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A water flow loop facility is designed, built and commissioned to investigate the effects of flow 

unsteadiness on the mean and turbulent characteristics of smooth and rough wall channel flows. 

Measurements of flow and turbulence are made by means of non-intrusive measurement 

techniques such as Particle Image Velocimetry (PIV) and Laser Doppler Velocimetry (LDV). The 

main objective of these investigations is to advance our understanding on the behaviour of 

turbulence under transient conditions. 

The unsteady flows considered, consist of an excursion of flow rate from an initial turbulent 

state to another over smooth or rough surfaces. A systematic study of turbulence under various 

initial and final conditions reveals novel insights into the turbulence dynamics of unsteady flows.  

It is shown that the unsteady flows behave strikingly similar to the so-called boundary layer 

bypass transition due to free-stream-turbulence. Consistent with the direct numerical 

simulations (DNS) of He and Seddighi (J. Fluid Mech., 715: 60-102), the process begins with the 

elongation of streaks much similar to the Klebanoff modes in the buffeted laminar boundary 

layer in a bypass transition. During the second stage, the formation and propagation of the 

isolated turbulent spots eventually lead to a complete breakdown of the organised streaky 

structures resulting in a new turbulent flow corresponding to the final Reynolds number. The 

present investigation covers a range of initial and final Reynolds numbers over smooth and 

rough surfaces to elucidate the underlying mechanisms involved in transient flows. 

The mean velocity profiles obtained from various unsteady cases are shown to correlate with 

each other during the pre-transition regime, coinciding with the Stokes solution for unsteady 

laminar boundary layer flows. The fluctuating velocity profiles are also correlated with each 

other during this period. The response of the perturbing wall-normal fluctuating velocity is 
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shown to mark the onset of transition, providing a good measure for the duration of the pre-

transition phase. 

It is shown that an equivalent critical Reynolds number can be defined to express the duration 

of the pre-transition regime in unsteady flows. The critical Reynolds number is shown to have a 

power-law relationship with the initial free-stream turbulence intensity levels. 

The unsteady rough flows investigated herein encompass a hydrodynamically smooth initial flow 

that is increased to either a transitionally or fully rough final state. The measurements of the 

fluctuating streamwise velocities in the wall region reveal a similar transition-like behaviour to 

the smooth-wall flows. It is shown that the particular roughness pattern investigated herein 

causes a significant decrease in the duration of the pre-transition regime, promoting an early 

transition. For relatively high intensity levels, an inner-scaled non-dimensional time correlates 

the period of the pre-transition regime. 

In addition to the experimental investigations, numerical simulations are performed to assess 

the applicability and robustness of various turbulence models under unsteady conditions. For 

this purpose, performance of a number of low-Reynolds number turbulence models is evaluated 

against DNS data. All models are applied to an unsteady flow comprising a ramp-type excursion 

of flow rate inside a channel. The flow rate is increased linearly with time from an initial Reynolds 

number of 𝑅𝑒0 = 9,308 (based on hydraulic diameter and bulk velocity) to a final Reynolds 

number of 𝑅𝑒1 = 29,650. The acceleration rate is varied to cover low, intermediate and high 

accelerations. It is shown that among the models investigated, the 𝑘 − 𝜀 models of Launder and 

Sharma (Lett. Heat Mass Transfer, 1(2), 131-137) and Chang et al. (J. Fluids Eng., Trans. ASME, 

117(3): 417-423) and 𝛾 − 𝑅𝑒𝜃 of Langtry and Menter (AIAA Journal, 47(12): 2894-2906) capture 

well the key flow features of these unsteady turbulent flows.  These three models yield 

predictions of wall shear stress that agree well with the corresponding DNS data, though for the 

case of high acceleration, the model of Chang et al. exhibits instabilities. 
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 Background 

The research reported in this thesis is a collaboration between the University of Sheffield, 

University of Aberdeen and the University of Dundee and is funded by the Engineering and 

Physical Sciences Research Council (EPSRC).  The overall project involves both numerical and 

experimental investigations of unsteady turbulent channel flows over smooth and rough 

surfaces. Direct Numerical Simulation (DNS) technique is used for the numerical analysis, which 

is undertaken by a post-doctoral research assistant, while this author is responsible for the 

experimental investigations as well as numerical modelling of the unsteady flows using 

Reynolds-Averaged Navier-Stokes (RANS) framework.  

Unsteady turbulent flows are present in many engineering systems such as pipe networks, 

railway tunnels and biological circulatory systems. Our understanding of such flows can 

potentially lead to better predictions of flow conditions in many engineering applications.  

The ultimate goal of the present research is to contribute to the development of new analytical 

or semi-empirical end-user formulations to model unsteady flows in pipe networks; to improve 

our understanding of the fundamental behaviour of turbulence which can be of great 

importance to turbulence modeller’s community; and to shed light on the new development in 

transient channel flow transition. 

A water flow loop facility with advanced instrumentation and flow control is designed and built 

in the Department of Mechanical Engineering at the University of Sheffield to examine the 

behaviour of flow and turbulence under unsteady conditions in smooth and rough channel 

flows. Furthermore, numerical simulations through the RANS framework are conducted to 

assess the performance of various turbulence models under unsteady conditions. 

Chapter 1. Introduction 
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 Aims and objectives 

The aim of this research is to further develop our understanding of unsteady turbulent flows 

using advanced measurement techniques. The main attention of this research is devoted to 

temporal accelerating flows that consist of an initial fully developed turbulent flow at a specific 

flow rate, followed by a rapid acceleration to a higher one. This excursion of flow rate with 

respect to time is investigated at various final to initial conditions. The experimental results are 

used to validate numerical simulations and support the new findings from DNS of He and 

Seddighi (2013). The specific objectives of the research covered by this thesis are: 

i. To develop a flow facility instrumented with advanced measuring equipment for 

fundamental research on turbulence in unsteady flows. 

ii. To produce experimental evidence and provide benchmark data for new understanding 

of transient channel flow by performing systematic measurements of accelerating flows 

over smooth and rough surfaces. 

iii. To evaluate the performance of RANS turbulence models in simulating unsteady flows 

against DNS data. 

 Thesis outline 

This thesis consists of eight chapters. The Second Chapter summarises the recent developments 

in various related topics to this research. These topics consist of experimental and numerical 

investigations of unsteady channel and pipe flows, laminar to turbulence transition, flows over 

rough surfaces as well as RANS modelling of unsteady flows. The third Chapter discusses in detail 

the design and construction of the rig, the measurement campaign and methodology behind 

each of the applied techniques. Chapter Four presents and discusses data obtained from steady 

flows over smooth and rough surfaces. Chapters Five and Six present and discuss the results on 

the unsteady flows over smooth and rough surfaces, respectively. Chapter Seven presents and 

discusses the results obtained from numerical simulations of unsteady flows over smooth 

surfaces obtained from the Reynolds-Averaged Navier-Stokes (RANS) simulation framework. 

The last Chapter provides a conclusion from the present investigations and discusses future 

works. 

 



 

Unsteady turbulent flows occur in many engineering applications. Apart from the practical 

perspective, detailed study of unsteady turbulent flow structures leads to a profound 

understanding of the complex mechanisms that are generally absent in steady flows. This 

chapter describes the studies of the unsteady turbulent flows over both smooth and rough 

surfaces. 

Research on unsteady turbulent flows is generally conducted through two main categories; 

periodic and non-periodic. The periodic flows can further be divided into pulsating and 

oscillatory. A periodic unsteady flow with a non-zero mean value is referred to as pulsating flow, 

whereas for oscillatory flows, the variation of flow rate occurs over a zero mean value. Pulsating 

flows are usually examined for a range of amplitudes and frequencies of the imposed flow rate 

as well as the mean Reynolds number of the flow. Non-periodic transient flows are characterised 

by the acceleration rate, ranging from very high rates which can be characterised as a step 

change to slow changes which in the limit become steady flow. 

Factors that influence turbulent flows, which are encountered in many engineering applications, 

include wall temperature, wall blowing/suction, curvature and surface roughness. This project 

focuses on the effects of surface roughness on unsteady flows. 

 Unsteady flows over smooth surfaces  

This section reviews the earlier experimental and numerical investigations of unsteady turbulent 

flows.  

As mentioned earlier, unsteadiness can be imposed on the flow as periodic or non-periodic. 

Effects of flow unsteadiness on the generated boundary layer over the solid surface can be 

examined in different geometries. However, due to simplicity and wide applicability, the most 

Chapter 2. Literature Review 
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commonly examined geometries are flat plates, pipes and channels. The main focus of this 

research is on the channel flows.  

As Uchida (1956) shows, laminar solution to the pulsating/oscillating boundary layer flow leads 

to a length scale 𝑙𝑠 (= √2𝜈 𝜔⁄ ) based on 𝜈 the kinematic viscosity and 𝜔 the frequency of the 

oscillation, describing the depth of oscillation. Due to the imposed oscillation, shear waves 

generated at the wall (caused by no slip condition) are propagated outwards. Beyond 𝑙𝑠  the 

generated vorticity waves are attenuated and a uniform modulation imposes a “plug flow” 

manner. 𝑙𝑠 is usually referred to as the Stokes layer thickness. It is apparent that by increasing 

the oscillation frequency 𝜔, Stokes layer will become thinner. As a result, vorticity waves will be 

confined to a thinner layer of the entire flow field.  

Three parameters characterise pulsating flows, the mean flow, the frequency of the oscillations 

and the ratio between oscillating and mean centreline velocity (the amplitude). Experimental 

studies (for instance Binder et al. (1995) and He and Jackson (2009)) have shown that for 

oscillation amplitudes of less than unity (sometimes referred to as current dominated flow), 

forcing frequency (𝜔) is a more influencing parameter on velocity and turbulent structures than 

the amplitude of oscillations.  

Analogous to laminar pulsating flows, turbulent Stokes length 2𝑙𝑡 defines the extent to which 

the generated shear waves attenuate in turbulent flows. Turbulent Stokes length splits the flow 

into inner and outer regions analogous to the steady boundary layer regions.  The interactions 

of these two layers have been the scope of many studies. This length scale has been first 

introduced by Tu and Ramaprian (1983). Scotti and Piomelli (2001) have shown that 𝑙𝑡 can be 

defined, on the basis of eddy viscosity 𝜈𝑡, as (√2(𝜈 + 𝜈𝑡) 𝜔⁄ ). The eddy viscosity was defined as 

𝜈𝑡 = 𝜅𝑢𝜏𝑙𝑡, where 𝜅 is the von Kármán constant and 𝑢𝜏 is the friction velocity (𝑢𝜏 = √𝜏𝑤 𝜌⁄ ). 

They have shown that the wall normalised turbulent Stokes length 𝑙𝑡
+ has the following relation 

to its laminar counterpart. 

 

𝑙𝑡
+ = 𝑙𝑠

+ (
𝜅 𝑙𝑠

+

2
+ √1 + (

𝜅 𝑙𝑠
+

2
)

2

)  (2.1) 

As mentioned earlier the important role of forcing frequency on the flow field is undeniable in 

current dominated pulsating flows. Such flows can therefore be categorised into quasi-steady, 

low, intermediate, relatively and very high frequency regimes due to Scotti and Piomelli (2001). 

When the forcing frequency is very low, 𝑙𝑡
+ becomes much larger than the channel half height 
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(h) or pipe radius (𝑙𝑡
+>> ℎ+, ℎ+ = ℎ 𝑢𝜏 𝜈⁄ ), in such a situation, the phases of turbulence 

quantities are independent of the wall distance. This regime is called quasi-steady.  

The low-frequency regime begins where 𝑙𝑡
+ has the same order as ℎ+. In this regime, as one 

moves towards the wall region, production and dissipation of turbulence become out of phase 

and therefore equilibrium condition no longer prevails. In addition, turbulent kinetic energy 

production shows a significant phase asymmetry between the acceleration and deceleration 

cycles.  

Within the intermediate frequency regime, 2𝑙𝑡
+ is smaller than ℎ+ and hence the inner and outer 

layers, as introduced earlier, exist simultaneously. Under such circumstances, the outer region 

experiences a frozen turbulence in a plug flow manner. Stokes solution yields a normalised 

speed 𝑐+~𝜔+𝑙𝑡
+  (𝜔+ = 𝜔𝜈/𝑢𝜏

2) representing the speed at which the generated shear waves 

propagate across the flow. At relatively large forcing frequencies, where Stokes length is thick, 

equation (2.1) can be rewritten as 𝑙𝑡
+ = 𝜅𝑙𝑠

+ 2. Therefore 𝑐+can be considered to be constant, 

leaving the speed c to be obtained from the friction velocity. By further increasing the forcing 

frequency within the relatively high frequency regime (0.2 ≥ 𝜔+ ≥ 0.04), the propagation of 

shear waves is sustained beyond the viscous sublayer, further reducing the interaction between 

the inner and outer regions. 

Further enhancement of forcing frequency leads to a complete detachment of the inner and 

outer layers, where the turbulence in the outer region would no longer be affected by the 

pulsation within the inner region. Therefore for very high frequency regime, flow patterns in the 

outer region can be seen as a steady state flow with a uniform modulation, demonstrating a 

plug flow. Turbulence in the inner region is attenuated rapidly inside the viscous sublayer while 

exhibiting a frozen pattern in the outer region. Such a situation is analogous to laminar Stokes 

flow, since (𝜅 𝑙𝑠
+/2 ≪ 1) so from equation (2.1) 𝑙𝑡

+ = 𝑙𝑠
+, where eddy viscosity is no longer 

influential. Under such circumstances the amplitude of the modulation component of 

turbulence quantities should vanish in the outer region while the amplitude of modulation and 

phase lag of the wall shear should approach Stokes laminar values. 

The mechanisms of turbulence production, redistribution of turbulence energy and diffusion 

associated with the acceleration and deceleration cycles of pulsating flows are analogous to 

ramp type excursions discussed next. As He and Jackson (2009) explains, pulsation of flow rate 

can be considered as a series of small perturbations initially felt in the wall region due to the no-

slip condition. The turbulence field remains unaffected until the change in the mean flow causes 
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a turbulence production in the wall region. Therefore the relationship between the Stokes layer 

thickness and the location where the turbulence production is occurred becomes of significant 

importance in characterising the behaviour of turbulence.  

The redistribution of turbulence from the axial component to the transverse and circumferential 

components due to the action of pressure results in further delays of these two components. 

This process also results in the attenuation of the amplitude of the modulation of transverse and 

circumferential fluctuating velocities in pulsating flows. 

Propagation of turbulence from the wall to the core region introduces a delay in the turbulence 

field. The speed of turbulence propagation was shown to be independent of the frequency of 

the modulation and sensitive to the mean flow, specifically the friction velocity (He and Jackson, 

2009). 

In addition to the studies on unsteady periodic flows, there has been an interest in non-periodic 

unsteady flows as well. Experimental studies of Kataoka et al. (1975), Maruyama et al. (1976), 

Lefebvre (1987), He and Jackson (2000), Greenblatt and Moss (1999), Greenblatt and Moss 

(2004) and He et al. (2011) are some examples of research on non-periodic flows. Numerical 

investigations of Moin et al. (1990), Chung (2005), He et al. (2008), Ariyaratne et al. (2010), 

Seddighi et al. (2011), Di Liberto and Ciofalo (2011), Jung and Chung (2012), He and Seddighi 

(2013), Gorji et al. (2014) and Seddighi et al. (2014) examined sudden changes of pressure 

gradients or linear ramp up/down flow rates. 

Kataoka et al. (1975) investigated a step change of flow rate from rest in pipe flows. They 

observed that the transition from laminar to turbulent flow was postponed as the final Reynolds 

number was increased. Maruyama et al. (1976) conducted a similar type of experiment, where 

response of turbulence was found to be slower in the core region than other locations. Moin et 

al. (1990) investigated the flow behaviour using Direct Numerical Simulation (DNS) in a channel 

flow subjected to sudden spanwise pressure gradients. It was shown in their investigations that 

the spanwise pressure gradient resulted in a suppressed turbulent activity. Chung (2005) also 

employed DNS to investigate the effects of sudden change in the streamwise pressure gradients 

in a decelerating turbulent channel flow. It was observed that there was no significant deviation 

from the log law during the excursion. Rate of response to the imposed pressure gradient is seen 

to differ between the three normal Reynolds stress components which is a sign of significant 

anisotropic behaviour. Seddighi et al. (2011) examined the flow behaviour under step increase 

and decrease of streamwise pressure gradient in a channel geometry. It was noticed that the 
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deviations of turbulent quantities from the quasi-steady values are more significant in 

accelerating than decelerating flows of similar magnitudes. A step increase of pressure gradient 

was shown to have similar effects on the turbulence field as in ramp-up flow excursions. The 

main distinction between the step-up and step-down changes of pressure gradient on the 

turbulence pattern was shown to be the length of the delay and the effect of the redistribution 

process of turbulence. 

He and Jackson (2000) focused their experimental research on linearly increasing and decreasing 

flow rate in a fully developed pipe flow. They identified three delays associated with the 

response of turbulence. Delays in turbulence production, turbulence energy redistribution and 

its radial propagation were found to be the key features of such unsteady turbulent flows. It was 

found that the first response to the imposed flow rate was initiated from a region close to the 

wall with highest turbulence production (buffer layer). The axial component of Reynolds stress 

was found to be the first responding to the excursion while the other two normal components 

were still experiencing a period of delay. It was concluded that due to the action of turbulent 

diffusion the response of turbulence to the flow excursion propagates towards the centre. The 

situation in the ramp down (decelerating) case was found to be somehow similar. However, 

delays associated with the flow excursion were found to be smaller than in the accelerating case. 

The wall-normal stress component was shown to be responding later than the streamwise 

component. Turbulence intensity was shown to be increasing in the decelerating flows. 

He et al. (2008) have identified three stages in the development of wall shear stress in ramp-

type flow rate excursions through numerical studies. The first stage is due to the delays of 

turbulence and the dominance of the inertial forces. This stage covers the duration where the 

wall shear stress overshoots and then decreases and undershoots the values of the quasi-steady 

shear stress. They have also shown that a non-dimensional parameter involving inner turbulence 

time scales associated with the turbulence production correlates the unsteady wall shear stress 

components very well. It is shown by He and Ariyaratne (2011) that in this stage the unsteady 

component of the wall shear stress behaves in a laminar-like manner. Second stage begins with 

the generation of new turbulence that causes the wall shear stress to escalate. It is shown by He 

et al. (2011) that a correlation exists involving outer turbulence time scales that can be applied 

to determine the critical Reynolds number where transition from stage one to two occurs. The 

third stage includes the wall shear stress asymptotically approaching the quasi-steady value.  

He and Seddighi (2013) have introduced a new concept in the study of unsteady flows. They 

have found striking similarities between the fully turbulent channel flows subjected to a step 
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increase of flow rate and boundary layer bypass transition due to free-stream turbulence (FST). 

They have shown that the initial flow structures undergo a process that involves three distinctive 

phases before reaching the final turbulent state. These phases consist of pre-transition, 

transition and fully turbulent stages that are equivalent to those seen in boundary layer bypass 

transition that are known as buffeted laminar flow, the intermittent flow and fully turbulent 

flow regions. They have shown that in transient channel flows, the initial streaky structures are 

elongated in the streamwise direction that are later disturbed by isolated turbulent spots. The 

generation of new turbulent packets due to instability eventually leads to a complete breakdown 

of the initial structures. This process is shown in Figure 2.1. These findings introduce a new 

analogy between the unsteady channel flows and FST induced transition. 

 

Figure 2.1 Temporal evolution of streamwise fluctuations in a plane adjacent to the wall 

(He and Seddighi (2013)).  

Seddighi et al. (2014) have performed DNS to investigate the behaviour of unsteady turbulent 

flows with linearly accelerating flow rate. They have shown that the fundamental behaviour of 

turbulence during the transition process is similar to the step change flow conditions and 

consequently bypass transition. It was shown that in step-change of flow rate, a new boundary 

layer is generated instantly over the walls while ramp flow excursions produces a gradually-

developing boundary layer. 
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He and Seddighi (2015) investigated various initial to final step-increase of flow rate ratios with 

DNS. They detected distinct differences between high and low final-to-initial Reynolds number 

ratios. Transition process during high ratio step-increases of flow rate was shown to be mainly 

characterised by the elongated streaks during the initial period that are followed by the 

generation and propagation of isolated turbulent spots. Whereas, flow structures under lower 

Re ratios show more progressive evolution. However, despite the distinctions in the flow 

structures, the behaviour of transient flow under both low and high final-to-initial Re was shown 

to be similar to laminar to turbulent transition. It was shown that during the pre-transition 

period, development of boundary layer under various final to initial Re had similar behaviour, 

closely following the Stokes solution. They also showed that a power-law correlates the critical 

time, where the transition process is initiated, to the unsteady-equivalent free-stream 

turbulence intensity. The unsteady-equivalent free-stream turbulence intensity was defined in 

such way to provide a measure for the rate of temporal acceleration. 

It must be mentioned that there are similarities between the temporal and spatial 

accelerating/decelerating flows. In the flows subjected to streamwise pressure gradients it was 

found that spatially decelerating flows result in an amplification of turbulence intensity contrary 

to accelerating flows where the turbulence is shown to be attenuated. Comprehensive reviews 

on spatial accelerating and decelerating flows are provided by Smits and Wood (1985) and 

Bushnell and McGinley (1989). 

 Bypass transition 

It has been a long time since researchers and engineers first devoted their interest to a 

phenomenon which is present in many thermofluid systems, transition to turbulence. There has 

been a great deal of research in the past centuries to study the processes involved in a laminar 

flow undergoing transition to a fully turbulent state. Identification of the characteristics in 

transitional flows leads to prediction and therefore control of such flows that have direct 

applications in many engineering design problems, such as improvement of mixing processes, 

skin-friction drag and heat transfer. These studies have mainly been conducted through various 

distinctive methods such as linear and non-linear stability theories, turbulence modelling, non-

homogenous rapid distortion theory, experiments and direct numerical simulation. 

The evolution of laminar to turbulent flow can take various forms. Transition to turbulence in a 

flat plate boundary layer occurs through either orderly (natural) or bypass transitions. The 

natural transition is a slow process occurring at high Reynolds numbers (order of 106). During 

this process two-dimensional Tollmien-Schlichting (T-S) waves are initially generated that are 
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only weakly unstable due to viscous processes. This specific route to turbulence can only be 

maintained if the free-stream turbulence intensity (Tu) remains less than 1%. These waves are 

then followed by secondary instabilities and eventually complete breakdown to turbulence. 

Arnal and Juillen (1978) have shown that for higher levels of free-stream turbulence intensity 

(>0.5-1%), T-S waves will no longer be generated. Under these circumstances, juxtaposed high 

and low streamwise velocity fluctuations appear, that are termed Klebanoff modes. This type of 

transition is referred to as bypass transition (Morkovin (1969)). 

During the process of bypass transition, flow goes through three different stages (Jacobs and 

Durbin (2001)): 

i. Buffeted laminar boundary layer 

ii. Intermittent turbulent spot formation 

iii. Fully turbulent boundary layer 

In the first region, the boundary layer remains stable while elongated low and high streamwise 

velocity fluctuations begin to develop. Amplification of the streaks can be explained by rapid 

distortion theory (Phillips (1969)). Landahl (1980) explains the lift-up mechanism of mean 

momentum under these circumstances. DNS of zero-pressure-gradient (ZPG) boundary layer 

beneath grid turbulence of Jacobs and Durbin (2001) shows that the free-stream fluctuating 

streamwise velocity decays as flow reaches downstream, while flow within the boundary layer 

experiences a bypass transition. Contours of streamwise fluctuating velocity within the 

boundary layer clearly shows the elongation of streaks in the streamwise direction. These 

elongated streaks inside the boundary layer can reach very high amplitudes such as 20% of mean 

free-stream velocity with FST of only 3% (Zaki (2013)). However, these jets are only visible in the 

streamwise and not in the wall-normal direction.  

During the second stage, localised perturbations trigger the instabilities which then cause 

turbulent spots. Two sources of secondary instabilities are identified which are of inner and 

outer nature (Vaughan and Zaki (2011)). The outer type of instability is one that is commonly 

seen in various experimental and numerical studies  such as works of Jacobs and Durbin (2001) 

and Matsubara and Alfredsson (2001). The stability theory can be applied to detect a particular 

streak that is likely to transform to a secondary stability. Theoretical results of Reddy et al. (1998) 

suggest that this type of instability is mainly due to the inflection of the spanwise profiles of the 

streaky structures. However, the role of the Klebanoff modes that lead to the generation of 

secondary instabilities is still unknown.  Durbin and Wu (2007) depict how an instability of Kelvin-
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Helmholtz at the edge of the boundary layer evolves all the way down through the boundary 

layer to create a turbulent spot. The inner  type of instability is first discovered by Nagarajan et 

al. (2007). They observed a wave-packet type of instability that emerged from the wall in their 

simulations of ZPG boundary layers with blunt leading edge. The theoretical work of Vaughan 

and Zaki (2011) investigates the nature of the inner and outer instabilities. It was found that the 

inner mode is connected with T-S waves and its growth rate is directly dependent on the 

amplitude and frequency of the base streaks.  

The final stage of bypass transition is the complete breakdown of the flow structures to form a 

fully turbulent region that covers the entire span of the boundary layer. This process is highly 

nonlinear and therefore this region of the boundary layer can only be effectively studied by 

means of computer simulations. 

Very limited information is available on the formation mechanisms of turbulent spots also 

known as bursts. The Orr-Sommerfeld theory can shed light on the difference of patterns inside 

and outside the boundary layer during the initial stages of transition. The formation of streaks 

(Klebanoff modes) can be explained by means of rapid distortion theory. Moffatt (1967) showed 

that the streamwise fluctuations grow linearly with time (𝑢2 ∝ 𝑡). Gustavsson (1991) showed 

theoretically that the viscous processes diminish the maximum growth of streaks resulting in the 

decay of disturbances. He showed that in channel flows, Reynolds number is a suitable 

parameter to scale the growth rate. Therefore, according to his findings, a required time to 

achieve a certain growth is proportional to 𝑅𝑒−1 (𝑅𝑒 =
𝑈𝑐ℎ

𝜈
, 𝑈𝑐 being the centreline velocity, ℎ 

is the channel half-height and 𝜈 being the viscosity). Luchini (1996) showed theoretically that in 

a boundary layer flow with three-dimensional disturbances, the streamwise disturbance 

velocities grow as 𝑥0.213. The streamwise velocity profiles predicted from his investigations were 

in excellent agreement with experimental results. Luchini (2000) showed that by applying 

optimal perturbations (perturbations that maximise the energy growth) energy growth is 

proportional to 𝑥 only.  

Andersson et al. (1999) showed that the growth of disturbance energy is almost linear at a fixed 

spanwise wavenumber. Their results were in excellent agreement with the experimentally 

obtained fluctuating profiles of a boundary layer subjected to FST. They also proposed a simple 

relationship between the critical Reynolds number where the transition takes place and the free-

stream turbulence intensity. This relationship correlates extremely well with the experimental 

results. This correlation is later confirmed by the experiments of Fransson et al. (2005). 
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Matsubara and Alfredsson (2001) experimentally examined boundary layer flows beneath grid 

turbulence with different levels of FST ranging from 1-6%.  They found a form of scaling that 

collapses the energy spectra of streamwise disturbances at different locations along the 

boundary layer. Therefore, it was concluded that the streamwise length of these disturbances 

are proportional to the boundary layer thickness and that they grow linearly with downstream 

distance. 

Ovchinnikov et al. (2008) performed a DNS study of bypass transition in high amplitude FST over 

a flat plate. The influence of FST’s length scale on the mechanism of transition was found to be 

profound. FST with smaller length scales, results in outer source of instability while larger FST 

length scale, results in the formation of wavepacket type of instabilities.  

Wu and Moin (2009) performed a DNS study of ZPG flat plate boundary layer with intermittent 

localised disturbances arising from patches of isotropic turbulence. Their results elucidate the 

role of Λ-shaped vortices that transform into hairpin shapes in the creation and breakdown of 

streaks.  

 Flows over rough surfaces 

The characteristics of boundary layers produced over rough surfaces have always been of a huge 

interest in design applications such as aeroplanes, ships, fluid transport or even sports.  

Laboratory experiments were the first efforts to understand the effects of roughness on the fluid 

flow. Nikuradse (1933) was the first researcher who did extensive investigations on the flows 

inside circular sand-roughened pipes. By measuring the flow rate and the pressure drop along 

the pipe, he managed to plot the friction factor of different roughness sizes versus the Reynolds 

number. It was then observed that the friction factor in laminar flows was not affected by the 

roughness sizes while there was a huge difference of values in the turbulent regime. Years later, 

Moody (1944) plotted friction factor of the pipe to the relative roughness (that is the ratio of 

the roughness height to the pipe diameter) versus the Reynolds number on the basis of the 

results of Colebrook (1939) for the smooth and rough pipes. It should however be noted that 

the friction factors of the Moody diagram in the transitional rough flows were found to be 

overestimated for honed and commercial steel pipes (Allen et al. (2005) and Langelandsvik et al. 

(2008)). The Moody diagram was developed on the basis of sand roughness height 𝑘𝑠 

(sometimes called effective sand grain roughness). Therefore caution must be paid when 

applying Moody diagram to a generic roughness, since 𝑘𝑠 should be determined experimentally 

as 𝑘𝑠 contrary to the roughness height 𝑘 is a flow property.  
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Flows over rough surfaces can be categorised into three regimes, hydrodynamically smooth 0 ≤

𝑘𝑠
+ ≤ 5, transitionally rough 5 ≤ 𝑘𝑠

+ ≤ 70 and fully rough 70 ≤ 𝑘𝑠
+, where 𝑘𝑠

+ is the roughness 

Reynolds number, 𝑘𝑠
+ = 𝑘𝑠𝑢𝜏 𝜈⁄ . The presence of rough surface leads to a defect in velocity 

profile. The effect of roughness is generally incorporated to the smooth log-law velocity profile 

by an additional negative term called the roughness function (∆𝑈+). This defect leads to a 

downward shift in the log-law profile. 𝑘𝑠
+ or ∆𝑈+both indicate the extent to which roughness 

interacts with the inner or outer regions of the flow. 

