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Abstract 

Defects in cilia structure and/or function are now known to be the cause of an 

important group of Mendelian developmental conditions called ciliopathies. Meckel-

Gruber syndrome (MKS) and Joubert syndrome-related disorders (JBTS) are the focus 

of this work. The research comprised genetic screening of an established MKS/JSRD 

patient cohort for mutations in seven known genes, and different approaches to identify 

new causes for these disorders. The latter included whole exome sequencing (WES) of 

mutation-negative patients, and a high-throughput whole genome siRNA-based reverse 

genetics screen to identify novel ciliopathy genes and genes implicated in the process 

of ciliogenesis. 

Mutation screening in the University of Leeds MKS/JSRD patient cohort showed 

that about 50% patients (n=29/65) were mutation-negative for known genes and 

confirmed mutations in TMEM67 as a major cause of MKS/JSRD. WES gave a 

conclusive molecular diagnosis for n=4/7 families. WES allowed the identification of 

mutations in TMEM237 as a new cause of JSRD. In vitro assays showed that the 

TMEM237 protein is required for correct cilia formation and function. Loss of the protein 

in patient fibroblasts and after transcript knockdown caused defects in ciliogenesis and 

the Wnt signaling pathway. 

The whole genome reverse genetics screen identified new functional modules 

that were not previously linked to cilia (components of the spliceosome and 

proteasome) or had a poorly characterized ciliary function (several neuroactive 

GPCRs). Cross-comparison of screen hits with available WES data allowed the 

prioritisation and confirmation of mutations in PIBF1 and C21orf2 as new causes of 

JBTS and the skeletal ciliopathy Jeune syndrome, respectively. 

In summary, the multiple approaches presented in this work have allowed further 

insights into the structure and function of the primary cilia, as well as the disease 

mechanisms of human ciliopathies. 
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1 Introduction 

1.1 Cilia 

Anthony van Leeuwenhoek was the first to describe a “little leg”-like structure 

on protozoa in 1675 1. The name “cilium” (meaning eyelash in Latin) was probably 

given in 1786 by Otto Muller 2. The cilium is the oldest known cellular organelle and 

for decades was thought to be vestigial with no particular function in the cell. With 

advances in microscopy techniques, cilia structure was studied with no further 

insight into its function. However, the last two decades of research have shown 

that, not only can cilia be found on almost all cells in the human body, but that they 

are sophisticated, complex structures that are essential for developmental and 

homeostatic signalling pathways.  

Cilia act as an “antenna” receiving mechanical and chemical signals from the 

extracellular environment and passing it to the cell body, performing various cellular 

functions including mechano-, chemo- and photosensation 3. Cilia have been 

shown to be crucial for normal organ function, and a range of developmental 

disorders collectively known as “ciliopathies” (section 1.2) are caused by the 

defects in its structure and/or function. This highlights the importance of the cilium 

in normal embryonic development 4. 

The cilium functions as a separate organelle but unlike mitochondria or 

endoplasmic reticulum (ER), it does not have a complete plasma membrane 

boundary with the cytoplasm. This determines a characteristic feature of the cilium, 

namely its compartmentalisation. Cilia also contain a basal body, derived from the 

mother and daughter centriole, as well as other structures such as transition fibres 

(TF) and the transition zone (TZ) that form the ciliary gate, and the ciliary axoneme. 

The ciliary gate appears to act as a boundary between cilium and the cytoplasm 5.  

 

1.1.1 Cilia types 

Cilia are microtubule-based, rod-like organelles that occur on the apical 

surface of most mammalian cells in G0/G1 of the cell cycle 6, with the exception of 

bone marrow-derived cells and liver hepatocytes 7. There are three main types of 

cilia that are distinguished on the basis of their microtubule structure observed on 

cross-section and the number carried by a cell.  

Motile cilia contain the canonical “9+2” microtubule pattern (Figure 1-1a) with 

nine outer doublets (containing A and B tubules) and a central pair of microtubules. 
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Outer doublets contain dynein arms and are connected by nexin links. Radial 

spokes protrude form these doublets towards the central sheath and microtubule 

pair 8. Inner and outer dynein arms are responsible for energy production 9 that 

allows these cilia to perform “whip”-like movements that facilitate movement of 

mucus in the airways, eggs in the oviduct or cerebrospinal fluid in the brain 

ventricles 10,11. There are also specialised motile cilia crucial for the sense of 

hearing, localised in the Organ of Corti in the inner ear called kinocilium 12,13. The 

kinocilium seems to establish polarity in the inner and outer hair cells of the Organ 

of Corti, this then allows the formation of the hair cell bundles on the abneural side 

of the cell. These are actin-based and are the structures that detect sound waves 

and are called stereocilia. 

Nodal cilia have a “9+0” microtubule pattern with outer microtubules, dynein 

arms and nexin connections present (Figure 1-1b). They are located at the 

embryonic node and they have the ability to mediate a leftward flow in a “whirlpool”-

like manner. The leftward flow is thought to transport vesicles containing 

morphogens that are crucial for symmetry-breaking, and is an essential step during 

the correct development of the mammalian body plan 7.  

The third type of cilium is an immotile (“9+0”) primary cilium (Figure 1-1c). It 

contains only nine outer microtubule doublets and its movement depends on fluid 

flow. It is now known to participate in diverse roles in cell signalling, chemo-, 

mechano- and photosensation 8 and these are discussed in more detail below 

(section 1.1.1.1). A specialised type of primary cilium can be found in the 

photoreceptors, where the TZ is hugely extended and is often known as the 

“connecting cilium”. In addition, the ciliary tip in photoreceptors is elongated and 

expanded, and is filled with stacked membrane discs containing cone opsin or 

rhodopsin 14 

The other specialised cilium with a hybrid character is the olfactory cilium. 

These cilia occur in multiple numbers on olfactory receptor neurons and are 

essential for the sense of smell. They have “9+2” microtubule pattern but no dynein 

arms that would facilitate their movement 15. 
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Figure 1-1. Cross-section of different types of cilia. a) motile cilia with “9+2” 

microtubule pattern, containing nine doublets of microtubules, dynein arms, nexin links, 
radial spokes, sheath and central microtubule pair, b) “9+0” nodal cilia, containing nine 
doublets of microtubules, dynein arms and nexin links, c) “9+0” primary cilia with nine 
doublets of microtubules. 

 
1.1.1.1 Primary cilia 

1.1.1.1.1 Basal body/centriole 

In quiescent cells, a mother and daughter centrioles migrates to the apical 

surface of the cell and matures into the basal body (Figure 1-2, orange colour). The 

mother centriole consists of a barrel-shaped structure with nine triplets of 

microtubules, each triplet consisting of A-, B- and C-tubules. The basal body is built 

of mother and daughter centrioles, assembled at 90° in relation to each other. After 

migration to the apical cell surface, the basal body docks to the plasma membrane 

via fibrous distal and sub-distal appendages 16 and the mother centriole 

subsequently acts as a matrix for microtubule nucleation during cilium formation. 

1.1.1.1.2 The “ciliary gate” 

The region just above the basal body is called the “ciliary gate” and consists of 

two structurally distinct sub-regions that include the TF and the TZ 17,18 (Figure 1-
2). The ciliary gate has been shown to form at the very early stages of ciliogenesis 

preceding ciliary axoneme extension and intraflagellar transport (IFT; section 

1.1.1.1.3.1). The TF begin with the termination of the C-tubules of the basal body. 

The boundary between the axoneme and the TZ is known as the basal plate and, in 

motile cilia, is thought to take part in the nucleation of the central microtubules 19. 

The basic components of the TZ appear to be conserved, but the structure varies 

between species and cell type 20, with the example of the connecting cilium in 

mammalian photoreceptor cells as the most elongated ciliary TZ 21. 

radial spokes

outer dynein arm
inner dynein arm

nexin

central microtubule doublet

microtubule A

microtubule B

central sheath

a) b) c)9+2 9+0 9+0
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Figure 1-2. Schematic representation of the ciliary structure with focus on the 

TZ. The main sub-structures of cilia include the ciliary axoneme, TZ, TF and the basal body. 
The TZ compartment contains the ciliary necklace and Y-shaped links; the basal plate is 
only observed in motile cilia. The left side of the cartoon shows cross-sections of cilia at the 
basal body, TF and TZ level. Green circles represent anterograde transport by the 
intraflagellar transport IFT-B complex and the yellow ones retrograde transport by IFT-A. 
Image adapted from Szymanska and Johnson, 2012.  

 

1.1.1.1.2.1 Transition fibres (TF) 

The composition of TF is still largely unknown but they emerge from the B-

tubules of the basal body triplet microtubules just before the end of the C-tubule 

and form a “pinwheel-like” structure on transmission electron microscope (TEM) 

cross-sections (Figure 1-2). TF, also known as distal appendages, are observed on 

the mature mother centriole and play a role in anchoring to the plasma membrane 

through CEP164 22 and ODF2 (outer dense fibre 2)/cenexin 23. Some of the known 

components of the TF include the ciliopathy proteins OFD1 24 and CEP123 25. In 

addition, IFT52 was observed in Chlamydomonas on TF 26, suggesting that they 

have a role in docking the IFT and motor proteins required for ciliogenesis. It is also 

suggested that TF take part in creating a pore complex, similar to nuclear pores, 

that are required for transporting proteins in and out of cilia 17. 

Basal
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Transi on
bres
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Y - shaped links
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in mo le cilia
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1.1.1.1.2.2 Transition zone (TZ) 

The TZ localises distally to the TF and contains characteristic structures of so-

called “Y-shaped” linkers and the ciliary necklace (Figure 1-2). Y-shaped linkers 

are structures connecting the outer doublets of microtubules to the plasma 

membrane and the ciliary necklace 27. Their sophisticated structure is suggested to 

be built from known ciliary proteins. These include NPHP1, NPHP4 with a function 

of microtubule binding, CEP290, NPHP8 – acting as a connecting structures, B9 

and C2 domain containing proteins like B9D1, B9D2, MKS1, CC2D2A, RPGRIP1L 

with a role of lipid binding at the plasma membrane, TMEM67, TMEM138, 

TMEM216, TCTN2, TCTN3 – components of ciliary necklace and TCTN1 an 

extracellular ciliary necklace protein 28. The ciliary necklace is a specialised 

structure that contains several parallel strands of intramembrane cell-specific 

particles. The identity of these strands is unknown, but they encircle the ciliary 

membrane spacing from the plasma/ciliary membrane boundary to the basal plate 
19. Y-shaped linkers and the ciliary necklace are especially visible in the elongated 

TZ structure of connecting cilia in photoreceptors 29. Similar to the TF, the TZ has 

been proposed to regulate ciliary protein composition in Chlamydomonas, C. 

elegans and mammalian cells 5,30,31 by regulating intracellular trafficking to/from the 

cilium. However, the molecular details of protein sorting at the TZ remain to be 

discovered. 

1.1.1.1.3 The axoneme 

Matured centrioles dock at the cell apical surface via the distal 

appendages/TF 32. The TZ is then established with motor and transport proteins 

recruited from the cytoplasm to nucleate the ciliary axoneme, containing the cilia-

specific pattern of doublets of A- and B-tubules (Figure 1-1). The axoneme is 

enclosed by the ciliary membrane that is a continuation of the cell plasma 

membrane (Figure 1-2) 18. Structural and functional components of the ciliary 

axoneme have to pass the ciliary gate and are transported along the axoneme by 

IFT. 

1.1.1.1.3.1 Intraflagellar transport (IFT) 

During ciliogenesis, IFT extends the centriolar doublets that contain A- and B-

tubules to form the ciliary axoneme 33. Once the axoneme is assembled, kinesin 

motors (specifically kinesin-2) mediate anterograde transport along the 

microtubules towards the tip of the cilium by carrying IFT-complex B proteins and 

other cargo proteins (including LCA5, IFT20, IFT80, IFT88) (Figure 1-2). In turn, 

cytoplasmic dyneins (dynein-2) mediate retrograde movement of the IFT-complex A 

(including IFT122, IFT140, TTC21B/IFT139) towards the proximal regions of the 
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cilium. IFT mediates both the assembly and resorption of the cilium, and the 

processing of key intermediates of signalling cascades 34. 

 

1.1.2 Transport to and from the cilium 

There is no simple model for defining the mechanisms of protein targeting to 

cilia. Although the identity of ciliary cargo proteins is becoming clearer, the 

mechanisms of their intracellular transport are still largely unknown. 

Mechanisms of transmembrane protein transport to cilia are of particular 

interest, since these proteins will then reside in the ciliary plasma membrane and 

act as receptors to receive extracellular signals. These proteins were shown to be 

packaged into vesicles at the trans Golgi network (TGN) and transported to cilia by 

the recognition of ciliary targeting sequences (CTS) 35-37. There are many different 

CTS identified, suggesting either a lack of consensus sequence across ciliary 

proteins or a lack of CTS indicating that the ones identified so far are an incidental 

finding. Identified sequences include one in the N-terminus of polycystin-2 (PKD2) 

comprising RVxP (where x is any amino acid) 37, the C-terminal VxPx sequence of 

rhodopsin 36 or the Ax(S/A)xQ motif present in the third intracellular loop of G-

protein-coupled receptors (GPCRs) such as SSTR3, HTR6 or MCHR1 38. These 

sequences are thought to be recognised by small GTPases including ARL, ARF 

and RAB which in turn recruit proteins that regulate membrane interactions 39.  

Proteins are thought to be transported in vesicles from the Golgi apparatus to 

a specific docking site at the periciliary base. The exocyst complex is then thought 

to tether the vesicles, presumably directing the fusion of vesicles with the ciliary 

membrane mediated by soluble N- ethylmaleimide sensitive factor receptors 

(SNAREs) and the Rab family of small GTPases 40. SNAREs are present at the 

surface of the exocyst complex to allow proteins to pass the ciliary gate and to 

cross to the ciliary membrane 40, implying an active transport process 41. This model 

of trafficking would therefore be analogous to that proposed for nuclear pores 

where importins and exportins are utilized. IFT proteins may mediate this transport 

machinery since they are enriched at the level of TF 26. Once trafficked through the 

ciliary gate, proteins may be then incorporated as cargo proteins in the IFT 

complexes and transported along the ciliary axoneme. 

 Other proposed mechanisms of ciliary protein transport include an interaction 

with IFT20 (Figure 1-3a). IFT20 is the only IFT protein observed outside of the 

cilium. It interacts with transmembrane proteins in the TGN facilitating their 

packaging into vesicles and chaperoning their transport to the ciliary base 42. This 
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interaction has so far only been shown for polycystin-2, but may be a common 

mechanism for other ciliary membrane proteins. 

 
Figure 1-3. Schematic representation of possible mechanisms of ciliary 

trafficking. The cartoon illustrates four proposed mechanisms of ciliary protein trafficking. 
a) a vesicle is targeted to the ciliary base by IFT20; b) IFT proteins coat the vesicle and 
target it to the ciliary base; c) vesicle trafficking is facilitated by RAB11 and RAB8. At the 
periciliary membrane the vesicle binds the exocyst complex via Rabin8; d) a ciliary targeting 
sequence is recognised by the BBSome, a complex of proteins that interacts with the 
exocyst via Rabin8 at the periciliary membrane. 

 Another model suggests that IFT proteins create clusters in the TGN that coat 

vesicles and ensure targeted trafficking to the cilium (Figure 1-3b) 42. These 

clusters would later become IFT complexes still attached to cargo proteins. 

Compatible with these proposed mechanisms, or indeed as an independent 

process, it is thought that vesicles containing ciliary proteins bud from the TGN and 

are directed to the ciliary base where they tether to the ciliary membrane. This 

process is facilitated by coordinated interactions between Rab GTPases and the 

exocyst complex containing seven components: SEC3, SEC5, SEC6, SEC8, 

SEC15, EXO70 and EXO84 (Figure 1-3c). RAB11 and RAB8 mediate the transport 

of the vesicle to the base of the cilium, where Rabin8 (the guanine nucleotide 

exchange factor [GEF] RAB8 activator) binds to the exocyst complex protein 
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SEC15 43. The exocyst subsequently facilitates the tethering of the vesicle to the 

periciliary membrane 44,45. An additional downstream binding partner of RAB8 is 

CEP290, which has been shown to localise to the pericentrosomal compartment, 

basal body and the TZ 46,47. CEP290 plays an important role at the ciliary gate, 

where together with other proteins containing C2/B9-related domains is predicted to 

bind phospholipids 48 and to be involved in membrane/vesicle trafficking and fusion 
46. In particular, CC2D2A, a C2 domain-containing protein, is now also suggested to 

mediate vesicle trafficking and fusion since it localizes to the photoreceptor 

connecting cilium/TZ, and appears to facilitate protein transport through Rab8-

dependent processes 49. 

Another possible mechanism of protein targeting to cilia is through the 

BBSome complex (Figure 1-3d). It consists of eight proteins with a coat-like 

structure and is proposed to mediate trafficking of transmembrane proteins to the 

ciliary membrane 50. The BBSome directly recognises cilia targeting sequences and 

is the major effector of Arl6/BBS3 (an Arf-like GTPase). Rabin8, interacting with the 

BBSome, regulates RAB8 in the same manner as the exocyst complex 50. The 

BBSome is not directly required for cilia formation in most tissues 51 but its failure to 

deliver important receptors and transmembrane proteins to the cilium is thought to 

result in cell signalling failure and organ-specific pathological abnormalities. It is 

unclear how the actions of the BBSome and exocyst complex are coordinated. It 

was suggested that the BBSome may work as part of a separate mechanism. In 

this scenario BBSome transports a subset of ciliary proteins to the base of the 

cilium, and upon the entry to the cilium it acts as an IFT adaptor 52. 

Following tethering to the ciliary membrane, fusion of the vesicle with the 

periciliary membrane is facilitated by interaction between SNARE proteins on the 

vesicle (v-SNARE) and target SNARE (t-SNARE) regions of the membrane 53. 

Incorporated transmembrane proteins subsequently pass the diffusion barrier of the 

ciliary gate and fulfil their function in the ciliary membrane. The exact process of 

passing the ciliary gate is not well understood. Vesicles have never been observed 

in the cilium itself, suggesting that membrane proteins are being deposited before 

reaching the ciliary gate. Lateral diffusion processes have been observed as a 

method of translocation of activated Smoothened (the Sonic hedgehog signalling 

receptor) from the apical cell membrane via ciliary gate to the ciliary membrane 54. 

In photoreceptor cells, vesicles containing rhodopsin were shown to pass to the 

ciliary membrane by the periciliary ridge complex, a structure consisting of nine 

symmetrically arranged ridges and grooves that surrounds the connecting cilium 

and extends outwards along the plasma membrane 41. Conversely, transmembrane 

proteins that have essential functions in ciliary signalling, are prevented from 
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premature exit from cilia by a septin diffusion barrier localised at the base of the 

primary cilium 30. 

During the process of cilia disassembly or after fulfilling their function in cilia, 

proteins must be removed from cilia. The BBSome or the proteosomal degradation 

pathway can mediate this process. The BBSome functions as an adaptor for 

retrograde IFT at the base of the cilia, where it promotes the export of proteins out 

of the cilia into the cytoplasm where they can be targeted for degradation 52. Ciliary 

proteins, destined to be removed from cilia, are transported to a proteosomal 

protein enriched area around the basal body. These proteins are then tagged with 

polyubiquitin chains and degraded by the proteasome 55.  

 
1.1.2.1 Cilia in signalling 

Primary cilia are sensory organelles that receive and transduce signals from 

the extracellular environment. Multiple receptors and ion channels are situated in 

the ciliary membrane and detect chemical messengers or mechanical stimuli to 

initiate a signalling cascade of signalling pathways such as Hedgehog, Wnt, mTOR, 

Notch, Hippo, JNK, FGF, PDGF and TGFβ 38.  

1.1.2.1.1 Sonic Hedgehog pathway (SHH) 

Probably the best-described pathway connected to the primary cilia is the 

Sonic Hedgehog (Shh) pathway. The Hedgehogs are a family of secreted proteins 

that participate in fate determination of the adjacent cells 56. Hedgehog (Hh) was 

identified in D. melanogaster genetic screens, and flies null for hh showed disrupted 

body hair pattern 57. Detailed analysis in mammalian cells showed three 

homologues of Hedgehog – Sonic (Shh), Indian (Ihh) and Desert (Dhh), all taking 

part in the organisation of body development 56,58-60. Shh is responsible for correct 

patterning of the limb bud, and it is also secreted from the notochord to the floor 

plate of the neural tube where it diffuses in a gradient to determine neuronal 

subtype identity. Ihh is partly redundant to Shh, and mediates cartilage and bone 

development. Dhh is essential for peripheral nerve sheath formation and the 

development of germ cells in testis.  

The transduction of a signal from the extracellular environment to its 

downstream effectors in vertebrates is strictly regulated by the primary cilium. In 

normal conditions, in the presence of the cilium, the Shh morphogen binds to 

Patched (Ptch) receptors localised on the apical plasma membrane of cells and in 

the cilium 61. The Ptch receptor represses the Smoothened (Smo) receptor, a G-

protein-coupled seven transmembrane domain receptor, inhibiting its translocation 
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to the cilium. Upon binding Shh, Smo is released, allowing it to translocate to the 

cilium where it participates in the activation of the transcription mediator Gli 62. 

Active Gli translocates to the nucleus where it acts as a transcription activator for 

the downstream effectors of Shh signalling. In the event of ciliary absence, Smo is 

unable to be translocated and the active form of Gli is not produced, therefore 

transcription of the downstream effectors is not activated. 

Disruptions in Shh signalling causes defects in the neural tube development, 

defects in the mid-line often presented as holoprosencephaly, and pre-axial 

polydactyly 62. Shh signalling is also crucial for stem cell homeostasis and its 

overexpression was noted in many cancer types including medulloblastoma and 

basal cell carcinoma 63. Somatic and germline mutations in Shh components cause 

cancer, for example Gorlin syndrome (an inherited form) 64 and sporadic forms of 

ependymoma 65. 

1.1.2.1.2 Wnt 

Wnt signalling was first investigated in D. melanogaster: flies that were null for 

wnt had under-developed wings, which led to their name - ‘wingless’ mutants. 

Multiple wnt genes were identified, along with their various functions and degree of 

importance, with some redundant to the other. It also became apparent that there 

are two distinguishable pathways in mammals driven by Wnt proteins: the canonical 

and non-canonical pathways. Wnt signalling was shown to be essential in 

embryonic development and adult tissue maintenance. It controls cell proliferation, 

cell fate and cell death 66.  

1.1.2.1.2.1 Canonical Wnt signalling  

In the absence of the Wnt ligand, the so-called “destruction complex” that 

includes axin, Adenomatous Polyposis Coli (APC), casein kinase 1α (CK1α) and 

GSK3β is formed. Cytoplasmic β-catenin is constitutively recruited to the 

destruction complex, phosphorylated by CK1α and GSK3β, and this then drives its 

ubiquitination and subsequent proteolysis by the proteasome.  

In the presence of the canonical Wnt ligand, Wnt binds to the Frizzled (Fz) 

seven transmembrane receptor and LRP5/6 co-receptors which drive recruitment of 

Dishevelled (Dvl) to the plasma membrane. Dvl binds Fz and this promotes 

phosphorylation of LRP by GSK3β and CK1γ, which in turn leads to axin binding 

and disassembling of the destruction complex. Non-phosphorylated β-catenin is 

then retained, enabling it to translocate to the nucleus and bind TCF/LEF proteins. 

These then act as transcription activators at the promoter sites of Wnt downstream 

effectors, such as cyclin D1, activating their transcription.  
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1.1.2.1.2.2 Non-canonical Wnt signalling 

The non-canonical Wnt ligand binds the Frizzled receptor and Knypek co-

receptor that triggers recruitment of Dvl to the plasma membrane. Dvl binds to the 

Fz receptor via the DEP domain, causing recruitment of the scaffolding protein 

Daam1 and activation of small GTPases such as RhoA. Alternatively, Dvl can also 

stimulate calcium flux and activation of calmodulin-dependent protein kinease II 

(CamKII) and calcium-sensitive kinases such as protein kinase C (PKC). 

The non-canonical Wnt signalling is crucial in correct convergent-extension 

movement during gastrulation, regulation of dorsal axis formation, and the 

determination of ventral cell fate and heart formation 66. 

1.1.2.1.3 Other signalling pathways linked to the cilium 

The role of cilia in mediating Wnt and Shh signalling has been the most 

extensively research, but other signalling pathways are now emerging that have a 

requirement for cilia. These include the mTOR, Notch, Hippo, JNK, FGF, PDGF and 

TGFβ pathways. 

 MTOR (mammalian target of rapamycin) pathway regulates cell size, 

proliferation, autophagy, protein translation, apoptosis and the actin cytoskeleton 67. 

The presence of the primary cilium was shown to be necessary for mTOR signal 

transduction 68,69. Treatment with rapamycin, an inhibitor of mTOR, caused 

reduction in number and size of kidney cysts, in animal models of ciliopathies. This 

suggests that defects in the mTOR pathway are an underlying cause of this 

common ciliopathy phenotype 70. 

 Another explanation for the cystic kidney phenotype was researched by Du et 

al. in Tmem67 mutated organisms. TMEM67 protein was shown to be required for 

cilia formation 71. Du et al. showed that cells overexpressing TMEM67 and Tmem67 

null mouse tissues present an activation of extracellular signal-regulated kinase 

(ERK) and c-jun N-terminal kinase (JNK) in Du et al. 72. They suggested that the 

cyst phenotype might be caused through ERK- and JNK-dependent signalling 

pathways. 

The cilium also has essential functions during early embryogenesis and in the 

establishment of normal fetal growth. As discussed above (section 1.1.1), 

mammalian body symmetry is determined by the correct distribution of morphogens 

at the embryonic node by nodal cilia. Notch signalling components are localised to 

this cilium 73 including the main effector, Nodal, a crucial left-side determinant 74. 

Defects in Notch signalling were shown to cause laterality defects including 

congenital heart disease such as heterotaxia 75. Limb development is also 

determined at this embryonic stage and depends on correct Shh and FGF signalling 
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76,77. The latter is also required for the correct development of craniofacial structures 
78. 

The Hippo pathway has been shown to be important in cell proliferation and 

organ size determination 79. Recently, ciliopathy proteins such as NPHP3, NPHP4 

and NPHP9 (also known as NEK8), were implicated in this pathway 80-82. NPHP4 

was identified as a negative regulator of the Hippo pathway, whilst NPHP3 and 

NPHP9 not only directly interacted with TAZ (transcriptional coactivator with PDZ-

binding domain), a Hippo pathway effector, but also activated the whole pathway. 

Cell proliferation controlled by NPHP3, NPHP4 and NPHP9 was therefore 

suggested to be regulated by the Hippo pathway. 

The presence of cilia is now thought to be required for TGFβ signalling. For 

the TGFβ signal to be transduced, clathrin-dependent endocytosis (CDE) of the 

receptor is thought to be necessary. CDE was proposed to be regulated by 

localisation to the ciliary pocket, a plasma membrane invagination at the base of the 

cilium 83. TGFβ receptors were shown to be present at the ciliary tip and the 

downstream effectors, such as SMAD2/3 and ERK1/2, were localized to the ciliary 

base 83. The latter effector is shared with another pathway mediated by cilia: the 

Platelet-Derived Growth Factor (PDGF) signalling pathway. Platelet-Derived Growth 

Factor Receptor alpha (PDGFRα) is up-regulated and localised to the primary 

cilium, where the signal cascade is activated, initiating the AKT and ERK1/2 

signalling cascades 84, required for cell homeostasis. 

 

1.2 Ciliopathies 

Defects in the structure and/or function of cilia cause a suite of congenital 

developmental disorders collectively called the “ciliopathies”. They often present 

with polycystic kidney disease and other multi-organ phenotypes including central 

nervous system (CNS), eye and skeleton 85. Many conditions are now classified as 

ciliopathies, such as Meckel-Gruber (MKS) or Joubert (JBTS) syndromes (sections 

1.2.2.1 and 1.2.2.2). Diseases that have some characteristic features of the 

classical ciliopathies, but unknown molecular causes of the phenotype or known 

links to cilia, are classified as “ciliopathy-like”. Ciliopathies are rare conditions but 

collectively, including polycystic kidney disease, they are quite common with a 

prevalence of 1 in 2000 births 21, highlighting the significance of cilia in human 

health and disease. 
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Many proteins that are mutated in ciliopathies are localized to the TZ 86,87. In 

particular, a protein complex at the TZ, known as the “MKS-JBTS module”, contains 

many of the proteins mutated in MKS and JBTS 47,88. 

 

1.2.1 Motile cilia 

Primary Ciliary Dyskinesia – PCD (MIM#244400) is an autosomal recessive 

heterogenous condition affecting motile cilia in respiratory tract, middle ear and 

oviducts. Its main phenotypic consequence is disrupted mucus movement and, in 

consequence, susceptibility to chronic recurrent respiratory infections. In 

combination with situs inversus, sinusitis and bronchiestasis, it is known as 

Kartagener syndrome 89,90. The phenotype is caused by defects in the main 

structural components of the ciliary axoneme including outer dynein arms (DNAI1, 

DNAH5, DNAI2, TXNDC3, DNAL1, CCDC114, ARMC4, CCDC151, CCDC103), 

inner and outer dynein arms (KTU, LRRC50, DNAAF3, DYX1C1, HEATR2, LRRC6, 

ZMYND10, SPAG1, C21orf59), microtubule disorganisation with inner dynein arm 

(CCDC39 and CCDC40), nexin-dynein complex (CCDC164 and CCDC65), 

microtubule disorganisation with central pair and radial spokes (RSPH4A, RSPH9, 

RSPH1), central microtubule pair (HYDIN) and no phenotype observed (DNAH11) 
91. 

 

1.2.2 Primary cilia 

In other ciliopathies, the structural as well as functional components of the 

primary cilia are affected. There is enormous heterogeneity in the “primary cilium 

ciliopathies” with an ever-increasing number of mutated genes being reported. 

Many phenotypes of previously unknown aetiology are now being classified as 

“ciliopathies”, following a plethora of research into protein function, cilia structure 

and the role of cilia in signalling pathways. In particular, the medical importance of 

the TZ is now clear. This sub-ciliary compartment acts as the ciliary gate (section 

1.1.1.1.2.2), regulating the entry and exit of components to the cilium, and is a hub 

of proteins mutated in ciliopathies 5,47. 

Genetic heterogeneity and pleiotropy causing both phenotypic overlap but 

also variable expressivity between various ciliopathies exists, yet the mechanistic 

basis of phenotypic variation has proven difficult to explain (Figure 1-4). Mutations 

in the same gene, for example CEP290, were shown to cause a relatively mild 

phenotype as Leber congenital amaurosis (LCA), through to nephronophthisis 

(NPHP) and severe, lethal MKS, with no clear correlation between the phenotype 

and genotype. Uncovering the genetic basis of these conditions, as well as 
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understanding the molecular function of the encoded protein, would benefit patients 

and their families, allowing better prognosis, diagnosis and treatment of the 

patients. The major interest in this thesis is in the genetic basis and mechanisms of 

disease pathogenesis of MKS and JBTS. 

 

 
Figure 1-4. Schematic representation of allelism in ciliopathies. Mutations in the 

same gene can cause multiple phenotypes, represented by the coloured lines. For example 
mutations in CEP290 can cause MKS, JBTS, Bardet-Biedl (BBS), Senior-Loken syndomes 
(SLS) or NPHP. Image adapted from Szymanska and Johnson, 2012. 

 
1.2.2.1 Meckel - Gruber syndrome (MKS) (MIM#249000) 

MKS is an autosomal recessive lethal condition characterised by central 

nervous system (CNS) defects including occipital meningoencephalocele (Figure 1-
5a, b and e). Other features required for minimal diagnosis include bilateral 

polycystic kidneys (Figure 1-5c and f) and ductal plate malformation of the liver, 

leading to hepatic fibrosis and cysts (Figure 1-5d) 92. Other frequently observed 

features may include post-axial polydactyly (Figure 1-5a-b), Dandy-Walker 

malformation (or other posterior fossa defects), bowing of long bones, cleft lip 

and/or palate, low set ears, microphthalmia, dextrocardia, situs inversus and iris 

coloboma 93-95.  
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Figure 1-5. Clinical features of MKS. a) and b) typical external features for a fetus 

with MKS at 16 weeks of gestation showing massive flank masses due to bilateral renal 
cystic dysplasia, encephalocele (arrowheads) and post-axial polydactyly of all limbs (blue 
arrows); c) H&E staining of MKS fetal kidney at gestation age 18+/40 showing cystic 
dysplasia, comprising large, fluid-filled cysts (asterix), small cysts and cystic swelling of the 
proximal tubules and glomeruli, with the absence of normal renal parenchyma; d) IHC 
staining of MKS fetal liver at gestation age 18+/40 for cytokeratin-19, showing the retention 
of embryonic bile duct structures (the ductal plate malformation, arrowhead) without the 
formation of patent bile ducts; e) and f) ultrasound findings at 14+/40 weeks of gestation for 
MKS showing e) encephalocele (arrowheads) and f) large cystic kidneys (arrowhead). 
Images are used by kind permission of Dr Riitta Salonen (Rinnekoti Foundation, Helsinki, 
Finland) from the Robert J. Gorlin Slide Collection. 
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Johann F. Meckel first reported this condition in 1822 and subsequently C.B. 

Gruber in 1934 93. It was not until decades later that the condition was confirmed to 

be inherited in an autosomal recessive manner 96, and even later to identify the first 

causative mutations in genes 97,98. There are twelve genes identified to cause this 

syndrome to date (Table 1-1) 97-108, but at the beginning of the research project 

described in this thesis only nine were reported. The extreme genetic heterogeneity 

of this syndrome has made the delineation of genotype-phenotype correlations 

difficult. Mutations in TMEM67 were associated with liver phenotypes 109-111, whilst 

polydactyly and occipital encephalocele were more often observed in patients with 

MKS1 mutations 112. The incidence of MKS varies between 1:13,250 and 1:140,000 

live births and depends on the ethnic background of the population, with Finnish 

and Gujarati-Indian populations having the highest incidence rate 95. 

 

 
Table 1-1. List of genes identified with pathogenic mutations causing the MKS 

phenotype. Twelve loci with identified genes are reported. The columns give the NCBI 
Entrez gene ID, other names, physical location (hg19), any reported founder mutations and 
key reference. 

 

1.2.2.1.1 Progress in gene identification 

The first MKS locus, MKS1, was mapped to chromosome 17q21-q24 113 in 

endogamous Finnish families using a combination of homozygosity mapping and 

haplotype analysis. Homozygosity mapping also identified loci (MKS2 and MKS3) 

on chromosomes 11q13 114 and 8q24 115 respectively, in consanguineous families 

from the Middle East and the Indian sub-continent. In 2006, Kyttälä et al. identified 

mutations in the MKS1 gene as a cause of MKS in the Finnish population 98, whilst 

Smith et al. identified mutations in TMEM67 97 in the MKS3 locus that encodes the 

TMEM67/meckelin orphan receptor (Table 1-1). Subsequently, homozygosity 

mapping identified point mutations in CEP290 100 and RPGRIP1L 101 as causes of 

MKS, as well as microdeletions in CEP290 116. The identification of mutations in 

CC2D2A for Finnish MKS families (excluded for mutations in MKS1), provided an 

LOCUS GENE ENTREZ 
GENE ID ALIASES LOCATION FOUNDER MUTATION REFERENCE

MKS1 MKS1 54903 BBS13, MES, MKS, POC12 chr17:58205436-58219605 Finnish c.1408-35_1408-
7del29 Kyttala et al. 2006

MKS2 TMEM216 51259 HSPC244 chr11:61392360-61398863 Ashkenazi p.R73L Valente et al. 2010

MKS3 TMEM67 91147 JBTS6, MECKELIN, MKS3, 
NPHP11, TNEM67 chr8:93754844-93819234 Pakistani c.1575+1G>A Smith et al. 2006

MKS4 CEP290 80184
3H11Ag, BBS14, CT87, JBTS5, 
LCA10, MKS4, NPHP6, POC3, 

SLSN6, rd16
chr12:88049013-88142216 Balaa et al. 2007

MKS5 RPGRIP1L 23322 CORS3, FTM, JBTS7, MKS5, 
NPHP8 chr16:53599906-53703859 Mixed European p.T625P Delous et al. 2007

MKS6 CC2D2A 612013 JBTS9, MKS6 chr4:15469865-15601971 Finnish c.1762C>T Tallila et al. 2008

MKS7 NPHP3 27031 MKS7, NPH3, RHPD, RHPD1, 
SLSN3 chr3:132680609-132722459 Bergmann et al. 2008

MKS8 TCTN2 79867 C12orf38, MKS8, TECT2 chr12:123671113-123708403 Shaheen et al. 2011
MKS9 B9D1 27077 B9, EPPB9, MKS9, MKSR1 chr17:19337250-19378182 Hopp et al. 2011
MKS10 B9D2 80776 ICIS-1, MKS10, MKSR2 chr19:41354417-41364540 Dowdle et al. 2011

MKS11 TMEM231 79583 UNQ870/PRO1886, ALYE870, 
JBTS20, MKS11, PRO1886 chr16:75538117-75556286 Shaheen et al. 2013

MKS12 CSPP1 79848 CSPP, JBTS21 chr8:67055392-67196614 Shaheen et al. 2014
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unusual example of a second major cause for a Finnish heritage disease 102. In 

contrast, microheterogeneity at the MKS2 locus for two adjacent genes that both 

encode tetraspanin-like transmembrane proteins (TMEM138 and TMEM216), 

prevented the identification of mutations in TMEM216 as a cause of MKS until 2010 
99. Interestingly, although mutations in TMEM216 are allelic for both JBTS and 

MKS, mutations in TMEM138 have not been described as a cause of MKS. 

Conversely, MKS1 truncating mutations have only been described as a cause of 

MKS, whereas missense or hypomorphic mutations are a cause of JBTS 117. 

Subsequent gene discovery studies for MKS have used whole exome 

sequencing (WES) to prioritize functional candidate genes, often based on 

sequence homology to known MKS or JBTS genes. For example, TCTN1, a known 

JBTS gene, was used to prioritize screening and then to identify a pathogenic 

private mutation in TCTN2, a paralogue and member of the Tectonic family of 

genes 104. Furthermore, the MKS1 protein contains a B9 domain of unknown 

function that is also present in only two other proteins in the human genome (B9D1 

and B9D2). Mutations in B9D1 were identified as a cause of MKS 105, followed by 

the description of a family with a pathogenic private mutation in B9D2 106. The most 

recently identified MKS genes include TMEM231 107 and CSPP1 108. 

 

1.2.2.1.2 Molecular characterisation of MKS proteins 

The protein products of the MKS genes have all been shown to be structural 

and functional components of the primary cilium. Most of these proteins localise to 

the TZ. Elaborate networks of protein-protein interactions have been described for 

these proteins, showing direct interactions with each other as well as with other 

ciliopathy proteins. This may suggest a hierarchy in TZ proteins, that could provide 

further insights into the mechanisms of variable ciliopathy expressivity. This is 

discussed in further detail in section 1.2.2.2.2. 

 
1.2.2.2 Joubert syndrome (JBTS) (MIM#614464) 

JBTS is an autosomal recessive condition with a characteristic 

neurodevelopmental phenotype of the “molar tooth sign” (MTS) observed on axial 

magnetic resonance imaging (MRI) scans. This phenotype consists of cerebellar 

vermis hypoplasia or aplasia, abnormality of the fourth ventricle, elongated superior 

cerebellar peduncles and a deep interpeduncular fossa (Figure 1-6a and b). 

Together with developmental delay, it is necessary for JBTS diagnosis. Additional 



 18 

features are reported in the affected patients and those include irregular breathing 

pattern or apnea, polydactyly, oculomotor apraxia and ataxia. 

 

 
Figure 1-6. Clinical features of JBTS. a) axial T2-weighted (MRI) scan in a 5-year-

old girl showing typical brain anomalies of JBTS, including a deepened interpeduncular 
fossa (arrow) and elongated superior cerebellar peduncles (arrowheads) that comprise the 
pathognomonic “molar tooth sign”, as well as cerebellar vermis hypoplasia; b) a sagittal T1-
weighted MRI scan showing the deepened interpeduncular fossa (arrow) and cerebellar 
vermis hypoplasis (arrowhead). The cerebellar hemispheres and brainstem are also 
hypoplastic. Images are used by kind permission of Dr Daniel Doherty (Seattle Children's 
Hospital, University of Washington, USA). 

Marie Joubert first described this condition in 1969 118. It is a rare condition 

with an estimated prevalence of 1:100,000 119. The pronounced phenotypic 

variability observed in this syndrome has caused it to be classified into classic JBTS 

and “Joubert syndrome-related disorders” (JSRD). The latter phenotype, in addition 

to the obligatory clinical features, can also include renal cysts, hepatic fibrosis, 

polydactyly, coloboma, retinal dystrophy and short oral frenula 120. Another sub-

class of JBTS is COACH syndrome, characterised by the combination of 

Coloboma, Oligophrenia (mental retardation), Ataxia, Cerebellar vermis hypoplasia 

and Hepatic fibrosis 121. Additional ocular and renal phenotypes are have also been 

described as CORS (cerebellar-ocular-renal syndrome) 122, but the preferred 

nomenclature is now JSRD. Just as for MKS, JBTS also has extreme genetic 

heterogeneity with 22 genes identified to date (Table 1-2). All proteins encoded by 

these genes localise to the primary cilium, where they play crucial structural and 

functional roles.  

 

a b
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Table 1-2. List of genes identified with pathogenic mutations causing the JBTS 

phenotype. Twenty two loci with identified genes are reported. The columns give the NCBI 
Entrez gene ID, other names, physical location (hg19), any reported founder mutations and 
key reference. 

1.2.2.2.1 Progress in gene identification 

 JBTS was proposed to be an autosomal recessive disorder in 1977 96. The 

first JBTS locus was reported by Natacci et al. 123, who identified a patient affected 

with JBTS and a deletion at chromosome 17p11.2. Subsequently, loci were 

mapped to chromosome 9q 124, 6q23 125 and 3q24 126 using the specialised linkage 

analysis technique of homozygosity mapping (section 1.2.2.7) in extended 

consanguineous families. The locus for a variant form of JBTS phenotype that 

included retinal dysplasia and cystic kidneys (known as “JBTS type B”, or 

"cerebello-oculo-renal syndrome"; CORS2) was initially mapped to 11p12-q13.3 127. 

The breakthroughs in gene identification came in 2004, when Parisi et al. identified 

a deletion involving NPHP1 in a patient affected with JBTS 128 as well as 

nephronophthisis (a hereditary kidney disease now also described as a ciliopathy) 

(Table 1-2). In the same year, Ferland et al. 129, investigated JBTS patients with the 

classical phenotype and linkage to 6q23.2-q23.3, and identified pathogenic 

mutations in the AHI1 gene encoding the protein called jouberin. 

 Subsequent genetic studies have provided many seminal insights into the 

JBTS phenotype and ciliopathies. In 2006, Valente et al. 130 and Sayer et al. 131 

identified mutations in CEP290 as a cause of JBTS and substantiated the 

importance of primary cilia dysfunction. Allelism between JBTS and MKS was 

LOCUS GENE ENTREZ 
GENE ID ALIASES LOCATION FOUNDER MUTATION REFERENCE

JBTS1 INPP5E 56623 CORS1, CPD4, JBTS1, 
MORMS, PPI5PIV chr9:136428615-136439853 Bielas et al. 2009

JBTS2 TMEM216 51259 HSPC244 chr11:61392360-61398863 Ashkenazi p.R73L Valente et al. 2010

JBTS3 AHI1 54806 RP1-32B1.2, AHI-1, JBTS3, 
ORF1, dJ71N10.1 chr6:135283532-135497765 Ferland et al. 2004

JBTS4 NPHP1 4867 JBTS4, NPH1, SLSN1 chr2:110123336-110205062 Parisi et al. 2004

JBTS5 CEP290 80184
3H11Ag, BBS14, CT87, JBTS5, 
LCA10, MKS4, NPHP6, POC3, 

SLSN6, rd16
chr12:88049013-88142216 Sayer et al. 2006

JBTS6 TMEM67 91147 JBTS6, MECKELIN, MKS3, 
NPHP11, TNEM67 chr8:93754844-93819234 Balaa et al. 2007

JBTS7 RPGRIP1L 23322 CORS3, FTM, JBTS7, MKS5, 
NPHP8 chr16:53599906-53703859 Delous et al. 2007

JBTS8 ARL13B 200894 ARL2L1, JBTS8 chr3:93980139..94055678 Cantagrel et al. 2008
JBTS9 CC2D2A 612013 JBTS9, MKS6 chr4:15469865-15601971 Noor et al. 2008

JBTS10 OFD1 8481 71-7A, CXorf5, JBTS10, RP23, 
SGBS2 chrX:13715430-13769361 Coene et al. 2009

JBTS11 TTC21B 79809
Nbla10696, ATD4, IFT139, 
JBTS11, NPHP12, SRTD4, 

THM1
chr2:165873362-165953838 Davis et al. 2011

JBTS12 KIF7 374654 UNQ340/PRO539, ACLS, HLS2, 
JBTS12, UNQ340 chr15:89617944-89655494 Dafinger et al. 2011

JBTS13 TCTN1 79600 UNQ9369/PRO34160, JBTS13, 
TECT1 chr12:110614027-110649130 Garcia-Gonzalo et al. 

2011
JBTS14 TMEM237 65062 ALS2CR4, JBTS14 chr2:201620184-201643529 Huang et al 2011
JBTS15 CEP41 95681 JBTS15, TSGA14 chr7:130393771-130441210 Lee et al. 2012
JBTS16 TMEM138 51524 HSPC196 chr11:61362001-61369505 Lee et al. 2012

JBTS17 C5orf42 65250 JBTS17 chr5:37067870-37249428
French Canadian 

p.Arg1336Trp, p.Ala1564Thr, 
c.7400+1G>A

Srour et al. 2012

JBTS18 TCTN3 26123 RP11-7D5.3, C10orf61, JBTS18, 
OFD4, TECT3 chr10:95663396-95694143 Thomas et al. 2012

JBTS19 ZNF423 23090 Ebfaz, JBTS19, NPHP14, OAZ, 
Roaz, ZFP423, Zfp104 chr16:49490604-49857919 Chaki et al. 2012

JBTS20 TMEM231 79583 UNQ870/PRO1886, ALYE870, 
JBTS20, MKS11, PRO1886 chr16:75538117-75556286 Srour et al. 2012

JBTS21 CSPP1 79848 CSPP, JBTS21 chr8:67055392-67196614 Tuz et al.  2014
JBTS22 PDE6D 5147 JBTS22, PDED chr2:231732437-231781264 Thomas et al. 2014
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demonstrated in 2007 with the identification of mutations in TMEM67 as a cause of 

JBTS 132, as well as the identification of mutations in RPGRIP1L to be a cause of 

both JBTS and MKS 101,133. Mutations in ARL13B, CC2D2A and INPP5E were 

shown to cause classical JBTS 134-136. ARL13B is a small Arf-family GTPase and 

INPP5E encodes an inositol 1,4,5-trisphosphate (InsP3) 5-phosphatase. InsP3 5-

phosphatases hydrolyze InsP3, which acts as a secondary messenger to mobilize 

calcium from intracellular stores. These findings implicate the dysregulation of 

embryonic signalling pathways as a cause of the ciliopathy phenotype (section 

1.2.2.2.2). Further allelism between an unusual X-linked form of JBTS 137 and oro-

facial-digital (OFD) syndrome was demonstrated by identification of mutations in 

OFD1 138. Affected males presented with a typical JBTS phenotype, but with 

additional features, including coloboma, and without the typical MTS. 

 In recent years, advances in genetic technology (principally, WES) have 

enabled a renaissance in gene discovery, often without initial linkage analysis, that 

has now enabled the study of smaller, non-consanguineous families. A key 

biological insight from these studies has been the importance of the Tectonic 

(TCTN) family of transmembrane proteins and small tetraspanin-like 

transmembrane proteins (TMEMs) in the pathogenesis of the JBTS phenotype. 

Initial WES studies identified the JBTS genes TMEM216 99,139, KIF7 140, TCTN1 
47,141, CEP41 142 and TMEM138 143. More recent studies have used WES to identify 

mutations in TMEM237 144 and C5ORF42 as a common cause in French-Canadian 

JBTS patients 145. C5ORF42 was also reported to be mutated in a cohort of Saudi-

Arabian JBTS patients 141. The most recently identified JBTS genes include EXOC8 
146, TCTN3 147, TMEM231 148, PDE6D 149, CSPP1 108,150,151 and TCTN2 152. 

1.2.2.2.2 Molecular mechanisms of JBTS and MKS proteins 

Following the initial gene discovery studies, contemporary research has 

focused on the delineation of possible cellular functions for JBTS and MKS ciliary 

proteins. Several recent studies have used biochemical assays and proteomic 

studies to delineate networks of protein-protein interactions and, in some instances, 

infer possible functions from those of other, better characterised members of a 

complex. Elegant transgenesis and localisation studies in animal models such as 

zebrafish (Danio rerio) and the nematode (Caenorhabditis elegans) have inferred 

genetic interactions between JBTS and MKS genes, although these do not always 

support the existence of biochemical interactions. However, in most of these 

studies the target ciliary protein is over-expressed either with a convenient epitope 

tag for biochemical purification, or a fluorescent protein reporter in genetic 

interaction experiments, and is not at physiological levels of expression. It is 

debateable if over-expressed proteins correctly model the localization and 
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interactions of the in vivo cognate protein, and these studies should be interpreted 

with some caution. 

Despite these limitations, several studies have identified the protein complex 

known as the “MKS-JBTS module” at the ciliary TZ that contains many JBTS and 

MKS proteins 28,88. These include all of the known small tetraspanin-like TMEMs 

mutated in ciliopathies (TMEM216, TMEM138, TMEM237 and TMEM231), as well 

as others (TMEM17 and TMEM107) that have yet to be implicated in a human 

ciliopathy (Figure 1-7). The Tectonic transmembrane proteins (TCTN1, TCTN2 and 

TCTN3) and the orphan receptor TMEM67/meckelin also localize to the TZ. All of 

these transmembrane proteins are thought to be inserted into the local plasma 

membrane at the TZ. This, in turn, may mediate interactions or regulate the function 

of membrane-targeting proteins with C2 domains such as RPGRIP1L and CC2D2A 
28,88. For example, a proteomics study of TCTN1 showed that this protein forms a 

complex at the TZ with MKS1, TMEM216, TMEM67, CEP290, B9D1, TCTN2 and 

CC2D2A 47. Confirmation of the direct interaction between CC2D2A and CEP290 

has come from yeast two-hybrid studies and GST pull-downs, with genetic 

interactions between these genes also demonstrated in zebrafish models 135. 

 

 
Figure 1-7. Schematic illustration of MKS/JBTS protein localisation in cilia. 

Transmembrane proteins including TMEM17, 67, 107, 138, 216, 231 and 237 that are 
localised to the TZ membrane as well as Tectonic proteins (TCTN1, 2 and 3). The cartoon 
focuses on the biochemical interactions of TCTN1 described in Garcia-Gonzalo et al. 2011. 
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The role of CEP290 and the B9 proteins at the TZ remains unclear, but they 

presumably act as linkers or mediators between the TMEMs and either the 

vesicular cargo that is targeted to the TZ during ciliogenesis, or the subsequent 

transport of cargo proteins within the cilium by IFT. The former model is supported 

by analogy from studies on AHI1, a JBTS ciliary protein that contains WD40 and 

Src Homology 3 (SH3) protein interaction domains. AHI1/jouberin interacts with 

RAB8A, a small GTP/GDP-binding protein that mediates the vesicular transport of 

proteins from the endoplasmic reticulum to the Golgi and the plasma membrane 153. 

Loss of AHI1/jouberin causes defects in ciliogenesis and also defects in vesicle 

transport 153. 

The elaborate machinery of the TZ appears to be in place to maintain the 

integrity of the ciliary gate, and the disruption of this function may contribute to the 

ciliopathy phenotype by altering the composition of the ciliary membrane or 

axoneme 5. Several recent studies have confirmed that disruption of the TZ results 

in the incorrect movement of proteins in and out of the cilium, with particular 

emphasis on the transport of enzymes and transmembrane proteins that mediate 

intracellular signalling. For example, TMEM231 and TMEM17 localize to the TZ, 

with the localization of TMEM231 dependent on other TZ proteins (CC2D2A and 

B9D1) 154. In turn, this regulated the transport of G-protein-coupled signalling 

receptors (GPCRs; specifically, somatostatin and serotonin receptors SSTR3 and 

HTR6) respectively into the ciliary membrane 154. Loss of either TMEM231 or B9D2 

in mice caused defects in ciliogenesis and Shh signalling 154. Sang et al. showed 

that loss of TCTN1, TCTN2, TMEM67 or CC2D2A caused tissue-specific defects in 

ciliogenesis and ciliary membrane composition 152. In a separate study, tissues that 

lacked TCTN1 had normal ciliogenesis, but nevertheless had defects in the ciliary 

localization of adenylyl cyclase 3 (ACIII, an enzyme that catalyzes the formation of 

the secondary messenger cAMP), the transmembrane signalling proteins 

Smoothened and PKD2/polycystin-2 and ARL13B (a small Arf-family GTPase) 47. 

Interestingly, ARL13B regulates the migration of interneurons in the developing 

brain, and this may provide a partial explanation for the neurological defects 

observed in JBTS patients 155. 

In contrast to other JBTS and MKS proteins that predominantly localise to the 

ciliary TZ, both ARL13B and INPP5E localise to the ciliary axoneme. The ciliary 

localisation of ARL13B depends on TZ function, as described above, but the 

axonemal localisation of INPP5E depends on the functions of both ARL13B and 

PDE6D (a phosphodiesterase that appears to act as a chaperone for prenylated 

ciliary and retinal proteins) 47,149,156. An attractive hypothesis is that INPP5E 

dysfunction (due to either mutation or mislocalisation) causes alterations in ciliary 
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signalling through changes in the levels of the secondary messenger InsP3. It is 

probable that this is one of the fundamental pathogenic mechanisms in both JBTS 

and MKS, but it has yet to be formally tested. The JBTS phenotype has also been 

associated with alterations in the tubulin post-translational modifications of the 

ciliary axoneme, and this would presumably affect both the stability of the cilium 

and the trafficking of ciliary proteins. Specifically, the JBTS protein CEP41, 

encoding a centrosomal and microtubule-binding protein, regulates the entry of 

TTLL6 (a tubulin polyglutamylase enzyme) to the ciliary axoneme 142. This thus 

implicates tubulin post-translational modification and therefore the composition of 

the axoneme in the ciliopathy phenotype 142,157. 

Finally, the loss or mislocalisation of many JBTS and MKS proteins cause 

defects in Shh signalling (section 1.1.2.1.1), as demonstrated in a number of mouse 

ciliopathy models 140,154,158-160. One explanation is that TZ disruption prevents the 

correct trafficking of KIF7, a ciliary-associated kinesin motor protein that regulates 

Shh signalling through altering the relative levels of the activator and repressor 

isoforms of GLI transcription factors 140,161. GLI proteins are the downstream 

effectors of the Shh signalling pathway, and KIF7 appears to act as both a negative 

regulator by preventing the inappropriate activation of GLI2 in the absence of 

ligand, and as a positive regulator by preventing the processing of GLI3 into its 

repressor form. Animal models with loss of TZ-associated JBTS and MKS proteins 

also have dysregulation of the “canonical” and “non-canonical” branches of the Wnt 

signalling pathway 99,158,159,162,163, but the mechanistic detail of how the ciliary TZ 

regulates this pathway is less clear than for the Shh pathway. One possibility, at 

least for the canonical β-catenin-mediated branch, is that AHI/jouberin directly 

interacts and sequestrates the downstream effector β-catenin at the cilium 164,165. In 

turn, this would limit the nuclear entry of β-catenin and its availability to act as a 

transcription factor for Wnt-responsive genes. 

 
1.2.2.3 Future perspectives for research into MKS and JBTS 

To date, mutations in the known JBTS and MKS genes appear to account for 

no more than 60% of cases. The spectrum of causative genes for these conditions 

is therefore incomplete, but the remaining genes are likely to be uncommon or even 

harbour mutations that are private to a single family. However, with the widespread 

availability and affordability of WES and targeted clonal sequencing techniques 

such as MIPS (molecular inversion probe sequencing) 166, many researchers have 

recently reported rare mutations in genes in patients that have been previously 

identified as mutation negative. In addition, whole-genome sequencing (WGS) at 

low coverage depth now allows rapid copy number analysis 167. These studies are 
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likely to uncover copy number variations and intronic mutations, as well as changes 

in the promoter sequence or in cis regulatory elements as potential pathogenic 

causes. This will improve JBTS and MKS patient diagnosis, and, with the emerging 

genotype-phenotype correlations for JBTS variants such as COACH, some 

improvements in prognostic testing. However, as described above, the efforts to 

describe most of these correlations in anything but broad terms are confounded by 

both the allelism and unusual phenotypic variability for these conditions. 

Furthermore, the range of phenotypes associated with the ciliopathies continues to 

be broadened 168-173. As many patients described in this work had either limited 

phenotype description or the phenotype was not clear JBTS,  and for consistency 

purposes, these patients will be refered as JSRD. 

 
1.2.2.4 Skeletal ciliopathies 

1.2.2.4.1 Short-rib thoracic dysplasia (SRTD) (MIM#208500) 

SRTD is a lethal, heterogeneous, autosomal recessive group of skeletal 

ciliopathies with presence/absence of polydactyly 174. It is characterised by short 

ribs, shortened tubular bones and constricted thoracic cage. For some types, the 

diagnosis is often based on the presence of 'trident' appearance of the acetabular 

roof in the hip bone, a feature that regresses with age 175. Additional features may 

include cleft lip/palate, retinal degeneration 176, hepatic fibrosis, bile duct 

proliferation 177,178, cysts in the kidneys, liver and pancreas 179 and hydrocephalus 
180. Many of these features are shared with other ciliopathies and differential 

diagnoses for these conditions is frequent. SRTD encompasses many syndromes, 

including Jeune asphyxiating thoracic dystrophy (ATD), Ellis-van Creveld syndrome 

(EVC) (MIM#225500), short rib-polydactyly syndrome (SRPS), and Mainzer-Saldino 

syndrome (MZSDS). Genes mutated in this disease are reported to be involved in 

ciliary intraflagellar transport, such as IFT80 181, TTC21B 182, IFT144 183, WDR35 184, 

IFT140 185, IFT172 186; in ciliary transport motors, specifically DYNC2H1 187; and in 

ciliogenesis, including WDR60 188, WDR34 189 and NEK1 190. 

1.2.2.4.2 Cranioectodermal dysplasia (Sensenbrenner syndrome) (CED) 
(MIM#218330) 

Sensenbrenner syndrome is an autosomal recessive, heterogenous condition 

with a high phenotypic overlap with SRTD. This condition is characterised by 

sagittal craniosynostosis, short stature, dolichocephaly, frontal bossing, widely 

spaced teeth, narrow thorax, nephronophthisis, joint laxity, brachydactyly and 

sparse hair 191-194. Four genes have been implicated in this syndrome and all of 
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them are members of the intraflagellar transport machinery: WDR35 184, IFT122 194, 

IFT144 183 and IFT43 195. 

 
1.2.2.5 Nephronophthisis (NPHP) (MIM#256100) 

Nephronophthisis is an autosomal recessive, heterogenous condition 

characterised by cystic kidneys leading to renal failure in childhood or adolescence. 

It is the most common genetic cause of renal failure in children. Additional features 

include situs inversus, liver fibrosis or cardiac malformations. It phenotypically 

overlaps with other disorders and can be split on the basis of additional clinical 

features into syndromes with, for example, retinitis pigmentosa (SLS) and 

cerebellar vermis hypoplasia (JBTS). Conversely, nephronophthisis can be an 

occasional phenotypic feature of MKS. 

This condition also displays extreme genetic heterogeneity with 18 genes 

identified to date (Table 1-3) and allelism with other ciliopathies (Figure 1-4). The 

encoded proteins localise to cilia, many to the TZ 5,144,152. Sang et al. showed 

NPHP2, NPHP3 and NPHP9 to form a complex and localise to a discrete 

compartment located distal to the TZ, which they called the inversin compartment 
152. 

 
Table 1-3. List of genes identified with pathogenic mutations causing 

nephronophthisis. Eighteen genes are identified to the date with NPHP1 deletion being the 
main cause of this condition. Listed are loci, gene names, other names, chromosomal 
localisation (hg19), founder mutations and references. 

LOCUS GENE ENTREZ 
GENE ID ALIASES LOCATION FOUNDER MUTATION REFERENCE

NPHP1 NPHP1 4867 FLJ97602,*JBTS4,*NPH1,*SLSN1 chr2:1102371778110319883 NPHP1*deletion Konrad*et*al.*1996

NPHP2 INVS 27130
RP118208F1.1,*INV,*KIAA0573,*

MGC133080,*MGC133081,*NPH2,*
NPHP2

chr9:1019013328102103247 Otto*et*al.*2003

NPHP3 NPHP3 27031
DKFZp667K242,*DKFZp781K1312,*
FLJ30691,*FLJ36696,*KIAA2000,*

NPH3
chr3:1338821448133923966 Olbrich*et*al.*2003

NPHP4 NPHP4 261734 RP11-33M12.1, KIAA0673, 
SLSN4 ch1:584545785975118 Otto*et*al.*2002

NPHP5 IQCB1 9657 NPHP5, PIQ, SLSN5 chr3:1229715318123036616 Otto*et*al.*2005

NPHP6 CEP290 80184
3H11Ag,*BBS14,*FLJ13615,*

FLJ21979,*JBTS5,*JBTS6,*KIAA0373,*
LCA10,*MKS4,*NPHP6,*SLSN6,*rd16

chr12:86966921887060124 Sayer*et*al.*2006

NPHP7 GLIS2 84662 NKL; NPHP7; FLJ38247; GLIS2 chr16:42382225 Attanasio*et*al.*2007

NPHP8 RPGRIP1L 23322 CORS3,*DKFZp686C0668,*JBTS7,*
KIAA1005,*MKS5,*NPHP8 chr16:52191319852295272 p.T615P Wolf*et*al.*2007

NPHP9 NEK8 284086 JCK; NPHP9; NEK12A; 
MGC138445; NEK8 chr17:27055832 Otto*et*al.*2008

NPHP10 SDCCAG8 10806
BBS16; CCCAP; SLSN7; 

NPHP10; hCCCAP; HSPC085; 
NY-CO-8

chr1:243419307-243663393 Otto*et*al.*2010

NPHP11 TMEM67 91147 JBTS6,*MECKELIN,*MGC26979,*
MKS3,*TNEM67 chr8:94836321894898323 Otto*et*al.*2009

NPHP12 TTC21B 79809 ATD4; THM1; JBTS11; NPHP12; 
FLJ11457; Nbla10696 chr2:166730453-166810348 Davis*et*al.*2011

NPHP13 WDR19 57728
ATD5; CED4; DYF-2; ORF26; 

Oseg6; PWDMP; IFT144; 
NPHP13; FLJ23127; KIAA1638

chr4:39184024-39287430 Bredrup*et*al.*2011

NPHP14 ZNF423 23090 OAZ; Roaz; Ebfaz; JBTS19; 
NPHP14; ZFP423; Zfp104 chr16:49490604-49857919 Chaki*et*al.*2012

NPHP15 CEP164 22897 NPHP15 chr11:117321778-117413266 Chaki*et*al.*2012

NPHP16 ANKS6 203286 PKDR1; SAMD6; NPHP16; 
ANKRD14 chr9:98732009-98796512 Hoff*et*al.*2013

NPHP17 IFT172 26160 SLB; wim; osm-1; NPHP17; 
SRTD10 chr2:27444373-27489784 Halbritter*et*al.*2013

NPHP18 CEP83 51134 CCDC41; NPHP18; NY-REN-58 chr12:94277758-94459988 Failler*et*al.*2014
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 About 80% of NPHP patients carry an NPHP1 deletion 196, although this 

mutation is also found in JBTS and SLSN 128. 

 
1.2.2.6 Other ciliopathies 

There are many syndromic conditions that are now classified as ciliopathies. 

These include Bardet-Biedl, Alstrom or oro-facio-digital syndromes. There are also 

conditions affecting only one organ system but with features compatible with a 

ciliopathy such as nephronophthisis, polycystic kidney disease (PKD) or Leber 

congenital amaurosis. Proteins encoded by genes mutated in these conditions have 

also been shown to be involved in cilia structure and/or function. There are also 

many syndromes and phenotypes that have not yet been proved to be caused by 

defects in cilia through formal gene identification, although some evidence points 

towards ciliary dysfunction as an underlying cause. An example is Marden-Walker 

syndrome (MIM#248700) 4 which shows multiple overlapping features of 

ciliopathies including microcephaly, cleft palate, low set ears, dextrocardia, 

hypoplastic lungs, cystic kidneys, Dandy-Walker malformation or hypotonia. 

 
1.2.2.7 Inheritance pattern in ciliopathies 

Ciliopathies are Mendelian conditions, which means that a particular genotype 

at a single locus is both necessary and sufficient for the phenotype to be 

expressed. That means that a given genetic state of one gene is enough to give a 

certain phenotype.  

Most ciliopathies are inherited as autosomal recessive traits (Figure 1-8). This 

means that both copies of a gene, located on one of the autosomes, need to be 

mutated for the ciliopathy phenotype to be expressed. Heterozygous mutation 

carriers do not express the phenotype. However, the offspring of two heterozygous 

carriers have a 25% chance of inheriting both mutant alleles and being affected. 

Frequently, autosomal recessive traits are seen in the children of consanguineous 

families or in isolated populations due to a founder mutation. In these situations, a 

method called autozygosity mapping can be used to locate the mutated gene by 

identifying the regions of homozygosity in the affected family members that 

surround the causative mutation 197. 
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Figure 1-8. Mendelian inheritance of a recessive mutation localised on an 

autosomal chromosome in a consanguineous family. Mutation that occurred in the 
ancestor is being passed to offspring in heterozygous state. Heterozygous carriers’ offspring 
has 25% chances to be healthy, 50% chances to be a carrier of the mutation and 25% 
chances to inherit mutation in homozygous state determining its expression. Recombination 
happening between generations decrease disease interval. Image adapted from 
autozygosity.org. 

  The exception to autosomal inheritance in ciliopathies is OFD1, which is an X-

linked condition 138. Mutations in OFD1 gene cause Oral-facial-digital syndrome 1 

(MIM#311200), Joubert syndrome 10 (MIM#300804), Retinitis pigmentosa 23 

(MIM#300424) and Simpson-Golabi-Behmel syndrome type 2 (MIM#300209). The 

phenotype, in families carrying mutations in this gene, is only expressed in male 

subjects. 

1.2.2.7.1 Variable expressivity in ciliopathies 

Mendelian inheritance of ciliopathies assumes that mutations in one gene are 

responsible for the phenotype. However, the phenotypic analysis of ciliopathy 

patients can demonstrate intrafamilial variability in the expressivity of the ciliopathy 

phenotype. In this situation, siblings carrying the same mutation in the same gene 

have differences in expressivity or even different clinical features within a broader 

spectrum of ciliopathy phenotypes. A leading hypothesis to explain this variation 

has been the existence of modifier alleles, which is now supported by several 

studies. It was also reported that some ciliopathies may be inherited in a non-

Mendelian manner, where three alleles are required for the phenotype to be 

expressed 198-200. In particular, studies in BBS families showed that two alleles in 

muta%on(

disease(interval(
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BBS2 were not sufficient for the phenotype manifestation and, only if inherited with 

third allele present in BBS6, manifested the disease phenotype. Also BBS4 was 

shown to participate in phenotype inheritance with BBS1 and BBS2. The triallelic 

inheritance remains controversial and needs further investigation 201,202. 

Missense coding variants in the RPGRIP1L (JBTS7, MKS5, NPHP8) and 

AHI1 (JBTS1) genes were associated with the expressivity of retinal degeneration 

in the ciliopathy phenotype. Thr229 in the common variant p.A229T in RPGRIP1L is 

associated with retinal degeneration in a range of ciliopathies including JBTS and 

MKS 203, and Trp830 in the variant p.R830W in AHI1 is associated with a more than 

sevenfold increase in relative risk of retinal degeneration within a cohort of 

individuals with the kidney ciliopathy nephronophthisis 204. In addition T231S, 

A327S, R867H, c.2322+3A>G, K157E, P209L, Y255C, T1103R, I1208S, C552* 

changes in TTC21B (ATD4, JBTS11, NPHP12) were shown to modify the 

phenotype in a range of ciliopathies (MKS, BBS, NPHP) interacting in trans with 

mutations in other disease-causing genes 182. Davies et al. showned that saturated 

resequencing combined with systematic functional studies may help in 

understanding the complexity of phenotypic variability. 

The molecular mechanisms that cause such phenotypic variability remain 

largely unknown, but are likely to include the effect of modifier alleles in other 

ciliary-related genes and stochastic effects in signalling pathways during embryonic 

development. Exome sequencing, where all coding variants are collected, could 

allow further in-depth analysis of genotype-phenotype correlation and variable 

expressivity. 

1.3 Aims of the research 

The overall aim of this project is to identify and characterise new genes 

involved in ciliogenesis and human ciliopathies. 

The first part of the project focused on the analysis of DNA samples from a 

cohort of MKS and JSRD patients established by Prof. Colin Johnson (University of 

Leeds) through national and international collaborations. At the start of this project, 

some families from this cohort had already been analysed and causative mutations 

had been identified in about 50% of subjects. However, the remaining cohort did not 

have a defined genetic cause for their disease. The aim of this study was to use 

DNA from mutation negative patients to identify new ciliopathy genes using new 

sequencing technologies and to characterise function of the proteins they encode. 

In addition, new ciliopathy genes identified during the course of this study by other 
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research teams would be screened in this cohort to aid in characterising the 

mutation spectrum and to investigate genotype-phenotype correlations.  

The second part of this project focused on identifying proteins involved in 

ciliogenesis. Previous studies 205,206 have shown that RNAi knockdown of the known 

MKS proteins, TMEM67 and MKS1, caused loss of primary cilia in cell lines. Based 

on these observations, it was hypothesized that by knocking-down every gene in 

the mouse genome by RNAi, it may be possible to identify novel candidates for 

human ciliopathies by screening for loss of primary cilia. This strategy is called 

“reverse genetics” since disruption of a known genetic locus would lead to an 

observable phenotype rather than the traditional “forward genetics” approach of 

using phenotypes to identify genes 207. This strategy would identify functional 

candidate genes that could then be screened in patient DNA samples or be used to 

filter/prioritise WES and WGS data. 

 

 In summary, the specific aims of the project are therefore: 

 To identify mutations in the known MKS/JSRD genes 

 To identify new genes mutated in MKS/JSRD using multiple approaches 

 To investigate the function of the proteins encoded by these new MKS/JSRD 

genes 

 To perform a whole genome RNAi knockdown screen to identify novel 

ciliopathy genes and genes that mediate ciliogenesis 
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2 Materials and methods 

For the purpose of this thesis “room temperature (RT)” was established as 22-

24°C. Followed abbreviations were used: hours (h), minutes (min), seconds (sec), 

acceleration (g), revolutions per minute (rpm), 1000 (k). 

2.1 Materials 

2.1.1 General reagents 
Water  Millipore 

Ethanol Sigma-Aldrich 

Methanol Sigma-Aldrich 

2.1.2 Reaction specific reagents 
 PCR 

o Thermoprime plus DNA polymerase  ABgene 

o Hot-Shot mastermix  Clent 

o Phusion high-fidelity polymerase  NEB 

o Primers [25nmol] Sigma-Aldrich 

o dNTP [100mM] Thermo Scientific 

o TRIS base Sigma-Aldrich 

o Amonium sulphate Sigma-Aldrich 

o Magnesium chloride Sigma-Aldrich 

o Tween®20 Sigma-Aldrich 

 Gel electrophoresis 

o Agarose Fisher Scientific 

o Ethidium bromide [10mg/ml] Sigma-Aldrich 

o EDTA Sigma-Aldrich 

o Trizma®base Sigma-Aldrich 

o Boric acid Sigma-Aldrich 

o Glycerol Sigma-Aldrich 

o Orange G Sigma-Aldrich 

o Xylene cyanol  Sigma-Aldrich 

o Easyladder Bioline 

o 1kb ladder Promega 

 Genotyping 
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o GeneScan™ 500 ROX™ dye Size Standard Life Technologies 

o Hi-Di Formamide Life Technologies 

o 5’FAM labelled primers Life Technologies 

 Sequencing 

o Exonuclease I (ExoI) Fermentas 

o Shrimp Alkaline Phosphatase (SAP) Fermentas 

o BigDye Terminator Cycle Sequencing Kit v3.0 Life Technologies  

 WES 

o SureSelectXT All Exon V4 Agilent Technologies 

 Cloning 

o Luria Broth (LB) Sigma-Aldrich 

o Agar Sigma-Aldrich 

o Ampicilin Sigma-Aldrich 

o “α-Select gold efficiency” competent E. coli cells Bioline 

o QIAquick mini/maxi prep kits QIAGEN 

 Tissue culture 

o Dulbecco’s Modified Essential Medium (DMEM) with L-glutamine Sigma-

Aldrich 

o DMEM/F12 Life Technologies 

o Fetal bovine serum Life Technologies 

o Trypsine  Life Technologies 

o PBS Sigma-Aldrich 

o Lipofectamine2000 Life Technologies 

o LipofectamineRNAiMax Life Technologies 

o OptiMEM Life Technologies 

o G418, Geneticin® [50mg/ml] Life Technologies 

o siRNA duplexes [5nmol] Ambion/Dharmacon 

o Thymidine [2mM] Sigma-Aldrich 

o Propidium iodide (PI) [1mg/ml] Sigma-Aldrich 

o RNase A [10mg/ml] Sigma-Aldrich 

o cell lines: 
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Table 2-1. Cell lines. Listed are cell lines used in the studies described in this 
thesis. 

 
 Immunofluorescence (IF) 

o Paraformaldehyde Sigma-Aldrich 

o Non-fat skimmed dried milk Marvel 

o Triton X-100 Sigma-Aldrich 

o DAPI [5mg/ml] Sigma-Aldrich 

o AlexaFluor® (488nm, 568nm) goat anti mouse and goat anti rabbit 

secondary antibodies [2mg/ml] Life Technologies 

o TOTO3 [1mM] Life Technologies 

o Mowiol Sigma-Aldrich 

o Primary antibodies: 

Cell$line Origin Source Reference
IMCD3 mouse+inner+medullary+collecting+duct ATCC Rauchman+et+al,+1993
HEK293 human+embryonic+kidney ATCC Graham+et+al,+1977

HDF+neo hTERT+immortalised+neonathal+human+dermal+
fibroblasts+from+foreskin+of+healthy+control

Genlantis

JSRD2
hTERT+immortalised+humen+dermal+fibroblasts+

form+a+patient+with+TMEM237+mutation+
p.R18*

Children's+
Hospital+of+

Eastern+
Ontario+
Research+
Institute

Huang+et+al,+2011
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Table 2-2. List of primary antibodies. Table contains used antibodies indicating 
optimized fixation method, species they were raised in, species reactivity, dilution for IF and 
WB and producer. Ms-mouse, Rb-rabbit, Hu-human. 

