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Abstract 

This thesis presents an investigation of discrete cell gravure roll coating 

using computational and experimental techniques.  

The gravure film thickness experiments conducted are similar to those 

presented in previous studies and show a near linear relationship between 

pickout ratio and speed ratio. This work adds detailed data of the gravure 

surface for use in computational modelling. Using a white light 

interferometer, surface images of the gravure topography were captured. 

From these images the key cell parameters, opening area, cell depth, cell 

volume and the cell patterning were characterised. Observations of 

scratches on the coated web were concluded to be caused by contact 

between the web and roll. 

A novel computational model was derived for the discrete cell gravure 

coating process. The model uses a multiscale approach to address the 

disparate scales of the coating bead and the gravure cell. This is an 

extension of earlier work and is extended to a three-dimensional, realistic, 

topography at the small scale and at the large scale a web-to-roll contact 

model was added. The key topographical gravure features are included via a 

detailed cell scale model. The computational model was able to predict the 

near linear relationship between pickout ratio and speed ratio but failed to 

accurately predict this gradient. The model was shown to be the most 

accurate at speed ratios near unity. 

A parametric investigation of both the coating conditions and the gravure cell 

geometries identified the contact pressure (the pressure caused by the web 

acting directly on the gravure surface) as being important to the coating 

process. Its magnitude was related to the web tension, wrap angle and cell 

size. This led the interesting result that very small cells display no contact 

pressure and suggests a direction for future work on the investigation of 

scratch free coatings. 
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Chapter 1 Introduction 

Coating and printing are the process of replacing the initial fluid on a 

substrate/web (usually a gas) with another fluid (usually a liquid) for the 

purpose of altering the surface properties. This process is ubiquitous today 

and is involved in the production of paper products, polymer sheets, solar 

panels, circuit boards and even transistors etc. Coating and printing 

processes share much of the same fluid flow regime but differ in that coating 

strives to uniformly cover the web while printing typically creates specific 

discrete shapes such as lines, dots etc. On both fronts there is a desire to 

achieve a better understanding of the fluid transfer process. This task is one 

which has received significant interest from both industrial and academic 

research over the last 30 years. 

Much of the early numerical representation comes from considerations that 

have their origins in tribology. Fluid flows where the thickness is much 

smaller than its width make up a sizable field of analysis commonly referred 

to today as lubrication. This area of numerical research was pioneered by 

Osborne Reynolds in his seminal paper investigating the lubrication of 

journal bearings (Reynolds, 1886). The hand drawn diagrams of a pressure 

profile between a rotating cylinder and a flat wall depict a remarkable 

similarity to what is discussed in the present thesis and has been 

reproduced in Figure 1.1. The antisymmetric pressure profile is one that is 

characteristic of a fluid being acted on by a roller. 
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Figure 1.1: Hand drawn diagram by Osborne Reynolds showing the 
pressure distribution between a rotating cylinder and a flat wall. 

 

The coating field today presents a wide range of coating systems which vary 

in speed and coated film thickness, some of which are shown in Figure 1.2. 

Curtain and slide coating control the fluid flow, Q, and speed of the web, Uw, 

to control the film thickness. Roll coating uses a rotating cylinder (the roll) to 

transfer fluid onto a web and the coated film thickness is proportional to the 

fluid carried by the roll and the relative velocity of the roll and web. Dip 

coating requires the coated object to be submerged in the coating fluid and 

then withdrawn. 
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a 

 

b 

 

c 

 

d 

 

Figure 1.2: Types of coating operations: a) roll coating, b) curtain 
coating, c) slide coating, d) dip coating. 

 

The focus of this thesis is on a subset of roll coating called discrete cell 

gravure roll coating and the relevant literature is outlined beginning in 

section 1.1. Results from an experimental investigation of these rolls are 

discussed and presented in Chapter 2. A predictive computational model is 

formulated in Chapter 3. Computational and experimental results are 

compared in Chapter 4. Results varied over a large parameter space are 

shown in Chapter 5. Finally, conclusions and future work are presented in 

Chapter 6. 
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1.1 Roll Coating Flows 

Roll coating is a continuous reel-to-reel process that is particularly well 

suited for covering large areas at high speed (Benkreira, et al., 1994), 

(Kistler & Schweizer, 1997). Roll coaters can operate in a reverse or forward 

mode of operation as shown in Figure 1.3. Industrially, reverse roll coating is 

more common than the forward version due to the increased stability found 

in the reverse mode (Benkreira & Cohu, 1998). 

The region of fluid transfer between roll and web is called the coating bead. 

For a coater operating in reverse mode the bead is bound at the upstream 

by one contact angle at the web-fluid-air interface and at the downstream 

both the roll and the web are wetted.  

 

 

Figure 1.3: Forward and reverse mode of operation for roll coating. 

 

In a forward roll coater at the downstream location there is a meniscus 

splitting region which allows for thinner films to be deposited on the web 

(Kistler & Schweizer, 1997) but, it also has a reduced steady operating 

window from that of a roll operating in reverse mode (Benkreira & Cohu, 

1998). This is because the upstream meniscus is at risk of being pulled 

through the coating bead (Gaskell & Kapur, 2001). A steady operating 

window for a forward roll coater is governed by the balance of roll speed, 
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web speed, the fluid pressure and the rate at which the contact angle can 

advance along the web interface at the upstream location. The film splitting 

process at the downstream meniscus can be taken advantage of to produce 

sequentially thinner films when multiple rolls are used in an individual system 

(Benjamin, et al., 1995). 

Multiple roll systems can be arranged in an off-set configuration (Figure 1.4) 

where one roll transfers the fluid to another which is then used for coating 

the web (there can be more than the two shown in Figure 1.4) and in this 

case the forward and reverse modes depend upon the roll that is transferring 

fluid to the web. One roll is placed in the coating fluid (metering roll), the 

second is placed at a fixed distance above this (applicator roll). The gap 

between the two rolls is referred to as the metering gap and controls how 

much fluid is transferred to the applicator roll (Benkreira, et al., 1994).  

 

                   

Figure 1.4: Off-set roll coater arrangement. 
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The roll is situated such that a portion of the surface is submerged in the 

coating fluid, in industry the fluid is often contained in a closed annilox 

chamber that encases part of the roller. Either a doctor blade or a metering 

roll is used to remove excess liquid from the roll surface. 

 

1.1.1 Gravure Roll Coaters 

Gravure roll coaters differ from smooth rolls by their surface topography 

which has patterns knurled, etched or laser engraved onto their surface 

(Figure 1.5). This topography is responsible for transporting the fluid from 

the fluid bath to the coating bead. The collective volume of the topography 

(i.e. the sum of the cells) dictates the volumetric fluid flow into the coating 

bead.  

Gravure roll coaters are considered to be partially self-metering because the 

surface topography carries a fixed amount of fluid (Benkreira, et al., 1994). 

The use of a doctor blade removes excess liquid from the lands (i.e. the 

surface of the roll, Figure 1.6), this helps to ensure that the surface 

topography is the sole transport mechanism.  

 

 

Figure 1.5: The surface topography of a discrete cell gravure roll 
contains cells, shown here as circular but other common shapes 
include hexagonal, pyramidal, etc. 

 

Wrap 
angle, β

WebSpeed, Uweb

Uroll
Doctor Blade
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Gravure roll coaters fall into two categories; discrete cell and tri-helical 

(Figure 1.7). Gravures that are populated with discontinuous, periodic 

features are called discrete cell gravures where a ‘cell’ refers to a unit 

periodic feature. Shown in Figure 1.5 there is an example with a 

hemispherical cell shape. The cells are aligned into off-set rows, the angle of 

these rows is referred to as the mesh angle or cell patterning (Figure 1.6). 

This describes how the position of the cells changes from one row to the 

next. 

 

 

Figure 1.6: Mesh angle as seen looking down onto the surface of the 

roll where 𝛉 is the mesh angle. The light grey background is the land of 
the gravure and the circles refer to the cells. 
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The other common type of gravure roll has a tri-helical pattern. This is made 

with continuous grooves that are etched, machined or knurled around the 

roller as shown in Figure 1.7. The angle of these grooves is also referred to 

as the mesh angle of the roller.  

 

 

Figure 1.7: Tri-helical gravure roll coaters use continuous channels 
that are etched into the roll’s surface.  
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1.1.2 Deformable Roll Coaters 

Deformable rolls are smooth with an outer layer of (typically) rubber. They 

are commonly used with a metering device, which can be a gravure roll and 

hence is used in an off-set orientation as shown in Figure 1.8. When used 

with a gravure roller these deformable rollers can produce very thin uniform 

coats but the additional advantage comes from the soft nature of the outer 

surface. The coated web is only ever in contact with the applicator roll i.e. in 

off-set this is the deformable roll whereas in direct roll coating it is in contact 

the ceramic/metallic gravure roller. The rubber surface is much softer than 

the ceramic or metallic surfaces of gravure rollers. As the rubber roll is not 

as hard as the web scratching does not occur (Dowson, 1979).  

 

                

Figure 1.8: Deformable roll in off-set configuration with a metering roll. 
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1.2 Experimental Investigations of Gravure Roll Coating 

Discrete cell gravure roll coating parameters can be divided broadly into two 

areas. The first is the gravure topography which includes cell shape, volume 

and aspect ratio. Second are coating parameters including web-to-roll speed 

ratio, web tension and doctor blade effectiveness, etc., and the fluid 

parameters viscosity, surface tension and density. The literature has offered 

insight to the importance of each of these areas. 

1.1.3 Gravure Topography 

The coated film thickness is directly linked to the volume of the cells (Kistler 

& Schweizer, 1997) and as such the cells act as a fluid metering device, 

however as the cells do not fully empty the cell shape also plays a role in the 

fluid transfer process. Cell shapes include (but are not limited to) circular 

cells forming cylinder/cone volume, quadrangular cells forming a 

cube/pyramid volume (see Figure 1.9). The ratio of fluid removed from a cell 

to its total volume is defined as the pickout ratio. It was found that the 

pickout ratio is related to the cell’s aspect ratio, the ratio of cell length (L) to 

depth (D) in Figure 1.9, and the degree to which the cell tapers (Benkreira & 

Patel, 1992).  

In a broad parametric study, it was also found that the shape of cells played 

a role in the fluid transfer mechanism (Kapur (2003), (Kapur, Gaskell, & 

Bates (2001)) noting that as volume of the cell increased so did the pickout 

ratio. Exceptions to this trend occurred when there were significant 

differences in the aspect ratio of the cells being compared (where aspect 

ratio was defined as the average cell width over the cell depth).  
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a 

 

b 

 

c 

 

d 

 

e 

 

f 

 

Figure 1.9: Example circular cells (a and b), quadrangular cells (c and 
d) and pyramidal cells (e and f). The aspect ratio, L/D, is constant for 
cells a, b, c and d. Cells a and c taper more than b and d. The aspect 
ratio is larger in cell e than cell f. 

 

The patterning of the cells (i.e. the mesh angle) has been suggested to 

affect the flow structure within the coating bead by Schwartz L. W. (2002), 

whom numerically modelled an array of discrete cells. There is lack of 

experimental data relating specifically to discrete cell patterning but 

considering the analogous case of a tri-helical roll, the pitch angle of the 

channels was shown by Hewson et al (2006) to affect the pickout ratio.  
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1.1.4 Coating Parameters 

The web-to-roll speed ratio effects the pickout ratio and the coated film 

thickness in both direct gravure (Benkreira & Patel, 1992) and off-set 

gravure modes of operation (Kapur, et al., 2001). The results documented 

an increase in the pickout ratio with increasing speed ratio for both discrete 

cell and tri-helical gravure roll coaters. Industrial applications commonly 

operate near a speed ratio of one. For discrete cell gravures operating at a 

speed ratio of one the pickout can be approximated to be one third of the 

total cell volume (Benkreira & Cohu, 1998). 

The speed ratio is a convenient way to scale production rates, where by 

increasing absolute speeds of the roll and web a similar coated film 

thickness can be maintained. The absolute value induces changes in the 

fluid Capillary Number (Ca) which relates fluid viscosity, η, surface tension, γ, 

and the velocity peripheral velocity of the roll, Uroll, via Equation 1.1.  

 

Ca =
ηUroll

γ
 

1.1 

The use of a high speed ratio is limited by a steady operating window by the 

onset of ribbing instabilities in the forward mode of operation which will lead 

to a non-uniform coated film thickness (Pulkrabek & Munter (1982), 

Benkreira & Cohu (1998), Coyle et al (1990)). In addition, air entrainment 

has been observed at high speed ratios in the reverse mode of operation 

(Coyle, et al., 1990), (Benkreira & Cohu, 1998), (Kapur, 2003) as well as in 

forward operation (Gaskell & Kapur, 2001) and leads to streaking (regions of 

un-coated web) in the final coating.  

The fluid structure within the coating bead is dependent on the transfer 

mechanism. For the case of two smooth rolls at a fixed gap operating in 

forward mode two primary eddies are formed while the reverse mode forms 

a single eddy (Figure 1.10, Gaskell, et al., 1998). In the smooth roll case 

fluid moves throughout the bead “transfer jets”, which are located at regions 

of relatively high velocity, i.e. in the case of a reverse roller they are located 

at the roller surface and the web surface connected by fast flowing regions 
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near the bounding menisci and has been shown in Figure 1.10. The study 

was conducted using two smooth rolls and alludes to the macroscopic 

coating bead scale when a large web-to-roll gap is present.  

 

 

Figure 1.10: Flow visualization using a laser particle technique of 
rollers operating in reverse mode showing a large eddy and the 
primary transfer jets. (Gaskell, et al., 1998) 

 

In the reverse mode of operation the speed ratio was found to change the 

coating bead structure. An increase in speed ratio (increasing the speed of 

the top roll) caused the coating bead to migrate downstream. The upstream 

meniscus was pulled down in the downstream direction as seen in Figure 

1.11 (Gaskell, et al., 1998). This corresponded to a reduction in the length of 

the coating bead.  

 

 

Figure 1.11: Flow visualization using a laser particle technique of 
rollers operating in reverse mode showing the upstream meniscus 
being pulled downstream. (Gaskell, et al., 1998) 
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A study of individual cell pickout has been undertaken on a scaled up 

gravure cell (Yin & Kumar, 2006) which allowed for the visualisation of the 

cell evacuation mechanism (Figure 1.12). It was found that the volume of 

coating fluid remaining in the cell after a PET (polyethylene terephthalate) 

coated glass top (representing a web or roller in off-set configuration) was 

passed over it depended on the initial volume of fluid in the cell, the distance 

the glass top was from the cell and the properties of the liquid (i.e. viscosity). 

A re-circulating flow was observed in the cell, which when considered in 

conjunction with the study by Gaskell et al (1998), it can be deduced that in 

a full gravure roller there are primary eddys forming in the coating bead but 

also many smaller ones in each cell indicating a very complicated flow in the 

domain. It has not yet been shown experimentally in the literature how the 

cell scale eddys affect the larger eddy in the coating bead. 

 

 

Figure 1.12: Flow visualization experiment showing the cell evacuation 
process. The meniscus formation can be seen as the glass top passes 
over the cell. (Yin & Kumar, 2006) 
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The addition of a flexible web to the coating bead adds the complexity of a 

variable web-to-roll gap which is governed by a balance of the fluid pressure 

and the downward force of the web. Bead structure visualisation results on a 

tri-helical roll (Figure 1.13, (Hewson, et al., 2006)) suggest that the web-to-

roll gap collapses to a distance of zero forming a contact zone. The single 

eddy found by Gaskell et al (1998) separates upstream and downstream into 

two separate eddys either side of a central contact region. 

 

 

 

 

Figure 1.13: Coating bead structure (image top, schematic bottom) 
between a tri-helical gravure and a flexible web presented in Hewson, 
et al. (2006).  
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Using a discrete cell gravure roll Kapur (1999) observed numerous substrate 

scratches on an aluminium coated web (Figure 1.14). The scratches indicate 

that the web and roll are in contact and that web is being supported by the 

roll. It is unclear from the literature what impact this has on the fluid transfer 

mechanism. 

 

 

Figure 1.14: Substrate scratching presented in the PhD thesis of Kapur 
(1999). 
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1.2.1 Doctor Blade 

Excess fluid is removed from the gravure surface via a doctor blade. The 

blade can be set in either a trailing or leading edge orientation. It can be 

deformed under hydrodynamic loads causing a change in the expected 

amount of fluid removed from the surface. In a trailing mode of operation 

Patel et al (1990) observed that as the angle of the blade against the 

gravure surface decreased the hydrodynamic loads increased, reducing the 

effectiveness of the blade. For leading orientation blades the resultant 

hydrodynamic loading pushes the blade into the roll surface.  

 

Figure 1.15: Leading and trailing orientation for doctor blades.  
 

Hanumanthu (1999) found the blades require a wear-in period as the edges 

of the un-used blade form sharp corners which locally can cause a leading 

orientation blade to behave as if it is in a trailing orientation. During this 

wearing phase Hanumanthu found that the coat weight reduced by 8% 

before reaching a steady state, signifying that the blade was fully worn. This 

difference is illustrated in Figure 1.16. 

 

  

Figure 1.16: Unworn versus worn-in doctor blades. Unworn doctor 
blades are not parallel to the roll surface. 
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1.3 Gravure Numerical Modelling 

The literature has presented two types of models for discrete cell gravure roll 

coating, these focus their attention on fluid flow through a cell or, 

alternatively, through the coating bead. In the analysis of roll coating the 

Navier-Stokes equations are often reduced to lubrication theory, therefore a 

derivation of this is presented at the start of this section. 

1.3.1 Lubrication Theory 

Reynolds equations have been used to describe simple lubricating flow and 

found common use in the analysis of bearing systems as well as coating 

applications. Equation 1.17 is the Reynolds equation subject to the following 

simplifications required by lubrication theory (Cameron, 1981): 

 

1. Body forces are neglected as the field forces (i.e. gravity) applied to the 

lubricating liquid are much less than those applied by the surrounding 

surfaces. 

