the inverse problem (Sekihara and Nagarajan, 2008)

In minimum norm, the solution for the inverse problem is found searching for brain sources

with the smallest amplitude that satisfy the magnetic �elds measured outside the head

(H•am•al•ainen et al., 1993). This search is made in all the square-integrable brain sources

con�ned in the space spanned by the sensors (H•am•al•ainen et al., 1993), where the concept of

norm is utilized to describe the amplitude of the sources as their lengths or sizes. The MNE

mathematical problem is based on the expression for the forward problem, Equation 3.14,

which is presented for the noiseless case in Equation 3.19. It can be observed in Equation

3.19 that the only unknown parameter are the brain sourcesm, where the magnetic �elds

and the lead-�elds are obtained from the MEG acquisition system.

x = Hm (3.19)

The solution for the inverse problem can be estimated as the solution of the linear least

squares inverse of Equation 3.19, de�ning the estimation ofthe unknown vector m as bm, for

the least-square cost function presented in Equation 3.20 (Sekihara and Nagarajan, 2008).

The solution for the least-square inverse function is shownin Equation 3.21, where H + =

H T [HH T ]� 1 is used to express the generalized inverse of the composite lead �eld matrix H

(Sekihara and Nagarajan, 2008). The inner products of the lead-�elds matrices [HH T ] is

known as the gram matrix (Sekihara and Nagarajan, 2008), andits inverse can cause large

computational errors because of the large eigenvalues thatcompose the matrix most of the

times (H•am•al•ainen et al., 1993). Therefore, it is necessary to use regularization methods

for the inverse problem, where some of the most used methods are the eigen-decomposition
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truncation (H•am•al•ainen et al., 1993), the Singular Valu e Decomposition Truncation (SVDT)

and the Tikhonov regularization (Sekihara and Nagarajan, 2008).

F = jjx � H bmjj2 (3.20)

bm = H + x (3.21)

The eigen-decomposition truncation regularization is implemented on the gram matrix by

suppressing brain sources spanned by the lead-�elds which have poor coupling to the sensors

that measure the magnetic �elds (H•am•al•ainen et al., 1993). Thus, it is necessary to express

the inverse of the gram matrix as the eigen-decomposition ofthe matrix, as is presented

in Equation 3.22, where V is used to express the eigenvectors, while� is used to express

the diagonal matrix composed by the eigenvalues, such that� � 1 = diag(� � 1
1 ; � � 1

2 ; : : : ; � � 1
N ).

Thereby, the regularization is achieved by replacing� with b� in order to express the regu-

larized diagonal matrix of eigenvalues, as can be seen in Equation 3.23. The k eigenvalue is

selected to be equal or greater than the allowed tolerance value � k � Tol, whereas the smaller

eigenvalues are suppressed (H•am•al•ainen et al., 1993).

[HH T ]� 1 = V� � 1V T (3.22)

b�
� 1

= diag(� � 1
1 ; : : : ; � � 1

k ; 0; : : : ; 0) (3.23)

The MNE �lter weights W ls 2 R3� M are calculated following Equation 3.24 and appendix

A. The weights can be used to estimate the brain sources on locations r i from the measured

magnetic �elds, as in equations 3.25 and 3.26. It is an estimate because the regularization

method limits the number of eigenvalues used for the inverseof the gram matrix. The

estimation will be more accurate when more eigenvalues are used, but then the �lter will be

more a�ected by the presence of the external noise. On the other hand, using few eigenvalues

will increase the performance of the �lter in terms of the noise, but the estimation of the

brain sources will be poorer as a result (H•am•al•ainen et al., 1993; Sarvas, 1987).

W ls (r i ) = L T (r i )[HH T ]� 1 (3.24)
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bq(r i ; t) = W T
ls (r i )x (3.25)

bm = W T
lsx = H T [HH T ]� 1x (3.26)

The MNE non-adaptive spatial �lter has advantages and disadvantages against other popular

techniques used to estimate the solution for the inverse problem. The performance of the

MNE is not a�ected by the presence of correlated brain activity, but its output is distorted

and weighted to solutions closer to the sensors. These characteristics are related to the use

of the least-squares method, which enhances and reduce the performance of the �lter under

speci�c conditions (Clarke and Braginski, 2006). The best performance of the �lter can be

found when the brain activity is located on the cortex and in the presence of a high signal to

noise ratio, Figure 3.9, whereas one of the worst scenarios is on the presence of brain sources

deeper than the cortex, Figure 3.10.
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(a)

(b)

Figure 3.9: Performance of the MNE spatial �lter in the �nding of brain so urces located near the
cortex. In a) are presented the true locations for simulatedbrain sources, while on b) are presented the
estimated locations of the sources using MNE, where the sizeof and colour of the spheres represent
the power of the brain activity on those locations. The spatial �lter was implemented in python.
The brain sources were generated on di�erent positions thanthe locations used to look for the brain
activity. The sensor distribution, the mesh used to look for the brain activity, and the brain volume
were obtained from the York Neuro Imaging Centre[7] .

[7] https://www.ynic.york.ac.uk/FrontPage
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(a)

(b)

Figure 3.10: This �gure shows the e�ects of a brain source located deeper than the cortex on the
performance of the MNE spatial �lter. In a) is presented the position of the brain source responsible
for generation of magnetic �elds, located deeper than the cortex. In b) can be observed the estimated
locations for the brain source, which are near the sensors rather than in its true position.
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3.3.2 Linearly Constrained Minimum Variance beamformer

The Linearly Constrained Minimum Variance beamformer is a spatial �lter used to estimate

the brain sources time series from measured magnetic �elds (Van Veen et al., 1997). The

LCMV is classi�ed as an adaptive spatial �lter, as its design relies on the covariance matrix

for the measured magnetic �elds (Van Veen et al., 1997). The LCMV is designed to allow

the estimation of the brain activity located at location r i , while at the same time attenuate

the contribution for the measured magnetic �elds from brain sources at locationsr j , where

r i 6= r j . This estimation, or extraction, is implemented by the use of a set of weightsW b(r i ) 2

R3� M that de�ne the �lter, as is shown in Equation 3.27 and appendix B. Unfortunately, the

brain sources time series obtained with this technique are only estimates, because of factors

that reduce the performance of the LCMV, factors such as the amount of correlation between

the brain sources and the external noise (Sekihara and Nagarajan, 2008).

bq(r i ) = W T
b (r i )x (3.27)

The LCMV beamformer was designed under the assumption that all brain sources are un-

correlated with each other (Sekihara and Nagarajan, 2008). This assumption allows the

expression of the covariance matrix for the measured magnetic �elds in terms of the auto-

covariance matrices for the brain sources and the lead-�elds matrices, as is shown in Equation

3.28, whereC(x) 2 RM � M is the M � M covariance matrix for the measured magnetic �elds

calculated over a time window containing P times samples, andh�i is used to express the

expectation operator. Moreover, the auto-covariance matrices for the brain sources on loca-

tions r i are represented by the 3� 3 matrices C(q i ) 2 R3� 3, as is shown in Equation 3.29,

when the brain sources are modelled as random processes (Sekihara and Nagarajan, 2008).

The e�ect of the noise is considered in Equation 3.28 in the form of the covariance matrix

for the noise Qn 2 RM � M , assuming that the noise is zero mean and uncorrelated on each

of the sensors measurements (Van Veen et al., 1997).

C(x) = h[x � h x i ][x � h x i ]T i

=
NX

i =1

L (r i )C(q i )L
T (r i ) + Qn

(3.28)
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C(q i ) = h[q(r i ) � h q(r i )i ][q(r i ) � h q(r i )i ]T i (3.29)

Then, it is necessary to designN sets of weights to extract the brain sources onN di�erent

locations, considering the N=3 � 1 degrees of freedom that the LCMV spatial �lter has

(Sekihara and Nagarajan, 2008; Van Veen et al., 1997). The pass and stop bands of the �lter

are characterized by the constraints presented in Equation3.30, wherer 2 
, while 
 is used

to represent the volume of the brain. The pass band of the �lter de�ne the spatial locations

where the brain sources will be extracted, while the stop band is used to de�nes the spatial

locations where the brain sources will be attenuated. Unfortunately, it is almost impossible

to have a complete attenuation in the stop band (Van Veen et al., 1997). Hence, the trace

of the covariance matrix for the brain sourcestr f C(q i )g is used to minimize that problem,

where the trace is used as a measure of the variance or strength of the sources (Van Veen

et al., 1997).

