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Osteoporosis is a condition in which the bones become porous and weak and are more 

likely to fracture.  The National Institute for Health and Clinical Excellence (NICE) 

reported, in 2009, (National Institute of Clinical Excellence, 2009) that more than 2 

million women suffer from osteoporosis; there are more than 180,000 osteoporosis 

related fractures annually in England and Wales and the annual cost of medical and 

social care amounts to about £2billion. Vertebral fracture is the most common type of 

osteoporotic fracture and is associated with increased mortality and morbidity (Cooper 

et al., 1993). The European Vertebral Osteoporosis Study (EVOS) has shown that the 

overall age-standardised incidence of fracture was 10.7 per 1000 person-years in 

women and 5.7 per 1000 person-years in men (O'Neill et al., 1996). 

Areal bone mineral density (aBMD) by Dual-energy X-ray absorptiometry (DXA) has been 

shown to have a good association with vertebral strength and fracture risk (Marshall et 

al., 1996, Cummings et al., 2002). Areal BMD by DXA is still the only clinical technique 

used to assess vertebral strength and fracture risk non-invasively. However, the use of 

aBMD alone has some limitations for explaining bone strength and fracture risk: aBMD 

accounts for approximately 70% of bone strength (NIH, 2000) and fifty percent of all 

patients with fractures were not diagnosed as having osteoporosis using aBMD (Schuit 

et al., 2004). Other factors that may affect bone quality include; bone morphology, and 

bone material properties as well as bone mass (Bouxsein, 2005, Hernandez and Keaveny, 

2006, Reid, 2013).  

Recently, finite element analysis (FEA) based on Quantitative Computed Tomography 

(QCT) has been adopted as an alternative non-invasive technique for assessing vertebral 



 

 

strength and vertebral fracture risk, since FEA is able to integrate all the information for 

bone quality as well as bone density. There is some indication that QCT-based FEA has a 

stronger correlation with vertebral compressive strength than aBMD by DXA or vBMD by 

QCT alone (Crawford et al., 2003a, Melton et al., 2007). Of the many vertebral FE models 

described in the literature, only one-QCT-based Voxel FE model has been well used as a 

research tool in clinical osteoporosis studies (Keaveny et al., 2007, Mawatari et al., 2008, 

Melton et al., 2007, Lewiecki, 2009, Melton Iii et al., 2010, Chevalier et al., 2010, Graeff 

et al., 2009). In all of these papers, the FE models consider only the vertebral body 

without posterior elements or intervertebral discs (IVDs).  

Load transfer on the vertebral column can act in two ways: the majority is done by the 

IVD to the vertebral body, and the remainder by the facet joints. IVD degeneration, 

therefore, affects the loading conditions and fracture patterns of the adjacent vertebrae 

(Pollintine et al., 2004a, Pollintine et al., 2004b, Adams and Dolan, 2005, Adams et al., 

2006), thus an FE model that incorporates the intervertebral disc could enhance the 

validity of the model as a predictor of fracture.  Furthermore, the posterior elements 

also share the load on the vertebra even though they are small in proportion to the 

vertebral body. The posterior elements, therefore, should also be considered when 

predicting realistic vertebral biomechanical characteristics in vivo (Imai et al., 2006). 

Some researchers used FE models of the functional spinal unit (FSU) that consists of two 

adjacent vertebrae and their IVDs, whereas others used multi-levels spinal FE models 

(Polikeit et al., 2004, Natarajan et al., 2003, Rohlmann et al., 2006, Schmidt et al., 2006, 

Noailly et al., 2005). However, none of the models were applied to the clinical studies 

for predicting vertebral strength as a patient-specific approach. The FSU is regarded as 

the smallest structural unit that has all structural components of the spine (vertebrae, 

IVD and ligaments) and therefore can exhibit the biomechanical behaviour which 

interplays between the IVD and its adjacent vertebrae. The multi-levels FE models are 

most physiological and complicated that consist of more than two vertebrae, multiple-

IVDs, and ligaments. Another practical consideration for choosing FSU was the 

availability of the specimen and mechanical testing data from the University of Bristol.  

There are many commercial and open-source programs for image processing of medical 

images (for example, Mimics, Simpleware, ImageJ, AMIRA and VTK/ITK platform) and for 

finite element mesh generation (for example, Hypermesh, Meshgrid, TetraGen and 



 

 

CUBIT). However, these have limitations. Each of these software applications has its own 

data format, and the additional steps required for data format conversion may lead to 

loss of data quality, and importing/exporting large datasets is time-consuming. 

Furthermore, it is very difficult to ensure the high degree of consistency in FE model 

orientation, mesh density and quality, and boundary condition that is required for 

clinical studies involving the processing of many patient scans for the investigation of 

group differences or changes from baseline. 

Therefore, in order to deal with the large datasets which are associated with clinical 

research scans, there is a clear demand for a simplified tool through a consistent full 

framework for generating FE model of vertebra with IVD as well as a need for further 

improvement of previous methods. The main work of this thesis was conducted with the 

overall scope of providing the best possible a framework for generating finite element 

model to predict vertebral strength from large clinical research data sets. 

 

The main aim of this thesis was to develop a diagnostic tool using finite element 

modelling to predict vertebral strength and fracture risk from clinical research images 

for large clinical studies and to better understand the mechanism of vertebral fracture. 

This was achieved through the following objectives: 

* To develop a streamlined workflow that performs pre/post processing for the 

generation of a range of FE models: functional spinal unit (FSU), vertebral body with 

posterior elements (VB PE), vertebral body (VB), and disc-vertebra-disc unit (DVD) from 

medical images 

* To develop a finite element model of the functional spinal unit (FSU) based on QCT 

and MRI scan data sets and to validate the FSU FE model using experimental data (from 

an in vitro cadaveric study) 

* To compare vertebral strength predicted by the FSU model with that predicted by 

single vertebra and vertebral body FE models 



 

 

* To apply a new patient-specific FE model of disc-vertebra-disc unit (DVD) to clinical 

research scans to discriminate vertebral fracture in postmenopausal women    

* To apply the patient-specific DVD FE model to clinical research scans and evaluate its 

ability in terms of monitoring the effect of pharmacological treatment. 

 

The main body of this thesis is divided into seven chapters: Chapters 2 to 8. 

Chapter 2 reviews a wide range of literature highlighting the basic concepts of 

osteoporosis and bone biomechanics whilst also covering the anatomical structure and 

biomechanics of lumbar spine and vertebral fractures. The state-of-the-art finite 

element models of lumbar spine for the vertebral strength and fracture risk assessment 

are reviewed together with these basic concepts in detail. Finally, the text summarises 

the characteristics of the current FE models and their limitations for application in 

clinical studies and suggests a patient-specific finite element model of vertebra for 

osteoporosis studies. 

Chapter 3 describes the development of a full framework, SpineVox_Pro for image 

processing, FE mesh model generation, and post-processing, using medical research 

images such as QCT and MRI datasets. The SpineVox_Pro application is then used 

throughout the studies described in this thesis.   

Chapter 4 presents the development of a new finite element model of the functional 

spinal unit (FSU) for predicting vertebral strength using QCT and MRI scans from sixteen 

cadaveric FSUs and shows the validation procedure of the FSU FE model with the 

experiment (the experimental work was done by Dr. Landham, University of Bristol).  

Chapter 5 describes a comparative study of FE-derived vertebral strengths under pure 

compression and forward bending from the different FE models developed in this thesis: 

the vertebral body FE model, the single vertebra FE model and the FSU FE model. 

Chapters 6 and 7 show the application of the full framework developed (SpineVox_Pro) 

to clinical research data sets. Chapter 6 proposes a new FE model of disc-vertebra-disc 

unit (DVD) and the study shows the application of the DVD FE model for the 



 

 

discrimination power of the vertebral fracture in postmenopausal women. Chapter 7 

investigates the effects of the drug teriparatide on vertebral strength in postmenopausal 

women using the developed DVD FE model. 

Chapter 8 summarises the strengths and limitations based on each chapter and 

addresses the subject of future work for improvement of the models and further 

applications. 



 

 

This literature review is preparatory to the actual work to suggest a patient-specific 

finite element model of vertebra and a methodology to generate the FE model for 

vertebral strength and fracture risk assessment clinically. Therefore, the contents of this 

chapter mainly have an object in view which reviews current cutting-edge finite element 

models of vertebra for clinical research, especially those related to osteoporosis studies. 

It is reached through covering the concept of osteoporosis, the basic anatomy and 

biomechanics of lumbar spine, and vertebral fracture assessment. 

 

Osteoporosis was defined, in 1993, as “a systemic skeletal disease characterized by low 

bone mass and micro-architectural deterioration of bone tissue, with a consequent 

increase in bone fragility and susceptibility to fractures” by the World Health 

Organization (WHO)(ConsensusDevelopmentConference, 1993). The WHO suggested 

that the diagnosis of osteoporosis should be defined by a bone density of 2.5 standard 

deviations below the mean value for young white adult women in the lumbar spine, 

femoral neck or forearm i.e., T-score  ≤ -2.5. The WHO T-score definition of osteoporosis 

is shown in Table 2.1 (Kanis and Glüer, 2000). T-scores are calculated by taking the 

difference between the patient’s measured BMD and the young and healthy adult mean 

BMD divided by young adult population standard deviation (SD) as shown: 

 

𝑇 − 𝑠𝑐𝑜𝑟𝑒 =
𝑆𝑢𝑏𝑗𝑒𝑐𝑡′𝑠 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝐵𝑀𝐷 − 𝑦𝑜𝑢𝑛𝑔 𝑎𝑑𝑢𝑙𝑡 𝑛𝑜𝑟𝑚𝑎𝑙 𝑀𝑒𝑎𝑛 𝐵𝑀𝐷

𝑌𝑜𝑢𝑛𝑔 𝑎𝑑𝑢𝑙𝑡 𝑛𝑜𝑟𝑚𝑎𝑙 𝐵𝑀𝐷 𝑆𝐷
 



 

 

 

Table 2.1: WHO definition of osteoporosis and osteopenia, data taken from (WHO, 1994, Kanis 

and Glüer, 2000) 

Terminology T-score definition 

Normal 𝑇 ≥ −1.0 

Osteopenia −2.5 <  𝑇 <  −1.0 

Osteoporosis 𝑇 ≤ −2.5 

Established osteoporosis 𝑇 ≤ −2.5 in the presence of one or more fragility fractures 

 

DXA is currently the most common method used to measure areal BMD. As radiation 

dose associated with DXA is extremely small: pencil beam DXA is from 0.1 (Lunar DPX) to 

1.0 µSv and fan beam DXA is from 1.0 (Lunar Prodigy) to 10 µSv (Hologic Discovery), 

measurement can be repeated with minimum dose to the patients (Lewis et al., 1994, 

Njeh et al., 1999, Blake et al., 2006). DXA measures the extent of attenuation of the X-

ray beam when two different X-ray photons, high energy and low energy beams, pass 

through the body. An alternative method, QCT has come into the spotlight in recent 

years because the geometric and structural information of bone is considered to be an 

important factor for the determination of bone strength. Three dimensional QCT 

imaging can produce volumetric BMD (g/cm³) instead of areal BMD (g/cm²) by DXA. 

Moreover, QCT can analyse the cortical bone and the trabecular bone separately. 

A lot of literature has shown that BMD is correlated with vertebral strength and fracture 

risk, and thus, areal bone mineral density (BMD) by DXA is frequently used as a proxy 

measure of bone strength (Marshall et al., 1996, Cummings et al., 2002). However, 

aBMD has limitations in terms of explaining bone strength and fracture risk: aBMD alone 

accounts for approximately 70% of bone strength (NIH, 2000) and half of patients who 

have fractures were not diagnosed as having osteoporosis (Schuit et al., 2004). Due to 

this limitation, the National Institutes of Health Consensus Development Conference in 

March 2000 redefined osteoporosis more comprehensively as “a skeletal disorder 

characterized by compromised bone strength predisposing to an increased risk of 

fracture”. The NIH emphasised the importance of bone strength and stated that “bone 

strength reflects the integration of two main features: bone density and bone quality”. In 

this manner, several papers suggested that other factors associated with bone quality 



 

 

such as macro- and micro-scopic architecture, and matrix and mineral composition 

should be considered in order to investigate bone strength and bone fracture risk as well 

as bone quantity (mass) for bone strength as shown in Figure 2.1 (Bouxsein, 2005, 

Hernandez and Keaveny, 2006, Reid, 2013). 

 

 

Figure 2.1: Determinants of bone strength 

 

The general recommendation for postmenopausal osteoporosis patients is an intake of 

1000 mg of calcium, 800 IU of vitamin D, and 1g/kg body weight of protein per day. 

General management is insufficient for reducing fracture risk, therefore, some type of 

pharmacological intervention is required (Tang et al., 2007). Currently available 

pharmacological treatments in Europe, as shown in Table 2.2, are categorised into two 

groups: antiresorptive agents that reduce bone resorption (bisphosphonates and 

selective estrogen receptor modulators: SERMs) and anabolic agents which increase 

bone formation (parathyroid hormone). These drugs have been shown to be efficacious 

in reducing the risk of vertebral fracture, non-vertebral fracture, and hip fracture (Kanis 

et al., 2008). In MORE study, raloxifene reduces the risk of vertebral fractures by 30 – 40% 

in postmenopausal women with osteoporosis (Ettinger et al., 1999). In the category of 

bisphosphonates, alendronate and risedronate have shown to reduce the incidence of 

vertebral and non-vertebral fractures by 40 – 50% and 30 – 36%, respectively (Black et 

al., 1996, Stevenson et al., 2005, Cranney et al., 2002, Harris et al., 1999, Reginster et al., 

2000). On the other hand, Ibandronate was shown to reduce only vertebral fractures by 



 

 

50 -60% (Delmas et al., 2004, Chesnut et al., 2004). HORIZON trial of Zoledronic acid that 

reduced vertebral fracture by 70 % and hip fracture by 40 % (Black et al., 2007). 

The majority of treatments for osteoporosis work by inhibiting bone resorption (anti-

resorptive treatments). However, recently treatments which stimulate bone formation 

(anabolic treatments) have been developed such as parathyroid hormone (PTH 1-34: 

Teriparatide, FORSTEO; PTH 1-84: intact PTH, PREOTACT). These treatments have been 

shown to be associated with a decrease in fracture risk (Neer et al., 2001, Greenspan et 

al., 2007).  

 

Table 2.2: Treatments for Osteoporosis (table based on Kanis et al. (2008)) 

Type Treatment 

Antiresorptive 

medications 

Bisphosphonates 

Alendronate (Fosamax) Tablets 

Risedronate (Actonel) Tablets 

Ibandronate (Bonviva) Tablets 

Zoledronic acid (Aclasta) 
Infusions 

&Injections 

Selective estrogen 

receptor modulators 

(SERMs) 

Raloxifene (Evista) Tablets 

  

  

Less commonly used 

drug treatments 

Hormone therapy or 

hormone replacement 

therapy (HRT) for women 

 

Hormone theraphy for men  

Calcitriol (Rocaltrol) tablet  

Anabolic drugs Parathyroid hormone 

Teriparatide (Forsteo) Injection 

Parathyroid hormone 

treatment (Preotact) 
Injection 

 

Teriparatide (PTH 1-34) is the only licensed anabolic therapy for treatment of 

osteoporosis in postmenopausal women in the UK. Several studies using bone-turnover 

markers showed that PTH increase bone formation which is greater than in bone 

resorption (Black et al., 2003, Chen et al., 2005, Eastell et al., 2006, Bauer et al., 2006). 

PTH treatment is also associated with increases in spine BMD. In women with 

postmenopausal osteoporosis treated with teriparatide a mean increase in spine BMD of 



 

 

6% at 6 months and 13% at 24 months was observed (Obermayer-Pietsch et al., 2008). 

These treatment effects have been investigated using bone densitometric parameters: 

BMD by DXA, vBMD by QCT. However, the increases in BMD by DXA reported are not 

sufficient to explain the reduction in fracture risk in response to the therapy. The 

increase in BMD measured by DXA for the lumbar spine following TPTD treatment 

explains 30-41% of the vertebral fracture risk reduction whilst the remaining portion is 

associated with non-BMD parameters (Chen et al., 2006). Imaging parameters such as 

trabecular thickness, trabecular number obtained by high-resolution CT (HRCT) are also 

used for monitoring the treatment effect on bone. One PTH study using HRCT reported 

an increase in cancellous bone volumetric BMD of 13% at 6 months and showed that 

high resolution CT of the spine allowed the measurement of parameters of bone 

microstructure that increased by 16% at 6 months (Graeff et al., 2007).  

Some studies here used femoral strength based on QCT femoral FE model to investigate 

therapeutic effects on femoral strength (Keaveny et al., 2008, Keaveny et al., 2011) and 

recently, some used vertebral strength derived from a QCT-based vertebral body FE 

model to investigate therapeutic effects on vertebral strength (Keaveny et al., 2007, 

Lewiecki, 2009, Imai et al., 2009, Graeff et al., 2009, Chevalier et al., 2010). These studies 

showed that FE-estimated strength provides a more sensitive indicator of effect of 

treatment on bone than densitometric variables.  

 

Bone has a highly hierarchical structure and consequently, the mechanical properties of 

bone vary with the different hierarchical structural levels, and the relationships between 

them. Therefore, different levels of hierarchical structure as illustrated in Figure 2.2 

should be considered when investigating the properties of bone.  

Some characteristics can be described from a structural viewpoint and some from the 

basic material properties. The structure of bone is categorised in terms of different 

scales: as an entire organ (femur, vertebra, tibia, etc), at the macroscale as cortical or 

trabecular bone, at the level of the Haversian system or single trabecula (micro: 

10~500µm), lamella (submicro: 1~10 µm), fibrillar collagen, embedded mineral (nano: a 



 

 

few hundred x10-3 µm ~1 µm), or the molecular structure of mineral, collagen, and 

organic proteins (subnano: < a few hundred x10-3 µm) (Rho et al., 1998). 

 

 

Figure 2.2: The hierarchical structural levels of cortical bone (image adapted from 

http://www.doitpoms.ac.uk with permission) 

http://www.doitpoms.ac.uk/


 

 

At the molecular level, bone can be treated as a composite material with an extracellular 

matrix (ECM) composed mainly of mineral, calcium phosphate (60-70%) which is 

approximated as hydroxyapatite (𝐻𝐴: 𝐶𝑎10(𝑃𝑂4)6(𝑂𝐻)2) , collagen fibrils (5-15%), 

water (25-30%), and a small amount of other substances: noncollagenous proteins and 

inorganic salts. Collagen, with its triple helical structure, is the main fibrous protein in 

the body and the collagen fibres act as nucleation sites for bone mineral crystals. A 

higher proportion of mineral leads to an increase in bone stiffness because the mineral 

phase is much stiffer than the collagen phase (Renders et al., 2008). 

At the macro level, bone can be categorised as one of two types, cortical or trabecular, 

according to porosity and location: cortical (volume fraction ≥ 0.7) and trabecular bone 

(0.05 ≤ volume fraction ≤ 0.3). The composition is similar whilst the structure of the two 

types is different. Cortical bone accounts for about 80% of the body’s bone mass, 

forming the dense outer shell of bones and consists of osteons or Haversian systems. 

Each osteon comprises a Haversian canal surrounded by concentric lamellae. Between 

the lamellae, the bone cells or osteocytes sit within cell-sized spaces, the lacunae. 

Haversian canals contain blood vessels; these are interconnected with the other vessels 

on the surface of the bone. In contrast to cortical bone, trabecular bone accounts for 20 % 

of the total mass of skeleton and is made up of a network interconnected plate-like and 

rod-like elements or trabeculae. Spaces between the trabeculae contain bone marrow. 

This porous structure means that trabecular bone is lighter and less dense than cortical 

bone. Trabecular bone is important because osteoporotic fractures generally occur in 

bones, such as the vertebrae, which have a high proportion of trabecular bone. The 

mechanical properties of trabecular bone depend on several factors: the mineral density, 

volume fraction, and tissue architecture and composition. The association of these 

factors results in heterogeneity and anisotropy: the elastic modulus and strength of 

trabecular bone is primarily determined by the volume and the variations in volume 

fraction lead to heterogeneity (Keaveny et al., 2001, Keaveny and Buckley, 2006), whilst 

the different architectures within trabecular bone lead to its anisotropic characteristics 

(Mosekilde et al., 1987). 

Bone has another unique characteristic: bone is modelled (bone formation) as the 

skeleton grows and continuously remodelled (bone remodelling) through a cycle of bone 

resorption and formation throughout the entire life of an individual. Three types of bone 



 

 

cells, forming the ‘basic multicellular unit (BMU)’, co-operate with each other to bring 

about remodelling. These are; osteoblasts (bone forming cells), osteocytes (mature bone 

cells associated with homeostasis- maintaining oxygen and mineral levels), and 

osteoclasts (bone resorbing cells). In healthy bone, the balance between the work of 

osteoblasts and osteoclasts maintains bone tissue whereas, in osteoporotic bone, there 

is an imbalance of formation and resorption due to a decrease in the activity of 

osteoblasts. Furthermore, bone is a dynamic tissue that adapts the mass and tissue 

structure to the physiological loading. Bone will remodel to become stronger through 

trabecular architecture adaptation and following cortical bone thickening. The idea for 

bone adaptation from the loading was introduced by Wolff. He assumed the 

architecture of bone is directly related to the directions of principal stress which is 

known as Wolff’s Law (Wolff et al., 1986). This was refined to introduce the concept of 

‘mechanostat’ that bone adaption occurs through a mechanism known as 

‘mechanotransduction’: the mechanical loading causes local bone deformation and the 

deformation stimulates bone cells. Mechanostat theory is based on the magnitude of 

the strain. Frost claims that there is a lower and an upper effective strain threshold to 

control bone remodelling process: strain between 800 and 1500 µStrain (adapted state) 

was reported as a balanced status which bone resorption and bone formation is in 

balanced; strain above the 1500 µStrain (over load) on the bone cause bone modelling 

to increase cortical bone mass and strength, whereas strain below 800 µStrain (disuse) 

cause bone remodelling because the stimuli is not sufficient to maintain bone formation 

and resorption is dominant resulting in reduce bone mass and strength. (Frost, 1987). 

This thresholds maybe relative to habitual load of individuals (Skerry, 2008). 

Many different techniques can be used to assess the various factors associated with 

bone quality across the different scales from macro scales to nanoscales as shown in 

Figure 2.3.  

 



 

 

 

Figure 2.3: Different techniques associated with the hierarchical structural level to assess bone 

quality (figure with permission from (Donnelly, 2011)) 

 

Conventional densitometry such as DXA is used to measure bone mass. Bone mechanical 

properties are obtained from physical tests such as whole bone mechanical testing, bulk 

tissue specimen testing, and nano-indentation whilst bone geometry and micro-

architecture are obtained from imaging techniques such as QCT, HR-pQCT, HR MRI, and 

micro CT. In addition, bone tissue properties, such as chemical composition, are studied 

by NMR imaging, vibrational spectroscopic imaging, and scanning electron microscopy 

(Donnelly, 2011). 

Mechanical properties of bone 

Despite its organic nature, bone can be treated as an engineering material. As 

mentioned earlier, the mechanical properties of bone can be described in terms of both 

structural and material properties (Table 2.3).  

For trabecular bone, its structural properties are usually determined by plotting load-

displacement curves as its extrinsic properties are influenced by the structure of both 

trabeculae and pores. This is an essential factor in carrying out a global stress analysis at 

the macro level. On the other hand, its material properties are defined from the stress-

strain curve as the intrinsic factors are an invariant value of the material of the 

trabecular struts. Intrinsic factors are important properties for stress analysis at the 



 

 

micro level. A typical load-displacement curve and stress-strain curve from a uniaxial 

tensile test is shown in Figure 2.4. 

 

Table 2.3: Extrinsic and intrinsic factors from tensile tests 

 Extrinsic from L-D curve Intrinsic from stress-strain curve 

Strength Fu Ult. Force N σu Ultimate Stress N/mm2 (MPa) 

Brittleness 
Su Ult. 

Displacement 
mm εu Ultimate Strain - 

Stiffness K Stiffness N/mm E Young’s Modulus N/mm2 (MPa) 

Energy 

Absorption 
U Work to Failure N −mm U Toughness Modulus N/mm2 

 

 

Figure 2.4: Typical load-displacement, and stress-strain curves for bone: (a) load-displacement 

curve, (b) Engineering stress-strain curve 

 

Bone has a higher strength in compression than in tension. This explains why bone 

strength varies between anatomical sites because within the body each bone is exposed 

to a different stress field. In addition, bone strength varies with the loading direction. In 

tensile tests of cortical bone, the strength in longitudinal loading is much greater than 

that in the horizontal loading. For this reason, bone is described as an anisotropic 



 

 

material the strength of which is dependent on loading direction. Bone is normally 

classified as a brittle material which shows only 0.5-3% of maximum total strain. Bone 

strength also changes with age: decreasing with increasing age. 

Bone exhibits normal Hookean elastic behaviour to a certain extent, i.e. it has a linear 

stress-strain relationship. Hooke’s Law for a linear elastic solid material is used to 

describe the mechanical properties of bone in the elastic region. Hooke’s Law is 

generally represented in tensor form as follows: 

[𝜎] = [𝑆][𝜀] (2.1) 

𝜎𝑖𝑗 = 𝑆𝑖𝑗𝑘𝑙𝜀𝑖𝑗 (2.2) 

 

Where, [𝜎] is the stress tensor, [𝜀] is the strain tensor, and [𝑆] is the stiffness tensor. In 

addition, [𝐶], the compliance tensor, can be introduced as follows: 

[𝜀] = [𝑆]−1[𝜎] = [𝐶][𝜎] (2.3) 

𝜀𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜎𝑖𝑗 (2.4) 

 

Stress and strain tensors are 2nd order tensors whilst the stiffness and compliance 

tensors are 4th order tensors. 

The general Hooke’s Law can be shown as a matrix form: 

{
 
 

 
 
𝜀11
𝜀22
𝜀33
𝛾23
𝛾13
𝛾12}
 
 

 
 

= 

[
 
 
 
 
 
𝐶11 𝐶12
𝐶21 𝐶22

𝐶13 𝐶14
𝐶23 𝐶24

𝐶15 𝐶16
𝐶25 𝐶26

𝐶31 𝐶32
𝐶41 𝐶42

𝐶33 𝐶34
𝐶43 𝐶44

𝐶35 𝐶36
𝐶45 𝐶46

𝐶51 𝐶52
𝐶61 𝐶62

𝐶53 𝐶54
𝐶63 𝐶64

𝐶55 𝐶56
𝐶65 𝐶66]

 
 
 
 
 

 

{
 
 

 
 
𝜎11
𝜎22
𝜎33
𝜏23
𝜏13
𝜏12}

 
 

 
 

 (2.5) 

 

Where, the indices refer to the anisotropic material symmetries about a point. The 

compliance tensors are defined by 21 independent constants. However, trabecular bone 

is usually treated as an orthotropic material that has 3 orthogonal planes of symmetry, 

where material properties are independent of direction within each plane. This leads to 

𝐶14  = 𝐶15 = 𝐶16 = 𝐶24 = 𝐶25 = 𝐶26 = 𝐶34 = 𝐶35 = 𝐶36 = 𝐶45 = 𝐶46 = 𝐶56 = 0 and 9 

independent elastic constants in the constitutive matrix: 



 

 

𝐶  =     

[
 
 
 
 
 
𝐶11 𝐶12
𝐶21 𝐶22

𝐶13   0
𝐶23   0

0    0
0    0

𝐶31 𝐶32
0 0

  𝐶33 0
0 𝐶44

0    0
0    0

0    0
0    0

0     0
0     0

𝐶55 0
0 𝐶66]

 
 
 
 
 

                     

=  

[
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Where,  𝐸𝑖  is the Young’s modulus along the axis 𝑖, 𝐺𝑖𝑗  is the shear modulus in direction 

𝑗 on the plane whose normal in direction 𝑖, 𝜈𝑖𝑗  is the Poisson’s ration that corresponds 

to a contraction in direction 𝑗 when an extension is applied in direction 𝑖. 

More simply, trabecular bone can be treated as a transverse isotropic material which 

has the same properties in one plane and different properties in the direction normal to 

this plane, that is, symmetrical with respect to a rotation about an axis of symmetry. 

Therefore, only 5 constants are independent: 
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Where, 
𝜈𝑝𝑧

𝐸𝑝
=

𝜈𝑧𝑝

𝐸𝑧
 . The 5 elastic constants are the Young's modulus and poisson ratio in 

the x-y symmetry plane, 𝐸𝑝 and 𝜈𝑝, the Young's modulus and poisson ratio in the z-

direction, 𝐸𝑝𝑧 and 𝜈𝑝𝑧, and the shear modulus in the z-direction 𝐺𝑧𝑝. (Odgaard et al., 

1997, Yang et al., 1998, Zysset et al., 1998). This latter case is considered to be valid 

since the elastic modulus and strength in the longitudinal direction are higher than 

those in the transverse direction in the trabecular bone of vertebra (Mosekilde et al., 

1987). 

 

The human spinal column is the most complex part of the musculoskeletal system. It 

consists of 33 vertebrae; cervical-7 (neck), thoracic-12 (chest), lumbar-5 (lower back), 

sacral, and coccygeal regions. The sacral and coccygeal regions are combined with the 

pelvis and can be considered as parts of the pelvic girdle. There are intervertebral discs 

between each two adjacent vertebrae and each vertebra is made up of a vertebral body 

and posterior elements. The spinal column has several functions; to protect the spinal 

cord, to support upper extremities including the head and neck, to transfer loads from 

the head and trunk to the pelvis, and, to allow a variety of movements such as flexion-

extension, lateral flexion, and rotation. The intervertebral discs in the spinal column 

have a particularly important role as shock absorbers to sustain loads transmitted from 

the segments above, to eliminate bone-to-bone contact, and to reduce the effects of 

impact forces by preventing direct contact between the bony structures of the vertebrae. 

