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0.1 Abstract

This dissertation considers a theory of numerical identity, first presented

by P.T. Geach (1962). I label this theory ‘the strong theory of relative

identity’. I suggest that the strong theory of relative identity involves three

theses, which I name ‘GT’, ‘RI’, and ‘SRI’. I argue that each of these theses

is logically independent. I consider arguments for and against each of these

theses in turn. I conclude that none of the arguments for GT, RI, or SRI

are conclusive. However, I also argue that the arguments against GT, RI

and SRI are unsuccessful. I argue, further, that the strong theory of relative

identity, and GT in particular, is incompatible with classical semantics and

classical first-order logic with identity. I consider alternative non-classical

logical systems and semantics which might be compatible with the strong

theory of relative identity. Finally, I consider the philosophical applications

of the strong theory of relative identity. I focus on one area, specifically

philosophical theology, and I argue, with respect to the logical problem of

the Trinity, that either GT is true or orthodoxy is false.
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0.4 Introduction

Natural languages such as English contain a multiplicity of constructions

expressing apparent relations of identity. Some of these relations seem, from

the sentences in which they are expressed, to be dyadic. Others seem to be

triadic. Apparent dyadic relations of identity in natural language are often

found in clauses involving the expressions ‘...is identical with...’, ‘...is the

same as...’, ‘...is equal to...’, or simply ‘... is ...’. Apparent triadic relations

of identity are normally expressed in English with the construction ‘...is the

same ... as ...’. This may be completed by a count noun or a mass term. To

complicate matters, the expression ‘...is the same ... as ...’ seems to function

differently depending on which noun fills the empty place. It seems, prima

facie, as if a different relation is involved in the sentence ‘Clark Kent is the

same man as Superman’ from that involved in the sentence, ‘Your eyes are

the same colour as the sea’. The latter difference is often characterized by

distinguishing between relations of ‘qualitative identity’, such as ‘... is the

same colour as...’, and relations of ‘numerical identity’, such as ‘... is the

same man as ...’. The number and nature of relations of identity will be the

subject matter of this dissertation.

According to one influential view of identity, the appearance of multi-

plicity is deceptive, and there is really only one genuine relation of identity.

However, according to an alternative view, made famous by the late Peter

Geach (1962, 1967, 1980), there is not one relation of identity, but many.

Moreover, the supposed single ‘genuine’ relation of identity is, in fact, inco-

herent. This dissertation is concerned with the second of these views. More

particularly, I will consider a theory which I will call ‘the strong theory of

relative identity’. I will identify this theory with the conjunction of three

theses. In what follows, I will define these three theses and consider the ar-

guments that have been presented both for and against them. I will conclude

that none of the arguments either for or against any of the theses is entirely

compelling. The following discussion will be split into seven chapters, the

content of which I will briefly outline here.
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0.4.1 Chapter 1: The Strong Theory of Relative Identity

In Chapter 1, I will set the stage by distinguishing between two sets of theo-

ries about the logic of identity. We begin with theories of absolute identity.

Defenders of theories of absolute of identity disagree amongst themselves on

a wide range of issues; however, for convenience sake I will treat this set

as a single theory. The theory of absolute identity is the orthodox theory

of numerical identity. According to absolute identity, relations of numerical

identity can be characterized as ‘the strongest equivalence relations’. A rela-

tion is an equivalence relation if and only if it is symmetric, transitive, and

reflexive in its field. The strongest equivalence relations are those equivalence

relations which guarantee the indiscernibility of any pair jointly satisfying

them. That is, for any x and y, if x bears relation R to y, x is indiscernible

from y. According to absolute identity, all relations of numerical identity are

characterizable in this way. In what follows, I will call the relations posited

by the theory of absolute identity, ‘relations of absolute identity’.

Thus, the theory of absolute identity entails:

(0.1) Every genuine relation of identity satisfies the following four

features: reflexivity, symmetry, transitivity, and the principle of

the indiscernibility of identicals (to be defined formally in due

course).

In addition, many, but not all, philosophers who ascribe to absolute identity

also hold the following:

(0.2) Satisfaction of these four formal features is a sufficient condi-

tion for some relation, R’s, being a relation of numerical identity.

(0.3) Statements involving apparent triadic relations of numerical

identity of the form ‘x is the same F as y’, where F is a schematic

letter replaceable by some sortal term, are logically equivalent to

statements of the form ‘x is F , y is F , and x is identical with y’.

(0.4) There is exactly one relation of identity.
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The second family of theories about the logical structure of identity rela-

tions are the theories of relative identity. Theories of relative identity have

their source in the work of Geach, particularly his Reference and Generality

(1962, 1980). In Chapter 1, I will expound Geach’s views on identity. I will

argue that Geach’s theory involves three central theses, which I will name

‘GT’, ‘RI’, and ‘SRI’. I argue that none of these theses entails either of the

others. Therefore, each would need to be defended separately. GT is the

thesis that there are no relations of absolute identity. RI is the thesis that

there are true statements of the form: x is the same F as y, x is not the

same G as y, and x or y is a G, where ‘F ’ and ‘G’ are sortal terms. SRI is

the thesis that every relation of identity involves a sortal and is not logically

reducible to a relation of identity without a sortal.

Collectively these positions form Geach’s theory of relative identity. As

we will see, various philosophers apart from Geach have espoused views re-

sembling Geach’s in one respect or another, though no one else has explicitly

taken on board all of Geach’s commitments.

SRI, the thesis that statements involving relations of identity are rel-

ative to some sortal, bears a prima facie similarity to theses which have

been defended by, among others, such philosphers as Anthony Kenny (1963),

Leslie Stevenson (1972, 1975), Michael Dummett (1973, 1991), Harold Noo-

nan (1980, 1997), E.J. Lowe (1983, 2009), and David Wiggins (1980, 2001).

However, I draw a distinction between the views of these philosophers and

SRI. These philosophers all believe that ‘x is identical with y’ implies that

‘For some F , x is the same F as y’. None of these philosophers would sub-

scribe to the stronger theses that Geach advances, that ‘x is identical with

y’ is incomplete.

RI has been a particularly controversial thesis. Apart from Geach, RI (or

a variant of it) has been defended by Douglas Odegard (1972), Eddy Zemach

(1973, 1982, 1991), E.J. Borowski (1975), Nicholas Griffin (1977, Griffin re-

jects SRI, however), A.P. Martinich (1978, 1979), Anil Gupta (1980), George

Myro (1985), Peter van Inwagen (1988, 2003), James Cain (1989)1, Harry

1 Martinich, Van Inwagen, and Cain are primarily concerned with the theological im-
plications of theories of relative identity. For more on this topic, see Chapter 7.
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Deutsch (1998)2 and Uwe Meixner (2005). It has been criticized by Quine

(1964), Dummett (1973, 1991), Lowe (1989, 2009), and Wiggins (2001),

amongst others.

The most controversial of all Geach’s claims is GT. This has been rejected

even by most philosophers who describe their own theories of identity as

theories of ‘relative identity’. Zemach (1973: 211) and Griffin (1977: 142-154)

both reject GT, while van Inwagen declares himself neutral on the existence of

absolute identity (van Inwagen 1988: 257).3 As I have said, there are several

philosophers who align themselves with Geach, in so far as they describe their

own theories as ‘theories of relative identity’. Some of these accept none of

the three theses that I have attributed to Geach (for example, Stevenson

1972, 1975); others accept some but not all of SRI, RI, and GT.4 In order to

clarify the different positions that go under the title of ‘relative identity’, I

will categorize theories of relative identity by dividing them into two groups.

The first group I will call ‘weak theories of relative identity’. A theory is

to count as a weak theory of relative identity if and only if it includes thesis

RI but not the thesis GT. According to this view, Griffin, Zemach and van

Inwagen all endorse theories of weak relative identity.5

The second group I will call ‘strong theories of relative identity’. A theory

is a strong theory of relative identity if and only if it includes both the theses

RI and GT. Geach’s theory is a strong theory of relative identity, as he is

committed to each of GT, RI, and SRI. In fact, Geach’s is the only developed

2 Odegard, Borowski, Myro and Deutsch are all primarily interested in diachronic iden-
tity. Odegard and Myro, for example, defend a temporal version of RI, which is consis-
tent with a form of LL where the substitution instances of the second-order variable or
schematic letter is restricted to non-temporal properties. For objections to the termpo-
ral version of RI, see Fredrick Doepke (1982). For a response to Borowski’s defence of
diachronic relative identity relations, see Roland Puccetti (1978). I will not discuss the
temporal form of RI in this dissertation.

3 Some parallels might be drawn between Geach’s position and some views held by Locke
(Essay Concerning Human Understanding, Book II, Chapter XXVII: 15. For a discussion
of Locke’s views and an argument that Locke would have rejected relative identity, see
Conn 2003: Chapter III) and the the Wittgentein of the Tractatus (5.5301). However,
any such connections are of primarily historical interest and of no use in supporting GT.

4 Cain (1989) is the only philosopher, of whom I am aware, who seems to defend all
three theses, apart from Geach.

5 This classification follows that provided by Michael Rea (2003: 433-437).
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strong theory of relative identity to be found in the literature.6,7,8

Having classified different theories of identity, I briefly consider how to

choose between them. I argue that a successful defence of the strong theory

of relative identity must involve an a priori argument for the truth of GT. I

will try to provide such an argument in Chapter 2.

0.4.2 Chapter 2: Geach’s Argument Against Absolute Identity

In Chapter 2, I consider Geach’s arguments for GT. Geach’s presents his

argument in a paper entitled ‘Identity’ (1967). The deductive structure of

Geach’s argument is unclear, so a major task of the chapter is expository. I

identify the premises of Geach’s argument and note the objections to them.

I suggest several alterations to Geach’s argument which would allow it to

escape the objections that have been raised.

For example, Geach claims that there is no criterion for a relation R’s

expressing absolute identity (Geach 1967: 6). Geach is open to the accusation

that he is attacking a straw man, since he only considers a limited number

of possible criteria. I argue that Geach’s argument, if it is to be compelling,

must be expanded to show that all the proposed alternatives in the literature

fail to provide a criterion of application for the general term ‘relation of

absolute identity’. Another alteration to Geach’s argument, which I propose,

involves an apparently central component of Geach’s argument, which is, in

fact, irrelevant to the issue. It has been claimed that the satisfaction of the

four formal features of absolute identity provides a criterion for a relation’s

expressing absolute identity, so long as the interpretation of any given theory

T coincides with the quotient-structure for T . Geach argues at length that

this proposal leads to unwanted ontological consequences. Geach’s objections

6 Geach also commits himself to several additional theses, the significance of which I
will consider only briefly. These include that derelativization thesis (Geach 1973: 287-302)
and the counting thesis (for example, Geach 1962: 63, also see Noonan 1997: 639-640).

7 Van Inwagen suggests that most relative identity theorists follow Geach in rejecting
the existence of relations of absolute identity (van Inwagen 1988: 256). I cannot find any
support for this view, however.

8 According to this classification, Stevenson’s theory of identity is not a theory of relative
identity, in spite of the fact he classifies it as such himself. This is because he rejects RI
(Stevenson 1972: 158).

14



to the proposed procedure are unsuccessful. I argue that the objections

are unnecessary in any case, since the interpretation strategy would refute

Geach’s argument only if we, in fact, always did reinterpret the sentences of

T in this way. However, we do not do so, so the interpretation strategy fails

as an objection to Geach’s argument. This allows me to provide a simpler

version of Geach’s argument.

Having suggested various modifications, I then set out a charitably recon-

structed version of Geach’s argument for GT. I consider each of the premises

and I conclude that several of the premises have not been conclusively estab-

lished.

0.4.3 Chapter 3: RI

Having considered GT in Chapter 2, I turn to the remaining theses involved

in Geach’s strong theory of relative identity. Chapter 3 will involve a consid-

eration of Geach’s arguments for SRI. Geach’s ‘river and waters argument’

(Geach 1962: 150-151) and his ‘men and heralds argument’ (Geach 1980:

183-184) aim to establish SRI. Both these arguments have been criticised

by Lowe (1989: 43-63). I conclude that these arguments fail to establish

the thesis. I also consider arguments for RI from Griffin (1977) and Zemach

(1973, 1982). I argue that these also fail. I conclude that RI is unproven.

I then consider objections against RI, from Lowe (1989a) and Wiggins

(2001). I argue that if GT is false, these objections succeed; however, if GT

is true, these objections fail. I conclude that RI is not disproved.

0.4.4 Chapter 4: SRI

In Chapter 4, I turn to SRI. I consider an argument from William Alston

and Jonathan Bennett (1984) which, if sound, would support SRI. Alston and

Bennett argue that if Frege’s Cardinality Thesis (henceforth CT) is true, then

all relations of identity must involve some sortal term. Alston and Bennett

conclude from this that CT must be false. However, there are good reasons

to think CT is true, so the alleged entailment from CT to SRI would provide

support for the latter. I attempt to reconstruct an argument to this effect.
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Such an argument would require a claim about the relation between state-

ments involving predications of cardinality and statements involving identity

relations. However, I argue that the relation that does hold between these

two classes of statements is such that CT does not entail SRI. I conclude

that the appeal to CT fails to provide support for SRI. SRI, then, is also

unproven.

0.4.5 Chapter 5: Objections to Relative Identity

In Chapter 5, I consider the objections that have been raised against GT. I

will consider objections from Quine (1964), Dummett (1973: 547-583, 1991),

and John Hawthorne (2003). These objections show that GT is incompatible

with classical semantics. Therefore, if GT is true, classical semantics would

need to be replaced by a non-classical semantics. I consider some of Geach’s

suggestions for solving these problems. I further note an objection raised by

James Cain (1985), which suggests that the apparatus, which Geach intro-

duces to solve the earlier objections, itself entails the failure of the syllogisms.

I put off any attempt to resolve this objections until the following chapter.

0.4.6 Chapter 6: The Logic and Semantics of Relative Identity

I begin this chapter by considering how Geach might respond to Cain’s ob-

jection. I suggest that Geach’s most promising response is to deny that

the cases, which Cain suggests Geach is committed to, are genuine counter-

examples to the syllogisms.

I then consider the kind of logic and semantics which might be compat-

ible with the strong theory of relative identity. There are several systems

that have been developed for theories of relative identity, as well as several

others which, though not developed with relative identity in mind, are com-

patible with it. For example, classical first-order logic without identity is

compatible with strong theories of relative identity. However, I argue that

there is a benefit to developing a more expressive logical language than first

order logic without identity. Such a language would involve inference rules

for relations of relative identity. I consider the strengths and weaknesses of

16



various systems to be found in the literature.

I then turn to the semantics for relative identity. I suggest that a seman-

tics compatible with the strong theory of relative identity must differ from

classical semantics in a number of respects, but that these do not show that

such a semantics is incoherent.

0.4.7 Chapter 7: Applications of Relative Identity

In Chapter 7, I consider the implications of the strong theory of relative

identity for other areas of philosophy. Relative identity may be used to solve

various puzzles in metaphysics. However, I will focus on one area of applied

philosophy in this chapter. This is the field of philosophical theology, on

which theories of relative identity have made the most notable impact. I will

consider what light might be shed on this field by the conclusions reached

in this dissertation. I argue that relative identity, if true, would provide a

resolution to the logical problem of the Trinity. More particularly, I consider

the different responses to the logical problem of the Trinity in the literature

and argue that either GT is true, or the orthodox doctrine of the Trinity is

false.
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1. THE STRONG THEORY OF RELATIVE IDENTITY

I will start by considering some of the things that are typically said by philoso-

phers about identity relations. I will classify these into theories of identity.

I will begin with the orthodox view, before turning to Geach’s theory of

relative identity. Having sketched the alternative positions I will make some

observations about the sort of argument which would be necessary to support

the theory of relative identity.

A distinction is often drawn between sentences which are said to express

‘numerical identity’ and those that are said to express ‘qualitative identity’.

Examples of the kind of sentences said to express numerical identity include

‘Clark Kent is the same man as Superman’, ‘Hesperus is Phosphorus’, and

‘One plus one equals two’. Examples of the kind of sentences said to ex-

press qualitative identity include ‘Your eyes are the same colour as the sea’,

‘These two boys are as tall as one another’, and ‘Jane and John are equally

clever’. Cashing out the distinction between numerical identity and qualita-

tive identity is a surprisingly challenging task, however. One option is that

a statement of the form ‘x is the same F as y’, where ‘x’ and ‘y’ are singular

terms and ‘F ’ is a sortal term, expresses numerical identity if and only if it

licenses the conclusion that x and y are one and the same thing. By contrast,

a statement of the form ‘x is the same F as y’ is a statement of qualitative

identity if and only if it licenses merely the weaker conclusion that x and y

have some one property in common (note that, throughout this dissertation,

I intend the widest sense of the term ‘property’, that is, an abundant account

of properties, whereby there is some property for every predicate. However,

I do not think any of the claims I defend in this dissertation depend on this

notion of properties, and so I will not try to resolve the various paradoxes



that accompany this notion).1 We are interested only in the former class,

that is, relations of numerical identity.

1.1 Theories of Identity

1.1.1 The Theory of Absolute Identity

It is a key thesis of the orthodox view of identity that there exists a first-order

dyadic relation, R, satisfying the following four formal features:

Strong Reflexivity: � ∀xR(x, x)

Symmetry: � ∀x∀y(R(x, y)→ R(y, x))

Transitivity: � ∀x∀y∀z((R(x, y) ∧R(y, z))→ R(x, z))

The Indiscernibility of Identicals: If x bears relation R to y,

then everything true of x is true of y, and everything true of y is

true of x.

I express the last of these features informally because a precise formulation of

the principle will involve issues which I wish to postpone for the moment. We

will return in Chapter 2 to consider the various formulations of the principle

of the indiscerniblity of identicals, which can be phrased either as an axiom-

schema or as a non-schematic second-order principle. We will also need to

consider whether the expression ‘everything true of x’ is to be understood as

including all possible predicates (or properties) or, if not, how to limit its ap-

plication. Once we have agreed upon a formulation for the indiscerniblity of

identity (also known, somewhat misleadingly, as ‘Leibniz’s Law’, henceforth

to be shortened to ‘LL’),2 we will be in a position to reduce our four for-

mal features to two, because symmetry and transitivity can be derived from

1 Namely, the property of being a particular F , which can be cashed out in terms of
common inclusion in some equivalence class, which is itself a partition on the class of all
F s.

2 Note that the principle here going under the name of ‘LL’ is not the much more
controversial ‘principle of the identity of indiscernibles’, about which I will have very little
to say. The latter states that, for any x and any y, if everything true of x is true of y,
then x and y are absolutely identical.
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reflexivity and any of the mainstream formulations of LL.3 There has been

a great deal of debate over whether the formal features of absolute identity

amount to a definition of absolute identity, or whether some other definition

can be provided. We shall consider some of the alternatives in due course. In

many formal systems, a primitive symbol is introduced to express absolute

identity. Some philosophers hold that identity is, by its nature, indefinable,

because any definition would involve circularity (for example, Savellos 1990,

McGinn 2000: 7-9). Other philosophers are not concerned by the worry of

circularity and provide various definitions, usually either involving some ver-

sion of LL (for example, Russell and Whitehead 1970 [1910]: 168 or, more

recently, Krause and French 2006: 15) or a set-theoretic definition (for ex-

ample, Enderton 2000: 5). It is often said that absolute identity is first-order

indefinable but second-order definable, with the caveat that a second-order

definition will involve absolute identity in the definiens4. Again, we will leave

the issue of definitions of identity for further discussion in Chapter 2.

It is also sometimes said that the relation expressed in such sentences as

‘Your eyes are the same colour as the sea’ is simply a roundabout way of

saying that a particular colour is numerically identical with itself (McGinn

2000: 2-3). In other words, relations of qualitative identity can be eliminated

in favour of a relation of numerical identity. This view supports another

3 Proof of symmetry: assume
(1) P (x, y)
where P is a two-place predicate expressing absolute identity. By reflexivity, it is the

case that
(2)P (x, x)
By LL, any property of x is a property of y, this includes the property expressed by the

symbols ‘P ( , x)’. Applying this to (2), we get
(3)P (y, x)
Proof of transitivity: assume
(1) P (x, y) ∧ P (y, z)
By conjunction elimination, we get both
(2) P (x, y)
and
(3) P (y, z)
By LL and (2) we can replace y with x in (3), giving
(4) P (x, z)
4 A proof of the indefinability of identity in first-order logic can be found in Hodges

1983, we shall consider possible second-order definitions of identity in Chapter 2.
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important thesis concerning identity, namely that there is really only one such

relation, and that the very notion of different identity relations is incoherent

(Frege 1903: 254, McGinn 2000: 1-7).

The relation just introduced is to be called ‘the absolute identity relation’5

and will, henceforth, be represented by the symbol ‘=’ when appearing in

formulae. According to philosophical orthodoxy, this relation holds between

everything and itself and never holds between a thing and something other

than itself.

The theory of absolute identity is often supplemented by a claim concern-

ing statements involving apparent triadic numerical identity relations, such

as that expressed by the sentence ‘Clark Kent is the same man as Superman’.

The thesis is first found in the work of Frege, and in his honour I will call

the ‘Fregean Analysis’.

Fregean Analysis: All statements of the form ‘x is the same

F as y’, in which ‘...is the same F as...’ expresses a relation of

numerical identity, are necessarily equivalent with statements of

the form ‘x is an F and y is an F ’ and ‘x is absolutely identical

with y’.

The significance of this thesis is that, if it is true, all triadic relations of

numerical identity can be eliminated and replaced with simple predications

and a dyadic relation of absolute identity without loss of expressiveness. It

follows from the Fregean Analysis that all such triadic relations of numerical

identity satisfy LL, so there are no cases of the following form:

x =F y ∧ x 6=G y ∧ (G(x) ∨G(y))

where the symbols ‘=F ’ and ‘=G’ represent the numerical identity rela-

tions ‘... is the same F as...’ and ‘... is the same G as ...’ respectively. A

formal proof of this result may be given, with ‘FA’ (for ‘Fregean Analysis’)

5 The theory of absolute identity is compatible with the existence of different relations
of absolute identity. For example, it is compatible with absolute identity that the relations
expressed by ‘... is the same man as ...’ and ‘... is the same mouse as...’ are both relations
of absolute identity but, perhaps, not the same relation.
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standing here for the inference rule

x =F y

F (x) ∧ F (y) ∧ x = y

and ‘substitution of identicals’6 here standing for the inference rule

x =F y,G(x)

G(y)

Proof 1 Rule of Inference Assumption Set

1 x =F y ∧ x 6=G y ∧ (G(x) ∨ G(y)) Assumption 1

2 x =F y Conjunction Elimination 1 1

3 x 6=G y Conjunction Elimination 1 1

4 G(x) ∨ G(y) Conjunction Elimination 1 1

5 F (x) ∧ F (y) ∧ x = y FA 2 1

6 ¬(G(x) ∧ G(y) ∧ x = y) FA 3 1

7 x = y Conjunction Elimination 5 1

8 ¬G(x) ∨ ¬G(y) ∨ x 6= y De Morgan’s 6 1

9 ¬G(x) Additional Assumption 1, 9

10 ¬G(y) Substitution of Identicals 7, 9 1, 9

11 ¬G(x) ∧ ¬G(y) Conjunction Introduction 9, 10 1, 9

12 ¬(G(x) ∨ G(y)) De Morgan’s 11 1, 9

13 G(y) Discharge Assmuption 9 (⊥ 4, 12) 1

14 ¬G(x) ∨ x 6= y Modus Tollens 8, 13 1

15 ¬G(x) Additional Assumption 1, 15

16 ¬G(y) Substitution of Identicals 7, 15 1, 15

17 ¬G(x) ∧ ¬G(y) Conjunction Introduction 15, 16 1, 15

18 ¬(G(x) ∨ G(y)) De Morgan’s 17 1, 15

19 G(y) Discharge Assumption 15 (⊥ 4, 18) 1

20 x 6= y Modus Tollens 14, 19 1

21 ¬(x =F y ∧ x 6=G y ∧ (G(x) ∨ G(y))) Discharge Assumption 1 (⊥ 7, 20) 1

The Fregean Analysis is not entailed by the theory of absolute identity

and a shorter proof with the same result could be given with suitable inference

rules introduced governing relations of the form px =F yq, which makes no

appeal to the Fregean Analysis. The important point is that all orthodox

theories of identity entail that it can never be the case that ‘x is the same F

as y, but not the same G as y’, when ‘...is the same F as ...’ and ‘... is the

same G as...’ express relations of numerical identity, and when either x or y

is (a) G.

6 Some philosophers use the term ‘substitution of identicals’ to mean the clearly false
thesis that any two co-referring expressions are replaceable in any sentence salva veritate.
Similarly, some philosophers use the term ‘indiscernibility of identity’ to refer to the fol-
lowing inference rule. As I have said, I use the latter term synonymously with ‘Leibniz’s
Law’, while the former names the inference rule provided.
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Yet natural language seems to provide many counterexamples to this

result.

1.1.2 Apparent Counter Examples to Orthodoxy

Wiggins, in his classic work on identity Sameness and Substance (1980 23-

44, 2001: 29-50), tries to classify apparent counter-examples to philosophical

orthodoxy about identity by dividing into five categories all the possible cases

in which it can be false that ‘x is the same G as y’.

Wiggins’s five categories are as follows:

Type 1: x =F y ∧ x 6=G y ∧ ¬G(x) ∧ ¬G(y)

For example: ‘The evening star is the same planet but not the

same star as the morning star.’

Type 2: x 6=F y ∧ x 6=G y

For example: ‘Venus is not the same star as Mars nor the same

anything as Mars.’

Type 3: Cases involving phased sortals. The logical structure of

such examples is disputed.

For example: ‘John Doe, the boy whom they stupidly took for a

dunce, is the same human being as Sir John Doe, the Lord Mayor

of London, yet not the same boy.’7

Type 4: x =F y ∧ x 6=G y ∧ ¬G(x) ∧G(y)

Wiggins does not believe that there are any true cases of Type 4, but gives

the following examples that seem to be plausible candidates:

7 This case is slightly altered for simplicity.
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(1.1) ‘This pile of fragments is the jug you saw last time you were

here.’

(1.2) (The fragment having been reconstructed into a coffee pot)

‘This coffee pot is the jug (or fragments) you saw last time.’

(1.3) ‘Cleopatra’s Needle in 2014 is not the same stone as it was

in 1900 (the stone having been gradually replaced by concrete),

but it is the same landmark.’

Type 5: x =F y ∧ x 6=G y ∧G(x) ∧G(y)

Once again, Wiggins thinks that purported examples of Type 5 must either

be false or misunderstood. Nevertheless plausible examples are as follows:

(1.4) ‘I moor my vessel in the river Scamander. The next day, it

is the same river as the previous night but not the same water.’

(1.5) ‘The boy John Doe is the same human being as John Doe

the mayor but not the same collection of cells.’

(1.6) ‘The old church is the same church as the rebuilt church

(which has none of the same masonry) but not the same build-

ing/stonework.’

(1.7) ‘The train from London to Bristol is the same train in 1962

as it was in 1911 but not the same collection of coaches and lo-

comotive.’

(1.8) ‘You may see the same official today as you did yesterday,

without his being the same man.’
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(1.9) ‘Dr Jekyll and Mr Hyde are not the same person/personality

though they are the same man.’

(1.10) ‘The doctrine of the Trinity (e.g. the Son is the same

divinity as the Father without being the same person).’

Of these, it is clear that Types 1 and 2 pose little philosophical difficulty for

the Fregean Analysis and the theory of absolute identity, and I will have no

more to say about them.

Wiggins thinks that ‘John Doe, the boy whom they stupidly took for a

dunce, is the same human being as Sir John Doe, the Lord Mayor of London,

yet not the same boy’ does not express the disputed form. The example, and

all similar cases involving phased sortals, such as ‘boy’, is ambiguous between

tensed and tenseless statements, in Wiggins’s view (Wiggins 2001: 29-33). If

it is tensed, then the second identity relation ought to be phrased in the past

tense, in which case the sentence is false. For John Doe was the same boy as

Sir John Doe was (even if he had not been knighted when he was a boy). If

the statement is to be understood tenslessly, then at least according to one

popular semantics for tenseless statements, the sentence must be understood

as saying ‘John Doe is, was, or will be the same human being Sir John Doe

and it is not the case that John Doe is, was, or will be the same boy as Sir

John Doe.’ But once again, this is false, for Sir John Doe was a boy, and he

was the same boy that John Doe was. So much for phased sortals.

Type 4 examples are those where the referring expression on one side of

an identity relation falls under some sortal which the referring expression on

the other side of the identity relation does not fall under.

Wiggins considers each case in turn and attempts to show that they are all

subject to alternative translations, according to which they do not instantiate

the disputed logical form (Wiggins 2001: 34-43). Examples (1.1) and (1.2)

illustrate the problems of material constitution. Can an entity falling under

a sortal, say ‘statue’, also fall under another sortal term derived from the

material with which it is made, say ‘clay’? This would seem to imply that

the entity (the statue/clay) will have contradictory properties, for example,
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different persistence conditions. Wiggins argues that this is impossible. In

his view, the statement ‘The statue is clay’ does not involve any identity

relation at all, but rather the copula expresses the ‘is’ of constitution. Thus,

‘the statue is clay’, in Wiggins’s view, means ‘the statue is made of clay’,

rather than ‘the statue is identical with some clay’.8

We move to case (1.3). Wiggins asks what it is that ‘Cleopatra’s Needle’

refers to. A stone? Or a landmark? If ‘Cleopatra’s Needle’ is the name

for the stone in 1900, then it is not the name for anything in 2014 because

that stone is no more in 2014. However, if ‘Cleopatra’s Needle’ is the name

for a landmark, then the claim ‘Cleopatra’s Needle is not the same stone in

2014 and 1900’ is just the claim that Cleopatra’s Needle is not made of the

same material at these two dates, and this, once again, can be explained in

terms of the ‘is’ of constitution and is not an instance of the disputed form.

Wiggins, thus, concludes that there can be no genuine Type 4 cases. He

contends that either apparent Type 4 cases collapse into time-indexed Type

3 cases, or they turn out to be cases of constitution relations rather than the

genuine identity relation.

Wiggins’s response to Type 5 cases adds little to his responses to Type 4

cases (Wiggins 2001: 43-50). The various examples turn out either to involve

the ‘is’ of constitution (examples (1.4) and (1.5)), a qualitative identity rela-

tion ((1.6) and (1.7)), or a simple ambiguity in the denotation of the singular

terms ((1.6), (1.7), (1.8), and (1.9)). In Wiggins’s view, only one example

seems to involve unambiguous expressions and two identity relations. This

is example (1.10). Wiggins concludes that this statement is necessarily false,

as it is self-contradictory, assuming all relations of numerical identity satisfy

LL. I leave discussion of this example to Chapter 7. I will move instead to

consider a theory which accepts the possibility of Type 4 and Type 5 cases.

8 Wiggins’ appeal to an ‘is’ of constitution is controversial and even some philosophers
committed to an orthodox theory of identity would reject that there is any such things as
an ‘is’ of constitution (for example see Noonan 1976, who tries to show that none of the
cases Wiggins considers are cases of RI without appealing to an ‘is’ of constitution).
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1.1.3 An Alternative Theory

It seems, then, that absolute identity can be supplemented by a series of

claims about the logical structure of statements in natural language, which

explain the apparent counterexamples. Wiggins has provided us with a way

of construing each of the apparent examples such that they are not counter-

examples to absolute identity. However, we are not duty bound to accept

Wiggins’s translations. I will now consider a rival theory, which challenges

both the Fregean Analysis and the theory of absolute identity.

I have already given a rough sketch of the relative identity view, first

advocated by Geach. I will now begin to set out this view in detail. We will

begin with Geach’s own words:

(1.11) “x is the same A as y” does not “split up” into “x is an A

(and y is an A) and x is the same as y.” (Geach 1962: 39)

(1.12)“Being the same water” cannot be analysed as “being the

same (something -or-other) and being water.”(Geach 1968: 151)

(1.13)When one says “x is identical with y” this, I hold, is an

incomplete expression; it is short for “x is the same A as y” where

“A” represents some count noun understood from the context of

utterance–or else it is just a vague expression of a half-formed

thought. (Geach 1967: 3)

(1.14) On my own view of identity I could not object in principle

to different As being one and the same B... (Geach 1968: 157)

(1.15) No criterion has been given, or, I think, could be given

for a predicable’s 〈predicate’s〉 9 being used in a language L to

9 Geach uses the term ‘predicable’ in place of the more familiar ‘predicate’. Geach feels
that the latter is ambiguous in the following way. The sentence ‘The man who broke the
bank at Monte Carlo dies in misery’ has, according to one use of the term ‘predicate’, only a
single predicate, namely ‘... died in misery’. According to an alternative use of ‘predicate’,
that same sentence has, at least, two predicates, the one noted above, but also ‘... broke
the bank at Monte Carlo’. That the latter is a predicate can be seen in the sentence
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express absolute identity. The familiar axiom schemata for iden-

tity could at most guarantee, if satisfied, that the relative term

under investigation will be true in L only of pairs that are indis-

cernible by descriptions framed in terms of the other predicables

of L. This cannot guarantee that there is no proper extension of

L, with extra predicables, that makes possible the discrimination

of things which were indiscernible by the resources of L. (Geach

1991: 297)

(1.16) [I]t seems clear that on my general view of numbers and

identity it is quite useless, indeed nonsensical, to characterize a

proper name as a name whose sense restricts it to naming only

one thing ; instead, what has to be explained is a name’s being a

proper name for an A; and such a name may be a shared name

of several Bs, so long as each such B is the same A as any other.

I thus came to accept the view of Lesniewski and other Polish

Logicians that there is no distinct syntactical category of proper

names. (Geach 1980: 15)

1.1.4 Theses

It is clear from the above excerpts that Geach rejects both the Fregean Anal-

ysis (Quotes (1.11) and (1.12)) and absolute identity (Quotes (1.15) and

(1.16)). As far as positive theses go, the following three suggest themselves:

SRI: All identity relations have the form ’... is the same F as...’,

‘John broke the bank at Monte Carlo’. The term ‘predicate’ is thus ambiguous between
these two uses. Geach’s solution is to use ‘predicable’ to replace ‘predicate’ when used
in the second sense and to reserve ‘predicate’ for the first sense of the term only (Geach
1980: 50). Although Geach’s point is well taken, I will use the traditional terminology
throughout, except when quoting.
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where F is replaceable by a sortal term. (Quote (1.13))10,11

RI: There exists some true statement of the form: px =F y∧x 6=G

10 In the vast literature on identity relations, many philosophers can be found advocating
some principle similar to SRI. Geach has more explicitly defended the claim that ‘x is
identical with y’ is true only if there is some general term, A, such that x is the same A as
y. However, this statement of the thesis remains ambiguous, and the different philosophers
who would agree to this claim, would also attach different interpretations to this thesis. I
therefore suggest a more specific form of this thesis in my statement of SRI, which I think
better reflects the thesis that Geach intends.

Geach distinguishes between two kinds of general terms, on the one hand, substantival
and, on the other hand, adjectival (Geach 1980: 63). Geach attributes this distinction
to Aquinas (IA q 39). On occasion, Geach seems to suggest that any general term can
complete the expression ‘... is the same ... as ...’ (Geach 1969: 558). This position is
open to a number of objections, not least of which is that it would then be impossible
to distinguish between relations of numerical and qualitative identity (Geach/Feldman
1969: 558-559). In later works, Geach is careful to specify that the only multi-place
predicates that express identity are those that involve substantival (sortal) terms (Geach
1980: 63-64). This is so because only sortal terms provide a criterion of identity. In the
absence of such a term and the corresponding criterion, grammatical relations of identity
are incomplete and, assuming no sortal term and criterion of identity can be supplied
from the context of utterance, then the sentences in which such grammatical relations
are found do not express propositions. Therefore, SRI involves sortals rather than simply
general terms. Moreover the claim is not simply that statements involving identity entail
statements involving sortals, but rather that statements involving identity relations involve
sortals as a part of their semantic content.

11 One further important point about SRI is in order. It is tempting to think that SRI
entails the thesis that there exists a relation of identity which is logically triadic. After
all, the expression ‘... is the same F as ...’ would need to be filled with three separate
word-tokens to express a determinate proposition, and by SRI, every relation of identity
instantiates this form. Geach, however, is keen to reject this view, at least if it is taken
to mean that there is just one relation of identity, but a triadic one, which can be turned
into a proposition by appropriate assignment of terms. Geach appeals to an insight of
Wittgenstein’s:

Some reader perhaps thinks that ‘the same’ is always the same, and criteria of
identity are just a matter of psychology; if so, I may here quote Wittgenstein’s
parody: ‘High pitch is high pitch’ it’s merely a psychological matter whether
you hear it’ (like the pitch of a scream) ‘or see it’ (like the pitch of a roof).
The relation expressed by ‘of higher pitch than’ has in fact the same logical
properties in both cases; but that does not mean there is just one relation,
which we happen to learn about by two different avenues of sense; and the
like, I maintain, holds for identity relations. (Geach 1972: 249)

For Geach, then, the general form ‘...is the same ... as ...’ does not itself express a
particular relation. Rather, his view is that, for every assignment of a sortal to fill the
middle gap, there is a particular dyadic relation of identity. However, this does not, in
Geach’s view, mean that any two such relations are instances of the same triadic relation.
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y ∧ (G(x) ∨G(y))q. (Quotes (1.14) and (1.16))

GT: There exists no absolute identity relation. (Quote (1.15))

I will devote the rest of this chapter to considering some of the relation-

ships between the theses I have now introduced. However, before I can do

this, I will try to shed a bit more light on two notions that are important for

what follows. These are the notions of a sortal and a criterion of identity.

1.1.5 Sortal Terms

The term ‘sortal’ is one that, until now, I have been taking for granted.

It is worth providing a more rigorous explanation of how this term is to

be understood, particularly as there are several different uses of the term

to be found in the literature. The term is originally due to Locke (Essay

Concerning Human Understanding : III, III: 15), but the contemporary usage

of the term is due, in part, to a distinction drawn by Geach, in Reference

and Generality, between two kinds of general term. Geach does not use the

term ‘sortal’ but rather distinguishes between ‘substantival’ and ‘adjectival’

terms. Geach’s distinction is as follows:

[S]ubstantives have (singular or plural) number on their own ac-

count, whereas adjectives have a number determined by the nouns

they qualify. (Geach 1980: 63)

Geach continues,

[O]nly in connection with some terms can the question be asked

how many so-and-so’s there are. For example, although we have

the phrase “the seven seas”, nobody could set out to determine

any division to the water area in the world into seas in the way

that the term “letter” (in the typographical sense) does determine

a division of the printed matter in the world into letters.

This ... ground of distinction between terms was recognized

by Frege and Aquinas. Frege said that only such concepts as
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“sharply deliminated” what they applied to, so that it was not

“arbitrarily divisible”, could serve as units for counting; to link

this up with what I have been saying, we need only observe that

for Frege a concept was what a language represented by a general

term. Frege cagily remarks that in other cases, e.g. “red things”,

no finite number was determined. But of course the trouble about

counting the red things in a room is not that you cannot make an

end of counting them, but that you cannot make a beginning; you

never know whether you have counted one already, because “the

same red thing” supplied no criterion of identity. Aquinas simi-

larly mentions the grammatical fact that, in Latin, substantives

have (singular or plural) number on their own account, whereas

adjectives have a number determined by the nouns they qualify;

I shall follow him in distinguishing general terms as substantival

and adjectival. Grammar is of course only a rough guide here:

‘sea’, for example, could be an adjectival term, although gram-

matically a substantive. (Geach 1980: 63)

The distinction Geach is drawing is, so far, between countability and non-

countability. The distinction that Geach draws in this passage has become

common for distinguishing between sortal and non-sortal terms.12 This, then,

is one of the contemporary uses of the term ‘sortal’. According to this dis-

tinction, roughly speaking, a general term is a sortal term if and only if it

provides a principle for counting its instances. In other words, sortal terms

are just those terms that have the logical status of count nouns (Lowe 1989a:

11).

However, Geach goes on:

Countability is a sufficient condition for considering a term as

substantival; this is so because we (logically) cannot count As

unless we know whether the A we are now counting is the same

A as we counted before. But it is not necessary, in order that “the

12 Variations on it can be found in P.F. Strawson 1959: 168, John R Wallace 1965: 9,
Griffin 1977: 43, and Dummett 1981: 547-648.
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same A” shall make sense, for the question “How many As?” to

make sense, we can speak of the same gold as being first a statue

and then a great number of coins, but “How many golds?” does

not make sense; the “gold” is a substantival term, though we

cannot use it for counting. (Geach 1980: 64)

When Geach clarifies his distinction, we see that it is not between those

terms which provide a principle for counting the number of their instances

and those terms that do not. The former are a proper subset of substan-

tival terms. For Geach, mass terms may also serve as substantival terms.

Geach’s distinction, then, is between any term, F , for which the following

construction makes sense, ‘... is the same F as...’ and those terms for which

the construction does not make sense. This way of phrasing the distinction

is not sufficiently rigorous, however, because it does not exclude dummy-

sortals. The expression ‘... is the same thing as...’ makes good grammatical

sense, and yet, ‘thing’ is not a sortal/substantival term (whether ‘...is the

same things as...’ expresses a genuine relation without the involvement of

some sortal is at issue between those philosophers who accept SRI and those

who do not). What Geach means is that any general term, F , is a sortal if

and only if it provides a criterion of identity for F s. The notion of a ‘cri-

terion of identity’ is also in need of explication, which I will provide in the

next section. For the moment, a criterion of identity is a principle according

to which it is possible to determine the truth of sentences of the form ‘x is

the same F as y’.

