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Abstract 

Under current guidelines in the UK, eligible adults can receive a single cochlear implant through 

the National Health Service. Should they wish to aid their non-implanted ear they can either use 

an acoustic hearing aid and have ‘bimodal aiding’ or elect to pay for a second cochlear implant 

and have ‘bilateral cochlear implants’. The experiments reported in this thesis sought to inform 

this choice by establishing which option provides the greater benefit. It was found that both 

options offered listening and self-reported benefits over listening with a single cochlear implant. 

However a greater clinical benefit was found from bilateral cochlear implantation, with better 

localisation and speech perception in noise abilities. A series of experiments investigated whether 

head movements could improve listening performance. It was found that cochlear implant users 

made more complex head movements than normally hearing listeners. Whilst head movements 

by bilateral cochlear implant users improved localisation performance by reducing the number of 

front back confusions made, users of a single cochlear implant were unable to accurately locate 

sounds when head movements were permitted. Finally experiments demonstrated that current 

generic health related quality of life instruments are limited in their sensitivity to binaural hearing 

benefits. These instruments are used to inform the ‘effectiveness’ component in cost-effective 

analyses. Therefore a new questionnaire sensitive to benefits in binaural hearing was developed 

and its validity and sensitivity were demonstrated. Using this self-report instrument, bimodal 

aiding and bilateral cochlear implantation were shown to have the potential to be a cost-effective 

use of resources resulting in improvements to ‘hearing-related quality of life’ compared to a single 

cochlear implant. 
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Overview of thesis 

Hearing impairment affects over 300 million people worldwide (World Health Organisation, 

2012). In the UK, 16% of adults are estimated to have a hearing loss of at least 25dB HL and 1% 

have at least a severe  (with a hearing loss greater than 65dB) bilateral impairment (Davis, 1989). 

One option for individuals with a profound loss of hearing is to receive a cochlear implant (CI). 

Under current guidelines (National Institute of Health and Care Excellence (NICE), 2013), with a 

few exceptions, adults in the UK may receive one CI from the National Health Service (NHS). 

Should individuals wish to aid their other ear they have two options: one is to use a contralateral 

acoustic hearing aid which can be obtained free from the NHS and have ‘bimodal aiding’; the 

other is to pay for a second CI themselves and have ‘bilateral CIs’. In this thesis, a second CI, or an 

acoustic hearing aid, in the ear contralateral to an implant is referred to as a ‘second device’. 

 

The purpose of this thesis was to investigate the clinical and cost-effectiveness of a second device 

for profoundly deafened UK adults. This thesis has addressed this issue from three perspectives 

(see Figure 0.1). The first (A) is a comparison of bimodal and bilateral CI users on a variety of 

listening tasks and self-report measures. This comparison is reported in chapters 5 and 6. 

Performance on listening tasks that benefitted from binaural hearing was investigated further by 

studying the role of head movements (B). These experiments are reported in chapter 7. Finally 

chapters 4 and 8 consider the cost-effectiveness (C) of a second device by studying the impact 

which a second device has on the quality of life of patients. 

 

 

 

 

 

 

 

 

 

 

Figure 0.1. Structure of thesis: The clinical- and cost-effectiveness of a second device was investigated from three 

perspectives. 

Chapter 1: Introduction 

This chapter describes the auditory pathway and explains how a normally-hearing listener 

perceives sounds. Next, the prevalence of hearing loss and the impact it can have on an 

individual’s life and society as a whole are discussed. Then, an overview of hearing aids and CIs is 

B. Listening 

performance: The role 

of head movements 

C. Cost-effectiveness 

A. Comparison of bimodal and 

bilateral users 

Listening ability Quality of life 
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provided with evidence of who may benefit from a hearing aid and what the candidacy 

requirements to receive a CI are. This chapter demonstrates that if a CI user has residual hearing 

remaining in their non-implanted ear, and they wish to aid it, they can choose to either use a 

contralateral acoustic hearing aid or receive a second CI. 

Chapter 2: Bimodal aiding or bilateral cochlear implantation: Clinical 

effectiveness 

This chapter first presents evidence that demonstrates that binaural listening provides advantages 

over monaural listening. Advantages include better spatial listening and speech perception, which 

are reflected in both performance tests and in self-report measures. Secondly, this chapter 

investigates the potential trade-offs made when opting for either a contralateral acoustic hearing 

aid or a second CI. It is argued that greater overall benefit is obtained from a second CI, but this 

comes at a cost both financially, and at the expense of pitch perception. A contralateral hearing 

aid on the other hand, costs less than a CI, and has been argued to have the potential to provide 

more pitch information which might be used in segregating talkers and understanding emotion. 

This chapter evaluates these issues further and suggests that the evidence is inconclusive on 

which option, a second CI or a contralateral acoustic hearing aid, is better for profoundly 

deafened adults. 

Chapter 3: Contribution of head movements to sound localisation 

This chapter discusses the acoustic and psychoacoustic rationale for the potential of head 

movements to assist both normal-hearing and hearing-impaired listeners when locating sound 

sources. It is argued that whilst head movements have been shown to help both normal-hearing 

and hearing-impaired listeners, it is less clear whether CI users can receive similar benefits. 

Chapter 4: Cost-effectiveness of a second device for adult users of a single 

cochlear implant 

This chapter describes existing generic instruments for measuring health-related quality of life. 

The chapter discusses the strengths and limitations of these instruments – in particular their 

limited sensitivity to hearing-specific difficulties and interventions. In addition the chapter 

outlines how responses to these instruments are used in analysing the cost-effectiveness of 

interventions. Finally studies which have used generic instruments to measure the cost-

effectiveness of a second CI are reviewed. This chapter demonstrates that existing research 

suggests that bilateral cochlear implantation is not a cost-effective intervention although bimodal 

aiding is likely to be cost-effective. 
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Chapter 5: Binaural advantages from a contralateral hearing aid or 

second cochlear implant 

This chapter reports an experiment comparing the listening ability of UK adult CI users on a 

battery of listening tasks. The test battery consisted of localisation tasks, speech perception tasks 

in quiet, in noise, and in the presence of other talkers, vocal emotion perception and melody 

recognition. The experiment compares performance on these tasks by users of bimodal aiding, 

users of bilateral CIs, and users of a unilateral CI. This study demonstrates that spatial listening 

ability is improved from a contralateral acoustic hearing aid. Bilateral cochlear implantation 

provided improvements in spatial listening, speech perception in noise and speech perception in 

speech. Overall, a greater clinical benefit was obtained from a second CI. 

Chapter 6: Self-reported advantages from a contralateral hearing aid or 

second cochlear implant 

This chapter reports results from an experiment comparing self-reported listening ability among 

unilateral and bilateral CI users and individuals using bimodal devices. In addition, the association 

between self-reported ability and actual listening ability as measured and reported in chapter 5 is 

discussed. This study demonstrates that self-reported listening ability and overall quality of life is 

improved from both bimodal aiding and bilateral cochlear implantation compared to unilateral 

cochlear implantation. Bilateral CIs provided a greater benefit in self-reported listening ability 

compared to bimodal aiding. 

Chapter 7: The role of head movements: Sound localisation, listening 

effort  and speech perception in noise  

This chapter reports three experiments investigating the role of head movements on listening 

performance. The first experiment examined the ability of unilateral and bilateral CI users to 

orient their heads towards a sound that was either short or long in length. In the second 

experiment a sound localisation task was completed where head movements were either 

permitted or not permitted.  This experiment investigated the role of head movements in 

reducing front-back confusions. The third experiment investigated what head orientation 

strategies listeners adopt when listening to speech in noise. These studies demonstrated that 

unilateral CI users are poor at localising sound sources and are unable to orient towards a sound 

even when it is continuous in duration. When a stimulus is long enough, bilateral CI users are as 

accurate as NH listeners in orienting to a sound although they make more complex head 

movements to achieve the same level of accuracy. Bilateral CI users benefit from head 

movements as the number of front-back confusions is reduced. In addition, listeners orient their 
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heads so as to maximise the level of a target talker irrespective of where background noise is 

presented from. 

Chapter 8: Development and validation of a measure of “hearing related 

quality of life” sensitive to binaural hearing in adults. 

This chapter addresses the limitations of current generic quality of life instruments outlined in 

chapter 4 by developing a new questionnaire, the York Hearing Related Quality of Life 

questionnaire (YHRQL). This chapter outlines the development of the questionnaire, from 

identifying areas in which binaural hearing provides benefits, to gathering valuations from 

members of the public using the time-trade-off technique. Then the chapter describes an 

experiment which validated the YHRQL by using it to elicit responses from a group of CI users 

which were then compared with other measures of quality of life, and measures of listening 

performance obtained from the same patients. This chapter demonstrates that the YHRQL is 

sensitive to binaural hearing and can detect differences between clinically distinct groups who use 

different combinations of devices. Furthermore, using this instrument bilateral cochlear 

implantation has the potential to be considered a cost-effective intervention at a willingness-to-

pay threshold of £30,000 per quality adjusted life year when compared to unilateral CI listening. 

Chapter 9: Summary and general discussion 

This chapter summarises the main findings and conclusions from the four experimental chapters. 

It offers recommendations for which option (bilateral CIs or bimodal devices) should be chosen 

and suggests options for measuring the cost-effectiveness of a second device. Finally, directions 

for future research are proposed and discussed. This chapter demonstrates that whilst both 

bimodal aiding and bilateral CIs offer clinical advantages over using a unilateral CI, a greater 

clinical benefit is obtained from a second CI. 
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1 Introduction 

1.1 Normal hearing 

When an object vibrates, it causes changes in the air pressure level around it. This pressure 

change causes air molecules to move resulting in sound waves emanating from the object. The 

auditory pathway enables changes in sound pressure in the air to be converted to neuronal 

impulses to be sent to the brain. The human auditory system can be divided into four parts; the 

outer ear, the middle ear, the inner ear (shown in Figure 1.1) and the central auditory nervous 

system. 

 

Figure 1.1. Diagram of the human auditory system. Adapted from (Action on Hearing Loss, n.d.). 

 

Sound waves enter the ear canal both directly as well as indirectly by reflecting off the pinna. The 

waves reach the tympanic membrane, causing it to vibrate. These vibrations cause the ossicles 

(the malleus, incus and stapes) to move transmitting the sound through the middle ear. This 

process, known as ossicular coupling, is the main way in which sound is transmitted through the 

middle ear to the inner ear (Rosowski, 2010). The innermost ossicle, the stapes, is positioned on 

top of the oval window, a membrane that covers an opening to the cochlea. The cochlea is a rigid 

spiral-shaped structure containing fluid and if it were to be unravelled it would be 35mm long 

(Yost, 2000). The base of the cochlear is closest to the oval window whereas the apex is furthest 
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from the oval window. The cochlea has three main sections: the scala vestibuli, scala tympani and 

scala media (see Figure 1.2). 

The scala vestibuli and scala media are separated by Reissner’s membrane. When the stapes 

moves, fluid in the scala vestibuli vibrates. Between the scala media and the scala tympani lies the 

basilar membrane. Vibration of the scala vestibuli causes the basilar membrane to vibrate. The 

movement of the membrane appears like a ‘travelling wave’ with high-frequency sounds resulting 

in maximum displacement at the basal end of the cochlear whereas low frequency sounds result 

in maximum displacement near the apical end of the cochlear (Moore, 2012). The organ of corti is 

positioned along the basilar membrane and contains approximately 3,500 inner- and 12,000 outer 

hair cells and each hair cell has approximately 140 (outer hair cells) or 40 (inner hair cells) 

stereocillia attached (Moore). Displacement of the basilar membrane can cause the stereocillia to 

deflect. If the deflection is large enough, ion channels are opened resulting in the generation of 

neuronal impulses. Larger deflections lead to a greater neuronal impulse which leads to increased 

auditory cortex activity (Plack, 2014). 

 

 

 

 

 

 

 

Figure 1.2. Cross-section of cochlea. Image from Ropshkow (2004). 

1.2 Hearing impairment 

1.2.1 Types 

Peripheral hearing loss can either be conductive, sensorineural or mixed. In conductive hearing 

loss, the damage is in the outer/middle ear whereas with sensorineural hearing loss, damage is 

present in the inner ear. Congenital hearing loss is present from birth and may be hereditary and 

genetic in origin, or it may have arisen as a result of problems arising during pregnancy or 

childbirth. Acquired hearing loss may occur due to excessive noise exposure. Excessive noise 

exposure can damage the stereocilia or even the tympanic membrane disrupting the normal 

auditory pathway (Yost, 2000). As individuals age, hearing impairment becomes more common 
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(Davis, 1989; Stevens et al., 2011). This age-related hearing loss known as presbyacusis, initially 

adversely affects hearing of the highest frequencies but over time, it gradually affects lower 

frequencies as well (Yost). The ability to control the electrical potential needed for effective 

neural transmission is reduced in older adults, which whilst impacting all frequencies, has the 

most impact on higher frequencies (Plack, 2014). Furthermore, damage or missing hair cells 

predominantly in the basal end of the cochlear can contribute to the larger loss at high 

frequencies (Liu & Yan, 2007).  Furthermore, ototoxic drugs, infections or diseases such as 

meningitis or even a head injury can cause hearing impairment and in some cases the cause of the 

loss may be unknown. 

1.2.2 Severity and prevalence 

Estimating the prevalence of hearing impairment is a challenging task, with some individuals 

unaware or unwilling to accept that they have a hearing impairment lowering estimations. Recent 

worldwide prevalence rates vary. Using 42 population based studies, the World Health 

Organisation (WHO, 2012) estimated that 328 million individuals over the age of 15 worldwide 

have a hearing loss greater than 40dB in their better ear.  In a cross-sectional survey randomly 

selecting participants from electoral registers in four large UK cities, Davis (1989) estimated the 

prevalence of hearing loss of at least 25dB HL in UK adults to be 16%. Using audiometric data, 

they demonstrated that the prevalence of hearing loss was much higher among older adults (60% 

of adults aged 71 to 80 years had a loss of more than 25dB HL in their better ear) than younger 

adults. 

 

The severity of hearing loss can be measured using pure-tone audiometry, which measures the 

minimum level at which individuals can detect a sound. It is performed for both ears across a 

number of different frequencies. An average threshold is then calculated for each ear, which is 

used to describe the level of hearing loss. The WHO (n.d.) uses the average threshold of the 

better-hearing ear to determine hearing loss severity. For adults, under the definitions described 

by the WHO, an average four-frequency (0.5, 1, 2, and 4 kHz) threshold between 26 and 40dB HL 

indicates a slight impairment. A moderate impairment exists if the threshold is between 41 and 

60dB HL, whereas a threshold between 61 and 80dB HL defines a severe impairment. A threshold 

at 81dB HL or greater indicates a profound impairment. However, the classification of hearing loss 

severity commonly adopted in the UK uses the definitions described by the British Society of 

Audiology (BSA, 2004). A five-frequency pure tone average is taken for each ear using the 

thresholds at 0.25, 0.5, 1, 2, and 4 kHz. The BSA defines a mild hearing impairment as an average 

hearing threshold between 20 and 40 dB HL, while an average threshold between 40 and 70 dB HL 
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indicates a moderate hearing loss. An average threshold between 70 and 95 dB HL indicates a 

severe loss, and thresholds greater than 95 dB HL indicate a profound loss.  

1.2.3 Impact of hearing loss 

Hearing loss results in a reduction in audibility. This can make it difficult for hearing impaired 

individuals to understand and follow conversations or detect potential hazards around them (e.g. 

an approaching car). Damage to the inner hair cells can result in a reduction in sensitivity and also 

result in problems with phase-locking, where temporal information is coded (Plack, 2014). 

Whereas damage to the outer hair cells can reduce the amplitude of the basilar membrane 

vibration, reduce frequency selectivity (the ability to resolve constituent frequencies in a complex 

sound), and impair pitch perception (Plack, 2014). These impairments can make it difficult for 

individuals to adequately understand speech and segregate concurrent sounds perceptually. 

Psycho-social 

Hearing loss can have a substantial social and emotional impact upon an individual. 

Communication is an important part of social interaction and not being able to hear adequately 

what someone is saying can result in misunderstandings. Not only is communication an important 

social aspect, it can also be important in many work settings, for example talking on the 

telephone, following instructions in noisy environments and attending meetings with others. 

Hearing impaired individuals may perceive stigma from others regarding their hearing loss, which 

can lead some individuals to pretend to understand conversations when in fact they cannot hear 

what is being said (Wallhagen, 2010).  

 

Perceived stigma may result in individuals being less inclined to acknowledge and accept they 

have difficulties with their hearing (Hétu, Jones, & Getty, 1993). Furthermore, hearing impaired 

individuals may withdraw from social situations due to embarrassment or difficulties in following 

group conversations leading to feelings of isolation (Hétu et al.). Hearing loss may prevent an 

individual from partaking in their usual activities, however, if the hearing loss occurs gradually 

over time, it may allow the individual to adapt in order to cope with their reduced hearing 

abilities. Hearing loss also has a substantial impact upon relationships with others. Partners of 

hearing impaired individuals can often feel frustrated, stressed and angry, feelings which can arise 

as a consequence of the hearing impairment, such as having to tolerate excessively loud 

television, continuously repeat things to the hearing impaired individual and being faced with 

many misunderstandings (Hétu et al.). 
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Financial 

Not only does hearing impairment have an impact upon the individual and their family, it also has 

a financial impact upon society. Mohr et al. (2000) used incidence rates of hearing loss to 

estimate the cost to society that severe-to-profound hearing impairment has in the USA. After 

considering medical, education and rehabilitation costs as well as productivity losses across the 

lifespan, Mohr et al. demonstrated that severe-to-profound deafness costs society on average 

USD $297,000 per individual. The cost was substantially greater when the age of onset was 0-2 

years old with an estimated total cost of over $1 million, with about half of that cost concerning 

special education. When the age at onset was greater than three years the greatest societal cost 

arose from productivity losses over the lifetime. Mohr et al. argued that early identification of 

hearing loss and early intervention with hearing aids and CIs could reduce these costs in the 

future.  

1.3 Hearing aids 

A hearing aid includes a microphone to detect sounds whose intensity is amplified before they are 

delivered through a loudspeaker to the ear canal. This enables sounds to be more audible to the 

listener whilst at the same time not being too loud so as to be uncomfortable. Despite having 

elevated hearing level thresholds, the threshold for tolerating loud sounds does not become 

elevated for individuals with sensorineural hearing loss (B. C. J. Moore, 2012). Thus simply 

amplifying all sounds in the environment could cause discomfort to listeners. Therefore, hearing 

aids are able to compress the amplitude of sounds in the environment into a smaller dynamic 

range by using automatic gain control. This means that quieter sounds are amplified more than 

loud sounds. 

 

A microphone on the hearing aid picks up sounds in the environment. These sounds are 

converted into electrical signals using digital signal processing before being passed to an amplifier 

that applies automatic gain control, so the sounds are made audible but not excessively loud. A 

receiver then converts the electrical signals back to acoustic signals that are then presented to the 

ear canal. A battery also provides power. Modern hearing aids are available in a variety of designs, 

including ones that are positioned in the ear canal as well as ones that are positioned behind the 

ear. However, whilst hearing aids improve audibility, they do not restore normal hearing. For 

instance, hearing impaired individuals have limited frequency resolution due to broader auditory 

filters (Wang, Xu, & Mannell, 2011), which cannot be restored through the use of a hearing aid.  
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1.3.1 Hearing aid use 

In order to benefit from a hearing aid the individual needs to have a sufficient amount of residual 

hearing remaining meaning that there needs to be a sufficient number of undamaged inner hair 

calls. Plomp (1978) demonstrated that hearing aids provide benefits in speech perception when 

hearing loss is at or greater than 35dB HL. Chien and Lin (2012) used a representative of the USA 

population to estimate the prevalence of hearing loss and hearing aid use. They estimated that 

less than 15% of older hearing impaired individuals in the USA use hearing aids (Chien & Lin, 

2012). Prevalence of hearing aid use differed depending upon the severity of the hearing 

impairment, with more individuals utilising hearing aids for moderate-to-severe hearing 

impairment than mild hearing impairment. In the UK, estimates are similar to that of the USA, 

suggesting that only 15% of individuals who report having a hearing difficulty actually use a 

hearing aid (Stephens, Lewis, Davis, Gianopoulos, & Vetter, 2001). However, more recent 

estimates suggest that the number of hearing impaired older adults (aged 55-74) utilising a 

hearing aid may be closer to 25% (Davis, Smith, Ferguson, Stephens, & Gianopoulos, 2007).  

 

Estimating hearing aid use in populations is a challenging task. Indeed a recent systematic review 

of the literature, incorporating studies from 16 countries, including the UK and USA, was unable 

to estimate the prevalence of hearing aid use in adults over fifty years of age due to vast 

differences in the methodologies employed (Perez & Edmonds, 2012). Despite this uncertainty, a 

number of individual differences related to hearing aid use or non-use have been shown. In a 

review of 22 studies, Meyer and Hickson (2012) found that compared to hearing impaired 

individuals who did not use hearing aids, hearing aid users were often older, had a greater hearing 

loss, perceived there to be more advantages than disadvantages from using hearing aids, and also 

perceived their significant others to be supportive of the use of hearing aids. 

 

Based on the available prevalence estimates cited above, it would appear that there are many 

individuals worldwide who do not use hearing aids, who may be likely to benefit from their use. If 

someone who does not have sufficient residual hearing wishes to aid their ear, then they may be 

interested in obtaining a CI. 

1.4 Cochlear Implants 

A CI is an electronic device that directly stimulates the auditory nerve fibres. A CI consists of both 

an external part and an internal part (see Figure 1.3). The key components of the external part are 

a microphone, speech processor and transmitter coil. The internal part consists of a magnet, 

receiver coil, stimulator, and a microelectrode array. The external microphone picks up sounds in 
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the environment and the signals are then passed to the processor. The processor converts the 

input into digital signals which are then coded as radio frequency signals (Zeng, Rebscher, 

Harrison, Sun, & Feng, 2008). These signals are then passed to the transmitter coil, which is held 

in place by a magnet implanted under the skin. The radio-frequency signals are transmitted to the 

receiver coil. The signals provide power for the stimulator, which converts the radio-frequency 

signal into electrical bi-phasic charge balanced impulses that are then passed to the 

microelectrode array. The electrodes then directly stimulate the auditory nerve fibres. 

 

 

 

Figure 1.3. Internal (left image) and external (middle image) parts of a CI with key components labelled. Rightmost 

image shows the components in relation to the cochlea. Left image adapted from (Tabercil, 2009), middle and right 

images adapted from (Blaus, 2013). 

 

The microelectrode array is positioned in the cochlea. The intended location of the array is within 

the scala tympani, although the array may pass into the scala vestibuli due to the delicate nature 

of the cochlea and the ‘invisible’ aspect of surgery (see Finley & Skinner, 2008). During cochlear 

implantation the microelectrode array is not fully inserted into the cochlea because there is a 

potential risk of cochlea damage with a full insertion.  The width of the cochlea is wider at the 

basal end than the apical end and the spiral turns of the cochlea become tighter. As such there is 

a risk that a deep electrode insertion can damage the apical end of the cochlea. Within the normal 

cochlea there is a tonotopic arrangement, with high frequencies being encoded at the base of the 

cochlea and low frequencies being encoded at the apex of the cochlea, as such low frequency 

information is not well represented by CIs. 
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1.4.1 Candidacy 

Candidacy requirements for a CI are continuously being updated and revised as evidence 

demonstrates that  even individuals who perform reasonably well with a hearing aid perform 

much better with a CI (Gifford, 2011). Gifford, Dorman, Shallop and Sydlowski (2010) tested 22 

participants with severe-to-profound hearing loss on a speech perception in quiet task and they 

found that individuals performed significantly better with one CI (mean: 67% correct) than they 

did with bilateral hearing aids (mean: 41% correct). With candidacy for a CI being relaxed, many 

individuals are being implanted with considerable levels of residual hearing in their non-implanted 

ear (Gifford). Candidacy for a CI is not uniform and differs between and, in some cases, within 

countries. In the UK, under current guidelines (see Table 1.1) severe-to-profoundly deafened 

adults are eligible to receive a CI if they have tried using a hearing aid for at least three months 

and they are not achieving functional hearing from it (NICE, 2009). To assess whether individuals 

are achieving functional hearing with the use of a hearing aid, a speech perception test in quiet is 

conducted. The stimuli used are context rich sentences spoken in a clear voice. If an individual 

fails to identify 50% of the keywords in the sentences when presented at 70dB SPL without 

lipreading, they are judged not to be achieving functional hearing with their hearing aid and are 

therefore eligible for a CI (NICE). 

 

In the USA, candidacy for a CI is more variable (see Table 1.1). The centers for Medicare and 

Medicaid have more relaxed criteria than the UK, specifying that cochlear implantation should be 

for individuals with moderate to profound hearing loss (Phurrough, Jacques, Ulrich, Spencer, & 

Sheridan-Moore, 2005). The Food and Drug administration has approved CIs for use with slightly 

different criteria depending upon the device (see Table 1.1). 
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Table 1.1. Candidacy requirements for a CI for adults. 

 

Criteria specification Severity of loss Stimuli % correct 
Which ear is the 
decision based 
on? 

UK:     

NICE (2009) 
Severe-to-profound deafness defined as 
only hearing sounds above 90dB HL at 2 
and 4 kHz unaided. 

Bamford-Kowal-Bench 
recorded sentences at 
70 dB SPL 

<50% Bilateral 

United States of America: 
 

    

Centers for Medicare and 
Medicaid services in the USA 
(Phurrough et al., 2005) 

Bilateral moderate-to-profound hearing 
loss 

Recorded sentences <40% Best-aided 

     

FDA indicators:     

Cochlear Americas Nucleus 
device (Cochlear, 2010) 

Moderate to profound loss in the low 
frequencies and profound loss (≥90dB 
HL) in mid to high frequency regions 

Sentence recognition 
(type not specified) 

≤ 50% in the ear to be 
implanted (≤60% in the 
best aided condition) 

Bilateral 

     

Advanced Bionics HiRes device 
(Advanced Bionics, n.d.) 

Bilateral severe-to-profound (pure tone 
average ≥ 70dB HL. 

Hearing in noise test 
(HINT) sentences 

≤ 50% Not specified 

     

Med-El Combi 40+ device (US 
Food and Drug Administration, 
2002) 
 

Bilateral severe-to-profound (pure tone 
average ≥ 70dB HL. 

HINT sentences ≤ 40% Best aided 
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1.4.2 Prevalence 

Approximately 324,000 individuals worldwide have received CIs (Food and Drug Administration, 

2012 as cited in the National Institute on Deafness and Other Communication Disorders, n.d.). 

There are approximately 11,000 CI users in the UK (British CI Group, 2012; The Ear Foundation, 

2011). The majority are adults, and the British CI Group highlights that there were 6088 adults 

with CIs in the UK in March 2012, and only 244 had bilateral CIs. Furthermore 675 adults were 

implanted in the UK between April 2011 and March 2012 with 96% receiving a single CI. The 

relatively few numbers of bilateral CI users in the UK can be explained by considering the current 

guidelines issued by NICE (2009) on bilateral cochlear implantation. In the UK, the NHS will pay for 

an eligible adult to receive one CI. The NHS will not pay for an individual to receive two CIs as 

bilateral cochlear implantation is not deemed to be a cost effective intervention for adults (Bond 

et al., 2009; Crathorne et al., 2012; Summerfield, Marshall, Barton, & Bloor, 2002). However, 

clinical specialists outlined that deaf-blind individuals and deaf individuals with other disabilities 

(who rely more heavily on hearing for spatial awareness than solely deaf individuals) will receive a 

greater quality of life from bilateral CIs than other CI candidates. As such, NICE guidelines specify 

that deaf-blind individuals and deaf individuals with other disabilities can receive a second CI paid 

for through the NHS. Otherwise, if an adult in the UK wishes to obtain a second implant they have 

to pay for it themselves. The finances needed would have to cover the cost of the CI itself and also 

the cost of the surgery and rehabilitation, which amounts to about £25,000 (Nottingham 

University Hospitals, n.d.). Add to that a yearly cost for audiology appointments and maintenance 

and it is clear that the finances required for a second CI are not available to many individuals.  

1.4.3 Advantages and disadvantages of cochlear implantation 

Cochlear implantation can enable profoundly deafened individuals to understand speech without 

the need to lipread. Although there is variability in listening performance following implantation, 

most individuals benefit, with mean speech perception performance for monosyllabic words 

above 50% correct (Finley & Skinner, 2008; Holden et al., 2013; United Kingdom CI Study Group, 

2004; Wilson & Dorman, 2008) and even higher performance when contextual cues are present in 

the form of sentences (United Kingdom CI Study Group, 2004; see Wilson & Dorman, 2008 for a 

review). In a systematic review Berrettini et al. (2011) found cochlear implantation improved 

listening ability and quality of life in adults, even those with pre-lingual deafness. Furthermore, 

cochlear implantation can result in improved job opportunities which has been shown to result in 

an increase to personal income with economic benefits to society (Monteiro, Shipp, Chen, 

Nedzelski, & Lin, 2012). 
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Despite substantial benefits from CIs, there are some drawbacks. Cochlear implantation involves a 

surgical procedure and therefore it comes with the risks which surgery poses. The facial nerve 

may become damaged during surgery, however this is a small risk affecting less than 1% of 

patients (Fayed, Wanna, Micheletto, & Parisier, 2003). Cochlear implantation is also an 

irreversible option. As the procedure can damage the remaining hair cells, patients cannot decide 

to return to using a hearing aid should they dislike using the CI. As with hearing aids, a CI does not 

restore hearing to normal levels of function. Whilst speech perception in quiet may be good 

(Carroll, Tiaden, & Zeng, 2011; Yoon, Li, Kang, & Fu, 2011) performance deteriorates abruptly with 

decreasing signal to noise ratios (Ricketts, Grantham, Ashmead, Haynes, & Labadie, 2006; Yoon et 

al., 2011),  and the quality of sounds, particularly musical sounds, is poor (Looi, McDermott, 

Mckay, & Hickson, 2007). Sounds may appear unnatural and it may take time for an individual to 

associate these unfamiliar sounds with their source. 

 

Nevertheless, if an individual chooses to receive a CI they have two options should they wish to 

aid their non-implanted ear: use an acoustic hearing aid (and be aided bimodally) or obtain a 

second CI (bilateral implantation). The next chapter will consider the advantages and 

disadvantages of these options. 

1.5 Summary of main points 

 The auditory pathway of a normal hearing listener converts changes in air pressure to 

neuronal impulses enabling them to perceive sound.  

 Hearing impairment arises as a result of damage to the auditory pathway; the most 

common form of hearing loss is presbyacusis that occurs in older age.  

 Hearing impairment can have a substantial functional, social, and economical impact. 

 Hearing aids improve audibility for hearing impaired listeners who have sufficient residual 

hearing remaining, but they do not restore normal hearing. 

 Cochlear implantation is an irreversible surgical procedure that enables the great majority 

of users to understand speech without the need to lipread. 

 For the majority of users, listening ability and quality of life are improved following 

cochlear implantation.
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2 Bimodal aiding or bilateral implantation for adult users of a 

single cochlear implant: Clinical-effectiveness 

As a result of the relaxation of criteria of candidacy for cochlear implantation over the last 25 

years (Gifford, 2011), many patients are being implanted whilst still having residual hearing in 

their non-implanted ear. Should these individuals wish to aid their non-implanted ear, they have 

two options. One option is to receive a contralateral acoustic hearing aid and have ‘bimodal 

aiding’; the other option is to receive a second CI and have ‘bilateral CIs’.  The aim of this chapter 

was to (1) assess the benefits and drawbacks of each option compared with using a single CI, and 

(2) compare the relative benefits of the two options in terms of clinical effectiveness. As will be 

demonstrated, both options offer advantages over a single CI both in behavioural and self-

reported measures. However, due to differing methodologies in the research studies it is unclear 

as yet, which option is better for individuals with one CI. 

2.1 Why two ears are better than one 

Listening with two ears rather than one has a number of benefits. These include the ability to 

localise sound sources more effectively, an important issue for safety, and understand speech in 

more adverse conditions such as in the presence of noise. The binaural cues that enable listeners 

to benefit from a second device are reviewed in the next sub-sections. 

2.1.1 Interaural differences 

A sound originating on the right hand side of an individual reaches the right ear before it reaches 

the left ear, because the right ear is closer to the sound source. This interaural time difference 

(ITD) is one cue which can be used for locating sound sources. The length of the ITD is dependent 

upon the angle of the sound source in relation to the listener’s head. When a sound source is 

directly in front of the listener (0°azimuth) it reaches the left and right ears at the same time so 

there is no ITD. However, as the location of a source increases in azimuth, the ITD increases, 

reaching a maximum ITD of about 709µs when the sound is at ±90° azimuth, although there are 

individual differences depending upon the size of the head (Middlebrooks, 1999). Listeners can 

detect differences in the ITD of pure tones at lower frequencies but for pure tones with 

frequencies greater than 1500Hz, individuals are unable to discriminate differences between ITDs 

due to phase ambiguity (Klump & Eady, 1956, as cited in Akeroyd, 2006; Colburn, Shinn-

Cunningham, Kidd, & Durlach, 2006).  

 

A sound originating on the right hand side of an individual is also more intense at the right ear 

compared to the left ear creating an interaural level difference (ILD).  The amount of ILD depends 
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upon the frequency of the sound and the distance between the sound source and the ears (Shaw, 

1974). Normal hearing listeners are able to detect differences in ILD as small as 0.5 dB across 

frequencies (Durlach & Colburn, 1978; as cited in Colburn et al., 2006). Rayleigh (1907) proposed 

that the use of ILD and ITD cues was dependent upon frequency which was later known as the 

duplex theory, As the phase of high frequency tones can be ambiguous, the main cue listeners 

used to localise low-frequency pure tones is ITD. However, for pure tones at high frequencies 

listeners judge location using ILDs as the head acts as a barrier to the shorter waveforms and 

shadowing occurs (Macpherson & Middlebrooks, 2002; Plack, 2014).  

2.1.2 Head shadow 

Should a sound be presented to either side of an individual, the head will act as an acoustic 

barrier, attenuating the transmission of the sound to the further ear. Listeners can take advantage 

of this head shadow effect when listening to speech in the presence of spatially separated 

maskers. If a target talker is presented from 0° azimuth and noise is simultaneously presented 

from either +90° or -90° this will result in a less intense representation of the target at the ear 

closer to the noise (compared to the other ear) and a less intense representation of the masker at 

the ear furthest from the noise (compared to the other ear; Akeroyd, 2006). Therefore the 

listener can use the ear which has a better target-to-masker ratio to hear out the target speech. 

Although a monaural effect, listeners have an advantage when listening with two ears as they can 

obtain the benefit from the head shadow when noise is presented to either their right or to their 

left. 

2.1.3 Binaural summation 

Sounds are perceived as being louder when listening with two ears compared to one ear (Hirsh, 

1948). Also referred to as binaural redundancy, binaural summation refers to the fact that 

listening with two ears results in information being represented twice, once at each ear. Thus 

there is some redundant information that listeners can use which may help them in tasks of 

speech perception in the presence of spatially concurrent noise or speech (Schafer, Amlani, Paiva, 

Nozari, & Verret, 2011). 

2.1.4 Binaural squelch 

Inputs received at each ear are combined enabling  a suppression of some of the signal (Carhart, 

1965; Koenig, 1950). Speech perception in the presence of spatially separated noise can benefit 

from binaural squelch (Dunn, Tyler, & Witt, 2005). This effect arises when inputs to each ear have 

different signal-to-noise ratios. Listeners are able to use interaural differences to listen with the 

ear that has the better signal-to-noise ratio (Balkany & Zeitler, 2013). 
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2.1.5 Auditory deprivation 

Adult users of a single CI who do not aid their non-implanted ear risk the effects of auditory 

deprivation (O’Neil, Connelly, Limb, & Ryugo, 2011; Silman, Gelfand, & Silverman, 1984). Silman et 

al. (1984) examined pure-tone thresholds and speech perception performance in a group of 67 

adults with bilateral hearing impairment in two sessions; once at a hearing-aid evaluation and 

again 4 to 5 years later. At the evaluation 44 individuals were fitted with bilateral hearing aids and 

23 were fitted with a single hearing aid. Pure-tone thresholds were similar between the two 

groups at the hearing aid valuation and whether the participant received one or two hearing aids 

depended upon the view of the audiologist whom they had seen. For the bilaterally aided 

participants, speech recognition performance with just the left ear decreased from a mean of 

87.5% at hearing-aid fitting to a mean of 85.9% four to five years later. Similar results were found 

with the right ear (89.8% to 87.9%). When listening with their aided ear, monaurally aided 

listeners also demonstrated a similar slight worsening on speech recognition scores (mean score 

of 86.2% to 83.6%). However, when listening with their unaided ear, performance dropped from 

84.9% to 66.4%. Despite the potential implications of not aiding a hearing-impaired ear for some 

time, opting to aid an auditory deprived ear later on can result in recovery for some individuals 

(see Palmer, Nelson, & Lindley, 1998 for a review). Opting to not aid an ear is detrimental, even is 

some recovery of function can occur following later aiding. 

2.2 Bimodal aiding 

There are an increasing number of individuals with a single CI who have aidable residual hearing 

in their non-implanted ear who could benefit from using a contralateral acoustic hearing aid. 

Whilst there have been reports that some users experience difficulty integrating the inputs from 

the two different devices (Fitzpatrick & Leblanc, 2010; Fitzpatrick, Séguin, Schramm, Chenier, & 

Armstrong, 2009; Mok, Grayden, Dowell, & Lawrence, 2006), for the most part a positive 

complementarily has been reported from using bimodal devices (Ching, 2005; Ching, van 

Wanrooy, & Dillon, 2007; Ching, Incerti, & Hill, 2003; Fitzpatrick et al., 2009; Incerti et al., 2011; 

van Hoesel, 2012). The use of a hearing aid in conjunction with a CI can give rise to a positive 

complementarity as it enables access to a broader frequency range than a CI alone because the 

hearing aid can provide access to the low-frequency range that is not conveyed by a CI.   

2.2.1 Localisation 

However, mixed findings have been reported regarding localising sound sources in the frontal 

horizontal plane with bimodal devices. In an influential, yet small sampled study, Tyler et al. 

(2002) found that two out of three individuals benefitted from using a hearing aid in conjunction 

with a CI for localising sound. However, Dunn, Tyler, and Witt (2005) found that localisation ability 
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varied widely among a group of twelve bimodal users. Although three of the participants could 

localise fairly well with bimodal devices, the majority of participants were unable to locate the 

source of the sounds accurately. Indeed the mean root-mean-square (RMS) error for these 

participants was 42.7°, which was similar to performance by unilateral CI users who did not aid 

their contralateral ear (seeTable 2.1; Dunn, Tyler, Oakley, Gantz, & Noble, 2008). Similar findings 

were reported by Noble, Tyler, Dunn, & Bhullar (2008b, see Table 2.1). Further discrepant findings 

have been found by Seeber, Baumann, & Fastl (2004) who tested a group of eleven bimodal users 

each of whom were fitted with the same model of hearing-aid a week prior to testing. Prior to the 

study, six participants regularly used hearing aids, whereas five participants did not. On each trial 

white noise was presented from one of eleven loudspeakers (from ±50°, separated by 10°), 

hidden from participants’ view.  In comparing accuracy of localisation with bimodal devices to 

when using one CI alone, four of the participants did not benefit significantly from a hearing aid. 

In another study, 19 unilateral CI users were fitted with a contralateral hearing aid (Potts, Skinner, 

Litovsky, & Strube, 2009). Monosyllabic words (lasting 1 to 2 seconds) were presented from one 

of ten loudspeakers separated by 15° in the frontal horizontal plane (±70°). Participants 

completed the task using their CI alone, and their CI and hearing aid together. The RMS error was 

calculated for each listening condition. Performance was significantly better with bimodal devices 

than with a CI alone. The results of these studies are summarised in Table 2.1. 

 

Table 2.1. Summary of mean localisation performance by bimodal and unilateral CI listening. Also shown is the 

measure of variance reported in the study. CIHA = bimodal, CI = CI. SD = standard deviation, SE = standard error. 

Study Participants CIHA CI only 

Tyler et al. (2002) 3 CIHA Did not report RMS 
error data 

Did not report RMS 
error data 

Dunn, Tyler, and Witt 
(2005) 

12 CIHA 43° (range 27° to 49°) n/a 

Dunn et al. (2008) 12 unilateral CI 
users 

n/a 44° (SE = 2°)† 

Noble, Tyler, Dunn, & 
Bhullar (2008b) 

16 CIHA 
14 CI only 

38° (SD = 7°) 43° (SD = 6°) 

Seeber, Baumann, & Fastl 
(2004) 

11 CIHA 
 

22.° (SE = 2.°) 25° (SE = 1°) 

Potts, Skinner, Litovsky, & 
Strube (2009) 

19 CIHA 39.° (range 21.° to 
66°) 

54° (range 30° to 80°) 

† Mean and SE inferred from figure. 

 

Whilst localisation ability is improved for some users of bimodal devices, for others it is not. The 

reason for these individual differences are unclear and further research using larger samples is 

needed to identify whether there are any participant characteristics that can account for this 

difference. 
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2.2.2 Speech perception 

An additional advantage from using a contralateral acoustic hearing aid is that low frequency 

information contains cues to consonant voicing and manner of articulation which is useful for 

speech perception (Rosen, 1992). A signal can be broken down into an envelope and temporal 

fine structure (TFS) information using the Hilbert Transform (B. C. J. Moore, 2008). The envelope 

contains information about the slow changes in amplitude of the signal, whereas the TFS 

information is the rapid changes over time whose amplitude defines the envelope (see Figure 

2.1). Fine structure information contained in the low-frequencies is important in conveying  cues 

to the voicing and manner of consonants (Rosen, 1992). CI processing extracts the envelope of a 

signal but the temporal fine structure is not well represented (Rubinstein, 2004). 

 

 

Figure 2.1. Example waveform showing the slowly varying envelope (thick black line), and the rapidly changing TFS 

over time. Image from (Moore, 2008). 

 

Advantages of combining low-frequency acoustic stimulation with the stimulation provided by a 

CI include improved speech perception in quiet (Incerti et al., 2011; Zhang, Dorman, & Spahr, 

2010), as well as improved speech perception in the presence of noise (Carroll, Tiaden, & Zeng, 

2011; Ching, Incerti, & Hill, 2004; Ching, van Wanrooy, Hill, & Dillon, 2005; Zhang et al., 2010). 

Adult users of bimodal devices can also benefit from binaural redundancy when listening to 

speech in noise (Ching et al., 2005). However, the bulk of the benefit has been shown to arise as a 

result of having access to information around the fundamental frequency (f0) region (Carroll et 

al., 2011; Zhang et al., 2010). This will be discussed in the next section. 

2.2.2.1 How much low-frequency information is needed to improve the accuracy of 

speech perception? 

Zhang et al. (2010) demonstrated that combining a CI with a limited amount of low-frequency 

acoustic input (125 Hz low-pass filtered signal) can improve word recognition in quiet and 

sentence recognition in noise compared to unilateral CI listening. The improvement was about 20 

percentage points in quiet and about 30 percentage points in noise. This was despite the fact that 

speech perception performance was at zero percent correct with the 125 Hz low-pass filtered 
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acoustic signal alone. When Zhang et al. (2010) increased the low frequency information 

conveyed up to 250Hz, 500Hz, or 750Hz, and combined it with electrical information, 

performance was not significantly different to performance with a CI and low-frequency 

information up to 125Hz. Thus the majority of benefit obtained arose from the low frequency 

region containing the fundamental frequency.  

 

A similar super-additive effect of combining low-frequency information with electric information 

has been found by Cullington and Zeng (2010). Electrical information was presented directly to 

the CI and acoustic information was filtered and presented to the non-implanted ear via an inset 

ear phone. The acoustic signal was low pass filtered at 150, 250, 500, and 1000Hz or was high pass 

filtered at 2000, 4000, and 6000 Hz. One participant was tested on speech perception in noise 

with their CI alone, acoustic information alone, and combined CI and acoustic information. 

Performance was poor with their CI alone (3% correct). Similar to Zhang et al. (2010), 

performance with acoustic information only at 250Hz was at floor. However when combined with 

the electrical information, performance was about 35% (an increase of 32 percentage points 

compared to electric information alone). Thus despite performance with a CI alone being different 

from that achieved by Zhang et al.’s participants, a similar increase in performance from bimodal 

aiding was found in both studies. These results demonstrate that whilst low-frequency 

information may not provide much benefit on its own, in combination with electrical information 

conveyed by a CI a substantial benefit in speech perception can be obtained. 

 

However, the findings reported by Cullington and Zeng (2010) were achieved by a single listener 

who used a CI in one ear but who had near normal hearing in the non-implanted ear (pure tone 

thresholds ≤ 20dB HL at 0.25 – 8 kHz with the exception of 4kHz which was at 35 dB HL). The 

bimodal participants in the study by Zhang et al. (2010) also had relatively good low-frequency 

hearing with thresholds ≤ 60 dB HL at 500 Hz and below. Under current guidelines from NICE 

(2009) these hearing levels are better than a typical UK candidate for a CI would have and as such 

UK users may not benefit from the addition of low frequency-information in the same way as 

these studies have demonstrated. Indeed, Neuman & Svirsky (2013) investigated how hearing aid 

bandwidth affected speech perception in quiet and in noise for listeners with severe-to-profound 

hearing loss in their non-implanted ear. They tested participants in five conditions; CI alone, CI 

and acoustic information up to 500Hz, CI and acoustic information up to 1000Hz, CI and acoustic 

information up to 2000Hz, and CI and wideband acoustic information. Neuman and Svirsky (2013) 

found that the mean sentence understanding was about 65% correct in quiet and 70% correct in 

noise with a CI alone. Despite the potential to improve, combining stimulation from a CI with low-
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frequency acoustic information below 500Hz, did not result in a significant benefit in performance 

either in quiet or in noise. However, significant benefits were observed when stimulation from a 

CI was combined with low-frequency information up to 2000Hz or wideband acoustical 

stimulation. In those conditions, performance improved to about 80% correct. 

 

Both Zhang et al., (2010) and Neuman and Svirsky (2013) tested intelligibility with AzBio sentences 

presented in noise at +10dB SNR. However, there were some potentially important 

methodological differences between the two studies. Zhang et al. presented stimuli directly to the 

participant’s CI and low-pass filtered acoustic stimuli were pre-generated and presented to 

participants through an insert ear-phone with real-ear insertion gain applied. Neuman and Svirsky 

on the other hand, adopted a more ecologically valid approach by presenting stimuli in the free 

field and setting programs on the hearing aid to achieve different bandwidths. The National 

Acoustic Laboratories, Revised Profound prescriptive procedure (Byrne, Dillon, Ching, & Katsch, 

2001) was used to set the wideband condition as this was designed for individuals with severe to 

profound hearing loss. However, Neuman and Svirsky point out that this prescription does not 

provide much gain at frequencies below about 200Hz which is the region which Zhang et al. 

identified as providing the most benefit. Thus, individuals with severe to profound hearing loss 

would typically have reduced access to acoustic information in the low-frequency region even 

when using a hearing aid. Therefore suggesting that more than a limited amount of low-frequency 

acoustic information is required to benefit from bimodal devices. In order to receive maximum 

benefit from bimodal devices, users should have access to low-frequency acoustic information up 

to at least 2000Hz. 

2.2.2.1.1 Cues conveyed in low-frequency information 

Thus far it has been argued that when low-frequency information is combined with electric 

information there is a super-additive benefit for some individuals. However it is less clear why this 

is the case. One possibility is that it is cues to the f0 that provide the benefit. The f0 can convey 

phonetic information useful for speech perception such as manner of articulation and consonant 

voicing as well as lexical information such as prosody and lexical boundaries (Brown & Bacon, 

2009; Sheffield & Zeng, 2012). Kong, Stickney, and Zeng (2005) tested four bimodal users on a 

speech in noise task. Sentences spoken by a male talker were presented in the presence of a 

competing talker at +20, +15, +10, +5 and 0dB SNR. The competing talker was either a different 

male talker or a female talker. Participants were tested with their hearing aid alone, their CI 

alone, and the two devices together. Whilst performance with the hearing aid alone was at floor 

across all SNRs, combining the hearing aid with the CI resulted in better performance than the CI 

alone, particularly in the more favourable listening conditions (+15 and +20dB SNR). The authors 
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argued that the temporal envelope alone (CI listening) did not provide sufficient pitch information 

to separate the two talkers. However, periodicity conveyed in the temporal envelope together 

with TFS at low-frequencies in the acoustic information (which are correlated) could be used to 

improve performance.  

 

However, the lead author later argued that the benefit may arise from voicing or glimpsing (using 

the temporal envelope changes to know when to listen) cues in the signal rather than from the 

correlation between temporal envelope periodicity cues and the f0. In a simulation study using 

vocoded speech, Kong and Carlyon (2007) first replicated the super-additive benefit from 

combining electric information with low-frequency acoustic information found from Kong et al. 

(2005) by testing speech perception of a target talker in the presence of a masker. In a follow up 

experiment phonetic cues were removed from the low-frequency stimuli but f0 cues, glimpsing, 

and voicing cues remained. This was achieved by frequency-and amplitude-modulating a 

harmonic complex with the same f0 contour as the voiced sections of the target speech. When 

participants were tested at 5dB SNR, a significant superadditive benefit from bimodal listening 

was found. In a further follow up experiment the f0 cues were also removed by replacing the f0 

contour with a harmonic complex with a fixed f0. The envelope of the voiced sections of the 

target speech was used to amplitude modulate the monotonic harmonic complex. Thus voicing 

and glimpsing cues remained in the stimulus but f0 cues were removed. Again, when participants 

were tested at 5dB SNR, a significant superadditive benefit from bimodal listening was found. This 

finding demonstrated that the benefit could not have arisen solely from the ability to use f0 cues 

to segregate the target from the masker. As the super-additive effect remained without the f0 the 

authors argued that the effect most likely resulted from glimpsing or voicing cues. 

 

However, Visram, Azadpour, Kluk, and McKay (2012) argued that f0 cues may be useful but not 

sufficient on their own for bimodal benefit to occur. The non-implanted ear of seven bimodal 

listeners was presented with different types of low-pass filtered stimuli: unprocessed speech , 

vocoded stimuli (which maintained spectral shape information but not f0), or modulated tones 

(which maintained f0 and amplitude information but removed spectral shape information). When 

a CI was combined with the unprocessed speech, speech perception performance was 

significantly better than with the CI alone. However no significant difference was found between 

using their CI alone and using their CI combined with the other low-pass filtered stimuli.  

 

Brown and Bacon (2009) also suggested that a combination of low-frequency cues resulted in the 

greatest benefit, however they also demonstrated that voicing alone can improve performance. 
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Brown and Bacon (2009) simulated electro-acoustic information within the same ear. This differs 

to traditional bimodal users who have a long electrode insertion in one ear and a contralateral 

acoustic hearing aid in the other ear. ‘Hybrid’ implant systems which use a short electrode array 

and maintain residual acoustic low-frequency information in the ear that is being implanted are 

used by some individuals with good low-frequency thresholds (no hearing loss to moderate 

hearing loss) but profound hearing loss at high frequencies (Gantz, Turner, Gfeller, & Lowder, 

2005). 25 normal hearing listeners completed a speech in noise task with a female target talker. 

The masker was either a male talker or a female talker, 4-talker babble or speech shaped noise. 

Stimuli were vocoded to achieve the electrical simulation. Simulated low-frequency information 

was either the target speech low-pass filtered at 500Hz or a tone (mean f0 = target mean f0). 

Changes in f0 over time were either present or not in the tone stimuli. Results showed that 

performance with low-pass filtered speech at 500Hz alone was 20% correct and with a vocoder 

alone was about 25% correct. However, when combined, performance was around 85% correct. 

The addition of voicing information (conveyed in the tone) to vocoded stimuli resulted in an 

average of an 11 percentage point improvement. When changes in f0 and voicing cues were 

present an average 25 percentage point improvement compared to vocoder alone was observed. 

When voicing and glimpsing cues were available (by modulating the tone to the envelope of low 

pass speech) performance was also 25 percentage points better on average than with the vocoder 

alone. When the vocoder was combined with an amplitude and frequency modulated tone 

performance was on average 31 percentage points better than with the vocoder alone. In the 

male background the greatest benefit arose from the voicing cue (with no significant additional 

benefit from the other cues) however, in the other backgrounds the other cues did provide a 

significant additional benefit. 

 

 The f0 has been shown to be an important contributor to the benefit obtained in a number of 

simulation studies (Brown & Bacon, 2009; Carroll et al., 2011; Qin & Oxenham, 2006; Turner, 

Gantz, Vidal, Behrens, & Henry, 2004)  and patient studies (Carroll et al., 2011; Kong et al., 2005; 

Turner et al., 2004; Zhang et al., 2010). Whether or not the f0, voicing, or glimpsing cues are the 

primary reason behind the benefit warrants further investigation. However, the overarching 

conclusion from these studies is that a benefit in speech perception is obtained from combining 

low-frequency acoustic information with electric information. 

2.2.3 Pitch perception 

Access to fine structure information conveyed in the low frequencies has also been shown to 

improve melody recognition when changes in pitch are made to be the only cue to identification 

(Kong et al., 2005). Furthermore, self-reports have shown that users rate sound quality and 
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listening to music better with bimodal devices than a CI alone (Flynn & Schmidtke, 2004). The 

ability to perceive changes in pitch is also important for detecting changes in intonation and vocal 

emotion recognition because pitch is one cue that indicates emotion in addition to intensity and 

duration (Pittam & Scherer, 1993). Indeed, Most, Gaon-Sivan, Shpak, and Luntz (2012) found that 

performance was significantly higher with bimodal devices than a single CI for emotion 

identification and intonation recognition.  

2.2.4 Self-reported benefits 

The Speech, Spatial and Qualities of hearing questionnaire (SSQ; Gatehouse & Noble, 2004) 

considers a wide range of listening scenarios across three broad topics: speech perception, spatial 

listening, and other aspects of hearing. Scores can be obtained for each of the three sections, or 

the questionnaire can be divided into ten sub-sections (speech perception in quiet, speech 

perception in noise, speech perception in the presence of other speech, multiple speech stream 

processing and switching, sound localisation, perceiving distance and movement, sound quality 

and naturalness, identification of sound and objects, segregation of sounds, and listening effort) 

resulting in ten scores (Gatehouse & Akeroyd, 2006). Noble et al. (2008b) found no significant 

differences between unilateral CI users and bimodal users on any of the 10 sub-sections. This 

result will be discussed in more detail in Chapter 6, which reports an experiment comparing self-

reported listening ability by unilateral, bimodal, and bilateral CI users. Noble, Tyler, Dunn, and 

Bhullar (2008a) administered the Hearing Handicap Inventory for the Elderly and the Hearing 

Handicap Questionnaire to 40 bimodal users and 71 unilateral CI users. Both questionnaires 

measure the impact of hearing loss on social activities (social restriction) and emotional wellbeing 

(emotional distress). The Hearing Handicap for the Elderly also contains questions related to 

specific hearing difficulties (e.g. “Does a hearing problem cause you difficulty when listening to TV 

or radio?”). On neither questionnaire was there a significant difference between unilateral or 

bimodal listeners on any of the sub-sections. 

2.2.5 Effectiveness of bimodal aiding 

As bimodal aiding has been shown to provide some  binaural benefits (for instance speech 

perception improvements), Ching et al. (2004; Ching, 2005) recommended that users of a single CI 

use a contralateral hearing aid as a matter of standard practice. In a systematic review assessing 

the effectiveness of bimodal aiding, Olson and Shinn (2008) demonstrated that the majority of 

bimodal patients receive benefit from using a contralateral hearing aid in conjunction with a CI. 

However, they did point out that some participants did not benefit, with some even showing a 

worsening in performance from using a contralateral hearing aid. They suggested that this 

outcome might be a result of the short amount of time for which these participants had 

experienced bimodal aiding. Nevertheless, on the whole, benefits were found for speech 
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perception in quiet, but a greater benefit was found for speech perception in noise. Olson and 

Shinn discussed four studies that had assessed localisation abilities, but found that localisation 

ability was quite varied between participants and studies. The review discussed two studies that 

had utilised self-report measures. The two studies had each created a questionnaire which 

showed preference for listening with bimodal devices over a CI alone. Olson and Shinn concluded 

that although the evidence for bimodal aiding was limited by studies with small samples, an 

adequate body of evidence existed to support the clinical effectiveness of bimodal aiding. 

2.3 Bilateral implantation 

2.3.1 Localisation 

One well established advantage of bilateral CIs over unilateral CI listening is improved localisation 

for sounds presented in the frontal horizontal plane (Dunn, Tyler, Oakley, Gantz, & Noble, 2008; 

Kerber & Seeber, 2012; Litovsky, Parkinson, & Arcaroli, 2009; van Hoesel & Tyler, 2003). Bilateral 

CI users have good access to ILDs however, they have a  limited ability to use ITDs due to 

restricted temporal information encoded by CIs (Laback, Majdak, & Baumgartner, 2007; van 

Hoesel, Ramsden, & O'Driscoll, 2002). Dunn et al. (2008) compared localisation performance 

between twelve bilateral CI users and twelve unilateral CI users. They demonstrated that although 

the average RMS error of the bilateral CI users was about 18°, this was 25° better than the RMS 

error of the unilateral CI users which was 43°. In a within-subjects design, a group of 17 bilateral 

CI users completed a localisation task using one or both of their CIs and a similar amount of 

benefit from bilateral devices was also found (Litovsky et al., 2009). 

2.3.2 Speech perception 

Bilateral advantages have also been observed for speech perception in the presence of multiple 

spatially separated competing talkers (Dunn et al., 2010; Loizou et al., 2009). With two CIs, a 

patient can listen with the ear that has the better signal-to-noise ratio (Loizou et al., 2009). 

Furthermore, bilateral CI users can benefit from the head shadow, binaural squelch and binaural 

redundancy when listening to speech in noise (Müller, Schön, & Helms, 2002; Schafer et al., 2011; 

Schleich, Nopp, & D’Haese, 2004) although the head shadow has been shown to account for the 

majority of the benefit (Müller et al., 2002; Schleich et al., 2004).  

2.3.3 Pitch perception 

Cochlear implants do have some limitations. One limitation is that they do not convey the 

temporal fine structure of sounds very well (Nie, Stickney, & Zeng, 2005) and they also do not 

provide access to low frequency information due to a risk of cochlear damage from a deep 

insertion of the electrode array.  Although there will be differences between recipients and 
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speech processors, cochlear implants intend to convey information between about 300Hz and 

7000Hz (Başkent & Shannon, 2004). As a result CI users find pitch-related tasks difficult (Gfeller et 

al., 2007) such as vocal emotion recognition (Luo, Fu, & Galvin, 2007) and music perception (e.g. 

Cullington and Zeng, 2010). 

2.3.4 Self-reported benefits 

Research has shown better self-ratings for  two CIs compared to one CI across the three sections 

of the SSQ (Noble, Tyler, Dunn, & Bhullar, 2009; Summerfield et al., 2006). Furthermore, Noble, 

Tyler, Dunn, and Bhullar (2008) compared self-reported ratings on the ten sub-sections of the SSQ 

between users of a single CI and users of bilateral cochlear implants. They found higher (greater 

self-rated ability) ratings for the bilateral CI users on the spatial sub-sections but no significant 

difference on the speech sub-sections. This finding was consistent with the participants’ 

behavioural performance. The participants completed a speech perception in quiet task with 

monosyllabic words and a localisation task where a stimulus was presented from one of eight 

loudspeakers in the frontal horizontal plane. Consistent with the SSQ results, there was no 

significant difference in performance between the bilateral CI users and the unilateral CI users on 

the speech in quiet task. However the bilateral CI users performed significantly better on the 

localisation task than the unilateral CI users. 

 

Unlike bimodal listeners described in Section 2.2.4, Noble et al. (2008a) did find that bilateral CI 

users reported less difficulty in hearing than unilateral CI users as measured on the Hearing 

Handicap Inventory for the Elderly. Furthermore, bilateral CI users reported less restriction on 

social activities than unilateral CI users as measured with both the Hearing Handicap Inventory for 

the Elderly and the Hearing Handicap Questionnaire. However, similar to the bimodal users there 

was no significant difference in emotional distress between bilateral and unilateral CI users. Out 

of a maximum of four with higher values indicating greater distress, bilateral CI users had a mean 

emotional distress of 0.85 (SD = .09) and unilateral CI users had a mean of 1.31 (SD = 1.1). Thus 

the bilateral CI users were not at floor but were numerically lower than unilateral CI users. 

2.3.5 Quality of life 

There is limited evidence to suggest that there are differences in quality of life between using one 

and two CIs. In one study, four different measures were administered to 28 CI users to determine 

quality of life values for unilateral and bilateral cochlear implantation (Summerfield et al., 2006). 

Both within-subject and between subjects comparisons were made. No significant differences in 

quality of life were found with between-group comparisons for any of the four measures. One 

measure used was the Glasgow Health Status Inventory (MRC Institute of Hearing Research, 1998) 

which assesses psychosocial aspects of quality of life. In a within-subjects comparison, this 
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measure showed a significantly greater quality of life with two CIs after nine months compared to 

one CI. However, contrasting results were found with a generic health-related quality of life 

questionnaire, the EuroQol (Brooks, 1996), which showed a significantly poorer quality of life with 

two CIs compared to one CI after nine months of bilateral CI use. These contradictory results may 

be due to the fact that the EuroQol focuses on health aspects of quality of life, rather than 

psychosocial aspects. However, the researchers also administered another measure which 

focuses on health aspects of quality of life, the Health Utilities Index Mark III (HUI3, Boyle, 

Furlong, Feeny, Torrance, & Hatcher, 1995). Results from this measure showed no significant 

differences in quality of life between bilateral and unilateral CI listening. Furthermore a measure 

that assessed overall quality of life by asking participants to indicate their overall quality of life on 

a 100-point scale where 0 indicated the worst imaginable quality of life and 100 indicated the best 

imaginable quality of life also showed no difference between the groups.  The researchers 

suggested that the lack of a positive benefit from two devices was due to worsening tinnitus 

among some individuals upon receiving a second CI. The impact of a second device on quality of 

life will be discussed in greater detail in Chapter 4. 

2.3.6 Effectiveness of bilateral cochlear implantation 

A recent systematic review assessing the effectiveness of bilateral CIs demonstrated that, 

compared to a single CI, bilateral CIs improve localisation ability and speech perception 

performance in the presence of background noise, but quality of life gains vary depending upon 

the measure used (Crathorne et al., 2012). Although an advantage of bilateral cochlear 

implantation is that the more physiological responsive ear is guaranteed to be implanted, 

undergoing two operations (as in sequential implantation) increases the risks which surgery 

poses. 