2. Pressure through the thickness of the film is considered constant. 

3. The length of the film is much greater than its thickness, 
thickness

length
≪ 1 

4. No slip conditions at all fluid to solid wall interfaces. 

The problem can be simplified by limiting the scope to small where the 

Reynolds number (=
ρUL

η
) flows: 

 

5. Fluids are assumed Newtonian. 

6. Fluid inertia is neglected. 

Applying points 1-6 to the Navier-Stokes momentum equations (1.2, 1.3 and 

1.4) results in the derivation of the Reynolds equation (Szeri, 1998).  
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ρ (
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
) = −

∂p

∂x
+ η (

∂2u

∂x2 
+

∂2u

∂y2
+

∂2u

∂z2) + ρfx 
1.2 

 

ρ (
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
) = −

∂p

∂y
+ η (

∂2v

∂x2 
+

∂2v

∂y2
+

∂2v

∂z2) + ρfy 
1.3 

 

ρ (
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
) = −

∂p

∂z
+ η (

∂2w

∂x2 
+

∂2w

∂y2
+

∂2w

∂z2 ) + ρfz 
1.4 

 

 

The terms in Equations 1.2 to 1.4 are defined where ρ is the fluid density, u, 

v, w are velocities in the x, y and z directions respectively, p is the pressure, 

η is viscosity of the fluid and f is the body force in the subscripted x, y or z 

direction. Throughout this section x will be defined as the primary flow 

direction, y as the thickness of the film and z as the direction across the film 

(on a roller this direction is axial). 

For a given fluid, 1.2 to 1.4 will have four unknowns, the velocities u, v, w 

and the pressure, p and therefore to solve this system of equations a fourth 

equation is required. This is the continuity equation for conservation of 

volume (equation 1.5): 

 

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 

1.5 

 

 

With the equations for a general flow field defined, the lubrication 

assumptions can now be applied. First the body forces in the flow field are 

assumed to be negligible, fx,y,z ≈ 0. Applying assumption two, the 
∂p

∂y
 term 

vanishes as it is assumed there is no pressure acting through the thickness 

of the film. From a consideration of the length scales (assumption 3) of the 

lubricant it can be deduced that velocities in the y direction (i.e. thickness) 

are very small and can be neglected which removes equation 1.3 and leaves 

the equations of motion as: 
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ρ (
∂u
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+ u

∂u

∂x
+ w

∂u

∂z
) = −

∂p

∂x
+ η (

∂2u

∂x2 
+

∂2u

∂y2
+

∂2u

∂z2) 
1.6 

 

ρ (
∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
) = −

∂p

∂z
+ η (

∂2w

∂x2 
+

∂2w

∂y2
+

∂2w

∂z2 ) 
1.7 

 

As a result of the constant viscosity through the thickness of the Newtonian 

film the fluid’s velocity will only vary with its distance from the surfaces in the 

thickness of the film. Additionally, since the bounding surfaces are 

continuous, fluid velocity will not change along the length of the surface (i.e. 

x-direction) and similarly across the surface (i.e. z-direction).  

ρ (
∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
) = −

∂p

∂x
+ η (

∂2u

∂y2) 
1.8 

 

ρ (
∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
) = −

∂p

∂z
+ η (

∂2w

∂y2 ) 
1.9 

 

 

Assuming that the inertial terms are small and can be neglected, the left 

hand side of the equation is set equal to zero. After rearrangement, the 

pressure gradients are: 

∂p

∂x
= η (

∂2u

∂y2) 
1.10 

 

∂p

∂z
= η (

∂2w

∂y2 ) 
1.11 

 

 

Equations 1.10, 1.11 and 1.5 govern the motion of a lubricating fluid (Stokes 

flow). The Stokes fluid governed by Stokes flow has the properties of being 

instantaneous, time reversible and linear. This is useful because the flow 

can be solved with knowledge of the boundary conditions at only one point in 

time. Further, its linearity means that it is proportional to just the forces 

acting on it. By twice integrating 1.10 and 1.11 with respect to y to isolate the 

fluid velocity components, the following equation is obtained: 
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u =
1

2η

∂p

∂x
y2 + Ay + B 

1.12 

 

w =
1

2η

∂p

∂z
y2 + Cy + D 

1.13 

 

 

Where A, B, C and D are constants of integration. The boundary conditions 

for equations 1.12 and 1.13 arise from a consideration of the bounding upper 

and lower surfaces. In reality the surfaces would typically be a solid plate 

and as such only moving in one direction which is defined here as the x 

direction. Assuming there is no-slip at each surface: 

u = Ulower, w = 0 at y = 0 1.14 

 u = Uupper, w = 0 at y = h 

 

Where U is the velocity of the subscripted surface and h is the separation of 

the two surfaces. Solving equations 1.12 and 1.13 for the boundary 

conditions in 1.14 the following is achieved: 

u =
1

2η

∂p

∂x
(y2 − yh) + (1 −

y

h
) Ulower +

y

h
Uupper 

1.15 

 

w =
1

2η

∂p

∂z
(y2 − yh) 

1.16 

 

 

A useful form of this equation is where the subject is the volumetric flow-rate. 

Finally the integrals ∫ u dy
h

0
 and ∫ w dy

h

0
 will yield the volumetric flow rates: 

qx = −
h3

12η 

∂p

∂x
+ (Uupper − Ulower)

h

2
 

1.17 

 

qw = −
1

12η

∂p

∂z
 

1.18 
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Where qx is the volumetric flow in the x direction, h is the distance 

separating the two surfaces, μ is the viscosity, 
∂p

∂x
 is the pressure gradient in 

the x direction, U is the subscripted velocity of the surface. Note that if the 

moving surfaces have velocity components in the z direction, equation 1.18 

will have an extra velocity term similar to 1.17. 
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1.3.2 Numerical Gravure Cell Models 

Models investigating discrete gravure cells or tri-helical channels operate on 

length scales of 10s-100s μm. 

Early work to numerically investigate the gravure cell evacuation process 

was undertaken using lubrication theory to approximate a Newtonian fluid, 

passing over a patterned surface (Schwartz, et al., 1998), this can be seen 

in Figure 1.17. The result showed that the pickout ratio increased with cell 

volume, which agrees with other experimental work found in the literature [ 

(Benkreira & Cohu, 1998), (Kapur, 2003)]. The model used a time-marching 

method, but made use of the periodic topography of a gravure surface and 

periodic time. Simulations were performed for both two and three 

dimensional cells and it was found that in three dimensions pickout ratios 

were smaller, suggesting that the cell walls (rather than just a cross-section) 

play a role in the evacuation process. The two-dimensional formulation is 

representative of a channel as opposed to three-dimensional formulation 

which describes a cell. 

The effect of cell patterning was also investigated by taking the initial nine 

cell square domain and rotating it such that the cells were patterned at 45o 

from the horizontal (as one looks down on the surface of the roller) which 

showed a corresponding increase in pickout Schwartz (2002).  

 

Figure 1.17: Patterned surface of the gravure roller as the meniscus 
passes over the surface. Fluid can be seen remaining in the cells. 
(Schwartz, et al., 1998) 
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Using the finite element method Powell et al (2000) modelled the fluid 

evacuation process in a two-dimensional rectangular cell (Figure 1.18). The 

simulation pinned a meniscus to an upper moving surface (the web) and as 

it travelled across the domain fluid was “pumped” out of the cell. It was found 

that a large aspect ratio (i.e. a long shallow cell) evacuated more completely 

in comparison to a low aspect ratio cell (i.e. narrow and deep cell); and for 

cells with a very large aspect ratios the pickout was independent of capillary 

number.  

 

 

Figure 1.18 Flow field inside a gravure cell showing as the meniscus 
travels across the domain fluid is forced to evacuate the cell. Figure is 
from Powell, Savage and Gaskell (2000). 

 

Velocity profiles in the cell also give some insight into the evacuation 

mechanism, whereby the eddy initially present in the cell is deformed as the 

meniscus travels down the cell wall. To conserve volume (and mass as the 

fluid is incompressible) the flow rate out of the cell near its corner greatly 

increases (see Figure 1.18), and it can be inferred that the meniscus is 

supplying a ‘pumping’ action to force this velocity increase.  

More recently a similar study (Hoda & Kumar, 2008) using the boundary 

integral method concurred with the findings of Powell et al (2000) but also 

noted that an increase in the contact angle on the cell wall led to a reduced 

pickout. It could be seen that the meniscus in certain conditions can travel 
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along all three walls of the cell (noting that study was in two dimensions and 

the cell was essentially a rectangle with an open top). The contact angle of 

the meniscus on the cell wall was shown to affect both the rate of emptying 

and the degree to which a cell would empty. It is also shown how the 

capillary number and the cell geometry affect the evacuation process (Figure 

1.19). The more significant of these two parameters is the cell geometry, 

specifically the ratio of the length of the cell entrance to cell depth. The 

model predicts what has been seen experimentally which is that shallow 

cells have a larger pickout ratio. 

 

Figure 1.19 Describing the time dependent travelling meniscus for different capillary 
numbers and different cell geometries presented in Hoda and Kumar (2008). 

 

Most studies that examined fluid flow in a gravure cell have neglected the 

influence of the web, and have considered it as a uniform rigid wall. This 

assumption arises from consideration of the length scale of an individual cell 
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(much like assuming the surface land near the cell is flat when in reality it is 

curved due to the cylindrical roll). This assumption was investigated by Yin 

and Kumar (2005) who used a lubrication model to determine the affect of a 

variety of tensioned webs and the case of an off-set roller which is covered 

in an elastic material. The results showed that webs which were only lightly 

tensioned severely deformed as they passed over the cell and on highly 

tensioned webs this effect was much less.  

Following this work external pressure was incorporated into the model (Yin & 

Kumar, 2006) to show the effect of the web (and in this study a flexible cell 

base was looked at) on the streamlines in the cell and its surrounding gap. 

These two models do ignore the web stiffness which plays an important roll 

on the web deformation problem on the cell length scale (Hewson, et al., 

2009). When web stiffness is included it can be concluded that the 

deformation, on the scale of a gravure cell level is negligible. 
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1.3.3 Numerical Coating Bead Models 

Greener and Middleman (1979) used lubrication theory to successfully 

predict the film thickness produced on two parallel counter-rotating smooth 

rolls that were half submerged in a coating bath. Coyle et al (1990) created a 

numerical model on the same roll setup (Figure 1.20) operating in reverse 

mode and focused its attention on the flow entering and leaving the metering 

gap. The model applied using lubrication theory and the finite element 

method. Due to the experimental setup the free surface above the metering 

gap (i.e. where film splitting occurs) played an important role in the physics. 

A recirculation region was induced below this free surface but above the 

metering gap and it was suggested that this recirculation caused a large flow 

rate back through the metering gap. It was found that lubrication theory was 

unable to correctly predict the location of the free surface or the recirculation 

region.  

 

Figure 1.20 Experimental setup used by Coyle et al (1990) for the basis of their 
lubrication model of the metering gap. 

 

Modelling the tri-helical coating bead on a gravure roller where the grooves 

are continuous and as such can be well represented with a two-dimensional 

model whereas discrete cells create more complex three-dimensional 

effects. Because of this an early predictive model was developed for a direct 

tri-helical gravure roller operating in reverse mode using the finite element 

method (Hewson, et al., 2006). In the case of a flooded coating bead these 

pressures would be taken at infinity where the pressure gradient would be 

equal to zero. As this is not ever the case since the coating bead is not 

infinitely long the pressure boundaries were taken to be in the menisci.  
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1.3.4 The Meniscus Boundary Condition 

The boundary conditions applied in these coating models have largely come 

from considerations of free surfaces, starting with the Young-Laplace 

equation relating a pressure differential across a fluid boundary to the radius 

of curvature of that boundary. From contemplation of a dip coating 

experiment, Landau & Levich (1942) found that the film thickness formed as 

a plate was withdrawn from a liquid could be calculated. In the limiting 

velocity case (i.e. where velocity is much less than the ratio of surface 

tension to fluid viscosity) the film thickness can be found using: 

 

h0 = 2.29
(v0η)2/3

γ1/2√ρg
 

1.19 

 

Where the asymptotic film thickness, h0, is related to the surface tension, γ, 

substrate withdrawal velocity, v0, fluid viscosity, η, fluid density, ρ, and 

gravity, g. At somewhat higher rates of withdrawal the film thickness is 

related by the equation: 

 

h = (
ηv0

γg
)

1/2

f (
v0η

γ
) 

1.20 

 

 

Where the capillary number, f (
v0η

γ
), needs to be experimentally determined. 

In these equations the inertial term becomes more significant as the 

withdrawal speed (and therefore the capillary number) increases.  

Experimentally considering a liquid filled narrow horizontal tube being 

partially evacuated by a long bubble yields a similar result to that of Landau 

and Levich, however, the gravitational drainage term becomes largely 

insignificant and vanishes in the analysis. This becomes important for use in 

roll coating analysis because the bead is typically located on top of the roll 

and its size is such that the inertia can readily be neglected. Such work was 
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completed by Taylor (1960), Bretherton (1960) and Cox (1962) who 

considered a range of capillary numbers. Bretherton, considering capillary 

numbers in the range of 0.015 to 0.09, analytically derived the ratio of 

asymptotic film thickness (λ) over its meniscus radius of curvature (r) to 

equate to the product of a coefficient and the capillary number to the two-

thirds power (equation 1.21). This relation was utilised as a boundary 

condition in Hewson, et al. (2011). 

 

λ

r
= 1.34 (

ηv

γ
)

2/3

 
1.21 

 

 

1.3.5 The Multiscale Method for Discrete Cell Gravure Modelling 

The multi-scale method is used to address problems that have components 

in disparate scales, where it is impractical to solve everything at the detail 

required for the small features, or alternatively there is missing information 

when using the larger scale (E, et al., 2003). It works by creating a 

homogeneous large scale solution using the small scale information to fill in 

the missing large scale data. The method is well suited to discrete cell 

gravure modelling because of the different length scales between the 

coating bead and the cells. This was first applied to gravure coating by 

Hewson et al (2011) who created a two dimensional model of a coating bead 

where the roller surface was populated with trapezoidal cells. The goal was 

to show the effect of the cells on the flow throughout the coating bead. It was 

noted that lubrication theory used in earlier works is not applicable to 

discrete cell gravure roll coating because of the sharply changing 

topography on the surface and since the depth of the cells can be of the 

same magnitude as the web-to-roll gap. In particular the multi-scale method 

accounted for the re-circulating within the gravure cells, a feature overlooked 

in earlier work.  

The model was able to predict important operation parameters as identified 

by experimental methods on the coating bead level and the cell level. 
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Particularly it showed that as web-to-roll speed ratio increased so too did the 

pickout. The model also predicted the effect of cell geometry on pickout and 

film thickness, i.e. shallow cells evacuated more completely and deeper cells 

lead to a greater film thickness which agrees with earlier work of Kapur 

(2003). 

1.4 Conclusions from Literature 

Work on discrete cell gravure roll coating is now a well-developed field of 

study. Experiments over the last 25 years have identified the key parameters 

that influence the coating process. Some of this has been shown 

numerically. The fluid transfer process for a gravure roll and flexible web 

remains at least a partial unknown, though it is analogous to the case where 

a transfer bead forms between two smooth rolls. The influence of the 

gravure cells, the flexible web and an unknown web-to-roll gap complicate 

this problem. The two scale modelling technique discussed in Hewson et al 

(2011) has shown a method of combining a simplified cell level flow model 

with the larger transfer flow model. Extension of this to a predictive discrete 

cell gravure model is a promising path of study. 
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Chapter 2 Experimental 

Methodology and Results 

2.1 Introduction 

This chapter outlines film measurement experiments undertaken for two 

gravure rolls of different patterns. The purpose of these tests is to establish a 

body of results against which a numerical model can be compared. Similar 

experimental work has been done elsewhere in the literature [ (Benkreira & 

Patel, 1992), (Benkreira & Cohu, 1998), (Kapur, et al., 2001), (Kapur, 2003), 

(Hewson, et al., 2006)] and details such as film thickness, pickout ratio, fluid 

properties and cell volumes are readily available. However, validation of the 

numerical model also requires details of the roll surface, especially 

pertaining to the cell shape which is typically not reported in the literature at 

an appropriate level.  

This chapter presents both the methodology for testing and the resulting 

data of the measured film thickness and the calculated pickout ratio of the 

two gravure rolls. It also contains experimental observations of scratches 

formed on the web during the coating process. 

2.1.1 Web Handling 

The experimental roll coating apparatus used here can be seen in Figure 2.1 

and Figure 2.2. It was designed to simulate industrial roll coating operations 

and has been used in previous work (Kapur, 1999). The apparatus replicates 

the coating process found on industrial production lines; it neglects the 

upstream web stretching processes and the downstream drying processes. 

A detailed description of its operation can be found in Kapur (1999). A brief 

description has been offered here for clarity. 
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Figure 2.1: Illustraion of coating rig showing direction of web travel 
through the rolls. 

 

Figure 2.2: Picture of the coating rig.  
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2.1.2 Web Handling 

Referring to Figure 2.1 the rig passes the web from the un-wind roll to a re-

wind roll. These are the only two powered web handling rolls. Between these 

there are five idle rolls, the first of which is fitted with a tachometer for 

measuring the velocity of the web. The second is fitted with a load cell to 

measure the web tension. A third idle roll is then used to re-direct the web to 

the coating at the top dead centre of the gravure. This roll has an adjustable 

height such that the wrap angle upstream of the gravure can be varied. 

Downstream of the gravure there were two more idle rolls which are used to 

direct the web to the re-wind roll. 

2.1.3 Fluid Handling 

The coating fluid is held in an open air tray. This can be filled such that the 

bottom two centimetres of a 10 cm gravure roll will be submerged. 

Geometrically the tray is unlike the closed anilox chambers used at industrial 

production scales, but from an operational perspective the roll collects fluid 

in a similar manner. 

Film thickness measurements require the fluid to be removed from the web 

and measured. This is accomplished using a rubber scraper which is firmly 

pressed against the idle roll directly downstream of the gravure (Figure 2.3). 

This process was described and shown to be effective in Kapur, (2003) and 

Kapur, Gaskell, & Bates (2001) leaving a fluid thickness of less than 0.1 𝜇m 

on the web. The fluid is funneled into a beaker which is then weighed to find 

the mass of liquid. The coating apparatus takes several seconds to 

accelerate to the input speed and the fluid takes up to 30 seconds to drain 

from the scraper into a collection beaker. Therefore, at least 30 seconds of 

operation is required before steady state is reached. 
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Figure 2.3: Fluid removal from web using scrapper. Fluid drips 
downward from the scraper to the collector tray below.  

 

2.1.4 Gravure Handling 

The gravure roll is powered by a dedicated motor and an independent speed 

control. The roll rotates in a tray containing the coating fluid with excess fluid 

being removed by the doctor blade. The gravure meshes with its drive motor 

using a key and channel configuration. The coating apparatus is designed to 

handle rolls of the dimensions shown in Figure 2.4.   
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2.1.5 Doctor Blade 

A doctor blade is fitted to remove excess fluid from the roll surface. The 

doctor blade is loaded by suspending weights (4 kg) via a pulley system. 

