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Abstract

The principal subject of this thesis is hypothesis testing and related problems of

estimation for stochastic processes. The thesis is concerned in particular with

two areas: sequential hypothesis testing in a Bayesian setting and estimation

of the parameters governing a continuous-time stochastic differential equation

that drives data sampled at high-frequency. The former area is concerned with

hypothesis testing for a newly developed healthcare technology and makes use

of optimal stopping theory. The latter area sees the application of limit the-

orems for stochastic processes that allow to recover the true volatility process

that can be estimated using the methods of moments estimator.
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1.1 Introduction to Part II

1.1.1 Clinical Trials, Uncertainty and Health-care Tech-

nology Assessment

Decision makers face great challenges in coping with the pressure

that health care systems face due to ageing populations, newly

developed health-care technologies and changing population expec-

tations about the use of resources in a health care system. In 1992,

Australia became the first country to formalise and issue mandatory

guidelines for health economic evaluations of pharmaceutical prod-

ucts as a requirement prior reimbursement. Other countries such

as Canada, France, Finland and Portugal have developed similar

guidelines. In the UK, the National Institute for Health and Care

Excellence (NICE) appraises the clinical and economic benefits of

new and existing health-care technologies and makes recommen-

dations to the National Health Service (NHS) (Hjelmgren et al.,

2001).

Health technology assessment (HTA) decisions are based on evi-

dence of relative costs and effectiveness of alternative interventions.

Decision makers, when evidence suggests that the incremental net

benefit of the new intervention is positive, are faced with the deci-

sion of whether to adopt the new intervention over the existing one

or, given the uncertainty surrounding the evidence, wait for more

information.

When uncertainty about the net benefit of alternative treat-

ments is present, there is a positive probability that the decision

taken is wrong. Claxton (1999) argued that there are two con-

ceptually separate but simultaneous decisions that must be made

within a health care system: i) should a technology be adopted or

reimbursed on the basis of existing evidence (and uncertainty sur-

rounding outcomes and resources used) and ii) is further evidence

required to support this adoption or reimbursement decision, and

if existing evidence is deemed insufficient and further research is

needed, what is the appropriate design for it ?

A source of information for the assessment of cost-effectiveness

of newly developed health care technologies derives from clinical tri-

als. The trials establishes the clinical efficacy and effectiveness of
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medical therapies (Glick et al., 2007). A newly developed health-

care technology (e.g. a drug) needs to go through a number of

stages of testing in human subjects before approval by the medical

community. Phase I trials are concerned with aspects of clinical

pharmacology and toxicity. A typical objective of a Phase I trial

is to identify adequate dose levels that would avoid adverse side ef-

fects and involve sample sizes of 20 to 80 healthy volunteers. Phase

II trials involve about 100 to 300 disease-affected patients and are

concerned with effectiveness evaluation and safety aspects. Phase

III trials take a further step in the evaluation of a newly developed

drug and involve more than 1000 patients and can last more than 5

years. Patients suffering from the medical pathology are randomly

assigned either to the new treatment or to standard treatment or,

when possible, a placebo treatment. Phase IV trials involve ad-

ditional testing and monitoring of the new treatment once it has

been approved for general use. Phase IV trials are also referred

to as post-marketing surveillance (Jennison and Turnbull, 2000).

However, these categorisations are not strict and trials of different

stages can overlap. Additionally, trials’ stages can be subdivided

in smaller categories (Burdette and Gehan, 1970).

In a situation where evidence from a trial accumulates over time,

it is important to monitor results as the study proceeds in order to

take action such as early termination or to modify the study de-

sign. The interim analysis of accumulating data is motivated by the

following reasons: ethical, administrative and economic. In trials

involving human subjects there is the need to frequently monitor

results to ensure that humans are not exposed to treatments that

are harmful or inferior to standard care. In trials where it appears

to be no difference between two treatment it is important to ter-

minate the study early in order to allocate resources to the next

most promising treatment in the pipeline. Administrative reasons

for interim analysis are the need to ensure that the trial is executed

as planned, with subject taken for the relevant population and that

eligibility criteria has been satisfied. Sequential analysis methods

were originally introduced in order to obtain economic benefits as

they exploit the trade-off given by economic costs of running a trial

and statistical significance. Sequential methods, when compared

15



to traditional statistical inference, typically need a smaller sample

size, time and costs. When evidence is positive, early termination

means that the product can be exploited sooner and, in the case of

negative evidence, stopping early involve saving resources (Jennison

and Turnbull, 2000).

Many clinical trials are concerned with testing the equivalence

of the new treatment efficacy and safety to the standard treat-

ment. This is the typical study found in pharmaceutical applica-

tions when the objective is to compare two formulations of the same

drug (Chow and Liu, 1992). The past 20 years have seen a great

increase in the number of studies that make use of the information

about cost and effect contained in clinical trials. Most frequently

economic evaluation has been incorporated into the drug develop-

ment process, typically Phase III as well as Phase IV. More than 20

years ago, economic evaluation derived from clinical trials typically

were based from primarily from epidemiological data and used only

some fey findings from the clinical trial. By the mid-1990s a grow-

ing number of trial-based economic evaluations consisted in direct

observation of the impact of a therapy on cost and effect. These

studies would observe short-term economic impacts and project on

the long-term by the use of extrapolation methods (Glick et al.,

2007).

Traditional sample size calculations for randomized clinical trials

are based on arbitrary rules of inference such as type I and type

II errors. Type I error if the failure to accept the null hypothesis

when true is often set to α = 0.05 regardless of the economic cost

of making such error. Type II error is the failure to reject a false

null hypothesis and is usually set to β = 0.2. With such value

the resources allocated to the clinical trial will be wasted 20% of

the time, even when the true treatment difference is equal to the

smallest clinically important one. Type II error, as with type I error

is set to a value that does not reflect the economic costs of making

such error (William and Pinto, 2005).

In the absence of irreversibility (Palmer and Smith, 2000) or any

costs associated with reversing a decision (Eckermann and Willan,

2008), the decision to adopt a technology can be based on expected

cost effectiveness. However, if adoption involves large implementa-
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tion costs, policy makers cannot switch costlessly between technolo-

gies as new evidence becomes available and uncertainty becomes

more relevant in the decision making process (Palmer and Smith,

2000).

The theory of real options integrates uncertainty and irreversibil-

ity associated with a health-care technology into a unifying theory

of economic evaluation that provides the decision maker with a

framework to handle the uncertainty inherent in evidence on the

cost-effectiveness of a health-care technology. Palmer and Smith

(2000) propose the use of real options in order to handle uncer-

tainty in HTA and to show that the degree of irreversibility of

actions requires some flexibility in the timing of decisions.

Decision makers, when assessing the central estimates of likely

effectiveness produced by sensitivity and/or statistical analyses,

are often confronted with the problem of whether the evidence is

enough to reject or defer implementation of a technology that ap-

pears to be cost effective. The problem is particularly true when

the estimated range straddles the critical threshold values. Meth-

ods that seek to estimate uncertainty in HTA have been proposed

and implemented, however the real option approach differs by i)

considering the degree of uncertainty about the future state of the

world ii) allowing the investment to have an irreversible commit-

ment of resources iii) considering the case where there exists some

discretion about the timing of investment.

Conventional investment decisions consider the case of now or

never and little attention is given to the possibility of deferring in-

vestment to some later time when better information about costs

and benefit of the investment become available. The orthodox in-

vestment strategy is to invest when the net present value of the ex-

pected investment benefit is greater than zero (Dixit and Pindyck,

1994). There is evidence that business managers, in particular when

projects are of large values, do not follow the orthodox investment

strategy and delay investment in order to have more information.

Similarly, in HTA, deferral is an important and often taken decision

as it allows for further information to be gathered.

Part II of the thesis brings together the ideas found in the real

option approach, such as deferring investment until more informa-
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tion about costs and benefits become available, with sequential hy-

pothesis testing in clinical trials.

1.2 Introduction to Part III

1.2.1 Continuous-time methods in finance

Continuous-time methods in finance can be traced back to the sem-

inal contribution of Merton (1969, 1971, 1973), Samuelson (1965)

and Black and Scholes (1973). Merton (1969) formulated the inter-

temporal consumption and portfolio choice problem in a continuous-

time stochastic dynamic programming setting and later showed how

this framework can be used to understand equilibrium asset prices.

Since the publication of the aforementioned articles, continuous

time modelling has become an integral part of financial economics

(Sundaresan, 2000). Due to the discrete nature of asset price data,

until recently, the development of empirical procedures for the es-

timation and inference of continuos time models has been slower

when compared to the discrete time modelling. The recent avail-

ability of reliable and accurate high-frequency assets prices data has

given new impetus to continuous-time research and new powerful

non-parametric techniques have been developed.

Due to the fact that return volatility plays a crucial role in a

number of practical financial management decision such as risk

management, asset allocation and option pricing there has been

considerable effort in developing models that can produce accurate

estimates and forecasts of current and future volatility. In contrast

to returns, volatility is non directly observable and common ap-

proaches to estimate the unobservable return volatility are based

on models that invoke strong parametric assumptions (e.g. ARCH,

GARCH), estimated at daily or lower frequency. Alternatively, op-

tion prices can be ’reverted’ using the appropriate pricing model in

order to recover the ’market implied volatility’. However, such pro-

cedures are model dependent and include a time-varying volatility

risk premium measure which produces biased forecasts (Andersen

and Benzoni, 2009). Other methodologies exploit the information

found in past volatility by taking a rolling window estimate and

assume that such value will give a proxy for current and future
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volatility. Such measures, due to the persistence of volatility can

provide and indication of current volatility levels but ignore the

feature of mean reversion that is found in volatility data series.

Continuos-time diffusion processes have been at the core of the-

oretical asset and derivative pricing models. However, only recently

econometric procedures for their estimation have been developed.

Realised volatility is a non-parametric estimate of return varia-

tion that benefit from the information contained in high-frequency

data. It was introduced concurrently by Andersen et al. (2001) and

Andersen et al. (2003) and by Barnoff-Nielsen and Shepard (2001,

2004). Realised volatility is computed by summing up the intra-

day squared returns; if prices do not exhibit micro-structure noise,

realised volatility is a consistent estimator of integrated volatility

for each trading day.

Part III of the thesis makes use of the realised volatility esti-

mators in order to estimate the volatility and jump parameters

driving the stochastic differential equation for stock prices. More

specifically, chapter 7 takes the Bollerslev and Zhou (2002) ap-

proach and matches the sample moments of the realised volatility

to the population moments of the integrated volatility implied by

the particular model’s structure. Analytical moments are derived

and used in a GMM estimator in order to recover the underlying

parameters governing the stochastic differential equation for the

observed realised volatility. Further, the power and bipower vari-

ation measures introduced by Barnoff-Nielsen and Shepard (2004)

are employed in order to recover intra-day realised jumps in re-

turns. Barndorff-Nielsen and Shephard showed that by subtracting

bipower variation from realised volatility it is possible to estimate

the quadratic variation of the jump component. The inclusion of

jumps in continuous time models has important implications and

finds motivation in a number of empirical studies.
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Chapter 2

Mathematical Preliminaries

2.1 Probability spaces, random variables and

stochastic processes

Some concepts from general probability theory are recalled be-

fore introducing a mathematical model for a random variable.

Definition 2.1. (Oksendal, 2000) If Ω is a given set, a σ-algebra

F on Ω is a family F of subsets of Ω with the following properties

(i) ∅ ∈ F

(ii) F ∈ F ⇒ FC ∈ F . where FC = Ω\F is the complement of F

in Ω.

(iii) A1, A2, · · · ∈ F ⇒ A : ∪∞i=1A1 ∈ F

The pair (Ω,F) is called a measurable space. A probability mea-

sure P on a measurable space (Ω,F) is a function P : F → [0, 1]

such that

(a) P (∅) = 0, P (Ω) = 1

(b) if A1, A2, · · · ∈ F and {Ai}∞i=1 is disjoint (i.e. Ai ∩ Aj = ∅ if

i 6= j) then

P (∪∞i=1Ai) =
∞∑
i=1

P (Ai).

The triple (Ω,F , P ) is called a probability space. It is called a com-

plete probability space if F contains all subsets G of Ω with P−outer
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measure zero. i.e. with

P ∗(G) := inf{P (F );F ∈ F , G ⊂ F} = 0

A collection U of all open subsets of a topological space Ω that

generates a σ-algebra HU , B = HU is a Borel σ-algebra on Ω and

elements B ∈ B are called Borel sets.

The subsets F of Ω belonging to F are said to be F -measurable.

These sets correspond to events and P (F ) is the probability that

event F occurs.

Definition 2.2. Measurable function (Williams, 2010) Let F
be a σ-field on Ω. Suppose that ξ : Ω→ R. For B ⊆ R, define

ξ−1(B) = {ω ∈ Ω : ξ(ω) ∈ B}.

Then ξ is called F-measurable if ξ−1 : B → F , that is, ξ−1(B) ∈
F , ∀B ∈ B.

Definition 2.3. Borel function(Capinski and Kopp, 2004) For

any interval I ⊂ R, if all the sets

f−1(I) ∈ B

we say that f is a Borel function.

A random variable X is an F−measurable function X : Ω→ Rn.

Every random variable induces a probability measure µX on (R,B),

such as

µX(B) = P (X−1(B)).

where µX is referred to as the distribution of X.

Suppose P and Q are two probability measures on a measurable

space (Ω,F). Then we have the following:

Theorem 2.1. Radon-Nikodym Suppose Q is absolutely con-

tinuous with respect to P (i.e. P ∼ Q ⇐⇒ [∀A ∈ F , P (A) =

0 ⇐⇒ Q(A) = 0]) . Then there exists a random variable f such

that

Q(F ) =

∫
F

f dP, ∀F ∈ F . (2.1)
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The function f is called the Radon-Nikodym derivative of Q with

respect to P . This can be written as

f(ω) =
dQ

dP
(ω).

The Theorem tells if and in which way it is possible to change

from one probability measure to another.

Definition 2.4. Conditional expectations(Capinski and Kopp,

2004) For an integrable random variable ξ on a probability space

(Ω,F , P ) and an event B ∈ B such that P (B) 6= 0 the conditional

expectations of ξ given B is defined by

E(ξ | B) =
1

P (B)

∫
B

ξdP.

2.2 Stochastic process

Definition 2.5. A stochastic process is a parametrized collection

of random variables

{Xt}t∈T
defined on a probability space (Ω,F , P ) and assuming values in Rn.

For each t ∈ T there is a random variable

ω 7→ Xt(ω); ω ∈ Ω

where instead fixing ω ∈ Ω gives a path of Xt

t→ Xt(ω); t ∈ T.

Often in stochastic analysis the process is viewed as a function of

two variables

(t, ω)→ X(t, ω)

from T × Ω into Rn.

In light of the above we now introduce the notion of joint measur-

ability for a stochastic process. The product σ-algebra is generated

by the family of sets F = F1 × F2 and a process X, measurable

with respect to the product σ-algebra B(R)⊗F , is said to be jointly

measurable.
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2.2.1 Convergence

When dealing with sequences or families of random variables

different notions of convergence apply. One of the simplest notions

of convergence is that of almost everywhere. Let E be a Borel

subset of Rn. For a given sequence (fn) in Lp(E), p ≥ 1, the

function fn → f as n → ∞ converges almost everywhere on E if

there is a null set F ⊂ E, where E as a Borel subset of Rn, such

that fn → f point wise on E\F .

For the function X : Ω → R, we consider convergence for all

ω ∈ Ω without considering those events that are in fact negligible

(i.e. with probability zero). This leads to the definition of almost-

sure convergence.

Definition 2.6. Almost-sure convergence (Williams, 2010) Let

(Xn : n ∈ N) be a sequence of random variables and let X be a

random variable on the probability triple (Ω,F ,P). We say that

Xn → X almost surely if

P (Xn −X) = 1.

The notion of convergence in probability gives a condition on

the probability of events when n→∞.

Definition 2.7. Convergence in probability (Capinski and Kopp,

2004) A sequence (Xn) of random variables on (Ω,F , P ) is said to

converge in probability to a random variable X if for each ε > 0

P (| Xn −X |> ε) = 0 n→∞ (2.2)

For convergence in probability we consider the probability that

Xn − X is at least ε away from the limit while for almost sure

convergence we consider the whole tail of the sequence (Xn)n≥k.

The implication is that convergence almost-surely is stronger than

convergence in probability. The last notion of convergence for this

section is:

Definition 2.8. Convergence in distribution (Cont and Tankov,

2003) A sequence (Xn) of random variables with values in E is said
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to converge in distribution to a random variable X if, for a bounded

continuous function f : E → R

E[f(Xn)]→ E[f(X)] n→∞. (2.3)

2.3 Martingales and stopping times

2.3.1 Martingales

As basic datum, a probability space (Ω,F , P ) is considered and

the following definitions (Poor and Hadjiliadsis, 2009) are intro-

duced:

1. A process X = (Xt; t ∈ T ) is called adapted if for each t, Xt

is Ft-measurable. This means that if X is adapted then the

value of Xt is known at time t.

2. A filtration {Ft; t ∈ T} is an increasing sequence of sub-σ-fields

of F . A filtration can be viewed as describing the evolution of

information as time goes by.

3. A random sequence {Xt} on (Ω,F , P ) is adapted to {Ft} if,

for each t, Xt is Ft-measurable.

4. {Xt,Ft} is a submartingale if

E{Xt | Fl} ≥ Xl ∀ l ≤ t a.s.

5. {Xt,Ft} is a supermartingale is {−Xt,Ft} is a submartingale.

6. {Xt,Ft} is a martingale if

E{Xt | Fl} = Xl ∀ l ≤ t a.s.

A supermartingale decreases on average and a submartingale in-

creases on average.
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2.3.2 Stopping times

(Williams, 2010) A map T : Ω → R is called a stopping time

(or Markov time) if

{T ≤ n} = {ω : T (ω) ≤ n} ∈ Fn, ∀n ≤ ∞

A stopping time is a random variable taking values in the time

set of the filtration. It can assume the value n only on events that

are measurable with respect to the filtration at n.

Example 2.2. Suppose that An is an adapted process, with B ∈ B.

Let

T = inf{n ≥ 0 : An ∈ B} = first time of entry of A into B.

If A never enters B, T =∞ . We have

{T ≤ n} = ∪k≤n{Ak ∈ B} ∈ Fn

so T is a stopping time.

2.3.3 Random walk

A symmetric random walk can be constructed by repeatedly

tossing a fair coin. A probability p is assigned to the probability of

an event H (head) and q = 1 − p to the probability of an event T

(tail), both equal to 1/2. We consider an infinite sequence of tosses

with ωn denoting the outcome of the n-th toss. Let

Xj = 1 if ωj = H

Xj = −1 if ωj = T,

and define

Mk =
k∑
j=1

Xj, k = 1, 2, . . . (2.4)

The process Mk, k = 1, 2, . . . is a symmetric random walk.

26



2.3.4 Brownian motion

Let Mk, k = 1, 2, . . . be a symmetric random walk as in (2.4).

The Brownian motion is obtained as the limit of scaled random

walks

W n(t) =
1√
n
Mn(t) as n→∞.

Definition 2.9. Brownian motion Let (Ω,F , P ) be a probability

space. A Brownian motion is a process W (t), t ≥ 0 such that

(a) W (0) = 0.

(b) The increment has normal distribution with mean E[Wti+1
−

Wti ] = 0 and variance Var[Wti+1
−Wti ] = ti+1 − ti.

(c) For all 0 ≤ t1 < t2 < t3 < · · · < tm the increments Wtn+1 −
Wtn , n = 1, . . . ,m− 1 are independent.

(d) The paths t→ W ω(t) are continuous for almost all ω.

Definition 2.10. p-th variation process If Xt(·) → R is a

continuous stochastic process, its p-th variation process,〈X,X〉(p)T is

given by

〈X,X〉(p)t (ω) = lim
4tk→0

∑
tk≤t

| Xtk+1
(ω)−Xk(ω) |p

where 0 = t1 < t2 < · · · < tn = t and 4tk = tk+1 − tk. If p = 1 this

process is referred to as the total variation and in the case p = 2

this process is called the quadratic variation.

Any differentiable process has finite total variation, it should

be noted that the Brownian motion does not have a finite total

variation and its path is thus almost surely not differentiable. The

Brownian motion has, however, finite quadratic variation. For a

Brownian motion Wt ∈ R the quadratic variation process (p = 2)

is

〈W,W 〉2t (ω) = t a.s.
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2.4 Reflection principle

We denote τa the first hitting time of the level a for the Brownian

motion (Xt, t ≥ 0) starting at zero on a probability space (Ω,F ,P).

The function

N (x) =
1√
2π

∫ x

−∞
e
u2

2 du

is the cumulative distribution function for a standard Gaussian dis-

tribution N (0, 1). The first hitting time for a level a is

τa(X) = inf{t ≥ 0 : Xt = a}.

The first time the process X is greater than a is given by

τ+
a = inf{t ≥ 0 : Xt ≥ a}

resp.

τ−a = inf{t ≥ 0 : Xt ≤ a}.

For a Brownian motion starting at zero, X0 = x and a > x the

hitting times τ+
a = τa and τ−a = 0. If a < x, we have τ−a = τa, and

τ+ = 0. In what follows when we refer to hitting time it is intended

to be the first hitting time. The running maximum (or respectively

the running minimum) is

MX
t = sup

s≤t
Xs, mX

t = inf
s≤t

Xs.

The process Mt is an increasing process with positive values. We

consider a pair of random variables (Wt,Mt) where M is the max-

imum process for the Brownian motion W Next we present the

reflection principle

Proposition 2.1. (Consequence of the reflection principle)

(Jeanblanc, Yor and Chesney, 2009) For y ≥ 0, x ≤ y, one has

P(Wt ≤ x,Mt ≥ y) = PWt ≥ 2y − x). (2.5)

From the symmetry of the normal distribution, we have

P(Wt ≤ x,Mt ≥ y) = P(Wt ≥ 2y − x) = N
(
x− 2y√

t

)
(2.6)

The following theorem specifies the joint distribution of Wt and

Mt. The result is used in Chapter 3 to compute the fist passage

distribution for a Brownian motion.
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Theorem 2.3. (Jeanblanc, Yor and Chesney, 2009) Let W be a

Brownian motion starting from zero and Mt = sup
s≤t

Ws. Then,

y ≥ 0, x ≤ y, P(Wt ≤ x,Mt ≤ y) = N
(
x√
t

)
−N

(
x− 2y√

t

)
y ≥ 0, x ≥ y, P(Wt ≤ x,Mt ≤ y) = P(Mt ≤ y)

= N
(
y√
t

)
−N

(
−y√
t

)
P(Wt ≤ x,Mt ≤ y) = 0.

(2.7)

The distribution of the pair of random variables (Wt,Mt) is

P(Wt ∈ dx,Mt ∈ dy) = 1{y≥0}1{x≤y}
2(2y − x)√

2πt3
exp

(
−(2y − x)2

2t

)
dx dy

(2.8)

2.5 Stochastic integration

We start by considering a stochastic process {φ(t, ω)} and a

standard Brownian motion {Wt} with W0 = 0. Integrating such

function over the Brownian motion∫ t

0

φsdWs (2.9)

leads to an integration problem that cannot be dealt by standard

integration methods (Lebesgue-Stieltjes). The above integral does

not exist for many types of integrands as the paths of the Brownian

motion are not of finite variation.

To define this type of integral we set some elementary processes

{φt} such as

φt =
2n−1∑
i=0

ci1( i
2n
, i+1

2n )(t) (2.10)

For each ω ∈ Ω we define

∫ t

0

φsdWs(ω) =
2n−1∑
i=0

ci

[
W i+1

2n
t −W i

2n
t

]
. (2.11)
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When ci = W i
2n
t the function is elementary and the right hand

side of the above equation becomes

E
[∫ t

0

φ(s, ω)dWs(ω)

]
=
∑
j≥0

E
[
Wsj(Wsj+1

−Wsj)
]

= 0.

On the other hand when ci = W i+1
2n

t the right hand becomes

E
[∫ t

0

φ(s, ω)dWs(ω)

]
=
∑
j≥0

E
[
Wsj+1

(Wsj+1
−Wsj)

]
= S

suggesting that additional requirements are needed for the functions

φ(t, ω).

Ito suggested an integrand that preserves the martingale prop-

erties by choosing an integrand that is not forward looking in time.

For each t, {φt < u} ∈ Ft = σ{Ws, s < t} for any u ∈ R i.e. {φt}
is Ft-adapted.

Definition 2.11. Let V = V(S, T ) be the class of function

φ(t, ω) : [0,∞)× Ω→ R

such that

(i) φ(t, ω) is jointly measurable in t and ω.

(ii) φ(t, ω) is Ft-adapted.

(iii) E
[∫ T

S
[φ(t, ω)]2dt

]
<∞

Definition 2.12. The Ito integral (Oksendal, 2000) Let f ∈
V(S, T ). Then the Ito integral from φ is defined as

∫ T

S

φ(t, ω)dWt(ω) = lim
n→∞

∫ T

S

φn(t, ω)dWt(ω) limit in L2(P )

(2.12)

where {φ(n)} is a sequence of elementary functions such that

E
[∫ T

S

(φ(t, ω)− φn(t, ω)2dt

]
→ 0 a.s. n→∞. (2.13)

From Definition (2.12) we get the following

Lemma 2.1. The Ito isometry (Oksendal, 2000)

E
[
(φ(t, ω)dWt)

2] = E
[∫ T

S

φ2(t, ω)dt

]
∀φ ∈ V(S, T ) (2.14)
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Lemma 2.2. If φ(t, ω) ∈ V(S, T ) and φ(n)(t, ω) ∈ V(S, T ) for n =

1, 2, 3, . . . and E[
∫ T
S

(φ(n)(t, ω)− φ(t, ω))2dt]→ 0 as n→∞ then∫ T

S

φ(n)(t, ω)dWt(ω)→
∫ T

S

φ(t, ω)dWt(ω) (2.15)

Example 2.4. Assume W0 = 0. Then∫ t

0

WsdWs =
1

2
W 2
t −

1

2
t1

It is possible to extent the Ito integral
∫
φ dW for a larger class

of integrands φ than V as long there exist a family of σ-algebras Ht

such that Wt is a martingale with respect to Ht and φt is adapted

to the filtration Ht.

