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Abstract  

The seismically induced interface friction capacity of piled foundations is a 

function of the soil-pile interface friction, the relative stiffness of the pile and 

the soil and the volume changes in the soil adjacent to the pile which affect 

the strength and stiffness of the soil. In order to fully understand this interface 

it is necessary to study the behaviour at the micro level which is possible with 

Discrete Element Modelling. A 2D DEM model was developed that simulated 

a section of an inflexible pile in a coarse grained soil that was subject to 

cyclic shear load. The model had to be representative of typical soil 

behaviour so it was necessary to carry out a sensitivity analysis to investigate 

the effect the micro behaviour had upon the macro properties, properties that 

are typically interpreted from laboratory tests such as triaxial tests. It was 

necessary to develop appropriate boundary conditions that allowed shear to 

be applied and dynamic deformable boundary particles to absorb some of the 

energy. In order to appreciate the stability of the particles, a new fabric 

quantity called the “symmetric geometric deviation index” was developed to 

show the deviation of the contact points from a symmetric, stable distribution.   

The results of the sensitivity analysis showed that the macro stress strain 

response and dilation behaviour with deformable boundary particles is more 

representative of actual behaviour than that with rigid boundaries. Further, 

the symmetric geometric deviation index was constant post peak for 

deformable boundaries, suggesting critical state conditions whereas it 

continued to change with rigid boundaries. 

A study of the impact of size of the element and the boundary conditions led 

to the development of DEM model which could be used to simulate the effect 

of a horizontal cyclic shear load applied to the base of the element. A 

comparison between a soil element with deformable boundaries and a soil 

element adjacent to a pile showed that the pile increased the shear stress in 

the soil which would lead to greater deformation consistent with observations 

in practice. 
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Chapter 1 

1 Introduction  

1.1 Background of the thesis 

Granular materials such as sands are made up of frictional discrete particles 

in contact. Sands in nature are three-dimensional with agglomerate shapes. 

However, as discussed by O’Sullivan (2011), it is useful to consider a two-

dimensional idealized system, where particles are disk shape, in fundamental 

research studies. A two-dimensional granular system is also particularly 

useful as particle motion is restricted to one plane, enabling clear 

visualisation. Many researchers, the most notable (Oda et al., 1985, 

Rothenburg and Bathurst, 1989) have also illustrated that invaluable insight 

can be attained from considering two-dimensional models of idealized sand.  

The static and seismic macro-mechanical behaviours of granular materials 

are greatly dependent on the inter-particle interactions and the geometrical 

distributions of these interactions along with the geometrical distribution of 

the contacts. The inter-particle interaction forces, including normal and shear 

contact forces, are related through the contact model to the inter-particle 

properties (such as particles stiffness and friction). The continuum 

approaches which are commonly applied to study the behaviour of granular 

sand under static and dynamic loads cannot take into account the inter-

particle interactions and the geometrical distributions of these interactions 

along with the geometrical distribution of contacts in their frameworks.  

The discrete element method (DEM) simulations provide an opportunity to 

study in-depth the macro-mechanical behaviour of granular systems from 

inter-particle interactions. The DEM model has been also shown to be 

capable of capturing the macro-mechanical variables of granular system from 

inter-particle properties (e.g. more recentlly Kozicki et al., 2014, Belheine et 

al., 2009), but it has not been fully addressed in the case of two-dimensional 

system. The DEM algorithm was developed for PFC2D software (Itasca, 

2008).  
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The geometrical distribution of contact networks and inter-particle contact 

forces in particulate systems are referred to as the fabric (e.g. Yimsiri and 

Soga, 2010, Rothenburg and Bathurst, 1993, O'Sullivan and Cui, 2009). 

Indeed, fabric is a collective term which is applied to characterize the spatial 

arrangement of granular particles and their interactions. However, 

geometrical data such as contact position, contact orientation, particle 

centroid and particle radius along with the inter-particle interaction forces 

such as normal and shear contact forces at the microscopic level, which are 

required to analysis the fabric evolution quantitatively during loading, are 

difficult to measure experimentally (Luo, 2012, Yimsiri and Soga, 2010, 

Rothenburg and Bathurst, 1989). DEM is able to predict both the spatial 

arrangement of sands and their inter-particle interaction forces at any time 

during loading. These data are then used to compute the fabric of sand 

through a number of fabric quantities such as “average normal contact 

distribution”, “average normal contact force distribution”, “average shear 

contact distribution” and “average coordination number”. Thus, with the help 

of DEM, the relation between macro-mechanical responses and fabric 

quantities of sands can be investigated quantitatively so that studying the 

fabric evolution of granular system during loading increases our insight from 

changes in macro-mechanical behaviour. 

1.2 Problem definition 

The normal approach to studying effects of earthquakes in soil media and 

soil-pile system is to consider them as wave propagation problems in solid 

semi-infinite continuum space. Although sands are particulate materials, they 

are treated as a continuum. This has proved acceptable for geotechnical 

structures provided an adequate factor of safety is applied so that there is no 

risk of failure (e.g. Zordan et al., 2011, Vasheghani-Farahani et al., 2010, 

Spyrakos and Loannidis, 2003, Zhang, 2006, Shamsabadi et al., 2007, Dicleli 

and Erhan, 2010, Huang et al., 2008, Pugasap et al., 2009, Thippeswamy et 

al., 2002, Khodair and Hassiotis, 2005, Karantzikis and Spyrakos, 2000, 

Mylonakis et al., 1997b, Springman et al., 1996, Kim and Laman, 2010, 

Civjan et al., 2007, Arsoy et al., 1999, Novak and Nogami, 1977, Makris and 

Gazetas, 1992, Mylonakis and Gazetas, 1999). However, a continuum 
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approach does not explain the mechanism of inter-particle interactions and 

fabric evolution which can have a significant influence on the macro 

behaviour of soil and soil-pile system, which is still not properly understood 

due to the effects of nonlinear behaviour, possible separation between the 

pile and soil and possible sliding of the pile. Ideally sand should be modelled 

as a particulate material using DEM but the number of particles involved is 

such that this is not possible because of the scale of geotechnical problems. 

DEM can be used to model elements of sand with and without the pile 

element to help understand the effect of fabric on the overall performance of 

a soil mass and soil-pile system qualitatively both during static and dynamic 

loading. This is discussed in this work to show how the contact properties 

between soil particles and fabric evolution influence the mass behaviour. This 

requires a new approach to describing soil at the micro level to show how 

DEM can be used to model soil under different boundary conditions and 

apply that knowledge to mass behaviour.  

To date, most DEM analyses in soil mechanics and granular materials have 

considered quasi-static material response. However, the influence of inter-

particle properties on the macro-mechanical parameters such as elastic 

modulus, Poisson’s ratio and angle of friction in the case of two-dimensional 

cannot be fully addressed.  

The use of DEM for dynamic problems in geotechnical earthquake 

engineering is restricted to a small number of published works (O’Donovan et 

al., 2012, Marketos and O’Sullivan, 2013, Zamani and El Shamy, 2011, El 

Shamy and Zamani, 2012, Zamani and El Shamy, 2012, El Shamy and 

Denissen, 2010, Hazzard et al., 1998, Toomey and Bean, 2000). However, 

the fabric evolution during an earthquake is not addressed in these works. As 

the particulate pack in the works of O’Donovan et al. (2012), Marketos and 

O’Sullivan, (2013), Hazzard et al. (1998) and Toomey and Bean, (2000) was 

homogeneous, hexagonal packing, the contact force network was also 

effectively homogeneous. Therefore, no hypotheses can be developed on the 

effect of fabric on the seismic macro-mechanical behaviour of sand as the 

contact networks in sands are neither hexagonal nor homogeneous. For the 

rest, the vertical gravitational acceleration increased to 25 to reduce the 
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dimensions of the model and time of simulation significantly. This leads to 

increase the contact forces and the overlap between them significantly 

increases during the process of particle generation. Since, the fabric is a 

microscopic term, changes at particle levels such as inter-particle contact 

forces leads to change the fabric of particulate system. Thus, studying the 

seismic fabric evolution by this approach cannot be accurate. This research 

will describe the static and seismic modelling of soils and the results 

obtained.    

1.3 Research objectives 

To better understanding the effect of inter-particle properties such as normal 

and shear contact stiffness and inter-particle coefficient friction on the macro- 

mechanical behaviour of idealized two-dimensional sands such as elastic 

modulus, Poisson’s ratio and angle of friction using DEM, a sensitivity 

analysis is required to be performed. The macro-mechanical parameters of 

sand are generally obtained from triaxial tests but the number of tests and 

range of parameters to be assessed are limited. Further, the results are 

affected by the particle shape as well as their distribution. DEM biaxial tests 

allow the effect of particle size distribution to be studied in more detail giving 

greater scope to vary the porosity and inter particle properties thus 

developing an understanding to the impact micro mechanical behaviour has 

upon macro behaviour. This also establishes a series of relationships 

between micro parameters and macro parameters, which have neither been 

fully understood nor taken into account in continuum mechanics. From this, 

the proper inter-particle properties can be extracted for further works. The 

following objectives are required for this aim to be achieved: 

1. Sourcing the inter-particle properties of single quartz sand particle from 

literature (see Appendix 2).  

2. DEM modelling of a biaxial test using PFC2D, 

2.1. The assumptions and limitations of PFC2D, 

2.2. Comparing the methods of particle generations, 

2.3. Applying confining pressure, 

2.4. Applying deviatoric stress, 
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2.4.1. Boundary conditions, 

2.4.1.1. Rigid boundary, 

2.4.1.2. Deformable boundary particles, 

2.5. The sensitivity of the macro-mechanical behaviour of sand to the 

normal contact stiffness, 

2.6. The sensitivity of the macro-mechanical behaviour of sand to the 

shear contact stiffness, 

2.7. The sensitivity of the macro-mechanical behaviour of sand to the 

inter-particle coefficient friction, 

2.8. The sensitivity of the macro-mechanical behaviour of sand to the 

confining pressure, 

2.9. The sensitivity of the macro-mechanical behaviour of sand to rigid 

boundaries, 

2.10. The sensitivity of the macro-mechanical behaviour of sand to 

deformable boundary particles, 

To use PFC2D to simulate biaxial tests, a suitable code has to be written. 

The programming language used for this software is Fish. 44 DEM biaxial 

tests were executed. 4800 lines of code were written, including 1500 lines 

of this code were related to boundary deformable particles.  

By studying the fabric evolution of sand media during the propagation of 

the shear component of an earthquake, a better understanding of the 

fundamental behaviour of sand was obtained. The following objectives 

are required for this aim as follows: 

1. DEM modelling of two-dimensional earthquake using PFC2D, 

1.2. Generating the particles using the radius expansion approach, 

1.3. Assigning the proper inter-particle properties obtained from the 

first aim,  

1.4. Applying dynamic deformable boundaries, 

1.4.1. Comparing the effects of rigid boundaries and dynamic 

deformable boundaries on the overall shear wave propagation 

in sands, 

1.4.2. Verification of the dynamic deformable boundaries, 

1.5. Applying shear seismic force to the base particles, 
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1.5.1. Simulating shear wave propagation through the sand,  

2. Comparing the shear wave velocity against different earthquake 

frequencies,  

3. The effect of different sample ratios on the average shear particles 

velocity,  

4. The sensitivity of the sand fabric and seismic macro-mechanical 

behaviour to the different sample ratio, 

5. The sensitivity of the sand fabric and seismic macro-mechanical 

behaviour to different earthquake frequencies, 

6. The sensitivity of the sand fabric and seismic macro-mechanical 

behaviour to different earthquake amplitudes, 

7. The sensitivity of the sand fabric and seismic macro-mechanical 

behaviour to different normal contact stiffnesses, 

8. The sensitivity of the sand fabric and seismic macro-mechanical 

behaviour to different normal inter-particle friction, 

9. The sensitivity of the sand fabric and seismic macro-mechanical 

behaviour to different confining pressures. 

Overall, 30 DEM tests were executed. 1500 lines of code were written for 

creating dynamic deformable boundary particles.  

By studying the fabric evolution of sand media near the pile element during 

the propagation of the shear component of earthquake, a better 

understanding of the fundamental effect of pile on the seismic macro-

mechanical behaviour of sand can be attained. The following objective is 

required for this aim as follows: 

1. DEM modelling of two-dimensional soil-pile system subjected to 

earthquake using PFC2D, 

1.2. Generating the particles using radius expansion approach, 

1.3. Applying dynamic deformable boundary, 

1.4. Defining rigid pile, 

1.5. Applying shear seismic force to the base particles, 

2. Studying the fabric evolution and seismic macro-mechanical behaviour of 

sand 
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A development in fabric quantity which is called “average symmetric 

geometric deviation index” is also introduced in this work. 

1.4 Thesis structure 

The background of the thesis, problem definition, research objectives and 

thesis structure are presented in chapter 1.  

Chapter 2 covers the concept, limitation and assumptions of DEM and 

reviews in homogenization method, which is needed to make a bridge 

between inter-particle contact force and particle displacement and average 

stress and strain tensor. 

Chapter 3 presents a review of previous DEM research on seismic wave 

propagation and soil-structure interaction and the boundary conditions which 

are required to define the deformable boundary particles for chapter 6 are 

discussed. The fabric quantities required to study the sand media are 

discussed in this chapter. 

Chapter 4 presents the development of a sensitivity analysis using PFC2D. An 

equation based on contact mechanics principle is provided to compute the 

normal contact stiffness, 𝑘𝑛,  for disk particles. An algorithm is proposed to 

develop a biaxial test simulation. Two different boundary conditions were 

applied, which are rigid wall and deformable boundaries, to maintain 

confining pressure during deviatoric loading. The algorithm is based on 

directed graph theory to update the deformable boundary particles at each 

time step. A new fabric quantity is also developed to measure the 

configuration of contact points of each particle from geometry symmetric 

deviation. 

In chapter 5, the results of sensitivity analysis are shown. Based on the 

results, the combination of inter-particle properties such as (𝐾𝑛, 𝐾𝑠 𝑎𝑛𝑑 𝜇) 

which  provide reasonable values of macro-mechanical quantities such as 

elastic modulus, Poisson’s ratio and angle of friction of dense and medium 

sand were obtained. These values were used to simulate the dense sand 

with DEM. 
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In chapter 6, the assumptions and limitations of dynamic deformable 

boundary particles which should be applied for seismic problems are 

discussed. The effect of different earthquake frequencies on the shear wave 

velocities and fabric evolution and consequently the seismic macro-

mechanical behaviour are also investigated. The effect of different 

earthquake amplitudes and various confining pressures, inter-particle 

coefficient friction, normal contact stiffnesses on the fabric evolution and 

consequently the seismic macro-mechanical behaviour are also investigated.  

The conclusion and recommendations are presented in chapter 7.  
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Chapter 2 

2 The analysis of granular sand media 

2.1 The Discrete Element Method 

DEM is an advanced numerical algorithm, which is able to dynamically 

simulate and track the micro-macro scale behaviour of granular materials 

subject to quasi-static and dynamic loads. The central explicit finite difference 

scheme is used in this code to solve the dynamic equilibrium of each particle 

at each time step. The stability of the solution is dependent on the magnitude 

of the time step. That is, the value of this time step should be small enough 

so that the effects of incremental contact force and displacement (i.e. 

disturbance) cannot be transmitted through the particle during each time 

step. The framework of this method is based on both motion equations and 

contact mechanics. Motion equations are used to determine the location of 

each individual particle at every time step and contact mechanics used to 

determine the inter particle force and displacement. This algorithm must be 

applied through the DEM computer codes such as BALL, TRUBAL and 

Particle flow code 2D (PFC2D). BALL and TRUBAL are early versions of DEM 

computer codes and are rarely employed by researchers for simulating 

particulate systems. It may be because the instinct functions provided in 

these codes are not comprehensive enough in comparison with those 

provided by PFC2D (Itasca, 2008). In addition, the special language 

programming, called FISH, is embedded into PFC2D to make this code more 

useful as it allows a user to provide any subroutine. Thus, this computer code 

is used in this research. The main advantage of this method is the generation 

of abundant information at particle scale, which can be used to comprehend 

the physics of granular systems. This method is proven to be a 

comprehensive method to study the sand medium (e.g. Iwashita and Oda, 

1998, Oda and Iwashita, 1999, Thornton and Zhang, 2003, Sitharam, 2003, 

Rothenburg and Kruyt, 2004, Potyondy and Cundall, 2004, O'Sullivan et al., 

2003, O'Sullivan, 2011). More in depth studies of particulate behaviour have 

taken place in chemical engineering where particulate performance is critical 
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in process engineering (e.g. Antony, 2007, Thornton and Antony, 2000, 

Antony and Kruyt, 2009, Tardos et al., 2003). As with all numerical methods, 

this method has its assumptions and limitations. The assumptions and 

limitations of this method are presented in section 2.1. The limitation of DEM 

in dealing with seismic analysis of granular systems is presented in section 

2.2. Section 2.3 presents the application of DEM in soil mechanics and soil 

dynamics. A DEM mechanical calculation cycle is illustrated in section 2.4. 

The interpretation of the DEM results into average continuum stress and 

strain tensors is discussed in section 2.5. The conclusion is presented in 

section 2.6. 

2.1.1 The limitations and assumptions of DEM 

The main limitations and assumptions of DEM are as follows: 

2.1.1.1 Computer speed-dependent 

Since DEM is computer speed-dependent, it has an explicit limitation to 

generate soil particles. For example, in a two dimensional study of the 

particulate regions adjacent to a pile foundation subjected to seismically 

movement of bedrock, a large number of sand particles should be generated 

to transfer bedrock movement, which is in 100 meters below the surface, to 

the particulate regions adjacent to the pile foundation. The largest computers 

yet built would not be able to handle these number of particles because the 

number of equations to be solved in each time step. Therefore, it is 

unrealistic to solve them in a reasonable time frame. For this reason, the 

application of DEM simulations in soil mechanics is restricted to small 

elements of soil medium (e.g. Yang et al., 2014, Gao et al., 2013).  

2.1.1.2 Rigid particle with soft contact 

 In reality, single sand particle deforms when it is subjected to contact forces.  

Since the rigidity of a sand particle is relatively high, the change in particle 

geometry is assumed to be restricted to the contact area. Therefore, a 

contact model is required to link the stress and strain for the contact area. 

Additionally, calculations are required to compute the updated geometry of 

the particle including central mass and contact geometry. Thus, the time of 

simulations increases significantly. Instead, in DEM, it is assumed that 
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particles are rigid with soft contact points and contact overlap is considered 

instead of contact deformation (Cundall and Strack, 1979). The amount of 

this overlap is dictated by a contact model. By using this assumption, the 

degrees of freedom of a particle are restricted to only contact points. The 

calculation volume decreases dramatically and force-displacement contact 

model is used instead of stress-strain contact model. Moreover, the 

geometrical characteristics and mass properties of particles are calculated in 

a straightforward analytical manner. However, the assumption of rigid 

particles with soft contact is acceptable if the contact deformations represent 

the particle deformations. This condition is more applicable for those particles 

with disk and spherical geometry undergoing elastic deformation (Johnson, 

1985).  

2.1.1.3 Particle geometry 

Sand particles have complex shapes including spheres, ellipsoids, cylinders, 

tubes and others (e.g. Bardet, 1998, Lambe and Whitman, 1969). However, 

only round geometrical particle shapes including disks and spheres are 

considered in DEM. The main reason is that the calculations related to these 

types of geometrical shapes are more straightforward reducing the 

processing time. However, in some DEM computer codes such as PFC2D 

and PFC3D it is possible to create agglomerate particles (or clumped particle) 

combining either disks or spheres particles (Cundall and Strack, 2008, 

Potyondy and Cundall, 2004).  

2.1.1.4 Particle asperity  

In DEM, particle friction and particle roughness are considered as two 

different issues. The friction term resists against particle sliding due to 

applied shear load. The particle asperity resists against particle rolling. 

However, the conventional DEM algorithm ignores the effect of particle 

roughness in the angular motion equation. That is, particles will be free to roll 

over together if the conventional DEM algorithm is used. (Iwashita and Oda, 

1998, Belheine et al., 2009) by using DEM simulations showed that the 

rolling resistance play a minor role on the micro-deformation mechanism 

controlling the dilatancy and strength of granular materials. (O'Sullivan, 2012) 

showed experimentally that if the size of particle is bigger than 0.1 [mm], the 
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size of particle asperity will be negligible in comparison to the particle inertia. 

Therefore, the surface roughness will have a minor effect on the material 

behaviour in comparison with the particle inertia. However, for those particles 

whose sizes are less than 0.1 [mm] the rolling resistance component should 

be considered in the PFC2D simulation by adding a C++
 subroutine into the 

target Fish code. This results in increasing the time of simulation because at 

the start of each mechanical cycle, the PFC compiler should compile this 

subroutine function for all contact points.  

2.1.1.5 Particle crush 

Sand particles deform and crush under compressive load in triaxial and 

odometer tests (e.g. Nakata et al., 1998, Nakata et al., 2001c, Nakata et al., 

2001a, Nakata et al., 2001b, Fukumoto, 1992). The failure takes place when 

the tensile stress along the line connecting the top and bottom of single a 

particle shown in figure 2-1, which is subjected to the compression load 

diametrically, reaches  the tensile strength of that particle which is defined 

𝜎𝑡 =
𝐹𝑓

𝑑2
 (Lee, 1992).  

where 𝐹𝑓 is the failure load and d is particle diameter. At this stage, the 

particle being considered split into small rigid portions. (Bolton et al., 2008) 

using the DEM simulations on the agglomerate particles assemblies of quartz 

sand (a clump of spherical particles are bonded with together) showed that 

the majority of agglomerate particles will crush and split into the single rigid 

spherical particles at the peak stress. This fact is ignored in the DEM code; 

that is particles do not split. 
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Figure 2-1 Particle tensile strength test 

 

2.1.1.6 Strength of single disk and spherical particle 

As mentioned above, an agglomerate particle is defined as a group of disks 

(in 2D) or spherical (in 3D) which are bonded together at their contact points 

to form a single particle (see figure 2-2). The strength of an agglomerate 

particle is based on its tensile strength while the strength of each single rigid 

particle is based on the shear strength at the contact zone which can be 

computed from Tresca and van Mises criterion (Thornton and Ning, 1998, 

O'Sullivan, 2011). The limiting contact pressure of each material is a material 

property-dependent.  

𝑑 
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Figure 2-2 Real geometry of particle and approximated geometry of agglomerate particle in 
DEM 

 

2.1.2 The main of limitation of DEM in dealing with seismic 

analysis of granular systems  

One of the important seismic features of soil is to find its fundamental (or 

resonance) frequencies. This helps us to find the resonance frequencies of 

the soil deposit. To find the fundamental frequencies of a system, the free 

vibration equation of the system must be solved in numerical manner (see 

below equation). 

𝑀�̈� + 𝐶�̇� + 𝐾𝑥 = 0                                                                                                                2.1 

where 𝑀,𝐶, 𝐾 and 𝑥 is mass, damping and stiffness matrices of each particle 

and contact deformation, respectively. This equation simply shows that the 

free vibration of a dynamic system at each time step is dependent on 

considering the response of whole system into three matrices 

simultaneously. The vibration modes are then obtained by applying transfer 

functions. However, these matrices cannot be directly formed by DEM, since 

DEM only obtains the response of each particle at each time step, which is 

executed by computing resultant forces on particles and applying Newton’s 

second law to each particle to capture the deformation of the system at each 
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time step. Therefore, the DEM model cannot a priori give information on 

natural frequencies of granular system. However, DEM model can provide 

each component of Eq. 2.1 at each time step such that at the end of each 

mechanical time step this equation can be solved. For more details readers 

can be referred to (Marketos and O’Sullivan, 2013) 

2.1.3 Application of Discrete Modelling in soil mechanics  

Hertz (1882) established a link between contact normal pressure and contact 

deformation of two contacting spheres. (Dantu, 1957) and (Schneebeli, 1956) 

by idealizing real soil as assemblies of rigid rod found some striking 

similarities between the macro-mechanical stress and strain responses of 

these idealized assembly and those obtained from real soils. (Duffy and 

Mindlin, 1956), (Deresiewicz, 1958, Deresiewicz, 1957), and (Thurston and 

Deresiewicz, 1958) studied the responses of soil idealized by rigid spheres. 

(Biarez, 1962) by employing glass beads and duralumium rods estimated the 

elastic and plastic behaviour of soils. These observations were applied to 

study the practical problems in soil mechanics. These pioneering works were 

later pursued by photoelastic studies (e.g. Drescher, 1976, Drescher and De 

Josselin de Jong, 1972) to visualize stresses within particulate systems. 

However, by increasing the speed of computers in early of 1970’s, the first 

discrete element method code, called BALL, was developed by (Cundall, 

1971) for simulating progressive large scale movements in blocky rock 

systems. (Cundall, 1978) and Cundall and Strack (1979) used this method in 

BALL software for modelling sand. The results were found to correspond well 

with experimental work of (Jong and Verruijt, 1969) and Dantu (1957) and 

(Wakabayashi, 1957). However, limited memory and storage capacity of the 

computers at the time meant that the number of particles was limited. For 

instance, the number of particles used by (Cundall and Strack, 1979) to 

simulate sand was 85. However, the significant increase in computing speed 

and storage capacity of computers in the last decade has resulted in 

developing DEM computer codes for simulating granular systems. Among 

them, Particle flow code 2D (PFC2D) which is one the powerful DEM code, 

has been used by many researchers to study sand behaviour. Owing to 

intrinsic Fish functions provided in this code, the speed of computations 
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increases considerably, and allows users to apply the desired subroutines. 

For example, (Cheung et al., 2013, O'Sullivan and Cui, 2009, Belheine et al., 

2009, Yimsiri and Soga, 2010, Sitharam and Vinod, 2010, O'Sullivan, 2011, 

Soroush and Ferdowsi, 2011, Liu et al., 2012, Fan et al., 2013, O'Sullivan et 

al., 2008, Tannant and Wang, 2007, Momeni et al., 2012) used PFC2D to 

study the microscopic behaviour of sand subjected to monotonic and cyclic 

loads. The results show that PFC2D is an appropriate code to examine the 

microscopic behaviour of sand media. (Jensen et al., 1999, Zeghal et al., 

2002) conducted a series of 2D DEM simulations to study the behaviour of 

sand-structure interface under monotonic load. In this work, soil particles 

were enclosed between four rigid walls with only the bottom wall moving 

horizontally. The results show that the displacements of those particles in 

contact with rigid wall are different from other particles.  Also the different 

types of wall roughness have a significant effect on the particles 

displacements in contact with it. (Zamani and El Shamy, 2012, El Shamy and 

Zamani, 2012) used PFC2D to analyse the seismic response of soil–

foundation–structure systems. (Zamani and El Shamy, 2011, Sadd et al., 

2000) used PFC2D to analyse one dimensional wave propagation in dry 

granular soils. The results show that DEM is able to derive the seismic 

properties of soils such as shear wave velocity, the degradation of shear 

modulus and hysteretic damping curve. Additionally, the conducted PFC 

simulations are able to capture a number of fundamental characteristics of 

wave propagation in soil media such as motion amplification and occurrence 

of resonance. 

2.1.4 The DEM calculation process  

The process of DEM calculation is schematically shown in figure 2-3.  

 After generating the initial configuration of an assembly (see figure 2-

3a), at the start of a time step, the contact detection process is 

implemented to detect contacting particles and location of each 

particle (see figure 2-3b).  

 The incremental contact forces, that is the contact normal and shear 

forces, of each contact point due to the incremental contact 
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deformation (i.e. overlap) resulted from boundary excitation is then 

computed by a contact model ΔF = 𝐾(ΔU) (see figure 2-3c). 

 If contact viscous dashpots are applied for simulation at this stage 

some portions of kinetic energy obtained from incremental normal and 

tangential contact forces is dampened. If contact viscous dashpots are 

not applied to the simulation the incremental normal and shear force 

are not changed.  

 The incremental resultant forces and moment in Cartesian directions 

due to these incremental forces obtained at current time step are then 

computed (see figure 2-3d). From these incremental forces and 

moment and by applying Newton's second motion law the incremental 

accelerations in Cartesian directions (i.e. x and y) and angular 

acceleration are computed.   

 If local viscous damping is applied to this simulation, this term will be 

added to the unbalanced forces and moment to absorb some portions 

of kinetic energy of the particle. 

 The incremental normal and tangential force at each contact at the 

current time step are added to the total normal and tangential contact 

force at each contact since contact has been established. Then, the 

updated total contact shear force is compared to the Coulomb sliding 

friction criterion to check whether the sliding has occurred. If it has 

taken place, all data related to this contact point including geometry 

and contact forces is removed and the contact is broken.  

 Using a central explicit finite difference integration from acceleration, 

particle velocity is extracted and by central explicit finite difference 

integration from this velocity, particle displacement including 

translation and rotation is obtained (see figure 2-3e). 

 From this new displacement, the updated position of each particle can 

be obtained at the end of the time step. Figure 2-3f shows 

schematically the new configuration of the assembly.    

 This mechanical cycle is repeated until the code reaches to the 

termination criterion. Therefore, DEM has time-marching algorithm to 

solve the motion equation. 
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If local damping is applied, the incremental contact forces are not damped. It 

is because this type of damping only influences the incremental resultant 

forces. Thus, if the applied strain rate on the DEM model is relatively high, 

the contact force will be large. Therefore, the use of contact viscous damping 

seems to be a priority to absorb some contact force at each time step.  

 

 

Figure 2-3 The calculation process in DEM  
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2.1.4.1 Contacts  

In the previous section an overview of DEM calculation was discussed. In this 

section, those parts of contact mechanics which are related to DEM 

calculations such as contact detection, contact kinematics, contact kinetics 

and contact models are discussed.  

2.1.4.1.1 Contact detection mechanism  

Before describing the contact detection mechanism, some notations are 

described. A contact between pairs of disk particles, a and b, takes place if 

the following criterion is met (see figure 2.4): 

𝑑 < 𝑅𝑎 + 𝑅𝑏     where 𝑑 = |𝑥𝑖
𝑎 − 𝑥𝑖

𝑏|                                                                               2.2  

in which xi
aand xi

b are the coordinates of particles centroid. Raand Rb are the 

radius of particles a and b, respectively. 𝑥𝑖
𝑐and 𝑛𝑖 are the vector position of 

contact and normal unit vector obtained by the following equation: 

𝑥𝑖
𝑐 = 𝑥𝑖

𝑎 + (𝑅𝑎 −
1

2
𝑈𝑛) 𝑛𝑖;     where     𝑛𝑖 =

𝑥𝑖
𝑎 − 𝑥𝑖

𝑏

𝑑
                             𝑖 = 1,2        2.3 

𝑈𝑛 is contact deformation or overlap and obtained from: 

𝑈𝑛 = 𝑅𝑎 + 𝑅𝑏 − 𝑑                                                                                                                 2.4 

For complicated particle shapes the computation of overlap becomes more 

complicated (e.g. (Ting et al., 1993). 

 

Figure 2-4 Notation used to characterize particle-particle contact 
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The contact detection process in particulate systems is one of the most time-

consuming and complicated parts in DEM. It will be more time-consuming 

and complex the more particles are being used. One of the robust and 

efficient contact detection algorithms, which are compatible for explicit nature 

of mechanical calculations was proposed by Cundall (1988). This technique 

is utilized in PFC2D. There are five steps to this technique: 

 Data element: each entity such as a particle, a wall or a contact point 

is represented by a data element (i.e. they are converted into PFC2D 

language). Each data element contains geometric and mechanical 

data (e.g. particle size, contact stiffness, particle and contact 

coordinate). 

 Data structure: all data elements are then linked in a list to data 

structures by memory addresses. The advantage of using linked-list 

scheme is that it takes very little computer time to maintain.  

 Grid the space of granular system: The next step is to divide the 

space containing the particles and walls into rectangular two-

dimensional cells (see figure 2-5). Then each entity and wall is 

mapped into a cell or cells. Each cell stores the addresses of all 

entities that map into it in linked-list form. It is difficult to provide an 

appropriate relationship for optimum cell size. However, the optimum 

cell density is ideally one cell per entity. 

 Identification of neighbours: Once all entities have been mapped 

into the cell space, the adjacent entities for a single entity are 

identified. Since the data of each entity is in the linked-list of cells, it is 

easy to detect the neighbours of each entity. 

 Contact detection: when neighbours of each entity are recognized, 

Eq. 2.2 is applied to check whether the pairs of entity are in contact 

(and touch) or not. In addition to Eq. 2.2, a heuristic algorithm is 

utilized in PFC2D to find those pairs of entities that may come in 

contact in a future time step, called potential contact, during the 

course of a simulation. For this reason, if incremental displacement of 

each entity becomes less than a pre-set tolerance value, the contact 

between two entities is considered as a potential contact. If two 
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entities are found to be separated by a gap that is equal to or less than 

a pre-set tolerance value, a potential contact is created. If an existing 

contact acquires a separation that is greater than a pre-set tolerance 

value, the contact is deleted. 

It is noted that the necessary computation time to perform the map and 

search functions for each entity depends on the size and shape of the entity. 

The overall computation time for neighbour detection is directly proportional 

to the number of entities. 

 

 

 

Figure 2-5 Uniform grid for contact detection between pairs of particles Contact kinematics 

 

When two particles a and b come into contact at c (see figure 2-4) due to 

boundary excitation, the kinematics at this contact such as relative 

displacement (or overlap) is determined from the relative displacement of 

pairs of particles. The explicit central finite difference method of relative 

displacement at the contact point at time step ∆𝑡 is as follows: 
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(Δ𝑛)𝑡+∆𝑡
2

= [(�̇�𝑖
𝑏 − �̇�𝑖

𝑎)
𝑡+
∆𝑡
2

] 𝑛𝑖
𝑐Δt                                                        𝑖 = 1,2 

                 

2.5 

(Δs)𝑡+∆𝑡
2

= {[(�̇�𝑖
𝑏 − �̇�𝑖

𝑎)
𝑡+

∆𝑡
2

] 𝑡𝑖
𝑐 − (�̇�𝑎|𝑙𝑐

𝑎| + �̇�𝑏𝑙𝑐
𝑏)
𝑡+

∆𝑡
2

} ∆𝑡       𝑖 = 1,2 

 

where �̇�𝑎, �̇�𝑏 , �̇�𝑎 and �̇�𝑏 are  translational and rotational particle velocities of 

particle a and b, respectively. 𝑙𝑐
𝑎 𝑎𝑛𝑑 𝑙𝑐

𝑏 are the vectors connecting the centre 

of masses of two particles to contact point “c”. 𝑛𝑖
𝑐 and 𝑡𝑖

𝑐 are the 𝑖th vector of 

normal and tangential components’ contact plane at contact point of two 

particles; 𝛥𝑛 and 𝛥𝑠 are the relative normal and tangential displacements of 

two particles over the time step, respectively. The kinematics of the contact is 

updated at the beginning of each cycle by applying Eq. 2.3. 

2.1.4.1.2 Contact kinetics 

The relative displacement at contact, c, leads to the contact force and 

moment between the particles, 𝐹i and 𝑀i. However, the contact deformation 

between pairs of disk particles is restricted to an infinitesimal area (contact 

point) in DEM. That is, the contact moment cannot transmit significant 

moment due to the small contact area (Bardet, 1998, O'Sullivan, 2011). 

Therefore, contact kinetic energy is reduced to contact force. The contact 

force is resolved into normal, 𝐹𝑖
𝑛, and shear, 𝐹𝑖

𝑠, components with respect to 

the contact plane as: 

𝐹𝑖 = 𝐹𝑖
𝑛 + 𝐹𝑖

𝑠                                                                                                                            2.6 

The magnitude of the normal contact force is calculated by 

∆𝐹𝑡
𝑛 = 𝑘𝑛(∆𝑛)𝑡           𝑖. 𝑒.   (𝐹𝑡𝑜𝑡𝑎𝑙𝑙

𝑛 )𝑡 =  (𝐹𝑡𝑜𝑡𝑎𝑙𝑙
𝑛 )𝑡−1 + (∆𝐹𝑛)𝑡                                  2.7  

in which 𝑘𝑛 is the normal stiffness [force/displacement] at the contact at 

current time step and relates incremental normal contact displacement and 

force. The value of this parameter will be determined by the contact model in 

further section. The magnitude of the shear contact force is calculated by 

∆𝐹𝑡
𝑠 = 𝑘𝑠(∆𝑠)𝑡           𝑖. 𝑒.   (𝐹𝑡𝑜𝑡𝑎𝑙𝑙

𝑠 )𝑡 =  (𝐹𝑡𝑜𝑡𝑎𝑙𝑙
𝑠 )𝑡−1 + (∆𝐹𝑠)𝑡 < 𝜇(𝐹𝑡𝑜𝑡𝑎𝑙𝑙

𝑛 )𝑡           2.8 
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in which 𝑘𝑠 is the shear stiffness [force/displacement] at the contact at current 

time step and relates incremental shear contact displacement and force. The 

value of this parameter will be determined by the contact model in further 

section. 𝜇 is the inter-particle friction coefficient, assigned by user. If contact 

viscous damping is applied, a new term will be add to each component of Eq. 