The doctor blade angle was set to operate in a leading orientation. The 

blade was made from a 250 micron thick strip of PET held in a custom 

clamp. 

New blades required a wear-in period; specifically, corners of the blade’s 

square edge needed to be worn down. Before this wear was completed the 

blade could vibrate violently. This wear process was also important in 

allowing the coat weight to arrive at a steady state (Hanumanthu, 1999). The 

wear process took approximately 20 minutes while operating as intended 

against the gravure (speed of 0.5 m/s) and was stopped when the vibrations 

ceased. The wear process was conducted prior to any coating experiments 

using a fluid that was replaced to prevent contamination of testing fluid. This 

is important as PET particles from the blade will flow into the coating solution 

and can mechanically lock into the gravure cells. A similar process is 

observed in industrial coating operations where the coating fluid may already 

contain solid particles and over time will reduce the volume of fluid 

transferred to the web due to build up in the cells. 

2.1.6 Coating Apparatus Control System 

The apparatus is operated from a control panel allowing for the values of the 

gravure speed, web speed and web tension to be set. 

The apparatus control uses a feedback loop comparing the input web 

tension and web speed to the measured tension (via the load cell) and 

speed (via the tachometer). The re-wind roll speed is adjusted to maintain a 

constant web speed/tension measured by the tachometer/load cell. These 

variations occur as the length of web on the un-wind/re-wind rolls changes 

(i.e. the radius of the web on the roll changes as it is used). 

The control system does not work at web loads less than 50 N/m and is 

most reliable above tensions of 100 N/m. The control system fails to 

consistently resolve the speed when the reels have a large difference in 
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radius (e.g. when a new reel is added to the un-wind roll and re-wind roll is 

empty).  

 

2.2 Experimental Fluid Properties 

The experimental fluid used was a mixture of water and glycerol. The 

addition of glycerol is used to increase the fluid viscosity to bring it into line 

with other experimentalists and industrialists. From literature the viscosity in 

experimental work has been conducted over a range of 0.001-0.0134 Pa∙s 

(Benkreira & Patel, 1992) and 0.001-0.004 Pa∙s (Kapur, 2003) where at 20° 

C water has viscosity of approximately 0.001 Pa∙s. 

Numerical work typically reports capillary number as the preferred metric 

and often does not quote viscosity, surface tension or characteristic velocity. 

For the purposes here the viscosity was computed using a surface tension of 

0.04 N/m and a gravure roll velocity of 0.5 m/s because these were the 

values eventually used in the experiment. Assuming this a value of 0.008 

Pa∙s was used by Hewson, et al. (2006), while Schwartz, et al (1998) reports 

viscosities of 0.005 Pa∙s. 

The surface tension of a water/glycerol solution is too high to completely wet 

the surface of the web (the fluid forms beads on the web leaving large areas 

uncoated). This was reduced using the surfactant Tween20 

(polyoxyethylenesorbitan monolaurate) at a one percent concentration.  

There are two properties of the coating fluid that need to be known for these 

experiments. These are the fluid viscosity and the surface tension of the 

fluid. It is worth noting that some of the boundary conditions used in the 

numerical model (shown in later chapters) are only applicable at low 

capillary numbers and a low viscosity is desirable in order to maintain their 

validity. The lower viscosities are also more representative of what is seen in 

industry. 
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2.2.1 Viscosity Measurement Method 

Measurements of the fluid viscosity were required to determine the ratio of 

glycerol to water that was needed to create a test solution of viscosity 0.002 

Pa∙s. Four test fluids were made with 20%, 25%, 33% and 50% glycerol 

concentrations.  

The viscosity of the coating fluids were measured using a cone on plate 

rheometer. This is a category of rotating shear rheometer. A sample of the 

test liquid is placed on the plate and the cone is lowered to a pre-set 

distance from the plate. This gap at the end of the cone was set to 0.25 mm 

(the cone is in fact slightly truncated at the tip rather than forming a point). 

The cone rotates and the rheometer measures the resistance to motion 

induced on the cone by the fluid. The viscosity can then be related to this 

measured value of shear force.  

The rheometer also requires a calibration against a fluid of known viscosity 

which in this case was water. 

2.2.2 Viscosity Measurement Results 

Referring to Figure 2.5 the preliminary glycerol concentration tests showed 

that 20% glycerol would yield viscosities of approximately 0.0018 Pa∙s. This 

concentration was carried forward to create a large batch solution for use in 

the experiments. The viscosity of this larger batch was measured 

immediately prior to conducting the experiments and was found to have a 

viscosity of 0.0016 Pa∙s, the variation likely due to changes in fluid 

temperature which was ultimately controlled by the ambient room 

temperature. 
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Figure 2.5: Resultant viscosity of water-glycerol test mixtures. The 
solution carried forward to the experiments was 20% gylcerol. 
  

200 300 400 500 600 700 800 900 1000
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Shear Rate, s-1

V
is

c
o
s
it
y
, 

P
a
.s

 

 

20% Glycerol

25% Glycerol

33% Glycerol

50% Glycerol

Water



40 
 

 

2.2.3 Surface Tension Measurement Method 

A small amount of surfactant was required to ensure that the web fully 

wetted. The volume used to achieve this was one percent of the volume of 

the test solution. The surface tension of the final solution was measured 

using a 10mm platinum du Noüy ring fixed to a tensiometer (Figure 2.6). The 

ring was cleaned prior to measurements using an ultrasonic bath containing 

distilled water.  

 

Figure 2.6: Du Noüy ring apparatus (Holmes, 1922). 

 

2.2.3.1 Surface Tension Measurement Results 

Measurement of the surface tension in the bulk test fluid used in the coating 

experiments was found to be 0.04 N/m. The scale on the tensiometer could 

read to 0.005 N/m. 
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2.3 Experimental Gravure Rolls 

2.3.1 Introduction 

The film thickness experiments were conducted using two gravure rolls 

which have been designated Roll A and Roll B. These are both ceramic rolls 

which were laser engraved with a discrete cell pattern to give the 

characteristics summarised in Table 2:1. The key parameters are the 

opening diameter, the cell depth and the characteristic length (which is equal 

to its periodic length), these are identified by the idealised sketch in Figure 

2.7. The cell details were captured using a white light interferometry 

technique. This allowed for the volume of individual cells to be calculated as 

well as their shape characteristics such as opening diameter, depth and 

volume. 

 

 

Figure 2.7: Sketch of a generic gravure cell. The cell diameter is given 
by 2r, the cell depth is given by D, and its characteristic length refers to 
its periodic length, L. 
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Table 2:1: Parameters for rolls A and B 

Average Cell Values A B 

Characteristic Length (L) 0.250 mm 0.450 mm 

Cell Diameter (2r) 0.150 mm 0.300 mm 

Cell Depth (D) 0.080 mm 0.175 mm 

Cell Volume 8.9× 10−13 m3 7.5× 10−12 m3 

Volume per Unit Area 1.4× 10−5 m3/m2 3.7× 10−5 m3/m2 
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2.3.2 Imaging of Gravure Rolls 

The cell depth of the test rolls was on the order of tens of microns and 

therefore to resolve the topography an imaging technique was required to 

capture features on the micron scale. The cell pattern repeats on a 

millimetre length scale. Two pieces of equipment were tested to meet these 

criteria, a white light interferometer and an optical microscope. 

2.3.2.1 Imaging: White Light Interferometer Method 

Interferometers split a light source to create two beams of light. One beam is 

reflected off of a mirror and the other off the surface which is being 

investigated. The two beams are then recombined and interfere with each 

other. Due to the phase difference between the two beams of light they form 

fringes of lower or greater intensity. The resulting interference fringes appear 

on the viewing surface. The distance separating the fringes is related to how 

out of phase the light has become after reflecting off of the object. This can 

be related to the topology of the surface. The resolution for interferometers is 

based on the wavelength of light used making them more than adequate at 

measuring sub-micron features. A simple schematic of a Michelson 

interferometer is shown in Figure 2.8, this is one which is monochromatic (a 

one wavelength light source). White light interferometers operate on the 

same principle but are polychromatic. For further information on the 

operation of a white light interferometer the reader is referred to Hariharan 

(2006). 
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Figure 2.8: Schematic of Michelson interferometer.  
 

The interferometer used was made by Bruker. The device was large enough 

for an entire gravure roll to be placed under the viewing lens. The curvature 

of the roll is noticeable when viewing an area of the roll. This curvature was 

digitally removed by approximating the roll surface to follow a parabolic 

curve.  

Any features on the gravure roll (or any object) that have a viewing angle 

greater than 40° will reflect the light away from the interferometer’s lens. This 

is relevant to rolls with steep cell walls, though the ones considered here did 

not exceed this criteria. 

2.3.2.2 Imaging: Optical Microscope Method 

An optical microscope relies on detraction of light through a lens to magnify 

and image. An optical three dimensional microscope operates similarly but 

instead of taking just one image it will take a series of images varying the 
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distance from the surface of the object. As the microscope has a fixed focal 

length there will only be one region in each image that is in focus. By digitally 

“stitching” these images together (this is based on interpolation between 

each image in the series) a single three dimensional image of the surface 

can be created. For further details on the theory of optical microscopes the 

reader is referred to Murphy (2001). 

The 3D optical microscope at the University of Leeds cannot handle a large 

sample such as a gravure roll. Therefore in order to capture a surface image 

of the gravure metallic imprint strips are required (these are produced by 

Praxair). They are made of a soft malleable metal that can be pressed into 

the surface of the gravure. An image of the imprint can then be captured by 

the microscope.  

2.3.2.3 Imaging: Conclusions 

As a method for capturing an image of a gravure surface the interferometer 

is preferable. This is because: 

 The interferometer can be focused directly on the roll without the 

need of an imprint strip. This reduces the number of steps required 

and reduces the chance of error. 

 The resolution of the interferometer is related to the wavelength of 

white light (~400-800 nm) allowing for resolution of features on the 

sub-micron scale. The resolution in the vertical axis for the optical 

microscope is determined by, first, the accuracy of the motor and 

plate which move the sample; and second the number images stored 

that can be stitched together. The optical microscope does not 

achieve the resolution (in the vertical axis) of the interferometer. 

However, in the event the gravure has very steep cells such that cannot be 

properly resolved by the interferometer the optical microscope can be used. 

However, none of the test rolls used here had features too steep to be 

captured. 
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2.3.3 Description of Gravure Rolls 

White light interferometry images of the surface of both rolls are shown in 

Figure 2.9 and Figure 2.10. The cells on both rolls have approximately 

circular openings. The cells narrow to form a rounded base, cross-sections 

profiles are shown in Figure 2.11. The Figure 2.12 and Figure 2.13 compare 

the relative land area of each roll. In part b of these figures the all but the top 

layer of image pixels has been digitally removed to highlight how much land 

actually at the surface of the roll. Simultaneously considering all of these 

figures there are several key differences between the two rolls: 

1. The land on Roll A is very smooth while the land on Roll B is visibly 

rougher (see part a of Figure 2.9 and Figure 2.10). 

2. The land on Roll A occupies a larger portion of the area than the land 

on Roll B (see Figure 2.12 and Figure 2.13). The land on Roll A is 

also smooth and complete everywhere while the land on Roll B is 

rough and arbitrarily incomplete which exacerbates the area 

difference. 

3. The walls on Roll A plateau to form the flat land surface while those 

on Roll B taper towards a point (Figure 2.11). 

4. The diameter of the cell opening is approximately two times larger for 

Roll B than for Roll A (see Figure 2.11 and Table 2:1). 

5. The depth of cells on Roll A are almost half that of Roll B (see Table 

2:1). 

6. The cell volume is one order of magnitude smaller for cells on Roll A 

than those on Roll B. Details of each roll are in Table 2:1 and the cell 

width can be compared directly in Figure 2.11. 
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a 

 

b 

 

Figure 2.9: White light interferometer contour image of Roll A (a) and a 
profile plot of a cell row (b).  
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Figure 2.10: White light interferometer contour image of Roll B (a) and 
a profile of a cell row (b).  
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Figure 2.11: Profile plots of Roll A and Roll B spanning three cells. 
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 Roll A 

a 

 

b 

              

Figure 2.12: Contour plot of Roll A (a) which has been levelled such the 
highest point of the land is at 90 µm. Part b shows the gravure surface 
with all but the top layer digitally removed, note that the land is smooth 
and complete everywhere.  
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 Roll B 

a 

 

b 

               

Figure 2.13: Contour plot of Roll B (a) which has been levelled such 
that the highest point of land is at 225 μm. Part b shows the surface 
with all but the top layer of land digitally removed. The land at this 
surface is rough and most of the space is occupied by the cell area. 
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2.4 Experimental Method 

The experimental procedure was designed to measure the fluid transferred 

from the roll to the web by each gravure at a given speed ratio. The method 

used was similar to the one used by Kapur (2003). However, the 

experimental method here is linked with greater detail of the gravure surface 

than is found in prior literature. The gravures are not new and have an 

unknown amount of surface wear. The imaging data gathered in section 2.3 

is used to account for this, where typically manufacturer’s data would suffice.  

The coating apparatus was set up with the web tension set to 1000 N/m, the 

roll speed 0.5 m/s, the web speed varied to achieve the desired speed ratio 

(0.5-1.25) and the test fluid used was a 20% glycerol/water mixture. The 

doctor blade was fixed in a 30° (Figure 2.3) leading orientation with the 

suspending weights causing a force of 4000 N/m (note that this is 400 N 

spread along the 10 cm web width) at the gravure surface. The web was 23 

𝜇m thick and 10 cm wide. The wrap angle was set to 2.5°. 

Coat weight was measured by placing a rubber scraper against web such 

that the web was pushed against an idle roll. The fluid would then drain 

under gravity into a funnel and finally a beaker for measurement. At the start 

of each test a period was required for the process to reach steady state 

which could be visually judged. The test time (𝐓) duration was two minutes. 

The captured fluid could then be measured to determine the transferred fluid 

mass along an area of web (0.1 × lweb) and therefore the film thickness (𝐭) 

can be calculated for a known density, 𝜌, (equations 2.1 and 2.2). The 

pickout ratio, ϕ, was then determined using equation 2.3 where the cell 

volume, Vcell, is a measured quantity. Enough repeats of each test were 

done to establish the experiments were in agreement with similar published 

data [ (Benkreira & Patel, 1992), (Kapur, 2003)]. 

 

t =
mfluid

𝜌 × 0.1 × lweb
 2.1 
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lweb = Uweb𝐓 = UrollS𝐓 2.2 

ϕ =
t

Vcell
 

2.3 

 

 

2.5 Results 

Results were obtained over a speed ratios range of 0.5 to 1.25 and have 

been presented in Figure 2.14 and Figure 2.15. The speed of the gravure roll 

was maintained at 0.5 m/s and the web speed was varied from 0.25 m/s to 

6.25 m/s. Above a speed ratio of 1.5 it is likely that air entrainment effects 

(pockets of air being drawn into the coating bead) can occur. These were 

beyond the scope of the numerical model and, hence, this formed the upper 

limit of the experimental range. 

Both rolls A and B show a linear pickout ratio against speed ratio gradient. At 

a speed ratio of 1 rolls A and B have a pickout of approximately 0.36 and 0.3 

respectively.  

The cell shape is described by the aspect ratio (cell radius at the gravure 

surface divided by cell depth) which for Roll A is 0.94 and Roll B is 0.86. The 

cell details are summarised in Table 2:1 showing that the opening diameter 

of A is half that of B (0.15 mm versus 0.3 mm) and likewise for the cell depth 

(0.08mm versus 0.175mm). 

The film thickness increases with increasing speed ratio. This gradient of film 

thickness versus speed ratio is greatest below a speed ratio of 1 after which 

the gradient is reduced.  

At a speed ratio of one Roll B produced a film thickness twice as large as 

that for Roll A. The volume per unit area for Roll B is also 2.6 times that of 

Roll A while a single cell of Roll B is nearly 10 times larger than one from 

Roll A. The film thickness, therefore, appears to be more closely related to 

the total volume per unit area on the roll rather than the volume of each cell.  
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Early experimental studies conducted by Benkreira and Patel (1993) showed 

that a pickout ratio of 1/3 is typical for gravure coating with deviation from 

this only occurring at very low Reynolds numbers. A comparison is also 

drawns between this work and that of Kapur (1999) which is summarized in 

Table 2:2. The surfaces of the compared rolls were a laser engraved 

ceramic and have similar cell volumes, surface volumes and characteristic 

length.  

 

Table 2:2: Comparison between film thickness results in this work and 
in Kapur (1999) for two garvures (Roll A top row, Roll B bottom row). 

This Work Kapur (1999) 

Surface Volume  Film Thickness Surface Volume Film Thickness 

14× 10−6 m3/m2 5 × 10−6m 26 × 10−6m3m−2 6 × 10−6m 

37× 10−6 m3/m2 11 × 10−6m 31 × 10−6m3m−2 9 × 10−6m 

 

Kapur (2003) found the most sensitive operating parameter is speed ratio 

which forms a nearly linear relationship with pickout ratio so long as the 

coating bead is not suffering from starvation/flooding effects which occur 

when speed ratio approaches unity/zero. This near linear trend is also 

observed in this work, noting as well that the bead does not reach a 

starvation/flooding condition over the tested speed ratio range. 
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Figure 2.14: Roll A plots of film thickness (top) and pickout ratio 
(bottom) against speed ratio. 
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Figure 2.15: Roll B plots of film thickness (top) and pickout ratio 
(bottom) against speed ratio.  
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2.5.1 Scratching Observations 

Scratches on the web appeared downstream of the coating nip. They 

became visible when the fluid coated onto the web was allowed to evaporate 

off rather than removal via the rubber scraper. In order to confirm that the 

scratches were not due to the web contacting any components other than 

the gravure the web was removed directly over the coating head such that 

one portion was upstream of the gravure (uncoated) and a second portion 

was downstream (coated). This was accomplished by using the emergency 

stop which applies breaks to bring the gravure and the web handling rotors 

to an immediate stop. A section of uncoated and coated web can be directly 

compared showing scratches only downstream of the gravure. The 

scratches were parallel to each other and could be found along the length of 

the coated web indicating that they have a common mode of formation (the 

rotating gravure). A typical length was of several millimetres with some 

variation between Roll A and B as well as with speed ratio.  

