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Abstract 

 

Developing low carbon cities is a key goal of 21st century planning, and one that can 

be supported by a better understanding of the factors that shape travel behaviour, and 

resulting carbon emissions. Understanding travel based carbon emissions in mega-

cities is vital, but city size, and often a lack of required data, limits the ability to apply 

linked land use, transport and tactical transport models to investigate the impact of 

policy and planning interventions on travel and emissions. Using Beijing as a case 

study, this thesis develops a new bottom-up methodology to provide improved 

transport CO2 emission from people‟s daily urban travel in Beijing from 2000 to 2030. 

It combines spatial microsimulation approach from geography and activity travel 

research from the transport field and applies this in a developing country for a long 

period, where detailed data to undertake fine scale analysis of phenomena such as 

transport CO2 emissions generated by travel behaviour is very scarce. 

On the basis of an activity diary survey and demographic data from the 2000 

and 2010 population censuses, this research first employs spatial microsimulation to 

simulate a realistic synthetic populations‟ daily travel behaviour and estimate their 

transport CO2 emission at a fine geographical resolution (urban sub-district) between 

2000 and 2010 for urban Beijing. It compares and analyses the changes in travel 

behaviour and transport CO2 emissions over this decade, and examines the role of 

socio-demographics and change in urban form in contributing to the modelled trend. 

The transport CO2 emission from people‟s daily travel behaviour in urban Beijing is 

then simulated and projected at disaggregate level to 2030 under four scenarios, to 

illustrate the utility of this bottom-up approach and modelling capability. The four 

scenarios (transport policy trend, land use and transport policy, urban compaction and 
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vehicle technology, and combined policy) are developed to explore travel behaviour 

and transport CO2 emission under current and potential strategies on transport, urban 

development and vehicle technology. The results showed that, compared to the trend 

scenario, employing both transport and urban development policies could reduce total 

passenger CO2 emission to 2030 by 24%, and by 43% if all strategies were applied 

together. This research reveals the potential of microsimulation in emission 

estimation for large cities in developing countries where data availability may 

constrain more traditional approaches, and provides alternative urban development 

strategies and policy implications for CO2 emission mitigation targets set by the 

national and local governments. 
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Chapter 1  

Introduction 

 

1.1 Contextual background 

 

Climate change is widely recognized as a real threat to urban development and a key 

global challenge of the 21st century (IPCC, 2013). An energy crisis, commonly 

known as “peak oil”, is further expected within the next decades (Boussauw and 

Witlox, 2009). How to reduce energy consumption and carbon emissions has been on 

the top of a number of political agendas and scientific research. While cities are 

responsible for 80% of global greenhouse gases, three urban sectors (industry, 

transport and housing) constitute the main sources of carbon dioxide emissions 

(Dhakal, 2009). One of the biggest sources, with the fastest growth in CO2 emission 

of any sector is the transport sector (Yan and Crookes, 2009). It is estimated that 

cumulatively, the transport sector produced the largest increase in global CO2 

emissions from 1970-2004 and was responsible for 23% of all energy-related CO2 

emissions in 2005 (IPCC, 2007). With increasing travel demand and car usage, it is 

projected that transport CO2 emissions globally will grow by nearly 50% to 2030, and 

by more than 80% by 2050 (IEA, 2009). Clearly, the transport sector has a key role to 

play in achieving the energy saving, energy diversification and carbon emission 

reduction goals of national governments (e.g. China‟s current Five-Year Plan) and the 

wider international community (e.g. Kyoto protocol).  



2 
 

Three main factors have been shown to affect energy use and carbon 

emissions from urban transport: travel behaviour (e.g. trip frequency, travel distance, 

and modal split), urban form (e.g. land use pattern, street design), and vehicle 

technology (Wright and Fulton, 2005, Hankey and Marshall, 2010). The focus of 

national initiatives to mitigate climate change has to date, concentrated on technology 

fixes and economic instruments, such as improved fuel efficiency and electric 

vehicles, and fuel/vehicle taxation (Brand and Boardman, 2008). Although significant 

reduction of carbon emissions can be achieved through improvements in vehicle 

technology, these reductions could eventually be offset by increased car ownership 

and use, and traffic congestion (Chapman, 2007). Furthermore, if developing 

countries such as China and India follow the same path of automobile dependence as 

developed nations, then technological advances will be insufficient to offset the 

anticipated increase in motorisation and its subsequent emissions (He et al., 2013). 

Consequently, the potential of urban planning in climate change mitigation 

has attracted much scholarly and practical attention in responding to a global low-

carbon movement. It is argued that spatial patterns of urban development at city and 

neighbourhood-scale influence people‟s travel behaviour, and thus travel-induced 

CO2 emissions (Grazi and Van den Bergh, 2008, Brownstone and Golob, 2009). This 

policy proposal of urban planning for low-carbon transport converges with recent 

planning ideas of new urbanism, the compact city, and smart growth, which criticise 

low-density sprawl, single-use zoning, and auto-oriented street design for long-

distance and auto-dependent travel. Such travel patterns not only produce 

environmental externalities important at a local scale, such as traffic congestion and 

air pollution, but contribute to the externality impacts of carbon emissions, which are 

globally important. 
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Much literature provides empirical evidence on the effectiveness of urban 

planning in modifying individual travel behaviour (e.g. Dieleman et al., 2002; Wang 

and Chai, 2009), while some studies further explore the implications for carbon 

emission reduction (e.g. Grazi et al., 2008; Qin and Han, 2013). Scholars have found 

that higher population density, mixed land use and pedestrian-friendly street design 

correlates with fewer vehicles, shorter distance and less motorised travel (e.g. Krizek, 

2003; Khattak and Rodriguez, 2005; Ewing and Cervero, 2010). These studies tend to 

support the advocates of new-urbanism, and compact urban design. However, 

theoretical debates have not been fully resolved with respect to the influence of urban 

form on travel behavior, especially when residential self-selection is taken into 

account (Bagley and Mokhtarian, 2002; Cao et al., 2007). In this regard, some 

scholars have argued that planning may have a smaller role in altering urban travel 

patterns, as residents may choose to live in the kind of neighbourhoods in line with 

their preferred lifestyles (e.g. Chatman, 2009). The urban form – travel associations 

may result from a certain residential self-selection process, in which residents select 

the built environment that facilitates their preferred travel patterns (e.g. Mokhtarian 

and Cao, 2008). The causal links between urban form and travel behaviour remain 

inconclusive still. Even less conclusive is the extent to which the urban form impacts 

on energy consumption and carbon emission from urban transport (Liu and Shen, 

2011). Handy (2005) therefore argues for more research on the relationships among 

urban form, travel behavior and transport carbon emission, which lie at the core of 

developing a sustainable city. 

In earlier studies, transport CO2 emissions were estimated using aggregate 

data based on the total energy consumed or the size of the vehicle fleet and average 

vehicle kilometres travelled (VKT). Although this „top-down‟ approach is 
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straightforward (Dhakal, 2009; Hu et al., 2010), its application at the urban scale is 

often constrained by poor data, particularly a lack of reliable data on the vehicle fleet 

in the city, its city-wide energy use, and the average distance travelled per vehicle (He 

et al., 2013). Furthermore, this approach is unable to directly link travel behaviour 

with land use patterns or urban development policies. For example, it is known that a 

city‟s physical form (urban morphology) influences the distance people travel each 

day, their choice of mode, and resulting CO2 emissions (Grazi et al., 2008). However, 

research on CO2 emissions based on individual travel behaviour (and the influence of 

urban form) for cities as a whole has been very scarce. This is likely due to the large 

amount of detailed data required on travel behaviour for large populations, which is 

not usually available, particularly in the case of fast growing mega-cities in 

developing economies such as China. 

China has already passed the US as the world‟s largest source of carbon 

dioxide emissions (Yan and Crookes, 2010); however, little is known about how 

transport CO2 emissions from people‟s daily travel respond to China‟s changing 

urban form at disaggregate level. Much existing literature on urban morphology, 

travel behaviour, and transport CO2 emissions predominately focuses on advanced 

economies such as the US or Europe. Yet urban spatial development and individuals‟ 

daily travel behaviour are very different in developing countries or transitional 

economies, such as China. China is still experiencing rapid urban expansion and 

spatial restructuring in which residents continuously find themselves constrained by 

institutional and spatial transformation involving marketisation of housing, residential 

suburbanisation, inner-city redevelopment, high job-housing spatial imbalance, and 

social and spatial stratification. So far, there is little research using spatial analysis 
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and microsimulation of daily travel behaviour and the resulting transport CO2 

emissions at a fine spatial scale for urban China. 

Moreover, by adopting the western idea of zoning-based land use planning, 

the neighbourhood-scale built environment has transformed from a more traditional 

mixed land use pattern in the inner city toward a mono-functional, automobile-

friendly design in suburbs. As continuous urbanisation in China is expected in the 

next two decades (UN, 2008), urban planning and development policies are critical 

for China in pursuing a low-carbon model of urban development, particularly given 

that urban spatial structure is hard to change once developed, and thus will have lock-

in effects on human activities and long-term environmental outcomes (Lefèvre, 2009). 

Until now, there has been little research in China on urban form, travel behaviour and 

transport CO2 emissions at the disaggregate level, a scale that is important to the 

development of more informed land-use transport environment policy.  

 

1.2 Research aim and objectives 

 

The aim of this research is thus to better understand the impact of urban form, and 

daily travel behaviour on transport CO2 emission in the context of rapid urbanisation 

and spatial transformation in China. This is achieved by spatially simulating a large 

population‟s daily travel behaviour at fine geographical scale through development of 

a new „bottom-up‟ methodology to provide improved transport CO2 emissions based 

on individuals‟ observed daily travel behaviour, from 2000-2030. The research 

provides a means to gain greater insight into the spatial variability of the CO2 

emission at micro-scale, adds new knowledge to existing transport emission research, 

contributes to the innovations of urban simulation, and generates empirical evidence 
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to inform ongoing debates on policy measures needed to facilitate China‟s transition 

towards sustainable and low-carbon urban development. There are three specific 

objectives to be considered in this thesis:  

 

Objective One – To comprehensively and microscopically analyse the 

relationships between urban form, household and individual socio-

demographics and tour-based travel behaviour (Travel Modelling).  

 

Tour or trip chain based travel analysis has been a feature of transport 

research, but has largely been the preserve of developed countries. The important 

associations between urban form and trip-chaining behaviour have received little 

attention. Therefore, the main research questions to be explored for this first objective 

include: (a) how do the socio-demographic attributes of households and individuals, 

and urban form characteristics, correlate with the tour-based travel decision process? 

and (b) does the urban form-travel relationship differentiate between workers and 

non-workers? 

 

To address this first objective the tasks are:  

 

1) Investigate the associations between urban form characteristics, socio-

demographics, and individuals‟ tour-based behaviour in Beijing, China. This 

will include an analysis of trip-chaining behaviour in three principle areas: 

tour generation, tour scheduling, and the tour interdependence effect.  
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2) Investigate the impacts of urban form on tour-based behaviour for workers 

and non-workers, respectively. Summarise the travel rules for residents with 

different socio-demographic attributes under various urban circumstances.  

 

Objective Two – To spatially simulate a large population‟s daily travel 

behaviour (including travel distance and mode choice) at a fine geographical 

scale and estimate transport CO2 emissions from daily urban travel at the 

disaggregate level over 2000-2010 (Microsimulation Modelling). 

 

The research questions to be explored for the second objective are: (a) using 

limited data, how can the travel behaviour and associated CO2 emissions of a large 

population be simulated for 2000 and 2010 in urban Beijing? and (b) what is the 

changing pattern of daily travel behaviour and transport CO2 emissions during this 

period, and what factors drive these changes?  

 

To address this objective the tasks are:  

 

1) Using an activity diary survey and 2000 population census, apply a simulated 

annealing algorithm with important socio-demographics as constraints, to 

create a realistic synthetic population at the sub-district level for 2000 in 

Beijing. 

2) Based on the underlying form-travel mechanisms, spatially simulate the 

synthetic population‟s daily travel, including travel distance and mode choice, 

and estimate transport CO2 emissions from urban travel at sub-district level 

for 2000 in Beijing.  
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3) Employ spatial microsimulation to simulate a realistic synthetic population‟s 

daily travel behaviour and estimate their CO2 emission in 2010. Compare and 

analyse the dynamic changes in travel behaviour and CO2 emissions over the 

decade 2000-2010. Examine the role of socio-demographics and change in 

urban form in contributing to the modelled trend.  

 

Objective Three – To project transport CO2 emissions from passenger travel 

behaviour to 2030 under urban scenarios, to mitigate carbon emissions in the 

future and facilitate China‟s sustainable urban development (Scenario 

Modelling). 

 

The research questions to be explored for this final objective comprise: (a) 

how to modify people‟s daily travel behaviour through transport policies, urban 

planning and vehicle technology? and (b) how does the change in people‟s daily 

travel behaviour (e.g. trip distance, mode share) impact upon aggregate transport 

carbon emission in urban Beijing to 2030?  

 

To address this final objective the task is to:  

 

1) Develop four scenarios on current and potential strategies to modify people‟s 

daily travel behaviour and estimate transport CO2 emissions to 2030. Compare 

and analyse the results of these scenarios to find effective solutions for 

transport CO2 mitigation and sustainable urban development. 
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1.3 Thesis structure 

 

Chapter 2 provides a comprehensive review of relevant literature on urban form, daily 

travel behaviour, and transport CO2 emissions. It first reviews the theories of compact 

development and the critiques of urban compaction, within the context of sustainable 

urban development. Following this reviews are presented of relevant empirical 

studies on the role of urban form in travel behaviour and carbon emission, and the 

potential of technology in carbon mitigation. Microsimulation research for urban 

analysis and transport forecasting is also reviewed. 

Chapter 3 presents the overarching research design, associated modelling 

techniques, and data sources used in the thesis. It serves as a foundation for the 

subsequent empirical analysis of travel behaviour and CO2 emission. Multiple 

methods are employed to address the objectives, including discrete choice modelling, 

spatial microsimulation, and urban scenario design. The study area, Beijing, China‟s 

capital city, is then introduced, followed by the description of the data sources used, 

including a travel dairy survey, land use surveys, and population census. 

Chapter 4 (Objective One, task 1) investigates how socio-demographic 

attributes of households and individuals, and urban form characteristics, influence 

tour-based travel behaviour. It accounts for urban form characteristics in a series of 

multivariate models drawing on detailed land use data, and a travel diary survey with 

discrete choice models employed to analyse the trip-chaining behaviour in three 

principle areas: tour generation, tour scheduling process, and tour interdependence 

effect. The urban form – trip-chaining relationships are examined for workers 

(employed) and non-workers (housekeepers, the retired, etc), respectively (Objective 

One, task 2). 
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The development of a spatial microsimulation of people‟s daily travel 

behaviour and CO2 emission is addressed in Chapter 5. On the basis of an activity 

diary survey and the 2000 population census, the model uses the determinants of trip-

chaining behaviour, discovered in Chapter 4, as constraints and applies a simulated 

annealing algorithm to create a synthetic population at fine spatial scale for Beijing to 

spatially simulate the population‟s daily travel, including trip distance and mode 

choice at the sub-district level (Objective Two, task 1). The model then estimates 

transport CO2 emission from daily urban travel at the sub-district level in urban 

Beijing for the 2000 base year (Objective Two, task 2). 

Chapter 6 applies the method presented in Chapter 5, to provide improved 

transport CO2 emission from people‟s daily urban travel in Beijing to 2030. Building 

on analysis of an activity diary survey and the 2010 population census, this chapter 

first employs spatial microsimulation to simulate a realistic synthetic population‟s 

daily travel behaviour and estimate their CO2 emission at a fine geographic resolution 

in 2010 for Beijing (Objective Two, task 3). It also compares and analyses the 

changes in travel behaviour and transport CO2 emission over the decade 2000-2010, 

and examines the role of socio-demographics and change in urban form in 

contributing to the modelled trend. The transport CO2 emission from passenger travel 

behaviour is then projected to 2030 under four scenarios concerning transport policies, 

urban planning, and vehicle technology (Objective Three, task 1). 

The final chapter, Chapter 7, discusses the limitations of the data sources, 

concludes the findings and innovations of this research, and suggests possible 

improvements and future research for scholars, as well as presenting policy 

implications for government. 
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Chapter 2  

Urban Form, Travel behaviour and Transport 

Carbon Emission: A Literature Review  

 

2.1 Introduction 

 

There has been interest in how urban design promotes wellbeing and efficient living 

since the last century in western countries‟ (particularly the UK and USA) planning 

system. Much research exists to offer theoretical and empirical evidence on the 

effectiveness of urban planning in shaping individual travel patterns and reducing 

carbon emissions. This chapter provides a review of key literature on urban form, 

daily travel behaviour, and carbon emissions. Section 2.2 presents the current debate 

on sustainable urban development patterns, critically reviewing the theories of 

compact development and critiques of urban compaction. The climate change issue 

and research on transport CO2 emissions are discussed in Section 2.3, including 

extensive reviews on the relationship between urban form and travel behaviour, as 

well as the potential of technology in carbon emission mitigation. Section 2.4 reviews 

analysis on the effects of urban form on energy use and carbon emissions from 

transport and buildings, followed by a review of microsimulation research for urban 

analysis and transport forecasting in Section 2.5. The concluding remarks are drawn 

in the final section of this chapter. 
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2.2 Cities, sustainability and urban form 

2.2.1 Theories of compact development 

 

There are general debates on urban development and sustainability worldwide, which 

involve a consideration of different urban forms, such as compact development, urban 

sprawl, and polycentricity. Different movements have been promoted to combat 

urban sprawl, particularly in the USA and Europe, including Smart Growth, and New 

Urbanism, which share much in common in terms of land use, street design and 

public transit development. The evaluation of these different urban forms requires 

comprehensive consideration of economic, social and environmental factors, which 

are very complicated. So far, no consensus exists on what is the most sustainable 

urban form, although there are growing interests in alternatives to urban compaction.  

Urban sprawl, labelled as the low-density, auto-dependent spread of 

metropolitan areas, has been criticised on grounds of traffic congestion, air pollution, 

energy consumption, wasted resources, and health problems (Handy, 2005). Such 

concerns have contributed to the increasing momentum of the smart growth 

movement worldwide. Since it first appeared in the so-called “Smart Growth” 

legislation debate in Maryland in 1997 (Daniels, 2001), smart growth has been 

regarded as a new style of development able to combat urban sprawl. This term has 

been defined by different environmental organisations, government agencies, and 

research groups. Until now, there is no universally accepted definition of smart 

growth, but essentially it means compact, transit accessible, pedestrian-oriented, 

mixed use development patterns and land reuse (American Planning Association, 

2002). 
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Ye et al. (2005) reviewed smart growth statements from ten national 

organisations with divergent land use agendas and forty-nine documents from two 

states of Georgia and Kentucky, finding that although the documents exhibited 

extreme variety in the meanings of smart growth, their broad conceptual definitions 

tended to converge. They further summarised six principal components of smart 

growth policies: 1) natural resources preservation, including farmland preservation, 

subdivision conservation, historical and ecological land preservation; 2) 

transportation, which aims to facilitate pedestrian and cycling, promote public transit 

system and reduce automobile dependence; 3) community development, which is 

designed to promote the population participation and the unique features of each 

community; 4) housing, such as providing multifamily housing and housing for 

special needs and diverse households; 5) planning, including comprehensive planning, 

mixed land use, street design, public facilities planning, alternative water 

infrastructure and systems; 6) economic development, including neighbourhood 

business, downtown revitalisation, infill development and existing infrastructure 

reusing. Among these six main elements of smart growth policies, there is much more 

agreement upon the former three elements (the importance of resource preservation, 

transportation choices, and community development) in various definitions of smart 

growth, than the housing, planning, and economic development dimensions. However, 

the potential conflict between economic growth and environmental protection is the 

main issue that the smart growth approach is intended to resolve (Ye et al., 2005). 

On the whole, the transportation-land use connection lies at the centre of 

efforts in the United States to combat urban sprawl through smart growth strategies 

(Handy, 2005). Unfortunately, the relationship between transportation and land use is 

not a simple linear one. In September 2002, many transportation and planning 
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professionals participated in a conference in Baltimore, Maryland, to discuss the 

issues, practice, and implementation of smart growth and transportation 

(Transportation Research Board, 2005). Their debate centred on a few key questions, 

including why smart growth is a transportation issue, what a smart growth 

transportation system looks like, and how smart growth differs with location, aiming 

to provide a smart transportation system to support smart growth movement. 

Meanwhile, another proposition of the smart growth movement has been 

promoted concerning land use and design strategies, and was labelled as New 

Urbanism. New urbanism advocates attempt to seek a new paradigm to guarantee the 

public place, with its fundamental organising elements the neighbourhood, the district 

and corridor (Katz, 1994). New urbanists have provided specific design 

characteristics to reduce automobile use and create more liveable communities, by 

putting the activities of daily living within walking distance, accommodating a range 

of household types and land uses, providing an interconnected network of streets, and 

facilitating walking, bicycling, and public transit (Handy, 2005).  

The most notable approach should be transit-oriented development (TOD) 

proffered by Calthorpe, which combines regional transportation and land-use 

strategies with detailed planning. The main characteristics of TODs include an 

approximate size of 80 ha, a distance from edge to centre 10 minutes‟ walk, a fine 

grain of different land uses, a mix of different houses, and a central area operating as 

the focus of the community‟s activities (Calthorpe, 1993). TOD can be further 

classified as “urban TOD”- located on a main transit route and suitable for job-

generating and high-intensity uses or “neighbourhood TOD”- located on a feeder bus 

line with a residential and local-serving shopping focus. Each TOD should be a dense, 

tightly woven community which mixes shopping, housing and offices in a compact, 
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walkable area surrounding a transit station, and different TODs are connected to the 

region through a network of light-rail and bus routes (Katz, 1994).  

Traditional neighbourhood development (TND) is another well-known 

approach of new urbanism conceived by Andres Duany and Elizabeth Plater-Zyberk, 

which includes more detailed regulation and varies more in response to local 

conditions than Calthorpe‟s TOD approach. However, it is rooted less strongly in 

convictions about regional planning and the importance of transit, and it operates at a 

smaller scale (Katz, 1994). This new urbanism idea was largely supported by the 

British government in the final report of the Urban Task Force, which addressed 

many recommendations towards altering policies, aiming to establish a framework to 

revitalise British towns and cities (Rogers, 1999).  

In general, those different approaches point to a consensus of urban compact 

development, which is primarily characterized as densely development centres, high 

population density, mixed land use, public transit priority and social interaction. Such 

compact city idea has been advocated by many scholars and professionals. For 

example, Hillman regarded the compact city as one way of responding to the 

challenge of “thinking globally and acting locally”, for the reason that compacting the 

city could reduce travel distances, greenhouse gas emissions and thus help curbing 

global warming; and urban residents could enjoy lower transport expenditure, less 

pollution, lower heating costs, more self-reliance, more community activity, more 

cycling and walking, and better health (Jenks et al., 1996). Kenworthy (2006) also 

suggested that the compact city will consume less land for sprawl and save more land 

for open space, gardens, urban agriculture, forestry and horticulture; and with urban 

compaction it will promote the city to be „greener‟ in its overall functioning through 

more use of green transport modes, traffic calming to promote greener, safer streets, 
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less energy use and less environmental impact. In addition, Camagni et al. (2002), 

based on statistical analysis in the metropolitan area of Milan, further demonstrated 

the compact city development would be associated with specific social, 

environmental and economic benefits, in terms of more land preservation, lower 

environmental impacts, higher public transport efficiency, competitiveness and its 

share in the mobility market.  

To conclude, the compact city development would generate many 

environmental, energy advantages and social benefits, like reuse of urban 

infrastructure, the preservation of rural land, increased accessibility, less pollution 

and congestion, reduced travel distance and car dependency, lower heating costs and 

energy consumption, social mix and interaction, concentration of local activities, 

urban regeneration and urban vitality (Frey, 1999). Many urban compaction policies 

have already been introduced in various western countries, with the purpose to 

promote urban regeneration, the revitalisation of town centres, the public transport 

services, and the concentration of urban activities (Breheny, 1997). 

 

2.2.2 Critique of urban compaction 

 

However, there is much criticism of urban compaction in the debate of sustainable 

development. Breheny, a British geographer, was a fierce critic of urban compaction. 

He provided a number of internal contradictions and potential conflicts of the 

compact city idea with other desirable policies, arguing that urban centralization 

undermines the desirable aim of greening the cities, contradicts British people‟s 

profound fondness for suburban qualities of life, conflicts with decentralised living 

enhanced with telecommunications, constrains the development of renewable energy 
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sources like wind and solar power which cannot be used efficiently in high-density 

urban environments, and undermines the vulnerable rural economies threatened by a 

focus of activity within cities and towns (Breheny, 1992).  

In addition, he further suggested the compact city idea should be subject to at 

least three types of tests: veracity, feasibility and acceptability (Breheny, 1995). For 

example, on the test of feasibility, he raised some major doubts concerning the 

economic, technical, and political prospects of urban compaction (Breheny, 1997). 

The economic doubt is that urban centralisation tends to turn around the long-

established and deeply-ingrained processes of urban decentralisation, attempting to 

reverse the population movements from suburb to city centre. The technical doubt is 

that problems of achieving more use of brownfield sites and problems of 

contamination, access, demand and liability makes urban revival difficult. As for 

political doubt, it refers to the willingness of central government to commit the 

resources needed to bring brownfield sites into use on a large scale and the 

willingness of local communities to bear the consequences of greater compaction 

(Breheny, 1997). He also indicated that compact city policy advocating all future 

growth should be within existing urban boundaries seemed unreasonable. 

Although there have been already many empirical studies trying to 

demonstrate that compact urban forms are sustainable with less energy consumption 

and environmental pollution, their evidences are inconclusive, and even contradictory. 

Hall (2001) outlined several complications concerning the relationship between 

energy system and urban form, pointing out density, residential parking and other 

land use characteristics are interrelated, and they are also associated with socio-

economic factors. The sexual and cultural revolution changed people‟s living patterns, 

and household size and structure changed too, so people demanded more working 
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places and had more complex space needs, and demands for public services became 

greater. Therefore, there is no clear relationship between urban compaction and 

energy consumption, making cities more compact should not be used as a general 

prescription for environmental improvement. Many people have been demonstrated to 

be more satisfied with rural and suburb lifestyles than city life, with high density city-

living less desirable (Hall, 2001). 

Meanwhile, there are other academics criticising the compact city idea in 

different ways. For example, by outlining the five intellectual origins of sustainability, 

Neuman (2005) summarized four common themes of sustainability: sustain, health, 

place specificity and interrelationships, and compared them with the compact city, 

finding that the compact city idea does not fully correspond to these themes. He 

further identified the compact city fallacy, concluding that the compact city is neither 

a necessary or sufficient condition for sustainability and the attempt to make cities 

more sustainable only by using urban form strategies is counterproductive; urban 

form should be conceived as a process towards sustainable cities (Neuman, 2005). 

Furthermore, while much empirical literature has concentrated on the environmental 

aspect of the sustainable city, Burton (2000) examined whether urban compaction 

promotes social equity. Based on a sample of 25 medium-sized towns and cities, she 

selected indicators to measure density, social equity and a range of intervening 

variables, and then used multivariate analyses to test the impact of higher-density 

urban form on 10 different social equity effects, such as access to superstores, access 

to green space, job accessibility, public transport use, opportunities for walking and 

cycling, domestic living space, health, crime, social segregation, and affordable 

housing (Burton, 2000). The results showed that urban compaction would have 

negative influences on at least four aspects of social equity, groups with lower income 
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would have less domestic living space, less affordable housing choice, lower levels of 

walking and cycling, and increasing levels of crime.  

Another criticism of urban compaction relates to carbon sequestration by 

urban greenery. It shows that urban green space can reduce net carbon emissions 

directly through carbon sequestration and indirectly through savings in the cooling 

and heating energy of buildings; with appropriate green space planning and 

management strategies, carbon release will be minimized and carbon storage will be 

maximized, thus helping mitigate the global CO2 problem (Jo and McPherson, 1995). 

It is argued that if cities are built with high density, the size of urban green space will 

be reduced, consequently, its ability to lock up carbon emissions will be constrained 

as well. Besides, high-density urban development without more urban greenery seems 

to be less liveable and sustainable. 

These arguments attempt to demonstrate that there are many disadvantages 

associated with urban compaction, like congestion in urban centres, contradiction to 

urban decentralization, conflict with the green city concept, threaten of rural 

economic development, reduction of living space, unpopular restrictions on 

movement, massive financial incentives and high degree of social control, 

degradation of quality of life, and social stratification (Frey, 1999). Besides, the 

clean-vehicle technologies, social fondness for suburban life and the development of 

telecommunication would make the compact city idea undesirable and unsuccessful.  

 

2.2.3 Towards a sustainable city 

 

In conclusion, there are both benefits and costs associated with urban compaction. 

Between these two extremes of the debate, there are also some compromisers, holding 
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the opinion that the sustainable development should neither be the compact city nor 

urban sprawl, but some kind of „decentralized concentration‟, which combines the 

merits of centralization with benefits of decentralization (Frey, 1999). Jenks et al., in 

their 1996 book „The Compact city-A Sustainable Urban Form?‟, posited three main 

problems of the compact city debate: the claims about the sustainability of the 

compact city have not been proved; the feasibility or social acceptability of the 

compact city remains questionable; and tools to ensure successful implementation of 

the compact city are required (Jenks et al., 1996). As the former two questions have 

been paid much attention, they also discussed some concerns on the implementation 

issue of the compact city, for example, which agency should implement the compact 

city, what measures can be used to manage its effect, on which scale to tackle the 

compact city, and how to evaluate the outcomes. In addition, in their 2000 book 

„Achieving Sustainable Urban form‟, they advanced this debate by offering more 

sophisticated analysis and testing the key elements of urban form: density, 

compactness, concentration, dispersal, mix of uses, housing types and so on 

(Williams et al., 2000). They also pointed out the relative merits of other urban forms, 

broadened the portfolio of options for further growth, and indicated that instead of 

searching for one definitive sustainable form, how to determine which forms are 

suitable in any given locality should be paid more emphasis and a diversity of urban 

futures were likely to co-exist within a single city. 

Towards making the city more ecological, liveable and sustainable, 

Kenworthy (2006) discussed ten critical dimensions and summarized them in a 

simple conceptual model of the eco-city, which involved compact, mixed-use urban 

form, well-defined higher-density centres, priority of public transport and non-

motorized modes, protection of natural environment, environmental technologies, 
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creative economic growth, high-quality public realm, sustainable urban design, urban 

planning and decision-making. These ten key dimensions were organised into four 

critical “Sustainable Urban Form and Transport” factors, four essential factors under 

the heading of “Sustainable Technologies, Economics and Urban Design” and two 

“Overarching Process” dimensions relating to planning and decision-making for 

sustainable cities.  

Until now, although much discussion has been devoted to the question of what 

form and structure would make the city more sustainable, their conclusion is confused, 

equivocal, and even contradictory. As the sustainable city issue is very complex, 

more debate is needed to precisely define the form and structure of the compact city, 

or to indicate the degree of compaction of the urban fabric and the degree of 

centralization or decentralization, which is missing in the previous discussion. In this 

research, the focus is on one aspect of the debate on urban development: how urban 

form influence people‟s daily travel behaviour and transport CO2 emissions, and what 

form would make the residents travel less, walk more, emit less CO2 and make the 

city more sustainable? In the following sections, an extensive review of literature is 

provided on urban form, daily travel behaviour, and transport carbon emissions. 

 

2.3 Climate change and transport CO2 emissions 

2.3.1 Overview 

 

Climate change is widely recognized as the key global challenge of the 21st century. 

The Fourth Assessment Report from the International Panel on Climate Change 

marked that elevated levels of greenhouse gas (GHG) emissions have led to a 0.6
o
C 
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increase in the global average surface temperature since 1900, which will increase an 

additional 1.8-4.0
o
C by 2100 if current emission trends are not altered (IPCC, 2007). 

CO2 is an important heat-trapping GHG, comprising more than 85% of total GHG 

emissions (IPCC, 2007). World CO2 emission from the consumption of fossil fuels is 

predicted to increase from about 25,000 billion metric tonnes in 2003, to more than 

40,000 billion metric tonnes by 2030, with an average rate of 2.1% per year (IEA, 

2006). Moreover, with the increasing concentration of GHG in the atmosphere, global 

warming has become arguably the dominant issue of our time, which may induce 

many serious environmental problems, such as extreme weather and natural disasters, 

and these can greatly impact the sustainability of cities and regions all over the world 

(Stern, 2007). For this reason, what we should do about climate change has gained 

political and popular global attention. 

At the international level, while strong conflicts remain, there is a general 

agreement about what steps need to be taken to reduce greenhouse gas emissions 

(Hamin and Gurran, 2009). Through international agreements, most notably the 

Kyoto protocol, and the resulting carbon trading schemes such as the European Union 

Emission Trading Scheme (EUETS), governments have sought to slow and 

eventually cap future global increases in greenhouse gas emissions (Jaroszweski et al., 

2010). However, due to weak actions at an intergovernmental level, carbon emissions 

continue to rise so that we risk exceeding the concentration limits the IPCC predict, 

which will result in major impacts. There is inertia in the system so climate change 

would continue even if emissions were brought below 1990 levels. The costs of 

implementing mitigation measures now are far less than the costs of dealing with the 

impacts later (Stern, 2007). 
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Many studies show that the global increases in CO2 concentration are due 

primarily to fossil fuel use and land use change (Poudenx, 2008, Jo et al., 2009). 

Human activities, in particular those involving combustion of fossil fuels, produce 

GHG that affects the composition of the atmosphere (Wee-Kean et al., 2008). Land 

use change due to urbanisation and other activities is also affecting the physical and 

biological properties of the earth surface and subsequently affecting the regional and 

global climate (IPCC, 2001). In addition, population and economic growth are the 

major driving forces behind increasing CO2 emissions worldwide over the last two 

decades. In brief, these agreements and studies have drawn the worldwide attention 

on the concept of low carbon, and a lot of low-carbon projects at the national level 

have been carried out in various countries. 

In 2003, the UK government published a white paper on energy with the title 

„Our Energy Future, Creating a Low Carbon Economy‟, which drew international 

attention to the concept of a low-carbon economy. Subsequently, the first legally 

binding national CO2 emission reduction plan was passed, set out in the 2008 Climate 

Change Act (DTI, 2003; Parliament, 2008). In 2007, the Japanese government 

expanded the concept of a low carbon from the economic field to the social field, and 

also promoted the concept of a low-carbon society (Liu et al., 2009). However, as the 

most significant increase in energy consumption and CO2 emission is taking place in 

cities, the concept of a low-carbon city has also gained popularity around the world. 

Since 2008, more than half the world‟s population lived in cites, and their GHG 

emissions make up 80% of the global emissions (Stern, 2007). Moreover, the world 

urban population was projected to grow at an average rate of 1.9% per year and 

expected to rise to about 5 billion (60.2% of world population) by 2030 (Popul, 2002). 
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Therefore, cities, as the main living and working places for human beings, have 

become critical contexts for reducing CO2 emissions. 