 Western blotting (WB) 

o Protease/Phosphatase inhibitors Thermo Scientific 

o PMSF Sigma-Aldrich 

o NP40 (IGEPAL) Sigma-Aldrich 

o RC DC™ Protein Assay Bio-Rad 

o NuPage 4-12% MES SDS gels Life Technologies 

o NuPage MES running buffer Life Technologies 

ANTIGEN RAISED*IN SPECIES*REACTIVITY FIXATION2
PFA

FIXATION2
MtOH

IF*
DILUTION*

(1/X)

WB*
DILUTION*

(1/X)
PRODUCER

5HT1B Rb Hu,*Ms *+ 100 500 Novus*Biologicals

ABC*(active*β=

catenin)
Ms Hu,*Ms *+ 100 Millipore

acetylated*α=

tubulin
Ms Ms *+ *+ 2000 N/A Sigma=Aldrich

ARL13B Rb Hu,*Ms *+ *+ 1000 Proteintech

C21orf2 Rb Hu,*Ms *+ 100 500 GeneTex

CRFR2 Rb Hu,*Ms *+ *+ 100 200 Novus*Biologicals

cyclin*D1 Ms Hu,*Ms *+ 100 Santa*Cruz*Biotechnology

Dvl1 Ms Hu,*Ms *= *+ 100 500 Santa*Cruz*Biotechnology

FLAG Ms *+ 1000 2000 Sigma=Aldrich

GPR173 Rb Hu,*Ms *+ *+ 100 200 Novus*Biologicals

GPR20 Rb Ms *+ 100 500 Thermo*Scientific

GT335 Ms Ms *+ 2000 Enzo*LifeScience

HA Ms Ms *+ 500 Cell*Signalling*Technology

KI67 Ms Hu *+ 200

Living*colours*A.v.*

peptide*(GFP)
Rb 200 Clontech

Living*colours*GFP*

monoclonal
Ms 1000 Clontech

MAS1 Rb Hu,*Ms *+ *+ 100 1000 Novus*Biologicals

OPRL1 Rb Hu,*Ms *+ 50 500 Abcam

P2RY14 Rb Hu,*Ms *+ 100 200 Novus*Biologicals

Phalloidin=488 *+ 200 Life*Technologies

Phospho=myosin=

2b
Rb Hu,*Ms *+ 50 N/A Cell*Signalling*Technology

Phospho=β=

catenin
Rb Hu,*Ms *+ 200 500 Cell*Signalling*Technology

PIBF1 Rb Hu * *+ 100 500 Novus*Biologicals

PLK4 Rb Hu,*Ms *+ 100 500 Cell*Signalling*Technology

PRPF31 Gt Hu *+ 100 500 Abnova

PRPF6 Rb Hu,*Ms *+ 100 500 Santa*Cruz*Biotechnology

PRPF8 Ms Hu,*Ms *+ 100 200 Santa*Cruz*Biotechnology

PRPF8 Rb Hu,*Ms *+ 100 200 Santa*Cruz*Biotechnology

Rapsyn Ms Ms *+ 100 500 Thermo*Scientific

RhoA Ms Ms *+ 100 500 Cytoskeleton

TMEM237 Rb Ms *+ 100 500
kindly*provided*by*

Dr.C.Craft

TMEM67 Rb Ms *+ 25 500 GeneScript

Xpress Ms 1000 Life*Technologies

β=actin Ms Hu,*Ms N/A 10000 Abcam

β=catenin Rb Hu,*Ms *+ 100 1000 Cell*Signalling*Technology

γ=tubulin Rb Hu,*Ms *= *+ 1000 N/A Abcam

γ=tubulin Ms Hu,*Ms *= *+ 200 N/A Sigma=Aldrich

γ=tubulin*C3 Ms *=/+ *+ 200 Sigma=Aldrich
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o NuPage transfer buffer Life Technologies 

o Invitrolon™ PVDF filter paper sandwich Life Technologies 

o SeeBlue2 prestained standard Life Technologies 

o SuperSignal West Femto Substrate Thermo Scientific 

o Sodium hydroxide Sigma-Aldrich 

o Goat anti-rabbit HRP Dako 

o Goat anti-mouse HRP Dako 

 Immunoprecipitation 

o Protein A agarose Roche 

 

2.1.3 Buffers 
 Phosphate buffer saline (PBS) (1x) 

 Tris – EDTA (TE) 

o 10mM Tris-HCl pH7.5 

o 1mM EDTA 

 Tris/Borate/EDTA (TBE) (10x) pH8.0 

o 890mM Tris 

o 890mM Boric acid 

o 20mM EDTA 

 PCR buffer (10x) 

o 750mM Tris-HCl pH8.8 

o 200mM (NH4)2SO4 

o 0.1% Tween 20 

o 15mM MgCl2 

 Gel loading buffer (2x) 

o 50% Glycerol 

o 10% 10x TBE 

o 0.1% Orange G 

o 0.1% Xylene cyanol 

 NP40 cell lysis buffer 

o 1% NP40 

o 50mM Tris–HCl pH8.0 

o 150mM NaCl 

o 1x Protease/Phosphatase Inhibitors 

 IP incubation buffer (transmembrane proteins) 

o 10% glycerol 
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o 10% ethanol 

o 20mM Tris – HCl pH8.0 

o 25mM NaCl 

o 2mM EDTA 

o 0.5mM PMSF 

o protease/phosphatase inhibitor (1x) 

 IP wash buffer 

o 150mM NaCl 

o 50mM Tris pH8.0 

o 0.5mM EDTA 

o 0.1% NP40 

 SDS loading buffer (2x) 

o 4% SDS 

o 20% glycerol 

o 20mM β – mercaptoethanol 

o 100mM Tris-HCl pH6.8 

o 0.004% bromophenol blue  

2.2 Methods 

2.2.1 Patient DNA 
Families across the UK with offspring diagnosed with Meckel-Gruber or 

Meckel-Gruber-like syndrome were recruited to the study. Blood samples with 

informed consent were collected under ethical approval from South Yorkshire Local 

Research Ethics Committee (study title “Molecular genetic investigations of 

autosomal recessive conditions”, REC reference 11/H1310/1, Appendix 1). DNA 

was extracted using a standard phenol/chloroform protocol by the Yorkshire 

Regional Genetics Service (http://www.leedsth.nhs.uk/sites/genetics/). Other DNA 

samples were obtained from collaborators abroad. 

 

2.2.2 Patient fibroblasts 
4-6mm skin punch biopsies were obtained from affected individuals under 

local anaesthesia with 1% lidocaine (“EMLA” cream). Fibroblasts were dispersed 

and grown in DMEM tissue culture medium (Life Technologies) containing 10% 

foetal bovine serum and 0.4% penicillin/streptomycin. Once confluent cultures were 

established, primary cells were grown and cyropreserved by standard procedures. 
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Fibroblasts were immortalised using retrovirus-mediated transduction to express 

human telomerase reverse transcriptase (hTERT)208. Fibroblasts were immortalised 

by Dr Julie Burns, CR-UK Cancer Studies, University of Leeds. 

 

2.2.3 DNA extraction 
2.2.3.1 Saliva 

Saliva samples were collected and extracted using Oragene® DNA sample 

collection kit (DNA Genotek) following the manufacturer’s instructions. The DNA 

pellet was resuspended in 50µl 1x TE for long term storage. DNA concentration 

was determined using a NanoDrop 1000 spectrophotometer (Thermo Scientific) 

according to the manufacturer’s protocol. 

2.2.3.2 Cells 

DNA was extracted from patients’ fibroblasts following standard 

phenol/chlorophorm extraction protocol.  

 

2.2.4 RNA extraction 
For RNA extraction, cells were scraped off culture vessels and spun down for 

5min at 200x g at RT. The cell pellet was then resuspended in 1x PBS and spun 

down again. The final cell pellet was resuspended in Trizol® reagent (Life 

Technologies) following the manufacturer’s instructions.  

Tissue samples were snap-frozen in liquid nitrogen, cut into fine pieces and 

ground into a fine powder using a chilled pestle and mortar. The powdered tissue 

sample was resuspended in Trizol® reagent (Life Technologies) following the 

manufacturer’s instructions. All equipment and benches were cleaned with 

RNaseZap (Ambion) to remove RNase traces. All solutions were prepared with 

RNase-free water.  

 

2.2.5 Polymerase Chain Reaction (PCR) 
PCR primers were designed using Primer 3.0 online software 

(http://bioinfo.ut.ee/primer3-0.4.0/) covering all coding exons and flanking intronic 

regions (Table 2-3 lists primers for MKS genes, and primers for all other 

investigated genes are listed in the Appendix 2). 
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PCR reactions were performed in a final volume of 10µl. Each PCR reaction 

contained 20ng genomic DNA, 2µM of 5’ and 3’ primers (Table 2-3 and Appendix 

2), 0.1 unit of Taq DNA polymerase (ABgene), 0.25µM of dATP, dGTP, dCTP and 

dTTP each (Thermo Scientific), in PCR buffer (75mM Tris-HCl buffer pH8.8, 20mM 

(NH4)2SO4, 0.01% [w/v] Tween 20 and 1.5mM MgCl2). Reactions were placed in a 

thermocycler (Bio-Rad) with the following reaction conditions: 96°C for 3min, 

followed by 30 to 45 cycles of 96°C for 30sec, 50-65°C for 30sec (Table 2-3), 72°C 

for 1min and then final extension step of 72°C for 5min. Amplified DNA products 

were subsequently analysed by agarose gel electrophoresis. Samples were mixed 

in a 1:1 [v/v] ratio with 2x loading buffer and run on a 1.2% [w/v] agarose gel 

containing 0.5µg/ml ethidium bromide with a DNA size standard (Easy Ladder I, 

Bioline). PCR products were visualised on a GelDoc station (Bio-Rad). 
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Table 2-3. List of MKS genes primers. The table list PCR primers for all coding 
exons of the MKS genes investigated in this thesis and include an intronic primer pair for the 
common intronic mutation c.2991+1655A>G in CEP290. 

Exon Forward Reverse Extension0temp Exon Forward Reverse Extension0temp

1 CCGTTGCCAGGAAAACAG AAGCAGAAAGTGGGGACCTC 65 1 TTTGGTTCATTCCATTGCATAG ACTTAAATGGTTTGGTTTGTATGAG 62.7
2 CTTGGCAACCCTACCTCCTC TGCCGGGCAACTCTATAAC 65 2 AATGGATACTATTGTTATTCAAATTCC CATCCTGCCTTGTTCCAAAC 58.9
3 CCACAGAACAAGAAGTGGTGC CCAGCCATGTGGAGGTAGAC 65 3 TCTTCACAGTGATTATGTTCCTTTC TTTCTCTTCCTAAAGACACTTAAAAGC 58.9
4 AAAACATGTCAGATAGCATCAGTTC AGACAGGCTACTTGTCTCCCC 65 4 TGGCTGAGATCACATATTCCC GCTGTATTTCAGTGGAGCAAAC 62.7
5 TCTTCTTTGGGTTGTTTGGC TCCCTTCCCTCTCTCTGAGG 65 5 ATTTCACTGTGTGCAGAGGC GCAGTTAGTAGGTCGAGCATAGG 62.7
6 GAAGTGGCTCTCCACTGGG GCTGGTGAGAGGAGAAAAGG 65 6 CCATAGATTTTCTTCTAACTTGCG AACAACTTGAATACTACTTTTGAATCC 58.9
7 CCTGCAGTGGGCTCAGTATC AAGTGCAACCAAGGGAAGG 65 7 GGTGAACTTCGGGAGTAAATTC TTTGCTGTGCTCAAAACACC 62.7
8 CTGGGCTGGGAGCTATCC CAGCTCCAGGCACTGAGG 65 8 GCAGCTACCATTTAGCAATCG TCTGACAACAGCAAATGCTTAC 58.9
9 TGAACTTTGGTCTAGCTTGGG CCACAGTCAGAATGCTCCG 65 9 GGTCTCTGCGCCACTAAAAG TGACTGATTCAATGAAGAAACATTAG 58.9

10 GATTTGTAGATGGGGCTGGA AGCAGACAAGGCCTCTACCA 65 10011 TTTGAAATGTGTCCTTAAACCTG AAGGGTTACAGATAAGGGTCATC 62.7
11 TTGGGTGCTAAGGGTGGTAG AGCCTGACCAAATGCCTCTA 65 12 TCCATCAGGAATGAAGCAGTC GGGTGACAACAGCAAAACTC 62.7
12 CTCTCCGAGAAACACCCAAG CCACACACAAGTCACCCAAC 65 13 TGCTTGAATCATAGTTGCTTTG CACTGTAAGTGCAGATTTGGATG 62.7
13 TTGGGTGTCCTTTTGCATCT TCTGGGAGCAAGGAGAGAAG 65 14 TTCAAAAGCCAGTTTTCATTTTC GTCCTTGCTCTAAAGGCACC 62.7
14 AGTGCTGTCTCTTGGTGAAGG CCAGAAGCATTCGAGTGTTAG 65 15 CCAATCTCACATCATTTGTGC AAAAGACACTTGATGGCTGTG 62.7
15 GTCATTGCTGGGGAGTCAG CACCTCCTACAGAAGGACAGG 65 16 TATCTTATTTGGGGCTTGGC AAAGACTGAGAAGAGGTTAGGGTG 62.7

16017 GGGGGTGTCTAGAGAGAGCA GCACTGCAGAGAGAAACAGG 65 17018 TTCACATGGTAGAGCATGAGTC TGTTTCCATTTAAATCAGGTAGGG 62.7
18 CATGGGCCTGTTTCTCTCTG CCACAGGGTCTCTGGCTTTA 58.9 19 TTGAACATTTGCATTGCTCTC GGGAAATGCTATGACTTCCTG 62.7

20 TTTACATGCTTTATTATTCAACTGTTC AACAGGTATCGTGAAGTAGACGC 62.7
1 CGTCGCTCACACCTTTTCTT GGGTTTAGGTCAAGCTCTGG 58.9 21 TTTTCCCTAAAATGTAATGTGTCTG TGTACTGTGAATGAAAGGCAGC 62.7
2 CAGCGTCTAGTTTCCCCAAA GGGCAGAAAAGAACGGAAAA 58.9 22 TGACATGCTGAGATGAAGTTGTC CGGATCATGAGGTCGGG 62.7
3 GCTGAGACTGATGTCCTCTTTTT CAGATCCAGTCTATGATAGTCAACC 58.9 23 TTCAAGAAAAGAAGCCCATTG TTCTTAATCTTTATGCTACTGGTTTG 58.9
4 TTGCCATTCCATCACATCTC CCCCTTAGGCTTCAGAAGAA 58.9 24 GTGAGGTGGCATGACTTGTG TGCCTTTTATTTTAACCATGTCC 62.7
5a TATCCTTTGGGGCCAGGAG ACAGCTCGTACAGGGAGCAT 58.9 25 GTTTTGTCTCGTGGTGATTTC AGCACCCTTGGAGCCAG 62.7
5b CCCCTGCTGACCTCAAGTT GCTCCTGAGAACAAACTGCTG 58.9 26 CCCAAGATGCCAGTGAACTT GAGGGGTGGCAGTTATGAGA 62.7

1 TGCAACTGGAGTGGTACCTG GTCCTGGGATTATGGGTGTG 58.9 1 GGTTCCTGGTGAGTGGAAAG GTGCAATAGATGCTGGTTGG 58.9
2 ACTTTGCCCTCAGCATCTCC TGCCTGTAATTCCAGCACTTT 58.9 2 GATGATGAGAGCCGCACAG GTATGGACCCCCGCCTTATT 58.9

3 ATAAGGCGGGGGTCCATACT CTCAAAATGGCGCTTCTCTC 58.9
1 GGAGGCTGTGAGGCTTCC GGTGAAACTCCATTTACGGG 58.9 4 TCAGGTGACAGAGACTGTGGTT TGGGGTAAAGTGGGTGGAG 58.9
2 TTATTAAAAGTTTCACTATCTGGGAAC AATTTTAAAGTCTGTGGGGAAAC 58.9 5 TCCAAATCTGAAATGTGACCTTC TGTTAGTCCATTTTGCATTGCT 65
3 CATACTCTTATGGCATTTTGAACTTAC AGAATTGCTTGAGCCACTGC 58.9 6 TAAATTACCCAGTCTCAGATATTCC CCTTCAGAGCCATGAGAAAA 58.9
4 TTTATTATGGAGATACTTGTTATGCC TGGGCCTCAGCTTCTGTATC 58.9 7 GGCAGGACTGAGGTTTTGTC TGTGCCAATGCAAAATAAGA 58.9
5 CTAATCCATTGTTTAGAAAGACAGC CCTGAAATTACTAATGGATGAAATG 58.9 8 TTTCCTTGCTCTTCCCCTTA CTTGGACTCAAGCGATCCTC 58.9
6 TTCAGTTGCTTATGCCTTTTCA CAAAAGGGTTTCTCATTCTAGCC 58.9 9 GAAGATAAGCCTTTGGGATGG ACACCCGGCCTGTAGTCA 58.9
7 TGTGAGACATTTCCCATTCAAC GCCCACAAGAAAGAGTTTATTC 58.9 10 CAACTGCCTGTGGCAGATATT CGTGGAGTGTCATTCTCCTG 65
8 TGGAACAGACCTGCACAAAG GCCAAGGAAGATTCTGTCTCC 58.9 11 CATGAGTTTGGTATTGTGAATTATTTT GGAATCAGTTCTGGAGATGAGG 58.9
9 CTGCTGGACTGAGCACTGTT CAATCCAGAAGTATCCACATATTCA 58.9 12 TCATCTTTTCCTTGGTTCTGC TGGGTTTTGAGCAGTTGAGA 58.9

10 AAAACCAGTCTAATTCTTTCAGGTC CTCTTGGCTTTGTCTCAGGC 58.9 13 GGGGGAGGAAGTACATGAAA GCCTGATGTTTGTTCTTTATGTGT 58.9
11 TATCCATGTTCGGGTTTGAG GCAACAAGAGCAAAACTCCATC 58.9 14 TGGCCTCTAAAACCTGGAAA CACACATCCTAAACCGAGGA 58.9
12 TGCTTGCTAATTTTCAATTGTG CAACAGTTTCTAAGTCCACCAGC 58.9 15 CACCATTTTGCCCAGGAG TGACCATTTCCTTACATCCTCA 58.9
13 GAACGCCATTGTCAGGTG CCGACCAACTGTTCCAATTC 61 16 TCTGCCTAAAGAGAACAAAATCAA CCTGGGAAGTGGTTACATGC 58.9
14 TGTGTAACCTTCCTTAGTCCTTG TCAGGATCCATAAGAACTCACC 58.9 17 AGCATCTGCCTCACAGGATT AGCCAGTCAATTCATTCATCC 58.9
15 TGGTAAAACCCAGCTACAAATG TCTGGGGAAAGAATAGCTGG 58.9 18 AGGCACAGAGAGGTCAGGTG CCCATGTCGTGCATGTGT 58.9
16 GAGCACTTCCTTACTTGTTCACAG TGAGAAGGATCCAGAATGGTC 58.9 19 TGTGCCCTTTTCAGTGTCTG GTCTCGAACTCCTGGCCTTA 58.9

17018 GGCTTCAGGCTTAAGAAATGG TGCTTTCTTTCAAAACCAAAGTG 58.9 20 TTAGGGCTGGAACAGTGACC TGGTTGTCTGGGAAGTGAAA 58.9
19020 TCCTTAGTGGTATTATAACTTCATGTG TGGCTTCACAACAATATTTCAAC 58.9 21 CACCCACTCCAAGTTCCATT TGGCACCTGACAATAAAAGG 58.9

21 GGTGAGTAGGGAGAGGTTTTCTG TGCTACAGAAAGAAGGATGTGG 58.9 22 GCTTCCTCAAGTCATGCTGTC ATAGCCAGGCAAGAAGCACA 58.9
22 GGAACTGTTAAAGGCCACTG ACAACCAGTGGAAAATTGGC 58.9 23 AGGGAAGCATGAACACCAAA CCGCTATTGCTAGTGACAACA 58.9
23 TTGCCCAGACTTGTTTCTCC CACTTGAACCCAGAAGGCAG 58.9 24 AGCCACCTGTCTCAGAATCC TGGCTTGCATAAGCTCACAT 58.9

24025 TGAATTTCACTTAGCACCTGAATC AGGGAAGGTCTTAAGGTGGG 58.9 25 GGGGGACACTGAGATGACA CATTATTCCTGGCCCAAATG 58.9
26 TCCTGCTGATTTTACATTAATTGC TTGGGAAGCTGAGGCAAG 58.9 26 GAGTTTTTCAGGGGCGTGT AACCACGTTAAGAATGAGAGTGA 58.9
27 TTGTCACCAGAAGTTTATCACAGAC TATTCCTTCTTTTGGTGGGG 58.9 27 GGCGACAGAGTGAGACCCTA CTTCACCTTAGCCGTTTCTCA 58.9
28 TGTATCACTATGGGATTCAGATACC TGCATTAAATACTACACACAATGGG 58.9 28 TTTGGGTATTTTTCAAATGCTG GATCGGGACCCCTTTCTG 50

29 AATCTTGCTGCTTTCCTGCT AGGCTCATCTCCAACTCCTG 62.7
2 ACCAATAATACTGTGTACCTTG CAGATTGTGACAATTATAGTTG 58.9 30 CCTTTCTGGCGAGTGCTTAG TTGCTGATTGACCCGATTACT 58.9
3 CAACTATAATTGTCACAATCTG GTTCCACTAATAGCCAAACC 58.9 31 TCCCAAACCATACATTTCCTG AGTCATCTGCCCGCCTTG 58.9
4 GTGCTTACATTCCAGTATAAAG GTTTAATGAACAAATGGAATTCA 50 32 AGGATGTTTGGTGAGGATGG TTTTTATGGCTAATGAATGTTGC 56
5 ACCTTATAATCATGATGGACTC AATAACCATGATTACAATCATCC 58.9 33 GAGAAAACACCATGCCCACT CCTGAGGACCACTGAAAACC 58.9
6 TTGTTGACTCATTTGAACCTC AAAAAGCCAGGTAACTTGAAC 58.9 34 TGCAAAACTAAGCATTCGACTT GCTTTGTCATTCTGCTTCTCG 58.9
7 ACTGCTGAATTTTATCTTCTTC TTAGAAGACTCCAGTCCTGG 58.9 35 TGCGGCCTATATGAACACTT CTGTTTCTTGTTGTGAGTTGAGC 58.9

809 CAAGATAATATGCATCATTTTCCC ATGAAATTAAAGTTTTTAGGAACC 58.9 36 CTTTTGGTGGGTCATGGGTA AAGTTGCCTAAATTGTTTCACATTC 58.9
10 AGAGGACACTTATGGCTGCG GTAATGAGATAATATGAAGTCTG 58.9 37 CAATCATCTGAATCCCCACT TGAAAAATGGTGGTATTTTGCT 58.9
11 CACATATGTAATGTAATGTATCC CTAATAAACGTGTTATAAACCAG 50 38 GCTGAGTAGAAAAACACAAGCAAA TTGCCCAAGCAAAAGGTAAG 50
12 GTATCATAAATCTACTAACGGTG ATCGTTCAGAGTTCCAACTG 58.9
13 CTTGTACCCACAAGAAAATATG AGAAAACTCAATATTGACTTGAC 50 1 ACACCCAGGCCTGCACAGACTCG AGATGAGTGAGGCGTCGTCGTG 62.7
14 TGATTTGAAGGAATAAGTAGTC CTGTGAATGGCAAGAATAATTC 58.9 2 TGCACGCCTCTCACCGCAACAT TTCCACCCACCCAGAGACCCAACC 62.7
15 GTACATTTTCCTTTAGACTTAG ACTTGTAAATCAGGTTGCGC 58.9 3 GATGGTATTTGAAGTAAAGAT GAGTTTCCTGAATCATTGTA 50

16017 CATTTTTGCAGCTTATTTGAATG ATATCCAGACAACTCACTTATC 58.9 4 TGCACGCCTCTCACCGCAACAT GGTGCAGTCCTCATTATAG 58.9
18 ATTAAAGTGTTGGAATAGTAGG TATTTTCCTTTACTCTCTTTGC 58.9 5 TCTTCCCCTAATCTATAAACG ACTGGCCTTAATTCTATCCTC 50
19 ATTGATCAAACTTTTCTTAACTTG ACAGAGGTAATTAGGAGTAAAG 58.9 6 TGAAAGAGATGGGGTTATTC GCTTAAGCCATTGGAGTTAT 50
20 CCAATGATGTCTTTGGTATATG AAATATCTCATCAGAAACTATGG 58.9 7 AAAACATTTTTGCCCAATTA CAAACAAAGCATCAGGGTAA 50
21 GTCCATTTTATTTAAAGACAGAC TTAATTCAAGGGGCATTTTCTC 58.9 8 GCCCTCAGAAATGTAAGTA TCAGATTTCCAGAAGTATAAAG 50
22 TATGGTTGAGGTAAAATTCCTG AGTACTATCTGCATGCTTTGG 58.9 9 TCGCTAGTTGTTAGTAATTACG TACCTACCATTTTAAGTTGT 50
23 TAACTTTCCTATAATGTTGTCAG TAAGTTCCTAACAGTAGTTACC 58.9 10 TAAACATCCTATTGGAATTG AAAGAACAGAAGTAGACTGGC 50
24 ATACCTCTTGTGTTGAGAAAAC CACAAAGACACATCCATATTAC 58.9 11 CATGCGTGTTAAGTATACACT AGGTAATGTTTATAAGGAGC 50
25 TATGCAATATTGTACAAAGTAGG TGATACCATCCTATCTTCTGC 58.9 12 GGATGTCTGGCCTATTGAAA GCAGGTGGACATAACAATAG 50
26 AAAGTGGCTAGTGCTTGACC TGTTAAATTTATATAAATGCAGGC 58.9 13 TTTCTCTAGGAGAGGACTGCT TTGGCATTCTGTTACACC 50
27 AACTGGATTGTGAGTTTTAAGG AGGATTATTCATCTGCCTAAG 58.9 14 CTTGAGGGCTTTCTATTAGT CTTCTACCATATTCGCTAAAT 50
28 ACAGCATCTAAAATATCTGAGG AGATCCAGACAAACCACTTAAC 58.9
29 AAGGCCAAGTAAAGAGGATTG TACTACTAAGAATTGTATACCTG 58.9
30 TAGAAAGTGTACTTAATTGTTCC CCCACTCCCAACATCTAATG 58.9
31 CATTTGGATTTTAAGTTTGTTTGA AGCCCAGGAGTTCCAGCTAT 52
32 CATTATCATCAATGGAGGAATG TAGTCATTTGTGCAATATTCTTG 58.9
33 CCTGTTATGTGCCTGATGTC TGAGTTAACACTCTAGACTATG 58.9
34 ATCTATGTTTTATCATACAGCTG ATCATTCTATGCATTGCCCTC 58.9
35 GCATTTTAAAGGGAAAAAGATAC CACTTTAGGGTAAAATAATATTTAG 58.9
36 ATATGGAGATACTGTTTCTTCC GCTGAATTTTAATTTACATGGTC 58.9
37 AATATGGAATAAGTATGGCATTG AGCAAACACTTATGTTTATCTTC 58.9
38 GTGACAGAGTGAGACTGGG ACAACACGGAGATTTATACTAC 58.9
39 ATAGTAGGAAGTAATAAAGCTTG TAGTGAATTCTCTTCCAATAGG 58.9
40 GTTCCTTTTATCATTGATACTTC AAGTAGAAATAAACTACTACCTC 58.9
41 GTGATAGCTTCAGAAAGTTGC CAGAATTAATACAGCCAGGTC 58.9
42 AACATATTTACATATTCTCTAGG TAAAGCTATATAATTTCCAGGTC 50
43 TTTGGTTTGGTAATGAGTATGC TTCAATTTCTAGGGGTCAACC 58.9
44 CATGGAGGGTCTTGTAGGTCA GGCCAGATTAAGAAAGAAGTTGAT 58.9
45 TATCCAGTATGTCTTTTATGGC ACCATCACCATGATATATTAGG 58.9
46 TTTGCCTTTTCTTTTCAATGGC TATCTAAACTTTTCATTTCTGGC 58.9
47 TGTTGTATTGTTGGTACTTCG TTAGCCTTGCCTCTCATAAG 58.9
48 TGGTTTCTAAAACTACTTTGAAG ACTTCCAGTTTTTCCAAGAGG 58.9
49 TAGAGCCCCAGGTTATTTTTG TGTTCATCAGGAAGAAACCAG 58.9
50 TTAGTACAGTTATTTGAACTGAC ACAATGCAAGGAACATCTTGC 58.9
51 ACGCTTTGTTAAAAATGTGTATC ATGCTTGTCTCTAGTTGTAGC 58.9
52 TCACTAGTTCATAAGAAATGCC AATTCGATTTTACAGGGAGAC 58.9
53 CCATTACCTTGAACTCATTCG TAGGATACGTAGTTAAAGATGG 58.9
54 ATTCAGGAATACTTTGGCTTTC TTCGGAGAACTGCTTATTTCC 58.9

intronic CTCGGCTTAACGCTTACTGC AATGGCTGCCACAATAAAGA 58.9

CC2D2A

TMEM237

MKS1

TMEM216

TMEM138

TMEM67

CEP290

RPGRIP1L
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2.2.6 Genotyping 
DNA was genotyped using primers with the 6-FAM fluorescent reporter dye 

attached by the hydroxy group at the 5’ end of the forward primer. A standard PCR 

reaction was set up, followed by gel electrophoresis and the sample diluted (usually 

1:25) before genotyping. 1µl of diluted PCR product was mixed with 8.5µl HiDi 

formamide and 0.5µl fluorescently-labelled size standard (ROX™ 500, Life 

Technologies) and run on an ABI3130xl genetic analyser using POP7 polymer and 

the default run module FragmentAnalysis36_POP7_1. 

DNA from individuals was genotyped for microsatellite markers with 

heterozygosity values of >0.70 that flanked seven of the nine known MKS genes (at 

the time of the study: MKS1, TMEM216, TMEM67, RPGRIP1L, CC2D2A, CEP290 

and TMEM237) at <1cM genetic distance, or otherwise as close as possible (Table 

2-4).  

 

Table 2-4. List of microsatellite primers flanking known MKS loci. Listed are 
known MKS genes with flanking markers, their sequences and optimised annealing 
temperatures. 

In samples from singleton or multiplex affected individuals of consanguineous 

origin, two homozygous markers indicated putative linkage to a locus under 

investigation, prioritizing the gene for subsequent sequencing. In non-

consanguineous multiplex families, two or more affected individuals sharing 

haplotypes for flanking markers indicated putative linkage to a locus. Data were 

analysed using GeneMapper® (Life Technologies) and haplotypes were drawn in 

Excel. 

 

GENE MARKER FORWARD,PRIMER,(WITH,'FAM',DYE) REVERSE,PRIMER ANNEALING,
TEMPERATURE

D17S1606 TGGTATTCAATCCTGGAGC TGATGAGTCTTCATAGCCCC 58.9
D17S1290 GCCAACAGAGCAAGACTGTC GGAAACAGTTAAATGGCCAA 58.9
D11S4191 GCAAGATGGCCAATTAGAAG TTTTGGTTGGAATGTAGTTGTTTAT 58.9
D11S4076 CATGAATGCTCTTGTCCC AACCCCCTGGAAAATAGACT 58.9
D8S1988 CCTTTGGACTCAGACCAGAA TAGTCAGAGTCCTCAGAGAAACA 58.9
D8S1699 CAACCTGACCCTGCCA CATGATGTTCTAAGCATATCTGC 58.9
D12S1719 TCCTCCAGTTTCAGTAATGTTT GGTGGTTGATGCCTGTAA 58.9
D12S1710 AGGTTTCTGGGTTCCTGATA CCATAATCCGTAGGAGCAA 58.9
D16S3034 TAATCTAGTTAAAGATGCAACTGCC GCTCAGAAGTTTTGATGCC 58.9
D16S771 GTCCAAAACACCACCCTCTA AAGTAGATCAGTCATCTTGCTGC 58.9
D4S1511 AGCCTCTGTAATCTTGTGTG TCCATTACTCAGGGCTCTC 58.9
D4S2960 AAGGCTTTATCATTAAGAATCCTA TGAGGGTATAGTTACCATCTTTT 58.9
D3S1596 ATCAATGCCCTGCTCATTAC CCTGCATCATGTGCTCTC 58.9
D3S1290 TTGCAGTAATGACCATAGGG AACACTTAGGGTAATGGGGC 58.9
D2S2309 TGTCAGGCACTTCGCTA TGCTTCTTATTGTACCCAAA 58.9
D2S1384 AATAGAGGGCCCTTGCTTAA TTTGGGATAAAAGGTATTTTGC 58.9

TMEM216/TMEM138

MKS1

TMEM237

CC2D2A

RPGRIP1L

CEP290

TMEM67

NPHP3
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2.2.6.1 Sample genotyping using SNPchip 

1µg of DNA from consanguineous affected individuals were sent to AROS 

(Applied Biotechnology) for genotyping with the Affymetrix Genome-Wide Human 

SNP Array 6.0. Firstly, data were analysed for CNVs using Affymetrix Genotyping 

Console 3.0 software and subsequently genotypes were analysed using SnpViewer 

(Sourceforge, http://sourceforge.net/projects/snpviewer/). Autozygous regions were 

identified and further analysed using Excel. 

 

2.2.7 Purification with ExoSAP 
In order to be sequenced, PCR-amplified DNA products were treated with 

ExoSAP, a mixture of two enzymes: 20U Exonuclease I and 1U shrimp alkaline 

phosphatase (SAP; Fermentas). To each 2.5µl of PCR reaction, 1µl of the ExoSAP 

enzyme mix was added. Samples were subsequently incubated at 37°C for 15min 

followed by denaturation at 85°C for 15min. 

 

2.2.8 Sequencing 
2.2.8.1 Sanger sequencing 

Enzymatically purified DNA samples were sequenced using the BigDye 

Terminator Kit v.3.1 (Life Technologies) following the manufacturer’s instructions. 

1µl DNA was added to 0.5µl BigDye, 2µl 5x ABI Sequencing Buffer, 5.5µl dH2O and 

1µl of the appropriate sequencing primer (Table 2-1) at a final concentration of 

0.2µM. Reactions were incubated for 28 cycles at 96°C for 15sec, 50°C for 15sec, 

and 60°C for 4min.  

Sequenced samples were subsequently precipitated using 5µl 0.125M EDTA 

pH8.0 and 60µl 100% [v/v] ethanol. The mixture was centrifuged at 1400x g for 

30min at 4°C. Samples were then inverted and tapped onto paper towel to remove 

excess supernatant. Samples in 96-well plates were spun inverted on a paper towel 

for 15sec at 100 x g to remove the remaining liquid and 60µl of freshly prepared 

70% [v/v] ethanol was added to each well. Samples were spun at 720x g for 15min 

at 4°C. Afterwards, plates were inverted on a paper towel, and then again 

centrifuged. Samples were air dried at RT for about 10min. Precipitated DNA was 

then resuspended in Hi-Di Formamide (Life Technologies), and sequencing 

products were separated by electrophoresis through polymer POP-7™ (Life 

Technologies), according to the manufacturer’s instructions. A total of 188 coding 
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exons were amplified by standard PCR protocols with one additional CEP290 

intronic amplicon covering the common LCA change 209. The electropherogram 

trace was analysed using Sequencing Analysis, SeqScape (Life Technologies) or 

4Peaks (Mek&Tosj.com). 

 

2.2.8.2 WES 

Initial WES sample preparation was done using SureSelectXT Human All 

Exon V4 kit (Agilent Technologies) by Dr Clare Logan following manufacturer’s 

instructions. Samples were sequenced on an Illumina GAIIx (sample 157), Illumina 

MiSeq (samples 36A and 66F1) and Illumina HiSeq2500 instrument (samples 17, 

144, 325 and 352). Fastq sequence files were aligned to GRCh37 (Genome 

Reference Consortium human reference assembly built 37) using the Novoalign 

aligner (http://novocraft.com/). SAM files were converted to BAM files using the 

Picard tool (http://broadinstitute.github.io/picard/), and using the same tool PCR 

duplicates were marked and removed. The Genome Analysis Toolkit (GATK; 

http://www.broadinstitute.org/gatk/) suite of tools were subsequently used to realign 

insertions/deletion and bases and identify variants. All variants were filtered out with 

poor quality scores (Phred-scaled p-value>60, RMSMappingQuality<40),  and if 

they were present in dbSNP129 (http://www.ncbi.nlm.nih.gov/projects/SNP/) or 

higher, the 1000 Genome Project (http://www.1000genomes.org/) 210,211 and in the 

EVS server (http://evs.gs.washington.edu/EVS/) with MAF>=0.01. Remaining 

variants were further filtered using vcfhacks suite of tools 

(http://sourceforge.net/projects/vcfhacks/) to identify those that were biallelic since 

all patients sequenced were consanguineous, although biallelic heterozygous 

variants were also checked in case of compound heterozygosity. The pathogenic 

potential of putative missense mutations was assessed by analysis with PolyPhen2 

(http://genetics.bwh.harvard.edu/pph2/) 212, SIFT (http://sift.jcvi.org/) 213 or by 

manual comparison of CLUSTALX 214 alignments of protein homologues to 

determine the phylogenetic conservation of mutated amino acid residues. The 

absence of novel mutant alleles was confirmed in a panel of 96 DNA samples from 

ethnically-matched normal control individuals. 

 

2.2.9 Quantitative real-time PCR (qRT-PCR) 
Primers were designed for amplification of human TMEM237 and a reference 

gene - 36B4 (member of 40S ribosomal subunit) cDNA using Primer Express 3.0 
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software. Primers sequences were as follows: for TMEM237 forward 

5’GCAATGAGCCATCAACTAAAGAACT and reverse 5’GAGGAAGTCTCCAATTC 

AAGAGGTA; for 36B4 forward 5’AGATGCTGCAGATCCGCAT and reverse 5’ 

ATATGAGGAGCAGTTTCTCCAG. RNA extracted form fibroblasts (section 2.2.4) 

was converted to cDNA using SuperScript III Reverse Transcriprtase (Life 

Technologies) according to manufacturer’s instructions. qRT-PCR reactions were 

set up using SYBR® GreenER™ qPCR SuperMix Universal Kit (Life Technologies) 

as follows: for total volume of 25µl, 12.5µl of 2x PCR mix was added to 2µl cDNA, 

0.25µl 20µM primers, 0.05µl ROX dye and 10.2µl of DEPC H2O. Samples were 

amplified on an ABI 7500 Real Time PCR System (Life Technologies). Initially 

samples were incubated at 50oC for 2min, followed by denaturation at 95oC for 

10min and 40 cycles including denaturation at 95oC for 15sec and 

annealing/extension 60oC for 1min. Data were analysed with 7500 System software 

(Life Technologies). 

 

2.2.10 Cells 
Mouse inner medullary collecting duct (IMCD3) cells were grown in 

Dulbecco’s minimum essential medium (DMEM)/Ham’s F12 supplemented with 

10% foetal bovine serum at 37°C/5% CO2. Immortalised fibroblasts were grown in 

the same medium supplemented with 0.2mg/ml geneticin.  

 

2.2.11 Transfection 
2.2.11.1 Over-expression 

For transfection with plasmids in 6-well plate, cells at 80% confluency were 

transfected using Lipofectamine2000 (Life Technologies). 6µl of Lipofectamine2000 

was mixed with 250µl OptiMEM and after 5min incubation 1µg of plasmid DNA was 

added. Growing media was replaced with OptiMEM and transfection complexes 

were added and incubated for 4h. Then complexes were taken off and replaced 

with fresh growing media. Cells were assayed 48-72h later. 

 

2.2.11.2 siRNA 

For RNAi knock-down experiments, siRNA duplexes were designed against 

mouse Tmem237 sequence using Ambion custom Silencer Select siRNA service 

(catalogue number: 4390771) and Rpgrip1l using the Dharmacon ON-TARGET 
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plus SMART pool (catalogue number: L-055668-01-0005). Antisense sequences 

were as follows: Tmem237: duplex 1 5’-GGAUCUUAGUGAAGAGUUATT, and 

duplex 2 5’-GAACGAAAACGGCAUUGAUTT; Rpgrip1l pool: duplex 1 5’-

GGAUCAAGCUAUUCGACUU, duplex 2 5’-CAGCACAGAUUACGAAACA, duplex 

3 5’-GAAUACUGGUUCCGAUUAA, duplex 4 5’-CAAUAAAGAUCUAGACCGA. The 

medium or low GC non-targeting scrambled siRNA duplexes (Dharmacon) were 

used as negative controls. 100pmol of each siRNA was transfected into IMCD3 

cells at 60-80% confluency in a 6-well plate. 6µl Lipofectamine RNAiMax (Life 

Technologies) was mixed with 125µl OptiMEM, 100pmol of siRNA was mixed with 

125µl OptiMEM and incubated for 5min. Both solutions were then combined 

together and incubated for another 20min. Cells had their growing media replaced 

with OptiMEM and knockdown complexes were added. Cells were assayed 72h 

later. 

 

2.2.12 IF and confocal microscopy 
Cells were seeded at 2x104 cells/well on sterilised glass coverslips in 6-well 

plates and fixed with ice-cold methanol (5min at -20°C) or 2% paraformaldehyde 

(20min at RT, then permeabilised with 0.01% Triton X-100 for 5min at RT). Cells 

were blocked with 1% [w/v] Marvel dried milk for 5min at RT and then incubated for 

an 1h with diluted primary antibody in the blocking solution (Table 2-2) in a humidity 

chamber. Cells were then washed three times with 1x PBS and incubated for 1h 

with diluted secondary antibodies in the humidity chamber. Cells were then washed 

five times with 1x PBS and once with distilled water and were mounted to slides 

with Mowiol. Confocal images were obtained using a Nikon Eclipse TE2000-E 

system, controlled and processed by EZ-C1 3.50 (Nikon) software. Images were 

assembled using Adobe Illustrator CS2. 

 

2.2.13 Whole cell extract preparation and SDS-PAGE 
western blotting 

Whole cell extracts (WCE) were prepared from confluent cells in 90mm tissue 

culture dishes, or scaled as appropriate. All procedures were conducted at 4°C to 

prevent protein degradation by proteases. Cells were washed with cold 1x PBS 

once and lysed with 100µl ice-cold NP40 lysis buffer for 5min at 4°C. Cells were 

scraped off the surfaces using chilled plastic cell scrapers, placed in cold Eppendorf 

tubes. Cells were then spun down at 12k x g for 5min and the supernatant was 
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transferred to new tubes. Protein concentration was measured using RC DC™ 

Protein Assay kit (Bio-Rad) following the manufacturer’s instructions. Absorbance 

was measured on a spectrophotometer at 750nm. Proteins were mixed with 2x 

SDS loading buffer, boiled and run on 4-12% SDS-PAGE (sodium dodecyl sulfate 

polyacrylamide gel electrophoresis) acrylamide gradient gels (Life Technologies) 

alongside protein marker (SeeBlue2, Life Technologies) in MES running buffer (Life 

Technologies) for 1.5h at 120V. Proteins were subsequently immunoblotted onto 

polyvinylidene difluoride (PVDF) membrane (Life Technologies) in transfer buffer 

supplemented with 10% methanol for 1h at 30V. Membranes were blocked in 5% 

[w/v] Marvel dried milk in 1x PBS with Tween 20 (PBST) for 1h and incubated with 

primary antibodies (Table 2-2) in Falcon tubes on a roller for 1h. Membrane was 

then washed four times with 1x PBST and incubated for 1h with the appropriate 

HRP-conjugated secondary antibody (Dako) at a final dilution of x10000. The 

membrane was then washed four times with 1x PBST. For detection by the 

enhanced chemiluminescence, the Femto West immunoblot detection system 

(Thermo Scientific) was used. Visualised bands were processed in ImageLab 

software (Bio-Rad). 

 

2.2.14 TopFlash assay 
For luciferase assays of canonical Wnt activity, fibroblasts were grown in 48-

well plates and co-transfected with 0.25µg Topflash firefly luciferase construct (or 

Fopflash, as a negative control); 0.25µg of expression constructs (pCMV-HA-

TMEM67, pCMV-GFP-TMEM216, pEGFPN1-TMEM237, or empty pCMV-

HA/pEGFPN1- vector; and 0.05µg of pRL-TK (Promega; Renilla luciferase 

construct used as an internal control reporter). Cells were treated with Wnt3A or 

Wnt5A conditioned media to stimulate or inhibit the canonical Wnt pathway. Wnt3A- 

or Wnt5A-conditioned media were obtained from stably-transfected L cells with 

Wnt3A or Wnt5A expression vectors. Control media was obtained from 

untransfected L cells. Activities from Firefly and Renilla luciferases were assayed 

with the Dual-Luciferase Reporter Assay system (Promega) on a Mithras LB940 

(Berthold Technologies) luminometer. Minimal responses were noted with co-

expression of the FopFlash negative control reporter construct. Raw readings were 

normalized with Renilla luciferase values.  
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2.2.15 Immunoprecipitation (IP) 
WCE were prepared as in 2.2.12 with additional DNA shearing by several 

passes through a 19G needle. 1mg of protein was transferred to a fresh pre-chilled 

Eppendorf tube and the volume was adjusted to 1ml with IP incubation buffer. 

Protein A agarose beads were washed with 1x PBS and centrifuged at 1000x g for 

1min at 4°C. The wash and spin were repeated for one more time and then restored 

to a 50% [v/v] suspension with 1x PBS. The cell lysate was pre-cleared with 70µl 

50% [v/v] bead suspension by incubation on a rotator for 30min at 4°C, then spun 

down for 1min 1000x g at 4°C. The cell lysate was then transferred to a fresh tube. 

1 to 8µg of the appropriate antibody was added to 150 to 500µg of soluble protein 

in the cell lysate and incubated overnight on a rotator at 4°C. 80µl of protein A or G 

suspension was added and incubated on a rotator at 4°C for 3h. Beads were then 

spun down at 1000x g for 1min at 4°C and the supernatant was discarded. Beads 

were washed three times with 500µl ice-cold IP wash buffer and spun down at 

1000x g for 1min at 4°C in between the washes. After washing, 20µl 2% SDS was 

added to the bead pellet, mixed by inverting to elute the proteins and left to 

incubate for 30min at RT with gentle mixing every few minutes. The final spin was 

done at 14k x g for 2min at RT. The supernatant was transferred to a new tube and 

an equal volume of 2x SDS loading buffer was added. Samples were further 

analysed as described in 2.2.13. 

 

2.2.16 RhoA GST pull-down 
The activated GTP-bound isoform of RhoA was specifically assayed in pull-

down assays using a GST fusion protein of the Rho effector rhotekin 

(Cytoskeleton), using conditions recommended by the manufacturer. WCEs were 

processed as rapidly as possible at 4°C, and snap-frozen in liquid nitrogen. Total 

RhoA in WCEs and pull-down protein was detected on immunoblots using a 

proprietary anti-RhoA monoclonal antibody (Cytoskeleton). Immunoblot analysis for 

total RhoA and β-actin were used as loading controls. 

 

2.2.17 Flow cytometry 
Four T25 flasks of fibroblasts (two control and two patient fibroblasts) were 

seeded at the same cell density. At about 30% density 2mM thymidine was added 

to synchronise cell cycle and incubated for 18h. After reaching 50% confluency, 

cells from two flasks (one control and one patient fibroblasts) were harvested by 
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trypsinization.  and the cells sedimented by centrifugation at 200x g for 5min. Media 

was then taken off and the pellet was resuspended in 1x PBS. After re-

centrifugation at 200x g for 5min the PBS wash was discarded leaving 100µl to 

cover the cell pellet. 500µl of 70% [v/v] ethanol was then added dropwise to fix the 

cells and mixed. The same volume of ethanol was added twice more in the same 

manner. Samples were stored at -20°C. The remaining two flasks of cells were 

incubated for another 48h and then cells were collected as described above. Before 

samples were run into the flow cytometer, they were washed twice with 1x PBS, 

and then incubated for at least 30min in propidium iodide (PI) solution (20µg/ml; 

Sigma-Aldrich) containing RNAase A (0.1µg/ml; Sigma-Aldrich) to remove the RNA. 

Cells were then analysed on a LSRII FACS machine (Beckman Coulter) using 

ModFit software (Verity Software). Data from 5000 events were collected and 

analysed to identify cells in G1-S-G2/M phases of the cell cycle. 

 

2.2.18  The whole genome siRNA screen 
Cell culture and transfections were done by BSTG (BioScreening Technology 

Group) members (Mrs Julie Higgins and Dr Matthew Adams). IF staining, image 

acquisition and analysis were done by Dr Gabrielle Wheway and the author. 

2.2.18.1 Cell culture 

Mouse inner medullary collecting duct (mIMCD3) cells from American Type 

Culture Collection (ATCC) were maintained in DMEM/F12 medium supplemented 

with 10% foetal bovine serum (FBS), under standard conditions (37oC, 5% CO2). 

Cells were passaged at a split ratio of 1:10 twice a week. Cells were obtained from 

ATCC at passage 13 and were used for screening purposes between passage 17 

and 25. 

2.2.18.2 siRNA 

A Dharmacon mouse siGENOME siRNA library (Dharmacon) was used, 

plated in a standard 96-plate well format. Each gene was targeted by a pool of four 

duplexes per well, across 36 sub-library plates, 89 drug target sub-library plates, 

and 114 plates targeting the remaining genes in the mouse genome (the genome 

sub-library). The entire library targeted a total of 18960 Entrez RefSeq genes 

across 239 plates.  

Library plates contained 80 targets per plate across columns 2-11. Lyophilised 

siRNA was re-constituted with 1x RNA buffer (Thermo Scientific) to a concentration 
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of 2µM using a Fluid-X XRD-384 dispenser, followed by 90min of agitation on a 

rotary shaker. Reconstituted siRNA plates were stored at -80oC. 

Thawed siRNAs were directly aliquoted into 96-well assay plates (View 

Plates, PerkinElmer) using an Agilent Bravo liquid handling platform. Eight different 

control siRNAs (siGENOME, Dharmacon) at 2µM were added to plates using a 

Star-pet-E 8-channel electronic pipette (in duplicate to columns 1 and 12). An 

siRNA pool targeting mouse siPlk1 was used as a positive transfection control. 

Mouse siMks1, siIft88 and siRpgrip1l were used as positive controls for effects on 

ciliogenesis. A number of negative controls were used: a non-targeting siRNA 

against human siMLNR which has no target in the mouse genome, two duplicate 

Dharmacon scrambled non-targeting control siRNAs and a transfection reagent-

only control. Sequences of control siRNA duplexes are given in Table 2-5. 

 

Table 2-5. Sequences of siRNA duplexes used to target positive and negative 
control genes for ciliogenesis. 

 
2.2.18.3 Transfection 

Reverse transfections were set up in batches of 20 plates. 2.5µl 2µM siRNA 

were added per well to optical-bottomed 96-well View Plates (PerkinElmer), 

followed by 0.2µl Lipofectamine RNAiMAX transfection reagent (Life Technologies) 

suspended in 17.5µl OptiMEM serum free media (Life Technologies) using a Fluid 

X XRD-384 dispenser at high speed (300rpm). Plates were gently mixed on a rotary 

Target'gene' Gene'ID' Gene'accession' siRNA'sequence'

Plk1% 18817$ NM_011121$

CCAACCAAAGUGGAAUAUGA$
GCAAUUACAUGAGUGAGCA$
GCAAGAUCGUGCCUAAGUC$
UCACUCUCCUCAACUAUUU$

Mks1% 380718$ NM_001039684$

CGGCGAAUCUUCACUUACA$
AGUUUGAAGUCGACCUGUA$
CAAUGUACAUCAUGGCGGA$
UGGCUGAGCGGAUGGCGAA$

Rpgrip1l% 244585$ NM_173431$

GGAUCAAGCUAUUCGACUU$
CAGCACAGAUUACGAAACA$
GAAUACUGGUUCCGAUUAA$
CAAUAAAGAUCUAGACCGA$

Ift88% 21821$ NM_009376$

CGGAGAAUGUUGAAUGUUU$
GCUUGGAGCUUAUUACAUU$
CGUCAGCUCUCACUAAUAA$
GUAGCUAGCUGCUUUAGAAA$

MLNR% 2862$ NM_001507$

GAAGAUUCGCGGAUGAUGU$
CAUCGUCGCUCUGCAACUU$
GCGCAUCUAUCAACCCAAU$
GCGCUAACGUGAAGACGAU$
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shaker at RT for a minimum of 20min. 80µl mIMCD3 cells at a density of 105 cells 

per ml in OptiMEM, in a uniform suspension maintained by constant magnetic 

stirring, were added per well to plates using an XRD-384 FluidX dispenser at high 

speed. 

To minimize edge effects, cells and transfection complexes were left to rest in 

a laminar flow hood for 1h at RT before returning to a 37oC 5% CO2 incubator 

without further changes of media in wells 215. Cells were assayed after 72h. 

2.2.18.4 Antibodies and staining reagents 

Cilia were detected with a mouse monoclonal antibody against acetylated α-

tubulin (Sigma-Aldrich) and an Alexa Fluor 488-conjugated secondary antibody 

(Life Technologies). DAPI (Sigma-Aldrich) was used with the far-red RNA stain 

TOTO3 (Life Technologies) to determine cell, cytoplasm and nuclear boundaries. 

2.2.18.5 High-throughput liquid handling 

Plates were processed for immunofluorescent staining in batches of 20. 72h 

after transfection media was removed from plates by inverting the plate and blotting 

on clean paper towels to remove excess liquid. Cells were washed three times with 

100µl 1x PBS, using two XRD-384 FluidX dispensers working in parallel on slow 

speed (100rpm), dispensing to the left side of the well to minimise disturbance of 

cells. After fixation, all cell washes were performed at medium speed (150rpm). 

After incubation with primary antibody, cells were washed once using 100µl PBS on 

a XRD-384 FluidX dispenser and three times on a Biotek ELx405 Select CW plate-

washer with a Biostack automated plate stacker that dispensed against the left side 

of the well. After incubation with secondary antibody and stains, cells were washed 

once using 100µl PBS on a XRD-384 FluidX dispenser and six times on a Biotek 

ELx405 Select CW plate-washer with a Biostack automated plate stacker. Plates 

were stored with 100µl PBS per well at 4oC for up to 1 week before imaging. 

2.2.18.6 Fixation 

50µl ice cold methanol was dispensed to the left side of each well using 

FluidX XRD-384 dispenser on slow speed (100rpm). Plates were then placed in a -

20oC freezer for exactly 5min. After fixation, each plate was removed from the 

freezer, inverted and blotted to remove methanol and washed with 50µl PBS. 

2.2.18.7 IF staining 

Plates were blocked with 100µl 1% Marvel dried milk/PBS [w/v] previously 

clarified of particulates by centrifugation at 3000x g for 5min. All antibodies and 
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stains were diluted in blocking solution and clarified by centrifugation at 12k x g for 

5min. at RT. Primary antibody (anti-acetylated α-tubulin) was diluted 1000x and 

cells were incubated with 50µl antibody solution per well for 1h at RT. Alexa 488 

secondary antibody (2000x dilution), and DAPI and TOTO3 (both 5000x dilutions) 

were incubated for 1h at RT in the dark. 

2.2.18.8 High-throughput imaging 

Plates were processed using the PerkinElmer Operetta high-content wide-field 

fluorescence imaging system, coupled to Harmony software. Plates were 

automatically loaded onto the Operetta using a PerkinElmer Plate Handler II robotic 

arm, operated through Plateworks software. Plates were bar-coded with specific 

plate information, and barcodes were read by a SICK barcode reader before 

loading onto the Operetta. Wells were imaged using a 20x objective lens, detecting 

three colours in three separate focal planes to ensure the best resolution was 

obtained for each colour. The bottom of each well was detected automatically by 

the Operetta infra-red focusing laser, and focal planes of detection for each colour 

were calculated relative to this value. DAPI emission was detected for 60ms 6µm 

below the calculated bottom of the well, TOTO3 emission was detected for 500ms 

1µm above the DAPI plane, and Alexa Fluor 488 emission was detected for 700ms 

7µm above DAPI. Six fields of view (each 510x675µm) were imaged per well (with 

an identical pattern of fields in every well away from the dispense area), with an 

approximate total of 4000 cells detected and analysed per well. 

2.2.18.9 Image analysis 

Modified PerkinElmer image analysis algorithms were used throughout 

(Appendix 6). Nuclei were detected as blue (DAPI) fluorescent regions >30µm2, 

with contrast >0.10. Cytoplasm was detected as far-red (TOTO3) fluorescent 

regions around nuclei. Border objects were excluded so that only whole cells were 

analysed. Cilia on whole cells were detected using a modified ‘find spots’ algorithm, 

identifying green (Alexa Fluor 488) fluorescent spots with radius <3.8 pixels, 

contrast >0.1, spot-to-region intensity >1.3 with a distance from all neighbouring 

spots >5.6 pixels. Any cells with more than one cilium in the cell area were 

excluded from analysis. Key output parameters were number of whole cells, and 

percentage of whole cells with a single cilium. Additional output parameters 

included number of whole cells with two or more cilia and mean cilium intensity, 

which could be used as an indicator of cilium length. 
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3 Results 

The work that comprises the results chapter was divided into three 
subchapters. The first subchapter includes efforts to identify linkage of samples to 
known MKS/JBTS loci using microsatellite markers and subsequent mutation 
screening using Sanger sequencing (Figure 3-1, green background). No linkage to 
these loci would prioritise the sample for the screening of new functional candidate 
genes, SNiPchip analysis and/or whole exome sequencing. However if the sample 
showed linkage to the particular locus it was Sanger sequenced for the mutation 
identification. Lack of variant identification would subsequently prioritise the 
sample for the same analyses described for no linkage samples. 
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Figure 3-1. Flow diagram presenting strategy of mutation identification if known 

and novel MKS/JSRD genes. Green background represtent strategy for subchapter 3-1, 
there samples were analysed for linkage to the locus using microsatellite markers and were 
Sanger sequenced for mutation identification. Purple background represents strategy for 
subchapter 3-2 where new functional candidate genes were Sanger sequenced, samles that 
showed no linkage to know loci or were mutation negative were prioritised for SNiPchip 
analysis and/or WES. Yellow background represents strategy described in chapter 3-3, a 
whole genome siRNA screen for defects in ciliogenesis. Hits from the screen were cross-
compared to the WES results to prioritise variants. 

The following two subchapters (3-2 and 3-3) describe efforts to identify new 
genes as a cause of the MKS/JSRD phenotype. In subchapter 3-2 samples that were 
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shown to have no linkage to known MKS/JSRD loci and/or were mutation negative 
in the screened genes were prioritised for Sanger sequencing of new functional 
candidates. Some of the samples were SNiPchipped for identification of 
homozygous regions and/or whole exome sequenced (Figure 3-1, purple 
background). Subchapter 3-2 focuses on a reverse genetics siRNA screen for 
identification of genes required for ciliogenesis/cilia maintenance. Highest 
confidence hits were used for filtering of variants identified in the WES (Figure 3-1, 
yellow background). 

 

3.1 Mutation screening, founder mutations and genotype-
phenotype correlations in MKS and associated 
ciliopathies 

MKS (1.2.2.1) and JSRD (1.2.2.2) are heterogeneous conditions (Table 1-1, 
1-2), which means that mutations in different genes can cause the same 

phenotype. They are also allelic to each other, meaning that mutations in the same 

gene can cause both phenotypes. To date, mutations in 12 genes have been 

identified to cause MKS (Table 1-1), whereas mutations in 22 genes are a cause of 

JSRD (Table 1-2). Although these genes have been screened in various cohorts by 

several different research groups, causative mutation identification was possible in 

only about 50% of investigated families. Therefore, there is still scientific and clinical 

benefit in identifying new loci linked to MKS and JSRD, as it is likely lots more 

genes will be identified as many of the new genes account for only one family 
104,105,216. 

 

3.1.1 Research rationale 

The genetic heterogeneity and phenotypic variability in MKS and JSRD have 

hindered the development of an evidence-based strategy for genetic diagnosis of 

families. To facilitate this process, the unequivocal identification of pathogenic 

variants, genotype-phenotype correlations and founder mutations in specific ethnic 

groups have important clinical utility.  

The aim of this chapter was to present a developed strategy to identify 

causative mutation in MKS/JSRD families, founder mutations and genotype-

phenotype correlations if present. The research was initially focused on MKS genes 

until, during the progress of this research, allelism for MKS and JSRD was 

demonstrated. Families with MKS and JSRD were ascertained and DNA was 

collected to form our screening patient cohort. Genotyping and sequencing were 
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started in the University of Birmingham, where the group was established, and 

carried on in the University of Leeds. 

 

3.1.2 Microsatellite screening of MKS/JSRD loci 

To identify causative mutations in 92 MKS families, genotyping analyses were 

first performed using microsatellite genetic markers. Microsatellites are short 

tandem repeats of 2 – 6 base pairs located in the non-coding part of the genome 
217,218. Genetic markers were chosen based on their close proximity to the flanking 

ends of the gene of interest, minimizing the possibility of an intervening cross-over 

event (http://genome.ucsc.edu/cgi-bin/hgGateway). Markers were also chosen for 

their high heterozygosity values so that the identification of a homozygous variant 

would be of greater significance (http://www.cephb.fr/en/cephdb/browser.php). 

Primer sequences were obtained from http://www.ncbi.nlm.nih.gov/unists/. DNA 

from affected individuals, from all available families, were genotyped for markers 

flanking eight loci of interest (Table 3-1). All collected samples were genotyped, as 

in most cases clinical notes were either incomplete or absent. Also distant 

consanguinity could not be excluded in the reported non-consanguineous cases. 

 

GENE MARKER FORWARD PRIMER (WITH 'FAM' 
DYE) REVERSE PRIMER 

MKS1 
D17S1606 TGGTATTCAATCCTGGAGC TGATGAGTCTTCATAGCCCC 
D17S1290 GCCAACAGAGCAAGACTGTC GGAAACAGTTAAATGGCCAA 

TMEM216/T
MEM138 

D11S4191 GCAAGATGGCCAATTAGAAG TTTTGGTTGGAATGTAGTTGTTTAT 
D11S4076 CATGAATGCTCTTGTCCC AACCCCCTGGAAAATAGACT 

TMEM67 
D8S1988 CCTTTGGACTCAGACCAGAA TAGTCAGAGTCCTCAGAGAAACA 
D8S1699 CAACCTGACCCTGCCA CATGATGTTCTAAGCATATCTGC 

CEP290 
D12S1719 TCCTCCAGTTTCAGTAATGTTT GGTGGTTGATGCCTGTAA 
D12S1710 AGGTTTCTGGGTTCCTGATA CCATAATCCGTAGGAGCAA 

RPGRIP1L 
D16S3034 TAATCTAGTTAAAGATGCAACTGCC GCTCAGAAGTTTTGATGCC 
D16S771 GTCCAAAACACCACCCTCTA AAGTAGATCAGTCATCTTGCTGC 

CC2D2A 
D4S1511 AGCCTCTGTAATCTTGTGTG TCCATTACTCAGGGCTCTC 
D4S2960 AAGGCTTTATCATTAAGAATCCTA TGAGGGTATAGTTACCATCTTTT 

NPHP3 
D3S1596 ATCAATGCCCTGCTCATTAC CCTGCATCATGTGCTCTC 
D3S1290 TTGCAGTAATGACCATAGGG AACACTTAGGGTAATGGGGC 

TMEM237 
D2S2309 TGTCAGGCACTTCGCTA TGCTTCTTATTGTACCCAAA 
D2S1384 AATAGAGGGCCCTTGCTTAA TTTGGGATAAAAGGTATTTTGC 

Table 3-1. Microsatellite genetic markers for the indicated MKS and JSRD 
genes. Note that TMEM216 and TMEM138 share a locus and therefore the same markers 
were used for genotyping. 

Genes with two homozygous flanking markers in a consanguineous patient 

were subsequently Sanger sequenced as they were compatible with linkage to the 

locus. In non-consanguineous siblings shared haplotypes indicated potential 

linkage and were also sequenced. The results for analysed genetic markers are 

presented in Table 3-2. 
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Physical location 
(Mbp)  52.95 53.68 59.76 61.12 93.55 96.07 85.68 88.2 51.69 53.06 14.72 16.06 133.55 134.47 202.33 204.93 

  MKS1 MKS1 TMEM216/1
38 

TMEM216/1
38 TMEM67 TMEM67 CEP290 CEP290 RPGRIP1L RPGRIP1L CC2D2A CC2D2A NPHP3 NPHP3 TMEM237 TMEM237 

  CHR.17 CHR.17 CHR.11 CHR.11 CHR.8 CHR.8 CHR.12 CHR.12 CHR.16 CHR16. CHR.4 CHR.4 CHR.3 CHR.3 CHR.2 CHR.2 

ID D17S1606 D17S1290 D11S4191 D11S4076 D8S1988 D8S1699 D12S1719 D12S1710 D16S3034 D16S771 D4S1511 D4S1567D4
S2960 D3S1596 D3S1290 D2S2309 D2S1384 

3     x x x x     x x x x x x nsd nsd 150 x x         
10     105 124 157     231 nsd nsd 272 253 150 183 233 240 nsd nsd 220     
13     105 115 155 157     235 264 278 275 257 179 233 nsd nsd 204 220     
16     107 148 161     223 233 275 278 272 277 249 253 179 183 240 245 85 114 210 195 147 
17     107 148 161     223 233 264 278 272 277 249 261 179 183 240 245 85 210 214 195 142 147 
21     x x x x     223 267 276 x x x x x x x x         
25     105 107 153 157     223 235 267 278 275 257 179 183 233 242 85 116 214 218     

29A                                 33A 
(TMEM67)                                 

36     105 128 155 157     223 225 274 278 275 253 179 233 238 85 105 214 220     36A     105 107 155 157     223 235 273 275 272 275 253 150 183 233 243 85 220 222     
39 (CEP290)     105 142     223 278 272 265 x x 239 241 84 207 213     

42     109 157     223 236 267 273 275 253 257 150 179 240 245     195 205 138 147 
43 

(TMEM138)     109 157     236 267 273 273 275 253 257 150 240 245     192 143 

70 (TMEM67)                                 
78     122 128 153 157     232 275 277 272 275 253 261 150 175 233 242 104 116 209 219     388                                

66F1 130 160 192 204 113 157     223 233 275 278 272 257 261 150 183 240 242 85 113 214 220 192 152 
66F2 165 167 192 213 107 113 157     233 275 272 277 253 264 150 183 240 242 113 116 212 220 195 142 155 
67FB                                 

51 (TMTM67)     105 130 151 157     223 225 x x 273 277
? 253? 179 240         

73 (TMEM67)                                 
76 (TMEM67)                                 

P95 
(TMEM67)                                 

102                             189 195 143 152 
103                                 244 130 191     x x x x 223 231   273 256 260             270 (MKS1)                                 

106 (MKS1)                                 
111 130 166 196 204 106 148 154 287 291 210 221 223 235 267 278 275 253 265 151 240 84 116 211     112 152 164 196 200 106 148 154 287 291 210 221 223 235 267 278 271 275 253 261 151 240 84 116 211     
115 130 158 188 192 105 113 149 159     223 238 268 273 272 257 261

? 179 233 239 84 116 219     
121 x x x x x x x x     x x x x x x x x 150 179 x x         
128 

(CC2D2A) 152 162 164 200 105 122 148 157 283 291 217 223 235 268 273 272 257 150 241         
134 154 160 184 204 105 109 155 159     233 275 272 253 150 233 241 85 114 214 224     
135 x x x x 105 115 155 x x 206 210 223 233 x x 272 257 150 243 85 216 220     
144     107 124 155     233 235 267 276 272 275 249 261 150 179 240 85 212 214     145 (BBS12)     107 124 155     229 235 269 280 272 257 261 150 179 241 249 85 214 222     
150 152 173 168 204 107 120 148 155     233 273 275 273 275 253 150 238 245         151 x x 188 200 107 109 155 157     223 238 277 272 275 261 179 233         152 154 162 188 105 120 155 157     233 275 273 275 249 253 150 179 241         
153 nsd nsd 192 204 124 126 155 157 287 291 210 233 263 272 273 275 253 261 151 184 240 242 85 105 210 214     154 (CEP290) 100 100 192 204 124 126 155 157 287 291 202 214 233 263 272 273 275 253 261 151 184 238 240 85 210     
157 130 158 188 196 105 107 153 155     223 273 278 277 257 150 233 240 85 214 220 189 192 138 147 
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Physical location 
(Mbp)  52.95 53.68 59.76 61.12 93.55 96.07 85.68 88.2 51.69 53.06 14.72 16.06 133.55 134.47 202.33 204.93 

  MKS1 MKS1 TMEM216/1
38 

TMEM216/1
38 TMEM67 TMEM67 CEP290 CEP290 RPGRIP1L RPGRIP1L CC2D2A CC2D2A NPHP3 NPHP3 TMEM237 TMEM237 

  CHR.17 CHR.17 CHR.11 CHR.11 CHR.8 CHR.8 CHR.12 CHR.12 CHR.16 CHR16. CHR.4 CHR.4 CHR.3 CHR.3 CHR.2 CHR.2 

ID D17S1606 D17S1290 D11S4191 D11S4076 D8S1988 D8S1699 D12S1719 D12S1710 D16S3034 D16S771 D4S1511 D4S1567D4
S2960 D3S1596 D3S1290 D2S2309 D2S1384 

157A         287 291 216   272 274     150 180 233 240 85 214 220     
158 

((CC2D2A) 158 162 196 124 126 148 291 295 218 223 223 267 275 272 245 265 150 245 85 116 220 222 192 147 152 

162 nsd nsd 188 196 104 120 148 156 287 291 217 219 233   272 275 245 253 150 183 233 243         163 
(TMEM216) nsd nsd 188 192 104 120 148 156 287 217 221 233   272 275 253 261 150 183 233 243     192 195 147 152 

166 
(RPGRIP1L) 154 165 196 200 107 120 148 155 288 291 212 214 223 235 267 278 275 245 253 150 240         

167 130 152 172 188 107 120 148 155 288 210 216 233 237 x x 275 253 261 150 179 238 240         168 163 168 200 105 132 155 157     233 235 274 276 272 275 257 261 150 179 240 246         169 161 165 188 192 105 148 155     235 237 269 274 273 275 249 253 150 233 239         
170 

(TMEM67)                                 
175     105 115 148 155     225 234 264 273 272 275 249 257 150 183 241 243 85 214 224 192 195 147 152 
176                                 177 

(TMEM67)                                 
178 158 192 196 107 109 157 159     233 273 276 273 275 257 150 237 241 114 116 nsd nsd     
179 154 173 192 200 122 126 148 157     223 233 267 273 273 253 257 150 183 241 x x 210 214     
180 

(CC2D2A) 163 164 113 117 148 157     233 275 272 253 150 245 85 116 210 220     
183 165 169 168 192 105 130 157 159 291 295 216 220 231 237 273 275 272 245 257 150 183 238 242 85 114 210 220     
184 130 160 196 200 122 155 288 291 221 225 225 233 264 275 272 261 150 183 233 240 112 114 214 224     
185     105 109 157 161     233 239 267 274 272 275 253 261 150 234 240 85 116 212 214     
186 

(TMEM67)                                 

202 130
? 161 196 204     292 204 216 223 237   272 277 260 151 179 96 108         

205 
(TMEM67) 149 191 208     288 216 232   272 277 253             

206 153 189 192     292 210 210 223 233   272 275 253 257 175 179 98 100 112 114 210 214     
207 

(RPGRIP1L) 155 159 184 196     284 292 216 218 223 237   275 257             
210 130 155 192 200     288 214 216 223 238 271 278 275 253 151 96 100 85 210 224     239 (CEP290) 163 165 199 200     284 288 216 219 223 238 x x 272 275 253 179 183 98 100 85 103 nsd nsd     
211 161 163 188     288 292 x x 223 233   272 275 249 253     85 113 214 220     212 153 161 188 192     288 296 x x 223 233   275 249 253     85 113 nsd nsd     
243 130 152 167 183     286 213 222 223 233   274 276 253 256 151 179 98 100 105 114 214 220     252 (NPHP3) 130 152 167 183     286 294 211 217 233   272 276 253 256 151 98 105 114 214 220     
217 161 163 188 208     292 210 216 223 231   271 273 249 253 151 183 100 108 85 210 224     
218 157 159 200 204     288 292 214 217 223 233   275 261 264 151 179 96 98 105 116 210 220 192 195 152 
219                                 
221 160 162 192 196     288 292 214 216 233   271 275 x x 151 183 96 106 85 116 210 220     272 130 165 191 199     282 286 216 223 233   271 260 267 nsd nsd 245 85 nsd nsd     
222 161 200     284 288 210 212 223 233   271 273 253 151 179 98 100 85 105 210     
227 130 167 195     286 290 210 216 223 233   271 273 260 263 151 96 85 116 214     
230 152 156 171 195     286 290 212 224 223 233   271 252 260 150 240 245 85 208 195 147 164 
231 165 170 187 195     286 208 214 223 233   271 274 248 252 151 183 98 85 212 214 195 143 152 
256 159 161 196 200     280 288 212 214 235 266 271 275 253 257 x x 98 105 116 nsd nsd     
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Physical location 
(Mbp)  52.95 53.68 59.76 61.12 93.55 96.07 85.68 88.2 51.69 53.06 14.72 16.06 133.55 134.47 202.33 204.93 

  MKS1 MKS1 TMEM216/1
38 

TMEM216/1
38 TMEM67 TMEM67 CEP290 CEP290 RPGRIP1L RPGRIP1L CC2D2A CC2D2A NPHP3 NPHP3 TMEM237 TMEM237 

  CHR.17 CHR.17 CHR.11 CHR.11 CHR.8 CHR.8 CHR.12 CHR.12 CHR.16 CHR16. CHR.4 CHR.4 CHR.3 CHR.3 CHR.2 CHR.2 

ID D17S1606 D17S1290 D11S4191 D11S4076 D8S1988 D8S1699 D12S1719 D12S1710 D16S3034 D16S771 D4S1511 D4S1567D4
S2960 D3S1596 D3S1290 D2S2309 D2S1384 

257 159 161 196 200     280 288 212 214 235   271 275 253 257             258 159 161 192 196     280 212 214 223 235 nsd nsd 275 277 257 151 98 100 116 nsd nsd     
242 156 161 179 187     286 290 210 213 233 271 274 275 256 260     85 218 224     
247 129 199     288 196 208 223 231   271 273 264 179 98 85 113 214 224     
250 129 158 183 199     284 292 216 222 223 233   271 256 151 98 85 105 214     251 

(TMEM67) 129 158 187 199     292 214 222 223 233   271 273 252 256 151 96 98 85 210 226     
255 161 163 187     x x 210 222 223 236   273 275 260 263 151 175 96 105 116 210 214     
261 

(TMEM237) 156 160 195 199     286 216 220 233 273 271 275 252 259 151 180 243 85 116 216 220 196 147 

264 (MKS1) 168 170 187     286 211 218 223 233   271 252             
269 164 166 167 199     x x x x 221   274 276 255 259 180 240 85 114 214 226     
276 152 167

? 168 188     287 291 214 216 223 233 273 280 272 274 253 261 151 98 116 118 nsd nsd 191 195 138 142 

277 154 160
? 184 188     287 294 214 218 223 237 264 273 272 274 253 257 151 98 nsd nsd 218 222 195 143 156 

281                                 
284 130 188 192     287 208 218 233 271 273 276 253 257 151 96 98 105 113 220 224     
287 152 159

? 188     287 290 214 222 223 237 271 275 272 276 261 151 98 85 113 220 222     
290 159 168     287 214 218 223 237 273 276 257 261 151 96 98 85 116 210 214     

292 (CEP290) 156 165 188 192 107 155 283 287 206 218 223 275 272 276 253 150 150 232 239         
295 133 165 172 188

? 122 Nsd 287 294 208 210 231 264 273 273 275 253 257 151 98 85 116 210 224     
296 

(TMEM67) 153 159 204 105 111 142 156 290 218 223 235 278 275 257 261 151 179 108 84 212 222     
302 

(TMEM67) 161 165 200 107 126 154 158 291 293 204 212 233 278 280 275 279 245 249 150 175 238 240 84 104 214 220     
308 x x x x x x x x x x x x x x x x x x x x x x x x         
311                                 
319 

(TMEM67) 152 164 168 172 105 124 148 158 291 208 225 233 X x 273 275 253 257 150 239 241 210 214 98 105     
324 158 164 200 204 104 114 157 288 291 208 210 233 235 267 273 272 253 257 151 179 238 112 120 216 222     325 130 164 176 204 121 155 291 208 216 223 233 267 273 272 274 253 168 179 x x 84 114 214 222     326 157 163 192 204 104 121 155 157 291 208 214 223 235 267 272 245 253 168 179 x x 114 116 222     
330 162 164 196 204 109 113 154 156 291 223 233 274 x x 249 257 150 233 240 84 214 222     

333 (CEP290) 152 162 192 200 104 148 288 291 214 233 274 271 253 257 137 177 x x 104 116 212 224     
336 

(RPGRIP1L) 130 196 105 111 156 291 223 233 237 276 278 272 253 150 183 240 108 214     
347 

(TMEM67) 157 159 187 191 104 152 156 287 208 232 234 266 272 271 275 256 150 183 232 241 84 116 219 221     
351 152 187 191 104 124 154 164 280 287 220 222 222 234 266 272 273 275 256 260 183 237 84 116 209     352 (ALG9) 152 158 187 104 124 152 156 287 291 212 218 222 234 266 272 271 273 253 260 179 183 237 84 114 209 215     
353 nsd nsd x x 104 142 nsd nsd 210 230 235 270 nsd nsd x x nsd nsd 236 85 221     
360 127 153 191 199 118 120 154 283 287 214 220 232 240 274 271 252 260 nsd nsd 238 242 nsd nsd 219 221     
361 nsd nsd 191 195 104 126 154 287 291 210 220 nsd nsd 268 272 nsd nsd 248 268 150 182 238 84 104 213 219     
366 159 169 nsd nsd x x x x 287 218 232 236 263 281 272 274 252 150 174 235 242 nsd nsd 221 223     
368 153 165 x x nsd nsd 148 158 287 216 x x 258 263 nsd nsd 252 260 nsd nsd x x 84 116 nsd nsd     
377 129 161 nsd nsd 112 118 nsd nsd 287 291 216 220 232 266-?278 nsd nsd 248 264 150 238 116 213     
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Physical location 
(Mbp)  52.95 53.68 59.76 61.12 93.55 96.07 85.68 88.2 51.69 53.06 14.72 16.06 133.55 134.47 202.33 204.93 

  MKS1 MKS1 TMEM216/1
38 

TMEM216/1
38 TMEM67 TMEM67 CEP290 CEP290 RPGRIP1L RPGRIP1L CC2D2A CC2D2A NPHP3 NPHP3 TMEM237 TMEM237 

  CHR.17 CHR.17 CHR.11 CHR.11 CHR.8 CHR.8 CHR.12 CHR.12 CHR.16 CHR16. CHR.4 CHR.4 CHR.3 CHR.3 CHR.2 CHR.2 

ID D17S1606 D17S1290 D11S4191 D11S4076 D8S1988 D8S1699 D12S1719 D12S1710 D16S3034 D16S771 D4S1511 D4S1567D4
S2960 D3S1596 D3S1290 D2S2309 D2S1384 

378 129 157 x x 108 120 148 154 291 294 216 212 230 232 268 274 272 274 x x 150 178 238 84 213 219     
Table 3-2. Table of genotyping results for MKS and JSRD genes for affected individuals and patients - MKS1, TMEM216/TMEM138, TMEM67, 

RPGRIP1L, CEP290, CC2D2A, NPHP3 and TMEM237. In the ID column patients are allocated a number to anonymize identity and are highlighted in red if a 
causative mutation has been identified (presented in brackets). Affected siblings are grouped in the same row. Consanguineous patients are indicated by 
underscoring ID number. Each column give genotyping data for a single microsatellite marker with the genetic distance, gene under investigation, 
chromosome and marker name listed in rows. In each column, pink highlighting indicates a locus with causative mutation(s) identified, yellow indicates 
potential linkage to the locus, vertical lines indicate linkage excluded previously by other researchers, and horizontal lines indicate excluded linkage based on 
Sanger sequencing data; Abbreviations: 'x' : genetic marker size could not be interpreted or there was no signal for that sample; 'nsd' no sizing data-(due to 
poor quality or no ladder was added, therefore the size of the PCR product could not be determined). Blank boxes indicate that genetic markers were not 
analysed for that sample. 
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3.1.2.1 Genotyping – results 

 MKS1 TMEM216/TMEM138 TMEM67 CEP290 RPGRIP1L CC2D2A NPHP3 TMEM237 

Linkage excluded by 

genotyping 
69 19 46 71 70 48 66 7 

Linkage excluded by 

sequencing 
23 54 35 5 8 18 2 63 

Linked to the locus and 

mutation confirmed 
6 4 19 7 3 3 2 1 

Linked to the locus but 

mutation excluded 
5 11 5 12 15 21 3 2 

Linked to the locus but not 

sequenced yet 
0 1 1 5 1 3 6 0 

Not analysed or didn’t work 19 33 16 22 25 29 43 49 

Table 3-3. Summary of the genotyping results in Leeds MKS/JSRD patient cohort. 
The table summarizes the numbers of families with/without linkage to particular loci. 

