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Abstract

Photorealistic 3-D models are used in a wide variety of apgibns from entertainment and
games, through to simulation, training . Algorithms to awically create such models from or-
dinary photographs can vastly reduce the workload and eepassociated with acquiring such
models. The vast majority of research into reconstructiiyrBodels from images has concentrated
on the case of single objects.

This thesis presents a method to model complex multi-olsjgehes in a series of steps starting
with a set of images which surround a scene and finally produai complete photorealistic rep-
resentation of the objects. The probabilistic space cgraigorithm is used to provide an initial
estimate of shape as it makes no assumptions about the dhifygescene aside from the bounding
cuboid. This representation is smoothed by fitting a Radédi® Function implicit surface, which
smoothes noise and interpolates any missing data. Errachyhbrsist are addressed by a matching
surface points between images and estimating the pergpdnsformation between them which
is used to calculate the correct position for the point, Whécconsistent with the input images. The
model may be corrected by constraining the surface to pasagh these points. The smoothing
properties of RBFs can cause problems by interpolatingsacobjects which are close together,
causing them to be joined in the representation. A methodeisgmted to correct this by enforcing
consistency between edges in 2-D and 3-D.

Experiments are conducted using real image sequences gli@omulti-object scenes. Both
qualitative and quantitative evaluations are performadatestrating the effectiveness of the meth-
ods presented. In addition to modelling all of the objecespnt, colour surfaces are produced from
which even fine text is legible. A detailed study is undertakeo the factors which influence the ef-
fectiveness of techniques to recover partially or fullydfd®bjects and conclusions are drawn which

hint at the ultimate limit of accuracy in the case of multiplgects.
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Notation

In general sets are indicated by caligraphic capital lettermatrices and tensors by capital italics,
M, column vectors by lowercase bold, and scalars by lowercase italigs,In addition to this the

following notations are commonly used:

T ={Lli € 1.n} the setofn inputimages

U,V
i

u=1I a [colour] pixel at coordinates, v in image:
P ={P;li € 1.n} the setof corresponding projection matrices
C; acontour corresponding to image
u € C; apointin 2-D which lies within the contour
V  the visual hull of an object or group of objects
x = (z,y,2)T apointin 3-D space, made up of three coordinates
¢(x) aradially symmetric basis function
c the centre of a basis function (a point in space)
n  normal vector (of unit length)
Please note the difference between the projection mBterd the probability of an eveit(e). The
following terms have a specific meaning with this thesis.oQp} a triplet of values that determine
the appearance of a point on a surface or image, capturihtnégs as well as the hue. Thus dark
blue, light blue, black, white etc. are different considkete be different colours. This is slightly

different to the definition of colour as a particular wavejdmof light. Texture - the pattern of

colours across a surface. This does not refer to the tactdéty of surfaces in any way.



Chapter 1

Introduction

We live in a three-dimensional world. For computers to be ablinteract with this world they need
sensory information about their 3-D environment. The fidldamputer vision lies at the confluence
of many areas of research, such as artificial intelligenaeotics, optimisation, pattern recognition
and signal processing. The ultimate goal is to allow compuie understand and reason about the
outside world visually, in a similar way to human beings. &dnputer vision concerns the process
of inferring spatial relationships from data obtained gsiameras or other electromagnetic sensory
equipment. Applications of 3-D vision include automatedigation, tracking and interpretation of
motion, face recognition and 3-D modelling.

The earliest origins of 3-D computer vision can be tracethécstudy of photogrammetry - mak-
ing measurements using photographs. Photogrammetrylutatkso the mid-nineteenth century and
is almost as old as photography itself. It was used prinlsiga}l architects and cartographers for
the purpose of creating accurate diagrams and is still wskytin areas where direct measurements
cannot be made. In photogrammetry the emphasis is placely fimmaccuracy. This requires high-
quality carefully constructed camera equipment (to misarthe distortion introduced by the lens
elements and any other imperfections) and full knowledgb®tameras internal geometry. Special
markers are usually attached to objects which are then gragibed from different angles. From
these photographs the absolute position in space of theemsackn be calculated geometrically.

Influences have also been drawn from other areas of mathesraatd computer science. The
popularisation of “impossible shapes” such as Penrosegigan the 1950s sparked interest in the

mathematical properties of drawings. One of the first usesoabtraint programming in Al was

13



CHAPTER 1. INTRODUCTION 14

to reason about physically plausible 2-D figures. Edges anctipns were labelled according to
wether they represented a convex, concave or occludingdaoynlf a labelling consistent with a
set of rules could be produced then the figure can be said todg@esentation of a 3-D real shape.

The first steps toward the description of a modern compugtorvisystem may be attributed to
David Marr [58]. Marr was a neurobiologist who set out to dise how human vision could be
defined as an information processing task. He argued thauatytask required three components:
the computational theory (which defines the problem andigesvthe motivation for its solution)
the representation and algorithm - a model of the processhwbads finally to an implementation.

Applying his theory to the human visual system he describas $tages in which visual infor-
mation is processed, these are the retinal image, the psketth, the %D sketch and finally the
3-D model.

In recent years researched has moved on from the first twesstagconcentrate on the final
stages. Itis possible to infer shape from a variety of visuals. Algorithms for 3-D reconstruction
are often referred to as “shape from X” depending on the qdati cue used.

Shape from shading aims to reconstruct a 3-D surface basetisemved irradiance in a single
image. By modelling the interaction between incident light! the surfaceinformation about the
shape can be inferred, although in general the problem israndstrained (since for each observa-
tion two angles must be calculated to define the surfacetatien). Additional constraints such as
smoothness are thus required to obtain a unique solutidn $&pe from shading has been shown
to be effective for object recognition [87] although the kgability to general 3-D vision is limited
by the requirement of untextured diffuse surfaces.

The appearance of an object’s texture is strongly influertigethe surface orientation leading
to the formlation of shape from texture. Geometric textunalgsis requires the identification of
repeating patterns which is not always possible. Frequeéoayain algorithms such as [69] rely
on changes in the power spectrum that indicate variatiomiifase orientation. Unlike shape from
shading the problem has sufficient mathematical constraiptovide a unique solution however a
fixed repeating texture must be used.

Human binocular vision provides the inspiration for shajenfstereo. Stereo algorithms take a

pair of images and use the displacement of correspondingerfeatures in order to estimate depth

! For example using Lambert’s law, which states that the sitgwof reflected light is proportional to the angle between
the surface and the light source.
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(distance from the camera). The output is often in the forra dépth map, which contains a depth
value for each pixel in the input images [74].

A related field to shape from stereo is shape from motion (monemonly referred to as struc-
ture from motion, or multi-view stereo). As the name suggestovement of either the object or
camera provides the information for reconstruction viaittleience of perspective. A wide variety
of algorithms have been presented for this problem and tteasbe broadly classified as either 2-D
to 3-D, in which image measurements are used to infer 3-Drimdtion (similar to photogramme-

try), or 3-D to 2-D, in which a 3-D shape is created and refirmeahatch the images.

Shape from shading, shape from texture and shape from siahg@roduce a gD representation,
meaning some parts of the scene are not present in the modelg@l of 3-D computer vision is
to obtain complete 3-D models of real world objects and sseSach models form the backbone of

a number of applications, including:

e Simulation, in which models are used to study new scenaripsavide realistic training that

would otherwise be expensive or impossible to undertakeeffample space missions).

¢ Modelling, whereby experimental designs can be evaluatexkplored visually without the

need to create expensive fabrications.

¢ Virtual Reality, immersion in a 3-D environment where a uisefree to move around and

interact. Forms of VR are commonly available for both ediocat and recreation purposes.

e Augmented reality, where the real and virtual worlds are lmioed. These techniques are

often used to provide special effects in films such as Theiklatr

In many of the applications mentioned above the models apainerl to be photorealistic, that is
views rendered of the model must be photographic in appeariémot completely indistinguishable

from photos.

This thesis describes a method to obtain photorealisticri8eels from scenes containing mul-
tiple objects, using only a set of images captured from w&rjpositions around the scene.

Chapter 2 presents a survey of literature on the subjectirgtavith the foundations of computer
vision and then considering early work in 3-D modelling daled by detailed studies of relevant

strands.
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Chapter 3 concerns creating and improving 3-D representatf real scenes using image sets.
The theory behind image formation is explained in detaih&sforms the foundation of much of the
following material. Probabilistic space carving forms thitial step of the modelling process, fol-
lowed by the fitting of smooth surfaces to the space carviaglteA novel method of updating these
surfaces by examining image disparities is presented. mbitbod avoids the need to approximate
the form of the 2-D distortion that arises when the initiaiface is incorrect. Finally Experiments
are presented using two challenging real world data setgrendesults analysed and conclusions
drawn.

This work is built upon in Chapter 4, which principally adgses a common problem whereby
objects close to each other in the scene become joined tgethhe reconstruction. A solution
is proposed based on the observation that an edge in 3-D ¢vihesurface disappears from view)
must have a corresponding edge in the images thus the affjfiitiing edge can be identified and re-
moved. A investigation is conducted into the conditionsarmwhich this is possible, using synthetic
data. These results are confirmed by further experimemg tise same data as the previous chapter
and conclusions are drawn about the effectiveness andtioris of multi-object 3-D reconstruction
from images.

Finally, Chapter 5 summarises all of the results obtainad,discusses possible applications of

the work.



Chapter 2

Literature Review

2.1 Computer Vision

One of the earliest publications in the field of computeronsivas David Marr's seminal work on
visual processing [58]. Marr argues that the human visustesy is best expressed as an information
processing task. He goes on to state that any such taskeesqualysis at two levels, that of the
computational theory, which is concerned both with whatasputed, and importantly also why
it is computed. The level below this is the realm of the howerehthe algorithms that accomplish
the task belong. Marr uses the analogy of fourier analykis definition of the fourier transform
is separate from the fast fourier transform algorithm. yutderstanding the latter requires a full
understanding of the former. Thus each of the stages ofrviie always described in reference to
their place in the overall system.

The motivation, the ‘why’ part of a visual system, is to egtra representation that useful to
the observer, and which does not contain extraneous or dedtiinformation. As for the ‘how’,
Marr identifies four stages characterised principally by thpresention and type of data that is
manipulated. Namely these are; the retinal image, the praketch, the %D sketch and finally
the 3-D model. The first stage is analogous to signal praogsshereby the raw data is captured
and transformed as necessary. The primal sketch contaims lsigher level structures, which might
be simple features identified in an image. These featuressm@ to infer 3-D information in the
next step. Marr coined the tern% to refer to a representation that is labelled with sometivela

3-D relationships but does not constitute a complete 3-Rrigwon. Finally the full 3-D model is

17
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described using an absolute frame of reference.

2.2 Stereopsis

Stereopsis refers to the problem of inferring depth fromrspaf images taken from side by side
viewpoints. It corresponds to th% sketch in Marr’s vision hierarchy, and work in this area was
clearly inspired by the human visual system. The technigjineipally revolves around the problem
of correspondence, once the location of a point is known th boages the depth can be estimated
by the degree to which this location differs.

A detailed catalogue of the range and breadth of approact&sreopsis can be found in [73].
Only methods which take two images and return a depth estifoaeach point in the images (dense
estimates) are considered, thus they share a “computhti@@y” in Marr's analysis. Differences
are limited then to the type of algorithm used to solve théojmnm. The paper describes this com-
putational theory as consisting of four steps: matching cosputation, cost aggregation, disparity
computation / optimisation, and disparity refinement.

The methods surveyed are grouped according to the algaritipplied to each of these steps
for example, what cost function is used for matching (i.ewhdo you determine how good a
given match between two image regions corresponding toathme 8-D feature is). This provides a
means to group methods together and reveals two broad categbstereo vision algorithms, local
and global. Local methods such as [10, 36, 92] are based oputorg costs across small image
windows and simple aggregation methods. Global methods asi§5, 14, 59, 72] tend to pose the
stereo problem in an optimisation framework where the dlobst of all matches is minimised. The
performance of global methods is shown to be better on théewho

In addition to this the authors also make available refexémplementations of each of the main
algorithmic steps covered, as well as datasets with grawnil depth labelling. The paper is thus a

very important contribution to the field.

2.3 Structure from Motion

Research into Structure from Motion SfM grew out of work oersb vision. Whilst results from

stereo algorithms can be very good, they are still unsuttdkcertain applications, due to the fact
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that even a dense depth map is onIy%@Zepresentation. Often depth values can only be intergrete
as relative measurements thus not corresponding to a ctm®I2 representation. In addition to this
there are some ambiguities that cannot be resolved wherconbidering two images, for example
certain parts of the scene will only be visible in one of th&e pAimages, due to occlusion. Depth
cannot be estimated for these regions.

In order to overcome this shortcomings structure from nmogieneralises stereo vision such that
arbitrary motion of a camera (or a set of many static camésasjed to calculate 3-D information.

Early approaches to structure from motion were based orytigalgeometry. Two views of
the same scene are related be a quantity known as the funtinmeatrix, which describes the
implicit geometry [57]. Use of the fundamental matrix beeapopular particularly for studying
the uncalibrated case since it is dependant on 2D image\atigsrs alone. From this matrix 3-D
shape can be recovered up to a projective transformationrdsn the 2D measurements often cause
serious distortion in the resultant shape. This can be ivgaldy using three views. The three view
equivalent of the fundamental matrix is known as the trifdeasor, first presented in [38]. The
trifocal tensor also overcomes scaling problems, whendbeespoints lie close to a certain plane.

Similar formulations have been derived for the case of fouades [39], but beyond this direct
calculation of structure and motion becomes very diffic@b far nobody has presented a closed
form solution to the geometry of five images. Further redearas based either on approximations
or nonlinear solutions to the problem.

Within the category of approximate solutions live a familiyso called “batch” algorithms.
Accurate correspondence is vital to any structure from omagilgorithm. Correspondence between
images taken from significantly different viewpoints isyelifficult to achieve without some user
intervention and this prompted the use of video sequendes tlom a moving camera, with a
small timelapse between frames. This produces a set of snaiffe limited spacial transformations
allowing salient features to be more easily tracked thrahglsequence.

Another advantage to video is the large degree of redundartbye data can make up for errors
due to mistracked features and the simplifying assumptibashave to be made. The ability to
make use of this large number of images is what distinguishleatch algorithm. The first such
algorithms were based on restricting the camera motion tarepor linear trajectory to reduce the
number of degrees of freedom in the motion equations [80]s ®bcurs is at the expense of both

generality (precisely controlling the camera trajectardlifficult in practice) and the accuracy of the
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resultant model since ambiguities can occur in such limigetera trajectories.

In [81] a technique known as the factorisation method wagld@ed to extract shape informa-
tion from arbitrary camera motions. Using an orthographimera model the projection of all scene
points from all views can be expressed as a single over@nstt matrix equationW = MS,
whereW contains the observationd] represents the camera motion &hthe objects shape. This
equation can be solved for the shape and motion componeffastioyisation, using reliable and fast
numerical algorithms such as the singular value decompodiafter overcoming certain ambigui-
ties in the solution).

The accuracy of this approach is limited by the assumptioartbifographic projection, which
fails to take into account any perspective effects such adatt that objects appear larger when
closer to the camera, and surfaces appear skewed when viewedblique angles. So whilst
arbitrary camera motion is allowed in practice the methdifiged to scenes of compact objects in
which the camera to object distance remains approximataigtant.

This issue was addressed in [65] where the authors congtrsictilar linear equation from a
first order approximation of the full perspective projentid@he paraperspective projection preserves
some of the key features of perspective projection, nanfelydbjects get smaller the further they
are from the camera and become skewed when viewed from ebdiggles. The only feature not
present is the tendancy for parallel lines to appear to agevas they get further from the observer.
The authors show how this more complicated projection mecaielbe transformed to fit into exactly
the same matrix equation as before. This constitutes a Vegam®t solution to the structure from
motion problem.

The authors also present a confidence weighted factomsalgmrithm whereby the decomposi-
tion yields the lowest residual weighted by measurementidemnce values. This allows reliability
estimates for tracked features to be incorporated, andisiod to be implicitty modelled by as-
signing zero confidence values to features when they cease tisible. All in all the method
they propose is a very elegant solution to the problem, aiedvallarge numbers of images to be
processed simultaneously.

These factorisation methods are ultimately limited to irapjects, since the necessary approx-
imations are only valid close to objects centroid - collectof objects have a common centroid that
may be far from each object. In the appendix [65] describessagrocessing step to iteratively re-

fine the shape and motion estimates using a gradient degemitiain to minimise the error between
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the predicted and observed image measurements.

The factorisation method works with point features tradkddchages and thus yields a 3-D point
cloud as the representation of the scene. Whilst this isil&®fcertain tasks a representation more
recognisable to humans is preferable. In addition to thistgeatures in images can be confused for
one another as they lack many distinguishing features, ptiomresearch into methods which use
higher level features. Lines are the obvious choice aftertp@nd algorithms to locate and extract
line features from images such as the Hough transform [423} baen for a long time.

In [68] a linear method to recover shape in the form of 3-D Begments from multiple images
is presented. A linear solution is permitted due to the usarohffine camera model, again an
approximation of the full perspective projection. Due testlimitation the extra information that
may be obtained from comparing line segments (differenderigth, orientation, location etc.) is
not utilised.

Better results are obtained by minimising an error functi@sed on the area between pre-
dicted and observed line segments [79]. This paper usesikasapproach to the nonlinear post-
processing step from [65]. A cost function is minimised by w@tivstep iterative algorithm whereby
the unknown variables are divided into four sets represgrttie line orientations, line positions,
camera rotation and camera positions. Local optimisatézascarried out on each set (which are

re-initialised if necessary) prior to a global minimisatiof the cost function.

Alternatives to the analytical approach have been explovedding the use of statistical tech-
nigues which are better able to cope with the noise inheremage data. In [28] shape and motion
are calculated from image measurements within Bayesianefreork. Under certain assumptions
Bayes theory is able to make the best use of the available @ata of these assumptions is that
the posterior probability distribution is known. As thisnst true in general, the authors use a
Markov chain Monte Carlo sampler to estimate the postefith@problem. The results are shown
to be robust in the presence of tracking errors, howeverdhled orthographic projection model is
used which limits the generality of this approach, and thes afspoint features only is limiting as
discussed above.

The statistical formulation was extended in [21] to workheitit any correspondence informa-

tion. This completely removes the problems of inaccuraleféatures and allows the algorithm to
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work in the absence of any pre-processing steps to track amchrimage features.

The algorithm works by finding the maximum likelihood esttina over all assignments of
shape points to image features. Statistical sampling fagsing the MCMC method) is used to
generate a set of virtual measurements which are then fecamintegration step as if they were
a unique structure from motion problem. The Expectationdiiésation framework provides good
convergence properties for the iteration. Results on reafjes are presented and whilst promising,
the number of and type of features is limited reducing thdulisess of this approach outside of
situations where correspondence is exceptionally difficul

The line and point based 3D representations mentioned selidst suitable for many applica-
tions (such as camera position estimation, robot navigaio.) fall someway short of photorealism.
This goal requires a shape representation that is densepn&ins no gaps. The following sections

describe work undertaken to provide such representations.