Since the most significant increase of energy consumptions and CO2 

emissions is taking place in cities, it is necessary to focus on the urban sectors to deal 

with such issues. Much research demonstrates that, from the perspective of end use, 

the main sources of carbon dioxide emissions come from three sectors: industry, 

transport and housing (Dhakal, 2009). Among these urban sectors, transportation is 

one of the largest and fastest growing sectors of CO2 emissions (World Bank, 2010). 

The transportation sector produced the largest increase in global CO2 emissions 

during 1970-2004 and was responsible for 23% of energy-related CO2 emissions in 

2005 (IPCC, 2007). It is projected that CO2 emissions from transportation will grow 

by nearly 50% by 2030, and by more than 80% by 2050 (IEA, 2009). The rate will be 

even higher in developing countries and transitional economies partly due to rapid 

increases in household incomes and car ownership (IEA, 2006). In China, CO2 

emissions from the transportation sector grew at an annual rate of 8.6% during 2000-

2008, reaching 630 million metric tonnes by 2008 (Qi, 2011). As shown above, it is 

not surprising that the topic of „transport and climate change‟ has received much 

attention in the scientific literature. 

Some researchers argue that urbanisation, increasing incomes, more social and 

leisure time and the diversity of activities have led to substantial increase in passenger 

transport demand while increasing urban infrastructure construction (Yan and 

Crookes, 2009). Three main factors (Figure 2.1) are said to affect carbon emissions 

from urban transport (Wright and Fulton, 2005). These are individuals‟ travel 

behaviour (such as trip frequency, mode choice, travel distance), urban form (such as 

land-use patterns, street network design, etc ) which will affect travel behaviour, and 
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carbon technologies concerning the carbon content of each fuel and the fuel 

efficiency which will affect the carbon emissions per vehicle miles travelled. 

 

 

 

Figure 2.1: Factors affecting transport CO2 emissions 

 

Accordingly, there are three options which can be used to reduce transport 

emissions: 1) low-carbon fuels or other energy carriers, which reduce the life cycle 

emissions per unit of energy, 2) more-efficient vehicles, which reduce energy 

consumption per vehicle kilometres travelled (VKT), and 3) VKT reductions, through 

options such as public transit, energy-efficient urban form, and non-motorised travel 

such as walking and biking (Hankey and Marshall, 2010; Mitchell et al., 2011).  

The first two options, concerning introducing low-carbon fuels and new 

technologies to increase fuel efficiency so that people can continue driving cars but 

with less CO2 emissions, could be named „sustainable mobility‟, while the solution to 

redesign our cities and regions so that there is less need to drive or drive shorter 

distance and more efficiently is known as „sustainable urbanism‟ (Cervero and 

Murakami, 2010). In general, reducing urban transport CO2 emissions will require the 
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combination of those solutions concerning travel behaviour, urban planning and 

carbon technologies. 

 

2.3.2 The role of urban form on travel behaviour 

 

Much literature provides empirical evidence on the effectiveness of urban planning in 

individuals‟ travel behaviour since or before the 1990s. These studies can be divided 

into several categories, for example, by travel purpose (work travel vs. non-work 

travel, etc.), analytical approach (simulations vs. regressions, etc.), research scale 

(macro level vs. micro level), measures of urban form (dummy variables of 

neighbourhood type vs. concrete measures of density, diversity, and design features, 

etc.), or the nature and level of data (Crane, 2000). Such classifications can be useful 

for the understanding of its history and progress. Here, the literature is reviewed in 

approximately chronological order, dividing it into three stages (Figure 2.2): early 

stage (before 1990), mid stage (1990s), and late stage (after 2000). However, we will 

pay more attention to the recent research, especially that post 2000, as the early 

research has been extensively reviewed elsewhere (Cervero and Seskin, 1995; Handy, 

1996; Ewing and Cervero, 2001) and recent studies are much more diversified, 

sophisticated and promising. 

 



27 
 

 

 

Figure 2.2: Literature summary (references are exemplified in the text below) 

 

2.3.2.1 First stage: literature pre-1990 

 

Past studies, especially those before 1990, were mainly aggregate in nature focused 

on the macro or intermediate scales, adopting the city, metropolitan area or corridors 

and activity centres as the analytical unit to investigate the relationship between urban 

form and travel patterns. Partly because of the absence of empirical data concerning 

land use and travel variables, many organizations used travel-demand forecasting 

models to simulate the effects of alternative land-use scenarios on aggregate travel 

behaviour (Cervero and Seskin, 1995). As this research assumed certain relationships 

between urban form and travel patterns, and then used these assumed relationships to 

predict the implications of different urban development scenarios, such simulation 

studies did not empirically test the relationship between urban form and travel 
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behaviour (Handy, 1996). For the most part, they only provided some general insights 

into the potential effects of different urban developments on average travel patterns; 

therefore, this kind of studies was of limited value (Handy, 1996). 

Another characteristic of research in this stage was that, density, such as 

population density, or job density, was mainly used as the measure of urban form. 

These studies usually compared the differences of urban densities and average travel 

variables, or energy consumption between various cities, regions or even countries. 

One of the best known studies was by Newman and Kenworthy (1989), who 

evaluated the associations between physical planning factors and gasoline use per 

capita for 32 cities worldwide, finding that land use parameters, such as population 

density, and job density, have strong correlations with gasoline use. In particular, the 

relationship between gasoline use and population density was an exponential curve, 

which implied that major fuel savings would happen when urban density increased to 

the range of 12 to 14 people per acre (Newman and Kenworthy, 1989). Although this 

work has been widely cited, it has also been criticized, notably for the lack of 

statistical control for other factors which may also influence fuel consumption and 

fuel price (Gordon and Richardson, 1989). 

In general, these first stage studies only provided strong correlations between 

urban form and travel patterns, and did not demonstrate causal relationships between 

variables. While not accounting for the household and individual socio-economic 

attributes, such as household size, income, or car ownership, the high correlations 

between physical planning and gasoline use may not be true. Besides, density, the 

simple measure of urban form, has also been challenged, for the reason that it may 

mask the impacts of other urban form measures on travel variables and energy use, 
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such as land use mix, street network design, accessibility to various facilities, and so 

on. 

 

2.3.2.2 Middle stage: literature in the 1990s 

 

The previous research attempted to predict travel patterns for given urban 

development scenarios. Research in the 1990s attempted to understand how travel 

behaviour might be influenced by land use planning and urban design (Crane, 2000). 

These studies pay more attention to micro-level analysis of neighbourhood-scale land 

use characteristics rather than only measuring macro-level urban forms such as city-

scale population density. By using activity diary data and disaggregate approaches, 

these studies better capture the associations between land use parameters and 

individual travel behaviour. For example, comparing residents‟ travel characteristics 

for work trips between some neighbourhoods in the San Francisco Bay Area, Cervero 

(1996) found that walking and bicycling modal shares and trip rates tended to be 

much higher in transit-oriented neighbourhoods than in the paired auto-oriented 

neighbourhood. Using regression models to explore the relationship between 

neighbourhood type and transit modal shares, he also found that both residential 

densities and neighbourhood type have significant positive effects on transit 

commuting.  

Cervero and Kockelman (1997) put forward three principal measures of the 

built environment as the original 3Ds: density, diversity and design, which have been 

widely adopted in later land use-travel research. Using 1990 travel diary data and land 

use records of 50 neighbourhoods in the San Francisco Bay Area, they found that 

these three principal urban form measures had significant impacts on individuals‟ 
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travel behaviour. People living in neighbourhoods with higher density, mixed land 

use, and pedestrian-oriented designs tended to travel fewer vehicle miles and relied 

less on automobiles, especially for non-work, home-based trips. Their findings 

seemed to support the claims of new urbanists and others that compact, mixed-use, 

pedestrian-friendly designs can „degenerate‟ vehicle trips, reduce vehicle kilometres 

travelled (VKT) per capita, and encourage non-motorized travel (Cervero and 

Kockelman, 1997). 

On the contrary, based on five diverse neighbourhoods in the San Francisco 

Bay Area in the same year, Kitamura et al (1997) also examined the effects of land 

use variables and attitudinal characteristics on travel behaviour. They found that the 

attitudinal variables explained the highest proportion of the variation in the data and 

were more strongly associated with travel behaviour than were land use 

characteristics, and further indicated that land use policies promoting higher densities 

and diversities may not alter travel demand effectively unless residents‟ attitudes are 

also changed. 

Using travel diary data for a sample of 769 individuals in the southern 

California, Boarnet and Sarmiento (1998) examined the link between land-use 

patterns at the neighbourhood scale and non-work trip generation by automobile. 

While applying an ordered probit model and instrumental variables regressions to 

control for individuals‟ socio-demographic attributes and residential location choice, 

they found the land-use variables to be statistically insignificant in the influences of 

non-work travel behaviour. They therefore suggested that the issues of geographical 

scale and residential location choice should have more attention when drawing 

conclusions about the relationship between travel behaviour and land-use 

characteristics. Research in this period attempted to investigate the influences of 
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residents‟ attitudinal variables which may confound the impacts of urban planning on 

travel behaviour. However, this research remained limited, partly due to the lack of 

individuals‟ subjective data.  

To conclude, research in the 1990s, compared to those in the first, pre 1990‟s 

stage, made great progress in examining the relationship between urban form and 

travel behaviour, largely because they worked with observed behaviour, showing how 

people behaved in different neighbourhoods, and used multivariate statistical models 

in an attempt to explain this behaviour (Crane, 2000). The measures of urban form 

were also extended to several dimensions, giving potential for greater explanatory 

power. Developing this last point, Stead and Marshall (2001) exemplified nine 

aspects of urban form which may influence travel behaviour, including distance from 

urban centre, mixing of land use, provision of local facilities, proximity to transport 

networks, and ranging from regional strategic planning down to specific local and 

neighbourhood planning issues. They also suggested that these land use variables are 

interrelated and that this would add further complexity to the analysis of relationship 

between urban form and travel behaviour. 

Ewing and Cervero (2001) conducted a review of 73 empirical studies of land 

use-travel demand relationships, mainly from the 1990s. They divided these studies 

into five categories according to urban form measures, with studies that addressed: 

neighbourhood and activity centre designs, land use variables, transportation network 

variables, urban design variables, and composite indices. While comparing and 

summarizing the relationships between the built environment variables and travel 

variables modelled, they further tended to generalize the impact of the built 

environment on vehicle trips and vehicle miles travelled by using elasticity measures 

for the application of public policy making and sketch planning. However, some 
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urban form variables remained relatively poorly investigated and the residential self-

selection problem (see below) was largely not addressed in these studies, hence 

causal links between urban form and travel behaviour remained uncertain. 

 

2.3.2.3 Late stage: literature after 2000 

 

Whereas research in the 1990s was mainly focused on case studies from the USA, 

studies post 2000 became common elsewhere. Based on data from the Netherlands 

National Travel Survey, Dieleman et al. (2002) applied multinomial logit models and 

regression models to explore the impacts of urban form factors and micro-level 

household attributes on modal choice and travel distance, respectively. They found 

that the two sets of factors were of nearly equal importance in explaining individuals‟ 

travel behaviour, although these relationships could be significantly modified by trip 

purpose, especially for distances travelled for shopping and leisure activities. 

Schwanen et al. (2001, 2004) also provided some Netherlands experiences of the 

relationship of urban form to travel behaviour by using data from the 1998 

Netherlands National Travel Survey and evaluating several national spatial policies. 

Whilst the land use – transport literature remains dominated by developed 

country studies, studies of developing countries, including China, emerged post 2000. 

Using data from a travel survey of four selected neighbourhoods in Shanghai, Pan et 

al. (2009) examined the influence of urban form variables on individuals‟ travel 

behaviour. The results showed that residents of pedestrian-friendly neighbourhoods 

tended to travel shorter distances, have fewer motor vehicles and were more likely to 

choose non-motorized modes, which suggested that land use planning and urban 

design have important short- and long-term effects on motorization and travel 
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behaviour. Based on a household interview survey in Beijing in 2001, Wang and Chai 

(2009) used structural equation modelling to examine the impact of job-housing 

relationships on transport mode and travel distance for work purpose. They 

demonstrated that residents living in the Danwei
1
 system had shorter commuting trips 

and higher usage of non-motorized transport modes than those living in commodity 

housing neighbourhoods, indicating that Danwei neighbourhoods with a higher land 

use mix, better public transit accessibility, and more pedestrian-friendly street design 

have positive effects on travel behaviour. However, although China is experiencing 

rapid urban expansion and profound urban spatial transformation, such research 

remains very scarce and there remains little empirical evidence explaining the causal 

links between neighbourhood-scale urban form and urban travel behaviour in China. 

Land use-transport studies have to date largely adopted the trip as the basic 

unit when analysing the relationship between urban form and travel behaviour. More 

realistic may be the use of the „tour‟ or „trip chains‟, defined as the travel from home 

to one or more activity locations and back home again. Tours (trip chains), can link 

individuals‟ multiple trips together, including the outbound and return trips and all the 

stops made along the way, and offer a means of better explaining an individuals‟ 

travel behaviour. By using tours as the basic unit for analysis, tour-based modelling 

can match more closely the way in which travel decisions are actually made, and so 

will more likely capture true behavioural causality (Frank et al., 2008). As a result, 

several studies post 2000 have attempted to model tour-based travel behaviour. Using 

data from the Puget Sound Transportation Panel (PSTP) in the United States, Krizek 

(2003) adopted multiple regression models to examine the relationship between 

                                                           
1
 Danwei used to be the basic unit of economic, social, and spatial organization in socialist 

Chinese cities. It not only provided a workplace for employees, but also a comprehensive 

package of welfare and services. Further details see Chapter 3. 
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neighbourhood access and number of tours, tour frequency by purpose, and distance 

for simple maintenance tours, respectively. He found that households living in 

neighbourhoods with higher accessibility were more likely to make more tours with 

fewer stops per tour, and they tended to travel shorter distance for maintenance 

activities, such as shopping, appointment or personal errands; while neighbourhood 

accessibility seemed to have little influence on households‟ propensity to take 

complex tours for any purpose.  

Chen et al. (2008) also demonstrated the importance of using the tour as the 

analysis unit to model travel behaviour. Using data for the New York Metropolitan 

Region, they employed a simultaneous two-equation system to examine the impacts 

of the built environment, especially the population and employment density at home 

and workplace, on mode choice decisions in home-based work tours. The results 

showed that the built environment variables did influence tour-based travel choice, in 

particular, employment density at workplace was found to exert more influence than 

residential density at home, which provided new evidence for urban planning and 

policy making. Frank et al. (2008) applied discrete choice models to investigate the 

effects of travel time, costs, and urban form variables on individuals‟ mode choice 

and tour complexity for home and work related travel in the Central Puget Sound 

region. They indicated that travel time was the most important factor in travel choice 

decision-making while land use variables were found to significantly influence the 

tour complexity for any type modelled. However, partly because of the difficulties of 

tour classification and tour complexity, studies using a tour-based travel framework 

have faced difficulties in drawing general conclusions on the role of urban form in 

tour-based travel behaviour.  
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Multivariate regression models have often been used to test the impacts of 

urban form on travel behaviour, with most studies treating urban form variables as 

exogenous, assuming that urban form is determined by forces such as planning, 

government subsidies, and developers‟ decisions, which were often beyond the 

control of individual residents. This approach, however, has been criticised by some 

researchers (e.g. Cao et al., 2006) for not considering the residential self-selection 

process while testing the land use-travel behaviour relationships. For instance, even 

though residents may have little power to shape urban forms, they may choose to live 

in the kind of neighbourhoods in line with their lifestyles. This residential sorting 

process, if not statistically controlled, will confound the estimation of the effects of 

urban form upon travel behaviour, because, if variation in the built environment leads 

to households spatially sort themselves according to their travel preferences, then 

those preferences will be highly correlated with built environment characteristics 

(Chatman, 2009). In other words, the associations between urban form and travel 

behaviour can either imply changes in travel choices in response to urban form, or it 

may result from a certain residential self-selection process, in which residents select 

the built environment that facilitates their preferred travel patterns. If the latter is the 

case, planning may have a smaller role in altering urban travel patterns and mitigating 

environmental outcomes.  

Therefore, researchers started to include individual‟s attitudinal variables 

towards urban form and travel preferences into their models to control for residential 

self-selection in their investigation of causal links between urban form and travel 

behaviour. For example, Khattak and Rodriguez (2005) surveyed and compared two 

different neighbourhoods in North Carolina. Using two-stage regression models to 

control for demographic characteristics of households and residential self-selection, 
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they found that households in the neo-traditional neighbourhood travelled shorter 

distances, made fewer external trips and made more walking trips than those in 

conventional suburban neighbourhoods. Chatman (2009) applied a variant reported-

attitudes approach to account for the residential self-selection process, provided 

evidence that households seeking travel access were less responsive to the built 

environment, and residential self-selection did not bias estimates of the effects of the 

built environment on travel behaviour very much. By applying the seeming unrelated 

regression equations model (SURE) to investigate the underlying causal link between 

the built environment and non-work trip frequency by different modes in Northern 

California, Cao et al. (2009) also found that neighbourhood characteristics influenced 

individuals‟ travel decisions, especially for non-motorized travel frequency, even 

when residential self-selection was accounted for. 

By contrast, there is other research which had different findings, including 

inverse results. For instance, using structural equation modelling, Bagley and 

Mokhtarian (2002) found that travel behaviour was largely impacted by attitudinal 

and lifestyle variables, not the built environmental variables, which had often been 

overestimated by the new urbanism supporters. Based on a self-administered survey 

of 1,368 respondents conducted in six neighbourhoods in Austin in 1995, Cao et al. 

(2006) applied two separate negative binomial models to investigate the influence of 

the built environment and residential self-selection on pedestrian behaviour, finding 

that residential preference plays an important role in individuals‟ travel choices, and 

pedestrian shopping trips are more likely to be explained by residential self-selection 

variables. Furthermore, they also conducted similar research for 547 individuals from 

different types of neighbourhoods in Northern California. Using a structural equation 

model, they examined the causal link between urban form and travel demand, while 
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controlling for residential preferences and travel attitudes derived from quasi-

longitudinal data. The outcomes showed that self-selection and built environment 

both had a significant influence on travel behaviour, and accessibility might be the 

most important factor in reducing automobile use (Cao et al., 2007). 

Other research with different approaches to those described above also 

provides useful explanations on the relationship between urban form and travel 

behaviour. For example, while focused on a special group of homemakers, Chen and 

McKnight (2007) tested this controversial relationship, finding that the effect of the 

built environment is an order of magnitude less than socio-economic variables and the 

inter-relationship between different types of activities and associated travel is very 

important for such studies. From the perspective of three different levels, including 

the block group, the individual and the trip analysis, Fan (2007) investigated the 

relationship between the built environment, coupled with traffic and weather 

conditions, travel behaviour and time allocation. Her evidence showed that land-use 

planning had important influences on individual travel behaviour, but that this land 

use-travel connection was differentiated based on activity context, such as activity 

type and time of day. Bartholomew and Ewing (2009) used a multi-level model to test 

how far compact growth scenarios were predicted to reduce VKT based on a wide 

range of scenario planning analysis, finding that VKT in 2050 will be reduced by 17% 

below compact growth scenarios assuming a continuation of existing trends. 

Ewing and Cervero (2010), conducted a meta-analysis of the associations 

between the built environment and travel demand, based on reviewing large quantities 

of literature existing before 2009. They further quantified the effect sizes of various 

urban form measures by computing individual and weighted average elasticities, 

trying to provide suggestions for governments in the application of land-use planning 
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and urban design (Ewing and Cervero, 2010). In their paper, „six Ds‟ have been 

summarized as important dimensions of urban form to moderate travel demand, in 

comparison with the original „three Ds‟, with demographics, the seventh D, controlled 

as confounding factors in travel studies. These six Ds of urban form measures include 

density, diversity, design, destination accessibility, distance to transit, and demand 

management.  

To conclude, whilst much research provides empirical evidence and insights 

into the role of urban planning in influencing individual travel behaviour, this 

evidence base is heterogeneous and so remains inconclusive with respect to the causal 

links between urban form and travel behaviour. Also, it is clear that literature on 

urban spatial structures and travel behaviour predominately focuses on advanced 

economies, particularly of the US and Europe. Thus, application of policy lessons 

drawn from these places, to developing countries where the underlying context may 

be very different, is potentially highly problematic. This means that efforts to develop 

carbon sensitive transport policy and plans for countries like China, require land use-

transport studies that aim to better understand travel behaviour within the specific 

local context. 

 

2.3.3 The carbon mitigation potential of technology  

 

Technology is widely regarded as a critical tool to reduce transport carbon emissions, 

particularly in terms of fuel type and vehicle fuel efficiency. For example, UK policy 

promotes advanced vehicle technologies such as plug-in hybrids and full battery 

electric vehicles which are viewed as key to achieve the government‟s stated 2050 

target to reduce CO2 emissions by 80% from 1990 levels (Anable et al., 2012). 
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Technological choices have been addressed by transport emission researchers for 

many years, with “bottom-up” system models like MARKAL1 and the TIMES 

integrated assessment used to explore the impact of technology innovation and 

adoption in abating carbon emissions (Labriet et al., 2005; Loulou and Labriet, 2008). 

By considering the transport sector within a model of the worldwide energy system, 

Hankey and Marshall (2010) related energy choices in the transport system to some 

key choices made elsewhere in the energy supply system, and suggested it was 

important to develop new technologies for supplying renewable energies such as 

electricity or hydrogen with zero emission to fight climate change. Moreover, under 

the continuous pressure of environmental regulation, particularly the Zero Emission 

Vehicle (ZEV) mandate introduced by the Californian Air Resources Board, more 

efficient engine technologies have also been developed for low emission vehicles, 

such as electric, fuel cell, and hybrid vehicles. Oltra and Saint Jean (2009) analysed 

the advantages and disadvantages of these alternative engine technologies, and 

showed the potential for decarbonisation under various technology scenarios.  

Although developing new vehicle technologies and increasing fuel efficiency 

has been seen as a central instrument to reduce both energy consumption and CO2 

emissions in the transport sector, these reductions will eventually be offset by 

increased car ownership, car usage, trip frequency, travel distance, and traffic 

congestion (Mitchell et al., 2011). Theoretical and empirical studies about rebound 

effects raise many doubts concerning the effectiveness of such technologies (Greene, 

2012; Matiaske et al., 2012). The rebound effect refers to the increased energy 

services consumption by end-consumers due to the introduction of new technologies 

and energy efficiency improvements. Such basic economic and behavioural responses 

tend to offset the environmental benefits of technology choices. In particular, these 
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counterproductive effects are estimated to be prominent in the transport sector. 

Matiaske et al. (2012) used the German Socio-Economic Panel data to examine the 

extent to which higher fuel efficiency of cars affects additional travel, and discovered 

fuel efficiency had a positive effect on the kilometres driven, meaning that with 

higher efficiency people tended to drive longer distances, which indicated a big 

rebound effect operated. Goerlich and Wirl (2012) introduced a theoretical 

framework to link the crucial issues of fuel demand, technical efficiency and quality 

of cars, and used Australia as the case study to demonstrate that more efficient 

automobiles encourage consumers to expand service demand as well as the demand 

for quality (larger and more powerful cars). Based on the analysis of six European 

countries, Ajanovic and Haas (2012) investigated the impact of fuel intensity on 

overall fuel consumption and on the demand for vehicle km driven in car passenger 

transport, and found a high rebound effect as well. They concluded that adopting the 

technical standards as the only policy instrument would have limited success.  

Therefore, in order to respond adequately to the environmental challenges, it 

is likely that technological improvements should be augmented with some 

fundamental changes in the day-to-day patterns of human activity (Anderson et al., 

1996). Despite significant reduction of carbon emissions due to improvements in 

technology and fuel efficiency, these reductions will eventually be offset by increased 

car ownership, car usage, and traffic congestion, which constitute perhaps the most 

pressing environmental threat of the current age. If developing countries such as 

China and India follow the same path of automobile dependence as developed nations, 

technological advances are very unlikely to offset such a monumental increase in 

motorisation and its subsequent emissions. The resulting emissions from millions of 

new vehicles will simply overwhelm the reductions achieved through improved fuel 
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efficiency and propulsion technologies (Wright and Fulton, 2005). In addition, even if 

technology could theoretically provide the required reduction in CO2 emissions, this 

would be a difficult, expensive and a long term solution with many risks (Chapman, 

2007). On the contrary, improvements to urban spatial organization and land use 

patterns are considered a cost-effective tool that reduces carbon emissions from 

transportation by encouraging low-carbon travel (Grazi and Van den Bergh, 2008; 

Brownstone and Golob, 2009). This is particularly important for developing countries 

that still experience rapid urban spatial expansion, because urban spatial structure is 

hard to change once built up, and thus will have lock-in effects on long-term 

environmental outcomes (Lefèvre, 2009). Therefore, all these technological efforts 

need to be supported by improvement of the physical characteristics of urban form so 

that its destructive environmental impact is minimized; and it is essential to research 

the relationship between urban form, travel behaviour, and thus CO2 emissions. 

 

2.3.4 Summary  

 

To combat climate change and facilitate low-carbon development, it is critical to have 

a better understanding of factors that shape travel behaviour, and resulting carbon 

emission. A large amount of literature has investigated the relationship between urban 

form and travel behaviour using various data collection techniques and analytic 

models, which attempts to demonstrate that higher population density, mixed land use, 

and pedestrian-friendly street design correlates with fewer private vehicles, shorter 

distance and less motorised travel. However, researchers have yet to resolve the 

debates regarding the complex effects of urban form on daily travel behaviour, 

mainly due to the residential self-selection issue. Moreover, most prior studies use 
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trips as the basic unit of research, with little attention devoted to tour based analysis, 

which better reflects the interrelated decision process of individuals‟ daily travel 

behaviour.  

Meanwhile, various technological approaches have been researched separately 

to mitigate transport carbon emission, such as introducing new clean fuels and 

improving fuel efficiency. Although it is a critical tool, the technological 

development alone cannot deliver the significant reductions in transport CO2 emission. 

It should be combined with fundamental changes in the daily travel patterns of 

residents. Furthermore, existing literature predominantly focuses on developed 

countries, while Chinese cities have been largely absent from such research. As 

China‟s urban spatial development and individuals‟ travel behaviour are often 

different in advanced economies such as US or Europe, lessons learnt from studies of 

developed countries cannot uncritically be applied to China. More efforts should be 

made to better understand the travel behaviour in the context of rapid urbanisation 

and spatial restructuring in urban China. 

 

2.4 Urban form, energy use and carbon emissions 

2.4.1 Urban form and transport CO2 emission from passenger travel 

 

Presently, the techno-economic analytical approach has principally been employed to 

examine the influence of fuel taxation, price elasticity and fuel efficiency on transport 

energy consumption and carbon emissions at the aggregate level in dealing with 

climate change mitigation (Dahl, 2012; Sterner, 2012). However, some studies 

include the effects of urban form or land-use strategies too. For example, using 
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TRESIS (Transportation and Environment Strategy Impact Simulator), an integrated 

model designed to analyse a variety of land use, transport, and environmental policy 

strategies or scenarios for urban areas, Hensher (2008) evaluated the influence of 

several policy instruments, such as fuel efficiency, a carbon tax, variable user charges, 

and improvements in public transit on passenger travel distance and CO2 emissions in 

the Sydney metropolitan area. The results showed that technology (i.e. fuel efficiency 

improvements) and pricing instruments (a carbon tax or a variable user charge) 

offered more attractive prospects than land-use strategy (i.e. public transport 

improvement) in terms of CO2 emission reduction, as well as in the aspect of 

government financial outcome. Similarly, Brand et al. (2012) introduced a newly 

developed and more sophisticated forecasting model, the UK Transport Carbon 

Model (UKTCM), to analyze the impact of different policy scenarios on energy 

demand reduction through life cycle carbon emissions and external costs. The results 

showed that electric vehicles tended to be the most effective single strategy for 

reducing emissions. Nevertheless, in terms of prioritizing policy interventions, an 

integrated policy approach that considered both demand and supply side strategies 

were far more effective than any single policy intervention. 

By contrast, there are some other studies which focus on the influence of 

urban form variables on household travel behaviour and transport carbon emissions at 

the disaggregate level. For instance, based on the analysis of 1998 Dutch housing 

survey data, Grazi et al. (2008) examined the impact of urban density on commuting 

behaviour and the travel-induced CO2 emissions. Applying an instrumental variable 

approach (IV) to account for endogeneity of residential location, they found that 

locations with higher density tended to lead to lower car based carbon emissions, and 

so concluded that spatial planning policies deserved more attention in climate change 
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debates because of their contribution to reducing carbon emissions. Boussauw and 

Witlox (2009) also investigated the relationship between spatial structure and energy 

consumption for commuting travel behaviour. Using 2001 census data for Belgium, 

they developed a commute-energy performance (CEP) index to illustrate the urban 

differences of transport energy consumption in Flanders and Brussels, and 

demonstrated that the home-work distance was a very important determinant for the 

commuting energy performance, whilst mode choice was much less important. 

Moreover, residential density and proximity to the main road and rail network had an 

influence on commuting travel and energy performance, but this influence varied 

significantly in different locations, such as suburban areas or central business districts. 

Conducting a major survey with a sample of 456 individuals in Oxfordshire, 

Brand and Boardman (2008) described an innovative methodology and evaluation 

tool for profiling annual greenhouse gas emissions from personal daily travel across 

all transport modes within a 12-month timeframe. They aimed to find out the extent 

to which individual and household travel activity patterns, choice of transport mode, 

geographical location, and socio-economic and other factors impact on greenhouse 

gas emissions. The results showed that air and car travel dominated overall emissions, 

and the emissions amongst the population is highly unequally distributed, with the top 

10% of emitters responsible for 43% of emissions and the bottom 10% for only 1%. 

Moreover, they further profiled the GHG emissions across all modes of personal 

passenger travel for non-business-related travel activity, and discovered there was a 

„60-20 emission‟ rule (with the highest 20% of emitters producing 61% of emissions) 

across different units and scales of the analysis. They also adopted a multivariate 

regression model to demonstrate that income, working status, age and car ownership 
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are significantly related to overall emissions, while factors related to accessibility, 

household location and gender are not (Brand and Preston, 2010). 

Based on the 2001 National Household Travel Survey (NHTS) data, Liu and 

Shen (2011) applied SEM to examine the effects of urban form variables on 

household travel and transport energy consumption in the Baltimore metropolitan 

area, finding that urban form did not have a direct effect on VMT or energy 

consumption, but its indirect effect was significant and negative, which indicated 

urban form influenced household travel and energy use through other channels, like 

speed or vehicle ownership. However, this result can be challenged for at least two 

reasons. Firstly, population density is used as the only urban form variable in the 

SEM; as urban form should be measured by many dimensions, such as diversity, 

design, accessibility, etc, only employing population density to represent urban form 

is far from enough. Secondly, urban form variables are hypothesized as the 

exogenous variables in their SEM, which is also questionable. Because of the 

interactions between urban form, travel behaviour, and transport energy consumption, 

the urban form variables should be included as the endogenous variables in the SEM 

in order to better capture the real relationship between urban form, household travel 

and energy use while accounting for the residential self-selection process.  

Such doubts can be illustrated by comparing it with similar literature. Using 

the same 2001 US NHTS data, Brownstone and Golob (2009) also applied SEM to 

investigate the impact of residential density on vehicle usage and energy consumption 

in California. While treating urban form as the endogenous variables in their model to 

account for residential self-selection, they found that residential density had directly 

and totally significant and negative effects on household vehicle usage and energy 
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consumption, and this total effect could be decomposed into two paths of influence: 

household vehicle mileage and type choice. 

To conclude, these empirical results have provided mixed evidence of the 

influence of urban form on travel behaviour and transport carbon emissions. Until 

now, few researchers have empirically investigated the causal link between urban 

form and transportation energy use and carbon emissions, and this causal link remains 

unclear and inconclusive. Therefore, more empirical research involving more 

sophisticated and comprehensive quantitative models and detailed behavioural data 

are needed to examine the relationship between urban form and transport CO2 

emissions (Liu and Shen, 2011). 

 

2.4.2 Building energy use and life-cycle carbon emission 

 

The urban form-energy relationship is more complicated than implied by the 

preceding discussion, as in addition to the transport energy requirements, urban form 

can influence residential building energy use too. Owens (1984) made the first 

attempt in the UK to explain the influence of urban form on energy demand for 

different end uses, such as transport and building sectors, and addressed the potential 

for planners to guide the evolution of sustainable built environment with an energy-

constrained consideration. Moreover, the form of the built environment may also be a 

significant factor in determining the feasibility of various technologies of energy 

supply and distribution (Owens, 1984). She later demonstrated that spatial variables 

could be related to energy needs and energy efficiency at various scales of urban 

development, the most significant interactions occurring through travel and transport 

requirements and through energy use in buildings, mainly for space heating. These 
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different scale spatial variables included built form, orientation, siting, layout, density, 

interspersion, shape, size, regional structure, etc. (Owens, 1992b).  

Not surprisingly, it is meaningful to consider the energy consumption of the 

residential sector, which typically accounts for a large share of energy demand. For 

instance, building energy use accounts for over half of the total energy consumed and 

an equivalent proportion of pollution generated in the UK; in the European Union this 

figure is 41%, and in the US 36% (Steemers, 2003). Nationally, it accounts for 16-50% 

of that consumed by all sectors, and averages approximately 30% worldwide (Swan 

and Ugursal, 2009). Therefore, it is important to explore the relationship between 

urban form and residential building energy use.  

Taking the UK as an example, energy used in housing is mainly to provide 

four services: space heating, hot water, lighting and appliances. The residential 

energy demand is dominated by space heating, which on average accounts for 60% of 

the total energy, and it is the space heating that will be most affected by urban form, 

with the remaining consumption being largely determined by occupant needs 

(Steemers, 2003). As for space heating, detached houses have been demonstrated to 

require more energy than flats, with terraced housing or low-rise flats resulting in 

significant reductions in energy demand at the neighbourhood scale; density and land-

use mix can affect the economic viability of large-scale Combined Heat and Power 

(CHP) at the urban scale (Owens, 1992a). 

Ratti et al. (2005) pointed out that building energy performance was a very 

complex function which was dependent upon: (1) urban geometry, (2) building 

design, (3) systems efficiency, (4) occupant behaviour; and these four points were 

under the control of different actors in the building sector: urban planners and 

designers in (1), architects in (2), system engineers in (3) and occupants in (4). Based 
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on use of digital elevation models (DEMs), they attempted to explore the effects of 

urban texture on building energy consumption and provided energy simulations for 

different urban areas. Ewing and Rong (2008) put forward a conceptual framework 

linking urban form to residential energy use via three causal pathways: electric 

transmission and distribution losses, energy requirements of different housing stocks, 

and space heating and cooling requirements associated with urban heat islands. By 

using various national data sources and multiple regression models, they examined 

the impact of urban sprawl on residential energy use through housing stock and UHI 

effects, demonstrated that both single-family detached houses and big houses lead to 

higher residential energy use, which indicated support for compact development 

strategies.  

