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Abstract

In this thesis, we consider the feature selection, model specification and

estimation of the generalised semi-varying coefficient models (GSVCMs),

where the number of potential covariates is allowed to diverge with

the sample size. Based on the penalised likelihood approach and ker-

nel smoothing method, we propose a penalised weighted least squares

procedure to select the significant covariates, identify constant coeffi-

cients among the coefficients of the selected covariates, and estimate

the functional or constant coefficients in GSVCMs. A computational

algorithm is also proposed to implement the procedure. Our approach

not only inherits many desirable statistical properties from the local

maximum likelihood estimation and nonconcave penalised likelihood

method, but also computationally attractive thanks to the proposed

computational algorithm. Under some mild conditions, we establish

the theoretical properties for the proposed procedure such as sparsity,

oracle property and the uniform convergence rates of the proposed es-

timators. We also provide simulation studies to show the proposed

procedure works very well when the sample size is finite. We then use

the proposed procedure to analyse a real environmental data set, which

leads to some interesting findings. Finally, we establish a classification

method and show it can be used to improve predictive modelling for

classify the patients with early inflammatory arthritis at baseline into

different risk groups in future disease progression.
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1 Introduction

In recent years, model selection has become an important and funda-

mental issue in data analysis as high-dimensional data are commonly

encountered in various applied fields such as epidemiology, genetics

and finance. It is well-known that the traditional model selection pro-

cedures such as the stepwise regression and the best subset variable

selection can be extremely computationally intensive in the analysis of

the high-dimensional data. To address this computational challenge,

various penalised likelihood/least-square methods have been well stud-

ied and become a promising alternative. With an appropriate penalty

function, the penalised method would automatically shrink the small

coefficients to zero and remove the associated variables from the model,

hence serve the purpose of model selection. A popular penalty function

is the L1 penalty, which leads to the LASSO (Tibshirani 1996). Efron

et al (2004) developed an efficient algorithm to solve the entire solu-

tion path of the LASSO. Yuan and Lin (2006) extended the LASSO

to group selection and proposed the group LASSO. Whilst the LASSO

comes with many nice properties, it is biased. Zou (2006) proposed the

adaptive LASSO to fix the inconsistency problem of the LASSO. Fan

and Li (2001) argued that nonconcave penalty function would serve

better than concave one, such as L1, in model selection. They built

an unified nonconcave penalised likelihood framework, and proposed

a penalty function termed SCAD as an example of their framework.

They showed the SCAD enjoys the properties of unbiasedness, sparsity

and continuity. Further works on the nonconcave penalised likelihood

method, such as its application in survival models, varying coefficient

1



models, can be found in Fan and Li (2002), Li and Liang (2008). In

the implementation of the nonconcave penalised likelihood method, the

optimisation of the penalised likelihood function is challenging. Hunter

and Li (2005) proposed an MM algorithm to meet the challenge, and

proved the convergence of the algorithm. Zou and Li (2008) applied

the local linear approximation to a nonconcave penalty function, and

showed the algorithm for LASSO can be used to compute the solution

of nonconcave penalised least squares.

In high-dimensional data analysis, it is often the case that the

number of potential covariates grow beyond the sample size. For para-

metric models, there is literature addressing this problem, see Huang

et al (2008), Zhang and Huang (2008), Zou and Zhang (2009), Huang

and Xie (2007). Furthermore, some literature explored the ultra-high

dimensional cases, allowing the number of potential covariates diverge

with certain exponential rate, see Fan and Lv (2008), Fan et al (2009),

Fan and Song (2010) and Bühlmann and van de Geer (2011).

However, the pre-supposed parametric linear relationships and mod-

els, although easy to implement, are often too restricted and unrealistic

in practical applications. They often lead to model misspecification,

which would result in inconsistent estimates and incorrect conclusions

being drawn from the data analysed. In this thesis, we relax this linear

restriction and use functional coefficients to describe the relationship

between response variables and covariates. Varying coefficient models,

as an useful generalisation of linear models, have played an important

role in the analysis of complex data and experienced deep and exciting

developments. See, for example: Fan and Zhang (1999, 2000), Cheng
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et al (2009), Wang and Xia (2009), Wang et al (2009), Zhang et al

(2009), Kai et al (2011), and Li and Zhang (2011).

Like any other family of models, model selection in the varying

coefficient models is of great interest and has been extensively stud-

ied in the literature. For instance, Wang et al (2008) and Wang and

Xia (2009) use group penalisation to select the significant variables

in varying coefficient models when the number of potential covariates

is fixed. More recently, for ultra-high dimensional varying coefficient

models, Song et al (2012), Cheng et al (2014), Fan et al (2014) and

Liu et al (2014) combine the nonparametric independence screening

technique and the group penalised method to choose the significant

covariates and estimate the functional coefficients for the varying coef-

ficient models. Lian (2012) considers variable selection in generalised

varying coefficient models whilst allowing that the number of covariates

to diverge with the sample size.

Unlike the literature, in this thesis, the model selection for the

proposed varying coefficient models has two aspects: (i) variable se-

lection; and (ii) identification of the constant coefficients. We remark

that variable selection is equivalent to identifying the zero functional

coefficients and that identification of the constant coefficients is equiv-

alent to identifying the functional coefficients with zero derivative or

variation. Either of the two aspects would be related to the so called

“all-in-all-out” problem. With this in mind, we call the proposed model

selection procedure feature selection and model specification.

Suppose we have a response variable y, covariate U , and potential

covariates x1, · · · , xdn , where dn depends on sample size n, and dn →

3



∞ when n → ∞. Let X = (x1, · · · , xdn)
T,

m(U, X) = E(y|U, X)

be the conditional expectation of y given (U, XT). In this thesis, we

define the density function of a discrete random variable as its proba-

bility mass function. We assume the log conditional density function

of y given X and U is

C1(φ1)ℓ(m(U, X), y)+C2(y,φ2) with g(m(U, X)) =

dn∑

j=1

aj(U)xj ,

(1.1)

where g(·), ℓ(·, ·), C1(·) and C2(·, ·) are known, the functional coeffi-

cients a1(·), · · · , ap(·) are unknown and to be estimated, and C1(φ1) >

0, φ1 and φ2 are unknown nuisance parameters.

The family of models in (1.1) is a natural extension of gener-

alised linear models by allowing the coefficients to vary with the index

variable U and for some functional coefficients to possibly be con-

stant. Hence we term (1.1) generalised semi-varying coefficient models

(GSVCMs). The family of GSVCMs is not only a mathematical gen-

eralisation but also stimulated by the demands in real applications. In

the following part, we give two brief examples to illustrate the usage

of GSVCMs in practice. The analysis of these examples can be con-

sidered as some future applications of the methods proposed in this

thesis.

Example 1.1. Estimation of the perk time in magnetic resonance

imaging (MRI) scan.

4



MRI scan is a radiological imaging technique which is widely used

in many medical studies and clinical fields. For some MRI scans, the

patients need to have an injection of contrast dye to make certain

tissues and blood vessels show up more clearly and in greater detail.

After the injection, the contrast dye will spread and be absorbed by

the body gradually and its concentration in blood will increase first

and then decrease. So as to make a clear enough image, MRI scans

need to be taken at the perk time, i.e. the time window that the

contrast dye concentration in blood is at a high level. In order to

guarantee a successful scan, the hospitals used to use a relatively large

dose of contrast dye to gain a long enough perk time. However, the

injection of contrast dye may cause many severe side-effects such as

nausea, vomiting, urticaria, anaphylaxis and so on. It is always desir-

able to keep the injection dose of contrast dye at a low level. Hence an

accurate estimation of the perk time will be the key to reduce the in-

jection dose of contrast dye. The traditional way to estimate the perk

time is to establish a Poisson regression model between the perk time

(response variable) and some covariates like gender, height, weight,

blood pressure, average heart rate, injection dose, injection rate, and

so on. In practice, this model does not work well as the impacts of

the covariates will depend on the age of the patients in a complicated

way. As an alternative, it will be natural to consider a semi-varying

coefficient Poisson regression model and take the age of the patients

as the covariate U .

Example 1.2. Prediction of stock market movements using Inter-

net data.
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Nowadays, the Internet has become an indispensable part of so-

ciety. Compared with traditional media sources like newspapers and

television, one big advantage of the Internet is how powerful search en-

gines allow people to obtain the information they want to know at any

time. Hence the records of search engines can be used as important

data to analyse their users including their behaviour in the stock mar-

ket. In this example, one can analyse a stock index by making use of

the search volume of various terms. One flexible model assumption is

to assume the stock index is a semi-varying coefficient model of search

volumes and the impact of these search volumes may vary with some

index covariate U . For example, the index covariate U can be chosen

as time, income, location or some other covariate. Furthermore, one

can allow the number of potential covariates to diverge with the sample

size and do model selection by the methods proposed in this thesis.

In this thesis, we will investigate feature selection and model speci-

fication procedure of GSVCMs under both diverging and ultra-high di-

mensionality. For the diverging dimensionality case, the methodology

we are going to use is based on kernel smoothing, penalised likelihood

estimation and group selection idea. We first obtain preliminary esti-

mators of the functional coefficients using local linear approximation

and log-likelihood estimation. Then, based on the preliminary esti-

mators, we propose a penalised weighted least squares procedure with

group selection penalty to select significant covariates, identify con-

stant coefficients and estimate functional or constant coefficients. For

the ultra-high dimensionality case, we first propose a penalised likeli-

hood method with LASSO penalty function to obtain preliminary esti-
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mators of the functional coefficients, which are proved to be uniformly

consistent. The uniform convergence rate for preliminary penalised

semi-parametric estimators relies on the number of non-zero functional

coefficients and the tuning parameters associated in the penalty terms.

Then, we use the preliminary estimators of the functional coefficients

in the quadratic approximation for the local log-likelihood function,

and the construction of the adaptive group LASSO penalty and the

adaptive SCAD penalty. We introduce a novel penalised weighted

least squares procedure to simultaneously select the significant covari-

ates and identify the constant coefficients among the coefficients of

the selected covariates. Hence, the semi-varying coefficient modelling

structure can be specified. Compared with the preliminary estima-

tors, the final estimators enjoy some nice statistical properties such as

sparsity and oracle property.

For both cases, the developed feature selection and model speci-

fication approaches inherit many desirable statistical properties from

both the local maximum likelihood estimation and non-concave pe-

nalised likelihood method. Under some regularity conditions, we es-

tablish some asymptotic properties for the proposed feature selection,

model specification and estimation procedures such as the sparsity and

oracle property. In order to implement our methods in practical appli-

cations, we further develop novel iterative computational algorithms

to do the maximisation involved in the estimation procedure when

the group/adaptive SCAD or LASSO penalty is used. The SCAD

penalty has many advantages and is widely used in shrinkage method.

The common approach to implement the SCAD penalty in shrink-
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age method for varying coefficient models consists of two steps: (i)

approximate SCAD with an L1 penalty locally using local linear ap-

proximation; (ii) apply the quadratic approximation to deal with the

L1 penalty. In this thesis, we do not go down that route. Making use

of the structure of the SCAD penalty, we propose a different algorithm

to implement our method. Furthermore, our novel iterative compu-

tational algorithms have a “double check” mechanism which works as

follows: If after an iteration a covariate is identified as insignificant

or with constant coefficient, it still has a chance to be re-selected into

the model or identified as with functional coefficient in the following

iteration. Thanks to this “double check” mechanism, our methods

have good model selection performance and are not very sensitive to

the choice of the preliminary estimators. Our simulation results show

that both the adaptive group LASSO and the adaptive SCAD methods

perform reasonably well, with the latter giving slightly better perfor-

mance. The method developed in this thesis outperforms those in

Wang and Xia (2009), and Lian (2012).

In this thesis, we also establish a multicategory classification method

based on semi-parametric predictive modelling. Our multicategory

classification method is based on a semi-varying coefficient multino-

mial logistic regression model and contains three steps: (i) feature

selection and model specification; (ii) coefficient estimation; and (iii)

classification. We conduct simulation studies to assess our method’s

performance and the results show that its correct classification rates

compare well with the oracle one which is based on the true model

and true coefficients under different scenarios. We illustrate the use of
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our method by applying it to classify the patients with early inflam-

matory arthritis at baseline into different risk groups in future disease

progression and use a leave-one-out cross-validation method to assess

its correct classification rate.

The rest of the thesis is organised as follows. We begin in Chapter

2 with a literature review on local polynomial modelling and penalised

likelihood method. Chapter 3 describes the proposed feature selection

and model specification procedures. Chapter 4 gives the asymptotic

properties of the proposed feature selection and model specification

procedures. Chapter 5 provides computational algorithms to imple-

ment the developed methods. Chapter 6 discusses how to select the

tuning parameters. In Chapter 7.1, the performance of the proposed

feature selection, model specification and estimation procedures and

algorithms are illustrated by some simulation studies. We also com-

pare the finite sample performance of our method with some existing

ones. In Chapter 7.2, we apply the generalised semi-varying coefficient

models together with the proposed feature selection, model specifica-

tion and estimation procedure to analyse an environmental data set

from Hong Kong, and explore how some pollutants and other envi-

ronmental factors affect the number of daily total hospital admissions

for circulatory and respiratory problems in Hong Kong. In Chapter

8, we establish a multicategory classification method based on a semi-

varying coefficient multinomial logistic regression model and analyse

a prognostic classification problem in medical science. In the end,

the regularity conditions, the proofs of the main theoretical results

and some auxiliary results for diverging and ultra-high dimensional

9



GSVCMs are provided in Chapter 9 and Chapter 10, respectively.
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2 Literature review

2.1 Framework of local polynomial modelling

We first review the framework of local polynomial regression. In order

to get an insight into this technique, we start with the theoretical basis

of applying local polynomial approximation to an i.i.d. bivariate data

sample (X1, Y1) · · · (Xn, Yn) from the population (X, Y ). We assume

the data are generated from the model

Y = m(X) + σ(X)ε (2.1)

where the error ε is independent of X , E(ε) = 0, and Var(ε) = 1.

Our goal is to estimate the regression function m(x0) = E(Y |X = x0)

and its derivatives ṁ(x0), m̈(x0), · · · , m(p)(x0). It is assumed that the

(p+ 1)th derivative of m(x) at the point x0 exists.

Through a Taylor expansion for the unknown regression function

m(x) in a neighbourhood of x0, we can approximate it by a local

polynomial as

m(x) ≈m(x0) + ṁ(x0)(x− x0) +
m̈(x0)

2!
(x− x0)

2

+ · · ·+ m(p)(x0)

p!
(x− x0)

p. (2.2)

We can fit this polynomial by treating
m(j)(x0)

j!
= βj for j =

0, 1, · · · , p, and solve them by minimizing the following weighted least

squares regression:

11



n∑

i=1

{
Yi −

p∑

j=0

βj (Xi − x0)
j

}2

Kh (Xi − x0) , (2.3)

where h is a bandwidth, and Kh(·) = K(·/h)/h is a kernel function al-

locating weights to each observation. Once we minimized this weighted

least squares problem with respect to βj and denote the minimizer by

β̂j , j = 0, 1, · · · , p, we can estimate the unknown function m(x) and

its derivatives by m̂(ν)(x0) = ν!β̂ν , ν = 0, 1, · · · , p.
Also, following the notations in Fan and Gijbels (1996), we can

rewrite the weighted least squares problem in (2.3) in matrix form,

min
β

(y −Xβ)T W (y −Xβ) , (2.4)

where the design matrix X, y and β are as follows:

X =




1 (X1 − x0) · · · (X1 − x0)
p

...
...

...

1 (Xn − x0) · · · (Xn − x0)
p


 ,

y =




Y1

...

Yn


 , β =




β0

...

βp


 ,

and W is the n× n diagonal matrix of weights:

W = diag {Kh(Xi − x0)} .

12



It is easy to see the solution of (2.4) is given by

β̂ = (XTWX)−1XTWy, (2.5)

with β̂ = (β̂0, · · · , β̂p)
T .

Recall that, the conditional expectation of y given X is m(x0) =

E(Y |X = x0). It is easy to see the conditional expectation and vari-

ance of β̂ from (2.5):

E(β̂|X) =
(
XTWX

)−1
XTWm (2.6)

= β + (XTWX)−1XTWr

Var(β̂|X) =
(
XTWX

)−1 (
XTΣX

) (
XTWX

)−1
,

where r = m−Xβ is the residual vector, and

Σ = diag
{
K2

h (Xi − x0)σ
2(Xi)

}
.

Although the exact conditional bias and variance of β̂ have nice and

simple closed forms, we can not directly use them since they involve

unknown quantities, like the residual r and the diagonal matrix Σ.

One way to solve this problem is to find the estimators of r̂ and Σ̂,

and plug them in equation (2.6). Another way, studied by Ruppert

and Wand (1994), approximating the conditional bias and variance by

their first order asymptotic expansions. Before illustrating their results

in the following theorem, we would like to introduce some notations

first. We denote the moments of K and K2 by µj =
∫
ujK(u)du and

13



νj =
∫
ujK2(u)du respectively. Let eν+1 = (0, · · · , 0, 1, 0, · · · , 0)T be

the indicator vector with 1 on the (ν + 1)th position and 0 elsewhere.

Also let

S = (uj+l)0≤j,l≤p , S̃ = (uj+l+1)0≤j,l≤p , S∗ = (uj+l)0≤j,l≤p ,

cp = (µp+1, · · · , µ2p+1)
T , and c̃p = (µp+2, · · · , µ2p+2)

T .

In addition, we denote the conditional variance of Y given X = x0

by σ2(x0) and the marginal density of X by f(·). We now have the

following theorem in Chapter 3.2 in Fan and Gijbels (1996).

Theorem 2.1. Assume that f(x0) > 0 and that f(·), m(p+1)(·) and

σ2(·) are continuous in a neighbourhood of x0. Further assume that

h → 0 and nh → ∞. Then the asymptotic conditional variance of

m̂ν(x0) is given by

Var(m̂ν(x0)|X) = eTν+1S
−1S∗S−1ev+1

ν!2σ2(x0)

f(x0)nh1+2ν
+ oP

(
1

nh1+2ν

)
.

(2.7)

The asymptotic conditional bias for p− ν odd is given by

Bias {m̂ν(x0)|X} = eTν+1S
−1cp

ν!

(p+ 1)!
m(p+1)(x0)h

p+1−ν + oP (h
p+1−ν).

(2.8)

Further, for p− ν even the asymptotic conditional bias is

Bias {m̂ν(x0)|X} = eTν+1S
−1c̃p

ν!

(p+ 1)!
{m(p+2)(x0)

+(p+ 2)m(p+1)(x0)
ḟ(x0)

f(x0)
}hp+2−ν + oP (h

p+2−ν), (2.9)
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provided that ḟ(·) and m(p+2)(·) are continuous in a neighbourhood of

x0 and nh3 → ∞.

Now let us analyse the results showed in the above theorem. Sup-

pose we fit an order p local polynomial to estimate the νth order deriva-

tive m(ν)(x0). The asymptotic bias of this fit has the order hp+1−ν (for

p− ν odd) or hp+2−ν (for p− ν even). So, the bias order will decrease

while p increases. This means fitting a higher order local polynomial

will effectively decrease the asymptotic conditional bias. Does this sug-

gest we should always apply a high order local polynomial regression?

According to the conclusion in classical multivariate regression, an in-

crease of approximate terms will result in an increase of the variance

part. To see this from an intuitive point of view, when we choose a large

p, each unknown term gets less “information” to estimate, and hence

the approximation variability increases. So there exists a trade off be-

tween bias and variance associated with picking up a proper model

order. The order of the asymptotic conditional variance according to

(2.7) is n−1h−(1+2ν), which is not a function of order p. However, the

order p does affect the constant term of the asymptotic conditional

variance in a complicated way. The detailed discussion about this can

be find in Ruppert and Wand (1994) and in Fan and Gijbels (1996) .

An interesting and useful result of this discussion is that the asymp-

totic variance will not increase when moving from an p− ν even order

to its consecutive odd order. The variability will only increase when

the model moves from a p− ν odd order to its consecutive even order.

In other words, when we estimate the regression function (ν = 0), a

2p+ 1 order fit, compared with a 2p order fit, introduces an extra pa-
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rameter to reduce the bias, without paying price on the variance side.

This result suggests that the odd order fits are preferable, i.e. local

linear outperforms local constant, and local cubic outperforms local

quadratic.

The choice of bandwidth is another important issue in local poly-

nomial modelling. The bandwidth h will determine the size of the

local neighbourhood of the polynomial fit, and its value will greatly

affect the approximation result. For example, a bandwidth h = 0 cor-

responds to interpolating the data and choosing the most complicated

model. On the contrary, h = ∞ leads to the simplest model – fitting

a ‘global’ polynomial. Thus the bandwidth h, which runs from 0 to

∞, will play a role of controlling the model complexity. We can derive

the asymptotically optimal bandwidth by minimizing the asymptoti-

cally conditional mean squared error with respect to the bandwidth h.

However, the optimal bandwidth is not directly applicable in practice

since it contains unknown quantities. Here we review a data-driven

procedure to select a constant bandwidth in local polynomial fitting

introduced in Fan and Gijbels (1996). The idea of this procedure are

formed by three steps. In the first step, we derive good estimators of

the bias and variance not fully relying on their asymptotic expressions.

In the second step, we establish the Residual Squares Criterion (RSC)

and obtain an optimal bandwidth estimator by minimizing the RSC. In

the third step, we use the bandwidth estimator obtained in the second

step as a pilot estimator and select the bandwidth which minimizes

the estimated integrated mean squared error. This procedure is called

the refined bandwidth selector.
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Now we briefly introduce the main results about the refined band-

width selector. The detailed results can be found in Chapter 4 of

Fan and Gijbels (1996). Fan and Gijbels (1996) defined the Residual

Squares Criterion (RSC) as the follows:

RSC(x0; h) = σ̂2(x0) {1 + (p+ 1)V } , (2.10)

where σ̂2(·) is the estimator of the unknown variance σ2(·), and V is

the first diagonal element of the matrix

(
XTWX

)−1 (
XTW2X

) (
XTWX

)−1
.

The estimator σ̂2(·) can be obtained by the normalized weighted resid-

ual sum of squares through a p-th order local polynomial approxima-

tion. Here we omit the corresponding technical details as they are not

of interest in this thesis.

Then the optimal bandwidth can be estimated through the mini-

mizer of the asymptotic expectation of the RSC statistic. The asymp-

totic expectation for the RSC statistic is given in the following theorem

established by Fan and Gijbels (1995).

Theorem 2.2. Suppose that σ2(x) = σ2(x0) in a neighbourhood of x0.

If hn → 0 and nhn → ∞, then

E {RSC(x0; hn)|X} =σ2(x0) + Cpβ
2
p+1h

2p+2
n + (p+ 1)a0

σ2(x0)

nhnf(x0)

+ oP
{
h2p+2
n + (nhn)

−1
}
,

where Cp = µ2p+2−cTp S
−1cp with cp = (µp+1, · · · , µ2p+1)

T , and a0 =
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∫
K∗

0 (t)dt which is the first diagonal element of the matrix S−1S∗S−1.

This theorem reveals that the approximation of the minimizer of

E {RSC(x0; hn)|X} with respect to h is

ho(x0) =

{
a0σ

2(x0)

2Cpβ
2
p+1nf(x0)

}1/(2p+3)

. (2.11)

And we have the simple relationship between ho and the optimal

bandwidth hopt as

hopt(x0) = adjν,pho(x0), (2.12)

where

adjν,p =

[
(2ν + 1)Cp

∫
K∗2

ν (t)dt

(p+ 1− ν)
{∫

tp+1K∗
ν(t)dt

}2 ∫
K∗

0 (t)dt

]1/(2p+3)

.

As the adjusting constants adjν,p only depend on the kernel function,

we find a statistic of which the minimizer leads to an estimator of hopt

and does not depend on unknown quantities.

Justified by the simulations in Fan and Gijbels (1995), the RSC

bandwidth selection method gives good estimation of the optimal band-

width, however the visual impression of the convergence rate of the

estimator is not great for some cases. To improve the convergence rate

of the bandwidth estimator, a refined bandwidth selector, introduced

by Fan and Gijbels (1996), is as following:

Pilot estimation. According to the RSC bandwidth selection

method introduced in (2.11) and (2.12), get a pilot bandwidth

estimator h∗ = ĥRSC
p+1,p+2 by fitting a polynomial of order p + 2.
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Then use this pilot bandwidth h∗ to obtain the estimates β̂p+1,

β̂p+2 and σ̂2(x0).

Bandwidth selection. Find the minimizer of the following

estimated integrated mean squared error:

ĥR
ν,p = argmin

h

∫

[a,b]

M̂SEν,p(y; h)dy, (2.13)

where the detailed form of M̂SEν,p(y; h) is given in Chapter 4.3

in Fan and Gijbels (1996). Then use this bandwidth estimator

obtained by the above refined bandwidth selector to fit a poly-

nomial of order p.

According to the simulation results in Fan and Gijbels (1996), this

refined bandwidth selector has higher relative rate of convergence than

the RSC bandwidth selector. Fan and Gijbels (1996) also provide

some simulations to show that a local polynomial model works well

with the refined bandwidth selector and can adapt neatly to spatially

inhomogeneous curves. This means even in the cases for which the

curves show many alterations, and are very irregular, this data-driven

methodology performs quite well.
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2.2 Penalised likelihood method

In practice, a large number of predictors may be treated as candi-

dates of true variables. So the initial step of high dimensional mod-

elling is usually to select a proper subset from the large pool of candi-

dates. We call this procedure the model selection or variable selection

procedure. There are some variable selection techniques, which are

practically useful in classical multivariate regression, like hypothesis

testing, AIC and BIC coupled with computational algorithms such as,

forward/backward search and stepwise deletion. However, problems

occur when directly apply them into high dimensional model selection.

There are several drawbacks of these methods. The first one is when

dealing with high dimensional data, the number of stages involved in

the variable selection procedure may be huge, and hence the stochas-

tic errors inherited in each stage may accumulate and become very

large. Another severe one is the theoretical properties of these classical

variable selection methods are hard to derive under high dimensional

model assumptions, i.e. “they lack of stability” as analysed in Breiman

(1996). The third drawback is that the traditional best subset selection

methods are usually computationally expansive. For example, the AIC

or the BIC is often impractical for p dimensional data when p is large,

since it would involve comparing 2p models. One good alternative is

the penalised likelihood approach. This approach attempts to auto-

matically and simultaneously select significant covariates and estimate

their coefficients via the combination of the likelihood function and a

penalty function.

We will briefly review the theory of penalised least squares and the
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SCAD penalty through the following linear regression model

y = Xβ + ǫ,

where X = (x1, · · · ,xn)
T is an n × p design matrix of covariates,

y = (y1, · · · yn)T is an n × 1 vector of the response variable, and ǫ ∼
N(0, σ2In) is an n×1 noise vector. Furthermore, for simplicity (but not

necessary), we assume X has orthonormal columns, i.e. XTX = nIp.

We define the penalised least squares (PLS) problem as

min
β∈Rp

{
1

2n
‖y −Xβ‖2 +

p∑

j=1

pλ(|βj |)
}
, (2.14)

where ‖u‖2 = uTu, pλ(·) is a penalty function, and λ ≥ 0 is a tuning

parameter. The first terms of (2.14) represents the goodness of fit while

the second term represents the penalty for model complexity. Thus the

minimizer of (2.14) can be also understood as a trade off between bias

and variance.