 

 



 

 

 

Figure 2.5: Functional spinal unit of lumbar spine (Image adapted from medical discussion paper-

Back pain:  http://www.wsiat.on.ca/english/mlo/back.htm with permission from Ms. Friesen) 

 

The functional spinal unit (FSU), or spinal motion segment (SMS), consists of an 

intervertebral disc with two adjacent vertebrae, facet joints, and intervening ligaments 

as shown in Figure 2.5. It is the smallest structural unit that can exhibit the full 

biomechanical behaviour of the spine (Nordin and Frankel, 2012). In this study, apart 

from some of cadaveric specimens used for the validation work which came from T11 

and 12, we limited the range to the level of the lumbar spine (L1-L5) focusing 

particularly on the FSU. 

http://www.wsiat.on.ca/english/mlo/back.htm


 

 

Each vertebra comprises a vertebral body, two pedicles, and posterior elements such as 

the transverse processes, articular processes, spinous process, and spinal canal as shown 

in Figure 2.6.  

 

 

Figure 2.6: Vertebra: top) axial view; bottom) sagittal view (Image adapted from medical 

discussion paper-Back pain:  http://www.wsiat.on.ca/english/mlo/back.htm with permission Ms. 

Friesen) 
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The vertebral body is primarily made of a trabecular bone core with a thin cortical shell. 

The trabecular bone comprises numerous interconnected trabecular struts surrounded 

by bone marrow. Trabecular architecture arises through adaptation which occurs during 

biological bone modelling and remodelling. Bone modelling during growth is in the form 

of new bone formation over existing bone with the independent activities of osteoclasts 

and osteoblasts leading to an increased bone mass. Bone remodelling during aging is 

bone formation over existing bone, achieved by ‘team work’ between osteoclasts and 

osteoblasts, resulting in maintenance at best, if not bone loss. 

According to mechanical tests carried out on cadaveric specimens, in compression, the 

vertebral body takes 80% of the load under pure compression and the posterior 

elements support the remaining load which is approximately 20%. Here, the literature 

shows a range of values (Nachemson 1960, 18%; Adams and Hutton 1980, 16%; Lorentz 

1983, 9%-25%; Yang and King 1984, 3-25%; Pal and Routal 1986, 18-22% (Nachemson, 

1960, Adams and Hutton, 1980, Lorenz et al., 1983, Yang and King, 1984, Pal and Routal, 

1986)). As the major load pathways through the vertebral body run in parallel to the 

columns of vertical trabeculae, the cortical shell and horizontal trabeculae are less 

important in transmitting compressive forces (Fields et al., 2011). Each individual strut of 

trabecular bone in the vertebral body is aligned in a vertical direction (cranio-caudal) 

thus the elastic modulus in the longitudinal direction is higher than that of the 

transverse direction. The dominant trabecular direction supports Wolff’s law that bone 

structure is adapted to sustain habitual loads with minimum bone mass. Although bone 

usually shows anisotropic behaviour with a different stiffness and strength along each 

direction, vertebral trabecular bone is often considered as a transversely isotropic 

material as mentioned earlier (Mosekilde et al., 1987, Mosekilde, 1993, Ulrich et al., 

1999). 

Trabecular architecture changes with ageing (Boyde, 2002). The trabeculae become 

thinner. This is more pronounced for horizontal trabeculae in non-load bearing parts. 

Drug treatments may not lead to full recovery of bone strength; whilst bone mass may 

recover fully, connection loss between trabeculae may remain. Connections between 

horizontal trabeculae decrease and hence trabecular strength is decreased as 

demonstrated by Euler bucking theory (Guo and Kim, 2002). Consequently, fracture risk 

increases (Mosekilde, 1993). 



 

 

Intervertebral discs (IVD) are the largest avascular and aneural structures in human body. 

The IVD is composed of collagen fibres embedded in a highly hydrated extracellular 

matrix. This composition is the same irrespective of the spinal level, although the size 

and shape varies (Guerin and Elliott, 2006).  

Each IVD has three distinct regions, as shown in Figure 2.7: the nucleus pulposus (NP: 

centre), the annulus fibrosus (AF: fibrous layer wrapped circumferentially on the nucleus 

pulposus), and two end plates (covering the inferior and superior aspects of the disc). 

 

 

Figure 2.7: Intervertebral disc: left) sagittal view; right) axial view (Image adapted from open 

access journal (Smith et al., 2011)) 

 

The nucleus pulposus (NP) accounts for 30~40% of the volume fraction of the IVD and is 

a highly-hydrated gel, comprising 70~85% of water, with proteoglycans and collagen 

(50%, 15~20% of the dry weight). It acts like fluid since the NP has high water content. 

The water content of the NP decreases with ageing and consequently, becomes dry, and 

stiff. The annulus fibrosus (AF) is formed from tough, ligamentous, fibrocartilage and is 

composed of 50% of water, with collagen fibre bundles (10%, 70% of dry weight) 

embedded in proteoglycan matrix. The collagen fibres consist of around twenty layers 

embedded in different orientations (about 30° and 150° from the horizontal plane, in 

turn) and attached to the endplates. This structure is designed to avoid bulging and 



 

 

support rotation. The endplates are thin plates of cortical bone perforated by many 

small holes, and covered by a thin layer of hyaline cartilage (Adams et al., 2002). 

As IVDs degenerate with age, they experience morphological and biochemical changes. 

Clinical degeneration is graded in vivo using MRI (Pfirrmann et al., 2001). At the earliest 

stage of degeneration, the IVD shows increasing flexibility, but, with increased severity 

of degeneration the IVD becomes stiffer and shows a solid-like behaviour (Iatridis et al., 

1997, Iatridis et al., 1998). The degenerative process alters the mechanical 

characteristics of the IVD itself and also the load distribution, thus the stress distribution 

on the adjacent vertebrae is affected (Adams and Roughley, 2006). In the heathy IVD 

load is transferred uniformly through the NP and AF whilst, for the degenerated IVD the 

load is transferred more through the AF (White iii and Panjabi, 1990). In severe disc 

degeneration, the neural arch and posterior elements of the vertebrae experienced 

more load-bearing. In consequence, this leads to progressive bone loss in the vertebral 

body which is the anterior part of vertebra and more likely to be fractured (Christiansen 

and Bouxsein, 2010). 

 

The facet joints, the so-called zygapophysial joints, are the links between the inferior 

articular process of the upper vertebra and the superior articular process of the lower 

vertebra. These have an important role in limiting excessive torsion and protecting 

disconnection of vertebra when sliding forward (Adams et al., 2002).  

The overall integrity of the spinal structure is maintained by ligaments. Many of these 

are connected together as shown in Figure 2.8, namely; the anterior longitudinal 

ligament (ALL), the posterior longitudinal ligament (PLL), the supraspinous ligament (SSL), 

the interspinous ligaments (ISL), and the ligamentum flavum (LF) in the lumbar spinal 

column. The longitudinal and supraspinous ligaments are attached to several vertebrae 

horizontally and the fibres of the SSL and ISL are combined together. For this reason, 

some loss of strength is inevitable if the spine is dissected into individual functional 

spinal units (Adams et al., 2002). 



 

 

 

Figure 2.8: Cross-section of a sagittal view of a functional spinal unit showing the major ligaments 

(Image adapted from medical discussion paper-Back pain:  

http://www.wsiat.on.ca/english/mlo/back.htm with permission from Ms. Friesen) 

 

The vertebral compression fracture (VCF) is the common type of osteoporotic vertebral 

fracture. This commonly occurs in the levels T11 to L2 (Van Der Klift et al., 2002). An 

anterior wedge fracture is the most frequent type of fracture as the primary loading of 

the human vertebral body is asymmetrical (Wasnich RD, 1996, Jackson S.A., 2000). A 

vertebral fracture, in itself, can be a good predictor of future fracture risk since vertebral 

fractures substantially increase the risk of new fragility fractures. Women with vertebral 

fractures have a 5-fold increased risk of a new vertebral fracture and a 2-fold increased 

risk of hip fracture (Black et al., 1999, Melton Iii et al., 1999). Of those with fractures, 

one woman in five will suffer from a further vertebral fracture within a year (Lindsay et 

al., 2001). 

Two imaging methods are used clinically to define vertebral fracture: vertebral fracture 

assessment (VFA) by DXA and conventional radiography. Conventional radiography has a 

superior image quality than VFA by DXA, but the effective radiation doses associated 

http://www.wsiat.on.ca/english/mlo/back.htm


 

 

with conventional radiography are much higher than those associated with VFA by DXA. 

Vertebral fracture is commonly defined as occurring in the vertebral body and several 

approaches for the identification of a vertebral fracture have been suggested. 

Conventionally, a change of 15%, or more, in the mean vertebral body height ratio 

assessed using quantitative morphometry (QM) is regarded as indicative of a vertebral 

fracture (Melton et al., 1989, Melton et al., 1993). Eastell et al. subsequently revised this 

definition to use standard deviations (Eastell et al., 1991). Gehlbach et al. used a similar 

percentage-rating system to visually grade the severity of vertebral deformity using a 

categorisation ranging from normal to three called the Semi-Quantitative (SQ) method 

(Gehlbah et al., 2000). Conventional methods are categorised into three-types: concave 

(collapse of the central upper endplate-leading to a reduction in the mid vertebral 

height), wedge (reduction of both the mid and anterior vertebral heights), and crush 

(collapse of the whole vertebral body). However, endplate fracture, an essential feature 

of typical osteoporotic vertebral fractures, is not taken into account in conventional 

methods. To account for the endplate the Algorithm-Based Qualitative (ABQ) Method 

was proposed recently (Jiang et al., 2004). The ABQ method incorporates two 

improvements to define vertebral fractures: the method is a visual assessment tool 

which takes account of fracture of the vertebral endplate and has no minimum 

threshold for apparent reduction in vertebral height. Nevertheless, vertebral fracture 

detection still represents a challenge and remains problematic and suboptimal: over-

diagnosis (confusion with other non-fracture deformities) and under-diagnosis remain a 

concern (Bouxsein, 2006). 

Vertebral fractures occur when the forces applied to the vertebral body exceed its 

strength. Therefore, there are two main factors that should be considered when seeking 

to reduce fracture risk; the applied load (force direction and magnitude) and whole bone 

strength (Bouxsein, 2006). As mentioned previously, several factors may affect vertebral 

compressive strength: bone mass, bone morphology (shape, micro-architecture), and 

bone material properties (matrix mineralization, collagen characteristics, micro-damage) 

(Christiansen and Bouxsein, 2010). In terms of the load on the spine, several factors also 

are involved: body weight, tension in the spinal ligaments and the surrounding muscles, 

spinal curvature, intervertebral disc degeneration, and external loads  (Christiansen and 

Bouxsein, 2010). Several studies indicate that the vertebral body takes most of 

compressive load on the spine, whilst the posterior elements take the interaction with 



 

 

ligaments, muscles and facet joints. Generally, the upright posture can be assumed to be 

associated with axial compressive loading on the spine, whilst forward bending moment 

should be considered during erect standing due to anterior movement of the centre of 

gravity of the body as a whole. 

Although aBMD by DXA is still the only clinical technique used to assess vertebral 

strength and fracture risk non-invasively, QCT has been in the spotlight in recent years 

since geometric and structural information is also considered to be an important factor 

for the determination of bone strength. Three dimensional volumetric QCT imaging can 

produce more accurate volumetric BMD (g/cm³: vBMD) when compared with areal BMD 

(g/cm²: aBMD) by DXA. QCT is also able to discriminate between trabecular and cortical 

bone. In common with the basic operating principle of DXA, QCT measurement is based 

on X-ray beam attenuation. CT images are obtained by two different processes: by 

gathering slice scan data made of voxels using a spiral scan mode and by reconstructing 

tomographic data using a mathematical process. Hounsfield units (HU), a linear 

parameter, are used to calibrate and standardise different types of CT scanners; air (-

1000), fat (-200), water (0), muscle (30), and bone (300-3000). A bone mineral phantom 

is used to transform HUs to vBMD values. These approaches use validated correlations 

between either, bone density and bone strength, or between bone density with bone 

structure information and bone strength. In general, studies by DXA or QCT indicate 

modest correlations (R2 =0.3-0.8) between aBMD assessed by DXA or vBMD by QCT and 

vertebral compressive strength, although they do not measure vertebral strength 

directly. Recently, QCT-based finite element analysis (FEA) has been adopted as an 

alternative non-invasive technique for assessing vertebral fracture risk. The advantage of 

FEA is that it can integrate all the information embedded in the scans such as bone 

shape, size, trabecular and cortical bone density distribution, as well as physiological 

loading conditions. Some studies suggest that QCT-based FEA has stronger correlation 

with vertebral compressive strength than aBMD by DXA or vBMD by QCT alone 

(Crawford et al., 2003a, Melton et al., 2007). 

 



 

 

A number of FEA studies of the spine have been published. These range from relatively 

simple individual vertebral body FE models, to realistic complex whole vertebrae column 

FE models. FEA models of the lumbar spine can be grouped according to the parts 

involved as shown in Figure 2.9: the vertebral body or the single vertebra, the FSU, three 

vertebrae, and the whole lumbar spine from vertebra L1 to vertebra L5 or from vertebra 

L1 to vertebra S1. 

 

 

Figure 2.9: Different categories of finite element models applied in lumbar spine research (figures 

with permission from Melton et al., 2007; Tawara et al., 2010; Schmidt et al., 2007; Noailly et al., 

2012; Rohlmann et la., 2007) 

 

The main procedures used to develop FE models in spine research are similar, even 

though the research approach and the range of FE models are hugely depended on the 

specific aims of each study. The general process of three-dimensional finite element 

analysis of the spine can be described in terms of in three main steps: i) the generation 

of the geometry and mesh; ii) the assignment of material properties; and, iii) the 

application of boundary conditions. Each step is extremely crucial for an accurate finite 

element analysis. To generate the three dimensional geometry of a finite element model, 

one common method is to use medical images such as CT or MRI scans, whilst another is 

to use a generic FE model which has been developed after measuring several 



 

 

dimensional parameters. However, not surprisingly, FE models based on medical images 

have been shown to give more accurate results when compared with experimental 

studies than those from generic FE models (Wilcox, 2007). Mesh generation is also a 

crucial step for obtaining an accurate FE result. Although several methods have been 

developed to build the mesh structure for a three-dimensional model, the most 

common approach is to generate a mesh model directly from the CT voxels. This uses 

pixel information obtained from CT data to generate cubic elements directly without the 

need to first create a solid model. However, a voxel mesh is not suitable to represent 

surface of the spinal structure due to the zigzag element shape. For this reason, other 

types of mesh model, such as tetrahedral and hexahedral mesh models, are often used 

to investigate surface strain and stress distribution after smoothing the surface. In terms 

of material properties, a wide range of different properties from a range of experimental 

studies has been suggested for use in vertebrae in spinal FE models. The most prevalent 

method employed in clinical research is to use the empirical relationships between CT 

number and bone density, and between density and Young’s moduli. The loads and 

boundary conditions are then applied to the model to simulate a specific loading 

condition such as pure compression, bending or shear and finally, the FE model is solved 

using a FE solver. 

Whilst several review papers are available, many of these are far too general for the 

purpose of this thesis (Villarraga and Ford, 2001, Fagan et al., 2002a, Ross, 2005, Jones 

and Wilcox, 2008). Fagan et al. (2002) categorised the finite element models by range 

within spine: whole spine models, vertebral body models, intervertebral disc and FSU 

models, lumbar and cervical spine models. They found that many researchers started 

with a simple individual model and then expanded it with the addition for more complex 

structure and components. Jones and Wilcox (2008) have also reviewed finite element 

modelling methods used for the spine, focusing on the verification, validation and 

sensitivity of the models. At the time of writing, only one review paper could be found 

that considered patient-specific finite element modelling of bones (Poelert et al., 2013). 

Although this reviewed the whole procedure in detail from the patient-specific point of 

view, only the femoral region was covered. 

In this chapter, state-of-the-art finite element models have been reviewed which 

specifically focus on the FE model of the lumbar spine generated from medical images to 



 

 

investigate vertebral strength and to predict fracture risk. Two specific groups of finite 

element models have been considered in particular: the vertebral body and vertebra 

model (at Macro level), and functional spinal unit model (FSU) - two vertebrae and the 

adjacent intervertebral disc as shown in Figure 2.9.  

 

The majority of mechanical studies on vertebra consider the vertebral body without 

posterior elements. The rationale for this is that fracture usually occurs within the 

vertebral body. In keeping with this, many researchers have developed finite element 

models of the vertebral body without posterior elements and the adjacent 

intervertebral discs for studies of the spine (Homminga, 2001, Crawford et al., 2003a, 

Crawford et al., 2003b, Crawford RP, 2004, Keaveny et al., 2007, Melton et al., 2007, 

Buckley et al., 2007b, Chevalier et al., 2008, Chevalier et al., 2010, Chevalier Y, 2009, 

Dall'Ara et al., 2010, Maquer et al., 2013, Mirzaei et al., 2009, Zeinali et al., 2010, 

Liebschner et al., 2003, Imai et al., 2006, Imai et al., 2009). However, although small in 

comparison with the vertebral body, the posterior elements also share the load on the 

vertebra. Thus posterior elements should be considered when predicting realistic 

vertebral biomechanical characteristics in vivo (Imai et al., 2006). Very few FE models 

include the posterior elements within a vertebra FE model (Wijayathunga et al., 2008, 

Tawara et al., 2010). Wijayathunga et al. (2008) used the whole vertebral FE model to 

investigate the effect of cement augmentation on the vertebra, while Tawara et al. 

(2010) used an FE model to investigate the effects of treatment. 

Voxel based FE models 

The CT-based voxel method (direct conversion of the QCT voxel data from cadaveric 

vertebral body into a finite element model using 8-node brick elements), has commonly 

been used to create a finite element model from medical images. Using this method, 

material properties can be assigned using the empirical relationship between density 

and Young’s modulus although there are wide ranges in empirical relationships. The 

detailed material properties and boundary conditions published in literature are 

summarised in Appendix A-1 and Appendix A-2. 



 

 

Homminga et al. (2001) used a patient-specific finite element model from CT data for 49 

lumbar vertebral bodies to investigate the load distribution and fracture-risk in healthy 

and degenerative IVD conditions. They considered an intervertebral disc model to 

generate a disc-vertebral body-disc unit. 1000 N load was applied with 2° forward 

flexion. They found that, in the case of a degenerated disc, the cortical shell carried 

more load than trabecular core and concluded that the load-sharing on the vertebra 

depends on the status of the disc (Homminga, 2001). Crawford et al. (2003a) developed 

a QCT-based voxel finite element model of a vertebral body without posterior elements 

to predict vertebral strength under compressive conditions. The results of the FEA were 

validated against experiment and demonstrated that the finite element model may give 

a more accurate strength prediction than BMD derived from QCT alone (Crawford et al., 

2003a). Keaveny et al. (2007) used a QCT voxel-based FE model for investigating 

vertebral strength in a clinical trial. The results indicated teriparatide (TPTD) gives a 

greater improvement estimated vertebral strength than alendronate (ALN) although 

both have positive effects on vertebrae (Keaveny et al., 2007). Melton et al. (2007) 

applied QCT voxel-based FEM to study vertebral fracture-risk, comparing the results 

with other methods available such as BMD, geometric factors, microstructure, bone 

strength and risk factors. The analysis showed that the results of QCT-based FEA were 

well-correlated with aBMD, and concluded that QCT-based FEA could be regarded as a 

good predictor of fracture-risk (Melton et al., 2007). Buckley et al. (2007) directly 

compared vertebral strength under uniaxial compression with various predictive 

methods, namely: QCT-based BMD, QCT-based mechanics of the solid (MOS) model, 

QCT-based FEM, and mechanical testing. The results of MOS and FE models showed a 

strong correlation with those of mechanical testing, whilst BMD was the only method to 

give a poor correlation (Buckley et al., 2007b). Some studies using a vertebra FE model 

used the same approach to predict vertebral strength (Lewiecki, 2009, Mirzaei et al., 

2009, Zeinali et al., 2010, Maquer et al., 2013). 

Non-Voxel based FE models 

Several studies generated the cortical shell explicitly using non-voxel mesh such as 

triangle shell elements or tetrahedral elements (Liebschner et al., 2003, Imai et al., 

2006). Liebschner et al. (2003) developed a QCT-based FE model with a cortical shell 

modelled using 20-node brick elements in TrueGrid (XYZ Scientific Application Inc., 



 

 

Livermore, CA). The study found that incorporation of a 0.3 mm thick cortical shell with 

a Young’s Modulus of 457 MPa improved the accuracy of the prediction of the 

biomechanical properties of the whole vertebra in the trabecular only FE model. Imai et 

al. (2006) proposed a nonlinear FE model to predict vertebral strength and the fracture 

site. This model was generated using MECHANICAL FINDER software (Mitsubishi Space 

Software Co., Tokyo, Japan).  The trabecular bone and cortical shell portions of the 

model were constructed from 2 mm tetrahedral elements and 2 mm triangular plates, 

respectively. The FE model was validated against experiment in terms of fracture 

strength, fracture site, and the strain on the surface of the vertebrae. A Drucker-Prager 

equivalent stress criterion was used to find the yield point since, unlike metal, bone is 

not a ductile material. The fracture location was estimated at the location of the 

minimum principal strain. 

Clinical Use 

Of the many FE models of the vertebra described in the literature, only one QCT-based 

voxel FE model has been frequently used as a research tool in clinical osteoporosis 

studies (Keaveny et al., 2007, Mawatari et al., 2008, Melton et al., 2007, Lewiecki, 2009, 

Melton Iii et al., 2010, Chevalier et al., 2010, Graeff et al., 2009). Melton et al. (2007) 

showed that FE methods can be used to estimate vertebral fracture risk in vivo. Some 

studies have used the vertebral body FE model to investigate therapeutic effects on 

vertebral strength. Keaveny et al. (2007) found, by comparing vertebral strengths 

between baseline and follow up, that treatments (teripratide and alendronate) 

increased vertebral strength. Lewiecki et al. (2009) studied the effect of oral 

ibandronate on bone strength in 93 postmenopausal women and found that 

ibandronate recipients had increased vertebral strength at 12 months. Imai et al. (2009) 

assessed fracture risk and therapeutic effects using a L2 vertebral body FE model and 

were able to show that alendronate increased vertebral strength. This paper was also 

able to show that vertebral strength assessed using an FE model has higher 

discriminating power for vertebral fracture than the aBMD by DXA. Chevalier et al. (2010) 

applied a QCT-based nonlinear FE model to evaluate the effects of teriparatide after 

treatment with alendronate and risedronate. 

 



 

 

As mentioned previously, load transfer in the vertebral column can act in two ways: the 

majority of the load is transferred through intervertebral disc to the vertebral body, 

whilst the remainder is carried by the facet joints. Degeneration of the intervertebral 

disc, therefore, affects the loading conditions and the fracture patterns of the adjacent 

vertebrae (Pollintine et al., 2004a, Pollintine et al., 2004b, Adams and Dolan, 2005, 

Adams et al., 2006). For this reason, an FE model that incorporates an intervertebral disc 

may enhance the validity of the FE models as predictors of fracture. Previous FSU FE 

models are very different from point of view of a patient-specific approach. In general, 

in these CT-based models the geometry of the IVD is usually inferred from the locations 

of the end plates of adjacent vertebrae. Furthermore, due to the increased complexity 

of its overall structure, the FSU model commonly relies upon very simplified 

homogeneous material properties for the trabecular and cortical bone of the vertebra 

rather than using element-specific properties. However, they tend to use more complex 

model such as a poro-elastic material model for the IVD. In general, for the AF, isotropic 

material properties with layered cable elements aligned the fibre direction, or 

anisotropic material properties have been used, whereas the NP is represented with 

simple isotropic elastic properties or hyperelastic to incompressible fluid properties. 

Material properties that are shown in the literature for vertebral bone (cortical and 

trabecular bone), IVD (end plates, nucleus pulposus, annulus ground substance with 

annulus fibres) are summarised in Appendix A-3 and Appendix A-4. 

The above-mentioned limitations can be overcome by complementing CT data with that 

from magnetic resonance imaging (MRI) scans. Data on the human disc obtained by MRI 

are directly correlated with both severity of the disc degeneration and water-/collagen-

content, and intradiscal pressure (Pfirrmann et al., 2001, Pfirrmann et al., 2006, 

Johannessen et al., 2006, Nguyen et al., 2008). These, in turn, are related to the 

mechanical properties of the IVD and can be modelled in FE analyses.  

FSU FE models including the IVD are explained in more detail in section which follows. 

The first numerical model including an IVD was introduced by Belytschko (1974). This 

was an axisymmetric three-dimensional model of one quarter of the IVD and adjacent 

vertebrae and was developed to investigate the behaviour of the IVD under axial loading. 



 

 

Isotropic, homogeneous material properties were assumed for the vertebrae, whilst the 

nucleus pulposus was modelled as an incompressible and in a hydrostatic state of stress, 

and the annulus fibrosus was composed of several lamellae with different homogeneous 

orthotropic material properties along the fibre directions (Belytschko et al., 1974). 

The most well-known model of this type is the nonlinear viscoelastic FSU FE model 

suggested by (Shirazi-Adl et al., 1984). Many researchers have adopted this model to 

investigate the effects of a healthy IVD on the stress and strain distribution in the 

adjacent vertebrae (Wang et al., 1997, Polikeit et al., 2004, Goto et al., 2002). Polikeit et 

al. (2004) developed a ligamentous L2-L3 FSU FE model based on CT data sets using a 

spectrum of different material properties for the vertebra, such as isotropic, 

transversely isotropic, and composite, to investigate the effects of IVD degeneration and 

bone quality alteration associated with osteoporosis on load transfer on the vertebra. 

The NP was modelled as an incompressible material and the AF as a composite with 

several fibre layers. Seven tension-only ligaments were also considered. Goto et al. 

(2002) developed a three-dimensional L4-L5 lumbar FE model from CT data sets to 

investigate stress distribution on the endplates, facet joints, and IVD under flexion, 

extension and compression. The material properties used in the Goto’s model were 

taken from papers published by Nachemson, Sato and Shirazi-Adl.  

The FSU FE model can be used to investigate the effects of IVD degeneration on 

biomechanical behaviours such as the range of motion, stiffness, and intra-discal 

pressure of a lumbar FSU under physiological loading conditions. Rohlmann et al. (2006) 

suggested a nonlinear L3-L4 FSU FE model to investigate the influence of disc 

degeneration on the mechanical behaviour of the lumbar spine under conditions of 

flexion, extension, lateral bending and axial rotation. A transverse isotropic material 

property was used for vertebra and a hyperelastic property was chosen for the annulus 

ground substance with AF layers, whilst the NP was assumed to be an incompressible, 

fluid-filled cavity. Seven tension-only ligaments and curved facet joints were also 

included (Rohlmann et al., 2006). Schmidit et al. (2006) developed a nonlinear L4-L5 FSU 

FE model based on CT and MRI scans to determine the ideal material properties for the 

AF under flexion, extension, lateral bending, and axial rotation condition. The vertebrae 

were modelled with eight-node hexahedral solid elements. The AF was assumed to be 

ground substance with spring element of 8 collagen fibre layers (Schmidt et al., 2006). 



 

 

The model developed was subsequently used to investigate IVD intra-discal pressure 

and effects of disc degeneration (Schmidt et al., 2009, Schmidt et al., 2007b, Schmidt et 

al., 2007c).  

FSU FE models have also been used to study the effect of surgical intervention. Zhang et 

al. (2010) developed a L1-L2 FSU FE model to investigate the biomechanical effects of 

vertebral augmentation. (Zhang et al., 2010) and Totoribe et al. (1999) used a three-

dimensional L4-L5 FSU FE model to investigate the effects of the posterolateral fusion on 

stability (Totoribe et al., 1999). 

Some studies here proposed a FSU FE model using poroelasticity. Cheung et al. (2003) 

developed a poroelastic L4-L5 FSU FE model to investigate fluid flow and, stress 

distribution in and deformation of the IVD under static and dynamic loading conditions 

(Cheung et al., 2003). Natarajan used a poroelastic material for the IVD in a L3-L4 FSU FE 

model to study IVD failure under cyclic loading in order to mimic the normal, 24 hour, 

daily activities. The improved FE model included physiological parameters such as 

swelling pressure, and permeability (Natarajan et al., 2003, Natarajan et al., 2007). 

To summarise all FE models described in this section, Table 2.4 categorises the FE 

models together with the image modalities used. 

 

 

 

 

 

 

 

 

 

 



 

 

 Table 2.4: FE models in literature 

Model name Components References 

QCT-based voxel VB FE model 

vertebral body 

Homminga et al., 2001 
Crawford et al., 2003;2004 
†Keaveny et al., 2007 
†Melton et al., 2007;2010 
Buckley et al., 2007 
†Lewiecki et al., 2009 
Mirzaei et al., 2009 
Zeinali et al., 2010 
†Chevalier et al., 2010 
†Wang et al., 2011 

HRQCT-based voxel VB FE model 
†Graeff et al., 2009 
†Gluer et al., 2013 
Dall’Ara et al., 2010 

HR pQCT-based voxel VB FE 
model 

Chevalier et al., 2008;2009 
Dall’Ara et al., 2012 
Maquer et al., 2012 

QCT-based VB FE model 
Imai et al., 2006 
†Imai et al., 2009 
Liebshner et al, 2003 

VB FE model (QCT) Our model 

QCT-based Vertebra FE model 
vertebral body with 

post elements 

†Tawara et al., 2010 
Sakamoto et al., 

µCT-based Vertebra FE model Wijayathunga et al., 2007 

VB PE FE model (QCT) Our model 

FSU FE model  
(Direct measurement) 

vertebra-disc-
vertebra 

Shirazi-Adl et al., 1984; 1986 
Wang et al., 1997;2000 

FSU FE model (QCT) 

Totoribe et al., 1999 
Goto et al., 2002 
Cheung et al., 2004 
Polikeit et al., 2003;2004 
Natarajan et al., 2003; 2007 
Rohlmann et al., 2006 
Ahn et al., 2008 
Ruberte et al., 2009 
Zhang et al., 2010 
Ezquerro et al., 2011 

FSU FE model (QCT+MRI) 
Schmidt et al., 2006;2007 
El-Rich et al., 2009 

FSU FE model (QCT+MRI) Our model 

DVD FE model (HR pQCT) 
disc-vertebra-disc 

Maquer et al., 2013 

DVD FE model (QCT) Our model 

Multi-levels FE model 
more than two 

vertebrae and discs 

Cao et al., 2001 
Noailly et al., 2003;2007 
Renner et al., 2007 

†FE model was used for clinical research 



 

 

In clinical investigations involving a large number of subjects the differences between 

individuals may affect the accuracy of the geometrical information and the material 

properties of the model. These factors are crucial to the accuracy of the results of FE 

analyses as illustrated in Figure 2.10.  