By contrast, there are empirical studies which show different and 

contradictory conclusions. For example, based on the survey of energy usage in a UK 

home, Wright (2008) demonstrated that there were only weak correlations between 

energy use and urban form variables across all types of dwelling, and households 

tended to have a much stronger influence on energy use than did built form. Howard 

et al. (2012) constructed a model to estimate the building sector energy end-use 

intensity for space heating, hot water, and electricity for space cooling in New York 

City. This indicated that such end use was primarily dependent on building function, 

not on construction type or the age of the building.  

In addition, as far as the methodologies are concerned, Swan and Ugursal 

(2009) provided a comprehensive review of the various modelling and techniques 

applied in the building energy use analysis, and broadly divided them into two 

categories: top-down and bottom- up. The top-down approach treats the residential 

sector as an energy sink and regresses the building energy consumption as a function 
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of top-level variables such as macro-economic indicators, energy price, and general 

climate. This approach is not concerned with individual end-uses and is mainly used 

for supply analysis based on long-term projections of energy demand by accounting 

for historic aggregate energy values (Swan and Ugursal, 2009). In contrast, the 

bottom-up approach estimates the energy consumption of a representative set of 

individual houses to regional and national levels, and consists of two distinct 

methodologies: the statistical method (e.g. regression, conditional demand analysis, 

neural network) and the engineering method (e.g. population distribution, archetype, 

sample). Such bottom-up techniques have advantages in examining the relationship 

between urban form and residential energy use, because it calculates the energy 

demand of end-uses based on representative survey data of individual houses by 

taking into account multiple detailed micro-level variables. However, partly because 

survey data is limited due to collection difficulties and cost, the strict requirements of 

a selected sample, the subjective descriptions of occupant behaviour, and the seasonal 

differences of energy use, the bottom-up building energy use analysis is often 

compromised (Swan and Ugursal, 2009).  

As spatial proximity can allow cost-effective re-use of waste heat streams and 

facilitate the introduction of combined heat and power and district heating systems, 

Steemers (2003) described three form factors which could be managed to increase 

density: by increasing building depth, by increasing building height or reducing 

spacing, and by increasing compactness. He further demonstrated that high housing 

density in the UK can be achievable and beneficial for energy conservation. However, 

some authors argued that high density housing would increase energy demand due to 

restrictions on natural ventilation and light, more energy intensive construction and 

constrained opportunity for solar heating systems (Owens, 1984; Hui, 2001); while 
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others maintained that even though low density living provided opportunities for 

energy efficient buildings with solar gain, it was at the cost of high transport energy 

demand due to long travel distance and motorized mode choice (Holden and Norland, 

2005). This paradox seems to suggest the possibility of a density at which total 

energy use (transport plus building) is at a minimum; and it is important to 

understand its simultaneous effect on energy use in both transport and building 

sectors and analyse it in its entirety, if urban form is to be used as a policy tool to 

reduce energy use and carbon emissions (Mitchell, 2005).  

Using land-use-transport interaction models, a residential dwelling type model, 

and transport and emission models, Mitchell et al. (2011) estimated and evaluated 

carbon emissions from transport, dwellings, and commercial buildings to 2031 for 

different spatial strategies for three English regions of decreasing size. They found 

that urban form was a relatively weak instrument in reducing carbon emissions and 

that comparatively, economic and technological instruments were more powerful in 

decreasing carbon emissions than urban form. When taking into account both the 

transport and building sectors, and estimating carbon emissions in 66 major 

metropolitan areas across the United States, Glaeser and Kahn (2010) discovered that 

there was a strong negative association between carbon emissions and land-use 

regulations; carbon emissions were much lower in cities than in suburban areas, and 

the city-suburb gap was particularly large in older areas.  

In general, the energy estimated from the building sector in the above 

literature refers to operational energy. This means the energy used for heating, 

cooling, lighting and appliances; however, embodied energy, which indicates the 

energy used for the construction and fabrication of products used to construct a 

building, the energy used on-site for the assembly of the building, and the energy 
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embodied in upstream inputs to these processes (Troy et al., 2003). Embodied energy 

is also an important component, and is considered by some researchers, although 

compared to literature on operational energy use, studies on the embodied energy use 

are rare. Weisz and Steinberger (2010) examined the effect of urban form, urban 

building stock, and urban consumption patterns on urban energy and material use, 

pointing out socio-economic variables, especially household income, strongly 

correlated with embodied energy and material use. 

By calculating the primary embodied energy and operational energy 

consumption from both the buildings and transport sectors in six case study areas in 

Australia, Troy et al. (2003) attempted to capture the full energy impacts of different 

built forms. They suggested that embodied energy consumption might be more 

significant than previously thought and the full energy analysis could be used as a 

development control tool in the planning system. Similarly, Norman et al. (2006) also 

provided a relatively complete understanding of urban density effects on overall 

energy use and greenhouse gas (GHG) emissions from construction materials for 

infrastructure, building operations, and transportation. By applying an economic 

input-output life-cycle assessment model, they compared the energy use and GHG 

emission associated with high-density development close to a city core versus low-

density development at the suburban periphery, finding that low-density development 

is more energy and GHG intensive than high-density development on a per capita 

basis.  

To conclude, as building energy use is a complex function of many interactive 

factors, it is very difficult to determine the exact marginal effect of urban form on 

residential energy use by controlling for all other factors (Rickwood et al., 2008). The 

effect of urban form on residential energy use is still equivocal. 
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 2.4.3 Summary 

 

While there is growing emphasis on the potential of urban planning in climate change 

mitigation, empirical literature is still insufficient and debates over the relationship 

between planning parameters and carbon emissions are yet to be fully resolved. Prior 

studies either focused on automobile travel while paying little attention to CO2 

emission from other transportation models (e.g. subway, bus, motorcycle), or failed to 

consider the travel purposes for transport carbon emission. Moreover, most existing 

urban form-energy literature focuses on advanced economies, while only a few recent 

studies (e.g. Qin and Han, 2013) explored the correlations between different types of 

neighbourhoods and household carbon emissions in the Chinese context of rapid 

urbanisation and spatial restructuring. The results showed that neighbourhoods with 

high density, mixed land use and high accessibility to public transit tend to have 

lower domestic and transport carbon emissions.  

As urban form might have complex and interrelated impacts on energy use 

and carbon emission from building and transport, it is important to consider the 

sectors of building and transport together in the urban form-energy relationships. 

However, as there are some limits in this thesis, and practical constraints including a 

lack of building energy data for the study area, the major research objectives remain 

focused on investigating the urban form-travel relationships with respect to transport 

carbon emissions. There will be a reflection on the building energy issue in the 

concluding chapter of this thesis.  
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2.5 Microsimulation for urban analysis and transport 

forecasting 

2.5.1 Overview 

 

Microsimulation is a computing process which uses simulation techniques for 

reproducing or forecasting a dynamic and complex system by taking micro-level units 

such as individuals, households and firms as the basic units of analysis (Merz, 1991; 

Guo and Bhat, 2007). Spatial microsimulation was developed in the field of 

economics (Orcutt, 1957), and has since been applied extensively in the fields of 

geography (Birkin and Clarke, 1988; Ballas and Clarke, 2000; Wu et al., 2008) and 

social sciences (Brown and Harding, 2002; Rakowski et al., 2010). For example, 

using the 1991 UK Census Small Area Statistics (SAS) and British Household Panel 

Survey (BHPS), Ballas et al. (2005) applied the deterministic reweighting method to 

spatially and dynamically simulate the entire population of Britain to 2021 at the 

small area level. Such microsimulation can be performed for a range of 

heterogeneous subgroups at different spatial scales, and represents a useful tool for 

addressing policy-sensitive problems, generating long-term forecasts and evaluating 

government policies (Miller et al., 2004; Mannion et al., 2012).  

In the transport field, problems of congestion, air pollution, and energy 

consumption have raised interest in the microsimulation of travel since the 1990s 

(Goulias, 1992; Kitamura et al., 2000). Various models of urban travel behaviour are 

increasingly developed and applied in a microsimulation framework, and these 

models share common objectives to replicate the temporal, spatial and modal 

decisions that lead to observed activity-travel patterns of residents (Miller and Roorda, 
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2003; Miller et al., 2004). For example, the MIDAS (microanalytic integrated 

demographic accounting system) was developed as a new travel demand forecasting 

model which attempted to combine dynamic models of travel behaviour with socio-

demographic and economic microsimulation (Goulias, 1992). Using simple logit 

models to determine household transition probabilities, MIDAS aims to simulate life 

changes in the household members‟ socio-demographic attributes dynamically, and 

then use these endogenously generated attributes to forecast household car ownership 

and mobility. Other microsimulation models include RAMBLAS (regional planning 

model based on the micro-simulation of daily activity patterns), which was developed 

to predict the spatial distribution of individuals‟ activities and related traffic flows in 

the Eindhoven region in the Netherlands (Veldhuisen et al., 2000).  

In a review paper, Hunt et al. (2005) provided a detailed evaluation of several 

frameworks of operational and comprehensive microsimulation systems designed for 

urban modelling purposes, such as ITLUP, MEPLAN, and UrbanSim. However, there 

are two comprehensive and noteworthy microsimulation modelling systems which 

have been developed for the purposes of disaggregate analysis and travel demand 

forecasting.  These are of interest to this thesis and will be summarised below.  

 

2.5.1.1 UrbanSim 

 

UrbanSim is a dynamic urban simulation system that was developed to simulate the 

development and interaction of land use, transportation and environment operated in 

several American metropolitan areas (Waddell et al., 2003). It is a comprehensive and 

operational urban simulation system which includes various urban actors (e.g. 

households, businesses, developers, governments) and represents their interactions in 
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the real estate market and the dynamic processes of urban development (Waddell, 

2002). Its purpose is to respond to emerging issues of urban sprawl, traffic congestion, 

housing affordability, and resource consumption, and further facilitate the 

metropolitan planning organizations and urban planners to evaluate the long-term 

outcomes of alternative transportation and land use policy scenarios (Noth et al., 

2003).  

UrbanSim consists of a software architecture for implementing models and a 

set of interacting model components which represent the major actors and choices in 

the urban system (Waddell, 2002). The major concern of UrbanSim is on the 

interactions of household and employment mobility and location choices which are 

simulated in a disequilibrium urban market. Based on parcel-level land-use data from 

the Eugene-Springfield, Oregon metropolitan area, Waddell (2000) simulated the 

interaction between demand and supply of real estate by the residential and housing 

market components of the developed UrbanSim model which operated on an annual 

time schedule.  

However, the daily activity and travel patterns are handled as external inputs 

in UrbanSim and still under development. Individuals‟ travel patterns were simulated 

and examined with internal household choices of housing and job location, and 

vehicle ownership in an interdependent framework (Waddell et al., 2010). Whist tour 

analysis improves understanding and prediction of travel behaviour, as discussed 

above, UrbanSim uses the „trip‟ – rather than the „tour‟ – as the basic unit for travel 

demand analysis, and this system does not account for transport CO2 emissions in the 

framework. 

 



56 
 

2.5.1.2 CEMDAP 

 

CEMDAP (comprehensive econometric microsimulator for daily activity-travel 

patterns) is a static and operational microsimulation system for activity-based travel 

demand modelling and forecasting developed at the University of Texas at Austin in 

the US (Bhat et al., 2004). It is a software implementation of a set of econometric 

models that represent the whole decision-making processes and provides the complete 

daily activity-travel patterns for individuals and households by putting various land 

use characteristics, socio-demographic attributes and transportation services into the 

system (Bhat et al., 2004). CEMDAP consists of five kinds of econometric models, 

including regression, hazard duration, multinomial logit, ordered probit, and location 

choice. Each model corresponds to one or more activity/travel decisions of an 

individual or household, and these models can be broadly grouped into two systems: 

the generation-allocation model system and the scheduling model system (Pinjari et 

al., 2008).  

Moreover, considering that out-of-home mandatory activities, such as work or 

school, impose constraints on participation in other types of activities and may have a 

significant influence on the decision-makers to pursue and schedule other activities, 

the CEMDAP modelling system firstly and respectively simulates the activity-travel 

patterns of workers as well as non-workers with different frameworks (Guo et al., 

2001). In this system, a worker‟s day has been partitioned into five periods (the 

before-work period, home-to-work commute, work-based period, work-to-home 

commute and after-work period) and an activity-travel pattern for workers is 

represented by a three level structure: stop, tour, and pattern. The non-workers‟ daily 

activity-travel pattern is simply characterized by a sequence of home-based tours 
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(Bhat et al., 2004). However, only considering morning commute and evening 

commute may be not appropriate for all the workers with different socio-demographic 

attributes under different urban circumstances, as some of their work commute 

patterns may include more than two commuting decisions on a typical weekday, 

especially in the Chinese context of rapid urbanization and spatial transformation.  

 

2.5.1.3 Summary 

 

To conclude, great efforts have been made to develop various microsimulation 

modelling systems for urban policy-related analysis and transport forecasting 

purposes, particularly in developed countries. While UrbanSim focuses on the 

interactions of household and employment mobility and location choices, its travel 

forecasting framework is still under development and uses the trip as the basic unit of 

analysis. With respect to the system particularly designed for the disaggregate 

activity-travel demand forecasting purposes, CEMDAP represents a comprehensive 

and promising system which integrates household activities, land use patterns, 

regional demographics, and transportation networks in an explicitly time-dependent 

framework. However, these modelling systems have rarely considered the spatial 

dimension of travel behaviour; and in the CEMDAP system, its “morning commuting 

+ evening commuting” analysis does not cover the travel patterns relevant to Chinese 

residents, as will be shown in the tour analysis in Chapter 4.  

Moreover, while these microsimulators are developed to generate synthetic 

travel patterns using Monte Carlo simulation, they demand large samples of travel 

data to derive the required conditional or transition probabilities, and these 

microsimulation systems rarely account for transport CO2 emissions in their 
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framework. Therefore, more comprehensive, disaggregate, and operational 

microsimulation modelling system should be developed to simulate individuals‟ daily 

travel behaviour and estimate their associated transport CO2 emissions effectively and 

dynamically. 

 

2.5.2 Microsimulation in developing countries 

 

Whilst transport problems are serious in transitional countries and in the developing 

world, microsimulation of travel has to date remained the preserve of developed 

economies (Yagi and Mohammadian, 2010). There are several possible reasons for 

this lack of microsimulation application to the transport problems of developing 

countries. First, there is a general lack of expertise in the technique, and model 

development is challenging requiring a high level of programming skills. Second, 

there is little publicly available software suited to transport microsimulation problems; 

those models that do exist, such as the ILUTE and CEMDAP discussed above, have a 

rigid design and generally require large samples of very specific data sets (Geard et 

al., 2013).  

A third explanation is a lack of data at an appropriate scale. Microsimulation 

addresses individuals, households, or firms as the basic analytical unit (Merz, 1991), 

and requires detailed information at the micro scale. However, large micro scale 

datasets are generally lacking in many, and particularly developing, countries. In 

China, there is no national travel survey or published governmental large sample of 

detailed travel information (Pucher et al., 2007; Long et al., 2011). Even for the 

population census conducted every ten years, the Chinese government only publishes 

a selection of demographic tabulations at relatively coarse geography (i.e. the district 
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or city level). Confidentiality issues also mean that at finer scales information that is 

collected is not disclosed, constraining the use of microsimulation techniques further. 

However, attempts have been made to get around this data problem elsewhere: 

for example, using the 1990 population census and the USA Public Use Microdata 

Sample, Beckman et al. (1996) applied iterative proportional fitting (IPF) to generate 

a synthetic baseline population of individuals and households so as to estimate future 

travel demand. Using the 1991 Sample of Anonymised Records and Small Area 

Statistics samples, Ballas and Clarke (2001) synthesised a household micropopulation 

of Leeds UK, using the IPF technique. They used this synthetic population to perform 

„what-if?‟ economic policy analysis at small-area level, estimating the geographical 

impact on patterns of employment and income from major changes (jobs lost or 

created) in the local labour market. In a recent study, Lovelace et al. (2014) also 

presented a spatial microsimulaiton to analyse people‟s daily commuting patterns at 

different levels in the UK, providing insight into spatial variability of commuting 

behaviour and its relationship with socio-demographic attributes (e.g. income, type of 

car, number of children). A critical review on current methods to generate synthetic 

spatial microdata using synthetic reconstruction or reweighting techniques can be 

found in Hermes and Poulsen (2012). 

Microsimulation has been widely used in western countries to provide a better 

understanding and estimation of a large population‟s daily travel behaviour. However, 

there is little research on the spatial microsimulation of urban transport CO2 

emissions at a fine spatial scale for developing countries, where the dominant 

approach remains econometric modelling drawing on small sample surveys, and at an 

aggregate or a coarse scale for both past and prospective emission (Dhakal, 2009; 

Yan and Crookes, 2009). Long et al. (2011) developed a multi-agent model for the 
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analysis of urban form, residential commuting energy consumption and 

environmental impact at the inner-city scale. They also proposed an Agenter (i.e. 

agent producer) approach to disaggregate lots of heterogeneous agents with non-

spatial attributes and spatial locations using aggregate data and small-scale surveys, 

for future microsimulation or agent-based modelling analysis (Long and Shen, 2013). 

However, the daily travel behaviour and concomitant CO2 emission of a large 

population has rarely been investigated by spatial microsimulation at a fine 

geographical scale, and no such work has been conducted for developing countries 

where travel behaviour may differ substantively from that represented in models of 

western countries.  

 

2.5.3 Discussion 

 

Spatial microsimulation uses individuals or households as the basic analytical unit, 

and represents a useful tool for generating disaggregate forecasts over a long period 

(Ballas et al., 2005). On the basis of some synthesising techniques, such as 

deterministic reweighting, conditional probability or simulated annealing, 

microsimulation models can synthesise much individual-level data for large 

populations by combining surveys and census data. It can also perform static what-if 

simulations to explore the impacts of alternative policy scenarios on the synthetic 

population for a base year, and perform future-oriented „what-if‟ simulations by 

updating the basic microdata set over a long period (Ballas and Clarke, 2001). For an 

appraisal of the strengths and weaknesses of the three established synthesising 

techniques see Harland et al (2012).  
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 Generally, simulated annealing algorithm has been demonstrated to provide 

the most promising results in the generation of synthetic microdata at different 

geographical scales. It has some major advantages over the deterministic reweighting 

and Monte Carlo sampling, such as the inclusion of the Metropolis Algorithm which 

allows both forward and backward steps in its search for an optimal population 

configuration. It evaluates the goodness of fit statistic simultaneously against all of 

the constraint variables, and generates a realistic representation of the observed 

population while maintaining the rich variety of attributes contained in the survey 

sample population. However, most prior simulation studies or modelling systems 

applied deterministic reweighting or Monte Carlo sampling to create synthetic 

populations, which could generate more errors. Therefore, in this thesis, the simulated 

annealing algorithm is adopted to create the spatial microdata at fine geographical 

scale, and a new microsimulation modelling system, i.e. the Flexible Modelling 

Framework (FMF), is used to facilitate the spatial microsimulation analysis in urban 

China. Further details on the microsimulation techniques can be found in Section 3.3. 

 

2.6 Conclusion 

 

Much research has been conducted to provide evidence on the factors that shape 

travel behaviour, and resulting carbon emissions, with the intention of developing low 

carbon cities, a key goal of 21st century planning. Understanding travel based carbon 

emissions in mega-cities is vital, but city size, and often a lack of required data, limits 

the ability to apply linked land use, transport and tactical transport models to 

investigate the impact of policy and planning interventions on travel and emissions. 

China has already passed the US as the world‟s largest source of carbon dioxide 
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emissions (Yan and Crookes, 2010), it is important to provide improved 

understanding of form-travel relationships, and estimation of transport CO2 emission 

to inform spatial development policy and mitigate carbon emissions. This thesis 

therefore aims to develop a spatial microsimulation of daily travel behaviour and 

transport CO2 emission in the Chinese context, and provide a basis for urban planning 

and transport policy evaluation. The overall research design, including the modelling 

techniques, study area, and data sources, are provided in detailed in the next chapter.  
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Chapter 3  

Methodology 

 

3.1 Introduction 

 

This chapter introduces the overall research design, including research methods, study 

area, and data sources used in the thesis. As noted in previous chapters, whilst 

transport problems (e.g. energy consumption, air pollution, traffic congestion) are 

generally more serious in transitional countries and in the developing world, research 

on urban form, travel behaviour and CO2 emission has largely focused on advanced 

economies, particularly those of the USA and Europe. However, urban spatial 

development and individuals‟ daily travel behaviour are often different in developing 

countries and transitional economies (Pan et al., 2009; Qin and Han, 2013); hence 

lessons learnt from studies of developed countries cannot uncritically be applied to 

developing nations. This includes those experiencing rapid urban development, like 

China, where improved understanding of form-travel relationships and estimation of 

transport CO2 emission are needed to inform spatial development policy.  

Figure 3.1 illustrates the overall research design of the thesis, which consists 

of three major analytical parts. Multiple data sets and modelling techniques are used 

to address the different research objectives. Specifically, using an activity travel diary 

survey and land use data, the thesis first investigates how socio-demographic 

attributes of households, individuals and urban form characteristics correlate with 

tour-based travel decisions. This analysis aims to determine the important predictors 
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of people‟s daily trip-chaining behaviour. As people‟s choices of tour frequency, tour 

pattern are a discrete multi-dimensional choice issue, discrete choice models (e.g. 

ordered logit, multinomial logit) are the most appropriate methods and are thus 

employed to investigate the relationships among urban form, socio-demographics and 

trip-chaining behaviour.  

 

 

 

Figure 3.1: Research design 

 

The next major analytical part involves simulating transport CO2 emission 

from people‟s urban travel, which is addressed through the development of spatial 

microsimulation of people‟s daily travel behaviour, drawing on the analysis of trip 
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chain behaviour described above. Using the activity diary survey and population 

census data at the sub-district level, a simulated annealing algorithm is applied to 

create a realistic synthetic population at fine spatial scale in urban Beijing. The 

constraints in the spatial microsimulation model are socio-demographic attributes of 

households and individuals, which are important predictors of people‟s daily travel 

behaviour found in the first empirical analysis. The population‟s daily travel, 

including travel distance and mode choice are then spatially simulated at the sub-

district level, and the transport CO2 emissions from people‟s daily urban travel are 

also estimated at the disaggregate level over the decade 2000-2010.  

Finally, in the last empirical analysis, the transport CO2 emissions from 

passenger travel behaviour are projected to 2030 using scenario analysis. On the basis 

of the population microsimulation, travel diaries and the aggregate parameters in the 

statistical yearbook (and city plans and Five Year Plan), this part develops four 

scenarios (transport policy trend, land use and transport policy, urban compaction and 

vehicle technology, and combined policy) to explore travel behaviour and transport 

CO2 emission under current and potential strategies on transport, urban development 

and vehicle technology. The analysis of these scenarios will lead to a better 

understanding of the role of various factors on daily travel behaviour and total CO2 

emission, and provide alternative urban development strategies and policy 

implications for CO2 emission mitigation targets set by the national and local 

governments. 

Compared with existing research, this research design facilitates a more 

detailed assessment of travel behaviour at the disaggregate level, provides an 

improved estimate of transport CO2 emissions based on individuals‟ observed daily 

travel behaviour, and allows the effect of different policies, strategies or technologies 
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to be more realistically evaluated. In addition, whilst transport CO2 is the focus of the 

thesis, the methodology presented could also be useful in estimating emissions of 

other pollutants relevant to local air quality (e.g. CO, NOx), or identifying 

geographical areas where congestion may become more serious in future.  

Below, Section 3.2 presents the discrete choice modelling for trip-chain 

analysis. Section 3.3 briefly reviews three established simulation techniques for 

population synthesis, before selecting the most appropriate algorithm for the spatial 

microsimulation models. Section 3.4 provides the scenario design for exploring 

transport carbon futures. The geographical research area (i.e. urban Beijing) is 

described in Section 3.5, followed by an introduction to the multiple data sources 

used in the thesis. The concluding remarks are drawn in the final section of this 

chapter. 

  

3.2 Trip-chain modelling  

3.2.1 Overview 

 

In the first empirical analysis (Chapter 4), this thesis uses discrete choice models to 

analyse people‟s daily trip chains and their relationship with socio-demographics and 

urban form. Compared to traditional trip-based travel analysis, the new models adopt 

tours (or trip chains) as the basic unit of analysis within a theoretical activity-based 

framework. Tours link individuals‟ multiple trips and stops, take into account the 

linkages between travel behaviour and activity participation, and provide a clearer 

explanation of the inter-related decisions that link trips. Analysis of tours can thus 

improve understanding and prediction of travel behaviour, capturing more precisely 
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urban form–travel relationships, and so contribute towards better transportation 

systems, travel demand management policies and land use strategies (Wallace et al., 

2000; Lee et al., 2009). 

 Trip-chaining analysis reflects considerable progress and growing significance 

in examining travel decision making within the space-time constraints and the 

integration of land use models with transport models. It has led to the development of 

a series of comprehensive econometric models for trip chain analysis. The 

econometric modelling typically involves using equations to explore individuals‟ 

daily travel decision-making process, as well as to examine relationships among 

travel patterns, land use, and socio-demographic characteristics of individuals and 

households (Bhat and Singh, 2000). Until now, different kinds of econometric models 

have been used in travel analysis, including instrumental variable models, sample 

selection models, discrete choice models, structural equations models and 

longitudinal designs (Mokhtarian and Cao, 2008). 

 Each model has its own advantages and disadvantages, and is used for 

different purposes. When it comes to the relations between travel behaviour and 

activity participation and predicting the probabilities of various decision outcomes, 

discrete choice models are the most appropriate method, as the household and 

individual choices of residential location, vehicle ownership, tour frequency, tour 

patterns, etc, are a discrete multi-dimensional choice issue (Waddell, 2002). 

 

3.2.2 Discrete choice models 

 

Typically, discrete choice models, which are suited to model choices between 

alternatives that are mutually exclusive, refers to the development of a class of 
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econometric models known as random utility maximization (RUM) based on discrete 

choice theory (Waddell, 2002). In discrete choice models, the decision makers, e.g. 

households and individuals, are assumed to make rational choices when faced with 

multiple choices that offer different utilities, and a rational decision maker usually 

selects the alternative offering the highest utility (McFadden, 1973). Therefore, the 

household and individual multi-dimensional choices have been widely treated with a 

model structure that allows for joint and conditional discrete choices which are 

dependent on a large number of discrete or continuous explanatory variables 

(Waddell, 2002). The most widely applied model structures in the land-use and 

transport studies are the ordered logit and multinomial logit models. 

 Before introducing ordered and multinomial logit, models for binary 

outcomes are briefly introduced here, as they are the most basic types and provide a 

foundation for the complex models. Binary dependent variables have two values, 

typically coded as 0 for a negative outcome and 1 as a positive outcome. In the linear 

probability model (Long and Freese, 2001): 

 

Pr (y = 1 | x) = xβ + ε                                                                                                 (3.1) 

 

where x represents the independent variables, β means the coefficients to be estimated, 

and ε refers to the random error. Using the equation above, the predicted probabilities 

can be greater than 1 or less than 0, which is problematic. In order to constrain the 

prediction of probabilities (Pr) to the range 0 to 1, it transforms the probability into 

the odds: 
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Ω (x) = Pr (y = 1 | x) / Pr (y = 0 | x) = Pr (y = 1 | x) / [1 – Pr (y = 1 | x)]                  (3.2) 

 

which indicates whether something happens (y = 1) relative to whether it does not (y 

= 0), ranging from 0 to ∞. The log of the odds, or logit, ranges from - ∞ to ∞: 

 

ln Ω (x) = xβ                                                                                                              (3.3) 

 

Ordinal and multinomial logit models are equivalent to the simultaneous 

estimation of a series of binary outcomes. The main difference between ordered and 

multinomial logit model is that the former is based upon cumulative response 

probabilities while the latter is based upon the response probability for each category 

or outcome. Specifically, the ordered logit model is a generalisation of the 

multinomial logit, and is useful for explaining ordinal discrete choices where 

individuals have systematic unobserved preferences, with proximate covariance in the 

stochastic utility components (Small, 1987). In the ordered logit model, it defines the 

odds that an outcome is less than or equal to m versus greater than m given values of 

x: 

 

Ω ≤m|>m (x) = Pr (y ≤ m | x) / Pr (y > m | x)   for m = 1, J – 1                                     (3.4) 

 

The log of the odds is assumed to equal: 

 

ln Ω ≤m|>m (x) = τm – xβ                                                                                              (3.5) 
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where J refers to the number of ordinal categories, τm represents the cut points or 

thresholds. However, when the dependent variable is a categorical outcome, 

multinomial logit (MNL) models are adopted, which can be defined as: 

 

ln Ωm|b (x) = ln [Pr (y = m | x) / Pr (y = b | x)] = xβm|b     for m = 1 to J                     (3.6) 

 

where b is the base category or the comparison group and J refers to the number of 

categories. 

 Using tours (or trip chains) as the basic unit of analysis within an activity-

based theoretical framework, discrete choice models are adopted to investigate 

relationships among urban form characteristics, socio-demographic attributes and 

individuals‟ trip-chaining behaviour for a typical weekday in Beijing. The trip-

chaining behaviour is focused in three principle areas: tour generation or frequency, 

tour scheduling (type and order of stops made), and tour interdependence mechanisms. 

As the tour frequency variable is an ordinal outcome, ordered logit models are used to 

investigate the effect of socio-demographics and urban form on tour generation 

choices. Multinomial logit models are then employed to explore the tour scheduling 

process, as the variable of tour pattern is a categorical outcome. Further details on 

trip-chaining analysis are provided in Chapter 4. 

 

3.3 Microsimulation techniques 

3.3.1 Overview 
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Spatial microsimulation is another modelling technique used in this PhD thesis. The 

microsimulation models simulate virtual populations in given geographical areas, so 

that the characteristics of these populations are as close as possible to their „real-

world‟ counterparts (e.g. Ballas et al., 2007). The microsimulation method offers 

many advantages, including data linkage, flexibility of scale changes, efficiency of 

storage, and update and forecast (Clarke, 1996). With respect to travel analysis 

specifically, microsimulation represents an effective disaggregate modelling 

technique which can replicate the process of complex travel systems and thus 

generate better estimation of real-world travel behaviour (Bhat et al., 2004). 

Compared to the traditional four-stage approach in transport studies, there are three 

major advantages of microsimulation: 1) technical advantage related to computational 

savings in the calculation and storage of large multidimensional probability arrays; 2) 

advantage in the explicit modelling of various decision-making chains and time-space 

constraints on travel behaviour; 3) the variability of microsimulation outcomes which 

can yield full information about the distributions of the travel demand statistics rather 

than single deterministic estimates or average values (Vovsha et al., 2002). 

 The spatial microsimulation method typically involves three major procedures: 

1) the construction of a microdata set from samples and surveys. 2) Static what-if 

simulations, in which the impacts of alternative policy scenarios on the population are 

estimated: who would benefit from a particular local or national government policy? 

Which geographical areas would benefit the most? 3) Dynamic modelling, to update 

the agents‟ characteristics on the basis of mathematical models or rule-based models 

and create future-oriented scenario simulations (Ballas et al., 2005). The first 

procedure can also be defined as static spatial microsimulation. This involves the 

reweighting of an existing microdata sample (which is only available at coarse levels 
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of geography), so that it would fit small area population statistics tables (Ballas et al., 

2006). Generally, there are three established techniques for creating synthetic 

populations, including deterministic reweighting, conditional probability (Monte 

Carlo sampling), and simulated annealing (Harland et al., 2012). These three methods 

are briefly reviewed below, before selecting the one that is most appropriate to this 

research. 

 

3.3.2 Deterministic Reweighting 

 

The most common deterministic reweighting approach is based on iterative 

proportional fitting (IPF) and uses a simple equation to iteratively calculate new 

weights  for the existing microdata to match known small area distributions (Hermes 

and Poulsen, 2012). For example, using household survey data and small area statistic 

tables, the main principle of the deterministic reweighting algorithm is to apply 

different weights iteratively to the survey population for each constraint step by step, 

while maximising the goodness of fit between the model distributions and the census 

tabulations. This method has been widely used in microsimulation models, such as 

evaluation of social policies and healthcare research. The reweighting process can be 

defined as (Ballas et al, 2005):  

 

ni = wi × sij / mij                                                                                                         (3.7) 

 

where ni is the new weight for individual i, j is an attribute of the individual, wi is the 

original weight for individual i, sij is the element of population census table (e.g. 



73 
 

small area statistics table) for individual i and attribute j, and mij is the element of the 

survey data table for individual i and attribute j.  

Normally, the initial weight for each individual is 1 and their final weight is 

fractional. Starting with reweighting the first constraint, the process then moves 

sequentially to the next variable, replacing the initial weight with the newly generated 

one. This process is repeated through each remaining constraint until to the last one, 

multiplying each new weight in the equation produced in the previous step. Since the 

last constraint would fit perfectly, it is necessary to put the constraints in order, with 

the last to be fitted the one which accounts for the most variation in the outcome 

variable of interest (Anderson, 2011). After reweighting all constraints once, the 

process then loops back to the first constraint and the process is repeated using the 

weight produced by the last constraint in the first iteration. It is suggested that 10 

iterations are sufficient to produce stable weights that reduced the error to a point 

where it converges (Anderson, 2011).  

This method can be operated easily and rapidly, and it produces the same 

result every time. However, this method is sensitive to the configuration of 

constraints and generates more errors if the geographic areas are characterised with 

different distributions, as it assumes all areas are homogenous. Some researchers have 

improved on this deterministic approach. For example, Smith et al (2009) conducted a 

cluster analysis to divide all areas into several groups in which the geographic areas 

are most similar in terms of population constraints, and ran the reweighting algorithm 

to create area-specific synthetic populations. This effectively reduced the errors 

which resulted from the assumption of homogeneity. Moreover, Lovelace and Ballas 

(2013) present a new method „truncate, replicate, sample (TRS)‟ to overcome the 
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problem of non-integer weights produced by the IPF technique, which offers more 

flexibility, efficiency and accuracy than alternative approaches to integerisation. 