If the roughness elements are confined to the viscous sublayer, the flow field is no different from 

that over a smooth surface. However, if the roughness penetrates out of the viscous sublayer 

region, deviations from the flows over smooth surfaces would be noticeable. By further growth 

of the roughness to the overlap region, the flow shall reside in the fully rough regime, where the 

flow is independent of the Reynolds number. 

In the fully rough regime, viscosity dominancy is diminished. Therefore 𝑘𝑠 becomes proportional 

to 𝑘 and is dependent on the roughness geometry. It is worthy to note that Jiménez (2004) 

defines a well-characterised rough-wall flow, where 𝛿/𝑘 > 40 , 𝛿  being the boundary layer 

thickness. In such a situation, effects of roughness on the flow field are usually examined 

through two characterising dimensions. One is the roughness height 𝑘  and the other is the 

solidity 𝜆 which, as Schlichting (1936) defines, is the total projected frontal roughness area per 

unit wall-parallel projected area (this parameter represents the density of the roughness).  

Jiménez (2004) showed that there is a strong correlation between the ratio 𝑘𝑠/𝐶𝐷𝑘 (𝐶𝐷 being 

the drag coefficient) and 𝜆 obtained from the results of Schlichting (1936) and other researchers 

(Webb et al. (1971), Tani (1987), Bandyopadhyay (1987)). It is shown that the roughness effects 

(proportionality factor between 𝑘𝑠 and 𝑘) rises as 𝜆 increases. However a critical solidity value 

exists where beyond it a reduction of this proportionality is seen. This reduction is due to the 

sheltering of the roughness elements leading to a weaker effect of roughness on the flow and 

hence a reduction of 𝑘𝑠 . It should be mentioned that the power of 𝜆  is one of the major 

contributing factors for obtaining better correlations of roughness parameters. 

d-type geometry refers to a surface with cavities of unit aspect ratio (width to height ratio), 

whereas the spacing between roughness elements is much larger in a k-type roughness. The 

geometrical difference between d and k type geometries is shown in Figure 2.2.  Perry et al. 

(1969) found no correlation between the effective roughness 𝑘𝑠 and roughness height 𝑘 in ZPG 

boundary layer with d-type geometry. They observed that the effective roughness for a d-type 

roughness was proportional to the boundary layer thickness. This might be due to the isolation 
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of the flow inside the cavities and therefore a weak interaction between the inner and outer 

regions of the flow.  

 

Figure 2.2 (a) d-type and (b) k-type roughness 

Regarding the turbulence structure above the roughness sublayer, as Raupach et al. (1991) 

explains, three complementary hypotheses exist. These hypotheses lead to a better 

understanding of the flow and its correlating length and velocity scales. (1) Wall similarity 

hypothesis: Townsend (1976) noticed a flow similarity between different types of rough surfaces 

provided that the flow is in the fully rough regime. Wall similarity hypothesis postulates that the 

turbulent motions outside the roughness sublayer of the boundary layer are independent of the 

wall roughness and viscosity, while wall roughness is only affecting the flow by manipulating the 

friction velocity 𝑢𝜏 (𝑢𝜏 = √𝜏𝑤/𝜌), the displacement of the zero plane and the boundary layer 

thickness. (2) Equilibrium-layer hypothesis: Townsend (1976) states that the local rates of 

turbulent kinetic energy production and dissipation inside the inner layer (and still out of 

roughness sublayer) are so large that the aspects of the turbulent motions involved in these 

processes are independent of the flow conditions elsewhere. (3) Attached-eddy hypothesis: 

Townsend (1976) claims that the fully turbulent part of the boundary layer consists of eddies 

which are geometrically similar to each other, yet sharing a similar geometrical relationship with 

the wall. 

Examples of the experimental studies of flows over rough surfaces within the fully turbulent 

regime  include those of Perry et al. (1969), Ligrani and Moffat (1986), Flack et al. (2005), McKeon 

et al. (2005), Allen et al. (2005), Schultz and Flack (2009), Birch and Morrison (2011), Hong et al. 

(2011) and Hong et al. (2012). On the other hand, some of the numerical studies are those of 

Krogstad et al. (2005), Singh et al. (2007), Flores et al. (2007), Lee and Sung (2007) . 

Perry et al. (1969) investigated the flow field over the k and d type roughness for a zero and 

adverse pressure gradient boundary layer, where, the role of solidity on the flow structure was 

further elucidated. Ligrani and Moffat (1986) studied the structure of flow over spherical 

roughness boundary layer in the transitional and fully rough regimes. The peak of turbulent 
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kinetic energy production in the transition regime was shown to diminish as the roughness 

Reynolds number was increased towards the fully rough regime. It was also shown that the 

friction velocity 𝑢𝜏  is suitable for normalising the streamwise normal Reynolds stress 

component in the outer region of a fully rough flow, while the wall-normal and spanwise 

components would collapse on the same pattern when the free-stream velocity is used for 

normalisation. Birch and Morrison (2011) examined the flow field in a range of Reynolds 

numbers within fully rough regime over two different roughness patterns, one a mesh of 

diamond shape and the other a grit type roughness in a fully developed channel flow. Hong et 

al. (2011) also investigated the flow patterns in a fully rough regime of fully developed channel 

flow roughened by pyramids using the Particle Image Velocimetry (PIV) technique. They 

observed that the roughness scale eddies generated in the wall region were transported to the 

outer region by means of large scale turbulent structures. With the help of PIV, measurements 

were also made in the roughness sublayer, demonstrating a continual increase of streamwise 

normal Reynolds stress component, as one approaches the crest, peaking at the height of the 

pyramids while wall-normal component was only increased slightly at the crest of the roughness.  

Contrary to these two components was the shear stress that decreases as the wall is 

approached. All the studies mentioned so far support the wall similarity hypothesis of Townsend 

(1976), while the measurements of Krogstad et al. (1992) showed a deviation of turbulence field 

in the outer layer of the rough surface from the smooth in fully rough flow. Jiménez (2004) stated 

that the reason for such deviation was due to the relatively high blockage ratio (𝑘/𝛿) of the 

roughness. Since the flow around a rough element is affected within 4 − 5 𝑘, for high blockage 

ratios the element would no longer be considered as rough wall but as an array of obstacles. On 

the other hand, studies of Djenidi et al. (1999), Leonardi et al. (2004) and Krogstad et al. (2005) 

on the d-type geometries reveal that the effects of roughness might extend to the outer region 

as well. 

For 5 ≤ 𝑘𝑠
+ ≤ 70 flow regime is transitionally rough, where both viscous shear stresses and 

form drag on the roughness are active simultaneously. The interaction between these two 

constituents leads to a further complicated flow behaviour. As shown by Tani (1987), variations 

of roughness function versus roughness Reynolds number in this regime are non-linear and 

depend on the roughness geometry.  

The role of roughness on the flow pattern of steady flows has been considered so far. However, 

relatively less attention has been paid to unsteady flows over rough surfaces. Among these, 

studies of Toit and Sleath (1981), Sleath (1987), Shih et al. (1993), Chen et al. (2007) and 
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Fornarelli and Vittori (2009) were focused on oscillatory flows over rough surfaces, whilst 

Bhaganagar (2008) investigated the flow field over rough surfaces in a pulsatile channel flow.  

Fornarelli and Vittori (2009) investigated the flow field obtained from an oscillating pressure 

gradient boundary condition on a semi-sphere roughness elements using DNS. It was shown that 

the secondary peak in the streamwise velocity component, close to the flow reversal, is 

generated by the horse-shoe coherent vortex structures that shed from the base of the 

roughness elements. 

Bhaganagar (2008) applied DNS to investigate the characteristics of a pulsating channel flow 

over “egg carton” roughness elements. Various forcing frequencies were applied to study the 

flow dynamics in the low-, intermediate-, and high-frequencies. The long-time average of mean 

velocity for the low and intermediate frequencies were shown to be close to that of steady flow 

over rough wall. Similarly, the long-time averages of fluctuating velocities are independent from 

the forcing frequencies and hence can well be represented by the steady channel flows over 

rough walls.  

Higher forcing frequencies result in deviations of the long-time averages of mean velocity from 

the steady rough-wall flows. The oscillatory boundary layer is shown to be confined to the inner 

layer while the mean velocity has a phase difference with respect to the centreline velocity. 

Turbulence intensity of various components were shown to be out of phase with each other as 

well as the shear stress and centreline velocity. In the outer layer a plug flow behaviour was seen 

with negligible modulation of turbulence intensities. 

 RANS modelling of unsteady channel flows 

The ability of Reynolds Averaged Navier-Stokes (RANS) models to predict the flow behaviour of 

steady/unsteady channel/pipe flows has been investigated by a number of researchers. The 

studies of Patel et al. (1985), Myong and Kasagi (1990) and  (Chang et al., 1995) are some good 

examples of application of RANS models to steady pipe/channel flows. Sarkar and So (1997) 

investigated the performance of different turbulence models for steady channel flows (along 

with Couette, boundary layer and back-step flows). They examined ten different low-Reynolds 

number turbulence models, comparing their results with the available DNS and experimental 

data. They observed that models with asymptotically consistent near wall behaviour generally 

return better predictions of flow features. Asymptotic behaviour of the turbulent kinetic energy, 

its dissipation rate and the Reynolds shear stress near a wall is explained by Launder (1986). 
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Performance of RANS models in unsteady flows have been studied by Cotton et al. (2001), Scotti 

and Piomelli (2002), Tardu and Da Costa (2005), Al-Sharif et al. (2010), Khaleghi et al. (2010) and 

Revell et al. (2011). The performance of turbulence models in predicting features of unsteady 

flows differ according to the turbulence model formulations. In most cases researchers compare 

the performance of different models against the available experimental or DNS data. Cotton et 

al. (2001) examined the performance of the second-moment closure model of Shima (1989) and 

the 𝑘 − 𝜀 model of (Launder and Sharma, 1974) for both oscillatory flat-plate boundary layer 

and pulsatile pipe flow. It was found that the second-moment closure schemes generally 

performed better in comparison with the 𝑘 − 𝜀 model examined. Scotti and Piomelli (2002) 

assessed the performance of five turbulence models against their own DNS data on pulsating 

flows (Scotti and Piomelli (2001)) while Khaleghi et al. (2010) investigated the performance of 

four turbulence models for a ramp-up pipe flow, comparing their results with the experimental 

data of (He and Jackson, 2000). In each of these two studies, the performance of an algebraic 

one-equation model, a 𝑘 − 𝜀 model, a 𝑘 − 𝜔 model and a 𝑘 − 𝜀 − 𝑣2 model were examined. It 

was concluded from both studies that 𝑘 − 𝜀 − 𝑣2 model outperforms the rest. However, these 

conclusions were based on investigations of only a limited number of models among the various 

formulations. Furthermore, new turbulence models have recently been developed which were 

not considered by previous researchers. 

 Summary 

This chapter has examined the relevant literature on the steady/unsteady flows over smooth 

and rough surfaces. First features and behaviour of channel flows subjected to periodic and non-

periodic unsteadiness have been discussed in detail. A general picture of the characteristics of 

bypass transition over smooth surfaces is then depicted. The behaviour of flows over rough 

surfaces has been discussed next. Finally a brief introduction on the relevant RANS studies of 

unsteady flows is given. This chapter provides an essential background for the study of unsteady 

channel and pipe flows over smooth and rough surfaces. 





 

 

 Introduction 

In order to investigate the effects of flow unsteadiness on a fully developed channel flow, the 

accuracy and repeatability of the measurement and control systems are of great importance. 

During this study a water flow loop system has been designed and constructed that enables the 

user to investigate various flow features of unsteady turbulent channel flows through detailed 

measurement of local and bulk instantaneous velocities, wall shear stress and streamwise 

pressure gradient. Furthermore a sophisticated control valve is employed to manipulate the flow 

rate of water in the system. This chapter discusses in detail on the water flow loop facility design, 

data acquisition and automation and non-intrusive measurement techniques. 

 Channel flow facility 

A water flow loop facility is designed to study unsteady flows over smooth and rough channel 

surfaces. Figure 3.1 shows a schematic view of the channel with the corresponding coordinate 

system applied throughout this thesis. Table 3.1 summarises the characteristics of some of the 

test facilities employed for similar purposes and their working conditions in the literature. Dean 

(1978) analysed the data obtained from various channel flow facilities and suggested the 

minimal width to full height ratio (𝑊/𝐻, referred to as aspect ratio) of 7 to avoid secondary 

flows at the midspan plane. This suggestion is later confirmed by others such as Hanjalic and 

Launder (1972), Monty (2005), Birch and Morrison (2011) as well as Hong et al. (2011). Regarding 

the length needed for obtaining a fully developed flow, Monty (2005) performed a 

comprehensive investigation of the effects of length to height ratio on the development of the 

flows in smooth pipes and channels. He eventually concluded that the length to height ratio of 

Chapter 3. Experimental setup 

and measurement techniques 
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130 is enough to produce a fully developed mean and turbulence profiles in channels. This length 

is however considered to be even shorter in flows over rough surfaces. The present facility 

complies with these proposals. The length of the closed rectangular channel is 160 length to full-

height (𝐿 𝐻⁄ ) with width to full-height (𝑊 𝐻⁄ ) ratio of 7, where the total length, width and full-

height physical sizes are 8, 0.35 and 0.05 metres, respectively. 

 

Figure 3.1 Schematic view of a channel flow.  

Researcher(s) 
Flow 

Type 

Boundary 

Type 
𝑹𝒆𝒃 = 𝟐𝑯𝑼𝒃 𝝂⁄  W/H 

L/H 

(L/D) 

Hanjalic and Launder (1972) Channel Rough 73K-306K 6 69 

Perry and Abell (1975) Pipe Smooth 80K-260K N/A (90) 

Dean and Bradshaw (1976) Channel Smooth 200 K 12  67 

Zagarola and Smits (1998) Pipe Smooth 32K-35000K N/A (196) 

He and Jackson (2000) Pipe Smooth 7K-45K N/A (178) 

Zanoun et al. (2003) Channel Smooth 27K-300K 12 115 

Monty (2005) Channel Smooth 76K-362K 11.7 205 

Krogstad et al. (2005) Channel Rough 24K 13.5 50 

Birch and Morrison (2011) Channel Rough 120K 7.5 67 

Hong et al. (2011) Channel Rough 250K-387K 4 50 

Table 3.1 Apparatus dimensions employed for studying fully developed two dimensional 

flows in pipes or channels.  

 Water flow loop 

A water flow loop facility consisting of three main pipelines has been designed, built and 

commissioned in the Department of Mechanical Engineering at the University of Sheffield. This 

flow loop facility is capable of generating flow rates up to 60 m3/h (Re = 23,700, based on half-

height and bulk flow at T =20°C). It consists of an 8 metre rectangular cross section as the test 

 
W 

H 

Flow direction 



3.3 Water flow loop  21 
 

section. The test section is fed through a 4” PVC pipeline from the header tank located 4.5 

metres above the test section’s outlet. PVC pipe is connected to the channel test section by 

means of a half a metre long stainless steel adaptor. Water flows from the top tank through a 

ball valve (fully open during operation), two sets of adaptors, PVC pipelines, a honeycomb, 

channel test section, control valve and a magnetic flow meter in series and is discharged to the 

bottom tank. Care has been taken to fully submerge the test section outlet pipe into the bottom 

tank to avoid further insertion of bubbles into the system. The capacity of the bottom tank is 

3,000 litres (3x1 metres) which is considered to be sufficient to (i) reduce the possibility of 

cavitation at the pump by providing a half metre of water column on the suction side (ii) provide 

a long distance from the supply and discharge pipelines. The latter was of great importance since 

one of the supply pipes (overflow) had significant volume of trapped air that required aeration. 

A four inch bore 2.4 kW, 3 phase, 4 pole centrifugal in-line pump delivers the discharged water 

from the bottom tank to the header. This pipeline is also fully submerged into the header tank 

to reduce the splash. The capacity of the header tank is 400 litres. An overflow pipeline provides 

a constant head on the system by removing the excessive water from the header tank back into 

the bottom tank. Figure 3.2 depicts the arrangement of the water flow loop facility.  

 

Figure 3.2 Drawing of the water flow loop facility.  

In order to remove the possible swirls and to enhance the flow development through the test 

section, a honeycomb unit is placed before the test section and after the adaptor (Figure 3.2). 

Honeycombs are useful in mitigating the undesirable levels of turbulence, provided that the 
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ratio of length to cell diameters is 5-10 (Mehta and Bradshaw (1979)). The honeycomb unit is 

made by drilling and machining a PVC block of 100 mm length with 10 and 6 mm holes. This 

configuration of holes provides the sufficient condition for swirl removal with minimum pressure 

loss. 

 

Figure 3.3 Honeycomb unit  (dimensions in mm). 

One of the challenges in the present design was the entrapment of significant amount of air into 

the water that results in formation of bubbles in the test section. This phenomena has two major 

adverse effects on the quality of the measurements. First, these bubbles can affect the fully 

developed, two-dimensional flow that is expected to be achieved further downstream. Second, 

these bubbles which were mainly flowing beneath the top surface of the channel limit the view 

from the top of the Particle Image Velocimetry (PIV) system. Therefore, great care was devoted 

to reduce the possibility of bubble formation in the system.  

There were two main sources of bubble formation in the system (i) cavitation and (ii) air 

entrainment. Cavitation onsets in a system wherever the pressure of the liquid falls beneath its 

vapour pressure. In the present system, this was more likely to happen at the pump, control 

valve and honeycomb. As mentioned earlier, sufficient pressure was provided at the suction 

inlet of the pump to assure its optimum performance. On the other hand, no bubbles were 

expected at the honeycomb or the control valve due to relatively high pressure on the system.  

As discussed earlier, the overflow pipe is responsible for the removal of the excessive water from 

the header tank. Therefore, this pipe is never fully filled with water providing constant air suction 

at its inlet. This mixture of air and water is returned to the collecting tank to be delivered to the 

test section. Due to lack of space at the header level of the lab, only a small tank of 400 litres 

could be accommodated, resulting in relatively small settling time. Such a configuration provides 

a loop of constant air injection into the system without a space for water to settle and air to 

escape. Two potential solutions were identified to reduce the adverse effect of the overflow on 

the system. These were either to divert the overflow to a separate tank or to reduce the delivery 
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of the pump. The second approach was implemented in the present system by mounting a 

carefully-trimmed mesh screen at the outlet of the pump’s delivery line. This approach 

significantly reduced the volume of bubbles in the test section. 

 Test section 

The test section is designed to have the capacity for studying a fully-turbulent, two-dimensional 

channel flow over smooth and rough surfaces. The length to height ratio (𝐿/𝐻) and width to 

height ratio (𝑊/𝐻) are 160 and 7, respectively. The channel facility is constructed out of four 

transparent Perspex sections, each two metres long, providing full optical access throughout its 

length. Each section consists of four Perspex plates that were first glued with Tensol 12 acrylic 

glue and then bolted together at every 100 mm.  Four bars of 3 mm thickness stainless steel run 

along the length of the sections to enhance the strength of the bolted joints. Top and bottom 

plates are distanced 60 mm away from each other, providing space for 10 mm inserts. Rough 

inserts are only implemented in the last two sections of the flow facility (i.e. from 𝐿/𝐻 = 80 −

160).The thickness of the bottom/top and side plates are 20 and 30 mm, respectively. This 

configuration was kept throughout the first three sections (i.e. 6 metres). Figure 3.4 shows 

various elements of a single panel of the test section.  

 

Figure 3.4 Single panel of the test section (a) Perspex channel (b) Supportin g fixtures (c) 

Flanges.  

A glass window is designed and mounted onto one side of the final section (measurement 

section), in order to improve the optical access to the measurement section. The edge of the 

window is located 6.8 metres downstream from the inlet. The window is 700 mm long with 500 

mm distance from the outlet.  The window consists of an aluminium frame and a 6 mm thick 

glass. Black Polyurethane adhesive was used to seal the glass plate onto the aluminium frame. 

A combination of 0.5 mm paper gasket and 4 mm O-ring chord was used to seal the window on 

the Perspex edges of the measurement section. The gap between the glass window and Perspex 
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sides is estimated to be less than 0.5 mm. The aluminium frame was pushed towards the Perspex 

test section by means of 8 clamps as shown on Figure 3.5. 

 

Figure 3.5 Glass window configuration  

Bottom inserts of the test section are removable allowing the user to mount and study any 

surface topology of interest. These 10 mm inserts are bolted on top of the bottom plate of the 

test section. These bolts are located on the sides to have the minimum adverse influence on the 

flow. An effort was made to make these connections as flush as possible by using countersink 

screws. These screws are sealed and bolted from the outside. Due to further optical access 

complexities, inserts are only available at the bottom of the channel.  

Each section is connected to the next by means of Perspex flanges (Figure 3.4). Each flange is 

glued to the test section and bolted to its counterpart. Only one face of each flange is grooved 

to accommodate the O-rings. Figure 3.6 illustrates the design and relevant dimensions. The 

nominal thickness of the O-ring chord is 5.33 mm. 

The test section is mounted onto the longitudinal main support beams by means of fixtures 

(Figure 3.4). Three fixtures are in place for every section. These fixtures prevent the top and 

bottom plates of the test section from bending due to exerted hydrostatic pressure in the test 

section. It was shown by PIV measurements that the top and bottom plates were only displaced 

for ~ 120 and 80 m, respectively, during the most severe unsteady conditions. Additionally, 

these fixtures are adjustable to level the test section.  

Clamps 
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Figure 3.6 Flange dimensions. A: The flange; B: O -ring grooves; C: Holes for bolts  

(dimensions in mm) 

 Flow control 

A 4” pneumatically operated globe valve is located one metre downstream of the outlet adaptor. 

This distance is considered to be sufficient for efficient performance of the valve. Equal 

percentage flow-lift characteristic was chosen for the valve. In such trim configurations, changes 

in the flow are an equal percentage of the existing flow for equal increment of the valve travel. 

This characteristic is of significant interest in cases where high control over the pressure changes 

is required. It should be stressed that the inherent characteristic of the valve is obtained by 

applying different valve opening percentages while the pressure loss through the valve is kept 

constant. This is obviously different from an arbitrary operational condition that stems from the 

configuration of any hydraulic system. Figure 3.7 depicts the opening versus flow rate for the 

inherent and operational scenarios. 

 

Figure 3.7 Operational versus inherent valve characteristic s.  
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The custom made control valve consists of four main parts, the body of the valve, actuator, 

positioner and volume boosters. The cylinder actuator type provides a high level of accuracy in 

stem positioning. Two sets of boosters were mounted on the system to improve the stroking 

speed of the actuator in both directions.  Precise Siemens PS2 positioner enables the user to 

control the position of the trim by means of a 4-20 mA signal (4 mA: fully shut – 20 mA: fully 

open).   

Figure 3.8 shows the setup of the control valve. The positioner and boosters are supplied with 

compressed air at 4 bar. The positioner operates solely on a 4-20 mA current signal and 

therefore no extra power supply is required. The current signal is generated through a Phoenix 

Contact 3-way isolating amplifier supplied with the 0-10 volts signal from the Data Acquisition 

(DAQ) device. 

 

Figure 3.8 Sketch of valve actuator, booster and positioner.  

The volume boosters are comprised of three ports, signal and pressure inlet-outlet. The signal 

ports are directly connected to the positioner outlet signal ports. In the case of steady operation 

of the valve, these boosters are bypassed, whilst variations in the signal port above the 

deadband limits result in activation of the booster and hence injection of high pressure air into 

the actuator. The boosters are connected to the actuator through spool valves. The spool valves 

are supplied with 4 bar compressed air from the main compressor. In the case of air supply 
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failure, high pressure air inside the lower chamber of the cylinder is evacuated through its 

corresponding spool valve, resulting in the closure of the system. 

Repeatability of the flow (𝜎) is defined as the standard deviation of the streamwise mean 

velocity from various realisations measured by LDV at the centre of the channel.  

Figure 3.9 shows the variation of centreline velocity’s repeatability under steady conditions at 

different Reynolds numbers (based on half-height and bulk velocity). It can be seen from the 

figure that the valve’s performance reduces significantly as the plug reaches its maximum 

opening.  

During the experiments, it was noticed that the repeatability of the valve for sudden opening 

scenarios was further reduced. This resulted in slight difference between the opening times for 

individual ensembles, mainly affecting the streamwise velocity component. As shown in 

Chapters 5 and 6, this slight misalignment of the ensembles resulted in a scatter of the 

streamwise mean and rms velocity profiles, for a short duration, right after the valve’s opening 

time (𝑡 = 0). Repeatability of the valve under severe transient conditions such as sudden-

opening (e.g. 6.25 to 100 % opening) was measured to be better than 3%. 

 

Figure 3.9 Repeatabil ity of the flow versus Reynolds number.  

 Data acquisition system and measurement devices 

The data acquisition system is provided by the National Instruments (NI USB-6211). This system 

consists of 16 analogue inputs and 2 analogue outputs both at signal resolution of 16 bits with 
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maximum sampling capability of 250,000 per second. The system is powered and connected to 

a PC through a USB port. 

The analogue output ports are capable of generating voltages within the range of -10 - 10 volts 

with a maximum current drive of 2 mA. The first port is used to control the pneumatically 

operated valve, while the second is reserved for triggering and synchronisation purposes.  

The analogue input ports are capable of measuring -10 - 10 volts. They are wired up to various 

measurement devices such as magnetic flow meter, hotfilm sensors and pressure transducer 

differentially in order to minimise the noise. 

The variations in the bulk flow are measured by a 4” ISOMAG magnetic flow meter which is 

located further downstream of the control valve. According to manufacturer’s report, levels of 

uncertainty in the measurements was recorded to be less than 0.2 % for velocities higher than 

0.5 m/s and better than 0.3 % for small velocities of 0.173 m/s. Sufficient length of pipe (> 10𝐷) 

is reserved before and after the flow meter to optimise its performance. Online filtering (time 

constant) of the measurement signal is disabled during the measurements in order to improve 

the response time of the flow meter. The full scale measurement of the device is set to 70 m3/hr. 

The output signals from the magnetic flow meter are within 4-20 mA, which is converted to 0-

10 volts by means of a 250 Ω resistance. The flow rate data obtained from the flow meter are 

recorded at 1 𝑘𝐻𝑧 throughout the measurements. 

A silicon differential pressure transducer (0-10” H2O, ¼” NPT) is used to measure the pressure 

drop across a fully developed section of the channel. The distance between the pressure taps is 

4 metres. It is shown by Shaw (1960) that the associated errors in the pressure measurement 

highly depend on the  𝑑𝑝
+ (𝑑𝑝𝑢𝜏/𝜈, 𝑑𝑝 is the pressure tap diameter) values. Levels of error inside 

the tappings are mainly due to vortices that form inside the pressure tap. Figure 3.10 shows the 

dimensions of the pressure taps applied to the rig. Threaded section shows where the fittings 

are attached. It should however be mentioned that since the main purpose of this study is to 

measure pressure drops in unsteady flows, measurements from the pressure transducer are 

found to be inaccurate within small ranges of flow rates and therefore neglected. 
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Figure 3.10 Pressure tapping dimensions in mil limetre.  

Furthermore, a pocket is created in the midspan of the top Perspex plate further downstream 

of the measurement section, providing a bed for glue-on hotfilms (depicted in Figure 3.11). 

Three hotfilms are mounted on this bed at a distance of 50 mm from each other and almost 15H 

from the outlet of the test section to measure the instantaneous wall shear stress. This distance 

is considered to be sufficient to diminish the outlet effects (Birch and Morrison (2011)). Sensors 

are grounded by 108 mm long brass tube which is machined off to be placed in a 2x1 mm groove. 

Hotfilms were glued onto the surface by means of Loctite 495. Fine wires of these sensors were 

soldered to an electrical joint and then soldered to RG59 BNC cables. The hotfilms are connected 

to the DAQ through a miniCTA box. However, these sensors only worked for a short time 

recording high variations of voltage under steady conditions that eventually decayed to a 

constant voltage. The defect in the hotfilms was mainly prone to the sealing of the fine signal 

wires. 

 

Figure 3.11 Hotfilm sensor bed.  

Three different LabVIEW codes were developed to facilitate the control, data logging and 

synchronisation of the various sensors, control valve, LDV and PIV systems. In order to obtain 

the operational curve of the valve (Figure 3.7), small piecewise increments of voltage were 

supplied to the valve while the flow rate was constantly monitored and recorded. This curve was 

later used to generate different linear type of flow excursion signals. The other two codes are 

mainly used to produce unsteady flows with either sudden or linear flow excursions. 
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 Data Processing 

The ensemble averaged statistical quantities for PIV measurements are obtained from the 

temporal and streamwise spatial averages. A representative velocity Φ is averaged as follows 

 
Φ(𝑡) =

1

𝑁𝑃
∑ ∑ Φ𝑖,𝑗

𝑃

𝑗=1

𝑁

𝑖=1

  (3.1) 

Reynolds stresses are calculated in a similar fashion 

 
𝜑′2(𝑡) =

1

𝑁𝑃
∑ ∑(𝜑𝑖,𝑗 − Φ(𝑡))2

𝑃

𝑗=1

𝑁

𝑖=1

  (3.2) 

where 𝑁 is the number of repeated runs and 𝑃 is the number of data points in the streamwise 

direction. 

The ensemble averages of the instantaneous data from flow meter, hotfilm sensors, pressure 

transducer and LDV are calculated in the following “windowing” procedure as initially 

introduced by He and Jackson (2000) in the study of transient flows. In the equations below 𝑢 

and 𝑣 represent the instantaneous streamwise and wall-normal component of velocity. 