This, then, is the second notion of sortal to be found in the literature.13

Note that the criteria of identity and principles of counting are not equivalent

(I will have more to say about the relationship between identity and cardi-

nality in Chapter 4). A criterion of identity for F s may provide a principle

by which it is possible to determine an answer to the question ‘how many

F s’ or to the question ‘how much F ’. A principle for counting may provide a

13 Lowe agrees with Geach that mass terms may be sortal terms. However, Lowe does not
think that association with a criterion of identity is a sufficient condition for a term’s being
a sortal, because he allows some basic sortals that lack criteria of identity (Lowe 1989a:
20-21). Apart from basic sortals, Lowe’s distinction runs parallel to Geach’s, though Lowe
uses the term ‘sortal’ in place of Geach’s ‘substantival’, (Lowe 1989a: 10, Lowe 2007: 515).
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determinate answer only to the former question (Lowe 1989a: 11). For what

follows, I will be using the term ‘sortal’, rather than ‘substantival’. How-

ever, the use of the term ‘sortal’ in the rest of this dissertation corresponds

to Geach’s use of ‘substantival’. I therefore permit mass terms to be sortal

terms, and I distinguish sortal terms from non-sortal terms on the basis of

whether or not they provide a criterion of identity.

1.1.6 Criteria of Identity

We have distinguished between those general terms which are sortals and

those that are not by appealing to the notion of criteria of identity. This is

another notion which has several different uses. I will try to clarify how I

intend to use the expression.

Geach makes a distinction between two kinds of criteria. One of these he

describes as ‘the standard we judge by’. The other is that according to which

we recognize something (Geach 1973: 288). The latter are merely principles

which we happen to use in practice for the purposes of identification. For

example, we recognize a man by his face, in the latter sense of the term

‘criterion’. But it is not a criterion of being that man that he have a particular

face (Geach 1973: 288). A principle of recognition is not what Geach has in

mind when he introduces the notion of criteria of identity. However, Geach

does not make it clear what is meant by ‘standard by which we judge’, if it

is not a principle by which we recognize.

We may come to a better grasp of the relevant notion of criteria of identity

by considering some of the more recent work that has been done on the

notion. The most sustained examination of criteria of identity has been

undertaken by Lowe.

One thing I should emphasize is that a “criterion of identity”,

as I am now using the expression, is not to be conceived of as a

heuristic or evidential or in any other sense purely epistemic prin-

ciple, but rather as a semantic rule (though, obviously, questions

of knowledge and meaning cannot be wholly separated). That is

to say, it is not a requirement of a criterion of identity in my sense
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that it should necessarily provide us with an effective means of

coming to know whether or not a given identity statement, “x is

identical with y”, is true: rather it should tell us, so to speak,

what it takes for x and y to be that same or different or, in ter-

minology drawn from Locke, “wherein their identity or diversity

consists”. In other words, it should specify ... in an informative

way, be it added ... the truth-conditions of the statement “x is

identical with y?” (Lowe 1989a: 15-16)

For Lowe, then, criteria of identity are semantic criteria rather than epistemic

criteria. Although Geach’s use of the expression ‘standard by which we judge’

is ambiguous, I suggest that he intends to make the same distinction as Lowe

is making. For what follows, I will also assume that a criterion of identity is a

semantic principle, as Lowe has explained that notion. Note that, if criteria

of identity are semantic rather than epistemic criteria, any given criterion of

identity, say the criterion of identity for F s, may fail to provide a guide to

establishing whether, in fact, x and y are the same F . A semantic criterion

can establish what it means for x to be the same F as y, without setting

conditions under which we could ever actually establish the truth of any

such sentence.

What, then, will a criterion of identity look like? We may first consider a

highly influential example of a criterion of identity, to be found in the work

of Frege:

The judgement “line a is parallel to line b?” can be taken as an

identity. If we do this, we obtain the concept of a direction, and

say: “the direction of line a is identical with the direction of line

b.” (Frege [1884] 1968: 74)

In other words, the direction of some line is the same direction as that of

another line if and only if the two lines are parallel. We may note an inter-

esting feature of this criterion. If we take the left-hand of the biconditional,

we may construe it as a relation of numerical identity only if we take the

relata to be the direction of the lines. If we do this, then the criterion for

the identity of directions is a relation that holds between lines.
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In other words, the Fregean criterion of identity has the form:

(1.16) ∀x∀y(f(x) =F f(y)↔ Rxy)14

Where ‘f( )’ stands for a function (in the above case, a function from lines to

the direction of lines). This sets the identity conditions for F s as a relation

that holds between Gs.

This form of criteria of identity is in contrast to the simpler form favoured

by Lowe:

(1.17) ∀x∀y((F (x) ∧ F (y))→ (x =F y ↔ Rxy))15

According to (1.17), the conditions for the identity of x and y involve a par-

ticular relation holding between x and y. (1.17) faces a circularity worry

that does not face (1.16). (1.17) involves quantification over F s in both sides

of the biconditional. In other words, comprehension of the right hand side

of the biconditional depends on prior understanding of the expression F (x).

Some philosophers hold that we can only sensibly assert F (x) if we under-

stand the criterion of identity for F s (for example, P.F. Strawson 1959: 168).

Geach, for one, certainly holds this; Geach thinks that all statements of the

form F (x) are ‘derelativizations’ of sentences of the form px =F yq (Geach

1973: 287-302).16 Geach’s notion seems to involve a sort epistemic priority.

Therefore, if this thesis is true, the right hand side of the biconditional in

14 The formulae (1.16) and (1.16) are proposed as forms for criteria of identity in Lowe
1989b.

15 (1.16) and (1.17) are sometimes called ‘first-level’ and ‘second-level’ criteria of identity
respectively.

16 Noonan (1997: 637-639) suggests that a key move in Geach’s writings is one that we
have not, till now, considered. This is what Noonan calls ‘The derelativization thesis’.
According to this thesis, statements of the form ‘x is an F ’ are ‘derelativizations’ of
statements of the form ‘x is the same F as x’ Where ‘F ’ is some sortal term (Geach 1960:
106). What this seems to mean is that relations of relative identity, involving a sortal
term ‘F ’, are, in some way, more fundamental than simple predications of the sortal term
‘F ’, such that the latter are derived from and entailed by the former. In other words, it
does not make sense to say ‘x is F ’ unless it makes sense to say ‘x is the same F as x’.
Indeed, it seems that Geach thinks that we cannot understand the former utterance unless
we understand the latter.

Noonan seems to think that the derelativization plays a key role in supporting RI.
Consider the following purported case of RI. ‘a is the same word-type as b, but a and b
are different word-tokens, and either a or b are word-tokens.’ A major objection to cases
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(1.17) is only comprehensible to someone who already understands the crite-

ria of identity for F s. (1.17), then, would be viciously circular as a criterion

of identity for F s. Other philosophers reject the claim that comprehension

of F (x) depends on understanding the criterion of identity for F s. If this is

true, then statements of the form (1.17) can provide informative criteria of

identity.17

Geach, then, can only accept criteria of identity having the form (1.16).

However, for what follows, I do not propose to assume that Geach is right

that predications involving sortals presupposes grasping the criteria of iden-

tity associated with the relevant sortals. Therefore, I will accept criteria of

identity of either form (1.16) or form (1.17), so long as they cannot be shown

to presuppose a prior understanding of the criteria of identity that they are

intended to assert. However, given that criteria of identity are semantic rules,

in Lowe’s sense, we must reject the possibility of explicitly impredicative cri-

teria of identity, that is, criteria of identity which involve the notion for which

they provide a criterion in the criterion itself.

Having made the notions of sortal and criterion of identity sufficiently

clear for my purposes, I will now consider the relationships between the

of this type is that, it is not clear that a and b are being used unambigiously throughout.
Are they word-types? Or word-tokens? If they are word-tokens, according to absolute
identity, then to say that they are the same word-type does not entail that they are word-
types at all, but simply that they are equiform word-tokens. Geach, however, thinks that
words can be both word-types and word-tokens at the same time. Geach may appeal to
the derelativization thesis for support for this view. If the dereletivization thesis is true,
then, it might be thought, the statement ‘a is a word-type’ is just a derelativization of the
statement ‘a is the same word-type as a’. Thus suggest that the latter entails the former.
If this entailment does hold, then, in the disputed case, a and b are word-types, and the
disputed case does turn out to be a case of RI.

However, this appeal to the derelativization thesis to support RI does not seem very
strong to me. Even if the derelativization thesis is true, it can only be true for a limited
number of statements of the form ‘x is the same F as y’. If it held for all such cases, then
we could infer from ‘x is the same colour as y’ to ‘x and y are colours’. Naturally this
is not a valid inference, and Geach would reject it. Therefore only some relations of the
form ‘... is the same F as...’ can be derelativized. Naturally, in the type-word/token-word
case, the theory of absolute identity entails that the relation ‘... is a type-word as...’ is
not one of these relations. To assume that it is would simply beg the question in favour of
RI. In light of this, whatever the significance of the derelativization thesis, I do not think
it provides support to RI and I will not consider it further in this dissertation.

17 for a more complete discussion of this issue, see Lowe 1989b.
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various theses involved in Geach’s theory of relative identity.

1.2 Relationship Between Theses

Although Geach provides numerous arguments for his theory of relative iden-

tity, it is far from clear which of the component theses need to be argued for

separately and which are entailed by the others. Therefore, before I consider

the arguments themselves I wish to briefly map out the relations between

the theses, and the sort of argumentative support that the strong theory of

relative identity requires. I will argue that each of that theses is logically

independent.

1.2.1 Independence of SRI, RI, and GT

I will look at the relationships between each of the three theses, beginning

with the relationship between SRI and the other theses. Consider the fol-

lowing case. If there can exist no identity relation without reference to some

specific sortal term, then surely Geach is right when he says “‘x is the same A

as y” does not “split up” into “x is an A (and y is an A) and x is the same as

y”’ (Geach 1962: 39). I take this to follow immediately from SRI. It is easy

to demonstrate that SRI and the Fregean Analysis are incompatible. Assume

that the Fregean Analysis is true. Thus, if ‘x is the same F as y’ is true, then

‘x is the same as y’ is also true. However, according to SRI, sentences of the

form ‘x is the same as y’ do not express propositions (assuming that context

does not convey sufficient information to determine a sortal-relative relation,

for which ‘... is the same as...’ is an abbreviation) and so can never be true.

So it turns out that, given SRI, either all statements of the form ‘x is the

same F as y’ are false, or it is false that ‘x is the same F as y’ splits up into

predication(s) and absolute, non-relativized identity statements. Naturally

there are some true statements of numerical identity, and so, SRI and the

Fregean Analysis are incompatible. So, if SRI is true, then Geach is certainly

right to say that relativized identity statements do not split up. But what

follows from this? Does this provide any support for either RI or GT?

37



SRI does not support GT. GT is true if and only if there are no relations of

absolute identity. SRI is true if and only if all relations of numerical identity

involve sortal terms. But it is, prima facie, possible that some relation is a

relation of absolute identity and also involves a sortal term. For example,

it is compatible with absolute identity, that ‘... is the same man as ...’ be

a sortal-relative absolute relation of identity. So, it seems that SRI may be

true and GT false. So SRI does not entail GT.

Moreover, as Noonan points out ‘it may be that whenever a term “A” is

interpretable as a sortal term in a language L the expression (interpretable

as) “x is the same A as y” in L will be satisfied by a pair 〈x, y〉 only if the

I-predicate of L is satisfied by 〈x, y〉’, where an I-predicate is a predicate

which expresses indiscernibility relative to L (Noonan 1997: 637). In other

words, even if all relations of identity involve sortals, nevertheless all of these

relations may satisfy reflexivity and LL. If all relations of identity satisfy LL,

then RI is false. So SRI does not entail RI either.18

Similarly, there is no entailment relation in the opposite direction. RI

does not entail SRI for the simple reason that RI requires only that there

be some relations of identity which do not satisfy LL. RI, unlike SRI, is

compatible with the existence of some unrelativized and absolute identity

relations. For the same reason, RI does not entail GT, either.19

It might be that Geach assumes that SRI follows from GT. This at least

would explain Geach’s otherwise surprising lack of argument for SRI. I will

consider Geach’s defence of SRI, such as it is, in due course, but SRI does not

follow trivially from GT. It is compatible with the truth of GT that there

18 For an informal model of this possibility, imagine a language in which there is no word
corresponding to the English ‘same’ or ‘identical’, but rather only a prefix which attaches to
sortal terms, to generate sortal-relative relations. Moreover, in this hypothetical language
it is a grammatical rule, followed without exception, that this prefix is only used if the
relation thereby formed satisfies the four laws of absolute identity relations. This entails
that relations of identity are all relative to sortal terms, so SRI is true, but that all such
relations are relations of absolute identity, which entails the falsity of both RI and GT.

19 Weak theories of relative identity generally accept RI but reject GT and SRI. Griffin
(1977) is representative of this view, he thinks that there are true cases of RI and therefore
some relations of numerical identity which do not satisfy LL. At the same time, he thinks
that there are some genuine relations of absolute identity, and that these need not involve
sortal terms.
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be non-relativized relations of numerical identity, so long as these are not

relations of absolute identity. A dyadic relation of numerical identity may

fail to be a relation of absolute identity, if, for example, it did not satisfy LL.

Given this, GT on its own does not entail that there are no genuine dyadic

relations of identity; it entails merely that, if there are dyadic relations of

numerical identity, they are not relations of absolute identity. So GT is in

fact compatible with the falsity of SRI.20

Moreover, GT does not entail RI, either. GT, being a negative existential

claim, does not entail anything about what sorts of identity relations do exist.

RI, by contrast, entails that there are relation of identity which do not satisfy

LL.21

It seems, then, that SRI, RI, and GT are three mutually independent

20 Curiously, Wiggins claims there is an entailment between these two theses (Wiggins
1967: 27). However, he is wrong, as is shown by the development of consistent formal
systems that involve SRI but reject RI (see Griffin and Routley 1979).

21 More can be said about the relationship between GT and RI, however this raises
some issues which I have not yet introduced. I will, therefore, confine this discussion to a
footnote. We will see that there are different versions of LL. Of particular importance to the
present issue, is the distinction between those versions of LL which involve quantification
over the properties of all possible languages and those that involve quantification over a
fixed stock of properties. We will see, further, that Geach’s argument for GT, which I will
defend, entails that there are no relations of the former kind, and that relations of the
latter kind are not absolute identity relations. Thus, taken one way, GT entails that there
are no relations satisfying the four formal features of absolute identity. However, taken
another way (that is, where LL involves quantification over a fixed stock of predicates)
GT does not entail that there are no relations with these formal features. It merely entails
that such relations are not relations expressing identity. In fact, I think the view that
there are no relations satisfying the weaker version of the four formal features is simply
incoherent. If it is true, then there would be no relations which satisfy reflexivity and
fixed-stock-LL. We can, in fact, go further than this. For any relation, R, that does satisfy
fixed-stock-LL in a language, there is a restriction of the domain of that language, which
involves all and only those elements that satisfy R. In this fragment, R would satisfy both
fixed-stock-LL and reflexivity. This shows that there would be no relations at all that
satisfy fixed-stock-LL.

This, it seems to me, is incoherent. Consider a theory with a domain involving only
one element, x. Presumably, it is necessarily true that it is not the case that φ(x) and
not φ(x), where φ is replaceable by any predicate from the fixed-stock. But from this, it
follows necessarily that, if it is the case that φ(x), then φ(x). From this, naturally, we can
derive, necessarily φ(x) if and only if φ(x). Finally, for any relation whatever, simply by
adding an antecedent to a necessary truth, we get the following: necessarily, if x R’s x,
then φ(x) if and only if φ(x). It, therefore, seems to me that there must be some relations
which satisfy the fixed-stock version of LL.
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theses. Thus, a convincing proof of a Geachean theory of strong relative

identity would require separate arguments for each of these three theses.

Having determined that all three theses require support if the strong theory

of relative identity is to be defended, I will make a few observations on

the kind of support that is required, before I consider the arguments in the

literature.

1.2.2 How to Evaluate Theories of Identity

Noonan suggests that there is an asymmetry involved in evaluating the two

classes of identity theories, in that theories of relative identity cannot be

supported by an appeal to examples, while the truth of a theory of absolute

identity can be (Noonan 1980: 3).

This claim comes in the context of Noonan’s discussion of the thesis that

I have termed ‘GT’, and it is not clear that this goes for each of Geach’s

theses. I will, therefore, consider in turn the form a sound argument for each

of these theses would take.

GT

Noonan is certainly right that the thesis GT cannot be proved with an

example. GT makes a negative existential claim, that there are no absolute

identity relations. Naturally, such a claim cannot be established by an ex-

ample. Nor can the claim be established by considering every single relation

to establish whether or not it is a relation of absolute identity. Instead, a

sound argument for GT must involve a conceptual claim about the proper-

ties a relation of absolute identity would have and a further claim that it is

a priori impossible for any object to exist having these properties. We will

consider such an argument in Chapter 2.

RI

RI involves the rejection of LL. More particularly, it entails that there
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exists some relation of numerical identity which does not satisfy LL.22,23

However, this is not to say that an example will be easy to come by. We

have already considered a series of apparent examples of identity relations

which do not satisfy LL. In each case, however, we saw that there is some

plausible interpretation of the terms involved such that the antecedent does

not involve a relation of numerical identity, so the sentences did not provide

counterexamples to LL. Moreover, we might think that it will be possible to

interpret all apparent counterexamples to LL in this way. As Noonan points

out,

[I]t is hard to see how such a denial 〈of LL〉 could be argued

for; if a case is described in which objects x and y differ in their

properties is this not the best reason there could be for saying

they are distinct? If someone insists on a counterexample to

Leibniz’s Law why is this not simply evidence that he means by

the expression for identity something different from the rest of

us? (Noonan 1980: 3).

22 Some relative identity theorists advocate ‘modifying’ LL rather than rejecting it (For
example, Griffin 1977: 140-141, Wiggins 2001: 46). When I come to discuss LL in detail,
I will consider several alternaitve renderings of the principle.

23 Noonan claims that, if GT is true, there are no counter-examples to LL, but equally,
there are no relations which satisy LL (Noonan 1980: 3). Noonan’s argument for this
point is not clearly articulated, but I think his idea is as follows. The thesis which Noonan
is calling ‘Leibniz’s Law’ is expressible as a material conditional, which involves a relation
of absolute identity in the antecedent. In other words, Noonan has the following schema
in mind:

(LL′) ∀x∀y(x = y → (F (x)→ F (y))) (Noonan 1980: 1)

If GT is true, then there are no relations of absolute identity, and so, (LL′) is ill-formed,
since the meaningless symbol, ‘=’, is present in the antecedent. A counterexample to LL
would involve an instance of a true antecedent and false consequent. But if the formula
‘x = y’ is ill-formed, then there is no possibility of a true antecedent, and therefore, there
is no possible counter-example to (LL′).

This is all true of course, but I did not express Leibniz’s Law with the schema (LL′) but
rather with the informal schema LL. LL did not involve the primitive symbol ‘=’ but the
schematic letter ‘R’. I have also claimed that a relation is a relation of absolute identity
only if it satisfies LL. There are of course many relations for which ‘R’ can be substituted
such that LL is false. A counterexample to Leibniz’s Law would consist of a relation of
numerical identity which was not replaceable for ‘R’ salva veritate. It seems, then, that
Noonan’s judgement that RI cannot be proved with an example was premature.
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In other words, if the notion of numerical identity involves LL, then surely

there could not be a compelling counterexample to the principle (we will have

more to say about the conceptual claim that the notion of a relation of nu-

merical identity involves that relation satisfying LL in Chapter 3, Section 2).

However, there is the possibility that the intuitive connection which, Noo-

nan claims, holds between numerical identity and LL, will conflict with some

equally strong intuition that a proposed counterexample is both a relation of

numerical identity and does not satisfy LL. In other words, the conceptual

claim that all relations of numerical identity satisfy LL is not safe from re-

vision in light of a sufficiently motivated example of an apparent relation of

numerical identity that does not satisfy LL. For example, Zemach argues that

the identity conditions for vague objects depend on the existence of identity

relations that do not satisfy LL (Zemach 1974, 1983, 1991). If this is true,

and if the existence of vague objects is a thesis which is better established

than the thesis that all relations of identity satisfy LL, then the latter may

give way.

We therefore must leave open the possibility of an example which sup-

ports the thesis RI. In Chapter 3, Section 1, we will look at several arguments

which propose such examples.

SRI

SRI, like GT, makes a universal claim, namely that all relations of numer-

ical identity involve sortals. Again, it is clear that such a thesis cannot be

proved with an example, for examples of numerical identity relations involv-

ing sortals would only licence a conclusion about some relations of numerical

identity. This thesis could only be proved by an argument showing the a pri-

ori impermissibility of relations of numerical identity which do not involve

sortals. I will consider one such argument in Chapter 4.
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1.2.3 Absolute Identity and Arguments by Example

Thus, the strong theory of relative identity cannot be proven with examples

alone. At least some of the theses will require a priori argument. I wish to

consider now how matters stand with the theory of absolute identity. Prima

facie, absolute identity is in no different a position than the strong theory of

relative identity. For absolute identity involves both universal claims, for ex-

ample that all relations of numerical identity satisfy LL (the rejection of RI),

and existential claims, that there is at least one relation of absolute identity

(the rejection of GT).24 It would seem, at first glance, that the first is not

a claim that can be established by an example, and that the second claim

can be. In fact, I think this is deceptive, and that the rejection of RI can,

in principle, be proved with an example, while the rejection of GT cannot.

Again, we will consider each of these in turn.

¬RI

To see how an example might support the falsity of RI, consider once again

Noonan’s claim that non-satisfaction of LL is the best reason for thinking

that some relation is not a numerical identity relation. If this is so, then

all relations that do not satisfy LL are not relations of numerical identity.

The only worry with this policy is that it might result in unacceptable con-

sequences for our ontology, if for example, Zemach is right in thinking that

it would require the abandonment of vague objects. Worries like this can be

avoided if enough examples of numerical identity relations which do satisfy

LL can be introduced to provide identity conditions for all the objects in

the domain of discourse. An example of a relation which satisfies LL and

which is (strongly) reflexive would therefore provide strong support for the

falsity of RI. If such a relation does exist, then defenders of absolute identity,

following Noonan, may take this relation as the only relation of numerical

24 We may note at this point that, of all the theses involved in the strong theory of
relative identity, only one of them is compatible with, though not entailed by, absolute
identity. This is SRI. The falsity of SRI could be proved with an example, if a compelling
example of a relation of numerical identity which does not involve a sortal can be found.
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identity. This would entail the falsity of RI. Similarly, a series of examples of

weakly reflexive absolute identity relations, such that the union of the sets

of their relata is co-extensive with the domain of discourse, would, again,

support the rejection of RI.

¬GT

It might be supposed that the falsity of GT can be proved with one

compelling example of a relation of absolute identity. However, things will

turn out to be more complicated than this. We will see that the argument

for GT turns on the claim that there cannot be relations of absolute identity

because there is no criterion for a predicate’s expressing absolute identity.

If this argument is sound, then no example would suffice. If this argument

fails, then the falsity of GT can be established with an example, and such

an example will not be difficult to find. I will conclude by noting several

examples of apparent relations of absolute identity to which defenders of

absolute identity have appealed in the past to demonstrate the falsity of GT:

(1.18) ‘x is essentially a man and y is essentially a man and x is

the same man as y’ (Anscombe in Noonan 1980: IX).25,26

(1.19) The relation between a thing and itself and a thing and

nothing other than itself.27

25 Elizabeth Anscombe, from whom this example is borrowed, seems committed to the
rejection of Geach’s Thesis.

26 Notice that this example only seeks to establish an absolute identity relation holding
between men, this would presumably not give us sufficient ontology to establish the truth
of absolute identity generally. As such, it serves (if the example is accepted) only to defeat
strong relative identity, not weak relative identity.

27 This relation (if such a relation exists) would prove absolute identity. Naturally, it
is a relation which is bound to be rejected by the strong relative identity theorist (and
almost certainly by the weak absolute identity theorist also). The real significance of this
example is that it shows just how much the relative identity theorist is forced to give up.
In particular, by denying that this relation is an absolute identity relation, the relative
identity theorist must give up a metaphysics of subsisting objects, distinguishable from
one another absolutely. This shows that this kind of metaphysics is incompatible with
the strong theory of relative identity. This sort of worry comes across most clearly in the
objections to relative identity from Wiggins 2001.
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(1.20) The relation between the referent of a name and the refer-

ent of the same name.28

1.2.4 Conclusion

In Chapter 1, I have presented the three theses that are central to Geach’s

strong theory of relative identity. I have argued that each would need to be

supported independently. The first thesis I will consider is GT. A successful

argument for GT would need to show that the very notion of absolute identity

is such that there cannot be any absolute identity relations. In the next

chapter, I will consider such an argument from Geach.

28 This example shows how theories of relative identity differ from more orthodox views,
with respect to philosophy of language. To explain why (1.20) is not a relation of absolute
identity would require a very complex theory of naming. Geach attempts to solve this
problem with his distinction between names for and names of (Geach 1980: 70). Once
again, if this view of language is false, then so too is GT. These sorts of worries come
across most clearly in Dummett’s attacks on relative identity (Dummett 1973, 1991).
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2. GEACH’S ARGUMENT AGAINST ABSOLUTE

IDENTITY

In his various writings on identity, Geach provides several arguments in favour

of his theory of relative identity. In Reference and Generality, Geach claims,

but does not try to prove, that the orthodox theory of identity is incoherent

because it implies the existence of one or more relations of absolute identity,

and no such relations exist (Geach 1962: 38-39). In a subsequent article,

simply entitled ‘Identity’ (1967), Geach attempts to provide an argument for

this position, that is, for GT. Geach continues to defend his view in further

papers (1969, 1973, 1991). In each case, Geach alters his attack on the ortho-

dox theory of identity. The deductive structure of the argument presented

in Geach’s papers is therefore, at times, unclear. It has been criticized on a

number of separate grounds, and the received wisdom is that the argument

fails to establish the conclusion that no relation of absolute identity exists

(Noonan 1997: 642-645, Hawthorne 2003: 120-123). In what follows, I will

revisit Geach’s argument. Section 1 will involve a close analysis of the argu-

ment, as presented by Geach. I will consider the major objections against

Geach’s argument, and I will propose the emendations that are required to

answer these objections. In Section 2, I will charitably reconstruct Geach’s

argument. I will consider each of the premises of the reconstructed argument

in turn, and I will suggest that several of the premises are likely to be re-

jected. I will consider how Geach might further motivate these premises. I

will conclude that the argument is ultimately inconclusive and that its force

ultimately depends on a series of further philosophical issues that lie beyond

the scope of this dissertation.1

1 Geach’s argument encouraged a long list of responses and replies. Wading through the
literature has therefore become a difficult task. I will provide a brief chronology here. The



2.1 Geach’s Argument

In the following section, I will present the key claims of Geach’s case against

absolute identity. I will outline the apparent deductive structure of Geach’s

argument and consider the objections that have been raised against the ar-

gument. I will note where the objections succeed and how Geach’s argument

might be amended to avoid these objections. The central adjustments that

I propose will be as follows:

(2.1) elaborate the inference from the absence of a criterion for

a predicate’s expressing absolute identity to the non-existence of

relations of absolute identity,

(2.2) replace reference to Wang’s Schema with reference to the

axiom schemata reflexivity and LL,

(2.3) consider what grounds there might be for rejecting set-

theoretic definitions,

(2.4) provide an explicit argument from the proposed second-

order criteria to Grelling’s paradox,

and

(2.5) abandon Geach’s attempt to show that Quine’s proposal for

theory reinterpretation is incoherent.

2.1.1 Geach’s Thesis

Geach begins his argument against absolute identity with the following thesis:

argument appears first in the aforementioned paper ‘Identity’ in 1967. An early reply from
Feldman can be found in The Review of Metaphysics, alongside a response from Geach and
a further rejoinder from Feldman (Feldman/Geach 1969). Next published, is an insightful
reply to Geach by Nelson (1970). This is followed by an elaboration of the argument by
Geach (1973), a response from Dummett (1991), and a final contribution from Geach, in
which he responds to his critics generally (Geach 1991: 276-299). All of this is in addition
to the discussions of the argument that can be found in most publications which consider
theories of relative identity in any depth, such as Noonan (1997) and Hawthorne (2003).
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I am arguing for the thesis that identity is relative. When one says

‘x is identical with y’, this, I hold, is an incomplete expression;

it is short for ‘x is the same A as y’, where ‘A’ represents some

count noun understood from the context of utterance–or else, it

is just a vague expression of a half-formed thought. (Geach 1972:

238)

In light of what follows, however, this seems an odd way for Geach to phrase

his intended conclusion. This passage suggests that the central aim of the

paper is to establish the thesis that relations of identity involve general terms

as a part of their content, in other words, a thesis akin to SRI. While it is

certain that Geach holds these theses to be true, it is equally clear that the

argument he presents in this paper is aimed at another conclusion altogether.

Geach concludes his argument with the following:

We thought we had a criterion for a predicable’s 〈predicate’s〉
expressing strict identity; but the thing has come apart in our

hands; and no alternative rigorous criterion that could replace

this one has thus far been suggested. I urged initially on intuitive

grounds that there just is no such notion as unqualified identity;

it now looks as though my intuition was reliable. I might say:

the prosecution rests. (Geach 1972: 241)

Here Geach reaches the conclusion that there is no notion of ‘unqualified

identity’, though he really means that there is no relation of unqualified (or

absolute) identity.2 His grounds for concluding that there is no such thing

as absolute identity are simply that there is no criterion for any predicate’s

expressing absolute identity.

Geach’s further clarifies his position in subsequent papers:

I can state once more the point I have often made. No criterion

has been given, or, I think, could be given for a predicable’s being

2 As we will see, Geach’s argument depends on there being a concept of absolute identity,
but a concept which necessarily has the null class as its extension.
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used in a language L to express absolute identity. (Geach 1991:

297)

...if we say “Whatever is true of x is true of y, and conversely”

without restricting “true of” to the predicables of some language

L, it is not clear that we have managed to say anything. The

absolute identity that was opposed to merely numerical difference

is a chimera; absolute indiscernibility is a will-o’-the-wisp that we

pursue in vain. (Geach 1973: 298)

Geach speaks of a predicate’s expressing strict identity. ‘Expressing strict

identity’, then, names a meta-linguistic property that predicates may or may

not have. Whether any predicate does in fact express absolute identity de-

pends partly on whether there is, in fact, any such property and partly on

whether or not the extension of the concept corresponding to that property

is the null class.3 As I understand Geach, he means to claim that the ex-

tension of the concept ‘... is a relation of absolute identity’ is the null class.

Although some of Geach’s comments seem to suggest the former contention,

I cannot credit this to Geach, as it would not make sense of his deductive

strategy. Geach takes for granted that we have a particular idea of what a

relation of absolute identity would be, as we will see. He uses expressions like

‘strict identity’, ‘absolute identity’, and ‘unqualified identity’ regularly and

clearly intends his reader to understand something by them. He, therefore,

cannot mean literally that there is no such notion, but rather that there are

no relations corresponding to such a notion. This is an issue to which I will

return later in the chapter when considering an objection from Hawthorne

(2003). For now, having identified Geach’s intended conclusion, we will look

at how he tries to get there.

3 Noonan makes a similar sounding point, which must be distinguished from mine. He
argues that Geach cannot mean that there are no predicates expressing absolute equiv-
alence, but must instead mean that all predicates that do express absolute equivalence
must have the null class as their extension (Noonan 1980: 3). Noonan thinks that Geach
must intend the second meaning, rather than the first, because some predicates are bound
to express absolute equivalence, as he defines the expression. This is a result of Noonan’s,
rather confusing, definition of ‘absolute equivalence’. My own definition does not have this
result. In my view, Geach does intend that there are no predicates that express absolute
equivalence relations.
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2.1.2 Criteria

As we have seen, a central premise of Geach’s is that there is no criterion

for a predicate’s expressing absolute identity. Geach does not explain why a

criterion is needed, he also does not explain what sort of criterion he has in

mind.

Geach is explicit that he is not demanding a definition of identity, al-

though he has occasionally been interpreted as making this demand (Feld-

man/Geach 1969: 549, Hawthorne 2003: 122). In response to one of his

critics, Geach responds:

I did not suggest Feldman’s formula (6) as a definition of identity;

nor did I argue that if a man cannot define a word, then he has

no concept answering to it.

What I did put into the mouth of an absolute-identity man was

a thesis :

(T ) x is identical with y iff whatever is true of x is true of y and

conversely. This differs from Feldman’s (6) by all the difference

between a statement and a convention, which comes out in the

difference between “iff” and “=df”. (Feldman/Geach 1969: 557)

Geach, perhaps, fails to make the distinction between definitions and

criteria sufficiently clear, especially as it is by no means agreed amongst

philosophers what the relation ‘=df ’ signifies. It seems, though, that Geach

intends his demand for a criterion to be, in some sense, weaker than a demand

for a definition. It might be that Geach takes the latter but not the former to

involve intentional equivalence. Geach does tell us, however, that the form

of a criterion must involve material equivalence.

Geach cannot be demanding a criterion of identity in this instance. A

criterion of identity is relative to some sortal term, F , and provides conditions

for the truth of sentences of the form ‘x is the same F as y’. It seems rather

that, in this case, we are looking for the conditions under which it is true to

say, of some predicate P , that ‘P expresses absolute identity’.
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There is, however, another kind of criterion very closely related to criteria

of identity to which Geach attributes importance. A criterion of application

(alternatively, ‘conditions for application’) is a criterion for some x’s falling

under some general term, ‘A’. Geach thinks all general terms, both sortal

and non-sortal, have criteria of application (see the discussion of Geach’s

views in Dummett 1973: 547-548). These provide us with truth conditions

for statements of the form ‘x falls under the general term “A”’.

We saw, when we considered the notion of criteria of identity, that these

were semantic principles rather than epistemic ones, which is to say, in Lowe’s

words ‘semantic principles whose grasp is essential to an understanding of

... general term〈s〉’ (Lowe 1989b: 13). Similarly, criteria of application are

semantic, not epistemic. Which suggests that, if there is no criterion of

application for F s, then ‘for some x, x is an F ’ does not express a determinate

proposition.

Although Geach is nowhere explicit that the criterion he is interested in is

a criterion of application for the general term ‘relation of absolute identity’,

this would make sense of his argumentative strategy. Should we, then, accept

Geach’s claim that all general terms have criteria of application?

If this claim is true, it would follow that, if there is no criterion of ap-

plication for the expression ‘relation of absolute identity’, there are no true

sentences of the form ‘P is a relation of absolute identity’.

Some philosophers may reject this claim, however. Lowe, for example,

in the context of criteria of identity, thinks that some concepts are so basic

that they are exceptions to the otherwise general demand for criteria (Lowe

1989a: 20-21). Perhaps this goes for criteria of application as well, moreover,

perhaps identity is one of these ultimately basic concepts.

If identity is this kind of concept, then Geach’s demand, and, indeed, the

argument which follows, will prove unavailing. Geach, naturally, is unlikely

to be impressed by this response. Geach holds that there is no relation of

absolute identity. As such, he is clearly not disposed to agree that the concept

is semantically privileged in this way.

It is not clear how this sort of dispute can be resolved. In any case, I will

not try to resolve it here. If there are concepts that do not require criteria
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of application, and if absolute identity is one of these concepts, Geach’s

argument will not work. In the interests of pursuing Geach’s line of though,

however, we shall assume that the concept of absolute identity does require

a criterion of application.

Given this assumption, if Geach wishes to show that there is no notion

of absolute identity, he could do this by showing that there is no criterion

of application for the term ‘relation of absolute identity’. However, as I

have said, I cannot credit this view to Geach. Instead, I think his claim is

that there is no non-contradictory criterion of application. Note that there

is nothing wrong with a contradictory criterion of application for a general

term. It means merely that, necessarily, the corresponding concept has as its

extension the null set. This, then, is Geach’s strategy, as I understand it.

With a rough notion of a criterion for a relation’s expressing absolute

identity in hand, we can now consider the structure of Geach’s argument.4

2.1.3 The Deductive Structure of Geach’s Argument against Absolute

Identity

Geach begins by introducing what he takes to be the orthodox theory of

identity. In Geach’s view, the orthodox theory of identity consists of a single

thesis which can be framed as an axiom schema and appended to FOL to pro-

4 In fact, Geach seems to reject the universal claim that all general terms requires
criteria of application elsewhere in his writings. In his textbook Reason and Argument,
Geach has the following to say, which sheds light on his attitude to terms of disputed
application:

One useful way of coming to understand the meaning of an imperfectly clear
term is to produce some good example where the term plainly applies. Plato
represents Socrates as objecting to this procedure: unless we already know
quite well what the term means, there will be no unexceptional examples
to show us; so example are useless anyhow. The truth is that if misunder-
standing arises it may be resolved either by producing criteria for using a
term or by giving good clear examples: we can work from examples to get
criteria that will fit them, and we can use criteria to apply the term to new
examples. (Geach 1976: 40)

In fact, Geach must be talking about epistemic principles here, rather than the semantic
criteria of application that we are interested in. For the latter, it is clear that Geach thinks
there are no exceptions. Every general term must have a corresponding semantic criterion
of application in his view.
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duce FOL with identity (henceforth, FOL=). The schema Geach introduces

on behalf of the absolute theory of identity is as follows:

(2.6) ` Fa↔ V x(Fx ∧ x = a)5

Geach calls this ‘Wang’s Schema’ and references Quine’s Set Theory and its

Logic (1963: 13) as its source. In that work, the Schema appears as:

(2.7) ` Fy ↔ ∃x(x = y ∧ Fx)

In both versions, ‘F ’ is ranging over all possible predicates, rather than just

sortal terms. From such a schema, the four traditional laws of identity can

all be derived as theorems.6,7 Having identified his target, Geach goes on:

In face of these well-known results, it may seem an enterprise wor-

thy of a circle-squarer to challenge the classical theory of identity.

All the same, it has an Achilles’ heel, as I hope to show. (Geach

1972: 239)

So what, then, is the supposed ‘Achilles heel’ of the theory of absolute iden-

tity? Geach’s next move is to introduce the notion of an I-predicate (in

Geach’s own vocabulary, ‘an I-predicable’), defined as any two-place predi-

cate, P , such that ‘P ’ can replace the occurrence of ‘=’ in (2.6)/(2.7) where

the resulting schema is truth-preserving. Geach then raises a problem for

I-predicates:

However, if we consider a moment, we see that an I-predicable

in a given theory T need not express strict, absolute, unqualified

identity; it need mean no more than that two objects are indis-

cernible by the predicables that form the descriptive resources of

the theory.’ (Geach 1972: 240)

5 Note that ‘V ’ is a symbol that Geach uses for existential quantification (Geach 1972:
239).

6 Proof of reflexivity: Taking (2.7), Replace ‘F ’ with px 6=q, we get y 6= y ↔ ∃x(y =
x ∧ y 6= x). We can of course prove that ¬∃xy = x ∧ y 6= x and, given the biconditional,
we get ¬(y 6= y).

7 Proof of LL: (2.7), we can derive, by weakening the biconditional, ((∃x)(x = y∧Fx))→
Fy. Note the scope of the quantifier, this entails that ∀x(x = y → (Fx→ Fy)). Note that
this last forumla is frequently used as a formulation of LL. My version, with a biconditional
in place of the final conditional is derivable from it.
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Geach concludes from this that I-predicates do not express absolute iden-

tity. This is the supposed ‘Achilles’ heel’ of the theory of absolute identity.

The thought seems to be this: satisfaction of Wang’s Schema (in the sense

of replaceability salva veritate of ‘P ’ for ‘=’) might be thought to provide

a criterion for some P ’s expressing absolute identity. However, relations

which satisfy Wang’s Schema do so relative to a given theory, T . There is no

guarantee that a given I-predicate-relative-to-T also satisfies Wang’s Schema

relative to some other theory, T ′. This, Geach seems to think, is good reason

for concluding that satisfying Wang’s Schema does not provide a sufficient

condition for being an absolute identity relation. Thus, Geach concludes,

Wang’s Schema does not provide a criterion for a relation’s expressing abso-

lute identity.

I have suggested that we must understand ‘criterion’ here to mean ‘crite-

rion of application’. In other words, Geach’s concern here is whether Wang’s

Schema can provide the expression ‘relation of absolute identity’ with a crite-

rion of application. It seems, then, that Geach’s attack on absolute identity

has the following structure:

2.1.4 Argument 1

P1. The theory of absolute identity proposes the following cri-

terion of application for the term ‘relation of absolute identity’:

Any predicate, P , is a relation of absolute identity if and only if

P satisfies Wang’s Schema.

P2. Every criterion of application provides a sufficient condition.

C1. If the theory of absolute identity is true, then the proposed

criterion provides a sufficient condition.

P3. The proposed criterion does not provide a sufficient condi-

tion for a predicate’s falling under the term ‘relation of absolute

identity’.
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C2. The theory of absolute identity is false.8

Let us consider Geach’s premises in turn.

2.1.5 P1

The theory of absolute identity proposes the following criterion of

application for the term ‘relation of absolute identity’: Any pred-

icate, P , is a relation of absolute identity if and only if P satisfies

Wang’s Schema.

Geach does not argue at any length for P1, and the premise might be

thought to be a straw man. This charge has some substance as there are al-

ternative and more popular criteria for a relation’s expressing absolute iden-

tity that Geach does not consider. In fact, few logicians make use of Wang’s

schema (this was so even at the time of Geach’s first paper on identity) to

characterize identity in a first-order language. It is more common to intro-

duce reflexivity and LL individually, by appending them as axiom schemata

to FOL, as was done in Chapter 1, or by simply adding the corresponding

rules of inference.9

It should also be noted that the conjunction of reflexivity and LL is

introduced as a characterization of absolute identity in first-order logic, not

as a criterion of a predicate’s expressing absolute identity. Moreover, the first-

order characterization of absolute identity is not introduced as a definition

of identity, either. As we saw in Chapter 1, absolute identity is first-order

indefinable but is thought by many to be definable in either a second-order

language, with LL serving as definiens, or by using the tools of set theory,

for example as follows:

‘x = x’=def < x, x > |x ∈ A10,11

8 My Argument 1 resembles Nelson’s reconstructed version of Geach’s argument (Nelson
1970: 243). Other responses to Geach’s argument invest too little effort into establishing
the intended deductive structure of Geach’s case against absolute identity.