2.7 and 2.8. 

∆𝐹𝑡
𝑛 = 𝑘𝑛(∆𝑛)𝑡 + 𝐷𝑛     𝑎𝑛𝑑      ∆𝐹𝑡

𝑠 = 𝑘𝑠(∆𝑠)𝑡 + 𝐷𝑠                                                         

𝐷𝑖 = 𝑐𝑖|v𝑖|:   𝑖 = 𝑛, 𝑠       𝑎𝑛𝑑     𝑐𝑛 =  𝛽𝑘𝑛  𝑐𝑠 =  𝛽𝑘𝑠                                                2.10      

in which 𝑐𝑛,  𝑐𝑠, 𝛽, 𝑣𝑛, v𝑠 and 𝐷𝑛, 𝐷𝑠 are contact normal and shear damping 

coefficients, contact viscous constant, normal and shear contact velocities, 

normal and shear contact damping forces. 

At the end of each time step the total tangential contact force at each active 

contact point is compared to Coulomb sliding friction criterion. If 𝐹𝑡𝑜𝑡𝑎𝑙𝑙
𝑠 >

 𝜇(𝐹𝑡𝑜𝑡𝑎𝑙𝑙
𝑛 )𝑡 the contact is broken, but the two particles will be checked at a 

future time step by the contact detection mechanism for potential contact. If 

𝐹𝑡𝑜𝑡𝑎𝑙𝑙
𝑠 <  𝜇(𝐹𝑡𝑜𝑡𝑎𝑙𝑙

𝑛 )𝑡, the two particles will be still in contact although the 

position of contact point may has been changed. At the end of each time step 

the resultant or out-of-balanced force and moment for each particle due to its 

contact points are computed. If local damping is required for simulation, a 

new term, 𝐹𝑖
𝑑 , is added to both resultant force and moment by following 

equation: 

(𝐹𝑖)𝑡
𝐾 = ∑ [(Fn)t

nk
n=1 n𝑖

c + (Fs)tt𝑖
c] + 𝐹𝑖

𝑑                   𝑖 = 1,2                            2.11 

(𝑀)𝑡
𝐾 = |𝑙𝐾| ∑ [

nk
n=1 (𝐹𝑠)𝑡] + 𝐹𝑖

𝑑                               𝑖 = 1,2  

where nk is number of contact points per particle. 𝐹𝑖
𝑑 is obtained as: 

𝐹𝑖
𝑑 = −𝛼|ℱ𝑖|𝑠𝑖𝑔𝑛 (v𝑖)                                                                                                        2.12 

where 𝐹𝑖
𝑑 , 𝛼, |ℱ𝑖| and 𝑠𝑖𝑔𝑛 (v𝑖) are local damping force, damping constant, 

unbalanced force on the particle 𝑖th and particle velocity, respectively.  
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2.1.4.1.3 Contact models 

In order to compute the contact forces including normal and shear, the 

normal and tangential contact stiffnesses are required. These parameters are 

determined from contact normal and tangential models, which show how two 

particles interact together in normal and tangential directions. In general, the 

framework for these relationships is 𝐾(𝑃, 𝛿) =
𝜕𝑃

𝜕𝛿
. 

in which P is the component of contact force (normal or tangential) and δ is 

its corresponding normal or tangential displacement. Various types of contact 

models such as linear elastic, non-linear elastic Hertz and Elasto-plastic are 

proposed (e.g. Misra, 1995, Thornton and Ning, 1998, Cundall and Strack, 

1979, Johnson, 1985). However, only elastic models have been used by 

DEM analysts in soil mechanics disciplines. It may be because the 

compression stiffness of soil particles is so much greater than the mass 

stiffness that particles cannot reach to the plastic zone. PFC2D uses these 

models. Further assumptions are considered to produce the constitutive 

contact models:  

 The surface of a particle is smooth, 

 There is no friction between the particles 

 There is no adhesion at the contact  

 There is no viscosity 

For more complicated constitutive models readers can refer to (Johnson, 

1985).  

2.1.4.1.4 The motion relationships 

After obtaining the resultant forces and moments of each particle at each 

time step from Eq. 2.11 and adding the gravitational force and external loads 

(e.g. for those deformable boundary particles), Newton`s second law and the 

conservation law of angular momentum is applied to each particle to obtain 

the particle acceleration: 

𝑚(�̈�𝑖)𝑡 = (𝐹𝑖)𝑡   𝑖 = 1,2  2.13 

𝐼(�̈�)
𝑡
= (𝑀)𝑡                  
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where 𝑚 and 𝐼 are the mass and inertial moment of the particle respectively, 

(𝐹𝑖)𝑡 and (𝑀)𝑡 are the total resultant forces and moment at the central mass 

of each particle at time t. Based on the principles of DEM, the linear 

acceleration (�̈�) and angular acceleration (�̈�) of the particle during the time 

step 𝑡 −
∆𝑡

2
  to 𝑡 +

∆𝑡

2
 are constant. By using the formulation of central explicit 

finite difference method, the linear velocities and angular velocities of a 

particle can be obtained from the following equation:    

(�̇�𝑖)𝑡+∆𝑡
2

= (�̇�𝑖)𝑡−∆𝑡
2

+
(𝐹𝑖)𝑡

𝑚
∆𝑡                               𝑖 = 1,2  

                               

2.14 

(�̇�)
𝑡+

∆𝑡
2

= (�̇�)
𝑡−

∆𝑡
2

+
(𝑀)𝑡

𝐼
∆𝑡                                 𝑖 = 1,2  

The coordinate of central mass of particle, (𝑥𝑖) and the rotation (𝜃) at 𝑡 + ∆𝑡 

is obtained from the following equation: 

(𝑥𝑖)𝑡+∆𝑡 = (𝑥𝑖)𝑡 + [(�̇�𝑖)𝑡+∆𝑡
2

] ∆𝑡                         𝑖 = 1,2 
                                            

2.15 

(𝜃)𝑡+∆𝑡 = (𝜃)𝑡 + [(�̇�)𝑡+∆𝑡
2

] ∆𝑡                                 𝑖 = 1,2                    

These equations are updated at each time step by the PFC compiler to 

obtain the new positions of particles.  

2.2 Homogenization method 

The stress and strain tensors of a representative volume element (RVE) of a 

particulate assembly are generally measured by averaging procedures from 

inter-particle forces and displacements calculated from DEM. The methods to 

translate inter-particle forces and displacements into continuum mechanics 

stress and strain tensors are called homogenization techniques (or often 

called volume averaging methods). The transition from micro-scale to the 

macro-scale is associated with multi-scale modelling. Thus, homogenization 

technique is associated with multi-scale modelling. Applying this method to 

compute stress and strain tensors of a representative volume element of a 
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particulate assembly subjected to loading increases our understanding from 

the effect inter-particle force and displacement and their changing on the 

macro-mechanical behaviour of RVE. However, the homogenization method 

is dependent on the flow regime of the granular system being simulated (i.e. 

quasi-static regime, transient regime and rapid flow regime) (O'Sullivan, 

2011). Based on these flow regimes, three different averaging methods are 

used: volume averaging, time-volume averaging and weighted time-volume 

averaging (Zhu and Yu, 2002). The first one, which is appropriate for quasi-

static regimes and the other two are appropriate for transient and rapid flow 

regimes.  

2.2.1 Micro-mechanical stress tensor 

A stress tensor is one of the continuum variables, which do not exist at each 

contact point of discrete media. Instead, a contact force over an infinitesimal 

point, (i.e. contact point) is obtained from DEM. Calculating the average 

micro-mechanical stress tensor from a RVE region within a particulate 

assembly can be undertaken in three ways: 

 Average macro stress tensor derived from boundary forces 

 Average stress tensor derived from inter-particle forces 

 

These methods will be compared in this section to detect their positive and 

negative aspects. In the case of static equilibrium (Chang and Kuhn, 2005) 

showed that the average macro stress is equivalent to the Cauchy stress 

tensor. 

2.2.1.1 Average macro stress tensor derived from boundary forces 

This approach is the quickest way to compute the stress tensor from DEM 

simulations. As shown in figure 2-6 the average stress along the rigid wall 

boundary or boundary particles is obtained by summing the inter-particle-wall 

or inter-particle-boundary particles contact force (𝑓𝑐𝑖𝑗
𝑝𝑤
) of 𝑁𝑝 number of 

particle over the length of sample, 𝑙,  (for 2D case): 

𝜎𝑖𝑗 =
∑ 𝑓𝑐𝑖𝑗

𝑝𝑤
𝑁𝑝

𝑙
  𝑤ℎ𝑒𝑟𝑒  𝑖, 𝑗 = 1,2                                                                                     2.16 
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This method is also used for validating and calibrating the DEM simulations 

with laboratory tests such as biaxial and triaxial tests (e.g. Belheine et al., 

2009). However, this method is only suitable for a RVE that has rigid wall 

boundaries. Therefore it is necessary to develop another method has to be 

developed for a RVE that represents a region within the DEM model since 

the boundary of the RVE is defined by particles. 

 

Figure 2-6 Computing the average macro stress from the boundary of sample 

 

2.2.1.2 Average stress tensor derived from inter-particle forces 

The aim of this method is to compute the average stress tensor, 𝜎𝑖𝑗 ,  of a 

RVE of a particulate system through the contact forces and position vectors 

of contact points of all the particles are in this element. A number of 

approaches were proposed by researchers to derive this relationship (e.g. 

Potyondy and Cundall, 2004, Rothenburg, 1980, Bagi, 1996, Li et al., 2009, 

Bardet and Vardoulakis, 2001). The basis of these methods is to measure 

the macro stress tensor of RVE, 𝜎𝑖𝑗, from volume average of average particle 

stress tensor, 𝜎𝑖𝑗
𝑝
,: 
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𝜎𝑖𝑗 =
1

𝑉
∑𝜎𝑖𝑗

𝑝𝑉𝑃
𝑁𝑝

     𝑤ℎ𝑒𝑟𝑒      𝜎𝑖𝑗
𝑝 =

1

𝑉𝑝
∑𝑥𝑖

𝑐𝑓𝑗
𝑐

𝑁𝑝

                                                         2.17 

where 𝑉𝑃 is the volume of disk with unit thickness. 𝑉 is the volume of RVE 

with unit thickness. 𝑥𝑖
𝑐 is the position vector of contact point. 𝑓𝑗

𝑐 is the inter-

particle force. 𝑁𝑝 is the number of contact points for each particle (see figure 

2-7). As particles are assumed to be rigid in a DEM simulation, the idea of an 

average stress tensor for the particles seems to be somewhat misleading. 

However, 𝜎𝑖𝑗
𝑝
 is used to define a term that has units of stress. The average 

stress tensor, 𝜎𝑖𝑗,  within RVE proposed by Potyondy and Cundall (2004) is 

as follows: 

𝜎𝑖𝑗 =
1 − 𝑛

∑ 𝑉𝑝𝑁𝑝

(∑∑(𝑥𝑖
𝑐 − 𝑥𝑖

𝑝 )𝑛𝑖
𝑐

𝑁𝑐
𝑝

𝑓𝑗
𝑐,𝑝

𝑁𝑝

    𝑖, 𝑗 = 1,2,3                                                 2.18 

where the summations are taken over the 𝑁𝑝 particles. 𝑛 is the porosity of the 

RVE, 𝑁𝑐
𝑝
 is the number of contacts of each particle. 𝑥𝑖

𝑐and 𝑥𝑖
𝑝
 are the position 

vectors of particle centroid and its contact points respectively. 𝑓𝑗
𝑐,𝑝

 is contact 

force acting on particle, p, at contact c. This relationship is often used to 

calculate the average stress tensor of a group of particles that from a RVE. 

From this equation, it is quite clear that the microscopic average stress 

tensor of a particulate region is greatly dependent on the geometry of 

particle, contact coordinate and inter-particle forces. This method is 

embedded into PFC2D (Itasca, 2008). The advantages of this method over 

that based on the boundary forces is that the contact forces between all the 

particles are considered and variation of the macro stress tensor within a 

DEM model can be calculated. However, there is a limit to the size of the 

region if the output is to have any meaning. For instance, if particle size 

distribution (PDE) is various, some particles are big and some is very small 

over the boundaries such that some of which may not have contact with 

others. Therefore, the macro average stress tensor obtained might be wrong. 

Rothenberg (1980) only took those particles lying along an RVE boundary 

(not the element boundary) to compute the average macro stress tensor: 

file:///C:/Users/Ali/Desktop/PhD%20THESIS/Chapter%204%20fabric.docx%23_ENREF_46
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𝜎𝑖𝑗 =
1

𝑉
∑𝑥𝑖

𝛽
𝑓𝑗
𝛽

𝛽∈𝑆

    𝑖, 𝑗 = 1,2,3                                                                                         2.19 

where 𝑥𝑖
𝛽
and 𝑓𝑗

𝛽
 is the ith component of the position vector of contact at point 

𝛽 and 𝑓𝑗
𝛽
 is it component of the force vector at this point respectively (grey 

particles in figure 2-7). The main disadvantage of this method is that only 

those particles lying along the RVE’s boundary are considered. In addition, 

the deviation between the stress tensor attained using this method and that 

obtained by above method may be considerable, especially when the RVE is 

near boundaries. At these regions the fabric anisotropy may be significant 

because of particles movement and changing interaction forces.  

 

Figure 2-7 Introducing a typical representative volume element (RVE) 

 

The structure of macro stress tensor proposed by (Bagi, 1996) is equal to the 

stress tensors derived using the method proposed by (Potyondy and Cundall, 

2004). However, instead of considering a particle, a continuum cell is defined 

using the tessellation shown in figure 2-8. Applying this method increases the 
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time of simulation. It is because at each time step the cells are updated. In 

addition, the discrete space in this method is considered as a continuum 

space. This method is not used by other researchers who are interested in 

granular soil mechanics.  

 

 

Figure 2-8 Particle cell diagram proposed by (Bagi, 1996) 

 

It is worth mentioning that in deriving the average stress tensor from the 

mentioned methods, the effect of particle rotation is not considered.  

(Bardet and Vardoulakis, 2001) proposed a method based on energy and 

virtual work methods to derive an average stress tensor. According to this 

study, the average stress tensor is anti-symmetric due to inter-particle 

moments. The amount of anti-symmetry in the average stress tensor is 

dependent on ratio of particle volume (or area in 2D case) to its 

circumference such that by increasing this value, the average stress tensor 

become more symmetric. However, the use of this method results in 

increasing the time of simulation because most of the time step portion is 

taken to compute the energy and virtual work for each particle. 
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2.2.1.3 Macro-mechanical strain tensor 

The strain tensor, 𝜀𝑖𝑗, is a fundamental concept in continuum mechanics, 

which is used to calculate the relative displacement of each element from its 

gradient displacement tensor field.  

𝜀𝑖𝑗 =
1

2
(𝑈𝑖,𝑗 +𝑈𝑗,𝑖) =

1

2
(𝐹𝑖𝑗 + 𝐹𝑗𝑖)                where i, j = 1,2                                    2.20 

where  𝑈𝑖 is the displacement in 𝑖 direction. 𝐹𝑖𝑗 = 𝑈𝑖,𝑗 is the gradient 

displacement tensor field of each point within a continuum domain. By using 

Gauss divergence theorem, the volume integral is converted to the surface 

integral. Therefore,  

𝐹𝑖𝑗 =
1

𝑉
∫
𝜕𝑈𝑖
𝜕𝑥𝑗

𝑑𝑉 =
1

𝑉
∮ 𝑈𝑖𝑛𝑗𝑑𝑆

𝑆𝑉

                                                                                     2.21 

where 𝑑𝑆 is the differential surface area and 𝑉 is volume. 𝑛𝑗  is the jth 

component of unit normal vector at each node. 𝑥𝑗 is the position vector of 

each point. 

Based on gradient displacement tensor field definition several methods have 

been suggested to compute the strain tensor such as Cauchy-Green, Piola, 

Green-Lagrange, Euler-Almansi strain tensors in continuum mechanics. For 

example, a gradient displacement tensor field used in finite element method 

(FEM) is based on linear interpolation between the relative displacements of 

mesh nodes.  

In contrast, granular assemblies consist of discrete particles with finite size, 

such that each particle has its own translational and rotational degrees of 

freedom. These translations and rotations are greatly heterogeneous such 

that their magnitude and orientation vary from one particle to other particle. 

Therefore, the estimation of the particle displacements with a continuously 

differentiable gradient displacement tensor field is impossible. 

However, in geotechnical engineering the interpretation of soil behaviour is 

done by using stress and strain tensors terms. Hence, establishing an 

approximate constitutive relationship between particles displacements within 
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a RVE and macro strain tensor is needed. The most important factor to 

establish this homogenized link is to find the approximate gradient 

displacement tensor field in terms of particle-level displacement. Hence, the 

aim of the existence macro-mechanical strain tensor methods is to estimate 

this gradient displacement tensor field. These methods are generally 

classified into two categories:  

 Strains based on continuum approach 

 Strains based on best-fit  

These methods will be compared in this section.  

2.2.1.3.1 Strains based on continuum approach 

The basis of this approach is to replace the RVE with a triangulation graph, a 

line connecting the particles centroids (see figure 2-9). The interior space of 

this region is then assumed to be a continuum. The next step is to specify the 

displacement gradient tensor for each triangle by considering linear variation 

from relative displacement values at nodes (see Eq. 2-20 and 2-21). The 

average displacement gradient tensor for each triangle is assumed to be 

constant in this method. The size of RVE is changing during loading as 

particles within RVE are moving. The average homogenized macro-

mechanical strain tensor for this domain is then determined by the two 

following methods: 

 Average of each element strain tensor 

 Average of boundary particles’ strain tensor 
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Figure 2-9 The configuration of RVE and its equivalent continuum domain at time t 

 

2.2.1.3.1.1 Average of each element strain tensor 

In this approach, a mesh is created as in FEM for the equivalent continuum 

polygon at each time step. Thus, the shape of particles is not important if this 

method is used. The node of each mesh is the particle centroid. Therefore, 

the nodal displacement can be extracted at each time step from DEM 

outputs. The strain tensor for each element, 𝜀𝑖𝑗
𝑒 ,  is then estimated from the 

nodal displacements of that element using Eq. 2-20 and 2-21. Eventually the 

average strain tensor of the equivalent continuum domain 𝜀�̅�𝑗 is calculated by 

weighted average method:  

𝜀�̅�𝑗 = 
1

𝑉
∫ 𝜀𝑖𝑗

𝑒
𝑉

𝑑𝑉                                                                                                                  2.22  

where 𝑉 is the volume of the equivalent continuum domain in 3D or it is area 

in 2D. A number of researchers (e.g. Bagi, 1996, Bagi, 1993, Kruyt and 

Rothenburg, 1996, Kuhn, 1997, Kuhn, 1999, Cambou et al., 2000, Dedecker 

et al., 2000, Kruyt, 2003, O'Sullivan et al., 2003) applied this method to find 

out a more accurate average strain tensor. Although the fundamental of 

these methods is the same, they do differ.  

Bagi method:  this method which is applicable for both 2D and 3D 

assemblies of particles with any arbitrary shape was proposed by (Bagi, 
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1996, Bagi, 1993). The strain tensor for each element is based on its vertices 

displacement. Due to this constant displacement gradient, the displacement 

of each point within this triangular element is found by using linear 

interpolation. The RVE’s boundary passes through the centres of boundary 

particles (see figure 2-10). That is, the condition of connecting boundary 

particles with together is not necessary. The particle rotation or anti-

symmetric part of the strain tensor is not considered in this method. At each 

time step the nodal displacement for each mesh is calculated by DEM code 

such as PFC, the strain tensor for each element (i.e. Eq. 2-20 and 2-21) can 

be computed by directly by DEM code by adding a subroutine to this code. 

Finally the average strain tensor of the RVE is calculated from Eq. 3.31 

directly from DEM model. Thus, all calculations are performed by DEM code 

and there is no need to use another method in corporation with DEM code. 

This is one of the advantage if this approach.  

 

 

Figure 2-10 Bagi method 

 

The Kruyt–Rothenburg method: this macro-structural strain tensor method 

which is only applicable for 2D particulate systems with any arbitrary shape 

was proposed by (Kruyt and Rothenburg, 1996).The triangulation of RVE in 



35 

 

this method goes through the centres of particles that are in contact (see 

figure 2-11).The strain tensor for each element is determined from the 

vertices displacement. The particle rotation or anti-symmetric part of the 

strain tensor is not also considered in this method. The disadvantage of this 

method is its high volume of calculations. 

 

 

Figure 2-11 The Kruyt–Rothenburg equivalent continuum 

 

Kuhn method: the framework of this method is the same as Kruyt–

Rothenburg method. The only difference is that the triangulation of the 

equivalent continuum domain in this method is restricted only to those 

particles that take part in the load-bearing framework (Kuhn, 1997, Kuhn, 

1999). The disadvantage of this method is its high volume of calculations. 

Cambou method: this method which was proposed by (Cambou et al., 

2000) and (Dedecker et al., 2000) in terms of mathematical structure is 

almost the same as Bagi method. The only difference between those 
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methods is in the detail of triangulation of RVE. The disadvantage of this 

method is its high volume of calculations.  

Kruyt method: this micro-structural strain tensor method is only applicable 

for 2D assemblies of circular particles (Kruyt, 2003). The triangulation of the 

equivalent continuum domain in this method is the same as Kruyt–

Rothenburg method but the strain tensor determined in this method includes 

the particle rotation or anti-symmetric part. The disadvantage of applying this 

method is its high volume of calculations. 

O’Sullivan et al. method: This method was proposed by (O'Sullivan et al., 

2003). The geometry of RVE in this method is restricted to a rectangular 

geometry (see figure 2-12). A rectangular mesh is created within the RVE. 

The nodes of the mesh are referred to as grid points. The interpolated 

displacements and displacement gradients are calculated at these grid points 

using the mesh free interpolants. The displacement of the particle centroids 

are known from the DEM analysis. Each particle within the RVE has a zone 

of influence, the compact support. It is simply a multiple of the radius of the 

particle and will include some grid points. The displacement gradient tensor, 

including translation and rotation, for each compact support is calculated 

using the reproducing kernel particle method (RKPM). The advantage of this 

method is to have a smoother continuous gradient displacement field for the 

RVE. However, applying this method increases the time of simulation. 
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Figure 2-12 A compact support (After O’Sullivan et al. (2003) 

 

A common feature of these methods is to assign a gradient displacement 

tensor field to the void spaces, which leads to unrealistic macroscopic 

response of particulate assemblies. In addition, the use of any of these 

methods using PFC2D requires a C++ subroutine. The PFC2D compiler should 

then compile this subroutine at each time step.  This increases the time of 

simulation. 

2.2.1.3.1.2 Average of boundary particles’ strain tensor 

The estimation of the displacement gradient field in this approach is only 

dependent on RVE’s boundary vertices displacements. That is, the 

displacements of the particles within RVE are not considered. The size of 

RVE changes during loading. The continuous boundary in this method is 

broken into a number of straight lines as shown in figure 2-13. The average 

stress tensor, 𝜀𝑖𝑗
𝑒 , and displacement gradient tensor for each line is then 

computed. A number of researchers (e.g. Bardet and Proubet, 1991, Bonilla, 
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2004) applied this method to find out a more accurate average strain tensor 

and displacement gradient tensor. 

Bardet and Proubet method: (Bardet and Proubet, 1991) proposed a 

method to calculate the strain tensor based on vertices displacement of the 

equivalent continuum domain. This method is more applicable for studying 

the shear band or localization phenomena in two dimensions. The particle 

rotation or anti-symmetric part of the strain tensor is also considered. In this 

method, the circumference of the equivalent continuum domain is broken into 

the straight lines such as AB, BC and others with their lengths 𝑆𝑘 (see figure 

2-13). Assuming the displacement for each line on each boundary piece such 

as AB is a linear function of the end points, Eq. 2-21 are becomes:    

𝐹𝑖𝑗 =
𝐴𝐵

2
(𝑈𝑖

𝐴 +𝑈𝑖
𝐵)𝑛𝑗

𝐴𝐵 +
𝐵𝐶

2
(𝑈𝑖

𝐵 + 𝑈𝑖
𝐶)𝑛𝑗

𝐵𝐶                                                             2.23 

𝑛𝑗  is the jth component of unit normal vector of each line.  

 

 

 

Figure 2-13 Calculating the average displacement gradient tensor considering the particle 

rotation (After Bardet and Proubet, 1991). 
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Bonilla method: the framework of this method is the same as Bardet and 

Proubet method expect that particle rotation is not considered (Bonilla, 2004). 

Therefore, the obtained average strain tensor by this method is as follows: 

𝜀𝑖𝑗 =
1

𝑉
∑[ 

1

2
{∆𝑥𝑖

𝛽
+ ∆𝑥𝑖

𝛽+1
}𝑒𝑗
𝛽
𝑆𝛽]

𝑛𝛽

𝛽=1

 𝑖, 𝑗 = 1,2                                                            2.24 

The parameters in this equation are shown in figure 2-14. V is the volume or 

area (in 2D analysis) of the polygon of the equivalent continuum domain with 

sides’ length of 𝑆𝛽. The vertices of this polygon correspond with the boundary 

particles. Each side of this polygon is defined by the coordinate of its two 

adjacent particles, β and β+1, with their displacement in i direction is 

∆𝑥𝑖
𝛽
and ∆𝑥𝑖

𝛽+1
 respectively. The quantity of 𝑒𝑗

𝛽
 is also the jth component of 

unit normal vector on the side 𝑆𝛽. 

 

 

Figure 2-14 Calculating the average strain tensor is based on boundary particle translation 

(After Bonilla, 2004) 



40 

 

Only the displacements of the particles on the boundary of a RVE are used to 

compute the average strain tensor of the RVE. The displacements of the 

interior particles are not taken into account when calculating the strain tensor. 

This can lead to erratic displacement vector fields for those particles near the 

boundary boundaries producing an unrealistic strain tensor for the region.  

In addition, the real contact between boundary particles of a RVE is not 

considered in these methods, care has to be taken in selecting the size of 

RVE. The number of boundary particles for a RVE is constant which means 

that a RVE deforms the particles may separate from one another leading to 

an erratic distribution of the strain tensor on the boundary giving an 

unrealistic strain tensor for that region. Thus this method may be acceptable 

for small regions where the displacements at the boundary are limited but 

inappropriate where displacements are much greater.  

The average strain tensor obtained from the boundary particles is not the 

same as the average stress tensor obtained from each particle within an 

RVE.  

However, in both approaches, the average of each element strain tensor and 

the average of boundary particles’ strain tensor, the volume of RVE is 

changing during loading. Thus, tracking the strain tensor for a constant 

position of RVE within a particulate system by applying these methods is 

impossible. If static and lower quasi-static loading is applied for a particulate 

system such that unbalanced forces are nearly zero, these methods can be 

applied with caution. In addition, these methods apply a strain tensor field to 

the void spaces and do not consider the granular media. Moreover, the strain 

tensor components obtained from these methods are based on continuum 

mechanics assumption while the stress tensor components are obtained from 

the inter-particle forces. Thus, the stress and strain tensors may not 

compatible because they obtained from two different spaces (i.e. continuum 

and discrete). Hence, an approach is required to track the strain tensor for a 

constant position of RVE within a particulate system, using an individual 

particle displacement to extract the strain tensor that is compatible with 
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average stress tensor. In the following section this approach will be 

described. 

2.2.1.3.2 Strains based on best-fit  

The gradient displacement tensor in this method is only allocated to those 

particles where are a RVE. The volume and location of the RVE change as 

the DEM model deforms therefore it is not possible to track the strain tensor 

at a particular location. Further the strain tensor is based on a continuum 

whereas the stress tensor is based on the contact forces between the 

particles thus they are not compatible. 

Since only one accurate displacement vector field and one displacement 

gradient tensor can be determined for each particle within an RVE, the 

average displacement vector field is based on the best-fit method to derive a 

displacement vector field equation which most describes the characteristic 

displacements of RVE to obtain the displacement gradient tensor of that 

region. The characteristic displacements of that RVE can be the 

displacements of particle centres (with or without considering the rigid-body 

rotation) or the relative translations at the contact points. A number of 

researchers (e.g. Potyondy and Cundall, 2004, Liao et al., 1997, Cambou et 

al., 2000) used this method to provide a more accurate average strain tensor.  

Potyondy and Cundall method: this method is proposed by (Potyondy and 

Cundall, 2004).  An average strain tensor is defined instead of specifying a 

form to compute the average strain tensor. The average strain-rate tensor in 

this method is based on the velocities of particle centres without considering 

the effect of particle rotation velocity (i.e. rigid-body-like rotation velocity). In 

this method, the velocity and position vector of each particle is firstly 

calculated as a relative velocity and position vectors with respect to the mean 

velocity and position vectors of 𝑁𝑝 particles centres (see Eq. 2.26 and 2.28). 

As only one accurate displacement vector field and one displacement 

gradient tensor can be specified for each particle within the RVE, a best-fit 

method (i.e. a first-order polynomial equation or higher order polynomial 

equation) is applied to predict a gradient velocity field and gradient translation 

field from those calculated data; (Itasca, 2008) and (Potyondy and Cundall, 
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2004) suggested a linear equation in order to obtain the gradient velocity 

tensor (or strain-rate tensor), 𝜀�̇�𝑗 , which is as follows: 

�̃�𝑖
𝑃,𝑟𝑒𝑙 = 𝜀�̇�𝑗𝑥𝑗

𝑃,𝑟𝑒𝑙                                                                                                                   2.25 

𝑥𝑖
𝑃,𝑚𝑒𝑎 = 𝑋𝑖

𝑃 −
1

𝑁𝑝
∑𝑋𝑖

𝑃

𝑁𝑝

𝑖=1

                                                                                                  2.26 

where �̃�𝑖
𝑃,𝑟𝑒𝑙, 𝑋𝑖

𝑃 and 𝑥𝑖
𝑃,𝑟𝑒𝑙 are the relative velocity vector, position vector and 

the relative position vector of each particle, respectively and 𝑁𝑝 is the number 

of  particles within the measurement region. For the particulate assemblies, 

this velocity gradient tensor,𝜀�̇�𝑗,is calculated in such a way that the velocity 

gradient tensor has the minimum deviation from the data on which it is based 

(i.e. �̃�𝑖
𝑃,𝑚𝑒𝑎). Therefore: 

𝜕𝐸

𝜕𝜀�̇�𝑗
= 0                                                                                                                                   2.27 

�̃�𝑖
𝑃,𝑚𝑒𝑎 = 𝑉𝑖

𝑃 −
1

𝑁𝑝
∑𝑉𝑖

𝑃

𝑁𝑝

                                                                                                  2.28 

𝐸 =∑|�̃�𝑖
𝑃,𝑟𝑒𝑙 − �̃�𝑖

𝑃,𝑚𝑒𝑎|
2
=

𝑁𝑝

∑|𝜀�̇�𝑗𝑥𝑖
𝑃,𝑟𝑒𝑙 − �̃�𝑖

𝑃,𝑚𝑒𝑎|
2
                                                2.29

𝑁𝑝

 

where E, 𝑉𝑖
𝑃and �̃�𝑖

𝑃,𝑚𝑒𝑎
is the approximation error, the translation velocity 

vector and the measured relative velocity of particle respectively. The 

minimization process is the least squares approach. Solving Eq. 2.29 leads 

to the system of equations (for 2D case): 
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      2.30 

These equations can only be solved (i.e. components of strain-rate tensor 

(𝜀1̇1, 𝜀1̇2, 𝜀2̇1and �̇�22) ) if there exist at least three particles whose centres are  

not co linear.  
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This average strain tensor (see Eq. 2.30) is compatible with the average 

stress tensor derived from discrete particles within RVE the same RVE (see 

Eq. 2.25). This method is compatible for PFC3D and PFC2D softwares. Unlike 

continuum methods, the number of boundary particles of RVE in not 

restricted in this method. Therefore the number of particles within a RVE can 

freely change. Therefore, the effects of fabric anisotropy on the average 

strain tensor are considered in this method. There is no need to add a C++ 

subroutine to the PFC code in order to calculate the average strain tensor.  

Liao et al. method: The main difference between this method (Liao et al., 

1997) and Potyondy and Cundall method is to include the rigid body motions 

of each particle. 

Cambou et al. methods: (Cambou et al., 2000) proposed two methods 

which are the result of improving the Liao et al. method. In the first method, 

the effect of rigid body motion is not taken into account and in the second 

method the effect of neighbouring particles is considered in the equations in 

order to predict the strain tensor.  

2.3 Conclusion  

In this chapter, the concepts of the Discrete Element Method to analyse 

granular media is described. In DEM, the motions of each particle are 

calculated through an explicit time integration scheme that operates under 

the principle that during a small time step the change in velocities and 

accelerations is so small that they can be assumed constant within that time 

step. During a calculation cycle, the interaction between particles is tracked 

and the contact forces are updated based on the contact laws. The particle 

equations of motion are then integrated to obtain new particle positions. As a 

result, in each time step, new contacts are formed and some existing 

contacts are deleted. The main advantages of this method are to provide 

abundant information at particle scale such as contact force and contact 

deformation, which can be used to comprehend the physics of granular 

systems. It was seen that this method has been applied by many researchers 

to study the sand medium.  
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In terms of average stress tensor methods, the average macro stress tensor 

derived from boundary forces (Eq. 2.16) is the quickest way to compute the 

macro stress tensor from DEM simulations and properly validate and 

calibrate the DEM simulations with laboratory tests such as biaxial and 

triaxial tests. However, if the aim is to study the average stress tensor from a 

RVE within a particulate system, this method is not appropriate. Thus, other 

methods are required to compute the average stress tensor within a 

particulate region. The method proposed by Bardet and Vardoulakis results 

in increasing the cost of simulation. It is because most of the time step 

portion is taken to compute the energy and virtual work for each particle. 

Applying the method of Bagi increases the cost of simulation. It is because at 

each time step, cells should be recognized then the mechanical calculation 

should be performed. In addition, a stress tensor field assigned to the void 

spaces in this method. The method proposed by (Potyondy and Cundall, 

2004) is more appropriate to compute the average stress tensor within a 

particulate region because this method considers only the effect of all 

individual particles within a RVE, while the method proposed by (Rothenburg, 

1980) only considers those particles lying along the RVE’s circumference.  

In terms of strain tensor, two general approaches were discussed: strains 

based on continuum approach and Strains based on best best-fit. The former 

approach, which assumes the interior space of RVE is continuous, is then 

split into two separate methods: average of each element strain tensor and 

average of boundary particles’ strain tensor. Based on these two 

approaches, several methods were illustrated. The main disadvantage of 

these methods is that the volume of RVE is changing during loading. Thus, 

tracking the strain tensor for a point within a particulate system by applying 

these methods is impossible. If static and quasi-static loading applied to a 

particulate system such that unbalanced forces are nearly zero, these 

methods can be applied with caution. In addition, these methods apply a 

strain tensor field to the void spaces and cannot consider the granular media. 

Since, the average strain tensor components obtained from these methods 

are based on continuum mechanics assumption, this average strain tensor 

may not be compatible with average stress tensor extracted from inter-
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particle forces because they obtained from two different spaces (i.e. 

continuum and discrete).  

In the best-fit approach, the disadvantages of applying continuum methods 

are solved by considering the discrete space of RVE. The Potyondy and 

Cundall method may estimate the realistic strain tensor for sand media 

because it considers particle displacement to derive the average strain tensor 

while Liao et al. and Cambou et al. methods consider particle deformation 

instead of particle displacement to derive the average strain tensor. However, 

for those granular systems that impact behaviour (i.e. particle deformation) is 

dominant such as fluid and gas media these average strain methods, 

obtained from particle deformation, would be proper. Additionally, in this 

approach the location of RVE is constant during particle movement. Thus, we 

can track the average strain tensor for a constant position of RVE within a 

particulate system during loading. 
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Chapter 3 

3 The literature review  

3.1  Introduction 

Piled foundations in seismic hazardous regions are damaged by earthquakes 

due to the effect of seismic loads on the soil-pile interaction and the 

development of soil particles’ instability adjacent to the pile. The interface 

friction capacity plays a major role on the seismic pile capacity. To 

understand how a seismic load affects the capacity of a pile, it is necessary 

to study the changes in that interaction to the soil fabric. Since the pile 

capacity is a function of the interaction between individual soil particles and 

the pile the discrete element method of analysis is considered to be the most 

appropriate method. Thus, a comprehensive review in the concepts of wave 

propagation in solid media is carried out to address the appropriate boundary 

condition for seismic problems. It follows by reviewing in the concepts of 

seismic behaviour of pile to address the gap. The current development in 

DEM model for earthquake wave propagation and soil-pile interaction is 

carried out. The importance of monitoring of fabric quantities during loading 

will be discussed.  