 

Figure 2.10: Schematic drawing of the steps involved in the construction, analysis, and validation 

of a typical patient-specific FE model of bones (Figure from (Poelert et al., 2013) with permission). 

 

Furthermore, in routine clinical practice, QCT data is only available for the central 

skeleton such as spine and hip region. In this regard, according to the literature review 

(Chapter 2.4), the appropriate method to support a subject-specific finite element 



 

 

model is a QCT-based voxel model of the vertebral body. The QCT based voxel method is 

robust and provides a fast way to generate a mesh and to assign material properties. 

The vertebral body FE model is well-validated and has been used in clinical trials. 

However, as mentioned previously, this model has limitations since the posterior 

elements of the vertebra and the adjacent intervertebral disc also play an important role 

in load transfer on the spine structures. For this reason, an FE model such as the FSU FE 

model (Chapter 2.5) that takes into account both the posterior elements and the IVD has 

been proposed, and used, to study the biomechanical characteristics of the lumbar spine. 

However, to the best of our knowledge a FSU FE model has not as yet been used in 

subject-specific way for clinical studies.  

In this regard, we developed an FSU FE model, based on QCT and MRI scans, from 

sixteen cadaveric FSUs and validated this against vertebral strength measured on the 

bench. Furthermore, by selecting different regions of interest from the FSU FE model it 

was possible to diversify into different FE models i.e. a simple FE model of vertebral 

body and the vertebral body with posterior elements. These were then used for the 

comparison purposes in predicting vertebral strength using the same QCT and MRI data 

sets. From a cadaveric study carried out during the initial phases of this project, we 

proposed a new patient-specific FE model of a single vertebra with two adjacent 

intervertebral discs. This disc-vertebra-disc (DVD) FE model combines the two main 

approaches a QCT-based voxel model of the vertebral body and a FSU FE model in order 

to provide a model that is suitable for use in clinical studies. Hussein (2013) used an FE 

model of disc-vertebral body-disc unit to investigate the influence of the IVD on the 

mechanical properties and failure mechanisms of the vertebra (Hussein et al., 2013). 

Maquer (2013) used a DVD FE model to compare the effects of boundary conditions on 

vertebral strength (Maquer et al., 2013). Whilst the DVD FE model is clearly not a 

completely new concept, this type of model has not, as yet, been used for clinical 

applications.  

At present, there is an obvious need for a simplified tool, accessed through a consistent 

full framework to generate FE models incorporating both the vertebra and IVD as well as 

further improving previous methods. The simple framework which standardises each 

step from geometry generation, to material property assignment, through to solving and 

checking results, can be updated as the model is developed further.  



 

 

Chapter 3 will start to introduce the framework in detail. This was used throughout this 

thesis as the work moved towards a final patient-specific FE model which is applicable 

for clinical research.   

 



 

 

This chapter introduces the streamlined framework, ‘SpineVox-Pro’ that was specifically 

developed in the course of this project for the development of patient-specific finite 

element models of vertebra and the adjacent intervertebral disc from medical images. 

The framework provides a seamless and efficient workflow for image processing, voxel 

mesh generation and post-processing of the finite element models from QCT and MRI 

scans. SpineVox-Pro was implemented using MATLAB (Mathworks Inc., Natick, MA, USA) 

and ANSYS APDL (ANSYS Inc., Canonsburg, PA, USA) via a single MATLAB Graphical User 

Interface (GUI). 

 

Reflecting on the steps involved in the process of developing a patient-specific model, it 

is clear that a more integrated approach is needed. Medical images such as CT or MRI 

data are usually saved in a standard format, the Digital Imaging and Communication in 

Medicine (DICOM) format. DICOM was developed with the aim of providing a common 

standard to enable imaging equipment to communicate with other devices. There are 

many commercial and open-source programs for processing medical images (Mimics, 

Simpleware, Image J, AMIRA and VTK/ITK platform, for example), and for finite element 

mesh generation (for example, Hypermesh, Meshgrid, TetraGen and CUBIT). However, 

each of these software packages has its own data format. Additional steps are required 

for data format conversion, these can lead to loss of data quality. The process of 



 

 

importing/exporting large datasets is also time-consuming. Furthermore, it is very 

difficult to ensure a high degree of consistency of FE model orientation, mesh density 

and quality, and boundary conditions that are required by clinical studies. Reliability and 

reproducibility are fundamental requirements for studies which involve the analysis of 

many patient scans to investigate group differences or changes from baseline. 

Keyak et al. suggested an automated method of generating patient-specific three-

dimensional finite element models of the proximal femur in vivo. The FE model was 

generated with a user-defined size of cubic element and assigned heterogeneous 

material properties from CT scans (Keyak et al., 1990). The technique has been well 

validated and used in studies of the hip for more than a decade. The same approach was 

used in studies of the vertebral body (Crawford et al., 2003a, Keaveny et al., 2007, 

Buckley et al., 2007b). The present work used a similar technique to develop a 

framework for generating FE model of the vertebra and adjacent intervertebral disc 

from CT and MRI scans.   

SpineVox-Pro, a streamlined framework, provides full steps for image processing, voxel 

mesh generation and post-processing of the finite element models of the vertebra with 

adjacent intervertebral disc from QCT and MRI scans. SpineVox-Pro was implemented 

using MATLAB (Mathworks Inc., Natick, MA, USA) and ANSYS APDL (ANSYS Inc., 

Canonsburg, PA, USA) via a single MATLAB Graphical User Interface (GUI). In SpineVox-

Pro, there are some additional options. These include functions which support the 

import/export the files with different types of formats (.stl, .png, .txt), and other 

functions which use commercial software such as Simpleware ScanIP (Simpleware, UK) 

to generate different types of mesh (e.g. a tetrahedral mesh). Figure 3.1 illustrates a 

schematic flow-chart for SpineVox-Pro and Figure 3.2 displays the main GUI, this is 

designed to be intuitive to the end user. 

The “STEPS” column in Figure 3.1 lists the sequential tasks required to process spinal 

QCT scans, these are explained in detail later in this chapter. The “MATLAB MAIN GUI” 

lists the procedures in the GUI to perform the corresponding tasks. The third column 

lists the corresponding MATLAB functions developed. SpineVox-Pro includes about 

twenty main function scripts with approximately eighty nested function scripts. 

SpineVox-Pro supports a full process for image processing of the raw medical images 

and for finite element mesh generation and analysis through four main categories: 1) 



 

 

patient data acquisition (vBMD calibration), 2) pre-processing (segmentation, 

interpolation, re-orientation, padding generation step), 3) simulation (voxel mesh 

generation and ANSYS APDL scripts generation), and 4) ANSYS post-processing. It should 

be pointed out that, except for image segmentation which requires a minimum amount 

of user interaction, all steps from the padding step onward are automatic without need 

for user interaction. This maximises consistency in FE analysis among different patient 

scans and precision of repeat analysis of same scans. 

 

 

 

Figure 3.1: SpineVox-Pro V1.1, Schematic view of the framework 

 

 

 

 



 

 

  

Figure 3.2: SpineVox-Pro V1.1, Main Graphical User Interface 

  

In the first step, the original CT and MRI data obtained in DICOM format (.dcm) are read 

and converted into MATLAB format (.mat) as shown in Figure 3.3. The basic structure of 

the DICOM file has two distinct parts: the header and data element set. The header has 

information about the patient, scanning device and data acquisition whilst the data set 

contains the image data. From the DICOM header, basic patient information such as the 

patient id and image acquisition information like slice thickness, pixel spacing, slice 



 

 

location, and scanned pixel values are extracted and saved to a MATLAB structured form 

for each patient. In addition, each image included an image of a calibration phantom 

(see Figure 3.3). 

In order to save data storage space, once the mean CT values for the five phantom tube 

circles on each CT slice are saved on the database, the external phantom part of the 

image is excluded from Region of Interest (ROI).  

 

 

Figure 3.3: SpineVox-Pro V1.1, Calibration Phantom (Mindways Software Inc., Austin, TX, USA) on 

the axial CT image 

 

The CT data in each slice are calibrated from Hounsfield units (HU) to hydroxyapatite 

(K₂HPO₄) equivalent density values using Mindways Model 3 CT calibration phantom 

(Mindways Software Inc., Austin, TX, USA) and associated techniques (Mindways, 2005). 

The phantom contains 5 different reference material rods embedded in a plastic base 

material. The rods contain known and varying amount of low and high atomic number 

materials, and their density information is expressed as water equivalent density and 

K₂HPO₄ equivalent density (Table 3.1).  



 

 

Table 3.1: Typical composition of various solid reference materials 

Typical composition of various solid reference materials 

Reference Rod Eq. 𝐻2𝑂 density (mg/cc) Eq. 𝐾2𝐻𝑃𝑂4 (mg/cc) 

A 1012.2 ± 2.3 -51.8 ± 0.1 

B 1057.0 ± 1.9  -53.4 ± 0.1 

C 1103.6 ± 1.7 58.9 ± 0.1 

D 1119.5 ± 1.8 157.0 ± 0.3 

E 923.2 ± 2.1 375.8 ± 0.9 

 

By using the known information for the reference material, unknown densities such as 

bone in the scanned QCT images can be estimated. The unknown material is 

characterised by estimating the density of K₂HPO₄ dissolved in water that would have 

the same attenuation properties as the unknown material under the conditions used to 

acquire the CT image data. The following equation was used first to characterise the 

response of the scanner to the changes in K2HPO4 in the reference material rods:  

𝜇𝑅𝑂𝐼(𝑝ℎ𝑎𝑛𝑡𝑜𝑚) − 𝜌𝑤𝑎𝑡𝑒𝑟 = 𝛼𝑟𝑒𝑓 ∙ 𝜌𝐾2𝐻𝑃𝑂4 + 𝛽𝑟𝑒𝑓 (3.1) 

 

𝑤ℎ𝑒𝑟𝑒, 

𝜇𝑅𝑂𝐼(𝑝ℎ𝑎𝑛𝑡𝑜𝑚) = 𝐻𝑈 of the Phantom Region Of Interest: circle 

𝜌𝑤𝑎𝑡𝑒𝑟 = 𝐻2𝑂 Equivalent density of the reference material rods (mg/cc) 

𝜌𝐾2𝐻𝑃𝑂4= 𝐾2𝐻𝑃𝑂4 Equivalent density of the reference material rods (mg/cc) 

𝛼𝑟𝑒𝑓 = Imaging technique-specific parameter defining the response of the CT scanner to 

𝐾2𝐻𝑃𝑂4 (Slope of a linear regression exercise) 

𝛽𝑟𝑒𝑓 = Imaging technique-specific parameter characteristic of the CT number scale 

(Intercept of a linear regression exercise) 

 

The imaging technique-specific parameters: 𝛼𝑟𝑒𝑓  and 𝛽𝑟𝑒𝑓  are calculated in a least 

square manner using 𝐻2𝑂  and 𝐾2𝐻𝑃𝑂4  equivalent densities and the 5 mean CT 

numbers of the phantom ROIs. However, the slope (𝛼𝑟𝑒𝑓) and the intercept (𝛽𝑟𝑒𝑓) are 

not the values for CT calibration purposes since the above phantom is solid 𝐾2𝐻𝑃𝑂4 (not 

an aqueous 𝐾2𝐻𝑃𝑂4). The required slope 𝛼𝐶𝑇 and intercept 𝛽𝐶𝑇 for vBMD calibration 

are shown in Equations 3.2 and 3.3, respectively. The offset of - 0.2174 for 𝛼𝐶𝑇 comes 



 

 

from physical consideration of the amount of water excluded when adding 𝐾2𝐻𝑃𝑂4. 

When 𝐾2𝐻𝑃𝑂4 is added to a volume of water, the overall volume of the solution 

increases. That is, K₂HPO₄ displaces some water. The offset of 0.2174 characterises the 

amount of water displaced by the addition of 𝐾2𝐻𝑃𝑂4. The offset value of 999.6 for βCT 

is the physical density of water at room temperature expressed in units of mg/cc.    

 

𝛼𝐶𝑇 = 𝛼𝑟𝑒𝑓 − 0.2174 (3.2) 

𝛽𝐶𝑇 = 𝛽𝑟𝑒𝑓 + 999.6 (3.3) 

 

Finally, the following equation was used to convert every the CT values in the images 

into volumetric bone mineral density (vBMD).  

 

𝜌𝑢𝑛𝑘𝑛𝑜𝑤𝑛 =
𝜇𝑢𝑛𝑘𝑛𝑜𝑤𝑛 − 𝛽𝐶𝑇

𝛼𝐶𝑇
 (3.4) 

 

 𝑤ℎ𝑒𝑟𝑒, 

𝜇𝑢𝑛𝑘𝑛𝑜𝑤𝑛 = 𝐻𝑈 𝑜𝑓 𝑡ℎ𝑒 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠 𝑖𝑛 𝐶𝑇 𝑖𝑚𝑎𝑔𝑒𝑠 

 

The above procedure is executed by calling the sub-function QCT_CTcopy.m from the 

main GUI.  

 

A crucial step is to extract the geometric area, in a process called segmentation, from 

the CT or MRI data for generating finite element model. The segmentation functions of 

SpineVox-Pro shown in Figure 3.4 were developed in semi-automatic ways.  

 



 

 

 

Figure 3.4: SpineVox-Pro V1.1, Automatic and manual segmentation functions with visualisation 

in SpineVox-Pro 

 

Different options for the segmentation were developed using MATLAB built in functions 

in the image processing toolbox. The first three buttons of the segmentation options 

support automatic extraction of bone area: [3D] Labelling, [3D] Thresholding, and [3D] 

Region Growing. Segmentation is carried out with a combination of a simple 

thresholding method and automatic labelling of the binary coded values by the MATLAB 

function. The segmented area can be checked in a three-dimensional view as well as in 

two-dimensional views of axial, sagittal and frontal planes: [View] 3D, and [View] Ortho 

as displayed in Figure 3.4. For each image slice, a manual operation is supported to 

enable the segmented area to be modified on three different sectional views: [2D] Axial 

Seg, [2D] Sagittal Seg, and [2D] Coronal Seg. The ROI can be added and deleted by 

manually drawing a closed polygonal area on the axial images: [Manual] ROI, and 

[Manual] Remove. In addition, the ROI can be modified using morphological operations: 

open, close, dilate, erode and fill. A manual line option was also added to facilitate 



 

 

separation of the small gap-like facet joint: - FacetJ. The required closed object can then 

be selected from amongst several closed segmented areas: PickUp.  

MRI data can be segmented in a similar way to the CT image processing procedures to 

obtain the geometry of the intervertebral disc on axial, sagittal and frontal views. The 

above procedure is executed by calling the sub-function QCT_Segment.m and 

MRI_Segment.m from the main GUI.  

The segmentation time depends on the CT slice number, the image resolution, and the 

quality of each image. The average manual segmentation time is approximately 20 

minutes per vertebra for typical clinical research scans (0.9375x0.9375x0.625 mm3; 

about 170 slices). 

 

The segmented image datasets can be interpolated, if required, to achieve a desired 

isotropic voxel resolution and to align and merge vertebra and intervertebral disc (IVD) 

images in a standard orientation as illustrated in Figure 3.5.  

The desired voxel resolution can be set by a user-input value and the images are 

interpolated using a linear method. The orientation angle can be tuned by translating a 

datum point and rotating a datum line. Once each segmented object are interpolated 

and aligned to the standard orientation, the segmented vertebrae mask is merged with 

the IVD mask by matching the centre point of each volume semi-automatic way. 

Furthermore, artificial cement paddings with a desired thickness, width, and depth can 

be generated at the inferior and superior surfaces of the vertebra to mimic the 

experimental condition, if required (see Chapter 4). The parameters for the rescale and 

padding limit can be controlled by a user-input value. The above procedure is executed 

by calling the sub-function QCT_Separate.m/ QCT_Interpolate.m/ QCT_RotateAng.m/ 

QCT_IVD.m/ QCT_Pad.m from the main GUI. 

 



 

 

 

Figure 3.5: SpineVox-Pro V1.1, a) re-orientation; b) merge option; c) padding option of vertebral 

masks with intervertebral disc mask 

 

There are two ways to generate the FE mesh model from the segmented object in 

SpineVox-Pro: direct voxel mesh generation, and an export/import option using 

commercial software such as Simpleware ScanIP and +CAD to generate different types 

of FE mesh model as shown in Figure 3.6. Use of different software packages in this way 

extends the flexibility of the FE models in terms of generating the mesh, but a few 

additional steps and several different file formats are required to follow this optional 

procedure.   

The voxel-based meshing technique was adopted for the rest of this work. It is a robust 

automatic way to generate FE model from CT coordinate information and has been 

commonly used in hip FE models. A benefit of the automated voxel mesh generation is 

the application of the correlation between CT values and the elastic moduli. The method 

is especially useful in the generation of patient-specific finite element models. A 

MATLAB function QCT2NE.m was developed to convert the segmented scan images to a 



 

 

finite element model directly. Each voxel is converted into an 8-node hexahedral 

element (Element type SOLID185 in ANSYS). The element size can be specified as an 

input variable of the function. 

 

 

Figure 3.6: SpineVox-Pro V1.1, Voxel mesh and tetrahedral mesh generation 

 

To assign material properties for vertebra, vBMDs of all voxels or elements are divided 

into one hundred equal intervals. Each voxel or element is categorised into one of these 

intervals and assigned a unique material number. The newly grouped BMD values are 

converted to an elastic modulus using one of empirical relationships such as 𝐸 (𝑀𝑃𝑎) =

−34.7 + 3230𝜌𝑄𝐶𝑇(𝑔/𝑐𝑚
3)  (Kopperdahl et al., 2002). 



 

 

Several different technical methods are supported to implement various types of 

material properties based on different empirical relationships between volumetric bone 

density and bone material properties. Figure 3.7 illustrates the procedure for 

assignment of material properties. 

 

 

Figure 3.7: SpineVox-Pro V1.1, procedure for material properties assignment 

 

In case of IVD material properties, two different types are available in SpineVox_Pro: a 

linear elastic material property for the nucleus pulposus (NP) and ground substance of 

the matrix of the annulus with 4 embedded fibre layers in the annulus fibrosus (AF); and 

a hyper elastic material property for both the NP and ground substance of the annulus 

with 4 fibre layers embedded in the AF. The embedded fibres were orientated in 

alternating layers, 30° and 150° from the horizontal axis (Wang et al., 1997, Schmidt et 

al., 2006, Strange et al., 2010). 



 

 

Boundary conditions can be applied with displacement control or force control 

depending on the specific problem: pure compression, bending, or if considering a 

physical experimental rig. The above procedure is executed by calling the sub-function 

QCT_AnsysGen.m/ QCT_BMD2MAT.m from the main GUI.  

 

The pre-processing script of ANSYS APDL can be generated and saved in a file by 

SpineVox-Pro. This script includes all the information required by ANSYS to solve a 

specific FE problem: i.e. node coordinate information, element connectivity, material 

properties, boundary conditions and solution options as shown in Figure 3.8.  

 

 

Figure 3.8: SpineVox-Pro V1.1, Generation of the voxel mesh. An ANSYS APDL script includes the 

material properties and boundary conditions 

 



 

 

The script also instructs ANSYS to save the analysis results to files for post-processing by 

SpineVox-Pro. The finite element analysis can be performed on any computer with 

ANSYS installed. SpineVox_Pro also supports the ‘batch’ mode which can run ANSYS 

without opening the program directly through import/export data triggered by ANSYS 

APDL scripts.  The average simulation, with the large deformation option, typically takes 

30 minutes per vertebra FE model (with about 380,000 elements) with ANSYS 14.5 using 

a parallel option through the INSIGNEO node on Iceberg (Linux based High Performance 

Computing Cluster, University of Sheffield). The above procedure is executed by calling 

the sub-function QCT_AnsysScr.m from the main GUI. 

 

Simulation results such as reaction forces, principal stress and strain values, von Mises 

equivalent stress and strain values are saved automatically as text files. SpineVox_Pro 

reads the results and uses the results to calculate fracture strength and to visualise the 

results in images. Two different types of vertebral strength definition are used in 

SpineVox_Pro according the analysis options: linear and nonlinear analysis.  

For linear analyses, stress or strain ratio is computed for each element using specific 

yield criteria, i.e., von Mises stress or strain yield criteria.  

𝑠𝑡𝑟𝑒𝑠𝑠 (𝑠𝑡𝑟𝑎𝑖𝑛)𝑟𝑎𝑡𝑖𝑜 =
𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑠𝑡𝑟𝑒𝑠𝑠 (𝑠𝑡𝑟𝑎𝑖𝑛)

𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑦𝑖𝑒𝑙𝑑 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ
 (3.5) 

 

In theory, fracture is initiated from the element that has the stress (strain) ratio bigger 

than 1. The equivalent stress (strain) is based on different yield criteria (see Chapter 4.6). 

However, failure of one element or a few elements are usually scattered in the vertebra 

of the FE model, which is sensitive to noise and does not mean a failure of the whole 

bone. In this regard, a specific volume is used to define the fracture location using a 

bunch of elements adjacent to each other where the stress ratios are high. For instance, 

fracture strength based on von Mises stress is defined as: the load that caused minimum 

von Mises stress exceeding a yield stress, or stress/strain ratio greater than 1, in 

contiguous elements that occupied at least a volume of 7.53 = 422 mm3, i.e. 



 

 

approximately 1.5 % of the vertebral body. The larger the volume, the lower the 

estimated strength. 

 

 

Figure 3.9: SpineVox-Pro V1.1, Post-processing: (a) stress and strain plots, (b) stress ratio plots, (c) 

estimated fracture locations 



 

 

Figure 3.9 shows the stress and strain plots, stress ratio plot, and estimated fracture 

locations in the SpineVox-Pro (MATLAB environment). The predicted fracture locations 

can be displayed with different yield criteria such as von Mises stress/strain, and 

Drucker-Prager criteria. 

For nonlinear analyses which take into account of the post yield behaviour of the bone, 

fracture strength is defined on the load-displacement curve: intersection point between 

0.2 % offset line from the linear portion of the load-displacement curve and the original 

load-displacement curve. The 0.2 % offset method is commonly used, if there is no clear 

yield point. The points plotted in the load-displacement curve represent the results at 

each step of the non-linear FEA, in which the load was added incrementally. To obtain 

the load-displacement curve from the result datasets, 6th-order polynomial curve fitting 

was used. The 0.2% offset line was drawn using the gradient of the initial linear portion 

of the curve and the displacement value corresponding to 0.2% strain. The final 

intersection point between the load-displacement curve and the offset line was defined 

as the yield point. 

The load-displacement curve can be displayed automatically with 0.2 % offset line to 

define the fracture strength in SpineVox_Pro as shown in Figure 3.10.  

 

 

Figure 3.10: A load-displacement curve with 0.2% offset line 



 

 

 

The above procedure is executed by calling the sub-function QCT_AnsysRes.m/ 

QCT_FEstrength.m/ QCT_StrPlot.m from the main GUI. 

 

SpineVox-Pro supports a full process for image processing of raw medical images and for 

finite element mesh generation and analysis via patient data acquisition, image 

processing, voxel mesh generation and ANSYS script generation, and ANSYS post-

processing in the single MATLAB GUI. All the steps are automatic without need for user 

interaction except for the image segmentation which requires minimal user interaction. 

This maximises both consistency in FE analysis between different patient scans and the 

precision of repeat analysis of the same scans. 

As the segmentation methods are not fully automated, this may be one source of error 

which may affect the subsequent finite element analysis. For this reason, we conducted 

a segmentation repeatability test in SpineVox-Pro using clinical research scans. Thirty 

scans from the Health Outcomes and Reduced Incidence with Zolendronic Acid Once 

Yearly_Pivotal Fracture Trial (HORIZON_PFT) study and duplicated sets were segmented 

by the author.  

These segmented data were used to assess precision (repeatability). The parameters 

used for this comparison were; the total volume of the segmented object, the sum of 

the segmented area, the volumetric BMD, and the sum of areal BMD. The precision was 

calculated using International Society for Clinical Densitometry (ISCD) advanced 

precision calculating tool and expressed as a Coefficient of Variation (CV) as shown in 

Table 3.2. 

 

Table 3.2: Precision- CV (%) 

 Total Volume Sum of ROI area vBMD Sum of aBMD 

Author 4.1 3.9 1.7 3.1 



 

 

 

Whilst there was no clear reference value for CV the coefficient of variation was 

considered to be a little high (Total volume 4.1%; Sum of ROI area 3.9%; vBMD 1.7%; 

Sum of aBMD 3.1%). One of main reasons for the large difference of CV is a different 

image quality in the sample scans. Furthermore, the resolution of HORIZON clinical trial 

scans is relatively low, and in particular, the slice thickness is much bigger than that used 

in the most recent clinical research scans (0.9766 x 0.9766 x 2.5 mm3 HORIZON; 0.9375 x 

0.9375 x 0.625 mm3 for the FORSTEO in vivo discussed in Chapter 7; 0.3867 x 0.3867 x 

0.3867 mm3 for the Bristol cadaveric study presented in Chapter 4). Better resolution 

would improve the CV results. In addition, it should be noted that intra-user reliability 

studies are recommended and a more robust segmentation method is required. 

 

A full framework for generating a subject-specific FE model from QCT/ MRI scans was 

developed and implemented in MATLAB via single GUI called SpineVox-Pro.  

Whilst the individual algorithms used are not new, SpineVox-Pro is a novel framework. 

Although, some user-interaction is required for image segmentation, all the steps are 

pursued in an automatic way. This maximises consistency in FE analysis across different 

patient scans and also the precision of repeat analyses on same scans and ultimately this 

will be used in patient-specific fracture risk estimation. 

Since its initial development, SpineVox-Pro was continuously updated during the 

following studies: 

1) For cadaver studies: development of subject-specific FE models of the functional 

spinal unit (FSU) and validation of the FSU FE model as discussed in Chapter 4, 

comparison of vertebral strengths from different spinal FE models (vertebral 

body, vertebra, FSU) as described in Chapter 5.  

2) For clinical studies: fracture discrimination and drug treatment studies using 

clinical research scans as shown in Chapters 6 and 7.   

 



 

 

This chapter proposes a subject-specific Functional Spinal Unit (FSU) FE model to 

determine vertebral fracture strength under more physiological conditions. A subject-

specific FSU FE model based on QCT and MRI data sets was developed in SpineVox-Pro 

and the FSU FE model was validated with the experiment. 

  

Finite element analysis of QCT scans integrates information about in vivo loading 

conditions with the data on bone geometry and density distribution embedded in the 

scans. This allows stress and strain to be calculated non-invasively to determine bone 

strength. Many researchers have developed continuum finite element models of the 

vertebral body without posterior elements to assess vertebral strength under pure 

compressive loading and these models are well validated (Melton et al., 2007, Silva 

Matthew J., 1998, Homminga, 2001, Crawford et al., 2003a, Crawford et al., 2003b, 

Crawford RP, 2004, Keaveny et al., 2007, Buckley et al., 2007b, Liebschner et al., 2003, 

Kopperdahl et al., 2000, Imai et al., 2006, Imai et al., 2009, Lewiecki, 2009, Chevalier et 

al., 2010, Zeinali et al., 2008, Chevalier et al., 2008, Chevalier Y, 2009, Zeinali et al., 2010). 

Although many vertebral FE models have been described in the literature, only one-QCT-

based voxel FE model has been well used as a research tool in clinical osteoporosis 

studies (Keaveny et al., 2007, Melton et al., 2007). This FE model is used to investigate 



 

 

vertebral strength under pure compressive loading which is generally representative of 

the standing posture.  

As the primary loading of the human vertebral body is asymmetrical, an anterior wedge 

fracture is the most frequent type of osteoporotic fracture (Eastell et al., 1991, Wasnich 

RD, 1996, Jackson S.A., 2000). For this reason, the forward bending needs to be 

considered with greater loads on the anterior part of the vertebrae. Load on the 

vertebrae is not transferred directly through vertebral body but via the intervertebral 

disc and facet joints. Whilst the exact mechanism of load transfer to the vertebrae is not, 

as yet, completely understood, degeneration of the IVD, is known to affect the loading 

conditions and fracture patterns in adjacent vertebrae (Pollintine et al., 2004a, Adams 

and Dolan, 2005, Pollintine et al., 2004b). The boundary conditions under forward 

bending for load transfer through the IVD and facet joint cannot be represented on an 

FE model of the vertebral body alone. For this reason, a functional spinal unit (FSU) or 

spinal motion segment (SMS) model has been proposed. The FSU consists of two 

adjacent vertebrae with the intervertebral disc and all adjoining ligaments and is the 

smallest physiological motion unit of the spine that can represent biomechanical 

characteristics close to those of the entire spine. The FSU model has been investigated 

under compression and flexion loading conditions (Wang et al., 1997, Natarajan et al., 

2003, Cheung et al., 2003, Polikeit et al., 2004, Rohlmann et al., 2006, Shirazi-Adl et al., 

1984, Goto et al., 2002). Previous studies using generic FSU FE models generally focus on 

influence of intervertebral disc degeneration on biomechanical behaviours such as the 

range of motion, and the intervertebral disc pressure. As yet, there has been no 

investigation of vertebral strength using a subject-specific FSU FE model.  

The aim of this chapter is to propose a subject-specific FSU FE model to determine 

vertebral fracture strength under more physiological conditions such those experienced 

in forward bending. The objectives were to; first, develop a subject-specific FE model of 

the FSU based on QCT and MRI data sets in SpineVox-Pro (developed and described as in 

Chapter 3), and validate the FSU FE model against experimental data.  