W T
b (r i )L (r ) =

8
<

:

I r = r i

0 r 6= r i

(3.30)

The LCMV beamformer approach follows the idea to �nd the set of weights that minimize the

variance of the extracted brain sources while the constraints presented in Equation 3.30 are

ful�lled (Van Veen et al., 1997). This minimization of the va riance optimizes the performance

of the �lter by reducing the contribution from sources locat ed in the stop band (Van Veen

et al., 1997). The LCMV mathematical problem is presented inEquation 3.31, where bC(q i )

is used to represent the estimated covariance matrix for the�lter output bq(r i ), Equation

3.32. Thus, the solution for the constrained LCMV minimizati on problem is de�ned using

the method of the Lagrange multipliers (Sekihara and Nagarajan, 2008). The solution for

the LCMV problem is presented in Equation 3.33 (Van Veen et al., 1997).

min tr f bC(q i )g subject to W T
b (r i )L (r i ) = I

W b(r i ) (3.31)

bC(q i ) = W T
b (r i )C(x)W b(r i ) (3.32)
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W T
b (r i ) = [ L T (r i )C � 1(x)L (r i )] � 1L T (r i )C � 1(x) (3.33)

Once the �lter weights are obtained, the brain sources can beestimated from the measured

magnetic �elds. However, it is also necessary to �nd the brain locations r i with enough

activity to be considered as active, where the trace of the estimated covariance matrices for

the brain sources can be used as a metric for their strength (Van Veen et al., 1997; Huang

et al., 2004). Nevertheless, the trace of the �lter output is not an accurate estimator, because

of the LCMV weights design, which does not consider the external noise e�ect (Sekihara and

Nagarajan, 2008). Then, a di�erent metric is needed in orderto considerer the e�ect of the

external noise, this metric is known as the neural activity index (NAI), shown in Equation

3.34, where dV ar(r i ) is the estimated brain strength (Van Veen et al., 1997).

NAI (r i ) = dV ar(r i ) =
tr f [L T (r i )C � 1(x)L (r i )] � 1g

tr f [L T (r i )Q � 1
n L (r i )] � 1g

(3.34)

In Figure 3.11 is presented the estimation of brain activity using the LCMV beamformer,

where the activity were simulated as uncorrelated AR processes, with a SNR of 20. In

Figure 3.12 are presented the e�ects that correlated activity has on the performance of the

LCMV beamformer, where two brain sources were simulated as correlated AR processes with

a correlation coe�cient factor of :5, while a third simulated source was uncorrelated with

respect to the other two. The problem of correlated activity causes a decrease in the power of

the estimated activity, which in some cases can make the estimated activity smaller than the

e�ects of the external noise, making the �lter estimate brain sources in the wrong locations

(Sekihara et al., 2002). Moreover, even when this is the biggest weakness of the �lter, its use

for brain study has increased because it is not common to dealwith highly correlated brain

sources in most of brain studies, specially between distantbrain regions (David et al., 2003).



3.3. Magnetic inverse problem 72

(a)

(b)

Figure 3.11: Estimation of simulated brain sources using the LCMV beamformer. In a) are presented
the real locations for the simulated brain activity, while i n b) are presented the estimated locations
using the LCMV beamformer, where the size and colour of the spheres represent the power of the
brain activity on those locations. The locations for the simulated brain sources do not match the
locations used to look for the brain activity, which were based on the YNIC brain mesh[8] .

[8] https://www.ynic.york.ac.uk/FrontPage
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(a)

(b)

Figure 3.12: E�ects of correlated activity on the performance of the LCMV beamformer. In a) is
presented the covariance matrix composed by three simulated brain sources, its diagonals elements
are composed by the variance of the brain sources components, while its o�-diagonal elements are
composed by the covariance between the brain sources components. In b) is presented the covariance
matrix for the estimated brain activity, where their varian ces decrease in relation with the amount of
correlation that exist between the simulated brain activit y. The simulated brain activity match the
positions used to solve the inverse problem.
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3.4 Spatial �lters variants

The previously mentioned spatial �lters have advantages and disadvantages with respect to

each other, which enhance their performances for speci�c scenarios while reducing their use

for others. The main problem that the MNE non-adaptive spatial �lter has is its distorted

and weighted output characteristics, which is based on the least-squares method, but it also

has advantages over the LMCV. On the other hand, the main problem related to the LCMV

adaptive spatial �lter is the assumption for the estimation of the weights that de�ne the

�lter, the uncorrelated brain sources assumption. These problems have been the main focus

of researches related to the design of spatial �lters, wheremodi�cations to the MNE and the

LCMV have been made to improve their weakness. Some of the most known algorithms used

to improve MNE and the LCMV are the Unbiased Minimum Norm, the FOCal Undetermined

System Solution (FOCUSS), the Dual-Core beamformer, and a beamformer that depends on

the use of a higher order covariance matrix (Type-4).

3.4.1 Unbiased Minimum Norm

The unbiased MNE is a modi�cation implemented on this �lter t o compensate for the bias

to solutions for the inverse problem near the sensors. This compensation is implemented in

the form of a matrix W u 2 R3N � 3N composed by regularization parameters, Equation 3.35

and appendix A. These parameters are used to compensate for the problem of the use of the

least-squares method, and for the fall-o� over distance characteristic of the magnetic �elds,

which focus the �lter on solutions near the sensors with morepower in the �eld distributions

with less currents (Clarke and Braginski, 2006). The compensation is introduced on the

lead-�elds, which cause the sensors to have a larger norm forbrain locations near the sensors

than for deeper sources.

bm = W uW T
u H T [HW uW T

u H T ]� 1x (3.35)

However, it is di�cult to compensate for locations at di�ere nt depths. The geometry of the

shape of the volume conductor, and the location and orientations of the sensors complicate

the �nding of the parameters needed for the compensation. Thus, the compensation of

the bias depends on the characteristics of the experiment implemented. One type of bias

adjustment used is the normalization (Gorodnitsky et al., 1995), where each of the diagonal
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elements of the matrix is de�ned as the reciprocal of the Euclidean norm of each of theL (r i )

columns, Equation 3.36. Nevertheless, this regularization only works well on relatively small

reconstruction spaces, or when sensors are close to the brain space (Gorodnitsky et al., 1995).

W u =

2

6
6
6
6
6
6
4

1=jj l x (r 1)jj

1=jj l y(r 1)jj
. . .

1=jj l z(r N )jj

3

7
7
7
7
7
7
5

(3.36)

3.4.2 FOCUSS

The FOCal Undetermined System Solution algorithm is considered an improvement for the

MNE distorted output, appendix D. Thus, the FOCUSS algorith m in combination with

the unbiased implementation of the MNE enhances both of the main problems that the

MNE has (Clarke and Braginski, 2006). FOCUSS uses the same approach as the unbiased

minimum norm, but the regularized matrix is estimated throu gh iterations. However, the

starting point of the iteration is the main weakness that thi s implementation has. The

solutions found will be undistorted, but the locations for the estimated brain sources will

be wrong if the estimated locations for the brain activity are not properly bias compensated

(Gorodnitsky et al., 1995). The FOCUSS algorithm is based onEquation 3.38, where the

matrix of weights W Fk 2 R3N � 3N is calculated overk iterations until a speci�ed condition

is ful�lled, appendix D. To avoid bad localization of the bra in activity, the starting point of

the iterations is normally de�ned as Equation 3.36.

W Fk =

2

6
6
6
6
6
6
4

diag(bqk (r 1))

diag(bqk (r 2))
. . .

diag(bqk (r N ))

3

7
7
7
7
7
7
5

(3.37)

bm = W Fk W T
Fk

H T [HW Fk W T
Fk

H T ]� 1x (3.38)

3.4.3 Dual-Core beamformer

A beamformer with a modi�ed source model is one solution to reduce the e�ects of correlated

brain sources on the performance of the LCMV beamformer (Brookes et al., 2007; Diwakar
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et al., 2011). This modi�cation to the well known LCMV beamfo rmer is known as the Dual-

Core beamformer, and is similar to the null-beamformer, which nulli�ed the e�ects of brain

sources at speci�c locations on other brain locations (Dalal et al., 2006). The di�erence

with the Dual-Core beamformer is that the Dual-Core estimates the activity on two di�erent

locations at the same time, instead of reducing the e�ect of the second one. This is possible

using the dual lead-�elds concept presented on Equation 3.39, which de�nes the sensitive

of the sensors for two di�erent sources (Brookes et al., 2007). The Dual-Core beamformer

design follows the LCMV approach based on the uncorrelated brain sources assumption, with

the only di�erence that the Dual-Core beamformer uses the dual lead-�elds, Equation 3.40.