2.5.1 Ito processes

(Poor and Hadjiliadis, 2009) We consider the class of one-dimensional

Ito processes of the form

Xt = X0 +

∫ t

0

µsds+

∫ t

0

σs dWs (2.16)

where µs and σs are Ft-adapted and

P

(∫ t

0

σ2
s ds <∞

)
= 1 (2.17)

P

(∫ t

0

| µs | ds <∞
)

= 1. (2.18)

An Ito process is the sum of a finite variation term and a local

martingale. For (2.16) the following shorthand notation2 is used

dXt = µtdt+ σtdWt.

1For detail see Example (2.6)
2Note that given the non-differentiability of Brownian paths the equation has a meaning

only in the integral form of (2.16).
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If {Xt}is an Ito process and g(t, x) is a first order continuously

differentiable of the first variable and second order continuously

differentiable function of the second variable, Yt = g(t,Xt) is also

an Ito process.

2.6 Ito Formula

Theorem 2.5. Ito Formula. (Oksendal, 2000) Let Xt be an Ito

process given by

dXt = µtdt+ σtdWt.

Let g(t, x) ∈ C2([0,∞)× R). Then

Yt = g(t,Xt)

is again a Ito process, and

dYt =
∂g

∂t
(t,Xt)dt+

∂g

∂x
(t,Xt)dXt +

1

2

∂2g

∂x2
(t,Xt) · (dXt)

2 (2.19)

where (dXt)
2 = (dXt) · (dXt) is computed according to the rules

dt · dt = dt · dWt = dWt · dt = 0, dWt · dWt = dt. (2.20)

Example 2.6. Take the integral

I =

∫ t

0

WsdWs.

Take Xt = Wt and g(t, x) = 1
2
x2. Then

Yt = g(t,Wt) =
1

2
W 2
t

By Ito formula

dYt = d(
1

2
W 2
t ) = WtdWt +

1

2
dt

or in integral form

1

2
W 2
t =

∫ t

0

WsdWs +
1

2
t
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2.7 Markov process

For a stochastic differential equation such as

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt

withXt ∈ Rn, µ(t, x) ∈ Rn, σ(t, x) ∈ Rn×m andWt ism−dimensional

Brownian motion, µ is the drift coefficient and σ the diffusion co-

efficient.

Definition 2.13. Time-homogeneous Ito diffusion (Oksendal,

2000) This is a stochastic process Xt(ω) = X(t, ω) : [0,∞)× Ω →
Rn satisfying a stochastic differential equation of the form

dXt = µ(Xt)dt+ σ(Xt)dWt, t ≥ s; Xs = x; (2.21)

In a time homogeneous Ito diffusion coefficients µ and σ depend

on Xt and not on t. The unique solution for (2.21) is denoted by

Xt = Xs,t
t ; t ≥ s. If s = 0, Xx

t stands for X0,x
t .

Let the probability law for a given Ito diffusion when the initial

value is X0 = x ∈ Rn be denoted by Qx. The expectation with

respect to this probability law Qx is Ex[·].

Theorem 2.7. Markov property Let f be a Borel function from

Rn → R. Then for t, h ≥ 0

Ex[f(Xt+h) | F (m)
t ](ω) = EXt(ω)[f(Xh)] (2.22)

The Markov property holds also for stopping times τ(ω). This

lead to the following Theorem.

Theorem 2.8. Strong Markov property for Ito diffusions

(Oksendal, 2000) Let f be a bounded Borel function on Rn, τ

a stopping time with respect to the filtration F (m)
t generated by

{Ws; s ≤ t}, τ <∞ a.s. Then

Ex[f(Xτ+h) | F (m)
τ ] = EXτ [f(Xh)] ∀ h ≥ 0. (2.23)
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2.8 The generator for an Ito diffusion

Associated to each Ito diffusion one can find a second order par-

tial differential operator A. The generator A encodes a great deal

of information about the process Xt.

Definition 2.14. Infinitesimal generator Let {Xt} be a (time-

homogeneous) Ito diffusion in Rn. For a bounded Borel function f ,

the (infinitesimal) generator A of Xt is defined by

Af(x) = lim
t↓0

E[f(Xt)]− f(x)

t
, x ∈ Rn

The formula for the generator of an Ito diffusion is given by

Theorem 2.9. (Oksendal, 2000) Let Xt be an Ito diffusion and f

a bounded function as in Definition (2.14)

dXt = b(Xt)dt+ σ(Xt)dWt.

If f ∈ C2
0(Rn), then

Af(x) =
n∑
i=1

bi(x)
∂f

∂xi
+

1

2

n∑
i,j=1

(σσT )i,j(x)
∂2f

∂xi∂xj
. (2.24)

Having defined the generator for an Ito diffusion, it is now pos-

sible to introduce some tools that permit to compute the expected

value of an Ito diffusion at a stopping time.

2.8.1 Dinkyn formula

Theorem 2.10. Dynkin’s formula Let f ∈ C2
0(Rn). Suppose τ

is a stopping time, Ex[τ ] <∞. Then

Ex[f(Xτ )] = f(x) + Ex
[∫ τ

0

Af(Xs)ds

]
(2.25)

where Ex is the expectation w.r.t. the natural probability distribution

for an Ito process starting at x.

This differential equation is also called the characteristic opera-

tor.

34



2.9 Girsanov’s theorem

Lemma 2.3. Bayes’ rule Let µ and ν be two probability measures

on a measurable space (Ω,G) such that dν(ω) = f(ω)dµ(ω) for some

f ∈ L1(µ). Let X be a random variable on (Ω,G) such that

Eν [| X |] =

∫
Ω

| X(ω) | f(ω)dµ(ω) <∞.

Let H be a σ-algebra, H ⊂ G. Then

Eν [X | H] · Eµ[f | H] = Eµ[fX | H] a.s. (2.26)

Theorem 2.11. Girsanov’s Theorem Oksendal (2010)Let Y (t) ∈
Rn be an Ito process of the form

dY (t) = β(t, ω)dt+ θ(t, ω)dB(t) t ≤ T (2.27)

where B(t) ∈ Rm,β(t, ω) ∈ Rn and θ(t, ω) ∈ Rn×m. Suppose

there exists processes u(t, ω) ∈ Wm
H and α(t, ω) ∈ Wm

H such that

θ(t, ω)u(t, ω) = β(t, ω)− α(t, ω) (2.28)

Put

Mt = exp

(
−
∫ t

0

u(s, ω)dBs −
1

2

∫ t

0

u2(s, ω)ds

)
; t ≤ T (2.29)

and

dQ(ω) = MT (ω)dP (ω) on F (m)
T . (2.30)

Assume that Mt is a martingale (w.r.t F (n)
T and P ). then Q is

a probability measure on F (m)
T , the process

B̂(t) =

∫ t

0

u(s, ω)dx+B(t); t ≤ T (2.31)

is a Brownian motion w.r.t. Q and in terms of B̂(t) the process

Y (t) has the stochastic integral representation

dY (t) = α(t, ω)dt+ θ(t, ω)dB̂(t). (2.32)
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2.10 Optimal stopping problem

Following Oksendal (2000) we consider an Ito diffusion Xt on Rn

and let g be a reward function on Rn, satisfying

1.

g(ξ) ≥ 0 for all ξ ∈ Rn (2.33)

2. g is continous

We seek to find an optimal stopping time τ ∗ = τ ∗(x, ω) for {Xt}
such that

Ex[g(Xτ∗ ] = supτEx[g(Xτ )], ∀x ∈ Rn, (2.34)

the supremum being taken over all stopping times τ . We seek

the optimal expected reward

g∗(x) = Ex[g(Xτ )]. (2.35)

We introduce some definitions.

Definition 2.15. (Oksendal, 2000) A measurable function f : Rn →
[0,∞] is supermeanvalued (w.r.t Xt) if

f(x) ≥ Ex[f(Xτ )] (2.36)

for all stopping times τ and all x ∈ Rn. If f is also lower semi-

continuous 3 then f is called l.s.c. superharmonic or just superhar-

monic.

Remark 2.1. If f ∈ C2(Rn) it follows from Dynkin formula that

f is super harmonic w.r.t. Xt iff

Af ≤ 0

where A is the characteristic operator of Xt.

3Semi continuity is weaker than continuity. A function f is lower semicontinuous at a point

y0 if for any ε > 0 there exists a neirborhood U of y0 such that f(y) ≥ f(y0) − ε ∀ y ∈ U .

This can be written as lim infy→y0f(y) ≥ f(y0)
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The next concepts are very important.

Definition 2.16. (Oksendal, 2000) Let h be a real measurable func-

tion on Rn. If f is a super harmonic (supermeanvalued) function

f ≥ h we say that f is a super harmonic (supermeanvalued) majo-

rant of h (w.r.t. Xt). The function

h̄ = inff f(x); x ∈ Rn, (2.37)

the inf being taken over all supermeanvalued majorant f of h, is

called the least supermeanvalued majorant of h.

Suppose there exists a function ĥ such that:

1. ĥ is a super harmonic majorant of h and

2. if f is any other super harmonic majorant of h then ĥ ≤ f.

Then ĥ is called the least superharmonic majorant of h. If h̄ is

lower semicontinuos, then ĥ exists and ĥ = h̄. It will be possible

to prove that if g is non negative and lower semicontinuous, then ĝ

exists and ĝ = ḡ (See Theorem 2.12 below).

Let g ≥ 0 and let f be a supermeanvalued majorant of g. Then

if τ is a stopping time

f(x) ≥ Ex[f(Xτ )] ≥ Ex[g(Xτ )].

So

f(x) ≥ supτEx[g(Xτ )] = g∗(x).

Therefore we always have, if ĝ exists,

ĝ ≥ g∗(x) for all x ∈ Rn (2.38)

Below we formally state that the converse inequality holds, lead-

ing to

ĝ = g∗.
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Theorem 2.12. (Construction of the least superharmonic

majorant) Let g = g0 be a non negative, lower semicontinuos func-

tion on Rn, and define inductively

gn(x) = supt∈SnE
x[gn−1(Xt)], (2.39)

where Sn = {k · 2−n; 0 ≤ k ≤ 4n}, n = 1, 2, 3, . . . . Then gn ↑ ĝ and

ĝ is the least superharmonic majorant of g. Moreover, ĝ = ḡ.

It is possible to replace the sets Sn with the whole interval [0,∞]:

Corollary 2.1. Define h0 = g and inductively

hn(x) = supt≥0Ex[hn−1(Xt)]; n = 1, 2, 3, . . .

Then hn ↑ ĝ.

2.10.1 Reward functions with negative values

The non-negativity assumption on g given by (2.33) can be re-

laxed. It can be noted that if g is bounded below, g ≥ −M where

M is a constant, it is possible to write

g1 = g +M ≥ 0

and apply the theory to g1. Since

Ex[g(Xτ )] = Ex[g1(Xτ )]−M if τ <∞ a.s.

we have g∗(x) = g∗1(x)−M and the problem can be reduced to an

optimal stopping problem for the function g1. If g is not bounded

below, problem (2.34) and (2.35) are not well defined unless the

following condition holds

Ex[g−(Xτ )] <∞ for all τ (2.40)

where

g−(x) = −min(g(x), 0).
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2.10.2 Connection with variational inequalities

The ’high contact principle’ provides useful information in de-

termining g∗. the principle states that, under certain conditions,

the solution g∗ is a C1 function on Rn if g ∈ C2(Rn).

Oksendal (2000) provides a verification theorem for optimal stop-

ping that makes it simpler to verify that a given candidate for g∗

is actually equal to g∗.

In what follows, we consider a domain G in Rk and let

dYt = b(Yt)dt+ σ(Yt)dWt; Y0 = y (2.41)

be an Ito diffusion in Rk. Define

τG = τG(y, ω) = inf{t > 0; Yt(ω) /∈ G} (2.42)

Let f : Rk → R, g : Rk → R be continuous functions satisfying

(i)

Ey
[∫ τG

0

f−(Yt)dt

]
<∞ for all y ∈ Rk (2.43)

(ii) the family {g−(Yτ ); τ stopping time τ ≤ τG} is uniformly

integrable w.r.t. Ry (the probability law of Yt), for all y ∈ Rk

(2.44)

Let I denote the set of all stopping times τ ≤ τG. Consider the

following problem: seek φ(y) and τ ∗ ∈ I such that

φ(y) = supτ∈IJ
τ (y) = Jτ

∗
(y), (2.45)

where

Jτ (y) = Ey
[∫ τ

0

f(Yt)dt+ g(Yτ )

]
for τ ∈ I. (2.46)

Note that J0(y) = g(y) and so we have

φ(y) ≥ g(y) for all y ∈ G. (2.47)
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The partial differential operator

L = LY =
k∑
i=1

bi(y)
∂

∂yi
+

1

2

k∑
i,j=1

(σσT )ij(y)
∂2

∂yi∂yj

coincides with the generator AY of YT on C2
0(R)k.

Theorem 2.13. (Variational inequalities for optimal stop-

ping)(Oksendal, 2000)

a) Suppose we can find a function φ : Ḡ→ R such that

i) φ ∈ C1(G) ∩ C(Ḡ)

ii) φ ≥ g on G limt→τḠ φ(Yt) = g(YτG)X{τG<∞} a.s.

Define

D = {x ∈ G;φ(x) > g(x)}.

Suppose Yt spends 0 time on ∂D a.s., i.e.

iii)

Ey
[∫ τG

0

X∂D(Yt)dt

]
= 0 for all y ∈ G

and suppose that

iv) ∂D is a Lipschitz surface, i.e. ∂D is locally the graph of a

function h : Rk−1 → R such that there exists K <∞ with

| h(x)− h(y) |≤ K | x− y | for all x, y

Moreover, suppose that following:

v) φ ∈ C2(G\∂D) and the second order derivatives of φ are

locally bounded near ∂D

vi) Lφ+ f ≤ 0 on G\D̄. Then

φ(y) ≥ φ(y) ∀ y ∈ G.

b) Suppose in addition to the above, that

a) Lφ+ f = 0 on D
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b) τD := inf{t > 0;Yt ∈ D} <∞ a.s Ry ∀ y ∈ G

and

c) the family {φ(Yτ ); τ ≤ τD, τ ∈ T } is uniformly integrable

w.r.t Ry, for all y ∈ G. Then

φ(y) = Φ(y) = supτ∈T Ey
[∫ τ

0

f(Yt)dt+ g(Yτ )

]
; y ∈ G

(2.48)

and

τ ∗ = τD (2.49)

is an optimal stopping time for this problem.

In most applications, including the ones in this thesis, the above

theorem is used in the following way. Consider a strongly Marko-

vian stochastic process (Xt)t≥0, with state space E, and the optimal

stopping problem

F ∗(x) = sup
τ
Ex
[
e−rτF (Xτ )

]
.

The state space can be split into two regions: C = {x ∈ E|F ∗(x) >

F (x)} and D = {x ∈ E|F ∗(x) = F (x)}. On the set C, which is

often called the continuation region, the function F ∗ should sat-

isfy the differential equation LXF
∗ = rF ∗ (the Bellman equation).

This guarantees that F ∗ is the smallest superharmonic function

dominating F . The function F ∗ is C2 on C and should be C1 on

E. So, on the boundary of C it should hold that F ∗ = F and

∂F ∗/∂x = ∂F/∂x. The latter condition (of then called the smooth

pasting or high contact principle) ensures optimality of the function

F ∗.

Note that Theorem 2.13 shows that one should also verify that

LXF
∗ < rF ∗ on D, i.e. that the function F ∗ is superharmonic

on the entire domain E. This is often neglected in applications of

optimal stopping theory.
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Chapter 3

Statistical preliminaries

3.1 Bandit problems

This sections aims at briefly outline continuous time bandits and in-

troduces the reader, following Berry and Fristedt (1985), to sequen-

tial selections for k ≥ 2 stochastic processes (or arms, treatments

etc.). Multi-armed Bandits are an example of sequential allocation

problem with exploration-exploitation trade-off. At each time step,

some resource is allocated to an action and some observable payoff

is derived. The goal is to maximise gains obtained in the sequence

of allocations. Bandits naturally address the trade-off between ex-

ploration and exploitation found in sequential experiments. The

player needs to balance the exploitation of actions that gave re-

wards in the past with the exploration of actions that might give

larger gains in the future (Bubekc and Cesa-Bianchi, 2012). Ban-

dit problems have been used to allocate resources between different

competing projects in large organisations.

Suppose there are two treatment for a certain disease and that

patients enter a treatment sequentially. One of the two treatments

must be used on a patient and the overall goal is to treat as many

patients as effectively as possible. In bandit problems time can be

discrete or continuous and the processes are corespondingly discrete

or continuous. Typically parameters that characterise the process

are unknown and the process selected for observation at any time

depends on the previous selection and results. A selection proce-

dure specifies which process is to be selected on the basis of previous

observations and selections. Utility for a strategy is defined by av-

eraging over all possible histories resulting from the strategy (Berry
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and Fristedt, 1985).

3.1.1 Continuos-time bandits: Brownian motion with un-

known drift

Two-point prior

The following section follows closely from Berry and Fristedt (1985).

The characteristics of arm 2 are assumed to be known, with con-

stant rate λ, generating the following reward process Y2 and Y1

Y2(t) = λt.

Arm 1 has an unknown drift and is it generates a Brownian motion

Y1(t) = θ1t+B(t),

where B(t) is a standard Wiener process with mean 0 and variance

1 at t = 1. The drift θ1 is random and follows a mixture distribution

F = pδa + (1− p)δb,

where b < a and F is the distribution of θ1. It is also assumed

that b < λ < a. The discount function is e−βt for some constant

β, 0 < β <∞. The worth of a strategy υ is

W (F, λ; e−βt; υ) = Eυ
∫ ∞

0

e−βtdYυ(t), (3.1)

where υ(t) indicates the arm being observed at time t. For the two

arms υ1(t) = 1 and υ2(t) = 2, it follows that

W (F, λ; e−βt; υ) = Eυ=1

∫ ∞
0

e−βt1{υ(t)=1}dY1(t) (3.2)

+Eυ=2

∫ ∞
0

e−βt1{υ(t)=2}dY2(t).

The latter term in (3.2) is meaningful provided the random set

{t : υ(t) = 2} is an a.s. measurable subset of [0,∞]. Given that

the integrals in (3.2) are stochastic the assumption of progressive

measurability with respect to the stochastic process need to be

satisfied. Next the supremum over the strategies is defined as

V (F, λ; e−βt) = sup
υ(t)

W (F, λ; e−βt, υ),
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There is a constant C ∈ (0, 1) depending on p such that arm 1

is optimal at time t if the current probability that θ = a is greater

then C. Arm 2 becomes optimal when the current probability is

less or equal to C. The decision maker, should then choose arm 2

indefinitely into the future when p = F ({a} ≤ C). When p > C

the decision maker should select arm 1 initially and stay with arm

1 until p(t, Y1(t)) = C, where p(t, y) denotes the conditional prob-

ability that θ1 = a given that Y1(t) = y. At such time the decision

maker should select permanently arm 2 (Berry and Fristedt, 1985).

3.2 Sequential probability ratio test

This section follows closely Siegmund (1985) and aims at intro-

ducing basic lemmas and the mathematical concepts that underpin

sequential analysis. The idea is to introduce the main concepts used

in sequential analysis in both the discrete and continuous setting.

Let x denote a random variable with probability density function

f . The Neyman-Pearson Lemma for testing a hypothesis H0 : f =

f0 against an alternative H1 : f = f1, for a constant r and a

likelihood ratio l(x) = f1(x)/f0(x), is given by

Reject H0 if l(x) ≥ r, (3.3)

Reject H1 if l(x) < r.

This class of test is optimal from the point of view of frequentist and

Bayesians. With Pi denoting the probability measure conditional

on the hypothesis Hi, i = 0, 1, any test of H0 against H1, which

is based on observing x and has a significance level no larger than

α = P0{l(x) ≥ r}, must have power no larger than P1{l(x) ≥ r}
(Cox and Hinkley (1974), p. 91).

In a sequential probability ratio test there is a third possibil-

ity: for intermediate values of l(x), one collects more data. Let

x1, x2, . . . be a sequence of random variables with joint density

functions

P{x1 ∈ dξ1, . . . xn ∈ dξn} = fn(ξ1, . . . .xn)dξ1, . . . , dξn, (n = 1, 2, . . . )

where each dξn for random variables i = 1, . . . , n represent a prob-

ability measure.
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Simple hypothesis H0 : fn = f0n for all n are tested against H1 :

fn = f1n for all n. Let ln = ln(x1, . . . , xn) = f1n(x1, . . . , xn)/f0n(x1, . . . , xn).

By taking constants 0 < A < B < ∞ and sampling sequentially

the random variables x1, x2, . . . until the random time

N = first n ≥ 1 such that ln 6∈ (A,B) (3.4)

= ∞ if ln ∈ (A,B) for all n ≥ 1

Stop sampling at time N and if N <∞

Reject H0 if lN ≥ B. (3.5)

Accept H0 if lN ≤ A.

Assuming that the procedure terminates (i.e. Pi{N < ∞} = 1 for

i = 1, 0) the size of the test is P0{lN ≥ B} and the power of the

test is P1{lN ≤ A}.

3.2.1 Approximations for Pi{lN ≥ B}

In what follows α = P0{lN ≥ B} and β = P1{lN ≤ A} is related

to A and B. Denote Bk as the subset of n-dimensional space where

A < lk(ξ1, . . . , ξk) < B

for k = 1, 2, . . . , n − 1 and ln(ξ1, . . . , ξn) ≥ B. The probability α

can be computed as

α = P0{lN ≥ B} (3.6)

= E1

[
l−1
N ; lN ≥ B

]
≤ B−1P1{lN ≥ B} = B−1(1− β).

Equation (3.6) takes the definition of α involving probability under

i = 0 and shows the relationship between the two probabilities

measures Pi, i = 1, 0 and the error probabilities α and β. Next, by

interchanging A and B
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β = P1{lN ≤ A} ≤ AP0{lN ≤ A} = A(1− α). (3.7)

The equalities (3.6) and (3.7) are not exact due to the fact that

the ln does not have to hit the boundary exactly when crossing

levels A or B. It is possible to solve the inequalities as

α ∼=
1− A
B − A

(3.8)

β ∼= A

(
B − 1

B − A

)
. (3.9)

3.2.2 Approximation for Ei(N)

In order to compute the expected value for N the observations xn

are assumed to be independent and identically distributed. The

likelihhod is give by

ln = Πn
k=1{f1(xk)/f0(xk)}.

By taking the log

log ln =
n∑
k=1

log{f1(xk)/f0(xk)}

a sum of i.i.d variables is obtained. Given constants a = logA and

b = logB

N = first n ≥ 1 such that log ln 6∈ (a, b) (3.10)

= ∞ if log ln ∈ (a, b) for all n

Proposition 3.1. Wald’s identity (Siegmund (1985)) Let y1, y2, . . .

be i.i.d. with µ = E(y1). Let M be any integer valued random vari-

able such that {M = n} is an event determined by conditions on

y1, . . . , yn (and independent of yn+1, . . . ) for all n = 1, 2, . . . and

assume that E(|M |) <∞. Then E
(∑M

k=1 yk

)
= µE(M).

By Wald’s identity

Ei{log lN} = µiEi(N), (3.11)

with

µi = Ei [log{f1(x1)/f0(x1)}] i = 0, 1.
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By using (3.8-3.9) the log ln can be understood as a two-valued

random variable taking on values a and b,

Ei{log lN} ∼= aPi{lN ≤ A}+ bPi{lN ≥ B}. (3.12)

Using (3.8-3.9), (3.11) and (3.12) gives the following approximation

E1(N) ∼= µ−1
1 {aA(B − 1) + bB(1− A)}/(B − A) (3.13)

and

E0(N) ∼= µ−1
0 {aA(B − 1) + bB(1− A)}/(B − A) (3.14)

Remark 3.1. The expected sample size approximations 3.13 and

3.14 can be expressed in term of the error probabilities α and β.

From (3.8), (3.9) and (3.12)

E1(N) ∼= µ−1
1

{
(1− β) log

(
1− β
α

)
+ β log

(
β

1− α

)}
(3.15)

and

E0(N) ∼= µ−1
0

{
α log

(
1− β
α

)
+ (1− α) log

(
β

1− α

)}
. (3.16)

3.2.3 Optimality of the Sequential Probability Ratio Test

In what follows a random variable T with values {1, 2, . . . ,∞} is

referred to as a stopping time if {T = n} ∈ Fn for all n. By observ-

ing a sequence of random variables {x1, x2, . . . , xn} it is possible to

infer whether T = n.

A sequential probability ratio test for a simple hypothesis is

optimal as it minimises the expected sample size under H0 and

H1 among all tests having no larger error probabilities (Siegmund,

1985). For a conventional test of H0 : f = f0 against H1 : f = f1

with error probabilities α = P0{Reject H0} and β = P1{Accept H0}
approximations (3.15) and (3.16) give the relationship between the

expected sample size and the error probabilities. The next The-

orem states that these expected sample sizes are the smallest for

these error probabilities.

Theorem 3.1. (Siegmund, 1985) Let T be the stopping time of any

test of H0 : f = f0 against H1 : f = f1 with error probabilities α,β

(0 < α < 1, 0 < β < 1). Assume Ei(T ) <∞ (i = 0, 1). Then

E1(T ) ≥ µ−1
1

{
(1− β) log

(
1− β
α

)
+ β log

(
β

1− α

)}
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E0(T ) ≥ µ−1
0

{
α log

(
1− β
α

)
+ (1− α) log

(
β

1− α

)}
.

where

µi = Ei[log{f1(x1)/f0(x0)}] (i = 0, 1)

It can be shown, by using Wald likelihood ratio and Wald iden-

tity (See Siegmund (1985) pp. 21), that the expected sample sizes

are minimal.