Genotyping allowed exclusion of 396 cases from sequencing (Table 3-3), bearing 

in mind that about a fifth of markers were not genotyped because the PCR reaction 

failed or the data was not interpretable. TMEM216/TMEM138 and TMEM237 were 

reported as a novel genes involved in MKS/JSRD by Prof. Colin Johnson’s group (Dr 

Clare Logan and Katarzyna Szymanska, respectively) and they were first Sanger 

sequenced in the whole MKS/JSRD cohort. Sequencing the NPHP3 gene was not 

feasible, and all reported mutations were kindly provided by collaborator Prof. 

Friedhelm Hildebrandt (University of Michigan). Mutations in this gene have been 

reported to be a cause of so-called “Meckel-like syndrome”, characterised by polycystic 

kidneys and liver fibrosis 103. 

 

3.1.3 Sequencing of MKS/JSRD cohort 

Samples, where genotyping analysis showed compatible linkage to MKS/JSRD 

loci, were taken forward for direct sequencing. This analysis focused on the seven 

most frequently mutated genes in MKS/JSRD 111: MKS1, TMEM216, TMEM67, 

CEP290, RPGRIP1L, CC2D2A and TMEM237. TMEM138, the JSRD16 gene was also 

sequenced. Three remaining genes (TCTN2, B9D1 and B9D2) have only reported 

private mutations in single families 104,105,216 and were therefore not further investigated.  
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All known coding exons and additionally known intronic founder mutation in 

CEP290 were Sanger sequenced for all the genes (Table 2-3 and Appendix 2). Once 

a putative mutation was identified, the variant was first checked for segregation in the 

remaining family members if available. If the change was not previously reported in the 

literature it was checked for presence in the dbSNP, EVS and 1000Genome datasets, 

and sequenced in a cohort of the best available ethnically-matched controls (n=96). 

Pathogenicity of novel missense mutations was determined using online tools: 

PolyPhen2 212, MutationTaster 219 and SIFT 213.  

 
3.1.3.1 Sequencing results 

To define the allelic series of pathogenic mutations for eight known MKS/JSRD 

genes, a cohort of 87 separate individuals affected with MKS/JSRD were screened. 

This group included all patients compatible with linkage to a particular locus (Table 3-2) 

and all non-consanguineous singletons. A total of 49 consanguineous and 18 non-

consanguineous families were sequenced. Biallelic mutations were identified in 25 

consanguineous and 13 non-consanguineous families (Table 3-4), including a total of 

18 previously unreported mutations 111.  

 

SAMPLE MUTATION PHENOTYPE 

ID ETHNICITY GENE ALLELE 1 ALLELE 2 OE PK PD DPM CLP DWM OTHER 

CONSANGUINEOUS 

102+ 
103+ 

244+ 270 
Pakistani MKS1 c.1448_1451dupCAGG c.1448_1451dupCAGG + + +  +  

Short neck, low set 
ears, bilateral 

talipes, syndactyly, 
micropenis, situs 

inversus, 
congenital heart 

defect inc. 
dextrocardia, short 
femurs and short 
spindle-shaped 
tibiae, deformed 

tongue 

264 Jordanian MKS1 c.1408-35_1408-
6del30N 

c.1408-35_1408-
6del30N       

diagnosed with 
MKS 

42+ 43 Pakistani TMEM138 c. A287G p.H96R c. A287G p.H96R + +  +    

29A+ 33A Pakistani/ 
Mirpuri TMEM67 c.1575+1G>A c.1575+1G>A + + + +    

70 Pakistani/ 
Mirpuri TMEM67 c.1575+1G>A c.1575+1G>A  +    +  

76 Pakistani/ 
Mirpuri TMEM67 c.1575+1G>A c.1575+1G>A + +      

77117 Pakistani TMEM67 c.1575+1G>A c.1575+1G>A       
diagnosed with 

MKS 

51 Pakistani/ 
Mirpuri TMEM67 c.870-2A>G c.870-2A>G +       

73 Pakistani/ 
Mirpuri TMEM67 c.870-2A>G c.870-2A>G + +  +    
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SAMPLE MUTATION PHENOTYPE 

ID ETHNICITY GENE ALLELE 1 ALLELE 2 OE PK PD DPM CLP DWM OTHER 

319 British TMEM67 c.1321C>T p.R441C c.1321C>T p.R441C  +  +   

some dilation of 
pancreatic ducts, 
hydrocephalus, 

posterior fossa cyst 

347 Pakistani TMEM67 c.1321C>T p.R441C c.1321C>T p.R441C       
diagnosed with 

MKS 

67FB Pakistani TMEM67 c.647delA, 
p.E216fs*221 

c.647delA, 
p.E216fs*221 + +  + +   

P95 Pakistani TMEM67 c.1127A>C p.Q376P c.1127A>C p.Q376P + +  +    

125 Omani TMEM67 c.383_384delAC 
p.H128fs*140 

c.383_384delAC 
p.H128fs*140 + + +   +  

170 Turkish TMEM67 c.1674+1G>AN c.1674+1G>AN       
diagnosed with 

MKS 

205 Chinese TMEM67 c.1645C>T p.R549CN c.1645C>T p.R549CN  +  +   

hypoplastic 
cerebellum, small 

fourth ventricle with 
large cisterna 
magna, small 

defect in superior 
aspect of occipital 

bone 

C28 Pakistani TMEM67 c.274G>A p.G92RN c.274G>A p.G92RN       
MTS, coloboma, 

mental retardation 

39 Pakistani/ 
Mirpuri CEP290 c.1429C>T p.R477*N c.1429C>T p.R477*N  +  +    

292 Pakistani CEP290 c.954delT 
p.S318fs16*N 

c.954delT 
p.S318fs16*N +       

333 Pakistani CEP290 c.5744insT 
p.G1915Ffs*1N 

c.5744insT 
p.G1915Ffs*1N +       

207 Pakistani RPGRIP1L c.1945C>T p.R649*N c.1945C>T p.R649*N + + +    small cerebellum 

336 Pakistani RPGRIP1L c.1945C>T p.R649*N c.1945C>T p.R649*N       
diagnosed with 

MKS 

158 Pakistani CC2D2A c.3540delA 
p.R1180Sfs*6N 

c.3540delA 
p.R1180Sfs*6N + + + + +  

low set ears, 
pulmonary 
hypoplasia, 

intestinal 
malrotation, 

markedly enlarged 
pancreas- irregular 
ducts on histology, 
brain shows dilated 
fourth ventricle with 
small cerebellum, 
poorly developed 
pyramidal tracts 

and some possible 
dysplasia in the 
basal ganglia 

180 Pakistani CC2D2A c.3540delA 
p.R1180Sfs*6N 

c.3540delA 
p.R1180Sfs*6N + + +   +  

261 Jordanian TMEM237 c.1066_1067dupC 
p.Q356Pfs*23 

c.1066_1067dupC 
p.Q356Pfs*23       

maningomyelocele, 
developmental 
delay, cortical 

visual impairment 

178 Pakistani/ 
Mirpuri TMEM67 c.1645C>T p.R549CN not detected       

diagnosed with 
MKS 

16+17 Pakistani CC2D2A c.685_687delGAA 
p.E229del not detected  +  +    

66F1+ 
66F2 Pakistani CC2D2A c.685_687delGAA 

p.E229del not detected + + + +   

Absent uterus, 
micrognathia, 

bilateral talipes, 
low set ears, wide 

spread eyes 

NON-CONSANGUINEOUS 
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SAMPLE MUTATION PHENOTYPE 

ID ETHNICITY GENE ALLELE 1 ALLELE 2 OE PK PD DPM CLP DWM OTHER 

106 British MKS1 c.1408-35_1408-
7del29 

c.1408-35_1408-
7del29 + + + +    

77172 Finnish MKS1 c.1408-35_1408-
7del29 

c.811delC 
p.H271fs*29N       

diagnosed with 
MKS 

74699 British MKS1 c.1408-35_1408-
7del29 

c.1408-35_1408-
7del29       

diagnosed with 
MKS 

162+ 163 British TMEM216 c.253C>T p.R85*† c.253C>T p.R85*† + + + + +  

facial 
dysmorphism, 

postural 
deformities of 
limbs, small 

perimembranous 
ventricular septal 
defect, intestinal 

malrotation 

176+ 177 British TMEM67 c.1426C>T p.P476S†† c.2440-3C>A + + + +   

flexion deformity of 
elbows and wrists, 

low set ears 

186 British TMEM67 c.755T>C p.M252T c.653G>T p.G218V + +      

302 British TMEM67 c.755T>C p.M252T c.651+5G>A 
p.V217VfsN  +  +  + agenesis of corpus 

callosum 

83527 Norwegian-
Indian TMEM67 c.755T>C p.M252T c.2882C>A p.S961YN + +  +    

74406a+ 
b  TMEM67 c.1351C>T p.R451* c.2018T>A p.V673A  +  +   

mental retardation, 
retinal coloboma 

210+ 239 Dutch CEP290 c.679_680delGA 
p.E227Sfs*2 c.1984C>T p.Q662*  +  +  + 

abnormal 
cerebellum, wide 

nasal bridge, 
extended 

abdomen, situs 
inversus throracul 
and abdominal, 

intestinal rotation, 
small bladder, 
uterus duplex 

153+ 154 French CEP290 c.2251C>T p.R751* c.4864insTdelCG 
p.R1622Ffs*9N  +      

166 British RPGRIP1L c.1829A>C p.H610P c.721_724delAATG 
p.N241fs*25 + + +   +  

128 British CC2D2A c.3544T>C p.W1182R c.3774_3774insT 
p.E1259fs*1       

diagnosed with 
MKS 

36+ 36A Pakistani/ 
Gujarati RPGRIP1L c.466C>T p.R156C*N not detected + +      

111+ 112 Portuguese CEP290 c.1451delA p.K484fs*8 not detected + + +     

202 British CC2D2A c.685_687delGAA 
p.E229del** not detected + +     

craniofacial 
abnormalities 

related to 
oligohydramnios, 

bone-cartilage 
junctions showed 

disarray 

Table 3-4. Clinical data and sequencing results of consanguineous and non-
consanguineous patients with MKS and MKS-like phenotypes. Abbreviations: OE: occipital 
encephalocele, PK: polycystic kidneys, PD: polydactyly, DPM: ductal plate malformation, CLP: 
cleft lip/palate, DWM: Dandy-Walker malformation; + indicates the presence of a clinical feature. 
* in cis with c.3790G>A het p.D1264N, ** in cis with c.3893T>A p.V1298D; † p.R85* allele was 
present in 2/10266 European/African/American controls in European Variant Server  (EVS) 
database, †† p.P476S allele present in 6/7012 European/American controls (EVS), ††† p.R208* 
allele present in 8/7012 European/American controls (EVS). Remaining changes are excluded 
in about 10000 European/African/American controls (EVS). N indicates novel variants. 
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3.1.3.2 Genotype – phenotype correlations 

There are previous reports of genotype-phenotype correlations in MKS 110,220,221. 

Some of these correlations were confirmed with the available clinical data for this 

cohort of MKS patients. Occipital encephalocele and polycystic kidneys were almost 

obligatory features for all patients. Individuals with TMEM67 mutations frequently had a 

diagnosis of ductal plate malformation in the liver (n=10/19), but polydactyly was 

infrequent (n=3/19) compared to RPGRIP1L and CC2D2A mutated individuals (n=4/6; 

p<0.001, chi-squared test). The Dandy-Walker malformation (or a posterior fossa 

defect) was occasionally observed in patients with TMEM67 mutations (n=3/19). 

Retinal colobomata were only observed for TMEM67-mutated individuals (n=2/19). 

Furthermore, situs or gut malrotation defects were never caused by TMEM67 

mutations (n=0/19), in contrast to the occasional manifestation of these clinical features 

with MKS1, TMEM216, CEP290 or RPGRIP1L mutations (n=4/17; p<0.05, chi-squared 

test). 

 

3.1.3.3 Conclusions about sequencing analysis 

Mutation analysis in MKS/JSRD cohorts suggested that some common mutations 

have arisen from probable founder effects. These observations will allow initial 

prioritization of gene and exon screening in affected patients. Patients diagnosed with 

MKS, particularly those with the additional features of ductal plate malformation and/or 

retinal coloboma, should be tested for TMEM67 mutations. Mutations in this gene are 

the most common cause of these clinical features and, in any case, MKS mutations are 

most frequent in this gene. In families of Pakistani origin, the TMEM67 splice-site 

mutations c.1546+1G>A and c.870-2A>G should be prioritized. In addition, screening 

for missense mutations between amino acid residues 250 to 570 would detect a third 

(n=10/29) of all of the TMEM67 mutations in this cohort and would involve sequencing 

10 out of 28 exons only. It is likely that missense or nonsense mutations of conserved 

arginine residues in this region (for example, R441C, R451* and R549C), may indicate 

this protein region to be a mutational hotspot. In Pakistani families, the probable 

founder mutations RPGRIP1L c.1945C>T p.R649* and CC2D2A c.3540delA 

p.R1180Sfs*6 should also be prioritised. For families of northern European (including 

British) origin, testing the TMEM67 missense mutation p.M252T may be useful, but the 

most common mutation observed was the MKS1 “Finn major” mutation 222 (identified 

initially in the Finnish population). The results demonstrate the broad phenotypic 

variability in MKS and the lack of clear genotype-phenotype correlations to guide 
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diagnostic choices. Furthermore, some MKS mutations, such as the TMEM67 p.R440Q 

missense mutation, are allelic for JSRD and other ciliopathies. For one patient, the 

phenotypic and genetic overlap between MKS and JSRD enabled the correct allocation 

of the causative mutation and the diagnosis. Patient 319 was originally reported as a 

MKS case and compatible with linkage to the TMEM67 locus. Screening of the gene 

identified a homozygous mutation in TMEM67, and additional detailed follow-up of 

clinical features for this patient allowed re-diagnosis for JSRD. 

 

3.1.4 Characterisation of an allelic series in TMEM67 
The most commonly mutated gene in MKS is TMEM67. Mutations in this gene 

cause not only MKS but are also reported in patients with JSRD, NPHP, SLS and may 

contribute to the BBS phenotype. A summary of the variants in this genes, that are 

potentially pathogenic is therefore a valuable clinical and diagnostic resource. 

The TMEM67 protein (also known as meckelin) contains a signal peptide at the 

N-terminus, followed by a cysteine rich domain, a predicted beta-sheet structure, seven 

predicted transmembrane helices and a coiled-coil domain at the C-terminus (Figure 3-
3) 163. The protein is highly conserved across species and its orthologue is found in D. 

melanogaster (Figure 3-2). To assess its conservation and identify functional domains 

ClustalX analyses were performed. Multiple orthologous sequences of TMEM67 were 

aligned, and functional domains were identified as presented in Figure 3-2 by regions 

of amino acids sharing similar physicochemical properties. Missense mutations have 

also been overlaid on the ClustalX alignment in Figure 3-2, which allows an 

assessment of the degree of conservation for the mutated amino acids.  

The positions of all reported mutations in TMEM67 are presented in Figure 3-3. 

These mutations appear to be fairly evenly spread across the coding regions of the 

gene. However, missense mutations in the cysteine-rich domain are only observed in 

JSRD patients (Figure 3-3, mutations coloured green with the exception of S245F and 

M252T that are also reported in MKS). MKS mutations are grouped mainly in the 

cysteine-rich domain and the C-terminus of the protein (amino acids 128-252 and 786-

979, respectively). Mutations reported in the JSRD group are localized to the amino 

acids 82-213 and 637-964, whilst NPHP mutations (coloured blue) are spread 

infrequently but evenly across the protein. BBS changes (grey) are only reported in the 

heterozygous state and are suggested to contribute to the BBS phenotype as potential 

modifier alleles rather than cause of the phenotype. Only one change (D430G) was 

reported to cause SLS (black). Mutations in the regions amino acids 82-110 and 670-

728 appear to be specific to JSRD patients.  
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This summary of all known and reported mutations in TMEM67 were collected 

and submitted as an update to the LOVD (Leiden Open Variation Database), an open 

source DNA variation database system (http://www.lovd.nl/3.0/home). This databse is 

free access and uses a standard nomenclature for the unambiguous reporting of 

variants and mutations that is approved by the Human Genome Variation Society. The 

summary of the mutations, and the primary publications that reported them, are 

presented in Table 3-5. 
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T372L Q376P; Q376E D430G R440Q 
R441C; R441L 

D446H 
G450A 

P476S P485S 
V445A 

D110Q P130R R172Q R213C G218A L16F Y54C P82S 
P82R 

G92R K99N 

N242T 
S245F M252T 

M257V 
W290L W296C S320C K329T 

L349S 
P358L 
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Figure 3-2. ClustalX analysis of the TMEM67 protein. Pink bars indicate transmembrane domains, yellow bar – signal peptide, red arrows indicate 
human TMEM67 sequence. Missense mutations are placed above the sequences. In the alignment cyan colour represents conserved non-polar residues; 
green = polar; red = basic; purple = acidic; orange = Glycine a non chiral amino acid; yellow = Proline amino acid. Abbreviations for other animal species with 
TMEM67 sequences aligned here: TRTCR- Trypanosoma cruzi, 9TRYP- Trypanosoma brucei brucei, LEIIN – Leishmania infantum, LEIDO – Leishmania 
donovani, LEIMA – Leishmania major, LEIME – Leishmania mexicana, MICSR – Micromonas sp., MICPC – Micromonas pusilla, PARTE – Paramecium 
tetraurelia, CAERE – Caenorhabditis remanei, CAEEL – Caenorhabditis elegans, OIKDI - Oikopleura dioica, DANRE – Danio rerio, BRAFL – Brachiosotma 
floridae, NEMVE – Nematostella vectensis, PEDHC – Pediculus humanus subsp. corporis,  DROME – Drosophila melanogaster, DROSI – Drosophila 
simulans, DROER – Drosophila erecta, DROYA – Drosophila yakuba, DROAN – Drosophila ananassae, DROPS – Drosophila pseudoobscura 
pseudoobscura, DROWI – Drosophila willistoni, DROVI – Drosophila virilis, CULQU – Qulex quinquefasciatus, DAPPU – Daphnia pulex, VOLCA – Volvox 
carteri, PHYIN - Phytophthora infestans, TRIVA – Trichomonas vaginalis.

Q841P 
I833T Y843C F942C 

Y513C G545E R549C F590S C615R F637L 

TM1 TM2 TM3 

S961Y 
T964I 

L966P 
G979R 

W668R V673A D711A Y723C S728G G786E 
H782R 

R820S 
R792G 

G821S 

TM4 TM5 TM6 

TM7 
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Figure 3-3. Summary of all reported TMEM67 mutations, the clinical phenotype and 

the position in relation to domains in the TMEM67 protein. The mutations are represented 
as predicted functional changes at the protein level. Red, mutations causing MKS; green, JSRD 
and COACH; blue, NPHP; grey, reported in BBS; black, SLS. Yellow block (SP), signal peptide; 
Orange (CRD), cysteine rich domain; black (TM), transmembrane domain. Grey blocks indicate 
a predicted beta-sheet region. 
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 DNA change (cDNA) Published as Protein Variant remarks Reference dbSNP ID 
1 c.46C>T c.46C>T p.L16F p.(Leu16Phe) 1 European family with NPHP (het) Helbritter et al.2012  1 c.130C>T c.130C>T p.Q44* p.(Gln44*) 1 family with JSRD (com-het with c.2461G>C) Chaki et al.2011  1 c.161A>G c.161A>G p.Tyr54Cys p.(Tyr54Cys) 1 European MKS family (com-het) Tallila et al. 2009 - 

1i c.224-2delA IVS1-2delA; 224del89; 
G75fs*89 p.(Gly75Glufs*15) 1 German-Polish MKS family (com-het), 1 family with JS (com-

het with c.1843T>C) 
Consugar et al. 2007, 

Gunay-Aygun et al. 2009 - 

2 c.244C>T c.244C>T p.P82S p.(Pro82Ser) 1 American family with JSRD (com-het with c.579_580delAG) Doherty et al.2010  2 c.245C>G c.245C>G p.P82R p.(Pro82Arg) 1 American family with COACH (com-het with c.755T>C) Doherty et al.2010  2 c.274G>A c.274G>A p.G92R p.(Gly92Arg) 1 Pakistani family with JSRD (hom) Szymanska et al.2012  2 c.297G>T c.297G>T p.K99N p.(Lys99Asn) 1 American family with COACH (com-het with c.2322+3insT) Doherty et al.2010  2 c.300C>A c.300C>A p.C100* p.(Cys100*) 1 American family with COACH (com-het with c.2498T>C) Doherty et al.2010  
2i c.312+5G>A c.G312+5G>A p.? 1 Croatian family with COACH (com-het with c.2498T>C) Brancati at al.2009  3 c.329A>G c.329A>G p.D110G p.(Asp110Gly) 1 Japanese family with JSRD (com-het with c.2322+5delG) Tsurusaki at al.2012  
3 c.383_384delAC 383-384delAC H128fs*140 p.(His128Leufs*13) 1 Omani MKS family (hom), 1 Omani MKS family (hom) Smith et al. 2006, 

Szymanska et al.2012 - 

3 c.387T>A c.387T>A p.C129* p.(Cys129*) 1 Italian MKS family (com-het) Iannicelli et al. 2010 - 

3 c.389C>G c.389C>G p.P130R p.(Pro130Arg) 1 American family with COACH (com-het with c.675G>A) Brancati at al.2009, Doherty 
et at.2010  

4i c.507-3C>A c.507-3C>A Splicing p.? 1 British family with MKS (com-het with c.2935G>A) Szymanska et al.2013  5 c.515G>A c.515G>A p.R172Q p.(Arg172Gln) 1 American family with COACH (com-het with c.769A>G) Doherty et al.2010  
5i c.576+2T>G IVS6+2T>G p.? 1 French family with JS (com-het with p.G545E and 

p.Q747fs*761) Baala et al.2007  

6 c.579delA 579delA T193fs*221 p.(Gly195Aspfs*27) 2 European MKS families (1 hom and 1 com-het) Consugar et al. 
2007, Iannicelli et al. 2010 - 

6 c.579_580delAG c.579_580delAG 
p.G195Ifs*13 p.(Gly195Ilefs*13) 

1 Moroccan MKS family (hom), 1 Italian family with COACH 
(com-het with c.1769T>C), 1 American family with COACH 

(com-het with c.244C>T) 

Brancati et al.2009, Iannicelli 
et al. 2010, Doherty et 

al.2010 
- 

6 c.622A>T 622A>T R208* p.(Arg208*) 

4 European MKS families (all com-het), 1 American family with 
COACH (com-het with c.2522A>C), 2 German families with 

JSRD (com-het with c.2168A>G, com-het with c.1843T>C), 1 
Italian family with SLS (com-het with c.1289A>G), 1 German 

family with NPHP (com-het with c.2498T>C), 1 family with MKS 
(com-het with c.2168A>G), 1 family with JSRD (com-het with 
c.2498T>C), 1 family with JSRD (com-het with c.622A>T), 1 

family with JSRD (com-het with c.1843T>C) 

Consugar et al. 
2007, Kahaddour et al. 

2007,Doherty et al.2010, 
Otto et al.2011, Chaki et 

al.2011, Halbritter et al.2012 

rs137853108 

6 c.637C>T c.637C>T p.Arg213Cys 1 French family with JS (com-het with c.2131A>C) Baala et al.2007  
6 c.648delA c.647delA E216fs*221 p.(Val217Leufs*5) 1 Pakistani MKS family (hom), 1 Pakistani MKS family (hom) Smith et al. 2006, 

Szymanska et al.2012 - 

6  p.G218A p.(Gly218Ala) 1 family with BBS (het in cis with p.(S320C), CEP290 p.E1903* 
(hom)) Leitch et al. 2008  

6i c.651+2T>G c.651+2G>T Splicing p.? 1 French MKS family (com-het) Kahaddour et al. 2007 - 
6i c.651+5G>A c.651+5G>A p.V217Vfs p.? 1 British family with MKS (com-het with c.755T>C) Szymanska et al.2012  
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 DNA change (cDNA) Published as Protein Variant remarks Reference dbSNP ID 

7 c.675G>A c.675G>A p.W225* p.(Trp225*) 
1 Italian MKS family (com-het), 1 Italian family with COACH 

(com-het with c.389C>G), 1 American family with COACH (com-
het with c.389C>G) 

Brancati at al.2009, Iannicelli 
et al. 2010, Doherty et 

al.2010 
- 

7 c.725A>G c.725A>G p.N242T p.(Asn242Thr) 1 American family with COACH (hom) Doherty et al.2010  
7 c.734C>T c.734C>T p.Ser245Phe p.(Ser245Phe) 1 European MKS family (com-het) Tallila et al. 2009 - 

7 c.755T>C 755T>C M252T p.(Met252Thr) 

5 European MKS families (all com-het), 2 American families with 
COACH (het, com-het with c.245C>G), 3 German families with 
JSRD (com-het with c.1843T>C, com-het with c.2498T>C), 2 

British families with MKS (com-het with c.653G>T, com-het with 
c.651+5G>A), 1 Norwegian-Indian family with MKS (com-het 

with c.2882C>A), 3 families with JSRD (com-het with 
c.1843T>C), 1 family with JSRD (com-het with c.2498T>C) 

Consugar et al. 
2007, Kahaddour et al. 

2007, Tallila et al. 
2009,Iannicelli et al. 2010, 
Doherty et al.2010, Otto et 
al.2011, Chaki et al.2011, 

Szymanska et al.2012 

- 

7 c.769A>G c.769A>G p.M257V p.(Met257Val) 1 American family with COACH (com-het with c.515G>A) Doherty et al.2010  
8 c.869G>T c.869G>T p.W290L p.(Trp290Leu) 1 German family with NPHP (com-het with c.1843T>C), 1 family 

with NPHP/JSRD (com-het with c.1843T>C) 
Otto et al. 2009, Chaki et 

al.2011  

8i c.870-2A>G INV8-2A>G; c.870-2A>G 
Splice change p.? 1 Pakistani MKS family (hom), 1 Pakistani MKS family (hom), 2 

Pakistani families with MKS (hom) 

Smith et al. 2006, Kahaddour 
et al. 2007, Szymanska et 

al.2012 
- 

9 c.888G>T c.888G>T p.Trp296Cys p.(Trp296Cys) 1 European MKS family (com-het) Tallila et al. 2009 - 

9 c.958A>T c.958A>T p.S320C p.(Ser320Cys) 1 family with BBS (het in cis with p.(G218A), CEP290 p.E1903* 
(hom)) Leitch et al. 2008 rs111619594 

9i c.978+3 A>G c.978+3 A>G p.? 1 American family with COACH (com-het with c.2825T>G) Doherty et al.2010  
10 c.986A>C c.986A>C p.K329T p.(Lys329Thr) 1 American family with JSRD (com-het with c.2556+1G>A), 1 

family with JSRD (com-het with c.2556+1G>A) 
Otto et al.2011, Chaki et 

al.2011  

10 c.1046T>C c.1046T>C p.L349S p.(Leu349Ser) 

2 French (com-het) and 1 Algerian MKS family (hom), 2 
American families with COACH (com-het with c.2498T>C, com-
het with 1843T>C), 1 German family with JSRD (com-het with 

c.1843T>C), 1 family with JSRD (com-het with c.1843T>C) 

Kahaddour et al. 
2007, Iannicelli et al. 2010, 
Doherty et al.2010, Otto et 
al.2011, Chaki et al.2011 

- 

10i c.1065+1delG c.1065+1delG splice p.? 1 Palestinian MKS family (hom) Kahaddour et al. 2007 - 
11 c.1073T>C c.1073T>C p.P358L p.(Pro358Leu) 1 American family with COACH (com-het with c.2661+5G>A) Doherty et al.2010  11 c.1083G>T c.108G>T p.E361* p.(Glu361*) 2 American family with COACH (com-het with c.1911A>C) Doherty et al.2010  
11 c.1115C>A c.1115C>A p.T372K p.Thr372Lys 1 Italian family with COACH (com-het with c.2345A>G), 1 

American family with COACH (hom) 
Brancati at al.2009, Doherty 

et al.2010  
11 c.1126C>G c.1126C>G p.Q376E p.(Gln376Glu) 1 American family with COACH (com-het with c.1674+3A>G) Doherty et al.2010  
11 c.1127A>C c.1127A>C Q376P p.(Gln376Pro) 1 Pakistani MKS family (hom), 1 Pakistani MKS family (hom) Smith et al. 2006, 

Szymanska et al.2012 rs137853106 

13 c.1289A>G c.1289A>G p.D430G, 
c.1259A>G p.D420G p.(Asp430Gly) 1 Italian family with SLS (com-het with c.622A>T), 1 European 

family with NPHP (het) Halbritter et al.2012  

13 c.1319G>A 1319G>A R440Q p.(Arg440Gln) 4 European MKS families (1 hom and 3 com-het), 1 Italian family 
with COACH (com-het with c.2182A>G) 

Consugar et al. 
2007, Kahaddour et al. 2007, 
Brancati at al.2009, Tallila et 
al. 2009,Iannicelli et al. 2010 

- 

13 c.1321C>T c.1321C>T p.R441C p.(Arg.441Cys) 1 American family with COACH (com-het with c.1453C>T), 1 Doherty et al.2010,  
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 DNA change (cDNA) Published as Protein Variant remarks Reference dbSNP ID 
British family with MKS (hom), 1 Pakistani family with MKS 

(hom) 
Szymanska et al.2012 

13 c.1322G>T c.1322G>T p.R441L p.(Arg441Leu) 1 French MKS family (com-het) Iannicelli et al. 2010 - 
13 c.1334T>C c.1334T>C p.V445A p.(Val445Ala) 1 German family with JSRD (het) Otto et al.2011  
13 c.1336G>C c.1336G>C p.D446H p.(Asp446His) 1 Moroccan MKS family (com-het) Kahaddour et al. 2007 - 

13 c.1351C>T c.1351C>T R451* p.(Arg451*) 

1 Swedish-German MKS family (com-het), 1 American family 
with COACH (com-het with c.2498T>C), 1 British family with 

JSRD (com-het with c.2018T>C), 1 family with JSRD (com-het 
with c.2018T>C) 

Consugar et al. 2007, 
Doherty et al.2010, Otto et 
al.2011, Chaki et al.2011 

rs116647652 

13 c.1379G>C c.1349G>C p.R450T p.(Arg460Thr) 1 European family with NPHP (het) Halbritter et al.2012  
13 c.1387C>T c.1387C>T p.R463* p.(Arg463*) 1 German family with JSRD (com-het with c.2891C>T), 1 family 

with JSRD (com-het with c.2891C>T) 
Otto et al.2011, Chaki et 

al.2011  
13i c.1413-1G>C c. 1413-1G>C Splice p.? 1 French MKS family (com-het) Iannicelli et al. 2010 - 

14 c.1426C>T c.1426C>T p.P476S; 
c.1396C>T p.P466S p.(Pro476Ser) 1 British family with MKS (com-het with c.2440-3C>A), 1 

European family with NPHP (het) 
Szymanska et al.2012, 

Halbritter et al.2012 rs145236803 

14 c.1453C>T c.1453C>T p.P485S p.(Pro485Ser) 1 American family with COACH (com-het with c.1321C>T) Doherty et al.2010  

15 c.1538A>G c.1538A>G p.Tyr513Cys, 
c.1438A>G p.Y513C p.(Tyr513Cys) 

1 European MKS family (com-het), 1 French family with JS (two 
affected sibs, com-het with c.2315_2323+4del13insGG), 1 
American family with COACH (com-het with c.1843T>C), 1 

American family with COACH (com-het with c.2497T>C) 

Tallila et al. 2009, Baala et 
al. 2007, Doherty et al.2010 rs137853107 

15 c.1538_1539delAT c.1538_1539delAT p.Y513* p.(Tyr513*) 1 Senegal MKS family (hom) Iannicelli et al. 2010 - 

15i c.1575+1G>A INV15+1G>A Splice change p.? 1 Pakistani MKS family (hom), 2 Pakistani MKS families (hom), 4 
Pakistani families with MKS (hom) 

Smith et al. 2006, Kahaddour 
et al. 2007, Szymanska et 

al.2012 
- 

16 c.1634G>A c.1634G>A p.(Gly545Glu) 1 French family with JS (com-het with c.576+2T>G and in cis 
with p.Q747fs*761) Baala et al.2007  

16 c.1645C>T c.1615C>T p.R549C p.(Arg549Cys) 1 Chinese family with MKS (hom), 1 Pakistani family with MKS 
(het) Szymanska et al.2012  

16i c.1674+3A>G c.1674+3A>G splice p.? 1 American family with COACH (com-het with c.1126C>G) Doherty et al.2010  16i c.1674+1G>A c.1674+1G>A splice p.? 1 Turkish family with MKS (hom) Szymanska et al.2012  
16i-21i c.1675-?_2241+?del c.1675-?_2241+?del 

p.T559_Q747del p.Thr559_Gln747del 1 Ivory Coast MKS family (hom) Kahaddour et al. 2007 - 

17 c.1769T>C c.1769T>C  p.F590S p.(Phe590Ser) 
2 Italian families with COACH (com-het with c.G1961-2A>C) 

(com-het with c.579_580delAG), 1 family with COACH (com-het 
with c.1961-2A>C) 

Brancati at al.2009, Chaki et 
al.2011 - 

18 c.1843T>C c.1843T>C p.Cys615Arg p.(Cys615Arg) 

1 European MKS family (com-het), 1 Turkish family with NPHP 
(hom), 1 German family with NPHP (hom), 1 family with JS 

(com-het with c.224-2delA), 2 American families with COACH 
(com-het with c.1046T>C, com-het with c.1538A>G), 5 German 

families with JSRD (com-het with c.755T>C, co-het with 
c.1911C>A, com-het with c.1045T>C, com-het with c.622A>T), 1 
family with JSRD (com-het with c.622A>T), 3 families with JSRD 
(com-het with c.755T>C ), 1 family with NPHP/JSRD (com-het 

Tallila et al. 2009, Otto et al. 
2009, Gunay-Aygun ey al. 
2009, Doherty et al.2010, 
Otto et al.2011, Chaki et 

al.2011 

- 
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with c.868G>T), 1 family with JSRD (com-het with c.1045T>C), 2 

families with JSRD (hom), 1 family with JSRD (com-het with 
c.1911C>A) 

19 c.1888T>C c.1888T>C p.S630P p.(Ser630Pro) 1 family with NPHP (hom) Chaki et al.2011  

19 c.1911C>A c.1911C>A p.F637L p.(Phe637Leu) 
1 American family with COACH (com-het with c.1073T>C), 2 
German families with JSRD (het, com-het with c.1843T>C), 1 

family with JSRD (com-het with c.1843T>C) 

Doherty et al.2010, Otto et 
al.2011, Chaki et al.2011  

19i c.1961-2A>C c.1961-2A>C p.? 1 Italian family with COACH (com-het wiyh c.1769T>C), 1 family 
with COACH (com-het with c.1769T>C) 

Brancati at al.2009, Chaki et 
al.2011  

20 c.2002T>C c.2002T>C p.W668R p.(Trp668Arg) 1 French MKS family (com-het) Iannicelli et al. 2010 - 
20 c.2009C>T c.2009C>T p.T670I p.(Thr670Ile) 1 Italian family with JSRD (het) Otto et al.2011  
20 c.2018T>C c.2018T>C p.V673A p.(Val673Ala) 1 British family with JSRD (com-het with c.1351C>T), 1 family 

with JSRD (com-het with c.1351C>T ) 
Otto et al.2011, Chaki et al, 

2011  
21 c.2132A>C c.2132A>C p.(Asp711Ala) 1 French family with JS (com-het with c.637C>T) Baala et al.2007  
21 c.2168A>G c.2168A>G p.Y723C p.(Tyr723Cys) 1 German family with JSRD (com-het with c.622A>T), 1 family 

with MKS (com-het with c.622A>T) 
Otto et al.2011, Chaki et 

al.2011  
21 c.2182A>G c.2182A>G p.S728G p.(Ser728Gly) 1 Italian family with COACH (com-het with c.1319G>A) Brancati at al.2009  
21 c.2241G>A c.2241G>A p.Gln747fs*761 1 French family with JS (com-het with c.576+2T>G), 1 family 

with BBS (single het with BBS9: c2804G>A hom) 
Baala at al. 2007, Leitch et 

al. 2008  
22 c.2301delT c.2301delT p.D768Ifs*5 p.(Asp768Ilefs*5) 1 French MKS family (com-het) Iannicelli et al. 2010 - 

22-22i c.2315_2322+4del13insGG c.2315_2323+4del13insGG p.? 1 French family with JS (two affected sibs, com-het with 
p.(Tyr513Cys)) Baala et al.2007  

22i c.2322+5G>C IVS23+5G>C p.(Ile775_Ala813deLeu) 1 Algerian family with JS (hom) Baala et al. 2007  22i c.2322+5delG c.2322+5delG p.? 1 Japanese family with JSRD (com-het with c.329A>G) Tsurusaki at al.2012  
22i c.2322+3insT c.2322+3insT spl p.? 2 American families with COACH (com-het with c.115C>A, com-

het with c.297G>T) Doherty et al.2010  
22i c.2322+2dupT c.2322+2dupT Splice p.? 1 American MKS family (com-het) Iannicelli et al. 2010 - 
23 c.2345A>G c.2345A>G p.H782R p.(His782Arg) 1 Italian family with COACH (com-het with c.1115C>A) Brancati at al.2009  23 c.2357G>A c.2357G>A p.G786E p.(Gly786Glu) 1 French MKS family (com-het) Iannicelli et al. 2010 - 
23 c.2374A>G c.2374A>G p.R792G p.(Arg792Gly) 1 Swiss family with JSRD (het) Otto et al.2011  
23 c.2439G>A c.2439G>A p.A813A splice 

site p.[=, ?] 1 Moroccan MKS family (com-het). Last nucleotide of exon 24 
before 5' splice donor site. Kahaddour et al. 2007 - 

24 c.2460A>C c.2460A>C p.R820S p.(Arg820Ser) 1 Croatian family with COACH (het) Brancati at al.2009  

24 c.2461G>A c.2461G>A p.G821S p.(Gly821Ser) 
1 Turkish family with NPHP (hom), 1 German family with NPHP 
(hom), 1 Turkish family with JSRD (het), 1 Egyptian family with 

JSRD (het), 2 families with NPHP (hom) 

Otto et al. 2009, Otto et 
al.2011, Chaki et al.2011  

24 c.2461G>C c.2461G>C p.G821R p.(Gly821Arg) 1 family with JSRD (com-het with c.130C>T) Chaki et al.2011  

24 c.2498T>C c.2498T>C p.I833T, 
c.2468T>C p.I823T p.(Ile833Thr) 

1 Croatian family with COACH (com-het with c.312+5G>A), 1 
Belgian family with COACH (com-het with c.2556+1G>T), 3 

American families with COACH (com-het), 1 American family 
with COACH (com-het with c.1538A>G), 1 European family with 
NPHP (het)c.2498T>C, com-het with c.1351C>T, com-het with 

c.300C>A), 1 German family with JSRD (com-het with 

Brancati at al.2009, Doherty 
et al.2009, Doherty et 

al.2010, Otto et al.2011, 
Chaki at al.2011, Halbritter at 

al.2012 
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c.755T>C), 1 German family with NPHP (com-het with 

c.622A>T), 1 family with JSRD (com-het with c.755T>C) 
24 c.2522A>C c.2522A>C p.Q841P p.(Gln841Pro) 1 American family with COACH (com-het with c.622A>T) Doherty et al.2010  24 c.2528A>G c.2528A>G p.Y843C p.(Tyr843Cys) 1 Italian MKS family (com-het) Iannicelli et al. 2010 - 
24 c.2542G>T c.2542G>T p.E848* p.(Glu848*) 1 French MKS family (com-het) Iannicelli et al. 2010 - 

24 c.2556+1G>T c.2556+1G>T p.? 
1 Belgian family with COACH (com-het with c.2498T>C), 1 

American family with JSRD (com-het with c.986A>C), 1 family 
with JSRD (com-het with c.986A>C) 

Brancati at al.2009, Otto et 
al.2011, Chaki et al.2011  

25 c.2557A>T c.2557A>T p.K853* p.(Lys853*) 1 French MKS family (com-het). Kahaddour et al. 2007 - 
25 c.2561dupA c.2561dupA p.N854Kfs*5 p.(Asn854Lysfs*5) 1 American MKS family (com-het) Iannicelli et al. 2010 - 
25i c.2661+5G>A c.2661+5G>A splice p.? 1 American family with COACH (com-het with c.1083G>T) Doherty et al.2010  
26 c.2689_2690insTA c.2689_2690insTA 

p.K897Ifs*64 p.(Lys897Ilefs*64) 1 French MKS family (com-het) Iannicelli et al. 2010 - 

27 c.2802delA c.2802delA p.G934Gfs*26 p.(Gly934Gfs*26) 1 American family with COACH (het) Doherty et al.2010  
27 c.2825T>G c.2825T>G p.F942C p.(Phe942Cys) 1 American family with COACH (com-het with c.978+3A>G) Doherty et al.2010  27 c.2882C>A c.2882C>A p.S961Y p.(Ser961Tyr) 1 Norwegian-Indian family with MKS (com-het with c.755T>C) Szymanska et al.2012  
27 c.2891C>T c.2891C>T p.T964I p.(Thr964Ile) 1 German family with JSRD (com-het with c.1387C>T), 1 family 

with JSRD (com-het with c.1387C>T) 
Otto et al.2011, Chaki et al, 

2011  

27 c.2897T>C c.2897T>C p.L966P p.(Leu966Pro) 2 European MKS families (both com-het) Consugar et al. 2007, Tallila 
et al. 2009 - 

28 c.2935G>A c.2935G>A p.G979R p.(Gly979Arg) 1 British family with MKS (com-het with c.507-3C>A Szymanska et al.2013  Table 3-5. Table summarising all reported changes in TMEM67 (NM_153704.5) to date. Changes are presented in the form they were reported in 
the original publication and in the corrected nomenclature, if necessary, to be compatible with LOVD following guidelines from HGVS. Mutation status and the 
reference publication are indicated. 
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3.1.4.1 Reclassification of TMEM67 variants of unknown significance 

Further research studies were performed to determine the pathogenic 

potential of variants of unknown significance (VOUS) in TMEM67. These were 

originally identified during routine service testing of TMEM67 by Dr Ian Berry, in the 

Diagnostic DNA lab, Yorkshire Regional Genetics Service, Leeds Teaching 

Hospitals NHS Trust. Investigations into two unrelated MKS patients are presented 

as an example for our routine procedures.  

3.1.4.1.1 Clinic – diagnostic laboratory – research laboratory workflow 

3.1.4.1.1.1 Patient 387 phenotype 

A couple was referred to the genetics clinic following termination of a 

pregnancy for suspected diagnosis of MKS. The couple was non-consanguinous 

and there was no other phenotype of relevance reported in the extended family. 

This was the first pregnancy of the couple. During the pregnancy, the antenatal 

scan at 18 weeks gestation showed occipital encephalocele and bilateral 

multicystic, enlarged kidneys. A clinical diagnosis of MKS was suspected and a 

termination of pregnancy was performed. Post-mortem examination showed 

bilateral syndromic cystic renal dysplasia, hepatic fibrosis and an occipital 

encephalocele. There was no evidence of polydactyly. 

3.1.4.1.1.2 gDNA sequencing 

Initial direct Sanger sequencing excluded mutations in the MKS1 gene. 

Analysis of changes in TMEM67 revealed two heterozygous changes: c.507-3C>A 

in intron 4 and c.2935G>A p.G979R in exon 28 (Figure 3-4). Both changes were 

not previously reported in the scientific literature. Both changes were excluded in 

online available databases for common variants (dbSNP, the 1000 Genomes 

Project and EVS). Parental DNA sequencing revealed the changes were inherited 

in trans: c.507-3C>A was inherited from the father and c.2935G>A from the mother. 

The c.507-3C>A change suggested disruption in splicing of an intron/exon 

boundary and c.2935G>A was localised in the last exon of TMEM67. In silico 

analyses were performed to predict the effects of these variants on the splicing of 

the TMEM67 transcript.  
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Figure 3-4. Electropherograms presenting sequencing results of genomic DNA 

of MKS affected patient 387. In red frames (highlighted) are changes identified in the 
affected patient compared to a normal control individual at the genomic (gDNA) level. 

 

3.1.4.1.1.3 In silico analysis 

The c.507-3C>A variant is located in intron 4 just before the beginning of the 

fifth exon. Although it is not localised within a consensus acceptor site, its close 

localisation to an intron/exon boundary suggests that it has an effect on splicing. To 

analyse the predicted effect on splicing the following algorithms were used: 

SpliceSiteFinder-like 223, MaxEntScan 224, NNsplice (also known as the BDGP 

fruitfly algorithm) 225, GeneSplicer 226 and HSF (Human Splicing Finder) 227 (Table 
3-6).  These were all interrogated through the Alamut v2.2 software 

package. Predictions from these algorithms suggested that c.507-3C>A may have 

an effect on the 3' (splice acceptor/end of intron) consensus site (Table 3.1-
9).  NetGene2 (http://www.cbs.dtu.dk/services/NetGene2/) was also used, and 

predicted a weak acceptor splice site (confidence = 0.00) in the wild-type, with 

abolition of the acceptor site in the mutant sequence (analysis done by Dr Ian 

Berry). 

 

Splicing algorithm: 

c.507-3C>A  c.2935G>A 
Wild-type 

confidence 
score 3': 

Mutant 
confidence 

score 3': 

Wild-type 
confidence 

score 5': 

Mutant 
confidence 

score 5': 

Mutant 
confidence 

score 3': 
SpliceSiteFinder-like 

(0-100) 80.4 70.4 63.2 73.3 96.1 

MaxEntScan 
(0-16) 8 4.8 1.7 6 10.9 

NNSplice (fruitfly) 
(0-1) 0.7 0 0 0.8 1 

Genesplicer 2.3 1.1 0 0 4.2 

Aff
ec
te
d'

Co
nt
ro
l'

gDNA' '

c.50743C>A'' ''
' ' ' '

c.2935G>A'' ''
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(0-15) 
Human Splicing 

Finder 
(0-100) 

84.2 74.9 73 81.4 91.8 

Table 3-6. Summary of in silico analyses on MKS patient 387 DNA. Multiple on-
line tools were used, integrated into Alamut v2.2 software. Both changes reported in case 
387 were analysed, since the missense change was located in the last exon of TMEM67. 
For both changes, a possible splice site effect was noted. 

All the algorithms predicted that the junction between c.507-1 and c.507 could 

function as both a 5' and a 3' splice junction site.  They also all predicted a 

reduction in confidence of the 3' acceptor splice site.  This reduction varied from 

being fairly minimal (SpliceSiteFinder-like & HSF, both of which lack specificity for 

predicting putative splice junctions) to being a complete abolition (or effective 

abolition) of the 3' junction (NNsplice and NetGene).  

Glycine at position 979 is conserved in vertebrate orthologs Figure 3-2. D. 

melanogaster and C. elegans orthologues also have non-polar, hydrophobic 

residues at this position (alanine and valine). ClustalX alignment (Figure 3-2) also 

shows leucine (non-polar, hydrophobic) in some species, as well as a couple of 

polar uncharged amino acids (glutamine and serine).  There are no charged amino 

acids at this position for any species in this alignment, but the missense mutation is 

glycine to arginine (charged, basic). The Grantham distance (physicochemical 

difference) between glycine and arginine is large (-125). BLOSUM scores (45:-2, 

62: -2, 80: -8) suggest a below average probability that this change has occurred by 

chance. Position 979 is just beyond the seventh transmembrane domain in the 

protein. Since this residue is localised in the last exon and close to the C-terminus, 

the same splice-site predictions as for the c.507-3 position were performed. The 

algorithm predicted the possibility of the change introducing a cryptic donor (5’) 

splice junction between c.2931 and c.2932.  For this splice site to cut out the end of 

exon 28, there would have to be a putative acceptor splice-site within the remaining 

portion of transcribed material.  According to the NM_153704.5 transcript, TMEM67 

has quite a large 3' UTR and the closest "strong" option is after c.*128. 

The c.2935G>A p.G979R change also has a possible pathogenic effect on the 

structure and/or function of the protein caused by amino acid missense change. In 

silico protein prediction tools leaned towards a potential pathogenic interpretation: 

MutationTaster 219 gave a score of 0.99, which is predicted to be damaging based 

on the amino acid change and possible splicing change. Polyphen2 212 (PSIC score 

1.00, Sensitivity 0.00, Specificity 1.00), predicted this change was probably 

damaging.  SIFT 213 suggested the change might be tolerated (with a score of 0.11, 

sequence conservation of 3.34). 

3.1.4.1.1.4 RNA/cDNA analyses 
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To establish the pathogenic potential of these possible splice-site changes, 

total RNA was extracted from foetal tissue. To investigate the c.507-3C>A change 

in intron 4, five primers sets were designed to span between exon 2 and 8 of 

TMEM67. Forward primers were localised in exon 2, 3, 4 and reverse primers in 

exon 7 and 8. Following RT-PCR of patient cDNA, all primer sets showed the wild-

type sequence with no effect on splicing (Figure 3-5). 
 

 
Figure 3-5. Electropherograms presenting sequencing results of cDNA of MKS 

affected patient 387. In red frame (highlighted) is change identified in the affected patient 
compared to a normal control individual at coding DNA (cDNA) level. The red line for c.507-
3C>A indicates an exon/exon boundary with no changes observed in the affected patient 
sample. The cDNA for change c.2935G>A shows homozygous change in affected patient 
sample. 

 

To investigate the c.2935G>A change, primers were designed to span 

between exon 27 and a region in the 3’UTR after c.*128. These analyses of patient 

cDNA showed that this change does not affect the splice-site but revealed the 

variant at position c.2935 to be in the homozygous (AA) state (Figure 3-5).  

Homozygosity of c.2935G>A change may suggest that c.507-3C>A is 

essential for correct splicing, and that the RNA product transcribed from the 

paternal chromosome was lost through a nonsense-mediated decay (NMD) and 

was therefore not detected by cDNA sequencing. This mutation could either directly 

abolish the splice site, or that there would be a competition between the putative 5' 

and 3' sequences at this locus for the splicing machinery 228. The c.2935G>A 

p.G979R change at the transmembrane boundary may affect the membrane 

topology or affect protein-protein interaction with cytoplasmic proteins. 

'
'

' cDNA'

'' c.50743C>A''
exon'4' exon'5'

'' c.2935G>A''
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d'
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' '

'' ''
' ' ' '
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3.1.4.1.2 Patient 178 

Ultrasound scan of the pregnancy showed enlarged polycystic kidneys, 

occipital encepaholcele and polydactyly, suggestive of MKS as a diagnosis. The 

pregnancy was terminated and a cord blood sample was collected for gDNA 

extraction. An additional skin biopsy was also collected. As the patient was of 

Pakistani ethnic origin, TMEM67 gene sequencing was prioritised. Initial analysis 

revealed a single heterozygous change c.1615C>T p.R549C. As the patient 

originated from a consanguineous family, it was expected that the causative 

mutation would be homozygous. The c.1615C>T p.R549C mutation in the 

homozygous state was previously reported in a consanguineous Chinese family 111, 

is present at a very low allele frequency in the available variant databases, hence is 

very likely to be causal and pathogenic. Since the gDNA under test was from a cord 

blood sample, it was possible that maternal contamination could explain the 

heterozygous state of c.1615C>T p.R549C in patient 178. Fibroblasts originating 

from patient 178 were therefore grown, RNA was extracted and cDNA was 

synthesised. Primers spanning across the whole coding sequence (Figure 3-6) of 

TMEM67 for patient 178 and control sample were used for amplification of TMEM67 

from cDNA. No differences in product sizes were observed between patient 178 

and control samples. cDNA was subsequently sequenced, which confirmed the 

heterozygous c.1615C>T change, however no other mutations in the amplified PCR 

products were identified. As this sample did not show linkage to any other known 

MKS loci (Table 3-2), it should be prioritised for WES for gene discovery of new 

MKS genes. 

 
Figure 3-6. RT-PCR primers for amplification of TMEM67 cDNA. Coloured blocks 

represent coding exons of TMEM67. 

 

 

3.1.5 Discussion 
As the first step in efforts to identify causative mutations in known MKS/JSRD 

genes, genotyping analyses were completed in cohort of MKS and JSRD patients. 

This method allows fast identification of linked loci by the analysis of genetic 

markers flanking genes of interest. There are four steps involved in the procedure: 

1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12" 13" 14" 15" 16" 17" 24"23"22"21"20"19"18" 28"27"26"25"

1226bp"

804bp"

473bp"

393bp"
815bp"

2374bp"

1843bp"

1579bp"

903bp"

552bp"

349bp"
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PCR, gel electrophoresis, sample analysis on an ABI 3730xl genetic analyser and 

data analysis on appropriate software (GeneMapper). This strategy reduces the 

costs of sample analysis since it does not require a sequencing step, which is the 

main outlay in expense and time. Genotyping allows fast analysis of the patient 

DNA and prioritisation of the samples with linkage to the certain loci to be taken 

forward for sequencing analysis. Linkage was excluded in just over half of our 

cohort and those samples were not sequenced for the known MKS genes. This also 

allowed a reduction in the amount of patient DNA to be used, as only 10-20ng of 

DNA was required for the analysis of one microsatellite marker. 

Linkage analysis was mainly performed for consanguineous patients, where 

homozygous markers flanking the gene would suggest linkage to the locus. Non-

consanguineous patients in multiplex families with two or more affected individuals 

were also analysed, as haplotypes shared between these affected individuals could 

also suggest linkage. This method was robust and allowed prioritisation of many 

samples for direct Sanger sequencing and linkage exclusion in the others. However 

the latter could lead to false negative results as observed in the case of sample 

264. This consanguineous patient had the MKS1 marker D17S1606 in the 

heterozygous state, whilst D17S1290 was homozygous. This sample was not 

sequenced for changes in MKS1 as the markers suggested no linkage. Conversely, 

this patient showed linkage to the RPGRIP1L locus but Sanger sequencing 

revealed no mutations. In the light of no causative mutations identified and putative 

linkage to other loci, this patient was prioritised for SNPchip genotyping analysis in 

efforts to identify a new MKS locus by homozygosity mapping. The whole genome 

genotyping data showed a large segment of homozygosity across the MKS1 locus 

and the MKS1 gene was screened revealing a pathogenic mutation. This 

highlighted the importance of careful data analysis and suggested that choosing a 

marker as close as possible to the gene, or even within the gene, is very important 

to prevent false negative findings.  

Mutations were identified in 57% (38/67) of families that were recruited to the 

study (Table 3-4). Out of all families with identified mutations, 19/38 (50%) had 

changes in TMEM67 (Figure 3-7), which highlights the prevalence of TMEM67 

mutations as a major cause of MKS. The second most commonly mutated genes 

were CEP290 and MKS1 (each 5/38; 13.1%), then CC2D2A and RPGRIP1L (each 

3/38; 7.9%). TMEM216, TMEM138 and TMEM237 each had mutations in only one 

family (2.7% each), confirming that these were uncommon causes of the MKS 

phenotype. 
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Figure 3-7. Pie charts summarising mutation analysis in MKS and MKS-like 

patients in the study cohort. a) frequency of genes mutated in MKS and MKS-like 
phenotype; b) frequency of MKS genes mutations in consanguineous patients; c) frequency 
of MKS genes mutations in non-consanguineous patients; d) common mutations in MKS1 in 
Leeds cohort study; e) common mutations in TMEM67 in Leeds cohort study. Image 
adapted from Szymanska et al. 2012. 

 

Homozygous mutations predicted to be pathogenic were identified in 50% of 

consanguineous families (Figure 3-7b). Two families had mutations in MKS1. 

Patient 264 had a homozygous MKS1 mutation c.1408-35_1408-6del30 (Figure 3-
7d), which overlaps with the “Finn major” Finnish founder mutation (c.1408-

35_1408-7del29) 222. Since family 264 is of Jordanian origin, and therefore has a 

different genetic background to northern European patients with the “Finn major” 

mutation, this finding suggests a mutation hot spot in this intronic region of the 

MKS1 gene. Three different homozygous mutations in CEP290 were identified in 

Pakistani families. Two of these were frameshift mutations and one was a 

nonsense mutation and all are predicted to cause NMD. 

The majority of identified mutations were found in TMEM67 (Figure 3-7b), 

comprising n=14/47 (30%) families. Two splice-site mutations and one missense 

mutation were identified multiple times and may therefore be founder mutations 

(Figure 3-7e). In patients of Pakistani origin two TMEM67 splice-site mutations 

were identified, c.1546+1G>A and c.870-2A>G, which have previously been 

reported as common mutations 97. The homozygous missense mutation p.R441C 

was identified in two families (319 and 347), a mutation reported previously in the 

heterozygous state for patients with COACH syndrome 229. A missense mutation 

affecting the same amino acid residue, p.R441L, has also been reported previously 
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in an MKS patient 110. As families 319 and 347 have different ethnic origins (British 

and Pakistani, respectively), this emphasizes the mutability of arginine residues and 

their importance to the function of the protein since the neighbouring residue 

p.R440 is also mutated in MKS and MKS-associated ciliopathies 112,230. 

Probable founder mutations in both RPGRIP1L and CC2D2A for families of 

Pakistani ethnic origin were identified. The RPGRIP1L nonsense mutation 

c.1945C>T p.R649* was observed in families 207 and 336 which are reported to be 

unrelated. The frame-shift mutation in CC2D2A c.3540delA p.R1180Sfs*6 occurred 

in the unrelated families 158 and 180, with polydactyly noted as an obligatory 

feature in all affected individuals. 

Applied methodology was useful to prioritise the known (at the time of this 

study) MKS/JSRD genes for sequencing, but establishing common haplotypes was 

difficult as samples were run on different days, with different batches of polymer 

and sometimes even with different sequencing arrays causing slight shifts in the 

peaks. The exception to this was observed for CC2D2A for which patients 158 and 

180 shared the haplotype 150/150-245/245 (for markers D4S1511 and D4S2960, 

respectively) and carry the same homozygous mutation c.3540delA (Table 3-4). 

Therefore consanguineous patients originating from Pakistan with this particular set 

of microsatellite markers could be prioritised for sequencing for this mutation, with a 

view to reducing the cost and time of the analyses. 

Two-thirds (n=13/19) of non-consanguineous families had their causative 

mutations identified (Figure 3-7c), with the majority of mutations (n=10/13) in the 

compound heterozygous state. The majority of identified mutations were found in 

the TMEM67 gene, with mutations in MKS1 and CEP290 the next frequent. In our 

cohort, the “Finn major” mutation was found in all MKS1-mutated patients, either in 

the homozygous state (families 106 and 74699 of British origin) or as a compound 

heterozygous mutation in trans with the frameshift mutation p.H271fs*29 (family 

77172 of Finnish origin). Overall, the MKS1 “Finn major” mutation was the most 

frequent (Figure 3-7d). The heterozygous missense mutation p.M252T accounted 

for 30% of identified alleles in TMEM67 in non-consanguineous patients. The 

previously reported common Finnish CC2D2A mutation was absent in screened 

cohort 102, even though the MKS1 “Finn major” Finnish mutation seemed frequent. 

This suggests that the latter is more widespread throughout European populations, 

whereas the CC2D2A mutation is less common outside Scandinavia. In addition, 

six families were identified with a single heterozygous mutation in an MKS gene 

with a second pathogenic variant to be identified. CC2D2A p.E229del was probably 

a common variant, as it was detected as a single heterozygous variant in two 
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families of Pakistani origin. In sibpair 36-36A and patient 202, two changes in the 

same gene were detected but segregation analysis in parental samples showed 

that these were inherited in cis from the paternal line, therefore the pathogenic 

potential of these variants was unclear. Patient 178 has the single heterozygous 

missense mutation p.R549C in TMEM67. Any other potential pathogenic changes 

in any of the seven MKS genes that were screened for these patients were not 

detected.  

The molecular basis of the phenotypic variability in MKS/JSRD may arise from 

oligogenic inheritance 231, where a third allele modifies the phenotypic effect of two 

recessive alleles. It is interesting to note that many ciliopathy and ciliary-related 

proteins interact and are reported to create functional modules that are localized to 

discrete structural regions of the cilium such as the TZ 47,108,152. The effect of 

modifier alleles may be to abrogate interactions between components of a 

functional module, which may disrupt protein complexes or signalling pathways 

giving rise to the ciliopathy phenotype. Four different heterozygous changes in six 

patients were identified in MKS/JSRD genes, in the absence of a second detectable 

pathogenic mutation in the same gene or any other mutations in remaining MKS 

genes. These heterozygous alleles could be potential modifier alleles, but the 

possibility of microdeletion or a second pathogenic mutation occurring deep within 

introns or regulatory elements of the same MKS/JSRD gene were not exhaustively 

excluded. These patients were also not excluded for the occurrence of biallelic 

mutations in all known MKS/JSRD genes, and the heterozygous variants could be 

incidental findings. Furthermore, the incomplete nature of some of the clinical 

details raises the possibility of differential diagnoses. 

With the ever-increasing power and affordability of genetic sequencing 

technologies, there is now the clear opportunity for the further rapid and robust 

identification of mutations in patients referred for a defined condition. As a 

prerequisite, there remains a pressing clinical need for the dissemination of 

mutations identified on a research basis, and the establishment of databases that 

provide detailed clinical phenotypes and allelic series for specific genes. 
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3.2 Autozygosity mapping and candidate gene screening for 
new MKS/JSRD genes 

The extensive genetic heterogeneity identified in the severe ciliopathies 

(Table 1-1 and 1-2) still does not explain the aetiology for as many as half of 

families with these phenotypes. This chapter describes the work to identify 

mutations in new genes causing MKS/JSRD.  

In the first instance, DNA samples from multiplex (multiple affected offspring) 

consanguineous families with MKS/JSRD were analysed for shared autozygous 

haplotypes (section 1.2.2.7) using microarray-based SNP genotyping. Autozygous 

regions were identified using established software programs AutoSNPa 232, 

IBDfinder (http://autozygosity.org/) 233 and SnpViewer (http://sourceforge.net/).  

Microsatellite genetic markers were also often used to exclude linkage to 

homozygous regions spanning across known MKS and/or JSRD loci, in order to 

prioritize known genes for conventional Sanger sequencing. For potentially novel 

loci, the best candidate genes were initially prioritised for Sanger sequencing based 

on the putative function related to the phenotype, similar expression patterns or 

homology to a known gene.  

 

3.2.1 Identification of a putative new MKS locus on chromosome 
12q24.11-24.13 

All mapping in this chapter is based on GRCh37.p13. 

Autozygosity mapping of six samples – 158, 227, 230, 261, 330 - identified a 

potential homozygous region of interest on chromosome 12. SNP chip genotyping 

(interval rs4475967, 108472383bp to rs7954961, 120286192bp) and genotyping of 

microsatellite genetic markers determined secure interval boundaries from 

D12S353 to D12S395 (Figure 3-8). There was no shared haplotype observed 

between the samples, additionally these samples contained additional homozygous 

regions at different loci (Appendix 3, 4, 5). 
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Figure 3-8. Microsatellite genetic markers and mapping of a putative new MKS 

locus on chromosome 12. All genotyped samples are singleton consanguineous affected 
individuals with MKS. In pink the minimal homozygous region is highlighted, defined by 
markers genotyped in sample 330. Homozygous markers are indicated by bold frames. All 
samples, with exception of individual 261 who is of Jordanian origin, are from Pakistan. 

 

Within the minimal interval 160 genes were present and two genes 

(TMEM116 and TMEM119) were prioritised for screening based on topological 

homology to a known MKS/JSRD gene,TMEM216. These genes were 

subsequently sequenced in samples 158, 227, 230, 261 and 330 but no putative 

pathogenic mutations were identified. Based on the predicted protein function 

ERP29, CCDC63, DYNLL1, TMEM233, RAB35, CORO1C and VPS29 were also 

sequenced in the same sample set. ERP29 functions in the endoplasmic reticulum 

and is thought to process secretory proteins. Choosing this gene as a functional 

candidate was based on a prediction that the function of TMEM67 is dependent on 

correct processing in the ER 234. CCDC63 contains coiled-coil domain commonly 

observed in multiple ciliary proteins. DYNLL1 is a dynein light chain protein and 

dyneins are known as motile cilia components as well as for their function in 

microtubule association. TMEM233 was chosen based on its similarity to the other 

ciliary transmembrane proteins. While other genes were chosen based on their 

involvement in endocytosis (RAB35, VPS29) and actin cytoskeleton remodelling 

(RAB35, CORO1C). There were no variants identified that could be pathogenic 

mutations in these candidate genes, with the exception of CCDC63 in which a 

homozygous missense variant, p.K33E, was identified in sample 158. This change 

was predicted to be possibly damaging with a PolyPhen2 score of 0.925. However, 

in sample 158 a homozygous causative pathogenic change in CC2D2A, 

p.R1180Sfs*6 was identified in a parallel study, which was sufficient to explain the 

MKS phenotype in the patient. The  CCDC63 missense variant is therefore unlikely 
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to be the primary causative locus in this patient, and may instead be a benign 

polymorphism. 

Other genes selected for screening based on their protein function were 

TCTN1 and TCTN2. There was a strong evidence of TCTN1 function in Shh 

signalling 235 and its importance in embryonic development. TCTN2 belongs to the 

same group of homologous tectonic proteins and, although its function was not 

known at the time of this study, it was also prioritised. The following samples were 

screened for mutations in TCTN1: 111, 112, 128, 168, 217, 218, 222, 242, 153, 

157, 158, 227, 230 and 261 (sample 330 arrived after TCTN1 screening); and 

TCTN2 (this gene was localised just outside the original chromosome 12 locus, 

~124Mbp, and only three samples showed linkage): 227, 230 and 330. Screened 

samples were used to define the chromosome 12 locus along with non-

consanguineous samples with no causative mutation identified. Two heterozygous 

variants were identified in TCTN1: p.G466C in sample 128 and a frameshift change 

p.G567Afs*107 in sample 168. No changes were identified in TCTN2. 

 

3.2.2 Other ciliopathy candidate genes 

A group of collaborators with a research focus on ciliopathies was established 

by Prof. Colin Johnson. To support each other in identification of mutations in new 

candidate genes and unravelling the complex genetics of ciliopathies, genes 

proposed by collaborators were screened in MKS and JSRD cohorts on an ad hoc 

and collaborative basis. 

 

3.2.2.1 CEP164 

One of the proposed genes to screen was CEP164 requested by Prof. 

Friedhelm Hildebrand (Harvard Medical School). Centrosomal protein 164 kDa was 

a good functional candidate since it is a component of the centrosome which is a 

matrix for ciliary axoneme nucleation. Samples from consanguineous patients with 

homozygous regions over the CEP164 locus were sequenced (158, 175, 179, 269 

and 352; homozygosity was established based on SNPchip 10k analysis for 

samples 158, 175, 179 and 269 [homozygous regions between rs1074480 and 

rs557940 were observed] and microsatellites analysis for sample 352 [D11S1986 

and D11S1998]). One heterozygous change was identified in sample 175: 

c.3268T>C p.Y1090H, though this change was predicted to be benign by 

PolyPhen2. Results from this study were published in the following article Chaki et 

al. 236. 



  85 

3.2.2.2 TTC21B 

Mutations in TTC21B, also known as IFT139, are a cause of sporadic 

nephronophthisis and syndromic Jeune asphyxiating thoracic dystrophy. The cohort 

of 18 MKS patients was screened for this gene in Prof F. Hildebrand’s laboratory 

(University of Michigan), but no biallelic changes were identified. Multiple 

heterozygous changes were identified and confirmed by the author in stock DNA, 

but these were either de novo, had no second change identified, or were inherited 

in cis with another variant as presented in Table 3-7. 

 

 
Table 3-7. Sequencing results for TTC21B. Separate MKS families are separated 

with thick lines. Empty spaces indicate that there was no change identified in the sample. * - 
in this family had CC2D2A causative mutation identified in a parallel study. Abbreviation: ex 
- exon; het - heterozygous. 

 

Screening of this gene was also carried out in collaboration with Prof. Nicolas 

Katsanis (Duke University Medical Centre, USA), and is described in the next 

subchapter. 

 

3.2.2.3 IFT genes 

The IFT machinery is well-described to function within ciliary axoneme, and 

some proteins that are components of the IFT complexes are already reported to be 

involved in ciliopathy phenotypes 183,237. Consequently, the remaining components 

of both the IFT-A and IFT-B complexes were sequenced by collaborator Prof. 

Nicolas Katsanis (Duke University Medical Centre, USA) (screened samples: 1, 2, 

17, 23, 24, 33A, 36, 39, 42, 43, 51, 66F1, 66F2, 67, 70, 74, 75, 78, 102, 104, 105, 

111, 112, 113, 114, 124, 128, 144, 145, 156F, 156M, 158, 162, 163, 166, 168, 169, 

170, 173, 174, 175, 176, 178, 179, 180, 181, 182, 184, 185, 200, 201, 205, 206, 

SAMPLE STATUS CHANGE
34 father TTC21B c.1040A>G p.Y347C het, c.3121G>A p.D1041N het
35 mother
36 affected TTC21B c.1040A>G p.Y347C het, c.3121G>A p.D1041N het

36A affected TTC21B c.1040A>G p.Y347C het, c.3121G>A p.D1041N het

37 mother TTC21Bc.2530A>G p.M844V het
38 father

39* affected TTC21B c.2530A>G p.M844V het

63 mother TTC21B  c.1846C>T p.R616C het
64 father
65 sister TTC21B c.1846C>T p.R616C het

66F1 affected TTC21B c.1846C>T p.R616C het
66F2 affected TTC21B c.1846C>T p.R616C het

240 father
241 mother
242 affected c.2588G>A p.R863Q het
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207, 211, 217, 221, 222, 227, 230, 231, 232, 233, 234, 235, 239, 242, 244, 247, 

250, 251, 252, 255, 261, 262, 263, 265, 266, 269, 270, 276, 282, 283, 292, 296, 

319, 324, 325, 326, 333, 356, 357, C14). Any detected variants were verified by the 

author in the stock DNA. No biallelic changes inherited in trans were observed, but 

as with the example of TTC21B (section 3.2.2.2), multiple heterozygous changes 

were detected (Table 3-8). The high frequency of those heterozygous changes may 

suggest that they act as modifier alleles on primary causal mutations of the 

ciliopathy phenotype, as suggested by a number of previous  publications 182,203, but 

this hypothesis needs further investigation. Results from this investigation will be 

analysed in collaboration with Dr Erica Davies and Prof. Nicolas Katsanis (Duke 

University). 

 

 
Table 3-8. List of changes identified in IFT genes in Leeds MKS/JSRD cohort. 

 
3.2.2.4 TMEM107 

Phylogenetic analyses by Prof. Martijn Huynen (Radboud University Nijmegen 

Medical Centre) suggested that the hypothetical transmembrane protein TMEM107 

was conserved in ciliates and had a probable functional role in ciliogenesis. This 

protein occurs in ciliated species but is not universal within it, suggesting an 

accessory role. It contains an X-box motif characteristic for ciliary genes. The 

protein is predicted to contain four transmembrane domains. The schlei mouse 

model has a missense mutation in Tmem107, and was shown to have defects in 

ciliogenesis and Shh signaling 238. Thirty-five MKS/JSRD samples, compatible with 

linkage to TMEM107 loci (markers: D17S1353 and D17S786), were sequenced but 

no pathogenic mutations were identified. Several other collaborators screened more 

SampleName Zygosity Sanger IFT Gene DNA var. ref aa aa alt aa
17  het variant inherited form mother A IFT144_WDR19 c.3565+4A>C Intron
36  het variants in cis, inherited from father A IFT139_TTC21B D 1041 N
36  het variants in cis, inherited from father A IFT139_TTC21B Y 347 C
36  het variant inherited form father A IFT139_TTC21B D 1041 N
36  het variant inherited form father A IFT139_TTC21B Y 347 C
42  hom WT in the other affected, parents hets B IFT54_TRAF3IP1 E 132 D
51  het variant inherited form father B IFT172 N 478 I
67  het variant inherited form mother A IFT121_WDR35 Q 527 R
75  het mother is het, father is WT B IFT88 D 544 V
102  het variant inherited form mother B IFT88 M 383 K
102  het variant inherited form mother B IFT88 c.C2265T Exon
115  het variant inherited form father A IFT144_WDR19 D 523 N
115  het variant inherited form father A IFT144_WDR19 D 523 N
176  het no parental samples B IFT80 D 368 H
244  het variant inherited form mother B IFT88 M 383 K
244  het variant inherited form mother B IFT88 c.C2265T Exon
256  het het in father, WT in mother B IFT80 E 500 G
257  het variant inherited form father B IFT80 R 719 H
264  het variant inherited form mother B IFT172 R 1134 L
264  het variant inherited form mother A IFT139_TTC21B D 242 N
264  het variant inherited form mother A IFT144_WDR19 E 1003 G
264  het variant inherited form mother B IFT46_C11ORF60 P 152 A
324  het variant inherited form father B IFT88 M 383 K
324  het variant inherited form father B IFT88 c.C2265T Exon
325  het variant inherited form mother B IFT74 c.G727C E 243 Q

66F1  het variant inherited form mother A IFT139_TTC21B R 616 C
66F2  het variant inherited form mother A IFT139_TTC21B R 616 C
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than 300 patients with diverse ciliopathy phenotypes but no pathogenic variants 

were identified. The EVS database shows that changes in TMEM107 are very rare, 

and analysis of the UK10k Consortium database revealed a single heterozygous 

variant of unknown significance c.74T>A, p.L25* in ciliopathy patient 

UK10K_CIL5236555. No validated antibodies recognizing TMEM107 protein were 

commercially available at the time of the study, therefore a construct containing the 

TMEM107 ORF fused to a C-terminal GFP sequence was used to analyse its 

cellular localization. Figure 3-9 shows IMCD3 cells over-expressing TMEM107-

GFP (green) co-localising with the ciliary axoneme marker acetylated α-tubulin 

(arrowheads). Only cells over-expressing a moderate amount of TMEM107-GFP 

showed co-localisation to the cilium (Figure 3-9, white arrows), whilst those cells 

with high levels of overexpressed protein did not have such a localisation (Figure 3-
9, yellow arrow). 

 
Figure 3-9. IMCD3 cells overexpressing TMEM107. White arrowheads point at 

ciliary localisation of TMEM107-GFP, while yellow one points at cilia without TMEM107-GFP 
co-localisation in cell with high level of exogenous protein level expression. Ciliary marker – 
acetylated α-tublin was stained in red, nucleus marked by DAPI staining in blue. Scale bare 
= 5µm. 

 

To further elucidate the function of TMEM107 in cilia structure, an siRNA 

experiment was designed to transiently remove Tmem107 transcript in IMCD3 cells. 

