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Abstract

Photorealistic 3-D models are used in a wide variety of applications from entertainment and

games, through to simulation, training . Algorithms to automatically create such models from or-

dinary photographs can vastly reduce the workload and expense associated with acquiring such

models. The vast majority of research into reconstructing 3-D models from images has concentrated

on the case of single objects.

This thesis presents a method to model complex multi-objectscenes in a series of steps starting

with a set of images which surround a scene and finally producing a complete photorealistic rep-

resentation of the objects. The probabilistic space carving algorithm is used to provide an initial

estimate of shape as it makes no assumptions about the shape of the scene aside from the bounding

cuboid. This representation is smoothed by fitting a Radial Basis Function implicit surface, which

smoothes noise and interpolates any missing data. Errors which persist are addressed by a matching

surface points between images and estimating the perspective transformation between them which

is used to calculate the correct position for the point, which is consistent with the input images. The

model may be corrected by constraining the surface to pass through these points. The smoothing

properties of RBFs can cause problems by interpolating across objects which are close together,

causing them to be joined in the representation. A method is presented to correct this by enforcing

consistency between edges in 2-D and 3-D.

Experiments are conducted using real image sequences of complex multi-object scenes. Both

qualitative and quantitative evaluations are performed demonstrating the effectiveness of the meth-

ods presented. In addition to modelling all of the objects present, colour surfaces are produced from

which even fine text is legible. A detailed study is undertaken into the factors which influence the ef-

fectiveness of techniques to recover partially or fully fused objects and conclusions are drawn which

hint at the ultimate limit of accuracy in the case of multipleobjects.
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Notation

In general sets are indicated by caligraphic capital letters,S, matrices and tensors by capital italics,

M, column vectors by lowercase bold,v, and scalars by lowercase italics,s. In addition to this the

following notations are commonly used:

I = {Ii|i ∈ 1..n} the set ofn input images

u = I
u,v
i a [colour] pixel at coordinatesu, v in imagei

P = {Pi|i ∈ 1..n} the set of corresponding projection matrices

Ci a contour corresponding to imagei

u ∈ Ci a point in 2-D which lies within the contour

V the visual hull of an object or group of objects

x = (x, y, z)T a point in 3-D space, made up of three coordinates

φ(x) a radially symmetric basis function

c the centre of a basis function (a point in space)

−→
n normal vector (of unit length)

Please note the difference between the projection matrixP and the probability of an eventP (e). The

following terms have a specific meaning with this thesis. Colour - a triplet of values that determine

the appearance of a point on a surface or image, capturing lightness as well as the hue. Thus dark

blue, light blue, black, white etc. are different considered to be different colours. This is slightly

different to the definition of colour as a particular wavelength of light. Texture - the pattern of

colours across a surface. This does not refer to the tactile quality of surfaces in any way.



Chapter 1

Introduction

We live in a three-dimensional world. For computers to be able to interact with this world they need

sensory information about their 3-D environment. The field of computer vision lies at the confluence

of many areas of research, such as artificial intelligence, robotics, optimisation, pattern recognition

and signal processing. The ultimate goal is to allow computers to understand and reason about the

outside world visually, in a similar way to human beings. 3-Dcomputer vision concerns the process

of inferring spatial relationships from data obtained using cameras or other electromagnetic sensory

equipment. Applications of 3-D vision include automated navigation, tracking and interpretation of

motion, face recognition and 3-D modelling.

The earliest origins of 3-D computer vision can be traced to the study of photogrammetry - mak-

ing measurements using photographs. Photogrammetry datesback to the mid-nineteenth century and

is almost as old as photography itself. It was used principally by architects and cartographers for

the purpose of creating accurate diagrams and is still used today in areas where direct measurements

cannot be made. In photogrammetry the emphasis is placed firmly on accuracy. This requires high-

quality carefully constructed camera equipment (to minimise the distortion introduced by the lens

elements and any other imperfections) and full knowledge ofthe cameras internal geometry. Special

markers are usually attached to objects which are then photographed from different angles. From

these photographs the absolute position in space of the markers can be calculated geometrically.

Influences have also been drawn from other areas of mathematics and computer science. The

popularisation of “impossible shapes” such as Penrose triangle in the 1950s sparked interest in the

mathematical properties of drawings. One of the first uses ofconstraint programming in AI was

13



CHAPTER 1. INTRODUCTION 14

to reason about physically plausible 2-D figures. Edges and junctions were labelled according to

wether they represented a convex, concave or occluding boundary. If a labelling consistent with a

set of rules could be produced then the figure can be said to be arepresentation of a 3-D real shape.

The first steps toward the description of a modern computer vision system may be attributed to

David Marr [58]. Marr was a neurobiologist who set out to describe how human vision could be

defined as an information processing task. He argued that anysuch task required three components:

the computational theory (which defines the problem and provides the motivation for its solution)

the representation and algorithm - a model of the process which leads finally to an implementation.

Applying his theory to the human visual system he describes four stages in which visual infor-

mation is processed, these are the retinal image, the primalsketch, the 21
2
D sketch and finally the

3-D model.

In recent years researched has moved on from the first two stages to concentrate on the final

stages. It is possible to infer shape from a variety of visualcues. Algorithms for 3-D reconstruction

are often referred to as “shape from X” depending on the particular cue used.

Shape from shading aims to reconstruct a 3-D surface based onobserved irradiance in a single

image. By modelling the interaction between incident lightand the surface1 information about the

shape can be inferred, although in general the problem is underconstrained (since for each observa-

tion two angles must be calculated to define the surface orientation). Additional constraints such as

smoothness are thus required to obtain a unique solution [86]. Shape from shading has been shown

to be effective for object recognition [87] although the applicability to general 3-D vision is limited

by the requirement of untextured diffuse surfaces.

The appearance of an object’s texture is strongly influencedby the surface orientation leading

to the formlation of shape from texture. Geometric texture analysis requires the identification of

repeating patterns which is not always possible. Frequencydomain algorithms such as [69] rely

on changes in the power spectrum that indicate variation in surface orientation. Unlike shape from

shading the problem has sufficient mathematical constraintto provide a unique solution however a

fixed repeating texture must be used.

Human binocular vision provides the inspiration for shape from stereo. Stereo algorithms take a

pair of images and use the displacement of corresponding image features in order to estimate depth

1 For example using Lambert’s law, which states that the intensity of reflected light is proportional to the angle between
the surface and the light source.
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(distance from the camera). The output is often in the form ofa depth map, which contains a depth

value for each pixel in the input images [74].

A related field to shape from stereo is shape from motion (morecommonly referred to as struc-

ture from motion, or multi-view stereo). As the name suggests, movement of either the object or

camera provides the information for reconstruction via theinfluence of perspective. A wide variety

of algorithms have been presented for this problem and thesecan be broadly classified as either 2-D

to 3-D, in which image measurements are used to infer 3-D information (similar to photogramme-

try), or 3-D to 2-D, in which a 3-D shape is created and refined to match the images.

Shape from shading, shape from texture and shape from stereoonly produce a 21
2
D representation,

meaning some parts of the scene are not present in the model. One goal of 3-D computer vision is

to obtain complete 3-D models of real world objects and scenes. Such models form the backbone of

a number of applications, including:

• Simulation, in which models are used to study new scenarios or provide realistic training that

would otherwise be expensive or impossible to undertake (for example space missions).

• Modelling, whereby experimental designs can be evaluated or explored visually without the

need to create expensive fabrications.

• Virtual Reality, immersion in a 3-D environment where a useris free to move around and

interact. Forms of VR are commonly available for both educational and recreation purposes.

• Augmented reality, where the real and virtual worlds are combined. These techniques are

often used to provide special effects in films such as The Matrix.

In many of the applications mentioned above the models are required to be photorealistic, that is

views rendered of the model must be photographic in appearance, if not completely indistinguishable

from photos.

This thesis describes a method to obtain photorealistic 3-Dmodels from scenes containing mul-

tiple objects, using only a set of images captured from various positions around the scene.

Chapter 2 presents a survey of literature on the subject, starting with the foundations of computer

vision and then considering early work in 3-D modelling followed by detailed studies of relevant

strands.
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Chapter 3 concerns creating and improving 3-D representations of real scenes using image sets.

The theory behind image formation is explained in detail as this forms the foundation of much of the

following material. Probabilistic space carving forms theinitial step of the modelling process, fol-

lowed by the fitting of smooth surfaces to the space carving result. A novel method of updating these

surfaces by examining image disparities is presented. Thismethod avoids the need to approximate

the form of the 2-D distortion that arises when the initial surface is incorrect. Finally Experiments

are presented using two challenging real world data sets andthe results analysed and conclusions

drawn.

This work is built upon in Chapter 4, which principally addresses a common problem whereby

objects close to each other in the scene become joined together in the reconstruction. A solution

is proposed based on the observation that an edge in 3-D (where the surface disappears from view)

must have a corresponding edge in the images thus the artificial joining edge can be identified and re-

moved. A investigation is conducted into the conditions under which this is possible, using synthetic

data. These results are confirmed by further experiments using the same data as the previous chapter

and conclusions are drawn about the effectiveness and limitations of multi-object 3-D reconstruction

from images.

Finally, Chapter 5 summarises all of the results obtained, and discusses possible applications of

the work.



Chapter 2

Literature Review

2.1 Computer Vision

One of the earliest publications in the field of computer vision was David Marr’s seminal work on

visual processing [58]. Marr argues that the human visual system is best expressed as an information

processing task. He goes on to state that any such task requires analysis at two levels, that of the

computational theory, which is concerned both with what is computed, and importantly also why

it is computed. The level below this is the realm of the how, where the algorithms that accomplish

the task belong. Marr uses the analogy of fourier analysis, the definition of the fourier transform

is separate from the fast fourier transform algorithm. Fully understanding the latter requires a full

understanding of the former. Thus each of the stages of vision are always described in reference to

their place in the overall system.

The motivation, the ‘why’ part of a visual system, is to extract a representation that useful to

the observer, and which does not contain extraneous or redundant information. As for the ‘how’,

Marr identifies four stages characterised principally by the represention and type of data that is

manipulated. Namely these are; the retinal image, the primal sketch, the 21
2
D sketch and finally

the 3-D model. The first stage is analogous to signal processing whereby the raw data is captured

and transformed as necessary. The primal sketch contains some higher level structures, which might

be simple features identified in an image. These features areused to infer 3-D information in the

next step. Marr coined the term 21
2
D to refer to a representation that is labelled with some relative

3-D relationships but does not constitute a complete 3-D description. Finally the full 3-D model is

17
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described using an absolute frame of reference.

2.2 Stereopsis

Stereopsis refers to the problem of inferring depth from pairs of images taken from side by side

viewpoints. It corresponds to the 21
2
D sketch in Marr’s vision hierarchy, and work in this area was

clearly inspired by the human visual system. The technique principally revolves around the problem

of correspondence, once the location of a point is known in both images the depth can be estimated

by the degree to which this location differs.

A detailed catalogue of the range and breadth of approaches to stereopsis can be found in [73].

Only methods which take two images and return a depth estimate for each point in the images (dense

estimates) are considered, thus they share a “computational theory” in Marr’s analysis. Differences

are limited then to the type of algorithm used to solve the problem. The paper describes this com-

putational theory as consisting of four steps: matching cost computation, cost aggregation, disparity

computation / optimisation, and disparity refinement.

The methods surveyed are grouped according to the algorithms applied to each of these steps

for example, what cost function is used for matching (i.e. how do you determine how good a

given match between two image regions corresponding to the same 3-D feature is). This provides a

means to group methods together and reveals two broad categories of stereo vision algorithms, local

and global. Local methods such as [10, 36, 92] are based on computing costs across small image

windows and simple aggregation methods. Global methods such as [5, 14, 59, 72] tend to pose the

stereo problem in an optimisation framework where the global cost of all matches is minimised. The

performance of global methods is shown to be better on the whole.

In addition to this the authors also make available reference implementations of each of the main

algorithmic steps covered, as well as datasets with ground truth depth labelling. The paper is thus a

very important contribution to the field.

2.3 Structure from Motion

Research into Structure from Motion SfM grew out of work on stereo vision. Whilst results from

stereo algorithms can be very good, they are still unsuitable to certain applications, due to the fact
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that even a dense depth map is only a 21
2
D representation. Often depth values can only be interpreted

as relative measurements thus not corresponding to a complete 3-D representation. In addition to this

there are some ambiguities that cannot be resolved when onlyconsidering two images, for example

certain parts of the scene will only be visible in one of the pair of images, due to occlusion. Depth

cannot be estimated for these regions.

In order to overcome this shortcomings structure from motion generalises stereo vision such that

arbitrary motion of a camera (or a set of many static cameras)is used to calculate 3-D information.

Early approaches to structure from motion were based on analytical geometry. Two views of

the same scene are related be a quantity known as the fundamental matrix, which describes the

implicit geometry [57]. Use of the fundamental matrix became popular particularly for studying

the uncalibrated case since it is dependant on 2D image observations alone. From this matrix 3-D

shape can be recovered up to a projective transformation. Errors in the 2D measurements often cause

serious distortion in the resultant shape. This can be improved by using three views. The three view

equivalent of the fundamental matrix is known as the trifocal tensor, first presented in [38]. The

trifocal tensor also overcomes scaling problems, when the scene points lie close to a certain plane.

Similar formulations have been derived for the case of four images [39], but beyond this direct

calculation of structure and motion becomes very difficult.So far nobody has presented a closed

form solution to the geometry of five images. Further research was based either on approximations

or nonlinear solutions to the problem.

Within the category of approximate solutions live a family of so called “batch” algorithms.

Accurate correspondence is vital to any structure from motion algorithm. Correspondence between

images taken from significantly different viewpoints is very difficult to achieve without some user

intervention and this prompted the use of video sequences taken from a moving camera, with a

small timelapse between frames. This produces a set of images with limited spacial transformations

allowing salient features to be more easily tracked throughthe sequence.

Another advantage to video is the large degree of redundancyin the data can make up for errors

due to mistracked features and the simplifying assumptionsthat have to be made. The ability to

make use of this large number of images is what distinguishesa batch algorithm. The first such

algorithms were based on restricting the camera motion to a planar or linear trajectory to reduce the

number of degrees of freedom in the motion equations [80]. This occurs is at the expense of both

generality (precisely controlling the camera trajectory is difficult in practice) and the accuracy of the
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resultant model since ambiguities can occur in such limitedcamera trajectories.

In [81] a technique known as the factorisation method was developed to extract shape informa-

tion from arbitrary camera motions. Using an orthographic camera model the projection of all scene

points from all views can be expressed as a single overconstrained matrix equation,W = MS,

whereW contains the observations,M represents the camera motion andS the objects shape. This

equation can be solved for the shape and motion components byfactorisation, using reliable and fast

numerical algorithms such as the singular value decomposition (after overcoming certain ambigui-

ties in the solution).

The accuracy of this approach is limited by the assumption oforthographic projection, which

fails to take into account any perspective effects such as the fact that objects appear larger when

closer to the camera, and surfaces appear skewed when viewedfrom oblique angles. So whilst

arbitrary camera motion is allowed in practice the method islimited to scenes of compact objects in

which the camera to object distance remains approximately constant.

This issue was addressed in [65] where the authors constructa similar linear equation from a

first order approximation of the full perspective projection. The paraperspective projection preserves

some of the key features of perspective projection, namely that objects get smaller the further they

are from the camera and become skewed when viewed from oblique angles. The only feature not

present is the tendancy for parallel lines to appear to converge as they get further from the observer.

The authors show how this more complicated projection modelcan be transformed to fit into exactly

the same matrix equation as before. This constitutes a very elegant solution to the structure from

motion problem.

The authors also present a confidence weighted factorisation algorithm whereby the decomposi-

tion yields the lowest residual weighted by measurement confidence values. This allows reliability

estimates for tracked features to be incorporated, and occlusion to be implicitly modelled by as-

signing zero confidence values to features when they cease tobe visible. All in all the method

they propose is a very elegant solution to the problem, and allows large numbers of images to be

processed simultaneously.

These factorisation methods are ultimately limited to single objects, since the necessary approx-

imations are only valid close to objects centroid - collection of objects have a common centroid that

may be far from each object. In the appendix [65] describes a post processing step to iteratively re-

fine the shape and motion estimates using a gradient decent algorithm to minimise the error between
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the predicted and observed image measurements.

The factorisation method works with point features trackedin images and thus yields a 3-D point

cloud as the representation of the scene. Whilst this is useful for certain tasks a representation more

recognisable to humans is preferable. In addition to this point features in images can be confused for

one another as they lack many distinguishing features, prompting research into methods which use

higher level features. Lines are the obvious choice after points and algorithms to locate and extract

line features from images such as the Hough transform [42] have been for a long time.

In [68] a linear method to recover shape in the form of 3-D linesegments from multiple images

is presented. A linear solution is permitted due to the use ofan affine camera model, again an

approximation of the full perspective projection. Due to this limitation the extra information that

may be obtained from comparing line segments (difference inlength, orientation, location etc.) is

not utilised.

Better results are obtained by minimising an error functionbased on the area between pre-

dicted and observed line segments [79]. This paper uses a similar approach to the nonlinear post-

processing step from [65]. A cost function is minimised by a multi-step iterative algorithm whereby

the unknown variables are divided into four sets representing the line orientations, line positions,

camera rotation and camera positions. Local optimisationsare carried out on each set (which are

re-initialised if necessary) prior to a global minimisation of the cost function.

Alternatives to the analytical approach have been exploredincluding the use of statistical tech-

niques which are better able to cope with the noise inherent in image data. In [28] shape and motion

are calculated from image measurements within Bayesian framework. Under certain assumptions

Bayes theory is able to make the best use of the available data. One of these assumptions is that

the posterior probability distribution is known. As this isnot true in general, the authors use a

Markov chain Monte Carlo sampler to estimate the posterior of the problem. The results are shown

to be robust in the presence of tracking errors, however the scaled orthographic projection model is

used which limits the generality of this approach, and the use of point features only is limiting as

discussed above.

The statistical formulation was extended in [21] to work without any correspondence informa-

tion. This completely removes the problems of inaccurate 2-D features and allows the algorithm to
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work in the absence of any pre-processing steps to track and match image features.

The algorithm works by finding the maximum likelihood estimation over all assignments of

shape points to image features. Statistical sampling (again using the MCMC method) is used to

generate a set of virtual measurements which are then fed into an integration step as if they were

a unique structure from motion problem. The Expectation-Maximisation framework provides good

convergence properties for the iteration. Results on real images are presented and whilst promising,

the number of and type of features is limited reducing the usefulness of this approach outside of

situations where correspondence is exceptionally difficult.

The line and point based 3D representations mentioned so far, whilst suitable for many applica-

tions (such as camera position estimation, robot navigation etc.) fall someway short of photorealism.

This goal requires a shape representation that is dense, i.e. contains no gaps. The following sections

describe work undertaken to provide such representations.