L DUAL =
1
2

L (r i ) +
1
2

L (r j ) (3.39)

W DUAL (r ij ) = [ L T
DUAL (r i )C � 1(x)L DUAL (r i )] � 1L T

DUAL (r i )C � 1(x) (3.40)

3.4.4 High order covariance matrix beamformer

The type 4 vectorized beamformer is a modi�ed version of the LCMV beamformer, which

deal with the e�ects of the external noise and correlated brain activity by using a higher

order covariance matrix for the estimation of the �lter weig hts (Huang et al., 2004). Then,

the �lter weights and the neural activity index can be expressed as Equation 3.41 and 3.42,

respectively, where Equation 3.42 is the vectorized form ofEquation 3.34 (Huang et al.,

2004). The covariance matrix of higher order is expressed asCn 2 RM � M , where n is used

to represent the order of the covariance matrix for the measured magnetic �elds C(x), while

Qn
n represent then order covariance matrix for the external noise.

W b
T
4 (r i ) = [ L T (r i )C � nL (r i )] � 1L T (r i )C � n (3.41)

NAI 4(r i ) =
(l T

x (r i )C � n l x (r i )) � 1

(l T
x (r i )Q � n

n l x (r i )) � 1
+

(l T
y (r i )C � n l y(r i )) � 1

(l T
y (r i )Q � n

n l y(r i )) � 1
+

(l T
z (r i )C � n l z(r i )) � 1

(l T
z (r i )Q � n

n l z(r i )) � 1
(3.42)
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3.5 Summary

In this chapter was introduced the use of magnetic �elds generated from neuronal activity

for the study of the brain. The magnetic �elds generated from the brain activity are known

as magnetoencephalograms, and their study can be implemented in two di�erent domains

or spaces, on the sensors used to measured the magnetic �elds, and on the sources space

using regression analysis to estimate where the brain signals were generated. The brain

analysis on the sensors space depend on the solution of the forward problem, related to the

measurements of the magnetic �elds from the brain activity, where the Maxwells equations

on their quasi static form are used. However, the study of thebrain in the sensors domain

generates problems related to the �eld spread e�ect, or with the reduction of the magnetic

�elds strength with respect to the distance from where the brain activity was generated.

The study of the brain in the sources space is possible by solving the neuromagnetism inverse

problem, related to the estimation of the brain activity responsible for the generation of the

magnetic �elds. This approach is based on the Biot-Savart law, which is used to express

the magnetic �elds measured on the sensors. Thus, regression analysis are used to estimate

the brain activity from the Biot-Savart law. Two of the most u sed techniques for this are

the linearly constrained minimum variance beamformer, andthe minimum norm estimates

spatial �lter. These techniques have advantages and disadvantages with respect to each other,

such as been una�ected by the presence of correlated brain activity or by giving less distorted

and unbiased solutions.



Chapter 4

Magnetoencephalography and

functional brain connectivity

The study of brain dynamics using MEG signals requires signal processing techniques and

statistical analysis to reduce the uncertainties related to the complexity of the brain. The

accuracy of these techniques depends on factors such as the external noise, the sampling fre-

quency, the geometry of the volume conductor used to represent the brain, and the smoothness

of the brain signals spectrum in the frequency domain. The study of the brain dynamics can

be implemented in the sensor domain (Smith, 1992; Zhongminget al., 2010) or in the source

domain (Kujala et al., 2008; Gaetz and Cheyne, 2006), by measuring the magnetic �elds

generated by the brain activity or by solving the neuromagnetism inverse problem, respec-

tively. However, as was mentioned before, the study of the brain dynamics in the sensor

domain gives a non-accurate representation of the brain behaviour because of the magnetic

�eld spread e�ects (Scho�elen and Gross, 2009; Brookes et al., 2011; Srinivasan et al., 2007),

which increases the measuring of false brain interactions.On the other hand, brain stud-

ies in the source domain rely on the methods used for the solution of the inverse problem,

where spurious �ndings of brain active regions could compromise the estimation of the brain

interactions (David et al., 2006).

In this chapter are presented the most used techniques for the estimation of brain dynamics

in the source domain, and one of the most used statistical analysis to reduce the �nding of

spurious brain connectivities. The techniques presented in this chapter are used on the two

approaches to estimate the brain interactions using spatial �lters, as is presented in Figure 4.1.

The techniques presented in this chapter are focus on the estimation of the functional brain

78
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interactions, without putting emphasis in their direction s or causalities. It is also introduced

in this chapter the required procedure for the use of the spatial �lters in order to use their

outputs for the measurements of the brain interactions, specially for the frequency domain

implementation of the spatial �lters, where the smoothnessof the spectrum is important to

reduce the measurements of false interactions.

Forward Problem
(Biot-Savart Law)

Inverse Problem
(Spatial-filters)

Brain Connectivity
(Spectral-Coherence)

Inverse problem and
covariance analysis

Figure 4.1: Approaches followed to estimate the brain dynamics using spatial �lters.

4.1 Estimation of the brain activity

The brain activity responsible for the generation of the MEG data can be estimated as

time series or as their spectrum. This is possible by using the spatial �lters presented in

Chapter 3 to solve the inverse problem in the time or in the frequency domain. The main

di�erence between these two types of implementations is theuse of the spectrum for the

measured magnetic �elds and its cross-spectral density matrix for the frequency domain

implementation, instead of the measured magnetic �elds time series and its covariance matrix

for the time domain implementation (Sekihara and Nagarajan, 2008). The most common

techniques used for the calculation of the spectrum and the cross-spectral density matrices

are the fast Fourier transform, the Welch periodograms (Jensen and Vanni, 2002), and the

multi-taper approach (Maris and Oostenveld, 2007). It is important to remark that the same

results are obtained when the spatial �lters are implemented in the time and in the frequency

domain, by using the same time to frequency domain transformation techniques. The only

di�erence is the increment of the computational processing.
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The main advantage for the use of the frequency domain version of the spatial �lters is the

direct estimation of the brain interactions from the output of the �lters, as was proved by

Gross with the implementation of the Dynamic Imaging of Coherent Sources (Gross et al.,

2001). Thus, it is also useful to reduce the computational cost for the calculation of the

spectrum and the cross-spectral density matrices among di�erent brain regions. This, as it

is only needed the estimation of the spectrum and the cross-spectral density matrix for the

measured magnetic �elds, Section 4.1.2, while it is required the estimation of the spectrum

and the cross-spectral density matrix for each of the time series obtained from the output of

the time domain version of the spatial �lters.

4.1.1 Spatial �lters in the time domain

One way to calculate the brain interactions is with the use ofthe brain activity time series,

which are obtained using the spatial �lters implemented in the time domain, using Equation

3.25 or 3.27 from Chapter 3. The accuracy for the estimation relies on the characteristics of

the spatial �lters, and on external factors such as the amount of correlation present between

di�erent brain regions (Sekihara et al., 2002; Huang et al.,2004; Clarke and Braginski, 2006).

For example, a brain study with expected highly correlated activity should use the MNE

spatial �lter for the estimation of the brain activity time s eries, as it is not a�ected by the

presence of correlated brain activity. However, the performance of the LCMV beamformer is

better than the MNE spatial �lter in the presence of small cor related brain activity (Sekihara

et al., 2002), as it does not have a signi�cant bias to solutions near the sensors (Sekihara

et al., 2005). Nevertheless, it is almost impossible to havecomplete certainty about the

amount of correlation that exists among di�erent brain regi ons, or to know that the brain

activity responsible for the generation of the magnetic �elds is located on the cortex or in

deeper locations because of the complexity of the brain.
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As was mentioned before, the performance of the LCMV beamformer is a�ected by the pres-

ence of correlated brain activity, which decreases the amplitude of the estimated activity

depending on the amount of correlation (Sekihara and Nagarajan, 2008). Thus, in the pres-

ence of uncorrelated brain activity the estimation of the time series will be limited only by

the SNR of the system. On the other hand, in the presence of highly correlated activity the

estimated time series can be almost completed overlapped bythe e�ects of the external noise,

as their amplitudes are reduced by the amount of correlation. This reduces the possibilities

to reconstruct the time series accurately.