 

In a review considering papers published up to July 2007, Bond et al. (2009) assessed five studies 

comparing bilateral to unilateral cochlear implantation in adults. Two studies investigated spatial 

hearing; one was self-reported spatial hearing as measured with the SSQ and the other was 

performance on a sound localisation task. Both studies found a significant benefit from bilateral 

cochlear implantation. Three studies investigated speech perception in quiet and in noise. All 

three studies found a bilateral advantage for speech in noise, and two out of three found a 

bilateral advantage for speech in quiet. This review has been followed up by van Schoonhoven et 

al. (2013) who reviewed the literature for studies published between October 2006 and March 

2011. The five studies which were included in the review by Bond et al. (2009) and 14 more recent 

studies were assessed. Scores on performance measures were standardized to enable 

comparisons between listening configurations. The main findings echoed those of Bond et al. 
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(2009) in that there was a clear advantage of bilateral CIs compared to a unilateral CI in spatial 

listening ability.  

2.4 Bimodal aiding or bilateral implantation 

Whilst it has been demonstrated that using a second device, whether it be a CI or a hearing aid, 

provides advantages over one CI alone, it is less clear which option is the better choice. Each 

option offers different benefits suggesting there is a trade-off (van Hoesel, 2012).  Although, as 

will be discussed in Chapter 4, bilateral cochlear implantation is not currently considered a cost-

effective intervention (Bond et al., 2009; Crathorne et al., 2012; Summerfield et al., 2006), there is 

interest amongst individuals in obtaining a second device.  Therefore it is important that unilateral 

CI users are aware of what can be achieved with each option in order to make an informed 

choice. 

 

In a meta-analysis assessing speech perception in the presence of background noise (where noise 

included speech, other talkers, babble and broadband noise), the benefit of a second CI and a 

contralateral hearing aid were compared (Schafer et al., 2011). Effect sizes were calculated in 

order to compare studies on three aspects of potential benefit: binaural squelch, binaural 

summation and the head-shadow effect. The results of the meta-analysis showed that both 

options provided a significant benefit for users in terms of binaural summation and the head 

shadow effect. Whereas only a second CI provided significant benefit for binaural squelch. These 

results led Schafer et al. to conclude that  a second CI offers only a slight advantage over a 

contralateral hearing aid. Noble et al. (2008b) found no significant difference between bilateral CI 

users and bimodal listeners on perception of monosyllabic words in quiet. Noble et al. also asked 

participants to indicate the location of everyday sounds presented in the frontal horizontal plane 

from eight loudspeakers separated by 15.5°. In this case they found a bilateral advantage. 

Bimodal users had a mean RMS error of 38° (see Table 2.1) whereas a group of 12 bilateral CI 

users had a mean RMS error of about 22° which was significantly less than the bimodal users. In a 

further study Cullington and  Zeng (2011) compared performance by bimodal and bilateral CI 

users on four different pitch related tasks. Each task had a number of sub-tasks resulting in 

sixteen tests, so a Bonferonni correction was applied to correct for multiple comparisons. It was 

expected that bimodal users would perform better than bilateral CI users due to the fact that they 

had access to low-frequency information. Although bimodal performance was numerically better 

than bilateral CI users on the majority of the tasks, no differences were found to be significant. 

Thus adding to the uncertainty about which option is better for adult users of a single CI.  
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Comparisons between bimodal devices and bilateral CIs have also been made using self-report 

measures. Noble et al. (2008) compared ratings on the SSQ between 16 bimodal and 18 bilateral 

CI users (of a similar age and with similar lengths of CI experience) and found few differences. 

Without correction for multiple comparisons, a significant advantage was found for bilateral 

cochlear implantation over bimodal listening in three of the ten sub-sections (speech in speech, 

distance and movement, and listening effort), whereas the other seven sub-sections showed no 

significant differences. Furthermore, Noble et al. (2008a) found that self-reported difficulty in 

hearing, emotional distress and restriction of social activities was reduced for users of bilateral CIs 

compared to bimodal aiding. These findings suggest that there may be a slight advantage for 

bilateral cochlear implantation compared to bimodal aiding. 

 

In a review of the literature comparing listening performance and self-rated sound quality, Ching, 

van Wanrooy, and Dillon (2007), highlighted advantages and disadvantages of each option. 

However, based on the available evidence, they were unable to conclude that one option was 

better than the other. A more recent review considering research published between 2006 and 

2010 focussed on  speech perception, localisation and self-reported ability (Sammeth, Bundy, & 

Miller, 2011). The review showed that bimodal aiding provided speech perception benefits, and 

binaural advantages from the head shadow effect and binaural redundancy, whereas mixed 

results were found for localising sounds. On the other hand, localisation ability with two CIs was 

shown to be much better than with one CI. Furthermore, bilateral CIs provided advantages for 

speech perception in quiet and in noise. Both options were found to have some self-reported 

benefits with bimodal users reporting a more natural sound over a single CI. However, although 

the authors were able to conclude that each option provides benefits over a single implant alone, 

they too were unable to reach a conclusion as to which option is better. Problems in drawing a 

conclusion stemmed from the limited amount of research directly comparing the two options, 

small samples sizes limiting statistical power, and varying methodologies. In a review by Bond et 

al. (2009), no studies comparing bimodal aiding to bilateral cochlear implantation in adults were 

found. In a more recent review, van Schoonhoven et al. (2013) highlighted that the limited 

number of studies investigating this comparison restricted the ability to draw firm conclusions. 

Indeed, in their review of the literature from 2006-2011, only three studies compared bimodal 

aiding to bilateral CI use and there was an overlap in the patients tested between the three 

studies. One study Noble et al. (2009) only analysed the effect of age on performance. The other 

two (Noble et al., 2008a, 2008b) have been discussed above. 
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2.4.1 Literature search 

Against the background of the conclusions reached in the previous section, a literature search was 

conducted in PubMed (National Center for Biotechnology Information, n.d.) in August 2014 using 

the search terms ‘‘cochlear implant*’ AND ‘bilateral’ AND (bimodal OR “hearing aid”). When the 

search was limited to publications in English between January 2009 and August 2014 there were 

97 results. To be included in the following review the paper must have been reporting a 

comparison between bimodal aiding and bilateral CI use in adults and not be a review. Titles and 

abstracts were assessed to determine if they met the inclusion criteria. If uncertainty remained 

the full text was reviewed to assess whether the article met the inclusion criteria. 13 articles were 

excluded due to being review papers and 21 articles were excluded because they focused on 

children. 10 articles concerned a different topic (e.g. tinnitus and ageing), 13 papers concerned 

other devices (including unilateral cochlear implantation and auditory brainstem implants), 19 

studies focussed on just bimodal listening, 8 papers focused on just bilateral cochlear 

implantation, and four further studies did not compare performance between bimodal and 

bilateral listeners (two investigated the effect of age on the benefit obtained and two used the 

use of a contralateral hearing aid or bilateral CIs as predictors on performance on music tasks but 

did not directly compare overall performance). Thus 9 papers remained; summaries of these 

papers are displayed in Table A1. Two papers covered the same study and have been summarised 

together. 

 

There was a hint from the results from Yoon, Shin, and Fu (2012) that the amount of residual 

hearing remaining may be important in the benefit obtained from a contralateral hearing aid for 

speech perception. They divided a group of 13 bimodal users into a ‘good group’ (n = 7) and a 

‘poor group’ (n=5) based on their audiometric thresholds. Good users had pure tone average 

thresholds less than 55dB HL (over 250, 500, 750 & 1000 Hz) whereas the poor group had loses 

greater than 55dB HL. They found that the benefit obtained from the hearing aid was significantly 

greater for the good group than the poor group for speech perception in quiet and noise.
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2.4.1.1 Comparison of studies 

Similar to van Schoonhoven et al. (2013) effect sizes for the difference between bimodal and 

bilateral performance were calculated as: 

 

𝐸𝑓𝑓𝑒𝑐𝑡 𝑠𝑖𝑧𝑒 =
(𝐵𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑚𝑒𝑎𝑛 − 𝐵𝑖𝑚𝑜𝑑𝑎𝑙 𝑚𝑒𝑎𝑛)

Pooled SD
 

 

In the case of speech in noise tasks with SRT as a measure, where a lower value indicates better 

performance, the result was multiplied by minus one. 95% confidence intervals were calculated as 

follows: 

95% 𝐶𝐼 = 𝐸𝑓𝑓𝑒𝑐𝑡 𝑠𝑖𝑧𝑒 ± (1.96 𝑥 𝑆𝐸) 

 

The results are shown in Figure 2.2. 

 

2.4.1.1.1 Localisation 

Only one study (Potts & Litovsky, 2014) compared localisation ability between bimodal aiding and 

bilateral CI use. They did not report a measure of variance for performance by each group and 

therefore are not included in this analysis. 

 

2.4.1.1.2 Speech in quiet 

Five papers included in the review investigated speech perception in quiet. Two studies could not 

be included in the analysis: Potts and Litovsky (2014) did not report a measure of variance for 

overall performance by each group. Yoon et al. (2012) reported overall performance graphically 

but the mean and SD could not be inferred from their figures. Kong et al. (2012) plotted mean 

performance and SE on graphs, the mean was extracted and the SD was calculated from the SE. 

Three out of four results showed the effect size did not differ significantly from zero. One finding 

(Sasaki, Yamamoto, Iwaki, & Kubo, 2009) had an effect size significantly smaller than zero 

indicating an advantage from bimodal aiding compared to bilateral CIs on speech perception of 

monosyllabic words. 

 

2.4.1.1.3 Speech in noise 

Four studies reported speech in noise performance. Similar to the speech in quiet results Yoon et 

al. (2012) presented performance on the task graphically. The mean and SD could not be 

extracted from these figures and therefore they are not included in the analysis. Gifford et al. 
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(2014) presented percentiles as a measure of variability. As it was unclear from the report 

whether the data were normally distributed, the results are not included in this analysis. 

Cullington and Zeng (2011) reported three measures of speech in noise performance and 

Kokkinakis and Pak (2014) also presented three measures. Across these six measures, effect sizes 

did not differ significantly from zero demonstrating no difference between the two options. It is 

important to note that in binaural listening to speech in noise when the noise was presented 

ipsilateral to the first (or only) CI, the effect size showed a trend of better performance with 

bilateral CIs but this was not significant. 

 

2.4.1.1.4 Self-reported ability 

Two studies compared self-reported listening ability. One study (Potts & Litovsky, 2014) did not 

report mean performance or a measure of variability for either group and therefore is not 

included. Results showed that the effect size of Perreau et al. (2014) was significantly greater than 

zero indicating a significant advantage from bilateral CIs compared to bimodal aiding. 

 

 

Figure 2.2. Effect sizes and 95% confidence intervals from studies included in the review. Black circles indicate speech 

in quiet tasks. Grey circles indicate speech in noise task. The white circle indicates a self-report measure the Spatial 

Hearing Questionnaire (SHQ). Asterisks indicate that the effect size is significantly different from zero. For bimodal 

users in the study reported by Kokkinakis & Pak (2014) ‘Noise left’ was on the side of their acoustic hearing aid and 

‘Noise right’ was on the side of the cochlear implant. 

 

Consistent with the earlier reviews discussed in this chapter (Ching et al., 2007; Sammeth et al., 

2011; van Schoonhoven et al., 2013) this review found the following. (1) Only a limited number of 

* 

* 
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studies have directly compared bimodal aiding with bilateral CI use in adults. (2) Of those studies 

that did include a comparison, varying methodologies were employed. (3) When results were 

standardized, for the most part there was no difference in performance. In summary, this review 

found no clear advantage of one option over the other. 

 

2.5 Conclusion 

Whilst the literature has demonstrated advantages of both bimodal aiding and bilateral cochlear 

implantation over using a single CI, there is a lack of certainty about which option is more 

advantageous to patients. Few studies have directly compared bimodal aiding to bilateral CI use 

and of those that have, differences in methodology restrict clear conclusions from being drawn. 

There are hints of a trade-off in listening abilities, with bilateral CIs offering greater spatial 

listening abilities but with reduced ability to use pitch information, and bimodal aiding offering a 

more natural sound quality and improved speech perception but minimal advantage in spatial 

listening skills. Much of the research has shown intersubject variability, with some individuals 

displaying great benefit from a second device, whilst others show minimal benefit. It would be of 

interest to identify why some individuals perform well whilst others do not. Small sample sizes 

make this task challenging and at present a clear explanation for these differences is lacking. The 

inconclusive findings highlight the need for a randomised control trial to be conducted to 

compare bimodal aiding to bilateral cochlear implantation on a variety of different behavioural 

and self-report measures. Thus, whilst the evidence suggests that a second device should be used 

by users of a single CI, whether it would be better to use a second CI or a contralateral acoustic 

hearing aid, remains at present unresolved. 
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3 Contribution of head movements to sound localisation 

3.1 Introduction 

It has long been known that rotations of the head can aid in locating sources of sound (Wallach, 

1940). Specifically changes in yaw (head movement from left to right) can aid localisation of 

sources in the horizontal plane. Changes in pitch (head movement up and down) and roll (rolling 

the head from side to side so that one ear becomes closer to one shoulder) can help determine 

where in elevation a sound is located. Head movements alter the interaural differences between 

the ears. For instance, should a sound be presented from straight ahead, there will be no ILD or 

ITD (see Chapter 2). However, rotating the head to the left will mean that the sound will reach the 

right ear earlier than it reaches the left ear. Furthermore the sound will be louder at the right ear. 

This chapter will summarise the role head movement have been shown to play in helping 

normally-hearing and hearing-impaired listeners (including CI users) locate a sound. 

3.2 Normally-hearing listeners 

Table B1 summarises findings from studies that have investigated head movements by normally-

hearing adults. Head movements have been shown to improve horizontal localisation (Mueller, 

Meisenbacher, Lai, & Dillier, 2014; Perrett & Noble, 1997a; Pollack & Rose, 1967) and vertical 

localisation (Perrett & Noble, 1997b; Wightman & Kistler, 1999). Furthermore, permitting head 

movements has been shown to reduce the number of front-back confusions made in the 

horizontal (Mueller et al., 2014; Perrett & Noble, 1997a) and vertical (Perrett & Noble, 1997b; 

Wightman & Kistler, 1999) planes. 

3.2.1 Localisation accuracy 

Perrett and Noble (1997a) found that when participants were instructed to rotate their head to 

the left by 45° while a sound stimulus was presented, horizontal localisation accuracy improved 

compared to when head movements were not permitted. Allowing participants to make natural 

head movements during the presentation of a three second stimulus, improved horizontal 

localisation accuracy significantly compared to when head movements were not permitted. When 

the stimulus was only 0.5 seconds long this effect was not found. The authors commented that 

the onset of a natural head movement was unlikely to have been achieved before this short 

stimulus ceased. Thus in order for normally-hearing listeners to benefit from head movements the 

stimulus needs to be sufficiently long for a head movement to be made whilst the stimulus is 

being presented. 

 



Chapter 3  Literature review: Head movements 
 

49 
 

This effect of duration was also noted by Pollack and Rose (1967) who found participants were 

more accurate locating a one second stimulus than a 15ms stimulus. However they found mixed 

results on the effect of head movement. In one experiment localisation error increased when the 

rate of head movement increased. In this experiment participants were instructed to locate a 

brief click (15ms) presented from one of 19 loudspeakers in the horizontal plane. One participant 

was instructed to move their head from left to right (or right to left) at two speeds: 120°/s or 

40°/s. At 120°/s the average localisation error was 5.1° but the average error reduced to 3.7° at 

40°/s. In a follow up experiment, a light was presented to pace head movements at 120°/s and at 

40°/s. This time the average localisation error was similar across fast (10.75° error) and slow 

(10.70° error) movement speed conditions. However, this was significantly higher than the error 

obtained when no head movement was permitted (3.1°). In three further experiments, 

participants were permitted to move their heads as if “searching for an auditory target”. In two 

out of the three experiments, localisation accuracy was better when head movements were 

permitted. However, in each of the five experiments reported by Pollack and Rose, no more than 

three participants were tested, which limits the generalizability of the findings. 

 

In a more recent study with eleven normally-hearing listeners, Mueller et al. (2014) found that 

head movement improved localisation accuracy if the stimulus was long enough. Participants 

located a target sentence in the presence of background noise in the horizontal plane. The 

sentence was either short (503ms), medium (2.18s), or long (4.45s) in duration. The average RMS 

error was significantly reduced when head movements were allowed for the medium and long 

stimuli. Consistent with Perrett and Noble (1997a), no benefit from head movements was found 

for the short stimuli, suggesting that half a second is not long enough for listeners to make a 

beneficial head movement. 

3.2.2 Front-back confusions 

Perrett and Noble (1997a) compared performance in three conditions: forced head movement 

where participants turned 45° to the left following stimulus onset, natural head movements 

permitted after stimulus onset, or no head movement permitted. In the forced head movement 

condition, very few front-back confusions occurred (about 2% of trials with a 3s stimulus and 

about 4% of trials with a 0.5s stimulus). With a 0.5 second stimulus the number of front-back 

confusions made when participants rotated their heads was significantly less than when 

participants kept their heads still (about 25% of trials) and significantly less than when they could 

move their heads as they wished (about 17% of trials). However, when the stimulus was longer at 

three seconds, the number of front-back confusions made when participants could move their 

heads as they wished was similar to the forced head rotation condition at about 1% of trials, 
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which was significantly less than the number of front-back confusions made when participants 

kept their heads still (about 30% of trials). Further support for the notion that head movements 

can reduce front-back confusions comes from Perrett and Noble (1997b). They found that when 

participants oscillated their heads between ±30° there were no front-back confusions for sources 

in the upper vertical plane. However, when head movements were not permitted, front-back 

confusions were made on 27% of trials. It is important to note that each participant completed 

just 7 trials per condition. When the number of trials was increased and the possible locations 

were extended by using 17 loudspeakers across the full 360° of the vertical plane, just 0.4% of 

trials resulted in a front-back confusion. As there were 22 participants completing 34 rotation 

trials each, this was just three errors across the whole data set. When head movements were not 

permitted, 35% of trials resulted in a front-back confusion. 

 

Mueller et al. (2014) found that the effect of head movement on the number of front-back 

confusions was dependent upon the duration of the stimulus. Although not significant, 

numerically fewer front-back confusions were made with a 503ms stimulus when head 

movements were permitted than when they were not permitted. When the stimulus was 2.18 

seconds of longer, permitting head movements resulted in no front-back confusions. 

3.2.3 Head movement trajectories 

Wightman and Kistler (1999) recorded the yaw, pitch and roll made by listeners during a sound 

localisation task. A visual inspection of the head movements made revealed that participants 

tended to turn their heads in the direction of the target. This finding is consistent with Mueller et 

al. (2014). Interestingly, Wightman and Kistler found that those individuals who made many front-

back confusions when head movements were not permitted, made large head movements when 

head movements were permitted. Conversely those individuals who made few to no front-back 

confusions when head movements were not permitted made few head movements when they 

were permitted. The authors argued that individuals who do make front-back errors use head 

movements to take advantage of the cues available to reduce the confusion. Conversely those 

who do not make front-back errors do not require head movements to perform well.  

 

In an earlier study Thurlow, Mangels, and Runge (1967) presented a five second noise stimulus 

from one of 10 loudspeakers located in the horizontal and vertical planes. Participants were 

instructed to move their head as much as they liked (but not their bodies) after the onset of the 

stimulus. Changes in yaw, pitch and roll greater than 3° were used to categorize the pattern of 

movement a participant made. They found that maximal changes in yaw were greater than 

changes in pitch and roll, and, consistent with the later findings of Wightman and Kistler (1999) 
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and Mueller et al. (2014), the majority of participants turned towards the target source. Whilst 23 

participants were included in the analyses, a number of other participants were tested but 

excluded due to no head movements being made. Despite not measuring localisation accuracy 

the authors excluded the participants from the analysis as they “[felt] that these subjects found 

the problem of localizing in three dimensions very difficult, and they did not really know how to go 

about it” (pp. 90). However, this may not have been accurate as when the findings from 

Wightman and Kistler (1999) are considered it may have been that these participants chose not to 

move because they did not need to in order to perform well. As localisation accuracy was not 

measured by Thurlow et al., it is not possible to confirm this speculation. 

3.3 Hearing-impaired listeners 

Previous research has demonstrated that hearing-impaired listeners make more complex head 

movements when attempting to orient to an auditory target. For instance, Brimijoin et al. (2010) 

instructed participants to orient towards an auditory stimulus or a visual stimulus presented from 

one of 11 loudspeakers in the frontal horizontal plane (-75° to +75°). They found that while a 

group of 17 normally-hearing adults undershot both auditory and visual targets to the same 

degree (see Table B1), a group of 14 hearing-impaired adults undershot auditory targets less than 

visual targets (see Table B2). Furthermore, hearing-impaired listeners made more complex head 

movements in orienting to auditory stimuli than normally-hearing listeners. Brimijoin and 

colleagues fitted increasingly higher order polynomial functions to the trajectories made until the 

head movement was accurately fitted. The lowest order of polynomial which did this was taken as 

an index of the complexity of the head movement. It was found that, for every 20dB increase in 

four-frequency-average hearing loss the mean polynomial order increased by about 1. The 

hearing-impaired listeners were also slower to orient to auditory stimuli than the normally-

hearing listeners. Whilst the normally-hearing listeners took 0.9 seconds on average to orient to 

the target location, the hearing-impaired listeners needed on average 1.3 seconds, which was the 

duration of the stimulus itself.  

 

Other research has demonstrated that hearing-impaired listeners may use head orientation as a 

strategy for coping with their loss in adverse listening environments. For instance, Brimijoin, 

McShefferty, and Akeroyd (2012) investigated the head orientation strategies used by hearing-

impaired listeners during a speech in noise task. 36 listeners with asymmetrical hearing 

impairment participated. A target sentence was presented from one of five locations in the 

horizontal plane and noise was presented from one of five separations from the target. It was 

found that individuals who had better hearing in their left ear, oriented their heads to the right of 

the target, and individuals with better hearing in their right ear oriented their heads to the left of 
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the target. This strategy maximised the level of the signal. However the strategy was the same 

regardless of the location of the noise suggesting that listeners did not seek to maximise the 

signal-to-noise ratio. 

3.3.1 CI users 

Buhagiar, Lutman, Brinton, and Eyles (2004) tested localisation performance in the frontal-

horizontal plane by a group of 18 unilateral CI users using seven types of stimuli (including speech, 

noise and tones, see Table B2). It was not their primary objective to investigate the role of head 

movements on sound localisation but in one condition participants were permitted to move their 

heads. In all other conditions participants were instructed to keep their heads still. It was found 

that when head movements were not permitted localisation accuracy was significantly better for 

sound presented on the side ipsilateral to the CI than sounds presented on the contralateral side. 

However, when head movements were permitted performance improved (although still remained 

poor with an average RMS error of 49°) and there was no difference in accuracy performance for 

sources presented on either side of the listener. 

 

This finding is somewhat discrepant to that found by  Tyler, Noble, Dunn, and Witt (2006). They 

found that even when head movements were permitted, unilateral CI users were unable to 

localise sounds when they were presented from the side of the horizontal plane (exact target 

locations were not reported). The position of the loudspeakers could account for this difference in 

finding. Whereas Bulagiar et al. (2004) positioned loudspeakers in the frontal horizontal plane 

from -90° to +90°; the results from Tyler et al. were from a condition where all loudspeakers were 

reported to be positioned to the side of the listener. Tyler et al. also tested bilateral CI users and 

found that when head movements were not permitted and the loudspeakers were positioned to 

the side, the bilateral CI users were unable to accurately locate the source of the sound. This was 

likely due to the inability of listeners to judge the location of a sound on the ‘cone of confusion’. 

The ‘cone of confusion’ refers to the fact that for a given ITD there are a number of possible 

locations (Plack, 2014), which can result in front-back and up-down confusions as discussed in 

section 3.2.2. When head movements were permitted, localisation accuracy by bilateral CI users 

was near perfect. This demonstrates that bilateral CI users can make use of head movements to 

alter the ITD and ILD and resolve where the sound is located. These findings demonstrate that 

whilst head movements can help improve localisation accuracy by bilateral CI users, they do not 

help unilateral CI users to locate sounds very well. 

 

Head movements can also help improve speech perception performance in adverse listening 

conditions. For instance, in their model, Culling, Jelfs, Talbert, Grange, & Backhouse (2012) 
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predicted that if speech is presented at 0° azimuth and noise is presented at +90° azimuth 

bilateral CI users could increase their spatial release from masking (SRM) from 3.5dB to 7dB if 

they rotated their head from 0° azimuth to 20° azimuth. In addition, a further 1.25dB of SRM 

could be achieved if the bilateral CI users turned to 30° azimuth. Furthermore, head movements 

can help bilateral CI users reduce the number of front-back confusions made during a localisation 

in noise task. For instance, Mueller et al. (2014) measured the localisation accuracy of seven 

bilateral CI users in the presence of background noise. In the same set-up described in section 

3.2.1 for normally-hearing adults, head movement was either permitted or not permitted and the 

target stimulus was either short (503ms), medium (2.18s) or long (4.45s) in duration. Although 

angular accuracy did not improve from permitting head movements, the number of front-back 

confusions was significantly reduced when head movements were permitted for the medium and 

long stimuli, from about 24% of trials when head movements were not permitted to about 8% of 

trials when head movements werepermitted. Permitting head movements did not reduce the 

number of front-back confusions for short stimuli. Mueller et al. monitored the head movements 

made by the bilateral CI users. They found that listeners tended to make search-like movements, 

which were more complex and longer in duration than the head movement trajectories made by 

normally-hearing listeners (see Table B2). 

3.4 Conclusion 

Both normally-hearing and hearing-impaired-listeners can benefit from head movements for 

improving localisation accuracy. When head movements are permitted, normally-hearing adults 

tend to orient their heads towards the source of the target and few to no front-back confusions 

occur. There are suggestions in the literature that some normally-hearing adults opt not to move 

their heads when permitted to do so because they perform well even when head movements are 

not permitted. Hearing-impaired individuals take longer than normally-hearing adults to orient 

their head to a target source. Furthermore when localising, they make more search-like 

movements resulting in longer and more complex head movement trajectories than normally-

hearing listeners. 

 

When head movements are permitted localisation accuracy in the frontal-horizontal plane by 

unilateral CI users remains. When the sources of sound are moved to the side of the listener in 

the horizontal plane, unilateral CI users do not benefit from head movements. However, bilateral 

CI users do benefit from head movements in this configuration, demonstrating that they are able 

to make use of the changes in ITD and ILD that are afforded by making head movements, to 

reduce the number of front-back confusions. For both normally-hearing and hearing-impaired 

individuals the duration of the stimulus had an influence on the effect of head movements. When 
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the stimulus is short (about 0.5 seconds or less) performance is not better when head movements 

are permitted. This is likely due to insufficient time available to begin a head movement, with the 

target sound ceasing before a head movement has begun or been completed. 

 

In conclusion, if the sound is long enough, head movements can improve localisation performance 

for both normally-hearing and hearing-impaired listeners. Furthermore, whilst users of bilateral 

CIs can benefit from making head movements to alter the ITD and ILD, unilateral CI users do not 

have access to these cues to help them. 

3.5 Summary 

 Head movements can improve angular accuracy and reduce front-back confusions for 

normally-hearing adults if the sound is long enough for a head movement to be made. 

 Normally-hearing adults typically orient their heads towards the target sound during tasks 

of localisation. 

 Hearing-impaired listeners make longer, more complex head movements than normally-

hearing listeners when attempting to locate a sound. 

 Like normally-hearing adults, hearing-impaired listeners can benefit from head 

movements in reducing front-back confusions if the sound is long enough for a head 

movement to be made.



 

55 
 

4 Cost-effectiveness of a second device for adult users of a single 

cochlear implant 

 

With limited resources available to fund healthcare, policy makers must prioritise the treatments 

to which they allocate funding. Cost-effectiveness analyses can inform the setting of priorities by 

ranking treatments in terms of the cost of gaining increments in health-related quality of life. This 

chapter will first outline what health-related quality of life (Health Utility) is and how it can be 

measured. The chapter will then discusses the strengths and limitations of existing self-report 

systems (i.e. questionnaires and methods for scoring them) for measuring health-related quality 

of life for hearing-impaired individuals. Next, how measures of health utility are used in 

calculations of incremental cost-effectiveness ratios will be explained before the existing 

literature on the cost-effectiveness of a second device for users of a single CI is evaluated. 

4.1 Health-related quality of life (Health Utility) 

With any disorder it is important to know the impact it has on people and the effectiveness of 

available treatments. When multiple treatments are available, it is important to ascertain which 

treatment is most effective. Policy makers need to measure the impact of disorders and the 

effectiveness of treatments on generic scales that are applicable to all disorders and 

interventions. This enables comparisons to be made between disorders and treatments. 

Measures of health-related quality of life address this requirement and can be obtained either 

directly or indirectly. Using the direct approach, an individual is asked to use either the standard 

gamble technique or the time-trade-off method to value their current health state or value a 

description of a hypothetical health state which they are instructed to imagine applies to them. 

These methods (discussed in detail below) are used to indicate a respondent’s preference for a 

health outcome. Whilst the standard gamble produces ‘utilities’ and the time-trade-off technique 

produces ‘values’ the terms are frequently used interchangeably to indicate preference 

(Drummond, O’Brien, Stoddart, & Torrance, 2000). This thesis will use the term ‘utility’ to indicate 

preference.  

 

Using the indirect approach, an individual completes a questionnaire to indicate what their 

current health state is. For the indirect approach, a utility value for that health state is assigned 

from valuations provided by a group of informants who used the direct approach to value some 
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or all of the possible combinations of states which the questionnaire can define. This is the 

preferred method for assigning a value of health utility to a patient’s health state. The standard 

gamble and time-trade-off techniques are conceptually demanding and also invoke the concept of 

early death and as such are not appropriate methods to use directly with patients. Furthermore, 

guidelines from NICE (2013) state that health-related quality of life valuations should be obtained 

from a large, representative sample of the UK population. 

4.1.1 Standard gamble 

In the standard gamble technique, participants are faced with a scenario in which they have to 

weigh up the risks of receiving a particular treatment. If the treatment is successful they would 

have perfect health for the rest of their life. If the treatment fails then they would die an 

immediate yet painless death. The task for the participant is to consider the risks of receiving a 

treatment and determine a probability of success for which they would be indifferent between 

taking the gamble and remaining in their current health state for the rest of their life (Drummond 

et al., 2000). This probability is taken as the utility value for that health state. The standard 

gamble is widely regarded as the ‘gold standard’ of utility valuations because it requires a decision 

under conditions of uncertainty and risk (Drummond et al., 2000; van Osch & Stiggelbout, 2008). 

However, the standard gamble is sensitive to loss aversion in which people value potential losses 

greater then they value potential gains. van Osch and Stiggelbout (2008) asked participants to 

think aloud whilst completing a standard gamble exercise with six rheumatioid arthritis health 

state descriptions. The researchers coded the number of times participants mentioned (together 

with the probability of it happening) the good outcome from the gamble, the bad outcome from 

the gamble, and the certain outcome. The most frequently mentioned outcome was determined 

to be the focus of attention. It was found that when attention was focused on the negative 

outcomes higher utility values were observed, whereas when participants focused on the positive 

outcomes a lower utility value was obtained. Attention was not directly manipulated by the 

experimenters, therefore results could be due to individual differences (e.g. individuals who focus 

on the negatives may also be more likely to give lower utility values) rather than a causal 

inference. Future research could manipulate attention by changing the wording in the 

instructions. 

4.1.2 Time-trade-off technique 

With the time-trade-off method, a health state is described and the respondent evaluates how 

many years (f) in perfect health they judge is equal to living a number of further years (y) with the 

health difficulties described.  Health utility is calculated as f/y. The time-trade-off technique is a 

convenient method using hypothetical scenarios, which therefore avoids the need to question 

patients directly. However, there is wide variation among studies in the number of further years 
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that have been used with this technique (Arnesen & Trommald, 2005). Heintz, Krol, and Levin 

(2013) used actuarial life expectancy based on the age and gender of the participant. However, 

many other studies have used a fixed number of years with the aim of levelling the playing field 

for all respondents. Some studies have used 10 years (Dolan, Gudex, Kind, & Williams, 1996; van 

Nooten, Koolman, & Brouwer, 2009; van Nooten, Koolman, Busschbach, & Brouwer, 2013), or 

other fixed amounts of time from one month to fifty years (Attema & Brouwer, 2012; Perez, 

McGee, Campbell, Christensen, & Williams, 1997; Summerfield, Lovett, Bellenger, & Batten, 

2010). Other studies have used participant specific durations from current age to a specified age 

(Summerfield, Marshall, Barton, & Bloor, 2002; van Nooten & Brouwer, 2004). 

 

The study reported in Chapter 8 used the time-trade-off technique rather than the standard 

gamble as it is less conceptually demanding. Furthermore responses using the time-trade-off 

technique have been demonstrated to be reliable in test-retest investigations (Dolan et al., 1996). 

Therefore the following discussion focuses on the time-trade-off technique. 

Limitations of the time-trade-off technique 

The concept of constant proportional trade off suggests that individuals should be willing to trade 

the same proportion of life regardless of the time horizon used. For example, if they were willing 

to trade one year in a 10-year time horizon, they should be willing to trade 5 years in a 50-year 

time horizon. However, in a review of the literature, Attema & Brouwer (2010) found constant 

proportional trade-off is not always evident and that the time horizon can have an influence on 

utility values. They highlight that with long time horizons participants may be unwilling to trade 

beyond a certain number of years (maximum trade) whereas with shorter durations participants 

may be unwilling to live less than a certain amount of time (minimum life remaining). 

 

Numerous demographic variables have been shown to impact the willingness of a participant to 

trade life years; therefore it is important that studies seeking valuations of health states use a 

large, representative sample. One such variable that has been shown to impact valuations is 

subjective life expectancy. For instance, if a respondent is asked to imagine that they will live until 

they are 80 years old but they expect that they will live until they are 83 years old they may feel 

they are being cheated out of three years of life and will trade less. Whereas those who have a 

subjective life expectancy less than 80 may feel they have bonus years and are therefore likely to 

trade more. This effect has been shown in several studies (van Nooten & Brouwer, 2004; van 

Nooten et al., 2009, 2013). Indeed, even when actuarial life expectancies are used for each 

participant, subjective life expectancy can have an influence, with those expecting to live longer 

willing to trade fewer years, and those expecting to live a shorter period of time trading more 

years (Heintz et al., 2013). Age and educational level have also been shown to impact willingness 



Chapter 4  Literature review: Cost-effectiveness 

58 
 

to trade, with older adults less willing to trade, and those with higher education more willing to 

trade (van Nooten et al., 2009, 2013). Furthermore, the time-trade-off technique is sensitive to 

differences in the way the task is explained. van Nooten et al. (2013) developed two 

questionnaires that asked participants to value three health states using the time-trade-off 

technique with a ten-year time frame. One questionnaire explicitly made the ten-year time 

horizon clear to participants by asking them how old they would be in ten years’ time before each 

question. The other questionnaire was identical to the first one, except the ten-year time horizon 

was not made explicitly clear. It was found that when the amount of time was made explicit, 42% 

of respondents were unwilling to trade any life compared to only 21% who completed the implicit 

questionnaire. Furthermore, those who completed the explicit questionnaire and did choose to 

trade life traded fewer years than those in the implicit condition. 

 

Despite the limitations surrounding the time-trade-off technique, it is widely used in the valuation 

of health states. However, no widely agreed guidance exists on how the time-trade-off method 

should be structured (e.g. time horizon, response method, instructions, etc., Attema, Edelaar-

Peeters, Versteegh, & Stolk, 2013). 

4.2 Generic measures of health-related quality of life 

In addition to the direct measures highlighted above, indirect measures can also be used to 

measure quality of life. Generic health-related quality of life instruments can be used to measure 

the effectiveness component for use in a cost-effectiveness analysis. By using instruments that 

result in a common metric, comparisons between treatments can be made to ascertain which 

treatment provides the greatest benefit. Responses to generic health-related quality of life 

instruments are converted to a utility score where 1 corresponds to perfect health and 0 

corresponds to being dead. Scores less than zero indicate that the health state is considered to be 

worse than being dead. 

 

The EuroQol questionnaire (EQ5D, Brooks, 1996; The Euroqol Group, 1990) is a generic 

instrument assessing health-related quality of life. It contains five multiple choice questions. Each 

question focuses on a domain of health (mobility, self-care, usual activities, pain/discomfort, and 

anxiety/depression) with three levels of difficulty (no difficulty, some difficulty, and extreme 

difficulty). Users of the instrument are instructed to select the level of difficulty which best 

describes how they function in each domain. There are 243 possible combinations of difficulties. A 

subset were valued by a representative sample of 2997 adults in the United Kingdom using the 

time-trade-off technique allowing an algorithm to be derived which assigns a value of health 

utility to any combination of difficulties (Dolan, Gudex, Kind, & Williams, 1995). Similar valuation 
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exercises have been conducted in other countries (Lamers, Mcdonnell, Stalmeier, Krabbe, & 

Busschbach, 2006; Shaw, Johnson, & Coons, 2005; Tsuchiya et al., 2002; Weijnen, Nieuwenhuizen, 

Ohinmaa, & de Charro, 2003; Wittrup-Jensen, Lauridsen, Gudex, & Pedersen, 2009).  

 

The EQ5D is quick to complete and uses straightforward terminology. From a UK perspective it 

also has the advantage of being valued by a UK sample and it is the preferred instrument for 

measuring health-related quality of life by NICE (2013). However, the EQ5D does not include any 

questions related to hearing or listening, nor speech understanding. Furthermore, for many 

individuals, hearing loss develops sufficiently gradually that they accommodate their ‘usual 

activities’ to their loss. As a result, they may indicate that they do not have any difficulties in this 

domain, despite being restricted in the range of activities with which they can engage. These 

limitations make the EQ5D relatively insensitive to hearing-related difficulties (e.g. Grutters et al., 

2007). Indeed, many hearing-impaired individuals are assigned a utility score of 1 (‘perfect 

health’) by the EQ5D (Barton, Bankart, & Davis, 2005; Grutters et al., 2007).  

 

The Health Utilities Index Mark 3 (HUI3, Boyle, Furlong, Feeny, Torrance, & Hatcher, 1995; Feeny 

et al., 2002; Torrance, Furlong, Feeny, & Boyle, 1995) is another widely used generic instrument 

measuring health-related quality of life. This instrument covers eight domains (vision, hearing, 

speech, ambulation, dexterity, emotion, cognition, and pain), each having five or six levels of 

difficulty. There are 970,000 possible combinations of levels, of which a subset has been 

evaluated by members of the Canadian general public (Feeny et al., 2002). The HUI3 focuses on 

physical and emotional wellbeing and does not cover social aspects of health-related quality of 

life (like the ‘usual activities’ question in the EQ5D). However, it includes questions specific to 

hearing and the ability to be understood whilst speaking. As a result it is sensitive to 

improvements in quality of life due to better hearing (Barton et al., 2005; Grutters et al., 2007; 

United Kingdom CI Study Group, 2004). Indeed recent reviews of generic instruments for use with 

patients with hearing difficulties have shown that the HUI3 is able to detect differences between 

groups of people with different hearing loss severity whereas the EQ5D is for the most part 

insensitive to differences (Longworth et al., 2014; Yang, Longworth, & Brazier, 2013).  

 

However, even with its higher sensitivity, Lovett, Kitterick, Hewitt, & Summerfield (2010) found no 

significant differences between utility values from the HUI3 from parental valuations of children 

with bilateral and unilateral CIs. Furthermore, Summerfield et al. (2006) found no differences in 

utility values measured with the HUI3 between bilaterally and unilaterally implanted adults. These 

findings arose despite there being significant advantages in measures of performance from 

bilateral cochlear implantation in both children and adults. Thus it could be that the self-reported 
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and behavioural benefits obtained from a second CI do not lead to an increase in health-related 

quality of life, or it could be that the benefits do improve health-related quality of life but that 

current instruments are not sufficiently sensitive to detect differences between monaural and 

binaural hearing. If the latter is the case this could have serious implications for determining the 

cost-effectiveness of treatments intended to improve binaural hearing. This issue will be 

addressed in Chapter 8 where the development and validation of a new questionnaire to measure 

‘hearing-related quality of life’ is described. 

4.3 Using utility in cost-effectiveness analyses 

Generic quality of life instruments assign a utility value to a respondent based on valuations made 

by members of the public. If a respondent who has received a treatment is assigned a value of .7 

there are two questions that can be asked: First, is this post-treatment utility value greater than 

the pre-treatment value (in effect, is the treatment providing any benefit to health-related quality 

of life)? Second, is the difference in utility values large enough to warrant providing funding (i.e. 

does the benefit justify the cost of providing the treatment)? In the case where multiple 

treatments are available, in order to represent an accurate measure of cost-effectiveness it is 

important that the analyses are conducted by making comparisons with the ‘next best 

alternative’. This is the preferred method outlined by NICE (2013). For instance, whilst the impact 

of providing one hearing aid should be compared to listening with no aids, an intervention of two 

hearing aids should be compared to listening with one hearing aid (as this would be the next best 

alternative).  

4.3.1 Effectiveness 

NICE’s preferred form of economic evaluation of an intervention is through a cost-effectiveness 

analysis in which the effects of an intervention are estimated as a number of quality adjusted life 

years gained (QALYs, NICE, 2013). A QALY is a measure that takes into account both quality and 

quantity of life. Utility values can be converted into QALYs by multiplying the utility value by the 

remaining life years. For example, take a hypothetical 30 year old patient who is expected to live 

until they are 80 years old. Imagine that prior to an intervention they had a utility value of .50. 

Had they remained in this state until death at 80 years old they would have continued to live for 

25 QALYs (.50 x 50 years). However, if they were to receive an intervention (option A) at 30 years 

old that did not improve the quality of their life but did extend their life by 10 years they would 

continue to live for 30 QALYs (60 years x .50). This would be a gain of 5 QALYs from their original 

state. Alternatively, were the patient to receive a different treatment (option B) at age 30 that did 

not extend their life but did improve their life quality so that they had a utility value of .7, they 

would have gained 10 QALYs (.70 x 50 years) – (.50 x 50 years). 
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4.3.2 Costs 

In the UK, the costs taken into consideration in cost-effectiveness analyses are the cost to the NHS 

and personal social services (NICE, 2013). The financial cost of the intervention, the cost of 

resources (e.g. hospital stays), and the potential savings that would be made from the 

intervention are all considered. As with effectiveness, costs over a reasonable time horizon long 

enough in duration to consider all important costs (e.g. repeated prescriptions) are taken into 

account.  

4.3.3 Discounting 

Typically individuals have a preference for receiving benefits earlier and paying costs later. This 

has led economists to discount future costs and benefits. By doing so, the savings and costs 

incurred to the health service now have a greater weight on the decision making process than 

future savings and costs. In the UK, under current guidelines (NICE, 2013), benefits and costs are 

discounted at a rate of 3.5% per annum.  Costs and benefits are discounted as follows: 

 

𝐷𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑 𝑐𝑜𝑠𝑡 =
𝑐

(1 + 𝑑)𝑦
 

 

(Where c is the cost incurred in the future year, d is the discount rate, and y is the number of 

years in the future). 

 

𝐷𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 =
𝑞

(1 + 𝑑)𝑦
 

 

(Where q is the number of QALYs gained in the future year, d is the discount rate, and y is the 

number of years in the future). 

4.3.4 Cost-effectiveness analysis 

The incremental cost effectiveness ratio (ICER) is the cost per QALY gained and is determined 

from evaluating the incremental cost and benefit as shown below. 

 

𝐼𝐶𝐸𝑅 =
𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 (𝛥𝐶)

Incremental benefit (ΔQ)
 

 

The incremental cost is the difference in cost between the treatment and the next best 

alternative. The incremental benefit between the treatment and the next best alternative is 

expressed as a number of QALYs. Continuing with the hypothetical patient mentioned above, if 

the incremental cost of option A over the next best alternative was £50,000, this would result in 
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an ICER of £10,000 per QALY (£50,000/5 QALYs), whereas if the incremental cost of option B was 

also £50,000 it would have an ICER of £5,000 per QALY (£50,000/10 QALYs). NICE (2013) 

guidelines suggest that the maximum acceptable ICER lies in the region of £20,000- £30,000. 

However, a review of NICE’s decisions suggested that this is not a strict cut-off, with some 

treatments having an ICER less than this being rejected, and other treatments with ICERs greater 

than this being accepted (Devlin & Parkin, 2004). Current guidelines (NICE, 2013) require cost-

effectiveness analyses to estimate the incremental net benefit at a willingness to pay threshold of 

£20,000 per QALY and at £30,000 per QALY. 

 

At a willingness-to-pay threshold of £30,000 a treatment is considered to be cost-effective 

provided that: 

 

𝛥𝐶

ΔQ
 ≤ 30,000 

 

Thus the value of the incremental benefit (30,000 x ΔQ) must exceed the incremental cost (ΔC) for 

the intervention to be cost-effective. The difference between the two (shown below) is the 

‘incremental net benefit’. 

 

𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙 𝑛𝑒𝑡 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 = (Willingness to pay threshold x ΔQ) −  𝛥𝐶 

 

It is possible to plot the relationship between the gain in utility and the resulting incremental net 

benefit provided one has two things: (1) an estimate of the costs of an intervention compared to 

the next best alternative, and (2) an estimate of the relationship between the size of the gain in 

utility and the resulting gain in QALYs (ΔQ). The resulting plot can then be used to estimate the 

minimum gain in utility required to result in a positive incremental net benefit and hence a cost-

effective intervention. Figures 4.1 and 4.2 show two illustrations of these types of plots. 

 

4.4 Cost-effectiveness of binaural devices for CI users 

4.4.1 Minimum gain in utility required 

It is well established that unilateral cochlear implantation compared with non-surgical 

interventions is cost-effective (Bond et al., 2009; Turchetti, Bellelli, Palla, & Berrettini, 2011; 

United Kingdom CI Study Group, 2004). In a threshold analysis, Bond et al. (2009) demonstrated 

that a gain in utility of 0.1 is required for unilateral cochlear implantation to be cost-effective at a 

willingness-to-pay threshold of £30,000 (see Figure 4.1). Indeed, after evaluating the evidence 
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available at the time, NICE (2009) stated that the ICER was £14,200 per QALY of providing a 

unilateral CI to post-lingually deafened adults compared with non-surgical intervention. It was 

therefore deemed to be a cost-effective intervention and NICE recommended unilateral cochlear 

implantation for adults who meet the candidacy requirements for a CI.  

 

Figure 4.1. Threshold analysis showing the gain in utility required for unilateral cochlear implantation to be a cost-

effective intervention compared to no surgical intervention for adults. At a willingness-to-pay threshold of £30,000 

the gain in utility required is about .1. Base case value from decision modelling by Bond et al (2009). Figure from 

Bond et al. 

 

However, for the majority of adults who meet the candidacy requirements for one CI, NICE does 

not recommend the funding of a second CI by the NHS; the exception is for those adults who have 

other major disabilities such as blindness (see Chapter 1). However, the NHS does provide hearing 

aids for hearing impaired adults. Compared to a CI, the cost of providing and maintaining a 

hearing aid is low (see Appendix C). Although no study has directly compared the cost-

effectiveness of bilateral cochlear implantation compared to bimodal aiding, the lower cost of the 

latter option can be inferred from previous research. For instance, Bond et al. (2009) investigated 

the cost effectiveness of unilateral cochlear implantation compared to no surgical intervention for 

adults. Using a base case scenario in which 70% of individuals used a contralateral acoustic 

hearing aid yielded an ICER of approximately £14,500 per QALY. However, in supplementary 

sensitivity analysis with contralateral acoustic hearing aid use was lowered to 40% or increased to 

100% the ICER was not substantially altered. Using Figure 34 in Bond et al., (2009) to estimate the 

differences in ICER, the incremental net benefit increased by about £112 with 100% of unilateral 

CI users using a contralateral acoustic hearing aid compared to 70%. Whereas no reduction in cost 

was observed from 40% of unilateral CI users using a contralateral acoustic hearing aid compared 

to 70%. 
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Appendix C reports an analysis on the cost-effectiveness of a contralateral acoustic hearing aid for 

adult users of a single CI. The incremental cost was estimated to be in the region of £1,262 (using 

the latest cost estimates from the UK Department of Health, 2013) and £4,171 (using cost data 

from Summerfield, Marshall, Barton, & Bloor, 2002 inflated to 2013 cost levels).  Using actuarial 

life expectancy data from the Office for National Statistics (2014) the minimum gain in utility 

required for a contralateral acoustic hearing aid to be cost-effective at a willingness to pay 

threshold of £30,000 was estimated to be in the region of .002 to .011 (depending upon the cost 

data used). 

 

In a threshold analysis investigating the cost-effectiveness of bilateral cochlear implantation 

compared to unilateral cochlear implantation, Bond et al. (2009) demonstrated that a gain in 

utility of at least 0.05 was required for bilateral cochlear implantation to be cost-effective at a 

willingness-to-pay threshold of £30,000 (see Figure 4.2). 

 

 

Figure 4.2. Threshold analysis showing the gain in utility required for bilateral cochlear implantation to be a cost-

effective intervention compared to unilateral cochlear implantation for adults. At a willingness-to-pay threshold of 

£30,000 the gain in utility required is about .05. The base case value was from Summerfield et al. (2006) and was 

used by Bond et al. (2009) to inform cost-effective estimates. Figure from Bond et al. (2009). 

4.4.2 Is bilateral cochlear implantation cost-effective? 

A limited literature exists on the cost-effectiveness of a second CI for adults. In one analysis 

normally-hearing adults with knowledge of cochlear implantation used the time-trade-off 

technique to value different health states (Summerfield et al., 2002). These valuations were then 

used to estimate the cost-effectiveness of providing bilateral CIs to profoundly deafened adults. 

Participants evaluated the quality of life of four scenarios: profound bilateral deafness with no 

benefit from hearing aids, profound bilateral deafness with some benefit from hearing aids (being 

able to understand approximately 25% of spoken sentences without the need to lipread), 

benefitting from a unilateral CI, and benefiting from bilateral CIs. Participants were instructed that 

they could either live in this state from their current age until they were 75 years old, or they 
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could trade years from the end of their life to live for a shorter period of time but with perfect 

hearing. The increase in utility from providing a second CI to users of a unilateral CI was estimated 

to be .031. This was less than the value of .05 estimated by Bond et al (2009) to be the minimum 

required for bilateral cochlear implantation to be a cost-effective use of resources (see Figure 

4.2). Indeed, when comparing either simultaneous bilateral cochlear implantation to unilateral 

cochlear implantation, or the provision of a second CI to existing unilateral CI users, the ICER was 

estimated to lie in the region of £43,908 -£116,012 per QALY.   

 

Summerfield et al. (2002) had estimated the cost-effectiveness of bilateral cochlear implantation 

from valuations made by normally-hearing adults. Although these adults had knowledge of 

cochlear implantation it was important to assess whether the utility estimates provided by these 

valuations were similar to the utility gain actually reported by patients. To do this the researchers 

used responses to the HUI2 (an earlier version of the HUI31) of 202 users of a unilateral CI. Firstly, 

the utility of patients as measured with the HUI2 were recalculated with the speech and hearing 

dimensions set to no difficulty. The difference between this new utility value and the original 

value highlighted the loss of utility due to difficulties with hearing and speech. Secondly, the loss 

in utility due to difficulties with hearing and speech for valuations made by normally hearing 

adults was calculated. To do this, new utility values were set to one on the assumption that 

normally-hearing adults have no difficulty with hearing and speech. Finally, the authors compared 

the loss in utilities between the two groups. This analysis confirmed that the gain in utility 

estimated by the normally hearing respondents with the time-trade-off technique for comparing 

unilateral cochlear implantation to no intervention was similar to the gain estimated by patients. 

The equivalence in this utility gain gave credibility to the respondents’ estimate of the gain from 

receiving bilateral cochlear implants compared to a unilateral CI. 

 

This study was followed by a randomised control trial in which 28 unilateral CI users were 

assigned to receive a second CI either immediately or after a delay of twelve months 

(Summerfield et al., 2006). Twenty-four participants completed the trial. Participants completed 

the HUI3 and the EQ5D before receiving their second CI and again three and nine months post 

implantation. No significant difference in utility scores as measured using the HUI3 was found 

between unilateral and bilateral cochlear implantation. Indeed, the mean gain from bilateral CIs 

(.030) echoed that found by Summerfield et al. (2002) which used valuations by normally hearing 

adults. Furthermore, a significant detriment on the EQ5D was found nine months post 

implantation, which the authors argued could have been driven by worsening tinnitus in a small 

                                                           
1 The HUI2 covers seven domains (sensation, mobility, emotion, cognition, self-care, pain, and fertility). 
Like the HUI3 it results in a utility value where 1 indicates perfect health and 0 indicates being dead. 
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minority of patients. When NICE (2009) were making their recommendations on cochlear 

implantation, this was the only published study of a randomised control trial that considered the 

health utility of adults with a second CI both before and after surgery.  

 

However, with such a small sample the Summerfield et al. (2006) study was underpowered. 

Previous research was used to estimate the variation in utility estimates. The standard deviation 

of utility estimates is about 0.2 (United Kingdom CI Study Group, 2004). Therefore a trial would be 

looking for a gain in utility (.05) of one quarter of a standard deviation for a second CI to be 

deemed cost-effective. Using a two-tailed test with an alpha of .05 would require two groups of 

251 participants to achive power of 80%. A randomized control trial could be conducted in which 

502 eligible adults are randomly assigned to receive one CI or receive two cochlear implants 

simultaneously. The use of simultaneous implantation would reduce the cost compared to 

sequential implantation as there is only one surgical procedure. In a between subjects-design 

utility values as measured on the HUI3 and EQ5D could be compared between the unilateral and 

bilateral CI groups to determine if bilateral cochlear implantation is a cost-effective intervention 

for adults. Although this study would have sufficient power the cost of a trial like this would be 

very expensive. NICE (2009) guidelines indicate that the price of a second CI should be reduced by 

40% or more. However if one considers that the cost of cochlear implantation (including the 

device costs, surgical costs and maintenance costs) is about £25,000 (Nottingham University 

Hospitals NHS Trust, n.d.), even with reductions of 40% on the second device and one surgical 

procedure, the trial is likely to cost over £10 million.  

 

To reduce the financial resources required to run a randomized control trial a within-subjects 

design could be employed. To achieve 80% power 126 individuals who already have one CI and 

are willing to obtain a second one would need to participate. The cost-effectiveness of a second CI 

could then be investigated by administering the HUI3 and EQ5D to participants before they 

receive a second CI to get a baseline measure of health utility with one CI. After receiving a 

second CI, the participants could then complete the questionnaires again. It would be beneficial 

to have participants complete the questionnaires several times both before and after receiving 

their second CI. This would ensure that any gain in utility is most likely due to the intervention and 

not due to other factors such as learning and familiarisation. For instance responses have been 

demonstrated to change between three and nine months after receiving a second CI as 

individuals became used to life in their new listening configuration (see Summerfield et al., 2006). 

A comparison could then be made on the utility value before and after implantation to determine 

if the difference in utility is large enough (0.05) for bilateral cochlear implantation in adults to be 

cost-effective. However, despite smaller numbers the trial would still cost £3.2 million to run. 
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Furthermore, the trial would be comparing unilateral cochlear implantation to sequential bilateral 

cochlear implantation which is not what NICE (2009) guidelines suggest as simultaneous cochlear 

implantation can reduce costs due to having only one surgical procedure. 

 

In addition, as previous research has demonstrated that the EQ5D is insensitive to differences in 

hearing ability (e.g. Barton et al., 2005; Grutters et al., 2007), and the HU13 is insensitive to 

differences between ‘some hearing’ and ‘more than some hearing’ (e.g. Lovett et al., 2010), even 

randomized controlled trials with large numbers may not be capable of detecting differences 

between one and two CIs. This could be due to one of two reasons. One possibility is that bilateral 

cochlear implantation does not result in improvements in health-related quality of life. The 

second alternative is that bilateral cochlear implantation does result in improvements in health-

related quality of life but current measures are insensitive to these benefits. This question will be 

addressed in research reported in Chapter 8. 

 

Since the NICE (2009) guidelines on cochlear implantation were published, there have been four 

systematic reviews investigating the cost-effectiveness of bilateral cochlear implantation for 

profoundly deafened adults (Bond et al., 2009; Crathorne et al., 2012; Lammers, Grolman, 

Smulders, & Rovers, 2011; Turchetti et al., 2011). All have met the same conclusion: that there is 

uncertainty on the cost-effectiveness of bilateral cochlear implantation due to the limited 

literature and varied estimated ICERs. Indeed, when reviewing the literature available up until 

2010, only four studies with adults met the inclusion criteria for Lammers et al. (2011) and 

Turchetti et al. (2011). Bond et al. (2009) conducted a sensitivity analysis based on the literature 

published up to July 2007. It was found that at a willingness-to-pay threshold of £30,000 (typical 

of NICE) bilateral cochlear implantation was not deemed to be a cost-effective intervention, even 

if implantation were to occur early in adulthood. The ICER of sequential bilateral cochlear 

implantation in adults was estimated to be £60,301 per QALY, whereas simultaneous bilateral 

cochlear implantation came in at a lower ICER of £49,559 per QALY. These ICERs are above the 

highest willingness-to-pay threshold considered by NICE of £30,000. The most recently published 

systematic review (Crathorne et al., 2012) considers papers that were published up until January 

2012. Whilst able to include several papers investigating the clinical effectiveness of bilateral 

cochlear implantation, only two included papers considered the cost-effectiveness of bilateral 

cochlear implantation (Summerfield et al., 2006, 2002) and these had already been included in 

previous reviews. 
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4.4.3 Literature search 

It is important to continually assess the effectiveness of treatments, as technology improves it is 

possible that greater gains in quality of life may be obtained which may lower the ICER to a more 

acceptable level. As such a literature search was conducted in PubMed (National Center for 

Biotechnology Information, n.d.) and Web of Science (Thomson Reuters, n.d.) in July 2014 using 

the search terms ‘cochlear implant*’ ‘bilateral’ ‘cost utility’ and ‘cost-effective*’ for papers 

published between January 2010 and July 2014. PubMed produced 6 results whereas Web of 

Science produced 15 results. After removing duplications there were 14 results remaining. 

Abstracts were assessed to determine if they met the inclusion criteria. To be included the paper 

must have reported an investigation of the cost-effectiveness of bilateral CIs in adults and not be 

a review. Three papers focused on cochlear implantation in children, six did not investigate cost-

effectiveness, one investigated the cost-effectiveness of bilateral bone anchored hearing aids, and 

three were review papers. One paper met the criteria for inclusion (Chen, Amoodi, & Mittmann, 

2014). In this study three vignettes were administered to four groups of knowledgeable 

informants (post-lingually deafened adults eligible to receive a CI, unilateral CI users, bilateral CI 

users, and expert health professionals). Each vignette described the abilities and challenges of one 

scenario: profound deafness with no intervention, unilateral CI use, and bilateral CI use. 

Participants completed the HUI3 three times, each time considering the health state of one of the 

vignettes. A cost-utility analysis was conducted using the utility values from the HUI3 and costs 

were considered from the perspective of the Canadian ministry of health. Compared to no 

intervention, unilateral cochlear implantation resulted in a gain in utility of .270 and bilateral 

cochlear implantation resulted in a gain of .305. Compared to unilateral cochlear implantation, 

bilateral cochlear implantation resulted in a gain in utility of .035. Whilst the gain in utility from 

unilateral cochlear implantation with Canadian respondents is higher than that found by 

Summerfield et al. (2002), the bilateral gain compared to unilateral cochlear implantation is 

remarkably similar to that from UK informants (see Table 4.1).  Furthermore, consistent with 

Summerfield et al., the ICER of bilateral cochlear implantation compared to the next best 

alternative (unilateral cochlear implantation) was not judged to be a cost-effective intervention. 
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Table 4.1. Summary of studies investigating the utility gain associated with bilateral cochlear implantation compared 

to unilateral cochlear implantation. 

Study Method Participants Mean gain in 
utility 

Summerfield et al. (2002) Time-trade-off technique Professional informants .031 

Summerfield et al. (2006) HUI3 at 3 months post 
implantation 

CI users .021 

HUI3 at 9 months post 
implantation 

.030 

Chen et al. (2014) HUI3 completed 
considering description of 
clinical scenarios. 

Professional informants .080 

CI candidates .030 

Unilateral CI users .030 

Bilateral CI users .000 

All .035 

 

4.5 Conclusion 

Unilateral cochlear implantation is a cost-effective intervention for profoundly deafened adults. 

Based on the low cost of a contralateral hearing aid it is likely that bimodal aiding is also be a cost-

effective intervention (see Appendix C). It is unlikely that bilateral cochlear implantation in adults 

compared to unilateral cochlear implantation is a cost-effective intervention at current willingness 

to pay thresholds. Few studies have investigated this issue, and those that have done relied on 

estimates from normally hearing adults or small numbers of CI users. Furthermore, quality of life 

has been measured using available generic instruments such as the HUI3 and EQ5D, which are 

limited in their ability to detect differences between groups that differ in their hearing ability. It 

may be that bilateral cochlear implantation could be a cost-effective intervention but current 

instruments are insensitive to differences in health-related quality of life between monaural and 

binaural hearing. This question will be addressed in Chapter 8. 

4.6 Summary 

 Utility is the standard measure of a health state where a value of 1 corresponds to perfect 

health and a value of 0 corresponds to being dead. 

 The time-trade-off and standard gamble are two techniques used to evaluate the utility of 

health states. 
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 Current generic questionnaires such as the EQ5D and HUI3 can be used to assign a utility 

value to a given health state to measure health-related quality of life without requiring 

respondents to master the cognitive demands of the standard gamble or the time-trade-

off methods. 

 The EQ5D is not very sensitive to differences in hearing ability. The HUI3, whilst sensitive 

to the difference between ‘some hearing’ and ‘no hearing’, is less sensitive to the 

difference between ‘some hearing’ and ‘more than some hearing’. 

 Utility values can be used to determine the number of quality adjusted life years (QALYs) 

an individual gains from a given treatment. 

 Cost-effectiveness analyses compare a treatment to the next best alternative using the 

incremental cost and the incremental benefit (expressed in QALYs) to generate an 

incremental cost-effectiveness ratio. 

 Although there is no strict threshold, in practice the NHS will typically not fund treatments 

where the cost of gaining one QALY exceeds £30,000. 

 The current literature on the cost-effectiveness of bilateral cochlear implantation in adults 

is sparse and varied.
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5 Binaural advantages from a contralateral acoustic hearing aid or 

a second cochlear implant 

 

Adult users of a single CI who wish to aid their non-implanted ear can either receive a 

contralateral acoustic hearing aid (bimodal devices) or pay to receive a second CI (bilateral 

cochlear implantation). This chapter reports an experiment which sought to inform this choice by 

comparing the benefits of each option for patients in the UK. Twelve bimodal users and twelve 

bilateral CI users completed a battery of listening tasks. The test battery included tasks for which 

participants could benefit from the head shadow and tasks for which participants might benefit 

from access to low-frequency information. Participants completed two sessions. In one session 

participants used their first (or only) CI, and in the other session participants used both their 

devices. Comparisons were made between monaural and binaural listening to assess whether 

provision of a second device resulted in improvements in listening ability. Furthermore, 

comparisons were made between the benefit obtained from a second CI and the benefit obtained 

from a contralateral acoustic hearing aid to determine which option provided the greater benefit. 