Ensemble averages can be defined as 

 
𝑈𝑘 =  

1

𝑁𝑀
∑ ∑ 𝑈𝑖,𝑗+(𝑘−1)𝑀

𝑀

𝑗=1

𝑁

𝑖=1

  (3.3) 

and the Reynolds normal and shear stresses reintroduced as 
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  (3.4) 
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  (3.5) 
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  (3.6) 

where 𝑘 = 1, 2, … , 𝐿 and 𝐿 is the number of windows in a single realisation of the transient. 𝑀 

and 𝑁 are the number of samples in each window and the number of repeats of the transient, 

respectively. Quantities in equations (3.3) and (3.4) can be replaced with flow rate, wall shear 

stress or pressure to calculate the mean and variance of these flow properties.  
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 LDV system 

A TSI FSA3500 two-component LDV system is employed to measure the instantaneous velocity 

in streamwise and wall-normal directions. Figure 3.12 shows the different components of the 

LDV system. This system consists of a CVI Melles Griot argon-ion laser generating device that is 

capable of generating lasers of wavelengths of 488 (blue) and 514.5 (green) nm with maximum 

output power of 300 mW. The power of each beam at the outlet of the transmitter probe was 

later measured to be approximately 30 mW. The beam is then directed into the beam separator 

device to be split, where one single beam of each component shifts by 40 MHz in the Bragg Cell 

unit. This shift allows the system to measure the direction of the flow. Each single beam is then 

reflected through the fibre couplers to be directed to the transmitting probe through fibre optic 

cables. In order to maintain the transmitted energy of the beams, the couplers should be 

precisely aligned with the incoming reflected beams in the splitter box. This process results in 

four sets of beams being fired from the transmitting probe, each two measuring one component 

of the flow. 

 

Figure 3.12 Sample LDV system. 

Each two beams cross each other at the focal length of the probe lens creating the measuring 

control volume (MCV). MCV of each component is an ellipsoid with Gaussian intensity 

distribution in all three dimensions. Two intersecting waves create fringes at the MCV as shown 

on Figure 3.13. Fringe spacing is a function of intersection angle and wavelength. The properties 

of the employed lens are tabulated in Table 3.2. 
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Figure 3.13 Fringes created at the measuring  control volume. 

 Lens focal 

length (mm) 

Beam spacing 

(mm) 

Fringe spacing 

(m) 

MCV diameter 

(m) 

MCV length 

(mm) 

LDV TR260 363 50 3.7 90 1.3 

Table 3.2 Lens Properties.  

As a particle crosses the bright fringes, scatters light in the bright fringe and scatters no light in 

the dark one. This results in a fluctuating pattern of scattered light intensity with a frequency 

proportional to the particle velocity. Since the distance between the fringes as well as the time 

required for a particle to travel from one fringe to another is known (from the frequency 

content), velocity of the particle can be calculated. The scattered light from the fringes is 

collected by the optics, a backscatter system in the present study, and transmitted to the 

Photomultiplier Tubes through the fibre optic cables, where it can be converted to electrical 

signals. Series of low, high and band pass filtering processes are then applied to these signals to 

improve the signal to noise ratio and to allow the user to measure zero or reversing flows. Seed’s 

arrival times is shown to have a Poisson distribution as reported by Britz and Antonia (1996) 

(Figure 3.14). 

 

Figure 3.14 Distribution of seed’s arrival times measured at the centre of the channel.  
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Throughout the measurements, transmitting probe was mounted on an Isel-Automation three 

dimensional traversing system capable of travelling 1450x1000x890 mm in streamwise, 

spanwise and wall-normal directions, respectively, with precision better than 0.01 mm. It is also 

important to mention that due to different refractive indices of water and air the actual 

displacement of the laser in the spanwise direction is affected. For this reason, the actual 

displacement of the laser in the spanwise direction is calculated by multiplying the displacement 

by 1.34. 

Hollow glass spheres with silver coating are used for seeding purposes in this study. The mean 

diameter of the seeds is 10 microns with unit specific gravity allowing it to follow the fluid path 

with high levels of fidelity. It was noticed that this specific type of seeding had superior optical 

properties which resulted in achieving higher data rates in comparison to the plain hollow 

Polyamide sphere seeds with similar physical properties.  

As shown by Durst et al. (1998), non-dimensional probe volume diameter 𝑑+ (𝑑𝑢𝜏/𝜈, 𝑑 is the 

probe diameter) is one of the most critical quantities in describing the spatial resolution of LDV 

systems in wall shear flows. The mean velocity gradient in the wall-normal direction produces 

different velocities at the edges of the MCV, resulting in velocity gradient bias. This gradient 

causes a bias in the measurement of fluctuating velocity components where their mean profiles 

are affected (for instance in our case 𝑢′
𝑟𝑚𝑠 and its higher order statistics). The velocity gradient 

bias causes an overestimation of Reynolds stresses in LDV measurements (Schultz and Flack 

(2013)). 

It is shown by Durst et al. (1995) that by writing the Taylor expansion series around the centre 

of a MCV, one can obtain an explicit relationship between the measured and true local velocity 

values. Streamwise mean and normal Reynolds stress reads 

 
𝑈𝑖 𝑚𝑒𝑎𝑠 = 𝑈𝑖 𝑡𝑟𝑢𝑒 +

𝑑2

32
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𝑑𝑦2 ) + ⋯  (3.7) 
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(

𝑑𝑈𝑖 𝑡𝑟𝑢𝑒

𝑑𝑦
)

2
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where 𝑈𝑖 𝑡𝑟𝑢𝑒 and 𝑢2
𝑖 𝑡𝑟𝑢𝑒 are the true mean and turbulent components of the measured ones 

(𝑈𝑖 𝑚𝑒𝑎𝑠 and 𝑢2
𝑖 𝑚𝑒𝑎𝑠) and 𝑑 is the diameter of the MCV. These corrections were only applied 

to the steady cases investigated throughout these investigations and are not applicable to 

unsteady ones. 
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Velocity bias as introduced by Buchhave et al. (1979) was corrected by applying Gatetime 

Weighting function from the FlowSizer v3.0 software menu. Velocity bias stems from the fact 

that more of the faster particles go through the measuring volume at each instant of time 

resulting in a bias towards faster particles in the sampled velocities. This causes the velocity 

mean values to be higher than their actual values. Gatetime Weighting function normalises each 

velocity data of particles with their respective gate times. For instance, slower particles have 

longer gate times and therefore more weight. This function was enabled throughout the 

measurements of steady and unsteady velocity measurements. 

In the case of Reynolds shear stress measurements in both steady and unsteady scenarios, it 

was of great importance to measure two components of a similar particle at an instant of time. 

For this reason, coincident mode was activated in the software to measure an identical burst. 

There are two methods available to identify similar bursts on each channel, one by means of a 

Gate Scale percentage and the other by the actual coincident interval time. Gate Scale controls 

how many gate widths in the forward and backward directions are required to synchronise the 

bursts. Two Gate Scale percentages are shown in Figure 3.15 to further elucidate the concept. 

Each channel in the figure represents a component of velocity. Smaller Gate Scales results in a 

stricter control on the passing seeds and hence less data rate. This scale can also be defined as 

a fixed coincident interval time. In this method, the actual time between two consecutive bursts 

on each channel should fall within a certain time band unless to be rejected. The former method 

was applied throughout the measurements herein where the Gate Scale was reduced to 200%. 

 

Figure 3.15 Coincident mode measurement.  

During the steady measurements, spurious data were identified by removing the individual 

samples of ± 7 times the rms values as suggested by Den Toonder and Nieuwstadt (1997). 

Another source of uncertainty in the LDV measurements is the location of the wall. There are 

different approaches introduced in the literature regarding this issue. Oldengarm et al. (1975) 
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measured a sine wave as the measuring volume reached the particles attached to the surface. 

Wei and Willmarth (1989) explain that they have assumed the location of the wall to be where 

no LDV signal is attainable. On the other hand, Durst et al. (1995) and DeGraaff and Eaton (2001) 

have assumed the wall to be located at a position where the signal due to light scattering by the 

particles attached to the surface is maximum. In the investigations reported herein, it was 

noticed that a location exists somewhere close to the wall that a strong signal with normal 

distribution and almost zero magnitude (order of -4) is attainable. This location was assumed to 

be the wall. Figure 3.16 shows the velocity signal at the wall measured by LDV. 

 

Figure 3.16 Streamwise instantaneous velocity signal and its distribution mea sured at 

the wall.  

For the steady cases, ensemble averages are computed from 20,000 samples at each point. In 

order to assure that the acquired data are independent from each other the interval time 

between the samples (reverse of sampling frequency) was maintained twice the integral length 

scales (ℎ/𝑈) of the flow. Mean and higher order statistics obtained from LDV measurements 

were collected at 30 points in wall normal locations.  

Ideally, measurements have to be taken at the midspan of the channel where a two-dimensional 

flow is expected. However, it was noticed during the initial measurements, that the 𝑣′ 

component of the flow is not realisable at most of the wall-normal direction due to the 

configuration of the beams and the channel i.e. the top beam being blocked by the lower plate 
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of the channel facility. For this reason and the major role that this components plays in unsteady 

flows, it was decided to traverse the measurement location in the spanwise direction towards 

the glass window where three-dimensional effects are insignificant. This location is later shown 

in §4.4 to be at 3.5h from the glass window.  

 PIV system 

Particle Image Velocimetry (PIV), contrary to LDV, provides an instantaneous flow field. A PIV 

system consists of three main components, laser pulse generator, CCD (Charge-Coupled Device) 

camera and a post-processing software. Figure 3.17 illustrates the procedures involved in 

obtaining a velocity field by using PIV. A double-pulsed laser generates two consecutive sheets 

of light to be fired at ∆𝑡 seconds from each other.  A CCD camera, preferably located 

perpendicular to the sheet of light, records the two consecutive frames. These two frames are 

then required to be image processed by using advanced cross-correlation algorithms to yield a 

single instantaneous velocity field. 

Three inherent assumptions are the building blocks of a PIV system: first, the tracer particles 

follow the fluid motion; second, the tracer particles are distributed homogenously and finally 

the particles have uniform displacement within the interrogation regions.  

 

Figure 3.17 PIV system components (Dantec Inc.).  

A Dantec Dynamics integrated planar PIV system was employed for these investigations. Laser 

generator device was a Litron Nano-S-65 Nd:YAG (Yttrium Aluminium Garnet) laser capable of 

generating pulsed laser at wavelength of 520 nm (green) with maximum energy of 65 mJ per 

pulse. A Dantec Dynamics FlowSense 12-bit 4M CCD camera with the resolution of 2048x2048 

pixels was used to capture the images from the flow field. A 60 mm focal length Nikon AF Micro-
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Nikkor lens with maximum aperture number of f/2.8D was mounted on the CCD camera. Dantec 

DynamicStudio v3.31 software was used for image and data processing purposes. 

Synchronisation of the laser, camera and the computer was performed by a NI PCI-E 1427 DAQ 

card and a Dantec Dynamics timer box which was controlled by a NI PCI 6602 timer board.  

Two sets of camera - laser orientations were used throughout the measurements reported 

herein. Figure 3.18 (a) depicts the orientation where the laser is firing from the side (horizontal 

direction) to perform measurements in the 𝑥𝑧 plane while the second configuration facilitates 

the measurements in the 𝑥𝑦 plane (Figure 3.18 (b), vertical direction). 

 

 

Figure 3.18 Different camera-laser orientations for  planes at (a) 𝑥𝑧 and (b) 𝑥𝑦 directions.  

Velocity fields in planar PIV systems are calculated from the seed displacement and the time 

between the laser pulses (∆𝑡). Statistical cross-correlation algorithms are applied to find the 

displacement of each set of particles. This process requires each image to be divided into a 

number of interrogation areas (IA). Group of particles in each IA create a unique fingerprint in 

the first frame. A search area needs to be defined so that each particle can be traced within the 

search range. The search area is the combination of IA and overlapping zones. Ideally, the unique 
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finger print detected in the first image should be traceable in the second image within the 

overlapping zone. A cross-correlation value needs to be calculated at each position within the 

overlapping zone resulting in a correlation function. The maximum cross-correlation is obtained 

when the fingerprint is detected in the second frame. Displacement vector can then be identified 

by the offset of the interrogation regions. Now that the displacement is known, velocity can be 

calculated with reference to ∆𝑡. This process is then repeated throughout the FOV. 

A number of PIV rules of thumb have been suggested upon the investigations of Keane and 

Adrian (1990) and Keane and Adrian (1991). The diameter of seed particles are suggested to be 

more than 2 pixels to reduce the peak locking (Raffel et al. (2007)). Peak locking occurs when 

the PIV correlation algorithm is locked in to integer pixel displacement. For instance, if a 

particle’s diameter is confined into one single pixel, the displacement of that particle is assumed 

to be the displacement of that single pixel. This conjecture however requires sub-pixel accuracy 

to be validated. Peak locking can stem from both experimental and numerical shortcomings. 5-

15 particles are generally required to produce strong cross-correlation within the IA and the 

searching area. Maximum displacement of the particles between the laser pulses is suggested 

not to exceed 25% of the IA width. This improves the detection process of the fingerprints. 

Effort has been made in these investigations to comply with the general guidelines introduced 

above. However, the major challenge in the measurement of unsteady flows stems from the fact 

that the optimal displacement of the particles between the pluses can be hugely different for 

the initial and final flows. Furthermore, the measurement of velocity gradients of the 

streamwise component of the flow with rather large FOV sizes applies a constraint on the 

applicability of the final general guideline. 

During the investigations reported herein, the adaptive correlation technique has been applied 

to calculate the velocity field. In this method, velocity vectors with an initial larger IA size are 

iteratively calculated, narrowing down to the final IA size. Three iterations are performed in the 

investigations reported herein to reduce the final interrogation size to 32x32 pixels.  Spurious 

velocity vectors were detected and removed by performing two validation approaches in series 

and parallel:  

i. Peak validation: According to Keane and Adrian (1992), the ratio of the two highest 

consecutive correlation peaks should not exceed 1.2 otherwise this results in their 

rejection and a moving averaged value is replaced. 
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ii. Moving average: A moving average is performed in an 8x8 neighbourhood with 3 

iterations and acceptance factor of 0.12. The gradient of velocity vectors exceeding the 

acceptance factor are removed and a moving averaged value is replaced. 

Velocity vectors are estimated from mean particle displacement inside the IA. Throughout the 

investigations reported herein, a second order central differencing scheme is employed to 

estimate the derivative of the displacement with respect to time. 

The high accuracy sub-pixel algorithm, independent of the particle image shape and correlation 

peak shape, is applied throughout these investigations to reduce the peak-locking effect. 

Furthermore, deforming windows option was enabled to improve the measurement in wall 

shear flow applications. 

The accuracy of PIV measurements is affected by a variety of factors such as sub-pixel 

interpolation of the displacement correlation peak, the particle’s fidelity to the flow, light pulse 

timing, light sheet positioning, depth of field (DOF) as well as the size of the interrogation area. 

As mentioned earlier in this section, uniform displacement of particles within the interrogation 

area is an ideal situation and is violated in wall shear flows. In order to achieve an acceptable 

valid detection probability of 95%, Keane and Adrian (1992) suggest the gradients in the flow to 

obey the following expression: 

 𝑀∆𝑈𝑦∆𝑡

𝑑𝑃𝐼𝑉
< 0.03  (3.9) 

where 𝑀 is the magnification factor, ∆𝑈𝑦 = (𝜕𝑈 𝜕𝑦)⁄ ∗ 𝑑𝑃𝐼𝑉 2⁄ , ∆𝑡 is the time between the 

pulses and 𝑑𝑃𝐼𝑉 is the length of the IA. The inequality above has a significant impact on the 

validity of the measurements at locations with high velocity gradients, such as those in the wall 

region. For instance, it can be shown that the measurement of a flow at Reynolds number of 

18,000 can only be considered to be valid above the 𝑦+ = 34 providing the magnification factor,  

∆𝑡  and IA size are 1.812, 350 s and 32 pixels, respectively. The above criteria was used 

throughout the steady wall shear flow investigations in this study to determine the light pulse 

timing (∆𝑡).  

 Summary 

The characteristics of the water flow facility, data processing, measurement equipment as well 

as data logging and control systems are discussed in this chapter. Limitations and advantages of 

each measurement technique is discussed in detail to provide us with an overview towards the 

measurement of steady and unsteady turbulent channel flows in the next chapters. 





 

 

 Introduction 

This chapter reports the data obtained from LDV and PIV measurements in the channel under 

steady conditions at various Reynolds number flows. These investigations are of great 

importance since they reveal the characteristics of the test facility and, by comparing the results 

with the benchmark data of conventional channel flows, they provide a thorough validation of 

the system. Development of streamwise velocity, two dimensionality of the flow, configurations 

of the PIV system and comparison of the measurements to the benchmark data in channel flows 

over smooth and rough surfaces are discussed in detail in the present chapter. The streamwise, 

wall-normal and spanwise directions are shown as 𝑥, 𝑦 and 𝑧 as depicted in Figure 3.1. 

 Streamwise flow development 

In order to demonstrate that the fully developed condition prevails in the measurement section, 

a number of measurements are performed in the streamwise direction along the glass window 

at the centre of the channel. 

Figure 4.1 shows the variations of the mean and higher order statistics of velocity in the 

streamwise direction. The measurements are performed at the spanwise centre of the channel 

(𝑧/ℎ = 7) with a flow rate of 42.8 m3/h equivalent to a Reynolds number of 17,000. Ensemble 

averages have been performed on 40,000 samples. These quantities are normalised with the 

bulk velocity (𝑈𝑏) and channel full-height (𝐻). 

It can be seen from Figure 4.1 that the streamwise mean and fluctuating velocity components 

are clearly fully developed and the variation is within 99.9% in the designated region, whilst the 

Chapter 4. Characterisation of the 

test facility and instrumentation 
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streamwise and the wall-normal skewness (𝑆𝑢, 𝑆𝑣) and flatness (𝐹𝑢, 𝐹𝑣) also show a fully 

developed feature with no systematic variation in 𝑥 direction, albeit with the relatively higher 

levels of scatter up to 99.2 and 98.7 %, respectively. It can therefore be concluded from the 

statistics that the flow is very well developed in the measurement section. Therefore, the cross 

sectional and spanwise measurements of the flow mainly performed at 𝑥 = 143 𝐻 unless 

otherwise stated. 

 

Figure 4.1 Variations of mean and higher order statistics at the centre of the channel in 

the streamwise direction at Re = 17,000.  

 Two dimensionality 

A series of measurements are performed in the spanwise direction of the flow at various 

Reynolds numbers. The measurements are taken at the centre of the channel with both LDV and 

PIV systems. These measurements help to understand the behaviour of the flow and to identify 

the region in which a two-dimensional flow assumption is valid.  
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Figure 4.2 LDV measurements of mean, fluctuating and shear stress profiles at various 

Reynolds numbers at the plane 𝑦/ℎ = 1.  

The ensemble averaged mean and turbulent statistics shown in Figure 4.2 are obtained from 

30,000 samples and normalised by the maximum centreline velocity (at 𝑧/ℎ ~ 7) and channel 

half-height (ℎ). It can be seen that the Reynolds shear stress is very low as expected and the rest 

of the profiles demonstrate good two-dimensional behaviour in the range of 𝑧/ℎ ~ 3.5 − 10.5. 

All profiles, except the Reynolds shear stress, show high levels of symmetry in the spanwise 

direction. It is should be noted that the fluctuating velocity components obtained from the low 

Reynolds number flow do not collapse with the high Reynolds number ones. 
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Figure 4.3 PIV measurements of streamwise and spanwise velocity components at the 

centre of the channel  at 𝑅𝑒𝑏 = 24,800.  

Figure 4.3 compares velocity profiles obtained from different PIV techniques with those of LDV 

at the centre of the channel with 𝑅𝑒𝑏 = 24,800. The two component LDV system does not allow 

for the measurement of spanwise velocity component and neither planar PIV for the wall-

normal component. Therefore relevant comparisons are only made for the streamwise mean 

and fluctuating quantities (Figure 4.3 a & c).   The FOV of the PIV images is 94x94 mm. The 

ensemble averages are calculated from 2,500 image pairs. Data obtained from the temporal 

averages are then spatially averaged in the streamwise direction. Adaptive correlation 

technique is applied to the PIV images in three different approaches to assess their effectiveness 

in the measurement of flow statistics. In the first approach, images are processed with 32x32 

pixel interrogation areas with 50% overlapping. In the second approach, similar interrogation 

areas and overlapping percentage are applied to images that are initially filtered by removing 

the background noise, these data are shown with ‘-br’ legend in Figure 4.3. Background noise 

removal is performed by subtraction of the averaged intensity over the ensembles from each 

individual image. Therefore, images yielded from this process are expected to be free from the 

background noises. The final approach was to apply a coarser grid of 64x64 pixel of interrogation 

areas with 50% overlapping. 

The measured mean and fluctuating velocities from different PIV post-data processing 

approaches are in agreement with the LDV, whilst some discrepancies are noticeable between 

the different PIV processing approaches. Among these, the 32x32 pixel interrogation area with 
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no background noise removal measures rms values closest to the LDV profile. It is also 

interesting to see a sharp fall in the PIV streamwise rms data between 𝑧/ℎ = 5 − 6 that is not 

evident in the LDV profiles.  

It is worth noting that the ratio 𝑊/𝑈 is considered to show the two dimensional effects. It can 

be seen from Figure 4.3 (b) that this ratio remains small throughout the FOV. Figure 4.3 shows 

that the mean and turbulence quantities within the measured range are weakly sensitive to the 

spanwise location which verifies the spanwise spatial averaging in analysing unsteady flows over 

smooth and rough surfaces in  chapters 5 and 6, respectively. 

 Steady smooth channel flows 

Figure 4.4 shows the mean and fluctuating profiles of streamwise velocity at different Reynolds 

numbers measured at the centre of the channel with LDV. These figures show the inner (a-b) 

and outer (c-d) scaled profiles of mean and fluctuating values.  It can be seen from the figures 

that the measurements are in close agreement with the DNS data. The levels of statistical 

uncertainties for 20,000 samples based on 95% confidence level were estimated to be better 

than 0.17% for mean and 2.6% for rms fluctuating velocities. 

  

  

Figure 4.4 LDV measurements of mean and fluctuating streamwise velocity component 

at various Reynolds numbers. (Dash line: DNS data of Hoyas and Jiménez (2008) 𝑅𝑒𝑏 =

21,300; Solid line: DNS data of  He and Seddighi (2013) 𝑅𝑒𝑏 = 2,800; Red straight l ine: log-

law) 
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There are a number of different methods suggested in the literature for indirectly calculating 

the wall shear stress in channel flows. This parameter is particularly useful in non-

dimensionalasing various flow quantities (as shown in Figure 4.4 (a-c)).  

One of these methods is to use the Blasius’ friction law which is defined as follows: 

 𝐶𝑓 = 0.079(4𝑅𝑒𝑏)−0.25  (4.1) 

where 𝐶𝑓 is the friction coefficient, 𝑅𝑒𝑏 is the Reynolds number based on bulk velocity and half-

height of the channel. Friction coefficient has the following relationship with the wall shear 

stress: 

 
𝐶𝑓 =

2𝜏𝑤

𝜌𝑈𝑏
2  (4.2) 

where 𝜏𝑤 is the wall shear stress and 𝜌 is the density of the fluid. There are however other 

empirical correlations such as the one suggested by Dean (1978): 

 𝐶𝑓 = 0.073(2𝑅𝑒𝑏)−0.25  (4.3) 

Alternative methods for calculating the wall shear stress in channel and pipe flows are based on 

log-law fitting to the fully turbulent region of velocity profile, or the polynomial-fitting to the 

buffer region proposed by Durst et al. (1996), or line-fitting to the Reynolds shear stress curve 

in the core region.  

For smooth walls, the standard logarithmic profile is obtained from dimensional analysis and the 

Reynolds number invariance principle as follows (Townsend (1976)): 

 𝑈+ =
1

𝜅
ln(𝑦+) + 𝐵  (4.4) 

where 𝑈+ is the mean streamwise velocity, non-dimensionalised with friction velocity ( 𝑢𝜏 =

√𝜏𝑤 𝜌⁄ ), 𝑦+(= 𝑦𝑢𝜏 𝜈⁄ ) is the non-dimensional distance from the wall and 𝜅 and 𝐵 are the von 

Kármán constant, and an empirical constant, respectively. It is shown by Nagib and Chauhan 

(2008) that the von Kármán constant cannot be considered to be universal and it depends on 

the geometry, pressure gradients and Reynolds number. Specifically in the case of channel flows, 

the aspect ratio of the facility is believed to be a factor in determination of the von Kármán 

constant (Marusic et al. (2010)). On the other hand, there are different constants proposed for 

𝐵 in the literature (such as Kim et al. (1987) and Durst et al. (1996)). For all these uncertainties 

as well as the controversy over the onset of the log-law region, wall shear stress in the present 

unsteady smooth investigations are mainly calculated from the Blasius’ friction law (4.1) unless 

otherwise stated. This method is applied to non-dimensionalise the results shown in Figure 4.4. 
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The log-law dash line plotted in Figure 4.4 (a) has the constants of 𝜅 = 0.41 and 𝐵 = 5.17. It is 

noteworthy to mention that the rms component of velocity for flows of Reynolds number 2,250 

and 2,800 do not collapse with the relatively higher Reynolds number flows in the centre. 

Figure 4.5 show that the mean streamwise component of the velocity is subjected to mixed 

inner-outer scaling.  It can be seen from the figure that this scaling provides a better collapse of 

data in the core region of the flow. 

 

Figure 4.5 Mixed scaling of mean velocity component at various Reynolds numbers.  

As mentioned earlier, due to the configuration of the laser beams, the access of the second LDV 

component was limited in the midspan of the channel. For this reason, most of the 

measurements of unsteady flows discussed in chapters 5 and 6 are taken at a location 3.5h away 

from the edge in the spanwise direction. This allowed the laser to measure the wall-normal 

component of the flow as close as 4.17 mm from the wall. 

Figure 4.6 shows the LDV measurements at 𝑧 = 3.5ℎ of the streamwise mean component along 

with the shear and normal Reynolds stresses at two different Reynolds numbers, streamwise 

components measured at the midspan and DNS data in a similar range of Reynolds numbers are 

also shown in the figure for comparison. Very close agreement can be seen between the 

statistics of the streamwise velocity component in the midspan and the side measurements. On 

the other hand, comparisons of 𝑣′𝑟𝑚𝑠 and 𝑢′𝑣′ obtained from the experiments at Reynolds 

number 26,000 are in good agreement with the DNS data while the lower Reynolds number flow 

shows higher discrepancy. This difference might be due to the low Reynolds number effects 

between the DNS and experiments or might be an indication of relatively higher three-

dimensional effects at low Reynolds number flows. 
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Figure 4.6 LDV measurements of mean and turbulence at 3.5h from the side window.  

(Dash line: DNS data of Hoyas and Jiménez (2008) 𝑅𝑒𝑏 = 21,300; Solid line: DNS data of 

Gilbert and Kleiser (1991 )𝑅𝑒𝑏 = 3,835) 

 PIV configuration  

PIV was also used to measure the mean and turbulent statistics under various flow conditions. 

Comparison of these investigations with DNS allows the user to quantify the quality of PIV 

measurements. A series of steady measurements with different light pulse timings (∆𝑡) have 

been conducted with a priori setup, so that these results can be used to optimise the 

measurements for unsteady flows. These measurements are carried out at both the midspan 

and 3.5h from the side wall. 

Table 4.1 tabulates the PIV sensitivity tests of light pulse timings at various Reynolds numbers 

and different midspan locations. During these measurements, 2,500 image pairs were acquired 

at a sampling frequency of 7 Hz. The first set of measurements with FOV size of 24x50 mm were 

taken at the midspan of the channel providing full channel height measurements, while the 

second set with a smaller FOV size of 20x27 mm measured at 3.5h to provide a higher resolution 

close to the bottom wall of the channel. The latter is the smallest FOV size that could have been 

achieved with the provided PIV configuration. Light sheet was masked to narrow down its 

thickness to 2 mm at both locations. 
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𝑹𝒆𝒃 (𝑼𝒃𝒉/𝝂) ∆𝒕 (sec) 𝒛/𝒉 FOV (mm x mm) 

2,450 300, 800, 1000, 1200 7 24x50 

2,700 1200 3.5 20x27 

3,000 300, 900, 1000 7 24x50 

3,400 1000 3.5 20x27 

10,000 400, 900 3.5 20x27 

25,000 300, 500 7 24x50 

26,300 200, 300, 400 3.5 20x27 

Table 4.1 PIV measurements at various Reynolds numbers, spanwise locations and light 

pulse t imings.  

For the sake of brevity, sensitivity of PIV measurements to the light pulse timing are only 

presented at two very different Reynolds numbers in Figure 4.7 and Figure 4.8. For the low 

Reynolds cases (Figure 4.7), the fastest light pulse timing (∆𝑡 = 300 𝜇𝑠𝑒𝑐) resulted in an 

overestimation of all rms components in both wall and core regions. A longer interval between 

the pulses has improved the measurements of the mean, fluctuating and shear stress 

components. However, even for ∆𝑡 as high as 900 sec measurements of rms components in 

the core region are not satisfactory.  This is while 1000 sec seem to return more realistic 

measurements in comparison to DNS. It must be mentioned that the levels of Reynolds shear 

stress component in the wall region are measured to be lower than DNS with both 900 and 1000 

sec configurations. Figure 4.8 shows the measurements of PIV at the final Reynolds number 

(~25,000) with two different light pulse timings of 300 and 500 sec. It is interesting that within 

the investigated range of light pulse timings, 𝑣′𝑟𝑚𝑠 is the only sensitive component to the choice 

of ∆𝑡 while 𝑈, 𝑢′𝑟𝑚𝑠 and 𝑢′𝑣′ show only slight differences in the wall region.  
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Figure 4.7 PIV measurements of streamwise and wall -normal velocity statist ics with 

different l ight pulse timings at  𝑅𝑒𝑏 ≈ 3000.  