The MNE spatial �lter can estimate correctly the brain sourc es time series as long as the

brain activity is located on the brain surface, otherwise the brain activity found will not

match the correct locations (Clarke and Braginski, 2006). Another important problem that

the MNE has is the e�ect of the external noise, which can decreases the performance of the

�lter because of the use of regularization techniques for the calculation of the weights that

de�ne the �lter (Sarvas, 1987; H•am•al•ainen et al., 1993). This e�ect can be compensated

by choosing a tolerance value for regularization techniques used for the inverse of the gram

matrix. Nevertheless, if this value is not chosen correctly, the recovered time series will be

mostly composed from the e�ects of the external noise instead of the brain activity.

The reconstruction of time series using the LCMV and MNE spatial �lters for uncorrelated

and correlated simulated brain activity is presented in �gures 4.2 to 4.7. In Figures 4.2 and

4.5 can be observed the simulated activity locations and time series, for the uncorrelated

and correlated cases, respectively. Moreover, Figures 4.3and 4.4 show the reconstructed

uncorrelated simulated activity using the LCMV and the MNE s patial �lters, receptively.

The e�ects of correlated activity on the reconstruction of brain activity can be observed in

Figures 4.6 and 4.7, for the LCMV and the MNE spatial �lter cases, respectively. The brain

activity was simulated as AR processes of order 9, while the external noise was simulated as

uncorrelated white noise for a SNR of 22. The selected locations used in Figures 4.2 to 4.7 for

the LCMV and MNE time series reconstructions were chosen based on brain mesh locations

with higher estimated activity, or power maps, for the uncorrelated brain activity case.
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Figure 4.2: Simulation of uncorrelated brain activity. On the left can b e observed the locations for the simulated brain activity, while on the right are
presented the time series for the simulated activity. The sizes for the spheres represent the average power for the signals presented.
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Figure 4.3: Reconstruction of uncorrelated simulated brain activity using the LCMV beamformer. On the left can be observed the locations for the
reconstructed simulated brain activity, while on the right are presented the reconstructed time series for the simulated activity. The sizes for the spheres
represent the average power for the signals presented.



4.1.
E

stim
ation

of
the

brain
activity

84

��� ��� ��� ��� ��� ���

 �����

 �����

�����

�����

�����

���
���

���

�	
�

�

�

�

��� ��� ��� ��� ��� ���
����

 �����

 �����

�����

�����

���
���

���

�	
�

�

�

�

�
� �������������������������

Figure 4.4: Reconstruction of uncorrelated simulated brain activity using the MNE spatial �lter. On the left can be observed the locations for the reconstructed
simulated brain activity, while on the right are presented the reconstructed time series for the simulated activity. The sizes for the spheres represent the average
power for the signals presented.
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Figure 4.5: Simulation of correlated brain activity. On the left can be observed the locations for the simulated brain activity, while on the right are presented
the time series for the simulated activity. The sizes for thespheres represent the average power for the signals presented.
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Figure 4.6: Reconstruction of correlated simulated brain activity using the LCMV beamformer. On the left can be observed the locations for the reconstructed
simulated brain activity, while on the right are presented the reconstructed time series for the simulated activity. The sizes for the spheres represent the average
power for the signals presented.
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Figure 4.7: Reconstruction of correlated simulated brain activity using the MNE spatial �lter. On the left can be observed the locations for the reconstructed
simulated brain activity, while on the right are presented the reconstructed time series for the simulated activity. The sizes for the spheres represent the
average power for the signals presented.
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4.1.2 Spatial �lters in the frequency domain

The use of the spatial �lters in the frequency domain follows the same approach used for

the implementation of the spatial �lters in the time domain, with the exception that these

versions of the �lters use the Fourier transform for the MEG recordings as inputs to the �lter,

and the cross-spectral density matrix for the measured magnetic �elds for the design of the

�lters weights (Sekihara and Nagarajan, 2008). The frequency domain versions of the �lters

present the same limitations as their time domain versions. The Fourier transform of the

measured magnetic �elds is de�ned in Equation 4.1, wheregm (f ) is the Fourier transform of

channel m used in the measuring of the magnetic �elds, Equation 4.2.

g(f ) =

2

6
6
6
6
6
6
4

g1(f )

g2(f )
...

gM (f )

3

7
7
7
7
7
7
5

(4.1)

gm (f ) =
Z 1

�1
bm (t)e� 2�f t dt (4.2)

The cross-spectral density matrix for the measured magnetic �elds can be estimated using

Equation 4.3 (Sekihara and Nagarajan, 2008), where the superscript H is used to represent

the Hermitian transpose. However, in the use of the discreteFourier transform, which is

implemented in most of the software available to analyse data, the frequency resolution

increases with the length of the data, while the accuracy forthe estimation of the amplitude

and phase of the spectrum does not (Jensen and Vanni, 2002). This can be improved using

techniques such as the Welch periodograms (Welch, 1967) andthe Multi-taper approach

(Percival and Walden, 1998). The approach presented by Welch improves the estimation

of the power spectra by dividing the signals into segments with the same length, and with

speci�c overlapping among the segments. Then, the spectrumis found by averaging the

estimated spectrum calculated for each of the segments. Themulti-taper approach follows

a di�erent idea from the Welch periodograms, it is still based on spectrum averaging, but

instead of the segmentation independent estimations are obtained for the same signal by using

orthogonal tapers, which provides independent estimations for the underlying spectrum.

� (f ) = hg(f )gH (f )i (4.3)
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The frequency domain version of the spatial �lters have the same design and characteristics

as the spatial �lters presented in equations 3.24 and 3.33. The di�erence between these

version of the �lters is how the �lters weights are obtained, which for the frequency domain

are calculated using equations 4.4 and 4.5, for the LCMV beamformer and the MNE spatial

�lter, respectively. It can be observed that there is no di�e rence between the expressions

used for the MNE spatial �lter weights in the time and in frequ ency domain, this is because

the �lter is non-adaptive, and therefore, the �lter does not rely on the measured magnetic

�elds, but on the characteristics of the MEG acquisition system. Thus, the estimated brain

activity at location r i for the f frequency is obtained using Equation 4.6.

W T
b (r i ; f ) = [ L T (r i )� � 1(f )L (r i )] � 1L T (r i )� � 1(f ) (4.4)

W ls (r i ; f ) = L T (r i )[HH T ]� 1 (4.5)

s(r i ; f ) � W H
b (r i ; f )g(f ) � W H

ls (r i ; f )g(f ) (4.6)

The use of the previously presented equations can be appliedfor speci�c frequenciesf, or for

a speci�c band of frequenciesFw (Sekihara and Nagarajan, 2008). Then, the cross spectral

density matrix for the measured magnetic �elds can be expressed as is presented in Equation

4.7, while the expression for the LCMV beamformer weights isexpressed in Equation 4.8. In

Figure 4.8 can be observed the e�ect of the use of the Welch periodograms compared with

the use of the fast Fourier transform found in Matlab for the estimation of the power spectral

density or raw periodograms.

� (Fw) =
X

f 2 Fw

hg(f )gH (f )i (4.7)

W T
b (r i ; Fw) = [ L T (r i )� � 1(Fw)L (r i )] � 1L T (r i )� � 1(Fw) (4.8)
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Figure 4.8: Spectrum for the brain activity using the FFT as the power spectral density, and the
Welch periodograms, with 1 second non-overlapped segments. The Welch periodograms and the FFT
were implemented on a 10 seconds length signal, sampled at 678.17 Hz.

4.2 MEG and functional brain interactions

Brain connectivity studies are being implemented using MEGdata in order to �nd interac-

tions between di�erent brain regions and their causalities, where the properties of the MEG

signals help to reduce some of the problems found in EEG and fMRI techniques. The brain

interactions are classi�ed into three di�erent types, depending on the brain structure and

functionality, as was explained in the previous chapters. Then, the brain interactions are ob-

tained by analysing the spatial �lters estimations of the brain activity with techniques such

as correlation, spectral coherence, phase looking value, and mutual information, for the esti-

mation of functional interactions, while methods like Granger causality and dynamical neural

modelling are used to estimate the interactions directions(Srinivasan et al., 2007; David et al.,

2004). The measurements of structural connectivities are found using anatomical approaches

such as the Golgy stain method.

In the following subsections are presented some of the most used techniques based on MEG

data to determine the functional brain interactions using time series analysis. The analysis are

useful to quantify statistical dependencies between the found neuronal activity (Scho�elen and

Gross, 2009), which are indicators of dynamical coupling between the estimated time series

(Sporns, 2011). The techniques used to �nd these dependencies can be classi�ed as linear

and non-linear techniques, which are used to evaluate synchronous and non-synchronous brain
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interactions (David et al., 2004).

