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Abstract 

 

In this work, fabrication and characterisation of nanostructure devices has been 

performed on InGaN/GaN multiple quantum wells (MQW) grown on either c-

plane sapphire or (111) silicon substrates. A cost effective nanosphere lithography 

technique has been employed for the fabrication of a number of nano structures 

such as nanorod arrays, nanoholes arrays; and single micro-disk lasers. Photonic 

crystal structures based on nanohole arrays have been designed and then 

fabricated on InGaN/GaN MQWs with an emission wavelength of 500 nm grown 

on c-plane sapphire by means of a nanosphere lithography technique, 

demonstrating a clear photonic crystal effect.  

 Significant suppression of spontaneous emission has been observed when the 

emission is within the photonic bandgap. Angular dependent measurements 

show a change in the far-field pattern when the emission lies outside the photonic 

bandgap compared with the emission which lies inside the photonic bandgap. 

A coherent nanocavity a two-dimensional (2D) periodic array of nanodisks,  was 

designed and fabricated on an InGaN/GaN MQW structure with an emission 

wavelength at 510 nm, leading to a significant enhancement in the internal 

quantum efficiency (IQE) as a result of enhanced spontaneous emission rate. 

Finite-difference time-domain (FDTD) analysis has performed for the structure 

design. The coherent nanocavity effect has been confirmed using means of time-

resolved photoluminescence measurements, showing a clear enhancement in 

spontaneous emission rate. Finally, an improvement in IQE of 88 times at 510 nm 

has been achieved. 

Optically pumped green lasing has been achieved with thresholds as low as 1 

kW/cm2, using an InGaN/GaN based micro-disk with an undercut structure on 

silicon substrates. The micro-disks with a diameter of around 1 μm were 

fabricated by means of a combination of a cost-effective silica micro-sphere 
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approach, dry-etching and subsequent a wet-etching. The combination of these 

techniques both minimises the roughness of the sidewalls of the micro-disks and 

also produces excellent circular geometry. Utilizing this fabrication process, lasing 

has been achieved at room temperature under optical pumping from a 

continuous-wave laser diode. Time–resolved micro-photoluminescence (PL) and 

confocal PL measurements have been performed in order to further confirm the 

lasing action in whispering gallery modes and also investigate the excitonic 

recombination dynamics of the lasing.  
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CHAPTER 1 

Introduction 

1.1 Introduction  

In this chapter the context of the thesis and the motivation and potential 

applications for III-nitride based optoelectronics devices will be introduced. This 

thesis is focused on the fabrication of nanostructure devices that enhance the 

optical properties of III-nitrides. A nanosphere lithography technique was 

extensively used in order to overcome lithography resolution restrictions.  

1.2 Aims and Motivation 

The ‘greenhouse effect‘, the major factor  for causing climate change over the 

years as shown in Fig. 1.1, drives a number of scientists worldwide  to look for 

suitable means of reducing decreasing carbon emissions. In nowadays electricity 

is mainly generated from non-environmentally friendly sources such as oil, coal 

and gas, and thus is one of the main sources of carbon emissions. In order to 

reduce carbon emissions 15 European Union (EC) member countries including the 

UK signed the Kyoto Protocol in 1997. The Kyoto Protocol states that the overall 

greenhouse emissions will have to be reduced by 20% compared to the levels in 

1990 by 2020, and reduced by 85-90% by 2050 [1].  
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Figure 1.1 Temperature change over the years. 

In order for the EU countries to reach the challenging targets, it is crucial to 

develop new technologies for sustainable and green energy, such as wind or solar 

energy, which help to reduce carbon emission. Additionally, a decrease in energy 

utilisation for general illumination is required through developing energy 

efficiency lighting sources.  

1.3 Light Sources 

Lighting accounts for 29% of global electricity consumption is used for lighting 

purposes annually [2]. Therefore, it would significantly save energy and reduce 

carbon emissions if energy efficient lighting sources could replace the present 

incandescent bulbs and fluorescent tubes. Solid state Light emitting diodes (LED) 

are an ideal candidate for this replacement, as LEDs are >10 times more efficient 

than conventional lighting sources in theory. Figure 1.2 illustrates the luminous 

efficacy of different light sources (Lumens per Watt) over the last 60 years, 

demonstrating the major advantage of white LEDs, mainly based on III-nitride 

semiconductors [3]. 

A step forward in reducing energy consumption for general illumination has been 

taken in the Europe through the legislation of prohibiting the sale of 100-Watt 

incandescent light bulbs set by the European Union on 1st September 2009, 
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requiring that the sale of all incandescent bulbs has to be phased out completely 

from supermarket by 1st September 2012.  

 

Figure 1.2 Luminous efficacy for various lighting technologies plotted over the 

years of their development [4]. 

The compact size, long life-time (up to 50,000 hours) and low energy consumption 

of LEDs make them attractive for utilisation of general illumination. LED devices 

have not only been used in solid state lighting but also for example in LED TV 

backlighting, traffic lights and automotive lighting. However, currently white LEDs 

based on III-nitrides is still far from the theoretical limit in respect of converting 

the injected electrical energy to optical energy and thus cannot replace the 

conventional lighting source. Consequently, further development is still required 

to improve their luminous efficacy of the LEDs.  

1.4 History of III-Nitrides LEDs 

The first LEDs emitting in the red spectral region demonstrated by Holonyak Jr. 

and Bevacqua [5] was based on GaAsP. Considerable effort has been devoted to 

further extending into the visible region with shorter wavelength, for example, 

increasing phosphorus composition in GaAsP. Unfortunately, GaAsP exhibits 

indirect band structure if phosphorus concentration is higher than 44%. As a result 

the efficiency drops approximately to 0.005% [6]. Therefore, this makes it an 
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unsuitable way to produce light at shorter wavelengths. Isoelectronic doping of 

GaP with nitrogen in 1968 resulted in yellow to green (550 nm) emission LEDs. 

The last two decades have seen major achievements in the field of III-nitride 

semiconductor materials and optoelectronics, leading to three Nobel Prize 

Winners in Physics for the year 2014 who have made revolutionary contributions 

to III-nitride epitaxial growth. Figure 1.3 shows that III-nitrides have direct 

bandgaps across their entire composition range, covering the complete visible 

spectrum and a major part of the ultraviolet (UV) (from 0.7 eV for InN, through 

3.5 eV for GaN, to 6.2 eV for AlN), and therefore can find a wide range of 

applications, such as solid state lighting, high definition displays, visible light 

communication, environmental protection, solar energy applications and 

healthcare etc. 

 

Figure 1.3 Bandgap energies of semiconductors versus their lattice 

constant [7]. 

In 1968 Herbert Maruska reported GaN films grown by HVPE on sapphire. This 

approach results in 16% lattice mismatch, giving rise to unintentional n doping [8]. 

The great challenge is growth of p-type GaN films which are crucial for the 

formation of a p-n junction. Based on previous experience in growing p-GaAs and 

p-GaP, he started doping Zn into GaN. The consequence was extremely 



 

~ 5 ~ 

 

disappointing. The film quality was poor and had high resistivity making it unusable for 

the formation of p-n junctions. Zn-doped GaN was semi-insulating and also had a 

reddish colour due to high density of defects. 

Subsequently, Maruska and Pankove determined the bandgap of GaN by optical 

investigation in 1970, which is 3.4 eV at room temperature [9]. In 1971 the first 

electroluminescence (EL) measurements by Pankove and his co-workers [10] were 

performed on unintentionally n-type doped GaN film/Zn-doped GaN structure 

with metal as contacts. The peak detected was at 2.6eV. Despite that the EL 

emission was observed from the device, I-V characteristics were very poor as a 

result of the semi-insulating Zn-doped GaN layer. Maruska also tried to dope Mg 

into GaN in 1972 in order to obtain p-GaN. Although p-type GaN was still not 

obtained, the first violet emission device was observed in 1973 and was bright 

enough to observe the emitted light in a well-lit room [11]. The emission was 

coming from the Mg dopants. 

Meanwhile, rapid progress in III-nitrides drew a lot of attention from a number of 

scientists as they realise that GaN has great potential to achieve high performance 

LEDs for solid state lighting. The initial research was mainly focused on improving 

the crystal quality of GaN films due to the, large lattice mismatch between GaN 

and sapphire substrate used. In 1986 Amano and Akasaki invented so-called two 

step growth approach which has become a standard method for the growth of 

GaN on sapphire using a metal organic vapour deposition (MOCVD) technique, 

namely, an initial AlN nucleation with a thin was deposited at a low temperature 

on sapphire in order to compensate the large strain as a result of the lattice-

mismatch before the growth of GaN layer at a high temperature. The two-step 

approach represents a major breakthrough in the growth of GaN, leading to 

significant improvement in crystal quality of GaN and also for the first time 

achieving an atomically flat surface [12, 13]. The p-type doping problem was 

overcome in 1989 by Amano and Akasaki et al. [14], through using low energy 

electron beam to activate Mg doped GaN. This led to the realisation of the first 

LED based on a GaN p-n junction by Amano and Akasaki in 1992 [15], emitting in 
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the UV-region of the spectrum. Finally, in 1993, Nakamura working at Nichia 

Industries in Japan demonstrated thermal activation of the Mg doped dopants by 

annealing the p-type film under nitrogen ambient, which was another major 

breakthrough required for industrial mass-production. The first blue, green and 

yellow electrically injected LED devices based on an InGaN/AlGaN quantum well 

(QW) system were reported by Shuji Nakamura in 1994, with efficiencies of 7.3%, 

2.1% and 1.2% respectively [16]. Due to their revolutionary contribution to 

development of GaN-based LEDs, the 2014 Nobel Prize for Physics was awarded 

to Professors Isamu Akasaki, Hiroshi Amano and Shuji Nakamura. 

1.5 Challenges to Overcome in III-Nitrides  

As mentioned previously in section 1.3, research in III-nitride semiconductors 

increased rapidly over the following years after the pioneering work by Professors 

Isamu Akasaki, Hiroshi Amano and Shuji Nakamura, evidenced by Fig. 1.4, 

demonstrating a significant increase in number of publication, starting in late 

1980s and early 1990s. 

 

Figure 1.4 Number of publications related to III-Nitrides from 1965 up to 

2000 [17]. 
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1.5.1 The ‘Green Gap’ Phenomenon 

One of the main advantages of InGaN/GaN quantum well technology is that the 

emission wavelength can be tuned from deep UV to near infrared region by 

changing the concentration of indium, which can cover the entire visible 

spectrum. However, by increasing the indium composition of InGaN the efficiency 

of the device dramatically decreases. The problem becomes more prominent 

when the wavelength moves toward green and yellow spectral regions with 

increasing indium composition. For yellow emission GaP incorporated with 

nitrogen could be used for the fabrication of yellow emitters. However, extending 

the GaP: N system to shorter wavelengths by reducing the concentration of 

nitrogen will lead to an indirect bandgap, and consequently a low optical 

efficiency is expected as discussed in section 1.4. 

This phenomenon, as demonstrated in Fig. 1.5, is so-called ‘Green/yellow Gap’, 

where the efficiency drops off rapidly in this specific region of the spectrum. 

 

Figure 1.5 External Quantum efficiency of LEDs emitting in the visible region of 

the spectrum at room temperature. V (λ) corresponds to the human eye 

response [18]. 
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The ultimate white light LED is based on Red-Green-Blue (RGB) technology, 

meaning that utilisation of the three primary colours of the visible spectrum 

(red/green/blue) to generate any colour, which includes white. Therefore, it is 

necessary to first solve the ‘green gap’ problem. 

1.5.2 Quantum Confined Stark Effect (QCSE) 

Due to the Wurtzite crystal structure of III-nitrides (see Chapter 2) a spontaneous 

polarization is expected to be along the c-direction [19]. The lattice mismatch 

between AlN, GaN and InGaN leads to a piezoelectric field in forming 

heterstructures. The induced piezoelectric field’s exhibit pronounced importance 

in InGaN/GaN based quantum well structures as a result of compressive strain 

which InGaN layer suffers. As a result electron-hole wave functions will be pulled 

apart, thus reducing the overlap between them. This is so-called quantum 

confined Stark effect (QCSE). A further increase in the indium composition, to 

achieve longer wavelength emission, will result in an increased lattice mismatch 

between InGaN and underlying GaN. A stronger piezoelectric field will therefore 

be induced in the QWs and cause further reduction in the overlap of the electron-

hole wave functions. QCSE is therefore the major reason for the limit in further 

improving optical performance of current III-nitride based emitters. This becomes 

more severe with increasing emission wavelength one of the major reasons for 

causing "green/yellow" gap. Figure 1.6(a) illustrates the ideal scenario for the 

quantum wells, where there is no piezoelectric fields induced. 

 

Figure 1.6  (a) An ideal case of InGaN / GaN QWs without any induced 

piezoelectric field (b) InGaN / GaN under strong piezoelectric fields. 
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In a contrast, the band diagram for an InGaN/GaN quantum well structure grown 

on c-direction (0001) is illustrated in Fig. 1.6 (b), where the electron–hole wave 

functions are clearly separated as a result of the lattice-mismatch induced 

piezoelectric fields. This reduction in the overlap of the electron–hole wave 

functions leads to a decrease in oscillator strength, and thus optical quantum 

efficiency. The presence of QCSE in the quantum wells also reduces the effective 

band gap of the structure and leads to a decrease in the energy of the emitted 

photons, which causes redshift in emission wavelength. 

Several methods have been proposed in order to reduce the lattice-mismatch 

induced piezoelectric fields. The growth of III-nitrides in different orientation such 

as non-polar or semi-polar can help eliminate or reduce the piezoelectric fields 

[20-22]. However, due to unavailability of cost effective substrates for the growth 

of III-nitrides on non-polar or semipolar orientation, makes the commercialisation 

of this technology impossible for now. Another way of increasing the optical 

efficiency of III-nitride based heterostructures is by fabricating nanostructures 

using top-down methods. It has been shown that nanostructures can result in a 

strain relaxation across the quantum wells [23, 24]. Fabricating nanostructures 

through the InGaN/GaN quantum wells allows the crystal lattice to relax, resulting 

in an increase in the radiative efficiency of the device. This will cause the blue shift 

in emission wavelength. An additional advantage of fabricating nanostructures it 

provides an increase in the extraction efficiency, allowing more light generated to 

escape out of the devices [25, 26]. 

1.5.3 Efficiency Droop  

Another major challenge is the so-called "efficiency droop", meaning a significant 

reduction in internal quantum efficiency (IQE) with increasing injection current, 

for example, the IQE can fall by up to 50% from its peak value at the drive currents 

required for practical applications. This problem becomes more severe as the 

emission wavelength shifts towards the green/yellow spectral region. This is also 
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a severe problem for fabrication of blue emitters with high output power for 

general illumination. 

 

Figure 1.7 Normalised external quantum efficiency versus injection current for 

a blue LED device emitting at 460 nm. 

Figure 1.7 shows a typical external quantum efficiency of a commercial blue LED, 

demonstrating efficiency droop starting even at a few mA injection current which 

is far from requirements for practical applications. There are intensive dates 

about the origins for the cause of the "efficiency droop", such as-Auger 

recombination [27] and leakage current [28]. 

 Auger recombination is the non-radiative recombination of carriers, where the 

excess energy of recombination is reabsorbed by a third carrier, allowing it to be 

excited to a higher energy level [29], resulting in the decrease in quantum 

efficiency at higher injection currents where this event is most likely to happen. 

Solving the “efficiency droop puzzle” that is the efficiency droop effect is vital to 

achieving high brightness LEDs for solid state lighting. 

1.5.4 Light Extraction  

The last two decades have seen major achievements since the pioneering work 

done by Amano, Akasaki in late 1980s and Nakamura in early 1990s. However, it 

is still necessary to further improve optical performance of blue LEDs in order to 
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replace currently conventional lighting sources. In addition to the requirements 

for further increasing IQE, extraction efficiency also needs to be increased. The 

major limit to extraction efficiency is due to the large contrast in refractive index 

between GaN and air. The optical performance of LEDs are limited because the 

majority of the light generated inside the device is trapped by total internal 

reflection (TIR); and is lost either by collisions with the crystal lattice, creating 

phonons, causing a temperature increase or by being reabsorbed by the quantum 

wells.  

The light generated as a consequence of the recombination of electron-hole pairs 

that can travel in any direction. If the propagated light from the device hits the 

GaN/Air interface with angle (𝛩𝑖𝑛𝑠.), and an incident angle is larger than the 

critical angle required for total internal reflection GaN (𝛩𝑖𝑛𝑠. > 𝛩𝑐), the light is 

totally reflected, as shown in Figure 1.8. On the other hand, if the propagated light 

hits the GaN/air interface with an angle smaller than the GaN critical angle then 

the light is extracted. 

Unfortunately the large difference in refractive index between GaN and air results 

in a small GaN extraction angle (~240), and thus most of the generated light is 

reflected back into the device. 

 

Figure 1.8 Description of the total internal reflection occurs in LED devices. 

A number of approaches have been used to overcome this problem, such as 

incorporation of surface texturing [30, 31]; and in more complicated systems, 
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introduction of so-called photonic crystal structures [32, 33], where light trapped 

inside the device can be manipulated and directed by suppressing the light 

propagation in a slab mode and then enhancing it along a vertical mode. The 

fabrication of photonic crystals structures, can result in the formation of photonic 

bandgaps for certain energies in the xy-plane. This will prohibit the formation of 

slab modes, which tend to be stay trapped inside the device and redistributing 

their energy outside the device. Additionally, the fabrication of photonic crystal 

structures could result in controlling the directionality of the light and 

modification of the spontaneous emission rate (see Chapters 4 & 5).  

1.5.5 Carrier Effective Mass and Lasing Threshold 

III-Nitride semiconductors generally exhibit much heavier effective masses of 

carriers (both electrons and holes) than those of other III-V semiconductors, as 

seen in Table 1.1, where the fundamental material parameters of a number of 

typical III-V semiconductors have been provided.  

In general, wide band gap semiconductors such as III-nitrides suffer from high 

thresholds for population inversion and lasing, typically in the kA/cm2 range. This 

high Jth is to a large degree an intrinsic limitation due to the high carrier densities 

of states resulting from the high masses in wide band gap materials.  

Material Eg (eV) Electron effective 

mass (me/m0) 

Hole effective 

mass (mh/m0) 

GaAs 1.424 0.063 0.51 

InP 1.34 0.08 0.6 

GaN 3.4 0.2 0.8 

 

Table 1.1 Energy bandgap and electron and hole effective masses of GaN and 

other III-V semiconductors. The free electron rest mass (m0) is 9.11x10-31 kg. 
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The current density for lasing threshold is directly related to carrier density 

required for meeting transparency conditions given by (1.1) [34]. 

𝐼𝑡ℎ =
𝑒𝑉𝑛𝑡𝑟

𝜏
     (1.1) 

Where V is the volume of the active region, ntr is the threshold of carrier density 

for meeting transparency conditions, τ is the recombination lifetime of carriers 

and e is the magnitude of the electron charge. Several methods have been proposed 

to reduce the threshold for lasing in III-nitrides, including the use of quantum dots 

[35]. However, it is far from satisfactory, as the lasing threshold till tends to be in 

kA/cm2 range due to the high carrier density required for transparency condition. 

1.6 Substrates   

The major problem of GaN is due to large lattice-mismatch epitaxial growth as a 

result of lack of suitable and affordable substrate. Free-standing GaN substrates 

are presently available, but are extremely expensive. Consequently, they are less 

attractive.  Currently, the typical approach for fabrication of free-standing GaN 

substrates is to use a hydride vapour phase epitaxy (HVPE) technique. Free-

standing GaN with a thickness of up to 300 μm can be obtained by means of a 

deposition of GaN using gallium chloride (GaCl) and ammonia (NH3) on foreign 

substrates, typically, like sapphire [36] and subsequently removing the foreign 

substrates using laser-lift technique or others [37- 40].Bowing effects and cracking 

problems are typically experienced during the substrate removal process. 

Sapphire is the most popular substrate for GaN growth [61], although the lattice 

mismatch and the difference in thermal expansion coefficient between sapphire 

and GaN are very large, 16% and 25.5% [41], repectively.  