 

3.3.3 Conditional Probabilities 

 

The conditional probabilities method is based on the synthetic reconstruction 

procedure first introduced by Birkin and Clarke (1988). This technique builds up the 

synthetic populations with one attribute each time, based on its conditional 

probabilities derived from the sample data. The characteristic of each attribute (e.g. 

male or female) is stochastically added to each individual in line with the associated 

constraining tables (Harland et al, 2012). This involves a sequentially random 

distribution process rather than iteratively deterministic reweighting, commonly 

known as Monte Carlo sampling. For each small area, a synthetic record is created for 

each individual, with each attribute added in turn against its conditional probability 

(Birkin and Clarke, 1988): 

 

p(x) = p(x1) × p(x2 /x1) × p(x3 /x2, x1) ×…× p(xm /xm-1,…, x1)                                    (3.8) 

 

As shown above, with the number of constraints increasing, the conditional 

probabilities become more complicated. Moreover, defining the order of the 

constraint variables is very important. Since the latter probability of attributes is 

dependent on the former constraints, it is reasonable to order the constraints in such a 

way that the most significant predictor of an outcome comes first and the least 

important variable comes last. Alternatively, it also makes sense to start with 

constraints which are relatively evenly distributed between the categories, like gender 
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and age, rather than ethnicity or qualifications (Harland et al., 2012). For example, the 

sequential procedure of synthetic reconstruction might begin with creating a set of 

household heads to whom are assigned a spatial location, gender, age and marital 

status by Monte Carlo sampling from known aggregate distributions from the census 

datasets (Williamson et al., 1998). 

However, if the sample population is not available to derive the underlying 

probabilities, iterative proportional fitting (IPF) can be applied alternatively to 

estimate the compound probability distributions. This technique involves combining 

joint probabilities and requires many repetitions to derive a fitted distribution, that is, 

it provides maximum likelihood estimates for the full conditional probability 

distributions from partial ones (Birkin and Clarke, 1989; Ballas and Clarke, 2000). 

The details about the mathematical properties and the theory of IPF can be found in 

prior studies (e.g. Norman, 1999). 

As the conditional probabilities technique involves random distribution and 

stochastic selection, it produces different results each time the model is run. It is 

necessary to run the simulation many times and derive the average estimation. This 

method is widely used in microsimulation studies, as it builds the model easily, it 

does not necessarily require a sample population, and it can combine different sources 

of microdata sets. Nonetheless, this approach might be not capable of handling 

numerous variables or when a large number of estimated cross-tabulations are 

required (Voas and Williamson, 2000).  

 

3.3.4 Simulated Annealing 
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Simulated annealing is a refinement over the basic combinatorial optimisation 

approach – hill climbing. In the hill climbing algorithm, a combination element to be 

replaced and a possible replacement element are randomly selected. If the 

replacement element improves the overall performance of the combination, that is 

reducing the error of the model, the replacement is made; otherwise, other elements 

are randomly selected for evaluation. This process is repeated until no further 

improvement to the selected combination can be made. The main disadvantage of the 

hill climbing method is that it cannot go backwards and it may easily become trapped 

in suboptimal peaks, rather than getting the most optimal solution (Williamson et al., 

1998). 

Simulated annealing is superior to hill climbing, as it overcomes the latter‟s 

drawbacks by relaxing its basic assumption - only replacement elements that lead to 

reduced error are accepted. For the simulated annealing technique, in order to allow 

the algorithm to go backwards from suboptimal solutions, some replacement elements 

which lead to worse performance (i.e. increase in error) are also accepted, if they 

satisfy some criteria. That is, the choice of whether or not to accept a „worse‟ 

combination element in place of a „better‟ one is determined by an equation, as shown 

in Williamson et al (1998): 

 

p(δE) = exp(-δE/T)                                                                                                    (3.9) 

 

where δE represents the potential change in combination performance, and T refers to 

the maximum level of performance degradation acceptable for the change of one 

element in a combination.  
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Initially, the threshold of a simulated annealing algorithm is set to equal the 

maximum change in combination performance likely to be induced by replacing an 

old element with a new one. As replacement elements are randomly selected and 

evaluated, those improving combination performance are automatically accepted, 

while those degrading performance are only accepted if p(δE) is greater than a 

randomly generated number between 0 and 1. As shown above, the smaller the value 

of δE (increase in error), the greater is the likelihood of potential replacement being 

made. On the contrary, the smaller the value of T, the smaller is the change in 

performance likely to be accepted (Williamson et al., 1998). 

Moreover, the simulated annealing algorithm evaluates the goodness of fit 

statistic simultaneously against all of the constraining tables, and it is thus not 

affected by the configuration of constraint variables. The simulated annealing 

algorithm randomly selects the synthetic population from the sample population 

optimising to reduce the Total Absolute Error and provides the best possible match to 

the real life population in each geographic zone.  The weight for each individual in 

the sample population can be 0 representing exclusion or any number up to the total 

population count representing the number of times a particular individual has been 

selected in a specific geographical zone. This is very different from the decimal value 

in the deterministic reweighting process. As expected, the great strength of this 

method is that it incorporates the Metropolis Algorithm (Harland et al., 2012) 

allowing both backward and forward steps in the search for the optimised 

combination of sampled population, which the deterministic reweighting or 

conditional probability method cannot do. Figure 3.2 illustrates the operating process 

of the simulated annealing algorithm. 
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Figure 3.2: The operating mechanism of simulated annealing algorithm 

 

Birkin and Clarke (2011) suggested that simulated annealing is „the most 

popular – and probably the most effective – method for the creation of reweighted 

spatial micro-data‟. Some prior studies also demonstrated that the simulated 

annealing technique generates the most consistent and accurate populations over 

various spatial scales (e.g. Williamson et al., 1998; Harland et al., 2012). For instance, 

using the study area of Leeds (UK) Metropolitan District Area (MDA), Harland et al 

(2012) compared the performance of these three methods over varying spatial scales, 

and found that simulated annealing consistently produced the best outcome with little 
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misclassification when fitting constraints. Moreover, using the simulated annealing 

algorithm, the generated population dataset is a realistic representation of the 

observed population aligning closely to the constraint totals while maintaining the 

rich variety of attributes contained in the survey sample population. This method is 

well suited to spatial microsimulation problems requiring attribute enrichment while 

simultaneously ensuring close constraint matching. It deals with the data constraints 

best in this research. Therefore, we adopt the simulated annealing algorithm to create 

realistic synthetic populations at fine spatial scale (i.e. the sub-district level) over the 

period 2000-2010; for further details see Chapter 5 and 6.  

 

3.4 Scenario design 

 

The third and final major analytical part of the thesis is the exploration of travel 

carbon emission futures for Beijing, under a range of scenarios reflecting possible 

development trajectories, and planning and policy interventions. Scenario design 

usually involves a range of “what if?” questions to define some possible future 

conditions. The typical scenario planning process compares alternative future 

planning scenarios to a trend scenario, which is often referred to as the Business As 

Usual scenario (Bartholomew and Ewing, 2009). The general approach for scenarios 

in urban and transport modelling is to model the process over a recent past time 

period and then (after calibration and validation) project that into the future (typically 

20-50 years ahead), with the scenarios reflecting the states (or combination of states) 

that the independent variables in the models could take. This method could 

incorporate the most important and uncertain factors in the analysis, identify the most 
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plausible conditions in the future, and evaluate the impact of trends and possible 

management strategies. 

Following the spatial microsimulation of carbon emission over 2000-2010 

(which serves as a baseline), the transport CO2 emission from passenger travel 

behaviour is projected to 2030 under four scenarios. These scenarios aim to explore 

the impact of current and potential strategies on transport CO2 emission from people‟s 

future travel behaviour. All four scenarios incorporate dynamic changes in Beijing‟s 

population, and also incorporate combined measures on transport policies, urban 

development and vehicle technology, which are important influences on travel 

behaviour and carbon emission. These four scenarios comprise: transport policy trend, 

land use and transport policy, urban compaction and vehicle technology, and 

combined policy.  

In contrast to prior studies which estimate transport CO2 emissions using 

aggregate vehicle population statistics, this scenario analysis presents a new „bottom-

up‟ methodology to simulate and project transport CO2 emissions at fine spatial scale 

using disaggregate travel attributes. An average per capita CO2 emission for 

passenger transport under the four scenarios to 2030 is calculated. This is calculated 

from mode share by trip frequency by travel distance and mode specific CO2 

emission factor, as: 

 

AverageCO2 = ∑ MSj × ATF × ATDj × EFj                                                           (3.10) 

 

where MSj refers to the mode share by vehicle type j ( j = bicycle, bus, subway, car, 

taxi, and other), ATF represents the average trip frequency on a typical workday (per 
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person per day), ATDj is the average trip distance by vehicle type j, and EFj the 

emission factor associated with the vehicle type j. 

Total CO2 emission from people‟s daily travel is also calculated. It is by the 

total population (i.e. the projected full population in eight urban districts in 2020 and 

2030) multiplied by the average CO2 emission, as: 

 

TotalCO2 = ∑ MSj × (ATF × TPt) × ATDj × EFj                                                   (3.11) 

 

where TPt refers to the total population in year t (t = 2020 or 2030). This method 

develops a realistic set of spatially resolved passenger transport CO2 emission futures, 

examines how changes in people‟s daily travel behaviour (e.g. trip distance, mode 

share) may impact upon transport carbon emissions, and evaluates the impact of 

current and potential strategies on transport, urban development and vehicle 

technology; for further details see Chapter 6. 

 

3.5 Case study 

 

China‟s major cities (Figure 3.3) including its mega-cities, such as Beijing, provide 

particularly interesting cases for studying the role of urban spatial organization in 

climate change mitigation in the context of rapid urban restructuring. China has 

already passed the US as the world‟s largest source of carbon dioxide emissions (Yan 

and Crookes, 2010), and its unprecedented urbanization continues to add to these 

emissions. It is projected that the urban population of China will grow to over 800 

million by 2020, with the urbanization rate rising from 44.9% in 2007 to 56-58% in 

2020 (Chinese Society for Urban Studies, 2009). Meanwhile, rampant spatial 
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expansion drives up demand for commuting and non-work travel (Pan et al., 2009; 

Wang and Chai, 2009). With stronger travel demand coupled with increased 

automobile ownership, urban transportation is likely to contribute a larger share to 

urban carbon emissions in China in the next decade. This trend raises great concerns 

over its possible ramifications for the environment, transportation, and climate change 

(Chen et al., 2008; Creutzig and He, 2009). 

 

 

 

Figure 3.3: China and its large cities (urban population > 2.5 million in 2012) 
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From these large and rapidly growing cities, Beijing, China‟s capital, is 

selected as our case study. Beijing is representative of the rapid urbanization and 

economic growth of urban China, driven by changes in lifestyle and spatial 

structuring, and with increasing energy consumption and carbon emissions (Feng et 

al., 2013). Beijing also offers, for China, good access to required datasets, and, as the 

capital, any analysis will be of particular interest to policy makers.  

Beijing has undergone rapid urban expansion since the 1980s, and the 

urbanised area has increased 168% in the decade since 1998 (National Bureau of 

Statistics of China, 1999, 2009). Driven by urban land reform, housing reform and 

economic restructuring, the industrial decentralisation and residential suburbanisation 

process accelerated in the 1990s (Zhou and Ma, 2000). High-tech industry zones and 

housing were established mainly in the suburbs, but employment opportunities arising 

from the redevelopment of industrial land for tertiary industries remained in the inner 

city, resulting in a job-housing spatial mismatch (Zhao et al., 2010; Wang et al., 

2011). Meanwhile, public transport in urban Beijing developed greatly from 2000 to 

2010, and there are now 14 subway lines comprising 336 km of track, and 713 bus 

lines served by 21,548 buses (Beijing Statistical Bureau, 2011). Beijing has a zonal 

structure formed by concentric arterial ring roads, connected by radial expressways 

and light rails (Wang et al., 2011). People have become increasingly dependent on 

automobiles, especially private cars, with private car ownership doubling to three 

million over the period 2004-2009 (Beijing Statistical Bureau, 2010) with a 

concomitant rise in traffic congestion and pollution, now pressing problems in the 

city area. 

The rapid urban expansion has been accompanied by urban sprawl on 

Beijing‟s fringe, characterised by low density development with little mixed use 
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(Zhao, 2010). Compared to western cities, traditional urban space in Beijing and other 

Chinese cities was characterized by mixed land use, proximity to services, and 

pedestrian friendly street design. In the inner city districts of Beijing are historical 

hutong-courtyard
2

 neighborhoods, built before 1949 and characterized by high-

density, low-rise courtyard housing (Figure 3.4-A). Usually, several families share a 

big hutong courtyard together, which is crowded. Work unit compounds are the 

legacy of Chinese socialist urban space (Wang and Chai, 2009), where employees of 

work units (danwei) worked and lived in the same compound and enjoyed on-site 

services and welfare provided by work units (Figure 3.4-B). The danwei used to be 

the basic unit of economic, social, and spatial organization in socialist Chinese cities 

(Chai, 1996; Bray, 2005). Work units not only provided a workplace for employees, 

but also a comprehensive package of welfare and services including housing, dining, 

health care, schools, grocery, and leisure facilities. Danwei employees not only 

worked but also lived in the work unit compounds that they belong to, and could 

enjoy job-housing proximity and on-site services. However, since the 1980s, the 

social welfare functions were gradually removed from Danwei and the Danwei was 

transformed from a multi-functional work unit to mere workplace for its employees. 

In 1998, the government officially removed the housing provision for employees 

function from Danwei and new employees of Danwei have since had to buy or rent 

dwellings on the housing market (Wang and Chai, 2009). 

Also, during the reform era (since the 1990s), western planning ideas, such as 

zoning-based land use, were introduced to urban planning practice in China. Most 

suburban neighborhoods built thereafter in Beijing adopted a market-based model of 

commodity housing development and followed the model of single-use, large-lot 

                                                           
2
 Hutong is a traditional living block built in the city centre before 1949. 
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residential development, and auto-oriented street design (Figure 3.4-C). Moreover, 

affordable housing projects initiated since the late 1990s were often located in the 

urban fringe with the aim to reduce land-related development costs and to 

decentralize inner-city urban population (Figure 3.4-D). Nonetheless, traditional 

hutong-courtyards and work units have not disappeared in the post-reform urban 

space but still occupy primary locations of the city. The neighbourhoods have urban 

form characteristics that differ in terms of density, land use mix, design (e.g. housing 

height, road width, street connections), and public transit accessibility. The co-

existence of different neighbourhoods causes a complicated urban landscape and 

makes it possible to examine effects of land use on travel behaviour and simulate 

transport CO2 emissions. 
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Figure 3.4: Four types of urban neighbourhoods in Beijing 

 

Beijing can be divided into three broad zones: central urban, inner suburban 

and outer suburban (Zhao et al., 2010). The central urban zone (Figure 3.5) comprises 

the urban districts of Dongcheng, Xicheng, Chongwen and Xuanwu
3
, located in the 

inner city and representing the traditional business districts. The inner suburban zone 

includes the districts of Chaoyang in the northeast (where the Beijing International 

Airport is located and where a new business district with an agglomeration of 

overseas investment enterprises is emerging), Haidian in the northwest (where the 

                                                           
3
 In 2010, the Beijing government adjusted the administrative division in the central urban zone. 

Chongwen and Dongcheng districts were merged into new Dongcheng district, while Xuanwu and 

Xicheng districts were merged into new Xicheng district. Other sub-districts remain the same. 

A – A hutong-courtyard neighbourhood in the inner city 

B – A work-unit compound of a government agency within the third-ring road 

C – A commodity-housing neighbourhood located in northwest suburb 

D – An affordable housing (jingji shiyong zhufang) neighbourhood in the northern 

urban fringe in Beijing 

A B 

C D 
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research institutes, universities, and hi-tech firms are found), Fengtai in the southwest 

(where a major development zone was established to introduce domestic and foreign 

investment), and Shijingshan in the far west (where Beijing‟s major heavy industrial 

enterprises are located) (Wang and Chai, 2009). These two zones of central urban and 

inter-suburban accounted for 63% of the all households in 2000 (National Bureau of 

Statistics of China, 2000), with the inner suburban zone experiencing most of the post 

1980s urban expansion. The outer suburban area refers to the remote counties and 

villages in the Beijing municipality.  
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Figure 3.5: Beijing and its urban districts 

 

The area of each urban district is large and varies considerably, from 16 km
2
 

to 470 km
2
, with a population range of 0.35 to 2.29 million respectively. However, at 

a finer spatial scale, each sub-district has a similar geographical area and population 

(approximately 8 km
2
 and 54,000 residents on average). This thesis uses the smaller 

Beijing Municipality 
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geographical scale, the sub-district
4
 (jiedao) principal administrative unit in Beijing, 

as the basic geographical unit in the microsimulation research (see Chapter 5). It also 

focuses on the central urban and inner suburban zones to represent only urban Beijing. 

This comprised 146 sub-districts in 2000, many located in the Chaoyang and Haidian 

districts (Figure 3.5).  

 

3.6 Data sources 

3.6.1 Activity diary survey 

 

An activity diary survey, conducted in Beijing in 2007, was used in this research. The 

survey was designed and implemented by the behavioural geography research group 

in Peking University in 2007 (of which I was an active member), with the intention of 

developing an improved understanding of the population‟s travel behaviour (noting 

the absence of any publicly available travel survey data). The survey adopted a two-

stage sampling process. First, ten representative neighbourhoods were selected on the 

basis of location, year of construction, building type, housing tenure structure, and 

land use characteristics (Table 3.1). The purpose was to cover the range of historical 

and institutional features in Beijing‟s urban neighbourhoods, as well as a spread of 

location and spatial measures. Two traditional neighbourhoods – Jiao Dao Kou (JDK) 

and Qian Hai Bei Yan (QHBY) – are located within the second ring road in the 

central urban zone (Figure 3.6). Four work unit compounds were selected: San Li He 

(SLH) and He Ping Li (HPL) are located between the second and third ring roads, and 

                                                           
4
 Beijing has 16 districts and counties, each of which includes dozens of sub-districts, the 

basic administrative unit. For each sub-district census data is collected for neighbourhoods 

which comprise the jiedao (in urban areas) and xiangzhen (rural town) elsewhere. 
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Tong Ren Yuan (TRY) and Yan DongYuan (YDY) are located south of the third ring 

road and northwest of the fourth ring road respectively. Four inner suburban 

neighbourhoods were selected, including two commodity housing neighbourhoods - 

Fang Zhou Yuan (FZY) and Dangdai Chengshi Jiayuan (DCJ), and two affordable 

housing neighbourhoods –Wang Jing Hua Yuan (WJHY) and Hui Long Guan (HLG). 

Among them, Hui Long Guan is located furthest away from the city centre (Figure 

3.6).  

 

Table 3.1: Basic characteristics of ten surveyed neighbourhoods 

 

Abbr. of 

communities 

Years of 

construction 
Building types Type of residents 

Valid 

samples 

JDK Pre-1949 
Single-story 

bungalow 

Transient, older or low 

income population 
115 

QHBY Pre-1949 
Single-story 

bungalow 

Transient, older or low 

income population 
103 

YDY 1970-80s 
Multiple-story 

apartments 

Employees of universities 

and their families 
100 

TRY 1970s - 90s 

Multi-story or 

high-rise 

apartments 

Employees and retirees from 

various factories 
132 

SLH 
1950-60s; 

1990s 

Multi-story or 

high-rise 

apartments 

Employees and their families 

from various government 

agencies 

96 

HPL 
1950- 60s, 

1990s 

Multi-story or 

high-rise 

apartments 

Employees and their families 

from various stated-owned 

enterprises 

99 

DCJ Early 2000s 

Multi-story or 

high-rise 

apartments 

White-collar or private 

entrepreneurs 

with high income 

91 

FZY 
Late 1990s - 

Early 2000s 

High-rise 

apartments 

White-collar or private 

entrepreneurs 

with high income 

117 

WJHY Early 2000s 
High-rise 

apartments 

Young or middle-aged 

residents with middle-to-low 

income 

133 

HLG Late 1990s 
Multi-story 

apartments 

Young or middle-aged 

residents with middle-to-low 

income 

133 
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Figure 3.6: Surveyed neighbourhoods and population density in Beijing‟s sub-

districts 
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Second, 60 households in each neighbourhood were randomly selected to 

complete a self-administered questionnaire, with each household member aged 

sixteen or above providing information on household and individual socio-

demographic attributes, commuting, shopping and leisure activities, as well as a 

continuous activity-travel record of a Sunday, representing a weekend, and a Monday, 

representing a weekday. In total 1,119 individuals from 520 households returned the 

questionnaire with valid answers (an 86.7 percent response).  

 

3.6.2 Land use data 

 

GIS-based spatial analysis was used to derive multi-dimensional measures of 

neighbourhood-scale land use characteristics at both residence and workplace using 

data from government sources. Population density, derived from the Fifth Population 

Census of China in 2000, is shown in Figure 3.6, by quartile, for the main sub-

districts (or jiedao) of urban Beijing. Most of the sub-districts within the fourth urban 

ring road are characterised by a high population density, in contrast to the lower 

density towards the periphery (excepting some north western sub-districts located 

near the fifth ring road which belong to the Haidian district, recognised as another 

sub-centre).  

Primary data to quantify retail employment density, service facility (e.g. 

hospital, bank, post office, library, stadium, and restaurant) density and accessibility 

were derived and geo-coded from the 2001 Basic Economic Unit Census developed 

by the Beijing Statistical Bureau. This database contains information on the locations 

and attributes of c.200, 000 economic units, which refer to any companies, factories, 

shops, restaurants, hospitals, banks, and so on. Figure 3.7 illustrates, by quartile, the 



93 
 

distribution of workplaces for employed residents and the retail employment density 

at their workplaces, measured as the number of retail employees per thousand 

residents within a 1 km radius, a variable often considered a proxy of land use mix 

(Krizek, 2003). It shows that most of these residents worked within the fifth ring road 

(with density highest within the fourth ring road), although there is evidently an 

additional lower density cluster north of the fifth ring road.  
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Figure 3.7: Retail employment density at workplaces within a 1 km radius 
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Table 3.2 compares some of the urban form characteristics of the ten surveyed 

neighbourhoods. Hutong-courtyard neighbourhoods and work unit neighbourhoods 

are more traditional not only because they were built prior to the market reform in 

1978 and were located closer to the centre of the city, but also because they are 

typified by higher population density, mixed land use, proximity to retail and services, 

availability of public transit, and pedestrian-friendly streets (Table 3.2). For instance, 

all work-unit neighbourhoods in the survey are within 1 km from a subway station, 

whereas hutong-courtyard and work unit neighbourhoods are much closer to densely 

city centre, and have higher retail employment density and leisure facility 

accessibility.  

 

Table 3.2: Urban form characteristics of ten surveyed neighbourhoods 

 

Surveyed 

communities 

Types of 

neighbour-

hoods 

Population 

density
*
 (1000 

persons / km
2
) 

Distance to 

the nearest 

subway 

station 

(km) 

Retail  

employment in 

1-km radius 

(1000 persons) 

Distance to 

the nearest 

leisure facility 

(km) 

JDK Hutong- 

Courtyard 

27.460 1.033 21.909 0.647 

QHBY Hutong- 

Courtyard 

18.986 1.243 13.920 0.113 

YDY Danwei 

Compound 

15.896 0.586 5.175 0.123 

TRY Danwei 

Compound 

13.733 0.187 9.897 0.082 

SLH Danwei 

Compound 

26.259 0.856 28.257 0.632 

HPL Danwei 

Compound 

20.949 0.442 16.806 0.714 

DCJ Commodity 

housing 

44.785 0.979 4.097 3.072 

FZY Commodity 

housing 

2.166 2.266 4.734 0.171 

WJHY Affordable 

housing 

8.947 2.309 1.423 1.143 

HLG Affordable 

housing 

2.147 0.934 0.005 5.330 

* 1000 persons/km
2
, based on sub-district or jiedao. 
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In contrast, commodity housing and affordable housing neighbourhoods, built 

since the 1990s, tend to follow the western planning model, dominant up to the turn 

of the century, of mono-functional land use and auto-oriented street design. These 

neighbourhoods tend to have lower population density (with only one exception) and 

lower land use mix measured by retail density (Table 3.2). Hui-Long-Guan is a 

typical example of single-use, large-lot residential development, one of the many 

suburban neighbourhoods developed as a “sleeping town” in order to decentralize 

population from the central city. Residential use accounts for 85% of its land area, 

with 12% for retail and leisure services and only 3% for transportation and other 

facilities (Chinese Society for Urban Studies, 2009: 728).  

 

3.6.3 Population census 

 

Other data sets used in this thesis are the fifth population census of Beijing conducted 

in 2000 and the sixth population census in 2010 by the national government. The 

census has a stratified sample covering all districts, counties and villages in Beijing, 

with four sub-survey types with differing data collection regimes. All people are 

required to answer the short census form, which contains basic information on the 

household and individual socio-demographic attributes, such as gender, age, 

registration, education, and housing area. A 10% sample of the population in each 

sub-district was randomly selected to complete the long census form, which requires 

additional information on demographic and economic attributes, including 

employment, occupation, housing tenure and household expenditure. A deaths 

questionnaire and an annexed table are designed to assist in estimating mortality and 

the temporary resident population respectively. The analysis used the 10% population 
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sample as it comprises most socio-demographic attributes, as shown in Table 3.3. The 

2000 population census sample includes a total of 721,894 residents aged 15 or over 

in the 146 jiedao sub-districts in urban Beijing, while the 2010 census sample 

includes 1,006,036 residents.  

Table 3.3 summarises key socio-demographic attributes in the 2007 activity 

diary survey and 2000 population census. People aged 14 and below are not included 

in the activity dairy survey. However, for people aged 15 and above both data sets 

contain common socio-demographic attributes, including gender, age, education, 

employment, and occupation. Household-level attributes, average housing area and 

housing tenure, also appear in both datasets, while the presence of children and car 

ownership are only available in the travel survey data. The travel survey also contains 

information on daily travel behaviour, such as travel purpose, trip frequency, travel 

distance, mode choice, start and end time, which is not reported by the population 

census.  
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Table 3.3: Key socio-demographic attributes in population census and travel survey 

 

Variables Population census data Activity Diary Survey 

Individual-

level 

Categories Count Categories Count 

Gender (0-14) Male  47086 Not available 

Female 43270 

Gender (15+)  Male  379227 Male 503 

Female 342667 Female 523 

Age 0-4 23517 Not available 

5-9 26552 

10-14 40287 

15-19 76471 16-18 28 

20-24 85727 19-29 163 

25-29 78961 

30-34 77452 30-39 280 

35-39 84848 

40-44 76254 40-49 226 

45-49 65755 

50-54 39593 50-59 217 

55-59 29079 

60-64 35799 60+ 112 

65+ 71955 

Education  

(6-14) 

illiterate 29589 Not available 

Primary school 40237 

Junior high school 20273 

Senior high school and 

above 

257 

Education 

(15+) 

Primary school and below 91561 Primary school and below 19 

Junior high school 223108 Junior high school 101 

Senior high school 217302 Senior high school 262 

College 80595 College 222 

University and above 109328 University and above 422 

Employment 

(15+) 

Employed 500782 Employed 746 

Jobless 71415 Jobless 49 

Retired 138759 Retired 195 

Other 10938 Other 36 

Occupation 

(15+) 

Students 78294 Students 42 

Workers in government and 

public institutions 

181548 Workers in government 

and public institutions 

344 

Workers in factories, 

service companies and 

other  

240940 Workers in factories, 

service companies and 

other  

360 

Total Individuals (0-14) 90356 Individuals (0-14) 0 

Individuals (15+) 721894 Individuals (15+) 1026 
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Table 3.3/cont. 

 

Variables Population census data Activity Diary Survey 

Household-

level 

Categories Count Categories Count 

Housing area 

(m
2
/capita) 

 <=12 43957  <=12 88 

13-19 57554 13-19 84 

 20-29 53788  20-29 150 

 30-39 41086  30-39 98 

 40+ 57681  40+ 83 

Housing tenure Self-built 32152 Self-built 20 

Buy commodity 

housing 

4078 Buy commodity housing 104 

Buy affordable housing 4309 Buy affordable housing 82 

Buy public housing 93509 Buy public housing 155 

Rent public housing 91653 Rent public housing 107 

Rent commodity 

housing 

18882 Rent commodity housing 20 

Other 9483 Other 15 

Presence of 

child (0-5) 

Not available Yes 104 

No 399 

Presence of 

child (6-12) 

Not available Yes 63 

No 440 

Car ownership Not available Yes 186 

No 317 

Total Households 254066 Households 503 

 

 

3.6.4 Beijing Statistical Yearbook 

 

The Beijing Statistical Yearbook has been published by the government annually 

since 1978. The Yearbook contains much information on population, economy, 

energy, environment, finance, public services, industry, transport, buildings and so on. 

Usually, the indicators in the Yearbook, such as total population, GDP, per capita 

GDP, per capita disposable income, birth rate, death rate, vehicle ownership, etc, are 

only published at the city level or district level. 
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3.7 Conclusion 

 

This chapter presents the overarching research design, modelling techniques, and data 

sources used in the thesis, which serves as a foundation for the subsequent empirical 

analysis of travel behaviour and CO2 emission. To comprehensively analyse and 

dynamically simulate the integration of urban form, daily travel behaviour and 

transport CO2 emission in urban China, multiple methods are employed to address the 

different objectives, i.e. discrete choice modelling for trip chain analysis, spatial 

microsimulation for population‟s transport CO2 emission, and scenario analysis for 

transport carbon futures. These methods are highly appropriate tools for the research 

in question; they are complementary and work well together. Using this set of tools, 

we can comprehensively investigate the relationships among socio-demographics, 

urban form and trip chains, provide improved transport CO2 emissions based on 

individuals‟ observed daily travel behaviour, and effectively evaluate the impact of 

different policies, strategies or technologies on transport carbon emissions in the 

future.   

This is addressed using multiple data sources, such as travel diary survey, land 

use data, and population census. Some temporal mismatch between the multiple data 

sources utilized in the thesis is acknowledged; however, the most systematic datasets 

available for scholarly research in China have been obtained, particularly related to 

some of the geo-coded data sets and population census at the sub-district level. China 

has no national travel survey, and the Beijing municipal government travel surveys 

are only published at an aggregate level due to confidentiality issues with the more 

individual level data. Whilst the 2007 travel diary data is a relatively modest data set 

considering the scale of Beijing, it does represent the latest and best data available, 
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and comprises complete activity-travel records for over 1,000 individuals, which 

remains a suitable data set from which to understand trip chain behaviour. The 

combination of micro and macro-level data sources is reasonable given the limited 

access of Chinese scholars to officially collected datasets. Further details on the three 

empirical analyses are provided in Chapters 4 – 6.  
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Chapter 4 

An Analysis of Trip Chains and Their Behavioural 

Determinants 

 

4.1 Introduction 

 

A tour or trip chain is defined as the travel from home to one or more activity 

locations and back home again. Using tour or trip chain as the basic analytical unit, 

this chapter investigates how socio-demographic attributes of households and 

individuals, and urban form characteristics, at both residence and workplace, 

influence tour-based daily travel behaviour. The approach taken accounts for urban 

form characteristics in a series of multivariate models drawing on detailed land use 

data, and a travel diary survey with discrete choice models employed to analyse the 

trip-chaining behaviour in three principle areas: tour generation or frequency (number 

of tours taken on a workday), tour scheduling process (the number of stops, their type, 

and order), and tour interdependence effect (how the characteristics of one tour type 

may influence other tours an individual may take). As the employed residents have 

great work related spatio-temporal constraints and their working activities may have 

significant influences on the decisions to pursue and schedule other non-work 

activities (Bhat et al., 2004), the impacts of urban form and socio-demographic 

attributes on tour-based daily travel behaviour are examined for the employed 

residents (workers) and the unemployed residents (non-workers), respectively. 
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 This chapter, investigating the determinants of individual‟s daily trip-chaining 

behaviour, serves as a basis for the following work (Chapters 5 and 6) that seeks to 

develop a spatial microsimulation model to forecast the daily travel behaviour and 

estimate the transport CO2 emission of a large synthesised population in a Chinese 

mega-city. Below, an empirical analysis of urban form and trip chains in Beijing is 

developed. Section 4.2 presents an analysis which considers the characterisation of 

trip chains that residents in Beijing make, and the role of neighbourhood type in tour 

behaviour. Then an ordered logit modelling of tour generation analysis is presented in 

Section 4.3, followed by multinomial logit modelling of tour schedule, and an 

analysis of interdependence in Section 4.4. Conclusions on the role of socio-

demographics and urban form on trip-chaining behaviour in Beijing are drawn in the 

final section. 

 

4.2 Characterisation of trip chains 

4.2.1 Tour frequency  

 

Tour generation or frequency, i.e. number of tours made during the day, is the first 

and foremost decision to be made on a typical workday. In this chapter, the Monday 

activity-travel records are used to yield a sample of 1,026 individuals who 

participated in at least one out-of-home activity, and who generated a total of 1,437 

home-based tours. Table 4.1 lists the tour frequency profile by selected individual 

socio-demographics. Male, household head and the employed residents have a higher 

proportion of one tour generation than their counterparts, especially for the employed 

residents. Partly due to their working constraints, most workers tend to generate only 
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one tour on a typical workday while non-workers are more likely to generate two or 

more tours. Similarly, the percentages of two or more tours are also lower for the 

male and household head, as they have diverse responsibilities within a family and 

face different spatio-temporal constraints on activity participation. This further 

illustrates how tour frequency varies according to socio-demographic attributes. The 

majority of residents generate only 1 or 2 tours on a typical workday in Beijing, while 

less than 10% generate 3 tours or more.  

 

Table 4.1: Tour frequency by socio-demographics 

 

Tour 

Frequency 

Gender Household Head Employment Total 

Male Female Yes No Employed Unemployed  

1 tour 360 341 433 268 569 132 701 

(%) (71.57) (65.20) (72.77) (62.18) (76.27) (47.14) (68.32) 

2 tours 107 140 131 116 142 105 247 

(%) (21.27) (26.77) (22.02) (26.91) (19.03) (37.50) (24.07) 

3 tours 33 37 28 42 33 37 70 

(%) (6.56) (7.07) (4.71) (9.74) (4.42) (13.21) (6.82) 

4 tours 3 5 3 5 2 6 8 

(%) (0.60) (0.96) (0.50) (1.16) (0.27) (2.14) (0.78) 

Total 503 523 595 431 746 280 1,026 

(%) (100) (100) (100) (100) (100) (100) (100) 

 

 

To better understand the role of urban form on tour frequency, the number of 

tours taken by the employed residents in each of the ten surveyed neighbourhoods is 

compared. Figure 4.1 illustrates that the propensity to take tours does vary across 

neighbourhoods, differentiated by retail employment density (measured as the 

number of retail employees per thousand residents within a 1 km radius). For example, 

people resident in hutong-courtyard (e.g. JDK) and danwei compound (e.g. YDY, 

SLH, HPL) neighbourhoods take an average 1.4 tours per person per day, while those 
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in commodity (DCJ, FZY) and affordable housing (WJHY, HLG) neighbourhoods 

take less than 1.2 tours per person per day. This shows that people living in high-

density or mixed land-use neighbourhoods tend to take more tours on a typical 

workday. 