4.2.1 Correlation analysis

Correlation analysis is one of the most commonly used techniques for the �nding of rela-

tionships between the activity located on di�erent brain re gions. It is used to calculate the

statistical dependencies between a pair of time series (Chat�eld, 1995). These metrics are

normally arranged into a N � N matrix known as the correlation matrix, composed by the

interactions betweenN di�erent time series. The diagonal elements of the matrix are known

as the autocorrelation values, while the o�-diagonal elements are used to express the amount

of cross-correlation between the di�erent time series. This method is widely used in neuro-

science, and is de�ned as is presented in Equation 4.9 (Davidet al., 2004), wherex and y

represent the time series, andx and � x represent the mean and the standard deviation for

the x time series, respectively. Thus, ifcxy has a value of 0 means that the two processes or

time series do not have similarities, but the similarities between them increase as the value

of jcxy j increases, having a maximum value ofjcxy j = 1, which means that those signals are

entirely related (Leon Garcia, 1994).

cxy =
��

x � x
� x

� �
y � y

� y

��
(4.9)

4.2.2 Spectral coherence

Another technique used for the measurements of functional brain interactions in neuroscience

is the spectral coherence or coherency function, which is the normalized value of the cross-

spectrum between the x and y signalsRxy (f ), Equation 4.10, de�ned as the Fourier transform

of the cross-correlation function (David et al., 2004). Thespectral coherence can take values

between 0 and 1, where, as for the correlation case, 1 means that x and y signals are linearly

dependent, while 0 means that there is no relationship between them. Many measurements of

functional connectivity rely on this metric to determine in terdependencies between di�erent

brain regions (Scho�elen and Gross, 2009). This metric is classi�ed as a non-parametric

technique, which uses the Fourier transform (Scho�elen andGross, 2009). Both the cross-

spectrum and the spectral coherences can be arranged intro matrices, known as the cross-

spectral density matrix and the spectral coherence matrix,respectively.
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Rxy (f ) =
j
 xy (f )j2

j
 xx (f )jj 
 yy (f )j
(4.10)

4.3 Brain connectivity and covariance analysis

The techniques presented in the previous sections are normally used, in the MEG context,

on signals obtained from the outputs of the spatial �lters. Some techniques, such as of the

spectral coherence, require a lot of computational processing as it is necessary the spectrum of

all possible locations where the brain activity is found, and is even more demanding when it is

implemented in all-to-all pairwise analysis between the locations used to look for brain activity

(Scho�elen and Gross, 2011). However, DICS is a di�erent approach with advantages and

disadvantages which rely on the analysis of the covariance matrices for the estimated activity

in the time domain, or on the cross-spectral density matrices in the frequency domain. Its

main disadvantage is that the information obtained is limit ed to information contained in

the covariance matrix, while in the normal approach are alsoobtained the variations of the

brain activity in the form of time series or as their spectrum.

The DICS approach reduce the computational cost for the study of brain dynamics, especially

when it is implemented in the frequency domain. The computational cost is reduced as it is

not necessary to calculate the cross-spectral density matrices used for the measurements of

the brain dynamics. They are obtained directly from the output of the �lter. In this section

are presented the more representative technique for the approach based on the use of the

spatial �lters and the covariance analysis, the Dynamic Imaging of Coherent Sources (DICS)

(Gross et al., 2001). It is also presented the permutation analysis used to reduce the �ndings

of spurious interactions.

4.3.1 Dynamic imaging of coherent sources

DICS is based on the use of the LCMV beamformer to estimate thespectral power and

the cross spectral density matrices for the brain activity directly from the outputs of the

spatial �lter (Gross et al., 2003). This is possible using the bases under which the LCMV

beamformer was designed, Equation 3.31. This estimation for the spectral characteristics

of the brain activity is obtained using Equation 4.11, where the weights of the �lter are

obtained using Equation 4.4, and can be obtained for a speci�c frequencyf , or for frequencies

averaged across a frequency band (Sekihara and Nagarajan, 2008). Thus, the spectral power
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for brain locations is obtained when the weights used in Equation 4.11 are pointing to the

same locationr i = r j , while the cross-spectral density matrices are obtained when the �lter

weights are pointing to di�erent locations r i 6= r j , where these locations determine the

interaction between two di�erent brain sources or regions (Gross et al., 2001). These metrics

are obtained in the form of 3� 3 matrices, as the brain activity is represented by equivalent

current dipoles composed by theirx, y and z components.

� r i r j (f ) = W b(r i ; f )� (f )W H
b (r j ; f ) (4.11)

The functional brain dynamics are found using the estimatedcross-spectral density matrices

in metrics such as the spectral coherence. DICS uses singular value decomposition (SVD)

to �nd the characteristics singular values for � r i r j (f ), � 1; � 2; � 3. This in order to �nd the

dominant direction for the brain interactions (Gross et al., 2001), where, if the obtained

singular values � 1 >> � 2 and � 1 >> � 3, then the cross-spectrum is attributed to sources

with �xed orientations, determined by the singular vectors related to � 1 (Gross et al., 2001).

Thus, the strongest cross-spectrum, or strongest interaction, is de�ned by Equation 4.12. In

the cases that brain sources do not have �xed orientations, the trace for the � r i r j (f ) matrix

can be used as an indicator of the stronger direction (Gross et al., 2001). Once the strongest

directions for the interactions are known, the brain dynamics can be estimated based on the

spectral coherence, as is presented in Equation 4.13.


 r i r j (f ) = � 1f � r i r j (f )g (4.12)

Rr i r j (f ) =
j
 r i r j (f )j2

j
 r i r i (f )jj 
 r j r j (f )j
(4.13)

The main problem found in DICS is the presence of correlated brain activity, which decreases

its performance as result of the use of the LCMV beamformer (David et al., 2003). This

problem is reduced using the method to estimate the brain activity among distant brain

regions (David et al., 2003), as it is not common to �nd highly correlated brain activity

between them. However, there exist other problems such as errors introduced by the linearly

between the lead�elds, errors in their calculations, and the e�ects of external noise, which can

cause the �nding of spurious brain interactions as a result (Scho�elen and Gross, 2011, 2009),

especially for all-to-all pairwise brain dynamics measurements. These problems can be limited
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following the strategies presented by Gross for the use of the DICS method (Gross et al.,

2001), where peripheral signals, the magnetic �elds measurements, and a priori information

are used, to mention some of the proposed strategies. A complementary approach used to

reduce the �nding of false brain dynamics is the permutation analysis, which is introduced

in the following subsection.

4.3.2 Permutation analysis

Permutation analysis has been used on MEG studies to reduce the �nding of false active brain

sources in the solution of the inverse problem (Nichols and Holmes, 2002; Pantazis et al.,

2003). However, the same analysis has been also used to reduced the �nding of spurious

brain interactions and synchronizations (Singh and Barnes, 2003; Jerbi et al., 2007). This

reduction is possible by comparing two di�erent conditions, normally labelled as active and

rest conditions. The active condition is related to experimental results obtained under speci�c

circumstances, while the rest condition is used as a controlcase or as baseline (Pentazis et al.,

2005). The comparisons are implemented using permutation analysis, signi�cant tests, and

p-values. These are used in order to �nd the probabilities of the di�er ent rearrangements, or

permutations, of the data obtained from the experiments, tobe classi�ed as active or as rest

conditions under the null-hypothesis (Nichols and Holmes,2002).

The permutation analysis in the brain connectivity context has been used to �nd brain

interactions between two di�erent sources or regions, while reducing the �nding of spurious

connectivities. The analysis is implemented by rearranging the labels for the condition of

interest and the baseline, and by estimating the probabilities of these new arrangements, or

their p-values, in order to de�ne the occurrence or surprisefactor corresponding to them.

Then, the probabilities obtained for the di�erent arrangem ents, the p-values, are compared

against a signi�cant value � in order to determine if they are signi�cant, or if the null

hypothesis is rejected (Nichols and Holmes, 2002). If thep-values are signi�cant, then the

interactions found are classi�ed as active, while they will be classi�ed with the rest label

(condition) if the null-hypothesis is valid (Pentazis et al., 2005). The null hypothesis is used

to establish the conditions that allow the rearrangements of the data obtained from the

experiments, under two di�erent conditions or labels.