 



 

 

Eight thoracolumbar spines (T11-L5) were obtained from cadavers (Female = 5, Male = 3; 

74 - 97 years old) that had been donated for medical research.  

The in vitro experiment was approved by the South West REC 5 (Frenchay) (REC Ref No. 

10/H0107/27) at the Centre for Comparative and Clinical Anatomy, University of Bristol.  

Table 4.1 summarises the FSU level, BMD, age, sex, and disc degeneration status 

information of sixteen FSUs. Two FSUs were dissected from each cadaveric spine. Prior 

to mechanical testing, the frozen specimens were sealed in plastic bags and transported 

to the University of Sheffield in a dry ice box for scanning as shown in Figure 4.1. The 

specimens were stored at -20 C° and defrosted at +4 C° prior to scanning. 

 

 

 

Figure 4.1: One of dissected functional spinal units in sealed bag 

 

 

 



 

 

Table 4.1: Basic information of specimen; data from University of Bristol 

FSU 

no. 

Spine 

Index 

FSU 

Level 

BMD 

(mg/cm2) 

Age 

 

Sex Disc Degeneration 

(Adams: scale 1-4) 

   Top Bottom    

0001 2710v T12-L1 16.88 19.67 90 M 4 

0003 2710k L2-L3 11.20 16.30 90 M 4 

0005 6211k L2-L3 7.88 7.37 84 M 2 

0007 6211v L4-L5 13.95 - 84 M 2 

0009 6811k L1-L2 3.19 5.84 98 F 2 

0011 6811v T11-T12 2.31 2.65 98 F 2 

0013 7011k L1-L2 15.00 20.22 74 F 3 

0015 7011v L3-L4 19.11 40.62 74 F 4 

0017 7509k L1-L2 31.30 30.82 84 M 3 

0019 7509v T11-T12 13.29 17.93 84 M 4 

0021 8911v L3-L4 16.80 13.37 89 F 3 

0023 8911k T11-T12 3.07 4.30 89 F 3 

0025 9311v L1-L2 6.38 11.21 88 F 2 

0027 9311k L3-L4 11.64 28.89 88 F 4 

0029 10211k L3-L4 6.11 8.94 97 F 3 

0031 10211v L1-L2 7.44 6.73 97 F 3 

Mean   11.60 15.66 88   
SD   7.47 10.97 7.43   
SE   1.87 2.83 1.86   

* Specimens were labelled for k (kyphoplasty) and v (vertebroplasty) 

 

The specimens were scanned using a clinical QCT machine (LightSpeed VCT, GE Medical 

Systems, 120kV, 60 mAs/slice, 0.3867 x 0.3867 x 0.3867 mm3) at the Northern General 

Hospital, Sheffield by a CT team member. A solid calibration phantom (Mindways 

Software Inc., San Francisco, CA) was used to calibrate Hounsfield unit (HU) values to 

bone mineral density.  Furthermore, the samples were scanned with MRI (MAGNETOM 

Avanto, SIEMENS AG, Germany) by a MRI team member at the Northern General 

Hospital, Sheffield. Several series of scan sets were obtained in axial and sagittal views 

using different settings of echo time (TE), repetition time (TR), and T1 weighted or T2 

weighted images. After examining the data, one specific condition was chosen to obtain 

the geometry of the IVD. This was as follows: TE=20, TR=2000, T1 SE Axial, 0.85938 x 

0.85938 x 3 mm3.  



 

 

Both QCT data sets and MRI data sets were used to develop the FSU finite element 

model in this research. 

 

Before testing, the bone mineral content (BMC) and bone mineral density (BMD) of each 

vertebral body was measured using dual energy X-ray absorptiometry (PIXImus 

densitometer, Lunar Corp., Madison, WI, USA).  

 

The in vitro experiments were performed by Dr. P Landham, Prof. M Adams and Dr. T 

Dolan at the Centre for Comparative and Clinical Anatomy, University of Bristol. As a 

part of Dr. Landham’s Degree of MD, they conducted an in vitro experimental study with 

the aim of determining whether kyphoplasty has any advantages over vertebroplasty in 

terms of its ability to restore vertebral shape and biomechanical function after severe 

vertebral wedge fracture.  

The experiments consisted of two stages: the generation of a vertebral wedge fracture, 

and kyphoplasty or vertebroplasty. The results from the initial fracture part of the 

experimental study provided the validation data used in this thesis. 

The experimental tests using a computer-controlled hydraulic material testing machine 

(Dartec-Zwick-Roell, Leominster, UK) were performed at the Spine Biomechanics 

Laboratory, University of Bristol and are described in detail by Luo et al (Luo et al., 2010). 

The test setup is shown in Figure 4.2 and the procedures are described briefly here.  

The metal specimen holders were attached to baseplates and loaded via low-friction 

rollers attached to the upper base plate; the angle of the upper plate could be varied to 

allow complex loading to be applied to the FSU. Each FSU was positioned in flexion in 

order to simulate a stooped posture. 

The FSU was then compressed at a rate of 3mm/s for 1.25 s while a graph of 

compressive load versus displacement was plotted in real time as shown in Figure 4.3.  



 

 

 

 

Figure 4.2: Schematic view and photograph of the experimental test and experimental apparatus 

 

 

Figure 4.3: Load-displacement curve from the experimental test (Full load-displacement datasets 

can be found in Appendix B) 

 



 

 

Fracture was detected from a reduction in gradient (stiffness) on the load-displacement 

curve. The compressive force applied at this point was recorded as the yield strength as 

shown in Table 4.2. The full load-displacement datasets can be found in Appendix B. This 

loading technique usually creates an endplate fracture, often accompanied by fracture 

of the anterior cortex, of a single vertebra within the FSU (Luo et al., 2010). The fracture 

location was identified by taking a lateral radiograph, and was subsequently confirmed 

by dissection. 

 

Table 4.2: Results of mechanical testing carried out at the University of Bristol 

FSU no. Spine 

Index 

FSU Level Fracture Level 

Top/Bottom 

Fracture Load (kN) 

0001 2710v T12-L1 T 1.104 

0003 2710k L2-L3 T 1.600 

0005 6211k L2-L3 B 1.180 

0007 6211v L4-L5 B 1.685 

0009 6811k L1-L2 T 1.663 

0011 6811v T11-T12 T 1.708 

0013 7011k L1-L2 T 3.090 

0015 7011v L3-L4 T 4.412 

0017 7509k L1-L2 B 3.399 

0019 7509v T11-T12 B 2.906 

0021 8911v L3-L4 B 1.861 

0023 8911k T11-T12 T 1.194 

0025 9311v L1-L2 T 1.930 

0027 9311k L3-L4 B 2.215 

0029 10211k L3-L4 B Test failure 

0031 10211v L1-L2 T 1.319 

Mean    2.086 
SD    0.924 
SE    0.231 

* Specimens were labelled for k (kyphoplasty) and v (vertebroplasty) 

 

SpineVox-Pro was used to generate a subject-specific finite element model of the FSU. 

The program was developed in MATLAB (Mathworks Inc., Natick, MA, USA) and used 



 

 

ANSYS APDL (ANSYS Inc., Canonsburg, PA, USA) and explained in the previous chapter 3. 

A brief description of the full procedure is presented below. The workflow used is 

illustrated in Figure 4.4. 

CT and MRI scan data in DICOM format (.dcm) were converted into MATLAB format 

(.mat). The CT data were converted from Hounsfield Units to density values after 

calibration using hydroxyapatite phantom (Mindways Software Inc., Austin, TX, USA), 

K₂HPO₄ equivalent densities. The converted CT/MRI images were used to extract the 

vertebra and intervertebral disc area.  

In SpineVox-Pro, the initial segmentation of the vertebra was carried out with 

thresholding and the label function automatically. Manual segmentation options were 

used to modify the segmented area on each slice after the automatic segmentation 

areas were checked in both three-dimensional and two-dimensional views. Manual 

drawing and morphological operations like open, close, dilate, erode and fill are 

available in 2D. The MRI data was also segmented in a similar way in order to obtain the 

geometrical information for the IVD. 

The vertebral component was separated into two independent vertebrae after 

segmentation. The image objects of the two vertebrae and the IVD were interpolated to 

achieve the desired resolution of 1.2 x 1.2 x 1.2 mm3. These were then aligned and 

merged to form a FSU, and then rotated if necessary to a standard orientation in order 

to apply the correct boundary conditions. In addition, artificial cement paddings, 15 mm 

thickness, were generated at the inferior surface of the inferior vertebra and at the 

superior surface of the superior vertebra to mimic the experiment condition. The size 

and position of the cement padding can be controlled by thickness, width, and depth 

with the centre point.  The re-oriented and merged FSU was directly converted to a 

finite element model with each voxel being converted into an 8-node hexahedral 

element (Element type SOLID185 in ANSYS). 



 

 

 

Figure 4. 4: SpineVox-Pro, the workflow for the creation of a subject-specific finite element model 
of functional spinal unit 



 

 

Table 4.3 summarises the material properties that were used for the vertebrae and IVD 

in this research. Transversely isotropic linear-elastic material properties were considered 

for the vertebra. The vertebra, including the vertebral body and posterior elements, was 

modelled as transversely isotropic material, that is, material properties in the 

longitudinal direction are different from in the transverse direction. The properties in 

the transverse plane are direction-independent. Cortical and trabecular bones were not 

modelled separately, since the resolution of the clinical QCT scans in this study could not 

distinguish the cortical shell. To assign longitudinal material properties for the vertebra, 

empirical relationships between volumetric bone density (𝜌𝑄𝐶𝑇 , 𝑔/𝑐𝑚3) and bone 

material properties were used to determine the longitudinal elastic modulus (𝐸𝑧, 𝑀𝑃𝑎) 

and compressive yield stress limit (𝜎𝑦𝑐 ,𝑀𝑃𝑎) (Kopperdahl et al., 2002). The original 

volumetric BMD values were divided into 100 intervals to limit the number of materials 

in the FE model. The remaining material properties in the transverse plane were defined 

by assuming fixed ratios of the elastic constants with respect to the longitudinal elastic 

modulus. The Poisson’s ratios,  𝜈𝑥𝑦 = 0.381 and 𝜈𝑥𝑧 = 𝜈𝑦𝑧 = 0.104 were assigned. The 

𝜈𝑥𝑦 expresses the strain in the y-direction divided by the strain in the x-direction in 

response to a load in the x-direction (Ulrich et al., 1999). Values for the tensile yield 

stress limit 𝜎𝑦𝑡 (Keaveny et al., 1994), ultimate stress limit 𝜎𝑢𝑐 (Crawford et al., 2003a, 

Morgan and Keaveny, 2001), yield strain limit 𝜀𝑦 (Kopperdahl et al., 2002), and ultimate 

strain limit 𝜀𝑢 (Morgan et al., 2003) of the vertebra were assigned from the literature. In 

the case of the IVD data, it is difficult to obtain information for mechanical subject-

specific properties except qualitative information from water content. For this reason, 

simple homogeneous linear-elastic properties were assigned to the nucleus pulposus 

and annulus fibrosus, taken from the literature (Denozière and Ku, 2006). 

The mechanical properties of the dental cement used for the artificial padding were 

obtained from the manufacturer’s manual (𝐸 = 2000 𝑀𝑃𝑎, 𝜈 = 0.3; Ultrahard Die 

Stone ISO-Type IV, Kerr).   

 

 

 



 

 

Table 4.3: Assigned material properties of the FSU model; vertebra, IVD, and padding 

Part Properties References 

Vertebra 

𝐸𝑧 (𝑀𝑃𝑎) = −34.7 + 3230𝜌𝑄𝐶𝑇 (𝑔/𝑐𝑚3) Kopperdahl et al. 2002 

𝐸𝑥  (𝑀𝑃𝑎) = 𝐸𝑦 = 0.333𝐸𝑧  

𝜈𝑥𝑦
1 = 0.381 

𝜈𝑥𝑧
1 = 𝜈𝑦𝑧

1 = 0.104 

𝐺𝑥𝑧 (𝑀𝑃𝑎) = 𝐺𝑦𝑧 = 0.157𝐸𝑧   

𝐺𝑥𝑦 (𝑀𝑃𝑎) =
𝐸𝑥

2(1+𝜈𝑥𝑦)
= 0.121𝐸𝑧  

Ulrich et al. 1999 

𝜎𝑦𝑐  (𝑀𝑃𝑎) = −0.75 + 24.9𝜌𝑄𝐶𝑇 (𝑔/𝑐𝑚3) Kopperdahl et al. 2002 

𝜎𝑦𝑡  (𝑀𝑃𝑎) = 𝜎𝑦𝑐 ∗ 0.79  Keaveny et al. 1994 

𝜎𝑢𝑐 (𝑀𝑃𝑎) = 1.2 ∗ 𝜎𝑦  
Crawford 2003;  

Morgan and Keaveny 2001 

𝜀𝑦 = 0.0078 Kopperdahl et al. 2002 

𝜀𝑢 = 0.145 Morgan et al. 2003 

Padding 
𝐸 = 2000 𝑀𝑃𝑎 

𝜈 = 0.3 
Lewis 1997 

IVD 

𝐸𝑁𝑃 = 8 𝑀𝑃𝑎 

𝜈𝑁𝑃 = 0.499 
Denoziere and Ku 2006 

𝐸𝐴𝐹 = 500 𝑀𝑃𝑎 

𝜈𝐴𝐹 = 0.3 
Denoziere and Ku 2006 

 

A simple, pure compression and a forward bending condition can both be simulated 

using SpineVox-Pro. A forward-bending loading condition (theta ° = 8.5°) was simulated 

to represent the mechanical test as shown in Figure 4.5. Two sets of boundary 

conditions for the forward bending condition were investigated. The first were those 

associated with a simplified rig, and the second with generating the experimental rig 

explicitly in detail as described in Appendix C. The simplified rig condition was used in 

this chapter. 



 

 

 

Figure 4.5: Simplified rig for forward bending condition; ramped displacement applied (Purple: 

Upper and lower padding parts; Red: IVD part; Mixed colours: vertebral bone material number 

based on assigned Young’s modulus) 

 

The inferior surface of the lower padding was constrained for all degrees of freedom, 

and tilted displacement boundary conditions were applied at the superior surface of the 

upper padding. FE models were solved using a commercial software package, ANSYS 

(ANSYS Inc., Canonsburg, PA, USA) in the batch mode of SpineVox-Pro. Whilst both, 

linear and nonlinear options could be selected, for the work carried out in this chapter, 

only the linear option was used. 

 

In FE studies of bone fracture in the literature, isotropic yield criteria such as von Mises 

and Drucker-Prager theories are commonly used to investigate the yield limits of the 

femur (Keyak and Rossi, 2000, Bessho et al., 2007, Yosibash Zohar, 2010). Keyak and 

Rossi (2000) investigated the failure load of the hip under stance-, and fall-, loading 

conditions using nine-different failure theories: Distortion energy, Hoffman, strain-based 



 

 

Hoffman, maximum normal stress and strain, maximum shear strain and stress, 

Coulomb-Mohr, and modified Mohr failure theory. They found that the distortion 

energy and maximum shear stress had a strong correlation with the experimental results 

for both loading conditions (Keyak and Rossi, 2000). Yosibash (2010) investigated 

predicted hip strength with isotropic and orthotropic material properties and four 

different yield criteria: von Mises, Drucker-Prager, and maximum principal stress and 

strain (Yosibash Zohar, 2010). Unfortunately, since only one experimental femur was 

used, the work does not provide sufficient evidence for the conclusion to be used here. 

In order to establish the best suitable yield criterion for vertebral strength in the FSU FE 

model, estimates of yield strength from finite element models of FSU under forward-

bending condition with linear analysis were compared using six different isotropic yield 

criteria as follows:  

1) von Mises stress (VM SR): the load that caused the minimum von Mises stress 

exceeding a yield stress in contiguous elements that occupied at least a volume 

of 422 mm3 

2) von Mises strain (VM ER): the load that caused the minimum von Mises strain 

exceeding a constant yield strain of 0.78% in contiguous elements that occupied 

at least a volume of 422 mm3 

3) Drucker-Prager stress (DP SR): the load that caused minimum Drucker-Prager 

stress exceeding a yield stress in contiguous elements that occupied at least a 

volume of 422 mm3 

4) Maximum principal stress (MX SR): the load that caused minimum of maximum 

principal stresses exceeding a yield stress in contiguous elements that occupied 

at least a volume of 422 mm3 

5) Maximum principal strain (MX ER): the load that caused the minimum of 

maximum principal strains exceeding a constant yield strain of 0.78% in 

contiguous elements that occupied at least a volume of 422 mm3 

6) Maximum shear stress (CM SR): the load that caused the minimum of maximum 

shear stresses exceeding a yield stress in contiguous elements that occupied at 

least a volume of 422 mm3 



 

 

In the post-processing step of SpineVox-Pro, vertebral strength can be calculated with 

the above yield criteria. The equivalent stress for yield criteria which were used in this 

study are summarised in Appendix D. 

The final results were visualised in SpineVox-Pro with the calculated strength based on 

the above yield criteria, the stress and strain plot, and the estimated fracture locations. 

Figure 4.6 and 4.7 shows one example of the predicted fracture locations. 

 

 

Figure 4.6: SpineVox-Pro, estimated fracture locations using six different yield criteria: a) von 
Mises stress and strain; b) Drucker-Prager yield criteria 



 

 

 

Figure 4.7: SpineVox-Pro, estimated fracture locations using six different yield criteria: c) 

Maximum principal stress and strain; d) Coulomb-Mohr yield criteria 

 

Linear regression analysis was performed for both the FE- and experiment-derived 

vertebral strength. Two specimens (No.0009, 0011) were excluded from the analysis due 

to poor image quality and one specimen (No. 0029) was discarded due to failure of the 

experimental test. A typical FE simulation took approximately 20 minutes of CPU time on 

3.6 GHz Intel core i5 CPU with 8GB RAM (about 380,000 elements). 



 

 

Simple isotropic material properties were considered in order to maintain the 

consistency of the models, because the strength was defined by von Mises isotropic 

yielding theory.  

A positive correlation was found between strength measured by experiment and the 

strength predicted by the FSU FE model for all failure criteria (p < 0.001) as shown in 

Table 4.4.  

 

Table 4.4: Linear regression analysis between Experiment- and FE-derived strength (six-different 

yield criteria) 

Yield Criteria 
Isotropic mat. Transversely isotropic mat. 

Y=Slope*x+Intercept R
2 

Y=Slope*x+Intercept R
2 

Von Mises Stress VM SR 1.08 ∗ x + 477.06 0.86 1.25 ∗ x + 453.16 0.87 

Von Mises 

Strain=0.78% 
VM ER 0.86 ∗ x + 163.13 0.86 1.09 ∗ x + 125.11 0.80 

Drucker-Prager Stress DP SR 0.94 ∗ x + 587.31 0.86 1.11 ∗ x + 535.35 0.85 

Max. Normal Stress MX SR 0.16 ∗ x + 900.68 0.71 0.21 ∗ x + 134.67 0.88 

Max. Normal 

Strain=0.78% 
MX ER 0.16 ∗ x + 531.63 0.74 0.46 ∗ x + 240.59 0.78 

Coulomb-Mohr Stress CM SR 0.11 ∗ x + 790.67 0.57 0.06 ∗ x + 984.87 0.54 

 

Vertebral strength based on von Mises stress (R2 = 0.86 VM SR Iso; R2 = 0.87 VM SR Trans) 

and strain (R2 = 0.86 VM ER Iso; R2 = 0.80 VM ER Trans) yield criteria showed the 

strongest correlation with the experimentally determined yield strength of the FSU. In 

addition, the Drucker-Prager stress criterion also showed strong correlation with 

experimental results (R2 = 0.86 DP SR Iso; R2 = 0.85 DP SR Trans). 

According to the results of this study for the FSU FE model, the strength based on von 

Mises yield criteria showed better correlation with the experimental strength (R² = 0.80 - 

0.87) when compared to the areal BMD (R² = 0.54) by DXA as shown in Figure 4.8.  



 

 

 

 

Figure 4.8: Linear regressions (p < 0.001) of the experimental vertebral strength as a function of (a) 

areal bone mineral density by DXA (b) FSU FE derived strength based on von Mises stress (c) FSU 

FE derived strength based on von Mises strain  



 

 

 

There is one extreme outlier (FSU0015) it weigh the correlation power between the FE 

analysis and the experiment. If the value was omitted from the result, the correlation 

coefficient is a bit lower than the original results (0.87 -> 0.81 VM SR; 0.80 -> 0.68 VM 

ER). In this regard, Spearman’s rank was calculated to verify the results. Both FE 

strengths based on VM SR and VM ER have strong correlation (ρ=0.83 and 0.84) whereas 

the aBMD has modest correlation (ρ=0.67) with the experimental strength. 

Furthermore, the predicted fracture location in the FSU model was compared with that 

seen in experiment as shown in Table 4.5. According to the results, the predicted 

fracture location varied depending on the yield criterion used to define the vertebral 

fracture. Among them, the VM ER and MX SR yield criteria show the best matching 

performance with the experimental results, even though there is no statistical 

significance according to Cohen’s Kappa values as shown in Table 4.5.  

 

Table 4.5: Fracture incidence in the FE models and in the experimental tests (T: top level on FSU, B: 

bottom level on FSU) 

FSU 

no. 

Spine 

Index 

FSU 

Level 

Fx Level 

Top/Bottom 

VM 

SR 

VM 

ER 

DP 

SR 

MX 

SR 

MX 

ER 

CM 

SR 

0001 2710v T12-L1 T B B T T B B 

0003 2710k L2-L3 T B T B B T B 

0005 6211k L2-L3 B T B B B T B 

0007 6211v L4-L5 B B B T B B B 

0013 7011k L1-L2 T T T B T T B 

0015 7011v L3-L4 T B T B T B B 

0017 7509k L1-L2 B T T B T T T 

0019 7509v T11-T12 B B B B B B B 

0021 8911v L3-L4 B B B B B B B 

0023 8911k T11-T12 T T T B B B B 

0025 9311v L1-L2 T B B B T B B 

0027 9311k L3-L4 B T T T T T B 

0031 10211v L1-L2 T T T T T T T 

Matching 13 6 9 6 9 6 6 

Cohen’s Kappa value  -0.14 0.38 -0.04 0.38 -0.14 -0.02 

* Specimens were labelled for k (kyphoplasty) and v (vertebroplasty) 



 

 

 

The primary aim of the study was to develop a subject-specific FSU FE model based on 

QCT and MRI scans and to validate the outputs of this FSU FE model against 

experimental test. This study shows that the outputs of the FSU FE models developed 

show a positive correlation with the experimental data in terms of vertebral strength 

(VM SR and VM ER R² = 0.80 - 0.87). As, earlier mentioned, the correlation coefficient is 

a bit lower than the original results (0.87 -> 0.81 VM SR; 0.80 -> 0.68 VM ER), if the one 

extreme outlier (FSU0015) was omitted from the result. The revised correlation is still 

higher than that between aBMD by DXA and the experimental strength (R² = 0.54).  

The correlation coefficients obtained are similar to those published by other researchers 

as summarised in Table 4.6.  

 

Table 4.6: Correlation coefficients between FE derived strength and experimental strength in the 

literature 

Authors Correlation R2 N 

Liebschner et al. 2003 Pearson 0.79 19 

Crawford et al. 2003 Pearson 0.86 13 

Buckely et al. 2007 Pearson 0.80 77 

Chevalier et al. 2008 Pearson 0.77 12 

Zeinali et al. 2010 Pearson 0.83 9 

Da’llara et al. 2012 Pearson 0.78 37 

Pahr et al. 2012 Pearson 0.77 37 

 

With the exception of Crawford et al. (2003), who used linear analysis, all of the studies 

shown in Table 4.6 used a vertebral body alone FE model to estimate vertebral strength 

under compressive loading, with the nonlinear option, and defined vertebral strength 

based on the load-displacement curve. In contrast, the current work uses the linear 

option and defines vertebral strength as a yield point in a specified volume of elements. 

The fracture strength predicted by an FE models varies with different fracture/yield 

definitions. The Von Mises criterion has been used to estimate fracture strength in a hip 



 

 

FE model (Keyak et al., 1998, Lotz et al., 1991a, Lotz et al., 1991b). This criterion assumes 

that ultimate bone strength is equal under tension and compression whereas, in reality 

the tensile strength of bone is lower than its compressive strength. There are a few hip 

FE studies that have been carried out using the Drucker-Prager stress. These take 

account of the differences in ultimate strength under tension and compression (Bessho 

et al., 2007, Koivumaki et al., 2012) and show a fairly good correlation with the results 

from experiment (R2 = 0.87, 0.89).  

As yet, there is no comparative study of different yield criteria for vertebral FE models. 

In the results presented in this chapter, Fisher’s r-to-z transformation indicates that 

there is little difference in R2 values between the von Mises criteria and the Drucker-

Prager criteria. Vertebral strength determined from DP SR is slightly higher than that 

from VM SR. This difference may come from the hydrostatic stress term that is 

presented in Drucker-Prager criterion. An element has to be subjected to a larger 

external load for its DP SR to be large in order to fit the yield criterion. Thus, by 

introducing the DP SR as the yield criterion, a larger external load is needed in order to 

bring about the yielding of an element. In addition, the DP criteria are affected by the 

ratio of the yield in the tension and the yield in compression. In the present study, this 

was assumed to be 0.8 (Keaveny et al., 1994, Morgan and Keaveny, 2001). However, the 

literature also shows that this ratio varies with different anatomical sites and loading 

conditions (Keaveny et al., 1994, Kopperdahl and Keaveny, 1998, Morgan and Keaveny, 

2001, Bayraktar et al., 2004).  

Furthermore, we identified the fracture site in the FE model by our fracture estimation 

definition. The experiment normally generated a wedge type fracture as commonly seen 

clinically. The process of fracture in our model was also thought to be fairly close to the 

results of the experiment. A few studies have compared the fracture site predicted by 

hip FE models with that obtained experimentally and have shown agreement between 

them: 13 out of 18 with linear analysis (Keyak et al., 2001), and 15 out of 18 with 

nonlinear analysis (Bessho et al., 2007). Fracture strength based on VM ER has shown to 

give a better estimation (10 out of 13) although, in our study, predicted fracture location 

also varied with yield criterion. However, it should be noted that detailed fracture site 

information could not be obtained from normal X-ray images since part of the top and 

bottom vertebrae had to be potted within the PMMA in order to perform the 



 

 

experiment. In the absence of this information, it was only possible to determine which 

of the two vertebrae in the FSU was fractured. This judgement was made from the 

reduction in vertebral height, with the vertebra with the greatest height reduction being 

assumed to be the first to fracture (the one of the two vertebrae). To validate the FSU FE 

model in terms of predicting the exact fracture location, a slightly different experimental 

test is recommended. This could be carried out on a specimen with two IVDs and 

adjacent vertebra (similar to the DVD FE model; described in Chapters 6 and 7) or three 

vertebrae with two adjacent IVDs (i.e. the multi-segment FE model briefly reviewed in 

Chapter 2). 

A wide range of material properties have been used for the vertebra and intervertebral 

disc of FE models reported in the literature and as described in Chapter 2 the material 

properties are important factors which effect to the FE results. The FSU FE model 

described above used one of the empirical relationships, a linear relationship between 

the elastic modulus and the QCT equivalent density, and between the yield stress and 

the  QCT equivalent density published by Kopperdahl (Kopperdahl et al., 2002) to assign 

the material properties for the vertebrae. This gave good agreement between the FE 

predicted strength and the experimental strength. Although the direct QCT density-

mechanical property regressions by Kopperdahl et al. can improve the fidelity of the FE 

models, some limitations should be noted for using this relationship. Cylindrical 

trabecular specimens (ρ = 0.09 – 0.38 g/cm3) were used for the regressions, whereas 

the FSU FE model used whole vertebra. Furthermore, the use of vertebra beyond the 

density range of the specimens may introduce some errors, since trabecular architecture 

may vary with density as well as anatomical sites. 

Some studies suggest that a power-law relationship gives better correlation between 

yield stress and density for the vertebra (Mosekilde et al., 1987, Kopperdahl and 

Keaveny, 1998, Ebbesen et al., 1999).  

Kopperdahl et al. (2002) showed regression results using both linear and power-law 

relationship as shown in Table 4.7. According to their results, the simple linear 

relationship gives an equally strong correlation to that shown by the power-law. In 

terms of the distribution of residuals, the linear relationship is preferable. 

 



 

 

Table 4.7: The empirical relationships between the QCT equivalent density and the elastic 

modulus (Kopperdahl et al. 2002) 

 𝜌𝑄𝐶𝑇 − 𝐸 𝜌𝑄𝐶𝑇 − 𝜎𝑦𝑐 

Linear Law 𝐸𝑧 = −34.7 + 3230 ∗ 𝜌𝑄𝐶𝑇 𝜎𝑦𝑐 = −0.75 + 24.9 ∗ 𝜌𝑄𝐶𝑇 

Power Law 𝐸𝑧 = 2980 ∗ 𝜌𝑄𝐶𝑇
1.05 𝜎𝑦𝑐 = 37.4 ∗ 𝜌𝑄𝐶𝑇

1.39 

 

Material properties for the vertebrae using a power law relationship were also assigned 

in the current work for comparison purposes, and in agreement with the findings of 

Kopperdahl et al. (2002) there was no significant difference between the two fits. Also 

the coefficients of determination from the linear regression between the FE strength 

and the experimental strength were similar (linear law R2=0.8727, 0.8014; power law 

R2= 0.8577, 0.8258) as shown in Table 4.8 and Figure 4.9.  

 

Table 4.8: FE-derived strength: based on the linear relationship and the power law 

FSU 

no. 