 

Figure 4.8 PIV measurements of streamwise and wall -normal velocity statist ics with 

different l ight pulse timings at 𝑅𝑒𝑏 ≈ 25,000.  

The choice of ∆𝑡 can play a major role in the measurements of PIV and therefore should be 

optimised according to the flow characteristics. This specifically becomes a challenge in the 

study of unsteady flows where the initial and final Reynolds numbers are very different from 

each other. In order to improve the resolution of the measurements, the laser sheet is moved 
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to 3.5h from the edge of the channel in the spanwise direction, where the flow shows a good 

two-dimensional behaviour (Figure 4.2). 

 

Figure 4.9 Outer scaled PIV measurements of mean, fluctuating and shear stress 

components at various Reynolds numbers at 3.5h in spanwise direction (Dash l ine: DNS 

data of Hoyas and Jiménez (2008) 𝑅𝑒𝜏 = 21,300; Solid line: DNS data of  He and Seddighi 

(2013) 𝑅𝑒𝑏 = 2,800).  

 Results 

Figure 4.9 shows a comparison between the PIV measurements and DNS data at 𝑧 = 3.5ℎ. 

Measurements are in good agreement with the DNS data. Large velocity gradients at the wall 

region, reflections from the surface as well as the finite pixel resolution of the camera made the 

measurements of flow components in the wall region extremely difficult. 

The agreement between the PIV data and DNS is also confirmed in Figure 4.10 through the inner 

scaling of statistics, 𝑈+ and 𝑦+ where 𝑢𝜏 is obtained from the 𝑢′𝑣′ curve. 
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Figure 4.10 Inner scaled PIV measurements  of mean, fluctuating and shear stress 

components of f low at various Reynolds numbers  at 3.5h in spanwise direction (Dash 

line: DNS data of Hoyas and Jiménez (2008) 𝑅𝑒𝜏 = 950; Solid line: DNS data of  He and 

Seddighi (2013) 𝑅𝑒𝜏 = 180).  

  

Figure 4.11 Inner scaled streamwise velocity at various Reynolds numbers calculated 

from (a) Blasius and (b) Dean.  

Correlations of Blasius (4.1) and Dean (4.3) are also applied to calculate 𝑢𝜏 for comparison. 

Figure 4.11 shows the differences between Blasius and Dean estimation of 𝑢𝜏. It can be seen 

from the plots that Blasius slightly and Dean significantly overestimate the values of 𝑢𝜏 within 

the range of present investigations. Therefore, from now on, Blasius correlation is applied 

wherever direct calculation of wall shear stress was not available. The log-law constants plotted 

in the figures have values of 𝜅 = 0.389 and 𝐵 = 4.31, fitting well to higher Reynolds number 

flows (from 𝑅𝑒𝜏 = 416 shown in Figure 4.10). 
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 Steady rough channel flows 

This section presents and discusses the results obtained from PIV measurements of steady 

flows in a channel with a smooth surface on the top and a rough surface on the bottom.  

 

 

Figure 4.12 Geometry of roughness plate at the bottom surface of the channel.  

Figure 4.12 depicts the geometry and size of the rough plate installed at the bottom of the 

channel facility. The roughness geometry consists of a series of square based pyramids with the 

wavelength of 7.5 mm and height (𝑘) of 0.90 mm. These plates are installed in the final 4 metres 

of the channel facility. The pattern of the pyramids shown in Figure 4.12 is machined with a 

precision CNC milling machine on a Perspex plate of thickness 10 mm. The length of each plate 

is 1 metre. The plates are fixed to the channel bottom wall by using uniformly distributed bolts 

of a 400 mm spacing. These bolts are carefully drilled halfway through the plate. The last two 

plates are made of black Perspex to mitigate the possible light reflections from the rough 

surface. The direction of the flow is shown in Figure 4.12. 

Table 4.2 summarises the details of the investigated cases over rough plates. The bulk Reynolds 

number (𝑅𝑒𝑏) is based on the channel half-height (ℎ) and the bulk velocity (𝑈𝑏). Friction 

Reynolds number is based on the friction velocity (𝑢𝜏) and effective channel half-height (𝛿𝑡). 
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Friction velocity is obtained by extrapolating a linear fit to the wall from the total shear stress 

profile. The location of the wall (𝑦 = 0) is assumed to be on the crest of the pyramids. The 

effective channel half-height is where the Reynolds shear stress approaches zero in the core 

region of the flow. In other words, the effective channel half-height of a smooth surface channel 

flow is equal to the geometrical channel half-height. 𝑘𝑠 and 𝑘𝑠
+  are the equivalent sand-grain 

roughness height and roughness Reynolds number, respectively. 

𝑹𝒆𝒃 𝑹𝒆𝝉 𝜹𝒕/𝒌 𝒌+ 𝒌𝒔
+ 𝜹𝒕/𝒉 

2,836 166 28.6 5.8 8.7 1.03 

3,489 211 29.3 7.2 10.8 1.05 

5,041 311 29.7 10.5 15.7 1.07 

7,736 506 30.9 16.4 24.6 1.11 

9,932 663 31.8 20.9 31.3 1.15 

18,218 1355 33.9 39.9 58.8 1.22 

24,569 1894 34.2 55.5 83.2 1.23 

Table 4.2 Details of the investigated flow conditions over the rough surface.  

The measurements presented and discussed in this section are obtained from the vertical 

configuration of the laser sheet, shown in Figure 3.18 (b), located at 3.5h from the side walls. 

The size of the FOV was fixed at 33 x 33 mm with a sampling frequency of 7 Hz. The ensemble 

and streamwise spatial averaging are applied to 4,000 image pairs to obtain mean and 

turbulence quantities. The thickness of the laser sheet was maintained at 2 mm throughout the 

measurements. The PIV settings such as light time pulsing and image processing algorithms were 

similar to those used for the smooth flows discussed in §4.4.1. 
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Figure 4.13 Inner-scaled mean and fluctuating components of streamwise and wall -

normal velocit ies at different Reynolds numbers.  

Figure 4.13 shows the measurements of the mean and rms components of the velocity along 

with the Reynolds shear stress at various Reynolds numbers. Inner scaling parameters are used 

in this figure to normalise the various components. Wall shear stress used for normalising these 

components is obtained from the slope of the Reynolds shear stress profile. 

Figure 4.14 shows various components of mean and fluctuating velocities normalised by the 

outer scaling parameters, such as effective centreline velocity (𝑈𝑡) and effective channel height 

(𝛿𝑡). It should be noted that the effective centreline velocity in these measurements is equal to 

the centreline velocity of the smooth channel flows. Filled symbols in this and the next figure, 

show the measurements from the smooth flow at similar bulk Reynolds number. These trends 

facilitate the comparison between the flows over rough and smooth surfaces. 
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Figure 4.14 Outer-scaled mean and rms components of velocity at different Reynolds 

numbers (fi lled symbols show corresponding smooth flow measurements).  

Figure 4.15 shows (a) the velocity deficit profiles, (b) normal streamwise and (c) wall-normal 

Reynolds stresses as well as (d) the Reynolds shear stress normalised by the friction velocity (𝑢𝜏). 

The wall-normal locations are normalised by the effective channel half-height (𝛿𝑡). It can be seen 

from this figure that the mean and turbulent components of the flow completely collapse on 

each other in the outer region of the flow, regardless of the surface or flow conditions. The 

normal streamwise stress component (𝑢′2) obtained from the lower Reynolds flows (𝑅𝑒𝑏 =

2,836, 3,489) show lower degree of similarity in comparison to the relatively higher bulk flow 

conditions. A similar trend is also evident in the behaviour of wall-normal stress component 

(𝑣′2). This behaviour can mainly be attributed to the relatively low roughness Reynolds number 

(𝑘𝑠
+).  The profiles of Reynolds shear stress (𝑢′𝑣′) show excellent collapse for all the flow and 

surface conditions. These plots provide a strong support for the Townsend’s hypothesis of 

Reynolds number similarity and its extension wall similarity (Raupach et al. (1991)). 

This similarity is rather surprising considering that the flows investigated herein lie on the 

transitionally rough regime (shown in Figure 4.16 (a)). In addition, most of the investigated flows 

in this study do not comply with the well-characterised flow conditions of Jiménez (2004), as the 

blockage ratio (𝛿/𝑘) in these investigations are well below 40. 
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Figure 4.15 Mean and Reynolds stresses at different Reynolds numbers (filled symbols 

show corresponding smooth flow measurements).  

 

Figure 4.16 Roughness function versus (a) 𝑘𝑠
+(b)𝑘 = 𝑘𝑠.  Dash line: Nikuradse  

Figure 4.16 shows the variation of the roughness function (∆𝑈+) versus the roughness Reynolds 

number (𝑘𝑠
+, 𝑘+) obtained from present investigations as well as others. The roughness function 

is the amount of the downward shift in the log region of the velocity profile in comparison to 
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the smooth curves, therefore, being a measure of the momentum deficit due to roughness 

elements. In the present investigations, this value is obtained by curve fitting to the log region 

of the smooth and rough inner-scaled velocity curves (Figure 4.13 (a)).  The method of Österlund 

et al. (2000) was applied herein to calculate the log-law constants. The equivalent roughness 

height (𝑘𝑠) for the fully rough flows was obtained from the following relationship: 

 ∆𝑈+ =
1

𝜅
ln(𝑘𝑠

+) + 𝐵 − 𝐶  (4.5) 

 where 𝐶 is the roughness function intercept for uniform sand grain equal to 8.5. 𝐵 and 𝜅 are 

obtained from the smooth flow and in these investigations are equal to 4.31 and 0.389, 

respectively. 𝑘𝑠 was found to be ≈ 1.49𝑘 which is similar to the findings of (Schultz and Flack, 

2009) and Seddighi et al. (2013) who investigated similar pyramid geometries. 

 

Figure 4.17 Friction coefficient at different Reynolds numbers.  

Figure 4.17 compares the variations of the friction factor over smooth and rough surfaces at 

various Reynolds numbers (based on full channel height, 𝐻 and bulk velocity) from the present 

and other investigations. The bulk velocity used for calculation of the friction factor and 

Reynolds number shown in Figure 4.17 is obtained from averaging the mean streamwise velocity 

obtained from PIV measurements. The friction coefficient over smooth surface is shown to be 

in agreement with the correlation of Dean (1978) for higher Reynolds number flows, whilst 

correlating better with those of Blasius at smaller Reynolds number flows. The friction 

coefficient and bulk Reynolds number curves calculated on the basis of flow meter 

measurements were shown to have an offset from the Dean’s curve, correlating better with 

those of Blasius and Zanoun et al. (2003) (not shown here). For the sake of simplicity, bulk flow 

measurements of flow meter were applied to the Blasius’ correlation to calculate the steady 

initial and final wall shear stresses for unsteady smooth-wall flows throughout this thesis. 
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Similarly, rough-wall flows with smaller Reynolds numbers are shown to be correlating well with 

the Blasius’ correlation. 

 Summary 

This chapter presents and discusses results obtained from the smooth and rough surfaces under 

steady conditions. LDV and PIV are used to measure the flow characteristics under various 

Reynolds numbers. These measurements are conducted at either midspan or 𝑧 = 3.5ℎ from the 

near side wall for various steady flow scenarios.  

Measurements under steady smooth flow conditions are in good agreement with the available 

benchmark data confirming minimal two dimensional effects at the midspan and the offset 

plane of 3.5h. 

Results obtained from the rough surface flow conditions provide a strong support for 

Townsend’s wall and Reynolds number similarity. According to Raupach et al. (1991), turbulent 

motions outside the roughness sublayer at high Reynolds numbers are independent of the wall 

roughness and viscosity. In the present investigations, the streamwise, wall-normal and shear 

Reynolds stresses at even relatively low roughness Reynolds numbers of 𝑘𝑠
+ = 15.7 and a 

blockage ratio (𝛿𝑡/𝑘) of 34.2 also exhibit strong similarities. 

In the present investigations, friction coefficient for smooth and hydrodynamically smooth 

surfaces is found to be in a better agreement with the correlations of Blasius and Dean (1978) 

for low and high Reynolds number flows, respectively. 

The equivalent sand grain roughness height (𝑘𝑠) obtained from the present investigations is in 

close agreement with the previous investigations of similar geometrical roughness. Contrary to 

the actual roughness height (𝑘), equivalent sand grain roughness height correlates well with the 

roughness function following that of Nikuradse. 

 





 

 

 Introduction 

In this chapter, the behaviour of flow mean and turbulence characteristics under transient 

conditions over smooth surfaces are investigated in detail. During the experiments, the flow rate 

is accelerated from a lower Reynolds number turbulent flow to one at a higher Reynolds number 

(𝑅𝑒). The acceleration is generated by either a sudden opening of the control valve or a slowly 

but better controlled valve opening operation. PIV (Particle Image Velocimetry) and LDV (Laser 

Doppler Velocimetry) are used to measure the mean and turbulence characteristics of the flow. 

In Section 5.2, details of the case studies are introduced. The instantaneous flow fields are 

discussed in Section 5.3. In order to provide a quantitative approach to the study of turbulence 

in unsteady flows, ensemble-averaged parameters are used in the consequent sections to study 

the time-developing boundary layers, auto-correlations, the behaviour of mean and fluctuating 

components and finally the critical Reynolds number and the period of transition. 

 Cases studied 

A range of initial and final transient flow conditions are investigated to elucidate the underlying 

mechanisms involved in transient flows. Measurement conditions are tabulated in Table 5.1. 

Two type of accelerating flows have been investigated herein. In the first set, the flow temporal 

acceleration from a lower flow Re to the higher Re takes place in response to a sudden opening 

of the valve. Therefore, the required time for the transition in this scenario depends solely on 

the initial and final states as well as the operational curve of the control valve (Figure 3.7). 

Figure 5.1 shows the variation of bulk flow against time for some main sudden opening cases 

Chapter 5. Unsteady flows over 

smooth surfaces 
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studied herein. These variations are measured by the magnetic flow meter. In the second 

scenario, the flow acceleration from the first stage to the next occurs through a fully controlled 

routine. In other words, the valve’s plug movement is manipulated in such a way to generate a 

pre-defined ramp type excursion of flow rate between the two states (cases S29-76R4 and S29-

76R6). The latter scenario is mainly performed for validation and verification purposes while the 

main focus of this research remains on the sudden opening scenarios. 

 

Figure 5.1 Variation of bulk velocity for selected sudden opening unsteady flows.  

Table 5.1 summarises the features of unsteady flows investigated herein. Subscripts of 0 and 1 

are used to designate the initial and final states, respectively. ∆𝑡 is defined as the time required 

for the initial bulk velocity to reach 90% of the final state. Bulk Reynolds number (𝑅𝑒𝑏) is based 

on the bulk velocity (𝑈𝑏) and channel half-height (ℎ). Calculation of the friction Reynolds number 

(𝑅𝑒𝜏) requires a priori knowledge of the friction velocity (𝑢𝜏) and hence wall shear stress (𝜏𝑤). 

As shown in §4.4.2, Blasius predictions of wall shear stress is the closest estimation among those 

investigated herein, therefore it has been applied here to calculate the friction Reynolds number 

for the steady flows. ∆𝑡∗ (= ∆𝑡𝑈𝑏1 ℎ⁄ ) is the normalised acceleration time on the basis of the 

channel half-height and the final bulk velocity (𝑈𝑏1). Alternatively, 𝑡0
+ (= 𝑢𝜏0

2𝑡/𝜈) is also used 

in the subsequent sections of this chapter as another non-dimensional time-scale. 

PIV and LDV are both applied to measure mean and turbulence components of the flow. Two 

laser-camera configurations are used for the PIV measurements. The first configuration is to 

produce measurement of the flow field over a horizontal plane. This configuration requires the 

camera to be located at the top while the laser is fired from the side, perpendicular to the 

camera (Figure 3.18 (a)). The second configuration is applied to provide wall-normal 

measurements (Figure 3.18 (b)). The PIV wall-normal measurements are performed at two 

spanwise locations, midspan (7h) and quarter-span (3.5h). As discussed in §4.4, the quarter-span 
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measurements provide a better resolution in the wall region. Such measurements were only 

taken at the bottom plate in order to avoid occasional flow of air bubbles during the transients. 

LDV measurements are made only at the quarter-span to facilitate measurements of the 

streamwise (𝑢′𝑟𝑚𝑠) and wall-normal (𝑣′𝑟𝑚𝑠) velocity components in the wall region. For cases 

S23-250, S29-76 and S29-250, eleven points were traversed in the wall-normal direction. For the 

rest of the cases shown in Table 5.1 measurements were only made at three wall-normal 

locations. 

The main objective of these experiments is to examine the effects of various 𝑅𝑒𝑏1 𝑅𝑒𝑏0⁄  ratios 

on the characteristics of transient flows. In order to facilitate the identification of the cases, 

following nomenclature is employed in Table 5.1;  

 The first letter designates the type of surface topology (e.g. S for smooth, R for rough). 

 The first and second numbers correspond to the initial and final Re, respectively (e.g.23-

250 for 2,300-25,000).  

 The last alphabet designates the type and duration of flow excursion (e.g. R3 for a 3 

seconds ramp), for sudden opening cases, this is left blank. 
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Case No. 
𝑼𝒃𝟎−𝑼𝒃𝟏 

(𝒎 𝒔⁄ ) 

∆𝒕 

(𝒔𝒆𝒄) 
𝑹𝒆𝒃𝟎−𝑹𝒆𝒃𝟏 𝑹𝒆𝝉𝟎−𝑹𝒆𝝉𝟏 ∆𝒕∗ Comments 

S23-250 0.09-0.96 1.9 2,300-25,000 150-1160 73.2 11 points LDV & PIV† 

S23-

230R3 
0.09-0.94 3.3 2,300-23,400 150-1115 124.5 PIV†‡ 

S23-200 0.09-0.76 1.9 2,300-20,000 150-970 57.5 3 points LDV & PIV† 

S23-180 0.09-0.69 1.85 2,300-18,000 150-890 51.4 3 points LDV & PIV† 

S23-135 0.09-0.53 2 2,300-13,500 150-680 42.3 3 points LDV & PIV† 

S23-93 0.09-0.38 1.4 2,300-9,300 150-500 21.1 3 points LDV & PIV† 

S29-250 0.11-0.96 1.85 2,913-25,000 180-1190 71.4 11 points LDV & PIV† 

S29-76 0.11-0.29 1.35 2,913-7,625 180-420 15.6 
11 points LDV & 

PIV†‡ 

S29-76R4 0.11-0.29 4 2,913-7,625 180-420 47.2 PIV† 

S29-76R6 0.12-0.29 6.1 2,913-7,625 180-420 70.76 PIV† 

S29-54 0.09-0.19 3.4 2,913-5,450 180-311 25.9 3 points LDV 

S35-250 0.14-0.98 1.9 3,500-25,000 220-1238 74.7 3 points LDV 

S33-40 0.12-0.15 6.7 3,300-4000 200-236 40.1 3 points LDV 

S60-250 0.24-0.98 1.3 6,000-25,000 384-1326 51.1 3 points LDV 

S90-250 0.37-0.97 1.35 9,000-25,000 562-1313 52.6 3 points LDV 

Table 5.1 Init ial and final flow conditions of the  unsteady measurements. †: PIV 

measurements at 3.5h, ‡: PIV measurements at 7h.  

 Instantaneous flow behaviour 

In this section, the focus of the discussions is devoted to the instantaneous behaviour of the 

flow under transient conditions.  

In order to facilitate the discussions, a previously examined unsteady flow case by He and 

Seddighi (2013) (indicated as HS13 herein) is revisited through experimental observations. This 

case consists of a step change of flow rate with initial and final friction Reynolds numbers of 178-

418. The imposed acceleration time scale in terms of non-dimensional time is ∆𝑡∗ =  0.22 which 

is equivalent to 𝑡 = 0.019 seconds in the experimental facility described in Section 3.2. Due to 

experimental limitations, the fastest acceleration rate in the described range is 1.35 seconds as 

shown in Table 5.1 (case S29-76). 

In case S29-76, the bulk velocity is increased from 0.11 to 0.29 m/s in 1.35 seconds due to a 

sudden opening of the valve. The history of the ensemble-averaged bulk flow and friction 
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coefficient is shown in Figure 5.2, where 𝑡 and 𝑡∗ are the dimensional and normalised time. Dash 

lines, designate the time stamps shown in the streamwise fluctuating contours presented next 

(Figure 5.3). 

 

Figure 5.2 Temporal evolution of (a) bulk flow; and (b) fr ict ion coefficient  for case S29-

76.  

Due to technical difficulties in the implementation of hot-film sensors, friction coefficient (𝐶𝑓 =

2𝜏𝑤 𝜌𝑈𝑏
2⁄ ) for all the cases reported herein was calculated by means of RANS CFD simulations 

of channel flow under corresponding experimental flow conditions. The actual flow variation 

shown in Figure 5.2 (a) is used to calculate 𝐶𝑓. Therefore, the 𝐶𝑓 values are only indicative and 

the timescales might differ from the actual flow conditions, readers are referred to Chapter 7 

for further information on the modelling procedures and results. 

Figure 5.3 shows the contours of the fluctuating streamwise velocity (𝑢′) of case S29-76 

measured at a horizontal plane adjacent to the wall. This velocity is obtained from subtraction 

of the mean velocity averaged in both streamwise and spanwise directions of the FOV from the 

instantaneous velocity (𝑢′ = 𝑢 − �̅�). The fluctuating velocity was then normalised using final 

bulk velocity (𝑢′/𝑈𝑏1).  

The distance of the measurement plane was 1 mm above the bed which is equivalent to 

𝑦0
+(= 𝑦𝑢𝜏0 𝜈⁄ ) = 7 and 𝑦/ℎ = 0.04. 𝑦0

+ is based on the initial flow friction velocity obtained 

from the Blasius’ friction law.  

The initial steady flow consists of low magnitude fluctuations with limited streamwise streaky 

structures (𝑡∗ = 0). The formation, development and enhancement of the elongated streaks of 

positive and negative 𝑢′ is the main characteristic of the early stages of the transient flow (𝑡∗ <

15). It can be seen that these structures become stronger in magnitude as time proceeds until 

around 𝑡∗~20 where the first signs of high magnitude fluctuations appear (e.g. Figure 5.3, 𝑡∗ =
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16.6). These turbulent spots initially appear as isolated bursts which later spread throughout 

the domain as time proceeds (e.g. Figure 5.3, 𝑡∗ = 104.4). 

The above process is typical of that observed in the boundary layer bypass transition, see for 

example Jacobs and Durbin (2001). The dark blue regions in the contours of streamwise 

fluctuating velocity at the early stages of transition are the negative jets which are known as the 

primary instability (also known as Klebanoff modes) in the boundary layer bypass transition due 

free-stream-turbulence.  This stage of the transient flow is referred to as the pre-transition due 

to He and Seddighi (2013) which is equivalent to the buffeted laminar boundary layer in bypass 

transition studies. The progressive amplification and elongation of the jets are followed by the 

appearance of the first turbulent spots. These spots result in juxtaposed layers of elongated 

positive and negative streamwise fluctuating velocities that eventually breakdown to form a 

new fully turbulent state. DNS study of He and Seddighi (2013) has shown that this process 

progresses independently on the top and bottom walls of the channel. 
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Figure 5.3 Temporal evolution of contour plots of streamwise fluctuating velocity  

(𝑢′/𝑈𝑏1) for case S29-76 at a plane 1 mm (𝑦0
+ = 7, 𝑦/ℎ = 0.04) above the bed.  
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In order to further elucidate the concept, we shall look into the instantaneous velocity 

fluctuations of the streamwise and wall-normal components. Figure 5.4 shows the fluctuating 

streamwise and wall-normal velocity components obtained from case S29-76 measured by the 

LDV at various wall-normal locations of 𝑦0
+ = 2,9, 31 and 189.  

Distinct differences can be seen in the response of 𝑢′ and 𝑣′ velocity components as previously 

shown by He and Seddighi (2013) . For instance, in Figure 5.4 (c) and (d), the high amplitude but 

rather low frequency response of 𝑢′ following the valve opening is attributed to the existence 

of the streaky structures which are not perceivable in the trends of 𝑣′. The response of the 𝑣′ 

component corresponds to the onset of transition. Since the initial transition is limited to the 

wall region, the response of 𝑢′ and 𝑣′ in the core region is delayed. Propagation of turbulence 

from the wall to the core region of the channel results in the increase of the amplitude of 

fluctuating signals (subplots (e) and (f)). 

Similar trends to that of Figure 5.4 are provided from the PIV measurements in the spanwise 

direction. These measurements are shown in Figure 5.5 at the centreline of the FOV in the 

spanwise direction. The variation of 𝑤′ during and after the transition can be seen to be similar 

to that of 𝑣′, that is to have an initial calm state followed by abrupt fluctuations after the onset 

of transition. 
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Figure 5.4 LDV measurements of f luctuating velocity of streamwise and wall -normal 

components at (a) 𝑦0
+ = 2; (b) 𝑦0

+ = 9; (c) and (d) 𝑦0
+ = 31; (e) and (f) 𝑦0

+ = 189 for case 

S29-76. 
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Figure 5.5 Temporal variation of normalised fluctuating velocities in (a) streamwise 

(𝑢′/𝑈𝑏1) and (b) spanwise directions ( 𝑤′/𝑈𝑏1) at 𝑦0
+ = 7,  𝑦/ℎ = 0.04 in the midsection of 

the FOV for case S29-76. 

Case S23-230R3 is the highest final to initial Reynolds number ratio producible with the present 

water flow facility that is 2,300-25,000 in 3.3 seconds. In order to improve the repeatability of 

the valve opening in the mentioned range of the trim travel, this case adopts a slower ramp with 

an improved valve movement control. Figure 5.6 shows the variation of ensemble-averaged flow 

rate along with friction coefficient, calculated from CFD.  It should be noted that the 

development of 𝐶𝑓 shown in the figure is only indicative and the time scales are not necessarily 

the same as those of the actual flows. Contour plots of streamwise fluctuating velocity at various 

times are shown next with the corresponding times designated as dash lines in Figure 5.6. 

(a) 

(b) 
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Figure 5.6 Temporal evolution of (a) bulk flow; and (b) fr ict ion coefficient for case S23-

230R3.  

 The instantaneous 𝑢′ contours in the 𝑥𝑧 plane at a distance of 1 mm from the bottom surface 

are shown at various times in Figure 5.7. The process is very similar to the smaller final to initial 

Re case described earlier, except that the streaks during the pre-transition phase are much 

stronger in magnitude. It is also interesting to note that the streaky structures are mitigated in 

a short duration after the valve’s opening (e.g. Figure 5.7, 𝑡 = 0.71 𝑠𝑒𝑐, 𝑡∗ = 27.79) before their 

amplification, burst generation and final break down. Figure 5.8 shows the fluctuating 

streamwise and wall-normal velocity components obtained from the case S23-250 measured by 

the LDV at the wall-normal locations of 𝑦0
+ = 2,12, 33 and 152. Fluctuations of streamwise and 

spanwise velocities are shown in Figure 5.9. 
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Figure 5.7 Temporal evolution of contour plots of streamwise fluctuating velocity 

(𝑢′/𝑈𝑏1) for case S23-230R3 at a plane 1 mm (𝑦0
+ = 6, 𝑦/ℎ = 0.04) above the bed.  
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Figure 5.8 LDV measurements of fluctuating velocity of streamwise and wall -normal 

components at (a) 𝑦0
+ = 2; (b) 𝑦0

+ = 12; (c) and (d) 𝑦0
+ = 33; (e) and (f) 𝑦0

+ = 152 for case 

S23-250.  
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Figure 5.9 Temporal variation of normalised fluctuating velocities in (a) streamwise 

(𝑢′/𝑈𝑏1) and (b) spanwise directions ( 𝑤′/𝑈𝑏1) at 𝑦0
+ = 6,  𝑦/ℎ = 0.04 in the midsection of 

the FOV for case S23-230R3.  

 Ensemble-averaged flow behaviour 

In this section, the behaviour of the flow under transient conditions is examined on the basis of 

ensemble-averaged flow statistics. This section can shed light on the quantitative aspect of the 

phenomenon emerged from the instantaneous flow fields in the previous section. Statistics 

obtained from PIV measurements are obtained from both temporal and spatial averages, where 

the detail of the spatial averaging approach depends on the plane of measurement. Spatial 

averaging takes place in both 𝑥 and 𝑧 direction in 𝑥𝑧 planes, while only streamwise spatial 

(a) 

(b) 
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averaging takes place in 𝑥𝑦 plane. Ensemble-averaged statistics for unsteady LDV measurements 

were calculated by means of the windowing approach discussed in §3.4. 

It will be shown in this section that the quantitative behaviour of flow and turbulence under 

unsteady conditions are directly comparable to bypass transition flows due to free-stream-

turbulence. The parameters to be discussed include perturbing velocities, momentum-thickness 

Reynolds number and shape factor. 

 The time-developing boundary layer 

It has previously been shown by DNS studies that a step-change of flow rate from an initially 

turbulent flow results in a three-stage flow development, named pre-transition, transition and 

fully turbulence. During the pre-transition phase, a newly formed boundary layer on the wall 

begins to expand into the core region of the flow. As shown previously by DNS investigations, 

and to be confirmed here through experiments, the development of the velocity profiles during 

the pre-transition phase show strong correlations if normalised by the similarity parameter 𝜂(=

𝑦/2√𝜈𝑡).  