 

 

 

Figure 4.1: Tour frequency across neighbourhoods by retail employment density 

 

4.2.2 Tour classification 

 

In prior literature, trip chains or tours, which sequentially link outbound and return 

trips and all intermediate stops, have been classified using different methods. For 

example, based on the combination of simple and complex tours with three different 

activity purposes (work or study, household-sustaining activities, and recreation) 
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within each tour, Krizek (2003) derived nine tour types (e.g. simple work, complex 

maintenance only, complex work and discretionary only). On the basis of the primary 

purpose of each tour, Frank et al. (2008) divided all tours into three simple types: 

home-based work tour, home-based non-work tour and midday work-based tour.  

This study adopts the home-based tour as the basic unit of research to better 

reflect the interrelated decision process of an individual‟s daily behaviour, and 

classifies the home-based work and non-work tours into eight types respectively, 

according to the trip sequence and activity purposes (Table 4.2). The single-purpose 

work tour
 
of H-W-H (Home-Work-Home), is the most common type accounting for 

nearly half of all the 882 work tours, a very similar proportion observed elsewhere 

(Chen et al., 2008). The other half comprises multi-purpose tours with non-work 

activities assigned before, during, or after work and their combinations. Here, tour 

type H-W-X-W-H (where W represents a work or work related activity, and X any 

non-work activity) is most common, indicating people participate in non-work 

activities during work near their workplace on a typical weekday. Conversely, tour 

types H-X-W-X-H and H-X-W-X-W-X-H are uncommon (c. 1%), suggesting few 

people participate in multiple non-work activities associated with a home-based work 

tour. 
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Table 4.2: Tour classification 

 

Home-based Work Tour Home-based Non-work Tour 

Tour type Freq. Percent (%) Tour type Freq. Percent (%) 

H-W-H 439 49.77 H-L-H 197 35.50 

H-X-W-H 29 3.29 H-S-H 139 25.05 

H-W-X-W-H 225 25.51 H-F-H 52 9.37 

H-W-X-H 68 7.71 H-P-H 66 11.89 

H-X-W-X-W-H 36 4.08 H-O-H 28 5.05 

H-X-W-X-H 9 1.02 H-2 stops -H 52 9.37 

H-W-X-W-X-H 68 7.71 H-3 stops -H 16 2.88 

H-X-W-X-W-X-H 8 0.91 H-4 stops -H 5 0.90 

Single-purpose 439 49.77 Single-purpose 482 86.85 

Multi-purpose 443 50.23 Multi-purpose 73 13.15 

Total 882 100 Total 555 100 

Note: W represents work or work-related activity; X represents any non-work activities; L 

represents  leisure activity; S represents shopping activity; F represents family obligation, 

including taking care of old people and children, etc; P represents personal business, like 

eating out, going to hospitals, etc; O represents other non-work activity. 

 

 

 Of the home-based non-work tours (Table 4.2), most are single-purpose, with 

only c. 13% being multi-purpose. The non-work activities are: leisure (L), shopping 

(S), family obligation (F), personal business (P) and other (O). Among the single-

purpose non-work tours, H-L-H dominates (36%), followed by H-S-H (25%) 

indicating workers go shopping and particularly engage in leisure activities for non-

work tours on a typical workday. Family obligation and personal business are also 

important non-work activities accounting for 21% of the non-work tours. The multi-

purpose non-work tours comprise three types according to tour complexity (number 

of stops), but collectively account for only 13% of all non-work tours, most having 

two stops. 

To understand the role of urban form on tour types, an analysis of tour 

complexity (number of stops) by neighbourhood is undertaken, particularly 

considering how tours are affected by retail employment density and land use mix. 
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For example, Figure 4.2 shows the share of multi-purpose tour (i.e. H-2 or more 

stops-H) by the surveyed neighbourhoods. The share of multi-purpose tour type is 

low in the hutong-courtyard (JDK, QHBY) and danwei compound (e.g. SLH, HPL) 

neighbourhoods, typified by higher retail employment density or mixed land use. In 

contrast, the multi-purpose tour has the highest proportion in the affordable housing 

neighbourhood WJHY (about 70%), followed by the commodity housing 

neighbourhood FZY and DCJ. This suggests people living in a low-density, mono-

functional environment located in the suburb tend to make more stops en route.    

 

 

 

Figure 4.2: Tour complexity across neighbourhoods by retail employment density 
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4.2.3 Tour type choice for workers 

 

As workers‟ daily activity-travel behaviour may be very different to that of non-

workers, the tour-based travel decision mechanisms for workers and non-workers are 

examined separately. Table 4.3 presents the profile of tour type choice for workers 

generating one and two tours. More than 30% of workers with only one tour choose 

the single-purpose work tour type of H-W-H on a typical weekday, while another 34% 

or so choose the multi-purpose tour type of H-W-X-W-H. The proportion of any other 

work tour type is low (less than 6%), except the type of H-W-X-W-X-H with about 

10%. Note that about 8% of workers generate only one tour which is of a non-work 

tour type. One possible reason may be that they need to take part in some occasional 

personal business (e.g. going to hospital) rather than work activities on that survey 

day. Another reason may be that these people, who work but at home, are 

telecommuting.  
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Table 4.3: Tour type choice for workers with one and two tours 

 

Workers with one tour 

generation 

Workers with two tours generation 

Tour type Freq. Percent 

(%) 

1
st
 Tour type  Freq. Percent 

(%) 

2
nd

 Tour type Freq. Percent 

(%) 

H-W-H 178 31.28 H-W-H 80 56.34 H-W-H 57 40.14 

H-X-W-H 19 3.34 H-X-W-H 6 4.23 H-X-W-H 1 0.70 

H-W-X-W-

H 

193 33.92 H-W-X-W-H 17 11.97 H-W-X-H 20 14.08 

H-W-X-H 25 4.39 H-W-X-H 4 2.82 H-X-W-X-W-

H 

1 0.70 

H-X-W-X-

W-H 

32 5.62 H-X-W-X-

W-H 

1 0.70 H-W-X-W-X-

H 

1 0.70 

H-X-W-X-H 8 1.41 H-X-W-X-H 1 0.70 H-L-H 32 22.54 

H-W-X-W-

X-H 

60 10.54 H-W-X-W-

X-H 

4 2.82 H-S-H 13 9.15 

H-X-W-X-

W-X-H 

7 1.23 H-L-H 8 5.63 H-F-H 8 5.63 

Non-work to

ur 

47 8.26 H-S-H 9 6.34 H-P-H 7 4.93 

   H-F-H 5 3.52 H-2 stops-H 1 0.70 

   H-P-H 3 2.11 H-3 stops-H 1 0.70 

   H-O-H 2 1.41    

   H-3 stops-H 2 1.41    

Total 569 100 Total 142 100 Total 142 100 

 

 

Of the workers taking two tours, more than 50% choose the single-purpose 

work tour type as their first tour arrangement, while another 12% or so select the 

multi-purpose work tour type of H-W-X-W-H. About 19% choose the single-purpose 

non-work tour as their first tour type, with very few people selecting a multi-purpose 

non-work tour. By contrast, with respect to the second tour type arrangement for 

these workers, the proportion of single-purpose work tour type is high, followed by 

another multi-purpose work tour type of H-W-X-H. However, the proportion of 

single-purpose non-work tour type is also high, exceeding 40%, which indicates 

many workers participate in some non-work activities for their second tour 

arrangement if they display two tours on a typical weekday. In particular, among 
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them, leisure activity is the most popular, as more than 20% select the tour type of H-

L-H. 

 

Table 4.4: Tour type choice for workers with three or more tours 

 

Workers with three or more tours generation 

1
st
 Tour 

type 

Freq. Percent 

(%) 

2
nd 

Tour 

type 

Freq. Percent 

(%) 

3
rd 

Tour type Freq. Percent 

(%) 

H-W-H 25 71.43 H-W-H 24 68.57 H-W-H 12 34.29 

H-W-X-H 1 2.86 H-X-W-H 1 2.86 H-W-X-H 2 5.71 

H-L-H 6 17.14 H-W-X-H 5 14.29 H-L-H 14 40.00 

H-F-H 1 2.86 H-L-H 1 2.86 H-S-H 6 17.14 

H-P-H 1 2.86 H-S-H 1 2.86 H-P-H 1 2.86 

H-O-H 1 2.86 H-F-H 1 2.86    

   H-O-H 1 2.86    

   H-X-X-X-H 1 2.86    

Total 35 100 Total 35 100 Total 35 100 

 

 

Table 4.4 lists the tour type profile for workers with three or more tours. As 

very few workers take more than three tours on a typical weekday, the samples of 

three tours and four tours generation are put together and the fourth tour is 

disregarded if the workers take four tours. As Table 4.4 shows, the majority of these 

workers choose the single-purpose work tour type as their first tour arrangement, 

followed by the single-purpose non-work tour type of H-L-H. The proportions of any 

other types are very low. Similarly, with respect to their second tour type arrangement, 

almost 70% choose the single-purpose work tour type while another 15% participate 

in some kind of non-work activity after work and before going home. As far as the 

third tour type arrangement is concerned, about 30% of these workers choose the 

single-purpose work tour type, while another 60% select the single-purpose non-work 

tour types, especially the tour type of H-L-H, suggesting most of these workers go 
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shopping or participate in some leisure activities for their last tour arrangement on a 

typical weekday. Overall, it shows that workers with different tour frequencies 

choose different tour types for their different tour arrangement.  

 

4.2.4 Tour type choice for non-workers 

 

With respect to non-workers, Table 4.5 presents the profile of tour type choice and 

arrangement for non-workers with one and two tours generated. More than 50% of 

non-workers with only 1 tour generated choose the single-purpose non-work tour type 

on a typical weekday. Of them, shopping and recreation are the main activities which 

people like to participate in, followed by personal business. The proportion of 

multipurpose non-work tour type with two activities participation, i.e. H-X-X-H, is 

nearly 13%, while the multipurpose non-work tour type with three or more activities 

participation accounts for about 6% altogether. Nonetheless, 25% of non-workers 

with only 1 tour choose work tour type on a typical weekday, probably due to that 

these unemployed residents take some temporary work-related activities on that 

survey day, like training or study for a job, re-hired by the company or university 

after retirement, etc.  
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Table 4.5: Tour type choice for non-workers with 1 and 2 tours 

 

Non-workers with 1 tour 

generation 

Non-workers with 2 tours generation 

Tour type Freq. Percent 

(%) 

1
st
 Tour 

type 

Freq. Percent 

(%) 

2
nd

 Tour type Freq. Percent 

(%) 

H-L-H 24 18.18 H-L-H 34 32.38 H-L-H 32 30.48 

H-S-H 27 20.45 H-S-H 18 17.14 H-S-H 24 22.86 

H-F-H 5 3.79 H-F-H 8 7.62 H-F-H 6 5.71 

H-P-H 14 10.61 H-P-H 7 6.66 H-P-H 15 14.28 

H-O-H 4 3.03 H-O-H 5 4.76 H-O-H 5 4.76 

H-X-X-H 17 12.88 H-X-X-H 12 11.43 H-X-X-H 6 5.71 

H-X-X-X-H 5 3.79 H-X-X-X-H 2 1.90 H-X-X-X-H 3 2.86 

H-X-X-X-X-

H 

3 2.27       

Work tour  33 25.00 Work tour 19 18.10 Work tour 14 13.33 

Total 132 100 Total 105 100 Total 105 100 

 

 

Of the non-workers with two tours generation, more than 30% choose the 

single-purpose non-work tour type, i.e. H-L-H, as their first tour arrangement, while 

another 17% or so select the tour type of H-S-H. Only 13% choose the multipurpose 

non-work tour type with two or three activities participation, with about 18% 

selecting the work tour type as their first tour type. By contrast, with respect to their 

second tour type arrangement for these non-workers, recreation and shopping are still 

the primary activities for the single-purpose non-work tour type, with about 14% 

selecting personal business. The proportion of multipurpose non-work tour type is 

very low, about 8%. 

Table 4.6 presents the tour type profile for non-workers with three tours. 

Nearly 40% choose the single-purpose non-work tour type of H-L-H as their first tour 

arrangement, with about 16% selecting the tour type of H-F-H. The proportion of H-

S-H is only 9%, while that of other non-work tour types is low. Similarly, regarding 

their second tour type arrangement, about 30% choose the single-purpose non-work 



115 
 

tour type of H-L-H, followed by the tour types of H-S-H and H-F-H, accounting for 

14% and 12% respectively. In contrast, with respect to their third tour type 

arrangement, more than 50% choose the single-purpose non-work tour types of H-L-

H and H-S-H, while the proportion of any other non-work tour type is very low. 

However, about 28% choose the work tour type as their third tour type arrangement 

on a typical weekday.  

 

Table 4.6: Tour type choice for non-workers with 3 tours 

 

Non-workers with 3 tours generation 

1
st
 Tour 

type 

Freq. Percent 

(%) 

2
nd

 Tour 

type 

Freq. Percent 

(%) 

3
rd

 Tour type Freq. Percent 

(%) 

H-L-H 17 39.53 H-L-H 13 30.23 H-L-H 12 27.91 

H-S-H 4 9.30 H-S-H 6 13.95 H-S-H 10 23.26 

H-F-H 7 16.28 H-F-H 5 11.63 H-F-H 3 6.98 

H-P-H 3 6.98 H-P-H 4 9.31 H-P-H 2 4.65 

H-O-H 2 4.65 H-O-H 1 2.33 H-O-H 2 4.65 

H-X-X-H 3 6.98 H-X-X-H 3 6.98 H-X-X-X-H 2 4.65 

H-X-X-X-H 1 2.33 H-X-X-X-H 1 2.33    

Work tour 6 13.95 Work tour 10 23.26 Work tour 12 27.91 

Total 43 100 Total 43 100 Total 43 100 

 

 

4.3 Modelling tour generation  

4.3.1 Ordered logit models 

 

Having established that tour frequency and type do vary for workers and non-workers, 

the next step was to determine whether tour characteristics (frequency and type) could 

be explained by the socio-demographic and / or urban form characteristics of the 

associated neighbourhoods. As the variable of tour frequency is an ordinal outcome, 
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the ordered logit models are adopted to investigate association between urban form 

characteristics (at residence and workplace), socio-demographic attributes (of 

households and individuals), and tour generation choices for workers and non-

workers, respectively.  

The ordered logit model is a generalisation of the multinomial logit, and is 

useful for explaining ordinal discrete choices where individuals have systematic 

unobserved preferences, with proximate covariance in the stochastic utility 

components (Small, 1987). This approach allows for ordinal differences in the 

dependent variable (in this case, the tour frequency) with a small range of discrete 

choice (our travellers chose to take 1 to 3 tours) and may also more appropriately 

account for the actual behaviour (Bhat, 1999; Noland and Thomas, 2007). The 

ordered logit model is based upon cumulative response probabilities and the odds that 

an outcome is less than or equal to m versus greater than m given values of x: 

Ω ≤m|>m (x) = Pr (y ≤ m | x) / Pr (y > m | x)   for m = 1, J – 1                                     (4.1) 

The log of the odds is assumed to equal 

ln Ω ≤m|>m (x) = τm – xβ                                                                                              (4.2) 

where J refers to the number of ordinal categories, τm represents the cut points or 

thresholds, and β means the coefficients to be estimated (Long and Freese, 2001). In 

this case, as the options of tour generation are divided into three categories, there are 

only two cut points (τ1 and τ2) to be estimated (i.e. between 1 and 2 tours, and 2 and 3 

tours). Stata software was used to estimate all the models in this analysis and the 

option of three tours generation was set as the reference category. 
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4.3.2 Tour generation modelling for workers 

 

Table 4.7 shows model results for the employed residents with effective samples 

representing workers who generated at least one home-based work tour on a typical 

weekday. Model 1 is the null model with only two cut points to be estimated. Taking 

the antilogit
5
 of them, we can obtain the estimated probability that a worker‟s tour 

frequency is one and the cumulative probability that a worker‟s tour frequency is less 

than three, respectively. Household and individual socio-demographic attributes (e.g. 

gender, age, occupation, child presence, household size) are added in model 2, 

followed by model 3 which adds urban form variables at both residence and 

workplace, and which includes population density (for the jiedao sub-district), retail 

employment density (retail employees within a 1 km radius), and service facility 

density (number of various service facilities within a 1 km radius). The natural log 

transformation is applied to these urban form variables at both residence and 

workplace, to make their distribution more symmetric and to mitigate the potential 

problem of heteroskedasticity (Anderson and West, 2006). The model indicators of 

Log likelihood and R
2
 increase as more variables are added. All the models pass the 

Brant Test of Parallel Regression Assumption (Long and Freese, 2001), indicating 

that the models are well fitted and the coefficients are appropriately estimated. 

 

 

 

                                                           
5
 The antilogit of r equals to exp(r) / [exp(r)+1] 
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Table 4.7: Ordered logit models for workers 

 

Variables Model 1 Model 2 Model 3 

 
Coef. S.E. Coef. S.E. Coef. S.E. 

Cut point1 1.082 0.087 -1.607 0.716 0.681 1.146 

Cut point2 2.943 0.173 0.561 0.719 2.876 1.153 

House head 
  

0.426
**

 0.212 0.424
**

 0.216 

Female 
  

0.357
*
 0.205 0.290 0.208 

Age (30-49) 
  

1.284
***

 0.347 1.164
***

 0.354 

Age (>=50) 
  

1.368
***

 0.386 1.250
***

 0.394 

Monthly income 
  

-0.439
***

 0.091 -0.431
***

 0.092 

Occupation 1 
  

-2.344
***

 0.885 -2.469
***

 0.890 

Occupation 2 
  

0.393
*
 0.215 0.303 0.223 

Occupation 4 
  

0.483 0.294 0.506
*
 0.298 

Child presence 
  

-0.505
**

 0.231 -0.396
*
 0.234 

Household size 
  

-0.126 0.123 -0.063 0.126 

Commuting time 
  

-0.534
***

 0.097 -0.529
***

 0.099 

Population density  

at residence     
0.292

*
 0.171 

Retail employment 

density at residence     
-0.001 0.070 

Population density  

at workplace     
-0.030 0.132 

Retail employment 

density at workplace     
-0.394 0.264 

Service facility density at 

workplace     
0.570

**
 0.287 

Log likelihood -483.539  -412.481  -405.841 

Pseudo R
2
 0.000  0.147  0.161 

* Significant at 0.10 level, ** significant at 0.05 level, *** significant at 0.01 level. 

Occupation is divided into four categories. Occupation 1 refers to students and occupation 2 

refers to staff members in various government and public institutions. Occupation 3 refers to 

workers in factories and companies, while occupation 4 refers to private-owned entrepreneurs 

and freelance workers. In the models, occupation 3 was set as the reference category. 

 

Compared with the parameters in model 2, the estimates of socio-

demographic attributes in model 3 vary little, which suggests the correlation of 

demographics and tour frequency is stable. It shows most of these socio-demographic 

attributes are significantly correlated with workers‟ tour generation choices. For 

example, household head, low-level income workers, private-owned entrepreneurs 

and freelance workers tend to generate more tours than their counterparts on a typical 

weekday. Distinctness is also found between various age cohorts – older people are 
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significantly associated with a higher tour frequency, contrary to the findings of 

Noland and Thomas (2007). Gender difference in trip-chaining behaviour is found in 

many developed countries, but here there is no significant difference between men 

and women‟s tour frequencies. One possible reason for these observations is that 

many young couples live with their parents (partly due to very high house prices in 

Beijing) to form big families. Older people, including those without work or the 

retired, take partial responsibility for housework (shopping, child-care, family errands) 

instead of women workers, a rather different situation than in many developed 

countries.  

Travel duration or commuting time is also very significantly and negatively 

associated with tour frequency, indicating that people tend to take fewer tours if they 

have to travel long periods for work activities. With respect to urban form, it shows 

that people living in neighbourhoods with higher population density at place of 

residence, or higher workplace service facility accessibility tend to leave home more 

often and generate more tours, which is mostly consistent with other research (Krizek, 

2003). 

 

4.3.3 Tour generation modelling for non-workers 

 

Table 4.8 presents model results for the unemployed residents with effective samples 

representing non-workers who generated at least one home-based tour on a typical 

workday. With household and individual socio-demographic attributes added in 

model 2, it shows that people with high educational attainment tend to generate fewer 

tours than their counterparts on a typical workday. Compared to non-workers with no 
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or low-level income (e.g. pensioners), the high-level income non-workers tend to 

generate more tours on a typical workday. By contrast, with urban form 

characteristics at residence added in model 3, some estimates of socio-demographic 

attributes (e.g. gender, education, and monthly income) vary little, while other 

attributes, like age and child presence, vary a great deal. For example, child presence 

is significantly correlated with non-workers‟ tour generation choices when accounting 

for urban form characteristics at residence. The non-workers with children in their 

households tend to generate more tours than their counterparts on a typical workday. 

With respect to urban form, it shows that people living in neighbourhoods with a 

higher population density at place of residence, or better access to a subway station 

tend to leave home more often and generate more tours than their counterparts on a 

typical workday. 

 

Table 4.8: Ordered logit models for non-workers 

 

Variables Model 1 Model 2 Model 3 

Coef. S.E. Coef. S.E. Coef. S.E. 

Cut point1 -0.105 0.138 1.337 0.653 3.770 0.959 

Cut point2 1.866 0.203 3.386 0.689 6.021 1.017 

Female 

  

-0.007 0.292 -0.013 0.301 

Age(40-49) 

  

0.586 0.689 1.012 0.727 

Age(50-59) 

  

0.365 0.520 0.968
*
 0.571 

Age(>= 60) 

  

0.236 0.510 0.677 0.561 

Education(tertiary) 

  

-0.841
**

 0.390 -0.842
**

 0.408 

Monthly income 

  

0.332
***

 0.115 0.387
***

 0.122 

Child presence 

  

0.441 0.327 1.266
***

 0.388 

Population density at 

residence 

    

0.435
**

 0.221 

Retail employment 

density at residence 

    

-0.071 0.085 

Subway accessibility at 

residence 

    

1.184
***

 0.342 

Log likelihood -206.978 -198.177 -185.110 

Pseudo R2 0.000 0.031 0.095 

     * Significant at 0.10 level, ** significant at 0.05 level, *** significant at 0.01 level. 
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4.4 Modelling tour schedule and interdependence 

 

Next, this section examines how socio-demographic and urban form attributes 

correlate with residents‟ tour schedule (the type and order of intermediate stops made) 

and interdependence. It firstly explores such correlations for workers with different 

tour frequencies separately to account for the sequence of tours taken and the tour 

interdependence effect for workers taking multiple tours in a day, followed by the 

multivariate analysis for non-workers. As the dependent variable of tour pattern is a 

categorical outcome, multinomial logit (MNL) models are adopted. These are the 

most frequently used discrete choice models, favoured for their simple mathematical 

structure and ease of estimation (Wen and Koppelman, 2000). Based upon the 

response probabilities for each category (in our case, tour type), the MNL models can 

be defined as: 

 

ln Ωm|b (x) = ln[Pr(y = m|x)/Pr(y = b|x)] = xβm|b     for m = 1 to J                              (4.3) 

 

Where b is the base category or the comparison group and J refers to the number of 

categories.  

 

4.4.1 Tour schedule modelling for workers taking one tour 

 

The eight types of home-based work tours taken (Table 4.2) vary in frequency, with 

some of the more complex tours occurring relatively infrequently. To simplify the 

modelling, four tour categories are thus developed: 
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 The single-purpose tour (H-W-H), comprising about 34% of observed tours; 

 The first pattern multi-purpose tour (H-X-W-H, H-W-X-H, H-X-W-X-H); 

without work-based tour (i.e. non-work activities occur before and/or after 

work) comprising almost 10% of observed tours; 

 The second pattern multi-purpose tour (H-W-X-W-H) with work-based tour 

(i.e. non-work activities only take place during work)  comprising 37% of 

observed tours; 

 The third pattern multi-purpose tour (H-X-W-X-W-H, H-W-X-W-X-H, H-X-

W-X-W-X-H), a more complex combination of the first and second pattern 

multi-purpose tours, comprising 19% of observed tours.  

The most complex pattern multi-purpose tour was set as the reference outcome in 

the MNL models of workers taking a single tour. The results (Table 4.9) reveal that 

household size, gender, and monthly income are significantly associated with tour 

type. Compared to the reference category, workers with large families tend to take 

less complex tours, whilst female and high income workers have the most 

complicated (third pattern multi-purpose) tour. This indicates that although women 

have a similar tour frequency (number of tours) to men, they tend to make more stops 

within their tour; this supports the findings of gender differences in trip-chaining 

behaviour reported elsewhere (McGuckin and Murakami, 1999) and contradicts the 

findings (i.e. no gender difference on tour types) of Yang et al. (2007). Commuting 

time is also significantly correlated with tour pattern, as might be expected. As travel 

duration increases, people are more likely to choose simpler tours making fewer 

intermediate stops (relative to the reference case). 
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Table 4.9: MNL results for workers with one tour generation 

 

Variables Single-purpose tour 
The first pattern of 

multi-purpose tour 

The second pattern of 

multi-purpose tour 

 
Coef. S.E. Coef. S.E. Coef. S.E. 

Child presence -0.449  0.319  -0.622  0.434  -0.117  0.309  

Household size 0.293
*
  0.160  0.636

***
  0.199  0.109  0.159  

Female -0.702
***

  0.273  -0.366  0.372  -0.605
**

  0.267  

Age (>=50) -0.552  0.405  -0.350  0.563  -0.352  0.389  

Occupation 2 -0.157  0.294  -0.100  0.415  0.349  0.280  

Monthly income -0.250
***

  0.093  -0.209
*
  0.124  -0.198

**
  0.092  

Commuting time 0.527
***

  0.144  0.477
**

  0.198  0.485
***

  0.138  

Population density  

at residence 
0.198  0.180  0.025  0.237  0.322

* 
 0.175  

Retail employment 

density at residence 
-0.014  0.075  0.081  0.102  -0.028  0.075  

Population density  

at workplace 
-0.160  0.165  0.190  0.213  0.095  0.160  

Retail employment 

density at workplace 
0.009  0.163  -0.475

**
  0.213  -0.269

*
  0.158  

Service facility 

accessibility at 

workplace 

-0.050  0.176  -0.092  0.228  -0.345
*
  0.186  

   The third pattern of multi-purpose tour is the reference case.  

   Log likelihood (model) = -630.48, Prob > Chi
2
 = 0.00, Pseudo R

2
 = 0.06 

   * Significant at 0.10 level, ** significant at 0.05 level, *** significant at 0.01 level. 

 

 

Regarding the urban form variables, land use characteristics at both residence 

and workplace have significant impacts on tour pattern choices, especially with 

respect to the workplace built environment, which exerts more influence than the 

residences‟. For example, people living in neighbourhoods of higher population 

density tend to choose simpler tours rather than the most complex (reference) 

category. However, where retail employment density and service facility accessibility 

(as average distance to service facilities within a 1 km radius) at the workplace is 

higher, people are more likely to take the most complex tour or make more stops en 

route. It indicates that firstly the urban form variables at residence and workplace 

have different impacts on tour pattern decisions; secondly, mixed land-use at a 
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workplace with higher accessibility leads to a more complex tour pattern with 

multiple stops within one work tour. 

 

4.4.2 Tour schedule modelling for workers taking two tours 

 

With respect to workers with two tours, based on the tour type selection profile in 

Table 4.3 and each tour type‟s characteristics, their first and second tour types are 

also grouped into four categories respectively. As shown in Figure 4.3, their first tour 

types are grouped as single-purpose work tour, multi-purpose work-based tour, other 

multi-purpose work tour and non-work tour, which are mostly single-purpose. By 

contrast, their second tour types are grouped as single-purpose work tour, multi-

purpose work tour, single-purpose non-work tour with leisure activities (H-L-H) and 

maintenance activities (H-M-H) separately. 

 

 

 

 

Figure 4.3: Tour pattern definition for workers with two tours generation 
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Table 4.10 presents the estimated results for the first tour pattern decisions. As 

shown below, the socio-demographic attributes of household size, gender, and age are 

significantly associated with first tour pattern taken. Relative to the reference case (i.e. 

other multi-purpose work tour), workers with a large family tend to choose the single-

purpose work tour pattern as their first tour arrangement, whilst women select the 

multi-purpose work-based tour. Older individuals tend to participate in some non-

work activities before they travel to work. Commuting time was also found to have a 

significant and positive effect on the first tour pattern choices. As the commuting time 

increases, people are more likely to begin with work activities and then participate in 

non-work activities close to their workplaces. However, the urban form variables are 

insignificant influences on the first tour pattern choices. 

 

Table 4.10: MNL results for the first tour of the day 

 

Variables H-W-H H-W-X-W-H Non-work tour 

 
Coef. S.E. Coef. S.E. Coef. S.E. 

Child presence 0.206  0.773  -2.264  1.403  1.093  0.891  

Household size 1.071
*
  0.554  1.055  0.695  0.979  0.620  

Female 0.681  0.622  1.484
*
  0.851  0.757  0.730  

Age (>=50) 0.878  0.863  1.461  1.098  2.180
**

  0.980  

Occupation 2 -0.276  0.638  -1.045  0.875  -0.715  0.746  

Monthly income -0.103  0.284  -0.027  0.357  -0.223  0.328  

Commuting time -0.267  0.360  1.281
**

  0.532  0.365  0.417  

Population density  

at residence 
1.018  0.686  1.596  1.230  0.714  0.716  

Retail employment density 

at residence 
-0.231  0.370  -0.407  0.504  -0.406  0.380  

Population density  

at workplace 
-0.094  0.624  0.183  0.729  -0.414  0.677  

Retail employment density 

at workplace 
-0.324  0.532  -0.187  0.659  -0.473  0.581  

Service facility accessibility 

at workplace 
-0.274  0.761  -0.552  0.985  -1.045  0.829  

   The category of other multi-purpose work tour is the base outcome. 

   Log likelihood (model) = -133.77, Prob > Chi
2
 = 0.01, Pseudo R

2
 = 0.18 

   * Significant at 0.10 level, ** significant at 0.05 level, *** significant at 0.01 level. 
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In contrast, urban form variables at residence and workplace are significantly 

correlated with the type of tour taken by workers taking a second tour in the day 

(Table 4.11). With higher population density at workplaces, people are more likely to 

choose the reference tour type (i.e. H-L-H) as their second tour of the day. However, 

with mixed land use at workplaces, people are more likely to select the work tour or 

non-work tour with maintenance activities (e.g. shopping). Monthly income and 

commuting time are also significantly correlated with the second tour type taken, 

indicating people with higher income or longer duration commutes tend to participate 

in some leisure activities after work. There is also a significant correlation between 

the choice of first and second tour type. For example, compared with the multi-

purpose work tour, if the workers‟ first tour pattern is single-purpose work tour or 

non-work tour, they are more likely to select the tour patterns of H-W-H, H-W-X-H 

or H-M-H as their second tour, rather than the base category of H-L-H. This suggests 

there may be a tour interdependence effect for different tour pattern choices for 

workers taking multiple tours in a day.  This observation is tentative, and additional 

data are required to test this further. 
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Table 4.11: MNL results for the second tour of the day 

 

Variables H-W-H H-W-X-H H-M-H 

 
Coef. S.E. Coef. S.E. Coef. S.E. 

Child presence 0.617  0.828  0.748  0.914  0.225  0.785  

Household size -0.678  0.476  -0.100  0.507  -0.476  0.426  

Female -0.309  0.653  0.164  0.725  0.015  0.626  

Age (>=50) -0.408  0.856  0.815  0.891  0.190  0.840  

Occupation 2 -0.227  0.717  0.087  0.793  -0.375  0.685  

Monthly income -1.256
***

  0.354  -1.290
***

  0.404  -0.576
*
  0.349  

Commuting time -1.959
***

  0.478  -1.796
***

  0.491  -0.763
*
  0.447  

Population density  

at residence 
-0.590  0.730  -1.013  0.725  -1.096

*
  0.664  

Retail employment 

density at residence 
-0.205  0.327  -0.081  0.318  0.229  0.287  

Population density  

at workplace 
-1.232

**
  0.616  -1.395

**
  0.671  -0.849

*
  0.513  

Retail employment 

density at workplace 
1.690

***
  0.555  1.038

*
  0.577  0.910

*
  0.500  

Service facility 

accessibility at workplace 
0.208  0.655  -0.412  0.696  0.553  0.548  

The first tour pattern of 

single-purpose work tour  
2.538

***
  0.801  1.607

*
  0.876  0.628  0.761  

The first tour pattern of 

non-work tour 
2.068

*
  1.064  2.088

**
  1.064  2.351

***
  0.889  

  The tour pattern of H-L-H is the base outcome.  

  Log likelihood (model) = -132.15, Prob > Chi
2
 = 0.00, Pseudo R

2
 = 0.29 

  * Significant at 0.10 level, ** significant at 0.05 level, *** significant at 0.01 level. 

 

4.4.3 Tour schedule analysis for workers taking three tours 

 

As the sample of workers with three or more tours generation is small (Table 4.4), 

MNL models cannot be used to explain these tours. Therefore, to explore this data 

further, different tour types were grouped into two categories: work tour (W) and 

non-work tour (N), most of which are single-purpose. With three tours, each taking 

two possible states, we have six possible tour patterns (Figure 4.4). Of these, tour 

pattern WWN accounts for about 60% of the three tours per day observations, 

indicating that most workers have two work tours, followed by a final non-work tour. 
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These workers are going home for lunch (as shown in the activity diaries) and then 

out again for work in the afternoon and non-work activities in the evening. Another 

17% select a non-work tour (e.g. take morning exercise) as their first tour followed by 

two work tours (i.e. one H-W-H in the morning and one in the afternoon), suggesting 

their first tour pattern influences the decisions about subsequent tours. Thus these 

particular tour patterns also indicate a tour interdependence effect for different tour 

decisions in the scheduling process.  

 

 

 

Figure 4.4: Tour patterns profile of workers taking three tours in a day 

 

4.4.4 Tour schedule analysis for non-workers taking one tour 

 

The eight types of home-based non-work tours taken (Table 4.5) vary in frequency, 

with multi-purpose tour occurring relatively infrequently. To simplify the modelling, 

three tour categories are thus developed: 

0% 

10% 

20% 

30% 

40% 

50% 

60% 
WWW 

WWN 

WNW 

WNN 

NWW 

NNW 



129 
 

 The single-purpose recreational tour (H-L-H, H-S-H), comprising about 52% 

of observed tours; 

 The single-purpose business tour (H-F-H, H-P-H, H-O-H), comprising about 

23% of observed tours; 

 The multi-purpose tour (H-X-X-H, H-X-X-X-H, H-X-X-X-X-H), comprising 

25% of observed tours. 

The most common pattern single-purpose recreational tour was set as the 

reference outcome in the MNL models of non-workers taking a single tour. The 

results (Table 4.12) show that age cohorts and child presence are significantly 

associated with tour type selection. Compared to the reference category, older people 

(aged 60 and above) tend to participate in several activities within one multi-purpose 

tour, whilst households with child presence are more likely to choose single-purpose 

business tour or multi-purpose tour. Regarding the urban form variables, the 

modelling shows that retail employment density at residence is significantly related 

with tour pattern taken. As the retail employment density increases or the land use is 

more mixed, people are more likely to choose multi-purpose tour and make more 

intermediate stops within one tour.  
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Table 4.12: MNL results for non-workers with one tour generation 

 

Variables Single-purpose business tour Multi-purpose tour 

 Coef. S.E. Coef. S.E. 