2.4 Volumetric Methods

Methods to estimate the volume of space occupied by an objecthave existed for a long time in

computer vision [48] and is a research area that has attracted a significant amount of interest. In

[53] a novel approach is presented to estimate the shape of anobject directly from the input images,

provided the outline, or silhouette, has been defined. The silhouette is simply a binary image in

which each pixel is labelled as being part of either the object, or the background, generated either

by hand or by automatic subtraction of a known or constant colour background. The method is

explained by means of a geometric formulation whereby the silhouette from each image is back-

projected from the corresponding camera position (which must be known a priori) forming a set of

conics. The intersection of these conics defines a convex volume known as the visual hull.

There are usually many different shapes that can be consistent with a given visual hull, the paper

presents a detailed analysis of the conditions under which the minimal hull is obtained. Methods

are presented to distinguish between ‘hard points’ which lie on the surface of the object and are thus

constrained within all consistent shapes, and ‘soft points’ that mark the extremes of the visual hull.

Many shape from silhouette algorithms employ a discrete representation of the volume (similar

to voxels which are covered below). The drawback of this approach is that the accuracy is dependant

on the resolution of the model. In [13] the authors note that much of the space is wasted when high
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resolution grids are used due to the uniform sampling. Instead they propose a non-uniform grid

composed of tetrahedrons and concentrated in the vicinity of the visual hull. This grid is based

on the Delaunay triangulation to sampled points on the visual hull. The results produce pleasing

surfaces which are more detailed but don’t require a correspondingly larger amount of space to store

than other methods.

A method to estimate both shape and motion of curved surfacesfrom silhouettes is proposed

in [32]. The notion of frontier points (referred to as hard points in the previous paper) provides a

means to solve a correspondence problem via the RANSAC (random sample consensus) method.

A specialised voting scheme enforces the geometric redundancy in the image set and allows the

estimation of camera positions which have consistent corresponding frontier points.

Their method is interesting in that it requires almost no a-priori information about the scene,

although it does assume that a set of curves corresponding the object’s outline can be segmented from

the images, or provided by the user. Their formulation also permits images to be added sequentially

the the input data in order to incrementally refine the representation. This “coarse to fine” approach

is common to computer vision algorithms where potentially large datasets are involved.

A related method to shape from silhouette, is shape from shadow [70]. Whilst silhouettes can

be thought of as the shadow of an object cast onto a plane by a lightsource aligned with the camera,

[70] demonstrates that this can be extended to the case of shadows cast onto arbitrary surfaces and

the object casting shadows onto itself. The incident illumination must be a point source and the

origin with respect to the scene must be known.

From an initial coarse shape estimate, modelling takes place by means of a carving methodol-

ogy whereby parts of the shape which are inconsistent with the observered shadows are removed, or

carved away. This continues until no further inconsistencies remain (note that this doesn’t necessar-

ily mean that the object’s true shape has been reached). The authors provide a proof of correctness

that relies on conservative estimates of shadow regions, that is in the detection of shadows false

negatives may occur but never false positives.

Whilst this is an interesting approach it is heavily constrained in the conditions under which

it can perform. However, shadow constraints have been successfully combined with shape from

shading algorithms which have similar prerequisites for simple, known illumination.

Carving methods based on shadows and silhouettes have difficulty when objects with complex
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surfaces and concavities are present. A family of alternative methods have been proposed to carve

shapes using primitives called voxels. Voxels are the 3-D analogue of pixels, where a 2-D array of

coloured pixels can represent an arbitrary image, a 3-D lattice of coloured voxels can represent an

arbitrary shape, limited only by the size and number of voxels used.

Voxels have long been used to visualise dense 3-D information present in medical images from

CT and MRI scanners. Creating a voxel model from a set of images was first addressed in [75]. The

algorithm is based around the concept of photoconsistency.Under the assumption that objects obey

Lambert’s law and reflect light equally in all directions, the appearance of a voxel should be the same

in all the images in which it is visible. Thus starting with anarray of voxels that completely encloses

the scene, any voxels which project to image regions with different colours cannot correspond to

parts of the scene and may be removed (marked as transparent). The algorithm is formulated to

provide photorealism by design - if each of the output voxelsare consistent, then together their

appearance will match the input images.

The difficulty with this approach arises due to visibility - if another object or part of the same

object is in front in a particular image photoconsistency with that image is not required. Determining

whether a voxel is visible will depend on the existence of other voxels. For this reason the authors

place a restriction that the candidate set of voxels and the camera positions must be separable by

a plane. This restriction, known as the ordinal visibility constraint ensures that for a given pair of

voxels A and B it is not possible that A occludes B in one image while B occludes A in another.

Thus the volume comprising the voxels can be processed from front (nearest the cameras) to back,

now when the photoconsistency of a voxel is evaluated the opacity of all voxels which could occlude

it will have been decided.

The algorithm presented in [75] performs well under this condition however it is not a funda-

mental restriction for all voxel carving methods. This was shown in two papers published around the

same time which presented algorithms which, by means of multiple sweeps of the volume, were able

to overcome the ordinal visibility constraint. In [50] the Space Carving algorithm is presented. At

its core is a plane sweep method of evaluating consistency that is applied in each of the six possible

directions. Only a subset of cameras behind the current sweep plane is used to evaluate consistency

of a given voxel. The ability to adopt arbitrary camera configurations was demonstrated by means

of a synthetic scene involving a room with an open door. Multiple cameras were placed both inside

and around the outside of the room. Real image sequences fromwhich results were presented in the
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paper were significantly less complex that this, however.

An alternative approach was presented in [20]. GeneralisedVoxel carving is a conservative

method whereby a mapping from each image pixel to a set of candidate voxels which may have

contributed to that pixel is maintained. For this purpose two data structures are proposed, the item

buffer and layered depth images. The former making the most efficient use of memory whilst the

latter sacrifices memory usage in order to gain speed (the item buffers update visibility information

less frequently, and whilst this does not affect the correctness of the algorithm, it means that voxels

can remain in an undetermined state for longer, increasing the number of consistency evaluations).

This means that visibility is determined exactly, using every possible image, which ought to

produce better results than Space Carving. This time results from real images consisting of more

that one object are presented. Whilst the reconstructions are incomplete an advantage over the space

carving algorithm is evident.

One problem with these methods is that real surfaces are rarely perfectly Lambertian, thus gen-

uine voxels will not appear to be exactly the same colour in each image, thus a threshold is used.

If the threshold is set too high the model will expand and detail will be lost. The situation is much

worse when the threshold is set too low, however. If part of the forground is deemed inconsistent,

anything behind is also likely to be deemed inconsistent as it will considered to be unoccluded. This

creates a knock-on effect, ultimately leading to holes being carved right through the model.

A method for automatically determining the threshold is presented in [47]. The idea of hard/frontier

points is once again employed to solve the threshold problem. Recall that such points occur when

the object shape touches the visual hull and thus their location can be relied upon. By examining the

photoconsistency of these points (which are assumed accurate) an estimate of the variation in colour

due to non lambertian reflectance is reached, and a value of the threshold sufficient to take account

of this variation can be set. This method can still suffer from threshold problems if many surfaces

with different properties are present, and it doesn’t provide any means to deal with situations that

cause a very high threshold to be set.

A better solution is presented in [55] which allows the threshold to be altered after the carving of

the volume is performed. Instead of recording whether or nota certain voxel exists in the model, their

algorithm calculates the lowest threshold that would allowthat voxel to be photoconsistent. Thus

the results of applying multiple thresholds are “embedded”in the same voxel set. Upon completion
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of the carving the user can then choose the appropriate threshold, or at determine a trade off between

accuracy and completeness that is appropriate for the application without having to reprocess any of

the voxels

Another novel solution to this problem is presented in [15] which frames the problem of esti-

mating the existence of voxels (and thus the shape of the scene) in a statistical framework. As in

[28], Bayes’ rule is used to decide the existence of each voxel from the available data by marginal-

ising the existence of possible occluding voxels. Some approximations are necessary to render this

calculation tractable. The full set of visibility configurations are not examined for each voxel but

rather the most probable case is chosen from the best1-view, 2-view, ...n-view configurations.

Once likelihoods have been calculated for all voxels, a concrete voxel model can be created by

calculating the voxels most likely to be responsible for each image pixel. This guarantees no holes

appear in the model since every pixel is accounted for, although it does require the volume from

which the voxels are drawn to completely enclose the scene. The real images used by the authors

have the background manually removed for this reason, effectively creating an additional constraint

in the form of a shape from silhouette approach.

The paper presents results obtained from a synthetic scene as well as images of real objects.

The reconstructions produced are very convincing althoughthe objects are shot against a black

background and thus some of the accuracy may be accounted forby silhouette extrusion alone.

All of the voxel colouring processes described so far require the camera positions corresponding

to each input image to be known in advance. This is typically achieved by rotating the object on

a turntable in front of a fixed camera. [22] presents an algorithm which, by using a generic shape

model which is successively refined, extracts the camera positions for a voxel reconstruction step.

A recent new approach to the space carving methodology was presented in [67]. The method

is semi-supervised in the sense that an example silhouette is provided to the system by the user

(it should be noted that many other algorithms require a complete set of silhouettes so this isn’t

considered a serious disadvantage). Once the algorithm is initialised there are no other parameters

that to be carefully set.

From the initialisation a probabilistic set of silhouettesare created for the other images. Carving

is achieved by calculating posterior probabilities that a voxel exists and propagating this information

in an evidence combining setting. Instead of a regular grid aprojective voxel lattice is used which

ensures the voxels project to a similar area in the images even for parts of the scene that may be



CHAPTER 2. LITERATURE REVIEW 27

further away from the cameras. Experiments on real world data demonstrates the effectiveness of

the silhouette expansion step.

2.5 Surface Reconstruction

Voxel based methods are ultimately limited by the assumption of Lambertian reflectance. Since

voxels represent a point sample of space, they have no orientation and therefor models which include

a term based on the angle between a surface and light source toaccount for specular reflections

(shinyness) cannot be used. In addition to this voxels are generally considered independently of

eachother, making it hard to impose any global constraints.In order to more accurately represent

opaque solid objects a closed 3D surface is required.

The factorisation method described in section 2.3 was applied to the surface reconstruction prob-

lem in [1]. Like many early surface-based approaches algebraic surfaces such as polynomials are

used. These representations are however rather inflexible in this domain, their ability to represent

arbitrary shapes is severely limited by the maximum number of terms and degree of the polynomial.

Mesh, or polygon, representations very popular in computergraphics due to the ease with which

they can both be rendered and created. Meshes consist of a series of connected vertices which

describe a piecewise linear surface. It is possible to create a mesh from a set of isolated points

provided by another algorithm. The crust algorithm [2] performs this operation using the medial

axis transform. Successful operation requires the points to be sufficiently dense otherwise there

may be ambiguities in the triangulation. The crust algorithm was used as a post processing stage to

generate complete surface representations from voxel setsin [23].

When using meshes, attention must be paid to the distribution of the constituent vertices and their

connectivity, to prevent innefficient or degenerate meshes(where polygons intersect each other). In

[25] a framework is presented to deform and evolve a surface based on partial differential equa-

tions. Many operations are required to maintain the integrity of mesh based representations in this

framework, including edge swapping, splitting and merging, and the application of a Laplacian

smoothness operator to ensure numerical stability.

A contrasting approach comes in the form of implicit surfaces whereby the surface is described

by the zero level set (that is, the set of points for whichf(x) = 0) of a function. This formulation

allows interesting mathematical properties (such as smoothness) to be enforced as well as automat-
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ically handling any changes in topology which might occur asa surface is manipulated to fit the

image data.

In [82] the authors define such a function as the sum of a set of simple radial basis functions

(RBFs). They also demonstrate how such surfaces can be created from surface points and how

specifying exterior points allows a greater control of the resultant implicit surface. Whilst their work

was aimed toward creating 3D surfaces by hand, the same approach has been applied to the problem

of reconstructing continuous surfaces from laser scan data, which typically consists of many points

in space (a point cloud). The dense nature of the point cloud removes the need for carefully placed

external constraints and results in very detailed reconstructions [16].

More recently, in [23] RBF surface reconstruction was applied to the results of volumetric al-

gorithms. Here the positions of the solid voxels are used as the point cloud and thus attention must

be paid to the increased level of noise associated with this type of data. The paper provides a com-

prehensive background into the use of RBFs and other surfaceconstruction and spatial smoothing

methods, and demonstrates how the principals may be appliedto smooth voxel data. The paper con-

cludes that interpolants which minimise several orders of smoothness improve both the quality of

the reconstruction and the numerical stability of the results. Results are presented of fitting surfaces

to voxel sets produced by the generalised voxel colouring algorithm [20].

Direct fitting of an implicit surface to image data is addressed in [27]. The authors proceed by

defining a cost functional based on consistency with the input images. From this cost functional

a set of PDEs (partial differential equations) are obtainedthrough the Euler-Lagrange equation.

These PDEs are used to evolve a surface toward the minimum of the cost functional using the level

set framework [63]. Although the authors present an elegantderivation from a strong theoretical

standpoint, few results are presented and no quantitative analysis of the performance of their method

is presented.

RBF modelling of surfaces is also used in the related field of computer graphics as an efficient

means to represent smooth surfaces. In [17] methods of fitting RBFs to range data in order to smooth

noise and interpolate across gaps using polyharmonic splines is presented. Compression in the space

required by the representation is provided by means of a greedy algorithm which iteratively increases

the number of basis functions until a sufficient closeness tothe data is achieved.

Results are provided on several well known objects such as the Stanford Buddha and dragon

datasets, as well as range data of medium and large scale structures. Whilst the range data contains
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noise, it is orders of magnitude better ordered than typicalvoxel carving data so these techniques

may not be applicable to the 3-D modelling from images domain.

2.6 Photorealistic Object Modelling

This section discusses a number of papers published with thegoal of moving toward photorealistic

3-D representations of the real world (or part thereof). Themajority of cases concentrate on single

objects in isolation.

As discussed previously, when dealing with single compact objects the visual hull provides a

very useful constraint of the shape of an object. In [46], a stochastic algorithm is presented to

improve surface provided by the visual hull and recover a representation of the objects colour/texture

in the form of a texture map (a 2D image that is stretched over apolygon mesh).

At all times the object silhouettes are treated as hard constraint, by fixing in place the frontier

points where the actual shape grazes the visual hull. As before these located by determining where

the visual hull is photoconsistent. The model is refined by applying free form deformations at

vertices sampled at random, weighted by their reprojectionerror. These deformations pull the model

toward the true surface by performing a linear search for thelowest error. The texture is then

recalculated using the current shape estimate. The algorithm successfully recovers the concavities

missing from the visual hull although overall the models lack detail - the way in which the initial

mesh is deformed prevents the final shape from increasing significantly in complexity. The authors

note that the quality of the results are also dependant on theobject having significant texture (that

is, variations in colour across the surface).

A common thread in a large number of the 3-D vision algorithmspresented so far is the formu-

lation of reconstruction as an optimisation problem, wherea shape is sought which has a maximal

consistency with the input images. Usually the consistencyerror function that is to be minimised

is too complex for a global minimum to be found efficiently. Optimisation by graph cuts, popular

in stereo vision has also been applied to the problem of 3-D surface reconstruction in a method

presented in [83].

Graph cuts allow the global minimum of a certain class of costfunctions defined over a set

of binary variables to be found in fast polynomial time. Thisis a significant improvement over

exponential time algorithms. In a graph cut optimisation problem the variables are represented as
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nodes in a weighted graph with two special nodes, the sink andsource. Optimisation is achieved

by finding the minimal cut, that is, a partition of the nodes into two groups (each containing either

the sink or source) which minimises the sum of the weights crossing the cut. In order to represent

a 3-D surface, each variable/node is a voxel with a value of [0,1] depending on whether the space

occupied by the voxel is solid or empty. The minimal cut then separates the solid inside from the

empty outside and thus represents the surface of the object.

In [83] a suitable cost function is proposed which maximisesboth smoothness and photoscon-

sistency, however the graph weights cannot be modified during the optimisation so the photocon-

sistency of each point cannot be updated to reflect changes invisibility (recall that points are only

required to be photoconsistent if they are unoccluded). Theauthors solve this problem by introduc-

ing the notion of approximate visibility: given an initial estimate of the shape (such as the visual

hull), the visibility of points within the shape is assumed to be the same as the visibility of the closest

point on the initial surface. Provided the real surface is close to this estimate this assumption holds

but for extreme viewing angles.

One problem the authors recognise with this scheme is that the graph cut optimisation produces

the surface with the lowest total cost. This can result in thin structures being truncated as although

the cost per unit area is low, the large areas push the total cost up. To combat this the authors

introduce a “ballooning term” which penalises small volumes and appears to solve the problem

although they concede that this parameter has to be set carefully by hand. Another limitation of

their approach is that to reduce the number of nodes in the associated graph, the final surface is

constrained to lie a within a certain distance from the initial outer surface, limiting the amount of

carving the algorithm can perform.

Another method, presented in [33], also uses graph cuts to carve models however their approach

differs in several important areas. Rather than just using the visual hull as an initialisation, silhouette

consistency is enforced as a hard constraint throughout themodelling process just as in [46]. This

helps prevent protrusions being truncated as in the previous case, as these structures often contribute

to the visual hull, being the most outward located parts of a surface. It is noted that frontier points

will not occur sporadically but will comprise a series smallarcs across the surface, referred to as

“rims”. These are identified using dynamic programming to find the shortest path along which

the an image discrepancy measure, defined as the photoconsistency over a small neighbourhood, is

minimised.
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Another significant contribution is an iterative local refinement procedure, performed after carv-

ing the visual hull using graph cuts, in which each vertex of in the model is moved inward or outward

according to the derivative of the image discrepancy function in addition to smoothness and silhou-

ette consistency forces. This process is similar in spirit to [46] it differs in the criteria used to move

each vertex and the fact that the vertices begin much closer to the ground truth. This step is intended

to recover fine details in the surface, and thus the fact that the surface doesn’t move very far during

this procedure ensures stability in the mesh. In a series of steps the vertices are repeatedly subdi-

vided increasing the resolution of the model until each triangle projects to an area approximately the

size of a pixel in the images.

The models obtained from their method are indeed very detailed however the images must be

captured under carefully controlled conditions to facilitate extraction of the silhouettes, and there

are still limits to the amount of deviation from the visual hull that can be tolerated.

A recent paper [51] proposes an alternative way to use graph cuts which permits the use of a

photometric minimisation without the potential loss of finestructures. Instead of constructing a

network for the entire shape, the optimisation proceeds in an iterative fashion by carving in a series

of concentric bands. This allows for much more accurate surface normal estimation (as the area

being carved is much closer to the most recent normal estimates) which in turn results in a more

accurate photo consistency term. Results presented on the same datasets reveal an increase in both

accuracy and completeness of the models when compared to thealgorithms of [33] and [83].

A related technique to these papers is presented in [49]. Here a global minimisation is achieved

by means of a convex functional, the key contribution of thispaper being this convex formulation.

Hard silhouette constraints limit the range of possible functions. What is unique about this method

is that exact silhouette and visibility constraint are applied negating the need to biases such as the

ballooning term of [83] in the minimisation. The formulation also allows the algorithm to be par-

allelised and implemented on commodity graphics hardware where the authors report solutions can

be obtained in under a minute.