2.4 \olumetric Methods

Methods to estimate the volume of space occupied by an obfaa existed for a long time in
computer vision [48] and is a research area that has attractégnificant amount of interest. In
[53] a novel approach is presented to estimate the shapeatfjact directly from the input images,
provided the outline, or silhouette, has been defined. Thewstte is simply a binary image in
which each pixel is labelled as being part of either the dbjecthe background, generated either
by hand or by automatic subtraction of a known or constambwobackground. The method is
explained by means of a geometric formulation whereby thmsette from each image is back-
projected from the corresponding camera position (whicktrbe known a priori) forming a set of
conics. The intersection of these conics defines a convesxmaknown as the visual hull.

There are usually many different shapes that can be contigtin a given visual hull, the paper
presents a detailed analysis of the conditions under wtiehrtinimal hull is obtained. Methods
are presented to distinguish between ‘hard points’ whigloti the surface of the object and are thus
constrained within all consistent shapes, and ‘soft pbthtg mark the extremes of the visual hull.

Many shape from silhouette algorithms employ a discreteesgmtation of the volume (similar
to voxels which are covered below). The drawback of this epgi is that the accuracy is dependant

on the resolution of the model. In [13] the authors note thattmof the space is wasted when high
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resolution grids are used due to the uniform sampling. &uwsthey propose a non-uniform grid
composed of tetrahedrons and concentrated in the vicifiitheovisual hull. This grid is based

on the Delaunay triangulation to sampled points on the Visub. The results produce pleasing
surfaces which are more detailed but don'’t require a cooredipgly larger amount of space to store
than other methods.

A method to estimate both shape and motion of curved surfmoss silhouettes is proposed
in [32]. The notion of frontier points (referred to as hardre in the previous paper) provides a
means to solve a correspondence problem via the RANSACdrarshmple consensus) method.
A specialised voting scheme enforces the geometric recoydim the image set and allows the
estimation of camera positions which have consistent sparding frontier points.

Their method is interesting in that it requires almost naiarpinformation about the scene,
although it does assume that a set of curves correspondirapibct’s outline can be segmented from
the images, or provided by the user. Their formulation akonits images to be added sequentially
the the input data in order to incrementally refine the reprgion. This “coarse to fine” approach
is common to computer vision algorithms where potentialgé datasets are involved.

A related method to shape from silhouette, is shape fromahdd0]. Whilst silhouettes can
be thought of as the shadow of an object cast onto a plane gitadiurce aligned with the camera,
[70] demonstrates that this can be extended to the case dbwkeacast onto arbitrary surfaces and
the object casting shadows onto itself. The incident illation must be a point source and the
origin with respect to the scene must be known.

From an initial coarse shape estimate, modelling takesfdiggameans of a carving methodol-
ogy whereby parts of the shape which are inconsistent witlobiservered shadows are removed, or
carved away. This continues until no further inconsistesicemain (note that this doesn’'t necessar-
ily mean that the object’s true shape has been reached). ukhera provide a proof of correctness
that relies on conservative estimates of shadow regiomas,ighin the detection of shadows false
negatives may occur but never false positives.

Whilst this is an interesting approach it is heavily corisied in the conditions under which
it can perform. However, shadow constraints have been ssitdly combined with shape from

shading algorithms which have similar prerequisites forge, known illumination.

Carving methods based on shadows and silhouettes haveltiffichen objects with complex
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surfaces and concavities are present. A family of alteraatiethods have been proposed to carve
shapes using primitives called voxels. Voxels are the 3-Blague of pixels, where a 2-D array of
coloured pixels can represent an arbitrary image, a 3-izdatff coloured voxels can represent an
arbitrary shape, limited only by the size and number of v@xisled.

Voxels have long been used to visualise dense 3-D informgtiesent in medical images from
CT and MRI scanners. Creating a voxel model from a set of images first addressed in [75]. The
algorithm is based around the concept of photoconsistdsiogter the assumption that objects obey
Lambert’s law and reflect light equally in all directionsethppearance of a voxel should be the same
in all the images in which it is visible. Thus starting witha@may of voxels that completely encloses
the scene, any voxels which project to image regions witferiht colours cannot correspond to
parts of the scene and may be removed (marked as transpafiér@)algorithm is formulated to
provide photorealism by design - if each of the output voxaks consistent, then together their
appearance will match the input images.

The difficulty with this approach arises due to visibilityf-ainother object or part of the same
objectisin front in a particular image photoconsistencthwhat image is not required. Determining
whether a voxel is visible will depend on the existence okotfoxels. For this reason the authors
place a restriction that the candidate set of voxels and dheeca positions must be separable by
a plane. This restriction, known as the ordinal visibilignstraint ensures that for a given pair of
voxels A and B it is not possible that A occludes B in one imagdélevB occludes A in another.
Thus the volume comprising the voxels can be processed from fnearest the cameras) to back,
now when the photoconsistency of a voxel is evaluated theitypaf all voxels which could occlude
it will have been decided.

The algorithm presented in [75] performs well under thisditon however it is not a funda-
mental restriction for all voxel carving methods. This whewsn in two papers published around the
same time which presented algorithms which, by means oipleikweeps of the volume, were able
to overcome the ordinal visibility constraint. In [50] th@&e Carving algorithm is presented. At
its core is a plane sweep method of evaluating consistemtyslapplied in each of the six possible
directions. Only a subset of cameras behind the currentspleee is used to evaluate consistency
of a given voxel. The ability to adopt arbitrary camera camfigions was demonstrated by means
of a synthetic scene involving a room with an open door. Nidtcameras were placed both inside

and around the outside of the room. Real image sequencesihich results were presented in the
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paper were significantly less complex that this, however.

An alternative approach was presented in [20]. General&e@! carving is a conservative
method whereby a mapping from each image pixel to a set ofidatedvoxels which may have
contributed to that pixel is maintained. For this purpose tata structures are proposed, the item
buffer and layered depth images. The former making the nféistemt use of memory whilst the
latter sacrifices memory usage in order to gain speed (thelitdfers update visibility information
less frequently, and whilst this does not affect the comess of the algorithm, it means that voxels
can remain in an undetermined state for longer, increasi@giimber of consistency evaluations).

This means that visibility is determined exactly, usingrgveossible image, which ought to
produce better results than Space Carving. This time sefuwlin real images consisting of more
that one object are presented. Whilst the reconstructimsmeomplete an advantage over the space

carving algorithm is evident.

One problem with these methods is that real surfaces any @egectly Lambertian, thus gen-
uine voxels will not appear to be exactly the same colour theémage, thus a threshold is used.
If the threshold is set too high the model will expand and itletidil be lost. The situation is much
worse when the threshold is set too low, however. If part effdrground is deemed inconsistent,
anything behind is also likely to be deemed inconsistent\agliconsidered to be unoccluded. This
creates a knock-on effect, ultimately leading to holesdpemrved right through the model.

A method for automatically determining the threshold issprded in [47]. The idea of hard/frontier
points is once again employed to solve the threshold probRetall that such points occur when
the object shape touches the visual hull and thus theiritotaan be relied upon. By examining the
photoconsistency of these points (which are assumed defaraestimate of the variation in colour
due to non lambertian reflectance is reached, and a value dfitéshold sufficient to take account
of this variation can be set. This method can still suffenfrihreshold problems if many surfaces
with different properties are present, and it doesn’t ptevény means to deal with situations that
cause a very high threshold to be set.

A better solution is presented in [55] which allows the thigd to be altered after the carving of
the volume is performed. Instead of recording whether oaraatrtain voxel exists in the model, their
algorithm calculates the lowest threshold that would altbat voxel to be photoconsistent. Thus

the results of applying multiple thresholds are “embeddedhe same voxel set. Upon completion



CHAPTER 2. LITERATURE REVIEW 26

of the carving the user can then choose the appropriatehthicer at determine a trade off between
accuracy and completeness that is appropriate for thecapipih without having to reprocess any of
the voxels

Another novel solution to this problem is presented in [1Hjck frames the problem of esti-
mating the existence of voxels (and thus the shape of theekdem statistical framework. As in
[28], Bayes' rule is used to decide the existence of eachlioxm the available data by marginal-
ising the existence of possible occluding voxels. Someamiations are necessary to render this
calculation tractable. The full set of visibility configti@ns are not examined for each voxel but
rather the most probable case is chosen from thelbeigw, 2-view, ... n-view configurations.

Once likelihoods have been calculated for all voxels, a mirovoxel model can be created by
calculating the voxels most likely to be responsible forreimeage pixel. This guarantees no holes
appear in the model since every pixel is accounted for, aghdt does require the volume from
which the voxels are drawn to completely enclose the scehe.r&al images used by the authors
have the background manually removed for this reason,taffbg creating an additional constraint
in the form of a shape from silhouette approach.

The paper presents results obtained from a synthetic seenelbas images of real objects.
The reconstructions produced are very convincing althaihghobjects are shot against a black
background and thus some of the accuracy may be accountby &ilhouette extrusion alone.

All of the voxel colouring processes described so far regthie camera positions corresponding
to each input image to be known in advance. This is typicatlyi@ved by rotating the object on
a turntable in front of a fixed camera. [22] presents an dlgariwhich, by using a generic shape
model which is successively refined, extracts the cameiltigpusfor a voxel reconstruction step.

A recent new approach to the space carving methodology vesepted in [67]. The method
is semi-supervised in the sense that an example silhowefieovided to the system by the user
(it should be noted that many other algorithms require a det@set of silhouettes so this isn't
considered a serious disadvantage). Once the algorithnitisdised there are no other parameters
that to be carefully set.

From the initialisation a probabilistic set of silhouettee created for the other images. Carving
is achieved by calculating posterior probabilities thabzel exists and propagating this information
in an evidence combining setting. Instead of a regular gpdogective voxel lattice is used which

ensures the voxels project to a similar area in the images f®reparts of the scene that may be
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further away from the cameras. Experiments on real world datonstrates the effectiveness of

the silhouette expansion step.

2.5 Surface Reconstruction

Voxel based methods are ultimately limited by the assumptibLambertian reflectance. Since
voxels represent a point sample of space, they have noatimaind therefor models which include
a term based on the angle between a surface and light souszdont for specular reflections
(shinyness) cannot be used. In addition to this voxels anergdly considered independently of
eachother, making it hard to impose any global constrailmsrder to more accurately represent
opaque solid objects a closed 3D surface is required.

The factorisation method described in section 2.3 was eghpdi the surface reconstruction prob-
lem in [1]. Like many early surface-based approaches afgelsurfaces such as polynomials are
used. These representations are however rather inflexilikis domain, their ability to represent
arbitrary shapes is severely limited by the maximum numberas and degree of the polynomial.

Mesh, or polygon, representations very popular in compyrgphics due to the ease with which
they can both be rendered and created. Meshes consist ofea séiconnected vertices which
describe a piecewise linear surface. It is possible to eraanesh from a set of isolated points
provided by another algorithm. The crust algorithm [2] pemis this operation using the medial
axis transform. Successful operation requires the pomtset sufficiently dense otherwise there
may be ambiguities in the triangulation. The crust algaonitivas used as a post processing stage to
generate complete surface representations from voxeirsg23].

When using meshes, attention must be paid to the distribofithe constituent vertices and their
connectivity, to prevent innefficient or degenerate megvbere polygons intersect each other). In
[25] a framework is presented to deform and evolve a surfased on partial differential equa-
tions. Many operations are required to maintain the intgagri mesh based representations in this
framework, including edge swapping, splitting and mergiagd the application of a Laplacian
smoothness operator to ensure numerical stability.

A contrasting approach comes in the form of implicit surfaednereby the surface is described
by the zero level set (that is, the set of points for whjgh) = 0) of a function. This formulation

allows interesting mathematical properties (such as snmegs) to be enforced as well as automat-
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ically handling any changes in topology which might occuraasurface is manipulated to fit the
image data.

In [82] the authors define such a function as the sum of a satrgfle radial basis functions
(RBFs). They also demonstrate how such surfaces can besdrératn surface points and how
specifying exterior points allows a greater control of thgultant implicit surface. Whilst their work
was aimed toward creating 3D surfaces by hand, the sameagbphas been applied to the problem
of reconstructing continuous surfaces from laser scan ddtigh typically consists of many points
in space (a point cloud). The dense nature of the point cleatbves the need for carefully placed
external constraints and results in very detailed recoastns [16].

More recently, in [23] RBF surface reconstruction was agplio the results of volumetric al-
gorithms. Here the positions of the solid voxels are useth@point cloud and thus attention must
be paid to the increased level of noise associated withypes of data. The paper provides a com-
prehensive background into the use of RBFs and other suefatgtruction and spatial smoothing
methods, and demonstrates how the principals may be appls@dooth voxel data. The paper con-
cludes that interpolants which minimise several ordersnubathness improve both the quality of
the reconstruction and the numerical stability of the rssuResults are presented of fitting surfaces
to voxel sets produced by the generalised voxel colouriggrahm [20].

Direct fitting of an implicit surface to image data is addezbin [27]. The authors proceed by
defining a cost functional based on consistency with thetimpages. From this cost functional
a set of PDEs (partial differential equations) are obtaittedugh the Euler-Lagrange equation.
These PDEs are used to evolve a surface toward the minimuhne a@foist functional using the level
set framework [63]. Although the authors present an eledartvation from a strong theoretical
standpoint, few results are presented and no quantitatiadysis of the performance of their method
is presented.

RBF modelling of surfaces is also used in the related fieldbofiguter graphics as an efficient
means to represent smooth surfaces. In [17] methods offRBFs to range data in order to smooth
noise and interpolate across gaps using polyharmonicespiipresented. Compression in the space
required by the representation is provided by means of algr&gorithm which iteratively increases
the number of basis functions until a sufficient closenesbeaalata is achieved.

Results are provided on several well known objects suche@sthAnford Buddha and dragon

datasets, as well as range data of medium and large scattustral Whilst the range data contains
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noise, it is orders of magnitude better ordered than typioakl carving data so these techniques

may not be applicable to the 3-D modelling from images domain

2.6 Photorealistic Object Modelling

This section discusses a number of papers published withdaleof moving toward photorealistic
3-D representations of the real world (or part thereof). irtagority of cases concentrate on single
objects in isolation.

As discussed previously, when dealing with single compéfgats the visual hull provides a
very useful constraint of the shape of an object. In [46], alsastic algorithm is presented to
improve surface provided by the visual hull and recover egsgntation of the objects colour/texture
in the form of a texture map (a 2D image that is stretched oyerlygon mesh).

At all times the object silhouettes are treated as hard @inst by fixing in place the frontier
points where the actual shape grazes the visual hull. Agddiese located by determining where
the visual hull is photoconsistent. The model is refined bglapg free form deformations at
vertices sampled at random, weighted by their reprojeaioor. These deformations pull the model
toward the true surface by performing a linear search forloleest error. The texture is then
recalculated using the current shape estimate. The digostccessfully recovers the concavities
missing from the visual hull although overall the modelskldetail - the way in which the initial
mesh is deformed prevents the final shape from increasimifisently in complexity. The authors
note that the quality of the results are also dependant oolfeet having significant texture (that
is, variations in colour across the surface).

A common thread in a large number of the 3-D vision algoritipresented so far is the formu-
lation of reconstruction as an optimisation problem, wheshape is sought which has a maximal
consistency with the input images. Usually the consistesregr function that is to be minimised
is too complex for a global minimum to be found efficiently. tiBrisation by graph cuts, popular
in stereo vision has also been applied to the problem of 3+fase reconstruction in a method
presented in [83].

Graph cuts allow the global minimum of a certain class of doattions defined over a set
of binary variables to be found in fast polynomial time. Thisa significant improvement over

exponential time algorithms. In a graph cut optimisatioalylem the variables are represented as
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nodes in a weighted graph with two special nodes, the sinksandce. Optimisation is achieved
by finding the minimal cut, that is, a partition of the nodewitwo groups (each containing either
the sink or source) which minimises the sum of the weightsging the cut. In order to represent
a 3-D surface, each variable/node is a voxel with a value df [@epending on whether the space
occupied by the voxel is solid or empty. The minimal cut thepagates the solid inside from the
empty outside and thus represents the surface of the object.

In [83] a suitable cost function is proposed which maximiseth smoothness and photoscon-
sistency, however the graph weights cannot be modified glihie optimisation so the photocon-
sistency of each point cannot be updated to reflect changesilnility (recall that points are only
required to be photoconsistent if they are unoccluded). atlteors solve this problem by introduc-
ing the notion of approximate visibility: given an initiabtimate of the shape (such as the visual
hull), the visibility of points within the shape is assumede the same as the visibility of the closest
point on the initial surface. Provided the real surface @éselto this estimate this assumption holds
but for extreme viewing angles.

One problem the authors recognise with this scheme is thajrtiph cut optimisation produces
the surface with the lowest total cost. This can result in #tiuctures being truncated as although
the cost per unit area is low, the large areas push the tosilugp To combat this the authors
introduce a “ballooning term” which penalises small volsrand appears to solve the problem
although they concede that this parameter has to be setltprie§ hand. Another limitation of
their approach is that to reduce the number of nodes in theciatsd graph, the final surface is
constrained to lie a within a certain distance from the ahitiuter surface, limiting the amount of
carving the algorithm can perform.

Another method, presented in [33], also uses graph cutgte caodels however their approach
differs in several important areas. Rather than just ugiagisual hull as an initialisation, silhouette
consistency is enforced as a hard constraint throughountuelling process just as in [46]. This
helps prevent protrusions being truncated as in the prevdase, as these structures often contribute
to the visual hull, being the most outward located parts afréase. It is noted that frontier points
will not occur sporadically but will comprise a series smats across the surface, referred to as
“rims”. These are identified using dynamic programming tal fthe shortest path along which
the an image discrepancy measure, defined as the photdeosgi®ver a small neighbourhood, is

minimised.
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Another significant contribution is an iterative local refinent procedure, performed after carv-
ing the visual hull using graph cuts, in which each vertexadhe model is moved inward or outward
according to the derivative of the image discrepancy famncth addition to smoothness and silhou-
ette consistency forces. This process is similar in sprfé6] it differs in the criteria used to move
each vertex and the fact that the vertices begin much clogbetground truth. This step is intended
to recover fine details in the surface, and thus the fact Heastrface doesn’'t move very far during
this procedure ensures stability in the mesh. In a seriesepbghe vertices are repeatedly subdi-
vided increasing the resolution of the model until eachntgia projects to an area approximately the
size of a pixel in the images.

The models obtained from their method are indeed very @etdibwever the images must be
captured under carefully controlled conditions to faatkt extraction of the silhouettes, and there
are still limits to the amount of deviation from the visuallltbat can be tolerated.

A recent paper [51] proposes an alternative way to use gragshvehich permits the use of a
photometric minimisation without the potential loss of fisieuctures. Instead of constructing a
network for the entire shape, the optimisation proceeds ibeaative fashion by carving in a series
of concentric bands. This allows for much more accurateasarhormal estimation (as the area
being carved is much closer to the most recent normal esghathich in turn results in a more
accurate photo consistency term. Results presented oanhe datasets reveal an increase in both
accuracy and completeness of the models when compared atgtimvthms of [33] and [83].

A related technigue to these papers is presented in [49F Agiobal minimisation is achieved
by means of a convex functional, the key contribution of ffaper being this convex formulation.
Hard silhouette constraints limit the range of possiblecfioms. What is unique about this method
is that exact silhouette and visibility constraint are &aphegating the need to biases such as the
ballooning term of [83] in the minimisation. The formulati@also allows the algorithm to be par-
allelised and implemented on commodity graphics hardwdrergithe authors report solutions can

be obtained in under a minute.