Thus, the permutation analysis has been used for brain connectivity studies to reveal statisti-

cally signi�cance coupling between di�erent brain sources, or between group of brain sources

(Jerbi et al., 2007). In the permutation analysis any statistic measure can be used for the
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signi�cance test, even when the distribution for the data is unknown (Singh and Barnes, 2003;

Chau et al., 2004). However, the analysis has di�erent factors that can increase or decrease

its performance, especially for the multiple comparison permutation test, where N di�erent

brain interactions are evaluated at the same time using Np-values (Gaetz and Cheyne, 2006).

The most known problem on this approach are the number of permutations used in order

to �nd their distributions, and the correction of p-values to control the Family Wise Error

Rate (FWER) (Pantazis et al., 2003; Nichols and Holmes, 2002). The family wise error rate

is present when the probability of falsely declared brain interactions as signi�cant is equal or

higher than the � value (Nichols and Holmes, 2002), where the family concept is de�ned as

the collections of statistical tests performed over all possible interactions.

For brain connectivity studies, the permutation analysis is usually implemented among spe-

ci�c selected voxels or between all-to-all pairwise voxels, where sometimes the voxels are seen

as group of voxels (Satoru and Nichols, 2004; Jerbi et al., 2007). However, the computational

cost for all-to-all pairwise voxels analysis can be too demanding, depending on how many

voxels are used to look for the brain activity, as it will be necessary to calculate the spectral

coherence for all interactions between those points, whichare arranged in a matrix. Normally

in MEG source-space coherence analysis a voxel is used as a reference, known as the seed

voxel, and then the coherence is estimated between the seed and the rest of the voxels to

look for the brain activity (Sekihara and Nagarajan, 2013). It provides a three dimensional

mapping of source coherence called a source coherence image, with respect to the seed voxel.

This map is represented as one of the columns or rows of the matrix obtained in all-to-all

pairwise voxels analysis (Scho�elen and Gross, 2011), is a particular case of all possible brain

interactions happening in the brain.

4.4 Summary

Functional brain interactions based on MEG data are normally estimated in two di�erent

ways, both of them using the previously mentioned spatial �lters. The �rst approach esti-

mates the brain activity in the time or in the frequency domain to be used on metrics such as

correlation and coherence in order to estimate the amount ofrelationship between di�erent

brain regions. The second approach uses the LCMV beamformerto estimate the covariance

matrices, or the cross spectral density matrices in the frequency domain, from the covariance,

or cross-spectral density matrix, for the measured magnetic �elds. The use of one approach

over the other depends on the information required from the estimation, and on the amount
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of interactions to estimate.

The �rst approach gives more information about the brain as it requires the estimation of the

brain activity time series or frequency behaviour, while the second approach only requires the

covariance or cross-spectral density matrix, which limit the information that can be obtained.

Nonetheless, the computational cost required for the methods is an important issue when all-

to-all pairwise brain interactions are estimated, especially for the �rst approach, as it require

to estimate the brain activity for all possible locations used to look for the brain activity. On

the other hand, the second approach only requires the estimation of the LCMV �lter weights

to �lter the required data from the covariance matrix, or cro ss-spectral density matrix, for

the measured magnetic �elds.

Thus, DICS is a useful method for all-to-all pairwise brain interactions estimation, however,

as been based on the use of the LCMV beamformer, it has the samelimitation in the presence

of correlated brain activity. In the next two chapters are presented two di�erent approaches

to deal with this problem, the Bilinear Constraint Minimum V ariance (BCMV) beamformer,

which modi�es the design of the LCMV beamformer, and the Linearly Constrained Minimum

Norm Estimates (LCMNE), which uses the MNE spatial �lter as D ICS uses the LCMV

beamformer, as it is not a�ected by the presented of correlated brain activity.



Chapter 5

The LCMV and estimation of brain

interactions

The Linearly Constrained Minimum Variance beamformer, based on the use of the Lagrange

multipliers, has proved to be, in general terms, a more reliable technique than the Minimum

Norm spatial �lter, which relies on the least-squares method. A more reliable technique

in terms of its implementation simplicity and on the results obtained when the amount

of correlation between di�erent brain regions is not too high. This has been one of the

main reasons for the development of techniques to improve the performance of the LCMV

beamformer in the presence of highly correlated brain activity. However, most of these

techniques improve the performance of the �lter without modifying its core, but by modifying

the implementation of the �lter to reduce the e�ects of the co rrelated activity (Diwakar et al.,

2011; Dalal et al., 2006; Brookes et al., 2007; Huang et al., 2004; Gross et al., 2001). Therefore,

the main assumption used to �nd the weights that de�ne the �lt ers has not been changed.

In this chapter are presented the LCMV beamformer uncorrelated brain sources assumption,

and a new approach based on the design of the LCMV spatial �lter, where the new approach

considers the e�ects of correlated brain activity on its design. However, this new approach

presents problems, and its solution may not be as elegant as the LCMV beamformer. The

most important problem found on this new approach is the �nding of solutions to a system

of bilinear equations, which may lead to solutions that do not satisfy all conditions used

as constraints based on the Lagrange multipliers method. This, because is di�cult to �nd

solutions since there is not warranty to �nd critical points with the constraints used. It is also

di�cult because of the nature of the problem, as in practice systems of bilinear equations are

97
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normally overdetermined and inconsistent (Cohen and Tomasi, 1997). This new approach

will be called the Bilinear Constraints Minimum Variance beamformer (BCMV).

5.1 E�ects of correlated brain activity

As is presented by Kensuke Sekihara (Sekihara and Nagarajan, 2008), and by Van Veen

(Van Veen et al., 1997), the main assumption used in the design of the LCMV spatial �lter

is located on the structure of the covariance matrix for the activity of the brain sources

responsible for the generation of the magnetic �elds. The assumption assumes that the

matrix is composed only of the diagonal elements, while the o�-diagonal elements have zero

values. The covariance matrix of the measured magnetic �elds, or the data covariance matrix,

is presented in Equation 5.1, it is also presented the covariance matrix for the brain activity in

Equation 5.2. In both expressions, the magnetic �elds and the sources activity are averaged

over time t. The expression 5.1 is di�erent from Equation 3.28, as the relationship hx(t)i � 0

holds for many applications (Sekihara and Nagarajan, 2008).

C(x) = hx(t)xT (t)i =

2

6
6
6
6
6
6
4

hx1(t)2i hx1(t)x2(t)i � � � hx1(t)xM (t)i

hx2(t)x1(t)i hx2(t)2i � � � hx2(t)xM (t)i
...

...
. . .

...

hxM (t)x1(t)i hxM (t)2x1(t)i � � � hxM (t)2i

3

7
7
7
7
7
7
5

(5.1)

C(m) = hmm T i =

2
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6
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(5.2)

Using Equation 3.18, presented again as Equation 5.3, it is possible to �nd the relationship

that exist between the data covariance matrix and the covariance matrix for the brain sources,

as is presented in Equation 5.4, whereCn is the noise covariance matrix .

x = Hm + n (5.3)
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C(x) = hx(t)xT (t)i = HC (m)H T + Cn (5.4)

One of the most common assumptions made in MEG studies is the presence of zero mean

white Gaussian noise, uncorrelated between the MEG acquisition sensor channels (Sekihara

and Nagarajan, 2008; Imada, 2010). This assumption allows to express the external noise as

is presented in Equation 5.5, which changes Equation 5.4 to Equation 5.6, where � 2
0 is the

variance of the noise.

Cn = � 2
0I (5.5)

C(x) = HC (m)H T + � 2
0I (5.6)

The uncorrelated brain sources assumption used to calculate the LCMV beamformer weights

implies that the product hq(r p; t)qT (r i ; t)i = 0 for p 6= i , and � 2
p = hq(r p; t)2i , where � 2

p

represents the power of the sourcep (Van Veen et al., 1997). Then, the matrix 5.2 can be

represented as matrix 5.7, which is the base for Equation 3.28, used to estimate the LCMV

�lter weights (Sekihara and Nagarajan, 2008).

C(m) =

2

6
6
6
6
6
6
4

� 2
1 0 � � � 0

0 � 2
2 � � � 0

...
...

. . .
...

0 0 � � � � 2
N

3

7
7
7
7
7
7
5

(5.7)

The uncorrelated brain sources assumption simpli�es the use of the Lagrange multipliers, as

there is needed only one main constraint for its solution. This helps to maintain the degrees

of freedom for the solution, as it was de�ned by Van Veen (Van Veen et al., 1997). The

constraint works relatively well, with the exception when the amount of correlation between

di�erent brain sources is high, as explained by Sekihara (Sekihara et al., 2002).