During the coating process it was also observed that the coating apparatus 

was in smooth operation with no erroneous vibrations. The doctor blade was 

fully worn-in and the coating fluid was clean, containing no particles. 

The white light interferometer image seen in Figure 2.16 depicts an arbitrary 

scratch. The depth was found to be very small (1-5 microns) while the length 

was on the millimetre length scale. It was clear that the scratch was in the 

web and not on the newly applied surface coating. The scratches form a 

trough bounded by two ridges (see Figure 2.16) suggesting that the web 

material was (at least partially) plastically pushed aside to form the trough 

rather than being mechanically removed from the web. Inspection of an un-

coated web showed no signs of scratches. It was concluded that the 

scratches occur due to the gravure, noting as well that the ceramic gravure 

is several orders of magnitude harder than the web. 

 

  



58 
 

 

 

Fi
gu

re
 2

.1
6

: D
e

p
ic

ts
 a

 t
yp

ic
al

 s
cr

at
ch

. T
h

e
 v

er
ti

ca
l d

is
p

la
ce

m
e

n
t 

is
 s

tr
e

tc
h

ed
 f

o
r 

vi
su

al
 e

ff
ec

t.
 



59 
 

 

2.6 Discussion 

The results in this section confirm what was already well documented in the 

literature. Both rolls show a linear relationship between pickout ratio and 

speed ratio. Earlier work by Kapur (2003) also observed a linear relationship 

with some curvature appearing as pickout ratio approached both zero and 

one. On a cell scale this indicates that more fluid is being removed from 

each cell as the speed ratio increases. This corresponds to an increase in 

film thickness. The gradients of pickout ratio and film thickness differ due to 

the coated surface area increasing as speed ratio increases (i.e. more web 

is being drawn through the coating bead as speed ratio increases). So even 

though more fluid is removed from each cell, that fluid has an increased area 

to cover. 

The pickout ratio for rolls A (0.36 at a speed ratio of 1) and B (0.3 at a speed 

ratio of 1) was typical of what is found in the literature (Benkreira & Patel 

(1993), Kapur (2003)). The aspect ratio (cell radius over cell depth) for Roll A 

is 0.94 and Roll B is 0.86. Much of the literature ties the pickout ratio to the 

cell shape and specifically the aspect ratio (Figure 2.17). Shallow broad cells 

have been noted to empty better which corresponds to what is seen here 

with Roll A having a larger aspect ratio and a larger pickout ratio. 

 

a 
 

b 

 

Figure 2.17: Cross-sections of a shallow broad cell (a) and a narrow 
deep cell (b). Cell a is an example of a high aspect ratio cell and will 
have a higher pickout ratio. Cell b is an example of a low aspect ratio 
cell and will have a low pickout ratio. 

 

The difference in film thickness between rolls A and B is tied to the total 

volume per unit area rather than just the cell volume. This is supported by 

the change in volume per unit area correlating with the change in film 

thickness. Cells on Roll B had nearly 10 times more volume than those on 
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Roll A yet the film thickness was only two times larger from Roll B (at a 

speed ratio of 1). If film thickness were only related to the volume of a cell 

then there should be a larger corresponding difference between rolls A and 

B, but this is not the case. 

The observed scratches were unavoidable in the direct gravure coating 

process. They indicate contact between the web and the gravure. The 

regular nature of the scratches suggests that they were not caused by large 

web vibrations (one would also expect periodic ‘rows’ in the film coating 

thickness which was not observed). It is likely either:  

 the coating bead is sufficiently thin to allow high points on the gravure 

surface to periodically pierce it and scratch the web, 

 or the pressure in the coating bead is insufficient to support the web 

and is in continuous contact with the roll with a noticeable scratch 

occurring due to some surface feature. 

The presence of web scratching and pickout ratios that are consistent with 

the literature suggest that the scratching phenomena may be functional in 

the coating process. It also poses questions about fluid transfer in the 

coating bead. Contact on a smooth roll coater (assuming it is uniform and 

steady) would prevent any fluid flow between the up and downstream 

portions of the coating bead. However, the presence of gravure cells 

complicates this as fluid can still be transported via the cells while the roll 

and web are in contact. 
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2.7 Conclusion 

The purpose of this experimental work was to provide a result against which 

a numerical model could be validated. Pickout ratio shows a constant near 

linear trend between the two rolls making it a useful metric for establishing 

correlations between experimental and numerical results.  

The fluid transfer process is strongly tied to the surface volume of the roll 

rather than just the cell volume. This means an accurate measure of the 

characteristic length is important. The numeric model uses the characteristic 

length to make length units non-dimensional. Correct use of the 

characteristic length will remove the need to numerically represent the whole 

surface. When comparing a single cell in a non-dimensional sense the 

volume then becomes very significant and can be used as a means to 

distinguish one roll from the next. 

Cell shape is tied to pickout ratio. Specifically, maintaining the aspect ratio of 

the cell is important in order to predict its pickout correctly. 

The scratches on the web indicate that there is consistent contact between 

the roll and web but these experiments did not elucidate a specific 

mechanism/cause. As the contact suggests that the web is being at least 

partially supported, a means of accounting for it is a benefit to a numerical 

model. 
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Chapter 3 Numerical 

Formulation 

3.1 Introduction 

This chapter describes the formulation of a predictive computational model 

for discrete cell gravure roll coating. The model uses a two-scale approach 

where the large scale describes fluid flow through the coating bead and the 

small scale describes flow at a cell level. The progression of these length 

scales is illustrated in Figure 3.1 noting as well that in the laboratory scale 

there is also a gravure roll width component which is on the order of meters. 

First, theory behind multi-scale modelling is outlined followed by the 

formulation of the two scales. 

  



63 
 

 

 

 

 

 

 

Figure 3.1: A schematic of length scales being modelled where the 
laboratory scale involves the entire apparatus, the bead scale is 
measured from the upstream to the downstream meniscus and the cell 
scale is that of a single cell. 
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3.2 Multi-scale Theory 

A multi-scale approach is designed to describe problems that require 

mathematical descriptions of the problem on disparate spatial or temporal 

scales (E, Bjorn, & Zhongyi, 2003), (E, et al., 2007). The large scale defines 

the region of interest but the mathematical description is not explicit; it is 

either not valid everywhere or incomplete. The method assumes there is 

access to an accurate model on a smaller scale (temporal or spatial). The 

small scale can therefore be used to estimate the missing information at the 

large scale. This is made possible by the two scales sharing a given state 

variable.  

The small scale is solved subject to boundary conditions that are set by the 

large scale. While these vary from one problem to the next, here, they are 

set by a periodic homogenization throughout the small scale. This means 

that the small scale contains a unit that repeats at regular intervals (i.e. 

periods) and as such can be homogenized by considering a unit with 

periodic boundaries. 

In the case of gravure roll coating the region of interest in this investigation is 

the coating bead as this is where fluid transfer from roll to web occurs. The 

quantity of interest is the amount of fluid transferred to the web. In the event 

the roll is smooth it can be analytically solved using lubrication theory. 

However, the presence of the gravure cells precludes this due to the rapidly 

changing topography inducing complex fluid flow through the bead that is not 

appropriate to the lubrication assumptions (see section 1.3.1 for lubrication 

assumptions). A description of the fluid flow is therefore missing on the bead 

length scale. However, accurate models can be formulated on the cell length 

scale using Computational Fluid Dynamics (CFD). 

In order to couple the state variables the large scale must first be written in 

mathematical terms. This is done by the system of ordinary differential 

equations in section 3.4.2. These equations are missing information that 

prevent them being solved (information, in this case, refers to the details of 

how the coating fluid is affected by the gravure topography). This information 
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is of the small scale and is defined in section 3.6. The small scale 

information is conveyed to the large scale via a lookup table. The problem 

can now be viewed as two distinct parts; that is the large scale defining the 

flow through the coating bead and the small scale pertaining to the flow 

through a cell.  
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3.3 Model Formulation 

The formulation has been presented in two parts; the large scale (Figure 3.2) 

which considers the fluid in the coating bead and the small scale (Figure 3.3) 

which considers the fluid in a single cell. The large scale is described in 

section 3.4 and the small scale is dealt with in section 3.6. 

The schematic in Figure 3.2 shows the large scale problem being 

considered, where the velocity of the web is given by Uweb, the velocity of the 

roll is given by Uroll. R is the radius of the roll, G is the web-to-roll gap and H 

is the vertical distance from top dead centre of the roll to the web. 

 

 

 

Figure 3.2: Cross section of the coating bead. This forms the large 
scale domain and neglects the explicit definition of the gravure cells. 
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The small scale problem is shown in Figure 3.3 where the web-to-roll gap is G and 

is measured from the gravure land to the web, the cell opening radius is R0 and the 

cell depth is D. The characteristic length is the sum of L1, L2 and L3 (Equation 3.1) 

and the periodic boundaries are shown. For an ideal roll the components L1 and L3 

should always be equal. 

 

 

Figure 3.3: Cross section of a gravure cell forming the small scale 
domain. The sum of L1, L2 and L3 forms the characteristic length, the 
boundaries of which are periodic. 

 

L = L1 + L2 + L3 3.1 

 

Where L is the distance from one periodic feature (e.g. a cell) to the next.  

To simplify the formulation the parameters have been reduced to 

dimensionless quantities: 

Uweb

Uroll
= S 

3.2 

 

{R, R0, D, G, H, X, Y}

L
= r, r0, g, h, x, y 

3.3 

 

PL

ηUroll
= p 

3.4 

 

T

ηUroll
= t 

3.5 

 

Q

LUroll
= q 

3.6 
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The dimensional quantities are denoted by the capital letters and their 

dimensionless counterparts are denoted by lower case. S is the web-to-roll 

speed ratio, X and Y are axis coordinates in the tangential and radial roll 

directions (Figure 3.4). The fluid properties have also been made non-

dimensional where P is the fluid pressure, T is the web tension, Q is a 

volumetric flow rate and η is the fluid viscosity. 

 

 

 

Figure 3.4: Roll and web direction definitions. 
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3.4 Large Scale: Theory 

3.4.1 Fluid Regime 

The fluid regime is governed by the cell length scale and on this scale 

viscous forces dominate (inertial forces are considered negligible). Under 

such conditions the Navier-Stokes equations of fluid flow reduce to the linear 

Stokes flow (3.7). Further the fluid is assumed Newtonian and 

incompressible allowing for the simplified conservation of volume in Equation 

3.8. 

 

η∇2𝐮 − ∇p = 0 3.7 

∇ ∙ 𝐮 = 0 3.8 

 

The length of the coating bead in the direction of the moving web (x-

direction) is on the order of millimetres while its width is on the order of 

metres at industry scales and is 10 cm at laboratory scales. This means 

most of the bead is insensitive to edge effects and can be well approximated 

in two dimensions (length, x, and height, y, see Figure 3.2).  

The fluid transport mechanism in the large scale is solely driven by the web 

and roll which act in the positive and negative x-direction respectively and 

therefore the local velocity only varies with the distance from these surfaces 

and the induced pressure gradient. The pressure gradient in the x-direction 

can then be written in terms of the flow rate, qx, and the web-to-roll gap 

(Equation 3.9).  

 

dp

dx
= f(qx, g) 

3.9 

 



70 
 

 

3.4.2 Governing Equations of the Coating Bead 

The governing equations in the large scale are derived to describe the fluid 

flow between a rigid curved surface (the gravure) and a flexible web. 

Attention is first focused on deriving the pressure gradient across the fluid 

domain of Figure 3.2. For the derivation process the roll will be considered 

smooth (the complexity of the cells will be addressed after). In the literature 

review (Section 1.3.1) a derivation of lubrication theory arrived at equation 

3.10 which relates fluid flow rate, Qx, to the pressure gradient, 
∂P

∂x
, and the 

relative motion of the web (Uw) and gravure (Ug) surfaces. 

 

Qx = −
G3

12η 

∂P

∂x
+

G

2
(Uw − Ug) 

3.10 

 

Making the equation non-dimensional according to 3.2 - 3.6 gives Equation 

3.11: 

 

qx = −
g3

12 

∂p

∂x
+

g

2
S −

𝑔

2
 

3.11 

 

The coefficients −
g3

12 
, 

g

2
 and −

𝑔

2
 are therefore representative of a smooth roll 

coater. They do not apply to a gravure roll and therefore in the large scale 

these coefficients are not explicitly known (these are the missing information 

described in the previous section). They can be replaced by the unknown 

coefficients a, b and c which are some function of the web-to-roll gap (g) 

giving Equation 3.12. 

 

qx = a
∂p

∂x
+ bS + c 

3.12 
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Secondly, attention is turned to the flexible web. The web curves in response 

to the fluid pressure as well as the web tension. The web is thin and can be 

treated as a membrane under tension, t, (Storey, 1996). This leads to a 

force balance between the web tension and the difference in fluid pressure 

either side of the web yielding Equation 3.13: 

 

∆p = −κt 3.13 

 

In Cartesian coordinates the curvature of a line can be written as Equation 

3.14. 

 

κ =

d2y
dx2

(1 + (
dy
dx

)
2

)

3
2

 

3.14 

 

The fluid in the coating bead can now be described by the three differential 

equations 3.15, 3.16 and 3.17. Equation 3.15 relates the pressure gradient 

across the coating bead, the web-to-roll speed ratio and the large scale flux 

term, qx. The coefficients a, b and c represent the missing information at the 

large scale and are a function of the web-to-roll gap (g). They are 

determined from the small scale but can be analytically approximated using 

lubrication theory (see section 1.3.1). The coefficients are supplied to the 

large scale via a lookup table.  

 

dp

dx
=

qx − Sb(g) − c(g)

a(g)
 

3.15 

dq

dx
= 0 

3.16 

d2h

dx2
=

p

t
× (1 + (

dh

dx
)

2

)

3
2

 

3.17 
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The pressure gradient in the length of the coating bead is given by 
dp

dx
, S is 

the web-to-roll speed ratio. Conservation of volume (equation 3.16) dictates 

that under steady state conditions the change in flow rate through the 

coating bead remains equal to zero (the fluid is assumed incompressible, 

hence conservation of mass is implied). Finally, equation 3.17 describes the 

curvature of the web where h is the vertical distance from the web to the roll 

surface and h = 0 was chosen arbitrarily to be at the top dead centre of the 

roll, t is the tension in the web.  

The web to roll gap (g) is calculated using equation 3.18 where the surface 

of the gravure roll is approximated by a parabola based on the roller radius, 

r. 

 

g = h +
x2

2r
 

3.18 
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3.4.3 Boundary Conditions 

To close the problem six boundary conditions are required because as the 

initial position of the menisci are unknown the problem is solved in a moving 

coordinate frame which is described in section 3.5.1. Each boundary 

condition is implemented at the upstream (us) and downstream (ds) 

meniscus locations shown in Figure 3.5. Equations 3.19 and 3.20 are used 

to set the wrap angle, β, of the web entering and leaving the coating bead. 

 

 

Figure 3.5: Location of the up and downstream boundary conditions. 
The wrap angle β is the upstream wrap angle. In practice the wrap 
angle is applied at the upstream while at the downstream it is equal to 
zero. 

 

dh

dxus
= −β 

3.19 

dh

dxds
= 0 

3.20 

 

The location of the meniscus is not a known parameter but is approximated 

by relating the meniscus radius of curvature to the web-to-roll gap and the 

simplifying assumption of a 90 degree contact angle. This radius of 

meniscus curvature is approximated using the Bretherton equation (1961). 

The x axis relates to the web-to-roll gap via equation 3.21 which has been 

rearranged from equation 3.18. The menisci locations are then given by 

equations 3.23 and 3.25 where the web-to-roll gap at the upstream and 

downstream locations is specified in equations 3.22 and 3.24 which are 
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derived from equation 1.21 in the literature review. The terms in equations 

3.21 to 3.25 are defined in Figure 3.5 and relate to the subscripted meniscus 

location upstream (us) or downstream (ds). 

 

x = √2r(g − h) 3.21 

gus =
q

1.34(Ca)
2
3

 3.22 

xus = −√2r (
q

1.34(Ca)
2
3

− h) 

3.23 

gds =
2q2

1.34(SCa)
2
3S

 3.24 

xds = √2r (
2q2

1.34(SCa)
2
3S

− h) 

3.25 

 

Where q2 is the volumetric flow rate leaving on the web and is equal to the 

difference between the volume of fluid entering the coating bead 

(determined by cell volume and roll speed) and that moving through the 

coating bead (from equation 3.16). The capillary number is defined by 

Ca =
ηUroll

γ
, where γ is the surface tension. At the upstream meniscus there is 

only one wetted surface and therefore only one radius of curvature. At the 

downstream there are two wetted surfaces, that from the fluid entering the 

bead on the roller and that which is leaving on the web. The two 

components, r1 and r2, in Figure 3.5 represents these two radii of curvature 

and are measured from the point of film splitting. In equation 3.25 these two 

components are assumed to be equal to the radius formed by the meniscus 

and the web.  

The final two boundary conditions arise from the Young-Laplace equation 

which specifies the pressures at the menisci (Landau & Levich, 1942) and 
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again the radius of meniscus curvature was approximated by the web-to-roll 

gap. The surface tension (γ) component of the Young-Laplace equations 

was made non-dimensional with the product of viscosity and roller velocity 

leaving it in terms of the capillary number. 

 

pus = γ ×
1

rus
=

γ

ηUroll
×

1

rus
≅

1

Ca
×

1

g
 3.26 

pds = γ × (
1

r1
+

1

r2
) =

γ

ηUroll
× (

1

r1
+

1

r2
) ≅

1

Ca
×

2

g
 3.27 

3.4.4 Contact Pressure 

Contact between the web and roll occurs when the gap closes to zero. 

Evidence for contact can be seen experimentally as scratches on the web. 

The scratches can only form when the web is dragged along the roll. At this 

point the pressure through the coating bead has two components. The first is 

the hydrodynamic forces of the fluid, pf. The other is the effect of two 

contacting solids, pc. The total pressure supporting the web is the sum of the 

two components such that the web curvature equation (3.17) takes the form 

of Equation 3.28. 

 

d2h

dx2
=

pf + pc

t
× (1 + (

dh

dx
)

2

)

3
2

 

3.28 

 

Justification for a contact model can be found in the form of experimentally 

observed web scratching where measuring from the highest to the deepest 

point of the scratch is on the order of 1s of microns (in Figure 2.16 the depth 

is 5 µm though this varies along the length of the scratch). 