A pool of 4 siTmem107 duplexes (Dharmacon) versus scrambled siRNA as a 

acetylated αα-tubulin TMEM107-GFP merge 

5"µm"
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negative control were transfected into sub-confluent IMCD3 cells and incubated for 

72 hours in serum-free media to induce ciliogenesis. Analysis of cilia number, 

length and cell number were done at the final concentration of siRNA of 50nM 

(Figure 3-10). A significant difference was observed in cilia length (t-test 0.02) and 

cilia number (t-test 0.0075) between control and Tmem107 knockdown. After 

normalisation for cell number the difference in cilia number was not significant and 

may be explained by decreased cell number in the Tmem107 knockdown. Multiple 

approaches to identify this protein’s function were taken, and five separate groups 

have collaborated on this project with a publication in preparation. 

 

 
Figure 3-10. Analysis of IMCD3 cells after Tmem107 knock down. Unpaired t-test 

with Welch’s correction was calculated - cilia length:0.02; cell number:0.0604; cilia 
number:0.0075; % of ciliated cells:0.0708. Number of cells analysed: siScrambled=583, 
siTmem107=435. Number of replicates=5. 

 
3.2.2.5 Other ciliopathy candidate genes 

Other genes screened for possible mutations include: PROM1 (one 

heterozygous change found in affected patient 106, variant c.55T>A p.S19A), and 

CENPF (samples 115 and 178 were screened, but no mutations were identified). 

The full cohort of 80 MKS and 16 JSRD patients was screened for variants in: 

TCTN3 239 and PDE6D  240 but all were mutation negative. 
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3.2.3 WES as a novel approach to identify causative mutations 
for MKS/JSRD 

With the rapid progress of developing genetic technologies, positional cloning 

was succeeded by ‘next – generation sequencing’ which includes WES, WGS and 

transcriptome sequencing (RNAseq). In the case of consanguineous samples with 

SNP genotyping data and identified homozygous regions and prioritised candidate 

genes screened and no causative mutations identified, the next step would have 

been to screen of all genes in the homozygous regions. This would have involved 

hundreds of time-consuming PCR optimisations, costly Sanger sequencing and 

significant quantities of precious DNA. Alternatively, WES allows rapid cost-

effective screening of candidate genes in autozygous regions. Homozygous regions 

shared only by affected individuals were checked for changes that were 

subsequently filtered based on zygosity, minor allele frequency (MAF), and 

presence in available on-line variant databases such as dbSNP, 1000 Genomes 

and EVS.  

All in-house sample preparation and sequencing was done by Dr Clare Logan, 

data were subsequently analysed by Dr David Parry. 

 
3.2.3.1 Illumina GAIIx platform 

3.2.3.1.1 MKS family 157 

This family is of Pakistani origin with known consanguinity (Figure 3-11). Two 

affected siblings, presented with typical MKS phenotype, were negative for 

mutations in known MKS genes. DNA from one of the affected cases was analysed 

by microarray SNP genotyping. This revealed four regions of homozygosity: 

chromosome 4: 106657900 – 115232500 bp; chromosome 6: 162174100 – 

170760000 bp; chromosome 11: 121476000 – 130075400 bp; chromosome 16: 

10639860 – 20822750 bp (hg18). From these regions, the following functional 

candidates were prioritised for Sanger sequencing: HYLS1 and TMEM45B. HYLS1 

encodes a gene mutated in hydrolethalus syndrome 1 MIM#236680 241, a condition 

with some features that are compatible with a ciliopathy, while TMEM45B showed 

similarity to other ciliary transmembrane proteins. Both genes were shown to have 

no pathogenic changes. 
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Figure 3-11. MKS family 157 pedigree. Consanguineous parents 156M (mother) 

and 156F (father) had two affected 157 and 157A and two unaffected 157B and 157C 
offsprings. 

Whole exome capture and sequencing were done on DNA from one affected 

individual,157 (section 2.2.8.2). 

 

 
Table 3-9. List of variants detected in MKS family 157 sample after WES and 

variant filtering. 

Table 3-9 shows a list of variants that were filtered based on their location 

within a homozygous region, their homozygous state and absence from the 

available on-line databases for common variants (dSNP, 1000Genomes, EVS). The 

variant detected in ABCC6 was not taken into consideration as it was reported as a 

cause of an existing autosomal recessive condition, pseudoxanthoma elasticum 

(MIM#177850). This condition is characterised by peau d’orange changes in the 

retina, chroidal neovascularization, congestive heart failure and gastrointestinal 

hemorrhages, which do not resemble a ciliopathy phenotype. The variant in DCPS 

was an in-frame insertion, and this change was not predicted to have a significant 

pathogenic effect. One of the changes in ROBO4 was predicted to be benign by 

PolyPhen2 and was not further investigated. ROBO4 p.P290L on the other hand 

was predicted to be probably damaging and did segregate with the disease within 

the family. However, the function of the ROBO4 protein did not seem to fit with 

those of previously reported ciliary proteins as it is involved in angiogenesis and 

vascular patterning and acts as a receptor for SLIT proteins. The focus therefore 

shifted toward the change in DLL1. The p.R317Q missense variant did segregate 

with the disease within the family and was excluded in 96 Pakistani controls. The 

same change was observed in the heterozygous state in one of the UK10k 

Consortium ciliopathy patients (UK10K_CIL5002423). Another heterozygous 

change, c.1802_1804del a non-frameshift deletion, was identified in ciliopathy 

patient UK10K_CIL5236547, as well as in patient 287 from the Leeds MKS/JSRD 

156M% 156F%

157% 157A% 157B% 157C%

Gene Class RefSeqID./>.Mutation PolyPhen2 Chrom Pos SNP_ID
DLL1 missense NM_00561801>0c.950G>A,p.R317Q 0.85 chr6 170594424 .
ROBO4 missense NM_01905501>0c.1817G>A,p.R606H 0.004 chr11 124761326 .
ROBO4 missense NM_01905501>0c.869C>T,p.P290L 0.968 chr11 124765520 .
DCPS non1frameshift_insertion NM_01402601>0c.215insTGGGGA,p.G77_E78insDG chr11 126176478 .
ABCC6 missense NM_00117101>0c.1171A>G,p.R391G 1 chr16 16295863 rs72653762
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patient cohort. A further heterozygous change was detected in sample C18 

(c.1622G>A p.G541E). However, the lack of other biallelic changes, also not 

reported in collaborator’s cohorts, made the possibility of pathogenic mutation in 

DLL1 as a cause of MKS to be unconvincing. Further functional work should help to 

support or reject hypothesis of mutation in this gene being a true cause of MKS 

phenotype. 

 
3.2.3.2 Illumina MiSeq platform 

3.2.3.2.1 MKS family 36A 

This family (Figure 3-12) originates from the Gujarat state in India and 

although parents were reported to be unrelated, distant consanguinity was not 

excluded.  

 

 
Figure 3-12. MKS family 36A pedigree. Parents 34 and 35 had two affected 

offspring, 36 and 36A. Dashed line between parents indicates possible consanguinity. 

Patient DNA had whole exome library prepared and was sequenced on an 

Illumina MiSeq sequencer. Homozygous changes were identified as shown in 

Table 3-10. Out of these six, only MACF1 was localised within a region of 

homozygosity. This variant segregated with the disease within the family and was 

not present in databases of common variants. Although MACF1 was a good 

functional candidate with a putative function in cytoskeleton organisation, the large 

size of the gene, lack of microtubule-associated functions in known ciliary genes 

and the low read coverage across the exome precluded extensive further study of 

this gene. 

 

35# 34#

36# 36A#
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Table 3-10. Summary of homozygous changes identified in WES of 36A sample. 

 

3.2.3.2.2 MKS family 66F1 

This consanguineous family originates from Pakistan (Figure 3-13).  

 

 
Figure 3-13. MKS family 66F1 pedigree. Consanguineous parents 63 and 64 had 

two affected offsprings 66F1 and 66F2 and one unaffected child 65. 

Parents of the affected cases are first cousins and only homozygous changes 

in homozygous regions were taken into consideration – Table 3-11. All of these 

changes were confirmed by Sanger sequencing and segregation was checked 

within the family. Only the change in TXNDC15 segregated with the phenotype.  

 

 
Table 3-11. WES results for 66F1 family. 

This change was excluded from databases of common variants and 96 

Pakistani controls. Subsequently, a panel of ninety MKS/JSRD patients was 

screened for additional mutations in this gene (Table 3-12). 

 

Gene Class RefSeqID./>.Mutation Chrom Pos SNP_ID
Variant.
Percent.

Confidence

MKS36A.
Allele.Depth

MACF1 missense NM_012090-.>-c.6797G>A,p.R2266Q 1 39835746 . 100 G=0/A=18
LEFTY1 nonsense NM_020997-.>-c.76C>T,p.Q26* 1 226076691 . 77.03851 G=0/A=1

RASGRP3 missense
NM_170672-.>-c.1058A>T,p.N353I,-
NM_015376-.>-c.1058A>T,p.N353I,-

NM_001139488-.>-c.1058A>T,p.N353I
2 33752454 . 77.03851 A=0/T=1

TGFBR2 missense NM_001024847-.>-c.1616G>A,p.C539Y,-
NM_003242-.>-c.1541G>A,p.C514Y 3 30732928 . 68.8111 G=0/A=1

PRB3
intronic/sp
lice_conse

nsus
NM_006249-.>-c.725.3del 12 11420333 rs140904217 100 AG=0/A=10

ALOX5AP splicing NM_001204406-.>-c.116+1insTA 13 31287979 . 100 G=0/GTA=11

63# 64#

65# 66F1# 66F2#

Gene Class RefSeqID -> Mutation Chrom Pos SNP_ID PolyPhen2 score
TXNDC15 frameshift_insertion NM_024715 -> c.955insT,p.S321Kfs*15 5 134235247 .
EYS intronic/splice_consensus NM_001142800 -> c.6078-4_-3del 6 65016977 rs66531247

CTTNBP2 missense NM_033427 -> c.2750C>G,p.A917G 7 117417593 . 1
PHGR1 missense NM_001145643 -> c.44G>A,p.G15D 15 40648299 . 0.998



  93 

 
Table 3-12. Sequencing results of TXNDC15 in MKS/JSRD panel of patients. 

No other biallelic changes were identified, although in Shaheen et al, 2013 the 

authors report a non-frameshift variant in TXNDC15 for an Arabic MKS patient. This 

change was not chosen by the authors as the causative mutation, since a missense 

variant in EXOC4 was judged to be a better candidate for the cause of the MKS 

phenotype. No further functional work was performed for this gene. 

 

3.2.3.3 Illumina HiSeq2500 platform 

3.2.3.3.1 MKS family 17  

This family originated from Pakistan and the parents are first cousins (Figure 
3-14).  

 

 
Figure 3-14. MKS family 17 pedigree. Consanguineous parents 14 and 15 had two 

affected offsprings 16 and 17 and one unaffected child 18. 

DNA for the affected individual was sequenced on an Illumina HiSeq2500 

sequencer. Only homozygous changes were prioritised for further analysis (Table 
3-13). 

 

 
Table 3-13. WES results for sample 17. 

Out of these changes EXOC3L4 was the best functional candidate gene, as 

the encoded protein is involved in exocytosis, process previously associated with 

ciliary function 242. The variant segregated with the disease within the family and 

sample exon cDNA protein status confirmed segregate controls EVS8(~13k) PolyPhen2
227 1 15C>A A5A het not-done not-done not-done not-present
377 2 C>T S110S homo not-done not-done not-done not-present

206 3 703C>T R235W het yes
no-family-
members

not-done not-present probably-damaging-1.0

378 5 1043G>A R348Q het yes
no-family-
members

not-done A=1/G=13005-rs149940297 probably-damaging-1.0

66F1 5 955insT S321Kfs*15 homo yes yes yes-(excluded) yes-(excluded)

11 5 955insT S321Kfs*15 het yes
not-passed-
to-affected-

13
yes-(excluded) yes-(excluded)

14# 15#

16# 17# 18#

Gene Class RefSeqID./>.Mutation Chrom Pos SNP_ID MKS17.Allele.Depth PolyPhen2
EXOC3L4 nonsense NM_001077594./>.c.232C>T,p.R78* 14 103566788 rs189674968 C=0/T=111 /
AHNAK2 missense NM_138420./>.c.6122C>T,p.P2041L 14 105415666 rs150446570 G=0/A=2 NM_138420,P>L,probably.damaging(1.0)
AHNAK2 missense NM_138420./>.c.5526C>G,p.I1842M 14 105416262 . G=0/C=6 NM_138420,I>M,benign(0.268)
NUDT14 missense NM_177533./>.c.10A>G,p.I4V 14 105647537 . T=0/C=16 NM_177533,I>V,benign(0.0)



  94 

was excluded in databases of common variants and 96 Pakistani controls. Only two 

additional heterozygous changes were identified in the MKS/JSRD cohort: 

c.893A>T, p.Q298L in family 157 and c.1937G>A, p.R646Q in sample 168. 

Functional analysis of the EXOC3L4 protein will be performed by Dr David Parry in 

a zebrafish model. 

 

3.2.3.3.2 MKS family 325 

This family is of Pakistani origin with known consanguinity (Figure 3-15).  

 

 
Figure 3-15. MKS family 325 pedigree. Consanguineous parent 327 (mother’s 

sample was unavailable) had three affected offsprings 324, 325 and 326. 

DNA samples for the family included three affected siblings and paternal DNA. 

SNP chip analysis of pooled and unpooled samples revealed no shared regions of 

homozygosity between the affected cases. Patient 325 was sequenced on an 

Illumina HiSeq2500 platform, but filtering for homozygous variants revealed a long 

list of possible variants – Table 3-14. Out of these, only SPTBN4 was located in a 

homozygous region, but was excluded as a causal mutation following segregation 

analysis since it was not observed in other family members. 

 

327$

324$ 325$ 326$
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Table 3-14. WES results for family 325. All homozygous changes predicted to be 

pathogenic are listed. 

The sequencing results in this family were inconclusive and no good 

functional candidates were identified. Ambiguity in sample labelling at the time of 

ascertainment also precluded further analysis of this family. 

  

3.2.3.3.3 MKS family 144 

This consanguineous family is of Moroccan origin, and was diagnosed with 

MKS (Figure 3-16). 

 

 
Figure 3-16. MKS family 144 pedigree. Consanguineous parents 142 and 143 had 

two affected offsprings 144 and 145. 

WES was done on an Illumina HiSeq2500 sequencer, and homozygous 

changes in homozygous regions were identified (Table 3-15). 

 

Gene Class RefSeqID./>.Mutation Chrom Pos SNP_ID MKS325.Allele.
Depth PolyPhen2

ST3GAL5 splicing NM_00389601>0c.82+1G>T 2 86115946 . C=0/A=2 1

MFSD9 missense NM_03271801>0c.368A>G,p.Y123C 2 103343363 . T=1/C=4 NM_032718,Y>C,probably0
damaging(1.0)

RYK frameshift_insertion NM_00100586101>0c.10insG,p.R4Afs*18,0
NM_00295801>0c.10insG,p.R4Afs*18 3 133969487 . G=0/GC=5

FAM170A missense NM_18276101>0c.755G>T,p.R252I,0
NM_00116399101>0c.614G>T,p.R205I 5 118970198 . G=0/T=84

BC128243,R>I,probably0
damaging(1.0)/NM_001163991,R>

I,probably0damaging(0.999)

HLA3B missense NM_00551401>0c.356T>G,p.L119R 6 31324207 rs146092816 A=0/C=11
NM_005514,L>R,probably0

damaging(0.996)/AK310586,L>R,p
robably0damaging(0.998)

MUC12 missense NM_00116446201>0c.5359A>C,p.S1787R 7 100639203 . A=0/C=9 1

LOC642236 intronic/splice_conse
nsus NR_03390701>03'UTR+3A>G 9 68433462 rs111392331 T=0/C=2 1

P2RY11,PPAN3P2RY11 missense,non1
coding,missense

NM_00256601>0c.814G>A,p.V272M,0
NM_00104066401>0c.2074G>A,p.V692M,0

NM_00119869001>03'UTR
19 10225103 rs147142449 G=1/A=161 NM_002566,V>M,probably0

damaging(0.999)

KRTDAP missense NM_20739201>0c.185A>T,p.E62V,0
NM_00124484701>0c.143A>T,p.E48V 19 35979371 . T=0/A=26 NM_207392,E>V,possibly0

damaging(0.665)

SPTBN4 missense NM_02097101>0c.2425C>A,p.R809S 19 41019121 . C=0/A=80
AF324064,R>S,possibly0

damaging(0.896)/AF324063,R>S,p
ossibly0damaging(0.924)

CEACAM21 missense NM_03354301>0c.70C>A,p.L24I,0
NM_00109850601>0c.70C>A,p.L24I 19 42083557 . C=0/A=21

NM_001098506,L>I,probably0
damaging(0.998)/NM_033543,L>I,

probably0damaging(0.997)

ASMTL missense
NM_00419201>0c.1372G>A,p.V458M,0

NM_00117347301>0c.1198G>A,p.V400M,0
NM_00117347401>0c.1324G>A,p.V442M

X 1537881 rs151271783 C=0/T=2

NM_004192,V>M,probably0
damaging(0.973)/NM_001173474,

V>M,probably0
damaging(0.985)/AK297805,V>M,

probably0damaging(0.973)

ABCD1 missense NM_00003301>0c.1748T>A,p.V583E X 153006141 rs79383557 T=0/A=2 NM_000033,V>E,probably0
damaging(1.0)

143$ 142$

144$ 145$



  96 

 
Table 3-15. WES results for family 144. 

Amongst the homozygous variants, a nonsense variant was identified in the 

BBS12 gene. It remains uncertain if MKS and BBS are allelic, and this result could 

have been a useful extension of the mutation spectrum in this gene, as well as 

definitive proof of allelsim between these different ciliopathies. However, further 

clinical information on the patient phenotype confirmed a diagnosis of BBS with 

antenatal presentation rather than MKS.  

This example shows how important a detailed clinical phenotype is for genetic 

research studies, and the possibility of differential diagnosis between ciliopathies. 

 

3.2.3.3.4 MKS family 351  

This consanguineous family from Southern India was referred for genetic 

analysis with a diagnosis of MKS (Figure 3-17).  

 
Figure 3-17. MKS family 351 pedigree. Consanguineous parents 349 and 350 had 

two affected offsprings 351 and 352. 
 

WES on an Illumina HiSeq2500 sequencer was performed and only 

homozygous changes in regions of homozygosity shared by affected siblings were 

taken forward for further analysis (Table 3-16). 

 

Gene Class RefSeqID./>.Mutation Chrom Pos SNP_ID
MKS144.
Allele.
Depth

PolyPhen2

GBP4 missense
NM_052941/0>/

c.1090C>G,p.L364V
1 89655828 . G=0/C=65

NM_052941,L>V,possibly/

damaging(0.529)

ITIH3 missense
NM_002217/0>/

c.1828G>A,p.E610K
3 52837989 rs190544531 G=0/A=85

NM_002217,E>K,possibly/

damaging(0.9)

BBS12 nonsense

NM_001178007/0>/

c.2023C>T,p.R675*,/

NM_152618/0>/

c.2023C>T,p.R675*

4 123665070 . C=0/T=67 0

BTBD11 intronic,mi

ssense

NM_001017523/0>/

c.61G>A,p.G21R,/

NM_001018072/0>/

c.14910185G>A

12 107974744 rs147063979 G=0/A=84
NM_001017523,G>R,prob

ably/damaging(1.0)

350$ 349$

351$ 352$
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Table 3-16. WES results for family 351. 

Initially, as the best functional candidate, DIXDC1 was prioritised for 

sequencing in MKS/JSRD cohort as the encoded protein was shown to localise at 

the centrosome 243 and be involved in Wnt signalling 244. Sequencing identified no 

other variants. Further investigation of the patient phenotype showed that affected 

individuals did not present with a ‘typical’ MKS phenotype. The patient phenotype 

included cystic dysplastic kidneys, skeletal anomalies, pre-axial limb malformation, 

cardiac defects, ductal plate malformation, pancreatic ductal ectasia, cerebral 

ventricular dialtation, pulmonary isomerism, hypertelorism, oligohydramnios with 

limb contractures (Potter sequence), limb shortening, hypoplastic vertebrae, pelvis, 

gracile ribs and acral anomalies. This phenotype, although unusually severe, is 

consistent with a congenital disorder of glycosylation type 1L, caused by mutations 

in the ALG9 gene (MIM#608776). Segregation of the change with the phenotype 

was confirmed in the family and the change was excluded from databases of 

common variants. The MKS/JSRD cohort was screened for mutations in this gene 

but no other changes were identified, enabling a differential diagnosis of CDG type 

1L to be excluded in the remaining MKS/JSRD patients. 

 

3.2.3.4 CSPP1 

A homozygous mutation in CSPP1 (NM_024790.6:c.2244_2247delAAGA, 

p.E750Lfs*7) was identified in consanguineous Canadian Hutterite family with 

JSRD by a collaborator, Prof. Micheil Innes (Medical Genetics University of 

Calgary, Canada), using an autozygosity mapping and WES strategy. Two patients 

from Leeds MKS/JSRD cohort that were compatible with linkage to this locus 

(microsatellites tested: D8S1785 and D8S1840) were sequenced but this analysis 

revealed no variants that could be interpreted as pathogenic mutations. CSPP1 

encodes centrosome and spindle pole associated protein 1 and was therefore an 

excellent candidate to cause a ciliopathy phenotype. However, the absence of other 

families with mutations in CSPP1 prevented further progress on this project until a 

second collaborator, Prof. Fowzan Alkuraya (Alfaisal University, Saudi Arabia), 

reported a second family with a homozygous CSPP1 mutation. Genotyping analysis 

of the CSPP1 locus were done for the remaining MKS/JSRD cohort and patients 

Gene Class RefSeqID./>.Mutation Chrom Pos SNP_ID MKS351.Allele.Depth PolyPhen2
FAM3D missense NM_138805./>.c.47T>C,p.I16T 3 58639475 . A=0/G=27 uc003dkq.2,I>T,benign(0.001)
LRCH4 missense NM_002319./>.c.853G>C,p.A285P 7 100175877 rs149693391 C=1/G=112 uc003uvj.2,A>P,benign(0.049)

ZAN missense NM_173059./>.c.6053C>T,p.P2018L,.NM_003386./>.
c.6053C>T,p.P2018L 7 100373317 . C=1/T=121 /

EMID2 missense NM_133457./>.c.257C>T,p.P86L 7 101063356 rs79106047 C=0/T=53
uc003uyo.1,P>L,probably.

damaging(1.0)/uc010lhy.1,P>L,
probably.damaging(1.0)

ALG9 nonsense
NM_001077690./>.c.764C>A,p.S255*,.NM_001077691./>.
c.251C>A,p.S84*,.NM_001077692./>.c.251C>A,p.S84*,.

NM_024740./>.c.764C>A,p.S255*
11 111724397 rs17113312 G=0/T=42 /

DIXDC1 missense NM_001037954./>.c.14T>G,p.L5R 11 111808237 . T=0/G=126
uc001pmk.2,L>R,possibly.

damaging(0.571)/uc001pml.2,L
>R,probably.damaging(0.998)
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compatible with linkage were Sanger sequenced. No variants were identified that 

could be interpreted as pathogenic mutations. Furthermore, 96 samples with 

MKS/JSRD were shared with Prof. Nicolas Katsanis for targeted resequencing of 

the ciliome. Targeted capture was performed for over 700 genes, from the 

CiliaProteome v3 245 or known to cause a ciliopathy or be involved in ciliary function. 

During the analysis, three variants of unknown significance in MKS/JSRD cohort 

were detected (Table 3-17), but these are unlikely to be disease-causing. All those 

changes were Sanger sequenced by the author in the stock DNA and all were 

detected to be in heterozygous. Sample 166 already had a causative mutation 

detected in RPGRIP1L, 175 inherited the change from mother and there is no DNA 

from an affected child for parent 356. Sequencing of the whole CSPP1 gene in the 

other parental sample to 356 did not reveal any changes. These results were 

incorporated into a subsequent publication 108. 

 

 
Table 3-17. CSPP1 changes identified in CiliaProteome v3 targeted capture 

sequencing. 

 

 

3.2.4 Identification of mutations in TMEM237 causing Joubert 
syndrome related disorder 

 
3.2.4.1 Genotyping of MKS/JSRD patient DNA 

Based on a personal communication (Prof. Kym Boycott, University of Ottawa) 

a novel locus for JSRD was identified on chromosome 2q33.1. Informative genetic 

markers (D2S2309 and D2S1384) were chosen that spanned approximately 2Mb 

across this locus. DNA samples from 18 MKS/JSRD patients, already determined to 

be mutation negative for all other known MKS genes, were chosen to be genotyped 

(Figure 3-18).  

Sample Other+Ciliopathy+Mutations Gene

166 Affected

RPGRIP1L.[c.1829A>C.

p.H610P][c.721_724delAATG.

p.N241fsX25]

CSPP1

175 Affected CSPP1

356 Parent CSPP1

annotation

c.1376.C>G.p.Ser459Cys.hom

c.2219.G>G/A.p.Arg740His.het.

c.2966.G>G/A.p.Arg989Gln.het

exon+ rsnumber ESP6500 MAF PolyPhen

11 rs146431326 G=54/C=12018 0.004473
Probably.damaging.with.a.score.of.

0.989.(sensitivity:.0.72;.specificity:.0.97)

17 W 0
Probably.damaging.with.a.score.of.

1.000.(sensitivity:.0.00;.specificity:.1.00)

24 A=1/G=11827 0.000085
Probably.damaging.with.a.score.of.

0.999.(sensitivity:.0.14;.specificity:.0.99)
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Figure 3-18. Chromosome 2 genotyping results from 18 MKS/JSRD DNA 

samples. Non-consanguineous samples are coloured yellow while consanguineous 
samples are represented in red. Genotypes homozygous for both markers are highlighted in 
green. 

DNA samples 16/17, 66F1/66F2 and 42/43 are from pairs of affected siblings, 

but none of them shared haplotypes for this region. The only sample that was 

compatible with linkage to chromosome 2q33.1 was from the singleton patient 261, 

of a consanguineous Jordanian origin. 

 

3.2.4.2 Sequencing 

Next generation sequencing was performed by collaborators in Prof. Kym 

Boycott’s group in Canada. As a result, mutations were identified in the previously 

uncharacterised gene TMEM237 (also known as ALS2CR4). Ninety MKS/JSRD 

patients from the University of Leeds patients cohort were then subsequently 

Sanger sequenced for mutations in TMEM237 by the author. One additional family 

with a mutation in TMEM237 was identified. In the consanguineous Jordanian 

patient 261 homozygous across the TMEM237 locus, a homozygous TMEM237 

frame-shift mutation in exon 12 (c.1066dupC) (Figure 3-19) was identified. The 

frame-shift mutation is predicted to result in a truncated protein (p.Q356Pfs*23) and 

was absent in one hundred and five normal Jordanian control individuals that were 

Sanger sequenced for the variant. 
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Figure 3-19. TMEM237 genomic organization with domain structure of the 

TMEM237 transmembrane protein. Yellow blocks indicate four predicted transmembrane 
domains in the TMEM237 protein, blue tetratricopeptide domain (predicted using TMHMM 
online tool: http://www.cbs.dtu.dk/services/TMHMM-2.0/). Both N- and C-terminal domains 
are predicted to be intracellular. The black line indicates exon 12 with the homozygous 
c.1066dupC frameshift mutation in patient 261. The red arrow shows the identified mutation 
on an electrophoretogram (lower panel), compared to a normal control (upper panel). Image 
adapted from Huang et al. 2011. 

 

TMEM237 spans 23 kb on chromosome 2q33 and contains 14 exons. Two 

alternative TMEM237 transcripts (1 [NM_001044385.1] and 2 [NM_152388.2]), 

translating into two protein isoforms, a [NP_001037850.1] and b [NP_689601.2], 

have been proposed in humans. Each transcript utilizes one of the two alternative 

exons, exon 1 or exon 2. These are spliced in a mutually exclusive manner. All 

positional information in this thesis refers to transcript 1, and isoform a.  

 
3.2.4.3 Patient phenotype 

The mutation in TMEM237 was identified in patient 261 who was initially 

reported to have MKS. Further detailed information obtained from their clinician 

though suggested JSRD with described occipital meningomyelocele, cortical visual 

impairment, mild dilatation of pelvic utreter, slopping forehead, low set ears, 

developmental delay with no sitting and no speech. 

 

3.2.4.4 Subcellular localisation of TMEM237 

To elucidate the potential roles for TMEM237, the subcellular localization of 

the encoded protein was first determined. Two affinity-purified polyclonal antibodies 

raised against mouse Tmem237 amino acids 76-88 (“FLJ-FM”) and 390-403 (“FLJ-

LG”) (kindly provided by Dr Cheryl Craft [University of California Santa Cruz]) in the 

N- and C-terminal domains, respectively, were used (Figure 3-20) 246. These 

!

!
228# 250# 265# 287# 300# 322# 351# 373#160# 192#
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antibodies were used for immunocytochemical staining of a polarized monolayer of 

ciliated mouse inner medullary collecting duct (IMCD3) cells (Figure 3-20). Discrete 

signals at the proximal region of primary cilia were observed, consistent with 

localization to the TZ.  

 

 
Figure 3-20. Subcellular localisation of TMEM237 in IMCD3s. On the left hand side 

cells were stained with anti-C-terminus, on the right with anti-N-terminus TMEM237 
antibodies (red). White arrows indicate TZ localisation of TMEM237. For both assays 
polyglutamylated tubulin (GT335 in green) was used as a cilia marker. DAPI (blue) was 
used as a nucleus marker. Image adapted from Huang et al. 2011. 

 

 
3.2.4.5 TMEM237 function in ciliogenesis  

Fibroblasts derived from a patient with a homozygous nonsense mutation 

(p.R18*, line JSRD2) in TMEM237 were obtained form collaborator Prof. Kym 

Boycott. As a control neonatal human dermal fibroblasts (HDF) obtained from Dr 

Jacqueline Bond (University of Leeds) were used. Quantitative real-time (qRT) PCR 

was used to measure TMEM237 transcript expression since the existing mouse 

antibodies were not specific to human TMEM237. TMEM237 transcript levels in the 

JSRD2 line were reduced by about 97% (Figure 3-21).  



  102 

 
Figure 3-21. qRT-PCR quantification of TMEM237 levels between control (HDF) 

and JSRD2 RNA levels. Error bars represent standard error of the mean (n=3). 

 

A failure in ciliogenesis was observed in patient fibroblasts, following 48h 

serum starvation (Figure 3-22) compared to control fibroblasts as seen previously 

in cells deficient for TMEM216 and TMEM67 99,205.  
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Figure 3-22. Disruption of ciliogenesis in JSRD2 patient fibroblasts with the 

homozygous TMEM237 p.R18* nonsense mutation. Images show fibroblasts stained with 
polyglutamylated tubulin (green), γ-tubulin (red) and nuclear marker DAPI (blue); scale 
bar=5µm. In JSRD2, a lack of cilia was observed, compared to control fibroblasts with cilia 
(defined as >1µm in length). The bar graph shows the comparison of % of cells with cilia (n= 
300), demonstrating a statistically significant loss of cilia in JSRD2 (**** represents 
p<0.0001, Student’s t-test, paired two-tailed). Error bars represents standard error of the 
mean. Figure adapted from Huang et al. 2011. 

 

These data were quantified by analysing the percentage of cells with evident 

cilia (defined as > 1µm length) versus those without cilia (defined as < 1µm length), 

with 300 cells analysed for each condition. For independent confirmation of these 

results,  ciliogenesis defects were tested in IMCD3 cells with transient siTmem237 

knockdown. The expected 45kDa protein was recognized by immunoblotting with 

the “FLJ-LG” antibody 246 in cells transfected with siScr (Figure 3-23a, first lane). 

The staining was lost following siTmem237 knockdown (Figure 3-23a). Consistent 

with the results obtained from patient fibroblasts, transfection with two separate 
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siTmem237 duplexes (#1 and #2) impaired ciliogenesis in polarized cells (Figure 3-
23b). 

 
Figure 3-23. Tmem237 siRNA knockdowns in IMCD3 cells. a) Western blot 

analysis demonstrating loss of protein in lysates from IMCD3 cells transfected with 
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siTmem237 compared to siScr; b) immunofluorescence staining of IMCD3 cells transfected 
with siTmem237 demonstrating loss and shortening of cilia compared to siScr. Green - cilia 
marker polyglutamylated tubulin, red - basal body marker γ- tubulin, blue - nucleus marker 
DAPI; c) bar graph showing loss of cilia in cells transfected with siTmem237 compared to 
siScr, for mock reaction transfection reagent only was used (** represents p<0.01 and **** 
represents p<0.0001, Student’s t-test, for pairwise comparisons, two-tailed; error bars 
represents standard error of the mean). Figure adapted from Huang et al. 2011. 

 

Knockdown of Tmem237 caused not only cilia loss but also shortening of cilia 

(Figure 3-24), a phenotype often observed following loss or mutation of proteins 

involved in ciliogenesis 22. 

 
Figure 3-24. Measuring the effects of siRNA knockdown of Tmem237 on cilia 

length. Diagram showing shortening of cilia length after treatment with siTmem237 
compared to siScr treatment. Length (µm) of cilia for >300 cells were measured, and 
pairwise comparisons (Student t-test, **** represents p<0.0001) are indicated. Error bars 
represents standard error of the mean. 

 

 
3.2.4.6 TMEM237 in Wnt signalling  

Many aspects of actin-dependent polarized cell behaviour, including 

morphogenetic cell movements 247 and ciliogenesis 248, are mediated by the planar 

cell polarity (PCP) pathway of non-canonical Wnt signalling (section 1.1.2.1.2). 

Perturbation of non-canonical Wnt signalling is implicated in the pathogenesis of 

MKS and deregulation of the canonical β-catenin pathway is implicated in the 

ciliopathy disease state 99,159,162. To assess if these pathways were perturbed 

following TMEM237 mutation or loss, levels of key mediators in patient and control 

fibroblasts were determined. Immunoblot analysis of patient fibroblasts protein 

extract demonstrated constitutive phosphorylation and hyperactivation of 

Dishevelled-1 (Dvl1), a core Wnt signalling protein, and an increase in both soluble 

and total levels of β-catenin (Figure 3-25a). Levels of downstream effectors for both 
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canonical and non-canonical Wnt signalling, cyclin-D1 and phosphorylated 

myosinIIB respectively, were also assessed using immunoblot analysis. A slight 

increase in phosphorylated myosinIIB levels and a striking decrease in the amount 

of cyclin-D1 in “JSRD2” patient cells was observed (Figure 3-25a). RhoA activation 

was then assayed as the Rho family of small GTPases are key PCP mediators. 

Consistent with previous results following TMEM67 or TMEM216 mutation or 

knockdown, RhoA signalling was found to be activated in TMEM237-mutated 

fibroblasts (Figure 3-25a) or following Tmem237 knockdown (Figure 3-25b) 

despite normal total amounts of RhoA in these cells.  

 
Figure 3-25. Deregulation of Wnt signalling following mutation or loss of 

TMEM237. a) Western blots showing the relative levels of the indicated endogenous 
mediators of both canonical and non-canonical/PCP Wnt signalling in normal control 
fibroblasts compared to the TMEM237-mutated patient fibroblast line (JSRD2 p.R18* line). 
Levels of β-actin and total RhoA indicate relative protein loading; b) Increase in levels of 
activated RhoA-GTP following siTmem237 knockdown with duplexes #1 or #2, compared to 
negative control (siScr). Levels of β-actin are shown as loading controls. Positive control for 
the assay (loading with non-hydrolyzable GTPγS) and a negative control (loading with GDP) 
are shown on the left. 

RhoA localized to the basal body in confluent IMCD3 cells (Figure 3-26), 

supporting a role in mediating centrosome docking at the apical cell surface prior to 

ciliogenesis. However, following Tmem237 knockdown, RhoA was mislocalized to 

peripheral regions of the basal body and to basolateral cell-cell contacts (Figure 3-
26), consistent with translocation of ectopically-activated RhoA to the cytosol. Since 

RhoA modulates the actin cytoskeleton in the PCP pathway, the cytoskeletal 

phenotype of TMEM237 patient fibroblast lines was evaluated. Strikingly, prominent 
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actin stress fibres were seen in the patient fibroblasts but not in normal control 

fibroblasts (Figure 3-26). 

 

 

 
Figure 3-26. Disrubtion of the noncanonical Wnt signalling effectors subcellular 

localisation. Top panel – RhoA localisation to the basal body after treatment with siScr. 
This localisation was disrubted after treating cells with siTmem237 (#1 and #2), where 
RhoA was mislocalized to the peripheral regions of the basal body (yellow arrows). 
Bottom panel – actin marker staining (phalloidin) showed an increase in actin stress 
fibres in JSRD2 patient fibroblast compared to the control cells. Scale bar=20µm. 
Image adapted from Huang et al. 2011. 

To assay levels of Wnt signalling in those cells TOPflash assay was done. In 

this assay luciferase levels are regulated by nuclear β-catenin binding to TCF/LEF 

regulatory elements. Therefore the more nuclear β-catenin the more luciferase  

expressed. JSRD2 patient fibroblasts demonstrated dysregulated canonical Wnt 

signalling (over 5-fold basal levels) compared to control fibroblasts upon stimulation 

with Wnt3A-conditioned media (a canonical Wnt signalling ligand) (Figure 3-27a). 

Treatment with Wnt5A (a noncanonical Wnt signalling ligand) had no effect on 

activation; however, Wnt5A suppressed the activation by Wnt3A (Figure 3-27a). 
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Figure 3-27. TOP Flash assays of canonical Wnt signalling. a) Assay showed 

deregulation in patient fibroblasts (JSRD2 p.R18*, red) compared to normal control cells 
(blue) following treatment with 0.5x L cell control conditioned media (control), and 
conditioned media containing expressed Wnt3A and/or Wnt5A, as indicated. Activity is 
expressed as ratios of luciferase reporter construct expression, normalized for loading by 
measurement of a Renilla construct expression. Values shown are means of three 
independent replicates, with error bars indicating standard error of the mean (s.e.m.); b) 
TOP Flash assays of canonical Wnt signalling, following cotransfection of Tmem67+/+ and 
Tmem67-/- MEFs with reporter constructs and empty vector control, wild-type GFP-
TMEM237, HA-MKS3 or GFP-TMEM216 as indicated. The empty vector results combine 
the data from co-transfections with pCMV-HA and pGFPN1. Responses are shown to L cell 
control conditioned media (control, green bars, values are means of three independent 
replicates) and conditioned media containing expressed Wnt3A (0.5x Wnt3A, brown bars, 
values are means of four independent replicates). Error bars indicate s.e.m. Statistical 
significance of pairwise comparisons are shown (* p < 0.05, ** p < 0.01, Student t-test). 
Figure adapted from Huang et al. 2011. 

Previously transmembrane proteins involved in MKS/JSRD have been shown 

to interact 99. N-terminal part of TMEM67 contains a leucine-rich domain, which is a 

characteristic feature of the Frizzled receptors, which are the receptors for the Wnt 

ligands. It was therefore suggested that TMEM67 may be a Frizzled-like receptor 

and its interaction with other MKS/JSRD transmembrane proteins, acting as a co-

receptors, facilitates the correct Wnt signalling. Consequently any interaction 

between TMEM237 and other transmembrane proteins, like TMEM67, have been 

investigated using mouse embryonic fibroblasts (MEFs, obtained form Tmem67-/- 

and Tmem67+/+ mice). Deregulated Wnt signalling activation by Wnt3A was also 

apparent in MEFs derived from wild-type Tmem67+/+ and knock-out mutant 

Tmem67-/- E18 embryos (Figure 3-27b). Interestingly, responses were attenuated 

by expression of TMEM237, TMEM67 and TMEM216, indicating either partial 

complementation of TMEM67 loss by other TZ-localized members of the TMEM 

family or Wnt signal compensation from another cellular site (or process). 
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3.2.4.7 RPGRIP1L knockdown interferes with TMEM237 localisation 

RPGRIP1L was shown to be crucial TZ component, having an important 

function in correct localisation of other TZ components 249. It shares subcellular 

localisation with Tmem237 and further interaction between those proteins was 

investigated. Knockdowns of Mks5/Rpgrip1l in IMCD3 cells were performed and 

cells were stained for Tmem237 and the basal body markers γ-tubulin (Figure 3-
28a) or Dvl1 (Figure 3-28b), and RhoA (Figure 3-28c). Following scrambled siRNA 

transfection, basal body architecture was observed to be intact (Figure 3-28b), and 

Tmem237 was just distal to the basal body (Figure 3-28a and b; marked by either 

γ-tubulin or Dvl-1, respectively). This localization to the TZ was disrupted following 

knockdown of Mks5/Rpgrip1l. RhoA was also mislocalized to peripheral regions of 

the basal body and to basolateral cell-cell contacts (Figure 3-28c), identical to the 

cellular phenotype following Tmem237 knockdown (Figure 3-28c) as well as 

Tmem216 knockdown 99, indicating Rpgrip1l plays an important role in Tmem237 

localisation 249. 
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Figure 3-28. Ciliary TMEM proteins are anchored at the TZ by MKS5/RPGRIP1L. 

a) In siScr-treated IMCD3 cells, Tmem237 (red) is at proximal regions of the cilium and 
partially colocalizes with γ-tubulin (green) at the basal body, consistent with Tmem237 
localization to the TZ. Colocalization with γ-tubulin is disrupted following siRpgrip1l 
knockdown. Insets show magnified regions (indicated by arrowheads on the main image) for 
the red and green channels only; scale bars 5 µm; b) Top panels: Dvl1 (green) is a basal 
body that colocalizes with γ-tubulin (red) in IMCD3 cells, as described previously. siRpgrip1l 
does not disrupt overall basal body architecture. Bottom panels: in siScr-treated IMCD3 
cells Tmem237 partially colocalizes with Dvl1, but this is disrupted following siRpgrip1l 
treatment; c) As above, but with RhoA staining; magnified insets indicated by white frames. 

 

3.2.4.8 Loss of TMEM237 disrupts G1/S transition 

During the analysis of cyclin D1 levels in JSDR2 (TMEM237-mutated) cells, 

loss of expression of cyclin D1 protein was observed (Figure 3-25a). This was 

unexpected as cyclin D1 acts downstream from β-catenin, and in normal cells, its 

levels are observed to be elevated during up-regulation of canonical Wnt signalling.  
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Propidium iodide staining and FACS analysis was performed to understand 

the effect of the absence of cyclin D1 expression on the cell cycle after loss of 

TMEM237. Patient and control fibroblasts were cultured in normal growth media 

and had cell cycle synchronised by treatment with thymidine for 18h hours. They 

confirmed that JSRD2 cells had a prolonged G1 phase and very short S phase, 

although G2 remained similar to the one observed in the control fibroblasts (Figure 
3-29). Proliferation of both control and patient fibroblasts remained at a similar level, 

based on cell number count, and there is an evidence in the literature that in the 

absence of cyclin D1, cyclin D2 levels are increased to compensate and maintain 

proliferation 250. 

 

 
Figure 3-29. FACS results showing that JSRD2 fibroblasts have a prolonged G1 

phase and shortened S phase compared to control cells. Blue, the proportion of cells in 
G1 phase; green, S phase cells; and red, cells in G2 phase. Abbreviation: Dip - diploid cells. 

 

3.2.5 Discussion 

With a vibrant development of new technologies allowing fast and cost-

effective causative mutation discovery, it is expected to identify all genes implicated 

in a certain syndrome (http://www.omim.org/statistics/update). In this chapter the 

author focused on this task. 

Using SNP chip analysis and genotyping, a putative locus on chromosome 12 

was identified. No causative mutations were identified in the best functional 

candidates within this locus, TCTN1 and TCTN2. These genes were later proved to 

be good functional candidates, as mutations were identified in TCTN2 causing MKS  
104 and in TCTN1 causing JSRD 47. None of the samples had shared haplotypes 

that were compatible with linkage to this locus, although some of the individuals 

shared the same ethnic background. It is also known from a parallel study that the 

cause of the phenotype in patient 158 is a mutation in CC2D2A (c.3540delA 

p.R1180Sfs*6), and for patient 261 a mutation in TMEM237 (c.1066_1067dupC 
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p.Q356Pfs*23). This could suggest that this chromosomal region is highly 

homozygous in consanguineous populations (Dr Ian Carr, University of Leeds, 

personal communication). Consanguineous first cousins, in theory, share 6% (1/16) 

of their genome (though in practise those numbers are shown to be higher 251), 

therefore large homozygous chromosomal segments may contain genes with 

disease causing mutations. Those regions are called “identical by descent” (IBD) or 

“autozygous” and strategy of disease gene identification based on this assumption 

is called “autozygosity mapping”. This strategy was used in this study yet fingings 

suggest that the locus on chromosome 12 is likely to be a false positive finding. The 

other samples homozygous at this locus still do not have any causative mutations 

identified despite additional screening of new MKS genes. It is therefore possible 

that another gene in this locus may have a causative mutation, or these patients 

actually harbour mutations in the non-coding regions of TCTN1 or TCTN2. The 

latter possibility could be investigated by either whole genome sequencing (WGS) 

to look at deep intronic mutations, changes in the regulatory elements or copy 

number variants (CNV), or in combination with RNA sequencing to look at transcript 

levels 252, or alternatively by long-range PCR followed by clonal sequencing 253.   

Collaborative work between groups interested in ciliopathies have proved to 

be fruitful and very efficient, especially in the event of monoallelic mutation 

identification. The best examples are the CEP164 and TTC21B projects. Although 

there were no biallelic mutations identified in our cohort in these genes, it allowed 

the community to better understand the frequency of mutations in those genes and 

phenotypes they are and are not involved in 182,236. 

The collaboration with the group at Duke University highlighted the importance 

of data quality and filtering methods in variant calling, as the false positive rate in 

those results reached 45%. This project was an opportunity to have all of the 

CiliaProteome v3 genes sequenced in these samples, and the maximum available 

amount of DNA was sent (often 5µg). However, even these amounts of DNA were 

insufficient for the targeted capture protocol and WGA was often performed. This 

primer extension reaction allows the amplification of short fragments of genomic 

DNA using random primers. It uses a polymerase that lacks proof-reading activity 

and is prone to introducing single base-pair changes. The results obtained from 

sample processed with WGA should be therefore interpreted with some caution. 

Obtained results indicate that mutations in IFT genes are not the cause of 

MKS/JSRD. Heterozygous changes were identified and they may contribute to the 

severity of the phenotype 182. In two cases (76 and 256) homozygous changes were 

observed in patient stock DNA but segregation showed that either only one of the 

parents carried the mutated allele (76) or affected siblings were only heterozygous 
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for the mutation (256). These findings could be caused by poor quality DNA or 

allelic drop-out. However, in case 76 a causative mutation was identified in 

TMEM67 (c.1575+1G>A) excluding variant in IFT88 as a possible cause of the 

phenotype. Further analysis of this study is required and extensive genetic and 

proteomic data comparisons are being undertaken to understand the genetic and 

phenotypic variability in ciliopathy patients and the involvement of changes 

identified in IFT genes. 

One further collaboration concerned the understanding of the function of the 

TMEM107 protein and verifying whether it is involved in a human ciliopathy 

phenotype. Sequencing of patients with linkage compatible to the TMEM107 locus 

did not reveal any variants that could be interpreted as pathogenic and extensive 

screening of many ciliopathy patient cohorts did not identify mutations. This 

suggested that mutations in this gene are either not a cause of human ciliopathies, 

cause another disorder that was not represented by the screened cohort or they 

affect early embryonic development stages and are not compatible with life. 

TMEM107-GFP was showed to localise to the base of the cilium and ciliary 

axoneme (Figure 3-9) and loss of Tmem107 caused shortening of the cilium and 

affected cilia and cell number (Figure 3-10). To further elucidate the function of this 

protein, work in C. elegans was undertaken by a collaborator as well as the 

identification of novel protein-protein interactions using the TAP assay. The 

predicted tetraspanin-like structure of TMEM107 resembles that of other TMEMs 

implicated in ciliopathies. It has been postulated that these proteins interact 

together to function at the base of the ciliary membrane (at the so-called “ciliary 

necklace” of the transition zone) and regulate the trafficking of other proteins to and 

from the cilium (Dr Oliver Blacque, University of Dublin, personal communication). 

WES was used to identify mutations in consanguineous families with an 

MKS/JSRD phenotype. Three different sequencing platforms were used with 

varying output data quality. DNA from family 157 was sequenced on the Illumina 

GAIIx platform and biallelic homozygous changes in homozygous regions shared 

between two affected individuals were prioritised. There were no obvious functional 

candidates, but the p.R317Q variant in DLL1 segregated with the phenotype in the 

family. Screening of this gene in an MKS/JSRD cohort revealed only heterozygous 

changes and an additional heterozygous change was identified in a UK10k sample. 

This change was identical to the one found in family 157 and it may suggest that 

this change is a rare variant for the Pakistani population. It is possible that the true 

mutation was not detected during this analysis or it was present in the intronic 

sequences, as seen in OFD1 254 and CEP290 209 or indeed the cause of the 

phenotype was a large insertion/deletion. The possibility that the change in DLL1 is 
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the true cause of the phenotype was not excluded especially because ENU induced 

mice with a homozygous missense mutation in Dll1 (p.E26G) showed a phenotype 

resembling ciliopathies including situs inversus, ectopic neural tube and short tail 
255. Further analysis should be taken to dissect the cause of the phenotype in this 

family, which could include WES of the second affected and unaffected siblings, as 

well as WGS to look at possible CNV and deep intronic/regulatory elements 

changes. 

Samples sequenced on the Illumina MiSeq platform showed very low read 

coverage per base and it made interpretation of the results very difficult. In family 

36A, five homozygous variants were identified that passed analysis filters but only 

one of them was localised in a homozygous region and showed quite good read 

depth (RD=18) (average RD for this sample was 7). The variant in MACF1 

segregated with the phenotype in the family but no further analysis was done as 

this gene is large (93 exons) and the possibility of a true variant being missed 

during data analysis and filtering was quite high. With no previous reports of 

microtubuls proteins being directly involved in ciliopathies it was decided that these 

samples will have to be re-sequenced to get much higher base coverage. 

The second family (66F1) sequenced on the MiSeq had a mutation identified 

in TXNDC15. The change segregated with the disease in the family and 

sequencing of this gene in an MKS/JSRD cohort revealed additional changes but 

none were homozygous (Table 3-12). A variant in this gene was reported in 

another MKS patient 256, but the authors did not suggest that it was causative, as it 

was an in-frame deletion and better functional candidate had mutations. Another 

thioredoxin gene (TXNDC3) had a single mutation identified as a cause of primary 

ciliary dyskinesia 257. Altogether this may suggest that the change in TXNDC15 is 

the true cause of the MKS in family 66F1, but further functional studies are 

essential to dissect out the function of TXNDC15 in cilia. 

Results from the Illumina HiSeq2500 sequencing platform provided much 

better data quality than those from the MiSeq. A mutation in EXOC3L4 was 

identified in family 17 and the change segregated with the disease in the family. 

Sequencing of this gene in the MKS/JSRD cohort revealed only two additional 

heterozygous changes. The function of EXOC3L4 in ciliogenesis in unknown but 

the excocyst complex has been strongly linked to trafficking to the primary cilium 
258. The identified variant in EXOC3L4 has been assigned an rs number indicating 

that it may be a benign variant. However, the MAF for this change is 0.0005, 

therefore this variant is very rare and could be pathogenic. This scenario was 

observed in the study that identified mutations in SLC38A8  as a cause of Foveal 

Hypoplasia and Optic-Nerve-Decussation Defects. Poulter at al. found a variant 
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with rs number (rs149592537) p.Q200* 259, which was observed at a very low 

frequency in the databases (1/12,999 in the EVS and 1/4,545 in dbSNP), 

suggesting that it could be pathogenic and therefore causative for the phenotype. 

Family 325 has three affected offspring but SNP chip analysis on both pooled 

and unpooled samples showed no shared homozygous regions. There was 

confusion in sample information as sample 325 was reported as a male, but SNP 

chip data clearly showed it was a female. This could have also suggested that 

naming on the samples was mixed up, as for this family no maternal DNA was 

provided. Further information obtained from the clinician confirmed that initial 

sample calling was correct with the exception of the sample gender. There was no 

clear functional candidate amongst those with homozygous changes identified in 

WES (Table 3-14). The possibility was not excluded that the cause of the 

phenotype in this patient could be a deep intronic mutation or big deletion/insertion. 

In family 144 a change was identified in BBS12 p.R675* and it was thought 

that this result will extend the allelism seen between the ciliopathies. However, 

further phenotypic investigation of the patient showed that they presented a typical 

BBS phenotype and had been mis-diagnosed initially. This example highlighted the 

possibility of a differential diagnosis in the Leeds cohort and it should be considered 

during further studies.  

This point was particularly valid during the investigation of sample 351 where 

initially a change in ALG9 (c.764C>A, p.S255*) was filtered out as it was at the 

same position as a SNP (p.S225L). DIXDC1 was screened in the whole MKS/JSRD 

cohort with no mutations identified. Only when the analysis was repeated it was 

noticed that a novel nonsense mutation in ALG9 was present which segregated 

with the disease in the family. Mutations in ALG9 are associated with Congenital 

disorder of glycosylation (CDG) type 1l 260 and further investigation of the patient’s 

phenotype revealed that it was not typical MKS but it actually resembled CDG 

phenotype. ALG9 was screened in the whole MKS/JSRD cohort to exclude from 

further studies other samples misdiagnosed for CDG.  

Identification of private mutations makes it difficult to establish if the change is 

the true cause of the phenotype. On average 66 homozygous rare pathogenic 

coding variants are being identified in first cousin consanguineous individuals 

(figure based on in-house WES data) that need to be prioritized by literature mining 

for the known protein function and interactions, structure analysis and animal 

models. The evidence suggesting that a particular variant is the cause of the 

phenotype has to be compelling before embarking on additional functional studies. 

With the rapid progress of gene discovery, the identification of the causes of 

Mendelian conditions has expanded vastly, leaving rare, often private variants to be 
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identified. Many samples analysed during this study proved this, and only 

sequencing of large cohorts and identification of a second case with mutations 

enables researchers to gain confidence in the true pathogenic nature of the variant. 

This was shown in the case of CSPP1 when a single homozygous private mutation 

was identified by a Canadian group who were unable to find additional patients with 

mutations. The project was not taken forward and only after the identification of 

another variant by collaborators in Saudi Arabia, the evidence sufficient to be 

reasonably certain that mutations in this gene were a cause of MKS 108. 

Surprisingly, other groups identified additional mutations in their patient cohorts 

resulting in three back-to-back publications reporting mutations in CSPP1 108,150,151. 

It remains possible that the variants found in patients 157, 17, 36A, 66F1 may in the 

future be confirmed as pathogenic by independent replication in other cohorts. 

TMEM237 mutations were initially identified by a group in Canada in two 

Hutterite families. Sequencing of the Leeds cohort of MKS/JSRD patients revealed 

an additional mutation in sample 261 (p.Gln356Profs*23). Patient 261 was initially 

diagnosed with MKS but a detailed phenotype provided by the clinician indicated 

JSRD. Functional analysis of TMEM237 showed that the protein localises to the 

base of the cilium, the TZ. In mouse proteomic studies, Tmem237 was found in the 

photoreceptor connecting cilium complex and outer segments 246. TMEM237 is a 

predicted tetraspan transmembrane protein with both amino and carboxyl termini 

directed to the cytoplasmic side of cells. Analysis of patient cell lines showed that 

the TMEM237 transcript was at very low level compared to the control (Figure 3-
21) and cilia were lost in those cells. Knockdown of TMEM237 in mIMCD3 cells 

also caused loss of cilia and cilia shortening. TMEM237 is hypothesised to be a co-

receptor for TMEM67 and TMEM216, and consistent with this hypothesis patient 

cell-lines for TMEM67 and TMEM216 showed deregulated canonical and non-

canoncal Wnt signalling 99,206. Downstream effectors for these pathways were also 

analysed in TMEM237 patient cell line and showed prominent up-regulation 

suggesting that TMEM237 is a negative regulator of Wnt signalling. Unexpectedly, 

cyclin D1 levels were shown to be lower than in the control sample. The increased 

levels of β-catenin, a transcriptional regulator of cyclin D1, would suggest that high 

level of cyclin D1 should had been observed. This may indicate that TMEM237 

plays a role in the correct localisation of β-catenin to the nucleus. The blocking of 

the TMEM237 patient cell line in the G1 phase of the cell cycle confirms loss of 

cyclin D1 as it is a key regulator of G1/S transition 261. As TMEM237 showed 

localisation to the TZ, it was investigated if its localisation would be affected by loss 

of the TZ component RPGRIP1L. TMEM237 showed mislocalisation after loss of 

RPGRIP1L suggesting that this protein is crucial for the correct localisation of 
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TMEM237 to the TZ. Further studies to elucidate the consequence of TMEM237 

loss were not conducted. 

Other members of the transmembrane protein (TMEM) family, 

TMEM216/MKS2 and TMEM67/meckelin, have both been implicated in JSRDs and 

MKS and both localize to the ciliary basal body or TZ region 99,152,262. Since other 

tetraspan transmembrane proteins function through the formation of complexes with 

each other, and other membrane proteins such as Frizzled receptors 263, it suggests 

that TMEM237, TMEM216 and TMEM67 may cooperate in maintaining normal 

ciliary function. 

The addition of TMEM237 to the suite of TMEMs mutated in ciliopathy 

patients, highlights the importance of this group of proteins in the function and 

structure of the primary cilia. Mutations in TMEM237 were recently reported to 

cause MKS 256 and other transmembrane protein: for example, TMEM231 was 

implicated in the MKS phenotype 107. Further investigation into the function of these 

particular transmembrane proteins in the cilia structure and function could help in 

prioritisation of further candidate genes responsible for MKS/JSRD phenotypes. 

Small nuclear families, poor quality DNA and incomplete phenotypic 

descriptions are all issues that were faced in this study. Analysis of large patient 

cohorts shows that the most common causes of MKS/JSRD have already been 

identified 111 and recent reports of new genes involve one family with one mutation 

(so-called “private” mutations) 104,105,216. Therefore, the possibility that the remaining 

causative mutations could be private was taken in into consideration in this study. 

Big insertion/deletions and deep intronic changes, known to cause a disease 

phenotype 209,254 were also considered. The technology moves now to WGS and 

this method has become more validated, robust and cost effective. It was shown 

not only to allow identification of CNVs but also structural DNA variations like 

inverted duplications or SNV 264. 

New technologies may bring advances in techniques and a reduction in the 

cost of the analysis, but they do not always provide an ‘easy’ answer. The high 

variant/noise ratio is still of a great consideration during data interpretation and 

careful analysis have to be applied. The above data shows that it is only one of 

many obstacles in the way to get a definitive molecular diagnosis. However, a 

careful and detailed clinical summary of the patient phenotype is of a great value to 

the researcher. For example, differential diagnoses were made for families 144 and 

351 this approach showed the effectiveness of WES analysis and enabled the 

reclassification of the patient phenotypes. 

  



  118 

 

3.3 High-throughput genome-wide siRNA visual screen for 
effects on ciliogenesis 

The identification of functional candidate genes that cause a certain 

phenotype is not always possible or accurate. In the case of ciliopathies, candidate 

genes are prioritised based on known or predicted protein function and possible 

links to cilia or signalling pathways linked to cilia. This can be a useful strategy to 

filter variants obtained from a WES or WGS experiment in order to identify 

causative mutations. However, the function of many proteins and their subcellular 

localisation is often unknown or has not been previously investigated in the context 

of ciliary biology. To identify proteins that are implicated in cilia structure or 

mechanisms important in ciliary assembly/disassembly on a global level, an 

unbiased whole mouse genome siRNA screen for ciliogenesis was performed. 

  

3.3.1 Screen set up 
3.3.1.1 Cell line 

To obtain meaningful results from visual screening strategies, cilia needed to 

be reliably and accurately resolved in sufficient numbers to generate a statistically 

powerful assay. In vivo, the primary cilium is a structure formed on epithelial cells 

during G0 and G1. However, in vitro, most ciliated cell lines only form a cilium 

during G0 phase, which must be induced by growing cells to confluence followed by 

serum starvation. Mouse inner medullary collecting duct (mIMCD3) cells are 

unusual in their ability to readily polarize and form single, long (up to 10µm) cilia in 

culture in both G0 and G1, particularly after serum starvation. For this reason, 

mIMCD3 cells were chosen for this assay over alternative ciliated cell lines such as 

human immortalized retinal pigment epithelial (hTERT-RPE1) or canine Madin-

Darby Canine Kidney epithelial (MDCK) cells. 

 
3.3.1.2 siRNA library 

The siGENOME mouse siRNA library from Dharmacon/ThermoFisher 

Scientific was used, and 19,097 genes were screened in duplicate with the 

methodologies described in section 2.2.18. The library was divided into 10 sub-

libraries: G-protein-coupled receptors (GPCRs), protein kinases, ion channels, 

proteases, phosphatases, three sub-libraries targeting components of ubiquitin 
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proteasome system, and two large sub-libraries for “druggable” targets and the 

remaining genes in the mouse genome. 

 

3.3.1.3 Screen set up and analysis 

3.3.1.3.1 Assay set up 

Seeding 8,000 cells per well in 96-well optical bottom plates resulted in a 

uniform monolayer of 95-100% confluency after 72 hours of incubation and reverse 

transfection of siRNAs. This confluency was optimal for the detection of cilia at the 

same single focal plane in every well, since over-confluent cells grew in multiple 

layers. The proportion of ciliated cells was consistently above 60%, which is 

comparable with the levels reported previously 99,205. 

Acetylated α-tubulin was used as a ciliary axoneme marker, due to its 

specificity for the entire length of the primary ciliary axoneme and low background 

staining. This antibody only recognises specific modified stable microtubules in the 

ciliary axoneme and minimally binds to cell body microtubules. Optimization 

experiments in pilot screens showed that separate primary and secondary antibody 

binding steps were essential for high-quality cilia staining, and that ice-cold 

methanol fixation gave much better resolution of cilia staining and lower 

background compared to other fixation methods. 

To maintain simplicity of the assay each cell was imaged for three markers. 

The green channel imaged actetylated α-tubulin (a ciliary axoneme marker), the 

blue channel was used to visual nuclei with DAPI, and the far red channel used 

TOTO3 to segregate cytoplasmic and nuclear staining (Figure 3-30). 
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Figure 3-30. Sample images of IMCD3 cells. Cells were stained in far red for 

cytoplasmic marker (TOTO3), nucleus – blue (DAPI) and cilia marker – green (acetylated α-
tubulin). Top panel scale bar = 50µm. Bottom panel figures show magnification of cilia 
staining and merged channels. Bottom panel scale bar=20µm. 

Cilia in this assay pointed straight up (Figure 3-31 right panel), therefore after 

imaging at the appropriate focal plane allowed the cilia to be visualized as spots of 

a characteristic size and intensity (Figure 3-31 left panel). 

 

 

Figure 3-31. Schematic representation of focal planes imaged in IMCD3 (left 
panel) and an example image of visualised cilia (right panel). Three focal planes were 
imaged: one for the nucleus (DAPI, in blue), a second 1 µm above it for visualization of the 
cytoplasm using TOTO3, and at 7 µm above the nucleus a third focal plane to image cilia 
using acetylated α-tubulin (AaT, green) (left panel). Cilia were visualised as spots in 
siScrambled (negative control)-treated cells using Columbus visualization software (right 
panel). 

3.3.1.3.2 Assay metrics 

Two measurements were analysed: ‘whole cell number’ (WCN) and ‘% of cells 

with a single cilium’ (%CSC) (Figure 3-32). WCN was obtained in the far-red 

channel using TOTO3 staining and %CSC from the green channel using an Alexa 

488 secondary antibody bound to acetylated α-tubulin. The same six fields of view 

per well were imaged across the whole screen. These fields of view were localised 

close to the centre of each well since a ‘doughnut effect’ of cell loss in the middle of 

the well was often observed. 

TOTO3$ DAPI$ Acetylated$α$tubulin$ merge$

20μm%

50μm%

base of well

nucleus detection plane (DAPI, -6µm)

cilium detection plane (488, +1µm)

cytoplasm detection plane (TOTO3, -5µm)
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Cells on the border of each field of view were excluded from further analysis, 

since cilia for these particular cells might have been missed causing 

underrepresentation in results and increasing false positive rates (Figure 3-32). 

 

 
Figure 3-32. Example of image analysis in Columbus software. The input image 

was analysed using an algorithm for object recognition. The software recognised nuclei, 
cytoplasm, cilia (with a separate spot-recognition protocol), and excluded border objects 
from further analysis.  

3.3.1.3.3 Assay analysis 

Images in TIFF format were exported from an Operetta automated high-

content imager and uploaded to Columbus on-line image analysis software. A script 

written for the purpose of this screen was applied (Perl script written by Dr David 

Parry) and the analysed data were exported in an Excel format and/or represented 

in the form of heatmaps (Figure 3-33). 

 

 
Figure 3-33. Heatmaps representing results obtained from Columbus software. 

Top heatmap shows results for WCN and the bottom one for %CSC. Colour scale indicates 
that the darker the colour the less WCN/%CSC was observed in the well. 
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Measurements for WCN and %CSC were transferred from the Columbus 

output Excel files into template Excel files for the analysis of ten plates in duplicate. 

The screen was performed in batches of 10 plates (or less) as this was the 

maximum number which could be processed accurately by the available equipment. 

Duplicate plates were biological replicates and were set up in an identical manner 

for cells with a different passage number. Data from the biological replicates were 

inputted into a template file that was subsequently analysed using a Perl script 

(written by Dr David Parry). Robust z scores were automatically calculated and 

appropriate cut-offs were applied. 

3.3.1.3.4 Robust z score 

The use of median and median absolute deviation rather than mean and 

standard deviation reduces the effect of outliers 265. Therefore the robust z score 

was chosen as a statistical measure of cellular phenotypes compared to a series of 

positive and negative controls. 

robust z score=(x-µ)/σ 

x value per well 

µ median of values of all negative controls 

σ MAD (Median Absolute Deviation) 

where MAD is calculated: 

MAD= mediani(|yi-µ|) 

yi negative control value per well 

µ median of values of all negative controls 

To ensure normalisation of the data and to exclude batch-specific effects, data 

were analysed within batches rather than across batches. Measurements of cilia 

number were normalised against whole cell number to remove systematic errors, 

plate-specific effects and allow comparison of results between different plates and 

batches. 

3.3.1.3.5 Assay controls 

A series of positive controls were optimised and evaluated to identify the most 

appropriate ones for this screen. These controls included siRNAs targeting known 

ciliopathy or ciliary-related genes including Lca5, Ift80, Mks1, Tmem67, Ift88, 

Ttc21b, Pla2g3, Rpgrip1l and Kif3a (Figure 3-34).  
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Figure 3-34. Diagram representing knockdown efficiencies in a panel of positive 

controls. %CSC was calculated in a panel of positive controls compared to scrambled 
negative control siRNA. The greatest effect on %CSC was observed after knockdown of 
Ift80, Ift88, Mks1 and Rpgrip1l. Statistical significance of comparisons between individual 
knockdown experiments and negative control (Scrambled) is as follows: Ift80 – 0.031 (*), 
Ift88 – 0.002 (**), Kif3a – 0.121 (ns), Lca5 – 0.108 (ns), Mks1 – 0.013 (*), Rpgrip1l – 0.036 
(*), Tmem67 – 0.654 (ns), Ttc21b – 0.113 (ns), Pla2g3 – 0.669 (ns); ns, not significant; * p < 
0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001, for Student’s t-test (unpaired, two-tailed). 
Error bars indicate s.d. for n=3 biological replicates. 

Knockdown of these genes showed a variable degree of cilia loss (Figure 3-
34). Although most of these genes had shown reductions in cilia number after 

knockdown in other studies, incubation times and reagent origin have differed to 

variable extents. Three positive controls were chosen, with pooled siRNA duplexes 

targeting three ciliary genes: Mks1, Rpgrip1l and Ift88 (example of siIft88 shown in 

Figure 3-35). Mutations in all of these genes are known to cause a ciliopathy 

phenotype in human patients or mouse models, and knockdowns of their transcripts 

have shown variable but significant cilia losses that accord well with the expected 

cellular phenotype. 

The negative control siRNAs included a non-targeting or ‘scrambled’ siRNA 

(Figure 3-35), an siRNA targeted against human motilin receptor (MLNR) that has 

no sequence homology in the mouse genome, and a mock transfection control 

(transfection reagent only). These controls had no significant effect on the 

percentage of cells with a single cilium, as previously reported 99,205 (Figure 3-36b 
and d). 

In addition to assay controls, a transfection control was required for visual 

monitoring of transfection efficiency during high-throughput screening. Since the 

image analysis protocol automatically evaluated the number of nuclei within an 

image, this was used as a surrogate value for cell number. Following knockdown of 

Plk1, a gene essential for cell growth and proliferation 266, >95% of cells were lost 
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when compared to non-targeting siRNA indicating a very high transfection efficiency 

(Figure 3-36a and c).  

 

 
Figure 3-35. Columbus images for siRNA screen controls. Top panel shows 

transfection efficiency control siPlk1 with striking cell loss (DAPI, blue and TOTO3, red 
staining) compared to negative control (siScrambled, middle panel). The positive control for 
cilia loss (siIft88, bottom panel) shows fewer cilia (actetylated α-tubilin, green) than the 
negative control. 

 

 
Figure 3-36. Bar graphs showing efficiency of knockdowns for screen controls. 

a) mean cell number in a series of knockdowns showing highly significant cell loss after Plk1 
knockdown, used in this study as a transfection efficiency indicator. There was moderate 
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cell loss observed after Ift88 and MLNR knockdowns, and increased cell number after 
treatment with transfection reagent compared to all negative controls. b) mean % of cells 
with single cilium showing efficient cilia loss after knockdown of Plk1, Mks1, Rpgrip1l and 
Ift88. %CSC was not affected in cells treated with siMLNR, siScrambled and transfection 
reagent only. c) mean of robust z scores for cell number showing a low value for siPlk1. d) 
mean of robust z scores for %CSC showing high scores for siMks1, siRpgrip1l and siIft88. 
Statistical significance of pair-wise comparisons between individual knockdown experiments 
and all negative controls (#) is indicated by: ns, not significant; * p < 0.05; ** p < 0.01; *** p < 
0.001; **** p < 0.0001, for Student’s t-test (paired, two-tailed). Error bars indicate s.d. for 
n=32 biological replicates. 

 

A test assay of 128 positive control and 128 negative control knockdowns 

across 16 plates in two separate batches (each control repeated 32 times) showed 

a highly reproducible, statistically significant effect of Plk1 knockdown on cell 

number (mean cell number 226.4) compared to all negative controls (mean cell 

number 4094.7), p < 0.0001 (paired two-tailed Student’s t-test) (Figure 3-36a). 
Plk1, Mks1, Rpgrip1l and Ift88 knockdowns were found to have highly reproducible, 

statistically significant effects on the percentage of cells with a single cilium (16.2, 

36.9, 35.2 and 32.4% respectively) compared to all negative controls (55.0%), p 

<0.0001, two-tailed Student’s t-test in all cases (Figure 3-36b). However, since 

Plk1 siRNA had a significant effect on cell number (Figure 3-36a and c), the cilia 

loss observed (Figure 3-36b and d) is a secondary effect due to loss of cells. This 

result indicates a potential source of false positive hits in the discovery phase of the 

whole genome screen that needs to be filtered from subsequent analyses and hit 

validation. 

The mean of robust z scores for Plk1 knockdown, quantitated for cell number, 

was <-17 (Figure 3-36c). All negative control siRNAs for cell number effects had 

robust z scores between -2 and 1 (Figure 3-36c). The mean of all robust z scores 

for positive controls, quantitated for the percentage cells with a single cilium, gave a 

value of <-2 (Figure 3-36d), indicating the suitability of these siRNAs as positive 

controls for effects on ciliogenesis. The individual mean robust z scores, for the 

%CSC, was z=-4.48 after Mks1 knockdown, z=-4.79 for Rpgrip1l and z=-5.39 for 

Ift88. Calculation of robust z scores allowed to set robust and meaningful statistical 

cut-offs for identification of significant ‘hits’ affecting the %CSC. These cut-offs were 

based on the median and median absolute deviation of positive controls per ten 

plate batch 267. 

 

3.3.2 Screen results 

Robust z scores for WCN and %CSC were calculated for all results, using the 

median and median absolute deviation for all biological replicates of negative 
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controls (siScrambled n=40, siMLNR n=20, mock transfection n=20 in a ten plate 

batch). 

 
3.3.2.1 Quality control metrics and overall performance of the whole 

genome screen 

The frequency of the z score distribution for the whole genome screen was 

analysed and is shown in Figure 3-37 for %CSC and Figure 3-38 for WCN for the 

two runs. 

 

 
Figure 3-37. Histograms representing frequency of %CSC in run 1 (left 

histogram) and run 2 (right histogram) for the whole genome screen. The x axis 
represents bins for robust z scores of %CSC. 

 
Figure 3-38 Histograms representing frequency of WCN in run 1 (left histogram) 

and run 2 (right histogram). The x axis represents bins for robust z score for WCN. 

Robust z scores from both runs of the screen for WCN and %CSC showed 

skewed (non-symmetric) distribution of negative values (Figure 3-37 and 3-38). 

This may be a result of start-up effects due to initial failures caused by difficulties in 

scaling up the set up protocol or the design of the screen when loss of cilia was of 

main interest, therefore any gain in cilia/cell number would be less sensitive. 
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To visualise overall screen performance, robust z scores for %CSC from one 

run of a ten plate batch were plotted (Figure 3-39). Controls from each plate were 

coloured and clear separation of positive (green) and negative (purple) controls was 

visible (Figure 3-39). Data from the transfection control (siPlk1) is represented in 

red. 

 
Figure 3-39.  Scatter plot representing robust z scores for %CSC from a ten 

plate batch single run. Negative control values are shown in purple, positive controls in 
green and siPlk1 transfection control in red. Clear separation between positive and negative 
controls is evident. Experimental samples are shown in blue. The x axis represents robust z 
score, while y axis represents sample number (the 10 plate batch investigated 80 target 
siRNAs). 

  

Robust z scores for %CSC of ten plate batch for two biological replicates were 

plotted against each other and showed good correlation (Pearson coefficient of 

correlation, R2=0.60266) (Figure 3-40). 

 

 
Figure 3-40. Correlation plot between two runs representing robust z scores for 

%CSC. x and y axes show values of the robust z scores. The black line indicates the 
trendline between the two runs with a good correlation score (Pearson coefficient of 
correlation, R2=0.60266). 
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3.3.2.2 Quality metrics 

The data illustrate a unique, efficient and reliable cilia detection algorithm, and 

highly reproducible positive controls that enable statistical verification of their 

efficiency and suitability in this screen. However, false positives and false negatives 

results are common in siRNA screens and need to be closely controlled.  

3.3.2.2.1 Off-target effects 

Potential sources of false positive hits are sequence-specific off-target effects 

(OTEs) due to the targeting of more than one transcript in the genome by siRNAs. 

To account for this, BLASTN alignments were used to identify all individual siRNAs 

duplexes with potential OTEs. BLASTN analysis of every siRNA in the Dharmacon 

siGENOME SMARTpool mouse siRNA library identified 832 siRNAs which had 

potential sequence-specific off-target effects (Appendix 7), and these were 

subsequently excluded from further analysis. These alignments also confirmed that 

the remaining siRNAs used in the whole genome screen had specific homology to 

the target transcripts. 

3.3.2.2.2 MicroRNA – like effects 

To test the possibility that siRNAs in the Dharmacon siGENOME library may 

have microRNA-like effects, leading to further off-target effects, genome-wide 
enrichment of seed sequence matches (GESS) analysis was carried out  268. This 

tests for 7-mer seed sequence complementarity to 3’UTR sequences in a mouse 

genome database. GESS analysis of siRNA sequences showed that none of the 

seed regions for the siRNAs duplexes were likely to cause off-target effects. 

3.3.2.2.3 Partial on-target effects 

Potential false negative results may arise from incomplete targeting of all 

alternative transcripts of particular mRNA by the four siRNAs in each Dharmacon 

siGENOME siRNA pool. BLASTN alignments of siRNAs sequences identified 2030 

siRNAs that only partially targeted their gene transcripts (Appendix 8), with at least 

one transcript not being targeted. These siRNAs were not excluded from further 

screen analysis, but this data provides the basis for potential weighting of results in 

further analyses. BLASTN analysis confirmed that the Plk1, Mks1, Rpgrip1l and 

Ift88 siRNA pools targeted every Ensembl annotated and protein coding alternative 

transcript of the target genes, with the exception of one incomplete Rpgrip1l 

transcript (ENSMUST00000132757) encoding a predicted 78 amino acid isoform of 

the protein. 

3.3.2.2.4 Array CGH 
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False negatives may arise due to imbalances in genetic copy number in the 

cell-line used. To control for this, array CGH was carried out in IMCD3 cells. Cells 

were treated to best represent their state in the screen set up. Samples were 

prepared by Dr Gabrielle Wheway and run and analysed by Dr Grischa Toedt in 

EMBL, Heidelberg, Germany. 5274 genes were identified with abnormal copy 

number (Figure 3-41), including 3 genes with total biallelic loss in IMCD3 cells 

(Olfr543, Igf1r, Cd244) (Appendix 9). The three genes with biallelic deletion were 

excluded from further studies. Abnormal copy number data provides the basis for 

potential weighting of results in further analyses. 