So far all the algorithms presented have assumed the tdipet o be Lambertian, occasionally
taking steps to handle some amount of specularity (for elamging thresholds, or selecting the
subset of cameras to use for a particular point to avoid oblangles [33]).

Attempts have been made to not only explicitly account far-leonbertian reflectance but to also
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recover the reflection properties themselves. An examptaisfidea can be found in [90]. Their
approach is based around the bi-directional reflectandghdison function (BRDF) for specular
surfaces. The BRDF describes how much light is reflected ascibn of the incidence angle and
viewing direction, however, rather than derive both thhtiigg conditions and surface properties, the
authors define a view independent reflectance map (VIRM) lwtéascribes their combined effect,
and is sufficient to predict the observed appearance of tifiecsu

Optimisation is performed alternately on the shape and Vilgivhig the Levenberg Marquardt
algorithm to minimise the least-squares error between thdigted and observed reflectance. A
multi-scale coarse to fine approach and surface initiéisare required for the algorithm to run
efficiently.

This technique is effective in capturing the charactaristof specular surfaces and provides
convincing novel views, however it relies on the assumpthmat the object is constructed from a
single material. The method also ignores the possibilityetffshadowing or interreflection between
parts of the same object. Results were demonstrated oryhsgkecular surfaces, for which other
techniques would be expected to perform very poorly. It isakear whether this approach offers

any benefits when the objects are only slightly non-laméerti

2.7 Multiple Object Scenes

A strong pattern which emerges from the previous sectiotisisthe current state of the art of im-
age based reconstruction has predominantly focused ole gibgects. Most work extracting 3-D
information from multiple objects concerns the case of adfikggdeo] camera and independently
moving objects [45, 3, 62]. The purpose of such systemsiiesiiveillance and autonomous nav-
igation applications. This is a different problem domaimptmtorealistic modelling although some
similarities exist.

It is possible to argue that at the highest level there is fierdnce between a scene consisting
of a single object and one in which several objects appelacoahected by the floor, or a table,
which is itself an object and thus part of the scene. Thendiitins between objects are artificial -
as far as the reconstruction is concerned they might as weaijlled down. However, the intuitive
human classification of multiple objects does hold true egbrt of datasets used by researchers. In

the case of single object algorithms presented in the puevibiapter, shapes are usually compact,
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with a plain or uncluttered background which is easily digtished from the object of interest.

Some of the problems associated with multiple object scanesaddressed in [9]. Multiple
depth maps are used to produce an entity known as the redegtd loull of a scene containing
multiple objects. Due to the use of expensive active scanniathods to produce the depth maps
the work is not directly applicable to the topic i hand. Hoeewhe authors do introduce a more
rigorous notion of what a constitutes a complex multi-obfaene, as one for which there exists “a
plane whose intersection with the scene consists of moredha connected region”.

Explicit reference to multi-objects is made in [66]. A coref@ method for 3-D scene recovery
is presented which first calculates the camera positions égnsof point tracking across images
and self calibration. Next, pairs of consecutive imagesiaesl as stereopairs and dense depth maps
are computed. The key contribution here is the fusing oflfuemps together into a single complete
3-D surface. The use of a stereo vision as an intermedigbendiést places a requirement for the
camera positions to be very close together, does providadams to model multiple objects without
explicit initialisation.

Another key contribution towards multi-object modellisghat their method attempts to identify
specular surfaces. One characteristic of multi-objeatesés the increased likelihood that there will
be one or more non-lambertian surface somewhere in the.s€bha@uthors attempt to identify such
surfaces by classifying values at the tail ends of the appeardistribution as outliers. Results are
presented on several real datasets consisting of imagke ekterior of a building and remains of a
Roman building.

Two interactive methods to model multi-objects scenes mrsgmted in [76]. The first operates
on a set of panoramic images and requires users to selecbam@nitives (points, lines, planes)
which are used to build a set of geometric constraints whiokiige the basis for the reconstruction.
This process may be repeated in order to refine all or parteofrihdel.

The second method makes use of an alternative representatimultiples scenes in the form
of individual image layers at various depths. This is bagethe assumption that individual objects
can be approximated by a flat “cardboard cutout”. The useraatively selects image segments
corresponding to individual planar regions and then theeranpose and depth are estimated by
exploiting redundancies in the images. Results are predemt real scenes both indoor and outdoor
with effective models being created in the case of the firdhotkin the presence of largely planar

shapes (the interior of an office).
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Several real world datasets are used and the authors pravifl&ntitative evaluation using
ground truth data. The method is however tailored towardtimeof data expected for this applica-
tion (modelling buildings) and may not generalise to otlwemarios.

More research on modelling multiple object scenes has bedartaken at the very other end
of the spectrum - where technigues are employed to attempbtiel entire cities in some cases.
In [30] a process is described to acquire models of a largke sthan environments using a pair
of laser rangefinder devices mounted on the back of a trucle i©uoriented vertically, to capture
the depth profile of the city facade, the other one horiztyntpbinting near ground level to aid in
registering the vertical stripes. In addition to this théhpaf the vehicle is calibrated using aerial
photographs.

A very similar vehicle mounted laser rangefinder system élus [12] to create urban models.
In this case the authors use the Global Positioning SystdP${@ order to obtain the trajectroy of
the vehicle. Importantly, the paper also addresses isssesiated with manipulating and rendering
the data that has been acquired. As the size of scene beingllatbdrows, so does the rendering
time. However, only some of the model will be visible at amgeiso the authors perform an octree
decomposition of the 3D data, recording the opacity of tla tedes, and then render the visible
parts of the scene in a front to back ordering. Another issiile lighly detailed models is that
the data is often too large to fit in the RAM of the machine. Ththars also address this, using
a statistical model of visibility from which data is put in aiqrity queue to be prefetched, thus
hopefully avoiding delays caused by reading data from a Heskl The authors report real-time
rendering speeds, making the system suitable for virtuitye

An approach using images alone is presented in [56]. Theadéstbased on aerial photographs,
extracted line features are interpreted as depth disagtiéia (i.e. the boundaries of buildings where
the height rises swiftly from the ground plane). This infation is combined with dense depth
estimates obtained from a traditional stereo vision apgrodhe key contribution is the fusing of
this data into a representation based on geometric prigsitfplanes and surfaces of revolution) to
form a polyhedral model, using the graph cuts global optitiis procedure. Several real world
datasets are used and the authors provide a quantitatiieattwa using ground truth data. The
results are impressive although the method is howeverré¢giltoward the sort of data expected for
this application (modelling buildings) and may not genismto other scenarios.

Many of these methods covered in this section make extensigeeof highly accurate laser
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scanning devices. Such devices are priced in the tens o$dhnads of pounds whereas consumer
digital cameras are available for under a hundred poundsdelMng multi-objects scenes using

only images captured from relatively inexpensive camezasains very much an open topic.

2.8 Conclusion

The field of computer vision, and specifically 3-D vision hase a long way since the foundations
were laid in the late 70s and early 80s. Direct analytical geaimetric methods have given way to
iterative optimisation approaches. Many different waysepiresenting scenes have been proposed,
from simple point and line clouds to volumes to various mdghiim describe complete 3-D surfaces.
The prevailing philosophy is that reconstruction takes ftven of multi-step procedure whereby
an initial representation is progessively improved in a hamof stages. This permits different
representations to be used at each stage each reflectingcalpatrade off between accuracy speed
or ease of implementation.

One very frequently occurring theme is use the visual hupravide initialisation, due to the
ease at which it can be computed for arbitrary shapes from af §gput images. Reliance on the
visual hull can be limiting, however as it’'s closeness tottihe shape can be dramatically reduced
in the case of multiple objects which variously occlude eattter and the centre of the scene. It
can also be argued that if your scene is, for example, theontef a room, no visual hull exists as
everything is of interest and there is no “background”.

Any task involving 3-D modelling from images inevitably rgres the ability to process a large
amount of data, as well as being able to cope with errors andstns in the data. Modelling
multiple object scenes is an area for which this is espgdialke. For this reason statistical methods
will be important as will any approaches such as voxel carvimich can operate without a good
initial shape estimate. Implicit surfaces representedgufladial Basis Functions provide means
smooth errors and also manage the data that has to be redordedans of approximation and

interpolation. These will be the areas which are exploretistindied in the remainder of this thesis.



Chapter 3

Modelling and Correcting 3-D Scenes

Using RBFs

3.1 Introduction

The vast majority of recent research into photorealisttonstruction from images has focused on
the case of isolated objects. The results that have beeimebtso far are good [33], however for sev-
eral applications we would like to be able to reconstrucheseconsisting of many objects/surfaces.
This is a significantly more difficult problem, not just besawof the increased complexity of the
models, but for many other reasons detailed the following.

Input images to object modelling algorithms are usuallytesgnl under laboratory conditions,
using a static camera in front of which the object revolvesi@omputer controlled turntable [33].
This allows the camera positions relative to the object t&rmmvn to a high level of precision. For
the case of medium to large scale scene reconstruction.esnaidl probably be captured using a
handheld camera, the positions and orientations of whitdlbeunknown. Even though many good
algorithms for camera motion recovery have been prese@&dHere is always some discrepancy
between the results and ground truth. Other factors sudblamb are also much easier to control
in the laboratory setting.

Recall from section 3.2.2 that the visual hull is providedthy intersection of many silhouette
cones. ltis effectively an outer-bound on the shape andiénafsed to provide an initial estimate

for the surface [46]. For a wide variety of objects used iroretruction the visual hull is very close

36
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to the true surface. When the aim is to reconstruct a scerghvghirrounds the camera, there will be
no silhouettes and thus it is not possible to calculate thgalihull and use this valuable constraint.

For some objects, image based reconstruction is simply osgilple. This may be due to ex-
tremely complex topologies, or the result of semi-transpartransiucent or highly specular sur-
faces. For this reason objects used for reconstructionaaedudly chosen. However, when recon-
structing an entire scene, the inclusion of such objectsmeaynavoidable. Windows, for example,
exhibit a large degree of specularity and are generally gsipte to avoid when reconstructing
buildings. Any practical scene reconstruction algorithmstmot let these objects degrade the re-
construction of other parts of the scene, as frequently ér@ppvith voxel carving algorithms [20].

Finally, the images captured could potentially featur@arghich are far away from the cameras
and/or area of interest, e.g. in outdoor scenes in whichkhéssvisible. Regardless of wether the
final reconstruction is intended to include these areas itst still be taken into account. With
the exception of [78] the vast majority of current algorithassume the scene lies entirely within a
bounding box [75][15][33].

The scene reconstruction problem may be stated as follows:

Given a setP of cameras which observe a scene simultanedusityl a set of corre-
sponding imageg, construct a 3D surfac8, representing the scene, which minimises

the difference betweeh and the projection of from P.

| chose to use radial basis functions for scene reconstrudiiie to their ability to interpolate when
data is missing and the ability to incorporate informatidthwarying reliability into a single frame-
work, which also allows the level of detail to vary locally.ll &f these properties are essential to
the scene reconstruction problem. Radial basis functiame heen used for function approximation
and are well established in the fields of pattern recogniéiod Al, where they are often used as
processing units in neural networks.

Despite their many flaws voxel carving algorithms posses/akigantage over visual hull based
techniques in that they can operate with no initialisatithat is, no a-priori knowledge about the
scene. | will follow the approach outlined in [23] which ddbes fitting an implicit surface to a
voxel dataset using RBFs. Note that in contrast to [23] wkideeis performed as a final step, | treat

this procedure as an initial step towards recovering a cet@phodel of a scene. Subsequent steps

! this is equivalent to a single moving camera which obsenstatic scene
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will refine this surface by comparing its appearance in diffié images, under the principal that the
true surface should recreate the input images exactly.

The content of this chapter is as follows. Section 3.2 belgyndescribing a mathematical model
of the image formation process and explains how that can &e tasinfer 3-D information from
2-D images. Next the probabilistic space carving algorjtshis outlined followed by modelling
implicit surfaces with RBFs. A novel method for correctingoes in such surfaces using disparities
calculated from the input images is discussed in Section Results from experiments using real

data are presented and discussed in Section 3.4. Finaliyusions are drawn in Section 3.5.

3.2 Representing and Modelling 3-D Scenes Using Radial Bagtunc-

tions

3.2.1 Projection and Image Formation Models

In order to solve the problem stated above it is necessargve & mathematical model of how a 3D
scene is converted into a 2D image by the camera. The pattéightrecorded on the sengocan
be attributed to the action of two processes, defined by dtiemeetric and geometric models.

The radiometric model describes the interaction of indidight with the object surface, classi-
fied by its reflectance function. The true physical processisplicated and thus it is assumed that
the surfaces of all objects in the scene are diffuse and obeybkert’s law - that is they reflect light
equally in all directions.

Perspective projection is used by the space carving metbsctidbed in section 3.2.2 (to project
voxels into the images) and by the surface refinement proeediescribed in section 3.3 thus it is
important to begin with an explanation of how it operates.

An image is the result of intersecting a ray from each sceir pgth the image plane (where
the sensor is located). The perspective projection is basedl pinhole camera, a simple device
which focuses light through a small aperture onto the imdgeep Instead of tracing rays through
the aperture, the model places a virtual image plane in fsbtite camera. The only difference is
that images are flipped about the horizontal axis (see figlje 3

The image plane coordinates of a projected paint [z,v,2]" can be calculated using similar

2 | will assume throughout that a digital camera is used.
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Figure 3.1: The pinhole camera and associated model
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Figure 3.2: (a) Projection geometry with similar triang{b¥the world centred view.

triangles:
v=1Y (3.1)
z
As several images must be used by the reconstruction digurill scene points and camera posi-

tions must be specified relative to the world origin. The citn of the camera is given by three

mutually orthogonal unit vectots j, andk which represent the orientation of the image plane. The
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position of a point relative to the camera is found by addirglevorigin, t = [t,,t,,t.]T. The

projection of pointx is now given by

y— i-x+1t, _lj-x—i—ty

— . = 3.2
k-x+1t, v k-x+t, (3.2)

Image plane coordinates must be transformed into pixeldioates. Since we measure pixel coor-
dinates from the top left corner, theandv values are normalised by subtracting the coordinates
of the image centrdug, vg]. Cells in the camera’s sensor may not be exactly square aadcale
factor s is applied to the horizontal coordinate (the vertical s¢attor can be fixed as 1 since it is

co-linear with the focal length).

i-x+t, U_Slj-x—i—ty

_ 3.3
k-x+tz+u0 k-x—i—z‘,z—i_vO (3.3)

u

this can be expressed as a matrix equation in homogenouditaias

1 te T
u I 0 uo 0 T
j t
v | =10 sl vg O ! Y Y (3.4)
kT t, z
h 0 0 1 0
0 0 0 1 1
u/
X
| =P (3.5
1
h

whereu = ' /h,v = v'/h. The matrixP fully specifies the transformation from 3D into 2D

coordinates and for this reason it referred to as a “camera”.
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3.2.2 Probabilistic Space Carving

The probabilistic space carving algorithm [15] is a variahthe voxel carving approach, in which
voxel occupancy is determined by utilising statistical noefs to overcome the uncertainty in lo-
calisation of voxels, avoiding the need for a specific, peéirebd threshold for voxel occupancy. In
common with other methods a cuboid surrounding the scenisdsetise into a 3D array of voxels
[75]. In [15], each voxel is represented by a spherical Gansdistribution in a 3D colour space.
The outputV is a subset of these voxels. In probabilistic space canBayes’ theorem is used to
calculate the likelihood that each voxel is part of the sdamel should be included M) given the

input data

PZ,P|xeV)P(xeV)
(Z,P|x€V)P(xeV)+ P(Z,P|x¢V)P(x¢V)

PxeV|I.P)= 5 (3.6)

where, in absence of any data, the prior probabilities eserased to beP(x € V) = P(x ¢ V) =
0.5. Other values may be used to bias the resultant voxel model.

The difficulty in this approach comes from the relationshgiween voxels which arises due
to occlusion. Calculating?(Z,P | x € V) and P(Z,P | x ¢ V) requires the existence of all
voxels which might occlude the voxel atto be marginalised. This is generally intractable as
there areO(2”3) cases (where is the dimension of the bounding cuboid). This may be reduced
by the observation that only voxels that lie on the line cating x and camera centre will affect
it's visibility, however this still leavesD(2™) visibility configurations (where: is the number of
images). To obtain a practical solution, a local threshpld introduced and only cameras with
likelihood greater than are included in the calculation. The value~pfs varied to find the most
probable visibility configuration from the bestview, 2-view, ... n-view configurations. Further
efficiency gains are obtained by processing voxels in a fixddrong from front to back (just as in
[75]) as visibility evaluations may be cached.

Once likelihoods have been calculated for all voxels, alsolbdel can be created by calculating
the voxels most likely to be responsible for each image piXel do this, new views are rendered
corresponding to each of the input images. For each pixely &ris defined containing the set of
voxels which intersect the line formed by back-projectihg the pixel into the volume. For each

ray, the voxel with the highest likelihoo®(x € V | Z, P) is added ta/, yielding a complete model
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which when projected matches the input images as closelpssitge. Each voxel is characterised

by a 6 element vector containing its position in space argktthplour co-ordinates.

3.2.3 3-D Surface Reconstruction
3.2.3.1 Fitting Implicit Surfaces using RBFs

The voxel model obtained from probabilistic space carving is noisy and &imst many disconti-
nuities and other artifacts which are undesirable in a 3Deeceodel. Radial basis functions allow
both approximation and interpolation of data as well as shmess and regularity constraints to be

imposed. The general form of a functigirepresented as a sum of radial basis functions is

Fx) = wid(x — cil) + F(x) (3.7)
i=1

where there are radially symmetric basis functions, each with weightv and centrec. F(x) is
a polynomial which spans the null space¢oflf the basis function is positive-definite F'(x) is a
constant.

The form of this function is derived from the study of scattkidata interpolation, whereby a
function is sought to match a sparse set of observationss reblem is ill posed since there are
an infinite number of functions which could account for the@lvations. To obtain a solution it is
assumed the unknown function is smooth. In [35] it is shovat #guation (3.7) is obtained from

variational principals as the minimum of

HIf) = B+ 5 2 (i = f(x)? (38)

wheref]f] is the smoothness functional, is the observation at poixt; and\ is a parameter which
weighs smoothness against data closeness - defined as thaf-sgomres error in the approxima-
tion, f. The basis functior depends on the smoothness functional, examples are gitka irext
section.

If each radial basis function centireis chosen to coincide with the locatienof an observation,

then the weights may be calculated by a linear system of mmsat
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d(ri1) + A1 - é(r1n) 1 w1 f(c1)
= (3.9)
(b(rnl) e (b(rnn) + )\n 1 W, f(cn)
i 1 1 1 0 ][ po | i 0 ]

wherer;; = |c; — c;| and\ terms added to the diagonal to allow approximation by lgtfieviate
from the observations [84].

An implicit surfacesS is described by the zero level set of some real-valued fongtion R3,

S = {x| f(x) = 0}. For example, the functiofi(x) = |x| — 1 describes a sphere of radius|1 |
represents the Euclidean norm BR). The surface function is sometimes called a signed distanc
function as negative values represent the inside of theebaiel positive values represent the outside
(note this is not a metric distance).