Limited benefit from bimodal aiding was found, although participants did benefit from a 

contralateral acoustic hearing aid when localising sound sources. As expected, bilateral CI users 

benefitted from a second CI on tasks where the head shadow could be exploited. In comparing 

the two options, a greater binaural advantage was found from using a second CI. Nevertheless, a 

contralateral acoustic hearing aid was found to improve localisation accuracy and is an affordable 

option for individuals with residual hearing in their non-implanted ear. 

5.1 Introduction 

Whilst previous research has highlighted that a contralateral acoustic hearing aid and a second CI 

each provide benefits over a single CI (see Chapter 2), no clear conclusion has been drawn as to 

which option is more effective (Ching, Van Wanrooy, & Dillon, 2007; Sammeth, Bundy, & Miller, 

2011). However, the majority of research assessing binaural advantages from bimodal aiding has 

been conducted outside the UK with a large proportion being conducted with patients in the USA. 

Candidacy requirements for a CI are more relaxed in the USA than in the UK, meaning that 

individuals may be implanted with greater levels of residual hearing than those in the UK (see 

Chapter 2). Indeed participants in a USA study reported by Zhang et al. (2010) had a mean 

unaided three-frequency average (250, 500 and 1000 Hz) pure tone threshold of 53dB HL. Under 

current guidelines (NICE, 2009) a UK adult with this level of residual hearing would not be a 

candidate for a CI. Therefore it may be that the bimodal benefits that have been demonstrated 

may not be realised for UK CI users. 
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There were a number of aims of the present study that are particularly relevant to UK users of CIs 

and also to clinicians. Firstly, this study sought to measure the benefit provided by a second CI on 

a range of listening tasks. Secondly, this study aimed to measure the benefit provided by a 

contralateral acoustic hearing aid. Thirdly, this study aimed to compare the benefit obtained with 

each option (a second CI and a contralateral acoustic hearing aid) to determine which option 

provides the greater benefit. As previous research has highlighted a trade-off in listening abilities 

between the two options (see Chapter 2), a variety of listening tasks were included that broadly 

covered three key aspects of listening: spatial listening, speech perception, and sound quality 

tasks. To assess benefit from a second device, participants in this study completed two sessions. 

They undertook the tasks in one session using their normal configuration (either bimodal aiding or 

bilateral CIs) and undertook the tasks in the other session using their first or, in the case of the 

bimodal users, their only CI. Based on findings from previous research (see Chapter 2), it was 

hypothesised that a greater benefit would be derived from a second CI on spatial listening tasks 

where the head shadow could be exploited, whereas a contralateral acoustic hearing aid would 

provide a greater benefit for tasks involving pitch perception, as the hearing aid would provide 

access, albeit limited, to low-frequency information. A unilateral CI group were tested as a control 

group to check for any learning effects or effects of unfamiliarity amongst the bimodal and 

bilateral groups with one CI. 

5.2 Method 

5.2.1 Participants 

Three groups of participants completed the listening battery. 12 bilateral CI users (mean age = 

64.8 years, SD = 7.7), 12 bimodal users (mean age = 59.4, SD = 16.4), and 11 unilateral CI users 

(mean age = 64.8 years, SD = 20.1). Participant information is shown in Table 5.1. The unaided 

pure-tone thresholds for the non-implanted ear of bimodal participants are shown in Figure 5.1. 

Five unilateral CI users included in the analyses (see section 5.2.6) had some measurable residual 

hearing remaining in their non-implanted ear. Their hearing thresholds are shown in Figure 5.2. 

Participants responded to a letter printed in the National CI Users Association magazine asking for 

participants to take part in this study.
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Table 5.1.Summary demographic information of participants. AB indicates Advanced bionics device. 

Participant 
number 

Group Age (in 
years) 

Gender 1st CI ear 1st CI type Approximate 
length of use of 

1st CI (years) 

2nd CI type Approximate 
length of use 

of 2nd CI 
(years) 

205 Bilateral 64.2 Female Right Med-El 16.0 Med-El 7.0 
203 Bilateral 61 Male Left Med-El 15.1 Med-El 10.1 
201 Bilateral 72.3 Female Right Cochlear 4.9 Cochlear 2.2 
206 Bilateral 63.5 Female Left Med-El 10.6 Med-El 10.3 
208 Bilateral 52.6 Male Right Cochlear 16.2 Cochlear 10.2 
480 Bilateral 66.6 Female Left Cochlear 6.4 Cochlear 4.4 
212 Bilateral 63.2 Male Right AB 7.3 AB 4.3 
488 Bilateral 64.6 Male Left Cochlear 14.4 Cochlear 0.8 
213 Bilateral 69.9 Male Left Cochlear 12.8 Cochlear 11.4 
214 Bilateral 50.9 Male Left Cochlear 3.6 Cochlear 1.7 
215 Bilateral 77.2 Male Left Cochlear 11.8 Cochlear 10.8 
216 Bilateral 71.6 Female Left AB 4.9 AB 2.7 
312 Bimodal 72.9 Female Left AB 3.3   
111 Bimodal 75.4 Male Left AB 7.6   
306 Bimodal 65.8 Male Left Med-El 1.6   
303 Bimodal 70.5 Female Right Cochlear 4.1   
310 Bimodal 66.0 Male Right AB 3.5   
486 Bimodal 66.3 Female Right AB 9.2   
481 Bimodal 58.5 Female Right Cochlear 1.4   
484 Bimodal 35.9 Male Right AB 11.8   
323 Bimodal 59.3 Female Left Cochlear 2.8   
324 Bimodal 24.2 Female Right AB 10.1   
317 Bimodal 44.2 Female Left Cochlear 12.0   
326 Bimodal 74.4 Male Left Med-El 2.1   
131 Unilateral 68.7 Male Left Cochlear 4.8   
134 Unilateral 77.2 Male Left Cochlear 14.2   
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Table 5.1.Summary demographic information of participants. AB indicates Advanced bionics device. 

Participant 
number 

Group Age (in 
years) 

Gender 1st CI ear 1st CI type Approximate 
length of use of 

1st CI (years) 

2nd CI type Approximate 
length of use 

of 2nd CI 
(years) 

104 Unilateral 88.1 Male Left Cochlear 9.1   
126 Unilateral 82.0 Male Right Cochlear 9.5   
168 Unilateral 67.5 Male Right Cochlear 10.4   
489 Unilateral 72.0 Female Left Cochlear 4.6   
135 Unilateral 78.8 Male Right AB 12.7   
301 Unilateral 30.5 Male Left AB 7.4   
118 Unilateral 62.4 Female Left Med-El 8.4   
325 Unilateral 52.4 Male Left Cochlear 0.9   
167 Unilateral 59.6 Female Right Cochlear 8.6   
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Figure 5.1. Average unaided pure tone thresholds of the non-implanted ear of the bimodal participants (thick black 

line). Dashed grey lines show individual thresholds. 

 

Figure 5.2. Unaided pure tone thresholds of the non-implanted ear of the five unilateral participants who had some 

measureable hearing (Patient numbers 134 (•), 104 (▪), 126 (x) ,  168 and 489 (both +). 
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5.2.2 Apparatus 

All listening tests were administered using the AB-York Crescent of Sound (Kitterick, Lovett, 

Goman, & Summerfield, 2011). This apparatus (Figure 5.3) consists of nine loudspeakers 

positioned in a semi-circular array with a radius of 149cm. Loudspeakers are positioned at a 

height of 1.1m and located at ±90°, ±60°, ±30°, ±15°, and 0° azimuth. Where 0° azimuth is directly 

in front of the listener and negative angles correspond to locations to the left of straight ahead 

and positive angles correspond to locations to the right of straight ahead. Below each of the 

loudspeakers from -60° through to +60°, is a 15 inch visual display unit. The Crescent of Sound is 

situated within an Industrial Acoustic Corporation (IAC) single-walled enclosure situated within a 

larger sound-treated room. A touch-screen is situated in front of the participant. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3. Diagram showing the crescent of sound arrangement in relation to the participant. 

 

The loudspeaker array was calibrated using a Brüel and Kjaer 0.5 inch microphone (Type 4189) 

and sound level meter (Type 2260 Investigator). The outputs from each loudspeaker were 

adjusted so that an octave band of noise centered on 1 kHz was presented at the same intensity 

(±0.5dB) in the centre of the arc with the participant absent. 

5.2.3 Listening Test battery 

A variety of different listening tests were used. Some of the tests were developed by Lovett, 

Kitterick, Huang, and Summerfield (2012). 

5.2.3.1 Localisation 

This test assessed how well participants can localise sound in the horizontal plane. On each trial 

the phrase “Hello what’s this?” spoken by a female talker was presented from one loudspeaker. 

The level of the phrase was varied randomly from trial to trial so that participants did not base 

their decisions entirely upon intensity cues. There were eleven possible presentation levels 

+90° -90° 

0° +15° -15° 
+30° -30° 

+60° -60° 

Loudspeaker 

Visual display unit 

Touch screen 
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(ranging from 65dB SPL to 75 dB SPL in 1dB steps). The participant’s task was to indicate which 

loudspeaker the stimulus was presented from. There were three versions of this task, each 

containing 30 trials, with an equal number of presentations from each possible loudspeaker. The 

percentage of correct responses was measured for each version of the task. In the 3-alternative 

(60° separation) version of the task, three loudspeakers were used (-60°, 0°, and +60° azimuth). A 

training phase was completed before the first run to familiarise participants with the task. The 

training phase consisted of three trials, presented in a random order, one from each of the three 

alternative locations. In the 5-alternative (30° separation) version, there were five possible 

locations separated by 30° (-60°, -30°, 0°, 30°and 60°). In the 5-alternative (15° separation) 

version, there were five possible locations separated by 15° (-30°, -15°, 0°, 15°and 30°). 

5.2.3.2 Movement tracking 

This task assessed whether a participant could track the trajectory of a moving sound. There were 

two sets of stimuli for this task which simulated a person walking or a horse galloping. There were 

four possible trajectories. The sound could either move from left to right (starting at -90° and 

finishing at +90°), from right to left (starting at +90° and finishing -90°), from the left to the centre 

and back to the left (both starting and finishing at -90°), or from the right to the centre and back 

to the right (both starting and finishing at +90°). Thus there were 8 movement tracking trials (2 

stimuli x 4 trajectories). All nine loudspeakers were used in this task with stimuli being presented 

at 65dB SPL. The stimuli were presented in a stepped manner between loudspeakers. The 

stimulus began at either +90° or -90° then moved inwards in 15° intervals. The stimuli at ±75° and 

±45° were simulated by presenting stimuli from adjacent loudspeakers at half the intensity. 

Previous research has indicated that listeners perceive these stimuli as a continuous smooth 

movement (Lovett et al., 2012). Prior to the first trial, participants were informed that the sound 

would start either on their left or right and would finish on either their left or right. A trial was 

scored correctly if the participant correctly identified where the trial began and where the trial 

ended. The percentage of correct responses was measured. 

5.2.3.3 Speech in quiet 

This test measured participants’ ability to understand speech in quiet. On each trial a sentence 

was presented from 0° azimuth at an average level of 70 dB SPL. The participant’s task was to 

repeat back the sentence as best they could. Each sentence contained a number of keywords and 

the experimenter recorded which keywords were reported correctly by using a loose scoring 

method. Using this method, a keyword was scored as correct if the root of the word was 

identified correctly so errors of tense or plurality were not scored as incorrect. Two versions of 

this task were completed: simple sentences and complex sentences.  
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Simple sentences 

The sentence corpus consisted of 20 lists of 16 semantically neutral sentences from the Bamford-

Kowal-Bench (BKB) corpus (Bench, Kowal, & Bamford, 1979). Each sentence contained three or 

four keywords and was spoken by a male talker with a British accent with clear articulation. Each 

list contained a total of 50 key words. The lists used were counterbalanced across participants. 

Unilateral CI users completed two lists during session one and another two lists during session 

two. The average percentage of keywords correctly identified across both sessions was calculated. 

Bimodal and bilateral CI users completed six lists during one session with performance on two 

lists being measured for each configuration (first (or only) CI, second device, and both devices). 

The percentage of keywords correctly identified for each configuration was calculated. 

Complex sentences 

The sentence corpus consisted of 25 lists of 30 sentences from the Harvard IEEE sentences corpus 

(Rothauser et al., 1969), spoken by a male and a female talker. Each sentence contained five 

keywords, thus there were 150 keywords per list. For each session, participants completed two 

lists, one spoken by a female talker and one spoken by a male talker. This was counterbalanced 

across sessions so that individuals, who completed the male talker condition first in session one, 

completed this condition second in session two. The percentage of keywords correctly identified 

when listening to the male talker, when listening to the female talker, and overall was measured. 

5.2.3.4 Speech in concurrent and spatially separated noise 

This test assessed speech perception in the presence of background noise. On each trial the 

phrase ‘Point to the OBJECT’ spoken by a female talker was presented from the loudspeaker 

situated in front of the participant (0° azimuth). On each trial ‘OBJECT’ was randomly selected 

from one of twelve possible objects (cow, cup, duck, fork, horse, house, key, plane, plate, shoe, 

spoon or tree), with the constraint that the same object could not be presented on two 

consecutive trials. The participants’ task was to identify which object was mentioned in the 

phrase. Response options were displayed on a touch screen in front of the participant together 

with an ‘uncertain’ response option. In addition to the target speech, broadband pink noise was 

also presented from one loudspeaker. There were three versions of this task. The noise was either 

presented spatially concurrent with the speech from the loudspeaker situated in front of the 

participant (0° azimuth), or spatially separated from the speech to the left of the participant (-90°) 

or to the right of the participant (+90°). 

 

For each version of the task an adaptive procedure was followed. The initial trial presented the 

speech at 60dB SPL and the noise at 30-38 dB SPL chosen randomly (thus a Signal-to-Noise Ratio 

(SNR) of +22 to +30 dB). An adaptive procedure was used for each run to measure the speech 
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reception threshold (SRT). The SRT was defined as the SNR at which participants were able to 

identify the object in the sentence with an accuracy of 70.7% correct. A one-up-one-down 

adaptive procedure was used with a step size of 6dB for the first two reversals. A reversal was a 

change in direction of the SNR. Thereafter a two-down-one-up adaptive procedure was used with 

a step size of 3dB for 6 reversals. The SRT was calculated from the average SNR at these last 6 

reversals. On each session participants completed a practice run to familiarise themselves with 

the task. This consisted of one run of the noise front version of this task. Two runs of each version 

of the task were competed in each session and an average SRT for each version was calculated. 

5.2.3.5 Speech in speech 

This test assessed speech perception in the presence of competing speech. Three versions of this 

task were completed. One version assessed speech perception in the presence of one other 

talker, whilst the other two versions assessed speech perception in the presence of multiple 

talkers. Each sentence took the form “Ready CALL-SIGN go to COLOUR NUMBER now.” There 

were eight possible call signs (Arrow, Baron, Laker, Charlie, Hopper, Tiger, Eagle, and Ringo), four 

possible colours (blue, red, green and white), and four possible numbers (1, 2, 3, 4). Thus an 

example sentence is “Ready Charlie go to blue two now”. Sentences were spoken by four female 

talkers and four male talkers.  Seven were native British-English talkers, whilst one male was a 

native Irish talker. Thus the corpus consisted of 1024 sentences (8 call signs x 4 colours x 4 

numbers x 8 talkers). On each trial the participants’ task was to identify the colour and number in 

the target sentence. A response was scored correctly if both the colour and number were 

identified correctly. For each trial, the target sentence was randomly selected from one of the 

sentences containing the call sign ‘Baron’. The competing sentence(s) were selected from the 

remaining sentences which did not contain the call-sign Baron, did not contain the same colour-

number co-ordinate as the target sentence, and were not spoken by the talker saying the target 

sentence. The SRT was calculated for each version of the task. The SRT was defined as the target 

to masker ratio (TMR) at which participants were able to correctly identify the colour and number 

in the target sentence with an accuracy of 50% correct.  

 

One other talker 

On each trial two sentences were presented simultaneously, one target sentence and one 

competing sentence, both from the loudspeaker situated at 0° azimuth. A masker of the opposite 

gender to the target talker was randomly selected on each trial. Each run began with the target 

voice presented at 60dB SPL and the masker sentence presented at 30dB SPL (thus a TMR of 

+30dB). TMR changes were achieved by varying the intensity of either the target or the masker 

sentence. Positive TMRs were achieved by keeping the level of the target fixed at 60dB SPL but 
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varying the level of the masker. For a negative TMR the level of the masker talker was fixed at 

60dB SPL and the level of the target talker was varied. A one-up-one-down adaptive procedure 

was used. The step-size was 10dB for one reversal, then 5dB for one reversal, then 2.5dB for 

fifteen trials. Using the method outlined by Plomp and Mimpen (1979), thresholds from the final 

14 trials and the threshold at which the 15th trial would have been presented at were averaged to 

estimate the SRT. Two runs of this task were completed in each session and the average SRT was 

calculated.  

Multiple talkers 

On alternating trials a target sentence was presented in the presence of either six or twelve 

competing talkers.  In the six-masker version of the task, sentences were presented in an 

overlapping sequential manner wherein one sentence started every 800ms. Each sentence was 

spoken by a different talker and the target sentence was either the 3rd, 4th or 5th sentence. In the 

12-masker version of the task, sentences also started every 800ms. Two masker sentences were 

presented concurrently and the target sentence was either the 7th, 9th or 11th sentence which 

ensured competing sentences fully overlapped with the target sentence. The SRT was calculated 

using the same method as the one other talker version of the task discussed above. Two runs of 

this task were completed in each session and the average SRT was calculated. 

5.2.3.6 Vocal emotion recognition 

The corpus contained 32 semantically neutral BKB sentences spoken by a male and female talker 

in five emotions (angry, anxious, happy, sad and neutral). These five emotions were chosen as 

they cover a range of emotional states and there are acoustical differences in their expression 

(Pittam & Scherer, 1993). For instance, compared to neural utterances, angry and happy 

utterances have a higher mean f0, higher intensity and often a higher rate of articulation. Anxious 

utterances also have a higher mean f0, whereas sadness on the other hand, is characterised by a 

lower mean f0, lower intensity and slower rate of articulation. Vocal emotion recognition was 

measured by using a five-alternative forced-choice task. Participants were shown the five possible 

options ‘angry’, ‘anxious’,  ‘happy’, ‘sad’, and ‘neutral’. For both talkers, the five sentences from 

each emotion category that were most recognisable as belonging to that category by normal 

hearing listeners were selected. Thus, the sub-set used in this study contained 50 utterances (2 

talkers x 5 emotions x 5 sentences). Three normally-hearing listeners were able to identify the 

vocal emotion of these sentences with 96% accuracy. On each trial a single sentence was 

randomly selected from the sub-set and was presented at 70 dB SPL from 0° azimuth. Participants 

were instructed to indicate, from the five options, the emotional tone of the voice for each trial. 

Two versions of this task were completed in each session. In one version, the original recordings 

were presented. In the other version (‘normalised version’) the average root-mean-square (RMS) 
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power across the sentences was normalised so that listeners could not rely on differences in 

amplitude. The order of the two versions was counterbalanced so that individuals, who 

completed the original version first in session one, completed the original version second in 

session two. The percentage of correct responses was calculated for the original condition, the 

normalised condition, and overall. 

5.2.3.7 Melody recognition 

This task assessed how well participants were able to use changes in pitch to recognise a simple 

tune. Ten simple and familiar tunes (see Appendix D) comprised of single notes were synthesised. 

Rhythmic information was removed by keeping the duration of each note the same. Thus the only 

cue remaining for listeners to identify the tune was changes in pitch. A similar procedure has been 

used elsewhere (Moore & Rosen, 1979; Kong et al., 2005). Before completing the task, 

participants were shown the names of the tunes and asked if there were any that they did not 

recognise. Throughout the task the names of the tunes were displayed in front of the participant. 

A practice run was conducted to familiarise participants with the task and the stimuli being used. 

The practice run contained 10 trials, with each trial containing a single tune. The tune was 

presented at 0° azimuth at 70dB SPL. Participants were asked to indicate which tune they thought 

was presented. Feedback was provided and regardless of whether the participant was correct or 

not, the tune was repeated. Following the practice, a 20-trial run was completed. The run 

contained two instances of each tune presented in a random order. Participants indicated which 

tune they thought they had heard. If the participant was unsure they were encouraged to make a 

guess; if they were unwilling to guess a null response was recorded by the experimenter. The 

percentage of correct responses was scored. 

 

5.2.4 Design 

A mixed design was used. Participants completed two sessions held on separate days, each lasting 

about three hours. In one session the bimodal and bilateral groups completed the listening tasks 

using both their devices. In the other session the bilateral and bimodal groups completed the 

listening tasks using their first (or only) CI. The ordering of the sessions was counterbalanced 

across participants within each group. This enabled within-group analyses to be conducted to 

assess the benefit (if any) from a second device. The unilateral group also completed two 

sessions. They served as a comparison group in order to check for the effects of learning and to 

check that the bimodal and bilateral groups were not unfairly disadvantaged due to unfamiliarity 

when performing with their first (or only) CI. The between-subjects aspect of the design allowed 

comparisons between the benefit provided by a second CI and the benefit provided by a 

contralateral acoustic hearing aid. 
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5.2.5 Procedure 

Pure-tone audiometry was conducted within a double-walled sound attenuated IAC booth to 

measure the hearing thresholds in the non-implanted ear of participants in the bimodal and 

unilateral groups. The procedure set out by the British Society of Audiology (BSA, 2004) was 

followed, with thresholds measured for each ear at 250Hz, 500Hz, 1000Hz, 2000Hz and 4000Hz. 

All participants completed the listening tasks in the same order with the exception that some 

participants found certain tasks extremely challenging. As a result, rather than completing all runs 

of a task in one go and risking the frustration and disengagement of the participant, completion of 

some tasks was postponed to a later stage of the session. All participants attempted the listening 

tasks in the following order with regular breaks: 

 Speech in quiet: simple sentences 

 Localisation 

 60 degree separation 

 30 degree separation 

 15 degree separation 

 Speech in noise 

 Version A2 

 Version B 

 Version C 

 Version C 

 Version B 

 Version A 

 Speech in quiet: complex sentences 

 Gender A3 

 Gender B 

 Speech perception in the presence of one other talker x 2 

 Speech perception in the presence of multiple talkers (Run 1) 

 Vocal emotion Identification 

 Version 14 

 Version 2 

 Melody Recognition 

                                                           
2
 Where Versions A, B and C correspond to the three versions of this task. The ordering was counterbalanced 

between sessions and across participants. 
3 Where Genders A and B correspond to male or female. The ordering was counterbalanced between 
sessions and across participants. 
4 Where Versions 1 and 2 correspond to original or normalised. The ordering was counterbalanced 
between sessions and across participants. 
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 Speech in the presence of multiple talkers (Run 2) 

The eight movement tracking trials were interspersed throughout the session. 

5.2.6 Analyses 

Three unilateral CI users (118,167 and 325) are not included in the analyses. One participant (167) 

only completed one session. Participants 118 and 325 were unable to complete all the tasks. 

These two participants had modified Z-scores (Iglewicz & Hoaglin, 1993) on the speech in quiet 

task using simple sentences greater than 3.5. One bimodal participant (326) had particular 

difficulty with the speech in speech tasks which resulting in elevated thresholds so high that it 

effectively became a speech in quiet task. Therefore data from participant 326 are not included in 

the analyses on the speech in speech tasks. As there were multiple comparisons a Bonferroni 

correction was applied (.05/15) for the listening tasks. As there were multiple comparisons a 

Bonferroni correction was applied (.05/15) for the listening tasks thus the alpha level was 

adjusted to be .003. Normality was tested using the Sharipo-Wilk test (also Bonferroni corrected). 

Statistical tests were conducted with SigmaPlot Version 12.0. 

 

In comparing performance with one or two devices, paired samples t-tests were conducted for 

each task. If the assumption of normality was not met, a Wilcoxon signed ranks test was used. In 

comparing performance with one CI across the three groups, analyses of variance were 

conducted. In order to present a summary of the overall pattern of the data, raw scores from all 

the tasks were converted to Z-scores enabling comparisons to be made between the tasks in 

terms of the degree of benefit received from a second device. 

5.3 Results 

5.3.1 Familiarity with configurations and learning 

No significant differences were found between the three groups when using one CI on any of the 

listening tasks. Thus there was no disadvantage for the bilateral and bimodal patients in the 

condition where they were using their first (or only) CI. No learning effects were observed with no 

significant differences in performance by unilateral CI users found between session one and 

session two. 

 

5.3.2 Monaural Vs binaural hearing 

5.3.2.1 Summaries 

Scores on the listening tasks were standardized and converted to Z-scores to illustrate the general 

pattern of performance on the battery of listening tasks. Performance results on each of the tasks 
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will be discussed in greater detail in the following sections. Figure 5.4 shows the overall pattern of 

performance on the battery of listening tasks by the bilateral group. It can be seen that users 

received a significant benefit from using a second CI on spatial listening tasks. Speech perception 

in quiet shows a trend to be better with two CIs although this is not significant. When listening to 

speech in noise, performance was significantly improved from the addition of a second CI when 

noise was presented on the side ipsilateral to the users’ first CI. However, no advantage from a 

second CI is found when noise was presented from the side contralateral to the users’ first CI or 

when the noise was spatially concurrent with speech. Performance on the quality of sounds tasks 

showed no advantage from a second CI.  

 

 

Figure 5.4. Standardized mean performance on the listening battery for the bilateral group. Spatial, speech and 

qualities of listening tasks are shown in blue, green and red respectively. Scores to the right of the central line 

indicate performance was numerically better with two CIs. Error bars show 95% confidence intervals. SP = speech 

perception. A significant difference between monaural and binaural listening after a Bonferroni correction had been 

applied is indicated by asterisks (*** indicates p<.001 and ** indicates p<.01). 

 

Figure 5.5 shows the overall pattern of performance on the battery of listening tasks for bimodal 

users. It can be seen that performance on spatial listening tasks shows a trend to be better with 

two devices although a significant benefit was found only for localising sound sources separated 

by 15°. There is no significant advantage from a second device on any of the speech tasks. 

Performance on the vocal emotion tasks shows a trend for a two device advantage although no 

significant benefit was found. Furthermore no advantage from a contralateral acoustic hearing aid 

was found for the melody recognition task. 
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Figure 5.5. Standardized mean performance on the listening battery by the bimodal group. Spatial, speech and 

qualities of listening tasks are shown in blue, green and red respectively. Scores to the right of the central line 

indicate performance was numerically better with two devices. Error bars show 95% confidence intervals. SP = 

speech perception, A significant difference between monaural and binaural listening after a Bonferroni correction 

had been applied is indicated by an asterisk (* indicates p<.05). 

5.3.2.2 Spatial listening 

Sound localisation 

Mean performance on the three versions of the localisation task for both the bilateral and 

bimodal groups is shown in Figure 5.6. For the bilateral group performance was significantly 

higher than chance when localising sources separated by 60° and 30° in both listening 

configurations. However, when localising sounds separated by 15°, performance was only 

significantly greater than chance when listening with two CIs. Paired samples t-tests showed that 

localisation accuracy was significantly higher with two CIs than one when localising sounds at each 

level of separation (60°: t(11) = -12.08, p<.001, 30°: t(11)=-5.98, p<.001, and 15°: t(11) = -7.13, 

p<.001). 

 

For the bimodal group, performance on all three versions of the localisation task was not 

significantly different from chance when using one CI. However, performance with bimodal 

devices was significantly higher than what would have been expected by chance for all three 

versions of the task. Although performance was numerically higher with two devices for all three 

versions of the task, no significant differences were found between the two listening 

configurations for the 60° separation (t(11)= -2.37, p= .037) or 30° separation (t(11)=-2.11, p=.059) 
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versions of the task. However, localisation accuracy on the 15° separation version of the task was 

significantly greater with two devices than one (t(11) = -3.94, p=.002).  

 

Figure 5.6. Mean localisation performance with one (yellow bars) and two (grey bars) devices when sounds were 

separated by (a) 60°, (b) 30°, and (c) 15°. Left column shows data from the bilateral group and the right column shows 

data from the bimodal group. Error bars show 95% confidence intervals. The thick black line shows chance 

performance for the task.  

Movement tracking 

The bilateral group displayed more accurate performance tracking moving sounds when using two 

CIs (mean = 80.21%, SD = 26.36) than when using one CI (mean = 31.25%, SD =21.65). A paired 

samples t-test showed this difference to be significant (t(11) = -9.84, p<.001). For the bimodal 

group, although performance when tracking moving sounds was numerically higher with two 

devices (mean = 41.67%, SD = 31.68) than one device (mean = 27.08%, SD = 20.53), this difference 

was not significant (t(11) = -1.63, p=.131). For both groups, performance with one device did not 

differ significantly from chance (25%), however performance with two devices was significantly 

greater than chance. 
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5.3.2.3 Speech perception 

Speech perception in quiet 

Simple sentences 

Mean performance by the bilateral and bimodal groups for each listening configuration is shown 

in Table 5.2. High accuracy was achieved by the bilateral group for all three listening 

configurations. The data were not normally distributed so a Friedman repeated measures ANOVA 

on ranks was conducted which showed no significant differences in mean scores across listening 

configurations (χ2(2)= 5.86, p=.053). The bimodal group achieved accurate speech perception in 

quiet scores when listening with both their devices or their CI alone. However performance was 

very poor when listening with just their acoustic hearing aid. The data were not normally 

distributed so a  Friedman repeated measures ANOVA on ranks was conducted which showed 

that there was a significant main effect of listening configuration (χ2(2)= 19.60, p<.001). Post-hoc 

comparisons using the Tukey HSD test revealed that there were no significant differences in the 

percentage of keywords correctly identified when using both devices and when using the CI alone 

(p=.839). However significantly fewer keywords were correctly identified with the hearing aid 

alone than when listening with both devices or the CI alone (both p<.001). 

 

Table 5.2. Mean percentage of keywords correctly identified in quiet by the bilateral and bimodal groups when using 

both devices, the first (or only)  CI alone and the second device alone. SD in parentheses. 

 Bilateral group 

Mean (SD 

Bimodal group 

Mean (SD) 

Both devices 94.92 (10.14) 88.08 (22.92) 

First (or only) CI  86.92 (16.07) 83.25 (27.71) 

Second device only 89.00 (17.35) 15.92 (25.43) 

 

Complex sentences 

Mean performance is shown in Table 5.3. Performance was numerically higher with two devices 

than one for both groups however paired samples t-tests revealed no significant difference 

between monaural and binaural listening for either group (all p>.003). Both the bilateral and 

bimodal groups had significantly higher mean speech perception scores when listening to the 

male talker than the female talker when using one device (bilateral: (t(11) = 5.76, p<.001; 

bimodal: t(11) = 4.40, p=.001) and when using two devices(bilateral: t(11) = 3.24, p=.008; bimodal: 

t(11) = 4.01, p=.002). 
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Table 5.3. Mean percentage of keywords correctly identified in quiet by the bilateral and bimodal groups when using 

one or two devices. SD in parentheses. 

 Bilateral group Bimodal group 

 First CI Both implants Implant only Bimodal aiding 

Male talker 77.56 (23.39) 89.77 (16.36) 76.17 (28.59) 79.94 (26.88) 

Female talker 65.83 (24.83) 83.44 (20.27) 63.61 (29.74) 65.20 (30.85) 

Average 71.70 (23.86) 86.61 (18.10) 69.89 (28.75) 72.58 (28.23) 

 

Speech perception in noise 

Table 5.4 shows the mean SRTs for the three noise conditions when using one or two devices. In 

comparing monaural and binaural performance for the bilateral group, no significant difference in 

SRTs was found when noise was spatially concurrent with the speech (t(11) = 2.82, p=..017) or 

when noise was presented on the side contralateral to the first CI (t(11) = -1.21, p=.250). When 

the noise was presented on the side ipsilateral to the first CI, performance was significantly better 

with two CIs compared to one CI (t(11) = 8.27, p<.001). For the bimodal group no significant 

difference in performance between monaural and binaural listening was found for any of the 

three versions of the task (all p>.003). 

 

The spatial release from masking was calculated for both sides for both groups. For the bilateral 

group, when using one CI the mean SRT worsened by 1.43dB (SD = 4.08) when the noise was 

moved from the front to the side ipsilateral to the first CI. When the noise was moved from the 

front to the side contralateral to the first CI mean performance improved by 6.62dB (SD = 3.29). 

When using two CIs the mean performance improved by 2.55dB (SD = 3.44) when the noise was 

moved to the side ipsilateral to the first CI, and improved by 2.26dB (SD = 3.44) when the noise 

was moved to the side contralateral to the first CI. For the bimodal group when the noise was 

moved from the front to the side ipsilateral to the CI, mean performance worsened by 2.43dB (SD 

= 2.02) when listening with one device and worsened by 3.10 dB (SD = 3.73) when listening with 

two devices. When the noise was moved from the front to the side contralateral to the CI mean 

performance improved by 5.33 dB (SD = 2.08) when listening with one device and improved by 

4.53dB (SD = 3.14) when listening with two devices. 
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Table 5.4. Mean SRTs (dB) for the speech perception in noise task by the bilateral and bimodal groups with one CI 

and with two devices. Also shown is the mean spatial release from masking (in dB). SD in parentheses. 

 Bilateral CI users Bimodal users 

 First CI Both 

implants 

Implant 

only 

Bimodal 

aiding 

Noise spatially concurrent with speech:     

Noise in front of listener 4.84 (6.29) 1.69 (4.11) 3.78 (4.91) 2.98 (4.71) 

Noise spatially separated from speech:     

Noise ipsilateral to first device 6.27 (6.21) -0.86 

(6.97) 

6.22 (6.23) 6.07 (7.30) 

Noise contralateral to first device -1.78 

(4.85) 

-0.57 

(7.29) 

-1.55 

(4.63) 

-1.55 (3.81) 

Spatial release from masking (1st device) -1.43 

(1.08) 

2.55 (3.44) -2.43 

(2.02) 

-3.10 (3.73) 

Spatial release from masking (2st device) 6.62 (3.29) 2.26 (3.92) 5.33 (2.08) 4.53 (3.14) 

 

Speech perception in speech 

Participants completed three speech in speech tasks; one with one spatially concurrent 

competing talker, another with six spatially separated competing talkers and a third with twelve 

spatially separated competing talkers. As can be seen from Table 5.5, for bilateral CI users, 

performance was numerically better when using two CIs compared to one CI for all three versions 

of the task. The improvement from the addition of a second CI on the six spatially separated 

competing talker version of the task was significant (t(11) = 4.83, p<.001) but the improvement 

was not significant in the one competing talker (t(11) = 2.74, p=.019) or the twelve competing 

talkers (t(11)=2.11, p=.058) versions of the task. When using one CI the bilateral group performed 

best when there was one competing talker, but SRTs for the six and twelve competing talkers 

were similar. When using two CIs performance worsened numerically as the number of 

competing talkers was increased. For the bimodal group in both listening conditions performance 

worsened numerically as the number of competing talkers increased although the differences 

between monaural and binaural listening on the three versions of the task were not significant. 
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Table 5.5. Mean SRTs by the bilateral and bimodal groups for the three speech in speech tasks when using one or two 

devices. SD in parentheses. 

 Bilateral group Bimodal group 

 One CI Two CIs Implant only Bimodal 

aiding 

One spatially concurrent 

competing talker 

6.63 (7.87) 3.35 (5.58) 3.74 (5.32) 3.26 (4.62) 

Six spatially separated 

competing talkers 

10.07 (5.22) 4.73 (3.13) 7.76 (3.87) 7.65 (3.88) 

Twelve spatially separated 

competing talkers 

10.03 (4.12) 6.54 (4.41) 8.91 (2.21) 8.06 (2.60) 

 

5.3.2.4 Qualities of sound 

Vocal emotion identification 

Mean performance on both versions of the task is shown in Table 5.6. Mean identification 

performance was significantly higher than chance (20%) for both groups and both sentence types 

in all listening configurations. Performance by the bilateral group was very similar across 

monaural and binaural listening conditions. There was no significant benefit from the addition of 

a second CI for either the original (t(11) = 0.59, p=.564) or amplitude normalised (t(11) = -1.28, 

p=.228) sentences. For the bimodal group there was no significant benefit from the addition of a 

contralateral acoustic hearing aid for either sentence type (original: t(11) = --1.58, p=.142; 

normalised: t(11) = -2.54, p=.027).  

 

For both groups, having access to amplitude information did improve performance in the 

monaural condition (Bilateral: t(11) = 2.35, p=.038; bimodal: t(11) = 2.86, p=.016) but did not 

improve performance in the binaural condition (bilateral: t(11) = 0.41, p=.688; bimodal t(11) 

=.094, p=.367). 
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Table 5.6. Mean percent correct scores on the vocal emotion identification and melody recognition tasks when using 

one and two CIs. SD in parentheses. 

 Bilateral group Bimodal group 

 One CI Two CIs Implant only Bimodal aiding 

Vocal emotion 

identification: 

    

Original sentences 57.00 (13.09) 55.83 (13.50) 55.50 (12.33) 58.83 (8.51) 

Normalised sentences 51.83 (17.11) 55.00 (13.31) 51.08 (12.22) 57.17 (11.77) 

Average 54.42 (14.75) 55.42 (12.94) 53.29 (11.98) 58.00 (9.80) 

Melody recognition 32.50 (25.27) 32.50 (26.07) 36.25 (28.61) 37.08 (28.88) 

Melody recognition  

Mean performance on the melody recognition task is shown in Table 5.6. Performance was 

significantly above the chance level of 10% correct for both groups in both listening conditions. 

However, there was no significant benefit in performance from a second CI (t(11) =0.00, p=1.000) 

or contralateral acoustic hearing aid (t(11) = -0.21, p=.838). 

 

5.3.3 Bimodal or Bilateral 

The benefit that a second device provided for each listening task for both groups were converted 

to Z-scores and the standardized benefit scores are shown in Figure 5.7. A significantly greater 

advantage from a second CI compared to a contralateral acoustic hearing aid was observed for 

spatial listening tasks (t(22) = 6.08, p<.001, t(22) = 4.058, p<.001, and t(22) = 4.39, p<.001 for 

localisation separated by 60°, 30° and 15° respectively and t(22) = 3.36, p=.003 for movement 

tracking). In addition, a greater benefit was achieved with a second CI than a contralateral 

acoustic hearing aid when listening to speech in noise when the noise was presented on the side 

ipsilateral to the first CI (t(22) =4.48, p<.001). No other significant differences in the amount of 

benefit received were found between the bimodal and bilateral groups. However, numerically, a 

greater benefit was obtained from using a second CI than using a contralateral acoustic hearing 

aid for all of the listening tasks except vocal emotion identification and melody recognition which 

showed a numerical bimodal advantage. The addition of a second CI resulted in numerically 

poorer speech perception performance in noise with noise presented on the side contralateral to 
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the first CI but  performance did not change for the bimodal group when a contralateral acoustic 

hearing aid was added. 

 

Figure 5.7.Standardized mean benefit scores from the listening test battery for the bimodal and bilateral groups. 

Spatial, speech and qualities of listening tasks are shown in blue, green and red respectively. Scores to the left of the 

central line indicate benefit was numerically higher with a second CI. Scores to the right of the central line indicate 

benefit was numerically higher with a contralateral acoustic hearing aid. Error bars show 95% confidence intervals. 

SP = speech perception. A significant difference between the benefit obtained from each option after a Bonferroni 

correction had been applied is indicated by asterisks (*** indicates p<.001 and ** indicates p<.01).† indicates that 

the assumption of normality was not met). 

 

5.4 Discussion 

5.4.1 Familiarity with devices and learning 

The bimodal and bilateral groups completed the listening tasks in an unfamiliar configuration 

using just their first (or only) CI. This could have inflated the amount of benefit observed from a 

second device, if the bilateral and bimodal groups had performed poorly with one CI due to being 

unfamiliar with listening in that configuration. Therefore, in order to check whether this issue 

arose, performance on all listening tasks when using one device was compared with performance 

by a group of unilateral CI users. No significant differences between the three groups were found 

for any of the listening tasks. Therefore any difference in performance when using two devices 

compared to one device can be attributed to the addition of the second device. No learning 

effects were found as unilateral CI users performed similarly in both sessions on all of the listening 

tasks. 



Chapter 5  Comparison of listening performance 
 

93 
 

5.4.2 Spatial listening 

As hypothesised, a second CI provided significant benefit over a single CI for localising sound 

sources and tracking moving sounds. This result is consistent with previous research that has also 

demonstrated bilateral CI advantages in spatial listening over using a unilateral CI (Ching et al., 

2007; Crathorne et al., 2012; Dunn et al., 2008; Kerber & Seeber, 2012; Litovsky et al., 2009; 

Sammeth et al., 2011; van Hoesel & Tyler, 2003). Comparing the acoustic input at the two ears in 

terms of intensity and time differences enables normally hearing listeners to locate sound sources 

(Akeroyd, 2006). However, CI users rely more heavily upon interaural level differences (ILD) than 

interaural time differences (ITD) (Seeber & Fastl, 2008). The stimuli were roved in level from trial 

to trial so that listeners could not base their response entirely on the intensity of the stimulus at 

either ear alone. However, on any individual trial, the use of two CIs compared to one CI enabled 

participants to utilise ILDs to determine the location of sounds. 

 

This study found mixed results for bimodal participants. No significant benefit from a contralateral 

acoustic hearing aid was found when localising sounds separated by 60° or 30° or when tracking 

moving sounds. These results may suggest that the different processing delays of the two devices 

restricted the ability of users to use interaural timing difference cues. It may also be the case that 

some participants did not have sufficient residual hearing in their non-implanted ear to use these 

cues. However, a significant benefit was found from the addition of a contralateral acoustic 

hearing aid when localising sound sources separated by 15°. This was the most challenging version 

of the task and the reason for only benefitting on this version of the task is not clear from the 

present study. It may be that there were too few trials in the less challenging versions of the task 

to enable a difference to be measured. These mixed findings for spatial listening are in 

accordance with the literature which has shown varied results for sound localisation by groups of 

bimodal users (Dunn et al., 2005; Olson & Shinn, 2008; Seeber et al., 2004; Tyler et al., 2002) 

 

In comparing the two options, as hypothesised a greater spatial listening benefit arose from using 

a second CI. 

5.4.3 Speech perception 

5.4.3.1 Speech in quiet 

Simple sentences 

Participants listened to simple sentences in quiet when using both their devices, their first device 

alone, and their second device alone.  The sentences used were short and were articulated clearly 

and neither group benefitted significantly from their second device. When listening with their first 
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CI alone, the bimodal group had good speech perception scores and the bilateral group had very 

good speech perception scores leaving little room for any improvement due to binaural 

summation to arise. 

Complex sentences 

The present study found no significant benefit from a second CI when listening to complex 

sentences in quiet. In a recent review on the effectiveness of bilateral cochlear implantation, van 

Schoonhoven et al. (2013) highlighted that, consistent with the present study, the vast majority of 

studies published between 2006 and 2011 showed no significant benefit from a second CI for 

speech perception in quiet. In a between-subjects design with bilateral CI users matched to 

unilateral CI users on duration of profound deafness and age at implantation, Dunn et al. (2008) 

assessed speech perception ability for sentences spoken by a male talker. Contrary to the present 

study, it was found that bilateral CI performance was significantly greater than unilateral CI 

performance. In the study by Dunn, the hearing in noise test sentences were used (HINT, Nilsson, 

Soli, & Sullivan, 1994) whereas the present study used IEEE sentences. The IEEE sentences have 

been argued to be more challenging for hearing impaired listeners than the HINT sentences due 

to the IEEE sentences having limited semantic cues (Wilson, Mcardle, & Smith, 2007). Users of 

bilateral CIs in the present study reached very good levels of speech perception in quiet and 

showed a numerical, albeit non-significant, benefit from a second CI. Benefits may have been 

observed with stimuli with more semantic cues (such as the HINT sentences). It may be that this 

task lacked power and was not sufficiently long for a difference in monaural and binaural speech 

perception ability to be detected. 

 

No significant benefit from a contralateral acoustic hearing aid was found for perception of 

complex sentences. This result is contrary to Zhang et al. (2010) who found patients 

demonstrated a significant improvement from the addition of low-frequency acoustic 

information. Although, acoustic information below 125Hz alone was not sufficient for speech 

perception of monosyllabic words, Zhang et al. demonstrated that when combined with electric 

information from a CI speech perception significantly improved.  However, Zhang et al. used an 

insert ear phone to present stimuli with real-ear insertion gain whereas the current study tested 

participants using their hearing aids.  In a study which did test speech perception of monosyllabic 

words by participants with their hearing aids, only four out of twelve individuals benefitted 

significantly from using a hearing aid in conjunction with a CI (Dunn et al., 2005). One might have 

expected a benefit from a hearing aid in the present study as the low frequency region contains 

cues to consonant voicing and manner of articulation which are important for speech perception 

(Rosen, 1992). Ching et al. (2007) highlighted that voice and manner information were 
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transmitted better with bimodal aiding than with a CI alone. However, Sheffield and Zeng (2012) 

found that bimodal users received limited voicing information from the low-frequency 

information when listening to consonants in quiet. Furthermore, Most et al. (2012) found no 

significant benefit from bimodal devices over a single CI for consonant voicing perception. 

Therefore participants in the current study may not have received sufficient information on low-

frequency cues from their bimodal devices compared to their CI alone. 

A comparison of the benefit derived from a second device between bilateral and bimodal patients 

showed no significant differences in the amount of benefit obtained from either option for speech 

perception in quiet when listening to either a male or female talker. Given the non-significant 

within-subjects benefits observed, this result was not surprising. 

5.4.3.2 Speech in noise 

When the speech and noise were spatially concurrent, the bilateral CI users did not benefit 

significantly from the use of a second CI suggesting that participants in the present experiment 

were not able to benefit from binaural redundancy. No benefit was observed from using a second 

CI when noise was on the side contralateral to the first CI. In this version of the task performance 

was already good when listening with one CI, with a negative mean SRT (see Table 5.4). However, 

as expected, when the noise was presented ipsilateral to the first CI a significant benefit from a 

second CI was observed. When listening with two CIs the participants’ head acted as an acoustic 

baffle that improved the signal-to-noise ratio at the ear further from the noise. When noise was 

presented ipsilateral to the first CI, the ear further from the noise was the ear with the second CI. 

When listening with just the first CI, there was no contralateral device from which participants 

could benefit from. Consistent with Kokkinakis and Pak (2014) the use of a second CI enabled 

listeners to take advantage of the head shadow. Although binaural summation and, binaural 

squelch can also improve speech perception in the presence of noise, the largest benefit has been 

shown to arise as a result of the head shadow effect (Kokkinakis & Pak, 2014; Müller et al., 2002; 

Schleich et al., 2004). The present findings are somewhat discrepant to that found by Müller et al. 

(2002).  In a similar design to the present study, Müller et al. tested bilateral CI users both 

monaurally and binaurally on a speech in noise task where the noise was presented from either 

straight ahead, +90° or -90°. Contrary to the present findings, performance was better with both 

CIs for all three versions of the task. One possible explanation for this difference is that Müller et 

al., used sentences whereas the present study used words. It is possible that the context provided 

by the sentences could have benefitted the participants in Müller et al.'s study with the task in the 

present study being more challenging. Furthermore Müller et al. measured the percentage of 

speech correctly identified at a fixed SNR of +10dB, whereas the present study used an adaptive 

procedure to measure SRTs at which 50% of keywords could be correctly identified. The adaptive 
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procedure used in the current study is likely to have been more challenging than the fixed 

procedure (Schafer et al., 2011) which could account for these discrepant findings. 

 

No significant benefit was obtained from the addition of a contralateral acoustic hearing aid for 

any version of the speech in noise task. This result is contrary to Tyler et al. (2002) who found that 

two out of three users performed better with bimodal devices than with a CI alone when the 

speech and noise were presented from 0° azimuth. However, Tyler et al. also found no significant 

benefit when noise was presented on the side of the hearing aid, consistent with the present 

study. The current findings suggest that the addition of a hearing aid is neither an advantage nor a 

hindrance to the accuracy of speech perception in noise. 

 

In comparing the two options, no significant difference in the amount of benefit from a second 

device was found when the noise was on the side contralateral to the first CI. However, a 

significantly greater benefit was found from using a second CI when the noise was on the side 

ipsilateral to the first CI. These findings suggest that users are better able to benefit from the head 

shadow with a second CI. This is unsurprising considering the poor speech perception in quiet 

scores achieved with a hearing aid alone (see Table 5.2). 

5.4.3.3 Speech in speech 

Three speech in speech tasks were conducted. One task had one competing talker, one task had 

six competing talkers and one task had twelve competing talkers. The SRTs from the bilateral 

group improved numerically from the addition of a second CI for all three versions of the task (see 

Table 5.5). However, only the improvement for the version with six competing talkers was 

significant. The finding for the two talker version of this task is consistent with Loizou et al. (2009) 

who also found no differences between bilateral and unilateral CI performance when a male and 

female talker were presented from 0° azimuth. Furthermore, when listening bilaterally the mean 

SRT on the one competing talker version of the task found in the current study (3.35dB, see Table 

5.5)  was similar to that found by Loizou (about 4dB inferred from their Figure 1a). 

 

In the one competing talker version of the task, the target sentence and the competing sentence 

were presented from the same location. An important cue for segregating the two talkers is a 

difference in voice pitch. Based on previous research (Kong et al., 2005), it had been anticipated 

that the bimodal group would benefit from the addition of a contralateral acoustic hearing aid as 

they would be able to use information conveyed in the low frequencies (such as the fundamental 

frequency) to segregate the two talkers. This was not the case as the addition of a contralateral 

acoustic hearing aid did not significantly improve the SRT. The bimodal users who participated in 
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Kong et al’s study were American and had moderate to profound pure-tone thresholds, which 

were more favourable than those of the participants in the present study. Therefore these results 

suggest that the advantages found for bimodal users in the USA are not always realised for UK 

users. In addition, the present study found no significant benefit from a contralateral acoustic 

hearing aid on speech perception performance in the presence of spatially separated talkers. This 

result suggests that the bimodal users were unable to receive sufficient benefit from the head 

shadow, consistent with the present findings for speech in noise. 

 

Using an adaptive procedure for a speech perception task in the presence of spatially separated 

noise presented from five locations, Ricketts, Grantham, Ashmead, Haynes, & Labadie (2006) 

found an average benefit of 3.3 dB from the use of a second CI over performance with the better 

monaural ear. The present study found a similar amount of benefit from a second CI (3.49dB, 95% 

CI ±3.63) for the twelve competing talker version of the task (see Table 5.5).  However a greater 

benefit (5.34dB, 95% CI ±2.43) was found from a second CI when there were just six competing 

talkers. This benefit was not significantly greater than the benefits found in the twelve talker 

version of the task or the average benefit found by Ricketts et al. as illustrated by these mean 

benefits being embraced by the 95% confidence interval of the mean for the six talker version. 

Few studies have compared bilateral to unilateral speech perception performance in the presence 

of multiple spatially separated speech maskers. One study which has, used three female talker 

maskers and one male target (Loizou et al., 2009). The target sentence was always presented 

from 0° azimuth, and the three spatially separated masker sentences were presented in two 

configurations:  presented from both sides (-30°, 60°, and 90°, one masker at each location), or 

from the right side only (30°, 60° and 90° , one masker at each location). They found that when 

the masker sentences were on the right hand side bilateral CI performance was better than the 

monaural right ear performance but not monaural left ear performance, suggesting that the users 

were able to use the ear with the better SNR to hear out the target speech. However, the current 

study utilised a more difficult stimulus set: there were more talkers, the target location was not 

fixed and could come from any location on each trial, and the masker sentences were spoken by 

talkers of both genders. The fact that a significant benefit was obtained from a second CI for the 

six competing talker version of the task suggests that the participants were able to utilise the 

head shadow and listen with the ear with the better SNR. The twelve competing talker version of 

this task is very challenging and although monaural performance on this version was similar to 

monaural performance on the six competing talker version of the task, the addition of a second CI 

did not provide as much benefit. This result could be due to a reduction in the head shadow effect 

as a result of a large number of masker talkers (Firszt, Reeder, & Skinner, 2008). 



Chapter 5  Comparison of listening performance 
 

98 
 

 

The current study found no significant difference in the amount of benefit obtained from a second 

device between bimodal and bilateral groups for any of the speech in speech tasks. This result is 

consistent with Cullington and Zeng (2011) who found that bimodal and bilateral CI users 

performed similarly when listening to speech in the presence of one other competing talker. 

When the competing talker was of a different gender, Cullington and Zeng measured similar mean 

SRTs for both groups with 2.17 dB for bilateral CI users and 2.52 dB for bimodal users. This level of 

performance is similar to that reached by the participants in the present study with mean SRTs of 

3.51 dB for the bilateral CI users and 3.26dB for the bimodal users. The current findings suggest 

that neither a second CI nor a contralateral acoustic hearing aid is better than the other for 

separating out concurrent talkers.  

5.4.4 Quality of sound tasks 

The bilateral group did not obtain a significant benefit from a second CI for vocal emotion 

identification or melody recognition. This was expected as CIs do not convey low frequency 

information and they also do not convey the temporal fine structure of sounds very well, an 

important feature of pitch perception (Moore, 2008). Although changes in pitch are an important 

cue in distinguishing different vocal emotions, other cues include duration and intensity (Pittam & 

Scherer, 1993). In order to assess the role of pitch more specifically there were two versions of 

the vocal emotion task – one with the original recordings and one where the average RMS power 

of the sentences were normalised, so that average intensity could not be used as a cue to identify 

the vocal emotion. Based on previous research by Luo, Fu, and Galvin (2007) it was expected that, 

although a challenging task, the bilateral CI users would perform better with the original 

recordings as they would have been able to detect intensity differences and utilise this 

information to infer the vocal emotion to some extent. However this was not found, rather the 

participants in the present study found vocal emotion identification difficult, irrespective of the 

range of cues available.  

 

No benefit from using bimodal devices over a CI alone was found for the quality of sounds tasks. 

This did not support the hypothesis that the bimodal users would benefit from using a 

contralateral acoustic hearing aid on pitch-related tasks because the hearing aid would provide 

access to pitch information conveyed in the low frequencies that the CI does not convey. Contrary 

to the present findings, previous research has demonstrated that having access to low-frequency 

information provided by an acoustic hearing aid can improve music perception (Flynn & 

Schmidtke, 2004; Kong et al., 2005) and vocal emotion recognition (Most et al., 2012). The 

present study’s results suggest that UK users of bimodal devices have difficulty in identifying the 
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vocal emotion of a talker and recognising musical melodies and are less able to utilise the 

information contained in the lower frequencies for these tasks.  

 

Although the benefit obtained from a contralateral acoustic hearing aid was numerically greater 

than that obtained from a second CI, the differences between the two options were not 

significant. This finding is consistent with that of Cullington & Zeng (2011) who presented bilateral 

and bimodal users a semantically neutral sentence spoken in six emotional states (neutral, happy, 

angry, sad, disinterested, and surprised), four of which are the same as that used in the current 

study. Consistent with the present study, no significant difference in performance between the 

groups was found. 

5.4.5 Strengths and weaknesses 

A wide range of tasks was completed over two sessions. An advantage of this approach was that 

different aspects of listening could be assessed. Furthermore, the mixed design enabled both the 

difference in performance between monaural and binaural listening to be evaluated and the 

difference in benefit between the two types of binaural hearing to be investigated. Although the 

bimodal and bilateral participants did not have much time to acclimatize to using one device, no 

significant differences in performance were found between these users using one device and 

performance by a group of unilateral CI users. The use of this comparison group provided a check 

that the bimodal and bilateral groups did not perform worse when using one CI simply due to 

unfamiliarity with this listening configuration. This in turn provided confirmation that any 

difference in performance when using two devices instead of one was due to the addition of the 

second device. Another advantage from including a group of unilateral CI users was that any 

learning effects could be measured. Similar performance across two days demonstrated that 

there were not any learning effects. Had there been learning effects, the use of a 

counterbalanced design would have overcome this with users of two devices completing the two 

sessions in both orders. 

 

It is important to acknowledge that the foregoing results were obtained with a small, self-

selecting sample. The participants who took part in this study had responded to a letter published 

in the National CI Users Association magazine which invited users to take part in the study. It is 

therefore possible that those who responded were individuals who were satisfied with their 

devices and therefore the findings may not be representative of UK CI users in general. It was also 

possible that they would show advantages from binaural listening precisely because they were 

satisfied with their devices. Thus it is justifiable to conclude that this study demonstrates the 

potential for UK adults to receive advantages from a second device. Users who are not satisfied 



Chapter 5  Comparison of listening performance 
 

100 
 

with their devices may not receive as large a benefit and therefore it would be informative to test 

a larger sample of UK CI users on tasks such as those used in the current study to investigate what 

a unilateral CI user considering obtaining a second device is likely to achieve. The ordering of the 

tasks in the present study was not fully counterbalanced. Although regular breaks were included 

over the course of testing, the length of the session and the cognitive demands of some of the 

tasks may have fatigued some of the listeners, potentially worsening their performance on some 

of the later tasks. 

 

Due to the size of the test battery, only a limited number of trials for each task could be included 

in the test session, therefore it is possible that the tests did not include a sufficient number of 

trials to have the statistical power to demonstrate an advantage from a second device. In a future 

study if a trade-off were to be made in increasing the number of trials in some listening tests and 

omitting others the most useful sub-set of tests in the present study to include would be 

localisation (15° separation), speech in noise, and emotion perception. The reason for selecting 

the 15° version of the localisation task is that this was the most challenging version of the task and 

both groups benefitted from a second device. It would be enlightening for future research to 

assess why bimodal users benefit in this condition.  A key advantage from binaural listening over 

monaural listening is the ability to benefit from the head shadow if the noise is on either side of 

the head. By using the speech in noise tests from the battery, one can assess if a second device 

provides advantages when the noise is ipsilateral to the first CI but also assess if a second device is 

a hindrance to performance when noise is contralateral to the first CI. Emotion perception 

showed a trend to be better with bimodal devices although this was not significant. Including 

more trials in a future study would enable a comparison in performance on the different types of 

emotions. For instance, the sad vocal emotion is characterised by a longer duration in addition to 

pitch differences (Pittam & Scherer, 1993), it may be that bimodal users benefit less on this 

emotion from a second device than they do for other emotions. 

 

No new hearing-aid fittings were provided to patients as part of this study. Some previous studies 

that have shown significant benefits from a contralateral acoustic hearing aid have fitted the 

hearing aids of participants as part of the study (Ching et al., 2003, 2004; Flynn & Schmidtke, 

2004; Incerti et al., 2011; Seeber et al., 2004). It may be that greater benefits could be observed 

with a properly and recently fitted hearing aid. It would also be informative for future research to 

test bimodal users who have had their hearing aid and CI fitted together prior to testing to 

optimize performance as suggested by Ching, Hill, Dillon, and Van Wanrooy (2004). Nevertheless, 
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this study outlines the potential benefits that can be achieved from a second device in everyday 

listening. 

 

5.4.6 Conclusion: Which option is better? 

In comparing monaural to binaural hearing, using a second CI provided significant advantages for 

spatial listening tasks. A contralateral acoustic hearing aid provided some advantage in spatial 

listening ability. As an acoustic hearing aid can be obtained free of charge from the NHS, this 

study supports the recommendations by  Ching et al. (2004) that bimodal aiding should be the 

standard provision for users of a unilateral CI.  A key aim of the present study was to assess which 

option, a second CI or a contralateral acoustic hearing aid, provides the greater benefit for UK CI 

users. The results have shown that for the patients in this study, a second CI provided greater 

benefit than a contralateral acoustic hearing aid for spatial listening and speech perception in the 

presence of noise. No tasks revealed a significantly greater benefit from a contralateral acoustic 

hearing aid compared to a second CI. In conclusion, this study has demonstrated that listening 

with two devices is better than listening with one CI alone for some listening tasks. Furthermore, 

bilateral cochlear implantation provides greater benefits than bimodal aiding for UK CI users. 

5.5 Summary 

 Bilateral Vs. Unilateral 

o Significant advantages were found from a second CI on spatial listening tasks. 

o When listening to speech in spatially separated noise, performance was 

significantly improved from a second CI when the noise was presented on the side 

ipsilateral to the first CI. 

o Mixed findings were observed for speech in speech tasks with a significant 

advantage from a second CI on a version with six competing talkers but not on 

versions with one or twelve competing talkers. 

o No significant advantage from a second CI was observed for perception of speech 

in quiet, emotion recognition, or melody identification. 

 Bimodal Vs. Unilateral 

o A significant advantage from a contralateral acoustic hearing aid was found for 

localising sources of sound separated by 15°. 

o No other significant advantages from a contralateral acoustic hearing aid were 

found. 
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 Bilateral Vs. Bimodal 

o Significantly greater benefit was obtained from a second CI for spatial listening 

tasks and speech perception in spatially separated noise when the noise was on 

the side of the first (or only) CI. 

o No other significant differences in the amount of benefit obtained from each 

device was found.
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6 Self-reported advantages from a contralateral acoustic 

hearing aid or a second cochlear implant 

 

This chapter outlines research comparing the self-reported benefits of each option (either a 

second CI or a contralateral acoustic hearing aid) for users of a unilateral CI in the UK. 

Comparisons were made between monaural and binaural listening to assess if provision of a 

second device results in self-reported benefit for everyday listening and quality of life. 

Furthermore, comparisons were made between the benefit obtained from a second CI and the 

benefit obtained from a contralateral acoustic hearing aid to ascertain which option provides 

greater self-reported benefit. 

6.1 Introduction 

There is a keen interest in establishing whether aiding the non-implanted ear of unilateral CI users 

provides clinical benefits for listeners. The study reported in Chapter 5 investigated the clinical 

benefits obtained from using either a contralateral acoustic hearing aid or a second CI. It was 

found that, compared to unilateral CI listening, both options resulted in improvements in spatial 

listening, and also, in the case of bilateral implantation, improvements to speech perception in 

the presence of spatially separated noise. In comparing the benefit provided from both options, 

the results in Chapter 5 demonstrated that a greater advantage was obtained from a second CI.  

The study reported in this chapter sought to establish whether these benefits in listening 

performance are also reflected in self-reports. The study also investigated whether self-reported 

listening ability highlights additional benefits which are not found in listening performance tasks. 