 
Figure 3-41. Array CGH analysis of mIMCD3 cell line. Copy number analysis 

shows extensive genetic imbalance in the IMCD3 cell-line. Blue indicates genetically 
balanced regions, green indicates allelic gain and orange indicates allelic loss, black line 
shows trendline, yellow – breakpoints, red hatched lines indicate thresholds, grey – 
chromosomal borders. 

3.3.2.2.5 RNA sequencing of IMCD3 transcripts 

Variations in expression levels of different transcripts could be a potential 

source of false positive or false negative hits. Expression levels of transcripts in 

IMCD3 cells were determined by RNA sequencing. Dr Gabrielle Wheway prepared 

sample and analysed the data. Samples were sequenced in the EMBL Genomics 

Facility in Heidelberg by collaborators Dr Grischa Toedt and Dr Toby Gibson.  

For this analysis, the cells were plated and treated in conditions identical to 

those for negative control knockdowns. RNA was extracted using standard 

protocols (section 2.2.4). Total RNA was purified and paired-end library was 

prepared following manufacturer’s protocols (Zymo and Agilent Technologies). 

Prepared libraries were run on an Illumina HiSeq 2500 clonal sequencer. 

Sequences were aligned using the “splice aware” TopHat2 algorithm 269,270 with the 

gene reference .gtf files downloaded for the Ensembl mouse genome mm19 build. 
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Transcript assembly and differential transcript expression was analysed using 

Cufflinks or Cuffdiff algorithms 271. FPKM (fragments per kilobase of exon per 

million fragments mapped) were calculated for all alternative transcripts listed in the 

Cuffdiff database, representing levels of expressed transcript (example in Table 3-
18). 

In summary, 96,253 transcripts were aligned and 72,898 had specific 

UniGene IDs. This covered a total of 21,488 mouse genes, out of which 3,893 had 

at least one transcript not expressed and 7,150 were not expressed in IMCD3s and 

were excluded from further studies. 

3.3.2.2.6 Sequence-independent off-target effects 

Other possible sources of false positive and negative hits were sequence-

independent off-target effects due to siRNA competition with, or saturation of, 

endogenous RNAi machinery components, especially if the cell-line used has 

under-expressed rate-limiting components of RNAi such as exportin-5, TRBP, Dicer 

and Ago1-4 272-275. To control for these effects, the normal copy number of rate-

limiting components of RNAi in IMCD3 cells was confirmed by arrayCGH. Xpo5 had 

normal copy number, Tarbp2 +1 gain and Dicer1 +1 gain (Table 3-18). There were 

no appropriate SNP markers for Eif2c1 so there is no copy number information for 

this gene, but both Eif2c3 and Eif2c4 are adjacent on mouse chromosome 4 and 

had a normal copy number therefore Eif2c1 is likely to have a normal copy number. 

Eif2c2 had a +1 gain and both Eif2c3 and Eif2c4 were normal. Importantly, there 

were no genomic losses in the genes encoding these crucial parts of RNAi 

machinery. RNAseq of the IMCD3 cell line confirmed these results (Table 3-18). 

With the exception of transcript NM_001253795 for the Tarbp2 gene that was not 

detected, all remaining transcripts of crucial RNAi machinery components were 

expressed at detectable levels. Robust negative controls including ‘scrambled’ 

controls (eight negative controls per plate) were also used to control for any 

sequence-independent off-target effects. 
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Table 3-18. Summary of expression levels of RISC (RNA Induced Silencing 

Complex) complex components. All canonical and non-canonical transcripts had RNA 
levels verified by RNAseq and are represented by scores in the FPKM column. The higher 
the number the higher the expression level of the transcript. Results from the array CGH 
analysis are also shown: 0 indicates genomic stability (2 alleles per gene), 1 indicates allelic 
gain, “-“ no data available.  

 

3.3.2.2.7 Measurements of assay robustness 

Analyses of signal-to-background ratio, coefficient of variation and Z’-factor 

have shown in previous studies that siRNA reverse genetics screens are less 

robust than small molecule screens 276 using these standard measurements. To 

account for the limitations of controls with moderate effect, the strictly standardised 

mean of differences (SSMD) is an alternative metric often used to assess the 

performance of siRNA screens 265,277. SSMD is a ratio between the difference of 

means and the standard deviation of the difference between two populations (the 

negative and positive control groups): 

 

SSMD=(µP-µN)/√(σP
2+σN

2) 

µP – mean of positive controls 

µN – mean of negative controls 

σP – standard deviation of positive controls 

REF. GENE ID TRANSCRIPT ID CUFFDIFF ID FPKM ARRAY CGH
Xpo5 NM_028198 NM_028198 15.453292 0

Tarbp2 NM_001253795 NM_001253795 0 1
Tarbp2 NM_009319 NM_009319 35.585083 1
Dicer1 NM_148948 CUFF.20614.1 2.421229 1
Dicer1 NM_148948 NM_148948 7.212395 1
Eif2c1 NM_153403 CUFF.61275.1 0.20074  -
Eif2c1 NM_153403 CUFF.61277.1 0.963916  -
Eif2c1 NM_153403 CUFF.61276.1 0.974174  -
Eif2c1 NM_153403 CUFF.61278.1 2.229429  -
Eif2c1 NM_153403 NM_153403 5.181405  -
Eif2c2 NM_153178 CUFF.29857.1 8.447386 1
Eif2c3 NM_153402 CUFF.61252.1 0.154763 0
Eif2c3 NM_153402 CUFF.61252.2 0.344294 0
Eif2c3 NM_153402 CUFF.61269.1 0.382929 0
Eif2c3 NM_153402 CUFF.61268.1 0.487889 0
Eif2c3 NM_153402 CUFF.61259.1 0.64435 0
Eif2c3 NM_153402 CUFF.61258.1 0.714686 0
Eif2c3 NM_153402 CUFF.61266.1 0.958926 0
Eif2c3 NM_153402 CUFF.61263.1 1.06833 0
Eif2c3 NM_153402 CUFF.61256.1 1.111508 0
Eif2c3 NM_153402 CUFF.61273.1 1.180859 0
Eif2c3 NM_153402 CUFF.61251.1 1.904965 0
Eif2c3 NM_153402 CUFF.61267.1 2.462731 0
Eif2c3 NM_153402 CUFF.61253.1 3.059563 0
Eif2c3 NM_153402 CUFF.61262.1 3.882692 0
Eif2c3 NM_153402 CUFF.61255.1 5.060067 0
Eif2c3 NM_153402 CUFF.61260.1 23.023834 0
Eif2c3 NM_153402 CUFF.61257.1 31.806826 0
Eif2c3 NM_153402 CUFF.61261.1 33.267184 0
Eif2c3 NM_153402 CUFF.61264.1 39.290785 0
Eif2c3 NM_153402 CUFF.61270.1 41.785199 0
Eif2c3 NM_153402 CUFF.61265.1 351889.8994 0
Eif2c3 NM_153402 CUFF.61272.1 351889.8994 0
Eif2c3 NM_153402 CUFF.61254.1 422267.8793 0
Eif2c3 NM_153402 CUFF.61271.1 774157.7786 0
Eif2c4 NM_153177 NM_153177 0.014123 0
Eif2c4 NM_153177 CUFF.61279.3 0.023801 0
Eif2c4 NM_153177 CUFF.61279.2 0.077269 0
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σN – standard deviation of negative controls 

 

Within the first batch of controls, the SSMD of cell number in Plk1 knockdown 

and all negative controls was 7.93, and in the second batch of controls the SSMD 

was 8.34 (the higher the number the better control), reflecting the suitability of Plk1 

as a positive control for effects on cell number. The SSMD of the percentage of 

cells with a single cilium in Mks1, Ift88 and Rpgrip1l knockdowns, compared to all 

negative controls, was >1 for most duplicate batches of controls (Figure 3-42) with 

an average SSMD value for all batches of 1.717 (Figure 3-42), indicating an 

acceptable consistency and quality for the screen 

. 

 
Figure 3-42. SSMD values for all batches in the whole genome siRNA screen. 

Each batch (ten or less plates) was assigned a colour which is used for all batch duplicates 
in the screen. 

 
3.3.2.3 Positive hits 

3.3.2.3.1 Primary screen 

243 96-well plates containing 19,097 siRNA duplexes targeting 18,690 Entrez 

RefSeq mouse genes were screened in duplicate. Each plate contained two 

transfection efficiency controls (siPlk1), six positive controls for a ciliogenesis defect 

(siMks1, siRpgrip1l and siIft88) and eight negative controls (four siScrambled, two 

siMLNR and two mock transfections). 

3.3.2.3.1.1 Data filtering – first pass 
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All results for WCN and %CSC were fed into a template spreadsheet that had 

a macro for robust z scores calculations in ten plate batches for both replicates. 

This file was subsequently uploaded into a Perl script called ‘Dharmascript’ (written 

by Dr David Parry) that calculated robust z scores, organised results based on the 

average highest effect on %CSC, and filtered for hits with a robust z score greater 

than the median robust z score of the positive controls in a ten plate batch for both 

runs of %CSC. 

A list of 2,174 genes was obtained after this filtering method, which comprises 

a 11.38% hit rate. siRNA duplexes targeting 133 genes from this list had potential 

off-target effects and were excluded from further studies. 288 genes had only partial 

on-target effects. There were no hits with biallelic copy number loss for any gene, 

(according to the results from array CGH). 1,956 genes had human homologues 

and mutations in 360 of these are known to be implicated in or causative of a 

Mendelian condition (OMIM, July 2013). Interestingly, most of those conditions are 

not known ciliopathies. 369 of the hits were listed in the CiliaProteome v3 database. 

The list of “hit” genes was submitted to the DAVID program (an on-line functional 

annotation and enrichment tool). Based on the Swiss-Prot and Protein Information 

Resource keywords, the terms with the most statistically significant enrichment 

were ‘ribonucleoprotein’, ‘ribosomal protein’, ‘acetylation’ and ‘mRNA splicing’ 

(Figure 3-43). There was also significant enrichment for the Gene Ontology terms 

‘ribonucleoprotein complex’, ‘ribosome’ and ‘spliceosome’ (Figure 3-44). A KEGG 

pathway (Kyoto Encyclopedia of Genes and Genomes) search showed enrichment 

for three functional modules: ribosome, spliceosome and proteasome (Figure 3-
45). Figures 3-46, -47 and -48 illustrate these modules and red stars highlight the 

position of hits from the screen. None of those terms have been associated 

previously with ciliary processes, which indicates either a high false positive rate or 

new functional modules that are important for ciliogenesis.  
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Figure 3-43. DAVID analysis using Swiss-Prot and Protein Information Resource 

keywords on the 2,174 primary screen hits. Listed are enriched terms with associated P 
values and Benjamini-Hochberg q values (to control for the false discovery rate due to 
multiple testing). Terms with q < 0.05 are listed. Image modified from 
http://david.abcc.ncifcrf.gov/. 

 

Sublist Category Term RT Genes Count % P-Value Benjamini 

  SP_PIR_KEYWORDS ribonucleoprotein RT 

 

85 7.5 4.0E-40 1.6E-37 

  SP_PIR_KEYWORDS ribosomal protein RT 

 61 5.4 7.7E-31 1.5E-28 

  SP_PIR_KEYWORDS acetylation RT 

 255 22.6 1.3E-26 1.8E-24 

  SP_PIR_KEYWORDS mrna splicing RT 

 

55 4.9 1.4E-23 1.4E-21 

  SP_PIR_KEYWORDS Spliceosome RT 

 

42 3.7 4.2E-23 3.3E-21 

  SP_PIR_KEYWORDS mrna processing RT 

 55 4.9 1.3E-18 8.5E-17 

  SP_PIR_KEYWORDS ribosome RT 

 17 1.5 1.9E-15 1.1E-13 

  SP_PIR_KEYWORDS protein biosynthesis RT 

 

31 2.7 2.1E-10 1.0E-8 

  SP_PIR_KEYWORDS rna-binding RT 

 65 5.8 3.0E-10 1.3E-8 

  SP_PIR_KEYWORDS nucleus RT 

 298 26.4 9.6E-10 3.8E-8 

  SP_PIR_KEYWORDS phosphoprotein RT 

 435 38.5 6.0E-7 2.1E-5 

  SP_PIR_KEYWORDS mRNA transport RT 

 

16 1.4 9.6E-7 3.1E-5 

  SP_PIR_KEYWORDS nuclear pore complex RT 

 10 0.9 4.0E-5 1.2E-3 

  SP_PIR_KEYWORDS viral nucleoprotein RT 

 9 0.8 9.2E-5 2.6E-3 

  SP_PIR_KEYWORDS rrna-binding RT 

 

7 0.6 1.1E-4 2.9E-3 

  SP_PIR_KEYWORDS translocation RT 

 

13 1.2 2.7E-4 6.7E-3 

  SP_PIR_KEYWORDS protein transport RT 

 45 4.0 5.9E-4 1.4E-2 

  SP_PIR_KEYWORDS ribosome biogenesis RT 

 10 0.9 8.6E-4 1.9E-2 

  SP_PIR_KEYWORDS tpr repeat RT 

 

19 1.7 1.1E-3 2.3E-2 

  SP_PIR_KEYWORDS lipid-binding RT 

 13 1.2 5.5E-3 1.0E-1 

  SP_PIR_KEYWORDS rrna processing RT 

 10 0.9 6.0E-3 1.1E-1 

  SP_PIR_KEYWORDS isopeptide bond RT 

 

27 2.4 8.9E-3 1.5E-1 

  SP_PIR_KEYWORDS dna-binding RT 

 

101 8.9 1.2E-2 1.9E-1 

  SP_PIR_KEYWORDS nonsense-mediated mrna decay RT 

 6 0.5 1.2E-2 1.8E-1 

  SP_PIR_KEYWORDS Initiation factor RT 

 9 0.8 1.2E-2 1.8E-1 

  SP_PIR_KEYWORDS mitosis RT 

 

19 1.7 1.4E-2 1.9E-1 

  SP_PIR_KEYWORDS transcription regulation RT 

 109 9.7 1.6E-2 2.0E-1 

  SP_PIR_KEYWORDS repressor RT 

 34 3.0 1.6E-2 2.0E-1 

  SP_PIR_KEYWORDS Transcription RT 

 122 10.8 2.0E-2 2.4E-1 

  SP_PIR_KEYWORDS cell division RT 

 

24 2.1 2.1E-2 2.4E-1 

  SP_PIR_KEYWORDS cytoplasmic vesicle RT 

 22 1.9 2.5E-2 2.8E-1 
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Figure 3-44. DAVID analysis using Gene Ontology term search on the 2,174 

primary screen hits. Listed are enriched terms with associated P values and Benjamini-
Hochberg q values (to control for the false discovery rate due to multiple testing). Terms 
with q < 0.05 are listed. Image modified from http://david.abcc.ncifcrf.gov/. 

 

 

Figure 3-45. DAVID analysis using KEGG pathway term search on the 2,174 
primary screen hits. Listed are enriched terms with associated P values and Benjamini-
Hochberg q values (to control for the false discovery rate due to multiple testing). Terms 
with q < 0.05 are listed. Image modified from http://david.abcc.ncifcrf.gov/. 

Sublist Category Term RT Genes Count % P-Value Benjamini 

  GOTERM_CC_FAT ribonucleoprotein complex RT 

 

126 11.2 2.3E-50 9.8E-48 

  GOTERM_CC_FAT ribosome RT 

 61 5.4 5.8E-28 1.2E-25 

  GOTERM_CC_FAT spliceosome RT 

 44 3.9 2.3E-22 3.3E-20 

  GOTERM_CC_FAT intracellular non-membrane-bounded organelle RT 

 

195 17.3 3.7E-15 3.9E-13 

  GOTERM_CC_FAT non-membrane-bounded organelle RT 

 

195 17.3 3.7E-15 3.9E-13 

  GOTERM_CC_FAT cytosolic ribosome RT 

 

13 1.2 2.4E-11 2.0E-9 

  GOTERM_CC_FAT nuclear lumen RT 

 

94 8.3 2.7E-8 1.9E-6 

  GOTERM_CC_FAT ribosomal subunit RT 

 19 1.7 3.2E-8 1.9E-6 

  GOTERM_CC_FAT small ribosomal subunit RT 

 12 1.1 3.9E-7 2.1E-5 

  GOTERM_CC_FAT intracellular organelle lumen RT 

 

107 9.5 1.2E-6 5.5E-5 

  GOTERM_CC_FAT organelle lumen RT 

 107 9.5 1.3E-6 5.7E-5 

  GOTERM_CC_FAT membrane-enclosed lumen RT 

 108 9.6 3.6E-6 1.4E-4 

  GOTERM_CC_FAT nuclear pore RT 

 15 1.3 6.6E-6 2.3E-4 

  GOTERM_CC_FAT nucleolus RT 

 

38 3.4 3.9E-5 1.3E-3 

  GOTERM_CC_FAT pore complex RT 

 15 1.3 8.4E-5 2.6E-3 

  GOTERM_CC_FAT nucleoplasm RT 

 59 5.2 1.5E-4 4.2E-3 

  GOTERM_CC_FAT cytosolic small ribosomal subunit RT 

 

5 0.4 1.7E-4 4.5E-3 

  GOTERM_CC_FAT nuclear speck RT 

 

16 1.4 2.5E-4 6.2E-3 

  GOTERM_CC_FAT nucleoplasm part RT 

 51 4.5 3.6E-4 8.4E-3 

  GOTERM_CC_FAT cytosolic large ribosomal subunit RT 

 5 0.4 3.7E-4 8.3E-3 

  GOTERM_CC_FAT eukaryotic translation initiation factor 3 complex RT 

 

6 0.5 4.1E-4 8.6E-3 

  GOTERM_CC_FAT nuclear body RT 

 20 1.8 7.3E-4 1.5E-2 

  GOTERM_CC_FAT cytosolic part RT 

 12 1.1 1.1E-3 2.1E-2 

  GOTERM_CC_FAT microtubule cytoskeleton RT 

 

44 3.9 1.4E-3 2.5E-2 

  GOTERM_CC_FAT spindle microtubule RT 

 

6 0.5 2.5E-3 4.3E-2 

  GOTERM_CC_FAT nuclear envelope RT 

 19 1.7 4.2E-3 7.0E-2 

  GOTERM_CC_FAT endomembrane system RT 

 48 4.3 4.4E-3 7.0E-2 

  GOTERM_CC_FAT microtubule RT 

 

24 2.1 1.6E-2 2.2E-1 

  GOTERM_CC_FAT coated membrane RT 

 9 0.8 2.1E-2 2.7E-1 

  GOTERM_CC_FAT membrane coat RT 

 9 0.8 2.1E-2 2.7E-1 

  GOTERM_CC_FAT large ribosomal subunit RT 

 

7 0.6 2.6E-2 3.2E-1 

Sublist Category Term RT Genes Count % P-Value Benjamini 

  KEGG_PATHWAY Ribosome RT 

 

56 5.0 1.5E-44 2.5E-42 

  KEGG_PATHWAY Spliceosome RT 

 50 4.4 1.2E-27 9.4E-26 

  KEGG_PATHWAY Proteasome RT 

 7 0.6 7.5E-2 9.8E-1 

!
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Figure 3-46. Cartoon illustrating the enrichment of hits from the primary screen 

in the ribosome. Red stars indicate proteins encoded by genes that were hits in the screen 
or interacting partners for those proteins. Image modified from http://david.abcc.ncifcrf.gov/. 
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Figure 3-47. Cartoon illustrating the enrichment of hits from the primary screen 

in the spliceosome. Red stars indicate proteins encoded by genes that were hits in the 
screen or interacting partners for those proteins. Image modified from 
http://david.abcc.ncifcrf.gov/. 
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Figure 3-48. Cartoon illustrating the enrichment of hits from the primary screen 

in the proteasome. Red stars indicate proteins encoded by genes that were hits in the 
screen or interacting partners for those proteins. Image modified from 
http://david.abcc.ncifcrf.gov/. 

 

3.3.2.3.1.2 Data filtering: second pass 

Although 11.38% was an acceptable hit rate for the whole genome screen, 

further filters needed to be applied to reduce the number of hits to those with the 

highest confidence. As the %CSC filter was shown to be efficient, effects on WCN 

were assessed as a potential additional filter, since many siRNAs in the primary 

screen had an effect on cell number. A decreasing cell number may be caused by 

either cell death or a delay in the length of the cell cycle. If the cell cycle is delayed, 

then cilia formation may be subsequently delayed and the number of cilia may be 

under-represented in knockdowns of those specific genes. This could be an 

important cause of potential false positive results due to non-specific effects that 

could cause defects in ciliogenesis due to secondary processes. For this reason, a 

stringent WCN filter was therefore applied. All hits were removed if their robust z 

score was lower than the median robust z score – 2MAD of the positive controls in 

each ten plate batch for both runs. MAD was applied to increase the stringency of 

the cell number cut-off based on positive controls. In particular, siIft88 affected cell 
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number compared to the negative controls (Figure 3-35a) and the -2MAD filter 

removed this effect.  

This filtering strategy resulted in 174 hits. Out of these 154 had human 

orthologues, 8 had off-target effects, 17 were only partially targeted and 31 had an 

OMIM annotation. Known ciliopathy genes included OFD1, which is mutated as a 

cause of Oro-Facio-Digital type 1 and Joubert syndrome type 10, USH1C, which is 

mutated in Usher syndrome type 1c, CEP120, mutated in Jeune asphyxiating 

thoracic dystrophy 278 and PLK4, mutations in which cause ciliopathy-like phenotype 

– microcephaly with growth failure and retinopathy 279. All of the hits with a human 

orthologue were taken forward for the secondary screen (Table 3-19). This also 

included seven hits with predicted off-target effects to investigate if single duplexes 

of siRNAs produced with different chemistry and targeting different sequences of 

RNA would still have an off-target effect. 

The list of genes was analysed for enrichment of functional annotations using 

DAVID. Swiss-Prot and Protein Information Resource databases keyword searches 

identified statistically significant enrichment of the terms ‘G-protein coupled 

receptors’ and ‘transducers’ (Figure 3-49). Gene Ontology searches of cellular 

components showed the most significantly enriched terms were ‘plasma 

membrane’, ‘nonmotile primary cilium’ and ‘photoreceptor outer segment 

components’ (Figure 3-50), all of which are either directly or indirectly linked to the 

primary cilium. Transmembrane proteins such as TMEM67, TMEM138, TMEM216 

or TMEM237 are known to be mutated in ciliopathies and localise to the ciliary 

transition zone 99,144,206,280. Also modified TZ in photoreceptor cells (known as the 

connecting cilium), links the inner and outer segments of photoreceptor cells. 

KEGG pathway annotations showed enrichment for the terms ‘neuroactive ligand-

receptor interaction’ (Figure 3-51 and 3-52). This finding was particularly 

interesting, as there are few reports about cilia involvement in neurotransmission, 

although primary cilia are well-known to be present on the surface of differentiated 

neuronal cells 281. 

  

%CSC 
run1 

%CSC 
run2 

%CSC 
average 

WCN 
average 

Mouse 
GeneID 

Mouse Gene 
Symbol 

Human 
GeneID 

Human 
Gene 

Symbol 
OMIM 

-7.35 -9.56 -8.46 -3.76 15551 Htr1b 3351 HTR1B  
-7.97 -8.78 -8.37 -4.18 80910 Gpr84 53831 GPR84  
-6.74 -7.33 -7.03 -4.63 14428 Galr2 8811 GALR2  
-6.47 -7.25 -6.86 -1.47 12057 Opn1sw 611 OPN1SW Colorblindness, tritan, 19090 
-6.12 -6.91 -6.52 -3.87 140795 P2ry14 9934 P2RY14  
-6.74 -6.08 -6.41 -3.08 215859 Taar8a 83551 TAAR8  
-6.66 -5.85 -6.26 -3.01 70771 Gpr173 54328 GPR173  
-4.76 -7.66 -6.21 -1.73 78560 Gpr124 25960 GPR124  

-4.76 -7.62 -6.19 -3.32 83603 Elovl4 6785 ELOVL4 

Macular dystrophy, autosomal 
dominant, chromosome 6-linked, 

600110; Ichthyosis, spastic 
quadriplegia, and mental 
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retardation, 614457; Stargardt 
disease 3, 600110 

-4.75 -7.60 -6.18 -2.03 76206 Gpr165 392486 GPR165P  
-6.48 -5.81 -6.14 -4.13 17171 Mas1 4142 MAS1  
-3.90 -8.13 -6.02 -1.98 12768 Ccr1 1230 CCR1  
-5.77 -6.09 -5.93 -2.29 236781 Gpr119 139760 GPR119  

-3.11 -8.57 -5.84 -3.18 14539 Opn1mw 2652 OPN1MW 
Colorblindness, deutan, 303800; 

Blue cone monochromacy, 
303700 

-5.75 -5.86 -5.80 -0.23 13491 Drd4 1815 DRD4 Autonomic nervous system 
dysfunction 

-3.87 -7.53 -5.70 -2.50 17202 Mc4r 4160 MC4R Obesity, autosomal dominant, 
601665 

-4.51 -6.82 -5.67 -2.35 57260 Ltb4r2 56413 LTB4R2  

-3.51 -7.53 -5.52 -2.92 11555 Adrb2 154 ADRB2 Beta-2-adrenoreceptor agonist, 
reduced response to 

-3.62 -6.84 -5.23 -4.09 239530 Gpr20 2843 GPR20  

-3.80 -6.59 -5.19 -3.57 14715 Gnrhr 2798 GNRHR 
Fertile eunuch syndrome, 

228300; Hypogonadotropic 
hypogonadism 

-3.39 -6.96 -5.17 -2.27 81006 Gpr63 81491 GPR63  
-3.33 -6.57 -4.95 -2.18 94043 Tm2d1 83941 TM2D1  
-3.62 -6.16 -4.89 -1.60 18389 Oprl1 4987 OPRL1  
-3.89 -5.67 -4.78 -3.63 107934 Celsr3 1951 CELSR3  
-3.11 -6.29 -4.70 -1.76 20607 Sstr3 6753 SSTR3  
-3.43 -5.78 -4.60 -2.29 12922 Crhr2 1395 CRHR2  
-3.24 -5.86 -4.55 -1.58 15552 Htr1d 3352 HTR1D  
-3.06 -5.77 -4.42 -1.71 11540 Adora2a 135 ADORA2A  

-14.96 -10.10 -12.53 -2.38 107932 Chd4 1108 CHD4  
-10.44 -7.71 -9.07 -2.29 66105 Ube2d3 7323 UBE2D3  
-8.86 -6.51 -7.69 -2.56 225055 Fbxo11 80204 FBXO11  

-8.86 -6.45 -7.65 -3.12 19400 Rapsn 5913 RAPSN 

Myasthenic syndrome, 
congenital, associated with facial 
dysmorphism and acetylcholine 

receptor deficiency, 608931; 
Myasthenic syndrome, 

congenital, associated with 
acetylcholine receptor deficiency, 

608931; Fetal akinesia 
deformation sequence, 208150 

-7.95 -7.03 -7.49 -3.55 72973 Fbxo47 494188 FBXO47  
-8.23 -6.68 -7.45 -2.78 78938 Fbxo34 55030 FBXO34  
-7.52 -6.44 -6.98 -3.12 50759 Fbxo16 157574 FBXO16  
-6.60 -6.92 -6.76 -2.16 94094 Trim34a 53840 TRIM34  
-7.70 -5.38 -6.54 -1.31 72323 Asb6 140459 ASB6  

-11.65 -7.47 -9.56 -1.24 269180 Inpp4a 3631 INPP4A  

-8.87 -9.81 -9.34 -2.40 16535 Kcnq1 3784 KCNQ1 

Short QT syndrome-2, 609621; 
Long QT syndrome-1, 192500; 

Jervell and Lange-Nielsen 
syndrome, 220400; Atrial 

fibrillation familial 3, 607554 
-8.72 -8.90 -8.81 -3.13 68440 Dusp23 54935 DUSP23  
-9.22 -7.50 -8.36 -2.56 11928 Atp1a1 476 ATP1A1  
-7.91 -5.96 -6.94 -2.45 227292 Ctdsp1 58190 CTDSP1  

-6.16 -8.35 -7.25 -1.64 224697 Adamts10 81794 ADAMTS10 Weill-Marchesani syndrome 1, 
recessive, 277600 

-4.99 -5.68 -5.34 -1.78 30806 Adamts8 11095 ADAMTS8  
-4.75 -5.88 -5.31 -0.62 11490 Adam15 8751 ADAM15  
-5.94 -6.19 -6.07 -1.96 268822 Adck5 203054 ADCK5  

-6.42 -5.39 -5.90 -1.48 14933 Gyk 2710 GK Glycerol kinase deficiency, 
307030 

-4.97 -5.44 -5.21 -2.64 77976 Nuak1 9891 NUAK1  
-4.70 -5.40 -5.05 -1.57 192292 Nrbp1 29959 NRBP1  
-5.05 -4.86 -4.95 -1.53 20873 Plk4 10733 PLK4  
-4.22 -4.43 -4.33 -1.60 69635 Dapk1 1612 DAPK1  
-4.98 -3.03 -4.00 -0.92 110355 Adrbk1 156 ADRBK1  
-4.89 -2.73 -3.81 -2.35 58864 Tssk3 81629 TSSK3  

-2.29 -5.35 -3.82 -0.38 109594 Lmo1 4004 LMO1 Leukemia, T-cell acute 
lymphoblastic 

-2.27 -5.09 -3.68 -1.71 59057 Zfp191 7572 ZNF24  

-2.61 -4.58 -3.60 -1.28 17349 Mlf1 4291 MLF1 Leukemia, acute myeloid, 
601626 

-2.59 -4.31 -3.45 -1.82 19387 Rangap1 5905 RANGAP1  
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-6.53 -6.45 -6.49 -0.55 17160 Man2b2 23324 MAN2B2  
-6.87 -5.87 -6.37 0.01 12479 Cd1d1 912 CD1D  
-7.65 -4.74 -6.19 0.18 17751 Mt3 4504 MT3  

-5.63 -6.00 -5.82 -1.29 103711 Pnpo 55163 PNPO Pyridoxamine 5'-phosphate 
oxidase deficiency, 610090 

-4.85 -6.18 -5.51 -1.63 11910 Atf3 467 ATF3  
-4.61 -4.94 -4.77 -1.76 226049 Dmrt2 10655 DMRT2  
-4.25 -4.97 -4.61 0.63 240690 St18 9705 ST18  
-4.95 -4.09 -4.52 4.49 245867 Pcmtd2 55251 PCMTD2  
-4.83 -4.10 -4.46 -1.85 227327 B3gnt7 93010 B3GNT7  
-3.77 -4.20 -3.98 -0.85 234889 Gucy1a2 2977 GUCY1A2  
-3.93 -4.01 -3.97 0.61 242341 Atp6v0d2 245972 ATP6V0D2  
-4.16 -3.69 -3.93 -0.11 17826 Fam89b 23625 FAM89B  
-4.18 -3.57 -3.87 -0.47 56085 Ubqln1 29979 UBQLN1  
-7.33 -9.85 -8.59 -0.28 192113 Atp12a 479 ATP12A  
-8.55 -6.46 -7.51 -0.71 17754 Mtap1a 4130 MAP1A  
-6.55 -8.28 -7.42 -2.08 56445 Dnaja2 10294 DNAJA2  
-6.06 -8.21 -7.14 -1.95 12419 Cbx5 23468 CBX5  
-6.34 -7.64 -6.99 -1.58 67738 Ppid 5481 PPID  
-5.27 -7.28 -6.28 -2.46 18584 Pde8a 5151 PDE8A  
-6.05 -6.30 -6.18 -2.42 54215 Cd160 11126 CD160  

-11.36 -9.66 -10.51 1.85 77766 Elp4 26610 ELP4  
-8.92 -8.54 -8.73 -1.80 232984 B3gnt8 374907 B3GNT8  
-9.98 -12.22 -11.10 -0.93 12351 Car4 762 CA4 Retinitis pigmentosa 17, 600852 

-6.20 -12.01 -9.11 -1.39 20526 Slc2a2 6514 SLC2A2 Fanconi-Bickel syndrome, 
227810 

-6.34 -8.82 -7.58 -3.72 114886 Cygb 114757 CYGB  

-4.61 -9.68 -7.15 -4.18 14595 B4galt1 2683 B4GALT1 Congenital disorder of 
glycosylation, type IId, 607091 

-4.51 -6.89 -5.70 -1.81 57138 Slc12a5 57468 SLC12A5  

-8.32 -24.29 -16.31 -1.56 237222 Ofd1 8481 OFD1 

Oral-facial-digital syndrome 1, 
311200; Joubert syndrome 10, 

300804; Simpson-Golabi-Behmel 
syndrome, type 2, 300209 

-7.82 -24.02 -15.92 -1.83 216227 Slc17a8 246213 SLC17A8 Deafness, autosomal dominant 
25, 605583 

-7.26 -24.49 -15.87 -1.84 14057 Sfxn1 94081 SFXN1  
-7.59 -22.05 -14.82 -2.41 108682 Gpt2 84706 GPT2  

-13.88 -11.96 -12.92 -3.12 70208 Med23 9439 MED23 Mental retardation, autosomal 
recessive 18, 614249 

-13.95 -11.10 -12.52 -3.03 21922 Clec3b 7123 CLEC3B  
-10.39 -11.89 -11.14 -1.61 56847 Aldh1a3 220 ALDH1A3  
-13.39 -8.45 -10.92 -2.95 217166 Nr1d1 9572 NR1D1  
-7.78 -13.70 -10.74 -2.08 56324 Stam2 10254 STAM2  

-13.32 -7.69 -10.51 -0.14 17300 Foxc1 2296 FOXC1 

Axenfeld-Rieger syndrome, type 
3, 602482; Iridogoniodysgenesis, 

type 1, 601631; Iris hypoplasia 
and glaucoma, 601631; Rieger 
or Axenfeld anomalies, 602482 

-11.27 -9.39 -10.33 -2.09 237940 Aoc2 314 AOC2  
-11.57 -8.90 -10.24 -1.39 52206 Anapc4 29945 ANAPC4  

-11.68 -8.57 -10.12 -2.14 16779 Lamb2 3913 LAMB2 

Nephrotic syndrome, type 5, with 
or without ocular abnormalities, 

614199; Pierson syndrome, 
609049 

-9.32 -10.21 -9.76 -1.66 14583 Gfpt1 2673 GFPT1  
-6.89 -9.73 -8.31 -2.34 224656 Zfp523 7629 ZNF76  

-8.14 -7.90 -8.02 -1.28 72088 Ush1c 10083 USH1C 
Deafness, autosomal recessive 
18, 602092; Usher syndrome, 

type 1C, 276904 
-7.40 -7.42 -7.41 -2.80 78829 Tsc22d4 81628 TSC22D4  

-12.42 -12.54 -12.48 -1.45 16691 Krt8 3856 KRT8 Cirrhosis, cryptogenic 
-7.95 -12.52 -10.24 -0.16 53791 Tlr5 7100 TLR5  

-8.70 -8.89 -8.79 -2.31 14563 Gdf5 8200 GDF5 

Brachydactyly, type C, 113100; 
Brachydactyly, type A2, 112600; 

Acromesomelic dysplasia, 
Hunter-Thompson type, 201250; 
Chondrodysplasia, Grebe type, 
200700; Fibular hypoplasia and 
complex brachydactyly, 228900; 
Multiple synostoses syndrome 2, 

610017; Symphalangism, 
proximal, 185800 



  142 

-7.67 -8.68 -8.18 -0.78 19414 Rasa3 22821 RASA3  

-4.23 -8.88 -6.56 -1.59 15107 Hadh 3033 HADH 

3-hydroxyacyl-CoA 
dehydrogenase deficiency, 
231530; Hyperinsulinemic 

hypoglycemia, familial, 4, 609975 
-3.20 -8.97 -6.09 -1.06 276770 Eif5a 1984 EIF5A  
-3.89 -8.28 -6.09 -1.48 16663 Krt13 3860 KRT13 White sponge nevus, 193900 
-4.14 -7.04 -5.59 -0.57 74760 Rab3il1 5866 RAB3IL1  
-4.64 -6.13 -5.38 -1.21 11768 Ap1m2 10053 AP1M2  

-3.69 -6.62 -5.15 -0.17 214498 Cdc73 79577 CDC73 

Hyperparathyroidism-jaw tumor 
syndrome, 145001; 

Hyperparathyroidism, familial 
primary, 145000; Parathyroid 
adenoma with cystic changes, 

145001; Parathyroid carcinoma, 
608266 

-3.07 -6.47 -4.77 -2.04 15959 Ifit3 3437 IFIT3  

-3.09 -6.35 -4.72 -0.95 21810 Tgfbi 7045 TGFBI 

Corneal dystrophy, Thiel-Behnke 
type, 602082; Corneal dystrophy, 

Reis-Bucklers type, 608470; 
Corneal dystrophy, Groenouw 

type I, 121900; Corneal 
dystrophy, Avellino type, 607541; 

Corneal dystrophy, epithelial 
basement membrane, 121820; 

Corneal dystrophy, lattice type I, 
122200; Corneal dystrophy, 

lattice type IIIA, 608471 

-4.98 -4.38 -4.68 -1.10 13074 Cyp17a1 1586 CYP17A1 

17,20-lyase deficiency, isolated, 
202110; 17-alpha-

hydroxylase/17,20-lyase 
deficiency, 202110 

-3.41 -5.77 -4.59 -1.99 16647 Kpna2 3838 KPNA2  
-3.20 -5.27 -4.23 -0.49 207839 Galnt6 11226 GALNT6  
-3.13 -5.24 -4.18 -2.16 58250 Chst11 50515 CHST11  
-2.82 -4.42 -3.62 -0.65 230673 Ipo13 9670 IPO13  
-8.64 -2.52 -5.58 -2.02 18857 Pmp2 5375 PMP2  
-7.30 -3.10 -5.20 -1.89 384009 Glipr2 152007 GLIPR2  
-8.24 -10.47 -9.36 -0.35 69029 1500032L24Rik 91689 C22orf32  
-8.50 -6.81 -7.66 0.61 76719 1700081L11Rik 284058 KANSL1  
-5.08 -6.33 -5.71 -1.54 227736 1700019L03Rik 286207 C9orf117  
-5.10 -5.94 -5.52 -0.98 67902 Sumf2 25870 SUMF2  
-4.18 -5.00 -4.59 -2.27 208606 Rsrc2 65117 RSRC2  
-4.40 -3.75 -4.08 2.36 70381 Tecpr1 25851 TECPR1  
-5.67 -5.31 -5.49 -2.07 78887 Sfi1 9814 SFI1  
-4.94 -3.88 -4.41 -1.60 67809 Fam82a2 55177 FAM82A2  
-5.12 -3.44 -4.28 -0.67 72373 Psca 8000 PSCA  
-5.73 -2.65 -4.19 -0.49 74716 Wbp2nl 164684 WBP2NL  
-4.69 -3.63 -4.16 -1.14 116905 Dph1 1801 DPH1  
-4.92 -3.38 -4.15 0.70 67878 Tmem33 55161 TMEM33  

-12.08 -3.57 -7.83 -1.50 258961 Olfr631 390059 OR51M1  
-11.77 -9.49 -10.63 1.36 51812 Mcrs1 10445 MCRS1  
-12.98 -8.17 -10.58 -0.19 73242 Atat1 79969 ATAT1  
-6.67 -7.30 -6.98 -0.77 68118 9430023L20Rik 60673 C12orf44  
-6.99 -5.72 -6.36 0.15 19934 Rpl22 6146 RPL22  

-19.21 -4.16 -11.69 -1.14 69612 2310037I24Rik 54934 KANSL2  
-7.40 -2.26 -4.83 -0.07 108671 Dnajc9 23234 DNAJC9  
-5.78 -2.91 -4.35 -2.57 320840 Negr1 257194 NEGR1  

-13.57 -9.60 -11.59 -1.29 66592 Stoml2 30968 STOML2  
-10.32 -4.32 -7.32 -1.32 66373 Lsm5 23658 LSM5  
-13.50 -3.70 -8.60 -0.65 52023 Pibf1 10464 PIBF1  
-12.95 -3.92 -8.43 -1.89 83701 Srrt 51593 SRRT  
-8.67 -2.43 -5.55 1.58 71617 9130011E15Rik 79591 C10orf76  
-8.68 -17.61 -13.14 -0.42 77048 Ccdc41 51134 CCDC41  

-21.69 -4.64 -13.16 -1.61 27756 Lsm2 57819 LSM2  
-17.49 -6.77 -12.13 -3.61 404315 Olfr372 284383 OR2Z1  
-17.64 -4.43 -11.04 -0.45 67884 1810043G02Rik 755 C21orf2  
-16.73 -4.43 -10.58 -2.41 225523 Cep120 153241 CEP120  
-11.66 -9.48 -10.57 -1.16 319158 Hist1h4i 8294 HIST1H4I  
-16.05 -5.06 -10.55 -3.31 171506 H1foo 132243 H1FOO  
-10.95 -8.52 -9.74 2.12 67217 2810055F11Rik 112849 C14orf149  
-13.35 -5.97 -9.66 -2.77 93714 Pcdhga6 56109 PCDHGA6  
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Table 3-19. List of genes that passed the second level of filtering. 154 genes had 

robust z score lesser than the median robust z score of positive controls for %CSC, and 
robust z score greater than the median robust z score reduced by two MADs of the positive 
controls for WCN in both runs of a ten plate batch and had homologues in human genome. 

 

 
Figure 3-49. DAVID analysis using Swiss-Prot and Protein Information Resource 

keywords on the 154 filtered primary screen hits. Listed are enriched terms with 
associated P values and Benjamini-Hochberg q values (to control for the false discovery 
rate due to multiple testing). Terms with q < 0.05 are listed. Image modified from 
http://david.abcc.ncifcrf.gov/. 

 

 
Figure 3-50. DAVID analysis using GO terms for cellular components on the 154 

filtered primary screen hits. Listed are enriched terms with associated P values and 
Benjamini-Hochberg q values (to control for the false discovery rate due to multiple testing). 
Terms with q < 0.05 are listed. Image modified from http://david.abcc.ncifcrf.gov/. 

 

 
Figure 3-51. DAVID analysis using KEGG pathway term search on the 154 

filtered primary screen hits. Listed are enriched terms with associated P values and 
Benjamini-Hochberg q values (to control for the false discovery rate due to multiple testing). 
Terms with q < 0.05 are listed. Image modified from http://david.abcc.ncifcrf.gov/. 

Sublist Category Term RT Genes Count % P-Value Benjamini 

  SP_PIR_KEYWORDS g-protein coupled receptor RT 

 

33 19.0 1.5E-6 3.2E-4 

  SP_PIR_KEYWORDS transducer RT 

 33 19.0 3.4E-6 3.6E-4 

  SP_PIR_KEYWORDS cell membrane RT 

 36 20.7 4.8E-6 3.3E-4 

  SP_PIR_KEYWORDS receptor RT 

 

44 25.3 1.8E-5 9.2E-4 

  SP_PIR_KEYWORDS G protein-coupled receptor RT 

 

6 3.4 1.8E-4 7.3E-3 

  SP_PIR_KEYWORDS glycoprotein RT 

 53 30.5 3.1E-4 1.1E-2 

  SP_PIR_KEYWORDS disulfide bond RT 

 36 20.7 5.4E-3 1.5E-1 

  SP_PIR_KEYWORDS membrane RT 

 

67 38.5 6.5E-3 1.6E-1 

  SP_PIR_KEYWORDS lipoprotein RT 

 12 6.9 2.0E-2 3.8E-1 

  SP_PIR_KEYWORDS neurotransmitter receptor RT 

 3 1.7 5.2E-2 6.7E-1 

  SP_PIR_KEYWORDS retinal protein RT 

 2 1.1 7.1E-2 7.6E-1 

  SP_PIR_KEYWORDS potassium transport RT 

 

4 2.3 7.6E-2 7.5E-1 

  SP_PIR_KEYWORDS photoreceptor protein RT 

 2 1.1 8.8E-2 7.7E-1 

  SP_PIR_KEYWORDS potassium RT 

 4 2.3 9.5E-2 7.8E-1 

  SP_PIR_KEYWORDS chromophore RT 

 

2 1.1 9.7E-2 7.6E-1 

!

Sublist Category Term RT Genes Count % P-Value Benjamini 

  GOTERM_CC_FAT plasma membrane RT 

 

52 29.9 1.5E-6 2.9E-4 

  GOTERM_CC_FAT nonmotile primary cilium RT 

 4 2.3 3.4E-3 2.8E-1 

  GOTERM_CC_FAT intrinsic to membrane RT 

 72 41.4 4.3E-3 2.4E-1 

  GOTERM_CC_FAT photoreceptor outer segment RT 

 

3 1.7 1.8E-2 5.8E-1 

  GOTERM_CC_FAT cell projection RT 

 

12 6.9 2.1E-2 5.5E-1 

  GOTERM_CC_FAT integral to membrane RT 

 66 37.9 3.0E-2 6.2E-1 

  GOTERM_CC_FAT anchored to membrane RT 

 6 3.4 4.8E-2 7.3E-1 

  GOTERM_CC_FAT chromatin RT 

 

5 2.9 7.3E-2 8.3E-1 

  GOTERM_CC_FAT sarcolemma RT 

 3 1.7 7.4E-2 8.0E-1 

!

Sublist Category Term RT Genes Count % P-Value Benjamini 

  KEGG_PATHWAY Neuroactive ligand-receptor interaction RT 

 

15 8.6 1.8E-7 1.3E-5 

!
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 Figure 3-52. Cartoon illustrating enrichment of the 154 filtered primary screen 
hits for neuroactive ligand-receptor interactions. Red stars indicate proteins encoded by 
genes that were hits in the screen or interacting partners for those proteins. Image modified 
from http://david.abcc.ncifcrf.gov/. 

 

3.3.2.3.2 Secondary screen 

2,174 hits from the primary screen were filtered to obtain a list of genes with 

the most significant effect on ciliogenesis (%CSC) that could be taken forward for 

validation in a secondary screen. Two different filtering strategies were applied in 

parallel (Figure 3-53). In the first instance, out of 2,174 hits, those with a 

statistically significant effect on cell number were removed. Out of remaining 174 

hits, any that did not have a human orthologue were removed. This comprised 154 

target genes (Table 3-19) that were taken forward to the secondary screen. The 

other, less stringent filtering method, included all genes with an effect on cell 

number (2,000 hits out of 2,174; 1,802 with human homologue) but were 

components that were enriched in discrete functional modules (Figure 3-45). From 

this group, 38 hits were taken forward for the secondary screen. 
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Figure 3-53. Filtering strategy in the siRNA screen. Initially 18,690 Entrez RefSeq 

mouse genes were screened. Out of those 2,174 had a significant effect of %CSC. Two 
parallel filters were further applied: genes within the most functionally enriched categories 
having effect on both WCN and %CSC (38 targets) and genes with effect on %CSC but no 
effect on WCN (154 targets). Only hits with human homologues were analysed in the 
secondary screen. Out of 192 targets, 68 were confirmed in the secondary screen, an 
overall hit rate of 35%. 

192 hits, that passed filtering after primary screen, were targeted for validation 

in the secondary screen. IMCD3s were used as the preferred model system, as 

they proved to be reliable and robust in the set-up of the primary screen, but siRNA 

duplexes of a different chemistry were used to those in the primary screen. The 

primary screen used pooled Dharmacon “siGENOME” reagents, whereas the 

secondary screen used four individual Dharmacon “ON-TARGET PLUS” unpooled 

siRNA duplexes which have modifications that decrease off-target effects and have 

an improved design to target all known transcripts of the target gene. The same 

protocol for set up, staining, imaging and analysis was used as in the primary 

screen to maintain uniformity between the two screens. 

To maintain consistency in the analysis, the 154 screened targets were 

filtered for an effect on ciliogenesis (%CSC) but without effect on cell number 

(WCN). 60 targets were confirmed in the secondary screen. No hits gave a 

phenotype for all four duplexes, but seven hits gave a phenotype with three 

duplexes, eighteen hits with two duplexes and thirty five hits with one duplex (Table 
3-20, top 60 hits).  

Out of the 38 genes shortlisted from the enriched functional modules, eight 

were confirmed in the secondary screen (Table 3-20, yellow shaded). Hits were 

filtered for an effect on cilia number but had no filter based on cell number. One of 

the hits had all four duplexes giving a ciliogenesis defect phenotype, one showed a 

phenotype with three targeting duplexes, three hits with two duplexes and four with 

one duplex.  
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The variability of %CSC phenotype between duplexes targeting one gene are 

shown in Figure 3-54. Genes in which the %CSC value was confirmed in the 

secondary screen, and therefore by duplexes using a different chemistry, were 

designated as positive hits. The functional annotation modules enriched in these 68 

hits include centrosome/microtubule organisation, splicosome/RNA processing, 

GPCR, UPS/proteasome components (Figure 3-54 and 3-55). 

 

 
Figure 3-54. Example of hits confirmed in the secondary screen. Robust z scores 

for %CSC for selected validated genes from the secondary screen, each assayed in two 
replicates with four individual siRNAs in mouse IMCD3 cells. Error bars indicate the range in 
values for the replicates. Cut-off values are based on the median z of positive controls per 
batch (-1.44, -0.81, -2.89, -4.08) for each batch. Colours indicate selected functional 
annotations, including centrosome/microtubule organisation genes (red), spliceosome/RNA 
processing genes (green), GPCRs (blue), UPS/proteasome genes (pink) and others (grey). 

 

 
Figure 3-55. DAVID analysis of enriched KEGG pathways in the 68 hits from the 

secondary screen. Statistically significant enrichment of spliceosome components and 
GPCRs were identified. Image modified from http://david.abcc.ncifcrf.gov/. 

 

The 68 targets confirmed in the screen represent a 35% confirmatory hit rate 

for the secondary screen and an overall 0.4% hit rate for the whole genome screen 

(Table 3-20). 

 

%CSC 
run1 

%CSC 
run2 

%CSC 
Avera

ge 

WCN 
Averag
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Mouse 
GeneID 

Mouse Gene 
Symbol 

Human 
GeneID 

Human Gene 
Symbol OMIM 

-1.85 -1.70 -1.78 -3.20 30806 Adamts8 11095 ADAMTS8  
-3.55 -1.02 -2.28 0.13 268822 Adck5 203054 ADCK5  
-1.95 -2.36 -2.15 -5.64 11768 Ap1m2 10053 AP1M2  
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-1.54 -1.69 -1.62 -2.25 11768 Ap1m2 10053 AP1M2  
-2.98 -2.90 -2.94 -6.59 11910 Atf3 467 ATF3  
-2.68 -1.38 -2.03 -5.05 11910 Atf3 467 ATF3  
-1.87 -1.94 -1.90 -6.28 11910 Atf3 467 ATF3  
-1.83 -0.85 -1.34 -5.30 242341 Atp6v0d2 245972 ATP6V0D2  

-4.56 -1.32 -2.94 -1.18 14595 B4galt1 2683 B4GALT1 
Congenital disorder of 
glycosylation type IId, 

607091 
-5.80 -2.60 -4.20 -9.59 71617 9130011E15Rik 79591 C10orf76  
-2.32 -1.06 -1.69 -1.76 67217 2810055F11Rik 112849 C14orf149  
-2.42 -1.02 -1.72 -8.70 67884 1810043G02Rik 755 C21orf2  
-2.14 -2.96 -2.55 -2.74 12419 Cbx5 23468 CBX5  
-1.99 -3.08 -2.53 -3.06 12419 Cbx5 23468 CBX5  
-4.64 -4.18 -4.41 -0.66 77048 Ccdc41 51134 CCDC41  
-2.97 -1.93 -2.45 -7.86 77048 Ccdc41 51134 CCDC41  
-1.51 -0.89 -1.20 -1.59 77048 Ccdc41 51134 CCDC41  

-2.31 -2.40 -2.35 -2.55 214498 Cdc73 79577 CDC73 

Hyperparathyroidism-jaw 
tumor syndrome, 145001; 

Hyperparathyroidism 
familial primary, 145000; 

Parathyroid adenoma with 
cystic changes, 145001; 
Parathyroid carcinoma, 

608266 
-2.42 -1.48 -1.95 -3.23 225523 Cep120 153241 CEP120  
-1.86 -1.08 -1.47 -1.57 225523 Cep120 153241 CEP120  
-3.97 -4.67 -4.32 0.98 12922 Crhr2 1395 CRHR2  
-2.86 -2.05 -2.46 -9.67 227292 Ctdsp1 58190 CTDSP1  

-2.85 -1.48 -2.16 -1.88 83603 Elovl4 6785 ELOVL4 

Macular dystrophy 
autosomal dominant 

chromosome 6-linked, 
600110; Ichthyosis spastic 
quadriplegia and mental 

retardation, 614457; 
Stargardt disease 3, 

600110 
-3.05 -2.09 -2.57 0.41 14428 Galr2 8811 GALR2  

-4.49 -2.85 -3.67 -3.12 14563 Gdf5 8200 GDF5 

Brachydactyly, type C, 
113100; Brachydactyly, 

type A2, 112600; 
Acromesomelic dysplasia, 
Hunter-Thompson type, 

201250; 
Chondrodysplasia, Grebe 

type, 200700; Fibular 
hypoplasia and complex 
brachydactyly, 228900; 

Multiple synostoses 
syndrome 2, 610017; 

Symphalangism proximal, 
185800 

-1.78 -0.96 -1.37 0.69 384009 Glipr2 152007 GLIPR2  
-1.90 -2.63 -2.27 -0.25 70771 Gpr173 54328 GPR173  
-1.93 -2.78 -2.36 -1.01 239530 Gpr20 2843 GPR20  

-4.46 -1.02 -2.74 -1.01 15107 Hadh 3033 HADH 

3-hydroxyacyl-CoA 
dehydrogenase deficiency, 
231530; Hyperinsulinemic 
hypoglycemia familial, 4, 

609975 

-2.83 -1.57 -2.20 -4.56 15107 Hadh 3033 HADH 

3-hydroxyacyl-CoA 
dehydrogenase deficiency, 
231530; Hyperinsulinemic 
hypoglycemia familial, 4, 

609975 
-2.94 -2.90 -2.92 -0.71 15551 Htr1b 3351 HTR1B  
-3.72 -1.69 -2.70 -4.54 15551 Htr1b 3351 HTR1B  
-2.73 -2.83 -2.78 -8.56 15959 Ifit3 3437 IFIT3  
-1.83 -1.88 -1.86 -2.70 15959 Ifit3 3437 IFIT3  

  -2.13 -3.30 76719 1700081L11Rik 284058 KANSL1  
-3.37 -2.56 -2.97 -1.45 69612 2310037I24Rik 54934 KANSL2  
-2.44 -2.59 -2.52 -4.07 69612 2310037I24Rik 54934 KANSL2  
-2.40 -2.16 -2.28 -1.16 69612 2310037I24Rik 54934 KANSL2  
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-3.39 -1.39 -2.39 -8.97 16535 Kcnq1 3784 KCNQ1 

Short QT syndrome-2, 
609621; Long QT 

syndrome-1, 192500; 
Jervell and Lange-Nielsen 
syndrome, 220400; Atrial 

fibrillation familial, 3, 
607554 

-3.77 -2.67 -3.22 0.12 16663 Krt13 3860 KRT13 White sponge nevus, 
193900 

-1.53 -1.01 -1.27 -0.43 16663 Krt13 3860 KRT13 White sponge nevus, 
193900 

-2.23 -3.16 -2.70 -4.65 109594 Lmo1 4004 LMO1  
-1.48 -2.51 -1.99 -11.32 109594 Lmo1 4004 LMO1  
-3.25 -3.03 -3.14 -3.43 27756 Lsm2 57819 LSM2  
-3.97 -1.27 -2.62 -2.69 27756 Lsm2 57819 LSM2  
-3.29 -0.95 -2.12 -1.56 27756 Lsm2 57819 LSM2  
-2.91 -1.73 -2.32 -8.30 66373 Lsm5 23658 LSM5  
-2.57 -1.53 -2.05 -0.71 66373 Lsm5 23658 LSM5  
-1.82 -1.93 -1.88 -1.80 17754 Mtap1a 4130 MAP1A  
-2.40 -2.13 -2.26 1.18 17171 Mas1 4142 MAS1  
-1.85 -2.01 -1.93 0.34 17171 Mas1 4142 MAS1  
-4.35 -3.57 -3.96 -1.69 51812 Mcrs1 10445 MCRS1  
-1.90 -2.85 -2.38 -11.98 51812 Mcrs1 10445 MCRS1  

-1.98 -2.48 -2.23 -7.46 17349 Mlf1 4291 MLF1 Leukemia acute myeloid, 
601626 

-3.37 -0.90 -2.13 -4.84 17751 Mt3 4504 MT3  
-1.71 -2.67 -2.19 -3.84 217166 Nr1d1 9572 NR1D1  
-2.67 -2.84 -2.76 0.38 192292 Nrbp1 29959 NRBP1  
-4.02 -2.89 -3.45 -6.61 77976 Nuak1 9891 NUAK1  

-4.66 -3.27 -3.97 0.36 237222 Ofd1 8481 OFD1 

Oral-facial-digital 
syndrome 1, 311200; 
Joubert syndrome 10, 

300804; Simpson-Golabi-
Behmel syndrome, type 2, 

300209 

-2.48 -3.02 -2.75 -1.36 237222 Ofd1 8481 OFD1 

Oral-facial-digital 
syndrome 1, 311200; 
Joubert syndrome 10, 

300804; Simpson-Golabi-
Behmel syndrome, type 2, 

300209 

-3.56 -1.71 -2.63 -2.21 237222 Ofd1 8481 OFD1 

Oral-facial-digital 
syndrome 1, 311200; 
Joubert syndrome 10, 

300804; Simpson-Golabi-
Behmel syndrome, type 2, 

300209 

-1.44 -1.28 -1.36 -0.55 14539 Opn1mw 2652 OPN1MW 
Colorblindness deutan, 

303800; Blue cone 
monochromacy, 303700 

-2.44 -2.27 -2.35 -4.65 12057 Opn1sw 611 OPN1SW Colorblindness tritan, 
190900 

-1.81 -1.26 -1.54 3.01 18389 Oprl1 4987 OPRL1  
-1.91 -1.23 -1.57 -0.69 404315 Olfr372 284383 OR2Z1  
-4.02 -2.64 -3.33 -8.95 258961 Olfr631 390059 OR51M1  
-1.45 -1.43 -1.44 -5.22 258961 Olfr631 390059 OR51M1  
-2.66 -1.61 -2.14 2.55 140795 P2ry14 9934 P2RY14  
-2.16 -1.79 -1.98 -0.27 140795 P2ry14 9934 P2RY14  
-2.90 -3.07 -2.98 -7.32 93714 Pcdhga6 56109 PCDHGA6  
-4.48 -2.42 -3.45 0.59 52023 Pibf1 10464 PIBF1/CEP90  
-2.10 -1.42 -1.76 -0.57 52023 Pibf1 10464 PIBF1/CEP90  
-1.49 -1.05 -1.27 0.46 52023 Pibf1 10464 PIBF1/CEP90  
-1.85 -2.35 -2.10 -1.88 20873 Plk4 10733 PLK4  
-2.06 -1.20 -1.63 -3.28 20873 Plk4 10733 PLK4  
-1.92 -2.07 -2.00 -4.10 74760 Rab3il1 5866 RAB3IL1  
-3.50 -1.92 -2.71 -11.58 19387 Rangap1 5905 RANGAP1  
-1.85 -1.21 -1.53 -4.93 19387 Rangap1 5905 RANGAP1  
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-3.90 -0.81 -2.36 -6.62 19400 Rapsn 5913 RAPSN 

Myasthenic syndrome 
congenital, associated with 

facial dysmorphism and 
acetylcholine receptor 

deficiency, 608931; 
Myasthenic syndrome 

congenital associated with 
acetylcholine receptor 

deficiency, 608931; Fetal 
akinesia deformation 
sequence, 208150 

-3.74 -2.82 -3.28 -6.28 216227 Slc17a8 246213 SLC17A8 Deafness autosomal 
dominant 25, 605583 

-1.89 -0.92 -1.41 -2.33 216227 Slc17a8 246213 SLC17A8 Deafness autosomal 
dominant 25, 605583 

-1.87 -1.33 -1.60 -2.16 20526 Slc2a2 6514 SLC2A2 Fanconi-Bickel syndrome, 
227810 

-4.08 -2.08 -3.08 -1.07 83701 Srrt 51593 SRRT  
-3.66 -1.18 -2.42 0.42 83701 Srrt 51593 SRRT  
-2.50 -1.04 -1.77 -0.25 83701 Srrt 51593 SRRT  
-4.63 -2.60 -3.62 -10.04 66592 Stoml2 30968 STOML2  
-3.59 -1.07 -2.33 -6.17 67902 Sumf2 25870 SUMF2  
-2.16 -1.71 -1.93 -6.93 67902 Sumf2 25870 SUMF2  
-1.67 -2.44 -2.05 -1.42 78829 Tsc22d4 81628 TSC22D4  
-2.11 -0.94 -1.53 0.58 78829 Tsc22d4 81628 TSC22D4  
-1.59 -2.42 -2.01 -1.21 56085 Ubqln1 29979 UBQLN1  
-3.19 -1.06 -2.12 0.54 74716 Wbp2nl 164684 WBP2NL  
-3.12 -11.63 -7.38 -10.64 217232 Cdc27 996 CDC27  

-3.15 -10.10 -6.62 -5.02 59026 Huwe1 10075 HUWE1 
Mental retardation X-linked 

syndromic Turner type, 
300706 

-6.72 -14.28 -10.50 -5.50 68988 Prpf31 26121 PRPF31 Retinitis pigmentosa 11, 
600138 

-5.00 -8.28 -6.64 -9.23 68988 Prpf31 26121 PRPF31 Retinitis pigmentosa 11, 
600138 

-4.48 -11.67 -8.07 -4.28 230596 Prpf38a 84950 PRPF38A  

-6.32 -12.70 -9.51 -5.28 68879 Prpf6 24148 PRPF6 Retinitis pigmentosa 60, 
613983 

-4.94 -8.14 -6.54 -3.90 68879 Prpf6 24148 PRPF6 Retinitis pigmentosa 60, 
613983 

-3.95 -7.82 -5.89 -2.99 68879 Prpf6 24148 PRPF6 Retinitis pigmentosa 60, 
613983 

-11.11 -17.74 -14.42 -15.39 192159 Prpf8 10594 PRPF8 Retinitis pigmentosa 13, 
600059 

-5.28 -13.24 -9.26 -7.82 192159 Prpf8 10594 PRPF8 Retinitis pigmentosa 13, 
600059 

-4.66 -7.79 -6.22 -12.88 56438 Rbx1 9978 RBX1  
-5.43 -6.74 -6.08 -10.09 28035 Usp39 10713 USP39  
-3.66 -6.12 -4.89 -6.59 28035 Usp39 10713 USP39  

Table 3-20. List of genes confirmed in the secondary screen. 68 genes were 
confirmed in the secondary screen with at least one siRNA duplex having an effect on 
%CSC. Targets from the enriched functional modules were not filtered for cell number 
(yellow shaded cells). 20 hits had OMIM annotations and 18 were present in the 
CiliaProteome v3. 

 

3.3.2.3.3 Validation of secondary screen hits 
 

Hits listed in Table 3-20 included genes identified previously from functional 

genomics analyses of centriole biogenesis in human cells 282 including PLK4 and 

CEP120, and other hits with known ciliary roles including CCDC41 283 and OFD1284, 

suggested that the screen had high specificity for ciliary processes. Several PRPFs 

and ribonucleoproteins, including PRPF8, PRPF19 and LSM2, were also hits that 



  150 

have been previously identified in a genome-wide screen of mediators of DNA-

damage response 285. Interestingly, our hits PRPF8 and PRPF38A have also been 

implicated in the process of centriolar under-duplication 282. 

Based on significance, functional categorization (Figure 3-55), relevant 

literature information and the availability of validated antibodies, a total of 15 genes 

encoding GPCRs, PRPFs and predicted centrosomal proteins were chosen for 

further study (Prpf6, Prpf8, Prpf31, Prpf38a, Pibf1, C21orf2, Gpr20, Gpr173, Rapsn, 

Mas1, Oplr1, Crhr2, Pkl4, Htr1b, P2ry14). For each of these genes a series of 

validation experiments was designed and conducted in collaboration with 

colleagues in the laboratory of Prof. Colin Johnson (University of Leeds). The 

reduction of mRNA transcript levels was assayed in IMCD3 cells by quantitative 

PCR if the negative control (siScr) cycle threshold (Ct) value was < 30 (performed 

by Subaa Natarajan). Transcripts quantity was compared between knockdown of 

specific gene and scrambled knockdown and unpaired two-tailed Student’s t-test 

was calculated (Figure 3-56). A decrease in protein level was assayed by western 

immunodetection (with assistance of Warren Herridge) if suitable antibodies were 

available. The decrease in cilia number and a reduction in immunostaining of the 

cognate protein by IF microscopy was also confirmed where suitable antibodies 

were available (the author and Dr Gabrielle Wheway). Finally, expression of 

selected proteins (principally, GPCRs) in embryonic neocortex was assayed in 

mouse tissue sections (Dr Zakia Abdelhamed). 

 
Figure 3-56. Graph representation of qPCR results for selected secondary 

screen hits. Relative quantities of the transcripts are shown of siScr versus knockdowns of 
selected genes. P values were as follows: C21orf2 – 0.0034, Pibf1 – 0.0225, Plk4 – 0.0057, 
Prpf8 - <0.0001, Prpf31 - <0.0001, Prpf38a - <0.0001. * p < 0.05; ** p < 0.01; *** p < 0.001; 
**** p < 0.0001, for Student’s t-test (unpaired, two-tailed). Error bars indicate s.d. for n=3 
biological replicates. 
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Although Prpf6, Prpf8 and Prpf31 predominantly localised to nuclear 

speckles as expected (Figure 3-57 and 3-59), these proteins were also shown to 

co-localise to the base of the cilium in diverse human and mouse ciliated cell lines 

(Figure 3-59) and to proximal regions of the connecting cilium in the adult mouse 

retina (Figure 3-60; image obtained from Dr Zakia Abdelhamed). Reduction of the 

protein (Figure 3-58 and 3-59) causes cilia loss and, as expected, a decrease in 

the level of protein present at the nuclear speckles and base of the cilium (Figure 

3-57 and 3-59). 
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Figure 3-57. Knockdown of Prpf6, Prpf8 and Prpf31. Prpf proteins are stained in 

green and in siScrambled are shown to localise to nuclear speckles (green arrowheads) and 
at the base of cilium (orange arrowheads). Knockdown of these proteins shows a decrease 
in intensity at the nuclear speckles and at the base of the cilium. Cells pointed with white 
arrowheads were enlarged to show protein localisation to the base of the cilium (white 
squares). 
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Figure 3-58. WB showing loss of protein after siRNA knockdown. Efficient 

knockdown of the indicated Prpf proteins was shown after siRNA knockdown in IMCD3 
cells. The target to loading control (β-actin) ratio is shown below each panel, to express the 
efficiency of protein knockdown. 

 
  

 
Figure 3-59. Localisation of Prpf proteins to the base of the primary cilium. Prpf 

proteins (green, indicated by green arrowheads in magnified insets) localised to the base of 
the cilium, visualized by staining for acetylated α-tubulin (red) in ciliated mouse IMCD3, 
human hTERT-RPE1 and differentiated human neuronal SHSY5Y cells. PRPF6 antibody 
was specific to mouse and human epitopes. 
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Figure 3-60. Localisation of Prpf proteins at the base of the connecting cilium in 

mouse retina. Prpf proteins (green or red as indicated) co-localised with the basal body 
marker γ-tubulin in mouse retinal sections. INL, inner nuclear layer; OPL, outer plexiform 
layer; ONL, outer nuclear layer; CR, connecting cilia. Scale bar = 50 µm. 

3.3.2.3.3.2 GPCRs 
Many of the human GPCRs identified as hits in the secondary screen were 

neuroactive GPCRs, including serotonin receptor 1b (HTR1B), corticotropin 

releasing hormone receptor 2 (CRHR2) and the nociceptin receptor (opiate 

receptor-like 1; OPRL1). The localisation of these proteins was investigated in a 

human ciliated neuroblastoma cell-line (SHSY5Y) with neuronal-like characteristics 

that differentiate by extending neurites. The localisation of most of these GPCRs 

(HTR1B, P2RY14, MAS1, OPRL1, CRHR2) was shown to be at the base of the 

cilium in differentiated SHSY5Y cells (Figure 3-61), and to the connecting cilium in 

adult mouse retina (Figure 3-62; image obtained from Dr Zakia Abdelhamed). The 

results from the screen suggest that these GPCRs are required not only for ciliary 

signalling but also for cilia assembly. 

 

 
Figure 3-61. Localisation of GPCR to the base of cilium in differentiated SHSY5Y 

cells. Localization of the selected indicated GPCRs (green) to proximal or basal regions of 
primary cilia (polyglutamylated α-tubulin; red) in differentiated SHSY5Y neuronal cells. 
Magnified insets for selected cells (white arrowheads) are shown in white frames. Scale bar 
= 10µm. 
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Figure 3-62. GPCR protein localisation in mouse retina sections. Localization of 

MAS1 and OPRL1 (green) to proximal regions of the connecting cilium (red; yellow 
arrowheads in magnified insets) in adult mouse retina. INL, inner nuclear layer; OPL, outer 
plexiform layer; ONL, outer nuclear layer; CR, connecting cilia. Scale bar = 50µm. 

 

3.3.2.3.4 Utility of screen results 

 

It was next investigated whether the list of validated ciliogenesis effectors 

(Table 3-20) could be used to prioritize predicted pathogenic variants identified 

from WES of ciliopathy patients. Mutations in two genes were identified by 

collaborators: mutations in PIBF1 as a cause of JSRD (Dr Daniel Doherty, 

University of Washington) and  mutations in C21ORF2 as a cause of Jeune 

syndrome (Dr Hannah Mitchinson, University College London). 

PIBF1 has independently been implicated in ciliogenesis 286. Yeast two-

hybrid (Y2H) analysis with the N-terminal part of TMEM237 as a bait identified 

PIBF1 as a potential interactor (personal communication with Prof. Kym Boycott, 

University of Ottawa). To validate this interaction co-immunoprecipitation (coIP) 

assays of co-overexpressed epitope-tagged PIBF1-GFP and TMEM237C-

terminaldeletion-FLAG were performed in HEK293 cells. There was a weak 

interaction observed between these proteins, when TMEM237 antibody pulled 

down PIBF1-GFP (Figure 3-63 lane 6). PIBF1-GFP was also pulled down by GFP 

and PIBF1 antibodies but not by the irrelevant antibody – MICU3 (Figure 3-63 

lanes 7, 8 and 9 respectively). 
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Figure 3-63. Co-IP experiment between co-overexpressed TMEM237-FLAG and 

PIBF1-GFP in HEK293 cells. TMEM237, PIBF1 and GFP antibodies pulled down PIBF1-
GFP (green boxes). Bands in red boxes could indicate a shorter form of PIBF1-GFP, but 
lack of this band in lanes 7 and 8 disprove this. Lane 1 and 2 – protein markers, lane 3 – 
whole cell extract (WCE) of untransfected HEK293 cells, lane 4 – WCE of HEK293 cells 
transfected with empty GFP, lane 5 – WCE of HEK293 cells co-transfected with 
TMEM237Cterminal deletion-FLAG and PIBF1-GFP, lane 6 – pull down with TMEM237 
antibody, lane 7 – pull down with GFP antibody, lane 8 – pull down with PIBF1 antibody, 
lane 9 – pull down with MICU3 antibody. Membrane was stained with mouse anti-GFP 
antibody.  

 

3.3.3 Discussion 

A whole mouse genome siRNA reverse genetics screen was conducted in 

ciliated IMCD3 cells. Cells were analysed for transcript expression (RNAseq) and 

copy number (arrayCGH). The siRNAs duplexes were analysed by BLAST in order 

to identify potential OTE and partial on-target effects, and were also analysed by 

GESS for predicted microRNA like effects. The controls used in the screen gave 

statistically significant results and were reliable and reproducible across the whole 

screen. Transcript loss of many genes was identified to have an effect on cilia as 

well as on cell number. The data was filtered in a number of ways to enable a 

meaningful and strict selection for hit validation in secondary screen studies. The 

different chemistry of siRNA duplexes allowed confirmation of 68 out of 192 hits in 
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the secondary screen. The selected hits taken forward to a tertiary screen were 

confirmed manually (confocal IF microscopy in 6 well plates instead of high content 

imaging in 96 well plates) and all of the selected proteins were shown to localise to 

the base of cilia. The utility of the screen data was confirmed by identification of 

PIBF1 and C21ORF2 to be mutated in known human ciliopathies. 

Mouse inner medullary collecting duct cells were chosen as the model system 

for the screen, as these cells are widely used in the cilia biology research 

community and widely accepted as a model for ciliogenesis. Their advantages 

include good levels of ciliation, with one cilium per cell, with a greater cilia length 

(~8µm) compared to other model systems such as human hTERT-RPE1 cells 

(~4µm). The mIMCD3 cells are adherent and easy to culture, although cell number 

prior to siRNA transfection had to be strictly controlled. Too many seeded cells 

caused the cells to quickly become over-confluent. Since mIMCD3s cells have 

reduced contact inhibition and can grow in multiple layers and even begin to 

differentiate to form tubule-like structures. Over-confluency disturbed the cilia 

recognition high content imaging protocol that involved scanning the cell monolayer 

at specific, pre-defined focal planes. Although on coverslips these cells appear to 

have flat long cilia, in the 96-well format the cilia were perpendicular to their 

substrate, which allowed the easy recognition of cilia as a spot over a cell. 

The methodology for IF staining in the screen was robust once initially 

optimised for high throughput cilia detection, but difficulties were encountered when 

a batch of acetylated α-tubulin mouse monoclonal antibody was exhausted and the 

new batch showed differences in staining. This required antibody re-optimisation 

and a delay in screening. A further delay was caused by the loss of transfection 

efficiency caused by a new batch of serum-free OptiMEM medium, which was 

observed by the loss of effect following Plk1 knockdown (the transfection positive 

control). It was concluded that this batch of OptiMEM contained foetal bovine serum 

leading to a sudden drop in transfection efficiency. These obstacles led to the 

conclusion that all reagents for a screen should be ordered beforehand and 

originate from one manufacturing batch. 

Out of the many positive controls for ciliogenesis defects, those targeting 

Mks1, Rpgrip1l and Ift88 were chosen (Figure 3-34). These genes are known to be 

involved in spectrum of ciliopathies including MKS, JSRD and Jeune syndrome and 

their protein function is well described. Their knockdown had graduated effects on 

%CSC with siIft88 having the most significant effect on ciliogenesis.  

Only one time point (72h siRNA incubation) was used to visualise cilia and 

this may not be reflected by a loss of protein levels since different proteins have 

different half-life. This could be a significant source of false negatives seen in this 



  158 

screen, since many genes known to be important for ciliogenesis were not detected 

in the screen. For example many IFT genes were filtered out early in the analysis 

since they not only affect cilia number but also cell number. Although this was a 

consideration taken into account during the design of the screen, the optimal 

transfection time was chosen to ensure the optimal siRNA transfection efficiency 

(as measured by the effect of the positive control siPlk1). The massive format of the 

screen did not allow multiple incubation time points, but follow-up secondary 

screens with different siRNA incubation times are being considered. 

Ciliary length is one of the metrics of cilia defects but was not assayed in this 

screen, as cilia were poking straight up and the length measurement was not 

possible. Imaging at another focal plane would have involved the storage and 

analysis of additional large data-sets and this was limited by the capacity of the 

existing screening facilities. Cilia intensity measured at the ‘cilia’ focal plane could 

be considered as a proxy indicator of ciliary length, but this metric needs further 

validation before it can be considered for future secondary screens. 

In both primary and secondary screens, an enrichment for components of the 

spliceosome and GPCRs was observed. These novel findings implicate these 

functional modules in ciliogenesis and cilia maintenance. There are only few reports 

for the function of GPCRs in cilia 281,287 and unveiling their function is of much 

interest. GPCRs have had ciliary localisation sequences identified, making them 

very interesting candidates for ciliary trafficking of membrane proteins 38. Figures 3-
61 and 3-62 also demonstrate localisation of selected GPCRs, that were hits in the 

siRNA screen, to the base of the primary cilium and to the connecting cilium in 

mouse retinal sections. Previous studies have hypothesised that GPCRs may play 

a sensory or signalling role in the ciliary vesicle or procilium 288,289 prior to 

ciliogenesis, rather than during ciliogenesis itself. Their function is also known in 

Hedgehog signalling crucial for correct embryonic development 287,290. Transcript 

and protein levels for all GPCR genes in the studied model systems were both very 

low, precluding further validation by either Western blotting or qRT-PCR. One of the 

reasons for this could have been the model system that was used, namely kidney 

cells. The low transcript levels were confirmed in the RNAseq study and further 

methods to investigate this group of proteins are necessary. For further 

investigation of GPCRs more relevant model system should be used, such as 

differentiated neuronal-like cells from the SHSY5Y neuroblastoma cell-line. Further 

characterisation of the GPCR hits from this siRNA screen may contribute to 

understanding the complex ciliary functions in different organs. 