Silicon Carbide (SiC) as a substrate for GaN growth exhibits less lattice-match 

(3.4% for 6H-SiC) compared with sapphire. However, SiC is too expensive to be 

used for growth of blue LEDs. Typically, the price of 2 inch 6H-SiC is approximately 

$1000 [43], making SiC substrates unsuitable for mass production purposes. 
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Silicon faces even more severe challenges as a substrate for GaN. Silicon (Si) 

substrates are the least expensive in comparison to the other main competitors 

at $40 for an 8 inch wafer [44]. Additionally, the availability of silicon substrates 

in large sizes, up to 12 inch, and the well-established processing technology of 

such wafers make them commercially attractive for mass production as it can 

further reduce the overall cost of LEDs. Although there are a number of potential 

benefits that might be gained from using Si as foreign substrate, the lattice 

mismatch of Si to GaN epilayers is even larger (~17%) and the larger thermal 

expansion coefficient further causes serious problems in the growth of GaN 

epilayers. Therefore the usage of Si as a foreign substrate poses on its own several 

challenges that need to be overcome. 

1.7 Nanoscale Lithography Techniques 

III-nitride based nano devices potentially exhibit a number of major advantages 

as a result of strain relaxation, and thus are expected to lead to significant 

enhancement in optical performance and some novel properties which cannot be 

achieved by the devices with a standard size. However, fabricating of nano devices 

is severely limited by the resolution limitation of standard optical lithography 

techniques or the actual fabrication cost using other advanced techniques, which 

restrict them from mass production. 

1.7.1 Fabrication of Self organised Nanorod arrays 

Our team has developed so-called self-organised Ni nano-mask approach in last 5 

years. In this method a thin layer of Ni is deposited on the top of a silicon dioxide 

layer which is initially prepared on the surface of the GaN epiwafer. The metal 

layer is then thermally annealed in order to form self-organised nickel nano-

islands as a first nanomask for etching through the silicon oxide. The Ni/silicon 

oxide nano-islands serve as a second mask for further etching into GaN-based 

nano-rod array structure [45, 46]. It is a simple and cost-effective approach, 

making this type of fabrication be ideal for mass production. This approach has 

been widely applied in fabrication of nano-rod array LEDs with significantly 
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improved surface [62]. This approach also led to the demonstration of first room 

temperature III-nitride based nano-plasmonic lasing with an ultra-low threshold 

[56, 57]. It has also been applied in fabrication of III-nitride nano-devices for solar 

powered hydrogen generation with significantly improved efficiency [58-60]. This 

approach has also been extended for fabrication of nanorod array templates for 

further overgrowth of semipolar or non-polar GaN templates, leading to 

significant improvement in crystal quality.  

Despite the advantage of this technique, the difficulty in accurately controlling 

size and shape due to the random formation of nano-islands, makes it 

inappropriate for the fabrication of periodic arrays or well defined cavities with a 

strict control. 

1.7.2 Electron Beam Lithography  

In electron beam lithography (EBL), the focused beam of electrons is used to write 

a nano patterned structure on a soft photoresist material for further device 

fabrication. A sub-10 nm resolution can be achieved, and any pattern can be 

designed and transferred to the soft photoresist [47, 46]. Despite the excellent 

properties of this technique is extremely timing-consuming and thus is limited to 

the fabrication of small size wafers. This prevents its use for mass-production. 

1.7.3 Nano-Imprint Lithography  

Nano-imprint lithography (NIL) technique is another method that can be used in 

the fabrication of nanostructures [49, 50]. Nanostructures are patterned on the 

surface of a thin polymer film which is initially deposited on epiwafers by pressing 

a rigid master, which contains surface relief features. The advantage of using NIL 

is that it does not require any sophisticated tools for masking and allows 

nanoscale designs. The rigid master is usually prepared by e-beam lithography. 

Imprinting the polymer film allows further etching that will transfer its pattern 

into the underlying epiwafers. This method is ideal for large scale fabrication, with 

a relatively low cost. The major drawback of NIL is that once the rigid mask is 
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written it cannot be changed. Moreover, the rigid master is expensive and has a 

limited lifetime. Normally, the rigid mask is written on Si wafers; unfortunately Si 

wafers are fragile, thus minimising the usage of the rigid mask to approximately 

10 to 15 times. 

1.7.4 Nanosphere Lithography 

Nanosphere lithography is an inexpensive technique, and nano-mask patterning 

is obtained through coating dielectric nano-particles, which can be formed in a 

very regular manner [51]. These nano-particles can serve as a two [52] or three 

[53] dimensional mask for the fabrication of photonic crystal structures 

fabrication or micro-cavity lasers [5]. Using nanosphere lithography, 

nanostructures can be fabricated using simple equipment. The resolution of the 

resulting nanostructures is defined by the nanosphere size. The particles can be 

found in a large variety from tens of nanometres up to several microns.  

Several techniques for deposition of nanoparticles have been studied and applied 

during the last few years. The lift–up deposition method requires that the device 

is immersed into a tank filled with nanoparticles diluted in a solution. When the 

device is lifted from the tank a film of self-aligned particles adheres to the wafer 

surface. This layer then serves as an etching mask. The lift-up deposition method 

is not used in this work. 

Another technique, used in this work is a spin coating method where a solution containing 

silica nanospheres, is deposited on the samples. Such a deposition technique 

provides several advantages: it is fast, cost effective and has a high degree of 

reproducibility. 

1.8 Conclusion 

In this Chapter a brief introduction on the history of III-Nitrides was presented. 

The major challenges that needed to overcome for improving the performance of 

the GaN based LEDs are introduced; such as the green gap, the quantum confined 

stark effect, the efficiency droop , light extraction and the high lasing thresholds. 
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Finally, the typical nanostructure fabrication techniques were presented, as well 

as the introduction of our own cost effective fabrication technique using 

nanosphere lithography. 
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CHAPTER 2 

Background 

 

2.1 Semiconductors 

Materials are separated into three main categories related to their electrical 

properties, which are conducting, insulating and semiconducting. A conductive 

material has the ability to easily allow the flow of electrically charged carriers 

through it (e.g. metals), while the materials that do not allow electrically charged 

carriers to flow are called insulators (e.g. glass). Semiconductors are a material 

with the ability to conduct better than insulators but less than conductors [1, 2].In 

metals the resistivity was found in the order of few times 10-8 Ωcm [69], where in 

semiconductors is in the order of 104 Ωcm for GaN [70]. On the other hand the 

resistivity of glass which is an insulator, was found to be in the order of 

1014 Ωcm [69]. The conductivity of semiconductors can be tuned through doping 

a small amount of certain impurities with different levels. For n-type doped 

semiconductors extra electron energy levels are introduced in the forbidden gap 

below the conduction band. In a p-type doped semiconductor extra hole energy 

levels are introduced above the valence band. 

III-Nitride semiconductors are the ideal candidates for optical devices because of 

their direct bandgap properties. Additionally, they can cover a wide range of 

energies that extends from 6.2 eV (AlN) to 0.7 eV (InN) [3], which covers from 
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deep ultraviolet (UV) to near infrared spectral region. In this study, nanostructures 

were fabricated in order to enhance the optical properties of InGaN/GaN multiple 

quantum well (MQW) based devices emitting in the visible spectral region. 

2.2 Crystal Structures  

Gallium nitride and its related alloys are attractive materials due to their direct 

and wide band structure, thermal and chemical stability. The crystal structure of 

III-nitrides is defined by the way the atoms are stacked together, leading to three 

different configurations which are defined as zincblende, rock-salt and hexagonal 

wurtzite structures [4], as shown in Figure 2.1 

 

Figure 2.1 Three types of GaN crystal structure (a) wurtzite structure, (b) 

zincblende structure, and (c) rock-salt structure. [5] 

The most common is the hexagonal wurtzite crystal structure as it is the most 

thermodynamically stable under ambient conditions. In a wurtzite crystal 

structure the atoms are stacked in a hexagonal closed packed plane (HCP) along 

(0001) direction (c-plane). The wurtzite crystal structure has two lattice 

parameters labelled as "a" and "c”. In Fig. 2.1 (a) an inter-atomic distance along 

the in-plane direction is defined as lattice constant "a", while an inter-atomic 

distance in the out of plane direction (perpendicular to the in-plane) is lattice 

constant "c" [6]. 
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In a zincblende structures which is typical of Si, MgO and GaAs [7], the crystal has 

a cubic unit cell, as shown in Fig. 2.1(b), described with a single lattice constant 

“a”. Wurtzite and zincblende crystal structures are similar but their main 

differences are due to the bond angle with their second nearest atom. In the 

zincblende structures there is a 60o rotation, where as in the wurtzite structure 

there is no rotation between the stacking orders of the atoms [6, 7]. 

III-nitrides with a rock-salt crystal structures can only be formed through placing 

a wurtzite structure under very high pressure [8], and cannot be produced by any 

epitaxial growth technique. The pressure required for this phase transition is 

approximately 50 GPa [9] for GaN, approximately 20GPa for AlN [10] and 

approximately 12 GPa for InN [11], respectively. 

2.3 Chemical and Electrical Properties of III-Nitrides 

2.3.1 Chemical Properties of III-Nitrides 

The excellent chemical and thermal stability of III-Nitrides makes them attractive 

in a number of different applications such as power electronics and 

optoelectronics. Table 2.1 below shows the material parameters of III-Nitrides. 

 

Table 2.1 Material parameters of AlN, GaN and InN and refractive indices at 

450 nm [12-15]. 

Generally, III-nitrides exhibit high resistance to chemical solution and high melting 

temperature, and consequently III-nitride based devices can be used in a harsh 

Material Bandgap 

(eV) 

Permittivity 

(F/m) 

Refractive 

Index (ηx) 

Lattice Constant 

(Å)  

Melting 

Point (oC) 

ALN 6.2 8.5 2.18 a=3.112, c=4.982 3000 

GaN 3.39 8.9 2.49 a=3.189, c=5.186 2500 

InN 0.65 15.3 2.9 a=3.553, c=5.693 2146 
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environments. However, some chemical solutions, such as KOH or NaOH, can 

attack GaN through defects under certain conditions, such as wet-etching at 

elevated temperatures or photo-electrochemical etching technique. 

2.3.2 Electrical properties of III-Nitrides 

The electrical properties of GaN compared to other III-V semiconductors are listed 

below in Table 2.2.The wide bandgap, high breakdown voltage and high 

temperature stability make GaN ideal for the fabrication of electronics devices for 

high frequency and high temperature applications. Currently, unintentional 

doped GaN exhibits n-type as a result of defects such as Ga vacancies or 

dislocations. 

Material Bandgap 

(eV) at 300 

K 

Electron 

Mobility 

(cm2/Vs) 

Thermal 

Conductivity 

(W/cm0C) 

Breakdown 

Field (MV/cm) 

GaAs 1.42 8500 0.4 0.4 

GaN 3.39 1000 2.3 5  

InP 1.34 5400 0.68 0.5 

SiC 3.26 700 3.6 2 

 

Table 2.2 Electrical characteristics of GaN compared against other III-V 

semiconductor materials [13, 16 -18]. 

Silicon is a typical dopant for achieving n-type GaN with an accurate control in 

electron density and electron mobility, and its activation energy is ~25 meV [19]. 

Therefore, basically, all doped silicon can be thermally activated at room 

temperature. 

Mg is a typical p-dopant and p-type GaN can be obtained through high-

temperature activation of Mg-doped GaN under nitrogen ambient. It is necessary 
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to heavily doped Mg into GaN in order to obtain p-type GaN, as the typical 

activation energy for p-GaN is very high, up to 150 meV [20].    

2.4 Optical Properties of III-Nitrides 

Figure 2.2 presents recombination mechanisms after electrons are excited from 

valence band to conduction in a semiconductor. The electron-hole recombination 

can be either radiative or non-radiative.  

 

Figure 2.2 Recombination mechanisms for the excited carriers in III-Nitrides. 

In the case of radiative recombination an electron in the conduction band loses 

its energy through recombination with a hole in the valence band, leading to the 

generation of a photon. The resulting photon energy from this process is equal to 

the bandgap (𝐸𝑔 =  
ℎ𝑐

𝜆
 ) of the material. This process is illustrated schematically in 

Figure 2.2(a) [21]. 

Figure 2.5(b), illustrates the excitonic recombination mechanism. After being 

excited optically or electrically, two kinds of charged carriers, negatively charged 

electrons and positively charged holes, will form excitons due to Coulomb 

potential. This increases the probability of radiative recombination. An exciton is 

a neutrally charged particle, and could be either free exciton or bound exciton, 

which are also called the Wannier-Mott and Frenkel exciton respectively. In 
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semiconductors a free exciton is more likely to occur, where a tightly bound 

exciton is more likely to occur in an insulator crystal. The free electron binding 

energy is small due to the large separation between holes and electrons. Applying 

the Bohr model the exciton binding energy can be estimated by (2.1) below. 

𝐸𝑛 =  −
𝜇

𝑚0

1

𝜀𝑟
2

𝑅𝐻

𝑛2
    (2.1) 

Where 𝑅𝐻 is the Rydberg constant for a hydrogen atom (13.61 eV), and 𝜀𝑟 is the 

dielectric constant of the material. The excitonic binding energy in GaN is 

approximately 26 meV, which is similar to the thermal energy at room 

temperature [22]. Excitonic recombination will have slightly lower emission 

energy than band edge emission due to the subtraction of the exciton binding 

energy (𝐸𝐺 − 𝐸𝑒𝑥𝑐𝑖𝑡𝑜𝑛). 

Figure 2.2(c), illustrates a schematic of donor-acceptor recombination process. 

When a semiconductor material is doped with either n-type or p-type impurities 

new energy levels can be introduced, and will be below the conduction band or 

above the valence band, respectively. This recombination mechanism will result 

in emission energy less than the material energy bandgap. 

Recombination of carriers that occurs within the bandgap of a material as result 

of impurities is presented in Fig. 2.2(d). This type of recombination mechanism 

results in the emission of photons with a reduced energy. The so-called yellow 

band emission often observed in GaN, in particular, silicon-doped GaN, is due to 

this kind of recombination mechanism [23, 24]. 

The Auger recombination mechanism is illustrated schematically in Fig. 2.2(e), 

where a third carrier is involved. In such a process the excess energy created from 

electron and hole recombination is absorbed by a third carrier in either the 

conduction band or valence band, and the third carrier is excited to a higher 

energy state. Normally, Auger recombination takes place when the density of 

excited carriers is high [71]. 
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Figure 2.2(f) describes non-radiative recombination schematically. In this 

situation when an electron and hole recombine their energy is lost due to phonon 

involvement, either as heat or lattice vibrations, as a result of defects or 

impurities.  

2.5 Low Dimensional Structures 

A low dimensional system is defined as a system with confinement along at least 

one of the 3- dimensions (x, y, and z). Due to advanced epitaxial growth or post 

fabrication techniques, a device with a confined region on the order of a few 

angstroms to a few of nanometres can be achieved. Such well-defined structures 

enhance the confinement along at least one direction [25]. In quantum mechanics 

quantum confinement states will be generated when at least one dimension is 

comparable to the magnitude of the de Broglie wavelength of the carriers, the 

energy level of such carriers becomes quantized in that direction. The de Broglie 

wavelength is given by (2.2). 

𝜆 ≈
ℎ

√𝑚𝑒
∗𝑘𝐵𝑇

    (2.2) 

Where h corresponds to Planck’s constant, 𝑚𝑒
∗  is the electron effective mass and 

𝑘𝐵 is the Boltzmann constant(1.38 × 10−23 m2kgs−2K−1).  

If the confinement occurs along one direction, it is labelled as a quantum well 

structure. A quantum wire structure means that there is a confinement along two 

directions. Quantum dots have confinement along all three dimensions.  

2.6 Density of States (DoS) 

The density of states (DoS) in a semiconductor is defined as the number of 

available states per interval of energy at each energy level that electrons can 

occupy per unit volume [26]. Figure 2.3 below shows the DoS as a function of 

dimensionality: (a) bulk semiconductor without any confinement, which is called 

as three dimensional system (3D); (b) quantum wells with confinement along one 

direction, which is called a two-dimensional system (2D); (c) quantum wires with 



 

~ 33 ~ 

 

confinement along  two directions, which is defined as a one dimensional system 

(1D); and (d) quantum dot with a confinement along all three directions, which 

we call zero dimensional system (0D). Figure 2.3 demonstrates that the DoS 

increases with reducing dimension in a quantum well. 

  

 

Figure 2.3 DoS as a function of dimensionality. 

2.7 Carrier Localisation Effect 

Exciton localisation in InGaN alloys is generally generated due to a low miscibility 

between InN and GaN, leading to indium segregation when indium composition 

is beyond a certain value. In some cases, a fluctuation in the thickness of InGaN 

quantum well [27] may also cause the exciton localisation effect. Localisation 

centres will have slightly lower bandgap energy as a result of higher indium 

composition [28, 29]. The effects of exciton localisation play a crucial role in the 

emission mechanism for III-Nitrides semiconductors. Despite the high defect 

density that InGaN based emitters suffers,such emitters exhibit high optical 

efficiency [72].This can be attributed to the effect of carrier localisation. The 

carriers are trapped inside the deep localisation centers prohibiting them to 

diffuse across the material and non-radiatively recombine with defects. 
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2.8 Photonic Crystals  

Photonic crystal structures have been widely used, for controlling the 

directionality of the emitted light, for high extraction efficiency devices, optical 

fibers and nanocavities laser [42, 74, 75]. PhC effect occurs when the refractive 

index is periodically varied in at least one dimension. The concept of PhC 

structures was first introduced by Lord Rayleigh in 1888, when one-dimensional 

(1D) structures were investigated [75]. In 1987, Yablonovitch introduced the 

concept of two-dimensional (2D) PhC structures, which would help to control the 

photon densities of states (DoS). Controlling the photon DoS means that 

spontaneous emission can be controlled [30-37]. Numerous challenges needed to 

be overcome in order to fabricate 2D PhC structure in the visible spectral region. 

The main challenge is due to the difficulty of fabricating sub-micron periodic 

arrays. In 1996, Krauss et al., demonstrated the first 2D PhC structure, fabricated 

using electron beam lithography on an AlGaAs semiconductor, showing a clear 

photonic bandgap in the near-infrared region [38, 39]. 

 

Figure 2.4 Schematic illustration of the photonic density of states (D (ω)) for (a) 

a homogeneous material and (b) with a photonic crystal. 

Similar to electronic states, photons have a density of states (DoS).Figure 2.4 (a) 

illustrates the photonic density of states for a homogeneous medium, while 

Fig.  2.4 (b) shows photonic density of states for a PhC. For the optical modes, the 

density of states describes the allowed number of states per frequency (ω). 

Fig. 2.4 (b) shows that the numbers of available photonic DoS at a number of 

particular frequencies (ω) are zero, thus implying a photonic bandgap at these 
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specific frequencies. This means there are no optical modes allowed over these 

frequency ranges [40]. 

 

Figure 2.5 Band gap map of two dimensional PhC of nanoholes in Transverse 

electric (TE) modes. 

Figure 2.5 shows a TE photonic bandgap map as a function of the air-filling factor 

for a hexagonal array, where the PhC lattice is 270 nm and the refractive index is 

assumed to be 2.5 for the case of GaN. The blue regions on the graph correspond 

to the photonic bandgaps, where the photonic DoS is zero for these certain 

frequencies. The filling factor and the photonic bandgap can be tuned by changing 

the nanohole size. The photonic bandgap map plotted in Fig. 2.5, is crucial for the 

design of PhC structures, as it allows to choose the appropriate structural 

parameters (i.e. nanohole diameter) in order to match the emission from sample 

to the PBG, see Chapter 4.  

Photonic crystals are periodic arrays of nanostructures that can affect light 

propagation in a device. In a photonic crystal the refractive index varies 

periodically in at least one direction. The light propagating inside the device can 

interact with PhC, along the direction(s) where the refractive index is varying. 

Similar to the bandgaps in semiconductors, PhC can form forbidden bandgaps  for 

certain wavelengths across the direction where refractive index is varying, thus 

prohibiting their propagation. 

Spontaneous emission can be substantially reduced by using a photonic crystal 

structure to introduce photonic bandgaps [41]. The photonic crystal effectively 



 

~ 36 ~ 

 

makes propagation of wavelengths within the phtonic 'forbidden gap' impossible. 

It was predicted that the PhC effect could lead to the inhibition of spontaneous 

emission in undesired directions and then allow redistribution of this emission in 

a direction required. In 2005, Noda's group observed inhibition of the optical 

modes along the 2D slab-plane direction (i.e. slab modes) and redistribution of 

the spontaneous emission to the direction normal to the slab (i.e. vertical modes) 

in a 2D GaAsInP semiconductor PhC slab [42]. The emission in slab modes is 

effectively suppressed when the emission wavelength lies within the PhC 

bandgap, while the emission in vertical modes is significantly enhanced. This can 

lead to a major improvement in the extraction efficiency and directionality of 

spontaneous emission.  