For 3D implicit surface reconstruction, this signed dis&ifunction can be approximated by
RBFs. The observations are a set of points which lie on theu®face and so have value zero (these
will be referred to as surface constraints). In additiorhie,ta small number of external or internal
constraints must be specified (with positive or negativees) to provide orientation to the surface
and also prevent the trivial solution thatx) = 0.

In [23] the co-ordinates of voxels are used as surface aingdr It is not feasible to use all of
the voxels inV for this, some method of selecting a subset is required. Alaegubsampling of
the discrete volume that is drawn from, cannot be used, as the matrix in equation (&8pmes
singular if the centres are colinear. For this reason a Boisphere random sampling scheme (the
3D analogue of the Poisson disc [52]) is used. This is antiterarocedure. At each step a voxel is
chosen at random from the set of remaining voxels. The posif this voxel is used as the centre
for a radial basis function. A sphere of radjuss centred on this location and all voxels inside the
sphere are removed from contention. Another voxel is chaseinthe process continues until there
are no voxels remaining. This creates an approximatelyotmidistribution of RBF centres across
the surface of the voxel model and ensures no two spheresveslam Exterior constraints may
easily be generated by finding regions of empty space bettieeroxels and camera positions.

We would like to be able to use as much of the voxel data aslgesdio this end, equation (3.9)

can be formulated as an overconstrained system allowing sumface constraints to be specified
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for the same number of RBFs. However, a value of the surfaoetifun that is close to zero doesn't

necessarily correspond to a point in space that is closeetgufface, hence the minimal sum-of-
squares solution to the equation will not yield the surfdwd best fits the constraints. Any non-

linear method to minimise the Euclidean distance betweemdnstraints and surface would almost
certainly be infeasible due to the extremely high dimeralion of the problem - for most scenes

there will be thousands of weights that would have to be dp@chsimultaneously.

A better approach is to use an averaging scheme as this wilhaease the number of terms
in equation (3.9).Due to the one to one correspondence batthe spheres and basis functions the
distribution of voxels within the sphere can be used to deitee the precise location of the RBF
centre. So instead of just choosing the voxel in the centtbeotampling sphere, the mean of the
coordinates of all voxels inside the sphere is calculatédrbehey are removed from the selection
pool. A more robust scheme is to replace the mean with th@ventdian, defined as the point to
which voxels in the sphere have the smallest Euclideanrdistfd], as this will remove some of the
noise present iy.

Outliers inV, voxels which do not correspond to actual surfaces, wilhtereerrors in the re-
constructed surface. These occur as a result of noise imthges, deviations the assumption of
lambertian reflectance and camera calibration errors. Tib&oponsistency measure used to decide
whether a voxel is carved is compromised by these deviatiaodsdue to the fact that higher voxels
(which are closer to the cameras) are processed first, thisaugse floating voxels to appear above
the surfaces and in the gaps between objects. As the folionlat (3.9) allows the value of to
be set for each surface constraint in turn, the voxel likelds computed by the probabilistic space
carving algorithm can be used to weight the contributionaafhreconstraint, under the assumption

that the most strongly photoconsistant voxels should beufad:

n
Ap = 3.10
P(x, € V|Z,P) (3.10)

wheren is a scaling parameter dependant¢gn).
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3.2.3.2 Choice of Basis Function

The RBF framework permits the use of any basis function wisigtositive definite or conditionally
positive definite (this requirement ensures the matrix imagign (3.9) is non-singular). There are
many such functions which have been applied previouslyffergint situations. Thin plate splines
often used in 2D applications have been shown to performpoyly in 3D [61]. A common choice

is the Gaussiany(r) = e"°/°” wherer is the radiusx — c| ando the width. This function is
widely used in radial basis function networks, a technigsedun pattern recognition. It was also
one of the first basis functions to be used to create impligfases, it's use in this field originally
inspired by electric field potentials [8]. It has been notedwever, that when applied to surface
reconstruction, the Gaussian has a tendancy to both ovetsrand also lead to gaps in the surface

- instead the use of a multi-order basis function was prapas§23]

1 we VU peVur
=—— |1 — 3.11
o(r) Amé2r ( + v—w v —w ) ( )
1+ V1 —471252 1 —+/1—471252
v = 5.2 w = 5.2 (3.12)

This function, derived in [18], imposes a combination oftfisecond and third order smoothness

—SAf+A%f —TA3f =0 (3.13)

determined by varying the parameterandd. This approach allows more detail to be retained in
reconstructions without sacrificing smoothness.

For these basis functions, each evaluation of the surfawetifun f(x) requiresO(N) evalua-
tions of the basic function, thus calculating the entirdfae S at resolutionR is O(N R?). The
Gaussian and other similar basis functions fall away shaplthe radius increases. This observa-
tion lead to the use of compactly supported basis functidnistwevaluate to zero for all values of

above a certain threshold (the radius of support) e.g.
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— )4 (4r if r
o) = (1 —r)*(4r +1) ff <1 (3.19)
0 ifr>1

here, the radius of support is 1 althouglean be scaled to give any desired radius of support [61].
The advantage of this is clear - when evaluatjf{g) only the basis functions whose centre lies
within a certain distance of need to be summed. In addition to this, the matrix in equato8)
becomes sparse and this can be exploited to provide a marieffsolution to the system using
the LU decomposition [61]. The time taken to evaluate the surfadhus dependant on the aver-
age density of the functions with respect to the radius opsttp Reducing the radius of support
allows more surface constraints to be used, at the expersseauthness. Equation (3.14) was orig-
inally derived in [85] as the minimum degree polynomial foierpolation of a 3D function witlq'?
continuity, which is guaranteed to be positive definite.

Unfortunately due to their very nature, compact functioageha limited ability to fill the gaps
between RBF centres. It would be possible to combine corypaapported and non-compactly
supported functions although the system matrix would ngdorbe sparse, limiting the number of
basis functions that could be used. It is also unclear howrtighematical properties of the surface

will be altered.

3.3 Updating Surfaces Using Image Disparities

Recall from Section 3.2.3.1 that the voxel model often domzany spurious results principally due
to uncertainty in the illumination and camera positions.itlsmall scale protrusions and gaps are
smoothed/interpolated over by the RBFs, larger scale tiemg@(in the form of large numbers of
voxels in the wrong place due to being photoconsistent bgagjeor parts of objects that are missing
(due to over carving when changes is illumination violat®tphonsistency) will be propagated
through to the RBF surface. Thus some method of improvingstitace using information from
the input images is required. One disadvantage of implicfases compared to meshes is that is not
possible to locally adjust the surface directly, since déscribed by the combined effect of many
basis functions. However, the surface is constrained t® glase to the centres thus these points can

be moved based on the local appearance of the surface. Qnbe aéntres have been moved the
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weights may be recalculated using equation (3.9).

Photoconsistency plays a central role in many algorithm84D reconstruction. The photocon-
sistency of point is usually defined as the variance in colour of the pixetbat it projects onto,
in the images in which it is visiblevar ({p | p = Z), }). Recall from section 3.2.1 that Lambertian
reflectance was assumed. Lambert’s law is a simplificati@ghnanst surfaces exhibit some level of
specular reflections, so that their appearance varies daggeon the viewing angle. Because of this
a threshold is required to decide whether a pixel is photsteor.

Relying on photoconsistency alone can cause errors due tpabsibility that arbitrary points
will project to pixels of the same colour to within the threkh especially if certain colours occur
frequently in an image. Looking at the photoconsistency lbpaints contained within a small
textured patch of the surface is far less likely to succumlhi® ambiguity - provided there is
sufficient variation in the colour across the patch.

In this section we assume the surface around each basisofumeay be locally approximated
by a square planar patch (a valid assumption when the siZeegbdtch is small), visible in two
images. A plane in 3-D induces a homogragiyetween two images [40], thatH is a mapping
that transforms one image of the plane to match the appeaddribe plane in the other image. As
the surface is unlikely to be planar on a large scale, thisraption is only valid within small image

windows around the projection of the RBF centre.

3.3.1 Homography Estimation by Block Matching

When the plane tangent to the RBF surface is not aligned Wwéttrue surfaceH wont map one
window onto the other precisely leaving a disparity betwdenresulting transformed windows. If
this disparity can be measured and then taken into accoimpdssible to recover the parameters
of this plane and thus know the location of a point on the turéase onto which the basis function
may be constrained to lie. The following presents a methaddover the disparity by finding local
offsets which maximise the consistency between windows.

The observed texture of the patch in imagg’ is defined by projecting the four corners of the
patch into the image, by using equation (3.3) (see figure 3.3)
The influence of perspective can be removed by interpoldigtgeen the four corners of the pro-
jection, rectifying to am x n square orthogonal view of the pat@h. Texture consistency, can

now be evaluated as average variances of correspondinig pt@ss all rectified image regioﬁ@f.
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Figure 3.3: The projection of a surface patch
. var({Z'5,}) (3.15)

Observed textures are inconsistent when there is a misadignbetween the surfaceand the true
surface observed iy (figure 3.4). Rather than using the consistency alone taegadoptimisation
algorithm, it is to compute a geometric solution to the dispiment from the true surface (as men-
tioned above), from correspondences between pairs of wabéextures. Let us assume a patch is

observed ag’' andz’? by two camera®,, P, € P with associated positions andt,.

(a) (b)

Figure 3.4: (a) The patch is aligned with true surface (b)pdieh is misaligned by a displacement,
d, due to errors i

Finding such correspondences is a fundamental probleneifigld of wide baseline stereo [71].
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Due to the potentially large distances between camerai@osiviewpoint invariant statistics about
surface textures are used in matching. However if the dispfe@nt between the patch and true sur-
face is small the transformation may be approximated bystagion, a block matching algorithm
can be used as in motion estimation [43]. The block matchaimgmme allows for changes in per-
spective between images by breaking up the image into snsatgions. The local change across
the smaller sections is less pronounced.

The first observed texture imagé1 is broken into a set of smaller blocks @fx ¢ pixels, and

for each block the translation vectbr= [b1, b;] is found which minimises the error:

q
1 2
€= Z Z(Ilj+b1,k+b2 ~T5)? (3.16)

j=1k=1

Since the perspective projection preserves straight linese vectors should form a regular field
allowing the disparity to be removed.

The observed detail may be significantly reduced in patcimsed from obliqgue angles and
also any deviation from planarity will be more pronouncedr this reason camera positions are
given a scorey based on the sum of the angle between the surfaeed camera positiort, and

the area of the projection

—

n - (t—x)

o T (g — ug)(v3 — v1) — (v4 — va)(ug — uy)) | (3.17)

X:

whereu, vy, ug, vo €tc. are the horizontal and vertical image coordinatesettrners of the pro-
jection (in a clockwise direction) and’ is the surface normal. The parameteweighing between
the two measures is kept small, as the area of the projectitbbavstrongly related to the angle
between the surface patch and the camera, and this ternyignehlded to penalise cameras which
are significantly further from the scene.

From these scores the two best positions may be selectethfmute disparities, however camera
positions which are too close together will not provide egtodisparity to extract reliable informa-
tion. This may be remedied by enforcing a minimum value ferahgle formed between the centre

of the patch and the two camera positions.



CHAPTER 3. MODELLING AND CORRECTING 3-D SCENES USING RBFS 50

Even when these conditions are met this method may still Earen though each block is less
sensitive to changes in perspective than the window as aayvblen the disparity between windows
is large the method will fail. Making the blocks smaller reds their succeptibility to this problem
however the smaller a block is the more likely it is that adatsatch will be obtained, making it

very hard to get a reliable result.

3.3.2 Texture Matching Under Perspective Projection

The block matching scheme presented above often fails ipréfsence of strong perspective effects
between images. Several methods have been presented totmdtoes between images under the
assumption of affine projection [7, 54]. The affine approxiorais only valid locally which can
cause these methods to give innaccurate results. Whilaldsefinding initial matches when cam-
era positions are unknown, they are not suitable for acew@trespondence between image regions.
This section presents a method that explicitly takes petsgeinto account by first rectifying the
two windows reduce the disparity to a linear one which maydoeieately estimated.

Let P andP’ be two3 x 4 matrices which describe the camera projection from 3-D dinates
to homogenous image coordinates. ket [u,v,1]” be the projection of a point in the patch from
the first camera angt’ = [u/,+,1]7 be the corresponding point from the second camera. These
points are related by’ = Hy. If the patch belongs to plang, wherez”+) = 0 for all the pointsz

which lie on+, the formula forH as given in [40] is :

H=A—av’ (3.18)

whereA anda are a3 x 3 matrix and & x 1 vector, respectively, given by :

-1
P
[A|a] =P (3.19)
0001

andv is the vector given by the following expression :

-1

= " (3.20)
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Given a point in one image the position corresponding paoianiother image can be constrained
to lie on a line known as the epipolar line. Epipolar linesatgbonly on the imaging geometry and
not the shape of the scene so it is possible to transform thgemto correspond to a pair rotated
‘virtual cameras’ whose epipolar lines are all horizontatl &o-linear. This process is known as
rectification and is often performed as an initial step imestealgorithms [34].

Let R andR’ be the rectifying x 3 matrix transformations. The rectified images of the patch
are now related by

R’y = HgRy (3.21)

As the epipoles are now horizontly is guaranteed to magcoordinates to the same value in

each pair and is thus of the form
s k t

Hr=|0 1 0 (3.22)
00 1

wheres, k andt, correspond to scaling, skew and translation, respegtiadl in the v direction).
To calculate these parameters, the images of the patchadedliinto! rows of pixels. When
considering a single row of pixels, the skew translationtagether to produce a single horizontal
offset, o, since thev coordinate of each pixel is the same.

The normalised cross correlation is computed between egictofrows at different scale and
offset values, and the values which result in the lowestesflmest match) are recorded. As the scale
should be the same for all rowsjs taken to be the median of the values found for each row. Any
values significantly outside the median are deemed to beseartd discarded. Using the offsets
from all rows, the skew and translation parametermsnd¢ can be calculated by solving a linear
system

V1 1 01

=1 : : (3.23)

wherew; is thewv coordinate of row. To improve the robustness further, the rows with the getate

residuals are removed from Equation (3.23) @nd recalculated. This process is repeated until
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convergence. NoW can be calculated frofH  taking into account the rectifying transformations :
H =R 'HzR (3.24)

With H at hand we calculate the vectorfrom (3.18) and consequently the location of the plane
that should contain the basis function using (3.20). Theeoted position.’ for the basis function

centrey is calculated as :
ply
Wo=p4+ 0 (3.25)

—
i

=l

wheren’ is the surface normal tg. The line by line matching based on cross-correlation regui
that there must be significant detail in order to find the eéfsmiquely. Thus some basis functions
are not updated by this procedure. Additionally, false tmescmay be obtained due to noise in the
images or patches which span the boundary of an object. Ailmlaced on the maximum distance
that a centre can move in order to prevent this from causirtgduerrors in the surface.

The method works on pairs of images. Like the block matchafgeme it is detrimental to use
cameras which view the patch from an oblique angle, so aaimilality measure is used to ensure

good camera positions:

n-(t—x)

+alt — x| (3.26)
[t — x|

X:

With the only difference being that the distance from thdase patch is used directly instead
of the patch area in the image.

Although the method can only operate on pairs of images, ytstithbenefit from the availability
of other images. This happens by finding the top three rardangeras according to Equation (3.26)
and estimating the correction using images from camerad 2 ghand 3, 2 and 3. In the absence of
errors in the matching, each of these runs should producsatine answer, thus if one differs from
the others it is discarded as an outlier. If all three diffeart the updating of that centre is abandoned.

Some of the basis function centres will converge towardghimiuring locations on the 3-D
surface causing singularity in the system matrix in equaf®9). If multiple basis functions occur
in the immediate neighbourhood of each other, only one wilpbeserved while the others will be

removed.
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3.4 Experimental Results

This section presents the results obtained from applyimase reconstruction, and investigating

texture consistency using two sets of real images of mujget 3-D scenes.

3.4.1 Experiment Setup and Data Capture

Figure 3.5: Original input images for scene 1
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The first scene was captured using a 3-megapixel digital @mvbich had been calibrated
according to the method outlined in [41]. For this sequer@aded 2D targets around the objects to
provide reliable features from which to calculate the canpmsitions (note that it is possible to do
this using features of the scene itself, automaticallyaested and tracked [29]). In total 12 images
were taken from positions surrounding the scene at appairignequal intervals (see Figure 3.5).
The scene comprises five objects; a cereal box, a kettle, daemoknife-block and a stack of two

books.

-1000
-800
-600
-400

-200

Figure 3.6: Recovered camera positions and tracked paomts the first scene

Initial camera positions were calculated using the faspiBtpalgorithm [40], operating on pairs

of images. The position of each camera was refined in turg@sionlinear minimisation procedure
based on the Levenberg/Marquardt algorithm [65]. FiguBesBows the recovered camera axes and
the 3-D positions of the tracked features.
The background in each image was manually removed to retlecgize of the volume required to
enclose the scene (figure 3.7 (b)). This segmentation defimeriter bound on the shape of the
scene, known as the visual hull [48]. Figure 3.8 demongtriditat whilst the visual hull defines the
tall objects (the kettle and cereal box) well, it providesyttle detail in the centre of the scene
as many objects are occluding each other. Modelling usimgocws is studied more extensively in
chapter 4.

The second scene was captured using an 8 megapixel digiat&mera and 50mm lens, which
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Figure 3.7: Scene 1, (a) original image, (b) segmented image

Figure 3.8: Visual hull of the segmented input images

was again calibrated according to the method outlined . [41 total 16 images were captured,
again with approximately even spacing (see Figure 3.9 $&guence was captured in a room with
black walls so there was no need for manual segmentatios.stene comprises four objects; a bag
of flour, an owl statue, a cardboard box and a running shoe.

Camera positions were calculated by manually tracking abmurof features, and then refining
the positions automatically. Figure 3.10 shows the re@/eamera axes and the 3-D positions of

the tracked features.
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Figure 3.9: Original input images for scene 2

To provide ground truth a scan of the scene was acquired asiyperware 3030 laser rangefinder
device. Figure 3.11 shows the resulting model. The scanioeaies about the scene on a cylindrical

trajectory and is thus only able to capture the outward taside of the objects.

3.4.2 Probabilistic Space Carving

From the inputimages and camera positions associatedheifirst scene a voxel model was created
using the probabilistic space carving algorithm [15]. Tésalution of the model wa37 x 284 x 426
voxels.

Figure 3.12 shows two views of the reconstructed voxels fimamimage set shown in Figure 3.5.
In general the shape of the scene is represented well (duaigepart to the constraint provided
by background segmentation). The coloured model lookkyfagcurate, however this is somewhat
deceiving. By design the space carving algorithm aims tdicate the input images as well as

possible, rather than provide the most accurate reprdgantaf the scene. Looking at the set of
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1000

Figure 3.11: Ground truth from laser scan from the secondesce

voxels directly shows the noisy reconstruction typicalmdice carving algorithms.

Figure 3.13 shows the results of applying the same proceks gecond scene. The voxel model
resolution wasi26 x 250 x 414. Again the uncoloured rendering shows a very similar pattdr
noise.