The function of PRPFs is well-known and well-described in the spliceosome, 

but they were not previously reported to localise to or have any function in the 
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primary cilium. The data suggests that the PRPFs are required for ciliogenesis or 

cilia maintenance, but it remains unclear if there is any further function for those 

proteins at the base of the cilium. Unpublished protein-protein interaction data has 

shown that PRPF8 was pulled down in a series of TAP experiments by the IFT 

proteins IFT27 and IFT52 (n=3 biological replicates), and PRPF31 by the ciliary 

proteins IFT20, IFT27, IFT46, IFT52, TTC21B and CC2D2A (n=3; experiments 

performed by collaborators Dr Dorus Mans, Radboud University Nijmegen Medical 

Centre and Dr Karsten Boldt, University of Tubingen). This protein localisation data 

and the ciliogenesis defect caused by protein loss, suggests that PRPF6, PRPF8, 

PRPF31 and PRPF38A could be crucial structural components of the primary 

cilium. PRPF6, PRPF8 and PRPF31 are all mutated in autosomal dominant retinitis 

pigmentosa (RP types 60 MIM#613983, 13 MIM#600059 and 11 MIM#600138, 

respectively). The pathogenic mechanism for these RNA splicing-factor forms of RP 

remains poorly understood, and none have been characterised as retinal 

ciliopathies. Further functional work to investigate the function of PRPF proteins at 

the basal body is on-going and is being conducted by the author’s colleague, Dr 

Gabrielle Wheway. 

In summary, the siRNA screen represents a systematic and unbiased strategy 

to assess the contribution of every gene in the genome to the processes of 

ciliogenesis. The elaborate steps to fully characterise the cell-line and the siRNA 

library, as well as the careful optimisation of the transfection, staining and imaging 

assay protocols, were important to minimize the false positive rate for hits. In 

addition, the characterisation of the IMCD3 cell-line is a useful resource for further 

studies. The various protocols can be adapted to suit screens in other ciliated cell-

lines, and have the potential for use in other high-throughput visual screens of, for 

example, small molecule effectors of cilium structure and length. Most importantly, 

this represents a novel and useful methodology which is a high-quality example of 

the application of the hypothesis-neutral strategy of reverse-genetic screening. The 

data highlights the opportunities of a synergistic analysis of large data-sets. The 

combination of genome-wide siRNA screening, WES and proteomics should lead to 

the identification of new disease-causing genes for diagnostic benefit, better 

refinement of patient phenotypes as an aid to prognosis and individualised clinical 

care, and to the discovery of new disease pathways that provide deeper insights 

into cilia biology. 
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4 Discussion 

4.1 Mutation screening, founder mutations and genotype – 
phenotype correlations in MKS and associated 
ciliopathies 

DNA samples were collected from ciliopathy patients and family members 

which led to a large patient cohort to be established. The initial investigation to 

identify causative mutations in the genes was undertaken at the University of 

Birmingham, where Prof. Colin Johnson’s group was established. Part of the work 

presented in section 3.1 was a continuation of this work. The gene identification 

workflow included initial linkage analysis using microsatellite markers. These 

markers were chosen based on their proximal physical position to the locus under 

investigation with the markers chosen to be no further than 1Mbp from the coding 

sequence of the gene (Table 3-2). A high (>0.70) heterozygosity value was a 

second criterion determining the choice of the marker and was verified on the 

CEPH website. Fulfilling those two criteria was desirable but not always possible for 

each microsatellite. Crossovers between the marker and gene could also not be 

excluded, though highly unlikely.  

Sanger sequencing of the known and candidate genes, at the time, revealed 

mutation in about 57% (n=38/67) of Leeds cohort families. This unselected 

MKS/JSRD cohort, including both consanguineous and non-consanguineous 

families from a range of ethnicities, suggests that other genes remain to be 

discovered. Sanger sequencing is a robust and reliable method of mutation 

identification but it is time consuming, costly and requires relatively large amounts 

of DNA. Prior genotyping allows linkage confirmation/exclusion that can decrease 

cost but may generate false negative/positive results. TMEM67 was also initially 

sequenced in Birmingham/Leeds for only the first eighteen exons (out of total of 

twenty eight), as most of the reported mutations (at the time) were located in this 

part of the gene. Later this assumption was proved to be wrong as mutations in the 

C-terminal part of TMEM67 were shown to be important in mediating protein-protein 

interactions 206. 

Genotype-phenotype correlations in the Leeds cohort confirmed previously 

reported observations 110,221,291. Patients with a liver phenotype should have 

TMEM67 screening prioritised, while those with occipital encephalocele, bone 

dysplasia, laterality defects and polydactyly should be screened for MKS1 first. 

Those with bone dysplasia, craniofacial abnormalities including micrognathia should 
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have RPGRIP1L screened first. More extensive correlations were often not possible 

since patient phenotypes were sometimes incompletely documented. The 

importance of detailed phenotype information should therefore be emphasized with 

referring clinicians. Extensive patient phenotyping would allow not only correlation 

with the genetic causes of the phenotype to be made, but would also decrease the 

time and cost of such analyses. 

Mutation analysis in the Leeds cohort revealed common mutations in the 

known MKS genes. Pakistani patients with either linkage to the MKS3 locus or with 

a liver phenotype should have mutational screening prioritised for two mutations: 

c.1575+1G>A and c.870-2A>G. For the same ethical background, c.954delT in 

CEP290, c.1945C>T in RPGRIP1L or c.3540delA in CC2D2A should also be 

selected for screening. Patients of European origin should be initially screened for 

the “Finn major” MKS1 common Finnish mutation c.1408-35_1408-7_del29. Also, 

the c.755T>C mutation in TMEM67 appears to be common in combination with 

another missense change.  

Yorkshire Regional Genetics Service (YRGS) prior to 2013 was offering NHS 

service testing of all exons of MKS1, TMEM216 and TMEM67. Pre-screening was, 

and still is, the first pass of the screening process and common mutations were also 

prioritised. This included sequencing of the common Finnish mutation in MKS1 and 

CC2D2A in Caucasians, and for Pakistani and other Asian patients common 

mutations in TMEM67, RPGRIP1L, CC2D2A and NPHP3. In practice, this strategy 

was not efficient and the focus of testing has moved to the use of WES of all 

samples (Dr Ian Berry, personal communication). 

Particular interest was taken into TMEM67, as mutations in this gene are a 

major cause of MKS and MKS-like phenotype (Figure 3-7a). Reported mutations 

are quite evenly spread across the protein (Figure 3-3), but those specific to JSRD 

are located in amino acids 82-110 and 670-728. There are also changes that were 

reported in different ciliopathies, for example p.R208* was found in MKS, JSRD and 

NPHP patients. This truncating mutation occurs quite early in the protein sequence 

and would probably cause NMD and loss of the protein 292. The molecular outcome 

and patient phenotype would therefore be expected to be the same. However, 

differences in patient phenotype are observed that could suggest the modulating 

function of an additional modifier allele or alleles 231.  

It is interesting to note that many ciliopathy and ciliary-related proteins interact 

and are reported to create functional modules that are localized to discrete 

structural regions of the cilium such as the TZ 47,144,152,249. The effect of modifier 

alleles may be to abrogate interactions between components of a functional 
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module, which may disrupt protein complexes or signalling pathways giving rise to 

the ciliopathy phenotype.  

Four different heterozygous changes in six patients were identified, in the 

absence of a second detectable pathogenic mutation in the same gene or any other 

mutations in other MKS genes. These heterozygous alleles could be potential 

modifier alleles, but the possibility that a second pathogenic mutation occurred 

deep within introns or regulatory elements of the same MKS gene was not 

excluded. The molecular mechanism of additive ciliary protein mutations should 

therefore be explored to explain observed human phenotypes. 

Many genetic changes are being identified while searching for true disease 

causing mutations and particular care should be taken to verify the pathogenicity of 

these changes. In section 3.1.4.1.1 it was described how mutations are being 

identified and verified in the YRGS while further confirmatory work was undertaken 

in the Leeds Institutes of Molecular Medicine. This is not a standard workflow for 

variant interpretation, although it shows how these two institutions can complement 

each other. Currently, the standard practice for YRGS is to conduct whole exome 

sequencing for each patient filtering for variants only in the known ciliopathy genes. 

If no mutation is identified, information sheets and consent forms for analysis on a 

research basis are sent to the referring clinician to be offered to the families. 

Appropriate DNA samples are then submitted to the Sir Jules Thorn autozygosity 

mapping project (http://autozygosity.org/) for WES, or the WES data files (fastq 

files) are supplied from the diagnostic lab for alignment and variant calling on a 

research basis. If a variant is predicted to be causative, and it is absent in 

databases of common variants, then segregation is checked in available family 

members. The variant is also excluded in a panel of ethnically-matched control 

DNA samples, and other affected patients presenting the same phenotype are 

screened for mutations in the gene. The sub-cellular localisation of the encoded 

protein can also be investigated and RNA levels can be checked (for predicted null 

alleles such as stop, frame-shift or splice mutations). 

There is a need to establish protocols for robust, high-throughput mutation 

identification in the known MKS/JSRD genes. To enable that technologies like 

MIPS 166 or targeted capture of ciliopathy genes 293,294 should be considered. 

Databases, like one available for CEP290 (http://www.retina-

international.org/files/sci-news/cep290mu.htm), should be established to allow easy 

access to combined genetic and phenotypic information to research and diagnostic 

laboratories, as well as to clinicians. 
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4.2 Autozygosity mapping and candidate gene screening 

Ciliopathies are very genetically heterogeneous conditions, and only a small 

proportion of genes with causative mutations have been identified to date. 

However, in some populations (for example, in Bradford which has a sizable 

population of individuals of Pakistani ancestry), the incidence of the most severe 

ciliopathy, MKS, can be as high as 1 in 3000 births. The identification of new 

ciliopathy genes is therefore clinically essential to provide options for accurate, 

molecular diagnostic testing, including carrier testing, prenatal diagnosis, accurate 

gene counselling and even, in the future, prenuptial testing. These general aims 

take advantage of modern technologies that allow high-throughput sequencing of 

genes and therefore quicker mutation identification. The molecular basis of 

ciliopathies is still unclear, and the investigation of proteins involved in primary cilia 

function and maintenance would help to understand this complicated and crucial 

process during embryonic development. 

Based on SNP whole-genome genotyping studies obtained from five 

consanguineous patients, a shared homozygosity region was identified on 

chromosome 12. This locus was also confirmed by microsatellite data (Figure 3-8). 

In both analyses no shared haplotypes were found despite the same ethnical 

background for some of the patients. Candidate genes within the minimum region 

were prioritised and sequenced for variant identification. No changes were 

identified, although genes chosen for sequencing were later shown to be a cause of 

MKS/JSRD (TCTN1 47, TCTN2 104 and TCTN3 147). 

The most common molecular causes of MKS were already identified and 

MKS7-12 were found to be a rare cause of this phenotype (<1%). To improve 

mutation identification in new genes that cause the MKS phenotype, a network of 

collaborators was established. Private mutations in single cases for putative 

functional candidate genes are difficult to prove to be truly pathogenic without 

extensive functional work. Therefore, the sequence analyses collected by the 

University of Leeds and elsewhere were combined with those collected by 

collaborators to improve the chances of independent replication. No pathogenic 

biallelic variants were identified in CEP164 236, TTC21B 182, TMEM107, PROM1, 

CENPF 295, TCTN3 (although a mutation in sample 330 in this gene was later 

identified) 147, PDE6D 149 or CSPP1 108,150,151. Mutations in these genes were either 

already reported to cause a ciliopathy phenotype or have manuscripts in 

preparation, and these represent the true functional candidates, and therefore were 

screened in the University of Leeds cohort. 
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WES to identify new causes of MKS/JSRD did not reveal mutations in any 

strong functional candidate genes. Samples sequenced on an Illumina MiSeq 

showed too low read depth to make any conclusions, and these samples will have 

to be re-sequenced on an Illumina HiSeq2500. The apparent absence of putative 

pathogenic variants could be explained by errors made during data analysis, but 

this is unlikely as the same analysis protocol was applied to other samples and it 

allowed successful pathogenic variant identification. A second explanation could be 

that the phenotype was caused by a microdeletion or insertion that was not mapped 

during sequence alignment by the Novalign program. It is therefore advisable to re-

analyze the original .bam file for CNVs in the known MKS/JSRD genes using, for 

example, the Integrative Genomics Viewer (IGV, Broad Institute). If this proved 

negative, then low read-depth WGS could be done for these samples in order to 

identify potential copy number variants (CNVs) or other genomic variants that 

include the non-coding regions of the known MKS/JSRD genes. CNVs at the 

resolution of arrayCGH (40kb) could also be analysed in order to identify potential 

larger deletions/insertions.  

The list of MKS/JSRD candidate genes found in the University of Leeds 

patients was passed to collaborators to look into their WES data, but no additional 

potential pathogenic variants were identified. The remaining MKS/JSRD families 

with no causative mutations found to date should be exome sequenced to identify 

mutations in new candidate genes. Although this task has proved to be more 

difficult than expected, the molecular causes of the phenotype should be identified 

in these families. The new “SureSelectQXT” reagent (Agilent Technologies) allows 

the use of as little as 50ng of genomic DNA (2µl of 25ng/µl), enabling the 

investigation of samples that have had too little DNA to be included in previous 

studies. Also current kits for WGS, for CNV investigations, require only 200ng of 

DNA or less (TruSeq Nano DNA Sample Prep Kit, Illumina). 

Many of the known ciliopathy proteins from vertebrates or other species such 

as C. elegans have now ascribed roles in cilium biogenesis and signalling at the 

ciliary TZ 47,49,152,249. To gain further insights into the molecular aetiology of 

ciliopathies, the identification of mutations in a novel and previously 

uncharacterized gene, TMEM237, was performed. Although mutations in TMEM237 

only account for <1% cases of our JSRD/MKS cohort, the high carrier frequency of 

the c.52C>T mutation in a Canadian Hutterite population (approximately 1:15) 

means that carrier testing, cascade testing in families, and prenatal diagnosis would 

be of high clinical utility in this population 144. Families with JSRD will also benefit 

from improved diagnosis and accurate genetic counselling. 
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The function of the TZ-localized TMEM237 protein was then characterised. 

Loss of human TMEM237 results in a failure of ciliogenesis and de-regulation of 

both canonical and non-canonical/PCP Wnt signalling pathways. These findings are 

strikingly similar to previous studies of both TMEM216 and TMEM67 99,205, two 

additional transmembrane proteins associated with JSRD and MKS. These 

membrane proteins have been suggested to be non-canonical Wnt receptors that 

regulate the RhoA pathway and thus mediate the cytoskeleton rearrangements 

required for basal body docking at the apical region of the cells prior to ciliogenesis 
99. Importantly, in a complementary zebrafish model system, disruption of 

TMEM237 was demonstrated to cause developmental (convergent extension) 

phenotypes comparable to those obtained upon abrogation of TZ-localized proteins, 

including TMEM216 and TMEM67 144. Hence, the similarities between TMEM237, 

TMEM216 and TMEM67 in cellular localization, protein structure, role in cilium 

formation/function, and clinical phenotypes indicate that TMEM237 likely functions 

in the same pathway to regulate ciliogenesis and signalling. 

 One of the central questions that remain about the molecular aetiology and 

underlying phenotypic variability of the JBTS-MKS-NPHP ciliopathy spectrum is 

whether the ciliary defects arise from disruption in one or more macromolecular 

assemblies, or modules, comparable to that of the ‘BBSome’ 50, an oligomeric 

protein complex containing proteins associated with BBS. Support for this model 

comes from the study of C. elegans which has suggested the existence of two 

genetically-defined modules: one, being an “MKS” module (consisting of MKS-1, 

MKSR-1/B9D1, MKSR-2/B9D2, MKS-3, and MKS-6), and the other, an “NPHP” 

module, consisting of NPHP-2 and NPHP-4 249. Specifically, disruption of any 

combination of genes within either module abrogates a “ciliary gate” function but 

does not significantly impair the structure of most cilia. In contrast, disrupting any 

combination of two genes, one from each module, causes TZ structure anomalies 

which are concomitant with loss of basal body/TZ anchoring to the membrane and 

ciliary axoneme structure defects. Additionally, disruption of individual mammalian 

TZ proteins (such as MKS1 and TMEM67) in patients or mouse models is on the 

whole phenotypically less severe than that observed for disruption of IFT, which 

causes global defects in ciliogenesis. This suggests a functional redundancy in 

mammals and could be exposed by analysis of mouse double knockouts. 

Previous studies 47,152,249,296 support the concept of human ciliopathies being 

caused by sorting defects at the TZ, and the ciliary gate playing a crucial role in cilia 

assembly and selective regulation of cilia protein content. What remains 

unexplained is the function of ciliary modules in mediating cilia trafficking, how 

these could regulate the signalling cascades that are mediated by cilia, and the 
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connection with other complexes such as the inversin module and the BBSome. It 

seems likely that the elucidation of these mechanistic details will begin to explain 

the phenotypic variability and pleiotropy of human ciliopathies. These could arise 

from either the diverse requirements of the protein composition of the TZ in different 

tissues, or the influence of modifier alleles in interacting components of individual 

functional modules. Another study by Li et al. 296 highlighted the complex, dynamic 

nature of the TZ and a possible role of this region of the cilium in G1/S checkpoint 

control. Linking the cilium, cell cycle control and extracellular cues of signalling 

pathways will be a further field of intensive future work, and will no doubt bring 

further surprises in understanding of the complex ultrastructure of the primary 

cilium. 

With the ever-increasing power and affordability of genetic sequencing 

technologies, there is now the clear opportunity for the further rapid and robust 

identification of mutations in patients referred for a defined condition. As a 

prerequisite, there remains a pressing clinical need for the dissemination of 

mutations identified on a research basis, and the establishment of databases that 

provide detailed clinical phenotypes and allelic series for specific genes, as 

described in section 3.1.4 and presented in Table 3-5. Those databases should use 

a standardised terminology, for both variant calling and phenotype description, as 

uniform databases can be easily searched (http://dgv.tcag.ca/dgv/app/home, 

http://www.ncbi.nlm.nih.gov/dbvar/, http://www.lovd.nl/3.0/home, 

http://evs.gs.washington.edu/EVS/, https://decipher.sanger.ac.uk/, 

http://exac.broadinstitute.org/). 

Increased power of variant filtering was shown when family trios were whole 

exome sequenced 297-300. Parental samples allow the exclusion of about 78% of 

biallelic variants and filtering based on variants observed in unaffected sibling will 

exclude 57% of changes. However parental and siblings variants together will 

eliminate about 83% of biallelic variants, highlighting the power of this strategy 

(numbers obtained from Dr David Parry, University of Leeds, personal 

communication). 

Large number of the obtained possible causative variants emphasizes the 

difficulties in assessing the pathogenic potential of variants of unknown significance 

(VOUS) in both basic research and clinical diagnosis of not only the ciliopathies but, 

more generally, for autosomal recessive and more so for autosomal dominant 

conditions 301. This is a key challenge that needs to be addressed to prevent false 

positive results from hindering the translation of research findings into clinical 

diagnostic testing and to enable the further biological understanding of disease 

mechanisms. For JSRD and MKS, the major causative genes are now known and 
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there are good insights into the function for some of the encoded proteins. In 

interpreting VOUS in the ciliopathies, researchers and clinical scientists can now 

take full advantage of public data-sets of genomic variation, functional genomic 

data and model-organism phenotypes. However, it remains important that variants 

identified from the many targeted screening and WES experiments for JSRD and 

MKS are reported as public data-sets with a standard nomenclature that follows 

published guidelines. Leiden Open Variation Database (LOVD) v3.0 would be a 

good database to use since it provides both gene- and patient-specific data 

storage, including datasets from WES and WGS 302. 

 

4.3 Whole genome siRNA screen 

The other approach to identify new causes of the MKS/JSRD phenotype was 

to apply an unbiased ‘reverse genetics’ whole genome siRNA screen. Loss of 

primary cilia was a known cellular phenotype, observed consistently in ciliopathy 

patient cells, and was assessed in ciliated mIMCD3 cells. All annotated mouse 

genes were knocked down and cilia number per cell was assessed. This 

methodology involved the screening of over nineteen thousands mouse genes in 

duplicate and, by necessity, had to be limited to answer a simple biological 

question: are cilia present or not? Although mRNA turnover varies between different 

genes, the high-throughput methodology used a single siRNA concentration and 

incubation time. This could lead to false negative results, as more rapid mRNA 

transcription would preferentially deplete the siRNAs and return the cell to a normal 

transcript level. For these targets shorter incubation times and/or increase in siRNA 

concentration would minimize the potential for false negative results. This could be 

tested by qRT-PCRs, but the necessity to do this in high throughput for all targeted 

transcripts precludes this approach on grounds of time, cost and available 

resources. The screen methodology also only used three out of a possible four 

fluorescence channels on grounds of data storage space constrains. About five 

hundred 96-well plates were scanned, excluding those that failed and were used for 

optimisation purposes. For each well, six fields of view were imaged with three 

fluorescence channels. Each plate contained about 5Gb of image data, and the 

whole screen was therefore  about 3TB of data storage. If storage constraints were 

not an issue, the fourth channel could have been used to assay an additional 

marker of ciliary dysfunction such as Smoothened or active β-catenin. 

The screen led to the identification of unexpected connections between cilia 

biology and other cellular or molecular processes, demonstrating the power of an 
unbiased screen. GPCRs have not been ascribed a role in ciliogenesis by previous 
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screens and biochemical approaches, due to the technical constraints of studying 

transmembrane proteins. Neuroactive GPCRs, such as those identified in the 

screen, may play sensory or signalling roles in the ciliary vesicle or procilium at the 

earliest stages of ciliogenesis both in the developing brain and in other tissues 303. 

In support of this hypothesis, adenylyl cyclase III co-localises with GPCRs at 

proximal ciliary regions in the developing neocortex, and over-expression of specific 

ciliary GPCRs including the 5-HT6 serotonin receptor in cortical neurons causes 

cilia elongation 304. 

Although the role of the PRPFs in the spliceosome is well-known and well-

studied, a group of seven splicing factors including PRPF6, PRPF8, PRPF31 and 

PRPF38a were identified to be required for ciliogenesis. PRPFs mutated in retinitis 

pigmentosa localise specifically to the base of primary cilia and the photoreceptor 

connecting cilium (Figure 3-60). Some of the splicing factors could therefore fulfil 

an additional ciliary function independent of their nuclear role in splicing. In support 

of this notion, two previous studies of the centrosomal proteome have suggested 

that splicing factors, including two of the splicing factors identified in our screen 

(PRPF6 and PRPF8), may be true centrosomal proteins 305,306. However, it seems 

less speculative to hypothesize that these proteins may be required for the correct 

splicing of an unidentified subset of genes that are involved in cilia formation. In 

support of the possible involvement of pre-mRNA processing factors in ciliogenesis, 

previous screens have identified that several splicing factor hits are important in 

related cellular processes of microtubule formation and regulation, namely 

centriolar biogenesis (PRPF8, PRPF38A) 282 and cell division (PRPF6, PRPF8) 307. 

In relation to this, several hits in the screen have a known function in the 

ubiquitin proteasome system (UPS), reflecting the importance of specific 

proteostasis mechanisms in mediating or regulating ciliogenesis which could be 

mediated through, for example, ubiquitylation or SUMOylation of ciliary transcription 

factors or chaperoning of ciliary proteins to the base of the cilium. It is known that 

proteasome function is necessary for cilia maintenance. Appropriate protein levels 

are necessary to maintain cell homeostasis and undisrupted ciliogenesis, therefore 

a discrete balance between ciliary protein ubiquitination 308-310 and de-ubiquitination 
311 has to be maintained. Remarkably, 5/7 of the splicing factor hits (LSM2, PRPF6, 

PRPF8, PRPF31 and USP39) are implicated in the ubiquitin-dependent regulation 

of the spliceosome 312. It is interesting to note that the interaction of PRPF8 with 

ubiquitinated PRPF3 is regulated by the deubiquitinating enzyme USP4, and that 

loss of USP4 prevents the correct splicing of mRNAs including those for α-tubulin 
312. Thus, UPS and/or PRPF proteins could act as multifunctional “nexus molecules” 



  169 

that are involved in multiple aspects of proteostasis of ciliary proteins, or, more 

specifically, ensure the correct splicing of transcripts encoding proteins important 

for ciliogenesis including structural components of the cilium such as α-tubulin 
312,313.  

The specificity and clinical utility of the screen suggests that it is a useful 

tool for disease-gene discovery. When combined with large variant datasets, for 

example WES of ciliopathy patients, the functional data from the siRNA screen 

allowed the filtering and prioritization of variants to identify pathogenic mutations. 

Although previous studies have identified both PIBF1 and C21orf2 as plausible 

functional candidate genes for ciliopathies 286,314,315, this screen demonstrated the 

utility and validity of a systems biology approach by the identification of mutations in 

these genes in JSRD and Jeune syndrome patients, respectively. Recently, another 

gene from the list of highest confidence hits (CEP120) was shown to be mutated as 

a cause of Jeune asphyxiating thoracic dystrophy 278. 

 

4.4 Future plans 

In future investigations the other datasets obtained from the whole genome 

siRNA screen could be further explored. So far only hits with cilia loss and no effect 

on cell number were analysed (with exception to splicosome and UPS hits). This 

allowed a focus on those hits that were relevant to ciliogenesis. It has been 

reported that loss of cilia proteins can also affect cell number, as these two 

processes are tightly correlated 316,317. Hits with cilia z score < cell number z score 

by -2 were shown to be highly enriched in known ciliopathy and cilia-related genes 

including CEP164, CEP290, GLIS2, MKKS, PKHD1, TTC21B, TULP3 and others. 

Therefore this subset of genes could be particularly enriched in good ciliopathy 

candidate genes and could be used as a filter in WES variant prioritisation. 

Furthermore, these hits would be excellent candidates for investigating ciliary 

function and dissection of ciliary biological process.  

A further interesting subset included hits that increased cilia number. This 

included ROCK2, POC5, GATA4, AKAP5 and AKAP8. DAVID analysis showed that 

this subset is enriched in microtubule and cytoskeleton components, suggesting 

their function in determining correct cilia number. The underlying mechanisms could 

involve correct microtubule organisation and dynamics as well as actin cytoskeleton 

remodelling for correct centriole division and apical cell surface transport. Actin 

stress fibres were observed in ciliopathy patients fibroblasts 99,205 and may be 
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formed by ROCK2, a direct target of the small GTPase Rho, that in turn is a 

downstream target of non-canonical Wnt signalling. No multiciliated cells were 

observed in patients fibroblasts, although this phenotype has been observed in 

TMEM67-mutated patient kidney cells 318. POC5, on the other hand, was reported 

to have a crucial role in centriole maturation 319, but no links of this protein loss and 

multiciliation have been reported previously. The understanding of centriole 

biogenesis, actin cytoskeleton remodelling and microtubule dynamics would be 

therefore an interesting subject of the future study. 

The whole genome siRNA screen did not assess the efficiency of knockdown 

since this was impossible to measure it for each gene. Protein levels were only 

assayed in the subsequent validation steps. This protein level represented a 

population of cells but not each cell individually, although the cilia 

presence/absence was investigated per each cell in a field of view on 96-well plate. 

The kinetics of the reagents was also not known per each target and the amount of 

siRNA duplexes and incubation times were generalised over the whole mouse 

genome. These problems suggest that future screens should use new genomic 

editing methodologies. The CRISPR-Cas9 (Clustered Regularly Interspaced 

Palindromic Repeats) system could introduce in-del mutations on a genomic level, 

allowing the loss of the mRNA due to NMD. The CRISPR-Cas9 system was 

originally identified in bacteria as a defence mechanism against foreign pathogens 
320. It is an RNA-guided nuclease system for the targeted introduction of double-

stranded breaks in DNA 321,322. This system requires two components: a guide RNA 

that binds specifically to the target sequence and Cas9, an endonuclease that 

introduces double stranded breaks. Specificity of this method is determined by 

guide RNA, which consists of twenty nucleotides and binds to the DNA immediately 

upstream of a Protospacer Adjacent Motif (PAM). The PAM is a three-nucleotide 

sequence (NGG, when N is any base pair) specific to Streptococcus pyogenes 

Cas9 (the one used most commonly for this method) that is present in human 

genome at high frequency of, on average, once every twelve nucleotides 322.  

CRISPR-Cas9 technology relies on two mechanisms for double stranded 

break repair: non-homologous end joining (NHEJ) and homology-directed repair 

(HDR). In the former, due to mistakes made by the polymerase, a small number of 

nucleotides may be inserted or deleted causing a frame-shift and a premature stop 

codon. It is therefore advised to design targets at the beginning of the coding 

sequence to maximize the possibility of NMD. HDR, on the other hand, requires a 

repair template that is co-transfected into cells. This template contains two arms of 

about fifty nucleotides with a high degree of homology directly upstream and 

downstream of the predicted double-strand break. The repair template also 
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contains a specific mutation that will be inserted into the genome. This method 

allows the introduction of a specific mutation into a cellular or animal model system, 

enabling the further investigation of the mutated protein in a biologically relevant 

system at physiological levels of expression. However, both methods of repair 

require careful optimization and selection of cells transfected with components of 

the CRISPR-Cas9 system. Current methods are facilitated by either selecting cells 

transfected with a guide RNA construct containing either an antibiotic resistance 

gene or GFP allowing cell sorting using FACS. Monoclonal cells containing the 

genomic change are then grown, and the function of the protein or phenotype of 

interest can be further investigated. This methodology would allow the better 

understanding of protein function using a reverse genetic modification system that 

is not dependent on the protein level, unlike siRNA knockdown which is transient 

and variable in efficiency. Furthermore, this system also enables the modelling of 

specific patient mutations that could elucidate the pathological mechanisms of a 

specific disease.  

This method could be used in screens, for example for chemical components 

rescuing cilia loss to facilitate the need for future possible ciliopathy theurapeutics. 

In order to achieve this the cell line would be treated with CRISPR-Cas9 targeting 

for example, CEP290 transcript (CEP290 is mutated in a large spectrum of 

ciliopathies). Cells would be selected for those with succeful transfection and 

introduction of frameshift mutation. Few monoclonal cell colonies would be grown 

and genetic and phenotypic state would be characterised. Cells with the most 

robust phenotype would be chosen for the screen and treated with available 

chemical library sceen for cilia rescue. Similarly, the same model system could be 

used for a screen of genetic interactants by transient knockdown of potential TZ 

components. It is known that CEP290 localises to the basal body/TZ region 323 and 

the list of predicted TZ components was obtained from collaborator Maritjn Huijnen 

(Radboud University Nijmegen Medical Centre). Furthermore, screens could be 

designed for the effects on the downstream effectors of ciligenesis defects like 

nuclear localisation of β-catenin or ciliary localisation of Smothened. 

Research into disease mechanisms should be conducted in the best available 

model system. Often the only accessible patient cells are dermal fibroblasts, which 

although a useful model system, are not derived from a tissue that is affected in 

most ciliopathy phenotypes. One solution to this potential problem would be to 

reprogram fibroblasts into inducible pluripotent stem cells (iPSCs), and then 

differentiate them into the desired cell types 324-327. Although this method is time 

consuming, taking several months to obtain cultures or organoids of the required 
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cell type, it could be used in combination with genomic editing to create the most 

relevant model system for physiological processes investigation 327.   

The further search for human mutations using WES and WGS should also be 

a priority, since a description of the genetic causes of MKS/JSRD is still incomplete. 

The identification of new disease genes and pathways may enable the future 

rational in design of therapeutics to modify or treat cystic kidney disease, retinal 

degeneration 328 or ciliopathy disease progression, or improve the long-term outlook 

of patients with these conditions. Since JSRD and MKS are predominantly 

autosomal recessive, they are caused by the absence of normal protein (rather than 

the presence of an abnormal protein) so they can, in principle, be corrected by 

gene-replacement. In the first demonstration of this strategy in a ciliopathy mouse 

model, McIntyre et al. used the well-established Ift88Tg737Rpw mouse mutant with 

many typical phenotypic features including anosmia 329. Remarkably, the 

adenoviral-mediated expression of IFT88 (a protein essential for IFT in cilia) in fully-

differentiated olfactory sensory neurons of mutant mice was sufficient to restore 

both ciliary structures and rescue olfactory function 329. Patients in whom mutations 

are found can therefore be given a clearer prognosis and prioritised for these new 

treatments, making inherited disease a top priority for further characterization.  

The further convergence of genetic data is envisaged with other independent 

lines of evidence that assess the pathogenic potential of a variant. These will 

include comparative genomic approaches and bioinformatic datasets, although the 

experimental validation of the damaging impact of a candidate variant still provides 

the most definitive proof 330-332. Future studies should use assays of patient-derived 

cells or tissues, as well as well-established cell or animal models of gene function 
333,334. Not only will these lead to improvements in the diagnosis and clinical 

management of ciliopathy patients, but they will also provide pre-clinical models to 

test future therapeutic interventions 335.  

In the future, targeted therapies such as antisense oligonucleotide (AON) 

therapy 336 and stop-codon read-through therapy 337 may be beneficial for patients 

with suitable splice-site or nonsense mutations. AON therapy was applied to correct 

a hypomorphic 126bp exon insertion in CEP290 caused by the deep intronic 

mutation (c.2991+1655A>G) in LCA patients. This insertion caused the introduction 

of a nonsense codon and loss of transcript. AON targeting this insertion prevented 

its introduction into the transcript and enabled the production of an in-frame mRNA 

and protein 338. This makes the JSRD and MKS group of ciliopathies a top priority 

for further genetic and functional characterization in order to prioritize patients for 

these potential treatments. 
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In conclusion, this thesis highlight the important clinical utility of combining 

different systems biology approaches, namely high content functional genomic 

screening and WES. The major findings of the chosen approach are the 

identification of new ciliary roles for well-studied proteins, identified new disease-

causing genes for diagnostic benefit, allowed the refinement of patient phenotypes 

as an aid to prognosis and individualized clinical care, and has highlighted new 

potential disease pathways that should provide deeper insights into cilia biology.
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2. Primer sequences of the screened genes: 

Name Sequence Product 
size (bp) 

 Name Sequence Product 
size (bp) 

CEP164_ex4F ttttcccctgttaagcttgg 238  CSPP1_ex9R caaccccttatttaaccatgtca 400 
CEP164_ex4R aaaaataaaccagacaatccctg 238  CSPP1_ex10F aaggctgtaatgtcagttaaagg 278 
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aa 
CEP164_ex5F tcattgatggagagaaaagacaaa 299  CSPP1_ex10R ctctatccccacctgccac 278 
CEP164_ex5R gaaaagctggccagttcaaa 299  CSPP1_ex11F tcttaagtgcctgctgggat 398 
CEP164_ex6F ccttttccaccccactctct 400  CSPP1_ex11R gaataacgtcatccgcttca 398 
CEP164_ex6R gcagacacctagaggttccc 400  CSPP1_ex12F tttggtgaatgattggagca 375 
CEP164_ex7F aatttgagcgtgcaggattt 383  CSPP1_ex12R agcaaagttgtgcttttctca 375 
CEP164_ex7R cgaactctgaggactccacc 383  CSPP1_ex13F atgcacctttttctggagga 244 
CEP164_ex8F ctgggagacattgacatagagagt 399  CSPP1_ex13R ggatggtggcttttaggttatg 244 
CEP164_ex8R ggtgcacacattgtgaaggt 399  CSPP1_ex14F gtcaaagcaaaggcaggaag 385 
CEP164_ex9F cacttttccctctgcacacc 244  CSPP1_ex14R ctctgagctctaagggacca 385 
CEP164_ex9R gcattacaacaaagtagcaggg 244  CSPP1_ex15F gccacgacacctgacctaaa 464 

CEP164_ex10_pa
rt_1F gtgggagtcagggaatagca 495  CSPP1_ex15R catgcgttgctatagaggct 464 

CEP164_ex10_pa
rt_1R gtgacttacttggctggcgt 495  CSPP1_ex16F gggcaccaacatatcattgaa 400 

CEP164_ex10_pa
rt_2F aggcagaccctacaggcag 248  CSPP1_ex16R gccaaattctcaagatccca 400 

CEP164_ex10_pa
rt_2R aagatgtggggataggaccc 248  CSPP1_ex17F ttagcaaactgttcattctttaactg 478 

CEP164_ex11F aattccctgggtagggacc 242  CSPP1_ex17R caccctagcctgggtagaca 478 
CEP164_ex11R ctgcgtgatgctaggcaaat 242  CSPP1_ex18F aggaacatgcaaaaagaggg 371 
CEP164_ex12F gtagtgaagaggcctggtgg 236  CSPP1_ex18R tgtactccaacactgttctcctt 371 
CEP164_ex12R agggctcagttctgggtca 236  CSPP1_ex19F aaggcagcacatttttgaat 329 
CEP164_ex13F agcaggaggatggaggga 241  CSPP1_ex19R caggaacaaaagcacctcct 329 
CEP164_ex13R ggccaccaaagccaagaat 241  CSPP1_ex20F aactataaggggtgtgtgtgtgt 259 
CEP164_ex14F tccacacactgtactcccca 343  CSPP1_ex20R gaaaatttcattcgatcccc 259 
CEP164_ex14R acccccatctctctcagcac 343  CSPP1_ex21F tgtggagtttggtttccttt 293 
CEP164_ex15F cccaaatggcgtacatctta 299  CSPP1_ex21R acacagcacctaaccgctct 293 
CEP164_ex15R ccacccaagagtgaataggc 299  CSPP1_ex22F gtcaggttgtgttttaatgtttagtc 289 
CEP164_ex16F ttccatctgtgatgttccgt 373  CSPP1_ex22R tgaattagtcctgttcccaaac 289 
CEP164_ex16R agagggtgtccctggctc 373  CSPP1_ex23F tacaagtgtgagccacagca 385 

CEP164_ex17F attggaggctgagagccata 298  CSPP1_ex23R ttccactttagaaaaagggtaca
aa 385 

CEP164_ex17R cacagtggaatggtaacggg 298  CSPP1_ex24F ttttgtggctattttactgtcct 398 
CEP164_ex18F tgtgcttacctgtgagctgc 387  CSPP1_ex24R atgcctgggaatgaaatcaa 398 

CEP164_ex18R ttgcccttcttctccttgtg 387  CSPP1_ex25F tttccagtagagagctagtcaaa
aa 285 

CEP164_ex19F ggtcggtagtcttcctggct 243  CSPP1_ex25R tccactttactgataagacttacgt
tc 285 

CEP164_ex19R gagaggctcgctgcctagta 243  CSPP1_ex26F aacagtgtggaaacttgtgcc 232 
CEP164_ex20F cagaacacatccccacacag 278  CSPP1_ex26R cagtactggtttttaagtgtggag 232 
CEP164_ex20R ccggctcagctgactgtaa 278  CSPP1_ex27F ggctcttggtttagctctgg 250 
CEP164_ex21F accttcaggtgcagcagg 294  CSPP1_ex27R agcacaggtcagaaccca 250 
CEP164_ex21R catgtgcgtgcatgtgtg 294  CSPP1_ex28F ggccctgattcactgatttg 296 
CEP164_ex22F ggggagctgtgatttttgtg 285  CSPP1_ex28R cctcagacgttagtgaaagcc 296 
CEP164_ex22R gtctgctcccagcaccttc 285  CSPP1_ex29F tggactacaagagacctgcg 378 
CEP164_ex23-

24F agcccagagtggaggttgt 463  CSPP1_ex29R aggggccaaaagtaggacat 378 

CEP164_ex23-
24R tgaacaaaatgtggggaaca 463  TCTN1_ex1_par

t_1F agcttcacacccgctcacta 494 

CEP164_ex25F ctttggcttccctaccctct 338  TCTN1_ex1_par
t_1R actgtggactccaggagctg 494 

CEP164_ex25R tgacacaagcagcagaggtc 338  TCTN1_ex1_par
t_2F caacgcgctgtccatgtc 342 

CEP164_ex26F tggttctgacccacttcacc 288  TCTN1_ex1_par
t_2R attattacgtcctcaccggg 342 

CEP164_ex26R tggaagtactcccctgatgc 288  TCTN1_ex2F accttcggaactttcccgt 232 
CEP164_ex27F gctttggggtcttgaacct 235  TCTN1_ex2R tggacgtttatggaacactcag 232 
CEP164_ex27R ccgtctcctcacttcagctc 235  TCTN1_ex3F tgtgcttgtcctcacactttattt 250 
CEP164_ex28F tctggtctgtgctcagggtt 400  TCTN1_ex3R cttgaggccaggagttca 250 
CEP164_ex28R ccaaaggactgttttgctga 400  TCTN1_ex4F atggtacactgtggtggcag 293 
CEP164_ex29F aatggcagggttgggact 247  TCTN1_ex4R gggtttttaagcctgggaaa 293 
CEP164_ex29R actcaacccaatcccaagaa 247  TCTN1_ex5F acagtacaagcatctgacagtttt 299 
CEP164_ex30F agtgtcccagccacttccta 360  TCTN1_ex5R aatctgacacatttttccataactt 299 
CEP164_ex30R agcacctagtccagacaccg 360  TCTN1_ex6F gcccagccaagacactattt 378 
CEP164_ex31F agctgtgtctgggaatggtc 500  TCTN1_ex6R aggaacccagttttcctggt 378 

CEP164_ex31R caggagaaagagggtagaagaa
aa 500  TCTN1_ex7F gtgggtgcccagtaagtgtt 298 

CEP164_ex32F aggcaagaggtgctggtg 234  TCTN1_ex7R caaatgtaaagtattaagttggtg
caa 298 

CEP164_ex32R gaggtctgctcccctcaga 234  TCTN1_ex8F tggagggggatttactcatt 300 
CEP164_ex33F gatgtgatggcctctgtgc 299  TCTN1_ex8R tggcaactaaaaagttttaatcta 300 
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gg 
CEP164_ex33R aaagggtcaaaggctgaaca 299  TCTN1_ex9F tgccattggaaaattgaaaa 294 
CEP164_ex34F cctttgaccctttcatggc 250  TCTN1_ex9R aaactcgagtgtcaatcatgtact 294 
CEP164_ex34R agatggaagaaggcaggcag 250  TCTN1_ex10F caactcgagatctgaaaaagca 213 
CCDC63_ex2F caggggtggcttacaagttc 220  TCTN1_ex10R gcaacaaggtccccttctaa 213 
CCDC63_ex2R cgtgtaaagtggatggcaca 220  TCTN1_ex11F ggaggtttctttccagttggt 300 
CCDC63_ex3F cccactgcccttcactctta 331  TCTN1_ex11R gagggcgtccagttaccc 300 
CCDC63_ex3R agacaagcaacatgaagccc 331  TCTN1_ex12F gatttgctatctatgggtgttttc 298 

CCDC63_ex4F gaaattcctctctcccggtc 376  TCTN1_ex12R gaaattcagttttatccactgaga
a 298 

CCDC63_ex4R ggcctaaggcatcacgaata 376  TCTN1_ex13F aagaatttttcttcctgccatt 230 
CCDC63_ex5F tgctatctgagcacacttcagtt 291  TCTN1_ex13R gataaagagcagtgcagccc 230 

CCDC63_ex5R gctgggcagacatcattttt 291  TCTN1_ex14F caagtgacactgtcttcttacctg
a 295 

CCDC63_ex6F gcaaagacctgacagccttc 349  TCTN1_ex14R ttgattaaaatggggaaaagtga 295 
CCDC63_ex6R tggcccagagtaggaagcta 349  TCTN1_ex15F gagctatgatggtgccactg 389 
CCDC63_ex7F cattctctaggcaggaaggc 375  TCTN1_ex15R ggctgccttcatcacacc 389 
CCDC63_ex7R acaaggagacttgggcacct 375  TCTN1_ex16F ttttggggcattgagttacttt 399 
CCDC63_ex8F tcacgttactgtctgcctgg 370  TCTN1_ex16R acctgtcacctaccacacttg 399 
CCDC63_ex8R ctaggagactgccctggaaa 370  TCTN1_ex17F tgaaaagtgtctcattgttgtca 298 
CCDC63_ex9F aggcgcacacttatttttgg 236  TCTN1_ex17R tcccctagggacttctagcc 298 
CCDC63_ex9R cggacagacagacagaagctc 236  TCTN1_ex18F ggggaaactgagacgaagcta 273 
CCDC63_ex10F gtttgaaaacccgcagtttg 370  TCTN1_ex18R ctcccaccccacactgtatc 273 
CCDC63_ex10R gcaaggccttatgctcagtc 370  TCTN2_ex1F ctgctgcgttttcgtgtct 239 
CCDC63_ex11F atcccgcacctcctgtactt 395  TCTN2_ex1R agtccaagtctggccctttt 239 
CCDC63_ex11R ggacacggtctccccaga 395  TCTN2_ex2F agtcgacaacgccaaagc 282 
CCDC63_ex12F aaaccaggcttagcccca 295  TCTN2_ex2R aaggatgccacctctccag 282 
CCDC63_ex12R atgtgtgtgacaggcacgag 295  TCTN2_ex3F gcagtctgactcaatgcacc 218 
CORO1C_ex1F tcagatgactggagagcgg 399  TCTN2_ex3R gagagcactgcagaaaccct 218 
CORO1C_ex1R cacatgctcagaggacaggt 399  TCTN2_ex4F ataaaatgaacggaggctga 383 
CORO1C_ex2F cagggaacgagtgggtgg 476  TCTN2_ex4R gctcaagcaatcctcctacc 383 
CORO1C_ex2R agagctcggtttctgcattc 476  TCTN2_ex5F ctggccgataattcagcttt 269 
CORO1C_ex3F tccttttgcttttcaccacc 383  TCTN2_ex5R agctgttggtggaactgctg 269 
CORO1C_ex3R tgggctgttgctaattcctt 383  TCTN2_ex6F agtgtcctgctggccttaaa 397 
CORO1C_ex4F gcagacaaaatgccatacca 391  TCTN2_ex6R ggttgggaaaaacgtgacc 397 

CORO1C_ex4R tgaactgtcaatctattaaggaaaa
a 391  TCTN2_ex7F agtgaacaaagatcacgcca 368 

CORO1C_ex5F aatgagaaatgggcctgaga 277  TCTN2_ex7R tgcacttgagcctaggaggt 368 
CORO1C_ex5R acccacacacatgcttttga 277  TCTN2_ex8F ggctgcagaaagaccagttt 398 
CORO1C_ex6F gcaaatctttatagtggatggtca 297  TCTN2_ex8R tgcaatatgctgtcttacgga 398 
CORO1C_ex6R caaaacacatttgcttcccc 297  TCTN2_ex9F cggtcaccatatttgctttg 295 

CORO1C_ex7F cagccgcatcttttctctct 398  TCTN2_ex9R gcagatctttctaactattgtgaac
c 295 

CORO1C_ex7R tgccttaaaaagcagaaagctc 398  TCTN2_ex10F acgcaagcagagagaacctc 387 
CORO1C_ex8F gaatggcagttggtgaggtt 288  TCTN2_ex10R ccttaaaattgcattttgtcatac 387 

CORO1C_ex8R cactggaagacctgctcaga 288  TCTN2_ex11F tgtatgacaaaatgcaattttaag
g 247 

CORO1C_ex9F aaaatggctcgcttaattgg 296  TCTN2_ex11R catcctgatggctgggag 247 
CORO1C_ex9R cattgcccgtcctctaaatc 296  TCTN2_ex12F ttgtattatttgcagagttagggc 241 
CORO1C_ex10F tcccaactactgctgggttt 358  TCTN2_ex12R ttgattgcttgattagattcaaaa 241 
CORO1C_ex10R tcttgctcagaatggtcagat 358  TCTN2_ex13F tgtttttcacggaaaactgaa 376 
CORO1C_ex11F ggggatgggtaaagaagcac 248  TCTN2_ex13R ttttccctcatattgatgtttgaa 376 
CORO1C_ex11R ggcctgggatttttgaattt 248  TCTN2_ex14F cggacattcactggaaatga 250 
CORO1C_ex12F gactgttcccaggaaggtga 495  TCTN2_ex14R atgctgcgactacagttgg 250 
CORO1C_ex12R tttactgaaaacccctgagca 495  TCTN2_ex15F tcattaatgtgatgcctgcc 340 
CORO1C_ex13F gcttgccgtttgcaaaata 300  TCTN2_ex15R ttccctattgtttgggatgc 340 

CORO1C_ex13R cacaccaataaccagctccc 300  TCTN2_ex16-
17F gattgcatccgttacctgct 564 

DYNLL1_ex3F gggtgggggcagttagtg 280  TCTN2_ex16-
17R tccaagtggcaatattatccg 564 

DYNLL1_ex3R cttaggaaagcaggatcggg 280  TCTN2_ex18F gtctcgaactggcctcaagt 388 
DYNLL1_ex4F acaggctctggcttatccaa 290  TCTN2_ex18R agttctccggaggctgag 388 
DYNLL1_ex4R tctggtatttggaatttaggctg 290  TCTN3_ex1F aaccccactttcgattggtt 499 
ERP29_ex1F tcacgtgaccgctgactc 294  TCTN3_ex1R gctttgtggcagctcaactt 499 
ERP29_ex1R aatccagcgtctccccac 294  TCTN3_ex2F ggaagaaggagggtgagca 293 
ERP29_ex2F cccttgggaaggggaatta 281  TCTN3_ex2R ggtgggaggcacaaagacta 293 
ERP29_ex2R ctgttccaagtagggaaacga 281  TCTN3_ex3F tcctctttggcatcatctgg 291 

ERP29_ex3_part_
1F ccctcagttcagctaggtcc 467  TCTN3_ex3R aatgtgggccagggaaga 291 

ERP29_ex3_part_
1R tgtcatctctgatgctggga 467  TCTN3_ex4F acacttaagatttgcaccctgt 392 

ERP29_ex3_part_ atcagggcctctggtgtg 389  TCTN3_ex4R aagggcatgattacgtggac 392 
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2F 
ERP29_ex3_part_

2R accacttttcccactacccc 389  TCTN3_ex5-6F gtccacgtaatcatgccctt 496 

RAB35_ex1F tgtttgttcgggaagtggat 390  TCTN3_ex5-6R ccacaacccacaacagtgag 496 
RAB35_ex1R gaacaggcgcgatgactg 390  TCTN3_ex7F cgccaaaccaaagcctatt 211 

RAB35_ex2F tctcccggaagaagggct 248  TCTN3_ex7R caacttagactaaaattgcctca
ga 211 

RAB35_ex2R tggcaaccagaatgagacag 248  TCTN3_ex8F ggtcaaggggaaggaaaaat 293 
RAB35_ex3F tgtgttgtgtgcagcgtg 300  TCTN3_ex8R gcaaacaaaattcagttgggt 293 
RAB35_ex3R gacccaccagtgacatttcc 300  TCTN3_ex9F cacccttgaagacagaaaatct 344 

RAB35_ex4-5F ctcaccttttccgggtca 572  TCTN3_ex9R gaggcctcaatcgacagact 344 
RAB35_ex4-5R aggcactcaataaatggcag 572  TCTN3_ex10F gtacggtgaagccaagcagt 283 
RAB35_ex6F acaggtagaaagagctgggc 331  TCTN3_ex10R aaaaattcctcacctttggc 283 
RAB35_ex6R aacggcacgaaactgagact 331  TCTN3_ex11F aacataaattttgcaatgctgc 279 

TMEM116_ex1F gctcccatctgtctagggtg 457  TCTN3_ex11R ttcctgactagcattttccg 279 
TMEM116_ex1R agcctggccaaaaagctc 457  TCTN3_ex12F gctaagagttttctggcaattgtt 399 
TMEM116_ex2F tgttttgagattaggctttgaaga 244  TCTN3_ex12R atggagacaaggctggtttt 399 
TMEM116_ex2R aagggggaaatgtggaaaac 244  TCTN3_ex13F tggcttagtacttggtgattga 388 
TMEM116_ex3F agcctggctgacatagcaa 393  TCTN3_ex13R tcagtaatcaggcagggtga 388 

TMEM116_ex3R aagggagccctactgaccat 393  TCTN3_ex14F cagggaaagtaataataacag
ccaa 410 

TMEM116_ex4F aggccccagaaaaatgatgt 342  TCTN3_ex14R tcatgagcaggtgaggttct 410 
TMEM116_ex4R gtctccacttcccaaggtga 342  TMEM107_ex1F cttgcggggagacttcag 250 
TMEM116_ex5F gcatggtgtcttagttcaggc 218  TMEM107_ex1R agggtaagacactgggaggg 250 

TMEM116_ex5R gagggcttgctctctgtctc 218  TMEM107_ex2-
3F ccctcccagtgtcttaccct 482 

TMEM116_ex6F gcctcccaagttcaagtgag 374  TMEM107_ex2-
3R tttgaactggaaggattggc 482 

TMEM116_ex6R ggtttgggtttttcattgga 374  TMEM107_ex4F caccactggccttttctgac 243 
TMEM116_ex7F atggttttgcctggtatgga 375  TMEM107_ex4R ctgggtaggggaaaaacctt 243 
TMEM116_ex7R gaattcctgggcataagcaa 375  TMEM107_ex5F agaggtggggtctctggttt 227 
TMEM116_ex8F aagcaaactggcttttggaa 241  TMEM107_ex5R cctatgccttccttcttcca 227 

TMEM116_ex8R cctatttgttcccacctgaa 241  EXOC3L4_ex1_
part_1F acagggccacaacaggttt 462 

TMEM116_ex9F tttgtggagattggtgggat 280  EXOC3L4_ex1_
part_1R tcgggtttcagttcctcaga 462 

TMEM116_ex9R tggaaagtctttttccagctc 280  EXOC3L4_ex1_
part_2F gacccaggtctccaaggaa 297 

TMEM116_ex10F gtctgtgggggagagacaag 381  EXOC3L4_ex1_
part_2R gagctagggaggacagcctt 297 

TMEM116_ex10R cacaagaagtgcctctctgc 381  EXOC3L4_ex2_
part_1F agacaatccagccccgat 567 

TMEM116_ex11F tgataggaggatagacctggg 298  EXOC3L4_ex2_
part_1R aaccaagccacccagctc 567 

TMEM116_ex11R ccttcttagtgagaccactttgc 298  EXOC3L4_ex2_
part_2F gacagcgacggtgtggac 486 

TMEM116_ex12F ctcagacgtgtgtggaggaa 233  EXOC3L4_ex2_
part_2R gcagctgtcctcgccact 486 

TMEM116_ex12R tcatccttaccgagtaaaggtagt 233  EXOC3L4_ex2_
part_3F aggtctatctgcgtgccttc 217 

TMEM116_ex13F gggagtgagaattattccctgg 352  EXOC3L4_ex2_
part_3R agaagaaaggtccggtgctc 217 

TMEM116_ex13R tcctttcccaacattctttcc 352  EXOC3L4_ex3F gcgttagactttgagcctgg 392 
TMEM119_ex1F cccaccccaaaccctctta 292  EXOC3L4_ex3R gtggtgagaccctcccaga 392 
TMEM119_ex1R caacagtccccagtccctaa 292  EXOC3L4_ex4F cttgtgacccgacagggc 291 
TMEM119_ex2_p

art_1F ggctggtgagcctgtttct 397  EXOC3L4_ex4R gaattcgttctggaaatcgc 291 

TMEM119_ex2_p
art_1R gagcccaccacagcaatc 397  EXOC3L4_ex5-

6F gaggggccaagactgaca 573 

TMEM119_ex2_p
art_2F acgttcctggaggatgtgg 572  EXOC3L4_ex5-

6R cacacactcctcacctctgc 573 

TMEM119_ex2_p
art_2R ccatgtccctggacttcct 572  EXOC3L4_ex7F ctgtgtgcccggctctat 279 

TMEM119_ex2_p
art_3F ccccaagaagaagtacgtgg 558  EXOC3L4_ex7R aatgaatgctgtgacctggg 279 

TMEM119_ex2_p
art_3R gagggagtgtcaggaagcag 558  EXOC3L4_ex8F gagggaaggggtcaggagt 287 

TMEM233_ex1F cttttcagagcctcgccac 375  EXOC3L4_ex8R agggtcagggtcagggtc 287 
TMEM233_ex1R aggaagggagccgcagag 375  EXOC3L4_ex9F ctcatggacaaggtggtgac 376 
TMEM233_ex2F ccttttcatcaggacagcct 294  EXOC3L4_ex9R cgctaaggccctagtcactg 376 

TMEM233_ex2R accctaacagattccaacgg 294  EXOC3L4_ex10
F ctgacctcgcactgacctc 286 

TMEM233_ex3F ataaggaaggcatcgagctg 225  EXOC3L4_ex10 ggggttgctccaataccag 286 
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TMEM233_ex3R acctgcctctggagagtcct 225  EXOC3L4_ex11
F catcctggaatgcagagtga 394 

VPS29_ex1F tacggcaatttctgtctccc 218  EXOC3L4_ex11
R cagagtgactccctgggct 394 

VPS29_ex1R atttcccaattcctcgcc 218  TXNDC15_ex1F ctgccaggtgttaagatggc 372 
VPS29_ex2F cgtacccgtttaactttgcc 250  TXNDC15_ex1R ggagagaagtcggggagac 372 

VPS29_ex2R cactctccccagaaaaatgtgt 250  TXNDC15_ex2_
part_1F gggaactgtaattctttgggg 490 

VPS29_ex3F tgctcatttggtatgggttt 248  TXNDC15_ex2_
part_1R tttggggatttcagactttca 490 

VPS29_ex3R tcggttacttcctttcaacaga 248  TXNDC15_ex2_
part_2F gtcacctgtggtgctggag 398 

VPS29_ex4F atttctgggattcgggatct 397  TXNDC15_ex2_
part_2R ttttcactgaagcagccatt 398 

VPS29_ex4R ccagttgagaaaccctggtc 397  TXNDC15_ex3F ctacccacccgttcctctc 397 
VPS29_ex5F gggcaacatagcaacactctg 491  TXNDC15_ex3R cttccatcccaggacacagt 397 
VPS29_ex5R gcccagccacatttctttta 491  TXNDC15_ex4F aatctccgtaggtcacacgc 318 
VPS29_ex6F cagatttctctgaatccaaatagtca 380  TXNDC15_ex4R gaacccacagaaggcaca 318 
VPS29_ex6R tttacaggaagcttggagca 380  TXNDC15_ex5F aggactgcatgtcattttgc 396 
CSPP1_ex1F cacagcaggagaacgagttg 491  TXNDC15_ex5R ttcaagtcaacacgtcactgg 396 
CSPP1_ex1R ccagagcctgtaactctggc 491  DLL1_ex1F cttttctgcccacgctcc 294 
CSPP1_ex2F tgtggactaagcctacatgttgat 283  DLL1_ex1R cccccgggattcatcttc 294 
CSPP1_ex2R tctcactcatagaagaggatgttttg 283  DLL1_ex2F ctgagcccttccaggctct 564 
CSPP1_ex3F tggctaattcctcaaaccttaca 320  DLL1_ex2R ctgctgggctggagtcct 564 
CSPP1_ex3R tgacaagacaaacctctttcag 320  DLL1_ex3F gaatgactgctttttgccgt 239 
CSPP1_ex4F gtgctttgttacaggaagtagaact 295  DLL1_ex3R cacgtgcagaatgaaagctg 239 
CSPP1_ex4R tttgctagtaccactgaaaacct 295  DLL1_ex4F cttcccgtgctgaatgtctc 466 
CSPP1_ex5F cccatgcctttcagtgacat 399  DLL1_ex4R ttccccaccagaacatctct 466 
CSPP1_ex5R tttggtttaatttggcttaattttg 399  DLL1_ex5F gagttgtgtcctggcccc 243 

CSPP1_ex6_part_
1F ttgcatggctgtatcagctt 673  DLL1_ex5R ttcgaatgatcacctagggc 243 

CSPP1_ex6_part_
1R tctcgaaagtcttctatcaaaatca 673  DLL1_ex6-7F tctagggtgagaatgtccactg 589 

CSPP1_ex6_part_
2F gaagaagtgggcatttccaa 389  DLL1_ex6-7R agcccacacactccattca 589 

CSPP1_ex6_part_
2R cccctcagtgggacataaaa 389  DLL1_ex8F ccctggtgttgaatggagtg 381 

CSPP1_ex7F gccaacatcaaatgtaaaaaca 257  DLL1_ex8R cgaggtcactcacaaatgctt 381 

CSPP1_ex7R ttagccagttttaggcacattc 257  DLL1_ex9_part_
1F ggactcattcaggccacaga 592 

CSPP1_ex8F cattttactctgaaattttgcttcc 441  DLL1_ex9_part_
1R ggacgcagaccaccacag 592 

CSPP1_ex8R cacctacggaaagcacatca 441  DLL1_ex9_part_
2F actgccagttcctgctcc 598 

CSPP1_ex9F ggcatgggcatgattactg 400  DLL1_ex9_part_
2R tgcatgagaacatttgggaa 598 

    DLL1_ex10-11F gaaccactgctccgtttctc 394 
    DLL1_ex10-11R cctcctcttcagcagcattc 394 

 

 

3. Homozygous regions in patient 227. 
Coordinates rsIDs Size (Mb) 

chr1:51557175-52906454 RS11577254;RS269319 1.35 
chr1:60297645-74832901 RS17561081;RS696694 14.54 
chr1:75397053-82088328 RS1405308;RS709707 6.69 
chr1:83474316-89665975 RS12403322;RS4495683 6.19 

chr1:92744416-107291289 RS4970705;RS6699202 14.55 
chr1:197584242-200239744 RS491369;RS10800806 2.66 

chr2:43053652-51252624 RS7576359;RS17577972 8.20 
chr2:52113108-58019972 RS4535080;RS2717031 5.91 
chr2:60087448-70396890 RS12622148;RS1382457 10.31 
chr2:71123543-74323642 RS10202354;RS828902 3.20 
chr2:74850052-76229219 RS6740991;RS10204325 1.38 
chr2:76821152-79860775 RS4853267;RS4852519 3.04 

chr2:163111549-164190114 RS11884875;RS11902715 1.08 
chr2:203291499-204401981 RS7571219;RS1968351 1.11 

chr3:50346436-52114950 RS2236947;RS13071976 1.77 
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chr3:97790745-98834034 RS7631577;RS301932 1.04 
chr3:139005299-141942918 RS2024369;RS9811699 2.94 
chr3:142545854-145812915 RS6765238;RS965343 3.27 
chr3:148824362-151887660 RS6796711;RS2116682 3.06 
chr3:188201492-192234575 RS11711828;RS6782827 4.03 
chr3:193156389-195951280 RS2133607;RS9881429 2.79 

chr4:82179489-86572891 RS4389567;RS340203 4.39 
chr4:98459674-107142009 RS11737720;RS17036483 8.68 
chr5:11481523-13990476 RS31897;RS17278234 2.51 
chr5:23764265-25447737 RS6875698;RS16894372 1.68 
chr5:26547908-35493048 RS10069706;RS284728 8.95 
chr5:36239831-41581643 RS10941278;RS6895481 5.34 
chr5:42929682-52039426 RS33814;RS351932 9.11 
chr5:53603843-65690100 RS10077344;RS17199162 12.09 

chr5:137465939-138513764 RS449965;RS11242450 1.05 
chr6:48627226-49789805 RS1361864;RS11759134 1.16 

chr7:4350952-6594767 RS4723657;RS3088114 2.24 
chr7:8965712-11479011 RS16874906;RS7811562 2.51 

chr7:32207484-48162114 RS6462341;RS7458899 15.95 
chr7:68370453-69685519 RS1718768;RS719114 1.32 

chr7:110158999-111166818 RS12155444;RS2074115 1.01 
chr7:118112850-119649537 RS13226251;RS2190183 1.54 
chr7:139401288-142726613 RS7810536;RS10216140 3.33 
chr7:144659900-146794202 RS6972400;RS11772135 2.13 
chr7:147896977-148899655 RS7777242;RS4727092 1.00 
chr7:149943582-151190466 RS1916028;RS12703164 1.25 

chr8:47966439-49201285 RS7018026;RS7014689 1.23 
chr8:99560087-101183757 RS7008395;RS2045677 1.62 

chr9:4401273-9015146 RS10974520;RS324490 4.61 
chr9:25554892-29266724 RS2498716;RS6476127 3.71 
chr9:30052517-37638490 RS1857663;RS4490927 7.59 
chr9:38396178-70357832 RS10973789;RS11795256 31.96 
chr9:72663416-82235931 RS17555916;RS1833050 9.57 

chr10:33965720-37724570 RS2076951;RS2505682 3.76 
chr10:44732650-49492963 RS7923091;RS3844493 4.76 
chr10:50164791-56074211 RS4838379;RS7905280 5.91 

chr10:134403775-135534747 RS2148666;RS10745303 1.13 
chr12:105809739-110614582 RS805505;RS659964 4.80 
chr12:111833253-115441807 RS3741981;RS2657300 3.61 
chr12:116297543-123303371 RS12305372;RS7305702 7.01 

chr14:90861514-97475452 RS10147454;RS9635183 6.61 
chr14:99096470-101876044 RS2400744;RS2896439 2.78 
chr16:31800420-45213017 RS11645176;RS1865837 13.41 
chr16:70010107-71459375 RS12444714;RS4788668 1.45 
chr18:60402783-61778096 RS9959555;RS7234383 1.38 
chr19:19274092-20312172 RS17751061;RS12609651 1.04 
chr20:25198577-28084878 RS8184820;RS2379798 2.89 

 

4. Homozygous regions in patient 230. 
Coordinates rsIDs Size (Mb) 

chr1:1-3904110 RS10458597;RS11583257 3.90 
chr1:12487152-13668036 RS10864554;RS3013090 1.18 
chr1:35151521-36340823 RS4652869;RS7553155 1.19 
chr1:72481630-73793151 RS1026566;RS9661557 1.31 
chr1:92261111-93322845 RS1927999;RS580828 1.06 

chr1:102516897-104176993 RS10874571;RS11185202 1.66 
chr1:153063896-154267970 RS16836414;RS7513082 1.20 
chr1:212714251-213905713 RS17790562;RS11120594 1.19 

chr2:26995019-28157217 RS9309559;RS2337699 1.16 
chr2:187236880-188345166 RS3816386;RS1356873 1.11 
chr2:193711027-194955833 RS12619354;RS1597691 1.24 

chr3:48319771-49853117 RS4336143;RS2271961 1.53 
chr3:130227425-152667552 RS395020;RS6790903 22.44 

chr4:1-7599724 RS2859203;RS11723455 7.60 
chr4:32986285-34044964 RS3098933;RS6846999 1.06 

chr4:132715547-133754504 RS350993;RS12510292 1.04 
chr4:151691113-152808889 RS12647325;RS6816002 1.12 

chr5:35122726-38527160 RS43215;RS3756419 3.40 
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chr5:44740897-50098368 RS2218081;RS10512906 5.36 
chr5:109566164-110570753 RS7380840;RS252858 1.00 
chr5:129601565-131364004 RS971891;RS17132288 1.76 
chr5:167697178-173144733 RS17731499;RS791362 5.45 
chr5:174400961-180915260 RS2036563;RS1298854 6.51 

chr6:58477173-64035369 RS2185929;RS6924050 5.56 
chr6:83352795-84391944 RS6915395;RS217345 1.04 
chr6:87612757-88633520 RS1321317;RS4311490 1.02 

chr7:160848-15691629 RS11970804;RS10486772 15.53 
chr7:78516290-92925480 RS4437570;RS6970701 14.41 
chr7:98281694-99407330 RS7801382;RS4215 1.13 

chr7:108526577-109681019 RS1513913;RS4141364 1.15 
chr7:118305715-120502390 RS1554904;RS10953925 2.20 

chr8:1-1801549 RS7462951;RS11136437 1.80 
chr8:50140977-51534019 RS341815;RS1383819 1.39 
chr9:43493496-70375735 RS11261805;RS9644996 26.88 
chr9:71632360-83498768 RS10511972;RS2796441 11.87 

chr9:90504265-101822934 RS1573235;RS3739795 11.32 
chr9:103258996-116826994 RS2183745;RS7035322 13.57 
chr9:136242947-141213431 RS7027150;RS4295734 4.97 

chr10:149404-10442547 RS4880750;RS10905715 10.29 
chr10:29439845-68245644 RS7901884;RS7085996 38.81 
chr10:73640843-76886733 RS7073342;RS11001397 3.25 
chr10:79941492-97970638 RS12218276;RS17111461 18.03 

chr10:130223939-134766111 RS3858296;RS7918862 4.54 
chr11:64593946-65837787 RS566908;RS10791867 1.24 
chr11:72761528-73809544 RS7130689;RS3867273 1.05 
chr11:84053389-85256952 RS1940065;RS11234454 1.20 
chr12:33716344-37733974 RS7954221;RS1562727 4.02 
chr12:59171931-60232119 RS17123871;RS7979611 1.06 
chr12:88242227-89249513 RS11105260;RS825962 1.01 

chr12:94908476-133851895 RS17676826;RS10747098 38.94 
chr13:55705346-57113143 RS9569446;RS9527675 1.41 
chr13:82970570-84730686 RS9575317;RS7329244 1.76 
chr14:21266050-38127860 RS1018345;RS11624377 16.86 
chr14:58873880-60922603 RS7143698;RS12100914 2.05 
chr14:62352482-63724184 RS11848904;RS1255984 1.37 

chr14:95013301-100542369 RS8020368;RS3809403 5.53 
chr15:40113551-66639394 RS7163310;RS2120859 26.53 

chr15:91953918-102531392 RS17658377;RS8029360 10.58 
chr16:35063218-46743874 RS2200012;RS11861127 11.68 
chr16:65787923-66941540 RS3730406;RS11075672 1.15 
chr16:68287927-69300526 RS1437134;RS3813909 1.01 
chr17:25002820-26626536 RS3098949;RS11870910 1.62 
chr17:55393675-56715030 RS1024637;RS9915205 1.32 
chr18:14983209-18031438 RS2872415;RS10454095 3.05 
chr21:46389340-48129895 RS9978174;RS15047 1.74 
chr22:39453741-41178298 RS6002083;RS5758727 1.72 

 

5. Homozygous regions in patient 261. 
Coordinates rsIDs Size (Mb) 

chr1:27394091-28477260 RS7542139;RS7532379 1.08 
chr1:35151521-36614436 RS4652869;RS3007220 1.46 
chr1:49133207-50560129 RS12043418;RS7339939 1.43 

chr1:148504248-149507166 RS2298161;RS11204791 1.00 
chr2:189590310-205981949 RS10175784;RS849268 16.39 
chr2:227240708-230006547 RS10184436;RS12694813 2.77 

chr3:97568370-98847354 RS1877807;RS301947 1.28 
chr3:103526734-104572931 RS7616427;RS7653853 1.05 

chr4:8135460-13547648 RS6447849;RS493284 5.41 
chr4:33257915-34401003 RS10025535;RS16990221 1.14 
chr4:81368193-82558540 RS6824301;RS6823416 1.19 
chr5:21942850-23191837 RS6452029;RS310912 1.25 
chr5:44939787-49859810 RS9791164;RS7708902 4.92 

chr6:110283483-111541603 RS12529570;RS9384787 1.26 
chr6:145505951-146708451 RS617778;RS362836 1.20 

chr7:12652719-20723067 RS6972755;RS6972085 8.07 
chr7:68351859-69474084 RS7787868;RS12698901 1.12 



  211 

chr7:98062972-99298043 RS817771;RS472660 1.24 
chr7:118134126-120087274 RS1912492;RS17595350 1.95 
chr7:132055624-138046665 RS17166719;RS12707395 5.99 
chr7:151190466-153776526 RS12703164;RS2337377 2.59 

chr8:89088414-90442285 RS1961470;RS6984875 1.35 
chr10:73783339-76029081 RS9415068;RS7088329 2.25 
chr11:46767492-56050851 RS11038993;RS658845 9.28 

chr11:103340453-105029591 RS881364;RS10502059 1.69 
chr12:78047312-79189125 RS12316236;RS2400697 1.14 
chr12:85144563-86171734 RS12311272;RS7316333 1.03 

chr12:106999780-118407800 RS10746115;RS518202 11.41 
chr13:76438356-77560694 RS9530615;RS2775133 1.12 
chr13:94926029-96096938 RS17268449;RS523268 1.17 

chr14:1-20565973 RS12895974;RS768531 20.57 
chr15:19131850-20575519 RS12594669;RS17137361 1.44 
chr15:25753962-27216309 RS8035334;RS7167473 1.46 
chr15:40884944-42262695 RS10467975;RS12908646 1.38 
chr15:58994347-67170519 RS4378570;RS4777108 8.18 

chr17:2266925-4688780 RS12452567;RS12450045 2.42 
chr17:29006254-30020866 RS280046;RS2190980 1.01 
chr18:35218493-36256659 RS16971892;RS9304221 1.04 

chr19:1-2971691 RS8100066;RS7249809 2.97 
chr19:20424240-21578647 RS10424235;RS2102920 1.15 

chr20:5726406-9700408 RS6085278;RS6056855 3.97 
chr20:42480762-51238361 RS11086925;RS757365 8.76 
chr22:29591756-30994241 RS5749182;RS10439908 1.40 
chr22:39380817-40540931 RS133055;RS139568 1.16 

 

6. Cilia recognition protocol: 
1. Input image 

a. Nuclei – DAPI 
b. Cilia – Alexa Fluor 488 
c. Cell –DRAQ5 (actually TOTO3) 

2. Find nuclei 
a. Channel: DAPI 
b. Method: C 

i. Common threshold: 0.40 
ii. Area: >30µm2 
iii. Split factor: 7.0 
iv. Individual threshold: 0.40 
v. Contrast: >0.10 

c. Output population: All nuclei 
3. Find cytoplasm 

a. Channel: DRAQ5 
b. Nuclei: all nuclei 
c. Method: D 

i. Individual threshold: 0.15 
d. Output population: Cell, Cytoplasm, Membrane 

4. Select population (1) 
a. Population: all nuclei 
b. Method: common filters 

i. Remove border objects 
c. Output population: Whole cells 

5. Find spots  
a. Channel: Alexa Fluor 488 
b. Population: whole cells 
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c. Region: cell 
d. Method: C 

i. Radius: <3.8px 
ii. Contrast >0.1 
iii. Spot to region intensity: >1.3 
iv. Distance: >5.6px 
v. Spot peak radius: 0 

e. Output population: Cilia 
6. Calculate intensity properties (2) 

a. Channel: Alexa 488 
b. Population: Whole cells 
c. Region: Cilia 
d. Method: Standard 

i. Mean 
e. Output population: Intensity of cilia 

7. Select population (2) 
a. Population: Whole cells 
b. Method: Filter by property 

i. Number of spots on cell = 1 
c. Output population: One cilium on cell 

8. Select population (3) 
a. Population: Whole cells 
b. Method: Filter by property 

i. Number of spots on cell ≥ 2 
c. Output population: Two or more cilia on cell 

List of outputs: 

Whole cells  

  -number of objects 

 

  

 -mean intensity of cilia 

Cilia  

  

 -number of objects 

Cells with single cilium  

 -number of objects 

Cells with two or more cilia -number of objects 

 

Formula output: 

(a/b)*100 



  213 

a – one cilium on cell, number of objects (sum) 

b – whole cells, number of objects (sum) 

ouput: % cells with single cilium 

(a/b)*100 

a – two or more cilia on cell, number of objects (sum) 

b – whole cells, number of objects (sum) 

ouput: % cells with two or more cilia 

 

7. siRNA screen sequence-specific off-target effect gene list: 
GENE 

ID Ensembl Gene Name  GENE ID Ensembl Gene Name 

11306 Abcb7,Relt,Abcb7  67983 Pdzd9,Pdzd9,Uqcrc2 
11519 Add2,Add2,Dlg5  68070 Pdzd2,Mfhas1,Pdzd2 
11542 Adora3,Gm12824,Adora3  68198 Ndufb2,Ndufb2,Dennd5b 
11593 Aga,Aga,Myo3a  68291 Mto1,Mto1,Gm17324 
11639 Ak4,Ak4,Foxred1  68318 Aph1c,Aph1b 
11656 Alas2,Alas2,Apex2  68401 G6pc3,G6pc3,Ttn 
11758 Prdx6,Prdx6,Dsc3  68431 Fbxl15,Cuedc2,Fbxl15 
11777 Ap3s1,Ap3s1-ps2,Ap3s1  68553 Col6a4,Col6a4,Dclre1c 
11792 Apex1,Tmem55b  68563 Dpm3,Dpm3,Itsn2 
11798 Xiap,Xiap,Bcl7a  68591 Mocos,Brox,Mocos 
11801 Cd5l,Cd5l,Dach2  68842 Gm2792,Tulp4,Tulp4 
11806 Apoa1,Apoa1,Mtmr1  68968 Cdan1,Stard9,Cdan1 
11819 Nr2f2,Nr2f2,Papss2  69101 Ydjc,Ydjc,Ccdc116 
11829 Aqp4,Aqp4,Olfr911-ps1  69482 Gm4353,Nup35 
11840 Arf1,Arf1,Slc24a4  69536 Hemk1,Atp2b2,Hemk1 
11854 Rhod,Rhod,Grlf1  69663 Ddx51,Ddx51,Mapre3 
11863 Arnt,Phrf1,Arnt  69802 Tom1l1,Cox11,Cox11 
11886 Asah1,Asah1,Pcdh19  69976 Galk2,Galk2,Insr 
11951 Atp5g1,Atp5g1,Dst  70047 Trnt1,Trnt1,Zxdb 