3.3 Brownian approximations and truncated tests

3.3.1 Sequential tests for the mean of a Brownian motion

A Brownian motion with drift µ and unit variance is a family of

random variables {W (t), 0 ≤ t ≤ ∞} with the following:

1. W (0) = 0

2. Pµ{W (t)−W (s) ≤ x} = Φ[(x−µ(t− s))/(t− s)1/2] 0 ≤ s <

t <∞

3. for all 0 ≤ s1 < t1 < s2 ≤ · · · ≤ sn < tn <∞, n = 2, 3, . . . the

random variables W (ti)−W (si), i = 1, 2, . . . , n are stochas-

tically independent

4. W (t), 0 ≤ t <∞ is a continuous function of t.

The standard normal cumulative distribution function is denoted

by Φ. When the Brownian motion with drift µ and variance σ2 per

unit time is considered, (2) in the list is replaced by

Pµ,σ{W (t)−W (s) ≤ x} = Φ[(x−µ(t−s))/σ(t−s)1/2], 0 ≤ s < t <∞

.

Proposition 3.2. For any −∞ < µi < ∞ (i = 0, 1), and t > 0,

the likelihood ratio of {W (s), s ≤ t} under Pµ0 relative to Pµ1 is

l(t,W (t);µ0, µ1) = exp

[
(µ0 − µ1)W (t)− t

2
(µ2

0 − µ2
1)

]
.

Proposition 3.3. (Likelihood ratio identity). For any −∞ < µi <

∞ (i = 0, 1), stopping rule T and Y ∈ ET (the class of random

variables prior to T ),

Eµ0(Y ;T <∞) = Eµ1{Y l(T,W (T );µ0, µ1);T <∞};
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in particular if Y = IA ∈ ET

Pµ0(A{T <∞}) = Eµ1 [l(T,W (T );µ0, µ1);A{T <∞}],

with l given in Proposition 3.2.

Proposition 3.4. (Wald’s identities). For any stopping rule T

with Eµ(T ) <∞,

EµW (T ) = µEµ(T )

and

Eµ[(W (T )− µT )2] = Eµ(T ).

Propositions 3.3 and 3.4 are special cases of the discrete time

results presented in Section 3.2.

3.3.2 Sequential probability ratio test for the drift of Brow-

nian motion

Let {W (t), 0 ≤ t ≤ ∞} be a Brownian motion with drift µ. For

a sequential probability ratio test of H0 : µ = µ0 and H1 : µ = µ1

with constants A < 1 < B, the stopping rule is given by

T = inf{t : l(t,W (t);µ1, µ0) /∈ (A,B)} (3.17)

with decision rule of rejectingH0 if l(t,W (t);µ1, µ0) ≥ B. Due to

the fact that W (t), 0 ≤ t <∞ is continuous and l(T,W (T );µ1, µ0)

equals A or B with probability one and the approximations given

in equations (3.8) and (3.9) become equalities. In what follows

it is assumed that µ0 < µ1, also the following notation is used:

b = (µ1−µ0)−1 logB, a = (µ1−µ0)−1 logA and θ = µ− 1
2
(µ1 +µ0).

The stopping rule (3.17) can be written as

T = inf{t : W (t)− 1

2
(µ1 + µ0)t /∈ (a, b)} (a < 0 < b) (3.18)

and under Pµ, W (t)− 1
2
(µ1 + µ0)t is a Brownian motion with drift

θ.

Theorem 3.2. (Siegmund, 1985) Let T be defined by (3.18) ad set

θ = µ− 1
2
(µ1 + µ0). Then

Pµ{W (T )− 1

2
(µ1 + µ0)T = b} =

1− e−2aθ

e−2bθ − e−2aθ
(θ 6= 0)

=
|a|
|a|+ b

(θ = 0)
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and

Eµ(T ) = [b(1− e−2aθ) + a(e−2bθ − 1)]/θ(e−2bθ − e−2aθ) (θ 6= 0)

= |a|b (θ = 0)

For the special case a = −b these become

Pµ{W (T )− 1

2
(µ1 + µ0)T = b} =

1

1 + e−2bθ

= 1/2

and

Eµ(T ) =
b

θ

(
1− e−2bθ

1 + e−2bθ

)
= b2

For the stopping rule (T ) of any sequential test of H0 : µ = µ1

vs H1 : µ = µ1, the lower bound for Ei(T )(i = 0, 1) in terms of

error probabilities of Theorem 3.1 is unchanged in the continuous

case. The relationships in Theorem 3.2 are exact and the sequential

probability ratio test achieves the lower bounds on both Eµ0(T ) and

Eµ1(T ) for error probabilities α and β (Siegmund, 1985).

3.3.3 Truncated sequential tests

Given the absence of an upper bound on the stopping rule, it is

natural to consider the effect of truncation on the properties of the

test.

In order to introduce a number of concepts in a simple frame-

work, and to keep the discussion contained, in this section a class

of one sided stopping rules is introduced.

Following (Siegmund, 1985), let {W (t), 0 ≤ t <∞} be a Brow-

nian motion with drift µ and consider the problem of testing H0 :

µ ≤ µ0 against H1 : µ ≥ µ0. It is assumed that for µ much larger

than µ0, the collection of data is expensive which ideally requires a

small sample size. It is also assumed that if µ ≤ µ0 data collection

is relatively inexpensive and a large sample size is desirable.
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For example in a clinical trial W (t) measures the cumulative

difference between patient’s response to a new treatment or placebo.

In this case H0 : µ = 0 denotes the null hypothesis of no difference

between the new treatment and the placebo, while H1 : µ > 0

indicates the superior benefit of the new treatment. If µ > 0 it

would be advantageous to have a small sample size so more patients

can benefit of the new treatment; from the patients point of view

the trial could continue indefinitely if µ = 0. A possible approach

to this kind of problem is given by a test designed to perform like

a sequential ratio test under H1 and a fixed sample test under H0.

Let µ1 > µ0 and for B > 1 the stopping rule is given by

τ = inf{t : l(t,W (t);µ1, µ0) ≥ B}.

With notation b = (logB)/(µ1 − µ0) and η = 1
2
(µ0 + µ1) the defi-

nition of τ becomes

τ = inf{t : W (t) ≥ b+ ηt} (3.19)

For m > 0 and c < b + ηm the following test is considered: H0 :

µ ≤ µ0 against H1 : µ > µ0. Sampling is stopped at

τ ∧m = min(τ,m),

reject the hypothesis H0 if either τ ≤ m or τ > m and W (m) > c,

otherwise do not reject H0. With c set to b+ηm the hypothesis H0

is rejected only if τ ≤ m. The power of the test (Siegmund, 1985)

is given by

Pµ{τ ≤ m}+ Pµ{τ > m,W (m) > c} (3.20)

= Pµ{W (m) > c}+ Pµ{τ < m,W (m) ≤ c}.

The following conditional probability is used to compute (3.20)

by unconditioning

Pµ{τ < m | W (m) = ξ} (ξ < b+ ηm), (3.21)

Additionally,

Pµ{W (m) ∈ dξ} = Φ[(ξ −mµ)/m1/2]dξ/m1/2

we have

51



Pµ{τ < m,W (m) ≤ c} (3.22)

=

∫ c

−∞
Pµ{τ < m | W (m) = ξ}Φ[(ξ −mµ)/m1/2]dξ/m1/2.

The first passage distribution is computed by using the reflection

principle.

3.4 Bayesian sequential analysis

3.4.1 Introduction

The idea lying at the core of Bayesian sequential analysis is that at

every stage of the procedure the posterior Bayes risk of making an

immediate decision is compared to the expected posterior risk that

will be obtained if more observations are taken (Berger, 1985).

Observation consist in X1, X2, . . . random variables. LetMi be

the sample space of Xi, define

Xn = (X1, X2, . . . )

and assume thatXn has density f(xn | θ) and distribution function

F (xn | θ) onMn =M1× · · · ×Mn. The unknown state of nature

concerned that is the subject of inference is defined by θ ∈ Θ. The

random variables Xi are independent and have common density

f(x | θ). A sequential sample form such density is given

fn(xn | θ) = Πn
i=1f(xi | θ). (3.23)

The observations are taken sequentially and after observing any

number of observations the experimenter can either make an imme-

diate decision or take more observations. There are cost in taking

observations, n denotes the number of observations, s denotes the

way observations are taken (e.g. group, one at a time) and a ∈ A
the action taken. The loss (or cost) when θ is the true state of

nature is given by

L(θ, n, s, a).

The sampling costs can be written as C(n, s) and the sum of deci-

sion loss (with linear utility for the decision maker) is L(θ, a).
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3.4.2 Bayesian sequential analysis - Notation

The prior density is π(θ) ∈ Θ and X0 and X0 imply that no obser-

vations have been taken. When observations are taken sequentially,

with action a ∈ A, the loss when θ is the true state of nature is

denoted by L(θ, a, n). The loss is assumed to be increasing in n. A

sequential decision procedure is denoted by

d = (τ , δ).

The sequential decision procedure consist of two components (i) τ is

the stopping time and is made up of functions τ0, τ1(x1), τ2(x2), . . .

indicating the probability of stopping sampling and make a decision

after xi has been observed (ii) δ is the decision rule and consists

of a series of decision functions δ0, δ(x
1), δ(x2), . . . , where δi(x

i) is

the action to be taken if sampling has stopped after observing xi.

The stopping time is the random function of X given by

N(X) = min{n ≥ 0 : τn(Xn = 1}.

The Bayes risk of a sequential procedure d is defined as

r(π,d) = Eπ[R(θ,d)]

where R(θ,d) is the risk function R(θ,d) = Eθ[L(θ, δN(XN), N)].

A Bayes sequential procedure is a sequential procedure that min-

imises Bayes risk and is denoted by

dπ = (τπ, δπ). (3.24)

The Bayes risk of the problem is given by

r(π) = inf
d
r(π,d) (3.25)

The marginal density is given by

mn(xn) = Eπ[fn(xn | θ)] =

∫
θ

fn(xn | θ)dF π(θ)

and for mn(xn) > 0 the posterior densities are given by

πn(θ) = π(θ | xn) =
fn(xn | θ)π(θ)

mn(xn)

After each observation, there is a new sequential problem starting

at that point. Once xn observation has been observed, the new

sequential problems is denoted En(xn).
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Denote the Bayes risk of a procedure d ∈ Dn by r(πn,d, n). The

objective is to find a procedure that gives minimum Bayes risk

r(πn, n) = inf
d∈Dn

r(πn,d, n).

The quantity r(πn, n) represents (conditional on xn) Bayes risk

of proceeding in optimal fashion at stage n. The quantity r(πn, n)

represents the minimum Bayes risk that can be achieved by observ-

ing xn. Intuitively, in order to make an immediate decision, the

value of r(πn, n) is compared to the Bayesian risk of an immediate

decision and continuing obverving data if r(πn, n) is smaller. The

posterior expected loss of action a at time n is denoted by

r0(πn, a, n) = Eπn [L(θ, a, n)].

Denote the posterior Bayesian risk of an immediate decision at

time n as

r0(πn, n) = inf
a∈A

r0(πn, a, n).

With θ having prior π, X with conditional density f(x | θ) and

marginal density m∗(x), define for any function g(x),

E∗[g(X)] = Em∗ [g(X)] = EπEXθ [g(X)]

where E is the expectation over X with respect to the marginal

density of X.

3.4.3 The sequential probability ratio test (SPRT) as a

Bayes procedure

The loss, in a sequential decision-theoretic approach is given by

L(θ, a, n) = L(θ, a) + nc

where L(θ, a) is ”0−Ki” loss. Letting ai denote accepting Hi, the

decision loss take the form of

L(θ0, a0) = L(θ1, a1) = 0

with

L(θ0, a1) = K1

and

L(θ1, a1) = K0.
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The prior, for a parameter space Θ = {θ0, θ1}, is specified as

π0 = π(θ0) = 1− π1

A Bayesian procedure dπ = (τ ∗, δπ), where δπ is a Bayesian

rule and τ ∗ is the stopping rule which stops sampling for the first

n, (n = 1, 2, . . . ) for which

ρ0(πn) = ρ∞(πn) (3.26)

The posterior Bayes decision risk is goven by ρ0(πn), while ρ∞(πn)

satisfies

ρ∞(πn) = min{ρ0(πn),E∗[ρ∞(πn(θ | X))] + c} (3.27)

the expectation is taken with respect to the marginal density of X

induced by πn(θ). The posterior distribution πn, are determined by

πn0 = πn(θ0).

For any prior π, we have

p(π) = inf
a

Eπ[L(θ, a)] = min{π1K0, π0K1}. (3.28)

The minimum Bayes risk among procedures taking at least one

observations is given by

ρ∗(π) = inf
d:N≥1

r(π,d)

Lemma 3.1. (Berger, 1985) The function p∗(π) is a concave func-

tion of π0, and is equal to c when π0 = 1 or π0.

Two cases are considered

1. p0(π) ≤ p∗(π) for all π0. When this is the case the Bayes

procedure is to immediately make the Bayes decision, taking

no observations

2. p0(π) > p∗(π) for some π0(0 < π0 < 1). In this case (see

Berger (1985)) p0(π) > p∗(π) if π′0 < π0 < π′′0 . This leads to

the following Theorem.

Theorem 3.3. (Berger, 1985) The Bayes sequential procedure, dπ,

stops sampling for the first n (n = 1, 2, . . . ) for which πn0 ≤ π′0 or

πn0 ≥ π′′0 , deciding a0 if πn0 ≥ π′′0 and a1 if πn0 ≤ π′0. The constants

π′ + 0 and π′′0 satisfy π′ ≤ K0/(K0 +K1) ≤ π′′0 .
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The Bayesian sequential procedure can be written by defining

the likelihood ratio of θ1 and theta0 at stage n

L =
Πn
i=1f(xi | θ1

Πn
i=1f(xi | θ0

and noting that

πn0 = π(θ0 | xn) =
π(θ0)Πn

i=1f(xi | θ0

π(θ0)Πn
i=1f(xi | θ0) + π(θ1)Πn

i=1f(xi | θ1)

=
1

1 + (π1

π0
)Πn

i=1(f(xi | θ1)/f(xi | θ0)

=
1

1 + (π1/π0)

(3.29)

Corollary 3.1. If 0 < π0 < 1, the the Bayes procedure , dπ, is of

the following form:

ifLn ≤ A, stop sampling and decide a0;

ifLn ≥ B, stop sampling and decide a1;

ifA < Ln < B, take another obsevation;
(3.30)

where A = π0(1− π′′0)/(π1π
′′
0) and B = π0(1− π′0)/(π1π0).

In what follows, it is assumed that it is desirable to take at least

one observation, equivalently this implies

π′0 < π0 < π′′0 . (3.31)

When (3.31) is satisfied A < 1 and B > 1.

Definition 3.1. (Berger, 1985) The procedure defined in (3.30)

with constants A < 1 and B > 1 is called the sequential probability

ratio test (SPRT) with stopping boundaries A and B, and is denoted

dA,B.

The Bayesian problem involves choosing A < 1 and B > 1 to

minimize r(π,dA,B). Let N denote the stopping time of dA,B as

N = min{n : Ln ≤ A or Ln ≥ B},

and define probabilities of Type I and Type II error as

α0 = Pθ0 deciding a1 = Pθ0(LN ≥ B),
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α1 = Pθ1 deciding a0 = Pθ1(LN ≤ A),

It is assumed that Pθ1(N < ∞) = 1 and Eθ1N < ∞. Let Eθ0 and

Eθ1N denote the expected stopping times under θ0 and θ1 respec-

tively. The Bayesian risk is then given by

r(π,dA,B) = π(θ0)R(θ0,d
A,B) + π(θ1)R(θ1,d

A,B)

= π0[α0K1 + cEθ0N ] + π1[α1K0 + cEθ1N ]. (3.32)

The problem reduces to the calculation of α0,α1,Eθ0N and Eθ1N
and the minimisation of (3.32) over A and B.
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Part II

A Quickest Detection Rule

for HTA
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Chapter 4

Introduction to Part II

4.1 Clinical trials

In clinical trials the term endpoint refers to the response variable

(i.e. the outcome measure under study). These can take various

forms, in Phase II trials for example, it is not uncommon to see

binary response variable (success or fail). A survival endpoint refers

to the time it takes for some event of interest to occur, this can be

for example, the elapsed time before an event such as death, failure

or relapse.

In conventional clinical trial designs the total sample size is de-

termined in advance and a single final analysis is performed once

data has been observed.

Two sided test for comparing two treatments with normal

response and known variance

The difference in response of two treatments, assumed to be a nor-

mally distributed random variable with known variance, is denoted

θ. The null hypothesis H0 : θ = 0 states that responses follow the

same distribution under both treatments.

The alternative hypothesis, H1 : θ 6= 0 includes the case θ > 0

and the case θ < 0, corresponding respectively to one treatment to

be superior and to one treatment to be inferior. In such case, the

standardise test statistics Z is distributed symmetrically around the

mean 0 under H0 and a test rejects H0 if | Z |> c for some constant

c. When H0 is rejected the sign of Z indicates which treatment is

to be preferred. The Type I error probability is given by
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α = Pr{| Z |> c} | (θ = 0).

The Type I error probability is the probability of wrongly re-

jecting the null hypothesis. The power of the test for a value of θ

is given by

Pr{| Z |> c} | (θ = δ) = Pr{| Z |> c} | (θ = −δ) = 1− β,

and indicates the probability of rejecting the null when it does not

hold. The parameter δ indicates the treatment difference. The

Type II error is given by β and indicates the probability of failing

to reject the null when it is not true.

Fixed sample Clinical Trials

The setup follows Jennison and Turnbull (2000). Let XAi and

XBi , i = 1, 2, . . . denote the responses of subjects allocated between

two treatments, A and B. Responses are assumed to be indepen-

dent and normally distributed with XA ∼ N(µA, σ
2) for subjects

receiving treatment A and XB ∼ N(µB, σ
2) for subjects receiving

treatment B. Testing the null hypothesis of no treatment difference

H0 : µA = µB against the two sided alternative µA 6= µB with Type

I error probability α and, power 1− β at µA − µB = ±δ.
The standardised statistics, for n subjects allocated to each

treatment is given by

Z =
1√

2nσ2

(
n∑
i=1

XAi −
n∑
i=1

XBi

)
∼ N((µA − µB)

√
{n/(2σ2)}, 1)

and Z ∼ N(0, 1) under H0 and the symmetric two-sided test with

Type I error probability α rejects H0 if

| Z |> Φ−1(1− α/2),

where Φ denotes the standard normal cumulative distribution func-

tion. In order to satisfy the power requirement

Pr{| Z |> Φ−1(1− α/2)} = 1− β,

when Z ∼ N(±δ
√
{n/2σ2}, 1) The number of subjects in each

treatment arm is given by

nf (α, β, δ, σ
2) = {Φ−1(1− α/2) + Φ−1(1− β)}22σ2/δ2.
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Fixed-sample designs, are easy to plan and implement but lack

flexibility. For example the trial strictly complies to the pre-specified

sample size regardless of unforeseen clinical results, such as better

than expected or futility or harm (Jennison and Turnbull, 2000).

In contrast sequential methods are flexible, regularly assessing data

over regular intervals and monitoring possible stopping due to fu-

tility or harm while observing the clinical outcomes. For example

with sequential methods, if a study shows overwhelming evidence

in favour of a treatment, the trial can be stopped allowing patient

in the arm with an inferior treatment to receive the more effective

treatment (Pocock, 1977; O’Brien and Fleming, 1977).

Sequential methods in clinical trials

The modern theory of sequential analysis stems from the work of

Wald (1947) and his sequential probability ratio test (SPRT). For

observations that belong to a distribution whose probability den-

sity function is known apart from the parameter θ, in its basic form

testing for a simple null hypothesis H0 : θ = θ0 versus a simple

alternative H1 : θ = θ1 consists in observing successive observa-

tions until the likelihood ratio exits a certain interval (a, b) where

the appropriate hypothesis is selected; otherwise the experiment is

continued.

The SPRT procedure typically leads to lower sample sizes than

fixed sample tests. Wald and Wolfowitz (1948) showed that the

SPRT has the optimal property that, for pre-specified Type I and

Type II error probabilities α and β, it reaches the smallest possible

expected sample size or average sample number (ASM) when either

H1 or H0 is true. The SPRT procedure is not bounded, leading

to a distribution of sample size that is skewed and displays a large

variance. In addition, the ASM can be very large in cases where θ is

not equal to those pre specified in the hypotheses. These problems

lead to consider curved boundaries for which the boundaries a and

b are no longer constant but are a function of the sample size n and

that ensure an upper limit n∗ on the sample size. Aroian (1968) and

Aroian and Robinson (1969) showed, using numerical integration,

how to compute a truncated SPRT and ASM curves.

The SPRT is concerned with the problem of selecting one of two
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competing hypotheses. The problem of selecting from more than

two hypotheses is more challenging and has received less attention.

An area that sees the application of such methods is communica-

tion theory, where problems include target detection in multiple

resolution radar and infrared systems, signal acquisition and pat-

tern recognition (Jennison and Turnbull, 2000). Baum and Veer-

avalli (1994) developed a procedure that generalises the SPRT to a

multi-hypotheses problem.

Armitage (1954, 1958, 1975) and Bross (1952, 1958) implemented

frequentist sequential methods in the medical field, with a particu-

lar focus on clinical trials. These methods did not find widespread

use as continuous assessment of the study was impractical. In re-

sponse, Cutler et al. (1966) proposed the use of group sequential

methods. In contrast to fully sequential methods, group sequential

tests involve analysing accumulated data at regular intervals rather

than after each observation.

The major impetus for group sequential methods came with

Pocock (1977), who demonstrated the flexibility of the approach

and gave indications for the implementation of group sequential

methods attaining Type I error and power requirements. Pocock

(1977) analysed accumulating data in a repeated significance test

at a nominal significance level. In the group sequential methodol-

ogy, patients are divided in K equally sized groups containing m

subjects on each treatment and the data is analysis at regular in-

tervals after each new group of observations have been observed.

In Pocock (1977) test, the critical value Cp(K,α) is chosen to give

the overall Type I error probability

PrµA−µB=0{Reject H0 at analysis k = 1, k = 2, . . . , or k = K} = α
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The test is given by

After group k = 1, 2, . . . , K − 1

if | Zk |≥ Cp(K,α) stop, reject H0

otherwise continue to group k + 1

After group K

if | Zk |≥ Cp(K,α) stop, reject H0

otherwise stop, accept H0

In Pocock’s design testing boundaries are equal throughout the

trial. O’Brien and Fleming (1977) proposed a class of group sequen-

tial tests based on the truncated SPRT. This test produce conser-

vative stopping boundaries at the early stage of the trial and give

a decision rule similar to the fixed sample test in the last trial’s

stage. In the O’Brien and Fleming’s design more stringent levels of

significance are allocated at the beginning of the study and allevi-

ates the significant levels towards the end of the trials (Yin, 2012).

The O’Brien and Fleming (1977) test consists of

After group k = 1, 2, . . . , K − 1

if | Zk |≥ Cp(K,α)
√
K/k stop, reject H0

otherwise continue to group k + 1

After group K

if | Zk |≥ Cp(K,α) stop, reject H0

otherwise stop, accept H0

Wang and Tsiatis (1987) proposed a family of two sided tests

that can produce stopping boundaries of different shapes, including

Pocock and Obrien & Fleming as special cases. The two-sided test

is indexed by a parameter γ that produces boundaries of different

shapes. The test with parameter γ rejects H0 after group k if

| Zk |≥ ck = CWT (K,α, γ)(k/K)γ−1/2, k = 1, . . . , K.
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The Wang and Tsiatis (1987) test consists of

After group k = 1, 2, . . . , K − 1

if | Zk |≥ Cp(K,α, γ)(k/K)γ−1/2 stop, reject H0

otherwise continue to group k + 1

After group K

if | Zk |≥ Cp(K,α, γ) stop, reject H0

otherwise stop, accept H0

In general, the Wand Tsiatis method can produce bounds that

give more stringent levels of significance to the end of the trial

requiring a lower maximum sample size than the O’Brien & Flem-

ing. With this test the experimenter can choose a suitable value

of γ, balancing reductions in expected sample sizes against a high

maximum sample size.

4.1.1 Bayesian approaches

The Neyman-Pearson procedure is the frequentist approach that

has dominated biostatistics in the last 50 years. In the frequen-

tist approach, parameters are regarded as fixed and not subject

to probability distributions. The Bayesian approach, in contrast

to the frequentist, considers the true value of a parameter as ran-

dom variables to which one can assign a probability distribution.

What is not known has a probability distribution assigned; what is

known is taken as given and what is unknown is given a conditional

probability based on the known values. Once the results of the ex-

periment is known, the parameter quantities are taken as known

and no longer subject probabilities (Berry, 2006).

The results of experiments are used to update probabilities of

parameters: make an observation, update what is known. The up-

dating process has great implications for trial design. The most

interesting feature being the ability to quantify what will happen

in a trial from any point onward, given the current result. No cer-

tain prediction can be made, however, the predictions are assessing
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the future with the right amount of uncertainty. These predictive

probabilities can be found in any trial and when applied to the final

result are very useful in deciding the course of the trial. They are

also important at the initial planning stage in assessing the value

(in terms of utility or costs) of the trial’s design (Berry, 2006).

Berry and Ho (1988) apply the Bayesian decision-theoretic ap-

proach of Raiffa and Schlaifer (1961) in which consequences of deci-

sions are considered in terms of the company’s assessment of related

consequences. Of the many consequences arising from the objective

of a clinical trial. Berry and Ho (1988) focus on those that can be

measured by financial terms. The aim of the methodology is not

to test for statistical hypothesis but rather to allow for the early

termination of the clinical trial if the expected loss from pursuing

the trial outweighs the expected return. If accumulating evidence

shows benefits the trial continues, if the accumulated evidence is

sufficiently negative the trial will end early with related saving of

resources.