The term pc grows exponentially as the web-to-roll gap approaches zero and 

is approximated by Equation 3.29.  
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pc = 10
−g

0.00001 3.29 

 

Equation 3.29 was constructed to supply a large pressure force term in 

equation 3.28 when the web-to-roll gap is zero. Similarly the contact 

pressure term must be negligible wherever the web-to-roll gap is larger than 

zero. There are other formulations that can approximate this contact but 

here equation 3.29 will be used throughout. 

3.5 Large Scale: Numerical Implementation 

3.5.1 Moving Mesh 

As the location of the bounding menisci is not known a priori the system of 

differential equations was solved on a moving mesh in order solve on a 

constant number of grid points but with a grid spacing that varies between 

iterations. This moving mesh is defined by equations 3.30 and 3.31 where ζ 

is the mesh axis and Ψ is the first order derivative of the coating bead axis 

(x) with respect to ζ. Equations 3.32 to 3.35 are the governing equations 

written in terms of this coordinate system. The inclusion of equation 3.34 is 

required to reduce equation 3.35 to a first order differential which was 

solvable numerically in MATLAB. 

 

d2x

dζ2
= 0 

3.30 

dx

dζ
= Ψ 

3.31 

dp

dζ
= [

dp

dx
×

dx

dζ
] = Ψ (

dp

dx
) 

3.32 

dq

dζ
= [

dp

dx
×

dx

dζ
] = Ψ × 0 

3.33 

dh

dx
= Ψ−1

dh

dζ
 

3.34 
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d (Ψ−1 dh
dζ

)

dζ
= Ψ

p

t
(1 + (Ψ−1

dh

dζ
)

2

)

3
2

 

3.35 

3.5.2 Coating Bead Boundary Value Problem 

The structure of the coating bead, that is a fluid body which is bound 

upstream and downstream by a meniscus interface between fluid and air, is 

well suited to be modelled as a Boundary Value Problem (BVP). Solutions 

exist to approximate the values at the meniscus locations which form 

convenient boundary conditions for the BVP. 

The solution of a BVP requires a general solution to fully define the problem. 

When this is implemented numerically it is referred to as an initial guess or 

initial solution. The BVP can have an infinite number of solutions or 

alternatively zero and therefore finding a general solution can be difficult.  

A sequential solving process was used (Figure 3.6) to obtain an initial guess.  

This was accomplished by first relaxing the boundary conditions to represent 

a flooded system where the meniscus location was an infinite distance away, 

the pressure and web gradient were set to zero. The ODEs were 

approximated by initially setting the pressure field to zero everywhere while 

the web was considered horizontally flat (i.e. also zero everywhere). 

After generating the first solution the problem lends itself well to a 

continuation method. Such methodology greatly increased the stability of the 

overall simulation. Continuation also serves as a convenient method to 

simulate over a large parameter space (i.e. increasing/decreasing speed 

ratio). 
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Figure 3.6: Flow chart describing how to obtain an initial solution over 
the coating bead. 
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3.6 Small Scale: Theory 

The purpose of the small scale model is to estimate the information missing 

in the large scale (Equation 3.15) thereby facilitating the large scale solution. 

To do this the small scale needs to be homogenised such that it is valid 

everywhere on the large scale. This is done by taking advantage of the 

periodic surface topography found on a discrete cell gravure roll. The small 

scale then only varies with the web-to-roll gap as shown in Figure 3.7 where 

g defines the column of fluid above the gravure cell (shown as a square 

section in Figure 3.7). The characteristic length is the distance from one cell 

centre to the next and is at least one order of magnitude smaller than the 

large scale (this varies from one roll to the next and is typically 2 or more 

orders of magnitude).  

 

 

Figure 3.7: Small scale domain (dashed boxes) varying with the web-to-
roll gap along the large scale domain. 

 

The small scale model is bound on the upper surface by a smooth web, on 

the lower surface by a representation of the gravure and finally by four 

periodic fluid interfaces. The fluid interfaces correspond to the periodic 

bounds and it is this periodicity that makes the small scale homogeneous. 
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On the cell length scale inertial forces are negligible and viscous forces 

dominate, i.e. Stokes flow, an assumption that is commonly applied to 

problems with a low Reynolds number ( 𝑅𝑒 =
𝜌𝑢𝑟𝑜𝑙𝑙𝐿

𝜂
) [(Gaskell et al, 1994), 

(Gaskell et al 1998), (Hewson et al, 2009)]. Here the Reynolds number is 

calculated to be 15.7 for Roll A and 32.5 for Roll B. 

 

𝑅𝑒 =
𝜌𝑢𝑟𝑜𝑙𝑙 (

𝑉𝑐𝑒𝑙𝑙
𝐴𝑐𝑒𝑙𝑙

)

𝜂
=

1000 × 0.5 ×
8.9 × 10−13

𝜋(75 × 10−6)2

0.0016
= 15.7 

36 

 

𝑅𝑒 =
1000 × 0.5 ×

7.5 × 10−12

𝜋(150 × 10−6)2

0.0016
= 32.5 

37 

 

 

Due to the linearity of Stokes flow the flux through the small scale domain 

only varies with the web-to-roll gap. The flux through the domain is governed 

by equation 3.38. 

 

qx
∗ = a(g)

dp 

dx
+ Sb(g) + c(g) 

3.38 

 

The terms a, b, and c vary with web-to-roll gap and Equation 3.38 couples 

the large and small scales. Equation 3.38 can be solved numerically subject 

to the boundary conditions in Table 3:1 to simultaneously determine the 

coefficients. Solutions are sought over the web-to-roll gap range of 0.001-5. 

The coefficients are then implemented into the large scale via a look up 

table. 
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Solving the coefficients subject to the boundary conditions in Table 3:1 

requires two simulations for each web-to-roll gap. Solving the pressure 

driven flow problem (Poiseuille flow) yields coefficient a. Solving the wall 

driven shear flow (Couette flow) gives coefficient b. The final coefficient, c, 

can be found analytically based on the domain volume and in the roll centric 

reference frame is equal to a zero flow condition. When translated into the 

laboratory frame coefficient c is given by the difference in coefficient b and 

the domain volume. 

 

 

Table 3:1: Boundary conditions in the laboratory reference frame for 
the solution of the small scale coefficients in equation 3.38. 

Coefficient dp

dx
 

S 

a -1 0 

b 0 -1 

c 0 0 
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3.7 Small Scale: Numerical Implementation 

3.7.1 Overview  

The purpose of the small scale solutions is to supply missing information 

about the influence of the gravure cells on the fluid flow to the large scale. 

Therefore small scale must find an approximate solution to this problem and 

then communicate it to the large scale. The approximate solution is found 

using CFD methodology and it is then communicated to the large scale via a 

lookup table. A flow chart summary is shown in Figure 3.8 of the solution 

process.  

The solution process requires first defining a physical model for the fluid 

domain (Section 3.7.3) and the representation of the gravure surface 

(Section 3.7.4). The second step creates a generic baseline mesh and the 

third step deforms it to the starting shape (Section 3.7.5). The problem is 

then solved using a Finite Element Method (FEM) using a Multigrid solver 

(Section 3.7.6). The height of the domain is sequentially decreased and a 

continuation method is employed until the minimum height of 0.001 is 

reached (see Figure 3.8). The final step extrapolates the small scale 

coefficients from a height of 0.001 until the zero flow point (Section 3.7.7). 

The small scale coefficients are used to populate a lookup table for use in 

the large scale. 
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Figure 3.8: Flow chart summarizing the small scale solution process. 
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3.7.2 The Small Scale Reference Frame 

The cell domain has two moving surfaces, the roll and the web. In order to 

avoid modelling a moving topographical surface a change in reference frame 

is required that will separate how the large scale and small scale are 

considered. 

In the laboratory frame of reference (large scale) the web and roll move in 

opposing motion relative to each other. Changing the reference frame to one 

which is roll centric (small scale) allows the roll to be modelled as stationary 

with a moving web (Figure 3.9). In this frame the web is moving at a speed 

of S + 1. This simplifies the problem because the web is smooth and 

therefore simulating it in motion is trivial.  

 

a 

 

b 

 

Figure 3.9: Difference between the laboratory reference frame (a) and 
the roll centric reference frame (b). 
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3.7.3 Fluid Domain 

The fluid web interface is modelled using a no-slip moving wall and the lower 

surface with a stationary no-slip representation of the gravure surface 

topography. The four fluid interfaces used periodic boundary conditions such 

that in the roll axis direction V1 = V2, P1 = P2 and in the direction tangent to 

the roll surface Uus = Uds, Pus = Pds + δP (Figure 3.10) where δP is the 

pressure gradient along the domain. 

 

 

Figure 3.10: Diagram showing the velocity and pressure terms were 
implimented in the small scale model. A pressure gradient term is only 
present in the tangential direction. The gravure surface topography has 
been removed for clarity. 

 

The fluid is modelled as a steady, incompressible and Newtonian flow in the 

Stokes regime. The implementation is governed by Equation 3.39 and 

follows the continuity law in Equation 3.40.  

 

∇ ∙ [−p𝐈 + (∇𝐮 + (∇𝐮)T)] 3.39 

 

∇ ∙ 𝐮 = 0 3.40 
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3.7.4 Method for Creating Cell Topography 

The creation of the cell topography has been divided into two sections for 

clarity where the first describes a generic process and the second shows 

how it models the experimental phase from Chapter 2. 

3.7.4.1 Method: Generic Topography 

The small scale is represented by a cell with a circular opening and is 

parameterised by a radius and cell depth value. The shape of the cell is 

created using a hyperbolic tangent as described by Equation 3.41.  

 

d =
dmax

2
(−1 − tanh{αr − αf[x, z]}) 

3.41 

 

Where dmax is the maximum cell depth, r0 was the radius of the cell, α is a 

factor that determined the ‘steepness’ of the cell wall and f(x, z) determines 

the radial distance from the cell centre in the local cell.  

Equation 3.41 forms the profile shown in Figure 3.11. Rotating this profile 

through 360° creates the cell geometry. The zero depth corresponds to the 

roll land.  
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Figure 3.11: Diagram showing the parameters used in Equation 3.41 to 
create the hyperpolic tangent for the cell geometries. The profile in 
blue is created by Equation 3.41 and is implemented through the x-z 
plane  
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The mesh angle, θ, in the large scale is caused by one row of cells being off-

set from the next; this is shown in Figure 3.12. For this to be consistent 

between the two scales the small scale must be skewed as in part b of 

Figure 3.12 such that the area on the small scale domain remains constant. 

Equations 3.42 and 3.43 determine the displacement in the x and z axis 

directions. 

 

a 

 

b  

 

Figure 3.12: Variation of mesh angle as seen from top down on roll 
surface. In diagram a the mesh angle is 90° and in diagram b the mesh 
angle is 45°. In both diagrams the small scale is highlighted by the 
dashed lines. 

 

∆x = x(cos θ − 1) 3.42 

∆z = (x × sin θ) + z (
1

cos θ
− 1) 

3.43 

 

3.7.4.2 Method: Topography for Experimental Comparison 

For comparison with the experimental results it is important that the cell 

shapes represent what was tested experimentally. These parameters are 

shown in Table 3:2 for rolls A and B which were used in the experimental 

phase. Figure 3.13 shows a side-by-side comparison of the implemented 

topography with a white light interferometer image of the roll. The surface of 
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the idealised model is significantly smoother than the interferometer data 

suggests and also neglects any non-periodic features. 

The cells on both rolls are at a 45 degree mesh angle. This was captured by 

skewing the domain subject to Equations 3.42 and 3.43. The small scale 

representation shown in Figure 3.13 has a cross-sectional area of one 

(through the x-z plane) and the cell volume was maintained to that measured 

by the white light interferometer (see Section 2.3.2). Inspection of the 

contour plots show that aspects of the upstream and downstream cells are 

present. 

 

Table 3:2: Key cell parameters 

Average Cell Values A B 

Characteristic Length 250 um 450 um 

Cell Diameter 150 um 0.6 300 um 0.67 

Cell Depth 80 um 0.32 175 um 0.39 

Cell Volume 9E-13 m3 0.055 7.5E-12 m3 0.083 
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Roll A Roll B 

 
 

Figure 3.13: Cell topography for rolls A and B. Roll motion is in the x-
axis direction. The length units, L, are the characteristic length of each 
roll. The small scale representation is highlighted by the dashed line 
on the large scale white light interferometer images. The small scale 
(bottom) is the approximation of the images using Equation 3.41 to 
3.43.  
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3.7.5 Meshing and Geometry Creation 

A deformed mesh was used to represent the geometry. For this process it 

means that a mesh must first be generated on a given shape (Figure 3.14) 

and then the nodes and elements are transformed to meet the desired 

shape (Figure 3.15). 

In this case the process started with a cube of dimension 1. Two surface 

meshes of square elements were produced on opposite faces. This was 

then swept through to form a regularly meshed cube. The sweeping 

distribution was altered such that element density was larger at the bottom 

than at the top, this is where the gravure topography is represented and 

therefore would experience the most non-linear flow, and is therefore a more 

efficient use of the fixed number of elements. This formed the meshed cube 

shown in Figure 3.14. 

 

Figure 3.14: Basic cube with an off-set swept mesh which has had its 
elements skewed towards the base to increase the density at the 
bottom. This forms the baseline mesh in Figure 3.8. 
 

The moving mesh implementation was designed to a) adjust the height of 

the cube to meet the web-to-roll gap specified in the lookup table over the 

range of 0.001-5 times the characteristic length; b) move the base of the 
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cube to form the cell topography and c) execute the skewing process to 

represent the large scale cell patterning (the angular offset from one row of 

cells to the next). An example result is shown in Figure 3.15. In this diagram 

it is clearer why additional elements are desired towards the gravure 

surface.  

The mesh deformation process scales the total required displacement 

amongst all the elements such that x-z plane running through y=0 remains 

stationary. The elemental displacement is defined in Equation 3.44 for the 

creation of the cell where d is the result of Equation 3.41.  

 

∆ yelement =
y

dmax
d 3.44 

 

 

Figure 3.15: Mesh deformed into a example small scale geometry. The 
web-to-roll gap in this example is 0.5 and the mesh angle is 45°. This 
forms the deformed mesh in Figure 3.8.  
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3.7.5.1 Mesh Sensitivity 

Mesh sensitivity results on a cell geometry with a web-to-roll gap of one is 

shown in Figure 3.16. The element count was varied from 320 elements to 

25168 elements and over that range showed a volumetric flow rate change 

of 0.00128 which corresponds to a 0.1% change. The solution time 

increased linearly with the number of elements (Figure 3.17) from 6 seconds 

to 405 seconds. The point marked in red on both figures indicates the 

element count used for the small scale models. 
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Figure 3.16: Volumetric flow rate where L is the characteristic length. 
Shown in blue are study point and the red point marks the mesh count 
used create the small scale models. 

 

 

 

Figure 3.17: Solution time in seconds increasing linearly with element 
count. The point in red marks the element count used to create the 
small scale models. 
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3.7.6 Solver: Multi-Grid  

The problem was solved using a multi-grid solver (Briggs & McCormick, 

2000). This is an iterative solver that breaks the initial dense grid into a 

series of coarser grids (a process called restriction) to obtain an initial 

solution and then using interpolation methodology achieves a solution on the 

dense grid (a process called prolongation), the process is outlined in Figure 

3.18. This type of solver is more memory efficient than using a direct solver 

on the initial grid. The effect of this is to allow for a higher mesh density to be 

used than would have been possible using direct solver. 

 

 

Figure 3.18: Multi-grid V-cycle. 

 

3.7.6.1 Solver: Multi-Grid Implementation 

The multi-grid solver was used in conjunction with a continuation method to 

sequentially solve over the range governed by the lookup table. Solutions at 

large web-to-roll gaps could be supplied with an initial guess approximated 

by lubrication theory. By continuing the problem the solution at a large web-

to-roll gap could be applied as the initial guess to the next smaller web-to-roll 

gap problem. This process made achieving solutions over the whole lookup 

table consistent. In the event a solution could not be readily achieved it was 
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required that the gap be increased such that the solution from the previous 

iteration better fit the new problem.  

3.7.7 Zero Flow Rate Geometry 

Zero flow geometry represents the point at which the web-to-roll gap is so 

small it allows no fluid to flow from one boundary to the other. For a cell that 

has perfectly idealised land then this occurs at a gap of exactly zero. The 

hyperbolic tangent used in equation 3.40 asymptotically approaches land of 

the gravure (i.e. where cell depth equals zero) and for certain formulations of 

this equation there can be a significant gap below zero. In practice many 

cells also have features that allow flow through the geometry when the web-

to-roll gap is less than zero (e.g. large cell radius so the peripheries of the 

cells meet forming a channel between the cells). Modelling these types of 

geometries is difficult for two reasons. First, predicting exactly where the 

zero flow rate occurs is difficult as it varies for every geometry. Second, 

modelling at a negative web-to-roll gap causes mesh inversions using the 

generic deformed mesh method described in section 3.7.5.  

It is necessary to have a representation of this region to prevent the large 

scale requesting values outside of the lookup table. The extrapolation to 

negative gap produces an impossible situation where the web is inside the 

roll. The web-to-roll contact would normally prevent this but it does allow 

comparisons to be made in the large scale without the contact model (this 

allows the importance of the contact model to be assessed). 

The first step is to determine at what web-to-roll gap zero flow occurs. This is 

the same gap for all three flow coefficients a, b and c with b and c being the 

most linear. By linearly extrapolating b to zero along the height axis the 

minimum height can be estimated (see example results in Figure 3.20). 

Coefficient a is cubic and can be extrapolated by fitting a curve to the 

computational data (see example results in Figure 3.19). 

Coefficient c is a function of the domain volume. Below a web-to-roll gap of 

zero this changes non-linearly because the web is below the land, a situation 

which in reality is impossible, and therefore the volume below the web is a 
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partial cell volume rather than the fluid column (this transition point is seen 

as a break in the example results shown in Figure 3.21). Therefore it needs 

to be extrapolated numerically by integrating the volume remaining below 

the web location Figure 3.21. 

 

Figure 3.19: Extrapolated data (blue ∙) from the computational results 
for coefficient a (red x). 
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Figure 3.20: Extrapolated data (blue ∙) from the computational results 
for coefficient b (red x). 

 

Figure 3.21: Numerically extrapolated data (blue ∙) and computational 
results (red x ). The break in the graph at height=0 occurs as the web 
moves through the land. 
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3.7.8 Validating the Small Scale with Lubrication Theory 

Comparing the computational result in the small scale to the analytic result 

of lubrication theory offers a means of validation. Though comparison with 

experimental data would be preferable the cell length scales make this 

impractical.  