So far all the algorithms presented have assumed the target object to be Lambertian, occasionally

taking steps to handle some amount of specularity (for example using thresholds, or selecting the

subset of cameras to use for a particular point to avoid oblique angles [33]).

Attempts have been made to not only explicitly account for non-lambertian reflectance but to also
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recover the reflection properties themselves. An example ofthis idea can be found in [90]. Their

approach is based around the bi-directional reflectance distribution function (BRDF) for specular

surfaces. The BRDF describes how much light is reflected as a function of the incidence angle and

viewing direction, however, rather than derive both the lighting conditions and surface properties, the

authors define a view independent reflectance map (VIRM) which describes their combined effect,

and is sufficient to predict the observed appearance of the surface.

Optimisation is performed alternately on the shape and VIRMusing the Levenberg Marquardt

algorithm to minimise the least-squares error between the predicted and observed reflectance. A

multi-scale coarse to fine approach and surface initialisation are required for the algorithm to run

efficiently.

This technique is effective in capturing the characteristics of specular surfaces and provides

convincing novel views, however it relies on the assumptionthat the object is constructed from a

single material. The method also ignores the possibility ofself-shadowing or interreflection between

parts of the same object. Results were demonstrated on highly specular surfaces, for which other

techniques would be expected to perform very poorly. It is not clear whether this approach offers

any benefits when the objects are only slightly non-lambertian.

2.7 Multiple Object Scenes

A strong pattern which emerges from the previous sections isthat the current state of the art of im-

age based reconstruction has predominantly focused on single objects. Most work extracting 3-D

information from multiple objects concerns the case of a fixed [video] camera and independently

moving objects [45, 3, 62]. The purpose of such systems lies in surveillance and autonomous nav-

igation applications. This is a different problem domain tophotorealistic modelling although some

similarities exist.

It is possible to argue that at the highest level there is no difference between a scene consisting

of a single object and one in which several objects appear, all connected by the floor, or a table,

which is itself an object and thus part of the scene. The distinctions between objects are artificial -

as far as the reconstruction is concerned they might as well be glued down. However, the intuitive

human classification of multiple objects does hold true in the sort of datasets used by researchers. In

the case of single object algorithms presented in the previous chapter, shapes are usually compact,
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with a plain or uncluttered background which is easily distinguished from the object of interest.

Some of the problems associated with multiple object scenesare addressed in [9]. Multiple

depth maps are used to produce an entity known as the reduced depth hull of a scene containing

multiple objects. Due to the use of expensive active scanning methods to produce the depth maps

the work is not directly applicable to the topic i hand. However, the authors do introduce a more

rigorous notion of what a constitutes a complex multi-object scene, as one for which there exists “a

plane whose intersection with the scene consists of more than one connected region”.

Explicit reference to multi-objects is made in [66]. A complete method for 3-D scene recovery

is presented which first calculates the camera positions by means of point tracking across images

and self calibration. Next, pairs of consecutive images areused as stereopairs and dense depth maps

are computed. The key contribution here is the fusing of depth maps together into a single complete

3-D surface. The use of a stereo vision as an intermediate step whilst places a requirement for the

camera positions to be very close together, does provide themeans to model multiple objects without

explicit initialisation.

Another key contribution towards multi-object modelling is that their method attempts to identify

specular surfaces. One characteristic of multi-object scenes is the increased likelihood that there will

be one or more non-lambertian surface somewhere in the scene. The authors attempt to identify such

surfaces by classifying values at the tail ends of the appearance distribution as outliers. Results are

presented on several real datasets consisting of images of the exterior of a building and remains of a

Roman building.

Two interactive methods to model multi-objects scenes are presented in [76]. The first operates

on a set of panoramic images and requires users to select a setof primitives (points, lines, planes)

which are used to build a set of geometric constraints which provide the basis for the reconstruction.

This process may be repeated in order to refine all or part of the model.

The second method makes use of an alternative representation for multiples scenes in the form

of individual image layers at various depths. This is based on the assumption that individual objects

can be approximated by a flat “cardboard cutout”. The user interactively selects image segments

corresponding to individual planar regions and then the camera pose and depth are estimated by

exploiting redundancies in the images. Results are presented on real scenes both indoor and outdoor

with effective models being created in the case of the first method in the presence of largely planar

shapes (the interior of an office).
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Several real world datasets are used and the authors providea quantitative evaluation using

ground truth data. The method is however tailored toward thesort of data expected for this applica-

tion (modelling buildings) and may not generalise to other scenarios.

More research on modelling multiple object scenes has been undertaken at the very other end

of the spectrum - where techniques are employed to attempt tomodel entire cities in some cases.

In [30] a process is described to acquire models of a large scale urban environments using a pair

of laser rangefinder devices mounted on the back of a truck. One is oriented vertically, to capture

the depth profile of the city facade, the other one horizontally, pointing near ground level to aid in

registering the vertical stripes. In addition to this the path of the vehicle is calibrated using aerial

photographs.

A very similar vehicle mounted laser rangefinder system is used in [12] to create urban models.

In this case the authors use the Global Positioning System (GPS) in order to obtain the trajectroy of

the vehicle. Importantly, the paper also addresses issues associated with manipulating and rendering

the data that has been acquired. As the size of scene being modelled grows, so does the rendering

time. However, only some of the model will be visible at any time so the authors perform an octree

decomposition of the 3D data, recording the opacity of the leaf nodes, and then render the visible

parts of the scene in a front to back ordering. Another issue with highly detailed models is that

the data is often too large to fit in the RAM of the machine. The authors also address this, using

a statistical model of visibility from which data is put in a priority queue to be prefetched, thus

hopefully avoiding delays caused by reading data from a harddisk. The authors report real-time

rendering speeds, making the system suitable for virtual reality.

An approach using images alone is presented in [56]. The method is based on aerial photographs,

extracted line features are interpreted as depth discontinuities (i.e. the boundaries of buildings where

the height rises swiftly from the ground plane). This information is combined with dense depth

estimates obtained from a traditional stereo vision approach. The key contribution is the fusing of

this data into a representation based on geometric primitives (planes and surfaces of revolution) to

form a polyhedral model, using the graph cuts global optimisation procedure. Several real world

datasets are used and the authors provide a quantitative evaluation using ground truth data. The

results are impressive although the method is however tailored toward the sort of data expected for

this application (modelling buildings) and may not generalise to other scenarios.

Many of these methods covered in this section make extensiveuse of highly accurate laser



CHAPTER 2. LITERATURE REVIEW 35

scanning devices. Such devices are priced in the tens of thousands of pounds whereas consumer

digital cameras are available for under a hundred pounds. Modelling multi-objects scenes using

only images captured from relatively inexpensive cameras remains very much an open topic.

2.8 Conclusion

The field of computer vision, and specifically 3-D vision has come a long way since the foundations

were laid in the late 70s and early 80s. Direct analytical andgeometric methods have given way to

iterative optimisation approaches. Many different ways ofrepresenting scenes have been proposed,

from simple point and line clouds to volumes to various methods to describe complete 3-D surfaces.

The prevailing philosophy is that reconstruction takes theform of multi-step procedure whereby

an initial representation is progessively improved in a number of stages. This permits different

representations to be used at each stage each reflecting a particular trade off between accuracy speed

or ease of implementation.

One very frequently occurring theme is use the visual hull toprovide initialisation, due to the

ease at which it can be computed for arbitrary shapes from a set of input images. Reliance on the

visual hull can be limiting, however as it’s closeness to thetrue shape can be dramatically reduced

in the case of multiple objects which variously occlude eachother and the centre of the scene. It

can also be argued that if your scene is, for example, the interior of a room, no visual hull exists as

everything is of interest and there is no “background”.

Any task involving 3-D modelling from images inevitably requires the ability to process a large

amount of data, as well as being able to cope with errors and omissions in the data. Modelling

multiple object scenes is an area for which this is especially true. For this reason statistical methods

will be important as will any approaches such as voxel carving which can operate without a good

initial shape estimate. Implicit surfaces represented using Radial Basis Functions provide means

smooth errors and also manage the data that has to be recordedby means of approximation and

interpolation. These will be the areas which are explored and studied in the remainder of this thesis.



Chapter 3

Modelling and Correcting 3-D Scenes

Using RBFs

3.1 Introduction

The vast majority of recent research into photorealistic reconstruction from images has focused on

the case of isolated objects. The results that have been obtained so far are good [33], however for sev-

eral applications we would like to be able to reconstruct scenes consisting of many objects/surfaces.

This is a significantly more difficult problem, not just because of the increased complexity of the

models, but for many other reasons detailed the following.

Input images to object modelling algorithms are usually captured under laboratory conditions,

using a static camera in front of which the object revolves ona computer controlled turntable [33].

This allows the camera positions relative to the object to beknown to a high level of precision. For

the case of medium to large scale scene reconstruction, images will probably be captured using a

handheld camera, the positions and orientations of which will be unknown. Even though many good

algorithms for camera motion recovery have been presented [29] there is always some discrepancy

between the results and ground truth. Other factors such as lighting are also much easier to control

in the laboratory setting.

Recall from section 3.2.2 that the visual hull is provided bythe intersection of many silhouette

cones. It is effectively an outer-bound on the shape and is often used to provide an initial estimate

for the surface [46]. For a wide variety of objects used in reconstruction the visual hull is very close

36
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to the true surface. When the aim is to reconstruct a scene which surrounds the camera, there will be

no silhouettes and thus it is not possible to calculate the visual hull and use this valuable constraint.

For some objects, image based reconstruction is simply not possible. This may be due to ex-

tremely complex topologies, or the result of semi-transparent, translucent or highly specular sur-

faces. For this reason objects used for reconstruction are carefully chosen. However, when recon-

structing an entire scene, the inclusion of such objects maybe unavoidable. Windows, for example,

exhibit a large degree of specularity and are generally impossible to avoid when reconstructing

buildings. Any practical scene reconstruction algorithm must not let these objects degrade the re-

construction of other parts of the scene, as frequently happens with voxel carving algorithms [20].

Finally, the images captured could potentially feature areas which are far away from the cameras

and/or area of interest, e.g. in outdoor scenes in which the sky is visible. Regardless of wether the

final reconstruction is intended to include these areas theymust still be taken into account. With

the exception of [78] the vast majority of current algorithms assume the scene lies entirely within a

bounding box [75][15][33].

The scene reconstruction problem may be stated as follows:

Given a setP of cameras which observe a scene simultaneously1 and a set of corre-

sponding imagesI, construct a 3D surfaceS, representing the scene, which minimises

the difference betweenI and the projection ofS from P.

I chose to use radial basis functions for scene reconstruction due to their ability to interpolate when

data is missing and the ability to incorporate information with varying reliability into a single frame-

work, which also allows the level of detail to vary locally. All of these properties are essential to

the scene reconstruction problem. Radial basis functions have been used for function approximation

and are well established in the fields of pattern recognitionand AI, where they are often used as

processing units in neural networks.

Despite their many flaws voxel carving algorithms posses a key advantage over visual hull based

techniques in that they can operate with no initialisation,that is, no a-priori knowledge about the

scene. I will follow the approach outlined in [23] which describes fitting an implicit surface to a

voxel dataset using RBFs. Note that in contrast to [23] wherethis is performed as a final step, I treat

this procedure as an initial step towards recovering a complete model of a scene. Subsequent steps

1 this is equivalent to a single moving camera which observes astatic scene
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will refine this surface by comparing its appearance in different images, under the principal that the

true surface should recreate the input images exactly.

The content of this chapter is as follows. Section 3.2 beginsby describing a mathematical model

of the image formation process and explains how that can be used to infer 3-D information from

2-D images. Next the probabilistic space carving algorithm[15] is outlined followed by modelling

implicit surfaces with RBFs. A novel method for correcting errors in such surfaces using disparities

calculated from the input images is discussed in Section 3.3. Results from experiments using real

data are presented and discussed in Section 3.4. Finally conclusions are drawn in Section 3.5.

3.2 Representing and Modelling 3-D Scenes Using Radial Basis Func-

tions

3.2.1 Projection and Image Formation Models

In order to solve the problem stated above it is necessary to have a mathematical model of how a 3D

scene is converted into a 2D image by the camera. The pattern of light recorded on the sensor2 can

be attributed to the action of two processes, defined by the radiometric and geometric models.

The radiometric model describes the interaction of incident light with the object surface, classi-

fied by its reflectance function. The true physical process iscomplicated and thus it is assumed that

the surfaces of all objects in the scene are diffuse and obey Lambert’s law - that is they reflect light

equally in all directions.

Perspective projection is used by the space carving method described in section 3.2.2 (to project

voxels into the images) and by the surface refinement procedure described in section 3.3 thus it is

important to begin with an explanation of how it operates.

An image is the result of intersecting a ray from each scene point with the image plane (where

the sensor is located). The perspective projection is basedon a pinhole camera, a simple device

which focuses light through a small aperture onto the image plane. Instead of tracing rays through

the aperture, the model places a virtual image plane in frontof the camera. The only difference is

that images are flipped about the horizontal axis (see figure 3.1).

The image plane coordinates of a projected pointx = [x, y, z]T can be calculated using similar

2 I will assume throughout that a digital camera is used.
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Figure 3.2: (a) Projection geometry with similar triangles(b) the world centred view.
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(3.1)

As several images must be used by the reconstruction algorithm, all scene points and camera posi-

tions must be specified relative to the world origin. The direction of the camera is given by three

mutually orthogonal unit vectorsi, j, andk which represent the orientation of the image plane. The
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position of a point relative to the camera is found by adding world origin, t = [tx, ty, tz]
T. The

projection of pointx is now given by

u = l
i · x + tx
k · x + tz

v = l
j · x + ty
k · x + tz

(3.2)

Image plane coordinates must be transformed into pixel coordinates. Since we measure pixel coor-

dinates from the top left corner, theu andv values are normalised by subtracting the coordinates

of the image centre,[u0, v0]. Cells in the camera’s sensor may not be exactly square and soa scale

factors is applied to the horizontal coordinate (the vertical scalefactor can be fixed as 1 since it is

co-linear with the focal length).

u = l
i · x + tx
k · x + tz

+ u0 v = sl
j · x + ty
k · x + tz

+ v0 (3.3)

this can be expressed as a matrix equation in homogenous coordinates
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whereu = u′/h, v = v′/h. The matrixP fully specifies the transformation from 3D into 2D

coordinates and for this reason it referred to as a “camera”.
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3.2.2 Probabilistic Space Carving

The probabilistic space carving algorithm [15] is a variantof the voxel carving approach, in which

voxel occupancy is determined by utilising statistical methods to overcome the uncertainty in lo-

calisation of voxels, avoiding the need for a specific, pre-defined threshold for voxel occupancy. In

common with other methods a cuboid surrounding the scene is discretise into a 3D array of voxels

[75]. In [15], each voxel is represented by a spherical Gaussian distribution in a 3D colour space.

The outputV is a subset of these voxels. In probabilistic space carving,Bayes’ theorem is used to

calculate the likelihood that each voxel is part of the scene(and should be included inV) given the

input data

P (x ∈ V | I,P) =
P (I,P | x ∈ V)P (x ∈ V)

P (I,P | x ∈ V)P (x ∈ V) + P (I,P | x /∈ V)P (x /∈ V)
(3.6)

where, in absence of any data, the prior probabilities are assumed to beP (x ∈ V) = P (x /∈ V) =

0.5. Other values may be used to bias the resultant voxel model.

The difficulty in this approach comes from the relationship between voxels which arises due

to occlusion. CalculatingP (I,P | x ∈ V) andP (I,P | x /∈ V) requires the existence of all

voxels which might occlude the voxel atx to be marginalised. This is generally intractable as

there areO(2n3

) cases (wheren is the dimension of the bounding cuboid). This may be reduced

by the observation that only voxels that lie on the line connecting x and camera centre will affect

it’s visibility, however this still leavesO(2n) visibility configurations (wheren is the number of

images). To obtain a practical solution, a local thresholdγ is introduced and only cameras with

likelihood greater thanγ are included in the calculation. The value ofγ is varied to find the most

probable visibility configuration from the best1-view, 2-view, ... n-view configurations. Further

efficiency gains are obtained by processing voxels in a fixed ordering from front to back (just as in

[75]) as visibility evaluations may be cached.

Once likelihoods have been calculated for all voxels, a solid model can be created by calculating

the voxels most likely to be responsible for each image pixel. To do this, new views are rendered

corresponding to each of the input images. For each pixel, a rayR is defined containing the set of

voxels which intersect the line formed by back-projecting the the pixel into the volume. For each

ray, the voxel with the highest likelihood,P (x ∈ V | I,P) is added toV, yielding a complete model



CHAPTER 3. MODELLING AND CORRECTING 3-D SCENES USING RBFS 42

which when projected matches the input images as closely as possible. Each voxel is characterised

by a 6 element vector containing its position in space and three colour co-ordinates.

3.2.3 3-D Surface Reconstruction

3.2.3.1 Fitting Implicit Surfaces using RBFs

The voxel modelV obtained from probabilistic space carving is noisy and contains many disconti-

nuities and other artifacts which are undesirable in a 3D scene model. Radial basis functions allow

both approximation and interpolation of data as well as smoothness and regularity constraints to be

imposed. The general form of a functionf represented as a sum of radial basis functions is

f(x) =

n
∑

i=1

wiφ(|x − ci|) + F (x) (3.7)

where there aren radially symmetric basis functions,φ, each with weightw and centrec. F (x) is

a polynomial which spans the null space ofφ. If the basis functionφ is positive-definite,F (x) is a

constant.

The form of this function is derived from the study of scattered data interpolation, whereby a

function is sought to match a sparse set of observations. This problem is ill posed since there are

an infinite number of functions which could account for the observations. To obtain a solution it is

assumed the unknown function is smooth. In [35] it is shown that equation (3.7) is obtained from

variational principals as the minimum of

H[f ] = β[f ] +
1

λ

n
∑

i=1

(yi − f(xi))
2 (3.8)

whereβ[f ] is the smoothness functional,yi is the observation at pointxi andλ is a parameter which

weighs smoothness against data closeness - defined as the sum-of-squares error in the approxima-

tion, f . The basis functionφ depends on the smoothness functional, examples are given inthe next

section.

If each radial basis function centre,c is chosen to coincide with the locationx of an observation,

then the weights may be calculated by a linear system of equations
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whererij = |ci − cj | andλ terms added to the diagonal to allow approximation by letting f deviate

from the observations [84].

An implicit surfaceS is described by the zero level set of some real-valued function f on R
3,

S = {x | f(x) = 0}. For example, the functionf(x) = |x| − 1 describes a sphere of radius 1 (| · |
represents the Euclidean norm onR

3). The surface function is sometimes called a signed distance

function as negative values represent the inside of the object and positive values represent the outside

(note this is not a metric distance).

For 3D implicit surface reconstruction, this signed distance function can be approximated by

RBFs. The observations are a set of points which lie on the 3D surface and so have value zero (these

will be referred to as surface constraints). In addition to this, a small number of external or internal

constraints must be specified (with positive or negative values) to provide orientation to the surface

and also prevent the trivial solution thatf(x) = 0.