By some calculations, the minimization problem in equation (2.14)

can be transformed as:

min
β∈Rp

{
1

2n

∥∥∥y −Xβ̂

∥∥∥
2

+
∥∥∥β̂ − β

∥∥∥
2

+

p∑

j=1

pλ(|βj |)
}
, (2.15)

where β̂ = n−1XTy is the ordinary least squares estimator. Therefore,

minimizing (2.15) becomes a component-wise univariate PLS problem:

θ̂(z) = argmin
θ∈R

{
1

2
(z − θ)2 + pλ(|θ|)

}
. (2.16)
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Now an important question is how to choose the penalty func-

tion. Antoniadis and Fan (2001) argues that a good PLS estimator

θ̂(z) should present three properties: sparsity, approximate unbiased-

ness and continuity. So Fan an Li (2001) pointed out an ideal choice

of penalty function should be singular around the origin to produce

sparsity, be upper bounded by a positive constant to produce approx-

imate unbiasedness and satisfy argmint≥0{t+ ṗλ(t)} = 0 to guarantee

continuity.

As we know Lp penalties are widely used in penalised likelihood

estimation. Some famous members of this penalty family are the L2

penalty (Hoerl and Kennard, 1970), the L1 penalty (LASSO) (Tib-

shirani 1996), or a combination of the two (Zou and Hastie, 2005).

However all the Lp penalties can not satisfy all three aforementioned

properties at the same time. For example, the concave Lp penalty

with 0 ≤ p < 1 does not meet the continuity condition, the convex

Lp penalties with p > 1 does not enjoy sparsity and the widely used

convex L1 penalty does not satisfy the approximate unbiasedness con-

dition. For this reason, there is a need to find some penalty functions

which satisfy these three properties simultaneously. One successful at-

tempt, introduced by Fan (1997) and Fan and Li (2001), is the smoothly

clipped absolute deviation (SCAD) penalty. The SCAD penalty is de-

fined through its derivative as

ṗλ(t) = λ

{
I(t ≤ λ) +

(aλ− t)+
(a− 1)λ

I(t > λ)

}
for some a > 2,(2.17)

where pλ(0) = 0, and a is suggested to be 3.7 according to a Bayesian

argument.
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Furthermore, under some conditions, Fan and Li (2001) showed

the resulting estimator of SCAD penalty enjoys Oracle property. In

other words the estimator obtained by SCAD penalty works as well as

the oracle estimator. Here, the oracle estimator means the estimator

obtained when the correct sub-model were known.

Though the SCAD penalty enjoys many good properties, optimiza-

tion of the penalised likelihood function with a non-convex penalty

function is challenging. To solve this problem, Fan and Li (2001)

proposed the local quadratic approximation (LQA) algorithm for non-

concave penalty case. Using a Taylor expansion, and given an initial

value β∗ = (β∗
1 , · · · , β∗

p)
T , the penalty function pλ can be locally ap-

proximated by a quadratic function as

pλ(|βj |) ≈ pλ(|β∗
j |) +

1

2

ṗλ(|β∗
j |)

|β∗
j |

[β2
j − (β∗

j )
2], for βj ≈ β∗

j . (2.18)

With this quadratic approximation, the penalty function can be

approximated by a quadratic function and the whole approximation

procedure becomes an iteratively re-weighted least squares problem.

A better approximation suggested by Zou and Li (2008) is the local

linear approximation (LLA) algorithm:

pλ(|βj|) ≈ pλ(|β∗
j |) + ṗλ(|β∗

j |)(|βj| − |β∗
j |] for βj ≈ β∗

j . (2.19)

With LLA, the penalised likelihood problem become an iteratively

re-weighted LASSO problem. According to Fan and Lv (2010), “LLA

is a better approximation since it is the minimum (tightest) convex

majorant of the concave function on [0,∞)”.
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3 Feature selection and model specifica-

tion procedure

3.1 Model description

For any function f(·), throughout this thesis, we use ḟ(·) to denote

its first-order derivative, and f̈(·) its second-order derivative. For any
vector u, we define ‖u‖2 = uTu. As with generalised linear models,

our main interest lies in the conditional mean of the response variable

for given covariates, and C1(φ1) and C2(y,φ2) in model (1.1) have lit-

tle to do with the mean part as they are known and can be ignored

through an affine transformation. In order to make the presentation

simpler, without loss of generality, we assume the log conditional den-

sity function of y given X and U is

ℓ
(
m(U,X), y

)
with g

(
m(U,X)

)
=

dn∑

j=1

aj(U)xj , (3.1)

and further assume the support of the index variable U is [0, 1] through-

out this thesis. Suppose we have a sample (Ui, Xi, yi), i = 1, · · · , n,
from model (3.1), where Xi = (xi1, · · · , xidn)

T. In this chapter, we

will introduce how to select the significant variables and identify the

constant coefficients in model (3.1), and how to estimate both the

functional coefficients and constant coefficients.

It is easy to see, to identify the non-significant variables in (3.1) is

equivalent to identify the aj(·)s such that aj(U1) = · · · = aj(Un) = 0,

and to identify the constant coefficients is equivalent to identify the
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aj(·)s such that either ȧj(U1) = · · · = ȧj(Un) = 0 or its deviation

Dj = 0. The deviation of aj(·), in this thesis, means the deviation of

aj(·) from its average and is defined as

Dj =




n∑

k=1

{
aj(Uk)−

1

n

n∑

s=1

aj(Us)

}2


1/2

. (3.2)

Hence, the model selection problem can be transferred to a penalised

local maximum likelihood estimation problem. The details of the esti-

mation and model selection procedure are as follows.

For each given k, k = 1, · · · , n, by Taylor’s expansion of aj(·),
j = 1, · · · , dn, we have

aj(Ui) ≈ aj(Uk) + ȧj(Uk)(Ui − Uk),

when Ui, i = 1, · · · , n, are in a small neighbourhood of Uk. This local

linear approximation leads to the construction of the following local

log-likelihood function to estimate aj(Uk) and ȧj(Uk), j = 1, · · · , dn,

Lnk(ak,bk) =
1

n

n∑

i=1

ℓ

(
g−1
{ dn∑

j=1

[
αjk + βjk(Ui − Uk)

]
xij

}
, yi

)
Kh(Ui−Uk),

(3.3)

where K(·) is a kernel function, h is a bandwidth, Kh(·) = 1
h
K(·/h),

ak =
(
α1k, · · · , αdnk

)T
, bk =

(
β1k, · · · , βdnk

)T
.

It is easy to see ak corresponds to (a1(Uk), · · · , adn(Uk)) and bk cor-

responds to (ȧ1(Uk), · · · , ȧdn(Uk)).
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When the number of the covariates is fixed, we may obtain the

solutions which maximise the local log-likelihood function Lnk(·, ·) de-
fined in (3.3) and show that the resulting nonparametric estimators are

consistent (c.f., Cai et al, 2000; Zhang and Peng, 2010). However, for

the case when the number of covariates is diverging, it would be diffi-

cult to obtain satisfactory estimation results by maximising Lnk(·, ·) as
the number of the unknown nonparametric components involved may

exceed the number of observations. In order to address this issue, we

next introduce penalised local log-likelihood methods by adding ap-

propriate penalty functions to the above local log-likelihood function.

When the number of covariates is diverging, dn may grow with n in

different rate. In this thesis, we call the case diverging dimensional

GSVCMs when dn grows in polynomial rate, and ultra-high dimen-

sional GSVCMs when dn grows in exponential rate. In Chapter 3.2,

we illustrate the feature selection and model specification procedure for

diverging dimensional GSVCMs. In Chapter 3.3, we give the feature

selection and model specification procedure for ultra-high dimensional

GSVCMs.

3.2 Procedure for diverging dimensional GSVCMs

Here we introduce the feature selection and model specification pro-

cedure for diverging dimensional GSVCMs. The diverging dimension

here means the dimension dn → ∞ when the sample size n → ∞,

and dn is of order O(nǫ1) for some 0 < ǫ1 < 1. The procedure we are

going to introduce is a mixture of the ideas of penalised likelihood,

local linear approximation and group variable selection. We first use
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the local log-likelihood function to construct preliminary estimators of

unknown functional coefficients. Then based on the preliminary esti-

mators, we approximate the penalised local log-likelihood function by

the sum of a quadratic function and penalties on grouped variables.

Therefore we convert the complex penalised local log-likelihood esti-

mation problem to the penalised least-square problem. And with the

help of the iterative algorithms provided in Chapter 5.1, the minimi-

sation of the penalised least-square target function can be solved as an

iterative re-weighted LASSO problem which we are familiar with.

Let

Ln(A, B)

=
1

n

n∑

k=1

n∑

i=1

ℓ

(
g−1
{ dn∑

j=1

[
αjk + βjk(Ui − Uk)

]
xij

}
, yi

)
Kh(Ui − Uk)

=
n∑

k=1

Lnk(ak,bk), (3.4)

whereA =
(
aT1, · · · , aTn

)T
, B =

(
bT1, · · · , bTn

)T
, ak =

[
a1(Uk), · · · , adn(Uk)

]T
,

and bk =
[
ȧ1(Uk), · · · , ȧdn(Uk)

]T
for k = 1, · · · , n.

The penalised local log-likelihood function for feature selection and

structure specification is

Qn(A, B) = Ln(A, B)−
dn∑

j=1

pλ1j

(
‖βj‖

)
−

dn∑

j=1

pλ2j

(
‖αj‖

)
, (3.5)

where pλ(·) is a penalty function with tuning parameter λ,

αj = (αj1, · · · , αjn)
T, βj = (βj1, · · · , βjn)

T,
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αj corresponds to (aj(U1), · · · , aj(Un))
T, and βj corresponds to

(ȧj(U1), · · · , ȧj(Un))
T.

The maximisation of Qn(A, B) can be challenging, and the com-

putation involved could be very expensive. However, by some simple

approximations, we could alleviate the computational burden signifi-

cantly.

Let (Ãn, B̃n) be the maximiser of Ln(A, B), and

Ln∗(A,B) = 1

2

((
A− Ãn

)T
, h
(
B − B̃n

)T)
L̈n(Ãn, B̃n)


 A− Ãn

h
(
B − B̃n

)

 .

By Taylor’s expansion and that L̇n(Ãn, B̃n) = 0, we have

Ln(A, B) ≈ Ln(Ãn, B̃n) + Ln∗(A, B). (3.6)

The second derivative L̈n(A, B) can be obtained by some tedious com-

putations, it is

L̈n(A, B) =


 L̈n(A, B, 0, 0) L̈n(A, B, 0, 1)

L̈n(A, B, 1, 0) L̈n(A, B, 1, 1)




with

L̈n(A, B, l, κ) = diag
(
L̈n1(A, B, l, κ), · · · , L̈nn(A, B, l, κ)

)
,
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for l = 0, 1, κ = 0, 1, and

L̈nk(A, B, l, κ)

=
n∑

i=1

q2

(
dn∑

j=1

{
αjk + βjk(Ui − Uk)

}
xij , yi

)(
Ui − Uk

h

)l+κ

XiX
T
i Kh(Ui − Uk),

for k = 1, · · · , n, where q2(s, y) = ∂2ℓ (g−1(s), y) /∂s2.

We also apply Taylor’s expansion to the penalty functions. By

simple calculations, we have

pλ1j

(
‖βj‖

)
≈ pλ1j

(
‖β̃j‖

)
− ṗλ1j

(
‖β̃j‖

)
‖β̃j‖+ ṗλ1j

(
‖β̃j‖

)
‖βj‖

(3.7)

and

pλ2j
(‖αj‖) ≈ pλ2j

(‖α̃j‖)− ṗλ2j
(‖α̃j‖) ‖α̃j‖+ ṗλ2j

(‖α̃j‖) ‖αj‖, (3.8)

for j = 1, · · · , dn.

Let

P1n,j(‖βj‖) = ṗλ1j

(
‖β̃j‖

)
‖βj‖, P2n,j(‖αj‖) = ṗλ2j

(‖α̃j‖) ‖αj‖,

by (3.6)–(3.8), we define a new objective function

Qn∗(A, B) = Ln∗(A, B)−
dn∑

j=1

P1n,j(‖βj‖)−
dn∑

j=1

P2n,j(‖αj‖). (3.9)

Our feature selection and model specification procedure for diverging

dimensional GSVCMs is based on maximising (3.9) rather than (3.5).
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Let (α̂j, β̂j), j = 1, · · · , dn, be the maximiser of Qn∗(A, B), and

α̂j =
(
α̂j1, · · · , α̂jn

)T
, β̂j =

(
β̂j1, · · · , β̂jn

)T
.

α̂j is our estimator of (aj(U1), · · · , aj(Un))
T and β̂j is our estimator

of (ȧj(U1), · · · , ȧj(Un))
T, j = 1, · · · , dn. Throughout this thesis,

we still call α̂j or β̂j penalised local maximum likelihood estimator,

although Qn∗(A, B) is not the penalised local log-likelihood function.

If we choose an appropriate penalty function, such as SCAD or L1

penalty, we would expect ‖α̂j‖ = 0 when aj(·) = 0 and ‖β̂j‖ = 0 when

aj(·) is a constant. So, our feature selection and model specification

procedure works as follows: if ‖α̂j‖ = 0, the corresponding variable xj

is not significant and should be removed from the model. If ‖β̂j‖ = 0,

the coefficient of xj is constant. Further, when aj(·) is a constant,

denoted by Cj, we use

Ĉj = n−1

n∑

i=1

α̂ji (3.10)

to estimate Cj.

In the identification of the constant coefficients, an alternative way

of penalising the derivatives of the coefficients is to penalise the Djs,

defined in (3.2). This leads to the following objective function for

feature selection and model specification

Q̃n(A, B) = Ln∗(A, B)−
dn∑

j=1

P̃1n,j(Dj)−
dn∑

j=1

P2n,j(‖αj‖), (3.11)
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where P̃1n,j(Dj) = ṗλ1j
(D̃j)Dj, and D̃j is Dj with αjk being replaced

by the local maximum likelihood estimator α̃jk of aj(Uk), which can

be obtained by maximising the local log-likelihood function Ln(A, B)
defined in (3.3).

As the maximiser of Q̃n(A, B) enjoys all asymptotic properties

of the maximiser of Qn∗(A, B), and the theoretical proofs are very

similar, in this thesis, we only present the asymptotic properties of the

feature selection, model specification and estimation resulting from the

maximisation of Qn∗(A, B).

3.3 Procedure for ultra-high dimensional GSVCMs

We now introduce the feature selection and model specification proce-

dure for ultra-high dimensional GSVCMs. The ultra-high dimension

here means the dimension dn has the exponential order of the sample

size n, i.e. dn = exp{O(nǫ2)} for some ǫ2 > 0. Unlike the diverging

dimensional case, as the dimension dn is allowed to be much larger

than the sample size n, we can no longer obtain the preliminary esti-

mators from the local log-likelihood estimation. For the procedure for

ultra-high dimensional GSVCMs, we first propose a penalised likeli-

hood method with the LASSO penalty function to get the preliminary

estimators of functional coefficients. According to the asymptotic re-

sults in Chapter 4.2, the preliminary estimators are uniformly consis-

tent. Then, we use the preliminary estimators of the the functional

coefficients to approximate the local log-likelihood function by an L2

objective function. We also use the preliminary estimators to construct

the adaptive group LASSO penalty and the adaptive SCAD penalty.
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Hence, we can establish a novel penalised weighted least square method

to simultaneously select the significant covariates and identify the con-

stant coefficients among the selected ones. In addition, the algorithm

provided in Chapter 5.2 shows this procedure can also be treated as

an iterative re-weighted LASSO process and the computation cost is

manageable.

Without loss of generality, we assume that there exist 1 ≤ sn1 ≤
sn2 < dn such that for 1 ≤ j ≤ sn1, aj(·) are the functional coefficients

with non-zero deviation; for sn1 + 1 ≤ j ≤ sn2, aj(·) ≡ cj are the

constant coefficients; for sn2 + 1 ≤ j ≤ dn, aj(·) ≡ 0. Moreover, we

assume that sn2, although may be diverging with the sample size, is

much smaller than the sample size n and the number of covariates

dn. Hence, for any k = 1, · · · , n, the number of non-zero elements in

ak0 =
[
a1(Uk), · · · , adn(Uk)

]T
and bk0 =

[
ȧ1(Uk), · · · , ȧdn(Uk)

]T
is

at most sn1 + sn2. Define the penalised local log-likelihood function

with the LASSO penalty function as

Qnk(ak,bk) = Lnk(ak,bk)− λ1

dn∑

j=1

|αjk| − λ2

dn∑

j=1

h|βjk|, (3.12)

where λ1 and λ2 are two tuning parameters. We let (ãk, b̃k) be the

maximiser of Qnk(·, ·), which will be used as the preliminary estimator

in the penalised feature selection and model specification procedure
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introduced as follows. Let

Ln(A, B)

=
1

n

n∑

k=1

n∑

i=1

ℓ

(
g−1
{ dn∑

j=1

[
αjk + βjk(Ui − Uk)

]
xij

}
, yi

)
Kh(Ui − Uk)

=

n∑

k=1

Lnk(ak,bk), (3.13)

where A =
(
aT1, · · · , aTn

)T
and B =

(
bT1 , · · · , bTn

)T
. In order to

conduct the feature selection and model specification for the ultra-

high dimensional GSVCMs, we define the following penalised local

log-likelihood function:

Qn(A, B) = Ln(A, B)−
dn∑

j=1

pnj
(
‖αj‖

)
−

dn∑

j=1

p∗nj
(
‖βj‖

)
, (3.14)

where pnj(·) and p∗nj(·) are two penalty functions which will be specified

later,

αj = (αj1, · · · , αjn)
T and βj = (βj1, · · · , βjn)

T,

which correspond to [aj(U1), · · · , aj(Un)]
T and [ȧj(U1), · · · , ȧj(Un)]

T,

respectively. However, the maximisation of the objective function

Qn(A, B) can be challenging, and the computation involved could

be very expensive. Hence we next introduce some simple approxima-

tions to the local likelihood function Ln(A, B) and the penalty terms

by using the preliminary estimators ãk and b̃k (k = 1, · · · , n), which
could significantly reduce the computational cost.
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Let

L̇n(A, B) =
[
L̇T

n1(a1,b1), · · · , L̇T
nn(an,bn)

]T

and

L̈n(A, B) = diag
{
L̈n1(a1,b1), · · · , L̈nn(an,bn)

}
,

where

L̇nk(ak,bk) =
1

n

n∑

i=1

q1

{
dn∑

j=1

[
αjk + βjk(Ui − Uk)

]
xij , yi

}
 Xi

Ui−Uk

h
·Xi


 ·

Kh(Ui − Uk),

L̈nk(ak,bk) =


 L̈nk(ak,bk, 0) L̈nk(ak,bk, 1)

L̈nk(ak,bk, 1) L̈nk(ak,bk, 2)


 ,

L̈nk(ak,bk, l) =
1

n

n∑

i=1

q2

{
dn∑

j=1

[
αjk + βjk(Ui − Uk)

]
xij , yi

}(
Ui − Uk

h

)l

·

XiX
T
i Kh(Ui − Uk), l = 0, 1, 2,

and

q1(s, y) =
∂ℓ
[
g−1(s), y

]

∂s
, q2(s, y) =

∂2ℓ
[
g−1(s), y

]

∂s2
.

Denote Ãn =
(
ãT1 , · · · , ãTn

)T
and B̃n =

(
b̃
T

1, · · · , b̃
T

n

)T
, where (ãk, b̃k) is

the maximiser of the objective function Qnk(·, ·) in (3.12). Define

Vn(A,B) =
(
aT1,b

T
1 , · · · , aTn,bTn

)T
, Vn(A, hB) =

(
aT1, hb

T
1, · · · , aTn, hbTn

)T
.

By Taylor’s expansion of the likelihood function defined in (3.13), we
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can obtain the following quadratic approximation:

Ln(A, B)

≈Ln(Ãn, B̃n) +
[
Vn(A, hB)− Vn(Ãn, hB̃n)

]TL̇n(Ãn, B̃n)+

1

2

[
Vn(A, hB)− Vn(Ãn, hB̃n)

]TL̈n(Ãn, B̃n)
[
Vn(A, hB)− Vn(Ãn, hB̃n)

]

≡L⋄
n(A, B). (3.15)

It is easy to see that L⋄
n(A, B) is essentially an L2 objective function.

Hence, it would be much easier to deal with L⋄
n(A, B) in (3.15) than

to directly deal with Ln(A, B).
For the penalty functions pnj(·) and p∗nj(·), we consider two possi-

ble cases: (i) the adaptive group LASSO penalty, and (ii) the SCAD

penalty. Note that identifying the constant coefficients in model (3.1)

is equivalent to identifying the aj(·)s such that either ȧj(U1) = · · · =
ȧj(Un) = 0 or its deviation Dj = 0, where Dj is defined in (3.2). Using

the preliminary estimation results, we can construct the preliminary

estimator of Dj :

D̃j =
{ n∑

k=1

[
ãj(Uk)−

1

n

n∑

k=1

ãj(Uk)
]2}1/2

,

where ãj(Uk) is the j-th element of ãk.

For case (i), we define

pnj
(
‖αj‖

)
= λ3‖α̃j‖−κ‖αj‖, p∗nj

(
‖βj‖

)
= λ∗

3|D̃j |−κ‖hβj‖,

where λ3 and λ∗
3 are two tuning parameters, κ is pre-determined and
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can be chosen as 1 or 2 as in the literature, and α̃j = [ãj(U1), · · · , ãj(Un)]
T.

For case (ii), we may apply Taylor’s expansion to the SCAD penalty

function. By a simple calculation on pnj (‖αj‖), we have

pnj (‖αj‖) ≈ pnj (‖α̃j‖)− ṗnj (‖α̃j‖) ‖α̃j‖+ ṗnj (‖α̃j‖) ‖αj‖, (3.16)

where pnj(z) ≡ pλ4(z) is the SCAD penalty function with the derivative

defined by

ṗnj(z) ≡ ṗλ4(z) = λ4

[
I(z ≤ λ4) +

(a0λ4 − z)+
(a0 − 1)λ

I(z > λ4)
]
, (3.17)

λ4 is a tuning parameter and a0 = 3.7 as suggested in Fan and Li

(2001). For p∗nj
(
‖βj‖

)
, we consider the structure:

p∗nj
(
‖βj‖

)
= ṗ∗nj(|D̃j|)‖hβj‖, (3.18)

where ṗ∗nj(·) is defined similarly to ṗnj(·) with λ4 replaced by λ∗
4.

Based on the approximation of Ln(A, B) and the specification

of the penalty functions, we may obtain the following two objective

functions:

Q1
n(A, B) = L⋄

n(A, B)− λ3

dn∑

j=1

‖α̃j‖−κ‖αj‖ − λ∗
3

dn∑

j=1

|D̃j|−κ‖hβj‖

(3.19)

for the adaptive group LASSO penalty; and

Q2
n(A, B) = L⋄

n(A, B)−
dn∑

j=1

ṗλ4(‖α̃j‖)‖αj‖ −
dn∑

j=1

ṗλ∗

4
(|D̃j|)‖hβj‖

(3.20)
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for the SCAD penalty. Note that the two penalty terms in (3.20) are

the weighted LASSO penalty functions, where the weights are deter-

mined by the derivative of the SCAD penalty using the preliminary es-

timators α̃j and D̃j . Thus, throughout this thesis, we call the penalty

functions in (3.20) as the adaptive SCAD penalty. The objective func-

tions in (3.19) and (3.20), in some sense, can be seen as the extension

of that in Bradic et al (2011) from the parametric linear models to the

flexible GSVCMs.

Our feature selection and model specification procedure is based

on maximising the objective function in either (3.19) or (3.20). Let

α̂j =
(
α̂j1, · · · , α̂jn

)T
and β̂j =

(
β̂j1, · · · , β̂jn

)T
, j = 1, · · · , dn,

(3.21)

be the maximisers of Q1
n(A, B), and

αj =
(
αj1, · · · , αjn

)T
and βj =

(
βj1, · · · , βjn

)T
, j = 1, · · · , dn,

(3.22)

be the maximisers of Q2
n(A, B). By choosing the penalty function

as the adaptive group LASSO (or SCAD) penalty, we would expect

‖α̂j‖ = 0 (or ‖αj‖ = 0) when aj(·) = 0, and ‖β̂j‖ = 0 (or ‖βj‖ =

0) when aj(·) is a constant. Hence our feature selection and model

specification procedure works as follows: if ‖α̂j‖ = 0 (or ‖αj‖ = 0),

the corresponding variable xj is not significant and should be removed

from the model; if ‖β̂j‖ = 0 (or ‖βj‖ = 0), the functional coefficient
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aj(·) is constant which is denoted by cj and can be estimated by

ĉj = n−1
n∑

i=1

α̂ji or cj = n−1
n∑

i=1

αji, j = sn1 + 1, · · · , sn2. (3.23)

Then the generalised semi-varying coefficient modelling structure is

finally specified.
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4 Asymptotic properties

4.1 Asymptotic properties for diverging dimen-

sional GSVCMs

We are going to present the asymptotic properties of the feature selec-

tion, model specification and estimation procedure designed for diverg-

ing dimensional GSVCMs. The assumptions and detailed proofs of the

following theoretical results can be found in Chapter 9. The assump-

tions used in this part are mild and justifiable. The detailed discussion

of these assumptions can be found in Remark A.1 in Chapter 9.1.

We will start with the uniform consistency of the local maximum

likelihood estimators when the number of covariates tends to infin-

ity, followed by the convergence rates of the proposed penalised local

maximum likelihood estimators, the sparsity property of the proposed

feature selection and structure specification procedure, and the oracle

property of the proposed penalised local maximum likelihood estima-

tors. Also we will show the asymptotic normality of the proposed

penalised local maximum likelihood estimators.

Let

ã(Ui) =
(
α̃1i, · · · , α̃dni

)T
and b̃(Ui) =

(
β̃1i, · · · , β̃dni

)T

be the local maximum likelihood estimators of

a(Ui) =
[
a1(Ui), · · · , adn(Ui)

]T
and b(Ui) =

[
ȧ1(Ui), · · · , ȧdn(Ui)

]T
,

39



respectively. We first present the uniform consistency of ã(Ui) and

b̃(Ui).

Proposition 4.1. Under the Assumptions A1–A5 in Chapter 9.1, we

have

sup
1≤i≤n

∥∥ã(Ui)− a(Ui)
∥∥ = OP

(√dn log n

nh

)
(4.1)

and

sup
1≤i≤n

∥∥b̃(Ui)− b(Ui)
∥∥ = OP

(√dn log n

nh3

)
. (4.2)

Remark 4.1. Assumption A3 in Chapter 9.1 guarantees that the max-

imal distance between two consecutive index variables Ui is only of the

order OP

(
logn
n

)
, see, for example, Janson (1987). Hence, the observed

values of U are sufficiently dense on its compact support. In fact, in

Chapter 9.2, we prove that the local maximum likelihood estimators are

uniformly consistent on the support of U , from which (4.1) and (4.2)

can be easily derived. When dn is fixed, as assumed by Cai et al (2000)

and Zhang and Peng (2010), the above uniform convergence rate would

be reduced to the well-known uniform convergence rate OP

(√
logn
nh

)
.

Let â(Ui) and b̂(Ui) be the proposed penalised maximum likelihood

estimators of a(Ui) and b(Ui). The following proposition gives the

convergence rates of â(Ui) and b̂(Ui).

Proposition 4.2. Under the Assumptions A1–A6 in Chapter 9.1, we

have
1

n

n∑

i=1

∥∥â(Ui)− a(Ui)
∥∥2 = OP

(
dn
nh

)
(4.3)
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and
1

n

n∑

i=1

∥∥b̂(Ui)− b(Ui)
∥∥2 = OP

(
dn
nh3

)
. (4.4)

Before presenting our main theorems, without loss of generality,

we assume that aj(·) is a function when j = 1, · · · , dn(1); aj(·) is a

constant, denoted by Cj , when j = dn(1)+1, · · · , dn(2); and aj(·) = 0

when j = dn(2) + 1, · · · , dn, 1 ≤ dn(1) < dn(2) < dn. Theorem 4.1

below shows the feature selection and model specification procedure

based on the maximiser of Qn∗(A, B) enjoys the property of sparsity.