Similarly to semiconductors, a PhC structure is also subject to quantum 

mechanical confinement effects. Figure 2.6 depicts schematics of 1D, 2D and 3D 

PhC structures, respectively. A 1D PhC means the refractive index is periodically 

varied only along one dimension (for example, the z-direction in Fig. 2.6 a), the 

difference in refractive indices is proportional to the size of the photonic band-

gap. The 1D PhC has been widely used in fabrication of advanced opto-electronics, 

such as vertical cavity surface emitting lasers (VCSEL). Figure 2.6 (b) illustrates 2D 

PhC structure, where the refractive index is periodically varied in two dimensions 

(e.g. x-y dimensions). 

 

Figure 2.6 (a) One-dimensional photonic crystal structure, (b) two-dimensional 

photonic crystal structure, and (c) three-dimensional photonic crystal 

structure [43]. 
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The photonic bandgap will inhibit the propagation of the specific wavelengths in 

the direction of the variation in refractive index. If a defect is intentionally 

introduced along the periodicity of the array, will cause the formation of high 

photonic DoS for certain wavelengths. In this way PhC cavity lasers can be 

designed by deliberately introducing defects to the array. 

Figure 2.6(c) shows a more complex 3D PhC structure, where the refractive index 

is periodically changed in all three directions (x-y-z). Although the first 3D PhC was 

demonstrated in 1999 [44], unfortunately such structures pose a number of 

challenges in difficulties in fabrication, as the pattern have to be defined into all 

three dimensions. This would imply, an accurate control of the lithography and 

etching techniques used to define and transfer the pattern into the material. 

Especially for III-Nitrides, the etching techniques used, either dry or wet chemical 

are difficult to control in all three-dimensions. 

2.9 Microcavities 

The control of light interactions allows for a wide range of applications in optical 

communications, digital displays and thresholdless lasers. In semiconductor lasers 

coherent photon emission results when the emitting dipole is in resonance with 

the optical cavity modes. Therefore it is vital to understand how to tune the 

cavities resonance in order to match the emission wavelength for achieving low-

loss optical cavities. 

Ideally confinement of light in an optical cavity would not incur any loss. In optical 

microcavities the number of cavity resonances that overlaps with the 

spontaneous emission spectrum of the active region strongly depends on the size 

of the cavity. Reducing the size of the cavity allows control over the number of 

cavity resonances that overlap with the emission spectrum. The two key factors 

responsible for achieving high quality microcavities is the Q-factor and the 

effective mode volume. 
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Figure 2.7(a) – (d) shows a number of different types of semiconductor optical 

microcavities schematically. Figure 2.7(a) shows a schematic representation of a 

single micropillar cavity based on a Fabry-Perot cavity [45, 46]. In such a 

microcavity the light confinement is achieved in an area stacked between two sets 

of Bragg reflectors, which consist of alternating layers of materials with different 

refractive indices. The thickness of the cavity region (the area ‘sandwiched’ 

between the regions) is typically in the order of a few emission wavelengths. The 

arrow indicates the emission direction of the cavity.  

In Fig. 2.7(b) a microdisk cavity is illustrated. This type of microcavity differs from 

standard Fabry-Perot cavities as light confinement is achieved under total internal 

reflection (TIR) conditions [48, 49]. The light circulates at the periphery of the disk 

forming whispering gallery resonances in the same manner in which sound waves 

travel in St. Paul’s Cathedral in London, UK. The 3D confinement of light, due to 

air that surrounds the disk, can result in higher Q-values by comparison to 

standard Fabry-Perot cavity. 

In Fig. 2.7(c) illustrates a hybrid plasmonic laser. This type of cavity confines light 

using surface plasmon coupling which gives confinement in a very small area [50 

- 52]. Such a cavity is also known simply as a hybrid cavity. This because it 

combines both a plasmonic cavity and Fabry-Perot cavity, where light bounces 

between the two flat facets of the nanorods. A thin SiO2 layer 

(approximately 5nm) is deposited on top of a silver (Ag) film and nanorods are laid 

on top of the SiO2 layer. The light is confined in the SiO2 layer along the direction 

perpendicular to the metal/dielectric interface. Due to the small effective mode 

volume plasmonic lasers suffer from considerable propagation loss. 
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Figure 2.7 Types of semiconductor optical microcavities: (a) Fabry-Perot 

microcavity; (b) microdisk cavity; (c) plasmonic nanolaser; and (d) phonic 

crystal nanocavity laser. 

Finally Fig. 2.7 (d) shows a photonic crystal nanocavity [52-54]. In these cavities 

the periodicity of the array of nanoholes offers a Bragg reflection in the xy-plane. 

Intentional hole is inserted in the centre of the array introduces a defect, which 

allows defect modes to be formed, by localising the light in small areas. This 

results in the rapid increase in the DoS for certain wavelengths. Despite their 

excellent optical performance in terms of lasing threshold and minimising the size 

of the cavity, compared to standard Fabry Perrot lasers [76 - 78], such structures 

poses several difficulties in terms of fabrication. EBL technique is often used to 

define such structures, which prohibits the realisation of this type of lasers for 

commercial purposes. Additionally sacrificial layers or Bragg reflectors need to be 

grown prior the membrane structure, for increasing the light confinement along 

the vertical direction [77, 78]. 

When an emitter is placed in a special environment, such as in a micro cavity, 

spontaneous emission can be enhanced as the dipole can radiate much faster if 

the dipole is in resonance with the cavity mode. This phenomenon is observed as 



 

~ 40 ~ 

 

the number of DoS for certain energies seen by the dipole are increased and the 

dipole decay rate increased. The photons are emitted in the cavity mode. On the 

other hand, if the dipole is not in resonance with the cavity mode, then the 

available DoS seen by the dipole are decreased [55], thus decreasing the 

recombination rate of dipole. Figure 2.8, demonstrates a dipole placed in cavity, 

where the light is confined between the two mirrors. If the dipole is in resonance 

with the cavity mode then the decay rate (Γ) of the dipole increased. 

 

Figure 2.8 A Dipole placed in a cavity with the light bouncing between the 

mirrors. 

The existence of this phenomenon was first theorised by Purcell in 1946 and 

described by (2.3). 

𝐹𝑝 =
𝛤𝑐𝑎𝑣

𝛤0
=

3

4𝜋2 (
𝜆𝑐

𝑛
)3(

𝑄

𝑉𝑒𝑓𝑓
)   (2.3) 

Where Γcav and Γ0 the emission rate in a system with and without an optical 

cavity, respectively; λc is the cavity emission wavelength, n is the refractive index, 

Veff is the effective mode volume and Q is the quality factor of the cavity. 

From (2.3) Purcell spontaneous enhancement is dependent on the ratio of the Q-

factor and effective mode volume (Veff). Therefore, a large Q factor and small 

effective mode volumes are required in order to obtain large spontaneous 

emission enhancement. In order to achieve enhanced spontaneous emission (i.e., 

high Purcell factor) the emitter must be in resonance with the cavity, meaning 

that the cavity mode wavelength (λc) must match the emission wavelength of the 

emitter used (λe). One important requirement that needs to be fulfilled to have a 
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high coupling efficiency between the emitter photon and cavity resonance is that 

the linewidth of emitter dipoles are narrower than the cavity resonance [57]. 

Time-resolved spectroscopy is normally used to measure the Purcell 

enhancement. When the dipole (exciton) is in resonance with the cavity mode the 

photon density of states increases allowing the dipole to radiate faster compared 

to a vacuum, and thus enhancing the spontaneous emission rate [58]. 

The Purcell effect also can approximated using equation 2.4. 

𝐹𝑝 ≈
𝛽

1−𝛽
                (2.4) 

Where β is the spontaneous emission coupling factor, which can be estimated 

experimentally using a log-log plot of integrated intensity against optical 

excitation pumping. The spontaneous emission coupling factor is defined as the 

fraction of the total spontaneous emission from the emitter dipole, coupled into 

a cavity mode; estimated from the ratio of output intensities below and above the 

lasing threshold [59, 60]. Spontaneous emission of a cavity can be controlled by 

designing a cavity where dipole and cavity modes operate in a strong coupling 

regime. The lasing threshold can also be reduced as described by Goy, 1983 [61]. 

Goy continued working on the problem and, around 1998, used InAs quantum 

dots in micropillars and microdisk cavities to obtain a reduced lasing threshold. 

In order to achieve high β the number of modes supported by the cavity that 

overlap with the emission spectrum must be minimised. The number of modes 

that overlap with the emission spectrum for a microdisk cavity, which is of 

particular interest in this study, can be estimated using the free spectral range 

(FSR) equation, given below in (2.5). 

𝛥𝜆𝑊𝐺 =  
𝜆𝑐𝑎𝑣

2

2𝜋𝑅𝑛
     (2.5) 

Where λcav is the whispering gallery mode (WG) mode wavelength, R is the 

microdisk radius and n is the refractive index. From the FSR equation an obvious 

dependence of the mode separation is observed. As the disk radius increases the 

mode separation decreases, and thus the number of modes that overlap with the 
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emission spectrum increases. Also because microdisk cavities are three-

dimensional their thickness must be controlled in order to suppress the formation 

of any vertical modes. The thickness criterion is given below by (2.6). 

𝑇 <  
𝜆

2𝑛𝐺𝑎𝑁
      (2.6) 

Where λ is emission wavelength of the dipole and η is the refractive index. The 

relationship of the spontaneous emission coupling factor (β) to the number of 

modes, which overlap with the gain region, is given by (2.7). 

𝛽 =  
1

2𝑁
      (2.7) 

Where N is the number of modes which overlap with the gain region [62]. A higher 

β value corresponds to a lower laser threshold, as more spontaneous emission is 

coupled to the lasing mode. A lower number of modes overlapping the gain region 

is desirable because it leads to a high beta. This is a result of the direct relationship 

between the number of modes and the spontaneous emission coupling factor. A 

high beta is desirable because it yields a low lasing threshold. Therefore microdisk 

cavities with a smaller diameter and thin disk regions are preferable in order to 

reduce the number of modes that overlap the emission spectrum. 

  

Figure 2.9 Schematic diagram of (a) the light in a microdisk circulating under 

TIR conditions; and (b) an InGaN/GaN MQWs microdisk on silicon substrate 

surrounded by air as an example.  

Although WGM are optical modes that circulate the periphery of the microdisk, 

striking the sidewalls at an angle θi, as shown in Fig. 2.8(a), actual fabrication of 
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small microdisks results in an increased probability of the mode escaping. This is 

due to the fact that the angle the mode hits the cavity sidewalls is close to the 

GaN critical angle (approximately 24.6o).  

2.9.1 Whispering Gallery Mode Microdisk 

The concept of whispering gallery mode (WGM) was first observed by Lord 

Rayleigh in 1878. He was examining a phenomenon whereby a whisper against the 

32 m circular wall of the Whispering Gallery of St. Paul’s Cathedral, UK, was 

audible to anyone with their ear to the wall [63],giving WGMs their name. In 1910, 

Lord Rayleigh developed his theory about sound waves in a circular setting by 

stating that sound could only exist at certain nodes. These patterns are called 

modes [64]. Taking into consideration that light has a wave-like behaviour, WGMs 

were observed in different types of cavities with circular geometries including 

microdisks, microrings and spheres. These types of cavities can be used in 

applications for lasing [66] and biosensors [67]. 

2.9.2 Quality Factor (Q) of the Cavity 

One of the main factors to describe the performance of any optical resonator is 

the quality factor (Q). The cavity Q factor, (2.8) is defined as the ratio of the 

resonance wavelength and the full width at half maximum (FWHM) bandwidth of 

the resonance. 

𝑄 =  
𝜆𝑐

𝛥𝜆
    (2.8) 

Where λc corresponds to the cavity wavelength and Δλ is the full width at half 

maximum of the resonant peak. Spontaneous emission enhancement, according 

to Purcell, is proportional to the ratio of the Q-factor and effective mode volume 

(𝐹𝑝 ∝  
𝑄

𝑉𝑒𝑓𝑓
 ) .High values of Q are required for spontaneous emission 

enhancement. 
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2.9.3 Loss Mechanisms in a Microdisk Cavity 

Loss mechanisms in the microdisk cavity can have a deleterious effect on the 

lasing properties of the cavity. Loss can be represented by a lowering of the cavity 

Q factor. The key loss mechanisms in a microdisk cavity are: 

 Scattering loss ( Qscatt.) 

 Absorption loss ( Q𝑎𝑏𝑠.) 

 Radiation loss ( Qrad.) 

The scattering losses are proportional to the surface roughness. As III-Nitrides 

materials are difficult to process, dry etching techniques are often applied to 

transfer nanostructures into the material. Unfortunately, the ion bombardment 

by the plasma dry etch method used to etch III-Nitrides, can cause severe damage 

on the sidewall of the microdisk cavity. Additionally, due to the growth of III-

Nitrides on foreign substrates such as silicon or sapphire, high density of defects 

are introduced in the grown epilayers. Such defects can act as a scattering traps 

for the optical modes. Both factors can lead to the increase of the scattering losses 

in cavity, which then lowers the Q-factor of the resonator [68]. 

Absorption losses are a consequence of the intrinsic material properties given 

by (2.8) below. 

𝑄𝑎𝑏𝑠 =
2𝜋𝑛

𝛼𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝜆
     (2.8) 

Where n is the refractive index of the material, λ is the emission wavelength and 

α is the material absorption coefficient. When lasing threshold is reached, the 

material is said to be at optical transparency, thus making α material equals to 

zero. Therefore the losses due to material absorption are negligible compared to 

scattering losses. 

Radiation losses are mainly the vertical radiation losses, induced by the mode 

coupling between the WGM and vertical radiation mode in the pedestal.The 

overall loss mechanism in microdisk laser is given by (2.9) below which is a sum 

up of the losses describe above. 
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1

𝑄
=

1

𝑄𝑎𝑏𝑠.
+

1

𝑄𝑠𝑐𝑎𝑡𝑡.
+

1

𝑄𝑟𝑎𝑑.
  (2.9) 

As the scattering losses are major loss for a microdisk laser; minimising them could 

result in a high – Q factor lasers with low lasing threshold.  

 

2.10 Conclusion 

In this chapter, we address the theoretical background on III-Nitrides 

semiconductors. The electrical, chemical and optical properties of III-Nitrides 

were introduced. The concept of low dimensional structures, electronic density of 

states and the effect of carrier localisation in III-Nitrides was explained in detail. 

Additionally, the photonic crystals concept and their properties has been 

explained in detail. Finally, the theoretical background on microdisk resonator 

was introduced. 
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CHAPTER 3 

Experimental Techniques 

3.1 Introduction 

In this Chapter the experimental techniques used during this study in to order to 

investigate and characterise the emitters based on an InGaN / GaN QWs are 

explained in detail. Optical characterisation techniques such as 

photoluminescence (PL) spectroscopy, confocal PL, micro – PL, angle dependent 

PL and time-resolved PL are presented. Additionally, the fabrication techniques 

used for the processing of III-Nitrides based devices are explained. 

3.2 Optical Characterisation 

3.2.1 Photoluminescence Spectroscopy 

One of the most powerful and widely used optical characterisation techniques is 

photoluminescence (PL) spectroscopy.  Electrons in a semiconductor are excited 

by an external lighting source whose emission energy is greater than or equal to 

the band edge of the material. Several pieces of information about the materials 

properties can be gathered using this technique such as the material bandgap, 

stress, and alloy composition [1]. Choice of an appropriate excitation light source 

emission energy allows excitation of a specific area on the heterostructure to be 

selectively excited and investigated.  
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Figure 3.1 A schematic diagram of an InGaN / GaN MQWs heterostructure 

emitting at 460 nm (b) selective excitation of InGan QWs only by a 375 nm 

laser by photon absorption mechanism. 

For example, only the InGaN / GaN MQWs in the heterostructure illustrated in 

Fig. 3.1 (a) would be excited, if the excitation source used, is a 375 nm laser. This 

is because the 375 nm photons from the excitation source will be invisible to the 

underlying GaN, whose cut-off wavelength is approximately 365nm, as Fig. 3.1 (b) 

shows. The main advantage of this technique over than electrically injected 

excitation is to provide a quick feedback, in terms of indium content in the QWs 

or the efficiency of device without requiring the effort of device fabrication. 

Fig. 3.2 show a schematic diagram of our PL system used throughout this study. 

The system consists of a 375 nm continuous wave (CW) diode laser, which is used 

as an excitation source. The laser is reflected by an aluminium (Al) mirror with a 

reflectivity of > 99%, and the laser beam is then focused using a lens on to the 

sample. 

The beam size is approximately 200 μm in a diameter. The samples are held in a 

helium closed-circuit cryostat in the temperature range from 10 K to room 

temperature. The luminescence was dispersed using a 0.5m monochromator and 

detected using a thermoelectrically (TE) cooled CCD detector which can be cooled 

down to -70˚C. 
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Figure 3.2 A schematic diagram of the Photoluminescence (PL) excitation 

system. 

3.1.2 Time-Resolved Photoluminescence System  

Time resolved PL (TRPL) has been used to study the excitonic dynamics of our 

InGaN/GaN samples PL decay time (𝜏𝑃𝐿) is measured after an optical excitation 

with a single short pulse a sample. The spontaneous emission PL decay time 

consists of both the radiative and non-radiative decay components of PL emission 

from samples the as described shown by (3.1) [2]. 

τPL = τrad. + τnon−rad.   (3.1) 

At low temperature (such as 6.5 K) it is reasonable to assume that non-radiative 

recombination mechanisms can be safely neglected, since non-radiative centres 

are frozen. Consequently it has been widely accepted [11, 12] that IQE can be 

assumed 100% for simplicity. This will allow extraction of the radiative and non-

radiative recombination lifetimes from TRPL measurements. 

Figure 3.3 presents a schematic diagram of our TRPL system, a time correlated 

single photon counting system. A 375 nm pulsed laser diode with a pulse width of 

83 ps and an average output of 0.1 mW at a repetition rate of 10 MHz is used as 

an excitation source. 
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Figure 3.3 Schematic diagram of our TRPL system. 

A hybrid PMT supplied by Becker & Hickl with a response of approximately 120 ps 

is used as a detector. Both the detector and the pulsed diode laser are 

synchronised using a time correlated single photon counting system (TCSPC) card 

with a FWHM of 6.5 ps, also supplied by Becker & Hickl. The electronics card is 

then connected to a computer to allow analysis of the data. The instrument 

response function (IRF) of the system is approximately 150 ps, described by (3.2). 

IRF =  √(FWHMLaser)2 + (FWHMDetector)2 + (FWHMTCSPC)2   (3.2) 

The measured decay lifetimes are a combination of both the IRF and the actual 

decay time of the semiconductor material. A deconvolution process is performed 

after the measurement of time decay races, using FluoFit software provided from 

PicoQuant. 

Figure 3.4 provides a typical example of the time decay race of one of InGaN/GaN 

MQW sample, where the system IRF and fitted curve are also provided. The decay 

profile for c-plane InGaN MQWs is typically a bi-exponential decay [3, 4], which 

can be fitted by a bi-exponential component model given below  

I(t) = A1e
−

t

τ1 +  A2e
−

t

τ2    (3.3)  
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Where A1 and A2 correspond to the fast and slow decay coefficients, respectively; 

and τ1 and τ2 are the fast and slow decay components, respectively. 

 

Figure 3.4 An example of a PL decay (blue colour) trace of an InGaN/GaN MQW 

plotted with the instrument response (red colour) and fitted curve based on a 

bi-exponential decay model (green colour). 

3.1.3 Micro-photoluminescence system  

A micro-photoluminescence (µ-PL) system provides spatially resolved 

photoluminescence. Additionally, a high magnification objective (50x) has been 

installed in the system, allowing the focussing of the excitation laser into a small 

spot (approximately 2 μm). Thus resulting in high excitation power densities to be 

achieved. The excitation power density can be varied either by changing the 

power of the excitation laser or by using absorptive filters in front of the laser 

beam path. Thus making the system ideal for studying lasing emission mechanism. 
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Figure 3.5 Schematic diagram of the micro-photoluminescence system. 