Linear regression Power law Experiment 

FE strength (N)  

(VM_SR) 

FE strength (N)   

(VM_ER) 

FE strength (N)  

(VM_SR) 

FE strength (N)   

(VM_ER) 
Strength (N) 

0001 862 1358 952 1428 1104 

0003 1073 1281 1180 1619 1600 

0005 607 998 774 1215 1180 

0007 654 1081 846 1286 1685 

0013 1967 2523 1888 2393 3090 

0015 3399 4176 3370 3834 4412 

0017 1930 2022 1887 1977 3399 

0019 1570 2095 1541 2166 2906 

0021 817 1604 873 1579 1861 

0023 857 1469 839 1456 1194 

0025 1374 2026 1236 1886 1930 

0027 1387 2051 1327 1976 2215 

0031 1079 1366 1172 1364 1319 

Mean 1352 1850 1376 1860 2146 

SD 759 834 707 694 1018 

SE 211 231 196 192 282 

 



 

 

 

Figure 4.9: FE-derived strength: a) from Linear Regression (p < 0.001); b) Power Law  

 

In addition, according to the result from Spearman’s rank, all the FE strengths have 

strong correlation with the experimental strengths (ρ = 0.83 - 0.88). For this reason, in 

all the studies in this thesis which follow, the linear relationships for vertebral material 

properties were used in all FE models. 

The material properties of the IVD of the FSU model described above were assumed to 

be linear-elastic. In the healthy IVD, the nucleus pulposus (NP) has often been modelled 

as a non-linear incompressible solid governed by Mooney-Rivlin law or as a fluid 

(Strange et al., 2010). However, the degenerated IVD loses its fluid-like region (Wognum 

et al., 2006) and the NP becomes more like a solid (Iatridis et al., 1996), hence, because 

the cadaveric specimens used had degenerated discs, the NP tissue was assumed to 

have homogeneous isotropic mechanical properties. The compressive modulus of the 

NP was assumed to be of the order of 8 MPa (Johannessen and Elliott, 2005).  For the 

annulus fibrosus (AF), although this has a layered composite structure, its compressive 



 

 

mechanical properties are not highly anisotropic, suggesting that they are not strongly 

influenced by collagen fibre direction (Berlemann et al., 1998, Urban and Roberts, 2003). 

In this way, we conducted simple parametric study to find out the effects of the material 

properties using five different combinations of material properties for the NP and the AF 

(Fagan et al., 2002b) as shown in Table 4.9.  

 

Table 4.9: Assigned material properties for NP and AF (five different combinations for the 

parametric study) 

DISC MAT. 
Nucleus pulposus (NP) Annulus fibrosus (AF) 

Young’s Modulus Poisson’s R Young’s Modulus Poisson’s R 

1 𝐸𝑁𝑃 = 1 𝑀𝑃𝑎 𝜈𝑁𝑃 = 0.499 𝐸𝐴𝐹 = 500 𝑀𝑃𝑎 𝜈𝐴𝐹 = 0.3 

2 𝐸𝑁𝑃 = 1 𝑀𝑃𝑎 𝜈𝑁𝑃 = 0.499 𝐸𝐴𝐹 = 250 𝑀𝑃𝑎 𝜈𝐴𝐹 = 0.3 

3 𝐸𝑁𝑃 = 8 𝑀𝑃𝑎 𝜈𝑁𝑃 = 0.499 𝐸𝐴𝐹 = 500 𝑀𝑃𝑎 𝜈𝐴𝐹 = 0.3 

4 𝐸𝑁𝑃 = 8 𝑀𝑃𝑎 𝜈𝑁𝑃 = 0.3 𝐸𝐴𝐹 = 500 𝑀𝑃𝑎 𝜈𝐴𝐹 = 0.3 

5 𝐸𝑁𝑃 = 8 𝑀𝑃𝑎 𝜈𝑁𝑃 = 0.3 𝐸𝐴𝐹 = 250 𝑀𝑃𝑎 𝜈𝐴𝐹 = 0.3 

 

According to the parametric studies on the IVD material properties, the FE strength 

values are insensitive to the five different disc moduli and Poisson’s ratios as shown in 

Table 4.10.  

 

Table 4.10: Linear regression from five different combinations 

DISC 

MAT. 

VM_SR VM_ER 

Y R2 Y R2 

1 𝑌 = 1.2522 ∗ 𝑋 + 434.39 𝑅2 = 0.8687 𝑌 = 1.0583 ∗ 𝑋 + 129.56 𝑅2 = 0.7853 

2 𝑌 = 1.2885 ∗ 𝑋 + 402.7 𝑅2 = 0.8643 𝑌 = 1.0433 ∗ 𝑋 + 165.86 𝑅2 = 0.7833 

3 𝑌 = 1.2487 ∗ 𝑋 + 424.84 𝑅2 = 0.8620 𝑌 = 1.0582 ∗ 𝑋 + 113.70 𝑅2 = 0.7912 

4 𝑌 = 1.2519 ∗ 𝑋 + 453.16 𝑅2 = 0.8727 𝑌 = 1.0923 ∗ 𝑋 + 125.11 𝑅2 = 0.8014 

5 𝑌 = 1.2726 ∗ 𝑋 + 437.54 𝑅2 = 0.8699 𝑌 = 1.0747 ∗ 𝑋 + 161.91 𝑅2 = 0.7993 

 

Isotropic elastic material properties might not be enough to represent the physiological 

characteristics of disc degeneration on the IVD of the FSU under the loading conditions 



 

 

which generate severe wedge fractures in the vertebra. Whilst disc degeneration was 

present in the specimens, in order for the model to have wider application, a more 

realistic material model such as biphasic material model which represents water with 

solid fibres might be required for the IVD.  

Several limitations of this study should be noted. Firstly, only linear analysis with linear 

elastic properties was carried out for the vertebrae and IVD (NP and AF), because a large 

forward bending condition (theta ° = 8.5°) was applied to the FE models in order to 

mimic the experimental status as closely as possible. The large angle of bending used led 

to higher peak values of stress and strain values especially in the anterior region. 

Therefore, this large angle makes the element fail easily, and to overcome the problem 

requires a more accurate material law which can describe the behaviour in the post 

yield region than is used here. In several in vivo studies relatively small angles such as 1 - 

2 degrees of flexion, based on in vivo statistics for the spine, were used (Adams and 

Dolan, 1991, Homminga, 2001, Melton et al., 2007). In addition, although the IVD 

properties vary from one subject to another, only constant values were assigned to 

every FE models. It also did not account for viscoelastic properties and the fibres in AF. 

In fact the initial stiffness of experimental curve should be related to the IVD stiffness.   

Secondly, the endplates were not separated in the FE model as the QCT and MRI 

resolution is not high enough to distinguish the endplate area. Thirdly, the number of 

specimen is small which limits the study power. Finally, the average age of the specimen 

donors is old, which limits the conclusion to this age range.   

In summary, the results of this study indicate that the linear FSU FE models are validated 

well against the experiment, namely, the strength derived from the FSU FE model could 

estimate the vertebral strength of the FSU specimen under forward bending. The 

validated FSU FE models could be used to improve the vertebral strength estimates in 

future clinical studies for fracture risk assessment and treatment effect monitoring.  

 



 

 

Findings from the validated FSU FE model in Chapter 4 are extended through 

comparison studies with different types of FE models in terms of vertebral strength. Two 

additional types of subject-specific FE models were developed based on the specimens 

used in Chapter 4. These were a vertebral body (VB) model, and a model of the vertebral 

body with posterior elements (VB PE).  

 

A FSU FE model which takes account of the posterior elements and intervertebral disc 

was developed and validated, under the forward bending condition, with the results 

from the in vitro experiment as described in Chapter 4. Previous findings were extended 

through comparison studies of vertebral strength using an additional two different FE 

models: vertebral body (VB) FE model and vertebral body with posterior elements (VB 

PE) FE model.  

One of these models, the VB FE model, has previously been used to investigate vertebral 

body strength under pure compressive loading, a test condition which is generally 

representative of the standing posture. The hypothesis was made that artificially 

removing the posterior elements in the model disrupts the continuity of the cortex and 

trabecular network and this may weaken the vertebral body causing strength to be 



 

 

under-estimated (Wasnich RD, 1996, Jackson S.A., 2000). In addition, osteoporotic 

vertebral fractures often occur during forward bending activities. This concentrates 

loading on the anterior vertebral body, and it is this type of loading rather than pure 

compression that causes the anterior wedge fractures commonly observed in life. FE 

models that simulate loading in flexed postures may result in different strength 

estimates to those that simulate pure axial compression.  

Furthermore, load on the vertebrae is not transferred directly through vertebral body 

but via an intervertebral disc and facet joints. Although the exact load transfer 

mechanism on the vertebrae is not yet clearly understood, degeneration of the IVD 

affects the loading conditions and fracture patterns of the adjacent vertebrae (Pollintine 

et al., 2004a, Adams and Dolan, 2005, Pollintine et al., 2004b). In this regards, the VB FE 

model and the VB PE FE model may give different strength patterns from those of the 

FSU FE model. 

The specific aim of this Chapter is to compare vertebral strengths derived from three 

different types of FE models (Vertebral body (VB), vertebral body with posterior 

elements (VB PE), and FSU FE model (FSU)) based on experimental data obtained from 

the same specimens described in Chapter 4 measured experimentally under forward 

bending conditions. 

 

The specimens, specimen preparation technique, bone mineral density, and in vitro 

experiments and experimental data obtained has already been described in Chapter 4 

(Chapter 4: 4.2.1 to 4.2.3).  

 

Using the same CT and MRI data the FSU FE model was deployed to give three different 

types of subject-specific finite element model as shown in Figure 5.1.   

 



 

 

 

Figure 5.1: Subject-specific FE models; vertebral body, vertebral body with posterior elements, and 

functional spinal unit (Multiple-coloured part: vertebra with assigned material properties; red-

coloured part: intervertebral disc with assigned material properties) 

 

SpineVox-Pro was used to generate all FE models as before: 

1) Vertebral body FE model (VB) – soft tissues and posterior elements were removed at 

the origin of the pedicles during the segmentation step in SpineVox-Pro.  

2) Vertebra with posterior elements FE model (VB PE) – soft tissues were removed 

during the segmentation step in SpineVox-Pro.  

3) The functional spinal unit FE model (FSU) which was developed and validated in 

Chapter 4 (4.2.4).  

As mentioned earlier, to mimic the experiment condition, for the FSU model artificial 

cement paddings were generated at the inferior surface of the inferior vertebra and at 

the superior surface of the superior vertebra. To match the boundary conditions, the 

artificial cement paddings were considered for the VB and VB PE models at the inferior 

and superior surfaces of the vertebra.  All the FE models were generated with each voxel 

being converted into an 8-node hexahedral element (Element type SOLID185 in ANSYS).  



 

 

Material properties for the vertebra and the artificial paddings were the same as those 

used for the FSU FE model in Chapter 4.  

 

For the VB FE model and the VB PE FE model, simple pure compression and a forward 

bending condition were both simulated in SpineVox-Pro. The bottom surface of the 

lower padding was constrained in all degrees of freedom. One of two possible boundary 

conditions, a tilted displacement or a three millimetre distributed displacement 

boundary condition was applied on the top surface of the upper padding for the 

forward-bending loading condition (theta ° = 8.5°) and pure compression, respectively. 

All FE models were then solved using a commercial software package, ANSYS (ANSYS Inc., 

Canonsburg, PA, USA) in the batch mode of SpineVox-Pro using the linear option. 

 

Vertebral strength was defined using von Mises criteria. This was defined in two 

different ways for all FE models:  

i. the load that caused minimum von Mises strain exceeding a yield strain of 

0.78% (VM ER) in contiguous elements that occupied at least a volume of 

422mm³ 

ii. the load that caused minimum von Mises stress exceeding a yield stress (VM 

SR) in contiguous elements that occupied at least a volume of 422mm³ 

The contiguous region was identified as the site with greatest likelihood of initial failure. 

Since each FSU consisted of two vertebrae, two different ways were used to choose the 

fractured vertebra to compare with the FSU results:  

SET 1) the vertebra which has a smaller FE strength  

SET 2) the fractured vertebra of the FSU in the in vitro experiment 

 



 

 

Linear regression was performed between FE- and experiment-derived vertebral 

strength. Two specimens (No.0009, 0011) were excluded due to poor image quality and 

one specimen (No. 0029) was discarded due to failure of the experimental test. The FE-

derived vertebral mean ± SD strengths from the three different types of FE models are 

presented in Table 5.1 (SET 1) and Table 5.2 (SET2). According to the results from the 

same strength definition of the FSU FE model, the FE strength under pure compression 

could be estimated most closely to the strength from the in vitro test on FSU specimens 

(2146N): VB 2026N, VB PE 2150N in set 1, and VB 2185N, VB PE 2300N in set 2. 

 

Table 5.1: FE- and Experiment- derived vertebral mean strength (N) based on SET 1 criteria 

Pure VB (N) VB PE (N)   

VM SR p 1255 ± 723 1424 ± 787   

VM ER p 2026 ± 969 2150 ± 914   

Forward VB (N) VB PE (N) FSU (N) In vitro (N) 

VM SR f 1019 ± 535 1030 ± 493 1352 ±  759 
2146 ± 1018 

VM ER f 1525 ± 604 1361 ± 580 1850 ± 834 

* SET 1) the vertebra which has a smaller FE strength 

* VB: vertebral body; VB PE: vertebral body with posterior elements; FSU: functional 

spinal unit 

 

Table 5.2: FE- and Experiment- derived vertebral mean strength (N) based on SET 2 criteria 

Pure VB (N) VB PE (N)   

VM SR p 1363 ± 761 1501 ± 785   

VM ER p 2185 ± 899 2300 ± 912   

Forward VB (N) VB PE (N) FSU (N) In vitro (N) 

VM SR f 1071 ± 550 1076 ± 502 1352 ±  759 
2146 ± 1018 

VM ER f 1653 ± 606 1499 ± 597 1850 ± 834 

* SET 2) the fractured vertebra of the FSU in the in vitro experiment 

* VB: vertebral body; VB PE: vertebral body with posterior elements; FSU: functional 

spinal unit 

 



 

 

The strength measured experimentally showed a positive correlation with the strength 

based on von Mises stress obtained for the VB FE model both in pure compressive 

loading and forward bending (SET 1: R² = 0.83 VM SR p, R² = 0.79 VM SR f; SET 2: R² = 

0.87 VM SR p, R² = 0.78 VM SR f) as did the strength based on von Mises strain for the 

VB FE model (SET 1: R² = 0.84 VM SR p, R² = 0.75 VM SR f; SET 2: R² = 0.79 VM SR p, R² = 

0.66 VM SR f) as shown in Figures 5.2 and 5.3.  

According to the Fisher’s r-to-z transformation, there is no significant difference  

statistically between the correlation coefficient from the pure compressive loading and 

that from forward bending VM SR (SET 1: z = 0.31 p = 0.38; SET 2: z = 0.68 p = 0.25) and 

VM ER (SET 1: z = 0.55 p = 0.29; SET 2: z = 0.59 p = 0.28), even though the correlation 

coefficient from the pure compression condition is slightly higher than that from the 

forward bending. 

 

 

Figure 5.2: Linear regression between Experiment- and FE-derived strength from the vertebral 
body FE model derived from: von Mises Stress in pure compression (VM SR p); from von Mises 
stress in forward bending (VM SR f). * Note: SET 1) the vertebra which has a smaller FE strength, 
and SET 2) the fractured vertebra of the FSU in the in vitro experiment 

 



 

 

 

 

 

 

Figure 5.3: Linear regression between Experiment- and FE-derived strength (FE model of vertebral 

body alone derived from: von Mises Strain in pure compression (VM ER p); von Mises strain in 

forward bending (VM ER f). * Note: SET 1) the vertebra which has a smaller FE strength, and SET 2) 

the fractured vertebra of the FSU in the in vitro experiment 

 

Figures 5.4 and 5.5 show the assigned elastic moduli, the von Mises stress and strain 

distribution of one example (VB 13 top and bottom vertebral body) under pure 

compression and forward bending, respectively. As expected, the anterior cortex shows 

the highest stress values under forward bending. On the other hand, in pure 

compression, the stress is distributed more evenly on the vertebra body compared with 

the results of the forward bending analysis, even though the peak value is still on the 

anterior cortex region. The strain peak value and the distribution is quite similar from 

both loading except the top vertebra under forward bending which shows slightly higher 

strain on relatively large area than the others.  

 

 



 

 

 

 

Figure 5.4: Elastic modulus, von Mises stress and strain plots of VB 13 under pure compression: 
(left) top vertebral body, (right) bottom vertebral body  



 

 

 

 

Figure 5.5: Elastic modulus, von Mises stress and strain plots of VB 13 under forward bending: 
(left) top vertebral body, (right) bottom vertebral body 



 

 

 

The strength obtained from experiment was positively correlated with the strength 

based on von Mises stress of the VB PE FE model in pure compressive loading and 

forward bending (SET 1: R² = 0.83 VM SR p, R² = 0.75 VM SR f; SET 2: R² = 0.85 VM SR p, 

R² = 0.78 VM SR f) and also with the strength based on von Mises strain of the VB PE FE 

model (SET 1: R² = 0.85 VM SR p, R² = 0.68 VM SR f; SET 2: R² = 0.76 VM SR p, R² = 0.59 

VM SR f) as shown in Figures 5.6 and 5.7.  

According to the Fisher’s r-to-z transformation, once again like the results from the VB 

FE model, there is no significance of the difference statistically between the correlation 

coefficient from the pure compressive loading and forward bending VM SR (SET 1: z = 

0.49 p = 0.31; SET 2: z = 0.45 p = 0.33) and VM ER (SET 1: z = 0.99 p = 0.16; SET 2: z = 0.70 

p = 0.24), even though the correlation coefficient from the pure compression condition 

is slightly higher than that from the forward bending.. 

 

 

Figure 5.6: Linear regression between Experiment- and FE-derived strength from the vertebra with 

posterior elements FE model derived from: von Mises Stress in pure compression (VM SR p); von 

Mises stress in forward bending (VM SR f). * Note: SET 1) the vertebra which has a smaller FE 

strength, and SET 2) the fractured vertebra of the FSU in the in vitro experiment 



 

 

 

 

 

Figure 5.7: Linear regression between Experiment- and FE-derived strength from the vertebra with 

posterior elements FE model derived from: von Mises Strain in pure compression (VM ER p); von 

Mises strain in forward bending (VM ER f). *Note: SET 1) the vertebra which has a smaller FE 

strength, and SET 2) the fractured vertebra of the FSU in the in vitro experiment 

 

Figures 5.8 and 5.9 show the assigned elastic moduli, the von Mises stress and strain 

distributions of one example (VB PE 13 top and bottom vertebra) under pure 

compression and forward bending, respectively. As before (Figures 5.4 and 5.5), the 

anterior cortex shows the highest stress values under forward bending and once again, 

in pure compression, the stress is distributed more evenly on the vertebra body 

compared with the results of the forward bending analysis, even though the peak value 

is still on the anterior cortex region. The strain peak value from the pure compression is 

near the posterior cortex, while the strain peak value from the forward bending is 

slightly on the front of the vertebra.  

 

 

 



 

 

 

Figure 5.8: Elastic modulus, von Mises stress and strain plots of Vertebra 13 under pure 
compression: (left) top vertebra, (right) bottom vertebra 

 



 

 

 

Figure 5.9: Elastic modulus, von Mises stress and strain plots of Vertebra 13 under forward 
bending: (left) top vertebra, (right) bottom vertebra 

 



 

 

The correlation coefficients for the VB and VB PE FE model were compared with the 

results (as described in Chapter 4) from the validated FSU model under forwarding 

bending only. As mentioned previously, under the forward bending condition, the 

strength measured by experiment showed a positive correlation with that based on von 

Mises stress for all FE models investigated (R² = 0.79 VB, R² = 0.75 VB PE, R² = 0.87 FSU). 

A similar relationship was found for von Mises strain (R² = 0.75 VB, R² = 0.68 VB PE, R² = 

0.80 FSU) as shown in Figures 5.10 and 5.11. The strength from FSU FE model has higher 

correlation value based on both yield criteria although the Fisher r-to-z transformation 

reported no significant difference statistically between correlation coefficient. 

 

 

 

Figure 5.10: Linear regression between Experiment- and FE-derived strength from FE model of FSU 

derived from: von Mises Stress in forward bending (VM SR f_FSU); the vertebral body FE model 

derived from von Mises Stress in forward bending (VM SR f_VB); the vertebra with posterior 

elements FE model derived from von Mises Stress in forward bending (VM SR f_VB PE). * Note: 

SET 1) the vertebra which has a smaller FE strength, and SET 2) the fractured vertebra of the FSU 

in the in vitro experiment 

 

 



 

 

 

 

Figure 5.11: Linear regression between Experiment- and FE-derived strength from FE model of FSU 

derived from: von Mises Strain in forward bending (VM ER f_FSU); the vertebral body FE model 

derived from von Mises Strain in forward bending (VM ER f_VB); the vertebra with posterior 

elements FE model derived from von Mises Strain in forward bending (VM ER f_VB PE). * Note: 

SET 1) the vertebra which has a smaller FE strength, and SET 2) the fractured vertebra of the FSU 

in the in vitro experiment 

 

Figures 5.12 show the assigned elastic moduli, the von Mises stress and strain plots of 

one example (FSU 13) under forward bending. The peak stress can be seen in anterior 

cortex region on both top and bottom vertebrae. This result is similar with the previous 

results from VB and VB PE under forward bending. On the other hand, the peak strain 

value is near the posterior cortex region, even though the anterior cortex region on the 

vertebrae has relatively higher strain distribution.  

 



 

 

 

Figure 5.12: Elastic modulus, von Mises stress and strain plots of FSU 13 under forward bending 

 



 

 

The predicted fracture locations found in the FE models were compared with that seen 

in the experimental results as shown in Table 5.3.  

 

Table 5.3: Estimated fracture level (T: top level of FSU, B: bottom level of FSU) 

FSUs experiment VB FE model VB PE FE model FSU FE 

no. Level 
Fx 

Level 

VM 

SR f 

VM 

ER f 

VM 

SR p 

VM 

ER p 

VM 

SR f 

VM 

ER f 

VM 

SR p 

VM 

ER p 

VM 

SR f 

VM 

ER f 

0001 T12-L1 T B B B B T B T B B B 

0003 L2-L3 T B B B B B B B T B T 

0005 L2-L3 B T T T T T T T T T B 

0007 L4-L5 B B B T T B B T T B B 

0013 L1-L2 T T T B T T T B T T T 

0015 L3-L4 T T B T T T B T T B T 

0017 L1-L2 B T T T T T T T T T T 

0019 T11-T12 B B B B B B B B B B B 

0021 L3-L4 B B B B B B B B B B B 

0023 T11-T12 T T T B T T T B T T T 

0025 L1-L2 T B B B B T B B B B B 

0027 L3-L4 B B T B T B B B T T T 

0031 L1-L2 T T T T T T T T T T T 

Matching 13 8 6 5 6 10 7 6 7 5 9 

Cohen’s Kappa Value 0.24 -0.07 -0.21 -0.10 0.53 0.09 -0.07 0.05 -0.14 0.38 

 

According to the results, the predicted fracture locations varied depending on the type 

of FE model and the yield criterion which used to define the vertebral fracture. To 

comparison purpose, FSU 0013 results are chosen to visualize. Figures 5.13 to 5.21 

illustrate the predicted fracture locations based on von Mises stress and strain yield 

criteria of three different FE models.   



 

 

Among them, the vertebra with posterior elements (VB PE) FE model based on von 

Mises stress showed the best agreement with experiments (10 out of 13 cases), even 

though there was no statistical significance according to the Cohen’s Kappa values as 

shown in Table 5.3. 

 



 

 

 

Figure 5.13: Estimated fracture locations on VB 13 (top vertebral body) based on von Mises stress 

and von Mises strain yield criteria under pure compression 



 

 

 

Figure 5.14: Estimated fracture locations on VB 13 (bottom vertebral body) based on von Mises 
stress and von Mises strain yield criteria under pure compression 



 

 

 

Figure 5.15: Estimated fracture locations on VB 13 (top vertebral body) based on von Mises stress 
and von Mises strain yield criteria under forward bending 



 

 

 

Figure 5.16: Estimated fracture locations on VB 13 (bottom vertebral body) based on von Mises 
stress and von Mises strain yield criteria under forward bending 

 

 



 

 

 

Figure 5.17: Estimated fracture locations on Vertebra 13 (top vertebra) based on von Mises stress 

and von Mises strain yield criteria under pure compression  



 

 

 

Figure 5.18: Estimated fracture locations on Vertebra 13 (bottom vertebra) based on von Mises 
stress and von Mises strain yield criteria under pure compression 

 



 

 

 

 

Figure 5.19: Estimated fracture locations on Vertebra 13 (top vertebra) based on von Mises stress 
and von Mises strain yield criteria under forward bending 



 

 

 

Figure 5.20: Estimated fracture locations on Vertebra 13 (bottom vertebra) based on von Mises 
stress and von Mises strain yield criteria under forward bending 

 



 

 

 

Figure 5.21: Estimated fracture locations on FSU 13 based on von Mises stress and von Mises 

strain yield criteria under forward bending  

 



 

 

 

This study was based on the premise that vertebral strength obtained from a FE model 

of the vertebral body alone under pure compressive loading could not represent the 

strength of an individual vertebra during different loading conditions. The hypothesis of 

this study in this chapter is that different FE models may influence the result of the FE 

analysis. FE models of the vertebrae simulating loading in flexed postures may result in 

different strength estimates to those that simulate pure compression. Furthermore, by 

artificially removing the posterior elements and IVD the model fails to represent the 

load transfer through the IVD and facet joint. This study has shown that all FE models 

investigated, as well as the FSU FE model, give results that are positively correlated with 

the experimental data (R²= 0.68 - 0.87 in forward bending; R²= 0.83 – 0.85 in pure 

compression). The correlation coefficients were similar for VB and VB PE models 

whereas the FSU model gave a slightly higher correlation. In other words, there is no 

significant difference statistically in terms of predicting vertebral strength between 

three different types of FE models under forward bending: VM SR (z = 0.59 p = 0.28 FSU 

vs. VB; z = 0.81 p = 0.21 FSU vs. VB PE) and VM ER (z = 0.28 p = 0.39 FSU vs. VB; z = 0.6 p 

= 0.27 FSU vs. VB PE). The FE models being compared first followed by their z and p-

values. This provides a justification for the current use of the VB model instead of VB PE 

or FSU for estimating vertebral strength. Furthermore, as earlier mentioned in Chapter 4, 

the correlation was compared by the Spearman’s rank to omit the effect of the extreme 

outlier (FSU0015). The results from FSU FE model showed the highest value, even 

though all FE strengths had strong correlation (ρ=0.83 - 0.84 FSU; ρ=0.78 - 0.82 VB; and 

ρ=0.76 - 0.79). 

However, it is important to remember that the mean FE strength were different: the 

mean FE strength (1850 N) from the FSU FE model could estimate most closely to the 

strength (2146N) from the in vitro test on FSU specimens: VB 1525N, VB PE 1361N in set 

1, and VB 1653N, VB PE 1499N in set 2. Furthermore, the stress and strain distributions 

on the vertebral body differ from the type of FE models: VB, VB PE, and FSU. Our results 

show that the predicted locations generally towards the anterior part of vertebra in the 

forward bending condition, while those towards the posterior part of vertebra in the 



 

 

pure compression for all the FE models. However, the predicted fracture locations were 

varied with the FE model types as well as the yield criteria. Especially, the predicted 

fracture locations on the VB FE models were quite different from each other. Among 

these three types of FE models, the VB PE FE model show the better prediction on the 

fracture locations compared with the experimental results (10 out 13), even though 

there was no statistical significance. 

From the results from the VB FE model, the FE strengths under the pure compression 

was a bit higher than those under the forward bending based on both von Mises stress 

and strain yield criteria: (VM SR pure 1255 - 1363N; VM SR forward 1019 - 1071N), and 

(VM ER pure 2185 – 2026N; VM ER forward 1525 – 1653N). However all of the FE 

strengths were positively correlated with the experimental strengths, namely, there is 

no significance difference statistically between the correlation coefficients. There are 

few validated FE studies using the isolated vertebral body FE model in the literature 

which investigate vertebral strength under anterior bending (Buckley et al., 2007a, 

Dall'Ara et al., 2010, Dall'Ara et al., 2012). Buckley et al. (2007a) investigated vertebral 

strength of the isolated vertebral body under anterior bending and showed a rather 

poor correlation (R2 = 0.34 - 0.40) between the FE-derived strength from VB FE model 

and the experimental strength. In contrast, Dall’Ara et al. (2010, 2012) were able to find 

a better correlation (R2 = 0.79). However, it must be noted that the above studies 

predicted vertebral strength based on the vertebral body alone FE model under anterior 

bending and, in particular, it is important to emphasise that Dall’Ara et al. used a 

vertebral body FE model without endplates.  

There is one in vivo study that has investigated vertebral strength from the vertebral 

body FE model under a number of different loading conditions, namely: forward bending, 

uniaxial compression, and in the erect standing posture (Matsumoto et al., 2009). This 

work shows a significant correlation between FE-derived strength under uniaxial 

compression and the strength under forward bending (R2 = 0.83, p < 0.0001). The mean 

fracture load under forward bending was reported to be significantly lower than the 

mean fracture load under uniaxial compression (2693N vs. 3062N, p = 0.00017).  

As earlier mentioned, the studies reported in this chapter show similar results to the 

findings above: there is a significant correlation between vertebral strength based on 

the VB FE model under forward bending and that in pure compression (R2 =0.91 VM SR; 



 

 

R2 = 0.87 VM ER). Also the mean vertebral strength under forward bending is smaller 

than that in pure compression (1019N vs.1255N VM SR; 1525N vs. 2025N VM ER).  

Some limitations of this study should be noted. First, all the FE models used consider 

only the specific forward bending condition (Ɵ = 8.5°) which was used in the in vitro 

experiment. To investigate the physiological loading associated with daily life, a gentler 

flexion condition would be recommended for a study more representative of the in vivo 

situation (Homminga, 2001, Melton et al., 2007). Second, there was no consideration of 

the FSU FE model under pure compression due to lack of compatibility using a voxel 

mesh for the contact analysis near the area of the facet joints. At surfaces of the voxel 

mesh model, the zigzagged boundary interrupts the analysis of sliding at the mesh 

interfaces. The effect of the voxel mesh is crucial at the facet joints area where stresses 

are not proportional to load because the engaged contact area changes as load is 

increased. Due to this strong geometric nonlinearity, more accurate representation of 

the contacting surfaces than voxel mesh is required. Last, the results for all the FE 

models were compared with experimental data obtained by generating a wedge 

fracture in a single vertebral body within a FSU rather than loading a single vertebra 

alone. The results might be improved, if there will be the fracture validation study on 

the single vertebra instead of FSU. Finally, as earlier mentioned in Chapter 4, there is 

one outlier (FSU 0015), the bigger estimated FE strength might affect the results of the 

linear regression for all the comparisons.   