Theorem 4.1. (Sparsity)Under the Assumptions A1–A6 in Chapter

9.1, we have

lim
n→∞

P

(
max

dn(2)+1≤j≤dn
‖α̂j‖ = 0

)
= 1 (4.5)

and

lim
n→∞

P

(
max

dn(1)+1≤j≤dn
‖β̂j‖ = 0

)
= 1. (4.6)

We next investigate the oracle property of the proposed penalised

local maximum likelihood estimators.

Let Ĉj,o, j = dn(1)+1, · · · , dn(2), be the estimator of Cj obtained

by the standard estimation procedure for the generalised semi-varying

coefficient models, see Zhang and Peng (2010), under the assumption

that we know aj(·) = 0 when j = dn(2) + 1, · · · , dn, and aj(·) is an
unknown constant Cj when j = dn(1) + 1, · · · , dn(2).

Let âj,o(Ui), j = 1, · · · , dn(1), be the estimator of aj(Ui) obtained

by the standard estimation procedure for generalised varying coefficient

models, see Zhang and Peng (2010), under the assumption that we

know aj(·) = 0 when j = dn(2) + 1, · · · , dn, aj(·) is a constant Cj
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when j = dn(1) + 1, · · · , dn(2), and we also know the true value of

Cj. Let

Dn =
(
max
1≤i≤n

∣∣α̂1i − â1,o(Ui)
∣∣, · · · , max

1≤i≤n

∣∣α̂dn(1)i − âdn(1),o(Ui)
∣∣
)T

and

Ĉo =
(
Ĉdn(1)+1,o, · · · , Ĉdn(2),o

)T
, Ĉ =

(
Ĉdn(1)+1, · · · , Ĉdn(2)

)T
,

where Ĉj is our estimator of Cj when aj(·) is an unknown constant Cj,

see Chapter 3.2.

Theorem 4.2. (Oracle property) Under the Assumptions A1–A7

in Chapter 9.1, for any dn(1)-dimensional vector Bn with ‖Bn‖ = 1,

we have
√
nhBT

nDn = oP (1), (4.7)

and, for any (dn(2) − dn(1))-dimensional vector An with ‖An‖ = 1,

we have

n1/2AT

n

(
Ĉ− Ĉo

)
= oP (1). (4.8)

Remark 4.2. The above theorem indicates that the difference between

the proposed penalised local maximum likelihood estimators and those

obtained under the oracle assumptions is uniformly asymptotically neg-

ligible. Furthermore, as the observed values of U are sufficiently dense

on the compact support as discussed in Remark 4.1, such difference is

asymptotically negligible uniformly on the support of U . Our theorem
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extends Theorem 2 in Wang and Xia (2009) to semi-parametric setting

with the diverging number of the covariates.

Finally, we are going to present the asymptotic normality of the

proposed penalised local maximum likelihood estimators by using the

oracle property derived in Theorem 4.2.

For any given u0 ∈ [0, 1], let Ui0 be the closest point to u0. For

j = 1, · · · , dn(1), we use α̂ji0 defined in Chapter 3.2 to estimate

aj(u0), and denote it by âj(u0). Let

â1(u0) =
[
â1(u0), · · · , âdn(1)(u0)

]T
, a1(u0) =

[
a1(u0), · · · , adn(1)(u0)

]T
,

bn(u0) =
1

2
µ2h

2
[
ä1(u0)

]
, Γn(u0) = E

[
̺(U,X)XXT|U = u0

]
,

C =
[
Cdn(1)+1, · · · , Cdn(2)

]T
,

where

µk =

∫
ukK(u)du, ä1(u0) =

[
ä1(u0), · · · , ädn(1)(u0)

]T
,

̺(u, x) = −q2
[
g(m(u, x)), m(u, x)

]
.

Let

X∗ =
(
x1, · · · , xdn(1)

)T
, X⋄ =

(
xdn(1)+1, · · · , xdn(2)

)T
,

Γn1(·) and Γn2(·) be defined as Γn(·) with XXT replaced by X∗X∗
T

and X⋄X⋄
T, respectively.
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Corollary 4.1. Under the conditions of Theorem 4.2, for any dn(1)-

dimensional vector Bn with ‖Bn‖ = 1, we have

√
nhBT

nΓ
1
2
n1(u0)

[
â1(u0)−a1(u0)−bn(u0)

]
d−→ N

(
0, ν0f

−1
U (u0)

)
, (4.9)

and for any [dn(2)− dn(1)]-dimensional vector An with ‖An‖ = 1, we

have

n1/2AT
nΓ

− 1
2

n

(
Ĉ−C

)
d−→ N(0, 1), (4.10)

where fU(·) is the density function of U , and

ν0 =

∫
K2(u)du, Γn = E

[
Γ−1

n2 (U)
]
.

Corollary 4.1 shows the proposed penalised local maximum likeli-

hood estimators enjoy asymptotic normality and optimal convergence

rate. However, in practice, it would be better to select the model first,

then apply the local maximum likelihood estimation to estimate the

unknowns in the selected model. This is because, when the sample size

is finite, the optimal tuning parameter for model selection is different

to that for estimation. It is impossible to pick up the best model and

construct the most accurate estimators simultaneously. We have to do

the model selection and estimation separately to get the best model

and the most accurate estimators. Furthermore, once the model is

selected, there is no need use the penalised method. In our simula-

tion studies and real data analysis, we use this two-stage approach to

construct estimators, that is to select the model first, then apply the

local maximum likelihood estimation to estimate the unknowns in the
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selected model.

4.2 Asymptotic properties for ultra-high dimen-

sional GSVCMs

We now present the asymptotic properties of the feature selection,

model specification and estimation procedure designed for ultra-high

dimensional GSVCMs. The assumptions and detailed proofs of the

following theoretical results can be found in Chapter 10. The assump-

tions used in this part are mild and justifiable. The detailed discussion

of these assumptions can be found in Remark B.1 in Chapter 10.1.

Recall the notations ak0 =
[
a1(Uk), · · · , adn(Uk)

]T
and bk0 =

[
ȧ1(Uk), · · · , ȧdn(Uk)

]T
, k = 1, · · · , n. We start with the uniform

consistency results for their penalised local log-likelihood estimators

ãk =
[
ã1(Uk), · · · , ãdn(Uk)

]T
and b̃k =

[˜̇a1(Uk), · · · , ˜̇adn(Uk)
]T
, which

are the maximisers of the objective function (3.12).

Proposition 4.3. Suppose that Assumptions B1–B4 in Chapter 10.1

are satisfied.

(i) If the moment condition (10.1) and Assumption B5 are satisfied

with dn ∝ nτ1 , 0 ≤ τ1 < ∞, we have

max
1≤k≤n

‖ãk − ak0‖+ max
1≤k≤n

‖h(b̃k − bk0)‖ = OP (
√
sn2λ1), (4.11)

where 0 ≤ τ1 < ∞ and sn2 is the number of the non-zero functional

coefficients

(ii) If the moment condition (10.2) and Assumption B5′ are satisfied
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with dn ∝ exp
{
(nh)τ2

}
, then (4.11) also holds, where 0 ≤ τ2 < 1− τ3

and 0 < τ3 < 1.

The above proposition indicates that the preliminary penalised es-

timators ãk and b̃k are uniformly consistent, as Assumption B3 in

Chapter 10.1 guarantees that the maximal distance between two con-

secutive index variables Ui is only of the order OP (log n/n) (c.f., Jan-

son 1987) and the observed values of U can be sufficiently dense on

the compact support [0, 1]. The uniform convergence rate in (4.11) de-

pends on sn2, the number of the non-zero functional coefficients, and

the tuning parameter λ1. In Assumptions B5 and B5′, we impose some

conditions on the relationship between λ1 and the well-known uniform

convergence rate
(
log h−1

nh

)1/2
, and assume that λ1 ∝ λ2. As a conse-

quence, the influence of
(
log h−1

nh

)1/2
and λ2 would be dominated by that

of λ1. It is also interesting to find from the assumptions in Proposition

4.3 that the required moment condition when dn diverges at a polyno-

mial rate is weaker than that when dn diverges at an exponential rate,

which is not difficult to understand.

Let Ân =
(
âT1 , · · · , âTn

)T
and B̂n =

(
b̂
T

1, · · · , b̂
T

n

)T
, where âk =

(α̂1k, · · · , α̂dnk)
T and b̂k = (β̂1k, · · · , β̂dnk)

T. We define Ao =
[
(ao

1)
T, · · · , (ao

n)
T
]T

and Bo =
[
(bo

1)
T, · · · , (bo

n)
T
]T
, where the last (dn−

sn2) elements of ao
k and the last (dn − sn1) elements of bo

k are zeros,

k = 1, · · · , n, and then denote the biased oracle estimators Âo
n =

[
(âo

1)
T, · · · , (âo

n)
T
]T

and B̂o
n =

[
(b̂

o

1)
T, · · · , (b̂o

n)
T
]T
, which maximise the

objective function Q1
n(Ao, Bo) when the penalty function is the adap-

tive group LASSO. Similarly, for Q2
n(·, ·) when the adaptive SCAD

penalty function is used, we let An and Bn be the penalised estimated
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values, and Ao

n and Bo

n the corresponding biased oracle estimators.

The following theorem gives the relation between the penalised esti-

mators which maximise the objective function (3.19) or (3.20) and the

corresponding biased oracle estimators.

Theorem 4.3. Suppose that the conditions in Proposition 4.3 are sat-

isfied.

(i) When the penalty is chosen as the adaptive group LASSO function

and Assumption B6 in Chapter 10.1 is satisfied, with probability ap-

proaching one, the maximisers of the objective function Q1
n(·, ·) defined

in (3.19), (Ân, B̂n), exist and equal to (Âo
n, B̂o

n). Furthermore,

1

n

∥∥Âo
n −A0

∥∥2 = sn2
nh

,
1

n

∥∥B̂o
n − B0

∥∥2 = sn2
nh3

, (4.12)

where A0 and B0 are the vectors of the true functional coefficients and

their derivative functions, respectively.

(ii) When the penalty is chosen as the adaptive SCAD function and As-

sumption B6 ′ in Chapter 10.1 is satisfied, with probability approaching

one, the maximisers to the objective function Q2
n(·, ·) defined in (3.20),

(An,Bn), exist and equal to (Ao

n,B
o

n). Furthermore, (4.12) still holds

when Âo
n and B̂o

n are replaced by Ao

n and Bo

n, respectively.

Theorem 4.3 suggests, using the proposed feature selection and

model specification procedure, the zero coefficients can be estimated

exactly as zeros, and the derivatives of the constant coefficients can

also be estimated exactly as zeros, which indicates that the sparsity

property holds for the proposed feature selection and model specifica-
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tion procedure. Hence, our theorem complements some existing ultra-

high dimensional sparsity results such as those derived by Bradic et al

(2011), Fan and Lv (2011) and Lian (2012).

We next study the oracle property for the penalised estimators

of the non-zero functional coefficients and constant coefficients. Let

auoj (Uk), j = 1, · · · , sn1, k = 1, · · · , n, be the (unbiased) oracle estima-

tor of aj(Uk), and cuoj , j = sn1 + 1, · · · , sn2, be the (unbiased) oracle

estimator of the constant coefficient cj obtained by the standard es-

timation procedure for the GSVCMs, i.e., the maximisation of the

objective function L⋄
n(Ao, Bo) with respect to Ao and Bo (the penalty

terms in (3.19) and (3.20) are ignored) and the application of (3.23)

under the assumption that we know aj(·) ≡ 0 when j = sn2+1, · · · , dn
and aj(·) ≡ cj when j = sn1 + 1, · · · , sn2. In the following theorem,

we only consider the case of the adaptive SCAD penalty function as

the case of the adaptive group LASSO penalty function can be derived

similarly (with slightly different assumptions). Let

Dn =
(
max
1≤k≤n

∣∣a1(Uk)− auo1 (Uk)
∣∣, · · · , max

1≤k≤n

∣∣asn1(Uk)− auosn1
(Uk)

∣∣
)T

,

where aj(Uk) = αjk is defined in (3.22), and

Cuo
n =

(
cuosn1+1, · · · , cuosn2

)T
, Cn = (csn1+1, · · · , csn2)

T ,

where cj is defined in (3.23).

Theorem 4.4. Suppose that the conditions of Theorem 4.3(ii) are
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satisfied. For any sn1-dimensional vector Bn with ‖Bn‖ = 1, we have

√
nhBT

nDn = oP (1); (4.13)

and for any (sn2−sn1)-dimensional vector An with ‖An‖ = 1, we have

√
nAT

n

(
Cn −Cuo

n

)
= oP (1). (4.14)

Theorem 4.4 above indicates that the penalised likelihood estima-

tors of the non-zero functional coefficients and constant coefficients

have the same asymptotic distribution as the corresponding oracle es-

timators. Following the arguments in Zhang and Peng (2010) and Li

et al (2013), we can easily establish the asymptotic normality of aj(·),
j = 1, · · · , sn1 and cj , j = sn1 + 1, · · · , sn2.
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5 Computational algorithm

5.1 Algorithm for diverging dimensional GSVCMs

As the feature selection and model specification procedure introduced

in Chapter 3.2 are based on the maximiser of Qn∗(A, B) or Q̃n(A, B).
We are going to address how to maximise Qn∗(A, B) and Q̃n(A, B).

We first rearrange Ln∗(A, B) to make it have the standard form

for using group LASSO idea. Let

θ = (αT
1, · · · , αT

dn , β
T
1, · · · , βT

dn)
T, T = (In⊗e1,dn , · · · , In⊗edn,dn)

T,

where ek,d is a d-dimensional unit vector with the kth component being

1. It is easy to see

θ =


 TA

TB


 .

Let θ̃ be θ with A and B being respectively replaced by Ã and B̃, and

H2 = −diag((TT)−1, h(TT)−1)L̈n(Ãn, B̃n)diag(T
−1, hT−1), η = Hθ̃,

we have

Ln∗(A, B) = −1

2
(η −Hθ)T(η −Hθ). (5.1)

Maximisation of Qn∗(A, B)

By (5.1), we have

−Qn∗(A, B) = 1

2
(η−Hθ)T(η−Hθ)+

dn∑

j=1

τ1j‖βj‖+
dn∑

j=1

τ2j‖αj‖ △
= O(θ),
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where

τ1j = ṗλ1j

(
‖β̃j‖

)
, τ2j = ṗλ2j

(‖α̃j‖) .

So, the maximiser of Qn∗(A, B) is the minimiser of O(θ).

As a direct consequence of the Karush-Kuhn-Tucker conditions, we

have that a necessary and sufficient condition for θ to be a minimiser

of O(θ) is





−HT
j (η −Hθ) + τ2j‖αj‖−1αj = 0 ∀ αj 6= 0,

‖HT
j (η −Hθ)‖ < τ2j ∀ αj = 0,

−HT
j+dn(η −Hθ) + τ1j‖βj‖−1βj = 0 ∀ βj 6= 0,

‖HT
j+dn(η −Hθ)‖ < τ1j ∀ βj = 0,

where Hj is the matrix consisting of the ((j− 1)n+1)th to the (jn)th

columns of H. That is, for j = 1, · · · , dn,





αj = 0, if ‖HT
j (η −Hθ−j)‖ < τ2j ,

αj =
(
HT

j Hj + τ2j‖αj‖−1In
)−1

HT
j (η −Hθ−j), otherwise,

and





βj = 0, if ‖HT
j+dn

(η −Hθ−(j+dn))‖ < τ1j ,

βj =
(
HT

j+dn
Hj+dn + τ1j‖βj‖−1In

)−1
HT

j+dn
(η −Hθ−(j+dn)), otherwise,

where

θ−j = (αT
1, · · · , αT

j−1, 0Tn, αT
j+1, · · · , αT

dn , βT
1, · · · , βT

dn)
T,
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0n is a n-dimensional vector with each component being 0, and

θ−(j+dn) = (αT
1, · · · , αT

dn , βT
1 , · · · , βT

j−1, 0Tn, βT
j+1, · · · , βT

dn)
T.

This leads to the following iterative algorithm to minimise O(θ):

(1) Start with α
(0)
j = α̃j and β

(0)
j = β̃j, j = 1, · · · , dn.

(2) Let the αj and βj , j = 1, · · · , dn, be α
(k)
j and β

(k)
j just after

the kth iteration. Update α
(k)
j and β

(k)
j in the (k+1)th iteration

as follows: for j = 1, · · · , dn,





α
(k+1)
j = 0, if ‖HT

j (η −Hθ
(k)
−j )‖ < τ

(k)
2j ,

α
(k+1)
j =

(
HT

j Hj + τ
(k)
2j ‖α(k)

j ‖−1In

)−1

HT
j (η −Hθ

(k)
−j ), otherwise,

and





β
(k+1)
j = 0, if ‖HT

j+dn
(η −Hθ

(k)
−(j+dn)

)‖ < τ
(k)
1j ,

β
(k+1)
j =

(
HT

j+dn
Hj+dn + τ

(k)
1j ‖β(k)

j ‖−1In

)−1

HT
j+dn

(η −Hθ
(k)
−(j+dn)

),

otherwise,

where

τ
(k)
1j = ṗλ1j

(
‖β(k)

j ‖
)
, τ

(k)
2j = ṗλ2j

(
‖α(k)

j ‖
)
,

θ
(k)
−j =

(
(α

(k+1)
1 )T, · · · , (α

(k+1)
j−1 )T, 0Tn,

(α
(k)
j+1)

T, · · · , (α
(k)
dn
)T, (β

(k)
1 )T, · · · , (β

(k)
dn
)T
)T
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and

θ
(k)
−(j+dn)

=
(
(α

(k+1)
1 )T, · · · , (α

(k+1)
dn

)T, (β
(k+1)
1 )T, · · · , (β

(k+1)
j−1 )T,

0Tn, (β
(k)
j+1)

T, · · · , (β
(k)
dn
)T
)T

.

If

‖α(k)
j ‖ = 0 and ‖HT

j (η −Hθ
(k)
−j )‖ > τ

(k)
2j ,

we set

α
(k+1)
j =

(
HT

j Hj + τ
(k)
2j ∆−1In

)−1

HT
j (η −Hθ

(k)
−j ),

where

∆ = min{‖α(k)
l ‖ : ‖α(k)

l ‖ 6= 0, l = 1, · · · , dn}.

If

‖β(k)
j ‖ = 0 and ‖HT

j+dn(η −Hθ
(k)
−(j+dn)

)‖ > τ
(k)
1j ,

we set

β
(k+1)
j =

(
HT

j+dnHj+dn + τ
(k)
1j ∆−1

1 In

)−1

HT
j+dn(η −Hθ

(k)
−(j+dn)

),

where

∆1 = min{‖β(k)
l ‖ : ‖β(k)

l ‖ 6= 0, l = 1, · · · , dn}.
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(3) If
dn∑

j=1

{
‖α(k)

j −α
(k+1)
j ‖+ ‖β(k)

j − β
(k+1)
j ‖

}
(5.2)

is smaller than a chosen threshold, we stop the iteration, and

(α
(k+1)
j , β

(k+1)
j ), j = 1, · · · , dn, is the minimiser of O(θ). In

practice, this threshold is a small enough number (e.g. 10−8 in

our program). When (5.2) is below this threshold, we believe the

estimators after this iteration converge and there is no need to

do more iterations.

Maximisation of Q̃n(A, B)

By (5.1), we have

−Q̃n(A, B) = 1

2
(η−Hθ)T(η−Hθ)+

dn∑

j=1

τ̃1jDj +
dn∑

j=1

τ̃2j‖αj‖ △
= Õ(θ)

where

D2
j =

n∑

k=1

(αjk − ᾱj)
2 = αT

jΞαj, Ξ = In −
1

n
1n1

T
n,

1n is a n-dimensional vector with each component being 1,

τ̃1j = ṗλ1j

(
(α̃T

jΞα̃j)
1/2
)
, τ̃2j = ṗλ2j

(‖α̃j‖) .

So, the maximiser of Q̃n(A, B) is the minimiser of Õ(θ).
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If θ is a minimiser of Õ(θ), then

−HT
j (η−Hθ)+ τ̃2j‖αj‖−1αj + τ̃1j(α

T
jΞαj)

−1/2Ξαj = 0, ∀ Ξαj 6= 0.

(5.3)

Hence, if θ is a minimiser of Õ(θ) and Ξαj 6= 0,

‖HT
j (η−Hθ−j)‖ = ‖HT

j Hjαj+τ̃2j‖αj‖−1αj+τ̃1j(α
T
jΞαj)

−1/2Ξαj‖ ≥ τ̃2j .

Therefore, if θ is a minimiser of Õ(θ), there has to be

Ξαj = 0 when ‖HT
j (η −Hθ−j)‖ < τ̃2j .

Further, let Õ(+j)(θ) be Õ(θ) with αj being replaced by α1n and Dj

being replaced by 0, α is a scalar. If θ is a minimiser of Õ(θ) and

Ξαj = 0, θ has to be a minimiser of Õ(+j)(θ). So, there has to be

−1TnH
T
j (η −Hθ) + τ̃2jn

1/2sign(α) = 0 ∀ α 6= 0.

which leads to that if α 6= 0, then

‖1TnHT
j (η −Hθ−j)‖ = ‖1TnHT

j Hj1nα + τ̃2jn
1/2sign(α)‖ ≥ n1/2τ̃2j .

So, if θ is a minimiser of Õ(θ), we have

αj = 0 when ‖HT
j (η −Hθ−j)‖ < τ̃2j .

By (5.3), if θ is a minimiser of Õ(θ), when Ξαj 6= 0, let P1 = n−11n1
T
n
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and

θ+j = (αT
1 , · · · , αT

j−1, n−1αT
j1n1

T
n, α

T
j+1, · · · , αT

dn, βT
1 , · · · , βT

dn)
T,

we have

‖HT
j (η −Hθ+j)‖

=‖HT
j HjΞαj + τ̃2j‖αj‖−1αj + τ̃1j(α

T
jΞαj)

−1/2Ξαj‖

=‖ΞHT
j HjΞαj + τ̃2j‖αj‖−1Ξαj + τ̃1j(α

T
jΞαj)

−1/2Ξαj+

τ̃2j‖αj‖−1P1αj +P1H
T
j HjΞαj‖

≥‖ΞHT
j HjΞαj + τ̃2j‖αj‖−1Ξαj + τ̃1j(α

T
jΞαj)

−1/2Ξαj‖

≥‖ΞHT
j HjΞΞαj + τ̃2j‖αj‖−1Ξαj + τ̃1j(α

T
jΞαj)

−1/2Ξαj‖

≥τ̃1j .

A summary of the above argument leads to that if θ is a minimiser

of Õ(θ), there has to be





−HT
j (η −Hθ) + τ̃2j‖αj‖−1αj + τ̃1j(α

T
jΞαj)

−1/2Ξαj = 0 ∀ Ξαj 6= 0,

αj = 0, if ‖HT
j (η −Hθ−j)‖ < τ̃2j ,

αj = α1n, if ‖HT
j (η −Hθ+j)‖ < τ̃1j and ‖HT

j (η −Hθ−j)‖ ≥ τ̃2j ,

βj =
(
HT

j+dn
Hj+dn

)−1
HT

j+dn
(η −Hθ−(j+dn)).

This leads to the following iterative algorithm to minimise Õ(θ):

(1) Start with α
(0)
j = α̃j and β

(0)
j = β̃j, j = 1, · · · , dn.

(2) Let the αj and βj , j = 1, · · · , dn, be α
(k)
j and β

(k)
j just after

the kth iteration. Update α
(k)
j and β

(k)
j in the (k+1)th iteration

56



as follows: for j = 1, · · · , dn,

if ‖HT
j (η −Hθ

(k)
−j )‖ < τ̃

(k)
2j

α
(k+1)
j = 0;

if ‖HT
j (η −Hθ

(k)
+j )‖ < τ̃1j and ‖HT

j (η −Hθ
(k)
−j )‖ ≥ τ̃2j ,

α
(k+1)
j =

(
1TnH

T
j Hj1n

)−1
1TnH

T
j (η −Hθ

(k)
−j )1n;

other situation else,

α
(k+1)
j =

(
HT

j Hj + τ̃
(k)
2j ‖α(k)

j ‖−1In + τ̃
(k)
1j

(
(α

(k)
j )TΞα

(k)
j

)−1/2

Ξ

)−1

HT
j (η−Hθ

(k)
−j ).

Under any circumstance





β
(k+1)
j = 0, if (α

(k+1)
j )TΞα

(k+1)
j = 0,

β
(k+1)
j =

(
HT

j+dn
Hj+dn

)−1
HT

j+dn
(η −Hθ

(k)
−(j+dn)

), otherwise,

where

τ̃
(k)
1j = ṗλ1j

((
(α

(k)
j )TΞα

(k)
j

)1/2)
, τ̃

(k)
2j = ṗλ2j

(
‖α(k)

j ‖
)
,

θ
(k)
+j =

(
(α

(k+1)
1 )T, · · · , (α

(k+1)
j−1 )T, 1Tn

(
1TnH

T
j Hj1n

)−1
1TnH

T
j (η −Hθ

(k)
−j ),

(α
(k)
j+1)

T, · · · , (α
(k)
dn
)T, (β

(k)
1 )T, · · · , (β

(k)
dn
)T
)T

.

If

(α
(k)
j )TΞα

(k)
j = 0 and ‖HT

j (η −Hθ
(k)
+j )‖ ≥ τ̃1j ,
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we set

α
(k+1)
j =

(
HT

j Hj + τ̃
(k)
2j ∆̃−1In + τ̃

(k)
1j ∆̃

−1/2
1 Ξ

)−1

HT
j (η −Hθ

(k)
−j ),

where

∆̃ = min
{
‖α(k)

l ‖ : ‖α(k)
l ‖ 6= 0, l = 1, · · · , dn

}
,

and

∆̃1 = min
{
(α

(k)
l )TΞα

(k)
l : (α

(k)
l )TΞα

(k)
l 6= 0, l = 1, · · · , dn

}
.

(3) If
dn∑

j=1

{
‖α(k)

j −α
(k+1)
j ‖+ ‖β(k)

j − β
(k+1)
j ‖

}
(5.4)

is smaller than a chosen threshold, we stop the iteration, and

(α
(k+1)
j , β

(k+1)
j ), j = 1, · · · , dn, is the minimiser of Õ(θ). In

practice, this threshold is a small enough number (e.g. 10−8 in

our program). When (5.4) is below this threshold, we believe the

estimators after this iteration converge and there is no need to

do more iterations.

5.2 Algorithm for ultra-high dimensional GSVCMs

First of all, the preliminary estimators (ãk, b̃k) are obtained by max-

imizing Qnk(·, ·) defined in (3.1) for k = 1, · · · , n. By the local

quadratic approximation introduced in Chapter 2.2, the penalty func-

tions in (3.1) can be approximated by quadratic functions. Then the
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preliminary estimators are obtained by solving an iterative re-weighted

least squares problem. The reason we use local quadratic approxima-

tion instead of local linear approximation is to reduce the computa-

tional burden. The numerical studies show the proposed preliminary

estimation works well and the final feature selection, model specifica-

tion and estimation results are not very sensitive to the choice of the

preliminary estimators.