In order to facilitate the comparisons between the unsteady channel flow and boundary layers, 

perturbing velocity is introduced as follows (He and Seddighi (2013)) 

 
𝑈

^
(𝑦/ℎ, 𝑡∗) =

𝑈(𝑦/ℎ, 𝑡∗) − 𝑈(𝑦/ℎ, 0)

𝑈𝑐(𝑡∗) − 𝑈𝑐(0)
  (5.1) 

where 𝑈𝑐(𝑡∗) is the ensemble-averaged centreline velocity at 𝑡∗. 

The first Stokes problem deals with a laminar flow over a flat plate that is subjected to a sudden 

movement at constant velocity. Solution to this problem is identical to the heat conduction 

equation for one-dimensional unsteady temperature variations (Schlichting et al. (2000)). A 

dimensionless similarity variable can be defined as 𝜂 = 𝑦/2√𝜈𝑡 with a solution of  

 𝑈(𝜂) = 1 − erf (𝜂)  (5.2) 

where erf(𝜂) = 2

√𝜋
∫ 𝑒−𝜂2

𝑑𝜂
𝜂

0
. Non-dimensional parameters of 𝑈

^
, 𝑦0

+ and 𝑡0
+ can be 

implemented into the Stokes solution. 

Stokes first problem is concerned about the sudden movement of a solid boundary and 

therefore requires a modification for relatively slower evolving boundaries. Applying a factor of 

0.75 to 𝜂  was shown to collapse and scale the Stokes solution on the results obtained from all 

the unsteady cases investigated herein (Figure 5.10). 
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Table 5.2 summarises the actual and normalised timescales describing the onset of transition 

and fully turbulent regimes in various cases investigated herein. Friction coefficient or 𝑣′𝑟𝑚𝑠  

history plots can be used to find the critical time. The critical time marks the end of the pre-

transition zone and the onset of transition. On the other hand, the 𝑢′𝑟𝑚𝑠 history plots in the wall 

region can be used to designate the commencement of the fully turbulent regime. The method 

these quantities are derived herein is discussed in §5.4.3 with further details. The “cr” and “turb” 

subscripts in Table 5.2 are used to designate the onset of transition and fully turbulent states, 

respectively. (He and Seddighi, 2015) suggest that 𝑡0
+ is a useful quantity to specifically detect 

the period of the pre-transition phase. This period is in the range of 80 < 𝑡0,   𝑐𝑟
+ < 130 in most 

of the examined cases herein.  

Cases 𝒕𝒄𝒓(𝒔𝒆𝒄) 𝒕𝒕𝒖𝒓𝒃(𝒔𝒆𝒄) 𝒕𝒄𝒓
∗  𝒕𝒕𝒖𝒓𝒃

∗  𝒕𝟎,   𝒄𝒓
+  𝒕𝟎,   𝒕𝒖𝒓𝒃

+  

S23-250 2.4 4.2 94.3 165.1 87.5 153.1 

S23-200 2.6 5 82.7 159.0 81.3 156.3 

S23-180 2.8 4.8 80.9 138.6 94.5 162.0 

S23-135 2.4 4.7 50.6 99.1 87.7 171.7 

S23-93 2.8 6.1 40.6 88.4 98.4 214.3 

S29-76 2.4 5.3 28.9 63.9 126.3 279.0 

S29-54 2.4 6.1 18.4 46.6 110.8 281.7 

S29-250 1.9 3.5 74.2 136.8 96.1 177.1 

S35-250 1.4 2.8 54.9 109.9 98.8 197.6 

S33-40 2.5 8 15.3 49.0 152.5 488.1 

Table 5.2 Dimensional and normalised crit ical and fully turbulent timescales for various 

unsteady cases.  

Figure 5.10 shows the development of perturbing velocity profiles with time for four different 

unsteady cases, S29-76, S23-250, S23-93 and S23-135. In these figures, the perturbing velocity 

is plotted versus a modified similarity parameter 𝜂 = 𝑦/2√𝜈𝑡. The Stokes solution (equation 

(5.2)) is also provided for direct comparisons. It can be seen that the perturbing velocity remains 

more or less unchanged during the pre-transition regime collapsing on the scaled Stokes solution 

at all four cases. It can be seen from these figures that the development of the perturbing 

velocity is very similar for all four cases, despite the fact that these four cases are very different 

in terms of final and initial flow conditions. It is noticeable that the detection of the onset of 

transition is not feasible from the perturbing velocity profiles.  
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Figure 5.10 Development of perturbing velocity profi les with time for four different 

cases: (a) S29-76; (b) S23-250; (c) S23-93; (d) S23-135; Line: scaled Stokes solution.  

The displacement thickness (𝛿𝑑𝑢), momentum thickness (𝜃) and shape factor (𝐻) of the 

boundary layers in unsteady internal flows are re-introduced as follows by He and Seddighi 

(2013) 

 
𝛿𝑑𝑢(𝑡∗) = ∫ (1 − 𝑈

^
(𝑦/ℎ, 𝑡∗)) 𝑑(𝑦/ℎ)

1

0

  (5.3) 

 
𝜃(𝑡∗) = ∫ 𝑈

^
(𝑦/ℎ, 𝑡∗) (1 − 𝑈

^
(𝑦/ℎ, 𝑡∗)) 𝑑(𝑦/ℎ)

1

0

  (5.4) 

 𝐻(𝑡∗) = 𝛿𝑑𝑢(𝑡∗)/𝜃(𝑡∗)  (5.5) 

Figure 5.11 shows the development of momentum-thickness Reynolds number (𝑅𝑒𝜃 = 𝜃ℎ𝑈𝑐/𝜈) 

and shape factor for two unsteady cases calculated from equations (5.4) and (5.5). Direct 

comparisons with transitional flows (Roach and Brierley (1992)) are also provided for case S29-

76. In these comparisons, 𝑅𝑒𝑥(= 𝑈∞𝑥/𝜈) needs to be linked to a temporal Reynolds number. 

One of the feasible methods to provide the link is to replace 𝑥 with 𝑈𝑐𝑜𝑛𝑣𝑡. Convective velocity 

of 0.74𝑈𝑏 is shown by He and Seddighi (2013) to correlate their data very well. Similar 

convective velocity shows a good correlation with the data obtained from case S29-76, bearing 

in mind that the HS13 case study had a similar final to initial Reynolds number ratio with a much 

shorter acceleration time (0.019 seconds). It should however be mentioned that the convective 

velocity introduced above was specifically curve-fitted to the friction coefficient trend of HS13 

and hence cannot be considered to be universal. Furthermore, the results of case S23-250 are 
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also included for comparisons. As can be seen from these curves, the general behaviour of the 

two cases are very similar, although the final to initial Reynolds number ratios are very different. 

It should be emphasised that the low-resolution PIV measurements in the wall region can affect 

the quality of the displacement and momentum thickness calculations. 

 

 

Figure 5.11 Development of momentum-thickness Reynolds number and shape factor for 

unsteady boundary layers for cases S29-76 (a,  b) and S23-250 (c, d).  

The temporal development of 𝑈
^
profiles from different cases can be compared with each other. 

In order to facilitate these comparisons, time can be normalised by means of inner-scaling 

parameters such as 𝑢𝜏0 and 𝜈. Figure 5.12 shows the temporal development of perturbing 

velocity obtained from different cases versus 𝑡0
+ = 𝑡𝑢𝜏0

2 /𝜈. Despite the chaotic early behaviour 

of the flow, the perturbing velocity in the various cases collapse with each other up to 𝑡0
+ = 90 

covering the whole range of pre-transition phase, regardless of the initial, final and acceleration 

conditions of the transient flow. It can be seen from Figure 5.12 that the scaled Stokes profile 

represents the flow during this phase reasonably well. This kind of velocity development is 

strikingly similar to the behaviour of laminar flows and the role of the Stokes similarity solution 

in governing the flow characteristics.  It is the most extreme unsteady cases (i.e. S23-250 and 

S29-250) that first begin to deviate more rapidly from the others during the early stages of the 

transition phase.  

It should however be noted that during the early stages of the flow rate excursion (i.e. 𝑡0
+ = 10), 

scatters are seen in the profiles that can mainly be attributed to the finite repeatability of the 

flow at the very early stages of sudden opening scenarios.  
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Figure 5.12 Development of perturbing velocity profi les at various Reynolds numbers ; 

(a) actual profi les; (b) zoomed profi les;  Line: scaled Stokes solution. 

Similar behaviour is evident in the trends of perturbing streamwise and wall-normal rms velocity 

profiles shown in Figure 5.13. Perturbing rms velocity profiles are obtained as following: 

 
𝑢′

^
=

𝑢′𝑟𝑚𝑠 − 𝑢′𝑟𝑚𝑠,0

𝑈𝑏1 − 𝑈𝑏0
 

 

 (5.6) 

 
𝑣′

^
=

𝑣′𝑟𝑚𝑠 − 𝑣′𝑟𝑚𝑠,0

𝑈𝑏1 − 𝑈𝑏0
 

 

 (5.7) 

It can be seen in Figure 5.13 that the fluctuating velocities of streamwise and wall-normal 

components collapse throughout the pre-transition phase up to 𝑡0
+ = 90, while 𝑣′

^
 of the S29-

250 is the first to deviate from the rest in the early stages of transition. 𝑢′
^
profiles show a 

sensitivity to the flow excursion during the pre-transition regime due to the streaks dynamics in 

the wall region. Contrary to 𝑣′
^
that is frozen throughout the pre-transition zone, marking the 

onset of transition by its response. Flow features presented herein are in general agreement 

with the DNS data of He and Seddighi (2015).  
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Figure 5.13 Development of perturbing streamwise (a) actual profi les; (b) zoomed 

profiles and wall-normal; (c) actual profiles; (d) zoomed profi les  of f luctuating velocities 

at various Reynolds numbers.  

 Correlations 

Correlations are used to facilitate the discussions on the structures of the flow. In particular, 

correlations can be used to quantify the distribution of the streaky structures. Spatial 

correlations of the streamwise velocity in different directions are calculated as follows: 
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𝑅11(𝑥𝑖, 𝑡) =

𝑢′(𝑥𝑖, 𝑡)𝑢′(𝑥𝑖 + 𝑑𝑥𝑖, 𝑡)

𝑢′(𝑥𝑖, 𝑡)2
  (5.8) 

where 𝑅11(𝑥𝑖, 𝑡) is the auto-correlation of the streamwise fluctuating velocity at specific time 𝑡 

and along the direction 𝑥𝑖 (here, 𝑖 = 1 ≡  𝑥 and 3 ≡  𝑧). 

Contrary to many other measurement devices, PIV allows for direct calculation of spatial auto-

correlations of the fluctuating velocities with no inherited implications from the Taylor 

hypothesis (Taylor (1938)). Figure 5.14 shows the ensemble-averaged spatial correlations of 

velocity in the spanwise (a, c) and streamwise (b, d) directions at various times. These 

measurements are taken at the plane of 𝑦/ℎ ≈ 0.04. In general, correlations at the spanwise 

direction (a, c) indicate only slight changes in the spanwise size of the streaks due to the imposed 

acceleration. On the other hand, correlations in the streamwise direction, show a small increase 

mainly during the pre-transition period. This increase at the early stages of the flow excursion is 

due to the elongation of the streaks during the pre-transition period. This state is then followed 

by a reduction in the correlation at the final steady flow, resembling the breakdown of the 

elongated structures. As mentioned earlier, the elongation of streaks is seen as a primary 

instability in the bypass transition due to free-stream turbulence. This feature is weakly 

recognisable through the correlation plots of unsteady flows examined herein. As mentioned 

earlier in this chapter, transition features are not as striking as the DNS investigations of He and 

Seddighi (2013) since the rate of acceleration is much lower (e.g. 67.5 times lower for case S29-

76). 

Figure 5.15 facilitates the visualisation of the streaks in the two examined cases S29-76 (a) and 

S23-230R3 (b). Positive spanwise correlation values of the streamwise velocity are set to zero in 

this figure, while the negative values are shown as contours. It can be seen from these figures, 

that the initial spanwise distribution of the streaky structures is diminished slightly as the 

acceleration is imposed. 𝑅11 remains more or less constant throughout the pre-transition phase. 

These streaks become narrower as time proceeds.  
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Figure 5.14 Temporal development of streamwise velocity correlations of cases (a -b) 

S29-76, 𝑦0
+ = 7; (c-d) S23-230R3, 𝑦0

+ = 6; insets: Zoomed correlations.  
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Figure 5.15 Temporal development of the  streamwise fluctuating velocity correlation in 

the spanwise direction; (a) S 29-76, 𝑦0
+ = 7; (b) S23-230R3, 𝑦0

+ = 6 

 Behaviour of mean and rms fluctuating velocities 

This section discusses the behaviour of mean and turbulent stresses in temporal accelerating 

turbulent channel flows. The main discussion of this section will be on cases S23-250, S29-76 

and S29-250, where most data points are collected from the LDV measurements, however, other 

cases will be used throughout this text to facilitate the discussion. 

Figure 5.16 shows the variation of the bulk velocity, measured by the flow meter, with time for 

case S29-76. Such a trend of flow variation is achieved by a sudden opening of the control valve 

from the initial Reynolds number of 2,913 equivalent to friction Reynolds number of 180. The 

ensemble-averaged statistics shown in Figure 5.17 are obtained from 80-100 repeats for LDV 

and 20 repeats for PIV. The modified ensemble-averaging technique of He and Jackson (2000) 

for transient flows is applied to the data obtained from the LDV and flow meter. Details of this 

method are discussed in §3.4. PIV data are initially spatially averaged in the streamwise direction 

and then temporally averaged through 20 ensembles. 

t
+

0

z
/h

 

 

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

t
+

0

z
/h

 

 

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

(a) 

(b) 



5.4 Ensemble-averaged flow behaviour  84 
 

 

Figure 5.16 Temporal variation of flow rate for case S29-76 (𝑅𝑒𝑏 = 2,913 − 7,625). 

The statistics presented in Figure 5.17 are normalised with the bulk velocity of the final state 

(𝑈𝑏1). Top and bottom abscissae of these figures show the statistics variations with actual (𝑡) 

and normalised (𝑡∗) time. Note that every four consecutive subplots are sharing the same 

legends. It can be seen from Figure 5.17 that PIV measurements (black symbols) of mean and 

streamwise fluctuating velocities along with the Reynolds shear stresses are in close agreement 

with LDV (red symbols) at various locations across the channel. However, at locations very close 

to the wall, discrepancy between the two increases due to relatively low spatial resolution of 

PIV. The rms component of wall-normal velocities measured by the two techniques show a small 

shift of magnitude at initial and final Reynolds number. As discussed in Chapter 3, LDV 

measurements of 𝑣′𝑟𝑚𝑠 and therefore 𝑢′𝑣′  component were not available at distances close to 

the wall (i.e. for 𝑦/ℎ < 0.17) and hence are not compared to PIV in Figure 5.17 (c and d). 

It can be seen from Figure 5.17 (b) that 𝑢′𝑟𝑚𝑠 responds immediately to the flow excursion in the 

wall region, while the 𝑣′𝑟𝑚𝑠 and 𝑢′𝑣′   components are still frozen (c, d). This is a well-known 

feature of unsteady flows subjected to temporal accelerations. The pipe flow investigations of 

He and Jackson (2000) have revealed a diffusion mechanism that results in propagation of 

turbulence from the wall to the core region.  

The early responses of the 𝑢′𝑟𝑚𝑠 component can be directly linked to the instantaneous 

behaviour of the flow shown earlier in §5.3. Elongation of the initial streaky structures during 

the pre-transition phase results in an immediate response of the 𝑢′𝑟𝑚𝑠 component at the wall 

region, leading to the conclusion that the stretching of the pre-existing streaks first commence 

in the wall region. 𝑣′𝑟𝑚𝑠 component experiences a delay during the pre-transition regime, 

showing no response to neither the flow acceleration nor the immediate response of the 𝑢′𝑟𝑚𝑠 

component. This behaviour is clearly seen in the studies of bypass transition (for instance Durbin 

and Wu (2007)). 
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The 𝑣′𝑟𝑚𝑠 component remains largely unchanged during the pre-transition regime in the wall 

region (𝑦0
+ < 50), making it a very important component in terms determining the onset of 

transition (Figure 5.17 (c, g)).  

 

 

Figure 5.17 continued on next page. 
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Figure 5.17 Temporal development of mean, fluctuating velocities and Reynolds shear 

stresses for case S29-76 (𝑅𝑒𝑏 = 2,913 − 7,625); Red symbols: LDV, Black symbols: PIV. 

Note: Every four subplots share a same legend.  

The behaviour of the mean, fluctuating and Reynolds shear stress, as measured by PIV, is shown 

separately in Figure 5.18 at selected locations. The process of turbulent diffusion from the wall 

to the core region can clearly be identified in Figure 5.18 (b), where the response of 𝑢′𝑟𝑚𝑠 

component in the wall region is almost immediate after the valve opening. A small jump of 𝑢′𝑟𝑚𝑠 

component in the core region right after the valve opening is attributed to the finite repeatability 

of the valve at sudden opening scenarios. It will be shown later in this section that the 

“controlled” valve openings do not suffer from this shortcoming. This early response of 𝑢′𝑟𝑚𝑠  

at the core region is not reflected in the wall-normal fluctuating component, since it is only the 

mean velocity of the streamwise component that is affected by the poor repeatability of the 

valve opening. 
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Figure 5.18 Temporal development of mean, fluctuating and Reynolds shear stress 

components for case S29-76 (𝑅𝑒𝑏 = 2,913 − 7,625). 

Tests have been carried out with various initial and final Reynolds number scenarios. The 

temporal variation of the bulk flow for case S23-250 is shown in Figure 5.19. The history of the 

statistics measured at various locations with PIV and LDV for this case are shown in Figure 5.20, 

whilst Figure 5.21 shows the response of various flow quantities due to PIV at selected wall-

normal locations. 

 

Figure 5.19 Temporal variation of flow rate for case S23-250 (𝑅𝑒𝑏 = 2,300 − 25,000).  

Similar trends of mean and turbulence behaviour to the previous case are observed for case S23-

250.  It can be seen from Figure 5.20 (a and b) that the streamwise velocity measurements of 

LDV close to the wall are not reproducible with the PIV due to the large gradients of velocity, 
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finite resolution of the camera as well as the surface reflections. The discrepancy between the 

two techniques decreases significantly as the distance from the wall is increased. It is noticeable 

from the subplots (g) and (k) that the response of the 𝑣′𝑟𝑚𝑠 component is measured to be 

slightly longer in PIV in comparison to LDV. 

 

 

Figure 5.20 continued on next page. 
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Figure 5.20 Temporal development of mean, fluctuating velocities and Reynolds shear 

stresses for case S23-250 (𝑅𝑒𝑏 = 2,300 − 25,000); Red symbols: LDV, Black symbols: PIV . 

Note: Every four subplots share a same legend.  

Figure 5.21 shows the plots of mean, rms fluctuating velocities and shear stresses obtained from 

PIV measurements. As mentioned earlier, the early response of the 𝑢′𝑟𝑚𝑠 component in the 

centre is caused due to poor repeatability of the control valve in sudden opening scenarios. Once 

more it can be seen from these figures that the period of 𝑣′𝑟𝑚𝑠 delays are similar in the wall 

region, with a transition time of 𝑡 = 2.4 𝑠𝑒𝑐 or 𝑡∗ = 87.5. 
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Figure 5.21 Temporal development of mean, fluctuating and Reynolds shear stress 

components for case S23-250 (𝑅𝑒𝑏 = 2,300 − 25,000).  

For the sake of generality of the discussions, a slow ramp unsteady case is presented as well. 

Figure 5.22 shows the linear variation of the mean flow rate with initial and final Reynolds 

numbers of 2,913 and 7,625, respectively, where the flow excursion lasts for almost 6 seconds. 

 

Figure 5.22 Temporal variation of flow rate for case S29-76R6 (𝑅𝑒𝑏 = 2,913 − 7,625).  

The statistics obtained from PIV measurements are plotted versus actual and normalised time 

in Figure 5.23. As can be expected, similar flow features to the previous cases are identifiable 

for this flow condition. It can be seen that the mean velocity escalates in a linear fashion, while 

the normal and shear stresses are experiencing longer delays in comparison with the sudden 

opening case (S29-76). The propagation of turbulence towards the core region of the channel 
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can clearly be seen in the trends of 𝑢′𝑟𝑚𝑠 component, whilst, the 𝑣′𝑟𝑚𝑠 and 𝑢′𝑣′ components 

are experiencing longer delays in the entire cross-section of the flow. Contrary to sudden 

opening scenarios, carefully controlled flow rate excursion in this case resulted in higher levels 

of flow repeatability. Consequently, and as expected, smooth delays of  𝑢′𝑟𝑚𝑠 components are 

noticeable in the core region. 

 

Figure 5.23 Temporal development of mean, fluctuating and Reynolds shear stress 

components for case S29-76R6 (𝑅𝑒𝑏 = 2,913 − 7,625).  

In order to facilitate the examination of temporal responses in different cases, the normalised 

perturbing rms values, that is (𝑢′𝑟𝑚𝑠 − 𝑢′𝑟𝑚𝑠,0) (𝑢′𝑟𝑚𝑠,1 − 𝑢′𝑟𝑚𝑠,0)⁄ , 

(𝑣′𝑟𝑚𝑠 − 𝑣′𝑟𝑚𝑠,0) (𝑣′𝑟𝑚𝑠,1 − 𝑣′𝑟𝑚𝑠,0)⁄  and (𝑢′𝑣′ − 𝑢′𝑣′
0) (𝑢′𝑣′1 − 𝑢′𝑣′0)⁄  versus 𝑡0

+ as well as 

𝑣′
^
 versus 𝑡∗ are shown to remove the effects of initial and final conditions. These quantities 

facilitate the identification of the response time and consequently detection of 𝑡𝑐𝑟 based on the 

response of wall-normal fluctuating velocities (𝑣′𝑟𝑚𝑠) at the wall region. Figures 5.24-5.26 show 

the variations of the normalised streamwise, wall-normal and shear stresses for all sudden 

opening cases. These measurements are obtained from the LDV.  

Figure 5.24 shows the development of normalised 𝑢′𝑟𝑚𝑠 component obtained from various 

cases at three different wall-normal locations. It can be seen from the subplot (a) that there is a 

good collapse of data throughout the transition process with no regards to the acceleration 

ratio. The discrepancy between the data is increased at further distances from the wall. It can 
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be seen from the subplot (b) and (c) that higher acceleration ratios result in sharper responses 

of turbulence.  

Figure 5.25 shows the development of normalised 𝑣′𝑟𝑚𝑠 component obtained from various 

cases at 𝑦/ℎ = 0.17 and the channel’s centreline versus 𝑡0
+ in subplots (a) and (b) and versus  𝑡∗  

in subplots (c) and (d). It is evident from these figures that how final-initial Reynolds number can 

affect the transition process. Higher final-initial ratios result in a sharper response of the 𝑣′𝑟𝑚𝑠 

while lower ratios provide smoother path of transition.  

 

Figure 5.24 LDV measurement of 𝑢′𝑟𝑚𝑠 velocities for different transients at (a) 𝑦/ℎ =

0.02,  𝑦0
+ = 3; (b) 𝑦/ℎ = 0.17,  𝑦0

+ = 25; (c) 𝑦/ℎ = 1,  𝑦0
+ = 150.  

Figure 5.26 shows the development of the normalised 𝑢′𝑣′ at 𝑦/ℎ = 0.17. The response trends 

of shear stress are very similar to that of 𝑣′𝑟𝑚𝑠, demonstrating a sharper response for a higher 

final-initial scenario.  
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Figure 5.25 LDV measurement of 𝑣′𝑟𝑚𝑠 velocities for different transients at (a)  and (c) 

𝑦/ℎ = 0.17,  𝑦0
+ = 25; (b) and (d) 𝑦/ℎ = 1,  𝑦0

+ = 150.  

 

Figure 5.26 LDV measurement of 𝑢′𝑣′ velocities for different transients at (a) 𝑦/ℎ = 0.17,  

𝑦0
+ = 25.  

The history profiles of various statistics obtained from all cases introduced in Table 5.1 are 

presented in the Appendix A. 

 Correlations of critical Reynolds number in smooth flows 

It has been shown by (He and Seddighi, 2013) and (He and Seddighi, 2015)(hereafter HS15) that 

the final-initial Reynolds number ratio is of significant importance due to its effect on the initial 

or “free-stream” turbulence intensity. Since the concept of free-stream turbulence is mainly 

used in external boundary layer flows, a re-definition of this parameter in unsteady fully-

developed channel flows is of interest. He and Seddighi have re-defined the initial turbulence 

intensity as follows: 
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 𝑇𝑢0 ≈ 1.8 (
𝑢𝜏0

𝑈𝑏1
)  (5.9) 

Derivation of this parameter was based on the peak values of the initial normalised fluctuating 

velocities 𝑢′𝑟𝑚𝑠,0
+ , 𝑣′𝑟𝑚𝑠,0

+  and 𝑤′𝑟𝑚𝑠,0
+  of 2.7, 1.2 and 0.9 in streamwise, wall-normal and 

spanwise directions, respectively.  

Another concept which is of equal importance in transition of external flows over flat surfaces 

is the Reynolds number defined as 𝑅𝑒𝑥 =
𝑥𝑈∞

𝜈
, where 𝑥 is the distance from the leading edge 

and  𝑈∞ the free-stream velocity. In order to re-write the Reynolds number in a fully developed 

channel flow, a characteristic length-scale is needed to replace the distance from the leading 

edge. This can be defined as a convection velocity equal to the final bulk velocity, 𝑈𝑏1, giving 

𝑥 = 𝑡𝑈𝑏1. Therefore, an equivalent Reynolds number can be defined as follows (He and Seddighi 

(2015)): 

 
𝑅𝑒𝑡 =

𝑡𝑈𝑏1
2

𝜈
 

 

(5.10) 

In order to study the sensitivity of the transition process to the initial and final Reynolds 

numbers, a critical Reynolds number needs to be defined. In spatially developing boundary 

layers, transition from laminar to turbulent state initiates where the friction coefficient deviates 

from the Blasius solution. Similar to boundary layer bypass transition flows, DNS study of He and 

Seddighi (2015) has shown that the first bursts of turbulence are generated where the friction 

coefficient (𝐶𝑓) is at its minimum. The time required for the friction coefficient to reach its 

minimum state is called the critical time. Therefore, critical Reynolds number is defined as  

𝑅𝑒𝑡,𝑐𝑟 = 𝑡𝑐𝑟𝑈𝑏1
2 𝜈⁄ . Due to technical complications, direct measurement of friction coefficient 

was not possible in the present investigations. However, as shown earlier, the response of the 

𝑣′𝑟𝑚𝑠 component can be a good measure of the state of the flow. It was shown in this chapter 

that the response of 𝑣′𝑟𝑚𝑠 component is very similar at the wall-normal locations smaller than 

𝑦0
+ ≈ 50. Therefore, in the present investigations, the response of the  𝑣′𝑟𝑚𝑠 component in this 

region is used to determine the critical time (Table 5.2). 

As mentioned earlier in §2.2, theoretical and experimental studies of spatially developing 

boundary layers suggest a parabolic relationship between the critical Reynolds number and the 

free-stream turbulence intensity (such as theoretical work of Andersson et al. (1999)).  

Figure 5.27 depicts the relationship between these modified parameters in unsteady flows. It 

also provides a comparison with the DNS of unsteady flows, correlations and theoretical models 

of Blumer and van Driest (1963) and Andersson et al. (1999) for bypass transition flows. Blumer 
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and van Driest have proposed the following empirical relationship between the critical Reynolds 

number and free-stream turbulence intensity for boundary layer bypass transition flows: 

 1

√𝑅𝑒𝑡,𝑐𝑟

= 𝑎 + 𝑏√𝑅𝑒𝑡,𝑐𝑟𝑇𝑢0
2 

 

(5.11) 

where 𝑎 = 10−4 and 𝑏 = 62.5 × 10−8.  

Andersson et al. (1999) have proposed the following model to predict the critical Reynolds 

number in bypass transition boundary layer flows, which can be considered to be a modification 

to Blumer and van Driest empirical correlation: 

 
√𝑅𝑒𝑡,𝑐𝑟𝑇𝑢0 = 𝐾 

 

(5.12) 

where 𝐾 is considered to be a constant for free-stream turbulence levels at 1-5%. 𝐾is suggested 

to be 1200 by Andersson et al. (1999), noting that, the choice of this constant is subjected to 

several parameters. The definition of the transition Reynolds number in boundary layer flows is 

an influencing factor. Other factors are considered to be the degree of anisotropy, the leading 

edge suction peaks, pressure gradients and obviously scales and degree of the free-stream 

turbulence. 

 

Figure 5.27 Critical Reynolds number  as a function of equivalent turbulence intensity for 

various flow conditions.  

He and Seddighi (2015) were the first to correlate the modified critical Reynolds number and 

free-stream turbulence intensity for unsteady flows. They have proposed the following best-fit 
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to their data obtained from ten different unsteady flows with Reynolds number ratios ranging 

from 1.1-4.5. 

 
𝑅𝑒𝑡,𝑐𝑟 = 565𝑇𝑢0

−1.71 
 

(5.13) 

It can be noticed that the constants of the power law are different from the proposal of 

Andersson et al. This difference is of no surprise, since the nature of these two flows are quite 

different. These differences can emerge from various reasons, such as the definition of the initial 

turbulence intensity as well as the actual flow patterns in a fully developed turbulent flow and 

a spatially developing boundary layer. 

The experiments carried out in the present investigations are performed to cover a wider range 

of Reynolds number ratios, where 𝑅𝑒𝑏1/𝑅𝑒𝑏0 varies from 1.2-10.8. Best-fit curve to these data 

is found to be: 

 
𝑅𝑒𝑡,𝑐𝑟 = 770𝑇𝑢0

−1.77 
 

(5.14) 

which is very close to the findings of He and Seddighi (2015). On the other hand, the general 

behaviour of the trend is very close to findings of other researchers of boundary layer bypass 

transition with differences in the constants. The difference between the equations (5.14) and 

(5.13) (present data and HS15) is likely due to the flow acceleration, which is a step change in 

HS15 but a much slower ramp in the present experiments. This might also arise from the 

uncertainties involved in the determination of the friction factor from the experiments. 