Figure 3.5 is a schematic of the µ-PL system. This µ-PL system is also connected to 

the TRPL system. Therefore, our system could also allow us to perform optical 

measurements in both spatial and time resolved modes simultaneously. Two 

kinds of diode lasers are used for this, a 375 nm CW diode laser with an adjustable 

power of up to 60 mW; and another pulsed 375 nm diode laser with an average 

power of 1 mW and a pulse width of 50 ps. Switching between the two lasers is 

achieved by using a flip mirror placed in the lasers beam path. The imaging CCD 

installed on the system, is used to ensure that the two laser spots are focused on 

the same position. The laser beam passes through an attenuator which can be 

continuously changed from ND0 to ND3 in 0.1 intervals, providing a wide range of 

excitation power densities required. Beam splitter 1 is first used to reflect the 

laser beam 90˚ through an objective (50x magnification, and 0.42 numerical 

aperture (NA)). The reflectivity of beam splitter 1 is above 99% at a wavelength of 

< 412 nm, which minimises the loss of excitation power from the laser. The laser 

beam can be focussed down to 1.5 µm spot size, which can be estimated 

using (3.4). 
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dspot = 1.22  ⋅ (
λexcit.

NA
)   (3.4) 

Where NA is the numerical aperture of the objective, and λ is the laser wavelength 

as an excitation source [5]. In order to further decrease the spot size, a higher 

magnification objective with higher NA can be used. 

The sample is mounted within a Janis microscopy cryostat ST500, which has a 

continuous liquid nitrogen (or helium) flow. For safety reasons only liquid nitrogen 

is available, limiting the temperature range from 77 K to 300 K. This type of 

cryostat can offer vibration isolation on a nanometre scale, which is crucial for the 

characterisation of nanostructure devices.  

The cryostat position is controlled by high resolution X-Y-Z positioners that allow 

to move the sample position on the order of sub-micro scale. 

The luminescence is collected through the same objective and transmitted 

through beam splitter 1. A second 50-50 power ratio beam splitter (beam splitter 

2) is placed in the emission beam path. The first 50% of the transmitted light is 

directed to a CCD imaging camera to monitor the sample surface. The remaining 

50% of the light is coupled to an optical fibre bundle which leads to a 0.55 m long 

iHR spectrometer to disperse the light. For light detection a -70oC TE cooled CCD 

array detector is used. 

3.1.4 Angular Dependent Photoluminescence System 

An angular Dependent PL system is used to measure far-field optical pattern of 

photonic crystal structure. A schematic diagram of the measurement system used 

is illustrated in Fig. 3.6. In this system the sample is placed on an XYZ stage which 

is manually controlled, this allows fine tuning and focusing of sample’s position. A 

cw 405 nm diode laser is used as an excitation source, mounted at a fixed 

excitation angle. 
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Figure 3.6 Schematic diagram of the angular-resolved photoluminescence 

system. 

The laser beam is reflected through mirror 1 to mirror 2, and mirror 2 then reflects 

the laser beam on the sample surface. The use of the two mirrors helps to 

minimise the excitation angle of the laser, thus reducing the stretching effects in 

the excitation laser spot. A lens is placed in the optical path after mirror 2 in order 

to focus the laser to an approximate 200 µm spot on samples surface. 

The luminescence is collected a 1 mm diameter fibre bundle, which is 300 mm 

away from samples. The fibre bundle is then attached to a high resolution (0.01o) 

motorised rotation stage, which will precisely control the collection angle. 

The luminescence is then dispersed by a Jobin Yvon monochromator, and 

detected by a photomultiplier (PMT) detector. The angular resolution of the 

system is defined by the diameter of the collection fibre and its distance from the 

sample. 

 

Figure 3.7 Schematic diagram of the angular resolution. 
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The schematic diagram in Fig. 3.7 illustrates how the angular resolution of the 

system is determined. In order to resolve fine features in the far-field 

measurements from the diffracted modes of the PhC arrays, a high angular 

resolution must be achieved. Using simple trigonometry, based on Pythagoras’s 

theorem, angular resolution is defined as below, 

θ = sin−1 (
1

√1+
𝐷2

𝑅2

)  (3.5) 

Where D corresponds to the distance of the fibre bundle from the sample, and R 

is the radius of the fibre bundle. Therefore in this system the angular resolution 

(θ) can be calculated to 0.01o. Unfortunately due to the limitations of the PMT 

detector measurements are instead performed in steps of 0.5o. 

3.1.5 Confocal PL system  

In a confocal PL system, the emission collected from the sample is focussed 

through a pinhole. Any emission from the sample which is not focused on the 

pinhole is not received by the detector, therefore eliminating any unwanted 

background emission [6]. 

A CW 375 nm laser diode coupled on a single mode fibre 2 μm core is used to 

excite the sample. The single mode fibre acts as the pinhole for the excitation 

source, which eliminates any unintended light emission and any uniformity 

problems of the actual laser diode beam profile. The laser is then focused on to 

the sample through a 100x magnification objective with 0.95 NA. The emission 

from the sample is then collected through the same objective and focused on to 

a multi-mode PhC optical fiber with a 10 µm core diameter. The Fibre will again 

act as a pinhole for the emitted light from the sample. Any light not focused on 

the fibres aperture will be rejected. The emitted light is then dispersed by a 300 

mm Princeton Instruments monochromator, where it is detected by a -60oC TE 

cooled CCD array detector. The sample is mounted on a XYZ piezoelectric stage 

with a resolution of approximately 2 nm.  
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Figure 3.8 (a) Schematic diagram of the confocal system (b) image of a confocal 

PL system 

In Fig. 3.8(a) a schematic diagram of the confocal microscope is illustrated, where 

a photograph of a confocal system is shown in Fig. 3.8(b). The spatial resolution 

of the system is given by (3.6) and (3.7) [7] below. 

FWHMspatial = 0.37 ⋅
λ′

ΝΑ
   (3.6) 

λ′ = √2  ⋅
λexcit.⋅ λemiss.

√λexcit.
2+λemiss.

2
   (3.7) 

Where FWHMspatial is the full width half maximum of the system’s spatial 

resolution, λ’ is the mean wavelength, λexcit. is wavelength of the excitation source 

and λemiss. is the emission wavelength. As can been seen from (3.6) and (3.7) the 

spatial resolution of the system depends on both the excitation and emission 

wavelengths. Taking into consideration that the laser used to excite the sample is 

fixed (375 nm CW) and the emission from the sample is typically around 460 nm, 

this would give a spatial resolution of approximately 160 nm. Therefore a 

spatially-resolved PL map could be built up using control software provided by 

Witec, where a PL spectrum is used spatially every 160 nm. Further processing of 

the measured data is also applicable, such as the calculation for the FWHM at 

each step. 
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3.2 Device Fabrication 

The samples used in this study are InGaN/GaN MQWs grown on either (0001) 

sapphire or (111) silicon by MOCVD and all post fabrication was performed in a 

high class cleanroom area. 

3.2.1 Metal Thin Film Deposition  

Metal deposition is performed using an Edwards thermal evaporation system 

under high vacuum (approximately 10-6 mTorr).In such a system a large range of 

metals can be deposited such as Ni, Au, Ag and Ti. The deposition rate and 

thickness of the metals can be controlled using a quartz crystal monitor. 

 

Figure 3.9 Schematic diagram of an Edwards thermal evaporator. 

The metals are placed in a tungsten coil at a fixed distance of approximately 120 

mm from the quartz crystal monitor. The large distance between the sample and 

the coil prevents any damage to the sample mask, as the high temperatures of 

tungsten coil may cause an increase in the temperature of the sample. A high 

current, normally in the range of tens Amps, is used to heat the tungsten coil, 

leading the metal to melt and then evaporate.   

3.2.2 Dielectric Material Deposition 

For the deposition of dielectric materials, such as SiO2 and SiN, two different 

techniques have been heavily used in this study, described below. 
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3.2.2.1 Electron Beam Evaporation  

In electron beam evaporation the evaporation of a SiO2 layer is deposited under 

high vacuum (approximately 10-6 mTorr). An electron beam is focused on a carrier 

crucible, which contains the dielectric material (SiO2). The crucible then heats up, 

which in turn melts the contained SiO2 for deposition.  

 

Figure 3.10 Schematic diagram of an Edwards electron beam evaporator. 

This system deposits the SiO2 vertically. Vertical deposition has certain 

advantages when producing nanohole arrays, which will be discussed in 

Chapter 4. 

3.2.2.2 Plasma-Enhanced Chemical Vapour Deposition (PECVD)  

Plasma-enhanced chemical vapour deposition (PECVD) is used to deposit 

dielectric materials such as SiN or SiO2. The deposition of these materials can be 

useful for masking purposes in the fabrication of nanostructure devices.  

 

Figure 3.11 (a) Schematic diagram of the PECVD process during deposition of 

SiN or SiO2 layers; and (b) Image of a Plasma Therm PECVD system. 
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In order to deposit dielectric materials such as SiO2 or SiN an appropriate mixture 

of gases must first be chosen for the process. The sample is placed on a heated 

plate at 300oC as shown in Fig. 3.11 (a). The deposition of the dielectric materials 

is conducted by plasma generated using RF power. The deposition rate and 

thickness can be accurately monitored using ellipsometry. For the system used, 

the deposition rate for SiN and SiO2 layers on a flat surface are approximately 10 

nm/min and 40 nm/min, respectively. Materials deposited using this technique 

are normally atomically smooth and robust which can serve as an excellent mask 

for further processing of our samples. 

3.2.3 Dry Etching Techniques  

3.2.3.1 Reactive-Ion Etching (RIE)  

Due to the resistance of III-Nitrides to wet chemical etching techniques, dry 

etching methods are often used. The resulting etched surface is highly anisotropic. 

This is preferable for the post-fabrication of nanostructure devices on as-grown 

wafers because this can allow the selective etching of the areas required and 

protection of others [13].  

 

Figure 3.12 (a) schematic diagram of a RIE process; (b) RIE system used in this 

study; and (c) recipes used for the RIE etching of different materials. 
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Reactive-ion etching (RIE) is a technique developed to etch through soft materials 

such as SiO2, SiN and photoresist. During this process a mixture of etchant gases 

are used in conjunction with an electromagnetic field that generates plasma. 

Reactive-ions within the plasma can remove unwanted materials through ion 

bombardment. Normally the high selectivity of different materials (such as Ni and 

SiO2) results in the fabrication of a secondary mask which can act as intermediate 

step in the post-fabrication of nanostructures. The etching recipes used for 

different materials are shown in a table in Fig. 3.12(c). By varying the RF power in 

the recipe the etching rate can be tuned, for example, if a RF power of 150 W is 

used, the etching rate of SiO2 can be doubled shown in Table 3.12(c).  

3.2.3.2 Inductively Coupled Plasma (ICP) Reactive-Ion Etching  

Since III-nitrides are a difficult materials to etch an inductively coupled plasma 

etching method is also used. In such techniques a higher plasma density can be 

generated by comparing to standard RIE processing discussed earlier. The ion 

bombardment generated by the plasma can again removes excess material and 

etches through GaN layers. 

 

Figure 3.13 (a) Schematic diagram of the ICP etching process; (b) Oxford 

PlasmaPro etching system used; and (c) ICP etching recipe for GaN. 
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In order to etch through GaN a mixture of Cl2 and Ar gases are used, as depicted 

in Fig. 3.13(a). Typically, such etching process is highly selective using dielectric 

materials as a mask, such as SiO2, meaning only GaN which is not protected by the 

masks can be etched away. The etching rate can be precisely controlled by varying 

the RF applied. Increasing the RF would result in straighter sidewalls as a result of 

an increase in etching rate, although the ion bombardment itself could result in 

damage to the exposed InGaN/GaN MQWs active regions [8]. 

3.2.4 Scanning Electron Microscopy  

Fabrication of nanostructure devices requires continuous monitoring of each step 

to ensure the quality of the sample. A scanning electron microscope (SEM) was 

used to examine each of the processing steps. The advantages of SEM over 

traditional optical microscopes are its higher magnification and resolution, which 

allows us the observation of small features on the samples down to a resolution of 

1 nm. It can be considered as one of the most powerful tools in the post-

fabrication of nanostructure devices. 

 

 

Figure 3.14 (a) Schematic diagram of a SEM [9]; and (b) SEM image of a 

nanorod array taken with a Philips XL30 FEGSEM. 

A schematic illustration of the SEM is given in Fig. 3.14(a). In a SEM an electron 

beam is generated by an electron gun. Under vacuum, the electron beam travels 
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in a vertical direction inside the SEM, passing through electromagnetic fields and 

lenses used to focus the beam onto the sample. When the beam hits the sample 

electrons, backscattered electrons and X-Rays are generated by the sample due 

to the interaction of the sample atoms with the electron beam. A secondary 

electron detector is used to collect this data, which is then translated into signals 

to generate an image [9]. An example image of a nanorod array fabricated for this 

study is presented in Fig. 3.14(b), which was taken using a Philips FEGSEM XL30. 

3.2.5 Spin Coating Technique 

Spin coating is a method of depositing thin films on a sample. In this method a 

droplet of the desired material is dropped on to the samples surface using a micro-

pipette. Centripetal acceleration of the sample stage will cause the solution to be 

uniformly spread across the sample. Figure 3.15 (a) is a schematic diagram 

illustrating the spin coating deposition technique of a monolayer of silica 

nanoparticles; where Fig. 3.15 (b) shows an image taken during the deposition of 

the same nanoparticles. Silica nanoparticles are employed as a mask for the 

fabrication of nanostructures in Chapters 4, 5 & 6.  

 

Figure 3.15 (a) Schematic diagram of the spin coating technique (b) image 

taken of the sample ready to spin during the deposition of Silica nano-

particles. 
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The deposition of the thin film can be modified by variation of spin speed, 

acceleration and viscosity of the solution used [10]. The simplicity of this 

technique makes it attractive for thin film applications. In this work the spin 

coating method has been extensively used for the deposition of monolayers of 

Silica nanoparticles.  
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CHAPTER 4 

Fabrication of Two-Dimensional InGaN/GaN 

Photonic Crystal Structures Using a Modified 

Nanosphere Lithography Technique  

By means of combining a very cost-effective lift-off process and a nanosphere 

lithography technique [1-4], we have fabricated two dimensional (2D) photonic 

crystal (PhC) structures on an InGaN/GaN multiple quantum well structure [5]. 

Significant enhancement in photoluminescence (PL) intensity has been observed 

when the emission wavelength is within the photonic bandgap. Time-resolved PL 

measurements have shown that the spontaneous emission rate is strongly 

reduced by a factor of 4 due to the PhC effect. As a consequence, the emission 

intensity along 2D PhC slab-plane directions is effectively suppressed and 

redistributed to the direction normal to the 2D PhC slab-plane simultaneously. 

Temperature-dependent PL measurements have confirmed that the enhanced PL 

intensity is due to an increase in extraction efficiency as a result of the PhC effect.  

4.1 Introduction  

One of the major problem that GaN based LED devices suffer, is the low extraction 

efficiency of light generated by the recombination of electron-hole pairs as is 

being trapped inside the device. This phenomenon occurs due to large refractive 

index difference of GaN (nGaN=2.5) and air (nair=1) .A number of techniques such 

as making the surface of the sample rough [6, 7], textured surface [8, 9] and 

tuneable shape devices [10] have been proposed in order to increase extraction 



 

~ 75 ~ 

 

efficiency. However, there is a major drawback to these approaches as a result of 

lack of accurate control over the directionality of the light emitted from the LEDs 

[6-10].  

Recently photonic crystal structures (PhC) have been employed on III-Ntirdes 

based LEDs, for increasing the extraction efficiency [11-14]. PhC are periodic 

arrays of nanostructures, where the refractive index is varied at least in one 

direction. One of the major benefits of PhC structures is they can control the 

directionality of the light [11], as well as controlling the spontaneous emission in 

a device. The spontaneous emission can be control by the modification of 

photonic density of state (DoS), by the introduction of photonic bandgaps, as 

discussed in earlier Chapter 2 [12-14]. Two-dimensional (2D) PhC structures have 

been utilized in the fabrication of advanced III-nitride based LEDs, leading to a 

significant improvement in light extraction due to the PhC effect [15].  

In order for the optical modes to be efficiently extracted out of the device the 

physical period of the PhC structure must be on the order of half a wavelength. 

For example, a PBG for wavelengths in the blue spectrum region (450 nm) can be 

introduced, when the PhC lattice has period of approximately 220 nm. As a result 

of that, the fabrication of PhC structures in the visible range of the 

electromagnetic spectrum can be considered as a major constrain. This is due to 

limited resolution (approximately 1 μm) of standard optical lithography 

technique. Electron beam lithography (EBL) techniques remain the most popular 

approach in the fabrication of PhC structures [14]. However, EBL is very time-

consuming and so is not cost-effective, using EBL only PhC structures with small 

areas (typically a few microns) can be normally fabricated, which is not attractive 

to industry. Alternate methods have also been developed, such as nano-imprint 

lithography [15]. In nano-imprinting lithography technique, EBL is used to write 

the required pattern on Si wafers which will be then used as the rigid mask for 

patterning the wafers. Unfortunately the limited lifetime of Si mask 

(approximately 10 to 15 times), as it tends to be fragile and the initial cost of the 
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mask renders the use of this technique inappropriate. Therefore it is desirable to 

develop a cost-effective method of fabricating PhC structures. 

4.2 Characterisation of the As-Grown Sample 

A standard five periods of InGaN/GaN multiple quantum well (MQW) sample was 

used to fabricate PhC structures. The sample was grown on c-plane (0001) 

sapphire by MOCVD using a high temperature AlN buffer technology, which leads 

to enhanced crystal quality compared with the widely used two-step growth 

approach [16]. The detailed structure of the sample is schematically illustrated in 

Fig 4.1(a). 

Before the growth of the InGaN/GaN MQWs a high temperature 0.5 μm 

atomically flat AlN buffer layer was grown directly on sapphire, followed by a 

1.2 μm thick GaN buffer layer. Afterwards, MQWs with a 10 nm capping layer 

were grown. 

 

Figure 4.1  (a) Structure of the as-grown sample (b) Room temperature PL of 

the as-grown sample used for this work. 

Figure 4.1(b) shows the PL spectrum of the as-grown sample measured at room 

temperature using a CW 375 nm diode laser as an excitation source, displaying a 

peak emission at 510 nm. The surface morphology was examined by atomic force 

microscopy (AFM) as shown in Fig. 4.2. 

The AFM image of the InGaN/GaN MQWs as-grown sample shows a number of 

“v” pits, which are the typical features for InGaN structures with a high indium 

composition. The “v-pits”, appears due to the lattice mismatch between the 
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InGaN QWs with the underlying GaN layers. The problem becomes even worse 

when the In composition increase, hence the lattice mismatch increases as 

well [27]. 

 

Figure 4.2 AFM images of the InGaN/GaN MQW as-grown sample 

   

Figure 4.3 XRD spectrum of the as-grown sample scanned in a ω - 2Θ mode: 

black lines are the measured curve, and the red lines are the fitted data. 

 

Table 4.1 Simulation data used to model XRD ω – 2θ scan. 
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X-ray diffraction measurements have been performed in a ω - 2Θ mode in order 

to estimate the indium composition, quantum well and barrier thicknesses by 

using the fitting data. Figure 4.3 shows the XRD spectrum scanned in a typical ω - 

2Θ mode and the fitted data, in black and red respectively, indicating the indium 

composition of 33% for the quantum wells. The thickness of quantum well and 

barriers are 2 nm and 11.2 nm, respectively. 

4.3 Fabrication of Nanohole Photonic Crystal Arrays 

A schematic diagram of the fabrication procedure is presented in Fig. 4.4. 

 

Figure 4.4 Schematic diagram presentation the fabrication of PhC nanohole 

arrays using nanosphere lithography. 

The samples were first cleaned sequentially using n-butyl acetate, acetone and 

IPA in order to degrease and remove any unwanted dust particles on the sample. 

The as-grown sample was then subjected to a chemical surface treatment for 20 

minutes using hydrogen peroxide (H2O2) and sulphuric acid (H2SO4) with a 1:1 
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volume concentration. This causes the GaN surface to become hydrophilic. This 

will help the silica nanosphere uniformly distribute across the surface [17]. 

Silica nanospheres with a diameter of 270 nm diluted in de-ionized (DI) water 

were then spin-coated on the surface of the InGaN/GaN MQW sample in order to 

form a monolayer of silica nanospheres, as schematically illustrated in Fig. 4.4(b). 

Subsequently the monolayer of silica nanospheres undergoes a selective etching 

process (etching the silica nanospheres but not the GaN underneath) to set both 

the separation between nanospheres and diameter of the silica nanospheres as 

in Fig. 4.4(c). This will act as the first mask in the fabrication of the PhC structure. 

Controlling the size of the nanospheres allows the photonic bandgap of the 

designed PhC structure to match the emission wavelength of the InGaN/GaN 

MQWs.  