9 In Geach’s final discussion of his argument, he does focus on the two axiom-schemata
rather than Wang’s Schema (Geach 1991: 296-299).

10 Enderton 2000: 5.
11 Informally, we may say: Where A is a set, the expression ‘I(A, ζ, η)’=def the partition
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or, alternatively,

Geach does not explicitly argue for the indefinability of absolute identity,

and Geach is not arguing that we can infer from the indefinability of absolute

identity to the non-existence of absolute identity (Geach 1969: 556-557),

though he has occasionally been misinterpreted as doing so (Geach/Feldman

1969: 549, Hawthorne 2003: 122). Nevertheless, if identity is definable in

second-order logic or in set theory, a criterion of application for a relation’s

expressing absolute identity can be formed by stipulating that a relation falls

under the term ‘relation of absolute identity’ if and only if the relation has

the property of satisfying the definiens. In other words, if absolute identity is

second-order definable or definable set-theoretically, then there is an apparent

criterion for a relation’s expressing absolute identity which can be provided

in either second-order logic or set theory.

Given this, Geach is attacking a straw man unless either his critique of

Wang’s Schema can extend to the alternative characterizations of identity, or

independent reasons can be provided for rejecting these characterizations as

criteria of application. Given this, my charitable reconstruction of Geach’s

argument will target the axiom-schemata LL and reflexivity, rather than

Wang’s Schema. I will also consider what grounds Geach might have for

thinking that the other characterizations of absolute identity in the litera-

ture fail to provide criteria of application for the term ‘relation of absolute

identity’. Geach does, in fact, have something to say about definitions of ab-

solute identity, other than those involving set theory. Geach dispenses very

quickly with informal definitions in his 1967 article, his objection to a typical

informal definition of absolute identity runs as follows:

“For real identity”, we may wish to say, “we need not bring in

the ideology of a definite theory T . For real identity whatever

is true of something identical with a is true of a and conversely,

regardless of which theory this can be expressed in; and a two-

place predicable signifying real identity must be an I-predicable

no matter what other predicables occur along with it in the the-

of A by I(A, ζ, η) gives the set of ordered pairs 〈x, x〉
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ory.” But if we wish to talk this way, we shall soon fall into con-

tradictions; such unrestrained language about “whatever is true

of a”, not made relative to the definite ideology of a theory T , will

land us in such notorious paradoxes as Grelling’s and Richard’s.

(Geach 1972: 240)

So Geach rejects the informal definition of the absolute identity relation as

‘whatever is true of something identical with a is true of a and conversely’,

on the grounds that talk of ‘whatever is true of a’ leads to Grelling’s (1936)

and Richard’s paradoxes (1905). Geach does not provide an explicit argu-

ment from the semantic paradoxes to the inadmissability of expressions such

as ‘whatever is true of a’, and some critics have disputed whether he is right

about this (Geach/Feldman 1969, Nelson 1970). A satisfactory reconstruc-

tion of his argument will certainly need to fill this gap. I will provide such an

argument in Section 2. I will consider only Grelling’s paradox, as Richard’s

would complicate matters without shedding additional light.12,13

Grelling’s paradox is normally framed as a contradiction derived by adding

to a language certain stipulatively defined adjectives. However, the paradox

can be framed just as easily using stipulatively defined predicates rather than

12 Although all the paradox’s of self-reference share a similar structure, Geach’s appeal to
Grelling’s and Richard’s paradoxes is chosen for good reason. Geach could not have called
on the more famous paradoxes of self-reference, like Russell’s or the liar paradox, because
the standard solutions to these do not suggest that there exists, in any given language,
some property which is inexpressible. We will see that this is o ne possible response to
Grelling’s paradox, which might provide support to GT.

13 Richard’s paradox is closely related to Cantor’s diagonalization argument, but, as in
the Grelling paradox, incoherence arises from our apparent ability to construct certain
predicates in ordinary language, which lead to contradictory results. In brief, this paradox
arises by running a Cantor-style diagonal argument with real numbers defined in a natural
language. Consider the following. It seems that we can define real numbers in a language
such as English. Moreover, it seems that if we were to compile a list of such definitions,
that list would be infinite. We order the corresponding list of real numbers by the length
of their English definitions. It seems that we now have an ordered list of all the defined
real numbers. However, we can introduce a new definition as follows: a real number <
1, for each decimal place, n, n is occupied by 2 if the nth decimal place of the nth real
number on the list of real numbers is 1, otherwise n is occupied by 1.

This definition is guaranteed of defining a real number which is not on the list. But
it must be on the list, because this contains all real numbers defined in English. Thus
we arrive at a paradox. Notice that our definition was entirely arbitrary, we could have
chosen any number of ways of defining a number that was on the list (I.J. Good 1966)
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adjectives. Let us attempt to add to the English language two second-order

predicates, defined as follows:

‘... is heterological’ =def ... is a predicate which is not true of itself.

‘... is homological’ =def ... is a predicate which is true of itself

We run into the paradox when we attempt to predicate ‘... is heterological’

of itself. Are we to say that ‘...is heterological’ is itself heterological? Or is

it homological?

The problem is this. If we attempt to say “‘... is heterological” is homo-

logical’, then we are saying that ‘... is heterological’ is true of itself. This

is of course just to say that “‘... is heterological” is heterological’. Thus,

we have contradicted ourselves. We have said that ‘... is heterological’ is

both heterological and homological. But if we begin by saying that “‘ ...is

heterological” is heterological’, then clearly we have just said of ‘... is het-

erological’ that it describes itself, in which case we must admit that ‘... is

heterological’ is homological, and again, we reach a contradiction. It seems,

then, that introducing the stipulatively defined predicate ‘... is heterological’

into a language leads to inconsistency. It is Geach’s contention that talk of

‘whatever is true of x’ will have the same consequence.

In his final work on identity, Geach makes explicit that his argument

against the informal definition, by appealing to Grelling’s paradox, is in-

tended to serve as an argument against any criterion of a relation’s express-

ing absolute identity which involves quantification over all predicates (Geach

1991: 297). On account of this paradox, Geach thinks that the standard

formal second-order definition of identity,

‘x = y’=def ∀P (P (x)↔ P (y))14

leads to Grelling’s paradox if we interpret the third quantifier as ranging un-

restrictedly.15 In Section 2, we will consider if an argument from Grelling’s

14 Russell and Whitehead [1910] 1970: 168
15 It seems that Geach’s argument, if sound, would undermine unrestricted second-order

objectual quantification generally. It is not clear if Geach intending this further result.
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paradox can be provided, which shows that a criterion of application in-

volving second-order definitions of absolute identity would entail that the

extension of the concept relation of absolute identity is the null class.

2.1.6 P2

Every criterion of application provides a sufficient condition.

P2 hardly needs defending. If C is a criterion of application for ‘P ’, then

C has the form ‘x is (an) P if and only if φ’. So the right-hand side of

C provides a sufficient (and necessary) condition for the satisfaction of the

general term for which C provides a criterion of application. This is simply

what it is to be a criterion of application.

2.1.7 P3

The proposed criterion does not provide a sufficient condition for

a predicate’s falling under the term ‘relation of absolute identity’.

Geach argues for P2 at much greater length then he does for P1. Geach

argues that the alternative to taking the schematic letter in Wang’s Schema

to be replaceable by any possible predicate, prohibited, Geach contends, by

the semantic paradoxes, is to take it as ranging over just those predicates

found in the ideology of a given theory, T . However, this does not guarantee

that any x and y jointly satisfying some I-predicate really are identical,

claims Geach.

We can never so specify what we are quantifying over that we

are secure against an expansion of our vocabulary enabling us to

discriminate what formerly we could not.(Geach 1973: 301)

In other words, it is possible that there is some extension of T , T ′, with

a larger vocabulary, such that for some pair, 〈x, y〉 jointly satisfying some

I-predicate in T , x and y are found to be discernible relative to T ′. This

means, of course, that x and y do not satisfy LL relative to T ′ and therefore
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that the relation that holds between them does not satisfy Wang’s Schema

relative to T ′. Geach attempts to bolster his case with an example.

2.1.8 Example

Take the two-place predicate:

‘...is equiform with...’

There is a theory, T , the ideology of which involves sufficient predicates to

distinguish one word-type from another but insufficient predicates to distin-

guish two different word-tokens of the same type. Take the sentence “‘horse”

is equiform with “horse”’. Relative to T , the two-place predicate ‘... is

equiform with...’ is an I-predicate because T lacks the resources to distin-

guish any two equiform words. Now imagine an addition to the ideology of T

of sufficient predicates to distinguish between two tokens of the same word-

type. We will call the expanded theory ‘T ′’. If the occurrences of ‘horse’ are

interpreted as referring to token words, then, relative to T ′ the predicate is

no longer an I-predicate. Thus, claims Geach, the predicate never expressed

an absolute identity relation at all. It seems that this goes for any theory-

relative I-predicate, for nothing can prevent the addition of new predicates

to a theory. So long as there exists the possibility of adding new predicates

to the ideology of a theory, the possibility of discriminating what we were

previously unable to discriminate will remain.16

Intuitively, it seems that if x and y are absolutely identical, they are one

and the same thing, and this does not seem to be a theory-relative matter.

On the basis of this intuition, if a predicate is an I-predicate relative to T

and not an I-predicate relative to T ′, then it expresses absolute identity in

16 Geach remarks, in response to one of his critics, that it is confused to set up the
relationship between theories in temporal terms (Feldman/Geach 1969: 557). Rather,
claims Geach, the distinction must be made in timeless, set-theoretic, terms. Apart from
the fact that Geach himself does not follow his own advice consistently, Geach’s concern is
motivated by a desire to try to demonstrate claims which I will ultimately reject anyway,
so I will continue to set out the relationship between theories and their sub-theories in
temporal terms, as this way of expressing the issue makes it easier to grasp.

60



neither T nor T ′. Or rather, to be more precise, if a predicate, P , is an I-

predicate relative to a theory T , but for some pair of objects, 〈x, y〉 satisfying

P in T , x and y are discernible relative to T ′, an extension of T , then P did

not express an absolute identity relation in T . It is this intuition which gives

force to Geach’s initial argument. Geach’s word-type/word token example

is intended to provide us with a demonstration of the truth of the second

premise of Argument 1. I will call this defence of P2 ‘Argument 2’. The

structure of Geach’s Argument 2 seems to be as follows:

2.1.9 Argument 2

P2.1. For any objects x and y, if x and y are discernible rel-

ative to the resources of any theory whatever, x and y are not

absolutely identical in any sub-theory of that theory.

P2.2. Wang’s Schema is theory-relative, in the sense that the

schematic letters range over those predicates that form the ide-

ology of a given theory. So, for any pair 〈x, y〉, it is possible

that 〈x, y〉 satisfies Wang’s Schema relative to some theory, T ,

but that x and y are discernible relative to some other theory T ′,

where T ′ is an extension of T .

C2.1. For any x and y, it is possible that x and y satisfy Wang’s

Schema and are not absolutely identical. (from P2.2)

C2.2. Therefore, Wang’s Schema does not provide a sufficient

condition for some relation’s being a relation of absolute identity.

(Modus Ponens P2.1, C2.1)

Once again, we will consider the truth of the premises in turn.

2.1.10 P2.1

For anything x and y, if x and y are discernible in any theory what-

ever, x and y are not absolutely identical in any sub-theory of that
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theory.

Geach neither defends P2.1 nor even makes explicit that he is asserting

it. However, the validity of Geach’s argument requires P2.1. More particu-

larly, I think that Geach is assuming that the notion of absolute identity is

incompatible with the following state of affairs: x is absolutely identical with

y and there is some model of a theory, T , in which x has some property that

y lacks.

This premise, however, has been challenged. Hawthorne (2003: 122-123)

has argued that Geach’s claim here is self-defeating. Geach’s claim is that

the discernibility of x and y in any theory whatever entails the non-absolute

identity of x and y. However, Hawthorne argues, this entailment is only true

if absolute identity is characterized by a version of LL which ranges over the

predicates of all possible languages. But Geach himself has argued that this

version of LL entails a contradiction. In other words, Hawthorne thinks that

P2.1 derives its plausibility from a notion of absolute identity which Geach

cannot accept in the first place. A successful argument will need to show

how this objection can be avoided. I will do this in Section 2 of Chapter 2.

2.1.11 P2.2

Wang’s Schema is theory-relative, in the sense that the schematic

letters range over those predicates that form the ideology of a given

theory. So, for any pair 〈x, y〉, it is possible that 〈x, y〉 satisfies

Wang’s Schema relative to some theory, T , but that x and y are

discernible relative to some other theory, T ′, where T ′ is an exten-

sion of T .

As we have seen, Geach thinks that, in order to avoid the semantic para-

doxes, we must interpret the schematic letter used in expressing Wang’s

Schema as being relative to a given language. This, claims Geach, guar-

antees that cases like the word-type/word-token case introduced above are

always possible.
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Moreover, as Geach says,

It is useless to protest that this need not happen; that such a

situation can arise is already enough to show how inadequate

a test it is for a predicable’s expressing absolute identity in a

language L, that when it is used in L the familiar axiom schemata

for identity are satisfied. (Geach 1991: 298)

P2.2 has been heavily criticized by Dummett. One of Dummett’s criticisms is

that Geach’s position ‘depends upon an oscillation between taking a language

or a theory, to be interpreted and taking it to be uninterpreted’ (Dummett

1991: 165). I will now identify the supposed oscillation and show how it can

be eliminated.

Responding to the possibility of the word-type/word-token cases that

Geach suggests, Dummett argues as follows:

Whether this can happen or not depends not only upon how the

domain has been specified, but also on the interpretation of the

predicates of L. If, in M , they were so interpreted that =L does

not come out as the identity relation over the domain D, then

the situation envisaged by Geach is possible. If, however, the

predicates of L were so interpreted that =L came out as the iden-

tity relation over DM , then no such possibility exists. (Dummett

1991: 164)

In other words, Dummett thinks that word-type/word-token cases are im-

possible so long as we are careful to interpret the terms of the theory in a

certain way. Moreover, Dummett thinks that this fact is insufficient to es-

tablish Geach’s thesis that Wang’s Schema fails as a criteria of a relation’s

expressing absolute identity.

In Dummett’s view, Geach’s argument is targeting a thesis, numbered

‘(iv)’ in Dummett’s paper, which Geach attributes to the absolute theory of

identity. That is: ‘For any language L, we can so construe L that, if =L holds

between x and y, then x and y are absolutely identical.’ (Dummett 1991:

63



164) Dummett then argues that the mere possibility of interpretations of a

theory which allow for word-type/word-token cases is not enough to establish

the falsity of (iv). As Dummett puts it,

Given a model M of T (formulated in L), by restriction we obtain

a model M0 of T 0 (formulated in L0) having the same domain as

M . In the case imagined, =L0 will not, in M0, denote identity.

But that does not disprove thesis (iv), which merely stated that

there would be some model of T 0 in which =L0 denoted identity.

If we consider such a model, say M1, it need not be a submodel

of M . (Dummett 1991: 165)

If Dummett is right in taking (iv) to be the position that Geach is attacking,

then he has shown that Geach’s argument fails. However, Geach nowhere

ascribes (iv) to the absolute theory of identity, and the soundness of his ar-

gument does not depend on the falsity of (iv). Geach’s conclusion, as we

have seen, is that the satisfaction of Wang’s Schema does not provide a suffi-

cient condition for a relation’s expressing absolute identity. This conclusion

will be true so long as there are even some interpreted theories which in-

volve relations which do satisfy Wang’s Schema and do not express absolute

identity.

The issue may be brought into sharp relief by considering the alternative

possible formulations of the premise P2.2. P2.2 is ambiguous between the

following:

(2.8) There is no interpretation of the terms of T ′ such that x

and y are indiscernible.

(2.9) There is at least one interpretation of the terms of T ′ such

that x and y are discernible.

(2.10) We take T and T ′ to be interpreted theories, which is to

say that the terms must be interpreted in T ′ the same way that

they are interpreted in T .
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To put each of these more accurately:

P2.2′: For any pair 〈x, y〉 in a theory T , the following is true.

〈x, y〉 may satisfy Wang’s Schema relative to T , but there exist

extensions of T , T ′ such that the truth of T ′, under any interpre-

tation, demands that x and y are discernible.

P2.2′′: For any pair 〈x, y〉 in a theory T , the following is true.

〈x, y〉 may satisfy Wang’s Schema relative to T , but there exist

interpretations of a theory T ′, an extension of T , such that the

truth of T ′ demands that x and y are discernible.

and

P2.2′′′: Given a structure, M , of a theory, T , some pair 〈x, y〉
may satisfy Wang’s Schema relative to T , while given, M ′, an

extension of M and a structure of an extension, T ′, of T , x and

y are discernible relative to T ′.

P2.2′ and P2.2′′ take T and T ′ as uninterpreted theories, allowing x and

y to be interpreted differently in T ′ from their interpretation in T . P2.2′′′

takes the theories T and T ′ as interpreted theories, thus interpreting x and

y differently in T ′ from how they are interpreted in T is ruled out.

Dummett thinks that P2.2′ is obviously false. He argues that P2.2′′ is

true, but presuming we read P2.1 along the same lines as P2.2, P2.1 would

then be false. For we cannot conclude anything merely from the fact that x

and y can be interpreted in such a way that they are discernible. So which of

these did Geach intend? Moreover, can any one of them be used to generate

a sound argument for Geach’s conclusion?

Let us begin with option P2.2′. Dummett is right that P2.2′ is simply

false. There must be at least one interpretation of the terms of T ′ which

is such that all the pairs jointly satisfying Wang’s Schema in T also satisfy

Wang’s Schema in T ′. A charitable interpretation of Geach’s argument will

reject P2.2′ as the correct reading of P2.2.
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We turn, then, to option P2.2′′. Taking P2.2′′ as the intended meaning of

P2.2 would require a new version of P2.1 as well. The argument would depend

on the claim that Wang’s Schema is a necessary and sufficient condition for

a predicate’s expressing a relation of identity if and only if that relation were

such that there were no interpretation of its relata such that any pair were

discernible. If P2.1 in this form were to be accepted, then Geach’s argument

would be valid. But the mere statement of the revised P2.1 shows that it is

also false. Of course there are some interpretations of x and y in any theory

such that x and y are discernible (Dummett 1991: 162-163). This will be

true just so long as the domain of discourse contains any two things that are

discernible. But the mere fact that, according to some interpretation, x and

y are discernible does not show us that x and y are not identical. Geach

cannot intend P2.2′′ as the correct version of P2.2, because he cannot accept

the corresponding version of P2.1.

Finally, we turn to option P2.2′′′. Reading P2.2 as P2.2′′′, Geach is claim-

ing that there is a least one case where, for some x and y, x and y are

indiscernible with respect to a theory, T , and discernible with respect to T ′,

an extension of T , and crucially, where all the common terms of T and T ′,

including of course x and y, have the same interpretation in both T and T ′.

Geach fails to adequately clarify his position between options P2.2′, P2.2′′,

and P2.2′′′, however he undoubtedly holds P2.2′′′, even if he seems to defend

the other claims at times as well. Moreover, option P2.2′′′ is the only one

which is not obviously false and thus has a hope of supporting a sound

argument for P2. Therefore, I advocate option P2.2′′′, and, in my charitably

reconstructed version of the argument which follows, I will assume that option

P2.2′′′ is the intended meaning of P2.2.

At this point Geach tries to defend P2 from what he considers to be a

possible objection. The objection is based on a proposal of Quine’s. Since

this plays an apparently large role in Geach’s argument and is the source of

much of the criticism of Geach’s argument, it would be well to set it out in

depth. The relevance of the objection may not be clear at first, and ultimately

I will argue that Geach would have been better to ignore it altogether, as it

does not in fact threaten any of the required premises of Geach’s argument.

66



2.1.12 Quine’s Proposal

Quine defends the following thesis:

In general we might propound this maxim of the identification of

indiscernibles: Objects indistinguishable from one another within

the terms of a given discourse should be construed as identical

for that discourse. More accurately: the references to the origi-

nal objects should be reconstrued for purposes of the discourse as

referring to other and fewer objects, in such a way that indistin-

guishable originals give way each to the same new object. (Quine

1953: 71)

What Quine intends is best understood by considering another example:

Suppose a discourse about person stages, and suppose that what-

ever is said about any person stage, in this particular discourse,

applies equally to all person stages which make the same amount

of money. Our discourse is simplified, then, by shifting its sub-

ject matter from person stages to income groups. Distinctions

immaterial to the discourse at hand are thus extruded from the

subject matter. (Quine 1953: 71)

Thus, let us take T ′ to be the discourse discussed by Quine, which by hypoth-

esis, takes person stages as the elements of the domain of discourse. Now

let us consider the set of sentences in that theory in which the only prop-

erty of person stages relevant for judging the truth of the sentence is how

much money each person stage possesses. This set of sentences is of course a

sub-theory of T ′. We will call this sub-theory ‘T ’. Quine is suggesting that

we construe the range of the quantifiers in T as income groups rather than

person stages, as in T ′. This suggestion also has the apparent result that a

two-place predicate, such as ‘...is as wealthy as...’, which is an I-predicate

relative to T ′ is also an I-predicate relative to T .

Consider, in T ′ we may find the statement ‘x is as wealthy as y’. It is

clear that this is not expressing a relation of absolute identity between x and
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y. By hypothesis, the terms ‘x’ and ‘y’ map on to person stages. It does

not follow from the fact ‘x is as wealthy as y’, where x and y are person

stages, that x is exactly the same thing as y. They could be different person

stages with the same net worth. Moreover, the predicate ‘... is as wealthy

as...’ does not guarantee indiscernibility between person stages, and so ‘...is

as wealthy as...’ is not an I-predicate relative to T ′.

Things stand differently with regards to T , however, if we adopt Quine’s

proposal. The quantifiers in T range over income groups. Again consider the

sentence ‘x is as wealthy y’. It is clear that if x and y are income groups, and

if they are equally wealthy, then they are simply one and the same income

group. So it seems that ‘... is as wealthy as...’ is an I-predicate relative to

T .

If this policy is always followed, we will never find a relation that satisfies

Wang’s Schema relative to one theory but does not satisfy Wang’s Schema

relative to an extension of that theory. This is because for any pair, 〈x, y〉
indiscernible relative to T , in any extension of T , T ′, and featuring a state-

ment of the form pF (x)∧¬F (y)q, Quine’s procedure demands that x and y

be interpreted differently in T ′ from how they were interpreted in T . This

proposal may seem to cause a problem for Geach, because his defence of

P2 depends on the possibility of cases of the word-type/word-token variety.

Consistently following Quine’s procedure would act to prevent any such case

from occurring.

This procedure is familiar to contemporary logicians. The structure of T

in which ‘x’ and ‘y’ are interpreted as income groups is called the ‘quotient-

structure’ of T . Indeed, many responses to Geach are willing to accept that

satisfaction of Wang’s Schema (or reflexivity and LL) does not, on its own,

provide a necessary and sufficient condition for a relation’s expressing iden-

tity (Nelson 1970), at least not in the sense that it guarantees that all in-

terpretations of a given I-predicate must construe it as an absolute identity

relation (Geach 1991: 162-163). Rather, the claim is that a given I-predicate

can always be interpreted as expressing absolute identity, so long as we fol-

low Quine’s procedure, and that this is enough to refute Geach’s argument

against the existence of absolute identity relations.
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2.1.13 Geach’s Objections to Quine

Geach says of Quine’s response ‘As you might expect, I have no knock-down

logical answer to this; Quine is hardly going to be caught out in a straight-

forward logical mistake.’ (Geach 1972: 243) Nevertheless, Geach thinks that

Quine’s suggestion is not one that ought to be adopted. Geach, in different

versions of his argument against absolute identity, gives two related reasons

for rejecting Quine’s proposal. These are first, indecent ontological expan-

sion, and second, the existence of objects that, he claims, are ‘incoherent’. I

will consider each of these in turn.

Quine’s suggestion relies on our ability to construe the range of the quan-

tifiers in such a way that all statements constructible in theory T have the

same truth-conditions in an expanded theory, T ′. Geach accepts that we can

construe the range of the quantifiers in such a way that no contradiction arises

but thinks that doing so ‘involves a sin against a highly intuitive method-

ological programme’ (Geach 1972: 243). The ‘highly intuitive methodologi-

cal programme’ to which Geach refers is that we should maintain the same

ontological commitments while allowing expansion of our ideology. This is

important, says Geach, referencing Quine himself, because it is implicit in

our understanding of the quantifiers that their range remain stable.17

Geach explains how Quine’s proposal would offend against the programme

of maintaining a stable ontology:

There are many ways of counting ... words: as John Austin

remarked, in a rare flash of perceptiveness, type-words and token-

words are just two among many ways of counting words. We

may, for example, count the dictionary-entry words in a book ...

If now we choose to follow Quine, there will be in rerum natura

ever so many different domains of words, just in one volume on

my shelves at Leeds. (Geach 1972: 244)

17 Geach himself describes his objection to Quine’s proposal as ‘ad
hominem’(Geach/Feldman 1969: 557). Quine expresses a well known love for ‘desert
landscapes’ in philosophy, and Geach thinks that this is incompatible with the ontological
expansion that he thinks is entailed by the proposal. So, concludes Geach, neither Quine
nor anyone with the same philosophical preferences as Quine ought to adopt the above
proposal.
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The point may be summed up as follows. Take again our theory T ′, expressed

in a language with descriptive resources sufficient to distinguish two different

tokens of the same word-type, and T ′’s sub theory T , which is the fragment of

T ′ expressible in a language capable only of distinguishing word-types. The

two-place predicate ‘... is equiform with ...’ is an I-predicate relative to T but

not an I-predicate relative to T ′. In accordance with Quine’s proposal, we

construe the quantifiers in T as ranging over word types and thus conclude

that the predicate ‘... is equiform with ...’ expresses an absolute identity

relation. However, when we consider the expanded theory T ′, we construe

the quantifiers as ranging over word tokens. So the truth of ‘x is equiform

with y’, does not entail that x and y are identical. Thus, relative to T ′, ‘... is

equiform with...’ does not express absolute identity. Geach points out that

there is yet another sub theory of T ′, we will call it ‘T ′′’, which requires that

we construe the quantifiers as ranging over ‘dictionary words’ (one dictionary

word, x, is identical with a dictionary word, y, if and only if they have the

same entry in the Oxford English Dictionary).

A key claim of Geach’s is that, if a theory is committed to the existence of

some entity, then any expansion of that theory is committed to the existence

of that entity as well. In other words, theory T ′ is committed to the existence

of all the entities quantified over in theories T and T ′′. Geach considers this

to be problematic for Quine’s proposal. For surely we are not committed

to the existence of dictionary words in ordinary discourse? Still less of the

increasingly bizarre kinds of words that we would be required to recognize

because they are the assignments of the variables in various sub-theories of

T ′? And yet, if there is a restriction of the language that we speak, such that

the quotient-structure of that language fragment takes dictionary words as

the semantic values of some of our referring phrases, then, Geach claims, we

must admit dictionary words into our ontology. Geach believes that such a

situation would be intolerable.18

18 Quine is, in fact, well aware that his proposal would entail an enlarged ontology. He
justifies this as follows:

Note, however, that from an over-all or absolute point of view the expedient
is quite opposite to Occam’s razor, for the multiple entities a, b, etc., have
not been dropped from the universe; the Cayster has simply been added.
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2.1.14 Surmen

We have seen that a very large number of objects might have to be quantified

over in order to fulfil Quine’s policy of construing the quantifiers in such a

way as to allow I-predicates to express identity while guaranteeing that every

statement retains the same truth-conditions in each sub theory. In a later

paper, Geach adds a second worry. Geach attempts to show that some of

the objects that a follower of Quine’s proposal would be committed to will

be incoherent. Geach argues for this conclusion by introducing his notion of

‘absolute surmen’. x and y are the same surman if and only if x and y are male

and have the same last name. An ‘absolute surman’ is a surman that exists

independently of any particular man. If the quantifiers range over men, then

the two-place predicate ‘... is the same man as...’ is an I-predicate relative

to theories which do not have sufficient predicates to distinguish between

different men with the same last name. Given what we have said above

about an expanded theory carrying over all the ontological commitments of

each of its sub theories, it seems that any reasonably expressive theory will

have to recognize the existence of both men and surmen. But a surman, by

stipulation, is a man. As Geach puts it, ‘he has brains in his skull and a

heart in his breast and guts in his belly’ (Geach 1972: 245). But what, then,

is the population of Leeds, for example? Is it the combined total of men and

surmen? Every surman is a man by stipulation, so if we are not to count

them separately when we count the number of men in Leeds, then we must

say that each surman is identical with some (ordinary) man. But which of

the men named ‘Smith’ is Smith (the surman)? Surely none of them. So

it seems that the surmen are entities independent of the men. Thus we are

committed to the existence of absolute surmen. Geach concludes from this

that following Quine’s procedure would entail the existence of incoherent

objects (Geach 1973: 299-300).

There are contexts in which we shall still need to speak differentially of a,
b, and others rather than speaking indiscriminately of the Cayster. Still
the Cayster remains a convenient addition to our ontology because of the
contexts in which it does effect economy. (Quine 1953: 70)
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It may not be clear that this result does, even prima facie, amount to an

incoherence. However, Geach’s point may be expressed as a dilemma arising

from the Quinean procedure. The horns of the dilemma are as follows. Either

every surman is identical with some individual men, in which case Smith, the

surman, is one of the men named ‘Smith’. However, the choice of which man

seems entirely arbitrary. Or each surman is numerically distinct from each

individual man, in which case, the total male population of Leeds is the

total of individual men and surmen. This is not an incoherent result, but if

Quine’s proposal cannot be supplemented by an alternative to these options,

the dilemma is, at least, unpalatable.

2.1.15 Responding to the Objections

Every published response to Geach’s argument has involved some attack on

Geach’s objections to Quine (Geach/Feldman 1969 552-554, Nelson 1970:

250-255, Dummett 1991: 172-180, Noonan 1997: 642-645 and Hawthorne

2003: 116-117). Geach seems to present his case against the Quinean sug-

gestion as a key component of his argument against absolute identity, and

so, it is not surprising that commentators have assumed that Geach needs to

show that the Quinean suggestion is misguided in order to defend his own

case. However, I think that this is a mistake.

The arguments against Geach’s objections to Quine’s proposal are strong.

One major point of contention is this: if theory T is a proper sub-theory of

theory T ′, is the latter theory committed to all of the ontological commit-

ments of the former? Both of Geach’s objections to Quine’s proposal depend

on it being the case that the ontological commitments of sub-theories carry

over to the extended theory. Several critics of Geach, however, have claimed

that this is not the case. Feldman, for example, sees no reason to think that

Quine should be committed to the existence of surmen as well as men in

a theory which is capable of differentiating two different men who have the

same surname. In his view, the move from the smaller theory to the larger

involves the rejection of a domain of discourse including the former entities

in favour of a domain including only the latter (Geach/Feldman 1969: 553-
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554). Dummett argues that ontological commitments carry over only if we

take the terms of T as already interpreted. That is, to use our former ex-

ample, if the term ‘x’ in a structure, M of T refers to a word-type, then

the structure M ′, an extension of M , of T ′, an extension of T , will involve

reference to word-types. Merely extending an existing structure is contrary

to Quine’s intentions, claims Dummett. The whole point of the reinterpre-

tation strategy is that ‘x’ maps on to an entity in T ′ which it did not map

on to in T . This would involve a structure of T ′ which was not an extension

of the structure of the sub-theory T . In other words, Quine’s proposal takes

theories to be uninterpreted (See Dummett’s discussion in 1991: 165-166).

Even if Geach were right in his claim that the ontological commitments

of the sub-theory carry over to the extended theory, his argument seems to

me to be weak. As Nelson points out, Quine should be happy to grant the

existence of creatures such as surmen, and this need not conflict with his

taste for desert landscapes, just so long as he can say that a surman is the

set of all men with the same last name (Nelson 1970: 253). This would

not involve a radical reinterpretation because the terms of T which were

interpreted as referring to surmen would still do so. The population of Leeds

would remain stable; we count the number of men and women and ignore

the infinite number of sets of men and women. There simply is no fact of

the matter which man Smith is, any more than there is a fact of the matter

which man the set of all black-haired-males is. It seems, then, that Quine

has the resources to avoid the problematic conclusions that Geach tries to

draw out from his proposal.

So it seems that Geach’s case against the Quinean proposal is not very

strong. What consequences does this have for Geach’s argument against

absolute identity? It has been assumed by many of the contributors to the

debate (the assumption seems most obvious in Feldman/Geach 1969 and

Nelson 1970) that if Geach fails to undermine Quine’s proposal, then the

latter can provide a response to Geach’s attack on absolute identity. It is not

at all clear to me that this is so.

I do not think that Geach’s argument against absolute identity depends

on his ability to show that Quine’s proposal is unworkable. Geach’s claim is
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that Wang’s Schema does not provide a sufficient condition for a predicate’s

expressing absolute identity. Wang’s Schema fails to provide a sufficient

condition for a predicate’s expressing absolute identity just in case there

is some predicate, P , which satisfies Wang’s Schema and does not express

absolute identity. Geach has provided an example of one such predicate,

namely ‘... is equiform with...’. Quine’s proposal offers a procedure for

construing all such relations in such a way that there is no a priori objection

to interpreting them as absolute identity relations. But John Perry points

out that Quine’s claim is compatible with Geach’s:

In order to be in the position of denying Geach’s position, Quine

would have to hold that we must interpret “E(x, y)” 〈‘E’ here

stands for any equivalence relation〉 in T as expressing identity.

If he holds only that we may do so, he is allowing the possibility

of there being an I-predicable that does not express identity and

is not in disagreement with Geach. (Perry 1968: 38)

In other words, for Quine’s procedure to serve as a counter-example to

Geach’s conclusion, it would have to be the case that we must follow Quine’s

procedure. But we have been given no reason to think that we always do

happen to follow this procedure in practice.

In fact, Quine seems to grant that we can, in practice, avoid adopting the

proposed procedure. It seems rather that Quine has a normative claim in

mind. When considering counter-examples to the proposed reinterpretation

involved in his group-stages/income groups example, Quine says,

In cases of this kind we could protest that the interpretation of

the universe and predicates has been ill chosen, and that it might

better be so rectified as to construe the members of the universe

as whole income groups. (Quine 1969: 15)

However, Quine does not follow this up with an argument showing why one

interpretation is better than the other or what constitutes an ‘ill-chosen’

interpretation of a theory. Quine gives us no reason to think that adopting
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an interpretation of a theory apart from the quotient-structure for that theory

violates some norm. It is not even clear what such a norm would be.

Consider a speaker of English who is unfamiliar with the notions either of

a word-token or a word-type (surely not an uncommon occurrence). When

this speaker says “‘horse” is the same word as “horse”’, she is not in a position

to say whether she means ‘horse’ the word-type or ‘horse’ the word-token.

Further assume that this speaker’s other predicates would be sufficient to dis-

tinguish one word-type from another but not one word-token from another.

Thus, at the time of utterance, the quotient-structure for our speaker’s theory

involves word-types. When she learns what word-tokens and word-types are

(along with the predicates to distinguish different instances of the former),

she is in a position to determine whether her earlier utterance of the phrase

“‘horse” is the same word as “horse”’ involved reference to word-tokens, or

word-types, or to neither. What if she were to tell us that, on reflection, her

earlier utterance of the expression “‘horse” is the same word as “horse”’ sim-

ply did not convey the thought that the word-type ‘horse’ was self-identical?

Is she wrong to do so? If so, why?

One line of thought runs as follows. Assume that the speaker can only

have been talking about word-tokens or word-types. She could not have

been talking about word-tokens, since the fragment of English which she

spoke at the time did not include sufficient predicates to distinguish any

word-token from any other. Therefore, she must have been talking about

word-types. This argument might be bolstered by an appeal to Russell’s

principle. According to Gareth Evans’s version of the principle, in order to

make a judgement about a, we must be able to distinguish a from all other

things (Evans 1982: 89). Evans defends the principle as follows:

[T]he idea people express by saying that one cannot possess the

concept of being F, and be able, for example, to entertain the

though that some G is F, without knowing what it is for a par-

ticular G to be F. (1982: 109)

This is a claim I would hardly want to dispute. Moreover, Geach’s claim that

any general term, A, requires a criterion of application is motivated by the
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idea that we must know what it is for something to be (an) A. Similarly, some

degree of understanding of a singular term is a prerequisite to expressing

propositions involving that term. However, I deny Evans’s stronger claim

that we must be able to distinguish a from all other things. In particular,

that, to understand what it is for a to be an F , a speaker must understand

what it would be for a to be a G, for any G that the speaker has a conception

of (Evans 1982: 104). Although it is true that to refer to a we must be able

to distinguish a from at least some things that are not a, the stronger claim

is highly contentious and there are many plausible counter-examples.

Geach thinks that it is false that terms like ‘horse’ must either be inter-

preted as word-tokens or as word-types. Geach thinks that such expressions

do not fall neatly into one or the other of the two categories, but rather, are

simply words, which can have different criteria of identity supplied for them.

Responding to objections against his view, Geach says:

I dismiss the protest that this result if incoherent because the

entity in question must be of only one of these three 〈Geach

also allows dictionary-entry words〉 kinds; there is no must about

it. We have in view an entity that belongs to the field of those

different equivalence relations, and therefore comes under three

different counts using different count nouns; each of the count

nouns applies–that is how count nouns are used. It is on the

contrary the question “But which is it really?” that is incoherent

and unintelligible. (Geach 1973: 294)

Note though, even if we do think that words must be interpreted as either

word-types or word-tokens, we are not committed to the Quinean procedure.

We do not need to accept Geach’s ontological flexibility in order to show that

Quine’s strategy does not save the criterion for expressing identity. What if

the speaker insists that she was talking about word-tokens, when she said

“‘horse” is the same word as “horse”’? The reason that was given for reject-

ing this as impossible is that the speaker cannot have been talking about a

kind of entity which she was unable to distinguish even in principle. But this
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reason is unsatisfactory. It is false that we are unable to talk about things

simply because we are unable to distinguish one from another.

One case to be found in the literature that requires reference to entities

that cannot be distinguished in principle are Max Black style universes com-

posed of different spheres having the same properties (Black 1952). As the

spheres have no properties to distinguish them, the quotient-structure for a

theory about Black’s universe would take the domain of discourse as com-

posed of one object, rather than two. We cannot distinguish two spheres, and

so, given Quine’s proposal, our referring expressions do not map onto two

different spheres. There are, of course, philosophers who would accept this,

most notably in the recent literature, perhaps, is Hawthorne, who thinks that

the sphere(s) is a single object multiply located (O’Leary-Hawthorne 1995).

But of course, this is counter-intuitive and runs against the general response

to Black’s thought experiment.

In addition, at least one view of quantum physics involves the claim that

we can quantify over entities which are indiscernible in theory (Krause and

French 2006). If Quine’s procedure is followed without exception, this is not

merely false but logically impossible.

Following Quine’s procedure in all circumstances therefore seems to rule

out acts of reference and quantification which are in fact possible. For it

seems that it is possible to talk about entities that we cannot distinguish.

By this same standard, it seems that there exists the possibility of adopting

an interpretation of a given theory, which does not coincide with the quotient-

structure of that theory.

The result of all this is that, even if we grant that there is a quotient-

structure for any theory whatever, and that Geach’s arguments against ever

adopting Quine’s proposal fail, nevertheless Quine’s proposal still does not

provide a guarantee against objects being indiscernible relative to one theory

but discernible relative to an expansion of that theory.

It might be wondered why Geach expends so much effort in attacking

Quine’s procedure (Geach 1967, 1972: 241-247, Geach/Feldman 1969: 557-

558, Geach 1973: 298-302)19, if, as I contend, the attack was unnecessary

19 Geach perhaps came to realize the irrelevance of his objections to Quine’s procedure
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to establish Geach’s central hypothesis. I suspect that Geach mistakenly

believed that if Quine’s procedure was coherent, it would undermine the

argument against absolute identity, because it would provide a procedure

for avoiding interpretations of theories which involve counter-examples to

Wang’s Schema. If Geach did think this, it might also explain a curious

ambiguity in his argument. On one hand, Geach, in some passages, claims

to show merely that the orthodox theory of identity fails because Wang’s

Schema fails as a criterion for a predicate’s expressing absolute identity. On

the other hand, in several places Geach claims to be arguing for a stronger

thesis; that there is no possible criterion which could be proposed that would

salvage the orthodox theory of identity. I suspect that Geach’s attacks on

Quine’s procedure are related to his attempts to prove the stronger thesis. At

the same time, the fact that he occasionally commits himself merely to the

weaker thesis may suggest that he himself was not convinced of his objections

against Quine’s procedure.

In any case, Quine’s procedure cannot provide a counter-example to either

the weaker or the stronger claims. Geach’s argument for GT does, in fact,

depend on a defence of the stronger claim and he must, consequently, reject

the possibility that any satisfactory criterion might be proposed in the future.

The weaker claim would provide, at best, inductive support for the conclusion

that there are no relations of identity (Calvert 1973: 16). The stronger claim

would provide deductive support for the conclusion that there are no relations

of absolute identity. My reconstructed version of Geach’s argument will be

framed accordingly.

We may, therefore, simplify Geach’s argument by abandoning the at-

tempts to show that Quine’s procedure leads to unwanted results. The other

modifications we have noted are as follows. Geach must provide a justifica-

tion for the inference from the lack of a criterion for a predicate’s expressing

absolute identity to the conclusion that there are no relations of absolute

identity. Geach’s argument must be extended to show that all candidate

as a defence of his views on identity. This at least would explain the otherwise surprising
absence of this issue in his final writings on identity. His only reference to his earlier
discussions of Quine’s procedure is to concede the failure of the ‘surman’ example (Geach
1991: 276-299).
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criteria fail. Finally, an explicit argument showing the second-order quantifi-

cation leads to Grelling’s paradox must be provided. The extent to which all

these things can be achieved will be considered in Section 2.