11975 Atp6v0a1,Prtg,Atp6v0a1  70101 Cyp4f16,Gm9705,Cyp4f16,Cyp4f16,Gm97
05 

11991 Hnrnpd,Hnrnpd,Cblb  70103 Znhit1,Znhit1,Plod3 
12000 Avpr2,Arhgap4  70118 Srrd,Srrd,Tfip11,Tfip11,Srrd 
12007 Azgp1,Azgp1,Mcoln3  70208 Dgki,Med23,Med23 
12116 Bhmt,Bhmt-ps1  70225 Ppil3,Ppil3,Sgcg 
12124 Bik,Bik,Qrsl1  70568 Cpne3,Cpne3,Klri2,Klri1 
12177 Bnip3l,Fbxl20,Bnip3l  70611 Fbxo33,Fbxo33,Gm16496 
12192 Zfp36l1,Zfp36l1,Ptprs  70620 Gm10088,Ube2v2 
12228 Btg3,Gm7334  70645 Nusap1,Oip5,Oip5 
12263 C2,Gm20547,C2  70673 Prdm16,Prdm16,Mecom 
12288 Cacna1c,Cacna1c,Gpr114  70997 Spef1,Spef1,Csnka2ip 
12292 Cacna1s,Cacna1s,Megf9  71149 4933413G19Rik,Gnaq,4933413G19Rik 
12385 Ctnna1,Ctnna1,Hook3  71336 Rbks,Rbks,Plekhg1 

12390 Cav2,Fgfr4,Cav2  71351 5430402E10Rik,Gm14744,5430402E10Ri
k,Gm14744,Igsf10,Med12l 

12399 Runx3,Rab27b,Runx3  71382 Pex1,Pex1,Grid1 
12417 Gm6984,Gm10068,Cbx3,Cbx3,Gm6984  71562 Afmid,RP23-268N22.1,Afmid 
12457 Ccrn4l,Ccrn4l,Tbl3  71679 Gm10250,Atp5h,Gm4953,Gm10250,Atp5h 
12497 Entpd6,Fam5b,Entpd6  71702 Cdc5l,Gm9049,Cdc5l,Cdc5l,Gm9049,Lhx8 
12505 Cd44,Cd44,Icam5  71710 Lrrcc1,Lrrcc1,Gnb4 
12517 Cd72,Cd72,Mki67  71816 Rnf180,Rnf180,Ctnna1 
12560 Cdh3,Cdh3,C030017K20Rik  71876 Mlf1ip,Ccdc111,Mlf1ip 
12593 Cdyl,Cdyl,Vps8  71883 Coq2,Gm6728 
12617 Cenpc1,Gtdc1,Cenpc1  71898 Apol9b,Apol9b,Apol9a 
12627 Cfc1,Prss40,Cfc1  71946 Endod1,Endod1,Fech 
12628 Cfh,Cfh,Cfhr2  72053 Tmub2,Atxn7l3 
12684 Cideb,2610027L16Rik,Cideb  72085 Osgepl1,Osgepl1,Tmprss9 
12715 A930016O22Rik,Ckm,Ckm  72129 Pex13,Zc3h15,Pex13 
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12722 Clca2,Clca1,Clca1  72199 Mms19,Il1rap,Mms19 
12737 Cldn1,Usp34,Cldn1  72303 Cyp2c65,Cyp2c66,Cyp2c65 
12824 Col2a1,Col2a1,Dis3  72401 Slc43a1,Nrxn3,Slc43a1 
12914 Crebbp,Crebbp,Bptf  72585 Lypd1,Lypd1,Gpr39 
12995 Csnk2a1,Csnk2a1,Il7  72749 Tonsl,Tonsl,Fnbp1 
13011 Cst7,Cst7,Plcb4  73122 Tgfbrap1,Tgfbrap1,Pik3c3 

13034 Ctse,Homer1,Ctse  73250 Ceacam5,Gm5155,Ceacam5,Ceacam5,G
m5155 

13048 Cux2,Cux2,Slc35f4  73347 1700042B14Rik,Gm16390,Gm4937,17000
42B14Rik,Gm16390 

13078 Cyp1b1,Col4a3,Cyp1b1  73381 Cmtm1,Cmtm2a,Cmtm2a 
13089 Cyp2b13,Cyp2b13,Dct  73382 Prss52,Prss52,Chl1 

13096 Cyp2c54,Cyp2c37,Cyp2c37,Cyp2c50,Cyp2c3
7 

 73523 Pebp4,Pebp4,Cdkn2d,Gm4694 

13098 Cyp2c39,Cyp2c39,Cyp2c38  73542 Tssk5,Tssk5,Nup210 
13114 Cyp3a16,Prl8a2,Cyp3a16  73626 Gm2663,1810009J06Rik 

13117 Cyp4a31,Cyp4a10,Cyp4a32,Cyp4a10,Cyp4a
32,Cyp4a32,Cyp4a31,Cyp4a10 

 74019 Traf3ip1,Traf3ip1,Egfr 

13396 Dlx6,Dlx6,Atg9a  74154 Unkl,Gm5819,Unkl 
13433 Dnmt1,Ildr2,Dnmt1  74281 Spatc1,B4galnt3,Spatc1 

13445 Cdk2ap1,Gm12184,Cdk2ap1,Trim7,Gm1218
4 

 74563 Cebpz,Rasgef1c,Rasgef1c 

13510 Dsg1b,Dsg1a,Dsg1a,Dsg1a,Dsg1b,Dsg1b,Ds
g1a,Dsg1c 

 74585 Sppl3,Gm10401,Sppl3 

13525 Adam26a,Adam26b  74708 4930521A18Rik,E230019M04Rik,4930521
A18Rik 

13531 Dub1,Dub1,Thrb  74763 RP23-312H15.9,Nat15,Nat15 
13537 Dusp2,Dusp1,Dusp2  75051 4930578N16Rik,4930578N16Rik,Pla2g16 

13610 S1pr3,S1pr3,Hist1h1c 

 

75199 

Rhox2g,Rhox2e,Rhox2d,Gm20464,Rhox2
c,Rhox2b,Rhox2a,Rhox2h,Rhox2g,Rhox2
d,Rhox2a,Rhox2f,Rhox2e,Gm20464,Rhox
2c,Rhox2b,Rhox2a,Rhox2e,Rhox2d,Rhox

2a 
13709 Elf1,Elf1,Slc30a7  75599 Pcdh1,Pcdh1,Il1rl1 
13713 Elk3,Cdk17,Elk3,Elk3,Tex2,Drp2  75645 1700011F14Rik,1700011F14Rik,Cdan1 

13796 Emx1,Emx1,Gm5878  75677 Cldn22,Cldn24,Cox10,Cldn22,Cldn24,Cldn
22 

13801 Enam,Enam,A930011G23Rik  75692 Nr2c2ap,Rfxank,Nr2c2ap 
13806 Eno1,Gm5506,Eno1  75778 Them4,Zfp191,Them4 
13821 Epb4.1l1,Epb4.1l1,Scml4  75788 Smurf1,Smurf1,Gatad2a 

13999 

Gm14288,Gm14440,Zfp931,Etohi1,Gm14326
,Gm14327,Gm14410,Gm14419,Gm14295,G
m14305,Gm14306,Gm14308,Gm14435,Gm1
4434,Gm14436,Gm2026,Gm14288,Gm4724,
Gm4723,Gm14440,Gm14399,Gm14420,Gm1
4431,Gm8898,Gm14288,Gm4245,Gm4723,G

m14440,Gm14435,Gm14288,Gm14440 

 

75847 Ispd,Ispd,D630036H23Rik 

14009 Etv1,Gm5454  75860 4930588N13Rik,Akap6,4930588N13Rik 
14017 Evi2a,Evi2a,Rapgef6  76089 Rapgef2,Rapgef6,Rapgef2 
14027 Evpl,Evpl,Zxdb  76367 Trp53rk,2810408M09Rik 
14057 Sfxn1,Setmar,Sfxn1  76390 Zfp735,Zfp616,Zfp735 
14168 Fgf13,Akap5,Fgf13  76571 Styxl1,Styxl1,Ptpn13 
14175 Fgf4,Fgf4,Olfr156  76688 Arfrp1,Nmnat2 
14283 Ccdc85b,Fosl1  76770 2010005H15Rik,Gm5483,2010005H15Rik 
14359 Dnajc19,Fxr1,Fxr1  76826 Nubpl,Gm7073,Nubpl 
14381 G6pdx,G6pdx,Ikbkg  76927 1700021C14Rik,Rhbg,1700021C14Rik 
14415 Gad1,Gad1-ps,Gad1  76933 Ifi27l2a,Ifi27l2b,Ifi27l2a,Ifi27l2a,Ifi27l2b 
14462 Gata3,Gata3,Gata2  76964 2610028H24Rik,Ybey,2610028H24Rik 
14464 Gata5,Gm14318,Gata5  77577 Spns3,Spns3,Zbtb8b 
14534 Kat2a,Kat2a,Myct1  77864 Ypel2,Ypel2,Phactr4 
14658 Glrb,Glrb,Pitpnc1  78304 Lsmd1,Ttc7,Lsmd1 
14664 Slc6a9,Ccdc24,Slc6a9  78376 Ng23,Ng23,D17H6S56E-3 
14674 Gna13,Gna13,Foxn2  78655 Eif3j,Gm9781 
14676 Gna15,Gna15,Gna11  78889 Wsb1,Wsb1,Fgf7 
14680 Mppe1,Gnal,Gnal  78891 Scyl1,Scyl1,Accs 
14683 AL593857.1,Gnas  78921 9130019O22Rik,Zfp747,9130019O22Rik 
14686 Ppat,Gnat2,Gnat2  79043 Eme2,Spsb3,Spsb3 
14706 Gng4,Gng4,Bmx  79410 Klra7,Cngb3 
14710 Gngt2,Gngt2,Fam38b  80797 Clca2,Clca2,Clca1 

14719 Gm10874,Got2  83672 Sytl3,Gm2792,Gm4778,Sytl3,Gm2792,Sytl
3 

14728 Lilrb4,Gp49a,Lilrb4,Gp49a,Cdc27  83767 Wasf1,Wasf1,Smarce1 
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14751 Gm1840,Gpi1,Gpi1  83984 Tssk6,Tssk6,Ndufa13 

14858 Gsta2,Gm10639,Trpc3,Gsta2,Gsta2,Gsta2,G
m10639,Gm3776,Gsta1 

 83996 Mmp1b,Mmp12,Mmp1b 

14859 Synpr,Gsta3,Gsta3  84004 Mcam,Gm12886,Mcam 
14863 Gstm2,Gm6665,Gstm2  84092 Usp8,Usp8,Gpr155 
14869 Gstp2,Gstp1  84111 Gpr87,Gpr87,Wdr82 
14870 Gstp2,Gstp1,Gstp1  93694 Clec2d,Clec2g,Clec2d,Rad18,Clec2d 
14963 H2-Bl,H2-Bl,1700013N18Rik  93765 Ube2n,Ube2nl,Ube2n 
14990 H2-M2,Vwde,H2-M2  93841 Uchl4,Uchl4,Uchl3 
14999 H2-DMb1,H2-DMb1,H2-DMb2  93968 Klra10,Klra8,Klra9,Klra9,Klra8,Klra8 
15000 H2-DMb1,H2-DMb2,H2-DMb2  94067 Peo1,Mrpl43,Mrpl43 
15130 Hbb-b1,Hbb-b2  98660 Atp1a2,Atp1a2,Igsf8 
15203 Heph,Heph,Gas2l1  99439 Duox1,Lpp,Duox1 
15216 Hfe,Hfe,Tcl1  100559 Ugt2b38,Ugt2b38,Ugt2b5 
15228 Foxg1,Myo1b,Foxg1,3110039M20Rik,Foxg1  102570 Slc22a13b,Slc22a13,Slc22a13 
15233 Hgd,Hgd,Kcng1  102680 Slc6a20a,Slc6a20a,Slc6a20b 
15251 Hif1a,Tmed10,Hif1a  103142 Rdh9,Rdh9,Rdh16,Rdh1 
15273 Hivep2,Hivep2,Wapal  103324 Gm5506,Eno1 
15398 Hoxa13,Hoxa13,Braf  104111 Adcy3,Cep250,Adcy3 
15416 Hoxb8,Hoxb7,Hoxb8  105663 Thtpa,Ap1g2,Thtpa 
15436 Hoxd4,Hoxd3  105689 Mycbp2,Mycbp2,Usp48 
15478 Hs3st3a1,Hs3st3a1,Hs3st3b1  106795 Tcf19,Zhx3,Tcf19 
15486 Hsd17b2,Etl4,Hsd17b2  106878 2010002N04Rik,2010002N04Rik,Bcl2l1 
15493 Hsd3b2,Hsd3b3,Hsd3b2  106957 Slc39a6,Slc39a6,Heatr6 

15494 Hsd3b3,Hsd3b3,Hsd3b2,Hsd3b6,Hsd3b3,Hs
d3b1 

 107141 Cyp2c50,Cyp2c50,Cyp2c54 

15507 Gm9817,Hspb1,Mon2,Hspb1,Gm9817,Hspb1  107272 Psat1,Psat1,Zfp658 
15525 Hspa4,Hspa4,Arid1b  107328 Fermt3,Trpt1,Trpt1 

15567 Slc6a4,Slc6a4,Gm10410,Gm10339,Gm1025
1,Gm11109,1700110I01Rik 

 107885 Mthfs,Mthfs,Gm2382,Nova1,Mthfs,Gm238
2 

15904 Id4,Olfr727,Olfr726,Olfr725,Id4  107986 Ddb2,Ddb2,Acp2 
15959 Ifit3,I830012O16Rik,I830012O16Rik,Ifit3  108079 Prkaa1,Prkaa2,Prkaa2 
15964 Ifna11,Ifna11,A930038C07Rik  108148 Gm20388,Galnt2 
15976 Ifnar2,RP23-190G10.4,Ifnar2  108989 Tpr,Tpr,Cacna2d1 
16000 Igf1,Igf1,Rnf111  109075 Exosc4,Exosc4,Oplah 
16155 Il10rb,RP23-190G10.4  109113 Uhrf2,Uhrf2,Ktn1 

16157 Il11ra2,Gm2002,Gm13305,Il11ra1,Il11ra1,Il1
1ra2,Gm2002,Gm13305 

 109910 Zfp91,Bcl9,Zfp91 

16158 Il11ra2,Gm2002,Gm13305,Il11ra1  110312 Pmch,4930547N16Rik,Pmch 
16170 Il16,Stard5,Il16  110460 Acat2,Acat3,Acat2 
16178 Il1r2,Il1r2,Dock3  110842 Etfa,Etfa,Chpt1 
16198 Il9,Ccnt1,Il9  112406 Egln2,Fnip2,Egln2 
16202 Taf10,Ilk  113868 Acaa1a,Acaa1b 

16403 Itga6,Itga6,Naa30  114228 Prss1,Gm5771,Prss1,Gm5771,Try5,Prss1,
Prss1,Prss2,Try10,Try5,Try4 

16451 Jak1,Jak1,Ranbp17  114255 Dok4,Dok4,Polr2c 
16453 Nr3c1,Jak3,Jak3  114671 4930444G20Rik,4930444G20Rik,Vegfa 
16551 Kif11,Kif11,Mrps9  114893 Tes3-ps,Dcun1d1 
16571 Kif4,Kif4,Pdzd11  117158 Scgb3a2 
16573 Kif5b,Kif5b,Zfyve26  117160 Ttyh2,Ttyh2,Dach1 
16576 9330171B17Rik,Kif7,Kif7  140571 Plxnb3,Zfp384,Plxnb3 
16612 Klk1,Klk1,Klk1b3,Klk1b5,Klk1b9  140780 Bmp2k,Paqr3,Bmp2k 
16638 Klra7,Klra17,Klra7  140858 Wdr5,Wdr5,Lamb2 
16642 Klrc2,Klrc3,Klrc2  170789 Acot8,Acot8,Snx21 
16679 Krt86,Krt83,Krt86,Dock9,Krt86,Krt81,Krt86  170930 Sumo2,Samd8,Sumo2 
16687 Krt6a,Krt6a,Krt6b  171180 Syt12,Syt12,Kcnq2 
16688 Krt6b,Krt6a,Krt6b  171196 Vmn1r22,Vmn1r22,Galntl2 
16785 Rpsa-ps10,Rpsa  171200 Vmn1r19,Ankrd33b,Vmn1r19 

16834 Cog1,D11Wsu99e,Cog1  171202 Vmn1r16,Vmn1r16,Vmn1r12,Vmn1r16,Tnf
sf10 

16924 Lnx1,Lnx1,Fip1l1  171210 Acot1,Acot2,Acot2 
16997 Ltbp2,D030025P21Rik,Ltbp2  171259 Vmn1r193,Vmn1r193,Atp2b1 
17079 Cd180,Lrrc40,Cd180  192159 Prpf8,Zkscan2,Prpf8 
17105 Lyz2,Lyz1,Lyz2  192176 Flna,Flna,Zfp184 
17110 Lyz1,Lyz2,Lyz1  195349 Btnl7,Btnl7,Btnl4 
17125 Smad1,Smad1,B3galnt2  208117 Aph1b,Aph1c,Aph1b,Aph1b,Aph1c 
17258 Mef2a,Mef2a,Wdr26  208595 Gm9897,Mterf 
17259 Mef2b,2310045N01Rik  208666 Diras1,Diras2,Diras1 
17354 Mllt10,Dnajc1,Mllt10  209186 Acnat1,Acnat2,Acnat2 
17364 Trpm1,AC139849.1  211151 Fntb,Churc1,Churc1 
17389 Mmp16,Ccdc17,Mmp16  213211 Gm9008,Rnf26 
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17523 Mpo,Mpo,Rasgrf2  213311 Fbxl21,Fbxl21,Ift88 
17755 Mtap1b,Mtap1b,Urb2  213409 Lemd1,Lemd1,Itga9 
17874 Myd88,Acaa1a,Myd88  213980 Fbxw10,Trim16,Fbxw10 
17876 Gm9833,Myef2,Myef2  214254 Nudt15,Gm5519,Nudt15,Gm5519,Ets1 
17885 Myh8,Myh4,Myh8,BC125332,Myh8  214766 Mmp21,Ar,Mmp21 
17938 Naca,Ric3,Naca  215095 Astl,Astl,1700028I16Rik 
17951 Naip5,Naip5,Naip6  215384 Fcgbp,9530053A07Rik,Fcgbp 
17952 Naip6,Naip5,Naip6,Naip6,Naip5  215418 Csrnp1,Ipo4,Csrnp1 

17967 Ncam1,Gm11149,Ncam1  215476 C330019G07Rik,RP23-
118L1.1,C330019G07Rik 

17977 Ncoa1,Ncoa1,Dak  215929 AI317395,G630090E17Rik,AI317395 
17999 Nedd4,Nedd4,Bhlhe22  216150 Cdc34,Cdc34-ps,Cdc34 
18032 Nfix,G430095P16Rik,Nfix  216233 Gm9847,Socs2 
18038 Gm16181,Nfkbil1,Nfkbil1  216635 Hbq1a,Hbq1b,Hbq1a,Pygo1,Hbq1a,Hbq1b 
18039 Nefl,Nefm,Nefl  216848 Chd3,Gm17305,Chd3 
18102 Nme1,Gm20390,Nme1  216965 Taok1,Taok1,Abhd15 
18115 Iqcf1,Nnt  217166 Nr1d1,Nr1d1,Thra 
18127 Nos3,Nos3,Aanat  217369 Uts2r,Uts2r,Catsperg1 
18130 Ints6,Ints6,Ptgr2  217734 Pomt2,Pomt2,Scrn3 
18162 Npr3,Npr3,Mkln1  217866 Cdc42bpb,Cdc42bpb,Ociad2 
18241 Gpr143,Fam126b,Gpr143  218268 Eif4e1b,Eif4e1b,Gm5705 
18263 Odc1,Odc1,Lmln  223254 Farp1,Farp1,Galnt9 
18301 Fxyd5,Fxyd5,Fndc3b  223649 Nrbp2,Nrbp2,Psd3 
18312 Olfr15,Olfr15,Sez6l2  223922 Atf7,Atf7,Atf2 
18317 Olfr2,Olfr2,Zranb2  223978 Cpped1,Cpped1,Dyrk1a 
18328 Olfr3,5730522E02Rik,Olfr3  224530 Acat2,Acat3,Acat3 
18359 Olfr59,Olfr406-ps,Olfr59  224624 Rab40c,Rab40c,Ehhadh 
18386 Oprd1,Oprd1,Akap17b,AI314180  224762 Trim31,Trim31,I830134H01Rik 
18477 Prdx1,Gm7204,Prdx1  225152 Gjd4,Gjd4,Bai2 
18521 Pcbp2,Map3k12,Pcbp2  225256 Dsg1b,Dsg1a,Dsg1b 
18567 Tbp,Pdcd2  225579 Slc27a6,Stim2,Slc27a6 
18574 Pde1b,Dera,Pde1b  225872 Npas4,Npas4,Gm5936,Gm5640 
18575 Pde1c,Fndc3b,Pde1c  226356 Gm101,Gm101,Rbms2 
18582 Pde6d,Pde6d,Ccdc38  226418 Yod1,Pfkfb2,Yod1 
18606 Enpp2,Erbb4,Enpp2  226695 Ifi205,Ifi205,Mnda,Mndal 
18648 Gm8910,Pgam1,Pgam1,Gm8910  226791 Lyplal1,9630033F20Rik,Lyplal1 
18701 Pigf,Prkaa2,Pigf  227099 Pms1,Pms1,Pkhd1l1 
18707 Pik3cd,Pik3cd,2410004P03Rik  227648 Sec16a,Flrt1,Sec16a 

18711 Pikfyve,Pikfyve,Gm15140,Gm10057,4921511
M17Rik,Gm15144 

 228536 Bahd1,Bahd1,Lin7a 

18724 Pira2,Gm15448,Gm14548,Pira2,Gm14548,Lil
rb3,Lilra6,Gm15448,Gm14548 

 228576 Mall,Mall,4930415O20Rik 

18781 Pla2g2c,Pla2g2c,Ubxn10  229574 Flg2,Gm11744,Flg2 
18782 Pla2g2d,Pla2g2d,Mepce  229780 Ccdc76,Lrrc39,Ccdc76 
18857 Pmp2,Dcaf17,Pmp2  229782 Slc35a3,Slc35a3,Hiat1 
18950 Pnp2,Pnp,Pnp,Pnp2  230396 Ifna13,Ifna13,Specc1 
18973 Pole,Pole,Bche  231103 Gckr,Gckr,Thoc2 
19046 Ppp1cb,Ppp1cb,Apbb2  231162 Cytl1,Cytl1,Sh2d4b 
19128 Pros1,Golim4,Pros1  231510 Agpat9,Agpat9,Ank2 
19139 Prps1,Prps1,Prps1l3,Prps1l3,Prps1  231580 Gak,Gak,Tax1bp1 
19156 Psap,Psap,Slc1a6  231637 Ssh1,Ssh2,Ssh1 
19188 Psme2,Psme2b-ps  231889 Bud31,Ptcd1,Bud31 
19230 Twf1,Twf1,Irak4  233001 Nlrp9a,Nlrp9a,Nlrp9b 
19250 Ptpn14,Ptpn14,Ankrd55  233210 Ppargc1b,Prr12,Prr12 
19265 Ptprcap,Ptprcap,Nlrx1  233870 Gm9755,Tufm 
19377 Rai1,Dnahc1,Rai1  233879 Asphd1,Rbfox1,Asphd1 
19654 Rbm6,Rbm6,Mfsd2b  234366 Gatad2a,Gatad2a,Dnajb14 
19664 Rbpsuh-rs3,Rbpj  234733 Ddx19b,Ddx19a,Ddx19b 
19668 Rbpjl,Rbpjl,Trim41  234779 Plcg2,Plcg2,C1qa 
19696 Rel,Rel,Gm16503  235344 Sik2,Sik2,Fry 
20022 Polr2j,Polr2j,Gpt2  235623 Scap,5830462I19Rik,Scap 
20185 Ncor1,Ncor1,Smarca5  235674 Acaa1b,Acaa1a,Acaa1b 
20190 Ryr1,Ryr1,Ryr3,Ryr2  236193 Zfp709,Gm17576,Zfp709 
20209 Saa2,Saa2,Saa1  236266 Alms1,Alms1,Zmynd19 
20256 Clec11a,Clec11a,Plcxd3  236539 Gm6756,Phgdh,Phgdh 
20274 Scn9a,Scn9a,Scn1a  237928 Phospho1,Abi3,Phospho1 
20276 Scnn1a,Scnn1a,4930597O21Rik  238130 Dock4,Dock4,1810041L15Rik 
20306 Ccl7,Ccl7,Itgb8  238405 Adam6b,Adam6b,Adam6a 
20341 Selenbp1,Selenbp2  238406 Adam6a,Adam6b,Adam6a 

20342 Selenbp1,Selenbp2  238829 1700042B14Rik,Gm16390,Gm4937,Gm49
37 
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20371 Foxp3,Foxp3,Dcakd  241159 Neu4,E330009J07Rik,Neu4 
20383 Gm12355,Srsf3  241431 Xirp2,4930523C07Rik,Xirp2 
20390 Sftpd,Sftpd,Ggn  242202 Pde5a,Pde5a,1600015I10Rik 
20431 Pmel,Pmel,Cep290  242700 Il28ra,Arhgap20 
20437 Siah1b,Siah1a,Siah1a,Siah1b  242726 Padi6,Tanc1,Padi6,Tmtc4,Padi6 
20438 Siah1b,Siah1a,Siah1b  243537 Uroc1,Uroc1,Sema5a 
20505 Slc34a1,Slc34a1,Pfn3  243755 Slc13a4,Csk,Slc13a4 
20527 Slc2a3,Slc2a3,Lingo2  243967 Ntn5,Ntn5,Sec1,Ntn5,Gm7092 
20534 Slc4a1ap,Slc4a1ap,Ubr3  244202 Nlrp10,Nlrp10,Gm20516 
20557 Slfn3,Slfn3,Slfn4  244667 Disc1,AC168060.2 

20583 Snai2,Snai2,Wapal  245509 4932429P05Rik,4932429P05Rik,4930415
L06Rik 

20597 Smpd1,Ppic,Smpd1  245615 Kir3dl2,Kir3dl1,Kir3dl2 
20620 Plk2,Plk2,Vmn1r33  245616 Kir3dl1,Kir3dl2,Kir3dl1 
20667 Sox12,Sox12,Ankrd27  246257 Dph1,Ovca2,Ovca2 

20684 Sp100,AC132444.3,AC168977.2,AC133103.
7,Sp100,AC125149.8 

 246730 Oas1a,Oas1a,Oas1g 

20700 
Serpina1c,Serpina1a,Serpina1e,Serpina1c,S
erpina1a,Serpina1d,Serpina1e,Serpina1c,Ser

pina1a,Serpina1d,Serpina1b 

 
246779 Il27,Ttn,Il27 

20701 
Serpina1e,Serpina1a,Serpina1d,Serpina1b,S
erpina1c,Serpina1b,Serpina1e,Serpina1c,Ser

pina1a,Serpina1d,Serpina1b 

 
246791 Obox3,Amh,Obox3 

20702 

Serpina1e,Serpina1c,Serpina1a,Serpina1d,S
erpina1b,Serpina1c,Serpina1a,Serpina1b,Ser
pina1c,Serpina1a,Serpina1d,Serpina1b,Serpi

na1e 

 

252912 Vmn1r188,Vmn1r188,Grn 

20703 
Serpina1e,Serpina1d,Serpina1b,Serpina1c,S
erpina1a,Serpina1e,Serpina1c,Serpina1a,Ser

pina1d,Serpina1d 

 
257899 Olfr1000,Olfr1000,Olfr996 

20704 

Serpina1e,Serpina1d,Serpina1b,Serpina1c,S
erpina1a,Serpina1e,Serpina1c,Serpina1a,Ser
pina1d,Serpina1e,Serpina1a,Serpina1d,Serpi

na1b,Serpina1c,Serpina1e 

 

257947 Olfr543,Olfr543,Synm 

20768 Sephs2,Sephs2,Gm16485  257951 Olfr988,Olfr987 
20775 Sqle,Sqle,Diap2  258067 Olfr1359,Olfr1360 
20878 Aurka,Aurka,Rprd2  258101 Olfr1137,Olfr1137,Olfr1013 

21367 Cntn2,Olfr394,Olfr381,Cntn2  258155 Olfr1425,Olfr1425,Olfr1424,Olfr1426,Olfr1
425,Olfr1424 

21390 Tbxa2r,Tbxa2r,Mxi1  258156 Olfr605,Olfr605,Sorbs1 
21415 Gm15401,Tcf7l1,Tcf7l1  258160 Olfr685,Olfr685,Cars2,Sp8 
21665 Tdg,Gm5806,Tdg  258166 Olfr988,Olfr987,Olfr988 
21683 Tecta,Tecta,Zbtb42  258181 Olfr59,Olfr406-ps 
21749 Terf1,Errfi1,Terf1  258706 Olfr43,Olfr403 
21754 Cd72,Tesk1,Tesk1  259097 Olfr558,Olfr558,Gm8251 
21802 Tgfa,Tgfa,Epb4.1  259101 Olfr628,Olfr628,Olfr243 
21823 Th,Lifr,Th  260298 Fev,Fev,Scn10a 
21925 Tnnc2,Ube2c  266744 Lgsn,Lgsn,4931428L18Rik 
21968 Gm5884,Tom1  268482 Krt12,Krt12,Krt42 
22018 Tpo,Deptor,Tpo  269378 Gm4737,Ahcy 
22038 Plscr1,Plscr1,Plscr4  269695 Rnft2,Fgf1,Rnft2 
22139 Ttr,Ttr,Vmn2r102  270599 Gm648,Gm648,Gm10477 

22142 Tuba1c,Tuba1a,Tuba1b,Slc7a11,Tuba1a,Tub
a1c,Tuba1b,Tuba1a,Slc7a11,Tuba1c,Tuba1b 

 271457 Rab5a,Galnt4,Rab5a 

22143 Tuba1c,Tuba1a,Tuba1b,Tuba1b,Tuba1c,Tub
a1a,Slc7a11,Tuba1c,Tuba1a,Tuba1b 

 
276865 

Olfr1371,Olfr1373,Fmn1,Olfr1371,Olfr1371
,Olfr1373,Olfr1380,Olfr1381,Olfr1382,Olfr1

371,Olfr1373,Olfr1380,Olfr1381 
22144 Tuba3a,Tuba3b,Tuba3a  277973 Slc9a5,Prpf18,Slc9a5 
22147 Tuba3b,Tuba3a,Tuba3b  278174 Ssxb3,Ssxb3,Ssxb9,Ssxb5,Ssxb3,Marcks 
22151 Tubb2a,Tubb2b,Tubb2a  280645 B3gat2,B3gat2,Sertad2 

22186 
Gm11808,2810422J05Rik,Uba52,Gm5239,G
m11808,Gm7866,2810422J05Rik,Uba52,Gm

5239,Gm11808,2810422J05Rik,Uba52 

 
317677 Gm5077,Gm5077,C1s 

22214 Ube2h,Gm2058  319195 Rpl17,Gm10268,Rpl17,Rpl17-
ps3,Gm10362,Rpl17,Rpl17-ps3 

22272 Uqcrq,Epb4.1,Uqcrq  319387 Lphn3,Synrg,Lphn3 
22287 Scgb1a1,Oxtr,Scgb1a1  320484 Rasal3,A530088E08Rik,Rasal3 
22290 Uty,Slc4a1ap,Uty  320615 Pgm3,Dopey1,Dopey1 
22325 Vav2,Vav2,Mlxip  320795 Pkn1,Pkn1,Ptger1 
22340 Vegfb,Vegfb,Hk2  320864 Krt26,Krt26,Rnf213 
22346 Vhl,Vhl,Ros1  320995 Rfx6,Rfx6,Rnf169 
22350 Ezr,Ezr,Liph  327957 A430084P05Rik,A430084P05Rik,Pign 
22362 Vpreb1,Vpreb2,Vpreb1  327978 Slfn5,Slfn5,Aak1 
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22363 Vpreb1,Vpreb2,Vpreb2,Vpreb1  328424 Kcnrg,Psd3,Kcnrg 
22410 Wnt10b,Wnt10b,Atp10b  329384 Ptrh1,Ptrh1,Wdr4 
22590 Xpa,Xpa,Ttn  329559 Zfp335,Zfp335,Pcif1 
22598 Slc6a18,Ccdc36,Slc6a18  330390 Gm765,Gm765,Gabbr2 

22599 Slc6a20b,Slc6a20b,Slc6a20a,Slc6a20a,Slc6a
20b 

 330450 Far2,Col8a1,Far2 

22612 Yes1,Fyn,Yes1  330627 Trim66,Trim66,Dnm3 
22639 Zfa,Zfx,Zfa  330814 Lphn1,Gm10644,Lphn1 
22673 Zfp185,Zfp185,5430403G16Rik  330830 Ccdc135,Ccdc135,Zfp442 
22764 Zfa,Zfx,Zfx  330962 Ostb,Gcc2,Ostb 
23832 Xcr1,Dcdc5,Xcr1  331188 Zfp781,Gm3055 
23980 Pebp1,Pebp1,Rgl2  338354 Zfp780b,Zfp780b,1700049G17Rik 
23983 Pcbp1,Pcbp1,Pcbp2  338521 Fa2h,Fa2h,Tln2 
24046 Scn11a,Osbpl3,Scn11a  353187 Nr1d2,Nr1d2,Med13 

24053 Sgcg,Sacs,Sgcg  380773 1810035L17Rik,1810035L17Rik,Vamp7,1
810035L17Rik,2700073G19Rik 

24075 Taf10,Gm4799  380855 Zfp429,Zfp456,Rsl1,Rsl1 
26386 Hsf4,Cep250,Hsf4  380928 Lmo7,Lmo7,4933414I15Rik 
26425 Nubp1,Fam18a,Nubp1  381107 Tmem232,Tmem232,Lrrtm4 

26426 Nubp2,Nubp2,Clec2h  381236 Gm5097,Lipo1,Lipo4,Lipo2,Gm8975,Lipo2
,Lipo1,Lipo4,Lipo1 

26442 Gm8394,Psma5,Psma5,Gm8394  381246 Xkr9,Xkr9,Apc 

26446 Gm4950,Psmb3,Psmb3,Gm4950,Gm5356,Ps
mb3 

 

381287 

AC133103.2,A530032D15Rik,AC125149.7
,AC132444.4,AC125149.7,Arhgef18,AC13
2444.4,A530032D15Rik,AC125149.7,AC1

32444.4,AC125149.7 
26888 Clec4a2,Clec4a2,Clec4a4  381308 Mnda,Ifi205,Mnda,Ifi205,Mnda,Mndal 
26909 Exo1,Exo1,Nsun2  381406 Trp53rk,2810408M09Rik 
26945 Tpsg1,Tpsg1,Elk4  381417 Gm14085,Slc28a2,Gm14085 
27027 Tspan32,Tspan32,Ptger3  381531 Mup21,Mup3,Mup21 
27223 Trp53bp1,Trappc8,Trp53bp1  381823 Apold1,Apold1,C130039O16Rik 
27384 Akr1c13,Akr1c12,Akr1c13  381852 Gm5155,Ceacam5,Gm5155 

27388 Ptdss2,Fstl4,Ptdss2 

 

381936 

Gm5890,Gm5891,Gm4545,Gm6882,Gm1
0668,Gm5156,Gm6902,Gm10662,Gm456
7,Gm6176,Gm5890,Gm5891,Gm4545,Gm
6882,Gm10668,Gm5156,Gm6902,Gm106
62,Gm4567,Gm5878,Gm6176,Gm5890,G
m4545,Gm10668,Gm5156,Gm6902,Gm45

67,Gm6176 
28080 Atp5o,Gm5436,Atp5o  382007 Adam26a,Adam26b,Adam26b 
28185 Tomm70a,Cnnm4,Tomm70a  382045 Gpr114,Actn2,Gpr114 
28250 Slco1a4,Slco1a4,Gm5724  382156 Fbxw22,Fbxw16,Fbxw22 

29849 Olfr159,Olfr159,Ung  382209 Rhox3h,Rhox3f,Rhox3e,Rhox3c,Rhox3a,R
hox3h,Rhox3f,Rhox3e,Rhox3a 

30843 Fbxl12,Fbxl12,Akap6  382864 Colq,Colq,Ryr3 

50720 Sacs,Sacs,Vmn2r42  384220 Vmn2r16,Mad1l1,Vmn2r117,Vmn2r16,Vm
n2r14,Vmn2r16 

50772 Mapk6,Hadhb,Mapk6,Rnf169,Mapk6  384806 4930529F22Rik,4930529F22Rik,Adam25,
4930529F22Rik,Adam25,Adam39 

50790 Acsl4,Acsl4,Dlc1  404195 Cyp2c54,Cyp2c50,Cyp2c54 
50797 Copb2,Copb2,Tinf2  406219 Krt83,Krt83,Krt86 

50908 C1s,Gm5077,C1s  407243 Tmem189,Gm20431,Hivep1,Tmem189,G
m20431,Tmem189 

50911 Ccna2,Exosc9,Exosc9  415115 Ctsa,Neurl2,Neurl2 
50933 Uchl3,Uchl3,Uchl4,Uchl4,Uchl3  432467 Hnrnph3,Hnrnph3,Rufy2 
50997 Mpp2,Nebl,Mpp2  432479 4930404N11Rik,4930404N11Rik,Mfsd12 

51791 Rgs14,Rgs14,Arl4a  432736 Vmn1r209,Vmn1r206,Vmn1r209,Vmn1r20
9,C77370 

51795 Srpx,Micalcl,Srpx  432779 Lrrc14b,Ccdc127 
51885 Tubgcp4,Tubgcp4,Trp53bp1  432879 Gm5465,Kbtbd7,Gm5465 

52830 Pnrc2,Pnrc2,Mettl16 
 

433016 
2010005H15Rik,Gm5483,Taf6,Gm5483,20
10005H15Rik,2010005H15Rik,Gm5483,Fb

xl20,Gm5483 
52838 Dnlz,Dnlz,Gpsm1  433182 Gm5506,Eno1 
52855 Lair1,Lair1,Sh2d1b2  433215 BC048609,BC048609,1110014N23Rik 
53314 Batf,Batf,Cadm2  433416 Gm13547,Trub2,Gm13547 
53622 5430421N21Rik,Krt86,Krt81,Krt83,Itpr3  433638 I830077J02Rik 
53625 Commd1,B3gnt2  433759 Hdac1,Gm10093 

53880 Naip5,Naip6 
 

433801 
Gm13157,Gm13212,Gm13157,Gm13154,
Gm13212,Gm13157,Gm13154,Gm13051,

Gm13251,Gm13212,Gm13139 
53893 Nudt5,Gm13199,Nudt5  434171 Gm5591,Gm5591,Tmem164 
54124 Cks1b,Cks1b,Gm6531  434325 Tmem221,Tmem221,Tex14 
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54140 Avpr1a,Avpr1a,Ssh1  434758 Rhox3h,Rhox3e,Rhox3a,Rhox3h,Rhox3h,
Rhox3f,Rhox3e,Rhox3c,Rhox3a 

54196 Pabpn1,Gm20521 
 

434764 
Rhox2f,Rhox2e,Rhox2c,Rhox2b,Rhox2h,R
hox2f,Rhox2f,Rhox2e,Gm20464,Rhox2c,R

hox2b,Rhox2a,Rhox2f 

54393 Gabbr1,Gabbr1,Mtap1b  434766 Rhox2g,Rhox2g,Jarid2,Rhox2h,Rhox2g,R
hox2d,Rhox2g,Rhox2d,Rhox2c 

54709 Eif3i,Eif3i,Gm749  434768 Rhox8,Rhox8,Ctdp1 
55927 Hes6,Hes6,Svil  434903 Mageb4,Mageb10-ps,Mageb4 
55981 Pigb,Pigb,Ccpg1  435529 Gpr111,Gpr111,Olfr988,Olfr987 
55991 Panx1,Panx1,Zfp507  435889 Try5,Try4,Try5 
56173 Cldn14,Cldn14,Qars  436002 Olfr628,Olfr243 
56210 Rev1,Rev1,Eif5b  436240 Foxr2,Foxr2,Slc9a2 

56275 Rbm14,Rbm14,Nlrp1c-ps  436523 Gm5771,Prss1,Gm5771,Gm5771,Prss2,Pr
ss1,Try10,Try5,Try4 

56289 Rassf1,Rassf1,Eif2c1  474156 Ggnbp1,Zbtb9 
56291 Gm14698,Styx  544696 D630037F22Rik,D630037F22Rik,Hoxd11 
56297 Arl6,Arl6,Rab22a  544748 Olfr765,Olfr767,Olfr765,Olfr765,Camk2d 

56309 Mycbp,Kif21a,Mycbp 
 

545288 
Cyp2c67,Cyp2c69,Cyp2c40,Cyp2c68,Cyp
2c68,Cyp2c67,Cyp2c67,Cyp2c69,Cyp2c67

,Ankrd13d,Ttll6,Cyp2c40,Cyp2c68 
56327 Arl2,Arl2,Esco1  545366 Cfh,Cfhr2,Cfhr2 
56335 Mettl3,Tox4,Mettl3  545471 Zfp345,Gm14124,Zfp345,Gm14139 
56378 Arpc3,Arpc3,Gpr126  545725 Gm9897,Mterf 

56388 Cyp3a25,Cyp3a59,Cyp3a25,Cyp3a25,Cyp3a
59 

 546049 C330021F23Rik,C330021F23Rik,Cir1 

56455 Dynll1,Gm6788,BC048507,Gm6788,Dynll1,B
C048507,Dynll1 

 546118 Ubtfl1,Ubtfl1,Naalad2 

56456 Mrpl47,Actl6a,Actl6a  546546 Serpina3i,Dlgap1 

56489 Ikbke,0610009O20Rik,Ikbke  546912 Vmn2r22,Vmn2r21,Zfp711,Vmn2r21,Vmn2
r20,Vmn2r22,Vmn2r21,Vmn2r20 

56495 Asna1,4930556J24Rik,Asna1  546913 Vmn2r22,Vmn2r21,Zfp711,Vmn2r22,Vmn2
r22,Vmn2r21,Vmn2r20 

56506 Cib2,Cib2,Slc9a6  546980 Vmn2r74,Vmn2r74,Vmn2r73,Vmn2r70,Vm
n2r68-ps,Vmn2r67,Vmn2r66 

56532 Ptger2,Ripk3  547127 AC175035.2,Tmem181c-ps 

56752 Aldh9a1,Myst4,Aldh9a1 
 

547347 
Gm7030,Gm19684,Gm11127,Gm6034,H2

-
Q1,Gm7030,Gm19684,Gm11127,Gm6034 

57349 Ppbp,BC025920,Ppbp  574418 Serinc4,2310003F16Rik,Serinc4,Sec11c,2
310003F16Rik,Serinc4,Serf2,Serinc4 

57430 Sult3a1,Sult3a1,Limk1  594844 Tceal3,Tceal6,Tceal3 
57442 Kcne3,Kcne3,Pi4ka  619310 Eny2,Zfp872 
57773 Wdr4,Wdr18,Wdr4  619331 Zfp551,Zfp551,Syne1 

57914 Crlf2,Myo7b,Crlf2  621697 Gm10064,Rpl32,Rpl32-
ps,Gm4987,Rpl32,Gm10064,Rpl32 

57916 Tnfrsf13b,Tnfrsf13b,Gabpb2  621852 Rhox3h,Rhox3e,Rhox3a,Rhox3h,Rhox3h,
Rhox3f,Rhox3e,Rhox3c,Rhox3a 

58179 Klrc3,Klrc2,Klrc3  622301 Rhox2h,Rhox2h,Rhox2g,Rhox2d,Rhox2h,
Rhox2g,Rhox2d,Rhox2a 

58521 Eid1,Shc4,Eid1  622402 Akr1c12,Akr1c12,Akr1c13 
58810 Akr1a1,Ccpg1,Akr1a1  623131 Prr19,Rxra,Prr19 
58988 Rps6kb2,Ipo11,Rps6kb2  623661 Lipt1,Mitd1,Lipt1 

59001 Pole3,Pole3,Pik3c2a 
 

623734 
Vmn2r85,Vmn2r86,Vmn2r85,Vmn2r84,Vm
n2r87,Vmn2r85,Vmn2r87,Vmn2r86,Vmn2r
84,Vmn2r87,Vmn2r85,Vmn2r84,Vmn2r86 

59015 Nup160,Nup160,Phf16  624681 Btnl6,Btnl6,Btnl7 
59020 Pdzk1,Pdzk1,Gpr89  624860 Gm12253,Gm12253,Flna 

59021 Rab2a,Rab2a,Gm5113  625068 Vmn2r86,Vmn2r84,Vmn2r85,Vmn2r86,Vm
n2r85,Vmn2r84,Vmn2r87,Vmn2r84 

59044 Rnf130,Rnf130,Sepsecs 

 

626316 

Gm13051,Gm13154,Gm13151,Gm13225,
Gm13154,Gm13151,Gm13051,Zfp534,Gm
13151,Gm13051,Gm13235,Gm13157,Gm
13154,Gm13051,Gm13251,Gm13212,Gm

13139 

59044 Rnf130,Rnf130,Sepsecs 

 

627111 

Vmn2r92,Vmn2r91,Vmn2r107,Vmn2r104,
Vmn2r101,Vmn2r100,Vmn2r99,Vmn2r98,
Vmn2r97,Vmn2r96,Vmn2r95,Vmn2r93,Vm

n2r94,Vmn2r-
ps113,Vmn2r92,Vmn2r92,Vmn2r91,Rab40

b 
59054 Mrps30,Mrps30,Itpr1  627576 Vmn2r101,Vmn2r101,Ube2e3 
59092 Pcbp4,Pcbp4,Fam159a,Pcbp4,Chdh  627805 Vmn2r108,Vmn2r108,Vmn2r109,Vmn2r10
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4,Vmn2r103,Vmn2r102,Vmn2r101,Vmn2r9
9,Vmn2r93,Vmn2r92,Vmn2r91 

59126 Nek6,Nek6,Ttc39b  630146 Cd101,Cd101,Obscn 
60440 Iigp1,Gm4951,Iigp1  630579 Zfp934,Zfp808,Zfp808 
64113 AK010878,Moap1  634104 Olfr287,Olfr288,Olfr287 
64337 Chtf18,Gng13,Gng13  636808 Cntnap5a,Cntnap5a,Cntnap5c 
64661 Krtdap,Krtdap,Uqcrh  639774 Skint8,Skint7,Skint7,Skint8,Skint8 
64833 Acot9,Acot10,Acot10  639781 Skint1,Cntnap5a,Skint1 
64918 Bhmt2,Cntn2,Scgn,Bhmt2  654801 Zfp784,Zfp784,4632433K11Rik 
66052 Sdhc,Sdhc,Asz1  664723 Cypt1,Cypt1,Cypt3 
66101 Gm17728,Ppih  664725 Cypt1,Cypt1,Cypt3 
66105 Spopl,Ube2d3,Ube2d3  664726 Cypt4,Cdkn1b,Cypt4 

66152 Uqcr10,4930481A15Rik,Uqcr10  665203 Rhox3h,Rhox3f,Rhox3e,Rhox3c,Rhox3a,R
hox3c 

66177 Ubl5,Ubl5,Gm6803,Gm2001,Gm16381,Ikbkg,
Ubl5 

 

665210 

Vmn2r92,Vmn2r91,Vmn2r107,Vmn2r104,
Vmn2r101,Vmn2r100,Vmn2r99,Vmn2r98,
Vmn2r97,Vmn2r96,Vmn2r95,Vmn2r93,Vm

n2r94,Vmn2r-
ps113,Vmn2r91,Vmn2r92,Vmn2r91,Vmn2r

92,Vmn2r91,Rab40b 

66179 1110031I02Rik,Hexdc,1110031I02Rik  665229 Rhox3f,Rhox3h,Rhox3f,Rhox3e,Rhox3a,R
hox3h,Rhox3f,Rhox3e,Rhox3c,Rhox3a 

66212 Sec61b,Sec61b,Gm10320,Gm5474,Gm1032
0,Sec61b,Gm5474 

 665378 AC133103.6,AC132444.1,AC132444.1,AC
133103.6,AC133103.6 

66251 Arfgap3,Arfgap3,Ulbp1  666118 2310042D19Rik,Olfr350 
66354 Snw1,Snw1,1810035L17Rik  666244 Tmsb15b1,Tmsb15b1,Tmsb15b2,Tmsb15l 
66416 Ndufa7,Ndufa7,Fam179b  666348 Apol7e,Apol7b 
66425 Pcp4l1,Pcp4l1,Mthfsd  666465 Immp1l,Immp1l,Cep290 

66475 

Rps23,Gm8618,C330021F23Rik,Gm5148,Rp
s23,Gm2174,Gm8618,C330021F23Rik,Gm5
148,Rps23,Gm2174,Gm8618,Gm9372,C330
021F23Rik,Gm5148,Rps23,Gm8618,Gm217

4 

 

667034 Pnp2,Pnp,Pnp2 

66495 Ndufb3,Ndufb3,Zbtb20  667370 I830012O16Rik,Ifit3 
66531 2310061C15Rik,2310061C15Rik,Mbtd1  668178 Mettl7a2,Mettl7a3,Mettl7a3 

66589 
Gm8325,Gm20431,Ube2v1,Cadm2,Gm8325,
Gm20431,Ube2v1,Gm8325,Gm20431,Ube2v

1,Gm5830 

 
668501 Zfp507,Zfp507,Gad2 

66596 Gtf3a,Mtif3  791260 Tomt,3200002M19Rik,Tomt 
66772 Asb17,Asb17,Tmprss11c  100037282 Rsph3a,Rsph3b,Rsph3a,Rsph3b,Gabrb2 
66897 Naa16,Naa16,Vipr1  100038804 Itpr3,Zfhx4,Itpr3 

66914 Vps28,Vps28,E2f7  100038993 Il11ra2,Il11ra2,Gm2002,Gm13305,Il11ra1,I
l11ra2,Ccl27b,Gm2506,Gm13306,Ccl27a 

66993 Smarcd3,Chpf2,Smarcd3  100039672 Msmp,Rgp1,Msmp,Rgp1,C1rb,C1ra 
67016 Tbc1d2b,Tbc1d2b,Adamts7  100040591 Kcnj13,Kcnj13,Gigyf2 

67025 

Rpl11,Gm10288,Rpl11,Gm10036,Gm10288,
Gm6905,Rpl11,Gm5093,Gm7589,Gm10036,
Gm10288,Rpl11,Gm5093,Gm7589,Gm10036

,Gm10288 

 

100040843 Cyp4a32,Cyp4a31,Cyp4a10,Cyp4a32 

67048 Vma21,Vma21-ps,Vma21  100040937 Gm16390,1700042B14Rik,Gm16390,Gm1
6390,1700042B14Rik 

67068 Dynlrb1,Rrad,Dynlrb1  100041686 Gm17541,Rpl18a,Rpl18a 
67141 Fbxo5,Fbxo5,Glcci1  100042314 Gm10639,Gsta2,Gm10639,Gm3776,Gsta1 
67255 Zfp422-rs1,Zfp422,Zfp422  100042555 Il11ra2,Gm2002,Gm13305,Il11ra1 
67263 Zswim6,Zswim6,Pramef12  100043803 Orai2,Orai2-ps 

67323 1700042G07Rik,Phkb,1700042G07Rik 

 

100048885 

Mup19,Mup18,Mup16,Mup15,Mup14,Mup
13,Mup12,Mup11,Mup10,Mup1,Mup9,Mup
8,Mup2,Mup7,Mup19,Mup18,Mup17,Mup1
6,Mup15,Mup14,Mup13,Mup12,Mup11,Mu
p10,Mup1,Mup9,Mup8,Mup2,Mup7,Mup19
,Mup18,Mup17,Mup16,Mup10,Mup9,Mup7 

67384 Bag4,Bag4,Gm17484  100073351 Yy2,Mbtps2 
67579 Cpeb4,Cpeb4,Cpeb2  100126824 Sco2,Ncaph2 
67738 Ppid,Lamp3,Ppid,Ppid,Lamp3    
67873 Mri1,Kcnab2,Mri1    

 

8. siRNA screen partially targeted gene transcripts: 

GENE 
ID 

NUMBER OF 
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TRANSCRIPT 

 GENE 
ID 

NUMBER OF 
MISSING 

TRANSCRIPT 
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11306 4  21823 2  101437 3 
11350 2  21827 1  101471 1 
11423 5  21843 1  101488 2 
11426 4  21885 1  101497 1 
11464 1  21886 2  101502 1 
11472 1  21915 1  101568 3 
11477 1  21925 1  101772 3 
11482 3  21928 1  102098 1 
11487 1  21929 2  102141 1 
11491 1  21945 5  102414 1 
11492 1  21955 1  102570 1 
11496 11  21974 1  102626 3 
11497 1  22017 1  102632 1 
11517 1  22018 3  102857 1 
11518 1  22021 1  103324 2 
11519 5  22022 1  103406 1 
11538 1  22031 1  103537 1 
11564 1  22040 1  103573 1 
11593 1  22041 1  103677 1 
11596 1  22042 1  103737 2 
11639 2  22061 1  103988 1 
11647 2  22062 1  104027 1 
11656 6  22064 4  104111 3 
11670 1  22121 1  104248 3 
11684 1  22129 5  104681 1 
11699 1  22138 17  105148 1 
11717 1  22138 17  105239 5 
11733 3  22186 5  105377 2 
11735 1  22193 1  105670 6 
11758 1  22196 2  105689 10 
11769 1  22230 2  106200 2 
11775 1  22240 2  106344 1 
11781 1  22249 2  106585 1 
11784 2  22272 4  106633 1 
11789 1  22276 3  106795 3 
11790 1  22278 1  106878 7 
11792 7  22284 2  106957 1 
11793 1  22290 3  107260 1 
11796 2  22295 1  107272 2 
11798 3  22321 1  107448 1 
11801 4  22337 2  107476 3 
11804 1  22339 1  107522 2 
11806 7  22340 1  107581 3 
11810 1  22352 1  107589 1 
11816 2  22359 2  107686 1 
11818 2  22371 4  107817 1 
11836 1  22410 1  107823 6 
11854 1  22433 1  107831 1 
11855 1  22590 17  107932 1 
11863 6  22612 7  107971 1 
11870 1  22629 1  107986 2 
11877 1  22631 2  108000 1 
11886 2  22634 3  108058 1 
11890 1  22639 2  108073 2 
11908 1  22668 1  108075 1 
11909 4  22673 1  108078 1 
11920 2  22688 2  108096 1 
11937 1  22715 5  108099 1 
11951 3  22719 2  108655 7 
11958 1  22722 2  108857 3 
11964 1  22724 4  108903 1 
11975 1  22757 1  108960 1 
11980 3  22770 2  108989 3 
11987 1  22773 1  109032 1 
11988 1  22778 2  109054 1 
11991 3  23790 2  109075 3 
11994 2  23792 1  109263 1 
12000 8  23802 1  109331 1 
12006 1  23805 3  109333 1 
12007 1  23827 1  109658 1 
12014 1  23832 2  109674 4 
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12029 1  23850 1  109689 2 
12035 1  23871 1  109700 1 
12036 1  23917 2  109900 8 
12040 1  23950 1  109910 1 
12045 6  23965 3  109929 1 
12047 6  23980 1  109934 3 
12054 1  23983 1  109979 2 
12057 1  23984 1  110094 1 
12121 1  23997 1  110157 1 
12122 1  24012 2  110310 1 
12153 1  24046 4  110312 3 
12175 1  24053 7  110385 1 
12177 4  24086 2  110542 1 
12180 2  24100 1  110593 2 
12192 1  24105 1  110651 2 
12263 1  24136 6  110695 2 
12266 2  26357 3  110784 2 
12287 3  26373 1  110789 1 
12288 2  26386 2  110821 3 
12292 1  26404 3  110842 5 
12293 1  26422 1  110854 2 
12296 2  26423 1  110876 1 
12305 1  26431 2  110911 1 
12322 2  26462 1  110948 1 
12335 1  26885 1  113858 3 
12337 2  26889 1  113868 1 
12355 2  26909 1  114142 5 
12361 2  26912 1  114255 1 
12385 1  26945 2  114600 1 
12387 1  26965 2  114643 2 
12390 1  27027 2  114671 3 
12396 2  27053 3  114716 1 
12399 2  27054 1  114873 2 
12402 1  27056 1  114875 1 
12411 1  27057 3  116837 1 
12421 4  27103 1  116873 1 
12457 2  27223 2  117147 1 
12495 1  27389 1  117149 1 
12544 1  27399 1  117160 1 
12545 1  27411 1  117600 1 
12554 1  28015 1  140571 2 
12593 4  28240 1  140630 1 
12617 6  28250 1  140780 2 
12627 1  28254 1  140781 1 
12628 2  29809 1  170638 1 
12655 1  29856 2  170648 1 
12704 3  29861 1  170707 7 
12705 1  29871 1  170722 2 
12721 2  30838 1  170738 2 
12733 1  30841 3  170743 2 
12737 1  30843 1  170744 1 
12738 1  30941 1  170789 3 
12747 1  30956 1  170791 2 
12748 1  50496 1  170828 1 
12753 1  50523 1  170930 1 
12778 1  50721 1  171166 1 
12788 1  50757 1  171180 3 
12790 1  50762 1  171183 14 
12804 3  50768 2  171196 1 
12816 1  50769 2  171200 2 
12818 1  50770 2  171202 1 
12819 2  50780 5  171207 2 
12822 1  50789 1  171259 1 
12824 1  50790 3  171580 1 
12827 1  50797 3  192119 1 
12830 2  50873 1  192159 2 
12833 1  50908 2  192166 1 
12870 2  50915 2  192176 3 
12896 2  50935 3  192185 3 
12908 6  50995 1  192285 4 
12912 3  50997 5  192292 3 
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12914 2  51789 1  192786 1 
12916 2  51792 1  193116 1 
12955 1  51885 3  194227 4 
12967 1  52397 8  207165 1 
12972 3  52563 1  207181 1 
12977 2  52679 2  207596 1 
12995 2  52685 1  207777 1 
13003 2  52830 4  207806 1 
13011 2  52838 2  208084 1 
13017 12  52855 1  208092 1 
13034 12  53325 1  208266 1 
13047 1  53333 1  208449 1 
13048 4  53357 1  208643 5 
13075 1  53376 1  208650 1 
13077 4  53413 1  208748 1 
13078 1  53417 1  208869 3 
13086 1  53418 1  208967 1 
13089 1  53619 1  208982 1 
13096 1  53625 4  209011 1 
13117 1  53860 1  209018 1 
13132 1  53870 1  209027 2 
13170 2  53883 3  209186 1 
13360 1  53885 1  209446 1 
13385 3  53896 1  209462 1 
13386 1  54139 1  209837 1 
13390 2  54140 1  210162 2 
13396 1  54153 1  210356 1 
13405 3  54201 2  210710 1 
13409 1  54338 1  211007 3 
13419 1  54357 1  211151 1 
13424 1  54369 1  211429 1 
13426 1  54380 3  211535 4 
13429 2  54383 2  211651 2 
13433 5  54393 3  211660 8 
13435 5  54403 1  211673 1 
13445 4  54411 1  211712 1 
13446 1  54427 3  212032 1 
13487 1  54446 1  212285 2 
13496 1  54563 1  212427 1 
13506 1  54607 1  212712 2 
13521 1  54611 1  212862 3 
13527 2  54613 2  212933 1 
13528 2  54614 1  213011 1 
13548 1  54633 1  213053 1 
13549 2  54652 2  213084 3 
13557 1  54667 1  213402 1 
13601 1  54722 1  213409 2 
13605 4  55927 3  213819 1 
13619 5  55981 3  213980 3 
13631 1  55983 2  213990 1 
13636 1  55991 1  214137 1 
13654 1  55992 2  214254 3 
13666 1  56046 1  214384 1 
13667 1  56055 2  214444 2 
13690 3  56075 1  214642 1 
13713 6  56086 1  214855 1 
13728 6  56173 3  214952 2 
13733 3  56215 1  215113 1 
13801 2  56218 1  215332 1 
13806 3  56248 1  215476 1 
13808 2  56275 2  216021 1 
13821 4  56289 1  216152 1 
13831 1  56299 1  216164 1 
13848 2  56309 1  216233 2 
13852 1  56314 1  216443 1 
13858 1  56315 1  216616 1 
13860 1  56324 1  216739 2 
13864 2  56347 1  216742 1 
13990 1  56361 2  216805 1 
13999 39  56365 1  216810 1 
14009 2  56375 1  216848 3 
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14011 1  56380 2  216856 1 
14017 10  56389 1  216860 1 
14030 1  56403 2  216867 1 
14043 2  56405 1  216964 1 
14050 1  56409 1  216965 1 
14068 1  56422 1  217166 4 
14069 2  56454 3  217198 1 
14081 1  56460 1  217258 2 
14088 2  56463 1  217316 2 
14102 1  56484 2  217353 3 
14107 1  56489 1  217356 1 
14126 1  56506 1  217369 2 
14134 1  56542 2  217734 1 
14161 1  56717 1  217826 1 
14163 1  56727 1  217893 1 
14164 1  56734 2  218214 1 
14168 4  56738 3  218268 2 
14180 1  56749 1  218454 1 
14182 2  56752 2  218885 1 
14183 1  56839 1  223254 1 
14186 1  56873 1  223272 1 
14194 1  56874 3  223435 1 
14219 1  57138 2  223649 2 
14232 1  57278 1  223664 2 
14256 2  57349 2  223669 1 
14260 1  57357 1  223770 2 
14261 1  57430 1  223774 1 
14264 1  57442 1  223922 8 
14275 6  57738 2  223978 3 
14312 1  57742 1  224170 1 
14359 3  57751 1  224619 1 
14375 2  57810 1  224727 3 
14381 14  57916 4  224742 1 
14387 3  58186 1  224836 1 
14391 3  58194 1  225010 1 
14394 2  58226 3  225115 1 
14407 1  58230 1  225579 2 
14412 1  58231 1  225600 2 
14423 1  58234 1  225876 1 
14429 1  58521 1  225888 3 
14463 3  58800 1  226169 4 
14567 1  58800 1  226243 1 
14585 4  58802 3  226251 2 
14598 3  58810 4  226356 1 
14634 1  58988 1  226418 5 
14645 1  58992 1  226519 1 
14658 1  58998 4  226747 2 
14660 2  59004 1  226861 2 
14664 6  59010 2  226970 2 
14674 1  59015 1  227099 4 
14680 1  59020 3  227377 1 
14681 2  59024 1  227399 1 
14683 5  59026 2  227634 3 
14686 1  59030 1  227648 1 
14710 2  59047 1  227659 1 
14728 3  59047 1  227696 1 
14747 1  59049 1  227720 1 
14748 1  59054 1  227738 2 
14755 3  59056 1  228005 1 
14783 3  59057 1  228061 1 
14794 1  59092 3  228366 1 
14814 1  59126 4  228608 1 
14815 4  63959 3  228684 1 
14823 1  64009 2  228829 1 
14824 1  64113 1  228839 1 
14852 1  64291 4  228850 1 
14853 1  64337 3  228880 1 
14854 1  64652 6  228960 1 
14859 1  64685 2  229003 2 
14885 3  64705 1  229285 2 
14886 2  64918 1  229574 1 
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14923 1  64945 1  229603 2 
14924 1  65111 2  229603 2 
14950 1  65254 1  229615 1 
14962 2  66065 1  229715 1 
15114 1  66078 1  229725 1 
15170 1  66177 11  229782 1 
15184 3  66179 4  230098 1 
15201 1  66204 1  230099 1 
15203 3  66209 1  230101 1 
15216 3  66213 2  230396 1 
15228 1  66234 2  230484 1 
15233 1  66251 1  230582 2 
15273 4  66354 3  230587 1 
15275 14  66369 1  230594 2 
15277 1  66399 1  230700 3 
15357 3  66416 1  230737 1 
15387 2  66425 4  230753 6 
15398 3  66435 1  230779 1 
15410 1  66495 11  230815 1 
15427 1  66505 2  230857 1 
15434 1  66510 2  230861 4 
15436 5  66531 4  231103 5 
15445 1  66552 1  231252 2 
15451 1  66576 1  231510 7 
15465 1  66589 2  231549 2 
15476 1  66596 5  231580 3 
15481 2  66656 3  231637 3 
15483 2  66659 1  231798 2 
15486 11  66680 1  231889 2 
15493 3  66813 1  231915 1 
15516 1  66848 1  232078 1 
15525 2  66854 1  232232 1 
15547 1  66881 1  232341 8 
15569 2  66904 1  232791 1 
15586 1  66914 2  232798 4 
15900 1  66930 1  232807 1 
15958 1  66942 1  232811 1 
15975 1  66958 1  232933 1 
16004 2  66985 1  232944 1 
16150 1  66993 3  233001 3 
16151 1  67016 6  233040 1 
16169 2  67063 2  233046 1 
16170 3  67071 1  233060 1 
16178 3  67141 4  233328 2 
16179 4  67155 1  233406 4 
16190 1  67260 2  233575 4 
16198 1  67269 7  233805 2 
16328 3  67283 3  233833 1 
16329 2  67292 1  233865 3 
16330 2  67300 1  233876 1 
16331 2  67323 4  233878 1 
16336 4  67331 1  233904 3 
16372 1  67338 1  234135 2 
16392 1  67420 1  234214 8 
16403 1  67426 6  234258 1 
16409 2  67452 1  234311 2 
16410 3  67469 1  234515 1 
16412 1  67492 1  234582 1 
16414 2  67533 1  234734 1 
16418 1  67534 1  234788 1 
16430 1  67569 3  235180 1 
16439 1  67573 1  235312 3 
16443 5  67575 1  235344 2 
16451 3  67579 5  235380 1 
16453 6  67665 1  235431 2 
16468 3  67772 1  235574 7 
16516 2  67873 6  235582 1 
16517 2  67911 4  235587 2 
16531 1  67941 1  235610 1 
16532 1  67949 1  235611 2 
16549 1  68021 1  235623 2 
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16551 2  68070 3  235626 1 
16559 1  68135 1  235674 1 
16561 2  68198 2  236798 1 
16563 2  68279 1  237175 1 
16568 1  68291 1  237178 1 
16571 1  68294 1  237500 2 
16574 1  68379 3  237615 1 
16580 3  68401 19  237806 2 
16594 1  68420 1  237831 2 
16634 1  68490 1  237860 2 
16644 1  68505 1  237898 1 
16649 1  68553 3  237928 1 
16653 1  68556 2  237940 1 
16679 1  68563 1  238023 1 
16706 2  68591 1  238055 1 
16728 2  68655 2  238247 2 
16777 1  68703 1  239099 1 
16796 1  68708 1  239122 1 
16801 1  68729 1  239134 1 
16818 1  68732 3  239337 1 
16818 1  68750 4  239420 1 
16834 2  68775 2  239556 3 
16847 1  68778 1  239719 2 
16871 1  68795 2  240034 1 
16875 1  68842 2  240880 2 
16881 4  68846 1  241066 1 
16882 2  68879 1  241112 1 
16885 1  68922 1  241159 1 
16890 1  68926 3  241201 1 
16905 1  68938 4  241274 3 
16912 1  68968 4  241431 1 
16924 6  69024 1  241489 1 
16969 2  69101 2  241494 1 
16971 3  69192 1  241589 2 
16973 1  69207 1  241694 1 
16976 1  69282 2  242202 1 
16997 1  69398 1  242362 1 
17079 2  69536 2  242409 1 
17125 1  69574 1  242443 1 
17127 1  69634 1  242502 1 
17160 1  69662 2  242669 1 
17165 1  69663 2  242726 5 
17171 1  69684 5  242939 1 
17179 1  69719 1  242960 1 
17220 1  69724 2  243277 1 
17222 1  69743 1  243407 1 
17250 1  69802 4  243537 5 
17251 9  69807 1  244059 3 
17258 1  69837 1  244329 2 
17259 2  69847 1  245000 1 
17279 2  69863 3  245109 1 
17283 1  69922 1  245269 2 
17295 1  69940 1  245670 1 
17299 1  69976 1  245827 1 
17346 1  70103 1  245860 1 
17354 3  70118 1  245880 1 
17364 4  70120 1  246179 1 
17385 1  70208 3  246190 2 
17389 1  70225 2  246257 1 
17523 4  70297 2  246313 1 
17524 2  70300 1  246727 1 
17535 2  70351 4  246728 1 
17536 3  70354 1  246779 16 
17540 2  70355 1  252912 1 
17685 1  70358 1  252973 1 
17686 1  70450 2  257979 2 
17756 6  70530 1  258156 1 
17762 3  70561 1  258925 1 
17764 1  70611 1  260296 1 
17765 1  70645 1  260315 1 
17769 2  70661 1  263803 1 



  227 

17773 1  70673 6  264064 2 
17776 2  70676 1  266692 1 
17827 1  70696 1  266744 1 
17857 1  70827 1  266781 2 
17873 4  70846 2  268379 1 
17874 5  70894 1  268482 1 
17879 1  71007 3  268782 2 
17883 1  71059 1  268857 1 
17884 1  71147 1  268878 1 
17885 3  71148 2  268903 1 
17886 2  71302 1  268977 1 
17896 1  71330 3  269113 2 
17906 1  71336 1  269224 1 
17909 6  71351 2  269254 2 
17919 1  71354 2  269275 1 
17921 2  71355 1  269400 4 
17933 1  71365 1  269437 2 
17937 2  71382 1  269582 1 
17938 1  71389 2  269587 4 
17951 2  71435 2  269615 3 
17952 2  71458 2  269682 1 
17966 2  71544 1  269695 4 
17967 1  71567 1  269823 1 
17968 1  71602 1  270076 1 
17996 2  71609 1  270118 1 
18000 2  71623 1  270120 1 
18004 1  71675 2  270627 1 
18022 3  71702 4  270757 1 
18023 2  71710 2  271209 1 
18029 1  71713 1  271564 1 
18036 1  71715 1  271639 1 
18039 1  71722 4  271786 1 
18127 1  71729 1  276865 4 
18128 1  71752 2  277468 2 
18130 3  71760 1  277939 1 
18143 1  71770 2  278174 1 
18174 2  71790 1  280645 1 
18181 2  71862 1  317677 2 
18189 1  71868 1  319188 1 
18190 2  71876 1  319217 1 
18191 1  71902 1  319504 2 
18193 1  71946 1  319586 1 
18195 1  71991 1  319636 1 
18201 1  71999 2  319748 1 
18220 1  72061 2  320091 1 
18222 1  72145 2  320100 1 
18226 1  72149 1  320119 2 
18241 3  72151 1  320226 3 
18301 1  72194 1  320244 4 
18312 1  72199 3  320267 2 
18386 6  72401 4  320495 1 
18412 1  72475 1  320595 3 
18424 3  72479 1  320615 1 
18452 1  72560 3  320634 1 
18479 1  72605 3  320661 1 
18481 1  72667 1  320718 1 
18484 4  72668 2  320790 1 
18504 1  72720 1  320799 1 
18508 2  72749 14  320806 1 
18510 1  72754 1  320864 4 
18514 1  72823 2  320951 1 
18519 2  72828 2  321006 1 
18521 3  72831 4  327655 2 
18550 2  72843 1  327957 4 
18567 9  72999 5  327978 1 
18573 1  73078 1  328424 3 
18575 1  73106 1  328572 1 
18578 2  73122 2  328699 1 
18583 1  73166 2  328795 1 
18585 1  73254 1  329251 2 
18606 2  73261 1  329384 1 



  228 

18607 1  73332 5  329421 1 
18611 1  73340 4  329828 1 
18647 2  73381 5  329910 2 
18670 1  73382 1  330064 1 
18675 1  73430 1  330177 1 
18703 1  73542 2  330189 1 
18705 1  73647 1  330260 1 
18707 3  73674 1  330409 2 
18709 1  73690 1  330627 4 
18710 1  73750 3  330830 1 
18724 1  73804 1  330962 2 
18725 1  73945 1  331535 1 
18739 1  73998 3  332221 1 
18741 2  74007 1  333564 3 
18759 1  74019 3  333654 3 
18762 3  74044 1  333883 2 
18770 1  74103 3  338354 1 
18781 2  74104 1  338365 2 
18786 1  74112 1  338521 4 
18795 1  74121 1  353187 1 
18803 2  74145 2  353234 1 
18806 1  74178 1  353236 1 
18807 2  74180 1  360213 1 
18810 2  74198 1  380711 1 
18822 2  74203 2  380753 5 
18828 1  74204 2  380855 1 
18854 2  74205 1  380969 1 
18857 5  74270 1  381107 5 
18861 2  74309 2  381199 2 
18971 1  74340 3  381246 2 
18973 2  74347 1  381280 1 
18984 1  74351 1  381287 3 
18986 4  74365 1  381405 1 
18987 1  74370 1  381406 2 
19025 1  74374 1  381569 1 
19039 2  74442 1  381591 2 
19046 13  74525 2  381626 2 
19073 2  74552 1  381628 1 
19085 4  74616 1  381680 1 
19087 1  74646 4  381686 1 
19116 7  74760 2  381801 2 
19125 1  74762 2  381833 1 
19128 2  74769 1  381924 2 
19167 1  74776 1  382045 2 
19201 1  74782 2  382066 1 
19205 1  74840 1  382113 1 
19206 1  75051 3  382209 1 
19230 3  75079 1  382236 1 
19250 4  75212 1  382252 2 
19256 1  75273 1  382253 1 
19266 2  75288 1  382864 3 
19267 1  75317 1  383619 1 
19270 1  75388 1  384220 1 
19272 1  75475 2  394430 5 
19273 1  75497 1  394433 5 
19277 2  75570 1  394434 5 
19280 1  75578 2  404710 1 
19283 1  75580 3  406218 1 
19300 1  75599 4  408065 1 
19360 1  75671 1  414089 2 
19377 1  75770 3  414872 1 
19395 2  75778 3  415115 2 
19668 3  75860 1  432442 3 
19679 1  76014 1  432467 4 
19682 3  76089 3  432508 1 
19691 3  76113 1  432555 2 
19699 1  76233 2  432736 1 
19699 1  76251 1  432779 2 
19700 1  76265 1  432825 3 
19701 1  76295 1  433016 5 
19702 3  76306 1  433182 2 



  229 

19714 1  76367 2  433215 3 
19726 1  76376 1  433247 1 
19730 2  76390 1  433416 2 
19731 1  76484 2  433466 2 
19876 2  76551 2  433700 1 
20112 1  76571 1  433719 8 
20181 1  76574 1  433801 5 
20185 7  76582 1  434171 5 
20190 2  76612 1  434179 1 
20216 2  76686 2  434325 3 
20226 1  76719 2  434446 2 
20230 2  76781 1  434459 1 
20239 3  76826 1  434674 2 
20256 2  76843 1  434689 1 
20265 1  76884 1  434766 5 
20269 1  76886 2  435285 1 
20271 2  76927 1  435529 2 
20274 1  77011 1  474156 2 
20300 1  77044 1  504193 4 
20301 4  77097 3  544678 1 
20317 1  77531 2  544696 1 
20346 1  77559 1  544748 3 
20353 2  77569 2  544817 3 
20356 1  77593 1  544988 43 
20371 1  77626 2  545007 43 
20382 1  77632 1  545288 3 
20390 2  77669 1  545370 1 
20391 1  77683 2  545388 3 
20393 1  77864 4  545389 1 
20397 2  77945 1  545428 1 
20429 1  77980 1  545471 1 
20438 1  78038 1  545554 1 
20466 2  78283 1  545637 1 
20480 2  78304 2  545693 1 
20498 1  78376 1  545762 3 
20504 1  78459 1  545812 2 
20505 1  78473 3  545913 1 
20509 1  78771 2  546118 4 
20512 1  78787 1  546144 2 
20527 4  78816 1  546546 5 
20534 3  78829 2  546912 1 
20535 1  78891 3  546913 1 
20536 1  78911 1  550619 1 
20541 1  78926 1  574418 4 
20557 1  78933 2  574438 2 
20562 1  79043 1  594844 1 
20563 1  79202 2  619331 4 
20568 1  79221 1  620078 5 
20583 4  79565 1  622976 1 
20587 1  80290 1  623131 4 
20591 1  80879 1  623272 1 
20595 2  80890 4  623281 1 
20602 2  80904 1  623474 1 
20603 1  80906 1  623661 1 
20620 1  80911 1  624860 4 
20623 3  80915 1  624866 2 
20624 1  81840 2  625321 2 
20658 1  83560 3  626316 9 
20681 1  83672 1  627081 2 
20683 3  83679 3  627111 2 
20684 1  83703 5  627576 2 
20700 1  83704 1  627914 4 
20701 1  83766 3  630146 4 
20703 1  83925 1  630579 1 
20704 1  83996 3  632687 1 
20715 2  84092 3  637027 1 
20719 6  84585 1  637515 5 
20740 1  93691 1  639774 3 
20775 5  93694 2  639781 1 
20778 1  93697 4  641376 2 
20815 1  93736 2  654362 1 



  230 

20852 2  93742 3  664723 1 
20869 1  93760 1  664725 1 
20878 1  93761 2  664987 10 
20912 1  93841 1  665210 2 
20916 1  93871 2  665229 4 
20918 3  93968 1  665902 1 
20972 1  94067 1  665943 3 
20981 2  94089 3  666060 1 
21335 2  94176 1  666168 2 
21343 2  94178 1  666173 1 
21355 1  94180 1  667214 4 
21356 1  94187 1  668030 5 
21374 1  94190 1  668039 4 
21391 1  94191 1  672911 1 
21411 1  94217 1  751865 1 
21415 2  94282 2  791260 8 
21417 4  97130 2  100037282 1 
21423 1  97287 2  100038804 1 
21425 7  98660 3  100038948 1 
21453 1  98999 1  100038993 4 
21454 1  99151 1  100039008 1 
21462 2  99152 1  100039089 9 
21665 1  99371 1  100039672 2 
21676 1  99377 2  100039948 1 
21677 1  99633 2  100040276 1 
21679 2  99683 1  100040591 10 
21683 2  100072 4  100040861 1 
21685 1  100090 1  100040972 1 
21744 1  100213 7  100041077 1 
21752 1  100561 2  100041379 1 
21754 4  100683 1  100041574 2 
21770 1  100705 1  100041586 2 
21787 1  100710 1  100041621 2 
21802 4  100737 1  100041639 2 
21807 1  100978 1  100041658 1 
21814 1  100986 2  100043100 5 
21815 2  101100 1  100048885 1 

 

 

9. siRNA screen – array CGH results. 