Then, taking advantage of the vertical deposition of the e-beam evaporator as the 

SiO2 can only be deposited on GaN surface in the gaps between the spheres. A 

thin silicon dioxide layer (60-70 nm) is deposited, as shown in Fig. 4.4(d). Then by 

using a low adhesive tape, the silica nanospheres are simply lifted off; leaving 

intact the silicon dioxide layer in the gaps of the silica nanospheres on the samples 

surface, see Fig. 4.5(e). Finally, this remaining silicon dioxide layer then acts as a 

mask for further etching of the InGaN/GaN MQW sample that ultimately gives a 

hexagonal 2D PhC structure, as in Fig. 4.4(f). The residues of silicon dioxide are 

removed by immersing the sample in hydrofluoric acid (HF). 

In Fig. 4.5 SEM images show each step in the fabrication of the final 2D PhC 

InGaN/GaN MQW structure, as detailed above. The samples have been etched 

down through the whole InGaN/GaN MQW region, where the depth of the 

fabricated nanoholes is approximately 200 nm. 
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Figure 4.5 SEM images of each individual step of the fabrication procedure as 

detailed in the corresponding schematic diagram depicted in Fig. 4.4. 

4.3.1 Nanosphere Deposition  

4.3.1.1 Spin Speed Optimisation 

For the deposition of 270nm diameter nanospheres, the silica particles were 

diluted in de-ionised water (DI) with a 10 % concentration of silica particles to DI 

water. The solution was then placed in an ultrasonic bath for approximately 

1 hour to mix the particles in the DI water and avoid to form clustering of particles 

on the samples surface.  

In Fig. 4.6, the rotation speed of the spin-coating was varied in order to optimise 

the spin speed conditions. At low speeds (such as 1500 rpm), as shown in 
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Figure 4.6(a) the sample was covered by a multilayer of the silica nanospheres. 

The speed was then further increased to 2300 rpm, as shown in Fig. 4.6(b) a 

monolayer of closely packed hexagonal array particles were formed on the 

surface of the InGaN/GaN MQWs. 

 

Figure 4.6 SEM images of silica nanospheres deposited on InGaN /Gan MQWs 

at (a) 1500rpm, (b) 2300 rpm and (c) 3000 rpm. 

Further increasing to 3000 rpm leads to a disordered array with gaps as shown 

Fig. 4.6(c). The optimum spinning speed was therefore found to be 2300 rpm. 

4.3.1.2 Sodium Dodecyl Sulphate (SDS) Conditions Optimisation 

In order to reduce the molecular adsorption between the nanospheres and the 

sample surface, sodium dodecyl sulphate (SDS) was mixed with the 10% Silica in 

DI water. Figure 4.7 shows top down SEM images, demonstrating the effects of 

the SDS as a surfactant. The deposition on both samples was performed under 

identical spinning conditions (2300 rpm). 
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Figure 4.7 Large scale top view SEM images illustrating coverage (a) without 

SDS surfactant and (b) with SDS surfactant. 

The SEM in Fig. 4.7 (a) shows a mixed image of the sample prepared without SDS, 

indicating close-packed monolayers (grey), disorder (light grey) and multilayer 

areas (dark spots). The use of the SDS solution leads to achieving a monolayer in 

a large area, as observed in Fig. 4.7(b). Some dark spots observed near the edge 

of the sample can be attributed to an edge effect. Edge effects are normally 

observed, as the silica solution flows uniformly outward the sample during the 

spin coating process, but it forms droplets at the edges of the sample in order to 

be flung off. Thus depending on the surface tension, viscosity, rotation rate etc. 

[26]. 

The optimisation of the SDS concentration with respect to the silica solution was 

carried out and the results are presented in Fig. 4.8. The SEM image in Fig. 4.8(a) 

shows a top down view of the sample with the ratio of SDS to silica and DI water 

solution at a 1:10. Under these conditions a dispersed monolayer of nanoparticles 

is formed with large gaps. Decreasing the quantity of SDS solution to the silica 

solution to a ratio of 1:50 a monolayer of nanospheres was achieved, as shown in 

Fig. 4.8(b). Despite the dramatic decrease in uncovered areas, some small gaps 

can still be observed. The optimum condition was found to be a 1:100 

concentration of SDS to Silica solution. The resulting monolayer of closely packed 

nanoparticles is presented in Fig. 4.8(c).  
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Figure 4.8 SEM images of nanospheres spin coated on InGaN/GaN  MQWs at 

2300 rpm under different ratios of  SDS solution to Silica nanospheres (a) 1:10, 

(b) 1:50 and (c) 1:100. 

4.3.2 RIE Etching Optimisation 

In order to select the diameter to match the photonic bandgap required for the 

emission wavelength studied, reactive-ion etching (RIE) techniques were 

employed. The ability to selectively etch the silica nanospheres is examined by 

tuning the etching time. Figure 4.9(a)-(c) shows the SEM images for silica particles, 

undergoing RIE etching for 4, 5 and 7 minutes respectively. The measured 

diameters of the nanoshperes were found to be approximately 210, 180 and 

160 nm respectively. Therefore the lateral etching rate for the silica nanospheres 

is roughly estimated to be 12 nm/minute. Because of the spherical geometry of 

nanospheres the etching rate of the particles differs in the lateral and vertical 

direction. 
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Figure 4.9 SEM images at a 30° tilt angle, varying the etching time between (a) 

4 minutes, (b) 5 minutes and (c) 7 minutes. 

The etch rate was found to be approximately 20nm/min in the vertical direction 

and 12nm/min in the lateral direction. 

 

Figure 4.10 Schematic representation of (a) silica particles that are not trapped 

under SiO2 mask and (b) silica particles trapped under the SiO2 layer deposited 

on top. Red arrows represents the height of the spheres and green arrows 

represent the thickness of the spheres and green arrows represent the 

thickness of the SiO2 mask. 

Increasing the etching time causes the diameter of the particles to decrease 

(more-so in the vertical direction than the horizontal). Particles can become 

trapped under the silicon dioxide (SiO2) mask. Therefore, there exist a limit on 

further reducing the diameter using this RIE etching method. The “trapping” 

mechanism of nanospheres under the SiO2 layer, can be observed when the 
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height of sphere (red arrows) is smaller than the height of the SiO2 spheres (green 

arrows), as Fig. 4.10 schematically illustrates. 

4.3.3 Lift-off and SiO2 Deposition Optimisatio 

The next step in the fabrication of the nanohole array as a PhC was the deposition 

of silicon dioxide, followed by the lift-off of the nanospheres. After selecting the 

size of the spheres using the RIE etching, a thin silicon dioxide layer 

(approximately 60 - 70 nm) was deposited covering the nanospheres and filling 

the gaps between them.  

 

Figure 4.11 SEM images after (a) SiO2 deposition (b) lift-off using ultrasonic 

bath (c) lift-off with blue tape. 

Figure 4.11(a) is an SEM image of the InGaN/GaN MQWs sample after the SiO2 

deposition. Depositing SiO2 on the top of the spheres is one of the most critical 

steps during the fabrication procedure. The SiO2 layer will act as a secondary mask 

for further etching through the MQWs. Therefore a thick layer is desirable in order 

to withstand the ICP dry etching process and protect the underlying 

heterostructure. However, depositing a layer with a thickness exceeding 100 nm 

(for the 140 nm nanospheres) would result in trapping the spheres under the SiO2 

layer, as they cannot be lifted-off.  The optimal thickness of the secondary mask 

was found to be approximately 60 - 70 nm. 

The nanosphere lift-off process was achieved with the use of a standard blue tape. 

Figure 4.11 (b) and (c) shows the nanosphere lift-off process using an ultrasonic 

bath and a standard blue tape, respectively. The use of the ultrasonic bath cause 

severe damage the nanomask due to the strong vibrations, causing the mask left 

to be completely destroyed.  In this case, simply using a low adhesive tape and 
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applying a slight pressure down on the sample surface, was sufficient to adhere 

the nano-spheres to the tape and allowing lift-off. This left behind an excellent 

hexagonal PhC arrao of SiO2 nano-holes. 

4.3.4 ICP Dry Etching Optimisation 

The thin SiO2 secondary mask is used to selectively etch into the PhC nanohole. 

Optimisation of the ICP dry etching conditions is the next step in the transferring 

the 2D PhC mask into the InGaN MQW sample. 

Figure 4.12 (a)–(c) shows top down SEM images after ICP dry etching through the 

InGaN/GaN MQWs with different RF powers at 100, 50 and 30 W respectively. 

Although there is good etching selectivity between GaN/SiO2, the bombardment 

of Ar ions can cause sputtering of the SiO2 mask. RF powers of 100 W and 50 W, 

as seen in Fig. 4.12 (a) and (b), tend to be catastrophic as the mask cannot 

withstand the etching for long time and therefore cannot protect the underlying 

GaN layer. 

 

Figure 4.12 ICP optimisation of etching conditions by varying the RF power (a) 

100 W (b) 50 W and (c) 30 W; the table presents the ICP recipes used in the 

etching process. 

Decreasing the RF power to 30 W results in significant improvement, as observed 

in Fig. 4.12 (c). 
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4.4 Mode Extraction 

This study concentrates mainly on the effects of two-dimensional photonic 

crystals structures created using simplified fabrication techniques. A schematic 

illustration of an unpatterned sample and a 2D-PhC are shown Fig. 4.13(a) and (b), 

respectively. Due to the refractive index difference at the GaN / air interface, an 

unpatterned structure shown in Fig. 4.13 (a), can support the formation of slab 

modes [17-20]. Since guided modes behave like waves, each wave therefore 

appears to have an in-plane wave vector(𝑘𝐼𝐼). 

Figure 4.13(b) shows the propagation of low-order (𝑘𝐼𝐼1) and high-order (𝑘𝐼𝐼2)  

guided mode. The guided modes will interact with the photonic crystal and 

eventually their propagation in the x-y plane will be suppressed before being 

redirected in the vertical direction, where they can escape into air [18]. 

 

Figure 4.13 Slab wave guiding model illustrating the (a) formation and 

propagation of slab modes in an unpatterned sample and (b) inhibition and 

redistribution of the slab modes in the vertical direction of a 2D PhC 

array [18, 19]. 

The in-plane wave vector of each guided mode, is given by (4.1) below. 

𝑘𝐼𝐼,𝑚 = (
2𝜋

𝜆
)𝑛𝐺𝑎𝑁 sin(𝜃𝑚) ≈  √[(

2𝜋

𝜆
𝑛𝐺𝑎𝑁)

2

− (
𝑚𝜋

𝐿
)

2

] (4.1) 
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Where 𝑛𝐺𝑎𝑁 is the refractive index of GaN; m is the mode number, which is an 

integer; λ is the wavelength of the light propagating in the PhC; and L is the 

thickness of the GaN epilayer [18]. 

Any periodic structure like 2D photonic crystals can be described by the reciprocal 

lattice whose vectors (G) couple harmonics of the light propagating through the 

photonic crystal. Photonic crystals couple the guided modes, therefore the guided 

modes are now becoming Bloch modes which are also known as leaky modes as 

they leak outside the device into the air [18, 19].  The wave vector of each guided 

mode are now coupled to the reciprocal lattice vectors as shown in (4.2).  

                          𝑘𝐼𝐼 + 𝐺    (4.2) 

Where G is the reciprocal lattice vector. According to Bragg’s law the guided 

modes are diffracted to air if the condition in (4.3) is satisfied. 

                 |𝑘𝐼𝐼 + 𝑝𝐺0|  <
 2𝜋

𝜆
   (4.3) 

Where p is an integer that determines the harmonic responsible for the diffraction 

of the guided mode into air. 

               𝐺0= 
2𝜋

𝛼
   (4.4) 

Where α is the photonic crystal lattice constant. In the case where the magnitude 

of the in-plane wave vector ( 𝑘𝐼𝐼) of the mode is larger than the in-plane projection 

of the air-cone then the mode remains trapped inside the device [18, 19]. The in-

plane projection of the air-cone is defined as a circle of radius (𝑘0 =
 2𝜋

𝜆
). The 

mode is then either lost through a collision within the crystal or reabsorbed within 

the quantum wells [18, 19]. 

After coupling to the photonic crystal reciprocal lattice, are diffracted outside the 

device into the air. The extraction of guided modes depends on the type of lattice 

constant (e.g. hexagonal, square) and the propagation of the guided modes inside 

the device. As shown in (4.1), LED devices can typically support several tens of 

modes depending on the thickness of the device [17, 18]. In order to maximize 
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the extraction of as many guided modes as possible, the guided modes 

propagating in any direction in the (2D) plane interact with the photonic crystal. 

Therefore 2D-PhCs with a hexagonal lattice are preferred compared to square 

lattice PhCs, due to their high degree of periodicity, which can effectively increase 

the interaction of the slab modes with the PhC.  

4.5 Simulation and Design of 2D PhC Array of Nanoholes 

Figure 4.14 (a) illustrates the structural characteristics of the 2D PhC. The PhC 

lattice constant is defined by α, where D corresponds to the nanohole diameter. 

The refractive index for simulation purposes is 2.5, as illustrated in the contour 

map in Fig. 4.14(b).  

 

Figure 4.14 (a) Dimensions of the PhC array of nanoholes and (b) contour map 

presenting the refractive index variation across the 2D PhC array of nanoholes. 

In Fig. 4.15(a) the photonic bandgap (PBG) map for the TE emission is plotted 

against the nanohole diameter. The red circles indicates the diameter of the 

nanoholes at which the spontaneous emission matched the photonic bandgap. 

The blue lines on the PBG map indicates the range of emission energies at which 

the photonic density of states is 0. A PBG is therefore induced for those energies. 

The diameter of the nanoholes was varied from 50 up to 270 nm, in 10 nm steps, 

to find the spontaneous emission from the InGaN/GaN MQW sample that 

matched the induced photonic bandgap. 
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Figure 4.15 (a) Photonic bandgap as a function of the nanohole diameter; (b) 

photonic band structure of the 2D PhC structure with a 250nm nanohole 

diameter. 

To investigate the PhC effect four samples were fabricated with nanohole 

diameters of 150 nm, 190 nm, 220 nm and 250 nm. Only the emission from the 

sample with a 250 nm nanohole diameter lies within the photonic bandgap, and 

also covers a wide range of PBG from 482 nm to 613 nm. The simulated photonic 

band structure is plotted in Fig. 4.15(b) for nanoholes with a 250 nm diameter. 

This figure indicates there is a clear photonic bandgap, corresponding to the 

frequencies between 0.44 and 0.56 (α/λ), namely, between 482 and 613 nm in 

terms of wavelengths. Figure 4.15(a) also manifests that the 500 nm emission 

wavelength requested for the InGaN/GaN MQW sample lies outside the PBGs of 

the 2D PhC structures with nanohole diameters of 150, 190 and 220 nm. 

 

 

 

Figure 4.16  FDTD simulation of the light propagating in the xy-plane for 

nanoholes with diameter (a) 150 nm, (b) 190 nm, (c) 220 nm and (d) 250 nm. 
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Finite-difference time–domain (FDTD) simulations were carried out in order to 

examine the propagation of the light as it travels in the xy-plane of the PhC. 

Figure 4.16 (a)-(d), shows the propagation of the light as it travels in the xy-plane 

for nanoholes with diameters 150, 190, 220 and 250 nm respectively. A dipole 

emitting at 500 nm was 1 μm from the 2D PhC arrays. It can be seen that for 

nanoholes with a diameter of 150, 190 and 220 nm the light propagates through 

the PhC. In the case of the 250 nm nanohole diameter the photonic bandgap 

introduced by the PhC prevents any propagation of the light through it. This 

phenomenon is caused by the matched photonic bandgap to the dipole emission.  

4.6 Optical Investigation of the PhC Nanohole Arrays 

Figure 4.17(a)-(d) top-view SEM images of the fabricated samples are presented, 

with nanohole diameters of 150, 190, 220 and 250nm respectively. It can be seen 

hexagonal 2D PhC arrays were fabricated with a relatively high uniformity. Some 

slight variation in the size of the nanoholes arises due to a ±10% variation in the 

diameter of the nanospheres used. 

 

Figure 4.17 Top view SEM images of the fabricated samples with a 270 nm 

lattice constant and diameters of (a) 150 nm, (b) 190 nm (c) 220 nm and 

(d) 250 nm. 
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4.6.1 Photoluminescence Measurements of the 2D-PhC Samples 

 

Figure 4.18 PL spectra of all of the 2D-PhC structures, measured at 12K. 

Figure 4.18 shows the PL spectra of all the four 2D PhC structures with different 

nanohole-diameters, measured at 12 K. It is clear that the PL intensity of the 2D 

PhC structure with the 250 nm nanohole-diameter is enhanced by factor of ~2 

compared with any other sample, which is due to the fact that the emission 

wavelength is within the PBG region, as stated in Fig. 4.14 (b). A slight variation in 

PL emission wavelength is due to small difference in strain relaxation as a result 

of fabrication of nanoholes with different diameters [21, 22]. 

4.6.2 Time-Resolved PL Measurements 

In order to confirm the PhC effect TRPL measurements were performed on all 2D 

PhC samples, at 12 K, using a time-correlated single photon counting (TCSPC) 

system and a 375 nm pulsed diode laser, with a pulse width of 83 ps, as an 

excitation source (see Chapter 3 for further details of this system). 
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Figure 4.19(a) shows the TRPL traces for all 2D PhC structures. A standard bi-

exponential component model is used to study the excitonic dynamics, and thus 

the TRPL traces [I(t)] can all be described by (4.5) [22, 23]. 

I(t) = A1e
(−

t

τ1
)

+ A2e
(−

t

τ2
)
  (4.5) 

Where A1 and τ1 are the fast component and A2 and τ2 are the slow component. 

As the non-radiative recombination can be safely ignored at such low 

temperatures since non-radiative recombination centers are almost frozen, the 

spontaneous emission lifetime τPL is simply equal to the fast decay time τ1, which 

can be obtained from the fittings based on (4.5). 

 

Figure 4.19 (a) TRPL traces of all the four 2D PhC structures, recorded at 12 K; 

(b) spontaneous emission decay time and rate against nanohole diameter. 

The spontaneous emission lifetimes (τPL) of 10.3, 12, 12.5, and 41.3 ns have been 

obtained, and are for the 2D PhC structures with a nanohole diameter of 150, 190, 

220, and 250 nm, respectively. Figure 4.18(b) shows the spontaneous emission 

lifetime and also the spontaneous emission rate (i.e., 1/τPL) as a function of the 
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nanohole-diameter, indicating that the spontaneous emission lifetime of the 2D 

PhC with the 250 nm nanohole-diameter increases suddenly to 41.3 ns from 

around 10 - 12 ns. In terms of the spontaneous emission rate, the 2D PhC with the 

250 nm nanohole-diameter exhibits a reduction with a factor of 4 compared with 

the other structures. 

This is due to the inhibition of the spontaneous emission along all 2D slab-plane 

directions (i.e. slab modes) as the emission wavelength is within the PBG region. 

According to the slab waveguide model suggested by Noda, et al. [14], the optical 

modes can be divided into slab modes and vertical modes. The former leads to 

the light propagation within the 2D slab-plane and thus prevents the light being 

extracted out of a device, and the latter allows light to be emitted out of a device. 

Therefore, the overall spontaneous emission rate (Rspon) can be expressed as a 

sum of the spontaneous emission rate for slab modes (Rslab) and the spontaneous 

emission rate for vertical modes (Rvertical) as given below [14], 

Rspon =  Rslab + Rvertical  (4.6) 

For a standard planar device, Rslab >> Rvertical due to the waveguide effect discussed 

above. If a 2D PhC structure is introduced, the conditions for the formation of slab 

modes disappear. Therefore, the propagation of the light emission light along 2D 

slab-plane direction is inhibited, and the light is redistricted along vertical 

direction simultaneously. In that case, Rslab is significantly reduced, while Rvertical is 

supposed to remain unchanged. As a result, the spontaneous emission rate is 

strongly reduced and the lifetime increases. It is worth highlighting that if the 

emission wavelength is outside the photonic band gap, the light can still 

propagate along the 2D slab-plane directions and the spontaneous emission rate 

will remain unchanged. 