In [23] the co-ordinates of voxels are used as surface constraints. It is not feasible to use all of

the voxels inV for this, some method of selecting a subset is required. A regular subsampling of

the discrete volume thatV is drawn from, cannot be used, as the matrix in equation (3.9)becomes

singular if the centres are colinear. For this reason a Poisson sphere random sampling scheme (the

3D analogue of the Poisson disc [52]) is used. This is an iterative procedure. At each step a voxel is

chosen at random from the set of remaining voxels. The position of this voxel is used as the centre

for a radial basis function. A sphere of radiusρ is centred on this location and all voxels inside the

sphere are removed from contention. Another voxel is chosenand the process continues until there

are no voxels remaining. This creates an approximately uniform distribution of RBF centres across

the surface of the voxel model and ensures no two spheres can overlap. Exterior constraints may

easily be generated by finding regions of empty space betweenthe voxels and camera positions.

We would like to be able to use as much of the voxel data as possible. To this end, equation (3.9)

can be formulated as an overconstrained system allowing more surface constraints to be specified
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for the same number of RBFs. However, a value of the surface function that is close to zero doesn’t

necessarily correspond to a point in space that is close to the surface, hence the minimal sum-of-

squares solution to the equation will not yield the surface that best fits the constraints. Any non-

linear method to minimise the Euclidean distance between the constraints and surface would almost

certainly be infeasible due to the extremely high dimensionality of the problem - for most scenes

there will be thousands of weights that would have to be optimised simultaneously.

A better approach is to use an averaging scheme as this will not increase the number of terms

in equation (3.9).Due to the one to one correspondence between the spheres and basis functions the

distribution of voxels within the sphere can be used to determine the precise location of the RBF

centre. So instead of just choosing the voxel in the centre ofthe sampling sphere, the mean of the

coordinates of all voxels inside the sphere is calculated before they are removed from the selection

pool. A more robust scheme is to replace the mean with the vector median, defined as the point to

which voxels in the sphere have the smallest Euclidean distance [4], as this will remove some of the

noise present inV.

Outliers inV, voxels which do not correspond to actual surfaces, will create errors in the re-

constructed surface. These occur as a result of noise in the images, deviations the assumption of

lambertian reflectance and camera calibration errors. The photoconsistency measure used to decide

whether a voxel is carved is compromised by these deviationsand due to the fact that higher voxels

(which are closer to the cameras) are processed first, this can cause floating voxels to appear above

the surfaces and in the gaps between objects. As the formulation of (3.9) allows the value ofλ to

be set for each surface constraint in turn, the voxel likelihoods computed by the probabilistic space

carving algorithm can be used to weight the contribution of each constraint, under the assumption

that the most strongly photoconsistant voxels should be favoured:

λn =
η

P (xn ∈ V|I,P)
(3.10)

whereη is a scaling parameter dependant onφ(0).
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3.2.3.2 Choice of Basis Function

The RBF framework permits the use of any basis function whichis positive definite or conditionally

positive definite (this requirement ensures the matrix in equation (3.9) is non-singular). There are

many such functions which have been applied previously in different situations. Thin plate splines

often used in 2D applications have been shown to perform verypoorly in 3D [61]. A common choice

is the Gaussian:φ(r) = e−r2/σ2

wherer is the radius|x − c| andσ the width. This function is

widely used in radial basis function networks, a technique used in pattern recognition. It was also

one of the first basis functions to be used to create implicit surfaces, it’s use in this field originally

inspired by electric field potentials [8]. It has been noted,however, that when applied to surface

reconstruction, the Gaussian has a tendancy to both oversmooth and also lead to gaps in the surface

- instead the use of a multi-order basis function was proposed in [23]

φ(r) =
1

4πδ2r

(

1 +
we−

√
vr

v − w
− ve−

√
wr

v − w

)

(3.11)

v =
1 +

√
1 − 4τ2δ2

2τ2
w =

1 −
√

1 − 4τ2δ2

2τ2
(3.12)

This function, derived in [18], imposes a combination of first, second and third order smoothness

−δ∆f + ∆2f − τ∆3f = 0 (3.13)

determined by varying the parametersτ andδ. This approach allows more detail to be retained in

reconstructions without sacrificing smoothness.

For these basis functions, each evaluation of the surface function f(x) requiresO(N) evalua-

tions of the basic function, thus calculating the entire surfaceS at resolutionR is O(NR3). The

Gaussian and other similar basis functions fall away sharply as the radiusr increases. This observa-

tion lead to the use of compactly supported basis functions which evaluate to zero for all values ofr

above a certain threshold (the radius of support) e.g.
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φ(r) =







(1 − r)4(4r + 1) if r < 1

0 if r ≥ 1
(3.14)

here, the radius of support is 1 althoughr can be scaled to give any desired radius of support [61].

The advantage of this is clear - when evaluatingf(x) only the basis functions whose centre lies

within a certain distance ofx need to be summed. In addition to this, the matrix in equation(3.9)

becomes sparse and this can be exploited to provide a more efficient solution to the system using

theLU decomposition [61]. The time taken to evaluate the surface is thus dependant on the aver-

age density of the functions with respect to the radius of support. Reducing the radius of support

allows more surface constraints to be used, at the expense ofsmoothness. Equation (3.14) was orig-

inally derived in [85] as the minimum degree polynomial for interpolation of a 3D function withC2

continuity, which is guaranteed to be positive definite.

Unfortunately due to their very nature, compact functions have a limited ability to fill the gaps

between RBF centres. It would be possible to combine compactly supported and non-compactly

supported functions although the system matrix would no longer be sparse, limiting the number of

basis functions that could be used. It is also unclear how themathematical properties of the surface

will be altered.

3.3 Updating Surfaces Using Image Disparities

Recall from Section 3.2.3.1 that the voxel model often contain many spurious results principally due

to uncertainty in the illumination and camera positions. Whilst small scale protrusions and gaps are

smoothed/interpolated over by the RBFs, larger scale deviations (in the form of large numbers of

voxels in the wrong place due to being photoconsistent by chance) or parts of objects that are missing

(due to over carving when changes is illumination violate photoconsistency) will be propagated

through to the RBF surface. Thus some method of improving thesurface using information from

the input images is required. One disadvantage of implicit surfaces compared to meshes is that is not

possible to locally adjust the surface directly, since it isdescribed by the combined effect of many

basis functions. However, the surface is constrained to pass close to the centres thus these points can

be moved based on the local appearance of the surface. Once all the centres have been moved the
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weights may be recalculated using equation (3.9).

Photoconsistency plays a central role in many algorithms for 3-D reconstruction. The photocon-

sistency of pointx is usually defined as the variance in colour of the pixelsp that it projects onto,

in the images in which it is visible:var({p | p = I i
Px

}). Recall from section 3.2.1 that Lambertian

reflectance was assumed. Lambert’s law is a simplification and most surfaces exhibit some level of

specular reflections, so that their appearance varies depending on the viewing angle. Because of this

a threshold is required to decide whether a pixel is photoconstent.

Relying on photoconsistency alone can cause errors due to the possibility that arbitrary points

will project to pixels of the same colour to within the threshold, especially if certain colours occur

frequently in an image. Looking at the photoconsistency of all points contained within a small

textured patch of the surface is far less likely to succumb tothis ambiguity - provided there is

sufficient variation in the colour across the patch.

In this section we assume the surface around each basis function may be locally approximated

by a square planar patch (a valid assumption when the size of the patch is small), visible in two

images. A plane in 3-D induces a homographyH between two images [40], that isH is a mapping

that transforms one image of the plane to match the appearance of the plane in the other image. As

the surface is unlikely to be planar on a large scale, this assumption is only valid within small image

windows around the projection of the RBF centre.

3.3.1 Homography Estimation by Block Matching

When the plane tangent to the RBF surface is not aligned with the true surface,H wont map one

window onto the other precisely leaving a disparity betweenthe resulting transformed windows. If

this disparity can be measured and then taken into account itis possible to recover the parameters

of this plane and thus know the location of a point on the true surface onto which the basis function

may be constrained to lie. The following presents a method torecover the disparity by finding local

offsets which maximise the consistency between windows.

The observed texture of the patch in imageI i is defined by projecting the four corners of the

patch into the image, by using equation (3.3) (see figure 3.3).

The influence of perspective can be removed by interpolatingbetween the four corners of the pro-

jection, rectifying to ann× n square orthogonal view of the patchI ′〉. Texture consistency,T , can

now be evaluated as average variances of corresponding pixels across all rectified image regionsI ′i.
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Figure 3.3: The projection of a surface patch

T =
1

n2

n
∑

j=1

n
∑

k=1

var({I ′i
jk}) (3.15)

Observed textures are inconsistent when there is a misalignment between the surfaceS and the true

surface observed byP (figure 3.4). Rather than using the consistency alone to guide an optimisation

algorithm, it is to compute a geometric solution to the displacement from the true surface (as men-

tioned above), from correspondences between pairs of observed textures. Let us assume a patch is

observed asI ′1 andI ′2 by two camerasP1,P2 ∈ P with associated positionst1 andt2.

true surface

2C

1C

Patch
Patch

d

true surface

2C

1C

(a) (b)

Figure 3.4: (a) The patch is aligned with true surface (b) thepatch is misaligned by a displacement,
d, due to errors inV

Finding such correspondences is a fundamental problem in the field of wide baseline stereo [71].
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Due to the potentially large distances between camera positions viewpoint invariant statistics about

surface textures are used in matching. However if the displacement between the patch and true sur-

face is small the transformation may be approximated by translation, a block matching algorithm

can be used as in motion estimation [43]. The block matching scheme allows for changes in per-

spective between images by breaking up the image into smaller sections. The local change across

the smaller sections is less pronounced.

The first observed texture imageI ′1 is broken into a set of smaller blocks ofq × q pixels, and

for each block the translation vectorb = [b1, b1] is found which minimises the error:

ǫ =

q
∑

j=1

q
∑

k=1

(I ′1
j+b1,k+b2 − I ′2

j,k)
2 (3.16)

Since the perspective projection preserves straight linesthese vectors should form a regular field

allowing the disparity to be removed.

The observed detail may be significantly reduced in patches viewed from oblique angles and

also any deviation from planarity will be more pronounced. For this reason camera positions are

given a scoreχ based on the sum of the angle between the surface,x and camera position,t, and

the area of the projection

χ =
−→
n · (t − x)

|t − x| + α |(u4 − u2)(v3 − v1) − (v4 − v2)(u3 − u1)) | (3.17)

whereu1, v1, u2, v2 etc. are the horizontal and vertical image coordinates of the corners of the pro-

jection (in a clockwise direction) and−→n is the surface normal. The parameterα weighing between

the two measures is kept small, as the area of the projection will be strongly related to the angle

between the surface patch and the camera, and this term is only included to penalise cameras which

are significantly further from the scene.

From these scores the two best positions may be selected to compute disparities, however camera

positions which are too close together will not provide enough disparity to extract reliable informa-

tion. This may be remedied by enforcing a minimum value for the angle formed between the centre

of the patch and the two camera positions.
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Even when these conditions are met this method may still fail. Even though each block is less

sensitive to changes in perspective than the window as a whole, when the disparity between windows

is large the method will fail. Making the blocks smaller reduces their succeptibility to this problem

however the smaller a block is the more likely it is that a false match will be obtained, making it

very hard to get a reliable result.

3.3.2 Texture Matching Under Perspective Projection

The block matching scheme presented above often fails in thepresence of strong perspective effects

between images. Several methods have been presented to match textures between images under the

assumption of affine projection [7, 54]. The affine approximation is only valid locally which can

cause these methods to give innaccurate results. While useful for finding initial matches when cam-

era positions are unknown, they are not suitable for accurate correspondence between image regions.

This section presents a method that explicitly takes perspective into account by first rectifying the

two windows reduce the disparity to a linear one which may be accurately estimated.

Let P andP′ be two3×4 matrices which describe the camera projection from 3-D coordinates

to homogenous image coordinates. Lety = [u, v, 1]T be the projection of a point in the patch from

the first camera andy′ = [u′, v′, 1]T be the corresponding point from the second camera. These

points are related byy′ = Hy. If the patch belongs to planeψ, wherezTψ = 0 for all the pointsz

which lie onψ, the formula forH as given in [40] is :

H = A− avT (3.18)

whereA anda are a3 × 3 matrix and a3 × 1 vector, respectively, given by :

[A | a] = P′





P

0 0 0 1





−1

(3.19)

andv is the vector given by the following expression :





v

1



 =











P

0 0 0 1





−1






T

ψ (3.20)
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Given a point in one image the position corresponding point in another image can be constrained

to lie on a line known as the epipolar line. Epipolar lines depend only on the imaging geometry and

not the shape of the scene so it is possible to transform the images to correspond to a pair rotated

‘virtual cameras’ whose epipolar lines are all horizontal and co-linear. This process is known as

rectification and is often performed as an initial step in stereo algorithms [34].

Let R andR′ be the rectifying3 × 3 matrix transformations. The rectified images of the patch

are now related by

R′y′ = HRRy (3.21)

As the epipoles are now horizontalHR is guaranteed to mapv-coordinates to the same value in

each pair and is thus of the form

HR =











s k t

0 1 0

0 0 1











(3.22)

wheres, k andt, correspond to scaling, skew and translation, respectively (all in theu direction).

To calculate these parameters, the images of the patch are divided into l rows of pixels. When

considering a single row of pixels, the skew translation acttogether to produce a single horizontal

offset,o, since thev coordinate of each pixel is the same.

The normalised cross correlation is computed between each pair of rows at different scale and

offset values, and the values which result in the lowest score (best match) are recorded. As the scale

should be the same for all rows,s is taken to be the median of the values found for each row. Any

values significantly outside the median are deemed to be errors and discarded. Using the offsets

from all rows, the skew and translation parametersk and t can be calculated by solving a linear

system





k

t



 =











v1 1
...

...

vl 1











−1 









o1
...

ol











(3.23)

wherevl is thev coordinate of rowl. To improve the robustness further, the rows with the greatest

residuals are removed from Equation (3.23) andk, t recalculated. This process is repeated until
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convergence. NowH can be calculated fromHR taking into account the rectifying transformations :

H = R′−1HRR (3.24)

With H at hand we calculate the vectorv from (3.18) and consequently the location of the planeψ

that should contain the basis function using (3.20). The corrected positionµ′ for the basis function

centreµ is calculated as :

µ′ = µ+ −→n µTψ
−→n T−→n (3.25)

where−→n is the surface normal toψ. The line by line matching based on cross-correlation requires

that there must be significant detail in order to find the offsets uniquely. Thus some basis functions

are not updated by this procedure. Additionally, false matches may be obtained due to noise in the

images or patches which span the boundary of an object. A limit is placed on the maximum distance

that a centre can move in order to prevent this from causing further errors in the surface.

The method works on pairs of images. Like the block matching scheme it is detrimental to use

cameras which view the patch from an oblique angle, so a similar quality measure is used to ensure

good camera positions:

χ =
−→
n · (t − x)

|t− x| + α|t − x| (3.26)

With the only difference being that the distance from the surface patch is used directly instead

of the patch area in the image.

Although the method can only operate on pairs of images, it may still benefit from the availability

of other images. This happens by finding the top three rankingcameras according to Equation (3.26)

and estimating the correction using images from cameras 1 and 2, 1 and 3, 2 and 3. In the absence of

errors in the matching, each of these runs should produce thesame answer, thus if one differs from

the others it is discarded as an outlier. If all three differ then the updating of that centre is abandoned.

Some of the basis function centres will converge towards neighbouring locations on the 3-D

surface causing singularity in the system matrix in equation (3.9). If multiple basis functions occur

in the immediate neighbourhood of each other, only one will be preserved while the others will be

removed.



CHAPTER 3. MODELLING AND CORRECTING 3-D SCENES USING RBFS 53

3.4 Experimental Results

This section presents the results obtained from applying surface reconstruction, and investigating

texture consistency using two sets of real images of multi-object 3-D scenes.

3.4.1 Experiment Setup and Data Capture
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Figure 3.5: Original input images for scene 1
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The first scene was captured using a 3-megapixel digital camera which had been calibrated

according to the method outlined in [41]. For this sequence Iplaced 2D targets around the objects to

provide reliable features from which to calculate the camera positions (note that it is possible to do

this using features of the scene itself, automatically extracted and tracked [29]). In total 12 images

were taken from positions surrounding the scene at approximately equal intervals (see Figure 3.5).

The scene comprises five objects; a cereal box, a kettle, a wooden knife-block and a stack of two

books.
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Figure 3.6: Recovered camera positions and tracked points from the first scene

Initial camera positions were calculated using the fast 8-point algorithm [40], operating on pairs

of images. The position of each camera was refined in turn using a nonlinear minimisation procedure

based on the Levenberg/Marquardt algorithm [65]. Figure 3.6 shows the recovered camera axes and

the 3-D positions of the tracked features.

The background in each image was manually removed to reduce the size of the volume required to

enclose the scene (figure 3.7 (b)). This segmentation definesan outer bound on the shape of the

scene, known as the visual hull [48]. Figure 3.8 demonstrates that whilst the visual hull defines the

tall objects (the kettle and cereal box) well, it provides very little detail in the centre of the scene

as many objects are occluding each other. Modelling using contours is studied more extensively in

chapter 4.

The second scene was captured using an 8 megapixel digital SLR camera and 50mm lens, which
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Figure 3.7: Scene 1, (a) original image, (b) segmented image

Figure 3.8: Visual hull of the segmented input images

was again calibrated according to the method outlined in [41]. In total 16 images were captured,

again with approximately even spacing (see Figure 3.9). This sequence was captured in a room with

black walls so there was no need for manual segmentation. This scene comprises four objects; a bag

of flour, an owl statue, a cardboard box and a running shoe.

Camera positions were calculated by manually tracking a number of features, and then refining

the positions automatically. Figure 3.10 shows the recovered camera axes and the 3-D positions of

the tracked features.
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Figure 3.9: Original input images for scene 2

To provide ground truth a scan of the scene was acquired usinga Cyberware 3030 laser rangefinder

device. Figure 3.11 shows the resulting model. The scan headrotates about the scene on a cylindrical

trajectory and is thus only able to capture the outward facing side of the objects.

3.4.2 Probabilistic Space Carving

From the input images and camera positions associated with the first scene a voxel model was created

using the probabilistic space carving algorithm [15]. The resolution of the model was337×284×426

voxels.

Figure 3.12 shows two views of the reconstructed voxels fromthe image set shown in Figure 3.5.

In general the shape of the scene is represented well (due in alarge part to the constraint provided

by background segmentation). The coloured model looks fairly accurate, however this is somewhat

deceiving. By design the space carving algorithm aims to replicate the input images as well as

possible, rather than provide the most accurate representation of the scene. Looking at the set of
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Figure 3.10: Recovered camera positions and tracked pointsfrom the second scene

Figure 3.11: Ground truth from laser scan from the second scene

voxels directly shows the noisy reconstruction typical of space carving algorithms.

Figure 3.13 shows the results of applying the same process tothe second scene. The voxel model

resolution was426 × 250 × 414. Again the uncoloured rendering shows a very similar pattern of

noise.