Given the preliminary estimators, the feature selection and model

specification procedure proposed in Chapter 3.3 are based on the max-

imiser of Q1
n(A, B) and Q2

n(A, B). We are going to address how to

maximise Q1
n(A, B) and Q2

n(A, B).
We now re-arrange the quadratic objective function L⋄

n(A, B) in

order to make it have the standard form when using the penalised

estimation method. Let

θ =
(
αT

1, · · · , αT
dn , hβT

1 , · · · , hβT
dn

)T

and define the transformation matrix

T = (In ⊗ e1,2dn , · · · , In ⊗ edn,2dn , In ⊗ edn+1,2dn · · · , In ⊗ e2dn,2dn)
T,

where ek,d is a d-dimensional unit vector with the kth component being

1 and In is an n × n identity matrix. With the above notations, it is

easy to show that θ = TVn(A, hB), where Vn(A, hB) is defined as in

Chapter 3.3. Let θ̃ be defined as θ but with A and B replaced by Ã
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and B̃, respectively, and

H2 = HTH = −TL̈n(Ãn, B̃n)T
T, η̃ = Hθ̃ + (H−1)TTL̇n(Ãn, B̃n).

We define a quadratic objective function

L∗
n(A, B) = −1

2
(η̃ −Hθ)T(η̃ −Hθ). (5.5)

Maximisation of Q1
n(A, B) and Q2

n(A, B)

Given the preliminary estimator Vn(Ãn, hB̃n), it is easy to see the

difference between L⋄
n(A, B) and L∗

n(A, B) is a constant. Therefore,

the maximiser of Q1
n(A, B) or Q2

n(A, B) is the minimiser of the fol-

lowing target function:

Ô(θ) ≡ 1

2
(η̃ −Hθ)T(η̃ −Hθ) +

dn∑

j=1

τ1j‖hβj‖+
dn∑

j=1

τ2j‖αj‖, (5.6)

where τ1j = λ∗
3|D̃j|−κ and τ2j = λ3‖α̃j‖−κ for Q1

n(A, B); and τ1j =

ṗλ∗

4
(|D̃j|) and τ2j = ṗλ4(‖α̃j‖) for Q2

n(A, B).
As a direct consequence of the Karush-Kuhn-Tucker conditions, we

have that a necessary and sufficient condition for θ to be a minimiser

of Ô(θ) is





−HT
j (η̃ −Hθ) + τ2j‖αj‖−1αj = 0 ∀ αj 6= 0,

‖HT
j (η̃ −Hθ)‖ < τ2j ∀ αj = 0,

−HT
j+dn

(η̃ −Hθ) + τ1j‖βj‖−1βj = 0 ∀ βj 6= 0,

‖HT
j+dn

(η̃ −Hθ)‖ < τ1j ∀ βj = 0,
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where Hj is the matrix consisting of the ((j − 1)n+ 1)-th to the (jn)-

th column of H. Hence, for j = 1, · · · , dn, we have αj = 0n if

‖HT
j (η̃ −Hθ−j)‖ < τ2j , otherwise

αj =
(
HT

j Hj + τ2j‖αj‖−1In
)−1

HT
j (η̃ −Hθ−j);

and βj = 0n if ‖HT
j+dn

(η̃ −Hθ−(j+dn))‖ < τ1j , otherwise

βj =
(
HT

j+dnHj+dn + τ1j‖βj‖−1In
)−1

HT
j+dn(η̃ −Hθ−(j+dn)),

where 0n is an n-dimensional vector with each component being 0,

θ−j =(αT
1 , · · · , αT

j−1, 0Tn, αT
j+1, · · · , αT

dn , hβT
1, · · · , hβT

dn)
T,

θ−(j+dn) =(αT
1 , · · · , αT

dn , hβT
1, · · · , hβT

j−1, 0Tn, hβT
j+1, · · · , hβT

dn)
T.

This leads to the following iterative algorithm to obtain the min-

imisers of Ô(θ).

Step 1. Start with α
(0)
j = α̃j and β

(0)
j = β̃j , j = 1, · · · , dn, where α̃j

and β̃j are the preliminary estimators of (aj(U1), · · · , aj(Un))
T

and (ȧj(U1), · · · , ȧj(Un))
T, respectively.

Step 2. For j = 1, · · · , dn, let α(k)
j and β

(k)
j be the results after the

k-th iteration. Update α
(k)
j and β

(k)
j in the (k+1)th iteration as

follows: for j = 1, · · · , dn, α
(k+1)
j = 0n if ‖HT

j (η̃ −Hθ
(k)
−j )‖ <

τ
(k)
2j , otherwise

α
(k+1)
j =

(
HT

j Hj + τ
(k)
2j ‖α(k)

j ‖−1In

)−1

HT
j (η̃ −Hθ

(k)
−j );
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and β
(k+1)
j = 0n if ‖HT

j+dn
(η̃ −Hθ

(k)
−(j+dn)

)‖ < τ
(k)
1j , otherwise

β
(k+1)
j =

(
HT

j+dnHj+dn + τ
(k)
1j ‖β(k)

j ‖−1In

)−1

HT
j+dn(η̃−Hθ

(k)
−(j+dn)

);

where τ
(k)
1j is defined as τ1j in (5.6) but with D̃j replaced by D

(k)
j ,

τ
(k)
2j is defined as τ2j in (5.6) but with α̃j replaced by α

(k)
j ,

D
(k)
j =

{ n∑

s=1

[
a
(k)
j (Us)−

1

n

n∑

l=1

a
(k)
j (Ul)

]2}1/2

,

θ
(k)
−j =

[
(α

(k+1)
1 )T, · · · , (α(k+1)

j−1 )T, 0Tn, (α
(k)
j+1)

T, · · · , (α(k)
dn
)T,

(hβ
(k)
1 )T, · · · , (hβ(k)

dn
)T
]T

, and

θ
(k)
−(j+dn)

=
[
(α

(k+1)
1 )T, · · · , (α(k+1)

dn
)T, (hβ

(k+1)
1 )T, · · · , (hβ(k+1)

j−1 )T, 0Tn,

(hβ
(k)
j+1)

T, · · · , (hβ(k)
dn
)T
]T

.

Furthermore, if ‖α(k)
j ‖ = 0 and ‖HT

j (η̃ −Hθ
(k)
−j )‖ > τ

(k)
2j , we set

α
(k+1)
j =

(
HT

j Hj + τ
(k)
2j ∆−1In

)−1

HT
j (η̃ −Hθ

(k)
−j ),

with ∆ = min{‖α(k)
l ‖ : ‖α(k)

l ‖ 6= 0, l = 1, · · · , dn}. If ‖β(k)
j ‖ =

0 and ‖HT
j+dn

(η −Hθ
(k)
−(j+dn)

)‖ > τ
(k)
1j , we set

β
(k+1)
j =

(
HT

j+dnHj+dn + τ
(k)
1j ∆−1

1 In

)−1

HT
j+dn(η̃ −Hθ

(k)
−(j+dn)

),

with ∆1 = min{‖β(k)
l ‖ : ‖β(k)

l ‖ 6= 0, l = 1, · · · , dn}.

Step 3. If
dn∑
j=1

[
‖α(k)

j −α
(k+1)
j ‖+ h‖β(k)

j − β
(k+1)
j ‖

]
is smaller than a

chosen threshold, we stop the iteration, and
(
α

(k+1)
j , β

(k+1)
j

)
,
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j = 1, · · · , dn, is the minimiser of Ô(θ). In our program, the

threshold is chosen as 10−8.

The simulation studies in Chapter 7 will show that the above iter-

ative procedure works reasonably well in the finite sample cases.
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6 Selection of tuning parameters

The tuning parameters involved in the proposed feature selection and

model specification procedures play a very important role. In this

chapter, we will address how to choose these tuning parameters.

6.1 Tuning parameter selection for diverging di-

mensional GSVCMs

First, in order to reduce the computational cost, we set the band-

width of the preliminary maximum log-likelihood estimation as h =

0.6(dn/n)
0.2. Also the preliminary estimation results are not very sen-

sitive to the choice of the bandwidth.

For the feature selection and model specification procedure based

on Qn∗(A, B) or Q̃n(A, B), if we use some proper penalty functions

that satisfy sparsity, approximate unbiasedness and continuity as in-

troduced in Chapter 2.2, such as SCAD, it would be reasonable to

set

λ11 = λ12 = · · · = λ1dn = λ1 and λ21 = λ22 = · · · = λ2dn = λ2.

This is because the need of different tuning parameters for different

coefficients would be met by the use of a proper penalty function. In

fact, in the proposed iterative algorithms in Chapter 5.1, the extent

of penalising a coefficient in each iteration is adjusted by its previous

value through the derivative of the penalty function. So, from now

on, we set λ1j = λ1 and λ2j = λ2 for any j, and select λ1 and λ2 by
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the generalized information criterion (GIC) proposed by Fan and Tang

(2013). We next briefly introduce the GIC method.

As the models concerned involve both unknown constant param-

eters and unknown functional parameters, to use GIC, we first need

to figure out how many unknown constant parameters an unknown

functional parameter amounts to. Cheng et al (2009) suggest that an

unknown functional parameter would amount to 1.028571h−1 unknown

constant parameters when Epanechnikov kernel was used. Taking their

suggestion, we construct the GIC for model (3.1) as

GIC(λ1, λ2) =− 2
n∑

i=1

ℓ(m̂(Ui, Xi), yi)

+ 2ln{ln(n)}ln(1.028571dnh−1)(k1 + 1.028571k2h
−1),

(6.1)

where m̂(Ui, Xi) is defined as m(Ui, Xi) with all unknowns being

replaced by their estimators obtained based on the tuning parameters

λ1 and λ2. k1 is the number of significant covariates with constant

coefficients obtained based on the tuning parameters λ1 and λ2, and

k2 is the number of significant covariates with functional coefficients

obtained based on the tuning parameters λ1 and λ2. The minimiser of

GIC(λ1, λ2) is the selected λ1 and λ2.
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6.2 Tuning parameter selection for ultra-high di-

mensional GSVCMs

First, for the preliminary estimation (3.12), the tuning parameters λ1

and λ2 are selected through BIC. The bandwidth is set to be h =

0.75[(log dn)/n]
0.2, which satisfies the assumptions in the asymptotic

theory. The reason for not using data-driven method to select this

bandwidth is to reduce the computational cost. Also the preliminary

estimation results are not very sensitive to the choice of the bandwidth.

Then, for the feature selection and model specification procedure

based on Q1
n(A, B) or Q2

n(A, B), the tuning parameters λ3 and λ∗
3 or

λ4 and λ∗
4 are also selected by the GIC method. Similar to (6.1), we

have the following GIC formula

GIC(λ, λ∗) =− 2
n∑

i=1

ℓ(m̂(Ui, Xi), yi)

+ 2ln{ln(n)}ln(1.028571dnh−1)(k1 + 1.028571k2h
−1),

(6.2)

where m̂(Ui, Xi) is defined as m(Ui, Xi) with all unknowns being re-

placed by their estimators obtained based on the tuning parameters

λ3 and λ∗
3 (or λ4 and λ∗

4), k1 is the number of significant covariates

with constant coefficients obtained based on the given pair of tuning

parameters, and k2 is the number of significant covariates with func-

tional coefficients obtained based on the given pair of tuning parame-

ters. For the maximisation of Q1
n(A, B), the minimiser of GIC(λ3, λ

∗
3)

is the selected λ3 and λ∗
3, while for the maximisation of Q2

n(A, B), the
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minimiser of GIC(λ4, λ
∗
4) is the selected λ4 and λ∗

4.
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7 Numerical studies

We now investigate the finite sample performance of the proposed fea-

ture selection, model specification and estimation procedure by some

numerical studies. As the procedure developed for the ultra-high di-

mensional GSVCMs also works well for diverging dimensional case,

here we only report the results based on the procedure for ultra-high

dimensional GSVCMs. When the dimension dn is not exceeding the

sample size n, two procedures have very close performance while the

procedure for diverging dimensional GSVCMs enjoys a faster compu-

tational speed. In practice, we suggest to use the procedure for diverg-

ing dimensional GSVCMs when dn ≤ n to reduce the computational

cost and use the procedure for ultra-high dimensional GSVCMs when

dn > n.

Throughout this chapter, we call the procedure based on (3.19)

the adaptive group LASSO method and the procedure based on (3.20)

the adaptive SCAD method. For the adaptive group LASSO method,

the pre-determined parameter κ is chosen to be 1. For the adaptive

SCAD method, the SCAD penalty is defined through its derivative as

in (3.17). The kernel function used in this chapter is taken to be the

Epanechnikov kernel K(t) = 0.75(1 − t2)+. The bandwidth is chosen

to be h = 0.75[(log dn)/n]
0.2. The tuning parameters are selected by

the data driven approach described in Chapter 6.2.
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7.1 Simulation studies

We are going to use three simulated examples to examine the accuracy

of the proposed feature selection, model specification and estimation

procedure. We will also examine the oracle property of the proposed

estimators.

We will start with a simulated example about semi-varying co-

efficient Poisson regression models, then an example about varying

coefficient models and finally an example about varying coefficient Lo-

gistic regression models. In Example 7.1, we will examine and compare

the proposed adaptive group LASSO method and the adaptive SCAD

method about their performance on feature selection, model specifi-

cation and estimation. We will see the adaptive SCAD method gives

slightly better performance under all simulation settings. Thus we will

call the adaptive SCAD method “our method” in the following two

examples and only compare it with the existing methods. In Example

7.2, we will compare our method with the KLASSO proposed in Wang

and Xia (2009) based on varying coefficient models. In Example 7.3,

we will compare our method with the methods appear in Lian (2012)

based on varying coefficient Logistic regression models. We will see

our method outperforms the existing ones.

Example 7.1. We generate a sample from a Poisson regression model

as follows: first independently generate xij , i = 1, · · · , n, j =

1, · · · , dn, from the standard normal distribution N(0, 1), and Ui,

i = 1, · · · , n, from uniform distribution U[0, 1], then generate yi
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based on

P (yi = k) =
ξki
k!
e−ξi , log(ξi) =

dn∑

j=1

aj(Ui)xij . (7.1)

We set the aj(·)s in (7.1) to be

a1(U) = sin(2πU), a2(U) = C2 = 0.6, aj(U) = 0, when j > 2.

For sample size n = 200 or n = 300, and dimension dn = 50,

dn = 100, dn = 200, or dn = 500, we apply either the adaptive group

LASSO method or the adaptive SCAD method to the simulated sample

to select the model, and estimate the unknown functional or constant

coefficients. For each case, we do 1, 000 simulations, and compute the

mean integrated squared error (MISE) of the estimators of the un-

known functional coefficients, mean squared error (MSE) of the esti-

mators of the unknown constant coefficients, and the ratios of correct-,

under-, over- and other-fitting. The “under-fitting” means that the se-

lected models either miss some significant covariates, or mis-specify

some functional coefficients as the constant coefficients. The “over-

fitting” means that the selected models either include some insignifi-

cant covariates, or mis-specify some constant coefficients as functional.

The “other-fitting” means that there exist both under-fitting and over-

fitting in the selected models. The “correct” models have to include

and only include the true significant variables as well as correctly iden-

tify the true structure of the model.

The simulation results are reported in Tables 1 and 2. We can
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see from Table 1 that both the adaptive group LASSO method and

the adaptive SCAD method work well for feature selection and model

specification, and the adaptive SCAD method gives slightly better per-

formance. Table 2 shows that the estimators obtained by either the

adaptive group LASSO method or the adaptive SCAD method are do-

ing very well, and their performance is comparable to that of the oracle

estimators.

Example 7.2. As the varying coefficient models are a special case of

the generalised varying coefficient models, our method is also appli-

cable to the varying coefficient models. In this example, we compare

our method with the KLASSO proposed in Wang and Xia (2009) for

varying coefficient models. We consider exactly the same simulated

example as that in Wang and Xia (2009), that is the following three

varying coefficient models:

(I) yi = 2 sin(2πUi)xi1 + 4Ui(1− Ui)xi2 + σǫi,

(II) yi = exp(2Ui − 1)xi1 + 8Ui(1− Ui)xi2 + 2 cos2(2πUi)xi3 + σǫi,

(III) yi = 4Uixi1 + 2 sin(2πUi)xi2 + xi3 + σǫi,

where xi1 = 1 for any i, (xi2, · · · , xi7)
T and ǫi, i = 1, · · · , n, are

independently generated from a multivariate normal distribution with

cov(xij1 , xij2) = 0.5|j1−j2| for any 2 ≤ j1, j2 ≤ 7 and the standard

normal distribution N(0, 1), respectively, Ui, i = 1, · · · , n, are inde-

pendently generated from either uniform distribution U[0, 1] or Beta

distribution B(4, 1), σ is set to be 1.5.
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Table 1: The ratios of model selection in 1,000 simulations

Adaptive group LASSO method
Correct Underfitting Overfitting Others

n=200, dn = 50 0.971 0.002 0.027 0.000
n=200, dn = 100 0.952 0.007 0.041 0.000
n=200, dn = 200 0.928 0.021 0.049 0.002
n=200, dn = 500 0.892 0.044 0.059 0.005

n=300, dn = 50 0.982 0.001 0.017 0.000
n=300, dn = 100 0.973 0.003 0.024 0.000
n=300, dn = 200 0.946 0.012 0.041 0.001
n=300, dn = 500 0.919 0.019 0.060 0.002

Adaptive SCAD method
Correct Underfitting Overfitting Others

n=200, dn = 50 0.979 0.002 0.019 0.000
n=200, dn = 100 0.960 0.006 0.034 0.000
n=200, dn = 200 0.936 0.017 0.046 0.001
n=200, dn = 500 0.902 0.040 0.054 0.004

n=300, dn = 50 0.990 0.001 0.009 0.000
n=300, dn = 100 0.981 0.003 0.016 0.000
n=300, dn = 200 0.956 0.010 0.034 0.000
n=300, dn = 500 0.924 0.017 0.058 0.001

The ratios of choosing correct, under-fitting, over-fitting and other mod-
els in 1000 simulations by using either the adaptive group LASSO
method or the the adaptive SCAD method.

For each model, we conduct 200 simulations, and in each simula-

tion, we apply either our method or the KLASSO to do model selection

and estimation and then make the comparison. We measure the per-

formance of model selection by reporting the percentages of correct-,

under- and over-fitting. The obtained results are presented in Table

3. From Table 3, we can see our method performs better than the
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Table 2: The MISEs and MSEs of the estimators for the functional
and constant coefficients

Adaptive group LASSO Adaptive SCAD Oracle Estimators

n = 200
â1(·) ĉ2 a1(·) c2 auo1 (·) cuo2

dn = 50 0.0184 0.0045 0.0182 0.0038 0.0170 0.0032
dn = 100 0.0205 0.0076 0.0198 0.0063 0.0170 0.0032
dn = 200 0.0273 0.0133 0.0265 0.0126 0.0170 0.0032
dn = 500 0.0329 0.0175 0.0306 0.0143 0.0170 0.0032

n = 300
â1(·) ĉ2 a1(·) c2 auo1 (·) cuo2

dn = 50 0.0175 0.0032 0.0172 0.0029 0.0162 0.0027
dn = 100 0.0184 0.0052 0.0181 0.0048 0.0162 0.0027
dn = 200 0.0247 0.0097 0.0232 0.0081 0.0162 0.0027
dn = 500 0.0288 0.0124 0.0274 0.0092 0.0162 0.0027

The MISEs or MSEs of the estimators obtained by either the adaptive
group LASSO method or the adaptive SCAD method. â1(·) and ĉ2 are
the estimators obtained by the adaptive group LASSO method, a1(·)
and c2 are the estimators obtained by the adaptive SCAD method, and
auo1 (·) and cuo2 are the unbiased oracle estimators.

KLASSO in model selection.

As in Wang and Xia (2009), we employ the median of the relative

estimation errors (MREE), obtained in the 200 simulations, to assess

the accuracy of an estimation method. The relative estimation error

(REE) is defined as

REE = 100×
∑n

i=1

∑dn
j=1 |âj(Ui)− aj(Ui)|

∑n
i=1

∑dn
i=1 |âj,o(Ui)− aj(Ui)|

(7.2)

where âj(·) is the estimator of aj(·), obtained by the estimation method
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concerned, and âuoj (·) is the oracle estimator of aj(·). The median of

REEs, of our method and the KLASSO under different situations,

are presented in Table 4. This shows our method is more accurate

than the KLASSO on the estimation side. We thus conclude that our

method performs better than the KLASSO on both model selection

and estimation.

Table 3: Comparison of model selection between our method and
KLASSO

Our Method KLASSO
fU(·) n Under Correct Over Under Correct Over

Model I
U[0,1] 100 0.020 0.910 0.070 0.09 0.74 0.16

200 0.005 0.985 0.010 0.02 0.95 0.03
B[4, 1] 100 0.020 0.875 0.105 0.21 0.58 0.21

200 0.005 0.950 0.045 0.08 0.86 0.05
Model II

U [0, 1] 100 0.015 0.915 0.070 0.01 0.83 0.16
200 0.005 0.990 0.005 0.00 0.99 0.01

B[4, 1] 100 0.015 0.890 0.095 0.01 0.82 0.18
200 0.005 0.970 0.025 0.00 0.96 0.04

Model III
U [0, 1] 100 0.010 0.935 0.055 0.02 0.85 0.13

200 0.000 0.995 0.005 0.00 0.99 0.01
B[4, 1] 100 0.015 0.895 0.090 0.02 0.79 0.19

200 0.005 0.975 0.020 0.00 0.96 0.04

The columns corresponding to “Under”, “Correct” and “Over” are the
ratios of under-fitting, correct-fitting and over-fitting for our method
and KLASSO under different situations.

Example 7.3. In this example, we compare the model selection per-
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Table 4: Comparison of estimation results between our method and
KLASSO

Median of Relative Estimation Errors
fU (·) n Our Method KLASSO

Model I
U[0,1] 100 109.35 121.00

200 101.78 115.45
B[4, 1] 100 114.41 127.42

200 103.49 122.12
Model II

U [0, 1] 100 107.81 109.45
200 101.51 109.46

B[4, 1] 100 115.17 111.06
200 103.73 108.07

Model III
U [0, 1] 100 106.71 116.53

200 101.21 110.59
B[4, 1] 100 112.39 118.91

200 104.06 113.43

formance of our method with the methods proposed in Lian (2012)

for generalized varying coefficient models. We consider exactly the

same simulation settings as that in Example 2 of Lian (2012), that

is the following varying coefficient logistic regression model where the

conditional mean function is:

E[yi|Xi] =

exp{
dn∑
j=1

aj(Ui)xij}

1 + exp{
dn∑
j=1

aj(Ui)xij}
. (7.3)

The covariates are generated as following: for any i = 1, · · · , n,
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xi1 = 1 and (xi2, · · · , xidn)
T are generated from a multivariate normal

distribution with cov(xij1, xij2) = 0.1|j1−j2| for any 2 ≤ j1, j2 ≤ dn.

The index variable Ui, i = 1, · · · , n, are independently generated

from the uniform distribution U[0, 1].

We set the aj(·)s in (7.3) to be

a1(U) = −4(U3 + 2U2 − 2U), a2(U) = 4 cos(2πU),

a3(U) = 3 exp{U − 0.5}, aj(U) = 0, when j > 3.

Similar to Example 2 of Lian (2012), we set the sample size n = 150

and dimension dn = 50 or dn = 200. For each case, the simulation

results are based on 100 replicates. The model selection performance

is measured by the average number of correct and incorrect varying

coefficients. The former one means the average number of significant

covariates are correctly selected into the final model while the latter

means the average number of insignificant covariates are falsely selected

as significant. The comparison results are shown in Table 5, from which

we can see our method gives better model selection results.

7.2 Real data analysis

We now apply the adaptive SCAD method to analyse an environmen-

tal data set from Hong Kong. This data set was collected between

January 1, 1994 and December 31, 1995. It is a collection of numbers

of daily total hospital admissions for circulatory and respiratory prob-

lems, measurements of pollutants and other environmental factors in

Hong Kong. The collected environmental factors are SO2 (coded by
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Table 5: Comparison of model selection between our method and
Lian’s methods

Average # of varying coef.
Method Correct Incorrect

dn = 50
GL(BIC) 3 18.75
GL(eBIC) 3 16.33
AGL(BIC-BIC) 3 10.29
AGL(eBIC-eBIC) 3 1.56
Our Method 3 1.37

dn = 200
GL(BIC) 3 38.78
GL(eBIC) 3 21.04
AGL(BIC-BIC) 3 25.72
AGL(eBIC-eBIC) 2.96 2.49
Our Method 3 2.18

The simulation results are based on 100 replicates with sample size
n = 150. GL means group lasso method, AGL means adaptive group
lasso method. The details of GL and AGL methods can be found in
Lian (2012) and eBIC means extended Bayesian information criterion
(Chen and Chen 2008).

x1), NO2 (coded by x2), dust (coded by x3), temperature (coded by

x4), change of temperature (coded by x5), humidity (coded by x6),

and ozone (coded by x7). What we are interested in is which envi-

ronmental factors among the collected factors have significant effects

on the number of daily total hospital admissions for circulatory and

respiratory problems (coded by y), and whether the impacts of those

factors vary over time (coded by U).

As the numbers of daily total hospital admissions are count data,
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it is natural to use Poisson regression model with varying coefficients,

namely (7.1), to fit the data. We apply the proposed adaptive SCAD

method to identify the significant variables and the nonzero constant

coefficients, and estimate the functional or constant coefficients in the

selected model.

The selected model is

P (yi = k) =
ξki
k!
e−ξi

with

log(ξi) = a0(Ui) + a2(Ui)xi2 + a4(Ui)xi4 + a5(Ui)xi5 + a6(Ui)xi6.

This shows only variables NO2, temperature, change of temperature,

and humidity have significant effects on the number of daily total hos-

pital admissions for circulatory and respiratory problems, and all these

variables have time-varying impacts. The estimates of the impacts of

these variables are presented in Figure 1.

Figure 1 shows NO2 always has a positive impact on the daily

number of total hospital admissions for circulatory and respiratory

problems, and this impact is stronger in winter and spring than in

summer and autumn. This is in line with the finding in one World

Health Organization report (WHO report, 2003) which shows some

evidence that “long-term exposure to NO2 at concentrations above

40–100 µg/m3 may decrease lung function and increase the risk of

respiratory symptoms”. The nonlinear dynamic pattern of the impact

of NO2 also makes sense. This is because the main source of NO2
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pollution comes from the burning of coals and gasoline. In winter and

spring, heating requirement will increase the amount of NO2 pollution.

This is evident from the plot of NO2 in the data set. Furthermore, the

fog and mist in winter and spring will also increase the chance that

people expose to NO2. As a common argument in chemistry (e.g.

see Wikipedia), though NO2 is toxic by inhalation, its compound is

acrid and can be easily detected by smell even at low concentrations.

Therefore the inhalation exposure to NO2 can be avoided in most cases.

However, when NO2 is dissolved into the fog, this acid mist will be hard

to detect, and people may easily be exposed to this toxic acid mist for

a long time without being aware.

Fig. 1 also shows the change of temperature has a time-varying

positive impact on the daily number of total hospital admissions for

circulatory and respiratory problems. This coincides with the intuition

that a sudden change of temperature will greatly increase the risk of

catching a cold, fever and other upper respiratory diseases. The impact

of temperature is also time-varying and mostly negative. It is stronger

in autumn and spring than in other seasons. This makes sense, indeed,

colder autumn or spring would see more people catching circulatory or

respiratory diseases.

The impact of humidity on the daily number of total hospital ad-

missions for circulatory and respiratory problems is interesting and

complicated. It does not seem to have any seasonal pattern. This is

in line with the findings reported in many literature. Indeed, existing

researches (Strachan and Sanders, 1989; Schwartz, 1995; and Leon et

al 1996) agree that humidity has a significant effect on daily hospital
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admissions for circulatory and respiratory problems in many different

places. Strachan and Sanders (1989) study the childhood respiratory

problems against the indoor air temperature and relative humidity.

Through a randomly sampled questionnaire survey, and interview of

1, 000 children aged 7 about their living conditions and reported cir-

culatory and respiratory problems, they show that the children living

in damp (higher relative humidity level) bedrooms had significantly

higher probability to catch day cough, night cough and chesty colds.