 -2 indicates loss of two alleles, -1 loss of one allele, 0 allelic balance, 1 gain 

of one allele, 2 gain of two alleles: 
GENE 

ID 
GENOMIC COPY 

NUMBER 
 GENE 

ID 
GENOMIC COPY 

NUMBER 
 GENE ID GENOMIC COPY 

NUMBER 
11298 1  22334 -1  80910 1 
11302 1  22337 1  80911 1 
11303 -1  22339 -1  80979 1 
11304 1  22344 1  80981 1 
11306 -1  22350 1,0  80987 -1 
11364 1  22354 -1  81000 -1 
11416 1  22355 1  81004 1 
11418 1  22359 1  81535 1 
11419 1  22362 1  81600 1 
11428 -1  22363 1  81703 1 
11429 1  22365 1  81840 1 
11430 1  22367 1  81897 -1 
11434 1  22375 1  81904 -1 
11441 -1  22376 -1  81905 -1,0 
11471 -1  22378 1  81906 -1 
11472 -1  22384 1  83379 1 
11474 1  22385 1  83383 1 
11475 1  22388 1  83396 1 
11479 1  22393 1  83398 1 
11481 -1  22401 1  83454 -1 
11482 1  22402 1  83456 1 



  231 

11487 -1  22410 1  83486 -1 
11488 1  22411 -1  83490 1 
11489 -1  22412 1  83493 -1 
11490 1  22414 1  83560 1 
11495 -1  22415 1  83563 -1 
11496 1  22416 1  83603 -1 
11500 -1  22418 -1  83669 -1 
11501 -1  22422 1  83674 1 
11504 1  22423 1  83679 1 
11512 1  22439 -1  83702 -1 
11513 1  22589 -1  83704 1,0 
11514 1  22590 -1,0  83762 1 
11515 1  22594 -1  83766 1 
11518 1  22598 -1  83767 1,0 
11519 -1,0  22599 -1  83797 1 
11522 1  22601 -1  83925 1 
11529 1  22608 -1,0  83946 -1 
11532 1  22619 -1  83984 1 
11534 -1  22627 1  83996 -1 
11542 -1,0  22628 1  84004 -1 
11544 1  22629 1  84095 1 
11549 -1  22632 1  84111 -1 
11551 1  22639 -1  84112 1 
11565 1  22644 1  84505 1 
11569 -1  22658 1  84585 -1 
11595 -1  22661 1  85031 1 
11600 1  22668 1  93679 1 
11605 -1  22680 1  93681 -1 
11607 -1  22688 -1  93683 -1 
11608 1  22691 -1  93684 1 
11624 -1  22697 1  93685 1 
11632 1  22719 -1  93686 1 
11639 -1  22724 1  93697 -1 
11651 1  22756 -1  93721 1 
11652 -1  22757 1  93732 -1 
11655 -1  22758 -1  93742 1 
11656 -1  22762 1  93746 -1 
11668 1  22764 -1  93747 -1 
11694 1  22770 1  93761 -1 
11699 -1  22773 -1  93762 1 
11717 -1  22780 1  93835 1 
11720 -1  22787 -1  93836 -1 
11722 1  22788 1  93837 -1 
11732 1  23790 1  93841 -1 
11736 1  23794 1  93871 1 
11744 -1  23802 1  93961 1 
11745 1  23806 -1  94043 -1 
11747 1  23806 -1  94045 1,0 
11750 -1  23807 -1  94061 1 
11752 -1  23821 -1  94067 1 
11754 1  23831 1  94088 -1 
11765 1  23834 1  94093 1 
11766 -1  23849 -1  94093 1 
11767 1  23857 1  94112 1 
11768 -1  23859 -1  94180 -1 
11769 1  23871 -1  94181 -1 
11771 -1  23873 -1  94187 1 
11772 -1  23881 1  94190 -1 
11773 1  23888 -1  94191 -1 
11774 -1  23908 1  94216 -1 
11775 -1  23912 1  94219 1 
11778 -1  23920 1  94245 -1 
11781 1  23921 1  94246 -1 
11784 -1  23923 1  94253 -1 
11785 -1  23938 -1  94279 1 
11792 -1,0  23947 -1  94280 1 
11796 -1  23948 1  94281 1 
11797 -1  23950 1  94315 1 
11798 -1,1  23955 -1  94353 -1 
11799 1  23959 -1  97064 1 
11801 -1,1  23960 1  97212 1 



  232 

11803 -1  23961 1  97243 1 
11804 -1  23962 1  97484 1 
11806 -1,0  23963 -1  97487 1 
11812 -1  23970 1  97541 -1 
11815 1  23971 1  97863 -1 
11816 -1  23972 1  97884 -1 
11818 1  23983 1  99439 1,0 
11819 1  23986 -1  99470 1 
11820 1  23988 -1  99526 1 
11830 1  23989 1  99571 1 
11831 1  23993 -1  99586 1 
11832 -1  23999 -1  99633 1 
11835 -1  24000 1  99683 1 
11836 -1  24004 -1  99696 1 
11840 1  24017 1  99709 1 
11841 1  24018 -1  99712 1 
11842 1  24044 -1  99738 1 
11843 -1  24045 1  99889 1 
11847 1  24046 -1,0  99929 1 
11848 -1  24050 1  100019 -1 
11854 -1,1  24051 1  100102 -1 
11856 -1  24053 -1  100121 -1 
11857 -1  24055 1  100182 -1 
11859 -1  24056 -1  100213 -1 
11863 -1,1  24058 -1  100434 -1 
11864 -1  24059 -1  100561 1 
11865 -1  24060 -1  100609 1 
11877 1  24061 -1  100637 1 
11878 -1  24064 -1  100678 1 
11881 -1  24069 1  100683 1 
11883 1  24075 -1  100705 1 
11886 -1,0  24086 1  100710 1 
11891 -1  24087 1  100715 -1 
11906 1  24109 1  100732 1 
11908 1  24115 1  100737 1 
11920 -1  24116 1  100756 1 
11928 1  24127 -1  100763 1 
11933 -1  24131 -1  100910 1 
11936 -1  26358 1  100972 1 
11937 -1  26359 1  100978 1 
11938 1  26362 -1  100986 1 
11944 -1  26363 -1  101437 -1 
11950 1,0  26364 1  101471 -1 
11951 1,0  26379 1  101488 -1 
11957 1  26380 1  101490 -1 
11958 1  26385 -1  101497 -1 
11966 1  26395 -1  101540 -1 
11972 1  26395 -1  101568 -1 
11975 -1,1  26399 1  101592 -1 
11977 -1  26401 -1  101613 -1 
11980 1  26401 -1  101631 -1 
11982 -1  26403 1  101700 -1 
11987 1  26404 1  101744 -1 
11991 1,0  26406 1  101772 -1 
11992 -1  26409 -1  101809 -1 
12006 1  26411 -1  102093 1 
12007 1  26413 1  102182 1 
12012 -1  26414 1  102339 1 
12013 1  26417 -1  102414 -1 
12014 -1  26419 -1  102423 -1 
12015 1  26422 1  102436 -1 
12017 -1  26425 1  102448 -1 
12020 1  26430 -1  102502 -1 
12023 -1  26431 1  102545 -1 
12028 -1  26432 -1  102570 -1 
12032 1  26433 1  102607 -1 
12035 -1  26440 -1  102626 -1 
12036 -1  26442 1  102680 -1 
12038 1  26446 1  102774 -1 
12039 -1  26448 1  102791 -1 
12040 -1  26457 1  103537 1 



  233 

12041 -1  26459 -1  103677 1 
12053 1  26462 1  103743 1 
12054 1  26465 -1  104099 -1 
12062 1  26557 -1  104110 -1 
12070 -1  26559 1  104112 1 
12091 -1  26563 -1  104156 1 
12116 -1  26564 -1  104158 1 
12123 1  26565 1  104174 1 
12124 1,0  26570 1  104175 -1 
12143 -1  26757 -1  104184 1 
12144 -1  26875 1  104245 -1 
12145 -1  26876 1  104263 1 
12153 -1  26879 1  104318 1 
12155 -1  26885 -1  104382 1 
12159 -1  26887 1  104383 1 
12160 -1  26896 -1  104384 -1 
12161 -1  26905 -1  104394 1 
12166 -1  26909 -1,0  104416 -1 
12167 1  26912 1  104443 1 
12169 -1  26914 -1  104445 1 
12173 -1  26918 -1  104759 1 
12175 -1  26926 -1  104776 1 
12176 -1  26931 1  104816 1 
12177 -1,1  26932 1  104831 -1 
12180 1  26939 -1  104859 1 
12182 1  26942 1  104884 1 
12189 1  26944 -1  104910 1 
12190 1  26946 -1  105148 -1 
12192 1,0  26951 -1  105245 -1 
12209 -1  26992 1  105355 -1 
12212 -1  27008 1  105377 -1 
12224 -1  27015 -1  105428 -1 
12229 -1  27027 -1,1  105445 -1 
12234 1  27029 1  105446 -1 
12257 1  27050 -1  105501 -1 
12265 1  27052 -1  105504 -1 
12274 1  27057 -1  105522 -1 
12279 1  27060 1  105590 -1 
12282 -1  27206 -1  105663 -1 
12286 1  27225 1  105670 -1 
12288 1,0  27260 1  105675 -1 
12289 -1  27267 -1  105689 -1,0 
12291 1  27277 1  105727 1 
12292 -1,0  27281 1  105785 1 
12293 1  27356 1  105787 1 
12294 -1  27357 1  105837 1 
12295 1  27359 -1  105853 1 
12297 1  27360 1  105988 1 
12300 1  27364 1  106039 1 
12306 -1  27371 1  106200 1 
12307 -1  27373 1  106298 1 
12317 1  27376 1,0  106344 1 
12319 -1  27384 -1  106347 1 
12325 -1  27388 -1,0  106369 1 
12332 1  27399 -1  106389 1 
12333 1  27401 1  106407 1 
12337 -1  27404 1  106957 1,0 
12338 -1  27405 1  107141 1 
12339 -1  27406 1  107173 1 
12340 1  27414 -1  107182 1 
12348 -1  27416 1  107221 1 
12349 1  27419 1  107260 1 
12350 1  27421 -1  107272 1 
12351 1  27426 1  107321 1 
12354 1  27681 1  107328 1 
12361 -1  27801 1  107338 1 
12363 -1  27965 -1  107351 1 
12364 -1  27979 1  107358 1 
12368 1  28000 1  107368 1 
12369 1  28018 -1  107371 1 
12373 1  28030 1  107375 1 



  234 

12374 1  28035 1  107448 -1 
12380 -1  28042 1  107476 1 
12387 -1  28080 1  107503 -1 
12390 -1  28114 -1  107522 1 
12394 1  28135 -1  107568 -1 
12395 -1  28200 -1  107589 1 
12400 1  28248 -1  107650 1 
12402 -1  28250 -1  107656 1 
12406 -1  28253 -1  107684 -1 
12408 1  28254 -1  107702 -1 
12412 1  29806 -1  107751 -1 
12416 1  29810 -1  107753 1 
12418 1  29811 -1  107767 -1 
12419 1  29815 1  107815 -1 
12424 -1  29817 1  107817 1 
12425 1  29820 -1,0  107823 1 
12426 -1  29849 1  107831 1 
12442 -1  29857 1  107868 1 
12447 -1  29858 1  107869 1 
12453 1  29859 1  107889 -1 
12454 1  29861 -1  107934 -1 
12455 1  29864 -1  107975 1 
12457 1  29867 1  107976 1 
12460 1  29871 -1  107993 -1 
12462 1  29875 -1  108012 -1 
12465 1  30046 -1  108015 -1 
12467 1  30049 1  108058 1 
12476 -1  30054 -1  108067 -1 
12478 -1  30806 -1  108069 1 
12481 1  30838 1  108071 -1 
12483 -1  30841 1  108075 -1 
12491 1  30926 -1  108079 -1,1 
12492 1  30942 1  108083 1 
12494 1  30945 1  108086 1 
12495 1  30946 -1  108096 -1 
12499 1  30947 1  108097 1 
12505 -1,0  30949 -1  108098 -1 
12507 1  30952 -1  108099 1 
12508 1  30959 -1  108100 1 
12511 1  30962 -1  108101 1 
12517 -1  50490 -1  108105 1 
12518 -1  50505 1  108116 -1 
12519 1  50523 -1  108124 -1 
12520 -1  50524 -1  108138 -1 
12522 -1  50527 -1  108148 1 
12524 1  50528 1  108153 -1 
12526 1  50706 1  108154 -1 
12530 -1  50720 -1  108155 -1 
12539 -1  50759 -1  108156 1 
12545 1  50760 -1  108672 -1 
12550 1  50765 1  108682 1 
12554 1  50769 -1  108723 1 
12556 1  50772 -1,1  108737 -1 
12557 -1  50776 1  108760 1 
12560 1,0  50779 1  108837 -1 
12562 1  50780 -1  108902 1 
12563 1  50786 -1  108903 1 
12565 1  50787 -1,0  108927 1 
12568 1  50788 1,0  108989 1,0 
12571 1  50789 -1  109052 1 
12578 -1  50790 -1,0  109075 1 
12585 -1  50791 1  109093 -1,0 
12591 1  50794 -1  109113 -1,1 
12592 -1  50796 1  109135 -1 
12593 -1,1  50797 -1  109136 1 
12614 1  50798 -1  109151 1 
12630 1  50868 -1  109263 -1 
12647 -1  50877 -1  109264 -1 
12649 -1  50883 1  109270 1 
12652 1  50887 -1  109305 1 
12655 1  50905 -1  109331 -1 
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12660 1  50907 1  109333 1,0 
12662 -1  50911 1  109552 1 
12669 1  50916 -1  109594 -1 
12671 -1  50931 1  109620 -1 
12677 1  50933 -1  109637 -1 
12684 -1  50934 -1  109652 -1 
12704 1  50995 -1  109674 1 
12709 1  50997 1,0  109689 -1 
12715 -1  51789 1  109700 -1 
12722 1  51795 -1  109711 1 
12724 1  51797 -1  109731 -1 
12725 1  51798 -1  109754 1 
12727 -1  51799 1  109801 -1 
12728 -1  51813 -1  109857 1 
12729 -1  51886 1  109900 1,0 
12737 1,0  52024 1  109904 -1 
12738 -1  52028 1  109905 1 
12745 1  52033 -1  109910 1 
12748 1,0  52064 1  109929 1 
12752 -1  52118 -1  109934 1 
12753 1  52150 -1  109979 1 
12757 -1  52187 -1  110006 1 
12759 -1,0  52206 1  110033 -1 
12763 -1  52335 1  110052 -1 
12764 -1  52389 -1  110075 1 
12769 -1  52397 1  110082 1 
12771 -1  52398 1  110094 -1 
12773 -1  52432 -1  110095 1 
12775 1  52585 -1  110115 1 
12780 1  52615 1  110119 -1 
12788 1  52686 1  110135 1 
12801 -1  52793 1  110173 1 
12804 -1  52830 1  110197 1 
12807 1  52897 1  110213 1 
12814 1  53310 -1  110265 -1 
12816 -1  53313 1  110308 1 
12818 1  53314 1,0  110310 1 
12819 -1  53319 1  110323 -1 
12821 1,0  53320 -1  110350 -1 
12824 1  53321 1  110355 1 
12830 -1  53322 -1  110380 -1 
12836 -1  53323 1  110382 -1 
12840 -1  53333 -1  110385 1 
12842 1  53334 1  110391 1 
12845 1  53357 1  110446 -1 
12846 1  53378 -1  110521 -1 
12856 1  53380 -1  110524 1 
12858 -1  53381 -1  110596 -1 
12864 1  53412 1  110606 1 
12869 -1  53413 1  110616 1 
12873 1  53417 -1  110637 -1 
12874 1  53419 1  110639 -1 
12876 1  53420 -1  110651 -1 
12889 1  53611 1  110749 1 
12891 -1  53612 1  110784 1 
12896 -1  53614 -1  110789 -1 
12904 1  53618 1  110821 -1 
12909 1  53622 1,0  110826 -1 
12914 1  53623 -1  110834 -1 
12919 -1  53627 -1  110835 -1 
12921 1  53859 1  110842 -1,0 
12927 1  53860 1  110855 1 
12931 1  53861 1  110862 1 
12933 1  53867 -1  110877 1 
12934 -1  53868 1  110880 1 
12961 1  53880 -1  110886 -1 
12962 1  53883 1  110891 -1 
12970 1  53892 1  110902 -1 
12972 1  53970 1  110948 1 
12985 1  54004 -1  112405 1 
12988 -1  54006 -1  112406 -1,1 
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12995 1,0  54120 1  112419 1 
13000 1  54122 -1  113868 -1 
13003 -1  54124 1  114230 1 
13009 -1  54128 1  114255 1 
13016 1  54130 1  114304 -1 
13018 1  54135 -1  114479 1 
13026 1  54140 1  114642 1 
13030 -1  54152 1  114643 1 
13033 -1  54153 1  114664 1 
13034 -1,0  54156 -1  114671 -1 
13036 -1  54169 -1  114674 1 
13040 1  54195 1  114713 -1 
13043 -1  54196 -1  114714 1 
13047 1  54200 -1  114741 -1 
13048 -1,1  54201 1  114873 -1 
13051 -1  54214 -1  114874 -1 
13056 1  54215 1  114875 -1 
13058 -1  54326 -1  114886 1 
13072 1  54343 -1  114893 1 
13075 -1  54352 1  116701 1 
13076 -1  54357 -1  116810 1 
13088 -1  54366 -1  116852 -1 
13089 -1  54367 1  116870 1 
13090 -1  54369 -1  116873 1 
13095 1  54375 1  116904 -1 
13096 1  54376 -1  116939 1 
13097 1  54377 1  116940 -1 
13098 1  54378 -1  116972 1 
13101 1  54381 1  117109 1 
13107 -1  54391 1  117146 1 
13108 -1  54393 -1,0  117147 -1 
13110 -1  54403 1  117149 -1 
13113 1  54446 1  117160 -1,1 
13114 1  54447 1  117589 -1 
13116 1  54473 -1  117590 1 
13117 -1  54524 1  117591 1 
13120 -1  54525 1  118446 1 
13123 1  54526 1  118453 1 
13131 -1  54608 -1  140475 -1 
13132 1  54611 -1  140477 -1 
13134 -1  54614 1  140481 -1 
13135 -1  54616 -1  140493 1,0 
13138 -1  54631 -1  140498 1 
13142 1  54632 -1  140557 1 
13143 -1  54633 -1  140577 -1 
13162 -1  54645 -1  140580 -1 
13171 1  54652 -1  140630 -1 
13172 -1  54672 1  140723 1 
13178 1  54673 1  140780 1 
13190 -1  54683 1  140781 -1 
13194 1  54698 -1  140806 -1 
13205 -1  54720 1  140858 -1,0 
13206 -1  55925 -1  140859 1 
13209 -1  55936 -1  140887 1 
13350 1  55944 1  140919 -1 
13353 1  55946 -1  142688 -1 
13356 1  55947 1  170439 1 
13358 1  55960 1  170472 1 
13360 -1  55980 1  170574 1 
13361 -1  55981 -1  170625 -1 
13363 1  55982 1  170644 1 
13370 -1  55984 1  170722 -1 
13383 1  55988 -1  170733 -1 
13383 1  55991 -1  170737 1 
13384 1  55992 -1  170743 -1 
13386 1  55993 1  170744 -1 
13389 -1  55994 1  170745 -1 
13393 1  56032 -1  170749 1 
13394 1  56041 1  170750 1 
13400 -1  56043 -1  170752 -1 
13401 -1  56044 -1  170757 1 
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13404 1  56048 -1  170762 1 
13405 -1  56068 -1  170767 1 
13409 1  56077 1  170770 -1 
13411 1  56078 -1  170790 1 
13417 -1  56085 -1  170822 1 
13421 -1  56092 -1  170828 -1 
13424 1  56094 -1  170930 -1 
13430 -1  56149 1  171166 1 
13433 -1,0  56173 -1,1  171180 1 
13446 -1  56175 1  171196 -1 
13447 1  56183 1  171200 1 
13449 -1  56189 -1  171202 1 
13478 -1  56196 -1  171209 1 
13483 1  56209 -1  171210 1 
13486 1  56212 -1  171211 -1 
13489 -1  56215 -1  171238 -1 
13497 -1  56216 -1  171261 -1 
13522 -1  56217 1  171286 1 
13531 -1  56228 -1  171429 -1,0 
13544 1  56233 1  171504 -1 
13548 1  56274 1  191578 1 
13549 1  56275 1  192119 1 
13557 -1  56278 -1  192157 1 
13595 -1  56280 -1  192159 -1,1 
13601 1  56289 -1  192167 1 
13602 1  56291 -1  192173 1 
13605 1  56294 -1  192176 -1,0 
13607 -1  56295 -1  192195 1 
13610 -1  56305 1  192232 1 
13612 -1  56309 1  192236 1 
13614 -1  56312 -1  192287 -1 
13631 -1  56314 1  192654 1 
13636 1,0  56315 -1  192656 -1 
13639 1  56316 1  192657 -1 
13641 -1  56317 1  192663 -1 
13644 -1  56318 -1  192775 1 
13645 1  56321 1  192897 1 
13663 -1  56322 1  192970 1 
13665 1  56325 1  192986 1 
13666 1  56330 -1  193034 1 
13669 1  56335 -1  193385 -1 
13682 1  56347 -1  194590 -1 
13684 1  56349 -1  194744 -1 
13709 -1,1  56350 1  195018 1 
13712 -1  56356 1  195646 -1 
13713 0,1,-1  56357 2  195727 -1 
13716 1  56358 1  207151 1 
13717 1  56373 -1  207165 1 
13722 1  56375 1  207181 -1 
13728 1  56378 1,0  207212 -1 
13797 1  56380 -1  207214 1 
13799 1  56382 -1  207215 1 
13803 -1  56388 1  207352 -1 
13809 1  56389 1,0  207425 -1 
13813 -1  56401 -1  207521 1 
13841 -1  56403 -1  207565 1 
13845 1  56404 -1  207596 -1 
13846 1  56405 1  207728 -1 
13850 -1  56417 1  207742 1 
13852 1  56419 -1  207777 1 
13856 1  56420 -1  207785 1 
13858 -1  56421 -1  207839 1 
13859 1  56426 1  207965 1 
13860 -1  56427 1  208080 -1 
13866 1  56430 1  208084 -1 
13870 -1  56433 1  208092 1 
13871 -1  56438 1  208104 1 
13874 1  56440 -1  208117 -1 
13875 -1  56445 1  208144 1 
13876 1  56447 1  208146 1 
13877 1  56448 1  208188 1 
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13884 1,0  56449 -1  208194 -1 
13885 -1  56451 1  208211 1 
13897 1  56452 1  208440 -1 
13909 1  56453 1  208449 1 
13983 1  56454 1,0  208501 1 
13984 -1  56456 1  208583 -1 
14000 1  56458 1  208595 1 
14011 -1  56459 -1  208606 1 
14026 1  56469 -1  208628 1 
14027 1  56473 1  208643 1 
14042 1  56494 1  208666 -1,0 
14055 1  56495 1,0  208691 1 
14057 -1  56501 -1,0  208846 1 
14062 -1  56503 -1  208869 -1 
14066 1  56506 -1  208890 -1 
14071 -1  56527 1  208898 -1 
14073 -1  56529 -1  208936 1 
14083 1  56532 -1  208943 -1 
14084 -1  56542 -1  208982 -1 
14085 -1  56543 1  208994 -1 
14086 1  56546 -1  209005 -1 
14088 -1  56551 1  209018 1 
14102 1,0  56612 1  209039 1 
14104 1  56613 1  209091 -1 
14114 1  56615 -1  209186 -1 
14129 1  56626 1  209195 1 
14132 -1  56637 1  209224 -1 
14137 -1  56642 1  209239 1 
14148 -1  56643 -1  209318 1 
14149 1  56696 1  209354 1 
14155 -1  56703 -1  209357 1 
14159 -1  56705 -1  209446 -1 
14161 1  56706 1  209588 1 
14163 -1  56708 1  209707 1 
14165 -1  56710 -1  209737 -1 
14167 1  56711 -1,0  209776 -1 
14168 -1  56715 1  210004 1 
14169 -1  56722 1  210009 -1 
14173 1  56727 1  210044 -1 
14174 -1  56734 -1  210106 -1 
14175 -1  56739 -1  210108 -1 
14176 1  56747 1  210126 1 
14180 -1  56749 1  210135 -1 
14183 -1  56752 -1,0  210162 -1 
14186 -1  56773 1  210274 -1 
14198 -1  56774 -1  210297 -1 
14204 -1  56788 -1  210376 -1 
14205 -1  56790 1  210529 1 
14208 1  56794 -1  210530 1 
14211 -1  56805 -1  210544 1 
14218 1  56808 -1  210992 -1 
14230 1  56839 1  211064 1 
14232 1  56843 -1  211134 1 
14238 -1  56847 -1  211147 1 
14247 -1  56857 -1  211151 1 
14254 1  56873 1  211208 -1 
14255 1  56874 1  211253 -1 
14263 1  57014 -1  211286 -1 
14265 -1  57080 1  211480 -1 
14266 -1  57230 1  211535 -1 
14275 -1  57246 -1  211548 -1 
14276 -1  57257 1  211578 -1 
14282 -1  57258 -1  211586 -1 
14283 1  57259 1  211612 -1 
14297 1  57265 1  211666 1 
14313 -1  57266 -1  211712 -1,0 
14314 1  57278 -1  211770 1 
14339 1  57279 -1  211949 -1 
14344 -1  57321 1  211978 1 
14348 -1  57342 -1  212032 -1 
14357 1  57344 1  212111 -1 
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14359 1  57357 1  212167 1 
14362 1  57376 1  212285 1 
14365 -1  57377 2  212390 -1 
14368 1  57385 -1  212391 1 
14377 1  57423 1  212503 -1 
14387 1  57430 1,0  212528 1 
14388 1  57434 1  212880 -1 
14389 -1  57441 -1  212919 1 
14402 -1  57442 1  212974 -1 
14407 -1  57444 -1  212986 1 
14408 -1  57740 -1  212989 1 
14409 -1  57742 1,0  212996 1 
14422 1  57746 -1  212999 1 
14429 1  57748 -1  213011 -1 
14450 1  57749 1  213053 -1 
14453 -1  57765 1  213054 1 
14460 -1  57775 -1  213119 1 
14463 -1  57776 -1  213121 1 
14468 1  57810 -1  213208 -1 
14469 1  57811 -1  213211 -1 
14473 1  57813 1  213311 -1 
14527 1  57837 1  213409 -1,0 
14528 -1  57912 1  213435 1 
14534 1  57914 1,0  213438 -1 
14537 1  57916 1,0  213439 -1 
14538 -1  58170 1  213498 1 
14544 1  58176 1  213582 1 
14560 -1  58178 1  213948 1 
14569 -1  58179 -1  213990 1 
14573 1  58193 1  214084 1 
14580 1  58194 -1  214111 -1 
14581 1  58200 1  214137 1 
14585 1  58206 -1  214162 -1 
14586 -1  58210 1  214254 -1 
14595 -1  58222 1  214292 1 
14600 1  58233 -1  214425 -1 
14605 -1  58234 1  214444 -1 
14611 -1  58235 -1  214523 -1 
14613 1  58242 -1  214531 -1 
14615 1,0  58245 -1  214572 1 
14618 -1  58249 1  214579 -1 
14623 -1  58522 1  214639 -1 
14629 -1  58805 1  214663 1 
14630 1  58807 -1  214669 1 
14634 -1  58810 -1  214766 -1 
14635 1  58861 -1  214897 -1 
14652 -1  58865 -1  215061 1 
14658 1  58988 -1,1  215113 1 
14661 -1  58992 -1  215114 1 
14664 -1  58994 1  215201 -1 
14673 1  59001 -1  215351 -1 
14674 1,0  59007 -1  215384 -1 
14675 1  59008 1  215418 -1 
14677 1  59009 1  215446 -1 
14678 -1  59015 -1,0  215476 1 
14679 1  59020 1,0  215512 1 
14681 1  59021 -1  215654 1 
14682 1  59024 -1  215707 1 
14686 1  59026 -1  216635 -1 
14696 1  59031 1  216964 1 
14697 -1  59033 1  216965 1 
14702 -1  59035 -1  216974 1 
14706 -1  59036 1  217026 1 
14709 -1  59040 1  217030 1 
14710 1,0  59042 1  217031 1 
14712 1  59044 1,0  217057 1 
14718 1  59044 1,0  217069 1 
14719 1  59045 1  217071 1 
14728 1,0  59046 -1  217109 1 
14731 1  59047 -1  217124 1 
14732 1  59047 -1  217127 1 
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14734 -1  59048 -1  217143 1 
14735 -1  59049 -1  217166 1 
14739 -1  59056 1  217198 1 
14745 -1  59079 -1  217207 1 
14747 1  59092 -1  217217 1 
14751 -1  59095 -1  217232 1 
14756 -1  59126 -1,0  217258 1 
14760 -1  59289 -1  217262 1 
14764 1  60322 -1  217265 1 
14766 1  60367 -1  217302 1 
14772 1  60504 -1  217304 1 
14773 1  60505 1  217316 1 
14784 1  60510 -1  217331 1 
14786 1  60527 1  217333 1 
14800 1  60534 -1  217342 1 
14802 -1  60595 -1  217344 1 
14803 -1  60596 1  217351 1 
14805 1  60599 -1  217353 1 
14809 -1  60613 -1  217356 1 
14811 1  63828 1  217364 1 
14812 -1  63857 1  217369 -1 
14813 1  63859 -1  217666 1 
14814 -1  63873 1  217716 1 
14824 1  64008 -1  217718 1 
14829 -1  64011 -1  217721 1 
14836 1  64051 1  217734 1,0 
14843 1  64113 1  217826 1 
14852 1  64176 -1  217837 1 
14858 -1,1  64209 1  217843 1 
14859 -1,0  64293 1  217864 1 
14860 -1  64296 1  217866 1 
14863 1  64297 -1  217882 1 
14869 1  64340 1  217944 1 
14870 1  64381 1  217980 -1 
14874 1  64383 -1  218030 -1 
14884 -1  64384 -1  218035 -1 
14886 1  64424 -1  218103 -1 
14904 1  64580 1  218138 -1 
14917 -1  64602 -1  218194 -1 
14918 -1  64652 -1  218203 -1 
14933 -1  64661 -1  218210 -1,0 
14936 -1  64705 1  218214 -1 
14938 -1  64706 1  218215 -1 
14945 -1  64833 -1  218232 -1 
15107 1  64918 -1,0  218236 -1 
15114 1  64929 -1  218268 -1 
15117 1  64945 1  218271 -1 
15163 1  65079 1  218294 -1 
15165 -1  65086 1  218343 -1 
15168 1  65098 -1  218397 -1 
15184 1  65107 -1  218440 -1 
15185 -1  65114 1  218441 -1 
15191 1  65221 1  218442 -1 
15194 1  65246 -1  218454 -1 
15201 1  65254 1  218461 -1 
15203 -1  65972 1  218490 -1 
15204 -1  65973 -1  218624 -1 
15209 -1  66046 1  218629 -1 
15211 -1  66053 1  218630 -1 
15212 -1  66065 -1  218699 -1 
15216 1  66069 -1  218756 -1 
15218 1  66073 -1  218772 -1 
15220 -1  66082 -1  218793 -1 
15221 -1  66101 -1  218811 -1 
15233 1,0  66105 1,0  218832 -1 
15234 1  66120 1  218850 -1 
15247 1  66138 1  218865 -1 
15251 1  66143 -1  218877 -1 
15257 1  66152 1  218885 -1 
15270 -1  66156 1  218914 -1 
15273 -1,0  66165 -1  218977 -1 
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15285 1  66171 1  219024 -1 
15288 -1  66177 -1,0  219103 -1 
15357 -1  66179 1  219114 -1 
15360 1  66185 -1  219135 -1 
15368 1  66190 -1  219150 -1 
15369 1  66194 1  219151 -1 
15371 1  66200 -1  219228 -1 
15377 -1  66204 1  223254 -1,1 
15408 1  66209 -1  223255 -1 
15410 1  66212 -1  223272 -1 
15416 1  66214 -1  223435 1 
15417 1  66222 -1  223453 1 
15422 1  66233 -1  223455 1 
15424 1  66234 1  223604 1 
15425 1  66235 -1  223649 1 
15427 1  66245 -1  223664 1 
15439 1  66246 -1  223669 1 
15442 1  66251 1  223690 1 
15450 -1  66313 1  223693 1 
15451 -1  66326 1,0  223701 1 
15452 -1  66333 -1  223722 1 
15458 -1  66335 1  223739 1 
15460 -1  66350 1  223753 1 
15461 -1  66354 1  223770 1 
15464 -1  66355 -1  223774 1 
15466 -1  66357 1  223776 1 
15467 1  66362 -1  223843 1 
15469 -1  66368 1  223870 1 
15476 1  66369 1  223881 1 
15486 1,0  66401 -1  223915 1 
15487 -1  66408 -1  223922 1,0 
15493 1  66413 -1  223978 1 
15494 1  66422 -1  223989 1 
15496 1  66427 1  224020 1 
15499 1  66435 -1  224079 1 
15505 1  66446 -1  224088 1 
15519 1  66475 1,0  224105 1 
15558 -1  66482 -1  224129 1 
15560 -1  66498 1  224132 1 
15561 -1  66500 1  224432 1 
15563 1  66505 -1  224624 1,0 
15566 1  66513 1  225579 1,0 
15567 1  66514 1  225849 1 
15569 -1  66522 1  225861 1 
15571 -1  66525 -1  225865 1 
15572 -1  66531 1  225872 1 
15894 -1  66549 -1  225876 1 
15898 -1  66556 1  225888 1 
15904 -1  66569 1  225922 1 
15925 1  66583 1  225994 1 
15931 -1  66587 1  225997 1 
15932 1  66588 -1  225997 1 
15957 1  66590 1  225998 1 
15958 1  66596 1  226016 1 
15959 1  66622 1  226025 1 
15972 -1  66656 1  226041 1 
15976 1  66661 1  226075 1 
15980 1  66671 -1  226090 1 
15985 1  66673 1  226098 1 
16000 -1,0  66681 1  226101 1 
16001 -2  66694 -1  226105 1 
16002 -1  66711 1  226143 1 
16007 1  66772 1,0  226151 1 
16012 1  66812 -1  226153 1 
16154 -1  66813 -1  226169 1 
16155 1  66824 -1  226243 1 
16156 -1  66830 1  226251 1 
16157 -1  66834 -1  226255 1 
16158 -1  66841 1  226265 1 
16161 1  66849 1  227099 1,0 
16164 -1  66853 -1  228576 1,0 



  242 

16165 -1  66854 -1  229211 1 
16168 1  66863 1  229214 1 
16170 -1  66866 1  229285 1 
16173 -1  66867 -1  229302 1 
16178 -1,0  66884 1  229320 1 
16180 1  66887 1  229357 1 
16183 1  66889 -1  229363 1 
16188 -1  66890 -1  229445 1 
16194 1  66894 1  229474 1 
16195 -1  66897 -1  229499 1 
16196 1  66902 -1  229504 1 
16197 1  66904 -1  229512 1 
16198 1  66913 1  229521 1 
16201 -1  66914 1,0  229534 1 
16202 -1  66916 1  229542 1 
16211 1  66922 -1  229574 1 
16323 -1  66925 -1  229584 1 
16332 -1  66930 -1  229588 1 
16336 1  66939 -1  229589 1 
16341 1  66945 -1  229603 1 
16348 -1  66948 -1  229603 1 
16364 -1  66949 1  229644 1 
16371 -1  66970 -1  229663 1 
16373 1  66988 1  229665 1 
16391 -1  66993 1  229681 1 
16392 -1  67011 -1  229697 1 
16398 -1  67013 -1  229699 1 
16399 1  67016 -1  229706 1 
16400 1  67041 1  229709 1 
16402 1  67042 1  229715 1 
16403 -1,0  67053 -1  229722 1 
16407 1  67062 -1  229725 1 
16408 -1  67071 -1  229776 1 
16409 -1  67073 1  229780 1 
16411 -1  67075 -1  229782 1 
16412 1  67085 -1  229791 1 
16416 1  67089 -1  229841 1 
16419 1  67103 -1  229877 1 
16421 1  67109 -1  229898 1 
16430 -1  67111 1  229900 1 
16432 -1  67118 1  229905 1 
16439 -1  67123 -1  229906 1 
16451 -1,0  67128 1  229937 1 
16452 1  67144 1  229949 1 
16453 1,0  67150 -1  230025 -1 
16468 -1  67151 1  230027 -1 
16480 1  67153 -1  230073 -1 
16490 1  67155 1  230099 -1 
16497 1  67161 1  230101 -1 
16502 -1  67164 -1  230103 -1 
16504 -1  67184 1  230125 -1 
16509 1  67201 1,0  230145 -1 
16511 1  67203 1  230162 -1 
16512 1  67213 -1  230233 -1 
16516 1  67235 1  230393 -1 
16517 1  67263 -1,0  230459 -1 
16520 1  67269 -1  230558 -1 
16521 -1  67283 1  230582 -1 
16522 1  67285 -1  230587 -1 
16523 -1  67287 -1  230594 -1 
16525 1  67295 -1  230597 -1 
16527 1  67296 -1  230598 -1 
16529 -1  67298 -1  230648 -1 
16531 -1  67300 1  230661 -1 
16535 -1  67305 -1  230673 -1 
16542 1  67317 -1  230674 -1 
16551 1,0  67323 1  230700 -1 
16552 -1  67338 1  230709 -1 
16553 -1  67375 -1  231042 1 
16563 -1  67378 1  231044 1 
16571 -1  67381 -1  231050 1 
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16573 1,0  67397 1  231051 1 
16576 -1  67398 -1  231086 1 
16578 -1  67402 -1  231103 -1,1 
16581 1  67414 1  231128 1 
16582 1  67417 -1  231162 -1 
16590 1  67420 -1  231225 1 
16591 1  67437 1  231252 1 
16593 1  67441 -1  231326 1 
16594 1  67442 1  231329 1 
16596 1,0  67451 1  231430 1 
16597 -1  67460 -1  231464 1 
16598 1  67464 -1  231510 1 
16599 1  67469 -1  231549 1 
16600 -1  67474 1  231580 1,0 
16601 1  67486 -1  231600 1 
16612 -1  67487 1  231605 1 
16636 -1  67488 1  231630 1 
16637 -1  67498 1  231637 1 
16638 -1  67511 -1  231655 1 
16642 -1  67528 1  231659 1 
16644 1  67533 -1  231670 1 
16646 1  67542 1  231672 1 
16648 -1  67547 1  231769 1 
16649 1  67549 1  231834 1 
16651 -1  67553 1  231842 1 
16653 -1,0  67573 1  231861 1 
16656 -1  67579 1,0  231863 1 
16667 1  67608 1  231871 1 
16669 1  67610 1  231876 1 
16678 1  67615 -1  231889 1 
16679 -1,1  67618 -1  231903 1,0 
16681 1  67622 1  231912 1 
16682 1  67623 -1  232078 1 
16687 1  67657 1  232089 1 
16688 1  67667 -1  232415 -1 
16691 1  67684 1  232430 -1 
16706 1  67689 1  232431 -1 
16709 -1  67711 -1  232441 -1 
16779 -1  67712 -1  232449 -1 
16784 -1  67731 1  232493 -1 
16785 -1  67733 -1  232533 -1 
16790 -1  67738 1  232791 -1 
16795 1  67758 1  232798 -1 
16796 1  67768 1  232807 -1 
16800 1  67772 -1  232811 -1 
16801 -1  67800 -1  232827 -1 
16825 1  67801 1  232878 -1 
16826 1  67834 -1  232889 -1 
16828 -1  67845 1  232906 -1 
16832 -1  67848 1  232910 -1 
16833 -1  67866 1  232933 -1 
16834 1  67870 1,0  232943 -1 
16835 -1  67873 1,0  232944 -1 
16842 1  67902 1  232970 -1 
16847 -1  67903 1  232975 -1 
16848 1  67905 -1  232989 -1 
16854 -1  67909 1  233001 -1 
16855 -1  67916 -1  233011 -1 
16859 1  67943 -1,0  233016 -1 
16869 1  67952 1  233020 -1 
16873 1  67956 1  233038 -1 
16875 1  67963 1  233040 -1 
16881 -1  67967 -1  233046 -1 
16882 1  67983 -1  233060 -1 
16885 1  67994 -1  233071 -1 
16889 1  68015 1  233080 -1 
16890 -1  68018 -1,0  233107 -1 
16905 1  68021 -1  233208 -1 
16924 1  68038 -1  233210 -1,0 
16939 1  68039 -1  233221 -1 
16949 -1  68043 -1  233230 -1 
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16956 1  68048 -1,0  233274 -1 
16970 -1  68055 1  233328 -1 
16973 1  68058 1  233332 -1 
16974 -1  68059 -1  233405 -1 
16975 -1  68070 1,0  233406 -1 
16976 1  68077 -1  233410 -1 
16985 -1  68079 -1  233437 -1 
16997 1  68097 1  233489 -1 
16998 1  68119 1  233529 -1 
17002 -1  68133 1  233532 -1 
17025 -1  68134 -1  233537 -1 
17079 -1,1  68135 1  233571 -1 
17083 -1  68137 -1  233575 -1 
17096 -1  68147 1  233649 -1 
17101 -1  68149 1  233726 -1 
17120 1  68178 -1  233733 -1 
17121 -1  68183 1  233781 -1 
17122 1  68194 1  233789 -1 
17125 -1,1  68196 1  233801 -1 
17127 -1  68203 -1  233805 -1 
17129 -1  68229 1  233824 -1 
17130 -1  68255 -1  233826 -1 
17132 1  68267 -1  233833 -1 
17133 1  68273 -1  233863 -1 
17134 1  68279 1  233865 -1 
17135 1  68291 -1  233870 -1 
17152 -1  68292 -1  233878 -1 
17156 1  68312 1  233879 1 
17159 1  68318 -1  233900 -1 
17160 1  68328 1  233902 -1 
17161 -1  68332 -1  233908 -1 
17165 1  68346 -1  233977 -1 
17169 1,0  68401 1,0  233979 -1 
17174 1  68420 1  234309 1 
17178 -1  68431 1  234311 1 
17187 1,0  68449 -1  234329 1 
17217 1  68458 -1  234356 1 
17218 1  68472 -1  234366 1 
17220 1  68490 -1  234374 1 
17237 1  68497 1  234388 1 
17250 1  68505 1  234404 1 
17251 1  68519 1  234515 1 
17252 1  68525 1  234582 1 
17258 -1,0  68537 1  234593 1 
17259 1  68553 -1,0  234594 1 
17260 -1  68558 -1  234595 1 
17261 1  68563 1,0  234663 1 
17274 1  68564 1  234664 1 
17279 -1  68566 -1  234673 1 
17285 1  68572 1  234684 1 
17293 -1  68581 1  234695 1 
17305 1  68603 1  234724 1 
17309 1  68606 1  234730 1 
17314 -1  68607 1  234733 1 
17318 -1  68614 1  234734 1 
17330 1  68616 -1  234736 1 
17345 -1  68644 -1  234740 1 
17346 -1  68646 1  234779 1,0 
17349 1  68666 1  234788 1 
17350 -1  68667 -1  234875 1 
17355 1  68682 -1  234878 1 
17364 -1  68705 -1  234889 -1 
17380 1  68708 1  234915 -1 
17381 -1  68729 1  234959 -1 
17388 1  68732 -1  234967 -1 
17389 -1  68742 -1  235033 -1 
17390 1  68743 -1  235040 -1 
17394 -1  68750 -1  235041 -1 
17420 1  68753 1  235072 -1 
17425 1  68770 1  235086 -1 
17428 1  68801 -1  235106 -1 
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17436 -1  68813 -1  235130 -1 
17444 1  68815 -1  235134 -1 
17448 1  68837 1  235180 -1 
17454 1  68839 1  235281 -1 
17463 1  68854 -1  235320 -1 
17470 1  68861 -1  235323 -1 
17476 1  68889 -1  235339 -1 
17480 -1  68922 -1  235344 -1,1 
17523 -1,0  68926 -1  235380 -1 
17532 -1  68927 -1  235431 -1 
17534 1  68938 1  235435 -1 
17535 -1  68939 1  235441 -1 
17537 -1  68947 -1  235442 -1 
17540 -1  68961 -1  235461 -1 
17686 -1  68966 -1  235497 -1 
17692 -1  68995 -1  235504 -1 
17698 -1  68999 1  235527 -1 
17751 1  69019 -1  235534 -1 
17755 -1  69024 1  235574 -1 
17762 1  69029 1  235584 -1 
17765 1  69032 -1  235604 -1 
17776 -1  69035 -1  235606 -1 
17777 1  69047 1  235611 -1,0 
17827 1  69048 -1  235623 -1 
17855 1  69060 1  235626 -1 
17857 1,0  69089 -1  235631 -1 
17858 1,0  69091 -1  235674 -1 
17859 1  69094 -1  235682 -1 
17869 1  69101 1  235973 -1 
17874 -1  69104 1  236193 1 
17880 1  69123 -1  236539 1 
17886 1  69131 1  236690 -1 
17888 -1  69137 -1  236727 -1 
17906 1  69147 -1  236733 -1 
17909 1  69150 1  236749 -1 
17918 -1  69159 1  236781 -1 
17920 -1  69168 1  236794 -1 
17921 -1  69207 1  236798 -1 
17925 1  69219 1  236848 -1 
17938 -1,0  69227 1  236899 -1 
17939 1  69237 -1  236900 -1 
17940 -1  69257 1  236915 -1 
17951 -1  69276 1  237038 -1 
17952 -1  69299 -1  237175 -1 
17961 1  69305 -1  237178 -1 
17962 1  69315 -1  237213 -1 
17966 1  69354 1  237222 -1 
17967 -1  69398 -1  237831 1 
17969 1  69462 1  237847 1 
17973 -1  69480 1  237859 1 
17977 1,0  69520 1  237860 1 
17984 -1  69528 1  237868 1 
17986 -1  69536 -1,0  237877 1 
17993 -1  69544 1  237886 1 
17999 -1  69562 -1  237891 1 
18002 -1  69574 1  237898 1 
18004 1  69587 1  237911 1 
18007 -1  69602 1  237926 1 
18011 1  69606 -1  237928 1 
18013 1  69608 1  237930 1 
18015 1  69617 -1  237958 1 
18021 1  69627 1  237988 1 
18022 1  69632 -1  238021 1 
18023 1  69634 -1  238023 1 
18027 -1  69635 -1  238024 1 
18028 -1  69639 1  238130 1,0 
18030 -1  69656 -1  238247 1 
18032 1  69663 1  238266 1 
18033 1  69666 -1  238271 1 
18036 -1  69672 -1  238323 1 
18039 -1  69684 1  238331 1 
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18046 -1  69706 1  238377 1 
18049 1  69714 -1  238384 1 
18053 1  69716 -1  238405 1 
18073 -1  69719 1  238406 1 
18074 -1  69721 -1  238463 -1 
18081 -1  69724 1  238505 -1 
18087 -1  69727 1  238673 -1 
18099 1  69740 1  238680 -1 
18102 1  69745 1  238683 -1 
18106 -2  69748 -1  238690 -1 
18107 1  69757 -1  238693 -1 
18113 -1  69774 1  238722 -1 
18115 -1,0  69787 1,0  238799 -1 
18121 1  69790 1  238803 -1 
18124 -1  69792 1  238829 -1 
18125 1  69806 1  238831 -1 
18127 1  69833 1  238871 -1 
18129 1  69863 -1  238944 -1 
18130 -1,1  69865 1  238988 -1 
18133 1  69888 1  239083 -1 
18142 -1  69890 -1,0  239122 -1 
18160 1  69906 1  239134 -1 
18162 1,0  69908 -1  239273 -1 
18163 1  69930 -1  239283 -1 
18164 1  69940 1  239337 1 
18167 1  69955 -1  239393 1 
18168 1  69983 1  239405 1 
18171 1  70008 -1  239420 1 
18174 1  70021 -1  239436 1 
18185 -1  70028 1  239510 1 
18186 1  70031 -1  239528 1,0 
18189 -1  70052 -1  239530 1 
18190 1  70059 1  239556 1 
18193 -1  70080 -1  239559 1 
18195 1  70086 -1  239570 1 
18198 -1  70093 1  239591 1 
18201 -1  70099 1  239659 1 
18203 1  70103 1  239691 1 
18211 1  70110 1  239706 1 
18212 -1  70118 1  239719 1 
18213 -1  70120 1  239731 1 
18218 -1  70127 1  239759 1 
18222 1  70144 1  239789 1 
18230 1  70178 -1  239827 1 
18241 -1,0  70202 -1  239833 1 
18256 1  70225 -1  239845 1 
18260 -1  70235 -1  240549 1 
18263 1  70238 1  240590 1 
18300 -1  70300 -1  240595 1 
18301 -1,1  70315 -1  240641 1 
18312 -1  70316 -1  240665 1 
18315 -1  70348 -1  240667 1 
18317 1  70350 1  240672 1 
18359 1  70355 1  242037 1 
18383 1  70356 1  242083 1 
18386 -1,0  70358 1  242202 1 
18399 1  70359 1  242259 1 
18400 -1  70363 1  242274 1 
18412 1  70381 1  242286 -1 
18414 1  70382 1  242291 -1 
18415 1  70394 -1  242341 -1 
18416 -1  70415 -1  242362 -1 
18417 1  70426 1  242409 -1 
18419 -1  70430 -1  242425 -1 
18420 -1  70439 1  242443 -1 
18424 -1  70450 1  242505 -1 
18426 1  70461 -1  242546 -1 
18431 -1  70472 1  242557 -1 
18436 1  70478 -1  242585 -1 
18438 1  70484 -1  242607 -1 
18439 1  70495 -1,0  242700 -1,0 
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18440 1  70551 -1  242726 -1,0 
18442 -1  70560 1  242851 1 
18453 1  70561 -1  242860 1 
18458 1  70567 1  242864 1 
18472 1  70568 -1  242894 1 
18477 -1  70573 1  242939 1 
18479 -1  70575 1  242960 1 
18481 -1  70584 -1  243168 1 
18491 -1  70591 1  243272 1 
18504 1  70598 -1  243277 1 
18507 -1  70601 -1  243312 1 
18518 -1  70620 1  243537 1,0 
18521 1  70625 1  243659 -1 
18548 -1  70646 -1  243755 -1,0 
18550 -1  70661 -1  243842 -1 
18554 -1  70673 1,0  243853 -1 
18555 -1  70686 -1  243864 -1 
18563 1  70696 -1  243867 -1 
18569 1  70701 1  243874 -1 
18570 -1  70737 1  243881 -1 
18571 -1  70757 1  243912 -1 
18574 -1,1  70762 1  243931 -1 
18575 1,0  70771 -1  243967 -1 
18576 -1  70784 -1  243979 -1,0 
18577 -1  70790 1  243983 -1 
18578 -1  70797 1  244049 -1 
18583 1  70823 1  244059 -1 
18584 -1  70834 1  244141 -1 
18587 1  70893 -1  244152 -1 
18588 1  70894 1  244202 -1 
18590 1  70930 -1  244238 -1 
18591 1  70967 1  244550 1 
18595 1  70974 -1  244556 1 
18597 -1  70993 1  244562 1 
18604 1  70998 -1  244595 1 
18606 1,0  71007 -1  244631 1 
18612 1  71037 -1  244646 1 
18613 1  71041 1  244650 1 
18616 -1  71046 1  244666 1 
18619 -1  71059 1  244667 1 
18624 -1  71078 1  244668 1 
18631 -1  71091 1  244701 -1 
18636 -1  71093 1  244879 -1 
18639 -1  71101 1  244882 -1 
18639 -1  71116 1  244895 -1 
18642 1  71146 1  244962 -1 
18645 1  71148 -1  245000 -1 
18647 1  71149 1,0  245007 -1 
18648 1  71164 -1  245038 -1 
18654 1  71200 -1  245049 -1 
18655 -1  71213 -1  245509 -1 
18667 -1  71240 1  245526 -1 
18669 1  71241 -1  245527 -1 
18670 1  71268 -1  245537 -1 
18671 1  71275 1  245555 -1 
18673 1  71276 1  245572 -1 
18675 -1  71310 1  245578 -1 
18676 -1  71330 -1  245596 -1 
18679 -1  71340 -1  245610 -1 
18682 1  71351 1  245615 -1 
18685 1  71354 -1  245616 -1 
18693 1  71355 1  245638 -1 
18700 -1  71375 1  245650 -1 
18701 -1,0  71382 -1,1  245666 -1 
18704 -1  71393 -1  245671 -1 
18705 -1  71412 -1  245688 -1 
18706 1  71458 -1  245841 1 
18708 -1  71472 -1  245857 1 
18709 1  71492 1  245880 1 
18710 -1  71519 1  245902 -1 
18715 -1  71521 1  246103 -1 
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18719 1  71522 1  246104 1 
18720 1  71538 -1  246133 1 
18724 -1,0  71544 -1  246179 -1 
18738 1  71562 1  246190 -1 
18739 1  71591 1  246198 1 
18741 1  71599 -1  246257 1 
18746 -1  71601 -1  246694 -1 
18747 1  71602 -1  246710 -1 
18749 1  71609 1  246727 1 
18750 1  71667 1  246728 1 
18751 -1  71679 1  246730 1 
18752 -1  71704 -1  246779 -1,0 
18753 -1  71710 1  246787 -1 
18755 1  71711 1  246788 1 
18759 1  71722 -1  252870 1 
18764 1  71723 -1  252912 1 
18766 1  71726 1  252967 1 
18770 1  71729 1  252972 1 
18787 1  71732 -1  252973 1 
18789 1  71743 1  257632 1 
18793 -1  71752 1  257635 1 
18797 1  71755 -1  257943 1 
18799 -1  71756 1  257947 -2 
18805 1  71760 1  258155 1 
18807 -1  71764 -1  258156 1 
18810 1  71770 1  258181 1 
18817 -1  71780 1  258196 -1 
18823 -1  71782 1  259097 -1 
18828 -1  71790 1  259101 -1 
18854 -1  71793 1  259277 -1 
18935 1  71795 1  260298 -1 
18938 1  71807 1  260302 1 
18946 1  71816 -1,0  260408 -1 
18947 1  71827 1  264064 1 
18950 -1  71833 1  264895 1 
18952 1  71838 -1  266690 -1 
18968 -1  71841 -1  266815 -1 
18969 1  71862 1  268448 1 
18971 -1  71868 1  268470 1 
18973 1  71883 1  268480 1 
18975 -1  71898 1  268482 1 
18985 -1  71903 1  268491 1 
18987 -1  71911 1  268498 1 
18988 -1  71914 1  268512 1 
19011 1  71918 -1  268566 1 
19012 -1  71919 1  268656 -1 
19013 1  71920 1  268663 -1 
19014 1  71929 -1  268697 -1 
19017 1  71934 1  268749 -1 
19023 1  71946 -1,0  268756 -1 
19024 -1  71949 1  268759 -1 
19042 1  71956 1  268782 1 
19046 1  71966 1  268783 1 
19047 1  71967 -1  268816 1 
19055 1  71974 -1  268822 1 
19056 -1  71978 -1  268857 1 
19057 -1  71985 1  268860 1 
19060 -1  71985 1  268878 1 
19062 1  71990 1  269053 1 
19065 -1  71991 -1  269113 1 
19079 1  71999 -1  269424 1 
19084 1  72000 -1  269437 1 
19085 1  72003 -1  269473 1 
19087 -1  72014 1  269514 -1 
19089 -1  72026 1  269523 -1 
19090 1  72027 1  269536 -1 
19091 1  72033 1  269629 1,0 
19092 1  72039 1  269642 1 
19094 1  72041 1  269643 1 
19108 -1  72047 1  269682 1 
19109 -1  72053 1  269695 1 
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19116 1  72054 1  269702 1 
19125 1  72065 -1  269713 1 
19126 1  72074 -1  269870 -1 
19128 1,0  72082 1  269881 -1 
19134 -1  72088 -1  269941 -1 
19139 -1  72133 1  269951 -1 
19141 1  72135 -1  269954 -1 
19141 1  72141 -1  269955 -1 
19142 1  72145 1  269966 -1 
19143 -1  72149 1  269994 -1 
19144 -1  72151 1  270004 -1 
19153 -1  72155 1  270058 1 
19155 1  72157 -1  270084 1 
19157 1  72162 1  270097 1 
19158 -1  72168 1  270118 -1 
19159 1  72169 -1  270120 -1 
19164 1  72179 -1  270150 -1 
19166 -1  72190 1  270152 -1 
19173 -1  72193 1  270156 -1 
19181 1  72194 1  270160 -1 
19188 -1  72195 1  270166 -1 
19193 1  72199 1  270190 -1 
19200 -1  72258 1  270198 -1 
19202 -1  72281 1  270198 -1 
19206 -1  72297 1  270599 -1 
19207 -1  72303 1  270627 -1 
19210 -1  72310 -1  270893 1 
19211 1  72318 1  271127 -1 
19217 -1  72333 1  271144 -1 
19218 1  72341 -1  271209 -1 
19218 1  72349 1  271305 1 
19219 1  72354 -1  271564 1 
19220 1  72361 1  271970 1 
19228 -1  72388 1  271981 1 
19229 -1,0  72399 1  272158 1 
19245 1  72400 -1  272322 -1 
19247 1  72404 -1  272359 -1 
19248 1  72413 1  272396 -1 
19249 1  72429 -1  272411 -1 
19250 -1,0  72431 -1  272428 -1 
19256 -1  72433 -1  276905 1 
19259 -1  72459 -1  276952 1 
19260 1  72461 -1  277939 -1 
19265 -1  72469 1  277973 1,0 
19266 -1  72475 -1  278097 -1 
19267 -1  72479 -1  278240 -1 
19268 -1  72486 -1  279653 -1 
19270 -1  72502 1  280408 1 
19276 1  72508 1  280662 1 
19277 -1  72535 -1  286940 -1 
19289 -1  72552 1  286942 1 
19294 -1  72560 -1  317717 1 
19299 1  72562 -1  319146 -1 
19300 1  72584 -1  319197 -1 
19302 1  72587 1  319207 -1 
19309 1  72590 -1  319239 -1 
19340 -1  72599 1  319293 -1 
19345 1  72607 1  319387 1,0 
19346 -1  72615 1  319446 1 
19354 1  72634 1  319478 1 
19355 1  72640 1  319480 -1 
19356 -1  72667 -1  319481 1 
19357 1  72739 -1  319518 1 
19358 1  72749 1,0  319594 1 
19359 -1  72776 1  319636 -1 
19363 1  72828 -1  319670 1 
19364 1  72831 -1  319748 -1 
19366 -1  72844 1  319758 -1 
19367 1  72852 -1  319765 1 
19377 -1,0  72873 1  319804 1 
19378 -1  72898 1  319924 1 
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19387 1  72925 1  319944 1 
19395 1  72935 -1  319945 1 
19401 1  72938 -1  319953 1 
19411 1  72960 1  319955 -1 
19415 1  72961 -1  320022 1 
19417 -1  72962 1  320024 1 
19645 -1  72973 1  320100 -1 
19647 -1  72981 -1  320118 1 
19654 -1,0  73032 -1  320129 1 
19659 -1  73062 1  320213 1 
19660 -1  73067 1  320214 1 
19662 1  73078 1  320226 -1 
19664 1  73086 1  320244 1 
19679 1  73095 1  320277 1 
19684 -1  73102 -1  320376 -1 
19687 1  73121 1  320452 -1 
19691 -1  73166 1  320472 1 
19697 1  73173 1  320534 1 
19698 -1  73181 -1  320571 -1 
19699 1  73246 1  320595 -1 
19699 1  73250 -1  320615 -1 
19704 1  73251 1  320634 -1 
19708 1  73254 1  320655 1 
19712 1  73274 -1  320661 1 
19719 1  73296 -1  320717 1 
19720 -1  73332 -1  320790 -1 
19724 1  73333 1  320795 1 
19726 1  73341 -1  320806 -1 
19739 1  73347 -1  320864 1 
19744 1  73381 1  320873 1 
19766 -1  73382 -1,0  320878 -1 
19771 -1  73412 -1  320910 1 
19773 1  73447 -1  320940 -1 
19777 -1  73456 -1  320995 -1,0 
19820 -1  73469 -1  321003 1 
19879 1  73523 -1  321006 -1 
19882 -1  73547 -1  326618 1 
19883 -1  73647 1  326623 -1 
19885 1  73658 -1  327958 1 
19889 -1  73670 -1  327987 1 
19892 1  73699 -1  327992 1 
19894 1  73707 1  328035 1 
19895 1  73744 -1  328162 1 
19983 1  73748 -1  328232 -1 
20019 1  73750 -1  328234 -1 
20021 1  73804 -1  328250 -1 
20022 1  73808 -1  328424 1 
20024 1  73830 -1  328572 1 
20132 1  73845 -1  328657 1 
20133 -1  73945 1  328660 1 
20147 -1  73991 1  329015 1 
20168 1  74006 1  329047 1 
20170 1  74008 1  329064 1,0 
20174 -1  74032 1  329065 1 
20184 -1  74039 1  329693 1 
20185 1,0  74041 -1  329777 1 
20187 -1  74044 1  329828 -1 
20190 -1,0  74051 1  329877 -1 
20191 -1  74052 -1  329910 -1 
20194 1  74055 1  330064 1 
20200 1  74080 -1  330119 1 
20202 1  74087 -1  330171 1 
20211 -1  74090 -1  330177 1 
20226 1  74096 1  330189 1 
20227 1  74105 -1  330390 -1 
20238 -1  74108 1  330470 -1 
20239 1  74125 -1  330474 -1 
20249 1  74127 1  330490 -1 
20250 1  74129 -1  330503 -1 
20255 -1  74133 1  330627 -1,0 
20256 1  74134 -1  330662 -1 
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20257 1  74136 1  330671 -1 
20264 -1  74140 -1  330812 1 
20266 -1  74143 1  330812 1 
20271 -1  74145 -1  330814 1 
20273 1  74147 1  330830 1 
20277 -1  74148 1  330836 1 
20280 -1  74152 -1  330914 -1 
20286 1  74153 -1  330921 -1 
20290 1  74156 -1  330953 -1 
20292 1  74164 -1  330962 -1,0 
20295 1  74167 1  331046 -1 
20299 1  74174 1  331374 -1 
20306 1,0  74180 -1  331416 -1 
20308 1  74195 -1  331493 -1 
20309 1  74197 1  332110 1 
20311 1  74198 1  332131 1 
20317 1  74204 -1  332396 1 
20319 1  74211 -1  332934 -1 
20333 1  74221 1  333048 1 
20340 1  74222 1  333050 1 
20341 1  74237 -1  333307 1 
20342 1  74249 -1  333424 -1 
20345 1  74251 1  333433 -1 
20346 1  74252 1  333564 -1 
20348 1  74256 1  333605 -1 
20350 -1  74257 -1  333654 -1 
20354 -1  74277 1  333789 1 
20356 1  74281 1,0  338337 -1 
20364 -1  74287 1  338351 -1 
20371 1  74306 -1  338354 -1 
20379 -1  74318 1  338370 -1 
20388 1  74325 -1  338372 1 
20390 -1  74337 1  338467 1 
20391 1  74338 -1  338521 -1,1 
20400 -1  74343 1  353187 -1,1 
20404 -1  74347 1  353346 -1 
20408 -1  74351 1  360213 1 
20409 1  74356 1  380614 1 
20410 -1  74365 -1  380711 1 
20418 -1  74370 1  380712 1 
20429 1  74374 1  380713 1 
20437 -1,1  74388 -1  380718 1 
20438 -1,1  74405 -1  380728 1 
20439 1  74407 1  380730 1 
20440 1  74413 1  380732 1 
20441 -1,0  74414 1  380773 1 
20442 1  74427 -1  380787 1 
20443 -1  74438 -1  380836 -1 
20444 1  74442 1  380840 -1 
20446 1  74443 -1  380842 -1 
20447 1  74451 1  380863 -1 
20449 -1  74464 -1  380912 -1 
20450 -1  74469 -1  380916 -1 
20454 1  74480 -1  380921 -1 
20460 -1  74488 1  380928 -1 
20465 1,0  74513 1  380969 1 
20467 1  74519 -1  381199 1 
20469 1  74521 1  381204 1 
20474 1  74525 -1  381217 1 
20480 -1  74570 1  381236 1 
20482 1  74585 1  381484 1 
20492 1  74596 1  381485 1 
20493 1  74610 1  381489 1 
20497 1  74617 1  381510 -1 
20498 1  74637 1  381511 -1 
20499 -1  74666 1  381534 -1 
20500 1  74685 1  381538 -1 
20501 1  74686 1  381549 -1 
20502 -1  74691 1  381591 -1 
20504 -1  74708 -1  381626 1 
20505 -1  74718 1  381668 1 
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20510 1  74734 1  381677 1 
20512 1  74735 -1  381678 1 
20514 -1  74737 -1  381680 1 
20523 -1  74753 -1  381686 1 
20524 1  74754 -1  381693 1 
20525 -1  74760 1  381694 1 
20526 1  74763 1  381738 1 
20527 -1  74769 -1  381823 1 
20529 -1  74775 1  381852 -1 
20530 -1  74776 1  381853 -1 
20531 1  74838 1  381903 -1 
20533 1  74996 -1  381924 -1 
20534 1,0  74998 1  381925 -1 
20535 1  75002 1  381974 -1 
20537 1  75051 1,0  381979 -1 
20538 1  75079 1  381983 -1 
20540 -1  75106 -1,0  381983 -1 
20556 1  75137 1  382018 1 
20557 1  75199 -1  382030 1 
20562 1  75221 1  382044 1 
20563 1  75288 -1  382045 -1,1 
20583 -1,1  75339 -1  382051 1 
20585 1  75404 -1  382056 1 
20586 -1  75410 -1  382066 -1 
20588 -1  75420 -1  382089 -1 
20589 1  75465 1  382090 -1 
20591 -1  75497 1  382097 -1 
20592 1  75502 1  382106 -1 
20595 -1  75504 1  382111 -1 
20597 -1,0  75512 -1  382113 -1 
20602 1  75524 -1  382156 -1 
20603 -1  75540 1  382207 -1 
20607 1  75547 -1  382209 -1 
20620 -1  75553 1  382236 -1 
20623 -1  75578 -1  382239 -1 
20646 -1  75596 -1  382252 -1 
20657 1  75597 -1  382253 -1 
20658 1  75607 -1  382282 -1 
20660 -1  75622 1  382543 1 
20661 1  75624 1  382620 1 
20663 1  75627 1  382864 -1,0 
20667 -1  75645 1  382867 -1 
20679 -1  75646 1  382913 -1 
20683 1  75669 -1  382985 1 
20688 1  75678 -1  384009 -1 
20700 2  75687 1  384198 1 
20701 2  75691 -1  384214 1 
20702 2  75692 1  384220 1 
20703 2  75698 -1  384569 -1 
20704 2  75705 1  384763 -1 
20713 1  75706 1  384997 1 
20716 1  75717 -1  385643 1 
20719 -1  75717 -1  385674 1 
20723 -1  75723 -1  387285 -1 
20733 -1  75735 1  387565 1 
20737 -1  75751 -1  387609 1 
20741 1  75769 1  399510 1 
20743 1  75770 -1  399548 -1 
20768 -1  75778 1,0  403187 -1 
20773 1  75784 1  403395 1 
20775 -1,1  75788 1  404195 1 
20778 1  75805 -1  404242 -1 
20788 1  75811 -1  404710 1 
20817 1  75826 1  406219 1 
20840 -1  75860 1,0  406220 1 
20848 1  75871 1  406222 1 
20850 1  75901 -1  406223 1 
20851 1  75974 -1  407243 -1,0 
20867 1  75985 -1  407786 -1 
20873 1  76007 -1  408067 -1 
20874 1  76055 1  414872 -1 
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20878 1,0  76072 -1  431706 -1 
20907 1  76073 1  432582 1 
20908 1  76074 1  432611 1 
20909 -1  76089 1,0  432677 1 
20916 -1  76108 -1  432720 -1 
20924 -1  76131 1  432731 -1 
20926 1  76137 -1  432736 -1 
20927 -1  76184 1  432763 -1 
20928 -1  76206 -1  432769 -1 
20963 -1  76238 -1  432779 -1 
20964 -1  76251 -1  432838 -1 
20972 1  76257 -1  432867 -1 
20977 -1  76265 1  432879 -1 
20981 -1  76267 1  432940 1 
21335 1  76279 1  433016 1 
21338 1  76295 1  433215 1 
21341 1  76299 -1  433256 1 
21343 1  76303 1  433586 1 
21345 -1  76308 1  433638 1 
21349 -1  76332 1  433667 1 
21350 -1  76338 -1  433693 -1 
21351 -1  76355 -1,0  433700 -1 
21357 1  76366 1  433899 1 
21371 -1  76376 -1  433904 1 
21384 1  76390 1  433926 1 
21385 1  76408 1  433931 1 
21387 1  76459 -1  433938 1 
21388 1  76484 -1  433956 1 
21390 1,0  76485 -1  434171 -1 
21405 1  76491 -1  434203 -1 
21406 -1  76499 -1  434232 -1 
21410 1  76500 -1  434234 -1 
21411 1  76560 -1  434246 -1 
21415 1  76561 1  434325 1 
21416 1  76571 1  434436 -1 
21418 -1  76582 -1  434437 -1 
21422 1  76608 -1  434438 -1 
21429 1  76612 -1  434439 -1,0 
21432 1  76630 1  434440 -1 
21667 -1  76645 1  434446 -1,0 
21672 1  76652 1  434756 -1 
21673 1  76686 -1  434758 -1 
21676 -1  76703 1  434764 -1 
21677 -1  76713 -1  434766 -1 
21681 1  76719 1  434769 -1 
21682 1  76722 -1  434778 -1 
21683 -1  76742 1  434784 -1,0 
21685 1  76763 -1  434903 -1 
21687 -1  76770 1  435286 1 
21744 1  76773 1  435350 -1 
21745 -1  76775 1  435391 -1 
21750 1  76781 -1  435766 1 
21752 -1  76787 -1  435791 -1 
21754 -1  76792 1  435965 -1 
21762 1  76800 1  436002 -1 
21771 1  76856 -1  436022 -1 
21803 -1  76858 -1  436240 -1,0 
21804 -1  76863 -1  446099 -1 
21807 -1  76872 1  448987 1 
21809 1  76886 -1  450219 1 
21810 -1  76895 -1  541610 -1 
21812 -1  76898 -1  544748 1 
21813 -1  76900 1  544817 1 
21814 1  76927 1  544922 -1 
21816 -1  76933 1  544963 -1 
21819 1  76947 -1  544971 -1 
21823 -1  76952 1  544988 -1 
21827 1,0  76954 -1  545085 1 
21828 -1  76971 -1  545123 1 
21832 1  77011 -1  545136 1 
21833 1  77036 1  545140 1 
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21834 -1  77041 -1  545276 1 
21843 -1  77044 1  545279 1 
21844 1  77045 1  545288 1 
21846 -1  77097 1  545291 1 
21847 1  77113 1  545527 1 
21849 -1  77116 -1  545622 -1 
21849 -1  77125 1  545667 -1 
21871 1  77219 1  545725 1 
21872 -1  77254 -1  545798 1 
21873 1  77286 -1  545902 -1 
21881 -1  77305 -1  546118 -1 
21885 -1  77318 -1  546134 -1 
21887 -1  77407 1  546144 -1 
21888 1  77519 -1  546161 -1 
21892 1  77559 1  546519 1 
21897 1  77569 1  546726 1 
21898 -1  77573 1  546837 -1 
21899 1  77577 1,0  546912 -1 
21912 -1  77578 1  546913 -1 
21916 -1  77582 -1  546980 -1 
21922 -1  77591 -1  547176 -1 
21923 -1  77593 -1  547253 1 
21924 -1  77613 -1  554292 -1,0 
21927 1  77622 -1  594844 -1 
21928 1  77626 1  606496 -1 
21933 -1  77634 -1  619287 -1 
21935 1  77669 1  619548 -1 
21943 -1  77697 1  620592 -1 
21946 -1  77706 1  620779 -1 
21947 -1  77739 -1  621852 -1 
21949 -1  77772 1  622127 1 
21954 -1  77782 1  622139 1 
21955 -1  77803 -1  622301 -1 
21968 1  77864 1  622402 -1 
21973 1  77891 -1  622434 1 
21974 -1  77914 1  622665 -1 
21976 1  77945 -1  622675 1 
21981 1  77974 1  623474 -1 
21985 1  77980 1  624855 1 
21990 -1  78038 -1  624866 1 
22003 -1  78070 -1  625321 -1,0 
22004 -1  78244 1  625716 -1 
22017 -1,0  78267 -1  626359 -1 
22018 1,0  78283 -1  627191 1 
22021 1  78317 1  627280 -1 
22022 1  78317 1  627585 1 
22031 1  78339 1  629016 -1 
22035 1  78394 1  629378 -1 
22036 -1  78408 1  630146 1,0 
22038 -1  78455 1  632687 1 
22042 1  78459 -1  632708 -1 
22045 1  78473 1  634104 1 
22061 1  78523 1  636104 -1 
22063 -1  78541 1  636931 -1 
22065 1  78558 1  637027 -1,0 
22066 1  78610 -1  639774 -1 
22067 -1  78618 1  639781 -1,0 
22068 -1  78753 1  654362 1,0 
22088 -1  78754 -1  654458 -1 
22116 -1  78767 1  654465 -1 
22122 1  78771 -1  654470 1 
22129 1  78784 1  654801 -1 
22141 -1  78787 -1  664723 -1,0 
22142 1  78796 1  664725 -1 
22143 1  78816 1  664994 -1 
22151 -1  78826 -1  665095 -1 
22165 1  78829 1  665203 -1 
22166 -1  78832 1  665229 -1 
22171 1  78889 1  665563 1 
22173 -1  78891 1  666048 -1 
22177 -1  78894 1  666060 -1 
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22186 1  78912 1  666168 -1 
22194 -1  78913 1  666173 1 
22195 1  78914 -1  666244 -1 
22201 -1  78919 1  666279 1 
22215 -1  78920 1  666348 1 
22217 1  78921 -1  666468 -1 
22223 1  78933 -1  666528 -1 
22227 1  78935 -1  667034 -1 
22228 -1  78938 -1  667370 1 
22229 -1  78943 1  667736 -1 
22232 -1  79264 1  668110 1 
22234 -1  79362 -1  668178 1 
22235 1  79410 -1,0  668257 -1 
22239 1  79456 1  668303 1 
22241 1  79464 1  670533 1 
22247 1  79565 1  791260 -1 
22249 -1  80291 1  100009600 -1 
22253 1  80334 1  100038804 1,0 
22255 1  80707 1  100038993 -1 
22256 1  80720 1  100039436 -1,0 
22258 -1  80751 1  100039672 -1 
22260 -1  80794 -1  100040276 1 
22262 1  80797 1  100040843 -1 
22273 -1  80837 1  100040937 -1 
22276 -1  80877 1  100040972 -1 
22284 -1  80879 1  100041449 1 
22287 1,0  80888 1  100041581 -1 
22290 1  80890 1  100041835 1 
22293 1  80891 1  100042265 -1,0 
22320 1  80893 -1  100042314 -1 
22325 1,0  80898 -1  100042555 -1 
22330 -1  80902 -1  100043803 1 
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