3.2  Literature review of seismic shear wave propagation 

through the soil using DEM  

3.2.1 Introduction 

Wave propagation through a particulate system is dispersive if the 

wavelengths of induced seismic wave approach to the mean particle size of 

granular system. Since the wavelength of earthquake waves is much longer 

than the size of sand particles, the wave propagation through a particulate 

system can be assumed to be similar to that in a continuous elastic medium 

(Toomey and Bean, 2000, Itasca, 2008, Marketos and O’Sullivan, 2013). In 

contrast to continuum mechanics, in which the wave propagation through a 

solid system is simulated by applying wave propagation equation (see 

section 3.2), the phenomena of wave propagation using DEM is simulated by 
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considering the physics of individual particle vibration. Due to the 

computational cost of DEM simulations, granular media is discretized into 

small parallelepiped cells. Each cell is then simulated by DEM. By applying 

the homogenization method (i.e. average method), the macro-scale 

behaviour of each cell is then computed. Thus, the continuum definitions 

applied in seismic wave propagation field such as shear wave velocity, 

impedance ratio and dynamic or viscous damping boundary concepts can be 

used in DEM simulations. These issues will be required to develop the 

dynamic deformable boundary particles discussed in chapter 6. They are 

discussed in following sections. 

3.2.2 The overview of seismic wave propagation through the 

infinity solid continuum media 

The rational approach to analytical study of earthquakes effects in soil 

deposits is to consider them as wave propagation problems in solid infinite 

continuum space. This leads to consider the attenuation and radiation of 

seismic energy from the excited zone to each point within the model. It is to 

be noted that the infinity term is a mathematical concept and it is considered 

when the aim is only to find the closed form analytical solutions for a system 

with simple geometrics.  

Due to the seismic excitation, the acceleration, velocity and displacement 

vector fields, which are time-dependent, are developed in three directions 

within a solid media (Pujol, 2003). These time-dependent variables result in 

development of stiffness, inertia and viscous forces on elements. Depending 

on the received amplitude and frequency of displacement vector fields (or 

acceleration and velocity vector fields) of seismic loading to each element, 

changes in the geometry and characteristic behaviour of solid elements 

including volumetric deformation, and distortion will be taken place. (Ishihara 

and Knovel, 1996) categorized dynamic events base on time of loading and 

number of repetitions of each sinusoidal impulse (see figure 3-1). In terms of 

an earthquake event, each sinusoidal displacement, velocity or acceleration 

impulse during an earthquake involves 10-20 times cycles. In addition, 

earthquakes generate low-frequency seismic waves (Marketos and 

O’Sullivan, 2013).  
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Figure 3-1 Categorizing dynamic events base on time of loading and number of repetitions of 
each sinusoidal impulse (After Ishihara, 1996) 

 

The induced gradient of stress tensor on the element due to received 

displacement vector fields on it (u1, u2 and u3) is shown at figure 3-2.   

 

 

Figure 3-2 The gradient of stress tensor on the typical soil element due to displacement 
vector field u1, u2 and u3 at three directions. 

 

Applying the dynamic equilibrium equation at three perpendicular directions 

(i.e. for 3D analysis) for this element due to these three perpendicular 
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displacement vector fields leads to the wave propagation equations in three 

directions (see Eq. 3.1).     

𝜌𝑏𝑢𝑙𝑘
𝜕2�⃗� 

𝜕𝑡2
=
𝜕𝜎𝑖𝑗

𝜕𝑥𝑗
+ 𝜌𝑏𝑢𝑙𝑘𝑓𝑖            �⃗� = [

�⃗� 1
�⃗� 2
�⃗� 3

]                                                                       3.1 

where 𝜌𝑏𝑢𝑙𝑘 is bulk density and term 𝜌𝑏𝑢𝑙𝑘𝑓𝑖 represents body force. The 

above equation can be used for any type of constitutive model. However, 

elastic wave propagation is widely used in research to illustrate the behaviour 

of soil under seismic load. For this purpose, the viscous-elastic constitutive 

model applied for soil (Kramer, 1996; Ishihara, 1996; Prakash, 1981; Zamani 

and El Shamy, 2011; Novak and Nogami, 1977; Makris and Gazetas, 1992; 

Mylonakis et al., 1997). By combining Hooke’s law (𝜎𝑖𝑗 = 𝜆𝛿𝑖𝑗𝜀𝑘𝑘 + 2𝜇𝜀𝑖𝑗) and 

the relation between strain tensor field and displacement vector field 

(𝜀𝑖𝑗 =
1

2
[
𝜕𝑢𝑖

𝜕𝑥𝑖
+
𝜕𝑢𝑗

𝜕𝑥𝑖
], the displacement vector field of a typical element of a 

general isotropic elastic solid can be obtained. However, for an 

inhomogeneous material where the Lame parameters are not constant, the 

analytical close-form solution for a displacement vector field of the element is 

impossible. The problem can be analytically solved with the following 

assumptions: 

 The material is homogeneous, 

 The material is linear elastic and 

 Deformations are small. 

Considering these assumptions and limitations, the displacement equation of 

an element during the wave propagation is as follows:  

𝜕2�⃗� 𝑖
𝜕𝑡2

= [
𝜆 + 𝜇

𝜌𝑏𝑢𝑙𝑘
]
𝜕𝜀𝑉
𝜕𝑥𝑖

+ [
𝜇

𝜌𝑏𝑢𝑙𝑘
] ∇2�⃗� 𝑖 + 𝑓𝑖                                                                             3.2 

where 𝜆 and 𝜇 are the Lame parameters and ∇2 is Laplacian operator and 

that is: 

∇2=
𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
+
𝜕2

𝜕𝑧2
                                                                                                           3.3 



50 

 

The close-form solution of Eq. 3.2 leads to two sets of independent answers 

(see Eq. 3.4 and 3.5). That is, only two types of seismic waves can generate 

and propagate within an infinity space: Primary wave and Secondary wave. 

The response of element due to P-wave propagation is as follows:  

𝜕2𝜀𝑉
𝜕𝑡2

= [
𝜆 + 2𝜇

𝜌𝑏𝑢𝑙𝑘
] ∇2𝜀𝑉 +∑𝑓𝑖

3

𝑖=1

                                                                                            3.4 

where term [
𝜆+2𝜇

𝜌𝑏𝑢𝑙𝑘
] represents Primary (or compressive) seismic wave 

velocity. By considering the fact that the 𝜀𝑉, volumetric strain, is the result of 

isotropic stress applied on the element, it can be concluded that the 

propagation of P-wave only leads to an isotropic stress, 𝜎𝑃, and volumetric 

strain within a solid element (see figure 3-3).  

 

 

 

 

Figure 3-3 The vertical propagation of P-wave within a soil media and the reaction of soil 
element to this wave schematically 
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The response of an element due to S-wave propagation is as follows: 

𝜕2𝜔1
𝜕𝑡2

= [
𝜇

𝜌𝑏𝑢𝑙𝑘
] ∇2𝜔1 

𝜕2𝜔2
𝜕𝑡2

= [
𝜇

𝜌𝑏𝑢𝑙𝑘
] ∇2𝜔2                                                                                                             3.5 

𝜕2𝜔3
𝜕𝑡2

= [
𝜇

𝜌𝑏𝑢𝑙𝑘
] ∇2𝜔3 

where term [
𝜇

𝜌𝑏𝑢𝑙𝑘
] represents shear seismic wave velocity. By considering 

this fact that 𝜔1 =
1

2
[
𝜕𝑢3

𝜕𝑦
−
𝜕𝑢2

𝜕𝑧
], 𝜔2 =

1

2
[
𝜕𝑢1

𝜕𝑧
−
𝜕𝑢3

𝜕𝑥
] and 𝜔3 =

1

2
[
𝜕𝑢2

𝜕𝑥
−
𝜕𝑢1

𝜕𝑦
] are 

the rotation tensor of each side of element, it can be concluded that the 

propagation of an S-wave leads to distortion of element with constant volume 

such that pure shear stress is developed on the sides of element (Prakash, 

1981, Kramer, 1996, Ishihara, 1996) (see figure 3-4).   

 

 

Figure 3-4 The vertical propagation of S-wave within a soil media and the reaction of soil 
element to this wave. 
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This leads to this conclusion that seismic P-wave and S-wave propagation 

cannot influence the gravity acceleration field as seen in figures 3-3 and 3-4. 

Thus, the static vertical and horizontal in-situ stresses applied on the 

boundaries of a solid continuum element do not alter during earthquakes. 

Rather a dynamic stress tensor field which will be further discussed should 

be superimposed on them. Another conclusion can be met from Eq. 3.4 and 

3.5 is that the propagation of P-wave in solid continuum media does not 

generate S-wave and vice versa.  

3.2.3 Dependency of deformation characteristics upon shear 

strains 

The deformation characteristics of soils depend upon the shear strains to 

which soils are subjected. Based on the induced shear strains, soil behaviour 

can be categorised into three stages: elastic, elasto-plastic and failure states 

of stress (see figure 3-5).  

3.2.4 The range of shear strain 

Soil is assumed to be linear elastic, providing the shear strain is less than  

10-5 (Ishihara, 1996). The shear modulus is, therefore, a key parameter to 

properly model the stress–strain behaviour of soil. However, based on  

experimental tests carried out by, (Okur and Ansal, 2007), some energy 

dissipates during cyclic loading which implies hysteresis. This fact is 

neglected in the linear elastic analytical approach. If the magnitude of the 

induced amplitude of cyclic shear strain is between 10-5 and 10-2, the soil 

behaviour will be elasto-plastic. The shear modulus decreases as the shear 

strain increases and energy dissipation occurs during the cyclic loading. The 

damping ratio represents the energy absorbing capacity of soils at this stage. 

Within this range of shear strain, the shear modulus and damping ratio are 

functions of the shear strain and independent of the progression of cycles 

(visco-elastic model). For shear strains exceeding 10−2, the mechanical soil 

properties such as the shear modulus and damping ratio change with both 

the shear strain and the progression of cycles. The current methods to 

achieve the stress–strain response of soil in this range of the shear strain are 

based on a numerical procedure involving step-by-step integration 

techniques (i.e. non-linear plastic method). Most of these techniques couple 
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a backbone curve (also called skeleton curve) with a series of constitutive 

laws such as a hyperbolic constitutive model. Consequently, the stress-strain 

relations can be specified at each step of loading, unloading, and reloading 

phases Ishihara (1996).  

 

 
Figure 3-5 the typical range of shear strains for different soil models (after Ishihara, 1996). 

 

3.2.5 The input earthquake motion  

The amplitude and frequency of a dynamic load has a significant effect on 

the seismic macro mechanical behaviour of granular sand (e.g. Amin, 1976). 

To import the earthquake motion to the model, an acceleration time-history of 

a specific earthquake is applied to the base of the model. However, the 

seismic site responses vary. Thus, an acceleration time-history of a specific 

earthquake cannot be applied to other sites. Instead a simplified periodic 

sinuous function with different amplitude are generally considered e.g. (El 

Shamy and Denissen, 2010). However, due to high computational cost of 

DEM simulations only a single sine impulse is considered in this research. 

Marketos and O’Sullivan (2013) and O’Donovan et al. (2012) studied the 

seismic shear wave propagation through idealized sand using DEM by 

applying a single period sine load. To find the typical frequencies and 

amplitudes for this ideal input motion, the lower and higher bound of 

amplitude and frequency within a strong ground motion is required. For this 

purpose, the frequency content of a series of well-known earthquake 

extracted by applying Discrete Fourier Transfer (DFT) is required. DFT is 

able to extract the amplitude and frequency contents of earthquake signals. 
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The acceleration time-history of ten well-known earthquakes along with their 

frequency contents obtained from open source website “Seismo signal” are 

shown in Appendix 1. The figures show that the maximum amplitudes of 

earthquake seismic waves is between the frequency range 1 to 6 [Hz] 

approximately. Also, the lower and higher bound of Fourier acceleration 

amplitudes within this range is between 0.03 [m/s2] and 0.5 [m/s2] 

approximately. The average duration of earthquakes is 40 [sec] with most of 

the shaking more likely in the first 10 [sec].  

3.2.6 Impedance ratio 

In reality, the seismic waves travel within different soil layers. When the 

incident seismic waves approach to the boundary of two layers, depending 

on the material properties of these layers such as density and Elastic 

modulus, whole or part of the seismic energy will reflect or transmit to the 

immediate neighbouring media (see figure 3-6). Impedance ratio, α, adjusts 

the effect of incident seismic energy at the interface of two different materials. 

By definition, Impedance ratio is: 

𝛼 =
𝜌𝐵𝑉𝐵
𝜌𝐴𝑉𝐴

                                                                                                                                  3.6 

where 𝜌 and V are the bulk density and wave velocity propagation (P or S) 

for the two media. Table 3-1 shows the effect of various Impedance ratios on 

the displacement amplitude of transmitted and reflected waves. It is to be 

noted that this material is taken from (Aki, 1980).   

 

 

Figure 3-6 The reaction of incident wave at the interface 
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Impedance ratio (𝛼) 
Acceleration, Velocity or Displacement amplitude 

Incident wave Reflected wave Transmitted wave 

0 A A 2A 

1 A 0 A 

∞ A -A 0 

Table 3:1 The effect of Impedance ratio on the displacement amplitude of reflected and 
transmitted waves 

 

𝛼=0 implies that the incident wave reaches to the free surface. At this state, 

the wave will reflect with the same amplitude of incident wave and transmit 

with two times bigger than the amplitude of incident wave. 𝛼=1 means the 

material A and B are the same. That is, the incident wave will fully transmit 

into material B without any reflection taking place at the boundary. 𝛼=∞ 

shows that incident wave meets solid material. At this point, the wave will 

fully reflect back to the media but with opposite sign of incident wave. For a 

2D element of sand at depth, 𝛼=1 for all four boundaries.  

3.2.7 Dynamic boundary  

It is assumed that all seismic energy will decay at infinity. Due to the 

complicated geometries of soil media and the excited zone encountered in 

reality, it is unlikely to find the close form solutions for wave propagation 

phenomenon for such an infinite system. For this purpose, numerical 

methods such as the finite element method (FEM) are used (e.g. 

Anandarajah et al., 1995, Guéguen et al., 2000, Lysmer, 1969, Semblat, 

2009, Wolf and Song, 1996) and the boundary element method (BEM) (e.g. 

Aubry and Clouteau, 1991, Bonnet, 1999, Dangla, 1988). However, as a 

finite number of nodal points can be defined for these methods and, in situ, 

faults are kilometres from the geotechnical application zones of interest, the 

numerical methods are not directly appropriate for infinite systems (Lysmer, 

1969). Therefore, an infinite half-space should be approximated to a finite 

half-space. A special dynamic boundary condition (called viscous boundary 

or absorb boundary) is superimposed to the boundary of the model to model 

this (White et al., 1977, Lysmer, 1969).  
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Consider Figure 3-7. This figure displays two different boundaries: an 

imaginary infinity boundary (i.e. green dash lines), where it encloses all 

excited zones. Dynamic boundaries (i.e. blue dash lines) used to reduce the 

dimensions and discretization of space in order to study it within an infinity 

space. The boundary condition applied at viscous boundary should absorb t 

the P and S waves so that no energy reflection takes place at the boundary. 

That is, when the seismic energy arrives at the viscous boundary it is 

assumed that it fully travels onto infinity. By applying the following normal and 

shear stresses to each node along that boundary, the arrival seismic waves 

will fully travel into infinity without reflection waves: 

𝜎𝑙𝑎𝑡𝑒𝑟𝑎𝑙 = 𝛼 ∗ 𝜌 ∗ 𝑉𝑃 ∗ �̇�                                                                                                                                   

𝜏𝑙𝑎𝑡𝑒𝑟𝑎𝑙 = 𝛼 ∗ 𝜌 ∗ 𝑉𝑆 ∗ �̇�                                                                                   3.7 

where 𝛼, 𝜌, 𝑉𝑃, 𝑉𝑆, �̇� and �̇� are impedance ratio, bulk density, primary wave 

velocity, shear wave velocity and nodal velocity in the normal and shear 

directions. 𝛼 will be set to 1.0 if the material properties within the interior finite 

half-space and exterior zone are the same.  
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Figure 3-7 Schematic infinite and finite half-space 

 

Since a finite half-space is considered, the excited seismic zone cannot be 

taken into account within this zone. To consider the effect of the excitation 

zone to the model being considered, an input motion (e.g. velocity-time 

history) should be applied at the base of the model. For this purpose, an 

appropriate dynamic boundary must be employed at the base of model to 

consider both the imaginary infinite media below the model and the input 

motion. Such boundary is able to absorb the reflecting waves (Joyner and 

Chen, 1975, Itasca, 2008, Zamani and El Shamy, 2011). The following 

normal and shear stresses are applied to each node of the base dynamic 

boundary to remove reflected energy: 

𝜎𝑏𝑜𝑡𝑡𝑜𝑚 = 𝛼 ∗ 𝜌 ∗ 𝑉𝑃 ∗ (2 ∗ �̇�𝑦 − �̇�)                                                                                                                                     

𝜏𝑏𝑜𝑡𝑡𝑜𝑚 = 𝛼 ∗ 𝜌 ∗ 𝑉𝑆 ∗ (2 ∗ �̇�𝑥 − �̇�)                                                                  3.8 

where �̇�𝑥 and �̇�𝑦 are the input velocity-time history in horizontal and vertical 

directions. If the top boundary is ground surface, the dynamic stresses are 

zero because α is zero. If the top boundary is placed at depth, the impedance 

ratio will be between 0 and 1. These boundary conditions are applicable for 

linear and non-linear systems (Joyner and Chen, 1975). These conditions 
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correspond to a situation where the finite media boundary is supported on 

dashpots oriented in normal and tangential directions to provide viscous 

tractions that remove all or part of the energy of the propagating wave at the 

boundary (see figure 3-8).  

 

Figure 3-8 a schematic of dynamic boundary by applying normal and shear viscous damping 
on the finite media 

 

3.2.8 Seismic behaviour of pile 

Piled foundations in seismic hazardous regions are damaged by earthquakes 

because of the effect of seismic loads on the soil-pile interaction (Zafeirakos 

et al., 2011, Zhang and Zhang, 2009, Zhang, 2008, Zhang and Zhang, 2006, 

Cheung and Lee, 1991, Kucukarslan et al., 2003, Novak and Nogami, 1977, 

Mylonakis et al., 1997a, Mylonakis and Gazetas, 2000, Mylonakis and 

Gazetas, 1999, Gazetas and Mylonakis, 1998, Makris and Gazetas, 1992) 

and the development of sand particles’ instability adjacent to the pile. This 

interaction is affected by the volume changes in the soil (Wolf, 1985). The 

pile capacity is formed of the interface friction and end bearing capacity. 

Therefore, the pile capacity due to the interface friction capacity (Poulos and 

Davis, 1980) alters. This fact fails to be addressed by continuum mechanics. 

Since interface friction capacity is a function of the interaction between 

individual soil particles and the pile as well as particles’ stability the discrete 
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element method of analysis is considered to be the most appropriate method. 

This research focuses on the interface friction and particles’ stability because 

the visual evidence suggests that a seismic load has a dramatic effect on the 

volume of the soil adjacent to a pile.    

3.2.9 Literature review of earthquake wave propagation through 

sand using DEM  

DEM has been proved to be a tool to study the quasi-static behaviour of 

granular sand at the micro and macro scale. The use of DEM for dynamic 

problems in geotechnical earthquake engineering is restricted to a small 

number of published works (e.g. O’Donovan et al., 2012, Marketos and 

O’Sullivan, 2013, Zamani and El Shamy, 2011, El Shamy and Zamani, 2012, 

Zamani and El Shamy, 2012, El Shamy and Denissen, 2010, Hazzard et al., 

1998, Toomey and Bean, 2000). The aim of this section is to examine the 

advantages and disadvantages of DEM models employed by them in order to 

develop a novel DEM code.  

The early work of applying DEM for seismic wave propagation is that of 

Hazzard et al. (1998). They investigated the acoustic emission produced 

when failure occurs in a hexagonal lattice rock medium during an 

earthquake. However, this experience is of interest in the area of dynamic 

rock mechanics failure. The post seismic behaviour of rock mass after 

breaking the bond between discrete particles was also studied in this work. 

Toomey and Bean (2000) studied the dispersive properties of granular 

systems during seismic wave propagation. For this purpose, a lattice of 

uniformly bonded particles was created. This model was then vertically 

excited by applying a single periodic load to propagate a seismic primary 

wave. They derived an important relationship relating angular frequency to 

the wave number for lattice packing with contact linear stiffness. This 

equation is: 

𝜔 = 2√
𝐾𝑛

𝑚
sin (

𝑘∗𝑟

2
)   ;  𝑘 =

2𝜋

𝜆
  ; 𝜆 = 𝑉𝑃 ∗ T ⟹ 𝑉𝑃 =

𝜔

𝑘
                                              3.9  
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where 𝜔, 𝐾𝑛, 𝑚, 𝑘, 𝑟, 𝜆, 𝑉𝑃 and T are angular velocity, normal contact 

stiffness, particle mass, wave number, mean particle diameter of system, 

wavelength, P-wave speed and period of loading. Figure 3-9 shows the 

relationship between angular frequency and wave number.  

Based on this figure, if the wavelength is much larger than the mean particle 

size the dispersion becomes practically undetectable (i.e. waveform cannot 

be changed within the particulate system). For shorter wavelengths, the 

waveform begins to be affected by discrete particles. That is, the wave is 

being dispersed during wave propagation. This leads to the conclusion that 

for those wavelengths that are much larger than mean particle diameter of a 

granular system, the wave propagation through them can be assumed to be 

similar to that in a continuous elastic medium. 

 

Figure 3-9 Investigation of dispersion phenomena by drawing a relationship between angular 
frequency and wavenumber (after Toomey and Bean (2000)) 
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(O’Donovan et al., 2012) studied seismic S-waves propagation within an 

idealized frictional uniformly-radius sized disks 0.0029 [m] in a hexagonal 

packing using a series of PFC2D simulations. They applied the idea of bender 

element test, originally proposed by (Shirley and Hampton, 1978) used in 

experimental soil mechanics such as standard triaxial tests to measure the P 

and S wave velocities and small strain shear modulus of soil (e.g. Kuwano 

and Jardine, 2002), for their DEM simulations. It is to be noted that a bender 

element is made of a small piezoceramic plate and can generate ultrasonic 

waves when a signal is sent through it. Pairs of these bender elements are 

inserted at the centre of the bottom and top of soil DEM model as a 

transmitter and receiver of a signal wave. The lateral boundaries applied in 

this work were static membrane particles to maintain constant confining 

pressure on them during the wave propagation simulation. It is done by 

applying an external force to each membrane particle. The algorithm of 

applying external force is based on the work proposed by (Cheung and 

O'Sullivan, 2008). The top and bottom boundaries were rigid walls according 

to this algorithm (see figure 3-10).   

 

 

Figure 3-10 the DEM model used by O’Donovan et al., (2012) and Marketos and O’Sullivan, 
(2013) to simulate bender element test. 
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It is to be noted that the algorithm of membrane particles proposed by 

Cheung and O'Sullivan, (2008) was originally created to simulate membrane 

latex in a biaxial test. Connectivity between membrane boundary particles 

was not considered in this algorithm. That is, a number of the membrane 

particles are unlikely to be in contact with its immediate membrane particles, 

while the membrane latex in standard triaxial test is continuus. Thus, the use 

of this algorithm for seismic research is restricted to hexagonal packs. 

Another limitation of this code is that once one of the membrane particles 

loses its contact with its immediate membrane boundary particles as the 

boundary is deflected, it is removed and a new particle with the same 

material properties and size is inserted into the membrane boundary. The 

place of this new particle in the membrane is the place of the deleted particle 

which was already in contact with other membrane particles before losing its 

contact. Removing a boundary particle from a dynamic system leads to 

chaos in the average un-balanced system of forces being considered. This 

chaos propagates through the model within a number of time steps and the 

current particles velocities will be changed. Thus, the amplitude of periodic 

load applied to the base of this model should be very small to prevent this 

issue. However, the use of membrane boundary particles in this work leads 

to a reduction in the impedance mismatch between the particles and the 

deformable boundary particles because of the forces applied to the boundary 

particles. Since there is no restriction applied to membrane particles adjacent 

to a rigid wall, they can move more freely. That is, more energy is absorbed 

at the deformable boundaries. This leads to a reduction of reflecting waves 

through the deformable boundaries. Applying rigid walls at the top and 

bottom of the model results a large impedance mismatch between rigid 

boundaries and the particulate system. Therefore, the whole of the energy 

wave is reflected back into the system. This shows that the use of rigid walls 

boundaries to simulate the wave propagation with DEM results in reflection of 

energy to the sample being considered.  Therefore the seismic responses 

obtained by this condition should be used with caution.  

The input seismic energy to the system which was applied to the transmitter 

particles was a horizontal pulse sinuous displacement with amplitude 1.25 
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(𝜇𝑚) with frequencies between 4 and 12 [kHz]. Due to this perturbation, the 

seismic waves including P and S waves that propagated through the sample 

and were measured at the receiver particle. The propagation of the wave in 

this work was tracked by demonstrating both the particle velocities and the 

mean normal and shear particle stresses at different times.  

In spite of applying this idealized hexagonal pack, the response of the system 

was in good agreement with lab data. The results show that under small 

seismic perturbations in shear direction, no change in contact configuration of 

hexagonal pack took place. That is, the material seems to be elastic as 

plasticity is related to contact breakage and sliding. Thus, the system being 

considered is fully homogeneous with lattice packing such that the contact 

force network is homogeneous. This is in contrast with soil packing 

configuration in reality where the size of particles varies, chains force are 

highly inhomogeneous and contact can break and slide in the course of 

loading. Additionally, the effect of dynamic boundary is not applied in this 

work to artificially consider the presence of infinity media.  

Marketos and O’Sullivan, (2013) created the stiffness and mass matrices of a 

un-damped granular sand from PFC2D data to compute its vibration modes, 

natural frequencies and transfer function. The DEM assumption applied for 

this work is the same as that of O’Donovan et al., (2012).  However, the input 

frequancy was 40 [kHz]. Marketos and O’Sullivan, (2013) said “Consideration 

is restricted here to a very simple system, that of a two-dimensional damped 

crystalline assembly of dry, uniformly sized grains. The conclusion drawn 

here are likely to be applicable to more random and three-dimensional 

packings; confirmation this requires future development of a more 

sophisticated model.” 

The results show that applying pure shear wave force at the transmitter 

particle results in both horizontal and vertical motion of the receiver particle. 

That is, applying pure shear wave propagates P-wave and S-wave within a 

sample. They said the reason of this is a combination of the granular packing 

and boundary conditions. Since the transmitter particle was excited, and 

because the contacts with the next row of particles were at angles of 60° and 
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120° these were forced to move vertically as well as horizontally. This was 

also observed by O’Donovan et al., (2012). The effect of different boundary 

conditions such as full rigid boundaries and mixed rigid top and bottom 

boundaries and lateral membrane boundary particles during a pure shear 

pulse excitation on the particles motions were also studied. It was seen that 

rigid walls leads to fully reflect the wave and increase the amplitude of 

receiver displacement. Changing the input frequency from 4 [kHz] to 40 [kHz] 

caused a big difference in the received signal shape at the receiver particle. 

An interesting result obtained from this work is that the minimum natural 

frequancy of granular sand is inversely proportional to the number of particles 

at the base of the model, while the maximun natural frequency of granular 

sand increases by increasing the number of particles at the base of the 

model.   

El Shamy and Denissen (2010) investigated liquefaction phenomena using a 

series of DEM simulations. They monitored the energy components of 

saturated sand including friction, viscous damping, kinetic, strain, and drag 

energies during a periodic loading. It was found that at the onset of 

liquefaction, the loss of energy increased remarkably. They increased the 

vertical gravitational acceleration to 25 to reduce the dimensions of the model 

and cost of simulation significantly. That is, the dimensions and time scales in 

the computational model declines by a factor of 25 while the acceleration 

amplitude and frequency of the seismic motion in the simulations will be 25 

times larger than those of the prototype. However, increase in gravity 

acceleration leads in increase the weight of individual particles and its inertial 

force. Increase in the weight of particles results in increase in the initial 

overlap between contacting particles before applying dynamic loading. Thus, 

to move the particle from its static equilibrium position during earthquake 

excitation more displacement is required. Additionally, an increase in the 

initial value of overlap between contacting particles increases the contact 

forces between the particles forming the granular system. Thus, the initial 

condition of the system will be completely different from the real one. Thus, 

the results at the prototype scale cannot be simply obtained by multiplying 

the results obtained from the model by a factor of 25. The initial fabric 
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condition plays an important role on the response of the granular system. As 

will be seen in section 3.3, the fabric quantities are dependent on the 

geometry of contact points. The geometry of contact points will be different 

for a model with an applied gravitational acceleration of -9.81 [m/s2] and a 

model with an applied gravitational acceleration of -25g [m/s2].  

In terms of boundary conditions, periodic boundaries were used to simulate a 

semi-infinite media in the two lateral directions in this work. The top of the 

model was the ground surface and the base of the model was rigid wall (see 

figure 3-11a). The use of periodic boundaries has the following effect on the 

physics of wave propagation. When a seismic wave reaches to the lateral 

boundary, it does not reflect but it also does not transmit to the infinite media. 

Rather, a wave with the same properties enters to the system from the 

adjacent virtual system on the opposite side. When this boundary condition is 

applied, the expansion of model during loading cannot be take place because 

the dimension of periodic space is already set to a constant value. When the 

system expands, the displacement of boundary particles may exceed the set 

periodic space. At this stage, those boundary particles will be removed 

automatically and the same particle enters to the system from the adjacent 

virtual system on the opposite side. This leads to change in the normal shear 

force distribution on the boundary. It will be seen further any unexpected 

changes in boundary particles result in change in the average un-balanced 

force system. That means the significant and permanent chaos in un-

balanced forces and particles velocities will be take place. Thus, the 

magnitude of periodic load imported to the base of system should be small 

enough to prevent a boundary particles flying over the periodic boundary. 
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Figure 3-11 The boundary condition used by Zamani and El Shamy (2011), El Shamy and 
Denissen (2010) and Zamani and El Shamy (2012). 

 

Zamani and El Shamy (2011) studied earthquake seismic wave propagation 

through the dry granular soil using PFC3D qualitatively. The same conditions 

applied by El Shamy and Denissen (2010) were used for this work. Three 

types of base conditions were studied in this work to investigate the effects of 

base material on the macroscopic behaviour of system: rigd bedrock, elastic 

bedrock and infinite base (see figures 3-11a and 3-11b). It was seen that 

applying a rigid base condition results in amplification in particle acceleration 

though the sample, while applying infinite base boundary condition does not 

cause the amplification in particle acceleration through the sample. However, 

the amplification in particle acceleration through the sample due to an elastic 

base boundary condition produces amplification but it is significantly lower 

than those introduced by a rigid base.  

Zamani and El Shamy (2012) studied seismic response of dry soil-shallow 

foundation interaction using PFC3D qualitatively. The same conditions applied 

by El Shamy and Denissen (2010) were used for this work. The results 

showed that DEM can be used to study the complex seismic soil-structure 

interaction problems.  
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3.3 The analysis of fabric of sand  

3.3.1 Introduction   

Particles are in static equilibrium until an earthquake occurs. A drift in 

displacement of any particle having one or more contacts about its 

equilibrium position during earthquake loading induces additional normal and 

shear contact forces at each contact point (called additional normal and 

shear dynamic contact forces) at each time step. These new contact forces 

generate an additional un-balanced force for each particle. This results in 

accelerating the particles. Depending on the magnitude of this acceleration at 

each time step, the fabric quantities change. These alterations may result in 

lost contacts or new contacts between particles. The energy applied to a 

granular system is lost as particles move a collide. Sand is considered as a 

collection of frictional discrete particles in which each particle has its own 

morphology and contact stiffness. The static and dynamic macro-mechanical 

behaviour of such granular material is influenced by its fabric evolution (e.g. 

contact configuration). Studying the fabric evolution of a sand assembly 

during the seismic loading with and without a pile element opens a new 

window to advance our understanding on the responses of sand element. It 

is because, the boundary excitation propagates through the contact network.   

However, analysing the sand fabric and its effect on the macro-micro 

mechanical stress-strain behaviour of the element whether the element is 

subjected to  static or dynamic loading by means of experimental tests or 

analytical methods is difficult (Luo, 2012, Yimsiri and Soga, 2010, 

Rothenburg and Bathurst, 1989).   

Alternatively, DEM-based simulations can provide the particle-level 

information such as particle movements and rotations, contact forces, contact 

directions, particle velocities, average coordination, porosity, relative density, 

specific volume and particle size distribution. Thus, this method can be used 

to study the evolution of sand fabric under seismic loading with or without the 

presence of a pile. Although, many efforts have been made to describe the 

fabric and macro-mechanical behaviour of sand under monotonic and quasi-

static cyclic loading using DEM such as (Luo, 2012, O'Sullivan et al., 2008, 
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Sitharam, 2003, Soroush and Ferdowsi, 2011, Belheine et al., 2009, Sazzad 

and Suzuki, 2010, Iwashita and Oda, 1998, Rothenburg and Kruyt, 2004, 

Thornton and Zhang, 2003, Mahmood and Iwashita, 2010, Yimsiri and Soga, 

2010, O'Sullivan and Cui, 2009, Cui et al., 2007, Cheung and O'Sullivan, 

2008, Yan and Zhang, 2013), no study has been carried out to examine the 

evolution of sand assembly fabric under seismic loading and no evaluation of 

the evolution of sand assembly fabric in presence of a pile under seismic 

loading. 

3.3.2 The history of studying sand fabric 

The early works related to the study of sand fabric was by (Arthur and 

Menzies, 1972, Miura et al., 1986, Oda, 1972). In these works, the fabric 

evolution and its effect on the macro-mechanical behaviour of sand subjected 

to static load were experimentally studied. Monitoring the evolution of contact 

configuration at different stages of loading process is, however, difficult to 

observe. Optical technology such as X-ray diffraction and electronic 

measurement techniques was used by a number of researchers (e.g. Lee et 

al., 1992, Hasan and Alshibli, 2010) to study the evolution of granular 

materials for quantitative and qualitative studies (Ng, 2001). However, the 

experimental methods are time consuming and difficult to apply. Thus, an 

alternative method is required to quantitatively and qualitatively study the 

fabric of sand.  

Void ratio, porosity and specific volume are fabric quantities (Brewer, 1964) 

in classical soil mechanics. The overall response of sand subjected to 

loading in DEM simulations can be partly estimated by void ratio and the 

mean effective stress of the specimen (Lamb and Whitman, 1969). However, 

such fabric descriptors used to quantify the packing density of the granular 

materials cannot explicitly describe the internal structure of granular materials 

during loading. Therefore, a micro-mechanical study should be conducted to 

examine sand fabric, including contact configuration, contact force 

configuration, using the microscopic quantities.  

The analysis of sand fabric is generally performed by micro-mechanics. 

Micro-mechanics is a field of geo-mechanics trying to statistically interpret the 
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fabric of granular materials and study the macro-mechanical behaviour of 

granular materials by applying a number of fabric quantities. The use of fabric 

quantities, however, is needed to extract particle-level information such as 

particle movements and rotations, contact forces, contact directions and 

number of contacts per particle. These data are obtained from DEM 

simulations.  

3.3.3 Average coordination number 

One of the key microscopic parameters, which are defined at particle-level, is 

the average coordination number. This parameter is the average number of 

contacts per particle within a specific volume of a particulate assembly and 

consequently it provides a measure of packing density or packing intensity of 

fabric at particle-level. For a specific volume of particulate assembly with 𝑁𝑝 

particles and total number of contacts, 𝑁𝑐, the simplest definition of average 

coordination number 𝐶𝑛 is given by:  

𝐶𝑛 =
2𝑁𝑐
𝑁𝑝

                                                                                                                               3.10 

Since each contact is shared between two particles, the actual number of 

contacts is multiplied by 2. From the micro-mechanical stability perspective, 

the stability and equilibrium of each particle within a particulate system is 

dependent on its coordination number and arrangement of contact points. 

Therefore, as outlined by (Thornton, 2000) and (Kuhn, 1999) only active 

contacts should be considered for calculating the average coordination 

number. (Maeda, 2009, Rothenburg and Kruyt, 2004) have shown that 

average coordination number should be at least three for each disk when a 

granular system is in quasi-static equilibrium. However, this average fabric 

quantity cannot show how contact points are distributed. Thus, a number of 

tensor quantities are needed to statistically describe the orientation of 

contacts and contact force during loading. 