For instance, the findings reported in Chapter 5 did not show an improvement on some listening 

tasks in the test battery; notably vocal emotion identification and melody recognition.  In the 

laboratory, the tests used captured only a small part of everyday listening. It is possible that the 

tests were not sufficiently long for an advantage to be measured or the tests used were not 

sensitive to the type of advantages obtained from binaural listening. In addition, it is possible that 

there are further advantages from using a second device that cannot be measured using listening 

tests (such as effects on quality of life). As the current study used self-report measures, the 

following sections describe how self-reports have been used previously to measure binaural 

advantages to everyday listening and quality of life amongst CI users. 
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6.1.1 Self-reported listening ability 

The Speech, Spatial and Qualities of hearing scale (SSQ) 

The SSQ (Gatehouse & Noble, 2004) is a measure of self-reported listening ability in everyday 

environments. The scale is divided into three sections each addressing a different aspect of 

listening: listening to speech, spatial listening, and other qualities of hearing and listening. The 

speech section contains 14 questions on listening to speech in quiet, listening to speech in noise, 

and listening to speech in the presence of other talkers. The spatial section includes 17 questions 

on determining where a sound is coming from, where a sound is moving from and to, and how far 

or close a sound is. The qualities section contains 18 questions that address aspects of listening 

that are not covered by the previous two sections such as identifying sounds, clarity of sounds, 

and listening effort. For each question participants rate their ability on an 11-point visual 

analogue scale which extends from no ability to perfect ability. There are multiple ways of scoring 

ratings on the SSQ. One option is to calculate an overall score by taking the mean rating across all 

the questions (e.g. as used by Tyler, Perreau, & Ji, 2009) A second approach is to calculate a mean 

score for each section, resulting in three scores, one each for the speech, spatial, and qualities of 

hearing sections (e.g. as used by Summerfield et al., 2006). The questionnaire can further be 

broken down into ten sub-sections (speech in quiet, speech in noise, speech in speech, multiple 

speech stream processing and switching, localisation, distance and movement, sound quality and 

naturalness, identification of sounds and objects, segregation of sounds, and listening effort), 

resulting in ten scores (Gatehouse & Akeroyd, 2006). Although a factor-analysis was not 

conducted to form these sub-scales, Gatehouse and Akeroyd assigned questions from the SSQ to 

each sub-scale based on the content of each question. This enables a summary score of ability in 

each listening area to be obtained. 

 

Higher self-rated listening ability has been found with bilateral CIs compared to using a unilateral 

CI (Noble, Tyler, Dunn, & Bhullar, 2008; Summerfield et al., 2006; Tyler et al., 2009). In a within-

subjects comparison with 24 participants Summerfield et al. found ratings with bilateral CIs 

compared to a unilateral CI were significantly higher on all three sections of the SSQ. Using a 

larger sample than Summerfield et al, Tyler et al. compared the overall SSQ score between a 

group of 99 unilateral CI users and a group of 40 bilateral CI users. Although the relative benefit 

on each of the three sections was not investigated individually, the mean self-rated listening 

ability score of bilateral CI users was significantly higher than the mean score of the unilateral CI 

users. 
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Noble et al. (2008) compared self-rated listening ability on the ten sub-sections of the SSQ 

between 70 unilateral and 36 bilateral CI users. Although no correction for multiple comparisons 

was made, no difference was found between ratings by bilateral and unilateral CI users on any of 

the speech sub-sections, but significantly higher ratings by bilateral CI users on the spatial and 

quality sub-sections were found (with the exception of the ‘segregation of sounds’ sub-section). 

Noble et al. also compared self-rated listening ability between 70 unilateral CI users and 39 

bimodal users. However, no significant difference in scores was found from the addition of a 

contralateral acoustic hearing aid. Comparisons were also made between bilateral CI users and 

bimodal users and a bilateral advantage was found on three of the ten sub-sections (speech in 

speech, distance and movement, and listening effort). Thus self-reported listening advantages 

have been observed from a second device for some aspects of listening. 

6.1.2 Quality of life measures 

The EuroQol questionnaire (EQ5D; Brooks, 1996; The Euroqol Group, 1990) and Health Utilities 

Index Mark III (HUI3; Boyle, Furlong, Feeny, Torrance, & Hatcher, 1995; Feeny et al., 2002; 

Torrance, Furlong, Feeny, & Boyle, 1995) are generic quality of life instruments resulting in a 

utility score where ‘1’ indicates perfect health and ‘0’ indicates being dead. They are described in 

detail in Chapter 4. Table 6.1 contains a summary of the gains obtained from a contralateral 

acoustic hearing aid or second CI as measured in previous studies. The EQ5D contains no 

questions related to hearing or listening and is insensitive to hearing difficulties (Grutters et al., 

2007; Longworth et al., 2014; Yang, Longworth, & Brazier, 2013). Grutters et al. administered the 

EQ5D to 315 respondents with hearing difficulties and found that 44% indicated that they had 

perfect health. Summerfield et al. (2006) administered the EQ5D to 24 unilateral CI users. The 

questionnaire was re-administered to the same participants after they had received a second CI. A 

significant detriment in utility was observed nine months after receiving the second CI. The 

authors argued that this detriment could have arisen as a result of worsening tinnitus in a few 

participants. 

 

The HUI3 is sensitive to benefits from providing ‘some hearing’ compared to ‘no hearing’ such as 

one CI compared to no surgical intervention (United Kingdom CI Study Group, 2004). However, 

despite the HUI3 containing questions related to hearing and speech understanding, it is less able 

to detect differences between ‘some hearing’ and ‘some more hearing’ (Lovett, Kitterick, Hewitt, 

& Summerfield, 2010; Summerfield et al., 2006). Indeed, Summerfield et al. found no difference in 

HUI3 scores between unilateral CI use and bilateral CI use. One possibility is that providing a 

second device to users of a single CI does not result in improvements in quality of life. An 

alternative possibility is that improvements in quality of life do arise as a result of receiving a 
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second device but current measures (such as the EQ5D and HUI3) are not sensitive to them. To 

address this issue the current study administered a further measure, the York Quality of Life 

Questionnaire (YorQol), which asked CI users to rate their overall quality of life. 
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Table 6.1. Gain in utility obtained from a second device as reported in previous research. Gains reported are means unless otherwise specified. Gains from Summerfield et al. 

(2006) are inferred from figure. 

Study Participants Comparison Measure used Gain in utility Significance 

Grutters et al. 
(2007) 
 
 
 

315 individuals 
with hearing 
complaints 

Before and after hearing 
aid fitting 

EQ5D (UK Tariff) .001 (SD = .13) n.s. 
EQ5D (Dutch Tariff) .000 (SD = .12) n.s. 
HUI2 .07 (SD =.13) p<.001 
HUI3 .12 (SD =.18) p<.001 

UKCISG 
(2004) 
 

316 unilateral CI 
users 

Before unilateral cochlear 
implantation and 9 
months after 

HUI3 (All) .197 (95% CI = .176-.218) Significant 
benefit 

HUI3 (Traditional candidates) .214 (95% CI =.189-.239) Significant 
benefit 

HUI3 (Marginal hearing aid users) .151 (95% CI =.113-.190) Significant 
benefit 

Summerfield 
et al. (2006) 
 
 
 
 
 
 

24 CI users Within subjects: Unilateral 
Vs. 3 months post bilateral 
implantation 

EQ5D -0.06 
(95% CI = 0.04 - -0.16) 

n.s. 

HUI3 -0.02 
(95% CI = 0.70 - -0.11) 

n.s. 

Within subjects: Unilateral 
Vs. 9 months post bilateral 
implantation 

EQ5D -0.06 
(95% CI = -0.01 - -0.14) 

p<.05 

HUI3 -0.01 
(95% CI = 0.80 - -0.10) 

n.s. 

Lovett et al. 
(2010) 
 

Children (14 
bilateral and 20 
unilateral) 

Unilateral Vs. Bilateral 
implantation 

HUI3 .05 (median gain) n.s. 

Damen et al. 
(2007) 

59 unilateral CI 
users 

Before and after unilateral 
cochlear implantation 

HUI3: Group implanted between 1989-1997 
(n=37), gain measured in 1998 

0.32 n.s. 

HUI3: Group implanted between 1989-1997 
(n=37), gain measured in 2004 

0.05 n.s. 

HUI3: Group implanted between 1999-2004 
(n=22), gain measured in 2004 

0.15 p<.05 
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6.1.3 Current study 

The first aim of this study was to assess whether self-reported listening ability is greater with 

binaural hearing compared to monaural hearing among adult users of CIs, and whether a second 

CI provides a greater advantage than a contralateral acoustic hearing aid. To test this, the SSQ was 

administered to three groups of CI users (bilateral, bimodal, and unilateral). It was hypothesised 

that, consistent with previous research (Noble et al., 2008b; Summerfield et al., 2006; Tyler et al., 

2009),  higher self-ratings on the SSQ would be reported when using bilateral CIs compared to 

unilateral CI use. Limited research has compared bimodal to unilateral self-reported listening 

ability. This coupled with the mixed advantages of actual listening performance discussed in 

Chapters 2 and 5 made it unclear whether the bimodal users would demonstrate a self-reported 

listening ability advantage over using a single CI. The only previous study that has compared 

bimodal to unilateral responses on the SSQ found no bimodal advantage (Noble et al., 2008b). 

The bimodal users in Noble et al.’s study were from the USA where candidacy for a CI is more 

relaxed than the UK (see Chapter 1.4.1). Although the pure tone audiograms for bimodal 

participants were not reported by Noble et al. it is possible that the participants in that study had 

higher levels of residual hearing than the participants in the current study. This difference could 

mean that the participants in the current study are less likely to show self-reported benefits on 

listening ability. This possibility coupled with the expected bilateral advantages led to the 

hypothesis that a greater benefit would be found from a second CI rather than from a 

contralateral acoustic hearing aid. 

 

The second aim was to assess whether there is a relationship between self-reported listening 

ability and actual listening performance reported in Chapter 5. Noble et al. (2008) investigated the 

relationship between scores on the ten sub-sections of the SSQ and performance on tasks of 

monosyllabic word recognition in quiet and localisation. Moderate positive relationships were 

found between speech-recognition performance and scores on the ten sub-sections of the SSQ. 

Interestingly, the weakest correlation with speech-recognition performance (with a correlation of 

.31) was with the scores on the speech in quiet sub-section, suggesting that the other sub-

sections sample abilities which are relevant to understanding speech in quiet. Only the two spatial 

sub-section scores of the SSQ correlated significantly with localisation performance. The alpha 

level used by Noble et al. was not Bonferroni corrected which increases the risk of some of these 

significant correlations arising as a result of a Type 1 error. Therefore the current study identified 

those listening tasks with which a relationship with self-rated listening ability would be expected 

and Bonferroni corrected the alpha level accordingly. Performance tasks were divided into three 

types (speech, spatial, and qualities of listening) and were correlated with scores on the 
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associated SSQ section (e.g. performance on spatial tasks was correlated with scores on the 

spatial section of the SSQ). It is possible that correlations would also be observed between tasks 

and other dimensions of the SSQ (for instance the qualities section of the SSQ contains questions 

related to the segregation of sounds which could potentially be related to performance on the 

speech in speech tasks). However, were correlations conducted between all 15 listening tasks and 

scores on the three sections of the SSQ, a Bonferroni correction would likely be too conservative 

to allow useful conclusions to be drawn. 

 

The third aim was to assess whether the addition of a second device results in improvements in 

quality of life compared to unilateral cochlear implantation. To assess this, three questionnaires 

(the EQ5D, the HUI3, and the YorQol) were administered to the three groups of CI users. Based on 

previous research which has demonstrated that the EQ5D is insensitive to hearing difficulties 

(Grutters et al., 2007; Longworth et al., 2014; Yang et al., 2013) it was hypothesised that the EQ5D 

would not show any significant differences between monaural and binaural listening, and bimodal 

and bilateral benefit. As previous research has demonstrated that the HUI3, whilst able to 

discriminate between ‘no hearing’ and ‘some hearing’, is less sensitive to differences between 

‘some hearing’ and ‘more than some hearing’, it was hypothesised that the addition of a second 

device would not show significant advantages on the HUI3 compared to unilateral CI use. It was 

also hypothesised that there would be no difference in the amount of benefit gained from a 

contralateral acoustic hearing aid compared to a second CI. The YorQol (described in section 

6.2.2) assesses overall wellbeing and asks participants to indicate their quality of life directly. It 

may be that this approach to measuring quality of life would be sensitive to differences between 

listening configurations that current generic measures do not detect. Measures of annoyance 

from tinnitus were also administered to assess if any negative changes in quality of life (as found 

by Summerfield et al., 2006) could be explained by worsening tinnitus. The Tinnitus Handicap 

Inventory (Newman, Jacobson, & Spitzer, 1996) was administered as it is a widely used tinnitus 

inventory. The Annoyance from Tinnitus questionnaire was administered as this was the 

questionnaire administered by (Summerfield et al., 2006).  

 

Finally, amongst the bimodal users the relationship between self-reported benefit and residual 

hearing was assessed to determine if those with better residual hearing showed greater benefit 

from using a contralateral acoustic hearing aid. The three frequency pure tone threshold average 

from 250Hz, 500Hz and 1000Hz was used as this is the range over which participants had 

measureable residual hearing (see Chapter 5, Figure 5.1). 
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6.2 Methods 

6.2.1 Participants 

The 32 participants who took part in the study described in Chapter 5 also took part in the study 

described in this chapter. Demographic information can be found in Chapter 5, Table 5.1. 

6.2.2 Questionnaires 

Participants completed one questionnaire about their listening ability, three quality of life 

questionnaires, and two questionnaires which asked about their experience of tinnitus. 

Self-reported listening ability: SSQ 

The SSQ is a 49-item questionnaire assessing listening to speech ability, spatial listening ability, 

and ability on other aspects of hearing and listening. Responses to each question were made on 

an 11-point scale from 0 (unable to perform task) to 10 (can perform task perfectly). Figure 6.1 

shows an example question from the spatial section of the SSQ. A mean score out of 10 for each 

section of the SSQ was calculated for each participant resulting in three scores. 

 

 

 

 

 

 

Figure 6.1. Example question from the spatial section of the SSQ. Participants responded by making a mark on the 

scale to indicate how well they can perform the task described in the scenario. 

Measures of quality of life 

EQ5D 

The EQ5D is a five-item generic quality of life questionnaire assessing mobility, self-care, usual 

activities, pain/discomfort, and anxiety/depression. Participants indicated whether they had ‘no 

difficulty’, ‘some difficulty’, or ‘great difficulty’ on each dimension. An algorithm (Dolan, Gudex, 

Kind, & Williams, 1995) converts their responses into a utility value (see Chapter 4). 

HUI3 

The HUI3 is a 17-item generic health related quality of life questionnaire containing questions 

related to eight domains of health (vision, hearing, speech, ambulation, dexterity, emotion, 

cognition, and pain). Each question is followed by five or six levels of difficulty. The participant 

responded by selecting the level of difficulty that best described them An algorithm (Feeny et al., 

2002) converts their responses into a utility value (see Chapter 4). 

You are outside. A dog 

barks loudly. Can you tell 

immediately where it is 

without having to look? 
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York Quality of Life scale (YorQol) 

The YorQol is a one-item questionnaire assessing overall quality of life. The questionnaire asks 

participants to “think about your overall quality of life taking account of your health, your ability 

to communicate, your ability to get around and travel, and your ability to take part in social 

activities and work”. Participants respond by making a mark on a visual analogue scale which 

extends from 0 to 100, where 0 is labelled the “worst imaginable quality of life” and 100 is 

labelled the “best imaginable quality of life”. Similar to Summerfield, Lovett, Bellenger, and Batten 

(2010) the score is then transformed and compressed to a value between 0 and 1 (1-(1-raw 

score/100)^1.6) to bring it into alignment with measures of utility. As responding using a visual 

analogue scale does not incur risk aversion (which is reflected in utility measured with the 

Standard Gamble technique, see Chapter 4), compressing the scores compensates for this effect 

(Drummond et al., 2000; Summerfield et al., 2010). 

Experience with tinnitus 

Tinnitus Handicap Inventory (THI) 

The THI (Newman et al., 1996) is a 25-item questionnaire assessing the impact of tinnitus on 

everyday life. Participants are instructed to indicate ‘Yes’, ‘Sometimes’ or ‘No’ to each question 

depending on whether tinnitus affects the aspect of their life described. In accordance with the 

the instructions for scoring the questionnaire, a total score is then calculated as follows ( (Number 

of ‘Yes’ responses x 4) + (Number of ‘Sometimes’ responses x 2)), resulting in a score out of 100. 

Annoyance because of tinnitus (TIN) 

The TIN is a 13-item questionnaire which assesses the impact of tinnitus on everyday life. For each 

question, participants responded by marking a scale from 0 (tinnitus does not adversely impact 

everyday life) to 10 (tinnitus substantially adversely impacts everyday life). Figure 6.2 shows an 

example question. 

 

 

Figure 6.2. Example question from the Annoyance because of Tinnitus Questionnaire. Participants responded by 

making a mark on the scale to indicate (in this example) how much discomfort they experienced. 

6.2.3 Design 

A mixed design was used. Participants completed two sessions held on separate days. In one 

session the bimodal and bilateral CI users completed the questionnaires considering their lives 
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when they use both their devices together. In this session the participants undertook 

performance tests using both their devices.  In the other session the bilateral and bimodal groups 

were instructed to complete the questionnaires considering how their lives would be if they did 

not have their second device. In this session the users undertook performance tests using just one 

device. The ordering of these sessions was counterbalanced across participants within each 

group. This enabled within-group analyses to assess the self-reported benefit (if any) from a 

second device. The unilateral group also completed two sessions. They served as a comparison 

group in order to check that there was not an overestimation of any benefits from a second 

device due to unfamiliarity with using just one device. The between-subjects aspect of the design 

allowed comparisons between the three groups when using one device, and comparisons of the 

benefit from a contralateral acoustic hearing aid and a second CI.  

6.2.4 Procedure 

Participants completed the questionnaires during breaks between performing listening tasks 

described in Chapter 5. In both sessions the questionnaires were completed in the following 

order: (1) EQ5D, (2) HUI3, (3) THI, (4) TIN, (5) SSQ, and (6) YorQol. 

6.2.5 Analyses 

Statistical tests were conducted with SigmaPlot 12.0. Normality was tested using the Sharipo-Wilk 

test. 

Within-subjects analyses 

In comparing performance with one or two devices, paired samples t-tests were conducted for 

each questionnaire. If the data was not normally distributed then a Wilcoxon signed ranks test 

was conducted. 

Between-subject analyses 

In comparing questionnaire scores with one CI across the three groups, individual analyses of 

variance were conducted. If the data was not normally distributed then a Kruskal-Wallis test was 

conducted. When comparing the benefit provided from either a contralateral acoustic hearing aid 

or a second CI independent sample t-tests were conducted. If the data were not normally 

distributed then a Mann-Whitney U test was conducted. 

Relationship with listening performance 

Pearson correlation coefficients were calculated to assess the relationship between performance 

on listening tasks reported in Chapter 5 and self-ratings on the SSQ. The listening tasks were 

separated into three domains (speech tasks, spatial listening tasks, and qualities of listening 

tasks). The listening tasks were correlated with the scores on the corresponding scale of the SSQ 
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(e.g. performance on spatial listening tasks was correlated with scores on the spatial section of 

the SSQ). A Bonferroni correction was applied within each domain to correct for multiple 

comparisons. As outlined in Chapter 5, one bimodal participant (326) found the speech in speech 

tasks very challenging resulting in thresholds so high that they effectively became a speech in 

quiet task. Therefore data from participant 326 on these tasks were are not included in the 

correlations. 

Relationship to residual hearing 

For the bimodal group, a Pearson correlation coefficient was calculated to assess the relationship 

between self-reported listening ability and the three frequency (250Hz, 500Hz, 100Hz) pure tone 

threshold average  (see Chapter 5, Figure 5.1) of the non-implanted ear. 

6.3 Results 

6.3.1 Familiarity with configurations 

No significant differences were found between the three groups when using one CI on any of the 

questionnaires. 

6.3.2 Monaural Vs. Binaural hearing 

Self-reported listening ability: SSQ 

Figure 6.3 shows mean ratings on the SSQ when using one device and two devices for the bilateral 

and bimodal groups. Paired samples t-tests demonstrated that self-rated listening ability of the 

bilateral group was significantly higher when listening with two devices compared to one for the 

speech (t(11) = -3.69, p= .004), spatial (t(11) = -6.26, p<.001), and qualities of hearing sections 

(t(11) = -4.78, p=.001). For the bimodal group, ratings were also significantly higher with both 

devices compared to one for the speech (t(11) = -3.15, p=.009), spatial (t(11) = 3.55, p=.005) and 

qualities sections (t(11) = -2.57, p=.026). 
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Figure 6.3. Mean self-rated listening ability on the speech, spatial, and qualities sections of the SSQ. Grey bars 

indicate ratings when using one CI and yellow bars represent ratings when using two devices. The left figure shows 

ratings by the bilateral group and the right figure shows ratings by the bimodal group. Error bars represent ± 1SE. A 

significant difference between monaural and binaural conditions is indicated by asterisks (*** indicates p<.001, ** 

indicates p<.01, * indicates p<.05). 

Measures of quality of life 

Shapiro-Wilk tests demonstrated that the data from measures of quality of life did not distribute 

normally (with the exception of the bimodal data from the HUI3) so Figure 6.4 shows box plots to 

illustrate the median utility values with one device and two devices for both the bilateral and 

bimodal groups. A Wilcoxon signed ranks test found no difference in utility value with between 

two CIs and one CI as measured with the HUI3 ( W = 17.00, Z = 1.78, p= .094). A paired-samples t-

test found no significant difference between utility values between bimodal devices and a single 

implant as measured on the HUI3 (t(11) = -1.02, p=.331). 

 

Median utility ratings were at ceiling using the EQ5D and Wilcoxon signed ranks tests found no 

difference in utility ratings between one and two devices for either the bilateral group (W = 1.00, 

Z = 0.45, p=1.00) or the bimodal group (W = 4.00, Z = 1.07, p=.500). However, Wilcoxon signed 

ranks tests did demonstrate that ratings were significantly higher with two devices than one 

device using the YorQol for both the bilateral (W = 66.00, Z = 2.93, p<.001) and bimodal (W = 

54.00, Z = 2.40, p=.014) groups. 
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Figure 6.4. Median utility ratings on the three quality of life measures by bilateral (left column) and bimodal (right 

column) participants using one (grey bars) or two (yellow bars) devices. A significant difference between monaural 

and binaural listening is indicated by asterisks (** indicates p<.01, * indicates p<.05). n.s. indicates there was no 

significant difference between monaural and binaural conditions. 

 

Measures of tinnitus 

Median scores on the tinnitus questionnaires were at, or close to, floor and are displayed in Table 

6.2. Shapiro-Wilk tests demonstrated that the assumption of normality was not met for either the 

bilateral or bimodal groups so Wilcoxon signed ranks tests were conducted. No significant 

differences between one device and two devices were found.  
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Table 6.2. Median, 25th percentile (25%) and 75th percentile (75%) scores from the Tinnitus Handicap Inventory (THI) 

and the Annoyance because of Tinnitus Questionnaire (TIN) with one device and two devices for the bilateral and 

bimodal groups. 

 One device Two devices    

 Median 25%, 75% Median 25%, 75% W Z p 

Bilateral        

THI 1.00 0.00, 15.50 1.00 0.00, 5.50 -15.00 -2.03 .063 

TIN 0.26 0.00, 1.40 0.12 0.00, 0.94 -17.00 -1.78 .094 

Bimodal        

THI 0.00 0.00, 12.00 0.00 0.00, 10.00 -9.00 -0.95 .438 

TIN 0.00 0.00, 1.07 0.19 0.00, 1.77 1.00 -0.11 1.00 

 

No significant relationships were found between difficulties with tinnitus and health-related 

quality of life (see Table 6.3). 

 

Table 6.3. Pearson correlation coefficients (r) between tinnitus difficulties (as measured on the THI and TIN) with two 

devices and health utility on the HUI3 and EQ5D and YorQol with two devices (n=24). 

 THI TIN 

 r p r p 

HUI3 .002 .991 -.113 .600 

EQ5D .077 .722 -.043 .840 

YorQol .080 .710 -.079 .715 

 

6.3.3 Relationship with listening performance 

Correlations between listening performance and scores on the speech, spatial, and qualities of 

hearing sections of the SSQ are shown in Tables 6.4, 6.5, and 6.6 respectively. Moderate to strong 

relationships were found. 
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Table 6.4. Pearson correlation coefficients (r) between scores on the speech section of the SSQ and performance on 

speech listening tasks. Significant relationships after Bonferroni correction (alpha level = .007) are emboldened. 

Listening task r p 

Speech in quiet:   

Average performance on complex sentences .362 .042 

Speech in speech:   

One competing talker .180 .333 

Six competing talkers .426 .017 

Twelve competing talkers .363 .045 

Speech in noise:   

Speech reception threshold (noise spatially concurrent with 

speech at 0° azimuth) 

.498 .004 

Speech reception threshold (noise spatially separated from 

speech, noise ipsilateral to (first) cochlear implant) 

.538 .001 

Speech reception threshold (noise spatially separated from 

speech, noise contralateral to (first) cochlear implant) 

.438 .012 

 

Table 6.5. Pearson correlation coefficients (r) between scores on the spatial section of the SSQ and performance on 

spatial listening tasks. Significant relationships after Bonferroni correction (alpha level = .013) are emboldened. 

Listening task r p 

Localisation (60°) .705 <.001 

Localisation (30°) .568 <.001 

Localisation (15°) .608 <.001 

Movement tracking .652 <.001 

 

Table 6.6. Pearson correlation coefficients (r) between scores on the qualities section of the SSQ and performance on 

listening tasks. Significant relationships after Bonferroni correction (alpha level = .025) are emboldened. 

Listening task r p 

Emotion average .402 .023 

Melody recognition .478 .006 

 

6.3.4 Relationship to residual hearing 

A significant positive relationship between the three frequency average hearing threshold and 

benefit on the spatial section of the SSQ was found (r = .751, p=.029). No other significant 

relationships were found (Table 6.7). 
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Table 6.7. Pearson correlation coefficients (r) between the three frequency average hearing threshold (250Hz, 500Hz, 

and 1000Hz) and benefit in scores on the three sections of the SSQ, the HUI3, the EQ5D, and the YorQol. 

Questionnaire r p 

SSQ: Speech section .143 .658 

SSQ: Spatial section .751 .005 

SSQ: Qualities section .125 .698 

HUI3 .013 .967 

EQ5D .336 .286 

YorQol -.297 .348 

 

6.3.5 Bilateral Vs bimodal hearing 

Table 6.8 shows that both the bimodal and bilateral CI users rated their listening abilities to be 

numerically better with two devices on all three aspects of the SSQ. However, the benefit from a 

second CI was only significantly higher than the benefit from a contralateral acoustic hearing aid 

for the spatial and qualities sections. No significant difference in ratings on the speech section was 

found. Furthermore, no significant difference in benefit was found on any of the quality of life 

measures or measures of tinnitus. 

 

Table 6.8. Median, 25th percentile (25%), and 75th percentile (75%) self-reported benefits from a second device for 

bilateral and bimodal listeners. Significant differences are emboldened. 

Questionnaire Median 

benefit from a 

second CI 

25%, 75% Median 

benefit from a 

contralateral 

acoustic 

hearing aid 

25%, 75% U p 

SSQ: Speech 2.35 0.60, 4.16 0.97 -0.10, 1.25 43.00 .100 

SSQ: Spatial 4.59 1.79, 5.22 0.63 0.41, 1.60 16.00 .001 

SSQ: Qualities 1.89 0.84, 4.18 0.65 -0.12,1.07 24.50 .007 

HUI3 0.00 0.00, 0.16 0.00 -0.06,0.14 58.00 .418 

EQ5D 0.00 0.00, 0.00 0.00 0.00,0.00 66.50 .684 

YorQol 0.10 0.03, 0.26 0.04 0.00,0.11 42.500 .094 

THI 0.00 0.00, 6.50 0.00 0.00, 4.00 151.50 .950 

TIN 0.00 0.00, 0.54 0.00 -0.38, 0.54 165.00 .371 

 



Chapter 6  Comparison of self-reported benefit 
 

119 
 

6.4 Discussion 

6.4.1 Familiarity with devices 

The bimodal and bilateral CI users completed the questionnaires considering their life in an 

unfamiliar configuration using just their first (or only) CI. This could have inflated the amount of 

benefit observed from a second device with participants reporting much poorer listening ability 

and quality of life with one device than is actually the case, either due to unfamiliarity with using 

one CI alone, or to simply disliking that configuration. Therefore, in order to check that this was 

not the case scores on the questionnaires using one device were compared to scores by a group 

of unilateral CI users. No significant differences between the three groups were found for any of 

the measures. Therefore any difference in self-reported ability and quality of life when using two 

devices instead of one can be attributed to the addition of the second device.  

6.4.2 Self-reported ability 

Table 6.9 shows the mean gain obtained from a second device found in this study and in previous 

studies. The self-reported abilities of participants in this study suggest that both bilateral and 

bimodal users perceive there to be benefits in everyday listening from a second device, but a 

greater self-rated benefit is obtained from a second CI than a contralateral acoustic hearing aid. 

The bilateral CI users reported significantly higher ratings on all three sections of the SSQ when 

using two CIs compared to one CI (Figure 6.3). This finding is consistent with that of Summerfield 

et al. (2006) who, in a within-subjects comparison, found significant improvements on all three 

sections of the SSQ three and nine months after receiving a second CI. However, the findings 

differ somewhat from those reported by Noble et al. (2008) who compared ratings on the ten 

sub-sections of the SSQ by bilateral CI users to ratings by unilateral CI users. They found that 

whilst the bilateral CI users showed higher ratings on the spatial sub-sections and three out of 

four of the qualities sub-sections, no significant differences in ratings were found on any of the 

speech sub-sections. However, it is worth noting, that whilst Summerfield et al. found within-

subjects advantages on all three sections from a second CI, no advantage from a second CI was 

found on the speech section of the SSQ when comparing between unilateral and bilateral groups. 

In addition, although Summerfield et al. found a benefit in the qualities section nine months after 

the users received their second CI, this was not evident three months after receiving a second CI. 

Thus these differences in findings could be explained due to the different designs and the time 

the ratings took place. For instance, in the present study the participants had been using their 

normal configuration for a mean of 7 years (standard deviation (SD) = 4) before the ratings were 

obtained. The ratings in the study by Summerfield et al. were gathered just three and nine 

months later and the ratings by Noble et al occurred within 12 months of receiving a second 
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device. Thus it may be that it takes time for self-rated benefits from a second device to be 

realised. 
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Table 6.9. Mean increase in scores on the three sections of the SSQ from a second CI or contralateral acoustic hearing aid compared to a unilateral CI, and the mean gain from a second CI 

compared to a contralateral acoustic hearing aid. 95% confidence intervals (CI) are shown in parentheses. Means from Noble et al. (2006) were averaged across the 10 sub-sections of the 

SSQ. Means from Summerfield et al. (2006) were inferred from a figure showing within-subjects comparisons. 

 Mean bilateral gain (95% CI) Mean bimodal gain (95% CI) 
Bilateral Vs. Bimodal: Mean bilateral gain 

(95% CI) 

 Speech Spatial Qualities Speech Spatial Qualities Speech Spatial Qualities 

Current study 
2.38 

(0.96-3.80) 

4.10 

(2.66–5.53) 

2.52 

(1.36 – 3.67) 

0.71 

(0.21 – 1.20) 

0.98 

(0.37 – 1.58) 

0.53 

(0.08 – 0.97) 

1.68 

(0.26 – 3.10) 

3.12 

(1.65 – 4.59) 

1.99 

(0.82 - 3.16) 

Noble et al (2006) 0.08 1.70 1.10 -0.10 0.40 -0.07 0.90 1.30 1.17 

Summerfield et al 

(2006) 
0.05 0.03 0.01 n/a n/a n/a n/a n/a n/a 
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In the current study the bimodal users gave significantly higher ratings when listening with two 

devices compared to one on all three sections of the SSQ (Figure 6.3). Previous research 

investigating self-reported benefit from bimodal aiding has found mixed results. For instance, 

contrary to the present findings, Noble et al. (2008) did not find any significant differences in 

ratings between unilateral CI users and bimodal users on any of the ten sub-sections of the SSQ. 

The different findings between the present study and that of Noble et al. could be due to 

differences in the sample used. Noble compared ratings from a larger, possibly more 

representative sample (70 unilateral CI users and 39 bimodal users). Participants in the study by 

Noble et al. had all received their device(s) at the CI program at the University of Iowa within 100 

months of the analyses being conducted whereas the current sample was small and self-selecting 

(as discussed in Chapter 5). However, the results from the present study are in line with other 

reports. For instance, Flynn and Schmidtke (2004) found  self-reported advantages of bimodal 

listening over unilateral CI listening for listening to music using the Bimodal Benefits 

Questionnaire. Also, Ching, Incerti, and Hill (2003) administered a custom made questionnaire 

assessing speech communication in quiet and noise as well as alertness to environmental sounds 

to six CI users and found self-reported advantages from bimodal aiding compared to unilateral CI 

listening. 

 

In comparing the two options, no difference in the amount of benefit on the speech section was 

found (Table 6.8). However, a greater benefit was obtained from a second CI on the spatial and 

qualities sections of the SSQ. The spatial benefit was to be expected as behavioural and self-

reported spatial listening benefits among bilateral CI users have been reported consistently 

(Dunn, Tyler, Oakley, Gantz, & Noble, 2008; Kerber & Seeber, 2012; Litovsky, Parkinson, & 

Arcaroli, 2009; van Hoesel & Tyler, 2003) whereas spatial advantages for bimodal users are 

inconsistent (Dunn et al., 2005; Seeber et al., 2004; Tyler et al., 2002). The fact that a greater self-

reported benefit on the qualities section was obtained from a second CI and not an acoustic 

hearing aid is somewhat unexpected. The qualities section of the SSQ incorporates questions 

related to music, voice naturalness, vocal emotion recognition and the segregation of sounds. 

Previous research has demonstrated that self-reported sound quality and sound naturalness are 

improved when acoustic and electric information are combined (Ching et al., 2007; Flynn & 

Schmidtke, 2004; Potts, Skinner, Litovsky, & Strube, 2009). The current finding suggests that these 

benefits are not being realised for users of bimodal devices in the UK.  

Relationship with listening performance 

Strong positive relationships between spatial listening performance and ratings on the spatial 

section of the SSQ were found (Table 6.5). This is consistent with Noble et al. (2008) who found 
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moderate positive relationships between performance on a localisation task and ratings on the 

two spatial sub-sections of the SSQ (localisation, and distance and movement). A significant 

positive relationship was found between scores on the speech section of the SSQ and speech-

reception thresholds obtained in a speech perception task in the presence of spatially concurrent 

noise (Table 6.4). A positive relationship was also found between scores on the speech section of 

the SSQ and speech-reception thresholds with noise ipsilateral to the first (or only) CI. No other 

significant relationships between scores on the speech section of the SSQ and speech perception 

tasks were found. This is contrary to Noble et al. (2006) who found significant relationships 

between all speech sub-scales and speech perception in quiet performance. This difference in 

findings could be due to the different tasks used. Noble et al. (2008) correlated ratings on the SSQ 

with performance on a monosyllabic word recognition in quiet task. However, the present study 

investigated the relationship between speech perception of sentences. However, it is worth 

noting that in the current study Bonferroni corrections were applied to correct for multiple 

comparisons which Noble et al. did not do. Indeed, if a Bonferroni correction had not been 

applied a significant relationship would have been observed. However, as previously discussed, a 

Bonferroni correction was applied as using an uncorrected alpha level increases the chance of a 

Type 1 error. 

Relationship with residual hearing 

Access to low frequency information provides cues for voicing (Rosen, 1992) which can help 

listeners to improve speech perception in quiet  (Incerti et al., 2011; Zhang et al., 2010). 

Furthermore, pitch information conveyed by low frequencies can help listeners to separate two 

speech streams (Kong et al., 2005), recognise vocal emotion (Most et al., 2012) and improve 

music perception (Flynn & Schmidtke, 2004). Therefore one might have expected better low 

frequency hearing to be associated with greater self-reported improvements on tasks such as 

emotion recognition, melody recognition, segregating talkers, and improvements in speech 

perception. However, no relationship was found between audiometric thresholds and the speech 

or qualities sections of the SSQ (Table 6.7), where these listening abilities are addressed. This is 

consistent with the findings reported in Chapter 5 which also showed no relationship between 

audiometric thresholds and listening performance. Whilst this could be due to the small number 

of participants and limited range of thresholds, the present study did find a relationship between 

audiometric thresholds and scores on the spatial section of the SSQ. The reason for this is unclear, 

however the only listening task reported in Chapter 5, for which the bimodal group received 

significant benefit from their contralateral acoustic hearing aid was a spatial task. However the 

lack of relationship between audiometric thresholds and spatial listening performance (discussed 

in Chapter 5) demonstrates that whilst individuals with better levels of residual hearing perceived 
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themselves to be better spatial listeners, this did not manifest in better spatial listening 

performance compared to individuals with lower thresholds.  

6.4.3 Quality of life 

This experiment examined two possibilities. One possibility was that despite improvements in 

actual listening ability reported in Chapter 5, using a second device does not improve quality of 

life compared to listening with a single CI alone. The second option was that a second device does 

result in improvements to quality of life compared to listening with a single CI alone but that 

current instruments are not sensitive to these differences. The results found support for the 

second alternative. 

 

Results varied depending upon the measure of quality of life used (Figure 6.4). With the HUI3 and 

the EQ5D, no significant benefit from adding a second device was found for either group. Indeed 

ratings on the EQ5D were at ceiling for both groups when using one device alone, allowing no 

room to measure any potential improvement from adding a second device. This finding is not 

surprising as the EQ5D contains no questions on hearing or listening. Furthermore this finding is 

consistent with Grutters et al. (2007) who found that 44% of hearing impaired individuals had a 

utility score of one (‘perfect health’) when measured with the EQ5D. One issue is that the EQ5D 

emphasises ‘health’, whereas hearing impairment can affect other aspects of life and hearing 

impaired individuals may not consider their impairment a health issue. This is reflected in two 

recent reviews in which the EQ5D has been shown to be insensitive to differences in hearing 

ability (Longworth et al., 2014; Yang et al., 2013). 

 

However, in previous research the HUI3 has shown some sensitivity to differences in hearing 

ability. For instance, Grutters et al. (2007) found that although many individuals were at ceiling on 

the EQ5D only 1% of the hearing-impaired sample indicated perfect health with the HUI3. In the 

present study median utility values of .82 (IQR = .54-.82) and .76 (IQR = .51-.79) were reported by 

the bilateral and bimodal groups with their first (or only) CI, respectively, and no respondent 

indicated they had perfect health. Thus there was room for improvements in quality of life due to 

a second device to be measured. However, no significant advantage from a second device was 

found when using the HUI3 as a measure. Whilst both the EQ5D and HUI3 have shown some 

benefit in quality of life from unilateral implantation compared to no surgical intervention (see 

Damen, Beynon, Krabbe, Mulder, & Mylanus, 2007; Summerfield et al., 2006) the results from this 

study support the notion that these instruments are less sensitive to detecting differences 

between ‘some hearing’ and ‘more than some hearing’ (Barton, Bankart, & Davis, 2005; Grutters 

et al., 2007; Lovett et al., 2010). 
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The YorQol was included as a measure of quality of life with the potential to be sensitive to overall 

wellbeing. The YorQol is a straightforward questionnaire where participants simply have to 

indicate their overall quality of life by marking a visual analogue scale. This is a more direct 

measure of quality of life than the HUI3 and EQ5D as participants are explicitly asked to think 

about their overall quality of life rather than answering questions relating to aspects of health 

related quality of life. When using this measure, a significant benefit in quality of life was 

observed for both groups when using a second device (Figure 6.4). This finding coupled with the 

finding that standardized health related quality of life questionnaires do not detect any benefit 

from a second device provides support for the suggestion that using a second device does indeed 

provide benefits to quality of life but that the widely used  instruments are insensitive to these 

benefits.  

 

However, in comparing bimodal aiding to bilateral cochlear implantation, there was no difference 

in the amount of benefit obtained on any of the quality of life measures (Table 6.8). Given the 

finding that using the EQ5D and HUI3 neither group benefitted significantly from a second device, 

it was not surprising that a difference between the benefits obtained by each option was not 

observed. This issue will be investigated in Chapter 8 which discusses the development and 

validation of a new questionnaire to measure ‘hearing-related quality of life’. The focus of the 

research presented in this chapter is on the self-reported clinical-effectiveness of a second device. 

However, standardized quality of life measures such as the HUI3 and EQ5D can be used to inform 

the effectiveness component in cost-effectiveness analyses. These types of analyses are 

important in helping policy makers determine the allocation of funding. Chapter 8 considers the 

cost-effectiveness of a second device and uses utility values obtained from the HUI3 and EQ5D in 

this study to calculate incremental-cost-effectiveness ratios. 

6.4.4 Tinnitus 

No difference in the severity or impact of tinnitus between monaural and binaural listening or 

between bimodal and bilateral CI listening was found (Table 6.2). Summerfield et al. (2006) had 

observed a significant detriment in health related quality of life as measured on the EQ5D 

between unilateral and bilateral CI listening. The authors suggested that this was due to 

worsening tinnitus in a few of the participants as revealed by scores obtained with the TIN 

questionnaire. However, the current study found no relationship between tinnitus difficulties and 

health-related quality of life (Table 6.3). Median scores on the tinnitus measures were close to 

floor due to the majority of participants reporting no difficulty or annoyance from tinnitus. 
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6.4.5 Strengths and weaknesses 

This study is limited by the sample used and full details of the impact of this limitation are 

discussed in Chapter 5.  It would therefore be informative to test a larger more representative 

sample of CI users. Although the bimodal and bilateral participants completed questionnaires 

considering life in an unfamiliar configuration, the use of a unilateral comparison group enabled 

checks to be made to ensure that any benefit observed arose from the use of a second device. 

 

6.4.6 Conclusion: Which option is better? 

A key aim of the present study was to assess which option, a second CI or a contralateral acoustic 

hearing aid, provides the greater benefit for UK CI users. It has been demonstrated that compared 

to unilateral cochlear implantation, bilateral cochlear implantation and bimodal aiding both result 

in improved self-reported listening ability. Furthermore, there is some evidence to suggest that 

quality of life may be improved from using a second device. However, in comparing the benefit 

provided from the two options, there were few differences. Indeed the only differences were 

between self-rated spatial listening and qualities of listening as measured with the SSQ which 

revealed an advantage from a second CI over a contralateral acoustic hearing aid. Furthermore, 

the study has demonstrated that existing questionnaires assessing health related quality of life 

are insensitive for assessing the benefits of binaural over monaural listening. This could have 

important implications for policy makers determining the allocation of funding. This implication 

will be discussed in more detail in Chapter 8. 

 

In conclusion, this study has demonstrated that self-reported listening ability is greater when 

using two devices. As an acoustic hearing aid can be obtained free of charge from the National 

Health Service, the results support the recommendations by  Ching et al. (2004) that bimodal 

aiding should be the standard provision for users of a unilateral CI. However, a greater self-

reported benefit in everyday listening for spatial tasks and other qualities of listening tasks 

suggests that bilateral cochlear implantation is more clinically effective than bimodal aiding. 

6.5 Summary 

 Both bimodal and bilateral CI users indicated greater self-reported listening ability with 

two devices compared to one. 

 No significant difference in health-related quality of life was found between one device 

and two devices using the HUI3 and EQ5D. 

 Quality of life as measured with the YorQol showed significant benefits from both a 

second CI and a contralateral acoustic hearing aid. 
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 Measures of tinnitus annoyance did not show any difference between one device and two 

devices. 

 In comparing the benefit from a second CI to the benefit from a contralateral acoustic 

hearing aid, self-reported listening ability for spatial tasks and listening quality were 

better with a second CI. 

 No significant difference in the gain in quality of life from a second device was observed 

between bilateral and bimodal listening.
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7 The role of head movements: sound orientation, sound 

localisation, listening effort, and speech perception in noise.  

 

This chapter reports three experiments investigating the association between head movements 

and listening performance. Section 7.1 describes and assesses the equipment used in the 

experiments reported in this chapter. Section 7.2 reports an experiment investigating the patterns 

of head movements made by CI users when orienting to either a short or long sound in the 

horizontal plane. Section 7.3 reports an experiment investigating the potential for head 

movements to reduce front-back localisation confusions in normally-hearing adults and CI users. 

Section 7.4 reports an experiment that investigated whether listeners make use of optimal head 

orientation strategies for maximising speech perception performance in the presence of noise. 

7.1 Assessing the accuracy of a head tracking system for movements in 

the horizontal plane 

7.1.1 Introduction 

Methods for monitoring head movement have progressed substantially over time. Early research 

by Thurlow, Mangels, & Runge (1967) utilised a camera in a procedure in which recordings were 

taken from the left hand side of participants while a stimulus was presented. A head mounted 

frame, worn by the participant, aided researchers in measuring angular movement. The accuracy 

of this device for measuring changes in yaw (horizontal movement), pitch (vertical movement), or 

roll (rolling the head left or right so that one ear moves closer to the shoulder) was not reported 

by the authors. However, the technology available at that time is likely to have had a limited 

sampling rate compared to standards today and therefore likely incapable of detecting small 

movements which would alter interaural level and timing differences which can help listeners 

locate the source of a sound (see Section 2.1.1). 

 

Nevertheless, cameras still play a pivotal role in some modern motion tracking software, from 

closed circuit television cameras (Buhagiar et al., 2004) to multiple motion cameras positioned 

around the testing room (Brimijoin, Boyd, & Akeroyd, 2013; Brimijoin et al., 2010, 2012). Brimijoin 

et al. (2012) used six motion tracking cameras to track the position of multiple markers mounted 

on top of a participant’s head. Tracking occurred at a sample rate of 100Hz and enabled the 

researchers to locate the horizontal and vertical position of the participant to within 0.2°. 

However, cameras are not the only method for monitoring head movements with some 

researchers making use of magnetic tracking (Perrett & Noble, 1997b; Toyoda, Morikawa, & 
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Hirahara, 2011). For instance, Perrett and Noble (1997) used a 3Space Isotrak II which can allow 

accurate measurements (within 0.75°) of yaw, pitch and roll with a resolution of 1° (Polhemus 

Incorporated, 2000). Toyoda et al. (2011) used pulsed magnetic tracking in which participants 

wore a cap containing multiple sensors which also had high precision (0.5° RMS error, Ascension 

Technology Corporation, n.d.). Other researchers are making use of inertial based tracking, such 

as Cooper, Carlile, and Alais (2008) who used an Intersense InertiaCube3 which involves placing a 

small cube shaped sensor on top of a participants head. This technology has an accuracy of 

detecting yaw to within 1°, and to just 0.25° for pitch and roll (Intersense Inc., n.d.). Non-camera 

based technology has the advantage that measurements are not limited by the field of view of the 

camera. 

 

However, these options can be expensive5 and recently researchers have begun developing 

affordable systems which make use of equipment from games consoles. Brimijoin et al. (2013) 

developed a head tracking system utilising a Nintendo Wii remote. For this, three infrared light 

emitting diodes (LEDs) were positioned on top of a participant’s head and a Nintendo Wii remote 

was positioned approximately 1.5 metres above the participant. The infrared camera in the Wii 

remote detected the XY coordinates of each of the LEDs and relayed the co-ordinates to a 

computer via a wireless Bluetooth connection.  The XY co-ordinates of the three LEDs were 

recorded at a rate of 100Hz to determine the direction in which the participant was facing. 

Brimijoin et al. (2013) provided instructions for setting up a similar system and it is from these 

guidelines that the current system was created. 

 

The aim of this section is to (1) describe the equipment, which is used in experiments in the 

following sections, and (2) test the accuracy of the equipment in measuring yaw. 

7.1.2 Methods 

7.1.2.1 The head tracking equipment 

The cap 

A custom made cap incorporating three LEDs is worn by the participant (Figure 7.1). The back two 

LEDs are positioned 4.5cm apart, whereas the front LED is positioned 3.0cm in front of the middle 

LED. A battery pack provides power for the LED array. 

 

 

                                                           
5 For instance, Intersense InertiaCube3 is marketed between £1350 and £3000 (Cybermind, 2010; 
Ilixco, n.d.) 
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Figure 7.1. Custom made cap with three LEDs positioned on top. The two front LEDs are positioned closer together 

than the back two LEDs to determine the direction the participant is facing. 

The tracking system 

A Nintendo Wii remote was suspended from the ceiling approximately 0.5m above where the 

participant sat. The infrared sensor of the Wii remote detected the position of the 3 LEDs at a rate 

of 100Hz. The XY co-ordinates of the three LEDs within the camera’s field of view were recorded 

and relayed to the computer via Bluetooth. The Euclidian distances between the three LEDs were 

then calculated using Matlab to infer the direction the participant was facing (described below). A 

further Nintendo Wii remote was used as a handheld response instrument in the experiments 

reported in this chapter. 

Calculating yaw 

Yaw was calculated from the 3 XY co-ordinates to an angle of azimuth using Matlab. The atan2 

function was used to extract the four-quadrant inverse tangent of the XY co-ordinates to 

determine the position in space. This was restricted to a 360° array using the mod function. When 

the three LEDs were detected by the Wii remote, the direction in which the participant was facing 

could be determined as the position of the front LED was unambiguous. If the positions from only 

two LEDs were recorded (for instance if the third LED went outside the field of view of the 

infrared sensor) the direction in which the participant was facing was ambiguous as the identity of 

the front most LED was unknown. With only two points of reference, the participant could be 

facing in one of two directions whose azimuths differ by 180°. However, due to the reasonably 

high sampling rate, the direction of the participant could be inferred based on temporarily-

adjacent samples in which all three LEDs were tracked. With a maximum reasonable horizontal 

head rotation speed of around 171°/second (Cooper et al., 2008), a delay of at least 1.05 seconds 

would be required to rotate the head by 180°. If the timing between the current 2-point 
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measurement and the previous 3-point measurement was less than 1.05 seconds, it was 

therefore considered reasonable to assume that the direction in which the participant was facing 

had not been rotated by 180°. If the position of only one LED was recorded the yaw could not be 

calculated and the yaw for that time-point was left blank.  

7.1.2.2 Procedure 

The cap was mounted on top of a Head and Torso Simulator (HATS, Brüel & Kjaer Type 4128C). 

The HATS was positioned on a rotating chair in the centre of a 360° array of 24 loudspeakers 

separated by 15°. During recording, the experimenter rotated the chair 360° pausing at each 15° 

interval when the HATS was directly facing each loudspeaker. At each 15° interval the 

experimenter pressed the response button on the handheld Wii remote to mark the time point at 

which the HATS was facing each location so that the XY co-ordinates of this position could be 

extracted and used in later analyses. This procedure was repeated three times and the recorded 

yaw angle for each location was averaged from the three measurements. 

Calibration 

The angle measured when the HATs was facing 0° azimuth was extracted using timing information 

from the response press. The difference between the measured location and 0° azimuth was 

calculated. This deviation was corrected for, for instance if there was an undershot at 0° azimuth 

by 2°, the recorded data was calibrated to this point with 2° being added to each data point. 

7.1.3 Results 

7.1.3.1 Precision/Resolution 

The left portion of Figure 7.2 shows a five second section of the recording with raw yaw angles 

calculated from the XY co-ordinates of the LEDs. Close inspection of the measurements revealed 

the limited resolution of the Wii remote tracking system. The right portion of Figure 7.2 shows the 

trajectory of a one second section of the recording. As the yaw calculations are computed with 

high numerical precision using Matlab, the limited resolution of the Wii remote tracking system 

leads to rapid changes in motion being indicated in the yaw angles. The rapid changes in yaw 

angle suggest that the absolute position of each LED is known to within about 1°. 
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Figure 7.2. Left: Five section sample of calculated yaw angles from the recording. The black box highlights the one 

second section of the recording that is shown in detail in the right-hand diagram. 

 

To overcome this limitation a 50ms sliding Hanning window was applied to smooth the data (this 

technique has also been used by Brimijoin et al., 2010). Figure 7.3 shows the smoothed yaw data 

overlaying the original unsmoothed data. The Hanning window preserves the overall movement 

whilst removing much of the noise which arose from sampling error.  

 

Figure 7.3. Unsmoothed yaw angle (green line) of a five second section of the recording. The red line shows the yaw 

calculation after a 50ms sliding Hanning window has been applied to the data. The black box highlights the one 

second section of the recording that is shown in detail in the right-hand diagram. 

 

7.1.3.2 Accuracy 

Figure 7.4 displays the mean yaw angle for each of the target directions. The results demonstrate 

that the head tracking equipment has a high degree of accuracy in measuring yaw angle. The 

average RMS error for all measurements was 2.33°. 
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Figure 7.4. Mean recorded yaw (blue circle) in degrees azimuth for target directions in the horizontal plane across 

360° as measured by the head tracking equipment. Black line indicates perfect yaw measurement for reference. 

7.1.3.3 Reliability 

The recording lasted for 3 minutes and 54 seconds. The co-ordinates of the three LEDs were 

recorded for the duration of this time with no missing values. 

7.1.4 Discussion 

The motion tracking system accurately measured changes in yaw across a full 360° of azimuth. 

This result is compatible with data reported by Brimijoin (2013) who also used a similar head 

tracking system. The limited resolution of the Nintendo Wii remote has previously been noted by 

Lee (2008). The RMS error measured in the current test was larger than that found for more 

expensive commercially available equipment using cameras (0.2°, Brimijoin, 2010), magnetic 

tracking (0.75°, Polhemus Incorporated, 2000), or inertia tracking (1°, Intersense Inc., n.d.). 

However, the RMS error was still within 2.5°, therefore suggesting that the Wii Remote head 

tracking system is able to accurately detect most head movements in the horizontal plane.  

 

The head tracking system was also reliable, recording the position of the three LEDs for the 

duration of the recording session. However, it is important to note that the recording was for a 

short period of time with a mannequin. It may be that missing data will arise with human 

participants who may move their heads outside of the field of view of the infrared sensor.  By its 

very nature, the system is capable only of tracking changes in yaw, and therefore it is unable to 

measure and record changes in pitch or roll. Listeners may use these types of head movements in 

strategic ways to determine the horizontal location of a sound source. For instance, when locating 
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sounds in the horizontal plane, although changes in pitch will not alter the interaural timing or 

level differences, the spectra may change from reflections off the pinna (Moore, 2012). Brimijoin 

(2012) measured the pitch, roll, and yaw movements of listeners with asymmetric hearing loss 

during a speech in noise task. Stimuli were presented in the horizontal plane across 360°. Median 

pitch was -7.5° (for better right-ear listeners, 6.2° for better left-ear listeners) and average roll was 

+2.5° (for better right-ear listeners, 2.7° for better left-ear listeners). However, changes in yaw 

played a much larger role with median changes in yaw being -40.8 (for better right-ear listeners; 

+51.8° for better left ear listeners). Having asymmetrical hearing difficulties may result in a 

greater reliance on changes in yaw to compensate for reduced hearing on one side. Nevertheless, 

the relatively small changes in pitch and roll demonstrate the reduced role these types of 

movements have in locating sounds in the horizontal plane.  In conclusion, this head tracking 

system is a financially viable piece of equipment capable of accurately and reliably recording 

changes in yaw. 
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7.2 Sound orientation in the horizontal plane by normally hearing 

listeners and cochlear implant users 

7.2.1 Introduction 

As outlined in Chapter 3, Brimijoin, McShefferty, and Akeroyd (2010) demonstrated that both 

normally hearing (NH) and moderately hearing impaired listeners undershot when orienting to 

auditory and visual targets in the frontal-horizontal plane. Brimijoin et al. instructed listeners to 

turn their head so that they were facing the source of either a visual stimulus or a short (1.3 

seconds) auditory stimulus. The present experiment sought to replicate this experiment with a 

group of NH listeners but also extend the study to test profoundly hearing impaired listeners who 

use CIs. The study sought to answer the following questions: 

 

1. How accurately can CI users orient to sound sources in the frontal horizontal plane? 

2. How do CI users make use of head movements during this task? 

3. Are unilateral and bilateral CI users more accurately able to orient to an auditory target 

when they have longer than 1.3 seconds? 

 

In a sound localisation task with 12 loudspeakers in the horizontal plane (separated by 30°), 

Mueller, Meisenbacher, Lai, and Dillier (2014) demonstrated that the mean RMS error of bilateral 

CI users was 30.6°, 26.9° and 27.6° for stimuli lasting 0.5 seconds, 2.2 seconds and 4.5 seconds 

respectively. This pattern suggests that increasing the duration of an acoustical stimulus does not 

improve localisation accuracy. With a short stimulus there is limited time available to make a 

movement whilst the stimulus is presented and it is possible that the sound will have ceased 

before a natural head movement has begun. Indeed, Brimijoin et al. (2010) measured the time 

listeners took from the onset of an acoustical stimulus to move their heads ±3°. The average time 

taken by NH listeners was 0.3 seconds whereas moderately hearing impaired listeners took 0.6 

seconds. Listeners may benefit from a brief pause before moving to ascertain the loudness of a 

stimulus whilst they keep their head still, before making a movement to monitor changes in 

loudness across space. It may be that bilateral CI users will take longer than unaided moderately 

hearing impaired listeners to make a movement because they must base their judgement largely 

on ILDs rather than both ILDs and ITDs. They also have to integrate information from two 

different processors. A 1.3 second stimulus should allow time for some movement to be made 

however, this may not be sufficiently long for CI users to benefit. For instance both Brimijoin et al. 

(2010) and Mueller et al. (2014) demonstrated that moderately hearing impaired individuals and 

bilateral CI users respectively made longer and more complex, search-like head movements than 

NH listeners. With just 1.3 seconds there may not be sufficient time for informative head 
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movements to be made and completed. When more time is available participants will have the 

opportunity to make and complete search-like head movements which could improve 

performance. 

 

Consistent with previous research by Brimijoin et al. (2010), it was hypothesised that both NH 

listeners and CI users would increasingly undershoot in their orientation to auditory and visual 

targets in the periphery due to restrictions in the ability to turn the neck (Tousignant & Breton, 

2006). It is well documented that NH listeners are able to locate sounds accurately in the frontal 

horizontal plane (e.g. Brimijoin et al., 2010; Mueller et al., 2014; Oldfield & Parker, 1984). In the 

experiment reported in Chapter 5, localisation accuracy for five sources of sounds separated by 

15° in the frontal horizontal plane by bilateral CI users was 52% correct (mean RMS error: 13.30°, 

SD = 6.02°). The duration of the stimulus in that experiment was 1.68 seconds (SD = 0.12) 

therefore, it was hypothesized that bilateral CI users in the present study would be less accurate 

than NH listeners at orienting to the source of a short stimulus. It was anticipated that a 

continuous stimulus would enable bilateral CI users to benefit from the changes in ILD afforded by 

a longer stimulus. This may help them to discriminate between the locations to determine where 

the target was presented from more accurately than with a shorter stimulus. Previous research 

has shown localisation accuracy by unilateral CI users to be poor (see Chapter 2). Furthermore, 

the experiment reported in Chapter 5 showed that unilateral CI users had an accuracy of 26% with 

target locations separated by 15° (mean RMS error: 26.36°, SD = 4.71°). Therefore, it was 

expected that unilateral CI users in the present study would be unable to locate and orient to an 

auditory target with just 1.3 seconds. Localisation performance by unilateral CI users has been 

shown to be poor even when head movements are permitted (see Chapter 3), thus it was 

anticipated that performance would remain poor even when a longer stimulus was used as even 

though there would be sufficient time to make head movements, the unilateral CI users will not 

benefit from them. Based on results by Brimijoin et al. (2010) and Mueller et al. (2014) it was 

hypothesised that CI users would make longer, more complex head movement trajectories than 

NH listeners. Consistent with Brimijoin et al., a visual control condition was included to check that 

any differences between the groups tested were due to hearing differences and not any other 

factors, such as limited neck movement ability or age differences. 

7.2.2 Method 

7.2.2.1 Participants 

Twenty-four NH listeners (5 male, mean age = 21.56 years, SD=2.61) and eight CI users (4 

bilateral) participated. All NH participants had pure-tone thresholds more favourable than, or 

equal to 20 dB HL at 0.25, 0.5, 1, 2, and 4 kHz and were recruited from within the University of 
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York. Users of CIs that had participated in the research study described in Chapters 5 and 6 were 

contacted with details of the present research.  Additional participants (participants 169 and 216) 

responded to an advertisement in the National CI Users Association calling for participants. 

Demographic information of CI users is displayed in Table 7.1. The Research Ethics Committee of 

the Department of Psychology at the University of York approved the study. 

 

Table 7.1. Summary demographic data of CI users 

Participant Age Gender Contralateral 
hearing aid? 

1st CI 
make 

Duration 
of 1st CI 
use 
(years) 

2nd CI 
make 

Duration 
of 2nd CI 
use 
(years) 

111 78.8 Male No Advanced 
Bionics 
 

11.0 - - 

169 55.1 Female No Advanced 
Bionics 
 

6.3 - - 

303 74.1 Female Yes Cochlear 
 

7.7 - - 

323 62.6 Female Yes Advanced 
Bionics 
 

6.1 - - 

201 55.0 Female - Cochlear 
 

8.6 Cochlear 5.9 

480 69.9 Female - Cochlear 
 

9.7 Cochlear 7.7 

214 52.9 Male - Cochlear 
 

5.6 Cochlear 3.7 

216 71.6 Female - Advanced 
Bionics 

4.9 Advanced 
Bionics 

2.7 

 

7.2.2.2 Apparatus 

All stimuli were presented through 11 loudspeakers (Bose Acoustimass 3 Series IV) positioned in a 

semi-circular array with a radius of 1.5m extending from -75° to +75° in 15° steps (Figure 7.5). 

Loudspeakers were positioned at a height of 1m. The array of loudspeakers was situated within an 

Industrial Acoustic Corporation (IAC) single-walled enclosure situated within a larger sound-

treated room. The loudspeaker array was calibrated using a Brüel and Kjaer 0.5 inch microphone 

(Type 4189) and sound level meter (Type 2260 Investigator). The outputs from each loudspeaker 

were adjusted so that an octave band of noise centred on 1kHz was presented at the same 

intensity (±0.5dB) in the centre of the arc with the participant absent. Positioned just directly 

underneath each loudspeaker was a red light-emitting diode (LED), which could be turned on or 

off. The head tracking equipment described in Section 7.1 was used to record the head 

movements of participants. 
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Figure 7.5. Diagram showing loudspeaker position in relation to the participant. 

 

7.2.2.3 Design 

A mixed design with three experimental conditions (visual, auditory short and auditory long) and 

three groups (NH, bilateral CI users, and unilateral CI users) was used. The experimental 

conditions were blocked and the order in which the conditions were completed was 

counterbalanced across participants. 

7.2.2.4 Stimuli 

Auditory stimuli 

Forty Bamford-Kowal-Bench (BKB, Bench, Kowal, & Bamford, 1979) sentences spoken by a British 

male talker were used. Sentences were selected to be as close in duration to 1.3 seconds as 

possible (to match those used by Brimijoin et al., 2010). The mean duration of the sentences was 

1.32 seconds (SD= .06). In the auditory short condition the stimulus was presented once. In the 

auditory long condition the sentence was repeated continuously until the participant responded 

(up to a maximum of 27 presentations or about 36 seconds). 

Visual stimulus 

A red light-emitting diode positioned directly beneath each loudspeaker was illiminated until the 

participant made a response. 

7.2.2.5 Procedure 

Prior to the experiment 25 modified de Bruijn sequences were generated (Brimijoin & O’Neill, 

2010). This produced 25 unique orderings that ensured stimuli were presented from each location 

an equal number of times (11) and that each location was followed by each other location once. 