2.2 A Charitably Re-constructed Geachean Argument

Against the Existence of Absolute Identity Relations

In this section, I will present an argument, charitably reconstructed from

the various arguments provided by Geach. I will not defend the soundness

of the argument, as I shall note several possible objections to which Geach

does not have compelling answers. The conclusion of the argument, about

which I will remain neutral, is that the only characterization of absolute

identity which might provide a criterion of application for the term ‘relation of

absolute identity’ is a characterization involving LL, where the latter involves

quantification over all possible predicates (or, alternatively, properties) which

might be added to a language. Moreover, any such version of LL entails a

contradiction; therefore the term ‘relation of absolute identity’ has as its

extension, necessarily, the null class. The argument will therefore focus very

much on LL. In order to justify this focus, I will begin by making a few

remarks about different characterizations of absolute identity to be found in

the literature and about the different versions of LL.

We have seen that Geach does not consider all the characterizations of

identity which might serve as a criterion of application for the term ‘relation

of absolute identity’. We may begin by dividing these into four categories:

(2.11) informal characterizations of identity:

For example, The relation that everything has to itself and to

nothing else.

(2.12) meta-linguistic characterizations:
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For example, ‘P expresses absolute identity’ is true if and only if

P is an absolute identity relation, where ‘... is an absolute iden-

tity relation’ is a predicate of the meta-language.

(2.13) set-theoretic characterizations:

For example, P expresses an absolute identity relation on a set

A if and only if the following is true:

I(P ) = 〈x, x〉|x ∈ A, where ‘I’ is an interpretation function,

or, alternatively,

for some pair, ρ, ρ satisfies P if and only if ρ = 〈x, x〉, for some x.20

(2.14) characterizations involving LL.21

Any of these, in order to characterize the absolute identity relation, must

involve some guarantee of indiscernibility. A relation that guarantees the

indiscernibility of its relata relative to any predicates/properties whatever

will be said to guarantee the ‘absolute indiscernibility’ of its relata. A re-

lation that merely guarantees the indiscernibility of its relata relative to a

fixed-stock of predicates/properties will be said to guarantee the ‘relative

indiscernibility’ of its relata. We may now consider the alternatives.

To begin with, informal criteria are simply English translations of one of

some version of (2.12)-(2.14). The example characterization, for instance, is

an informal translation of (2.13), and so, these also stand or fall together.

We can therefore turn to our next category.

20 I am grateful to my examiner, Ian Rumfitt, for suggesting this alternative to me.
21 I will not separately consider Wang’s Schema, because all different versions of Wang’s

Schema stand or fall with different versions of criterion (2.14) to which they are logically
equivalent.
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Turning, then, to (2.12). It is commonplace to take the symbol ‘=’ as a

logical primitive in FOL=. The meaning of the symbol ‘=’ may be provided

by given by providing truth-conditions for statements of the form px = yq.

For example, if the meta-language is English, we might say px = yq is true if

and only if ‘x is absolutely identical with y’. Geach, however, has a response

to this:

It is a particularly futile semantic assent to stipulate that a predi-

cable of a language shall express this sort of identity 〈i.e. absolute

identity in the meta-language〉, and then call this “a complete se-

mantical characterization in the metatheory”. (Geach 1973: 297)

It is a ‘futile semantic assent’ because the expression ‘absolute identity’ in

the meta-language, in Geach’s view, would still need a criterion for its appli-

cation. It is, perhaps, not clear that this is a sufficient reason for rejecting

these types of criteria. I have already noted that if there are particular con-

cepts which are so basic to our conceptual framework that the corresponding

predicates cannot be provided with a criterion of application, and if absolute

identity is such a concept, then Geach’s argument will not be sound. This

same point can be extended to the current proposal. If there are some pred-

icates that can only be provided with truth-conditions by appealing to the

same predicate in the meta-language, and if this process is justified in virtue

of the basicness of the concept, then Geach cannot exclude these types of

criteria. Once again, it is very difficult to resolve this sort of issue. It is not

clear how we might determine which concepts are basic in this way. Once

again, I will note that this response, if identity is basic in this way, would

render Geach’s argument unsound.

We turn, then, to (2.13). There are a number of proposed characteri-

zations of absolute identity to be found in the literature using the tools of

set-theory. Take, for example, the following:

for some pair, ρ, ρ expresses absolute identity if and only if ρ =<

x, x >, for some x.
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The question I will consider, then, is whether this formulae can be used

as a criterion for a predicate’s expressing a relation of absolute identity. How

might Geach respond the candidate criteria? There is a set-theoretic version

of Grelling’s paradox, but it will not help Geach, as the appeal to Grelling’s

depends on unrestricted second-order quantification, and the proposed set-

theoretic criteria do not involve second-order quantification. Geach, then,

must have some other reason for rejecting these possible criteria.

In the absence of any explicit argument from Geach, I suggest that his

best case for rejecting set-theoretic characterizations of absolute identity is

to try to show that the proposed characterizations fail to rule out counter-

examples to absolute indiscernibility, such as the type-word/token-word case.

A first objection to this response is that we cannot find out that x is dis-

cernible from x when we add a new predicate to our language, because that

would be simply contradictory, it would entail, for some P , that both P (x)

and ¬P (x). However, Dummett (1991: 168) when discussing the occurrence

of such cases involving proper names, grants that such cases do not entail a

contradiction, ‘If we discover that some name ,“a”,... is really a shared name,

we shall, presumably, replace it as quickly as possible by two or more new

names, say “b” and “c”.’ Why, then, can the same not happen with variables?

When we discover that the variable, x, has been assigned ambiguously, does

that not simply show that we must now use new variables to distinguish what

formerly we could not, and is the process one which might, in principle, go

on ad infinitum? If it can, once again, Geach will infer that the characteri-

zation has failed to rule out cases of the name-type/name-token variety and,

therefore, failed to uniquely characterize absolute identity which, as we have

seen, he takes to involve absolute indiscernibility.

It might be argued that this response misses the point of using multiple

tokens of the same variable, x. The very notion of an assignment for variables

depends, it might be thought, on value assigned to a variable type, being

identical to the value assigned to any other token of the same variable type.

This is a strong objection to Geach’s view, and it is unclear how he might

respond to it. However, he might begin to respond by pointing out that what

this shows is that the proposed characterization must involve a particular
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interpretation of the correct use variables, one which involves the stipulation

that multiple tokens of the same variable type must be assigned exactly

the same object as value. This is an interpretation which Geach himself

will view as incoherent because he does not believe that the there are such

things as absolutely identical and non-identical assignments for variables.

He may therefore claim that the proposed characterization depends on an

interpretation which must have the notion of absolute identity built into it,

and will therefore be, by his lights, incoherent.

This response is unlikely to sway the absolute identity theorist, who,

naturally, has no objection to use of absolute identity in understanding the

assignments of variables. As with previous cases, the debate has reached an

impasse, where Geach’s rejection of a proposed criterion depends on his view

that absolute identity is, in fact, incoherent. Again, this reasoning will not

be compelling for those who do not already agree with Geach. Once more, I

will pursue Geach’s argument, putting this issue to the side.

Turning, finally, to (2.14). If there is a characterization of identity which

can provide a criterion of application for the term ‘relation of absolute iden-

tity’ it will, therefore, involve some version of LL. But what version? In

Chapter 1, I noted that there are various formulations of LL but put off

discussion of the alternatives. It is now time to say something about this

issue.

There are at least three different issues that are raised in trying to express

LL. They are as follows. First, should LL be expressed as a first-order schema

or as a second-order theorem? Second, should the expression ‘everything

true of ...’ be understood as ranging over properties or predicates? Third,

should the expression ‘everything true of...’ be understood as ranging over

all possible properties/predicates or just those of a specified language? The

third issue, as we have seen, is addressed in Geach’s argument. We will leave

it for the moment. We will consider the first two issues here.

First, then, we must decide whether to express LL as a first-order schema

or a second-order theorem. The following two criteria of application present

themselves:
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(2.14a) a second-order criterion:

P expresses absolute identity if and only if the following is true

∀x∀y(P (x, y)↔ ∀Q(Q(x)↔ Q(y)))

(2.14b) a schematic first-order criterion:

P expresses absolute identity if and only if it satisfies the follow-

ing axiom-schemata

∀xP (x, x)

∀x∀yP (x, y)→ (φ(x)↔ φ(y))

Note that the distinction between the proposed first-order and second-order

criteria for a relation’s expressing absolute identity cross-cuts the distinction

between relative indiscernibility and absolute indiscernibility. The first-order

axiom schema LL would guarantee the absolute indiscernibility of its relata if

the schematic letter, ‘Q’, is replaceable by any predicate expressing a prop-

erty of the relata. The first-order axiom schema LL would guarantee the

relative indiscernibility of its relata if the schematic letter, ‘Q’, is replaceable

only by the predicates of a given language.

The second-order principle of the indiscernibility of identicals would guar-

antee the absolute indescerniblity of the relata if the domain of the quantifier

binding the predicate variable included all predicates expressing properties of

the relata. The second-order principle would guarantee relative indescernib-

lity if the domain of the quantifier binding the predicate variable were re-

stricted to a fixed-stock of predicates.

Having noted this, I will take the first-order axiom schemata to guarantee

relative indiscernibility and the second-order principle of the indiscernibility

of identicals to guarantee absolute indiscernibility. This will avoid needless
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repetition. Everything I say regarding the first-order axiom schemata would

also be true of the second-order principle with a restricted domain of pred-

icates. Similarly, everything I say about the second-order principle with an

unrestricted domain of predicates would also be true of the first-order ax-

iom schemata when unrestricted substitution is permitted. Finally, we must

decide whether to take LL to involve properties or predicates.

Richard Cartwright (1971) argues in favour of the property over the pred-

icate version of LL, on the grounds that only the property version can escape

the apparent counterexamples to LL involving intentional contexts.

Quine (1986) thinks that we can get rid of the counterexamples simply

by specifying that grammatical predicates are only really being predicated

if the subject term is being used referentially. Moreover, Quine argues, if Q

is replaceable by all predicates, then LL is stronger, because there are some

predicates which are not properties but should be included in the range of

the variable Q. So, Quine concludes, the predicate version of LL is to be

preferred.

Following the contemporary trend, I shall assume for what follows that

quantification over properties is a genuine possibility, and will therefore follow

Cartwright. With this in mind, we can now consider a reconstructed version

of Geach’s argument.

2.2.1 Argument 3

P3.1 If the criterion of application for the general term ‘relation

of absolute identity’ entails a contradiction, then the extension of

that general term is the null class.

P3.2 If there is a criterion of application for the general term

‘relation of absolute identity’, then it either guarantees that the

arguments of any two-place predicate, P , falling under that gen-

eral term are indiscernible with respect to all possible properties,

or it guarantees merely that the arguments of P are indiscernible

relative to a fixed-stock of properties.
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P3.3 For any proposed criterion of application for the general

term ‘relation of absolute identity’, C, which guarantees merely,

for every two-place predicate, P , falling under that general term,

that the arguments of P are indiscernible relative to a fixed-stock

of properties, the following is possible: for some two-place P sat-

isfying C in a structure M of a theory T , there is a pair 〈x, y〉
satisfying P in M of T , but not satisfying P in M ′ of T ′, where

M ′ is an extension of M , and T ′ is an extension of T .

P3.4 For any two-place predicate, P , P falls under the general

term ‘relation of absolute identity’ only if, for any pair 〈x, y〉,
jointly satisfying P in M of T , in which P guarantees indiscerni-

bility, it is not the case that there is some extension of M , M ′, in

an extension T ′ of T , in which x and y are discernible.

C3.1 There is no criterion of application for the general term

‘relation of absolute identity’ which guarantees merely that the

arguments of a two-place predicate, P , falling under that gen-

eral term, are indiscernible relative to a fixed-stock of properties.

(Calemes Syllogism from P3.3, P3.4.)

C3.2 If there is a criterion of application for the general term ‘re-

lation of absolute identity’, then it guarantees that the arguments

for any two-place predicate, P , falling under that general term,

are indiscernible with respect to all possible properties. (Modus

Tollens P3.2, C3.1)

P3.5 A criterion of application for the general term ‘relation of

absolute identity’ which guarantees that, for any two-place pred-

icate, P , falling under that general term, the arguments of P are

indiscernible with respect to all possible properties entails a con-
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tradiction.

C3.3 The extension of the general term ‘relation of absolute iden-

tity’ is the null class. (Modus Ponens C3.1, C3.2)22

Argument 3 is valid. We therefore consider each premise in turn.

2.2.2 P3.1

If the criterion of application for the general term ‘relation of ab-

solute identity’ entails a contradiction, then the extension of that

general term is the null class.

It is, of course, possible to talk about contradictory notions. By saying

a contradictory concept has the null class as its extension, I simply mean

that there are no true contradictions. We can consider other, parallel, cases.

The terms ‘true contradiction’, ‘square circle’, and ‘married bachelor’ are all

general terms. If they were not, it would not make sense to say, for example,

‘There are no unmarried bachelors’. Moreover, the terms themselves are not

meaningless or ambiguous. It is because we understand the terms that we

are able to say that there cannot be any instances of them. The extensions

of each of these concepts (‘concept’, here, is being used in a very broad sense,

parallel to ‘predicate’) must be the null class because there are no unmarried

bachelors, square circles, or true contradictions. So too, in Geach’s view, for

relations of absolute identity. I will return to this issue when discussing P3.4.

2.2.3 P3.2

If there is a criterion of application for the general term ‘relation

of absolute identity’, then it either guarantees that the arguments

22 Carl Calvert, in his unpublished thesis on Geach’s argument for relative identity (1973:
Chapter II), provides a reconstruction of Geach’s argument which resembles mine in some
respects. One major difference is that Calvert splits Geach’s position up into several
separate arguments; whereas I attempt to present his case as a single argument. Moreover,
we do not attribute to Geach exactly the same premises. I am very grateful to Dr. Calvert
for permitting me to cite his work.
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of any two-place predicate, P , falling under that general term are

indiscernible with respect to all possible properties, or it guaran-

tees merely that the arguments of P are indiscernible relative to a

fixed-stock of properties.

The notion of absolute identity is intimately bound up with indiscerni-

bility. A relation that did not guarantee the indiscernibility of its relata is

certainly not a relation of absolute identity. The various criteria that are to

be found in the literature either guarantee the indiscerniblity of their relata

relative to all possible predicates or merely to those of a given language. A

criterion of a relation’s expressing absolute identity must involve one of these

features.

2.2.4 P3.3

For any proposed criterion of application for the general term ‘re-

lation of absolute identity’, C, which guarantees merely, for every

two-place predicate, P , falling under that general term, that the

arguments of P are indiscernible relative to a fixed-stock of prop-

erties, the following is possible. For some two-place P satisfying C

in a structure M of a theory T , there is a pair 〈x, y〉 satisfying P in

M of T , but not satisfying P in M ′ of T ′, where M ′ is an extension

of M , and T ′ is an extension of T .

P3.3 is the premise which Geach devotes most effort to defending. We

have seen that he attempts to do so by appealing to the word-type/word-

token case described above. Several critics have attacked this case. We

have already seen that Geach’s own defence of the claim that there is some

relation which jointly satisfies the four formal features of absolute identity

is both intricate and confused by his drawn out and futile campaign against

Quine’s procedure to systematically interpret any given theory, T , so that

the model of T corresponds to the quotient-structure of T .

Notwithstanding the debate over Quine’s procedure, some of Geach’s crit-
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ics have been happy to grant at least part of this premise. It is a fact rec-

ognized by Quine himself (1986 :63), that logic can provide no guarantee

that, because a predicate satisfies both reflexivity and LL relative to theory

T , that predicate must also satisfy reflexivity and LL relative to theory T ′,

an extension of T . In fact, as Krause and French point out, this feature of

identity relations is logically commonplace (2006: 252).23 Consider again the

case of the woman who learns, late in life, to distinguish between word-types

and word-tokens. I argued that there is no reason to reject the possibility

that she discovers that she had been talking about different word-tokens,

even when it had been impossible for her to distinguish them. This serves

as an example of some x and some y satisfying an I-predicate relative to a

theory, T , but being discernible relative to T ′, an extension of T .

2.2.5 P3.4

For any two-place predicate, P , P falls under the general term

‘relation of absolute identity’ only if, for any pair 〈x, y〉, jointly sat-

isfying P in M of T , in which P guarantees indiscernibility, it is not

the case that there is some extension of M , M ′, in an extension T ′

of T , in which x and y are discernible.24

The thought that motivates P3.4 is that the very notion of absolute iden-

tity is incompatible with a pair 〈x, y〉 satisfying the relation and yet being

discernible. Hawthorne (2003: 122-123), however, presents an objection to

Geach’s argument, which challenges this intuition. Hawthorne’s objection

may be presented as a dilemma. Either unrestricted second-order quantifi-

cation does not entail a contradiction (i.e. P3.5 is false) in which case the

argument against absolute identity is unsound, or unrestricted second-order

23 In fact, Krause and French think that even the unrestricted second-order character-
izations of identity can provide no guarantee against coming to discern what has been
indiscernible. This is a result of their views on how we evaluate interpretations (Krause
and French 2006: 254-258).

24 If this premise is false, then absolute identity becomes a theory-relative notion. This is
a proposal suggested by Feldman and rejected by Geach (Geach explicitly rejects language-
relative identity in Geach/Feldman 1969: 559).
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quantification does entail a contradiction (i.e. P3.5 is true). However, if un-

restricted second-order quantification entails a contradiction, then we cannot

express the thought that a predicate, P ’s, expressing absolute identity is in-

compatible with the arguments of P being discernible (i.e. P3.4 is false).

This is because indiscernibility in this context is absolute indiscernibility,

but the very notion of absolute indiscernibility depends for its expression on

unrestricted second-order quantification, which, by hypothesis, leads to para-

dox. In other words, if unrestricted second-order quantification is impossible,

the worry that some x and y satisfying a relation of absolute identity will

turn out to be discernible is not even an expressible worry. Once again the

argument against absolute identity would turn out to be unsound.25

A more general concern, related to Hawthorne’s objection, may be pressed.

It seems that P3.4 is making a conceptual claim about absolute identity. But

given that Geach claims that his argument shows ‘there is no such notion as

absolute identity’ (Geach 1972: 24), what could possibly support P3.4? The

answer to the latter worry is simply that Geach is wrong to claim that there

is no notion of absolute identity. It is key to the argument against absolute

identity that there is such a notion.

With this in mind, we may respond to Hawthorne’s specific objection.

Let us assume for the moment that Geach is right to claim that unrestricted

second-order quantification, of the kind expressed by ‘everything true of ...’,

leads to paradox. What follows from this? It follows that, when such pred-

ications are asserted, the proposition is contradictory. However, it does not

follow that all propositions involving quantification over all possible predi-

cates entail a contradiction. For example, second-order quantification over all

possible predicates is coherent, in the sense that statements involving second-

order quantification are possibly true, if the bound variables are within the

scope of a connective. To make this point clear, consider a parallel case. The

sentence ‘x is F and not F ’ entails a contradiction. The sentence ‘if x is

a G, then x is F and not F ’ entails no contradiction, but merely that x is

not a G. This is the difference between Geach’s use of second-order quan-

25 Geach points out that this is a general problem with pseudo-concepts (Geach 1991:
296).
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tification in P3.4 and the use of second-order quantification to characterize

actual relations of numerical identity. The second entails a contradiction,

the first does not. For Geach, as I interpret him, is merely claiming that if

there is a relation of absolute identity, then, as a matter of conceptual anal-

ysis, it would involve quantify over all possible properties. We may add that

P3.4, therefore, depends on there being a notion of absolute identity, which

involves absolute indiscernibility. That is to say, P3.4 depends on LL pro-

viding the criterion of application for the general term ‘relation of absolute

identity’. We will return to the conceptual link between numerical identity

and indiscernibility in Chapter 3.

2.2.6 P3.5

A criterion of application for the general term ‘relation of abso-

lute identity’ which guarantees that, for any two-place predicate,

P , falling under that general term, the arguments of P are indis-

cernible with respect to all possible properties entails a contradic-

tion.

We have already seen that Geach claims that a second-order criterion

for a predicate’s expressing absolute identity will soon run afoul of semantic

paradoxes such as Grelling’s. Geach concludes that expressions like ‘whatever

is true of x’ are incoherent (Geach 1972: 240). To clarify Geach’s reasoning,

I will suggest an argument against the proposed second-order criterion of a

predicate’s expressing absolute identity. I will then consider the responses to

Grelling’s paradox. I will argue that there are various ways of responding to

the argument, only some of which support P3.5.

The following argument, if it is to provide support for P3.5, must show

that the following criterion of application for the general term ‘relation of

absolute identity’:

(2.15) For any predicate P , P expresses absolute identity if and

only if it is the case that
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∀x∀y(P (x, y)↔ ∀Q(Q(x)↔ Q(y)))

results in contradiction if we assume that the third quantifier is unrestricted.

Argument 426

Begin with the supposed criterion of a relation’s expressing identity. We

may render (2.15) into English as follows:

(2.15*) P expresses absolute identity if and only if, for any x and

for any y, (P (x, y) if and only if, for any Q, (Q is true of x if and

only if Q is true of y)).

Our argument proceeds by assuming the right hand side of (2.15*) and

deriving from it a contradiction.

(2.16) For any x and for any y, P (x, y) if and only if, for any Q,

(Q is true of x if and only if Q is true of y).

From (2.16) we can derive:

(2.17) For any x, P (x, x) only if for any Q(Q is true of x if and

only if Q is true of x).

By the truth-conditions for bi-conditionals, we can derive:

(2.18) For any x, P (x, x) only if, for any Q, it is not the case that

(Q is true of x and it is not the case the Q is true of x).

Now we stipulatively define the following predicate: ‘x is heterological’ =def

‘it is not that case that x is true of itself’. This predicate is intended to stand

for the property of heterologicality, under the assumption that there is such

a property. Assigning the newly defined predicate for the variable ‘Q’, we

get:

26 Feldman (Feldman/Geach 1969: 549-550) provides a reconstructed argument. How-
ever, mine is different in some respects. I do follow not Feldman in taking the word
‘heterological’ as the subject of the predicate ‘... is heterological’, in order to derive a
contradiction. Rather, I consider whether the property heterologicality satisfies ‘... is
heterological’.
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(2.19) For any x, P (x, x) only if it is not the case that (x is

heterological, and it is not the case that x is heterological).

Assign the property heterologicality as the value of the bound variable x.

Thus,

(2.20) P (heterologicality, heterologicality) only if it is not the case

that (heterologicality is heterological, and it is not the case that

heterologicality is heterological).

We make an additional assumption,

(2.21) heterologicality is heterological.

From (2.21), and the stipulative definition of ‘x is heterological’ we arrive at:

(2.22) It is not the case that heterologicality is true of itself,

which is of course to say that,

(2.23) It is not the case that heterologicality is heterological.

This contradicts our additional assumption, made at (2.21), so we can infer

that (contrary to the discharged assumption):

(2.24) It is not the case that heterologicality is heterological.

From (2.24) and the definition of ‘x is heterological’, we arrive at:

(2.25) It is not the case that it is not the case that heterologicality

is heterological.

But of course, in classical logic, it follows from (2.25) that

(2.26) heterologicality is heterological.
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Again we arrive at a contradiction ((2.24), (2.26)).

If the stipulatively defined expression ‘x is heterological’ genuinely des-

ignates the property of heterologicality, then, assuming bivalence, contradic-

tion is unavoidable in any theory which involves statements with expressions

like ‘everything true of x’, where ‘everything true of...’ is replaceable salva

veritate with a predicate for any property. If the predicate does designate

a property, therefore, there is a prima facie case for rejecting unrestricted

second-order quantification. It is on this assumption that Geach’s argument

rests.

But, of course, Grelling’s paradox is a problem quite aside from its re-

lationship to the proposed criterion. Philosophers have proposed numerous

responses to the paradox.27 If the best available responses involve rejecting

some other premise of Argument 4, apart from (2.15*), the proposed crite-

rion might not need to be rejected. In other words, there might be responses

to the paradox which are compatible with the proposed second-order criteria

of a relation’s expressing absolute identity.

So, how are we to respond to the paradox? Geach claims that the ‘classical

responses to the paradox involve rejecting talk of ‘whatever is true of x ...’,

when unrelativized to the resources of a particular language (Geach 1969:

557).

2.2.7 Responding to Grelling’s Paradox

Presumably, when Geach speaks ‘the classical responses’ to the semantic

paradoxes he has in mind those responses inspired by Tarski’s (1933, Geach

1991: 298) semantic conception of truth, which can be used to respond to

the liar’s paradox, as well as Russell’s (1905, 1944) type-theory, which can

provide a response to Russell’s set-theoretic paradox. Tarski’s ‘hierarchies of

27 For example, Martin 1968, whose response provided at least some of the inspiration
for Kripke’s ground-breaking work (Kripke 1975: 698), Laurence Goldstein (2003), and
Newhard (2005). Newhard, in the most recent response to be worked out in detail, argues
that ‘... is heterological’ can apply to most words, but not to the words that are sensitive
to semantic context, such as ‘heterologicality’. However, it is not clear that Newhard’s
account can respond to all versions of the paradox.
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language’ and Russell’s type-theory are structurally similar28 and dominated

the literature on the semantic and set-theoretic paradoxes at the time of

Geach’s original presentation of his argument against absolute identity.29 We

will first consider whether these kinds of responses really do support Geach’s

contention that unrestricted second-order quantification is ‘dubiously intelli-

gible’ (Geach 1969: 557).

A Tarski/Russell-style heirarchical approach requires that the metalan-

guage and object language be carefully distinguished. For any predicate of

level n, all arguments for that predicate are of level n-1 or lower. We specify

the language-level for each term in the definition of ‘x is heterological’.

We thus with replace the following definition:

‘x is heterological’ =def ‘it is not that case that x is true of itself’

with

H: ‘x’j is heterologicalk =def xi is not true of ‘xj’
30

Definition H is itself a statement of level k. As we have said, the hierar-

chical approach to the semantic paradoxes involves the claim that predicates

can only be satisfied by terms of a lower level than the predicate itself. So

“x”, the variable ranging over predicates, is of level j. However, a problem

arises when we look at the right-hand side of the definition operator. ‘x’ is a

free variable standing for the property which is expressed by the name “x”.

On one hand ‘x’ must be of a lower level than “x”, because “x” is the name

of ‘x’. On the other hand, ‘x’ must be of a higher level than “x”, because ‘x’

is being predicated of “x” in the definiens of H, and we have said that pred-

icates can only be satisfied by terms of a lower level. So, ‘x is heterological’

28 As indeed both the liar paradox and Russell’s paradox are with Grelling’s paradox.
For discussion of the relationship between Grelling’s paradox and the liar’s and Russell’s
paradoxes, see Newhard 2005 and Martin 1968.

29 We may note, first of all, that Geach is certainly right of his own time that Russell’s and
Tarski’s hierarchies of types and languages respectively were widely accepted as providing
the best available responses to the paradoxes of self-reference generally.

30 Taken from Newhard 2005: 10.
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is not well-defined by H (Newhard 2005: 10). This problem is inescapable

regardless of the values of j, k, and i.31

An alternative response to the semantic paradoxes has increased in pop-

ularity since Geach’s original paper was published.32 According to those

philosophers who follow Saul Kripke’s (1975) work on definitions of truth, a

statement such as ‘heterologicality is heterological’ is neither true nor false

but rather has a third truth-value, ‘undefined’. This avoids the need to posit

different levels of language and might seem to offer the prospect of permit-

ting predicates like ‘... is heterological’ as the possible interpretations of

second-order predicate variables. The result of so doing would not be con-

tradiction but rather a truth-value gap. Some second-order sentences would

therefore be neither true nor false. But this is perfectly acceptable to those

philosophers who endorse Kripke-style responses to the semantic paradoxes.

Thus, there exists a strengthened version of Grelling’s paradox which

leads to contradiction even if we allow for truth-value gaps. Such ‘revenge

problems’ are a well-known feature of Kripke-style responses to the semantic

paradoxes.33 The standard response to the strengthened version of Grelling’s

paradox is to take the position that ‘... is undefined’ is a predicate of the

meta-language, not the object language. This suggests that the resources of

the two languages must still be kept separate. In Kripke’s own words, ‘The

ghost of the Tarski hierarchy is still with us’ (Kripke 1975: 714).

What does all of this show us? Several possible conclusion might be

drawn. First, there is the conclusion that Geach would have us draw. Namely,

that there exists a property that cannot be quantified over in a sufficiently

31 The ideology of the meta-language may well include the whole ideology of the object
language but not the other way around (Martin 1966: 322-324).

32 Along these lines, Feldman claims that Geach’s reasoning depends on the following,
he thinks dubious, principle: ‘For any predicable, F , and any thing, x, if it is not the
case that F is true of x, then it is the case that F is false of x’ (Feldman 1969: 550).
Feldman follows this by claiming that ‘at least some philosophers who have grappled with
the paradox would prefer to reject this, so as to leave open the possibility that some
predicables are neither true of, nor false of certain things’ (Feldman 1969: 550). In fact,
the argument I have provided makes no reference to the ‘dubious principle’ which Feldman
attributes to Geach, though it does make an inference which would be invalid in systems
without the law of excluded middle, namely the inference from (2.25) to (2.26).

33 Newhard (2005), for example, considers a strengthened version of Grelling’s paradox.
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expressive language, on pain of contradiction. This is similar to Quine’s

response to the paradox:

In view of Grelling’s paradox we know a set which is determined

by no sentence of the object language; namely, the set of all

sentences of the object language that do not satisfy themselves.

If a sentence determined this set, the sentence would be “¬(x

satisfies x)” or an equivalent; and Grelling’s paradox shows that

no such sentence is admissible in the object language. (Quine

1970: 53)34,35

If this response is adopted, then quantification over all possible properties

is ruled out. We may note, however, that Quine’s way of putting the issue

seems related to his assumption, noted earlier, that all second-order quanti-

fiers range over predicates rather than properties. If Quine were right about

this, then it would follow from the fact that we can identify a property which

we cannot name without contradiction directly to the conclusion that un-

restricted second-order quantification is incoherent (because, in this case,

34 Quine points out that the moral of Grelling’s paradox is exactly the inverse of the
moral of Russell’s paradox. While the former shows that there is some property (or set)
which is inexpressible by any predicate in the object language, the latter shows that there
is some predicate in the object language which does not denote a set (Quine 1970).

35 Note that Grelling’s paradox can be reintroduced as a set-theoretic paradox. Where
A is the set of all word-types and we define the relation I(A, x, y) as follows: For x and y
in A, I(A, x, y) if and only if, for each subset X of A, either x and y are both elements of
X or neither is an element of X, we can introduce a partition on A: ∀x(x ∈ A→ (x ∈ H
if and only if x is not true of x)). From this a paradox is derivable.

A contradiction can be derived so long as we allow the expression ‘any subset of A’ to
include a subset of A generated by a partition of A by the definition of ‘x is heterological’.
If there is a set of all objects not true of themselves, and if we can map some predicate of
our second-order language onto that set, then a contradiction is unavoidable.

This version can also be used to show that set-theoretic versions of unrestricted second-
order LL cannot be used to provide a criterion of application for the term ‘relation of
absolute identity’. For example, Quine’s attempted set-theoretic definition of identity, for
a language with four predicates:

D3‘x = y’=def (Ax ≡ Ay) ∧ (∀z)((Bzx ≡ Bzy) ∧ (Bxz ≡ Byz) ∧ (Czx ≡
Czy)∧ (Cxz ≡ Cyz)∧ (∀z′)((Dzz′x ≡ Dzz′y)∧ (Dzxz′ ≡ Dzyz′)∧ (Dxzz′ ≡
Dyzz′))), where ‘A’ is a one-place predicate, ‘B’ and ‘C’ are both two-place
predicates and ‘D’ is a three-place predicate (Quine 1963: 13-15).

Quine’s definition is, in any case, generally rejected (see Savellos 1990 and Beziau 2003).
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predicates are the things being quantified over). If we assume second-order

quantification ranges over properties, however, this inference is not immedi-

ate, because the fact that a stipulative definition for a real property leads to

paradox might be evidence for rejecting the definition, but not for rejecting

that the property can be quantified over.

There is, however, an alternative response that is possible. Specifically, we

might take the argument to show that there is no property of heterologicality

at all (Calvert 1973: 17-19). This would provide no support to P3.5. Geach

might object that there surely are concepts which are not true of themselves,

for example long, unspeakable, and cacophonous.

However, it might further be proposed, in response, that the definition

of heterologicality can be modified for different languages, in a way similar

to how the traditional accounts treat the truth predicate. There are, then,

properties of heterologicality, but not the one, single, unnameable property

which Geach’s view entails. Geach might object that reflection on those

things that are not true of themselves, suggests that they all have one thing

in common, and that there is therefore only one property of heterologicalty,

and not many.

Which of these alternative responses36 to the argument is the most ap-

propriate is not something I will try to sort out here. I will restrict myself to

concluding that Geach has not demonstrated that Grelling’s paradox support

P3.5. One response to the paradox can be used to that end, but it is one of

several, and it is by no means clear that the conclusion Geach draws is more

appropriate than the alternatives.

36 A further alternative response is to hold that quantification over all properties is per-
missible, but that the argument merely shows that the universal quantifier cannot be
replaced salve veritate by a predicate designating one of the properties over which the
quantifier ranges. This position, in other words, entails that the property of heterological-
ity cannot be designated by a predicate in an expressive language but can, nonetheless, be
quantified over. This response would not lend support to P3.5. A compelling argument for
P3.5 would, therefore, show that this response does not work. Geach provides no guidance
on this and I can think of no argument, except to note that this involves quantifying over
something that cannot be named.
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2.2.8 Conclusion

In the preceding chapter, I have presented a version of Geach’s argument that

there are no relations of absolute identity. I considered each of the premises

and concluded that they are not all conclusively proven. I argued, in Chapter

1, that RI and SRI require separate arguments, and I will now move to a

consideration of those arguments.
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3. RI

In the previous chapter, I considered an argument for the thesis GT, which

states that there are no relations of absolute identity. GT is one of the

three component theses of Geach’s strong theory of relative identity which I

identified in Chapter 1. The other central theses of Geach’s strong theory of

relative identity are RI and SRI. RI is the thesis there are true statements

of the form ‘x is the same F as y and x is not the same G as y’, where ‘...

is the same F as...’ and ‘... is the same G as...’ express numerical identity

relations, and where either x or y is a G. SRI is the thesis that all relations

of identity have the structure ‘... is the same F as ...’ where F is a sortal

term. In this chapter, I will consider the extant arguments for and against

RI; in the following chapter I will consider arguments for and against SRI.

Geach provides an argument in the first edition of Reference and Gener-

ality (1962: 150-151), which he alters considerably for the 3rd edition of that

work (1980: 183-184) that has often be taken as a defence of RI. I will con-

sider both versions of this argument and conclude that both fail. In addition,

Griffin (1977) argues for RI on the grounds that it provides the advantage

of simplicity, while Zemach (1974, 1986) argues that the existence of vague

objects entails the truth of some cases of RI. I will argue that both Griffin

and Zemach fail to establish their conclusions.

I then turn to objections to RI. I consider Lowe’s claim that no object

can fall under different sortals. I argue that Lowe fails to sufficiently support

his claim. Finally, I consider Wiggins’s objection that cases of RI, that is,

true instances of the form px =F y∧x 6=G y∧ (G(x)∨G(y))q, are ruled out a

priori because the very notion of numerical identity involves indiscernibility.

I argue that Wiggins’ objection is compelling only if one assumes, as Wiggins

does, that GT is false. I, therefore, conclude that RI is, as yet, neither proved



nor disproved, but that the prospects for weak theories of relative identity

are poorer than the prospects for strong theories of relative identity.

3.1 Arguments for RI

RI is true if and only if there is a true statement of the form px =F y∧x 6=G

y ∧ (G(x) ∨ G(y))q. There are many sentences which might,prima facie, be

thought be instances of this form. We have seen some examples in Chapter

1.

We also noted that, if ‘=F ’ and ‘=G’ are interpreted as relations with

the traditional formal features of absolute identity, then all cases of RI are

demonstrably inconsistent. This was demonstrated with Proof 1, in Chapter

1. Therefore, if RI is true, there is some inference involved in Proof 1 that

must be invalid. The inferences that are invalid according to most relative

identity theorists occur at lines (10) and (16) of the proof.1 However, these

inferences are valid so long as the inference rule which I named ‘the substitu-

tion of identicals’ is truth-preserving. So RI generally involves the rejection

of this inference rule. In addition to this, RI entails the falsity of the related

thesis, LL.

Proof:

Assume the truth of a case of RI. This entails that some x and

y jointly satisfy some relation of numerical identity, but there

is some other relation of numerical identity which either x or

y jointly satisfies with something z, but which x and y do not

jointly satisfy. Call this relation ‘=G’. This entails that there

is a property, for some z, expressed by the symbols p=G zq,

which is satisfied by one of, x or y, but not both. So x and y

are discernible. By LL, no x and y which jointly satisfy some

1 Note that most relative identity theorists also reject the rule of inference which I titled
‘the Fregean Analysis’. This inference occurs at lines (5) and (6) of the proof. In fact,
neither the Fregean Analysis nor the substitution of identicals is strictly incompatible with
RI. RI does, however, entail that one of them must be rejected.
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numerical identity relation are discernible. So LL is incompatible

with RI.

Thus, one result which follows from RI is that there are numerical identity

relations which do not imply the indiscernibility of their relata. Should we

accept the possibility of true cases of RI, at the cost of rejecting LL? I will

consider four arguments for doing so. Geach attempts to prove RI with

two examples, his ‘river and waters’ case (1962: 150-151) and his ‘men and

heralds’ case (1980: 183-184). I will consider each of these in turn. I will look

at objections to these cases by Lowe (1989a), and I will conclude that both

of Geach’s arguments fail. I will then consider an argument which appeals

to simplicity from Griffin and an argument which appeals to vagueness from

Zemach. I will argue that both of these arguments fail to establish the truth

of RI.

3.1.1 Two Geachean Arguments, River and Waters/Men and Heralds

In the first two editions of Reference and Generality (1962, 1968), Geach

provides an argument which has often been viewed as an attempted defence

of his theory of relative identity. I will call this argument ‘the river and

waters argument’. It is not at all clear, however, what Geach intends the

river and waters argument to establish, for it does not appear alongside

anything more than a vague outline of the theory relative identity. Rather,

from the context in which the argument appears, it seems that Geach’s more

immediate concern is to make a point about quantification.2 In the third

and final3 edition of Reference and Generality, Geach replaces the river and

2 Dummett (1973: 551-558) notes that Geach’s deductive strategy at this point is am-
biguous. It is not clear if Geach is trying to use this example to defend RI, or whether he
is assuming the truth of RI, and he is using the example to defend his views on quantifi-
cation. I will put the questions of exegesis to the side and will simply consider whether
the example can be used to provide an argument for RI.

3 I have undertaken an, as yet, unsuccessful search for the 4th edition of Reference
and Generality (1980), which Geach apparently wrote or, at least, intended to write. My
search took me to the Balliol College archive, to which Geach left many of his papers.
Edited copies of the 2nd and 3rd editions can be found there. With them can be found
several letters by Geach to the then archivist. In several of these, Geach advises destroying
the archived papers on the grounds that these do not reflect his final opinions, and that
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waters argument with an argument based around a new example. I will

call this second argument ‘the men and heralds argument’. The argument

retains the same structure in both versions, and the context and apparent

conclusion remain unchanged, yet the objections raised against the river and

waters argument on one hand and the men and heralds argument on the

other are different, and so I will consider them as separate arguments.

I will begin with the river and waters argument. I will show how the

example might be turned into an argument for the rejection of LL, and that

this in turn might appear to give support to RI. I then consider the objections

to the river and waters argument from Wiggins and Lowe. I argue that

Geach’s argument fails to establish that LL fails to hold for some relations

of numerical identity and, therefore, provides no support to RI.

I will then turn to Geach’s second argument. Following the same method,

an argument from the men and heralds example to the rejection LL can be

given. The argument escapes the objections raised against the river and wa-

ters argument. However, new objections against this argument, from Lowe

(1989a), show that it, too, fails. A possible reply to the objections is con-

sidered and rejected on the grounds that, if the suggestion is followed, the

men and heralds argument becomes susceptible to the same objections as the

river and waters argument.

I conclude that Geach fails to provide an argument for rejecting LL and

thus fails to provide any support for RI.

3.1.2 River and Waters

Turning, then, to the river and waters argument. The relevant passage may

be quoted in full.

According to this accepted view, we may treat the proposition:

they may confuse future generations of researchers. Geach says that his final opinions can
be found in the 4th edition of Reference and Generality published by the University of
Warsaw in 2004. I contacted that institution only to find out that the 2004 publication
was not a new edition but, rather, a Polish translation of the 3rd edition with only minor
changes. My thanks are due to Professor Joanna Odrowaz-Sypniewska, who helped Geach
prepare the 2004 Polish translation of Reference and Generality.
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(3.1)4 Heraclitus bathed in some river yesterday and bathed

in the same river today

as equivalent to:

(3.2) Something (or other) is a river, and Heraclitus bathed

in it yesterday, and Heraclitus bathed in it today

or, using “bound variable” letters, as equivalent to:

(3.3) For some x, x is a river, and Heraclitus bathed in x

yesterday, and Heraclitus bathed in x today.

Now by parity of reasoning we may analyse:

(3.4) Heraclitus bathed in some water yesterday and bathed

in the same water today

as equivalent to:

(3.5) Something (or other) is water, and Heraclitus bathed in

it yesterday, and Heraclitus bathed in it today

or again to:

(3.6) For some x, x is water, and Heraclitus bathed in x yes-

terday, and Heraclitus bathed in x today.

...

we may assert the additional premise “whatever is a river is

water” or “For any x, if x is a river, x is water”. Now given this

premise, (3.5) or (3.6) is inferable from (3.2) or (3.3). But clearly

this premise would not warrant us in inferring (3.4) from (3.1):

it is notorious that (3.1) could be true and (3.4) false. Hence the

above analyses of (3.1) and (3.4), which stand or fall together,

must both be rejected.