Therefore, the PhC structure with the 250 nm nano-hole diameter exhibits a 

considerably reduced spontaneous emission rate, while all the others remain 

approximately unchanged, as shown in Fig. 4.19 (b). 
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4.6.3 Angular Dependent Measurements of the 2D-PhC Nanohole 

Arrays 

Angular dependent PL measurements have been performed in order to further 

investigate the behaviours of the PhC structures. The emission patterns of the PhC 

structures are shown in Fig. 4.20(a)–(d). Figures 4.19(b), 4.20(c), and 4.20(d), 

correspond to the PhC structures with a nano-hole diameter of 220, 190, and 

150 nm, respectively. These show a relatively uniform PL intensity across the 

whole angle range as a result of the allowed propagation in slab modes. In 

contrast, Fig. 4.20(a) which gives the emission pattern of the PhC structure with a 

250 nm nanohole diameter shows a concentrated distribution of the PL intensity 

along a vertical direction (normal to the sample surface) due to the inhibition of 

slab modes, leading to the energy redistribution into the vertical direction. This 

confirms the photonic crystal effect. [25]. 

 

Figure 4.20 Angular emission patterns for the 2D PhC structures with nanohole 

diameters of (a) 250nm, (b) 220nm, (c) 190nm and (d) 150nm. 
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4.6.4 Internal Quantum Efficiency of the 2D PhC Nanohole Arrays 

In order to further confirm that the enhanced PL intensity of the PhC structure 

with the 250 nm nano-hole diameter is due to an increase in extraction efficiency 

instead of IQE, temperature-dependent PL measurements have been performed 

on all the samples under identical conditions. The integrated PL intensity as a 

function of temperature has been widely used to estimate IQE.  

 

Figure 4.21 Temperature-dependent PL measurements of the 2D-PhC nanohole 

arrays with diameter of (a) 150 nm, (b) 190 nm, (c) 220 nm and (d) 250 nm. 

Figure 4.21 (a)–(d), shows the PL intensities of the samples with 150, 190, 220 and 

250 nm diameters as a function of temperature, respectively. In order to estimate 

the IQE of the samples the assumption is made that all the non-radiative centers 

at 12 K are frozen. The IQE for the samples was calculated by using (4.7). 

𝜂𝐼𝑄𝐸 =
𝐼(𝑇)

𝐼 (12 𝐾 )
    (4.7) 

Where I (T) is the integrated PL intensity at specified temperature and I (12K) is 

the integrated PL intensity at 12 K. 
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Figure 4.22 clearly demonstrates that all the samples exhibit similar IQE. 

Therefore, we can attribute the increase in PL intensity to the inhibition of the 

formation slab modes and their redistribution in the vertical direction, confirming 

the 2D PhC effect of the nanohole arrays with a 250 nm diameter once again. 

 

Figure 4.22 Normalized integrated PL Intensity of all of the samples as a 

function of temperature. 

4.7 Summary 

In summary, a very cost-effective approach has been developed in the fabrication 

of 2D PhC structures in InGaN/GaN MQW samples. The PL intensity has been 

observed to have been enhanced by a factor of 2. This was due to an increased 

extraction efficiency compared to other 2D PhC structures whose emission 

wavelength exists outside the PBG. Finally, the inhibition of the slab modes in the 

2D slab-plane direction and redistribution of the light in the vertical direction was 

observed and confirmed by time-resolved PL measurements. This agrees with a 

well-established model for the inhibition and redistribution of spontaneous 

emission due to the 2D PhC effect. 
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Chapter 5 

Coherent Nanocavity Structures for 

Enhancement in Internal Quantum Efficiency 

of III-Nitride Multiple Quantum Wells 

5.1 Introduction 

One of the greatest challenges in the field of III-nitride optoelectronics is referred 

to as the “green gap” [1] (see Chapter 1). This refers to effect where the internal 

quantum efficiency (IQE) of an InGaN based emitter significantly reduces as the 

emission wavelength moves towards the green spectral region. This reduction in 

IQE is a result of higher indium concentrations. One of the major causes for this is 

the strong piezoelectric fields induced by the large lattice mismatch between GaN 

and InGaN. 

 This would result in a reduction in the overlap of the electron-wave functions, 

which decreases the radiative recombination. To overcome this problem several 

different approaches have been employed, such as the growth of InGaN/GaN 

MQWs in non-polar or semi-polar orientations [2, 3]. Growth in these orientations 

can either eliminate or reduce the piezoelectric field induced in the 

heterostructures. Another method employed involves the post fabrication of 

nanostructures, which has the effect applying strain relaxation across the 

InGaN/GaN MQWs [4, 5]. 

The spontaneous emission (SE) rate needs to be increased in order to enhance the 

IQE of green InGaN/GaN emitters. It has been predicted that an atom in an optical 
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cavity can radiate much faster than in free space [6]. The SE of an optical field 

strongly depends on its surrounding electromagnetic vacuum fields, namely the 

photonic density of states (DoS) or optical modes. As a result, it is possible to 

achieve an enhanced SE rate by manipulating optical modes [7-10]. The 

enhancement factor (cavity Purcell factor), F, is defined as the ratio of an emission 

rate in a system with an optical cavity to one without an optical cavity, as 

described by (5.1) [11]. 

𝐹𝑝 =
𝛤𝑐𝑎𝑣

𝛤0
=

3𝑄𝜆3

4𝜋2𝑉𝑚𝑜𝑑
  (5.1) 

Where Γcav and Γ0 are the emission rates of a system with and without an optical 

cavity respectively, Q is the cavity quality factor, and Vmod is the cavity mode 

volume.  

When a spontaneous emission wavelength matches the resonance wavelength of 

the cavity mode, an enhanced spontaneous emission rate can be achieved. Over 

the last decade a number of pioneering works have been performed on a micro-

pillar cavity or a micro-disk in semiconductors [8, 10, 12 - 17], as it can lead to a 

reduction in cavity mode volume and thus an increase in Purcell factor. It is 

expected that a further enhancement in Purcell factor can be obtained through 

further reducing the cavity mode volume, by using a nanocavity or nanodisk 

instead of a microcavity or microsdisk  

Fabrication of InGaN/GaN based emitters on a nanometer scale is presently 

particularly important for green InGaN/GaN emitters. Recently a significant 

reduction in the strain induced piezoelectric field has been achieved by fabrication 

of the device using an InGaN/GaN nanorod structure with a diameter less than 

300 nm [28, 29].This has led to an increase in SE rate and thus an enhancement in 

IQE, which has shown particularly effective for InGaN/GaN based light emitting 

diodes (LEDs) in the green spectral region. It is expected that the introduction of 

the nanocavity effect into InGaN/GaN based nanorod LEDs allows to achieve a 

new kind of LED with a further enhanced IQE. 
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In the present study, "coherent" nanocavity effect is demonstrated, using two 

dimensional (2D) InGaN/GaN nanodisk arrays with a diameter below 300 nm in a 

well-ordered manner. This coherent nanocavity effect can generate an extra 

cavity mode with a resonance wavelength in the green spectral region compared 

with a single nanodisk with the resonance wavelength of the cavity mode 

exclusively in the UV spectral region. The 2D well-ordered InGaN/GaN nanodisk 

array structures are fabricated by means of a very cost-effective nanosphere 

lithography technique. Time resolved photoluminescence (TRPL) measurements 

have shown a clear enhancement in SE rate due to the coherent nanocavity effect. 

Temperature-dependent photoluminescence (PL) measurements have shown an 

amazing improvement in IQE with a factor of 88, compared with the as-grown 

sample. Such an array structure is particularly important for fabrication of a green 

LED with an ultra-high output power, which cannot be achieved using a single 

nanodisk.  

5.2 Characterisation of the As-Grown Sample 

5.2.1 Structural Characterisation  

For the fabrication of periodic nanodisk arrays, the InGaN/GaN MQW sample used 

was grown on a c-plane sapphire substrate with a high temperature AlN buffer 

layer grown using a low pressure metalorganic chemical vapour deposition 

(MOCVD) system, as detailed description in Chapter 4 [18, 19].  

 

Figure 5.1 (a) Structure of the as-grown sample (b) room temperature PL of the 

as-grown sample. 
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Figure 5.1(a) shows the heterostructure of the sample used. Figure 4.1(b) shows 

the PL of the as-grown sample with a peak emission at 545nm. The surface 

morphology was also examined using atomic force microscopy (AFM) as shown in 

Fig. 5.2. 

 

Figure 5.2 AFM images of the as-grown InGaN/GaN MQWs sample. 

 

Figure 5.3 XRD spectrum scanned in a ω - 2Θ scan. Black line is the measured 

data and red line is the fitted data. 

 

Table 5.1 Simulation data used to model XRD ω – 2θ scan. 
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X-ray diffraction measurements show 30% of the indium composition for the 

quantum wells the thicknesses of the InGaN quantum wells and GaN barriers are 

2nm and 9nm, respectively. 

5.3 2D-Nanodisk Array Fabrication Optimisation 

For the fabrication of nanodisk arrays, nanosphere lithography was used. Fig. 5.4 

presents a schematic diagram illustrating a detailed fabrication procedure. The 

samples were first cleaned sequentially using n-butyl acetate, acetone and IPA in 

order to degrease and remove any unwanted dust particles. An 80 nm silicon 

dioxide layer was then deposited using plasma-enhanced chemical vapour 

deposition (PECVD). The samples with the silicon dioxide layer were subjected to 

a 3 minute RIE oxygen (O2) plasma cleaning in order to make the silicon dioxide 

surface hydrophilic [21], which facilitate silica nanospheres solution to be spread 

across its surface. 

 

Figure 5.4 Schematic diagram of the procedure used to fabricate nanodisk 

array structures. 



 

~ 107 ~ 

 

Silica nanosphere particles with a diameter of 274nm diluted in de-ionised (DI) 

water with a 10% concentration was then mixed in a 1:100 volume concentration 

with SDS surfactant, preventing aggregation of the nanospheres. This solution was 

then dropped on the samples surface and spin coated for 45 seconds at 2300 rpm, 

as detailed description in Chapter 4.A selective RIE etching process was then 

performed on the nanospheres to set their diameter. The nanospheres will then 

serve as the mask for etching through the InGaN MQWs. During the etching 

process the SiO2 layer exposed around the nanospheres is etched away 

simultaneously. Finally a Cl2 based inductively coupled plasma etching was used 

to etch the InGaN/GaN MQW sample into a well-ordered 2D nanodisk array 

structure with a height of 350 nm. 

 

Figure 5.5 (a)-(d) SEM images of each of the steps completed in the fabrication 

procedure. 

Figure 5.5 SEM images show each step during the fabrication procedure, in order 

to monitor and control the quality of each sample. Figure 5.5(a) shows the 

nanospheres deposited on the sample by spin coating, forming a close-packed 

hexagonal array. Figure 5.5(b) shows the nanospheres after tuning of their 

1 μm

(c) (d)

500 nm

(b)

500 nm

(a)
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diameter via RIE. The 2D hexagonal array of nanodisks were then transferred into 

the InGaN/GaN MQWs using ICP dry etching technique. A cross-sectional SEM 

image of the nanodisks arrays with a height of 350 nm is presented in Fig. 5.5 (d) 

with straight sidewalls. 

5.3.1 SiO2 Layer Purpose 

The deposition of silica nanosphere particles was made directly onto a silicon 

dioxide layer instead of the InGaN/GaN MQWs surface as in Chapter 4. Due to 

their small size the distribution of the silica nanospheres is sensitive to the surface 

morphology. This effect could result in disordered arrays and a limited area 

coverage of close-packed monolayers. Therefore the nanospheres were spin 

coated onto an atomically flat silicon dioxide surface instead of the rough surface 

of the InGaN/GaN MQWs, where typical "v" pits appear as discussed in Chapter 

4. 

 

Figure 5.6 Large scale top view SEM images showing silica nanosphere 

coverage on GaN/InGaN MQWs (a) without SiO2 layer and (b) with SiO2 layer.  

Low magnification top view SEM images, which present the formation of a 

close-packed 2D array of nanodisks. 

Figure 5.6 (a) and (b) show the top view SEM images of the deposited silica 

nanospheres on a large scale on a silicon dioxide layer and directly on the surface 

of an InGaN/GaN sample, respectively. A significant improvement in the 

monolayer nanospheres coverage is observed on the sample prepared with the 

SiO2. Additionally the edge effects were almost eliminated for the sample with the 
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silicon dioxide layer. Figure 5.5 (b) shows a higher magnification image of a defect-

free close-packed array of nanodisks. Additionally, the silicon dioxide layer also 

provides an extra protection layer during the ICP dry etching for the masked 

region underlying it. 

5.3.2 ICP Dry Etching Optimisation 

After the RIE etching to select the nanodisk size (see Chapter 4), the nanodisk 

mask is transferred into the InGaN/GaN MQWs for further etching using an ICP 

dry etching technique. In contrast with nanohole arrays fabricated in Chapter 4, 

the ICP dry etching conditions were optimised to achieve straight sidewalls for the 

nanodisks. 

 

Figure 5.7 Cross sectional images of the nanodisk arrays with (a) 30 W ICP RF 

power and (b) 50 W ICP RF power. 

In the fabrication of nanohole arrays in Chapter 4, using an ICP RF power of 30 W 

resulted in an inclined sidewall, as seen in the cross section SEM image of 

Figure  5.7 (a). Increasing the ICP RF power to 50 W resulted in straight sidewalls.  

5.4 FDTD Simulation Results 

Finite difference time domain (FDTD) were performed using a commercially 

available software from Lumerical computational solutions. At this point I would 

like to thank the support team of Lumerical for their help optimizing the 

simulation conditions for our structures. 

 Three-dimensional FDTD simulations were performed to examine the nanodisk 

arrays, as Fig. 5.8 shows. The nanodisk diameter was fixed at 205nm (as discussed 
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later in Section 5.5), and the resonance wavelength of the cavity modes position 

were simulated for an InGaN/GaN nanodisk array structure as a function of the 

centre-to-centre separation.  

When separation is greater than or equal to 600 nm the simulation results of the 

nanodisk array structure are identical to those of a single nanodisk. This 

demonstrates that only a single cavity mode with its resonance wavelength in the 

UV spectral region is obtained. As the separation is reduced more cavity modes 

are observed with their resonance wavelengths are longer than for the single 

cavity mode case. Reducing the separation to 300 nm or less, yields a cavity mode 

with a resonance wavelength at 510 nm, which is within the green spectral region. 

The appearance of more cavity modes is due to a strong interaction among the 

optical fields of the well-ordered nanodisks, resulting from a small separation, 

thus generating a "coherent" nanocavity effect. 

`  

Figure 5.8 Simulated results of nanodisk arrays and a single nanodisk, with a 

fixed 205nm nanodisk diameter. Resonance wavelength spectra of nanodisk 

array structures as a function of the centre-to-centre separation between 

nanodisks from 274, 300, 500, 540 and 600 nm; and the resonance wavelength 

spectra of a single nanodisk provided for comparison. 
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The FDTD simulation indicates that a single InGaN/GaN MQW nanorod or 

nanodisk (with a diameter of 300 nm or less) exhibits resonance wavelengths of 

the cavity modes, which exclusively dominate the ultraviolet (UV) spectral region, 

as shown in Fig. 5.9(a). In order to seek out any extremely weak modes, Fig. 5.9(a) 

is plotted on a log scale. This allows observation of a very weak mode at 775 nm 

(the fundamental mode) and another at 532 nm. It is clear that both modes, which 

are extremely weak, will not be able to enhance optical performance of green 

wavelength emitters. Furthermore, all previous studies of the nanocavity effects 

are limited to a single nanodisk or nanocavity [23-27] and are fabricated using an 

electron beam lithography (EBL) technique. 

Figure 5.9(b) shows the simulated results for the resonance wavelengths of the 

cavity modes for the nanodisk arrays with the centre-to-centre separation of 

274nm between the nanodisks. The nanodisk diameter is fixed at 205nm 

(explained in Section 5.5). As the nanodisk separation is reduced the cavity modes 

appears at longer wavelengths becomes gradually stronger. When the separation 

is reduced to 274 nm a strong cavity mode appearing at 510 nm, evolving from 

the mode at 532 nm  in the case of the single nanodisk, as shown in Fig. 5.9(a). 

This mode shifting will be discussed shortly. 

In addition to the significant enhancement in mode intensity the resonance 

wavelength has shifted to 510 nm from its original 532 nm in the case of the single 

nanodisk. The significant enhancement of the cavity mode in the green spectral 

range is due to a strong interaction among the optical fields of the well-ordered 

nanodisks, resulting from a close separation, and thus generating a "coherent" 

nanocavity effect. 

Due to a strong interaction among the optical fields of the nanodisks, which 

results from a close separation (i.e. nanocavity coherent effect), emission from 

the InGaN/GaN MQW in one nanodisk can pass through other coupled nanodisks, 

as well as the initial nanodisk itself. It is therefore simply the equivalent to an 

increase in the diameter of the nanodisks. Due to an evanescent nature the 

interactions or coupling between adjacent nanodisks can only take place as these 
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nanodisks approach each other. Consequently, as the separation is reduced the 

interactions become stronger, thus the “effective diameter” increases. This 

means that strong cavity modes with resonance at longer wavelengths can be 

generated. For instance, the nanodisk arrays, with a 205 nm nanodisk diameter, 

with centre-to-centre separation of 274 nm show a significantly enhanced mode 

at 510 nm, as depicted in Fig. 5.9(b).  

 

Figure 5.9 Resonance wavelength spectra of a single nanodisk with a 205 nm 

diameter; (b) resonance wavelength spectra of nanodisk arrays with a centre-

to-centre separation of 274 nm and 205 nm diameter; (c) schematic diagram of 

a single nanodisk with a series of five InGaN/GaN QWs used in the FDTD 

nanodisk array simulations; (d) electric field distribution profile of the three 

modes at 220, 532 and 775 nm for a single 205 nm diameter nanodisk; and (e) 

electric field distribution profile of the nanodisk arrays, monitored at a 510 nm 

resonance wavelength. 
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In order to make a comparison between the single nanodisk and the nanodisk 

arrays the mode profiles in both cases was calculated. Figure 5.9(d) depicts the 

electric field distribution profile of the three representative modes at 220, 532 

and 775 nm in the case of a single 205 nm diameter nanodisk. The mode at 220 nm 

shows an electrical field distribution with a twelve-fold rotational symmetry; 

whereas the mode at 532 nm shows only a four-fold symmetry. The mode at 775 

nm shows a dipole distribution, which is a finger-print of the fundamental mode.  

Figure 5.9(e) depicts the electric field distribution at 510 nm (using a 7 by 7 

nanodisk array), which shows a stronger coupling amongst adjacent nanodisks. 

Further examining the electric field distribution in an individual nanodisk, in 

Fig. 5.9(c), shows the electrical field distribution has a tetragonal (four-fold) 

symmetry, similar to the mode at 532 nm in Fig. 5.10(d) for a single nanodisk. This 

is confirmation that the mode at 510 nm evolves from the mode at 532 nm in the 

case of the single nanodisk.  

 

Figure 5.10 Resonance wavelength spectra of the nanodisk array structures 

with a nanodisk diameter of 145, 160, 180, 205, and 270 nm, where the centre-

to-centre separation is fixed to 274 nm. 
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Figure 5.10 shows the simulated resonance wavelength of the cavity modes as a 

function of the nanodisk diameter (270, 250, 235, 205, 180, 160 and 145 nm), with 

a fixed centre-to-centre nanodisk separation of 274nm. The simulated results 

show that the nanodisk array structure with a 205nm nanodisk diameter exhibits 

a cavity mode at a 510nm resonance wavelength, the wavelength of interest in 

this study. 

5.5 Optical Investigation of the 2D Nanodisk Arrays 

Figure 5.11(a)–(e) shows SEM images of the fabricated nanodisk arrays at a 30o 

tilt angle. The well-ordered 2D nanodisk array structures, with a series of 5 

InGaN/GaN QWs, have an emission wavelength in the green spectral region. The 

samples were fabricated using the nanodisk fabrication technique presented in 

Fig. 5.4 above. In each case the typical height of the nanodisks is 

approximately 350 nm, with nanodisk separation of 274 nm. The diameter of the 

nanodisks is then varied from 270, 250, 235, 205, 180, 160, and 145 nm. 

 

Figure 5.11 SEM images of the nanodisk array structures with a nanodisk 

diameter of approximately (a) 270 nm, (b) 250 nm, (c) 235 nm, (d) 205 nm, (e) 

180 nm, (f) 160 nm and (g) 145 nm. 
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5.5.1 Photoluminescence Measurements of the 2D Nanodisk 

Arrays 

In order to examine the optical performance of the 2D nanodisk arrays the 

samples PL was measured with a 375 nm CW laser excitation source at room 

temperature.  