In addition to the noise both models contain many ‘floating’ voxels that are not connected to

anything, particularly in the centre of the scene where the true surface lies a long way below the

visual hull.
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(a) (b)

Figure 3.12: Scene 1 (a) raw voxel geometry (b) colour image rendered from voxel model

(a) (b)

Figure 3.13: Scene 2 (a) raw voxel geometry (b) colour image rendered from voxel model

The reason for this stems from the way the voxels are processed in layers starting with the layer

closest to the cameras. If a voxel in a higher layer happens tobe photoconsistent by chance it will

be added to the model in preference to voxels lower down whichrepresent actual parts of the scene.

Note this processing order is necessitated by the need to model occlusions and is a common feature

of space carving algorithms.

3.4.3 Generating Surface Constraints

This section presents the results of extracted a candidate set of surface constraints from a voxel

model and fitting an RBF surface to those constraints. Using the Poisson Sphere sampling scheme
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of section 3.2.3.1 a total of 3800 constraints were generated for the first scene. In addition to this

290 exterior constraints were generated by dilating the model (i.e. the model is made successively

fatter by adding extra voxels around each voxel). The surface points of the dilated model are then

sampled, yielding a set of points which are guaranteed to be aminimum distance from the original

surface. Figure 3.14 (a) shows these points as red crosses inthe case of surface constraints and blue

circles for the exterior constraints.

The weights were calculated from equation (3.9) and the function f(x) evaluated over a regular

3D grid. These values allow a mesh to be generated using the marching tetrahedrons algorithm [24],

which searches for places on the grid where the function changes sign. Figure 3.14 (b) shows the

resultant surface.
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Figure 3.14: (a) The set of basis functions modelling the surface [red crosses] along with the exterior
constraints [blue circles] (b) the resultant implicit surface using these centres

Basing surface constraints on the voxels allows errors in the voxel model (described in the pre-

vious subsection) to be propagated through to the RBF surface.

The surface when forced to comply to constraints based on floating voxels exhibits bridges con-

necting certain objects together in addition to spurious protrusions. This problem is made worse by

the fact that floating voxels are more likely to be chosen by the Possion sphere sampling scheme. As

many will have no neighbours within the radius of the sampling sphere, they can never be eliminated

and will eventually be selected.

Recall from Section 3.2.3.1 that the RBF formulation allowsfor λ, the ‘confidence’ value (which

determines how faithful to the constraint the surface will be) to be set per basis function. Figure 3.15



CHAPTER 3. MODELLING AND CORRECTING 3-D SCENES USING RBFS 60

(a) (b)

Figure 3.15: (a) Surface obtained by varyingλ (b) Surface obtained by removing floating voxels
prior to generating surface constraints.

(a) shows the results obtained whenλwas set according to the voxel likelihoods obtained from space

carving. There is still some bias in the reconstruction as some floating voxels occur far from the real

surface and exert an influence even when their confidence weighting is low. The effectiveness of the

scheme is limited by the fact that some floating voxels will have a high confidence value, as they can

be strongly photoconsistent. Part of the outcome of this procedure can be attributed to the fact that

it results in a lowerλ value on average, which results in a general smoothing effect.

Figure 3.15 (b) demonstrates an alternative solution obtained by simply eliminating voxels which

are not connected to the main surface, prior to generating surface constraints. This gives more de-

tailed results and is effective provided the proportion of voxels removed is low and they are not so

tightly clustered that they actually occlude part of the model which would otherwise not be photo-

consistent. Note that the erroneous protrusion from the cereal box is made up of tightly clustered

voxels and thus represents a more serious deficiency of the voxel carving approach.

Whilst removal of floating voxels works well for the scene in question, it may cause problems

in certain cases. For example it is possible to have an objectthat is made up from a cloud of voxels,

which whilst disconnected from each other, are sufficient indensity and number to resemble a solid

object when viewed. Thus whole objects or parts of objects may be deleted by this method meaning

that care must be taken.

Applying the same method to the second scene (whose image setis shown in Figure 3.9) yielded
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Figure 3.16: (a) The set of basis functions modelling the surface [red crosses] along with the exterior
constraints [blue circles] (b) the resultant implicit surface using these centres

a set of 4150 surface constraints and 68 external constraints (again represented as red crosses and

blue circles respectively in Figure 3.16 (a)). The resultant RBF surface after floating voxel removal

is shown in Figure 3.16 (b). The surface result is less recognisable than the result from the first

scene. This is due in part to the fact that the objects are closer together allowing the smoothing of

the RBF surface to create bridges between objects. Also the shoe is a more complex shape than

objects from the first scene. The taller structures (owl statue, bag of flour) are modelled best. This

can be explained by the action of occlusion reducing the accuracy of the voxel model (the fewer

images a voxel is visible from, the easier it is to pass the photoconsistency test). In addition to this

the taller objects stand clear of the others and are mostly seen in front of a black background which

reduces the possibility for false photoconsistency compared to the lower objects which sit in front

of a multi-coloured background.

3.4.4 Compact Versus Non-compact Basis Functions

Using compact radial basis functions offers considerable gains in efficiency as only a subset of the

functions need to be evaluated at each point. To take advantage of this, the parameters for each basis

function are stored in an open hash table.

Figure 3.17 shows reconstructions obtained from compactlysupported basis function (a) and
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(a) (b)

Figure 3.17: Surfaces obtained from (a) compactly supported basis functions (b) multi-order basis
functions
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Figure 3.18: (a) Profiles of the Gaussian and compactly supported basis function (b) profile of the
multi-order basis function

multi-order basis function (b). The compact function givenin Equation (3.14) is very similar to

the Gaussian, see figure 3.18 (a), and thus shares many of the undesirable properties when used in

reconstruction. Comparing it to the multi-order basis function, (3.11), provides some insight into the

reasons behind this. The peak of the Gaussian is much wider giving poor definition to the surface and

it falls away much more quickly resulting in gaps forming between constraints. However, evaluating

the surface function created from the multi-order basis function took over three hours whereas the

surface created from the compactly supported function tookonly 30 minutes.

The performance of the multi-order basis function depends on the values of parametersδ andτ ,
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Figure 3.19: Reconstructions using the multi-order basis functions with different smoothing param-
eters. First column,δ = 5, second columnδ = 15, third columnδ = 25. First rowτ = 0.005,
second rowτ = 0.015, third rowτ = 0.025.

defined by equation (3.13). Figure 3.19 demonstrates the influence of the smoothing parametersδ

andτ . The first order smoothing parameter,τ , has the greatest effect, if it is set too low the individual

objects become fused, while if it is set too high parts of the surface become collapsed. Values of

δ = 15, τ = 0.015 produce the best results.

3.4.5 Estimating Disparities by Block Matching

Figure 3.20 (a) shows the observed texture of a patch locatedon the surface of a book, in the 9 images

in which it is visible, whilst figure 3.20 (b) shows the resultof rectifying these image regions.

It can now be seen that the surface generated from the voxels is not quite aligned with the true

surface, hence the slight variation in the observed textures. Also notice how even though the book
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(a) (b)

Figure 3.20: Image regions corresponding to the projectionof a surface patch (a) before and (b) after
normalising

cover is not particularly shiny, it still exhibits a degree of non-lambertian reflectance, as demon-

strated by changes in the shade of blue in the different images.
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Figure 3.21: Results from section 3.3.1 (a) Two rectified texture observations (b) vector field show-
ing displacements evaluated by block matching
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Figure 3.22: Results from the method described in section 3.3.2, pairs of patches and their correction.

Figure 3.21 demonstrates the results of applying block matching to a pair of observations. If

the variance in pixel intensities within a block falls belowa certain threshold then matching is not

attempted. There are some outliers in the vector field due to the fact that small blocks can sometimes

generate spurious matches. These may be rejected for example if the length and orientation for a

vector deviates more than a certain percentage from its neighbours.

3.4.6 Texture Matching of Surface Patches

Section 3.3.2 describes a method to calculate the disparitybetween two images of a surface patch,

induced by the changing camera geometry. Surface patches located at RBF centres and the initial es-

timated orientation provided by the derivative of the implicit surface functionf , from Equation (3.7).

From image windows centred on the surface patches, more accurate values for the position and ori-

entation of the patch are calculated by matching the textures.
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Figure 3.22 shows two cases of surface texture matching. Thefirst column figure 3.22 (a) &

(e) shows the image regions which correspond to the projection of a point on the surface. Note the

difference in appearance of the same point in the two images.Figure 3.22 (b) & (f) show the same

image regions after rectification by matricesR andR′. The texture now lines up vertically (i.e. the

top of the ’o’ is the same height in both images etc.) 3.22 (c) and (g) show the offset vectors for each

row, detailing the horizontal shift and skew. Finally figure3.22 (d) & (h) show the results after the

patches have been aligned by applying transformationH to the bottom image.

3.4.7 RBF Surface Updating

The texture matching and homography estimation proceedurewas applied to each basis function in

both scenes to try and calculate a more accurate position. Once the basis function centres have been

moved, the weights are recalculated using Equation (3.9), and a new updated surface is obtained.
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Figure 3.23: Successfully updated centres, shown as blue stars in (a) scene 1, and (b) scene 2. Yellow
dots represent centres which were not moved.

Recall from Section 3.3.2 that there must be sufficient surface texture to get a reliable match.

In the first scene 69% of patches met this criteria, and accurate matches were obtained for 46% of

the total number of centres. For the second scene 75% had sufficient detail and 35% resulted in

accurate matches. Figure 3.23 shows the centres which were updated (shown in blue) and those

which were not (shown in yellow). In both cases the centres that were updated are not evenly spread

but clustered around textured areas and strong edges.
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Despite containing more textured patches, the overall number of accepted matches was lower

in the second scene. This is due to the character of the textures present on some of the objects.

The owl statue featured mostly complex noisy patterns, whereas the shoe had a fine self repeating

texture, both of these cases present difficulties to the matching algorithm. Several potentially correct

matches were discarded due to inconsistency in the results.

3.4.7.1 Qualitative results

(a) (b)

(c) (d)

Figure 3.24: Qualitative results, scene 1. Top row: initialsurface, bottom row: updated surface

Textured surfaces renderings were produced by projecting each point on the RBF surface into

each of the input images. The colours of the corresponding pixels are then averaged, and the resultant
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colour is applied to that surface point.

If the RBF surface is misaligned, a collection of image points representing one point on the real

surface will back-project to several different points on the RBF surface. The effect of this is that

the image points become spread out and the surface texture will appear blurred in areas where the

model is incorrect. Thus the degree of local blurring is an indication of how accurate the surface is.

This is most noticeable where there is sharp detail in the original scene, such as text.

Figure 3.25: Closeup of the coloured rendering showing legibility of small text

Figure 3.24 shows the initial and updated surface in both shaded and coloured formats for the

first scene. Certain improvements are clear from the shaded surface alone. The book surface is

flatter and also extends to the correct position in the updated surface. Parts missing from the right

hand edge of the knifeblock have been recovered, and the large protrusion from the cereal box has

been completely eradicated. In the coloured renderings thetext on the surface of the book is vastly

more legible after updating indicating very good alignmentbetween images. The closeup shown

in Figure 3.25 proves that even the very small text at the bottom can be read. The same is true of

the cereal box. A slight improvement in the surface texture is visible everywhere. Certain defects

remain in the updated surface. There is a large concavity in the left side of the kettle, inherited

from the voxel model, this has not been corrected due to the lack of texture on the kettle surface.

The kettle and knifeblock remain joined together for the same reason. In some places holes have
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developed in the floor of the model, probably due to the addition of extra external constraints.

(a) (b)

(c) (d)

Figure 3.26: Qualitative results, scene2. Top row: initialsurface, bottom row: updated surface

Figure 3.26 shows the initial and updated surface in both shaded and coloured formats for the

second scene. Whilst the improvements visible in the shadedrendering are perhaps not as striking

as the previous case, a large spurious structure in the bottom left has been removed and the back of

the shoe and owl statue now extend to the correct position. The coloured view shows the full extent

to which the shape owl statue has been recovered. In additionto this there are clear improvements

to the text on the bag of flour indicated that the surface has been pulled into the correct position.

The generation of holes is more serious in this dataset, particularly in the bottom left corner.

This is due to the fact that a lot of centres were moved but not replaced as there was insufficient

texture information to go on. One drawback of this updating approach is that there is no constraint

to require the model to be complete (i.e. free of holes!)
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3.4.7.2 Quantitative results

In order to provide quantitative assessment of the improvement in the first scene in the absence

of ground truth, I note that the real surface of the blue book is almost perfectly planar. I then

measure its deviation from the planarity in the estimated 3-D model. This deviation, measured in

millimetres, was estimated for the voxel model, the initialRBF surface, as well as for the surface

updated according to the algorithm provided in Section 3.3.2 and is shown in the first column of

Table 3.1. Gaps in the surface and floating voxels result in a large error in the voxel model. These

are smoothed in to a bumpy but essentially flat surface by the RBFs. Correction based on texture

yields a final error of just over 1mm.

For the second dataset ground truth is available in terms of alaser scan, taken at the same time

as the input images were captured. The laser scanner provides depth information in terms of the

distance from the central axis of rotation for a360 ◦ arc surrounding the scene. The depth map error

is weighted by the distance from this axis (as more distant values in the depth map correspond to

larger areas of the surface) and is calculated as:

DE =

√

∑n
i=1 di(di − d̂i)2
∑n

i=1 di
(3.27)

whered̂i is the value for a specific point on the model anddi is the corresponding value measured by

the laser,n represents the number of surface locations for which we havea valid depth information.

The measurements for each stage in the reconstruction are provided in the third column of Table 3.1.

Again presence of floating voxels results in a large initial error which is reduced by the subsequent

RBF surface fitting. The updating procedure reduces this error further. It is important to consider

that this error is the average figure for the entire surface which is why it is higher than the planarity

error of the previous scene.

Another measure of the accuracy of the reconstruction can beobtained by comparing the input

images with coloured renderings from a matching viewpoint.As before the colour of each point on

the 3-D surface is obtained by averaging the colours of all its corresponding projection pixels from

the original images. I evaluated the PSNR between the projected scene using{Pi|i = 1, . . . , n} and
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Scene 1 Scene 2
Method Planarity PSNR DE PSNR

error (mm) (dB) (mm) (dB)

Voxel carving 11.6 13.40 25.23 9.485
Initial RBF 3.63 14.14 18.24 13.02
Updated RBF 1.04 17.45 14.76 15.93

Table 3.1: Surface geometry and PSNR errors for the 3-D scenereconstructions from images.

the original images. The PSNR is calculated as:

PSNR =
10

n

n
∑

i=1

log10

[

g 2552

∑g
j=1(Iij − Îij)2

]

(3.28)

whereÎi represents the projection of the reconstructed textured 3-D surface from camerai, n repre-

sents the number of images andg represents the total number of pixels in each image. The PSNR

values are provided in columns two and four in Table 3.1. The figures follow the same general trend

of improvement. For comparison purposes, the PSNR for JPEG images with medium compres-

sion is 25 Db. The PSNR figures aggregate the errors over the entire image and can therefor hide

large errors than occur over only part of the image. They are best considered in conjuction with the

qualitative results as shown in Figure 3.24.

3.5 Conclusion

In this chapter a method was presented for representing 3-D scenes with several objects from mul-

tiple images. An implicit function model using RBFs is initialised using the voxel representation

provided by the space carving algorithm. The resulting RBF model solves certain problems related

to the uncertainty in the voxel estimation and provides a smooth representation of the surface. Errors

are caused in the resulting surface due to various uncertainfactors such as illumination variation,

complex object shapes or occlusions. I consider a set of patches in 3-D, where each patch is associ-

ated with an RBF function. I propose a method for refining RBF centres by using correspondences

of images, representing the projections of the same patch from the 3-D scene, along epipolar lines.

Experiments are conducted on two real multi-object datasets. Both of these datasets contain ob-
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jects which would present serious problems to traditional object modelling algorithms. The methods

outlined in this chapter were applied to the datasets, each yielding three representations, the initial

voxel mode, the initial RBF surface and the RBF surface afterupdating from image information.

Colour surfaces representations are obtained in all cases

The space carving results demonstrate the level of noise anduncertainty that occurs in the voxel

model due to the lack of any global constraints. The initial RBF surface is smoother but is inconsis-

tent with the input images in several areas. The updated surface is far superior with a large proportion

of basis function centres moved to lie on the correct surface. In general the various objects are mod-

elled well and are easily identified in the representation. Numerical evaluations are provided with

respect to both geometry and texture information for the twosets of images. The geometry recon-

struction is evaluated by employing a planarity test in the first image set and by comparing with the

ground truth provided by a 3-D laser scanner in the second image set. The colour information esti-

mation is evaluated using the PSNR when backprojecting the information from the 3-D surface onto

the image planes. The numerical results confirm what is seen qualitatively, with large leaps between

the voxel model and initial RBF surface, and smaller but still significant improvements made after

updating.

Whist the improvements over the initial surface are significant, there are still errors in the re-

construction. These are mainly in the form of adjacent objects which are spuriously joined by the

interpolating action of the RBFs. This occurs in areas whichlack sufficient texture to obtain reliable

matches and hence find the correct positions for the RBF centres. Correcting these errors forms the

main topic of the following chapter.



Chapter 4

Contour Based Correction of 3-D Scenes

4.1 Introduction

This chapter builds upon the work of Chapter 3 and also complements it. Whereas in Chapter 3

the existence of surface detail or patterns (specifically edges) was a requirement for obtaining good

3-D information, this work focuses mainly on homogenous areas without significant detail. The

boundaries of such areas form a set of image edges which are used to correct the scene.

The majority of the work here is based on the following observation. For each edge in 3-D

(either an object boundary or a ‘rim’, where the surface disappears from view) there should be a

corresponding edge in the observed image. This will be true except in rare cases in which an object

sits in front of another object with exactly the same colour and shading.

It should thus be possible to detect any gross errors in the recovered shape by comparing the

predicted and observed edges. This is specifically important for the case where two objects are

erroneously joined together or fused. There should be no observable image feature corresponding to

the part of the shape which joins the objects.

The outline or contour of a shape also provides some information about it’s shape in 3-D so it

should also be possible to correct the shape using the same contours. Methods of 3-D modelling

using this information are usually referred to as “Shape from Silhouette” [48] or “Shape from Con-

tours” [91], and have been around for a long time in Computer Vision. In a common with voxel

carving, Shape from Silhouette also works on the principal of cutting away areas that are incon-

sistent with the images. In this case inconsistency occurs when part of the shape projects onto the

73
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image in a way that falls outside of the contour.

Sections 4.2 and 4.3 demonstrate how this theory can be adapted to the case of correcting large

shape errors and separated objects that have become joined by the RBF modelling process. A statis-

tical formulation of the 3-D scene updating methodology is provided in Section 4.2. Such a 2-D to

3-D approach requires performing many low level vision tasks such as segmentation, edge detection

etc. Here we are not particularly interested in segmenting whole objects or image understanding

tasks, but merely in finding the boundaries of homogenous image regions (edges). Here the term

homogenous applies to appearance, thus areas of homogenoustexture are just as important as areas

of homogenous colour.