In addition to the noise both models contain many ‘floatingkels that are not connected to
anything, particularly in the centre of the scene where the surface lies a long way below the

visual hull.
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Figure 3.13: Scene 2 (a) raw voxel geometry (b) colour imageered from voxel model

The reason for this stems from the way the voxels are prodesdayers starting with the layer
closest to the cameras. If a voxel in a higher layer happebs fhotoconsistent by chance it will
be added to the model in preference to voxels lower down wigiphesent actual parts of the scene.
Note this processing order is necessitated by the need telmodusions and is a common feature

of space carving algorithms.

3.4.3 Generating Surface Constraints

This section presents the results of extracted a candidatef surface constraints from a voxel

model and fitting an RBF surface to those constraints. UsiagPbisson Sphere sampling scheme
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of section 3.2.3.1 a total of 3800 constraints were gengratethe first scene. In addition to this
290 exterior constraints were generated by dilating theahg:. the model is made successively
fatter by adding extra voxels around each voxel). The sarfaints of the dilated model are then
sampled, yielding a set of points which are guaranteed torhamenum distance from the original
surface. Figure 3.14 (a) shows these points as red crostes dase of surface constraints and blue
circles for the exterior constraints.

The weights were calculated from equation (3.9) and thetiomg (x) evaluated over a regular
3D grid. These values allow a mesh to be generated using thahing tetrahedrons algorithm [24],
which searches for places on the grid where the functiongdmsign. Figure 3.14 (b) shows the

resultant surface.

(@) (b)

Figure 3.14: (a) The set of basis functions modelling théaser[red crosses] along with the exterior
constraints [blue circles] (b) the resultant implicit o€ using these centres

Basing surface constraints on the voxels allows errorservidxel model (described in the pre-
vious subsection) to be propagated through to the RBF surfac

The surface when forced to comply to constraints based otirftpaoxels exhibits bridges con-
necting certain objects together in addition to spuriowdrpsions. This problem is made worse by
the fact that floating voxels are more likely to be chosen kyRbssion sphere sampling scheme. As
many will have no neighbours within the radius of the sampiphere, they can never be eliminated
and will eventually be selected.

Recall from Section 3.2.3.1 that the RBF formulation alldars), the ‘confidence’ value (which

determines how faithful to the constraint the surface vall to be set per basis function. Figure 3.15
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@) (b)

Figure 3.15: (a) Surface obtained by varyihdb) Surface obtained by removing floating voxels
prior to generating surface constraints.

(a) shows the results obtained whewas set according to the voxel likelihoods obtained frontepa
carving. There is still some bias in the reconstruction asestloating voxels occur far from the real
surface and exert an influence even when their confidencehtirgggs low. The effectiveness of the
scheme is limited by the fact that some floating voxels willeha high confidence value, as they can
be strongly photoconsistent. Part of the outcome of thisgutare can be attributed to the fact that
it results in a lower\ value on average, which results in a general smoothingteffec

Figure 3.15 (b) demonstrates an alternative solution nbthby simply eliminating voxels which
are not connected to the main surface, prior to generatirfgcgiconstraints. This gives more de-
tailed results and is effective provided the proportion afels removed is low and they are not so
tightly clustered that they actually occlude part of the elaglhich would otherwise not be photo-
consistent. Note that the erroneous protrusion from theatdrox is made up of tightly clustered
voxels and thus represents a more serious deficiency of tted warving approach.

Whilst removal of floating voxels works well for the scene imegtion, it may cause problems
in certain cases. For example it is possible to have an ottjatts made up from a cloud of voxels,
which whilst disconnected from each other, are sufficiemtansity and number to resemble a solid
object when viewed. Thus whole objects or parts of objectg Ineadeleted by this method meaning
that care must be taken.

Applying the same method to the second scene (whose imagesketvn in Figure 3.9) yielded
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Figure 3.16: (a) The set of basis functions modelling théaser[red crosses] along with the exterior
constraints [blue circles] (b) the resultant implicit .0€ using these centres

a set of 4150 surface constraints and 68 external congrégain represented as red crosses and
blue circles respectively in Figure 3.16 (a)). The resulRBF surface after floating voxel removal

is shown in Figure 3.16 (b). The surface result is less reisapie than the result from the first
scene. This is due in part to the fact that the objects arectogether allowing the smoothing of
the RBF surface to create bridges between objects. Alsohbe is a more complex shape than
objects from the first scene. The taller structures (owlstabag of flour) are modelled best. This
can be explained by the action of occlusion reducing theracguof the voxel model (the fewer
images a voxel is visible from, the easier it is to pass théqaumsistency test). In addition to this
the taller objects stand clear of the others and are mosly sefront of a black background which
reduces the possibility for false photoconsistency coegbén the lower objects which sit in front

of a multi-coloured background.

3.4.4 Compact Versus Non-compact Basis Functions

Using compact radial basis functions offers considerablaggin efficiency as only a subset of the
functions need to be evaluated at each point. To take adyaofahis, the parameters for each basis
function are stored in an open hash table.

Figure 3.17 shows reconstructions obtained from compatthported basis function (a) and
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(b)

Figure 3.17: Surfaces obtained from (a) compactly supddrtesis functions (b) multi-order basis
functions
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Figure 3.18: (a) Profiles of the Gaussian and compactly stggbdvasis function (b) profile of the
multi-order basis function

multi-order basis function (b). The compact function giverEquation (3.14) is very similar to
the Gaussian, see figure 3.18 (a), and thus shares many afidiesitable properties when used in
reconstruction. Comparing it to the multi-order basis fiorg (3.11), provides some insight into the
reasons behind this. The peak of the Gaussian is much widaggioor definition to the surface and
it falls away much more quickly resulting in gaps formingweén constraints. However, evaluating
the surface function created from the multi-order basistion took over three hours whereas the
surface created from the compactly supported function trdk 30 minutes.

The performance of the multi-order basis function depemdthe values of parametefsandr,
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Figure 3.19: Reconstructions using the multi-order basistions with different smoothing param-
eters. First column§ = 5, second columm = 15, third columné = 25. First rowr = 0.005,
second rowr = 0.015, third rowr = 0.025.

defined by equation (3.13). Figure 3.19 demonstrates theeimfe of the smoothing parametérs
andr. The first order smoothing parameterhas the greatest effect, if it is set too low the individual
objects become fused, while if it is set too high parts of thdage become collapsed. Values of

0 = 15, 7 = 0.015 produce the best results.

3.4.5 Estimating Disparities by Block Matching

Figure 3.20 (a) shows the observed texture of a patch locatéue surface of a book, in the 9 images
in which it is visible, whilst figure 3.20 (b) shows the resoitrectifying these image regions.
It can now be seen that the surface generated from the vexatst iquite aligned with the true

surface, hence the slight variation in the observed testufdso notice how even though the book
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Figure 3.20: Image regions corresponding to the projeaf@nsurface patch (a) before and (b) after
normalising

cover is not particularly shiny, it still exhibits a degreenmn-lambertian reflectance, as demon-

strated by changes in the shade of blue in the different is1vage
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Figure 3.21: Results from section 3.3.1 (a) Two rectifieduexobservations (b) vector field show-
ing displacements evaluated by block matching
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Figure 3.22: Results from the method described in secti®i? 3pairs of patches and their correction.

Figure 3.21 demonstrates the results of applying block Iniagcto a pair of observations. |If
the variance in pixel intensities within a block falls belewcertain threshold then matching is not
attempted. There are some outliers in the vector field dueetéact that small blocks can sometimes
generate spurious matches. These may be rejected for exdntipé length and orientation for a

vector deviates more than a certain percentage from ithheigs.

3.4.6 Texture Matching of Surface Patches

Section 3.3.2 describes a method to calculate the disgagtiyeen two images of a surface patch,
induced by the changing camera geometry. Surface patctatetbat RBF centres and the initial es-
timated orientation provided by the derivative of the imjlsurface functiory’, from Equation (3.7).
From image windows centred on the surface patches, moreadeatalues for the position and ori-

entation of the patch are calculated by matching the testure
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Figure 3.22 shows two cases of surface texture matching. fildtecolumn figure 3.22 (a) &
(e) shows the image regions which correspond to the projedi a point on the surface. Note the
difference in appearance of the same point in the two imagigsire 3.22 (b) & (f) show the same
image regions after rectification by matrid@8sandR’. The texture now lines up vertically (i.e. the
top of the '0’ is the same height in both images etc.) 3.221id) @) show the offset vectors for each
row, detailing the horizontal shift and skew. Finally figlg@2 (d) & (h) show the results after the
patches have been aligned by applying transformdtiaio the bottom image.

3.4.7 RBF Surface Updating

The texture matching and homography estimation proceedaseapplied to each basis function in
both scenes to try and calculate a more accurate positioce @e basis function centres have been

moved, the weights are recalculated using Equation (3r@) aanew updated surface is obtained.
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Figure 3.23: Successfully updated centres, shown as ldteist(a) scene 1, and (b) scene 2. Yellow
dots represent centres which were not moved.

Recall from Section 3.3.2 that there must be sufficient serfaxture to get a reliable match.
In the first scene 69% of patches met this criteria, and ateunatches were obtained for 46% of
the total number of centres. For the second scene 75% hadienfffdetail and 35% resulted in
accurate matches. Figure 3.23 shows the centres which weliatad (shown in blue) and those
which were not (shown in yellow). In both cases the centraswiere updated are not evenly spread

but clustered around textured areas and strong edges.
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Despite containing more textured patches, the overall murobaccepted matches was lower
in the second scene. This is due to the character of the ésxpunesent on some of the objects.
The owl statue featured mostly complex noisy patterns, edmthe shoe had a fine self repeating
texture, both of these cases present difficulties to themrag@lgorithm. Several potentially correct

matches were discarded due to inconsistency in the results.

3.4.7.1 Qualitative results

(© (d)

Figure 3.24: Qualitative results, scene 1. Top row: ingiatface, bottom row: updated surface

Textured surfaces renderings were produced by projectif point on the RBF surface into

each of the inputimages. The colours of the correspondixgjgpare then averaged, and the resultant
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colour is applied to that surface point.

If the RBF surface is misaligned, a collection of image poi@presenting one point on the real
surface will back-project to several different points oe RBF surface. The effect of this is that
the image points become spread out and the surface textlirgpgear blurred in areas where the
model is incorrect. Thus the degree of local blurring is atidation of how accurate the surface is.

This is most noticeable where there is sharp detail in thggral scene, such as text.

Figure 3.25: Closeup of the coloured rendering showingpléityi of small text

Figure 3.24 shows the initial and updated surface in botldesth@nd coloured formats for the
first scene. Certain improvements are clear from the shaaiédce alone. The book surface is
flatter and also extends to the correct position in the updstieface. Parts missing from the right
hand edge of the knifeblock have been recovered, and the eairusion from the cereal box has
been completely eradicated. In the coloured renderingtettieon the surface of the book is vastly
more legible after updating indicating very good alignmbketween images. The closeup shown
in Figure 3.25 proves that even the very small text at theoboitan be read. The same is true of
the cereal box. A slight improvement in the surface textsreisible everywhere. Certain defects
remain in the updated surface. There is a large concavithendft side of the kettle, inherited
from the voxel model, this has not been corrected due to ttledatexture on the kettle surface.

The kettle and knifeblock remain joined together for the sagason. In some places holes have
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developed in the floor of the model, probably due to the amtditif extra external constraints.

Figure 3.26: Qualitative results, scene2. Top row: ingiatface, bottom row: updated surface

Figure 3.26 shows the initial and updated surface in botldesth@nd coloured formats for the
second scene. Whilst the improvements visible in the sheetedkring are perhaps not as striking
as the previous case, a large spurious structure in thenbddtib has been removed and the back of
the shoe and owl statue now extend to the correct positioa.cbloured view shows the full extent
to which the shape owl statue has been recovered. In addiititms there are clear improvements
to the text on the bag of flour indicated that the surface has pelled into the correct position.

The generation of holes is more serious in this dataseticpktly in the bottom left corner.
This is due to the fact that a lot of centres were moved but epliaced as there was insufficient
texture information to go on. One drawback of this updatipgraach is that there is no constraint

to require the model to be complete (i.e. free of holes!)
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3.4.7.2 Quantitative results

In order to provide quantitative assessment of the impravenn the first scene in the absence
of ground truth, | note that the real surface of the blue baoklmost perfectly planar. | then
measure its deviation from the planarity in the estimatdd i®odel. This deviation, measured in
millimetres, was estimated for the voxel model, the iniRBF surface, as well as for the surface
updated according to the algorithm provided in Section23a®d is shown in the first column of
Table 3.1. Gaps in the surface and floating voxels result argelerror in the voxel model. These
are smoothed in to a bumpy but essentially flat surface by BiesR Correction based on texture
yields a final error of just over Imm.

For the second dataset ground truth is available in termdaxfea scan, taken at the same time
as the input images were captured. The laser scanner psod@jeh information in terms of the
distance from the central axis of rotation foB@0 ° arc surrounding the scene. The depth map error
is weighted by the distance from this axis (as more distaltegain the depth map correspond to

larger areas of the surface) and is calculated as:

n N A
DE = \/Zi:g:l’n(d’d dz) (3.27)
i=1%

whered; is the value for a specific point on the model ahds the corresponding value measured by
the lasery represents the number of surface locations for which we hawdid depth information.
The measurements for each stage in the reconstruction@riel@d in the third column of Table 3.1.
Again presence of floating voxels results in a large initrabewhich is reduced by the subsequent
RBF surface fitting. The updating procedure reduces thir éurther. It is important to consider
that this error is the average figure for the entire surfacetwis why it is higher than the planarity
error of the previous scene.

Another measure of the accuracy of the reconstruction cabtaned by comparing the input
images with coloured renderings from a matching viewpokst before the colour of each point on
the 3-D surface is obtained by averaging the colours ofattdrresponding projection pixels from

the original images. | evaluated the PSNR between the gealescene usingP;|i = 1,...,n} and
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Scene 1 Scene 2
Method Planarity PSNR DE PSNR
error (mm) (dB) (mm) (dB)
Voxel carving 11.6 13.40 25.23 9.485

Initial RBF 3.63 14.14 18.24 13.02
Updated RBF 1.04 1745 14.76 15.93

Table 3.1: Surface geometry and PSNR errors for the 3-D semmastructions from images.

the original images. The PSNR is calculated as:

10 — 2552
PSNR =223 jlogm[ 9 2] (3.28)
(e j:l(Iij - Iij)

wherel; represents the projection of the reconstructed texturBds8¢face from camera n repre-
sents the number of images amdepresents the total number of pixels in each image. The PSNR
values are provided in columns two and four in Table 3.1. Tdneréis follow the same general trend
of improvement. For comparison purposes, the PSNR for JRE&ges with medium compres-
sion is 25 Db. The PSNR figures aggregate the errors over tire @anage and can therefor hide
large errors than occur over only part of the image. They ast @onsidered in conjuction with the

qualitative results as shown in Figure 3.24.

3.5 Conclusion

In this chapter a method was presented for representing &Bes with several objects from mul-
tiple images. An implicit function model using RBFs is iniised using the voxel representation
provided by the space carving algorithm. The resulting RERfleh solves certain problems related
to the uncertainty in the voxel estimation and provides astmmepresentation of the surface. Errors
are caused in the resulting surface due to various uncdgeiars such as illumination variation,

complex object shapes or occlusions. | consider a set ohpain 3-D, where each patch is associ-
ated with an RBF function. | propose a method for refining RBRtes by using correspondences
of images, representing the projections of the same paboh tihe 3-D scene, along epipolar lines.

Experiments are conducted on two real multi-object dasa®zith of these datasets contain ob-
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jects which would present serious problems to traditiob@ct modelling algorithms. The methods
outlined in this chapter were applied to the datasets, e@ttliyg three representations, the initial
voxel mode, the initial RBF surface and the RBF surface afpetating from image information.
Colour surfaces representations are obtained in all cases

The space carving results demonstrate the level of noisereettainty that occurs in the voxel
model due to the lack of any global constraints. The initiBFsurface is smoother but is inconsis-
tent with the input images in several areas. The updatedcii§ far superior with a large proportion
of basis function centres moved to lie on the correct surfacgeneral the various objects are mod-
elled well and are easily identified in the representationmirical evaluations are provided with
respect to both geometry and texture information for the $ets of images. The geometry recon-
struction is evaluated by employing a planarity test in th&t finage set and by comparing with the
ground truth provided by a 3-D laser scanner in the secondemsat. The colour information esti-
mation is evaluated using the PSNR when backprojectingfioenation from the 3-D surface onto
the image planes. The numerical results confirm what is sealitatively, with large leaps between
the voxel model and initial RBF surface, and smaller but sigjnificant improvements made after
updating.

Whist the improvements over the initial surface are sigaiftc there are still errors in the re-
construction. These are mainly in the form of adjacent dbjadich are spuriously joined by the
interpolating action of the RBFs. This occurs in areas whack sufficient texture to obtain reliable
matches and hence find the correct positions for the RBFeen@orrecting these errors forms the

main topic of the following chapter.



Chapter 4

Contour Based Correction of 3-D Scenes

4.1 Introduction

This chapter builds upon the work of Chapter 3 and also comghts it. Whereas in Chapter 3
the existence of surface detail or patterns (specificalesjyiwas a requirement for obtaining good
3-D information, this work focuses mainly on homogenousasreithout significant detail. The
boundaries of such areas form a set of image edges whicheddasorrect the scene.

The majority of the work here is based on the following obaton. For each edge in 3-D
(either an object boundary or a ‘rim’, where the surface mhears from view) there should be a
corresponding edge in the observed image. This will be tkeep in rare cases in which an object
sits in front of another object with exactly the same colauwd ahading.

It should thus be possible to detect any gross errors in tt@vesed shape by comparing the
predicted and observed edges. This is specifically impoftanthe case where two objects are
erroneously joined together or fused. There should be nereaisle image feature corresponding to
the part of the shape which joins the objects.

The outline or contour of a shape also provides some infoomatbout it's shape in 3-D so it
should also be possible to correct the shape using the sameuce. Methods of 3-D modelling
using this information are usually referred to as “ShapefRilhouette” [48] or “Shape from Con-
tours” [91], and have been around for a long time in Computsiod. In a common with voxel
carving, Shape from Silhouette also works on the princigatutting away areas that are incon-

sistent with the images. In this case inconsistency occhienvpart of the shape projects onto the

73
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image in a way that falls outside of the contour.

Sections 4.2 and 4.3 demonstrate how this theory can beaatfipthe case of correcting large
shape errors and separated objects that have become jgitleel RBF modelling process. A statis-
tical formulation of the 3-D scene updating methodologyrisvjided in Section 4.2. Such a 2-D to
3-D approach requires performing many low level vision saskch as segmentation, edge detection
etc. Here we are not particularly interested in segmentihgl&objects or image understanding
tasks, but merely in finding the boundaries of homogenougémagions (edges). Here the term
homogenous applies to appearance, thus areas of homogdertwe are just as important as areas
of homogenous colour.

Texture classification and segmentation is studied in the fievideo compression where re-
gions containing arbitrary texture are removed from the m@®sion process and later synthesised
during decompression [11]. Several methods are used, bsttan® based on collecting local statis-
tics concerning the variation in image brightness leveld tren using standard clustering algo-
rithms. In this work two segmentation methods are used, apersised, utilising support vector
machine classifiers, and one unsupervised, utilising mieiftncgustering.