Computational results over the web-to-roll gap range of 0.001-5 for the 

coefficients in Equation 3.38 are compared against their analytic lubrication 

values in Figure 3.22 and Figure 3.23 for rolls A and B respectively. The 

lubrication values are calculated using Equations 3.45, 3.46 and 3.47. The 

difference between the computational and analytic results becomes more 

apparent when looking at the percentage difference between the two. This 

percentage difference is found using Equations 3.48 to 3.50 

 

alube = −
h3

12
 

3.45 

blube =
h

2
 

3.46 

 

clube = −
h

2
 

3.47 

 

%∆a= 100
acomp − alube

alube
 3.48 

 

%∆b= 100
bcomp − blube

blube
 

3.49 

 

%∆c= 100
ccomp − clube

clube
 3.50 

 

 

The lubrication height terms are calculated such that the total volume of fluid 

in the domain is the same as that in the computational gravure case. This 

makes the numerical difference between the computational and analytic 

results only due to topography rather than from some difference in volume. 

By plotting the percentage difference between the computational and 
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analytic results it is clear that when the web-to-roll gap is large lubrication 

theory is a good approximation to the small scale flow field. As the web-to-

roll gap tends toward zero the solutions diverge up to a 100% difference in 

the coefficients of both rolls.  

Considering the relative volume of the cell and the fluid column can help 

elucidate the reason for this difference. At the minimum value of the web-to-

roll gap of 0.001(L) the volume of the fluid column is 0.001(L3) (recall that the 

cross-section area is equal to unity). The cell volume for Roll A is 0.055 (L3) 

and for Roll B is 0.083 (L3). Therefore the volume of the cell is 55 (Roll A) 

and 83 (Roll B) times larger than the fluid column making it the dominant 

flow feature at this web-to-roll gap. 

Column two in Figure 3.22 and Figure 3.23 shows the extrapolated values 

from the minimum computed web-to-roll gap of 0.001 to a zero flow condition 

which occurs at a negative gap of -0.016. This allows gaps all the way to 

zero to be modelled without exceeding the lookup table. This is an issue 

which arises when using a contact model requiring gaps approaching zero. 
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By examining the flow field within the small scale domain further evidence is 

found to explain the difference in Figure 3.22 and Figure 3.23. The two flow 

components are the pressure driven flow (Poiseuille) and the wall driven flow 

(Couette). 

Examples of the two fluid flow components are shown in Figure 3.24 to 

Figure 3.31. Figure 3.24 to Figure 3.27 depicts the smallest web-to-roll gap 

at 0.001 and Figure 3.28 to Figure 3.31 is for the much larger gap of 1. A 

comparison of the two shows that the fluid is less affected by the cell when 

the gap is large. The fluid flow when the gap is small is dominated by the cell 

topography, including the formation of an eddy in the Couette component. 

Comparing these with Figure 3.22 and Figure 3.23 helps to form a complete 

picture as to why lubrication theory is a poor representation when the gap is 

small. 

The Couette components in Figure 3.24 and Figure 3.25 show the axial flow 

that was captured by the small scale. This process transfers fluid axially 

across the domain and is caused by the mesh angle. There is also some 

evidence of this axial transfer in the Poiseuille component in Figure 3.26 and 

Figure 3.27. 
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Couette Component: Roll A 

 

Figure 3.24: Gap of 0.001. Contour plot at walls with streamlines in the 
fluid domain and scale showing dimensionless velocity. 

Couette Component: Roll B 

 

Figure 3.25: Gap of 0.001. Contour plot at walls with streamlines in the 
fluid domain and scale showing dimensionless velocity.  
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Poiseuille Component: Roll A 

 

Figure 3.26: Gap of 0.001. Contour plot at walls with streamlines in the 
fluid domain and scale showing dimensionless velocity. 

Poiseuille Component: Roll B 

 

Figure 3.27: Gap of 0.001. Contour plot at walls with streamlines in the 
fluid domain and scale showing dimensionless velocity.  
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Roll A 

 

Figure 3.28: Roll A at a web-to-roll gap of 1. Streamlines in the fluid 
domain and scale showing dimensionless velocity. 

Roll B 

 

Figure 3.29: Roll B at a web-to-roll gap of 1. Streamlines in the fluid 
domain and scale showing dimensionless velocity.  
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Poiseuille Component: Roll A 

 

Figure 3.30: Roll A at a web-to-roll gap of 1. Streamlines in the fluid 
domain and scale showing dimensionless velocity. 

Poiseuille Component: Roll B 

 

Figure 3.31: Roll B at a web-to-roll gap of 1. Streamlines in the fluid 
domain and scale showing dimensionless velocity.  
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Chapter 4 Computational 

Results  

The results from the multi-scale model are presented with the results 

obtained via experiment in Chapter 2. The parameter space for both sets of 

results are summarised in Table 4:1. The purpose of this is to allow for a 

direct comparison between computation and experiment. This comparison is 

first done using pickout ratio as a metric at varying speed ratios. The second 

section (4.2) assesses the importance of web-to-roll contact in the 

computational model with reference to the scratches observed during 

experiment. The third section (4.3) assesses the sensitivity of the model to 

the boundary conditions.  
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Table 4:1: Parameter space for experiemental and computational 
results. 

Parameter Experiment Value Computational Value 

Web Tension 1000 N/m 1203700 

Web Thickness 23 μm neglected 

Wrap Angle 2.5° 2.5° 

Capillary Number 0.0204  0.0204 

Viscosity 0.00163 Pa ∙ s - 

Surface Tension 0.0400 N/m - 

Uroll 0.500 m/s - 

Speed Ratio 0.5-1.25 0.5-1.25 

Roll Radius (Roll A/Roll B) 0.05 m /0.05 m 200/111 

Mesh Angle 45° 45° 

Characteristic Length, L, 

(Roll A/Roll B) 

2.5 × 10−4/4.5 × 10−4 m 1/1 
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4.1 Comparison of Computational and Experimental 

Results 

Pickout ratio (ϕ) versus speed ratio results are shown in Figure 4.1 and 

Figure 4.2 for rolls A and B respectively. Computational and experimental 

results show a nearly linear gradient which is under predicted by 

computation in both cases. For rolls A and B the gradients of the Best Fit 

lines for the experimental results are 0.50 and 0.38 while the computational 

gradients are 0.23 (Roll A) and 0.21 (Roll B). The experimental and 

computational lines intersect at S = 1.18 and ϕ = 0.44 for Roll A; and S = 

1.09 and ϕ = 0.33 for Roll B. At S = 1 pickout ratios are separated by 0.027 

(Roll A) and 0.018 (Roll B). The largest difference occurs at S = 0.5 with a 

difference of 0.13 (Roll A) and 0.086 (Roll B).  
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Figure 4.1: Numerical and experimental pickout ratios plotted against 
the web-to-roll speed ratio for Roll A. 

 

Figure 4.2: Numerical and experimental pickout ratios plotted against 
the web-to-roll speed ratio for Roll B.  
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4.2 Contact Model Results 

Figure 4.3 and Figure 4.4 demonstrate the influence of the contact model at 

a speed ratio of one. The primary region of contact is immediately 

downstream of x=0 (top dead centre of the roll), which corresponds to the 

region of minimum gap (see parts (b) and (c) of Figure 4.3 and Figure 4.4). 

The fluid pressure is shown to be too small to support the web as can be 

seen in part (a) of Figure 4.3 and Figure 4.4 in the form of a spike of contact 

pressure. The length of the contact area is approximately 0.8 for Roll A and 

0.4 for Roll B making it less than the length of the small scale domain.  

Directly comparing the coating bead pressures on the two rolls in Figure 4.5 

and Figure 4.6 shows that the fluid pressure on Roll B is smaller than that of 

A. This translates to a higher contact pressure required to support the web in 

Figure 4.6. The scale of these differences is highlighted in Table 4:2. 

 

Table 4:2: Comparison of non-dimensional pressure. 

Roll Max Fluid 

Pressure (Pf) 

Max Contact 

Pressure (Pc) 

Difference in 

Pressure 

Pc

Pf
 

A 768 6016 5248 7.8 

B 362 10800 10438 29.8 
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a 

 

b 

 

c 

 

 

Figure 4.3: Plots with the x axis showing the coating bead axis. The top 
plot (a) is the sum of the fluid pressure and the contact pressure. 
Second plot (b) indicates the web-to-roll gap and the third (c) is the 
web location relative to the surface of the roll. 
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a 

 

b 

 

c 

 

 

Figure 4.4: Plots with the x axis showing the coating bead axis. The top 
plot (a) is the sum of the fluid pressure and the contact pressure. 
Second plot (b) indicates the web-to-roll gap and the third (c) is the 
web location relative to the surface of the roll.  
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Figure 4.5: Comparison of fluid pressure at S = 1 for rolls A and B. 

 

 

Figure 4.6: Comparison of fluid plus contact pressure at S = 1 for rolls 
A and B.  
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4.3 Boundary Condition Results and Analysis 

This section investigates the limitations of the boundary conditions. This is 

accomplished by the introduction of scaling variables into the boundary 

conditions equations (3.23, 3.25, 3.26 and 3.27). Section 4.3.1 outlines what 

simplifications are present at the menisci. The later sections vary the scaling 

variables (α) to determine how the pickout ratio responds to these changes. 

Ultimately this section concludes that the model is relatively insensitive to 

the simplifications at the menisci. 

4.3.1 The Smooth Roll Assumption: Meniscus Locations 

The boundary conditions neglect the gravure topography by assuming the 

meniscus travels along a smooth surface (this simplification is illustrated in 

Figure 4.7). This simplification is required for the implementation of 

Equations 3.23, 3.25, 3.26 and 3.27 which govern the meniscus location and 

pressure. These boundary conditions relate the meniscus radius of curvature 

to the web-to-roll gap.  

 

 

Figure 4.7: An illustration of the smooth roll assumption at the 
upstream free surface and how it is simplified in section 3.4.3. While 
dry contact angle is shown in the cell this may not always (or even 
ever) be the case. 
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First considering the meniscus location boundary conditions (Equations 3.23 

and 3.25), which are calculated using the Bretherton equation (4.1). This 

equates the meniscus radius of curvature (r) to the web-to-roll gap (Equation 

4.2). The ratio of planar film thickness, λ, and meniscus radius of curvature 

are related by a function of capillary number. 

 

λ

r
= 1.34(Ca)2/3 

4.1 

g ≅ r =
λ

1.34(Ca)2/3
 

4.2 

 

On a gravure topography the assumption that b is planar breaks down at 

both meniscus to gravure interfaces. These occur at r2 and r3 in Figure 4.8 

while at r1 the meniscus forms on the smooth web.  

At the upstream position the gravure surface exits the coating bead with 

partially filled cells, a process that is dynamic with the position of the roll. At 

the downstream the meniscus with radius r2 is travelling over a mixture of 

land, where the film is thin, and over cells where the film is much thicker. 

Both of these situations are not strictly valid in Equation 4.1 (Bretherton, 

1961). 

 

 

Figure 4.8: Schematic defining the meniscus radii of curvature in the 
context of the coating bead. 
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Secondly, considering the Young-Laplace (Equation 4.3) equation is used to 

obtain the pressure at the menisci. These equations relate the meniscus 

radius of curvature and the capillary number to determine the pressure 

across a fluid-fluid interface (here the fluids are air and the coating liquid). 

The implementation used for Equations 3.26 and 3.27 first assumes that the 

contact angle at the upstream web interface is 90°. At the downstream 

location the assumption is that r1 = r2 = 2r1. These radii of curvature are 

then approximated using the web-to-roll gap (Equation 4.4). The dynamic 

nature of a meniscus passing over a gravure surface means that the actual 

separation of the web and meniscus changes with the roll.  

 

p =
1

Ca
×

1

r
 4.3 

p ≅
1

Ca
×

1

g
 4.4 

 

As it is clear that the boundary conditions are being poorly represented it is 

important to quantify what impact this has on the model as a whole. In all 

cases the relation of web-to-roll gap and meniscus curvature is poor. This is 

addressed via a sensitivity test which artificially scales the web-to-roll gap 

and looks at the changes to pickout ratio. 

The section investigates the sensitivity of these meniscus boundary 

conditions looking separately at the upstream and downstream meniscus 

locations and then at the upstream and downstream meniscus pressure 

conditions. In each case a scaling variable, α, is introduced that 

increases/decreases the web-to-roll gap.  

4.3.2 Meniscus Location: Upstream 

The upstream meniscus features one dry contact angle at the meniscus to 

web interface. The implementation is defined by Equation 3.23 where the 

web-to-roll gap is approximated using Equation 4.2. The sensitivity test is 
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conducted such that the scaling variable, α, is introduced to 

increase/decrease the web-to-roll gap, g, subject to Equation 4.5. 

 

xus = √2R(αg − h) 4.5 

 

The limits of the scaling variable are conducted varying α from 0.5 to 5. The 

results are plotted in Figure 4.9. Over the entire range the pickout ratio is 

insensitive to α. Physically increasing α becomes increasingly similar to a 

flooded boundary condition where the meniscus location is very far from the 

centre of the roller. 

 

Figure 4.9: Pickout ratio plotted versus scaling variable 𝛂. The 
implemented value of 𝛂 in the model was 1. 
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4.3.3 Meniscus Location: Downstream 

The downstream meniscus location represents a flow leaving the coating 

bead on the web (q2 on Figure 4.8) and an incoming flow in the cells. The 

web flux component, q2, forming meniscus curvature r1 is planar and is well 

approximated by 4.1. The menisci radius, r2, which measures to the roll is 

not planar due to the roll topography. The model approximated these two 

components by considering both equal to r1 and equating this to the web-to-

roll gap via Equation 4.6. 

g ≅ 2r1 =
2 × q2

1.34(SCa)2/3S
 

4.6 

 

The scaling variable, α, was implemented to scale the web-to-roll gap over 

the range 0.1-10 where initially it was equal to two. This adjusts the 

downstream meniscus boundary condition to the form seen in Equation 4.7 

(this is the addition of α to equation 3.22). 

 

xds = √2R(αg − h) 4.7 

 

The pickout results have been shown in Figure 4.10. The implemented 

boundary condition is at α = 2. With increasing values of α the pickout tends 

towards an asymptote. With decreasing α there is a reduction in pickout of 

6% (Roll A) and 3% (Roll B) from the baseline model. The simulation for Roll 

B reached a minimum α value of 0.18 instead of the desired 0.1.  
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Figure 4.10: Comparison of pickout ratio against 𝛂 for Rolls A and B. 

This is implemented into the model at 𝛂 = 𝟐. 
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4.3.4 Meniscus Pressure: Upstream 

The meniscus pressure is defined by Equation 3.26 at the upstream 

meniscus. This meniscus has a dry contact angle at the web-air-coating 

liquid interface. The implementation assumes this contact angle is 90° and 

that the meniscus radius of curvature can be approximated by the web-to-roll 

gap as shown by Equation 4.8.  

 

pus =
1

Ca
×

1

r3
≅

1

Ca
×

1

g
 

4.8 

 

The topography of the gravure surface means that the validity of equating r3 

and g changes depending on whether the meniscus is over a cell (in which 

case r3 is large) or over land (in which case r3 is small). The scaling variable, 

α, is used to vary the web-to-roll gap to establish the effect of poorly 

approximating r3.  The implementation of α is done according to Equation 

4.9. 

 

pus =
1

Ca
×

1

αg
 

4.9 

 

The results of varying α over the range 0.5-5 are shown in Figure 4.11. The 

pickout ratio is shown be insensitive to changes in α above one. Increasing α 

tends towards a flooded condition where there meniscus pressure 

approaches zero.  

Reduction in α corresponds to a fall in pickout ratio and an asymptotic 

increase in the magnitude of the pressure while physically this corresponds 

to a smaller web-to-roll gap. 
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Figure 4.11: The effect of scaling parameter 𝛂 on the pickout ratio of 
Roll A and B.  
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4.3.5 Meniscus Pressure: Downstream 

The downstream meniscus location contains the two menisci radii of 

curvature r1 and r2. These are implemented in the model by assuming that 

r1 = r2 ≅ 2r1 = g. The r2 component is affected by the gravure topography 

because the pool of fluid in cell is inconsistent with an asymptotically thin film 

which underpins the Young-Laplace equations.  

The scaling variable is implemented into the downstream boundary condition 

according to Equation 4.10. 

 

pds =
1

Ca
×

2

αg
 4.10 

 

The results of scaling α over the range of 0.5-5 show that pickout ratio is 

insensitive to changes in downstream meniscus pressure (Figure 4.12). The 

result for Roll B was terminated at α = 0.78 as it became unsteady.  
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Figure 4.12: Influence of scaling variable, 𝛂, on the pickout ratio.   
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4.4 Discussion 

Computational results are presented for a multi-scale model of two discrete 

cell gravure rolls (A and B). The results show a near linear relationship 

between pickout ratio and speed ratio. This relationship was also found in a 

like-for-like comparison with the experimental results from Chapter 2. 

Despite predicting this relationship the magnitude of the gradient is under 

predicted by the computational model. The model does qualitatively agree 

with the experimental results. 

The contact model is shown to play an important role in the fluid transfer 

process with the maximum contact pressure being 7.8 and 29.8 times larger 

than the maximum fluid pressure for rolls A and B respectively. Roll B has a 

larger cell size than that of Roll A (refer to Figure 3.13) and corresponding 

larger small scale coefficients, the most significant of which at very small 

web-to-roll gaps is the pressure gradient coefficient, a. This is found in the 

denominator of the governing equation 3.15 which determines the fluid 

pressure. It also scales approximately cubically with the web-to-roll gap. It 

therefore suggests that small cells produce a higher fluid pressure in the 

coating bead than larger ones because they naturally have smaller values of 

coefficient a. Roll B is more likely to produce low fluid pressure flows due to 

its larger cells, rough surface and narrow cell walls. To illustrate why 

coefficient a is smaller for Roll A, consider the comparison between rolls A 

and B in Figure 4.13. The opening radius of the cells and the cell depth is 

larger in Roll B. This can also be interpreted as Roll B having less land area. 
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Roll A Roll B 

  

Figure 4.13: Side by side comparison of the surfaces of Roll A and Roll 
B. 