3.3.4 Contact normal distribution  

An early study on contact normal distribution and contact force distribution for 

an idealized particulate system during loading was by (Dantu, 1957). Photo-

elasticity was used. The distribution of both normal contact orientations and 
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normal contact forces was monitored during these tests. Clear biases in 

orientation of contacts during loading were noted. (Oda, 1972), using drained 

triaxial test on resin-impregnated samples of sand, showed that soil strength 

and stiffness was highly anisotropic because the number of contacts in the 

direction of major principle stress axis was higher than those in the direction 

of the minor axis. Thus, the re-arrangement of particles during loading from 

an isotropic state to an anisotropic state leads to “anisotropy of contact 

orientation” or “fabric anisotropy” in a granular system. (Oda et al., 1980) 

showed that the extent of this anisotropy can be found by studying the 

standard deviation of each particle coordination number at different time of 

triaxial test. However, this approach is time-consuming to apply.  

Since the contact normal and contact force are simply extracted from DEM 

outputs at any time-step, the study of fabric anisotropy, including average 

normal contact distribution, average normal contact force distribution and 

average shear contact force distribution, by using DEM outputs is possible. 

These fabric quantities can be shown either in tensorial form or in polar 

diagram form. The “polar diagram” is often used by those working with DEM.  

The contact normal, 𝑛𝑐, is the unit normal vector at a contact point between 

two particles (see figure 3-12a). The vector connecting the centroid of two 

particles is called the branch vector or contact vector. However, for circular 

particles in contact, the branch vector coincides with the line connecting the 

centres of the two particles (see figure 3-12b). 
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Figure 3-12 Defining contact normal vector for real and circular particles 

 

To show the statistical distribution of contact normal vectors within a 

representative volume element (RVE) (see figure 2-7) (see figure 3-13) the 

direction of each unit normal vector is plotted in the form of a polar diagram 

using an angular interval to define the range of direction θ).   

 

 

Figure 3-13 Polar diagram of normal contact distribution along with approximate continuous 

function 
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Increasing the number of particles within a RVE produces a smoother polar 

diagram. As a result, the polar diagram can be estimated with a continuous 

function 𝐸(𝜃) (i.e. probability distribution function of unit normal vectors for 

disk assemblies). (Rothenburg, 1980) proposed a closed form solution to 

estimate the normal contact distribution histogram. The key feature of this 

function is that 𝐸(𝜃) = 𝐸(𝜃 + 𝜋):   

𝐸(𝜃) =
1

2𝜋
[1 + 𝑎 cos2(𝜃 − 𝜃𝑎)]                                                                                     3.11 

Where a  represents a “geometrical anisotropy” in a granular system, 

depending on the number and density of unit normal vectors in principles 

axes. For example, if 𝑎 = 0, 𝐸(𝜃) will be a circle such that the state of the 

system being considered is in an isotropic state. 𝜃𝑎  𝑖𝑠 the direction of 

aanisotropy. Parameters, 𝑎 𝑎𝑛𝑑 𝜃𝑎, are obtained by the following equations:  

𝑎 =
2 sin ∆𝜃

𝑁∆𝜃
√[∑𝑁𝑔 sin((2𝑔 − 1)∆𝜃]

𝑛𝑔

𝑔=1

2

+ [∑𝑁𝑔 cos((2𝑔 − 1)∆𝜃]

𝑛𝑔

𝑔=1

2

 

                                                                                                                                                  3.12 

𝜃𝑎 =
1

2
tan−1

∑ 𝑁𝑔 sin((2𝑔 − 1)∆𝜃
𝑛𝑔
𝑔=1

∑ 𝑁𝑔 cos((2𝑔 − 1)∆𝜃
𝑛𝑔
𝑔=1

  

where 𝑁 is the total number of contact. ∆𝜃 =
360

𝑛𝑔
,  𝑛𝑔 the number of segments 

and  𝑁𝑔 is the number of contacts within the 𝑔th segment. It is seen that 

𝑎 𝑎𝑛𝑑 𝜃𝑎 obtained from Eq. 3.12 are ∆𝜃-dependent such that changing the 

value of angular interval results in changing these parameters. In fact, these 

fabric anisotropy parameters show the ability of granular systems to create 

the anisotropy state in normal contact distribution and normal force 

distribution quantities. There are a number of DEM studies which have 

examined the influence of anisotropy of contact orientation on the macro-

mechanical sand. More recently (Sazzad and Suzuki, 2010, Yimsiri and 

Soga, 2010, Mahmood and Iwashita, 2010) using monotonic and cyclic 2D 

biaxial and 3D triaxial DEM simulations showed that the initial fabric and 
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preferential or induced fabric plays an important role on the overall macro-

mechanical behaviour of sand.  

3.3.5 Contact force distribution  

Parameters 𝑎 𝑎𝑛𝑑 𝜃𝑎 can statistically show the deviation between the unit 

normal vector at any step during loading and that for an isotropic 

arrangement of the particles. The same idea can be used to draw the polar 

diagram of contact force distribution, which shows the deviation between the 

geometry of contact force distribution at any step during loading and the 

isotropic geometrical contact force distribution of a granular system. Contact 

forces can be expressed as average normal forces, 𝑓�̅�
𝑐(𝜃), and average 

tangential forces, 𝑓�̅�
𝑐(𝜃).   

The distribution function of average normal contact force, 𝑓�̅�
𝑐(𝜃), and 

tangential forces, 𝑓�̅�
𝑐(𝜃) was initially proposed by (Rothenburg, 1980) for disk 

particles.  

As the normal force component is perpendicular to the contact plane (see 

figure 3-12), the form of probability distribution function of average normal 

contact force is the same as “normal contact distribution” equation:  

𝑓�̅�
𝑐(𝜃) = 𝑓0̅

𝑐[1 + 𝑎𝑛 cos 2(𝜃 − 𝜃𝑛)]                                                                                  3.13  

where 𝑎𝑛 is the normal contact force anisotropy. 𝜃𝑛 is a direction of the 

normal contact force anisotropy. The same method used to compute the 

contact normal distribution is used here to specify 𝑎𝑛 and 𝜃𝑛: 
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𝑓0̅
𝑐 =

1

2𝜋
∑𝑓𝑛

𝑐(𝑔)∆𝜃

𝑛𝑔

𝑔=1

        

𝑎𝑛 sin 2𝜃𝑛 =
1

𝜋𝑓0̅
𝑐
∑𝑓𝑛

𝑐(𝑔) sin((2𝑔 − 1)∆𝜃)∆𝜃

𝑛𝑔

𝑔=1

 

                                                                                                                                                    3.14  

𝑎𝑛 cos 2𝜃𝑛 =
1

𝜋𝑓0̅
𝑐
∑𝑓𝑛

𝑐 (𝑔)cos((2𝑔 − 1)∆𝜃)∆𝜃

𝑛𝑔

𝑔=1

 

𝑓𝑛
𝑐(𝑔) =∑𝑓𝑛

𝑐𝑖

𝑛𝑐𝑔

𝑖=1

 

where 𝑛𝑐𝑔 and 𝑓𝑛
𝑐𝑖 are the number of contacts within 𝑔th segment and the 

normal contact force of 𝑖th contact from 𝑔th segment respectively. If 𝑎𝑛 = 0, 

𝑓�̅�
𝑐(𝜃) = 𝑓0̅

𝑐. That is, if the deviation of contact forces from average value of 

contact forces is small, the system  is likely to be isotropic (O'Sullivan, 2011). 

The distribution function of average shear contact force is defined as follows:  

𝑓�̅�
𝑐(𝜃) = −𝑓0̅

𝑐[𝑎𝑡 sin 2(𝜃 − 𝜃𝑡)]                                                                                        3.15 

where 𝑎𝑡 and 𝜃𝑡  are the magnitude of shear contact force anisotropy and the 

direction of the shear contact force anisotropy respectively which are 

obtained by the following equation: 

𝑎𝑡 sin 2𝜃𝑡 =
1

𝜋𝑓0̅
𝑐
∑𝑓𝑡

𝑐(𝑔) sin((2𝑔 − 1)∆𝜃)∆𝜃

𝑛𝑔

𝑔=1

 

𝑎𝑡 cos 2𝜃𝑡 =
1

𝜋𝑓0̅
𝑐
∑𝑓𝑡

𝑐 (𝑔)cos((2𝑔 − 1)∆𝜃)∆𝜃

𝑛𝑔

𝑔=1

                                                       3.16 

𝑓𝑡
𝑐(𝑔) =∑𝑓𝑡

𝑐𝑖

𝑛𝑐𝑔

𝑖=1
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where  𝑓𝑡
𝑐𝑖 is the shear contact force of 𝑖th contact from 𝑔th segment. (Kruyt, 

2003), by comparing the results obtained from DEM biaxial tests on two 

separate samples, where one of them was filled with 1000 particles and other 

filled by 20000 particles, showed that increasing the number of particles 

produces results which are similar to those from continuum analysis. This 

fact was also proved by (Momeni et al., 2012, Rothenburg, 1980) who 

implemented a series of sensitivity DEM biaxial tests. Thus, an increase in 

the number of particles within a RVE (i.e. applying particles with finer size) 

results in 𝐸(𝜃), 𝑓�̅�
𝑐(𝜃) and 𝑓�̅�

𝑐(𝜃) become smoother. It also leads to the 

estimated average stress and strain tensors within a RVE become more 

representative of the average stress for the whole sample provided each 

particle has at least three contact points.  

3.3.6 Sand particle morphology 

Particle morphology (e.g. shape and surface roughness) is one of the fabric 

quantities, and has a significant effect on the fabric and subsequently on the 

macro-mechanical behaviour of particulate system (Iwashita and Oda, 1998, 

Sazzad and Suzuki, 2010, Oda et al., 1985, O'Sullivan et al., 2002, 

O'Sullivan, 2011, O'Sullivan, 2012, Mitchell and Soga, 2005).  

In terms of particle roughness, (Iwashita and Oda, 1998) using DEM biaxial 

simulations showed that particle roughness has a significant effect on the 

fabric and macro-mechanical behaviour of disk sand assemblies. It is 

because the effect of rolling resistance is considered for the dynamic 

equilibrium of each particle (𝐼�̈� + 𝐶�̇� + ∑𝐾𝜃𝜃 = 𝑀). 𝐼, 𝐶, 𝐾𝜃, 𝜃 𝑎𝑛𝑑 𝑀 are 

particle moment of inertia, damping ratio, rolling stiffness of particle, angular 

displacement of particle and resultant moment. The effect of particle shape 

on the fabric and macro-mechanical behaviour of granular material was also 

studied by (Sazzad and Suzuki, 2010). In their work, the macro-mechanical 

behaviour of sand specimens, with oval roughness shape, was studied by 

implementing a series of DEM biaxial simulations. It was found that the 

particle rotation, which is due to shear and normal contact force, decreases 

and subsequently the Young’s modulus, peak stress and Poisson’s ratio of 

sand increases.   
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(O'Sullivan, 2012) showed that if the particle size is larger than 0.1 mm, the 

surface roughness will have a minor effect on the material behaviour in 

comparison with the particle inertia. That is, the effect of rolling resistance in 

the dynamic equilibrium of each particle can be ignored.  

3.3.7 Stress-force-fabric relationship 

The relationship between fabric quantities and average stress tensor for a 

system with idealized circular particles was first suggested by (Rothenburg, 

1980).  

𝜎𝑥𝑥 =
𝑚𝑣𝑙0̅

𝑐�̅�0
𝑐

2
[1 +

𝑎𝑎𝑛

2
+
𝑎+𝑎𝑛+𝑎𝑡

2
cos 2𝜃𝑎] 

𝜎𝑦𝑦 =
𝑚𝑣𝑙0̅

𝑐𝑓0̅
𝑐

2
[1 +

𝑎𝑎𝑛
2
−
𝑎 + 𝑎𝑛 + 𝑎𝑡

2
cos 2𝜃𝑎]                                                          3.17 

𝜏 =
𝑚𝑣𝑙0̅

𝑐𝑓0̅
𝑐

2
[
𝑎 + 𝑎𝑛 + 𝑎𝑡

2
sin 2𝜃𝑎] 

where 𝑙0̅
𝑐 is the mean of particle radius within a RVE. 𝑚𝑣 is the “average 

contact density” defined as follows (Rothenburg and Bathurst, 1989):  

𝑚𝑣 =
2𝑁𝑐
𝑉
                                                                                                                               3.18 

where 𝑉 is the volume of RVE. Other parameters such as 𝑎,

𝜃𝑎 , 𝑎𝑛, 𝑓0̅
𝑐 and 𝑎𝑡, are obtained from Eq. 3.12, Eq. 3.14 and Eq. 3.16. t 

invariants of stress tensor, isotropic stress, s, and internal mobilized friction 

are: 

𝑠 =
𝜎𝑥𝑥 + 𝜎𝑦𝑦

2
=
𝑚𝑣𝑙0̅

𝑐𝑓0̅
𝑐

2
[1 +

𝑎𝑎𝑛
2
] 

𝑡 = 𝜎𝑥𝑥 − 𝜎𝑦𝑦 =
𝑚𝑣𝑙0̅

𝑐𝑓0̅
𝑐

2
[𝑎 + 𝑎𝑛 + 𝑎𝑡]                                                                          3.19 

sin (𝜃) =
𝑡

𝑠
=
𝜎𝑥𝑥 − 𝜎𝑦𝑦

𝜎𝑥𝑥 + 𝜎𝑦𝑦
≅
[𝑎 + 𝑎𝑛 + 𝑎𝑡]

2
 

Eq. 3.17 and 3.19 shows that the macro-stress tensor components have a 

direct relationship with fabric quantities such as 𝑎, 𝑎𝑛, 𝑎𝑡, 𝜃𝑎  and 𝑚𝑣 and inter-
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particle forces. These equations also show that the angle of friction, 𝜃, of a 

granular system depends on how much this system is able to develop 

anisotropy in its fabric. That is, an increase or decrease in the values of fabric 

anisotropy parameters result in an increase or decrease in the shear strength 

parameters of a particulate system. At each time step the required DEM 

outputs are extracted and the fabric quantities computed using Eq. 3.12 to 

Eq. 3.16. Therefore, monitoring the stress tensor components using this 

approach increases the time of computation. 

However, the fabric quantities addressed above are a collective terms and 

fails to address the individual particles’ instability. As the failure of pile during 

earthquake is because of individual particles’ stability where are adjacent to 

it, a new fabric quantity is required to investigate at each time step the 

stability of both each single particle and bulk. This term, called “symmetric 

geometric deviation index”, will be introduced in chapter 4. 

3.4 Conclusion 

In this chapter, the impact of a seismic event was considered by assessing 

how a wave propagates through a simulated granular system. Due to the 

computational time of DEM simulations, the granular media is discretized into 

small parallelepiped cells or RVEs. DEM simulation is then applied to 

simulate each cell. Special conditions should be applied for the boundary 

particles to simulate the effect of infinite media. A literature review of the 

impact of the boundary conditions on wave propagation in a using continuum 

was done was used to provide the deformable boundary particles algorithm 

used in Chapter 6.   

A literature review on the phenomena of wave propagation using DEM was 

done. It was seen that the number of works using DEM for seismic problems 

was limited. Frequencies higher than those observed in earthquakes and 

hexagonal pack media rather than random packing were considered. Other 

works increased the gravity to decrease the time of simulations. However, 

the boundary conditions applied for these work was also based on the static 

boundary. Thus, a new algorithm was required to for a boundary in dealing 

with dynamic problems. 
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Studying how seismic waves propagate through the contact networks helps 

gain an insight into the fabric evolves during an earthquake and how that 

fabric evolution affects the macro-mechanical behaviour. For this purpose, a 

literature review on the both fabric quantities and the application of fabric on 

seismic behaviour of soil was carried out. It was found that there was no work 

carried out to investigate the effect of fabric evolution on the macro-

mechanical behaviour of sand.  
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Chapter 4 

4 The development of the DEM model 

4.1 Introduction  

The macro-mechanical behaviour of granular sand is related to the 

parameters that affect the inter-particle interaction forces. The Discrete 

Element Method takes into account the discrete nature of sand (Antony, 

2007, O'Sullivan et al., 2002, O'Sullivan, 2011). As with any numerical 

method, assumptions still have to be made such as inter-particle properties, 

particle shape, size and configuration in DEM simulations. The former is 

addressed through the contact model. As a DEM model’s response is based 

on inter-particle forces and displacements, the homogenization approach is 

used to obtain the average macro-mechanical response. The macro 

mechanical response is then validated against appropriate experimental 

data. 

The accuracy of this validation depends on replicating the geometric 

properties of the sample and selecting the appropriate inter-particle 

properties. The former means creating a configuration of particles that has 

the same geometry including boundary conditions and particle size 

distribution as the experimental sample. However, this cannot be achieved 

because of the nature of the particles; the number, the shape, the size and 

the distribution will be different between the numerical model and the 

experimental sample. Therefore, any model can be similar but not the same 

as the real sample.  

The second issue, and fundamentally more important, is the inter-particle 

relationship, which is based on a number of variables including the particle 

stiffness, particle size and the inter-particle friction. It is possible to fit a single 

experimental curve with a number of combinations of these variables. 

However, not all the combinations will be valid because there can be some 

interdependencies between the parameters and there are limits to the range 

of the parameters.   
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A sensitivity analysis will identify which are the critical parameters and the 

range over which the parameters impact on the mass behaviour. Mass 

behaviour is used as the outcome as it provides a link to experimental 

behaviour, which provides the macro mechanical properties.  

The main aim of this chapter is to develop a DEM model to perform biaxial 

test simulation with different boundary conditions such as rigid and 

deformable boundary particles using PFC2D. This model is then used in 

chapter 5 for sensitivity analysis. A review of the assumptions and limitations 

of PFC2D is presented. A new method to define deformable boundary 

particles is presented. Also a method which is required to define the normal 

contact stiffness is discussed. A new fabric quantity term, called “symmetric 

geometric deviation index” is also defined.  

4.2 The DEM-based biaxial tests 

The macro-mechanical characteristics of sand are found from field and 

laboratory tests. The triaxial test is the most common laboratory method used 

to determine the stress strain characteristics. However, many problems in 

geotechnical design assume plane strain (e.g. Lambe and Whitman, 1969, 

Wood, 1990). Therefore, a biaxial test may be more appropriate assuming 

that the soil response is different between triaxial and biaxial behaviour. For 

this purpose, biaxial test simulations are needed to reproduce the macro-

mechanical behaviour of sand. To simulate a biaxial test using PFC2D, an 

algorithm written using the Fish language programming code is required. 

Before describing this algorithm and its assumptions and limitations, it is 

essential to illustrate the assumptions and limitations of PFC2D.  

4.2.1 Assumptions and limitations of PFC2D 

The two-dimensional version of particle flow code or PFC2D (Itasca, 2008) is 

based on the DEM numerical algorithm. The accuracy of this programme has 

been already approved by other researchers (e.g. Belheine et al., 2009, 

Bhandari et al., 2014). As with any numerical method, it is necessary to 

consider the limitations and assumptions when using PFC2D. These 

limitations and assumptions are as follows: 
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4.2.1.1 Two-dimensional simulations 

Providing a two-dimensional DEM simulation using PFC2D requires two in-

plane force components and one in-plane moment. Stress and strain tensors 

exist at each point within a continuum media, they cannot be determined 

within a granular media. An averaging method is used to estimate the 

average stress and strain tensors within an RVE. Since the in-plane contact 

force components are considered to calculate the average stress tensor in 

2D case and the out-of-plane force component is not taken into account in 

the motion equation - i.e. the out-of-plane constraint factor which is essential 

to enforce a state of plane strain or plane stress is not present, the 

interpretation of PFC2D results in terms of either plane strain or plane stress 

will be a controversial issue.  

The two-dimensional assumption, however, has an advantage. The dynamic 

response of a particulate system is greatly dependent on the number of 

degrees of freedom of each particle within these systems. In 3D DEM 

simulations, each idealized particle has six degrees of freedom while in 2D 

cases there are three degrees of freedom per particle. The computational 

effort in 2D DEM simulations will be less than 3D simulations and therefore 

faster. Furthermore, the number of documented 2D DEM studies published 

annually shows that 2D DEM simulations are able to capture the key complex 

mechanical response features of soil medium. Moreover, many problems in 

geotechnical design are assumed to be plane strain. Therefore, the two-

dimensional analysis may be more appropriate.  

4.2.1.2 Particle geometry 

In morphological terms, sand particles have a complex geometry such that a 

particle may have more than one contact point with its neighbouring particle 

(see figure 4-1). When a particle is squeezed by their surrounding particles 

during loading, their geometry will change. Therefore, finding the current 

geometry characteristics of a deformed particle such as particle centroid and 

contact geometry in the framework of a simple analytical manner will be 

difficult. To overcome this difficulty, as mention in the previous chapter all 

particles are assumed to be rigid with soft contact. This condition is 

applicable only for disk and spherical particles which behave elastically. It is 
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because the contact deformation for such particles based on the principle of 

contact mechanics can properly demonstrate the particle deformation in 

elastic domain behaviour (Johnson, 1985). However, for complex particle 

geometry, this assumption may results is unrealistic contact behaviour 

(Bardet, 1998).   

 

 

Figure 4-1 A possible shape of sand particles showing multiple contact points for two 
particles 

 

4.2.2 Elastic normal contact model 

The response of soil systems is dependent on both relative movement of 

particles and contact deformations. The normal contact model is a 

relationship between the normal contact force, 𝐹𝑛, and normal contact 

deformation, 𝑈𝑛, 𝐹𝑛 = 𝑓(𝑈
𝑛). To find the contact deformation, it is vital to 

define a proper contact model which must be compatible with the 

assumptions and the limitations of both DEM and PFC2D. All particles are 

rigid disk with soft contact. This restricts the simulations to an elastic contact 

model. For quartz sand material, the Young’s modulus is relatively high 

compared to the soil skeleton (Nakata et al., 2001a), therefore, it can be 

assumed that a particle might behave elasticity during loading (Nakata et al., 

2001b) since most of the deformation will be due to the movement of the 

particles.  
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When modelling the behaviour of sand subject to quasi static loads 

 Contact velocity is low since the unbalanced force is small,  

 The particle rigidity is much greater than the rigidity of the particle 

skeleton. 

Some sand grains may undergo plastic deformation and possibly fail but the 

macro failure mode of the sample is dominated by the relative displacement 

between the sand grains (e.g. Nakata et al., 2001b). Therefore, a simplified 

contact model such as elastic contact model can be used. Two types of 

elastic normal contact models are generally used by researchers in soil 

mechanics and soil dynamics: the modified Hertz model and the linear elastic 

contact model.   

The limitations and assumptions of these two contact models are dependent 

on the limitations and assumptions of the Hertz contact model. The Hertz 

contact model is originally obtained for two spherical particles in contact. The 

assumptions of Hertz contact model are: 

1- The strains are small and within the elastic limit, 

2- The radius of contact area is much smaller than the particle radius, 

3- The width of contact zone is infinitesimal,  

4- The particle surface is continuous,  

5- The particles are frictionless, 

6- The particles are spherical, 

7- The particles are considered as an elastic half-space, 

8- Failure criterion is not applied. 

However, as this analysis is 2D, the particles are disks and assumed to be 

elastic the following assumptions are considered:   

1- Particles are assumed to be rigid with an elastic soft contact zone, 

2- Contact point is considered rather than contact area between two 

particles, 

The contact models link contact forces to contact deformation not contact 

stress to contact strain. This reduces the degrees of freedom to one.  
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4.2.2.1 Hertz contact model 

In the Hertz contact model (see figure 4-2a), the normal contact stiffness at 

the interface of two particles (i.e. 𝑘𝑛) is dependent on the elastic modulus, 

Poisson’s ratio and geometry of the two particles (see Eq. 4.1 to Eq. 4.4). 

These material properties are defined by the user.   

𝑘𝑛 = {
2𝐺∗√2𝑅∗𝑈𝑛

3(1 − 𝜐∗)
}                                                                                                               4.1 

𝑅∗ =
2𝑅1 ∗ 𝑅2
𝑅1 + 𝑅2

                                                                                                                         4.2 

𝐺∗ =
1

2
(𝐺1 + 𝐺2)                                                                                                                    4.3 

𝜈∗ =
1

2
(𝜈1 + 𝜈2)                                                                                                                      4.4 

In which 𝑈𝑛 is contact deformation or overlap and computed by PFC2D 

compiler at each time step from (Eq. 3.3). The other symbols are shown in 

figure 4.2. Typical values of shear modulus and Poisson’s ratio of quartz 

sand particles can be found from the literature or acquired from a uniaxial 

compression test on a quartz sand particle (i.e. the change in diameter, both 

in line with the load and perpendicular to the load will be used to obtain the 

compression stiffness of that grain. However, the latter is difficult to perform 

(e.g. McDowell and Bolton, 1998). 

As particles are rigid with a soft contact zone (see figure 4-2b), the contact 

deformation between two particles is restricted to the soft contact zone 

interface. Therefore, the rheological model (figure 4-2c) shows the behaviour 

of contact subjected to the normal contact force and deformation  𝐹𝑛 =

𝑓(𝑈𝑛). It should be noted that the soft contact zone drawn in figure 4-2 is 

scaled up to show the details of rheological modified Hertz contact model.  
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Figure 4-2 Modified Hertz contact model used in PFC
2D

 

 

This model is appropriate for spherical particles but not disk particles. The 

linear elastic contact model has been used by a number of researchers to 

study the two dimensional behaviour of soil. This model links the normal 

contact force to the normal contact deformation by the constant normal 

contact stiffness, (i. e.  𝑘𝑛) (see figure 4-3). To find the normal contact 

stiffness, the normal stiffnesses of two contacting particles are required. 

Therefore, other methods are needed to determine the stiffness of disk 

particles. These methods should be able to take into account disk radius, 

contact radius and material properties. Two methods can be used to compute 

normal stiffness for disk particles: 
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 Equivalent rectangular approach, and 

 Deformable disk method. 

 

 

 

Figure 4-3 Schematic linear normal contact stiffness model used by PFC 

 

4.2.2.2 Equivalent rectangular approach 

This method (Figure 4-4) is proposed by Itasca (2008). As shown in figure 4-

4a and 4-4b, a compressive force exists between two disk particles. The size 

of these two particles is assumed the mean particle size. As particles are 

assumed rigid, the load applied at the contact points, 𝐹, is transferred to the 

particles centroid (see figure 4-4c and 4-4d). The area of contact is obtained 

from Eq. 4.6. Since the particles are subject to a normal load they can be 

replaced by a column or beam of length equal to the distance between the 

centres of the particles, axially loaded and with a stiffness 𝐾𝑛.(see figure 4-

4e). From this figure, the value of normal contact stiffness is: 

𝐾𝑛 =
𝐴𝐸𝑝

𝐿
                                                                                                                                 4.5 

𝐴 = 2𝑅𝑡                                                                                                                                     4.6 

𝐿 = 2𝑅                                                                                                                                       4.7   

in which 𝑡 and 𝑅 are the particle (or disk) thickness and radius of particle, 

respectively (i.e. geometry components). 𝐸𝑝 is the intrinsic elastic modulus of 

𝐹𝑛 

𝑈𝑛 

1 

𝑘𝑛 

(Overlap) 
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the particle material, which is independent of the particle size. By default 𝑡 is 

equal one (SET disk t = 1.0) in PFC2D.  

In PFC, the normal contact stiffness, 𝑘𝑛, is computed at each time step by 

assuming that the stiffnesses of the two contacting particles, 𝐾1
𝑛and 𝐾2

𝑛,  act 

in series (see figure 4-4f): 

𝑘𝑛 =
𝐾1
𝑛 ∗ 𝐾2

𝑛

𝐾1
𝑛 + 𝐾2

𝑛                                                                                                                         4.8 

Generally the stiffness of the particles is assumed to be the same (i.e. 

𝐾1
𝑛 = 𝐾2

𝑛 = 𝐾𝑛) such that Eq. 4.8 becomes:   

𝑘𝑛 =
𝐾𝑛

2
                                                                                                                                    4.9 

From Eq. 4.9, the normal particle stiffness is twice the normal contact 

stiffness, which is computed from Eq. 4.5. The normal particle stiffness is 

provided by the user. The normal contact stiffness then is calculated by 

computing Eq. 4.8. The intrinsic elastic modulus of a particle, which is 

independent of particle size, is obtained from the literature. The main 

advantage of applying this contact model is that it is a straightforward method 

to give the initial value for the normal contact stiffness. However, the main 

disadvantages of this approach are as follows: 

 The stiffness is independent of the geometry,  

 The size of contact is the same as diameter of particle and it is 

constant even though the actual contact area is much smaller, 

 Only the normal force at a contact is considered, and 

 Only the elastic modulus is considered. 
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Figure 4-4 Linear elastic normal contact model used in PFC
2D 
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4.2.2.3 Deformable disk method 

The aim of this method is to find a proper contact stiffness of two disks in 

contact based on the principle of contact mechanics. The normal contact 

stiffness of two disks in contact is dependent on their normal stiffness which 

is in series. Two disks in contact with elastic properties 𝐸1, 𝜈1 and 𝐸2, 𝜈2 are 

subject to a compressive load to determine the normal contact stiffness (see 

figure 4-5 (a)). The relative displacement, 𝑈𝑛, of the disk, C1 C2, is obtained 

by integrating by 𝜀𝑧 from z = 0 to z = 2R (see figure 4-5 (b)):  

𝑈𝑛 = ∫ 𝜀𝑧

2𝑅

0

𝑑𝑧 = ∫
2𝐹(1 − 𝜈2)

𝜋𝐸
(2𝐿𝑛 (

4𝑅

𝑎
) − 1)

2𝑅

0

                                                      4.10 

In plane strain, the vertical strain obtained by following equation:  

𝜀𝑧 =
1 − 𝜈2

𝐸
{𝜎𝑧 −

𝜐

1 − 𝑣
𝜎𝑥}                                                                                              4.11 

𝜎𝑧 =
𝐹

𝜋
{
1

𝑅
−

2

2𝑅 − 𝑧
−

2

√𝑎2 + 𝑧2
}    and  𝜎𝑥 =

𝐹

𝜋
{
1

𝑅
−
2(𝑎2 + 2𝑧2)

𝑎1
2√𝑎2 + 𝑧2

+
4𝑧

𝑎2
}           4.12 

 𝑎 = √
4𝐹𝑅

𝜋𝐸∗
      where  

1

𝐸∗
=
(1 − 𝑣1

2)

𝐸1
+
(1 − 𝑣2

2)

𝐸2
                                                      4.13 

In the case of identical elastic properties, 𝐸∗ =
𝐸

2(1−𝑣2)
. The tangential disk 

stiffness then is obtained by: 

𝐾𝑑𝑖𝑠𝑘
𝑛 =

𝐹

𝑈𝑛
=

𝜋𝐸

ln(4𝑅𝐸∗𝜋) − ln(𝐹) − ln(𝑒)
                                                                   4.14 

Figure 4-6 shows the variation of normalized normal load with normalized 

relative displacement for disk-disk and sphere-sphere in contact with the 

same properties. Figure 4-7 shows the variation of normalized normal 

stiffness with normalized relative displacement for disk and sphere. For more 

details reader can refer to (Bardet, 1998, Johnson, 1985).  
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Figure 4-5 Compression of deformable disk particle due diametrically opposed point loads 

 

 

 

 

 

Figure 4-6 The variation of normalized normal load with normalized relative displacement for 
disk and sphere 
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Figure 4-7 The variation of normalized normal stiffness with normalized relative displacement 
for disk and sphere 

 

The graphs show that the use of Eq. 4.1 to compute the normal contact 

stiffness of two disks in contact results in to produce unrealistic response.   

 

By using mean theory, the average particle stiffness of a disk can be 

obtained from Eq. 4.14- 

𝐾𝑛   = ∫
(

𝜋𝐸
ln(4𝑅𝐸∗𝜋) − ln(𝑥) − ln(𝑒)

)  

𝑥 − 0

𝑥

0

                                                                       4.15 

 

where x is the upper bound of applied force, which can be infinite. Instead, 

the initial stiffness is used from figure 4-7. When the initial normal or average 

stiffness of two disks in contact obtained from figure 4-7 or Eq. 4.14 

respectively, the contact stiffness is then computed using Eq. 4.8. The 

advantage of using this approach is to consider the geometry of particle and 

contact area. In addition, the force is considered in this approach. This leads 

to the conclusion that the contact stiffness obtained from this approach is 

more realistic in comparison with the Equivalent rectangular approach. 
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4.2.3 Elastic tangential contact model 

Unlike the normal contact models, the parameters for the tangential contact 

model are numerous; contact geometry, the intrinsic material property, 

normal contact traction, normal contact deformation, inter particle friction, 

particle roughness, loading and unloading cycles and tangential deformation 

(see chapter two). Two types of tangential contact models are generally used 

by researchers in soil mechanics and soil dynamics: the modified Mindlin and 

the tangential linear elastic contact model. 

The original Mindlin contact model can compute the tangential stiffness, 

𝑘Mindlin
𝑠 , between two frictional spherical particles in contact (Mindlin and 

Deresiewica, 1953). The assumptions considered in the Hertz model are also 

considered in this model. This contact model is also a function of contact 

force history, including normal and tangential force: 

𝑘Mindlin
𝑠 = 𝑘𝑠 {1 −

𝐹𝑡−1
𝑡

(𝜇𝐹𝑡
𝑛)
}

1
3

                                                                                             4.15 

where 𝑘𝑠 is tangential shear stiffness and obtained from Eq. 4.16. 𝜇 is the 

minimum inter-particle friction, 𝐹𝑡−1
𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙

 is the total tangential contact force 

at the prior time step and 𝐹𝑡
𝑛 is the total normal contact force at the current 

time step. 

This contact model has been modified by (Cundall, 1988) in such way that 

the tangential contact force and particle friction terms are ignored. The 

modified tangential stiffness is as follows (see figure 4-8): 

𝑘𝑠 = {
2[

𝐸2

4(1 + 𝜈)2
3(1 − 𝜈)�̃�]

1
3

(2 − 𝜈)
} |𝐹𝑛|

1
3                                                                         4.16 

�̃�, 𝐸 and 𝜈 are particle radius, Elastic modulus and Poisson’s ratio . |𝐹𝑛| is the 

magnitude of the normal contact force at each time step. 



93 

 

 

Figure 4-8 Modified Mindlin contact tangential force vs. tangential deformation used in PFC 

 

Next, the incremental tangential force is obtained by applying 

∆𝐹𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙 = 𝑘𝑠∆𝑈
𝑠                                                                                                        4.17 

where ∆𝑈𝑠 is the relative tangential contact deformation and computed by 

PFC2D compiler from Eq. 3.4. The incremental tangential contact force at the 

current time step is then added to the total tangential contact force when the 

contact point was formed (𝐹𝑡
𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙

= ∆𝐹𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙 + 𝐹𝑡−1
𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙

). This total 

tangential contact force is then compared to the sliding criterion to check 

whether the contact is lost or not.  

The Hertz normal contact model and Mindlin tangential contact model, so 

called Hertz-Mindlin contact model, is activated in PFC2D by specifying the 

keyword hertz command. That is, these two contact models are coupled in 

PFC. The main advantage of applying this tangential contact model is to 

consider normal contact force component in order to evaluate the tangential 

contact stiffness. The main disadvantage of this contact model is that at each 

time step, the tangential contact stiffness should be derived from Eq. 4.15. 
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Thus, by increasing the number of particles the time of simulation will 

increase. The ratio of 
𝑘𝑠

𝑘𝑛
 based on Hertz-Mindlin contact model is: 

𝑘𝑠
𝑘𝑛
= 2

1 − 𝜈

2 − 𝜈
                                                                                                                         4.18 

By changing the Poisson’ ratio from zero to 0.5, the value of 
𝑘𝑠

𝑘𝑛
 will vary 

between one and two third.    

The linear elastic tangential contact model links the shear contact force to the 

shear contact deformation by using the constant tangential stiffness (i. e.  𝑘𝑠). 

The same assumptions used to derive the elastic beam are considered here 

to derive the linear tangential contact stiffness (see figure 4-9). The linear 

tangential stiffness value for a contact point between two particles is obtained 

from: 

𝐾𝑠 =
12𝐼𝐸𝑝

𝐿3
                                                                                                                           4.19 

in which 𝐼 =
1

12
𝑡(2𝑅)3 is moment of inertia. In PFC, the tangential contact 

stiffness, 𝐾𝑠, is computed at each time step by assuming that the stiffnesses 

of the two contacting particles, 𝐾1
𝑠 and 𝐾2

𝑠,  act in series (see figure 4-9f): 

𝐾𝑠 =
𝐾1
𝑠 ∗ 𝐾2

𝑠

𝐾1
𝑠 + 𝐾2

𝑠                                                                                                                       4.20 

Generally the user-defined value of normal stiffness for all the particles within 

a model is assumed to be the same (i.e. 𝐾1
𝑠 = 𝐾2

𝑠 = 𝐾𝑠) such that:  

𝑘𝑠 =
𝐾𝑠

2
                                                                                                                                  4.21 

From Eq. 4.21, it is deduced that the tangential particle stiffness is twice the 

tangential contact stiffness, which is computed from Eq. 4.19. The tangential 

particle stiffness is specified by the user. The tangential contact stiffness is 

then calculated by computing Eq. 4.20. 