Female 0.213 0.607 0.101 0.578 

Age (>=60) -0.455 0.621 1.045
*
 0.572 

Child presence 1.838
***

 0.669 1.388
**

 0.676 

Education (primary) 0.092 0.623 0.892 0.593 

Population density at residence 0.308 0.378 -0.329 0.376 

Retail employment density at residence -0.017 0.170 0.282
*
 0.167 

Subway accessibility -0.348 0.671 0.580 0.647 

   The category of single-purpose recreational tour is the base outcome. 

   Log likelihood (model) = -90.13, Prob > Chi
2
 = 0.03, Pseudo R

2
 = 0.11 

   * Significant at 0.10 level, ** significant at 0.05 level, *** significant at 0.01 level. 

 

4.4.5 Tour schedule analysis for non-workers taking two tours 

 

On the basis of tour type selection for non-workers with two tours generation (Table 

4.5), their first and second tour types are further grouped into three categories: H-L-H, 

H-S-H, and other non-work tour (including single-purpose business tour and multi-

purpose tour). Table 4.13 presents the results for the first tour pattern of non-workers 

taking two tours in a day. Results show that, compared to the reference case (i.e. H-S-

H), older people (aged 60 or above) tend to participate in some leisure activities and 

choose the single-purpose tour of H-L-H as their first tour of the day. Households 

with child presence are more likely to begin with some non-work activities, like 

leisure, person business or family obligation, rather than shopping. Subway 

accessibility is also significantly correlated with the first tour pattern choice. People 

resident in neighbourhoods with subway station nearby are more likely to choose 

single-purpose business tour or multi-purpose tour as their first tour pattern of the day. 
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Table 4.13: MNL results for the first tour of non-workers 

 

Variables H-L-H Other non-work tour 

 Coef. S.E. Coef. S.E. 

Female 0.145 0.695 0.139 0.699 

Age (>=60) 1.191* 0.715 0.629 0.726 

Child presence 3.028** 1.407 2.606* 1.427 

Education (primary) 0.599 0.722 0.301 0.729 

Population density at residence 0.866 0.647 0.030 0.654 

Retail employment density at residence -0.125 0.227 0.219 0.228 

Subway accessibility 0.178 0.766 1.594** 0.822 

     The category of H-S-H is the base outcome. 

     Log likelihood (model) = -77.59, Prob > Chi
2
 = 0.04, Pseudo R

2
 = 0.11 

     * Significant at 0.10 level, ** significant at 0.05 level, *** significant at 0.01 level. 

 

 

Regarding the second tour of the day, no significant correlations between tour 

type and any urban form variables at residence are observed (Table 4.14). In contrast, 

for the socio-demographic attributes, child presence is still significantly associated 

with tour type choice. It shows that, relative to the reference case (H-L-H), 

households with child presence are more likely to participate in some shopping 

activities and choose the single-purpose tour of H-S-H as their second tour of the day. 

Moreover, as shown below, a significant correlation between the choice of first and 

second tour type is also found for non-workers. For example, compared with the 

reference case, if the non-workers‟ first tour pattern is single-purpose tour of H-L-H 

or other non-work tour, they are more likely to select the tour pattern of H-S-H as 

their second tour. This suggests there may be also a tour interdependence effect for 

different tour pattern choices for non-workers taking multiple tours in a day. 
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Table 4.14: MNL results for the second tour of non-workers 

 

Variables H-S-H Other non-work tour 

 Coef. S.E. Coef. S.E. 

Female 0.909 0.691 1.025 0.650 

Age (>=60) 0.087 0.702 -0.634 0.649 

Child presence 1.717* 1.033 1.324 1.045 

Education (primary) -0.091 0.728 0.110 0.671 

Population density at residence 0.524 0.601 -0.292 0.567 

Retail employment density at residence -0.143 0.219 0.102 0.210 

Subway accessibility -0.155 0.893 -1.106 0.751 

The first tour pattern of H-L-H 2.024* 1.206 0.903 0.813 

The first tour pattern of Other non-work tour 2.750** 1.230 1.458* 0.859 

      The category of H-L-H is the base outcome. 

      Log likelihood (model) = -72.79, Prob > Chi
2
 = 0.02, Pseudo R

2
 = 0.18 

      * Significant at 0.10 level, ** significant at 0.05 level, *** significant at 0.01 level. 

 

 

4.4.6 Tour schedule analysis for non-workers taking three tours 

 

As the sample of non-workers taking three tours in a day is very small (Table 4.6), 

MNL models cannot be used to explain these tours. Therefore, to explore this data 

further, tours were grouped into only two categories: the single-purpose tour (S) and 

the multi-purpose tour (M). Figure 4.5 presents the tour pattern profile for non-

workers taking three tours in a day. As shown below, tour pattern SSS accounts for 

nearly 65% of the three tours per day observations, indicating that most non-workers 

have three single-purpose tours of the day. Another 14% select a multi-purpose tour 

as their first or second tour, accompanied by two single-purpose tours. Very few 

people choose a multipurpose tour as their last tour of the day. These particular tour 

patterns for non-workers also suggest a tour interdependence effect for different tour 

decisions in the scheduling process. 



133 
 

 

 

 

Figure 4.5: Tour pattern profile of non-workers taking three tours in a day 

 

4.5 Conclusions 

 

Gaining an understanding of the determinants of travel behaviour, including the role 

of built form, is important when attempting to address the transport problems of cities. 

However, such an understanding is often limited, particularly with respect to cities of 

transitional and developing countries, which to date have been little studied with 

respect to trip-chaining behaviour and especially its association with urban form. 

Such research is generally limited, and very scarce in developing countries, and 

particularly China, where the urban form characteristics and people‟s daily travel 

behaviour might be very different from developed countries. One reason for this is 

attributed to data availability. For example, in China, there is no national travel 
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survey or published large samples of detailed travel information by the government 

(Pucher et al., 2007). 

Based on detailed land use data and activity diary survey, this chapter has 

examined the relationships between socio-demographic attributes, urban form 

characteristics, and tour-based travel behaviour for workers and non-workers, 

respectively. The tour decision process are mainly focused on tour generation, tour 

scheduling and interdependence mechanism. Contrary to prior research that analysed 

aggregate samples, this study analysed tour behaviour at a disaggregate level, and 

further investigated the urban form – trip-chaining relationship for workers and non-

workers, separately, taking one, two and three tours in a single day. This allows for a 

consideration of both tour sequence, and tour interdependence, which has rarely been 

considered before, and not at all for China. 

Socio-demographic attributes of households and individuals correlate 

significantly with people‟s tour-based behaviour, especially with respect to the 

number of tours taken. For example, workers with high income or in households with 

children tend to take fewer tours on a typical workday; but when they do leave home, 

they make more intermediate stops. Older people tend to take more tours and tend to 

participate in non-work activities before they travel to work, which is notably 

different from the findings in developed countries (e.g. Noland and Thomas, 2007). 

However, whilst no gender differences were observed with respect to the number of 

tours taken, women workers tend to make more stops within one tour, participating in 

non-work activities (mostly household-sustaining activities, such as shopping, child-

care and family errands) en route. This is consistent with the results found in many 

developed countries (e.g. McGuckin and Murankami, 1999). With respect to non-

workers, people with lower educational attainment tend to generate fewer tours than 
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their counterparts on a typical workday. The non-workers with children in their 

households tend to generate more tours and participate in some family obligation 

activities en route.   

Regarding the urban form variables, the prior studies illustrate the difficulty in 

drawing general conclusions on the role of urban form in trip chaining. For instance, 

using an activity-based model to analyse the effect of land use on household shopping 

tour decisions, Limanond and Niemeier (2004) suggested that land use patterns had 

virtually no impact on overall shopping tour frequencies.  In contrast, Crane (1996) 

and Krizek (2003) found, for the USA, that urban form influenced trip-chaining 

behaviour, with the more accessible (high density) areas generating more tours, with 

fewer stops. Maat and Timmermans (2006) conducted similar European research on 

urban form and trip-chaining, and also found that higher densities led to more 

frequent tours, but that tours were more complex (tours had more stops). Noland and 

Thomas (2007) drew a very different conclusion, presenting evidence to show that 

(low density) suburban areas had a higher tour frequency with these tours being more 

complex than for higher density areas.   

In this research, land use characteristics at both residence and workplace are 

significantly associated with residents‟ tour frequency, but differ with respect to tour 

complexity. For instance, higher density at residence leads to more home-based tours 

with fewer stops for workers, while mixed land use at workplace with higher density 

and accessibility leads to more stops within one work tour or a more complex tour 

pattern. With respect to non-workers, it finds that people living in neighbourhoods 

with higher density or better access to subway station tend to leave home more often 

and make more intermediate stops than their counterparts on a typical workday. 

Moreover, for residents taking several tours in a day, the models indicate that first 
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tour type is significantly correlated with the type of tour subsequently taken, 

suggesting that behaviour for one tour affects that observed for others. The tour 

interdependence effect, revealed in this research for the first time, contributes to the 

relative trip-chaining analysis. 

To conclude, this disaggregated analysis of trip-chaining behaviour provides a 

sophisticated understanding of tour-based travel decisions and an empirical basis of 

behavioural determinants. Following this, the next chapter develops a static spatial 

microsimulation to analyse the entire population‟s daily tour-based travel behaviour 

and associated CO2 emissions at fine spatial scale for urban Beijing. While lack of 

detailed travel data for a large population, spatial microsimulation represents a useful 

tool in population synthesis, and it provides a good means to gain greater insight into 

the spatial variability of the emissions at micro-scale than has previously been 

possible. Using various relevant socio-demographic attributes (e.g. gender, age, 

education, employment, etc) as constraints, the next chapter firstly creates a realistic 

synthetic population and spatially simulates the population‟s daily travel, including 

travel distance and mode choice at the sub-district level. It also estimates the transport 

CO2 emission from daily urban travel at the disaggregate level in urban Beijing. 
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Chapter 5 

Spatial Microsimulation of Transport CO2 from 

Urban Travel 

 

5.1 Introduction 

 

The preceding (Chapter 4) analysis of tour-based travel relationships concluded that 

household and individual socio-demographic attributes, e.g. gender, age, education, 

employment, occupation, are important predictors of people‟s daily travel behaviour 

in Beijing. Therefore, in this chapter, these significant socio-demographic attributes 

are used as constraints to create a realistic synthetic population (a good selection of 

constraints is of paramount importance in a spatial microsimulation model, see 

Section 5.2.2), and simulate the population‟s daily travel behaviour and estimate their 

subsequent CO2 emission. This chapter presents a new „bottom-up‟ methodology to 

provide improved transport CO2 emission based on individuals‟ observed daily travel 

behaviour.  

Note that one of two main approaches is usually employed to estimate 

transport CO2 emission. The first is to estimate CO2 emission using aggregate data on 

total energy consumed or from a consideration of size of the vehicle fleet and average 

vehicles kilometres travelled (VKT) per vehicle. This „top-down‟ approach is 

straightforward and has been widely used (Dhakal, 2009; Hu et al., 2010), including 

in China, where on the basis of fuel consumption Cai et al. (2012) estimated CO2 
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emissions from transport at national and regional levels for 2007. However, the 

application of this approach at the urban scale is often constrained by poor data, 

particularly a lack of reliable data on the vehicle fleet in the city, its city-wide energy 

use, and the average distance travelled per vehicle (He et al., 2013). Furthermore, this 

approach is unable to directly link travel behaviour with land use patterns or urban 

development policies. For example, it is known that a city‟s physical form (urban 

form features, such as density) influence the distance people travel each day, their 

choice of mode, and resulting CO2 emission (Grazi et al., 2008).  

In contrast, the second approach is to estimate emissions from less aggregate 

travel attributes, including trip frequency, mode choice and vehicle kilometres 

travelled for each trip (e.g. He et al., 2013). This „bottom-up‟ method not only 

differentiates CO2 emission from different types of vehicles, but also helps to 

understand the influence that other factors (e.g. socio-demographic or urban form 

characteristics) have on carbon emissions. This is useful for examining how much 

emissions may respond to development scenarios or strategic policy and plan 

interventions (noting that factors such as fuel type, speed, and road condition are also 

influential; Cai et al., 2012). This approach is prevalent in urban air quality (and CO2 

emission) analyses but such studies rarely address people‟s travel behaviour at the 

individual level or account for urban form. This is likely due to the large amount of 

detailed data required on travel behaviour for large populations, which is not usually 

available, particularly in the case of fast growing mega cities in developing 

economies such as China. 

Using the understanding of travel behaviour developed in Chapter 4 (based on 

an activity diary survey), and the 2000 population census, this chapter employs static 

spatial microsimulation to generate a realistic synthetic population at a fine 
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geographical resolution as a basis on which to model the entire urban population‟s 

daily travel, and subsequently their CO2 emission. The method provides an alternative 

means to estimate transport CO2 emission, and provides a way to gain greater insight 

into the spatial variability of the emission at micro-scale than has previously been 

possible. Section 5.2 below details how the microsimulation model is developed 

within a generic „Flexible Modelling Framework‟    

(https://github.com/MassAtLeeds/software/releases) using a simulated annealing 

technique and the constraint specification. Model validation is discussed in Section 

5.3, followed by the travel analysis by constraints (Section 5.4). Section 5.5 presents 

and discusses results of the population synthesis and spatial simulation of urban travel 

and CO2 emission. Discussion on the relationship between transport CO2 emission 

and socio-economic indicators, and the conclusions are provided in the final section. 

 

5.2 Building a spatial microsimulation 

5.2.1 Flexible Modelling Framework: The Modelling Tool 

 

The Flexible Modelling Framework (FMF) developed at the University of Leeds is a 

generic software framework to assist in the development of social science models. It 

incorporates a static spatial microsimulation algorithm based on Simulated Annealing 

and facilitates the construction of population microdata for a single time period. The 

FMF eases data manipulation / processing – but it does not prescribe the model 

attributes and their relationships. Although the software has only recently been 

released to the wider academic community, it has been the subject of internal 

development and testing at the University of Leeds since 2005. The FMF includes 
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model evaluation options that provide a variety of fitness statistic calculations at 

individual cell, category and overall attribute levels. 

Several spatial microsimulation algorithms are available; for an appraisal of 

the strengths and weaknesses of the three most commonly applied techniques see 

Harland et al. (2012). Generally, Simulated Annealing has been demonstrated to 

provide the most promising results in the generation of synthetic spatial microdata at 

different geographical scales (Voas and Williamson, 2000; Hermes and Poulsen, 2012; 

Harland et al. 2012). It has some major advantages over the other approaches, such as 

the inclusion of the Metropolis Algorithm which allows the algorithm to take 

backward steps in its search for an optimal population configuration. This ability 

prevents the algorithm becoming stuck in a sub-optimal solution preventing it finding 

the global optimal solution. However, the sensitivity of results to the stochastic 

element of the algorithm should be examined to ensure that this is the case and that 

the number of iterations and algorithm progression rate are suitable for the problem 

under examination, section 5.5.1 presents the sensitivity analysis for this study. 

The Simulated Annealing approach is a combinatorial optimisation technique 

that selects an optimal configuration from a small sample population (i.e. activity 

diary survey in this study) constrained by observed aggregate population counts 

(population census).  The optimisation process operates on known values common to 

both sample and constraint datasets.  The generated population dataset is a realistic 

representation of the observed population aligning closely to the constraint totals 

while maintaining the rich variety of attributes (e.g. information on daily travel 

behaviour) contained in the survey sample population.  As outlined by Harland et al. 

(2012) Simulated Annealing is well suited to spatial microsimulation problems 
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requiring attribute enrichment while simultaneously ensuring close constraint 

matching. 

 

5.2.2 Constraint specification 

 

The microsimulation draws on an activity diary survey conducted in 2007 across 

urban Beijing, which includes 1,026 individuals for whom there is a valid and 

continuous activity-travel record for the weekday. A second data set used here is the 

fifth population census of Beijing conducted in 2000 by the national government. Full 

details of these two data sets are reported in Chapter 3. This study used the 10% 

population sample as it comprises most socio-demographic attributes. However, 

people aged 14 and below are not included in the activity dairy survey, while both 

data sets contain common socio-demographic attributes for people aged 15 and above, 

such as gender, age, education, employment, and occupation. Household-level 

attributes, average housing area and housing tenure, also appear in both datasets. In 

summary, the target population addresses a total of 721,894 residents aged 15 or over 

in the 146 jiedao sub-districts in urban Beijing in 2000 (see Figure 3.5).  

To produce a successful synthetic population, the spatial microsimulation 

model must create a realistic representation of the population whose structure and 

dynamics match the profiles of real populations. Of paramount importance is a good 

selection of constraints, which represents the important dimensions of interest (Smith 

et al., 2009). Furthermore, constraint attributes must be present in both survey data 

and the population census. As demonstrated in preceding (Chapter 4) analysis, 

household and individual socio-demographic attributes of age, gender, education, 
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employment, occupation, housing area
6
, and housing tenure, are all significant 

influences on travel behaviour, and are variables found in both principal data sets. 

Therefore, this study uses their tabulations (education, housing tenure, and housing 

area) and cross-tabulations (age by gender, employment by occupation) at the sub-

district level as constraints to generate a synthetic population of urban Beijing.  

Table 5.1 presents the configuration of these seven constraints. As shown, 

people aged 15 and above are divided into five age cohorts; the education attribute 

has three categories: primary (junior school and below), secondary (senior high 

school) and tertiary (college and above). The employment attribute is divided into 

four categories comprising the employed, jobless, retired and other, while employed 

residents are further classified by occupation: students, workers in government or 

public institutions (worker TP1), and workers in factories, service companies and 

other (worker TP2). Of the household-level attributes, housing tenure is categorised 

as buy or rent; whilst the average per capita housing area of urban residents is divided 

into two broad categories: low (< 30 m
2
) and high (>= 30 m

2
).  

 

Table 5.1: Constraints description 

 
Socio-demographic attributes Categories 

Gender male, female 

Age 15-29, 30-39, 40-49, 50-59, 60+ 

Education primary, secondary, tertiary 

Employment employed, jobless, retired, other 

Occupation students, workers in government or public 

institutions, workers in factories, service companies 

and other 

Housing tenure buy, rent 

Housing area (m
2
 / capita) < 30, 30+ 

                                                           
6
 As shown in Chapter 4, monthly income is a significant influence on people‟s daily travel 

behaviour, but this variable is not available in the population census. Instead, housing area 

and housing tenure are used as constraints in the microsimulation model, as these two 

variables partly represent the economic conditions of households, and they are significant 

influence on travel behaviour in prior studies (e.g. Wang et al., 2011; Ma et al., 2011). 
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Ensuring the survey population is representative of the general population 

observed in the aggregate census data is key to producing a realistic microsimulated 

population. This is achieved by comparing attribute combinations between the census 

data and the survey dataset. Theoretically, there are 720 combinations
7
 of these 

constraints, but some are not feasible (e.g. a male aged 15-29 with retired 

employment status, or a female aged over 60 occupied as a student). Multiple two 

dimensional cross-tabulations of the seven constraints are created using the survey 

samples which showed that all combinations observed in the activity diary survey are 

sensible and represent the expected combinations identified from the census data.  

This indicates that the travel survey data is a good representation of the population 

that is to be synthetically reconstructed.  

 

5.3 Evaluation 

 

The evaluation of the microsimulated or synthetic population is established via 

goodness-of-fit testing. However, as model outputs are estimates of unknown data, 

we must aggregate the simulated outcomes to a suitable geographic scale and validate 

the tabulations and cross-tabulations for the constrained and unconstrained variables 

(Ballas and Clarke, 2001). There are several established goodness-of-fit statistics in 

use for geographical microsimulation. The most frequently used statistic is the Total 

Absolute Error (TAE), expressed as:  

 

TAE = ∑i ∑j | Tij - Eij |                                                                                                (5.1) 

                                                           
7
 720=2*5*3*(3+3)*2*2, while the “(3+3)” refers to six combinations of “employment by occupation”, 

as only the employed individuals can be further divided into 3 categories of occupation. 
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where Tij and Eij are the observed and simulated counts respectively for the cell at ij.  

This goodness-of-fit statistic is easily calculated and understood, simply a 

count of the absolute differences, and depends on the total number of samples (Voas 

and Williamson, 2001). However, TAE can be misleading when used across all the 

categories for an attribute, and may produce a larger total population than observed 

(Harland et al., 2012). The Total Error (TE) statistic can instead be used to modify the 

raw TAE, and better calculate the misclassified population for attributes with multiple 

categories:  

 

TE = TAE / 2                                                                                                             (5.2)                                                                 

 

Both these statistics are referred to as the Classification Error, which show the 

number of misclassified individuals in a cell, zone or attribute (Harland et al., 2012). 

Nevertheless, TAE and TE are absolute measures of misclassification and they are 

subject to population size, and relative measures may be preferable. Some well 

performing relative statistics, such as Percentage Error (PE), Cell Percentage Error 

(CPE) and Standardised Root Mean Square Error (SRMSE), can also be applied to 

evaluate simulated outputs. PE is a relative error statistic derived by TE/N*100 while 

CPE is derived by TAE/N*100, where N is the population of the relevant cell, zone or 

attribute. SRMSE is defined as: 

 

SRMSE = {∑i ∑j (Tij - Eij)
2
/m×n}

1/2
 / (∑i ∑j Tij /m×n)                                               (5.3)                                              

 

where m and n are the flow matrix dimensions (Knudsen and Fotheringham,1986). 

These relative measures are also appropriate options for validating or evaluating 
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estimated populations (Voas and Williamson, 2000; Smith et al., 2009). As each 

goodness-of-fit statistic tests different aspects of the model‟s results and has its own 

advantages and disadvantages, all are applied here to provide a comprehensive 

evaluation of Beijing‟s synthetic population. 

 

5.4 Travel analysis by constraints 

 

Drawing on the activity diary survey, this section details the comparison of the 

samples‟ daily travel behaviour for the different constraining groups. Four 

dimensions of travel attribute are considered, including tour frequency, number of 

trips made during the day, total distance travelled, and low-carbon travel, measured as 

the proportion of trips by low-carbon travel modes in all trips for each group. Low-

carbon travel mode refers to walking, cycling (including electronic cycles), bus, and 

subway. In addition, CO2 emitted from each individual‟s daily travel is estimated 

based on a complete account of travel activities during the day, derived from the 

survey.  This is calculated from travel distance by travel mode and mode specific CO2 

emission factor, as:  

 

CARBON = ∑
m

i=1 Distancei × Factori                                                                       (5.4) 

 

where, CARBON refers to individual CO2 emission from urban travel on a typical 

workday, Distancei is the distance travelled in trip i during the day, m the number of 

trips made during the day, and Factori the emission factor associated with the travel 

mode used in trip i (in tonnes of carbon dioxide per person kilometre travelled).  
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5.4.1 Emission factor 

 

No commonly agreed set of emission factors (EF) exists for all travel modes used in 

the Chinese urban context. Most studies on transportation-related CO2 emissions are 

performed on aggregate levels and do not provide estimates of carbon dioxide 

emissions on a person ∙ kilometre scale for each of the urban transportation modes. 

No official report has been published in China on CO2 emission factors for all 

transportation modes on a person ∙ kilometre scale. Thus different emission factor 

estimates are used by Chinese scholars (Zhao et al, 2009; Jiang et al. 2011; Qin and 

Han, 2013). Table 5.2 lists the Energy factor and Carbon intensity adopted in a recent 

Chinese study (Guo et al., 2013). From these data we can calculate a Modified CO2 

EF and a Direct CO2 EF, respectively: 

 

Modified CO2 EF = Energy factor × Carbon intensity                                              (5.5) 

 

Direct CO2 EF = Modified CO2 EF / Passenger capacity                                         (5.6) 

 

The Direct CO2 EF only addresses direct CO2 emissions from fuel combustion 

by a vehicle during a trip, while the Total CO2 EF, derived from an EU‟s TREMOVE 

baseline model, takes into account both these direct emissions plus lifecycle 

emissions from the manufacturing of the vehicle fuel (European Commission, 2006; 

cited from Grazi et al., 2008). Comparing the Direct CO2 EF and Total CO2 EF shows 

that, the EU-TREMOVE model presents quality estimations of emission factors for 

all urban transportation modes concerned in this study. Besides, this model includes 

both the direct and indirect carbon emission during the lifecycle and provides the 
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emission factor for the most complete list of urban travel modes on a person ∙ 

kilometre scale.  

 

Table 5.2: Energy factor and CO2 emission factor for different transportation modes 

 

Transportation 

mode 

Energy 

factor 

(MJ/km) 

Carbon 

intensity 

(t/TJ) 

Modified 

CO2 EF
 a)

  

(g/km) 

Passenger 

capacity 
b)

 

Direct CO2  

EF 

(g/person/km) 

Total CO2  

EF 
c)
 

(g/person/km) 

Car 2.962 69.3 205.3 1.4 146.4 178.6 

Bus 10.680 74.1 791.4 18 43.9 73.8 

Taxi 2.673 69.3 185.2 1.2 154.2 178.6 

Motorcycle 0.612 69.3 42.4 1 42.4 113.6 

Electric bike 0.076 -- -- -- -- 69.6 

Subway -- -- -- -- -- 9.1 

a) EF represents emission factor; b) derived from Jiang et al. (2011); c) cited from Grazi et al., 

(2008) 

 

 

Emission factors for the majority of vehicles in China are however expected to 

be increasingly comparable to those of European countries, as the dominant vehicle 

manufacturing technologies in China stem from Europe and the vehicle emission 

regulations implemented in Beijing are emulating the historical development and 

adoption of the EU standards (Cai and Xie, 2007; Darido et al., 2013). On January 1, 

1999, the Beijing Environmental Protection Bureau (EPB) introduced emission 

standards for vehicles by adopting the Euro 1 standard for light-duty vehicles (Hao et 

al., 2006), first adopted in Europe in 1993. This first-ever emission standard 

implemented in Beijing resulted in a dramatic decrease in permitted emissions for 

new vehicles (Wu et al., 2011). The increasingly tighter Euro 2 – Euro 4 standards 

were introduced to Beijing between 2003 and 2008 (Table 5.3), only three years 

behind their adoption in Europe. These regulations have been the most important 

control measures on vehicle emission in Beijing, and, as a consequence of their 
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accelerated introduction (relative to Europe) and the turnover of the vehicle fleet, 

fleet weighted emission factors are little different to those now observed in Europe.  

 

Table 5.3: Summary of EU emission standards implemented in Beijing 

 

Vehicle type Euro 1  Euro 2 Euro 3 Euro 4 

Light-duty gasoline vehicle 1999-1-1 2003-1-1 2005-12-30 2008-3-1 

Heavy-duty gasoline vehicle 2002-7-1 2003-9-1 2009-7-1 -- 

Heavy-duty diesel vehicle 2000-1-1 2003-1-1 2005-12-30 2008-7-1 

Motorcycle 2001-1-1 2004-1-1 2008-7-1 -- 

 

 

Nonetheless, with respect to CO2 emission estimation for Beijing, there 

remains uncertainty in the aggregate emission factors, mainly due to uncertainty over 

the composition of the vehicle fleet, because regulated emissions vary for every 

vehicle dependent upon factors such as vehicle class, engine size, weight and age, and 

because a range of other factors mean that actual emissions may differ substantially 

from the regulated emission standard. For example, cold start condition, road slope 

and condition, and travel speed and driving style are all important additional 

determinants on emissions and hence actual EF for individual vehicles, and hence the 

fleet as a whole. Of these, speed is perhaps the most significant, as vehicles have 

highest emissions at very high and low speeds (e.g. a motorway, or in congested 

traffic respectively) (Yan and Crookes, 2010), so that vehicle specific EFs display a 

characteristic U shape indicative of speed dependent emission. Whilst such factors 

may be incorporated into microsimulation models of traffic flow, more aggregate 

traffic models tend to address these factors through the aggregate EFs – that is EFs 

are determined through observation of typical drive cycles (that include variable 

speeds, cold start etc). This more aggregate approach is quite suitable for the 
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determination of CO2 emission, whose impacts are important at the strategic scale, 

although it is not ideal where finely resolved spatio-temporal emission estimates are 

needed, as in, for example, air quality modelling.  

Unlike many developed countries which release vehicle-use data regularly, 

China does not officially publish such data, possibly due to the restriction of data 

access and relatively short history of motor vehicle development (Huo et al., 2012). 

Therefore, the analysis presented in this chapter makes use of fleet-averaged emission 

factors taking no consideration of travel speed variation on CO2 emission in 2000. 

However, for the projection of carbon emissions in the future (Chapter 6), reduction 

in fleet weighted EF is addressed, recognising the impact of the fleet turnover, as 

older, less efficient vehicles are retired, and replaced by new vehicles that adhere to 

the latest emission factor standards (e.g. EU 5 and 6 too).  

 

5.4.2 Comparison analysis 

 

Table 5.4 compares travel behaviour and modelled CO2 emission for different 

constraining attributes. Males, young people, people with high educational attainment, 

the employed, and workers in companies or factories have a lower tour frequency and 

take fewer trips during the day.  However, they generally travel further, have a lower 

percentage of low-carbon travel and so emit more CO2 on a typical workday. Females, 

old people (aged 60+), people with low educational attainment, and the unemployed 

make more trips but these are generally shorter with a higher percentage of low-

carbon travel and so emit less CO2 than their counterparts.  

With respect to the household-level constraints, it shows that people with a 

smaller home have a higher tour frequency and take more trips than their counterparts. 
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However, they do not travel as far, and have a higher proportion of low-carbon travel, 

and so generate less CO2. Regarding the housing tenure variable, although the two 

groups do not show significant difference in travel characteristics, the renters 

generally have lower CO2 emission than their counterparts on a typical workday. 

One-way ANOVA shows the difference in travel behaviour and CO2 emission 

between most constraining groups is statistically significant (p value < 0.05). 
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Table 5.4: Mean value of travel variables and CO2 emission by constraints 

 

Household and individual 

Socio-demographic 

attributes 

Tour 

frequency 

Number of 

trips 

Distance 

travelled 

(km) 

Percentage 

of  low-

carbon 

travel 

CO2  

emission  

(kg) 

Gender Male 1.36 3.24 23.64 80.18% 2.31 

Female 1.44 3.42 19.25 90.16% 1.46 

F value (p) 3.51(0.06) 3.31(0.07) 6.36(0.01) - - 14.86(0.00) 

Age 15-29 1.11 2.64 28.14 85.35% 2.10 

30-39 1.26 3.06 26.39 72.89% 2.65 

40-49 1.46 3.47 20.76 84.06% 2.01 

50-59 1.61 3.78 14.92 93.79% 1.17 

60+ 1.74 4.04 11.27 96.24% 0.66 

F value (p) 29.67(0.00) 23.79(0.00) 12.16(0.00) - - 9.29(0.00) 

Education Primary 1.61 3.63 14.37 97.71% 0.79 

Secondary 1.54 3.59 15.51 93.31% 1.07 

Tertiary 1.31 3.17 25.11 79.12% 2.41 

F value (p) 20.05(0.00) 9.58(0.00) 15.76(0.00) - - 20.03(0.00) 

Employment Employed 1.29 3.12 25.09 81.05% 2.33 

Jobless 1.53 3.41 14.18 91.62% 0.81 

Retired 1.82 4.15 9.45 97.78% 0.42 

Other 1.33 3.17 19.60 77.19% 1.85 

F value (p) 38.58(0.00) 24.06(0.00) 18.25(0.00) - - 17.05(0.00) 

Occupation Students 1.07 2.49 22.70 94.12% 1.43 

Worker 

TP1 

1.41 3.37 19.92 83.93% 1.78 

Worker 

TP2 

1.20 2.95 30.31 76.63% 2.95 

F value (p) 16.22(0.00) 12.59(0.00) 10.65(0.00) - - 8.88(0.00) 

Housing 

tenure 

Owner 1.39 3.33 22.18 83.91% 2.03 

Renter 1.43 3.34 19.27 89.49% 1.44 

F value (p) 0.69(0.41) 0.03(0.87) 2.18(0.14) - - 5.70(0.02) 

Housing area 

(m
2
/capita) 

<30 1.44 3.41 19.31 89.50% 1.51 

30+ 1.33 3.17 25.64 76.47% 2.61 

F value (p) 6.43(0.01) 5.30(0.02) 11.82(0.00) - - 22.32(0.00) 

Note: As the percentage of low-carbon travel is calculated by group rather than by individual, 

the ANOVA analysis for this variable is not conducted and its F value (p) is displayed as “--”. 
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5.5 Results of the spatial microsimulation 

 

Optimising the population reconstruction process with the Total Absolute Error 

statistic, the FMF software was used to link the attributes across the different data 

sources and create realistic synthetic populations in 2000 for urban Beijing. The 

synthetic population reconstruction was undertaken at the fine sub-district geography 

and contains 721,894 individuals aged 15 or over.  

 

5.5.1 Sensitivity analysis 

 

The simulated annealing approach is stochastic therefore a sensitivity analysis was 

conducted to test whether the output is sensitive to the randomised number (seed 

value) in the software. The range of synthetic datasets produced is to determine 

whether the algorithm is reaching a global optimal solution despite the random seed 

being changed (effectively altering the simulated annealing algorithms starting 

position in the possible search space). The nature of the simulated annealing 

algorithm means that it will examine a wide area of the available search space to 

configure the synthetic population. The sensitivity analysis conducted here is to 

ensure that the parameters controlling the amount of „work‟ the algorithm undertakes 

are sufficiently set to allow a globally optimal solution to be reached for each 

population. If the algorithm input parameters are too restrictive, suboptimal solutions 

will be produced resulting in wide discrepancies between the 146 zones over the 

resulting synthetic populations. The variation in results would likely manifest over a 

smaller number of populations, 5 may suffice, however 10 was deemed to be 
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appropriately robust while not being overly wasteful of computing, storage or 

analysis resources. 

This study generated 10 synthetic populations using different seed values and 

calculated the standard deviation of the constrained output attributes. By and large, 

the standard deviation for the constraining attributes (e.g. gender, age, education) is 

close to zero in almost all of the sub-districts. For example, Figure 5.1 illustrates the 

standard deviation of education for each geographic zone. It can be seen that the 

standard deviation is zero in most of the sub-districts, indicating that the distribution 

of people with different education levels is exactly the same for each area despite the 

variation in seed value, hence the optimisation process is working effectively and the 

output is not sensitive to the randomised seed value. However, four geographical 

zones do exhibit a high standard deviation in the primary and tertiary education 

categories while the secondary education category remains consistent.  This indicates 

that the Simulated Annealing optimisation algorithm is not able to correctly configure 

the education constraint for these four zones in a consistent manner.   