Schwartz (1995) studies the short term fluctuations in air pollution and

hospital admissions of the elderly for respiratory disease. According to

their data set, the risk (measured by sample variance) of respiratory

hospital admissions of people aged 65 or above is bigger in the cities

with higher average humidity levels (measured by dew point). Leon et

al (1996) study the effects of air pollution on daily hospital admissions

for respiratory disease based on a data set collected in London between

1987-88 and 1991-92. They show that the relative humidity is more

significant for the respiratory hospital admission numbers of children

(0-14 years) and the elderly (65+ years). All of these suggest there

may be a strong relationship between humidity level and the risk for

children and elderly people to catch circulatory or respiratory disease.
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Figure 1: Estimated curves of the functional coefficients in the selected
model for the Hong Kong environment data.
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8 Multicategory classification method

8.1 Motivation

The motivation for this multicategory classification method arose from

a medical study, where the research interest is to classify the patients

with early inflammatory polyarthritis at baseline to different risk levels

of progression to functional disability in a future time. Such a predic-

tive model is important in stratified medicine in order to identify a

sub-group of patients at early stage of disease onset who are at higher

risk to progress to a worse outcome so that more aggressive treat-

ment strategies, such as biologic therapy, could be suitable for them.

Logistic regression models are widely used for developing predictive

models where the outcome of interest is a dischotomous or nominal-

scaled variable. When the outcome variable can take more than two

values, a multinomial logistic regression is usually applied (Hosmer

and Lemeshow, 2000) and new multicategory classification methods

in multinomial logistic regression were recently discussed in Li, Jiang,

and Fine (2013). However usual logistic regression models assume that

the effects of predictors on outcomes are constant. We relax this as-

sumption by allowing the effects of the predictors to vary smoothly

with the change of a continuous covariate U based on a varying coef-

ficient structure. The use of such a nonparametric structure permits

nonlinear interactions between predictors and a particular variable U

and could be useful to improve the model fitting (Fan and Zhang,

1999, 2008; Solari et al , 2012). For example, in Chapter 8.4 we will

consider a relatively large number of candidate covariates at baseline
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to predict future progression to functional disability in early arthritis

patients. The set of candidate covariates may include patients’ de-

mographic factors (e.g., age, gender), serological and genetic factors

(e.g., rheumatic factor status, number of copies of shared epitope),

disease activity and severity measures (e.g., number of swollen or ten-

der joints), social-economic factors (e.g., index of multiple deprivation

score), etc. The number of potential predictors could be very large if

more biomarkers are available at baseline. It is of interest to allow the

effects of some baseline predictors to depend on the disease duration

from disease symptom onset to the baseline time when predictor vari-

ables were measured. By incorporating a flexible interaction between

baseline predictors and disease duration in the prognostic model, we

account for influences due to variations in time window from disease

onset to baseline between subjects. The research questions are then (i)

which variables among a large number of candidates should be included

in the predictive model; and (ii) which have varying effects among the

selected predictors.

In this chapter, we will introduce a multicategory classification

method for prognostic classification problems. This method is based

on a semi-varying coefficient multinomial logistic regression model and

the feature selection and model specification procedure proposed in

Chapter 3.2. Similar to the previous chapters, our proposed method

allows the number of potential covariates to increase with the sam-

ple size and, in theory, tend to infinity as the sample size tends to

infinity. This would be particularly useful in practice as we may in-

clude all available potential predictors to improve prediction accuracy.
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Generally speaking, our proposed multicategory classification method

contains three steps:

1. Feature selection and model specification. We start with a

full model including all potential covariates with functional coefficients

and apply a penalised likelihood approach to select predictors and

identify which coefficients are functional and which are constant.

2. Coefficient estimation. We estimate both constant and func-

tional coefficients based on the selected model.

3. Classification. For each subject, we can calculate the condi-

tional probabilities that this subject belongs to different risk groups

based on the selected model and its estimated coefficients. The sub-

ject is classifiable if the maximum of the estimated group-membership

probabilities exceeds a given threshold and is then classified to the

corresponding group with the maximum conditional probability. The

threshold can be chosen as a high enough probability to distinguish

the different groups, for example 80%.

In the above procedures, step 2 is a simple extension of the tra-

ditional maximum likelihood estimation and step 3 just involves some

trivial calculations. Thus the key step for our modelling is the feature

selection and model specification part. The rest of this chapter is ar-

ranged as follows. In Chapter 8.2, we discuss the feature selection and

model specification using a penalised likelihood estimation method in

details, which is based on the procedure we introduced in Chapter 3.2.

The bandwidth and tuning parameters for the feature selection and

model specification step can be chosen based on the method described

in Chapter 6.1. Chapter 8.3 gives simulation studies and Chapter 8.4
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focuses on an application to inflammatory polyarthritis data.

8.2 Methodology

A semi-varying coefficient multinomial logistic regression model

Suppose we have a sample (yi, Ui, xi1, · · · , xidn), i = 1, · · · , n,

from (y, U, x1, · · · , xdn). y is a categorical outcome variable of S

levels; U is a given continuous covariate; and xj , j = 1, · · · , dn, are

potential predictors that can be either continuous or discrete. We allow

dn to grow and diverge with sample size n. Throughout this chapter,

without loss of generality, we assume y ∈ {1, · · · , S}, and take level

S as reference.

Assume the conditional probability that the ith subject belongs to

the category s is psi = P (yi = s | Ui, xi1, . . . , xidn), where i = 1, . . . , n

and s = 1, . . . , S. To incorporate nonlinear interactions between xj

and U into the modelling, we specify all psis through a semi-varying

coefficient multinomial logistic regression, i.e.

psi =
exp(

∑dn
j=1 xijasj(Ui))

1 +
∑S−1

k=1 exp(
∑dn

j=1 xijakj(Ui))
, s = 1, . . . , S − 1,

pSi =
1

1 +
∑S−1

k=1 exp(
∑dn

j=1 xijakj(Ui))
. (8.1)

where akj(·)s are unknown coefficients that are either constant or func-

tional and
∑S

s=1 psi = 1. A constant coefficient akj(·) means that there

is no interaction between xij and Ui. It follows that the logit of cate-

gory s versus the reference category S is ln
(

psi
pSi

)
=
∑dn

j=1 xijasj(Ui).
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Feature selection and model specification

We now describe how to select the predictor variables in (8.1) and iden-

tify which coefficients are constant and which are functional. This is

basically a feature selection and model specification problem. Based on

the penalised likelihood idea, the feature selection and model specifica-

tion problem is transformed to an estimation problem of the unknown

coefficients, akj(·)s, in (8.1). In the following, we are going to apply

the penalised local maximum likelihood estimation to estimate akj(·)s
in (8.1).

It is easy to see the conditional log-likelihood function of akj(·)s,
given all potential predictors, in (8.1) is

n∑

i=1

{
S−1∑

s=1

I(yi = s)
dn∑

j=1

xijasj(Ui)− log

(
1 +

S−1∑

k=1

exp

{
dn∑

j=1

xijakj(Ui)

})}

(8.2)

For each given k, k = 1, . . . , n, within a small neighbourhood of

Uk, a Taylor’s expansion gives

asj(Ui) ≈ asj(Uk) + ȧsj(Uk)(Ui − Uk),

where i = 1, . . . , n, and j = 1, . . . , dn. This leads to the following local
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conditional log-likelihood function

ℓk(ak, bk) =

n∑

i=1

Kh(Ui − Uk)

{
S−1∑

s=1

I(yi = s)

dn∑

j=1

xij {αsjk + βsjk(Ui − Uk)}−

log

(
1 +

S−1∑

l=1

exp

[
dn∑

j=1

xij {αljk + βljk(Ui − Uk)}
])}

where αsjk corresponds to asj(Uk) and βsjk corresponds to ȧsj(Uk),

K(·) is a kernel function, h is a bandwidth, Kh(·) = 1
h
K(·/h),

ak = (α11k, . . . , α1dnk, . . . , α(S−1)1k, . . . , α(S−1)dnk)
T,

bk = (β11k, . . . , β1dnk, . . . , β(S−1)1k, . . . , β(S−1)dnk)
T.

Adding all ℓk(ak, bk), k = 1, · · · , n, together, we have

Ln(A, B) =
n∑

k=1

ℓk(ak, bk), (8.3)

where

A = (aT
1 , . . . , aT

n )
T, B = (bT

1 , . . . , bT
n )

T.

This leads to the following penalised local conditional log-likelihood

function for the model selection

Qn(A, B) = Ln(A, B)−
S−1∑

s=1

dn∑

j=1

pλ1sj
(Dsj)−

S−1∑

s=1

dn∑

j=1

pλ2sj
(‖αsj‖),

(8.4)
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where pλ(·) is a penalty function with tuning parameter λ,

‖u‖ = (uTu)1/2, αsj = (αsj1, · · · , αsjn)
T,

Dsj =

{
n∑

k=1

(αsjk − ᾱsj)
2

}1/2

, and ᾱsj =
1

n

n∑

k=1

αsjk.

To directly maximise Qn(A, B) can be very challenging. We are

going to find a quadratic function and use its maximiser to approximate

the maximiser of Qn(A, B), thereby simplifying the maximisation.

Let (Ãn, B̃n) be the maximiser of Ln(A, B), α̃sjk the component

of Ãn which corresponds to αsjk. α̃sj is αsj with αsjk replaced by α̃sjk.

D̃sj is Dsj with αsjk replaced by α̃sjk.

Noticing L̇n(Ãn, B̃n) = 0, by Taylor’s expansion, we have

Ln(A, B) ≈ Ln(Ãn, B̃n)

+
1

2

((
A− Ãn

)T
, h
(
B − B̃n

)T)
L̈n(Ãn, B̃n)


 A− Ãn

h
(
B − B̃n

)

 ,

and for s = 1, · · · , S − 1, j = 1, · · · , dn,

pλ1sj
(Dsj) ≈ pλ1sj

(D̃sj)− ṗλ1sj
(D̃sj)D̃sj + ṗλ1sj

(D̃sj)Dsj,

pλ2sj
(‖αsj‖) ≈ pλ2sj

(‖α̃sj‖)− ṗλ2sj
(‖α̃sj‖) ‖α̃sj‖+ ṗλ2sj

(‖α̃sj‖) ‖αsj‖ .
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Let

Ln∗(A, B) = 1

2

(
(A− Ãn)

T, h(B − B̃n)
T
)
L̈n(Ãn, B̃n)


 A− Ãn

h(B − B̃n)


 ,

and

P1n,sj(Dsj) = ṗλ1sj
(D̃sj)Dsj, P2n,sj(‖αj‖) = ṗλ2sj

(‖α̃sj‖) ‖αsj‖

We define

Qn∗(A, B) = Ln∗(A, B)−
S−1∑

s=1

dn∑

j=1

P1n,sj(Dsj)−
S−1∑

s=1

dn∑

j=1

P2n,sj(‖αsj‖),

and use the maximiser of Qn∗(A, B) to approximate the maximiser of

Qn(A, B) and estimate the corresponding unknown parameters.

Let (α̂sj, β̂sj), s = 1, · · · , S−1, j = 1, · · · , dn, be the maximiser

of Qn∗(A, B). For the penalty functions which enjoy sparsity property,

such as SCAD or L1 penalty, our feature selection and model specifica-

tion procedure works as follows: if ‖α̂sj‖ = 0, then the corresponding

variable xj is not significant and should be removed from modelling

the conditional probability P (y = s|U, x1, · · · , xdn) of y falling in level

s. Let D̂sj be Dsj with αsj replaced by α̂sj. If D̂sj = 0, the coefficient

of xj is constant when modelling P (y = s|U, x1, · · · , xdn).

Estimation

After the model is selected, we apply the standard local maximum

likelihood estimation to estimate the coefficients based on the selected
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model. The details are as following.

Suppose the set of the subscripts of the variables with functional

coefficients, in the selected model for P (y = s|U, x1, · · · , xdn), is Ωs,

with constant coefficients is ∆s. For any given u, by simple calculation,

we have the following local conditional log likelihood function

n∑

i=1

Kh(Ui − u)

{
S−1∑

s=1

I(yi = s)

[
∑

j∈Ωs

xij {αsj + βsj(Ui − u)}+
∑

l∈∆s

xilαsl

]

− log

(
1 +

S−1∑

k=1

exp

[
∑

j∈Ωk

xij {αkj + βkj(Ui − u)}+
∑

l∈∆k

xilαkl

])}
.

Let (α̂sj(u), β̂sj(u)), j ∈ Ωs ∪∆s, s = 1, · · · , S−1, be the maximiser

of this local conditional log likelihood function at u.

For any j ∈ Ωs, the estimator âsj(u) of the functional coefficient

asj(u) is taken to be α̂sj(u). For any l ∈ ∆s, the coefficient asl(·) is

constant which is denoted by Csl, and can be estimated by

Ĉsl =
1

n

n∑

i=1

α̂sl(Ui).

Classification

Once the model is specified and the coefficients in the selected model

are estimated, the classification becomes straightforward: For a new

subject, if the observation of the predictor is (Ul, xl1, . . . , xldn), the

conditional probability of this subject falling in level s, s ∈ {1, · · · , S−
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1}, given (Ul, xl1, . . . , xldn) can be estimated by

p̂sl =

exp

(
∑
j∈Ωs

xlj âsj(Ul) +
∑
j∈∆s

xljĈsj

)

1 +
S−1∑
k=1

exp

(
∑
j∈Ωk

xlj âkj(Ul) +
∑

j∈∆k

xljĈkj

) . (8.5)

Let

p̂Sl = 1−
S−1∑

s=1

psl

and ŝ maximise p̂sl with respect to s on {1, · · · , S}. If p̂ŝl is greater

than a given threshold, this new subject is classifiable under this

threshold. Then we classify it into level ŝ.

8.3 Simulation Study

We are going to use a simulated example to examine the performance

of the proposed 3-step multicategory classification method.

Example 8.1. We generate xij , i = 1, · · · , n, j = 1, · · · , dn,

independently from the standard normal distribution N(0, 1), and Ui,

i = 1, · · · , n, from the uniform distribution U [0, 1]. The response

variable yi is generated from a multinomial logistic regression model

defined by (8.1). We set S = 3, and all aij(·)s to be 0 except that

a11(U) = sin(2πU), a12 = 0.6, and a21 = 0.7.

The simulations are conducted for the following cases: the num-

ber of potential predictors dn = 3, 5, 10, 20 when the sample size

n = 200; and dn = 50 when n = 300. For each case, we do 200

replicates. In this example, the kernel function is taken to be the
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Epanechnikov kernel K(t) = 0.75(1− t2)+, and the bandwidth is cho-

sen to be h = 0.6[(S− 1)dn/n]
0.2. We use the SCAD penalty function,

which is defined through its derivative as in (3.17). We set the tuning

parameters λ1sj = λ1 and λ2sj = λ2 all s and j. The tuning param-

eters λ1 and λ2 are selected by the data-driven method introduced in

Chapter 6.2.

The performance of the feature selection and model specification

step is evaluated by the ratios of picking up the true models at various

cases, and the results are presented in Table 6. From Table 6, we can

see the feature selection and model specification step works well. The

performance of the estimation step is assessed by the median perfor-

mance among the 200 replicates. The estimated constant coefficients

are also reported in Table 6 and the estimates of the functional coeffi-

cient a11(·) are presented in Figure 2. From these results, we can see

the estimation step works well too.

We then examine the performance of the proposed classification

step. We compare the correct classification rate of our method with

the oracle rate that based on true model and true coefficients. The cor-

rect classification rate is computed by leave-one-out cross-validation.

That is: for each i, i = 1, · · · , n, we classify the ith subject by apply

the proposed method to the rest n− 1 subjects. Then, for each repli-

cate, the correct classification rate is the ratio between the number of

correct classified subjects and the number of total subjects (i.e. n).

By repeating this calculation for 200 replicates, we can get a sample

of correct classification rate. Similarly, we can also get a synthetic

sample of oracle rate by classify each subject according to the true
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conditional probabilities of all levels. The sample means and sample

variances of the correct classification rate and the oracle rate under all

cases are presented in Table 7. From Table 7 we can see the proposed

classification method performs almost equally well as the oracle one.

It should be noted that the proposed classification method does not

have a high correct classification rate. This is because, for each case,

none of the levels, which the outcome variable y may take, stands out

with high conditional probability. This means even if we knew the true

conditional probability (like the oracle one), we would still have a good

chance to mis-classify a subject. Indeed, from Table 7 one can see, the

oracle one does not have high correct classification rate either.

Furthermore, we will demonstrate that the proposed classification

method would have high correct classification rate when there is one

level standing out with a high conditional probability. Under the same

simulation settings, for each case, we treat the simulated sample as a

training set, then simulate a test observation. The test observation is

simulated such that there is one level which the outcome variable y falls

into with conditional probability of either 90% to 100%, or 80% to 90%,

or 70% to 80%, or 60% to 70%. We apply the proposed classification

method based on the training set to classify the test observation. For

each case, we do 200 replicates, and compute the correct classification

rate across the 200 replicates. The results are reported in the right

hand side of Table 7.
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Table 6: Simulation study – ratios of picking up models and estimates
of constant coefficients

Ratios of picking up models Coefficient estimates
Cases Correct Under Over Others Ĉ12 Ĉ21

n = 200

dn = 3 0.955 0.015 0.030 0.000 0.540 0.757
dn = 5 0.940 0.025 0.035 0.000 0.678 0.795
dn = 10 0.920 0.025 0.055 0.000 0.513 0.621
dn = 20 0.895 0.035 0.070 0.000 0.723 0.817
n = 300

dn = 50 0.820 0.065 0.110 0.005 0.466 0.573

Columns corresponding to “Correct”, “Under”, “Over” and “Others” are the ratios

of picking up correct, under-fitting, over-fitting and other models, respectively. True
values of constant coefficients are C12 = 0.6 and C21 = 0.7.

Table 7: Simulation study – comparison of means and variances of
correct classification rates between oracle method and our method

Oracle method Our method
90%− 80%− 70%− 60%−

Cases Mean Variance Mean Variance 100% 90% 80% 70%
n = 200

dn = 3 0.452 0.001 0.447 0.001 0.920 0.815 0.725 0.610
dn = 5 0.450 0.001 0.436 0.001 0.910 0.805 0.720 0.605
dn = 10 0.448 0.001 0.425 0.002 0.900 0.795 0.710 0.595
dn = 20 0.441 0.001 0.406 0.002 0.890 0.780 0.695 0.585
n = 300

dn = 50 0.458 0.001 0.368 0.002 0.850 0.740 0.635 0.530

Columns corresponding to “90%-100%”, “80%-90%”, “70%-80%”, “60%-70%” are

the average correct classification rates for the sub-group of subjects with maximum

conditional probability between 90% to 100% , “80%-90%”, “70%-80%”, “60%-
70%”.

8.4 Application to a medical data set about in-

flammatory polyarthritis

Scientific background

We now use the classification method developed in Chapter 8.2 to study

a medical data set from the primary care-based prospective cohort of
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Figure 2: Estimation of functional coefficient in simulation study –
solid lines are the true functional coefficients and dotted lines are their
estimates.
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patients with recent onset inflammatory polyarthritis (Farragher et

al, 2010). Rheumatoid arthritis (RA) is the most common inflamma-

tory disease of the joints, which is associated with progressive joint

destruction resulting in severe disability. However, it is difficult to

identify RA at an early stage of disease onset because no tests or di-
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agnostic criteria are available to define early RA (Visser, 2005). A

lab test that often helps with diagnosis of RA at a follow up stage

is anti-cyclic citrullinated peptide antibody test. Early arthritis may

be progressed into established RA or another definite arthritis disease

or may remain undifferentiated. To better manage the outcome in

arthritis, it has been suggested by clinical researchers to first recog-

nize inflammatory arthritis and then estimate the risk of developing

persistent and erosive irreversible arthritis such as RA in order to pro-

pose an optimal treatment (Dixon and Symmons, 2005). RA is a very

heterogeneous disease in terms of disease progression outcome. Some

RA patients do not develop any severe outcome, such as erosion, even

after a long time, but the majority will have bone erosions and carti-

lage breakdown resulting in joint destruction and functional disability.

For the management of early inflammatory polyarthritis, the Euro-

pean League against Rheumatism recommends that patients at risk of

developing persistent and/or erosive arthritis should be started with

disease-modifying anti-rheumatic drugs (DMARDs) as early as possi-

ble, even if they do not yet fulfil established classification criteria for

RA (Combe et al, 2007). Furthermore, the revolutionary introduction

of biologic agents, such as anti-tumour necrosis factor (TNF), in the

past decade offers patients a new and very effective treatment option

alternative to the traditional DMARDs. Early treatment with bio-

logic agents has been shown by published studies to improve clinical

outcomes, patients’ functional status and health-related quality of life

(Venkateshan et al, 2009). However, biologic agents have potential to

leave the patients more vulnerable to severe adverse events such as
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infection or malignancy because TNF is involved in many aspects of

host immunity (Fu et al, 2013) . Also the drug costs of treatment with

biologic agents are much higher comparing to DMARDs. In order to

achieve the goal of personalised treatment and optimal early use of

biologic agents in the management of RA, it is necessary to identify

a sub group of patients at baseline who are at higher risk to progress

into a worse functional status in future or have better response to bi-

ologic treatment so that specific treatment strategies are matched to

individual patients. In this study, our scientific interest focuses on

a prognostic model to classify the patients into groups with different

risk of progression to severe outcome rather than different responses to

treatment. An ideal therapeutic strategy should then be based on such

an appropriate prognostication of the disease (Combe et al, 2007). The

aim of this study is to improve the prognostic (or predictive) modelling

by identifying significant prognostic factors (or predictors) associated

with disease progression together with their significant interactions.

HAQ progression data

The data sample we study comprises 290 patients, who were recruited

to the Norfolk arthritis register cohort between 1990-1994 and have

disease duration from symptom onset to registration less than three

years. The disease outcome of interest is functional disability status,

which is an important clinical measure in RA as it has been shown to

be predictive of crucial RA-related outcomes, such as mortality (Fang

et al, 2014). This measure was assessed using the modified British

version of the Health Assessment Questionnaire (HAQ) score. The
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questionnaire contains 20 questions in 8 categories. Each question is

given a score of 0 (no difficulty), 1 (some difficulty), 2 (much difficulty

or need of assistance), or 3 (unable to perform). The score for each

category is determined by the highest score in that category, and the

sum of scores is then divided by the number of categories, yielding a

total HAQ score ranging from 0 (best) to 3 (worst). All patients in

our study sample have mild disease outcome at registration (baseline)

with baseline HAQ scores between 0 and 1 and were followed for at

least five years. The response variable Y is the functional disability

status at the end of a 5-year follow up since registration. Y = 1 if

the functional disability status at the end of follow up is at low risk

(HAQ score between 0 and 1); 2 if the functional disability status is

at moderate risk (HAQ score between 1 and 2); and 3 if the functional

disability status is at high risk (HAQ score between 2 and 3).

In the predictive model, the candidate predictors include age at

registration, gender, number of swollen joints out of 51 joints, number

of tender joints of 51 joints, rheumatic factor (1=positive or 0= nega-

tive), smoking status (three categories: non-smoker, current smoker or

ex-smoker), socio-economic status defined as a area-level category vari-

able based on the nationally-determined quartiles of the index of mul-

tiple deprivation score used in the UK (four categories: least deprived

group, two middle deprived groups, most deprived group), number of

copies of the shared epitope which is an established genetic biomarker

in RA, fulfillment of the American College of Rheumatology 1987 clas-

sification criteria for rheumatoid arthritis (1= yes or 0 = no), season of

birth (four categories: spring, summer, autumn or winter), DMARDs
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treatment duration (in days), baseline HAQ score and their functional

interactions with disease duration from symptom onset (in months).

One of the advantages of the proposed semi-varying coefficient

multinomial logistic regression model is to allow us to incorporate

potentially varying effects of baseline covariates with the change of

disease duration on disease progression outcome. It is more flexible

and more general than the one including a linear interaction term be-

tween a covariate and disease duration. We use the proposed method

in Chapter 8.2 to do feature selection and model specification to decide

which covariates are those with a varying coefficient and then estimate

both constant coefficients and varying coefficients based on the selected

model.

Results and analysis

We fit model (8.1) to the data and consider the disease duration vari-

able as the covariate U . Without loss of generality, we re-scale the

covariate U to [0, 1]. The response category Y = 1 is chosen as the

reference and the other two categories are compared against the ref-

erence category Y = 1. The initial model contains 18 covariates with

varying coefficients including an intercept and all numerical or dummy

variables listed in the data description above. We use the classifica-

tion method introduced in Chapter 8.2 to do feature selection and

model specification. The kernel function is chosen as the Epanech-

nikov kernel K(t) = 0.75(1 − t2)+, and the bandwidth is chosen as

h = 0.6[(S− 1)dn/n]
0.2. The tuning parameters λ1 and λ2 are selected

by GIC (Fan and Tang, 2013).
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The selected predictors together with their estimated constant or

functional coefficients and associated standard errors are presented in

Table 8 and Table 9. The plots of the estimation results of functional

coefficients are presented in Figure 3 and 4. For those functional coeffi-

cients, we report their estimates and standard errors at a given number

of U values with disease duration being 1, 3, 6, 12 or 24 months. The

standard errors of the coefficient estimates are calculated by a boot-

strap method as follows. For each observation, using the estimated

coefficients of the selected predictors, we can generate a bootstrap

sample member. Then all bootstrap sample members, i.e. bootstrap

sample members for all observations, form a bootstrap sample. Based

on the bootstrap sample, we can get the estimates of the coefficients,

which we call a bootstrap sample member of the estimated coefficients.

Repeating the re-sampling procedure 500 times, a bootstrap sample of

the estimated coefficients of size 500 is obtained. The sample standard

deviation of the bootstrap sample of estimated coefficients is used as

the standard error of the estimate.

Among the list of candidate covariates, twelve were selected to

be significantly associated with the multinomial logit of the response

group Y = 2 (moderate risk) relative to the reference group Y = 1 (low

risk). Three of them (RA, female, current smoker) have constant coef-

ficients and are associated with increasing probability of being a higher

risk group. The others (baseline HAQ score, number of swollen joints,

number of tender joints, DMARDs treatment duration, age at onset,

copies of genetic biomarker, previous smoker, upper middle deprived

group, and most deprived group) have functional coefficients. For the
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multinomial logit of the response group Y = 3 (high risk) relative to

the low risk group, eight covariates together with a functional intercept

were selected in the model. Two of them (baseline HAQ, rheumatic

factor) have constant coefficients and six (number of swollen joints,

number of tender joints, DMARDs treatment duration, age at onset,

copies of genetic biomarker, upper middle deprived group) have func-

tional coefficients. All the selected covariates in Table 8 and Table 9

are indeed well acknowledged predictors in HAQ progression (see for

example, Combe et al, 2003). Less significant covariates were identi-

fied in Table 9 due to the smaller sample size of 23 in Group Y = 3

comparing to 74 in Group Y = 2.