It is easy to see what has gone wrong; (3.5) or (3.6) tells

us that Heraclitus bathed in the same something-or-other on two

successive days and that this something-or-other “is” water. This

does indeed follow from (3.2) or (3.3), and therefore from (3.1),

but it is a much weaker proposition than (3.4). “Being the same

water” cannot be analysed as “being the same (something-or-

4 All quotes in this dissertation that involve numbered theses have had the numbers
altered to correspond to my own numbering system.
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other) and being water”. (Geach 1968: 174-176)

From the final sentence, it seems that Geach’s conclusion is to reject the

Fregean Analysis, namely that statements like ‘x is the same water as y’ are

always logically equivalent to statements of the form ‘x is the same as y and

x is a water’. This rejection is an important component of Geach’s theory

of identity. However the theory involves much more than this claim, as we

have seen. In the quoted passage, Geach makes no reference to any of the

component theses of his theory of strong relative identity: GT, SRI, and RI.

Yet the river and waters example has often been taken as an argument for

the last of these theses.

The immediate context of Geach’s river and waters example is a point

Geach is trying to establish about quantification. Namely, it is Geach’s con-

tention that restricted grammatical quantification, for example expressions

like ‘all cats...’, is not reducible to unrestricted grammatical quantification,

for example, statements like ‘all things that are cats...’. This position, judg-

ing from its place in the dialectic is, at least in part, motivated by Geach’s

view that ‘thing that is a cat’ is not a ‘logically simple sign’, analogous to a

complex name. He concludes from this that ‘Something that is a cat’ cannot

be analysed as consisting of two parts, the quantifier, ‘some’, and the refer-

ring expression ‘thing that is a cat’ (Geach 1968: 149).5,6 From this, Geach

5 Geach concludes, ‘We cannot, then, accept the conventional way of reducing the re-
stricted quantification of (4) to the unrestricted quantification of (5) or (6).’ (Geach 1968:
153)

Geach’s own view is that,
(5) Something (or other) is water, and Heraclitus bathed in it yesterday, and Heraclitus

bathed in it today
and
(6) For some x, x is water, and Heraclitus bathed in x yesterday, and Heraclitus bathed

in x today.
Are true if and only if the following is true
(7) Some A is water, and Heraclitus bathed in that (same) A yesterday, and Heraclitus

bathed in the same A today
This view entails that, for some A, ‘There is some x such that φ’ is true if and only

is ‘There is some x such that x is an A and φ.’ (Geach 1968: 150-156) It is clear from
the context that Geach intends for ‘A’ to range over sortals. In other words, everything
satisfies some sortal.

6 The reasons Geach gives for this position is as follows, first, whereas the relation
between a name and its referent is tenseless, the relation between ‘thing that is a cat...’
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concludes as follows ‘we have failed in our attempts to explain “anything”

and “something” in terms of “any” and “some”; is the converse sort of ex-

planation feasible?’ (Geach 1968: 149) Geach then proceeds into the quoted

passage.7

Geach’s river and waters argument can, however, be turned into an argu-

ment for RI in the following way. First, we will remove one possible source of

confusion. Geach has been challenged (Quine 1963, Helen Cartwright 1965)

for using the term ‘water’ in such a way that it is ambiguous whether he

intends it to be understood as a count noun or mass term. I shall use it as a

count noun, and define it as follows. For some river, x, a water is n gallons

of water, where n varies over time such that, at tm, n is just the same as the

same number of gallons of water which is in x at tm. In other words, a water

is just the amount of water that fills a given river. Next, assume the truth

of the premises. Thus, whatever is a river is a water. Moreover, Heraclitus

bathed in some river yesterday and bathed in the same river today. Now fur-

ther assume that Heraclitus bathed in some water yesterday, and it is not the

case that Heraclitus bathed in the same water today. Given certain rules for

translating sentences of English into FOL, this can be formalized as follows:

3.1.3 Argument 6

Using the following dictionary: R: ... is a river, W : ... is a water, B: ...

bathes in...., h: Heraclitus

Assumption:

and the cat of which the statement including that expression is true is not. Second, a
name supplies a criterion of identity, and ‘thing that is a cat...’ does not.

7 Geach notes, but sidesteps, Quine’s view that names are logically redundant, as they
are always reducible to quantified expressions. Geach seems to provisionally agree, though
he thinks Quines doctrine is an empty one. The point for Geach is that proper names
have the same referential function as substantival terms (i.e. sortals). As Geach says ‘both
in acts of naming and within propositions, use for example of “cat...the same cat...the
same cat...”closely corresponds in its referential force to repeated use of the proper name
“Jemima”; I hold that recognition of proper names as logical subjects stands or falls with
recognition of an irreducible subject role for substantival general terms.’ (Geach 1968:
150).
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(3.7) ∃x(Rx ∧Bhx at t1 ∧ ∃y(Ry ∧Bhy at t2 ∧ x = y))

Assumption:

(3.8) ∀x(Rx↔ ∃y(Wy ∧ x = y))

Assumption:

(3.9) ∃x(Wx ∧Bhx at t1 ∧ ∃y(Wy ∧Bhy at t2 ∧ x 6= y))

Let us add the further assumption that it is only possible to bathe in one

water at any one time:

(3.10) ∀x∃y∀z(Wx ∧Byx at t1)→ ((Wz ∧Byz at t1)→ x = z)

From these we can derive the following. By replacing the variables in (3.10)

with names we get:

(3.11) Ra ∧Bha at t1 ∧Rb ∧Bhb at t2 ∧ a = b

From the conjunction of (3.11) and (3.8) we get:

(3.12) ∃x(Wx ∧ x = a)

and

(3.13) ∃x(Wx ∧ x = b)

we can replace the variables in (3.12) and (3.13) to get:

(3.14) Wc ∧ c = a

and

(3.15) Wd ∧ d = b

At this juncture we can either assume that the relations which hold between

c and a and between d and b, are non-Leibnizian and grant that LL does not

characterize all relations of numerical identity, or we can assume that they

do satisfy Leibniz’s Law. We will take the latter course, which means we can

derive the following from (3.11), (3.14), and the substitution of identicals:
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(3.16) Bhc at t1

By parity of reasoning we can derive, following from (3.11), (3.15) and the

substitution of identicals:

(3.17) Bhd at t2

From (3.9), (3.10), (3.16), and (3.17) we can prove:

(3.18) c 6= d

At this point, assuming the truth of (3.7)-(3.9), we have no option but to

accept that the relation that holds between a and b is non-Leibnizian, on

pain of inconsistency. For to assume that LL held for this relation would

allow the following, from (3.11), (3.15), and the transitivity of identity:

(3.19) a = d

At the same time, from (3.14), (3.18), and the substitution of identicals, we

can establish that:

(3.20) a 6= d

Thus, it seems that we can establish the existence of non-Leibnizean

relations of absolute identity from a set of three sentences, which seem (at

first glance) to be capable of being simultaneously true. This in itself is not

an immediate proof of the thesis RI, but cases of RI seem to be plausible

instances of a non-Leibnizean identity relations. If non-Leibnizean realtions

of identity are possible, it would seem highly appealing to conclude that a is

the same river as b, but that a is not the same water as b, although both a and

b are waters. Thus it seems that Geach’s example of waters and rivers does

provide at least some prima facie support for RI. The immediate question of

course is whether the assumptions Geach makes about the interpretation of

the English expressions are well-founded.
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3.1.4 Possible Alternatives: Wiggins and Lowe

We have already seen examples structurally similar to our reconstruction of

Geach’s river and waters case. Wiggins provides a series of apparent counter-

examples to absolute identity. We considered the following case in Chapter

1:

Type 5: a =F b ∧ a 6=G b ∧G(a) ∧G(b)

For example, I moor my vessel in the river Scamander. The next

day, it is the same river as the previous night but not the same

water.

We saw at the time that Wiggins thinks that purported examples of Type

5 must be false and that sentences which apparently instantiate this logical

form must be interpreted either as involving ambiguous referring expressions,

an ‘is’ of constitution, or a qualitative identity relation in place of an ‘is’ of

identity. Thus, Geach would have us interpret (3.7)-(3.9) as involving the ‘is’

of identity, but Geach’s premise (3.8), ‘every river is water’, involves an ‘is’

of constitution in Wiggins’s view. With this interpretation, Argument 2 is

unsound, for the crucial premise (3.8) is false. In other words, it is not the

case that every river is identical with some water. Without this premise, the

argument does not go through, and no support is lent by the example to RI.

Lowe adopts Wiggins’s strategy in attacking Geach’s argument. He adds

the following justification to Wiggins’s contention that it must be false that

a river is numerically identical with some water:

This, at bottom, is because rivers and waters have different crite-

ria of identity, and an individual of one sort or kind cannot also

belong to another sort or kind with a different criterion identity

from that of the first. (Lowe 1989a: 53)

By adopting the Lowe and Wiggins interpretation, it is possible to accept

the truth of each of the following sentences,
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(3.7a) Heraclitus bathed in some river yesterday and bathed in

the same river today.

(3.8a) Whatever is a river is water.

(3.9a) Heraclitus bathed in some water yesterday and bathed in

a different water today.

while rejecting the existence of non-Leibnizean identity relations. This in-

volves interpreting ‘Whatever is a river is water’ as involving the ‘is’ of con-

stitution rather than the ‘is’ of identity.

According to this view, as soon as we make determinate what the subject

of the sentences is, we can see which occurrences of ‘is’ express identity and

which express constitution. Let us assume that, in each of (3.7)-(3.12), we

are talking about the river Thames. Once we have interpreted the referential

expressions in that way, it is clear that all occurrences of ‘is’ in premises

(3.7)-(3.9) are examples of the ‘is’ of identity, while all the premises (3.10)-

(3.12) as well as the additional premise that everything that is a river is water

involve the ‘is’ of constitution. Given this way of interpreting (3.7a)-(3.7c), no

support is offered to RI. Rather than argue in favour of his own interpretation

of the disputed sentences, Geach instead provides an new example, which he

seems to think is a more compelling case of RI.

3.1.5 Men and Heralds

In the third edition of Reference and Generality, Geach replaces the river and

waters case with a new one (Geach 1980: 174-184). Geach neither disowns

the original example, nor does he explain what the new example is supposed

to add. We will see that, though it is not so easily disposed of, it, too, fails

to establish GT.

The structure of the new example remains unchanged. Now, however, we

begin with the following statement:
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(3.21) Lord Newriche discussed armorial bearings with some her-

ald yesterday and discussed armorial bearings with the same her-

ald again today.

Geach again argues that this statement cannot be logically equivalent to:

(3.22) Something (or other) is a herald, and Lord Newriche dis-

cussed armorial bearings with it yesterday and discussed armorial

bearings with it again today.

Once again, this is because if (3.21) were logically equivalent to (3.22), then,

with the additional premise,

(3.23) Whatever is a herald is a man,

(3.21) and (3.23) would entail:

(3.24) For some x, x is a man, and Lord Newriche discussed

armorial bearing with x yesterday and discussed armorial bearing

with x again today.

However, claims Geach, (3.21) and (3.23) do not entail (3.24), because it is

logically possible that ‘with a change of personnel in the Heralds’ College,

Lord Newriche might have seen a different man on Monday and Tuesday but

the same herald, namely Bluemantle’ (Geach 1980: 176).

Geach’s example trades on the fact that, at the College of Arms, the

official positions are given fanciful names, such as ‘Bluemantle’, and that

different men may occupy the post of Bluemantle on different days. Yet all

the heralds are men.8

Once again, an argument may be found, parallel to Argument 6, starting

with the three assumptions:

(3.25) Lord Newriche discussed armorial bearings with some her-

ald yesterday and discussed armorial bearings with the same her-

ald again today.

8 Still true apparently; the College of Arms has yet to appoint its first female herald.
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(3.26) Lord Newriche discussed armorial bearings with some man

yesterday and discussed armorial bearings with the same man

again today.

and

(3.27) Whatever is a herald is a man

to the conclusion that there are non-Leibnizean relations og numerical iden-

tity. Of course, this argument will also be valid only if the copulas are all

interpreted as expressing numerical identity. Note however, that the objec-

tion to Argument 6, that the ‘is’ in ‘Whatever is a herald is a man’ expresses

the relation of constitution rather than identity, is far less persuasive in this

case. It does not seem that men ‘constitute’ heralds in the way that water

constitutes a river. Some other response must be provided for the men and

heralds argument.

3.1.6 ‘Is’ of Instantiation

Lowe has a separate objection to the men and heralds argument (1989a: 43-

50). Lowe suggests that there is another use of the word ‘is’, namely an ‘is’ of

instantiation. The ‘is’ of instantiation is a sub-class of the ‘is’ of predication.

An important logical feature of the relation of instantiation is the one of the

relata is a concrete entity and the other is abstract.9 An example of the ‘is’

of instantiation can be found in the statement ‘this animal is a horse’.
9 The important difference, in Lowe’s view, is that, in the first case, the copula is

redundant, while in the second it is not. It is not redundant in the second case because
the addition of the copula is necessary to distinguish between occurrences of a sortal as
a subject and occurrences as a predicate. Thus, ‘horses are animals’ involves ‘horses’ as
a logical unit. However, ‘these are horses’ does not involve ‘horses’ as a logical unit but
rather ‘... are horses’. This is because predicates and subjects are very different kinds of
things, and a single logical unit, like ‘horses’, cannot play both roles without what Lowe
calls ‘systematic ambiguity’ (he accuses Geach of this, because Geach thinks that the ‘is’
in statements involving sortals is redundant). All this of course holds for proper names as
well in Lowe’s view: i.e. there is a difference between the ‘i’s of attribution, where the ‘is’
is redundant and the ‘is’ of identity where it is not (Geach’s position is ambiguous in the
case of proper names, specifically, whether the ‘is’ is redundant or not). I am unconvinced
of Lowe’s argument here, particularly because I do not see that the charge of ‘systematic
ambiguity’ is a knock-down objection and why the presence of the word ‘is’ should be
assumed to be the only way of getting rid of that supposed ambiguity. Lowe, however,
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Lowe then argues that the expression ‘... is a herald’ involves the ‘is’ of

instantiation. Because to say, of any concrete entity, that it is Bluemantle,

is simply to say that it occupies a particular office. Geach’s argument would

only be valid if we interpreted each of the copulas as expressing numerical

identity, and we can only do that if we interpret the relata as being concrete

entities. As Lowe points out ‘what Geach is doing, in effect, is to reject talk

of these (abstract entitites) in favour of talk of a (hitherto unrecognized!)

kind of concrete entity’ (Lowe 1989a: 49). Lowe goes on to point out the

drawbacks of recognizing such things as concrete heralds (they would seem

to lead gappy existences, for one thing, Lowe 1989: 50). The important

point, however, is that Geach has not succeeded, with the men and heralds

argument, in providing a case which establishes that there are non-Leibnizean

relations of identity, because there exists a plausible interpretation of the

component sentences of the example which is compatible with the falsity of

that claim. It seems, then, that neither of Geach’s arguments has provided

any support to RI. Several philosophers have nonetheless followed Geach in

advocating RI, though providing different arguments in its favour.

3.1.7 Griffin’s Argument

Next, I will consider an argument presented by Griffin (1977: 204-212). Grif-

fin grants that sentences which are apparent cases of RI can plausibly be

interpreted in some other way without affecting their truth-value and thus

do not serve as counter-examples to the theory of absolute identity. We are,

therefore, faced with a decision. We can accept that all apparently true cases

of RI in fact instantiate some other logical form and thus preserve a classical

theory of identity, or we can accept that there are genuine cases of RI. Griffin

thinks that we ought to prefer an interpretation of such sentences which does

involve non-Leibnizean identity over an interpretation which does not, on the

grounds that the former allows us greater theoretical simplicity.

We will return to a case of Geach’s:

proceeds to employ these distinctions to distinguish between individuals and sorts in an
interesting and, I think, plausible way. However, this has little bearing on his attack on
Geach’s example, so I will put it to one side (Lowe 1989a: 28-42).
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(3.28) Smith is the same herald as Jones, but they are not the

same man.

In Griffin’s view, the first conjunct of (3.28) may be interpreted either as a

relative identity statement or as a ‘common property statement’. Griffin’s

use of the term ‘common property statement’ is closely related to the more

familiar notion of ‘qualitative identity’. The notion of a common-property

statement can be cashed out as follows:

(3.29) A statement, P, of the form ‘a is the same F as b’, is a

common-property statement if and only if it entails that ‘a is an

F and b is the same F ’ but does not entail that ‘a is the same

thing as b’.10

If (3.28) is interpreted as involving a relative identity relation, then it is a

case of RI. If it is interpreted as involving a common property statement,

no such consequence follows. Griffin argues that it is preferable to interpret

all such statements, indeed all statements of the form ‘a is the same F as

b’, as involving relations of relative identity, rather than interpreting them

as common-property statements. Griffin tries to show that there are certain

norms of theory selection given which, he claims, it would be preferable to

interpret (3.28) as involving relative identity.

The norms of theory selection that Griffin highlights are two: first, sim-

plicity and second, non-arbitrariness (Griffin 1977: 211-212). In Griffin’s

view, it seems, a theory which provides a single account of the logical struc-

ture of a class of statements is, ceteris paribus, to be preferred over a theory

that involves two different accounts of the logical structure of the same class

of statements. Griffin thinks that accepting genuine cases of RI offers sim-

plicity because it dispenses with a theoretical distinction between statements

of numerical identity and common-property statements. Thus, it is simpler

with respect to the theoretical apparatus rather than the ontological com-

mitments, that is, it achieves theoretical elegance, rather than ontological

parsimony.

10 For a discussion of the criterion for some statement’s being a common property state-
ment, see Griffin 1977: 204-212.
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Griffin (1977: 204-212) also thinks that, wherever the line between state-

ments of numerical identity and common-property statements is drawn, the

resulting distinction is bound to be an arbitrary one.

Griffin’s argument becomes somewhat hard to follow at this point because

he gives very little by way of sustained defence of the claim that the these

norms are the only or even the most relevant norms according to which our

decision ought to be made. The absolute identity theorist may object that,

while accepting Griffin’s claim to elegance and non-arbitrariness, the other

theoretical benefits of absolute identity are such that these considerations

are defeasible in light of more pressing considerations.

However, I do not think the absolute identity theorist is under any com-

pulsion to show even this much. I think that any absolute identity theorist

can give a much simpler response to arguments like Griffin’s. As we will

shortly see, Wiggins holds that the very notion of numerical identity involves

indiscernibility. If Wiggins is right about the supposed conceptual link be-

tween numerical identity and indiscernibility, then the existence of true cases

of RI is ruled out a priori. If this is the case, then the elegance that is

achieved by RI is simply not a relevant consideration. We will return to this

issue later in this chapter, where I will argue that no defence of RI can escape

Wiggins’s conceptual response, unless it is supplemented with a successful

argument for GT.

3.1.8 Zemach’s Argument

Zemach (1982, 1991) provides another argument for RI by appealing to an

example which seems to instantiate the disputed form. In fact, if Zemach is

right, cases of RI would include most statements involving numerical identity

relations.

To understand Zemach’s argument, consider the following case:

(3.30) Samuel Clemens was Mark Twain.

We will take it that (3.30) is a true statement, and that it expresses an

numerical identity relation. Now consider the following statement:

115



(3.31) Samuel Clemens on July 4, 1885 was partly composed of

the semi-digested food in his stomach.11

Is (3.31) true or false? Surely, suggests Zemach, the concept of such things as

men are vague with respect to such properties as ‘...partly composed of the

semi-digested food in his stomach’. Given this, Zemach thinks there simply

is no fact of the matter about whether or not Samuel Clemens on July 4,

1885 was partly composed of the semi-digested food in his stomach.

Yet, there is certainly an object in the vicinity of Samuel Clemens on the

day in question which is partly composed of the semi-digested food in his

stomach. Let us designate the entity composed of the skin, hair, teeth, inter-

nal organs, etc, as well as the semi-digested food, man ‘s’. Let us designate

the skin, hair, teeth, internal organs, etc, without the semi-digested food,

man ‘c’.

Given LL, s is not absolutely identical with c. s has the property of being

partly composed of semi-digested food. c lacks this property. Which of these

is Samuel Clemens? It would seem that both s and c have equal claim to

be the referent of ‘Samuel Clemens’. In this case, the name seems simply

ambiguous. Even if it is a shared name, assuming there are such things, the

token of ‘Samual Clemens’ in (3.31) must have referred uniquely to either s

or c. But surely it does not, because there is no reason for the name to refer

to one entity rather than the other. Moreover, the name could not refer to

both, because, given (3.30) and the fact that s and c are non-identical, this

would violate the transitivity of identity, as it would imply that each of the

different referents of ‘Samuel Clemens’ was identical with Mark Twain, but

they were not identical with one another.

This has a number of unwanted consequences. It would seem that ‘Samuel

Clemens’ either does not refer at all or is a shared name, whose use is sys-

tematically ambiguous. Given this, the sentence (3.31) does not express a

proposition. Moreover, when we count the number of men who wrote Adven-

tures of Huckleberry Finn, we will have to count s and c separately, as they

are not absolutely identical. So it turns out that Adventures of Huckleberry

11 This example is based on one from Zemach 1982: 297.
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Finn was co-authored. Moreover, the same problem affects almost all the

utterances of ordinary language, claims Zemach (1982: 295). If each of our

apparently referring expressions is, in fact, indeterminate in reference, the

way that ‘Samuel Clemens’ is indeterminate between c and s, all the sen-

tences involving these referring expressions will turn out to be false. This is

an unacceptable consequence.

All these consequences are avoided if we accept that s bears a relation of

non-Leibnizian numerical identity to c. s and c are the same man, but they

are not the same extended body. But this last statement has the following

form, ps =M c ∧ s 6=B c ∧ (B(s) ∧ B(c))q, where ‘=M ’ stands for ‘... is

the same man as...’, and ‘=B’ stands for ‘... is the same extended body

as...’ and ‘B’ stands for ‘... is a body’. From this, of course, we can derive

ps =M c ∧ s 6=B c ∧ (B(s) ∨B(c))q, which is a case of RI.

Though Zemach’s work constitutes a novel contribution to the literature

on vagueness, this argument fails to establish RI. Once again, as with both

of Geach’s arguments, the theory of absolute identity has the resources to

avoid the unacceptable consequences that Zemach derives without appealing

to non-Leibnizian identity relations. There are a series of alternatives for

escaping the consequences.

We could, for example, reject that ‘Samuel Clemens’ is indeterminate with

respect to the truth of ‘... is partly composed of the semi-digested food in his

stomach’. Notably Gareth Evans (1978) and Timothy Williamson (1994),

amongst others, argue for this response. This is, of course, compatible with

never being in a position to know whether or not Samuel Clemens is partly

composed of the of the semi-digested food in his stomach. It is simply the

claim that all such statements are either true or false.

But let us assume that there are genuinely vague terms. Even so, Zemach

has failed to establish that there are true cases of RI. For it might be the

case that the truth of the sentence ‘s is absolutely identical with c’ is itself

vague and lacks a truth-value.

Let suppose, further, that there are genuinely vague terms, and that

sentences like ‘s is absolutely identical with c’ must be either true or false.

Even still, Zemach has not proved the existence of true cases of RI. For we
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might say that the sentence ‘s is absolutely identical with c’ is false, but that

this does not license the conclusion that s and c are two different men. We

might say that s and c bear the relation of ‘sameness without identity’ to

one another.12

There are of course still more alternatives. With the exception of the first

suggestion, Zemach does not argue against any of these alternative proposals.

Therefore, he has not shown that the truth of sentences like (N) depends on

the truth of RI. Zemach’s argument, therefore, fails to prove RI.

This completes my survey of arguments for RI. I have argued that none

of the four arguments that I considered provide the necessary support for RI.

Next, I will consider arguments that are intended to show that RI must be

false.

3.2 Arguments Against RI

3.2.1 Lowe’s objection

I will begin with an objection from Lowe (1989a: 53-63). Lowe thinks it can

never be the case that an individual falls under two different sortals at the

same time, which have different criteria of identity. Lowe therefore proposes

a rule, which states that an individual, x, may be a member of two sorts F

and G if and only if either one of F and G are related as species to genus,

or there is another sort, H, which is a subspecies of both F and G, and x

is a member of H (Lowe 1989a: 53-54). If this rule were to be violated, the

individual may no longer satisfy the persistence conditions for one sortal,

while continuing to satisfy the persistence conditions of another sortal. It

would seem, in this case, that the individual both exists and does not exist,

and this is incoherent. If Lowe is right in this claim, then he is right that

individuals cannot be of different sortals, for it is overwhelmingly plausible

that individuals may not both persist and have ceased to exist at the same

time. This principle entails the falsity of RI.

12 For a recent examination of the notion of ‘sameness without identity’, see Graf Fara
2008.
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Yet this is hardly a knock-down objection. According to the strong theory

of relative identity, it is possible that, for some x, x is an F and a G at some

time, t1, and for x to be an F but not a G at t2. This does not entail, though,

that x both exists and does not exist at t2, rather x exists but is no longer

a G.13 The persistence conditions for G’s tell us, not when x continues or

ceases to exist, but simply when any given G continues or ceases to exist.

Lowe’s objection, then, fails to show that cases of RI are impossible.

3.2.2 Wiggins’ Conceptual Objection

I will next consider a claim which I have noted earlier and which I think

provides the strongest objection against RI. We have seen that Wiggins14

argues that cases of RI are impossible, and it is to his argument that I now

turn.

Wiggins’s primary target is the claim that there exist non-Leibnizian

relations of identity (1980, 2001). Wiggins makes the following claim:

Leibniz’s Law marks off what is peculiar to real identity and it

differentiates it in a way in which transitivity, symmetry and re-

flexivity (all shared by exact similarity, weighing the same, having

exact equality in part, etc.) do not. (Wiggins 2001: 27)

For Wiggins, then, indiscernibility is inherent in our notion of numerical

identity. In his view, talk of ‘non-Leibnizian identity relations’ is really talk

of mere equivalence relations.

Several philosophers who defend weak theories of relative identity have,

at least in part, rested their case on occurrences of the expression ‘identity’

in natural language which violates Leibniz’s Law (Zemach 1974, 1982, 1983,

13 Lowe responds that such a move entails a relativization of the notion of existence
(Lowe 1989a: 57), in the sense that the situation envisioned would entail that x exists qua
F , but had ceased to exist qua G. I do not see why Lowe thinks that a qua strategy is the
only alternative here or, for that matter, why he thinks it is so problematic.

14 The conceptual objection, alongside semantic objections of the kind discussed in Chap-
ter 5 of this dissertation, is the one of the most common challenges raised against theories
of relative identity. Apart from Wiggins, this objection can be found in Stevenson 1972,
Noonan 1980, Doepke 1982: 12-17, Lowe 1989a, and McGinn 2000: 4-5.
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Deutsch 1998, and Garbacz 2002). The empirical point, however, hardly

needs elaboration. After all, we talk of national identity, sexual identity,

gender identity, cultural identity and so on, and none of these satisfy LL.

But, for Wiggins, this is simply to employ a different use of the term ‘iden-

tity’. No example of a non-indiscernible relation need worry Wiggins, who is

always permitted to rename any such relation ‘a mere equivalence relation’,

withholding the term ‘identity’ for only those relations which guarantee in-

discernibility. Wiggins’s point is about the concept identity and is not to be

solved empirically.

Is Wiggins’s conceptual claim correct? I think it quite obviously is, in

the sense that there is a use of the term ‘identity’ which does necessarily in-

volve indiscernibility. Perhaps this use of the term is more common amongst

philosophers than non-philosophers, but nevertheless Wiggins is perfectly

right to insist that, according to one concept of identity, non-Leibnizian iden-

tity relations are ruled out a priori.

It seems to me, however, that whether or not this conceptual point can

be useful as an objection against RI depends entirely on whether or not GT

is true. Assume, for the moment, that GT is false. In this case, there are

relations of absolute identity which do satisfy LL. Wiggins, then, will insist

that these are the only relations of numerical identity, properly speaking.

And, if we take him to mean that these are the only relations that fall under

the philosopher’s notion of identity, characterized by the four laws of identity,

then he is right. Unless some reason can be given why the distinction between

numerical identity relations and equivalence relations ought not to be drawn,

Wiggins’s conceptual claim is sufficient to rule out non-Leibnizian relations

of identity. We considered two arguments, Griffin’s argument from simplicity

and Zemach’s argument from vagueness. However, we saw that neither of

these arguments is particularly compelling. Unless some further argument

can be provided, the prospects for supporting RI, while assuming the falsity

of GT, seem to me to be poor. That is to say, Wiggins’s conceptual objection

suggests that weak theories of relative identity are false.

What if GT is true? In this case, Wiggins’s conceptual claim is a claim

about a concept whose extension is the null-class. The claim, of course, is
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still true but trivially so. There are no relations of non-Leibnizian numerical

identity because there are no relations of numerical identity at all, at least not

in Wiggins’s sense of the term. Moreover, no distinction is possible between

predicates which express genuine numerical identity and those that merely

express equivalence relations, because there are no relations that express

‘genuine numerical identity’.15

So where does all of this leave the thesis RI? I think all of the extant

arguments in its favour fail. For any example apparently having the disputed

form, there is always some interpretation of that example which does not

involve a case of RI. At the same time, I think that, if GT is true, the

coherence of interpretations which do logically imply true cases of RI cannot

be ruled out a priori. RI, then, is neither proven nor disproven.

15 Regarding the distinction between relations of identity and relations of mere equiva-
lence, some philosophers attached important to a thesis which I will not discuss at length
in this dissertation. Noonan (1997: 639-640) draws attention to this thesis, which he at-
tributes to Geach, and which has been called ‘the counting thesis’: that we can count be
a relation weaker than absolute identity. That is, there is some I-predicate, which is not,
and does not entail a relation of absolute identity, such that, if I(x, y), then x and y are
to be counted as one. Certainly, Geach’s theory of identity does depend on the truth of
this claim. Note that this is different from claiming that we can count by relations that
are not identity relations. I think that Geach would reject the latter claim. It seems to me
that Geach’s persistence in using the term ‘identity’, when discussing relations that do not
satisfy the formal features traditionally associated with identity, results from an implicit
assumption that any relation that we can count by is, ispo facto, a relation of numerical
identity.
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4. SRI

We have seen that the arguments for GT and RI are indecisive. We now

turn to the final component of Geach’s strong theory of relative identity,

SRI. Although there are several arguments in the literature advocating theses

similar to SRI, for example, that a sentence with the grammatical form ‘x is

(numerically) identical with y’ is true only if a sentence of the form ‘x is the

same A as b’ is true, where A is a general term (for example, Wiggins 1980:

55-76), the truth of such theses gives no support to SRI. SRI is the stronger

thesis that all atomic sentences involving a relation of numerical identity are

of the logical form ‘x is the same F as b’ where F is a sortal. It is possible

that SRI is false and similar but weaker theses are true.1 So the truth of

SRI needs to be established by an argument different from those presented

by philosophers like Wiggins.

4.1 An Argument for SRI

Geach does not provide anything like a clear-cut argument in favour of SRI,

though we have seen that this thesis is independent of both RI and GT.

Instead, what we find in Geach’s writings are several passing comments on

a supposed relationship between relative identity and Frege’s views on the

logical structure of statements involving predications of cardinality. These

reflections have been built into an argument by Alston and Bennett (1984).

I will consider their argument and conclude that it fails to establish SRI. I

will then consider an argument against SRI from Le Poidevin (2009). I will

conclude that Le Poidevin’s argument also fails. My final judgement on SRI,

1 Each non-relativized relation may be semantically complete and still entail some rel-
ativized identity relation.



then, is that, like RI, it is neither proven nor disproven.

4.1.1 Two ‘Parallel’ Theses

In Reference and Generality, Geach claims that Frege’s cardinality thesis

supports his own view on identity (Geach 1980: 64, 176). Geach provides

little argument except to note that both theses involve relativization of cer-

tain classes of statements to general terms (concept-terms or count-nouns).

Alston and Bennett (1984: 557) defend Geach’s assertion, providing an argu-

ment that the two theses are ‘parallel’. Alston and Bennett do not, however,

say exactly what it means for the two theses to be parallel. In responding to

Alston and Bennett, Sacchi and Carrara (2006: 547) suggest that the theses

would be parallel ‘if the reasons which justify the involvement of the general

term “A” in the first case would also justify a parallel involvement in the

second case’. The central concern of this section is to show to what extent

this condition is satisfied by the cardinality thesis and SRI.

Geach suggests that SRI is entailed by a central Fregean thesis. Geach

writes,

Frege emphasized that “x is one” is an incomplete way of saying

“x is one A, a single A”, or else has no clear sense; since the

connection of the concepts one and identity comes out just as

much in the German “ein und dasselbe” as in the English “one

and the same”, it has always surprised me that Frege did not

similarly maintain the parallel doctrine of relativized identity.

(Geach 1980: 64)

To adjudicate this claim, we will have to consider Frege’s argument.

4.1.2 Frege’s Relativity Argument

Frege argues that numbers are not predicated of individuals or collections

of individuals, but, rather, numbers are predicated of concepts, where such

predications have the form ‘... has the extension n’, and the empty argument

place is filled by a first-level concept (Frege [1884] 1968: 59). This thesis
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is considered by some, including Frege himself, to be a profound discovery

about the nature of number and about statements involving numbers. The

argument which leads Frege to this conclusion has come to be called ‘the

relativity argument’. In this section, I wish to examine one basic move of the

relativity argument, namely the arguments provided by Frege for thinking

that number cannot be a property of individuals or groups of individuals.

Frege presents two arguments for this claim. It is this conclusion, an interim

conclusion in the relativity argument, which seems to bear some relation to

SRI.

4.1.3 The Thesis

Frege’s Cardinality Thesis can be stated as follows:

‘The content of a statement of number is an assertion about a

concept.’ (Frege 1968: 59)2

Frege’s argument for the cardinality thesis proceeds by considering and re-

jecting existing accounts of the nature of numbers. Frege considers the ab-

stractionist accounts from Cantor, Schroeder, and Mill (Frege 1968: 27-33),

subjectivist accounts from Kant and Schloemilch (Frege 1968: 33-38), a set

theoretic account from Thomae (Frege 1968: 38-39), and finally definitions

of the number one in terms of the concept of unity, from Schroeder, Leib-

niz, and Bauman (Frege 1968: 39-44). In the course of examining the views

mentioned above, Frege presents several arguments against the view that

numbers are themselves concepts. I therefore introduce, as an interim con-

clusion of the Relativity Argument:

CT*: Numbers are not first-order concepts.

We will next consider the support for CT*.

2 I use the Austin translation throughout, Mike Beaney translates this passage as ‘a
statement of number contains an assertion about a concept’ (Beaney 1997: 99, my italics).
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4.1.4 The First Argument

Frege provides a well-known argument for CT*. The argument can be extrap-

olated from the following passage (beginning with a quote from Baumann).

“[E]xternal things do not present us with any strict units; they

present us with isolated groups or sensible points, but we are at

liberty to treat each one of these itself again as a many.” And it is

quite true that, while I am not in a position, simply by thinking

of it differently, to alter the colour or hardness of a thing in the

slightest, I am able to think of the Iliad either as one poem, or as

24 Books, or as some large Number of verses. Is it not in totally

different senses that we speak of a tree as having 1000 leaves

and again as having green leaves? The green colour we ascribe

to each single leaf, but not the number 1000. If we call all the

leaves of a tree taken together its foliage, then the foliage too is

green, but it is not 1000 . . . if I place a pile of playing cards in

(someone’s) hands with the words: find the number of these, this

does not tell him whether I wish to know the number of cards, or

of complete packs of cards, or even, say, of honour cards at skat.

To have given him the pile in his hands is not yet to have given

him completely the object he is to investigate; I must add some

further word–cards, or packs, or honours. (Frege 1968: 28-29)

It seems that concepts like colour and hardness have the following fea-

tures:

(4.1) For any object, x, of which the concept-word is predicated,

that concept-word can be truly predicated of at least some part

of x.

(4.2) The concept-word can be truly predicated of x, no matter

how x was conceived of.
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The foliage example shows that the number one does not have feature (4.1).

The pack of cards example shows that the number one does not have feature

(4.2).

4.1.5 SRI and CT: The Differences

Frege’s thesis concerns the subject of propositions involving identity. SRI

concerns the predicates themselves. Frege’s strategy for treating the ambi-

guity of sentences involving cardinality, that is, CT* above, is to construe

the subject of these sentences as being a concept and the predicate as some-

thing like ‘having the extension n’. As Perry (1970) points out, if Frege’s

thesis really were the parallel of SRI, Frege would have held that there were

a multiplicity of cardinalities, one for each of the general terms which we

are able to count. According to this view, which Perry calls ‘the relative

number thesis’, a group of individuals has no absolute cardinality, but in-

stead can be counted in several different ways. In other words, there is no

such thing as having the number two simpliciter. Rather, there are a series

of number-properties: having the pack-number two; having the card-number

two; having the honours-at-skat-number two and so forth.

But it seems that this is not Frege’s view. So it may at first glance seem

that the two theses are not parallel. Alston and Bennett (1984), however,

argue that there is a parallel, nonetheless. Firstly, they claim, the difference

between the cardinality thesis and the relative number thesis is merely no-

tational. Frege could have accepted either on the basis of the arguments he

provides for CT*. Given this, Alston and Bennett argue that

[J]ust as we have constructed a variant on Frege’s doctrine of car-

dinality which does make it run parallel to the relative identity

thesis, we could instead modify the latter so as to make it paral-

lel to what Frege actually held about cardinality. Having become

convinced that ‘a=b’ won’t do as it stands, and that a general

concept must be lurking somewhere in the vicinity, Geach might,

in closer emulation of Frege, have gone on to construe identity as

a relation between concepts. Instead of insisting that all state-
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ments of numerical identity are of the form ‘a is the same F as

b’ he might instead have opted for “The concept a which is F is

uniquely coextensive with the concept b which is F .” (1984: 557)

They go on to say,

Do these complications blunt the force of Geach’s appeal to the

close connection of identity and cardinality? We think not. It

seems clear that for both topics we can move freely between the

“changing the subject” version and the “relativizing the predi-

cate” version, that the two versions are motivated by the same

considerations, and that they accommodate the same range of

data. Thus Geach can still ask: if we adopt one of these “gen-

erality” theses for number, how can we refuse to adopt some

generality thesis for identity? (1984: 557)

Thus, Alston and Bennett conclude, the cardinality thesis and relative iden-

tity are parallel after all.

Alston and Bennett do not, however, provide an explicit argument show-

ing that either the relative number thesis or the cardinality thesis entails any

version of relative identity. We will need to find such an argument if the case

for SRI is to progress any further.

4.1.6 Finding the Principle of Equivalence

In what follows I intend to introduce a principle which elucidates the re-

lationship between statements involving identity and statements involving

cardinality.

Introductory logic textbooks and first year courses alike teach new stu-

dents that if they would make a statement involving cardinality, using the

vocabulary of formal logic, they must do so using identity relations. Thus:

(4.3) Two students failed the exam.

is written
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(4.4) ∃x∃y(S(x)∧ S(y)∧F (x)∧F (y)∧ x 6= y), where S: ‘... is a

student’ and F : ‘... failed the exam’.

However, it is never divulged what the relationship between (4.3) and (4.4)

actually is. Obviously, there is some principle of translation between English

and FOL= at work here. But besides this, there must be some other principle,

for if (4.3) is to be written as P2, then surely some important relationship

holds between (4.3) and the English translation of (4.4): ‘There is some x

and some y such that x is a student, and y is a student, and x failed the exam,

and y failed the exam, and x is not identical with y’. Are these two sentences

which assert the same proposition? This might be conceivable if identity and

cardinality are taken to have the same propositional content. At the very

least it seems that there must be a special relationship between (4.3) and

the English translation of (4.4), which allows (4.3) to be translated as (4.4).

If this is the case, then it seems that this principle, on which depends the

validity of such a fundamental use of formal logic ought to be made explicit.

Before I attempt to formulate the principle, I will restrict the sentences

that I am interested in. First of all, we need to exclude sentences which

involve the relevant relations in an irrelevant way. We are not interested in

all sentences with a cardinal number in them or with the word ‘identical’. We

are only interested in each atomic sentence with an identity relation as the

main connective, or the negations of such sentences, or conjunctions of the

above (otherwise we would only be able to include the cardinal numbers one

and two). Similarly, we are only interested in atomic sentences which involve

grammatical predications of cardinal numbers. Having set these provisos, we

may turn once more to the relation.

I propose the following principle:

Equivalence of cardinality and identity thesis:

For every statement, P, which involves an identity relation, there

is some statement, Q, involving cardinality and just the same

subject and mass terms and count nouns as P such that, nec-

essarily, P is logically equivalent to Q, and for any statement,
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R, involving cardinality, there exists at least one statement, S,

involving an identity relation and just the same subject and mass

terms and count nouns as R which is such that necessarily R is

logically equivalent to S.

With this equivalence thesis in hand, we are at last in a position to

suggest an argument on behalf of Alston and Bennett which might suggest an

entailment from the cardinality thesis to SRI, before considering objections

to it.

If we assume the truth of the cardinality thesis and the falsity of SRI,

then, Alston and Bennet might argue, we run into a contradiction. The idea

is this, if SRI is false, then there is some statement of identity which does not

involve specification of some sortal term. By the equivalence thesis, if there

is some statement of identity not involving a sortal term, then there is some

statement involving cardinality not involving a sortal term. So there is some

statement of cardinality not involving a sortal term, but, by the cardinality

thesis, it might be claimed, it is not the case that there is some statement

of cardinality not involving a sortal term. So our initial assumption might

seem to be inconsistent. If this is right, the truth of the cardinality thesis

would be incompatible with the falsity of SRI. In other words, the former

entails the latter. This, I think , is the best case that can be made for Alston

and Bennett’s conclusion. However, objections have been raised to which I

now turn, and which, I think, ultimately show that Alston and Bennett’s

argument is unsound.