 

 
 

Figure 5.1: Standard deviation of education for each geographic zone 
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Using attributes from the travel survey data for the 10 resulting reconstructed 

populations the standard deviation of people‟s average trip frequency and daily travel 

distance is also computed for each sub-district, respectively. It shows that the 

standard deviation of trip frequency is less than 0.05 in most sub-districts (Figure 5.2) 

and the standard deviation for travel distance is also relatively small, less than 0.8 in 

most sub-districts (Figure 5.3), demonstrating that the optimisation process is robust 

and that the results are not sensitive to the initial seed value. The four districts with 

large standard deviations in the education constraint discussed above show very small 

variation for average trip frequency or daily travel distance. This suggests that despite 

the variation within the education constraint the impact on the final simulated daily 

travel attributes is not large. 

 

 

 
 

 

Figure 5.2: Standard deviation of trip frequency for each geographic zone 

 

0 

0.02 

0.04 

0.06 

0.08 

0.1 

0 20 40 60 80 100 120 140 160 

S
ta

n
d

a
rd

 D
ev

ia
ti

o
n

 

ZoneID 



155 
 

 
 

Figure 5.3: Standard deviation of travel distance for each geographic zone 

 

5.5.2 Constraint evaluation 

 

A reconstructed population from the ten generated was selected at random for 

comparison to observed aggregate data. Table 5.5 shows the goodness-of-fit 

evaluation statistics, which demonstrate a very close match to the observed census 

data within the reconstructed population. Most of the constraining tabulations and 

cross-tabulations at the sub-district level are reproduced with very little or no 

misclassification. The highest level of misclassification is seen in the education 

constraint where the TAE is more than 1,000 although the percentage error (PE) is 

less than 0.1%, which is still a very good overall fit (Harland et al., 2012). 
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Table 5.5: Representation of the model constraints at the sub-district level 

 

Constraints SRMSE TAE PE TE CPE 

Gender 0.001 74 0.005 37 0.010 

Age 0.002 82 0.006 41 0.011 

Age by Gender 0.003 82 0.006 41 0.011 

Education 0.014 1260 0.087 630 0.175 

Employment 0.000 2 0.000 1 0.000 

Occupation 0.000 2 0.000 1 0.000 

Employment by Occupation 0.000 2 0.000 1 0.000 

Housing tenure 0.000 0 0.000 0 0.000 

Housing area 0.003 192 0.013 96 0.027 

 

 

It is worth noting that the education constraint was the most variable 

constraint in the sensitivity analysis conducted above, and it is clear that there is some 

difficulty with representing this constraint for a small number of geographical areas. 

This is possibly due to the specific geo-demographics in these zones (i.e. most 

individuals have low educational attainment). However, it has also been shown that 

the variability of the education attribute across a small number of zones has little 

impact on the resulting travel attributes estimates; therefore the underlying cause of 

the variability will not be explored any further here. 

 

5.5.3 Spatial Simulation of urban travel and CO2 emission 

 

The next stage involved linking the travel data to the microsimulated synthetic 

population and both spatially simulating the population‟s travel behaviour, and 

estimating their transport CO2 emissions, at the sub-district geography for urban 

Beijing. Figures 5.4 – 5.7 show, by quartile, the average distance travelled, 

percentage of low-carbon travel, average and total CO2 emission for each sub-district. 
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The average simulated travel distance of the synthetic population in urban Beijing is 

approximately 20 km per person per day in 2000, compared to 22 km reported by an 

independent government household travel survey (Beijing Transportation Research 

Centre, 2002). This latter survey excludes walking trips and will thus be an 

overestimate of average travel distance across all modes, the travel metric which was 

adopted.   

The simulation thus provides a good agreement with observed travel 

behaviour. Note that the average distance travelled by sub-district varies substantially 

around this city wide average. Figure 5.4 shows that people resident in the central 

urban zone (Xicheng, Dongcheng, Xuanwu, Chongwen) do not travel as far on a 

typical workday, whilst people resident in the inner suburban zone, particularly some 

sub-districts of Haidian and Chaoyang, travel further, more than 20 km per person per 

day. This may be due to the difference in urban form features across these areas. The 

traditional urban space in inner city Beijing is characterised by its high population 

density, mixed land use, and proximity to services, while most suburban areas, built 

after the 1978 economic reform, adopted western planning ideas prevalent at the time, 

and so developed housing in single-use, lower density and car-oriented 

neighbourhoods. This contrast in urban form is identified in prior observations of 

travel behaviour and CO2 emissions for Beijing (e.g. Qin and Han, 2013). 
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Figure 5.4: Average distance travelled by the synthetic population in each sub-district 
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The mode choice analysis (Figure 5.5) shows the variability in low-carbon 

travel mode (walk, cycle, bus, subway) by area. On average, about 90% of trips in 

urban Beijing are made by low-carbon transport modes; this is in good agreement 

with the observed 88% share reported by the Beijing Transportation Research Centre 

(2002) survey. This simulation is also in close accord with the 90% value reported in 

a household interview survey conducted in the eight urban districts of Beijing in 2001 

by Zhao et al. (2011). Some geographical variability can be observed. Residents of 

northern inner-suburban zones have a lower share of low-carbon travel, with more 

than 10% of trips here made by car, whilst car travel is lower in the central urban and 

peripheral urban zones; here more than 93% of trips are made by low-carbon modes.  
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Figure 5.5: Share of low-carbon travel by the synthetic population in each sub-district 
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The next stage involved estimating the average CO2 emission from the 

synthetically constructed population for each sub-district (Figure 5.6). On average, 

the transport CO2 emission from people‟s daily travel in urban Beijing is 1.44 kg per 

person per day. People resident in most of Haidian and northwest Chaoyang sub-

districts have higher CO2 emission (>1.55 kg per person per day), as people resident 

here travel further and make greater use of the car. In contrast, residents of the more 

compact central urban area have lower CO2 emission.  

Multiplying the total population by the average CO2 emission for each 

geographical zone, the total mass CO2 emission across the urban sub-districts of 

Beijing can be estimated (Figure 5.7). The total emissions for many sub-districts in 

the inner suburban area is much higher than that in the central urban area, although 

the population density in the central area in relatively high. The peripheral zones in 

the inner suburban area, particularly in northwest Haidian and east Chaoyang, have a 

much lower total emission, mainly due to their low population density. However, if 

current trends of suburbanisation and rising car ownership continue (Zhao et al., 

2011), the total CO2 emissions in the peripheral zones is likely to increase 

substantially. These types of questions can be effectively examined by future 

microsimulation work, in particular through investigating population growth over 

time under a variety of different scenarios. 
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Figure 5.6: Average CO2 emission from the synthetic population in each sub-district 
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Figure 5.7: Total CO2 emission from the synthetic population in each sub-district 
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5.6 Discussion and conclusion 

5.6.1 Socio-economic indicators 

 

In prior research, transport CO2 emissions are usually related to the economic growth 

level of a region and linked with socio-economic indicators (e.g. GDP, per capita 

GDP, per capita disposable income) to assess the city- or district-level transport CO2 

efficiencies (e.g. Timilsina and Shrestha, 2009; Cai et al., 2012). The “CO2 efficiency” 

is defined based on the eco-efficiency concept, which is “the product or service value 

per environmental influence” (Tahara et al., 2005). Some critical aspects of CO2 

efficiency include CO2 emissions per GDP, CO2 emissions per capita per GDP, and 

CO2 emissions per capita vs. per capita disposable income. Although the relationships 

between transport CO2 emission and socio-economic indicators were examined in 

several prior studies, their conclusions remain controversial. For example, Timilsina 

and Shrestha (2009) indicated GDP and per capita GDP are strongly correlated with 

transport CO2 emissions in China, while other researchers suggested the relationship 

between transport CO2 emissions and per capita GDP was insignificant (Cai et al., 

2012). 

Based on the simulation results of transport CO2 emission from urban travel, 

this section further discusses the correlations of socio-economic indicators and 

transport CO2 emission in urban Beijing. However, as the economic indicators, like 

GDP, or per capita GDP, are only published at the district level, there needs to be an 

aggregation of the total CO2 emission from people‟s daily urban travel into the 

district level (Figure 5.8). The CO2 emission in Haidian district is the highest, about 

310 tonnes on a typical workday, followed by Chaoyang district with approximately 

280 tonnes. In contrast, the districts in the urban central area, i.e. Dongcheng, 
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Xicheng, Chongwen, and Xuanwu, have lower CO2 emission from people‟s daily 

urban travel. In total, transport CO2 emission estimates from the synthetic population 

(aged 15 and above, about 10% sample of the total urban population) peek at 1,038 

tonnes on a typical workday in urban Beijing for the year 2000. 

 

 

 

Figure 5.8: District CO2 emission and the cumulative total in 2000 
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between transport CO2 emission and total urban population in each district is also 

significant (p = 0.000, R
2
 = 0.986), as shown in Figure 5.9 (Right). 

 

 

 

Figure 5.9: Regression between transport CO2 emission and GDP (Left) and 

population (Right) 

 

In contrast, as shown in Figure 5.10, the relationship between transport CO2 

emissions and per capita GDP is not significant (p = 0.174, R
2
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from people‟s daily travel are affected by the car usage. We also analysed the 

regression between transport CO2 emissions and residents‟ income, as the share of car 

owners might increase with the increase of people‟s disposable income. However, 

such relationship is not significant (p = 0.146, R
2
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disposable income of urban residents is not the main factor of transport CO2 

emissions.   
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Figure 5.10: Regression between CO2 emission and per capita GDP (Left) and per 

capita disposable income of urban residents (Right) 
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density, mixed land use, and high accessibility to services and public transit, adopt 

lower carbon travel behaviour. Whilst these results are particularly relevant to Beijing, 

the wider point is that this study has demonstrated how it is possible to simulate urban 

travel for a developing country mega-city, in a manner that allows credible estimation 

of geographically resolved transport carbon emissions. Microsimulation has allowed 

us to create a realistic and representative synthetic population at a fine geographic 

scale, and to spatially simulate that population‟s daily travel, including distance 

travelled by mode, and hence estimate transport CO2 emission by sub-district, and for 

the city.  

This has been achieved using limited data, a travel diary survey, and a sample 

population census. China has no national travel survey, and Beijing municipal 

government travel surveys have only published results at aggregate level 

(confidentiality issues may constrain release of more individual level data). It has thus 

drawn upon travel diary data that is a rather modest data set considering the scale of 

Beijing. Furthermore, the population data which has been drawn upon is a 10% 

sample of the city population. However, the simulated annealing algorithm applied 

here has been used to synthesise the city‟s population in its entirety, and its travel 

behaviour in a manner that closely reflects travel behaviour reported at the aggregate 

level, in the municipal government‟s 2000 travel survey, and a further independent 

survey. This is the first time that microsimulation has been used to overcome the data 

deficiencies (a general absence of data) that often act as a barrier to spatial analysis of 

travel behaviour, and hence low carbon city planning, for any mega-city in the 

developing economies.  

The analysis represents a sophisticated spatial microsimulation of people‟s 

daily travel and associated transport CO2 emission, which can be served as a solid 
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basis for low carbon city planning, or transport policy evaluation for mega cities in 

the developing economies. It also presents opportunities for dynamic microsimulation 

or scenario analysis in the future. On the basis of the work conducted here, the next 

chapter further dynamically simulates people‟s travel behaviour and estimate their, 

and the city‟s, future carbon emission. Scenario analysis is also conducted to explore 

how changes in people‟s daily travel behaviour (e.g. mode shift, tour frequency, or 

travel distance) may impact upon aggregate travel behaviour and transport carbon 

emissions. By considering different policies, in terms of private vehicle usage, land 

use mix, accessibility to public transit, and vehicle technology, it would also be 

possible to examine planning interventions that are relevant to the development of 

more sustainable and low-carbon urban development in China. 
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Chapter 6 

Exploring Transport Carbon Futures in Beijing to 

2030  

 

6.1 Introduction 

 

This chapter uses the bottom-up methodology presented in Chapter 5, to provide 

improved transport CO2 emission estimates from people‟s daily urban travel in 

Beijing to 2030. Building on analysis of an activity diary survey and demographic 

data from the 2010 population census (as described in Chapter 3), first, spatial 

microsimulation is employed to simulate a realistic synthetic population‟s daily travel 

behaviour and to estimate their CO2 emission at a fine geographic resolution in 2010 

for Beijing. This chapter then compares and analyses the changes in travel behaviour 

and transport CO2 emission over the decade 2000-2010, and examines the role of 

socio-demographics and change in urban form in contributing to the modelled trend.  

Next, the transport CO2 emission from passenger travel behaviour is projected 

to 2030 under four scenarios, to illustrate the utility of the approach. Within this work, 

scenario is defined as “an internally consistent view of what the future might turn out 

to be – not a forecast, but one possible future outcome” (Porter, 1985). This usually 

involves a range of “what if?” questions to define some possible future conditions. 

The typical scenario planning process compares one or more alternative future 

planning scenarios to a trend scenario, which is often referred to the “Business As 
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Usual” scenario (Bartholomew and Ewing, 2009). The general approach for scenarios 

in urban and transport modelling is to model the process over a recent past time 

period and then, (after calibration and validation), project that into the future (20-50 

years ahead), with the scenarios reflecting the states (or combination of states) that 

the independent variables in the models could take.   

For instance, He et al (2005) estimated the historical (1997-2002) oil 

consumption and carbon emission from China‟s road transport sector and developed 

three scenarios (non-control, low-fuel, and high-fuel economy improvement scenarios) 

to project future trends of oil demand to 2030. They found that the oil demand by 

China‟s road vehicles will reach 363 million tonnes by 2030 under the non-control 

scenario; however, with fuel economy improved, the total oil consumption will be 

reduced by 55-85 million tonnes by 2030. In this chapter, four scenarios (transport 

policy trend, land use and transport policy, urban compaction and vehicle technology, 

and combined policy) are developed to explore travel behaviour and transport CO2 

emission under current and potential strategies on transport, urban development and 

vehicle technology. This will help us better understand the role of various factors on 

daily travel behaviour and total CO2 emission, and can inform alternative urban 

development strategies and policy implications for CO2 emission mitigation targets 

set by the national and local governments. 

Below, Section 6.2 presents the microsimulation results of transport CO2 

emission in 2010, and analyses the role of socio-demographics and changes in urban 

form in contributing to the modelled trend over 2000-2010. Section 6.3 presents the 

measures and parameters of four scenarios concerning transport policies, land use 

pattern and vehicle technology, to explore the impact of trends and possible 

management strategies on transport CO2 emission from people‟s daily travel to 2030. 
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The modelling results of average per capita and total CO2 emissions under the four 

scenarios are discussed and analysed in Section 6.4, with the sensitivity analysis of 

the travel parameters provided in Section 6.5. The conclusions of the scenario 

analysis are summarised in the final section. 

 

6.2 Simulating transport CO2 emission in 2010 

6.2.1 Simulation by socio-demographic attributes 

 

In Chapter 5, the spatial microsimulation was presented to simulate the synthetic 

population‟s daily travel behaviour and transport CO2 emission in 2000.  Using the 

2000 base case as the starting point, a synthetic population was generated for 2010 

using spatial microsimulation. The synthetic population‟s daily travel behaviour and 

CO2 emission are examined across Beijing for 2000-2010. Table 6.1 presents the 

socio-economic data from the censuses (10% samples), which was used to constrain 

the microsimulation models. Many of the constraining categories reveal much 

variation over this period, particularly for people aged 50 and over, those with 

different education levels, and the employed or retired. It shows that the female 

population increases by about 3% from 2000-10, while the number of older people 

(>50 years) grows by c. 6%. People with only a low-level (primary) education 

accounted for nearly 44% of the population in 2000, but this had fallen to 34% by 

2010, whilst those with a high-level (tertiary) education grew by 15%.  The share of 

the employed population decreased by c.4% from 2000-10, and the unemployed, 

particularly the retired, increased correspondingly. The household-level constraints 

reveal that the share of housing owners increased by about 2%, with a corresponding 
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decline amongst their counterparts, and that housing area changes little, with a modest 

increase in floor space per capita. These data are indicative of the dynamic changes 

taking place in the city over this period. 

 

 

Table 6.1: Comparing the distribution of constraining variables between 2000 and 

2010 census samples 

 

Constraints 2000 Population census 2010 Population census 

Individual-level Categories Count Share (%) Count Share (%) 

Gender 
Male  379,227 52.53 503,865 50.08 

Female 342,667 47.47 502,171 49.92 

Age 

15-29 241,159 33.41 327,823 32.59 

30-39 162,300 22.48 195,109 19.39 

40-49 142,009 19.67 178,594 17.75 

50-59 68,672 9.51 148,521 14.76 

>= 60 107,754 14.93 155,989 15.51 

Education 

Primary 314,669 43.59 343,015 34.10 

Secondary 217,302 30.10 242,569 24.11 

Tertiary 189,923 26.31 420,452 41.79 

Employment 

Employed 500,782 69.37 662,171 65.82 

Jobless 71,415 9.89 101,667 10.11 

Retired 138,759 19.22 222,757 22.14 

Other 10,938 1.52 19,441 1.93 

Occupation 

Students 78,294 10.85 93,642 9.31 

Workers TP1 181,548 25.15 267,379 26.58 

Workers TP2 240,940 33.38 301,150 29.93 

Total Individuals 721,894 100.00 1,006,036 100.00 

Household-level Categories Count Share (%) Count Share (%) 

Housing area 

(m
2
/capita) 

<= 29 155,299 61.13 240,207 60.56 

>= 30 98,767 38.87 156,447 39.44 

Housing tenure 
owner 134,048 52.76 218,226 55.02 

tenant 120,018 47.24 178,428 44.98 

Total Households 254,066 100.00 396,654 100.00 
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With such changing socio-demographics, it might be expected that aggregate 

travel distance and transport CO2 emission will change as people with different socio-

demographic attributes have different trip or tour (trip chain) characteristics. For 

example, male, younger people (e.g. aged 20-39), the employed, and people with 

high-level education tend to travel further, while female, older people (e.g. aged 60 

and above), the retired, and people with only a low-level education tend to travel 

shorter distances, and have lower CO2 emissions (Ma et al., 2014a; also see Section 

5.4.2). However, the nature of the aggregate changes are not easily seen, due to the 

complexity of the changing socio-demographics which can result in increases or 

decreases in travel, depending upon the demographic group in question; thus having 

more and older women, for example, would potentially act to reduce average travel 

distances, but the growth in young employed men would counteract this effect. Such 

heterogeneity (functional and spatial) is readily handled within the microsimulation.   

Using the activity survey and census data, the Flexible Modelling Framework 

(FMF) was used to create a synthetic yet realistic population for Beijing in 2010, 

constrained by the socio-demographic attributes derived from the 2010 census (Table 

6.1). The population synthesis was undertaken at fine geographical scale (the sub-

district level) and contains 1,006,036 individuals aged 15 and over across eight 

districts of Beijing. Table 6.2 shows the goodness-of-fit statistics, which demonstrates 

a very close match to the observed 2010 census data within the reconstructed 

population. Most of the constraining tabulations and cross-tabulations at the sub-

district level are reproduced with very little or no misclassification, except for the 

education constraint where the Total Absolute Error (TAE) is more than 2,000, 

although the Percentage Error (PE) is only 0.1%, which is still a very good overall fit. 
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Table 6.2: Representation of the model constraints at the sub-district level in 2010 

 

Constraints SRMSE TAE PE TE CPE 

Gender 0.003 248 0.012 124 0.025 

Age 0.005 314 0.016 157 0.031 

Age by Gender 0.007 314 0.016 157 0.031 

Education 0.022 2026 0.101 1013 0.201 

Employment 0.000 6 0.000 3 0.001 

Occupation 0.000 8 0.000 4 0.001 

Employment by Occupation 0.000 8 0.000 4 0.001 

Housing tenure 0.000 0 0.000 0 0.000 

Housing area 0.000 0 0.000 0 0.000 

 

Travel attributes (trip frequency, mode, etc.) from the travel survey are then 

linked to the corresponding demographic groups in the synthetic population, and the 

population‟s daily travel behaviour is simulated spatially for Beijing in 2010. Figure 

6.1 illustrates the average travel distance for each transportation mode
8
 from the 

synthetic population across districts. For motorised travel, the average trip distance by 

subway is highest (c. 21 km per trip), followed by bus, car, taxi, and other 

transportation modes (e.g. motorcycle). These results are in agreement with the 

Beijing 2010 household travel survey (Beijing Transportation Research Centre, 2011), 

which found that people travel furthest by subway, followed by bus and car, with the 

non-motorised travel shortest (c. 3 km per trip for bicycle). It also reveals some 

geographical variability. The average trip distance for most transportation modes in 

the inner-suburban area is longer than in the central urban area, possibly due to 

differences in socio-demographics, or urban form characteristics, which is a point that 

is further analysed below.  

                                                           
8
 Walking trips are not shown in the results (the average distance by walking is about 1 km 

per trip with quite small variation across districts), as this mode is usually excluded in the 

official transportation survey and report. 
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However, although the population is synthesised at a fine spatial (sub-district) 

scale, the simulation results are only presented and compared at the district level. This 

is mainly because some sub-districts experienced administrative and geographical 

changes from 2000 (total 146 sub-districts) to 2010 (total 133 sub-districts), and the 

data of urban form and public/private transport developments to adjust the simulation 

results (see below) is only available at the district level.  

 

 

 

Figure 6.1: Average trip distance for each travel mode made by the synthetic 

population across urban districts 

 

 

 

0.0 

5.0 

10.0 

15.0 

20.0 

25.0 

Dongcheng Xicheng Chongwen Xuanwu Chaoyang Fengtai Shijingshan Haidian 

A
v

er
a

g
e 

tr
ip

 d
is

ta
n

ce
 (

k
m

 p
er

 c
a

p
it

a
 p

er
 

d
a

y
) 

District 

Bicycle Bus Subway Car Taxi Other 



178 
 

6.2.2 Adjustment for changes in urban form and transport 

developments 

 

So far, the microsimulation is only constrained by socio-demographics.  However, the 

simulation needs to be adjusted to account for urban form changes as well as public 

and private transport development. Each of these factors are known to have had a 

significant impact on mode choice over the period in question (Zhao and Lü, 2011; 

He et al., 2013). Beijing‟s recent growth and urbanisation has been characterised by 

spatial restructuring within high-tech industry zones and new housing established 

predominantly in the suburbs.  Additionally, employment opportunities arising from 

the substantial redevelopment of industrial land for tertiary industries has remained 

concentrated in the inner city, resulting in a spatial mismatch of jobs and housing 

(Zhao et al., 2010; Wang et al., 2011).  This has obvious implications for travel. 

Using population density as an indicator, it shows that the urban form of Beijing has 

changed from 2000 to 2010 (Figure 6.2). In 2010, the population density in the 

central districts (i.e. Dongcheng, Xicheng, Chongwen, Xuanwu) was 23,407 

persons/km
2
, a 24% reduction since 2000.  In the same period density had almost 

doubled in the suburban area, particularly in Chaoyang (from 4,029 to 7,790 

persons/km
2
) and Fengtai districts (from 3,626 to 6.907 persons/km

2
). This suburban 

growth has been accompanied by sprawl on Beijing‟s fringe, characterised by low 

density development with little mixed use, while the traditional neighbourhoods in 

the inner city retained their high density and mixed land use (e.g. Figures 3.7-3.8 in 

Chapter 3). 
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Figure 6.2: Population density in eight urban districts between 2000 and 2010 

 

Public transport has also developed quickly (Figure 6.3); in particular the 

subway service, which is the focus of municipal policies for encouraging public 

transport in Beijing. The Beijing subway is the oldest and now busiest in China (Xu 

et al., 2010), with 16 lines comprising 442 km of track (second in extent only to the 

Shanghai Metro), compared to only 2 lines and 54 km of track in 2000 (Beijing 

Statistical Bureau, 2013). However, with urban expansion and rising incomes, motor 

vehicles ownership has also increased greatly (Figure 6.4), with a greater number of 

people becoming increasingly dependent on automobiles. Private car ownership 

doubled to three million over the period 2004-2009, and traffic congestion, air 

pollution, energy consumption and carbon emission, are now pressing problems in the 

city (Zhao et al., 2011).  
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Figure 6.3: Passenger carried by different modes per year from 2000 to 2010 

(Source: Beijing Statistical Yearbook 2001-2011) 

 

 

 

Figure 6.4: The growth of motor/private vehicles in Beijing over 2000-2010 
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These urban form changes and public/private transit developments are 

potentially important factors in explaining an elevated preference for motorised travel.  

To this end, measures were taken to adjust the simulated mode share by bicycle, car 

and subway. The most significant change to address is the sharp decline in mode 

share of non-motorised travel (NMT, e.g. bicycle). This decreased from 

approximately 70% in the early 2000s to 30-40% in the later 2000s in many Chinese 

cities, with an average fall of 3% per year (He et al., 2013). In Beijing, the NMT 

share fell by 25% from 2000-10 (He et al., 2013), and this observation is used here to 

adjust the simulated mode share for bicycle. As actual car ownership (ACO) for each 

district is available in the Beijing Statistical Yearbook and the simulated car 

ownership (SCO) can be derived from the microsimulation model, a simple equation 

is adopted to estimate the modified car share: 

 

MCSi = SCSi × (ACOi / TPi) / (SCOi / SPi) × 100%                                                  (6.1) 

 

where MCSi represents the modified car share for the district i and SCSi represents the 

simulated car share for the district i, TPi and SPi refer to the total population and 

sample population for the district i from the 2010 population census. The modified 

mode share for the subway (MSS) is calculated as 1 minus the share of other modes: 

 

MSSi = 1 - MNSi - MCSi - SBSi - STSi - SOSi                                                            (6.2) 

 

where MNSi represents the modified mode share for non-motorised travel for the 

district i, and SBSi, STSi and SOSi refer to the simulated mode share for bus, taxi and 

other transportation modes (mainly motorcycle) for the district i, respectively.  
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 Table 6.3 presents the final estimated mode share for each transportation 

mode in the urban districts of Beijing for 2010. On average, about 43% of trips in 

urban Beijing are made by public transportation modes (i.e. bus, subway), with nearly 

30% made by private vehicles. This agrees well with the 40% value for public transit, 

and 34% for car, reported in another household travel survey conducted by the 

Beijing government in 2010 (Beijing Transportation Research Centre, 2011). The 

simulation results also show the variability in different travel modes by area. 

Residents of inner-suburban districts have a higher share of subway travel; with car 

travel below that of the central urban area. This can be explained by the fact that after 

2000 the new subway lines and stations were extended to the inner-suburban areas.  

Residents of inner-suburban zones, who have longer travel distances, prefer subway 

travel as it is fast, inexpensive and uncongested. In contrast, with rising car ownership 

and changing urban form (for example, industrial suburbanisation, falling residential 

density, and a job-housing spatial mismatch), the share of car travel in the central 

urban area, which has not seen substantial increases in its subway network, has 

increased greatly.  
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Table 6.3: Estimated mode share in urban districts of Beijing for 2010 

 

Mode share (%) Bicycle Bus Subway Car Taxi Other Total 

Dongcheng 20.6 30.1 6.0 34.1 6.0 3.3 100.0 

Xicheng 18.4 30.3 4.7 37.2 6.0 3.3 100.0 

Chongwen 24.5 29.9 5.3 30.9 5.8 3.6 100.0 

Xuanwu 20.8 31.0 10.2 28.7 5.8 3.6 100.0 

Chaoyang 17.9 31.4 14.4 26.9 5.5 4.0 100.0 

Fengtai 21.9 31.8 6.8 29.7 5.6 4.2 100.0 

Shijingshan 24.1 30.2 12.1 23.9 5.9 3.8 100.0 

Haidian 14.0 32.3 16.7 28.5 5.3 3.2 100.0 

Estimated 18.3 31.4 11.9 29.1 5.6 3.7 100.0 

Surveyed 16.4 28.2 11.5 34.2 6.6 3.1 100.0 

Note: The surveyed number is reported in an independent household travel survey in 2011 

from Beijing Transportation Research Centre. 

 

6.2.3 Comparing CO2 emission over 2000-2010 

 

Using the simulated trip distance, mode share, and emission factors (gCO2 per person 

per km) derived from Grazi et al (2008), the transport CO2 emission from the travel of 

the synthetic population is estimated for each district for 2010 (Figure 6.5). On 

average, the transport CO2 emission from individuals‟ daily urban travel in Beijing is 

2.21 kg per person per day.  This is in good agreement with the value reported in a 

Beijing household carbon emission survey conducted in 2010 by Qin and Han (2013). 

They estimated the housing and transport carbon emissions for selected 

neighbourhoods in Beijing, and observed that transport CO2 emission from people‟s 

daily travel varied widely (from 14.8 - 1,734.8 kg per person per year), with an 

average of 2.11 kg per person per day. Compared to the average CO2 emission in 

2000 (Figure 6.6, further details see Section 5.5.3), this shows that CO2 emission per 
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capita from travel has increased significantly (by about 54%) in Beijing, with that in 

the central urban districts (except Xuanwu) experiencing an increase since 2000 of 

more than 70%.  

 

 

 

Figure 6.5: Average and total CO2 emission from the synthetic population in 2010 
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Figure 6.6: Average and total CO2 emission from the synthetic population in 2000 
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2000-2010, with the growth rate approximately 114%, much higher than the 
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Figure 6.7: Growth rate of population and transport CO2 emission over 2000-2010 

(Source: Beijing Statistical Yearbook for population growth rate) 
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trend transport policies combined with urban development strategies, the third Urban 

Compaction and Vehicle Technology (UCVT) scenario examines the impact of 

technological change in the vehicle fleet combined with compact urban development, 

and the final scenario, Combined Policy (CP), examines the impact of combined 

transport policies, urban development strategies and vehicle technologies.  

All four scenarios, (discussed in section 6.3.2 – 6.3.5 below) incorporate 

dynamic changes in Beijing‟s population; as Li et al., 2010 highlights, this is a major 

influence in travel demand and ultimately emissions. A range of population scenarios 

could be explored in this analysis, but here a common demographic change is applied 

to the four scenarios. Table 6.4 presents the observed population change 2000-2010 

(Beijing Statistical Bureau, 2011). Average annual growth rate has been high at 3.3% 

and is expected to fall only slightly over the next two decades, primarily due to 

internal (principally rural-urban) migration in China (Yuan et al., 2008). 

Two city plans have been implemented to control population growth, the 

“Beijing City Master Plan (2004-2020)” and the “12th Five Year Plan (2010-2015)”. 

These plans require the local government to limit the total population in Beijing and 

slow its annual growth rate. All scenarios adopt the average annual growth rate of the 

eight districts of the central urban and inner suburban areas for the modelled 

population, which is projected to be 2.4% 2010-2020, and 2.2% 2020-2030 (Table 

6.4). Using the estimated urban population share, the total population in Beijing is 

projected to be 23.96 million in 2020 and 29.79 million in 2030, which is in good 

agreement with the predicted 29.82 million in 2030 reported by Feng et al (2013). 

 

 

 



188 
 

Table 6.4: Population growth in Beijing over 2000-2030 

 

Variables 2000 2005 2010 2020 2030 

Population in eight urban districts (million) 8.50 9.53 11.72 14.86 18.47 

Total population (million) 13.57 15.38 19.61 23.96 29.79 

Urban population share 
a
 (%) 62.64 61.96 59.77 62.00 62.00 

Population growth rate 
b
 (%) 2.61 2.30 3.26 2.40 2.20 

a
 Urban population share = Population in eight urban districts / Total population *100% 

b
 Population growth rate refers to the average annual growth rate of population in eight urban districts; 

2.61 was the average annual population growth rate during 1990-2000  

The population figure from 2000 to 2010 is derived from Beijing Statistical Yearbook, and the number 

from 2020 to 2030 is our estimates based on the projected population growth. 

 

 

6.3.2 Transport Policy Trend 

 

The Transport Policy Trend (TPT) scenario represents a continuation of current 

transport policies that aim to encourage public transit use and reduce travel by private 

vehicle. Primary measures include restrictions on private vehicle usage through 

regulation, rationing of car licenses, and development of a Bus Rapid Transit (BRT) 

system and a subway extension (Table 6.5).  
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Table 6.5: Transport, land use and technology measures in the four scenarios 

 

Measures TPT LUTP UCVT CP 

Improve public 

transport 

development and 

constrain private 

vehicle use 

20%-off driving 

restrictions; 

maximum 150,000 

car license plate 

release over 2014-

2017;  

18 BRT lines in 

the central city and 

9 BRT lines to the 

suburbs by 2020;  

660 km of subway 

by 2015 

 

As TPT 

 

None As TPT 

Promote urban 

compaction to 

reduce vehicle 

kilometres 

travelled (VKT) 

and motorised 

travel 

None Urban redevelopment;  

infill; densely 

developing 

neighbourhood 

centres; 

increasing population 

density; 

constructing basic 

services and facilities 

near residence; design 

pedestrian-friendly 

street network; etc 

 

As LUTP As LUTP 

Develop vehicle 

technology to 

provide new 

clean vehicles 

and improve fuel 

efficiency 

None None Promote emission 

standards, e.g. Euro 

5 in 2012, Euro 6 in 

2016;  substitution 

of clean fuel 

vehicles, e.g. CNG 

buses, LPG taxis, 

HEV, FCV; 

improve fuel 

efficiency, e.g. 6.9 

L/100km by 2015 

and 4.5-5 L/100km 

by 2020 

As UCVT 

 

 

Throughout the Beijing Olympics period  (July-September 2008), where 

concerns over poor air quality were paramount, the municipal government restricted 

vehicle use via a last digit license plate ban, where on alternating days only vehicles 
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with the permitted odd or even last digit could be used (Hao et al., 2011). This 50% 

ban was relaxed to 20% in October 2008, using the last two licence plate digits 

vehicles are restricted on weekdays in the urban area, which is within the 5th ring 

road. To control the growth in private vehicles, limitations on issue of car license 

plate were introduced in December 2010. Applicants are randomly selected in a 

lottery and only then can they purchase a private vehicle. From 2011-13, the total 

lottery quota was 0.24 million; this was reduced to 0.15 million for the period 2014-

2017.  

Policies on improving public transit are set out in the “12th Five Year Plan 

(FYP) for Public Transit Development in Beijing”. The government aims to improve 

the BRT network from one line (in 2007) to nine lines between the central city and 

suburban towns, and 18 BRT lines in the central city, by 2020 (Ma et al., 2008). 

Compared to regular buses, BRT buses have dedicated lanes with exclusive access, 

which can double operational speed from 10 to 20 km/h in the rush hour, and 

effectively doubles the bus system capacity.  This can potentially add eight million 

passengers a day with no increase in the number of vehicles (Creutzig and He, 2009). 

The city government is also developing the subway system with plans to extend the 

network to 660 km by 2015.  