In conclusion, the results of this study indicate that the mean FE strength (1850 N) from 

the FSU FE model under the forward bending condition could estimate most closely to 

the mean strength (2146N) from the in vitro test on FSU specimens, even though all FE 

strengths are positively correlated with the experimental data. The predicted fracture 

locations differ from the type of FE models as well as the yield criteria. Among them the 

VB PE FE model show the better prediction on the fracture locations compared with the 

experimental results (10 out 13). Furthermore, there is a tendency that the FE strengths 

under the pure compression are higher than those from the forward bending condition.  

The strength derived from the simple vertebral body FE model under the pure 

compression can still be used to estimate the vertebral compressive strength without 

posterior elements or the functional spinal unit with large population of patients for the 

clinical studies. The reason is that one of main burdens for generating vertebral FE 



 

 

model based on CT is the segmentation process. The removal of posterior elements 

from the ROI makes the process of the segmentation much easier. However, our results 

might address the limitations of the current approach in that, the FE model should 

incorporate the posterior elements and IVD as well as the loading conditions. 



 

 

This chapter introduces a new patient-specific FE model of the Disc-Vertebra-Disc unit 

(DVD) that incorporates the vertebra and adjacent intervertebral discs. The DVD FE 

model was adapted, for clinical research, from the FSU FE model described in Chapters 4 

and 5. The underpinning premise in the design of this model was that vertebral strength 

and load distribution, via the vertebral endplates, is dependent on the properties of the 

IVD. A case-control study was conducted to investigate the sensitivity and specificity of 

the DVD FE model by comparison between the predicted strengths for patients with 

fractures and patients without fractures in order to investigate the discrimination power 

of the FE model. 

 

Fractures that result from osteoporosis are a major cause of pain, disability and death. 

There are over 200,000 fractures each year in the UK with an estimated cost to the NHS 

of £1.7 billion. As both clinical and sub-clinical vertebral fractures are associated with 

increased mortality and morbidity (Poole and Compston, 2006, Kado et al., 1999). It is 

essential that patients with osteoporosis and secondary fractures are investigated and 

treated effectively. Areal Bone Mineral Density (BMD) assessed by dual-energy X-ray 

absorptiometry (DXA), is found to be low in vertebral fracture patients. However, BMD 

only explains 51-71 % of vertebral strength (Bjarnason et al., 1996, Wegrzyn et al., 2010) 

with about half of fragility fractures occurring in patients with BMD above the 



 

 

osteoporosis threshold (Roux et al., 2010, Siris et al., 2004). This is because bone 

strength is influenced by not only BMD, but also other factors including bone shape, 

bone size and bone structure. In recent years, patient-specific finite element (FE) models 

of the vertebral body based on quantitative computed tomography (QCT) have been 

used to estimate vertebral strength and assess fracture risk. Finite element analysis (FEA) 

integrates all of the available data (obtained from both measurement and imaging 

techniques), on bone density, bone geometry, microarchitecture and the material 

properties of bone with assessments of external forces and loading using patient-

specific in vivo loads. These factors are used to calculate the stress and strain in the 

bone, from which bone strength can then be determined. Finite element analysis 

therefore provides an opportunity to assess bone strength accurately, and non-

invasively. The majority of previous patient-specific FE models described in the literature 

do not include the IVD and, furthermore, an isolated vertebral body is used. However, 

vertebral strength and load distribution on the vertebra via endplates depends on the 

condition of the IVD. For this reason, a new patient-specific FE model of the Disc-

Vertebra-Disc unit (DVD), based on CT was developed. This incorporates the vertebra 

and adjacent intervertebral discs. To investigate the power of discrimination power of 

this it was necessary to conduct a case-controlled study to investigate the sensitivity and 

specificity of the CT-based FEM by comparing the predicted strengths between patients 

with fractures and patients without fractures (Bessho et al., 2009).  

The purpose of the work described in this chapter was to investigate whether vertebral 

strength derived from the DVD FE models could discriminate between women with and 

without vertebral fracture using data from an existing case-control study QCT scans.  

 

The original clinical study for the data which used in this chapter was designed to 

investigate into the relationship between serum oestradiol and other hormones, and the 

risk of osteoporotic vertebral fracture using novel imaging technology and measurement 

of biochemical markers. The clinical study was approved by the South Yorkshire 



 

 

Research Ethics Committee (REC Ref No. 11/H1310/2). The study was carried out by the 

principal investigator Dr. Miguel Debono, a clinical research fellow at the University of 

Sheffield, 

This cross sectional case-control study included 81 postmenopausal women (age 59-82) 

in 3 groups: a case group (n=18) with osteopenia/osteoporosis (total hip or vertebral 

BMD T-score < -1) and prevalent vertebral fracture, an age- and BMD-matched control 

group (n=29), and an age-matched non-osteopenia/osteoporosis control group (n=34).  

The two control groups were combined to form a single control group for statistical 

analysis. Several scans for spine could not be obtained (2 in case group, 6 in control 

group). Basic information for the study population is summarised in Table 6.1. 

 

Table 6.1: Basic information for the study population 

 Case group 

(N= 16/18) 

Control group 

(N= 57/63) 

Age (years) 71 ± 6.04 70 ± 5.92 

Weight (kg) 65.52 ± 8.92 74.94 ± 17.39 

Height (cm) 158.51 ± 5.01 160.07 ± 14.06 

DXA   
   Hip BMC 28.45 ± 4.52 31.49 ± 5.25 

   Hip aBMD (g/cm2) 0.79 ± 0.11 0.89 ± 0.12 

   Lumbar spine BMC 41.27 ± 8.97 53.60 ± 13.26 

   Lumbar spine aBMD (g/cm
2
) 0.80 ± 0.10 0.95 ± 0.15 

QCT   
   vBMD at L2 (mg HA/cm3) 79.77 ± 22.28 108.60 ± 26.43 

* Values represent the mean ±SD. 

 

BMD was acquired for the lumbar spine in both the posterior-anterior and lateral 

projections and for right hip in the posterior-anterior (PA) projection using a Hologic 

Discovery A densitometer (Hologic Inc., Bedford, MA, USA). Mean areal BMD (g/cm2) 

was calculated for vertebrae L1 to L4 and for the total hip region. As spinal BMD cannot 

be measured reliably in fractured vertebrae, for analysis of BMD, the study participants 

were required to have a minimum of two un-fractured lumbar vertebrae; participants 



 

 

with fractures of all lumbar vertebrae were excluded from the study. For this reason a 

lumbar spine BMD scan was acquired first to ensure that the participant was eligible for 

the study. If the right hip had been fractured or replaced, the left hip was imaged. 

 

DXA-based VFA of the thoracolumbar spine was conducted using the Hologic Discovery 

A device (Hologic Inc., Bedford, MA, USA). This produces high definition images of 

vertebrae T4 to L4 in both the PA and lateral projections. Spinal radiography remains the 

standard for diagnosis of vertebral fracture, but VFA confers much lower doses of 

ionising radiation. Vertebral fracture assessment (VFA) is a useful tool for identifying 

existing and new vertebral fractures (Ferrar et al., 2008). The images were read by 

technicians trained using an algorithm-based qualitative method for the identification of 

vertebral fractures. Images that exhibited definite or possible evidence of vertebral 

fracture were reviewed by a clinician. Any fractures identified were confirmed by 

conventional radiography. This ruled out the possibility of abnormal appearance due to 

causes other than osteoporotic fracture.  

 

The right hip and lumbar spine were scanned with a clinical QCT machine (LightSpeed 

VCT, GE Medical Systems, 120kV, 60 mAs/slice, 0.9375 x 0.9375 x 0.625 mm voxel size), 

in the Diagnostic Imaging Department, Northern General Hospital, Sheffield. The left hip 

was measured if the patient had a fractured or a prosthetic in the right hip. Scans were 

acquired using a study-specific operating procedure. Quantitative computed 

tomography enables the acquisition of 64 slices, 0.625mm thick from which the 

assessment of geometric and compartmental properties of bone can be made. These 

measurements were used to assess volumetric cortical and trabecular BMD and strength 

of the vertebra and proximal femur.  A solid calibration phantom (Mindways, Mindways, 

San Francisco, CA) was used to calibrate Hounsfield unit (HU) values with bone mineral 

density. 

 



 

 

A new patient-specific FE model of the Disc-Vertebra-Disc unit (DVD) was developed 

incorporating the vertebra and adjacent two intervertebral discs. In general, QCT scans 

of the lumbar 1 to lumbar 3 (L1-L3) in clinical research do not include the lumbar 1 and 

lumbar 3 completely, so only the lumbar 2 and its adjacent IVDs can be generated fully 

into FE models. Therefore, for using clinical research scans, the DVD FE model is 

proposed in this Chapter. The FE model still takes account of the effects IVDs on loading 

transfer to the vertebra. The model was generated from the L2 vertebral component of 

L1 to L3 QCT scans. Once again, SpineVox-Pro was used to generate patient-specific 

models using the procedure illustrated in Figure 6.1. 

The procedure used to generate the DVE FE model is almost the same as that for the 

FSU FE model (Chapter 4.2.4), except in this case two IVD are included in the FE model. 

The procedure is described here briefly. The CT data were calibrated from Hounsfield 

units to hydroxyapatite equivalent density using the phantom. The converted CT images 

were segmented semi-automatically to extract the vertebra and intervertebral disc (IVD). 

The IVD masks were generated from the information of the gap from the frontal and 

sagittal plane of QCT images. The NP was assumed to be an elliptic cylinder occupying 45% 

of the IVD volume. It was assumed to be placed on the centre of the IVD, even though 

the position of the NP within the disc varies regionally. The extracted images were 

interpolated to achieve the desired resolution of 1.2 x 1.2 x 1.2 mm3 and rotated if 

necessary to a standard orientation. The images were directly converted to a finite 

element model with each voxel being converted into an 8-node hexahedral element 

(Element type SOLID185 in ANSYS). 



 

 

 

Figure 6.1: SpineVox-Pro, procedure to generate the DVD FE model 

 



 

 

Isotropic, elastic-perfectly plastic material properties were considered for the vertebra. 

To assign material properties for the vertebra, empirical relationships between 

volumetric bone density and bone material properties were used to determine the 

elastic modulus 𝐸 and compressive yield stress limit 𝜎𝑦𝑐 for the vertebra as before. The 

original volumetric BMD values were divided into 100 intervals to limit the number of 

materials in the FE model. The ultimate stress limit 𝜎𝑢𝑐  and yield strain limit 𝜀𝑦 and 

ultimate strain limit 𝜀𝑢  of the vertebra were assigned according to the literature 

(Morgan and Keaveny, 2001, Kopperdahl et al., 2002, Crawford et al., 2003a, Morgan et 

al., 2003). 

 

 

Figure 6.2: Three different types of material properties are assigned for the IVD area of the 

subject-specific finite element model of DVD unit: DVD 1) simple linear elastic cement for both the 

nucleus pulposus (NP) and annulus fibrosus (AF); DVD 2) a linear elastic material property for the 

NP and ground substance of the matrix of the annulus with 4 embedded fibre layers in the AF; 

DVD 3) a hyper elastic material property for both the NP and ground substance of the annulus 

with 4 fibre layers embedded in the AF. The embedded fibres were orientated in alternating layers, 

30° and 150° from the horizontal axis. 

 

 



 

 

For comparison purposes, three different types of material properties were assigned to 

the IVD area as shown in Figure 6.2, which resulted in 3 different DVD FE models 

labelled as: DVD 1, DVD 2, DVD 3. The first material chosen was one that is often used in 

research into vertebral strength this was used previously in the vertebral body FE model 

without the IVD. The DVD 1 used simple linear elastic cement for both the nucleus 

pulposus (NP) and annulus fibrosus (AF). For second and third IVD material models, two 

representative material properties for the FSU FE models in the spinal research were 

chosen: DVD 2) a linear elastic material property for the NP and ground substance of the 

matrix of the annulus with 4 embedded fibre layers in the AF; DVD 3) a hyper elastic 

material property for both the NP and ground substance of the annulus with 4 fibre 

layers embedded in the AF (Wang et al., 1997, Schmidt et al., 2006, Strange et al., 2010). 

The embedded fibres were orientated in alternating layers, 30° and 150° from the 

horizontal axis. 

The mechanical properties of the dental cement used for the padding were obtained 

from the manufacturer’s manual (𝐸 = 2000 𝑀𝑃𝑎, 𝜈 = 0.3; Ultrahard Die Stone ISO-

Type IV, Kerr) as discussed in the previous study described in Chapter 4.  The material 

properties of vertebra and IVD used are summarised in Tables 6.2 and 6.3. 

 

Table 6.2: Material properties (Vertebra) 

Component Material properties 
 

Vertebra 𝐸 (𝑀𝑃𝑎) = −34.7 + 3230𝜌𝑄𝐶𝑇 (𝑔/𝑐𝑚
3)  

 𝜈 = 0.381  

 𝜎𝑦𝑐  (𝑀𝑃𝑎) = −0.75 + 24.9𝜌𝑄𝐶𝑇 (𝑔/𝑐𝑚
3)   

 𝜎𝑢𝑐 (𝑀𝑃𝑎) = 1.2 ∗ 𝜎𝑦 (𝑀𝑃𝑎)   

 𝜀𝑦 = 0.0078  

 𝜀𝑢 = 0.145  

Padding 𝐸 = 2000 𝑀𝑃𝑎 𝜈 = 0.3 

  

 



 

 

Table 6.3: Material properties (IVD) 

Part 
 

Material properties 
 

DVD 1 Cement Elastic 𝐸 = 3000 𝑀𝑃𝑎 ν = 0.3 

DVD 2 

Nucleus pulposus1 Elastic 𝐸 = 2 𝑀𝑃𝑎 ν = 0.499 

Annulus ground 

substance1 Elastic 𝐸 = 8 𝑀𝑃𝑎 ν = 0.4 

Annulus fibrosus
2
 

 
Elastic 

𝐸𝐿1𝐿2 = 500 𝑀𝑃𝑎 

𝐸𝐿3𝐿4 = 485 𝑀𝑃𝑎 

𝐸𝐿5𝐿6 = 420 𝑀𝑃𝑎 

𝐸𝐿7𝐿8 = 360 𝑀𝑃𝑎 

ν = 0.3 

DVD 3 

Nucleus pulposus3 Hyperelastic 𝐶1 = 0.12 
 

 
Mooney-Rivlin 𝐶2 = 0.03 

 

  
𝐷1 = 0.0667 

 

Annulus ground 

substance3 Hyperelastic 𝐶1 = 0.56 
 

 
Mooney-Rivlin 𝐶2 = 0.14 

 

  
𝐷1 = 0.143 

 

Annulus Fibrosus
2
 

(REINF265) 
Elastic 

𝐸𝐿1𝐿2 = 500 𝑀𝑃𝑎 

𝐸𝐿3𝐿4 = 485 𝑀𝑃𝑎 

𝐸𝐿5𝐿6 = 420 𝑀𝑃𝑎 

𝐸𝐿7𝐿8 = 360 𝑀𝑃𝑎 

ν = 0.3 

* 1/ Wang et al., 1997, 2/ Strange et al., 2010, 3/ Schmidt et al., 2006 

* L1 to L8: represents the number of fibre layer embedded in the AF 

 

For the hyperelastic model (DVD 3), the fluid-like behaviour of the annulus ground 

substance and NP was simulated using an in incompressible, hyper-elastic, two 

parameter Mooney-Rivlin (𝐶1, 𝐶2) formulated with the following strain energy function 

W: 

𝑊 = 𝐶1(𝐼1 − 3) + 𝐶2(𝐼2 − 3) +
1

𝑑
(𝐽 − 1)2 (6.1) 

 

Where, 



 

 

𝐶1, 𝐶2 ∶ Material constants characterizing the deviatoric deformation of the material 

𝐼1, 𝐼2 ∶ First/second invariants of the deviatoric strain tensor 

𝑑 = 2/𝐾 : Material incompressibility parameter 

𝐽 = 𝑉/𝑉0 : Local volume ratio 

𝐾 ∶ Initial bulk modulus of the material 

 

A simple pure compression condition was simulated with the inferior surface of the 

lower padding constrained in all degrees of freedom. Three millimetre distributed 

displacement boundary conditions were applied on the superior surface of the upper 

padding. The FE models were then solved using ANSYS (ANSYS Inc., Canonsburg, PA, USA) 

in batch mode of the SpineVox-Pro. Nonlinear analysis was performed using the 

Newton-Rahpson method with a postyield modulus of 0.05 𝑀𝑃𝑎 (Bayraktar et al., 2004, 

Reilly and Burstein, 1975). A 0.2% offset method in the load-displacement curve was 

chosen to define vertebral strength. 

 

Statistical analysis was carried out using STATA11 (StataCorp LP., TX, USA). The 2 control 

groups were combined to form a single control group for statistical analysis. Group 

means and standard deviations were calculated for the case and control groups.  

Differences in the estimated strength from the total study population were also 

expressed in absolute values scaled to the SD of the total study population. The odds 

ratio (OR) for vertebral fracture for 1 SD decrease in covariates was derived from logistic 

regression, and the area under the curve (AUC) was obtained from analysis of receiver 

operating characteristics.  

 



 

 

Compared to the controls, the fracture cases had significantly (p < 0.0001) lower 

vertebral BMD (0.79 ± 0.11 v. 0.89 ± 0.12 g/cm2), volumetric BMD (0.08 ± 0.02 v. 0.11 ± 

0.03 g/cm3) and FE-strength (1405.06 ± 90 v. 2155.74 ± 88 N for DVD 1, 1231.25 ± 79 v. 

1801.26 ± 62 N for DVD 2, 1206.19 ± 78 v. 1694.37 ± 54 N for DVD 3).  

Table 6.4 summarises the FE strength results together with the basic information for the 

study population. 

 

Table 6.4: FE strength results of the case group and control group 

 Case Group 

(N= 16) 

Control Group 

(N= 57) 

SD score 

(Case) 

SD score 
(Control) 

Age (years) 71 ± 6.04 70 ± 5.92 0.12 -0.03 

Weight (kg) †65.52 ± 8.92 †74.94 ± 17.39 -0.45 0.13 

Height (cm) 158.51 ± 5.01 160.07 ± 14.06 -0.10 0.03 

DXA     
   Hip BMC 28.45 ± 4.52 31.49 ± 5.25 -0.45 0.13 

   Hip aBMD (g/cm2) 0.79 ± 0.11 0.89 ± 0.12 -0.59 0.17 

   Lumbar spine BMC 41.27 ± 8.97 53.60 ± 13.26 -0.72 0.20 

   Lumbar spine aBMD 

(g/cm2) 

0.80 ± 0.10 0.95 ± 0.15 -0.77 0.22 

QCT     
   vBMD at L2 (mg HA/cm3) 79.77 ± 22.28 108.60 ± 26.43 -0.80 0.22 

FE-strength DVD 1 1405.06±360.76 2155.74±665.05 -0.86 0.24 

FE-strength DVD 2 1231.25±314.46 1801.26±468.15 -0.89 0.25 

FE-strength DVD 3 1206.19±311.53 1694.37±408.17 -0.87 0.24 

* Values represent the mean ±SD. 

†p = 0.003 

 

Logistic regression analysis showed that FE-strength was significantly (P < 0.0001) 

associated with vertebral fracture, and the odds ratios (ORs) for vertebral fracture (95% 

CI) being 12.2 (3.0-49.2) for DVD 1, 8.35 (2.6-26.8) for DVD 2, 6.9 (2.4-20.3) for DVD 3, as 

was BMD 3.7 (1.6-8.5) and volumetric BMD 4.8 (1.9-12.4) as shown in Table 6.5. After 

adjustment for BMD, the ORs of FE-strength were still significant (P < 0.05): 11.4 (2.4-

53.9) for DVD 1, 6.7 (2.0-23.3) for DVD 2 and 5.3 (1.6-17.0) for DVD 3. 



 

 

Table 6.5: Odds ratio per SD decreases in variables 

Variables Odds ratio 95% CI P value 

Total spine aBMD  3.72 (1.62-8.53) 0.002 

L2 vBMD  4.85 (1.89-12.45) 0.001 

FE-strength DVD 1  12.22 (3.03-49.24) 0.000 

FE-strength DVD 2  8.35 (2.60-26.84) 0.000 

FE-strength DVD 3  6.94 (2.37-20.34) 0.000 

 

The AUC (95% CI) for FE-strength was 0.86 (0.77-0.96) for DVD 1, 0.87 (0.78-0.95) for 

DVD 2, 0.85 (0.76-0.95) for DVD 3, higher but not significantly higher than that for BMD 

(0.79).  

In a model where we added FE strength to BMD, AUC increased to 0.89 (0.80-0.97) for 

DVD 1, 0.89 (0.81-0.96) for DVD 2, and 0.87 (0.78-0.96) for DVD 3 as shown in Figure 6.3. 

The AUCs for DVD 1 and DVD 2 were significantly (p<0.05) larger than that for BMD 

alone. 

 

 

Figure 6.3: AUC curve 



 

 

The aim of the study described in this chapter was to investigate whether vertebral 

strength derived from the DVD FE model can discriminate between women with and 

without vertebral fracture. FE strength from the developed DVD FE model was able to 

discriminate between women with and without vertebral fracture according to the ORs 

(3.72 for aBMD; 12.22 for DVD 1; 8.35 for DVD 2; 6.94 for DVD 3).  

Some studies of the discrimination power of aBMD by DXA and vBMD by QCT have been 

published. Volumetric BMD by QCT generally has been found to have superior 

discriminatory power to DXA. Yu et al. (1995) reported that QCT trabecular BMD offered 

the best discrimination power between post-menopausal women with and without 

fractures according to the area under the ROC (0.81 for QCT; 0.72 for L-DXA; 0.65 for PA-

DXA), although low BMD by QCT and DXA is strongly associated with the prevalence of 

vertebral fracture (Yu et al., 1995). Gugliemlmi et al. (1999) also showed that QCT has 

stronger power according to odds ratios by age-adjusted logistic regression analysis (2.9 

for QCT; 1.5 for DXA) and some other groups support this conclusion (Guglielmi et al., 

1999, Duboeuf et al., 1995, Grampp et al., 1997). However, one study using DXA and 

QCT showed that the discrimination power of QCT is not significantly different to that of 

DXA (Lang et al., 2002).  

In addition, several studies have also been reported that investigate the power of 

fracture discrimination by the QCT-based FE models. QCT-based FE derived bone 

strength showed a better ability to discriminate between women with and without 

vertebral fractures than BMD by DXA according to AUC (0.8 for FE strength; 0.73 for 

aBMD by DXA; 0.79 vBMD by QCT) (Melton et al., 2007). Wang et al. (2012) investigated 

the discrimination power of QCT-based FE derived strength in men and reported that FE 

strength predicted by QCT-based FE models has better power than BMD with age-

adjusted hazard ratios (7.2 for FE strength; 3.2 for aBMD by DXA) (Wang et al., 2012).  

Imai et al. (2008) also showed that the predicted vertebral strength at L2 in the 

nonfracture group was greater than that in the fracture group (2489 ± 580 vs. 1764 ± 

588 p < 0.0001) (Imai et al., 2008). The work described here gave similar results to these 

studies. 



 

 

The majority of patient-specific FE models do not include an IVD and isolated vertebral 

bodies are also used in mechanical testing due to the ease of both the loading control 

and the calculation of vertebral stiffness. However, vertebral strength and the 

distribution of load on the vertebra via endplates depend on the condition of the IVD: i.e. 

whether the IVD is healthy or degenerated with changes in geometry and material 

properties. In this study, the patient-specific geometry of IVD was represented using 

information on the gap between vertebrae on the L1 to L3 QCT scan. For comparison of 

the stress and strain distribution in the vertebral body, three different types of material 

models for the IVD area were assigned for each patient. DVD 1 represents vertebra 

without the IVD, DVD 2 and DVD 3 represent vertebra with IVD. The first material (DVD 1) 

chosen was one that is often used in research into vertebral strength. This was used 

previously in the vertebral body FE model without the IVD. Therefore, simple linear 

elastic material property was considered for both the nucleus pulposus (NP) and annulus 

fibrosus (AF). For second and third material models, two representative material 

properties for the FSU FE models in the spinal research were chosen: a linear elastic 

material property for the NP and ground substance of the matrix of the annulus with 4 

embedded fibre layers in the AF (DVD 2); a hyper elastic material property for both the 

NP and ground substance of the annulus with 4 fibre layers embedded in the AF (DVD 3). 

The embedded fibres were orientated in alternating layers, 30° and 150° from the 

horizontal axis. Higher stiffness and vertebral FE strength was found in DVD 1 compared 

to DVD 2 and DVD 3. Figure 6.4 show the FE strength values from one patient data (VF 

3001) on each load-displacement curve (4070 N for DVD 1; 3335 N for DVD 2; 2972 N for 

DVD 3). The proportion of forces transferred to the endplate and deeper into the inner 

trabecular network may be lower than in a more realistic DVD representation, which 

gives a higher overall vertebral FE strength as shown in Figure 6.5.  

These results support previous research which found that the embedded cement disc 

model has a higher yield strength than the that of the DVDs models (Maquer et al., 

2013). Hussein et al. (2013) also showed similar results in ex vivo mechanical testing of 

rabbit thoracic vertebral bodies using digital volume correlation (Hussein et al., 2013). 

The technique quantified deformations throughout the vertebral body using the 

recorded micro CT scans at each loading step. Specimens that included an IVD showed 

lower stiffness and lower ultimate force and higher ultimate displacement under 

mechanical tests than the isolated vertebral body. 



 

 

 

 

Figure 6.4: FE strengths from one patient data (VF 3001) on each Load-displacement curve: DVD 1, 

DVD 2 and DVD 3 FE models  



 

 

 

 

Figure 6.5: Stress and strain plots from one patient data (VF 3001) 

 

Buckley et al. (2006) suggested that it might not be necessary to generate an IVD 

explicitly in order to predict vertebral compressive strength since the load distribution 

on the endplate had low impact on strength estimation (Buckley et al., 2006). However, 

this study indicated that the stress distribution on the endplates can affect predicted 

strength. It is important to note that the FE models were simulated with generic 

boundary conditions, so this was not a study that was representative of in vivo loading 

conditions nor was an experimental. For these reasons, direct interpretation of the 

results and comparison with the current work might not be appropriate. 

Again, some limitations of the current work should be noted. Even though the FE model 

used was generated based on patient-specific geometry, it was not able to reflect the 

difference in IVD material properties related to the specific IVD health status of each 

patient. Further images, for example MRI scans, are required to obtain patient-specific 

information for IVD, as only QCT scans were available in clinical studies. In addition, this 

study is limited to a small number of scans and a cross-sectional case-control design. A 

further longitudinal study with many more scans is required if the discriminative power 



 

 

of the model is to be determined. Furthermore, fracture-case patients had fractures at 

different levels of the spine which were not necessarily coincided with the FE modelled 

L2. These differences might affect the discrimination power.  

Despite these limitations, the main outcome is that it clearly shows that a patient-

specific DVD FE model was able to discriminate between women with and without 

vertebral fracture independent of aBMD by DXA by means of the predicted vertebral 

strength. Furthermore, this study indicates the importance of considering an IVD within 

the vertebral FE model in terms of predicting the vertebral strength and stress/strain 

distribution. The DVD FE model represents a patient-specific FE model that would 

provide a feasible method for clinical research application.  

 

 



 

 

This chapter presents a second clinical application of the patient-specific DVD FE model 

to investigate the effect of a two year period of teriparatide (TPTD) treatment on 

vertebral strength in postmenopausal women. 

 

The majority of treatments for osteoporosis act by the inhibition of bone resorption 

(anti-resorptive treatments). However, treatments which simulate bone formation 

(anabolic treatments) such as Parathyroid hormone (PTH 1-34: Teriparatide, Forsteo; 

PTH 1-84: intact PTH, Preotact) have been developed recently. These treatments have 

been shown to result in a decrease in fracture risk: vertebral fracture risk was reduced 

by 65 - 69% depending on dose (Neer et al., 2001, Greenspan et al., 2007). Teriparatide 

(PTH 1-34) is the only licensed anabolic therapy for osteoporosis in postmenopausal 

women in the UK. Several studies using bone turnover markers have shown that PTH 

increases bone formation that precedes bone resorption (Black et al., 2003, Chen et al., 

2005, Eastell et al., 2006, Bauer et al., 2006). Treatment effects are investigated using 

bone densitometric parameters: aBMD by DXA, vBMD by QCT. PTH increases spine BMD 

but not femoral neck BMD. In women with postmenopausal osteoporosis treated with 

teriparatide a mean increase in spine BMD of 6% at 6 months and 13% at 24 months was 

observed (Obermayer-Pietsch et al., 2008). However, the increase in aBMD by DXA is not 



 

 

sufficient to explain the reduction in fracture risk observed in response to the therapy. 

The increase of aBMD by DXA with TPTD treatment for the lumbar spine explains 30-41% 

of the vertebral fracture risk reduction and the remaining portion is associated with non-

BMD parameters (Chen et al., 2006). Imaging parameters determined with high-

resolution CT (HRCT) are used for monitoring the treatment effect on bone. One PTH 

study by HRCT reported an increase in trabecular bone volumetric BMD of 13% at 6 

months and showed that high resolution CT of the spine allowed the measurement of 

parameters of bone microstructure that increased by 16% at 6 months (Graeff et al., 

2007).  