Figure 5.12 (a) clearly indicates a sharp jump in PL intensity for the 2D nanodisks 

with a diameter of 205 nm, meaning that the PL intensity drops significantly when 

the nanodisk diameter deviates from 205 nm. Our 3D FDTD simulation as shown 

in Fig. 5.10 indicates that the resonance wavelength of the cavity mode for the 2D 

nanodisks with a diameter of 205 nm is at 510 nm, matching the emission 

wavelength. This demonstrates a significant enhancement in optical efficiency 

due to the coherent nanocavity effect. The inset in Fig. 5.12 (a) also gives the PL 

spectra of the as-grown InGaN/GaN sample, showing an emission peak at 545 nm. 

For the blue-shift in the emission peak of the nanodisk, is attributed to the strain 

relaxation, resulting from the nanostructures fabrication [4, 28, 29]. 

IQE labelled as η, can be typically obtained by means of temperature dependent 

PL measurements using the ratio of an integrated intensity at room temperature 

to that at a low temperature, such as 12 K in the present study. Figure 5.12(b) 

shows the integrated PL intensities of all the 2D nanodisk structures as a function 

of temperature. For reference, the data from the as-grown sample are also 

provided. Using the as-grown sample as a reference, we can plot the IQE 

enhancement factor (defined as the ratio of the IQE of each nanodisk sample to 

that of the as-grown sample) as a function of nanodisk diameter, which is given in 

the inset of Fig. 5.12(b), where a sharp jump with an IQE enhancement factor of 

88 has been achieved for the 2D nanodisk array structure with a nanodisk 

diameter of 205 nm. This also confirms the existence of the coherent nanocavity 

effect. Regarding the IQE enhancements observed on the rest samples, where the 

resonance wavelengths of the cavity modes do not match the emission 

wavelength, this is simply due to the strain relaxation as a result of being 
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fabricated into nanodisk structures, which has been confirmed by our previous 

studies [28, 29]. 

 

Figure 5.12 (a) PL spectra of the 2D nanodisk array structures at room 

temperature, inset is the PL spectrum of the as-grown InGaN/GaN MQW 

sample at room temperature; and (b) Arrhenius plots of the normalized 

integrated PL intensity as a function of temperature, inset is the IQE 

enhancement factor as a function of the nanodisk diameter. IQE enhancement 

is the ratio of the IQE of each nanodisk array structure to the as-grown sample. 

The inset of Fig. 5.12(b) plots the IQE enhancement factor as a function of 

nanodisk diameter; where an increase in the IQE enhancement factor to 88 has 

been achieved for the 2D nanodisk array structure with a 205nm nanodisk 

diameter. This also confirms the existence of the coherent nanocavity effect. In 

regards to the IQE enhancement observed for the rest of the samples, where the 

resonance wavelengths of the cavity modes do not match the emission 

wavelength. This is due to the strain relaxation that results from the fabrication 

of the nanodisk structures, as has been confirmed by previous studies [28, 29]. 
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5.5.2 Time-Resolved PL Measurements (TRPL). 

To further investigate the recombination dynamics of the coherent nanocavity 

structures, time-resolved measurements were performed on the samples at low 

temperature (12 K), where non-radiative components can be safely ignored. TRPL 

measurements have been performed in a temperature range from 12 to 300 K, 

using a time-correlated single photon counting (TCSPC) system and a 375 nm 

pulsed diode laser, with a pulse width of 83 ps, as an excitation source. The 

average excitation power with a pulse repetition at 10 MHz is 0.1mW, and the 

system response-time is about 150 ps (see Chapter 3).  

 

Figure 5.13 (a) TRPL traces of the nanodisk array structures, measured at 12K; 

and (b) lifetime of the InGaN MQW in the nanodisk array structures as a 

function of nanodisk diameter. 

Figure 5.13 (a) shows the TRPL traces of all of the samples, recorded at a 

temperature of 12K. The SE lifetime can then be obtained through fitting the TRPL 

traces with a standard two exponential component model; TRPL traces [I(t)] can 

be described by (5.2) [30-32]. 
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I(t) = A1e
−

t

τ1 +  A2e
−

t

τ2   (5.2) 
 

Where A1 and τ1 (A2 and τ2) are for the fast (slow) decay component. As stated 

above the nonradiative recombination can be safely ignored, and thus the PL 

emission lifetime τPL is simply equal to the fast decay time τ1, which can be 

obtained from the fittings based on (5.2). PL emission lifetime of the InGaN/GaN 

MQW is plotted as a function of the nanodisk diameter in Fig. 5.13 (b). This plot 

indicates that the nanodisk array structure with a 205 nm nanodisk diameter has 

the shortest PL emission lifetime, and therefore the highest SE rate. This improved 

SE rate when compared to the other samples confirms the existence of the 

coherent nanocavity effect in a 2D nanodisk array structure for nanodisk 

diameters of 205 nm.  

5.6 Conclusion 

To summarize, a well-ordered 2D InGaN/GaN nanodisk array structure has been 

designed, which generates a coherent nanocavity effect with a strong cavity mode 

in the green spectra region. The results were confirmed using 3D FDTD simulation, 

temperature dependent PL measurements and TRPL measurements of the 2D 

nanodisk arrays. Additionally the optimised fabrication of 2D nanodisk arrays 

using silica nanosphere lithography on InGaN/GaN MQW samples, emitting in the 

green spectrum region, was described. Finally, the coherent nanocavity effect has 

been shown to generate an anticipated enhanced SE rate. Therefore as a result 

this has provided a much improved IQE, by a factor of 88 when compared to the 

as-grown samples. 
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Chapter 6 

Room Temperature Continuous-Wave 

Green Lasing from an InGaN Microdisk on 

Silicon 

6.1 Introduction 

The last four decade has seen the unparalleled impact of the semiconductor 

industry, driven by silicon technologies. Silicon based technology is extremely 

mature and cost-effective. However, it is well-known that silicon has an indirect 

band structure, which prohibits its use as an effective light emitter. The unification 

of III-V and silicon technologies would be the ideal way to integrate 

semiconductor based electronics and photonics. Therefore the fabrication of 

silicon compatible III-nitride optoelectronics, namely, III-nitride optoelectronics 

on silicon substrates would be a step in bridging this requirement. 

 This would be particularly significant to III-nitride based optoelectronics, because 

the required device fabrication techniques of III-nitrides are more complicated in 

comparison to other III-V semiconductors. This would not only eliminate their 

individual fundamental limits, but also draw together the major advantages of the 

two types of semiconductors. However, there exist a number of great challenges 

in the epitaxial growth of III-nitrides on a silicon substrate. These challenges are 

caused by the large lattice-mismatch and large difference in thermal expansion 

coefficients of silicon and GaN. Consequently, this leads to a less competitive 

performance than devices grown on the more usual sapphire substrate. To date, 
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there are no reports of lasing from III-nitrides on silicon in the green spectral 

region. 

Micro or nano-cavities, such as photonic crystal cavities [1, 2] and plasmonic 

waveguides [3-7], have been demonstrated in the fabrication of laser structures 

with excellent performance characteristics. In the last decade microdisk lasers 

have become increasingly popular due to their simple geometry and compact size 

[8-10]. Microdisk lasers can be used to provide high quality whispering gallery 

modes (WGMs), leading to a low lasing threshold. This property is particularly 

significant in III-nitride based lasers, as III-nitride laser diodes (LDs) exhibit 

intrinsically a much higher lasing threshold compared to other III-V semiconductor 

LDs. This is due in large part to an intrinsic limitation caused by the high carrier 

density of states, which results from the high effective mass associated with wide 

band gap materials [45]. Furthermore, a microdisk laser on a Si substrate can 

potentially be used to integrate electronics and photonics on the same wafer. This 

would meet the challenge of fabricating photonic-electronic integrated circuits 

for communication and computation technologies, overcoming their fundamental 

speed and bandwidth limits [11]. In this case, taking the extremely mature silicon 

technology into account, III-nitrides on silicon exhibit overwhelming advantages 

when compared to the current and widely used GaN on sapphire technology, in 

the fabrication of microdisk lasers. For instance the utilisation of silicon substrates 

leads to the formation of an undercut structure easily, which is necessary for 

microdisks, in order to enhance the light confinement in the disk region. The 

utilisation of silicon substrates makes the growth of extra sacrificial layers 

unnecessary, while sacrificial layers are otherwise necessary in fabricating GaN 

based microdisks on a sapphire substrate [9, 10], as it is extremely difficult to 

chemically etch sapphire. Additionally the growth of extra sacrificial layers can 

lead to degradation in the crystal quality, as is this the case with GaN on sapphire. 

Current GaN based microdisks suffer from serious fabrication problem, which 

includes inclined sidewalls and non-uniformity in circularity [13], both of which 

lead to major limits in optical performance. The situation for fabricating GaN 
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microdisks on sapphire becomes even worse, because extra sacrificial layers, are 

required to form an undercut structure or the even more complicated distributed 

Bragg reflector [9, 10, 14]. Both aim to enhance the optical confinement along the 

vertical direction to minimise the light leakage. 

Optically pumped green lasing with an ultra-low threshold has been achieved 

using an InGaN/GaN based microdisk with an undercut structure on a silicon 

substrate. Microdisks of an approximate 1 μm diameter were fabricated using a 

combination of a cost-effective silica microsphere technique, dry-etching and 

subsequent chemical etching. The combination of these techniques minimises the 

sidewalls roughness of the microdisks and also produces an excellent circular 

geometry. Utilizing this fabrication process, lasing has been achieved at room 

temperature under optical pumping from a continuous-wave laser diode. The 

threshold for lasing was as low as 1 kW/cm2. Time–resolved micro 

photoluminescence (PL) and confocal PL measurements have also been 

performed to further confirm the lasing action in WGMs, and to also investigate 

the excitonic recombination dynamics of the lasing. 

6.2 III-Nitrides Microdisk Laser History 

III-nitride microdisk lasers were first reported in 1997 [15], where an air gap was 

introduced under the microdisk in order to enhance vertical confinement through 

wet chemical etching of the aluminium nitride buffer layer. The main 

disadvantage of this method is due to the etching rate of the AlN buffer layer, 

mainly depending on the quality of the material. Faster etching rates are possible 

at the expense of decreasing the crystal quality of the AlN buffer layer. However, 

an AlN buffer with a high crystal quality is required in order to grow high quality 

heterostructures.  

In 2004, Hu's group at Harvard reported the first microdisk laser fabricated by 

photo-electrochemical etching techniques [16, 17]. In this method a sacrificial 

layer was introduced prior to the microdisk region. The sacrificial layer consists of 

an InGaN/InGaN superlattice structure with a lower indium composition than in 
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the active region. The sacrificial layer was etched using hydrogen chloride (HCL) 

solution under an optical illumination with a proper wavelength for selective 

etching, meaning that the lower indium composition region is etched away. 

Growth of the sacrificial InGaN/InGaN SL is undesirable because it significantly 

lowers the quality of the overlying microdisk region.  

Choi (2006) reported III-nitride based micro-disk on silicon [18], where an 

InGaN/GaN MQW structure was grown on top of a Si wafer. The disks were 

defined using optical lithography methods and then etched through the Si 

substrate. Silicon, a well-known and established technology for over 40 years, can 

be selectively wet chemical etched with hydrogen fluoride (HF) and nitric acid 

(HNO3). An air gap can therefore be introduced under the disk region in order to 

achieve an enhanced optical confinement in the vertical direction. 

The concept of a microdisk laser differs significantly from conventional Fabry-

Perot lasers, as the modes formed in a microdisk laser are due to whispering 

gallery resonances which circulate the periphery of the disk.  

6.3 Characterisation of the As-Grown Sample 

6.3.1 Structural Characterisation 

For the fabrication of microdisk lasers, a standard five period InGaN/GaN multiple 

quantum well grown (MQW) was grown on (111) silicon substrate by MOCVD. The 

high temperature AlN buffer layer, originally developed for the growth of GaN on 

sapphire, was modified before using it in the growth of GaN on Si [19-21]. The 

epiwafer consists of a 200 nm AlN buffer layer followed by a 500 nm GaN buffer 

layer, both of which are grown at high temperatures. Five periods of 

In0.27Ga0.83N/GaN MQWs were then grown with the thicknesses of the barrier and 

quantum well of 2.5 nm and 10 nm, respectively. This is then followed by a 10 nm 

GaN capping layer. 
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Figure 6.1(a) illustrates the structure of the as-grown used in the fabrication of 

the microdisk lasers; where Fig. 6.1(b) shows the room temperature PL emission 

of the as-grown sample with an emission peak at 543 nm. 

 

 

Figure 6.1 (a) Schematic diagram of the InGaN/GaN MQW epiwafer grown on a 

(111) silicon substrate via MOCVD; and (b) room temperature PL 

measurements of the as-grown epiwafer.

 

Figure 6.2 XRD spectrum scanned in a ω - 2Θ scan. Black line is the measured 

data and red line is the fitted data. 

 

Table 6.1 Simulation data used to model XRD ω – 2θ scan. 
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Figure 6.2 XRD spectrum scanned in a ω - 2Θ mode; where the black line is the 

measured data and the red line is the fitted data. The table shows indium 

composition and thicknesses of the InGaN quantum well and GaN barriers, 

respectively. 

6.4 Fabrication of the Microdisk Laser  

In the fabrication of the microdisk lasers a silica nanosphere lithography 

technique was used [22-23]. Figure 6.3 (a)-(d) illustrates the fabrication procedure 

schematically. The samples were initially cleaned sequentially using with n-butyl 

acetate, acetone and IPA in order to degrease and remove any unwanted dust 

particles on the sample. This was done by. The silica particles with a diameter of 

approximately 1 µm diluted in DI water with 1:50 concentration was then spin-

coated on the sample surface at a high rotation speed, and the silica particles 

serve as micro-masks for subsequent dry etching. In contrast to the previous 

studies, where a monolayer of close-packed particles was required (see Chapters 

4 & 5), microdisk laser fabrication requires a randomly dispersed monolayer of 

microspheres.  
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Figure 6.3  (a) - (d) Schematic diagram presenting the fabrication procedure of 

the microdisk lasers using a microsphere lithography technique. 

Increasing the rotation speed to 7000 rpm leads to larger centrifugal forces 

applied to the silica microspheres, which results in a dispersed monolayer. A 

standard inductively coupled plasma (ICP) technique was used to etch the 

InGaN/GaN epi-wafer in order to form sparsely distributed micro pillars. Silica 

microspheres were then removed from the top of the pillars simply by using an 

ultrasonic bath. Finally, a KOH wet etching method was then employed to form 

an undercut structure through introducing an air gap, which isolates the micro-

disk region from the silicon substrate. Consequently, a large air-gap (1.2 μm) with 

a very small post remaining to mechanically support the micro-disk was formed 

under the micro-disk region, significantly enhancing the optical confinement 

along the vertical direction and thus minimising any optical losses to the silicon 

substrate. A further surface treatment involving the utilisation of hot nitric acid 

has been employed in order to remove the residual etchants and the damage 

generated during the ICP dry etching process.  
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Figure 6.4 (a)-(c) shows the SEM images recorded at each step of the 

fabrication procedure, which were used to monitor the fabrication procedure. 

6.4.1 Undercut Microdisks with KOH 

In order to form an undercut structure by introducing an air gap under the 

microdisk in the silicon substrate, a potassium hydroxide (KOH) wet chemical 

etching of a 30% concentration at 40oC was employed. 

Undercutting the microdisk is the most difficult part of the fabrication process and 

must be controlled precisely. Therefore an optimisation of the etching time was 

performed, as Fig. 6.5 (a)–(e) shows, where the etching time is varied from 20 to 

100 seconds. In the case of an etching time from 20 to 60 seconds the microdisks 

were not fully undercut. 

Figure 6.5(d) shows a microdisk after an 80 second wet chemical etching that left 

behind a Si post of approximately 150nm thick, which will mechanically support 

and isolate the disk region. If the etching time was further increased to 100 

seconds, as shown in Fig. 6.5(e) the microdisks fall over on the etched silicon 

surface. Our optimised etching time is 80 seconds, with an estimated etching rate 

of approximately 9 nm/second. In addition to undercutting the micro disk the KOH 

etching also slightly polishes the sidewalls of the microdisk. 
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Figure 6.5 (a)-(e) Wet chemical etching times of (a) 20 seconds, (b) 40 seconds, 

(c) 60 seconds, (d) 80 seconds and (e) 100 seconds. 

6.5 Optical Investigation of Microdisk Lasers 

6.5.1 Optical Pumping of a Single Microdisk Laser 

The optical investigation is completed on the sparsely distributed microdisks, as 

shown in Fig. 6.6(a)-(c), fabricated using procedure detailed above. The side-view 

SEM image of Fig. 6.6(a) shows the final structure of a microdisk with a large air 

gap, introduced during wet chemical etching. The air-gap below the micro-disk is 

approximately 1.2 μm height, which is much larger than that obtained in the 

micro-disks fabricated based on GaN-on sapphire, where the extra sacrificial layer 

with a total thickness of 200 nm is used [9, 10]. The very large air gap is expected 

to minimise optical losses to the silicon substrate, and thus is expected to 

significantly enhance optical confinement in the vertical direction [24]. 
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Figure 6.6 (a) side-view SEM image of a single microdisk on a Si substrate; (b) 

high magnification SEM image revealing smooth sidewalls; and (c) top-view 

SEM image showing the circular geometry of the cavity. 

Figure 6.6(b) shows a SEM image with a high magnification, which shows smooth 

sidewalls. Smooth sidewalls are crucial to achieving microdisk lasers with 

excellent performance [9]. Roughness in a microdisks sidewalls results in a leakage 

of the optical modes, leading to an increase in lasing threshold. To minimise any 

potential damage or defects (non-radiative recombination centres) generated 

during the dry etching process a surface treatment process was completed. The 

process employed involves the use of hot nitric acid for 10 minutes set at 

160oC [7]. The purpose of this process is to restore the damage on the InGaN/GaN 

QWs, which was caused by Ar ion bombardment during the dry etching process. 

Finally, the top-view SEM image provided in Fig. 6.6(c) shows the excellent circular 

geometry of the microdisk, with a diameter of around 1 μm. 

Figure 6.7(a) shows the typical lasing spectra of our micro-disk laser measured at 

room temperature as a function of optical pumping power density from 79 W/cm2 

to 25 kW/cm2, excited using a 375 nm cw diode laser in a micro-PL system.  
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Figure 6.7 (a) Lasing spectra of the microdisk laser recorded as a function of the 

optical pumping power density at room temperature; (b) light-light curve (on a 

log-log scale) and FWHM plotted as a function of the optical pumping power 

density. The inset shows the lasing image of the microdisk, captured above the 

lasing threshold; and the red dashed-lines are a visual guide only. 

This system is equipped with a high resolution camera and a sub-micron 

resolution positioner, allowing us to identify and address single micro-disks 

accurately. Under low excitation power, a few weak emission peaks (different 

WGMs) have been observed. However, when the optical pumping power density 

is above 1 kW/cm2, a very sharp and strong emission peak at 514 nm has been 

observed. The intensity increases dramatically along with a significant reduction 

in full width at half maximum (FWHM) with further increase in optical pumping 

power density. The thickness of the microdisk is greater than λ/2n 

(approximately 600nm), which gives the potential for some weak vertical or 

hybrid modes, thus other peaks in Fig. 6.7 (a) are observed, which do not indicate 

of a lasing. 
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Figure 6.7 (b) shows a light-light (L-L) plot of the lasing mode at 514 nm on a log-

log Scale. The L-L curve exhibits an ‘‘s’’ shaped behaviour, a typical fingerprint for 

lasing [4-7, 25, 26]. The threshold for lasing can be determined from the L-L plot, 

and is found to be approximately 1 kW/cm2. Figure 6.7(b) also shows the FWHM 

of the emission peak as function of the optical pumping power density. This plot 

exhibits a dramatic reduction in the FWHM with increasing optical pumping 

power density starting from 1 kW/cm2, the lasing threshold. The FWHM drops to 

0.17 nm from 0.24 nm with an increasing optical pumping power density, and is 

due to the temporal coherence of the cavity. The quality factor (Q factor) of the 

cavity is given by (6.1) below. 

Q =
λ

Δλ
    (6.1) 

Where λ and Δλ is the central emission wavelength and FWHM respectively, 

below the lasing threshold the Q factor is approximately 2150. The high Q factor 

achieved could be partially attributed to the enhancement in optical confinement 

in the vertical direction [10, 20]. This enhancement is a result of the smoothed 

cavity sidewalls and the improved air gap obtained underneath the microdisk, one 

of the major benefits to using silicon substrates. This also leads to enhancement 

in the coupling between the cavity mode and the green emission from the 

InGaN/GaN MQWs. The inset image of Fig. 6.7(b) shows an image of the lasing 

from the micro-disk as captured by a CCD camera, where the optical pumping is 

above the threshold. Further characterisation of the microdisk laser allows the β 

factor to be determined, which is defined as the fraction of spontaneous emission 

coupled into the lasing mode. It can be evaluated based on the ratio of the 

integrated intensity below and above lasing threshold from the L-L curve of 

Fig. 6.7(b) [20]. The β factor can be obtained by fitting a standard rate equation 

analysis [27, 28].  