The length of the transition is another important feature of bypass transition flows. This length 

is of particular importance in terms of modelling and correlating various types of transitional 

flows. The length is defined as the difference between the initial and final states of a transitional 

flow. For instance, Fransson et al. (2005) have defined this difference as follows: 

 
∆𝑅𝑒𝑡,𝑐𝑟 = 𝑅𝑒𝑥,𝛾=0.9 − 𝑅𝑒𝑥,𝛾=0.1 

 

(5.15) 

where 𝑥 is the downstream distance from the edge and 𝛾 is the level of intermittency, where 

𝛾 = 1, resembles a fully turbulent flow and 𝛾 = 0 is a laminar state. This parameter is usually 

plotted versus 𝑅𝑒𝑥,𝛾=0.5, which represents the flow at the middle of the transition process (𝛾 =

0.5). By assuming a linear relationship between the two, the following relation between the 

length of transition and 𝑅𝑒𝑥,𝛾=0.5 were obtained from the examination of various experimental 

data by Fransson et al. (2005): 
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∆𝑅𝑒𝑡,𝑐𝑟 = 𝐴 + 𝐵𝑅𝑒𝑥,𝛾=0.5 

 

(5.16) 

where constants 𝐴 and 𝐵 are 3.9x104 and 0.33, respectively. 

There are other empirical formulations based on the experimental data, proposed to predict the 

length of transition, such as those of Dhawan and Narasimha (1958), Abu-Ghannam and Shaw 

(1980) and Narasimha (1985). 

Narasimha (1985) has proposed the following power-law correlation between the length of 

transition and the critical Reynolds number: 

 
∆𝑅𝑒𝑡,𝑐𝑟 = 𝛼𝑅𝑒𝑥,𝛾=0.5

𝛽
 

 

(5.17) 

where 𝛼 and 𝛽 are 9.0 and 0.75, respectively. Narasimha has used a narrower levels of 

intermittency (i.e. 0.25 < 𝛾 < 0.75) for calculation of ∆𝑅𝑒𝑡,𝑐𝑟 in comparison to Fransson et al. 

(2005). 

In the studies of unsteady flows the period of transition may be defined as follows: 

 
∆𝑅𝑒𝑡,𝑐𝑟 = 𝑅𝑒𝑡,𝑡𝑢𝑟𝑏 − 𝑅𝑒𝑡,𝑐𝑟 

 

(5.18) 

where 𝑅𝑒𝑡,𝑡𝑢𝑟𝑏is considered to be the final fully turbulent state, while the 𝑅𝑒𝑡,𝑐𝑟 is the critical 

Reynolds number. He and Seddighi (2015) have used the friction coefficient curve to determine 

the termination of transition. They have used the first maxima peak of the friction coefficient 

after the departure from the Stokes solution to indicate the fully turbulent state. In the 

experiments, however, 𝑢′𝑟𝑚𝑠 curve is used as a feasible measure to determine the end of 

transition. Transition is considered to be finished when the 𝑢′𝑟𝑚𝑠 response to the excursion of 

flow rate in the wall region (𝑦0
+ ≈ 3) has reached its final state. This is consistent with the 

observations of instantaneous signal of the  𝑢′𝑟𝑚𝑠, since this component is the first experiencing 

the final turbulence levels in the wall region, while other components are undergoing a frozen 

state (for instance the signals shown in Figure 5.4). The period of 𝑢′𝑟𝑚𝑠 response is shown to be 

very similar up to the buffer layer (𝑦0
+ ≈ 20), see Figure 5.17 (b). 

Figure 5.28 provides a comparison between the bypass transition and the unsteady flows. 

Equations (5.16) and (5.17) are provided to facilitate the comparisons with the bypass transition 

flows. However, as the definition of critical Reynolds number is different for unsteady flows, a 

modification to these equations is required. Implementation of this modification is performed 
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by replacing the 𝑅𝑒𝑥,𝛾=0.5 in these two equations with its equivalent 𝑅𝑒𝑡,𝑐𝑟 + 0.5∆𝑅𝑒𝑡,𝑐𝑟 (He and 

Seddighi (2015)). 

 

Figure 5.28 Period of transit ion as a function of critical Reynolds number for various 

flow condition. 

It can be seen from Figure 5.28 that the range of unsteady flows investigated herein, goes much 

beyond the available DNS.  It is shown in the inset figure, that there is a good consistency 

between the experiments and the DNS data. Whilst the general trend encompassing the whole 

available data from the experiments is shown to be more of a power-law type rather than a 

linear relationship which is more likely to prevail in flows with shorter period of transition. The 

power-law coefficients fitted to the experimental data are 𝛼 = 28.9 and 𝛽 = 0.752, where 𝛽 is 

similar to the proposal of Narasimha (1985) for boundary bypass transition flows. 

 Summary 

Particle Image Velocimetry (PIV) and Laser Doppler Velocimetry (LDV) have been used to study 

the mean and turbulence behaviour in accelerating unsteady channel flows over smooth 

surfaces. These measurements comprise of different initial and final Reynolds numbers, all at 

fully turbulent state. Present investigations cover a variety of unsteady flows with various final 

to initial Reynolds number ratios. 

Fluctuating streamwise velocity contours at the wall region reveal a new and interesting 

perspective towards the study of unsteady flows. It is shown in §5.3 that the fluctuating velocity 

patterns undergo a strikingly similar process that has previously been seen in bypass transition 

flows. Following the direct numerical simulations of He and Seddighi (2013), two sets of 
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experiments were performed at a spanwise plane at the 𝑦/ℎ = 0.04. The first and second cases, 

S29-76 and S23-250R3, examine the flow excursion process from a steady flow at 𝑅𝑒𝑏0 = 2,913 

and 2,300 which is increased to 𝑅𝑒𝑏1 = 7,625 and 25,000 due to opening of the control valve, 

respectively. During the initial stages of the flow excursion, pre-existing streaks, or backward-

jets, are stretched in the streamwise direction, resembling the Klebanoff modes previously seen 

in the buffeted laminar regime of the bypass transition flows. Stretching of the streaks continues 

up to an instant 𝑡∗ ≈ 16 and 120 or 𝑡0
+ ≈ 76 and 128 for the S29-76 and S23-250R3, 

respectively, where the irregular instabilities appear, resembling the bursts of turbulence in 

transitional flows. These isolated packets of instability spread to other locations in the plane as 

time proceeds further, occupying the entire surface. Three distinct regimes are identifiable in 

these flows named pre-transition, transition and fully-turbulent due to He and Seddighi (2013). 

The transition-like phenomena observed in the instantaneous flow fields can be quantitatively 

evaluated by examining the ensemble-averaged quantities. Perturbing velocity, which is a 

measure of the temporal development of the mean flow with respect to its initial state, was 

shown to behave similarly to the Stokes solution during the pre-transition phase when plotted 

versus the unsteady-equivalent similarity parameter, 𝜂 = 𝑦/2√𝜈𝑡, regardless of the final-to-

initial state of the flow. The momentum-thickness Reynolds number and the shape factor of the 

internal unsteady channel flows are shown to follow a similar trend as those of a boundary layer. 

Interestingly, perturbing mean and fluctuating velocities obtained from various cases examined 

herein show to collapse extremely well during the pre-transition period regardless of the final-

initial flow conditions. According to the ensemble-averaged data, the pre-transition period can 

extend up to 𝑡0
+ ≈ 90 for the cases examined herein. This is however an averaged estimation of 

the pre-transition duration and can be subjected to changes in the instantaneous flow 

visualisation. It should be emphasised that the degree of the flow response during the transition 

phase depends on the acceleration rate. For instance, considering the fluctuating velocities, the 

responses in cases with higher final-initial Reynolds number ratios seem to deviate more 

rigorously from those in other cases. 

Streamwise and spanwise correlations of the streamwise velocity can provide quantitative 

information on the characteristics of the streaks. Measurements of the spanwise and 

streamwise auto-correlations of the streamwise velocity in a plane adjacent to the wall (𝑦/ℎ =

0.04) show a slight decrease in the width and elongation in length of the streaks during the pre- 

transition and transition processes. 
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The response of the ensemble-averaged mean and fluctuating velocities due to the excursion of 

flow rate provides useful information on the flow-field across the channel. It is shown that 𝑢′ 

component is the first fluctuating velocity that responds to the acceleration in the wall region 

while other components (𝑣′𝑟𝑚𝑠, 𝑢′𝑣′, and 𝑤′𝑟𝑚𝑠) are experiencing longer delays. The early 

response of 𝑢′𝑟𝑚𝑠 can be attributed to the elongation of the pre-existing coherent structures. 

The elongation process provides a flow field that is comparable in many ways with the buffeted 

laminar flow in bypass transition flows. The friction coefficient obtained from RANS simulations 

and previously through DNS studies, is shown to behave very similar to the Stokes solution for 

an unsteady laminar flow during the pre-transition phase. Formation of turbulent spots and their 

propagation across the flow-span results in the response of the 𝑣′𝑟𝑚𝑠 and 𝑤′𝑟𝑚𝑠 components, 

providing a good measure for the end of the pre-transition period.  

A critical Reynolds number (𝑅𝑒𝑡,𝑐𝑟) can be defined to mark the start of transition. This parameter 

is equivalent to the critical Reynolds number of boundary layer flows. 𝑅𝑒𝑡,𝑐𝑟 utilises an 

equivalent length-scale to 𝑥, which is defined on the basis of the final bulk velocity and the 

critical time (𝑡𝑐𝑟). Equivalently, free-stream turbulence intensity (𝑇𝑢0) can be defined to provide 

a measure of final-to-initial flow conditions. The flow-loop facility employed in the present 

investigations provides a capability for higher initial free-stream turbulence levels in comparison 

to what was previously examined by (He and Seddighi, 2015). Confirming the previous 

investigations, critical Reynolds number is found to have a power-law relationship with the initial 

free-stream turbulence levels. The constant of the power-law are higher than the proposal of 

He and Seddighi (2015). This relationship was found to be 𝑅𝑒𝑡,𝑐𝑟 = 770𝑇𝑢0
−1.77. However, it 

must be emphasized that the constants of this power-law are more likely to be a product of 

arbitrary assumptions and are dependent on the interpretation of the initial turbulence field. 

The period of transition in unsteady flows has been defined as the difference between the time 

when the flow has reached a fully turbulent state and the critical time for transition. Unsteady 

flows with lower initial free-stream turbulence intensity are shown to have higher critical 

Reynolds numbers with longer period of transition. The period of transition is shown to have a 

power-law relationship with the critical Reynolds number with the power-law constant of 0.75 

which is similar to the findings of Narasimha (1985) in spatially developing boundary layer flows.



 

 

 Introduction 

In this chapter the behaviour of mean and turbulence characteristics in an asymmetric rough 

channel flow are investigated in detail. The asymmetric rough channel flow investigated herein 

comprises of a smooth surface on the top of the channel and a rough surface at the bottom. The 

size, pattern and flow characteristics of the rough plates are discussed in detail in Section 4.5. 

During these investigations, the flow rate is increased from a lower Reynolds number turbulent 

flow to one with a higher Reynolds number. In order to facilitate the comparisons, the rate and 

magnitudes of the flow rate excursions investigated herein are similar to the previous 

investigations over smooth surfaces (described in Chapter 5). For these rough surface 

experiments, velocities are measured using PIV only. 

In Section 6.2, details of the case studies are introduced. The instantaneous flow fields are 

discussed in Section 6.3. Ensemble-averaged results are then presented to shed light on the 

development of the flow mean and fluctuating velocities. Relevant comparisons to unsteady 

flows over smooth surfaces are made to highlight the effects of the roughness. Finally the effects 

of roughness on the initial free-stream turbulence intensity, critical Reynolds number and period 

of transition are investigated. 

 Cases studied 

A range of initial-to-final Reynolds number unsteady flows are generated by sudden opening of 

the control valve. The duration as well as the initial and final bulk states of the flows investigated 

match those presented earlier in Table 5.1. The flows start from an initial bulk Reynolds number 

Chapter 6. Unsteady flows over 

rough surfaces 
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of 2,300 or 2,900, i.e. essentially a hydrodynamically smooth flow, and end with much higher Re 

corresponding to either transitional or fully rough regime. 

Table 6.1 summarises the flow conditions of the unsteady cases examined. The variation of the 

bulk flow conditions are maintained in a similar fashion to produce similar bulk Reynolds 

numbers and acceleration rates as for the smooth-wall experiments. The duration of the flow 

excursions (∆𝑡) corresponds to the time to reach 90% of the final flow. Nomenclature of the 

cases is based on the initial and final bulk Reynolds numbers as well as the surface conditions of 

the channel (R indicates the measurements over rough plates). Temporal variations of the bulk 

velocities are shown in Figure 6.1.   

Case No. 𝑼𝒃𝟎−𝑼𝒃𝟏(𝒎 𝒔⁄ ) ∆𝒕 (𝒔𝒆𝒄) 𝑹𝒆𝒃𝟎−𝑹𝒆𝒃𝟏 ∆𝒕∗ 

R23-250 0.09-0.96 1.9 2,300-25,000 73.2 

R23-230R3 0.09-0.94 3.3 2,300-23,400 124.5 

R23-200 0.09-0.76 1.9 2,300-20,000 57.5 

R23-180 0.09-0.66 1.85 2,300-18,000 51.4 

R23-135 0.09-0.50 2 2,300-13,500 42.3 

R23-93 0.09-0.35 1.4 2,300-9,300 21.1 

R29-250 0.11-0.96 1.85 2,913-25,000 71.4 

R29-76 0.11-0.27 1.35 2,913-7,625 15.6 

Table 6.1 Init ial and final flow conditio ns for the rough wall experiments .  

PIV is used to measure streamwise, wall-normal/spanwise velocities over the rough wall, while 

the flow meter is used to measure the bulk flow condition. PIV measurements are performed 

over vertical (𝑥𝑦) and horizontal planes (𝑥𝑧) as shown in Figure 3.18. The vertical plane 

measurements are performed at a plane with 𝑧 = 3.5ℎ distance from the near side wall. The 

horizontal plane measurements are performed at 𝑦~0.75 𝑚𝑚 (~0.8𝑘) above the crest of the 

roughness elements. The horizontal plane measurements were made for cases R23-76, R23-250 

and R23-230R3 only, in order to provide direct comparisons to the measurements over smooth 

surfaces. These measurements are performed with two different camera distances from the 

laser sheet: the first and second camera configurations provide a 77 × 77 𝑚𝑚 and 19.7 ×

19.7 𝑚𝑚 of FOV, respectively. The vertical measurements provide a FOV of 33 × 33 𝑚𝑚. All 

image pairs are collected at a sampling frequency of 7 Hz. The origin of the wall is assumed to 

be at the tip of the roughness crest throughout these investigations. 
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Figure 6.1 Variation of bulk velocity for all sudden opening flows over rough surfaces.  

 Instantaneous flow behaviour 

This section will focus on the behaviour of the instantaneous flow field under unsteady 

conditions.  Three main cases will be considered: R29-76, R23-230R3 and R23-250. The variation 

of the bulk flow in each of these cases along with the time stamps of certain events presented 

later in this section are shown in Figure 6.2. These measurements are obtained from the 

horizontal configuration of the laser sheet at a plane of 𝑦 = 0.75 𝑚𝑚. For the sake of brevity, 

results obtained from the smaller FOV size are not presented here. 

The first case presented in this section is the R29-76, which is equivalent to the S29-76 in terms 

of bulk Reynolds numbers and acceleration rate. As was shown earlier in §4.5, the initial flow 

conditions in the range of  𝑅𝑒𝑏~2300 − 2800 can be considered to be hydrodynamically 

smooth and therefore the initial wall shear stress can be obtained from the Blasius correlation. 
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Figure 6.2 Variation of bulk flow with t ime for the cases (a) R29 -76 (b) R23-230R3 (c) 

R23-250 

Figure 6.3 shows the evolution of the normalised fluctuating streamwise velocity at different 

instances of time. It can be seen from the contour plots that the transition process is very similar 

to that of smooth flows and therefore similar to boundary layer bypass transition due to FST. 

The initial flow contains positive and negative streaky structures that experience elongation and 

amplification of magnitude in the streamwise directions during the early periods of the flow 

excursion (e.g. 𝑡∗ = 20.9). This pattern is then disturbed by high amplitude bursts of turbulence 

that lead to complete breakdown of the structures. This observation is similar to the previous 

investigations over the smooth surfaces except the fact that the plane of measurement for the 

rough-wall flows is slightly closer to the wall. This shortcoming in exact adjustment of the laser 

plane is not of great importance as the flow features within the wall region are considered to be 

similar.  
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Figure 6.3 Temporal evolution of contour plots of normalised streamwise fluctuating 

velocity (𝑢′/𝑈𝑏1) for Case R29-76 at a plane 0.75 mm ( 𝑦0
+ = 5.3,  𝑦/ℎ = 0.03) above the 

roughness.  
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Figure 6.4 Temporal variation of normalised fluctuating velocities in (a) streamwise 

(𝑢′/𝑈𝑏1) and (b) spanwise directions (𝑤′/𝑈𝑏1) at 𝑦0
+ = 5.3,  𝑦/ℎ = 0.03 in the midsection of 

the FOV for case R29-76. 

Figure 6.4 shows the fluctuating streamwise and spanwise velocities for case R29-76 at the 

midspan of the FOV at a similar plane presented earlier. These plots confirm the similarities 

observed between the smooth and rough flows more clearly. Despite the small differences in 

the magnitude of the fluctuations, the response of turbulence, as well as its structure, is similar 

to case S29-76. Figure 6.5 compares the instantaneous fluctuating signals at three different 

locations in the FOV from the smooth and rough flows. It can be seen from these figures that 

the response of tubrulence can be considered to be very similar in these two cases. This can 

mainly be attributed to the fact that both the intial and final Reynolds numbers of the unsteady 

(a) 

(b) 
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cases are relatively low and hence the surface is not far from a hydrodynamically smooth 

condition. 

 

 

 

 

Figure 6.5 Temporal evolution of (a) streamwise and (b) spanwise fluctuating velocities 

over smooth (top) and rough surfaces (bottom) for the case R29 -76 at 𝑦0
+ = 5.3,  𝑦/ℎ =

0.03.  

  

-20 0 20 40 60 80 100 120 140

-0.3

0

0

0

0

0.3

t*

u
/
U

b
1

-20 0 20 40 60 80 100 120 140

-0.3

0

0

0

0

0.3

t*

w
/
U

b
1

-100 0 100 200 300 400

-0.3

0

0

0

0

0.3

t*

u
/
U

b
1

-100 0 100 200 300 400

-0.3

0

0

0

0

0.3

t*

w
/
U

b
1

-20 0 20 40 60 80 100 120 140

-0.3

0

0

0

0

0.3

t*

u
/
U

b
1

-20 0 20 40 60 80 100 120 140

-0.3

0

0

0

0

0.3

t*

w
/
U

b
1

-100 0 100 200 300 400

-0.3

0

0

0

0

0.3

t*

u
/
U

b
1

-100 0 100 200 300 400

-0.3

0

0

0

0

0.3

t*

w
/
U

b
1

(a) 

(b) 



6.3 Instantaneous flow behaviour  108 
 

  

  

  

  

 

Figure 6.6 Temporal evolution of contour plots of normalised streamwise fluctuating 

velocity (𝑢′/𝑈𝑏1) for Case R23-230R3 at a plane 0.75 mm (𝑦0
+ = 4.5,  𝑦/ℎ = 0.03) above the 

roughness.  
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Contours of streamwise fluctuating velocity for case R23-230R3 are shown in Figure 6.6. It can 

be seen from the contour plots that the acceleration of the flow results in an elongation of the 

initially existing streaky structures leading to their complete breakdown by 𝑡∗ ≈ 150, which is 

very similar to the smooth-wall measurements. Figure 6.7 shows the streamwise and spanwise 

fluctuating velocities obtained from case R23-230R3. These plots clearly show the so-called calm 

and turbulent states associated with the pre-transition and fully turbulent states introduced in 

Chapter 5. It should however be noted that the response of the fluctuating velocities is enhanced 

for the flows over the specific rough surface investigated herein. A direct comparison of the 

fluctuating velocities over smooth and rough surfaces for the R23-230R3 is provided in Figure 6.8 

to further clarify the effect of the roughness. It is clear that the transition is earlier in the flow 

over a rough wall than over a smooth wall.  
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Figure 6.7 Temporal variation of normalised fluctuating velocities in (a) streamwise 

(𝑢′/𝑈𝑏1) and (b) spanwise directions ( 𝑤′/𝑈𝑏1) with t ime at 𝑦0
+ = 5.3,  𝑦/ℎ = 0.03 in the 

midsection of the FOV for case R23-230R3. 

The last case to investigate is the R23-250, which comprises a sudden opening of the control 

valve to increase the bulk flow from 𝑈𝑏 = 0.09 to 0.96 𝑚/𝑠 in 1.9 seconds. The evolution of the 

streamwise fluctuating velocity contours are shown in Figure 6.9. The initial process of this 

evolution is similar to the ramp case. The early stages (𝑡∗ < 49.5) consists of elongation of the 

juxtaposed high and low streaky structures. This is while the breakup process is much faster in 

comparison to the ramp case. It can be seen from the contour plots of the sudden opening case 

that the magnitude and size of the elongated jets before the breakup are much lower than the 

jets in the ramp case. A comparison of the fluctuating signals obtained from the PIV for the rough 

(a) 

(b) 
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case (Figure 6.11) with the LDV plots in Figure 5.8 reveals an enhancement in the process of 

transition, namely, an early transition in the former. 

 

 

 

 

Figure 6.8 Temporal evolution of (a) streamwise and (b) spanwise fluctuating velocit ies 

over smooth (top) and rough surfaces (bottom)  for the case R23-230R3 at 𝑦0
+ = 4.5,  

𝑦/ℎ = 0.03.  
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Figure 6.9 Temporal evolution of contour plots of normalised streamwise fluctuating 

velocity (𝑢′/𝑈𝑏1) for Case R23-250 at a plane 0.75 mm (𝑦0
+ = 4.5,  𝑦/ℎ = 0.03) above the 

roughness.  
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Figure 6.10 Temporal variation of normalised fluctuating velocities in (a) streamwise 

(𝑢′/𝑈𝑏1) and (b) spanwise directions ( 𝑤′/𝑈𝑏1) at 𝑦0
+ = 5.3,  𝑦/ℎ = 0.03 in the midsection of 

the FOV for case R23-250. 

(a) 

(b) 
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Figure 6.11 Temporal evolution of (a) streamwise and (b) spanwise fluctuating velocity 

over the rough surface at the plane of 𝑦0
+ = 5.3,  𝑦/ℎ = 0.03.  

 Ensemble-averaged flow behaviour 

In this section the ensemble-averaged flow quantities are presented. Different cases of final-to-

initial Reynolds numbers are investigated to measure the effect of roughness on various flow 

parameters in comparison to smooth flows. Statistics obtained from the PIV measurements are 

calculated from the spatial and temporal averaging similar to flows over the smooth surfaces 

described in the earlier chapters. These statistical calculations are performed on 30 ensembles. 

 The time developing boundary layer 

This section focuses on the development of the boundary layer formed on the rough wall during 

and after the flow excursion. Measurements from the vertical laser sheet configuration 

(Figure 3.18 (b)) at the 𝑥𝑦 plane of 𝑧 = 3.5ℎ from the near side wall are used for this analysis.  

Perturbing velocity (𝑈
^

(𝑦/𝛿, 𝑡∗), equation (5.1)) was used in the previous chapter to show the 

development of the velocity profile during and after the transition process. Similar plots are 

presented in Figure 6.12 to show the development of the velocity profiles at various instances 

with respect to the Stokes similarity parameter 𝜂 (= 𝑦/2√𝜈𝑡) over the rough surface of the 

channel for four selected cases with rather different acceleration rates and initial flow 

conditions. It can be seen from these plots that the general trend of velocity profile development 

is very similar regardless of the acceleration rate or the initial flow conditions. It should be noted 

that the perturbing velocity profiles nearly collapse on the Stokes solution in the early stages of 

all test cases with no scaling parameter required. 
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During the initial instances of the flow development, the perturbing velocity profiles nearly 

collapse on the Stokes solution. This behaviour is similar to the flow development shown earlier 

over smooth surfaces. Further temporal development results in deviations from the Stokes 

solution and steeper defections (in comparison to the smooth cases) in the wall region as a result 

of the roughness. These developments continue until a new boundary layer is formed. 

Similarities observed in the development process of the boundary layer over smooth and rough 

surfaces show the existence of a pre-transition period, where flow behaves similar to the laminar 

buffeted regime of the transitional flows. 

  

  

Figure 6.12 Development of perturbing velocity profi les with time for four different 

cases; (a) R29-76 (b) R23-250 (c) R23-93 and (d) R23-135; Line: Stokes solution  

It can be seen from the instantaneous flow fields as well as the development of the perturbing 

velocity profiles that similarities exist between the unsteady flows over rough and smooth 

surfaces discussed in the previous chapter. It can be concluded that the features of the bypass 

transition due to free-stream turbulence are still evident over the rough surfaces in the flow 

conditions investigated herein.  Table 6.2 summarises the actual and normalised critical and fully 

turbulent timescales for the rough-bed cases. Similar to smooth flows, the fully turbulent 

condition was defined as the time when the near-wall streamwise fluctuating velocity reaches 

its final value, while the critical time is when the wall-normal fluctuating velocity responses to 

the flow excursion in the wall region. 
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Cases 𝒕𝒄𝒓(𝒔𝒆𝒄) 𝒕𝒕𝒖𝒓𝒃(𝒔𝒆𝒄) 𝒕𝒄𝒓
∗  𝒕𝒕𝒖𝒓𝒃

∗  𝒕𝟎,   𝒄𝒓
+  𝒕𝟎,   𝒕𝒖𝒓𝒃

+  

R23-250 1.14 2.57 44.86 100.93 39.20 88.20 

R23-200 1.14 2.57 35.10 78.97 40.13 90.29 

R23-180 1.43 3.14 38.17 83.98 51.14 112.50 

R23-135 1.43 3.14 28.35 62.37 45.38 99.85 

R23-93 2.29 4.86 32.04 68.09 70.55 149.92 

R29-76 2.29 4.57 25.74 51.48 107.13 214.27 

R29-250 1.14 2.57 44.46 100.04 53.44 120.24 

Table 6.2 Dimensional and normalised crit ical and fully turbulent timescales for various 

unsteady cases over the rough wall.  

Figure 6.13 shows the development and distribution of the perturbing velocity with respect to 

𝑡0
+ (= 𝑢𝜏0

2 𝑡/𝜈) and 𝑦0
+ (= 𝑦𝑢𝜏0/𝜈). Despite the variation in the commencing curves, which can 

be mainly attributed to the finite repeatability of the flow, a good collapse of trends exists during 

the initial instances of the flow development (𝑡0
+ < 40). The deviation from the Stokes solution 

initiates from 𝑡0
+~50 which marks the critical point of transition. This is significantly lower than 

the  𝑡0
+~90 over smooth flows.  

Difference in the development of the boundary layer velocity profile for lower and higher 

Reynolds number ratios is evident from the trends. It is clear that the development of R23-93 

and R29-76 during the transition process is very different from the other cases. This can mainly 

be attributed to the relatively low final Reynolds numbers of these cases. 
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Figure 6.13 Development of perturbing velocity profi les at various Reynolds  numbers; 

(a) actual profi les (b) zoomed profi les; Line: Stokes solution.  

The streamwise and wall-normal perturbing rms velocities are plotted in Figure 6.14 and 

Figure 6.15, respectively. The profiles obtained from each of the components show good 

collapse up to 𝑡0
+ < 50. Similar to smooth flows, the development of the  𝑢′

^
 profile in the wall 

region during the pre-transition zone is attributed to the dynamics of the streaky structures, 

whilst the 𝑣′
^
 profiles are almost frozen. It is noteworthy that similarities can be observed in the 

𝑢′
^
 development of R29-76 and R29-250 up to the critical time of the R29-250 (𝑡0

+~ 50). 
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Figure 6.14 Development of perturbing streamwise fluctuating velocit ies at various 

Reynolds numbers; (a) actual profi les,  (b) zoomed profiles.  

Cases R23-200 and R23-250 are the first to show a 𝑣′
^
respond at the wall region (at 𝑡0

+~ 50), 

while slower accelerating flows such as R23-93 and R29-76 experience a longer pre-transition 

zone, in comparison to others, requiring more time to build up to the final state.  

It can be noticed, by comparing the developing plots of the unsteady flows over roughness 

presented here and the counterparts obtained from the flows over smooth surfaces discussed 

in §5.4.1, that the duration of the pre-transition phase is significantly reduced for flows over 

rough surfaces. The response of the 𝑣′
^
for the R29-76 is similar to the corresponding smooth 

case as both the initial and final Reynolds numbers are relatively low, inducing minimum 

roughness effects on the flow. However, case R23-93, which has a slightly higher final Reynolds 

number, responds faster in comparison to its equivalent smooth behaviour. The behaviour of 

the fluctuating velocities are further discussed in the next sections.  
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Figure 6.15 Development of perturbing wall-normal fluctuating velocities at various 

Reynolds numbers; (a) actual profi les,  (b) zoomed profiles.  