Recently, studies have used the vertebral strength derived from a QCT-based vertebral 

body FE model to investigate the therapeutic effects on vertebral strength (Keaveny et 

al., 2007, Lewiecki, 2009, Imai et al., 2009, Graeff et al., 2009, Chevalier et al., 2010) and 

used the QCT femoral FE model to determine the effect on the femoral strength 

(Keaveny et al., 2008, Keaveny et al., 2011). This research showed that the FE estimated 

strength has a larger treatment effect relative to the baseline on bone than 

densitometric variables.  

The aim of this chapter is to use the patient-specific Disc-Vertebra-Disc unit (DVD) FE 

model to investigate the effect of teriparatide (TPTD) treatment on vertebral strength in 

postmenopausal women. The development and application of DVD FE model for clinical 

study has already been described in the previous chapter (The study of vertebral 

fracture discrimination in postmenopausal women).   

 

In this open-label, single centre study, postmenopausal women with osteoporosis (n=20, 

BMD T score < -2.5 at spine or hip) were treated with teriparatide (FORSTEO, 20 micro 

grams daily) for 104 weeks. The original clinical study was carried out by Dr. Richard 

Eastell, Professor of Bone metabolism, University of Sheffield. The clinical study was 

approved by the North West 2 Research Ethics Committee (REC Ref No. 10/H1005/59). 



 

 

The treatment under study (Forsteo) is licensed in the UK for the treatment of 

osteoporosis. In addition to the study drug, all subjects received a vitamin D3 load of 

100,000 IU at the start of the study and six-monthly thereafter. All subjects also received 

600mg of elemental calcium and 400 IU of vitamin D per day throughout the study. 

Table 7.1 details the treatments.  

The purpose of the original study was to develop a strategy for evaluating the 

effectiveness of teriparatide using biochemical markers of bone turnover and changes in 

BMD. At the time of writing this study is still on going and 4 patients will have their last 

visit by the end of January, 2015. 

 

Table 7.1: Treatment for patients 

IMP Dose Form and Strength Manufacturer, Name 

Teriparatide 
20 mcg subcutaneous 

injection once daily 

Eli Lilly and Company, 

Basingstoke, Hamps, 

Forsteo 

Non-IMP   

Cholecalciferol (Dekristol or 

equivalent) 

5 x 20,000 IU capsules at 

screening and six-monthly 

thereafter (see below for 

full details of dosing). 

Jenapharm Gmbh, 

Germany, Dekristol 

Calcium/Vitamin D (Adcal 

D3,or equivalent) 

Single chewable tablet 

containing 600mg calcium 

and 400IU Vitamin D3 once 

a day 

Prostraken Ltd, Galashiels, 

UK, Adcal D3 

 

*Timeline: Visit02: Baseline 1 (-28 ± 6days); Visit08: Week 26 (175 ± 7days); Visit10: 

Week 52 (364 ± 7days); Visit14: Week 104 or end of study visit (728 ± 7days) 

 

DXA was used to measure bone mineral density of the lumbar spine (L1 - L4) and total 

hip. Vertebral fracture assessment of the thoraco-lumbar spine was performed at the 

screening visit in those subjects with BMD T score of ≤-2.5 at the spine and/or hip and 

also at week 104 in those completing the study. If a participant withdraws early from the 



 

 

study they were asked to return for an end of study visit which include the DXA 

measurements that would have been obtained at week 104 if they had completed the 

study.  

 

Bone mineral density at the spine and hip were measured by DXA (Discovery, Hologic 

Inc.) and QCT (LightSpeed, GE Medical Systems) at baseline (weeks -1), 26, 52, and 104 

weeks. The QCT scanning parameters were 120kV, 60mAs/slice, 0.9375 x 0.9375 x 0.625 

mm voxel size. The characteristics of the participants in the biomechanical analysis by CT 

and DXA at each visit are as shown in Table 7.2. 

 

Table 7.2: Characteristics of participants in the biomechanical analysis CT and DXA at each visit 

  Baseline Week 26 Week 52 Week 104 

  -28 ± 6days 175 ± 7days 364 ± 7days 728 ± 7days 

Age (years) Years 64.40±15.35    

Weight Kg 63.82±8.43 63.45±8.22 63.18±8.70 64.25±11.14 

Height cm 161.13±4.52 161.08±4.64 161.20±4.78 161.70±3.32 

DXA      

   Hip aBMD g/cm
2
 0.76±0.08 0.76±0.08 0.77±0.08 0.79±0.10 

   spine aBMD(L1-L4) g/cm
2
 0.73±0.04 0.77±0.05 0.79±0.04 0.82±0.05 

QCT      

   vBMD (L1-L3) mg /cm
3
 86.13±16.99 95.77±19.74 103.91±20.04 99.82±21.84 

   vBMD at L2 mg /cm
3
 87.02±19.32 97.55±22.23 105.08±20.21 103.48±20.82 

* Values represent mean SD. 

 

A solid calibration phantom (Mindways, San Francisco, CA) was used to calibrate 

Hounsfield unit (HU) values to bone mineral density as before. L1 to L3 were used to 

generate DVD FE models of the L2 vertebra. 

 



 

 

The patient-specific FE model of the Disc-Vertebra-Disc unit (DVD), previously developed 

and described in Chapter 6, was used. The L2 part from L1 to L3 patient QCT scans were 

used to generate the DVD FE model. SpineVox-Pro was used to generate the FE models. 

The procedure used to generate the DVD FE model is identical to that described in 

Chapter 6.2.5 and illustrated in Figure 6.1: calibration, segmentation, visualisation, mesh 

generation, material properties assignment, boundary condition assignment, and 

fracture load definition. 

Of the 3 different types of material properties for the IVD area which were used in 

Chapter 6, only two types of material properties which actually took account into the 

IVD on the DVD FE models were considered in this chapter. These were: DVD 2 and DVD 

3.  

 

Statistical analysis was carried out using STATA11 (StataCorp LP., TX, USA) as before.  

Group means and standard deviations were calculated for all visits and percentage 

changes from baseline were found on a group basis. Changes in the estimated strength 

from baseline were also expressed in absolute values scaled to the SD of the baseline 

visit. This method allows the comparison of differently scaled variables. Significance of 

the changes from baseline was assessed by a one sample, two-sided t-test.  

 

Table 7.3 summarises the mean absolute baseline values for densitometric data and 

mean percentage change from baseline at each visit throughout the FORSTEO study. In 

addition, the difference from baseline at each visit was also shown in standard deviation 

units using the mean and SD of the baseline. Some data could not be obtained for 

different reasons: image  data corruption (F18 at baseline, F05 at 6 months, F14 at 12 

months), patient withdraw (F09 at 6 months, F02 at 12 months, F01 and F13 at 24 



 

 

months), and scheduled at the analysis point (F05, F14-F16) as shown in Tables 7.4 and 

7.5. 

According to the densitometric results the treatment had positive effects on vertebral 

density. The values of areal BMD by DXA and vBMD by QCT for the spine showed 

increases from the baseline at each visit. However, whilst the vBMD by QCT increased 

until 12 months, it was found to have a slight decrease at 24 months. 

 

Table 7.3: Absolute baseline values of densitometric data and mean percentage change from 

baseline at each visit of the FORSTEO study 

   Percent change (%) SD score 

  Baseline Week 

26 

Week 

52 

Week 

104 

Week 

26 

Week 

52 

Week 

104 

DXA         

   Hip aBMD g/cm
2
 0.76±0.08 -0.37 -0.06 1.55 -0.08 -0.04 0.12 

   L1-L4 aBMD g/cm
2
 0.73±0.04 5.21 7.59 10.87 1.10 1.59 2.28 

QCT         

   L1-L3 vBMD mg/cm
3
 86.13±16.99 11.94 22.73 21.91 0.59 1.11 1.04 

   vBMD at L2 mg/cm
3
 87.02±19.32 13.01 22.31 22.42 0.30 0.94 0.89 

 

Tables 7.4 and 7.5 present the results of the DVD FE model with materials DVD2 and 

DVD 3, respectively. The treatments also had a positive effect on vertebral strength from 

the both DVD FE models. The result shows that the vertebral strength increased from 

baseline at 6, 12, 24 months. Strength increased rapidly until 12 months of treatment, 

increasing by 30 % (DVD 2) and 27 % (DVD 3) at 12 months and then stabilising as shown 

Figure 7.1.  

Although the strength values obtained with the two IVD material models were slightly 

different, the overall predicted differences with respect to the treatment were not 

significant. 

 

 

 



 

 

 

 

 

Table 7.4: FE-derived strength_DVD2 

 Baseline1 Week 26 Week 52 Week 104 

 -28 ± 6days 175 ± 7days 364 ± 7days 728 ± 7days 

F01 1001 977 1221 Withdrawn 

F02 1339 1305 Withdrawn Withdrawn 

F03 1066 1536 1805 1681 

F04 1255 2253 2107 2211 

F05 1503 Invalid scan 1758 Scheduled 

F06 1094 930 1307 1095 

F07 1645 1445 2081 1546 

F08 1108 1279 1380 1280 

F09 1145 Withdrawn Withdrawn Withdrawn 

F10 1375 1794 1935 2169 

F11 1902 2147 2473 2441 

F12 1362 1526 1560 1651 

F13 1076 1594 1902 Withdrawn 

F14 1801 2072 Invalid scan Scheduled 

F15 1426 1807 2029 Scheduled 

F16 1190 1703 1804 Scheduled 

F17 1892 1913 1828 1843 

F18 Invalid scan 1307 1499 1476 

F19 1285 1703 1722 2192 

F20 1396 1614 1609 1933 

Mean 1361.11 ± 279.01 1605.83 ± 367.36 1765.88 ± 319.71 1793.17 ± 411.41 

SE 64.01 86.59 77.54 118.77 

PC (%) 0.00 20.27 34.28 32.48 

SD Score - 1.03 1.73 1.69 

Count 19 18 17 12 

* Values represent the mean ±SD. 

 

 

 

 



 

 

 

 

 

 

Table 7.5: FE-derived strength_DVD3 

 Baseline1 Week 26 Week 52 Week 104 

 -28 ± 6days 175 ± 7days 364 ± 7days 728 ± 7days 

F01 981 946 1175 Withdrawn 

F02 1183 1287 Withdrawn Withdrawn 

F03 1084 1507 1753 1667 

F04 1257 2171 2002 2114 

F05 1421 Invalid scan 1665 Scheduled 

F06 1012 933 1290 1070 

F07 1566 1401 1862 1530 

F08 1099 1273 1350 1263 

F09 1088 Withdrawn Withdrawn Withdrawn 

F10 1334 1415 1830 1974 

F11 1769 1953 2271 2049 

F12 1360 1525 1568 1618 

F13 1079 1568 1804 Withdrawn 

F14 1684 1992 Invalid scan Scheduled 

F15 1340 1657 1742 Scheduled 

F16 1422 1570 1741 Scheduled 

F17 1806 1775 1730 1730 

F18 Invalid scan 1289 1441 1431 

F19 1166 1583 1575 2034 

F20 1391 1590 1561 1892 

Mean 1318.00±250.69 1540.06±326.67 1668.24±267.87 1697.67±332.27 

SE 57.51 77.00 64.97 95.92 

PC (%) 0.00 18.27 29.42 29.94 

SD score - 0.91 1.45 1.49 

Count 19 18 17 12 

* Values represent the mean ±SD. 

 

 

 

 



 

 

 

Figure 7.1: Mean FE strength and mean percentage change from baseline at each visit (DVD 2 and 

DVD 3) 

 

 

Figure 7.2 shows the individual percentage changes of the FE strength from baseline at 

each visit in model with DVD 3 material. Most of the patients show positive treatment 

effect except the F07 and F17 at the final visit, although the treatment effect is varied 

with the patient at each visit (there were some negative values at week 26). Two 

patients showed gradual increasing of the FE strength during the treatment period (F10 

and F12). 

 

 



 

 

 

 

 

 

 

Figure 7.2: Individual percentage changes of the FE strength from baseline at each visit 

 

Figures 7.3 and 7.4 illustrated a load-displacement curve and strain energy intensity plot 

of the F12 DVD FE model using DVD 3 material properties at each visit. 

 

 

 



 

 

 

Figure 7.3: Typical load-displacement at all four visits for one patient (F12: DVD 3) 

 

 

 

Figure 7.4: Typical strain energy intensity plot at all four visits for one patient (F12: DVD 3) 



 

 

The aim of this study was to investigate the effect of teriparatide treatment on vertebral 

strength in postmenopausal women after 6, 12 and 24 months using DVD FE models. 

The study indicates that the treatment increased not only the densitometric variables 

but also the vertebral strength as predicted by DVD FE model. At the 2 year follow up 

study, the increases at the end of visit were 10% for DXA spine aBMD, 14% for QCT 

vBMD (L1-L3), and 16% for QCT vBMD (L2). FE predicted strength went up by 

approximately 30% for DVD 3 as shown in Figure 7.5.  

 

 

Figure 7.5: Mean percentage change from baseline and SD score: FE strength, QCT vBMD (L1-L3), 
QCT vBMD (L2), DXA hip aBMD, DXA spine aBMD (L1-L4) 

 



 

 

The top graph in Figure 7.5 indicated that the FE strength has a larger treatment effect 

relative to the baseline value than densitometric variables. However, it does not mean 

the FE strength is the most sensitive indicator. According to the SD score in Figure 7.5 

(bottom), this study shows that the aBMD (L1-L4) is the most sensitive on the TPTD 

treatment among the densitometric variables and the FE strength. 

These results show good agreement with studies carried out by other groups in recent 

years (Keaveny et al., 2007, Graeff et al., 2009). Keaveny et al. (2007) compared effects 

of treatment with TPTD and Alendronate (ALN) using L3 vertebral body FE models in a 

clinical trial. The study indicated that the median percentage change of FE-predicted 

strength increase for TPTD was greater than for ALN, 21.1%, and 3.7% at 18 months. 

Graeff et al. (2009) also investigated the effect of teriparatide treatment on vertebral 

body strength, but in this study a T12 High Resolution CT scan was used to generate 

vertebral body FE models. The FE predicted strength increased by 28% at 24 months. 

These two studies did not consider the IVD in the FE model.  

The unique feature of the current study is that proposed DVD FE model takes account of 

the effect of IVD on the vertebra.   

A recent study used a vertebral body FE model to investigate combination treatment 

effects, namely: ALN + TPTD and Risedronate + TPTD (Chevalier et al., 2010). Other 

studies have used QCT-based FE model of femur to investigate the effect of treatment 

on femoral strength (Keaveny et al., 2008, Keaveny et al., 2011). All these FE studies 

support the efficacy of QCT based FE models in the clinical studies of treatments efficacy. 

Whilst no prospective clinical studies have yet been carried out using a FE model based 

on QCT together with treatment for predicting vertebral fracture, some clinical case-

control studies that have used QCT based FE models have shown better fracture 

discrimination power for the spine (Melton et al., 2007, Wang et al., 2012). The previous 

chapter, Chapter 6, showed that the DVD FE model also had better discrimination power 

for vertebral fracture. 

Some limitations should be noted here. First, only compressive strength was considered 

even though the DVD FE model considered the IVD on the vertebra. The other loading 

condition such as bending through IVD may affect the vertebral strength. Graeff et al. 

(2009) showed the FE predicted strength in compression and bending were nearly 



 

 

identical changes with treatments although their model did not take into account the 

IVD. Second, the present study is not able to show whether the DVD FE model is a better 

predictor in treatment effect than other densitometric variables. The study only showed 

the vertebral strength based on the DVD FE model has a sensitive indicator of effect of 

treatment on the vertebra. Thirdly, the DVD FE model does not represent the state of 

the art, for example, the IVD FE model is not patient-specific and does not model the 

endplates separate, whereas the vertebral FE model uses only linear elastic material 

properties. 

In conclusion, the FE predicted strength has a larger treatment effect relative to the 

baseline value than densitometric variables. This supports the use of vertebral strength 

based on the DVD FE model as an additional tool for monitoring TPTD treatment effects 

on the vertebra in clinical trials.  

 

 



 

 

This study proposes the use of a patient-specific DVD FE model to investigate vertebral 

strength in clinical osteoporosis studies non-invasively. The final DVD FE model was 

developed through developing the full framework (SpineVox-Pro), generation and 

validation of the FSU FE model, comparison of the vertebral strength from the different 

types of FE model (VB, VB PE, and FSU FE model), and development of the DVD FE model 

and its clinical application.  

 

The most important outcomes of this work are as follows:  

1. Standardisation: SpineVox_Pro standardises the full framework for various 

vertebral FE model based on medical images. 

2. Validation of FSU FE model: the FSU FE models were well validated against 

experimental data on sixteen cadaveric FSU units. 

3. Novelty: the DVD FE models incorporated the state of the art FE modelling of 

the IVD and were evaluated successfully in clinical research studies (case-control 

study for vertebral fractures and clinical trials for two years TPTD treatment) 

 

 



 

 

To summarise the studies in this thesis, the strengths and limitations based on each 

chapter are highlighted below. In addition, future work is addressed based on these 

limitations and further applications.  

Chapter 3 SpineVox-Pro: Development of a framework for image processing and a 

subject-specific finite element model generation 

The SpineVox-pro provides a new framework to support a streamlined full workflow of 

generating a subject-specific FE model of vertebra(e) based on medical images. The 

framework has been implemented in MATLAB via single GUI. Whilst the individual 

algorithms used are not new, SpineVox-Pro has some novel characteristics. All steps in 

SpineVox-Pro workflow are operational in an automatic way without the need for user 

interaction except for refinement of the image segmentation. Automation maximises 

both consistency in the FE analysis among different patient scans and precision of repeat 

analysis of same scans. Consistency and precision are key considerations if the software 

is eventually to be used in the target application: for patient-specific fracture risk 

estimation. Using the framework in SpineVox-Pro, several different types of FE models 

were developed for estimating vertebral fracture strength. These were: the vertebral 

body alone, the single vertebra, the FSU, and the DVD FE models. From these, one 

model, the FSU FE model was validated against experiment in terms of predicting 

vertebral fracture load. In addition, a further development of the FSU model, the DVD FE 

model was applied for estimating the vertebral fracture load in a clinical study. The 

SpineVox_Pro framework is available for researchers in the Department for further 

development and for use. 

Whilst, the utility of SpineVox_Pro was demonstrated it does have some minor 

limitations and there are some aspects which can still be improved. 

Limitations: 

 Whilst SpineVox-Pro is designed to produce a mesh automatically from a clinical 

image datasets, the segmentation step requires a small amount of user-

interaction. Manual processing tools are provided for this purpose. This is an 

aspect which may introduce unwanted variability in the models. 



 

 

 Only voxel-mesh type is embedded in the MATLAB script of SpineVox_Pro: other 

types of mesh models can be implemented through an import/export step via 

other software, if required, but this increases process time. 

 SpineVox-pro is not suitable for the surface or contact analyses as the 

framework does not support a surface smoothing step 

 Finally, additional software is required for solving the FE models  

Chapter 4 Development and validation of a subject-specific finite element model of 

the functional spinal unit 

The subject-specific FSU FE model based on the QCT and MRI scans can be used to 

estimate the vertebral strength under forward bending following validation of the 

strength derived from the FSU FE model against experimental tests. Vertebral strength 

predicted by the FSU model based on von Mises stress/strain and Drucker-Prager stress 

showed strong correlation with experimental results among different six-yield criteria. 

The validated FSU FE model shows an excellent potential in terms of its use in future 

clinical studies to improve vertebral strength estimates for fracture risk assessment and 

monitoring the effects of treatment. 

Limitations: 

 Only linear analyses with linear elastic properties were carried out for vertebrae 

and IVD (NP and AF), because for consistency with the experiments a large 

forward bending condition was considered. This large angle makes the element 

fail easily, thus the model requires a more accurate assumption of the material 

law. This was beyond the scope of the current work. In general, the FSU FE 

model which takes account into the facet joints and ligaments requires 

nonlinear analysis as these components were generated with contact elements 

and cable elements, respectively. To avoid the need for complex analysis, in this 

validation study the facet joints and ligaments are ignored in the FSU FE model, 

but were not removed from the cadaveric FSUs during the experimental tests.   

 A good representation of the geometry of the patient-specific anatomy of IVD 

could be extracted from the corresponding MRI scans. Nevertheless, the signal 

information could not be used to obtain the important material properties of 

IVD in subject-specific way.  



 

 

 There is an obvious need for further experimental study to validate the 

estimated fracture location properly 

Chapter 5 Comparison of vertebral strengths derived from FE models of the vertebral 

body, vertebral body with posterior elements, and the FSU 

This study was based on the premise that vertebral strength obtained from a FE model 

of the vertebral body alone under pure compressive loading could not represent the 

strength of an individual vertebra during different loading conditions. Our hypothesis 

was that different FE models may influence the result of the FE analysis. FE models of 

the vertebrae that simulate loading under flexed postures may result in different 

strength estimates to those that simulate pure compression. Furthermore, the artificial 

removal of posterior elements and IVD in the model prevents load transfer through the 

IVD and facet joint to be represented.  

In terms of vertebral strength, that the mean FE strength (1850 N) from the FSU FE 

model under the forward bending condition could estimate most closely to the mean 

strength (2146N) from the in vitro test on FSU specimens. Although, all FE strengths are 

positively correlated with the experimental data and there is no significant difference 

statistically, several findings are should be addressed; the FE strengths under the pure 

compression are higher than those from the forward bending condition. The predicted 

fracture locations differ from the type of FE models as well as the yield criteria. Among 

them the VB PE FE model show the better prediction on the fracture locations compared 

with the experimental results (10 out 13).  

One of main burdens for generating vertebral FE model based on CT is the segmentation 

process. The removal of posterior elements from the ROI makes the process of the 

segmentation much easier. In this regards, the strength derived from the simple 

vertebral body FE model under the pure compression can still be used to estimate the 

vertebral compressive strength without posterior elements or the functional spinal unit 

with large population of patients for the clinical studies. However, our results might 

address the limitations of the current approach in that, the FE model should incorporate 

the posterior elements and IVD as well as the loading conditions. 

 



 

 

Limitations: 

 There was no consideration of the FSU FE model under pure compression due to 

lack of compatibility when using a voxel mesh for the contact analysis near the 

facet joints area under bending or torsion loading conditions.  

 In the absence of experimental validation data for the VB and VB PE FE model, 

the results from all the FE models were compared with experimental data 

obtained by generating a wedge fracture in a single vertebral body of a FSU 

rather than in a single vertebra alone.  

 

Chapter 6 Clinical application: vertebral fracture discrimination in postmenopausal 

women using a patient-specific finite element model of the disc-vertebra-disc unit 

A patient-specific FE model of the Disc-Vertebra-Disc unit (DVD) was proposed for use in 

clinical research studies. The study highlighted the importance of considering the 

influence of the IVD on the vertebra FE model in the prediction of vertebral strength and 

stress/strain distribution and clearly showed that vertebral strength derived from DVD 

FE model based on QCT images from in vivo clinical studies was able to discriminate 

between women with and without vertebral fracture independent of aBMD by DXA. 

Limitations: 

 The model is unable to reflect the IVD health status for each patient. Although 

this model is based on patient-specific geometry, routine clinical QCT scans are 

unable to provide data required for the development of patient-specific IVD 

material properties.  

 There is a large variation in the vertebral level which contains fracture (T4 – L4) 

in the fracture group. These differences might affect the discrimination power of 

the FE model. 

 

Chapter 7 Clinical application: impact of teriparatide on vertebral strength in 

postmenopausal women using a patient-specific finite element model of the disc-

vertebra-disc unit 



 

 

The study indicated that FE-predicted strength from the DVD FE model showed the 

highest response in mean percentage change from the baseline than that of the 

densitometric variables at the 2 year follow up study. The prediction of vertebral 

strength based on the DVD FE model could be an additional tool for monitoring TPTD 

treatment effect on the vertebra in clinical trials with the conventional densitometric 

variables. 

Limitations: 

 Only pure compressive loading condition was simulated. Other loading 

conditions such as forward bending and torsion through IVD may affect 

vertebral strength.  

 The DVD FE model requires further validation study against experimental tests 

under different loading conditions: pure compression, forward bending, and 

torsion. 

 Further longitudinal in vivo studies with many more scans are required to 

evaluate the FEA using the DVD FE model for fracture risk assessment and 

treatment monitoring. 

 

The uses of FE models in bone research are increasing with the concept of using a 

patient-specific FE model to provide a surrogate marker of bone fragility. For clinical 

research such as assessment of fracture risk and evaluation of treatment effects, the FE 

models still need refinement and further studies may be needed to refine our patient-

specific DVD FE model in SpineVox-Pro. 

 In this thesis, the image processing procedure required user interaction. 

Accurate semiautomatic (Kaminsky et al., 2004) and fully automatic 

segmentation methods (Kim and Kim, 2009) for three-dimensional lumbar spine 

structure would improve the current FE model.  

 Material properties for the vertebra in all the FE models of this thesis are based 

on the linear empirical relationship between elastic modulus - density proposed 

by Kopperdahl et al. (2002) for the elastic region. In addition, simply elastic 



 

 

perfectly plastic material law is considered for the post-yield region as illustrated 

in Figure 8.1 (E - elastic region; D - damage region; P - plastic region) (Fyhrie and 

Schaffler, 1994, Keaveny et al., 1999). The simplified assumption for the material 

law was not able to describe post-yield characteristics such as fracture modes 

and damage accumulation in detail. 

 

 

Figure 8.1: A typical load-displacement curve from compression testing of vertebra: (top) 

monotonic loading; (bottom) cyclic loading (figures from Fyhrie et al. 1994 and Keaveny et al. 

1999 with permission) 

 

There is a constitutive model, proposed by (Garcia et al., 2009), which includes 

the damage parameters based on the Zysset and Curnier theoretical model. The 



 

 

material model is based on trabecular anisotropy expressed by the fabric tensor 

as well as a generalised anisotropic form of Hooke’s law (Zysset and Curnier, 

1995, Zysset and Curnier, 1996). This material law could be adopted in further 

research. In addition, the use of high resolution scans such as HR-pQCT or micro-

CT have the potential to improve the trabecular characteristics in the FE model 

with, for example, the incorporation of the anisotropy of the trabecular network.  

 Larger clinical studies are required in order to evaluate the DVD FE model for 

fracture risk assessment and treatment monitoring for use with both men and 

women, for example Parathyroid Hormone and Alendronate for Osteoporosis 

(PaTH), Health Outcomes and Reduced Incidence with Zoledronic Acid Once 

Yearly- Pivotal Fracture Trial (HORIZON-PFT), or Osteoporotic Fractures in Men 

(MrOS) studies (UC, 2014). 