1.5m 
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Thus there were 110 trials (11 locations x 10 transitions). Participants completed each condition in 

a different de Bruijn order. 

 

For the auditory conditions, on each trial one of the sentences was randomly selected and 

presented from the loudspeaker determined by the de Bruijn order at 65dB SPL. Stimuli were 

randomly roved (by 0, -5, or -10dB) on each trial. In the visual condition, on each trial a red LED 

was presented from the location determined by the de Bruijn order. On each trial the 

participant’s task was to turn to face the light (visual condition) or the loudspeaker from which 

the sentence was presented (auditory conditions). Participants were instructed that when they 

were satisfied that they were facing the light/loudspeaker, they should press a handheld response 

button and continue facing that light/loudspeaker until the next stimulus was presented. Prior to 

each block, 11 practice trials, in which the stimulus was presented from each possible location, 

were included to familiarise participants with the task. 

7.2.2.6 Analyses 

Head-movement trajectories were smoothed with a 50ms Hanning window as described in 

Section 7.1.2.2. Individual trials were excluded from the analysis if the there was a gap in the head 

tracking recordings for 300ms or more. To ensure that measurements by the head tracking 

equipment matched where the participant was actually facing, the head tracking equipment was 

calibrated immediately before and immediately after each condition. For this, a light was 

presented below each loudspeaker used in the experiment in turn from left to right and then back 

to left. The participant was instructed to turn to face the light and then when satisfied that their 

nose was pointing at it, press a handheld response button. After a response was made the next 

light was presented. The mean yaw head orientations when the participant responded to a light 

at 0° azimuth (4 instances per condition) were extracted and averaged to produce a calibration 

yaw. This value was used to correct each recorded head position for that condition as described in 

section 7.1.2.2. Descriptions of the outcome measures are shown in Table 7.2. Two CI users (303 

and 323) used a hearing aid in their non-implanted ear. Due to the small sample size, these two 

participants and participants 111 and 169 were treated as one group as users of a single cochlear 

implant. 
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Table 7.2. List of outcome measures with descriptions. 

Outcome measure Definition 

Final Orientation Position (°) at which the participant was orienting when they pressed 
the response button. 

Accuracy Mean root-mean square error (°) of the final orientation relative to the 
target orientation. 

Latency to Respond The time (seconds) taken from the target onset until the participant 
pressed the response button. 

Initial Latency The time (seconds) taken from target onset until the participant moved 
more than ±3°. 

Duration at Fixation Length of time (seconds) for which participants remained within ±3° of 
their final orientation. 

Duration of Movement The time (seconds) between initiating a movement and fixating the 
target (i.e. the period of time after Initial Latency and before the start 
of Duration at Fixation). 

Length of Movement Absolute length of the head trajectory (°) 

Maximum Velocity Maximum speed (°/s) at which the participant moved during a trial. The 
average maximum velocity from each participant for each condition 
was calculated. 

Reversals A change in the direction of head movement (e.g. a change from 
leftward movement to rightward movement) was counted as a 
‘reversal’. The number of reversals per trial was counted and an 
average per participant for each condition was calculated. 

 

Individual 3 (group) by 3 (conditions) ANOVAs were conducted for each measure however 

Levene’s test indicated that the assumption of homogeneity had not been met for the majority of 

analyses. Therefore the data were transformed (log10) and Levene’s test was conducted again. 

However, the assumption of homogeneity was still not met. Therefore, 3 (group) by 3 (condition) 

linear mixed models were calculated with maximum likelihood estimation. All pairwise 

comparisons reported are Bonferroni corrected. Individual data from the CI users is displayed in 

Appendix E. 

 

7.2.3 Results  

7.2.3.1 Accuracy  

Figure 7.6 shows the mean Final Orientation for each target location by the NH listeners. 

Participants accurately oriented to the loudspeaker at 0° azimuth however, there was a slight 

undershoot as the target location moved further into the periphery, reaching about 25° of 

undershoot at the furthest target locations. Furthermore, this pattern was consistent across all 

three conditions. Also shown, as an inset to Figure 7.6, are the equivalent findings for NH listeners 
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from Brimijoin et al. (2010) which show a similar amount of undershoot in the periphery as the 

present study. 

 

 

 

Figure 7.6. Mean Final Orientation in the visual, auditory short, and auditory long conditions for each target location 

by NH listeners. Error bars show standard errors. Inset figure from Brimijoin et al (2010). 

 

Figure 7.7 shows the mean Final Orientation for each target location for the CI users individually. 

All listeners were able to orient accurately to the visual target (blue lines). The bilateral CI users 

(top four graphs) were able to orient to the target locations in the auditory conditions with a 

reasonable level of accuracy. The unilateral CI users were more varied, for example participant 

323 was reasonably accurate whereas participant 303 consistently perceived the sound to be 

coming from the right hand side (the side ipsilateral to their CI).  
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Figure 7.7. Mean Final Orientation in visual, auditory short, and auditory long conditions for each target location by 

the eight CI users. The top 4 graphs show orientation by bilateral CI users and the lower four graphs show orientation 

by unilateral CI users. 
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Table 7.3 displays the mean RMS error for each condition by each listener group. Average RMS 

error was calculated for each participant in each condition and used as the dependent variable in 

a linear mixed model. Significant main fixed effects of group (F(2,94.618) = 59.028, p<.001), 

condition (F(2,60.758) = 30.481, p<.001), and a significant group by condition interaction 

(F(4,60.758) = 22.295, p<.001) were found. The interaction was investigated by examining the 

simple effects of group and condition at each level of the other factor. The simple effect of group 

was found in the auditory short (F(2,32) = 62.910, p<.001) and auditory long conditions (F(2,32) = 

33.438, p<.001) but was not found in the visual condition (F(2,32) = .837, p=.442). Pairwise 

comparisons revealed that RMS error was significantly greater for unilateral CI users than bilateral 

CI users and NH listeners in both auditory conditions (all p<.001). Bilateral CI users had higher 

RMS errors than NH listeners in the auditory short condition (p=.050) but there was no significant 

difference between the two groups in the auditory long condition (p=.622). The simple effect of 

condition was evident only for the unilateral CI group (F(2,67.105) = 46.687, p<.001). Pairwise 

comparisons revealed that RMS error was significantly lower in the visual condition than the 

auditory short or auditory long conditions (both p<.001). 

 

Table 7.3. Mean RMS error for the three listener groups in the three conditions. SD in parentheses. 

 Visual Auditory short Auditory long 

NH listeners 17.75 (6.75) 16.08 (4.10) 15.54 (4.31) 

Bilateral CI users 14.57 (8.95) 25.17 (11.37) 20.63 (11.25) 

Unilateral CI users 14.23 (1.06) 56.24 (14.62) 47.88 (17.41) 

 

7.2.3.2 Latency to respond 

Table 7.4 shows the mean latency to respond for each condition by the bilateral and unilateral CI 

users.  A linear mixed model demonstrated significant fixed effects of group (F(2,42.476) = 89.006, 

p<.001) and condition (F(2,41.078) = 140.759, p<.001) and a significant group by condition 

interaction (F(4,41.078) = 31.639, p<.001). The interaction was investigated by examining the 

simple effects of group and condition at each level of the other factor. The simple effect of group 

was found for each condition (all p<.001). Pairwise comparisons revealed that in the visual 

condition the bilateral CI users were significantly slower to respond than the NH listeners 

(p=.001). In both auditory conditions the NH listeners were significantly faster to respond than 

both the unilateral and bilateral CI users (all p<.001). In the auditory long condition, the bilateral 

CI users were significantly faster to respond than the unilateral CI users (p=.017). No other 

significant differences were found. 
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Table 7.4. Mean latency to respond (in seconds) for each condition by the unilateral and bilateral CI users. SD is 

shown in parentheses. 

Group Visual Auditory short Auditory long 

NH listeners .63 (.23) 1.26 (.34) 1.27 (.38) 

Bilateral CI users 1.13 (.28) 2.67 (.80) 4.70 (1.36) 

Unilateral CI users .91 (.13) 3.23 (.61) 7.18 (3.45) 

 

7.2.4 Maximum velocity 

A 3 (group) by 3 (condition) mixed ANOVA was conducted on the average maximum velocities. No 

main effect of group was found (F(2,29) = .586, p=.563). A significant main effect of condition 

(F(2,58) = 6.097, p=.004) and a significant group by condition interaction was found (F(4,58) = 

3.031, p=.024). The interaction was investigated by examining the simple effects of group and 

condition at each level of the other factor. No simple effect of group was found for any condition 

(all p>.05). The simple effect of condition was found only for the unilateral CI users (F(2,28) = 

7.744, p=.002). Pairwise comparisons revealed that the mean maximum velocity was significantly 

smaller in the auditory short condition than the visual (p=.009) and auditory long conditions 

(p=.003). 

 

Table 7.5. Mean maximum velocity of head turn (degrees per second) for the three groups in the three conditions. SD 

is shown in parentheses. 

Group Visual Auditory short Auditory long 

NH listeners 127.63 (31.51) 121.52 (29.67) 120.36 (32.66) 

Bilateral CI users 126.10 (39.58) 113.17 (50.52) 112.13 (24.77) 

Unilateral CI users 125.60 (11.52) 75.45 (62.95) 117.30 (38.42) 

 

7.2.5 Trajectory complexity  

Figure 7.8 shows the head movements made by one representative NH listener on each trial. In 

the visual condition the participant initiated an orienting head movement in the direction of the 

target almost immediately whereas there was a delay before movement in the two auditory 

conditions. Figure 7.9 (top panel) displays those same head movements but on a 20-second 

timescale to enable comparisons with the head movements made by the CI users shown in the 

bottom two panels. A visual inspection shows that the head movements made in the visual 

condition were similar across these three participants, whereas in the auditory short condition, 

the unilateral participant did not orient his head in the hemispace contralateral to his CI. In the 
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auditory long condition the unilateral CI user did move his head from left to right but finished 

most of the trials in the left hand hemispace. The bilateral CI user also made use of head 

movements but to a lesser extent than the unilateral CI user. The following sections seek to 

quantify the differences in the trajectories made by the three groups as a measure of trajectory 

complexity.
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Figure 7.8. Head movement trajectories made by a representative NH listener in the visual (left), auditory short (centre) and auditory long (right) conditions. Each line corresponds to the 

head movement trajectory made in a single trial from target onset to participant response. The colour of the line corresponds to the location of the target stimulus. 
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Figure 7.9. Head movement trajectories made by a representative NH listener (top), unilateral CI user (middle) and bilateral CI user (bottom) in the visual (left), auditory short (centre) and 

auditory long (right) conditions. Each line corresponds to a single trial from target onset to participant response. The colour of the line corresponds to the location of the target stimulus. 
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7.2.5.1 Reversals  

Figure 7.10 shows the mean number of reversals per trial for each condition by each listener 

group. A linear mixed model showed significant fixed effects of group (F(2,70.802) = 112.962, 

p<.001) and condition (F(2,59.023) = 160.802, p<.001) and a significant group by condition 

interaction (F(4,59.023) = 38.582, p<.001). The interaction was investigated by examining the 

simple effects of group and condition at each level of the other factor. A significant simple effect 

of group was found for the three conditions (all p<.01). Pairwise comparisons revealed that in the 

visual condition the bilateral CI users made more reversals than the NH listeners (p=.003). In both 

the auditory short and auditory long conditions the NH listeners made fewer reversals than the 

bilateral and unilateral CI users (all p<.001). The simple effect of condition was found for each 

level of group (all p<.001). Pairwise comparisons revealed that for all listener groups, significantly 

fewer reversals were made in the visual condition than both auditory conditions (all p≤.001, see 

Figure 7.10). For both the bilateral and unilateral CI users, fewer reversals were made in the 

auditory short condition than the auditory long condition (p<.001 and p=.013 respectively). 

 

 

Figure 7.10. Mean number of reversals in head movement per trial by NH listeners, unilateral CI users and bilateral CI 

users in the three conditions. Blue bars represent the visual condition, red bars represent the auditory short 

condition and green bars represent the auditory long condition. Error bars represent ±1SE. Asterisks indicate 

significant differences between conditions (*** p<.001, ** p<.01, * p<.05). 

7.2.5.2 Length of head movement per trial  

Figure 7.11 shows the mean absolute length of head movement per trial for each condition by 

each listener group. A linear mixed model showed significant main effects of group (F(2,39.890) = 

13.703, p<.001) and condition (F(2,39.269) = 11.621, p<.001) and a significant group by condition 
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interaction (F(4,39.269, p=.001). The interaction was investigated by examining the simple effects 

of group and condition at each level of the other factor. A simple effect of group was found for 

the visual condition (F(2,32) = 6.075, p=.006) and auditory long condition (F(2,32) = 12.832, 

p<.001) but was not found for the auditory short condition (F(2,32) = .551, p=.582). Pairwise 

comparisons revealed that in the visual condition, the mean length of movement made by the NH 

listeners was significantly shorter than that made by the bilateral CI users (p=.007). In the auditory 

long condition the mean length of movement made by the NH listeners was significantly shorter 

than that made by the unilateral CI users (p<.001). The simple effect of condition was only found 

for unilateral CI users (F(2,37.997) = 14.097, p<.001). Pairwise comparisons revealed that the 

mean length of movement in the auditory long condition was significantly longer than both the 

visual and auditory short conditions (both p<.001, see Figure 7.11). 

 

Figure 7.11. Mean length of head movement per trial (degrees) by NH listeners, unilateral CI users and bilateral CI 

users in the three conditions. Blue bars represent the visual condition, red bars represent the auditory short 

condition and green bars represent the auditory long condition. Error bars represent ±1SE. Asterisks indicate 

significant differences between conditions (*** p<.001). 

 

7.2.5.3 Latency   

Initial latency 

Figure 7.12 displays the mean initial latency of the three listener groups in the three conditions. A 

linear mixed model showed significant fixed effects of group (F(2,63.105) = 43.092, p<.001) and 

condition (F(2,47.422) = 120.268, p<.001) and a significant group by condition interaction 

(F(4,47.422) = 18.351, p<.001). The interaction was investigated by examining the simple effects 

of group and condition at each level of the other factor. The simple effect of group was found for 
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all three conditions (all p<.01). Pairwise comparisons revealed that in the visual condition, initial 

latency was significantly shorter for the NH listeners than the bilateral CI users (p=.003). In both 

auditory conditions initial latency was significantly shorter by NH listeners than unilateral CI users 

(both p<.001). Furthermore, initial latency was significantly shorter by bilateral CI users than 

unilateral CI users in the auditory short (p<.001) and auditory long (p=.027) conditions. The simple 

effect of condition was found for each group (all p<.001). Pairwise comparisons revealed that for 

all groups, initial latency was significantly shorter in the visual condition than the two auditory 

conditions (all p<.01).  No difference between auditory short and auditory long conditions was 

found for any of the groups. 
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Figure 7.12. Mean initial latency (left figure), duration of movement (middle figure) and latency at fixation (right figure) for the NH listeners, unilateral CI users and bilateral CI 

users in the three conditions. Blue bars represent the visual condition, red bars represent the auditory short condition and green bars represent the auditory long condition. Error 

bars represent ±1SE. Asterisks indicate significant differences between conditions (*** p<.001, ** p<.01, * p<.05). 
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Duration of movement 

Figure 7.12 displays the mean duration of movement of the three listener groups in the three 

conditions. A linear mixed model showed significant fixed effects of group (F(2, 38.477) = 41.771, 

p<.001) and condition (F(2,35.754) = 44.968, p<.001) and a group by condition interaction 

(F(4,35.754) = 18.311, p<.001). The interaction was investigated by examining the simple effects 

of group and condition at each level of the other factor. The simple effect of group was found for 

all three conditions (all p<.01). Pairwise comparisons revealed that in all three conditions the 

duration of movement by the NH listeners was significantly shorter than the duration of 

movement by the bilateral CI users (all p<.01). In the auditory long condition, the duration of 

movement made by the unilateral CI users was significantly longer than the NH listeners (p<.001) 

and bilateral CI users (p=.025). The simple effect of condition was found for the unilateral CI users 

(F(2,34.202) = 39.026, p<.001) and the bilateral CI users (F(2,34.202) = 12.242, p<.001) but was 

not found for the NH listeners (F(2, 34.202) = .541, p=.587). Pairwise comparisons revealed that 

for both CI groups, the duration of movement in the visual condition was significantly short than 

the duration of movement in both auditory conditions (all p<.05, see Figure 7.12). Furthermore, 

the duration of movement in the auditory short condition was significantly shorter than the 

auditory long condition (both p<.01). 

Duration at fixation 

Figure 7.12 displays the mean duration at fixation of the three listener groups in the three 

conditions. A linear mixed model with group (3 levels) and condition (3 levels) was conducted. A 

significant fixed effect of group was found (F(2, 85.024) = 20.602, p<.001). Pairwise comparisons 

revealed that duration at fixation was significantly shorter for the NH listeners than the unilateral 

and bilateral CI users (both p<.001). No difference between unilateral and bilateral CI users was 

found (p=.838). A significant fixed effect of condition was found (F(2, 65.676) = 18.680, p<.001). 

Pairwise comparisons revealed that duration at fixation was significantly shorter in the visual 

condition than the two auditory conditions (both p<.001, see Figure 7.12), however no difference 

between the two auditory conditions was found. No significant interaction was found (F(4, 

65.676) = 1.960, p.111). 

 

7.2.6 Discussion 

7.2.6.1 Accuracy 

As expected, and consistent with Brimijoin et al. (2010), NH listeners in the present study 

undershot both auditory and visual targets. The degree of undershoot increased the further the 

target was into the periphery. Figure 7.6 demonstrates the similarity between the results from the 
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current study and the results reported by Brimijoin et al., with NH listeners in both studies 

undershooting targets by about 25° when the target was presented from the locations furthest 

into the periphery (±75°). This undershoot at the periphery can be explained by the limits of the 

human neck in rotating the head. Tousignant and Breton (2006) demonstrated that the maximum 

a human can turn their head comfortably to either side is about 56°. Thus for the peripheral 

targets in the current study, listeners were likely orienting their head most of the way but were 

then relying on eye gaze to fixate the target. However, this would not explain why there is an 

undershoot for targets close to the centre (e.g. there was an average of 3.97° and 4.56° 

undershoot for visual targets at -15° and +15° respectively). Brimijoin et al. also found a similar 

undershoot, and found no difference in performance between when participants could see the 

targets and when they were blindfolded and could not see the targets. Therefore a reliance on 

eye-gaze rather than head movement to fixate the target is unlikely to account for the 

undershoot found in the present stud and it is unclear why the undershoot arose. Nonetheless, 

the amount of undershoot systematically increased as the target location increased in angular 

distance from 0° azimuth. Importantly, as reported in Section 7.2.3.1, there was no difference in 

accuracy between the three groups for the visual targets. This result demonstrates that any 

difference in accuracy between the groups in the auditory conditions can be attributed to 

differences in hearing ability rather than other factors such as head movement restriction or age.  

 

As shown in Figure 7.7, unilateral CI users performed poorly in both auditory conditions with the 

majority of stimuli perceived to originate from the same side as their implanted ear. Consistent 

with expectations, even when extra time was available in the auditory long condition (repetitive 

stimulus up to about 36 seconds), performance did not improve compared to the auditory short 

stimulus (mean duration 1.3 seconds). As hypothesised, bilateral CI users oriented significantly 

more accurately than unilateral CI users in both auditory conditions. The accuracy of bilateral CI 

users was slightly poorer than NH listeners in the auditory short condition; however their 

performance was as good as that of NH listeners in the auditory long condition. If accuracy was 

the only measure of performance, it would be reasonable to conclude that, with sufficiently long 

stimuli, bilateral CI users perform as well as NH listeners. However, as will be discussed below, 

despite similar levels of performance there were a number of differences between the two 

groups. The following discussion seeks to explain how bilateral CI users make use of extra time 

when it is available, in order to achieve normal levels of accuracy in final orientation. 
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7.2.6.2 Latency to respond 

Whilst orientation accuracy was no different between NH listeners and bilateral CI users in the 

visual condition, bilateral CI users were significantly slower to respond in the visual condition than 

the NH listeners. This could be due to an age effect. The NH listeners were young (mean age = 22 

years) whereas the bilateral CI group were older, ranging in age from 52.9 years to 71.6 years 

(mean = 62.4 years, see Table 7.1).  Baron and Mattila (1989) demonstrated that older adults 

(aged 65-76 years) were slower to respond to auditory and visual stimuli than NH listeners (aged 

18-25 years).  Furthermore, Roggeveen, Prime and Ward (2007) found that when asked to 

respond to a moving visual stimulus, older adults (aged 65 to 81 years) were slower to respond 

than younger adults (aged 18 to 28 years). By using electroencephalography Roggeveen et al. 

were able to determine that the longer latency to respond by older adults was primarily due to 

slower motor processes compared to younger adults.  

 

However, the unilateral CI users in the current study were similar in age (mean age = 67.7 years) 

to bilateral CI users yet bilateral CI users responded significantly faster than unilateral CI uses in 

the auditory long condition. This could be explained by higher uncertainty amongst the unilateral 

CI users. The bilateral CI users were as accurate as NH listeners in the auditory long condition, 

measured by their Final Orientation, suggesting that the time which they took to respond was 

sufficient to accurately locate the target (i.e. they did not require any more time to complete the 

task). The unilateral CI users however, performed poorly even when extra time was available. This 

suggests that they were uncertain where the target was located and so made use of the extra 

time to attempt to locate the target and hence took longer to respond. 

7.2.6.3 Maximum velocity 

No difference in maximum velocity was found between the three groups. However, the unilateral 

CI users had a significantly slower maximum velocity in the auditory short condition than the 

other two conditions. This could be due to uncertainty in the location of the stimulus and 

insufficient time to make a head movement whilst the stimulus was being presented. Indeed the 

mean initial latency (discussed in detail below) of the unilateral CI users in the auditory short 

condition was 1.13 seconds (SD = .56). As the duration of the stimulus in the auditory short 

condition was 1.32 seconds, this initial latency did not allow much time for a head movement to 

be made before the stimulus had finished. 

7.2.6.4 Trajectory complexity 

Trajectory complexity was assessed with five measures: number of head movement reversals, 

length of head movement, initial latency, duration of movement, and latency at fixation. 
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Reversals 

Both unilateral and bilateral CI users made significantly more head movement reversals than NH 

listeners in the two auditory conditions. This is somewhat consistent with the experiment 

reported by Mueller et al. (2014) who tracked the head movement trajectories of eleven NH 

listeners and seven bilateral CI users during a sound localisation task. Whilst they did not report 

the number of reversals listeners made, they did report the mean number of times during a trial 

that participants turned their head away from the target. They found that NH listeners made few 

head turns away from the target whereas the bilateral CI users made significantly more. However, 

in the present study bilateral CI users also made more reversals than NH listeners in the visual 

condition. This too could be due to age differences (discussed in Section 7.2.6.2). 

Length of movement 

Whilst no difference between the bilateral CI users and NH listeners was found for the length of 

movement in the auditory conditions, in the visual condition bilateral CI users moved their heads 

significantly further than NH listeners. This is consistent with the reversal findings discussed 

above; if listeners make more reversals they will need to make longer head movement 

trajectories to correctly orient to the target. Despite the mean head movement trajectory length 

in the auditory long condition of the bilateral CI users (91.41°) being more than double that of the 

NH listeners (42.53°) this difference was not significant. The variance in performance was high 

among bilateral CI users (SD = 24.89) and the lack of a significant difference is likely due to the 

present study being underpowered with too few participants (see Section 7.2.6.5 for a full 

discussion on this issue). 

Initial latency 

Unilateral CI users displayed longer initial latencies than both NH listeners and bilateral CI users in 

both auditory conditions. All listeners could be using this time to extract information from the 

environment to determine whether the sound source was on their left or right before making a 

movement to try and further resolve the location. With only one CI, and therefore unable to 

access interaural differences in level or timing, the unilateral CI users may take longer to try and 

extract as much information from the environment as possible.  They may be attempting to judge 

the loudness of a stimulus with their heads still before moving their head to see how the loudness 

varies at their implanted ear. Consistent with the latency to respond analyses discussed above, 

bilateral CI users had a significantly slower initial latency than NH listeners. Regardless of the 

auditory condition, NH listeners took on average 0.4 seconds to initiate a head movement 

(consistent with Brimijoin et al., 2010 who also found an average initial latency of 0.4 seconds by 

NH listeners). Knowing that additional time was available in the auditory long condition did not 
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result in either group of CI users taking longer to initiate a movement. Rather differences arose in 

the duration of movement, discussed below.  

Duration of movement 

The duration of movement by NH listeners was significantly shorter than the bilateral CI users. 

Consistent with Brimijoin et al. (2010) and Mueller et al. (2014), the NH listeners in the present 

study typically made uniform head movements (as illustrated in Figure 7.8). Both Brimijoin et al. 

and Mueller et al. fitted polynomial functions to head movement trajectories in order to quantify 

the complexity. The order of the polynomial function was increased until the error estimate of the 

fit was below a specified threshold. This method yielded the lowest order polynomial required to 

adequately fit the data. Whilst this method is useful with typically sigmoidal functions (as was the 

case in Brimijoin et al., 2010) it becomes increasingly less meaningful with complex head 

trajectories such as some of the head trajectories displayed in Figure 7.9. As such, this method 

was not employed in the present study. However, duration of movement was considered. In the 

auditory long condition unilateral CI users had a longer duration of movement than both the NH 

listeners and bilateral CI users. However, despite making use of this extra time, the unilateral CI 

users did not improve their performance. Both CI groups had a longer duration of movement 

when time was available in the auditory long condition than the auditory short condition which is 

consistent with making more reversals in this condition as discussed above. 

Duration at fixation 

Both CI groups displayed longer at fixation durations than the NH listeners. This effect was not 

specific to auditory conditions as no interaction was found, suggesting that this is not specific to 

hearing difficulties. This could be due to differences in age (as discussed above). No difference 

was found between the two CI groups further suggesting that hearing difficulty is not the reason 

behind this difference. Participants had shorter latencies at fixation with the visual stimulus than 

an auditory stimulus. This could be due to the location of the visual stimulus being more salient 

than the location of the auditory stimulus, with listeners taking some moments to check they are 

facing the correct location of the auditory target. 

Reasons for increased movement complexity 

Brimijoin et al. (2010) proposed two explanations for moderately hearing impaired listeners 

having more complex head movement trajectories compared to NH listeners: uncertainty and 

learned behavioural search response. These two explanations are challenging to separate as it is 

possible that uncertainty in where the target is presented from results in users adopting searching 

strategies to extract as much information from the listening environment as possible to help 

reduce ambiguity. The search-like strategies could be used by listeners to maximise the ILD. These 
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two interpretations could also be applied to the current dataset to explain why bilateral CI users 

made more complex head movement trajectories to achieve a similar level of performance to NH 

listeners. They may make more complex head movements to manipulate the interaural level of 

the signal to determine the location of the sound source more accurately. This would be 

beneficial to bilateral CI users as the direction of the sound source could be inferred from the ear 

which has the louder stimulus level. When the ILD is at its maximum for that stimulus, one can 

infer that the sound source is located in the direction in which the ear with the louder signal is 

pointing. However, head movement trajectories by bilateral CI users were also more complex 

than NH listeners in the visual control condition. Visual acuity was not measured however 

participants reported no difficulty in seeing the light stimulus used. Therefore it is possible that 

confounding variables such as age account for some of the differences. This cannot be confirmed 

from the present study. 

 

7.2.6.5 Strengths and limitations 

The inclusion of the visual condition enabled checks to be made that all groups were physically 

able to orient their heads to the different target locations and that any differences between the 

groups were not explainable by mobility constraints. However, although there was no difference 

in orientation accuracy between bilateral CI users and NH listeners in the visual condition, there 

were several differences in the trajectories made that distinguished the two groups. Bilateral CI 

users took longer to initiate a movement, made longer head movements, made more head 

movement reversals, and  took longer when making head movements than NH listeners. In all 

cases the bilateral CI users were demonstrating slower, more complex movements than NH 

listeners. This could be due to the age difference between the two groups. If this suggestion is the 

case, it is likely that these age differences could also be contributing to differences in trajectory 

complexity in the two auditory conditions as well. Therefore it would be informative for future 

research to age match normal hearing listeners with bilateral CI users in order to separate age 

effects from effects driven by hearing difficulties. 

 

A limitation of this study is that there were just four participants in each of the CI groups. This 

study is therefore likely to be underpowered. One approach one could take is to conduct a power 

analysis to determine a more appropriate minimum number of participants per group. One way to 

estimate required sample size is to use the effect sizes gathered from this study in a power 

analysis. A power analysis was conducted using G*Power Version 3.1.9.2 to determine the 

minimum sample size required given these measured effect sizes.  Effect size ‘Cohen’s f’ was 
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calculated within G*Power from the Ƞp
2 calculated in SPSS from an ANOVA for accuracy. G*Power 

uses the conversion as outlined by Cohen (1988) shown below. 

 

𝑓 =  √
Ƞ𝑝

  2

1 − Ƞ𝑝
  2 

 

Cohen’s f for group, condition, and the group by condition interaction was large at 1.47, 1.16, and 

1.40 respectively. Alpha was set at .05. To achieve a power of at least 80% would require 9 

participants per group. The lack of significant differences between groups on some measures 

could be accounted for in part because of a lack of power to detect differences. Future research 

should compare performance from at least 9 participants in each group to disambiguate whether 

the non-significant differences found are due to insufficient participants tested in the current 

study or to no difference being present. 

7.2.6.6 Implications 

This study has demonstrated that the duration of a stimulus can influence the accuracy of 

performance by bilateral CI users which has implications for studying localisation accuracy. 

Although in a sound localisation task Mueller et al. (2014) found no benefit from increasing 

stimulus length for reducing RMS error, they did find that fewer front-back confusions occurred 

with a longer stimulus. Indeed 32% of confusions with a 0.5s stimulus decreased to 10% of 

confusions with a 2.2 second stimulus and 5.5% confusions with a 4.5 second stimulus. In 

comparing performance between different devices to determine clinical effectiveness, it is 

important that the test is adequately able to capture the benefits obtained. It may be that 

comparisons of localisation ability with monaural and binaural listening (such as the experiment 

reported in Chapter 5) will achieve more discriminatory results from using a longer stimulus. 

These results can be informative for determining the potential achievement users can obtain from 

interventions for hearing loss. In the present experiment CI users made more complex head 

movements in the auditory long condition compared to the auditory short condition, with 

bilateral CI users achieving a higher level of accuracy than unilateral CI users. Despite listeners 

being able to benefit from the additional time available, it may be that head movements 

contribute an important role in locating sources of sounds. This idea will be investigated further in 

an experiment reported in Section 7.3. 

7.2.6.7 Conclusion 

NH listeners are able to orient to an auditory or visual target stimulus but undershoot towards the 

periphery. Bilateral CI users perform slightly worse than NH listeners when asked to orient to an 
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auditory stimulus of 1.3 seconds in duration. However, when more time is made available 

bilateral CI users are as accurate as NH listeners. Nevertheless, in order to achieve this level of 

performance the bilateral CI users make more complex head movements, with more reversals, 

longer trajectories and longer durations. Unilateral CI users are unable to accurately orient to a 

sound source even when sufficient time is available to make large head movements. Future 

research should use a larger sample of CI users and age-match NH controls to distinguish between 

effects due to hearing differences and age. 

 

7.2.7 Summary 

 Participants oriented their heads towards a visual stimulus, a short (1.3 second) auditory 

stimulus or a long auditory stimulus. 

 No difference in accuracy by NH listeners was found between the three conditions 

although participants did undershoot by increasing amounts as the target location was 

presented from further in the periphery. 

 With a long stimulus bilateral CI users oriented as accurately as NH listeners, but were less 

accurate when the stimulus duration was limited to 1.3 seconds. 

 In order to achieve a similar level of accuracy to NH listeners, bilateral CI users made 

more complex head movements. 

 Unilateral CI users made more complex head movements in the auditory long condition 

than the auditory short condition, however this did not improve performance, with 

accuracy remaining poor. 
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7.3 Sound localisation by cochlear implant users and normally hearing 

listeners: The role of head movements 

7.3.1 Introduction 

Previous research investigating the role of head movements in sound localisation was discussed in 

detail in Chapter 3 and why they may help listeners in Section 7.2. On the whole, previous 

research has demonstrated that head movements can help NH listeners improve localisation 

accuracy and reduce the number of front-back confusions made (Mueller et al., 2014; Perrett & 

Noble, 1997a, 1997b; Wightman & Kistler, 1999). However, this conclusion is caveated by the 

finding that head movements only improve performance if the sound stimulus is long enough 

(Mueller et al., 2014; Perrett & Noble, 1997a). With a 0.5 second stimulus both Mueller et al. and 

Perrett and Noble demonstrated that localisation in the horizontal plane was not improved from 

permitting natural head movements compared to no head movement. It was argued that 0.5 

seconds was insufficient for a head movement to be made and completed before the cessation of 

the sound. In comparison, when a 2.18 second (Mueller et al.) or three second (Perrett and Noble) 

stimulus was used localisation performance by NH listeners improved when head movements 

were permitted. 

 

Unilateral CI users have been shown to perform poorly even when head movements are 

permitted (Buhagiar et al., 2004; Tyler et al., 2006). Only one published study has directly 

assessed the role of head movements by bilateral CI users on localisation accuracy. In that study, 

Mueller et al. (2014) instructed participants to locate a target sentence in the presence of 

background noise. Both the target and background noise were presented in the horizontal plane 

and the target was short (0.5 seconds), medium (2.18 seconds) or long (4.45 seconds) in duration. 

Compared to NH listeners, the bilateral CI users made longer, more complex head movement 

trajectories. Consistent with the findings for NH listeners discussed above, the stimulus needed to 

be sufficiently long for listeners to benefit from permitting head movements. For instance, whilst 

the number of front-back confusions was reduced when head movements were permitted for the 

long and medium stimulus durations, there was no significant reduction in the number of front-

back confusions made with the short stimulus. Mueller et al. calculated the RMS error made after 

accounting for front-back errors by projecting the locations behind the listener to the front of the 

listener to remove large RMS errors caused by front-back confusions. It was found that whilst 

head movements had helped to reduce the number of front-back confusions, they had not helped 

listeners to significantly reduce the angular error made. In the short-duration condition RMS error 

was around 31° both with and without head movements permitted, in the medium-duration 

condition RMS error was about 26° without head movement and 30° with head movement and in 
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the long-duration condition, RMS error was about 28° without head movement and about 26° 

with head movement. 

 

The current study sought to investigate the role of head movements for sound localisation in the 

horizontal plane by NH listeners and CI users. Head movement was either permitted or not 

permitted but, unlike Mueller et al., the current study used a localisation task without the 

presence of background noise. This study also investigated the impact that the duration of the 

stimulus has on the amount of benefit obtained from permitting head movements. Three 

durations were used; short (0.8 seconds, which is slightly longer than the 0.5 second stimulus 

used by Mueller et al; 2014 and Perrett & Noble; 1997a), medium (5.4 seconds, which is slightly 

longer than the ‘long’ stimulus used by Mueller et al.) and long (a continuous repeating stimulus). 

These durations were chosen to cover a broad range of durations to assess whether individuals 

make use of extra time when it is available (continuous stimulus) and whether this improves 

performance over a medium length stimulus similar in duration to Mueller et al’s long stimulus. 

This study also tested two groups of CI users (bilateral and unilateral) to assess the benefit of 

head movements to each group. 

 

It was hypothesised that both NH listeners and bilateral CI users would benefit from head 

movements in reducing the number of front-back confusions when the sound was long enough 

(medium and long stimulus duration conditions). However, it was anticipated that unilateral CI 

users would perform poorly even when head movements were permitted. Pilot research (Goman, 

Kitterick, & Summerfield, 2013) had suggested that the angular accuracy of locating sources in the 

horizontal plane by NH listeners was not improved by permitting head movements. However, 

despite no change in performance, self-rated listening effort was reduced. This previous study had 

only tested participants on one half of auditory space (either front or rear) therefore the potential 

for head movements to reduce front-back confusions was not assessed. For this reason, the 

present study sought to investigate the potential for head movements to reduce front-back 

confusions. A self-rated listening effort scale was included to assess listening effort. It was 

hypothesised that listening effort would be larger in the front-and-back condition as there would 

be a greater number of location possibilities and a chance for  front-back confusions to occur that 

would be absent from the front-only condition. 
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7.3.2 Method 

7.3.2.1 Participants 

Twenty-five NH adults (6 male, mean age = 22.1 years (SD=2.9) and eight CI users participated (4 

unilateral and 4 bilateral, summary demographic information displayed in Table 7.1 in Section 

7.2.2). All NH participants had pure-tone thresholds below or equal to 20 dB HL at 0.25, 0.5, 1, 2, 

and 4 kHz. NH participants were recruited from within the University of York. The Research Ethics 

Committee of the Department of Psychology at the University of York approved the study. 

7.3.2.2 Apparatus 

All stimuli were presented through an array of 10 loudspeakers (Bose Acoustimass 3 Series IV) 

positioned in a circular array with a radius of 1.5m (see Figure 7.13). Loudspeakers were 

positioned at a height of 1m and were separated by 15°. The array of loudspeakers was situated 

within an Industrial Acoustic Corporation (IAC) single-walled enclosure situated within a larger 

sound-treated room. The loudspeaker array was calibrated as described in section 7.2.2.2. 

Positioned just directly underneath each loudspeaker was a red light-emitting diode (LED), which 

could be turned on or off. The head tracking equipment as described in section 7.1 was used to 

measure the head movements of participants. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.13. Loudspeaker arrangement. In the front-only condition loudspeakers A-E were used. In the front-and-back 

condition loudspeakers A-J were used. 
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7.3.2.3 Design 

Three groups of participants were tested in a 2 (movement condition) by 2 (direction condition) 

by 3 (stimulus duration) blocked design. Participants were either instructed to keep their head still 

by maintaining their fixation on the loudspeaker directly in front of them (movement not 

permitted), or they were instructed that they could move their head as they wished (movement 

permitted). For the direction conditions the target was either presented from one of five 

loudspeakers in front of the participant (front-only condition) or was presented from one of the 

ten possible locations (front-and-back condition, see Figure 7.13). There were three stimulus 

durations; short (mean duration = 0.82, SD= 0.10), medium (mean duration = 2.54s, SD= 0.23), 

and long (continuous repetition until responded up to a maximum mean duration of 17.79s, SD= 

1.60). 

 

7.3.2.4 Stimuli 

Coordinate-response-measure (CRM) sentences were used. Each sentence took the form “Ready 

CALL-SIGN go to COLOUR NUMBER now.” There were eight possible call signs (Arrow, Baron, 

Laker, Charlie, Hopper, Tiger, Eagle, and Ringo), four possible colours (blue, red, green and white), 

and four possible numbers (1, 2, 3, 4). Thus an example sentence is “Ready Charlie go to blue two 

now”. Target sentences were spoken by four male talkers.  Three talkers were native British-

English whilst one was a native Irish talker. Thus there were a total of 512 sentences (8 call signs x 

4 colours x 4 numbers x 4 talkers). In the short-duration condition only the ‘Ready CALL-SIGN’ 

portion of the sentence was presented. In the medium-duration condition the full sentence was 

presented twice with the second instance presented immediately after the first. In the long-

duration condition the sentence was repeated continuously until the participant made a response 

(up to a maximum of 7 presentations, or 17.79 seconds). All sentences were normalised to the 

same total RMS power. The average presentation level of sentences when presented from 

0°azimuth was 60.0 dB SPL.  The presentation level was randomly roved from trial to trial by ±5dB. 

7.3.2.5 Procedure 

On each trial the target sentence was presented from one loudspeaker. Throughout each 

condition the target sentence was presented from each of the possible locations 5 times resulting 

in 25 (front-only condition) or 50 (front-and-back condition) trials. The location of the target was 

randomly selected on each trial. Prior to the experimental conditions, a practice run was included 

of a movement-permitted, front-and-back-long-duration condition. Prior to each block, to 

familiarise participants with the condition, a brief practice period was included where stimuli 

were presented from each possible location once.  

 



Chapter 7  Head movements 
 

164 
 

For each trial the participant had two tasks: 

1. As soon as they knew where the sound was coming from they were instructed to press a 

button on a handheld Nintendo Wii Remote. This was used as a measure of response 

latency. 

2. They then indicated where they judged the sound to be coming from, using a touchscreen 

in front of them which had labels indicating the possible locations (A-J, see Figure 7.13). In 

addition, a ‘?’ button was also displayed which participants could use if they were unable 

to judge where the sound was coming from. These responses were scored to provide a 

measure of accuracy of localisation. 

 

At the end of each condition participants rated how much listening effort they had needed to 

expend on a scale from 0 (‘None at all’) to 100 (‘Extremely great’ amount of effort). 

7.3.2.6 Analyses 

Individual trials were excluded from the analysis if the there was a gap in the head tracking 

recordings for 300ms or more. Any trials in the “head-movement-not-permitted” conditions that 

had head movements greater than ±5 ° were excluded. Head movement trajectories were 

smoothed with a 50ms Hanning window as described in Section 7.1.2.2.  

 

To ensure that measurements by the head tracking equipment matched where the participant 

was actually facing, the head tracking equipment was calibrated immediately before and 

immediately after each condition. For this, a light was presented below loudspeakers A to E in 

turn from left to right and back to left. The participant was instructed to turn to face the light and 

then when satisfied that their nose was pointing at it, press a handheld response button. After a 

response was made the next light was presented. The mean yaw head orientations when the 

participant responded to a light at 0° azimuth (4 instances per condition) were extracted and 

averaged to produce a calibration yaw. This value was used to correct each recorded head 

position for that condition as described in section 7.1.2.2. 

 

 Outcome measures and a corresponding description are shown in Table 7.6. For all outcome 

measures (except listening effort), only data from participants who had 40% or more of trials 

included were included in the group analyses. As not all conditions by all CI users met this 

criterion, fixed effects linear mixed models were calculated with maximum likelihood estimation. 

All pairwise comparisons reported are Bonferroni corrected. 
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Table 7.6. Description of outcome measures. 

Outcome measure Definition 

Accuracy Percent correct. 

Number of unknown 
responses 

Number of trials where participants responded with a ‘?’ to indicate 
they did not know where the target was located. 

Same-sector error Error made within the same half of auditory space as the target. 

Number of front-back 
confusions 

Number of trials in which a target in the front sector was perceived as 
coming from the back sector (and vice versa). 

Angular error RMS error of participant response after correcting for front-back 
confusions. 

Latency to respond The time (seconds) taken from the target onset until the participant 
pressed the response button. 

Length of movement Absolute length of the head trajectory (°). 

Maximum velocity Maximum speed (°/s) at which the participant moved during a trial. The 
average maximum velocity from each participant for each condition 
was calculated. 

Reversals A change in the direction of head movement (e.g. a change from 
leftward movement to rightward movement) was counted as a 
‘reversal’. The number of reversals per trial was counted and an 
average per participant for each condition was calculated. 

Listening effort Rating on a scale from zero (“No effort”) to 100 (“Extremely great 
amount of effort”). 

 

7.3.3 Results  

One NH participant was excluded from the analysis due to a lack of data recorded from the head 

tracking equipment. The remaining participants were included in the following analyses. 

7.3.3.1 Accuracy 

Percent correct 

The percentage of correct trials were calculated for each participant in each condition.  Figure 

7.14 shows the mean localisation accuracy for each group averaged across duration conditions. 
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Figure 7.14. Mean localisation accuracy for NH listeners (grey bars), bilateral CI users (green bars) and unilateral CI 

users (yellow bars) in the front-only condition (left figure) and front-and-back condition (right figure). Error bars 

show ±1SE. Asterisks indicate significant differences between the groups (*** p<.001, ** p<.01). 

 

A linear mixed model analysis was performed with fixed effects of group (3 levels), direction (2 

levels), duration (3 levels), and movement (2 levels). Significant main fixed effects were found for 

each factor except movement. A significant group by direction by duration by movement 

interaction was also found (see Table 7.7). The four way interaction was examined by 

investigating the simple effects of each factor at all combinations of the other three factors. 

 

Table 7.7. F test results from mixed linear model investigating localisation accuracy. Significant effects are 

emboldened. 

Tests of fixed effects F df p 

Group 1860.134 2,329 <.001 

Direction 160.929 1, 330.037 <.001 

Duration 3.347 2, 218.035 .037 

Movement 3.136 1, 330.037 .077 

Group x direction x duration x movement 2.432 4, 217.394 .049 

 

Simple effect of group 

A simple effect of group was found to be significant at all combinations of the other three factors 

(all p<.001). Pairwise comparisons showed that NH listeners were significantly more accurate than 

bilateral CI users and unilateral CI users at all combinations of the other three factors (all p<.05). 

In addition bilateral CI users were significantly more accurate than unilateral CI users at all 

combinations of the other three factors (all p<.01).  

Front only Front and back 
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Simple effect of movement 

For the NH listeners, no simple effect of movement was found (all p>.05). For the bilateral CI users 

a simple effect of movement was found in the front-only-short-duration condition (p=.028) and 

the front-and-back-long-duration condition (p=.001). Pairwise comparisons revealed that in the 

front-only-short-duration condition, accuracy was significantly higher when head movements 

were not permitted but in the front-and-back-long-duration condition, accuracy was significantly 

better when head movements were permitted. For the unilateral CI users the simple effect of 

movement was found in the front-only-short-duration condition with more accurate performance 

when head movements were permitted (p=.016). 

Simple effect of direction 

For the NH listeners, the simple effect of direction (more accurate performance in the front-only 

condition) was evident at all combinations of the other factors (all p<.001). For the bilateral CI 

users the simple effect of direction was significant at all combinations of other factors (all p<.001) 

except the head-movement-permitted-long-duration condition (p=.542). For unilateral CI users, 

the simple effect of direction was only evident in two combinations of conditions; head-

movement-not-permitted-medium-duration (p=.007), and head-movement-permitted-long-

duration (p=.040). 

Simple effect of duration 

For the NH listeners there was no simple effect of duration at any combination of conditions (all 

p>.05). For the bilateral CI users, the simple effect of duration was evident in the front-only-head-

movement-not-permitted condition (p=.003). Pairwise comparisons revealed that accuracy was 

significantly better in the short-duration condition than the medium-duration and long-duration 

conditions (p=.017 and p=.018 respectively, see Table 7.8). No significant difference between the 

medium-duration and long-duration conditions was found. In addition for the bilateral CI users 

the simple effect of duration was evident in the front-and-back-head-movement-permitted 

condition (p<.001). Pairwise comparisons revealed that accuracy was significantly better in the 

long-duration condition than the short-duration and medium-duration conditions (p=.001, and 

p=.002 respectively). For unilateral CI users, the simple effect of duration was only evident in the 

front-only-head-movement-not-permitted condition (p=.001). Pairwise comparisons revealed that 

accuracy in the short-duration condition was significantly worse than accuracy in the medium-

duration and long-duration conditions (p=.008, and p=.010, respectively). 
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Table 7.8. Mean percent correct localisation accuracy for bilateral and unilateral CI users in both direction and 

movement conditions across the three duration conditions. SD in parentheses. 

  Head movement not permitted Head movement permitted 

  Short Medium Long Short Medium Long 

Bilateral 

Front-
only 

83.09 
(14.87) 

67.04 
(30.12) 

69.39 
(25.56) 

72.63 
(19.16) 

72.58 
(24.94) 

67.00 
(17.09) 

Front-
and-back 

33.74 
(12.19) 

42.24 
(10.97) 

42.76 
(27.25) 

44.82 
(22.94) 

43.42 
(18.72) 

70.54 
(14.73) 

Unilateral 

Front-
only 

11.46 
(6.25) 

26.80 
(10.85) 

24.25 
(5.68) 

22.52 
(14.92) 

18.18 
(7.13) 

28.75 
(12.37) 

Front-
and-back 

11.03 
(7.35) 

12.05 
(4.67) 

15.16 
(7.65) 

15.10 
(3.37) 

14.32 
(10.97) 

16.14 
(13.73) 

 

Types of error 

The following sub-sections focus on only the error trials. 

Front-only condition 

NH listeners performed at ceiling. All errors made by bilateral CI users were same sector errors. 

The majority of errors by unilateral CI users were in the same sector (see Table 7.9) however they 

did use the unknown response occasionally. 

 

Table 7.9. Percentage of error trials made by unilateral CI users in the front-only conditions due to same sector 

errors. SD in parentheses. 

Head movement not permitted Head movement permitted 

Short Medium Long Short Medium Long 

82.88 (21.16) 82.88 (21.16) 82.88 (21.16) 90.63 (18.75) 90.63 (18.75) 90.63 (18.75) 

 

Front-and-back condition 

The majority of errors made by NH listeners in the front-and-back condition were same-sector 

errors, whereas about half of the errors made by CI users were front-back confusions (see Table 

7.10).  
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Table 7.10. Percentage of error trials that were due to a front-back confusion and 'unknown location' responses by 

the three groups of participants in the front-and-back conditions. The rest of the error trials were same sector errors. 

SD in parentheses. 

  Head movement not permitted Head movement permitted 

  Short Medium Long Short Medium Long 

NH 
listeners 

Front-back 
error 

9.14 
(17.48) 

1.39 
(6.80) 

5.02 
(20.47) 

2.69 
(7.97) 

1.45 
(6.95) 

1.11 
(4.25) 

Unknown 
location 
response 

0 0 0 0 0 0 

Bilateral 
CI users 

Front-back 
error 

58.54 
(9.45) 

50.38 
(10.63) 

63.82 
(11.67) 

45.47 
(9.01) 

21.79 
(25.61) 

0 

Unknown 
location 
response 

0 0 0 0 0 0 

Unilateral 
CI users 

Front-back 
error 

44.76 
(17.15) 

50.60 
(19.18) 

46.29 
(5.81) 

45.64 
(9.86) 

30.74 
(20.81) 

32.29 
(21.59) 

Unknown 
location 
response 

14.67 
(29.35) 

13.69 
(25.82) 

0 
8.39 

(13.66) 
4.89 

(9.78) 
5.11 

(10.23) 

 

Did the proportion of front back errors differ by condition? 

A 3 (group) by 3 (duration) by 2 (movement) mixed linear model found a significant main effect of 

group (F(2,118.960) = 143.845, p<.001), duration (F(2,84.959) = 4.276, p=.017) and movement 

(F(1, 118.567) = 35.703, p<.001) and a significant group by duration by movement interaction 

(F(4,84.715) = 3.467, p<.001). The interaction was investigated by examining the simple effects of 

each factor at each combination of the other factors. 

 

Simple effect of group: 

The simple effect of group was significant at each combination of the other factors (all p<.01). 

Pairwise comparisons showed that the proportion of errors that were front-back confusions was 

significantly lower for NH listeners than unilateral CI users (all p<.01). and bilateral CI users in all 

but one condition (all p<.05 except the head-movement-permitted-long-duration condition where 

p>.05). No differences between bilateral and unilateral CI users were found except in the head-

movement-permitted-long-duration condition where the proportion of errors that were front-

back confusions was significantly higher for unilateral CI users (p<.001). 

 



Chapter 7  Head movements 
 

170 
 

Simple effect of duration: 

The simple effect of duration was significant only for unilateral and bilateral CI users in the head-

movement-permitted condition. Pairwise comparisons demonstrated that for unilateral CI users 

the effect did not survive Bonferroni correction. For bilateral CI users, significantly more front-

back confusions were made in the short-duration condition than the medium- duration and long-

duration conditions (both p<.01), and significantly more in the medium-duration condition than 

the long-duration condition (p<.05). 

 

Simple effect of movement: 

The simple effect of movement (fewer errors made when head movements were permitted) was 

significant for unilateral and bilateral CI users in the medium-duration condition and bilateral CI 

users only in the long-duration condition (all p<.01). 

 

Angular error 

Focusing on the error trials only, this section sought to ascertain what the RMS error was after 

correcting for front-back errors. Of those trials in which a front-back error was made, this was 

corrected for by projecting the response from one hemifield to the other (for instance a front-

back error in which a -165° response was made was converted to a -15° response). A 3 (group) by 

2 (direction) x 3 (duration) by 2 (movement) mixed linear model found a significant main effect of 

group (F(2,72.182) =584.841, p<.001) with pairwise comparisons  revealing significantly lower 

RMS error for NH listeners (mean = 14.51°, SE = .335) than both CI groups. Furthermore, bilateral 

CI users (mean = 21.04°, SE = .36) had significantly lower RMS errors than unilateral CI users 

(mean = 31.28°, SE = .36). A significant interaction between group and direction (F(2,72.182) = 

4.840, p=.011) was also found. The interaction was investigated by examining the simple effects 

of each factor at each level of the other factor. The simple effect of group was found for both 

directions (all p<.001). A simple effect of direction was found only for bilateral CI users, with a 

slight but significantly higher RMS error in the front-only condition (mean = 22.09°, SE = .66) than 

the front-and-back condition (mean = 20.00°, SE = .39, p=.008). 

 

7.3.3.2 Latency to respond 

The mean latency to respond to each condition by each group is shown in Table 7.11. A 3 (group) 

by 2 (direction) x 3 (duration) by 2 (movement) mixed linear model found a significant main effect 

of group (F(2,224.918) = 782.658, p<.001), direction (F(1,226.217) = 30.132, p<.001), duration 

(F(2,166.211) = 294.259, p<.001) and movement (1,226.217) = 10.075, p=.002). The main effect of 

movement showed that latency to respond was significantly slower in the head-movement-
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permitted condition (mean = 3.10s, SE = .074) than the head-movement-not-permitted condition 

(mean = 2.81s, SE = .06). A significant group by direction by duration interaction was found (F(4, 

187.913) = 3.438, p=.010). The interaction was investigated by examining the simple effects of 

each factor at each combination of levels of the other factors. 

 

Simple effect of group: 

The simple effect of group was significant at each combination of the other factors (all p<.001). 

Pairwise comparisons demonstrated that latency to respond by NH listeners was significantly 

faster than unilateral and bilateral CI users at all levels (all p<.001). In the front-only condition, 

unilateral CI users were significantly slower to respond than bilateral CI users in the short-

duration condition, but were significantly faster to respond in the long-duration condition. 

 

Simple effect of direction: 

The simple effect of direction (faster to respond in the front-only condition) was found for the NH 

listeners at all duration levels (all p<.01), unilateral CI users for the long-duration condition 

(p=.004) and bilateral CI users for the short-duration and medium-duration conditions(both 

p<.01). 
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Table 7.11. Mean latency to respond (seconds) by the three groups of listeners in the twelve listening conditions. SD in parentheses. 

  Head movement not permitted Head movement permitted 

  Short Medium Long Short Medium Long 

NH listeners 
Front-only .72 (.27) .79 (.41) .73 (.44) .76 (.31) .79 (.35) .73 (.28) 

Front-and-back .90 (.30) 1.06 (.40) 1.10 (.34) 1.03 (.28) 1.45 (.65) 1.54 (.77) 

Bilateral CI users 
Front-only 1.30 (.12) 3.91 (.46) 5.00 (1.41) 1.56 (.84) 3.96 (.70) 5.99 (1.92) 

Front-and-back 2.23 (.05) 5.00 (.35) 4.74 (.64) 2.05 (.72) 5.43 (1.77) 5.50 (2.09) 

Unilateral CI users 
Front-only 2.23 (.87) 4.14 (1.41) 4.75 (1.73) 2.27 (.73) 4.95 (1.14) 3.90 (.04) 

Front-and-back 2.29 (.29) 4.52 (.93) 4.99 (.76) 2.60 (.69) 5.15 (.98) 6.09 (2.07) 
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Simple effect of duration: 

The simple effect of duration was found in the front-and-back condition for NH listeners (p=.002) 

but not the front-only condition. Pairwise comparisons revealed that latency to respond in the 

short-duration condition was significantly faster than both medium-duration and long-duration 

conditions (both p<.05), however there was no difference between medium-duration and long-

duration conditions. The simple effect of duration was found for both direction conditions by 

unilateral and bilateral CI users (all p<.001). Pairwise comparisons  revealed that for unilateral CI 

users, latency to respond was significantly faster in the short-duration condition than the medium 

and long-duration conditions for both directions (all p<.001). However, no difference between 

medium and long-duration conditions was found. For bilateral CI users latency to respond was 

significantly faster in the short-duration condition than the medium-duration and long-duration 

conditions for both directions (all p<.001). Latency to respond in the medium-duration condition 

was significantly faster than the long-duration condition for the front-only (p<.001) condition but 

there was no significant difference in the front-and-back condition. 

 

7.3.3.3 Movement trajectory 

Figure 7.15 shows the head movements made by one representative NH listener, one bilateral CI 

user and one unilateral CI user in the front-only condition when head movements were 

permitted. Little movement was made by the NH listener in any of the three duration conditions. 

However, when more time was available the bilateral CI user made use of it, turning to the left 

and right periphery. The unilateral CI user also made use of the extra time available though they 

did not turn as far as the bilateral CI user shown. The head movement trajectories made by the 

same listeners in the front-and-back condition are displayed in Figure 7.16. This time listeners 

made larger head movements (as shown by the larger range on the y axis). When time was 

available for a head movement to be completed whilst the stimulus was still presented, the NH 

listener turned their head in the direction of the target in a smooth manner. The bilateral CI user 

initially made a head movement in the direction of the target but then moved their head to the 

other side of the hemispace before returning to the hemispace containing the target location. The 

unilateral CI user made fewer movements into the far periphery, rather the majority of the head 

movements were within the hemispace in which their implanted ear was on. The following 

sections seek to quantify the complexity of the head movements made in terms of the number of 

reversals in head movement made, the length of movement, and the maximum velocity.
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Figure 7.15. Head movement trajectories in the front-only condition by a representative NH listener, a bilateral CI user and a unilateral CI user in the short, medium and long-duration 

conditions. Each line represents one trial. The colour of the line indicates the target location for that trial (see key). 
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Figure 7.16. Head movement trajectories in the front-and-back condition by a representative NH listener, a bilateral CI user and a unilateral CI user in the short, medium and long-

duration conditions. Each line represents one trial. The colour of the line indicates the target location for that trial (see key). 
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Reversals 

The mean number of reversals per trial for the three groups collapsed across duration is displayed 

in Figure 7.17. A 3 (group) by 2(direction) by 3 (duration) mixed linear model was conducted. 

Significant fixed effects of group (F(2,126.035) = 126.277, p<.001) and duration (F(2,91.945) 

=36.143, p<.001) were found. A significant group by direction by duration interaction was found 

(F(4,109.056) = 3.674, p=.008). The interaction was investigated by examining the simple effects 

of each factor at each combination of levels of the other factors. 

 

 

Figure 7.17. Mean number of reversals per trial for NH listeners (grey bars), bilateral CI users (green bars) and 

unilateral CI users (yellow bars) in the movement-permitted-front-only condition (left) and movement-permitted-

front-and-back condition (right). Error bars show ±1SE. Asterisks indicate significant differences between the groups 

(*** p<.001, ** p<.01). 

 

Simple effect of group: 

The simple effect of group was significant at each combination of the other two factors (all 

p<.001). Pairwise comparisons showed that NH listeners made significantly fewer reversals than 

unilateral CI users at all combinations (all p<.001) except the front-only-long-duration condition 

(p=.051). NH listeners made fewer reversals than bilateral CI users at all combinations (all p<.05). 

Unilateral CI users made significantly fewer reversals than bilateral CI users in the front-only-long-

duration condition (p=.013). No other significant differences were found. 
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Simple effect of direction: 

Bilateral CI users made significantly more reversals in the front-and-back condition in the 

medium-duration condition (p=.030) but significantly fewer reversals in the front-and-back 

condition for the long-duration condition (p=.013). No other significant differences were found. 

 

Simple effect of duration: 

The simple effect of duration was found in both direction conditions for unilateral CI users (both 

p=.001) and bilateral CI users (both p<.001). Pairwise comparisons showed that for unilateral CI 

users in both directions, significantly fewer reversals were made in the short-duration condition 

than the medium-duration condition (both p<.001). Furthermore, unilateral CI users made 

significantly fewer reversals in the short-duration condition than the long-duration condition in 

the front-and-back condition (p=.003). For bilateral CI users in both direction conditions 

significantly fewer reversals were made in the short-duration condition than the medium-

duration condition (both p<.01). In the front-only condition, significantly fewer reversals were 

made in the medium-duration condition than the long-duration condition (p=.005) and 

significantly fewer reversals were made in the short-duration condition than the long-duration 

condition (p<.001). 

 

Length of movement per trial  

The mean length of movement per trial for the three groups collapsed over duration is displayed 

in Figure 7.18. A 3 (group) by 2(direction) by 3 (duration) mixed linear model was conducted. 

Significant fixed effects of group (F(2,91.511) = 26.799, p<.001), direction (F(1,91.056) = 13.128, 

p<.001), and duration (F(2,78.643) = 20.107, p<.001) were found. A significant two way 

interaction was observed (group x duration: F(4,79.452) =6.262, p<.001).The interaction was 

investigated by examining the simple effects of each factor at each combination of the other 

factor. 
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Figure 7.18. Mean length of head movement per trial for NH listeners (grey bars), bilateral CI users (green bars) and 

unilateral CI users (yellow bars) in the head-movement-permitted-front-only condition (left) and the head-

movement-front-and-back condition (right). Error bars show ±1SE.  

 

The simple effect of group was found at all levels of duration (all p<.05). Pairwise comparisons 

showed that length of movement was significantly shorter for NH listeners than unilateral CI users 

at all three durations (all p<.05). Movement was significantly shorter for NH users than bilateral CI 

users in the medium-duration (p=.004) and long-duration (p<.001) conditions. There was no 

difference between unilateral and bilateral CI users. The simple effect of duration was significant 

for unilateral and bilateral CI users (both p<.01) but not NH listeners. Pairwise comparisons 

demonstrated that for unilateral CI users, length of movement was significantly shorter in the 

short-duration condition than the medium-duration condition (p=.016). For bilateral CI users 

length of movement in the short-duration condition was significantly shorter than both medium-

duration (p=.005) and long-duration (p<.001) conditions. 

 

Maximum velocity 

A 3 (group) by 2(direction) by 3 (duration) mixed linear model was conducted. Significant fixed 

effects of group (F(2,99.802) = 18.237, p<.001), direction (F(1,99.334) = 14.921, p<.001) and 

duration (F(2,82.189) = 5.190, p=.008) were found. Pairwise comparisons revealed that the mean 

maximum velocity of movement by NH listeners (mean = 34.83°/s, SE = 3.645) was significantly 

slower than unilateral (mean = 59.26°/s, SE = 9.05) and bilateral (mean = 95.89°/s, SE  = 9.93) CI 

users. Maximum velocity was significantly faster in the front-and-back condition (mean = 81.25°/s, 

SE = 8.85) than the front-only condition (mean = 45.40°/s, SE = 2.80). Pairwise comparisons 

revealed that the mean maximum velocity was significantly slower in the short-duration condition 
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than the medium-duration condition (p=.034) and long-duration condition (p=.028). No 

interactions were observed. 