A method for transforming segmented images into continudpjisct contours is also presented.
It is based on research using active contours to fit shapesagd data for medical imaging algo-
rithms [60]. Given a suitable initialisation a contour exesd as it is acted upon by forces derived
from the image, and subject to limits on elasticity and stoess. The (incorrect) 2-D contour
given by projection of the current 3-D surface is used aglisation. This also helps ensure only
locally relevant image edges are used. With this contowrinition, the RBF model is corrected to
be consistent with the input images uniting the methodsudsed previously into a novel contribu-
tion to multi-shape modelling. Problems associated withititerpolating and smoothing properties
of RBF implicit surfaces are addressed using constrairtis mégative weights.

A detailed analysis is undertaken in Section 4.4 in whichféloéors influencing the potential of
contour based methods are studied. It is shown that in nertiaiumstances disparity between the
correct and incorrect contours is too small and makes deteot correction of the error impossible.
Full analysis of the key variables and their contributiopiisvided, used to provide recommenda-
tions on how to capture image sequences to maximise the ebafisuccess when modelling scenes
with multiple objects which are located closely to each pthe

In section 4.5, results of the methods discussed so far agepted using real image data and



CHAPTER 4. CONTOUR BASED CORRECTION OF 3-D SCENES 75

both qualitative and quantitative evaluations are perémniinally the conclusions of this chapter

are drawn in section 4.6.

4.2 Probabilistic Updating of 3-D Scenes Using Contour Constency

In this chapter it is assumed that we already have a 3-D réwmtion of a scene consisting of
several objects constructed from a set of images taken fesious angles. The procedure used was
described in Chapter 3 and employs space carving followesiface modelling using radial basis
functions.

In this study | will show how the 3-D scene representation lmaimproved by using additional
information extracted from the input images. Such infoioratmay consist of colour, texture, cor-
ners or boundaries of objects in the scene. This sectionidesa formal statistical framework for
reasoning about such information which will be used as tlsiskia derive concrete algorithms.

In the following it is assumed that the input images contdijects which are characterised by
well defined colours and textures while separated by boigglawhen the scene contains multiple
objects such as the case considered in this thesis, someseftiiay become merged by the resulting
surface if they are positioned close together.

Let us assume that in addition to the input images {I;|: = 1,...,n} there is a corresponding
set of silhouettes. In several papers it was shown that af s#houettes can be used to model the
3-D scene using a union of cone volumes [48]. These methaddder good reconstructions except
when the objects contain extensive concave regions. Thaotixin of such silhouettes is usually
based on the existence of a plain background. Silhouettatingdhas been used for single object
3D reconstructions in several studies [46]. In the follagvirinvestigate how problems with merged
objects can be detected and corrected using segmentediitica similar approach with that of
shape from silhouettes.

Let us denote the set of contours@s= {C;|i = 1,...,n} extracted from the input images
Z. Contours can be extracted directly from images using uarineans [64][31]. The contours are
assumed known and represent a segmentation of the imagedistinct 3-D objects. The situation
when two or more distinct objects are merged into the rexpl8-D scene is investigating in the
following. Such errors can occur when two or more objectschoee to each other resulting in the

RBF surface interpolating across the gap between the abject
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We assume that the sceSecontains distinct objects denoted gA, B} € S which are close
to each other and could occlude each other in several imafes.background is assumed as an
object of the scene as well. The process of space carvinghargltface fitting may fail to identify
them as separate objects. The first process may producesanlamgper of floating voxels in the area
between the two objects, blurring the boundary between thdmie the second stage may merge
both objects with the same surface, failing to represenetigting gap in between the two objects.
A probabilistic assessment of whether we have two objectgeadanto one or a single independent

object may be obtained from evaluating the following :

P(A)P(B) > P(AUB) (4.1)

where the left side term represents the probability of lawivo separate objects and the right side
term represents the probability of having a single objediese probabilities are never explicitly
estimated in the contour based updating method, howevecdheept of deciding between two
hypotheses (that there exist two separate objects or thia thally exists only one object) forms the

foundation of the method, the steps of which are summariséuki following.

By comparing coloured renderings of the scene with the immatyes, anomalies can easily
be detected. Objects suspected of being joined can be stginieom the rest of the scene so
that their 3-D contour is known. This segmentation is adeby removing the ground plane
which connects the free standing objects. In the case of@magth colour and texture features
(texels) are considered for characterising the objectsh &atures have been used before for image
segmentation [11] as well as have been considered for the@APEoding standard [6].

The following steps are used for checking the contour ctersy:
e Threshold the sceng in order to separate the objects.
e Use either unsupervised or supervised segmentation asvéoll

— Unsupervised segmentation - Segment each image using te-shédt by considering

the colour and texels as features and consequently defirubjbet boundaries.

— Supervised segmentation - Consider one image or more faingaand sample values

of pixels for various objects of interest. Employ supergliseaining by using Support
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Vector Machines (SVM) for learning the given data set andnedtfie object boundaries.

Usually it is assumed to have two objects and their backgtoun
e Model the boundaries of objects using snakes.

e Project the contour of the 3-D objeafs using the projections matricé8 = {P; € i =

1,...,n} onto each image from the given dgti = 1, ..., n.

e Compare the segmented contours from 2-D images with theséirg from projection from

the 3-D scene and detect inconsistencies.

The concept of this approach consists of detecting mergegtstby identifying inconsistencies
in the object contours, as they are detected in 2-D from thengimages, after using either super-
vised or unsupervised segmentation, and the contourstedsiibm projecting the object surface
from the 3-D scene. In the following section the feature @@a, the supervised and unsupervised

segmentation, the contours extraction and their modeliingnakes are described in detail.

4.3 Contour Extraction for Model Correction

In order to detect disparities between 3-D object shapeddadhapes we have to detect the con-
tours of objects. In the 3-D scerfe the objects are easily segmented by thresholding the scene
by assuming that we have a set of objects lying on a flat surfAamore complex 3-D clustering
approach, involving spatial coordinates can be used forencothplex scene assumptions.

| use a statistical approach to object contour extractiomfimages. In the following the ap-
proach used for the object contour extraction from the gB#&himage sef is explained. The 3-D
scene modelling will be verified and corrected wherever seagy by checking the consistency of
the contours obtained by projecting the object surfacesmeted from the 3-D sceng with those
extracted from the original image sét

The object contours are extractred from the images by ermgayvo different approaches:
supervised and unsupervised object segmentation. In Ippitoaches the same set of features is
used to characterise the objects. The supervised appraashtiaining based on object samples
from one or more of the images and afterwards classifies tlageéntontent in objects by using

Support Vector Machines (SVM) [64]. The unsupervised frejremploys clustering in the given
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set of images by using the mean-shift algorithm. The clirgjezorresponds to a segmentation of the
image in objects. In both cases single continuous contdutembjects are extracted and modelled

using snakes. Each of these steps are described in detad foltowing.

4.3.1 Feature Selection

As in other studies [11], it is considered that objects aaratterised by colour and texture these as
features are used for segmenting the images and for afsvestracting the object contours. The
primary features used in segmentations are the three cof@mels, red green and blue.

Other colour spaces such as L*a*b* [26] have been proposhkdtter characterise the perception
of colour by the human visual system. These colour space®tadu any information since they
are just a coordinate transform of the same unlying data.ttiereason | use the camera’s native
RGB colour space. In addition to colour | found it useful tonsiler texture information to provide
means with which to distinguish between objects of simitdowr but contrasting textures.

To provide an estimate of the local image texture a formukdus the Harris corner detector
[37] provides a rough measure of texture which is good endaghost circumstances. It gives a
large response for grainy textures which are uniform ingd@ection, a reduced response for more
stripy textures with anisotropic variance in colour and g/Jyew response for untextured surfaces.

Let us consider the location of a piXel, v] T in one of the input images. The measure is defined as:

tx(u,v) = det(M) — (k trace?(M)) 4.2

whereM is the ‘structure matrix’ which describes the local imagadigents around the poifi, v]T,

defined as:

> Lw,0)® > Lu(u,0)I,(u,0)

M = u,vEW u,veEW (4.3)
Z Iu(u’v)lv(u’v) Z (Iv(u’v))Q
u,veEW u,vEW

W represents the window which is weighted by a Gaussiarfganil represent the image gradient in
the u, v direction. The parametdr determines how the response varies with respect to thegsitren

of the gradients in orthogonal directions. If the gradienstrong in both directions the first term
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will dominate, however if the gradient is significantly stger in one direction the second term
will dominate yielding a negative response. As this forrtiatacan result in extreme values which
throw off segmentation algorithms, the output is clamped $pecific intervaltx,,,, txma.]. The

contribution of the texture response is weighted by a paranje Each image pixel is then mapped

into a 4-D feature space as= [r, g, b, (tx]T.

4.3.2 Contour Extraction

In order to extract contours we use object segmentation imagjes from the input sét. Two prob-
abilistic methods of image segmentation are discusseddrs#ittion, supervised and unsupervised.

Both methods use the same feature vegtas described above.

4.3.2.1 Unsupervised Image Segmentation

Unsupervised segmentation consists of estimating the like partition of the image without
usinga priori knowledge. Usually this consist of applying a clusteringthmd. | choose to use
the mean shift segmentation method due to its easy usahiliyproven success in characterising
clusters well [31].

The mean shift algorithm classifies based on identifyingllocaxima in the density estimation
of the sample points. It is unsupervised in that no a-priadvidedge is required about the number
of classes or their distributions. In this case we are trymgegment a pair of objects from the
background so the number of classes, 2, is known, howeveatheur fitting procedure described
in this section is robust with respect to oversegmentatipirovided the area between the objects is
segmented correctly.

The mean shift procedure for clustering (and hence clastiit) is based around kernel density

estimation of the feature space, which is defined as follows:

fulr) = W;k (=) (4.9

where there are feature vectors, of dimension (in our casel = 4). k() is the radially symmetric

kernel function (I will use the multivariate normal kernghe parametet defines the width of the
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kernel, and is referred to as the bandwidth. The teisra constant that ensures the kernel integrates
to 1.
The mean shift procedure iteratively updates the centrbeoluster using the derivative of the

density function. The vector which points in the directidngoeatest increase in density is given

by :
noo o] 222 (|2
m(Z) _ 211:11 ZZg(HZ_;L_ ‘2’ ) _ g (45)
>im1 9UEREP)
whereg(z) = —k/(z). The classification algorithm is iterative, starting witmaamdom placing of

seeds, sufficient in number so that kernels overlap ensatimgppulated areas of the feature space

are covered. The steps used are as follows:

1. Compute the mean shifh for the current window
2. Translate the window according to the mean shift vegtot = z! + m(z*)

3. repeat until convergence

The stationary points are then the centres of the classealldadture vectors within the basin of
attraction are assigned to that class. The output of theitligois then a mapping from image pixels
to classes. Due to the fact that no spatial information frbenitnage is used, there is no guarantee
of compactness of the resulting classes. Utilising texinfiiemation helps with this in areas where
pixel colours tend to vary a lot from their neighbours. Hoaethe goal of the segmentation is to
produce a set of edges which correspond to genuine changedace colour or topology. With this
in mind | use a post processing step to enforce regularithigrdata.

The classes are recomputed to be contiguous sets of pixamédly two pixels with similar
features on opposite sides of the image could be assignée teaime class). This is achieved by
sweeping the image and using the union find algorithm [19ially each pixel belongs to a unique
set of size one. The pixels are then examined in order andi¥feh Ipelongs to the same class as it's
neighbour, the union of the containing sets is taken. Whinhhas completed each set represents
a contiguous group of pixels with the same original clasggassent. These sets then become the
new classes.

This procedure results in the creation of many very smadls#da. Any classes with a population

below a given threshold are merged into the largest neigirmgpalass.
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The bandwidth parameter defines the sensitivity of the dhgorand indirectly determines the
number of clusters found. Although it requires no trainiaglisadvantage of the mean shift algo-
rithm compared with other algorithms is that it can be ditfitoi set the bandwidth in order to obtain
a good segmentation for some scenes. Various statistisatilagorithms can be used to choose the

bandwidth for the mean shift algorithm [77].

4.3.2.2 Supervised Image Segmentation

A supervised image segmentation method is able to overcemaic problems associated with pa-
rameter selection by using a training set of pixels expi¢itbelled in two classes as the foreground
and background in the image. This section describes suclirechehich is based on support vector
machines (SVM) [64].

SVMs classify data points by constructing an optimal sejargplane by identifying support
vectors which lie along the boundaries of the two classese dptimal plane is the one which
maximises the separation between the two classes (théiontis that this property will help the
classifier generalise well). SVM was shown to provide vergdysupervised classification results.
As this is a supervised method, a training set is createdrypliag n pixels creating feature vectors
consisting of colour components and texels. . . , z,, from one or more images from our séand
labelling them withy; € {—1,1}, i = 1,...,n, each label corresponding to an object class as
foreground and background, respectively.

We want to find the maximum-margin hyperplane which dividesgoints having;; = 1 from

those havingy; = 0. Any hyperplanew can be written as the set of poitsatisfying:

wip=b (4.6)

whereb is a constant. The vecter is a normal vector: it is perpendicular to the hyperplanee Th
parameterﬂ%|| determines the offset of the hyperplane from the origin glthe normal vectow.

We want to choose th& andb to maximise the margin, or distance between the parallettptanes
that are as far apart as possible while still separating #t@. drhese hyperplanes can be described

by the equations
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wlz—b=1 4.7)

and

wlz—b=—1 (4.8)

Formally, the SVM is the solution to the following quadragimogramming optimisation prob-

lem:. Mimimise in the given feature spacewfandb the following

. 1 2
Z 4.9
min 2HWH (4.9)

)

such that for all data we have

yi(wTz —b) > 1 (4.10)

That is, the value ofw which maxmises the separation, provided all training gointthe two
classes lie on the correct side of the plane. As the pointserdtD feature space described above
are unlikely to be linearly separable, the problem is tramséd by replacing dot products with a
kernel function which maps the points into a higher dimemsigpace. This allows the algorithm
to fit the maximum-margin hyperplane in the transformeduieaspace. The Gaussian RBF kernel

is used for this purpose as it produces the best results:

k(w,z) = exp <—M> (4.11)

202
whereo represents the Gaussian spread. This kernel replacesttheodoctsw 'z from equations
(4.7) and (4.10).
Once the classifier is trained, the image segmentation ferpeed by calculating where each
pixel falls with respect to the boundary in the kernel featspace and labelling them accordingly.
The classified image is post-processed using the same stepe ansupervised case, to produce

contiguous classes with no holes.
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4.3.2.3 From Edges to Contours

The next part of the contour correction algorithm generategmproved contour estimate. Using
the segmentations produced so far, class boundaries imtges are used to generate an edge map
for each image. To join this edge map into a continuous caorttoaiinitial estimate is refined by
using Active Contours [88] (better known as ‘snakes’). Thishnique has been used for segmenting
organs in medical images by applying snakes on a plane &edréom a volumetric dataset, such
as an MRI scan [89]. Starting within an initial estimate, kswiteratively evolve a contour using

a combination of different forces. External forces pushghake towards image features, such as
edges, whereas internal forces regulate the shape of tke,®rdorcing a sort of smoothness known
as elasticity which prevents the snake from bending too namchover fitting to the data. A typical

external force would be

E(u,v) = Gy(u,v) * I v (4.12)

Wherel is the image(- is the 2-D Gaussian function and the widtlcontrols how far away from
the edge the force will be felt by the snake.

In this case the a variation of the classical snakes algorithused [88]. This variant uses the
gradient vector flow as the external force, and possessqwdperty that it is able to expand into
heavily concave regions, which is a necessary conditioretaldle to separate objects. The snake is

a curves(q) parametrised by € [0, 1]. Itis updated by solving the following equation

si(q,t) = as”(q,t) — Bs""(q,t) + VE (4.13)

wheres; represents the snake as a function of timegy means of a discrete iterative algorithm.
Constantsy and 8 represent the weights of the second and third derivativéeeonake function
andV F is the gradient of (4.12).

The algorithm takes as input a binary edge map (obtained thenbboundaries between classes
provided by either the supervised or unsupervised segmmmtmethods, described in sections

4.3.2.1 and 4.3.2.2) and an initial contour. Again the ahittontour used is that of the current
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(presumably fused) shape, projected into 2-D. This isékat a reasonably good estimate of the
objects’ true contours, initialising the snake’s position

Instead of using segment boundaries as edges, an simpledetigdion algorithm could have
been used which would have negated the need for complex ségfine techniques. However, if
there were any gaps in the detected edges the shake coulaékgeneded into one of the objects
instead of stopping on the boundary. Another problem is ¢dgie detection often gives spurious
results in the presence of textures, a problem which textware segmentation resolves.

One drawback of the Snakes approach is the inability to ahémytopology of the contour as it
evolves. This means that even in the case that the objectgestign are clearly distinct in a given
view, the algorithm will only produce a single contour, wahoining line of unit width. A post

processing step is required to detect this configurationsapdrate the result into two contours.

4.3.3 Shape Correction Using Object Contour Consistency i@-D and 3-D

The visual hull [48], denoted by, is the outer bound of the scene shape based on it's appearanc

in several images, and may be defined as follows:

H = {x|Vier.n Pix € Ci} (4.14)

Informally, if a point is within the visual hull then it's pjection falls within the scene silhouette
in every image. The visual hull can be calculated as thegat#ion of the backprojected silhouette
cones corresponding to the given set of images. The vislidslused for shape representation from
silhouette algorithms.

The concept of the visual hull also applies to individual pements of the scene - single objects
or groups of objects. It is by considering the visual hull bjexts that the surface can be corrected
using the improved contours as calculated in the previocisose

When objects are joined in the scene representation, tfacsuxtends beyond the visual hull of
the objects. Correction can then be applied by moving this iasction centres to lie on the visual
hull (just as centres were moved to fit certain planes baseahage block matching, as described

in the previous chapter, see section 3.3.2).



CHAPTER 4. CONTOUR BASED CORRECTION OF 3-D SCENES 85

Centres to be moved must lie on or be close to the original etesyrface. This check is
important as centres are allowed to lie outside the visubliftlhey are part of other objects. The

following updating formula is used for the selected RBF pest

¢, = argmin||¢; — x|| (4.15)
xEH

where|| - | denotes the Euclidean distance. Thus the basis functidnesesre forced to be located
on the visual hull{ while producing a minimal change to the given scene surface.

Sometimes moving the centres does not result in the expaodvement in modelling accu-
racy. This occurs when the correction requires creationd#f@aession in the surface, or separation
of two objects. In this case RBF interpolated surface witeofflatten the surrounding area in
order to preserve smoothness. To remedy this problem whaneseare moved, extra 'external’
constraints with negative weights are created in theirglaRecall from section 3.2.3.1 that such
constraints are usually only required to provide oriediigtio the surface. However, their property
of enforcing emptyness in their vicinity helps force thefaoe to obey the necessary depression or

separation.

4.3.4 Applicability to Other Representations

It is only the last step of the procedure described abovehwtgiates specifically to the radial basis
function modelling. The same contour correction methogploan be applied to many different
shape representations. For example, using a voxel repatisenyou can simply eliminate any
voxels which lie outside the true visual hull in any image.