In the Bayesian paradigm, the parameter of interest θ is consid-

ered a random variable with a probability distribution. at the start

of the trial, the distribution about θ is called a prior distribution

with density p0(θ). As evidence accumulate, this prior is updated

of from the posterior distribution that summarises the current un-

certainty about θ. Bayes law permits the updating and states that

the posterior density is given by the normalised product of the prior

density and the likelihood. This can be expressed as

p(θ | D) ∝ L(D | θ)p0(θ)

where D stands for observed data. At any stage, the posterior

distribution can be used to draw inference about θ. It is possible to

construct a credible set for the parameter of interest with posterior

probability equal to some level 1−2ε. For example, with ε = 0.025,

a Bayesian interval estimate (θL, θU) as in Lindley (1965) satisfies

Pr{θL < θ < θU | D) = 0.95.

As data is collected the standardised statistic is given by Z1, Z2, . . . .

At each stage k = 1, 2, . . . the likelihood for the parameter of inter-

est θ os the normal density with mean θ and variance I−1
k evaluated
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at θ̂(k) = Zk√
Ik

. The posterior distribution for θ at stage k, for con-

jugate normal prior distribution N(µ0, σ0), is

N

(
θ̂(k)Ik + µ0σ

−2
0

Ik + σ−2
0

,
1

Ik + σ−2
0

)
(4.1)

Following (Jennison and Turnbull, 2000) the 95% credible set for

θ is given by (
θ̂(k)Ik + µ0σ

−2
0

Ik + σ−2
0

± 1.96
1√

Ik + σ−2
0

)
.

It can be noted that he interval is reduced to the prior mean.

In contrast, the fixed sample frequentist confidence intervals are

centre around the estimate for the parameter θ̂(k).

Stopping rules

A stopping rule provides a mechanism for deciding whether to con-

tinue or stop an action. For example a stopping time is a ran-

dom variable that takes value at the occurrence of a certain event.

Bayesian inference on termination is easily derived, the problem

of design and definition of stopping rules is not so straightforward

(Jennison and Turnbull, 2000).

A possible stopping rule (that does not consider costs of utilities)

is to stop, at some intermediate stage k, if

(i) Pr{θ < 0 | Dk} < ε or (ii) Pr{θ > 0 | Dk} < ε (4.2)

where Dk stands for data observed till time k. A typical value for

ε is 0.025. The rule is equivalent to stop when 1− ε credible regions

exclude zero. Berry (1985) follows this type of rule when comparing

classical to Bayesian methods and Mehta and Cain (1984) recom-

mended, in the context of Phase II clinical trials, monitoring on

the basis of the posterior probability of exceeding a threshold and

provide charts that specify the appropriate stopping rules.

The frequentist properties of the Bayesian procedure described

in (4.2) show, when not controlled for, inflated Type I error rates.

For example, by choosing a value of the prior of σ0 → ∞ in (4.1)

and ε = 0.025, (4.2) is equivalent to the repeated significance test

that stops at the first k that | Zk |> 1.96. (Jennison and Turnbull,
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2000) show that in such case the Type I error rate becomes inflated

with K, the maximum number of analysis. When K → ∞ the

error rate is equal to 1.00. Some procedures have been suggested

to correct what has been termed ’sampling to a forgone conclusion’

Cornfield (1966). (Cornfield, 1966) proposed to use a mixed prior,

with such approach large number of analysis do not lead to the

almost certain rejection of the hypothesis and there is no ’sampling

to a forgone conclusion’. Berry (1987), by using data derived from a

fully sequential trial on a new treatment for leukaemia that involved

missing data points, argued that the Bayesian approach is much

more flexible when compared to the classical method. Berger and

Berry (1988) argue that the Bayesian approach is better suited to

calculate, given some data, ’final probabilities’ for hypothesis.

Cornfield (1966) design has not been adopted and current rec-

ommendation for clinical trial monitoring are among the lines of

(4.2). The concern in the use of Bayesian procedures (with no cost

or utilities) is due to the frequentist properties of Bayesian methods

and the choice of prior. Pocock and Hughes (1989) argue that the

Type I error is a useful tool when it comes to restrict the number

of false positives in the medical literature. Regulatory agencies,

such as the Food and Drug Association in the U.S.A., that have

committees dedicated to reviewing clinical trial’s evidence for drug

approval, have similar concerns (Jennison and Turnbull, 2000).

Bayesian inference, by making use of posterior probabilities, does

not depend on monitoring or stopping rules and consequently, there

is no need for maximum sample sizes. Target sample size, useful in

practice, can be derived using pre-posterior analyses using predic-

tive distributions. Spiegelhalter and Freedman (1986) for the situ-

ation where the decision is based on the credible interval (θL, θU)

and where the decision rule θL > 0 recommends the new treatment,

θU < 0 recommends rejection of the new treatment and θL ≤ 0 ≤ θU

be non-committal. The conditional probability of concluding with

recommendation of the new treatment on the basis that is prefer-

able (i.e. θ > 0) is given by∫∞
0
Pr{θL > 0 | θ}p0(θ)dθ∫∞

0
p0(θ)dθ

Similarly, it is possible to compute the conditional probability
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for θU < 0 and θ < 0. A target sample size should be such that

these probabilities are greater than some level, such as 90%.

Prior distributions

The choice of the prior distribution for the unknown parameters is

very important in the context of interim monitoring because data

dependent stopping can greatly increase the sensitivity of Bayesian

credible intervals to misspecification of the prior (Rosenbaum and

Rubin, 1984). While ideally a single defendable prior is desirable,

due to the fact that a prior is subjective, it is unlikely that such a

prior exists. A typical strategy involves bringing together a collec-

tion of analyses that are the result of a collection of priors (Jennison

and Turnbull, 2000). A list of priors that might be considered, fol-

lowing Jennison and Turnbull (2000) is listed below.

(i) Clinical priors : represent expert’s opinions. Priors are ob-

tains by surveying clinicians knowledgable of the field. A problem

with such approach is that chosen experts might be involved in the

trials and consequently be optimistic about the new proposed ther-

apy. An alternative approach, is to use meta-analysis studies. This

method can also be over-optimistic due to publication biases.

(ii) Sceptical priors : should be selected so they represent an

extreme of a range of options.

(iii) Enthusiastic priors : counterbalance a sceptical prior. an

enthusiastic prior could be set by centring the distribution to the

alternative allowing for a small probability that θ < 0.

(iv) Non-informative priors : represents a lack of any prior opin-

ion. This involves setting the prior probability of θ to lie in a

interval around zero and equally in a very wide interval.

(v) ’Handicap’ or ’pragmatic Bayes’ priors : proposed as a way

to control the frequentist properties of aBayesian monitoring pro-

cedure. The prior is chosen os that the false positive rate is con-

trolled at a given level α, is there is no planned number of K maxi-

mum analysis. However, in the Bayesian paradigm, choosing a prior

based on frequentist properties is paradoxical as the procedure does

not maintain the properties of independent inference and indepen-

dence from the sampling scheme Jennison and Turnbull (2000).
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Discussion

While many Bayesian approaches have been proposed, the frequen-

tist properties of false positive rates are considered to be very im-

portant. Additionally, the determination of sample sizes has been

based on frequentist ideas of Type I probability and power of the

test. Although Bayesian posterior probability can be very useful in

practice, the requirement of inference based on a family of priors

can be confusing Jennison and Turnbull (2000). Chevret (2012)

reviewed over 300 articles related to Bayesian clinical trials, spam-

ming the last 30 years period. The findings are that Bayesian meth-

ods are used more in the analysis than the design of clinical trials

and are overall not used much in practice. The challenges associ-

ated with Bayesian methods in the frequentist domain, such as the

possibly of an inflated Type I error rate or the choice of prior, are of

concern to the regulatory agencies and, although Bayesian methods

posses many desirable properties and have gained popularity, their

use is still limited.
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4.1.2 Bayesian decision theory and the value of informa-

tion

Claxton (1999) proposed to use the Value of Information developed

by Pratt et al. (1995) as a way to address how decision makers

should interpret the results of probabilistic modelling and to ad-

dress the question of whether enough evidence has been gathered.

In this framework, the expected cost of uncertainty is determined

jointly by the probability that a decision based on current evidence

will be wrong and the consequences of a wrong decision.

The decision maker must choose between two interventions using

only prior information. It is possible to minimise the expected

opportunity loss taken as the difference in incremental net benefit

between the best choice and the alternative actually chosen. The

expected opportunity loss is the expected cost of the uncertainty

surrounding the decision problem: this is the expected value of

perfect information (EVPI).

With current information, decisions must be made before we

know how uncertainties will resolve and the decision maker needs

to undertake a decision based on the expected net benefit of each

alternatives. If the decision maker has access to perfect information

he/she could then undertake decisions for different resolutions of net

benefit. The EVPI is the difference between the payoff with perfect

and current information (Pratt et al., 1995; Sculpher and Claxton,

2005).

Expected Value of Perfect Information (EVPI)

As in Ades et al. (2004)’ set-up, the decision model has unknown pa-

rameters θ and the choice is between different treatment j. NB(j, θ)

is the net benefit of treatment j = 1, 2, . . . , J for parameters of value

θ. The optimal decision, subject to current knowledge, is the one

that provides the higher expected net benefit:

maxjEθNB(j, θ). (4.3)

Maximising over the possible interventions j in not possible as the

true values of θ are unknown. However, it is possible to obtain the

expected net benefit of a decision taken with perfect information

by averaging equation (6.1) over the joint distribution of θ:
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EθmaxjNB(j, θ). (4.4)

The EVPI is the difference between equation (6.2) and (6.1) ,

amounting to the difference between the expected value of a decision

made with perfect and current information:

EVPI = EθmaxjNB(j, θ)−maxjEθNB(j, θ). (4.5)

Expected Value of Sample Information (EVSI)

In order to establish if the conditions for further research are present

and to identify efficient research design there is the need to also

consider the expected costs of sample information. The expected

value of sample information was introduced as a decision tool for

clinical trial design by Claxton and Posnett (1996) and Ades et al.

(2004).

The EVPI places an upper bound on returns to further research

and provide a necessary but not sufficient condition for conducting

further research. If the value of EVPI exceeds the cost of further

research it might be worthwhile to gather more information about

the problem as a whole or on selected parameters. However, in order

to establish if further research will be worthwhile (i.e. net benefits

of research are positive) and to identify efficient research design

there is the need to consider the marginal benefits and marginal

costs of sample information.

Technically efficient research design

The value of information analysis can be extended in order to find

the expected value of sample information for particular research

design (Ades et al., 2004).

A sample of size n on θ will give a sample result D. If the sample

result were known, it would be possible for the decision maker to

choose the alternative with the maximum expected payoff. It is

possible to compute the expected net-benefit by averaging over the

posterior distribution of the net-benefit of each intervention j given

the sample result D:
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maxjEθ|DNB(j, θ). (4.6)

As the value of D is not known in advance (i.e. the result of the

sample is not known), the expected value of a decision taken with

sample information is computed by averaging the maximum ex-

pected net benefits over the distribution of possible values of D.

In other words this amount to compute the expectation over the

predictive distribution of the sample results D conditional on θ,

averaged over the prior distribution of θ:

EDmaxjEθ|DNB(j, θ). (4.7)

The EVSI is the difference between the expected value of a decision

made with sample information and the expected value with current

information:

EVSI = EDmaxjEθ|DNB(j, θ)−maxjEθNB(j, θ). (4.8)

The EVSI proposed in (6.6) is for a single study design and single

sample size. In order to establish the optimal sample size for a par-

ticular study these computations needs to be repeated for various

sample sizes n.

The difference between the EVSI and the cost of acquiring sam-

ple information Cs is the expected net benefit of sample information

(ENBS). The payoff of research given by

ENBS = EVSI− Cs (4.9)

Where Cs is the cost of obtaining a sample of size n. The optimal

value of n is the one that generates the maximum ENBS. (Claxton

and Posnett, 1996) state the core of this problem as

∂EVSI

∂n
= Cm (4.10)

where Cm is the marginal cost of sampling. In other words the op-

timal sample size is the one that satisfies the condition of marginal

benefit of sampling to be equal to the marginal sampling cost

MB = MC.

Claxton and Thompson (2001) propose to apply a Bayesian de-

cision theoretic approach to the value of information in order to
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address i) which clinical decisions are worth addressing through

clinical research ii) if a clinical decision problem is worth evalu-

ating, which of the competing alternatives should be considered

relevant iii) what is the optimal scale of the prospective research

iv) what is the optimal allocation of trial entrants and v) what is

the value of the proposed research. The approach found in Clax-

ton and Posnett (1996) and Claxton (1999) are generalised to the

analysis of a sequential clinical decision problem. Estimates of the

expected net benefit of sample information are used in a dynamic

program to establish optimal allocation of trail entrants, optimal

sample size, technically efficient research design and the expected

net benefit derived from proposed research.

4.1.3 Real option and Investment decisions

A health-care system’s objective is to maximise health gains from

available resources and a decision of adopting (or rejecting) a tech-

nology should be based on its costs, health outcomes and the cost

effectiveness threshold. While in the absence of irreversibilities

(Palmer and Smith, 2000) or any costs associated with reversing

a decision (Eckermann and Willan, 2008), the decision to adopt a

technology can be based on expected cost effectiveness, the explicit

inclusion of a sunk investment cost becomes important under un-

certainty. The implication is that the decision makers need to be

reassured that the selected policy is sustainable, as reversing the

decision involves an economic cost.

Palmer and Smith (2000) apply Dixit and Pindyck (1994) real

option approach to the adjustment (under a certain degree of ir-

reversibility and uncertainty) of the incremental cost-effectiveness

ratio for a drug. The conclusion is that for innovations with high

uncertainty, large reversal cost and low opportunity costs of delay

should be reimbursed at a lower rate than treatments with opposite

characteristics.

Forster and Pertile (2012) illustrated through a combined real-

option and decision-theoretic approach to HTA that view adoption,

treatment and research decision as a single economic project that

existing models found in the HTA literature consider only some

of the dimensions relevant to optimal decisions, thus leading to
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potential efficiency losses in resources allocation.

They refer to the literature on dynamic stochastic optimisation

of Dixit and Pindyck (1994) to define two important dimensions

that give value to an option: irreversibility and flexibility. The

former refers to an action taken at a time t that cannot be undone

at t+ 1 and the latter to an action available at time t that can be

postponed to time t+ 1.

By using a two-period framework, Forster and Pertile (2012)

explore four scenarios under either the present (absence) of irre-

versibilities and presence (absence) of the flexibility of deferring

adoption/abandonment to a later time. Their framework shows

that when a technology is costlessly reversible and treatment to

patient cannot be deferred, then it is best to treat patients with

the treatment that has the highest expected benefit. On the other

hand, if there are irreversibilities, adopting on the basis of current

evidence might ’lock’ patients in a treatment with an inferior treat-

ment. With the present of an option for treatment of patients, it

is optimal to post-pone adoption and take advantage of the new

evidence as it becomes available.

When adoption treatment and research decisions are viewed as a

single economic project, the optimal rule must account for a number

of dimensions such as i) the expected costs and benefits of additional

research ii) the size of the treatment population over the stages

of the project iii) flexibility and irreversibility of actions iv) the

dynamic nature of the decision process.

Eckermann and Willam (2007) consider the choices that decision

makers face when the new intervention has positive but uncertain

net benefits. In such case the decision maker can either i) adopt

with no further research ii) adopt and undertake a trial (assuming

the decision is reversible) and iii) delay the decision and under-

take a trial. In the paper the trade-off between the value and cost

of information is considered. By delaying the decision there is an

expected opportunity cost for patients receiving the standard in-

tervention outside the trial and when the intervention is adopted,

due to reversal costs, the expected value of information is reduced.

They suggest that the optimal strategy and trial design needs to

consider both the opportunity cost of delay and the costs of rever-
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sal.

Eckermann and William (2008) demonstrate that in the case of

irreversible decisions, delaying adoption with research is preferred

to adoption and no trial when the EVSI is greater than the ex-

pected cost of information and the expected opportunity cost of

not treating patients with the new technology. When decisions are

reversible, adopting the technology with trial becomes an optimal

strategy. However, in this case the EVSI is lowered due to the

lower probability of reversal being optimal and lower payoffs when

reversal is optimal. Decision makers face joint research and reim-

bursement decisions and such choices should also account for cost

of reversal and opportunity costs of delay.

McKenna and Claxton (2011) examine a range of research de-

signs, including length of follow up, sample size, policy options

available and opportunity costs related to research. In the paper

the authors distinguish the impact that research decisions have on

patients enrolled in the trial, not enrolled and at trial end once

evidence is reported.

They evaluate adoption and research decisions and for the lat-

ter account for a range of opportunity costs attached conducting

further research, both under ’approval with research’ or ’only in re-

search’. They argue that there is a trade-off between the expected

net benefits of early approval and the expected gains if approval

is withheld till research reports. If research is possible with ap-

proval, the presence of irrecoverable cost associated with this de-

cision might lead to ’only in research’ decision as this avoids the

commitment of costs until the results of research are known. If the

new technology is ’approved with research’ and the research reveals

that the technology is not as cost effective as initially expected,

losses will have been incurred and will not be compensated by later

gains. The impact of such decision on an investment time profile

will be greater with high uncertainty. The paper highlights the

tradeoff between the expected net benefits to current patients from

being able to accessing a technology early and the future health

benefits to patients that will be realised by withholding approval

until new research evidence becomes available.

Claxton et al. (2012) outlines the key principles and assessment
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required when considering ’adoption in research’ or ’only in re-

search’. Irrecoverable costs become more important (i) when the

estimates of cost-effectiveness would alter if the decision would be

revised sooner than anticipated (ii) with a higher probability of al-

tering the decision earlier than expected and (iii) the size of the

health terms as a proportion of the net health effects. The assess-

ment of irrecoverable costs calls for considerations on how health

effects and costs accrue overtime, giving a ’break-even’ time point

at which the costs are recovered. For example a large negative ir-

recoverable cost may imply a large negative health effect to be offset

by future gains. If the break even time point is not so distant in

the future it would indicate that irrecoverable costs are not signifi-

cant and they would have little influence on the alternative policy

payoffs. In contrast, if the break-even time point is in the distant

future, the impact of irrecoverable costs must be considered along

side with the likelihood that guidance will change.

Griffin et al. (2011) suggested that the decision to adopt or reim-

burse a technology may damage future prospects of further research

being conducted. Under such circumstances there must be a formal

assessment of the opportunity loss of immediate adoption (value of

forgone research). The omission of the opportunity loss can lead

to the adoption of technologies for which current evidence is insuf-

ficient.Decisions to adopt or reimburse a new technology based on

expected cost-effectiveness can be justified when no irreversibilities

are present if its approval has no effect on the prospect of acquir-

ing further evidence that may be needed. The decision made must

consider whether the benefits of immediate access to a technology

exceed the value of the evidence that maybe forgone.

The investment option approach has been implemented as a

watchful waiting regime for diseases with slow progression (Driffield

and Smith, 2007). In this case the patient management strategy

involves postponing curative treatment. The patient undergoes a

period of close observation and periodic tests that monitor the pro-

gression of the disease.

The basic ideas is that, by deferring the treatment decision

and monitoring the patient, more information is collected and this

may obviate the use of expensive, irreversible or risky treatments.
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The economic decision structure implies a 3-fold decision at each

time point: treat, continue monitoring or discharge. The model is

solved using backward induction, with treatment recommendation

that follow from the current state. At very low levels of expected

net benefits the patient is discharged, at high level the patient is

treated immediately. One of the issues reported in the study is that

the incorrect modelling of the options can introduce serious biases

into treatment advice. However, the technique has the potential

to demonstrate that watchful waiting is beneficial in areas where

waiting has been traditionally viewed as detrimental.

Discussion

The methods discussed above can inform the decision to adopt or

reimburse a technology based on current evidence, indicate if more

evidence is needed to reach a decision and be used to identify effi-

cient research design. The question of whether to adopt a technol-

ogy, whether more evidence is required and how to design future

research, depends on economic considerations and traditional ap-

proaches based on hypothesis testing that fail to take into account

costs attached to decision errors prove not to be an adequate guide

for health care technology assessment.

Decision theoretic contributions have considered the expected

costs and benefits of additional research by implementing the EVSI

approach. These contributions have been extended to account for

irreversibility costs such as the forgone value of evidence (Griffin

et al., 2011; Claxton et al., 2012; McKenna and Claxton, 2011; Eck-

ermann and Willam, 2007; Eckermann and William, 2008). How-

ever, the EVSI is essentially static in nature and, in the value of

information decision framework, the issue of dynamics and flexibil-

ity of decisions has not yet been yet fully dealt with.

Examples of real options that account for uncertainty, degrees

of investment irreversibility and time-dynamics are implemented by

Palmer and Smith (2000) and Driffield and Smith (2007). However,

these real option models assume that the underlying variable fol-

low a stochastic process and limitations are seen as the expected

value of sample information cannot be directly incorporated. Al-

though there are examples of real option approach in the HTA
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literature, presently there has been no systematic use of these tech-

niques (Meltzer and Smith, 2012).

A more recent approach that incorporates dynamics, irreversibil-

ity and flexibility has been put forward by Pertile et al. (2010). The

authors extend Chernoff (1961) models of sequential sampling to a

multi-period perspective that incorporates the dimensions stated

above. The model derive optimal sequential sampling rules for

technology adoption and research abandonment decisions. This

is a considerable move towards a true dynamic approach in HTA.

Sequential sampling can provide a more complex decision making

framework that allows for efficiency gains in resource allocation and

a better assessment of uncertainty in HTA.

It is now common for clinical trial evaluating medicines, medical

devices and clinical procedures to incorporate economic analysis

of these interventions. The growing number of clinical-economic

trials reflect both interest in economic information for new health-

care technologies and the requirements that many countries have

in terms of economic value and clinical efficacy. Trial based cost-

effectiveness studies have great appeal because of their high internal

validity. It has recently been argued that by improving the quality

and uniformity of these studies will be valuable to decision makers

who need to consider economic value along with clinical efficacy

(Ramsey et al., 2005). A dynamic sequential approach to HTA is

likely to be very valuable in this context.
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Chapter 5

On a simple quickest

detection rule for

health-care technology

assessment

5.1 Introduction

Health technology assessment (HTA) decisions are based on evi-

dence of relative costs and effectiveness of alternative interventions.

Decision makers, when evidence suggests that the incremental net

benefit of the new intervention is positive, are faced with the deci-

sion of whether to adopt the new intervention over the existing one

or, given the uncertainty surrounding the evidence, wait for more

information.

The explicit inclusion of a sunk investment cost is important as

in the absence of such costs decision makers could switch between

technologies as new evidence becomes available. The implication

of uncertainty and cost associated with the investment is that the

decision makers need to be sufficiently confident that the selected

policy is sustainable, as reversing the decision involves an economic

cost. The presence of uncertainty and the degree of irreversibility

mean that there is economic value in employing a modelling ap-

proach that has flexibility in the timing of a decision (Palmer and

Smith, 2000).

Forster and Pertile (2012) illustrated through a combined real-
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option and decision-theoretic approach to HTA that view adoption,

treatment and research decision as a single economic project that

existing models found in the HTA literature consider only some

of the dimensions relevant to optimal decisions, thus leading to

potential efficiency losses in resources allocation. When adoption

treatment and research decisions are viewed as a single economic

project, the optimal rule must account for a number of dimensions

such as i) the expected costs and benefits of additional research ii)

the size of the treatment population over the stages of the project

iii) flexibility and irreversibility of actions iv) the dynamic nature

of the decision process.

More recently Pertile et al. (2013) discussed the use of real op-

tions as a way to view adoption, treatment and research decisions as

a single economic project. Their approach follows in part from the

financial option pricing literature and exploits Bayesian sequential

analysis in order to update the beliefs as more evidence is gathered.

One of the shortcoming of their approach is due to the requirement

of a maximum experiment time N1. In their model, once the point

N is reached the option expires and becomes worthless and con-

sequently any decision must take either before or at time N . The

implication is that the stopping bounds dependent on the maxi-

mum time N , influencing the investment/abandonment decision,

and it is not clear how one should go about determining the maxi-

mum time N . Additionally, the model requires the construction of

a computationally intensive grid of values and it’s solved by back-

ward induction. In contrast, real option models such as the ones

proposed by Dixit and Pindyck (1994) involve solving a set of equa-

tions for some unknown values2 and do not have computationally

intensive requirements. While the framework shows the potential of

such modelling procedures, presently the real option approach has

not been implemented in any systematic way (Meltzer and Smith,

2012).

In this chapter we introduce a sequential value of information (S-

1This restriction is embedded in financial options models. In financial markets, option’s

expiry dates are know and at such time the option’s payoff has either positive value or is

worthless. American options allow investor to exercise an option before the expiry time and

the optimal stopping is dictated by the optimal stopping bounds. This contrast with the real

option modelling approach where investment can theoretically be delayed forever.
2It is often possible, and it is the case of the model proposed in this paper, to solve for

the unknown values in a spreadsheet program such as Excel.
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VoI) Bayesian model for the evaluation of health care technologies

that allow to find an optimal stopping time at which the decision

maker (i) knows that the value of further evidence is zero (i.e. zero

value of waiting) and (ii) selects a strategy (either invest or abandon

research) that gives maximal health benefit to patients. The S-

VoI framework involves observing a trial and at each observation

update a Bayesian posterior probability about the effectiveness of

the healthcare technology. With only prior information the value

of (further) information is a the maximum and it gradually reduces

to zero as the trial continues.