(Cundall and Strack, 1979) recommended that for the linear elastic contact 

model the 
𝑘𝑠

𝑘𝑛
 ratio is between two third and one.  
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Figure 4-9 Tangential linear elastic contact model 

 

Although the use of Mindlin contact model for simulating the elastic normal 

and tangential behaviour of contact points leads to more appropriate results, 

applying this contact model will increase the time of simulation in comparison 

with the linear elastic contact model. Additionally, the majority of papers 

published in DEM in soil mechanics use the linear elastic contact model for 
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modelling the inter-particle contact behaviour. This contact model is applied 

in this research.   

4.2.4 Sliding criterion 

As sand particles are frictional and cohesionless, the continuous shearing 

deformation at the contact point should be limited. The failure criterion used 

to restrict the tangential force in PFC is the Mohr-Coulomb criterion: 

𝐹𝑚𝑎𝑥
𝑡 = 𝜇|𝐹𝑛|                                                                                                                         4.22 

where 𝜇 is particle friction and 𝐹𝑛 is total contact normal force. At each time 

step the total tangential force, 𝐹𝑡
𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙

, is compared with Eq. 4.22. If 

𝐹𝑡
𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙

 is more than 𝐹𝑚𝑎𝑥
𝑡 , 𝐹𝑡

𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙
 is set to 𝐹𝑚𝑎𝑥

𝑡  (see figure 4-10).  

 

 

Figure 4-10 Shear contact force vs. shear contact deformation 

 

4.2.5 Damping  

The mechanism of stress wave propagation within particulate systems, 

subjected to boundary excitation, is based on an individual particle vibration, 

which act on its translational and rotational degrees of freedom. A particle 

starts to vibrate due to imposed kinetic energy when the wave front reaches 

it. However, this kinetic energy and particle vibration is naturally damped in 
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real granular material such as sand due to the mass, plastic deformation, 

crush and slippage of particle establishing static equilibrium. Since the elastic 

contact model is applied in this work, absorbing a portion of kinetic energy 

due to plastic deformation and particle crushing cannot be met. Therefore, 

the damping mechanism associated with applying the elastic contact model 

is only concentrated on the frictional slippage and mass of particles.  

 Frictional slippage: this term is only applied at the contact points. 

When the tangential contact force exceeds the Coulomb failure 

criterion, the slippage mechanism is activated to absorb some of the 

kinetic energy.  

The stress wave propagation tends to move the particles from their stationary 

positions based on motion law. The frictional damping which is applied to 

absorb the release energy due to the slippage of particles cannot be 

adequate for non-slippage of particle movement. The rate of particle 

movement is naturally dampened due to viscosity of system. Since this 

movement is the result of unbalanced force and unbalanced force is the 

result of the sum of contact forces, this viscosity damping is generally 

separated based on the local damping, which is compatible with unbalanced 

force of each particle mass, and contacts viscous damping, which is 

compatible with each contact force of particle mass.  

 Local viscous damping: it is assumed that the particles are immersed 

in a viscous liquid. This reduces the particle inertial force or 

unbalanced force which acts on translational and rotational degrees of 

freedom on a particle by adding a virtual damping force against the 

particle movement rate. The damping is applied equally to all particles 

(Cundall, 1989). The magnitude of the local damping force is 

proportional to the unbalanced force acting on each particle. By 

applying this type of damping, the 𝐹𝑖
𝑑 term applied in equation of 

motion Eq. 3.10 becomes: 

𝐹𝑖
𝑑 = −𝛼|𝐹𝑖|𝑠𝑖𝑔𝑛(v𝑖);   𝑖 = 1,2      𝑠𝑖𝑔𝑛(v) = {

+1,   if v >  0 
−1,   if v <  0 
0,      if v =  0 

                               4.23 
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where v is particle velocity and 𝛼 is the local damping ratio.  

Since in quasi-static deformation the acceleration of all particles is very small, 

the use of local damping means that all particles are equally dampened. This 

results in the particulate system reaching the static state quickly. For the 

quasi-static deformation such as biaxial and triaxial test (Bardet and Proubet, 

1991) by using Adaptive Dynamic Relaxation method (ADR) on an assembly 

of 163 spherical particles surrounded by four rigid walls shows that this value 

fluctuates between 0.5 and 0.8 (see figure 4-11). (Potyondy and Cundall, 

2004) suggested for quasi-static regime this value is 0.7.   

 

 

Figure 4-11 Variation of 𝛼 calculated by Adaptive Dynamic Relaxation method during 

deviatoric load After (Bardet and Proubet, 1991) 

 

This form of damping has the following advantages: 

1-  Only accelerating motion is damped. Therefore, no erroneous 

damping forces arise from steady-state motion. 

2- The damping constant, α, is non-dimensional. 
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3- Since damping is independent of frequency, regions of the assembly 

with different natural periods are damped equally, using the same 

damping constant. 

However, for dynamic loading such as that due to earthquakes where the 

particle acceleration is relatively high and is not uniform within a sample 

contact viscose damping is used to show the dynamic behaviour of system. 

For these simulations, the small value for contact viscose damping in normal 

and tangential direction appropriate to energy dissipation of dynamic waves 

is applied.    

 Contact viscous damping: it is assumed that only contact points are 

immersed in a viscous liquid. Therefore, normal and tangential 

damping forces (dashpots) are added to the normal and tangential 

contact forces, respectively to diminish the value of contact forces in 

those directions. As this resistance force is only applied on those 

entities that have a velocity, it can resist against unbalanced force and 

contact force. The normal and tangential damping force is obtained by 

following equation: 

𝐹𝑖
𝑑 = 𝛽𝑖𝑐𝑖

𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙|v𝑖| ∶      𝑖 = 𝑛, 𝑠     where     𝑐𝑖
𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 2√𝑚𝑘𝑖                        4.24 

𝑐𝑖
𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 is the critical contact viscous damping constant and 𝑘𝑖 (i.e. 

𝑘𝑛 and 𝑘𝑠) is the contact stiffness, and 𝑚 is the particle  mass. 𝛽𝑖 (i.e. 

𝛽𝑛 and 𝛽𝑠) are the critical damping ratio, defined by user. Based on the 

principle of dynamic structure (e.g. Humar, 2012), when 𝛽𝑛 and 𝛽𝑠 = 1, the 

system is said to be critically damped (i.e. the response decays to zero at 

the most rapid rate). When 𝛽𝑛 and 𝛽𝑠 < 1 the system is said to be 

underdamped with oscillation behaviour and when 𝛽𝑛 and 𝛽𝑠 > 1, the 

system is said to be overdamped, or heavily damped with no oscillation 

behaviour. Appropriate viscous damping constants have to be determined 

for the simulation to produce a realistic response. 

In the case of particle-wall contact, m is taken as the particle mass; in the 

case of particle-particle contact, 𝑚 =
𝑚1∗𝑚2

𝑚1+𝑚2
, where 𝑚1 and 𝑚2 are the 
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mass of particle 1 and particle 2, respectively are. In case of applying 

contact viscous damping the equation of motion Eq. 3.10 becomes: 

(𝑀)𝑡
𝐾 = |𝑙𝐾|∑[

nk

n=1

(𝐹𝑠 − 𝐹𝑠
𝑑)𝑡 

                                                                                                                                                        4.25 

(𝐹𝑖)𝑡
𝐾 =∑[(𝐹𝑛 − 𝐹𝑛

𝑑)t

nk

n=1

n𝑖
c + (Fs − 𝐹𝑠

𝑑)tt𝑖
c 

4.2.6 Non-crushable particle 

The failure mode of spherical sand particles under compression in reality is 

based on tensile failure (McDowell and Bolton, 1998). This fact is not 

considered in PFC2D because grains are assumed to be rigid and non-

crushable. Therefore, single particles do not fail.   

4.2.7 Rolling resistance 

One of the main limitations associated with PFC2D is to not consider the 

rolling resistance. (O'Sullivan, 2012) experimentally showed that if the 

particle size is larger than 0.1 mm, the surface roughness will have a minor 

effect on the material behaviour in comparison with the particle inertia. That 

is, the effect of rolling resistance on the dynamic equilibrium of each particle 

can be ignored. As the particle size in this research is between 1 mm and 

2mm, this assumption in particle size met the above condition.   

4.2.8 Forced-vibration and free-vibration of single degree of 

freedom 

When the boundaries of a biaxial test are excited, those particles that are in 

contact with those boundaries start to oscillate due to either forced-vibration 

or free-vibration framework, depending on the boundary condition: rigid wall 

or deformable boundary. If the boundaries of biaxial test are rigid, the 

vibration mode for all boundary particles will be free-vibration. Figure 4-12 

shows the biaxial test with rigid horizontal boundaries and flexible vertical 

boundaries. In PFC2D, the velocity of the rigid walls is defined by the user. 

The mode of vibration for those particles that are in contact with rigid walls 
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(i.e. green particles in figure 4-12) is based on a free-vibration framework, 

while that for the boundary particles (red particles in the figure 4-12) due to 

the external pressure (e.g. isotropic confining pressure) is based on a force-

vibration framework.  

 

 

Figure 4-12 The schematic biaxial test with mixed the boundary excitation 

 

By vibrating the boundary particles the forces are propagated through the 

contact network to the neighbouring particles thus generating a stress wave 

throughout the model.  
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Figure 4-13 Free-vibration of red particles after encountering the halt PFC command 

 

In contrast, when the boundary movement encounters the halt PFC 

command, the forced-vibration of boundary particles is changed to the free-

vibration mode (i.e. the external confining forces applied on the boundaries 

particles, such as 𝐹𝑋 and 𝐹𝑌 , are set to zero: 𝑚�̈�𝑥 + 𝑐�̇�𝑥 + ∑ 𝑓𝑥
𝑛𝑔
𝑖=1 = 0 and 

𝑚�̈�𝑦 + 𝑐�̇�𝑦 + ∑ 𝑓𝑦
𝑛𝑔
𝑖=1 = 0 (see figure 4-13). In which 𝑛𝑔 is the number contact 

of each grain.  

Those particles (i.e. yellow particles) far from the source of boundary will still 

be vibrating whereas even though the boundary excitation has been halted. It 

is because the stress wave travels from boundaries with time lag (i.e. explicit 

solution). Thus, additional number cycles are needed to damp the free-

vibration of particles in order reach a quasi-static state.  
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4.2.9 Time step 

A centred finite-difference formula is used in PFC2D to explicitly solve both 

the free and forced-vibration equation of each individual particle. In order for 

the solution to converge it is necessary to use a time step that is a fraction of 

the critical time step. Otherwise, the solution does not converge. A critical 

time step of a particulate system at the current time step is, however, 

dependent on the minimum Eigen-period of the system at the current time 

step. The accurate way to obtain the minimum Eigen-period of the particulate 

system at the every time step is to solve the 𝑀�̈� + 𝐶�̇� + 𝐾𝑋 = 𝐹(𝑡) using 

matrix analysis. Where 𝑀,𝐶 𝑎𝑛𝑑 𝐾 are the mass, damping ratio and stiffness 

matrix of the particles, respectively. 𝐹(𝑡) is the external boundary forces 

matrix. 𝑋 is the inter-particle overlap matrix of particles. The matrix analysis 

of the system is, however, impractical to apply to the large and constantly 

changing systems typically encountered in PFC2D simulations. A simplified 

approach is needed to predict the minimum period of the system. Having 

attained the minimum period, the critical time step is obtained. Based on this 

method, the minimum period of whole system is attained by applying Eq. 

4.26. The critical time step is then found by using Eq. 4.27. 

𝑇𝑚𝑖𝑛 = 2𝜋√
𝑚𝑚𝑖𝑛

𝑘𝑚𝑎𝑥
                                                                                                               4.26  

in which 𝑚min is the minimum mass of particle within a system and 𝑘𝑚𝑎𝑥 is the 

maximum contact stiffness within a system either normal or tangential.  

∆𝑡 𝑐𝑟𝑖𝑡=
𝑇𝑚𝑖𝑛
𝜋

                                                                                                                         4.27 

 Motion is based on one-dimensional simple harmonic motion. Thus, the 

used time step in PFC2D is taken as a fraction of the critical time step at each 

cycle. This fraction is characterized by using the SET safety_fac PFC 

command. The amount of this parameter by default is 0.8. 

∆𝑡= 𝑠𝐚𝐟𝐞𝐭𝐲_𝐟𝐚𝐜 ∗ ∆𝑡 𝑐𝑟𝑖𝑡= 2 ∗ 𝐬𝐚𝐟𝐞𝐭𝐲_𝐟𝐚𝐜 ∗ √
𝑚𝑚𝑖𝑛

𝑘𝑛
                                                 4.28 
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In PFC2D, the time step can be determined either by user or it can be 

computed automatically at each time step from by solving Eq. 4.28. 

4.2.10 Equilibrium condition 

DEM is a dynamic method. Controlling the quasi-static condition of each 

grain at the end of each time step is of great importance when the quasi-

static state of the granular materials is required. The following key 

assumptions are made: 

1- The load is applied slowly on the boundaries, 

2- A damping term is applied to each grain. 

 

When the net force vector at each grain centroid is zero, a DEM model is in 

equilibrium. That is, the right side of Eq. 3.10 becomes zero (i.e. out-of-

balanced force is zero, 𝑚�̈� + 𝑐�̇� = 𝐹𝑏𝑜𝑑𝑦 − ∑𝑓𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑓𝑜𝑟𝑐𝑒). However, this 

condition is unlikely to be satisfied because the unbalanced force will never 

reach zero. For this purpose, the “relative equilibrium” term is used. That is, if 

the right side of that equation approaches to zero, it will be assumed that the 

particle is in equilibrium. The criteria which show that particles are in relative 

equilibrium will be discussed at this section. If the out-of-balance force 

approaches a constant non zero value, this may indicate that failure and 

granular flow are occurring within the DEM model. The criterion used to show 

whether the DEM simulations are in relative equilibrium or not is:   

 Restricting the ratio of the average unbalanced force to the average 

contact force of grains to the specific value (i.e. 
|𝐹|𝑎𝑣𝑒

|𝐶|𝑎𝑣𝑒
≤ 𝜒), 

in which |𝐹|𝑎𝑣𝑒 and |𝐶|𝑎𝑣𝑒 are the average unbalanced force (or out-of-

balanced force) and the sum of average contact forces of a particle, 

respectively. 𝜒 is the limited value of each criterion. For example, in PFC2D, it 

is 0.005.  

4.3 PFC2D-based biaxial test 

There are four stages to a PFC2D-based biaxial test simulation in this 

research: initial condition, boundary condition, applying deviatoric stress and 

interpreting the results (see figure 4-14).  
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Figure 4-14 The diagram of biaxial simulation test in this research.  

 

4.3.1 Initial condition 

As the stress wave that reaches a particle is the result of earlier responses of 

the system, the initial condition (i.e. the initial geometry, manner of particle 

generation and the micro-mechanical properties) plays a major role in the 

response of the granular system.  

4.3.1.1 Initial geometry 

In general, the initial particle configuration of a soil is generated by allowing 

the particles to fall under the gravity force. It is also presumed that they are in 

static equilibrium under gravitational force such that each particle will have 

enough contact points (i.e. constrains) with another particles (O'Sullivan, 

2011) to satisfy the static equilibrium condition. In this way forces are 

transmitted through the model. The initial geometry of a biaxial test in this 

work is created using the following stages (see figure 4-15):  

 

 

 Biaxial test 

 Initial condition 

 Boundary condition 

 Applying deviatoric stress 

 Interpretation of the results 
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Figure 4-15 The initial geometry of creating biaxial test 

 

4.3.1.2   Rigid walls 

The first step to set up the initial geometry of a biaxial test is to generate the 

geometry of four rigid planar walls as the boundaries of the biaxial test 

chamber (see figure 4-16). 
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Figure 4-16 The initial dimention of the biaxial test‘s chamber 

 

These walls by default are fixed. Generally, these platen walls are smooth 

and frictionless (Belheine et al., 2009). Therefore, the wall friction is set to 

zero in the code. The tangential stiffness of wall is assumed to be the same 

as particle tangential stiffness. The value of normal stiffness for each wall in 

this work is, however, computed by Fish compiler in such a way that normal 

stiffness of walls are ten times  the average of the normal stiffness of those 

particles in contact with each wall. In PFC2D, if the value of the overlap 

between a wall and a particle exceeds half of the particle size, the particle will 

cross over the boundary. Hence applying a higher normal stiffness prevents 

particles crossing the wall during loading. If the particle does cross the 

boundary there is disturbance in the chain forces and instability of the 

particulate system within the boundaries zones. Increasing and decreasing 

the wall normal stiffness increases or decreases the particle acceleration in a 

given time step such that it effects the vibration mode of particles in contact 

with the wall. Thus, the further response of particulate systems, including 
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fabric and macro-mechanical behaviour, will be influenced by this issue. The 

advantages and disadvantage of applying rigid walls to simulate the biaxial 

test are mentioned in the previous chapter. 

The following features are considered in this DEM model:  

 As the walls are considered to be inflexible, they do not deform during 

loading, 

 It is assumed that the walls have no inertia, 

 The velocity of the wall can be specified directly by the user either as a 

constant value or as a time-dependent values,  

 The particle-wall interaction forces do not influence the wall movement. 

 the equations of motion are not satisfied for walls since the wall motion is 

specified by the user, 

 The use of walls in PFC2D requires only defining the force-displacement 

law. 

4.3.1.3 Random particle generation and particle size distribution     

Sand particles sizes vary in nature. To generate the various sizes of sand 

particles in PFC2D, a random function generation is required (see Eq. 4-29). 

In this equation the term �̃� is randomly selected by the software within range 

0 and 1.  

𝑟 = 𝑟𝑚𝑖𝑛 + (𝑟𝑚𝑎𝑥 − 𝑟𝑚𝑖𝑛)�̃�         𝑤𝑖𝑡ℎ            �̃� = (0,1)                                               4.29  

However, the mechanism of choosing this random number is dependent on 

the particle size distribution. The distribution of well graded soil particles is 

normal for most sands  so the PSD is linear  in a logarithm graph (Van Baars, 

1996) (see figure 4-17). Considering the smaller sizes for sand particles 

leads to a reduction in the time step in DEM simulations and increase the 

number of particles within a chamber (see Eq. 4.28). To decrease the cost of 

simulation it is preferred to filter out the small sizes of particles. By doing this, 

the PSD supposed to be more uniform. Thus, the maximum and minimum 

radii of particles in this research were restricted between 0.25 to 1.0 [mm]. 

That is, �̅� = 0.625 [mm]. Repeated calls to the function (Eq. 4.29) will 
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generate different particle size between a minimum and maximum particle 

radii based on uniform PSD. 

 

Figure 4-17 Sand particle size distribution  

 

4.3.1.4 The methods of filling the biaxial chamber  

After generating each particle, the chamber of biaxial test should be filled. 

There are two methods for fill the chamber: gravitational and radius 

expansion method.  

4.3.1.4.1 Gravitational method 

The particles are typically deposited as particles under gravitational vector 

field. This process will have been continuing when the particles reach to the 

state of equilibrium (e.g. dry pluviation method). At static equilibrium each 

disk particle will need enough constraints to satisfy the static equilibrium 

equations. That is, the minimum average coordination number for each disk 

will be three. This is a fundamental key feature to generate the assemblies of 

sand grains numerically. In this method, all of the particles cannot be 

deposited simultaneously because there is not enough space to 

accommodate them. Rather they will be deposited in stages (see figure 4-

18). Therefore, the process of filling of biaxial chamber is time-consuming. 

During the deposition time, soil grains undergo large displacements. They 

also collide with other particles entering the model. Therefore, the initial force 
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will be anisotropic before applying the confining stress. This leads to non-

uniform chain forces within a system (see figure 4-19 and figure 4-20).   

 

 

Figure 4-18 Particles generation based on gravity method 
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Step 1 
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Figure 4-19 Contact normal force chains  

 

 

 

 

Figure 4-20 The initial fabric anisotropy of pack generated based on gravity method 
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The disadvantages of this method are: 

 The user does not control the desired number of particles, target 

porosity and stress state during deposition,  

 This method is time-consuming. It is because filling the chamber has 

to be carried out in stages. As more particles are added more contact 

points are generated increasing the time of computation to reach 

equilibrium.  

4.3.1.4.2 Radius expansion method 

The alternative method, which is in common use, is to use a radius 

expansion method. This reduces the computational time significantly. This 

method covers those disadvantages of prior method. That is, the number of 

particles and target porosity are the user-defined. The first stage is to define 

the required number of particles to fill the chamber based on a uniform 

particle distribution. All of the particles are generated in one stage (see figure 

4-21). The number of particles required are based on the target porosity, 𝑛, 

chamber area, 𝐴, and average particle radius, �̅�, by the following equation: 

𝑁 =
𝐴(1 − 𝑛)

𝜋�̅�2
 𝑤𝑖𝑡ℎ �̅� =

𝑅𝑚𝑖𝑛 + 𝑅𝑚𝑖𝑛
2

                                                                          4.30 

In which 𝑅𝑚𝑖𝑛 and 𝑅𝑚𝑖𝑛 are the minimum and maximum particle radii, which is 

defined by the user, and dependent on the chosen particle size distribution. 

Based on Eq. 4.30, the number of particles needed to fill the chamber is 

inversely related to the average particle size. However, it is unlikely that all of 

the particles will fit into the biaxial chamber and, given that the walls are 

fixed, will cause the particles to overlap. Therefore, to generate the required 

number of particles, they start at half their final size. Then all particles are 

uniformly expanded to reach to the target porosity.  

Other advantages of using this approach are as follows: 

 The number of cycles needed to strain a system with the same 

chamber size and PSD to equilibrium using this approach is 
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significantly less in comparison with the gravitational method (Zamani 

and El Shamy, 2011). 

 It takes more time to establish the contacts in the gravity method 

compared to the radius expansion approach.  

 The particulate system after generation is shown in figure 4-21. 

 The force chains are shown in figure 4-22. 

 Figure 4-23 shows the development of macro stresses on walls during 

the particles expansion. The graph shows the stresses on the four 

walls at the end of expansion are the same; that is an isotropic state.  

 The initial fabric provided by this method is in an isotropic state (see 

figure 4-24). 

Some disadvantages of using this approach are as follows: 

 During the expansion, it is seen for the number of simulations that the 

magnitude of walls stresses are greater than would be expected in 

geotechnical problems 

  

Figure 4-21 Particle generated using radius expansion method 
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Figure 4-22 Normal contact chain forces 

 

 

 

Figure 4-23 The development of macro stresses on four wall vs. time step during particle 
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Figure 4-24 The normal contact distribution at the end of expansion 

 

4.3.2 Symmetric geometric deviation index 

The fabric quantities such as average coordination number and contact 

normal distribution provide average data from bulk packing during loading. 

These global fabric quantities cannot provide information such as the drift 

from the past contact configurations of a particle to the current contact 

configurations and how this develops for each single particle during loading. 

In addition, the stability of each single particle cannot be addressed using 

these fabric terms. For example consider figure 4-25. The fabric anisotropy 

for this configuration is zero (i.e. 𝑎=0). Although particle A in this figure is 

stable for the current contact configuration, any imposed force in the 𝑥-

direction may cause it to be unstable. Thus, a proper fabric quantity should 

define the deviation of the current contact geometry of each particle from a 

symmetric geometry or the stables contacts configuration.   
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Figure 4-25 A particulate system  

 

A set of n symmetric contact points on a particle is called n-symmetry, if the 

radial distance between them is 
2𝜋

𝑛
. Consider figure 4-27. In this figure, the 

set of 3 blue contact points and 4 red contact points are called 3-symmetry 

and 4-symmetry.  

 

 

Figure 4-26 A set 3 and 4 of symmetric configurations   

 

An arbitrary set of n-symmetry is shown by 𝑆𝑛 and the class of such all sets 

is shown by 𝑆̅𝑛.  
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Let M be a set of k contact points of 𝑚𝑗 where 𝑗 = 1. . 𝑘. The radial distance of 

set 𝑀 with an arbitrary n-symmetry set is defined as follows:  

𝑑𝑀
𝑆𝑛 =∑𝑑(𝑆𝑖

𝑛, 𝑀)

𝑛

𝑖=1

                                                                                                             4.31 

in which: 

𝑑(𝑆𝑖
𝑛, 𝑀) = min{𝑑(𝑆𝑖

𝑛, 𝑚𝑗)|   𝑚𝑗 ∈ 𝑀}                                                                           4.32 

in which 𝑆𝑖
𝑛 are the contact points for the n-symmetry set.  

𝐷𝑀
𝑛 = min{𝑑𝑀

𝑆𝑛| 𝑆𝑛 ∩𝑀 ≠ 𝜙 𝑎𝑛𝑑   𝑆𝑛 ∈  𝑆̅𝑛}                                                               4.33 

𝐷𝑀 = min{𝐷𝑀
𝑛 | 𝑛 = 3. . . 𝑘}                                                                                                 4.34  

𝜆 =
𝐷𝑀
360

                                                                                                                                  4.35 

in which 𝜆 is geometry symmetric deviation index.  

Figure 4-27 shows that particle A is in contact with four particles. Therefore, 

this contact configuration can be compared with 3-symmetric and 4-

symmeteric sets as j=4. First this contact configuration is compared with 3-

symmetric sets (figure 4-27(a)). One of the vertexes in the 3-symmetric set is 

placed at the one of the contacts (No. 1 in red network). The radial distances 

(i.e. 𝑑𝑀
𝑆3) are then computed for this 3-symmetric set. This applies for other 

contacts. Then 𝐷𝑀
3 = min [𝑑𝑀

𝑆3 , 𝑑𝑀
𝑆′
3

, 𝑑𝑀
𝑆′′

3

, 𝑑𝑀
𝑆′′′

3

] is computed. 

This procedure is also applied for 4-symmetric sets (figure 4-27(b)) to 

compute 𝐷𝑚
4 . The best n-symmetric set (i.e. 𝐷𝑀) which is the close to the 

current contact arrangement of this particle is the minimum of 𝑑𝑀
𝑆3𝑎𝑛𝑑 𝐷𝑀

3 . To 

make this quantity dimensionless, it is divided to 360 ̊. Therefore, 𝜆 is the 

deviation of the current contact arrangement of particle from the best 

possible symmetric configuration or the stablest contacts configuration. 
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(1)                                                                               (2)                                                                                

𝑑𝑀
𝑆3 = 0 +min(𝛽1, 𝛽2) + min(𝛿1, 𝛿2) + min(𝛼1, 𝛼2)    𝑑𝑀

𝑆′
3

= 0 +min(𝛽1, 𝛽2) + min(𝛿1, 𝛿2) + min (𝛼1, 𝛼2) 

 

 

 

 

 

 

 

    

(3)                                                                              (4)                                                                                

𝑑𝑀
𝑆′′

3

= 0 +min(𝛽1, 𝛽2) + min(𝛿1, 𝛿2) + min(𝛼1, 𝛼2)    𝑑𝑀
𝑆′′′

3

= 0 +min(𝛽1, 𝛽2) + min(𝛿1, 𝛿2) + min (𝛼1, 𝛼2) 

 

𝐷𝑀
3 = min {𝑑𝑀

𝑆3 , 𝑑𝑀
𝑆′
3

, 𝑑𝑀
𝑆′′

3

, 𝑑𝑀
𝑆′′′

3

} 

 

 

 
(a) Comparing with 3-symmetry sets 
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(1)                                                                          (2) 

𝑑𝑀
𝑆4 = 0 +min(𝛽1, 𝛽2) + min(𝛿1, 𝛿2) + min(𝛼1, 𝛼2)    𝑑𝑀

𝑆′
4

= 0 +min(𝛽1, 𝛽2) + min(𝛿1, 𝛿2) + min (𝛼1, 𝛼2) 

 

 

  

(3)                                                               (4) 

𝑑𝑀
𝑆′′

4

= 0 +min(𝛽1, 𝛽2) + min(𝛿1, 𝛿2) + min(𝛼1, 𝛼2)    𝑑𝑀
𝑆′′′

4

= 0 +min(𝛽1, 𝛽2) + min(𝛿1, 𝛿2) + min (𝛼1, 𝛼2) 

 

 

𝐷𝑀
4 = min {𝑑𝑀

𝑆4 , 𝑑𝑀
𝑆′
4

, 𝑑𝑀
𝑆′′

4

, 𝑑𝑀
𝑆′′′

4

} 

𝐷𝑀 = min {𝐷𝑀
3 , 𝐷𝑀

4 } 

𝜆 =
𝐷𝑀
360

           

Figure 4-27 An example of a contact arrangement to apply Eq. 4-31 to 4-35- (a) Comparing 

with 3-symmetry sets, (b) Comparing with 4-symmetry sets    

 

(b) Comparing with 4-symmetry sets 
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4.3.3  Porosity  

Ideally there should be at least three contact points per particle to achieve 

the maximum density. This means that there is no zone of instability within a 

sample. Based on Eq. 4.30, the number of particles needed to fill the 

chamber is directly related to the target porosity. The number of half-sized 

particles is placed in the chamber and then expanded to achieve the target 

porosity. However, some particles, i.e. floating particles, do not have enough 

contacts to be stable. Therefore, a sensitivity study to establish which 

porosity values can provide a stable system with a minimum number of 

floating particles, i.e. a particle with one and zero contact point. For this 

reason, 43 PFC2D simulations, including irregular and hexagonal packing, 

were carried out. A hexagonal packing is created using single sized particles. 

The inter-particle properties and mean particle size for all these tests are the 

same. The simulations were spilt into two groups. In the first group, 33 

irregular simulations with different porosities were carried out. The nominal 

radius of the particles varied between 0.25 and 1.0 [mm]. In the second 

group, 10 hexagonal packing simulations with equal particles radii but with 

different porosity were carried out to find the densest packing. The results are 

drawn in figures 4-28 and 4-29. The results show that there is a reasonable 

relationship between porosity and coordination number and between 

coordination number and geometric deviation index such that a decrease in 

porosity results in an increase in active coordination number and a decrease 

in geometric deviation index such as: 

𝑛 =  −0.0012𝑧4  +  0.009𝑧3  −  0.0194𝑧2  +  0.0081𝑧 +  0.1775                      4.36 

According to figure 4-28, for a porosity greater than 0.1680, the system will 

be unstable because the average active coordination number for the model is 

less than three. Therefore, all values of porosity less than 0.1680 may be 

appropriate. However, a review of the results based on geometric symmetric 

deviation index and floating particles obtained from simulation shows that 

that porosity is more appropriate having less geometric symmetric deviation 

index and floating particles, such as from 0.08 to 0.12. A porosity of 0.12 was 

used in this research. It is worth mentioning that the average coordination 

number obtained from Eq. 3.15 cannot distinguish potential contact and real 
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contact engaged in chain forces. Thus, another method is required to make 

distinguish potential contact and real contact. The method proposed by 

(Thornton, 2000)  used to compute the active coordination number is as 

follows: 

𝑧 =
2 ∗ (𝑁𝑐 − 𝑁1

𝐶)

𝑁𝑃 − 𝑁1
𝐶 − 𝑁0

𝐶                                                                                                              4.37 

in which 𝑁𝑐 , 𝑁1
𝑃, 𝑁0

𝑃 and 𝑁𝑃 are total active contact points, the number of 

particle with one contact, the number of particle with zero contact and total 

number of particles. 

 

 

 

 

 

 

 

 

Figure 4-28  The sensitivity study between coordination number and porosity 
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Figure 4-29 The sensitivity study between coordination number and geometry symmetry 
deviation index 

 

4.3.4 Soil data 

The inter-particle parameters of the linear elastic contact model, i.e. normal 

and tangential stiffnesses and inter-particle friction, must be assigned. The 

values of elastic modulus, Poisson’s ratio and inter-particle friction can be 

found from literature (see Appendix 2). Inter particle friction is set to zero 

when the model is created in order to create the porosity required. The 

internal particle friction coefficient is set to the desired value when the model 

is created. The tables in Appendix 2 show that quartz sand data vary. If the 

macro soil properties depend on the inter particle properties then an analysis 

needs to be undertaken. This will demonstrate that how much each inter-

particle property has an effect on the macro-mechanical parameters such as 

elastic modulus, Poisson’s ratio and angle of friction. (Belheine et al., 2009) 

showed that the inter-particle properties have a significant effect on the 

macro-mechanical parameters of three-dimensional sand. However, this 

effect has not been addressed for two-dimensional configurations.   

4.3.4.1 The values of inter-particle parameters for PFC2D biaxial tests 

The initial values for normal and tangential stiffnesses, which are shown in 

table 4-1, were obtained from Eq. 4.15 and figure 4-7 at 
𝑈𝑛

𝑅
= 0.001 for 

various elastic moduli and Poisson’s ratio, respectively. The values of inter-
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particle coefficient friction are also listed in table 4-2. These values were used 

for the sensitivity analysis.  

 

Ep [Pa] 
Mean 

size[mm] 

𝑘𝑛 (N/m) 𝑘𝑠 (N/m) 

𝑣p=0.12 𝑣p =0.15 𝑣p =0.2 𝑣p =0.25 
𝑣p 

=0.35 

𝑣p 

=0.12 

𝑣p 

=0.15 

𝑣p 

=0.2 

𝑣p 

=0.25 

𝑣p 

=0.35 

5.40e8 0.625 1.36e7 1.38e7 1.40e7 1.44e7 1.54e7 1.27e7 1.27e7 1.24e7 1.234e7 1.23e7 

4.00e9 0.625 1.01e8 1.02e8 1.04e8 1.06e8 1.14e8 9.45e7 9.38e7 9.24e7 9.08e7 8.98e7 

8.34e9 0.625 2.11e8 2.13e8 2.17e8 2.22e8 2.38e8 1.97e8 1.95e8 1.92e8 1.90e8 1.87e8 

2.32e10 0.625 5.88e8 5.95e8 6.04e8 6.18e8 6.61e8 5.50e8 5.46e8 5.36e8 5.29e8 5.20e8 

7.00e10 0.625 1.78e9 1.79e9 1.83e9 1.87e9 2.00e9 1.66e9 1.64e9 1.63e9 1.60e9 1.57e9 

7.83e10 0.625 1.98e9 2.00e9 2.03e9 2.08e9 2.23e9 1.85e9 1.83e9 1.80e9 1.78e9 1.75e9 

8.00e10 0.625 2.03e9 2.04e9 2.08e9 2.13e9 2.28e9 1.90e9 1.87e9 1.84e9 1.82e9 1.79e9 

8.30e10 0.625 2.10e9 2.12e9 2.16e9 2.21e9 2.36e9 1.96e9 1.95e9 1.92e9 1.89e9 1.75e9 

8.50e10 0.625 2.15e9 2.17e9 2.21e9 2.27e9 2.42e9 2.01e9 1.99e9 1.96e9 1.94e9 1.91e9 

Table 4:1 The normal and tangential stiffnesses values for sensitivity analysis 

 

 

𝜇 Particle-wall friction 

0.46 

0° 
 

0.57 

0.70 

0.90 

1.20 

Table 4:2 The Inter-particle coefficient friction values for sensitivity analysis 

 

4.3.4.2 Selection of data for the sensitivity analysis 

The methodology of sorting out the various range of inter-particle values (see 

table 4-1 and 4-2) for sensitivity analysis in this research is as follows. 

For each pair of normal and tangential stiffnesses obtained from the same 

elastic modulus and Poisson’s ratio, the inter-particle coefficient friction is 

changed from 0.36, 0.46, 0.57, 0.7 and 1.20. This leads to 225 simulations. 
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For each simulation, the macro-mechanical behaviour such as axial stress 

vs. axial strain, volumetric strain vs. axial strain and macro-mechanical 

parameters including elastic modulus, 𝐸, and Poisson’s ratio, 𝑣, and angle of 

friction, 𝜃, are determined using the theory discussed in Chapter 5. The 

simulation time required for each test using the current computer takes nearly 

eight days, performing all of these 225 DEM biaxial simulations proved 

impossible in the time available. To decrease the number of biaxial tests to 

an acceptable number of simulations, only the normal and shear stiffnesses 

based on Poisson’s ratio of 0.12 are used. Additionally, only the 
𝑘𝑠

𝑘𝑛
 =1 and 

0.5 are used for this research. The effect of a variation of Poisson’s ratio is 

recommended for further work. In terms of inter-particle coefficient friction 

only the lower, middle and higher bounds are considered. The inter-particle 

properties used for this research are listed in tables 4-3 and 4-4. 