For mesh based representations vertices can be moved hsisgre formula given above for
RBFs, equation (4.15). However, care must be taken not wugea degenerate mesh (e.g. one in
which triangles intersect each other) is not produced. N ®necessary to iteratively move the
vertices with remeshing in between steps, or use a complexgpocessing step. This highlights a
key advantage of radial basis function surfaces in thatagueaeing orientability and non-degeneracy

are trivial.
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4.4 Analysis of Object Separation in Multiple Object Scenes

4.4.1 Introduction

This section presents an analytical study of the factorghimfluence the ability of multi-object 3D
reconstruction algorithms to correctly distinguish bedwseparate objects. Detection of spuriously
connected objects relies on disparity between the 2-Draaglof an object observed in the image and
the outlines you would expect to get if the 3-D model was aaeufpredicted contours). The error
between pairs of countours will signal that a case of fusgelotdbexists and guide the reconstruction
accordingly.

It is the variables which determine this error which will bevéstigated here in a simplified
environment. Despite these simplifications a closed forltiem for the this error with respect to
each variable is likely to be intractable so a simulationgsdito provide empirical data about the

relationships.

4.4.2 Experiment Design

2l

Figure 4.1: Key variables under investigation

Two object types are considered, in order to evaluate theeddg which shape influences the
error. These two types are a pair of cuboids with square blasielelengthl and height2/, and a
pair of cylinders of diametel and height2l. The shapes stand upright on an horizontal plane (see

Figure 4.1) separated by a gap of siz@he distance between object centreg is [).
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There are two scenarios for each object type, one in whiale e two distinct objects, and one
in which the objects are joined by filling in the gap betweeamth(see Figure 4.2) for an example of

this in the case of cylindrical objects.

(@) (b)
Figure 4.2: Two cases considered (a) Cylinders joined (inGgrs separated

Recall from section 3.2.1 that there are six extrinsic canparameters, three of which corre-
spond to the position in space of the centre of projectiontarek angles which determine camera
orientation. The camera’s position in space can be exptésspherical coordinatgg 6 r|, this is
convenient since we wish to fix the distance from the centre of the scene, and allow thetabey
angle,d, and azimuth anglep to vary. The camera is assumed to be always pointing toward th
centre of the scene with no tilt/roll, which determines temaining three extrinsic parameters.

The shapes are similar to shapes present in real scenesyzaly the cuboids). The size of
the objects as well as the distance between them, and camsitims were all chosen to closely
approximate the arrangement in one of the real scenes | Bfgpdte 4.3 shows the objects to scale,
along with a selection of 16 camera positions with the sameadibn angle.

2-D projections of these scenes are obtained using thesitrcamera parameters as measured
in section 3.2.1, thus at least geometrically resembliegrtrages you would get from a real system
though they lack noise, illumination variation, shadows &is there is no background, the object

contours are easy to extract.
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Figure 4.3: Synthetic Scenes, overlaid with the cameraipaosi

4.4.3 Analysis

This section explains the various factors which were ingagtd and discusses the results of the
simulation.

The ability of a system to distinguish between two distingjects and a single large object will
be judged according to the size of the error measured beta@®ours obtained from the fused
object scene with respect to the separate object scene. Bilwds of calculating this error are
considered here. The first is the Hausdorff distance [44]revlierepresents the set of poirfighat
comprise the fused contour, agdthe set of points belonging to the separate object contour, is

defined as

en(F,S) :I;leaj}-'{ Islféléle—SH (4.16)

The shortest distance is found between every pair of pointa # and S, and the greatest of
these distances is returned. The Hausdorff measure cambghthof corresponding to the size of
the largest divergence between the two contours. If theyeaeeywhere reasonably close to each
other the Hausdorff distance will be small, whereas if oneesdurther away at any point this will
result in a large error.

The other measure considered is the difference in the amased by each contour. #+ and
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ST represent the set of points that fall within each of the corgtothis corresponds to the symmetric

difference, normalised by the cardinality Sf .

FTUSTH\(Ft NS

5] (4.17)

eA(f+,S+) = I

This is the difference between the area of the combined comtand the area of the overlap
between the contours. Again contours which are always dtmsach other will result in a small
value of the error. Cases in which one contour significantriaps the other will result in a greater
error. However, if the area of the overlap is small relativéts size (for example if it forms a thin

peninsular) this will not result in a large error - in contressthe Hausdorff distance.
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Figure 4.4: Comparison of error measures for the cuboidescen

Figure 4.4 shows the two error measures for the cuboid schea varying the azimuth angte
Initially viewing the shapes end on, there is very littlefelience between the outlines of the pair of
cuboids and the large fused cuboid. As the camera pans arthendisparity becomes more visible,
reaching a peak when the camera is perpendicular to the ¢gapdrethe objects and falling again
as the camera views them end on once again.

The Hausdorff distance is more descriptive in terms of togichl differences, which accounts
for the large spike as soon as the gap between objects beaasitds. The surface difference is
more sensitive to general changes in contours and will teussked for the other experiments in this
section. However, the Hausdorff distance is more reliableeal world scenarios where noise is

present due to a variety of factors beyond control, as we shalin the next experimental result.
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4.4.3.1 Influence of Object Shape

In this experiment | will study how the shape of the objeceet$ the error which is observed. | set
the distance between the objects equal their widta (). The elevatiord was fixed at 0.85 radians
(again corresponding to values found in the real scenesyasadied from 0 tor (a full revolution
was not necessary as the second half would be identical firshie Figure 4.5 shows the results of

this experiment, using the area error measure from equétiai).
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Figure 4.5: Error measure as a function of shape

It can be observed from Figure 4.5 that in the scene with dyilial objects, disparities between
the fused and separate case are detectable from a widerobogmera positions, hence the wider
peak to the curve. However the shape of both lines are na guntilar, so in the real world noise
may mask this trend. Also apparent from the figure is that ther é higher for the cylinders at
every point. This can be explained by the fact that fusingsamdre in terms of volume to the
cylinders than it does to the cubes. The fused and sepaiatderyscenes are thus more ‘different’

from each other than is the case with cuboids.

4.4.3.2 Varying the Camera Elevation

In this experiment the elevation anglds varied, in addition t@. Recall from section 4.4.2 that in
this simulation camera positions have only two free paramseClearly the viewing angle is a very
important factor in the ability to correctly distinguishifetween compound and separate objects.

Distance between the objects is kept.dtigure 4.6 shows a plot of area error againsindé.
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Figure 4.6: Error with respect to camera angles

It is easiest to interpret this figure with respect¢to Assuming the standard configuration of
a set of inward pointing cameras surrounding the scene, utface represents error profiles for
several different choices of elevation. There is littlera@to the shape of the peak (and thus ability
to differentiate separate and joined objects) uiti= %’r when the error starts to increase for all
values off). Itis easy to see why this occurs by considering the mosemrcase, wheré = 3.
In this configuration, the gap is always visible as the caneedirectly above the objects and thus
6 no longer has any effect. The result of increased elevatiohtlaus independence froénis that
separation becomes possible for fewer cameras/images a@ndsi more reliable. The corollary of
this is that adding a single high elevation image is likelyetad to a large improvement in the result
by revealing the gap between the objects. This assumes tistreal world scenes will consist of
tall objects on a ground plane, for other arbitrary confijare the issue is more complicated and
there may be no way to gaurantee good separation of objelsts, the availability of high elevation
images depends on the scene, for example it is relatively teaachieve for a collection of small
objects, however if your scene consists of buildings, fameple, it may be very difficult to acquire

images from above.

4.4.3.3 Evaluating the Number of Cameras Necessary

In this experiment the goal is to determine how the numberoferas used influences the observed

error. This variable is very important in determining thefpemance of any multi-view 3D recon-
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struction technique as increasing the number of camerdgueilerally improve the result at the
expense of additional processing requirements.

Again a circular configuration at fixed elevation € 0.85 rad) is assumed. To manage the
complexity | will also assume that for a givercamera configuration the positions are evenly spaced.
However, there may still be differences between the errosgived for two different evenly spaced
n camera configurations with differe@ffsets. With this in mind, for each value of | will record
the error measured between the fused and separate caskdossible offsets, and calculate the
minimum and maximum errors that arise. These extremesgept® the best and worse case for
detecting the separation for each configuration. The esult shown in Figure 4.7. The figure
clearly demonstrates the need to consider all possibldyespaced: camera configurations due to
the fact that the best case results are almost totally ewaton. This is because deciding whether
two objects are joined can be achieved with as few as one océnwwras - if they happen to be in

exactly the right position to observe the gap between theotdj
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Figure 4.7: Error plotted against number of cameras

The shape of the worst case performance line fits with whatwauld expect given that there
are only a certain number of angles for which the gap is vsibtWhen the number of cameras is
sufficient to guarantee that at least one camera falls witli;zone, the worst case performance
suddenly picks up. After this point there is little improvent (with respect to identifying fused ob-
jects) when using additional cameras, as illustrated byreig.7, where the worst case performance

curve converges asymptotically toward the best caseiasreases.
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4.4.3.4 Evaluating the Object Separation Distance
The distancel between the objects is another factor that would be expécteave a large influence
on the result, especially considering the extreme case Wigeseparation is almost zero there is a

miniscule difference between the joined and unjoined cases
In this experiment! is varied by moving the objects away from the origin by sonstadice. A

circular configuration of cameras at elevation 0.85 is usebedore. A plot of both area error and

Hausdorff distance againgtandd is shown in Figure 4.8.
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Figure 4.8: Error plotted against inter-object distance

Again the general trend is as expected, smaller gaps arertarddentify by the given array
of cameras. The shape of the Hausdorff distance plots (aj@nclearly shows the width of the

peak getting smaller as the gap is reduced. The area ertsr(ploand (d) show that the profile of
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the two different shaped objects follows the same trend &sguare 4.5 with the cylindrical shapes
yielding a wider more gently sloping peak. Also note thatwtite cylindrical objects the error never
disappears, even wheh= 0, as there is a difference between a scene with two cylindeishing
and the same two cylinders joined by extending to the sideagp refer to Figure 4.2).

The degree to which performance suffers for small separatiints at fundamental limitations
of any multiple object 3D reconstruction algorithm. A smialirease in error is likely to be unde-
tectable in the presence of noise thus when the gap is sreathiéinces of being able to detect and
resolve this in the model are slim, even when many imagessae. (r'his also has implications for

the recovery of fine details that are part of a given object.

4.4.4 Conclusion

This section presented experiments to determine how theradide error associated with incor-
rectly joining a pair of objects varies depending on: shapgle, number of cameras and separation
distance.

The shape of the objects determines how quickly the erres sghen the gap between the objects
starts to become visible, and thus the range of angles farthithie error is above a given threshold.
From this we conclude that it is easier to detect that twandgis have become joined as opposed
to two cuboids.

The azimuth anglé is primarily responsible for variations in the observedesince it directly
affects whether or not the gap between the objects is vifibie trend is shown in all experiments).
As the elevation angle increases, so does the number of views which display a higin, @gain
as it controls whether the space between the objects ideviditigher angles are thus preferable for
this task. It's worth noting that for other tasks lower ekias are more helpful due to the larger
baseline [71]. However since almost any high angle is ablgbgerve the gap, the addition of a
small number of images taken from above will in most casas tea large improvement in results.

A larger number of cameras will on average lead to a greatierctien rate, however a very
small number of cameras can still be effective if they areituinate positions. The mechanism for
this is the same as before and centres around when the gagdvetine objects is visible in different
amounts. There is a hard limit for the number of camera mostibeyond which adding additional
cameras leads to no further improvement.

Finally the separation distance also presents limits teafien as both the visibility angles and
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difference in projection of the contours shrink whéis reduced.

The results from these experiments help set out the opgrhtitits for any multi-object 3-D
recovery algorithm, and suggest a reasonable number ofraant®at should be for the task. As
expected closely placed objects are unlikely to be sepanatiess there is an extensive collection
of images available. However, overhead cameras can be ffecfiee for separated free standing
objects.

Due to the fact that occlusion by other objects does not dodine simulation, the performance
on more complex collections of objects will be worse thandhses analysed in this study. The
correct demarcation of individual objects is a very diffiguoblem in practice and in some cases
complete scene recovery will be impossible for any realistimber of cameras external to the scene.

In the following section we will analyse the 3-D reconstioctof a real scene with several

objects using multiple images.

4.5 Experimental Results

This section presents the results of experiments carrietbdast the algorithms presented in Sec-
tion 4.3, using real data. The dataset used is of the firstbbgdlection Figure 3.5 from the previous
chapter. The original input images and camera calibratiformation were used. The RBF surface
after correspondence based based updating (see Secti@nB@/ided a starting point.

This dataset was chosen as it exhibits a very good examplgexts which are spuriously fused
together in the reconstruction. The knife block and ketteeadmost completely joined, due to their
proximity, and as a result of errors in the voxel model. Thesers themselves stem from the
similarity in colour between the carpet and knifeblock, dmel fact the gap between the objects is
only visible in two views due to occlusion from the cereal bdke second dataset did not contain
any fused objects after the disparity based updating ptreed

Figures 4.9 and 4.10 show the input data. Figure 4.9 showsttee input images (which are
identical to those used in the previous chapter) whilst FEEigu10 (a) shows the RBF surface (after
disparity based updating), and Figure 4.10 (b) shows thexdfobject pair itself after segmentation
from the rest of the scene. The pair of objects were segmdmytéaresholding the scene to remove

the ground plane .
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Figure 4.9: Two of the twelve input images
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Figure 4.10: The input surface before (a) and after (b) tieblpm objects have been segmented
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45.1 Feature Selection

The texture filter described by Equation (4.2) from the prasisection was applied to the input
images in order to provide additional information for segtagon. This is combined with the three
colour channels to give a four dimensional feature space ififluence of the texture channel is
controlled by scaling parameter for example a very large weighting value has the tendancy to
allow texture to dominate the segmentation. A setting of 2 (meaning texture was twice as
important as any single colour channel) was found to givelgesults across all of the images. The
width of the filter,o was set to 2 pixels and the output was clamped to the intedvaDD0], and

then normalised to 255.

Figure 4.11: Texture response in two images

Figure 4.11 shows the response of the texture filter in 2 viemging from 0 (black) to 255
(white). The filter clearly distinguishes between the cagoel wood grain of the knife block. It also
exhibits a high response around very strong edges as carb®sdhe blue book cover text. This
is an undesirable effect as strong edges and grainy texdueegery different in character. However
in this case the results of contour fitting are not signifisaobmpromised due to the fact that the

new contour is constrained to lie within a certain distanfcenoinitial estimate.

4.5.2 Unsupervised Segmentation

In this experiment the supervised segmentation methoddbaisenean shift clustering [31], de-

scribed in section 4.3.2.2, was applied to the feature satfritbeed above. The implementation con-
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tains code for mean shift clustering by Bryan Feldntatp://www.bryanfeldman.com/

As this segmentation method is based on an unsupervisesifidashe number of classes is
assumed to be unknown. The sensitivity, and hence the nuofiletasses that result, is based on a
parameter of the density estimation step called the banidwid

If the value is too low, the filter is too sensitive and oversegtation occurs, if the value is
set too high undersegmentation occurs. Generally oversefgtion is not a problem unless the
area between the two objects becomes split into two or masses. This will result in spurious
edges being passed to the contour fitting step. Undersegtimentan be tolerated provided that
the objects in question are assigned to different classeadb other, and to the background! A

bandwidth of 25 was found to be effective across all images.

Figure 4.12: The unsupervised segmentation results foobtie input images

Figure 4.12 shows the results of the segmentation for varioput images. Segments have
been coloured according to the average colour of pixelsnigalg to each segment. As can be
observed from the figure, the algorithm segments well th@wardifferent objects in the scene.
Key edges are preserved despite the oversegmentation obgbets (particularly the kettle). Even
though the image is oversegmented in the sense that eaatt sbjpade up of several segments,
the set of segments belonging to each object are fully disgoid thus the object boundaries are not

compromised.
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4.5.3 Supervised Segmentation

In this experiment the supervised segmentation methoditmas8upport Vector Machines described
in section 4.3.2.1, was applied to the feature set obtaineskction 4.5.1. The implementation
contains code for Support Vector Machine classification byiG Cawley, from

http://theoval.sys.uea.ac.uk/"gcc/svm/toolbox

Figure 4.13: The image used to train the algorithm overlaiti samples belonging to class 1 (red
crosses) and samples belonging to class 2 (blue circles)

This method is supervised and thus requires training. Inf8aghown in figure Figure 4.13, was
used as training data. Samples belonging to class 1 are dhiarkéth red crosses and samples from
class 2 with blue circles. In total two points from each obgaed one or two points from the each
background object were sampled giving training set of sizeThis image was specifically chosen
as it doesn’t show the gap between the objects so that no sarap taken from this area to avoid
biasing the result.

Figure 4.14 shows the results of applying different kertelhe SVM algorithm. White repre-
sents class 1 (the objects) and black represents classi#agkground). The linear kernel performed
better than expected, the various colours and textures altesgparated in the feature space. The
polynomial kernel (b) gave very similar results with the mdifference being the inability to dis-
tinguish tones close to black.

The b-spline kernel gave the worst results which is somewhatdrising, failing to distinguish

between the forground and background classes at all. tilegéy the Gaussian RBF kernel (d)
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Figure 4.14: Results of applying different kernels, (ag#in(b) polynomial (c) bspline (d) gaussian
RBF
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gave the best results, this is essentially the same keraigbénformed poorly at surface modelling.

100 200 300 400 500 600 700 800

Figure 4.15: Final segmentation result

Figure 4.15 shows the final result using the Gaussian keanghfage 3 (which corresponds
with the results from the unsupervised method, Figure 4.P3rts of the background are falsely
classified as the objects due to containing exactly the satweircand texture properties as the
objects in question. However since the boundary of the ¢bjsdistinct in most cases and due to
the search area restrictions this is not a problem, and iargéthe segmentation is successful. One
problem area compared with the unsupervised results igthefthe knife block, which is assigned

to the background. This region is very similar in colour (bat texture) to the carpet.

4.5.4 Generating Contours

The contour fitting method described in section 4.3.2.3 #iag to the both the unsupervised and
supervised segmentation results in this experiment. Tipéeimentation contains code for the Gra-
dient Vector Flow shakes algorithm by Chenyang Xu and Jerince,
http://iacl.ece.jhu.edu/projects/gvf . The elasticity, rigidity and viscosity param-
eters were set to 0.05, 0, and 1 respectively. As binary edgesmre used (in contrast to edge maps
with varying intensities) the snake is not overly sensitv¢hese settings as, for example it doesn'’t

have to overcome weaker ‘false’ edges or be resistant toigaps edge map. Elasticity needs to be
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sufficient to allow the snake to fully explore concavitieghie contour. Snake settings were kept the
same for the unsupervised and supervised datasets. Tketojof the fused object RBF surface
(see Figure 4.10 (d)) is used to initialise the snake (sear&ig.17 (b)). A search radius of 50 pixels

is applied to prevent the snake from moving too far away.

(@) (b)

Figure 4.16: Merging of small segments (a) before (b) after

Before the edge map is obtained there is a filtering stagehwbimoves classes with fewer than
100 pixels and assigns their pixels to the largest adjadass.cThis helps remove some noise since
such small clusters are unlikely to be significant. Figudg4hows the results before and after this
operation on the supervised segmentation data. As can bdrseethe figure the output is visibly
cleaner. Many of the falsely classified background areas@mected, for example the cereal box
and the book text. Similarly, falsely classified areas ofihiéeblock and particularly the kettle are
corrected in this step.