The difference in surface area between the two rolls has been highlighted by 

digitally removing the lowest components of each roll and only keeping the 

surface layers. A side by side comparison shows Roll A to have more 

surface area (Figure 4.14) than Roll B. In the event of web to roll contact it is 

only the upper surface that will actually be in contact. Consider that the 

contact length is greater for Roll A (see the length of the contact pressure 

spike in Figure 4.3 and Figure 4.4) and that it inherently has a greater 

surface area. Since the pressure gradient coefficient, a, scales 

approximately cubically with the web to roll gap, Roll A has a higher portion 

of its surface area at that gap (remembering that web-to-roll gap is 

measured to the land and not to the base of a cell). 

Roll A Roll B 

 
 

Figure 4.14: Side by side illustration Roll A and Roll B where all but the 
surface layer has been removed from Figure 4.13.  
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This is of interest in the context of web scratching because if the fluid can 

fully support the web then the contact pressure drops to zero and an 

unscratched web would be expected.  

The advantage of the multi-scale model is that it allows the complex 

topography of the gravure roll to be accounted for in a more robust way than 

lubrication theory would allow. This advantage does not extend to the 

boundary conditions, which as implemented still maintain a smooth roll 

approximation. By considering the sensitivity of the pickout ratio to changes 

in the boundary conditions it can be highlighted that even though this 

discrepancy exists at the meniscus boundaries, it does not have a significant 

impact on the predictive results for common industrially relevant applications 

where the speed ratio is near unity.  
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Chapter 5 Parametric Results 

5.1 Introduction 

In this chapter key parameters are systematically varied to investigate how 

sensitive the model is to these parameters, with a specific focus on the 

pickout ratio result. In the first section (5.2), attention is focused on coating 

parameters (wrap angle, capillary number etc.) which are dealt with in the 

large scale. The second section (5.3) varies the gravure cell geometry which 

is dealt with in the small scale. The final section is an investigation of the 

sensitivity of the large scale boundary conditions to establish the importance 

of neglecting cell geometry at the boundaries.  

For convenience the following sections refer back to an initial set of results, 

termed the “baseline results”. 

5.1.1 The Baseline Results 

As this chapter presents results over a changing parameter space, it is 

useful to have a constant set of data for comparison. These are drawn from 

the baseline model presented here. The parameters for the baseline model 

are shown in Table 5:1. Each parameter variation in the following section will 

assume to have started from these results unless otherwise stated. The 

pickout ratio against speed ratio graph for the baseline model is shown in 

Figure 5.1. 
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Table 5:1: Baseline parameters 

Parameter Value Value (dimensionless) 

Web Tension 1000 N/m 1227000 

Wrap Angle (β) 0° 0 

Capillary Number (Ca) - 0.0204 

Roll Radius (Roll A/Roll B) 0.05m/0.05m 200/111 

Mesh Angle (Cell Patterning) 45° 45° 

Characteristic Length, L, 

(Roll A/Roll B) 

2.5 × 10−4/4.5 × 10−4 m 1/1 

 

 

Figure 5.1: Pickout against speed ratio for the baseline models A and 
B. These results have been taken from Chapter 3 where the upstream 
wrap angle has been set to zero.  
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5.2 Coating Parameters (Large Scale) 

5.2.1 Web Tension 

The non-dimensional web tension was varied from t =10000 (8.15 N/m) to 

t =10,000,000 (8150 N/m) which have been made non-dimensional using 

Equation 3.5. A typical tension used in industry is 1000 N/m (Kapur, 1999) 

which corresponds to t =1,227,000 in non-dimensional units. On an 

industrial scale the web tension is not used to control the film thickness, but 

is determined by upstream and downstream web stretching. 

The results are shown in Figure 5.2. It is clear that for industrially relevant 

tensions there is no significant effect on the pickout ratio. This remains the 

case as web tension increases. Figure 5.3 shows a corresponding increase 

in the contact pressure component, that is pressure from web-to-roll contact 

rather than fluid pressure in the coating bead.  

The pickout ratio becomes sensitive to changes in web tension when it is 

much smaller than the baseline model. These points are at t =515602 and 

t =132661 for Roll A and B respectively.  
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Figure 5.2: Depicts how the pickout ratio varies with web tension for 
rolls A and B. 

 

Figure 5.3: Contact pressure varying with web tension for rolls A and 
B. Very low web tensions experience no contact.  
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An examination of the pressure profile (i.e. an indication of how the pressure 

varies along the length of the coating bead) is useful in determining at what 

tension web-to-roll contact occurs. Figure 5.4 shows how the coating bead 

pressure profile varies with web tension for rolls A and B. The minimum 

pickout value is marked by A2 and B2, A3 and B3 correspond to the 

baseline result. The limits of the simulation are marked by A1, B1 and A4, 

B4.  

As web tension increases beyond the minimum point (A2, B2) the fluid 

pressure profiles through the coating bead remains mostly constant (a 

decrease in maximum fluid pressure from 900 to 700 occurs from points A2 

to A4 and from B2 to B4). The additional load induced by the increase in 

web tension is supported by the gravure roll in the form of contact pressure 

(Figure 5.5) which experiences an order of magnitude increase from points 

A2, B2 to A4, B4.  

At points A1 and B1 the fluid pressure is large enough to support the web. 

With reference to Figure 5.6 and Figure 5.7, which show the relative position 

of the web and the gravure roll surface, it is shown that the web-to-roll gap is 

maintained at points A1 and B1. A region of constant positive bead pressure 

forms. This result bears a striking resemblance to that found by Hewson et al 

(2011) whom also modelled low pressures in a gravure coating bead. The 

results presented in that study are for cells 80%-90% smaller than those 

here but both cases suggest a coating bead pressure profile containing a 

long region of constant gap followed a downstream pressure ripple indicating 

that the web is being deformed by the fluid pressure. As web tension 

increases at points A2 and B2 this gap drops to zero signifying that the fluid 

pressure is insufficient to maintain a separation of web and roll and leads to 

the onset of contact pressure.  
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Figure 5.4: The top diagram indicates the change in pickout ratio with 
web tension; the subsequent four graphs depict how the fluid pressure 
profile in the coating bead varies as the tension changes. A2 and B2 
are the minimum pickout condition; A3 and B3 correspond to the 
baseline result. A1, B1, A4 and B4 are the limits of the simulation.  
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Figure 5.5: The top diagram indicates the change in pickout ratio with 
web tension; the subsequent four graphs depict how the contact 
pressure increases with increasing tension. A1 and B1 have no contact 
component. A2 and B2 are the minimum pickout condition; A3 and B3 
correspond to typical industrial values. A1, B1, A4 and B4 are the limits 
of the simulation.  
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Figure 5.6: Web and roll locations at points A1 and B1 on Figure 5.4 

(𝐭 =10000). 

 

Figure 5.7: Web and roll locations at points A1 and B1 on Figure 5.4 

(𝐭 =10000).  
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5.2.2 Wrap Angle 

The wrap angle was adjusted at the upstream web entering the coating 

bead. An increase in wrap angle corresponds to an increasing web induced 

load on the roll given by Tsin (β) where β is the wrap angle and T is the web 

tension. Figure 5.8 shows the web location along the length of the coating 

bead for the range of wrap angles simulated in this parametric study.  

For both rolls the upstream wrap angle was varied from 0 to 5 degrees. This 

changes the gradient of the web entering the coating bead at the upstream 

(note: wrap angle is only ever applied in practice at the upstream). Any 

downstream changes were negligible. 

  

Figure 5.8: Both plots depict the web location at wrap angles from 0 to 
5 degrees (as indicated on each graph) with Roll A on the left and Roll 
B on the right. 

 

Referring to Figure 5.9 and Figure 5.10 it can be seen that both fluid and 

contact pressures increase with wrap angle. The effect this contact has on 

the coating bead is evident in Figure 5.11 with wrap angles at zero degrees 

and Figure 5.12 with wrap angles at 5 degrees. The contact effectively de-

couples the upstream from the downstream boundary. Under similar 

circumstances some authors have found two isolated counter rotating flow 

regions (Rees (1995), Figure 1.13). The contact length also increases with 

the wrap angle.  
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Figure 5.9: These figures depict the influence of wrap angle on fluid 
pressure (top) and contact pressure (bottom) for Roll A.  
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Figure 5.10: These figures depict the influence of wrap angle on fluid 
pressure (top) and contact pressure (bottom) for Roll B.  
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Figure 5.11: Web gradient against coating bead length. The central 
linear region indicates the contact region. 

 

 

Figure 5.12: Web gradient against coating bead length. The central 
linear region indicates the contact region.  
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The pickout ratio shows a very small decrease with increasing wrap angle. 

This result was also found experimentally by Kapur (1999). Benkreira & 

Patel (1993) tested a range of 0-12 degrees wrap angle and found no 

significant change in film thickness.  

 

 

Figure 5.13: Pickout ratio variation with wrap angle for Rolls A and B. 
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5.2.3 Capillary Number 

The capillary number (equation 5.1) is the non-dimensional number relating 

the relative effect of fluid viscosity (η), surface tension (γ) and some 

characteristic speed (Uroll). It is currently employed in the Landau-Levich 

and Bretherton boundary conditions to find both the meniscus pressure and 

location (equations 3.23, 3.25, 3.26 and 3.27). Viscosity terms are also used 

to make the web tension and the pressure terms non-dimensional while the 

characteristic speed is used in the non-dimensional speed ratio term. 

Industrially the viscosity is varied by changing the concentration of solid 

particles in the coating solution. This allows the dry coat thickness to be 

scaled.  

 

Ca =
ηUroll

γ
 

5.1 

 

Here, the capillary number was varied from 0.001 to 0.1. At small capillary 

numbers (i.e. below 0.01) the pickout ratio is predicted to increase with 

increasing capillary number. For all larger capillary numbers the change in 

pickout ratio is negligible (Figure 5.15 and Figure 5.18). This trend is 

exhibited by both rolls.  

The experimental investigation by Patel & Benkreira (1991) suggested a 

relation between capillary number and film thickness that increases rapidly 

when the capillary number is low and plateaus at higher capillary numbers. 

However, it is unclear what influence other parameters had on this result. 

Subsequent work by Kapur (2003) removed this ambiguity and observed a 

secondary relationship between increasing pickout ratio with increasing 

capillary number (web-to-roll speed ratio being the primary relation between 

the two). At a speed ratio of one the study varied capillary number from 0.02-

0.08 and observed that a 1% increase in capillary number caused an 

approximate 0.3% increase in pickout ratio. 
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The use of Landau-Levich and Bretherton boundary conditions has been 

shown to predict appropriate sensitivity to capillary number in rigid smooth 

roll cases [ (Benjamin, et al., 1995) (Gaskell, et al., 1995), (Summers, et al., 

2004)], smooth roll cases with a tensioned web (Gaskell, et al., 1998) as well 

as smooth cases with a deformable roll (Carvalho & Scriven, 1997). The 

ability of these equations to predict appropriate sensitivity to capillary 

number does not appear to extend to the gravure case observed by Kapur. 

Interestingly the fluid pressure in the coating bead shows the same trend 

exhibited in the earlier work of Gaskell et al (1998) where the maximum and 

minimum value of fluid pressure decreases with increasing capillary number 

Figure 5.16 and Figure 5.17.  
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Figure 5.14: Pickout ratio against capillary number for rolls A and B at 
a speed ratio of one. 

 

Figure 5.15: Pickout ratio against speed ratio for rolls A and B at 
capillary numbers of 0.01, 0.05 and 0.1. 
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Figure 5.16: Fluid pressure varying along the coating bead for Roll A at 
S=1. 

 

 

Figure 5.17: Fluid pressure varying along the coating bead for Roll B at 
S=1. 
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There is a sharp change in the gradient of Figure 5.15 below S=0.5 which 

corresponds to the contact pressure dropping to zero. The contact pressure 

at a given speed ratio can be seen in Figure 5.19.  

With reference to the results below a speed ratio of 0.5 in Figure 5.15 it is 

unclear from that diagram if the capillary number has an effect when there is 

no contact pressure. To clarify this Figure 5.20 was created to show pickout 

ratio over the range of speed ratios 0.5 to 4 at a web tension of t =10000. At 

this reduced web tension there is no contact (see Figure 5.19). However, 

even at this web tension value the capillary number has a negligible effect 

on the pickout ratio (Figure 5.20). 
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Figure 5.18: Contact pressure between the web and roll against 
capillary number at a speed ratio of one.  

 

Figure 5.19: Contact pressure against speed ratio at capillary numbers 
of 0.01, 0.05 and 0.1. The wrap angle was zero and the web tensions 

was 𝐭 =1203700 (1000 N/m).  
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Figure 5.20: Pickout ratio against speed ratio for rolls A and B at the 

indicated capillary numbers. The web tension has been set to 𝐭 =10000 
which reduces the contact pressure to zero near speed ratios of one. 
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5.2.4 Roll Radius 

The baseline model approximates the cylindrical roll surface using the 

parabolic expression in Equation 5.2. The impact on pickout ratio of varying 

the roll radius is shown in Figure 5.21. The pickout response is insensitive 

until the contact pressure drops to zero (also shown in Figure 5.21), after 

which pickout increases with increasing roll radius.  

There are two different ways of looking at a change in roll radius. The first 

(and most obvious) is simply that the roll is getting larger/smaller. The 

second has to do with how it was made non-dimensional. An increase in the 

roll radius is equivalent to a reduction in the characteristic length which 

means these results are also relevant to having varied the cell size at a fixed 

roll diameter. The present simulation can be interpreted as a change in roll 

radius of 100L → 1000L or change in characteristic length of 5 × 10−4m →

5 × 10−5m. 

 

 

Rollsurface =
x2

2r
 

5.2 
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Figure 5.21: Dependence of pickout from Rolls A and B against the roll 
radius. Left axis shows the pickout ratio while the right axis shows the 
contact pressure. When contact pressure drops to zero the gradient of 
pickout ratio increases.  

 

With reference to Figure 5.22 it can be seen that the length of the coating 

bead increases as the roll radius increases. The points P1 and P2 on Figure 

5.22 indicate the two extremes of the simulation. Comparing P1 profiles 

(Figure 5.23, Figure 5.24 and Figure 5.25) to P2 profiles (Figure 5.26, Figure 

5.27 and Figure 5.28) shows: 

 Increased length of coating bead. There is no significant change in 

the web-to-roll gap at the up and downstream boundaries due to 

changing the roll radius. The coating bead extends to meet the 

existing boundary conditions. 

 Change in shape of the profiles due to lack of web-to-roll contact 

while fluid pressure rises with increasing roll radius. The maximum 

fluid pressure doubles from P1 to P2 (see Figure 3.23 and Figure 3.26). 
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Figure 5.22: Coating bead length increasing with radius of the roll.  
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Figure 5.23: Web location profile at P1 from Figure 5.22. 

 

 

Figure 5.24: Web-to-roll gap profile at P1 from Figure 5.22. 

 

 

Figure 5.25: Bead pressure profile at P1 from Figure 5.22.  
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Figure 5.26: Web location profile from at P2 from Figure 5.22. 

 

 

Figure 5.27: Web-to-roll gap profile at P2 from Figure 5.22. 

 

 

Figure 5.28: Bead pressure profile at P2 from Figure 5.22.  
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5.2.5 Coating Parameters: Summary 

The coating parameters are entirely considered in the large scale. The 

parameters examined in this section were wrap angle, capillary number, web 

tension and roller radius. The speed ratio has been displayed in Chapter 4 

and is by far the most sensitive of the coating parameters.  

The web loading is determined by T sin θ and is shown in these 

computational results to have no significant impact on the pickout ratio 

unless the web tension is very low, as was the case at points A1 and B1 in 

Figure 5.4. Experimental observation by Kapur (2003) also noted little 

change in pickout ratio with web loading. However, work by Gaskell et al 

(1998) on smooth roll coaters found that the coat weight did vary with web 

loading. This adds to the conclusion the gravure cells play an important role 

in the fluid transfer mechanism. This conclusion highlights the importance of 

web-to-roll contact. In the case of a smooth roll coater any contact would 

only allow fluid to accumulate downstream of the point of contact (Figure 

5.29) while on a gravure roll the cells offer a means to carry fluid through the 

coating bead.  

 

 

Figure 5.29: Smooth roll with contact between web and roll. Fluid is 
unable to transfer past point of contact. 

 

The discussion in section 4.3 suggests that the small scale pressure 

gradient coefficient is the most important at small web-to-roll gaps. For 

example at a web-to-roll gap of 0.001 the value of the pressure gradient 

coefficient, a, is −4.22 × 10−6 for Roll A and −8.10 × 10−6 for Roll B. For a 

smooth roll coater which is well approximated by lubrication theory, the 
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same equivalent pressure gradient coefficient corresponds to 
1

12
g3 = 8.3 ×

10−11. This is a difference of five orders of magnitude and implies that a 

smooth roll coater can achieve much higher fluid pressures than a gravure 

coater (the reader is referred to Equation 3.15 for clarity). Therefore, using 

cells as a metering device also reduces the fluid pressure such that web-to-

roll contact will occur at lower web loading than that of smooth roll coating.  

The cells in Roll B are larger than that of Roll A and an inspection of the 

pressure profiles in Figure 5.25 and Figure 5.28 shows that B has a smaller 

maximum fluid pressure. This suggests that Roll A is more analogous to a 

smooth roll than that of Roll B. 

Roll radius variation shows the very interesting result of increasing fluid 

pressure with radius size. This can be either interpreted as the roll becoming 

physically larger or the characteristic length becoming smaller. This poses 

the interesting situation where the use of very small cells may reduce web-

to-roll contact and thus reduce scratching. 
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5.3 Gravure Parameters (Small Scale) 

In this section the small scale geometry was varied and the influence at the 

large scale was assessed. The geometry used was that for Roll B and all 

other parameters are from the baseline model. The first part varies the cell 

mesh angle and the second varies the aspect ratio of the cell. 

5.3.1 Results: Gravure Cell Mesh Angle 

The mesh angle (sometimes referred to as cell patterning) refers to the 

angle at which each row of cells is off-set from the next. This was 

approximated in the small scale by deforming the domain such that the total 

volume remains constant. The deformation is equivalent to rotating a square 

grid of cells as shown in Figure 5.30. The effect is to capture the flow field as 

it is influenced by the adjacent up and downstream cells. The small scale 

cells used here can be seen in Figure 5.31, where geometry C most clearly 

shows the adjacent cells. For a consistent comparison of mesh angle all the 

cell volumes were kept constant at 0.083.  