 

 

 

 

𝐸p 
[MPa] 

Mean 

size 

[mm] 

𝑣p=0.12 

𝑘𝑛 (N/m) 
*10

7
 

𝑘𝑠/𝑘𝑛 =1 

𝑘𝑠
𝑘𝑛

 

 =0.5 

𝑘𝑠 (N/m) 
*10

7
 

𝑘𝑠(N/m) 
*10

7
 

540 0.625 1.24
 

1.24
 

0.62 

4000 0.625 8.45 8.45 
4.22 

8340 0.625 17.1 17.1 
8.55 

23200 0.625 46 46 
23.0 

70000 0.625 133 133 
66.5 

78300 0.625 150 150 
75.0 

85000 0.625 160 160 
80.0 

Table 4:3 The revised inter-particle values for the sensitivity analysis 
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𝜇 Particle-wall friction 

0.5 0° 
0.9 0° 
1.2 0° 

Table 4:4 The revised Inter-particle friction values for the sensitivity analysis 

 

4.3.5 Boundary condition 

Having assigned the values of normal and tangential stiffnesses for each 

particle and wall, the simulation is ready for isotropic consolidation. In order 

to reach a stable condition, the particle and wall friction are set to zero during 

this process. At this stage, the constraint of wall fixity, which had been 

applied at the particle formation stage, is released to allow the walls to move 

freely. To reach to desired isotropic stress at the boundaries of a sample, a 

proper servo mechanism code is required. Note that the term servo 

mechanism is used by Itasca (2008), the software developers. Thus, a Fish 

code was developed for a servo mechanism to maintain the confining 

pressure on four boundary walls.   

4.3.5.1 The rigid wall-basis servo-control mechanism 

Isotropic stresses are maintained during consolidation and a deviatoric stress 

is applied during the loading stage. The vertical walls are maintained at 

constant pressure. At the start of each time step, the value of the wall stress, 

𝜎(w), obtained from Eq. 3.22 is compared with 𝜎(t). If the wall stress is equal to 

𝜎(t), the wall velocity will be set to zero; otherwise the wall velocity, �̇�(𝑤), 

should be adjusted through the following relation: 

�̇�(𝑤) = 𝐺(𝜎(𝑤) − 𝜎(𝑡))     where    𝐺 ≤
𝛼 𝐴

𝐾𝑛∆𝑡
                                                               4.38 

where 𝐺, 𝛼, 𝐴, 𝑘𝑛 and ∆𝑡 is the gain parameter, the relaxation factor, wall 

area, average normal contact stiffness of those particles in contact with wall 

and time step. In practice, the relaxation factor, 𝛼, is set to 0.5 (Itasca, 2008). 

For stability, the absolute value of the change in wall stress must be less than 

the absolute value of the difference between the measured and target 

stresses. This prevents overshooting of the target stress, which would lead to 

an oscillation about the target stress that would grow in an unbounded 

fashion and lead to instability.  
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4.3.5.2   The deformable boundary particles-basis servo-control 

mechanism 

The algorithm to provide a deformable boundary is more complex in 

comparison with that for a rigid wall. When the granular system reaches the 

isotropic state in a biaxial test, the vertical rigid walls are removed.  

The boundary particles should form two continuous chains at the edge of the 

model connecting the horizontal walls. This means that the centroid of a 

particle (𝑖) is above the centroid of particle (𝑖 – 1) and below the centroid of 

particle (𝑖 + 1).  However, this is not always the case as shown in figure 4.32.  

This means that some particles at the edge of the model are not part of the 

deformable boundary. This means that the deformable boundary lies within a 

boundary zone shown in Figure 4.31. Trial and error showed that the zone 

was ten times the mean particle size. 

To identify the boundary particles, a path is followed from the base wall 

(figure 4.30) using the centroid criteria. It starts with the particle (A in figure 

4.31) to the left of the model. The pathway to the left is followed until it 

reaches particle D. At this point the path comes to the top boundary. Particle 

D is defined as a degenerate particle which is not part of the deformable 

boundary. The degenerate particles were identified throughout the boundary 

zone (the yellow particles in figure 4.31). Once the degenerate particles are 

identified, those particles connected to them as shown in figure 4.33.The 

clear particles in figure 4.33 are particles that could form the deformable 

boundary. The actual deformable boundary for the left side of the sample, the 

grey particles, is shown in figure 4.34. This is the continuous chain of 

particles to the furthest left of the sample. 

The inter particle friction of the boundary particles is set to zero because it is 

assumed that these particles from the interface between the external 

pressure and the soil model and only transmit lateral pressure. In practice, 

latex is used which is considered a frictionless material (O’Sullivan, 2007). 

While in practice a uniform pressure is applied, in the DEM model a force is 

applied to each boundary particle (figure 4.34b). The force divided by the 

effective area is equal to the external pressure. The effective area is defined 
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by the line connecting the two contact points which define the pathway 

though the particle.  

 

 

 

 

 

 

 

 

 

 

Figure 4-30 Define two separate ranges for left and right hand side of the sample 

Range 1  Range 2  
Rigid Wall 

20 ∗ 𝑅𝑚𝑒𝑎𝑛 20 ∗ 𝑅𝑚𝑒𝑎𝑛 
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Figure 4-31 Finding the degenerate particles on left boundary schematically 

 

 

 

Figure 4-32 Determination of all degenerate particles and paths within Range 2 (left range) 
schematically 
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Figure 4-33 Determination of boundary particles  

 

 

Figure 4-34 Applying hydrostatic forces on left boundary particles schematically 
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As the deviatoric loading proceeds, some particles escape from the model. A 

force is applied to those particles to push them back to edge of the model. 

Once these particles come into contact with the model, their velocity is set to 

zero. The process to identify the boundary particles is repeated.    

The advantages of this approach over those mentioned in chapter three are 

that the boundary particles are always in real contact though the actual 

particles forming the boundary may change between time steps and the 

boundary is updated every time step.  

4.3.5.3 Deviatoric loading 

When the system reaches an isotropic stress state, the top and bottom 

platens are moved inward at a constant velocity to perform a biaxial test. For 

a quasi-static problem, the strain rate should be applied very slowly to the top 

and bottom walls of chamber (e.g. 2.2*10-5 (1/s)) such that the incremental 

acceleration of each particle on left hand side of Eq. 3.12 at each time step is 

small. However, completing the simulations with such small strain rate value 

may take several days due to the very small time step, obtained from Eq. 

4.28. As the critical time step is proportional to the particle mass (see Eq. 

4.28), a mass scaling is adopted to increase both the critical time step and 

local viscous damping. This reduces the computational time of DEM 

simulations significantly. For a quasi-static state in which particle acceleration 

is nearly zero and no body force is applied, the contact forces and 

displacements are not sensitive to the mass density (Soroush and Ferdowsi, 

2011). To consider the effect of mass scaling, a dimensionless parameter 

has been introduced, called dimensionless inertia parameter, 𝐼 (e.g. Sheng et 

al., 2004, Agnolin and Roux, 2007). 

𝐼 = √
�̇�2𝜌𝑟𝑚𝑖𝑛

2

𝑝𝑦
                                                                                                                         4.36  

where 𝜀̇, 𝑟𝑚𝑖𝑛, 𝑝𝑦 and ρ are the strain rate, the minimum radius of the 

particles, the limiting contact pressure between particles and the density of 

the particles. There is a transition zone in the behaviour of the materials near 

𝐼 = 10−3 for which higher values of 𝐼 leads to a transient and dynamic 

behaviour, and the behaviour maintains a quasi-static response for lower 
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values. In these simulations, 𝐼 is used to control the density scaling effect 

and maintain the behaviour of the assembly in the quasi-static response 

range. For example, Soroush and Ferdowsi (2011) applied this method to 

study the cyclic behaviour of sand. The value of particle density in this work 

was 2*1018 (kg/m3). To ensure the effect of mass density on the macro-

mechanical behaviour is negligible, four simulations with different particle 

densities were implemented. The value of 𝜌 is shown in table 4-6- 

 

Test number 𝜌 (kg/m
3
). 

Test 2 
2650 (real value of quartz sand 

particle) 

Test 3 2*10
8
 

Test 4 2*10
12

 

Test 5 2*10
18

 

 

Table 4:5: The value of 𝜌 

 

The results of sensitivity analysis are shown in chapter 5. 

4.4 Conclusion  

In this chapter the development of a DEM model, which is required for the 

sensitivity analysis performed in Chapter 5 using PFC2D, was discussed. The 

main assumptions and limitations of PFC2D were also presented. The 

numerical stages which were required to prepare the idealized sand sample 

including the generation of the particles and the methods of filling the biaxial 

chamber were discussed. It was seen that the use of radial expansion to fill 

the chamber was much faster than the gravitational method. It was also seen 

that the use of Hertz model which was originally based on spherical particles 

to model the normal contact stiffness of disk particle produces an unrealistic 

response. The new normal contact stiffness model developed for disk 

particles was able to take into account the non-linear elastic behaviour of the 

contact. However, a C++ code would have to be developed for this contact 

model so only the initial normal contact stiffness obtained from this method 

was used.  
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An investigation into the properties of quartz sand was undertaken to 

establish the range of inter particle properties to be considered in the 

sensitivity analysis. Given the time for simulation the actual number of 

analyses was limited. 

The simulations were carried out using deformable boundaries. A description 

of the generation of these boundaries for the quasi static simulations was 

provided. The criteria for the deformable boundary is formed of a continuous 

chain of particles such that the centroid of each particle was above the 

centroid of the particle below. This meant that some particles in the boundary 

zone were degenerate particles which fell outside the deformable boundary. 

The number of these particles was limited and was assumed to have little 

effect on the overall analysis. 

A new fabric quantity term called “symmetric geometric deviation index” was 

also defined. This term is able to investigate the stability of each single 

particle by comparing the current contact configurations with the possible 

symmetric states.  
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Chapter 5 

5 The results of biaxial tests 

5.1 Introduction 

The sensitivity of macro-micro mechanical properties of sand (i.e. Young’s 

modulus, Poisson’s ratio, angle of internal friction, to the micro-mechanical 

parameters (i.e. 𝑘𝑛, 𝑘𝑠 𝑎𝑛𝑑 𝜇) of a single sand particle, presented in table 4-3 

and table 4-4 was studied by performing a series of quasi-static DEM biaxial 

tests using rigid boundary. The effects of applying deformable boundary 

particles to maintain the confining pressure at the vertical sides on the 

macro-micro response of sand was also investigated and compared with 

those obtained from an analysis based on rigid boundary. The analyses were 

used to investigate the effects of confining pressure.  

The pre-peak and peak behaviour of the sand material was studied. 

Interpretation of sand behaviour at the critical state obtained from these 

simulations is beyond the scope of this thesis, though the macro-mechanical 

behaviour and micro-mechanical behaviour i.e. fabric quantities evolution at 

these stages are shown. The PFC2D biaxial simulations are performed under 

the limitations and assumptions explained in the previous chapter. The micro-

mechanical properties used for the simulations are taken from table 4-3 and 

4-4. It is to be noted that only those normal stiffnesses based on Poisson’s 

ratio of particle 0.12 are considered in this work due to the time of simulation.  

As mentioned in chapter four (see section 4.2.1), an important aspect with 

respect to biaxial tests is to interpret their results. Since a two-dimensional 

DEM code is used, what happens in the third dimension is not known. Thus, 

the results should be interpreted assuming either a plane-strain or a plane-

stress situation. Both situations are discussed and compared in this chapter.  

Section 5.2 gives the difference between the plane-strain and plane-stress 

situation. The typical behaviour of dry medium and dense sand are discussed 

in Section 5.3. The results of sensitivity analysis are shown in Section 5.4. 

Conclusions are presented in Section 5.5.  
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5.2 Plane-strain and plane-stress behaviour 

The behaviour of the majority of geotechnical problems such as tunnels, 

retaining walls, earth dams, strip foundations, slope stability is assumed to be 

dependent on the vector displacement field in two dimensions and the effect 

of vector displacement field in third dimension is not very evident on the 

behaviour. This situation in continuum mechanics is called plane-strain. From 

this situation, the three-dimensional problem is analysed as a two-

dimensional problem where the values of the strain tensor components in the 

third dimension are set to zero (i.e. 𝜀33 = 𝜏31 = 𝜏32 = 0). In some cases in 

continuum mechanics, the stress tensor field is also two-dimensional. In this 

case, the stress in the third dimension is the intermediate stress. This 

situation is called plane-stress. This does not apply in DEM analysis because 

no stress and strain tensor exists in DEM models. Instead, in two-dimension 

DEM only two in-plane force components and one out-of-plane moment (see 

figure 2-3d) exists. By applying an averaging method an average stress and 

strain tensor can be computed. However, only the in-plane forces and 

displacements are used to calculate the average stress and strain tensor 

(see chapter 2) and the out-of-plane force and displacement are not taken to 

calculate the average stress and strain tensor. Therefore, the out-of-plane 

constraint which is essential to enforce a state of plane strain or plane stress 

cannot be present. Hence, the interpretation of PFC2D results in terms of 

either plane strain or plane stress will be a controversial issue. In this section 

the formulations of plane-stress and plane-strain needed to describe both 

situations are explained. The macro parameters (i.e. Elastic modulus, 

Poisson’s ratio and angle of internal friction) obtained from these two 

situations will be compared, in order to view the differences between both 

interpretations. 

5.3 The typical behaviour of dry sand 

As schematically shown in figure 5-1, the general macro–mechanical 

behaviour of dry sand subjected to the static deviatoric loading in a standard 

triaxial test is characterized by:  
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 The initial Young’s modulus, 𝐸0 (the value of Young’s modulus at very 

small axial strains usually of the order of 10-5) is an important 

characteristic of soil deformability and plays an important role in 

dynamic and static response of soil. This is usually estimated using 

laboratory or field tests which are related to seismic wave propagation 

and stiffness degradation curves based on cyclic tests conducted in 

the laboratory (Okur and Ansal, 2007). Instead, 𝐸50, the secant 

modulus at 50% of peak stress is often used to predict ground 

movements (Holtz et al., 1981). 

 The slope of the volumetric strain vs. axial strain curve at a strain 

corresponding to half of peak stress is used to compute Poisson’s 

ratio 𝜐50 both plane-strain and plane-stress. 

 The slope of the volumetric strain vs. axial strain curve at the strain at 

which the stress is maximum in used to compute the maximum 

dilatancy angle 𝜓, where the material starts to show mechanical 

instabilities (Bolton, 1986). 

 In the case of dense and medium sand, the characteristic point, 𝑀, 

corresponds to 
𝜕𝜀𝑣

𝜕𝜀11
= 0, where the dilation of the sample starts. The 

axial strain corresponding to this point varies between sands, and is 

likely to be between of the order 10-4 and 10-2 (Atkinson, 2007, 

Belheine et al., 2009).  

 Small strains: these correspond to those ranges of strains which are 

generally between 0.00001 and 0.1. At this range, the stress-strain 

curve is highly non-linear and 𝐸 is strain-dependent. In the case of 

dense and medium sand, the peak stress ratio or deviatoric stress 

occurs within this range. 

 Large strains: these correspond to strains generally larger than 0.1, 

where the soil is approaching failure and the shear stiffness becomes 

small.  
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Figure 5-1 The typical behaviour of medium and dense sand  

 

These characteristics are derived from triaxial tests.  

5.3.1 Elastic parameters 

In soil mechanics it is assumed that at the start of a triaxial test the material is 

linear elastic. In principal stress space the behaviour is as follows: 
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(

𝜀11
𝜀22
𝜀33
) =

1

𝐸
[
1
−𝑣
−𝑣
 
−𝑣
  1
 −𝑣

  −𝑣
 −𝑣
  1

] (

𝜎11
𝜎22
𝜎33

)                                                                                         5.1 

In terms of plane-strain, the stress-strain relation is as follows: 

(
𝜀11
𝜀33
) =

1

𝐸
(
1 − 𝑣2           − 𝑣(1 + 𝑣)

−𝑣(1 + 𝑣)             1 − 𝑣2
) (
𝜎11
𝜎33

)                                                                  5.2 

In terms of plane-stress, the stress-strain relation is as follows: 

(
𝜀11
𝜀33
) =

1

𝐸
(
1      − 𝑣
−𝑣       1

) (
𝜎11
𝜎33

)                                                                                                5.3 

The elastic modulus and Poisson’s ratio are important characteristics when 

predicting ground movements as it is often assumed that soil is isotropic and 

homogenous and behaves elastically. There are numerous methods 

available to determine these characteristics but the most common is the 

triaxial test. In this test, using local strain measurements it is possible to 

measure the stress strain response of the sample of soil subject to a variety 

of load paths. The values of stiffness obtained are stress path dependent and 

vary with strain range over which they are measured as well as being a 

function of the confining stress, the particle geometry and the density of 

packing. In this study only monotonic compressive loading is monitored. 

Further, the triaxial test is three dimensional, whereas the DEM analysis used 

in this study is two dimensional. However, as soil assumed to be isotropic 

and homogenous material, the material properties obtained from triaxial test 

can be applied for two-dimensional analysis. In two dimensional studies it is 

necessary to consider plane stress or plane strain conditions which lead to 

small different values of stiffness.  

In plane-strain situation, the secant Elastic modulus is: 

𝐸 = (1 − 𝜐2)
𝜎11
𝜀11

                                                                                                                   5.4 

where 𝜎11 is the deviatoric stress value at 50% of peak stress. (𝜀11) is the 

corresponding axial strain (see figure 5-1). 

In plane-stress situation, the Elastic modulus is: 
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𝐸 =
𝜎11
𝜀11

                                                                                                                                    5.5 

It can be seen that when Poisson’s ratio is zero, the elastic modulus is equal 

for the plane-stress and plane stain situations. Also when Poisson’s ratio is 

0.5 the elastic modulus of plane-strain is 75% the elastic modulus of plane-

stress.  

Poisson’s ratio is obtained from the slope of the horizontal strain vs. axial 

strain curve. In two-dimensional analysis volumetric strain is 𝜀𝑣 =  𝜀11 + 𝜀33. 

In plane-stress condition, Poisson’s ratio is obtained from the following 

equation: 

𝜐  =  −
𝜀33
𝜀11

                                                                                                                              5.6 

where 𝜀33 is the horizontal strain and  𝜀11 is the axial strain. In plane-strain 

situation it is: 

𝜐𝑃𝑙𝑎𝑛𝑒−𝑠𝑡𝑟𝑎𝑖𝑛   =  
𝜐

1 + 𝜐
                                                                                                        5.7 

The equations of 5.4, 5.5, 5.6 and 5.7 are converted into Fish language to 

compute the elastic parameters for the plane-strain and plane-stress cases. 

If the slope of the volumetric strain vs. axial strain curve is changed from 0 

(lower extreme) to 1.0 (higher extreme) (see figure 5-1), the corresponding 

values for Poisson's ratio for the plane strain and plane stress situations can 

be calculated. Table 5-1 shows these values.  

 

 

Slope of volumetric strain vs. 

axial strain 
𝑣 (Plane-strain) 𝑣 (Plane-stress) 

0.0 0.5 1.0 

0.5 0.3 0.5 

1.0 0.0 0.0 

 

Table 5:1 Values of Poisson’s ratio obtained from the slope of the volumetric strain vs. axial 
strain curve for plane strain and plane stress situations 
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From this table it is seen that when the slope has such values, Poisson’s 

ratio for the plane strain case has realistic values between 0 and 0.5 while 

Poisson’s ratio in case of plane stress situation has unrealistic values larger 

than 0.5.  

5.3.2 Plastic parameters 

Angles of friction, 𝜃, are related to the plastic and failure behaviour of non-

cohesive material. For non-cohesive sand the following relationship can be 

used to compute the angle of friction:  

𝑡

𝑠
= 𝑇𝑎𝑛2(45 +

𝜃

2
)                                                                                                                5.8 

where t is the deviatoric stress and s is the isotropic stress.  

5.4 The sensitivity analysis  

The macro behaviour of frictional sand is related to its inter-particle 

properties. A sensitivity analysis will identify which are the critical parameters 

and the range over which the parameters impact on the macro-mechanical 

behaviour. Macro-mechanical behaviour is used as the outcome as it 

provides a link to experimental behaviour, which provides the macro 

mechanical properties.  

The inter-particle properties for each biaxial test are obtained from tables 4-3 

and table 4-4. A total of forty two biaxial tests were conducted for this part. 

The initial condition such as the initial geometry of biaxial chamber, particle 

size distribution, particle shape, contact model, porosity and isotropic stress 

state condition and the lateral boundary condition for all of these tests were 

similar. The initial porosity of system, which was 0.12, was based on section 

4.3.3. After generating the particles, the system was allowed to reach static 

equilibrium. Next, the rigid boundaries of biaxial cell were moved based on 

the applied strain-control, see section 4.3.5.1., to approach the stress at the 

boundaries to the 100 [kPa] (see figure 5-2). Once the system was 

isotropically consolidated, further cycles were needed to reach system 

equilibrium (i.e. 
|𝐹|𝑎𝑣𝑒

|𝐶|𝑎𝑣𝑒
< 0.05). Due to the time of simulation at this stage, the 

particle friction was set zero. It is because particles can move freely in an 
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isotropic state in a reasonable time. Figure 5-3 shows the system met the 

static equilibrium condition of uniform boundary stresses. Figure 5-4 shows 

the average velocities of all particles are about zero when the system is in 

static equilibrium. 

 

Figure 5-2 The normal stresses on the walls at isotropic consolidation state. 

 

 

 

 

 

Figure 5-3 The variation of 
|𝐹|𝑎𝑣𝑒

|𝐶|𝑎𝑣𝑒
 by time to show the system reaches to the relative 

equilibrium. 
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Figure 5-4 The variation of average particles velocity by time to show how the system 
reaches equilibrium. 

 

The variation of average coordination number of system during isotropic 

consolidation is shown in figure 5-5.  

 

Figure 5-5 The variation of average coordination number by time  

 

The polar diagrams of normal contact distribution and normal contact force 

distribution at isotropic consolidation are shown in figure 5-6 and 5-7. To 

draw these polar diagram 18 bins were considered with an angular interval 

Δθ = 20̊. The radius of each bin in the polar diagram of normal contact and 
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normal contact force distribution corresponds to the number of contacts and 

summation of normal contact forces within each angular interval. If polar 

diagram of is fully circle, it shows that the distribution of normal contact and 

normal contact force is in isotropic state. That is 𝑎 and 𝑎n = 0 (see Eq. 3.12 

and 3.14). Since, the friction between the particles was zero during isotropic 

consolidation, no shear contact force distribution was drawn at this stage. 

Although the macro state of stress shows that the system is in an isotropic 

state, it can be seen from figures 5-6 and 5-7 that the fabric of the system at 

this stage is not in an isotropic state because 𝑎=0.0034 and 𝑎n=9*10-8.  

 

 

 

 

 

 

 

Figure 5-6 Normal contact distribution at the isotropic state. 
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Figure 5-7 Normal contact force distribution at the isotropic state. 

 

Next, the confining pressure on the vertical rigid boundaries was kept 

constant while the top and bottom rigid boundaries move towards each other 

to apply a deviatoric stress. In the calibration method (e.g. Belheine et al., 

2009) the inter-particle properties (i.e. 𝑘𝑛, 𝑘𝑠 𝑎𝑛𝑑 𝜇) are attained so that the 

obtained stress-strain curve from DEM simulations fits to that from triaxial 

test. However, in the sensitivity analysis the critical parameters and the range 

over which the parameters impact on the macro-mechanical behaviour is 

investigated. From each combination of 𝑘𝑛, 𝑘𝑠 𝑎𝑛𝑑 𝜇, the macro parameters 

of elastic modulus, Poisson’s ratio and angle of internal friction were 

computed. These values will be then compared with typical Elastic modulus, 

Poisson’s ratio and angle of internal friction of sand obtained from literature 

(see table 5-2). Additionally, the sensitivity analysis displays that effect of 

each inter-particle property to the macro-micro behaviour.  
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Elastic parameter Medium sand Dense sand 

𝐸 [MPa] 

 

30~50 (Obrzud, 

2010) 

25~50 (Bowles, 

1988) 

 

50~80 (Obrzud, 

2010) 

50~81(Bowles, 

1988) 

𝑣 
0.2~0.35 

(Bowles, 1988) 

0.3~0.4 

(Bowles, 1988) 

Friction angle (°) 

30~36 (Obrzud, 

2010) 

 

36~41 (Obrzud, 

2010) 

 

 

Table 5:2 Typical bulk properties of sand  

 

5.4.1 The methodology of sensitivity analysis 

Three inter-particle properties, the normal and shear stiffnesses and inter 

particle friction, were considered in this research. It was necessary to 

establish a methodology to measure the effect of each parameter on the 

macro-micro behaviour expressed in terms of the angle of friction and 

stiffness of the sample. Each of the inter particle properties were varied 

keeping the others constant to determine the impact on the macro properties.     

5.4.1.1 The sensitivity of sand system to the various particle densities 

under the quasi static simulation 

The time step required to simulate the biaxial test has to be very small in 

order to prevent instability of the model. To increase the time step, the 

density scaling approach was used in this work in such a way to realise a 

sensible time for the simulation. This method is only applicable for quasi-

static simulation. That is, 𝐼, in Eq.4-36 must be less than 10-3 (see 4.3.5.3.) 

(Sheng et al., 2004). For example, for typical properties of sand, (see Table 

5-3), 
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𝜀̇ (typical strain rate applied in triaxial test) (
1

𝑠
) 

2%

𝑚𝑖𝑛
 

𝜌 (typical sand particle density) (
𝑘𝑔

𝑚3) 2650  

𝑅𝑚𝑖𝑛 (minimum rounded sand particle radius) (𝑚) 0.000236 

𝑝𝑦 (typical limiting contact pressure) (MPa) (Goodman, 

1980) 
150 

 

Table 5:3 The values are required for I. 

 

𝐼 =  3.30−10. Eq. 4.28 shows a stable time step is also related to the particle 

mass and particle stiffness. Based on table 4-1, three different orders of 

magnitude of particle stiffness were considered for quartz sand particle, 107, 

108 109 were considered. The initial packing density, number of particles, 

particle size distribution, and inter-particle properties for these three set of 

simulations were the same. In the first group of simulations, the sensitivity of 

macro-mechanical behaviour of idealized sand system to the various particle 

densities when the particle stiffness was 107 [
𝑁

𝑚
] is examined. The micro-

mechanical properties, initial porosity and 𝐷50 is presented in table 5-4. 13 

simulations based on table 5-5 were performed to find an appropriate density 

for each particle for further simulations. The macro-mechanical behaviour of 

sand including deviatoric stress vs. strain, volumetric stain vs. axial strain and 

fabric quantities such as average coordination number vs. axial strain, 

degree of anisotropy vs. axial strain and average geometric symmetric 

deviation index vs. axial strain for the first group of simulations are presented 

from figures 5-8 to 5-12.  

Initial porosity 0.12 

D50 (𝑚) 0.000625 

kn (
𝑁

𝑚
) 1.25*10

7 

ks (
𝑁

𝑚
) 1.25*10

7 

μ 0.2 

𝑣p 0.15 

 

Table 5:4 The initial porosity and micro-mechanical properties to measure the sensitivity of 
system to the various particle densities  
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Test 

number 
𝜌 (kg/m

3
) 𝐼 

Test 1 2650 (real value of quartz sand particle) 3.30*10
-10 

Test 2 2*10
4
 9.07*10

-10
 

Test 3 2*10
6
 9.07*10

-9
 

Test 4 2*10
7
 2.87*10

-8
 

Test 5 2*10
8
 9.07*10

-8
 

Test 6 2*10
9
 2.87*10

-7
 

Test 7 2*10
10

 9.07*10
-7

 

Test 8 2*10
11

 2.87*10
-6

 

Test 9 2*10
12

 9.07*10
-6

 

Test 10 2*10
13

 2.87*10
-5

 

Test 11 2*10
14

 9.07*10
-5

 

Test 12 2*10
15

 2.87*10
-5

 

Test 13 2*10
16

 9.07*10
-4

 

 

Table 5:5 The various values of density for the sensitivity analysis 

 

 

Figure 5-8 The sensitivity of sand response to the different particle density when the normal 
stiffness of particle was 10

7
: deviatoric stress vs. axial strain  

 

Figure 5-8 shows that the stress strain behaviour when ρ is between 2650 

[
𝑘𝑔

𝑚3
] and 2*108 [

𝑘𝑔

𝑚3
] are similar. When the density exceeds 2*108 [

𝑘𝑔

𝑚3
] the 

results indicate hardening behaviour which is not consistent with real sand 

behaviour (Mitchell and Soga, 2005). Since the rate of applying deviatoric 



147 

 

loading is very small also the density of particles is very high, the tendency of 

particles to move decreases. That is, the particles’ velocity decreases (see 

figure 5-9). This decrease in particles’ velocity is more evidence for the 

higher particle density (i.e. 2*108 [
𝑘𝑔

𝑚3]).  

 

 

Figure 5-9 The sensitivity of average particle velocity to the various particle density when the 
normal stiffness of particle was 10

7 

 

Therefore, the shear capacity of the bulk corresponding to the particle density 

2*108 [
𝑘𝑔

𝑚3] is more than others. This fact also shows in figure 5-10 where for 

the higher particle density the ability of system to develop normal contact 

anisotropy (or anisotropy degree) increases, while increasing 𝜌 between 

2650 [
𝑘𝑔

𝑚3
] and 2*109 [

𝑘𝑔

𝑚3
] has a slight effect on this fabric. As the particle 

inertia increase, the tendency of losing contacts per particles decrease 

especially in the case of 2*1010 [
𝑘𝑔

𝑚3
]. Thus, the average coordination number 

in the case of higher particle density slightly increases (see figure 5-11). 
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Figure 5-10 The sensitivity of average anisotropy degree to the various particle density when 

the normal stiffness of particle was 10
7 

 

 

 

 

 

 

 

 

Figure 5-11 The sensitivity of average coordination number to the various particle density 
when the normal stiffness of particle was 10

7 



149 

 

Figure 5-12 shows that the average stability of bulk increases by increasing 

the particle density. It was seen around axial strain 0.3 a significant change in 

the slope of 𝜆 takes place which corresponds with the maximum deviatoric 

stress (see figure 5-8). This inflection point is consistent with change in the 

slope of average particles velocities (see figure 5-9).  

 

 

Figure 5-12 The sensitivity of average geometric symmetric deviation index, λ, to the various 
particle density when the normal stiffness of particle is of order 10

7 

 

 

 

 

Figure 5-13 The sensitivity of sand response to the different particle density when the normal 

stiffness of particle was 10
7
: volumetric strain vs. axial strain 
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Figure 5-13 shows that the volumetric behaviour when 𝜌 is between 2650 

[
𝑘𝑔

𝑚3
] and 2*109 [

𝑘𝑔

𝑚3
] is similar. However, for density 2*1010, the starting of bulk 

dilation takes place at the higher value of axial strain. It is because the 

tendency of particles movement over each other in order to show the 

expansion reduces. These results show that a density of 2*108 [
𝑘𝑔

𝑚3
] gives 

similar results to the natural density of 2650 [
𝑘𝑔

𝑚3], therefore, 2*108 [
𝑘𝑔

𝑚3] was 

used for further simulations if the normal stiffness of the particles is of order 

107 [
𝑁

𝑚
] to reduce the time of processing.  

For the second group of simulations, the sensitivity of macro-mechanical 

behaviour of idealized sand system to the various particle densities when the 

particle stiffness is 108 [
𝑁

𝑚
] was examined. The micro-mechanical properties, 

initial porosity and D50 are presented in table 5-6. 

 

 

 

 

 

 

 

Initial porosity (𝑛) 0.12 

𝐷50 (m) 0.000625 

𝑘n (
𝑁

𝑚
) 4.62*10

8
 

𝑘s (
𝑁

𝑚
) 4.62*10

8
 

𝜇 0.2 

𝑣 0.15 

 

Table 5:6 The initial porosity and micro-mechanical properties to measure the sensitivity of 
system to the various particle densities. 
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Figure 5-14 The sensitivity of sand response to the different particle density: deviatoric stress 
vs. axial strain when the normal stiffness of particle is of order 10

8 

 

The figures 5-14 and 5-15 show that the macro-mechanical behaviour of this 

particulate system is independent of the particle density if it is between the 

range of 2650 [
𝑘𝑔

𝑚3] and 2*108 [
𝑘𝑔

𝑚3]. Therefore, 𝜌 = 2*108 [
𝑘𝑔

𝑚3] is used for the 

further simulations for a particle stiffness of 108 [
𝑁

𝑚
]. As seen increase in 

particle stiffness leads to that the slope of deviatoric stress become more 

deeper in comparison with that for a particle stiffness of 107 [
𝑁

𝑚
]. It is because 

the normal contact forces significantly increases. Therefore, the shear 

capacity of single particle remarkably increases. This fact will be discussed in 

details at section 5.4.1.3. As the shear capacity of system increases, the 

tendency of particle to move decreases considerably. Thus, The threshold of 

dilation behaviour significantly decreases for a particle stiffness of 108 [
𝑁

𝑚
].  
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Figure 5-15 The sensitivity of sand response to the different particle density: volumetric 
strain vs. axial strain when the normal stiffness of particle is of order 10

8 

 

For the third group of simulations, the sensitivity of macro-mechanical 

behaviour of idealized sand system to the various particle densities when the 

particle stiffness was 109 [
𝑁

𝑚
] is examined. The micro-mechanical properties, 

initial porosity and D50 are presented in table 5-7. 

 

𝑛 0.12 

𝐷50 (m) 0.000625 

𝑘n (
𝑁

𝑚
) 1.5*10

9
 

𝑘s (
𝑁

𝑚
) 1.5*10

9
 

𝜇 0.2 

𝑣 0.15 

 

Table 5:7 The initial porosity and micro-mechanical properties to measure the sensitivity of 
system to the various particle densities   

 

Figures 5-16 and 5-17 clearly show that the macro-mechanical behaviour of 

this particulate system is independent of the particle density if it is between 

the range of 2650 [
𝑘𝑔

𝑚3] to 2*108 [
𝑘𝑔

𝑚3]. Therefore, ρ = 2*108 [
𝑘𝑔

𝑚3] is used for the 

further simulations for a particle stiffness of 109 [
𝑁

𝑚
]. 
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Figure 5-16 The sensitivity of sand response to the different particle density: deviatoric stress 

vs. axial strain when the normal stiffness of particle is of order 10
9 

 

 

Figure 5-17 The sensitivity of sand response to the different particle density: volumetric 
strain vs. axial strain when the normal stiffness of particle is of order 10

9
 

 

5.4.1.2 The sensitivity of sand system to the inter-particle coefficient 

friction 

Twenty one biaxial tests with rigid boundary particles were carried out to 

determine the effect the inter particle coefficient of friction has upon the 

macro behaviour of the model. The input data for these 21 tests is listed in 

table 5-8. The results of the tests in terms of deviatoric stress vs. axial strain 

and volumetric strain vs. axial strain are shown in Appendix 3. The 
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interpretation of the tests to show the effect of the inter particle coefficient of 

friction upon the average coordination number, average fabric anisotropy, 

average normal contact force anisotropy, average shear contact force 

anisotropy, average symmetric geometric deviation index is show in 

Appendix 3.  

Figures 5.18 to 5.21 show the effect of the inter particle friction on the macro 

properties the angle of friction, the peak stress, the secant stiffness at 50% of 

the peak stress and Poisson’s ratio. 

 

𝑘n [
𝑁

𝑚
] 𝑘s [

𝑁

𝑚
] 𝜇 𝜌 [

𝑘𝑔

𝑚3
] 𝑛 

1.24*10
7
 

8.45*10
7
 

17.1*10
7
 

46.0*10
7
 

133.0*10
7
 

150.0*10
7
 

160.0*10
7
 

1.24*10
7
 

8.45*10
7
 

17.1*10
7
 

46.0*10
7
 

133.0*10
7
 

150.0*10
7
 

160.0*10
7
 

0.5,0.9,1.2 2*10
8
 0.12 

  

Table 5:8 The micro-mechanical parameters for performing a series of biaxial tests of sand 
system to investigate the sensitivity of system to the particle friction. 

 

The peak stress (Figure 5.18) increases as the inter-particle friction increases 

though it is independent on the inter particle stiffness. Note that in PFC2D, 

there is no rolling friction between the particles. This is compensated by 

increasing the inter-particle friction.  
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Figure 5-18 The sensitivity analysis: μ vs. Peak stress. 

 

The angle of friction (Figures 5-19) increases as the inter particle friction 

increases but is not affected by the inter particle stiffness. The angle of 

friction between 28o and 37o is typical for medium and dense sand. The 

angle of friction was computed using Eq. 5.8. 

 

 

Figure 5-19 The sensitivity analysis: μ vs. angle of friction. 

 

Based on the data provided for this study, a relationship between inter-

particle friction and angle of friction can be developed as follows: 
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𝜃 = 13.5𝜇 + 14.8                                                                                                                   5.9 

where 𝜃 and 𝜇 are angle of friction and inter-particle coefficient friction. Note, 

this relationship is developed for inter-particle coefficient between 0.5 and 

1.2. Figure 5.20 shows 𝐸50 vs. inter-particle friction, for both plane stress and 

plane stress conditions, that the sample stiffness is more dependent on the 

inter particle stiffness than the inter particle friction. The relationship between 

the inter particle friction changes as the inter particle stiffness increases.  