 Correlations 

This section discusses the behaviour of the streamwise auto-correlations (equation (5.8)) 

obtained from the three different unsteady scenarios in the streamwise and spanwise 

directions. The auto-correlation function can be used to quantify the distribution and behaviour 

of the streaky structures during the transition. These correlations are obtained from the 

streamwise/spanwise spatial and ensemble averaging over the entire 30 runs. The 

measurements used for this analysis are from a horizontal plane at 𝑦/ℎ = 0.03 (𝑦/𝑘 = 0.8). 

Figure 6.16 shows the development of streamwise velocity auto-correlations for R29-76, R23-

230R3 and R23-250 in the spanwise and streamwise directions. The trends obtained from the 

R29-76 show a slight stretch in the streamwise and a continuous mitigation in the spanwise size 

of the streaky structures during the pre-transition phase (𝑡0
+ < 100). More or less the same 

behaviour is observed in the other two cases. The main difference between the ramp and 

sudden opening scenarios of case R23-250 is the duration of the pre-transition phase. It can be 

seen that the stretching process of the streaks in the streamwise direction is much shorter for 

the sudden opening case (subplots c and e). 

The effect of roughness on the initial (𝑡0
+ = 0) streamwise correlations in both streamwise and 

spanwise directions is shown to be more pronounced in the normalised wall-normal location of 
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4.5 for cases with lower initial Re flows as shown in Figure 6.16 (c to f). The existence of 

roughness has resulted in correlation waves of wavelengths equal to the wavelength of the 

roughness in the low wall-normal locations (such as 𝑦0
+ = 4.5), whilst higher planes of 𝑦0

+ = 5.3 

for case R29 are not affected by the roughness (Figure 6.16 (b)). 

Figure 6.17 shows the visualisation of the streaks during and after the flow excursion for cases 

R29-76, R23-230R3 and R23-250. Negative auto-correlation values designate the strength of the 

backward jets in a turbulent flow field. The magnitude of the negative correlation values in the 

spanwise direction are shown in the subsequent figures while the positive ones are set to zero 

(Figure 6.17). The correlation map of case R29-76 is very similar to that of its corresponding 

smooth case (Figure 5.15 (a)). Similar to smooth flows, the initial spacing between the streaks 

immediately after the valve opening reduces with the increase in the acceleration rate. The 

spacing remains more or less constant throughout the pre-transition phase. On the other hand, 

the onset of transition results in a reduction of the streaky structures reflecting the burst and 

generation of turbulent spots. This feature of transition is more apparent in the R23-230R3 and 

R23-250 contour plots (Figure 6.17 (b) and (c)). By comparing R23-230R3 to its smooth 

counterpart (Figure 5.15 (b)), an early transition due to the presence of roughness is noticeable.  
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Figure 6.16 Temporal development of streamwise velocity correlations for cases (a -b) 

R29-76, 𝑦0
+ = 5.3; (c-d) R23-230R3, 𝑦0

+ = 4.5; (e-f) R23-250,𝑦0
+ = 4.5.  
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Figure 6.17 Temporal development of the streamwise fluctuating velocity  correlation in 

the spanwise direction; (a) R29-76, 𝑦0
+ = 5.3; (b) R23-230R3, 𝑦0

+ = 4.5; (c) R23-250,𝑦0
+ =

4.5 
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250. However, statistics obtained from other cases are provided in relevant discussions to 

facilitate the comparisons.  

Figure 6.18 provides a comparison between the smooth (shown in red symbols) and rough 

(shown in black symbols) response of the normalised mean and turbulent quantities to the 

excursion of flow rate (Figure 6.1) for case R29-76. Final bulk velocity (𝑈𝑏1) is used to normalise 

the velocity and time in the upper abscissae (𝑡∗). It can clearly be seen from these figures that 

only a slight difference in the response of turbulence is observed between the smooth and rough 

surfaces. 

 

Figure 6.18 continued on next page. 
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Figure 6.18 Temporal development of mean, fluctuating velocities and Reynolds shear 

stresses; Red symbols: S29-76 (LDV), Black symbols: R29-76 (PIV). Note: Every four 

subplots share a same legend.  

The behaviour of the normalised mean and turbulent quantities are shown separately at 

selected wall-normal locations for case R29-76 in Figure 6.19. By comparing these with the 
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trends obtained from the smooth counterparts, insignificant differences can be seen in the 

temporal responses of the flow. 

 

Figure 6.19 Temporal development  of mean, fluctuating and Reynolds shear stress 

components for the case R29 -76.  

Figure 6.20 shows the temporal development of the mean and turbulent statistics subjected to 

a sudden opening of the valve for case R23-250. Similar to the previous plots of this kind, data 

obtained from the LDV measurements over the smooth surface are shown in red and the data 

obtained from the PIV measurements over the rough surface are shown in black.  

It can be seen from the plots that the mechanisms governing the turbulence behaviour in 

smooth surfaces are still valid in rough flows. It is shown that the production of turbulence is 

first initiated in the wall region and is later propagated towards the centre.  However, the main 

difference between the two flows is that the delays of the streamwise and wall-normal 

fluctuating velocities in the rough flows are much shorter than the smooth counterparts. Similar 

to the smooth flows, the duration of the delays in the response of 𝑣′𝑟𝑚𝑠/𝑈𝑏1 in the wall region 

(Figure 6.20 (c)) is almost independent from the wall distance. It should be mentioned once 

more that the sudden response of the streamwise fluctuating velocity in the core region (subplot 

(j)) is attributed to the finite repeatability of the valve in sudden opening scenarios. 
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Figure 6.20 continued on next page. 
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Figure 6.20 Temporal development of mean, fluctuating velocities and Reynolds shear 

stresses; Red symbols: LDV (S23-250),  Black symbols: PIV (R23 -250). Note: Every four 

subplots share a same legend.  

Figure 6.21 shows the temporal development of the normalised mean, streamwise and wall-

normal fluctuating velocities as well as the Reynolds shear stress at selected locations for R23-

250. General features of the flow and turbulence are shown to be similar to those for the 

corresponding smooth-wall flows. It is mainly the duration of the delays that are significantly 

reduced for rough-wall flows. 
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Figure 6.21 Temporal development of mean, fluctuating and Reynolds shear stress 

components for the case R23 -250.  

In order to further facilitate the comparisons between the smooth and rough unsteady flows, 

four sets of plots are provided in Figure 6.22-25 at four selected wall-normal locations. These 

plots show the response of the wall-normal fluctuating velocity versus time with different 

normalisation factors. The wall-normal fluctuating velocity is either presented as the increase 

from its initial value at the start of the excursion (𝑣′𝑟𝑚𝑠 − 𝑣′𝑟𝑚𝑠,0)/(𝑣′𝑟𝑚𝑠,1 − 𝑣′𝑟𝑚𝑠,0) 

(Figure 6.22 and Figure 6.23) or perturbing rms velocity (𝑣′
^
) (Figure 6.24 and Figure 6.25). 

Normalisation of the wall-normal fluctuating velocity with its initial values and 𝑡0
+ is shown in 

Figure 6.22-23 for smooth and rough walls, respectively. Direct comparison of S29-76 and R29-

76, in Figure 6.22 and 6.23, shows no significant alteration in the response timescales. It is 

noticeable from Figure 6.23 that the trends obtained from the various Reynolds numbers with 

relatively high acceleration rates collapse very well in the wall region (subplots a and b).  Whilst, 

the difference in the responses of this component becomes wider in the core of the flow 

(subplots c and d). Among the slow acceleration cases, R29-76 shows similar response behaviour 

to the S29-76 while the duration of the delays in the R23-93 is shorter than its smooth 

counterpart. 

Figure 6.24 and 6.25 show the development of 𝑣′
^
versus 𝑡∗ at four different wall-normal 

locations for various Reynolds numbers over the smooth and rough surfaces, respectively. It can 

-2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

U
/U

b
1

 

 

-2 0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

u
 rm

s
/U

b
1

-2 0 2 4 6 8 10
0

0.02

0.04

0.06

t (sec)

v
 rm

s
/U

b
1

-2 0 2 4 6 8 10
-0.001

0.000 

0.001 

0.002 

0.003 

0.004 

t (sec)

u
v
/
U

b
1

2

y/h =0.056(y
+

0
=7)

y/h =0.16(y
+

0
=23)

y/h =0.448(y
+

0
=65)

y/h =1(y
+

0
=147)

-100 0 100 200 300

t
*

-100 0 100 200 300

t
*

-100 0 100 200 300 -100 0 100 200 300

(a) (b) 

(c) (d) 



6.4 Ensemble-averaged flow behaviour  129 
 

be seen from Figure 6.25 (b) that the trends obtained from various Reynolds numbers collapse 

relatively well with respect to 𝑡∗ regardless of their acceleration rates. This is contrary to the 

observations of flows over smooth surfaces that 𝑡0
+ was a more suitable non-dimensional 

parameter in determining the time of transition. It should however be noted that except the 

two relatively slower accelerating cases of R23-93 and R29-76, the rest of the rough unsteady 

cases collapse on each other relatively well with respect to 𝑡0
+ (Figure 6.23 (b)). Onset of 

transition for the cases examined herein occurs in 20 < 𝑡∗ < 35. Statistics obtained from all the 

cases introduced in Table 6.1 are presented in Appendix B. 

 

Figure 6.22 Variation of normalised wall -normal fluctuating velocity versus 𝑡0
+at (a) 

𝑦/ℎ = 0.07; (b) 𝑦/ℎ = 0.15; (c) 𝑦/ℎ = 0.5; and (d) 𝑦/ℎ = 1 for smooth flows.  
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Figure 6.23 Variation of normalised wall -normal fluctuating velocity versus 𝑡0
+at (a) 

𝑦/ℎ = 0.07; (b) 𝑦/ℎ = 0.15; (c) 𝑦/ℎ = 0.5; and (d) 𝑦/ℎ = 1 for rough flows. 

 

Figure 6.24 Variation of perturbing wall-normal rms velocity versus 𝑡∗at (a) 𝑦/ℎ = 0.07; 

(b) 𝑦/ℎ = 0.15; (c) 𝑦/ℎ = 0.5; and (d) 𝑦/ℎ = 1 for smooth flows.  
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Figure 6.25 Variation of wall -normal rms perturbing velocity versus 𝑡∗at (a) 𝑦/ℎ = 0.07;  

(b) 𝑦/ℎ = 0.15; (c) 𝑦/ℎ = 0.5; and (d) 𝑦/ℎ = 1 for rough flows.  

 Correlations of critical Reynolds number in rough flows 

This section discusses the effect of the rough surface on the critical transition Reynolds number 

as introduced by He and Seddighi (2013) and He and Seddighi (2015) for smooth flows. 

Definitions of the initial free-stream turbulence (𝑇𝑢0), critical Reynolds number (𝑅𝑒𝑡,𝑐𝑟) and the 

period of transition (∆𝑅𝑒𝑡,𝑐𝑟) are the same as for smooth-wall flows, introduced in §5.4.4. These 

quantities are calculated on the basis of critical and fully turbulent timescales introduced in 

Table 6.2. It was shown in §4.5 that the initial flow conditions for the unsteady rough-wall flows 

correspond to the hydrodynamically smooth regime. Therefore, the wall shear stress and 

consequently the friction velocity can be determined from the equivalent smooth correlations. 

This specifically becomes useful in the calculation of 𝑇𝑢0. 

Figure 6.26 shows the variation of the critical Reynolds number with the initial free-stream 

turbulence intensity. Smooth-wall results obtained from the experiments and DNS are also 

shown for comparison. Similar to unsteady smooth-wall flows and bypass transition, it is shown 

that a power law correlates the data for the unsteady flows over the rough wall. As 𝑇𝑢0 

decreases, the critical Reynolds number increases at a slower rate in comparison to its 

corresponding smooth-wall flows. Specifically, when 𝑇𝑢0~4.2 × 10−2, the critical Reynolds 

number is similar in the rough and smooth wall flows. With the decrease of 𝑇𝑢0, difference 
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between the critical Reynolds number in the two flows develops, approaching less than half of 

those obtained from smooth flows for lower 𝑇𝑢0 values of 0.01. 

 

Figure 6.26 Critical Reynolds number as a function of  equivalent turbulence intensity for 

various flow conditions over smooth and rough surfaces.  

Figure 6.27 provides a measure between the period of transition and the critical Reynolds 

number obtained from the smooth and rough unsteady flows as well as the bypass transition 

correlations. It is evident from the trends that the period of the transition for a similar range of 

bulk Reynolds number is significantly decreased due to the effects of roughness. Best-fit curves 

are also shown in the figure, providing a linear relationship between the critical Reynolds 

number and the period of transition. 
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Figure 6.27 Period of transit ion as a function of  the crit ical Reynolds number and 

duration for various flow conditions over smooth and rough surfaces.  

 Summary 

A range of unsteady flows with mainly constant initial Reynolds number and a different higher 

final Reynolds number were investigated in an asymmetric channel with roughness at the 

bottom. PIV is used to measure the mean and turbulence quantities at different planes of 

motion. Vertical laser sheet measurements provided the statistics in the wall-normal direction 

for a wider range of cases. The horizontal laser sheet configuration was used to measure the 

flow properties in the spanwise and streamwise directions at a height of 𝑦~0.03ℎ (i.e. 𝑦~0.8𝑘) 

for three of the flow excursion scenarios.  

It was shown in §6.3 that the instantaneous fluctuating flow field under rough conditions is 

similar to smooth flows in terms of the transition behaviour. At the same time quantitative 

differences can be seen between the two bed types. It was shown that the streamwise 

fluctuating velocity undergoes a pre-transition phase similar to unsteady smooth flows with high 

and low amplitude juxtaposed streaks. These streaks are stretched in the streamwise and 

narrowed in the spanwise direction, resembling the Klebanoff modes present in the bypass 

transition due to free-stream turbulence. The first sign of secondary instability appears at a 

critical time, marking the start of transition. Similar to smooth-wall flows, the response of the 

wall-normal Reynolds stress component can accurately measure the start of transition. It was 

shown that the behaviour of streaky structures throughout the excursion are qualitatively 

similar to smooth flows. During the pre-transition phase the spacing of the streaks are almost 
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constant, with slight reduction after the commencement of the flow excursion. At the same time 

the quantitative behaviour of the streaks is highly sensitive to Reynolds number. For instance, 

the S29-76 and R29-76 behaviours are very similar as the roughness interaction with the flow 

can be considered insignificant.  On the other hand, the transition is enhanced in accelerating 

flows encompassing larger Reynolds numbers, resulting in a diminished pre-transition period. 

Evolving temporal boundary layer represented by the perturbing velocity profiles collapses on 

the Stokes solution during the pre-transition regime, providing similarities during and after the 

pre-transition for the unsteady cases examined herein. It should however be noted that the 

development rate of this temporal boundary layer depends on the initial and final Reynolds 

numbers. For instance, the pre-transition period is longer in the R23-93 and R29-76, while this 

range is relatively lower at around 𝑡0
+~50 for the other cases. The perturbing rms velocities 

collapse reasonably well during the pre-transition phase, while the wall-normal component can 

specifically mark the critical time of transition. The development of the perturbing streamwise 

fluctuating velocity during the pre-transition regime reflects the dynamics of the streaky 

structures in the wall region while the wall-normal component remains unchanged. 

The overall picture depicted from the instantaneous fluctuating velocities can be confirmed 

from the statistics. The rough-wall measurements performed herein confirm the previous 

findings of He and Jackson (2000) on the mechanisms of turbulence production, redistribution 

and radial propagation in unsteady turbulent flows. The geometrical properties of the roughness 

implemented in the present investigations, however, results in relatively shorter delays of 

streamwise, wall-normal and consequently shear stresses across the channel. As mentioned 

earlier, the critical time can be obtained from the response of the wall-normal fluctuating 

velocity 𝑣′𝑟𝑚𝑠. The critical non-dimensional inner scaled time (𝑡0
+)  is shown to be ~50 for all 

cases investigated, except for the relatively lower Re flows of R29-76 and R23-93. Whilst the 

scatter between the normalised critical time for similar cases over smooth surfaces is much 

wider and more sensitive to the levels of 𝑇𝑢0. On the other hand, the critical time normalised 

with the outer-scaling parameters (𝑡∗) appears to collapse the responses of various accelerating 

flows in the wall region, regardless of the 𝑇𝑢0 levels. 

Similar to smooth flows, the critical Reynolds number is shown to have a power-law dependence 

on 𝑇𝑢0, with a reduced critical Reynolds number for small initial turbulence intensity levels. The 

period of transition (∆𝑅𝑒𝑡,𝑐𝑟) was shown to be significantly reduced due to the roughness. A 

linear relationship was shown to exist between the period of transition and the critical Reynolds 

number.



 

 

Note: This chapter is published in the Computers & Fluids, 2014, 89(0): 111-123. 

 Introduction 

The present chapter reports a systematic assessment of the performance of a wide range of low-

Reynolds number turbulence models used to predict the flow characteristics of ramp-up-type 

unsteady flows in a channel. Recent DNS results are used as benchmark data for the assessment. 

The DNS data used for the validation purposes are previously published in He and Seddighi 

(2013) and Seddighi et al. (2014). 

 Methodology 

The study reported here involves the assessment of ten different turbulence models applied to 

three accelerating flow test cases. FLUENT 13.0 is used as the RANS solver for the numerical 

investigations.  

The flow domain consists of a rectangular channel section with smooth wall boundaries and the 

working fluid is water (𝜌 = 1000 𝑘𝑔/𝑚3, 𝜈 = 1 × 10−6 𝑚2/𝑠). The channel is 8 metres long 

and 0.05 metres high, giving a length to height ratio of L/H=160 as shown in Figure 7.1. Because 

of symmetry, the computational domain covers half of the channel height. In this study, only 

spatially fully developed flow is of interest; hence, the results presented are taken at 7.5 metres 

from the inlet (L/H=150, AB line in Figure 7.1). Systematic mesh sensitivity tests were carried out 

Chapter 7. Numerical simulation 

of channel flows over smooth 
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for each group of turbulence models to obtain mesh-independent solutions. These tests were 

conducted by distributing 70, 100 and 180 control volumes in the wall normal direction (y 

direction, shown in Figure 7.1). It was concluded that distributing 100 control volumes non-

uniformly along the wall normal direction is adequate to achieve mesh independent solutions. 

The number of control volumes used in the axial direction (x direction, shown in Figure 7.1) is 

30 but this is of no significance since only axially developed flow is of interest. This also means 

that the level of turbulence intensity at the inlet is of no relevance as long as it is set to a 

sufficiently high level to initiate turbulence in the channel. In this work, it is set to be 5% in all 

simulations. The non-dimensional distance of the first node from the wall is maintained within 

the range of 𝑦+= 0.3 – 0.9 (𝑦+ = 𝑦𝑢𝜏/𝜈, 𝑢𝜏 representing friction velocity) during the excursion 

to ensure the low-Reynolds criterion for the models is satisfied.  

 

Figure 7.1 Sketch of the channel geometry.  

In all test cases the flow rate is increased linearly from an initial steady state Reynolds number 

(𝑅𝑒0 = 𝑈𝑏0𝐷ℎ/𝜈, 𝑈𝑏0 representing the bulk velocity) of 9,308 to a final Reynolds number (𝑅𝑒1) 

of 29,650. The length scale of the Reynolds number is based on the hydraulic diameter, i.e.  𝐷ℎ =

2𝐻, where H is the full height of the channel. We consider three acceleration time periods (∆𝑡): 

Case A, 8.16 seconds (“low” acceleration); Case B, 2.86 seconds (“intermediate” acceleration); 

Case C, 0.02 seconds (“high” acceleration). Table 7.1 summarises the initial and final flow 

conditions of the examined flow cases along with non-dimensional time scale (∆𝑡∗ =

∆𝑡 (𝐻/2) 𝑈𝑏1⁄⁄ ) and ramp rate (𝑑𝑈 𝑑𝑡⁄ = (𝑈𝑏1 − 𝑈𝑏0) ∆𝑡⁄ ). Although these simulations are 

carried out for water, as long as the boundary conditions such as the initial and final Reynolds 

numbers and non-dimensional acceleration rate are consistent, the choice of fluid is of no 

significance to the outcome of the simulations. 
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Flow Case 𝑹𝒆𝟎 𝑹𝒆𝟏 ∆𝒕∗ ∆𝒕 (𝒔𝒆𝒄) 𝒅𝑼 𝒅𝒕⁄  (𝒎 𝒔𝟐⁄ ) 

A 9,308 29,650 96.8 8.16 0.025 

B 9,308 29,650 33.9 2.86 0.071 

C 9,308 29,650 0.2 0.02 10.17 

Note  ∆𝑡∗ =
∆𝑡

(𝐻/2) 𝑈𝑏1⁄
   

𝑑𝑈

𝑑𝑡
=

𝑈𝑏1−𝑈𝑏0

∆𝑡
 

Table 7.1 Test cases and flow conditions.  

The continuity and momentum transport equations along with the Reynolds stress closure 

equations are solved for the computational domain. The flow is assumed to be two-dimensional 

and Cartesian coordinates are employed for the governing equations. 

Continuity: 

 𝜕𝑈𝑖

𝜕𝑥𝑖
= 0  (7.1) 

Momentum: 

 𝐷𝑈𝑖

𝐷𝑡
= −

1

𝜌

𝜕𝑃

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
(𝜈

𝜕𝑈𝑖

𝜕𝑥𝑗
− 𝑢𝑖𝑢𝑗)  (7.2) 

where linear eddy viscosity models employ a stress-strain relation as follows:   

 
𝑢𝑖𝑢𝑗 =  2 3⁄ 𝑘𝛿𝑖𝑗 − 𝜈𝑡 (

𝜕𝑈𝑖

𝜕𝑥𝑗
+

𝜕𝑈𝑗

𝜕𝑥𝑖
)  (7.3) 

 where 𝜈𝑡, the eddy viscosity, is obtained by solving a set of turbulence transport equations, the 

details of which are presented in the next sections.  

Only low-Reynolds number turbulence models can potentially predict the features of unsteady 

flows. Here we consider ten low-Reynolds turbulence models, which can be categorised into 

four groups: 𝑘 − 𝜀 models, 𝑘 − 𝜔 based models, the 𝑣2 − 𝑓 model of Durbin (1995) and the 𝛾 −

𝑅𝑒𝜃  transition model of Langtry and Menter (2009). 

 𝒌 − 𝜺  models 

Low-Reynolds number 𝑘 − 𝜀 turbulence models are based on solving transport equations for 

turbulent kinetic energy and its dissipation rate, as follow: 

 𝐷𝑘

𝐷𝑡
=

𝜕

𝜕𝑥𝑗
[(𝜈 +

𝜈𝑡

𝜎𝑘
)

𝜕𝑘

𝜕𝑥𝑗
] + 𝑃𝑘 − 𝜀̃ − 𝐷  (7.4) 
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 𝐷𝜀̃

𝐷𝑡
=

𝜕

𝜕𝑥𝑗
[(𝜈 +

𝜈𝑡

𝜎𝜀
)

𝜕𝜀̃

𝜕𝑥𝑗
] + 𝐶𝜀1𝑓1

1

𝑇𝑡
𝑃𝑘 − 𝐶𝜀2𝑓2

𝜀̃

𝑇𝑡
+ 𝐸  (7.5) 

where  𝑃𝑘 is the production of turbulent kinetic energy given by 

 
𝑃𝑘 = −𝑢𝑖𝑢𝑗

𝜕𝑈𝑖

𝜕𝑥𝑗
  (7.6) 

The eddy viscosity in 𝑘 − 𝜀 models is defined to be 𝜈𝑡 = 𝐶𝜇𝑓𝜇𝑘2/𝜀, 𝐶𝜇 being a constant and 𝑓𝜇 

being the damping function. 𝑇𝑡 in equation (7.5) is a turbulent time scale, 𝜀̃ is the modified 

isotropic dissipation rate, D and E are near wall correction functions for 𝑘 and 𝜀equations, 

respectively.  

The six 𝑘 − 𝜀 turbulence models examined in this study are designated as AB for Abid (1993), LB 

for Lam and Bremhorst (1981), LS for Launder and Sharma (1974), YS for Yang and Shih (1993), 

AKN for Abe et al. (1995) and CHC for Chang et al. (1995). Note that the performance of FLUENT’s 

built-in LS model is found to be unexpectedly poor and therefore a User Defined Function (UDF) 

for LS developed by Mathur and He (2013) was also implemented. The FLUENT built-in 

implementation of LS is designated LS-FLUENT and the UDF implementations is designated LS-

UDF in what follows. 

A summary of the model constants, damping functions and near-wall correction functions are 

presented in Table 7.2-7.4. 

Model 𝑪𝝁 𝑪𝜺𝟏 𝑪𝜺𝟐 𝝈𝒌 𝝈𝜺 

AB 0.09 1.45 1.83 1.0 1.4 

LB 0.09 1.44 1.92 1.0 1.3 

LS 0.09 1.44 1.92 1.0 1.3 

YS 0.09 1.44 1.92 1.0 1.3 

AKN 0.09 1.5 1.90 1.4 1.4 

CHC 0.09 1.44 1.92 1.0 1.3 

Table 7.2. Constants for the turbulence models.  
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Model 𝒇𝝁 𝒇𝟏 𝒇𝟐 

AB 
tanh(0.008𝑅𝑒𝑘)  × (1 +

4

𝑅𝑒𝑡
3/4

) 
1.0 

1 − 2 9⁄ exp (−
𝑅𝑒𝑡

2

36
) 

× (1 − exp (−
𝑅𝑒𝑘

12
)) 

LB (1 − exp(−0.0165𝑅𝑒𝑦))
2

× (1 +
20.5

𝑅𝑒𝑡
) 

1.0 1 − exp(−𝑅𝑒𝑡
2) 

LS 
exp (

−3.4

(1 + 𝑅𝑒𝑡 50⁄ )2
) 

1.0 1 − 0.3 exp(−𝑅𝑒𝑡
2) 

YS (1 + 1 √𝑅𝑒𝑡⁄ ) 

× [1 − exp (

−1.5 × 10−4𝑅𝑒𝑦

−5.0 × 10−7𝑅𝑒𝑦
3

−1.0 × 10−10𝑅𝑒𝑦
5

)]

0.5

 

√𝑅𝑒𝑡

1 + √𝑅𝑒𝑡

 
√𝑅𝑒𝑡

1 + √𝑅𝑒𝑡

 

AKN 
[1 +

5

𝑅𝑒𝑡
0.75 exp (− (

𝑅𝑒𝑡

200
)

2

)] 

 × (1 − exp (−
𝑦∗

14
))

2
 

1.0 
{1 − 0.3 exp (− (

𝑅𝑒𝑡

6.5
)

2

)} 

× (1 − exp (−
𝑦∗

3.1
))

2
 

CHC [1 − exp(−0.0215𝑅𝑒𝑦)]
2

× (1 +
31.66

𝑅𝑒𝑡
5 4⁄

) 

1.0 [1 − 0.01 exp(−𝑅𝑒𝑡
2)] 

× [1 − exp(−0.0631𝑅𝑒𝑦)] 

Table 7.3. Functions in the turbulence models.  
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Model D E Wall BC 

AB 0 0 
𝜀𝑤 =  𝜈 (

𝜕2𝑘

𝜕𝑦2) 

LB 0 0 
𝜀𝑤 =  𝜈 (

𝜕2𝑘

𝜕𝑦2) 

LS 
2𝜈 (

𝜕√𝑘

𝜕𝑦
)

2

 2𝜈𝜈𝑡 (
𝜕2𝑈

𝜕𝑦2 )

2

 
𝜀�̃� = 0 

YS 0 
𝜈𝜈𝑡 (

𝜕2𝑈

𝜕𝑦2 )

2

 𝜀𝑤 =  𝜈 (
𝜕2𝑘

𝜕𝑦2) 

AKN 0 0 
𝜀𝑤 =  𝜈 (

𝜕√𝑘

𝜕𝑦
)

2

 

CHC 0 0 
𝜀𝑤 =  𝜈 (

𝜕2𝑘

𝜕𝑦2) 

 

Note 
𝑅𝑒𝑡 =

𝑘2

𝜈𝜀
 𝑅𝑒𝑦 =

𝑦𝑘1/2

𝜈
 𝑦∗ =

𝑦𝑢𝜀

𝜈
 𝑢𝜀 = (𝜈𝜀)0.25 

Table 7.4. D and E terms along with the boundary conditions .  

 𝒌 − 𝝎  and shear stress transport (SST) 𝒌 − 𝝎 models 

FLUENT 13.0 employs the low-Reynolds number 𝑘 − 𝜔 model of Wilcox (1994), which solves 

two transport equations, one for turbulent kinetic energy (same as for the 𝑘 − 𝜀 models) and 

one for its specific dissipation rate (𝜔 ∝ 𝜀/𝑘). Further details of this model can be found in 

Wilcox (1994). 

The 𝑘 − 𝜔 Shear Stress Transport (SST) model developed by Menter (1994) employs a blending 

function, which retains the near-wall 𝜔 equation while switching to 𝜀 equivalent further from 

the wall. Further details of the model can be found in Menter (1994).  

 𝒗𝟐 − 𝒇 model 

Anisotropy of the turbulence stresses is not addressed in linear eddy viscosity turbulence 

models. Durbin (1991) replaced the ad hoc damping functions of the 𝑘 − 𝜀 models by 

introducing the wall-normal stress 𝑣𝑣̅̅ ̅ as the velocity scale in the eddy viscosity formulation. An 

elliptic relaxation function is also solved to model the redistribution process of wall-normal 

stress transport equation. However, due to difficulties of implementation of the original 

formulation, major commercial codes tend to use more numerically stable formulations. The 
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𝑣2 − 𝑓 version coded in FLUENT, which is examined in this study, is the due to Iaccarino (2001) 

but with default constants of those proposed by Lien and Kalitzin (2001). 