In contrast to traditional approaches found in the literature the

proposed framework introduces a dynamic sequential Bayesian ap-

proach to decision making under uncertainty when the objective

of the decision maker (DM) is to maximise health benefit. The

proposed model has a number of advantages over existing method-

ologies (i) by finding an optimal stopping time the decision is taken

at the point where there in no value for further waiting (ii) error

probabilities can be computed and the decision maker can assess

the cost of error (iii) sample size is reduced to the minimum neces-

sary in order to make a decision with minimal error (iv) the model

incorporates a penalty for not using the best technology and (v) de-

cision bounds are sample size independent. As a consequence the

proposed method maximises expected gains both in terms of health

to the population and minimised trial costs. Traditional decision

tools such as the expected value of perfect information (EVPI) are

based on ex-ante calculation and therefore consider only the de-

terministic time dimension. The proposed methodology improves

decision making by enlarging the strategy space to stopping times.

In the paper clinical evidence is modelled as a noisy process: we

start with a discrete binomial tree and, by allowing the number of

observation within a time interval to increase, on the limit the ran-

dom variable’s distribution is obtained reflecting the uncertainty

surrounding each clinical outcome. The methodology presented in

the paper is based upon the work of Shiryaev (1978) and Peskir

and Shiryaev (2006). However, there are some crucial difference

between our approach and Peskir and Shiryaev’s work: (i) we max-

imise health benefits (i.e. monetary payoffs) rather than minimising
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a risk function which has Type I and Type II error probabilities as

arguments (ii) we observe an arithmetic Brownian motion and de-

fine the likelihood ratio process as the Radon-Nikodyn derivative

and while Peskir and Shiryaev (2006) solve the risk function via

the posterior probability process, in our approach, given that the

likelihood ratio process follows a geometric Brownian motion, it is

possible to formulate the solution of the optimal stopping problem

in terms of the likelihood ratio (iii) we depart from the traditional

rules of statistical inference by incorporating a rate of discounting

for the expected payoffs; in this way the optimal stopping problem

fully incorporates the economic nature of decision making in HTA.

The paper is organised as follows: section two gives some back-

ground, section three deals with the probabilistic environment re-

quired for sequential hypothesis testing, section four specifies the

decision problem while section five presents the solution to the op-

timal stopping problem. Section six discusses results implications

for the value of information and the irrelevance of inference and

section seven presents a case study comparing the model decision

with a traditional decision making approach for robot-assisted la-

paroscopic prostaectomy.

5.2 Clinical trials

The decision maker wishes to test whether a newly produced health

technology has effectiveness greater than the minimum required for

reimbursement. The decision maker wishes to test if the newly

developed health-care technology exceeds the health care system

threshold value λ and sets up a a set of tests aimed at uncovering

whether the new technology provides the increased effectiveness.

Within such scenario we observe a sequence of outcomes from a

clinical trial. The trial evolves through time and at regular points

we observe an outcome representing information about the effec-

tiveness of the healthcare technology.

The outcome of a clinical trial is measured in terms of the cu-

mulative benefit to the population over time and is denoted by Xi

for each step i. We model the uncertainty of the trial’s outcome by

allowing Xi to go either up by a factor u or down by a factor d.

Trials evidence is noisy, which implies that trend in the sequence
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of observed outcomes cannot be clearly observed. The two factors

are given by

u = θµdt+ σ
√
dt

d = θµdt− σ
√
dt

(5.1)

where θ ∈ [0, 1] and dt is obtained by splitting an interval [0, t]

into n parts (i.e. dt = t/n) and µ is the incremental effectiveness

threshold per time period that warrants adoption.

Following the above we model the evolution of the health benefit

as binomial tree. The random variable Xi can take values Xi−1 +u

or Xi−1 +d with equal probability. The factor σ
√
dt determines the

size of the noise. The total accumulated evidence after n steps is

equal to Xn =
∑n

i=1Xi. The sequence X0, X1, X2, . . . describes a

stochastic process, where X0 is the initial value.

Denote Xt = limn→∞Xn(t) where the limit is understood to be

in distribution and n → ∞ implies dt ↓ 0. According to the CLT,

the distribution of Xt exists and is given by

Xt ∼ N(θµt, σ2t)

implying that in the continuous time limit the process Xt follows

the arithmetic Brownian motion

Xt = θµt+ σWt, (5.2)

where (Wt)t≥0 is a standard Brownian motion. Of course, this is

only a heuristic argument providing pointwise convergence. In or-

der to prove uniform convergence, a “functional” form of the CLT is

required. A fairly straightforward application of Donsker’s Invari-

ance Principle (see, for example, Steele, 2001, Theorem 5.4) shows

that, indeed, for all x ∈ R,

lim
n→∞

P
(
X(n)(·) ≤ x

)
= P (X(·) ≤ x) .

The decision maker problem is to find an optimal time at which

to make an investment/abandonment decision about the new tech-

nology. If the trial’s outcome supports the hypothesis H1 that the

effectiveness of the new technology is greater than the health care

system minimum requirement there is investment, else, under H0
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research is abandoned and there is no adoption. The problem is

then to sequentially test for H0 : θ = 0 vs H1 : θ = 1.

5.3 Sequential hypothesis testing

The sequential testing problem of two hypotheses is discussed in

Shiryaev (1978) and Peskir and Shiryaev (2006). As in their setup

we assume that what follows takes place on a probability space

(Ω,F , Qp) and that we are given mutually independent random

variables θ = θ(ω) and a standard Wiener process W = (Wt)t≥0

under the probability measure Qp.

The probability measure Qp follows a mixture distribution

Qp = pQ1 + (1− p)Q0 (5.3)

for p ∈ [0, 1].

Since we take a Bayesian viewpoint θ is considered a random

variable taking the value of 1 or 0, and Qp is such that Qp{θ =

1} = p and Qp{θ = 0} = 1 − p. As outlined above, we observe a

process X = (Xt)t≥0 taking the form

Xt = θµt+ σWt, (5.4)

where µ > 0 and σ2 > 0 are given and fixed. The conditional

distribution of Xt is

Xt | θ ∼ N(µθt, σ2t)

and thus p and 1 − p play the role of a priori probability for the

statistical hypotheses

H1 : θ = 1 and H0 : θ = 0 (5.5)

respectively.

The process Xt generates the filtration FXt = σ(Xs : 0 ≤ s ≤ t),

which is augmented with the Qp-null sets. The likelihood ratio

process Λt is defined as the Radon-Nikodym derivative

Λt =
d(Q1 | FXt )

d(Q0 | FXt )
(5.6)
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Proposition 5.1. The likelihood ratio process admits the following

representation:

Λt = exp
( µ
σ2

(
Xt −

µ

2
t
))

, t ≥ 0 (5.7)

Proof. See Appendix

Note that under hypotheses H1 and H0 the corresponding prob-

ability measures are Q1 and Q0 respectively. These measures are

mutually singular since it holds that

Λt −→

0, a.s. under Q0

∞, a.s. under Q1

as t→∞

In other words, if we can observe (Xt)t≥0, as the trial continues

the observer will learn the true state of nature and decide between

the two hypothesis.

The likelihood ratio process can be expressed as a stochastic

differential equation (SDE).

Proposition 5.2. The likelihood ratio process (Λt)t≥0 solves the

stochastic differential equation

dΛt =
µ

σ
ΛtdWt (5.8)

Thus the likelihood ratio Λ follows a geometric Brownian motion

on the state space E = [0,∞). In addition the process (Λt)t≥0 is a

martingale.

Proof. See Appendix

Peskir and Shiryaev (2006) express the posterior probability pro-

cess πt = Qp(θ = 1 | FXt ) as a function of the likelihood ratio

process using Bayes rule:
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πt(Λ) =

(
p

1− p
Λt

)/(
1 +

p

1− p
Λt

)
. (5.9)

Therefore, we can also write the likelihood ratio process as a

function of the prior and the posterior probability process

Λt =
πt

1− πt
1− p
p

.

(5.10)

In the remainer we will work with (Λt)t≥0 or (πt)t≥0 interchangeably.

5.4 Decision problem

The observed process (Xt)t≥0 represents the outcome of the ran-

domised clinical trial (RCT) in terms of cumulative health benefit

and expresses the extent of effectiveness of the health care technol-

ogy. The decision maker seeks to test if the new technology is more

effective than the minimum required by the heath care system. The

value µ represents the health benefit derived from adopting this new

technology. If the new technology is more effective than the thresh-

old λ specified by the health care system the decision maker will

invest into this new technology.

The decision maker values payoffs in terms of Quality of Ad-

justed Life Years (QALY). This is a standard measure3 for health

benefit in health care technology assessments and allow to attach a

monetary value to the benefits derived from adopting the technol-

ogy, conditional on the technology being effective.

We seek to establish an optimal stopping time τ at which the

decision takes an investment or abandonment decision about the

health care technology. In the model adoption/abandonment de-

cisions are based upon the present net monetary value of QALY

gained/lost.

When undertaking the investment the decision maker incurs a

sunk cost I. In the investment equation (5.11) below P1 represents

3This is the standard in the UK. Other measures that are specific to the heath care

technology can also be used. We use QALY to keep the analysis tractable in terms of

monetary benefits/costs.
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the monetary benefit from adopting the new health care technol-

ogy conditional on θ = 1 and P0 represents the monetary loss of

adopting the technology conditional on θ = 0. Thus, −P0 is the

opportunity cost of adopting the new technology when this is in

fact not better than the standard care, in effect making a type I

error.

The table below summarises the various payoffs under invest-

ment and abandonment

θ = 1 θ = 0

Investment P1 > 0 P0 > 0

Abandonment −P1 0

The net present value of the investment, denoted by, FI , is

FI(Λ) = π(Λ)P1 − (1− π(Λ))P0 − I

=

[(
p

1− p
Λ

)/(
1 +

p

1− p
Λ

)]
P1

−
[(

1−
(

p

1− p
Λ

)/(
1 +

p

1− p
Λ

))]
P0 − I,

(5.11)

If research is abandoned there is no investment. In equation

(5.12) below −P1 describes the monetary loss incurred when re-

search is abandoned conditional on θ = 1, in effect making a type

II error. It is assumed that forgone benefits and costs are the same.

Therefore the expected payoff of abandoning, denoted by FA is

negative as it identifies the expected QALY loss due to keeping

standard care when in fact the new health care technology is more

effective. So,

FA(Λ) = −π(Λ)P1 = −
[(

p

1− p
Λ

)/(
1 +

p

1− p
Λ

)]
P1 (5.12)

Figure (5.1) shows FI and FA as function of the likelihood ratio.

It can be noted that both payoffs are non-linear in Λ (even though
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Figure 5.1: Payoffs of investment and abandonment as a function of the likeli-

hood ratio, Λ

they are affine in the posterior probability, π). Additionally the

function FA is concave and the function FI is convex.

Assuming that all payoffs and trial costs are discounted at a

rate r > 0 the decision maker needs to find a stopping time τ ∗ that

solves the following optimal stopping problem

F ∗(Λ) = supτEΛ

[
−c
∫ τ

0

e−rtdt+ e−rτ (max [FI(Λτ ), FA(Λτ )])

]
= −c

r
+ supτEΛ

[
e−rτ [max (FI(Λτ ), FA(Λτ ))] + e−rτ

c

r

]
= −c

r
+ supτ

{
EΛ[e−rτ (FI(Λτ ) + c

r
)] if Λτ ≥ Λ̄

EΛ[e−rτ (FA(Λτ ) + c
r
)] if Λτ < Λ̄

(5.13)

where Λ̄ is the unique point for which FI(Λ̄) = FA(Λ̄). The term

c represents the cost stream connected to running the trial. This

includes sampling costs and the forgone health benefits associated

with allocating resources to the trial rather than treating patients.

These costs are incurred up to the time at which a decision of

investment or abandonment is made.

The solution to (5.13) can intuitively be thought of taking the
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following form. The state space will be split in 3 regions. The first

one is a region around Λ̄ where continuation of the trial is optimal,

hence called continuation region, denoted by

C = {Λ ∈ R+|F ∗(Λ) > max(FA(Λ), FI(Λ))}.

When Λ gets large enough we enter the investment region, where

adoption of the health-care technology is optimal. This region is

denoted by

DI = {Λ ∈ R+|F ∗(Λ) = FI(Λ)}.

Conversely, when Λ gets low enough, we enter the abandonment

region, where abandoning the clinical trial is optimal. This region

is denoted by

DA = {Λ ∈ R+|F ∗(Λ) = FA(Λ)}.

5.5 Problem Solution

The likelihood ratio process (Λt)t≥0 follows a geometric Brownian

motion for which it is possible to find a solution to the optimal

stopping problem (5.13). At the heart of the approach lie functions

of the form

ϕ(Λ) = AΛβ1 +BΛβ2 , (5.14)

which solve the differential equation

AΛϕ = rϕ. (5.15)

Here A denotes the generator (or characteristic operator) of the

process (Λt)t≥0,

AΛf =
1

2

µ2

σ2

∂2f

∂Λ2
, (5.16)

A and B are arbitrary constants (to be determined as part of the

solution) and β1 > 1 and β2 < 0 are the roots of the quadratic

equation

Q(β) =
1

2

µ2

σ2
β(β − 1)− r = 0. (5.17)

The following proposition gives sufficient conditions for the ex-

istence of a solution to the optimal stopping problem (5.13). For

89



each pair (ΛA,ΛI), ΛA < Λ̄ < ΛI , define the functions

ϕ̂(Λ) = A
(

Λβ1 − Λβ1−β2

A Λβ2

)
, and ϕ̌(Λ) = B

(
Λβ2 − Λβ2−β1

I Λβ1

)
.

Then define the function ϕ by

ϕ(Λ) =
ϕ̂(Λ)

ϕ̂(ΛI)
FI(ΛI) +

ϕ̌(Λ)

ϕ̌(ΛA)
FA(ΛA).

It follows from Thijssen (2013, Proposition 6) that

ϕ(Λ) =EΛ

[
e−rτ̂(ΛI)

∣∣∣τ̂(ΛI) < τ̌(ΛA)
]
QΛ(τ̂(ΛI) < τ̌(ΛA))FI(ΛI)

+EΛ

[
e−rτ̌(ΛA)

∣∣∣τ̂(ΛI) > τ̌(ΛA)
]
QΛ(τ̂(ΛI) > τ̌(ΛA))FI(ΛI),

where

τ̂(ΛI) = inf{t ≥ 0|Λt ≥ ΛI},

is the first hitting time of ΛI from below and

τ̌(ΛA) = inf{t ≥ 0|Λt ≤ ΛA},

is the first hitting time of ΛA from above.

So, if one defines the function

F (Λ) =

FI(Λ) if Λ ≥ Λ̄

FA(Λ) if Λ < Λ̄,

and the stopping time τ ∗ = τ̂(ΛI) ∧ τ̌(ΛA), then ϕ is simply the

unconditional expectation of the present value of abandonment or

investment, whichever threshold is reached first:

ϕ(Λ) = EΛ

[
e−rτ

∗
F (Λτ∗)

]
.

Proposition 5.3. Suppose that the system of equations

− ϕ̂′(ΛI ,ΛA)

ϕ̂(ΛI ; ΛA)
FI(ΛI) + F ′I(ΛI) +

ϕ̂′(ΛI ,ΛI)

ϕ̂(ΛA; ΛI)
FA(ΛA) (5.18)

− ϕ̌′(ΛA,ΛI)

ϕ̂(ΛA; ΛI)
FA(ΛA) + F ′A(ΛA) +

ϕ̌′(ΛA,ΛA)

ϕ̂(ΛI ; ΛA)
FA(ΛA) (5.19)

has a solution (ΛA,ΛI), with ΛA < Λ̄ < ΛI . Suppose, in addition,

that

1. ϕ is strictly convex, and

2. ϕ is more convex than FA on (0, Λ̄), i.e. F ′′A/F
′
A > ϕ′′/ϕ′ on

(0, Λ̄).
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Then the optimal stopping problem (5.13) has the solution

F ∗(Λ) =


FA(Λ) if Λ ≤ ΛA

ϕ̂(Λ)
ϕ̂(ΛI)

FI(ΛI) + ϕ̌(Λ)
ϕ̌(ΛA)

FA(ΛA) if Λ ∈ (ΛA,ΛI)

FI(Λ) if Λ ≥ ΛI ,

(5.20)

and the optimal stopping time is τ ∗ = τ̂(ΛI) ∧ τ̌(ΛA).

Proof. Note that

AΛϕ̂− rϕ̂ = AΛϕ̌− rϕ̌ = 0,

and that

ϕ̂(ΛA) = ϕ̌(ΛI) = 0.

Also, since FI is concave it is less convex than ϕ on [Λ̄,∞). There-

fore, the result follows immediately from Thijssen (2013, Proposi-

tion 7).

Figure 5.2 shows the solution for a case with cost of sampling

equal to c = 10, a prior set to p = 0.5, discount rate of r = 0.15,

payoff of investment P1 = 130, Investment cost of I = 60 and losses

from adoption when in fact the technology is not more effective

than standard care of P0 = 60. The process Xt has standard de-

viation σ = 0.2 and mean µ = 0.25. For this base-case scenario

it turns out that the conditions of Proposition 5.3 are satisfied for

p ∈ [0, 0.72]. For higher values of p, FA is more convex than ϕ,

which implies that the value function F ∗ is no longer superhar-

monic. Since superharmonicity of the value function is a necessary

condition for optimal stopping, no solution exists for high values

of p. Essentially, for such values it is always optimal to adopt the

technology immediately.

Figure 5.3 shows some simulated sample paths for the likelihood

ratio process and some hypothetical bounds. Different values for µ

and σ in the likelihood ratio process lead to different hitting times.
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Figure 5.2: Value function F ∗ and bounds ΛI , ΛA for the case with c = 10,

p = .5, r = .15, P1 = 130, P0 = 60, I = 50, µ = .25, and σ = .2.

5.6 Analysis of the model

It has been argued (see Claxton (1999)) that classical statistical

inference (and its Bayesian counterpart) is arbitrary and irrelevant

to clinical decision making. He suggests to use the expected value

of perfect information (EVPI) as a way to deal with uncertainty

in health-care technology (HCT) assessment. The EVPI is given

by the probability that a decision based on mean net benefit is

incorrect (i.e. not cost effective) and the size of the opportunity loss

of this wrong decision. It should be noted however, that the EVPI

represents the maximum value of additional information (clinical

research) and it is used to decide whether to fund more research. In

particular, if the estimated costs of additional research (e.g. another

trial) are higher than the EVPI, proposed research should not be

undertaken and a decision for adoption by the health care system

can be made on existing evidence.

This approach involves checking if sufficient information has
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been gathered and belongs to a framework where there is irre-

versibility of investment and where the decision maker is confronted

with a ’invest now or never’ type of decision (Pratt et al., 1995).

Where reversing policy is costly and the decision maker has the

possibility of deferring decision a sequential approach arises natu-

rally.

5.6.1 Option value and waiting for more information

In between the thresholds the solution (5.20) gives the value of

the investment / abandonment option at any point in the trial.

When this value is compared to the investment/abandonment pay-

off, equation (5.20) reflects the value of waiting for more evidence

(i.e. the value of information or the opportunity cost of investment

with current evidence).

Figure 5.4 shows the function ϕ(Λ) for different values of σ. It

can be noted that the value of the investment option (i.e. the option
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of investing now or investing later with more evidence) increases

with σ. As uncertainty increases, there is more to be gained in

waiting, and Figure 5.4 shows that it is possible to quantify the

waiting value for different levels of uncertainty. Figure 5.2 shows

the investment option value against the investment payoff FI(Λ)

and FA(Λ). As the value of waiting for more evidence decreases, at

the investment point ΛI , the value of the investment option ϕ(Λ)

and the payoff FI(Λ) coincide and the value of waiting goes to zero.

Similarly, on the other side, when the value of waiting for more

evidence decreases, at the abandonment point ΛA, the value of the

abandonment option ϕ(Λ) and the payoff FA(Λ) coincide and the

value of waiting goes to zero.

Figure 5.5 shows the value of waiting (i.e. value of information)

at different values for Λ. The value of information is at the highest

around the initial point Λ = 1 as at this point the evidence in

favour of H0 and H1 are equal as there is only prior information

available. As Λ increases there is less and less value in waiting

and this reaches zero at the optimal adoption/abandonment time

τ ∗. Outside of the threshold region waiting has no value and the

decision maker should act immediately .
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Figure 5.4: ϕ(Λ) for different values of σ
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5.6.2 Posterior probability

In the health technology assessment literature one of the relevant

decision tools is the probability of a drug being cost-effective (i.e.

net benefit to be greater than the cost-effectiveness threshold).

While the standard approach is to compute the probability via

simulation methods, in our proposed model the posterior proba-

bility π(Λ) of making a gain of P1 and the probability (1 − π) of

making loss P0, can be obtained by looking at the posterior value

at the decision bound. In this way it is possible to assess the prob-

ability for the heath-care technology to provide a gain P1 or a loss

P0, in turn allowing to determine the probability for the heath-care

technology to be cost effective.

5.6.3 Comparative statics

It is possible to explore the impact of varying parameters on the

decision bounds. In this section we explore the comparative statics

of the payoffs P1, P0, parameters µ, σ, cost c and the discount rate
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r. Figure 5.6a-f and Figure 5.7a-f show how the bonds vary due to

a change in a single parameter. The prior has been set to a neutral

value of 1/2 for all cases.

Figure (5.6a) shows the variation in bounds due to changing the

payoff P1. The payoff P1 enters both the adoption and the abandon-

ment payoff consequently affecting both upper and lower bounds.

As the benefit from adoption increases the loss from not adopting

a beneficial technology increases accordingly. It should be noted

that as the payoff P1 increases the upper bound eventually goes

below the starting value for the likelihood ratio and the posterior

process. As one would expect, holding P0 and the required initial

investment costs constant while increasing substantially the payoff

P1, due to the large gain to the healthcare system, above a certain

threshold value it becomes optimal to invest immediately.

Figure (5.6b) shows the bounds variation due to changing the

loss P0. This loss enters the adoption payoff and thus affects only

the upper bound. When the loss P0 increases the adoption payoff

decreases forcing the upper bound upwards to reflect the penalty

brought in by a larger decision error. A large negative payoff to

the healthcare system makes adoption more difficult, as one would

expect.

Figure (5.6c) shows the bounds variation due to changing the

drift µ. It should be noted that increasing µ and holding σ constant

implies that the volatility of the likelihood process given by µ/σ

increases. With a higher µ the trial becomes more informative

relative to the noise component. This increases the value of waiting

for more information. The non-monotoniticy in the expected time

until a decision is taken arises because of two opposing forces: on

one hand, we get more information per time period, leading to a

decision being taken sooner, one the other hand, because the value

of waiting increases, we want to make a decision later. It is not

clear at priori what effect dominates.

Figure (5.6e) shows the bounds variation due to changing the

volatility σ. As for µ, σ also determines the likelihood process

volatility. The figure appear counterintuitive as on average, a deci-

sion is taken sooner (bands are narrower) for higher levels of noise.

This is in contrast with the real option literature, where more uncer-
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Figure 5.6: Bounds variation for parameter change in terms of the likelihood

ratio.
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Figure 5.7: Bounds variation for parameter change in terms of the posterior

(π).
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tainty further delays the decision. The reason for taking a decision

sooner is due to the fact that, as σ increases, a trial that provides

less information is kept alive. This in turn means that waiting leads

to less precise information which reduces the value of waiting. With

an expensive trial, one might as well decide sooner. In such case,

given that the trial is less informative, the cost of waiting do not

outweigh the benefit of evidence.

Figure (5.6d) shows the bounds variation due to changing the

discount rate r. The discount rate r enters the payoff functions and

a high r decreases the present value of both the benefit and loss.

Keeping all other parameters constant, increasing the discount rate

r has the effect of correspondingly decreasing both upper and lower

bounds. The discount rate affects project’s present value and a high

discount rate will decrease payoff values affecting decision bounds.

Figure (5.6f) shows the bounds variation due to changing the

sampling costs c. Increasing the cost of sampling leads to narrower

decision bounds. When the cost of conducting the trial are high

the decision bounds become narrower forcing an earlier decision.

5.7 Some Probabilities

5.7.1 Probability of adoption/abandonment

We compute the probability of hitting the adoption or investment

bound. The expected discount factor, under the posterior proba-

bility Qπ(Λ) (below simply noted as QΛ) is given by

EΛ[e−rτ
∗
] = EΛ[e−rτ̌(ΛA) | τ ∗ = τ̌(ΛA)]QΛ(τ ∗ = τ(ΛA))

+ EΛ[e−rτ̂(ΛI) | τ ∗ = τ̂(ΛI)]QΛ(τ ∗ = τ(ΛI)).

=
ϕ̂(Λ)

ϕ̂(ΛI)
+

ϕ̌(Λ)

ϕ̌(ΛA)
(5.21)

Using the fact that

QΛ(τ ∗ = τ̌(ΛA)) = 1−QΛ(τ ∗ = τ̂(ΛI)) (5.22)

and writing the discount factors in (5.21) as

EΛ[e−rτ̌(ΛA) | τ ∗ = τ̌(ΛA)] =

(
Λ

ΛA

)β2
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and

EΛ[e−rτ̂(ΛI) | τ ∗ = τ̂(ΛI)] =

(
Λ

ΛI

)β1

we obtain

QΛ(τ ∗ = τ̌(ΛA)) =
EΛ[e−rτ

∗
]−
(

Λ
ΛI

)β1[(
Λ

ΛA

)β2

−
(

Λ
ΛI

)β1
] . (5.23)

5.7.2 Error Probabilities

We can compute the ex ante probabilities that we make an erro-

neous decision. Following from Shiryaev (1978), the frequentist ap-

proach, in contrast to the Bayesian approach above, does not take

into account benefits and costs. It is rather concerned with purely

inferential concerns such as Type I (falsely rejecting the null) and

Type II (falsely rejecting the null) errors.