 



 

 

Material Properties of Vertebral body and Vertebra FE model in Literature 

Author Specimen Type 
Material 

model 
Trabecular 

Material 
model 

Cortical References 

Homminga et al. 2001 49 Cadaveric 
Vertebral body + 
artificial disc 

Elastic
1 

E = 0.366 ∙ Et ∙ 𝜌𝑎𝑝𝑝
1.7 

Et = 14 GPa 
ν = 0.3 

Elastic
1,2,3 

E = 0.366 ∙ Et ∙ 𝜌𝑎𝑝𝑝
1.7 

Et = 14 GPa 
ν = 0.3 

1 Homminga et al. 1998 
2 Mosekilde 1993 
3 Mosekilde 1998 

Crawford 2003a, 2004 
 
 

17 Cadaveric 
Vertebral body 
(T11-L4) 

Elastic
1 

 
Transverse 
isotropy

2,3 

𝐸𝑧 = −34.7 + 3230𝜌𝑄𝐶𝑇 

 
𝐸𝑥 = 𝐸𝑦 = 0.333𝐸𝑧 

𝜈𝑥𝑦
1 = 0.381 

𝜈𝑥𝑧
1 = 𝜈𝑦𝑧

1 = 0.104 

𝐺𝑥𝑧 = 𝐺𝑦𝑧 = 0.157𝐸𝑧 

𝐺𝑥𝑦 =
𝐸𝑥

2(1 + 𝜈𝑥𝑦)
= 0.121𝐸𝑧 

 

Elastic
1 

 
Same as Trabecular bone 
 
Voxel dimensions > typical cortical shell

4
 

(0.35mm)
 

1 Kopperdahl et al. 2002 
2 Moskilde et al. 1987 
3 Ulrich et al. 1999 
4 Silva et al. 1994 
 

Keaveny et al. 2007 Clinical Trials: 
Vertebral body L3 at 
baseline, 6, and 8 
months 

Elastic
1 

 
Transverse 
isotropy

2,3
  

 
 
 
 
 
Side-artifact

5,6
 

𝐸𝑧 = −34.7 + 3230𝜌𝑄𝐶𝑇 

 
𝐸𝑥 = 𝐸𝑦 = 0.333𝐸𝑧 

𝜈𝑥𝑦
1 = 0.381 

𝜈𝑥𝑧
1 = 𝜈𝑦𝑧

1 = 0.104 

𝐺𝑥𝑧 = 𝐺𝑦𝑧 = 0.157𝐸𝑧 

𝐺𝑥𝑦 =
𝐸𝑥

2(1 + 𝜈𝑥𝑦)
= 0.121𝐸𝑧 

𝜎𝑢 = (1.2 ∗ 𝜎𝑦) ∗ 1.28 

 

Elastic
1 

 
 
 
 
 

Same as Trabecular bone 
 
Voxel dimensions > typical cortical shell

4
 

(0.35mm) 
 
 

1 Kopperdahl et al. 2002 
2 Moskilde et al. 1987 
3 Ulrich et al. 1999 
4 Silva et al. 1994 
5 Crawford et al. 2003 
6 Homminga et al. 2001 

Melton et al. 2007 
 

Clinical Trials: 
74 Vertebral body L3 

 Same as above  Same as above  

Lewiecki et al. 2009 Clinical Trials: 
86 Vertebral body 

 Same as above  Same as above  

Buckley et al. 2007 44 Cadaveric  Same as above  Same as above  



 

 

Vertebral body 
(T1-L5) 

Liebschner et al. 2003 23 Cadaveric 
Vertebral body 
(T12-L3) 
 
With explicit Cortical 
shell 
 

Elastic
1
 

 
Anistropy

2 

 

𝐸𝑧 = −81.9 + 3850𝜌𝑄𝐶𝑇 

 
𝐸𝑥 = 0.42𝐸𝑧 
𝐸𝑦 = 0.287𝐸𝑧 

 
𝜈𝑥𝑦

1 = 0.226 

𝜈𝑥𝑧
1 = 0.399 

𝜈𝑦𝑧
1 = 0.381 

𝐺𝑥𝑧 = 0.131𝐸𝑧 
𝐺𝑦𝑧 = 0.183𝐸𝑧 

𝐺𝑥𝑦 = 0.153𝐸𝑧 

Elastic-
isotropic 

Cortical shell th=0.35mm 
ν = 0.3 

1 Kopperdahl et al. 2002 
2 Ulrich et al. 1999 

Imai et al. 2006 12 Cadaveric 
Vertebral body 
(T11-L1) 
 

Bilinear 
elastoplastic 

Ref. 1 
 
Hardeningc = 0.05 

 Cortical shell th=0.4mm 
 
Ec = 10 GPa 
ν = 0.4 
 
 
 

1 Keyak et al. 1998 
 

Imai et al. 2009 Clinical Trials: 
37 Vertebral body L2 

 Same as above  Same as above  

Mirzaei et al. 2009 13 Cadaveric 
Vertebral body 

Elastic
1 

 
Transverse 
isotropy

2
 

 
 
 
 
 
 
 
 
 
 
Ref

3,4 

𝐸𝑧 = −34.7 + 3230𝜌𝑄𝐶𝑇 

𝐸𝑧 = 2980 ∗ 𝜌𝑄𝐶𝑇
1.05 

 
𝐸𝑥 = 𝐸𝑦 = 0.333𝐸𝑧 

𝜈𝑥𝑦
1 = 0.381 

𝜈𝑥𝑧
1 = 𝜈𝑦𝑧

1 = 0.104 

𝐺𝑥𝑧 = 𝐺𝑦𝑧 = 0.157𝐸𝑧 

𝐺𝑥𝑦 =
𝐸𝑥

2(1 + 𝜈𝑥𝑦)
= 0.121𝐸𝑧 

 
𝜎𝑦𝑠 = −0.75 + 24.9 ∗ 𝜌𝑄𝐶𝑇 

𝜎𝑦𝑠 = 37.4 ∗ 𝜌𝑄𝐶𝑇
1.39 

 
𝜎𝑢𝑙𝑡 = 1.2 ∗ 𝜎𝑦𝑠 

 Same 1 Kopperdahl et al. 2002 
2 Ulrich et al. 1999 
3 Crawford et al. 2003 
4 Morgan et al. 2001 
5 Kopperdahl et al. 1998 
6 Morgan et al. 2003 



 

 

 
Ref

5,6
 

 
Linearly 
elastic-
perfectly 
plastic

 

 

𝜀𝑦 =
𝜎𝑦𝑠

𝐸
 

𝜀𝑢𝑙𝑡 = 0.0145 
 

Zeinali et al. 2010 9 Cadaveric Vertebral 
body 

 
Linearly 
elastic-
perfectly 
plastic 
 
Linearly 
elastic-linearly 
plastic 

Same as above  Same as above  

 

Boundary Conditions of Vertebral body and Vertebra FE model in Literature 

Author Mesh Type Loading Type Boundary Conditions Analysis Type Fracture References 

Homminga et al. 2001 Voxel-based FEM 
 

Flexion 2° 1000 𝑁 (2*normal standing)
1,2 

 
 
 
 
 

𝑆𝑡𝑟𝑎𝑖𝑛 > 5000 𝜇𝑠𝑡𝑟𝑎𝑖𝑛
3 

1 Nachemson 1981 
2 Schultz et al. 1982 
3 Kopperdahl and Keaveny 
1998 

Crawford 2003a 
 
 

Voxel-based FEM Compression 
0.15 mm/s 

*Superior surface: uniform vertical 
displacement with lateral constraints 
 
*inferior surface: constrained all DOF 

Linear analysis 
(ABAQUS) 
 

𝐹𝐹𝐸 = 0.0068 ∙ 𝐾𝐹𝐸 ∙ 𝐻  

Keaveny et al. 2007 Voxel-based FEM 
1 × 1 × 1.5𝑚𝑚3 

 

Compression 
 

Uniform compressive displacement Nonlinear analysis
1 

𝜀𝑐𝑜𝑚𝑝 ∗ 0.002 =
𝛿

𝐻
 

1 Crawford et al. 2004 



 

 

 Bending 1° 

Melton et al. 2007 
 
 

Voxel-based FEM 
 

 Uniform compressive displacement  Nonlinear analysis
1
 

𝜀𝑐𝑜𝑚𝑝 ∗ 0.002 =
𝛿

𝐻
 

1 Crawford et al. 2004 

Lewiecki et al. 2009 Voxel-based FEM  Same as above  Same as above  

Buckley et al. 2007 Voxel-based FEM 
 

 Uniform inferior axial displacement 
 

Nonlinear-Large 
deformation analysis 

𝜀𝑐𝑜𝑚𝑝 ∗ 0.003 =
𝛿

𝐻
 

 

Liebschner et al. 2003 20-noded brick 
(TrueGrid) 

 Uniform compressive displacement    

Imai et al. 2006, 2009  
 
(MECHANICAL 
FINDER) 
 

 Uniaxial compressive load 
 

Nonlinear analysis by 
the Newton-Raphson 
method 
 
Drucker-Prager 
equivalent stress 
criterion 

𝜀𝑚𝑖𝑛 < −10000 𝜇𝑠𝑡𝑟𝑎𝑖𝑛  

Chevalier et al. 2010 Voxel-based FEM 
Hexahedral FE 

 Axial compression displacement 
 

Nonlinear   

Maquer et al. 2013       

Mirzaei et al. 2009 Voxel-based FEM Compression  Nonlinear 𝐹𝐹𝐸 = 0.0068 ∙ 𝐾𝐹𝐸 ∙ 𝐻  

Zeinali et al. 2010 Voxel-based FEM Compression  Nonlinear 𝐹𝐹𝐸 = 0.0068 ∙ 𝐾𝐹𝐸 ∙ 𝐻  

Wijayathunga et al. 
2008 

Hexa and Tetrahedral 
(ScanIP) 

Compression  Nonlinear 1 mm offset line  

Tawara et al. 2010 Tetrahedral 
(MECHANICAL 
FINDER) 

Compression 1000 𝑁 Linear   

 

 

 



 

 

Material properties of bone in FSU FE model 

Author 
Model 
type 

Material 
Model 

Trabecular 
Material 
Model 

Cortical 
Material 
Model 

Endplates Ref. 

(Wang et al., 1997) FSU Elastic
1
 𝐸 = 100 𝑀𝑃𝑎 

𝜈 = 0.2 
Elastic

1
 𝐸 = 12000 𝑀𝑃𝑎 

𝜈 = 0.3 
Elastic

1
 𝐸 = 24 𝑀𝑃𝑎 

𝜈 = 0.4 
1(Shirazi-Adl et al., 1986) 

Strange et al. 2010 FSU     Elastic 𝐸1 = 325 𝑀𝑃𝑎 
𝐸2 = 375 𝑀𝑃𝑎 
𝐸3 = 450 𝑀𝑃𝑎 
𝐸4 = 500 𝑀𝑃𝑎 

𝜈 = 0.3 

 

Kuo       𝐸1 = 360 𝑀𝑃𝑎 
𝐸2 = 550 𝑀𝑃𝑎 

𝜈 = 0.3 

 

(Cheung et al., 2003)  Poroelastic 
with fluid 

𝐸 = 100 𝑀𝑃𝑎 
𝜈 = 0.2 

𝑘0 = 1.0𝐸 − 13 
𝑒0 = 0.40 

Elastic 𝐸 = 12000 𝑀𝑃𝑎 
𝜈 = 0.3 

Poroelastic 
with fluid 

𝐸 = 25 𝑀𝑃𝑎 
𝜈 = 0.1 

𝑘0 = 7.0𝐸 − 15 
𝑒0 = 4.00 

 

(Schmidt et al., 2006, 
Schmidt et al., 2007b, 
Schmidt et al., 2007a, 
Schmidt et al., 2009) 

 Elastic
1
 𝐸𝑥𝑥 = 140 𝑀𝑃𝑎 

𝐸𝑦𝑦 = 140 𝑀𝑃𝑎 

𝐸𝑧𝑧 = 200 𝑀𝑃𝑎 
𝐺𝑥𝑦 = 48.3 𝑀𝑃𝑎 

𝐺𝑥𝑦 = 48.3 𝑀𝑃𝑎 

𝐺𝑥𝑦 = 48.3 𝑀𝑃𝑎 

𝜈𝑥𝑦 = 0.45 

𝜈𝑥𝑦 = 0.315 

𝜈𝑥𝑦 = 0.315 

Elastic
1
 𝐸𝑥𝑥 = 11300 𝑀𝑃𝑎 

𝐸𝑦𝑦 = 11300 𝑀𝑃𝑎 

𝐸𝑧𝑧 = 22000 𝑀𝑃𝑎 
𝐺𝑥𝑦 = 3800 𝑀𝑃𝑎 

𝐺𝑥𝑦 = 5400 𝑀𝑃𝑎 

𝐺𝑥𝑦 = 5400 𝑀𝑃𝑎 

𝜈𝑥𝑦 = 0.484 

𝜈𝑥𝑦 = 0.203 

𝜈𝑥𝑦 = 0.203 

Elastic
1,2

 𝐸𝑏𝑜𝑛𝑦 = 12000 𝑀𝑃𝑎 

𝜈 = 0.3 
𝐸𝑐𝑎𝑟𝑡𝑖𝑙 = 23.8 𝑀𝑃𝑎 

𝜈 = 0.4 

1(Lu et al., 1996) 
2(Edwards et al., 2001) 

(Ahn et al., 2008)   𝐸 = 100 𝑀𝑃𝑎 
𝜈 = 0.2 

 𝐸 = 12000 𝑀𝑃𝑎 
𝜈 = 0.3 

 𝐸 = 25 𝑀𝑃𝑎 
𝜈 = 0.25 

 

(El-Rich et al., 2009)  Elasto-
plastic

1
 

𝐸 = 291 𝑀𝑃𝑎 
𝜈 = 0.25 

Elasto-plastic
1
 𝐸 = 14000 𝑀𝑃𝑎 

𝜈 = 0.3 
  1(Kopperdahl and Keaveny, 1998) 

(Polikeit et al., 2003, 
Polikeit et al., 2004) 

 Elastic
1
 𝐸𝑜𝑠𝑡𝑒𝑜 = 34 𝑀𝑃𝑎 

𝜈 = 0.2 
Elastic

1
 𝐸𝑜𝑠𝑡𝑒𝑜 = 8040 𝑀𝑃𝑎 

𝜈 = 0.3 
Elastic

1
 𝐸𝑜𝑠𝑡𝑒𝑜 = 670 𝑀𝑃𝑎 

𝜈 = 0.4 
 

(Zhang et al., 2010)  Elastic
1
 𝐸𝑜𝑠𝑡𝑒𝑜 = 34 𝑀𝑃𝑎 Elastic

1
 𝐸𝑜𝑠𝑡𝑒𝑜 = 8040 𝑀𝑃𝑎 Elastic

1
 𝐸𝑜𝑠𝑡𝑒𝑜 = 670 𝑀𝑃𝑎 1(Polikeit et al., 2003) 



 

 

𝜈 = 0.2 𝜈 = 0.3 𝜈 = 0.4 

(Goto et al., 2002)  Elastic
1
 𝐸 = 100 𝑀𝑃𝑎 

𝜈 = 0.2 
Elastic

1
 𝐸 = 12000 𝑀𝑃𝑎 

𝜈 = 0.3 
Elastic

1
 𝐸 = 23.8 𝑀𝑃𝑎 

𝜈 = 0.4 
1(Shirazi-Adl et al., 1986) 

(Li and Wang, 2006)     𝐸 = 200 𝑀𝑃𝑎 
𝜈 = 0.3 

   

(Homminga, 2001)  Elastic
1
 𝐸 = 0.366 ∙ 𝐸𝑡 ∙ 𝜌

1.7 
𝐸𝑡 = 14 𝐺𝑃𝑎 
𝜈 = 0.3 

Elastic
1
 𝐸 = 0.366 ∙ 𝐸𝑡 ∙ 𝜌

1.7 
𝐸𝑡 = 14 𝐺𝑃𝑎 
𝜈 = 0.3 

Elastic
1
 𝐸 = 0.366 ∙ 𝐸𝑡 ∙ 𝜌

1.7 
𝐸𝑡 = 14 𝐺𝑃𝑎 
𝜈 = 0.3 

1(Homminga et al., 1998) 

(Ruberté et al., 2009)  Elastic
1
 𝐸 = 100 𝑀𝑃𝑎 

𝜈 = 0.2 
Elastic

2
 𝐸 = 12000 𝑀𝑃𝑎 

𝜈 = 0.3 
Elastic

3
 𝐸 = 24 𝑀𝑃𝑎 

𝜈 = 0.4 
1(Goulet et al., 1994) 
2(Cassidy et al., 1989) 
3(Shirazi-Adl et al., 1986) 

(Totoribe et al., 1999)  Elastic
1,2 𝐸 = 100 𝑀𝑃𝑎 

𝜈 = 0.2 
Elastic

1,2
 𝐸 = 12000 𝑀𝑃𝑎 

𝜈 = 0.3 
Elastic

3 𝐸 = 23.8 𝑀𝑃𝑎 
𝜈 = 0.4 

1(Shirazi-Adl et al., 1984) 
2(Shirazi-Adl et al., 1986) 
3(Belytschko et al., 1974) 

 

Material properties of IVD in FSU FE model 

Author Model type 
Material 
Model 

Annulus Ground 
Material 
Model 

Nucleus Pulposus Material 
Model 

Annulus Fibres 
Ref. 

(Wang et al., 1997)  Viscoelastic 
(Prony) 

𝐸 = 8 𝑀𝑃𝑎 
𝜈 = 0.45 

𝑔𝑖 𝑘𝑖 𝜏𝑖: attached 

Viscoelastic 
(Prony) 

𝐸 = 2 𝑀𝑃𝑎 
𝜈 = 0.49 

𝑔𝑖 𝑘𝑖 𝜏𝑖: attached 

Viscoelastic 
(Zener 
model)

1 

Nonlinear spring and 
dashpot 

1(Haut and Little, 1972) 

Strange et al. 2010 FSU Hyperelastic 
Mooney-
Rivlin 

𝐶1 = 0.56 
𝐶2 = 0.14 
𝐷1 = 0.143 

Hyperelastic 
Mooney-
Rivlin 

𝐶1 = 0.12 
𝐶2 = 0.03 
𝐷1 = 0.0667 

Elastic 𝐸1 = 325 𝑀𝑃𝑎 
𝐸2 = 375 𝑀𝑃𝑎 
𝐸3 = 450 𝑀𝑃𝑎 
𝐸4 = 500 𝑀𝑃𝑎 

𝜈 = 0.3 

 

Kuo   𝐸 = 4.2 𝑀𝑃𝑎 
𝜈 = 0.45 

 𝐸 = 1 𝑀𝑃𝑎 
𝜈 = 0.4999 

 𝐸1 = 360 𝑀𝑃𝑎 
𝐸2 = 550 𝑀𝑃𝑎 

𝜈 = 0.3 

 

(Cheung et al., 2003) 1 L4-L5 FSU Poroelastic 𝐸 = 4.2 𝑀𝑃𝑎 Poroelastic 𝐸 = 1 𝑀𝑃𝑎 Elastic 𝐸 = 500 𝑀𝑃𝑎  



 

 

CT with fluid 𝜈 = 0.1 
𝑘0 = 3.0𝐸 − 16 
𝑒0 = 2.33 

with fluid 𝜈 = 0.1 
𝑘0 = 3.0𝐸 − 16 
𝑒0 = 4.00 

𝜈 = 0.3 

(Schmidt et al., 2006) 1 L4-L5 FSU 
CT & MRI 

Hyperelastic 
Mooney-
Rivlin

1
 

𝐶1 = 0.56 
𝐶2 = 0.14 

(≈ 𝐸 = 4.2 𝑀𝑃𝑎) 
𝜈 = 0.45 

Hyperelastic 
Mooney-
Rivlin

2
 

𝐶1 = 0.12 
𝐶2 = 0.09 
𝜈 = 0.4999 

Stress-strain 
curve

3 
 1(Goel et al., 1995) 

2(Smit et al., 1997) 
3(Shirazi-Adl et al., 1986) 

(Schmidt et al., 2007b, 
Schmidt et al., 2007a) 

1 L4-L5 FSU 
CT & MRI 

Hyperelastic 
Mooney-
Rivlin

1
 

𝐶1 = 0.18 
𝐶2 = 0.045 
𝜈 = 0.45 

Hyperelastic 
Mooney-
Rivlin

2
 

𝐶1 = 0.12 
𝐶2 = 0.03 
𝜈 = 0.4999 

Stress-strain 
curve

3
 

 1(Schmidt et al., 2006) 
2(Smit et al., 1997) 
3(Shirazi-Adl et al., 1986) 

(Schmidt et al., 2007c, 
Schmidt et al., 2009) 

1 L4-L5 FSU 
CT & MRI 

Hyperelastic 
Mooney-
Rivlin

1,2 

 
No 
degeneratio
n effect

4,5 

𝐶1 = 0.18 
𝐶2 = 0.045 

Hyperelastic 
Mooney-
Rivlin

1,2
 

𝐸𝑔𝑟𝑎𝑑𝑒0 = 0.9 𝑀𝑃𝑎 

𝐶1 = 0.12 
𝐶2 = 0.03 

𝐸𝑔𝑟𝑎𝑑𝑒1 = 1.07 𝑀𝑃𝑎 

𝐶1 = 0.14 
𝐶2 = 0.035 

𝐸𝑔𝑟𝑎𝑑𝑒2 = 1.25 𝑀𝑃𝑎 

𝐶1 = 0.17 
𝐶2 = 0.041 

𝐸𝑔𝑟𝑎𝑑𝑒3 = 1.41 𝑀𝑃𝑎 

𝐶1 = 0.19 
𝐶2 = 0.045 

Stress-strain 
curve

3
 

 1(Wilke et al., 2006) 
2(Rohlmann et al., 2006) 
3(Shirazi-Adl et al., 1986) 
4(Ebara et al., 1996) 
5(Holzapfel et al., 2005) 

(Ahn et al., 2008) 1 L3-L4 FSU 
CT 

 𝐸 = 4.2 𝑀𝑃𝑎 
𝜈 = 0.45 

 𝐸 = 1 𝑀𝑃𝑎 
𝜈 = 0.4999 

 𝐸1/2 = 550 𝑀𝑃𝑎 
𝐸3/4 = 495 𝑀𝑃𝑎 
𝐸5/6 = 413 𝑀𝑃𝑎 
𝐸7/8 = 358 𝑀𝑃𝑎 

 

 

(El-Rich et al., 2009) 1 L2-L3 FSU 
CT 

Hyperelastic 
Mooney-
Rivlin

1
 

𝐶1 = 0.18 
𝐶2 = 0.045 
𝜈 = 0.45 

Hyperelastic 
Mooney-
Rivlin

1
 

𝐶1 = 0.12 
𝐶2 = 0.03 
𝜈 = 0.495 

Nonlinear 
elastic curve

2 
 1(Schmidt et al., 2007b) 

2(Shirazi-Adl et al., 1986) 

(Polikeit et al., 2003) 1 L2-L3 FSU 
CT 

 𝐸 = 4.2 𝑀𝑃𝑎 
𝜈 = 0.45 

 𝐸 = 0.2 𝑀𝑃𝑎 
𝜈 = 0.4999 

 𝐸𝑜𝑢𝑡 = 550 𝑀𝑃𝑎 
𝐸2 = 495 𝑀𝑃𝑎 
𝐸3 = 440 𝑀𝑃𝑎 
𝐸4 = 420 𝑀𝑃𝑎 
𝐸5 = 385 𝑀𝑃𝑎 

𝐸𝑖𝑛𝑛𝑒𝑟 = 360 𝑀𝑃𝑎 
𝜈 = 0.3 

 

(Zhang et al., 2010) 1 L1-L2 FSU Elastic
1
 𝐸 = 4.2 𝑀𝑃𝑎 Hyperelastic 𝐶1 = 0.12  𝐸 = 455 𝑀𝑃𝑎 1(Polikeit et al., 2003) 



 

 

CT 𝜈 = 0.45 Mooney-
Rivlin

2,3 
𝐶2 = 0.047 
𝜈 = 0.4999 

𝜈 = 0.3 2(Baroud et al., 2003) 
3(Noailly et al., 2005) 

(Goto et al., 2002) 1 L4-L5 FSU 
CT 

 𝐸 = 4.2 𝑀𝑃𝑎 
𝜈 = 0.45 

Intradiscal 
pressure

1,2 
𝐸𝐹𝑙𝑒𝑥𝑖𝑜𝑛 = 1.32 𝑀𝑃𝑎 
𝐸𝑈𝑝𝑟𝑖𝑔ℎ𝑡 = 0.54 𝑀𝑃𝑎 

𝐸𝐸𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛
= 0.59 𝑀𝑃𝑎 

Nonlinear  1(Nachemson, 1966) 
2(Sato et al., 1999) 

(Li and Wang, 2006)     𝐸 = 4 𝑀𝑃𝑎 
𝜈 = 0.4999 

   

(Homminga, 2001) 49 D-VB-D 
CT 

  Elastic
1
 𝐸ℎ𝑒𝑎𝑙𝑡ℎ = 100 𝑀𝑃𝑎 

𝐸𝑑𝑒𝑔𝑒𝑛 = 1𝑀𝑃𝑎 

𝜈 = 0.49 

Elastic
2,3,4

 𝐸 = 10 𝑀𝑃𝑎 
𝜈 = 0.45 

1(Furlong and Palazotto, 1983) 
2(Kurowski and Kubo, 1986) 
3(Lane et al., 1998) 
4(Spilker et al., 1986) 

(Ruberté et al., 2009) 1 L4-L5 FSU Hyperelastic 
Mooney-
Rivlin 

𝐶1 = 0.2 
𝐶2 = 0.05 
𝐶1 = 0.4 
𝐶2 = 0.1 
𝐶1 = 0.9 
𝐶2 = 0.23 

Elastic
1,2,3

 𝐸ℎ𝑒𝑎𝑙𝑡ℎ = 1 𝑀𝑃𝑎 
𝜈 = 0.49 

𝐸𝑑𝑒𝑔𝑒𝑛1 = 1.26 𝑀𝑃𝑎 

𝜈 = 0.45 
𝐸𝑑𝑒𝑔𝑒𝑛2 = 1.66 𝑀𝑃𝑎 

𝜈 = 0.4 

  1(Umehara et al., 1996) 
2 latris 1997  
3 (Elliott and Setton, 2001) 

(Totoribe et al., 1999) 1 L4-L5 FSU Elastic
1,2,3 𝐸 = 4.2 𝑀𝑃𝑎 

𝜈 = 0.45 
Elastic

4 𝐸 = 1 𝑀𝑃𝑎 
𝜈 = 0.4999 

Nonlinear 
Elastic

1,2,5 
 1(Shirazi-Adl et al., 1984) 

2(Shirazi-Adl et al., 1986) 
3(Wu and Yao, 1976) 
4(Goel et al., 1995) 
5(Sanjeevi et al., 1982) 

 ‘-‘: Information is not applicable. 

 

 

 

 



 

 

Hyperelastic behaviour 

An incompressible, hyper-elastic, two parameter Mooney-Rivlin (C1,C2) formulation with the following strain energy function W: 

𝑊 = 𝐶1(𝐼1 − 3) + 𝐶2(𝐼2 − 3) +
1

𝑑
(𝐽 − 1)2 (A.1) 

 

Where, 

𝐶1, 𝐶2 material constants characterizing the deviatoric deformation of the material 

𝐼1, 𝐼2 first/second invariants of the deviatoric strain tensor 

𝑑 = 2/𝐾 material incompressibility parameter 

𝐽 = 𝑉/𝑉0  local volume ratio 

𝐾 initial bulk modulus of the material 

 

 

 

 



 

 

Viscoelastic behaviour 

The equation of stiffness for the Prony series can be described as: 

𝐺𝑅(𝑡) =
𝐺(𝑡)

𝐺0
= 1 −∑𝑔𝑖(1 − 𝑒

−𝑡/𝜏𝑖)

𝑛

𝑖=1

 (A.2) 

 

Where, 

𝐺𝑅(𝑡) normalised relaxation modulus 

𝑔𝑖 weighing factor ranged from 0 to 1 

𝜏𝑖 relaxation time constant 

𝐺0 instantaneous stiffness at t=0 

 



 

 

In vitro load-displacement curves were drawn by the author, University of Sheffield 

(based on the experiment data from the University of Bristol) 

*Note: red star (fracture load were defined from experiment, University of Bristol), 

green star (FE strength based on von Mises strain yield criteria), DDD (disc degeneration 

scale by prof. Adams, University of Bristol) 

 

Figure B.1: Specimen 2710v (Fracture load: 1.104 kN; FE strength: 1.335 kN; DDD: grade 4) 

 

Figure B.2: Specimen 2710k (Fracture load: 1.600 kN; FE strength: 1.281 kN; DDD: grade 4) 



 

 

 

 

Figure B.3: Specimen 6211k (Fracture load: 1.180 kN; FE strength: 0.836 kN; DDD: grade 2) 

 

 

 

Figure B.4: Specimen 6211v (Fracture load: 1.685 kN; FE strength: 0.936 kN; DDD: grade 2) 

 

 

 



 

 

 

 

Figure B.5: Specimen 6811k (Fracture load: 1.663 kN; FE strength: NA; DDD: grade 2) 

 

 

 

Figure B.6: Specimen 6811v (Fracture load: 1.708 kN; FE strength: NA; DDD: grade 2) 

 

 

 



 

 

 

 

 

Figure B.7: Specimen 7011k (Fracture load: 3.090 kN; FE strength: 2.388 kN; DDD: grade 3) 

 

 

 

Figure B.8: Specimen 7011v (Fracture load: 4.412 kN; FE strength: 4.093 kN; DDD: grade 4) 

 

 



 

 

 

 

 

Figure B.9: Specimen 7509k (Fracture load: 3.399 kN; FE strength: 1.775 kN; DDD: grade 3) 

 

 

 

Figure B.10: Specimen 7509v (Fracture load: 2.906 kN; FE strength: 1.962 kN; DDD: grade 4) 

 

 



 

 

 

 

 

Figure B.11: Specimen 8911v (Fracture load: 1.861 kN; FE strength: 1.515 kN; DDD: grade 3) 

 

 

 

Figure B.12: Specimen 8911k (Fracture load: 1.194 kN; FE strength: 1.378 kN; DDD: grade 3) 

 

 



 

 

 

 

 

Figure B.13: Specimen 9311v (Fracture load: 1.930 kN; FE strength: 1.958 kN; DDD: grade 2) 

 

 

 

Figure B.14: Specimen 9311k (Fracture load: 2.215 kN; FE strength: 2.051 kN; DDD: grade 4) 

 

 



 

 

 

 

 

Figure B.15: Specimen 10211v (Fracture load: 1.319 kN; FE strength: 1.291 kN; DDD: grade 3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Yield criteria 

Each yield function could be described in principal stress term (𝜎1, 𝜎2, 𝜎3) and yield 

stress/strain term(𝑌). 

 

Von Mises: Distortion energy (VM SR and VM ER) 

Yield function can be defined as follow: 

𝑓 = 𝜎𝑒 − 𝑌  (D.1) 

 

Where,  

Equivalent stress 𝜎𝑒 

= [
1

2
(𝜎1 − 𝜎2)

2 +
1

2
(𝜎2 − 𝜎3)

2 +
1

2
(𝜎3 − 𝜎1)

2]

1
2

 

= [
1

2
((𝜎𝑥 − 𝜎𝑦)

2 + (𝜎𝑦 − 𝜎𝑧)
2 + (𝜎𝑧 − 𝜎𝑥)

2) + 3(𝜏𝑥𝑦
2 + 𝜏𝑦𝑧

2 + 𝜏𝑥𝑧
2)]

1
2
 

and, equivalent strain 𝜀𝑒 

=
1

(1 + 𝜈)√2
[(𝜀𝑥 − 𝜀𝑦)

2 + (𝜀𝑦 − 𝜀𝑧)
2 + (𝜀𝑧 − 𝜀𝑥)

2 +
3

2
(𝛾𝑥𝑦

2 + 𝛾𝑦𝑧
2 + 𝛾𝑥𝑧

2)]

1
2

 

 

Drucker-prager criterion (DP SR) 

Yield function can be defined as follow: 

𝑓 = 𝜎𝑒 + 𝛼 ∗ 𝜎𝑚 − 𝑌 (D.2) 

 

where,  



 

 

𝜎𝑒 = equivalent stress,  

𝜎𝑚 = 𝐼1 =
1

3
(𝜎1 + 𝜎2 + 𝜎3) 

The Drucker-Prager yield criterion was presented by Drucker and Prager (1952) as an 

approximation to the Mohr-Coulomb law and a modification of the von Mises yield 

criterion (Owen and Hinton, 1980). Drucker-Prager yield criterion is described by the 

following equations, i.e. the influence of a hydrostatic stress component on yielding was 

introduced by inclusion of an additional term in the von Mises expression; 

𝛼 is a parameter that reflects the dilative potential of the material and it is related to the 

proportions of the volumetric and deviatoric strains. The alpha value which we found 

only in the bone research was chosen as 0.07 as yosibash et al (Yosibash Zohar, 2010). 

However, the alpha value is based on a correlation with yielding in concrete and should 

be calibrated to bone tissue specimens.  

 

Maximum Principal stress and strain (MX SR and MX ER) 

Yield function can be defined as follow: 

𝑓 = max(|𝜎1|, |𝜎2|, |𝜎3|) − 𝑌  (D.3) 

 

Maximum Shear stress (CM SR) 

Yield function can be defined as follow: 

𝑓 = max (|
𝜎1 − 𝜎2
2

| , |
𝜎2 − 𝜎3
2

| , |
𝜎3 − 𝜎1
2

|) −
𝑌

2
  (D.4) 
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