4.1.7 Sacchi and Carrara’s Objection

So it seems that there might be a prima facie case for thinking that the

cardinality thesis implies some version of SRI. In light of the conceptual con-

nections between cardinality and identity, we might expect that, if sentences

of one kind necessarily involve sortal terms, then so do sentences of the other.

However, Sacchi and Carrara argue, in response, that the cardinality thesis

implies absolute identity and is therefore incompatible with SRI. Their ar-

gument rests on the claim that there are some meaningful sentences which,
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if the cardinality thesis is true, must include an absolute identity relation as

a logical component. Carrara and Sacchi give the following example: ‘What

is said in sentences of the form “x is one” is that the concept being identical

with x has the property of having a singular exemplification.’ (Carrara and

Sacchi 2007: 549)

Sacchi and Carrara claim that, following the cardinality thesis, this sen-

tence must be understood as predicating a number of a concept rather than

an object. Carrara and Sacchi suggest that the only possible concept that can

be derived from this sentence would be ‘identical to Solon’. Thus the sentence

is to be understood as “‘being identical to Solon” has extension one’. But

the translation of the sentence involves an unrelativized relation of numerical

identity. Thus, they conclude that the cardinality thesis is incompatible with

SRI.

Strong claim: CT entails the falsity of SRI

Sacchi and Carrara have argued that if we take sentences involving cardinality

to be statements about concepts, then some sentences must be statements

about concepts involving unrelativized identity relations.

It might at first glance seem odd to interpret ‘Solon is one’ as saying

something about a concept involving an identity relation. After all, there is

no obvious reference to the notion of identity in the original, pre-theoretic

rendering of the statement. No doubt Sacchi and Carrara will respond that

the introduction of an identity relation is a trivial move, since the concept ‘...

being identical with Solon’ is already implicit in the use of the name ‘Solon’

in the sentence. If this is right, then the same should go for all sentences

involving cardinality with names as grammatical subjects. Thus, ‘Tommy

and Timmy are two cats’ would be interpreted as ‘the concept cats identical

to Tommy or Timmy has extension two’ (Sacchi and Carrara 2007: 549-550).

Sacchi and Carrara take themselves to have shown that the cardinality

thesis implies the existence of relations of identity which do not involve sor-

tal terms because the conceptual specification required for some, apparently

meaningful, predications of cardinality, must itself involve a relation of iden-

130



tity which lacks any sortal.

However, Sacchi and Carrara are wrong about this. We can still provide

Frege-style reconstructions of such sentences along the lines required by the

cardinality thesis without making reference to any identity relation at all.

For example, the sentence ‘Tommy and Timmy are two cats’ could be recon-

structed as ‘the concept under which fall the cats Timmy and Tommy, and

nothing else, has extension two’.

This kind of reconstruction of sentences involving names and cardinality is

compatible with the cardinality thesis because the subjects of these sentences

are still concepts. These sentences remain compatible with SRI because they

do not involve absolute identity relations. Thus, contra Sacchi and Carrara,

the cardinality does not imply that SRI is false.3

3 Another published paper, by Patricia Blanchette (1999), also targets Alston and Ben-
nett’s argument from the cardinality thesis to SRI. However, Blanchette’s objection de-
pends on the incompatibility of all versions of the cardinality thesis with Geach’s strong
theory of relative identity as a whole, most particularly RI, rather than simply the infer-
ence from the cardinality thesis to SRI. Since I wish to consider only the arguments for
and against SRI in this chapter, I will restrict my discussion of Blanchette’s paper to this
footnote.

Like Sacchi and Carrara, Blanchette argues that Geach’s theory of identity is actually
incompatible with the cardinality thesis (Blanchette 1999: 212-213). Blanchette argues
that Geach’s view entails that it is possible for a domain to consist of elements all of
which are F s and Gs but for the cardinality of the domain to be n F s and m Gs where
n > m. Note that SRI does not, in fact, have any such consequence. Clearly, Blanchette
has in mind RI here, which does have the consequence that Blanchette claims. Blanchette
claims that this is incompatible with the cardinality thesis, because the cardinality of a
concept (presumably a Z-F set, in contemporary versions of the cardinality thesis) has,
in Frege’s view, a single determinate cardinality (Blanchette 1999: 213). So it seems that
the conjunction of SRI and RI is incompatible with the cardinality thesis.

Moreover, though Blanchette accepts Alston and Bennett’s claim that the relative num-
ber thesis (which she names ‘RN’) is a variant of the cardinality thesis (Blanchette 1999:
217), Blanchette argues that the relative number thesis is similarly incompatible with the
strong theory of relative identity.

RN is the doctrine that a given pile has different “relative cardinalities” in
the sense that it can be divided into parts in different ways; Geach’s doctrine
is that a given pile has different “relative cardinalities” because even given
a particular way of dividing it into parts, these parts are only “relatively”
identical or non-identical with one another. (Blanchette 1999: 211)

To see what Blanchette has in mind, consider the following. Take Frege’s example of a
pile of cards. Imagine the set of individual cards in this pile. We have now specified a
particular set, corresponding to the concept ‘cards in the pile’. According to Blanchette,
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Weak claim: CT does not entail SRI

However, even if the cardinality thesis and SRI are not incompatible, Sac-

chi and Carrara think that they have shown that we can adopt the former

without adopting the latter. Consider that the argument from the cardi-

nality thesis to SRI rests on the relationship between the class of sentences

involving cardinality and those involving identity, specifically that we seem

to be able to translate sentences of one class into sentences of the other. This

seemed to suggest that the cardinality thesis implies SRI. This is so because

a sentence which involved an identity relation has no corresponding sentence

involving a predication of cardinality to translate into. However, if we follow

Sacchi and Carrara’s proposal, the relationship between the two classes of

statement will still hold even if SRI is false. Take the example: ‘Solon is iden-

tical with Solon’. This sentence does not involve a sortal. However, it does

translate into the sentence suggested by Sacchi and Carrara, namely ‘being

identical with solon has extension one’. In this case, the statement predicat-

ing cardinality does not involve a sortal term, so neither does the latter. Yet

the latter is admissible according to the cardinality thesis. In other words,

the cardinality thesis does not entail the sortal-relativity of all statements

involving numerical identity relations.4,5 I conclude, then, that the Alston-

the cardinality thesis and the relative number thesis both entail that this set has a de-
terminate cardinality, but Geach’s view entails that this set does not have a determinate
cardinality, because it is a relative matter whether or not any x and y in the set are to be
counted as one or two.

In fact, Blanchette fails to establish her case on several points. It is not clear why
the relative number thesis should entail that some concepts should admit of multiple
cardinalities, for example the pile which is n packs and m cards, but that the concept
‘cards in the pile’ should only admit of one cardinality, namely the number of individual
cards. Surely it makes sense to say ‘The cards in this pile number n packs’.

Similarly, it is not clear that Geach’s view really does entail that any set must admit of
multiple cardinalities. This will depend heavily on the set theory which is adopted. I talk
more about the set theory which best fits the strong theory of relative identity in Chapter
6, but the consequences of this set theory with regard to the cardinalities of sets have still
to be worked out in full. Therefore, a final resolution to this problem must await future
work.

4 Wiggins, in the course of arguing on behalf of the Fregean thesis that existence is a
second-level concept, suggests the a very similar strategy. (Wiggins 1995: 95-96).

5 It might be objected, on behalf of Alston and Bennett, that this strategy for avoiding
their conclusion is incompatible with some of the passages from Grundlagen, for example
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Bennett argument for SRI fails. Next, I will consider an argument from Le

Poidevin against SRI.

4.1.8 Le Poidevin’s Objection to SRI

Of the numerous objections that target theories of relative identity, almost

all are aimed at theses that I have called ‘GT’ and ‘RI’. Since, as we have

seen, very little independent argument has been advanced for ‘SRI’, it is,

perhaps, not surprising that there are very few objections against that thesis

in particular. There is however, one objection to relative identity in the

literature, which I take to affect SRI primarily. The objection comes from Le

Poidevin (2009). Le Poidevin argues that relative identity entails statements

of the form:

(4.5) x =F y ∧ x 6=G y

However, argues Le Poidevin, (4.5) entails the existence of relations of abso-

lute identity, because it involves multiple tokens of the same variable. But

relative identity, in Le Poidevin’s view, rejects the existence of absolute iden-

tity. To avoid inconsistency, Le Poidevin thinks the relative identity theorist

must replace (4.5) with the following,

(4.6) x1 =F y ∧ x1 =F x2 ∧ x2 6= y

But this generates a new problem. Christopher Hughes Conn explains Le

Poidevin’s next move:

If our goal is to replace affirmations of absolute identity with

affirmations of relative identity, then it should be clear that we

are no better off than before. For (4.6) succeeds in avoiding one

affirmation of absolute identity only by committing itself to an-

other, namely, the assertion that the very thing (x2) which is

1968: 40, in which Frege seems to reject ‘all-embracing’ concepts. However, these passages
may well be a simple mistake on Frege’s part, as they conflict with other, and more
significant passages of the same work, for example Frege’s definition of zero. I am grateful
to my examiner, Ian Rumfitt for pointing this out to me.

133



the same F as x1 is not the same G as y. It is only too clear,

moreover, that by substituting a suitably relativized version of

this identity-statement, we will be committing ourselves to yet

another statement of absolute identity. (Conn 2012: 63-64)6

The worry, then, is that true statements instantiating form (4.5) somehow

lead to an infinite regress. Le Poidevin’s argumentative strategy is to raise

a preliminary objection: that statements of the form (4.5) are incompatible

with some feature of relative identity, then to offer an apparent escape route

for relative identity, namely, indexing the variables. Finally, he tries to show

that the attempted escape would lead to a regress.

However, the attempted escape route, the repeating and subscripting of

variables, is not required to defend SRI. Naturally, Geach does not think

that the referents of two tokens are absolute identical, because there is no

such relation. However, it will be the case that, for any x, x is relatively

indiscernible (indiscernible with respect to a fixed-stock of properties) from

x. This will be a condition on the assignment of the variable x. Given this,

why would the relative identity theorist need to specify some relative identity

relation holding between the two tokens of x, in order to avoid inconsistency?

There is no such need, and the regress does not get started.

We have therefore considered the arguments for and against SRI, and

I have argued that they all fail. Once again, I remain neutral about the

thesis. However, there are a class of objections that do not clearly target

any particular one of the three theses in particular which I have not yet

considered, but which are potentially problematic for the strong theory of

relative identity. It is to these that I will turn in the next chapter.

6 Dummett raises the same concern, though in a less developed argument than Le
Poidevin’s. Dummett (1973) argues that Geach has inadvertently introduced a double
relativity in his thesis and in so doing has ensured its incoherence. For Geach holds that
there are true sentences of the form ‘x is the same F as y and x is not the same G as y and
either x or y is a G’. But if what has just been said is correct, then this is wrong, argues
Dummett, the correct form of identity statements ought to be ‘x (the F ) is the same F
as y (the F )’. We must relativize the names before we use them. But this in turn seems
to rule out cases of RI, because if we are limiting ourselves to discussing only x (the F )
and y (the F ), then it is not possible for them to disagree over their properties, because
they are the same F . A satisfactory response to Le Poidevin’s argument will answer this
concern as well.
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5. OBJECTIONS TO RELATIVE IDENTITY

In the previous chapters, I have distinguished three theses which are involved

in Geach’s strong theory of relative identity. I have considered arguments

for and against these theses and argued that, so far, they are neither proven

nor disproven. However, I have so far avoided a large class of objections to

theories of relative identity generally, to which I will now turn. These are

objections which have been raised against the semantic and logical conse-

quences of relative identity. In particular, the following three charges stand

out. Theories of relative identity are incompatible with singular reference

(Alston and Bennett 1984: 557-560, Dummett 1991: 167, Hawthorne 2003:

113). Singular terms are incompatible with the very notion of quantification

(Quine 1964, Dummett 1991), and Geach’s theory of relative identity entails

the failure of the syllogisms (Cain 1988).

One of the difficulties in assessing these objections is that those philoso-

phers who have raised the objections are rarely careful to distinguish the

different theses involved in theories of relative identity. Consequently, it is

not always clear what thesis is believed to lead to which unwanted conclusion.

The objections are most often phrased as attacks on the thesis I have dubbed

‘RI’; however, it will become clear that the first two objections are really

problematic only for those theories of identity involving GT, while the third

is directed at further views of Geach’s that we shall consider shortly. I will

argue that the incompatibility between relative identity, specifically GT, and

features of classical semantics can be traced to a more general incompatibil-

ity than has hitherto been recognized, between the set-theoretic assumptions

of the strong theory of relative identity and classical semantics, respectively.

Moreover, I suggest that all of the semantic objections show that the theory

of relative identity needs to be supplemented by a non-classical semantics. I



also draw several conclusions about what such non-classical semantics would

need to be like. Specifically, if GT is true, the appropriate semantics is one

in which there is no possible characterization of the domain of discourse in

terms of the most fine-grained elements of the domain. I consider such a

semantics in Chapter 6. Finally, I will show how the apparent failure of the

syllogisms derives from Geach’s own attempts to escape the semantic objec-

tions. I will put off attempting to resolve this last problem until the next

chapter.

5.0.9 A Preliminary Objection

Wiggins, who, as we have seen, thinks there is a conceptual connection be-

tween relative identity and indiscernibility, poses the following question as a

challenge to RI:

How, if a is b, could there be something true of the object a which

was untrue of the object b? They are the same object. (Wiggins

2001: 27)

Note, however, that RI does not entail that there are cases of a and b that

are the same object and have different properties. Cases of RI involve some

x and y that jointly satisfy some sortal-dependant identity relation and have

different properties. However, it is not the case that if x and y jointly satisfy

some sortal dependent identity relation, then x and y are the same object.

So RI may be true without there being any instances of the kind Wiggins is

objecting to. Moreover, if SRI is also true, then such instances are impossible,

because there is no relation ‘... is the same object as...’.

However, this does not entirely dispel the general worry. To put this

objection into focus, let us consider a case of RI. First, stipulate that ‘Smith’

names a surman, that ‘John Smith’ names a man born on March 18th, and

‘Sam Smith’ names a man born on March 19th. Further assume the truth of

the following.

(5.1) John Smith is the same surman as Sam Smith, but John

Smith is a different man than Sam Smith (further stipulate that
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(5.1) is a case of RI).

(5.2) John Smith is the same surman as Smith.

(5.3) Sam Smith is the same surman as Smith.

(5.4) Every surman is a man.

(5.5) Every man has a birthday.

From these, we can derive the following:

(5.6) Smith is a man.

and, from thence, we can derive:

(5.7) Smith has a birthday.

At this point, an objection can be raised. When is Smith’s birthday? March

18? March 19? Both? Neither? We have already seen that RI is incompatible

with LL. But even if LL is rejected, a problem remains. For we have said

that Smith has a birthday, but it does not seem that there is any particular

day on which Smith was born. We could of course simply reject (5.5), but

this would be to allow a class of birthday-less men.

Wiggins’s analysis of this problem is that RI entails certain unwanted

semantic consequences. As Wiggins explains,

Suppose there were terms t1 and t2 both designating z, one and

the same donkey, and suppose there were a context φ( ) such

that the result of supplying t1 to it was true and the result of

supplying t2 was false. What ought we to say if it were suggested

that the open sentence φ(x) determined a property? Call the

putative property Q. We ought to ask: How can the donkey both

have and lack the property Q? The question is unanswerable.
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Let the R〈relative identity〉-theorist note that this argument can

be stated, as it is stated here, without showing any special favour

between ‘=’ and ‘=F .’ It supports Leibniz’s Law for both of

these relations. In order to counter it, the R-theorist will have to

uncover much more complexity than appears to be present in the

innocuous locution ‘t1 designates z and t2 designates z.’ Nor is

that enough. R-theorists will need to deny the very possibility of

there being such a relation as simple designation. (Wiggins 2001:

28)

The charge here is that any semantics for the expression ‘t1 designates z’ that

is compatible with RI will be excessively complicated and will not involve the

notion of simple designation. To consider how far this objection succeeds,

let us briefly note Geach’s view of referring expressions. The metaphysical

issue, how it is possible for some x and y to have different properties and yet

be identical relative to some sortal, is answered by Geach, with an account

of how referring expressions work. Geach introduces a distinction between

two kinds of names, which he calls ‘names of’ and ‘names for’, respectively.

As Geach puts it,

A proper name carrying as part of its sense the criterion of iden-

tity expressed by “the same cat” may be called a name for a cat.

. .a proper name is a name of a cat if it is not an empty name

but does actually name a cat. (Geach 1980: 70)1

1 Hawthorne objects to Geach’s contention that names have semantic content which
involve criteria of identity:

Current wisdom about proper names would also need rethinking were Geach’s
approach to be accepted. According to Geach, in order for a proper name to
have a legitimate place in the language, it must have a criterion of identity
associated with it-given by a relative identity predicate. The popular view (see
Kripke 1971) that a name can be cogently introduced by either demonstration-
‘Let “Bill” name that thing (pointing)’-or else by reference-fixing description
(that need not encode a sortal in Geach’s sense)-‘Let “Bill” name the largest
red thing in Alaska’-is thus anathema to Geach. (Hawthorne 2003: 113)

Hawthorne is singling out neither RI nor GT, but rather a further thesis of Geach’s as the
point of incompatibility with the popular view of proper names. Hawthorne thinks that
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This response is open to all the usual objections raised against descriptive

theories of proper names, given that the distinction is cashed out in terms of

the descriptive content involved in the sense of a name. However, we will put

these concerns to one side. If a name, ‘a’, is a name for a cat, then the sense

of ‘a’ will include all sufficient descriptive content such that only one cat is

named by ‘a’. If ‘a’ is a name of a cat, the referent will have the property of

being a cat, but the sense of the name will not necessarily include sufficient

information to determine which cat. We can now see how the name of/name

for distinction serves to resolve the problem.

If we stipulate that the substitution instances of the quantified expression

‘every man’ in ‘every man has a birthday’ are all those names for men and

none of the names of men that are not names for men, the inference from

(5.5) and (5.6) to (5.7) is invalid. It does not follow that Smith has a birthday

and the problem disappears.

If Geach’s notions of names of and names for are coherent, the distinction

seems to provide a resolution to the problem of surmen apparently having

multiple birthdays. However, Dummett’s second concern remains a major

worry on this account. According to the standard view, names are singular

terms. It is not clear that any sense can be made of the very notion of a

‘singular’ term, if relative identity is true.

Geach’s view that each name corresponds to some criterion of identity, is incompatible
with the plausible view that the reference of a term can be fixed ostensively or via a
description lacking a sortal. Hawthorne is right on this score.

However, it is by no means clear how damaging this is to Geach’s case. Even if the strong
theory of relative identity does require Geach’s further thesis that names involve criteria of
identity, Hawthorne has not shown that Geach is unable to adequately tweak the notion of
ostensive and descriptive reference-fixing in such a way that they are made compatible the
rest of the theory. For example, we could restrict reference-fixing descriptions to just those
that involve sortals, and we could further stipulate that all legitimate cases of ostensive
reference-fixing implicitly involve sortals knowable by the context of the ostension. These
would surely not be wholly implausible alterations to the popular theory of reference-
fixing. I think, then, that, though Hawthorne is right in claiming that Geach’s views are
incompatible with some aspects of orthodox semantic theory, the examples that he points
too are not ones which undermine the strong theory of relative identity.
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5.0.10 Relative Identity and Singular Reference

Several different reasons have been provided for thinking that relative identity

is incompatible with the classical semantics for proper names, as we shall

see.2 I intend to establish what features of relative identity, in particular, are

incompatible with classical semantics. I will argue that both RI and GT are

incompatible with singular reference.

Alston and Bennett argue against relative identity as follows:

We not infrequently succeed in picking out particular items ...

physical objects, events, experiences, properties, persons, institu-

tions ... by the use of proper names, definite descriptions, and

indexical expressions of various sorts. Given that we have suc-

ceeded in picking out something by the use of ‘a’ and picking out

something by the use of ‘b’ it is surely a completely determinate

proposition that a = b, that is, it is surely either true or false

that the item we have picked out with ‘b’ is the item we have

picked out with ‘a’; nor do we have to range a and b, covertly

or overtly, under a common concept in order to form an identity

proposition with a determinate truth-value. If a is the number

15 and b is Sally’s new hat, it is clearly false that a = b, and no

question ‘Aren’t they the same what?’ is left dangling. (Alston

and Bennett 1984: 558)

Alston and Bennett are here suggesting that the mere occurrence of apparent

singular reference (by naming, definite description, etc.) in natural language

is sufficient proof of the existence of absolute and unrelativized identity re-

lations. Thus, in Alston and Bennett’s view, singular reference entails both

the falsity of GT and also the falsity of SRI. Alston and Bennett do not

provide much by way of sustained argument to back up their intuition that

2 This is denied by Griffin (Griffin 1977: 156-157). In fact, in this regard, Griffin appeals
to Dummett for support. Claiming that Dummett successfully argues that there is no
formal entailment from Geach’s relative identity thesis to a non-classical interpretation of
the quantifiers. The reference is to an early work of Dummett (1973: 562), and in later
work, in which Dummett argues that there is such an entailment and which I quote at
length in what follows, Dummett’s criticisms of Geach seem to be expressible formally.
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the presence of certain kinds of expressions in natural language entail the

existence of an absolute identity relation, still less that such a relation must

be dyadic. I think their position depends not simply on the existence of

certain features of natural language but also on a particular view of how

those features work. We can get a better grasp of the supposed problem by

considering some additional thoughts from van Inwagen.

Van Inwagen argues:

The philosopher who eschews classical, absolute identity must

also eschew singular terms, for the idea of a singular term is ... at

least in currently orthodox semantical theory, bound to the classi-

cal semantical notion of reference or denotation; and this notion,

in its turn, is inseparably bound to the idea of classical identity.

It is a part of the orthodox semantical concept of reference that

reference is a many-one relation. And it is a part of the idea of

a many-one relation–or a one-one relation, for that matter–that

if x bears such a relation to y and bears it to z, then y and z

are absolutely identical. (That’s what it says on the label.) (van

Inwagen 1988: 259)

Van Inwagen is arguing that relative identity is incompatible with the classi-

cal semantics for singular terms on the grounds that the relation of singular

reference is many-one, but that relative identity is incompatible with the no-

tion of a single referent for a given term. Indeed, Geach would disagree with

the view, which van Inwagen attributes to classical semantics, that naming

is a many-one relation (one or more names referring to one object). Geach

countenances the existence of ‘shared names’, that is, names with more than

one bearer (Geach 1991: 17-18). In other words, Geach thinks that nam-

ing is a many-many relation. Moreover, the name of/name for distinction

involves a conception of proper names that are not related many-one to ele-

ments in the domain of discourse. The whole point is that any given proper

name bears different kinds of naming relations to entities which are not ab-

solutely identical with one another. The name ‘Bluemantle’, for example,

refers to a herald at the College of Arms (as a name for) and coincidentally
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to John Smith, the man who is performing the duties of Bluemantle at the

time (as a name of). The herald and the man are not absolutely identical, so

the name ‘Bluemantle’ does not refer solely to one absolutely individuated

object. Moreover, the name of/name for distinction (or something similar)

is required to make sense of the thesis RI. The truth of statements of the

form: for some x and y, x is the same F as y but not the same G, depends

on there being at least two different kinds of name. This shows that RI is

incompatible with the thesis that naming is always many-one. Any theory

of identity involving RI, therefore, must deny that all names are singular

terms. Van Inwagen, then, is right. The strong theory of relative identity is

incompatible with the many-one view of names. However, it is not simply a

matter of supplanting the many-one view of names with a many-many view,

for, it turns out that the latter is also incompatible with the strong theory

of relative identity.

Although Geach claims to accept the existence of shared names (1980:

216), he is not, in fact, free to make the distinction between names that are

singular terms and shared names. The difference between these categories

is that the first refer to just one object, while the latter may refer to more

than one. But of course, this very way of talking presupposes that we can

distinguish between a single entity and a multiplicity of entities singled out

only as ‘objects’, without further specification. But to do this would require

absolute identity. If classical semantics is appropriate for apparent singular

terms in natural language, then there exists a relation, which we call ‘refer-

ence’, between every name and exactly one individual element in the domain

of discourse. But, if we allow ourselves talk of ‘one individual element in

the domain of discourse’, then we must have access to an absolute identity

relation in order to individuate any given element from the others. For this

reason, GT is also incompatible with classical semantics. It seems, then, that

relative identity is incompatible with naming being a many-one relation in at

least two respects. If RI is true, there are counter-examples to the many-one

view of naming. If GT is true, the very terms in which the relationship is

expressed lack sense.

GT and RI, then, are both incompatible with the classical semantics for
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proper names. Next, we will consider if the same is true for the classical

semantics for quantified expressions. I will argue that it is.

5.0.11 Quantification

We began the discussion of the semantics of proper names with an intuitive

objection to relative identity. The same worry can, of course, be phrased us-

ing devices of quantification, as in the following objection to relative identity

from Michael Burke,

If a cat and one of its proper parts are one and the same cat,

what is the mass of that one cat? (Burke 1994: 138 footnote 19)

Once again, if we assume that all cats have some weight, and that proper

parts of cats weigh less than the whole cats of which they are parts, then

it seems that the cat in Burke’s example has two different weights. If RI is

true, ‘... is the same cat as ...’ is not a relation of absolute identity. It is not

the case that some x and y that are the same cat are exactly the same thing.

So why ought we to think that they should have the same weight in the first

place? What gives this example its force, is the intuition that every cat has

just one weight or at least just one weight at any given time.

Cases like this show that RI entails a non-classical view of quantificational

expressions, parallel to the view of proper names entailed by RI. Indeed,

Geach seems to have been aware of this consequence, as his treatment of the

quantifiers is exactly the parallel of his name of/name for distinction. We

have already briefly noted Geach’s view that restricted quantification over

F s is not reducible to unrestricted quantification over things that are F s. We

are now in a position to consider this component of Geach’s views in more

depth.

Geach’s advocates a substitutional account of the quantifiers. As he says,

‘I think the best way to understand applicatives like ‘some’, ‘every’, ‘most’,

and the like, is to consider first their use in harness, not with substantival

general terms, but with lists of proper names’ (Geach 1980: 191). Such a list

of proper names can characterize the contents of the domain of discourse for a
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language, in the sense that there is nothing in the domain which is not named

by a name on the list. Geach does not mean that every competent speaker of a

given language is in possession of such a list of names which characterizes the

domain for that language (1980: 184, 205-206), but rather, that the contents

of a domain are so structured that there must be a characterizing list of

names even if unknown, and that truth-conditions for our statements about

the contents of a domain can always be provided which appeal to such a list.

In particular, the truth-conditions Geach provides for the quantifiers, ‘some’

and ‘many’ are provided in terms of substitution from a list of names. Given

that names come in two varieties, names of and names for, two different kinds

of quantification are possible, in Geach’s view, depending on which names

can be substituted salve veritate. On one hand, ‘some F is a G’ is true if and

only if there is a name of and for an F , a, which is such that G(a) (Geach

1980: 206). While ‘some x is an F and a G’ is true if and only if it is possible

to introduce some name, a such that F (a) and G(a), without the further

stipulation that a be a name for either an F or a G, though it will, of course,

be a name of both (Geach 1980: 184). Similar truth-conditions hold for the

quantifier ‘any’. These truth-conditions have the result that it is possible

that ‘some x is an F and a G’ is true, while ‘some F is a G’ is false, so the

latter (restricted) quantification is not reducible to the former (unrestricted).

We may get a better grasp of Geach’s views here by considering an ex-

ample. First, stipulate that ‘Tibbles’ is a name for a cat, while ‘Tibbles’ and

‘Tib’ are both names of one and the same cat. In other words, the sense of

the name ‘Tibbles’ includes sufficient content to identify Tibbles as a par-

ticular cat. ‘Tibbles’, then, can never name something which is not a cat,

nor something which is a different cat from Tibbles at t1. Matters stand

differently with those names of cats which are not at the same time names

for cats. I will stipulate that ‘Tib’ be such a name. ‘Tib’ names a cat on the

mat at t1 (in fact it names the same cat as ‘Tibbles’). Tib by t2, however,

may have ceased to be the same cat as Tibbles, may have ceased to be the

same anything as Tibbles, and may have ceased to be a cat at all.

The important point is that the possible truth-preserving substitutions

for the quantifier in:

144



(5.8) Every cat has a tail.

are names for cats, and the possible truth-preserving substitutions for the

quantifier in:

(5.9) Everything that is a cat has a tail.

are names of but not necessarily for cats, as we have just seen. Any name

for a cat is a name of a cat, so under assumption that ‘Tibbles’ is the only

name for the cat on the mat at t1, (5.8) is true if and only if Tibbles has a

tail. (5.9) is true if and only if the names of all things that are cats and are

on the mat at t1 have tails. As it happens of course (5.9) turns out to be

false because ‘Tib’ names one thing that is a cat on the mat at t1 and does

not have a tail.

In Burke’s case, the first quantified expression, ‘a cat’ involves existential

restricted quantification over cats. The second quantified expression, ‘its

proper part’, is elliptical for ‘some proper part of the aforementioned cat’,

involves unrestricted quantification over things that are cats. The rule that

all cats have exactly one weight involves restricted quantification over all cats.

Since restricted quantification is not reducible to unrestricted quantification,

this rule does not entail that all things that are cats, and are the same cats

as one another, have the same weight. In Burke’s case, then, the cat has

just one weight. The fact that there are things which are cats, have different

weights, and are the same cat as the aforementioned cat, does not mean that

the cat has more than one weight.

5.0.12 An Objection: Cain

It seems, then, that the name of/name for distinction and the thesis of the ir-

reducibility of restricted quantification play an important role in responding

to some of the objections to the theory of relative identity. However, there is

a cost involved. A major objection to Geach’s views on the quantifiers has

been presented by James Cain (1988). Cain argues that Geach’s thesis that

restricted quantification over F s is not reducible to unrestricted quantifica-

tion over things that are F s, leads to the failure of the syllogisms. Cain has

in mind cases like the following:
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(5.10) All men are mortal

(5.11) Bluemantle is a man

But

(5.12) Bluemantle is not mortal

‘Bluemantle’, recall, is the name for a herald at the College of Arms.

It seems, Geach’s position commits him to the truth of all three of these

statements. Bluemantle is a herald, and is not mortal but continues so long

as there is a man (or woman) to perform the associated functions. Yet, surely

it is the case that all men are mortal. Moreover, it seems that Geach is not

in a position to deny the minor premise either, since he has appealed to this

quite explicitly in presenting his argument for RI (as we saw in Chapter 3).

This, in turn, entails the following counterexample to the Darii syllogism:

(5.13) All men are mortal

(5.14) Something is a man

But it does not follow logically that

(5.15) Something is mortal

So it seems that Geachean cases of relative identity lead to the failure of

at least one of the syllogisms.3

This is a serious worry, to which we will return at the beginning of the

next chapter. If it turns out that Geach’s irreducibility thesis does lead

directly to the failure of the syllogisms, then Geach’s theory of relative iden-

tity would involve a significantly more substantial diversion from orthodoxy

than hitherto expected. This would cast serious doubt on the feasibility of

Geach’s irreducibility thesis, but without this thesis, we have seen that the

strong theory of relative identity faces other objections.

3 Cain shows that many of the syllogisms will be affected. I will focus on only one, but
what I say will generalize.
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I will put off consideration of the ways in which Geach might respond

to Cain for the moment, because there remain more general worries about

the semantics of the strong theory of relative identity which must be iden-

tified first. In particular, it is not clear that the irreducibility thesis can

provide a suitable account of the quantifiers even if it escapes Cain’s objec-

tion. For, several philosophers, namely, Quine (1964) and Dummett (1991),

have objected that relative identity is incompatible with the very notion of

quantification.

5.0.13 Further Objections: Quine and Dummett

This point is first raised by Quine:

This doctrine [Geach’s denial of the existence of an absolute re-

lation of identity] is antithetical to the very notion of quantifi-

cation, the mainspring of modern logic. Quantification depends

upon there being values of variables, same or different absolutely;

grant quantification and there remains no choice about identity,

not for variables. For a language with quantification in it there

is but one legitimate version of “x = y”. (Quine 1964: 101)

This point is expanded upon by Dummett,

If we are engaged in giving a verbal statement of the interpreta-

tion of the object-language, we have first to specify the domain

of the variables. To give the interpretation of the non-logical

constants, we have to be able to refer in the metalanguage to

elements of that domain, or to pick out subsets of it. In order to

know whether a given interpretation is admissible, that is, intel-

ligible, we must know when two terms of the metalanguage pick

out the same element of the domain, since the requirement that

one and the same element, considered as picked out by each of

two distinct singular terms of the metalanguage, should behave

differently in respect of the satisfaction of some predicate of the

object-language will render the interpretation contradictory and
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so inadmissible. Hence, to give an interpretation relative to a

domain presupposes a relation of identity defined over it. And,

according to the present argument, the same applies to the case in

which we have only a mental apprehension, rather than a verbal

statement, of the interpretation. (Dummett 1991: 294)

Given the incompatibility just noted between the strong theory of relative

identity and the classical semantics for proper names, these objections will,

perhaps, come as no great surprise.

Geach recognizes that the domain of discourse for a language cannot be

a set defined by elements distinguished from one another by an absolute

identity relation, if no such relation exists. This leaves Geach needing to

explain how the domain of discourse is so structured that we can quantify over

entities when those entities are not distinguished from one another absolutely.

We have already seen that Geach adopts a substitutional account of quan-

tification, according to which the contents of the domain are characterized

by a list of names. Whereas a classical semantics would introduce an ‘in-

terpretation function’ defined such that, for each name as argument, some

element in the domain of discourse is returned as value. In Geach’s view, we

cannot say what the contents of a domain of discourse for a language are,

apart from using the referring expressions of that language. But this is not

to say that the names of a language lack denotata, non-lingistic entities to

which the names refer; merely that the denotata are not individuated from

one another absolutely. This picture of the domain of discourse either re-

quires us to grant that the domain is not itself a set or to adopt a broader

view of what constitutes a set.

As Cantor puts it, ‘a set is a collection into a whole of definite, distinct

elements of our intuition or of our thought’ (as quoted in Fraenkel 1966: 9).

That the intended interpretation of the formal system of set theory involves

absolute identity is further evidenced by considering a further passage from

Cantor:

[A] variety (an aggregate, a set) of elements that belong to a cer-

tain conceptual subject is well defined if by virtue of its definition
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and of the Principle of Excluded Middle it must be determined as

internally determined whether an element of such a conceptual

subject is an element of the variety, so as if two objects belonging

to the set, despite the formal diversity by means of which they

are given, are identical or not. (As quoted, E. Casari 1976: 22.)

The trouble for the strong theory of relative identity is not over, as Dum-

mett has another objection against the semantics of relative identity. Dum-

mett has the following to say about Geach’s proposal concerning the use of

a list of names to specify a domain of discourse:

These remarks hang oddly together with the thesis to which

Geach subscribes, as do I, that to every proper name is associated

some determinate criterion of identity, given that he acknowledges

that a list is a string of proper names; indeed, without affecting

the issue, we could allow the list to contain singular terms other

than proper names. It is not that Geach has gone back on this

thesis concerning proper names, since he reiterates it in the very

article, “Ontological Relativity and Relative Identity”, under dis-

cussion. If for two proper names occurring in the list there are

associated conflicting criteria of identity, it would not appear to

make sense to say that they denoted the same object; and, when

the same criterion is associated with two names, that criterion

determines the sense of asking whether a repetition is involved,

without the need for any arbitrary choice. Given an assignment,

to each entry on the list, of an appropriate criterion of identity, it

seems that an identity relation over the elements of the domain

specified by the list had thereby been determined, one that will,

as before, set bounds to the fineness of the interpretation of any

=L. (Dummett 1991: 298)

Dummett is arguing ad hominem that Geach thinks that every name on

the list has some criterion of identity. If this is so, then surely the relation

that holds between the referent of a name for an object and the referent
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for another name for the same object is a relation that expresses absolute

identity.

Dummett is right about this, up to a point. If it is true that every name

in any given language corresponds to some criterion of (absolute) identity,

then, of course, specifying the domain of discourse by a list of names entails

that a relation of absolute identity can be defined over that domain. The

referent of any name will be absolutely identical with the referent of the

same name and the associated criterion of identity will give us a principle

for determining which names co-refer. Geach, therefore, cannot consistently

hold that all names are associated with criteria of (absolute) identity. Rather,

Geach (1991: 292) intends quite a different claim, though one which is not

strictly entailed by his other views, that all names come associated with a

criterion of identity relative to some sortal, F . This is just to say that all

names are names for some F . Such a view, at any rate, would escape the

charge of inconsistency.

Dummett has a final, and perhaps more challenging, objection:

[I]t would seem that the list itself, taken together with those con-

straints, if any, sets a bound to the fineness of any equivalence

relation expressed by some =L. For, even if there are no con-

straints, we surely cannot get any finer equivalence relation than

that which holds between the object corresponding to each en-

try and itself, but not between any such object and the object

corresponding to any other entry. (Dummett 1991: 167-168)

In other words, Dummett suggests that no matter what constraints you put

on what names are allowed onto the list, there is no more fine-grained relation

than that which holds between the referent of one name on the list and the

referent of that same name. The relation that holds between the referent of

a name and the referent of the same name is surely a relation of absolute

identity. So long as we have adequately specified the domain of discourse for

the language, it seems impossible to distinguish two different entities going

by the same name. If this were to happen, it would simply show that we had

not adequately specified the domain in the first place.
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This is a major difficulty for Geach’s proposal, as it casts doubt on GT. It

casts doubt on GT because the existence of a most fined-grained characteri-

zation of the domain entails that the cases envisioned by Geach, of previously

indiscernible objects becoming discernible, are impossible. That is, it sug-

gests that P3.3 of the argument presented in Chapter 2 is false. Geach is

committed to P3.3, and therefore if Dummett is right that Geach’s views on

specifying a domain entail the existence of a most fine-grained characteriza-

tion of the domain of discourse, then Geach’s views on specifying a domain

are incompatible with GT.4 So GT entails that there is no ‘most fine-grained’

characterization of any domain of discourse.

To dispose of this objection against Geach’s proposed theory of quantifi-

cation, it will be necessary to develop a semantics for quantifiers, based on

Geach’s theory and to show that this semantics escapes Dummett’s objec-

tions. I will make some suggestions in this regard in Chapter 6.

5.0.14 Conclusion

In this chapter, we saw that relative identity has been challenged on account

of its supposed incompatibility with classical semantics. First, it seems that

GT is incompatible with singular reference. Second, it seems that GT is

incompatible with the traditional notion of quantification.

It seems, then, that if the strong theory of relative identity is true, then

singular reference is impossible, at least in the conventional sense. But more

importantly, it seems that GT is incompatible with the assumption that a

domain of discourse for a language can be thought of as composed of discrete,

absolutely discriminated elements. Quine has said ‘grant quantification and

4 As Dummett puts it,

... there is compelling fear of incompatibility between the picture that we are
accustomed to form of the classical interpretation of the quantifiers and the
picture evoked by Geach’s doctrine on identity ... 〈according to the former〉
the picture we have of what constitutes a domain of objects which can serve
as the range of the individual variables is such that it is impossible to see
how there could be any objection to suppose an absolute relation of identity
defined on it: the elements of the domain are thought as being, in Quine’s
words, the same or different absolutely. (Dummett 1973: 562-563)
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there remains no choice about identity, not for variables’ (Quine 1964: 101).

It seems to me it would be more accurate to say that if one grants a traditional

set-theoretic framework for the semantics of a language, then there remains

no choice about identity.

The strong theory of relative identity is left, then, with a series of prob-

lems. It is not clear whether some account of names and quantifiers can be

provided which is compatible with GT. It is also unclear if some suitable

explanation can be given of what the domain of discourse for a language

is, if it is not a set as traditionally understood. Moreover, it is not clear

that any such account can be given which does not involve an ultimately-

fine-grained characterization of the contents of the domain, such that the

word-type/word-token style cases which are so important for Geach are pos-

sible. This worry is made more acute by Geach’s further contention that all

names come with criteria of identity.

In addition to all this, we have seen that the apparatus that Geach in-

troduces in his account of proper names and quantification appears to lead

to the failure of the syllogisms. This is prima facie a serious problem for the

semantics of relative identity, and we will begin our consideration of the pos-

sible responses to the various problems raised in this chapter by confronting

this one.
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6. THE LOGIC AND SEMANTICS OF RELATIVE

IDENTITY

We established in the last chapter that the strong theory of relative identity

is incompatible with classical semantics, and the proposals that Geach has

made to address these problems seem to entail some odd logical consequences.

In this chapter, I will consider the logical systems and the kind of semantics

which would be compatible with theories of relative identity. I will begin by

considering the challenge pressed by Cain, to the effect that Geach’s theory

entails the failure of the syllogisms. I will then consider the semantics implied

by relative identity. First, the kind of semantics compatible with GT, before

considering how it would have to be altered to incorporate RI and SRI as

well, as well as how these might escape the various worries raised in the last

chapter. I finish the chapter by considering the various logical systems that

might be suitable for theories of relative identity.

6.0.15 Geachean Quantification and the Syllogisms

We will begin, then, by considering the apparent failure of the syllogisms.

We saw that Cain provides examples of the following kind:

(6.1) All men are mortal

(6.2) Bluemantle is a man

But

(6.3) Bluemantle is not mortal

The major premise involves universal quantification. For this case to serve

as a counterexample to the syllogism, this quantifier must be interpreted as



involving restricted quantification over men, rather than unrestricted quan-

tification over all things that are men. If it the quantifier were unrestricted,

the premise would be straightforwardly false, because of course there are

things that are men but are not mortal– Bluemantle, for example. If the first

premise were false, then naturally the case would not serve as a counterex-

ample. The key to the second premise is that involves a name of a man, but

not a name for a man, which is then repeated in the conclusion. If, instead

of ‘Bluemantle’, a name for a man had been chosen, then no counterexam-

ple could be generated. Any name for a man, will satisfy the predicate ‘...

is mortal’, and will do so as a matter of necessity. Similarly, we could not

create a counter-example to the Darii syllogism using a restricted existential

quantifiers in the minor premise and conclusion.