Under such scenario, the basic problem seeks to find a pair (d, τ),

where τ is the time of stopping, d is the decision rule d : Ω→ {0, 1}
and accepting H1 if d = d1 or accepting H0 if d = d0 such that the

probability error of the first and second kind satisfy:

Prob(accept H1 | true H0) ≤ α

Prob(accept H0 | true H1) ≤ β

and the mean times of observation E0τ and E1τ are as small as pos-

sible. The “payoffs” assigned to these errors are given in Table 5.1.

State of nature

{Θ = 1} {Θ = 0}

Decision
Adoption 0 -1

Abandonment -1 0

Table 5.1: Payoff matrix of a health technology decision problem.

In the frequentist setting the decision maker wishes to control

for these errors. Typical values are α = 0.05 and β = 0.2 with

α + β < 1. The optimal stopping rule turns out to rely on the
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likelihood ratio process (Λt)t≥0. In fact, the optimal decision rule

(τ̂ , δ̂) is (Shiryaev, 1978, Theorem 4.6)

τ̂ = inf
{
t ≥ 0|Λt 6∈ (Â, B̂)

}
, and d̂ =

1 if Λt ≥ Â

0 if Λt ≤ B̂
, (5.24)

where the frequentist bounds are given by

Â =
β

1− α
, and B̂ =

1− β
α

. (5.25)

In other words, the inferential bounds of the frequentist approach

do not change when the decision environment changes.

Finally, for abandonment and adoption bounds ΛA and ΛI , the

error probabilities are defined as

α = Q0 (τ ∗ = τ̂(ΛI)) , and β = Q1 (τ ∗ = τ̌(ΛA)) .

Such error probabilities, as a function of the investment and adop-

tion bounds and as a corollary of (5.25), are given by the following

Wald approximations (See Poor and Hadjiliadis (2009))

α =
1− ΛA

ΛI − ΛA

and β = ΛA
1− ΛA

ΛI − ΛA

(5.26)

5.7.3 Current and future population

The issue of population, such as the tradeoff between the expected

net benefits to current patients from being able to accessing a tech-

nology early and the future health benefits to patients that will

be realised by withholding approval (See McKenna and Claxton

(2011)) can be dealt by separately modeling patients that will ben-

efit from the trial in the future and current trial participants. In

such case, a rescaled µ would measure the expected net benefit of

the new technology in the trial’s population while rescaled P1 and

P0 would account for the population that would benefit from the

treatment once the technology is adopted or abandoned.

Choosing the time horizon over which information about a de-

cision problem can be of use is challenging and poses a number

of question on it’s assessment and integration in a decision model

(Philips et al., 2008). The model presented above assumes that the

technology once adopted is used forever. However, considerations

of a time horizon will impact the cost-effectiveness if investment
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costs are not recovered quickly enough. Many real-life investment

are finite and expire or became valueless at some point in the future

(e.g. patents). In practical applications, where the decision maker

needs to limit the investment to a certain time frame and related

population, it is necessary to multiply the costs and benefits by an

exponential factor

1− exp(−rT )

where T is the life time factor.

5.8 Case study: standard vs robot-assisted la-

paroscopic prostaectomy

In this section we apply the model developed above to the HTA

of robot-assisted and standard laparoscopic prostaectomy from the

perspective of the UK national health service using data from a

published study (Close et al., 2013). The application of the model

developed above to this case study if for illustration purposes only

and aims at showing the value that our approach can have for HTA.

Standard laparoscopic prostaectomy and robot-assisted laparo-

scopic prostaectomy are favoured over the open technique as these

cause less bleeding and allow for a quicker return to activities.

Robot assisted laparoscopic prostaectomy is increasingly used com-

pared to standard laparoscopic technique. However, the high cost

has led authorities to question the value of robotic-assisted proce-

dure to patients and the health care system.

Many of the existing cost studies on prostaectomy techniques do

not include cost effectiveness analysis that takes into account the

value of relative gains that men achieve if a particular technique

has better outcomes.

Close et al. (2013) conduct a cost-utility analysis for two in-

dipendent cohort of 5000 men undertaking respectively robotic or

laparoscopic prostaectomy over 10 years. They report that the use

of robotic prostaectomy was on average £1412 more costly than

laparoscopic prostaectomy and that it was also more effective with

mean gain of QALY of 0.08 (95% CI,0.01-0.15) over 10 years for a

case load of 200 patients per year. As we take the point of view of

the UK health service, we seek to establish if robot prostaectomy
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Table 5.2: Cost-effectiveness of standard vs robot-assisted laparoscopi prostaec-

tomy

Parameter Description Source Value

E1 − E0 Incremental QALY gain Close et al 0.08 QALY

C1 − C0 Incremental cost Close et al £1412

σ Std. deviation Close et al £1071

µ Incremental QALY gain Set as NIMB > 0 £1413

p Prior Assumed 0.5

r Discount rate Close et al 3.5%

c Cost of sampling Assumed £10

I Close et al 0

n Number of patients Close et al 10000

is cost-effective at the UK NICE threshold of λ = £30, 000 at such

threshold value the mean gain is of £2400.

Confidence intervals give a standard deviation σ of £1071 indi-

cating considerable uncertainty. We set the minimum required µ

for adoption by the national health service to £1413, just greater

than the incremental cost of the robot assisted surgery. In other

words we set µ such that the net incremental mean benefit4 is pos-

itive, ensuring a positive gain to the heath service if the technology

is adopted. The adoption excess benefit P1 is set for each patient

at £2400 and the cost of wrongly adopting the technology P0 is

set equal to the incremental cost at £1412. The prior is set to a

neutral value of p = 0.5, the discount rate is set to r = 0.035 and

initial investment I is assumed to be zero. Having no information

on the cost of following patients and reporting the outcome of the

procedure, we assume sampling costs for each observation c to be

£50. Parameters are summarised in Table 7.1.

Figure 5.8a shows the optimal stopping bounds obtained with

such values. The upper bound is ΛI = 1.30 and the lower bound

ΛA = 0.0035. Correspondingly these bounds in terms of the poste-

rior are πI = 0.56 and πA = 0.003.

The value of the likelihood ratio at the point estimate is Λ = 8.24

and π = 0.89, much higher than the required adoption bounds.

These value suggest that there is enough evidence to make a in-

vestment decision.
4NIMB = (E1 − E0)λ− (C1 − C0)
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5.8.1 Probability of adoption/abandonment

Using formulas in section (5.7) it is possible to compute the proba-

bility of abandonment and the probability of investment. The prob-

ability of abandonment using (5.23) and (5.22) is PA(τ ∗ = τ̌(ΛA)) =

0.69 and the probability of investment PI(τ
∗ = τ̂(ΛI)) = 0.31.

The probability of committing a type I error is α = 0.77 while

the probability of committing a type II error is β = 0.0035. These

results seem to go against standard practice of keeping Type I error

probabilities low. The reason for a high α and low β in this model is

as follows. A Type I error implies that one adopts the technology if

it’s not effective. This may be costly due to the additional expense

related to the technology, but does not harm patients and, there-

fore, has no impact on patient’s health benefits. A Type II error,

however, implies not treating with a superior technology. This er-

ror carries with it large opportunity costs: the health benefits that

would have been realised if the technology had been accepted. The

model, therefore, does what one would expect: it keeps β low. As

a consequence α will be large.

5.9 Conclusion

The Bayesian Sequential Value of Information presented in this pa-

per brings together statistical and economic modelling, allowing for

flexible decisions that account for irreversibility costs. The model

provides rules that allow the decision maker to take the decision

that maximise health benefits and reduce losses on the health care

system.

Our novel approach to healthcare technology assessment makes

use of Bayes rule in order to compute the posterior probability for

the effectiveness of the healthcare technology at each point during

the randomised control trial. Decision bounds are a function of

uncertainty and prior information and follow from the parameters

of the model. Decisions are taken at the moment in which the net

benefit of the healthcare technology hits a pre-specified threshold

value. At this optimal stopping time there is not more gain to be

made by further waiting.
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5.10 Appendix

5.10.1 Proof of Lemma 5.1

The Wiener process Xt under P1 and under P0 takes the form

dXt = σdWt Pp = P0

and

dXt = θµdt+ σdWt Pp = P1

Girsanov’s Theorem allows for the change of measure P1 to P0.

Define u(t, ω) = −µ
σ

and

Λt(t, ω) = exp

(
µ

σ

∫ t

0

dWs −
µ2

2σ2

∫ t

0

ds

)
= exp

(
µ

σ

∫ t

0

σdWs −
µ

2σ2
t

)
= exp

(
µ

σ2

[∫ t

0

σdWs −
µ

2
t

])
= exp

( µ
σ2

(
Xt −

µ

2
t
))

Also, the (Λt)t≥0 process is a martingale.

EP0 [Λt | Fs] = EP0 [e
µ

σ2 (Xt−µ2 t) | Fs]

= EP0 [e
µ

σ2 [(Xt−Xs)−µ2 (t−s)]e
µ

σ2 (Xs−µ2 s) | Fs]

= ΛsEP0 [e
µ

σ2 [(Xt−Xs)−µ2 (t−s)] | Fs]

= Λse
− µ2

2σ2 (t−s)EP0 [e
µ

σ2 (Xt−Xs)]

= Λse
− µ2

2σ2 (t−s)e
µ2

2σ2 (t−s)

= Λs (5.27)
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5.10.2 Proof of Lemma 5.2

Apply Ito’s lemma to Λt = exp
(
µ
σ

(
Xt − µ

2
t
))

gives

dΛt =
∂Λ

∂t
dt+

∂Λ

∂x
dx+

1

2

∂2Λ

∂x2
dx2

= −1

2

µ2

σ2
Λt +

µ

σ2
ΛtσdWt +

1

2

µ2

σ4
Λtσ

2
t dt

=
µ

σ
ΛdWt
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Chapter 6

Don’t Stop ’Til You Get

Enough: a quickest

detection approach to HTA

6.1 Introduction

When uncertainty about the net benefits of a health-care technology

is present there is a positive probability of making an incorrect

decision. The expected value of information developed by Raiffa

and Schlaifer (See Pratt et al. (1995)) and later applied to the

case of health technology assessment (HTA) and clinical research

design by Claxton and Posnett (1996) and Claxton (1999) can be

used to quantify the expected opportunity loss associated with this

uncertainty. When the expected opportunity loss is less than the

cost of a new study the information is deemed to be sufficient and a

decision can be made. When this static decision making approach

is implemented to clinical research design it suggests to compute

an ex-ante optimal (fixed) sample size deemed to be sufficient for

the purposes of decision making. Claxton (1999) put forward the

idea that inference is irrelevant to decision making and suggested

that the question of whether more evidence is needed should be

determined by the value of information framework developed by

Raiffa and Schaifer (See Pratt et al. (1995) ).

Recently, William and Pinto (2005) suggested a method for com-

puting the ex-ante sample size n∗ for a clinical trial that maximises

the difference between the cost of a trial and the expected value of
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the results using the incremental net benefit as the main outcome

for the trial. William and Kowgier (2008) developed the model of

William and Pinto (2005) to a multistage adaptive-design involving

an early termination rule based on the expected net gain from the

trial computed for each stage j. If the EVSI in the next stage j+ 1

is less than the total cost at j + 1 then the trial terminates at the

end of the jth stage and the decision rule can be applied. Although

it is theoretically possible to construct a purely multistage model

that jointly determines the value of n∗j for all j maximizing the ex-

pected net gain, due to its complexity William and Kowgier (2008)

suggest to proceed in two-stages steps where at each stage j the

(ex-ante) two stage calculation is repeated and the maximisation

process is repeated at each j. Another early termination approach

is found in Berry and Ho (1988) who take the point of view of a

pharmaceutical company that wishes to maximise profits and uses

a one-sided decision-theoretic approach in order to determine if ex-

perimentation of a newly developed drug should be stopped early

in case of negative evidence.

In recent years the literature has seen the application of the

real option approach to investment decisions in health technology

assessment (Palmer and Smith, 2000). This literature aimed at

incorporating the dynamic nature of the decision process and con-

siders the role of flexibility and irreversibility of investment. More

recently Pertile et al. (2013) solved the dynamic problem of the eco-

nomic valuation of a new health technology in the content of the

optimal stopping under sequential sampling literature developed by

Chernoff (1961). Forster and Pertile (2012) discuss the use of real

options analysis as a way to view adoption, treatment and research

decisions as a single economic project and argue that the dynamic

approach to HTA can provide efficiency gains in resource allocation.

In this paper we present a comparison between the traditional

value of information framework as found in Claxton (1999) and a

dynamic decision theoretic approach. We adopt a sequential value

of information (S-VoI) rule (see Bregantini and Thijssen (2013)) as

this helps the user to reach a decision between two hypotheses af-

ter a minimal number of experiments. This method, in contrast to

Pertile et al. (2013), does not involve an estimation problem for the
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unknown net incremental mean benefit but specifies some bounds

at which a decision can be taken for a given hypothesis on the mean

benefit level. When the cumulative net incremental mean benefit

hits one of the bounds the observed sample size is sufficient and

the decision, either for investment or for abandonment, can be un-

dertaken with minimal error. In Pertile et al. (2013)’s approach, a

shortcoming is given by the requirement of a-priori specified max-

imum experiment time N . The implication is that the stopping

bounds dependent on the maximum time N , influencing the invest-

ment/abandonment decision, and it is not clear how one should go

about determining the maximum time N . The requirement of a

pre-specified experiment time is avoided in the S-VoI model.

In contrast to the static approach, the S-VoI model does not force

a decision after observing n observations no matter the information

contained in the observed sample. In particular, in the case of

a fixed sample, the size can be dangerously small or redundantly

large for making a reasonably good inference on which of the two

hypotheses is true.

With sequential testing on the other hand, no observations are

wasted. In fact, as soon as we can declare that one of the two

hypotheses is true with reasonable certainty, we stop taking ob-

servations. For this reason, in the presence of sampling costs, it is

clear that sequential testing is a method of testing that is less costly

on average than its competitor fixed sample size testing (Poor and

Hadjiliadis, 2009)).

Consistent with Claxton (1999), and in contrast to traditional

sample size calculations for randomised clinical trials based on type

I and type II probabilities rules that do not account for the mon-

etary cost or making the wrong decisions, the S-VoI focuses on

expected payoff and aims at maximising health benefits with mini-

mum error probability. In the sequential setting the implication for

the irrelevance of inference suggested in Claxton (1999) is that fix-

ing the sample size ex-ante is not optimal and, as with rules based

on type I and type II error minimisation, can lead to choices that

do not maximise health benefits with minimum error probability.

The paper begins by outlining the static value of information

approach and the sequential value of information. These are then
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followed by an illustrative example of research design based on sim-

ulations for the two models. Finally we report and contrast, in

terms of monetary value of gained health benefit, the expected re-

search design outcome for the Value of Information (VoI) approach

to HTA found in Claxton (1999) and Claxton and Posnett (1996)

and the S-VoI.

6.2 Static decision rules

We begin by introducing the main tools of the Value of Information

approach as found in Raiffa and Shlaifer (see Pratt et al. (1995))

and adapted to the case of health technology assessment by Claxton

and Posnett (1996) and Claxton (1999).

6.2.1 Expected Value of Perfect Information

Claxton (1999) propose to use the EVPI as a way to address how

decision makers (DM) should interpret the results of probabilistic

modelling and to address the question of whether enough evidence

has been gathered. This approach mirrors the sequential nature of

decision making: making an initial decision; deciding to gather ev-

idence; revising decisions in the light of this new information; and

again considering whether more information is required. It also

ensures that the type of information acquired through research is

driven by the objectives of the health care system and is valued

in a way which is consistent with the budget constraint on service

provision. In this framework, the expected cost of uncertainty is de-

termined jointly by the probability that a decision based on current

evidence will be wrong and the consequences of a wrong decision.

As in Ades et al. (2004)’ set-up, the decision model has un-

known parameters θ and the choice is between different treatment

j. NB(j, θ) is the net benefit of treatment j = 1, 2, . . . , J for param-

eters of value θ. The optimal decision, subject to current knowledge,

is the one that provides the higher expected net benefit:

maxjEθNB(j, θ). (6.1)

Maximising over the possible interventions j in not possible as the

true values of θ are unknown. However, it is possible to obtain the
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expected net benefit of a decision taken with perfect information

by averaging equation (6.1) over the joint distribution of θ:

EθmaxjNB(j, θ). (6.2)

The EVPI is the difference between equation (6.2) and (6.1) ,

amounting to the difference between the expected value of a decision

made with perfect and current information:

EVPI = EθmaxjNB(j, θ)−maxjEθNB(j, θ). (6.3)

Expected Value of Sample Information

The value of information analysis can be extended in order to find

the expected value of sample information for particular research de-

sign (Ades et al., 2004). In order to establish if the conditions for

further research are present and to identify efficient research design

there is the need to also consider the expected costs of sample infor-

mation. The expected value of sample information was introduced

as a decision tool for clinical trial design by Claxton and Posnett

(1996) and Ades et al. (2004).

The EVPI places an upper bound on returns to further research

and provides a necessary but not sufficient condition for conducting

further research. If the value of EVPI exceeds the cost of further

research it might be worthwhile to gather more information about

the problem as a whole or on selected parameters. However, in order

to establish if further research will be worthwhile (i.e. net benefits

of research are positive) and to identify efficient research design

there is the need to consider the marginal benefits and marginal

costs of sample information.

Technically efficient research design

The EVSI can be calculated for a particular sample size from the

prior information and the estimate of the sample variance (σ2/n).

The EVSI is then

A sample of size n on θ will give a sample result D. If the sample

result were known, it would be possible for the decision maker to

choose the alternative with the maximum expected payoff. It is

possible to compute the expected net-benefit by averaging over the
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posterior distribution of the net-benefit of each intervention j given

the sample result D:

maxjEθ|DNB(j, θ). (6.4)

As the value of D is not known in advance (i.e. the result of the

sample is not known), the expected value of a decision taken with

sample information is computed by averaging the maximum ex-

pected net benefits over the distribution of possible values of D.

In other words this amount to compute the expectation over the

predictive distribution of the sample results D conditional on θ,

averaged over the prior distribution of θ:

EDmaxjEθ|DNB(j, θ). (6.5)

The EVSI is the difference between the expected value of a decision

made with sample information and the expected value with current

information:

EVSI = EDmaxjEθ|DNB(j, θ)−maxjEθNB(j, θ). (6.6)

The EVSI proposed in (6.6) is for a single study design and single

sample size. In order to establish the optimal sample size for a par-

ticular study these computations needs to be repeated for various

sample sizes n.

The expected net benefit of sampling is the difference between

the total benefit and the total variable cost for a particular sample

size:

ENBS(n) = EVSI(n) − Cs(n) (6.7)

The subscript n indicates the step in the trial and the cost Cs(n) is

the total trial cost at step n. The optimal sample size n∗ maximises

ENBS(n). The optimal value of n is given by the following condition

∂EVSI

∂n
= Cn (6.8)

As for the EVPI, simulation methods have been proposed in

order to deal with the non-linearities and non-normal distribution of

the net benefit (See Ades et al. (2004). However, the solution to the
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decision problem in the value of information approach, as noted in

equation (6.8), remains a static one: the maximisation of the EVSI

is computed ex-ante, it computes a single value for the optimal

sample size n and does not take into account any information that

arises during the trial, in effect making the choice of n reasonable

before the trail actually starts, but as we show in section 6.5.1,

suboptimal at any point n > 0.

Cost

The EVSI does not account for costs different than those directly

associated in running the trial. There are no health losses connected

in delaying the decision and not treating patients with a more effec-

tive technology. The issue of forgone value of information has been

introduced by Griffin et al. (2011), however, the value of informa-

tion remained a static decision framework. A dynamic approach

to research design has been undertaken by Claxton and Thompson

(2001) where the approach found in Claxton and Posnett (1996)

and Claxton (1999) are generalised to the analysis of a sequential

clinical decision problem.

Claxton (1999) advocates that deciding which alternatives should

be chosen, given existing information, and deciding whether more

information should be required are two simultaneous but conceptu-

ally separate steps. The VoI provides a way to distinguish between

these two concepts.

6.3 Sequential Value of Information (S-VoI)

In a sequential value of information (S-VoI) decision making model

developed in Bregantini and Thijssen (2013), the DM is faced with

a two-sided decision: either invest in the health care technology or

abandon the health care project. The S-VoI is a quickest detection

model that allows to test for the hypothesis with the minimum

number of observation required, maximising payoff with minimum

error probability.

In contrast to models that propose simulation based solutions,

the S-VoI model uses continuous time mathematics that allows to

fully understand the modelling results. The use of continuous over
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discrete time modelling enables to access a mathematical toolbox

that provides analytical solutions. While discrete time realise on

a very large sample size to ensure convergence, in continuous time

such requirement is avoided as convergence is guaranteed even in

steps of tiny size. During the trial, the decision maker observes

the net benefit for each patient as a sequence of outcomes. The

net benefit over a small time interval is given by µdt. The decision

maker however, cannot clearly observe the net benefit due to a

noise element
√
σ. The evolution of the sequence is described by

the following tree diagram

X0 Xt+1 Xt+2 Xt+3

p X0 + 3u

↗
p X0 + 2u

↗ ↘
p X0 + u 1−p

p X0 + 2u− d
↗ ↘ ↗

X0
1−p
p X0 + u− d

↘ ↗ ↘
1−p X0 − d 1−p

p X0 + u− 2d

↘ ↗
1−p X0 − 2d

↘
1−p X0 − 3d

In the above tree the initial value X0 can increase by a factor

u = θµdt + σ
√
dt or decrease by a factor d = θµdt − σ

√
dt. with

probability p = 0.5. The term θ can be equal to 1 or 0 and will be

used below for hypotheses testing. The sequence of random variable

is

Xi =

{
θµdt+

√
dt with pr = 1/2

θµdt−
√
dt with pr = 1/2

At each point in the sequence the value of X(n) is given by
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X(n) =
∑n

i=0 Xi and as the time interval between steps decreases

we denote Xt = lim
n→∞

Xn(t) where the limit is understood to be in

distribution and n → ∞ implies dt ↓ 0. According to the CLT1,

the limit Xt exists in distribution and is given by

Xt ∼ N(θµt, σ2t)

implying that in the continuous time limit the process Xt follows

the arithmetic Brownian motion

Xt = θµt+ σWt. (6.9)

Equation (6.9) describes the net benefit as a continuous time se-

quence of random variables. In the equation, θ represents the hy-

pothesis that the health care technology is effective and provides

the claimed net benefit µ > 0. With θ = 1 the technology is effec-

tive and when θ = 0 the technology is no better than standard care

(in which case θµt = 0).

We consider the case where the decision maker is interested in

testing the claim from a manufacturer that seeks reimbursement

for a newly developed health care technology that should provide

excessive benefit µ. The claim could also be related to the mini-

mum effectiveness required for cost-effectiveness (i.e. µ such that

net incremental mean benefit (NIMB) is positive) as part a cost-

effectiveness trial by a health care manufacturer. Such test will

allow the manufacturer to provide stronger evidence in support for

government reimbursement.

We consider research design for a project that has an irreversible

fixed cost I and net present value of adoption given as function of

the posterior probability π. The investment payoff is FI(π) and

the abandonment payoff FA(π). At each point in the sequence,

Bayes rule allows to compute a posteriori probability process πt as

a function of (i) the prior probability assigned to the likelihood of

the technology being more effective than standard care and (ii) a

likelihood process Λt(Xt) as a function of the trial sequence Xt (For

details see Bregantini and Thijssen (2013)).

In this way the posterior probability πt that the new technology

is more effective than standard care in continuously updated via

1See Chapter 5 for the functional argument
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Bayes rule. In order to reflect the possibility of investment when the

technology is not effective (i.e. a type I error) and the possibility of

abandoning the project when the technology is better than standard

care (i.e. type II error) the payoffs are specified as follows:

FI(π) = πP1 − (1− π)P0 − I P1 > 0, P0 > 0 (6.10)

FA(π) = −πP1 P1 > 0 (6.11)

The term P1 represents the monetary benefit to the healthcare

system of investment in the new healthcare technology conditional

on θ = 1 and −P0 represents the monetary loss of new healthcare

technology conditional on θ = 0.

Subject to sampling costs c and discount rate r, the problem

is to find an optimal stopping time τ ∗ at which a decision can be

taken, payoffs maximised and the value of waiting for an additional

sample is zero. At the optimal stopping time τ ∗ the likelihood

process Λt(Xt) hits either the upper investment bound ΛI or the

lower abandonment bound ΛA. The likelihood process provides

evidence for hypothesis H1 : θ = 1 or H0 : θ = 0. At τ ∗ the DM

stops sampling and an optimal decision can be taken, either for

investment with payoff FI (i.e. supporting H1) or abandonment

with negative payoff FA (i.e. supporting H0).

In the optimal stopping model, the decision to invest/abandon

or continue research, in contrast to the VoI approach, is subject

to the information generated by the random variable Xt. As the

trial continues, information about the net benefit X increases, and

consequently uncertainty about the true net benefit decreases. The

optimal decision is taken at the time τ ∗, when the value of waiting

for a further sample is zero.

6.4 Quickest detection decision rules

The S-VoI model specifies investment and abandonment bounds

that aim at maximising payoff. The following simulation study

shows hitting times τ ∗ (times at which it is optimal to make a
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Table 6.1: Simulation

Simulation σ modeτ∗ µτ∗ στ∗ minτ∗ maxτ∗

1 σ = 0.1 192 314 197.7 10 2619

2 σ = 0.15 195 435 321 34 3925

3 σ = 2 175 548 478 36 6803

4 σ = 2.5 179 667 660 25 8181

decision) for 100, 000 simulated sample path for some hypothetical

levels of uncertainty. The table 6.1 below reports statistics for a

simulation study based on the following values: P1 = 130, P0 = 60,

r = 15%, I = 40, µ = 0.15. The value for σ is increased in

small steps for each simulation in order to show the consequence of

different degrees of uncertainty on the distribution of hitting times

τ ∗.