7.3.3.4 Listening effort 

A3 (group) by 2(direction) by 3 (duration) by 2 (movement) mixed linear model was conducted on 

listening effort ratings. A significant fixed effect of group (F(2,358.656) = 36.033, p<.001) was 

found. Pairwise comparisons revealed that listening effort ratings were significantly lower (less 

effort) for NH listeners (mean = 44.12, SE = 1.50) than unilateral (mean = 56.32, SE = 3.35) and 

bilateral (mean = 81.58, SE = 4.33) CI users (both p<.001). Furthermore, listening effort by 

bilateral CI users was significantly higher (more effort) than unilateral CI users (p<.001). A 

significant main effect of direction (F(1,358.656) = 13.983, p<.001) was also found, with higher 

listening effort ratings in the front-and-back condition. No other significant main effects or 

interactions were observed.  

7.3.4 Discussion 

7.3.4.1 Accuracy 

As expected, localisation accuracy by unilateral CI users was significantly poorer than bilateral CI 

users and NH listeners. Furthermore, accuracy by bilateral CI users was significantly worse than 

NH listeners. This pattern is consistent with previous research (see Chapter 2) which has 

demonstrated that whilst localisation with bilateral CIs is better than with one CI, performance 

does not reach NH levels. This is likely due to the bilateral CI users having restricted access to the 

cues which NH listeners use. Whilst bilateral CI users have good access to ILDs they are limited in 

their ability to use ITDs due to the restricted ability of CIs to encode temporal information 

(Laback, Majdak, & Baumgartner, 2007; van Hoesel, Ramsden, & O'Driscoll, 2002). Furthermore, 

they have to integrate the signals from two different processors, and from electrodes which may 

have been installed to different depths and which may not have been mapped identically, which 

could impair performance. 

 

NH listeners did not benefit from head movement in the front-only condition as they were already 

at ceiling when movement was not permitted. This result is consistent with Cooper, Carlile, and 

Alais (2008) who found NH listeners can localise sound sources in the frontal plane within ±30° 

very well without movement. NH listeners in the present study did perform worse in the front-

and-back condition than the front-only condition. Cooper et al. (2008) found that NH listeners 

made more location errors in the rear than in the front. They presented a visual stimulus to the 

left or right (in the frontal hemifield) and the participant’s task was to turn rapidly to this location. 

During the head turn a 0.8 second stimulus was presented from one of 74 locations around the 
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participant. More errors for locations in the rear hemifield were found and the authors suggested 

this was due to the visual target (in frontal horizontal plane) capturing attention resulting in 

better spatial attention in this area. Whilst the present study used the same length of stimulus (in 

the short-duration condition) as Cooper et al., movement in the present study did not start until 

after the onset of the target whereas in Cooper et al.’s study movement had already been 

initiated before the onset of the stimulus. However, the present study did not use a visual 

stimulus, therefore the attentional facilitation effect proposed by Cooper et al. cannot explain 

why accuracy performance in the front-and-back condition was worse than the front-only 

condition. 

 

Mixed findings were observed on the effect of movement with the bilateral CI users: In the front-

only condition, listeners performed more accurately when head movements were not permitted 

(only significant for the short-duration condition), whereas in the front-and-back condition 

performance was better when head movements were allowed (only significant for the long-

duration condition). The effect in the front-only-short-duration condition could be due to head 

movements impairing performance when there is insufficient time to complete a movement. For 

instance, Mueller et al (2014) encouraged bilateral CI users to make head movements when 

locating the source of a short stimulus (0.5 seconds). However, some listeners reported that 

performance was hindered when making head movements due to the short-duration of the 

stimulus. The short-duration stimulus in the present study was a little longer at 0.8 seconds 

therefore bilateral CI listeners may have begun a head movement before the stimulus ceased. The 

present study used a blocked design so participants knew in advance how long each stimulus 

would be. However, it may be that failure to complete a movement actually worsened 

performance. The mean length of movement by bilateral CI users in the front-only-short-duration 

condition was 15.21° (SD = 10.36) demonstrating that they did make a movement in this 

condition. However, this explanation does not extend to unilateral CI users. Based on previous 

research, it had been hypothesised that unilateral CI users would not benefit from head 

movements. However, unilateral CI users did benefit from head movements in the front-only-

short-duration condition with an accuracy of 23% compared to 12% when head movements were 

not permitted. Whilst this was a significant improvement, performance was still poor, near the 

chance level of 20% correct. Performance might have been below chance in the front only short-

duration condition when head movements were not permitted because unilateral CI users were 

less willing to make a guess of the location in this condition. This is shown in Table 7.9, with more 

unknown responses when head movements were not permitted. By selecting a target location 
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unilateral users have a one in five chance of selecting the correct answer, which is not the case 

when participants select the ‘unknown’ response. 

Front-back confusions 

It had been hypothesised that both NH listeners and bilateral CI users would make fewer front-

back confusions when head movements were permitted when the stimulus was long enough to 

make a head movement (medium-duration and long-duration conditions). This was not found for 

NH listeners. NH listeners made few errors and whilst the proportion of errors that were front-

back confusions in the head movement conditions were overall numerically less than in the head-

movement-not-permitted condition (see Table 7.10)., there was no significant simple effect of 

duration or movement. This is likely due to the small numbers of errors made. 

 

However, the hypothesis was supported for bilateral CI users. When head movement was 

permitted, bilateral CI users benefitted from additional time, and made significantly fewer front-

back confusions as the length of the stimulus increased; from 45% in the short-duration condition, 

to 22% in the medium-duration condition and to no front-back errors in the long-duration 

condition (see Table 7.10). Furthermore, bilateral CI users benefitted from head movements with 

fewer front-back confusions made in the head-movement condition than the head-movement-

not-permitted condition for medium-duration and long-duration stimuli. As expected, the effect 

was not found for short stimuli. This could be due to insufficient time to make informative head 

movements whilst the stimulus is being presented. For instance, the stimulus in the short-

duration condition was about 0.8 seconds in duration yet bilateral CI participants required, on 

average, a total duration of 1.3 seconds (front-only condition) to respond (see Table 7.11). 

7.3.4.2 Latency to respond 

NH listeners responded faster than both CI groups. This could be due to better hearing or other 

differences between the groups. One confounding factor is age, with the CI users being much 

older than the NH listeners. The implications of this difference on reaction times were discussed 

in detail in Section 7.2.6. so will be acknowledged here but not discussed further. The CI users 

may have taken longer to respond due to being less certain than the NH listeners of the location 

of the stimulus. The bilateral CI users could have made use of the extra time available to integrate 

information from both processors, to make more movements (when permitted to do so) to vary 

the ILDs to determine where the sound was presented from. Unilateral CI users could have used 

the extra time to make more movements to vary the level of the stimulus at their implanted ear. 

The movements made by listeners will be discussed in the next section. 
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In the majority of conditions there was no significant difference in response latency between the 

two CI groups. However, in the front-only conditions unilateral CI users took longer to respond 

than the bilateral CI users to stimuli with short-durations but responded faster in the long-

duration conditions. Mean response time for both groups in the front-only-short-duration 

condition was after the stimulus had ceased. However, in the front-only-long-duration condition 

both groups responded within the time the stimulus was presented. The reason why unilateral 

users responded quicker may be that, despite additional time being available they were not 

getting sufficient information from the stimulus to determine its location as they do not have 

access to ILDs like the bilateral CI users. Therefore, they may have chosen to make a guess (as 

evidenced by their low accuracy results discussed in Section 7.3.4.1) whereas bilateral CI users 

made use of the extra time available using interaural level differences to help guide their decision. 

 

NH listeners were faster to respond in the front-only condition than the front-and-back condition. 

This is likely due to a combination of the reduced number of response options in the front-only 

condition (five compared to ten) and listeners taking longer in the front-and-back condition to 

reduce the likelihood of front-back confusions occurring. 

7.3.4.3 Trajectory complexity 

Maximum velocity 

In both direction conditions, the mean maximum velocity was slower for NH listeners (mean = 

34.83°/s) than both CI user groups (bilateral mean = 95.89°/s; unilateral mean = 59.26°/s). NH 

listeners made less use of head movements than CI users with fewer reversals and shorter head 

movements (discussed in detail below). With fewer search like movements there was less 

opportunity to move the head at a fast speed like the CI users did. CI users may have been using 

rapid head turns to vary the level of the signal at the CI (unilateral CI users) or vary the ILD 

(bilateral CI users) or to reach a position for which the ILD could be maximised (bilateral CI users). 

However, rapid head turns have been shown to distort cues (such as interaural differences) 

listeners use to locate sound sources. Cooper et al. (2008) instructed NH listeners to turn rapidly 

towards a visual stimulus located to their left or right in the frontal horizontal plane. During the 

head turn a 0.8 second stimulus was presented from one of 74 locations around the participant. 

They found that localisation performance with rapid head turns was worse than no movement 

particularly for sources in the middle of the frontal horizontal plane (such as the locations used in 

the present study). The possibility of distorted spatial cues from rapid head turns could a possible 

explanation for poorer performance by CI users as they made faster head turns than NH listeners. 
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Reversals 

NH listeners made fewer reversals than either CI group. This result is consistent with the findings 

reported in Section 7.2.5.1. Furthermore, CI users made use of extra time when it was available 

making more reversals in the medium-duration and (sometimes) long-duration conditions than 

the short-duration conditions. This result is also consistent with the results reported in Section 

7.2.5.1. where both CI groups made more reversals in a continuous stimulus condition than a 

short (1.3 second) stimulus condition. The finding is also consistent with Mueller et al. (2014) who 

found bilateral CI users made more head turns away from the target location than NH listeners for 

all stimulus durations tested. 

Extent of movement 

NH listeners made less extensive movements than unilateral CI users at all durations and less 

extensive movements than bilateral CI users in the medium-duration and long-duration 

conditions. This result is not consistent with the results from the experiment reported in Section 

7.2. In that experiment there was no difference in the length of movement made by bilateral CI 

users and NH listeners when the stimulus was long. The reason why a difference between these 

groups was found in the present study could be because of the locations of the sources (with 

some being behind the listeners).  Support for this suggestion can be found in the study reported 

by Mueller et al. (2014). In their study they conducted a sound localisation task using a 360° array 

of loudspeakers and found that the extent of head movements made by bilateral CI users was 

significantly greater than NH listeners for a 4.45 stimulus (the longest used in their experiment 

and slightly shorter than the medium-duration condition stimulus used in the present study) but 

there was no difference for stimuli of 0.5s and 2.18s in duration. This pattern of results is 

consistent with the present study’s finding of no difference in the extent of movement made 

between bilateral CI users and NH listeners for the short-duration stimulus, which at 0.8 seconds 

was in between the two durations used by Mueller et al. 

 

There was no difference in the extent of movement between unilateral and bilateral CI users. 

Both CI groups made use of extra time when it was available, making longer movements in the 

medium-duration condition than the short-duration condition. However, despite this similarity, 

performance by the bilateral CI users was significantly better than unilateral CI users (as discussed 

in 7.3.4.1). 

 

Reasons for increased movement complexity 

Similar to the discussion in Section 7.2.6.4 it is difficult to distinguish between an uncertainty 

explanation and a learned behavioural response explanation for increased head movement 



Chapter 7  Head movements 
 

184 
 

complexity. Mueller et al. (2014) argued that the reason why bilateral CI users made more 

complex head movements than NH listeners was due to uncertainty in the location of the 

stimulus. This could explain why the unilateral and bilateral CI users who took part in the present 

study displayed more complex head movement trajectories than the NH listeners. CI users may 

have used head movements to vary the loudness at the CI (unilateral CI users) or vary the ILD 

(bilateral CI users) in an attempt to reduce the uncertainty. However, Brimijoin, McShefferty, and 

Akeroyd (2010) found moderately hearing impaired listeners made more complex head 

movements than NH listeners in a sound orientation task and they suggested this could be a 

learned behavioural response to extract as much information as possible from the environment. 

This too could explain the results of the present study. However, as discussed in Section 7.2.6.4 it 

is difficult to separate these two explanations given the data available. 

 

7.3.4.4 Listening effort 

Listening effort ratings were not consistent with accuracy results. NH listeners displayed the least 

amount of listening effort , followed by unilateral CI users and then bilateral CI users. It was 

expected that NH listeners would require less listening effort than CI users due to having normal 

levels of listening ability. However, it was anticipated that unilateral CI users would find the task 

difficult, performing poorly, and therefore require more listening effort than bilateral CI users. 

Using the SSQ, Noble, Tyler, Dunn, and Bhullar (2008) compared self-ratings of listening effort 

between 70 unilateral CI users and 36 bilateral CI users and found that listening effort ratings 

were significantly higher (more effort) for unilateral CI users (mean = 5.1 on a 0-10 scale) than 

bilateral CI users (mean = 6.1). The listening effort rating in Noble et al.’s study was derived from 

answers to three questions which focused on concentration when listening to someone or 

something, when in conversation with others, and ignoring other sounds when trying to listen to 

something. The question used in the present study was less general and focused on the task the 

participant had just completed. The task was not easier for unilateral CI users as evidenced by 

their lower accuracy scores. It was suggested in Section 7.3.4.2 than unilateral CI users may have 

displayed giving up behaviour, ceasing to engage in the task as they could not do it. This could 

explain why listening effort ratings were lower. Bilateral CI users know that they ought to be able 

to localise with two devices and therefore they may have put effort into the task. On the other 

hand, unilateral CI users know that they should not be able to localise with just one device and 

therefore they do not put in as much effort. 

 

As expected listening effort ratings were higher in the front-and-back condition than the front-

only condition. This could be due to an increased number of possible responses (uncertainty). 
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However, it could also be due to the uncertainty in whether the stimulus was presented in front 

of or behind the listener. Indeed both unilateral and bilateral CI users had many trials resulting in 

front-back confusions (see Table 7.10). 

7.3.4.5 Strengths, limitations, and future research 

A strength of this study is that it assessed the impact of permitting head movement for sound 

source locations both in front of, and behind, the listener. The location of the loudspeakers 

enabled the potential benefit of head movements for reducing front-back confusions to be 

measured. However, the use of an unknown location response does not indicate to what degree 

of uncertainty participants perceived the sound as possibly coming from. Nevertheless, only the 

unilateral users made use of this response option and very few unknown location responses were 

made (see Table 7.10). Therefore it is unlikely to have influenced the findings. Similar to the 

previous experiment, this study is limited by insufficient power and age differences between the 

groups. These were discussed in detail in Section 7.2.6.5. This study has demonstrated that head 

movements can help bilateral CI users reduce the number of front-back confusions provided the 

stimulus is long enough. From the mean latency to respond data, this study suggests that the 

stimulus needs to be longer than 5 seconds for bilateral CI users to benefit. 

 

It would be informative for future research to measure the certainty of participants in their 

response. This could shed light on whether certain locations are located with more confidence 

than others (for instance locations on the side of the CI for unilateral CI users). This could also 

attempt to disambiguate between an uncertainty explanation and a learned behavioural response 

explanation for increased head movement complexity. If increased head movement complexity 

was due to a learned behavioural response, head movement should be similar across certainty 

ratings. However, if increased head movement complexity was due to uncertainty, the amount 

and type of head movements made may differ across certainty ratings. This measure was not 

included in this study due to the experiment already encompassing several tasks for the 

participant (e.g. maintaining head position in the head movement not permitted conditions, 

responding to each trial with a handheld response button then responding using a touch screen). 

Having the additional confidence measure would have extended the 2 hour experimental session. 

With a longer session there were the risks of tiredness, fatigue, or disengagement with research 

tasks. This could be overcome in future studies by running multiple shorter sessions. CI users were 

already completing a four hour research session (or two 2-hour sessions which included the other 

two experiments reported in this chapter) therefore extending this experiment was not feasible 

within the time available.  
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7.3.4.6 Conclusion 

In conclusion, unilateral CI users were unable to accurately locate the target location even when 

the stimulus was continuously repeated or when head movements were allowed. Head 

movements helped bilateral CI users by reducing the number of front-back confusions provided 

the stimulus was long enough. CI users made more complex head movements than NH listeners 

with more reversals, longer head movement trajectories, and faster movements. Listening effort 

was reduced in the front-only condition likely due to fewer location alternatives and no chance of 

front-back confusions occurring. Thus head movements have the potential to improve localisation 

performance for bilateral CI users. 

 

7.3.5 Summary 

 Localisation accuracy by NH listeners is at ceiling for sound sources in the frontal 

horizontal plane but is reduced when sources are located in both the front and rear 

horizontal plane. 

 Unilateral CI users are unable to accurately localise the source of a sound. 

 Bilateral CI users benefit from head movements when the stimulus is longer than 5 

seconds in duration as front-back confusions are reduced. 

 Both CI groups made more complex head movements than NH listeners with more 

reversals, longer head movement trajectories and faster head movements. 

 Despite both CI groups making complex head movement trajectories, accuracy was 

significantly better for bilateral CI users.  
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7.4 Head orientation strategies for improving speech perception in 

noise 

7.4.1 Introduction 

When listening to speech in the presence of background noise, different head orientations can be 

adopted to potentially improve performance. Moving the head manipulates the level of a sound 

at each ear. In a speech in noise task, listeners may opt to orient to a position which maximises 

the level of the target at one or the other ear. However, changes in head orientation will also alter 

the noise level at each ear and thus the signal-to-noise ratio (SNR), therefore a more optimal head 

orientation may be to maximise the SNR. These two strategies were investigated by Brimijoin, 

McShefferty, and Akeroyd (2012) who monitored the direction in which asymmetrically 

moderately hearing impaired listeners oriented their head during a speech in noise task. In a 

blocked design, a target sentence was presented from one of five locations and speech-shaped 

noise was presented from one location which was separated from the target location by  ±30°, 

±90°, or 180°. If listeners sought to maximise the signal level, Brimijoin et al. (2012) demonstrated 

that the optimal head orientation strategy would be to turn to orient 60° to the side of the target 

irrespective of where the noise was presented from. If listeners opted to maximise the SNR 

Brimijoin demonstrated that they would need to orient differently depending on where the noise 

was presented from (relative to target: 0° for a separation of +30°, -150° for a separation of -30°, 

+35° for a separation of +90°, +155° for a separation of -90° and +65° for a separation of 180°). 

Brimijoin et al. (2012) found that listeners who had better hearing in their left ear oriented their 

head to the right of the target (median = +51.2°, IQR = +12.2° to +79.8°), whereas listeners who 

had better hearing in their right ear oriented their head to the left of the target (median -48.6°, 

IQR = -9.5° to -78.8°) irrespective of where the noise was presented from. This strategy served to 

maximise the signal level rather than the SNR. 

 

Culling, Jelfs, Talbert, Grange, and Backhouse (2012) compared the benefits in spatial release 

from masking (SRM) from bilateral cochlear implantation to unilateral cochlear implantation in a 

modelling report. They modelled performance when speech and noise were presented 

concurrently at 0° azimuth and when speech was presented at 0° azimuth but noise was 

presented at +90° azimuth. Their model predicted that bilateral CI users would have an SRM of 

3.5dB when facing the target. However, this could be increased to 7dB if the head was turned to 

the right by 20° or increased to 8.25dB if the head was turned to the right by 30°. A unilateral CI 

user (with a CI in the right ear) would need to turn to -150° to achieve the maximum benefit to 

SRM (about 10dB relative to looking at the target). Thus this model predicts that head orientation 

has the potential to improve performance. The current study sought to establish what orientation 
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strategies NH listeners and unilateral and bilateral CI users adopt when completing a speech in 

noise task. Based on Brimijoin et al’s findings it was expected that listeners would seek to 

maximise the signal level rather than maximise the SNR. If, on the other hand, listeners sought to 

maximise the SNR, based on the predictions from the model by Culling et al. (2012), it would be 

expected that unilateral CI users would orient further from the target than NH listeners and 

bilateral CI users. 

7.4.2 Method 

7.4.2.1 Participants 

24 normally hearing adults (6 male, mean age=21.8 years, SD=2.4) participated. All had pure-tone 

thresholds below or equal to 20 dB HL at 0.25, 0.5, 1, 2, and 4 kHz. Participants were recruited 

from within the University of York. Four bilateral CI and four unilateral CI participants 

participated. Demographic information for these participants is displayed in Table 7.1 in Section 

7.2. 

7.4.2.2 Apparatus 

Stimuli were presented through an array of 24 loudspeakers (Bose Acoustimass 3 Series IV) 

positioned in a 360° circular array with a radius of 1.5m. Loudspeakers were positioned at a height 

of 1m and were separated by 15°. The array of loudspeakers was situated within an Industrial 

Acoustic Corporation (IAC) single-walled enclosure situated within a larger sound-treated room. 

The loudspeaker array was calibrated as described in Section 7.2.2.2. Positioned just directly 

underneath each loudspeaker was a red light-emitting diode (LED), which could be controlled to 

be turned on or off. The head tracking equipment as described in section 7.1 was used to measure 

the head orientation and head movements of the participants. 

7.4.2.3 Design 

Three groups (NH listeners, unilateral CI users, and bilateral CI users) were tested in a blocked 

design. There were 5 levels of target location (-90°, -45°, -30°, 60°, and 105°) and 6 levels of 

separation (0°, 30°, -30°, 90°, -90°, 180°). The experiment was completed in sessions where 

participants also took part in one or both of the experiments reported earlier in this chapter. 

Therefore participants completed a subset of these conditions depending upon the time available 

in the experimental session. The number of participants who took part in each condition is given 

in Appendix F. 

7.4.2.4 Stimuli 

Coordinate-response-measure sentences were used. Each sentence took the form “Ready CALL-

SIGN go to COLOUR NUMBER now.” There were eight possible call signs (Arrow, Baron, Laker, 
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Charlie, Hopper, Tiger, Eagle, and Ringo), four possible colours (blue, red, green and white), and 

four possible numbers (1, 2, 3, 4). Thus an example sentence is “Ready Charlie go to blue two 

now”.  Target sentences were spoken by four male and four female talkers.  Seven were native 

British-English talkers, whilst one male was a native Irish talker. Thus the corpus consisted of 1024 

sentences (8 call signs * 4 colours * 4 numbers * 8 talkers). Pink noise was used to provide 

consistency with the experiment reported in Chapter 5. 

7.4.2.5 Procedure 

Conditions were completed in blocks and the order of conditions was counterbalanced across 

participants using a Williams design latin square (Williams, 1948). This method ensured that for 

each condition, the preceding condition was different for each participant. On each trial a target 

sentence was selected randomly and presented from the target location. On each trial, pink noise 

was presented from a loudspeaker determined by the noise separation condition. The pink noise 

sample was 4.38s long and began 500ms before the sentence began. Participants sat on a rotating 

chair in the centre of the loudspeaker array and were given the following instructions: “In this 

experiment you are seated on a rotating chair. Feel free to turn the chair as you like.” The 

participant was instructed to repeat back the colour and number that they heard. A trial was 

scored correct if both the colour and number were identified correctly.  

 

Each condition began with an SNR of +6dB. The presentation level of the noise began at 60dB SPL, 

and the presentation level of the target sentence was 66dB. A one-up-one-down adaptive 

procedure was conducted whereby the SNR was increased or decreased by 2dB for 6 reversals. A 

reversal was defined as a change in direction of the SNR. If the participants reported the correct 

colour and number the SNR was reduced by 2dB. If either the colour or number were reported 

incorrectly, the SNR was increased by 2dB. SNRs less than 6dB were achieved by attenuating the 

level of the signal, whereas SNRs greater than 6dB were achieved by attenuating the level of the 

noise. Before and after each condition, calibration of the head tracking equipment was conducted 

as described in Section 7.3.2.5. 

7.4.2.6 Analysis 

Table 7.12 describes the measures used in this experiment.  For each condition and each 

participant, trials before the second reversal were not included in the following  analyses. This 

was to allow time for listeners to become familiar with the location of the target and the noise 

and adjust their head position if they wished. All correct trials from the second reversal onwards 

were included. Mixed linear models were computed because not all participants had completed 

all combinations of conditions. All pairwise comparisons reported are Bonferroni corrected. 
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Table 7.12. Description of measures. 

Measure Description 

SNR Average signal-to-noise-ratio (SNR) of the trials 

included in the analyses 

Final head position relative to the target Final yaw (°) from the trial. Averaged over the trials 

included in the analyses 

Final absolute head position relative to 

the target 

Absolute value of final head position relative to the 

target (°). 

Signal level optimization For each condition participants were categorized into 

one of two groups: Signal-level optimizers and signal-

level non-optimisers. Individuals who oriented their 

heads to a position which would maximise the signal 

level at one ear (defined below) were classified as 

signal-level optimisers. Participants who oriented their 

heads to other positions were classified as signal-level 

non-optimisers. 

SNR optimization For each condition participants were categorized into 

one of two groups: SNR optimizers and SNR non-

optimisers. Individuals who oriented their heads to a 

position which would maximise the SNR at one ear 

(defined below) were classified as SNR optimisers. 

Participants who oriented their heads to other 

positions were classified as SNR non-optimisers. 

Any optimization Individuals who optimized the signal-level or the SNR 

were classified as optimizers and those who did not 

were classified as non-optimizers. 

 

Signal level optimization 

The range of head orientation positions which would optimize the signal level was determined 

from data courtesy of Pádraig Kitterick and Quentin Summerfield. They did not have a broadband 

measure like the stimuli used in the present experiment, but they did present an octave band of 

white noise centred on 2kHz from each of the same 24 loudspeakers used in the present 

experiment. Recordings were made using the in-ear microphones of a HATS. Figure 7.19 shows 

the relative attenuation of the signal-level as a function of loudspeaker position. This figure 

demonstrates that the optimal head orientation position to maximise the target signal at one ear 
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lies in the region between 30° and 60° to the left or to the right of the target. The slightly higher 

levels of attenuation for the right ear shown in the figure are likely due to the room acoustics 

(A.Q. Summerfield, personal communication, November 21, 2014). The ‘signal-level optimization 

zone’ between 30° and 60° either side of the target has been highlighted in grey in the figures 

presented later in this report. Brimijoin et al. (2012) estimated the peak head orientation that 

would maximise the signal level to be ±60° relative to the target. This is at the higher end of the 

optimization zone defined above. The difference could be due to the room acoustics and signal 

used by Brimijoin compared to that used by Kitterick and Summerfield. The present study has 

used estimates from data by Kitterick and Summerfield as this was gathered in the same room 

that the present experiment was conducted in and it also incorporates the peak orientation 

estimated by Brimijoin. 

 

 

Figure 7.19. Relative attenuation of a noise signal centred on 2kHz when presented from different locations. Figure 

demonstrates that the least attenuation of the signal is observed between ±30 and ±60 degrees to the side of the 

listener. 
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SNR optimization 

The optimal head orientation position relative to the target to maximise the SNR was estimated 

from the same data set used to estimate signal-level optimisation. Figure 7.20 shows the optimal 

head orientation relative to the target location to maximise the SNR at each ear for each noise 

separation used in this experiment (excluding 0° of separation as this will have an SNR of 0dB). For 

each noise separation, the head orientation which resulted in the best SNR at either ear was 

taken as the optimal SNR position. A tolerance of ±10° was applied to create ‘SNR-optimization 

zones’. This is highlighted in purple in the figures presented later in this report. 
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Figure 7.20. SNR at each ear for each head orientation at each noise separation (NS) used in this experiment.  

 



Chapter 7  Head movements 
 

194 
 

7.4.3 Results 

7.4.3.1 Final head orientation relative to the target 

NH listeners 

Figures 7.21 and 7.22 show the final head orientation by NH listeners in each condition. It can be 

seen that the mean head orientation for each target location did not vary as the noise location 

varied. However, participants did orient themselves differently for each target location. For some 

target locations (Figure 7.21) the mean head orientation was within the signal-level optimization 

zone. Thus participants oriented so as to maximise the signal level, although there was large 

variation, particularly when the target was presented from 105°. For target locations at -30° 

and -45°, the mean head orientation was for the most part not within either the signal-level or 

SNR optimization zone. Instead the majority of listeners oriented their head within ±30° of the 

target. As with the other conditions, they adopted a similar orientation irrespective of where the 

noise was presented from. 

CI users 

Figures 7.23 and 7.24 show the final head orientation by CI users in each condition. For target 

locations at -90°, 60° and -45° a similar pattern to NH listeners was found. In these conditions the 

majority of listeners oriented their heads within the signal-level optimization zone, maximising 

the level of the signal at one ear. However, when the target location was presented from 105°, all 

but one listener in one condition oriented to a position that was not within either the signal-level 

or SNR optimization zones.  
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Figure 7.21. Final head orientation by NH listeners. Grey areas represent optimal head position for maximising the 

signal level at either ear. Purple areas represent optimal head position for maximising the SNR at either ear. Red 

circle indicates the location of the target talker (in degrees azimuth). Blue circle indicates the location of the noise (in 

degrees azimuth). Green circle indicates the mean head orientation (in degrees azimuth). Coloured shapes at the 

periphery of each polar plot represent final head orientation data from individual participants. 
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Figure 7.22. Final head orientation by NH listeners. Shaded grey areas represent optimal head position for 

maximising the signal level at either ear. Shaded purple areas represent optimal head position for maximising the 

SNR at either ear. Red circle indicates the location of the target talker (in degrees azimuth). Blue circle indicates the 

location of the noise (in degrees azimuth). Green circle indicates the mean head orientation (in degrees azimuth). 

Coloured shapes at the periphery of each polar plot represent final head orientation data from individual 

participants. 
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Figure 7.23. Final head orientation by CI users. Shaded grey areas represent optimal head position for maximising the 

signal level. Red circle indicates the location of the target talker (in degrees azimuth). Blue circle indicates the 

location of the noise (in degrees azimuth). Coloured shapes at the periphery of each polar plot represent final head 

orientation data from individual participants. Yellow shapes indicate unilateral CI users, light blue shapes indicate 

bilateral CI users. 
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Figure 7.24. Final head orientation by CI users. Shaded grey areas represent optimal head position for maximising the 

signal level. Red circle indicates the location of the target talker (in degrees azimuth). Blue circle indicates the 

location of the noise (in degrees azimuth). Coloured shapes at the periphery of each polar plot represent final head 

orientation data from individual participants. Yellow shapes indicate unilateral CI users, light blue shapes indicate 

bilateral CI users. 

 

7.4.3.2 Does the absolute final head orientation relative to the target differ depending 

upon the target location and noise location?  

A 3 (group) by 5 (Target location) by 6 (separation) mixed linear model was calculated which 

found fixed effects of group (F(2,414.686) = 7.741, p=.001), target location (F(4,175.687) = 30.926, 

p<.001) and a significant group by target location interaction (F(6,251.852) = 3.557, p=.002). No 

other significant effects were found. The interaction was investigated by examining the simple 

effects of group and target location at each level of the other factor. The simple effect of group 

was found only for target locations at 60° (F(2,131.911) = 8.138, p<.001) and 105° (F(2,135.158) = 

7.574, p=.001). Pairwise comparisons demonstrated that for the 60° target location unilateral CI 
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users oriented their heads further from the target than NH listeners (p<.001) and bilateral CI users 

(p=.011). For the 105° target location, unilateral CI users oriented their heads further from the 

target than NH listeners (p=.003). No other significant differences were found. The simple effect 

of location was found for all three groups (all p<.001). Pairwise comparisons demonstrated that 

for NH listeners, there was no difference between the absolute head orientation relative to the 

target when the target was presented at -30° or -45°. There was also no difference in the absolute 

head orientation when the target was presented from -90°, 60°, or 105°. However, orientations 

with targets at -90°, 60° and 105° were significantly further from the target than head orientations 

when the target was presented from-30° and -45° (see Table 7.13). Unilateral CI users oriented 

their heads further from the target when it was presented from 105° than when it was presented 

from -90° or -45°. Also, unilateral CI users oriented themselves further from the target when it 

was presented from 60° than when it was presented from -45°. For bilateral CI users, head 

orientations were closer to the target when it was presented from -45° than when the target was 

presented from the other locations. Bilateral CI users oriented themselves further from the target 

when it was presented from 105° than when it was presented from 60°. No other significant 

differences were found. 

 

Table 7.13. Mean absolute head orientation relative to the target location. SE in parentheses. 

Target location NH Unilateral CI Bilateral CI 

-90 63.99 (4.96) 56.36 (12.88) 63.83 (13.20) 

-45 32.29 (2.77) 39.97 (5.97) 21.71 (7.61) 

-30 36.45 (4.00) - - 

60 55.92 (3.69) 96.02 (9.25) 59.30 (8.27) 

105 71.38 (4.76) 127.06 (15.60) 98.30 (10.96) 

 

7.4.3.3 Do ‘optimizers’ perform better? 

An independent t-test found no significant difference in mean SNR between signal-level non-

optimizers (mean = -10.01, SD = 5.87) and signal-level optimizers (mean = -10.10, SD = 5.73), 

t(733) = -.147, p=.883. An independent t-test found no significant difference in mean SNR 

between SNR non-optimizers (mean = -10.45, SD = 5.98) and SNR optimizers (mean = -12.00, SD = 

6.81), t(591) = -1.329, p=.184. Furthermore an independent t-test found no significant difference 

in SNR performance between individuals who did not optimize their head orientation (mean 

= -10.48, SD = 6.00) and individuals who either optimized the signal level or SNR (mean = -10.68, 

SD = 6.12). 
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7.4.3.4 Is performance different between groups and target and noise locations? 

A 3 (group) by 5 (Target location) x 6 (noise separation) mixed linear model was calculated using 

SNR as the dependent variable. Fixed main effects of group (F(2,522.832) = 628.460, p<.001) and 

noise separation (F(5,185.180) = 4.441, p=.001) were found as was a significant group by noise 

separation interaction (F(10,184.062) = 2.204, p=.019). No other significant effects were found. 

The interaction was investigated by examining the simple effects of group and noise separation at 

each level of the other factor. A simple effect of group was found at all noise separations (all 

p<.001). NH listeners performed significantly better than both CI groups at all noise separations 

(see Table 7.14). Bilateral CI users performed significantly better than unilateral CI users at the 

larger noise separation of 180° (p=.029). No other significant differences were found. The simple 

effect of noise separation was found only for NH listeners (F(5,176.852) = 35.421, p<.001). SNR 

significantly improved as the noise separation increased, up to 90° (see Table 7.14). Pairwise 

comparisons demonstrated that  there was no  difference in performance  for separations of the 

same magnitude but different directions ( i.e. between +30 and -30 separations, and between 

+90° and -90° separations).  Performance with no separation was significantly poorer than all 

other conditions. A separation of ±30° was poorer than ±90° and 180°. There was no difference 

between 180° and ±90°. 

 

Table 7.14. Mean SNR for each noise separation for each group. SE shown in parentheses. 

Noise separation NH Unilateral Bilateral 

0 -9.43 (.26) 0.10 (.97) 16 -0.77 (.86) 1 

-30 -11.37 (.33) -0.52 (.83) 1 -.77 (.88) 1 

30 -11.61 (.31) 0.77 (.94)1  -1.18 (.93)1 

-90 -13.20 (.34) 0.66 )1.10) 1 -2.78 (1.02) 1 

90 -14.14 (.44) -0.37 (1.13)1  -2.03 (1.04)1 

180 -14.00 (.31) 0.28 (1.05) 1  -3.52 (.99)1 

 

 

7.4.4 Discussion 

7.4.4.1 Listeners orient their heads depending upon the target location and not the 

noise location 

This study found no effect of noise separation, for each target location the mean head orientation 

did not vary as the noise location varied. Section 7.4.3.2 demonstrated that NH listeners adopted 

                                                           
16 Based on modified population marginal mean  
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two different strategies. In three out of five target locations (-45°, -30°, and 60°), listeners 

oriented their heads in a way that would optimise the level of the signal at one ear. This finding is 

consistent with Brimijoin et al. (2012) who found that participants with moderate asymmetrical 

hearing loss oriented their heads within the ‘signal-level optimization zone’ defined in this study. 

In the present study, mean head orientation for targets presented from -90° were just outside the 

signal-level optimization zone. However, when the target location was presented from 105° the 

data were more heterogeneous. On average, orientation relative to the target was beyond the 

signal-level optimization zone, with a mean relative head orientation of 71°. It is unclear why this 

was the case for this target location. As the order of conditions was counterbalanced it cannot be 

explained by novelty of the task. Whilst not the most optimal position, an orientation of 71° 

relative to the target will provide 3-4dB of benefit compared to orienting towards the target (see 

Figure 7.19). Testing was not conducted in an anechoic chamber so effects of reverberation may 

account for some of these differences in head orientations between target locations. 

 

For the most part, head orientation relative to the target by CI users was similar to NH listeners. 

Unilateral CI users optimized the signal level when the target was presented from -45° or -90°. 

Bilateral CI users optimized the signal level when the target was presented from 60°, although 

oriented just beyond the signal-level optimization zone when the target was presented from -90°. 

Similar to NH listeners, both CI groups oriented their heads beyond the signal-level optimization 

zone when the target was presented from 105°. Modelling by Culling et al. (2012) predicted that 

unilateral CI users would orient their heads further from the target than bilateral CI users and NH 

listeners. Some support was found for this prediction as unilateral CI users oriented their heads 

further than both groups when the target was presented from 60°, and further than the NH 

listeners when the target was at 105°. However, for the other two target locations, unilateral CI 

users performed similarly to the other two groups. 

 

7.4.4.2 Optimization does not improve performance 

Consistent with data reported by Brimijoin et al. (2012), there was a range of final head 

orientations with sometimes large inter-subject variation (see Figure 7.21). To assess whether a 

strategy to maximise the signal level improved performance, for each condition listeners were 

grouped as ‘signal-level optimizers’ and ‘signal-level non-optimizers’ based on whether or not 

their final head orientation relative to the target was within the signal level ‘optimization zone’. 

However, no difference was found between the two groups suggesting that maximising the signal 

level did not result in benefits to speech perception in the presence of noise. Orienting to a 

position which optimized the SNR was adopted by a few participants in some conditions. 
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However, their performance did not differ from those who did not orient to optimise the SNR. 

Furthermore, when performance by participants who optimised either to maximise the signal-

level or the SNR was compared to non-optimisers, no difference in performance was found. 

 

One possibility is that those individuals who optimized did so because they found the task 

difficult, whereas those who did not optimize, performed the task well enough that they did not 

need to optimize. This is similar to the suggestion made by Wightman and Kistler (1999) in 

relation to head movements and sound localisation discussed in Chapter 3. They found that when 

locating the source of a sound when head movements were not permitted some individuals made 

many front-back confusions whereas other individuals made very few. Of interest to the present 

discussion, is that individuals who made many front-back confusions when head movements were 

not permitted, made large head movements when they were allowed to do so, whereas 

individuals who made few errors made limited head movements when allowed to do so. To test 

whether this was the case in the present experiment, a future study could test participants in two 

conditions. In one condition, like the present study, participants would be able to orient their 

heads as they wished whilst performing the task. In another condition participants would be 

instructed to orient their heads to a position outside of the optimization zone. Participants could 

be divided into two groups (optimizers or non-optimizers) based on their behaviour in the former 

condition. Performance in the latter condition could then be compared between optimizers and 

non-optimisers. If performance by optimizers in the latter condition was worse than non-

optimizers, it would support the proposal that some individuals who find the task challenging 

optimize their head orientation position to maximise the signal level to improve performance.  

Thus it could be that head orientation could improve speech in noise performance for some 

individuals. Of further interest is whether “forced” optimization results in an improvement to 

performance. Participants could be instructed to orient to a theoretically optimal or theoretical 

sub-optimal position which would either maximise the SNR or not. Performance could then be 

compared between these conditions. 

 

7.4.4.3 NH listeners perform better with increasing target to noise spatial separation 

This experiment found that NH listeners’ performance improved as the spatial separation 

between the target and noise increased. This finding is consistent with previous research into the 

cocktail party problem (Cherry, 1953; Bronkhorst, 2000). The cocktail party problem refers to the 

challenge of hearing out a target in the presence of background interference (i.e. noise or other 

speech). In a review of the literature, Bronkhorst (2000) demonstrated that when speech was 

presented at 0° azimuth, performance improved as the location of background noise increased in 
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azimuthal distance from the speech. This increase reached a peak around 120° (with an SRM of 

10dB) then decreased to an SRM of 0dB at a separation of 180°. The maximum azimuthal 

separation in the present study (180°) did not improve performance over a separation of ±90° but 

neither did performance decrease. 

 

However, this effect was not found for CI users, who performed similarly at all noise separations 

(see section 7.4.3.4). This is somewhat surprising as previous research has demonstrated that 

speech perception performance in the presence of competing noise by CI users is better when 

speech and noise are spatially separated than when they are spatially concurrent (e.g. Loizou et 

al., 2009). In a study reported by  Loizou et al. (2009), stimuli were presented directly to the 

processor of CIs so listeners could not move their heads to alter the signal input. In the virtual 

space, a target was presented from in front of the listener at 0° azimuth and speech modulated 

noise was presented from  either 0°, -30°, +60°, and +90°. They found that when listening with 

either  a unilateral CI or bilateral CIs SRTs in the separation conditions were about 4dB better than 

performance in the no separation condition. However, Loizou et al. (2009) found that there was 

no difference in performance between bilateral CI listening and listening with a unilateral CI 

(when the noise was presented contralateral to the CI). This finding is similar to the present study 

which found no difference in performance between bilateral and unilateral CI users at any 

separation condition. However the present study is limited by a small sample of CI users. 

 

In the present study, final head orientations relative to the target did not differ depending upon 

the location of the noise (see section 7.4.3.2), which cannot account for why there was limited 

spatial release from masking. When the noise separation was +90° and -90°, bilateral users 

achieved  1.7dB and 2.59dB better performance than when the speech and noise were presented 

concurrently. These values are similar to the levels of spatial-release-from-masking obtained with 

a larger sample of bilateral CI users (2.55dB and 2.26dB for each ear) in the experiment reported 

in chapter 5.  

7.4.4.4 Conclusion 

Listeners oriented differently depending upon the location of the target. The noise separation did 

not affect head orientation showing that the majority (96%) of listeners did not seek to maximise 

the SNR. For NH listeners, performance improved as the separation between the target sentence 

and the background noise increased in azimuth consistent with research into the cocktail party 

phenomenon. This effect was not found for CI users. Listeners who oriented to maximise either 

the signal level or the SNR did not perform better than those who did orient to maximise the 
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signal level or SNR. In conclusion, listeners orient their heads differently depending upon where 

the target is presented from irrespective of where background noise is presented from. 

 

7.4.5 Summary 

 A target sentence was presented from one of five locations and pink noise was presented 

from one of 6 separations. 

 Head orientation was monitored in a blocked design. 

 Although there was inter-subject variability, behaviour was consistent across noise 

separations with listeners not demonstrating an orientation pattern consistent with 

maximising the SNR. 

 Individuals who oriented to a position which would maximise the signal level of the target 

did not perform any differently to individuals who did not orient to maximise the signal 

level.
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8 Development and validation of a measure of “hearing related 

quality of life” sensitive to binaural hearing in adults 

 

8.1 Introduction 

With limited resources available to fund healthcare, policy makers must prioritise the treatments 

to which they allocate funding. Analyses of incremental cost-effectiveness can inform the setting 

of priorities by ranking treatments in terms of the cost of gaining increments in health-related 

quality of life. Generic health-related quality of life measures (such as questionnaires) can be used 

to measure the effectiveness component for use in a cost-effectiveness analysis. As discussed in 

Chapter 4, one widely used  generic questionnaire, the EuroQol (EQ5D, Brooks, 1996; The Euroqol 

Group, 1990) lacks sensitivity to differences between groups of people with differing hearing 

difficulties (Barton, Bankart, & Davis, 2005; Grutters et al., 2007). Another widely used generic 

questionnaire, the Health Utilities Index Mark 3 (HUI3, Boyle, Furlong, Feeny, Torrance, & 

Hatcher, 1995; Feeny et al., 2002; Torrance, Furlong, Feeny, & Boyle, 1995) is sensitive to 

differences between groups of people with ‘no hearing’ compared to ‘some hearing’ but lacks 

sensitivity to differences in quality of life between groups of people with ‘some hearing’ 

compared to ‘more than some hearing’, such as unilateral CI users and bilateral CI users (Lovett et 

al., 2010; United Kingdom CI Study Group, 2004).  Two alternative interpretations can be put on 

this result. One is that the self-reported and behavioural benefits obtained from a second CI (as 

demonstrated in chapters 5, and 6) do not lead to an increase in health related quality of life. The 

second interpretation is that the benefits do improve health-related quality of life but that current 

instruments are not sufficiently sensitive to detect differences between the quality of life 

associated with monaural, compared with binaural hearing.  

 

The purpose of the current study was to distinguish between these two alternatives. Firstly this 

study aimed to use the time-trade off method to test whether members of the public are willing 

to trade years of life to improve listening skills which particularly benefit from binaural hearing. If 

so, the second aim was to establish whether patients with one or two CIs show significant 

differences in utility and whether the differences are large enough, in principle, for the provision 

of a second CI to be a cost-effective use of resources. To address these aims, this study adopted a 

similar approach to what was used in the development of the EQ5D (Brooks, 1996). Firstly, areas 

in which binaural hearing provides benefit were identified. Secondly, members of the public used 

the time-trade off method to value these areas. Thirdly, a questionnaire was created in which 

patients can describe their own level of hearing ability on each area. Fourthly, using valuations 
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gathered from members of the public, a utility value was assigned to each patient based on their 

level of function described in the questionnaire. Finally, the questionnaire was used to test 

whether there are significant differences between patients with a unilateral CI, bimodal devices, 

and  bilateral CIs. This can be used to infer whether the size of the difference is large enough to 

mean that bilateral cochlear implantation could, in principle, be a cost-effective use of resources. 

This new questionnaire is a means of establishing values of “hearing-related quality of life” which 

could be used to inform cost-effectiveness analyses in the same way that measures of health-

related quality of life currently do. 

8.1.1 Advantages of binaural listening over monaural listening 

There are a number of advantages from binaural hearing compared to monaural listening. 

However, in order to keep the length of the questionnaire short enough so that it could 

reasonably be administered to patients alongside existing questionnaires, only a limited number 

of dimensions could be included. Following a review of the literature the three dimensions 

identified were: the ability to understand speech presented in spatially-separated noise, the 

ability to localise sounds, and a reduction in effort and fatigue. These dimensions were chosen 

because they are aspects of listening that are commonly encountered in daily life, they can be 

improved from listening with two ears compared to one, and they also correspond to the three 

sections of the SSQ which addresses everyday listening scenarios. This correspondence provides 

the opportunity to assess the construct validity of the new questionnaire by assessing the 

relationship between self-ratings on the SSQ and YHRQL questionnaires. 

Speech in noise 

Three mechanisms contribute to improved speech understanding in spatially-separated noise 

when listening with two ears rather than one: The head shadow effect, binaural redundancy, and 

binaural squelch. A full description of these can be found in Chapter 2. Compared to unilateral CI 

users, bilateral CI users can benefit from the head shadow, binaural squelch and binaural 

redundancy when listening to speech in noise (Müller et al., 2002; Schafer et al., 2011; Schleich et 

al., 2004) although the head shadow has been shown to account for the majority of the benefit 

(Müller et al., 2002; Schleich et al., 2004).  Furthermore bimodal listeners have been shown to 

benefit from the head shadow and binaural summation (Ching, 2005) with better speech 

perception in noise compared with unilateral CI listening (Carroll, Tiaden, & Zeng, 2011; Ching, 

Incerti, & Hill, 2004; Ching, van Wanrooy, Hill, & Dillon, 2005; Zhang et al., 2010). 

Sound localisation 

Being able to localise sources of sound enables listeners to locate potential hazards and to know 

where to look to see who is talking. Binaural listening can provide listeners with access to 
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interaural differences in level (ILDs) and timing (ITDs).  Users of bilateral CIs have access to ILDs, 

but have access to ITDs only in the envelope of the signal, not the temporal fine structure (Ching, 

van Wanrooy, & Dillon, 2007). Bilateral CI users are more accurate at localising sounds in the 

horizontal plane than unilateral CI listening (Dunn, Tyler, Oakley, Gantz, & Noble, 2008; Kerber & 

Seeber, 2012; Litovsky, Parkinson, & Arcaroli, 2009; van Hoesel & Tyler, 2003). Mixed findings 

have been reported for horizontal localisation with bimodal devices. In a small sampled study, 

Tyler et al. (2002) found that compared to performance with a single CI, two out of three patients 

benefitted from using a contralateral acoustic hearing aid. Dunn, Tyler, and Witt (2005), found 

that localisation ability was very varied in a group of twelve bimodal users, and whilst three 

participants could localise fairly well, the majority of participants were unable to locate the source 

of the sounds accurately. Thus binaural hearing has the potential to improve spatial listening skills 

for some listeners. 

Effort and fatigue 

Listening effort refers to the need for cognitive resources to be utilised to direct attention during 

a listening task (Hicks & Tharpe, 2002) and can be measured either subjectively (through the use 

of self-reports) or objectively (using either a dual-task paradigm or physiological measures). Using 

a dual-task paradigm, individuals perform a listening task whilst simultaneously performing a 

secondary task (such as responding to a visual stimulus). The assumption is that increases in 

listening effort due to the listening task will manifest themselves in longer reaction times to 

respond to the secondary task (Hicks & Tharpe, 2002). Using a dual-task method in which a 

speech in noise task was performed whilst simultaneously responding to a probe light, Hicks and 

Tharpe (2002) found that hearing impaired children took significantly longer to respond to the 

probe than normal hearing children. In a comparison between 42 bilateral hearing aid users and 

118 unilateral hearing aid users who completed the Speech, Spatial and Qualities of hearing scale 

(SSQ), Noble & Gatehouse (2006) demonstrated that self-reported effort of conversation was 

significantly lower with two hearing aids compared to one. In a comparison of listening effort 

between unilateral and bilateral CI users, it was found that, at the group level, listening effort was 

reduced with binaural hearing (Hughes & Galvin, 2013). However, in this dual-task paradigm only 

three out of eight listeners showed this effect individually. Fatigue can incorporate both physical 

and mental exhaustion and increases in listening effort have been suggested to exacerbate 

fatigue (Hornsby, 2013; McGarrigle et al., 2014; Nachtegaal et al., 2009). Thus, binaural hearing 

may have an important role in reducing listening effort and fatigue. 
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8.1.2 Existing questionnaires 

Binaural listening 

The aim of this study was to develop and validate a questionnaire that is sensitive to the benefits 

of binaural hearing. Previous research developing questionnaires sensitive to binaural benefits 

include the SSQ (Gatehouse & Noble, 2004), and the Spatial Hearing Questionnaire (Tyler et al., 

2009). The SSQ is a 50-item questionnaire split into three sections: listening to speech, spatial 

listening, and other qualities of hearing and listening. The authors emphasised that the 

questionnaire was designed to be sensitive to the benefits of binaural listening but also 

incorporated some questions related to monaural listening. The instrument has shown better self-

rated ability with binaural devices compared to monaural devices (bilateral hearing aids vs. 

unilateral hearing aids:  Gatehouse & Akeroyd, 2006; Noble & Gatehouse, 2006, bilateral CIs vs. 

unilateral CI: Summerfield et al., 2006; Tyler et al., 2009). The Spatial Hearing Questionnaire is a 

shorter instrument comprising 24 items, which assesses eight aspects of listening (understanding 

male voices, female voices, and children’s voices, perception of music, source localisation, 

understanding speech in quiet, in spatially concurrent noise, and in spatially separated noise).  

Tyler et al. administered the questionnaire to 100 unilateral and 42 bilateral CI users and found 

that overall self-rated spatial listening was significantly higher for the bilateral group.  

 

Quality of life amongst CI users 

Two questionnaires which were specifically designed to assess quality of life amongst CI users are 

the Nijmegen cochlear implant questionnaire (NCIQ, Hinderink, Krabbe, & Van Den Broek, 2000) 

and the comprehensive cochlear implant questionnaire (CCIQ, King, Nahm, Liberatos, Shi, & Kim, 

2014). The NCIQ has 60 questions and covers three broad domains (physical, psychosocial and 

social). The questions are answered on a 5-point Likert scale from ‘Never’ to ‘Always.’ Similarly 

the CCIQ contains 28 questions over three domains (hearing and balance, psychological and 

social) and responses are made using the same 5-point Likert scale. Despite being sensitive to 

differences between clinically distinct groups  these questionnaires were not developed following 

the principles for measuring utility. For instance, each question on the NCIQ can result in a score 

out of 100, with the score for each sub-group being the mean score of the questions in that 

group. The CCIQ results in a mean score between 1 and 5. Therefore scores from these 

questionnaires are not suitable for incorporation in the type of cost-effectiveness analyses 

required by NICE (2013) as the scores cannot be interpreted in terms of quality adjusted life years. 
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Questionnaires for us in cost-effectiveness assessment 

Two previous studies have developed questionnaires to inform analyses of the cost-effectiveness 

of cochlear implantation. Summerfield, Lovett, Bellenger, & Batten (2010) sought to estimate the 

cost-effectiveness of cochlear implantation for pre-lingually deafened children. They created a 

questionnaire which described a hypothetical child born profoundly deaf with one of four 

different listening scenarios (using no devices, benefiting from a unilateral CI, benefiting from 

bimodal devices, and benefiting from bilateral CIs). Each scenario described spatial listening 

abilities, speech understanding, school performance, language development, family strain and 

potential future job opportunities. Respondents consisted of clinicians, students and members of 

the public who read each scenario imagining that they were 33 years old and the scenario was 

describing their hypothetical six-year-old daughter. Using the time-trade off technique they were 

asked to imagine they had 50 years of remaining life and could trade some of their own life years 

to relieve difficulties for their daughter. It was found that respondents valued bilateral CIs to have 

on average a 0.11 higher utility value (with a wide range of valuations from 0.00 to +0.60) than a 

unilateral CI. Furthermore, the study demonstrated differences between types of binaural 

hearing; bilateral cochlear implantation was valued with a utility value 0.05 higher than that of 

bimodal listening (also with a wide range of valuations from -0.06 to +0.40). 

 

Although influential (the findings contributed to NICE's (2013) decision to fund bilateral cochlear 

implantation for children) the focus was to estimate the cost-effectiveness of cochlear 

implantation in pre-lingually deafened children.  There are aspects included in their questionnaire 

that are not relevant to post-lingually deafened adults, namely school performance and language 

development.  One study which did focus on adults was that of Summerfield, Marshall, Barton, & 

Bloor (2002). They used the time-trade off technique with a group of normally hearing adults to 

estimate the cost-effectiveness of providing bilateral CIs to profoundly deafened adults. The 

increase in utility from providing a second CI to users of a unilateral CI was estimated at +0.03, 

which the authors concluded was not large enough to mean that bilateral cochlear implantation 

would be judged to be cost-effective. This conclusion was supported by Bond et al (2009) which 

demonstrated that at a willingness-to-pay threshold of £30,000 (typical of NICE, 2013), the gain 

would need to be about +0.05 (see Chapter 4). 

 

8.1.3 Current study 

The rather lengthy scenarios described in Summerfield et al. (2002; 2010) were useful in creating 

a picture of what it may be like to have those hearing difficulties but it was not the authors 

intention that they be used directly with patients. Therefore the research reported in this chapter 
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sought to bridge a gap in the literature and develop a questionnaire that would be (1) sensitive to 

benefits in binaural hearing obtained by adults, and (2) observe the principles used in compiling 

current generic health related quality of life instruments to enable estimates of hearing related 

quality of life to be measured, and (3) be short enough that it could feasibly be administered to 

patients alongside existing generic instruments. The style of the questionnaire was based on the 

style of the EQ5D. The EQ5D is the preferred evaluation questionnaire by NICE (2013)and includes 

three levels of difficulty for each domain: No difficulty, some difficulty, and great difficulty. The 

scenario descriptors provided informants with an insight into how a hearing difficulty could 

impact everyday life so that they could make an informed evaluation. Previous research using the 

time-trade off technique has also used vignettes to describe the potential challenges of hearing 

difficulties (Summerfield et al., 2010).  However, unlike Summerfield et al., the descriptions in the 

present study were kept short enough so that the questionnaire could be administered alongside 

existing instruments. Furthermore, this approach ensured that the utility values assigned to 

patients were based on the same descriptors used to elicit valuations. The first study outlines the 

development of this questionnaire (the York hearing related quality of life questionnaire, YHRQL), 

and study two outlines the validation of this new instrument with an opportunity sample of adult 

CI users. 

8.2 Study 1: Questionnaire development 

8.2.1 Materials and methods 

Participants 

The opportunity sample of 361 adults consisted of students, clinicians, and members of the 

general public. Demographic information is displayed in Table 8.1.The Research Ethics Committee 

of the Department of Psychology at the University of York approved the study. 

 

Table 8.1. Summary demographic data of participants. 

Group N Minimum age 

(years) 

Mean age 

(years) 

Maximum age 

(years) 

Females (%) 

Clinicians 51 23 45.10 62 86 

Students 154 18 20.54 26 79 

Non-students 156 22 46.48 79 53 

All 361 18 35.22 79 69 
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Levels of function 

Three levels of function on each dimension were defined corresponding to ‘No difficulties’, ‘Some 

difficulties’, and ‘Great difficulties’ (see Table 8.2). These levels of difficulty were selected to cover 

a broad range of listening challenges, whilst limiting the number to three kept the possible 

combinations of difficulties to a reasonable number (27) so that all combinations could be valued 

by the same informants.  
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Table 8.2. Scenario descriptors by dimension and difficulty. 

Level of 
function 

Speech in noise  Localisation  Effort and fatigue 

No 
difficulty 

When a friend speaks to 
you while the TV is on or 
other people are chatting 
in the same room, you can 
hear your friend speaking 
easily, usually picking up all 
of the words they say. 

 

You can work out where 
sounds are coming from 
accurately. You can point 
to where a sound is 
coming from easily. 

 

You have to concentrate a 
little when you are trying 
to hear something or 
someone. You can hear 
what people are saying 
with only a little effort.  By 
the end of the day, you 
are not mentally or 
physically tired because of 
your hearing. 

Some 
difficulty 

When a friend speaks to 
you while the TV is on or 
other people are chatting 
in the same room, you can 
hear your friend speaking, 
but you can only pick out 
some of the words they 
say. This can lead to 
confusion if you miss an 
important word. 
Sometimes you need them 
to repeat themselves or to 
turn the volume down for 
you to understand them. 

 

You have some difficulty 
working out where sounds 
are coming from. You can 
usually tell if a sound is 
coming from the right- or 
left-hand side, but you 
cannot be more accurate 
than that. As a result, you 
are not always sure who is 
speaking when you are in 
a group with several 
people. 

 

You have to concentrate 
quite hard when you are 
trying to hear something 
or someone. You have to 
put in some effort to hear 
what people are saying. 
By the end of the day, you 
are moderately mentally 
and physically tired 
because of your hearing. 

Great 
difficulty 

When a friend speaks to 
you while the TV is on or 
other people are chatting 
in the same room, you find 
it very difficult to hear your 
friend speaking. You are 
usually unable to pick out 
the words they say. This 
regularly leads to 
misunderstanding and 
confusion. The room needs 
to be completely quiet for 
you to understand them. 

 

 
You have great difficulty 
working out where sounds 
are coming from. You 
cannot even tell if a sound 
is coming from the right- 
or left-hand side without 
looking around. As a 
result, you find it very 
difficult to tell who is 
speaking when you are in 
a group with several 
people. You are also 
worried about your safety 
outdoors because of your 
difficulty working out 
where sounds are coming 
from. 

 

You have to concentrate 
very hard when you are 
trying to hear something 
or someone. You have to 
put in a great deal of 
effort to hear what people 
are saying. By the end of 
the day, you are 
extremely mentally and 
physically tired because of 
your hearing. 

Questionnaire creation 

A questionnaire was compiled in which all 27 (3 x 3 x 3) combinations of difficulties were 

evaluated using the time-trade off technique. Respondents were instructed to imagine that the 

descriptions were describing their own hearing abilities. For each combination of difficulties, 

participants were given a choice: either live with the difficulties for the rest of their life or live a 
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shorter period of time (f) but with perfect hearing. Participants were told that any life given up 

would be taken from the end of their life. 

 

Two different time-trade-off methods were used, instructions for which can be found in Appendix 

G. One group (50-year condition, n = 250, clinicians, students and non-students) were instructed 

to imagine that they were 30 years old and that they would live for 50 more years (y=50) until 

they were 80 years old. They were asked to state how many years of their remaining life they 

would give up (L) in order to have perfect hearing (f = y-L). The other group of respondents (10-

year condition, n= 111, students and non-students) were instructed to imagine that they had 10 

years of life remaining (y=10) and were asked to indicate the number of years with perfect 

hearing (f) that they judged was equivalent to living for 10 years with the difficulties described in 

the scenario. Group 2 responded by placing a cross anywhere on an 11 point scale from 0 years to 

10 years. 

 

The questionnaire included two unrelated examples to familiarise participants with the response 

method. One example described a scenario that many would consider to be a major problem 

(suffering from a stroke and as a result struggling to cope with day-to-day living). The other 

example described a scenario that many would consider to be a minor problem (either suffering 

from hayfever or having a cut on your hand). Following the examples, participants valued the 27 

scenarios, which were presented in one of four random orders.  The assignment of scenario order 

to participant was randomly allocated. A value of hearing related quality of life (Hearing Utility) 

was calculated as f/y for each scenario for each participant. Analyses were conducted on the 

hearing utility values. A brief demographic questionnaire gathered information concerning each 

participant’s age, gender, experience of personal hearing loss, family hearing loss, working with 

hearing loss, own disabilities, and family disabilities. 

8.2.2 Analyses 

All analyses were conducted with IBM SPSS Statistics 21.  Mauchly’s test was used to assess 

sphericity, if the assumption of sphericity was violated, the degrees of freedom were corrected 

using a Huynh-Feldt correction. All pairwise comparisons reported are Bonferroni corrected. 

Missing data and zero traders 

A small minority of responses were missing (6 missing values for the 50-year condition and 9 

missing values for the 10-year condition). These were imputed based on the available data as: 

𝑀𝑖𝑠𝑠𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒 =  
(𝑆 𝑥 𝑃)

𝐺
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Where S is the average utility value for the scenario as judged by the other participants in the 

group, P is the average utility value for all scenarios by the participant who has a missing value 

and G is the grand mean of utility values by scenario and participants (Raaijmakers, 1999). 

 

The majority of respondents were willing to trade quantity of life to have perfect hearing (see 

Table 8.3). Twenty-eight participants were unwilling to trade years of life in any of the scenarios. 

No significant difference was found between the number of people (24) who were unwilling to 

trade life years in the 50-year condition and the number of people unwilling to trade life years in 

the 10-year condition (4) (p=.055, Fisher’s exact test). 

 

The proportion of non-traders between the three groups (students, non-students, and clinicians) 

was significantly different (p<.001, Fisher’s exact test). Subsequent 2 x 2 post-hoc analyses with a 

Bonferroni correction were conducted to investigate this difference. It was found that the 

proportion of non-traders was significantly smaller in the student group than the non-student 

group (χ2= 15.971, p<.001) and the clinician group (p<.001, Fisher’s exact test). No significant 

difference between the proportion of non-traders in the non-student and clinician groups was 

found (χ2= 1.264, p=.1.00). All participants, including zero-traders were included in the 

subsequent analyses. 