Faster public transit can induce a significant modal shift. For example, in 

Seoul, a 10% increase in public transport speeds induced 5% of car drivers to switch 

to bus and subway (Lee et al., 2003). This is the expectation of the Beijing 12th FYP 

which aims to raise the share of public transit travel in urban areas to 50% by 2015, 

decrease the car share to 25% and achieve a bicycle share of 18%. Based on these 

parameters, the share of public transit under the TPT scenario is assumed to reach 52% 

(c. 34% bus, 18% subway) in 2020, and 57% (c. 36% bus, 21% subway) by 2030 



191 
 

(Table 6.6). Travel by private vehicles is assumed to decrease to 25% in 2020, and 23% 

in 2030, with cycling at 16%. Average trip distance by vehicle types, personal trip 

frequency, and the vehicle emission factor under the TPT scenario follow the 2010 

simulation results and are assumed to be constant during the period 2010-2030. 

Walking is excluded from the travel modes in the scenario analysis, and walking trips 

are also excluded in the estimation of average trip frequencies. Based on the 2010 

simulation results, the average trip frequency is assumed to be roughly 2 trips per 

person per day under four scenarios over 2010-2030. 

 

Table 6.6: Key parameters of travel behaviour under four scenarios 

 

Control 

factors 
Category TPT LUTP UCVT CP 

  2020 2030 2020 2030 2020 2030 2020 2030 

Mode share 

(%) 
Bicycle 17.0 15.0 18.0 16.0 11.0 8.0 18.0 16.0 

Bus 33.5 35.6 34.5 36.6 32.4 28.0 34.5 36.6 

Subway 18.4 21.4 19.4 22.4 12.9 13.0 19.4 22.4 

Car 25.0 23.0 22.0 20.0 37.3 45.5 22.0 20.0 

Taxi  4.5 4.0 4.5 4.0 5.6 4.6 4.5 4.0 

Other 1.6 1.0 1.6 1.0 0.8 0.9 1.6 1.0 

Average trip 

distance (km) 
Bicycle 3.3 3.3 2.8 2.6 2.8 2.6 2.8 2.6 

Bus 16.5 16.5 14.0 13.2 14.0 13.2 14.0 13.2 

Subway 22.6 22.6 19.2 18.1 19.2 18.1 19.2 18.1 

Car 13.8 13.8 11.7 11.0 11.7 11.0 11.7 11.0 

Taxi  9.7 9.7 8.2 7.8 8.2 7.8 8.2 7.8 

Other 6.1 6.1 5.2 4.9 5.2 4.9 5.2 4.9 

Emission 

factor  

(g/person/km) 

Bicycle 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Bus 73.8 73.8 73.8 73.8 59.0 55.4 59.0 55.4 

Subway 9.1 9.1 9.1 9.1 7.3 6.8 7.3 6.8 

Car 178.6 178.6 178.6 178.6 142.9 134.0 142.9 134.0 

Taxi  178.6 178.6 178.6 178.6 142.9 134.0 142.9 134.0 

Other 113.6 113.6 113.6 113.6 90.9 85.2 90.9 85.2 
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6.3.3 Land Use and Transport Policy 

 

The Land Use and Transport Policy (LUTP) scenario assumes, in addition to the 

transport measures described above, that travel growth will also be tackled using 

urban planning and design policies. Recent urban development has followed a 

planning model, familiar in the western world, of land use zoning, with single use, 

large-lot residential development and auto-oriented street design. The urban form of 

Beijing is now characterised by low density development with little mixed use (Zhao, 

2010). Alternative planning strategies have been tried elsewhere that have proved 

effective in encouraging non-motorised travel and reducing vehicle kilometres 

travelled (VKT) (e.g. Grazi et al., 2008).  These „new urbanist‟, „smart growth‟, and 

„transit-oriented development‟ strategies seek to develop a more compact urban form 

characterised by high density and mixed land use, with ready access to work and 

services facilitated by prioritisation of public transit (Mitchell et al., 2011). 

To date, there is no explicit policy to promote „smart growth‟ ideas in Beijing, 

although some local-level practices have introduced an „eco-city‟ concept elsewhere 

in China, for example, Tianjin (Chinese Society for Urban Studies, 2009). In the 

LUTP scenario, it assumes that the compact urban development is pursued, together 

with the transport policies described above that promote mass public transport and 

strictly control private cars. Primary compaction measures include urban 

redevelopment in the old urban residential area, infill, densely developing 

neighbourhood centres accommodating a range of household types and land uses, 

increasing population density by 50% in the suburban districts, constructing basic 

services and facilities near residences to put the activities of daily living within 
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walking distance, and developing a pedestrian-friendly street network in the suburbs 

(Table 6.5).  

Such measures are assumed to have significant impacts on travel and mode 

choice if adopted for Beijing. Reviewing 85 land use-VKT scenarios in the US, 

Bartholomew and Ewing (2009) found that vehicle kilometres travelled (VKT) under 

different planning scenarios ranged from 5% above the regional trend to 32% below it; 

and that the difference is larger for longer planning horizons. Comparing the travel 

distance in different (traditional and commodity housing) neighbourhoods from the 

Beijing 2007 travel survey, with adopting compact urban development (e.g. mixed 

land use, increasing population density), the average trip distance by vehicle types is 

assumed to have a 15% reduction in the LUTPS by 2020 and a further 5% reduction 

by 2030, respectively (Table 6.6). Regarding the mode share, 3% car travel in the 

TPT scenario is assumed to be shifted to bus, subway and bicycle with a 1/3 split 

each, as suggested in some prior studies (e.g. He et al., 2013). Vehicle emission 

factors are assumed to be the same as the TPT scenario over 2010-2030.  

 

6.3.4 Urban Compaction and Vehicle Technology 

 

In the Urban Compaction and Vehicle Technology (UCVT) scenario, densification or 

compaction policies are used, with the addition of aggressive promotion of clean 

vehicle technology. This includes strengthening emission standards of in-use and new 

vehicles, improvement of fuel efficiency, and substitution of alternative clean fuel 

types (Table 6.5). In China, both central and local governments have made substantial 

efforts to promote the development and use of clean vehicle fuels, such as liquefied 

petroleum gas (LPG), compressed natural gas (CNG), electric vehicles (EV), hybrid 
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electric vehicles (HEV) and fuel cell vehicles (FCV).  This has been through the 

uptake of policies and legislations, including the „National Clean Vehicles Action‟ 

(1999), „Renewable Energy Law‟ (2005), and „Rules on the Production Admission 

Administration of New Energy Automobiles‟ (2007) (Hu et al., 2010). 

With these government interventions, LPG and CNG vehicles increased 

rapidly in bus and taxi fleets. By 2005, Beijing had more than 2,000 CNG buses and 

600 LPG taxis and approximately 32,000 gasoline/LPG bi-fuel taxi.  These vehicles 

were demonstrated to have better performance on the road than the conventional 

vehicles (Hao et al., 2006). However, compared to global HEV sales, which grew 

rapidly from 40,000 in 2002 to 509,000 in 2007, growth in clean fuel vehicles in 

China has been slow, although there has been considerable investment in 

EV/HEV/FCV research and development projects (Hu et al., 2010). This scenario 

assumes that the government will continue to encourage new energy projects, and 

subsidise HEV and FCV vehicle purchases, so that the share of new clean vehicles in 

use increases to match EU‟s current level by 2030. 

Policies to improve fuel efficiency and emission standards are also included in 

this scenario. China issued its first two-phase vehicle fuel-economy standards for 

passenger vehicles in 2004, in order to improve the fuel efficiency of the fleet by 15% 

(Huo et al., 2012). The average fuel consumption rates were reduced from 9.11 

L/100km in 2002 to 8.06 L/100km in 2006 and 7.87 L/100km in 2009 (Wagner et al., 

2009; Wang et al., 2010). The third phase fuel-economy standard, similar to the US 

CAFE standard, has been designed and will be adopted to improve fuel efficiency to 

6.9 L/100km by 2015 and 4.5-5 L/100km by 2020 (Huo et al., 2012). Moreover, the 

Beijing government also tightened the vehicle emission standards and implemented 

the Euro 4 standard for light-duty vehicles in 2008. It plans to catch up with the EU in 
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future by introducing more stringent emission standards, i.e., Euro 5 in 2012 and Euro 

6 in 2016, to control emissions (Wu et al., 2011).  

Estimates of aggregate reduction in CO2 emission factors for Chinese 

passenger transport from fuel efficiency improvements and clean fuels vary, 

including 17% (Liu et al., 2007), 22% (Ou et al.,  2010) and 25% (Zhang et al., 2005). 

This scenario assumes mid-level values for 2020 of 20%, rising to 25% in 2030, 

compared to the trend value. VKT is assumed to be the same as the LUTP scenario. 

Regarding the mode share, as no major transport policies are implemented, the mode 

share by car is assumed to follow the historical trend
9
 (2000-2010), accounting for 

approximately 37% in 2020 and 45% in 2030, whereas the share by public travel and 

NMT reached 56% in 2020 and 49% in 2030, respectively (Table 6.6). 

 

6.3.5 Combined Policy 

 

While the three scenarios above (i.e. TPT, LUTP, and UCVT) address specific 

measures in different aspects in isolation, the final scenario, Combined Policy (CP), 

assumes all these measures discussed above are considered altogether to reduce the 

transport CO2 emissions from people‟s daily travel, including the transport policies, 

compact urban development and vehicle technologies (Table 6.5). A complete 

combination of these measures is assumed to have substantial impacts on travel 

distance, mode choice and emission factor at the same time (Table 6.6). Results and 

analysis of these four scenarios on future transport CO2 emissions in urban Beijing 

are presented in the following section.  
                                                           
9
 Based on the historical trend, the car share increased by 11.2% from 2000 to 2010; the 

compaction policy will make 3% car share shifted to the public and bicycle travel. Therefore, 

the car share will increase 8.2% in the UCVT scenario, with 37.3% (29.1%+8.2%) in 2020 

and 45. 5% (37.3%+8.2%) in 2030. 
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6.4 Results 

6.4.1 Average CO2 reduction potential 

 

Based on the assumptions above in section 6.3, an average per capita CO2 emission 

for passenger transport under the four scenarios to 2030 is calculated. This is 

calculated from the mode share by trip frequency by travel distance and mode 

specific CO2 emission factor, as: 

 

AverageCO2 = ∑ MSj × ATF × ATDj × EFj                                                             (6.3) 

 

where MSj refers to the mode share by vehicle type j ( j = bicycle, bus, subway, car, 

taxi, and other), ATF represents the average trip frequency on a typical workday (i.e. 

2 trips per person per day), ATDj is the average trip distance by vehicle type j, and 

EFj the emission factor associated with the vehicle type j. 

Figure 6.8 presents the results from 2000 to 2030. Compared to the sharp 

increase from 2000-2010, transport CO2 emission under the TPT scenario will grow 

more slowly to 2.30 kg per person per day in 2020 and 2.24 kg in 2030, as a 

continuation of current transport policies is considered effective in both encouraging 

public transit use and reduced private car travel. When both transport and urban 

development policies are employed (LUTP), CO2 emission falls to 1.85 kg per person 

per day by 2020 and 1.70 kg by 2030, this is mainly due to the lower VKT.  
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Figure 6.8: Average CO2 emission from people‟s daily urban travel over 2000-2030 

 

Under the UCVT scenario, where vehicle technology is aggressively 

promoted with compact urban development, the average CO2 emission reaches 1.96 

kg per person per day in 2020 and 1.89 kg in 2030, falling 14% from 2010. However, 

when transport policies, compact urban development and vehicle technologies are 

employed together (CP), CO2 emission falls sharply to 1.48 kg per person per day by 

2020 and 1.27 kg by 2030, reducing 43% relative to 2010. It suggests that, although 

transport policies, urban compaction and vehicle technology are feasible tools, they 

cannot significantly reduce transport CO2 emissions from people‟s daily travel in 

isolation. The most effective solution to mitigate transport carbon emission in the 

future is the combination of those solutions concerning travel behaviour, urban 

planning and vehicle technologies.  
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6.4.2 Total CO2 emission comparison 

 

Total CO2 emission from people‟s daily travel is calculated by the total population 

(see Table 6.4, the projected full population in eight urban districts in 2020 and 2030) 

multiplied by the average CO2 emission, as: 

 

TotalCO2 = ∑ MSj × (ATF × TPt) × ATDj × EFj                                                     (6.4) 

 

where TPt refers to the total population in year t (t = 2020 or 2030).  

 

Figure 6.9 presents the total transport CO2 emission in urban Beijing in 2020 

and 2030. It shows that, under the trend scenario (TPT), total transport CO2 emission 

reaches about 34,200 tonnes per day in 2020 and 41,400 tonnes per day in 2030, with 

car travel accounting for half of all transport emissions (Figure 6.10). Together with 

urban compaction strategies to decrease VKT, total transport CO2 emissions under the 

LUTP scenario are about 20% below the trend scenario in 2020, and 24% less in 2030, 

with the proportion of total CO2 from public transit rising to 46% by 2030 (Figure 

6.10).  
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Figure 6.9: Total transport CO2 emission from daily travel in urban Beijing 

 

 

 

 

Figure 6.10: Transport CO2 emission by vehicle types in 2020 and 2030 
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In contrast, with compact urban development and vehicle technology taken 

into account, total transport CO2 emission under the UCVT scenario is 16% below 

the trend scenario in 2030, with the car accounting for more than 70% of the total 

CO2 emission (Figure 6.10). This is mainly due to the larger vehicle population and 

increased car travel, which suggests that continuing to both encourage public transit 

use and constrain car travel in Beijing through transport policies, is a priority solution 

for reducing transport carbon emission. However, these measures will be more 

effective if developed in conjunction with travel sensitive land use policies and 

advanced vehicle technologies, as total transport CO2 emissions under the CP 

scenario decrease sharply, about 36% below the trend scenario in 2020, and 43% less 

in 2030. 

 

6.5 Sensitivity analysis 

 

To address the uncertainty in travel assumptions, a sensitivity analysis was conducted 

to examine the model‟s responses to variations of input parameters. Each time, one of 

the travel parameters (Table 6.6) was changed by 20% (the normally used value, e.g. 

He et al, 2013), while the others were kept constant. The resulting transport CO2 

emissions were then compared to the estimated carbon emissions under the trend or 

reference scenario, and the sensitivity value of each travel parameter is examined by 

the following equation: 

 

Sj = ∆ECj / EC × 100%                                                                                             (6.5) 
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where Sj is the sensitivity value of a specific travel parameter (e.g. mode share, trip 

distance, or emission factor) for vehicle type j ( j = bicycle, bus, subway, car, taxi, 

and other); EC refers to the estimated CO2 emissions for trend scenario in 2030 and 

∆ECj represents the increments or decrements of CO2 emissions with the travel 

parameter of vehicle type j changing by 20%.  

 The sensitivity analysis reveals that transport CO2 emissions from people‟s 

daily travel in urban Beijing are largely insensitive to bicycle, subway, taxi and other 

vehicle types (e.g. motorcycle), as a 20% change in that travel parameter resulted in 

less than a 2% change in the emissions (Figure 6.11). In contrast, the variation in trip 

distance, mode share or emission factor by private car would be most sensitive to, or 

have significant impact on transport CO2 emissions, as its sensitivity value is 

approximately 10%, followed by bus, about 8%.  

 

 

 

Figure 6.11: Sensitivity analysis of travel parameters 
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6.6 Conclusions 

 

In contrast to prior studies which estimate transport CO2 emissions using aggregate 

vehicle population statistics, this chapter presents a new „bottom-up‟ methodology to 

simulate and project transport CO2 emissions from people‟s daily urban travel using 

disaggregate travel attributes for a Chinese mega-city to 2030, where published travel 

survey, energy statistics or census data are usually very poor. Using a spatial 

microsimulation approach, this study firstly estimates transport CO2 emission from 

people‟s daily travel behaviour at disaggregate level in urban Beijing in 2010. The 

simulation results show that the average CO2 emission from urban travel has 

increased significantly from 2000-10, reaching 2.21 kg per person per day in 2010. It 

also suggests that the total mass transport CO2 emission in urban Beijing has 

increased by 114% since 2000, with the Chaoyang and Haidian districts being 

particularly high emitters.  

Next, on the basis of the estimated historical emissions, this chapter also 

develops four major scenarios concerning transport policies, urban planning and 

vehicle technology to examine how changes in people‟s daily travel behaviour (e.g. 

trip distance, mode share) may impact upon transport carbon emission in urban 

Beijing to 2030. These scenarios (i.e. transport policy trend, land use and transport 

policy, urban compaction and vehicle technology, and combined policy) are 

developed to illustrate the model capability, and they are reasonable reflections of 

possible strategies for Beijing. The modelling results show that compared to the trend 

scenario, employing both transport and urban development policies could contribute a 

further 24% reduction of the total carbon emission to 2030. Moreover, when transport 

policies, compact urban development and vehicle technologies are combined, the total 
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transport CO2 emission falls sharply, about 36% below the trend scenario in 2020, 

and 43% less in 2030. The results show that the most effective solution to mitigate 

transport carbon emission in the future is the combination of those solutions 

concerning travel behaviour, urban planning and vehicle technologies.  
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Chapter 7  

Conclusions 

 

7.1 Introduction 

 

China has experienced rapid urbanisation and spatial restructuring since the 1980s.  

This has been accompanied by major growth in travel, which has brought with it the 

associated issues of energy consumption, greenhouse gas emission, traffic congestion 

and local air pollution (Feng et al., 2013). Few studies have focused on investigating 

the relationship between CO2 emissions from an individual‟s daily journey and 

China‟s changing urban form at a disaggregate level. With relatively sparse data on 

travel behaviour in China, this thesis develops a new „bottom-up‟ methodology to 

provide improved transport CO2 emission estimates based on individuals‟ observed 

daily travel behaviour for Beijing. This is achieved through the development of a 

spatial microsimulation that takes account of people‟s daily travel behaviour at fine 

geographical scale. This is the first time that spatial microsimulation has been used to 

overcome the data deficiencies that often act as a barrier to spatial analysis of travel 

behaviour, and hence low carbon city planning, for any megacity in the developing 

countries. The developed „bottom-up‟ methodology provides greater insight into the 

spatial variability of transport CO2 emissions, and allows a range of scenarios to be 

tested out that examine travel behaviour at a disaggregate level.  

 Moreover, to illustrate the utility of the approach, this thesis also estimates the 

transport CO2 emissions from passenger travel behaviour to 2030 under four 
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scenarios. These scenarios are developed to explore travel behaviour and transport 

CO2 emissions under current and feasible future strategies on transport policy, urban 

development and vehicle technology. It provides a more detailed and realistic 

evaluation on the planning interventions that are relevant to the development of more 

sustainable and low-carbon urban development in China. The remainder of this 

chapter is structured as follows. Section 7.2 discusses the three research objectives 

(and six tasks) established in Chapter 1 (Section1.2), reflecting on the extent to which 

the objectives have been met, the limitations of the analysis, and the principal 

conclusions that can be drawn. Section 7.3 presents recommendations for policy and 

practice, and for further research development.  

 

7.2 Research summary 

 

The central aim of this thesis was to improve our understanding of the impact of 

urban form, and daily travel behaviour on transport CO2 emission in the context of 

rapid urbanisation and spatial restructuring in China. To achieve this aim, a „bottom-

up‟ methodology was developed to spatially simulate a large population‟s daily travel 

behaviour at fine geographical scale. This provided improved evidence of transport 

CO2 emissions for the period 2000-2030, based on observed daily travel behaviour of 

individuals. Three specific objectives (including six tasks) were established in 

Chapter 1 and are now revisited and discussed here. 
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7.2.1 Objective One: Travel Modelling 

 

Objective One – To comprehensively and microscopically analyse the 

relationships between urban form, household and individual socio-demographics 

and tour-based travel behaviour (Travel Modelling). 

 

Using the tour as the basic unit of analysis, Chapter 4 investigates how the 

socio-demographic attributes of households, individuals, and urban form 

characteristics, at both residence and workplace, influence tour-based daily travel 

behaviour (Objective One, task 1). This approach accounts for urban form and socio-

demographics in a series of discrete choice models to analyse the trip-chaining 

behaviour for three principle aspects: tour generation or frequency, tour scheduling 

process, and tour interdependence mechanism. In contrast to prior research that 

analysed aggregate samples (e.g. Krizek, 2003; also see the discussion in Section 

2.3.2.3), this chapter examines tour behaviour at a disaggregate level, and further 

investigates the urban form – trip-chaining relationships for workers and non-workers, 

separately, taking one, two and three tours in a single day (Objective One, task 2). 

This allows for a consideration of both tour sequence, and tour interdependence, 

which has rarely been considered before. 

This disaggregated analysis of urban form – trip-chaining behaviour provides 

a more sophisticated understanding of tour-based travel decisions and an empirical 

basis to inform land use and/or travel planning. It also contributes to the notion of 

predictive behaviour that leads itself to being modelled using individual-based 

modelling techniques, such as microsimulation. However, it is restricted to tour 

generation, schedule and interdependence analysis on a typical workday; travel 
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behaviour on the weekend, which may be more flexible and potentially be influenced 

by neighbourhood-scale urban form, is not addressed here due to data limitations. 

Moreover, the intra-household dependency (e.g. intra-household interactions between 

the male and female household heads), and correlations between people‟s trip-

chaining behaviour on Sunday and the subsequent Monday, are currently too complex 

and not tested in this thesis.  

Modelling results in Chapter 4 show that socio-demographic attributes of 

households and individuals correlate significantly with people‟s tour-based behaviour. 

For instance, workers with high income or in households with children tend to take 

fewer tours on a typical workday; but when they do leave home, they make more 

intermediate stops. Older people tend to take more tours and participate in non-work 

activities before they travel to work; and women tend to make more stops within a 

tour, although there is no significant gender difference in tour frequency as observed 

in developed countries (e.g. McGuckin and Murakami, 1999). Non-workers with 

lower educational attainment tend to take fewer tours on a typical workday, and those 

with children in their households tend to take more tours and participate in some 

family obligation activities en route.  

Urban form characteristics at home and at workplace are significantly 

associated with tour frequency, but differ with respect to tour complexity. For 

example, higher residential density is correlated with more home-based tours with 

fewer stops for workers, while mixed land use at workplace with higher density and 

accessibility leads to more stops within one work tour or a more complex tour pattern. 

With respect to non-workers, people living in neighbourhoods with higher density or 

better access to subway station tend to leave home more often and make more 

intermediate stops than their counterparts on a typical workday. The research in 
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Chapter 4 also reveals, for the first time, a tour interdependence effect for residents 

who undertake multiple tours on a typical workday. A paper on the basis of this 

chapter has been published in a peer-reviewed journal; see Ma et al (2014b). 

 

7.2.2 Objective Two: Microsimulation Modelling 

 

Objective Two – To spatially simulate a large population’s daily travel 

behaviour (including travel distance and mode choice) at a fine geographical 

scale and estimate transport CO2 emissions from daily urban travel at the 

disaggregate level over 2000-2010 (Microsimulation Modelling). 

 

Using the understanding of travel behaviour developed in Chapter 4 (based on 

an activity diary survey), and the 2000 population census, Chapter 5 first applies a 

simulated annealing algorithm to create a realistic synthetic population at the sub-

district level for 2000 in Beijing (Objective Two, task 1). The population synthesis is 

developed within a generic „Flexible Modelling Framework‟ based on the simulated 

annealing technique, and the constraints in the microsimulation model are socio-

demographic attributes, including age, gender, education, employment, and 

occupation, which are significant influences on travel behaviour (as shown in Chapter 

4). The reconstructed population is validated by the observed aggregate data using 

several established goodness-of-fit evaluation statistics. Using the microsimulated 

synthetic population, Chapter 5 then spatially simulates the population‟s daily travel, 

including trip distance and mode choice, and estimates transport CO2 emission from 

daily urban travel at the sub-district level for 2000 in urban Beijing (Objective Two, 

task 2).  
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The analysis in Chapter 5 represents a sophisticated spatial microsimulation of 

people‟s daily travel and associated transport CO2 emission, which can be served as a 

solid basis for low carbon city planning, or transport policy evaluation for mega cities 

in developing economies. However, this has been achieved using limited data, a 

travel diary survey, and a sample population census. China has no national travel 

survey (Pucher et al., 2007), and data from Beijing‟s municipal government travel 

surveys have only been published at aggregate level (confidentiality issues may 

constrain release of more individual level data). We have thus drawn upon travel 

diary data that is a modest data set considering the scale of Beijing. Furthermore, the 

population data we have drawn upon is a 10% sample of the city population. 

Nonetheless, the simulated annealing algorithm applied here has been used to 

synthesise the city‟s population in its entirety, and its travel behaviour in a manner 

that closely reflects travel behaviour reported at the aggregate level (see Section 5.5). 

There are some further limitations to this research. First, the constraints in the 

microsimulation models are all socio-demographic attributes. Other attributes, like 

attitudinal and lifestyle variables, and spatial locations, which might impact on 

people‟s daily travel behaviour, are not taken into account. This is mainly because 

these variables are not available in the activity diary survey and population census 

datasets. Furthermore, this work only used weekday (Monday) samples to estimate 

transport CO2 emission from people‟s daily urban travels on a typical workday, while 

the weekend information is not included in the analysis. The microsimulated 

emissions could be adjusted to recognise differences in travel patterns for different 

days of the week, but the travel observations needed to produce the relevant scaling 

factors are not currently available, hence the emissions are for a weekday (Monday) 

only. Although the sample size is small, the survey microdata is representative in 
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terms of the sampling procedure used – the survey area covering all different types of 

neighbourhoods in the central urban and inner suburban zones of Beijing (see Section 

3.6.1). By comparing attribute combinations between the census data and the survey 

dataset, the survey population is also representative of the observed target population. 

As there are no similar studies estimating transport CO2 emission from people‟s daily 

urban travels at a micro scale for urban Beijing, and such detailed accurate data is not 

available, it is difficult to validate the results of the analysis at the disaggregate level. 

However, verification at the aggregate level was possible by comparing the synthetic 

travel characteristics with some government household travel surveys (e.g. Beijing 

Transportation Research Centre, 2002) and other independent household interview 

surveys (e.g. Zhao et al., 2011). This shows that the simulated travel distance and 

share of low-carbon travel are in good agreement with this independent information.  

To conclude, the microsimulation results in Chapter 5 show that people 

resident in the inner suburban zone travel further, make fewer low-carbon trips, and 

emit more carbon per workday than average. In contrast, residents in the central urban 

zone, characterised by a high population density, mixed land use, and high 

accessibility to services and public transit, adopt low-carbon travel behaviour. This 

analysis presents a new „bottom-up‟ methodology through the development of a 

spatial microsimulation of people‟s daily travel, and provides improved transport CO2 

emission from urban passenger travel at a disaggregate level. A paper on the basis of 

the work in Chapter 5 has been published in a peer-reviewed journal; see Ma et al 

(2014a). 

Using the 2000 base case as the starting point, Chapter 6 applies the „bottom-

up‟ methodology presented in Chapter 5 to simulate a realistic synthetic population‟s 

daily travel behaviour and estimate their CO2 emission in 2010 for urban Beijing 
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(Objective Two, task 3). The dynamic changes in travel behaviour and transport CO2 

emission over 2000-2010 are also analysed. The simulation results show that the 

average CO2 emission from urban travel has increased significantly from 2000 to 

2010, reaching 2.21 kg per person per day in 2010. The total mass transport CO2 

emission in urban Beijing has increased by 114% since 2000, with the Chaoyang and 

Haidian districts being particularly high emitters. The role of socio-demographic 

attributes and change in urban form and transport development is also examined for 

the modelled trend during this period. 

 

7.2.3 Objective Three: Scenario Modelling 

 

Objective Three – To project transport CO2 emissions from passenger travel 

behaviour to 2030 under urban scenarios, to mitigate carbon emissions in the 

future and facilitate China’s sustainable urban development (Scenario 

Modelling). 

 

Chapter 6 presents a scenario analysis of transport CO2 emissions from 

passenger travel behaviour to 2030 (Objective Three, task 1). Using the baseline 

results for passenger transport CO2 emission for Beijing 2000-10, Chapter 6 further 

explores how changes in people‟s daily travel behaviour (e.g. trip distance, mode 

share, etc) may impact upon transport carbon emission in urban Beijing to 2030. Four 

scenarios (transport policy trend, land use and transport policy, urban compaction and 

vehicle technology, and combined policy) are developed to explore travel behaviour 

and transport CO2 emission under current and potential strategies on transport, urban 

development and vehicle technology.  
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In contrast to prior studies which estimate transport CO2 emissions using 

aggregate vehicle population statistics (e.g. Dhakal, 2009), this research employs an 

alternative approach to simulate and project transport CO2 emissions from people‟s 

daily urban travel using disaggregate travel attributes, which enables examination of 

the influence on emission of factors that operate at a more resolved functional level 

and enables exploration of development scenarios and policy or plan interventions. 

However, as it only projects the transport CO2 emission from passenger travel for 

urban Beijing (eight urban districts), it is difficult to compare the results of our 

analysis with other studies mostly conducted at a wider scale (e.g. China). 

Furthermore, only four scenarios are developed to explore transport CO2 emissions 

concerning transport policy, urban development and vehicle technology, while urban 

compaction and vehicle technology are not examined on their own.  

Nevertheless, these scenarios are reasonable reflections of possible strategies 

for Beijing, and they are the options that are under discussion by urban planners and 

policy makers in Beijing (He et al., 2013). The modelling results show that compared 

to the trend scenario, employing both transport and urban development policies could 

contribute a further 24% reduction of the total carbon emission to 2030. Moreover, 

when transport policies, compact urban development and vehicle technologies are 

combined, the total transport CO2 emission falls sharply, about 36% below the trend 

scenario in 2020, and 43% less in 2030. It suggests that the most effective solution to 

mitigate transport CO2 emission in the future is the combination of those solutions 

concerning travel behaviour, urban planning and vehicle technologies. A paper on the 

basis of the work in Chapter 6 has been submitted for publication (Ma et al., 2014c). 
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7.2.4 Conclusion 

 

To conclude, this thesis examines in detail the impact of urban form, and daily travel 

behaviour on transport CO2 emission at a disaggregate level in urban Beijing. It 

combines a spatial microsimulation approach from geography and activity travel 

research from the transport field and applies this in a developing country for a long 

period, where detailed data to undertake fine scale analysis of phenomena such as 

travel behaviour and associated transport CO2 emissions is very scarce. It also 

develops a „bottom-up‟ methodology to provide improved transport CO2 emissions at 

a disaggregate level and allows the effect of different policies, strategies or 

technologies to be more realistically evaluated. However, as there are some limits to 

this thesis, and practical constraints including a lack of building energy data for the 

study area, the effect of urban form on residential energy use and life-cycle carbon 

emission is not investigated. It is hoped that, with some future development, these 

analysis techniques and modelling methods could be significant tools to support 

urban spatial analysis, residential energy consumption forecasts, and environmental 

and health policy evaluation. 

 

7.3 Recommendations for policy and future research 

7.3.1 Policy Implications 

 

Since the 1990s, China‟s urban development has largely followed the western model 

of mono-functional residential development with an auto-oriented transport system 

(Wang and Chai, 2009). The rapid urban expansion has been accompanied by urban 
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sprawl on Beijing‟s fringe, characterised by low population density and little mixed 

use, while the inner city retains highly diverse traditional neighbourhoods with high 

density, mixed land use, and high accessibility to services and public transit (e.g. 

Zhao, 2010). Using Beijing as a case study, this thesis demonstrates that urban form 

has a significant influence on people‟s daily travel behaviour and transport CO2 

emission. High population density, mixed land use, and good access to public transit 

could reduce dependence on private automobile usage, make residents travel shorter 

distance, and emit less carbon on a typical workday. It suggests that, ceteris paribus, 

the Chinese government should encourage compact urban development to mitigate 

CO2 emission and combat climate change. 

 Transport policy is also an effective tool in mitigating carbon emissions from 

daily urban travel. With transport policies pursued to encourage public transit use and 

reduce travel by private vehicle, total transport CO2 emission will grow more slowly 

in the future, compared to the sharp increase from 2000-2010. The modelling results 

show that, under the Transport Policy Trend scenario, the average transport CO2 

emission from daily urban travel will grow more slowly to 2.30 kg per person per day 

in 2020 and 2.24 kg in 2030 (Figure 6.8). And with a continuation of current transport 

policies, the total transport CO2 emission reaches about 34,200 tonnes per day in 

2020 and 41,400 tonnes per day in 2030, with car travel accounting for half of all 

transport emissions (Figures 6.9-6.10). 

Moreover, when both transport and urban development policies are employed, 

average CO2 emission falls to 1.85 kg per person per day by 2020 and 1.70 kg by 

2030, mainly due to the lower VKT (Figure 6.8). Total transport CO2 emissions under 

the Land Use and Transport Policy scenario are about 20% below the trend scenario 

in 2020, and 24% less in 2030, with the proportion of total CO2 from public transit 
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rising to 46% by 2030 (Figures 6.10). However, reduction of urban carbon emissions 

will require a combination of behavioural changes, urban planning, transport 

development, and other technology fixes and economic instruments, such as 

improved fuel efficiency and electric vehicles, and fuel/vehicle taxation. When 

transport policies, compact urban development and vehicle technologies are 

employed together (i.e. Combined Policy), average CO2 emission falls sharply to 1.48 

kg per person per day by 2020 and 1.27 kg by 2030 (Figure 6.8). Total transport CO2 

emissions under the Combined Policy scenario also decrease sharply, about 36% 

below the trend scenario in 2020, and 43% less in 2030 (Figure 6.9). The government 

should continue to make efforts to promote the development of clean vehicle 

technology and use of clean vehicle fuels. The modelling results suggest that although 

transport policies, urban compaction and vehicle technology are feasible tools, they 

cannot significantly reduce transport CO2 emissions from people‟s daily travel in 

isolation. The most effective solution to mitigate transport carbon emission in the 

future is the combination of those solutions concerning travel behaviour, urban 

planning and vehicle technologies.  

 

7.3.2 Research development 

 

The previous section has outlined some implications for policy and practice, and this 

section suggests some future research and development that might be advantageous to 

transport and environment research, and to academic knowledge in general. First, 

whist the results are particularly relevant to urban Beijing, the wider point 

demonstrated here is how it is possible to simulate urban travel for a developing 

country mega-city, in a manner that allows credible estimation of geographically 
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resolved transport carbon emissions. Future research could apply the „bottom-up‟ 

methodology presented in this thesis to other big cities to microsimulate urban travel, 

estimate transport carbon emissions, and further develop a dynamic microsimulation 

system. Second, whilst transport CO2 is focused on here, the methodology could also 

be useful for estimating emissions of other pollutants relevant to local air quality (e.g. 

CO, NOx, SO2), or identifying where congestion may become more serious in the 

future.  

Moreover, building on the spatial microsimulation of transport CO2 emissions, 

future research could dynamically simulate the socio-spatial distribution of air quality 

and associated disease burden at fine geographical resolution, to investigate the 

evolution of environmental and health inequalities in developing countries, where air 

pollution levels such as fine particulates (PM10, PM2.5) are the highest in the world, 

and a very significant public health risk (e.g. Zhang et al., 2013). Future development 

could relate environmental justice research from geography with public health studies 

to estimate disease burden, particularly for socially deprived groups, evaluate 

environmental and public health policies, and provide policy implications for the 

government to redress environmental and health inequalities. 
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