Cain’s counterexamples, then, depend on a particular mismatch between

the quantifier in the major premise and the referring expressions/quantifiers

in the minor premise and conclusion. Let us consider how Geach might

respond to these cases.

I think the preliminary point that needs to be made on Geach’s behalf

is that Geach has the resources to provide an account of the syllogisms ac-

cording to which there are no counterexamples. This is because Geach’s

account of the syllogisms will rule out the kind of mismatching that Cain’s

counterexamples depend upon. To see this, consider the following.

Having made a distinction between two kinds of quantification, Geach will

of course not permit this distinction to be ignored in a formal statement of his

system. The symbols ‘∀’ and ‘∃’, then, can stand for restricted quantification,

or restricted quantification, but not both. Let us assume, first that it stands

for unrestricted quantification. The Darii Syllogism can now be phrased as

follows:

∀xFx→ Px

∃xFx

——————

∃xPx
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However, none of Cain’s cases can provide a counterexample to this rule.

For the second quantifier is a restricted quantifier, and we have seen that the

Cain cases all require that the quantifier in the minor premise and conclusion

be unrestricted.

Similarly, if we assume that ‘∀’ and ‘∃’ represent unrestricted quantifica-

tion, then, again we cannot find a counterexample, because, in this case, the

major premise of any proposed counterexample will turn out to be false. As

we saw, ‘All men are mortal’, when interpreted as involving an unrestricted

quantifier is straightforwardly false.

All of this goes for cases where the minor premise and conclusion involve

names rather than quantifiers. A Geachean formal system will stipulate

that the names in the minor premise and conclusion must be names for the

sortal type to which the quantifier in the major premise is restricted. Having

built this stipulation into the formal system, no counterexamples can be

constructed.

The objection then, cannot target the coherence of a Geachean formal

system, which preserves the syllogisms. Rather, the objection targets in-

formal cases, and the fact that the formal systems will exclude cases by

stipulation and therefore, perhaps, fail to recognize some genuine instances

of the syllogisms, as found in ordinary language.

In other words, Cain (1988: 88) objects that (6.1)-(6.3) is manifestly a

counterexample to the syllogisms and that, if Geach’s formal system does not

recognize it as such, so much the worse for the formal system. The question

then is, is it obvious the truth of the premises (6.1) and (6.2) entail the falsity

of the conclusion? Or, to put the point in another way, is it obvious that

cases with the grammatical structure of counter-examples to the syllogisms,

need to be recognized as such? Geach may answer ‘no’ to these questions.

Note that there are plenty of grammatical counterexamples to the syllo-

gisms. Consider the following:

(6.4) All water evaporates

(6.5) The Thames is water

But
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(6.6) The Thames does not evaporate

Naturally, philosophers can provide simple explanations of why this is not,

in fact, a counterexample to one of the syllogisms. But this does not change

the fact that the three intuitively true statements involved in this case can be

put into the grammatical form of a counter-example to one of the syllogisms.

Why should this case not be a problem for philosophers generally, but (6.4)-

(6.6) should be a problem for Geach? Perhaps, Cain may say, simply because

the intuition that (6.1)-(6.3) genuinely does instantiate the form which entails

a counterexample to one of the syllogisms is stronger in that case. It is not

clear how compelling this answer is though. Geach would no doubt respond

that, once a speaker of ordinary English has become sufficiently well versed

in the distinction between restricted and unrestricted quantification and the

parallel distinction between names of and names for, it will become apparent

to him or her that (6.1)-(6.3) does not, in fact, instantiate a counterexample

to the syllogisms.

I will not pass a final judgement on how compelling these responses to

Cain’s objection are. I have presented what I take to be the best response

open to Geach, whether this response is sufficient, I leave an open question.

If they are not, a defender of the strong theory of relative identity is left with

the unpalatable dilemma of either biting the bullet and granting the invalidity

of the syllogisms or finding some suitable replacement for the irreducibility

of restricted quantification thesis and the corresponding name of/name for

distinction. I shall not follow up this issue any further in this dissertation,

but turn instead to a consideration of whether the other objections raised in

the last chapter can be answered.

6.1 Semantics

Returning, then, to the semantic worries that we raised in the last chapter.

To recapitulate, these are as follows. First, whether a semantics for proper

names and the quantifiers can be provided if GT is true, given that that thesis

is incompatible with the notion of singular reference and individuated assign-

ments for variables. Second, whether an account of domains of discourse can
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be provided which is open to evermore fine-grained characterizations of the

contents of the domain. I shall divide the following discussion into two parts.

First, I will consider what a semantics compatible with GT would need to be

like, given the objections raised in the last chapter. Second, I will expand the

discussion by considering how Geach’s further semantic apparatus (names of,

names for, and the irreducibility of restricted quantification thesis) might be

useful in providing a semantics compatible with RI and SRI as well.

6.1.1 Prospects for a Semantics for GT

Recall that classical semantics stipulates that the interpretation of any sin-

gular term in a language is an element in the domain of discourse. Formally,

this can be written:

(6.7) If N ∈ C is the set of all names in a language, L, and S is

a structure, 〈D, I〉, then S must be such that for every element

n ∈ N , I(n) ∈ D, where I is an interpretation function and D is

the domain for L.

This is to say, all names in L have referents in the domain of discourse.

An assumption underlying (6.7) is that there is a collection of entities, which

we have called D, which are the possible denotata of the singular terms of

the language for which a semantics is being provided. Moreover, it is the

standard assumption that D is a Z-F set, specifically, that D is the set of all

possible objects nameable in the language L. We have already seen that the

traditional interpretation of the formal language of set theory (both naive

and Z-F) is incompatible with the strong theory of relative identity because

the traditional interpretation of an Z-F set presupposes that any set contains

a number of elements distinguished from one another absolutely.

The other requirements for a complete semantics are rules for interpreting

the quantifiers and variables, predicate letters, complete propositions and the

logical vocabulary. The semantics for propositions and the logical vocabulary

(apart from identity relations themselves, about which I shall say more in

the next section) do not pose any special problems for the strong theory of
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relative identity. However, it should be noted that the incompatibility be-

tween relative identity and singular reference, which van Inwagen and Alston

and Bennett have drawn our attention to, and the incompatibility between

relative identity and the traditional notion of quantification which Dummett

and Quine have drawn our attention to, are in fact only two instances of

a wider incompatibility between the strong theory of relative identity and

classical semantics. The same considerations which show that GT is incom-

patible with the classical semantics of singular terms also show that GT is

incompatible with the classical semantics of predicates as well. A statement

of the classical semantics for predicates is as follows:

(6.8) If Fn ∈ C (n ≥ 1) is the set of all n-place predicates in L,

then S must be such that for every element ∈ Fn, the set of all

n-tuples such that 〈I(t1), ..., I(tn)〉 satisfy F is a subset of D.

(6.8) says that there is a function from any n-place predicate in a language

L which returns as value a set of n-tuples, such that each n-tuple is a subset

of D. In other words, the value of a predicate is the set of its arguments.

If the arguments of a given predicate, F , are collectively a subset of D, and

D, as before, is assumed to be Z-F set, as traditionally understood, then

distinguishing one subset of D from another is a matter of distinguishing

the elements of one subset from the elements of another; again (given the

identity conditions for Z-F sets) this entails absolute identity.

Classical semantics, therefore, assumes that there is a definable function

from referring expressions and predicates in a language to elements and sets

of elements in the domain of discourse for that language. For a function

to be well-defined it must return individual values for its arguments, always

returning the same values for the same arguments. But this implies that the

set of names for a language L maps onto a set of individuated objects, which

are picked out by these names. Similar considerations apply to the account of

the assignment function for variables. This is precisely the picture of naming

which must be rejected according to the strong theory of relative identity.

Does this mean that a semantics cannot be provided for proper names if

GT is true? I think not, however, such a semantics will involve the rejection
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of certain assumptions that underlie classical semantics.

GT is compatible with stipulations like (6.7) and (6.8) so long as the

contents of D are not understood as involving entities the same or different

absolutely, and so long as the interpretation and assignment functions are

not understood as mapping terms of a language onto such elements.

We have seen that Dummett and Quine take these features of a semantics

to be ruled out a priori. But it is not clear why this should be so. Indeed, if

we take D to be a set, and understand that notion along the lines suggested

by Cantor, then Dummett and Quine are right. However, it does not seem

obvious that we do need to understand the notions of a domain and a mapping

onto a domain along these lines. We could, for example, continue to use the

formal apparatus of set-theory, while rejecting the those elements of the

traditional interpretation of the formal system which are in conflict with

GT.1

It might be objected that, shorn of its classical interpretation, stipulations

like (6.7) and (6.8), which involve such set-theoretic notation of set inclusion,

are simply meaningless, and cannot shed any light on how to interpret the

singular terms of a language. If this were true, and the formal systems of

orthodox set-theories cannot be provided with a non-standard interpretation

which does render them compatible with GT, then one alternative for the

strong theory of relative identity would be to frame the intended semantics

in some non-classical set-theory which is more amenable to the strong theory

of relative identity. This possibility has not been explored in detail, but at

least one logician has passed the following judgement:

The prospects for developing logics of RI (relative identity) in a

nonstandard set theory are rather poor, but I think that Bliz-

zard’s theory of multisets or the Krause conception of quasi sets

1 The axiom of extensionality might have to be modified as well, as it involves a re-
lation of absolute identity. However, this is perhaps less implausible than it may sound.
Stevenson (1972: 155) notes that Geach proposes the following case of RI in private cor-
respondence: A is the same set as B, but not the same ordered set. If this were a case of
RI, this would suggest that the axiom of extensionality provides a criterion for the relative
identity relation, ‘...is the same set as ...’. For an objection to this example, see Lowe
1989a: 18. Lowe’s central claim is that no set is also an ordered set.
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may be useful in this respect. (Garbacz 2002: 28)

I admit that I do not see why he thinks the prospects are poor, especially

given one of the alternatives he recommends seems to me to offer great

promise, namely quasi-set theory. I will turn, then, to quasi-set theory, an

alternative set theory originally developed in Krause’s paper ‘On a Quasi-Set

Theory’ (Krause 1992) and subsequently, in more detail by Krause together

with French (2006, 2010). The theory of quasi-sets involves sets with ele-

ments of two different kinds: one labelled ‘M -atoms’; objects for which all

the traditional laws of logic (including identity) apply. These are no differ-

ent than the Ur-elements of Z-F set theory. The other entities are called

‘m-atoms’. As Krause explains:

The atoms of the other kind (m-atoms) may be intuitively thought

of as elementary particles of modern physics, and we will suppose,

following Schrodinger’s ideas, that identity is meaningless with

respect to them (Schrodinger 1952: 16-68). Then we will admit

that the Traditional Theory of identity (TTI) does not apply to

the m-atoms. These facts enable us to hold, with regard to the

m-atoms, that the concepts of indistinguishability and identity

may not be equivalent. Therefore, roughly speaking we can say

that a q-set (quasi-set) is a collection of objects (called elements)

such that to the elements of one of the species (the m-atoms), the

notion of identity (ascribed by classical logic and mathematics)

lacks sense. (Krause 1992: 402-403)

Krause and French, therefore, accept two kinds of entities into their do-

main of discourse: M -atoms, to which the notion of absolute identity does

apply, and m-atoms, to which the notion of absolute identity does not apply.

Or, more specifically, for any m-atom, x, it is not the case that x is absolutely

identical with x. This makes quasi-set theory attractive as a groundwork for

a semantics compatible with GT. It suggests that a q-set of indiscernible m-

atoms cannot be thought of as composed of ultimately-fine-grained elements

distinguished from one another absolutely. A formal semantics in which the
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notion of a domain, and interpretation and an assignment are thought of as

involving q-sets and m-atoms may, therefore, escape the objections raised

against a semantics for GT. I shall not try to work out the details of such

a semantics here, but simply note that this may provide an alternative to

conceiving of the notions of a domain, interpretation, and assignment, which
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do not presuppose the existence of absolute identity relations.2

2 Krause and French (1992: 404) provide a dictionary involving, amongst others, the
two following definitions:

(a) Q(x) =def ¬(m(x) ∨ M(x)) Where ‘Q’ stands for ‘... is a quasi-set’
(henceforth, ‘q-set’).

(b) x = y =def ¬m(x) ∧ ¬m(y) ∧ x ≡ y

From the definitions that they provide, Krause and French are able to prove the following
theorems:

Theorem 1: The defined relation ‘=’ has all the usual properties of classical
equality.

Theorem 2: ∀x∀y(¬m(x) ∧ ¬m(y)→ (x ≡ y → x = y))

This says that for, anything which is not an m-atom, indistinguishability implies identity.
Krause (1992: 404) then provides the following axioms of quasi-set theory:

(A1) ∀x(¬(m(x) ∧M(x)))

(A2) ∀x∀y(x ∈ y → Q(y))

(A3) ∀x(Z(x)→ Q(x))

(A4) ∀Qx∃my((y ∈ x)→ ¬Z(x))

(A5) ∀Qx∀y((y ∈ x→ D(y))→ Z(x))

(A6) ∀x∀y((m(x) ∧ x ≡ y)→ m(y))

The theorems that follow from (A1)-(A6) and are relevant to the present project include:

(3b) For all x and for all y, [x]=[y] if and only if x ≡ y.

Needless to say, (a), (b), and Theorems 1, 2, and (3b) are all incompatible with GT.
Quasi-set theory must therefore be modified if it is to rendered compatible with Geach’s
views on identity.

I propose the following modifications:
Firstly, we reject the existence of M -atoms altogether. This of course means that we

abandon axiom (A1). Secondly, we replace definition (a) with (a)*:

Definition (a)*: Q(x) =def ¬m(x), where Q stands for ‘...is a q-set’.

Thirdly, we replace definition (b) with (b)*:

Definition (b)*: x =Q y =def ¬m(x) ∧ ¬m(y) ∧ ∀z(z ∈ x → z ∈ y) Where
‘=Q’ is to be read ‘... is the same q-set as...’.

This definition provides an extensional criterion of identity for q-sets. Note, however, that
this definition does not imply the indiscernibility of some x and y which are the same
q-set. This is intentional, for a plausible case of RI is the following: for q-sets x and y, it is
possible for x to be the same q-set as y, but, for example, x to be a different ordered-q-set
as y. x may have the same elements as y and, therefore, by (b)*, x and y are the same
q-set, yet x and y may be differently ordered and, therefore, discernible.

Given this alteration, neither Theorem 1 nor Theorem 2 of quasi-set theory is a theorem
of modified quasi-set theory. However, the following is derivable as a theorem:
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Therefore, the prospects for a semantics compatible with GT depend on

either a non-standard interpretation of the formal language of traditional set

theory or an unorthodox system of set theory being found that can be used

to frame the definition of a structure for a semantics compatible with GT,

which can provide an account of the interpretation of names, predicates, and

assignments for variables that does not presuppose absolute identity. If this

can be found, the answer raised in Chapter 5 can be answered.

6.1.2 Prospects for a Semantics for GT, RI, and SRI

Even if some notion of a set can be provided which is compatible with GT,

things become more complicated if RI and SRI are true. This would require

a semantics which does not presuppose the existence of relations of absolute

identity but also provides a semantics for relations of sortal relative identity.

We saw, in Chapter 5, that Geach introduces the notions of ‘names of’ and

‘names for’ and the thesis of the irreducibility of restricted quantification,

all of which are helpful in understanding RI. I will show how these notions

might find a place in a semantics for strong relative identity.

In order to show how cases of RI are possible, we will also need to say

something about the semantics for statements involving identity. To make

sense of locutions such as ‘a is the same F as b’, we will introduce a new

Theorem 1*: ∀x∀y(¬m(x) ∧ ¬m(y)→ (x ≡ y → x =Q y))

Moreover, several of Krause’s additional theorems are not derivable in modified quasi-set
theory. (3b), for example, is not a theorem of modified quasi-set theory. The following,
however, is now a theorem:

(3b)* For all x and for all y, if [x] =Q [y], then x ≡ y

In other words, for any x and y, where the q-sets [x] and [y] are the same q-set, the
m-atoms x and y are indistinguishable. The modifications to quasi-set theory that I
am proposing are thus two-fold. First of all, modified quasi-set theory will eliminate all
reference to M -atoms, and secondly, it will involve the replacement of the relation ‘=’,
when taking expressions for q-sets as arguments, with the relation ‘=Q’, a relation which
does not guarantee indistinguishability. With these two alterations, I believe quasi-set
theory can be purged of any commitment to absolute identity. Krause and French (2010:
116-121) provide a proof of the consistency of quasi-set theory that can be easily adapted
to modified quasi-set theory. Therefore, I think it provides an appropriate framework for
providing a semantics which will be compatible with the strong theory of relative identity.
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syntactical category into our semantics, that of relative-identity relations.

First a bit of ground work. The notion of a sortal will be as explained in

Chapter 1. We introduce a set of sortals, S, into the vocabulary for L, the

language for which we are providing a semantics. Each sortal partitions the

domain of discourse into disjoint subsets, a set of those things that are F s

and a set of those things that are not.

We may then introduce the following definition:

Definition 1:

If ‘a’, ‘b’ ∈ TL (where TL is the set of terms of the language)

and F ∈ PL (where PL is the of predicates of the language),

then ‘a =F b’ ∈ PL (where PL is the set of all formulae of the

language).3

We may further stipulate that every relation =F partitions the set of things

that are F into equivalence classes, that is sets of things that are the same

F .

The structure for a semantics incorporating the name of/name for distinc-

tion will be more complex than in classical semantics. Rather than a pair,

involving a domain and an interpretation function, the structure of a seman-

tics for GT, RI, and SRI will involve several different types of interpretation

function. First, there will be a function which takes names as arguments and

returns as values that for which they are names for. We might further stip-

ulate that the name-for-value of a name of will be one of the subsets of the

domain generated by one of the relative-identity relations. If the name-for

referent of ‘a’ is a subset generated on a domain, D, by the relation ‘=F ’,

then ‘a’ is the name for an F . Implicit in this stipulation is that every name

is a name for, and never both a name for an F and a name for a G. This, I

think, is what Geach had in mind when defending the thesis that every name

comes with a criterion of identity.

3 Adapted from Garbacz 2002. Garbacz’s semantics for the formal language in which
his logical systems are expressed is, in fact, incompatible with the strong theory of relative
identity, more particularly with GT, in various respects, so I will not consider it further
here.
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In addition to this, the structure of a semantics for GT, RI, and SRI

will involve a further set of interpretation functions, where for every sortal,

F , there is some IF . These also take names as arguments and return as

values subsets of D. For every x, where x is an element in the value of an

IF function, it will be the case that F (x). However, unlike the name-for

function, it will not necessarily be the case that they are all the same F , just

as ‘Bluemantle’ may be a name of several different men.

As far as the quantifiers are concerned, we have already noted that

Geach’s views suggest a close connection between the name for/name of

distinction and the irreducibility of restricted quantification thesis. In par-

ticular, we saw that Geach seems (1980: 184, 206-207) to have in mind some

account of substitutional quantification, such that the unrestricted quanti-

fiers, when ranging over things that are F are replaceable salve veritate by

any name. In other words:

〈∀xF (x)〉 is true if and only if every name is such that F (a).

and

〈∃xF (x)〉 is true if and only if there is some name a, such that

F (a).

Similarly, restricted quantifiers are replaceable by names for.

〈∀FxG(x)〉 is true if and only if, for any name a of and for an F ,

G(a).

and

〈∃FxG(x)〉 is true if and only if there is at least one name, a of

and for an F such that G(a). (Geach 1980: 2006)

This completes my overview of the possibilities for the semantics for the-

ories of relative identity. Before I bring this chapter to a close, I will make

some reflections on the sort of logical system which is best suited to the strong

theory of relative identity, by considering the various systems developed for

relative identity that are to be found in the literature.
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6.2 Logical Systems for Strong Theories of Relative Identity

I will begin my survey of the extant systems compatible with strong theories

of relative identity by considering the desiderata for such a logical system.

This will, of course, depend on which theory of relative identity we are in-

terested in. A weak theory of relative identity is compatible with a logical

system which licenses some inferences involving absolute identity, while a

strong theory of relative identity would be incompatible with any such logic.

A strong theory of relative identity is therefore incompatible with FOL=. A

strong theory of relative identity is compatible with FOL without identity.

However, to adopt FOL without any further rules of inference would mean

some intuitively valid inferences were not underwritten by the logical system.

Given that the strong theory of relative identity is compatible with FOL, it

is only those inferences which involve relations of identity that are under

threat. But take the following as an example:

Argument 8

P8.1 a is the same person as b.

P8.2 a is the son of John Smith.

Therefore

C8.1 b is the son of John Smith.

Given FOL, the inference drawn in argument 8 is invalid. Of course, it

might be that the most appropriate logical system for the strong theory of

relative identity does not license the inference in Argument 8. Perhaps it is a

substantive, non-logical, maybe even contingent, claim that, if a is the same

person as b and a is the son of John Smith, then b is the son of John Smith.

However, this clearly conflicts with some widely held intuitions. It would be

good to know if there is a logical system compatible with the strong theory

of relative identity which could underwrite the inference in Argument 8 and
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other similar inferences. However, determining which inferences are valid

and which are not is not a simple task. I have remained neutral about the

thesis RI; however, a principled decision about the most appropriate logical

system would require either accepting or rejecting that thesis. For example,

the following case might be thought to be as intuitively obvious as Argument

8.

Argument 9

P9.1 a is the same person as b.

P9.2 a is 5’8”.

Therefore,

C9.1 b is 5’8”.

However, It has been argued that relative identity provides the best so-

lution to the problems associated with change over time (in this regard, see

Odegard 1972, Borowski 1975, Gupta 1980, and Deustch 1998). If this is so,

then instances of change over time can be expressed with cases of RI. For

example:

R′′: The baby is the same person as the grown man but not the

same temporal slice.

Of course, most philosophers deny that sentences such as R′′ genuinely a case

of RI. But, if we assume for the moment that it is, then we would seem to

have a counterexample to the validity of Argument 9. In this case, the grown

man is the same person as the baby, but surely it is possible for the grown

man to be 5’8”, and for the baby to be some other (presumably shorter)

height. So, if sentences like R′′ are possibly true and are cases of RI, then

inferences like that involved in Argument 9 are invalid.

Moreover, the choice of logic does not depend only on the truth or falsity

of RI. Even if RI is true, where to draw a principled distinction between valid

167



and invalid inferences remains problematic. It could be that cases of RI are

possible, but that sentences like R′′ are not, in fact, examples of them. RI,

then, is compatible both with the validity and the invalidity of Argument 9.

The problem, then, is to determine not just the truth of RI but also what

instances of RI are possibly true.

For any theory of identity, therefore, discerning the appropriate logical

system depends on some system satisfying at least the three following desider-

ata:

(6.13) The system must be compatible with the various theses

involved in the theory (in the case of theories of relative identity,

these are some combination of GT, RI, and SRI).

(6.14) The system must be consistent and complete.

(6.15) The system must not involve an ad hoc distinction between

valid and invalid inferences.

Several attempts have been made to develop logical systems for theories

of relative identity, notably, by Griffin and Routley (1979), van Inwagen

(1995), and Garbacz (2002).4 In what follows I will consider these systems. I

cannot endorse any given one of these systems, as I intend to remain neutral

concerning the various component theses of relative identity. However, we

will see that each of the systems is compatible with a certain view of the

relationship between identity and logic. The choice between these systems is

left for the future.

I will consider these systems from the weakest to the strongest.

4 To be sure, there are other alternative systems of first-order logic which may be
compatible with strong relative identity; for example Wehmeier’s Wittgensteinian-inspired
logic without objectual identity (Wehmeier 2012) and Krause and French’s Schrodinger
logics (Krause and French 2006, first developed by da Costa 1980). However, none of these
are tailor-made for relative identity, and so I will not consider them further here.
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6.2.1 Stevenson and Van Inwagen’s Logics

Chronologically, the first system relevant to theories of relative identity is

Stevenson’s axiomatized system (1975). The motivation for Stevenson’s sys-

tem is to shed light on the behaviour of sortals. Stevenson’s logic has several

benefits, relative identity versions of reflexivity, transitivity, and symmetry

are all theorems (1975: 194). However, Stevenson’s logic is incompatible with

GT and also with RI. Not only is ‘=’ a primitive symbol in the language of

Stevenson’s logic, but the following is a theorem:

` (t1 =F t
2) if and only if (F (t1) ∧ t1 = t2)

In other words, the Fregean Analysis is provable (1975: 195). The Fregean

Analysis is, of course, incompatible with both GT, since it implies that there

exists a relation of absolute identity and with RI because it implies the in-

discernibility of the relata of any relative identity relation.

In spite of this, Stevenson’s logic may cast some interesting light on the

appropriate logic for theories of relative identity generally. In particular,

Stevenson develops a notion which is important to understanding the logic

of sortals. This is the notion of ‘an ultimate sortal’ (1975: 195). A sortal, F ,

dominates a sortal, G, if and only if px =F yq entails px =G yq. For example,

plausibly, if Clark Kent is the same man as Superman, then Clark Kent is

the same human being as Superman. F is an ultimate sortal if and only if,

for everything x, F dominates every sortal G such that G(x). The existence

of dominating and ultimate sortals is, of course, important for determining

which cases of RI are possible (see Griffin 1977: 76-92). These notions have

been incorporated into the subsequent systems that have been developed,

and it is to these that I will now turn.

I will begin, then, with van Inwagen’s, provably consistent, system of nat-

ural deduction (van Inwagen 1988: 248-260). The language of van Inwagen’s

logic involves a constant, ‘I’, standing for relations of relative identity. How-

ever, it involves neither the symbol ‘=’ nor any singular terms. As we have

seen, van Inwagen believes that naming and relative identity are incompati-
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ble. In the language of van Inwagen’s logic, therefore, all reference is carried

out by quantified expressions (van Inwagen 1988: 260). If the strong the-

ory of relative identity can be provided with a semantics for proper names,

then the vocabulary of the language of van Inwagen’s logic is unnecessarily

restricted.

Van Inwagen’s system of natural deduction involves adding just two new

inference rules to the system of natural deduction for FOL. These are as

follows:

SymmetryvI :

Ix, y

Iy, x

and

TransitivityvI :

Ix, y, Iy, z

Ix, z

These are, of course, relative-identity versions of symmetry and transitiv-

ity. However, van Inwagen does not provide a relative-identity version of

reflexivity and provides nothing similar to LL. No inferences of the form:

Ix, y, ϕ(x)

ϕ(y)

are valid in van Inwagen’s system. Van Inwagen, naturally, accepts that many

inference of this kind are highly intuitive. He suggests that some relative-

identity relations ‘dominate’ certain predicates. However, in van Inwagen’s

view, all claims concerning what relations dominate what properties are sub-

stantive metaphysical theses and not guaranteed by logic (van Inwagen 1988:

256). This may mean that van Inwagen’s system fails to satisfy desideratum

(6.14). Note that van Inwagen logic does not abandon identity as a logical

notion all together. We have seen that it does involve two laws of identity.

However, the absence of any form of reflexivity means that it is possible that
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there are no objects that satisfy any relation I. The absence of any form of LL

means that, even if there are entities that do satisfy identity relations, they

may not share any other properties in common. In other words, whether or

not van Inwagen’s logic is complete depends on whether or not it is a logical

truth that entities have determinate identity conditions and whether these

identity conditions involve some principle of substitutivity.

6.2.2 Routley and Griffin’s Logics

Stronger alternatives to van Inwagen’s system can be found in the form

of a series of second-order logics for relative identity developed by Routley

and Griffin (Routley and Griffin 1979). Routley and Griffin’s first system

is closely connected to van Inwagen’s system; the major difference is that

Routley and Griffin build the notion of predicate domination into their logic.

Routley and Griffin (1979: 70) introduce a new symbol, ‘∆F ’,5 which is a

function on the sortal term F , and designates the set of properties which

F dominates. Routley and Griffin’s first system is arrived at by adding the

following definition to FOL (without identity):

D1: x =F y =def (∀P ∈ ∆F )(P (x)↔ P (y))

With this definition, Routley and Griffin are able to prove the consistency of

their system (1979: 73-74), amongst other theorems. In addition to theorems

corresponding to symmetry and transitivity, from D1 and the definition of

the expression ‘∆F ’, they are able to prove the following version of reflexivity

and LL:

ReflexivityRG: ` x =F x

LLRG: ` (x =F y ∧∆F )→ (φ(x)↔ φ(y))

LLRG tells us that any pair jointly satisfying some relative-identity relation

are indiscernible with respect to the predicates dominated by that relative

5 In fact, Routley and Griffin use ‘Φ’ as a schematic letter for sortals, rather than ‘F ’.
Here and throughout this section, I make small alterations in order to use the same symbols
through my dissertation.
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identity-relation. This, of course, does not mean that arguments like 9 are

valid, for it is still not a logical matter which predicates are dominated by

a given relative-identity relation. Nevertheless, the system is stronger than

van Inwagen’s system in this respect.

ReflexivityRG, however, poses a problem for Routley and Griffin’s (1979:

76-77) system, as they are willing to admit. For this theorem tells us that

any x is the same φ as itself. But the schematic letter, φ is replaceable by

any predicate whatever. In other words, x is the same horse as x and x is

the same person as x, and so on, regardless of what x is. Routley and Griffin

also note that, in their system we cannot infer from ‘x =F y’ to ‘F (x)’ or to

‘F (y)’. This is surely counter-intuitive.

To solve both these problems, Routley and Griffin (1979: 74-77) offer

another alternative. This replaces D1 with D1*:

D1*: x =F y =def (F (x) ∧ F (y) ∧ (∀P ∈ ∆F )(P (x)↔ P (y)))

From D1*, it is possible to infer from ‘x =F y’ to F (x) and F (y). It also

entails a different version of reflexivity.

ReflexivityRG∗: ` F (x)→ x =F x

Surely ReflexivityRG∗ is more plausible than ReflexivityRG. Given this,

the modified version is the better of Routley and Griffin’s alternatives to

van Inwagen’s system. The salient differences between Routley and Griffin’s

modified system and van Inwagen’s system are two-fold. Firstly, the former

involves weak reflexivity, while the latter does not. Secondly, the former en-

tails that relations of relative identity guarantee indiscernibility with respect

to a certain class of predicates, while the latter does not. If these sorts of

inferences are logically valid, then Routley and Griffin’s modified logic is the

appropriate logic for relative identity. If all substitutivity claims are prop-

erly issues for metaphysics rather than logic, then van Inwagen’s logic is the

appropriate system.

As we noted however, Routley and Griffin’s system does not under-

write any particular inferences involving dominated properties. It might
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be thought that some such inference ought to be underwritten by logic. For

even stronger systems, we must look to the most recent work that as been

done on logics for relative identity.6

6.2.3 Garbacz’s C1

Garbacz provides no fewer than 11 different logical systems compatible with

various theories of relative identity (Garbacz 2002). Each is defined by a

different set of assumptions. The one that I will begin with is his ‘minimal

monadic logic of relative identity’, which he names ‘C1’. C1 is the weakest

of the eleven systems Garbacz devises, and indeed, all the other systems are

extensions of C1. C2 - C11 differ from C1 for the most part in licensing

versions of LL.

C1 is defined by the following assumption:

C1: If A1, A2 ∈ =(F ) and A1 6= A2, then A1 ∩ A2 = ∅

where ‘=(F )’ represents any partition on the domain of discourse by a relation

of the form ‘... is the same F as...’. In other words, the resulting sets of a

partition on the domain by any relative identity relation are disjoint. From

C1 and the semantics Garbacz provides, five sequents follow:

(6.15) �C1 (x = x ∧ φ(x))→ x =φ y

6 The system to which Routley and Griffin devote the greatest amount of effort is a
three-valued logic of significance. I have not argued in this dissertation for a third truth-
value and I don’t not think that any of the component thesis of the strong theory of
relative identity give support to the existence of a third truth-value. Given this, I think
that unless a good reason can be given for adopting a three-valued logic, the appropriate
logic for theories of relative identity will be bivalent.

Regardless, Routley and Griffin’s, as they stand, logics are all incompatible with RI,
and therefore with the strong theory of relative identity. Routley and Griffin provide the
following truth conditions for statements involving relative identity relations.

a =F b if and only if F (a) ∧ F (b) and (if F ′ ∈ DF , then F ′(a) if and only if
F ′(b)), where DF is the set of all the predicates dominated by the sortal ‘F ’.

In other words, a bears some relative identity relation to b if and only if a and b satisfy
all the same sortals. This, of course, rules out true cases of RI. This account of relative
identity relations will, therefore, have to be rejected in order to make the Routley and
Griffin systems compatible with Geach’s views.
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(6.16) �C1 x =φ y → φ(x)

(6.17) �C1 φ(x)→ x =φ x

(6.18) �C1 x =φ y → y =φ x

(6.19) �C1 (x =φ y ∧ y =φ z)→ x =φ z

Of these, sequents corresponding to 1-4 are true in FOL=.

With these facts established, Garbacz (2002: 33-36) proceeds to give his

sequent calculus for C1, which he calls ‘SQ1’. He provides a series of rules

(see Appendix A), R1-10, which are familiar from the standard calculus for

FOL=. These are supplemented by four additional rules of inference, which

he calls ‘R11A-R11D’. Informally, these are:

(6.20) From ‘x is identical with y’ and ‘x is (an) F ’, infer ‘x is

the same F as y’.

(6.21) From ‘x is the same F as y’, infer ‘x is an F ’.

(6.22) From ‘x is the same F as y’, infer ‘y is the same F as x’.

(6.23) From ‘x is the same F as y’ and ‘y is the same F as z’,

infer ‘x is the same F as z’. (Garbacz 2002: 34)

With these rules, Garbacz is able to prove the completeness of SQ1.7 That

is, all the sequents which are semantically entailed by the assumption C1

are provable, given the rules of SQ1. (6.15)-(6.19) are, therefore, theorems.

These theorems give us versions of weak reflexivity (6.17), symmetry (6.18),

7 Garbacz is able to prove Theorem 9.1: ‘If Φ �Cn ϕ, then Φ `SQn ϕ’, which simply
states the completeness of each of the Garbacz sequent calculi. The proof, which I will
not repeat here, is a modification of Henkin’s proof of the completeness of the standard
first order system (Garbacz 2002: 38-41).
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and transitivity (6.19), as well as the intuitive principle that if x and y are

the same F , then they are F s. (6.15), however, is incompatible with GT.

In fact, C1 is incompatible with GT several times over. Garbacz’s system

presupposes the existence of absolute identity by involving a semantics for-

mulated using the tools of Z-F set theory.8,9 Moreover, statements of the form

px = yq are well formed in the language Garbacz uses to express C1. More

importantly for our present concerns though, C1 entails theorems involving

absolute identity relations:

(6.24) �C1 (x = y ∧ φ(x))→ x =φ y

All of this is quite at odds with the central tenet of the strong theory of

relative identity.

In addition to this, the assumption C1 itself involves an absolute relation

of identity, as do the rules of inference R9 and R10. C1, then, is a logic which

may be appropriate for weak theories of relative identity but inappropriate

for Geach’s views. As it stands, C1 does not satisfy desideratum (6.13).

Having said this, I think that Garbacz’s work may provide an important

stepping stone for understanding the logical properties of the strong theory

of relative identity.

C1 can be modified in such a way that it does not presuppose the existence

of relations of absolute identity, if it is possible to replace the absolute identity

relations in C1 with suitable relativizations. A system compatible with the

strong theory of relative identity would involve (6.16)-(6.18) as theorems,

but would not involve (6.15). From SQ1, the inference rules corresponding

to those of FOL (i.e. R1-R8) still form a necessary component of the sequent

8 See 〈Assumption 1.4〉, Garbacz 2002: 28. Moreover, the existence of objects with
determinate absolute identity conditions is explicitly built into Garbacz’s semantics.

‘If px = yq, then x and y will be called AI-objects ... the definition of an
RI-object is bound to refer to AI-objects; namely, and RI(δ) (that is, RI(F ))
is the set of AI-objects that are the same δ (that is, F ).’ (Garbacz 2002: 28)

9 Garbacz, no doubt, would grant that his semantics is incompatible with the strong
theory of relative identity. Providing a semantics for the strong theory of relative identity
falls outside the scope of Garbacz’s project, as he is interested only in weak theories of
relative identity.
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calculus for a system compatible with the strong theory of relative identity,

while the inference rules involving absolute identity must be rejected. As for

Garbacz additional rules, R11A must be rejected, as it involves an absolute

identity relation, while R11B-R11D, are all compatible with C1*.

Note though, that even if it can be modified to be compatible with the

strong theory of relative identity, C1 is a very weak system and, as it stands,

does not add much of interest to the van Inwagen and Routley and Griffin

systems, except for being more technically developed.10 I am interested in

stronger logical systems for relative identity. This is why Garbacz’s exten-

sions of C1 are of value

For each of the extensions of C1, Garbacz adds further sequents to create

more powerful logical systems, which underwrite a larger number of infer-

ences. Some of these have intuitive appeal and are worth considering here. I

do not have the space to consider all the extension. I will list them and possi-

ble objections to them in Appendix A. I will, however, look at two examples

here.

SQ2, the sequent calculus for system C2 involves all the inference rules

of SQ1, plus the following:

R12

Φ∀ x(F (x)↔ G(x)),Φa =F b

Φa =G b

While, SQ3 adds the following:

R13

Φ∀x(F (x)→ G(x)),Φ(a =F b) ∧ (b =G c)

Φa =G c

10 Indeed, Garbacz (2002: 47) claims that C1 is the appropriate system for van Inwagen’s
views on identity. In fact, he is wrong about this, given that C1 assumes the existence of
relations of absolute identity and van Inwagen remains neutral on their existence. More-
over, C1 is stronger than the C1 involves a version of relative-identity-reflexivity (fact 4.1,
number 3, Garbacz 2002: 30), while, as we have seen, van Inwagen’s system does not.
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Each of these rules has at least some intuitive appeal and would license many

apparently valid inferences. However, among these are the following infer-

ences

Argument 10

P10.1 Everything that is a human being is a persona and vice

versa.

P10.2 Clark Kent and Superman are the same human being.

Therefore,

C10.1 Clark Kent and Superman are the same persona. (By

R12)

Argument 11

P11.1 Every river is water.

P11.2 The river that Heraclitus bathed in yesterday is the same

river as the river he bathed in today.

P11.3 The river Heraclitus bathed in today is the water of yes-

terday’s rainfall.

Therefore,

C11.1 The river yesterday is the same water as yesterday’s rain-

fall. (By R13)

But of course, these two cases could be taken as plausible cases of RI and,

therefore, counter-examples to the proposed rules of inference. A logic which

involves rules of inference concerning the domination of properties by relative

identity relations will be bound to rule out some cases of RI. In short, if sortal
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domination is a properly logical notion, the choice of logic will depend not

merely on the truth of RI but on what particular kinds of cases of RI are

possible. This is not an issue I can address here, but it does represent an

important future field of research for theories of relative identity.11

In the final analysis, there are several possible logical systems compati-

ble with the theory of strong relative identity. GT is compatible with any

system that does not involve an absolute identity relation. The choice of

logic depends, then, on the truth of RI as well as whether relative identity

is a properly logical notion or not. As we have seen, there are at least three

options here. firstly, the structure of identity relations generally is a matter

for logic, but it is a metaphysical issue whether anything, in fact, satisfies

such relations and in what such satisfaction consists (van Inwagen’s position).

Secondly, it is a logical matter that satisfying an identity relation involves

satisfying a certain set of predicates, that is, it is a fact of logic that, if x

satisfies some particular predicates, then x bears some relation of identity to

x (weak reflexivity), and if x and y jointly satisfy an identity relation, then x

and y must have certain properties in common, but the properties that entail

and are entailed by the satisfaction of identity relations are a question for

metaphysics (Routley and Griffin’s position). Thirdly, all identity relations

are properly logical notions and, therefore, the predicates that entail and are

entailed by the satisfaction of any given identity relation are matters for logic

to pass judgement upon (Garbacz’s C2-c11).

A further option is to abandon the search for a new logical system for

relative identity and rest content with classical FOL without identity. This

would be appropriate if the notion of identity is entirely non-logical, and

if even the most basic structural features of the relations are metaphysical

hypotheses. I have not tried to presented a sustained argument to the effect

that identity relations and the corresponding inferences ought or ought not

to be incorporated into a predicate logic. This issue is outside of the scope

of my work, and so I pass on with it unresolved.

11 For more on this issue the systems developed by Gupta (1980) and Deutsch (1998)
may be useful.
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6.2.4 Conclusion

In Chapter 6, considered how Geach might respond to the objections raised

in the previous chapter. First, I considered possible responses to Cain’s claim

that Geach’s views entail the failure of the syllogisms. Second, I considered

the prospects for answering the semantic objections to relative identity. I ar-

gued that these depend on the development on a non-standard set-theoretic

framework in which to frame the notions of an interpretation, an assignment

and a domain of discourse. Finally, I have briefly considered the various pos-

sibilities for first-order systems of predicate logic which would be compatible

with the theory of strong relative identity. In the next chapter I will consider

some of the philosophical consequences the strong theory of relative identity

will have.
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7. APPLICATIONS OF RELATIVE IDENTITY

If GT, RI, or SRI are true, many avenues for further research are opened as

a result. In particular, the metaphysical consequences of strong theories of

relative identity have yet to be worked out in full.1 The metaphysical issues

that are raised are far too numerous to deal with sufficiently in this disser-

tation, so I will consider only one issue in depth, namely, the relationship

between theories of identity and the logical problem of the Trinity. However,

before I do this, I would like to briefly note some of the other metaphysical

issues which are raised by the positions taken in this dissertation.2

1 Relative identity theorists are sometimes challenged for paying too little attention to
the metaphysical picture to which their views on identity commit them (Dummett 1973:
561-567, Richard H. Feldman, 1981: 373)

2 To begin with, much more can be said about how the picture I have sketched fits into
more general metaphysical debates. That is, how the metaphysics entailed by GT compares
to existing theories. Dummett characterizes the metaphysics entailed by Geach’s views on
identity as ‘an amorphous lump of reality, in itself not articulated into distinct objects’
(Dummett 1973: 563.) However, Matti Eklund is of the opinion that there are a number of
different versions of amorphous lump ontologies (Eklund 2008). Following Eklund, we may
call these ‘theories of ontological pluralism’. But which theory of ontological pluralism is
compatible with GT?