 

Table 8.3. Proportion of zero-traders by the three participant groups. 

Group Number of participants Number of zero-traders 

Student 154 1 

Non-student 156 18 

Clinician 51 9 

 

8.2.3 Results 

A 3 (speech in noise) x 3 (localisation) x 3 (effort and fatigue) x 2 (method) mixed ANOVA was 

conducted. 

Hearing utility 

Figure 8.1 shows the mean hearing utility value for each of the 27 scenarios as valued by the 50-

year condition and the 10-year condition. 
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Figure 8.1. Mean hearing utility valuations for the 27 scenarios by the 50-year condition (left) and the 10-year condition (right). 
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Effect of the time-trade off method used 

A significant main effect of method was found (F(1,359) = 121.232, p<.001, Ƞp
2 = .481) with 

participants in the 10-year condition willing to trade proportionately more life years (mean utility 

across scenarios: .787, SD = .14) than those in the 50-year condition (mean utility across scenarios 

= .917, SD = .08). A significant speech in noise x localisation x method interaction was found 

(F(3.801, 3.743) = 5.711, p<.001, Ƞp
2 =.016) and a significant localisation x effort and fatigue x 

method interaction was found (F(3.851, 1382.358) = 5.946, p<.001, Ƞp
2=.016).  These interactions 

were investigated further by evaluating the simple effects of method separately for each 

combination of localisation and (either) speech in noise and effort and fatigue. The simple effect 

of method was found for each combination of the other levels (all p<.001). However, as can be 

seen from Figure 8.2 the difference between the two methods increased as difficulty on the 

dimensions increased. When there was no difficulty with localisation, the mean difference 

between the two methods varied between 0.53 and .145 depending upon the level of difficulty on 

the other levels. However, when there was great difficulty with localisation, the difference 

between the two methods was greater (between .129 and .195).
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Figure 8.2. Mean utility values for both method conditions at each level of the three dimensions. Purple line indicates 50-year condition and orange line indicates 10-year condition.
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Are there systematic differences in hearing utility values between scenarios? 

Significant main effects were found for each dimension (speech in noise: F(1.501, 539.029) = 

262.076, Ƞp
2 =.422, localisation: F(1.335, 479.434) = 338.260, Ƞp

2 =.485, effort and fatigue: 

F(1.323, 475.028) = 402.464, Ƞp
2 =.529, all p<.001). Pairwise comparisons demonstrated that 

utility values decreased significantly as difficulty on each dimension increased (all p<.001).  A 

significant speech in noise x localisation x effort interaction was also found (F(6.880, 2469.954) = 

2.896, p=.005, Ƞp
2 =.008). This interaction was investigated further by evaluating the simple 

effects of each dimension at each combination of the other dimensions. Significant simple effects 

were found for all combinations of levels (all p<.001) and pairwise comparisons demonstrated 

that utility values decreased significantly as difficulty on each dimension increased (all p<.01). 

However, the difference between the levels varied depending upon the difficulty of the other two 

levels. For example, Figure 8.3 shows the interaction between speech in noise and effort and 

fatigue at each level of localisation. As difficulty in localisation increased, utility values decreased. 

When there was ‘no difficulty’ with localisation, utility values at each level  of effort and fatigue, 

decreased more sharply between ‘no difficulty’ and ‘some difficulty’ than they did between ‘some 

difficulty’ and ‘great difficulty’. As localisation difficulty increases however, this effect becomes 

less pronounced and starts to go in the opposite direction when localisation difficulty is great. 
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Figure 8.3. Mean hearing utility values for each level of speech in noise and each level of effort and fatigue (blue line = 'No difficulty', green line = 'Some difficulty',  

red line = 'Great difficulty') at each level of localisation (left = 'No difficulty’, middle = ‘Some difficulty’, right = ‘Great difficulty’). 

M
ea

n
 h

ea
ri

n
g 

u
ti

lit
y 

Difficulty with speech in noise 

None Some Great 

No difficulty with localisation 

None Some Great 

Some difficulty with localisation 

None Some Great 

Great difficulty with localisation 



Chapter 8  Hearing-related quality of life 
 

220 
 

Importance of each dimension 

Average differences between no difficulty and great difficulty were calculated for each of the 

three dimensions (average of the nine scenarios with no difficulty minus the average of the nine 

scenarios with great difficulty) for both time-trade off methods. This created two ‘dimension 

difference’ values (one for each time-trade off method) which are displayed in Table 8.4. A 3 

(dimension) x 2 (method) mixed ANOVA was conducted. A significant main effect of dimension 

was found (F(1.695, 608.425) = 51.804, p<.001). Pairwise comparisons demonstrated that the 

effort and fatigue dimension difference value was significantly larger than the localisation and 

speech in noise dimension difference values (both p<.001).  In addition, the localisation dimension 

difference value was significantly larger than the speech in noise dimension difference value 

(p<.001). A main effect of method was found with the dimension difference scores being 

significantly higher in the 10-year valuation group (F(1,359) = 94.505, p<.001). A significant 

dimension x method interaction was also found (F(1.695, 608.425) = 13.184, p<.001). A simple 

effects analysis of this interaction, demonstrated that in the 50-year condition there was no 

significant difference between dimension difference scores for speech in noise and localisation 

(p=.558) but there were significant differences between speech in noise and effort and fatigue 

(p<.001) and localisation and effort and fatigue (p=.006). For the 10-year valuation group there 

were significant differences between all dimensions (p<.001). 

 

Table 8.4. Mean dimension difference scores for both method conditions. SE in parentheses. 

 Speech in noise Localisation Effort and fatigue 

50-year condition .040 (.004) .045 (.004) .061 (.005) 

10-year condition .075 (.005) .108 (.006) .140 (.008) 

 

Influence of demographic variables 

40.2% of participants indicated that they had worked with people who had a hearing loss. An 

independent samples t-test showed that average valuations were significantly higher amongst 

those who had worked with individuals with hearing loss (M=.91, SD = .10) than those who had 

not worked with individuals with hearing loss (M=.86, SD = .13, t(353.156 = 3.957, p<.001). Just 

under half of the sample (47.1%) indicated that some members of their close family had a hearing 

loss but only 8.6% indicated that they had a hearing loss themselves. No significant differences 

between these groups were found. A Kendall’s tau correlation demonstrated that age was 

significantly positively correlated with average hearing utility values (τ = .274, p<.001).   
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A multiple linear regression analysis on the average hearing utility with the enter method found 

that method and age explained 31.3% of the variance in willingness to trade. The method 

significantly predicted willingness to trade as did age. However, when working with hearing loss 

was added, the model was not significantly improved (R2 change = .006, see Table 8.6). 

 

Age weighting 

As age was found to significantly predict willingness to trade, in order to appropriately represent 

the responses across ages, the valuations for the combinations of difficulties were age weighted 

using UK population estimates from the Office for National Statistics (2013). Age-weighted 

valuations for the 27 scenarios from both groups are shown in Figure 8.4.
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Table 8.5. Summary of regression analysis for variables predicting willingness to trade (N=361). *** indicates p<.001. 

 

Predictor Model 1 Model 2 Model 3 

 B SE β B SE β B SE β 

Method .003 .00 .502 .003 .00 .464 .003 .00 .454 

Age    .002 .00 .258 .002 .00 .241 

Worked with hearing loss       .019 .01 .078 

R2 .250 .313 .317 

F change 121.218*** 34.016*** 3.019 
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Figure 8.4. Age weighted hearing utility valuations for the 27 scenarios by the 50-year condition (left) and the 10-year condition (right). 
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8.2.4 Discussion 

Systematic differences 

There were systematic differences in the number of years traded for the different scenarios. 

Consistent with Summerfield et al. (2002; 2010) as difficulties increased in severity, participants 

were willing to trade more years of life to relieve the difficulties. This result confirms that 

participants understood the task for both methods. Some participants were willing to trade years 

of life in the condition where no difficulties were described (as can be seen from the mean utility 

values being less than 1 in Figure 8.4). This is likely to be due to the wording used in the scenarios 

(see Table 8.2). In the ‘no difficulty’ description of effort and fatigue the description mentioned 

that ‘you have to concentrate a little’ and in the speech in noise dimension the description was 

‘usually picking up all of the words’. The wording of the descriptions for this scenario were chosen 

to be closely matched to everyday listening by normal hearing listeners, however it is possible 

that participants perceived perfect hearing to be better than this; not needing to concentrate at 

all and picking up all the words said and were therefore prepared to trade years of life to achieve 

this level of performance. 

Importance of dimensions 

Effort and fatigue was found to be the most important dimension with participants willing to 

trade more years of life to relieve difficulties on this dimension than on either of the other two 

dimensions. There are three possible explanations for this result. (1) Effort and fatigue may be 

considered to be more important due to familiarity with difficulties in this dimension. Responses 

to the demographic questionnaire indicated that the majority of participants had no difficulties 

with their own hearing therefore for many, they may not have had much experience with 

difficulty localising sound sources or understanding speech in the presence of background noise. 

Effort and fatigue on the other hand encompasses many aspects of life which participants are 

likely to have experienced. As a result participants may be more able to appreciate difficulties in 

this dimension over the other dimensions and therefore more willing to trade years of life to 

relieve difficulties. (2) Effort and fatigue may be considered to be the most important dimension 

due to an additive effect. Although consideration was made to keep the three dimensions 

separate from each other, the description of effort and fatigue may have overlapped with the 

other two dimensions. For example  ‘You have to put in some effort to hear what people are 

saying’ may have combined with the speech in noise dimension. (3) Effort may be considered to 

be the most important dimension due to the position in the questionnaire. A limitation of the 

current study was that the three descriptions for each scenario were viewed in the same order: 
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speech in noise, localisation, and effort and fatigue. It may be that participants placed more 

weight on the latter simply because it was the most recent description before they answered. 

 

The majority of research investigating the benefits of binaural hearing has focused on listening 

performance and self-rated listening ability, with less emphasis on the cognitive demands that are 

associated with monaural hearing, such as increases in effort and fatigue (see Noble, 2006; and 

Sammeth et al., 2011 for reviews). However, it may be that the reduction in cognitive demands 

from binaural hearing has a greater impact on quality of life than has previously been considered. 

Neither the HUI3 nor the EQ5D include direct questions on effort and fatigue. Thus the YHRQL 

enables a test of this hypothesis. If reductions in effort and fatigue are valued as being more 

important than listening ability the YHRQL offers a way to measure the impact of this on hearing 

related quality of life. 

Effect of the time-trade off method used 

No evidence of constant proportional trade-off was found. Two different versions of the time-

trade-off method were used: One group of respondents were asked to imagine that they were 30 

years old and had 50 years to live and were instructed to indicate how many years of life they 

would give up in order to have perfect hearing. Another group of respondents were asked to 

imagine that they had 10 years of life remaining and were instructed to indicate how many years 

living with perfect hearing they thought was equivalent to living 10 years with the difficulties 

described in the scenario. Two methods were chosen as there is no consensus on what the most 

appropriate time-trade off method is (Arnesen & Trommald, 2005; Attema, Edelaar-Peeters, 

Versteegh, & Stolk, 2013). Respondents in the 10-year condition were willing to trade 

proportionately more years than respondents in the 50-year condition. There were four 

differences between the two valuation methods that could account for this difference.  

 

The first difference is the time horizon used: 10 years or 50 years.  The fact that participants were 

willing to trade proportionately more in the shorter time frame is consistent with Attema and 

Brouwer (2010) who found participants were willing to trade a higher proportion of life to be 

relieved of back pain when there were 14 years left than when there were 27 years left. However, 

this finding is not consistent with others such as Dolan and Stalmeier (2003) who found 

participants traded a greater proportion of life with a longer time horizon. Attema and Brouwer 

may have found conflicting results to Dolan and Stalmeier due to the second difference in the 

present study: differences in the way in which participants were instructed to respond. For 

instance, Attema and Brouwer asked participants to indicate how many years in full health they 

considered to be equivalent to living a fixed period of time (either 14 or 27 years) in a described 
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health state. Dolan and Stalmeier on the other hand, asked participants to state how many years 

of their remaining life (which was either 10 or 20 years) they would give up in order to have 

perfect health.  In the present study, the shorter time frame asked respondents to indicate 

equivalence (consistent with Attema & Brouwer, 2010) whereas the longer time frame asked 

respondents to give up years of life (consistent with Dolan & Stalmeier, 2003). The equivalence 

method is more conceptually demanding than simply stating the number of years one would give 

up. Thus it is unclear whether differences between the two methods arose due to the different 

time frames used or the method of responding.  

 

However, there is a third difference in that the concept of foregoing life years was not as explicit 

in the equivalence version as it was in the give up version. This could account for the fact that 

people were willing to trade proportionately more life years when using the equivalence version 

of the method. van Nooten et al. (2013) demonstrated that when the time horizon is made 

explicitly clear, individuals are less willing to trade. In the present study participants in the 50-year 

(‘give-up’) condition received instructions that were more explicit than those in the 10-year 

(‘equivalence’) condition. Instructions for the 50-year condition stated “imagine that you are 30 

years old and that you will live for 50 more years, until you are 80 years old.” (emphasis in original 

instructions, see Appendix G) whereas the 10-year condition had instructions which stated “Now 

imagine that you have 10 years left to live.” The forth difference between the valuation methods 

was the age at which the traded years would be lost. Both groups were instructed that any years 

lost would be taken from the end of their remaining life but respondents in the 50-year condition 

were trading years from 80 years old, whereas respondents in the 10-year condition were trading 

years from 10 years from their current age. No participant was over the age of 80 so no 

participant was trading years that they had already lived. One might have expected participants in 

the 50-year condition to trade more due to frailty and declining health in older age, whereas in 

10-year time horizon, participants will be likely to be fairly healthy. However, although the 

questionnaire did not make this explicit, participants may have perceived hearing loss to be part 

of older age in which they could have time to adapt, whereas in the next 10 years it would have a 

more sudden impact on their current activities and they may therefore have been more willing to 

trade years in the 10-year condition.  

 

Thus, consistent with previous research, this study has demonstrated that the time-trade-off 

method used, and the way in which it is described does influence the number of years people are 

willing to trade and therefore utility values associated with a health state. 
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Zero-traders 

A minority of respondents from each group were unwilling to trade any life years to relieve 

difficulties, with the proportion of non-traders being higher in the 50-year condition. A zero-trade 

can indicate that the participant is indifferent between the two options, does not understand the 

question, or is unwilling to trade (Arnesen & Trommald, 2004, 2005). Including zero-traders in the 

analyses can result in high utility values (as a zero trade corresponds to a hearing utility value of 

1). However, excluding zero-traders can have the opposite effect and indicate a lower utility value 

than may be the case. There is no consensus in the literature as to whether non-traders should be 

included or excluded from analyses (Arnesen & Trommald, 2005). 

 

This study sought to establish whether the dimensions in which binaural hearing can provide 

benefit matter to informants. It was possible that these dimensions would not be valued as 

important and therefore informants would have declined to trade life years to alleviate difficulties 

with some or all of the dimensions. Hence, excluding zero-traders would bias the analyses in 

favour of the hypothesis that binaural hearing results in gains of quality of life rather than there 

being no difference. Therefore both traders and zero-traders were included in the analyses in this 

study. No difference was found between the proportion of non-traders in the 50-year and 10-year 

conditions which demonstrate that the difference in utility values between the two time-trade-off 

methods was not due to a difference in the proportion of zero-traders. 

 

The student group of respondents had proportionately fewer traders than the non-student and 

clinician groups. Students are likely to be more familiar with research participation and therefore 

more likely to engage. Furthermore, they were younger than the other two groups (see Table 

8.1). Previous research has demonstrated that younger respondents are more willing to trade 

years of life than older respondents (e.g. van Nooten et al., 2009, 2013). 

Influence of demographic variables 

Those informants who had worked with people with hearing loss were less willing to trade than 

those informants who had not worked with people with hearing loss. It may be that these 

individuals are more familiar with the difficulties faced by hearing impaired individuals and the 

options available to them and therefore do not view the difficulties as being as impactful on daily 

life as those who have not worked with hearing loss. However, a regression analysis indicated that 

experience working with hearing loss did not significantly explain more variance over method and 

age. It was found that older adults were willing to trade fewer years than younger adults which is 

consistent with previous research (e.g. van Nooten et al., 2009, 2013). A larger, more 

representative sample of respondents would improve the valuations of utility. Age weighting 
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using the most up to date population statistics available served to appropriately represent 

valuations from all ages. It is these values that were used in Study 2. 

 

8.3 Study 2: Questionnaire validation 

It is important to assess the validity of new instruments by determining whether they are 

measuring what they intended to measure (construct validity, Cronbach & Meehl, 1955) and 

whether they are also capable of detecting differences between clinically distinct groups 

(sensitivity). This study sought to validate the YHRQL by assessing the construct validity and 

sensitivity of this questionnaire. To do this, firstly the YHRQL was administered to three groups of 

adult CI users: unilateral CI users, users of bimodal aiding, and users of bilateral CIs. The bilateral 

CI users and bimodal users completed the questionnaire twice, once considering their life if they 

only had their first (or only) CI, and again considering their life with their two devices. Utility 

values gathered from study one were assigned to each patient for each listening condition based 

on their responses. To assess the construct validity of the YHRQL, correlations were conducted 

between YHRQL utility values and scores on the SSQ and performance on listening tasks. To assess 

the sensitivity of the new questionnaire, comparisons were made between utility values for 

monaural and binaural hearing, and also between different types of binaural hearing (bimodal 

devices and bilateral CIs). 

8.3.1 Method 

Participants 

The questionnaire was mailed to 31 CI users who had participated in a previous research project 

at the University of York (see Table 5.1). Implicit consent was obtained by the returning of the 

questionnaire. 27 participants completed and returned the questionnaire. A further bilateral CI 

participant completed the questionnaire whilst taking part in another experiment being 

conducted at the University of York. All participants were adults living in the UK. Summary 

demographic data of these participants is shown in Table 8.6. The average duration for which the 

bilateral participants had used two CIs was 8.4 years (SD = 4.4). The Department of Psychology 

Ethics Committee at the University of York approved the study. 
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Table 8.6. Summary demographic data of participants. 

Group N Gender (n 

female) 

Mean age in 

years (SD) 

Years of first 

implant use 

(SD) 

Unilateral 8 1 70.6 (17.6) 10.9 (3.6) 

Bimodal 9 6 64.3 (9.4) 7.4 (3.4) 

Bilateral 11 5 64.9 (8.0) 12.4 (5.4) 

 

Materials 

A questionnaire consisting of three questions was created (see Figure 8.5). The questions asked 

participants about their everyday hearing on the three dimensions defined in study one. 

Respondents complete the questionnaire by selecting one of five descriptions. The wording of 

descriptions 1, 3 and 5 was intentionally exactly the same as that used to describe the “No 

difficulty”, “Some difficulty”, and “Great difficulty” scenarios in the first study (see Table 8.2) so 

that the wording used to elicit valuations from informants was the same as the wording that 

patients used to describe their own hearing ability. In addition to the three levels of function used 

in study one, the questionnaire contained two further levels, one between ‘No difficulty’ and 

‘Some difficulty’ (worded as “Between 1 and 3”) and one between ‘Some difficulty’ and ‘Great 

difficulty’ (worded as “Between 3 and 5”). These levels were included to allow for a greater 

sensitivity of differences to be detected. 
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Figure 8.5. YHRQL with instructions for bilateral two implant listening. Participants responded by ticking a box for 

each question next to the description that best described their hearing ability. 

 

The questionnaire was one page in length. Unilateral CI users received a single sided sheet 

whereas bimodal and bilateral CI users received a double-sided sheet. The wording of the 
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instructions differed slightly for each combination of devices. On one side the participants were 

asked to “indicate which statement best describes your own hearing when using your cochlear 

implant’ (unilateral), ‘when using your cochlear implant on its own’ (bimodal) or ‘when using 

your first cochlear implant on its own’ (bilateral). The other side contained the same questions 

but asked the participant to ‘indicate which statement best describes your own hearing when 

using your cochlear implant together with your hearing aid’ (bimodal) or ‘when using your two 

cochlear implants together’ (bilateral). 

Procedure 

Participants completed the questionnaire in their own time. One participant completed the 

questionnaire during one of the sessions of the experiments reported in Chapters 5 and 6.  The 

rest of the participants completed the questionnaire on average 2 years later. Two hearing utility 

values were assigned to each unilateral CI user using the valuations from study one (one from the 

50-year condition and the other from the 10-year condition). For the bimodal and bilateral CI 

users, four hearing utility values were assigned: two when they answered considering their own 

hearing with their first (or only) CI (one from each valuation group), and two when they answered 

considering their own hearing with both their devices (one from each valuation group). 

 

To examine the test-retest reliability of the questionnaire, 14 months after the questionnaire had 

been completed another copy of the questionnaire was sent to the 27 participants originally 

contacted by post (re-test reliability could not be assessed with the one participant who 

completed the questionnaire whilst taking part in another experiment at the University of York 

due to insufficient time passing). 25 participants returned the completed questionnaire (one 

unilateral CI user and one bimodal user did not). 

Analyses 

Utility values for intermediary states 

There were no valuations derived from study one which considered the between level responses 

(between ‘No difficulty’ and ‘Some difficulty’ and between ‘Some difficulty’ and ‘Great difficulty’). 

Therefore utility values for these responses were interpolated using the available valuations 

gathered in study one. 

 

To calculate the utility when responses included one between level response, utility values for 

responses either side of the between level were averaged. For instance, using the response 

numbers to the three questions shown in Figure 8.5, to calculate the utility value for a  121 

response (no difficulty with speech in noise, between no difficulty and some difficulty with 
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localisation, and no difficulty with effort and fatigue) the utility value of 111 and the utility value 

of 131 (.97 and .93 respectively with valuations from the 10 year condition) were averaged to 

produce the new utility value (.95). This method produced 54 between level utility values for each 

valuation method. 

 

When there were two between level responses, four utility values gathered from study one were 

averaged to produce the new utility value. These were the four utility values either side of the 

between level responses. For instance to calculate the utility value for a 122 response, utility 

values from 111 ,113, 131, and 133 (.97, .89, .93, and.87 respectively with valuations from the 10 

year condition) were averaged to produce the new utility value (.92). This method produced 36 

between level utility values for each valuation method. 

 

To calculate the utility when responses to all three questions were between the three levels, eight 

utility values were averaged. For instance to calculate the utility value for a 222 response utility 

values from 111, 113, 131, 133, 311, 313 , 331, and 333 (.97, .89, .93, .87, .92, .87, .89, and .84 

respectively with valuations from the 10 year condition) were averaged to produce the new utility 

value (.90).  This method produced 8 between level utility values for each valuation method. 

Appendix H contains a full table of utility values for both the 50-year and 10-year valuations. 

 

All of the following analyses were conducted with IBM SPSS Statistics 21.  

Monaural listening 

This study asked bimodal and bilateral participants to complete the YHRQL considering their life if 

they only had their first (or only) CI. There is a risk that these responses will be biased to report 

greater difficulty with one CI than is actually the case due to being unfamiliar to listening with just 

one CI. To check that this was not the case a between subjects ANOVA was conducted between 

the three groups when considering their hearing with their first (or only) CI. 

Construct validity 

Participants had previously completed the SSQ and a battery of listening tests on average two 

years earlier (see Chapters 5 and 6). The listening test battery contained a variety of tests. Of 

interest to the present study were the results of tests of sound localisation and speech perception 

in the presence of one, six or twelve other talkers. These tests were most closely related to the 

dimensions included in the YHRQL. Correlations between participants’ hearing utility values and 

participants’ scores on the SSQ and between participants’ hearing utility values and participants’ 

performance on the listening tasks were calculated to assess the construct validity of the 

questionnaire. Participants had previously completed the HUI3 and EQ5D questionnaires (see 
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Chapter 6). To enable comparisons with the new questionnaire, correlations were also conducted 

between the health utilities measured with the HUI3 and EQ5D with SSQ scores and performance 

on listening tasks. . All correlations were calculated on scores obtained from participants when 

considering their experience in their normal configuration (two CIs for bilateral CI users, one CI 

and a contralateral acoustic hearing aid for bimodal users and one CI for unilateral CI users). 

Sensitivity 

To assess whether the YHRQL could distinguish between clinically distinct groups a Wilcoxon 

signed rank test was conducted to examine the difference in hearing related quality of life 

between using one device and two devices. In addition, a Mann Whitney U test was conducted to 

test for differences in the benefit from a second device between the bimodal and bilateral groups. 

Reliability 

To examine the test-retest reliability of the YHRQL, Pearson correlations were calculated between 

utility values obtained from the initial completion of the questionnaire and utility values obtained 

from the completion of the questionnaire 14 months later. 

8.3.2 Results 

Monaural listening 

A between-subjects ANOVA found no significant main effect of group using utility values from the 

10-year valuations (F(2,25) = .721, p=.496) or the 50-year valuations (F(2,25) = .794, p=.463). 

Construct validity 

Relationship to SSQ scores 

Correlations are shown in Table 8.7. Strong positive correlations between SSQ scores and hearing 

utility values obtained from the YHRQL using the two different valuations were found. Health 

utility scores measured by the EQ5D and HUI3 did not distribute normally so Kendall’s tau 

correlations were calculated. No relationship was found between SSQ scores and the health utility 

values from the EQ5D. Moderate positive correlations were found between SSQ scores (with the 

exception of the spatial section) and the health utility values from the HUI3.  
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Table 8.7. Pearson's product moment (or Kendall's tau) correlation coefficients between measures of utility (YHRQL, 

10-year valuations and 50-year valuations; EQ5D;HUI3) and SSQ scores. 

Measure SSQ average SSQ speech SSQ spatial SSQ qualities 

YHRQL (10-year 
valuations) 

 
.660*** .627*** .652*** .552** 

YHRQL (50-year 
valuations) 

 
.644*** .609*** .632*** .546** 

 
EQ5D 

 
.214† .192† .243† .195† 

 
HUI3 

 
.390†** .391†** .344†* .366†* 

*p<.05, **p<.01, ***p<.001. Bonferroni corrected, †Non-parametric Kendall’s tau correlation 

coefficient. 

Relationship to listening performance 

Scores on the listening measures did not distribute normally so Kendall’s tau correlations were 

calculated. The results of these correlations are shown in Table 8.8.  Moderate to strong positive 

correlations were found between hearing utility values on the YHRQL and localisation 

performance. No other significant relationships were found.



 

 

2
3

5
 

C
h

ap
te

r 8
 

 
 

 
 

 
 

H
earin

g-related
 q

u
ality o

f life
 

Table 8.8. Kendall's tau correlation coefficients calculated between measures of utility (YHRQL, 10-year valuations and 50-year valuations; EQ5D; HUI3) and measures  

of listening performance. 

 Localisation 
 

Speech perception 
 

 3 alternative 
(60 degree 
separation) 

5 alternative 
(30 degree 
separation) 

5 alternative 
(15 degree 
separation) 

One 
competing 

talker 

Seven 
competing 

talkers 

Twelve 
competing 

talkers 

YHRQL (10-
year 

valuations) 
 

.479** .457** .384* .158 .302 .337 

YHRQL (50-
year 

valuations) 
 

.499** .456** .374* .179 .323 .353 

 
EQ5D 

 

.107 .230 .129 -.112 -.013 -.036 

 
HUI3 

 

.265 .318 .156 -.011 .215 .081 

*p<.05, **p<.01 (Bonferroni corrected) 
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Sensitivity 

Monaural Vs. Binaural listening 

Differences in utility from monaural to binaural listening derived from the YHRQL, EQ5D and HUI3 

were not normally distributed. Median utility values for the three questionnaires for both 

monaural and binaural listening are displayed in Figure 8.6. Wilcoxon signed ranks tests 

demonstrated that with the YHRQL, the population mean rank was significantly higher with 

binaural devices than monaural devices when using both valuations (both Z = -3.622, p<.001). No 

significant difference was found between utility values in binaural and monaural listening with the 

EQ5D (Z = -1.219, p=.223).  With the HUI3 the population mean rank was higher in the binaural 

condition than the monaural condition at the level of significance (Z=-1.963, p=.050). 

 

Figure 8.6. Median utility values for monaural (yellow) and binaural (red) listening measured by the YHRQL, EQ5D, 

and HUI3. Asterisks indicate significant differences (* p<.05, *** p<.001). 

Gain from bimodal and bilateral CI listening 

Mann-Whitney U tests showed that the benefit in hearing utility obtained from listening with a 

second device was significantly higher for the bilateral CI users (10 year: median = .09, IQR = .10, 

50 year: median = .05, IQR = .06) than the bimodal listeners (10 year: median = .01, IQR = .03, 50 

year: median = .01, IQR = .02) when using the YHRQL for both the 10-year (U = 11.00, Z = -2.932, 

p=.003) and 50-year (U = 12.50, Z =-2.818, p=.005) valuations. Benefits in utility using the EQ5D 

and HUI3 from a contralateral acoustic hearing aid compared to a second CI were compared in 

Chapter 6 which showed a non-significant difference in the amount of benefit received (see Table 

6.8). 

Cost-effectiveness of bilateral cochlear implantation 

Table 8.10 shows that when using the YHRQL and HUI3, the mean gain in utility from bilateral 

cochlear implantation compared to unilateral cochlear implantation is at or above the threshold 
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of .05 as defined by Bond et al. (2009) as being required in order for bilateral cochlear 

implantation to be considered cost effective. When compared to bimodal aiding, the gain in utility 

is below this threshold with all measures. 

Reliability 

Correlations were calculated on data from the 25 participants who completed the questionnaire 

at both time points. Strong positive correlations were found between the utility values measured 

at the two time points when using both the 50-year (r = .822, p<.001) and 10-year (r = .794, 

p<.001) valuations. 
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Table 8.9. Mean gain in utility from bilateral cochlear implantation compared to unilateral cochlear implantation and bimodal aiding. d = Cohen’s d 

Measure of utility Bilateral CI users 
listening with one 
CI (SD) 

Bimodal users 
listening with both 
devices (SD) 

Bilateral CI users 
listening with both 
CIs (SD) 

Bilateral gain from unilateral 
CI use (95% CI) 

Bilateral gain from bimodal 
devices (95% CI) 

YHRQL (10 year) .814 (.052) .857 (.060) .903 (.035) .090 (.054 to .125), d = .43 .046 (.007 to .091)†, d=.39 
YHRQL (50 year) .910 (.029) .935 (.034) .960 (.018) .050 (.030 to .071), d = .33 .024 (.002 to.048) †,  d= .27 
EQ5D .913 (.106) .918 (.135) .920 (.116) .007 (-.079 to .089), † d = .04 .003 (-.010 to .107) †, d=.01 

HUI3 .692 (.184) .708 (.079) .751 (.127) .058 (-.056 to .194), † d = .14 .043 (-.059 to .145), d=.13 

† Bootstrapped mean and confidence intervals calculated as the assumption of normality was not met. 
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8.3.3 Discussion 

Construct validity 

The YHRQL, containing just three questions, is not as broad in scope as other hearing specific 

questionnaires (e.g. the SSQ, CCIQ, NCIQ, and the Spatial Listening Questionnaire) yet this study 

found strong positive correlations between the utility values from the YHRQL and scores on the 

SSQ. This result demonstrates that the YHRQL measures aspects of hearing that are also 

measured by the longer SSQ, thus establishing the construct validity of the YHRQL.  

 

Correlations between the SSQ and the HUI3 were less strong. This result was expected as the 

questions in both the YHRQL and the SSQ are specific to listening, whereas the HUI3 addresses 

other functional dimensions in addition to hearing. The fact that no correlations were observed 

between the EQ5D and the SSQ is not surprising, considering that the EQ5D does not contain 

questions related to hearing and listening. 

 

Unlike the HUI3 and EQ5D, there were strong relationships between localisation performance and 

hearing utility values from the YHRQL, which offers support on the construct validity of the 

questionnaire. However, even though the strength of the correlations between utility values and 

speech perception performance increased as task difficulty increased (from one to twelve 

competing talkers), the relationships did not survive Bonferroni correction. However significant 

differences in hearing utility values were found between clinically distinct groups, adding further 

support for the construct validity of this questionnaire. 

 

Sensitivity 

Using the YHRQL no differences were found between the three groups when considering life with 

their first (or only) CI. As utility values were not at ceiling with one CI this measure had the 

availability to measure improvements from a second device. Using the YHRQL, significant benefits 

in hearing-related quality of life were observed from binaural listening compared to monaural 

listening. Furthermore, the YHRQL was able to detect differences between the benefits obtained 

by two types of binaural listening (bilateral CIs and bimodal devices) with a greater benefit found 

from a second CI. Consistent with previous research (Barton et al., 2005; Grutters et al., 2007), the 

EQ5D was found to be insensitive to differences in hearing, with the median utility value being at 

ceiling for both monaural and binaural listening. This reflects the limitations of this instrument in 

that it does not have any questions related to hearing, listening, or speech understanding. 

However, the HUI3, which does contain questions on these domains, was only just able to detect 
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differences between monaural and binaural hearing but as was reported in Chapter 6, it was not 

able to detect differences between types of binaural hearing. This finding is in line with previous 

research (Longworth et al., 2014; Yang et al., 2013), which has demonstrated that the HUI3 is 

somewhat sensitive to detecting differences between groups differing in their hearing ability but 

isn’t always able to detect differences (Summerfield et al., 2006). As one of the more established 

advantages from bilateral implantation over bimodal aiding is improved spatial listening ability 

(see Chapters 2 and 5), the fact that the HUI3 does not contain any questions related to spatial 

listening could account for this limited sensitivity to differences. 

Reliability 

It was demonstrated that the YHRQL performs well over time, with a strong test re-test reliability. 

Implications 

This study has demonstrated that the EQ5D is limited in scope and is insensitive for assessing the 

benefits of binaural over monaural hearing despite the substantial behavioural (Carroll et al., 

2011; Kerber & Seeber, 2012; Schafer et al., 2011; Zhang et al., 2010) and self-reported (Flynn & 

Schmidtke, 2004; Noble & Gatehouse, 2006; Noble et al., 2008b) benefits that can arise as a result 

of listening with two ears compared to one. When using the YHRQL questionnaire, greater 

hearing related quality of life was found from binaural listening compared to monaural listening.  

Furthermore, when comparing bilateral cochlear implantation to unilateral cochlear implantation 

a small to medium effect size was found, compared to a small effect size with the HUI3. This has 

important implications for policy makers determining the allocation of funding resources. 

Currently generic instruments are used to measure the effectiveness component in cost-effective 

analyses. If they are not able to detect the benefits which binaural devices provide, then the 

incremental cost-effectiveness ratio of binaural treatments (such as a second CI) is likely to be 

much higher than current willingness to pay thresholds and therefore treatments are likely to be 

deemed not cost-effective (see Chapter 4). 

 

This study has developed an instrument that is sensitive to differences between monaural and 

binaural listening and results in a utility score that can be used in the same manner as current 

generic quality of life instruments to determine the effectiveness of a treatment. It is 

recommended that this questionnaire is administered alongside existing instruments such as the 

HUI3 and EQ5D when assessing treatments for hearing impairment. An effective treatment should 

result in an increase in utility on the YHRQL but no detriment on the other generic instruments 

that measure other aspects of health-related quality of life. 
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Cost-effectiveness 

It was not the primary aim of the current study to assess the cost-effectiveness of a second device 

for UK adult users of a single CI. However, the present study does suggest that a second device 

has the potential to be cost-effective. The mean gain in utility of a second CI compared to one CI 

was .090 (using valuations from the 10-year condition) and .050 (using valuations from the 50-

year condition). In a threshold analysis Bond et al. (2009) determined that in order for a second CI 

to be cost-effective at the current willingness-to-pay threshold of £30,000, the gain in utility 

would need be at least about .05. Bond et al. made their estimations on the basis of comparing a 

second CI to individuals already using a single CI. If an individual who currently uses a single CI has 

sufficient residual hearing remaining it could be argued that the next best alternative to two CIs is 

bimodal devices. The current study found that the mean gain in utility from a second CI compared 

to bimodal aiding was .046 (10-year condition) and .024 (50-year condition). Using Bond et al’s 

estimates, this suggests that bilateral cochlear implantation would not be considered cost-

effective compared to bimodal aiding.  

 

However, it is important to note that the utility values in this study were obtained from a small 

self-selecting sample of relatively successful adult CI users (see Chapter 5 for listening 

performance data).  Given how large a sample would be required for a randomised control trial 

(see Chapter 4), a useful avenue for future research would be to conduct a prospective study in 

which estimates of the gain in hearing utility from a second device are obtained from a more 

representative CI sample than that used in the present study. Adults with a unilateral CI who are 

opting for a second CI or a contralateral acoustic hearing aid, could complete the YHRQL 

questionnaire before receiving the second device, and then again after they have received the 

device. If time permitted, the questionnaire could be completed twice before the intervention, 

separated by three months, to check for any learning effects, and again twice after the 

intervention to assess if any differences in hearing utility arise only after a prolonged period of 

use with the second device. 

 

8.4 Conclusion 

Evident from this study is that although widely used in health economic decisions, the EQ5D is 

insufficient for detecting differences between types of hearing. The creation of the YHRQL, a 

questionnaire that is sensitive to different degrees of hearing, will enable differences in hearing-

related quality of life to be measured and used in cost-effectiveness analyses. A limitation of the 

study is the small sample used. However, the results from this study demonstrate the potential 
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for a larger scale study in which a population-representative sample is used to provide the 

valuations and a larger number of CI users complete the questionnaire. 

8.5 Summary 

• A short questionnaire (the YHRQL), sensitive to the benefits of binaural hearing was 

developed to assess ‘hearing-related’ quality of life. 

• Adult respondents used two different versions of the time-trade off technique to evaluate 

27 health states that varied in their listening ability. 

• Participants were willing to trade years of life to relieve hearing difficulties. There was an 

effect of the time trade off method used, with respondents willing to trade 

proportionately more in the 10-year time horizon than the 50-year time horizon. 

• The YHRQL was administered to a group of 27 CI users to assess the construct validity and 

sensitivity of the YHRQL. 

• Strong correlations between hearing utility measured on the YHRQL and scores on the 

SSQ established the construct validity of the questionnaire.
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9 Summary and general discussion 

This chapter summarises the findings from the experiments reported in this thesis.  

Recommendations for clinical practice on the basis of these findings are suggested and options for 

future research are proposed. 

9.1 Recap of research aims 

The experiments reported in this thesis sought to establish the benefits (and potential drawbacks) 

to users of a single CI of aiding their non-implanted ear by using either a second CI (bilateral 

cochlear implantation) or an acoustic hearing aid (bimodal aiding). One aim was to establish the 

clinical effectiveness of a second device. This was achieved by assessing the performance of 

patients on a range of listening tasks. Performance with a unilateral CI was compared to 

performance with bimodal aiding and with bilateral CIs. Self-reported listening ability and quality 

of life with a second device were also compared with ratings obtained when participants used a 

unilateral CI. Another aim was to compare the clinical effectiveness between bilateral cochlear 

implantation and bimodal aiding to determine which option offers profoundly-deafened UK CI 

users the greater clinical benefit. These two aims were addressed in experiments reported in 

Chapters 5 and 6. 

 

A second series of experiments focused on head movements as an example of a behaviour that 

could be employed by CI users, potentially, to gain more benefit from their devices. The aim was 

to investigate whether head movements could help listeners to improve localisation accuracy and 

reduce listening effort.  A speech-in-noise task was also used to ascertain whether participants 

adopt optimal head-orientation strategies in difficult listening environments. These aims were 

investigated in a series of experiments reported in Chapter 7. 

 

Finally, this thesis reported a preliminary assessment of the cost-effectiveness of providing a 

second device. The first aim was to compare the cost-effectiveness of a second device (either a 

contralateral acoustic hearing aid or a second cochlear implant) to unilateral cochlear 

implantation. The second aim was to compare the cost-effectiveness of bilateral cochlear 

implantation to bimodal aiding. Noting the insensitivity of existing self-report instruments for 

valuing hearing difficulties, a new self-report instrument was developed and validated; the new 

instrument was designed to be sensitive to differences in hearing ability whilst being short 

enough to be completed alongside existing instruments. These aims were investigated in an 

experiment reported in Chapter 8 and an analysis reported in Appendix C. 
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9.2 Summary of findings 

9.2.1 Main findings from the study reported in chapter 5 

 Compared to unilateral cochlear implantation, listening with bilateral CIs resulted in 

significantly better sound localisation, and some advantage for speech in noise and 

speech in speech tasks. However, no significant benefit was found for pitch-related tasks. 

 Compared to unilateral cochlear implantation, limited benefit in listening ability was 

obtained from bimodal aiding. Listeners were able to localise more accurately with 

bimodal aiding, but no benefit on speech tasks or pitch-related tasks was found.  

 Bilateral cochlear implantation was more clinically effective than bimodal aiding, with 

greater benefit in localising sound sources and perceiving speech in the presence of 

spatially separated noise. 

9.2.2 Main findings from the study reported in chapter 6 

 Self-reported listening ability was significantly greater with a second device than a single 

cochlear implant. Bilateral CI users reported a greater benefit in self-reported listening 

ability than bimodal users. 

 Generic health-related quality of life instruments (EQ5D and HUI3) showed no differences 

between unilateral cochlear implantation and a second device. Furthermore, no 

differences in health-related quality of life were found between types of binaural hearing: 

bimodal aiding and bilateral cochlear implantation. As has been demonstrated in Chapters 

5 and 6, users of unilateral, bimodal, and bilateral CI users perform differently on listening 

tasks and self-rated listening ability. These results highlight the limited sensitivity of 

existing generic health-related quality of life instruments to differences in hearing ability. 

 When overall quality of life was assessed with the YorQol, significantly greater quality of 

life was obtained from a second device compared to unilateral cochlear implantation. 

However, no difference was found between bimodal aiding and bilateral cochlear 

implantation. 

9.2.3 Main findings from the experiments reported in chapter 7 

 When orienting to a sound source in the frontal horizontal plane, bilateral CI users were 

less accurate than NH listeners when the stimulus duration was limited to 1.3s. However, 

when a continuous stimulus was used, bilateral CI users were as accurate as NH listeners. 

Despite similar accuracy, bilateral CI users made more complex head movements than NH 

listeners. Unilateral CI users made more complex head movements when a continuous 

stimulus was presented but this did not improve their performance. 
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 When locating sources in the front and rear horizontal planes, bilateral CI users benefited 

from head movements when the stimulus was greater than five seconds in duration as 

front-back confusions were reduced. Both bilateral CI users and unilateral CI users made 

complex head trajectories compared to NH listeners, however unilateral performance 

remained poor even when head movements were permitted. 

 When listening to speech in the presence of background noise, listeners oriented their 

heads differently depending upon the location of the speech. They did not orient 

differently depending upon the location of the noise. Individuals who optimized their 

head position did not perform better than those who did not. 

9.2.4 Main findings from the study reported in chapter 8 

 The time-trade-off technique was used to elicit valuations from NH adults to descriptions 

of 27 health states that varied in the extent of listening difficulties described. Participants 

were willing to trade years of life to relieve hearing difficulties. Two time-trade-off 

methods were used and the study found that the proportion of years respondents were 

willing to trade differed by method, with respondents willing to trade proportionally more 

years when a shorter time horizon (10 years) was used compared to when a longer time 

horizon (50 years) was used. 

 A new questionnaire (the YHRQL questionnaire) was developed to measure hearing-

related quality of life. Questions related to speech perception, localisation, and effort and 

fatigue. The questionnaire was completed by a group of CI users. Strong correlations were 

found between utility values measured with the YHRQL questionnaire and self-rated 

listening ability using the SSQ, establishing the construct validity of the questionnaire. 

 The EQ5D was found to be insensitive to differences in hearing ability and using this 

instrument a second device would not be deemed cost-effective. The HUI3 is somewhat 

sensitive to differences in hearing difficulty and using this instrument the gain in utility 

was just large enough to mean that bilateral cochlear implantation could be considered 

cost effective. The YHRQL is sensitive to differences between types of hearing and when 

using this instrument both bimodal aiding and bilateral cochlear implantation would be 

deemed cost-effective interventions. 
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9.3 General discussion 

9.3.1 Clinical-effectiveness of a second device 

9.3.1.1 Bimodal aiding versus unilateral cochlear implantation 

Previous research has shown mixed results on the clinical effectiveness of bimodal aiding (see 

Chapter 2). The experiment reported in Chapter 5 compared bimodal aiding to unilateral cochlear 

implantation on a wide range of listening skills to assess if bimodal aiding is a clinically effective 

intervention. No previous study had compared bimodal aiding to unilateral cochlear implantation 

within the same adult participants on as many varied listening measures. Some benefits of 

bimodal aiding were found. Listening with bimodal devices resulted in significantly better spatial 

listening performance than listening with a single CI alone. This effect arose despite a 

conservative Bonferroni correction for multiple comparisons. However, at least for the 

profoundly-hearing impaired adults tested, bimodal aiding did not improve speech perception 

ability or performance on pitch-related tasks. However, it is important to note that bimodal aiding 

did not hinder performance either, despite listeners using two different devices with different 

processing times and different mappings of frequency to place in the cochleae. 

 

Despite no benefit in listening ability for speech perception and pitch-related tasks measured in 

the laboratory, listeners did report that they experienced better speech perception, spatial 

listening and qualities of listening abilities in a self-completed questionnaire. These results 

demonstrate that listeners may obtain benefits from their contralateral hearing aid that were not 

measured (or not able to be measured) in the listening tests administered in the study reported in 

Chapter 5. 

9.3.1.2 Bilateral cochlear implantation versus unilateral cochlear implantation 

Consistent with previous research discussed in Chapter 2, greater spatial listening ability with 

bilateral CIs than a unilateral CI was found (see Chapters 5 and 7). Unlike bimodal aiding, bilateral 

cochlear implantation provided significant gains to speech perception in the presence of spatially 

separated noise, and spatially separated talkers compared to a single CI. However, listeners did 

not benefit from a second CI on pitch-related tasks, highlighting the limitations of CIs in conveying 

pitch cues. Nevertheless, significantly greater self-reported listening ability in speech perception, 

spatial listening, and qualities of listening was found for bilateral cochlear implantation compared 

to unilateral cochlear implantation. 

 

Localisation ability was assessed in Chapters 5 and 7. To enable comparisons between studies, 

RMS error was calculated and is presented in Table 9.1. Higher RMS errors were found in the 
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experiment reported in Section 7.2 than the other experiments for both bilateral CI and unilateral 

CI groups. This is likely due to the experiment reported in Section 7.2 having more possible 

locations (11 compared to 5) over a wider range in azimuth (±75° compared to ±30°). For instance 

if a participant knows that a sound is being presented from their left hand side but not where on 

the left they have a one-in-two chance of getting it right in experiment 1 (as they will indicate that 

the sound was presented from -30° or -15°). Thus if they are wrong they will have an error of 15° 

for that trial. However, with 11 possible locations (as in experiment 3), if the participant knows 

that the sound is on the left but not where on the left they have a one-in-five chance of 

identifying the location correctly. In this experiment the error can be as large as 60° for a trial 

when the participant indicates the sound came from -75° when in fact it was presented from -15°. 

This could account for the higher RMS error in experiment 3. 

 

Results from unilateral CI users were consistent across the experiments using 5 locations, with a 

mean RMS error of around 26°. Whereas bilateral CI users demonstrated better localisation ability 

in experiment 4 than experiment 1. The RMS error from experiment 1 for the subset of listeners 

who participated in experiments 3 and 4 was similar to the group mean (mean = 12.30°, SD = 

7.13). Therefore it was not simply that the participants who took part in the later experiments 

were better localisers. Although, both experiments 1 and 4 contained a similar number of trials, 

this difference could be due to practice and familiarity with the task. In experiment 1 the 

localisation task was one of several types of listening tasks completed. Furthermore, the task was 

always completed near the start of the session. Experiment 4 on the other hand was localisation-

specific and had 12 conditions lasting a total of about 2 hours (with breaks). Thus performance 

could have improved over time resulting in lower RMS errors in this experiment. 
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Table 9.1. Mean RMS error (°) for sources in the frontal horizontal plane separated by 15°. SD in parentheses. 

 

Number of 
locations 
(azimuth 
range) 

Mean 
length of 
stimulus 

Bilateral Unilateral 

Experiment 
1 (reported 
in Chapter 
5) 

5 (-30° to 
+30°) 

1.7 seconds 13.30 (6.02) 27.31 (4.88) 

Experiment 
3 (reported 
in Section 
7.2) 

11 5 (-75° 
to +75°) 

1.3 seconds 25.17 (11.37) 56.24 (14.62) 

11 5 (-75° 
to +75°) 

Continuous 20.63 (11.25) 47.88 (17.41) 

Experiment 
4 (reported 
in Section 
7.3) 
 

5 5 (-30° to 
+30°) 

 

Head 
movement 
not 
permitted 

Head 
movement 
permitted 

Head 
movement 
not 
permitted 

Head 
movement 
permitted 

0.8 seconds 6.23 (3.50) 8.02 (3.79) 
27.38 
(3.86) 

25.01 
(5.20) 

2.5 seconds 8.55 (4.90) 7.43 (4.21) 
25.11 
(6.04) 

24.71 
(3.87) 

Continuous 7.85 (3.29) 8.76 (2.39) 
25.92 
(5.36) 

26.25 
(4.41) 

 

9.3.1.3 Bilateral cochlear implantation versus bimodal aiding 

It is important to ascertain which option, bilateral cochlear implantation or bimodal aiding, 

provides the greater benefit in order for patients using a unilateral CI to make an informed 

decision when opting to aid their non-implanted ear. No difference in the amount of benefit 

obtained from either a contralateral acoustic hearing aid or second CI was found for pitch-related 

tasks of emotion perception and melody recognition. This result is consistent with a previous 

study (Cullington & Zeng, 2011) which compared a similar number of bimodal and bilateral 

participants on pitch-related tasks. However, the experiment reported in Chapter 5, 

demonstrated that a second CI provided a greater benefit than a contralateral hearing aid for 

listening to speech in the presence of spatially separated noise and an even greater benefit was 

found for spatial localisation tasks.  Both groups demonstrated improved self-reported ratings of 

listening ability however the bilateral CI users reported a greater benefit than bimodal users for 

spatial listening and qualities of listening. These findings suggest that bilateral cochlear 

implantation offers more clinically effective benefits than bimodal aiding. 
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9.3.2 Head movements 

9.3.2.1 Accuracy of localisation 

It is a common assumption that listeners make head movements to resolve front-back confusions 

(Plack, 2014). However, head movements did not improve overall localisation accuracy for NH 

adults. For bilateral CI users, permitting head movements improved performance when sounds 

could be presented in either the front or rear horizontal plane if the stimulus was long enough. 

With a short (0.8s) sound, head movements hindered performance. As was discussed in Section 

7.3, there may have been insufficient time to make and complete an informative head movement 

with a short stimulus. Bilateral CI users made fewer front-back errors when head movements 

were permitted if the stimulus was 5 seconds or longer in duration. Thus, head movements can 

improve localisation performance of CI users by helping to reduce the number of front-back 

confusions. 

9.3.2.2 Duration of stimulus 

The orientation experiment reported in Section 7.2 demonstrated that the duration of the 

stimulus was important for orientation accuracy but only for bilateral CI users. NH listeners were 

able to accurately orient to a short stimulus (1.3 seconds) and therefore received no additional 

benefit from a longer continuous stimulus. On the other hand, unilateral CI users were unable to 

orient accurately to a stimulus even when it was continuously repeated. With a 1.3 second 

stimulus bilateral CI users had a better orientation accuracy than unilateral CI users but 

performed significantly worse than NH listeners. However, when the stimulus duration increased 

to a continuous stimulus, performance by bilateral CI users was as good as performance by NH 

listeners. 

 

The sound localisation experiment reported in Section 7.3 also demonstrated that NH listeners 

did not benefit from additional time in localising a sound stimulus. However, the effect of 

duration was mixed for bilateral CI users. When locating sources in the frontal horizontal plane 

and head movements were not permitted, bilateral CI users had a significantly higher overall 

accuracy for a short 0.8 second stimulus than a 5.4 second, or continuous stimulus. However, 

when locating sources in the front and rear horizontal plane and head movements were 

permitted overall accuracy was significantly higher for a long stimulus than medium and short 

stimuli. Nevertheless, increasing the duration of the stimulus reduced the number of front-back 

confusions made by bilateral CI users.  Thus bilateral CI users can benefit from longer stimulus 

durations when orienting to sounds on the frontal horizontal plane and a stimulus of at least 5 

seconds can improve sound localisation performance by reducing the number of front-back 

confusions made. 
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9.3.2.3 Complexity of head movement 

In the orientation experiment reported in Section 7.2, despite similar levels of accuracy to NH 

listeners when a continuous stimulus was presented, bilateral CI users made more complex head 

movements when orienting to a sound source. They made more reversals in head direction, had 

longer durations of movement, and also fixated at their final orientation for longer before 

reporting that they had finished orienting. More complex head movements by bilateral CI users 

were also observed in the sound localisation experiment reported in Section 7.3. However, in this 

latter experiment they did not perform as well as NH listeners. Possible reasons for increased 

head movement complexity include uncertainty about where the stimulus was presented from or 

a learned behavioural response. These alternatives were discussed in detail in Sections 7.2 and 7.3 

and an experiment to attempt to tease apart these two explanations was proposed in Section 7.3 

in which participants would rate the certainty of their responses. 

 

9.3.3 Cost-effectiveness of a second device 

The experiments reported in Chapters 6 and 8 have highlighted the inadequacy of existing generic 

health-related quality of life instruments for detecting benefits in hearing ability from a second 

device. It is inarguably a challenge for any generic quality of life instrument to be sensitive to 

changes that affect a very specific area of life, whilst being short enough to complete, yet broad in 

coverage. Chapter 4 highlighted that different health-related quality of life measures (and 

different methodologies) can impact the gain in utility measured from interventions intended to 

improve hearing, which in turn impact judgements of the cost-effectiveness of the intervention. 

An advantage of generic health-related quality of life instruments for policy makers is that they 

can be used to compare the cost effectiveness of multiple treatments across a range of health 

states – essential for an organization making resource allocations on a finite budget. 

 

However, an undesirable consequence of using insensitive generic self-report instruments is that 

interventions that result in increased patient quality of life are not funded because the generic 

instruments do not detect the benefits obtained. This was demonstrated using the EQ5D, where 

bimodal and bilateral CI users considering their lives with just unilateral CI listening resulted in 

scores at ceiling (see Chapter 6), which left no room to measure any potential benefit from 

different additional hearing interventions. The HUI3 is somewhat sensitive to differences between 

‘no hearing’ and ‘some hearing’ but is less sensitive to differences between ‘some hearing’ and 

‘more than some hearing’. In light of these limitations, a new self-report instrument (the YHRQL) 

was developed that was designed to be sensitive to differences in hearing ability. The new 
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instrument was shown to be valid and reliable and is short enough that it can be administered 

alongside existing questionnaires. 

9.3.3.1 Bimodal aiding Vs. Unilateral cochlear implantation 

The cost of providing a contralateral acoustic hearing aid was estimated in order to inform a 

preliminary analysis of the cost-effectiveness of bimodal aiding compared with unilateral cochlear 

implantation. Using the most recent cost-data from the Department of Health (2013), even in the 

most conservative analysis (in which a hearing aid was replaced every 5 years and all recipients 

required aftercare), bimodal aiding was found to be a potentially cost-effective intervention 

compared to unilateral cochlear implantation when the YHRQL was used to elicit utility valuations 

(see Appendix C). Despite a lifetime cost of just £1,736 per recipient (see Appendix C), the lack of 

benefit found by the EQ5D and HUI3 mean that bimodal aiding would not be deemed cost 

effective. This again highlights the need for a measure sensitive to the benefits of binaural hearing 

compared to monaural listening. This analysis was preliminary using a small number of patients. 

The results indicate that bimodal aiding has the potential to be cost-effective but this needs to be 

investigated further with a larger more representative sample of respondents. 

9.3.3.2 Bilateral cochlear implantation Vs. Unilateral cochlear implantation 

The utility gain required for bilateral cochlear implantation to be a cost-effective intervention 

compared to unilateral cochlear implantation had been estimated previously by Bond et al. (2009) 

to be about .05. Previous research (see Chapter 4) had found that the gain in utility measured 

using either the HUI3 (Chen et al., 2014; Summerfield et al., 2006) or EQ5D (Summerfield et al., 

2006) was lower than this and therefore insufficient for bilateral cochlear implantation to be 

judged cost-effective. Using the EQ5D, the experiment reported in Chapter 8 found results 

consistent with previous research in that the gain in utility was insufficient for bilateral cochlear 

implantation to be considered cost-effective. However, with the HUI3 the gain was large enough 

(mean = .058) to mean that bilateral cochlear implantation has the potential to be cost-effective 

at a willingness-to-pay threshold of £30,000 per QALY.  

 

Table 9.2 is an updated version of Table 4.1 with the results from this thesis included. This table 

demonstrates the mean gain in utility obtained from bilateral cochlear implantation compared to 

unilateral cochlear implantation as measured with the HUI3. The gain found in the experiment 

reported in Chapter 6 is higher than that reported by Summerfield et al. (2006) for bilateral CI 

users at three and nine months post-implantation. The users who completed the HUI3 in the 

experiment reported in this thesis had had their second CI for a mean of 6.3 years (see Chapter 5). 

One possibility is that the increase in gain between 3 and 9 months post implantation found in the 

study reported by Summerfield et al. (2006) could continue to increase as the duration of using a 
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second CI increases. However, this possibility would not explain why Chen et al. (2014) found no 

gain in utility despite users having their second CI for at least one year.  Chen et al. gave bilateral 

CI users short descriptions of outcomes from unilateral and bilateral cochlear implantation and 

asked respondents to complete the HUI3 based on their readings of these descriptions, whereas 

Summerfield et al. (2006) and the experiment reported in Chapter 8  asked patients to complete 

the HUI3 considering their life in the past two weeks. It is possible, therefore, that differences in 

methodology may account for the different findings. 

 

Table 9.2. Mean gain in utility of bilateral cochlear implantation compared to unilateral cochlear implantation as 

measured by the HUI3 in previously reported studies and in an experiment reported in this thesis. 

Study Method Participants Mean gain in utility 

Summerfield et al. 
(2002) 

Time-trade-off 
technique 

Professional 
informants 

.031 

Summerfield et al. 
(2006) 

HUI3 at 3 months post 
implantation 

CI users .021 

 
HUI3 at 9 months post 
implantation 

 .030 

Chen et al. (2014) 
HUI3 completed 
considering description 
of clinical scenarios. 

Professional 
informants 

.080 

  CI candidates .030 

  Unilateral CI users .030 

  Bilateral CI users .000 

  All .035 

Experiment reported in 

Chapter 6. 
HUI3 Bilateral CI users .059 

 

When using the YHRQL, a mean gain in utility of .050 (50-year valuations) and .090 (10 year 

valuations) for bilateral cochlear implantation compared to unilateral cochlear implantation were 

found. These results also demonstrate that bilateral cochlear implantation has the potential to be 

a cost-effective intervention. As with the bimodal gain discussed in section 9.3.3.1, the analysis is 

preliminary using a small number of bilateral CI users. Future research should administer the 

questionnaire to a larger, more representative sample of bilateral CI users. 
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9.3.3.3 Bilateral cochlear implantation Vs. Bimodal aiding 

No previous study has directly assessed the cost-effectiveness of bilateral cochlear implantation 

compared to bimodal aiding in adults. This in an important analysis to conduct because current 

guidelines (NICE, 2013) suggest that cost-effectiveness analyses should compare an intervention 

to the ‘next best alternative’. Although previous studies (e.g. Bond et al., 2009; Chen et al., 2014; 

Summerfield et al., 2006) have compared the cost-effectiveness of bilateral cochlear implantation 

to unilateral cochlear implantation, it is arguable that, at least for patients who have some 

contralateral residual acoustic hearing, bimodal aiding is the ‘next best alternative’ to bilateral 

cochlear implantation. None of the measures used found a large enough gain in utility for bilateral 

cochlear implantation to be judged to be a cost-effective use of resources compared with bimodal 

aiding. 

 

9.3.3.4 Summary 

The experiments reported in this thesis have demonstrated that when using a measure sensitive 

to differences in hearing ability both bimodal aiding and bilateral cochlear implantation have the 

potential to be cost-effective interventions compared to unilateral cochlear implantation. When 

using generic health related quality of life measures the results are mixed: The EQ5D is insensitive 

to difficulties with hearing with scores at ceiling with only one CI and it is unable to discriminate 

between clinically distinct groups. The HUI3 is somewhat sensitive to difficulties with hearing (as 

shown by the gain in utility with bilateral CIs compared to unilateral cochlear implantation) but 

the gain was not great enough for bilateral cochlear implantation to be considered cost-effective 

when compared to bimodal aiding (see Table 9.3). 

 

Table 9.3. Cost-effectiveness of bimodal aiding and bilateral cochlear implantation as measured by three measures. 

Ticks indicate the intervention would be deemed cost-effective at a willingness-to-pay threshold of £30,000/QALY. 

Measure 

Bimodal aiding Vs. 

Unilateral cochlear 

implantation 

Bilateral cochlear 

implantation Vs. 

Unilateral cochlear 

implantation 

Bilateral cochlear 

implantation Vs. Bimodal 

aiding 

EQ5D X X X 

HUI3 X √ X 

YHRQL √ √ X 
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9.3.4 Recommendations for clinical practice 

This thesis found advantages from a second device over unilateral cochlear implantation and 

therefore recommends that users of a single CI aid their non-implanted ear. This research 

suggests that a contralateral hearing aid should be used for four reasons: Some listening benefit is 

obtained, no detriment to hearing ability is observed, self-reported listening ability is improved, 

and overall quality of life is rated as greater. As patients can obtain a hearing aid at no charge 

from the NHS, it is recommended that individuals who currently have one CI aid their non-

implanted ear with an acoustic hearing aid. However, this research suggests that a second CI 

offers three advantages over bimodal aiding: greater spatial listening ability, greater benefit for 

speech perception in the presence of spatially separated noise, and greater self-reported listening 

benefit. Overall the results reported suggest that bilateral cochlear implantation offers greater 

clinical benefits than bimodal aiding. 

 

9.3.5 Recommendations for measuring the cost-effectiveness of a second device 

Existing self-report measures are limited in their sensitivity to hearing difficulties and the benefits 

obtained from different interventions for hearing loss. The YHRQL questionnaire (see Chapter 8) is 

sensitive to differences in hearing ability. It is recommended that this new questionnaire be 

administered alongside existing generic health-related quality of life instruments. The generic 

instruments can detect changes in a patient’s health state that are not hearing-specific and 

therefore are not detected by the YHRQL questionnaire. Initial results with the YHRQL 

questionnaire (Chapter 8) suggest that bilateral cochlear implantation has the potential to be 

cost-effective compared to unilateral cochlear implantation. This idea should be explored further 

in a comparison with a larger sample of patients (see section 9.4.2). 