The pickout ratio against speed ratio results are shown in Figure 5.32. A 

mesh angle of 0° yields the highest pickout ratio which decreases with 

increased mesh angle. At a speed ratio of 1 there is a 0.067 difference in 

pickout between 0° and 45° mesh angles which corresponds to a 17.8% 

change. At this speed ratio Figure 5.33 shows the bead pressure profiles for 

each mesh angle and in Figure 5.34 the matching contact pressures. The 

fluid pressure increases with increasing mesh angle.  
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Figure 5.30 Cell grid showing rotation that is approximated by 
deforming a small scale geometry by 45 degrees. 

 
 

A 

 

B 

 

C 

 

Figure 5.31: Small scale models at a web to roll gap of 0.05 where A 
has a mesh angle of 0°, B has a mesh angle of 30°and C has a mesh 
angle of 45°. In all the diagrams the direction of roll movement is left to 
right and the roll axial direction runs from the bottom to top. 
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Figure 5.32: Pickout ratio against speed ratio for mesh angles of 0°, 30° 
and 45°.  
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Figure 5.33: Fluid pressure against the coating bead length for mesh 
angles of 0°, 30° and 45°.  

 

Figure 5.34: Web to roll contact pressure against bead length for 
reference with Figure 5.33.  
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5.3.2 Results: Gravure Cell Aspect Ratio 

The ratio of a cell’s opening area to its depth has been identified as an 

important parameter in determining the pickout ratio in Chapter 2 as well as 

in other published work [(Benkreira & Patel, 1992), (Schwartz, et al., 1998), 

(Kapur, 2003)]. The aspect ratio in Equation 5.3 relates the radius, r0, to the 

depth, d, of the cell and these are defined in Figure 3.11 and are 

implemented in Equation 3.41. For this parametric study the aspect ratio is 

varied from 0.5 to 1 while the cell volume is held constant, these parameters 

for this are summarised in Table 5:2. The resulting geometries are shown in 

Figure 5.35 as contour plots where the aspect ratio is largest in geometry A 

and reduces to its minimum in geometry C. This means that geometry A has 

a cell which is relatively shallow and wide, while geometry C has a cell that 

is relatively narrow and deep. The colour axis in these figures indicates the 

depth at the contour.  

 

AR =  
r0 

d
 5.3 

 

 

 r0 Depth (d)  AR 

A 0.35 0.18 0.50 

B 0.28 0.24 0.85 

C 0.26 0.26 1.00 

Table 5:2: Parameters used in parametrically varying aspect ratio. 
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Figure 5.36 shows the pickout ratio as a function of speed ratio for the three 

cell geometries. It is clear that aspect ratio plays an important role in the 

coating flow process. At a speed ratio of 1 the difference in pickout ratio 

between geometry A and C is 0.20 which is a 43% change in pickout ratio as 

the aspect ratio goes from 0.5 to 1. From the coating bead pressure profile in 

Figure 5.37 the highest pickout ratio also corresponds to the smallest 

magnitude pressure profile while the lower pickouts correspond to the higher 

pressures. The contact pressure does not vary significantly from one aspect 

ratio to the next but it is clear that the cell geometry does not change the 

point in the coating bead at which contact occurs (Figure 5.38). 

 

 

Figure 5.36: Pickout ratio against speed ratio for the three cell 

geometries. A has a cell radius (𝐫𝟎) of 0.35032 and a cell depth of 

𝐫𝟎 × 𝟎. 𝟓. B has a cell radius (𝐫𝟎) of 0.27815 and a cell depth of 𝐫𝟎 × 𝟎. 𝟖𝟓. 

C has a cell radius (𝐫𝟎) of 0.25815 and a cell depth of 𝐫𝟎 × 𝟏.  
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Figure 5.37: Fluid pressure against coating bead location. A has a cell 

radius (𝐫𝟎) of 0.35032 and a cell depth of 𝐫𝟎 × 𝟎. 𝟓. B has a cell radius (𝐫𝟎) 
of 0.27815 and a cell depth of 𝐫𝟎 × 𝟎. 𝟖𝟓. C has a cell radius (𝐫𝟎) of 
0.25815 and a cell depth of 𝐫𝟎 × 𝟏. 

 

Figure 5.38: Contact pressure against bead location. A has a cell radius 

(𝐫𝟎) of 0.35032 and a cell depth of 𝐫𝟎 × 𝟎. 𝟓. B has a cell radius (𝐫𝟎) of 

0.27815 and a cell depth of 𝐫𝟎 × 𝟎. 𝟖𝟓. C has a cell radius (𝐫𝟎) of 0.25815 
and a cell depth of 𝐫𝟎 × 𝟏.  

-15 -10 -5 0 5 10 15
-800

-600

-400

-200

0

200

400

600

Bead Location

F
lu

id
 P

re
s
s
u
re

 

 

A

B

C

-15 -10 -5 0 5 10 15
0

2000

4000

6000

8000

10000

12000

Bead Location

C
o
n
ta

c
t 

P
re

s
s
u
re

 

 

A

B

C



164 
 

 

5.3.3 Gravure Parameters: Summary 

Two key parameters have been varied, the mesh angle and the aspect ratio. 

Over a change in mesh angle of 45 degrees there was a 17.8% change in 

pickout ratio, while a change in aspect ratio from 0.5 to 1 showed a 43% 

change in pickout ratio.  

The pickout ratio is sensitive to the small scale geometry, much more so 

than the coating parameters described in section 5.2. Accurately capturing 

the flow physics in the small scale is vital to the accuracy of the two scale 

model.  
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5.4 Summary of Parametric Results 

From the results presented in this chapter it can be seen that the coating 

operating parameters (web tension and wrap angle) have little effect on the 

coating process under normal conditions. Similarly, capillary number has 

only minimal effects on the pickout ratio. Only as these parameters approach 

zero do they begin to have significant effect on the pickout ratio. However, 

the surface topography has a much larger effect on the pickout ratio. In 

particular the cell aspect ratio which showed dramatic changes in pickout 

ratio.  

In comparison to both the web tension and the wrap angle, pickout ratio is 

much more sensitive to changes in the speed ratio as shown in Chapter 4. It 

is also interesting that the pickout to speed ratio gradient changed when the 

web tension was reduced from t = 1 × 107 to t = 1 × 104 (see Figure 5.15 

versus Figure 5.20). At these low web tensions the fluid pressure is large 

enough to support the web and the contact pressure drops to zero. This 

result is of interest when considering how to reduce web scratching.  

Roll radius, which at small radii, had no significant effect on pickout ratio but 

did have an effect on the contact pressure. As the roll radius increased the 

minimum web-to-roll gap was shown to increase. The result implies that a 

roll with very small cells may exhibit a reduced amount of web-to-roll contact. 

This result is one which would benefit from experimental analysis.  

Gravure patterning had a 17.8% effect on the pickout ratio over the range of 

0 to 45 degrees. This is a greater sensitivity than was found from the 

variable coating parameters. The pickout was shown to be sensitive to the 

aspect ratio of the gravure cells. As the aspect ratio decreased (i.e. the 

radius increased and cell depth was reduced) the pickout ratio became 

larger for a constant volume. This is tending towards the theoretical 

lubrication result for a smooth roll which will transfer all the coating fluid to 

the web.  

The implemented large scale boundary conditions neglect the influence of 

the cells, but it was shown in section 4.3 that the pickout ratio under normal 
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operating conditions is not sensitive to them. This is similar to many of the 

coating parameters and it should be noted that speed ratio, capillary number 

and wrap angle occupy a key role in the large scale boundary conditions. 
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5.5 Discussion 

Earlier authors identified in Chapter 1 investigating the gravure coating 

process have experimentally established a typical operating behaviour for 

gravure roll coating including pickout ratio, stable operating parameters, key 

fluid properties and some gravure surface properties, all of which affect the 

coat weight. The experimental results presented in Chapter 2 fall into line 

with those already published [(Benkreira & Patel, 1992), (Kapur, 2003)]. 

However, unlike other published data these results can be linked to a 

specific gravure roll for a like-for-like comparison with the computational 

model. While similar experimental data is published elsewhere the real value 

of the experiments conducted here comes from the ability to make these 

comparisons. 

The two-scale model has extended the work published in Hewson, et al 

(2011) where the representation of the small scale has been extended to 

three-dimensions as well as the inclusion of a contact pressure term in the 

large scale. The present work also moves the web tension into a realistic 

parameter space. Previously, tension had been underestimated and hence 

prior to this work no contact model was required.  

5.5.1 Model Validation 

The results predicted by the two-scale model have been compared with 

those determined by experiment to find a correlation between the pickout 

ratios for two separate rolls. The model was able to predict the linear 

relationship between the pickout ratio and the speed ratio. 

A look at the fluid structure of the coating bead revealed similarities between 

the computational predictions and the observations in earlier work [(Gaskell, 

et al., 1998), (Hewson, et al., 2006)]. These observations are important 

because they are influenced by a flexible web and add more information 

from that of earlier fixed gap simulations. The presence of a flexible web 

introduces the relationship between fluid pressure and web tension and 

therefore when the force of web tension is much higher than that of the fluid 
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pressure it presents the possibility of contact. The two scale model suggests 

that contact between the web and roll is important in the fluid transfer 

process for a given parameter space (namely realistic web tensions). This 

contact is then evidenced by the observation of web scratches during the 

experimental coating phase (Chapter 2). 

For both rolls the small scale representation was created such that the 

aspect ratio, the cell volume and the mesh angle were representative of the 

roll used in the experiment. This required specific images taken using a 

white light interferometer for each roll. A comparison of these images with 

the small scale implementation has shown that the main features are 

represented (i.e. cell volume, aspect ratio, mesh angle) but much of the 

detail is lost in going from the image to the computational model (small 

scale), specifically the surface is much smoother than it should be. 

5.5.2 Scratching 

Scratches on the web appear as a result of the gravure coating process. 

These are caused by contact between the web and the harder, rough 

surface of the gravure. Evidence of these scratches was experimentally 

observed in Chapter 2 where the scratches form a long and relatively 

shallow trough of plastically deformed PET web.  

The inclusion of web-to-roll contact in the large scale and neglecting the 

same roughness in the small scale is a troublesome contradiction. The 

presence of web scratching is most readily explained by local peaks on the 

gravure surface. However, the spacing of these peaks is unknown and 

varies from one roll to the next as well as varying around the circumference 

of the roll. This is inconsistent with a multi-scale modelling method as it 

violates the key assumption that the small-scale is periodic. By applying an 

ad hoc contact pressure term in the large scale this violation is avoided, but 

it does imply that there is continuous contact between the web and the roll 

and that this contact is present at a constant load which means the predicted 

contact cannot be related to individual scratches.  
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The contact pressure is seen to be an important component in the gravure 

fluid transfer process. Over much of the parameter space identified in 

Chapter 5 the contact pressure is very high relative to the maximum fluid 

pressure. What is most interesting to the coating engineer is when the 

contact pressure drops to zero as this suggests a condition that will avoid 

web-to-roll contact and therefore prevent scratching.  

One such situation occurs at very low web tensions but the industrial 

relevance of this is limited because the web tension is set by other 

production parameters rather than the coating operation (such as web 

stretching, etc.). This sensitivity to roll radius highlights a problem between 

the laboratory roll size and the industry roll size. Laboratory sized rolls used 

here are 10 cm in diameter while those at industry are often twice as large, 

though this does vary from one coating line to the next.  

The second such condition occurs when the cells are very small. The 

contact pressure was shown to respond to absolute cell size in Chapter 5. It 

has also been shown (both in Chapter 5 and in the literature) that the pickout 

ratio is sensitive to the cell shape. The combination of very small cells with 

tailored aspect ratios to achieve a pickout ratio that gives a desired film 

thickness is a promising direction of research into the production of scratch 

free coatings.  

5.5.3 Relevance to Industry 

The two-scale model has applications in the design process of these new 

types of rolls. Physically creating and experimentally testing rolls is an 

expensive process, while computationally doing this is cheaper and faster.  

The cells size has also been shown to correlate to the pressure in the 

coating bead. Smaller cells are more analogous to a smooth roll and 

correlate with a higher pressure. 

Computational investigations of the surface topography captured in the small 

scale simulations showed the formation of eddys in the cells (Figure 3.24 

and Figure 3.25). In these regions not all of the fluid is being replaced as the 

cell passes through the coating bead. This alludes to a common industrial 
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problem of solid particulate build-up in the cells (these particulates are often 

part of the coating fluid). The build-up changes the cell volume over time and 

results in a reduction in coating weight requiring the roll to be cleaned. Any 

particles trapped in the eddy have no obvious path exiting and will therefore 

have an increased likelihood of becoming attached to the roll surface. 
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Chapter 6 Conclusions and 

Future Work 

This thesis presented both experimental and computational work. The 

conclusions drawn from this work are: 

 The two scale model correlates with experimental results and predicts 

a nearly linear relationship between pickout ratio and speed ratio. 

Successfully predicting the gradient of this relationship remains 

elusive. At industrially relevant speed ratios (i.e. within 10% of S=1) 

the pickout ratio predicted by computation is consistent with the 

results from experiment. The formulation of the model allows for a 

variety of cell geometries and roll coating conditions to be accounted 

for.  

 Web-to-roll scratching has been observed to occur during the coating 

process. The fluid pressure at normal operating conditions is 

computationally predicted to be insufficient to support the web and 

therefore a contact pressure component between the web and 

gravure takes the additional load. The inclusion of contact in the 

computational model is supported by experimentally observed 

scratching on the web. Contact is of particular interest for discrete cell 

gravure roll coating because contact does not stop the fluid transfer 

process. Coating fluid can be transported through the coating bead 

during contact because the presence of the cells. The inclusion of 

web to roll contact is entirely novel and provides a valuable insight 

into the web scratching phenomena. 

 The magnitude of the contact pressure correlates with the web 

tension and the cell size/roll radius. At sufficiently low web tensions 

the contact pressure is reduced to zero suggesting there is no web-to-
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roll contact. At sufficiently small cell size (or equally large roll radius) 

the contact pressure drops to zero suggesting no contact. In the 

reduced tension case there are increases in the pickout ratio. In the 

reduced cell size/increased roll radius case there is a nominal effect 

on pickout but also implications in film thickness due to the change in 

characteristic length. 

 Wrap angle has only a nominal effect on the pickout ratio. In 

accordance with what has been shown elsewhere in the literature the 

wrap angle increases the web loading on the gravure. This has been 

extended here to show that this additional loading is not always 

supported by the fluid but instead increases the contact pressure 

between the web and roll.  

 At web tensions below the point of web-to-roll contact the pickout ratio 

is sensitive to changes in web tension. At web tensions above where 

web to roll contact occurs the pickout ratio becomes unaffected by 

further increasing the web tension. This is due to the roll supporting 

the additional load.  

 The small scale has been extended from a two dimensional 

representation of topography in earlier work (Hewson, et al., 2011) to 

a three dimensional representation of the topography. 

 The surface topography is important to the fluid transfer process. This 

has also been observed experimentally in the literature. Correctly 

implementing features such as the cell aspect ratio and volume are 

important when representing the small scale. Cells with larger aspect 

ratios will have a larger pickout ratio.  

 Capillary number is computationally predicted to have a nominal 

effect on the pickout ratio. This is in contrast to what other authors 

have experimentally observed. 

 The pickout ratio is affected by the layout of the cells which as been 

observed elsewhere in the literature (Schwartz, 2002). 
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6.1 Future Work 

The predictive two-scale model discussed in this thesis provides a 

computational representation in a realistic parameters space for discrete cell 

gravure roll coating and qualitatively validates it against experimental results. 

It does not quantitatively predict the pickout ratio as it changes with speed 

ratio. This an important detail to the coating engineer as speed ratio is a 

common method of scaling the production process.  

The parametric study in Chapter 5 showed that the pickout ratio is strongly 

influenced by the small scale results. The idealised small scale models 

presented here neglect surface non-uniformities. Inclusion of these non-

uniformities is not a trivial task as these features are much smaller than the 

cell itself. They open the exciting possibility of creating third smaller scale of 

the model. 

A small scale representation of a real roll would be an improvement to the 

model. Instead of idealising the surface topography it would be beneficial to 

create it directly from some surface data, such as an image obtained from 

white light interferometry. An example of this is shown in Figure 6.1. This 

would more closely capture the opening area and the depth of a cell allowing 

for a more realistic representation of not only the cell but the land as well. It 

presents challenges in maintaining periodicity as one end of the domain will 

no longer be of the same opening area as the other on a cell by cell basis.  
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Figure 6.1: Example of a numerical geometry created from a white light 
interferometer image of a gravure surface. One cell is modelled and 
then mirrored to maintain periodicity. 
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The problems caused by web-to-roll contact currently prevent gravure 

coating from being used for coating products that require a scratch free 

surface. Such products are becoming more common with the miniaturization 

of electronics towards the micro and nano scales, for example the mass 

production of micro-scale transistors (Tobjörk D. et al (2008), Maenosono et 

al (2003)). Results in Chapter 5 point to gravure rolls with very small cells as 

a promising direction for further work on the question of web-to-roll 

scratching.  

The large scale boundary conditions could be further refined so that they 

more correctly represent coating bead menisci. They do not have significant 

effect on the pickout ratio at normal industrial operating conditions but it was 

shown that as the web-to-roll gap approaches zero they become significant. 

At extremes of speed ratio (i.e. below 0.5 and above 2 with some variation 

from one roll to the next) the web-to-roll gap does approach zero as the 

upstream or downstream meniscus is drawn into the narrow central location 

of the coating bead. 

During the industrial coating operation the rolls experience a build-up of solid 

particulates that change the shape of the cell and other surface features. 

Each roll is affected slightly differently by this build up but in all cases there 

is a reduced cell volume and a corresponding drop in coated film thickness 

over time. These changes limit the time a given gravure roll can operate. 

Measurements of the coat weight during the industrial coating process 

decline over the length of time used and upon reaching a predetermined 

minimum the coating process must be stopped and the roll cleaned. 

Obviously, this is a source of inefficiency. Gravure roll coating is particularly 

susceptible to this due to its topography. The re-circulation that forms in the 

cells means that once material becomes trapped in a cell there is not a clear 

path for escape. It presents a couple of interesting areas for research. 

Firstly, an understanding of the build-up process is required. Secondly, a 

means of preventing or delaying the onset of the build-up is needed. The 

former requires a means of experimental study. The latter can be well 

addressed via a numerical investigation looking specifically for conditions at 
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which the streamlines sweep through the base of the cell. Both situations 

require an understanding of the flow physics at the cell scale.  
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