The scientific aim of this study is to classify the patients into dif-

ferent risk groups at baseline to predict their outcomes at the end of

follow up. Hence we assess the performance of our methods by com-

paring correct classification rates with other existing methods. The

calculation of correct classification rate is based on a leave-one-out

cross-validation approach. For each subject, we use the rest of the

data (289 subjects) to select covariates and obtain their coefficient es-

timates. Then we calculate the estimated conditional probability of

belonging to each risk level for this subject. If any estimated condi-

tional group-membership probability is higher than a threshold, say

80% or 70%, we classify this subject into the corresponding group and

compare the classification result with the true response value of Y . By

repeating this procedure to all subjects, we calculate correct classifi-

cation rates for those subjects who have a maximum of the estimated

group-membership probabilities greater than the threshold. The re-
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sults are shown in Table 10, where the correct classification rate are

compared between the model we selected (Model 1) and alternatives

that can be handled by existing R packages(Models 2-5). We pick

Models 2-5 to represent the model structure that are commonly used

in the applied fields as they can be solved without extra efforts on

programming. Model 2 is the full model including all covariates with

functional coefficients; Model 3 is the one including those covariates

identified in Table 8 but with constant coefficients; Model 4 is the one

including those covariates identified in Table 9 but with constant coef-

ficients; Model 5 is the full model including all covariates with constant

coefficients. We see that our selected model always gives the highest

correct classification rate comparing to the others. It could reach to

85.2% when the threshold probability is 0.8, though unsurprisingly less

number of subjects are classifiable. The two full models, with either

constant coefficient or functional coefficient, give lower classification

rates due to overfitting.

8.5 Discussion

In stratified medicine, it is of interest to identify a sub-group of sub-

jects at baseline who are at high risk in future progression to a se-

vere disease outcome and hence specific therapeutic strategy could

be matched. Many prognostic markers (predictors) are often taken

into account in prognostic classification modelling and the interactions

between predictor variables can be complicated. In this chapter, we

presented a semi-varying coefficient regression model for improving

the classification in predictive modelling and conducted the feature
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Figure 3: Plots of estimates of functional coefficient versus disease
durations – HAQ progression data with selected covariates for the logit
of Y = 2 vs Y = 1.

0 5 10 15 20

0.
1

0.
2

0.
3

0.
4

0.
5

haq0

Disease duration (months)

0 5 10 15 20

−
0.

02
5

−
0.

01
5

−
0.

00
5

swollen_51jt

Disease duration (months)

0 5 10 15 20

−
0.

00
5

0.
00

0
0.

00
5

0.
01

0

tend_51jt

Disease duration (months)

0 5 10 15 20

−
2e

−
04

0e
+

00
2e

−
04

dmard

Disease duration (months)

103



0 5 10 15 20

−
0.

00
20

−
0.

00
10

0.
00

00
age

Disease duration (months)

0 5 10 15 20

−
0.

10
−

0.
05

0.
00

0.
05

se

Disease duration (months)

0 5 10 15 20

−
0.

15
−

0.
05

0.
05

0.
10

smoke_pre

Disease duration (months)

0 5 10 15 20

−
0.

1
0.

0
0.

1
0.

2
0.

3

imd07_q3

Disease duration (months)

0 5 10 15 20

−
0.

1
0.

0
0.

1
0.

2
0.

3

imd07_q4

Disease duration (months)

104



Figure 4: Plots of estimates of functional coefficient versus disease
durations – HAQ progression data with selected covariates for the logit
of Y = 3 vs Y = 1.
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Table 8: HAQ progression data – selected covariates for the logit of
Y = 2 vs Y = 1 and their coefficient estimates (standard errors): either
constant or varying at selected disease durations

Variable with Constant
constant coefficient

ra 0.0907 - - - -
(0.0513)

gender 0.1444 - - - -
(0.0103)

smoker now 0.0925 - - - -
(0.0021)

Variable with Month(s)
Functional coefficient 1 3 6 12 24

haq0 0.1472 0.0835 0.0439 0.0893 0.5764
(0.0411) (0.0190) (0.0166) (0.0226) (0.1534)

swollen 51jt -0.0112 -0.0045 0.0012 0.0012 -0.0278
(0.0040) (0.0016) (0.0003) (0.0004) (0.0068)

tend 51jt -0.0073 -0.0044 -0.0004 0.0067 0.0133
(0.0026) (0.0010) (0.0001) (0.0018) (0.0050)

dmard -0.0002 -0.0001 0.0001 0.0002 0.0002
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

age -0.0017 -0.0010 -0.0004 0.0000 -0.0002
(0.0005) (0.0002) (0.0001) (0.0001) (0.0001)

se 0.0778 0.0536 0.0382 0.0058 -0.1035
(0.0275) (0.0214) (0.0149) (0.0018) (0.0329)

smoke pre 0.1067 0.0796 0.0304 -0.0319 -0.1732
(0.0273) (0.0194) (0.0093) (0.0066) (0.0574)

imd07 q3 0.2911 0.2412 0.1944 0.0830 -0.1844
(0.0860) (0.0887) (0.0464) (0.0321) (0.0531)

imd07 q4 0.3086 0.2896 0.2637 0.1740 -0.1755
(0.1005) (0.0934) (0.0877) (0.0672) (0.0675)

selection and model specification by a penalised likelihood approach.

Based on the ideas of penalization on deviation, kernel smoothing and

quadratic function approximation, our method selects significant pre-

dictors, determines whether each selected predictor has a constant or

functional coefficient and estimates their coefficients at the same time.
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Table 9: HAQ progression data – selected covariates for the logit of
Y = 3 vs Y = 1 and their coefficient estimates (standard errors): either
constant or varying at selected disease durations

Variable with Constant
constant coefficient

haq0 0.0515 - - - -
(0.0004)

rf 0.0771 - - - -
(0.0008)

Variable with Month(s)
Functional coefficient 1 3 6 12 24

intercept -0.1585 -0.1493 -0.1379 -0.0976 0.0247
(0.0433) (0.0387) (0.0521) (0.0336) (0.0069)

swollen 51jt 0.0050 0.0043 0.0033 0.0038 0.0098
(0.0019) (0.0013) (0.0007) (0.0013) (0.0033)

tend 51jt -0.0055 -0.0038 -0.0013 0.0021 0.0147
(0.0021) (0.0011) (0.0003) (0.0007) (0.0056)

dmard 0.0006 0.0004 0.0001 -0.0002 -0.0001
(0.0002) (0.0002) (0.0001) (0.0002) (0.0001)

age 0.0026 0.0023 0.0020 0.0007 -0.0010
(0.0009) (0.0006) (0.0004) (0.0002) (0.0003)

se 0.0567 0.0525 0.0377 0.0027 -0.0541
(0.0182) (0.0160) (0.0149) (0.0008) (0.0208)

imd07 q3 -0.0948 -0.0453 0.0197 0.1171 0.1649
(0.0193) (0.0160) (0.0075) (0.0440) (0.0379)

Another attractive feature of the proposed method is that it allows the

number of potential covariates to increase with the sample size. With

rapid development of laboratory medicine, more potential prognostic

markers, including clinical and demographic features, environmental

factors, serological factors, genetic factors, epigenetic factors and their

interactions, are considered as candidates to predict future disease out-

come or response to treatment in stratified medicine and the number

of potential predictors could be very large.
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Table 10: HAQ progression data – comparison of correct classification
rates among models

Estimated conditional probability ≥ 80%
Model Total Correct Correct

classification No. classification No. classification rate
Model 1 61 52 85.2%
Model 2 77 51 66.2%
Model 3 45 37 82.1%
Model 4 34 22 71.0%
Model 5 81 50 61.7%

Estimated conditional probability ≥ 70%
Model Total Correct Correct

classification No. classification No. classification rate
Model 1 120 93 77.5%
Model 2 138 88 63.7%
Model 3 142 105 73.9%
Model 4 70 46 65.7%
Model 5 143 90 62.9%

“Total classification No.” is the number of classifiable subjects whose estimated

maximum group-membership probability is higher or equal to 80% or 70%. “Correct
classification No.” is the number of correctly classified subjects. “Correct classifica-

tion rate” is the ratio between “Correct classification No.” and “Total classification

No.”.

This study focuses on nonparametric prognostic classification mod-

elling and future work would be focussing on treatment-specific con-

sideration in stratified medicine and methods to predict response to

treatment.
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9 Proofs of the theoretical results in Chap-

ter 4.1

In Chapter 9.1, we give some assumptions which are needed to prove

the asymptotic theory in Chapter 4.1. In Chapter 9.2 and Chapter

9.3, we provide the proofs of the main theoretical results and some

auxiliary results, respectively.

9.1 Assumptions

Recall that

q1(s, y) =
∂ℓ
[
g−1(s), y

]

∂s
, q2(s, y) =

∂2ℓ
[
g−1(s), y

]

∂s2
.

Let µk =
∫
ukK(u)du and νk =

∫
ukK2(u)du for k = 0, 1, 2, · · · ,

Λ(u) = fU(u)diag
(
1, µ2

)
,

V1(u) = E
{
q21
[ dn∑

j=1

aj(U)xj , y
]
XXT|U = u

}

and

V2(u) = E
{
q2
[ dn∑

j=1

aj(U)xj , y
]
XXT|U = u

}
,

where fU(·) is the marginal density function of U . Define

an1 = max
1≤j≤dn(1)

ṗλ1j

(
‖β̃j‖

)
, an2 = max

1≤j≤dn(2)
ṗλ2j

(
‖α̃j‖

)
.
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and

bn1 = min
dn(1)+1≤j≤dn

ṗλ1j

(
‖β̃j‖

)
, bn2 = min

dn(2)+1≤j≤dn
ṗλ2j

(
‖α̃j‖

)
.

Let αn ∝ βn denote c1βn ≤ αn ≤ c2βn for 0 < c1 ≤ c2 < ∞. We next

introduce some regularity conditions which have been used in Chapter

4.1 to establish the asymptotic theory. Some of them might be not the

weakest possible conditions.

Assumption A1. The kernel function K(·) is a continuous and sym-

metric probability density function with a compact support.

Assumption A2. (i) Let E
{
q21
[∑dn

j=1 aj(U)xj , y
]
|U = u

}
be continu-

ous for u ∈ [0, 1] and

E
{∣∣q1

[ dn∑

j=1

aj(U)xj , y
]∣∣2+δ

}
< ∞

for some δ > 0.

(ii) Let q2(s, y) < 0 for s ∈ R and y in the range of the response

variable. Furthermore, E
{∣∣q2

[∑dn
j=1 aj(U)xj , y

]∣∣2+δ
}

< ∞ and

there exists a M(X,U, y) > 0 such that

∣∣∣q2(s2(X,U), y)−q2(s1(X,U), y)
∣∣∣ ≤ M(X,U, y)

∣∣∣s2(X,U)−s1(X,U)
∣∣∣

and

max
i,j,k

sup
u

E
[∣∣xixjxk

∣∣M(X,U, y)
∣∣∣U = u

]
< ∞.
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(iii) Let V1(u) and V2(u) be continuous for u ∈ [0, 1], and

−Λ(u)⊗ V2(u) be positive definite for any u ∈ [0, 1] with eigen-

values bounded away from zero and infinity, where ⊗ denotes the

Kronecker product.

Assumption A3. The density function fU(·) has a continuous second-

order derivative. In addition, fU(u) is bounded away from zero

and infinity when u ∈ [0, 1].

Assumption A4. The functional coefficients, aj(·) have continuous

second-order derivative for j = 1, · · · , dn.

Assumption A5. Let the bandwidth h ∝ n−1/3 and the number of the

covariates dn = o(n4/15 log−1/3 n).

Assumption A6. (i) The penalty functions, pλkj
(·), are positive and

nondecreasing on (0,∞) and have the first-order derivatives de-

noted by ṗλkj
(·) for k = 1, 2 and j = 1, 2, · · · , dn. In addition,

ṗλkj
(z) ≥ 0 if z ≥ 0.

(ii) Let an1 = oP (γnn
3/2h/

√
dn) and an2 = oP (γnn

3/2/
√
dn),

where γn =
√

dn
nh
.

(iii) Let γnn
3/2/bn1 = oP (1) and γnn

3/2/bn2 = oP (1).

Assumption A7. Let an1 = oP (
√
n/dn) and an2 = oP (

√
n/dn).

Remark A.1. The above assumptions are mild and justifiable. As-

sumption A1 is a mild condition on the kernel function and the compact

support restriction can be relaxed at the cost of more tedious proofs.
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Assumption A2 imposes some smoothness and moment conditions on

q1(·, ·) and q2(·, ·), which are commonly used in local maximum likeli-

hood estimation (see, for example, Cai et al 2000, Li and Liang 2008).

Assumptions A3 and A4 provide some smoothness conditions on the

density function of U and the functional coefficients aj(·), which are

necessary when the local linear approach is applied (see, for example,

Fan and Gijbels 1996). In Assumption A5, we let the bandwidth cho-

sen as the optimal rate, and allow that the dimension of the covariates

diverges with a polynomial rate. Assumption A6 imposes some restric-

tions on the penalty functions and the tuning parameters λ1j and λ2j .

We will later show in Chapter 9.3 that the SCAD and LASSO penalty

functions would satisfy these conditions with mild restrictions on the

tuning parameters. Some additional restrictions on the penalty term

in Assumption A7 are mainly used to establish the oracle property in

Theorem 4.2. However, if we are only interested on the oracle prop-

erty for the nonparametric estimation in Theorem 4.2 and can prove

(4.1) and (4.2) in Proposition 4.1 for the penalised local maximum es-

timates â(·) and b̂(·), the conditions in Assumption A7 can be relaxed

to an1 = oP (n/
√
dnh) and an2 = oP (n/

√
dnh).

9.2 Proofs of the main results

We now provide the detailed proofs of the asymptotic results stated in

Chapter 4.1. Define

Lnu(a,b) =

n∑

i=1

ℓ
(
g−1
{ dn∑

j=1

[
αj+βj(Ui−u)

]
xij

}
, yi

)
Kh(Ui−u) (9.1)
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for u ∈ [0, 1]. Let ã(u) and b̃(u) be the maximiser to Lnu(a,b), the

local maximum likelihood estimators of a(u) and b(u), where

a(u) =
[
a1(u), · · · , adn(u)

]T
and b(u) =

[
ȧ1(u), · · · , ȧdn(u)

]T
.

We first give the proof of the uniform consistency results in Proposition

4.1.

Proof of Proposition 4.1. To prove (4.1) and (4.2), it suffices to

show that

sup
u∈[0,1]

∥∥ã(u)− a(u)
∥∥ = OP

(√dn logn

nh

)
(9.2)

and

sup
u∈[0,1]

∥∥h[b̃(u)− b(u)]
∥∥ = OP

(√dn log n

nh

)
. (9.3)

In order to prove (9.2) and (9.3), we first prove the result that

uniformly for u ∈ [0, 1],


 ã(u)− a(u)

h[b̃(u)− b(u)]


 = −L̈+

nu(a(u),b(u))L̇nu(a(u),b(u))(1 + oP (1)),

(9.4)
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where A+ is the Moore-Penrose inverse matrix of A,

L̇nu(a,b) =

n∑

i=1

q1

({ dn∑

j=1

[
αj + βj(Ui − u)

]
xij

}
, yi

)
Kh(Ui − u)


 1

Ui−u
h


⊗Xi,

L̈nu(a,b) =
n∑

i=1

q2

({ dn∑

j=1

[
αj + βj(Ui − u)

]
xij

}
, yi

)
Kh(Ui − u)


 1 Ui−u

h

Ui−u
h

(Ui−u)2

h2


⊗XiX

T
i .

By Taylor’s expansion for L̇nu(ã(u), b̃(u)) at (a(u),b(u)), we have

0 =L̇nu(ã(u), b̃(u))

=L̇nu(a(u),b(u)) + L̈nu(a∗(u),b∗(u))


 ã(u)− a(u)

h[b̃(u)− b(u)]


 ,

where a∗(u) lies between a(u) and ã(u), and b∗(u) lies between b(u)

and b̃(u). As in the proof of Lemma A.2 in Zhang et al (2012), we

may show that

L̈nu(a∗(u),b∗(u)) = L̈nu(a(u),b(u))(1 + oP (1))

uniformly for u ∈ [0, 1]. Then, using the Convex Lemma (c.f., Pollard

1991), we can prove (9.4) uniformly for u ∈ [0, 1].

By Assumptions A1–A5 in Chapter 9.1, we have, uniformly for
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u ∈ [0, 1],

1

n
L̈nu(a(u),b(u)) = Λ(u)⊗ V2(u)(1 + oP (1)). (9.5)

The detailed proof of (9.5) will be given later in Chapter 9.3.

Let Ri =
∑dn

j=1 aj(Ui)xij . We next consider L̇nu(a(u),b(u)). Let

L̇n(u) =

n∑

i=1

q1(Ri, yi)Kh(Ui−u)
( 1

Ui−u
h

)
⊗Xi =:

[
Sn,1(u), · · · , Sn,2dn(u)

]T
.

Observe that

L̇nu(a(u),b(u)) =L̇n(u) +
[
L̇nu(a(u),b(u))− L̇n(u)

]

=:L̇n(u) +
[
Tn,1(u), · · · , Tn,2dn(u)

]T

=
[
Sn,1(u) + Tn,1(u), · · · , Sn,2dn(u) + Tn,2dn(u)

]T
.

(9.6)

By Assumptions A1–A3, A5 and similarly to the proof of Theorem

B in Mack and Silverman (1982), we can show that

sup
u∈[0,1]

1

n

∣∣Sn,k(u)
∣∣ = OP

(√ logn

nh

)
, k = 1, · · · , 2dn. (9.7)

By Taylor’s expansion for q1(r, y) with respect to r,

sup
u∈[0,1]

1

n

∣∣Tn,k(u)
∣∣ = OP (h

2), k = 1, · · · , 2dn. (9.8)

Let λs(u) and λl(u) be the smallest and largest eigenvalues of
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−Λ(u)⊗ V2(u), respectively, and

λs = inf
u∈[0,1]

λs(u), λl = sup
u∈[0,1]

λl(u).

By Assumption A2(iii), it is easy to show that 0 < λs ≤ λl < ∞, which

implies that the largest eigenvalue of
[
− Λ(u) ⊗ V2(u)

]+
is bounded,

and

max
‖z‖=1

∥∥[Λ(u)⊗ V2(u)
]+

z
∥∥ < ∞ (9.9)

uniformly for u ∈ [0, 1]. Hence, by (9.4)–(9.9) and noting that h2 =

o
(√

logn
nh

)
by Assumption A5, we can prove (9.2) and (9.3).

✷

Proof of Proposition 4.2. Let

A0 =
[
aT(U1), · · · , aT(Un)

]T
, B0 =

[
bT(U1), · · · , bT(Un)

]T
,

and

U =
[
uT(1), · · · ,uT(n)

]T
, V =

[
vT(1), · · · ,vT(n)

]T
,

where both u(k) and v(k) are column vectors with dimension dn for

k = 1, · · · , n. Define

Ω(C) =
{
(U ,V) : ‖U‖2 = nC, ‖V‖2 = nC

}
,

where C is a positive constant.

For (U ,V) ∈ Ω(C), observe that

Qn∗

(
A0 + γnU ,B0 + γnV/h

)
−Qn∗(A0,B0) = In1 + In2 + In3, (9.10)
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where

In1 =
[
Ln∗

(
A0 + γnU ,B0 + γnV/h

)
−Ln∗(A0,B0)

]
,

In2 =
dn∑

j=1

[
P1n,j(‖βj0‖)− P1n,j(‖βj0 + γnvj/h‖)

]
,

In3 =
dn∑

j=1

[
P2n,j(‖αj0‖)−P2n,j(‖αj0 + γnuj‖)

]
,

in which γn is defined in Assumption A6(ii), αj0 =
[
aj(U1), · · · , aj(Un)

]T
,

βj0 =
[
ȧj(U1), · · · , ȧj(Un)

]T
, uj =

[
uj(1), · · · , uj(n)

]T
, vj =

[
vj(1), · · · , vj(n)

]T
,

uj(k) and vj(k) are the j-th component of vectors u(k) and v(k), re-

spectively.

We first consider In1. By the definition of Ln∗(·, ·) in Chapter 3.2,

we have

In1 =Ln∗

(
A0 + γnU ,B0 + γnV/h

)
−Ln∗

(
A0,B0

)
, (9.11)

P∼γn
(
UT,VT

)
L̇n(A0,B0) +

1

2
γ2
n

(
UT,VT

)
L̈n(Ãn, B̃n)

( U
V

)
,

where an
P∼ bn denotes that an = bn(1 + oP (1)). The detailed proof of

(9.11) will be provided in Chapter 9.3 below.

We define

In4 =γn
(
UT,VT

)
L̇n(A0,B0),

In5 =
1

2
γ2
n

(
UT,VT

)
L̈n(Ãn, B̃n)

( U
V

)
.
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Using Assumptions A1–A5 and Cauchy-Schwarz inequality, and by

some elementary but tedious calculations, we can show that

In4 = OP (γ
2
nn

3/2) ·
(
‖U‖+ ‖V‖

)
. (9.12)

The detailed proof of (9.12) will be also given in Chapter 9.3 below.

For In5, note that

In5 =
1

2
γ2
n

(
UT,VT

)[
L̈n(Ãn, B̃n)− L̈n(A0,B0)

]( U
V

)

+
1

2
γ2
n

(
UT,VT

)
L̈n(A0,B0)

( U
V

)

=:In6 + In7. (9.13)

Recalling that λs(u) is the smallest eigenvalue for −Λ(u) ⊗ V2(u), by

Assumption A2(iii), we have λs = infu∈[0,1] λs(u) > 0. Then, following

the proof of (9.5) in Chapter 9.3, we can show that

In7 ≤ −λsγ
2
nn ·

(
‖U‖2 + ‖V‖2

)
< 0. (9.14)

By Assumptions A2(ii) and A5, and using Proposition 4.1, we can
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prove that

In6 =OP (dnγ
3
nn
√

logn) ·max
i,j,k

sup
u

E
[∣∣xixjxk

∣∣M(X,U, y)
∣∣∣U = u

]

·
(
‖U‖2 + ‖V‖2

)

=OP (dnγ
3
nn
√

logn) ·
(
‖U‖2 + ‖V‖2

)

=oP (γ
2
nn) ·

(
‖U‖2 + ‖V‖2

)
,

which, together with (9.11)–(9.14), implies that In7 is the leading term

of In1. Hence, when n is sufficiently large, by taking C large enough,

we have

In1
P∼ 1

2
γ2
n

(
UT,VT

)
L̈n(A0,B0)

( U
V

)
. (9.15)

We next consider In2. By the definition of P1n,j(·) and Assumption
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A6(ii), we have

In2 =
dn∑

j=1

[
P1n,j(βj0)− P1n,j(βj0 + γnvj/h)

]

=
dn∑

j=1

ṗλ1j

(
‖β̃j‖

)(
‖βj0‖ − ‖βj0 + γnvj/h‖

)

≤
dn(1)∑

j=1

ṗλ1j

(
‖β̃j‖

)(
‖βj0‖ − ‖βj0 + γnvj/h‖

)

−
dn∑

j=dn(1)+1

ṗλ1j

(
‖β̃j‖

)
‖βj0 + γnvj/h‖

=OP

(√
dn(1)γnan1/h

)
· ‖V‖ −

dn∑

j=dn(1)+1

ṗλ1j

(
‖β̃j‖

)
‖βj0 + γnvj/h‖

=oP (γ
2
nn) · ‖V‖2 −

dn∑

j=dn(1)+1

ṗλ1j

(
‖β̃j‖

)
‖βj0 + γnvj/h‖. (9.16)

Similarly, by the definition of P2n,j(·) and Assumption A6(ii) again,

we also have

In3 =OP

(√
dn(2)γnan2

)
· ‖U‖ −

dn∑

j=dn(2)+1

ṗλ2j

(
‖α̃j‖

)
‖αj0 + γnuj‖

= oP (γ
2
nn) · ‖U‖2 −

dn∑

j=dn(2)+1

ṗλ2j

(
‖α̃j‖

)
‖αj0 + γnuj‖. (9.17)

Hence, by (9.10) and (9.15)–(9.17), we can prove that the leading

term of In1 + In2 + In3 is negative in probability, which indicates that
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for any ǫ > 0, there exists a sufficiently large C > 0 such that

P

{
sup

(U ,V)∈Ω(C)

Qn∗

(
A0 + γnU ,B0 + γnV/h

)
< Qn∗(A0,B0)

}
≥ 1− ǫ

(9.18)

for large n, which implies that (4.3) and (4.4) holds. ✷

Proof of Theorem 4.1. To prove (4.5), it is equivalent to show

P

(
max

dn(2)+1≤j≤dn
‖α̂j‖ 6= 0

)
→ 0 (9.19)

as n tends to infinity. As a consequence of the Karush-Kuhn-Tucker

conditions, for any dn(2) + 1 ≤ j ≤ dn such that ‖α̂j‖ 6= 0, we must

have
∂Ln∗(A,B)

∂αj
= ṗλ2j

(‖α̃j‖)
αj

‖αj‖
(9.20)

when αj = α̂j . It is easy to see that the Euclidean norm of the right

hand side of equation (9.20) is larger than bn2, which is defined in

Chapter 9.1 and is independent of j. Note that the convergence rates in

Proposition 4.2 hold for both the local maximum likelihood estimation

and penalised maximum likelihood estimation. Following the proof of

(9.9), we may show that the Euclidean norm of the left hand side of

(9.20) is bounded by OP (n
3/2γn) uniformly for dn(2) + 1 ≤ j ≤ dn.

Assumption A6(iii) indicates that the probability for (9.20) holds for

at least one dn(2) + 1 ≤ j ≤ dn is zero as n tends to infinity. Hence,

we can prove that (9.19) holds.
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Similarly, the proof of (4.6) is equivalent to the proof of

P

(
max

dn(1)+1≤j≤dn
‖β̂j‖ 6= 0

)
→ 0 (9.21)

as n tends to infinity. Applying the Karush-Kuhn-Tucker conditions,

for any dn(1) + 1 ≤ j ≤ dn such that ‖β̂j‖ 6= 0, we must have

∂Ln∗(A,B)
∂βj

= ṗλ2j
(‖β̃j‖)

βj

‖βj‖
(9.22)

when βj = β̂j . Using the argument analogous to the proof of (9.19)

and Assumption A6(iii), we can also prove that (9.21) holds. We then

complete the proof of Theorem 4.1. ✷

Proof of Theorem 4.2. The proof is similar to the proof of The-

orem 2 in Wang and Xia (2009) with some modifications. Let X∗
i =

[
xi1, · · · , xidn(1)

]T
,

L̇∗
nu(a,b) =

n∑

i=1

q1

({ dn∑

j=1

[
αj + βj(Ui − u)

]
xij

}
, yi

)
Kh(Ui − u)


 1

Ui−u
h


⊗X∗

i ,

L̈∗
nu(a,b) =

n∑

i=1

q2

({ dn∑

j=1

[
αj + βj(Ui − u)

]
xij

}
, yi

)
Kh(Ui − u)


 1 Ui−u

h

Ui−u
h

(Ui−u)2

h2


⊗X∗

i (X
∗
i )

T.
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For i = 1, · · · , n, denote

â1(Ui) =
[
â1(Ui), · · · , âdn(1)(Ui)

]T
,

âo(Ui) =
[
â1o(Ui), · · · , âdn(1)o(Ui)

]T
,

and let b̂1(Ui) and b̂o(Ui) be the penalised and oracle local maximum

estimates of
[
ȧ1(Ui), · · · , ȧdn(1)(Ui)

]T
, respectively.

Following the proof of (9.11) in Chapter 9.3, we can show that the

oracle estimates satisfy the following equation:

0 = L̇∗
nUi

(
a(Ui),b(Ui)

)
+ L̈∗

nUi

(
a(Ui),b(Ui)

)[ âo(Ui)− a1(Ui)

b̂o(Ui)− b1(Ui)

]

(9.23)

uniformly for 1 ≤ i ≤ n, where a1(u) and b1(u) are the sub-vectors

consisting of the first dn(1) elements of a(u) and b(u), respectively.