 𝜸 − 𝑹𝒆𝜽 transition model of Langtry and Menter (2009) 

The performance of a correlation based transition turbulence model of 𝛾 − 𝑅𝑒𝜃  Langtry and 

Menter (2009) available in FLUENT 13.0 is also considered. The model incorporates two extra 

transport equations into the SST model, one for the intermittency 𝛾 and the other for the 

transition onset momentum-thickness Reynolds number 𝑅�̃�𝜃𝑡. Turbulent kinetic energy and its 

specific dissipation rate transport equations of the SST model are customised to include the 

additional transport equations. 

The following are the transport equations for intermittency and momentum-thickness Reynolds 

number:  

 𝜕𝜌𝛾

𝜕𝑡
+

𝜕𝜌𝑈𝑗𝛾

𝜕𝑥𝑗
= 𝑃𝛾 − 𝐸𝛾 +

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡

𝜎𝑓
)

𝜕𝛾

𝜕𝑥𝑗
]  (7.7) 

 𝜕𝜌𝑅�̃�𝜃𝑡

𝜕𝑡
+

𝜕𝜌𝑈𝑗𝑅�̃�𝜃𝑡

𝜕𝑥𝑗
= 𝑃𝜃𝑡 +

𝜕

𝜕𝑥𝑗
[𝜎𝜃𝑡(𝜇 + 𝜇𝑡)

𝜕𝑅�̃�𝜃𝑡

𝜕𝑥𝑗
]  (7.8) 

 

where 𝑃𝛾 and 𝐸𝛾 are the production and dissipation terms of the intermittency transport 

equation, respectively. 𝑃𝜃𝑡 is the production term of momentum-thickness in the Reynolds 

number transport equation. 𝜎𝑓 and 𝜎𝜃𝑡 are the constants of intermittency and momentum-

thickness Reynolds number transport equations, respectively. 

Intermittency is a measure of the regime of the flow. For instance, in a growing boundary layer 

over a flat plate, intermittency is zero before the transition onset and reaches a value of one 

when the flow is fully turbulent. In order to determine the condition of a developing boundary 

layer, correlations exist between the location of the transition onset and the free-stream 

turbulence intensity, pressure gradient and transition momentum-thickness Reynolds number 

(e.g. Abu-Ghannam and Shaw (1980) and Mayle (1991)). Both algebraic and transport equations 

have been developed by researchers to determine the intermittency factor. Langtry and Menter 

(2009) couples the transport equations for intermittency and transition onset momentum-

thickness Reynolds number to Menter (1994) SST model. The production term in the turbulent 

kinetic energy transport equation is modified to account for the changes in the intermittency of 

the flow. 
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The transition onset momentum-thickness Reynolds number is mainly responsible for capturing 

the nonlocal effects of turbulence intensity and pressure gradient outside the boundary layer. 

Further details regarding the formulation of the model and its performance in different test 

cases can be found in Langtry and Menter (2009). 

  Comparisons for steady flow 

DNS results for two steady flow scenarios, corresponding to the initial and final Reynolds 

numbers (𝑅𝑒0 = 9,308 and 𝑅𝑒1 = 29,650) of the unsteady flow cases to be discussed in the 

next section, are used to assess the performance of the ten different low-Reynolds number 

turbulence models applied to two-dimensional, fully developed, steady channel flow.  

Figure 7.2 shows the predications of the mean axial velocity, turbulent kinetic energy, turbulent 

shear stress and turbulent viscosity with the DNS results for the initial and final Reynolds number 

flows. Bulk velocity (𝑈𝑏) which represents the ratio of flow rate to cross sectional area and 

kinematic viscosity (𝜈) are used to normalise the mean and turbulence quantities.  

All turbulence models with the exception of LS-FLUENT give an acceptable prediction of the axial 

velocity profile across the channel. However, the performance of the various models is rather 

different for the predictions of turbulent kinetic energy, turbulent shear stress and turbulent 

viscosity. 

Most models are successful in predicting the location of the peak of turbulent kinetic energy for 

both steady flow cases. The predictions of the turbulent kinetic energy of LB, 𝑣2 − 𝑓 and 𝑘 − 𝜔 

are the closest to DNS in the wall region, whereas the kinetic energy predictions of AB, AKN, 

CHC, LS-UDF and 𝛾 − 𝑅𝑒𝜃 match better the DNS data in the core region. The last three models 

significantly under-predict the peak of turbulent kinetic energy for both flows even though they 

show superior performance in predicting the unsteady flows (as discussed in §7.4). 

The turbulent shear stress is well predicted by AKN, LB, YS and 𝛾 − 𝑅𝑒𝜃. This contrasts with AB, 

CHC, LS-UDF and 𝑣2 − 𝑓, which slightly under-predict, and LS-FLUENT, which significantly over-

predicts the shear stress. The turbulent viscosity predictions of most of the 𝑘 − 𝜀 models are 

quite good in the wall region, with AKN, LB, YS and 𝑘 − 𝜔 being the closest to DNS. In the core 

region, however, all models except AKN and 𝑘 − 𝜔 predict a monotonic increase of eddy 

viscosity that is contrary to the DNS data. The over-prediction of eddy viscosity in this region is 

a known shortfall of many 𝑘 − 𝜀 models that results from the under-prediction of dissipation 

((Billard and Laurence, 2012)). Myong and Kasagi (1990) argue that in most 𝑘 − 𝜀 models the 

chosen value of 𝜎𝑘 is too low in comparison to 𝜎𝜀 and they therefore suggest using higher 𝜎𝑘 𝜎𝜀⁄  
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ratios. In the absence of turbulent energy production in the core region, this ratio balances the 

diffusion and dissipation terms in the turbulent kinetic energy and its dissipation rate transport 

equations. Among the 𝑘 − 𝜀 models investigated, AKN utilises the highest 𝜎𝑘 𝜎𝜀⁄  ratio improving 

its eddy viscosity predictions in the core region. 
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Figure 7.2. Steady flows with 𝑅𝑒0 = 9,308 (short curves) and 𝑅𝑒1 = 29,650 (longer curves): 

comparisons of predicted flow properties from various turbulence models (dashed l ine) 

with DNS data (solid l ine).  
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It should be noted that in the framework of eddy viscosity models the only connection between 

the turbulence model and the mean flow field is through the turbulent shear stress 𝑢𝑣̅̅̅̅ , which is 

mostly dependent on the eddy viscosity. It can be seen that 𝑢𝑣̅̅̅̅  is well predicted by all models 

(excluding LS-FLUENT) for both the high and the low Reynolds number flows. This is true despite 

the turbulent viscosity being not well predicted in the core region by some models. In fact, the 

most important part of the flow is the wall region, where the turbulent viscosity is predicted 

fairly well by most of the models. In the core region, the role of turbulent viscosity is not of major 

importance to the performance of the models.  

Results obtained for the higher Reynolds number flow are generally more reliable (i.e. agree 

better with the DNS results) than those for the lower Reynolds number flow. We note that 

turbulence models are often tuned for relatively high Reynolds number flows, and applying such 

models to relatively low Reynolds number flows can result in poor performance.  

Figure 7.3 presents the wall shear stress predicted by the various turbulence models, together 

with the DNS results. Among the turbulence models considered, AKN, LB and 𝑘 − 𝜔 are seen to 

yield the most accurate predictions of wall shear stress for both the lower and higher Reynolds 

number flows. 

 

Figure 7.3. Predictions of steady flow wall shear stress for two Reynolds numbers by the 

various turbulence models (symbols) and by DNS (l ines).  

In contrast to the LS-FLUENT, LS-UDF performs well overall, leading to our conclusion that the 
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not due to any inherent fault with the model itself. The results obtained from LS-FLUENT are not 

further presented or discussed in the remainder of this chapter. 

 Comparisons for unsteady flow 

 Key features of unsteady flow from DNS 

The main features of the unsteady flows as predicted by DNS are first summarised in this section 

in order to facilitate the assessment of the performance of the turbulence models in the next 

section. The discussion largely follows that of He and Jackson (2000), He et al. (2011) and (He 

and Seddighi, 2013), where more detailed discussion can be found. 

Figure 7.4 shows the DNS-predicted time histories of wall shear stress, turbulent viscosity, 

turbulent shear stress and turbulent kinetic energy for the three unsteady flow cases. 

Considering first the wall shear stress evolution for Case A (Figure 7.4 (a)), we can identify a 

three-stage development in the wall shear stress and turbulence. Stage 1 is initially dominated 

by large inertial effects, causing the wall shear stress to overshoot the corresponding quasi-

steady values. However, due to the delayed turbulence response, the growth rate of wall shear 

stress decreases during the final moments of stage 1. Stage 2 corresponds to the time period 

when the generation of new turbulence causes the unsteady wall shear stresses to increase 

rapidly towards the corresponding quasi-steady values. During stage 3, the bulk flow is no longer 

accelerating and the wall shear stress gets gradually closer to the quasi-steady flow shear stress.  

The flow acceleration is higher in Case B (Figure 7.4 (b)), and 𝑅𝑒1 is reached while flow response 

is still in stage 1 (a). As a result of the sudden removal of the acceleration, a strong but negative 

inertial effect is imposed on the flow, which results in a sharp decrease in the wall shear stress 

(stage 1 (b)).  Afterwards, the trend is reversed when turbulence production starts to increase 

the wall shear stress, which eventually reaches the quasi-steady values. Increasing the 

acceleration even further (Case C, Figure 7.4 (c)) causes overshooting of the unsteady wall shear 

stress over the quasi-steady wall shear stress to occur in an instant (stage 1 (a), not shown on 

the figure), because of the very sudden change in flow rate. This is then followed by a sharp 

reduction (stage 1 (b)). During stage 2, the wall shear stress rapidly increases again as a result of 

turbulence production. The wall shear stress approaches the corresponding quasi steady values 

in stage 3. 

The DNS-predicted time-histories of turbulent viscosity at selected 𝑦0
+ locations (where 𝑦0

+ =

𝑦𝑢𝜏0/𝜈, 𝑢𝜏0 representing friction velocity at 𝑅𝑒0) are also shown in Figure 7.4. It can be seen 

from the Figure 7.4 that turbulent viscosity close to the wall (𝑦0
+ = 5) remains more or less 
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unchanged during stage 1, but begins to increase rapidly at approximately 5, 4 and 2 seconds 

for cases A, B and C respectively, corresponding to the onset of stage 2. It can also be seen that 

the delays of turbulent viscosity are roughly constant across the channel for all three flow cases. 

However, the response of the turbulent viscosity to the imposed excursion in the wall region is 

of greater importance for modelling purposes as discussed in §7.4.2. 

  

  

  

  

Figure 7.4 continued on next page. 
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Figure 7.4. Time-history of wall shear stress and turbulence quantities for the three 

unsteady flow cases predicted by DNS.  

The response of the turbulent shear stress is consistent with that of the turbulent viscosity. 

Turbulent shear stress very close to the wall (at 𝑦0
+ = 5) stays mainly constant during stage 1. 

Its response to the acceleration is initially observed in the wall region, while the delay period 

becomes progressively longer with distance from the wall. 

The overall picture of the development of turbulent kinetic energy with time is similar to that of 

turbulent shear stress. Delays associated with the response of turbulence increase with distance 

from the wall. However, the delay in turbulent kinetic energy in the wall region is much shorter 
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streamwise turbulent normal stress (𝑢𝑢̅̅̅̅ ) increases due to the stretching of the existing eddies, 
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are unaffected ((He and Jackson, 2000)). This strong anisotropic behaviour in the near-wall 

turbulence is the key feature of the unsteady flow and is likely to pose a challenge for linear 

eddy viscosity models. 
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to as Group II) are not able to do so. All Group I models reproduce the three stage development:  

a delay stage followed by a rapid response in stage 2 and then a slow adjustment phase (stage 

3). Focusing on more detail, 𝛾 − 𝑅𝑒𝜃 appears to predict time scales that are very close to those 

of DNS for all three flow cases. The LS and the CHC models predict time scales close to those of 

DNS, but are slightly shorter as the acceleration is increased. Note that CHC shows instability in 

the simulation of Case C. Although able to predict the general features of the unsteady 

turbulence response, the AB and 𝑣2 − 𝑓 results always show time scales that are much shorter 

than those of DNS. The Group II models fail to predict the main features of the unsteady flows, 

mostly because of their inability to predict the delayed response of turbulence which controls 

the response of the flow. All of the models (both groups) are able to capture the initial overshoot 

of the shear stress in early stage 1 since this behaviour is due to the effect of the inertial forces, 

which is not strongly dependent on turbulence (and hence not dependent on the choice of 

turbulence model).  We note once more that the simulations of the LS model are based on the 

UDF version; predictions based on FLUENT’s built-in LS model (not presented) are very different 

from the results described above, with very small delays that are much like the predictions of 

Group II models.  

   

Figure 7.5. Wall shear stress time-histories for unsteady flows; a) Case A, b) Case B and 

c) Case C. DNS (solid lines) and RANS with various models (dashed lines).  
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by each model. It is apparent that the characteristic delay in turbulent viscosity in the wall region 

is well reproduced by LS, CHC and 𝛾 − 𝑅𝑒𝜃, and to some extent by AB and 𝑣2 − 𝑓. Once more, 

𝛾 − 𝑅𝑒𝜃 slightly over predicts the delays in all flow cases. CHC predicts the delay for flow Cases 

A and B rather accurately, whilst predicting unrealistic oscillation for flow Case C (not visible in 

the current scale of the figure). Even though 𝑣2 − 𝑓 does not predict the delay period correctly 

for any of the cases, it is the only model to return accurate values of turbulent viscosity during 

the pre- and post-ramp periods for all three flows.  The delays predicted by AKN, LB and YS are 

much shorter than those of DNS, whereas 𝑘 − 𝜔 and 𝑘 − 𝜔 SST return even shorter delays. 

These observations are consistent with the predictions of wall shear stress from the respective 

models, as shown in Figure 7.5.  

   

Figure 7.6. Turbulent viscosity time-histories at 𝑦0
+ = 5 for unsteady flows; a) Case A, b) 

Case B and c) Case C. DNS (solid l ines) and RANS with various models (dashed l ines).  
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performing slightly better than others. The delay in the core region results from the fact that the 

turbulence response occurs initially in the wall region, propagating towards the centre through 

diffusion.  The above comparison shows that all models are capable of reproducing this feature 

because the diffusion term is explicitly included in the transport equations of the turbulent 

kinetic energy and its dissipation rate. Once more CHC and 𝛾 − 𝑅𝑒𝜃 are outperforming the rest 

in reproducing the trends associated with the development of turbulent shear stress across the 

channel; CHC’s prediction for Case A is nearly indistinguishable from the DNS data although it is 

less so for Case B. In Case C, CHC’s instability in predicting turbulence quantities in the wall 

region is once more evident in the trends of the turbulent shear stress. The LS model predicts 

the delay period fairly well, especially for cases A and B, but it returns magnitudes that are lower 

than those of DNS in the final plateau (not shown). The trends obtained by the AB and 𝑣2 − 𝑓 

are close to those of DNS only in the core region, failing to predict the delays close to the wall. 

 

Figure 7.7. Time-histories of turbulent shear stress at selected 𝑦0
+ for unsteady flow case 

A: RANS model (thin lines) and DNS (thick l ines).  
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Figure 7.8. Time-histories of turbulent shear stress at selected 𝑦0
+ for unsteady flow case 

B: RANS model (thin lines) and DNS (thick l ines) .  

 

 

Figure 7.9. Time-histories of turbulent shear stress at selected 𝑦0
+ for unsteady flow case 

C: RANS model (thin lines) and DNS (thick l ines).  
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that all models except CHC, LS and 𝛾 − 𝑅𝑒𝜃 can predict this near wall response fairly well. The 

𝑣2 − 𝑓 prediction of turbulent kinetic energy in the wall region is almost indistinguishable from 

the DNS data during the early stages of the three flows. 𝛾 − 𝑅𝑒𝜃 on the other hand predicts a 

much longer delay, which is similar to that of the turbulent shear stress. It is noted that the 

important requirement for any eddy viscosity model is to faithfully represent the turbulent 

viscosity itself or the turbulent shear stress. In this particular case, since turbulent kinetic energy 

and shear stress show different characteristics, it is actually desirable that the early response of 

the kinetic energy is not reproduced so that the turbulent shear stress (𝑢𝑣̅̅̅̅ ) can be well 

represented. This is what CHC, LS and 𝛾 − 𝑅𝑒𝜃 have done in order to capture the delay of the 

wall shear stress correctly. Clearly it is desirable for a model to decouple the prediction of 

turbulent shear stress and the prediction of turbulent kinetic energy so that both can be 

predicted faithfully. In principle, this is readily achievable with second momentum closure 

models. Regarding the performance of the models in the core region, all models reproduce the 

kinetic energy delay fairly well. 

 

 

Figure 7.10. Time-histories of turbulent kinetic energy at selected 𝑦0
+ for unsteady flow 

case A: RANS model (thin lines) and DNS (thick lines).  
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Figure 7.11. Time-histories of turbulent kinetic energy  at selected 𝑦0
+ for unsteady flow 

case B: RANS model (thin lines) and DNS (thick lines).  

 

 

Figure 7.12. Time-histories of turbulent kinetic energy at selected 𝑦0
+ for unsteady flow 

case C: RANS model (thin lines) and DNS (thick lines).  
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in the wall region. Figure 7.13 shows the cross-channel profile of damping function 𝑓𝜇 at selected 

times, as predicted by four 𝑘 − 𝜀 models (AB, YS, LB and CHC) for flow Case B.  It is seen that the 

near-wall values of 𝑓𝜇 predicted by CHC is the only one that is sensitive to the imposed excursion. 

𝑓𝜇 in CHC begins to respond to the imposed flow rate immediately after the first stage of wall 

shear stress evolution (inertial-dominated period). The increased 𝑓𝜇 at the early stages of the 

excursion keeps turbulent kinetic energy and therefore turbulent shear stress low, reproducing 

the delay effect needed. 

A damping function does not exist in the 𝑣2 − 𝑓 or in the 𝛾 − 𝑅𝑒𝜃 model. This correction 

function is replaced by the wall-normal stress component, as discussed in §7.2.3 for the 𝑣2 − 𝑓 

model. However, in the 𝛾 − 𝑅𝑒𝜃 model the production of turbulent kinetic energy is controlled 

via intermittency factor derived from its transport equation. Figure 7.14 shows the temporal 

evolution of the intermittency at selected 𝑦0
+ for the three flow cases. It can be seen that the 

intermittency is reduced significantly at the early stages followed by a period of delay before 

increasing again. The turbulent viscosity trend shows similar behaviour. Such a reduction in the 

intermittency leads to further reduction in turbulent kinetic energy and shear stress in the wall 

region.  

 

 

Figure 7.13. Damping function profiles at selected times, as predicted by AB, YS, LB and 

CHC turbulence models for flow case B.  
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Figure 7.14. Time-histories of intermittency at selected 𝑦0
+,  as predicted by 𝛾 − 𝑅𝑒𝜃 for 

unsteady flow cases A, B and C.   

 Summary 

This chapter reports a systematic study of the behaviour of various low-Reynolds number linear 

eddy-viscosity turbulence models under steady and unsteady flow conditions over smooth 

channels. Three different acceleration rates were studied to identify the applicability and 

robustness of different turbulence models in predicting various features of unsteady flows from 

the response of mean and Reynolds stresses to the behaviour of wall shear stress. 
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This chapter gathers the conclusions on the study of turbulence under unsteady conditions. 

These are the concluding remarks on the development of the flow loop facility as well as the 

mean and turbulence behaviour of unsteady flows over smooth and rough surfaces. The 

concluding remarks on the numerical modelling of the unsteady flows in the RANS framework is 

discussed as well. Finally, future work and further investigations are presented in the last section 

of this chapter. 

 Flow loop facility 

 A water flow loop facility is designed, constructed and commissioned to study the behaviour of 

mean flow and turbulence under unsteady conditions.  This facility was built to provide the 

experimental evidence for new understanding of transient channel flow as well as to generate 

benchmark data for the verification of new models for both smooth and rough flows.  

The flow loop consists of a header and a collecting tank with available head of 4.5 metres, 

capable of generating bulk Reynolds numbers (based on half-height and bulk velocity) up 25,000. 

The unsteady flows examined herein belong to the category of non-periodic flows with flow 

variation obtained from either sudden or controlled valve opening. Flow manipulation is 

performed by means of a customised pneumatically operated control valve capable of 

generating sudden flow transients. 

The test section was designed and later verified to provide a fully developed, two dimensional 

flow at the measurement station ~140𝐻 downstream of the inlet. The physical length, width 

Chapter 8. Conclusions and Future 

Work 
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and height of the channel are 8, 0.35 and 0.05 metres, respectively. The channel facility was 

designed so that the bottom plates of the test section could be removed to facilitate the study 

of different surface topologies.  

Particle Image Velocimetry (PIV) and Laser Doppler Velocimetry (LDV) were used to measure the 

mean and turbulence flow features under steady and unsteady flow conditions. Bulk flow and 

static pressure variations were measured by a magnetic flow meter and a pressure transducer, 

respectively. Thermocouples are also used to measure the temperature of the water. The 

statistics obtained from the present steady investigations are in good agreement with previous 

Direct Numerical Simulation (DNS) studies of channel flows. 

The rough surface investigated in the present investigations consists of a carefully CNC machined 

square based pyramids with the height of 0.9 mm (ℎ/𝑘 = 28) and wavelength of 7.5 mm. The 

flow properties over the roughness elements were measured to vary between the 

hydrodynamically smooth to fully rough regimes over a range of bulk Reynolds numbers of 2,300 

to 25,000. 

The mean velocity as well as the Reynolds stresses obtained from the various steady flows over 

rough surfaces provide a strong support for the Townsend’s wall and Reynolds number similarity 

hypotheses throughout the transitionally and fully rough regimes.  

 Unsteady flows over smooth and rough surfaces 

LDV and PIV were used to measure mean and turbulence flow characteristics over the smooth 

surfaces, while only PIV was employed for the rough surface investigations. 

Present investigations support the concept regarding the transient channel flow transition 

initially introduced by He and Seddighi (2013). It was shown that the turbulence in an unsteady 

channel flow due to sudden flow rate excursion undergoes a process that resembles the bypass 

transition due to free-stream turbulence in boundary layers. Near-wall measurements show a 

three-stage development namely the pre-transition, transition and fully turbulent phases, 

resembling the buffeted laminar, intermittent turbulent spot generation and fully turbulent 

states of Jacobs and Durbin (2001). During the pre-transition phase, existing streaky structures 

are stretched in the streamwise and narrowed in the spanwise direction resembling the 

Klebanoff modes present in the laminar buffeted regime of the transitional boundary layers. The 

period of the pre-transition phase (or the critical Reynolds number) depends on the surface 

conditions as well as the levels of the initial free-stream turbulence intensity (𝑇𝑢0). It was shown 
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that a high level of 𝑇𝑢0 as well as the presence of roughness on the surface can diminish the 

period of pre-transition.  

It was shown that during the transient process a new boundary layer is formed on the wall 

surface evolving with respect to time. Perturbing velocity (𝑈
^
) was used to illustrate this 

temporal evolving boundary layer. 𝑈
^
obtained from various unsteady flows, regardless of the 

surface condition, was shown to collapse on a single curve during the pre-transition process 

governed by the Stokes solution. Similarly, the perturbing streamwise and wall-normal rms 

velocities due to various cases was shown to collapse during this regime. 

The first signs of instability occur as isolated packets of high amplitude turbulent bursts that 

eventually propagate throughout the spanwise surface, leading to a complete breakdown of the 

existing structures. These features were clearly identifiable from the spanwise PIV 

measurements over both smooth and rough surfaces. Period of transition was shown to have a 

power-law and a linear relationship with the critical Reynolds number for smooth and rough 

surfaces, respectively.  This period was shown to be significantly reduced for flows over rough 

surfaces in comparison to their corresponding smooth-wall flows.  

Furthermore, It was shown in the present investigations that the mechanisms of turbulence 

production in the near-wall region, its redistribution to wall-normal (and likely spanwise) 

component as well as its diffusion towards the centre, initially introduced by He and Jackson 

(2000) are valid for unsteady flows over rough surfaces. Despite the fact that the duration of the 

associated delays are dependent on the regime of the rough flows and are likely to be much 

shorter in comparison to similar smooth-wall flows. 

 RANS study of unsteady turbulent flows 

The performance of ten eddy viscosity turbulence models in predicting unsteady, ramp-up-type 

turbulent channel flows has been examined by comparing predictions with DNS results for the 

same flows. Three ramp-up flows with different acceleration rates have been considered. The 

key features of the unsteady flow as seen in the DNS data are the distinct delays in the response 

of the turbulent shear stress and turbulent viscosity to the imposed change in the flow rate. 

These delays are in turn responsible for the response of the wall shear stress. It is shown that 

the wall shear stress goes through a three-stage development. The first stage is influenced by 

the frozen turbulence and inertia forces. In the early part of the first stage, inertial forces 

dominate, causing the wall shear stress to overshoot the corresponding quasi-steady values. 

Then the effect of frozen (or delayed) turbulence takes over, causing the wall shear stress to 
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undershoot the quasi-steady values. The second stage corresponds to a rapid response of 

turbulence, causing a rapid increase in wall shear stress. In the final stage the wall shear stress 

approaches the quasi-steady value.  

The diffusion of turbulence from the wall to the core region is another feature of unsteady flows, 

leading to relatively long delays in the response of turbulent kinetic energy and turbulent shear 

stress in the core region. However, the duration of the delay period of turbulence response in 

the wall region is different for kinetic energy and for turbulent shear stress because of the 

stretching of turbulence structures. 

The following are the main conclusions regarding the performance of the various turbulence 

models examined in this study: 

 The most important feature that needs to be modelled in order to capture the overall 

behaviour of the flow is the delayed response of turbulent shear stress (and turbulent 

viscosity). Among the models examined, only the LS, CHC and 𝛾 − 𝑅𝑒𝜃 models can 

capture this accurately, making them the only suitable models for such unsteady flows. 

LS and CHC achieve this through an appropriately designed damping function (𝑓𝜇), while 

𝛾 − 𝑅𝑒𝜃 employs an intermittency parameter that responds suitably to the variation in 

flow rate. However, it should be pointed out that the performance of the CHC model in 

high acceleration flow case was not satisfactory because of its instability. The AB and 

𝑣2 − 𝑓 model can also reproduce the basic trends but with much shorter time scales 

than expected. 

 All models reproduce the overshoot in wall shear stress over the corresponding quasi-

steady shear stress that occurs in the early stage of the flow rate excursion, with only 

minor differences between the predictions of each model. In fact, the overshoot is an 

inertia-dominated effect that is not related to turbulence. For this reason we expect the 

predictions of the various turbulence models to be similar at this early stage. 

 The delay in the response of turbulence in the core region is governed by diffusion, 

represented explicitly in the transport equations of the 𝑘 − 𝜀/𝜔 models. As a result, 

such delays are reasonably well predicted by all models. 

For accelerating flows, it is desirable that the early response of turbulent kinetic energy is not 

reflected in the model predictions unless turbulent kinetic energy and shear stress formulations 

are decoupled. It is also noted that due to the similarities between channel and pipe flows, 

performance of turbulence models are expected to be similar for both geometries. 
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 Suggestions for future work 

Below are some suggestions for future investigations of the unsteady channel flows: 

 The concept of transient channel flow transition was originally introduced for sudden 

excursions of flow rate in He and Seddighi (2013). Generating high acceleration rates 

was a challenge to the employed gravity-driven flow loop facility and therefore any 

effort to improve the acceleration rate of the system in future studies would be 

extremely advantageous. 

 Sudden opening flow scenarios in the present investigations suffered from the poor 

repeatability of the control valve in the first few seconds. Therefore, improvement of 

the control system would significantly improve the quality of the measurements. 

 One of the main parameters in the study of unsteady channel flows is the skin friction 

or wall shear stress. Despite the efforts made during the design and commissioning 

process of the apparatus for the implementation of the hot-film sensors, they only 

worked for a short period. In future studies, effort should be made to achieve accurate 

data on the behaviour of the wall shear stress during the transition which is of great 

importance in characterising the flow features. 

 The present investigations on the unsteady rough flows can only be considered to be a 

scratch on the surface as there are many parameters that require a separate and 

thorough investigation such as the geometrical properties of the roughness as well as 

the initial and final regimes of the unsteady flow. 
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A. Unsteady history profiles for various cases over smooth surfaces 

This section provides the dimensional data obtained from the LDV of smooth unsteady flows. 

The water temperature is provided for reference above the figures. 

 S23-250, measured at 22 (°C): 

 

Figure A. 1 continued on next page. 
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S23-200, measured at 26 (°C): 

 

S23-180, measured at 26 (°C): 

 

Figure A. 1 continued on next page. 
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S23-135, measured at 26 (°C): 

 

S23-93, measured at 26 (°C): 

 

Figure A. 1 continued on next page. 
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S29-250, measured at 26 (°C): 

 

S29-76, measured at 22 (°C): 

 

Figure A. 1 continued on next page. 
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S29-53, measured at 26 (°C): 

 

S35-250, measured at 23 (°C): 

 

Figure A. 1 continued on next page. 
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S60-250, measured at 26 (°C): 

 

S90-250, measured at 26 (°C): 

 

Figure A. 1 Mean and turbulent quantities for various unsteady flows over smooth surfaces. 
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B. Unsteady history profiles for various cases over rough surfaces 

This section provides the dimensional data obtained from the PIV of rough unsteady flows. The 

water temperature is provided for reference above the figures. 

R23-250, measured at 21 (°C): 

 

R23-200, measured at 22 (°C): 

 

Figure B. 1 continued on next page. 
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R23-180, measured at 23 (°C): 

 

R23-135, measured at 24 (°C): 

 

Figure B. 1 continued on next page. 
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R23-93, measured at 23 (°C): 

 

R29-250, measured at 23 (°C): 

 

Figure B. 1 continued on next page. 
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R29-76, measured at 24 (°C): 

 

Figure B. 1 Mean and turbulent quantities for various unsteady flows over rough surfaces. 
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