Figure 4.17 (a) shows the resultant binary edge map (beferes¢arch radius restriction was
applied). Figure 4.17 (b) shows the initial state, the tleith line represents the initial location of the
shake whilst the edges within range are shown in grey. (cesgmts the progress of the snake as it
evolves from the initial contour estimate to fit the edge dduwawn in intervals of 15 iterations. (d)
shows the final result the snake converged on. A limit of 7&fations total was required to allow
the snake enough time to fully extend into all concavities.

Performance of the snake was very good in all cases. Coroparisetween the initial and final
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Figure 4.17: Progress of the snakes algorithm (a) input edge(b) snake initialisation (c) progress
in intervals of 15 iterations (d) final snake result
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contours, overlaid with the image data are shown in Figut8 for the unsupervised segmentation
and in Figure 4.19 for the supervised segmentation. Notedimato the thresholding of the ground

plane, the initial contours (red) do not extend to the bottdithe objects.
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Figure 4.18: Initial and final contours for various imagemgainsupervised segmentation

In general the results from the unsupervised segmentaioe better. There were fewer parts of
the objects missing (false negatives) and fewer areas whereontour extends beyond the objects
(false positives). Figure 4.20 shows this trend numesicatntours extracted from image data are
compared to the ground truth (obtained by hand) using theséha€f distance. The performance of

the supervised algorithm is slightly worse in almost all gas.
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Figure 4.19: Initial and final contours for various imagesgsupervised segmentation
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Figure 4.20: Numerical accuracy of extracted contours akiated against the ground truth using
the Hausdorff distance

This can be explained by the fact that the two class model s supervised case is too re-
strictive for this application. It doesn’'t matter that bgokund objects are assigned to many different
classes, likewise it is not essential that the objects irstipe are uniquely segmented. There could
be many classes as part of each object - the only importanisfétat class boundaries correspond

to genuine edges in the image.

4.5.5 RBF Surface Correction Using Contours

In this experiment the extracted contours are used to ddtrednput RBF surface (see Figure 4.10
(c)) using the methods described previously in Sectior84.3.

Recall from Section 3.4.1 that a manual segmentation wdsrpged on the images to ensure the
scene was contained within a bounding volume for the voxelilng algorithm. This segmentation
removes the background and thus provides a silhouette cddbiee in each image, as shown in
Figure 4.21. These silhouettes may be treated as contodrsissd to correct the RBF surface,
using the contour updating method. No initial contour isuieed since we are dealing with the

entire scene, every basis function centre is checked faistamcy.

The results are shown in Figure 4.22. The most obvious inggnant is in the handle of the
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Figure 4.21: (a) segmented input image (b) scene silhouette

Figure 4.22: silhouette based correction (a) before (ley aft
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kettle. This had previously been smoothed over by the RBEsiawement of centres away from
the problem area and the creation of negative constraints dbowed the recovery of this thin
structure. This demonstrates that with accurate datantie®thing tendencies of RBF surfaces can
be overcome to recover fine details. There is also a slightctexh in a bridge between the kettle
and cereal box. Elsewhere in the model the RBF surface gltdéws the silhouettes so no further
improvement occurs.

Bulding upon this result the contours extracted by both tisupervised and supervised segmen-
tation algorithms were applied in turn. The same initial 3dymentation (see section Section 4.5)
was used in both cases to limit the basis functions that weeeked for contour consistency. The

results are shown in Figure 4.23 and compared to the surffoecbsilhouette correction.

(@) (b) (©

Figure 4.23: Correction results (a) initial surface befooerection (b) surface after contour correc-
tion with the unsupervised method (c) surface after contourection with the supervised method

There is clearly a large improvement in the area betweendttielkand knife block, with both
methods achieving a complete separation of the two obj&dtgally the appearance of the surface
is very similar between the unsupervised and supervisedtsehowever it should be noted that the
upper part of the knife block is falsely truncated by in thpeswised result. This can be explained in
reference to the contours; in Figure 4.19 (c) the extractedonir misses the top of the knife block
due to misclassifying the whiter tone of the wood as backgglouCompare this to Figure 4.18 (c).
This error is sufficient to move the centres too far down thiéekfock, reducing its height.

Figure 4.24 shows the coloured results for the same thrdacest As expected there is an
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(b)

Figure 4.24: Coloured renderings from (a) initial surfaeéobe correction (b) surface after contour
correction with the unsupervised method (c) surface afiataur correction with the unsupervised
method

improvement after contour correction with objects nowhlisithrough the gap between the kettle

and knife block. The only clearly visible difference betwebe results from the two segmentation

methods is the top of the knife block, which is missing in thpervised result, confirming what was

observed from the 3-D surfaces.

It is possible to quantify the differences between the aaldsurface renderings and one of the

input images by considering the squared errors or a per pasit. Plots of these errors for the three

surfaces are shown in Figure 4.25
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Figure 4.25: squared pixel errors between an input imagricedl renderings from (a) initial surface
before any correction (b) surface after contour correciiith the unsupervised method (c) surface
after contour correction with the unsupervised method



CHAPTER 4. CONTOUR BASED CORRECTION OF 3-D SCENES

Model

PSNR
(dB)

Initial surface
Surface after contour correction with the unsupervisechote
Surface after contour correction with the supervised nktha

11.17
13.91
13.75

Table 4.1: PSNR when comparing rendering images with art inpage window

110

The error is greatest when part of the black book is seen giwdioe gap. In other areas the

brown texture of the carpet is very similar to the wood of tinéfek block yielding a smaller error.

The area in between the objects shows a considerable impamtebecoming much more consistent

with the input image. The area at the top of the image betweedreal box and book also shows

a large improvement, this time due to use of the scene sittesue

150 200 250 300 350 400 450 500 550 600 650

Figure 4.26: The window over which the PSNR between the maigand rendered images was

computed

The input image was specifically chosen to display the gawdmt the objects. Even with

this consideration, the overall reduction in error is qsiteall. However, concentrating on the area
between the objects, and calculating the PSNR between thared renderings and input images

across the window highlighted in Figure 4.26 shows that aftiiyable improvement does result, as

shown in Table 4.1.
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The values show a clear improvement from the uncorrectddiand give a slight advantage
to the unsupervised algorithm. Note that the window dodsitif cover the truncated part of the

knifeblock so this difference is on top of the difference®atly discussed.

4.5.6 Fused Object Disparity

Finally this section presents an experiment into the effeness in detecting fused objects using
real data. This provides a companion to Section 4.4 whickstigated the factors which influence
observed contour errors on synthetic data. Figure 4.27 shiog disparity between the contours
extracted from the image data and the ‘predicted’ contobtsioed from the uncorrected RBF
model using the Hausdorff and area measures defined in 8dctiB. The extracted contours were

from the unsupervised method.

90
801
701
0.2

601
o 0.15k
501
0.1}
401

30 0.05f

20 . . . . . . . 0 . . . . . . .
0 /4 n2 3mn/4 m 5m/4 3m/2 Tn/4 0 /4 n2 3mn/4 m 5m/4 3m/2 Tn/4

€] €]
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Figure 4.27: Numerical discrepancies between the pretite observed contours

As demonstrated by Figure 4.27 (a), the real data displagestlexactly the same trend as the
simulation for the Hausdorff distance, with a peak centnethe angles for which the gap is visible.
However when using the area measure (b) the peak is drowrtdoymbise as small area errors
along the contours length add up to become similar in magdaita the error caused by the incorrect
topology. The Hausdorff distance only looks for the greadeviation between a pair of inputs and

so avoids this error aggregation, making it more suitableiée on real data.
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Figure 4.28: More views of the unsupervised contour cowaaesult

45.7 Final Results

This section presents some more views of the most accusiét obtained (using the unsupervised
contour correction method). Coloured renderings from edi¢he 12 original camera positions are
shown in Figure 4.28, a larger version of one of the imagemalvith the corresponding input

image is shown in Figure 4.29.
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Figure 4.29: Closeup of one of the final views (bottom), withresponding input image (top)
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4.6 Conclusion

A method was presented to correct RBF scenes using conteinested from image data, particu-
larly in the case where objects have become undesirablgdoiry the RBF modelling procedure.
This method complements the approach described in theguewhapter by utilising areas with
constant colour or texture to correct errors. In additiomhis a study is presented into the factors
and ultimate limits of such techniques.

The approach fits into a statistical framework for maxingsihe likelyhood of accurate corre-
spondence between 2-D and 3-D contours, given the imagdéststaection 4.2). In section 4.3 two
methods of extracting contours were presented. Both joirttlise colour and texture information.
The first unsupervised method benefits from a simpler irsaéibn but can perform poorly when
the parameters are not properly set. The second supenpgedaah is more robust in this respect
however some user input is required (in the form of seleataggons to use as training data).

Experiments were presented using real image data (seersdch). The object outlines were
extracted accurately in most cases, but more importandystiapes were completely separated by
the approach in spite of occasional errors. Some of thesesemesult from similar colours being
present in the background. Performance of the two segnami@pproaches were similar however
the numerical results indicate an advantage to the unsisperapproach. This may be attributed to
the fact that oversegmentation that it may produce is natllysa problem, and the flexibility this
adds improves reliability.

The improvement in the model is clear from looking at textiurepresentations from cameras
in which the gap between the objects is visible. Before obioa the textures are blurred and
correspond to different regions in different images. Atfterrection the appropriate background
texture is applied to the area between the objects. Thisangonent is also confirmed numerically
by summing the errors between synthesised images of the aoelthe corresponding input images.

The theoretical study provided a number of interestingltegsee Section 4.4). The shape of
the objects determines how quickly the error rises when dipebgtween the objects starts to become
visible, and thus the ease of which an image based algoritmseparate them.

The azimuth angle is primarily responsible for variationghe observed error since it directly
affects whether or not the gap between the objects is vistimdaever as the elevation angte

increases, so does the number of views which display a digp@levated views are thus preferable
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for this task.

A greater number of cameras will on average lead to a greatectibn rate, however the best
case performance indicates that a small number of camenasecaffective if they are in the right
position. There is also a practical limit for the number aihesias, beyond which adding additional
cameras leads to no further improvement.

Finally, the separation distance also presents limits teafien as both the visibility angles and
difference in projection of the contours shrink when theasation distance is reduced. This indi-
cates that closely placed objects are unlikely to be sefmtatbess there is an extensive collection
of images available.

Overall the study confirms that modelling multi object sceisea significantly more difficult
problem than the case of single objects which has predoitiynia@en studied previously.

Further work in this area would include a method to automadljicdetect and segment problem
surface regions, or a more sophisticated segmentatioagipito reliably find image edges corre-
sponding to all object boundaries. Such a scheme might weskib an iterative manner where 3-D
information is fed back into the segmentation/edge detrctlgorithm to incrementally improve the
correspondence between 2-D and 3-D edges.

Finally, increases in the accuracy of the model will at somi@torequire more detailed, higher
resolution 3-D models, particularly in the presence of glrmanface features or edges. This might
be achieved by either compactly supported basis functimadidw many more centres to be used,
or anisotropic basis functions which support tighter ctukes in certain directions (this is particu-
larly useful for representing hard edges for example). rAliévely hybrid representations may be

developed to account for both smooth and angular surfaces.



Chapter 5

Conclusion

This chapter presents the conclusions that may be drawn thigmhesis. Section 5.1 details the
novel contributions made herein. Section 5.2 discussempiat applications of the work. Section
5.3 presents a critical analysis of some of the weaknesgbssiapproach to 3-D scene modelling,

which are then addressed in section 5.4 which discusse® fditections for this research.

5.1 Contributions

The first novel aspect of this research is the systematicoapfprdesigned specifically for the mod-
elling of multiple object scenes. As discussed in sectidntBis problem is significantly more
difficult than than the case of modelling single objects angstrequires different methods for its
solution. Initialisation is a much bigger problem since #imape of the scene is considered to be
unknown. Also there is an increased likelihood that thealchape varies considerably from the
visual hull or approximation of the object(s) as a sphere.

The next novel contribution is the method to update radialdfunction models. Traditionally
radial basis functions have been used to approximate imxtiven observations and to fit surfaces
to sets of observations. In this work they are also used astenmediate representation for surface
refinement instead of just as a final destination. Previgoslygon meshes and volumetric methods
(which involve updating a 3-D grid of values) have been udetbat exclusively for this purpose.
Evolving the RBF surface entails more than just moving thietsased to fit the surface, as this will
often result in concavities being smoothed over. In addittomoving the RBF centres appropriately,

extra centres are created which are constrained to forémtiieit surface function to take a positive
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value therefor causing the space to become empty.

Two methods are provided to calculate how to adjust the RBfaces based on the image data,
which is regarded to be the only information available alibatscene. The first contains a novel
method to match surface textures between perspective wbwsurface patch (under the assump-
tion that the surface can be locally approximated as plan@hjs method reduces the matching
problem to a linear search (conducted at difference scalbi$t still taking the full perspective
projection into account

The second method utilises classification and segmentatgnrithms which have been pub-
lished previously. However it is novel in that it forms a cdment to the texture matching method
and in that it extends the concept of silhouettes into a robjiect domain. Whereas the previous
disparity based updating method only works in the presefictrong textures, the segmentation
based contour correction works best in the absence of sutéxtures. The two methods together

form a novel scheme that takes full advantage of all avalabbge information.

5.2 Applications

There are many potential applications to this techniqueadfetiing multiple object scenes from im-
ages. Digital 3-D objects are used in many areas such as fiomguter games, educational/learning
tools and interactive mapping. It is not intended that theghod would speed up the digitization of
objects by processing several objects at once - it would be mecurate to model each in isolation
and then re-pose them in 3-D if necessary. Instead the gatismonstrate the feasibility of mod-
elling more complex scenes that would take a long time taeeithodel by hand or digitize object
by object.

Such scenes could represent the interiors of rooms, dollexcsuch as museums or historical
sites so that people may visit them in a virtual environm@&hte ability to handle scenes containing
multiple objects hints at possibilities in the field of largeale recovery of urban environments.
Interest in this area has increased due to the popularityvéshespread use of technologies such as
Google streetview. Currently Google streetview contaiey Vittle 3-D information (not counting
the trajectory of the vehicle used to capture the imagesisting as it does of a series of individual
360 degree panoramas. However future versions will be abtake advantage of multi-object

reconstruction from images in order to provide a richer 8t2 experience.
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The multiple object modelling methodology presented hése achieves compression by re-
moving the redundancy present in sequences of images oéithe scene. If coloured output is not
required, the RBF model achieves a very high compressidm generalising the data contained in
tens of megabytes of image data down to around 6000 integedioates in three dimensions (the
RBF centres) and 6000 floating point weights, which togethles up approximately 40 kilobytes.

If colour/texture information is also required the spacedusicreases substantially as values
have to be stored for each point on the surface. The preciseir@ndepends on the resolution at
which this is achieved, however. Matching the image resmutvould still result in a reduction of
storage as the corresponding parts of each image are ondgsince. Whilst this is not a practical
alternative to standard image compression in most sittsts fields such as 3-D television mature,

compressing and coding 3-D models efficiently will gain intpace.

5.3 Ciritical Analysis

This section covers some shortcomings of the methods pesbanthis thesis. Firstly it is assumed
that both camera positions and the projection parameterkrawn in advance. This is fairly com-

mon amongst 3-D reconstruction algorithms, and there &isdbke methods to obtain this calibration

information. However, the precise internal camera pararaehay change slightly from their cali-

brated values when a particular image sequence is capflinedocal length, for example, changes
slightly depending on where the lens is focused, even fomazoom lens.

All of the methods presented in this thesis rely at some lemghe assumption of Lambertian
reflectance. That s, that the appearance of a point on aceulfzes not vary with the viewing angle.
Almost all real surfaces deviate from this to some degregnifitant deviations cause serious
problems as they result in false matches.

There is room for improvement in the contour extraction rodthpresented in section 4.3. Su-
pervised methods in general are undesirable in this fieldasiltimate goal is for a system which
operates without any human interaction (since humans &n aflot better at solving high level vi-
sion problems). Also the separation into a distinct segatimt and contour fitting by snakes steps
is not strictly necessary.

Radial basis functions have many advantages, principaihgstaovhich is the fact that they

guarantee smoothness of the surface in the first three teeisa However, this very smoothness
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makes it very difficult to represent rough surfaces and skdges. By scaling down the RBFs more
detail can be represented but this requires more centrese Tha practical limit on the number of
RBF centres that can be used as the time and space requisimeatculate the weights at¥(n?)
in the number of centres.

Finally the space containing the scene must fit within a bmghduboid. This clearly limits the
application to large scale scene recovery (such as urbaroements) and breaks the condition that

no a-priori knowledge about the scene is required.

5.4 Further Work

In order to address the main shortcomings identified prelotine following further work should
be carried out. In order to address the problem of calibmagigors, recalibration could take place
at each step, using the image data from the scene directig. cbhld be achieved by varying the
paramters which describe the camera’s interal charattstisecomputing the shape and examining
the error with respect to the images.

Although voxel carving methods are restricted to the Lartidnereflectance - due to the fact that
voxels have no orientation - RBF surfaces do, so it would tssipée to take non-uniform reflectance
into account. This would be achieved by modelling the BDRE, hii-directional reflectance distri-
bution function. In some cases the problem may be under@ansd or there may be ambiguities.
This could cause image regions that do not correspond tcathne part of a 3-D surface to appear
to match, for some BDRF. However it would be possible to maldelBDRF across the surfaces
with RBFs as well, in order to take advantage of smoothnesmove ambiguities by assuming the
surface reflectance properties are locally similar.

The contour correction process would benefit from a moreistiphited colour/texture segmen-
tation algorithm which could potentially also take non Laartkan reflectance into account, as an
intermediate 3-D model of the scene is available at thisesté&®pgmentation/contour fitting with
shakes could be combined into a single step using a snakgyefugrction that takes colour and
texture information into account, forgoing the need forasape stages.

There are several problems with RBF surfaces mentionedealvbich could be addressed with
more research. Firstly there is the problem of smoothneb&hwcould be overcome by utilising

a mesh based representation in addition to the RBF surfane.oOthe disadvantages of polygon
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meshes compared to RBFs is the need to constantly checkdendeate meshes when altering the
surface and the inability to cope with topological changdswever after refinement, the surface
model is quite close to the true surface so these disadwes@@ no longer significant. Thus it

would be possible to convert the RBF surface into a mesh antvethe mesh using an error

function based on the difference between the renderedcgudad input images. This final post
processing step would allow fine details and sharp edgesrecoeered.

Another problem is that the number of RBFs is limited by thed® calculate all weights simul-
taneously. Attempts to use compactly supported basisiurectemove this requirement resulted in
poor performance in experiments (see section 3.17). Rurtsearch into a radius of support which
is great enough to take advantage of smoothing and holegfillwhilst still being finite, would allow
more basis functions to be used in order to represent morelmated scenes.

This would fit naturally with a scheme to warp the space thatrttodel occupies in order to
allow far off objects to be represented, but in less detaiisTs acceptable as further away objects
will be smaller in the images and feature less perspectiaagh so their modelling will not be as
accurate. This non-uniform space would forgo the need tp Kee scene within a bounding cuboid

and allow extensive scenes such as large urban areas to fefiedod
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