Following the proof of Theorem 4.1, we can also show that the

penalised estimates satisfy the following equation:

0 =L̇∗
nUi

(
a(Ui),b(Ui)

)
+ L̈∗

nUi

(
a(Ui),b(Ui)

)[ â1(Ui)− a1(Ui)

b̂1(Ui)− b1(Ui)

]

−
[
PT
a(Ui),P

T

b(Ui)
]T

(9.24)

uniformly for 1 ≤ i ≤ n, where

Pa(Ui) =
[
ṗλ21(‖α̃1‖)

â1(Ui)

‖α̂1‖
, · · · , ṗλ2dn(1)

(‖α̃dn(1)‖)
âdn(1)(Ui)

‖α̂dn(1)‖
]T
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and

Pb(Ui) =
[
ṗλ11(‖β̃1‖)

d̂1(Ui)

‖β̂1‖
, · · · , ṗλ1dn(1)

(‖β̃dn(1)‖)
d̂dn(1)(Ui)

‖β̂dn(1)‖

]T
,

d̂j(Ui) is the i-th element of bj .

By Assumption A7, we can prove that

√
nh

n

∥∥Pa(Ui)
∥∥ ≤ an2

√
dn(1)h√
n

= oP (1) (9.25)

and √
nh

n

∥∥Pb(Ui)
∥∥ ≤ an1

√
dn(1)h√
n

= oP (1). (9.26)

Then, by (9.23)–(9.26), and following standard argument in Wang and

Xia (2009), we can prove (4.7). The proof of (4.8) is analogous, and

details are omitted here. ✷

Proof of Corollary 4.1. Based on Theorem 4.2, Remark 4.2 in

Chapter 4.1, Theorem 2 in Cai et al (2000) and Theorem 1 in Zhang

and Peng (2010), we can easily prove (4.9) and (4.10).

✷

9.3 Proofs of some auxiliary results

Proof of (9.5). Let Vnu(k, l) be the (k, l)-th element of 1
n
L̈nu(a(u),b(u)),

and Vu(k, l) be the (k, l)-th element of Λ(u) ⊗ V2(u). Then, by the

uniform consistency result for nonparametric kernel estimation (c.f.,
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Theorem B in Mack and Silverman 1982),

sup
u∈[0,1]

∣∣Vnu(k, l)− Vu(k, l)
∣∣ = OP (h

2 +

√
log n

nh
) = OP (

√
log n

nh
)

as h ∝ n−1/3 in Assumption A5.

Note that

1

n
L̈nu(a(u),b(u)) =Λ(u)⊗ V2(u) +

1

n
L̈nu(a(u),b(u))− Λ(u)⊗ V2(u)

=:Λ(u)⊗ V2(u) + Ṽnu, (9.27)

where Ṽnu is a 2dn × 2dn matrix with the (k, l)-th element being

Vnu(k, l)− Vu(k, l).

Recall that λs(u) is the smallest eigenvalue of −Λ(u)⊗ V2(u) and

λs = infu∈[0,1] λs(u). By Assumption A2(iii), λs > 0. Thus, in order

to prove (9.5), it suffices to show that the largest eigenvalue of Ṽnu

is o(1) in probability. Let λ̃n(u) be the largest eigenvalue of Ṽnu and

λ̃n = supu∈[0,1] λ̃n(u). Note that, by Assumption A5,

λ̃n(u) ≤ max
k

2dn∑

l=1

[
Vnu(k, l)− Vu(k, l)

]
= OP (dn

√
logn

nh
) = oP (1)

uniformly for u ∈ [0, 1]. We then complete the proof of (9.5). ✷

Proof of (9.11). Recall that L̇n(Ãn, B̃n) = 0 by the definition of the
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local maximum likelihood estimation. Note that

In1 =Ln∗

(
A0 + γnU ,B0 + γnV/h

)
−Ln∗

(
A0,B0

)

=
{1
2

[ A0 − Ãn + γnU
h
(
B0 − B̃n

)
+ γnV

]T
L̈n(Ãn, B̃n)

[ A0 − Ãn + γnU
h
(
B0 − B̃n

)
+ γnV

]

− 1

2

[ A0 − Ãn

h
(
B0 − B̃n

)
]T
L̈n(Ãn, B̃n)

[ A0 − Ãn

h
(
B0 − B̃n

)
]}

+
{[

L̇n(Ãn, B̃n)
]T[ A− Ãn + γnU

h
(
B − B̃n

)
+ γnV

]
−
[
L̇n(Ãn, B̃n)

]T[ A0 − Ãn

h
(
B0 − B̃n

)
]}

=:In1(1) + In1(2).

By Taylor’s expansion, we have

In1(2) =γn
[
L̇n(Ãn, B̃n)

]T( U
V

)
P∼ γn

[
L̇n(A0,B0)

]T( U
V

)

− γn

[ A0 − Ãn

h
(
B0 − B̃n

)
]T[

L̈n(A0,B0)
]T( U

V

)
.
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On the other hand, by some elementary calculations, we also have

In1(1) =
{1
2

[ A0 − Ãn + γnU
h
(
B0 − B̃n

)
+ γnV

]T
L̈n(Ãn, B̃n)

[ A0 − Ãn + γnU
h
(
B0 − B̃n

)
+ γnV

]

− 1

2

[ A0 − Ãn

h
(
B0 − B̃n

)
]T
L̈n(Ãn, B̃n)

[ A0 − Ãn + γnU
h
(
B0 − B̃n

)
+ γnV

]}

+
{1
2

[ A0 − Ãn

h
(
B0 − B̃n

)
]T
L̈n(Ãn, B̃n)

[ A0 − Ãn + γnU
h
(
B0 − B̃n

)
+ γnV

]

− 1

2

[ A0 − Ãn

h
(
B0 − B̃n

)
]T
L̈n(Ãn, B̃n)

[ A0 − Ãn

h
(
B0 − B̃n

)
]}

=
γn
2

[
UT, VT

]
L̈n(Ãn, B̃n)

[ A0 − Ãn + γnU
h
(
B0 − B̃n

)
+ γnV

]

+
γn
2

[ A0 − Ãn

h
(
B0 − B̃n

)
]T
L̈n(Ãn, B̃n)

[ U
V

]

=
γ2
n

2

[
UT, VT

]
L̈n(Ãn, B̃n)

[ U
V

]
+ γn

[ A0 − Ãn

h
(
B0 − B̃n

)
]T
L̈n(Ãn, B̃n)

[ U
V

]

P∼γ2
n

2

[
UT, VT

]
L̈n(Ãn, B̃n)

[ U
V

]
+ γn

[ A0 − Ãn

h
(
B0 − B̃n

)
]T
L̈nA0,B0)

[ U
V

]
.

We can easily prove (9.11) by using the above results. ✷

Proof of (9.12). Recall that

In4 = γn
(
UT,VT

)
L̇n(A0,B0). (9.28)

128



By Taylor’s expansion for q1(r, y) and Assumption A4, we have

q1

{ dn∑

j=1

[
aj(Uk) + ȧj(Uk)(Ui − Uk)

]
xij , yi

}

=q1

[ dn∑

j=1

aj(Ui)xij , yi

]
+OP (h

2), (9.29)

which implies that

In4 =γn

n∑

k=1

n∑

i=1

q1
[ dn∑

j=1

aj(Ui)xij , yi
]
XT

i u(k)Kh(Ui − Uk)

+ γn

n∑

k=1

n∑

i=1

q1

[ dn∑

j=1

aj(Ui)xij , yi

](Ui − Uk

h

)
XT

i v(k)Kh(Ui − Uk)

+OP (γnn
3/2h2) ·

(
‖U‖+ ‖V‖

)
. (9.30)

Note that (Ui, Xi, yi), i = 1, · · · , n, are independent and identi-

cally distributed. By Assumptions A1–A3 and the Cauchy-Schwarz
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inequality, we have

E

[ n∑

k=1

n∑

i=1

q1
[ dn∑

j=1

aj(Ui)xij , yi
]
XT

i u(k)Kh(Ui − Uk)
]2

(9.31)

≤n

n∑

k=1

E

{ n∑

i=1

q1
[ dn∑

j=1

aj(Ui)xij , yi
]
XT

i u(k)Kh(Ui − Uk)
}2

=n

n∑

k=1

E

[
E

({ n∑

i=1

q1
[ dn∑

j=1

aj(Ui)xij , yi
]
XT

i u(k)Kh(Ui − Uk)
}2∣∣∣Uk

)]

=n

n∑

k=1

n∑

i=1

E

[
E

({
q21
[ dn∑

j=1

aj(Ui)xij , yi
]}

u
T(k)XiX

T
i u(k)K

2
h(Ui − Uk)

∣∣∣Uk

)]

=O
(
n2h−1

n∑

k=1

u
T(k)u(k)

)
= O(n2h−1) · ‖U‖2.

Similarly, we can also show that

E
[ n∑

k=1

n∑

i=1

q1

[ dn∑

j=1

aj(Ui)xij, yi

](Ui − Uk

h

)
XT

i v(k)Kh(Ui − Uk)
]2

= O(n2h−1) · ‖V‖2.

Thus, by (9.30) and noting h ∝ n−1/3 in Assumption A5, we have

In4 = OP (γ
2
nn

3/2) ·
(
‖U‖+ ‖V‖

)
. (9.32)

We then complete the proof of (9.12). ✷

Verification of Assumption A6: We next show that Assumption A6

can be satisfied for LASSO and SCAD penalty functions with certain

mild restrictions.

If the penalty function is the LASSO penalty defined by pλ(·) =
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nλ| · |, it is easy to see that Assumption A6(i) is satisfied. Note that

an1 = n max
1≤j≤dn(1)

λ1j , an2 = n max
1≤j≤dn(2)

λ2j

and

bn1 = n min
dn(1)+1≤j≤dn

λ1j , bn2 = n min
dn(2)+1≤j≤dn

λ2j .

By Assumption A5 and the definition of γn, we can show that Assump-

tion A6(ii) is satisfied if

max
1≤j≤dn(1)

λ1j = o(n−1/10) and max
1≤j≤dn(2)

λ2j = o(n1/10).

We can further show that Assumption A6(iii) is satisfied if

√
dnn

1/10

min
dn(1)+1≤j≤dn

λ1j
+

√
dnn

1/10

min
dn(2)+1≤j≤dn

λ2j
= o(1). (9.33)

We next consider the SCAD penalty function defined by pλ(·) =

nρλ(·), with

ρ̇λ(|z|) = λI(|z| ≤ λ) +
(aλ− |z|)+

a− 1
I(|z| > λ), (9.34)

where a = 3.7 as suggested by Fan and Li (2001). It is easy to check

that Assumption A6(i) is satisfied. If we assume that

max
1≤j≤dn(1)

λ1j + max
1≤j≤dn(2)

λ2j = o(n1/2),

by Proposition 4.1, we may show that an1 = an2 = 0 with probability

1, which indicates that Assumption A6(ii) is satisfied. By using the
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definition of the SCAD penalty function, we can further show that

Assumption A6(iii) is satisfied if (9.33) holds.
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10 Proofs of the theoretical results in Chap-

ter 4.2

In Chapter 10.1, we give some assumptions which are needed to prove

the asymptotic theory in Chapter 4.2. In Chapter 10.2 and Chapter

10.3, we provide the proofs of the main theoretical results and some

technical lemmas, respectively.

10.1 Assumptions

Recall that

q1(s, y) =
∂ℓ
[
g−1(s), y

]

∂s
, q2(s, y) =

∂2ℓ
[
g−1(s), y

]

∂s2

and define

L̈n(u) =


 L̈n(u, 0) L̈n(u, 1)

L̈n(u, 1) L̈n(u, 2)




with

L̈n(u, l) =
1

n

n∑

i=1

q2

{ dn∑

j=1

aj(Ui)xij , yi

}(Ui − u

h

)l

XiX
T
i Kh(Ui − u)

for l = 0, 1, 2. For some sufficiently large b0 > 1, let

Ω0(b0) =
{
v = (v11, · · · , v1dn , v21, · · · , v2dn)T : ‖v‖ = 1,

dn∑

j=1

(|v1j |+ |v2j|) ≤ b0

sn2∑

j=1

(|v1j |+ |v2j |)
}
.
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Let αn ∝ βn denote b1βn ≤ αn ≤ b2βn when n is sufficiently large,

0 < b1 ≤ b2 < ∞, and let αn ≪ βn denote αn = o(βn). We next

introduce some assumptions which have been used in Chapter 4.2 to

establish the asymptotic theory for the proposed feature selection and

model specification procedure. Some of the conditions might be not

the weakest possible conditions.

Assumption B1. The kernel function K(·) is a continuous and sym-

metric probability density function with a compact support.

Assumption B2. (i) Let

E
{
q1
[ dn∑

j=1

aj(Ui)xij , yi
]∣∣Xi, Ui

}
= 0 a.s.,

and E
{
q21
[∑dn

j=1 aj(U)xj , y
]
|U = u

}
be continuous for u ∈ [0, 1].

Moreover, suppose that either

max
1≤j≤dn

E
{∣∣q1

[ dn∑

j1=1

aj1(Ui)xij1, yi
]
xij

∣∣m0
}
< ∞ (10.1)

for m0 > 2, or

max
1≤j≤dn

E
{∣∣q1

[ dn∑

j1=1

aj1(Ui)xij1 , yi
]
xij

∣∣m
}
≤ M0m!

2
(10.2)

for all m ≥ 2 and 0 < M0 < ∞.
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(ii) Let q2(s, y) < 0 for s ∈ R and y in the range of the response

variable. Furthermore, there exists a M(X,U, y) > 0 such that

∣∣∣q2
[
r2(X,U), y

]
−q2

[
r1(X,U), y

]∣∣∣ ≤ M(X,U, y)
∣∣∣r2(X,U)−r1(X,U)

∣∣∣

and

max
i,j,k

sup
u∈[0,1]

E
[∣∣xixjxk

∣∣M(X,U, y)
∣∣∣U = u

]
< ∞.

(iii) There exist 0 < ρ1 ≤ ρ2 < ∞ such that

ρ1 ≤ inf
u∈[0,1]

inf
v∈Ω0(c0)

vT
[
−L̈n(u)

]
v ≤ sup

u∈[0,1]
sup

v∈Ω0(c0)

vT
[
−L̈n(u)

]
v ≤ ρ2

with probability approaching one.

Assumption B3. The density function fU(·) has a continuous second-

order derivative. In addition, fU(u) is bounded away from zero

and infinity when u ∈ [0, 1].

Assumption B4. The functional coefficients, aj(·), have continuous

second-order derivatives for j = 1, · · · , dn.

Assumption B5. Let dn ∝ nτ1 and nh
(ndn)2/m0 log h−1 → ∞, where 0 ≤

τ1 < ∞ and m0 is defined in (10.1). Moreover, the bandwidth

h and the tuning parameters λ1 and λ2 satisfy h2 ≪
(
log h−1

nh

)1/2
,

(
log h−1

nh

)1/2
= o(λ1), λ1 ∝ λ2 and sn2λ

2
1h

−2 = o(1).

Assumption B5 ′. Let dn ∝ exp
{
(nh)τ2

}
with 0 ≤ τ2 < 1 − τ3, 0 <

τ3 < 1. Furthermore, the bandwidth h and the tuning parameters

λ1 and λ2 satisfy h2 ≪
(
log h−1

nh

)τ3/2,
(
logh−1

nh

)τ3/2 = o(λ1), λ1 ∝ λ2
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and sn2λ
2
1h

−2 = o(1).

Assumption B6. Let sn2h
2 ∝ (nh)−1/2, λ3 ∼ λ∗

3,

λ3 = o
(
nκ/2h−1/2

)
, (10.3)

λ3 ≫ λκ
1(nsn2)

κ/2h−1/2
[
(log h−1)1/2 + s

1/2
n2 (1 + λ1

√
nh)
]
.

Furthermore, assume that

(
min

1≤j≤sn2

‖αj0‖+ min
1≤j≤sn1

Dj

)
≥ b0n

1/2, b0 > 0. (10.4)

Assumption B6 ′. Let sn2h
2 ∝ (nh)−1/2, λ4 ∼ λ∗

4,

λ4 = o
(
s
1/2
n2 n

1/2λ1

)
, λ4 ≫ h−1/2

[
(log h−1)1/2 + s

1/2
n2 (1 + λ1

√
nh)
]

(10.5)

and (10.4) hold.

Remark B.1. The above assumptions are mild and justifiable. As-

sumption B1 is a commonly-used condition on the kernel function and

can be satisfied for the uniform kernel function and the Epanechnikov

kernel function which is used in our numerical studies. The compact

support restriction on the kernel function is not essential and can be

removed at the cost of more tedious proofs. Assumption B2 imposes

some smoothness and moment conditions on q1(·, ·) and q2(·, ·), some of

which are commonly used in local maximum likelihood estimation (c.f.,

Cai et al, 2000, Li and Liang, 2008). Two moment conditions (10.1)

and (10.2) on q1
[∑dn

j1=1 aj1(Ui)xij1 , yi
]
xij are imposed in Assumption

B2(i), and they are used to handle the polynomially diverging dimen-
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sion of X (in Assumption B5) and the exponentially diverging dimen-

sion of X (in Assumption B5′), respectively. Hence, as the dimension

of the covariates increase from the polynomial order to the exponential

order, the required moment condition would be stronger. In contrast,

most of the existing literature such as Lian (2012) only considers the

case of the stronger moment condition in (10.2), which may possibly

limit the applicability of the model selection methodology. Assump-

tion B2(iii) can be seen as the modified version of the so-called re-

stricted eigenvalue condition introduced by Bickel et al (2009) for the

parametric regression models. Assumptions B3 and B4 provide some

smoothness conditions on the density function of U and the functional

coefficients aj(·), which are not uncommon when the local linear ap-

proach is applied (c.f., Fan and Gijbels, 1996). Assumption B5 imposes

some restrictions on the bandwidth h and the tuning parameters λ1

and λ2 when dn ∝ nτ1 , whereas Assumption B5′ imposes some condi-

tions when dn ∝ exp
{
(nh)τ2

}
. They are crucial to derive the uniform

convergence rates for the preliminary estimation in Proposition 4.3.

Noting that h2 ≪
(
log h−1

nh

)1/2
= o(λ1) and λ1 ∝ λ2 by Assumption B5,

the influence by h and λ2 on the uniform convergence rate in (4.11)

is dominated by that of λ1. The Assumptions B6 and B6′ are mainly

used to prove the sparsity and oracle property for the proposed feature

selection and model specification procedure.
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10.2 Proofs of the main results

We next give the detailed proofs of the main theoretical results devel-

oped in Chapter 4.2.

Proof of Proposition 4.3 (i). Recall that

ãk =
[
ã1(Uk), · · · , ãdn(Uk)

]T
, b̃k =

[ ˜̇a1(Uk), · · · , ˜̇adn(Uk)
]T
.

The basic idea used in the proof of this proposition is similar to that in

Bickel et al (2009) and Lian (2012). However, as we need to derive the

uniform convergence rates for the kernel-based estimators, the tech-

nical argument would be more complicated. We start with the proof

that with probability approaching one, uniformly for k = 1, · · · , n,

max
{ dn∑

j=sn2+1

|djk|,
dn∑

j=sn1+1

|ḋjk|
}
≤ (1 + C1)

( sn2∑

j=1

|djk|+
sn1∑

j=1

|ḋjk|
)
,

(10.6)

where C1 > 0 can be sufficiently large but independent of k, where

djk = ãj(Uk) − aj(Uk) and ḋjk = h
[˜̇aj(Uk) − ȧj(Uk)

]
, j = 1, · · · , dn,

k = 1, · · · , n.

By the definitions of ãk and b̃k, we readily have

Qnk(ãk, b̃k) ≥ Qnk

(
ak0,bk0

)
, (10.7)
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where ak0 and bk0 are defined in Chapter 3.3. From (10.7), we have

Lnk(ãk, b̃k)−Lnk

(
ak0,bk0

)
(10.8)

≥λ1

[ dn∑

j=1

|ãj(Uk)| −
dn∑

j=1

|aj(Uk)|
]
+ λ2

[ dn∑

j=1

|˜̇aj(Uk)| −
dn∑

j=1

|ȧj(Uk)|
]
.

By the concavity condition of ℓ(·, ·) (c.f., Assumption B2(ii)), we may

show that

Lnk(ãk, b̃k)− Lnk

(
ak0,bk0

)
≤ dTkL̇nk, (10.9)

where

L̇nk =
1

n

n∑

i=1

q1
[ dn∑

j=1

aj(Uk) + ȧj(Uk)(Ui − Uk)xij , yi
]
·


 Xi

Ui−Uk

h
·Xi


Kh(Ui − Uk)

and dk = (d1k, · · · , ddnk, ḋ1k, · · · , ḋdnk)T. By Lemma 10.1 in Chapter

10.3, we may show that

max
1≤j≤dn

sup
1≤k≤n

∣∣∣∣∣
1

n

n∑

i=1

q1
[ dn∑

j1=1

aj1(Ui)xij1 , yi
]
xijKh(Ui − Uk)

∣∣∣∣∣

= OP

(√
log h−1

nh

)
(10.10)
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and

max
1≤j≤dn

sup
1≤k≤n

∣∣∣∣∣
1

n

n∑

i=1

q1
[ dn∑

j1=1

aj1(Ui)xij1 , yi
]
xij

(Ui − Uk

h

)
Kh(Ui − Uk)

∣∣∣∣∣

= OP

(√
log h−1

nh

)
. (10.11)

Then, by (10.10), (10.11), the Cauchy-Schwarz inequality and the stan-

dard calculation in kernel-based smoothing, we may show that

dTkL̇nk ≤ OP

(√ log h−1

nh
+ h2

)
·
( dn∑

j=1

|djk|+
dn∑

j=1

|ḋjk|
)

(10.12)

uniformly for k = 1, · · · , n.

On the other hand, by the triangle inequality, we may prove that

λ1

[ dn∑

j=1

|ãj(Uk)| −
dn∑

j=1

|aj(Uk)|
]

=λ1

sn2∑

j=1

(
|ãj(Uk)| − |aj(Uk)|

)
+ λ1

dn∑

j=sn2+1

|ãj(Uk)|

≥ − λ1

sn2∑

j=1

|djk|+ λ1

dn∑

j=sn2+1

|djk|. (10.13)

Similarly, we also have

λ2

[ dn∑

j=1

|˜̇aj(Uk)| −
dn∑

j=1

|ȧj(Uk)|
]
≥ −λ2

sn1∑

j=1

|ḋjk|+ λ2

dn∑

j=sn1+1

|ḋjk|.

(10.14)

By (10.8), (10.9), (10.12)–(10.14) and the condition that
√

log h−1

nh
+
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h2 = o(λ1 + λ2) and λ1 ∝ λ2, we can complete the proof of (10.6).

Let u1 and u2 be two dn-dimensional column vectors and define

Ω(C2) =
{
(uT1, uT2)

T : ‖u1‖2 = ‖u2‖2 = C2

}
,

where C2 is a positive constant. By the concavity of ℓ(·, ·), we only

need to prove that there exists a local maximiser (ãk, hb̃k) in the

interior of the ball
{
(ak0+ γnu1, hbk0+ γnu2) : (uT1 , u

T
2)

T ∈ Ω(C2)
}
,

where γn =
√
sn2λ1. For simplicity, in the sequel, we let u1 = ãk − ak0

and u2 = h(b̃k − bk0). Observe that

Qnk

[
ak0 + γnu1,bk0 + γnu2/h

]
−Qnk

(
ak0,bk0

)
=

3∑

l=1

Ink(l), (10.15)

where

Ink(1) =Lnk

[
ak0 + γnu1,bk0 + γnu2/h

]
− Lnk

(
ak0,bk0

)
,

Ink(2) =− λ1

[ dn∑

j=1

|aj(Uk) + γnu1j| −
dn∑

j=1

|aj(Uk)|
]
,

Ink(3) =− λ2

[ dn∑

j=1

|hȧj(Uk) + γnu2j | −
dn∑

j=1

|hȧj(Uk)|
]
,

in which u1j and u2j are the j-th element of u1 and u2, respectively.

We first consider Ink(1). Letting u = (uT1 , uT2)
T and by the defini-

tion of Lnk(·, ·) in Chapter 3.1, we have

Ink(1)
P∼ γnu

TL̇nk +
1

2
γ2
nu

TL̈nk(a
∗
k,b

∗
k)u, (10.16)
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where an
P∼ bn denotes that an = bn(1 + oP (1)), (a

∗
k,b

∗
k) lies between

(
ak0 + γnu1,bk0 + γnu2/h

)
and (ak0,bk0),

L̈nk(ak,bk) =


 L̈nk(ak,bk, 0) L̈nk(ak,bk, 1)

L̈nk(ak,bk, 1) L̈nk(ak,bk, 2)




with

L̈nk(ak,bk, l) =
1

n

n∑

i=1

q2

{
dn∑

j=1

[
αjk + βjk(Ui − Uk)

]
xij , yi

}
·

(
Ui − Uk

h

)l

XiX
T
i Kh(Ui − Uk)

for l = 0, 1, 2.

By (10.6), and noting that u1 = (ãk − ak0)/γn and u2 = h(b̃k −
bk0)/γn, we may show that there exists C3 > 0 such that

dn∑

j=1

(|u1j|+ |u2j|) ≤ C3

sn2∑

j=1

(|u1j|+ |u2j|). (10.17)

Using Lemma 10.1 in Chapter 10.3, the Cauchy-Schwarz inequality

and (10.17), we can show that

γnu
TL̇nk = OP (γ

2
n) · ‖u‖. (10.18)

142



Note that

1

2
γ2
nu

TL̈nk(a
∗
k,b

∗
k)u (10.19)

=
1

2
γ2
nu

T
[
L̈nk(a

∗
k,b

∗
k)− L̈nk(ak0,bk0)

]
u+

1

2
γ2
nu

TL̈nk(ak0,bk0)u.

By Assumption B2(iii), we readily have

1

2
γ2
nu

TL̈nk(ak0,bk0)u ≤ −1

2
ρ1γ

2
n‖u‖2 < 0. (10.20)

By Assumption B2(ii), we can prove that

γ2
nu

T
[
L̈nk(a

∗
k,b

∗
k)− L̈nk(ak0,bk0)

]
u = oP (γ

2
n) ·
(
‖u‖2

)
. (10.21)

Hence, by (10.16) and (10.18)–(10.21), when n is sufficiently large, by

taking C2 large enough, we have

Ink(1)
P∼ 1

2
γ2
nu

TL̈nk(ak0,bk0)u. (10.22)

We next consider Ink(2) and Ink(3). It is easy to show that

Ink(2) =− λ1

[ dn∑

j=1

|aj(Uk) + γnu1j | −
dn∑

j=1

|aj(Uk)|
]

≤λ1

sn2∑

j=1

[
|aj(Uk)| − |aj(Uk) + γnu1j|

]
− λ1

dn∑

j=sn2+1

|γnu1j|

=OP (γ
2
n) · ‖u1‖ − λ1

dn∑

j=sn2+1

|γnu1j|. (10.23)

143



Similarly, noting that λ1 ∝ λ2 we also have

Ink(3) = OP (γ
2
n) · ‖u2‖ − λ2

dn∑

j=sn1+1

|γnu2j |. (10.24)

Hence, by (10.15) and (10.22)–(10.24), we can prove that the lead-

ing term of Ink(1)+Ink(2)+Ink(3) is negative in probability (uniformly

in k), which indicates that (ãk, b̃k) is indeed in the interior of ball de-

fined previously for sufficiently large C2, and thus completes the proof

of Proposition 4.3 (i). ✷

Proof of Proposition 4.3 (ii). The proof is similar to that in the

proof of Proposition 4.3 (i) with the role of Lemma 10.1 replaced by

Lemma 10.2. ✷

Proof of Theorem 4.3 (i). We start with the proof of the conver-

gence rates for the biased oracle estimators Âo
n and B̂o

n. According to

the definition, we have

(
Âo

n, B̂o
n

)
= argmaxQ1

n(Ao, Bo), (10.25)

where Ao and Bo are defined as in Chapter 4.2. Let A0 and B0 be the

vectors of the true functional coefficients and their derivative functions,

and denote

U1 =
[
uT1(1), · · · ,uT1(n)

]T
, U2 =

[
uT2(1), · · · ,uT2(n)

]T
,

where both u1(k) and u2(k) are dn-dimensional column vectors, k =

1, · · · , n, the last dn − sn2 elements of u1(k) and the last dn − sn1
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elements of u2(k) are zeroes. Define

Ω∗
n(C4) =

{
(UT

1 , UT
2 )

T : ‖U1‖2 = ‖U2‖2 = nC4

}
,

where C4 is a positive constant which can be sufficiently large.