 

 

 

 

 

 

Figure 5-20 The sensitivity analysis: 𝜇 vs. 𝐸50. (a) Plane-strain (b) Plane-stress   

(a) 

(b) 
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Figure 5-21 shows that increasing the inter-particle coefficient friction leads to 

a slight increase in Poisson’s ratio. As inter-particle coefficient friction leads 

to increase the magnitude of inter-particle forces, the contact deformations 

and particles displacements increases. This leads to increase the lateral 

deformation of system. 

 

 

 

 

 

 

Figure 5-21 The sensitivity analysis: Inter-particle coefficient friction vs. Poisson’s ratio: (a) 

Plane-strain (b) Plane-stress 

(a) 

(b) 



158 

 

Figures 5.22 to 5.25 show the effect of the inter particle friction on the 

anisotropic behaviour with axial strain for a fixed value of inter particle 

stiffness.  

 

 

Figure 5-22 The sensitivity of normal contact anisotropy to the various inter-particle 

coefficient friction when normal and shear stiffnesses are constant 

 

The normal contact anisotropy (Figure 5.22) increases until a maximum at 

the peak stress and then reduces with further strain for all inter-particle 

frictions. The trend of this fabric quantity is similar to the trend of deviatoric 

stress-axial stain (see Appendix 3). This clearly shows that the inter particle 

friction has little effect on the results. The maximum normal contact 

anisotropy which is approximately 0.3 shows how much the contact 

arrangement drifts from the isotropic state (i.e. 𝑎=0). Indeed, this term shows 

how much the system being loaded can develop anisotropy in contact 

networks. It is also a variance term that can be statistically shown as to how 

well the contact networks are changing during loading. The more normal 

contact anisotropy there is, the more shear strength capacity can be attained.  

The variation of normal contact force anisotropy is shown in figure 5-23. As 

seen, it increases until a maximum at the peak stress and then reduces with 

further strain for all inter-particle frictions. This clearly shows that the inter 

particle friction has little effect on the results. The maximum value of normal 
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contact force anisotropy is 0.8 for these three models. That is, the ability of 

the system to develop the normal contact forces during loading for these 

inter-particle properties and pack is 0.8. The trend of this is normal contact 

force anisotropy is similar with the trend of normal contact anisotropy 

behaviour.  

 

 

Figure 5-23 The sensitivity of normal contact force anisotropy to the various inter-particle 
coefficient friction when normal and shear stiffnesses are constant   

 

Figure 5.24 shows that the shear contact force anisotropy is dependent on 

the inter-particle friction and the amount of axial strain. The anisotropy 

reduces to a constant value of 0.05 for all three samples. It is also seen that 

the peak of shear contact force anisotropies are not at the same strain as 

those for the normal contact and normal contact force anisotropies.  
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Figure 5-24 The sensitivity of shear contact force anisotropy to the various inter-particle 

coefficient friction when normal and shear stiffnesses are constant 

 

Figure 5.25 shows that the average symmetric deviation index increases with 

axial strain but the inter-particle friction has little effect. The graph 

qualitatively shows that the models were not in symmetric state at the initial 

(𝜆 = 0.1 at 𝜀22 = 0). At peak deviatoric stress (see figure 100 in Appendix 3), 

the slope of λ significantly decrease, showing the stability of bulk decreases. 

However, at post-peak the slope of 𝜆 slightly increases, showing that the 

stability of bulk increases. 𝜆 = 0 corresponds with a fully symmetric contact 

configuration and 𝜆 = 1 corresponds the floating particles.   

 

 

Figure 5-25 The sensitivity of average geometric symmetric deviation index of sand to the 
various particle coefficient friction. 
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Figure 5-26 shows that an increase in inter-particle friction has little effect on 

the average coordination number to peak deviatoric stress. The coordination 

number is constant after that though the value depends on the inter particle 

friction.   

 

 

Figure 5-26 The sensitivity of average coordination number of sand to the various particle 
coefficient friction. 

 

Comparing the stress-strain behaviour obtained from 𝜇=0.2 (see figure 5-8) 

and those obtained from 𝜇=0.5, 0.9 and 1.2 (for example figure 100 in 

Appendix 3) shows that inter-particle friction is also mainly controlled the 

hardening and softening strain behaviour. Therefore, 𝜇 = 0.2 used to study 

the sensitivity of bulk to the various particle densities shows no clear peak 

deviatoric stress, corresponding typical loose behaviour of dry sand (Atkinson 

and Bransby, 1978), while 𝜇=0.5, 0.9 and 1.2 used to study the sensitivity of 

bulk to the inter-particle coefficient friction indicates the clear peak deviatoric 

stress, corresponding typical dense and medium behaviour of dry sand 

(Atkinson and Bransby, 1978). 

5.4.1.3 The sensitivity of sand system to normal contact stiffness 

A series of 21 biaxial tests were performed to determine the effect of the 

normal particle stiffness on the macro properties of the sample. The input 

data for these 21 tests is listed in table 5-8. The results of the sensitivity of 
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the particulate system to the normal contact stiffness is shown as deviatoric 

stress vs. axial strain, volumetric strain vs. axial strain, average coordination 

number, average fabric anisotropy, average normal contact force anisotropy, 

average shear contact force anisotropy, average symmetric geometric 

deviation index in Appendix 3 (see tables 19 to 20 and figures 139 to 159).  

The sensitivity of macro-mechanical behaviour for these 21 tests to the 

different particle normal stiffness are shown in Figures 5-27 to 5-30. Figure 5-

27 shows that an increase in normal particle stiffness results in an increase in 

the elastic modulus of the sample (i.e. 𝐸50). The linear relationship can be 

established for each inter-particle friction (in the case of plane-strain): 

 

𝐸50 = 2.94𝑘𝑛    for inter-particle friction 0.5 

𝐸50 = 3.45𝑘𝑛    for inter-particle friction 0.9                                                 5.10 

𝐸50 = 3.60𝑘𝑛    for inter-particle friction 1.2 

 

A linear relationship can be also established for each inter-particle friction (in 

the case of plane-stress): 

𝐸50 = 3.15𝑘𝑛    for inter-particle friction 0.5 

 

𝐸50 = 3.63𝑘𝑛    for inter-particle friction 0.9                                                 5.11 

𝐸50 = 3.76𝑘𝑛    for inter-particle friction 1.2 

 

The values of normal stiffness, which are between 8.45*107 and 17.1*107 

(N/m) lead to values of 𝐸50 which are typical for medium and dense sand; i.e. 

between 25 and 50 [MPa] and 50 and 80 [MPa], respectively.  
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Figure 5-27 The sensitivity of 𝐸50 to the various particle normal stiffness: (a) Plane-strain (b) 

Plane-stress 

 

Figure 5-28 shows that an increase in the normal particle stiffness leads to 

an increase in Poisson’s ratio. The value increases from 0.1 to 0.25. The 

typical range of 𝑣50 for medium and dense sand (see table 5-2) is between 

0.2 and 0.35 and 0.3 and 0.4, respectively. However, if the normal stiffness of 

particles is between 8.45*107 and 17.1*107 [N/m], which produces a sensible 

value of 𝐸50 for any inter-particle friction used in this work, these values of 

normal stiffness will also produce a sensible range for Poisson’s ratio of 

medium sand only for inter-particle friction between 0.9 and 0.5. For the 

(a) 

(b) 

∗ 107 

∗ 107 
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higher values of inter-particle coefficient friction, the interpreted value of 

Poisson’s ratio is less than typical values.  

A non-linear relationship can be also established for each inter-particle 

friction (in the case of plane-strain): 

 

𝑣50 = 0.163𝑘𝑛
0.091

    for inter-particle friction 0.5 

𝑣50 = 0.136𝑘𝑛
0.102    for inter-particle friction 0.9                                         5.12                                         

𝑣50 = 0.122𝑘𝑛
0.115

    for inter-particle friction 1.2 

A non-linear relationship can be also established for each inter-particle 

friction (in the case of plane-stress): 

 

𝑣50 = 0.18𝑘𝑛
0.126

    for inter-particle friction 0.5 

𝑣50 = 0.14𝑘𝑛
0.137    for inter-particle friction 0.9                                           5.13                                         

𝑣50 = 0.13𝑘𝑛
0.15

     for inter-particle friction 1.2 

 

 

 

 

(a) 

∗ 107 
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Figure 5-28 The sensitivity of v50 to the various particle normal stiffness: (a) Plane-strain (b) 
Plane-stress 

 

Figures 5-29 and 5-30 shows that an increase in the normal stiffness of 

particles has little effect on the angle of friction and peak deviatoric stress. 

 

 

 

 

 

 

Figure 5-29 The sensitivity of angle of friction to the various particle normal stiffness 

(b) 

∗ 107 

∗ 107 
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Figure 5-30 The sensitivity of peak stress to the various particle normal stiffness 

 

 

 

Figure 5-31 The sensitivity of sand to the different normal particle stiffness when inter-

particle friction is 0.9: Normal contact anisotropy vs. axial strain 

 

An increase in normal particle stiffness from 1.24*107 to 160*107 [N/m] leads 

to increase in the rate of normal contact anisotropy in the direction of applied 

deviatoric load. That is, the particles and contacts velocities and 

displacements in the direction of applied deviatoric load increase. This results 

in an initial increase in the normal contact anisotropy of the system (see 

figure 5-31). The maximum value of average fabric anisotropy takes place 

when the axial strain corresponds to the peak deviatoric stress.  

∗ 107 
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This initial increase in normal contact anisotropy significantly increases the 

average normal contact force anisotropy (see figure 5-32). It is because the 

contact networks re-arranges in the direction of major principle stress (𝜎11) to 

resist against shearing deformation. The main reason of this rapid rise is to 

increase the slope of 𝜆 significantly, where the contact networks around each 

particle tends to drift from its symmetric contacts arrangement (or stablest 

contacts arrangement) to resist against the deviatoric load (see figure 5-34). 

 

 

Figure 5-32 The sensitivity of sand to the different normal particle stiffness when inter-
particle friction is 0.9: average normal force anisotropy vs. axial strain 

 

 

Figure 5-33 The sensitivity of sand to the different normal particle stiffness when inter-
particle friction is 0.9: average shear force anisotropy vs. axial strain 
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Figure 5.33 shows that the shear contact force anisotropy reduces with axial 

strain for all particle stiffnesses. At post-peak, 𝑎𝑡 is independent from contact 

stiffness. 

During the shearing of sand in a biaxial test, the particles are rearranged to 

represent their higher shear capacity. These changes lead to drift from the 

initial contact configuration. This is shown in figures 5-34 and 5-35. Figure 5-

34 shows that an increase in normal particle stiffness causes the average 

symmetric geometric deviation of contact points increase due to lose of their 

contacts because the higher rate of dilation (see figures 142 to 144 in 

Appendix 3).  

 

 

Figure 5-34 The sensitivity of average geometric symmetric deviation index of particles to the 

normal particle stiffness when inter-particle friction is 0.9 

 

Figure 5-35 shows that increase in normal particle stiffness leads to decrease 

the average coordination number. In both cases the variation depends on the 

particle stiffness.    
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Figure 5-35 The sensitivity of average coordination number of particles to the normal particle 
stiffness when the inter-particle friction is 0.9 

 

As seen in figure 5-35, the average coordination number after peak deviatoric 

stress (see figure 140 in Appendix 3) for 𝑘𝑛 = 17.1*107 to 𝑘𝑛 = 160.0*107 

[N/m] is below 3, which is below the enough restrains to satisfy the static 

equilibrium of each particle, while their stiffnesses are much higher than that 

for 𝑘𝑛 = 1.24*107 to 𝑘𝑛 = 8.45*107. It is because an increase in contact 

stiffness or μ leads to increase the inter-particle forces (or shear capacity of 

particles). Therefore, the chain forces developed for each particle during 

sharing in order to maintain granular system in static equilibrium increases. 

This leads to this conclusion that a lower average coordination number is 

possible for strong network forces to resist against shear deformation.  

In the case of lower normal contact stiffness, the average coordination 

number increases about peak and becomes constant at post-peak. The 

reason of this increase till peak stress is due to dilation behaviour (see figure 

143 in Appendix 3). As seen in this figure, the system contracts till axial strain 

0.05. This causes that the system becomes compacted and tendency of 

particles to lose their contact decreases. Therefore, the average coordination 

number increases. Also, as the rate of dilation decreases, the ability of 

system to develop higher anisotropy in comparison to that for higher normal 

contact stiffnesses decreases.  
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5.4.1.4 The sensitivity to the shear particle stiffness 

The input data of the biaxial tests to determine the effect of shear particle 

stiffness is listed in table 5-9. The results for a normal particle stiffnesses 

between 8.45*107 and 17.1*107 [N/m] are presented as these gave produced 

typical values of deformation modulus. The results of the sensitivity of 

particulate system to the shear contact stiffness such as deviatoric stress vs. 

axial strain, volumetric strain vs. axial strain, average coordination number, 

average fabric anisotropy, average normal contact force anisotropy, average 

shear contact force anisotropy, average symmetric geometric deviation index 

for these tests are shown in Appendix 3 (see tables 22 to 42 and figures 160 

to 162). The results are shown in figures 5-36 to 5-38.  

 

 

 

 

 

 

𝑘𝑛 (N/m) 
𝑘𝑠 (N/m) 

𝑘𝑠/𝑘𝑛=1 𝑘𝑠/𝑘𝑛=0.5 

1.24*10
7
 

8.45*10
7
 

17.1*10
7
 

46.0*10
7
 

133.0*10
7
 

150.0*10
7
 

160.0*10
7
 

1.24*10
7
 

8.45*10
7
 

17.1*10
7
 

46.0*10
7
 

133.0*10
7
 

150.0*10
7
 

160.0*10
7
 

6.2*10
6
 

42.25*10
6
 

8.55*10
7
 

23*10
7
 

66.5*10
7
 

75*10
7
 

80*10
7
 

𝜇 0.5  

𝜌[
𝑘𝑔

𝑚3] 2*10
8
 

𝑛 0.12 

 

Table 5:9 The micro-mechanical parameters for performing a series of biaxial tests of a 
particulate system to investigate the sensitivity of system to the normal stiffness of particle. 
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Figure 5-36 The sensitivity of E50 to the various particle shear stiffness 

 

Figures 5-36 shows that an increase in kn/ks between 0.5 and 1 results in an 

increase in 𝐸50 while this increase leads to a decrease in Poisson’s ratio (see 

figure 5-37). As expected increasing 𝐸50 leads to system that is more brittle. 

That is the deformability term such as Poisson’s ratio should decrease.  

 

 

Figure 5-37 The sensitivity of 𝑣50 to the various particle shear stiffness 

 

Figure 5-38 clearly show that increase in 𝑘𝑠/𝑘𝑛 between 0.5 and 1 has little 

effect on the angle of friction and peak deviatoric stress. The results show 
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how the deformation modulus is controlled by particle normal stiffness and 

shear stiffness while the angle of bulk friction is controlled by particle friction. 

 

 

Figure 5-38 The sensitivity of angle of friction to the various particle shear stiffness 

 

Figures 5-39, to 5-43 shows that changes in the ratio of particle normal 

stiffness to the shear stiffness from 1 to 0.5 do not have any effect on the 

average coordination number, average symmetric geometric deviation index, 

average fabric anisotropy, average normal force anisotropy and average 

shear force anisotropy of sand respectively.  

 

Figure 5-39 The sensitivity of average coordination number of sand to the various particle 
shear stiffness. 
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Figure 5-40 The sensitivity of average symmetric geometric deviation index of sand to the 

various particle shear stiffness. 

 

 

 

 

 

 

 

 

 

 

Figure 5-41 The sensitivity of average fabric anisotropy of sand to the various particle shear 
stiffness. 
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Figure 5-42 The sensitivity of average normal force anisotropy of sand to the various particle 

shear stiffness. 

 

 

 

Figure 5-43 The sensitivity of average shear force anisotropy of sand to the various particle 
shear stiffness. 
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the inter-particle properties, particle size distribution (PSD), initial porosity 

and confining pressure. 

 

Boundary 

condition 

𝑘𝑛 

[N/m] 

*10
7
 

𝑘𝑠 

[N/m] 

*10
7
 

𝜇 
Width 

[cm] 

Height 

[cm] 
𝑛 

Range 

of PSD 

[mm] 

Number of 

particles  

Confining 

pressure 

[kPa] 

Rigid 8.45 8.45 0.9 7.5 15.0 0.12 1-2 8067 100 

Deformable 8.45 8.45 0.9 7.5 15.0 0.12 1-2 8067 100 

Table 5:10 The input properties used for sensitivity analysis of sand to the different boundary 
conditions 

 

The results are shown in figures 5-44 to 5-54 and table 43 in Appendix 3. 

Figure 5-44 shows that trend of deviatoric stress vs. axial strain between rigid 

boundary and deformable boundary till peak stress is similar. However, the 

peak stress with a rigid boundary is higher than that for a deformable 

boundary. This fact is also shown by (Cheung and O'Sullivan, 2008). The 

reason of this higher peak stress in the case of rigid boundary is that the rigid 

side boundaries are a constraint not for those particles in contact the 

boundary which constrains the whole system. Both samples show a 

reduction in deviatoric stress to a post peak value. The deviatoric stress 

remains relatively constant for the deformable boundary, suggesting critical 

state conditions, but it increases for the rigid boundary. Therefore, the macro 

stress strain response with deformable boundaries is more representative of 

actual behaviour than that with rigid boundaries. 
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Figure 5-44 The sensitivity of macro-mechanical behaviour of the system to the different 
boundary condition: deviatoric stress vs. axial strain 

 

The volumetric strain increases in both cases though the dilation rate with 

deformable boundaries post-peak is more representative of typical soil 

behaviour than that with rigid boundaries, suggesting critical state conditions 

(figure 5-45).  

 

 

 

 

Figure 5-45 The sensitivity of macro-mechanical behaviour of the system to the different 
boundary condition: volumetric strain vs. axial strain 
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The average symmetric geometric deviation index, 𝜆 is constant at post peak 

for deformable boundaries (𝜆 = 0.2) (see figure 5-46). Tracking 𝜆 clearly 

shows that the particle stability and bulk stability do not increase after peak 

stress for deformable boundaries, suggesting critical state conditions, while it 

increases after peak stress in the case of rigid boundaries.  

Figure 5-47 shows the variation of average coordination number against axial 

strain for different boundary conditions. The trend of average coordination 

number vs. axial strain between rigid boundary and deformable boundary till 

peak stress is similar. It remains relatively constant at 3.3 for the deformable 

boundary which suggests critical state conditions but it slightly decreases for 

the rigid boundary. The reason of this decrease in average coordination 

number in the case of rigid boundaries after peak is its dilation behaviour. As 

the rate of dilation increases, the tendency of particles to move and lose their 

contacts increases and subsequently their stability decreases.   

 

 

 

 

 

Figure 5-46 The sensitivity of 𝜆 to the different boundary condition: volumetric strain vs. axial 
strain 
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Figure 5-47 The sensitivity of average coordination number to the different boundary 
condition: volumetric strain vs. axial strain 

 

Thus, if the aim is to find the elastic deformation modulus, rigid side 

boundaries can be applied as the initial stress-strain and volumetric 

behaviour are similar for two cases. However, if the critical state behaviour of 

soil is considered, the deformable boundary particles should be applied. 
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Figure 5-48 The bulk shearing deformation when deformable boundary particles used 

 

Figure 5-48 shows the shearing deformation of sand at different axial strain 

levels for deformable boundary. It is seen that the use of deformable 

boundary particles allows the bulk to bulge. According to this figure, the bulk 

dilation starts about 𝜀11 = 0.005. From 𝜀11 = 0.05 to 𝜀11 = 0.1the bulk 

deformation seems to be similar, suggesting critical state conditions. 

                                 

 

 

             

 

 

   At  11 = 0                                         At  11 = 0.005                                         At  11 = 0.01 

   At  11 = 0.015                                  At  11 = 0.05                                        At  11 = 0.1 
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Figure 5-49 The evolution of normal contact forces during shearing when deformable 
boundary particles used 

 

Figure 5-49 shows the evolution of normal contact forces during shearing 

deformation at different axial strain levels for deformable boundary. It is noted 

that the magnitude of normal contact force is proportional to its thickness. 

From 𝜀11 = 0.0 to 𝜀11 = 0.005 where the sample mainly contracts the normal 

contact forces increases. However, once the sample starts to dilate (i.e. 

above 𝜀11 = 0.005) the direction of normal contact forces change and their 

magnitude is decreasing such that at 𝜀11 = 0.1 a clear change in distribution 

of normal chain forces formed.  

 

                             

 

 

                           

   At  11 = 0                                         At  11 = 0.005                                         At  11 = 0.01 

     At  11 = 0.015                                    At  11 = 0.05                                        At  11 = 0.1 
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Figure 5-50 The evolution of shear contact forces during shearing when deformable 
boundary particles used 

 

Figure 5-50 shows the evolution of shear contact forces during shearing 

deformation at different axial strain levels for deformable boundary. It is noted 

that the magnitude of normal contact force is proportional to its thickness. 

From 𝜀11 = 0.0 to 𝜀11 = 0.005 the magnitude of shear contact forces 

significantly increases as system is compacted. However, once the sample 

starts to dilate (i.e. over 𝜀11 = 0.005) particle sliding starts. This leads to a 

reduction in the magnitude of shear contact forces.  

                             

 

 

                          

       At  11 = 0                                             At  11 = 0.005                                 At  11 = 0.01 

   At  11 = 0.015                                  At  11 = 0.05                                        At  11 = 0.1 
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Figure 5-51 The particles displacement during shearing along with shear band taken place at  
𝜀11 = 10% when deformable boundary particles used 

 

Figure 5-51 shows the particles displacement during shearing deformation at 

different axial strain levels for deformable boundary. It is seen that applying 

vertical loading causes the particles to move in the horizontal direction. As 

the system dilates the configuration of particle displacement changes 

significantly (e.g. compare particles displacements at 𝜀11 = 0.005 and 𝜀11 = 

0.015). From 𝜀11 = 0.015 and 𝜀11 = 0.05 a wedge failure forms. Eventually, 

the shear band formed at 𝜀11 = 0.1 for deformable boundary is clearly seen.  

 

                    

 

 

             

       At  11 = 0                                           At  11 = 0.005                                       At  11 = 0.01 

       At  11 = 0.015                                  At  11 = 0.05                                      At  11 = 0.1 
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Figure 5-52 The shear band taken place at 𝜀11 = 10% when rigid boundary used 

 

Figure 5-52 shows the shear band clearly formed at 𝜀11 = 0.1 for the rigid 

boundary is different for that formed for deformable boundary particles.  

Figures 5-53 and 5-54 show the polar diagram and analytical form of normal 

contact distributions for deformable and rigid boundaries at the end of test. 

These figures show that the orientation of the normal contact at the post peak 

state at the end of the test for deformable boundary particle is 0.057 ̊ and it is 

4.2  ̊for rigid boundary from horizontal direction. This shows the system with 

rigid boundary has this ability to develop at the failure state while the system 

with deformable boundary does not have this ability to develop as 𝜃𝑎 = 

0.057 ̊.  
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Figure 5-53 Normal contact distribution of deformable boundary particles at  𝜀11 = 10% 

 

 

 

 

 

 

Figure 5-54 Normal contact distribution of rigid boundary particles at 𝜀11 = 10% 
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Figures 5-55 and 5-56 show the polar diagram and analytical form of normal 

contact force distributions for the system for deformable and rigid boundaries 

at the end of the test. These figures show that the orientation of normal 

contact forces at the residual state is in the horizontal direction. However, the 

summation of normal contact forces at the end of test is significantly different 

between deformable and rigid boundaries. For deformable boundaries, the 

value of 𝑓0̅
𝑐 (see Eq. 3.14) is 16082 (N/m) while it is 658277 (N/m) for rigid 

boundaries, which is possibly due to the effects of interaction between the 

rigid walls and the neighbouring particles and lack of deformation at the 

boundaries. 

 

 

 

 

 

 

 

Figure 5-55 Normal contact force distribution of deformable boundary particles at  𝜀11 = 10% 
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Figure 5-56 Normal contact force distribution of rigid boundary at 𝜀11 = 10% 

 

Figures 5-57 and 5-58 show that the concentration of shear contact forces is 

about 30 ̊ for deformable boundary while it is about 40 ̊ for rigid boundary 

when shear band formed. As seen in table 44 in Appendix 3, the angle of 

friction obtained from Mohr-Coulomb envelope is about 27 ̊ for this system. 

This shows the direction of the shear band formed in the case of deformable 

boundary is similar to that in a triaxial test on dense sand.   
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Figure 5-57 Shear force anisotropy of deformable boundary particles at 𝜀11 = 10% 

 

 

Figure 5-58 Shear force anisotropy of rigid boundary at 𝜀11 = 10% 
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To investigate the effect of confining pressure on the macro mechanical 
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200 and 300 [kPa] were applied. Table 5-11 shows the inter-particle 

properties along with size of sample, initial porosity, PSD, number of particles 

and confining pressures used for this study. The results are shown in figures 

5-59 to 5-64 and table 44 in Appendix 3.   

 

Test No. 

𝑘𝑛 

[N/m] 

*10
7
 

𝑘𝑠 

[N/m] 

*10
7
 

𝜇 
Width 

[cm] 

Height 

[cm] 
𝑛 

Range 

of PSD 

[mm] 

Number of 

particles  

Confining 

pressure 

[kPa] 

1 8.45 8.45 0.9 7.5 15.0 0.12 1-2 8067 100 

2 8.45 8.45 0.9 7.5 15.0 0.12 1-2 8067 200 

3 8.45 8.45 0.9 7.5 15.0 0.12 1-2 8067 300 

Table 5:11 The input properties used for sensitivity analysis of sand to the different confining 
pressures 

 

Figure 5-59 shows the variation of deviatoric stress against axial strain. As 

expected an increase in confining pressure leads to an increase in the peak 

stress. For example, the ratio of peak stress in the case of a confining 

pressure of 300 [kPa] to that for 100 [kPa] is nearly 3.1, the ratio of peak 

stress for the case of 300 [kPa] to that for 200 [kPa] is almost 1.5 and the 

ratio of peak stress in the case for 200 [kPa] to that or 100 [kPa] is 

approximately 1.0. This shows that these ratios are in good agreement with 

the ratio 300 [kPa]/100 [kPa], 300 [kPa]/200 [kPa], and 200 [kPa]/100 [kPa], 

respectively. The reduction to post peak stress increases as the confining 

pressure increases and the post peak stress increases with confining 

pressure.   
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Figure 5-59 The sensitivity of macro-mechanical behaviour of sand to isotropic stress: 

deviatoric stress vs. axial strain 

 

Figure 5-60 shows the variation of volumetric strain against axial strain for 

different confining pressures. As expected increasing the confining pressure 

leads to an increase in the degree of compaction or contraction of sand. This 

leads to an increase of the secant elastic modulus of sand 𝐸50.   

 

 

Figure 5-60 The sensitivity of macro-mechanical behaviour of sand to isotropic stress: 
volumetric strain vs. axial strain 

 

Figure 5-61 shows the variation of 𝐸50 against confining pressures in terms of 

plane-strain and plane-stress. As expected increasing the confining pressure 
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leads to increase the degree of compaction 𝐸50 and angle of friction (figure 6-

62). 

 

 

Figure 5-61 𝐸50 against confining pressure for both plane-strain and plane-stress 

 

 

 

 

 

 

Figure 5-62 Angle of friction against confining pressure 
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Figure 5-63 shows that increase in confining pressure results in a decrease 

in Poisson’s ratio. It is because the system shows more contraction by 

increasing the confining pressure.  

 

 

Figure 5-63 Poisson’s ratio against confining pressure 

 

Figure 5-64 demonstrates the Mohr-Coulomb failure envelope of sand. It can 

be seen from this figure that the cohesion term is zero. 

 

 

Figure 5-64 Mohr-Coulomb failure envelope. 
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5.5 Conclusion 

In this chapter the sensitivity of an idealised particulate system to the inter-

particle friction and normal and shear particle stiffnesses was investigated. 

42 biaxial tests with rigid walls were investigated. For this purpose, more than 

5800 lines code were written by Fish language programming. The values of 

inter-particle properties for these 42 tests were extracted from table 4-1.  

The results show that elastic parameters, Young’s modulus and Poisson’s 

ratio, with particle diameters varying between 1.25 [mm] and 2.0 [mm], are 

greatly dependent on the normal particle stiffness while the angle of friction is 

strongly dependent on the inter particle friction. It was seen that an inter-

particle friction between 0.5 and 1.2 produced an angle of friction between 

30  ̊ and 37  ̊ such that the relationship between them seems to be linear. 

These values are compatible with typical ranges of angle of friction of 

medium sand. That is, to produce the angle of friction for dense sand, a 

higher inter-particle coefficient friction (i.e. more than 1.2) should be applied. 

It was also seen that the values of normal particle stiffnesses between 

8.45*107 and 17.1*107 with ratio 𝑘𝑠/𝑘𝑛=1 results in sensible values of 𝐸50 of 

medium sand. However, Poisson’s ratio obtained from these ranges 

produced a lower value than typical values for sand. That is, to produce 𝐸50 

for dense sand, higher values for 𝑘𝑛 should be applied. The sensitivity of 

Poisson’s ratio to shear stiffness was investigated with a number of biaxial 

tests within ranges of normal particle stiffnesses between 8.45*107 and 

17.1*107 and ratio 𝑘𝑠/𝑘𝑛= 0.5. The results show that a decrease in shear 

particle stiffness produces sensible ranges of Poisson ratio for idealised sand 

which are compatible with those mentioned for typical medium sand while 

this decrease does not have any effect on 𝐸50.     

In terms of micro-mechanics, changes in inter-particle friction from 0.5 to 1.2 

do not have any significant effect on the average fabric anisotropy and 

average normal force anisotropy, while this increase leads to increase the 

average shear force anisotropy. An increase in 𝑘𝑛 results in an increase in 

average fabric anisotropy, while this increase results in initial rise in average 

normal force anisotropy. The average shear force anisotropy decreases 
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slightly when 𝑘𝑛 increases. The deviation from the average symmetric of 

contact topology increase significantly when 𝑘𝑛 increase. That is, the 

average coordination number decreases considerably when 𝑘𝑛 increases. An 

increase in the ratio 𝑘𝑠/𝑘𝑛 from 0.5 to 1 does not have any effect on the 

micro-structure.  

To investigate the macro-mechanical behaviour of idealised sand to the 

different boundary conditions two biaxial tests with the same initial condition 

and inter-particle properties were implemented, one with rigid walls and the 

other with deformable boundary particles. For the later one, a novel Fish 

code with approximately 1500 lines was written. The results show that the 

macro mechanical behaviour of sand obtained from these two different 

boundary conditions demonstrates the same behaviour till peak deviatoric 

stress.  

To investigate the macro-mechanical behaviour of idealised sand to the 

different confining pressure three biaxial tests with the same initial condition 

and inter-particle properties were implemented with three confining pressure 

100 [kPa] 200 [kPa] and 300 [kPa]. The results show that the 𝐸50 and angle 

of friction increase as the confining pressure increases.  
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Chapter 6 

6 Studying the fabric of sand during earthquake  

6.1 Introduction 

The evolution of idealized sand fabric serves as a powerful tool to investigate 

its response during an intricate phenomenon earthquake. By monitoring the 

fabric components, a qualitative assessment of the response of granular 

sand to seismic loading can be attained. However, the fabric quantities such 

as “normal contact distribution”, “normal contact force distribution”, “shear 

contact force distribution”, “average coordination number” and “average 

symmetric geometric deviation index” are material-geometric-dependent 

quantities. That is, the geometry of contacts and contact forces are greatly 

dependent on inter-particle properties and the initial geometry of system. 

Additionally, the frequency and amplitude of an earthquake has a profound 

influence on the geometrical arrangement of contacts and contact forces 

such that a change in the contacts topology will influence the seismic micro-

macro behaviour of particulate system. Therefore, a series of sensitivity 

analysis was undertaken to examine the effect of inter-particle properties 

such as normal and shear contact stiffness and inter-particle coefficient 

friction on the behaviour of idealized sand fabric during earthquake. The 

sensitivity of idealized sand fabric to different frequencies and amplitudes of 

earthquake load was also studied by performing a series of DEM simulations.  

To study the evolution of the fabric quantities of a granular element using 

DEM simulations due to seismic activity, a novel deformable boundary 

particles algorithm was defined. The applied assumptions and limitations of 

this algorithm regarding seismic wave propagation through the sand media 

are presented in section 6.2. To apply this dynamic deformable boundary, the 

average shear velocity of particulate sand system is required. Section 6.3 

investigates the sensitivity of seismic shear wave speed to the various 

earthquake frequencies. The validation of this new method is also described 

in section 6.4. The sensitivity of shear wave propagation to the different 

boundary conditions is also discussed in section 6.5. The influence of 



195 

 

different sample ratios on the shear wave propagation and fabric evolution of 

idealized sand is investigated in section 6.6. Section 6.7 studies the 

sensitivity of fabric quantities of sand system to the various earthquakes’ 

frequencies. Section 6.8 studies the sensitivity of fabric quantities of sand 

system to the various earthquakes’ amplitudes. Section 6.9 explores the 

sensitivity of fabric quantities of sand system to the various initial porosities. 

Section 6.10 explores the sensitivity of fabric quantities of sand system to the 

various normal particle stiffnesses. Section 6.11 presents the sensitivity of 

fabric quantities of sand system to the various inter-particle frictions. The 

influence of pile element on the fabric evolution will be studied in section 

6.12. The conclusion is presented in section 6.13.  

6.2 Assumptions and limitations of dynamic deformable 

boundary particles 

One of the main differences between a quasi-static analysis and a dynamic 

analysis using DEM is that damping should be reduced to a physically 

realistic value when the aim is to simulate a dynamic problem (Marketos and 

O’Sullivan, 2013, Itasca, 2008). However, before applying dynamic loading, 

the particulate system being considered must be in relative static equilibrium. 

That is, the ratio of average unbalanced force to the maximum contact force 

must be below 0.005. The contact law used in this work is a linear elastic 

spring acting in parallel with a contact viscous dashpot, both in the normal 

and shear directions (see chapter 2 for more details). The damping force, D, 

is added to the contact force at each time step to absorb the kinetic energy of 

the particles. The magnitude of this force, whose direction is always opposite 

to the velocity vector, is calculated through 𝐷 = 2𝛽 √𝑚𝑘|𝑉|, where 𝛽 is the 

critical damping ratio, 𝑚 is the effective mass of the two particles in contact, 𝑘 

is the normal or shear contact stiffness and 𝑉 is the relative normal or shear 

contact velocity. As mentioned in chapter four, the magnitude of critical 

damping ratio 𝛽 for dynamic problems should be set to a low value in order to 

show the dynamic behaviour of system. (Marketos and O’Sullivan, 2013) 

applied 0.01 and 0.0 for the magnitude of normal and shear critical damping 

ratio for their DEM simulations, respectively, while (Zamani and El Shamy, 
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2012) applied 0.1 and 0.1 for the magnitude of normal and shear critical 

damping ratio, respectively. Thus, a sensitivity analysis is required to 

examine the effect of different normal and shear critical damping on the 

micro-macro-mechanical behaviour of idealized sand.  

6.2.1 Boundary condition 

As discussed in section 3.2, in reality seismic earthquake waves are 

produced at bedrock then they radiate to the soil media (see figure 3-7). Due 

to the limiting computing power of the current computers it is impossible to 

fully study the phenomena of wave propagation through idealized sand 

media using DEM simulations. Thus, the particulate sand media must be 

discretized into small elements (see figure 6-1). DEM simulation can be then 

applied for each element. If the seismic behaviour of the particulate element 

near the ground surface requires to be investigated, the impedance ratio of 

top boundary particles should be set to zero, while the impedance ratio of 

base and lateral boundary particles should be set to one to represent infinite 

media. If the seismic behaviour of the particulate element near the bed rock 

is investigated, the proper impedance ratio for those base boundary particles 

should be set to a very high value (Kramer, 1996), while the impedance ratio 

of the top and lateral boundary particles should be set to one to represent 

infinite media. This reflects any downward-traveling waves to the soil media, 

thereby trapping all of the elastic wave energy within the soil layer. In terms 

of an elastic bed rock, part of the seismic wave energy will be transmitted 

through the interface and continue traveling through the elastic base, 

whereas the remainder will be reflected at the interface and will travel back 

through the soil media. For this purpose, the impedance ratio of base 

particles should be greater than one. In the case of an infinite medium, all the 

energy of the wave will be transmitted through the interface, and there will be 

no reflection at the boundary. For this purpose, the impedance ratio of base 

particles should be set to one. In this research it is assumed that the bed rock 

is an infinite medium. The effect of other bed rock conditions on the 

propagation and fabric is recommended for further work. For those elements 

which are neither in contact with bedrock nor the free ground surface, the 
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impedance ratio should be set to one so that seismic waves travel across 

them without any reflection.  