Figure (6.1) below shows the distribution of τ ∗ for different val-

ues of µ. As it can be noted in Figure (6.1a) the distribution of

τ ∗ is centred around the mode2 value of τ ∗ = 192 with few events

that occur after the τ ∗ = 1250 region. Figure (6.1c) τ ∗ has a much

thicker tail after τ ∗ = 1250, indicating that there is a greater num-

ber of τ ∗ events after this value than in the previous model. For

σ = 0.15 the mean µτ∗ = 435 and στ∗ = 321 with a minimum hit-

ting time of 36 and a maximum hitting time of 3803. A substantial

increase from simulation 1. In simulation 3, as σ increases, the sta-

tistical values for µτ∗ , στ∗ , minτ∗ , maxτ∗ increase. It can be noted in

Figure 6.1b that the number of events occurring after τ ∗ = 1200 is

much greater than in simulation 1 and 2 with some extreme events

occurring well inside the far right tail of the distribution with a

maximum of τ ∗ = 6803. Figure 6.1d shows the distribution hitting

time τ ∗ for simulation 4. Of the simulated models, this is the most

extreme case with σ = 0.25. The mean is µτ∗ = 667 with στ∗ = 660

with a the maximum τ ∗ = 8181 with most of the events occurring

before τ = 4000.

The above results suggests that while the mode for the hitting

times do not vary much, distribution varies considerably and the

dispersion for hitting times (or decision times) varies considerably

given different levels of uncertainty. A consequence of this, for

2Here the mode is reported as the mean is affected by very extreme values and does not

fully characterise the large concentrations of hitting times
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(d) σ = 0.25

Figure 6.1: Simulated τ∗ for different values of σ

models that use the total cost of new research (or stage of a trial)

as a rule to determine if a new study should be undertaken (e.g.

EVPI), is that when uncertainty is high it is difficult to correctly

asses the cost of a new trial due to the uncertainty surrounding

the optimal stopping time τ ∗. For these ex-ante models, when

estimating and comparing the average net benefit of new research

with its costs, once should account for the uncertainty surrounding

the optimal stopping time τ ∗.

Additionally, another important consequence of uncertainty is

that by having a rule that specifies ex-ante a fixed sample size for

a trial, decisions might be taken at points where information is

not sufficient or alternatively decision might be taken later than

necessary with corresponding costs for the health care system. The

cost of employing such ex-ante rules, for the specific case of EVSI,

is discussed in the next section.
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Table 6.2: Cost-effectiveness of standard vs robot-assisted laparoscopi prostaec-

tomy

Parameter Description Source Value

E1 − E0 Incremental QALY gain Close et al 0.08 QALY

C1 − C0 Incremental cost Close et al £1412

σ Std. deviation Close et al £1071

µ Incremental QALY gain Set as NIMB > 0 £1413

p Prior Assumed 0.5

r Discount rate Close et al 3.5%

c Cost of sampling Assumed £50

I Investment Close et al 0

λ QALY value Close et al £30000

n Number of patients Close et al 10000

6.5 EVSI vs quickest detection rules

In this section we aim at showing, with a simple illustrative ex-

ample, the difference in a research design application between the

two approaches. We simulate for a number of cases the stopping

time produced by the dynamic Bayesian model and compare this

to the optimal sample size given by the static value of information

approach. For illustration purposes data is taken from Close et al.

(2013)’s study of cost-effectiveness of standard vs robot-assisted

laparoscopi prostaectomy. Data is shown in Table 6.2.

The EVSI predicts that the optimal sample size is n∗ = 91. Fig-

ure (6.2) shows the relative frequency of hitting time τ ∗ for 10,000

simulated sample paths with sampling fixed at one new patient

added per day (i.e. we assume 365 patients per year). When com-

paring the simulated hitting times with a static approach it can

be noted that this last is likely to overestimate the sample size,

nonetheless it can also underestimate the sample size for a good

number of cases. In the analysis that follows τ and n represent the

same values3. In the case of the S-VoI the mean hitting time τ ∗ is

τ ∗ = 216, just over 7 months. As there simulation displays some

very high values for τ ∗, the mode is reported as it avoids the influ-

3Since the same sampling scale is used we use τ to denote the dynamic optimal stopping

model and retain n for the traditional EVSI approach. However, τ and n are equivalent and

represent the same values.
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Figure 6.2: EVSI optimal sample size n∗ and simulated τ∗
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Table 6.3: Expected payoffs

Decision model Optimal sample size Expected payoff £

EVSI Fixed (n∗) 207.7

S-VoI Flexible (τ∗) 564.3

Health gain from S-VoI 356.6

ence of the very large hitting times and captures the most frequent

τ ∗. The mode is τ ∗ = 60 (2 months), indicating that the most fre-

quent decision time is lower than the EVSI. This seem to suggest

that the S-VoI is quicker (in frequency) in making a decision than

the EVSI for the values used in the case study.

The EVPI describes the advantage of full information over par-

tial information. The EVSI involves computing the opportunity

loss of making a decision based on prior information solely. In

sharp contrast, in the S-VoI each decision is based on the appropri-

ate information set generated by the random variable Xt.

The S-VoI approach provides a way to undertake the quickest

decision that minimises expected opportunity loss both in terms

of forgone health benefits to patients or resources allocated to the

trial.

6.5.1 Cost of non optimal decisions

For the case study above, we compare the sequential-VoI and the

EVSI payoffs. This gives an estimate of the costs involved in taking

decisions based on a fixed, deterministic rule versus a sequential

flexible rule.

Table (6.3) shows the expected value obtained from 100,000 sim-

ulated paths for a trial sequence Xt based on the Close et al. (2013)

prostaectomy study reported above. The expected payoff is ob-

tained by taking the maximum payoff value at the optimal decision

point in the sequence Xt. For each simulated sample path, the ex-

pected payoffs are computed at the EVSI and the S-VoI decision

point. This point is given by the optimal sample size (n∗) for the

EVSI and at the optimal stopping time (τ ∗) for the S-VoI4. The

expected payoff at the optimal sample size predicted by the EVSI

provides a low value, indicating that (n∗) is suboptimal when com-

4The discount rate r provides the link between the continuous and discrete time models.
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pared to the S-VoI approach that instead selects the trial size (i.e.

optimal stopping time τ ∗) that maximises expected payoff. The S-

VoI total expected gain for the health care system when compared

to the EVSI approach is £356,600 per 1000 patients.

6.6 Further considerations and research

While the above example aims at showing the potential of the S-VoI,

some additional aspects, relevant for clinical research and HTA,

would need to be considered in practical applications. McKenna

and Claxton (2011) highlights the tradeoff between the expected

net benefits to current patients from being able to accessing a tech-

nology early and the future health benefits to patients that will be

realised by withholding approval until new research evidence be-

comes available. The issue of population can be dealt by the model

by separately modeling patients that will benefit from the trial in

the future and current trial participants. In such case, a rescaled

µ would measure the expected net benefit of the new technology

in the trial’s population while rescaled5 P1 and P0 would account

for the population that would benefit from the treatment once the

technology is adopted or abandoned.

The value of information framework must consider the future

population benefiting from the information derived from research.

Choosing the time horizon over which information about a decision

problem can be of use is challenging and poses a number of ques-

tion on it’s assessment and integration in a decision model (Philips

et al., 2008). While the S-VoI assumes that the technology once

adopted is used forever, considerations of a time horizon will impact

the cost-effectiveness if investment costs are not recovered quickly

enough. Many real-life investment are finite and expire or became

valueless at some point in the future (e.g. patents). In the real

option literature such scenario is dealt by allowing for a downward

drift in the net benefit or by allowing the net present value of the

project to jump to zero (Schwartz and Trigeorgis, 2001). Such time

horizon adjustments for the S-VoI model can be implemented by

5A simple rescaling is given by µ ∗ pop trial and P1 ∗ number of future patients and

P0 ∗ number of future patients
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multiplying the costs and benefits by an exponential factor

1− exp(−rT )

where T is the life time factor.

6.7 Conclusion

Within the context of the value of information approach we compare

deterministic versus dynamic rules for research design in HTA. The

value of information approach selects the optimal trial length based

on the prior information available and it produces a decision rule

that proves to be inefficient for a great majority of cases. The reason

is to be found in that under uncertainty evidence is accumulated

over time and the point at which sufficient information is reached

is not known at the start of the trial.

We show that this optimal decision point is reached at a random

time that is optimal under some payoff based rules. As this opti-

mal stopping time cannot be predicted at the start of the trial the

research design advocated by the EVSI is inefficient brings losses

to the health care system.
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Part III

Inference for Stochastic

Processes
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6.8 Introduction to Part III:

6.8.1 Realised volatility

Realised volatility, in contrast to models that rely on strong para-

metric assumptions, for continuously observed prices allows for the

measurement of return variation along with returns. The estimator

was introduced concurrently by Andersen et al. (2001, 2003) and

Barnoff-Nielsen and Shepard (2001, 2002). In the realised volatil-

ity framework the instantaneous return is decomposed into a loga-

rithmic price process that features a martingale innovator. Conse-

quently the expectation of the price process for high frequency data

is zero with variance given by the quadratic variation of the local

martingale. Realised volatility is computed by summing the intra-

day squared returns; with the absence of micro-structure noise re-

alised volatility will provide a consistent estimator of the integrated

volatility for each trading day.

Realistic models describing asset price dynamics consist in a con-

tinuous stochastic diffusion component and a discontinuous jump

component (Andersen et al., 2002). Under jumps, the quadratic

variation of the local martingale can be decomposed into a con-

tinuous and a discontinuous component. With realised volatility,

when jumps are present in the data, the estimates are the sum of

the quadratic variation of these two components. Barnoff-Nielsen

and Shepard (2004) proposed the use of a partial generalisation of

the quadratic variation called the realised bipower variation. This

measure estimates the integrated variance isolating the continu-

ous component of the process driving returns. The difference be-

tween realised volatility and bipower variation permits to isolate

the jumps component.

Since the work of Barnoff-Nielsen and Shepard (2004) the econo-

metrics for jumps identification and testing has seen a burst. Barnoff-

Nielsen and Shepard (2006) show how the realised bipower varia-

tion can be used to construct statistical tests for the presence of

jumps and derive the appropriate asymptotic distributional the-

ory. Huang and Tauchen (2005) evaluate the Barnoff-Nielsen and

Shepard (2006) jump detection test and propose a z-statistics that

avoids the over-rejection of the null found in Barnoff-Nielsen and
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Shepard (2006). The z-statistics makes use of the tripower quartic-

ity measure developed by Andersen et al. (2005)

6.8.2 Statistical inference

Statistical inference, based on realised volatility measure, that test

for the correct specification of the functional form of the volatil-

ity process can be found in a number of articles(e.g. see Corradi

and Distaso (2006), Bollerslev and Zhou (2002), Todorov (2009)).

Bollerslev and Zhou (2002) derive analytically the first two con-

ditional moments for the integrated volatility and estimate the

parameters governing the stochastic differential equation driving

volatility using the generalised method of moments. Corradi and

Distaso (2006) make use of the eigenfunction stochastic volatility

model class found in Meddahi (2001), while Todorov (2009) esti-

mates a Levy-driven Continuous Auto-regressive Moving Average

model (CARMA) model.

Empirical evidence from high-frequency data analysis supports

the hypothesis that there is jump component in the stochastic differ-

ential equation driving returns (e.g. see Barnoff-Nielsen and Shep-

ard (2006), Huang and Tauchen (2005), Andersen et al. (2007)).

A moment-based econometric technique looks promising in the

contest of estimation of the parameters for the stochastic differential

equation that drive returns and for shedding further light on the

size and frequency of stochastic jumps.
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Chapter 7

Moment-Based estimation

of Stochastic Volatility

7.1 Introduction

Estimation and forecasting of current and future volatility of re-

turns is of practical importance in a number of financial applica-

tions. Over the past decade the development of areas such as risk

management and option pricing has led to significant growth in

financial market volatility research. A number of difficulties are

encountered when estimating volatility. For example a major issue

is that while daily raw returns are observable, volatility is latent.

To deal with this latency a common approach is to conduct infer-

ence through strong parametric assumptions (e.g. ARCH, GARCH

models) or to adopt a proxy for the unobserved volatility by invert-

ing observed derivative prices and obtain market-based forecasts of

implied volatility. The drawback of such methods is that they are

model dependent and the measure can incorporate a time-varying

volatility risk premium thus providing biased forecasts of the un-

derlying asset’s volatility (Andersen and Benzoni, 2009).

The main goal of this paper is to provide statistical inference

for stochastic volatility models and to identify a class of jump-

diffusion models that are successful in approximating S&P 500

high-frequency intra-day dynamics for the period 1997-2011 and

could therefore be used as an adequate basis for continuous-time

asset pricing applications. Further, the application of the power

and bipower variation allows the empirical recovery of the realised
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quadratic variation of the jump component on the S&P 500 index

over each given day. Observing the jump process is of particular

interest given the recent period of market turmoil.

There a number of articles that make use of realised measures

to test for the correct specification of the functional form for the

volatility process (e.g. see Todorov (2009), Corradi and Distaso

(2006) and Bollerslev and Zhou (2002)). While Corradi and Dis-

taso (2006) focus on the class of eigenfunction stochastic volatil-

ity models developed by Meddahi (2001) and Todorov (2009) fo-

cuses on a Levy-driven Continuous Auto-Regressive Moving Av-

erage (CARMA) model, Bollerslev and Zhou (2002) analytically

derive the first two conditional moments for the latent integrated

volatility, the realisation of which is given by the realised volatility

estimator.

This paper contributes to the existing literature in a number of

ways. First, moments are developed for the stochastic volatility

model allowing for the leverage effect and for finite-activity jumps

in returns. These are tested for their accuracy in the content of re-

alised volatility. Second, in order to better understand the proper-

ties of the finite sample GMM estimators Monte Carlo experiments

are presented for all the above extensions revealing estimation bi-

ases present in current modelling practices. Finally, applications of

these methods are made on the equity asset class over the recent

period of market turmoil giving new insights over this exceptionally

high period of financial markets’ volatility. The paper is particu-

larly insightful for the jump dynamics.

The paper is structured as follows: section two describes the the-

oretical framework while section three states the stochastic volatil-

ity model and derives the two conditional moments that are later

used in the GMM estimation. Section four reports the results of

the Monte Carlo study for the GMM estimator and section five de-

scribes the data set used and reports data analysis for the series

under study. Finally section six reports the GMM estimates while

section seven and section eight describe model’s jump in returns

and leverage extensions.
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7.2 Theoretical Framework

7.2.1 Quadratic Variation

The logarithm of an asset price pt = log (Pt) is assumed to be a

semi-martingale in order to rule out arbitrage opportunities (Back,

1991). This is defined by

dpt = µtdt+ σtdWt

where µt and σt are predictable process independent of the Brow-

nian motion dWt. The drift µt is of finite variation, while σt is

strictly positive and square integrable (i.e. E
(∫ t

0
σ2
sds
)
<∞,∀t).

Merton (1980) developed an estimator for integrated volatility

that involves the sum of intraday squared returns. He showed that

choosing increasingly finer observation intervals increases the accu-

racy of the estimator. Andersen et al. (2001) formally introduced

realised volatility as a sum of intraday squared returns.

The continuously compounded return for a trading day T − t is

given by

r (T − t) = pT − pt =

∫ T

t

µτdτ +

∫ T

t

στdWτ (7.1)

and its quadratic variation QV (T, t)is defined as

QV (T, t) =

∫ T

t

σ2
τdτ. (7.2)

Innovations in the drift do not affect the sample path variation

of the return; intuitively, the mean term µt, when cumulated over

many high-frequency returns over short horizons can be neglected

Andersen and Benzoni (2009). The diffusive sample path variation

over the interval T − t is the integrated variance IV (T, t)

IV (T, t) =

∫ T

t

σ2
τdτ (7.3)

Equations (7.2) and (7.3) coincide when no jumps are present1.

With no micro-structure noise2 and measurement error, the quadratic

variation for the return process can be approximated by cumulative

1The distinction between QV and IV is in the approximation of the observation frequen-

cies. IV belong to the pure continuous time case.
2This requirement can be relax. See section 7.5.1
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squared return process. This was formally introduced by Andersen

et al (2001)3 and is referred to as realised volatility. The realised

volatility estimator, for a partition
{
t+ j

n
, j = 1 . . . n · k

}
, with R

defined as in equation (7.1) is given by

RV (T, t) =
n·k∑
j=1

r

(
t+

j

n
,

1

n

)2

. (7.4)

When the sampling frequency increases, semi-martingale theory en-

sures that realised volatility (7.4) converges to the quadratic varia-

tion (7.2). Formally

RV (T, t, n)
p→ QV (T, t) as n→∞.

7.2.2 Bipower Variation

In the presence of jumps, as pointed out by Andersen et al (2001),

realised volatility becomes

RV (T, t) =

∫ T

t

σ2
τdτ +

N(t)∑
i=1

J2
i (7.5)

where N is a finite activity (N(t) < ∞) simple counting pro-

cess. Barnoff-Nielsen and Shepard (2004) introduced the gener-

alised power variation and focused on the 1, 1-order bipower varia-

tion. This is defined as

BV (T, t) = µ−2

M−1∑
j=1

| rj || rj+1 | (7.6)

where µ = E | u | is the mean of the absolute value of a standard

normally distributed random variable, u . This amounts to E | u |=√
2/π ' 0.79788. Barnoff-Nielsen and Shepard (2004) then show

that as n→∞
BV (T, t)

p→
∫ T

t

σ2 (u) du. (7.7)

In the stochastic volatility semi-martingale case this implies that

in the limit the difference between the realised volatility and the

quadratic variation amounts to

RV (T, t)−BV (T, t)
p

→ 0 (7.8)

3See Appendix A for details.
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In constrast, in the presence of jumps, the realised power variation

is unaffected by jumps and the difference in Eq. (7.8) converges in

probability to a positive, finite quantity

RV (T, t)−BV (T, t)
p→

N(t)∑
i=1

J2. (7.9)

This is the core theoretical insight that enabled for the empirical

estimation of jumps in the paper. Andersen et al. (2007) point out

that it is possible for the jump quantity
∑
J2 in Eq. (7.9) to be

negative in finite samples and suggest a zero truncation scheme

J2
(T,t) = max

[
RV(T,t) −BV(T,t), 0

]
(7.10)

to ensure non negative daily estimates. The result given by (7.10)

will be later used in order to construct a test for jumps.

7.3 Stochastic volatility diffusion and GMM es-

timation

The generic continuous time stochastic volatility model can be

stated as

dpt = µ(pt, Vtt)dt+ v (pt, Vt) dBt (7.11)

dVt = k (pt, Vtt) dt+ σ (pt, Vtt) dWt (7.12)

where pt is the time t logarithmic price for some asset and Bt and

Wt are (possibly correlated) Brownian motions. Consistent with

empirical evidence provided by Andersen and Bollerslev (1997), in-

dicating that there is little predictable variation in the mean for

high-frequency returns, the drift term is set to zero µ(pt, Vt) = 0.

By the theory of quadratic variation given above, we have

lim
n→∞

2N∑
i=1

[
pt+i/2N (T−t) − pt+(i−1)/2N (T−t)

]2 a.s→
∫ T

t

v2 (ps, Vs) ds ≡ Vt,T

(7.13)

where Vt,T denotes integrated volatility from time t to T . The point

in time volatility v (pt, Vt) is in general unobservable. By taking the

sum of increasingly finer sampled squared high-frequency returns,
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it is possible to obtain estimates of the integrated volatility process.

In the limit, it is possible to observe the integrated volatility.

In practice, continuously sampled observations are unavailable

and integrated volatility is not truly observable. GMM modelling

can be implemented by exploiting the assumption that the number

of observations in the sample moments converges to infinity at a

slower rate than the almost sure convergence rate of the quadratic

variation (Bollerslev and Zhou, 2002).

7.3.1 Baseline stochastic volatility (SV) model

The first model to be estimated is a stochastic volatility model with

no drift given by

dpt =
√
VtdBt

dVt = k (θ − Vt) dt+ σ
√
VtdWt

(7.14)

where Vt is the scalar latent volatility process. This model with

correlated Brownian motions was presented by Heston (1993) and

has found wide applications in empirical finance. In the model θ

determines the long-run (unconditional) mean of the volatility, k is

the mean reversion parameter, while σ denotes the local variance

(volatility of volatility) parameter.

The process is well defined with θ > 0 (non negativity), k > 0

(stationarity in the mean), and σ2 ≤ 2kθ (stationarity in volatility).

The deterministic part of process is asymptotically stable if k > 0

and the condition σ2 ≤ 2kθ ensures that the variance process cannot

reach zero Feller (1951).

A distinction is drawn between two information sets: the contin-

uous σ-algebra Ft = σ {Vs; s ≤ t}, generated by the point-in-time

volatility and the discrete σ-algebra Gt = σ {Vt−s−1,t−s; s = 0, 1, 2, . . . ,∞}
generated by the integrated volatility series. The coarser filtration

is a subset of the finer filtration (Gt ⊂ Ft) and applying the law of

iterated expectations leads to E [E (· | Ft) | Gt] = E (· | Gt).

Conditional mean

Next conditional moments are derived. Following from Cox et al.

(1985), the conditional mean of the point in time volatility is given

by
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E (VT | Ft) = αT−tVt + βT−t (7.15)

where αT−t = ek(T−t) and βT−t = θ
(
1− e−k(T−t)) are function of

k, θ and T − t. Bollerslev and Zhou (2002) express the conditional

mean of the stochastic process as a linear function of the point in

time volatility giving

E (Vt,T | Ft) = E
(∫ T

t

Vsds | Ft
)

= aT−tVt + bT−t (7.16)

where aT−t = 1/k
(
1− ek(T−t)) and bT−t = θ (T − t)−(θ/k)

(
1− e−k(T−t))

denote functions of the drift parameters and the sampling inter-

val. Using equations (7.15) and (7.16) for a one-day horizon (thus

a = a1, b = b1, α = α1 and β = β1 gives

E [E (Vt+1,t+2 | Ft+1) | FT ] = aE (Vt+1 | Ft) + b

= a (αVt + β) + b

= α [E (Vt,t+1 | Ft)− b] + aβ + b

simplifying to

E (Vt+1,t+2 | Ft) = αE (Vt,t+1 | Ft) + β.

This equation can be conditioned on the coarser information set Gt,
giving the link between the first moment of the integrated volatility

and lagged integrated volatility. This gives

E [E (Vt+1,t+2 | Ft) | Gt] = E (Vt+1,t+2 | Gt) = αE (Vt,t+1 | Gt) + β.

(7.17)

Conditional second moment

The derivation of the second moment follows in similar fashion to

the above. Again, following Cox et al. (1985)

E
(
V 2
T | Ft

)
= V ar (VT | Ft) + [E (VT | Ft)]2

= CT−tVt +DT−t + [αT−tVt + βT−t]
2 .
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In the same fashion as for the first moment, the conditional variance

of the integrated volatility is expressed as a function of the point

in time volatility. An application of Itō’s Lemma leads to

V ar (Vt,T | Ft) = AT−tVt +BT−t (7.18)

where AT−t and BT−t are functions of the parameters4. By com-

bining (7.16) and (7.18) it is possible to obtain, for the one day

horizon

E
(
V2
t,t+1 | Ft

)
= V ar (Vt,t+1 | Ft) + [E (Vt,t+1 | Ft)]2

= a2V 2
t + (2ab+ A)Vt + (b2 +B) .

(7.19)

By application of the Law of Iterated Expectation on different in-

formation sets and substituting expressions it is possible to obtain

E [E (Vt+1,t+2 | Ft) | Gt] = E
(
V2
t+1,t+2 | Gt

)
= HE

(
V2
t,t+1 | Gt

)
+ IE (Vt,t+1 | Gt) + J

(7.20)

H, I and J are functions5.

7.3.2 Conditional moments

GMM estimation requires the specification of moment conditions.

Zhou (2001), in a Monte Carlo application to the square-root dif-

fusion process of Cox et al (1985), constructed a GMM estimator

with lag-one augmented moments.

Bollerslev and Zhou (2002) employ the analytical solutions for

the conditional mean given by (7.17) and the conditional second

moment given by (7.20), augmented by the lag-one and the lag-one

squared realised volatility to construct a standard GMM estimator.

This leads to the following six moments:

4See Appendix A for details.
5See Appendix A for details.
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ft (ξ) ≡



E [Vt+1,t+2 | Gt]− Vt+1,t+2

E
[
V 2
t+1,t+2 | Gt

]
− V 2

t+1,t+2

E [Vt+1,t+2Vt−1,t | Gt]− Vt+1,t+2Vt−1,t

E
[
V 2
t+1,t+2Vt−1,t | Gt

]
− V 2

t+1,t+2Vt−1,t

E
[
Vt+1,t+2V

2
t−1,t | Gt

]
− Vt+1,t+̇2V

2
t−1,t

E
[
V 2
t+1,t+2V

2
t−1,t | Gt

]
− V 2

t+1,t+2V
2
t−1,t


(7.21)

The moment’s one period lag implies aMA(1) error structure6. The

augmented moments involve the product of the related error term

with the lagged (and the squared lag) realised volatility. The true

parameters for the process are given by ξ0 and following Hansen

(1982) formulation the set of orthogonality conditions are of the

form

Eft (ξ0 | Gt) = 0. (7.22)

The idea behind GMM is to chose ξ in order to make the sample

mean of the moment conditions,

gT (ξ) =
1

T

T−2∑
t=1

ft (ξ) (7.23)

as close as possible to the population moment of zero Hamilton

(1994). The corresponding GMM estimate ξ̂T is the value of ξ that

minimises

gT (ξ)′ Ŝ−1
T gT (ξ) (7.24)

where S−1
T is the inverse of the asymptotic variance matrix. ŜT , is

an estimate of

S = lim
T→∞

(1/T )
T∑
t=1

∞∑
v=−∞

E
{

[gT (ξ)] [gT (ξ)]′
}

In the asset price simulation and the empirical estimates the

heteroschedasticity and autocorrelation robust covariance matrix

estimator with Bartlett-Kernel and lag length of five is used.