5.1.1 E�ects of correlated activity on LCMV performance

The LCMV uncorrelated brain sources assumption is almost impossible to achieve, as the

brain sources are inevitably correlated to some degree (Sekihara and Nagarajan, 2008). This

relation between the brain sources a�ects the performance of the spatial �lter depending on
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the amount of correlation, as the assumption used to design the �lter is not ful�lled. This

means that, the blocking capability of the LCMV beamformer will be limited depending

on the amount of correlation present between the brain sources. Thus, the best blocking

capability of the spatial �lter will be achieved in the presence of uncorrelated brain sources,

as is presented in Equation 5.8 (Sekihara and Nagarajan, 2008).

W T
b (r p)L (r p) = I (5.8)

The reduction of the blocking capability of the LCMV beamformer weights can be repre-

sented, in the general case, by Equation 5.9 (Sekihara and Nagarajan, 2008), where [C � 1(m)]p;q

is used to represent the (p; i) element of the inverted C(m) matrix.

W T
b (r p)L (r p) =

[C � 1(m)]p;i

[C � 1(m)]p;p
(5.9)

Thus, the brain activity generated by a target source located at position r p, correlated with

N I di�erent brain sources located at positions r i , where i = 1 ; 2; � � � ; N I , is expressed as is

show in Equation 5.10. Equation 5.10 shows that there exist leakage from the correlated

sources on the activity generated from the target source. This leakage causes problems in the

estimation of the brain sources time-series.

bq(r p; t) = q(r p; t) +
N IX

i =1

[C(m)] � 1
p;i

[C(m)] � 1
p;p

q(r i ; t) (5.10)

The e�ect of correlated sources in the estimation of brain sources time-series using the LCMV

spatial �lter can be observed better with the case where onlytwo sources are correlated, while

the rest are not. The correlation coe�cient between the correlated sources is denoted as� ,

following Sekihara's notation (Sekihara and Nagarajan, 2008). Then, the covariance matrix

for the brain activity can be expressed as follows:

C(m) =
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(5.11)



5.1. E�ects of correlated brain activity 101

and the inverse of the covariance matrix for the brain activity as follows:

C � 1(m) =

2
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(5.12)

Then, the e�ects that correlated activity has on the performance of the �lter weights can be

found combining equations 5.9 and 5.12, as is shown in the followings expressions:

W T
b (r 1)L (r 1) = I W T

b (r 1)L (r 2) = � � 1
� 2

� I

W T
b (r 2)L (r 1) = � � 2

� 1
� I W T

b (r 2)L (r 2) = I
(5.13)

W T
b (r 1)L (r i ) = 0 W T

b (r 2)L (r i ) = 0 for i = 3 ; � � � ; N (5.14)

Therefore, when the LCMV spatial �lter is used to estimate th e brain activity generated

by any of the sources located at positionsr 1 and r 2, it lets pass the signals from the second

source with a gain factor of� � 1�=� 2, while blocking the rest of the uncorrelated brain signals

(Sekihara and Nagarajan, 2008). These leakages can be observed better in equations 5.15

and 5.16, where are presented the estimated activity for those locations. The gain factor

reduces the power of the reconstructed, or estimated, signals. This e�ect is known as signal

cancellation, and is the main reason for the decrease in the performance of the LCMV spatial

�lter. The amount of cancellation depends on the amount of correlation between sources,

where N brain sources can be correlated (Sekihara and Nagarajan, 2008).

bq(r 1; t) = q(r 1; t) � (
� 1

� 2
� )q(r 2; t) (5.15)

bq(r 2; t) = q(r 2; t) � (
� 2

� 1
� )q(r 1; t) (5.16)
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5.2 Bilinear constraints for a minimum variance beamformer

It is proposed in this section the use of constraints as in theLCMV case for a modi�ed

version of the �lter, where the constraints are used to avoidthe uncorrelated brain sources

assumption. This proposal is motivated to improve the performance of the LCMV spatial

�lter in order to be more robust when used in brain connectivity studies, where the uncorre-

lated brain sources assumption creates reasonable doubts about the accuracy of the results

obtained. The idea is similar to the dynamic imaging of coherent sources, but in this case

the brain interactions are found by changing the LCMV design instead of changing its ap-

plication. This modi�ed version of the LCMV is designed in th e time domain, nevertheless,

its main application will be in the frequency domain, implemented in the same way as DICS,

presented in Chapter 4.

This new approach is based on the solution of a bilinear system of equations used to express

the covariance matrix for the measured magnetic �elds. The main objective of the �lter

is to extract the covariance matrix corresponding to the [C(m)]p;i element, or C(qp; q i ),

which expresses the covariance matrix between the three components of the sources on those

locations (Gross et al., 2001; Mignerey, 1989). It is proposed to extract the brain sources

covariance matrices by using two set of weights per location, or per interaction between the

brain sources, expressed asW 1b(r p) 2 R3� M and W 2b(r i ) 2 R3� M for locations r p and r i .

The design of the �lter weights uses the same procedure as theLCMV beamformer, but in

this case there will beN 2 bilinear equations to estimate all possible interactions between the

brain sources. This is possible by de�ning the covariance matrix for the measured magnetic

�elds as is presented in Equation 5.17, which consider the correlated brain activity.

C(x) =
NX

p=1

NX

i =1

L (r p)C(qp; q i )L
T (r i ) + Cn (5.17)

Thus, the modi�ed version of the spatial �lter is proposed to estimate the brain activity as

is presented in Equation 5.18, which is a similar expressionas the one presented in Equation

4.11, but in the time domain.

C(qp; q i ) = W T
1b(r p)[

NX

p=1

NX

i =1

L (r p)C(qp; q i )L
T (r i )]W 2b(r i ) (5.18)
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5.2.1 Bilinear constraints

The main idea is to use de�ned constraints that let pass the activity on speci�c locations,

or by speci�c brain interactions, whenever any of the conditions used for them are present,

while nullifying the brain activity generated on di�erent l ocations, or by di�erent brain in-

teractions. It is the same idea used as in the LCMV beamformer, but using a bilinear set

of equations, where each of the bilinear variables are used to select speci�c locations for the

interactions. Thus, as a brief description, the constraints are used to ful�l the conditions

present in Equation 5.19, as in Equation 3.30 for the LCMV case. However, the bilinear form

of the equations for the problem imply that their solutions may not ful�l all the constraints

used, independently of the conditions related with the constraints, as is proved in this, and

the following section.

W T
1b(r p)L (r ) =

8
<

:

I r = r p

0 r 6= r p

W T
2b(r i )L (r ) =

8
<

:

I r = r i

0 r 6= r i

(5.19)

It is possible to use the LCMV �lter weights in a way that the co nditions present in Equation

5.19 are ful�lled. However, the LCMV weights will generate uncertainties in the presence

of correlated brain activity. The main idea is to �nd the set o f weights that satisfy the

conditions presented using the Lagrange multipliers in thesame way as is done for the LCMV

beamforming, without relying on the uncorrelated brain sources assumption. The proposed

problem is presented in Equation 5.20, similarly to Equation 3.31, wherer p can be a di�erent

or the same location asr i . Then, as in the LCMV case, the idea is to �nd the set of weights

that minimize the variance of the �lter output, where the var iance can be generated from the

power of a brain source or by the interactions between them.

min( tr f bC(qp; q i )g) subject to W T
1b(r p)L (r p) = I ; W T

2b(r i )L (r i ) = I

W 1b(r p); W 2b(r i )
(5.20)

Bilinear equation using one constraint

It is presented an example of the bilinear problem using onlyone constraint. The condition

used in this case may not be the most appropriate, as there is not possible to �nd a critical

point in the space de�ned by the magnetic �elds measured. However, it works as an example
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of the bilinear approach, which is solved in the same way as the LCMV spatial �lter case,

with the use of the Lagrange multipliers (Ito and Kunisch, 2008). The bilinear function

to minimize f (W 1b; W 2b) is presented in Equation 5.21, along with the constraint function

g(W 1b; W 2b).

f (W 1b; W 2b) = W T
1b(r p)C(x)W 2b(r i )

g(W 1b; W 2b) = W T
1b(r p)L (r p) + W T

2b(r i )L (r i ) = 2 I
(5.21)

The use of the Lagrange multipliers to solve forW 1b and W 2b is presented in the following

equations, where� LM is used to represent the Lagrange multiplier.