For (UT
1 , UT

2 )
T ∈ Ω∗

n(C4), observe that

Q1
n

(
A0 + γ∗

nU1,B0 + γ∗
nU2/h

)
−Q1

n(A0,B0)

= In(1) + In(2) + In(3), (10.26)

where γ∗
n =

√
sn2/nh,

In(1) =L⋄
n

(
A0 + γ∗

nU1,B0 + γ∗
nU2/h

)
− L⋄

n(A0,B0),

In(2) =λ3

dn∑

j=1

‖α̃j‖−κ‖αj0‖ − λ3

dn∑

j=1

‖α̃j‖−κ‖αj0 + γ∗
nu1j‖,

In(3) =λ∗
3

dn∑

j=1

|D̃j|−κ‖hβj0‖ − λ∗
3

dn∑

j=1

|D̃j|−κ‖hβj0 + γ∗
nu2j‖,

in which αj0 =
[
aj(U1), · · · , aj(Un)

]T
, βj0 =

[
ȧj(U1), · · · , ȧj(Un)

]T
,

u1j =
[
u1j(1), · · · , u1j(n)

]T
, u2j =

[
u2j(1), · · · , u2j(n)

]T
, u1j(k) and

u2j(k) are the j-th component of vectors u1(k) and u2(k), respectively.

For In(1), by the definition of L⋄
n(·, ·) in Chapter 3.3, we have

In(1)
P∼ γ∗

nVT
n(U1,U2)L̇n(A0,B0)+

1

2
(γ∗

n)
2VT

n(U1,U2)L̈n(Ãn, B̃n)Vn(U1,U2).

(10.27)

The detailed proof of (10.27) will be provided in Chapter 10.3 below.
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We define

In(4) =γ∗
nVT

n(U1,U2)L̇n(A0,B0),

In(5) =
1

2
(γ∗

n)
2VT

n(U1,U2)L̈n(Ãn, B̃n)Vn(U1,U2).

By some elementary but tedious calculations, we can show that

In(4) = OP

(
(γ∗

n)
2n1/2

)
·
(
‖U‖+ ‖V‖

)
. (10.28)

The detailed proof of (10.28) will be also given in Chapter 10.3 below.

For In(5), note that

In(5) =
1

2
(γ∗

n)
2VT

n(U1,U2)
[
L̈n(Ãn, B̃n)− L̈n(A0,B0)

]
Vn(U1,U2)+

1

2
(γ∗

n)
2VT

n(U1,U2)L̈n(A0,B0)Vn(U1,U2)

≡In(6) + In(7). (10.29)

By Assumption B2(iii) and the definitions of U1 and U2, we may show

that

In(7) ≤ −1

2
ρ1(γ

∗
n)

2
(
‖U1‖2 + ‖U2‖2

)
< 0. (10.30)

By Assumption B2(ii) and using Proposition 4.3, we can prove that

In(6) = oP
(
(γ∗

n)
2
)
·
(
‖U1‖2 + ‖U2‖2

)
, (10.31)

which, together with (10.27)–(10.30), implies that In(7) is the leading

term of In(1). Hence, when n is sufficiently large, by taking C4 large
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enough, we have

In(1)
P∼ 1

2
(γ∗

n)
2VT

n(U1,U2)L̈n(A0,B0)Vn(U1,U2). (10.32)

We next consider In(2). By Proposition 4.3 and noting that u1j =

0 for j = sn2+1, · · · , dn and λ3 = o
(
nκ/2h−1/2

)
in (10.3), we have

In(2) =λ3

dn∑

j=1

‖α̃j‖−κ‖αj0‖ − λ3

dn∑

j=1

‖α̃j‖−κ‖αj0 + γ∗
nu1j‖

=λ3

dn∑

j=1

‖α̃j‖−κ
(
‖αj0‖ − ‖αj0 + γ∗

nu1j‖
)

=λ3

sn2∑

j=1

‖α̃j‖−κ
(
‖αj0‖ − ‖αj0 + γ∗

nu1j‖
)

=OP

(
λ3n

−κ/2s
1/2
n2 γ

∗
n

)
· ‖U1‖ = oP

(
(γ∗

n)
2
)
· ‖U1‖2. (10.33)

Similarly, we may also show that

In(3) = OP

(
λ∗
3n

−κ/2s
1/2
n2 γ

∗
n

)
· ‖U2‖ = oP

(
(γ∗

n)
2
)
· ‖U2‖2. (10.34)

Hence, by (10.26) and (10.32)–(10.34), we can prove that the lead-

ing term of In(1) + In(2) + In(3) is negative in probability, which

indicates that for any ǫ > 0, there exists a sufficiently large C4 > 0

such that

P

{
sup

(U1,U2)∈Ω∗

n(C4)

Q1
n

(
A0 + γ∗

nU1,B0 + γ∗
nU2/h

)
< Q1

n(A0,B0)

}
≥ 1− ǫ

(10.35)
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for large n. Therefore, we may show that

1

n

∥∥Âo
n −A0

∥∥2 = sn2
nh

,
1

n

∥∥B̂o
n − B0

∥∥2 = sn2
nh3

. (10.36)

which is (4.12) in Theorem 4.3 (i).

In order to complete the proof of Theorem 4.3 (i), we need to apply

Lemma 10.3 which is given in Chapter 10.3. By the definition of the

biased oracle estimators Âo
n and B̂o

n, it is easy to verify (10.57) and

(10.58). We next only show the proof of (10.59) as the proof of (10.60)

is similar. Under the moment condition (10.1) and dn ∝ nτ1 , we may

show that when A = Âo
n and B = B̂o

n, the left hand side of (10.59)

satisfies

max
sn2+1≤j≤dn

‖L̇⋄
n(A, B |αj)‖ = OP

(
(h−1 log h−1)1/2+(sn2h

−1+sn2nλ
2
1)

1/2
)

(10.37)

with L̇⋄
n(A, B | αj) being the gradient vector of L⋄

n(A, B) with respect

to αj , whereas the right hand side of (10.59) satisfies

λ3 min
sn2+1≤j≤dn

‖α̃j‖−κ = λ3 min
sn2+1≤j≤dn

‖α̃j −αj0‖−κ

=λ3

[
max

sn2+1≤j≤dn
‖α̃j −αj0‖

]−κ

≥c⋄
(
λ3λ

−κ
1 (nsn2)

−κ/2
)

(10.38)

by Proposition 4.3, where c⋄ > 0. Using (10.37), (10.38) and Assump-

tion B6, we may prove (10.59). Similarly, under the moment condition

(10.2) and dn ∝ exp {(nh)τ2}, we can also prove (10.59).

Then, the proof of Theorem 4.3 (i) is completed by using Lemma
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10.3. ✷

Proof of Theorem 4.3 (ii). By using Proposition 4.3, the definition

of the SCAD function and Lemma 10.4, the proof is similar to the

proof of Theorem 4.3 (i). Hence details are omitted here to save space.

✷

Proof of Theorem 4.4. The proof is similar to the proof of Theo-

rem 2 in Wang and Xia (2009) with some modifications. Recall that

aoj(Uk), j = 1, · · · , sn2, k = 1, · · · , n, are the biased oracle estimators

of aj(Uk), i.e., the maximisation of the objective function Q2
n(Ao, Bo)

with respect to Ao, and define

coj =
1

n

n∑

k=1

aoj(Uk), j = sn1 + 1, · · · , sn2.

Let

D
o

n =
(
max
1≤k≤n

∣∣ao1(Uk)− auo1 (Uk)
∣∣, · · · , max

1≤k≤n

∣∣aosn1
(Uk)− auosn1

(Uk)
∣∣
)T

,

and

C
o

n =
(
cosn1+1, · · · , cosn2

)T
.

By Theorem 4.3, in order to prove (4.12) and (4.13), we only need to

show that

√
nhBT

nD
o

n = oP (1),
√
nAT

n

(
C

o

n −Cuo
n

)
= oP (1). (10.39)
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For k = 1, · · · , n, denote

auo(Uk) =
[
auo1 (Uk), · · · , auosn2

(Uk), 0, · · · , 0
]T
,

ao(Uk) =
[
ao1(Uk), · · · , aosn2

(Uk), 0, · · · , 0
]T
,

where the last dn − sn2 elements in the above two vectors are zeros,

and let buo(Uk) and b
o
(Uk) be defined analogously. Then, using the

first-order condition, we may show that the oracle estimates satisfy the

following equation:

0 = Rsn2L̇∗
nk

(
ãk, b̃k

)
+Rsn2L̈∗

nk

(
ãk, b̃k

)

 auo(Uk)− ãk

buo(Uk)− b̃k


 (10.40)

uniformly for 1 ≤ k ≤ n, where Rsn2 =
[
Isn2 , Nsn2×(2dn−sn2)

]
with Is

being an s× s identity matrix and Nr×s being a r × s null matrix.

Following the proof of Theorem 4.3, we can also show that the

biased oracle estimates satisfy the following equation:

0 = Rsn2L̇∗
nk

(
ãk, b̃k

)
+Rsn2L̈∗

nk

(
ãk, b̃k

)

 ao(Uk)− ãk

b
o
(Uk)− b̃k


−P∗(Uk)

(10.41)

uniformly for 1 ≤ i ≤ n, where

P∗(Uk) =
(
ṗλ4(‖α̃1‖)

ao1(Uk)

‖αo
1‖

, · · · , ṗλ4(‖α̃sn2‖)
asn2(Uk)

‖αo
sn2

‖
)T

,

αo
j =

[
aoj(U1), · · · , aoj(Un)

]T
. By Proposition 4.3 and Assumption B6′,
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we may show that

min
1≤j≤sn2

‖α̃j‖ ≥ min
1≤j≤sn2

‖αj0‖ − max
1≤j≤sn2

‖α̃j −αj0‖ ≥ 1

2
b0
√
n

with probability approaching one, which together with (10.5), indicates

that the penalty term P∗(Uk) in (10.41) is asymptotically negligible.

Hence, by (10.40) and (10.41), we can complete the proof of (10.39).✷

10.3 Proofs of some technical lemmas

Define

Zij(u, l) = q1
[ dn∑

j1=1

aj1(Ui)xij1, yi
]
xij

(Ui − u

h

)l
Kh(Ui − u), u ∈ [0, 1]

(10.42)

for i = 1, . . . , n, j = 1, . . . , dn, l = 0, 1, 2, · · · . Under different mo-

ment conditions on the random element q1
[∑dn

j=1 aj(Ui)xij , yi
]
xij , in

Lemmas 10.1 and 10.2 below, we give the uniform consistency results

of the nonparametric kernel-based estimators in the ultra-high dimen-

sional case, which are of independent interest.

Lemma 10.1. Suppose that Assumptions B1 and B3 in Chapter 10.1

are satisfied. Moreover, suppose that the dimension dn ∝ nτ1 with

0 ≤ τ1 < ∞, E
{
q1
[∑dn

j=1 aj(Ui)xij , yi
]∣∣Xi, Ui

}
= 0 a.s., the moment

condition (10.1) holds for some m0 > 2, and

h ∝ n−δ1 with 0 < δ1 < 1,
nh

(ndn)2/m0 log h−1
→ ∞. (10.43)
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Then we have, as n → ∞,

max
1≤j≤dn

sup
u∈[0,1]

∣∣∣ 1
n

n∑

i=1

Zij(u, l)
∣∣∣ = OP

(( log h−1

nh

)1/2)
(10.44)

for any l = 0, 1, 2, · · · .

Proof of Lemma 10.1. For simplicity, let ξn =
(
log h−1

nh

)1/2
. The main

idea of proving (10.44) is to consider covering the interval [0, 1] by a

finite number of subsets U(k) which are centered at uk with radius

rn = ξnh
2. Letting Nn be the total number of such subsets U(k),

Nn = O(r−1
n ). It is easy to show that

max
1≤j≤dn

sup
u∈[0,1]

∣∣∣ 1
n

n∑

i=1

Zij(u, l)
∣∣∣

≤ max
1≤j≤dn

max
1≤k≤Nn

∣∣∣ 1
n

n∑

i=1

Zij(uk, l)
∣∣∣+

max
1≤j≤dn

max
1≤k≤Nn

sup
u∈U(k)

∣∣∣ 1
n

n∑

i=1

Zij(u, l)−
1

n

n∑

i=1

Zij(uk, l)
∣∣∣

≡Πn1 +Πn2. (10.45)

By the continuity condition on K(·) in Assumption B1 and using the

definition of rn, we readily have

Πn2 = OP

(rn
h2

)
= OP (ξn). (10.46)

For Πn1, we apply the truncation technique and the Bernstein in-

equality for i.i.d. random variables (c.f., Lemma 2.2.9 in van der Vaart
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and Wellner, 1996) to obtain the convergence rate. Let

Mn =M1(ndn)
1/m0 ,

Z ij(u, l) =Zij(u, l)I
{∣∣q1

[ dn∑

j=1

aj(Ui)xij , yi
]
xij

∣∣ ≤ Mn

}
,

and Z̃ij(u, l) =Zij(u, l)− Z ij(u, l),

where I{·} is an indicator function. Hence we have

Πn1 ≤ max
1≤j≤dn

max
1≤k≤Nn

∣∣∣ 1
n

n∑

i=1

{
Z ij(uk, l)− E[Z ij(uk, l)]

}∣∣∣+

max
1≤j≤dn

max
1≤k≤Nn

∣∣∣ 1
n

n∑

i=1

{
Z̃ij(uk, l)− E[Z̃ij(uk, l)]

}∣∣∣

≡Πn3 +Πn4. (10.47)

Note that for M2 > 0 and any ε > 0, by (10.43) and the Markov

inequality,

P
(
Πn4 > M2ξn

)
≤P

(
max

1≤k≤Nn

max
1≤i≤n,1≤j≤dn

∣∣Z̃ij(uk, l)
∣∣ > 0

)

≤
dn∑

j=1

n∑

i=1

P

(
∣∣q1
[ dn∑

j1=1

aj1(Ui)xij1 , yi
]
xij

∣∣ > Mn

)

≤M−m0
1 E

[∣∣q1
[ dn∑

j1=1

aj1(Ui)xij1 , yi
]
xij

∣∣m0
]
< ε,

if we chooseM1 > E
[∣∣q1

[∑dn
j1=1 aj1(Ui)xij1, yi

]
xij

∣∣m0
]1/m0ε−1/m0 . Then,
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by letting ε be arbitrarily small, we can show that

Πn4 = OP (ξn). (10.48)

Note that
∣∣Z ij(uk, l)− E[Z ij(uk, l)]

∣∣ ≤ CMn

h
(10.49)

and

Var
[
Z ij(uk, l)

]
≤ C

h
(10.50)

for some C > 0. By (10.44), (10.48), (10.49) and Lemma 2.2.9 in van

der Vaart and Wellner (1996), we have

P(Πn3 > M2ξn) ≤2dnNn exp
{ −n2M2

2 ξ
2
n

2nC/h+ 2CM2nξnMn/(3h)

}

≤2dnNn exp
{
−M2 log h

−1
}
= o(1), (10.51)

where M2 is chosen such that

M2 > 3C, dnNn exp
{
−M2 log h

−1
}
= o(1),

which are possible as dn is diverging with certain polynomial rate.

Hence we have

Πn3 = OP (ξn). (10.52)

In view of (10.45)–(10.48) and (10.52), we have shown (10.44), com-

pleting the proof of Lemma 10.1. ✷

Lemma 10.2. Suppose that Assumptions B1 and B3 in Chapter 10.1

are satisfied. Moreover, suppose that the dimension dn ∝ exp{(nh)τ2}
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with 0 ≤ τ2 < 1, E
{
q1
[∑dn

j=1 aj(Ui)xij , yi
]∣∣Xi, Ui

}
= 0 a.s., the mo-

ment condition (10.2) holds for all m ≥ 2, and h ∝ n−δ1 with 0 < δ1 <

1. Then we have, as n → ∞,

max
1≤j≤dn

sup
u∈[0,1]

∣∣∣ 1
n

n∑

i=1

Zij(u, l)
∣∣∣ = oP

(( log h−1

nh

)τ3/2) (10.53)

for any l = 0, 1, 2, · · · , 0 < τ3 ≤ 1− τ2.

Proof of Lemma 10.2. The proof of (10.53) is similar to the proof

of (10.44) in Lemma 10.1. The major difference is the way of dealing

with Πn1. Because of the stronger moment condition in (10.2), we may

directly use a different exponential inequality and do not need to apply

the truncation method. By replacing ξn by ξn(τ3) ≡
(
log h−1

nh

)τ3/2, we
may re-define r = o

(
ξn(τ3)h

2
)
and thus Nn = O

(
r−1
)
.

Note that there exists a positive constant M3 such that

E
[∣∣Zij(u, l)

∣∣m] ≤ M3

2h
m!(h−1)m−2 (10.54)

for all m ≥ 2, by using the moment condition (10.2). Then, by (10.54)

and Lemma 2.2.11 in van der Vaart and Wellner (1996) with M = h−1
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and vi = M4/h, we can show that for any ǫ > 0

P
(
Πn1 > ǫξn(τ3)

)
≤2dnNn exp

{ −n2ǫ2ξ2n(τ3)

2nM4/h+ 2nǫξn(τ3)/h

}

≤2dnNn exp
{
− ǫ2(log h−1)τ3

3M4
(nh)1−τ3

}

=2Nn exp
{
(nh)τ2 − ǫ2δτ31 (log n)τ3

3M4
(nh)1−τ3

}

=o(1) (10.55)

as (1− τ3) ≥ τ2. The remaining proof is the same as that in the proof

of Lemma 10.1. Hence details are omitted here to save space. ✷

Define

Mα =
(
αj : 1 ≤ j ≤ sn2

)
and Mβ =

(
βj : 1 ≤ j ≤ sn1

)
, (10.56)

which correspond the non-zero components in A0 and B0, respec-

tively. Let L̇⋄
n(A, B | Mα), L̇⋄

n(A, B | Mβ), L̇⋄
n(A, B | αj) and

L̇⋄
n(A, B | βj) be the gradient vector of L⋄

n(A, B) with respect to

Mα, Mβ, αj and βj, respectively. Define the sub-gradient of the

adaptive group LASSO penalty terms in (3.19) as

P1(Mα) =
( α11

‖α̃1‖κ‖α1‖
, · · · , αsn21

‖α̃sn2‖κ‖αsn2‖
, · · · ,

α1n

‖α̃1‖κ‖α1‖
, · · · , αsn2n

‖α̃sn2‖κ‖αsn2‖
)T

,

P1(Mβ) =
( β11

‖D̃1‖κ‖β1‖
, · · · , βsn11

‖D̃sn1‖κ‖βsn1
‖
, · · · ,

β1n

‖D̃1‖κ‖β1‖
, · · · , βsn1n

‖D̃sn1‖κ‖βsn1
‖

)T
.
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The following lemma is crucial to the proof of Theorem 4.3 (i).

Lemma 10.3. Suppose that the conditions of Theorem 4.3 (i) are sat-

isfied. Then, the objective function Q1
n(A, B) has a unique maximiser

(
Âo

n, B̂o
n

)
if

L̇⋄
n(A, B | Mα)− λ3P1(Mα) = 0, (10.57)

L̇⋄
n(A, B | Mβ)− λ∗

3P1(Mβ) = 0, (10.58)

max
sn2+1≤j≤dn

‖L̇⋄
n(A, B | αj)‖ < λ3 min

sn2+1≤j≤dn
‖α̃j‖−κ, (10.59)

max
sn1+1≤j≤dn

‖L̇⋄
n(A, B | βj)‖ < λ∗

3 min
sn1+1≤j≤dn

‖D̃j‖−κ (10.60)

hold at A = Âo
n and B = B̂o

n, where 0 is a null vector whose size may

change from line to line.

Proof of Lemma 10.3. The proof of this lemma is similar to the

proof of Theorem 1 in Fan and Lv (2011). Hence, the details are

omitted here to save space. ✷

Let P2(Mα) and P2(Mβ) be defined as P1(Mα) and P1(Mβ)

with ‖α̃j‖−κ and ‖D̃j‖−κ being replaced by ṗλ4(‖α̃j‖) and ṗλ∗

4
(‖D̃j‖),

respectively. We next give a lemma for the case of the adaptive SCAD

penalty function, which is crucial to the proof of Theorem 4.3 (ii). The

proof of Lemma 10.4 below is also similar to the proof of Theorem 1

in Fan and Lv (2011).

Lemma 10.4. Suppose that the conditions of Theorem 4.3 (ii) are sat-

isfied. Then, the objective function Q2
n(A, B) has a unique maximiser
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(
Ao

n, Bo

n

)
if

L̇⋄
n(A, B | Mα)−P2(Mα) = 0, (10.61)

L̇⋄
n(A, B | Mβ)− P2(Mβ) = 0, (10.62)

max
sn2+1≤j≤dn

‖L̇⋄
n(A, B | αj)‖ < min

sn2+1≤j≤dn
ṗλ4(‖α̃j‖), (10.63)

max
sn1+1≤j≤dn

‖L̇⋄
n(A, B | βj)‖ < min

sn1+1≤j≤dn
ṗλ∗

4
(‖D̃j‖) (10.64)

hold at A = Ao

n and B = Bo

n.

Proof of (10.27). Note that In(1) equals to

L⋄
n

(
A0 + γ∗

nU1,B0 + γ∗
nU1/h

)
− L⋄

n

(
A0,B0

)

=γ∗
nVT

n(U1, U2)L̇n(Ãn, B̃n)

+
1

2

{
VT
n

(
A0 − Ãn + γ∗

nU1, h(B0 − B̃n) + γ∗
nU2

)
L̈n(Ãn, B̃n)

Vn(A0 − Ãn + γ∗
nU1, h(B0 − B̃n) + γ∗

nU2)

− VT
n(A0 − Ãn, h(B0 − B̃n))L̈n(Ãn, B̃n)Vn(A0 − Ãn, h(B0 − B̃n))

}

≡In(1, 1) + In(1, 2).

By Taylor’s expansion, we have

In(1, 1) =γ∗
nVT

n(U1, U2)L̇n(Ãn, B̃n)
P∼ γ∗

nVT
n(U1, U2)L̇n(A0,B0)

− γ∗
nVT

n(U1, U2)L̈n(A0,B0)Vn

(
A0 − Ãn, h(B0 − B̃n)

)
.
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On the other hand, by some elementary calculations, we also have

In(1, 2)

=
1

2

{
VTn
(
A0 − Ãn + γ∗

nU1, h(B0 − B̃n) + γ∗

nU2

)
L̈n(Ãn, B̃n)Vn

(
A0 − Ãn + γ∗

nU1, h(B0 − B̃n) + γ∗

nU2

)

− VTn
(
A0 − Ãn, h(B0 − B̃n)

)
L̈n(Ãn, B̃n)Vn

(
A0 − Ãn + γ∗

nU1, h(B0 − B̃n) + γ∗

nU2

)

+ VTn
(
A0 − Ãn, h(B0 − B̃n)

)
L̈n(Ãn, B̃n)Vn

(
A0 − Ãn + γ∗

nU1, h(B0 − B̃n) + γ∗

nU2

)

− VTn
(
A0 − Ãn, h(B0 − B̃n)

)
L̈n(Ãn, B̃n)Vn

(
A0 − Ãn, h(B0 − B̃n)

)}

=
γ∗

n

2
VTn(U1, U2)L̈n(Ãn, B̃n)Vn

(
A0 − Ãn + γ∗

nU1, h(B0 − B̃n) + γ∗

nU2

)

+
γ∗

n

2
Vn

(
A0 − Ãn, h(B0 − B̃n)

)
L̈n(Ãn, B̃n)Vn(U1, U2)

=
1

2
(γ∗

n)
2VTn(U1, U2)L̈n(Ãn, B̃n)Vn(U1, U2) + γ∗

nVn

(
A0 − Ãn, h(B0 − B̃n)

)
L̈n(Ãn, B̃n)Vn(U1, U2)

P∼1

2
(γ∗

n)
2VTn(U1, U2)L̈n(Ãn, B̃n)Vn(U1, U2) + γ∗

nVTn (U1, U2)L̈n(A0,B0)Vn

(
A0 − Ãn, h(B0 − B̃n)

)
.

We can easily prove (10.27) by using the above two results on asymp-

totic expansion for In(1, 1) and In(1, 2). ✷

Proof (10.28). Recall that

In(4) = γ∗
nVT

n(U1,U2)L̇n(A0,B0). (10.65)

By Taylor’s expansion for q1(r, y) and Assumption B4, we have

q1

{ dn∑

j=1

[
aj(Uk) + ȧj(Uk)(Ui − Uk)

]
xij , yi

}

=q1

{ sn2∑

j=1

[
aj(Uk) + ȧj(Uk)(Ui − Uk)

]
xij , yi

}

=q1

[ sn2∑

j=1

aj(Ui)xij , yi

]
+OP (sn2h

2), (10.66)
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which implies that

In(4) =
γ∗
n

n

n∑

k=1

n∑

i=1

q1
[ sn2∑

j=1

aj(Ui)xij , yi
]
XT

i u1(k)Kh(Ui − Uk)

+
γ∗
n

n

n∑

k=1

n∑

i=1

q1

[ sn2∑

j=1

aj(Ui)xij , yi

](Ui − Uk

h

)
XT

i u2(k)Kh(Ui − Uk)

+OP (γ
∗
ns

3/2
n2 n

1/2h2) ·
(
‖U1‖+ ‖U2‖

)
. (10.67)

Note that (Ui, Xi, yi), i = 1, · · · , n, are independent and identically

distributed. By Assumptions B1, B2(i) and B3 in Chapter 10.1, and

the Cauchy-Schwarz inequality, we have

E

[ 1
n

n∑

k=1

n∑

i=1

q1
[ sn2∑

j=1

aj(Ui)xij , yi
]
XT

i u1(k)Kh(Ui − Uk)
]2

≤ 1

n

n∑

k=1

E

{ n∑

i=1

q1
[ sn2∑

j=1

aj(Ui)xij , yi
]
XT

i u1(k)Kh(Ui − Uk)
}2

=
1

n

n∑

k=1

E

[
E

({ n∑

i=1

q1
[ sn2∑

j=1

aj(Ui)xij, yi
]
XT

i u1(k)Kh(Ui − Uk)
}2∣∣∣Uk

)]

=
1

n

n∑

k=1

n∑

i=1

E

[
E

({
q21
[ sn2∑

j=1

aj(Ui)xij, yi
]}

u
T
1(k)XiX

T
i u1(k)K

2
h(Ui − Uk)

∣∣∣Uk

)]

=O
(
h−1

n∑

k=1

u
T
1(k)u1(k)

)
= O(h−1) · ‖U1‖2.

Similarly, we can also show that

E
[1
n

n∑

k=1

n∑

i=1

q1

[ sn2∑

j=1

aj(Ui)xij , yi

](Ui − Uk

h

)
XT

i u2(k)Kh(Ui − Uk)
]2

= O(h−1) · ‖U2‖2.
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Noting that sn2h
2 ∝ (nh)−1/2, we have

In(4) = OP

(
(γ∗

n)
2n1/2

)
·
(
‖U1‖+ ‖U2‖

)
, (10.68)

which completes the proof of (10.28). ✷
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