One influential contemporary view is Hilary Putnam’s (1994) ‘conceptual relativity’.
Putnam outlines this theory as follows:

All situations have many different correct descriptions, and ... even descrip-
tions that, taken holistically, convey the same information may differ in what
they take to be “objects” – There are many usable extensions of the notion of
an object – The logical primitives themselves, and in particular the notions
of object and existence, have a multitude of different uses rather than one
absolute “meaning”. (Putnam 1994: 300)

Putnam is here suggesting that there might exist multiple accurate descriptions of the
world. The difference between these descriptions is the different ways in which words
like ‘object’ or ‘exists’ are being used. From the claim that ‘exists’ has several different
possible uses, comes Eli Hirsch’s (2002) theory of quantifier variance. That is, that the
quantifiers of a language are ambiguous and may range over different kinds of entities,
providing different domains of discourse for the same language.



There are many traditional metaphysical problems that must be reconsid-

ered in light of GT. As I have argued, if GT is true, the traditional arguments

against RI lose their force. Further, if RI is true, possible instances of RI

may include:

(7.1) The male infant is the same human being as the grown man, but

not the same boy, though the male infant is a boy. (From an example in

Geach 1957: 69)

(7.2) Cleopatra’s Needles in 2014 is not the same stone as it was in 1900

(the stone having been gradually replaced) but it is the same landmark.

(Wiggins 2001: 34)

The Putnam/Hirsch view is compatible with GT. However, once again, the compatibility
of the Putnam/Hirsch view of ontology with a theory involving GT will depend on whether
that theory also involves RI, as RI is incompatible with the Putnam/Hirsch view.

What separates the metaphysics of the strong theory of relative identity from that of
Putnam and Hirsch (who do not accept RI) is that for the latter there are different uses of
words like ‘object’ and ‘exists’, and one’s ontology will depend on which use of the word is
being employed. Once that is established the objects can be distinguished from one another
absolutely. The strong theory of relative identity is different. If there are true cases of RI,
the ontological entities which are named on either side of the relation must exist in just
the same sense as one another. Thus, any similarity between the strong theory of relative
identity and quantifier variance, and its relatives, is only prima facie. The metaphysics
implied by the strong theory of relative identity is, perhaps, closer to an ontological nihilism
than to the conceptual relativity of Putnam or Hirsch. Ontological nihilism is the rejection
of ontology altogether. This radical view has been sketched by Cortens and Hawthorne,
in their article ‘Towards Ontological Nihilism’. Cortens and Hawthorne (1995) note that
any defender of ontological nihilism face the major task of describing the world, given
human languages which are clearly built on the assumption of ontological entities. There
are two possible responses. One response would be to follow Bradley, who holds ‘that
the concept of an object is indeed indispensable to our thinking but nevertheless ill-suited
to characterise ultimate reality as it is in itself’ (Cortens and O’Leary-Hawthorne 1995:
148). Though, as Cortens and Hawthorne point out, this response ‘forced Bradley to
deny that we can ever think or say anything straightforwardly true, and to embrace his
notorious degrees of truth doctrine’ (Cortens and O’Leary-Hawthorne 1995: 148). The
other response would be to attempt to show that there is some description of the world
which is in fact ‘ontologically innocent’. It is the latter that Cortens and Hawthorne
attempt to achieve in their paper, showing that the world is describable without reference
to objects or ‘stuffs’. Thus, for Cortens and Hawthorne, sentences likes ‘there is a pebble’
do not reflect ultimate reality as well as sentences like ‘it is pebbling’ (O’Leary-Hawthorne
and Corten 1995: 148). It is, as yet, unclear to me whether the metaphysics implied by
the strong theory of relative identity is closer to Bradley or the Cortens-Hawthorne view.
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(7.3) Tibbles is the same cat as Tibbles-minus-Tibbles’s Tail, but Tibbles

is not the same collection of feline tissue as Tibbles-minus-Tibbles’s Tail.

Therefore, if RI is true, there may be solutions to the problems of change

over time, (7.1), material constitution, (7.2), and the problem of the many,

(7.3). Of course, whether (7.1)-(7.3) really are cases of RI is a matter of

debate, even if RI is true. So further work remains to be done on these issues

on what cases of RI are possible, if any, given the truth of GT.

One further metaphysical problem to which relative identity has been

applied, and which I intend to reconsider in light of the truth of GT, is the

logical problem of the Trinity. That is, the Christian doctrine that three

distinct persons are wholly divine and yet there is exactly one divinity. Al-

though several attempts have been made to solve this problem, including

several that involve theories of relative identity, I will argue that all of these

fail unless they involve the thesis GT.

7.0.5 The Doctrine of the Trinity

In recent philosophical theology, various accounts of the mystery of the Trin-

ity have tried to steer a middle path between two heresies. On one hand,

orthodoxy is threatened by tritheism, the heretical view that there are three

Gods, while on the other hand, avoiding tritheism runs the risk of falling

into modalism, the heretical view that the individual persons of the Trinity

are merely modes of the same entity. Social Trinitarianism tries to avoid

modalism by stressing the distinctness of the divine persons. In so doing, it

faces accusations of tritheism. The Latin Trinitarian approach, by contrast,

stresses the unity of God, at the expense of the distinctness of the persons

and therefore runs the risk of modalism.3

I shall argue that Social Trinitarianism does entail tritheism. However, I

shall also argue that most versions of Latin Trinitarianism also entail trithe-

ism. I shall argue that tritheism is avoided only by an account of the Trinity

3 See McCall and Rea 2009: 1-15 and Moreland and Craig 2003 for good recent accounts
of the difference between these two approaches.
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involving GT.

7.0.6 Social and Latin Trinitarianism

The Athanasian Creed involves 44 theological theses concerning the doctrines

of the Trinity and the Incarnation. Amongst these theses are the following

four:

(7.4) ‘And the Catholic faith is this, that we worship one God in

Trinity, and Trinity in unity.’

(7.5) ‘Neither confounding the persons nor dividing the substance.’

(7.6) ‘So the Father is God, the Son is God, and the Holy Spirit

is God.’

(7.7) ‘And yet they are not three Gods, but one God.’

The interpretation of (7.4)-(7.7), however, is the issue at stake between Social

Trinitarianism and Latin Trinitarianism.

The central desiderata for interpretations of (7.4)-(7.7) is that they avoid

both modalism and tritheism. I shall be arguing that the only coherent

interpretation of (7.4)-(7.7) which avoids tritheism is an interpretation which

involves GT, so I shall be targeting all those accounts of the Trinity which

reject GT. An account of the Trinity, T , which rejects GT, is tritheistic if

and only if it satisfies the following:

(7.8) T entails that there are three persons which are not ab-

solutely identical with each other and that are each absolutely

identical with some God.

I shall argue that all accounts of the Trinity which reject GT satisfy (7.8).

We will begin by considering the Social Trinitarian interpretations of

(7.4)-(7.7). The Social Trinitarian view is best summed up by McCall and

Rea:
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ST (Social Trinitarianism) is usually associated ... with the claims

that it “starts” with threeness and moves toward oneness, that

the divine persons are numerically distinct, and that the unity of

the Trinity can be understood by way of a “social analogy”: the

divine persons are relevantly like a family, a supremely unified

community of monarchs, or three human persons whose interper-

sonal relationships are so strong as to be unbreakable. (McCall

and Rea 2009: 2)

We can get a better handle on this by considering one influential version of

Social Trinitarianism. Richard Swinburne sets out his views as follows:

On the account which I have given, the three divine individuals

taken together would form a collective source of the being of all

other things; the members would be totally mutually dependent

and necessarily jointly behind each other’s acts. This collective

would be indivisible in its being for logical reasons-that is, the

kind of being that it would be is such that each of its members is

necessarily everlasting, and would not have existed unless it had

brought about or been brought about by the others ... The claim

that ‘there is only one God’ is to be read as the claim that the

source of being of all other things has to it this kind of indivisible

unity.

But then how is the claim that each of the individuals is “God”

to be understood? Simply as the claim that each is divine-

omnipotent, perfectly good, etc. (Swinburne 1994: 27)

Swinburne’s account involves the claim that God is ‘a collective’. The persons

are distinct entities, which, taken together, compose the divine collective.

The relationship between each of the persons and the Godhead, then, is

a relation of constitution. Other versions of Social Trinitarianism involve

some other general term in place of ‘collective’. For example, David Brown

(1985, see also Leftow 1999: 217-221) sees the Godhead as something like a

group mind, composed of three constituent minds. While C. Stephen Layman
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(1988) holds that the Godhead is the bearer of the sum of the properties of the

three persons. So, while each of the persons of the Trinity are not omnipotent,

the three persons taken together are omnipotent. All of these versions of

Social Trinitarianism are structurally alike in the following respect. The

Godhead is something over and above any one of the persons which constitute

it, and the truth of statements of the form ‘x is God’ is grounded in x’s

possession of certain divine properties rather than any identification of x

with the Godhead. Note that, throughout this chapter I will use the term

‘divine’/‘divinity’, in place of ‘God’, as the latter is too often ambiguous

between is various possible uses as a proper name and a count noun. When

I intend to use a proper name, I shall use the term ‘the Godhead’.

All of this is in contrast to Latin Trinitarianism. According to Latin

Trinitarianism, none of the three persons is a proper part of the Godhead;

rather each person is wholly divine. This is motivated, in part, by the rejec-

tion on the part of some of the Church Fathers of the view that the persons

in any way compose the Godhead. This has lead some Latin Trinitarians

to assert that some relation of numerical identity holds between each of the

persons and the Godhead, as we will see.

Consider another statement of Trinitarian theology:

(7.9) The Father is the same divinity as the Son, and the Son is

the same divinity as the Holy Spirit, and the Holy Spirit is the

same divinity as the Father.

According to both Social Trinitarianism and Latin Trinitarianism, (7.9) is

true. If it were false, then, given (7.7), there would be three distinct divinities.

However, Social Trinitarinism would interpret (7.9) differently from Latin

Trinitarianism. According to Social Trinitarianism (7.9) asserts that, for

any two persons of the Trinity, they are both members of the same divine

collective or group mind, etc. In other words, we can translate (7.9) as:

(7.9′) The Father is a member of the same F as the Son, and the

Son is a member of the same F as the Holy Spirit, and the Holy

Spirit is a member of the same F as the Father.
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If (7.9′) is an accurate translation of (7.9), then the latter is composed of the

conjunction of three common-property statements.4

But in fact, we can be more specific than this. It is not simply that the

Social Trinitarianism involves rejecting the inference from ‘a is a member of

the same F as b’ to ‘a is the same thing as b’; Social Trinitarianism is in fact

committed to the claim that the Father and the Son are numerically distinct.

(7.5′), then, is not simply a conjunction of common-property statements; it is

a conjunction of what I will call ‘mere common-property statements’, where

a mere common-property statement is defined as follows:

(7.10) A statement, P, of the form ‘a is the same F as b,’ is a

mere common-property statement if and only if it entails ‘a is an

F and b is the same F ’ and if it is the case that ‘a is not the same

thing as b’.

However, this leads to a serious problem for Social Trinitarianism. Leftow

has argued, convincingly, that the Godhead and the three persons of the

Trinity must be divine in the same sense of the term ‘divine’ (Leftow 1999:

221). The alternative is the heresy of Arianism, roughly the view that one

or more of the persons of the Trinity are divine only derivatively. Indeed the

doctrine that each of the persons of the Trinity is wholly God is confirmed

by the eleventh council of Toledo in the seventh century.

If we take the claim that the Godhead and the persons are divine in just

the same sense at face value, this entails the following:

(7.11) If ‘the Godhead is divine’ entails ‘the Godhead is numer-

ically identical with one divinity’, then, for any person of the

Trinity, x, ‘x is divine’ entails ‘x is numerically identical with one

divinity’.

4 More particularly, it involves a relation of constitution. The Father (partly) constitutes
God. As William Lane Craig, a prominent Social Trinitarian says, ‘it seems undeniable
that there is some sort of part/whole relation obtaining between the persons of the Trinity
and the Godhead’ (Craig 2003: 590). In fact, as we shall see, I not only think that this is
deniable, but that the failure to deny it results in tritheism.
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Any Trinitarian theory which involves a relation of absolute identity accepts

the antecedent of this conditional. Therefore, the consequent follows. In

other words, if the Son is divine, then the Son is absolutely identical with

one divinity. Naturally, all forms of Trinitarianism accept that the Son is

divine. The Father, similarly, is divine and, therefore, absolutely identical

with one divinity. So, too, for the Holy Spirit. However, by the Social

Trinitarian interpretation of (7.9) as a conjunction of three mere common

property statements, the Father, Son, and the Holy Spirit are not absolutely

identical with one another. By the transitivity of absolute identity, there

are, at least, three divinities which are not absolutely identical with one

another.5,6

For these reasons, Social Trinitarianism entails tritheism. However, I

will argue that most forms of Latin Trinitarianism, including Leftow’s, entail

tritheism for similar reasons.

7.0.7 Latin Trinitarianism and the Logical Problem of the Trinity

For what follows, I will consider some of the various versions of Latin Trinitar-

ianism that have been proposed. Latin Trinitarianism is sometimes divided

between those theories which adopt RI and those that do not, the former be-

ing described as ‘relative Trinitarianism’ (McCall and Rea eds. 2009: 9-14).

Leftow (2004) and Brouwer and Rea (2005), for example, reject RI, while

Martinich (1978, 1979), van Iwagen (1988, 2003), Cain (1989), Christopher

Hughes (2009), and Conn (2012) accept it. The central objection to all

versions of Latin Trinitarianism is that the proposed interpretations of the

sentences (7.1)-(7.5) lead to what has become known as ‘the logical problem

of the Trinity’. The problem can be stated in many different ways. But I

will set it up as follows:

Translate (7.5) as:

5 In fact, there are four. The Godhead is absolutely identical with some God which is
not absolutely identical with any of the other three (Leftow 1999: 218).

6 Defenders of Trinity Monotheism hold that there are two different ways to be divine
(Craig 2009: 95-96). However, I think that Leftow is right that this position is simply a
form of Arianism (Leftow 1999: 218).
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(7.12) The Father is not identical with the Son, and the Father

is not identical with the Holy Spirit, and the Son is not identical

with the Holy Spirit, and there is only one divinity.

Translate (7.6) as:

(7.13) The Father is identical with some divinity, and the Son is

identical with some divinity, and the Holy Spirit is identical with

some divinity.

Translate (7.7) as:

(7.14) There is some divinity, x, and for any divinity y, x is

identical with y.

For the argument that follows we will take (7.12), (7.13), and (7.14) to

be theological axioms. From this we may derive the following:

Proof 2

1. The Son is identical with some divinity. Omitting Conjunction: axiom (7.13)

2. The Father is identical with some divinity. OC: axiom (7.13)

3. The divinity that the Son is identical with is identical with the divinity

that the father is identical with. axiom 14: 1,2

4. The Son is identical with the divinity that the Father is identical with. Transitivity: 1, 3

5. The Son is identical with the Father. Transitivity: 4, 2

6. The Father is not identical with the Son. OC: axiom 31.9

⊥4, 5

Thus, assuming classical logic with identity, the theological axioms we

began with are inconsistent, therefore false. It seems that the claim that

each of the three persons of the Trinity are identical with some divinity leads,

via the classical logic of identity, to contradiction. It seems our options are

either to abandon the Athanasian Creed, to maintain the Creed in spite

of its inconsistency, to interpret the theological statements differently than

(7.12)-(7.14), or to replace classical logic with some other logic, given which,

Argument 1 is invalid.

I am interested in the prospects for an orthodox doctrine of the Trinity, so

I will assume the truth of the Athanasian Creed. Our second option would

be to say that the Creed is inconsistent and yet true. The result would

seem to amount to Fideism, roughly the view that articles of faith are not
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answerable to reason (in this case, to logic). However, we might avoid the

accusation of Fideism in the following way: reject classical FOL= in favour

of some logical system which permits true contradictions. That is, adopt

a dialethic logic. This is an alternative which has not yet been developed

in any depth as a response to the logical problem of the Trinity.7 Recent

defences of dialetheism, most notably by Graham Priest (1983), perhaps

make this a worthwhile avenue for further research. However, accepting true

contradictions is undoubtedly a high price to pay, and any resolution to

the logical of the problem of the Trinity which offers consistency is to be

preferred. There remain two alternative strategies for resolving the logical

problem of the Trinity, either by reinterpreting the theological statements or

by adopting a deviant logic. I will first argue that those versions of Latin

Trinitarianism that do not involve adopting a deviant logic entail tritheism.

I will focus on Leftow’s time-travel analogy (2004), but I suggest that the

point generalizes.

7.0.8 Time Travel and the Trinity

Leftow’s account of the Trinity depends on an analogy with time travel. If

time travel is possible, then it is apparently possible for one and the same

person to be multiply instantiated simultaneously in different spatial loca-

tions. For example, it is possible for a person to journey through time and

join his or her earlier self. Presumably, if this is possible, it is possible for

three instantiations of the same person to be present in the same room at one

time. Leftow suggests that this possibility serve as a model for the Trinity.

Each of the persons is like one of the instantiations; just as the three instanti-

ations are all one and the same person, even though they do not have all the

same properties, so too all three persons are one and the same divinity, and

that single divinity is to be identified with a single divine substance persist-

ing through time. It is easy to see why this account is generally considered a

version of Latin trinitarianism. The most apparent worry here is modalism

rather than tritheism. Quite apart from the general worries about the possi-

7 Though its possibility as a response to the logical problem of the Trinity has been
noted by David Efird (2012: 191).
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bility of time travel, it is not clear that the Father, Son and Holy Spirit are

genuinely different persons on this account. However, I have another worry.

I think that this account is still tritheistic.

Note that Leftow’s account does not involve GT. Let us assume, then,

that there is a relation of absolute identity. Next, consider the relation that

holds between any two of the persons. If we take ‘the Father’ and ‘the Son’

both to name the Godhead, that is, the single divine substance that persists

through time, then we have clearly reached straightforward modalism. This

cannot be what Leftow has in mind. Rather, when we say ‘the Father is

not the Son’, we are referring to two instantiations of the divine substance,

rather than the divine substance itself. Leftow seems to conceive of these

instantiations as temporal phases of the divine substance. This suggests

that Leftow assumes perdurantism. Given this, the Father, Son, and Holy

Spirit are not absolutely identical with each other or with the Godhead. At

the same time, each is divine. By (7.11), which is supported by Leftow’s own

contention that the persons are divine in just the same sense as the Godhead,

this seems to entail tritheism. To see this, once again, we can assume that

the Godhead is absolutely identical with some divinity, so, by (7.11), each of

the persons is absolutely identical with the some divinity. Yet none of the

persons is absolutely identical with any of the other persons, so each of the

divinities with which the persons are identical must similarly be absolutely

non-identical with each other.

Leftow may want to reject this application of (7.11) because he thinks

that the relation between the persons and the Godhead is something like the

relation of identity through time. After all, the boy may have different prop-

erties from the grown man, but this does not prevent the boy and the man

from being the same person, even when ‘...same person as...’ is construed

as a relation of absolute identity. However, this appeal is illegitimate. As

we have seen, Leftow is committed to perdurantism in order to avoid modal-

ism. But, on this account, a temporal instance of a substance instantiates a

substance, rather than being absolutely identical with that substance. The

persons therefore are divine in the sense of instantiating the Godhead, while

the Godhead is divine in the sense of being absolutely identical with some

190



divinity. This contradicts Leftow’s assertion that the persons and the God-

head are divine in just the same sense. The appeal to the relation of identity

over time therefore fails, and again we arrive at tritheism.

Note that this form of argument suggests that any account fo the Trinity

that holds that there is only one kind of divinity, that the Godhead is abso-

lutely identical with some divinity, and that the persons are not absolutely

identical with some divinity, entails tritheism. Next, we turn to accounts of

the Trinity according to which there is an identity relation that holds be-

tween each person and some divinity. To begin with, we may set out the

general structure of relative Trinitarian accounts.

7.0.9 The Relative Identity Solution to the Logical Problem of the Trinity

Geach attributes a theory of relative identity to Thomas Aquinas, in par-

ticular with respect to Aquinas’s views on the doctrine of the Trinity. We

can get a better grasp the significance of strong relative identity for Latin

Trinitarianism, if we consider Geach’s account of Aquinas.

A few remarks on the logic of “there is but one God” and “the

one and only God.” On Russell’s theory of descriptions “the one

and only God is X” would be construed as meaning:

“For some y, y is God, and for any z, if z is God, z is the same as

y, and y is X”; And this, shorn of the final clause “and y is X”,

would also give the analysis of “there is but one God.” Aquinas

would certainly have objected, on general grounds, to the clause

“z is the same as y”; the sameness, as we saw, must for him be

specified by some general term signifying a form of nature. Now

the general term that we need to supply here is clearly “God”; so

“there is but one God” will come out as:

“For some y, y is God, and, for any z, if z is God, z is the same

God as y.” It is important to notice that this would leave open

the possibility of there being several Divine Persons; there would

still be but one God, if we could truly say that any Divine Person
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was the same God as any other Divine Person. (Anscombe and

Geach 1961: 118)

Geach, therefore, holds that the sentence ‘The Father is identical with God’

must be completed with the general term ‘God’. I, however, will continue my

practice of replacing ‘God’ with ‘divinity’, and therefore, we arrive at ‘The

Father is the same divinity as the Godhead.’ We will, henceforth, represent

this relation with the symbol ‘=D’. We can also say that any of the persons

is the same divinity as any other persons. So we get:

(7.14) The Father =D the Son ∧ the Son =D the Holy Spirit ∧
the Holy Spirit =D the Father.

But Geach tells us that this leaves open the possibility of the three persons

remaining distinct. We can therefore translate our theological axiom (7.2)

as:

(7.15) The Father 6=P the Son ∧ the Son 6=P the Holy Spirit ∧ the

Holy Spirit 6=P the Father ∧ there is only one divine substance.

Where the symbol ‘=P ’ stands for the relation ‘... is the same

person as...’.

Geach intends that we take (7.14) and (7.15) as interpreted, where the

relations ‘... is the same divinity as...’ and ‘... is the same person as...’ are

relations of numerical identity. The possibility of (7.14) and (7.15) being

true together entails that the relation ‘... is the same divinity as...’ does not

satisfy LL.

Proof : Assume ‘... is the same divinity as...’ does satisfy LL. It

follows that everything true of the Father is true of the Son. This

entails that, if the Father is the same person as the Father, then

the Son is the same person of the Father. The Father is the same

person as the Father, so, by LL, the Son is the same person as

the Father. By omitting the conjunction on (7.15) it is also the

case that the Father is not the same person as the Son. And we

have reached a contradiction.
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The relation ‘... is the same divinity as...’ is therefore non-Leibnizian.

This solves the logical problem of the Trinity, because a contradiction cannot

be derived when (7.2) is interpreted as (7.15) and (7.5) is interpreted as

(7.14). Argument 1 depended on the inference from ‘The Father is identical

with some divinity’ and ‘The Son is identical with some divinity’ to ‘The

Father is identical with the Son’. If we follow Geach, however, we must say

‘The Father is the same divinity as the Godhead’ and ‘The Son is the same

divinity as Godhead’, but this only licenses the conclusion that ‘The Father

is the same divinity as the Son’, and this is consistent.

Geach’s account of the Trinity escapes the logical problem of the Trinity

by appealing to RI. To see that (7.14) and (7.15) entail the truth of RI, con-

sider the following.

By omitting the conjunction on (7.14) we get:

(7.16) The Father is the same divinity as the Son.

By omitting the conjunction on (7.15) we get:

(7.17) The Father is not the same person as the Son.

Finally, all versions of the doctrine of the Trinity are committed to:

(7.18) The Father is a person.

By introducing the conjunction of (7.16)-(7.18), we get:

(7.19) The Father is the same divinity as the Son, and The Father

is not the same person as the Son, and The Father is a person.

Thesis (7.19) is an instance of the cases of relative identity posited by RI.

Geach’s strategy has been a very influential amongst Latin Trinitarians,

and many philosophers have adopted similar strategies, as we have noted.

These accounts can be divided into those versions that involve a weak theory

of relative identity, that is, that reject GT, and those that involve a strong
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theory of relative identity, accepting GT. It might be noted that the above

account of Geach’s strategy for avoiding the logical problem of the Trinity has

not involved any reference to GT. Given this, it is not immediately obvious

that GT is required in order to escape the logical problem of the Trinity.

Next, I will consider theories of the Trinity that involve weak theories of

relative identity. I will argue that these, too, entail tritheism.

7.0.10 Weak Theories of Relative Identity

Weak relative identity is compatible with (7.14) and (7.15), and, given this,

that the relation ‘... is the same divinity as...’ does not satisfy LL. This is

sufficient to escape the logical problem of the Trinity, as was shown above.

Weak relative identity is represented in the literature on Latin trinitar-

ianism by van Inwagen (1988, 2003) and Conn (2012).8 Van Inwagen, in

8 Another version of Latin Trinitarianism is the ‘sameness without identity’ view de-
fended by Brouwer and Rea (2005). Their defence of the coherence of the Trinity consists
of two parts. First a logical/semantic claim, that we can define some relation which is not
an identity relation but which permits the inference: if R(x, y), then x and y are one.

Second, there is a metaphysical claim. The metaphysical claim is that ‘The familiar
particulars of experience must be conceived of as hylomorphic compounds–that is, as
matter-form structures related to other things sharing their matter by the relation of
accidental sameness’. In the case of the Trinity, we are not concerned with a compound
of matter and form but rather of essence and form. Thus, there is one divine essence
and three ‘distinctive Trinitarian properties’ which serve as the form for each of the three
Persons. Brouwer and Rea further note that ‘As in the case of matter, moreover, we can
regard the divine essence not as an individual thing in its own right but rather as that
which, together with the requisite “form”, constitutes a person’ (Brouwer and Rea 2005:
77). Interesting though the metaphysical claim is, for the moment I wish to focus only on
the logical claim.

The claim that there is a relation of ‘sameness without identity’ can, apparently, be
used to escape the logical problem of the Trinity in the following way. If there is such
a relation of numerical sameness, and if that relation is sometimes named in ordinary
language by the English word ‘is’, then the sentence ‘The Father is divine, and the Son is
divine, and the Holy Spirit is divine, and there is only one divinity’, may be true without
entailing that the Son is strictly identical to the Father, or the Father or Son to the Holy
Spirit. Each of the persons has the ‘numerical sameness’ relation to each other (at least
qua divinity) and to the Godhead. Thus, they are not strictly identical but they are to be
counted as one.

Structurally this is similar to the Social Trinitarian responses, and the same objections
apply. As with the Social Trinitarian accounts, the persons are not absolutely identical
with one another. Again, like the Social Trinitarian accounts, the Godhead is absolutely
identical with some divinity. By (7.11), this entails that each of the persons is absolutely
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fact, declares himself agnostic about GT (1988: 257), while Conn (2012)

advocates rejecting GT because, he claims, it is subject to an unanswerable

objection.9

According to the weak relative identity account of the Trinity, the Father

and the Son are not absolutely identical, but there is another, weaker, relation

of numerical identical which they jointly satisfy. Once again, the same simple

argument may be deployed. If we take seriously Leftow’s contention that

there is only one way of being divine, then we are committed to (7.11). But,

as we have seen, this leads to tritheism.

The general worry can be brought into sharper focus in the case of weak

relative identity accounts in particular. Leftow’s contention that there is

only one way of being divine is motivated by the desire to avoid Arianism,

the heretical view that one of the persons is only divine in some derivative

sense. However, this worry recurs in one form or another in each of the ac-

counts of the Trinity we have so far considered. The only way of avoiding

this worry is to assert that the relation that holds between each person and

some divinity is the same relation that holds between the Godhead and some

divinity, and this leads to tritheism. The same is true with the weak relative

identity account of the Trinity. As we have seen, the weak theory of relative

identity faces a serious challenge from Wiggins’s conceptual objection. Once

again, the idea was that satisfying LL is just what it is to be a relation of

identity. Given this, relations of non-Leibnizian ‘identity’ are not really rela-

tions of identity at all. Moreover, if an absolute identity relation is admitted,

then the domain of discourse for a language admits of a most-fine-grained

identical with some divinity and therefore, by transitivity, there are, at least, three di-
vinities. Brouwer and Rea hold that we count the number of divinities as one, even if
the persons and the Godhead have different properties. I will not pass judgement on the
coherence of a relation of sameness without identity. However, note that, even if we do
sometimes count by a relation of sameness without identity, we also count by identity re-
lations. Brouwer and Rea would, of course, accept that the godhead is absolutely identical
with a divinity and is not absolutely identical with any other divinity, naturally, this en-
tails that the Godhead is one divinity. So, divinities can be counted according to relations
of absolute identity. By this method, we can still count to three divinities given that, as
we have seen, each of the persons is absolutely identical with some divinities, and they are
not absolutely identical with each other.

9 He has in mind Le Poidevin’s (2009) objection, which I discussed in Chapter 4.
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characterization, specifically that generated by partition of the domain by

the absolute identity relation. Given this, the proposition ‘the Father is not

absolutely identical with the Son’ involves a more fine-grained relation than

does ‘the Father is the same divinity as the Son’. If all this is true, then the

Godhead, on the weak relative identity view, is no more than an equivalence

class generated by a less-than-maximally fine grained equivalence relation.

The persons represent a more-fine-grained description of the contents of the

world. This suggests that a more fundamental description of the world, on

the weak relative identity view, involves three divine beings, rather than one.

Once again, this sounds like tritheism.

7.0.11 Strong Relative Identity

With the failure of weak relative identity to provide an adequate Latin Trini-

tarian response to the logical problem of the Trinity, we will naturally wonder

how strong relative identity fares. We might expect to find the same problem

here.

In fact, we do not. All of the above accounts of the Trinity turn out

to be tritheistic under the assumption that the persons and the Godhead

are divine in the same sense. If we take this claim seriously then (7.11)

follows if and only if there exists some relation of absolute identity. Strong

relative identity, by contrast, avoids this problem. If strong relative identity

is true, there are no relations of absolute identity. This means that, even

assuming that it is true that the persons and the Godhead are divine in the

same sense, we cannot derive tritheism, because the key premise, (7.11), is

ill-formed. The general schema still holds. Any relation that the Godhead

bears to any divinity, the persons also bear to any divinity. However, the

Godhead is not absolutely identical with any divinity, and neither are any of

the persons. The argument to tritheism is thus rendered invalid.

7.0.12 Conclusion

In this chapter, I have considered several accounts of the Trinity. I argued

that all of these accounts entail tritheism. I argued that the only way of
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avoiding is by adopting GT.
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Conclusion

In this dissertation, I have looked at the strong theory of relative identity.

In the first half of the thesis, I considered arguments in favour of the strong

theory of relative identity. In the second half of this dissertation, I considered

objections to the strong theory of relative identity and how these might be

answered. In this conclusion I will briefly outline the results of each chapter

of the foregoing dissertation in turn.

In Chapter 1, I classified theories of identity. First, I distinguished be-

tween theories of absolute identity and theories of relative identity. A theory

is a theory of absolute identity if and only if it involves the claim that all

relations of numerical identity are relations of absolute identity. A theory is

a theory of relative identity if and only if it involves the thesis that there are

true sentences instantiating the form: p∃x∃yx =F y∧x 6=G y∧G(x)∨G(y)q.

I then subdivided theories of relative identity into two further categories;

strong theories of relative identity and weak theories of relative identity.

This distinction was drawn in terms of the relation between the theory and

a further thesis, which I named ‘GT’. GT is the thesis that there are no

relations of absolute identity. A theory is a weak theory of relative identity

if and only if it is a theory of relative identity, and it rejects GT. A theory

is a strong theory of relative identity if and only if it is a theory of relative

identity and it includes GT. The rest of the dissertation focuses on strong

theories of relative identity. More particularly, I considered Geach’s theory

of identity, which is the only strong theory of relative identity which has been

developed in the contemporary literature. Aside from the above mentioned

theses, Geach is committed to a thesis, which I named ‘SRI’, which states

that all relations of identity involve sortal terms. I argued that each of the

three theses involved in the strong theory of relative identity needs to be

defended separately, as none entails either of the others. I also considered

whether any of the three theses, RI, GT, or SRI, can be proved with an

example. I concluded that GT and SRI cannot be proved with examples but

that, in principle, RI can. I further argued that the alternative to relative

identity, AI, cannot be proved with an example.
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Chapter 2 considered Geach’s argument for GT. The chapter was divided

into two sections. The first involved an exposition of Geach’s argument.

In Section 1, I argued that the objections raised against Geach do succeed

against his formulation of the argument, but that they might, perhaps, be

avoided by a series of alterations to Geach’s argument. The alterations which

I suggested are as follows: to focus the argument on the existence of relations

of identity characterized by reflexivity and LL, rather than those character-

ized by Wang’s Schema. To defend the inference from the absence of a criteria

for a predicate’s expressing absolute identity to the non-existence of relation

of absolute identity. To provide an explicit argument from the proposed

second-order criteria to Grelling’s paradox. Finally, to abandon Geach’s at-

tempts to show that Quine’s proposal for reinterpretation is incoherent.

In Section 2, I incorporated the proposed alterations to arrive at a char-

itably reconstructed version of Geach’s argument. I considered each of the

premises in turn and concluded that not all of them have been conclusively

established. Therefore GT is unproven

In Chapter 3, I considered the arguments that have been advanced in

favour of and against RI. I considered four arguments that are intended to

support the thesis that there are possibly true cases of RI. I argued that

each of these fails. The first argument, Geach’s ‘river and waters’ argument,

fails because Geach fails to establish the key second premise, that every

river is numerically identical with some water. A similar problem, though

involving slightly different issues, confronts Geach’s second attempt, with his

‘men and heralds’ argument. Specifically, Geach fails to show that heralds

are concrete entities. Without this, once again, the second premise, that

all heralds are numerically identical with some man, is unproven. We then

considered two further arguments for RI from two defenders of weak theories

of relative identity, Griffin and Zemach. Griffin argues that a theory allowing

the existence of non-Leibnizian relation of numerical identity is simpler than

a theory which distinguishes between relations of numerical identity and

common-property relations, based on satisfaction of LL. Zemach argues that

the existence of vague objects entails the truth of some cases of RI. I argued

that both Griffin and Zemach fail to establish their claims. I then considered
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objections to RI. I argued that the strongest objection against RI is Wiggins’s

conceptual objection. I holds that this objection can only be answered if GT

is true, not if it is false. For this reason, I concluded that all weak theories

of relative identity are false.

In Chapter 4, I considered the only developed argument in the literature

in favour of SRI. This argument, from Alston and Bennett, is that Frege’s

cardinality thesis entails SRI. I considered the relationship between the two

theses, but conclude, following Saachi and Carrara, that CT does not entail

SRI. I therefore concluded that both RI and SRI are unproven. I considered

an objection against SRI, from Le Poidevin, I argue that this too fails.

In Chapter 5, I turn to the remaining objections against theories of rela-

tive identity. I suggested that several of these objections focus on the same

apparent weakness. They show that the strong theory of relative identity is

incompatible with classical semantics. In fact, it is incompatible with any

semantics which takes the domain of discourse for a language to be a set as

traditionally understood. I also noted an objection from Cain, to the effect

that Geach’s views entail the failure of the syllogisms.

In Chapter 6, I consider how the objections raised in the previous chapter

might be answered. I started by suggesting the best response open to Geach

against Cain’s objection. I then considered the kind of semantics which

might be compatible with the strong theory of relative identity and escape

the objections raised against that theory. Finally, I considered the logical

systems that have been developed, which might be compatible with relative

identity.

In Chapter 7, I considered one area of philosophy to which the results of

the previous discussion might be fruitfully applied. I considered the relative

identity responses to the logical problem of the Trinity in philosophical the-

ology. While most versions of the relative identity response involve RI and

either reject GT or are neutral concerning it, I argued that either GT is true

or Christian orthodoxy is false.

There are potentially many more areas of philosophy to which the strong

theory of relative identity may be fruitfully applied, but these must remain

tasks for the future.
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Appendix A: List of possible rules of inference for
logics of relative identity, with counterexamples.

R1

Φ1ϕ

Φ2ϕ

if Φ1 ⊆ Φ2, where Φ is a set corresponding to any monadic property, and phi

is any singular term.

R2

Φϕ

if ϕ ∈ Φ

R3

Φϕ1ϕ2,Φ¬ϕ1ϕ2

Φϕ2

R4

Φ¬ϕ1ϕ2,Φ¬ϕ1¬ϕ2

Φϕ1

R5

Φϕ1ϕ3,Φϕ2ϕ3

Φ(ϕ1 ∨ ϕ2)ϕ3

R6 (i)

Φϕ1

Φ(ϕ1 ∨ ϕ2)

(ii)

Φϕ1

Φ(ϕ2 ∨ ϕ1)

R7
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Φϕ[β/α]

Φ∃βϕ

R8

Φϕ1[β1/β2]ϕ2

Φ∃β1ϕ1ϕ2

if β2 is not free in the sequent Φ∃β1ϕ1ϕ2

R9

α = α

R10

Φϕ[β/α2]

Φα1 = α2ϕ[β/α2]

R11-R20 are the rules of inference that distinguish Garbacz systems from

classical logic. All Garbacz systems involve R1-R11. SQ1, the sequent cal-

culus for C1, involves those and no others. SQ2, the sequent calculus for C2,

also involves R12. SQ3 also involves R13, but not R12. SQ4 also involves

R14 but not R12 or R13, and so on.

R11A

Φα1 = α2,Φδ(α1)

Φα1 =δ α2

Note that R11A involves a premise which is ill-formed if SRI is true. R11A,

therefore, is not compatible with Geach’s strong theory of relative identity.

R11B

Φα1 =δ α2

Φδ(α1)

This rule is compatible with all of GT, RI and SRI. Interestingly, Zemach

rejects this rule.

R11C
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Φα1 =δ α2

Φα2 =δ α1

This rule of inference is what I have called ‘relative symmetry’ and is com-

patible with all theories of relative identity.

R11D

Φα1 =δ α2,Φα2 =δ α3

Φα1 =δ α3

This rule of inference is what I have called ‘relative transitivity’ and is com-

patible with all theories of relative identity.

R12

Φ∀β(δ1(β) ≡ δ2(β)),Φα1 =δ1 α2

Φα1 =δ2 α2

Counterexample: Everything that is a human being is a persona and every

persona is a human being. Superman is the same human being as Clark

Kent. Superman is not the same persona as Clark Kent.

R13

Φ(δ1(β)→ δ2(β),Φ(α1 =δ2 α2) ∧ (α2 =δ2 α3)

Φα1 =δ2 α3

Counterexample: Every river is water. The river that Heraclitus bathed in

yesterday is the same river he bathed in today, and the river he bathed in

today is the same water as yesterday’s rainfall. The river Heraclitus bathed

in yesterday was not the same water as yesterday’s rainfall.

R14

Φ(δ1(β)→ δ2(β),Φ(α1 =δ2 α2) ∧ (α2 =δ2 α3)

Φ(α1 =δ1 α3)
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Counterexample: Every river is water. The river that Heraclitus bathed in

yesterday is the same river he bathed in today, and the river he bathed in

today is the same water as yesterday’s rainfall. The river Heraclitus bathed

in yesterday was not the same river as yesterday’s rainfall.

R15

Φ(δ1(β)→ δ2(β),Φ(α1 =δ2 α2) ∧ (α2 =δ2 α3)

Φ(α1 =δ1 α3 ∧ α1 =δ2 α3)

Counterexample: Every river is water. The river that Heraclitus bathed in

yesterday is the same river he bathed in today, and the river he bathed in

today is the same water as yesterday’s rainfall. It is not the case that the

river Heraclitus bathed in yesterday was the same river and the same water

as yesterday’s rainfall.

R16

Φ(α1 =δ1 α2) ∧ (α2 =δ2 α3)

Φ(α1 =δ1 α3) ∨ (α1 =δ2 α3)

Counterexample: The river that Heraclitus bathed in yesterday is the same

river he bathed in today, and the river he bathed in today is the same water

as yesterday’s rainfall. The river Heraclitus bathed in yesterday was neither

the same river, nor the same water, as yesterday’s rainfall.

R17

Φ(α1 =δ1 α2),Φδ2(α1)

Φδ2(α2)

Counterexample: Superman is the man as Clark Kent. Superman is a su-

perhero. Clark Kent is not a superhero.

R18

Φ(α1 =δ1 α2),Φ(δ2(α1) ∧ δ2(α2))

Φα1 =δ2 α2
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Counterexample: John Smith is the same surman as Sam Smith. John and

Sam Smith are both men. John and Sam Smith are not the same man.

R19

Φ(α1 =δ1 α2),Φδ2(α1)

Φ(α1 =δ2 α2)

Counterexample: John Smith is the same surman as Sam Smith. John Smith

is a man. John and Sam Smith are not the same man.

R20

Φ(α1 =δ α2)

Φ(α1 = α2)

If SRI is true, the conclusion is ill-formed. R20 is therefore incompatible

with Geach’s strong theory of relative identity.
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List of Abbreviations

GT: There exists no relation of absolute identity.

RI: There are possibly true instances of the form px =F y∧x 6=G

y ∧ (G(x) ∨G(y))q.

SRI: All relations of numerical identity involve sortal terms as a

part of their content.

FOL: First-order logic.

FOL=: First-order logic with the (classical) laws of identity.

CT*: Numbers are not first-order concepts.
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