I(p) = A × [
𝑝

1+𝑝
(1 + 𝜁)(1 + 𝛽𝑝) − 𝜁𝛽𝑝]                   (6.2) 

A =
ћωγ

δβ
                                                           (6.3) 

ζ =
Ν0βV

γτsp
           (6.4) 
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Where p and I are the photon number and excitation intensity respectively. The 

scale factor A is given by (6.3), where ω is the mode frequency, γ is the cavity 

decay rate and δ is the photon conversion efficiency. The dimensionless 

parameter ζ is given by (6.4), where N0 is the transparency carrier density of the 

material, V is the volume of the active region and τsp is the spontaneous emission 

lifetime. The rate equation uses the assumption that there is only one mode lasing 

overlapping with the gain region. Since material parameters like γ and N0 are 

unknown, we treat β, ζ and A as fitting parameters, where β and ζ define the 

overall shape of I (p) and A is the magnitude [25, 26]. 
 

 

Figure 6.8 Integrated peak intensity against excitation power density; solid 

lines are the fitting curves based on the rate equation for β equal 0.01, 0.043 

and 1. 

The characteristic ‘s-shape’ of the curve in the L-L plot defines the three regimes 

of operation in a laser from spontaneous emission, amplified spontaneous 

emission and then lasing oscillation. Figure 6.8 shows the fitting which results 

from using the rate (6.2). It can be seen that for low β values a more pronounced 
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kink and a higher threshold is observed. As the spontaneous emission factor 

increases, thresholdless lasers can be achieved, where all of the spontaneous 

emission is coupled into the lasing mode (green line). For this microdisk laser the 

β factor was estimated to approximately 0.043 by fitting the experimental results 

to the rate (6.3). 
 

 

Figure 6.9 Measured peak wavelength and FWHM as a function of optical 

pumping power density. 

Unfortunately, further investigation of the lasing peak reveals that as the 

excitation power increases above 10 kW/cm2, a redshift of the lasing peak starts 

to occur. The reason for this is attributed to the thermal effects of the microdisk 

region under high excitation power densities. The excitation power density was 

limited to a maximum 25 kW/cm2 in order to avoid permanently damaging the 

microdisk laser. 
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6.5.2 Recombination Dynamics Investigation 

In order to further investigate the lasing oscillation of the microdisk room 

temperature micro time-resolved PL (μ-TRPL) measurements have been 

performed. A single microdisk was pumped with a 375 nm pulsed diode laser with 

a pulse width of 50 ps excitation source. Figure 6.10 shows the μ-TRPL decay 

traces measured below threshold (0.9 kW/cm2) and above threshold (4.7 kW/cm2) 

to demonstrate the major difference between them. Above the lasing threshold 

shows the additional and ultra-fast decay component. The initial fast decay 

component observed in PL decay trace of the microdisk is believed to be a result 

of a lasing operation. 

 

Figure 6.10 (a) room temperature μ-TRPL decay traces of the microdisk laser 

recoded above and below the threshold; inset plot shows the data-fitting using 

a bi-exponential and tri-exponential model to aid comparison. 

A standard bi-exponential model was used to fit the TRPL decay trace below the 

threshold [29-31], these TRPL traces [I (t)] can be described by equation 6.5 below. 

I(t) =  A1e−t/τ1 + A2e−t /τ2   (6.5) 

Where A1 and τ1 are the fast component and A2 and τ2 are the slow component. 

The obtained lifetime of the fast and slow decay components is around 1.0 ns and 

2.7ns, respectively.  
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Remarkably, the bi-exponential model no longer works for the μ-TRPL traces 

obtained above lasing threshold (4.7 kW/cm2 as an example for Fig. 6.10). In that 

case, an extra decay component is required to fit the TRPL trace, adding an extra 

term (6.5) to give (6.6). 

I(t) =  A1e−t/τ1 + A2e−t /τ2 +   A3e−t /τ3  (6.6) 

Where A1 and τ1 (A2 and τ2) remain unchanged from above, and the last term 

represents the additional ultra-fast component due to the laser action [32, 33]. 

For comparison, the fitting based on both the bi-exponential model and tri-

exponential model have been performed, and are shown in the inset of 

Figure 6.10. A good fit is obtained using the tri-exponential model (green line), 

while the bi-exponential model (red line) no longer works. The extra component 

(τ3) is extremely fast at approximately 150 ps, which approaches the systems 

response-time. The lifetimes of τ1 and τ2 remain almost completely unchanged 

and are set at 1.10 ns and 2.72ns respectively. The ultra-fast decay component is 

due to lasing action [28, 29], providing solid evidence for lasing in the microdisk 

laser. 

  

Figure 6.11 (a) dependence of the μ-TRPL decay traces of the microdisk laser 

on the optical pumping power density, showing evolution from spontaneous 

emission to lasing; and (b) FWHM of the lasing peak and lifetime of the ultra-

fast decay component as a function of optical pumping power density, inset 

plot shows A1 and A3 coefficients as a function of optical pumping power 

density. 
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Figure 6.11(a) shows the μ-TRPL traces of the microdisk laser recorded as a 

function of optical pumping power density from 0.3 kW/cm2 to 4.7 kW/cm2. This 

plot allows observation of the evolution from spontaneous emission to lasing, 

lasing threshold can also be determined. Figure 6.11(a) clearly shows that the 

ultra-fast component only appears when the optical pumping power density is 

above 1 kW/cm2, the same value obtained from Fig. 6.7(b). In Fig. 6.11(a) the bi-

exponential model was deliberately used to fit the TRPL traces (red lines); as it 

highlights the appearance of the ultra-fast component clearly as it passes the 

lasing threshold. When the optical pumping power density is below 1 kW/cm2, the 

bi-exponential model fits µ-TRPL decay is well, while the ultra-fast component 

starts to appear and then becomes dominant when the optical pump power 

density is above 1 kW/cm2. It becomes even more clear if we plot the FWHM of 

the lasing peak at 514 nm and the lifetime of the ultra-fast decay component 

(i.e. τ3) as a function of optical pumping power density in a same figure, which is 

Fig. 6.11(b). It is clear that the sudden reduction in the FWHM and the appearance 

of the ultra-fast component take place simultaneously. 

It should be noted that the optical pumping power density dependent FWHM plot 

shown in Fig. 6.11(b) was obtained using a 375nm pulsed laser optical source. This 

leads to less significant thermal effects when compared to the use of a 375nm CW 

diode laser as an optical pumping source as in Fig. 6.7(b). As a result Fig. 6.11(b) 

is slightly different from the data shown in Fig. 6.7 (b).  

The inset of Fig. 6.11(b) provides comparison of the ultra-fast decay component 

(i.e. lasing part described as A3 in (6.6) and the standard fast decay component 

(i.e. spontaneous part described as A1 in (6.5). As the optical pumping power 

density exceeds the threshold (1 kW/cm2), A3 increases very quickly, supressing 

A1. This means that the lasing effects dominate the emission when the optical 

pumping power density is above the threshold. Please note that for simplicity A3 

is labelled zero below the threshold, as this component does not appear below 

the threshold. 
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6.5.3 Spatially-Resolved PL Measurements  

Spatially-resolved PL measurements were performed at room temperature using 

a commercially available confocal PL system, in order to further investigate the 

microdisk laser. The spatial resolution of the system is approximately 160nm, 

where a 375nm CW diode laser was used as an excitation source. Figure 6.12(a) 

shows the lasing spectrum above threshold, where the highlighted areas labelled 

with blue and red colour represent the on-resonance (i.e. lasing peaks at 514nm) 

and off-resonance regions, respectively. Figure 6.14(b) shows a typical confocal 

PL mapped image of the microdisk in off-resonance (i.e. red coloured area), where 

the boundaries of the microdisks are defined by the white dashed circles. In the 

case of the off-resonance emission, light is mainly due to spontaneous emission 

and therefore has random phase.  

 

Figure 6.12 (a) Lasing spectrum of the microdisk laser above lasing threshold, 

blue and red coloured areas respectively highlight regions of on-resonance and 

off-resonance; (b) typical confocal PL image in off-resonance; (c) typical 

confocal PL image in on-resonanc e; and (d) overlaid confocal PL maps of on-

resonance and off-resonance. 
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Figure 6.12(c), shows a typical confocal PL image in the on-resonance case, 

demonstrating that the coherent light circulates the periphery of the microdisk to 

form clear WGMs [34-38]. 

The confocal PL images of the off-resonance and on-resonance integrated areas 

in Fig. 6.12(b) and (c), were overlaid in Fig. 6.12(d). The blue colour shows the on-

resonance emission circulating the periphery and the off-resonance emission is 

coloured red. Off-resonance originates from the spontaneous emission of the 

QWs at the centre of the microdisk, and is not coupled into the lasing mode. 

Standard finite-difference time-domain (FDTD) simulations have also been 

performed to confirm the WGM at 514 nm, agreeing with the observed spectrum 

of the microdisk. The modes are labelled in Fig. 6.12(a). 

6.5.4 Finite-Difference Time-Domain (FDTD) Microdisk 

Simulation 

In order to numerically investigate the microdisk laser and locate and identify the 

cavity modes, a FDTD simulation was completed, a more detailed discussion is 

provided in Section 5.4. The simulations were carried out using FDTD Lumerical 

solutions software. 

Figure 6.13(a) shows the experimentally measured microdisk laser spectrum 

above the lasing threshold (green line) and the simulated FDTD mode spectrum 

(red line), which are well-matched. This also indicates that there exist three 

resonance modes at 498 nm, 514 nm and 546 nm. Some variation in the WGMs 

position can be attributed to a slight variation in the actual microdisk size, where 

the silica particles size uniformity is ±10%. A diameter of 1 µm and refractive index 

for GaN of 2.5 are used for our simulation. 
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Figure 6.13 (a) Experimental results and simulated FDTD WGM position; TE 

WGMs profiles are shown in Figures (b)-(d). 

From Fig. 6.13(a) the experimental WGM spacing measured is approximately 

33nm. The separation of the modes can be calculated using (6.7) below. 

ΔλWG =  
λcav

2

2πRnGaN
    (6.7) 

Where λcav is the WGM wavelength, R the microdisk radius 

(approximately 500 nm) and ηGaN is the refractive index of GaN (2.5). The 

experimentally observed and theoretically calculated WGM spacing shows a good 

match at approximately 33 nm. The transverse electric (TE) WGM profiles for the 

modes at 498 nm, 514 nm and 546 nm are all illustrated in Fig. 6.13 (b)–(d). The 

red and blue regions represent the highest and the lowest field intensities 

respectively, where the microdisk boundaries are defined by the black line. 

According to the FDTD simulations the peak at 498 nm is a second-order 

mode (n=2) with mode number (m) 9; whereas the peaks at 514 nm and 549 nm 

belong to a first-order mode family (n=1) with mode numbers of 11 and 10 
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respectively. Second-order modes circulate nearer to the centre of the disk, 

consequently they tend to suffer from leakage due to the location of the Si post.  

6.5.5 Lasing Threshold Investigation 

In the previous sections lasing from an InGaN/GaN MQW microdisk laser in the 

green spectral region has been presented, with a lasing threshold of 

approximately 1 kW/cm2. A large indium mole fraction (29%) was used to achieve 

lasing in the green spectral region, which resulted in lower quality QWs, due to an 

increase of the spontaneous piezoelectric fields pulling apart the electron-hole 

wave functions. Additionally, high indium compositions is obtained by reducing 

the growth of InGaN/GaN MQWs at a low temperature, increasing number of 

non-radiative centres for green emitters [39 - 41]. 

 

Figure 6.14 (a) Microdisk emitting at 480nm; and (b) Microdisk emitting at 

514nm. 

Similar to the fabrication of the microdisk lasing in the green spectra region 

detailed earlier in this chapter, microdisk were fabricated in order to achieve a 

blue lasing at 480 nm. Figure 6.14(a)-(b) shows the SEM images of the fabricated 

microdisks for both blue and green lasing. The insets show the images of the 

emission from the microdisk under optical pumping during lasing oscillation, 

captured using a CCD image camera.  

The lasing threshold for the blue lasing is   approximately 300 W/cm2, as shown in 

Fig. 6.15, while the threshold for the green at 514nm is 1 kW/cm2. 
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Figure 6.15 (a) PL emission of the microdisk lasers at different emission 

wavelengths, operating above lasing threshold; and (b) integrated Pl intensity 

plotted as a function of optical pumping power density on a linear scale. 

6.6 Conclusion  

In summary, room temperature green lasing has been achieved, with an ultra-low 

lasing threshold, from InGaN/GaN MQW microdisk lasers with an undercut 

structure using a silicon substrate. The devices were fabricated by means of a 

cost-effective microsphere lithography approach with subsequent dry and 

chemical etching steps. The optically pumped lasing at 514 nm has been achieved 

using a CW diode laser source, where the lasing threshold has been found to be 

as low as approximately 1kW/cm2. Optical pumping power dependent 

measurements have confirmed this lasing action. Further evidence includes micro 

time-resolved PL measurements, which demonstrate an ultrafast decay 

component with a lifetime of approximately 150 ps, due to the lasing action when 

the optical pumping power density is above the threshold. This result is in 

agreement with the optical pumping power dependent measurements. Confocal 

PL mapping measurements have also been performed, which demonstrate a clear 

coupling of the coherent light with the WGM. 

Furthermore, the dependence of the lasing threshold with the indium mole 

fraction for the InGaN/GaN MQWs was investigated. A reduction in lasing 

threshold operation at 480 nm with a 300 W/cm2 lasing threshold was found. The 
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lasing operation for both microdisk lasers, at 480 nm and 514 nm were confirmed 

via power dependent and time-resolved measurements. The reduction of the 

lasing threshold with reducing indium mole fraction is a result of the decrease in 

the current density required to reach transparency conditions and also the 

potentially lower inhomogeneity of the InGaN QWs. 
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Chapter 7 

Conclusions and Future Work 

7.1 Conclusion 

This thesis presents work on controlling optical interactions in InGaN based 

MQWs heterostructures, by the post fabrication of nano- and micro- structures. 

A nanospheres lithography technique was optimised and used for the fabrication 

of these structures. Nanostructures can enhance the optical performance of the 

devices, leading to new physics concepts and development of fabrication 

technologies for future advanced III-nitride optoelectronics. 

7.1.1 Fabrication of two-dimensional InGaN/GaN photonic crystal 

structure using a modified nanosphere lithography technique 

Fabrication of two-dimensional photonic crystal structures of nanoholes arrays 

has been achieved, by means of combining a cost effective nanosphere 

lithography technique and a novel lift off process. The suppression of the 

spontaneous emission by the inhibition of propagation in the slab modes was 

observed through an introduction of photonic crystal structure, leading to 

significant enhancement in quantum efficiency. The excitonic recombination 

dynamics were investigated by time-resolved measurements, showing a 

reduction in spontaneous emission rate as a result of the photonic crystal effect. 

Angular dependent measurements were performed, showing a clear redirection 
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of the emission along the vertical direction, further confirming the photonic 

crystal effect. 

7.1.2 Coherent nanocavity structures for enhancement in internal 

quantum efficiency of III-nitride multiple quantum wells 

A significant enhancement in optical performance has been achieved through the 

introduction of a nanocavity effect based on an InGaN / GaN MQWs emitting in 

the green spectral region. Three dimensional FDTD simulations have been used to 

design the nanocavity structure. A series of samples were fabricated by a 

nanosphere lithography technique based on the designs. PL measurements 

showed sudden increase the PL intensity for the nano array disk with a diameter 

of 205 nm. The increase in spontaneous emission rate was also confirmed. 

Additionally, a significant enhancement of the internal quantum efficiency of the 

sample with a diameter 205 nm.  

7.1.3 Room temperature continuous-wave green lasing from an 

InGaN microdisk on silicon 

A room temperature lasing in the green spectral region was achieved by the 

fabrication of a micro-disk on an InGaN / GaN MQWs sample grown on Si 

substrate. A clear lasing at 514 nm has been observed with a lasing threshold of 

approximately 1 kW/cm2, with a Q-factor of 2150. Excition power density 

dependent time-resolved PL measurements show an appearance of ultrafast 

component above the threshold. Spatially resolved measurements were 

performed on a single micro-disk, further confirming the lasing operation of our 

microdisk laser. 
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7.2 Future Work 

7.2.1 Fabrication of Hybrid LEDs for white light emission and for 

ultrafast communication purposes 

Hybrid III-nitrides/organic devices, drawing together the major advantages from 

the two kinds of semiconductors, are becoming more interesting recently. Guha 

et al. (1997) reported the first hybrid organic–inorganic emitter, where a blue 

InGaN led device, emitting at 460 nm was used to pump the DCM dye [4], resulting 

in colour conversion with high CRI. 

The coupling mechanism between organic and inorganic semiconductors is due 

to the non-radiative Föster resonant transfer (FRET). In such a dipole-dipole 

interaction which consists of a donor (InGaN QWs) and an acceptor dipole 

(inorganic semiconductor) the distance between the two dipoles and the 

absorption spectrum overlap of the organic and inorganic semiconductor are the 

parameters that affect the energy transfer efficiency [5]. Due to the nature of near 

field effect, the critical separation between dipole needs to be less than 10 nm in 

order to achieve the non-radiative energy transfer efficiently. For a standard 

InGaN based LED structure, a thick 200 nm p-type layer is required to grown on 

top of the QWs, thus restricting any energy transfer due to the large separation 

between the two dipoles. 

A novel approach, has been developed at Sheffield leading to successful 

fabrication of a hybrid III-nitride nanostructure/organic structure  efficient, where  

InGaN based nanorods fabricated by the self-organised nickel mask approach was 

surrounded by an yellow F8BT polymer [6]. The F8BT polymer was chosen to be 

as the acceptor dipole, as its absorption spectrum overlaps with the emission 

spectrum of the donor dipole (InGaN QWs) and has a broad emission spectrum 

with the peak at 560 nm. Mixture of the emission from the two materials could 

result in white light emission with high CRI due to broad spectrum of the F8BT 

polymer. The use of nanorod structures enables the high non-radiative energy 
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transfer efficiency, as the distance between the donor and acceptor dipoles is 

minimized. By using a structure directly injected hybrid devices may be fabricated. 

Furthermore, fabrication of a nano-rod structure would result in high efficiency 

InGaN quantum wells due to strain relaxation [7] and an increase of the extraction 

efficiency due to wave guiding effects [8]. 

 

Figure 7.1 Schematic diagram of a nano-rod Hybrid LED fabricated by 

nanosphere lithography with F8BT polymer deposited in-between. 

Fabrication of periodic arrays of nanorods by using the nanosphere lithography 

technique as schematically illustrated in Fig. 7.1 could result in the accurate 

control of nanorods size and so the DoS can be enhanced through a proper design. 

The combination of a nanorod array with a photonic crystal effect and the F8BT 

polymer is expected to result in the fabrication of high efficiency white light 

emitters, with ultra-fast response for communication purposes. 

7.2.2 Photonic crystal cavity  

The enhancement of spontaneous emission can be significantly increased by 

decreasing the mode volume because as the Purcell enhancement is directly 

proportional to the ratio of Q-factor to mode volume (∝
𝑄

𝑉𝑚𝑜𝑑
). A schematic 

fabrication procedure for a PhC cavity laser is illustrated in Fig. 7.2 (a) – (h). 
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Figure 7.2 Schematic fabrication procedure for PhC cavity laser on Si substrate. 

In order to fabricate the PhC cavity, a silicon dioxide layer is deposited prior the 

silica nanosphere deposition. The size of the spheres can then be refined by RIE 

etching and a Ni metal mask can be deposited on top of the spheres. The RIE dry 

etching can then etch through the silicon dioxide and reach the InGaN /GaN 

MQWs surface. A second deposition of a diluted silica particles will be then 

deposited on top of the silicon dioxide nanohole mask in order to form randomly 

spaced defect particles. The randomly spaced particles will be then used to form 

a cavity and protect the area underneath it. Inductively coupled plasma etching 

will be employed to etch through the InGaN /GaN QWs and Si substrate. Finally, 

the membrane can be released by immersing the sample into a tank of 

hydrofluoric acid (HF). 
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