6The first moment can be written as Vt+1,t+2− (αVt,t+1 + β) = MA(1) while the second

moment can be written as V2
t+1,t+2 −

(
HV2

t,t+1 + IVt,t+1 + J
)

= MA(1).
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7.4 Monte Carlo study

As in later sections the conditional moments developed above will

be used to estimate realised volatility obtained from high-frequency

data, a Monte Carlo study is constructed in order to test for the

accuracy of the GMM estimator.

To simulate the asset price, the SDE (7.14) is discretized using

the Euler-Maruyama approximation with 78 artificial five-minute

intervals per trading day and further partition to 780 observations

per day. This last finer partitioning is implemented in order to em-

ulate the “continuous-time record” and to provide a comparison for

the GMM estimation between the five-minutes quadratic variation

and the true integrated volatility. Figure 7.1 below shows a sample

path for the SDE.

Integrated volatility is approximated by the application of (7.13)

to the simulated sample. This involves summing squared intra-

day returns in order to obtain a series of realised volatility. The

study design, in order to achieve a comparable set of results, fol-

lows Bollerslev and Zhou (2002); two series with respective sample

size of T=1000 and T=4000 are simulated in order to check for

long-span asymptotics. This amount to around 4 and 16 years of

daily observations. The total number of Monte Carlo replications

is 1000.

7.4.1 Simulation results

The simulation concentrates on a single scenario where k = 0.03, θ =

0.25 and σ=0.1 and statistics for the Monte Carlo estimation are

given in Table 7.1. This reports the true parameter values, the

mean and median for the simulated values and RMSE for the GMM

estimation.

7.4.2 Parameter estimates

From the simulation estimates, it can be noted that as the sample

size increases, the mean and median get closer to the true value,

thus reducing the estimation bias. The GMM estimates for the

parameter k are slightly upward biased, while for the parameter θ

there is a small downward bias. It can be seen that for the small
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Table 7.1: Monte Carlo GMM estimation

True value Mean Median RMSE

T 1000 4000 1000 4000 1000 4000

GMM with integrated volatility

Observations per day: 780

k 0.03 0.0384 0.0326 0.0375 0.0323 0.0092 0.0087

θ 0.25 0.2340 0.2451 0.2283 0.2437 0.0544 0.0265

σ 0.10 0.0997 0.1004 0.0999 0.1004 0.0042 0.0050

GMM with quadratic variation from high-frequency returns

Observations per day: 78

k 0.03 0.0349 0.0314 0.0337 0.0310 0.0072 0.0058

θ 0.25 0.2407 0.2447 0.2361 0.2428 0.0529 0.0262

σ 0.10 0.0979 0.0994 0.1009 0.1023 0.0025 0.0043

sample size of 1000, k has a mean value of 0.0384 compared to

the true value of 0.030 while the mean for θ is 0.2340 compared

to the true value of 0.25 for the integrated volatility case. For the

quadratic variation, k has a mean value of 0.0349 compared to the

true value of 0.030 while the mean for θ is 0.2407 compared to the

true value of 0.25.

Finally for the volatility-of-volatility parameter σ the bias is very

small. The RMSE, in the case of integrated volatility, for the pa-

rameters k, θ decreases with the long-span and has little variation

for the σ parameter. Similarly, for the case with high-frequency

returns, k, θ decreases with the long-span and has little variation

for the σ parameter. This can be noted when comparing the values

for the sample size of 1000 to the sample size of 4000. The mean

value for θ improves respectively from 0.2340 to 0.2407 and for the

parameter k this improves from 0.0384 to 0.0349 while the volatility

parameter σ changes from 0.0997 to 0.0979.

Bollerslev and Zhou (2002) found that for the smaller sample size

the standard GMM J-test for over-identifying restrictions exhibits

a small bias and that this tends to disappear once the sample size

increases from 1000 to 4000.
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7.5 Data

Data for the stock price index is obtained from Market Grain Re-

search (MGR) in Marietta, Georgia, USA, and consists of continu-

ously recorded five-minute prices on the S&P 500. The full sample

starts from August 1, 1997 through June 20, 2011 and consists of

271,092 high-frequency observation for a total of 3,494 days.

7.5.1 Sampling Frequency

While finely sampled data would minimise the estimation error,

the presence of market micro-structure issues such as price dis-

creteness, bid-ask spread and non-synchronous trading effects, im-

ply that the underlying semi-martingale assumption is violated at

very high sampling frequency Bollerslev et al. (2008). There is

thus the need to strike a balance between noise and sampling fre-

quency. Hansen and Lunde (2006) empirical estimates suggest that

for highly liquid assets a five-minute sampling frequency provides

an adequate compromise.

7.5.2 Calendar effects and other adjustments

Following Andersen et al. (2001) a number of days have been explic-

itly excluded in order to avoid calendar effects arising from various

holiday periods and the related reduced trading hours. Several hol-

idays have been removed, including Christmas (December 24-26),

New Year’s (December 31 and January 1-2), and July Fourth. In

addition, the following moving holidays have been excluded from

the sample, Good Friday, Easter Monday, Memorial Day, July

Fourth (when officially on the 3rd), Labor Day, Thanks-giving and

the day after.

As argued by Andersen et al. (2001) these adjustments do not

completely eliminate all holiday market slowdowns, however, they

eliminate the most important calendar effects. The data set, once

holidays has been removed, is reduced to 267,129 observations con-

sisting of 3,428 days. The typical trading day is characterised by 78

observations, however, the data set is in-homogenous as in places

exhibits some missing price observations due to interrupted data

feed. This is particularly true for the year 2000, where on average a
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Table 7.2: Data summary statistics

S&P 500 realized volatility

RV S&P500

Period 1997-2011

µ 1.065

σ 2.017

σannual 15.93

Skewness 9.49

Kurtosis 154.33

Min 0.0004

Max 0.507

datapoint goes missing every two trading days for a total of about

100 data points.

In order to deal with in-homogenous high-frequency data An-

dersen et al. (2001) deleted trading days containing the 15 longest

DM/$ zero runs. For the S&P 500, days with missing data are

in general characterised very small lapses of 1 and more rarely 2

observations. By adopting a similar approach to Andersen et al.

(2001), and by taking into account the shorter trading day consist-

ing of 78 observations, days with less than 70 observations per day

are deleted. This amounts to deleting a total of eight trading days,

taking the sample to 3420.

Table 7.2 summarised data statistics for the S& P 500 over the

period. This compares well with data obtained using Shepard and

Shepard (2010) methodology.

7.6 Empirical estimation

7.6.1 Estimation results

This section presents GMM estimates for equation (7.14) for the

periods 1st August 1997 to the 20th June 2011. Table 7.3 reports

estimates for the stochastic volatility model (SV)

dpt =
√
VtdBt

dVt = k (θ − Vt) dt+ σ
√
VtdWt

. (7.25)

Reported estimates confirm the data features highlighted in the

summary statistics. The long-run mean parameter θ × 100 is close
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Table 7.3: GMM Estimation

SV model estimates

S&P 500

1997-2011

k 0.1135

(0.0353)

θ 0.0103

(0.0011)

σ 0.0840

(0.0104)

GMM test of overidentifying restrictions

J − stat 0.5919

P
[
X 2 > J

]
0.8983

2kθ ≥ σ2 Reject

to the sample mean of the realised volatility in Table 7.2. The speed

adjustment parameter k is slightly smaller than the one obtained

in the exchange rate estimates of Bollerslev and Zhou (2002) and

has also a large standard error7. When the results for the S&P 500

are compared to the estimates of Bollerslev and Zhou (2002) for the

DM/$ exchange rate, it can be noted that the volatility generated

by the equity index displays a much lower volatility-of-volatility σ

and average level of spot variance θ. For the equity index the speed

of variance mean reversion k is the dominating parameter. This

indicates that the S&P 500 is less volatile than the DM/$ exchange

rate but reverts to the mean level in similar fashion to the exchange

rate.

The test for over-identifying restrictions does not reject the model

for the samples analysed, however, the stationarity condition 2kθ ≥
σ2 is violated by the data. This means that the model is asymp-

totically stable (k > 0), however, the variance can reach zero.

Overall the estimates display strong mean reversion, confirming

what can be inferred by visual inspection (See Figure 7.2).

7No direct comparison with previous studies is possible as the methodology has never

been applied to the S&P500. Here the results are compared to the exchange rate as a way

to check for reasonable estimates
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7.7 Stochastic volatility with leverage

7.7.1 Leverage parameter (SVL Model)

In this section Heston (1993)’s model is extended by allowing for

correlated Wiener processes. In model (7.14) this would involve

dpt =
√
VtdBt

dVt = k (θ − Vt) dt+ σ
√
VtdW

1
t

dBt = ρdW 1
t +

√
1− ρ2dW 2

t

(7.26)

where W 1
t ,W

2
t are independent Wiener processes and the leverage

parameter is given by dBtdW
1
t = ρdt. Various moments aimed

at estimating the leverage parameter have been proposed8. By

applying Itō’s lemma Garcia et al. (2011) develop the following

moment involving the return over a given day rt,T = pT − pt for the

estimation of the leverage parameter.

E
[
rt,T
Vt+1,t+2 − b

a
| Gt
]

=
1

ekk

[
ρσ

(
E (Vt,t+1 | Gt)− b

a
k + θ

(
−1 + ek − k

))]
(7.27)

This is directly implementable.

Table 7.4 shows the Monte Carlo estimation results. The RMSE

for the estimated coefficient have similar magnitude than estimates

presented in Garcia et al. (2011). As with their estimates for the

leverage parameter, the mean and median values for ρ̂ indicate a

downward bias. This amounts to about 15%, a value close to the

one reported in Garcia et al. (2011)’s study.

7.7.2 Estimation results

Table 7.5 displays estimates for the stochastic volatility model with

leverage (SVL)

The estimates for k, and σ are in line with Garcia et al. (2011),

while θ is much lower. The leverage parameter ρ is bigger as Garcia

et al finds -0.165 and indicates a much higher leverage effect for

the period 1997-2011. It should be noted that the above results are

not directly comparable to Garcia et al. (2011) as in their study

8Ishida et al 2011 report poor performance of the leverage moment proposed by Bollerslev

and Zhou (2002) and suggest as an alternative a leverage moment based upon Corradi and

Distaso (2006) realised correlation estimator.
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Table 7.4: Monte Carlo estimation for SVL Model

True value Mean Median RMSE

T 1000 4000 1000 4000 1000 4000

GMM with integrated volatility

Observations per day: 780

k 0.03 0.0378 0.0326 0.0363 0.0322 0.0139 0.0057

θ 0.25 0.2362 0.2445 0.2307 0.2424 0.0540 0.0268

σ 0.10 0.0998 0.1003 0.0996 0.1004 0.0043 0.0022

ρ -0.5 -0.441 -0.4764 -0.4234 -0.4697 0.2738 0.1485

GMM with quadratic variation from high-frequency returns

Observations per day: 78

k 0.03 0.0356 0.0313 0.0342 0.0310 0.0130 0.0054

θ 0.25 0.2392 0.2457 0.2341 0.2445 0.0547 0.0262

σ 0.10 0.1009 0.1023 0.1011 0.1023 0.0083 0.0048

ρ -0.5 -0.4615 -0.4684 -0.4322 -0.4673 0.5892 0.1543

parameters are obtained through joint estimation of high frequency

data and daily option prices.

The test for over-identifying restriction is not rejected, however,

as in the previous estimation the stationary condition 2kθ ≥ σ2 is

violated.

7.8 Realised volatility, jumps and Microstruc-

ture noise correction

Using the theory developed earlier (See Section 7.2.2), the jump

component is separated from the continuous part of the semimartin-

gale. Figure 7.4 displays the squared sum of realised jumps (
∑N(t)

i=1 J2
i )

in each day for the sample period. What can be observed is that

large squared sums corresponds to large deviation in the variability

of returns with the largest jumps occurring during the recent period

of market turmoil.

Graphical inspection indicates that the jump squared sums are

not distributed evenly across the sample but rather are clustered

around periods of high volatility. The jumps are obtained using

Equation (7.10).

Before proceeding with the development of a GMM estimator

that would allow to recover the parameter of the distribution of
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Table 7.5: SVL model estimates

Stochastic volatility model estimates

S&P 500

1997-2011

k 0.1135

(0.0354)

θ 0.0103

(0.0011)

σ 0.0834

(0.0104)

ρ -0.4625

(0.1401)

GMM test of overidentifying restrictions

J − stat 0.5538

P
[
X 2 > J

]
0.9069

2kθ ≥ σ2 Reject

the Poisson process driving jumps, the next section will describe

some asymptotic distribution theory that can be used in order to

accurately test for the presence of jumps.

7.8.1 Asymptotic Distribution theory

So far the analysis relied on nonparametric jump estimates defined

by the difference between realised volatility and bipower variation.

This is theoretical justified when the partition 4 → 0, however,

when the sampling frequency allows for 4 > 0, the implementation

of such nonparametric estimate is subject to measurement error.

The non-negativity truncation in Equation (7.10) eliminates theo-

retical infeasible negative values for the squared jumps, however, it

also likely allows for many small measurement errors to enter the

estimate.

Equation (7.9) can be effectively used to develop a test for the

presence of jumps. Huang and Tauchen (2005) used the following

relative jump measure

RJ (T, t) =
RV (T, t)−BV (T, t)

RV (T, t)

as an indicator of the contribution of jumps to the total realised
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variance for a given day. Barnoff-Nielsen and Shepard (2004, 2006)

found that under sufficient regularity, frictionless markets and in

the absence of jumps in the price path

√
4 RV (T, t)−BV (T, t)[(

µ−4
1 + 2µ−2

1 − 5
) ∫ T

t
σ4 (s) ds

]1/2

d→ N (0, 1) ,

as 4 → 0. This implies that for an abnormally large value of the

standardised difference RV (T, t)−BV (T, t) should be interpreted

as a significant jump in the T, t time interval. In order to obtain

the statistics there is the need to estimate the integrated quarticity.

Andersen et al. (2005) suggest that integrated quarticity can be

consistently estimated even in the presence in jumps by the realised

tripower quarticity measure,

TP (T, t) = 4−1µ−3
4/3

M∑
j=3

| rt+j4,4 |4/3| rt+(j−1)4,4 |4/3| rt+(j−2)4,4 |4/3

(7.28)

where µ4/3 = 22/3 · Γ (7/6) · Γ (1/2)−1 = E
(
| Z |4/3

)
and Γ (·) is the

Gamma function. It can be shown (Andersen et al., 2005) that

TP (T, t)
p→
∫ T

t

σ4
sds. (7.29)

The Wt statistics was found to over-reject the null of no jumps for

large critical values. Huang and Tauchen (2005) after extensive

simulation found that the z-test statistics gives reasonable power

against several realistic stochastic volatility jump diffusion models.

This ratio statistics can be written as

zt = 41/2 RV (T, t)−BV (T, t)√(
µ−4

1 + 2µ−2
1 − 5

)
max

(
1, TP (T,t)

BV 2(T,t)

) , (7.30)

which is very closely approximated by a standard normal distribu-

tion. Jumps are identified as the values of zt in excess of the critical

value Φα for some level of significance α, jumps are given by

J2
α (T, t) = I [zt > Φα] [RV (T, t)−BV (T, t)] (7.31)

where I [·] is an indicator function. Andersen et al. (2005) sug-

gest, in order to ensure that the total variation is the sum of the
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estimated continuous sample path and the jump component, the

following component

Cα (T, t) = I [zt ≤ Φα]RV (T, t) + I [zt > Φα]BV (T, t) (7.32)

for Φα > 0, equations (7.31) and (7.32) automatically guarantee

that J2
α (T, t) and Cα (T, t) are positive. The non-negativity trun-

cation of Equation (7.10) corresponds directly to α = 0.5 or Jt,0.5

7.9 Stochastic Volatility with Jumps in Returns

(SVJ) Model

Realistic models for asset prices should consist of a continuous

stochastic volatility component plus a jump component (Andersen

et al., 2002). Several models have been introduced in the litera-

ture: Bates (1996) introduced one of the most popular models of

this class where the Heston stochastic volatility model is extended

by adding an independent jumps component. In the case of no drift

the stochastic volatility model (7.14) with jumps returns is given

by

dpt =
√
VtdBt + JdN (λt)

dVt = k (θ − Vt) dt+ σ
√
VtdWt

(7.33)

where the Brownian motion dBt and the Poisson process JdN (λt)

are independent, with jumps arriving at the exponential rate of λdt

with jump size J , determined by the normal distribution (µJ , σ
2
J).

The jump parameters are identified by the following two moment

conditions:

E
[
J2
t+1 | Gt

]
− J2

t

E
[
J4
t+1 | Gt

]
− J4

t

(7.34)

The two moments for Gaussian jumps J ∼ N(0, σ2
J) , are introduced

by using the moment generating function. With the assumption of

µ = 0 these are given by

E
[
J2 | Ft

]
= λE

(
J2 | Ft

)
= λσ2

J (7.35)

E
[
J4 | Ft

]
= λE

(
J4 | Ft

)
= 3λσ4

J (7.36)
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Table 7.6: Monte Carlo estimation for SVJ model (T=1000)

T Mean RMSE

True value 1000 α0.5 α0.05 α0.01 α0.001 α0.5 α0.05 α0.01 α0.001

Estimation using high frequency data

Observations per day: 82

k 0.03 0.034 0.035 0.034 0.035 0.012 0.013 0.012 0.012

θ 0.25 0.236 0.240 0.247 0.245 0.055 0.053 0.0514 0.052

σ 0.10 0.098 0.098 0.099 0.100 0.020 0.020 0.018 0.019

λ 0.10 0.076 0.123 0.100 0.086 0.018 0.033 0.027 0.021

σjump 0.50 0.050 0.450 0.472 0.486 0.066 0.077 0.054 0.057

Table 7.7: Monte Carlo Estimation for SVJ model (T=4000)

T Mean RMSE

True value 4000 α0.5 α0.05 α0.01 α0.001 α0.5 α0.05 α0.01 α0.001

Estimation using high frequency data

Observations per day: 82

k 0.03 0.031 0.031 0.031 0.031 0.005 0.005 0.005 0.005

θ 0.25 0.245 0.245 0.247 0.248 0.026 0.027 0.026 0.027

σ 0.10 0.101 0.101 0.102 0.102 0.013 0.010 0.010 0.008

λ 0.10 0.172 0.120 0.096 0.082 0.075 0.023 0.010 0.019

σjump 0.50 0.417 0.455 0.480 0.498 0.087 0.054 0.035 0.035

7.9.1 Monte Carlo study

Tables 7.6 and 7.7 show Monte Carlo simulation for λ = 0.1 and

σjumps = 0.5. These values are also used in Huang and Tauchen

(2005). There is no current agreement for the value of α (Tauchen

and Zhou, 2011), for example Andersen et al. (2007) employ var-

ious values for α in the same study. The following Monte Carlo

experiments show the ability of extrapolating jumps from realised

variance using the techniques discussed in section (7.2). As noted

by Andersen et al. (2007) the level of α = 0.5 corresponds to the

non-negativity truncation of equation (7.10) .

Table 7.6 and 7.7 report Monte Carlo estimation for the SVJ

model for the sample size of 1000 and 4000 respectively.

The Monte Carlo simulations show that the RMSE and mean of

the estimated parameters varies for different values of α. It can be

observed that the RMSE for λ and σjump is minimised in the region
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Table 7.8: Stochastic volatility model with jumps (SVJ)

Stochastic volatility model (SVJ) estimates

S&P 500

1997-2011

k 0.1153

(0.0389)

θ 0.0097

(0.0010)

σ 0.0796

(0.0112)

λα=0.01 0.1762

(0.0319)

σJ,α=0.01 0.0545

(0.0060)

GMM test of overidentifying restrictions

J − stat 0.7282

P
[
X 2 > J

]
0.8666

2kθ ≥ σ2 Reject

of α = 0.01 and α = 0.001, or correspondingly a 99% and 99.9%

confidence level with a slightly bigger bias for the case of α = 0.001.

Consequently, in the empirical estimates that follows, α will be set

to α = 0.01.

7.9.2 Estimation results

Estimation for the stochastic volatility model with jumps is given

by Table 7.8.

Estimates in Table 7.8 confirms mean reversion in k. The jump

intensity λ is in the same order of magnitude 9 as for the maximum

likelihood estimation in Andersen et al. (2002).

Figure 7.2, 7.3 and 7.4 shows the estimated Realised variance,

the component series Cα=0.01 and the jump’s quadratic variation.

It can be noted that the S&P 500 displays jump clustering around

the recent market turmoil and that jumps tend to occur in periods

of high volatility.

9These are not directly comparable as Andersen et al. (2002) obtain the value for λ from

option prices. To the author’s knowledge there are no previous studies for which a one-to-one

comparison can be made.
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From Figure 7.3. it is possible to note that an increase in jump

activity is associated with an increase in realised variance: this in

turn could suggest a stochastic volatility factor with jumps as in

Eraker (2004) and Eraker et al (2003). It also provides support to

Jacod and Todorov (2010) findings that most stock market jumps

in the S&P 500 stock index are associated with volatility jumps.

7.10 Result summary

Table (7.9) displays the estimated parameters for the SV, SVL,

SVLJ10 models. The leverage effect is confirmed by the data and

confirming previous studies as ρ is negative for the sample. It should

be noted that jumps in returns change the size of the leverage ef-

fect. Jumps contribute to the leverage parameter for about 30% of

its value and the ρ values suggest that jumps are correlated with

returns.

Once the leverage parameter is estimated using realised volatil-

ity generated by the bipower variation estimator the leverage value

falls. The leverage parameter ρ, when obtain using Bipower vari-

ation rather than quadratic variation takes value ρ = −0.3516 in-

stead of ρ = −0.4625.

For all models the J-test is not rejected by the data while the

stability condition is rejected. The implication of 2θk ≥ σ2 for a

Feller (1951) type of process is that the volatility process can reach

zero.

7.11 Conclusion

The paper focuses on modelling realised volatility in the context

of high-frequency data. The quadratic variation for the jump com-

ponent is obtained by subtracting bipower variation from the re-

alised volatility measure. Monte Carlo estimation shows that the

proposed moments work well and the GMM estimation is able to

recover the parameters driving the stochastic differential equation

(SDE) with low RMSE for all proposed stochastic volatility models.

The parameters obtained are in line to the ones obtained in the

literature, both in terms of signs and magnitude. The leverage

10The SVLJ is the SVJ model with added leverage moment as in equation (7.27) .
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Table 7.9: Summary

Estimation summary

SV SVL SVJ SVLJ

S&P 500 S&P 500 S&P 500 S&P 500

1997-2011 1997-2011 1997-2011 1997-2011

k 0.1135 0.1135 0.1153 0.1153

(0.0353) (0.0354) (0.0389) (0.0389)

θ 0.0103 0.0103 0.0097 0.0097

(0.0011) (0.0.0011) (0.0010) (0.0010)

σ 0.0840 0.0834 0.0796 0.0796

(0.0104) (0.0104) (0.0112) (0.0112)

ρ -0.4625 -0.3510

(0.1401) 0.1027

λ 0.1762 0.1762

(0.0319) (0.0319)

σJ 0.0545 0.0545

(0.0060) (0.0060)

GMM test of overidentifying restrictions

J − stat 0.5919 0.5538 0.7282 0.7280

P
[
X 2 > J

]
0.8983 0.9069 0.8666 0.8666

2kθ ≥ σ2 Reject Reject Reject Reject
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effect displays a lower value when bipower variation is applied to

the series, indicating that a large proportion of the leverage effect

is due to jumps. This finding additionally provides evidence that

jumps are negatively correlated with returns.

Estimation for the stochastic volatility model, the stochastic

volatility model with leverage and the stochastic volatility model

with jumps in returns are rejected due to the stability condition

not being satisfied.

The common feature for all tested model is a high value for the

parameter k. This high mean reversion is potentially the cause for

the rejection of the stability condition.

The instability in the SDE that drives volatility could poten-

tially indicate a two factor model. While a volatility process that

is driven by two SDEs would be a natural extension to the work

reported above, it should be noted that due to the number of pa-

rameters involved, estimation of a two factor model, requires very

efficient algorithms not usually available with standard software

and in even such cases it is not possible to obtain sensible esti-

mates using standard GMM techniques 11. Potential future work

will involve methodologies that avoid the ’hill climbing algorithms’

commonly employed in classical estimation. A possibility is the

Laplace type estimators based on Markov Chain Monte Carlo pro-

posed by Chernozhukov and Hong (2003).

The S&P 500 displays jump clustering around the recent mar-

ket turmoil with large jumps that tend to occur in periods of

high volatility. This finding provides support for jump cluster-

ing, time-varying jump frequency and jump size distribution. Al-

though possible time-varying jumps have been recently indicated

by Tauchen and Zhou (2011), the estimates obtained above provide

much stronger support to this argument. The size of the leverage

effect, in particular, suggests large negative jumps occur more often

than positive jumps.

As increases in jump activity are associated with an increase in

realised variance, further modelling should involve a jump compo-

11The two factor model proposed by Bollerslev and Zhou (2002) and estimated by the

author using MATLAB c©did not produce any sensible estimates. Although such two-factor

model estimation is theoretically possible, it is likely that estimation based on GMM and

analytical moments is too complex and standard algorithms such as the Newton-Raphson

method would fail to converge.
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nent in the volatility process that is correlated with the jump com-

ponent present in the SDE driving returns. One possible choice is a

stochastic volatility factor that is Levy-driven such as the Barnoff-

Nielsen and Shepard (2001, 2002) model.
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7.12 Figures

Figure 7.1: Simulated Path for SDE
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Figure 7.2: Realized Variance of S&P 500

Figure 7.3: Bipower Variation and Realized Variance Component
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Figure 7.4: Realized jumps α = 0.01
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