Texture classification and segmentation is studied in the field of video compression where re-

gions containing arbitrary texture are removed from the compression process and later synthesised

during decompression [11]. Several methods are used, but most are based on collecting local statis-

tics concerning the variation in image brightness levels and then using standard clustering algo-

rithms. In this work two segmentation methods are used, one supervised, utilising support vector

machine classifiers, and one unsupervised, utilising mean shift clustering.

A method for transforming segmented images into continuousobject contours is also presented.

It is based on research using active contours to fit shapes to image data for medical imaging algo-

rithms [60]. Given a suitable initialisation a contour evolves as it is acted upon by forces derived

from the image, and subject to limits on elasticity and smoothness. The (incorrect) 2-D contour

given by projection of the current 3-D surface is used as initialisation. This also helps ensure only

locally relevant image edges are used. With this contour information, the RBF model is corrected to

be consistent with the input images uniting the methods discussed previously into a novel contribu-

tion to multi-shape modelling. Problems associated with the interpolating and smoothing properties

of RBF implicit surfaces are addressed using constraints with negative weights.

A detailed analysis is undertaken in Section 4.4 in which thefactors influencing the potential of

contour based methods are studied. It is shown that in certain circumstances disparity between the

correct and incorrect contours is too small and makes detection or correction of the error impossible.

Full analysis of the key variables and their contribution isprovided, used to provide recommenda-

tions on how to capture image sequences to maximise the chances of success when modelling scenes

with multiple objects which are located closely to each other.

In section 4.5, results of the methods discussed so far are presented using real image data and
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both qualitative and quantitative evaluations are performed. Finally the conclusions of this chapter

are drawn in section 4.6.

4.2 Probabilistic Updating of 3-D Scenes Using Contour Consistency

In this chapter it is assumed that we already have a 3-D reconstruction of a scene consisting of

several objects constructed from a set of images taken from various angles. The procedure used was

described in Chapter 3 and employs space carving followed bysurface modelling using radial basis

functions.

In this study I will show how the 3-D scene representation canbe improved by using additional

information extracted from the input images. Such information may consist of colour, texture, cor-

ners or boundaries of objects in the scene. This section describes a formal statistical framework for

reasoning about such information which will be used as the basis to derive concrete algorithms.

In the following it is assumed that the input images contain objects which are characterised by

well defined colours and textures while separated by boundaries. When the scene contains multiple

objects such as the case considered in this thesis, some of these may become merged by the resulting

surface if they are positioned close together.

Let us assume that in addition to the input imagesI = {Ii|i = 1, . . . , n} there is a corresponding

set of silhouettes. In several papers it was shown that a set of silhouettes can be used to model the

3-D scene using a union of cone volumes [48]. These methods provide good reconstructions except

when the objects contain extensive concave regions. The extraction of such silhouettes is usually

based on the existence of a plain background. Silhouette updating has been used for single object

3D reconstructions in several studies [46]. In the following I investigate how problems with merged

objects can be detected and corrected using segmented contours in a similar approach with that of

shape from silhouettes.

Let us denote the set of contours asC = {Ci|i = 1, . . . , n} extracted from the input images

I. Contours can be extracted directly from images using various means [64][31]. The contours are

assumed known and represent a segmentation of the images into distinct 3-D objects. The situation

when two or more distinct objects are merged into the resulting 3-D scene is investigating in the

following. Such errors can occur when two or more objects areclose to each other resulting in the

RBF surface interpolating across the gap between the objects.
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We assume that the sceneS contains distinct objects denoted as{A,B} ∈ S which are close

to each other and could occlude each other in several images.The background is assumed as an

object of the scene as well. The process of space carving and the surface fitting may fail to identify

them as separate objects. The first process may produce a large number of floating voxels in the area

between the two objects, blurring the boundary between them, while the second stage may merge

both objects with the same surface, failing to represent theexisting gap in between the two objects.

A probabilistic assessment of whether we have two objects merged into one or a single independent

object may be obtained from evaluating the following :

P (A)P (B) > P (A ∪ B) (4.1)

where the left side term represents the probability of having two separate objects and the right side

term represents the probability of having a single object. These probabilities are never explicitly

estimated in the contour based updating method, however theconcept of deciding between two

hypotheses (that there exist two separate objects or that there really exists only one object) forms the

foundation of the method, the steps of which are summarised in the following.

By comparing coloured renderings of the scene with the inputimages, anomalies can easily

be detected. Objects suspected of being joined can be segmented from the rest of the scene so

that their 3-D contour is known. This segmentation is achieved by removing the ground plane

which connects the free standing objects. In the case of images both colour and texture features

(texels) are considered for characterising the objects. Such features have been used before for image

segmentation [11] as well as have been considered for the MPEG-4 coding standard [6].

The following steps are used for checking the contour consistency:

• Threshold the sceneS in order to separate the objects.

• Use either unsupervised or supervised segmentation as follows:

– Unsupervised segmentation - Segment each image using the mean-shift by considering

the colour and texels as features and consequently define theobject boundaries.

– Supervised segmentation - Consider one image or more for training and sample values

of pixels for various objects of interest. Employ supervised training by using Support
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Vector Machines (SVM) for learning the given data set and define the object boundaries.

Usually it is assumed to have two objects and their background.

• Model the boundaries of objects using snakes.

• Project the contour of the 3-D objectsCS using the projections matricesP = {Pi ∈ i =

1, . . . , n} onto each image from the given setIi, i = 1, . . . , n.

• Compare the segmented contours from 2-D images with those resulting from projection from

the 3-D scene and detect inconsistencies.

The concept of this approach consists of detecting merged objects by identifying inconsistencies

in the object contours, as they are detected in 2-D from the given images, after using either super-

vised or unsupervised segmentation, and the contours resulted from projecting the object surface

from the 3-D scene. In the following section the feature selection, the supervised and unsupervised

segmentation, the contours extraction and their modellingby snakes are described in detail.

4.3 Contour Extraction for Model Correction

In order to detect disparities between 3-D object shapes and2-D shapes we have to detect the con-

tours of objects. In the 3-D sceneS the objects are easily segmented by thresholding the scene

by assuming that we have a set of objects lying on a flat surface. A more complex 3-D clustering

approach, involving spatial coordinates can be used for mode complex scene assumptions.

I use a statistical approach to object contour extraction from images. In the following the ap-

proach used for the object contour extraction from the given2-D image setI is explained. The 3-D

scene modelling will be verified and corrected wherever necessary by checking the consistency of

the contours obtained by projecting the object surfaces extracted from the 3-D sceneS with those

extracted from the original image setI.

The object contours are extractred from the images by employing two different approaches:

supervised and unsupervised object segmentation. In both approaches the same set of features is

used to characterise the objects. The supervised approach uses training based on object samples

from one or more of the images and afterwards classifies the image content in objects by using

Support Vector Machines (SVM) [64]. The unsupervised training employs clustering in the given
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set of images by using the mean-shift algorithm. The clustering corresponds to a segmentation of the

image in objects. In both cases single continuous contours of the objects are extracted and modelled

using snakes. Each of these steps are described in detail in the following.

4.3.1 Feature Selection

As in other studies [11], it is considered that objects are characterised by colour and texture these as

features are used for segmenting the images and for afterwards extracting the object contours. The

primary features used in segmentations are the three colourchannels, red green and blue.

Other colour spaces such as L*a*b* [26] have been proposed tobetter characterise the perception

of colour by the human visual system. These colour spaces do not add any information since they

are just a coordinate transform of the same unlying data. Forthis reason I use the camera’s native

RGB colour space. In addition to colour I found it useful to consider texture information to provide

means with which to distinguish between objects of similar colour but contrasting textures.

To provide an estimate of the local image texture a formula used in the Harris corner detector

[37] provides a rough measure of texture which is good enoughin most circumstances. It gives a

large response for grainy textures which are uniform in every direction, a reduced response for more

stripy textures with anisotropic variance in colour and a very low response for untextured surfaces.

Let us consider the location of a pixel[u, v]T in one of the input images. The measure is defined as:

tx(u, v) = det(M) − (k trace2(M)) (4.2)

whereM is the ‘structure matrix’ which describes the local image gradients around the point[u, v]T,

defined as:

M =


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(4.3)

W represents the window which is weighted by a Gaussian andIu, Iv represent the image gradient in

theu, v direction. The parameterk determines how the response varies with respect to the strength

of the gradients in orthogonal directions. If the gradient is strong in both directions the first term
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will dominate, however if the gradient is significantly stronger in one direction the second term

will dominate yielding a negative response. As this formulation can result in extreme values which

throw off segmentation algorithms, the output is clamped toa specific interval[txmin, txmax]. The

contribution of the texture response is weighted by a parameter ζ. Each image pixel is then mapped

into a 4-D feature space asz = [r, g, b, ζtx]T.

4.3.2 Contour Extraction

In order to extract contours we use object segmentation in all images from the input setI. Two prob-

abilistic methods of image segmentation are discussed in this section, supervised and unsupervised.

Both methods use the same feature vectorz as described above.

4.3.2.1 Unsupervised Image Segmentation

Unsupervised segmentation consists of estimating the mostlikely partition of the image without

using a priori knowledge. Usually this consist of applying a clustering method. I choose to use

the mean shift segmentation method due to its easy usabilityand proven success in characterising

clusters well [31].

The mean shift algorithm classifies based on identifying local maxima in the density estimation

of the sample points. It is unsupervised in that no a-priori knowledge is required about the number

of classes or their distributions. In this case we are tryingto segment a pair of objects from the

background so the number of classes, 2, is known, however thecontour fitting procedure described

in this section is robust with respect to oversegmentation -provided the area between the objects is

segmented correctly.

The mean shift procedure for clustering (and hence classification) is based around kernel density

estimation of the feature space, which is defined as follows:

fd(z) =
c

nhd

n
∑

i=1

k

(

z − zi

h

)

(4.4)

where there aren feature vectorsz, of dimensiond (in our cased = 4). k(·) is the radially symmetric

kernel function (I will use the multivariate normal kernel), the parameterh defines the width of the
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kernel, and is referred to as the bandwidth. The termc is a constant that ensures the kernel integrates

to 1.

The mean shift procedure iteratively updates the centre of the cluster using the derivative of the

density function. The vector which points in the direction of greatest increase in density is given

by :

m(z) =

∑n
i=1 zig(||z−zi

h ||2)
∑n

i=1 g(||z−zi

h ||2)
− z (4.5)

whereg(z) = −k′(z). The classification algorithm is iterative, starting with arandom placing of

seeds, sufficient in number so that kernels overlap ensuringall populated areas of the feature space

are covered. The steps used are as follows:

1. Compute the mean shiftm for the current window

2. Translate the window according to the mean shift vectorzt+1 = zt + m(zt)

3. repeat until convergence

The stationary points are then the centres of the classes andall feature vectors within the basin of

attraction are assigned to that class. The output of the algorithm is then a mapping from image pixels

to classes. Due to the fact that no spatial information from the image is used, there is no guarantee

of compactness of the resulting classes. Utilising textureinformation helps with this in areas where

pixel colours tend to vary a lot from their neighbours. However, the goal of the segmentation is to

produce a set of edges which correspond to genuine changes insurface colour or topology. With this

in mind I use a post processing step to enforce regularity in the data.

The classes are recomputed to be contiguous sets of pixels (originally two pixels with similar

features on opposite sides of the image could be assigned to the same class). This is achieved by

sweeping the image and using the union find algorithm [19]. Initially each pixel belongs to a unique

set of size one. The pixels are then examined in order and if a pixel belongs to the same class as it’s

neighbour, the union of the containing sets is taken. When this has completed each set represents

a contiguous group of pixels with the same original class assignment. These sets then become the

new classes.

This procedure results in the creation of many very small classes. Any classes with a population

below a given threshold are merged into the largest neighbouring class.
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The bandwidth parameter defines the sensitivity of the algorithm and indirectly determines the

number of clusters found. Although it requires no training,a disadvantage of the mean shift algo-

rithm compared with other algorithms is that it can be difficult to set the bandwidth in order to obtain

a good segmentation for some scenes. Various statistical based algorithms can be used to choose the

bandwidth for the mean shift algorithm [77].

4.3.2.2 Supervised Image Segmentation

A supervised image segmentation method is able to overcome certain problems associated with pa-

rameter selection by using a training set of pixels explicitly labelled in two classes as the foreground

and background in the image. This section describes such a method which is based on support vector

machines (SVM) [64].

SVMs classify data points by constructing an optimal separation plane by identifying support

vectors which lie along the boundaries of the two classes. The optimal plane is the one which

maximises the separation between the two classes (the intuition is that this property will help the

classifier generalise well). SVM was shown to provide very good supervised classification results.

As this is a supervised method, a training set is created by samplingn pixels creating feature vectors

consisting of colour components and texelszi, . . . , zn from one or more images from our setI and

labelling them withyi ∈ {−1, 1}, i = 1, . . . , n, each label corresponding to an object class as

foreground and background, respectively.

We want to find the maximum-margin hyperplane which divides the points havingyi = 1 from

those havingyi = 0. Any hyperplanew can be written as the set of pointsz satisfying:

wTp = b (4.6)

whereb is a constant. The vectorw is a normal vector: it is perpendicular to the hyperplane. The

parameter b
‖w‖ determines the offset of the hyperplane from the origin along the normal vectorw.

We want to choose thew andb to maximise the margin, or distance between the parallel hyperplanes

that are as far apart as possible while still separating the data. These hyperplanes can be described

by the equations
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wTz− b = 1 (4.7)

and

wTz − b = −1 (4.8)

Formally, the SVM is the solution to the following quadraticprogramming optimisation prob-

lem:. Mimimise in the given feature space ofw andb the following

min
w,b

1

2
‖w‖2 (4.9)

such that for all data we have

yi(w
Tzi − b) ≥ 1 (4.10)

That is, the value ofw which maxmises the separation, provided all training points in the two

classes lie on the correct side of the plane. As the points in the 4-D feature space described above

are unlikely to be linearly separable, the problem is transformed by replacing dot products with a

kernel function which maps the points into a higher dimensional space. This allows the algorithm

to fit the maximum-margin hyperplane in the transformed feature space. The Gaussian RBF kernel

is used for this purpose as it produces the best results:

k(w, z) = exp

(

−‖w − z‖2

2σ2

)

(4.11)

whereσ represents the Gaussian spread. This kernel replaces the dot productswTz from equations

(4.7) and (4.10).

Once the classifier is trained, the image segmentation is performed by calculating where each

pixel falls with respect to the boundary in the kernel feature space and labelling them accordingly.

The classified image is post-processed using the same steps as the unsupervised case, to produce

contiguous classes with no holes.



CHAPTER 4. CONTOUR BASED CORRECTION OF 3-D SCENES 83

4.3.2.3 From Edges to Contours

The next part of the contour correction algorithm generatesan improved contour estimate. Using

the segmentations produced so far, class boundaries in the images are used to generate an edge map

for each image. To join this edge map into a continuous contour the initial estimate is refined by

using Active Contours [88] (better known as ‘snakes’). Thistechnique has been used for segmenting

organs in medical images by applying snakes on a plane extracted from a volumetric dataset, such

as an MRI scan [89]. Starting within an initial estimate, snakes iteratively evolve a contour using

a combination of different forces. External forces push thesnake towards image features, such as

edges, whereas internal forces regulate the shape of the snake, enforcing a sort of smoothness known

as elasticity which prevents the snake from bending too muchand over fitting to the data. A typical

external force would be

E(u, v) = Gσ(u, v) ∗ II,uv (4.12)

WhereI is the image,G is the 2-D Gaussian function and the widthσ controls how far away from

the edge the force will be felt by the snake.

In this case the a variation of the classical snakes algorithm is used [88]. This variant uses the

gradient vector flow as the external force, and possesses theproperty that it is able to expand into

heavily concave regions, which is a necessary condition to be able to separate objects. The snake is

a curves(q) parametrised byq ∈ [0, 1]. It is updated by solving the following equation

st(q, t) = αs′′(q, t) − βs′′′′(q, t) + ∇E (4.13)

wherest represents the snake as a function of time,t, by means of a discrete iterative algorithm.

Constantsα andβ represent the weights of the second and third derivatives ofthe snake function

and∇E is the gradient of (4.12).

The algorithm takes as input a binary edge map (obtained fromthe boundaries between classes

provided by either the supervised or unsupervised segmentation methods, described in sections

4.3.2.1 and 4.3.2.2) and an initial contour. Again the initial contour used is that of the current
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(presumably fused) shape, projected into 2-D. This is treated as a reasonably good estimate of the

objects’ true contours, initialising the snake’s position.

Instead of using segment boundaries as edges, an simple edgedetection algorithm could have

been used which would have negated the need for complex segmentation techniques. However, if

there were any gaps in the detected edges the snake could haveexpanded into one of the objects

instead of stopping on the boundary. Another problem is thatedge detection often gives spurious

results in the presence of textures, a problem which textureaware segmentation resolves.

One drawback of the Snakes approach is the inability to change the topology of the contour as it

evolves. This means that even in the case that the objects in question are clearly distinct in a given

view, the algorithm will only produce a single contour, witha joining line of unit width. A post

processing step is required to detect this configuration andseparate the result into two contours.

4.3.3 Shape Correction Using Object Contour Consistency in2-D and 3-D

The visual hull [48], denoted byH, is the outer bound of the scene shape based on it’s appearance

in several images, and may be defined as follows:

H = {x|∀i∈1..n Pix ∈ Ci} (4.14)

Informally, if a point is within the visual hull then it’s projection falls within the scene silhouette

in every image. The visual hull can be calculated as the intersection of the backprojected silhouette

cones corresponding to the given set of images. The visual hull is used for shape representation from

silhouette algorithms.

The concept of the visual hull also applies to individual components of the scene - single objects

or groups of objects. It is by considering the visual hull of objects that the surface can be corrected

using the improved contours as calculated in the previous section.

When objects are joined in the scene representation, the surface extends beyond the visual hull of

the objects. Correction can then be applied by moving the basis function centres to lie on the visual

hull (just as centres were moved to fit certain planes based onimage block matching, as described

in the previous chapter, see section 3.3.2).
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Centres to be moved must lie on or be close to the original merged surface. This check is

important as centres are allowed to lie outside the visual hull if they are part of other objects. The

following updating formula is used for the selected RBF centres :

ĉ′i = argmin
x∈H

‖ĉi − x‖ (4.15)

where‖ · ‖ denotes the Euclidean distance. Thus the basis function centres are forced to be located

on the visual hullH while producing a minimal change to the given scene surface.

Sometimes moving the centres does not result in the expectedimprovement in modelling accu-

racy. This occurs when the correction requires creation of adepression in the surface, or separation

of two objects. In this case RBF interpolated surface will often flatten the surrounding area in

order to preserve smoothness. To remedy this problem when centres are moved, extra ’external’

constraints with negative weights are created in their place. Recall from section 3.2.3.1 that such

constraints are usually only required to provide orientability to the surface. However, their property

of enforcing emptyness in their vicinity helps force the surface to obey the necessary depression or

separation.

4.3.4 Applicability to Other Representations

It is only the last step of the procedure described above which relates specifically to the radial basis

function modelling. The same contour correction methodology can be applied to many different

shape representations. For example, using a voxel representation you can simply eliminate any

voxels which lie outside the true visual hull in any image.