9.4 Future research 

9.4.1 Behaviours leading to gain 

The experiments reported in Chapter 7 focused on a behaviour that had the potential to improve 

listening performance: head movements. The experiment reported in Chapter 5 demonstrated 

some improvement in spatial listening ability from bimodal aiding compared to unilateral cochlear 

implantation. This was also reflected in self-report measures reported in Chapter 6. It is unclear 

why participants benefitted on spatial listening. One possibility is that they used head movements 

to help them by either maximising the signal level at one ear or by maximising the SNR. In Chapter 

7 the question of whether head movements improved performance for bilateral CI users was 

addressed. Future research could address whether head movements improve the localisation 

performance of bimodal users. 
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9.4.2 A randomised control trial to assess the cost-effectiveness of a second device 

The experiment reported in Chapter 8 demonstrated that with the YHRQL questionnaire the gain 

in utility from a second device can be large enough (greater than .05) to be considered a cost-

effective intervention. This gain in hearing related quality of life was found in the absence of any 

detriment to generic health related quality of life (as measured with the EQ5D and HUI3). 

 

The first step for future research assessing the cost effectiveness of a second device would be to 

gather valuations from a larger, more representative sample of the UK general public. This is 

outlined in NICE (2013) guidelines as the appropriate method for gathering valuations.  The 

second step would be, using the new valuations, to check that variability estimates are similar 

with a new set of patients. For instance, the experiment reported in chapter 8 found lower 

estimates of variability in the gain of bilateral implantation compared to unilateral implantation 

with the HUI3 than previous research (United Kingdom Cochlear Implant Study Group, 2004b) 

with an SD of .08. As variability estimates are used to estimate the sample size required for a well-

powered randomised control trial, it is important to establish accurate estimates. 

 

The third step would be to conduct a randomised control trial. Previous estimates of variability 

using the HUI3 are around .20 (United Kingdom Cochlear Implant Study Group, 2004b), therefore 

with a gain of .05 required a trial would be looking for a gain in utility of around a quarter of a SD 

(.05/.2 = .25). To detect an effect of this size with 80% power would require 126 participants 

overall (for a within subjects comparison) or 126 participants in each group for a between-

subjects comparison. As discussed in Chapter 4, this size of a trial would be very expensive to 

conduct.  

 

However, variability estimates from the YHRQL as found in the experiment reported in Chapter 8 

are much smaller. Using the 10-year valuations resulted in a larger SD than using the 50-year 

valuations. Using the SD estimates with the 10-year valuations, the gain in bilateral implantation 

from unilateral implantation had an SD of .06. Thus the required gain of .05 is a much larger 

proportion of the standard deviation of the YHRQL (.05/.06 = .83). Using these estimates, a trial 

with 80% power would require 11 participants for a within subjects comparison or 22 participants 

(11 in each group) for a between-subjects comparison. This would be a much more affordable 

trial. Even with a more conservative sample size estimate to achieve 90% power would require 15 

participants for a within subjects comparison or 30 participants (15 in each group) for a between-

subjects comparison. Estimates of the variability in the gain in utility from bilateral cochlear 

implantation compared to bimodal aiding were estimated from bootstrapping. With 10 year 
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valuations the SD was estimated to be .022 (the SD with 50 year valuations was .012). Using the 

SD with the 10-year valuations a trial with 90% power would require 6 participants (3 in each 

group). 

 

The minimum gain in utility required for bimodal aiding to be considered cost-effective compared 

to unilateral implantation was estimated to be between .002 and .011 depending upon the cost 

data used (see Appendix C). Sample size estimates to achieve 80% power were estimated in 

Appendix C to be 15 participants (within-subjects comparison with 50-year valuations) and 44 

participants (within-subjects comparison with 10-year valuations). To achieve 90% power would 

require 20 participants for a within-subjects comparison (50-year valuations) or 59 participants 

(10-year valuations). 

 

Thus an affordable and well powered trial could be conducted in which participants with a 

unilateral CI are randomly assigned to receive either a second cochlear implant or a contralateral 

acoustic hearing aid. The primary outcome would be the gain in utility as measured with the 

YHRQL. However, the EQ5D and HUI3 could also be administered to check that there was no 

detriment to other aspects of health that are not detected by the YHRQL. Furthermore, secondary 

outcome measures such as performance on listening tasks could be obtained which can be 

correlated with the gain in utility. It would be informative to test listeners at four time points, two 

prior to receiving the intervention (separated by three months) and two post receiving the 

intervention (6 months post-intervention and 12 months post-intervention). As discussed in 

Chapter 4, a previous randomised control trial investigating self-reported listening ability and 

quality of life from bilateral cochlear implantation found that the time in which measurements 

were made influenced the results (Summerfield et al., 2006).  By testing listeners twice before the 

intervention, it would be possible to ascertain if there were any learning effects. Testing listeners 

six months after receiving the intervention would allow sufficient time for listeners to become 

accustomed to listening with their two devices. By testing one year post-intervention, it would be 

possible to see if any benefits found at six months continue after listeners have used their devices 

for a prolonged period of time. It will also be possible to ascertain if any benefits (or drawbacks) 

arise only after a prolonged period of use. With a large enough sample it may be possible to 

identify variables that predict successful performance with the intervention such as pre-

intervention performance scores, levels of residual hearing, or musical training. 

 

However, the questionnaire could also be applied to new technology. Non-traditional bimodal 

candidates have electro-acoustic stimulation within the same ear through the use of a short 
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electrode array about 10mm in length compared to a length of about 25mm for traditional CIs 

(Turner, Reiss, & Gantz, 2008). Potentially, these devices offer a middle ground between bilateral 

cochlear implantation and bimodal aiding. As an emerging technology at the time, the latest NICE 

guidelines (NICE, 2009) on cochlear implantation did not comment on the candidacy requirements 

for hybrid devices. However, the Food and Drug Administration in the United States of America 

recently approved the use of Hybrid devices in one ear for individuals with severe-to-profound 

high-frequency hearing loss who also have good unaided low-frequency hearing (FDA, 2014). In 

determining the cost-effectiveness of an intervention NICE (2013) guidelines recommend that the 

intervention is compared to the next best alternative. It is therefore important to establish if a 

hybrid electrode array is ‘the next best alternative’ to bilateral cochlear implantation or bimodal 

aiding (or indeed whether bimodal aiding is the next best alternative to hybrid devices). 

Nevertheless the YHRQL could be used to assess the effectiveness of these interventions. 

 

9.5 Conclusion 

Using a second device, either a contralateral acoustic hearing aid or a second cochlear implant, is 

more clinically effective than a single CI alone. However, greater benefits in listening ability and 

self-reported listening ability can be obtained with a second CI. Bilateral CI users can use head 

movements to improve sound orientation accuracy and reduce front-back confusions provided 

that the stimulus is at least five seconds in duration. The EQ5D is insensitive to hearing difficulties. 

The gain in utility from a second CI compared to a unilateral CI measured with the HUI3 is large 

enough for bilateral implantation, potentially, to be cost-effective. However, bilateral 

implantation would not be considered cost-effective when compared to bimodal aiding. When 

using the EQ5D neither a contralateral acoustic hearing aid nor a second CI would be considered 

to be cost-effective. A short questionnaire was developed which is sensitive to the benefits of 

binaural hearing and using this instrument the gain in utility from both bimodal aiding and 

bilateral cochlear implantation compared to unilateral cochlear implantation was large enough to 

be considered cost-effective at current willingness-to-pay thresholds. In conclusion, the 

experiments reported in this thesis demonstrate that both bimodal aiding and bilateral 

implantation have the potential to be clinically-effective and cost-effective alternatives to 

unilateral cochlear implantation, although greater clinical benefits can be obtained from a second 

cochlear implant.
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Appendix A 

Table A1. Summary of papers included in the literature review discussed in Chapter 2. 

Study Participants Comparison Task Stimuli Result 

Sasaki, 
Yamamot
o, Iwaki, 
& Kubo 
(2009) 

4 CICI 
11 CIHA 

Between-
subjects 

Speech 
perception in 
quiet 

Monosyllabic words at 65dB SPL Overall performance was higher for bimodal users: 

 CICI = 53% correct 

 CIHA = 79% correct 
 

But benefit from second device compared to a 
single implant was greater from a second CI. 

 CICI: 17 percentage points 

 CIHA: 12 percentage points 
 

Statistical analyses on these comparisons were not 
conducted 

Cullingto
n & Zeng 
(2010b)/ 

13 CICI 
13 CIHA 

Between-
subjects 

1. Speech 
perception 
in noise 

2. Music 
perception 

3. Affective 
prosody 
discriminat
ion 

4. Talker 
identificati
on 

Presented at RMS level of 60dB (A) 
Stimuli by task: 
1) Target sentences were HINT 

sentences spoken by a male in 
the presence of another talker. 
The maskers were IEEE 
sentences spoken by either one 
male, one female, or one child 
talker. 

2) Montreal Battery of Evaluation 
of Amusia 

3) Comprehension part of the 
Aprosodia Battery 

4) Speakers from the Hillenbrand 
vowel stimuli. 

No significant difference between the groups was 
found on any test: 

 
1) Mean SRT for speech perception in noise was 

similar for both groups.  
2) Numerically bimodal users performed better 

than bilateral CI users on 4 out of 6 subtests of 
the test battery. 

3) Numerically bimodal users performed better 
than bilateral CI users on 4 out of 5 subtests of 
the test battery. 

4) Numerically the bimodal users performed 
better than the bilateral CI users. 

Cullingto
n & Zeng 
(2011) 
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Yoon, 
Shin, & 
Fu (2012) 

12 CICI 
13 CIHA 
(divided into 
two groups; 
Poor group 
(n=5) had 
aided PTA 
thresholds of 
55dB HL at all 
frequencies, 
Good group 
had aided PTA 
thresholds<55
dB HL). 

Between-
subjects 

1) Speech 
perception 
in quiet 

2) Speech 
perception 
in noise at 
+5 and 
+10 dB 
SNR 

Consonant, vowel and sentence  
(HINT sentences) recognition 

Overall performance: 

 No significant difference in performance 
between bimodal and bilateral groups. 

 
Benefit from a second device: 

 Bilateral CI users had significantly greater 
benefit than bimodal (poor group) for 
consonant, vowel and sentence perception in 
noise and sentence perception in quiet. 

 Bilateral CI users had significantly greater 
benefit than bimodal (good group) at sentence 
perception in quiet. 

 Bimodal users (good group) had significantly 
greater benefit than bimodal (poor group) at 
vowel perception (in noise and in quiet) and 
sentence perception (in noise). 

Kong, 
Mullangi, 
& 
Marozea
u (2012) 

5 CICI (aged 
17-66, two 
were also 
members of 
the bimodal 
group prior to 
receiving their 
second CI) 
7 CIHA (aged 
16 – 65) 
 
 

Between-
subjects 
and Within-
subjects 

Speech 
perception in 
quiet. 

Consonants and vowels presented at 
a comfortable listening level. 

Mean benefit from a contralateral hearing aid 
(inferred from figures): 

 Consonant perception: 5 percentage 
points. (7 participants tested). 

 Vowel: 8 percentage points. (6 participants 
tested) 

 
Mean benefit from a second CI (3 participants 
tested): 

 Consonant perception: 4 percentage points 

 Vowel: 6 percentage points 
 
Significant differences between the groups was not 
assessed. 
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Gifford, 
Dorman, 
Sheffield, 
Teece, & 
Olund 
(2014) 

30 CICI 
35 CIHA 

Between-
subjects 

Speech 
perception in 
quiet. 
Speech 
perception in 
noise. 
 
 

Speech perception in quiet: 
Monosyllabic words. 
 
Speech perception in noise: 

1. Bamford-Kowal-Bench (BKB) 
sentences in noise 
(adaptive) 

2. Azbio sentences at +5dB 
SNR 

Speech perception in quiet: 
Overall scores were not significantly different: 

 Bilateral: Mean = 83.1% correct (SD = 12.4) 

 Bimodal: Mean = 80.5% correct (SD = 11.2) 
 
Benefit from a second device was not significantly 
different. 

 Bilateral: Mean = 9.6 percentage points 
(SD = 11.51) 

 Bimodal: 4.23 percentage points (SD = 
11.13). 

 
Speech perception in noise: 
No significant difference between the groups. 

 Bilateral: Mean threshold = 5.8dB (BKB), mean 
percent correct = 65.5% (Azbio) 

 Bimodal: Mean threshold = 6.3dB (BKB), mean 
percent correct = 58.6% (Azbio). 
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Potts & 
Litovsky 
(2014) 

4 CIHA who 
then became 
4 CICI 

Within-
subjects 

Speech 
perception in 
quiet. 
Sound 
localisation 
Self-reported 
listening 
ability 

Speech perception and localisation: 

 Monosyllabic words presented 
at 60 dB SPL (±3dB SPL) from 
one of 15 loudspeakers in the 
frontal horizontal plane (±70°). 
Location selected randomly on 
each trial. 

 
Self-reported listening ability: SSQ. 

Speech perception: 

 2/4 participants significantly better with CICI 
than CIHA (about 18 and 25 percentage points 
better inferred from graph) 

 The other two participants were about 5 and 8 
percentage points better (inferred from graph) 
with CICI than CIHA but this benefit was not 
significant. 

 
Localisation: 

 Significantly better with CICI than CIHA. RMS 
error is about 14° better with CICI (inferred 
from graph). 

 
Self-reported listening ability: 

 Significantly higher overall SSQ scores with CICI 
than CIHA. 
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Kokkinaki
s & Pak 
(2014) 

7 CICI 
7CIHA (with CI 
in right ear 
and HA in left 
ear) 

Between-
subjects 

Speech 
perception in 
the presence 
of noise 

BKB sentences presented in 4-talker 
babble noise (level varied to 
measure SNR where performance is 
50% correct). 
 
Three conditions: 

 Speech and noise presented 
concurrently at 0° azimuth. 

 Speech presented at 0° and 
noise presented at +90°. 

 Speech presented at 0° and 
noise presented at -90°. 

 

Mean speech reception thresholds: 
Noise front:  

 Bilateral (5.79dB, SD = 3.00) 

 Bimodal (4.07dB, SD = 2.47) 
 
Noise left: 

 Bilateral (1.79dB, SD = 2.55) 

 Bimodal (-0.21dB, SD = 2.00) 
 
Noise right: 

 Bilateral (3.71dB, SD = 5.77) 

 Bimodal (8.57dB, SD = 2.62) 
 
Head shadow (inferred from graph): 

 Bilateral: 8dB 

 Bimodal: 6.7dB 

 Not significantly different 
 
Binaural squelch (inferred from graph): 

 Bilateral: 0.9dB 

 Bimodal:3.1dB 

 Not significantly different 
 
Binaural summation (inferred from graph): 

 Bilateral:2.5dB 

 Bimodal:7.7dB 

 Significantly different 
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Perreau, 
Ou, Tyler, 
& Dunn 
(2014) 

49 CICI 
32 CIHA 

Between-
subjects 

Self-reported 
spatial 
listening 
ability 

Spatial hearing questionnaire Overall score: 

 Significantly higher score (better ability) with 
CICI than CIHA. 

 
Sub-scales: 

 Significantly higher scores (better ability) with 
CICI than CIHA on 5 out of 8 sub-scales 
(understanding male voices, understanding 
female voices, understanding children’s voices, 
music, and localisation). 
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Appendix B 

Table B1. Summary of studies investigating the role of head movements for sound localisation by normally-hearing adults. 

Study Participants Apparatus Stimuli Conditions Results 

Perrett & Noble 
(1997a) 

12 normally-
hearing 
listeners. 

25 loudspeakers 
separated by 15°. 
Loudspeakers 
were positioned 
in the left 
horizontal plane 
from 0° azimuth 
to 180° azimuth. 

Low-pass white noise 
bursts (3 second and 0.5 
second samples). Mean 
presentation level was 
55dB A (roved between 
±3dB across trials). 

Three movement conditions: 
1) Natural movement 
2) Rotation: Turning the head 

45° horizontally to the left 
after onset then stopping. 

3) Motionless 
 
Two duration conditions: 

1) 3 second 
2) 0.5 second 

Absolute accuracy: 
In the 3 second duration condition 
performance was significantly better in both 
movement conditions compared to the 
motionless condition 
 
In the 0.5 second condition performance was 
significantly better in the rotation condition 
than the natural movement or motionless 
conditions. 
 
Front-back errors: 
With the 3 second stimulus the natural and 
rotation conditions had significantly fewer 
confusions (about 1% and 2% of trials 
respectively) than the motionless condition 
(about 30% of trials). 
 
With the 0.5 second stimulus the rotation 
condition had significantly fewer confusions 
(about 4% of trials) than the motionless 
(about 24% trials) and natural conditions 
(about 17% trials). 

Perrett & Noble 
(1997b) 

Experiment 1: 
10 normally-
hearing 
listeners. 

7 loudspeakers 
separated by 30° 
in the vertical 
plane from 0° in 
front of the 
listener to 180° 

7 different white noise 
signals. Mean 
presentation level was 
60dB A (ranged between 
±3dB). Stimulus was 3 
seconds long. 

Conditions: 7 noise x 4 listening 
conditions. 
Listening conditions: 

1) Normal motionless listening 
2) Normal rotation listening – 

oscillated head between 

Front-back discrimination 
In the rotation listening conditions errors 
were minimal (none in the normal listening 
condition and only 0.6% of trials in the 
distorted listening condition). 
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Table B1. Summary of studies investigating the role of head movements for sound localisation by normally-hearing adults. 

Study Participants Apparatus Stimuli Conditions Results 

behind. ±30° azimuth 
3) 3 Distorted normal listening 

(short tubes inserted in ear) 
4) Distorted rotation listening 

In motionless listening there were errors in 
27% of trials (normal listening) and 35% of 
trials (distorted listening). 
Apparent elevation: 
Averaged across all noise types the mean 
absolute elevation error was 16.2° (normal 
listening with rotation), 27.0° (normal 
listening, motionless), 24.1° (distorted 
rotation), and 35.3° (distorted and 
motionless). 

Experiment 2: 
22 normally-
hearing 
listeners. 

17 loudspeakers 
separated by 30° 
in the 360° 
vertical plane. 

2khz low-pass noise. Two listening conditions: 
1) Motionless 
2) Rotation 

Front-back errors: 
Motionless: 35% of trials 
Rotation: 0.4% trials 
Apparent elevation: 
Rotation improved performance for upper 
elevated sources but not lower elevated 
sources. 

Wightman & 
Kistler (1999) 

7 normally-
hearing 
listeners. 

15 loudspeakers 
separated by 10°. 
Loudspeakers 
were positioned 
from directly 
overhead to -50 
degrees below 
the horizontal 
plane. 

White Gaussian noise (2.5 
seconds or 1 second) 
presented around 70dB 
SPL. 

Three listening conditions: 
1) Restricted (blindfolded and 

motionless) 
2) Freestyle (head movements 

encouraged) 
3) Compulsory movement 

(orient towards source) 

Front-back errors: 
When head movements were encouraged 
few listeners made confusions. Confusions 
were almost non-existent in the compulsory 
movement condition (one listener continued 
to make some errors). 
 
Head movement trajectories: Visual 
examination revealed the following: 

1) Head movements were varied 
2) Most participants oriented towards 

the target. 
3) Those who made front-back 

confusions moved more when they 
were permitted to do so. 

4) Those who did not make front-back 
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Table B1. Summary of studies investigating the role of head movements for sound localisation by normally-hearing adults. 

Study Participants Apparatus Stimuli Conditions Results 

confusions did not move when 
permitted to do so 

Thurlow et al. 
(1967) 

23 normally-
hearing 
listeners were 
included in 
the analyses. 

10 loudspeakers 
in the horizontal 
and vertical 
planes. 

High and low frequency 
filtered noise presented at 
48dB SPL. 5 second 
stimulus. 

Participants were instructed to move 
their head as much as they liked (but 
not their bodies) after the onset of 
the stimulus. 

Magnitude of movement: 
Mean maximal rotation movements were 
greater than pitch or roll movements. 
 
Direction: 
Majority of participants turned towards the 
target. 
 
Reversals: 
A number of head movement reversals 
occurred. 

Pollack & Rose 
(1967) 

Experiment 
one: 3 
normally-
hearing 
listeners in 
stationary 
conditions 
and one 
normally-
hearing 
listener in 
moving 
conditions. 

19 loudspeakers 
in horizontal 
plane positioned 
9.6° apart. 

Click of about 15ms 
presented at 86dB SPL. 

Three head stationary conditions 
with the head oriented straight 
ahead and body oriented: 

1) Straight-ahead 
2) +90° 
3) - 90° 

 
Two moving head conditions: 
Moving head left to right in a 
sweeping motion at 

1) 120°/s 
2) 40°/s 

Accuracy 
Largely unaffected by body position. 
 
Significant effect of rate of head movement: 
More errors in fast condition. 

Experiment 2: 
3 normally-
hearing 
listeners. 

Loudspeakers in 
the horizontal 
plane positioned 
3.2° apart. 

Click of about 15ms 
presented at 86dB SPL. 

Same as experiment 1 but this time a 
light was used to pace head 
movements and participants were 
told not to reverse head movement 
sharply. 
 
 

Accuracy: 
More errors when moving than when not 
moving. 
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Table B1. Summary of studies investigating the role of head movements for sound localisation by normally-hearing adults. 

Study Participants Apparatus Stimuli Conditions Results 

 
Experiment 3: 
3 normally-
hearing 
listeners 

Loudspeakers in 
the horizontal 
plane positioned 
3.2° apart. 

Click of about 15ms 
presented at 86dB SPL and 
white noise of 1 second. 

Same as experiment 1 but this time a 
light was used to pace head 
movements and participants were 
told not to reverse head movement 
sharply. 
 
Also included an unconstrained head 
movement condition where 
participants were instructed that 
they can move head as if searching 
for an auditory target. 

Accuracy: 
Main effect of duration: More accurate with 
longer duration 
 
Main effect of head movement: More 
accurate with head movement 

Experiment 4: 
2 normally-
hearing 
listeners 

Loudspeakers in 
the horizontal 
plane positioned 
3.2° apart. 

Click of about 15ms 
presented at 86dB SPL and 
white noise. The duration 
of the white noise varied 
between .03 seconds and 
3 seconds and was 
presented at 58dB SPL. 

Same as experiment 3. Accuracy: 
Main effect of movement: More accurate 
when head is not moving. 
 
Main effect of duration: More accurate with 
longer stimuli 

Experiment 5: 
2 normally-
hearing 
listeners 

Loudspeakers in 
the horizontal 
plane positioned 
3.2° apart. 

Click of about 15ms 
presented at 86dB SPL and 
white noise lasting 3 
seconds presented at 54 
dB SPL. 

Two listening conditions: 
1) Unconstrained head 

movement condition where 
participants were instructed 
that they can move head as 
if searching for an auditory 
target 

2) Non-moving 
5 starting positions facing: 

1) 0° 
2) -45° 
3) +45° 
4) 90° 
5) +90° 

Accuracy: 
Main effect of movement: More accurate 
with head movement 
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Table B1. Summary of studies investigating the role of head movements for sound localisation by normally-hearing adults. 

Study Participants Apparatus Stimuli Conditions Results 

Brimijoin et al. 
(2010) 

17 normally-
hearing 
adults 

11 loudspeakers 
separated by 
15° from -75° to 
+75° 

Acoustic stimuli: 
110 short (1.3 second) 
sentences. Presented 
between 65-75dB. 
 
Visual stimuli: 
Red light emitting 
diodes. 

Three conditions: 
1. Visual condition 
2. Auditory (eyes-open) 
3. Auditory (eyes-closed) 

Orientation accuracy: 
Undershot both visual and auditory 
targets. 
No difference between eyes-open and 
eyes-closed conditions. 
 
Peak velocity: 
Small jumps: 50°/s 
Large jumps: 150°/s 
 
Initial latency: 
Average initial latency was 0.4s for 
auditory targets and 0.3s for visual 
targets. 
 
Fixation latency: 
Average fixation latency was 0.9s for 
auditory targets and 0.8s for visual 
targets. 
 
Head movement trajectory: 
Varied between listeners but typically 
sigmoidal in shape. 
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Table B1. Summary of studies investigating the role of head movements for sound localisation by normally-hearing adults. 

Study Participants Apparatus Stimuli Conditions Results 

Mueller, 
Meisenbacher, 
Lai, & Dillier 
(2014) 

11 normally-
hearing 
listeners 

12 loudspeakers 
separated by 
30° in the 
horizontal 
plane. 

Target stimuli: Speech 
spoken by a male talker. 
Presented at the same 
intensity as the noise 
stimuli (±2dB). 
 
Noise: Background 
cafeteria noise 
presented from 12 
loudspeakers at 60dB 
SPL. 

Two movement conditions: 
1. Head movement 

permitted 
2. Head movement not 

permitted 
 
Three stimulus duration 
conditions: 

1. Short (503ms) 
2. Medium (2.18s) 
3. Long (4.45s) 

Accuracy: 

 Significantly less RMS error with 
medium and long stimuli 
compared to short stimuli. 

 RMS error was significantly 
reduced when head movements 
were allowed (for medium and 
long stimuli). 

 
Front-back confusion: 

 When head movement was not 
permitted, as duration increased, 
confusions reduced. Significantly 
fewer confusions with long 
stimulus than medium stimulus. 

 When head movement was 
permitted, there were no front-
back confusions in the medium 
and long conditions. 

 
Head movement trajectory 

 Moved head in direction of target 
location. 
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Table B2. Summary of studies investigating the role of head movements for sound localisation by hearing-impaired individuals. 

Study Participants Apparatus Stimuli Conditions Results 

Buhagiar et al. 
(2004) 

18 unilateral 
CI users. 

Semi-circular 
array of 11 
loudspeakers 
in the 
horizontal 
plane 
separated by 
18°. 

7 stimuli: 
1. Sentence at 60dB 
2. Sentence + 

reverberation at 60dB 
3. Sentence repeated 3 

times at 60 dB 
4. Pink noise at 60dB 
5. Pink noise at 70dB 
6. White noise + 

reverberation at 60 
dB 

7. Tone bursts at 60dB 

For stimulus 3: head 
movements were 
permitted. 
 
For all other stimuli 
head movements 
were not permitted. 

Accuracy: 

 When head movements were not permitted 
performance was better for sound presented on 
the side ipsilateral to the implant. 

 When head movements were permitted there 
was no difference in accuracy performance 
between the ipsilateral and contralateral sides. 

Tyler et al. 
(2006) 

Unspecified 
number of 
bilateral and 
unilateral CI 
users. 

8 loudspeakers 
positioned in 
the horizontal 
plane. 

Everyday sounds. Two location 
conditions: 
1. Loudspeaker 

array in front of 
listener 

2. Loudspeaker 
array to side of 
listener 

 
Two listening 
conditions: 
1. Bilateral CIs 
2. Unilateral CI 

Accuracy: 

 When localising sounds in the frontal plane, 
bilateral performance is near perfect without 
head movements. 

 When localising sounds off to the side, bilateral 
performance is poor without head movements 
but near perfect when head movements are 
permitted. Unilateral performance is poor when 
head movements are permitted. 

Brimijoin et al. 
(2010) 

14 hearing-
impaired (4FA 
> 25dB HL, 
average = 

11 
loudspeakers 
separated by 
15° from -75° 

Acoustic stimuli: 

 110 short (1.3 
second) sentences. 
Presented between 

Three conditions: 
1. Visual condition 
2. Auditory (eyes-

open) 

Orientation accuracy: 

 Undershoot both visual and auditory targets. 

 Undershot auditory targets less than visual 
targets. – Correlated with hearing loss. 
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Table B2. Summary of studies investigating the role of head movements for sound localisation by hearing-impaired individuals. 

Study Participants Apparatus Stimuli Conditions Results 

43.5dB HL). to +75°. 65-75dB (or between 
75-80dB for one HI 
listener with an 82dB 
average hearing 
threshold). 

 
Visual stimuli: 

 Red light emitting 
diodes. 

3. Auditory (eyes-
closed) 

 
Peak velocity: 

 Small jumps: 50°/s 

 Large jumps: 130°/s 
 
Initial latency: 

 Positive correlation between degree of hearing 
loss and initial latency for auditory targets. 

 Average initial latency was 0.6s for auditory 
targets and 0.4s for visual targets. 

 
Fixation latency: 

 Positive correlation between degree of hearing 
loss and fixation latency. 

 Average fixation latency was 1.3s for auditory 
targets and 1.0s for visual targets. 

 
Head movement trajectory: 

 Positive correlation between degree of hearing 
loss and trajectory complexity. 

Brimijoin, 
McShefferty, & 
Akeroyd (2012) 

36 
asymmetrical 
hearing-
impaired 
listeners 
20 listeners 
with better 
hearing 
thresholds in 

24 
loudspeakers 
separated by 
15° in the 
horizontal 
plane. 

Target stimuli: Short 
sentences (2-3s). 
Presentation level was 
adapted based on 
performance. 
 
Noise: Speech shaped 
noise presented at 70dB 

Speech in noise task 
with five target 
locations: 
1. 105° 
2. -45° 
3. 60° 
4. -30° 
5. -90° 
Five noise 

Head yaw orientation: 

 Left-ear listeners oriented to the right of target 
(median = +51.2°, IQR = 12.2-79.8°) 

 Right-ear listeners oriented to the left of the 
target (median = -48.6°, IQR = -9.5 - -78.8°). 

 No difference between distracter conditions. 

 No significant differences between two listener 
types for pitch and roll. 
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Table B2. Summary of studies investigating the role of head movements for sound localisation by hearing-impaired individuals. 

Study Participants Apparatus Stimuli Conditions Results 

their left ear 
(left-ear 
listeners) and 
16 right-ear 
listeners. 

separations: 
1. ±180° 
2. -90° 
3. -30° 
4. +30° 
5. +90° 

Results show listeners sought to maximise the signal 
level and not the signal-to-noise level. 

Mueller, 
Meisenbacher, 
Lai, & Dillier 
(2014) 

7 bilateral CI 
users. 

12 
loudspeakers 
separated by 
30° in the 
horizontal 
plane. 

Target stimuli: Speech 
spoken by a male talker. 
Presented at the same 
intensity as the noise 
stimuli (±2dB). 
 
Noise: Background 
cafeteria noise presented 
from 12 loudspeakers at 
60dB SPL. 

Two movement 
conditions: 
1. Head movement 

permitted 
2. Head movement 

not permitted 
 
Three target 
stimulus duration 
conditions: 
1. Short (503ms) 
2. Medium (2.18s) 
3. Long (4.45s) 

Accuracy: 

 No difference between duration conditions. 

 No benefit from head movement. 
 
Front-back confusion: 

 More confusion when head movement was 
not permitted (23.6% of trials with medium 
duration, 25% for long duration). 

 Significantly less confusions when head 
movement was allowed for medium (10.4% of 
trials) and long (5.5% of trials) stimuli. 

 No difference for short stimuli. 
 
Head movement trajectory 

 Moved head from left to right in a search-like 
manner. 

 For the medium and long conditions head 
movements were significantly longer than 
normally-hearing listeners (see Table B1). 

 For medium and long conditions the head 
movement trajectories were more complex than 
those made by normal hearing listeners (see 
Table B1) - quantified by polynomial order. 
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Appendix C 

Cost-effectiveness of a contralateral hearing aid for users of a single 

cochlear implant 

 

C.1 Introduction 

This appendix reports an analysis of the cost-effectiveness of providing a contralateral acoustic 

hearing aid for individuals with one cochlear implant. The comparison investigated is the cost of 

providing a contralateral hearing aid with no intervention. Thus the incremental cost is the cost of 

providing a hearing aid and the incremental benefit is the gain in QALYs from having a hearing aid 

compared with not having a hearing aid. 

C.1.1 Costs 

Following discussions with audiologists, Summerfield et al. (2002) identified three main costs of 

providing an acoustic hearing aid to adults: the fitting session (£1007 incurred every three years), 

the cost of a new hearing aid (£2501 incurred every three years), and therapeutic rehabilitation 

(£3001 per year which was considered to be incurred by only 10% of patients). The cost of a new 

hearing aid identified by Summerfield et al. is slightly above the upper cost of a digital signal 

processing hearing aid in the UK found by Barton et al. (2003) when using cost data from the 

Department of Health at 2000/2001 cost levels. Barton et al. found the cost of a digital signal 

processing hearing aid in the UK to range between £164.30 and £241.80. In the early 2000’s when 

these studies were published, hearing services including the provision of hearing aids were in the 

process of being modernised to improve services and provide modern technology. Indeed, Barton 

et al. (2003) identified that just 1.3% of hearing aids provided in the UK in 2000/2001 were digital 

aids. Today, the majority of users in the UK, including 99% of recipients in Northern Ireland, 

receive a digital hearing aid (Moore, 2012). 

 

The NHS is able to reduce the cost of a hearing aid through bulk buying. Therefore with larger 

numbers of individuals receiving digital hearing aids compared to analogue aids it is possible that 

the estimates of the cost of a digital hearing aid provided by Summerfield et al. (2002) and Barton 

et al. (2003) are higher than would be the case today. In a more recent study, using costs from the 

NHS supply chain, Bond et al. (2009) identified the cost of a digital hearing aid to the NHS to be 

                                                           
7 At year 2000 cost levels. 
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between £62 and £152 (at 2007 cost levels). In their analyses they estimated the average cost of a 

hearing aid to the NHS to be £100. Following a personal communication with a clinical Director of 

Audiology they assumed that a hearing aid would be replaced every five years and that the costs 

of batteries were sufficiently small not to be worth including in their cost model. In a more recent 

publication, Summerfield, Lovett, Bellenger, and Batten (2010) following assumptions by Bond et 

al. (2009), estimated the cost of a new hearing aid to be £100 and replaced every five years. No 

other costs related to a hearing aid were included in their model. 

 

In an economic model to estimate the effectiveness of screening older adults for hearing loss, 

Morris et al. (2012) used the UK NHS 2009/2010 Adult Hearing Services Indicative Tariff. This 

tariff, produced by the Department of Health, indicated that the cost of a single hearing aid and 

ear mould was £122, the cost of an audiological assessment was £57, the cost of a hearing aid 

fitting appointment was £69, the cost of a follow-up appointment was £49, and the cost of 

hearing aid repair was £26. The most recent UK NHS Adult Hearing Services Tariff (Department of 

Health, 2013) has combined some of the aforementioned costs into one ‘pathway cost’. The costs 

listed include an audiology hearing aid assessment which is £54. The ‘pathway for hearing aid 

assessment’ includes the cost of fitting, the cost of one hearing aid, and the first follow up. The 

total cost amounts to £273. Finally, hearing aid aftercare (repairs) costs are estimated to be £26. 

Thus this analysis suggests that the cost of providing a hearing aid is higher than the value 

estimated by Bond et al. (2009). 

C.1.2 Current study 

The aforementioned studies by Summerfield et al. (2002) and Bond et al. (2009), whilst 

considering the cost of an acoustic hearing aid, were mainly concerned with estimates of the costs 

that would be averted by providing unilateral or bilateral cochlear implants to individuals. These 

studies did not directly investigate the cost-effectiveness of providing a contralateral hearing aid 

to users who already have one implant. As mentioned above and discussed in detail in Chapter 4, 

the cost of providing a contralateral acoustic hearing aid to a user of a single implant can be 

inferred from Bond et al’s analyses. However, Bond et al. only considered the cost of a hearing aid 

(estimated to be £100) upgraded every 5 years in their cost analysis. As outlined above, there are 

other costs which need to be taken into account (e.g. fitting and repair costs). 

 

The current study had two aims. First, to estimate the incremental cost of providing a 

contralateral hearing aid to users of a single cochlear implant. Second, to calculate the minimum 

gain in utility required for a hearing aid to be considered a cost-effective intervention. The first 

aim was addressed by using the costs outlined by Summerfield et al. (2002) and the costs outlined 
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by the Department of Health (2013). The costs estimated by Summerfield et al. are more 

expensive and include more regular upgrades. Moreover, they also include rehabilitation costs. 

The costs outlined by the Department of Health are more recent estimates which are likely to be 

more representative of the actual costs incurred.  

 

In order to test the sensitivity of conclusions to assumptions about the frequency of replacements 

and the percentage of patients receiving rehabilitation, four cost models were compared:  

 Summerfield et al. (2002) costs with the hearing aid replaced every three years, and 10% 

of patients receiving rehabilitation 

 Summerfield et al. (2002) costs with the hearing aid replaced every five years, and with 

10% of patients receiving rehabilitation 

 Department of Health (2014) costs with the hearing aid replaced every five years, and 

with 10% of patients receiving aftercare 

 Department of Health (2014) costs with the hearing aid replaced every five years, and 

with 100% of patients receiving aftercare (i.e. worst case scenario) 

The costs estimated by each model were used to infer the minimum gain in utility required for a 

hearing aid to be considered cost-effective. 

C.2 Methods 

C.2.1 Remaining life years 

In a sample of 311 participants, the United Kingdom Cochlear Implant Study Group (UKCISG, 

2004) found the mean age of implantation for adults was 50.8 years (95% CI = 49.1-52.5). In their 

economic analyses, Bond et al. (2009) set the basecase mean age at which an implant was 

received by a post-lingually deafened adult to be 50 years old. Consistent with this research, the 

present study used 50 years old as the basecase age at which an adult receives a cochlear implant. 

Using government produced actuarial life tables for individuals in England and Wales, the average 

expected life expectancy for someone aged 50 today is 31 years for a man and 34 years for a 

woman, with an average of 33 years (Office for National Statistics, 2014). These were the number 

of remaining life years used in the analyses. 

C.2.2 Gender distribution 

The proportion of males and females who received an implant at NHS centres in England between 

2008 and 2013 was calculated using Hospital Episode Statistics (2009-2014). 
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C.2.3 Costs 

Two sets of costs of providing a hearing aid were used: costs identified by Summerfield et al. 

(2002) and costs outlined by the Department of Health (2013). Summerfield et al. costs were 

inflated to 2013 cost levels using the June 2014 update of the UK Gross Domestic Product deflator 

(HM Treasury, 2014). The costs outlined by the Department of Health were already at 2013-2014 

cost levels and were therefore not adjusted. Summerfield et al. identified that a hearing aid would 

be updated every three years, whereas Bond et al. (2009) state that a hearing aid would be 

expected to be updated every 5 years. Summerfield et al. identified that therapeutic 

rehabilitation would be given to 10% of patients. The Department of Health (2014) did not include 

rehabilitation costs but did include a cost of hearing aid aftercare (such as repairs). As such four 

sets of costs were calculated, descriptions for which are shown in Table C1. 

 

Table C1. Four cost models were used. 

Costs from: Years that hearing aid is 

upgraded 

Percentage receiving 

rehabilitation/aftercare 

Summerfield et al. (2002) 3 10% 

Summerfield et al. (2002) 5 10% 

Department of Health (2013) 5 10% 

Department of Health (2013) 5 100% 

 

The cost of not providing a hearing aid (no intervention) was set at zero. Therefore costs reported 

are the incremental costs. 

C.2.4 Discounting 

Costs and benefits were discounted at a rate of 3.5% (consistent with NICE, 2013 guidelines). 

Costs were assumed to be incurred at the start of the year, while benefits were assumed to be 

incurred at the end of the year. As such, costs were discounted from year zero and benefits were 

discounted from year one. 

C.2.5 Cost-effectiveness 

The incremental benefit was expressed as the number of QALYs gained. The number of QALYs was 

calculated by summing together the discounted utility gain across the remaining life years. The 

incremental cost-effectiveness ratio (ICER) was calculated as: 

 

𝐼𝐶𝐸𝑅 =
𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙 𝑐𝑜𝑠𝑡

𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙 𝑏𝑒𝑛𝑒𝑓𝑖𝑡
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C.2.6 Benefit required 

The four cost models were used to assess the minimum gain in utility required for a contralateral 

acoustic hearing aid to be deemed cost-effective at a willingness to pay threshold of 

£30,000/QALY and at a willingness to pay threshold of £20,000/QALY. ICERs at these thresholds 

are requested by NICE (2013). 

C.2.7 Benefit obtained 

The gain in utility from a contralateral acoustic hearing aid compared to a unilateral cochlear 

implant was reported in experiments in Chapters 6 and 8. These values were used to assess if the 

minimum benefit required for a contralateral hearing aid to be cost-effective was met. The four 

measures used were the Health Utilities Index Mark III (HUI3), the EuroQol (EQ5D), the York 

Quality of life questionnaire (YorQol), and the York hearing-related quality of life questionnaire 

(YHRQL). Full details of the participants and measures can be found in Chapters 6 and 8. 

C.3 Results 

C.3.1 Gender distribution of cochlear implant recipients 

Table C2. Total number of admissions for cochlear implantation in England between 2008 and 2013. Also shown are 

the number of male recipients of a cochlear implant and the proportion of male and female recipients of a cochlear 

implant. 

Year Total number of 

admissions 

Number of males Male:Female 

2012-2013 931 420 45:55 

2011-2012 1115 503 45:55 

2010-2011 923 445 48:52 

2009-2010 870 428 49:51 

2008-2009 802 391 49:51 

Total 2008-2013 4641 2187 47:53 

C.3.2 Costs 

Table C3 shows the lifetime costs incurred by providing a hearing aid as estimated with the four 

cost models. The cost per male recipient, female recipient and average recipient are shown. The 

average costs are calculated using a 47:53 male:female gender distribution. 
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Table C3. Incremental cost of providing a hearing aid using the four cost models. Average is for a 47:53 Male:Female 

ratio. 

 Years 

that HA is 

upgraded 

Percentage receiving 

rehabilitation/aftercare 

Cost per 

male 

recipient 

Cost per 

female 

recipient 

Average 

cost per 

recipient 

Summerfield et 

al. (2002) 

3 10% £4,070 £4,260 £4,171 

Summerfield et 

al. (2002) 

5 10% £2,892 £2,931 £2,913 

Department of 

Health (2013) 

5 10% £1,261 £1,263 £1,262 

Department of 

Health (2013) 

5 100% £1,722 £1,748 £1,736 

 

C.3.3 Benefit required 

Table C4 shows the minimum gain in utility required at year zero for a hearing aid to be cost-

effective at a willingness to pay threshold of £30,000/QALY and at a willingness to pay threshold 

of £20,000/QALY. 
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Table C4. Minimum gain in utility required at year zero for a hearing aid to be cost-effective at £30,000/QALY and at 

£20,000/QALY using the four cost models. 

 Year that 

HA is 

upgraded 

Percentage 

receiving 

rehabilitation/ 

aftercare 

Minimum utility value required in year zero 

 

Male Female Average 

Summerfield et al. 

(2002) 
  

   

£30,000/QALY 
3 10% 

.0073 .0073 .0073 

£20,000/QALY .0109 .0109 .0109 

Summerfield et al. 

(2002) 
  

   

£30,000/QALY 
5 10% 

.0052 .0050 .0051 

£20,000/QALY .0078 .0075 .0076 

Department of 

Health (2013) 
  

   

£30,000/QALY 
5 10% 

.0023 .0022 .0022 

£20,000/QALY .0034 .0033 .0033 

Department of 

Health (2013) 
  

   

£30,000/QALY 
5 100% 

.0031 .0030 .0031 

£20,000/QALY .0046 .0045 .0046 

 

C.3.4 Benefit obtained 

With the exception of the HUI3, utility values were not normally distributed therefore Table C5 

summarises the median gain in utility obtained from the four quality of life measures from using a 

contralateral acoustic hearing aid. The median gain was at floor with the HUI3 and EQ5D. The 

largest gain in utility was obtained with the YorQol, and the YHRQL showed a median gain of .010 

with both sets of valuations. See chapters 6 and 8 for full details, including statistical analyses, of 

these results. 
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Table C5. Median gain in utility from a contralateral hearing aid as measured on the four questionnaires. Also shown 

are the 25th (25%) and 75th (75%) percentile. 

Questionnaire used N Median gain in utility 25% 75% 

HUI3 12 .000 -.060 .137 

EQ5D 12 .000 .000 .000 

YorQol 12 .036 .002 .105 

YHRQL (50 year 

valuations) 

9 .010 .000 .020 

YHRQL (50 year 

valuations) 

9 .010 .000 .030 

 

C.4 Discussion 

C.4.1 Gender distribution 

Publically available data showed that slightly more females were receiving a cochlear implant than 

males consistent with Bond et al. (2009) who found the same overall proportion (47:53 

Male:Female) during the period 2003-2006. The current study did not separate gender 

distribution by age. Bond et al. (2009) separated their proportion into age bands and found that 

for individuals aged over 15 years of age the ratio of male:female recipients of cochlear implants 

became 41:59. Nevertheless the use of a five year period gives a recent estimate on the 

proportion of each gender receiving a cochlear implant and was therefore used as a parameter of 

the model. 

C.4.2 Costs 

Costs were slightly higher for female recipients of a hearing aid due to having a longer life 

expectancy than males as an extra three years of costs were incurred. Costs were lower when 

using the tariff provided by the Department of Health (2013). This is likely to be more 

representative of the costs incurred by the NHS as it was compiled by the UK Government 

Department of Health for this year whereas the Summerfield et al. (2002) estimations were based 

on consultations with a small number of audiologists. As outlined in the introduction, the costs 

estimated by Summerfield et al. were obtained in the early 2000’s when digital hearing aids are 

likely to have been more expensive than today due to the small number of recipients. The costs 

outlined by the Department of Health are ‘Non-mandatory’ which means that there is the 

possibility that average prices are higher (or indeed, lower) than those outlined here.  
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Nevertheless, in a worst-case scenario in which 100% of hearing aid recipients required aftercare 

each year, a low cost of under £1750 was found. This cost of providing a contralateral acoustic 

hearing aid to a user of a single cochlear implant is substantially lower than the cost of providing a 

second implant (see Chapter 4). 

C.4.3 Benefit required 

Minimal differences in the gain in utility required by each gender were found. Using cost data 

from Summerfield et al. (2002), at a willingness-to-pay threshold of £30,000 a gain in utility of at 

least .0073 was required for a contralateral hearing aid to be considered cost-effective. This rose 

to a gain of .0109 at a willingness-to-pay threshold of £20,000. However, these gains were 

observed with a new hearing aid fit every three years. When a new hearing aid was fit every five 

years (in line with NHS practice, Bond et al., 2009) the gain reduced to .0051 and .0076 for 

willingness-to-pay thresholds of £30,000 and £20,000 respectively. When using the most recently 

available cost data obtained from the Department of Health (2013) the gain in utility required fell 

to .0022 and .0033 at a willingness-to-pay threshold of £30,000 and £20,000 respectively. At a 

willingness to pay threshold of £30,000, the gain in utility required in a worse-case scenario where 

aftercare was used by 100% of recipients was slightly higher at .0031 than if aftercare was 

required by just 10% of recipients. Similarly, the gain in utility required was slightly higher (at 

.0046) than if aftercare was required by just 10% of recipients at a willingness-to-pay threshold of 

£20,000. 

C.4.4 Benefit obtained 

Using generic health-related quality of life questionnaires no gain in utility was observed. The 

EQ5D is insensitive to hearing difficulties, and the HUI3, whilst sensitive to ‘some hearing’ over ‘no 

hearing’, is less sensitive to differences between ‘some hearing’ and ‘a bit more than some 

hearing’. This point is discussed in more detail in Chapters 4 and 6. The gain in utility as measured 

using the YorQol is large enough for a contralateral hearing aid to be considered cost-effective 

using costs obtained from both Summerfield et al. (2002) and the Department of Health (2013). 

The gain in utility obtained from the two versions of the YHRQL is large enough for a contralateral 

hearing aid to be considered cost-effective when using costs obtained from the Department of 

Health (2013) and when using the costs estimated by Summerfield et al. (2002) with a hearing aid 

updated every five years. However, the median gain in utility just falls short of being considered 

cost-effective at a willingness to pay threshold of £20,000 when a hearing aid is updated every 

three years. As an upgrade every three years is not common practice in the NHS (Bond et al, 

2009), it can be concluded that these data suggest that providing a contralateral hearing aid to a 

user of a single implant has the potential to be cost effective. 
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However, it is important to note that the gains in utility reported come from a small self-selecting 

sample of bimodal users in the UK. It would be informative to administer the quality of life 

questionnaires to a larger sample of bimodal users more representative of the UK population. The 

SD of utility estimates on the HUI3 is about .20 (United Kingdom Cochlear Implant Study Group, 

2004b). Therefore the estimated effect size is .011 standard deviations (using a .0022 utility gain) 

or .055 standard deviations (using a .0109 utility gain). In a within-subjects design, to detect a 

difference of this size with a two tailed paired-samples t-test at an alpha of .05 and at 80% power 

would require 64,785 participants (.0022 utility gain) or 2640 participants (.0109 utility gain). The 

SD of the gain in utility from bimodal devices compared to unilateral cochlear implantation was 

estimated in Chapter 8 to be .015 (with the 50-year valuations) and .026 (with the 10 year 

valuations). Thus a gain of .011 is a large proportion of the standard deviation of the 50-year 

valuations (.011/.015 = .73) and about 40% of the standard deviation of the 10-year valuations 

(.011/.026 = .42). Using the 50-year valuations would require 15 participants for a within-subjects 

comparison or 30 (15 in each group with a between-subjects comparison) to achieve 80% power. 

To achieve 90% power would require 20 participants for a within-subjects comparison or 40 

participants for a between-subjects comparison. Using the 10-year valuations would require 44 

participants for a within-subjects comparison or 88 participants (44 in each group) for a between-

subjects comparison to achieve 80% power. 

C.4.5 Conclusion 

In conclusion, this study has demonstrated that there is a low cost incurred to the NHS by 

providing a contralateral acoustic hearing aid to users of a single cochlear implant. Furthermore, 

the minimum gain in utility required for a contralateral acoustic hearing aid to be judged cost-

effective is also small. Using data from a small sample of bimodal users in the UK, the medium 

gain in utility as measured using generic health-related quality of life instruments was at floor. 

However, when using questionnaires that are more sensitive to differences in hearing ability, the 

gain in utility was large enough for a contralateral hearing aid to be considered cost-effective at a 

willingness-to-pay threshold of £30,000. Furthermore, using the most up-to-date cost estimates 

provided by the Department of Health, the gains in utility observed with the more sensitive 

questionnaires are large enough for a contralateral acoustic hearing aid to be cost-effective at a 

willingness-to-pay threshold of £20,000. A contralateral acoustic hearing aid has the potential to 

be cost-effective, but a larger, more representative sample of patients is required to confirm this 

conclusion. 
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C.5 Summary 

 Four cost models were created using the costs of providing an acoustic hearing aid 

obtained from Summerfield et al. (2002) and the Department of Health (2014). 

 The average  incremental cost of providing a contralateral hearing aid ranged between 

£1,262 and £4,171 depending on the cost model used. 

 The minimum gain in utility required for a contralateral hearing aid to be considered cost 

effective at a willingness-to-pay threshold of £20,000 ranged between .0033 and .0109 

depending on the cost model used. 

 The minimum gain in utility required for a contralateral hearing aid to be considered cost 

effective at a willingness-to-pay threshold of £30,000 ranged between .0022 and .0073 

depending on the cost model used. 

 Median gains in utility from a contralateral hearing aid obtained from four measures were 

summarised. 

 Gains in utility using generic health-related quality of life instruments were not large 

enough for a contralateral hearing aid to be considered a cost-effective intervention. 

 Gains in utility from questionnaires sensitive to differences in hearing were large enough 

for a contralateral hearing aid to be considered a cost-effective intervention. 
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Appendix D 

The 10 familiar tunes used in the experiment reported in Chapter 5 were: 

 Auld Lang Syne 

 Baa Baa black sheep 

 Chimes of Big Ben 

 Frere Jacque 

 Good King Wenceslas 

 God rest ye merry gentlemen 

 Jingle bells 

 Old MacDonald 

 This old man 

 Twinkle twinkle little star
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Appendix E 

Table E1. Individual participant mean results for the eight measures reported in Section 7.2 for the visual condition. 

PID Number 
of CIs 

RMSE (°) Latency to 
respond (s) 

Maximum 
velocity (°/s) 

Reversals 
(count) 

Length of 
movement (°) 

Initial latency 
(s) 

Duration of 
movement (s) 

Latency at 
fixation (s) 

201 2 14.61 1.34 81.41 2.04 41.46 0.25 0.59 0.50 

214 2 9.88 1.06 107.19 1.72 46.33 0.13 0.49 0.43 
216 2 6.71 1.36 145.21 2.66 68.41 0.18 0.76 0.42 
480 2 27.08 0.77 170.6 1.24 43.60 0.09 0.49 0.17 
169 1 15.20 0.93 118.89 1.77 43.75 0.13 0.39 0.39 
111 1 15.08 1.07 142.75 1.93 43.75 0.18 0.33 0.54 
323 1 13.49 0.77 118.92 0.68 42.49 0.11 0.38 0.26 
303 1 13.15 0.85 121.85 1.59 40.39 0.08 0.39 0.38 

 

Table E2. Individual participant mean results for the eight measures reported in Section 7.2 for the auditory short condition. 

PID Number 
of CIs 

RMSE Latency to 
respond 

Maximum 
velocity 

Reversals Length of 
movement 

Initial latency Duration of 
movement 

Latency at 
fixation 

201 2 31.83 3.20 79.34 9.46 54.34 0.71 1.79 0.67 

214 2 9.55 1.88 104.71 3.76 58.14 0.46 0.75 0.65 
216 2 24.21 2.09 81.65 6.39 37.13 0.48 0.64 0.92 
480 2 35.1 3.49 186.99 8.91 55.59 0.31 1.18 0.88 
169 1 46.72 2.39 58.88 5.19 23.81 1.56 0.34 0.41 
111 1 58.58 3.18 50.58 6.96 17.11 1.63 0.41 0.84 
323 1 43.71 3.56 167.37 6.60 120.82 0.49 2.37 0.68 
303 1 75.95 3.77 24.98 12.84 12.9 0.82 0.26 1.25 

 



 
 

 

2
8

6
 

A
p

p
en

d
ices 

 
 

 
 

 
 

 
 

A
p

p
en

d
ix E 

Table E3. Individual participant mean results for the eight measures reported in Section 7.2 for the auditory long condition. 

PID Number 
of CIs 

RMSE Latency to 
respond 

Maximum 
velocity 

Reversals Length of 
movement 

Initial latency Duration of 
movement 

Latency at 
fixation 

201 2 16.16 4.14 86.74 9.45 76.13 0.69 2.44 0.98 
214 2 37.45 6.56 97.44 11.43 127.03 0.89 4.58 1.00 
216 2 13.93 3.36 122.75 8.64 72.61 0.53 1.92 0.91 
480 2 14.98 4.73 141.58 13.87 89.90 0.53 3.29 0.88 
169 1 45.20 4.69 118.47 9.14 109.67 1.00 3.23 0.44 
111 1 52.4 6.89 79.89 10.63 119.7 2.13 3.88 0.85 
323 1 25.98 12.14 169.85 16.44 438.81 0.86 10.85 0.42 
303 1 67.93 4.99 100.98 16.69 71.51 0.48 3.65 0.85 
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Appendix F 

TableF1. Number of participants in each group who completed each experimental condition. 

Target location Noise separation NH listeners Unilateral CI 
users 

Bilateral CI users 

-90 0 24 3 3 
 30 24 3 2 
 -30 12 3 2 
 90 12 2 3 
 -90 24 3 3 
 180 24 3 3 
-45 0 24 4 2 
 30 24 4 3 
 -30 12 4 2 
 90 12 4 2 
 -90 24 4 3 
 180 24 4 3 
-30 0 23 - - 
 30 23 - - 
 -30 11 - - 
 90 11 - - 
 -90 23 - - 
 180 23 - - 
60 0 24 3 3 
 30 24 3 4 
 -30 12 2 4 
 90 12 2 3 
 -90 23 3 3 
 180 24 3 4 
105 0 24 1 4 
 30 24 2 4 
 -30 12 2 3 
 90 12 2 3 
 -90 24 2 4 
 180 24 2 3 
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Appendix G 

Instructions for the 10-year condition 

This questionnaire consists of 27 ‘scenarios’. Each scenario is a description of three aspects of a 

person’s ability to hear. We want you to imagine that we are describing you. 

 

First, we describe your ability to understand speech when there is background noise. 

Second, we describe your ability to work out where sounds are coming from; that is, 

to ‘localise’ sounds. 

Third, we describe the amount of effort that you have to make in order to hear. Also, 

we describe how tired this makes you feel by the end of the day. 

 

Please read each scenario carefully and imagine that it is describing your own ability to hear. Now 

imagine that you are told that you have 10 years left to live. Imagine that you are also told that 

you can choose either to live these 10 years with the hearing abilities that are described in the 

scenario, or that you can choose to give up some years of life to live for a shorter period with no 

problems with your hearing.  

 

We shall then ask you to indicate the number of years with no problem with your hearing that 

you think is of equal value to 10 years with the abilities described in the scenario. 

 

Please look at the examples on the next page. Then work your way through all 27 scenarios, one 

at a time. When you reach the end of the questionnaire, please check that you have answered all 

of the scenarios. 

 

There are no right or wrong answers. We are simply trying to find out how people value 

different aspects of the ability to hear. 

 

Instructions for the 50-year condition 

While you are completing this questionnaire, we would like you to imagine that you are 30 years 

old and that you will live for 50 more years, until you are 80 years old.  

 

The questionnaire consists of 27 ‘scenarios’. Each scenario is a description of three aspects of a 

person’s ability to hear. We want you to imagine that we are describing you. 
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First, we describe your ability to understand speech when there is background noise. 

Second, we describe your ability to work out where sounds are coming from; that is, 

to ‘localise’ sounds. 

Third, we describe the amount of effort that you have to make in order to hear. Also, 

we describe how tired this makes you feel by the end of the day. 

 

Please read each scenario carefully and imagine that it is describing your own ability to hear. Any 

difficulties with your hearing are permanent. They are not life-threatening, but there is no cure. 

Then imagine that you could give up some of your remaining 50 years of life in order to be free of 

any difficulties with your hearing. You would hear normally now, and for the rest of your life. The 

years that you would give up would be taken from the end of your life. 

 

Remember: you are 30 years old and you can expect to live for 50 more years. Please read each 

scenario carefully. Imagine that it is describing your hearing.  Then tell us how many of those 50 

years you would be willing to give up in order to hear normally now, and for the rest of your 

life.  

 

Please work your way through all 27 scenarios, one at a time. When you reach the end of the 

questionnaire, please check that you have answered all of the scenarios. 

 

There are no right or wrong answers. We are simply trying to find out how people value 

different aspects of the ability to hear.  
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Appendix H 

Table H1. Utility valuations from the experiment reported in Chapter 8. Numbers in the first three columns 

correspond to the response number on the patient questionnaire. 

Speech in 
noise 

Localisation Effort 50-year 
values 

10-year 
values 

1 1 1 0.99 0.97 

1 1 2 0.98 0.93 

1 1 3 0.97 0.89 

1 1 4 0.95 0.86 

1 1 5 0.93 0.83 

1 2 1 0.98 0.95 

1 2 2 0.97 0.92 

1 2 3 0.95 0.88 

1 2 4 0.94 0.85 

1 2 5 0.92 0.82 

1 3 1 0.98 0.93 

1 3 2 0.96 0.90 

1 3 3 0.94 0.87 

1 3 4 0.93 0.84 

1 3 5 0.92 0.81 

1 4 1 0.97 0.90 

1 4 2 0.95 0.87 

1 4 3 0.93 0.84 

1 4 4 0.92 0.82 

1 4 5 0.91 0.79 

1 5 1 0.95 0.86 

1 5 2 0.94 0.84 

1 5 3 0.92 0.82 

1 5 4 0.91 0.79 

1 5 5 0.90 0.77 

2 1 1 0.98 0.94 

2 1 2 0.97 0.91 

2 1 3 0.96 0.88 

2 1 4 0.94 0.85 

2 1 5 0.92 0.82 

2 2 1 0.97 0.93 

2 2 2 0.96 0.90 

2 2 3 0.95 0.87 

2 2 4 0.93 0.84 

2 2 5 0.92 0.81 

2 3 1 0.97 0.91 

2 3 2 0.95 0.88 

2 3 3 0.94 0.85 

2 3 4 0.92 0.82 
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2 3 5 0.91 0.79 

2 4 1 0.96 0.89 

2 4 2 0.94 0.86 

2 4 3 0.93 0.83 

2 4 4 0.91 0.80 

2 4 5 0.90 0.78 

2 5 1 0.94 0.87 

2 5 2 0.93 0.84 

2 5 3 0.92 0.81 

2 5 4 0.90 0.79 

2 5 5 0.89 0.76 

3 1 1 0.97 0.92 

3 1 2 0.96 0.90 

3 1 3 0.95 0.87 

3 1 4 0.93 0.84 

3 1 5 0.91 0.80 

3 2 1 0.96 0.90 

3 2 2 0.95 0.88 

3 2 3 0.94 0.85 

3 2 4 0.92 0.82 

3 2 5 0.91 0.79 

3 3 1 0.96 0.89 

3 3 2 0.94 0.86 

3 3 3 0.93 0.84 

3 3 4 0.92 0.81 

3 3 5 0.90 0.78 

3 4 1 0.95 0.88 

3 4 2 0.93 0.85 

3 4 3 0.92 0.83 

3 4 4 0.91 0.79 

3 4 5 0.89 0.76 

3 5 1 0.94 0.87 

3 5 2 0.92 0.84 

3 5 3 0.91 0.81 

3 5 4 0.89 0.78 

3 5 5 0.88 0.75 

4 1 1 0.96 0.91 

4 1 2 0.95 0.88 

4 1 3 0.94 0.86 

4 1 4 0.92 0.83 

4 1 5 0.91 0.80 

4 2 1 0.96 0.90 

4 2 2 0.94 0.87 

4 2 3 0.93 0.84 

4 2 4 0.92 0.82 

4 2 5 0.90 0.79 

4 3 1 0.95 0.88 
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4 3 2 0.94 0.86 

4 3 3 0.92 0.83 

4 3 4 0.91 0.80 

4 3 5 0.89 0.77 

4 4 1 0.94 0.87 

4 4 2 0.93 0.84 

4 4 3 0.91 0.81 

4 4 4 0.90 0.78 

4 4 5 0.88 0.75 

4 5 1 0.93 0.85 

4 5 2 0.92 0.82 

4 5 3 0.91 0.79 

4 5 4 0.89 0.76 

4 5 5 0.87 0.74 

5 1 1 0.96 0.90 

5 1 2 0.94 0.87 

5 1 3 0.93 0.84 

5 1 4 0.92 0.82 

5 1 5 0.90 0.79 

5 2 1 0.95 0.89 

5 2 2 0.94 0.86 

5 2 3 0.92 0.83 

5 2 4 0.91 0.81 

5 2 5 0.89 0.78 

5 3 1 0.94 0.88 

5 3 2 0.93 0.85 

5 3 3 0.92 0.83 

5 3 4 0.90 0.80 

5 3 5 0.89 0.77 

5 4 1 0.93 0.86 

5 4 2 0.92 0.83 

5 4 3 0.91 0.80 

5 4 4 0.89 0.77 

5 4 5 0.88 0.75 

5 5 1 0.92 0.83 

5 5 2 0.91 0.80 

5 5 3 0.90 0.76 

5 5 4 0.88 0.75 

5 5 5 0.87 0.73 
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