f (W 1b; W 2b; � LM ) = W T
1b(r p)C(x)W 2b(r i ) + � LM (W T

1b(r p)L (r p) + W T
2b(r i )L (r i ) � 2I )

�f (W 1b;W 2b;� LM )
� W 1b

= C(x)W 2b(r i ) + � LM L (r p)
�f (W 1b;W 2b;� LM )

� W 2b
= W T

1b(r p)C(x) + � LM L (r i )T

(5.22)

Then, W 1b and W 2b expressions in terms of� LM are presented as:

W 2b(r i ) = � � LM C � 1(x)L (r p)

W T
1b(r p) = � � LM L T (r i )C � 1(x)

(5.23)

Plugging W 1b and W 2b in g(W 1b; W 2b) to solve for � LM :

� LM = � [L T (r i )C � 1(x))L (r p)] � 1 (5.24)

Finding the expression forW 1b and W 2b by using the expression for� LM :

W T
1b(r p) = L T (r i )C � 1 (x )

L T (r i )C � 1 (x )L (r p )
W 2b(r i ) = C � 1 (x )L (r p )

L T (r i )C � 1 (x )L (r p )
(5.25)

However, the expressions found forW 1b and W 2b do not ful�l the constraints presented on

Equation 5.19 in most of the cases, only when their expressions match the same expression as

for the LCMV �lter weights presented in Equation 3.33. The pr oposed spatial �lter was tested

using simulated brain activity in order to illustrate its ch aracteristics problems. The brain

activity was simulated as correlated autoregressive processes (AR) for a SNR of 20, located



5.2. Bilinear constraints for a minimum variance beamforme r 105

on three speci�c locations of a brain mesh composed by 62 elements located on a prede�ned

brain volume. Table 5.1 shows the correlation matrix among the simulated brain activity,

where their locations are represented considering the brain sources components. Therefore,

a simulated brain source located at position 12 will be represented by elements 34 to 36 of

the correlation matrix.

Location 12(34-36) 40(118-120) 58(172-174)

12(34-36) 1 0 .5

40(118-120) 0 1 .2

58(172-174) .5 .2 1

Table 5.1: Correlation matrix for simulated brain activity used for th e BCMV test.

The covariance matrix among the elements that compose the brain mesh used to solve the

inverse problem is composed by 62 elements, and then, it has a186� 186 dimension since each

element consider the three brain sources components. The LCMV and the BCMV spatial

�lters are used to estimate this covariance matrix in order to show the performance of the

�lters in functional brain dynamic studies, presented on �g ures 5.1 and 5.2, respectively. It

can be observed that using the LCMV gives almost an accurate representation of the brain

activity power and covariances, with some reductions on their amplitudes because of the

uncorrelated brain sources assumption. On the other hand, the estimations accuracy using

the BCMV spatial �lter is not good, as it does not estimate the brain activity power and

their interactions on the correct locations.

It can also be observed on �gures 5.1 and 5.2 that the estimateactivity and interactions have

di�erent range of amplitudes for both �gures. This di�erenc e in amplitudes makes di�cult

the comparison betwen the matrices diagonal elements, which have the same values since the

BCMV expressions match the LCMV �lter weights for those cases. However, the scenario

is di�erent for the o�-diagonal elements, as the constraints are not ful�lled. Thus, the o�-

diagonal elements estimated values do not make sense, as their amplitudes are to high to be

considered as valid estimations.
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Figure 5.1: Estimated covariance matrix for simulated brain activity u sing the LCMV beamformer.
The characteristics for the simulated activity are presented in Table 5.1.

Figure 5.2: Estimated covariance matrix for simulated brain activity u sing the BCMV spatial �lter.
The characteristics for the simulated activity are presented in Table 5.1.
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Comparison between DICS and the BCMV spatial �lter

The problems related with the obtained solution for the BCMV proposed spatial �lter can

be observed with more detail in the following example, wherethe BCMV is used to estimate

the spectral coherence between simulated brain activity. The results obtained are compared

against results obtained using DICS. For this comparison brain activity was simulated in order

to have complete certainty of where the brain sources locations are, and to know the amount

of correlation present between them. The brain activity was simulated as autoregressive

processes (AR) of order 9, for a SNR of 22. The locations and the amount of correlation

among the simulated brain sources are presented in Table 5.2.

Brain source(x,y,z) A(35,182,190) B(35,100,190) C(140,100,190) D(140,182,190)

A(35,182,190) 1 .2 0.0 0.0

B(35,100,190) .2 1 0.0 .4

C(140,100,190) 0.0 0.0 1 0.0

D(140,182,190) 0.0 .4 0.0 1

Table 5.2: The matrix shows the correlation coe�cients among simulated brain activity located on
speci�c x, y, and z positions. The locations for the brain sources are presented in millimetres.

In Figure 5.3 are presented the locations for the simulated brain activity, with respect to a

brain volume used to solve the inverse problem, highlightedby red circles, and represented

for labels A, B, C and D. The description for the simulated activity are presented in Table

5.2. Then, the LCMV and the BCMV spatial �lters were used to estimated the brain activity

from the simulated magnetic �elds, as can be seen in Figure 5.4. It can be observed how the

estimated power is identical for both estimations. This is because the BCMV spatial �lter

has the same �lter weights expressions as the LCMV beamformer for this case, Equation

3.33. However, this is not the case for the estimation of the brain activity interactions, as is

shown later on this section.
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In Figure 5.4 speci�c locations are selected for the study ofthe functional brain dynamics

using both spatial �lters. These locations were selected from the brain mesh elements with

enough estimated power to be considered as active brain regions. Thus, the functional brain

dynamics are estimated for this locations following the DICS approach and using the BCMV

spatial �lter for the estimation of the cross-spectral density matrices, using the singular value

decomposition truncation to �nd the strongest interaction s among the brain mesh elements

used to solve the inverse problem, section 4.3.1 .

The estimated functional brain dynamoics obtained using DICS and the BCMV following

the DICS approach are presented in �gures 5.5, 5.6, 5.7 and 5.8. Figures 5.5 and 5.7 present

the estimated functional brain dynamics using both spatial �lters between the seed voxels

located at position 408 and 451 and the rest of the brain mesh elements, respectively. On

the other hand, Figure 5.6 and 5.8 present the same interactions as the previous �gures but

inly considering the brain mesh elements located on the cortex.

It can be observed in the �gures that the functional brain dynamics estimation using DICS

are more accurate than the ones obtained using the BCVM spatial �lter. The BCMV has a

bad performance because of the ampli�cation of speci�c interactions that make impossible

the �nding of anything else. The brain interactions found wi th the BCMV spatial �lter are

located on positions that do not match the expected ones. On the other hand, the LCMV

beamformer, or DICS, has a moderate performance, as the amount correlation between the

brain sources reduce it. However, it is possible to have an idea of where the brain interactions

are using the DICS approach, while it is impossible to make any valid assumption using the

BCMV spatial �lter results.
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(a)

A

B

D

C

(b)

Figure 5.3: Locations for simulated correlated and uncorrelated brainactivity, highlighted by red
circles and identi�ed using the labels A, B, C and D.
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Figure 5.4: Estimated brain power using the LCMV and BCMV spatial �lters , with normalized
values to have a maximum value of one for plotting reasons. Ina) is presented the estimated brain
power using the LCMV beamformer, while in b) is the estimatedbrain power using the BCMV spatial
�lter. The size and colours of the spheres represent the amount of power estimated on each of the
elements that compose the brain mesh used to solve the inverse problem.
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Figure 5.5: Estimated brain coherence using a seed voxel located at position 408. In a) are presented
the estimated functional brain dynamics obtained using DICS. In b) are presented the functional brain
interactions obtained using the BCMV spatial �lter.
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Figure 5.6: Estimated cortical brain coherence using a seed voxel located at position 408. In a) are
presented the estimated cortical functional brain dynamics obtained using DICS. In b) are presented
the cortical functional brain interactions obtained using the BCMV spatial �lter.
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Figure 5.7: Estimated brain coherence using a seed voxel located at position 451. In a) are presented
the estimated functional brain dynamics obtained using DICS. In b) are presented the functional brain
interactions obtained using the BCMV spatial �lter.
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Figure 5.8: Estimated cortical brain coherence using a seed voxel located at position 451. In a) are
presented the estimated cortical functional brain dynamics obtained using DICS. In b) are presented
the cortical functional brain interactions obtained using the BCMV spatial �lter.