For mesh based representations vertices can be moved using the same formula given above for

RBFs, equation (4.15). However, care must be taken not to produce a degenerate mesh (e.g. one in

which triangles intersect each other) is not produced. It may be necessary to iteratively move the

vertices with remeshing in between steps, or use a complex post processing step. This highlights a

key advantage of radial basis function surfaces in that guaranteeing orientability and non-degeneracy

are trivial.



CHAPTER 4. CONTOUR BASED CORRECTION OF 3-D SCENES 86

4.4 Analysis of Object Separation in Multiple Object Scenes

4.4.1 Introduction

This section presents an analytical study of the factors which influence the ability of multi-object 3D

reconstruction algorithms to correctly distinguish between separate objects. Detection of spuriously

connected objects relies on disparity between the 2-D outlines of an object observed in the image and

the outlines you would expect to get if the 3-D model was accurate (predicted contours). The error

between pairs of countours will signal that a case of fused objects exists and guide the reconstruction

accordingly.

It is the variables which determine this error which will be investigated here in a simplified

environment. Despite these simplifications a closed form solution for the this error with respect to

each variable is likely to be intractable so a simulation is used to provide empirical data about the

relationships.

4.4.2 Experiment Design

d
Camera

2l

l

θ
φ

Figure 4.1: Key variables under investigation

Two object types are considered, in order to evaluate the degree to which shape influences the

error. These two types are a pair of cuboids with square base of side lengthl and height2l, and a

pair of cylinders of diameterl and height2l. The shapes stand upright on an horizontal plane (see

Figure 4.1) separated by a gap of sized (the distance between object centres isd+ l).
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There are two scenarios for each object type, one in which there are two distinct objects, and one

in which the objects are joined by filling in the gap between them (see Figure 4.2) for an example of

this in the case of cylindrical objects.

(a) (b)

Figure 4.2: Two cases considered (a) Cylinders joined (b) Cylinders separated

Recall from section 3.2.1 that there are six extrinsic camera parameters, three of which corre-

spond to the position in space of the centre of projection andthree angles which determine camera

orientation. The camera’s position in space can be expressed in spherical coordinates[φ θ r], this is

convenient since we wish to fixr, the distance from the centre of the scene, and allow the elevation

angle,θ, and azimuth angle,φ to vary. The camera is assumed to be always pointing toward the

centre of the scene with no tilt/roll, which determines the remaining three extrinsic parameters.

The shapes are similar to shapes present in real scenes (particularly the cuboids). The size of

the objects as well as the distance between them, and camera positions were all chosen to closely

approximate the arrangement in one of the real scenes I used.Figure 4.3 shows the objects to scale,

along with a selection of 16 camera positions with the same elevation angle.

2-D projections of these scenes are obtained using the intrinsic camera parameters as measured

in section 3.2.1, thus at least geometrically resembling the images you would get from a real system

though they lack noise, illumination variation, shadows etc. As there is no background, the object

contours are easy to extract.
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Figure 4.3: Synthetic Scenes, overlaid with the camera positions

4.4.3 Analysis

This section explains the various factors which were investigated and discusses the results of the

simulation.

The ability of a system to distinguish between two distinct objects and a single large object will

be judged according to the size of the error measured betweencontours obtained from the fused

object scene with respect to the separate object scene. Two methods of calculating this error are

considered here. The first is the Hausdorff distance [44] whereF represents the set of pointsf that

comprise the fused contour, andS the set of pointss belonging to the separate object contour, is

defined as

eH(F ,S) = max
f∈F

min
s∈S

||f − s|| (4.16)

The shortest distance is found between every pair of points from F andS, and the greatest of

these distances is returned. The Hausdorff measure can be thought of corresponding to the size of

the largest divergence between the two contours. If they areeverywhere reasonably close to each

other the Hausdorff distance will be small, whereas if one moves further away at any point this will

result in a large error.

The other measure considered is the difference in the area enclosed by each contour. IfF+ and
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S+ represent the set of points that fall within each of the contours, this corresponds to the symmetric

difference, normalised by the cardinality ofS+.

eA(F+,S+) =
|(F+ ∪ S+)\(F+ ∩ S+)|

|S+| (4.17)

This is the difference between the area of the combined contours and the area of the overlap

between the contours. Again contours which are always closeto each other will result in a small

value of the error. Cases in which one contour significantly overlaps the other will result in a greater

error. However, if the area of the overlap is small relative to its size (for example if it forms a thin

peninsular) this will not result in a large error - in contrast to the Hausdorff distance.
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Figure 4.4: Comparison of error measures for the cuboid scene

Figure 4.4 shows the two error measures for the cuboid scene when varying the azimuth angleθ.

Initially viewing the shapes end on, there is very little difference between the outlines of the pair of

cuboids and the large fused cuboid. As the camera pans around, the disparity becomes more visible,

reaching a peak when the camera is perpendicular to the gap between the objects and falling again

as the camera views them end on once again.

The Hausdorff distance is more descriptive in terms of topological differences, which accounts

for the large spike as soon as the gap between objects becomesvisible. The surface difference is

more sensitive to general changes in contours and will thus be used for the other experiments in this

section. However, the Hausdorff distance is more reliable in real world scenarios where noise is

present due to a variety of factors beyond control, as we shall see in the next experimental result.
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4.4.3.1 Influence of Object Shape

In this experiment I will study how the shape of the object affects the error which is observed. I set

the distance between the objects equal their width (d = l). The elevationθ was fixed at 0.85 radians

(again corresponding to values found in the real scenes) andφ varied from 0 toπ (a full revolution

was not necessary as the second half would be identical to thefirst). Figure 4.5 shows the results of

this experiment, using the area error measure from equation(4.17).
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Figure 4.5: Error measure as a function of shape

It can be observed from Figure 4.5 that in the scene with cylindrical objects, disparities between

the fused and separate case are detectable from a wider rangeof camera positions, hence the wider

peak to the curve. However the shape of both lines are not quite similar, so in the real world noise

may mask this trend. Also apparent from the figure is that the error is higher for the cylinders at

every point. This can be explained by the fact that fusing adds more in terms of volume to the

cylinders than it does to the cubes. The fused and separate cylinder scenes are thus more ‘different’

from each other than is the case with cuboids.

4.4.3.2 Varying the Camera Elevation

In this experiment the elevation angleφ is varied, in addition toθ. Recall from section 4.4.2 that in

this simulation camera positions have only two free parameters. Clearly the viewing angle is a very

important factor in the ability to correctly distinguishing between compound and separate objects.

Distance between the objects is kept atl. Figure 4.6 shows a plot of area error againstφ andθ.
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Figure 4.6: Error with respect to camera angles

It is easiest to interpret this figure with respect toφ. Assuming the standard configuration of

a set of inward pointing cameras surrounding the scene, the surface represents error profiles for

several different choices of elevation. There is little change to the shape of the peak (and thus ability

to differentiate separate and joined objects) untilφ = 3π
8

when the error starts to increase for all

values ofθ. It is easy to see why this occurs by considering the most extreme case, whereφ = π
2
.

In this configuration, the gap is always visible as the camerais directly above the objects and thus

θ no longer has any effect. The result of increased elevation and thus independence fromθ is that

separation becomes possible for fewer cameras/images and is thus more reliable. The corollary of

this is that adding a single high elevation image is likely tolead to a large improvement in the result

by revealing the gap between the objects. This assumes that most real world scenes will consist of

tall objects on a ground plane, for other arbitrary configurations the issue is more complicated and

there may be no way to gaurantee good separation of objects. Also, the availability of high elevation

images depends on the scene, for example it is relatively easy to achieve for a collection of small

objects, however if your scene consists of buildings, for example, it may be very difficult to acquire

images from above.

4.4.3.3 Evaluating the Number of Cameras Necessary

In this experiment the goal is to determine how the number of cameras used influences the observed

error. This variable is very important in determining the performance of any multi-view 3D recon-



CHAPTER 4. CONTOUR BASED CORRECTION OF 3-D SCENES 92

struction technique as increasing the number of cameras will generally improve the result at the

expense of additional processing requirements.

Again a circular configuration at fixed elevation (φ = 0.85 rad) is assumed. To manage the

complexity I will also assume that for a givenn camera configuration the positions are evenly spaced.

However, there may still be differences between the errors observed for two different evenly spaced

n camera configurations with differentθ offsets. With this in mind, for each value ofn, I will record

the error measured between the fused and separate case for all possible offsets, and calculate the

minimum and maximum errors that arise. These extremes represents the best and worse case for

detecting the separation for each configuration. The results are shown in Figure 4.7. The figure

clearly demonstrates the need to consider all possible evenly spacedn camera configurations due to

the fact that the best case results are almost totally invariant ton. This is because deciding whether

two objects are joined can be achieved with as few as one or twocameras - if they happen to be in

exactly the right position to observe the gap between the objects.
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Figure 4.7: Error plotted against number of cameras

The shape of the worst case performance line fits with what youwould expect given that there

are only a certain number of angles for which the gap is visible. When the number of cameras is

sufficient to guarantee that at least one camera falls withinthis zone, the worst case performance

suddenly picks up. After this point there is little improvement (with respect to identifying fused ob-

jects) when using additional cameras, as illustrated by Figure 4.7, where the worst case performance

curve converges asymptotically toward the best case asn increases.
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4.4.3.4 Evaluating the Object Separation Distance

The distanced between the objects is another factor that would be expectedto have a large influence

on the result, especially considering the extreme case whenthe separation is almost zero there is a

miniscule difference between the joined and unjoined cases.

In this experimentd is varied by moving the objects away from the origin by some distance. A

circular configuration of cameras at elevation 0.85 is used as before. A plot of both area error and

Hausdorff distance againstθ andd is shown in Figure 4.8.
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Figure 4.8: Error plotted against inter-object distance

Again the general trend is as expected, smaller gaps are harder to identify by the given array

of cameras. The shape of the Hausdorff distance plots (a) and(b) clearly shows the width of the

peak getting smaller as the gap is reduced. The area error plots (c) and (d) show that the profile of
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the two different shaped objects follows the same trend as inFigure 4.5 with the cylindrical shapes

yielding a wider more gently sloping peak. Also note that with the cylindrical objects the error never

disappears, even whend = 0, as there is a difference between a scene with two cylinders touching

and the same two cylinders joined by extending to the sides (please refer to Figure 4.2).

The degree to which performance suffers for small separations hints at fundamental limitations

of any multiple object 3D reconstruction algorithm. A smallincrease in error is likely to be unde-

tectable in the presence of noise thus when the gap is small the chances of being able to detect and

resolve this in the model are slim, even when many images are used. This also has implications for

the recovery of fine details that are part of a given object.

4.4.4 Conclusion

This section presented experiments to determine how the observable error associated with incor-

rectly joining a pair of objects varies depending on: shape,angle, number of cameras and separation

distance.

The shape of the objects determines how quickly the error rises when the gap between the objects

starts to become visible, and thus the range of angles for which the error is above a given threshold.

From this we conclude that it is easier to detect that two cylinders have become joined as opposed

to two cuboids.

The azimuth angleθ is primarily responsible for variations in the observed error since it directly

affects whether or not the gap between the objects is visible(this trend is shown in all experiments).

As the elevation angleφ increases, so does the number of views which display a high error, again

as it controls whether the space between the objects is visible. Higher angles are thus preferable for

this task. It’s worth noting that for other tasks lower elevations are more helpful due to the larger

baseline [71]. However since almost any high angle is able toobserve the gap, the addition of a

small number of images taken from above will in most cases lead to a large improvement in results.

A larger number of cameras will on average lead to a greater detection rate, however a very

small number of cameras can still be effective if they are in fortunate positions. The mechanism for

this is the same as before and centres around when the gap between the objects is visible in different

amounts. There is a hard limit for the number of camera positions, beyond which adding additional

cameras leads to no further improvement.

Finally the separation distance also presents limits to detection as both the visibility angles and



CHAPTER 4. CONTOUR BASED CORRECTION OF 3-D SCENES 95

difference in projection of the contours shrink whend is reduced.

The results from these experiments help set out the operating limits for any multi-object 3-D

recovery algorithm, and suggest a reasonable number of cameras that should be for the task. As

expected closely placed objects are unlikely to be separable unless there is an extensive collection

of images available. However, overhead cameras can be very effective for separated free standing

objects.

Due to the fact that occlusion by other objects does not occurin the simulation, the performance

on more complex collections of objects will be worse than thecases analysed in this study. The

correct demarcation of individual objects is a very difficult problem in practice and in some cases

complete scene recovery will be impossible for any realistic number of cameras external to the scene.

In the following section we will analyse the 3-D reconstruction of a real scene with several

objects using multiple images.

4.5 Experimental Results

This section presents the results of experiments carried out to test the algorithms presented in Sec-

tion 4.3, using real data. The dataset used is of the first object collection Figure 3.5 from the previous

chapter. The original input images and camera calibration information were used. The RBF surface

after correspondence based based updating (see Section 3.3.2) provided a starting point.

This dataset was chosen as it exhibits a very good example of objects which are spuriously fused

together in the reconstruction. The knife block and kettle are almost completely joined, due to their

proximity, and as a result of errors in the voxel model. Theseerrors themselves stem from the

similarity in colour between the carpet and knifeblock, andthe fact the gap between the objects is

only visible in two views due to occlusion from the cereal box. The second dataset did not contain

any fused objects after the disparity based updating procedure.

Figures 4.9 and 4.10 show the input data. Figure 4.9 shows twoof the input images (which are

identical to those used in the previous chapter) whilst Figure 4.10 (a) shows the RBF surface (after

disparity based updating), and Figure 4.10 (b) shows the fused object pair itself after segmentation

from the rest of the scene. The pair of objects were segmentedby thresholding the scene to remove

the ground plane .
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Figure 4.9: Two of the twelve input images

(a) (b)

Figure 4.10: The input surface before (a) and after (b) the problem objects have been segmented
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4.5.1 Feature Selection

The texture filter described by Equation (4.2) from the previous section was applied to the input

images in order to provide additional information for segmentation. This is combined with the three

colour channels to give a four dimensional feature space. The influence of the texture channel is

controlled by scaling parameterζ, for example a very large weighting value has the tendancy to

allow texture to dominate the segmentation. A setting ofζ = 2 (meaning texture was twice as

important as any single colour channel) was found to give good results across all of the images. The

width of the filter,σ was set to 2 pixels and the output was clamped to the interval [0 2000], and

then normalised to 255.
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Figure 4.11: Texture response in two images

Figure 4.11 shows the response of the texture filter in 2 viewsranging from 0 (black) to 255

(white). The filter clearly distinguishes between the carpet and wood grain of the knife block. It also

exhibits a high response around very strong edges as can be seen on the blue book cover text. This

is an undesirable effect as strong edges and grainy texturesare very different in character. However

in this case the results of contour fitting are not significantly compromised due to the fact that the

new contour is constrained to lie within a certain distance of an initial estimate.

4.5.2 Unsupervised Segmentation

In this experiment the supervised segmentation method based on mean shift clustering [31], de-

scribed in section 4.3.2.2, was applied to the feature set described above. The implementation con-
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tains code for mean shift clustering by Bryan Feldman,http://www.bryanfeldman.com/ .

As this segmentation method is based on an unsupervised classifier the number of classes is

assumed to be unknown. The sensitivity, and hence the numberof classes that result, is based on a

parameter of the density estimation step called the bandwidth.

If the value is too low, the filter is too sensitive and oversegmentation occurs, if the value is

set too high undersegmentation occurs. Generally oversegmentation is not a problem unless the

area between the two objects becomes split into two or more classes. This will result in spurious

edges being passed to the contour fitting step. Undersegmentation can be tolerated provided that

the objects in question are assigned to different classes toeach other, and to the background! A

bandwidth of 25 was found to be effective across all images.
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Figure 4.12: The unsupervised segmentation results for oneof the input images

Figure 4.12 shows the results of the segmentation for various input images. Segments have

been coloured according to the average colour of pixels belonging to each segment. As can be

observed from the figure, the algorithm segments well the various different objects in the scene.

Key edges are preserved despite the oversegmentation of theobjects (particularly the kettle). Even

though the image is oversegmented in the sense that each object is made up of several segments,

the set of segments belonging to each object are fully disjoint and thus the object boundaries are not

compromised.
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4.5.3 Supervised Segmentation

In this experiment the supervised segmentation method based on Support Vector Machines described

in section 4.3.2.1, was applied to the feature set obtained in section 4.5.1. The implementation

contains code for Support Vector Machine classification by Gavin Cawley, from

http://theoval.sys.uea.ac.uk/˜gcc/svm/toolbox .
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Figure 4.13: The image used to train the algorithm overlaid with samples belonging to class 1 (red
crosses) and samples belonging to class 2 (blue circles)

This method is supervised and thus requires training. Image3, shown in figure Figure 4.13, was

used as training data. Samples belonging to class 1 are marked in with red crosses and samples from

class 2 with blue circles. In total two points from each object and one or two points from the each

background object were sampled giving training set of size 11. This image was specifically chosen

as it doesn’t show the gap between the objects so that no samples are taken from this area to avoid

biasing the result.

Figure 4.14 shows the results of applying different kernelsto the SVM algorithm. White repre-

sents class 1 (the objects) and black represents class 2 (thebackground). The linear kernel performed

better than expected, the various colours and textures are well separated in the feature space. The

polynomial kernel (b) gave very similar results with the main difference being the inability to dis-

tinguish tones close to black.

The b-spline kernel gave the worst results which is somewhatsurprising, failing to distinguish

between the forground and background classes at all. Interestingly the Gaussian RBF kernel (d)
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Figure 4.14: Results of applying different kernels, (a) linear (b) polynomial (c) bspline (d) gaussian
RBF
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gave the best results, this is essentially the same kernel that performed poorly at surface modelling.
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Figure 4.15: Final segmentation result

Figure 4.15 shows the final result using the Gaussian kernel for image 3 (which corresponds

with the results from the unsupervised method, Figure 4.12). Parts of the background are falsely

classified as the objects due to containing exactly the same colour and texture properties as the

objects in question. However since the boundary of the objects is distinct in most cases and due to

the search area restrictions this is not a problem, and in general the segmentation is successful. One

problem area compared with the unsupervised results is the top of the knife block, which is assigned

to the background. This region is very similar in colour (butnot texture) to the carpet.

4.5.4 Generating Contours

The contour fitting method described in section 4.3.2.3 is applied to the both the unsupervised and

supervised segmentation results in this experiment. The implementation contains code for the Gra-

dient Vector Flow snakes algorithm by Chenyang Xu and Jerry Prince,

http://iacl.ece.jhu.edu/projects/gvf . The elasticity, rigidity and viscosity param-

eters were set to 0.05, 0, and 1 respectively. As binary edge maps are used (in contrast to edge maps

with varying intensities) the snake is not overly sensitiveto these settings as, for example it doesn’t

have to overcome weaker ‘false’ edges or be resistant to gapsin the edge map. Elasticity needs to be
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sufficient to allow the snake to fully explore concavities inthe contour. Snake settings were kept the

same for the unsupervised and supervised datasets. The projection of the fused object RBF surface

(see Figure 4.10 (d)) is used to initialise the snake (see Figure 4.17 (b)). A search radius of 50 pixels

is applied to prevent the snake from moving too far away.
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Figure 4.16: Merging of small segments (a) before (b) after

Before the edge map is obtained there is a filtering stage which removes classes with fewer than

100 pixels and assigns their pixels to the largest adjacent class. This helps remove some noise since

such small clusters are unlikely to be significant. Figure 4.16 shows the results before and after this

operation on the supervised segmentation data. As can be seen from the figure the output is visibly

cleaner. Many of the falsely classified background areas arecorrected, for example the cereal box

and the book text. Similarly, falsely classified areas of theknifeblock and particularly the kettle are

corrected in this step.

Figure 4.17 (a) shows the resultant binary edge map (before the search radius restriction was

applied). Figure 4.17 (b) shows the initial state, the thin red line represents the initial location of the

snake whilst the edges within range are shown in grey. (c) represents the progress of the snake as it

evolves from the initial contour estimate to fit the edge datashown in intervals of 15 iterations. (d)

shows the final result the snake converged on. A limit of 750 iterations total was required to allow

the snake enough time to fully extend into all concavities.

Performance of the snake was very good in all cases. Comparisons between the initial and final
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Figure 4.17: Progress of the snakes algorithm (a) input edgemap (b) snake initialisation (c) progress
in intervals of 15 iterations (d) final snake result
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contours, overlaid with the image data are shown in Figure 4.18 for the unsupervised segmentation

and in Figure 4.19 for the supervised segmentation. Note that due to the thresholding of the ground

plane, the initial contours (red) do not extend to the bottomof the objects.
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Figure 4.18: Initial and final contours for various images using unsupervised segmentation

In general the results from the unsupervised segmentation were better. There were fewer parts of

the objects missing (false negatives) and fewer areas wherethe contour extends beyond the objects

(false positives). Figure 4.20 shows this trend numerically, contours extracted from image data are

compared to the ground truth (obtained by hand) using the Hausdorff distance. The performance of

the supervised algorithm is slightly worse in almost all images.
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Figure 4.19: Initial and final contours for various images using supervised segmentation
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Figure 4.20: Numerical accuracy of extracted contours as evaluated against the ground truth using
the Hausdorff distance

This can be explained by the fact that the two class model usedin the supervised case is too re-

strictive for this application. It doesn’t matter that background objects are assigned to many different

classes, likewise it is not essential that the objects in question are uniquely segmented. There could

be many classes as part of each object - the only important fact is that class boundaries correspond

to genuine edges in the image.

4.5.5 RBF Surface Correction Using Contours

In this experiment the extracted contours are used to correct the input RBF surface (see Figure 4.10

(c)) using the methods described previously in Section 4.3.3.

Recall from Section 3.4.1 that a manual segmentation was performed on the images to ensure the

scene was contained within a bounding volume for the voxel carving algorithm. This segmentation

removes the background and thus provides a silhouette of thescene in each image, as shown in

Figure 4.21. These silhouettes may be treated as contours and used to correct the RBF surface,

using the contour updating method. No initial contour is required since we are dealing with the

entire scene, every basis function centre is checked for consistency.

The results are shown in Figure 4.22. The most obvious improvement is in the handle of the
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Figure 4.21: (a) segmented input image (b) scene silhouette

(a) (b)

Figure 4.22: silhouette based correction (a) before (b) after
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kettle. This had previously been smoothed over by the RBFs but movement of centres away from

the problem area and the creation of negative constraints have allowed the recovery of this thin

structure. This demonstrates that with accurate data, the smoothing tendencies of RBF surfaces can

be overcome to recover fine details. There is also a slight reduction in a bridge between the kettle

and cereal box. Elsewhere in the model the RBF surface closely follows the silhouettes so no further

improvement occurs.

Bulding upon this result the contours extracted by both the unsupervised and supervised segmen-

tation algorithms were applied in turn. The same initial 3-Dsegmentation (see section Section 4.5)

was used in both cases to limit the basis functions that were checked for contour consistency. The

results are shown in Figure 4.23 and compared to the surface before silhouette correction.

(a) (b) (c)

Figure 4.23: Correction results (a) initial surface beforecorrection (b) surface after contour correc-
tion with the unsupervised method (c) surface after contourcorrection with the supervised method

There is clearly a large improvement in the area between the kettle and knife block, with both

methods achieving a complete separation of the two objects.Initially the appearance of the surface

is very similar between the unsupervised and supervised results, however it should be noted that the

upper part of the knife block is falsely truncated by in the supervised result. This can be explained in

reference to the contours; in Figure 4.19 (c) the extracted contour misses the top of the knife block

due to misclassifying the whiter tone of the wood as background. Compare this to Figure 4.18 (c).

This error is sufficient to move the centres too far down the knifeblock, reducing its height.

Figure 4.24 shows the coloured results for the same three surfaces. As expected there is an
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(a) (b) (c)

Figure 4.24: Coloured renderings from (a) initial surface before correction (b) surface after contour
correction with the unsupervised method (c) surface after contour correction with the unsupervised
method

improvement after contour correction with objects now visible through the gap between the kettle

and knife block. The only clearly visible difference between the results from the two segmentation

methods is the top of the knife block, which is missing in the supervised result, confirming what was

observed from the 3-D surfaces.

It is possible to quantify the differences between the coloured surface renderings and one of the

input images by considering the squared errors or a per pixelbasis. Plots of these errors for the three

surfaces are shown in Figure 4.25
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Figure 4.25: squared pixel errors between an input image coloured renderings from (a) initial surface
before any correction (b) surface after contour correctionwith the unsupervised method (c) surface
after contour correction with the unsupervised method
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Model PSNR
(dB)

Initial surface 11.17
Surface after contour correction with the unsupervised method 13.91
Surface after contour correction with the supervised method 13.75

Table 4.1: PSNR when comparing rendering images with an input image window

The error is greatest when part of the black book is seen through the gap. In other areas the

brown texture of the carpet is very similar to the wood of the knife block yielding a smaller error.

The area in between the objects shows a considerable improvement, becoming much more consistent

with the input image. The area at the top of the image between the cereal box and book also shows

a large improvement, this time due to use of the scene silhouettes.
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Figure 4.26: The window over which the PSNR between the original and rendered images was
computed

The input image was specifically chosen to display the gap between the objects. Even with

this consideration, the overall reduction in error is quitesmall. However, concentrating on the area

between the objects, and calculating the PSNR between the coloured renderings and input images

across the window highlighted in Figure 4.26 shows that a quantifyable improvement does result, as

shown in Table 4.1.
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The values show a clear improvement from the uncorrected surface and give a slight advantage

to the unsupervised algorithm. Note that the window doesn’tfully cover the truncated part of the

knifeblock so this difference is on top of the differences already discussed.

4.5.6 Fused Object Disparity

Finally this section presents an experiment into the effectiveness in detecting fused objects using

real data. This provides a companion to Section 4.4 which investigated the factors which influence

observed contour errors on synthetic data. Figure 4.27 shows the disparity between the contours

extracted from the image data and the ‘predicted’ contours obtained from the uncorrected RBF

model using the Hausdorff and area measures defined in Section 4.4.3. The extracted contours were

from the unsupervised method.
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Figure 4.27: Numerical discrepancies between the predicted and observed contours

As demonstrated by Figure 4.27 (a), the real data displays almost exactly the same trend as the

simulation for the Hausdorff distance, with a peak centred on the angles for which the gap is visible.

However when using the area measure (b) the peak is drowned out by noise as small area errors

along the contours length add up to become similar in magnitude to the error caused by the incorrect

topology. The Hausdorff distance only looks for the greatest deviation between a pair of inputs and

so avoids this error aggregation, making it more suitable for use on real data.
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Figure 4.28: More views of the unsupervised contour correction result

4.5.7 Final Results

This section presents some more views of the most accurate result obtained (using the unsupervised

contour correction method). Coloured renderings from eachof the 12 original camera positions are

shown in Figure 4.28, a larger version of one of the images, along with the corresponding input

image is shown in Figure 4.29.
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Figure 4.29: Closeup of one of the final views (bottom), with corresponding input image (top)
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4.6 Conclusion

A method was presented to correct RBF scenes using contours extracted from image data, particu-

larly in the case where objects have become undesirably joined by the RBF modelling procedure.

This method complements the approach described in the previous chapter by utilising areas with

constant colour or texture to correct errors. In addition tothis a study is presented into the factors

and ultimate limits of such techniques.

The approach fits into a statistical framework for maximising the likelyhood of accurate corre-

spondence between 2-D and 3-D contours, given the image data(see section 4.2). In section 4.3 two

methods of extracting contours were presented. Both jointly utilise colour and texture information.

The first unsupervised method benefits from a simpler initialisation but can perform poorly when

the parameters are not properly set. The second supervised approach is more robust in this respect

however some user input is required (in the form of selectingregions to use as training data).

Experiments were presented using real image data (see section 4.5). The object outlines were

extracted accurately in most cases, but more importantly the shapes were completely separated by

the approach in spite of occasional errors. Some of these errors result from similar colours being

present in the background. Performance of the two segmentation approaches were similar however

the numerical results indicate an advantage to the unsupervised approach. This may be attributed to

the fact that oversegmentation that it may produce is not usually a problem, and the flexibility this

adds improves reliability.

The improvement in the model is clear from looking at textured representations from cameras

in which the gap between the objects is visible. Before correction the textures are blurred and

correspond to different regions in different images. Aftercorrection the appropriate background

texture is applied to the area between the objects. This improvement is also confirmed numerically

by summing the errors between synthesised images of the scene and the corresponding input images.

The theoretical study provided a number of interesting results (see Section 4.4). The shape of

the objects determines how quickly the error rises when the gap between the objects starts to become

visible, and thus the ease of which an image based algorithm can separate them.

The azimuth angle is primarily responsible for variations in the observed error since it directly

affects whether or not the gap between the objects is visible, however as the elevation angleφ

increases, so does the number of views which display a disparity. Elevated views are thus preferable
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for this task.

A greater number of cameras will on average lead to a greater detection rate, however the best

case performance indicates that a small number of cameras can be effective if they are in the right

position. There is also a practical limit for the number of cameras, beyond which adding additional

cameras leads to no further improvement.

Finally, the separation distance also presents limits to detection as both the visibility angles and

difference in projection of the contours shrink when the separation distance is reduced. This indi-

cates that closely placed objects are unlikely to be separable unless there is an extensive collection

of images available.

Overall the study confirms that modelling multi object scenes is a significantly more difficult

problem than the case of single objects which has predominantly been studied previously.

Further work in this area would include a method to automatically detect and segment problem

surface regions, or a more sophisticated segmentation approach to reliably find image edges corre-

sponding to all object boundaries. Such a scheme might work best in an iterative manner where 3-D

information is fed back into the segmentation/edge detection algorithm to incrementally improve the

correspondence between 2-D and 3-D edges.

Finally, increases in the accuracy of the model will at some point require more detailed, higher

resolution 3-D models, particularly in the presence of sharp surface features or edges. This might

be achieved by either compactly supported basis functions to allow many more centres to be used,

or anisotropic basis functions which support tighter curvatures in certain directions (this is particu-

larly useful for representing hard edges for example). Alternatively hybrid representations may be

developed to account for both smooth and angular surfaces.



Chapter 5

Conclusion

This chapter presents the conclusions that may be drawn fromthis thesis. Section 5.1 details the

novel contributions made herein. Section 5.2 discusses potential applications of the work. Section

5.3 presents a critical analysis of some of the weaknesses inthis approach to 3-D scene modelling,

which are then addressed in section 5.4 which discusses future directions for this research.

5.1 Contributions

The first novel aspect of this research is the systematic approach designed specifically for the mod-

elling of multiple object scenes. As discussed in section 3.1 this problem is significantly more

difficult than than the case of modelling single objects and thus requires different methods for its

solution. Initialisation is a much bigger problem since theshape of the scene is considered to be

unknown. Also there is an increased likelihood that the actual shape varies considerably from the

visual hull or approximation of the object(s) as a sphere.

The next novel contribution is the method to update radial basis function models. Traditionally

radial basis functions have been used to approximate functions given observations and to fit surfaces

to sets of observations. In this work they are also used as an intermediate representation for surface

refinement instead of just as a final destination. Previouslypolygon meshes and volumetric methods

(which involve updating a 3-D grid of values) have been used almost exclusively for this purpose.

Evolving the RBF surface entails more than just moving the points used to fit the surface, as this will

often result in concavities being smoothed over. In addition to moving the RBF centres appropriately,

extra centres are created which are constrained to force theimplicit surface function to take a positive

116
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value therefor causing the space to become empty.

Two methods are provided to calculate how to adjust the RBF surfaces based on the image data,

which is regarded to be the only information available aboutthe scene. The first contains a novel

method to match surface textures between perspective viewsof a surface patch (under the assump-

tion that the surface can be locally approximated as planar). This method reduces the matching

problem to a linear search (conducted at difference scales)whilst still taking the full perspective

projection into account

The second method utilises classification and segmentationalgorithms which have been pub-

lished previously. However it is novel in that it forms a compliment to the texture matching method

and in that it extends the concept of silhouettes into a multi-object domain. Whereas the previous

disparity based updating method only works in the presence of strong textures, the segmentation

based contour correction works best in the absence of surface textures. The two methods together

form a novel scheme that takes full advantage of all available image information.

5.2 Applications

There are many potential applications to this technique of modelling multiple object scenes from im-

ages. Digital 3-D objects are used in many areas such as films,computer games, educational/learning

tools and interactive mapping. It is not intended that this method would speed up the digitization of

objects by processing several objects at once - it would be more accurate to model each in isolation

and then re-pose them in 3-D if necessary. Instead the goal isto demonstrate the feasibility of mod-

elling more complex scenes that would take a long time to either model by hand or digitize object

by object.

Such scenes could represent the interiors of rooms, collections such as museums or historical

sites so that people may visit them in a virtual environment.The ability to handle scenes containing

multiple objects hints at possibilities in the field of largescale recovery of urban environments.

Interest in this area has increased due to the popularity andwidespread use of technologies such as

Google streetview. Currently Google streetview contains very little 3-D information (not counting

the trajectory of the vehicle used to capture the images), consisting as it does of a series of individual

360 degree panoramas. However future versions will be able to take advantage of multi-object

reconstruction from images in order to provide a richer true3-D experience.
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The multiple object modelling methodology presented here also achieves compression by re-

moving the redundancy present in sequences of images of the same scene. If coloured output is not

required, the RBF model achieves a very high compression ratio, generalising the data contained in

tens of megabytes of image data down to around 6000 integer coordinates in three dimensions (the

RBF centres) and 6000 floating point weights, which togethertake up approximately 40 kilobytes.

If colour/texture information is also required the space used increases substantially as values

have to be stored for each point on the surface. The precise amount depends on the resolution at

which this is achieved, however. Matching the image resolution would still result in a reduction of

storage as the corresponding parts of each image are only stored once. Whilst this is not a practical

alternative to standard image compression in most situations as fields such as 3-D television mature,

compressing and coding 3-D models efficiently will gain importance.

5.3 Critical Analysis

This section covers some shortcomings of the methods presented in this thesis. Firstly it is assumed

that both camera positions and the projection parameters are known in advance. This is fairly com-

mon amongst 3-D reconstruction algorithms, and there are reliable methods to obtain this calibration

information. However, the precise internal camera parameters may change slightly from their cali-

brated values when a particular image sequence is captured.The focal length, for example, changes

slightly depending on where the lens is focused, even for a non-zoom lens.

All of the methods presented in this thesis rely at some levelon the assumption of Lambertian

reflectance. That is, that the appearance of a point on a surface does not vary with the viewing angle.

Almost all real surfaces deviate from this to some degree. Significant deviations cause serious

problems as they result in false matches.

There is room for improvement in the contour extraction methods presented in section 4.3. Su-

pervised methods in general are undesirable in this field as the ultimate goal is for a system which

operates without any human interaction (since humans are often a lot better at solving high level vi-

sion problems). Also the separation into a distinct segmentation and contour fitting by snakes steps

is not strictly necessary.

Radial basis functions have many advantages, principal amongst which is the fact that they

guarantee smoothness of the surface in the first three derivatives. However, this very smoothness
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makes it very difficult to represent rough surfaces and sharpedges. By scaling down the RBFs more

detail can be represented but this requires more centres. There is a practical limit on the number of

RBF centres that can be used as the time and space requirements to calculate the weights areO(n2)

in the number of centres.

Finally the space containing the scene must fit within a bounding cuboid. This clearly limits the

application to large scale scene recovery (such as urban environments) and breaks the condition that

no a-priori knowledge about the scene is required.

5.4 Further Work

In order to address the main shortcomings identified previously the following further work should

be carried out. In order to address the problem of calibration errors, recalibration could take place

at each step, using the image data from the scene directly. This could be achieved by varying the

paramters which describe the camera’s interal characteristics, recomputing the shape and examining

the error with respect to the images.

Although voxel carving methods are restricted to the Lambertian reflectance - due to the fact that

voxels have no orientation - RBF surfaces do, so it would be possible to take non-uniform reflectance

into account. This would be achieved by modelling the BDRF, the bi-directional reflectance distri-

bution function. In some cases the problem may be under-constrained or there may be ambiguities.

This could cause image regions that do not correspond to the same part of a 3-D surface to appear

to match, for some BDRF. However it would be possible to modelthe BDRF across the surfaces

with RBFs as well, in order to take advantage of smoothness toremove ambiguities by assuming the

surface reflectance properties are locally similar.

The contour correction process would benefit from a more sophisticated colour/texture segmen-

tation algorithm which could potentially also take non Lambertian reflectance into account, as an

intermediate 3-D model of the scene is available at this stage. Segmentation/contour fitting with

snakes could be combined into a single step using a snake energy function that takes colour and

texture information into account, forgoing the need for separate stages.

There are several problems with RBF surfaces mentioned above which could be addressed with

more research. Firstly there is the problem of smoothness, which could be overcome by utilising

a mesh based representation in addition to the RBF surface. One of the disadvantages of polygon
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meshes compared to RBFs is the need to constantly check for degenerate meshes when altering the

surface and the inability to cope with topological changes.However after refinement, the surface

model is quite close to the true surface so these disadvantages are no longer significant. Thus it

would be possible to convert the RBF surface into a mesh and evolve the mesh using an error

function based on the difference between the rendered surface and input images. This final post

processing step would allow fine details and sharp edges to berecovered.

Another problem is that the number of RBFs is limited by the need to calculate all weights simul-

taneously. Attempts to use compactly supported basis functions remove this requirement resulted in

poor performance in experiments (see section 3.17). Further research into a radius of support which

is great enough to take advantage of smoothing and hole filling, whilst still being finite, would allow

more basis functions to be used in order to represent more complicated scenes.

This would fit naturally with a scheme to warp the space that the model occupies in order to

allow far off objects to be represented, but in less detail. This is acceptable as further away objects

will be smaller in the images and feature less perspective change so their modelling will not be as

accurate. This non-uniform space would forgo the need to keep the scene within a bounding cuboid

and allow extensive scenes such as large urban areas to be modelled.
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