 

 

Figure 6-1 Discretization of half-space schematically  

 

6.2.1.1 The dynamic deformable boundary condition  

The numerical algorithm which is used to create a dynamic deformable 

boundary for seismic application in granular soil dynamics is different to that 

for deformable boundary particles for a static loading discussed in chapter 4. 

In the latter, once a particulate system reaches to isotropic state, the lateral 

rigid walls are removed and numerical deformable boundary particles are 

applied. This models the latex that is used for the standard triaxial test. It 

applies an external force corresponding to a uniform pressure in x and y 

direction to each boundary particle in order to maintain the confining 

pressure. For seismic application where the wave-induced grain velocities 

are considerable during an earthquake, the external force applied through the 

deformable boundaries is not constant. Therefore, the algorithm of 
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deformable boundary particles should be modified to take into account the 

effect of dynamic boundary condition (see chapter 3 for more details). The 

framework of this algorithm is as follows: 

1- Create four rigid walls to build up the initial geometry of the model (see 

figure 6-2). 

 

 

Figure 6-2 The four rigid walls were created to establish the initial geometry of the model 

 

2- Generate uniform random sand particles between 1.5 to 2.0 [mm] in 

size and expand their radius to reach the porosity of the system to the 

desired value as discussed in chapter 4. Then allow the system to 

reach to static equilibrium (see figure 6-3). The global or mass 

damping is applied at this stage to bring the system to static 

equilibrium more rapidly. The value of mass damping ratio is, 

therefore, set to 0.75. 
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Figure 6-3 Generation of uniform randomly ideal sand particle  

 

3- In this stage, the rigid boundaries are moved by applying servo-

mechanism control discussed in section 4.3.5.1 to apply the required 

confining stress. It is to be noted that at this stage the inter-particle 

coefficient friction is set to zero so that the isotropically consolidation 

process can be achieved rapidly. When the system reaches to the 

desired confining pressure, extra mechanical cycles are executed to 

bring the system to static equilibrium.   

4- Next, the dynamic deformable boundary particles algorithm is run. To 

apply dynamic deformable boundary particles after terminating stage 

3, those particles in contact with the rigid walls are recognised and 

their addresses are stored in four separate arrays. At the same time, 

the un-balanced forces of these particles are stored into four different 

arrays. Next, the four rigid walls are removed. Once these walls are 

removed, an external force exists, which is equivalent to the un-

balanced force on each particle. Extra mechanical cycles are required 

to bring the system to static equilibrium (see figure 6-4). 
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Figure 6-4 applying top and bottom deformable boundary  

 

5- When the system reaches the equilibrium, the shear wave component 

of an earthquake load is applied to the base of the model. The stages 

of applying a seismic shear wave force to the base deformable 

boundary particles and applying a dynamic boundary condition to the 

top and lateral deformable boundary particles are as follows: 

5-1- In this stage, the global damping is set to zero. Normal and shear 

contact viscous damping is added (see figure 6-5). In this figure, 

𝑘n, 𝑘s, 𝑐s and 𝑐n are the normal contact stiffness, shear contact 

stiffness, normal contact viscous damping ratio and shear contact 

viscous damping ratio. The values of 𝑐s and 𝑐n are set to 0.01. The 

inter-particle coefficient friction value is also set in this section. 

 

 

Figure 6-5 The rheological model for the inter particle contact for seismic application 
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5-2- At each time step, a dynamic force is applied to each base particle. 

This external dynamic force is superimposed on the static external 

force of each base boundary particle (see figure 6-6). The dynamic 

force is as follows: 

𝐹𝑒𝑎𝑟𝑡ℎ𝑞𝑢𝑎𝑘𝑒:𝑠ℎ𝑒𝑎𝑟 = 𝛼 ∗ 𝜌 ∗ 𝑉𝑆 ∗ 𝐴 ∗ (2 ∗ �̇�𝑥 − �̇�)                                             6.1  

where A is the base particle disk area (for 2D) perpendicular to the 

shear wave.  

 

 

Figure 6-6 Apply both static and dynamic forces to a base particle  

 

5-3- If P-wave propagation is to be studied then a dynamic normal force 

is applied to the base particles at each time step as follows (see 

figure 6-7): 

𝐹𝑒𝑎𝑟𝑡ℎ𝑞𝑢𝑎𝑘𝑒:𝑛𝑜𝑟𝑚𝑎𝑙 = 𝛼 ∗ 𝜌 ∗ 𝑉𝑃 ∗ 𝐴 ∗ (2 ∗ �̇�𝑦 − �̇�)                                          6.2 

 

Figure 6-7 Apply both static and dynamic forces to a base particle 

 

5-4- To consider dynamic boundary on the lateral deformable boundary 

particles, the following shear and normal dynamic forces should be 

applied on each particle at each time step as follows: 

𝐹𝑑𝑦𝑛𝑎𝑚𝑖𝑐;𝑠ℎ𝑒𝑎𝑟   = 𝛼 ∗ 𝜌 ∗ 𝑉𝑆 ∗ 𝐴 ∗ �̇�                                                                             6.3  

𝐹𝑑𝑦𝑛𝑎𝑚𝑖𝑐;𝑛𝑜𝑟𝑚𝑎𝑙 = 𝛼 ∗ 𝜌 ∗ 𝑉𝑃 ∗ 𝐴 ∗ �̇�                                                                            6.4 

 

𝐹𝑠𝑡𝑎𝑡𝑖𝑐  𝐹𝑑𝑦𝑛𝑎𝑚𝑖𝑐  
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The ratio of P-wave velocity to S-wave velocity 
𝑉𝑃

𝑉𝑆
 is between 1.5 and 2.0 

for dry sand (Osman, 2010). A ratio of 1.75 was used. 

5-5- To consider dynamic boundary on the top deformable boundary 

particles, the following shear and normal dynamic forces were 

applied to each particle at each time step as follows: 

𝐹𝑑𝑦𝑛𝑎𝑚𝑖𝑐;𝑠ℎ𝑒𝑎𝑟    = 𝛼 ∗ 𝜌 ∗ 𝑉𝑆 ∗ 𝐴 ∗ �̇�                                                                           6.5  

𝐹𝑑𝑦𝑛𝑎𝑚𝑖𝑐;𝑛𝑜𝑟𝑚𝑎𝑙 = 𝛼 ∗ 𝜌 ∗ 𝑉𝑃 ∗ 𝐴 ∗ �̇�                                                                           6.6 

These dynamic forces simulate an infinite media and transmit the 

whole energy to them (see figure 6-8). 

5-6- The stages 4 and 5 are invoked every time step.  

 

 

 

Figure 6-8 Dynamic deformable boundary particles  



203 

 

6.3 The sensitivity of shear wave velocity to the various 

earthquake frequencies   

An earthquake produces two modes of propagation which are distinguished 

by the relative directions of particle oscillation. P-waves have particle motion 

parallel to the direction of propagation and S-waves have particle motion 

perpendicular to the direction of propagation. However, shear wave 

propagation has a more destructive effect on the stability of both soil media 

and structures in comparison to P-wave propagation. It is because during P-

wave propagation, the weight of ground and superstructure resists the 

vertical ground motion. O’Donovan et al. (2012) showed that the value of 

shear wave speed significantly changes between the frequencies 4 [kHz] and 

12 [kHz] for hexagonal pack when the material is in fully elastic mode. 

However, these frequencies are not in the range of typical earthquake 

frequencies. The aim of this section is to compute and measure the 

sensitivity of shear wave speed with various seismic earthquakes’ 

frequencies. As the maximum value of shear wave velocity is obtained when 

the material is in elastic mode, the input motion should be small. To assure 

that the system is in elastic mode, the amplitude of input velocity is set to 

1μm/s. The same scenario applied by (O’Donovan et al., (2012) and 

Marketos and O’Sullivan, (2013) (see chapter three for more details) to 

calculate shear wave velocity is investigated but using dynamic boundaries 

and irregular packing. For this purpose, a velocity-sine wave with the 

frequencies between 1 and 6 [Hz] are applied to the base particles (i.e. 

transmitter particles) and the average velocities of top particles (or receiver 

particles) (see figure 6-9) are recorded. Table 6-1 shows the input inter-

particle properties for the DEM simulations. kn, ks and μ are normal and shear 

contact stiffness and inter-particle coefficient friction. In PFC2D, there are 

three ways to import input motion to the particle: applying velocity, applying 

displacement and applying external force to the particles. External load (see 

Eq. 6.1) cannot be used to compute the shear wave velocity. It is because 

the value of shear wave velocity is one of the required parameters for 

equation 6.1. Therefore, velocity and displacement can be applied. Only 

velocity is considered in this research  because it is more compatible with the  
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algorithm and is suggested by PFC2D (Itasca, 2008) when the aim is to apply 

dynamic load to a group of particles. A velocity-sine wave was applied to the 

base particles. They were initially fixed in a horizontal direction then the sine 

velocity wave was prescribed to them. To allow that input motion to be fully 

transmitted to the soil element, the base particles were not allowed to rotate. 

Figure 6-10 shows that the velocity-time history at the receiver particle for 

different frequencies when the amplitude of input motion for whole 

simulations was similar. T in horizontal axis in figure 6-10 is period which is 
1

𝑓
, 

where f is frequency.  

 

 

Figure 6-9  The transmitter and receiver particles  

 

To compute 𝑉𝑆, the travel distance and travel time of the shear component of 

the seismic wave must be known. The travel distance of the shear wave 

component is taken as the distance between the transmitting and receiving 

particles. To compute the travel time two methods are generally applied 

which are: 

 Start–start, 



205 

 

 Peak–peak, 

In the first method, the start time of the propagating wave at the transmitter is 

subtracted from the start time of the propagating S-wave at the receiver 

particle. Toomey and Bean (2000) and (El Shamy and Zamani, 2012) applied 

this method to measure arrival time for their work. 

The peak–peak travel time is taken as the difference of the peak time of the 

propagating wave at the transmitter and the peak time of the propagating S-

wave at the receiver particle. However, the peak time cannot be easily 

distinguished for discrete systems Marketos and O’Sullivan, (2013) therefore 

the start–start approach was used to compute the travel distance.  

 

 

Figure 6-10 The velocity-time history of receiver particle for various frequencies  

 

Figure 6-11 shows that the trend of average shear velocities of receiver 

particles from t = 0 to arrival times of these six DEM models are the same. 

Figure 6-12 shows the variation of shear wave velocity of the idealized 

system to the various earthquake frequencies. The figure demonstrates that 

shear wave velocity is constant when the frequencies are between 1 and 6 

[Hz]. (Thomas et al., 2009, O’Donovan et al., 2012) measured the variation of 

shear wave velocity of between 4 to 12 [kHz] for hexagonal packing and 

found that the shear wave velocity increases.  
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Figure 6-11 Comparing the arrival time of these six DEM models in order to compute the 
shear wave velocity 

 

 

Figure 6-12 Sensitivity of shear wave velocity to the earthquake frequencies  

 

The maximum value of 𝐺𝑚𝑎𝑥, the small-strain shear modulus is as follows: 

𝑉𝑠 = √
𝑔 ∗ 𝐺𝑚𝑎𝑥
𝜌
𝑏𝑢𝑙𝑘

                                                                                                                      6.7 

where 𝐺𝑚𝑎𝑥, g and 𝜌𝑏𝑢𝑙𝑘 are the small-strain shear modulus, gravity 

acceleration and bulk density. The values of 𝐺𝑚𝑎𝑥 from these simulations 

were compared with 𝐺𝑚𝑎𝑥 from biaxial test with similar inter-particle 
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properties (Table 6.1). The results show that 𝐺𝑚𝑎𝑥 obtained from these six 

tests are in good agreement with that obtained from biaxial test in chapter 5. 

Only 4.9% error is between these values. 

 

𝑓 [Hz] 
𝑉𝑠 

[m/s] 

𝑘𝑛 

[N/m] 

*10
7
 

𝑘𝑠  

[N/m] 

*10
7
 

𝜇 𝜌𝑏𝑢𝑙𝑘[kg/m
3
] 

𝐺𝑚𝑎𝑥 

[MPa] 

𝐺𝑚𝑎𝑥 

[MPa] 

Obtained 

from 

biaxial test 

Error 

[%] 

1 250.37 8.45 8.45 0.9 2250 14.1 

14.8 4.9 

2 250.37 8.45 8.45 0.9 2250 14.1 

3 250.37 8.45 8.45 0.9 2250 14.1 

4 250.37 8.45 8.45 0.9 2250 14.1 

5 250.37 8.45 8.45 0.9 2250 14.1 

6 250.37 8.45 8.45 0.9 2250 14.1 

Table 6:1 The values of 𝐺𝑚𝑎𝑥 vs. frequency 

 

6.4 The verification of the proposed algorithm  

To verify the code provided for this study as well as those results shown in 

table 6-1, the displacement-time history of the receiver particle obtained from 

this method was compared to that obtained by O’Donovan et al., (2012). 

Table 6-2 shows the dimension of the model, inter-particle properties, particle 

radius, frequency and amplitude of input motion used by O’Donovan et al., 

(2012). Figure 6-13 shows the regular DEM mono-size pack created by this 

method and the lattice hexagonal packed created by O’Donovan et al., 

(2012).  

After generating the particles, the granular system was isotropically 

consolidated to 1.0 [MPa]. The dynamic deformable boundary particles 

algorithm was then applied. The input motion applied to the transmitter 

particle and the displacement-time history of receiver particle was tracked. 

Figure 6-14 compares the displacement-time history of the receiver particle 

for these two models. The figure shows that the response of receiver particle 

for these two models is similar in shape but different in value. The reasons 
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for this difference are due to the different boundary conditions and the 

particle arrangement.  Those particles in contact with the rigid base including 

the transmitter cannot move down due to the rigid base constraint. This issue 

cannot happen with for deformable boundary particles since the base 

particles can move down which absorbs some of the energy of the system. A 

lattice hexagonal pack means the seismic wave reaches the receiver particle 

faster than the irregular pack (see figure 6-15). The shear wave velocity 

obtained by O’Donovan et al., (2012) was 340 [m/s] compared to 250 [m/s] 

with irregular packing and deformable boundaries. 

 

 

 

 

 

 

Height [m] 0.24 

Width [m] 0.12 

𝑘𝑛 

 (N/m) 
1*10

9
 

𝑘𝑠 

 (N/m) 
1*10

9
 

𝜇 0.65 

Particle radius [m] 0.0029 

Global damping ratio 0.01 

Frequency [kHz]  8.2 

Amplitude [m] 1.5*10
-5

 

Confining pressure 

[MPa] 
1.0 

Shear wave velocity 

[m/s] 
400.0 

 

Table 6:2 The input data used for validation test (O’Donovan et al., (2012) 
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Figure 6-13 DEM models: (a) Dynamic deformable boundary condition, (b) mixed boundary 
condition (after O’Donovan et al., (2012)) 

 

 

 

 

 

 

 

 

 

Figure 6-14 The displacement-time history of the receiver particle for two different methods 
with the same input motion  

(a) (b) 
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Figure 6-15 The displacement-time history of the receiver particle for two different methods 

 

6.5 The sensitivity of shear wave propagation to the 

different boundary conditions 

In the previous section, it was seen that the existence of horizontal rigid walls 

and hexagonal pack leads to an increase in shear wave velocity in 

comparison with that obtained from dynamic deformable boundary particles. 

A sensitivity test is required to distinguish how the side boundaries affect the 

base and top particles velocities. For this purpose, two DEM simulations with 

the similar initial condition but with different boundary conditions: rigid 

boundaries and dynamic deformable boundary particles were executed (see 

figure 6-16). A single sine load with the frequency 6.0 [Hz] and amplitude 

1*10-3 [m/s] was considered. Table 6-3 show the details relating to these two 

simulations. 

Test 

No. 

Boundary 

condition 

𝑘n and 

𝑘s [N/m] 

* 10
7
 

𝜇 

Confining 

pressure 

[kPa] 

𝑛 

Range of 

PSD 

[mm] 

1 Rigid 8.45 0.9 100.0 0.12 1.5-2 

2 Deform. 8.45 0.9 100.0 0.12 1.5-2 

 

Table 6:3 The properties of the two DEM models used to study the effect of the type of 
boundaries 
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After generating the particles within a chamber with sample ratio 4 

(width/height=4.0), the system was isotropically consolidated to reach 100 

[kPa]. In the case of the rigid boundaries, the bottom rigid boundary was 

moved by applying a sine wave and a servo-control mechanism 

simultaneously applied to maintain the confining pressure on these four 

boundaries. The average base and top velocities of the particles were 

recorded. Figure 6-17 clearly shows that the velocities of base and top 

particles are similar. As the chamber is enclosed with rigid boundaries, the 

induced waves cannot be transmitted over the boundaries due to high 

impedance ratio. Thus, the energy of the system cannot be absorbed at the 

boundaries. This means the waves are reflected and the waves amplified.  

 

 

 

 

 

Figure 6-16 DEM model: (a) rigid boundaries, (b) dynamic deformable boundary particles 

 

 

 

 

(a) Rigid boundaries 

(b) Dynamic deformable boundaries 
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Figure 6-17 Average velocity-time history of top and bottom boundaries 

 

Figure 6-18 compares the time-history of the average velocities of the top 

particles obtained from these two models. The average velocity of the top 

particles is similar to the input velocity; that is the amplification factor was 

1.01 (Table 6.4).  It is to be noted that the amplification factor is ratio 

Average maximum top boundary velocities

Average maximum base boundary velocities
. The amplification factor for the 

deformable boundary was 0.85 showing that the deformable boundaries 

absorbed some of the energy. 

 

 

Figure 6-18 A comparison of the average top particles velocities vs. time 
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Boundary condition 
Dynamic deformable 

boundaries 
Rigid boundaries 

Average maximum base boundary velocity 
[m/s] 

0.000853 0.000958 

Average maximum top boundary velocity [m/s] 0.000725 0.000968 

Amplification factor 0.849941 1.010194 

 

Table 6:4 The seismic characterization of average top and bottom velocities for two different 
boundary conditions for sample ratio = 4 

 

This leads to the conclusion that applying rigid boundaries may amplify 

seismic waves, while applying dynamic deformable boundaries absorb the 

seismic waves. Further work is needed to establish whether this is always the 

case. 

6.6 The influence of sample ratio  

In reality, the earthquake wave propagates within a semi-infinite media (i.e. 

the width of the soil layer is much greater than its depth). Thus an earthquake 

waves naturally travel to infinity. However, due to the cost of DEM 

simulations, it is impossible to simulate a semi-infinite particulate media with 

current computers. Thus, the DEM model should be necessarily bounded but 

this may lead to changes in the micro-scale responses such that this 

alteration may influence the fabric of system.   

6.6.1 The sensitivity of sample ratio on the micro-scale responses  

The aim of this section is to investigate the effect of various sample ratios on 

the propagation of the shear wave through the idealized sand by measuring 

the particle-scale responses such as particle velocity and kinetic energy. This 

issue was initially investigated by Marketos and O’Sullivan (2013). They 

showed that with a uniform hexagonal lattice DEM pack and no slippage 

between the contacts (i.e. the work done by friction between particles are 

zero), the velocity of a receiver particle in horizontal and vertical directions 

was then tracked during the shear wave propagation. The results showed 

that if the width of sample is 2.25 times bigger than the height of sample, the 

reflecting waves due to the side boundaries during seismic shear wave 

propagation will not significantly effect the micro-scale responses such as 

particle velocity. Furthermore, in their work, the applied frequency was 40 
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[kHz] while the frequencies of earthquake are between 1 and 6 [Hz]. 

Moreover, the input motion in that study was only applied to one particle, the 

transmitter particle (see chapter 2 for more detail).  

To investigate the effect of shear earthquake wave propagation on idealized 

sand system, four different sample ratios were used for this study (see figure 

6-19). Table 6-5 shows the inter-particle properties, height, initial porosity, 

range of particle size distribution (PSD), frequency and amplitude of these 

four samples ratios. The inter-particle properties used for these DEM 

simulations were obtained from the sensitivity analysis in chapter 5. A single 

periodic sine load with frequency 6.0 [Hz] and input velocity amplitude 1*10-3 

[m/s] was applied in horizontal direction to the base boundary particles for the 

four DEM models. The average velocities of the top boundary particles in x 

and y directions was then recorded (see figure 6-20 and figure 6-21). Figure 

6-20 shows that the amplitudes of the average velocities at the top of the 

samples were different. It is because the total kinetic energy of the system 

obtained from the summation of the micro-scale kinetic energy of each 

particle at the based boundary particles increases by increasing the width of 

sample (see figure 6-22). However, this increase slightly increase after 

sample ratio = 3. The micro-scale kinetic energy of system obtained from the 

following equation: 

𝐸𝑘𝑖𝑛𝑖𝑡𝑖𝑐 = ∑ ∑
1

2
𝑚𝑝v

2 +
1

2
𝐼𝑝�̇�

2𝑝
𝑁=1

𝑇
𝑡=0                                                                                6.8   

where 𝑡, T, 𝑝, 𝑚𝑝, v, 𝐼𝑝 and �̇� are time, period, number of particles, particle 

mass, particle translational velocity, moment of inertia of particle and 

rotational velocity of particle, respectively. Marketos and O’Sullivan (2013) 

suggested that the reason for this increase in amplitude is because of side 

boundaries wave reflection. This should mean that increasing the width of the 

sample should reduce the effect of the boundaries. Figure 6-20 shows that 

the difference in amplitude between sample ratio 3 and 4 is lower than that 

for sample ratio 1 and 1.5. This suggests that an increase in the sample ratio 

leads to a decrease in the effect of reflecting wave due to the side 

boundaries. Figure 6-23 clearly shows that an increase in sample ratio leads 

to an increase in average velocity but the increase reduces as the sample 
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ratio increases. It also shows that there is a sample ratio such that 

boundaries have no effect. Figure 6-24 shows the influence of sample ratio 

on the amplification factor. Figure 6-24 also shows that there is a sample 

ration such that the boundaries have no further effect on the amplification 

factor. This investigation leads to this conclusion that the minimum sample 

ratio required to decrease the effect of side boundaries should be 4. The 

influence of sample ratios on fabric of sand during a sine load will be 

investigated in the following section.  

 

 

 

 

 

Sample ratio 

(width/height) 

Height 

[cm] 

𝑘n 

[N/m] 

* 10
7
 

𝑘s 

[N/m] 

* 10
7
 

 𝜇 𝑛 

Range 

of 

PSD 

[mm] 

𝑓 [Hz] 

Amplitude 

[m/s]  

*10
-3

 

1.0 5.0 8.45 8.45 0.9 0.12 1.5-2 6.0 1.0 

1.5 5.0 8.45 8.45 0.9 0.12 1.5-2 6.0 1.0 

3.0 5.0 8.45 8.45 0.9 0.12 1.5-2 6.0 1.0 

4.0 5.0 8.45 8.45 0.9 0.12 1.5-2 6.0 1.0 

Table 6:5 various samples ratio and inter-particle properties considered in this study 
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Figure 6-19 Four DEM simulations in order to investigate the effect of sample ratio on overall 
seismic behaviour of idealized sand (a) Sample ratio=1.0, (b) Sample ratio=2.0, (c) Sample 

ratio=3.0 and (d) Sample ratio=4.0 

 

 

 

  

 

 

 

 

 

 

(b) Sample ratio=1.0 (a) Sample ratio=1.5 

(c) Sample ratio=3.0 

(d) Sample ratio=4.0 
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Figure 6-20 Average shear velocity of top boundary particles vs. time for four samples ratio 

 

 

 

 

 

 

 

 

 

Figure 6-21 The recorded vertical average top boundary particles velocity for four samples 
ratio  
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Figure 6-22 The total kinetic energy-time history of system obtained from each kinetic energy 
of particle  

 

 

 

 

 

 

 

 

 

 

Figure 6-23 Average maximum velocities of top and bottom boundaries vs. sample ratio 
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Figure 6-24 Amplification factor vs. sample ratio 

 

Figure 6-21 displays that the propagation of pure shear wave results in 

vertical wave propagation. To illustrate this problem, consider two different 

contact topology of configuration in figure 6-25. Let’s assume particles are in 

touch (i.e. the initial contact forces between particles are zero). When an 

external force or velocity applies to the particle A (see figure 6-25a) in a time 

step, it starts to move in only x direction. The value of this displacement is 

calculated by solving its dynamic equilibrium equation at the end of this time 

step. This displacement leads to produce the contact normal and shear 

forces to its neighbouring particles. The dynamic equilibrium solution of these 

particles in next time step results in generates the displacement in horizontal 

and vertical directions and rotation for them. In contrast, applying an external 

force or velocity to the particle, A, does not induce any vertical displacement 

to other particles (see figure 6-25b) because contacts are in net form.  
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Figure 6-25 Two different contact topology of configurations  

 

6.6.2 The sensitivity of sand fabric to the different sample ratios 

during earthquake 

Seismic waves propagate through the inter-particle contacts network 

changing the fabric which affects the subsequent response to the seismic 

waves and the magnitude of the stress tensor. Thus, by studying the fabric 

evolution of the system during the propagation of the shear component of a 

seismic earthquake wave provides an insight into the seismic behaviour of 

sand. The aim of this section is to investigate the effect of sample ratio on 

evolution of fabric quantities during the propagation of shear component of 

seismic earthquake wave and the influence of this fabric evolution on the 

seismic micro-macro-mechanical behaviour of sand. According to the 

literature review, there have been no researches carried out in the area into 

the effect of fabric evolution during the propagation of both shear and 

longitude components of seismic earthquake wave using DEM. Two sample 

ratios 1 and 4 were considered for this study. The fabric evolution of whole 

system called hereafter RVE is investigated in this research. Figure 6-26 

shows the RVE for these two DEM samples. The influence of the RVE size 

and its location on the fabric quantities and macro-mechanical parameters 

such as stress tensors requires further study.  
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Figure 6-26 RVE: (a) Sample ratio=4, (b) Sample ratio=1 

 

The inter-particle properties, initial, porosity, range of PSD, frequency and 

amplitude of periodic loading for these two samples are listed in table 6-5. 

The input motion for this study is the same as shown in figure 6-20.   

A sine periodic load with frequency 6 [Hz] and input velocity amplitude 1*10-3 

[m/s] (i.e. v = V * Sin (2*π*6*t)), which is equal to the maximum acceleration 

0.037 [m/s2], was applied in the horizontal direction to the base boundary 

particles. The maximum acceleration takes place when t=0. As acceleration 

is the derivative of velocity function to time (i.e. a = (2*π*6) * V * Cos 

(2*π*6*t)), the velocity amplitude (i.e. V) at the maximum acceleration 

a=0.037 [m/s2] is 1*10-3 [m/s]. The evolution of fabric quantities such as 

“normal contact distribution”, “normal contact force distribution”, “shear 

contact force distribution”, “average coordination number”, “bulk density” and 

“average symmetric geometric deviation index” of the RVE were studied at 

five different times during seismic excitation: 𝑡 = 0.0 [s], 0.25T [s], 0.5T [s], 

0.75T [s] and T [s]. T is the period of sine load. For this purpose, 18 bins 

were considered for each polar diagram each with an angular interval Δθ = 

(a) Sample ratio = 4 

(b) Sample ratio = 1 
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20̊. The radius of each bin in the polar diagram of average normal contact, 

average normal contact force and shear contact force distribution 

corresponds to the number of contacts, summation of normal contact forces 

and summation of shear contact forces within each angular interval. Changes 

in contacts, normal contact force and shear contact force alter the radius of 

bins. Thus, following these fabric quantities through the polar diagrams 

shows how the fabric of the system is changing during loading. The polar 

diagram of normal contact, normal contact force, and shear contact force 

distribution are shown in 6-27, 6-32 and 6-34 against time for both sample 

ratios. As seen in these figures, the number of contacts, the magnitude of 

normal contact force and shear force per bin increases significantly when the 

sample ratio increase from 1 to 4 because the number of contacts within a 

RVE in sample ratio 4 is larger than that in sample ratio=1. For example, 

compare the number of contacts at 0.5T in Figure 6.27. Number contact 

anisotropy is greater in Figure 6.28 for the sample ratio of 4 and the 

distribution of the number of contacts is more uniform in the smaller sample. 

This applies to all the other diagrams for the normal contact force distribution.  
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Figure 6-27 Comparison of normal contact distribution for two samples ratio during 
earthquake 

 

The polar diagrams of normal contact distribution for sample ratios 4 and 1 

are not in an isotropic state before applying the periodic load as shown in the 

normal force contact distribution for 0T in Figure 6.27. This is more evident 

for sample ratio = 1 such that the ratio of normal contact anisotropy of 

sample ratio 1 to 4 at 𝑡 = 0 [s] is 1.74 (see figure 6-28). The evolution of 

fabric anisotropies are shown in 6-28, 6-33 and 6-35 in which the normal 

contact anisotropy, normal contact force distribution and shear contact 

distribution are plotted against time for both sample ratios. 
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Figure 6-28 The variation of normal contact distribution vs. time for two different sample 
ratios 

 

Figure 6-29 shows that the larger sample is more stable than the smaller 

one.  

 

 

 

Figure 6-29 Variation of average symmetric geometric deviation index vs. time for two 
different sample ratios 

 

Indeed, if the distribution of contact around each particle approaches to the 

isotropic state, the deviation of contacts arrangement around the particle 
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from symmetric configuration decreases. Thus, a meaningful relationship can 

be established between these two fabric quantities. This will be 

recommended as a research gap.  

Tracking the evolution of polar diagram of normal contact distribution and the 

evolution of normal contact anisotropy for these two sample ratios from 0T to 

T shows that applied sine shear wave load does not have a significant effect 

on the arrangement of the average normal contact distribution of both DEM 

models (Figures 6.27 and 6-28). This means that the contact distribution is 

similar to that for a static state. Thus, the contact network generated during 

the static loading dominates the average coordination number and therefore 

the average symmetric geometric deviation index is very nearly constant 

though different for the two models (see figures 6-29 and 6-30. 

 

 

Figure 6-30 Variation of average coordination number vs. time for two different sample ratios 

 

The bulk density of these two systems is very high and is little influenced by 

the periodic load (see figure 6-31). This leads to the conclusion that the 

contact network created at the static state for two DEM models dominates its 

behaviour during seismic loading such that the given amplitude does not 

have a major effect on average normal contact distribution, coordination 

number and average symmetric geometric deviation index of system.  
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Figure 6-31 Bulk density of two DEM model during shear wave propagation 

 

Increasing the size of samples increases the number of contacts within the 

RVE. This increases the magnitude of normal contact force within each 

segment in the polar diagram of normal contact force distribution. For 

example, compare the normal contact distribution at 0.5T from Figure 6-32.  
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Figure 6-32 Comparison of normal contact force distribution for two samples ratio during 
earthquake 

 

Moreover, this increase in sample size results in smoothing the polar diagram 

of normal contact force distribution. As the chain force established during 

static state is strong, the applied dynamic load on the particulate system has 

a little influence on anisotropy of normal contact force, it can be concluded 

that normal contact distribution during wave propagation does not change 

significantly for the systems being considered. The positive sign of average 

normal contact force anisotropy (i.e. 𝑎n) in figure 6-33 implies this fact that 

the average normal contact forces of particles within RVE is larger than the 

ideal isotropic state i.e. 𝑎n=0. A similar argument is also used to justify the 

positive sign of average normal contact anisotropy (i.e. a). As the system was 

isotropically consolidated before applying the earthquake (i.e. 𝑡 = 0 [s]), the 
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positive sign of “𝑎n” and “𝑎” presents this fact that in micro-scale point of view 

the particulate system is not in isotropic state. 

 

 

Figure 6-33 The variation of normal contact force distribution vs. time for two different 
sample ratios 

 

The normal contact forces are always in compression, while the direction of 

shear contact force is positive if it produces a clockwise moment and is 

negative if it produces a counter clockwise moment. The shear contact forces 

developed within RVE for these two samples during the static stages (i.e. 𝑡 = 

0 [s]) were approximately zero (see the axial axis in the left hand side of 

shear contact force distribution of these two models at 𝑡 = 0 [s] in figure 6-

34).  
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Figure 6-34 Comparison of shear contact force distribution for two samples ratio during 
earthquake 

 

As seen in this figure, some contacts have negative shear forces and the rest 

has a positive shear contact force. Note that white bins correspond to 

positive shear contact force and yellow bins correspond to negative shear 

contact forces. It is known that the activation of shear contact force is only 

related to the shear contact deformation when the linear elastic contact 

model is applied. The shear contact deformation is also related to the relative 

shear motion at the contact, or the shear contact velocity, which is defined as 

the shear velocity of two particles in contact (see Eq. 2.5). The velocity of 

each particle is also related to the resultant of the normal and shear contact 
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forces applied to the particle. Thus, both the evolution in normal and shear 

contact forces has a profound influence on the shear contact velocity. As the 

particles velocities are almost zero at 𝑡 = 0 [s], it can be argued that the 

induced resultant forces of particles are approximately zero. That is, the 

system is in static state (see chapter 4). This also leads to the conclusion that 

the stability of granular system is greatly dependent on the normal contact 

forces rather than shear contact forces.  

Tracking the polar diagram of shear contact force of these two sample ratios 

from 𝑡 = 0 [s] to 𝑡 = T [s] (see figure 6-34) shows that the magnitude of shear 

contact force distribution is greater at 𝑡 = 0.25T [s] when the shear load 

reaches to its maximum value. From 𝑡 = 0 [s] to 𝑡 = 0.25T [s], shear seismic 

load moves to the right. The majority of shear contact forces are negative 

and distributed in a vertical direction.  

From 𝑡 = 0.25T [s] to 𝑡 = 0.5T [s], when the direction of shear load reverses 

and the shear load approaches to zero, the distribution of shear contact 

forces is different for the two samples. As particles have already experienced 

higher shear contact forces at 𝑡 = 0.25T [s], decreasing the shear seismic 

load cannot alter the magnitude of shear contact forces of whole contacts to 

zero at 𝑡 = 0.5T [s]. This shows that samples experienced plastic 

deformation.  Instead, the direction of whole shear contact forces is negative.   

From 𝑡 = 0.5T [s] to 𝑡 = 0.75T [s], when the seismic load increases to its 

maximum value at 𝑡 = 0.75 [s], the distribution and the magnitude of shear 

contact force changed. In the case of sample ratio = 4 positive shear contact 

forces dominated, while in the case of sample ratio = 1 negative shear 

contact forces dominated.  

From 0.75T to T, when the load is terminated there is residual shear contact 

forces for both samples. It is because when the loading process is 

terminated, the individual particles are still vibrating due to free-vibration (see 

chapter 4). Thus, more cycles after termination of load are required to 

dampen the free-vibration of whole particles.  
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Another result can be deduced by following the polar diagrams of shear 

contact force distribution during wave propagation are to track the radius of 

bins. For, example, when the seismic wave reaches to the maximum value, 

the majority of shear contact forces is concentrated between 260 ̊and 280̊, 80 ̊

and 100 ̊for two cases (i.e. in the direction of wave propagation).  

The shear contact velocity of any contact point is related to the velocities of 

those two particles which create this contact. Figures 6-20 and 6-21 show the 

horizontal and vertical average velocities of the top boundary particles. As 

seen from these two figures, the trend of horizontal average particles 

velocities is similar to the trend of the input motion, while the magnitude of 

the vertical average particles velocities is very small and can be ignored in 

comparison with the horizontal velocity. The normal contact forces are almost 

constant during loading, while shear contact forces vary significantly during 

loading. Thus, it is changes in the shear contact forces that accelerate the 

particles not changes in normal contact forces.  

The changes in shear contact force distribution from 𝑡 = 0 [s] to 𝑡 = T [s] 

shows that these variation in this distribution is almost periodic. However, the 

magnitude of shear contact forces within each bin is being altered during 

loading. This indicates that the plastic deformation is being developed within 

RVE from 𝑡 = 0 [s] to 𝑡 = T [s]. Comparing the magnitude of shear contact 

force distribution developed during earthquake for these two samples also 

shows that an increase in sample ratio results in increasing the shear contact 

force capacity when the same load is applied for these two models. In 

contrast to the normal contact force distribution, the shear contact distribution 

at 𝑡 = 0 [s] and 𝑡 = T [s], when the magnitude of the earthquake load is zero, 

is not similar. The shear contact distribution is also not similar at 𝑡 = 0.25T [s] 

and 𝑡 = 0.75T [s] when the magnitude of the earthquake load is maximum. 

This indicates the natural of shear contact force distribution is more 

complicated than the normal contact force during earthquake. As the 

magnitude of shear contact force is greatly dependant on the shear contact 

velocity, the reason for this discrepancy in shear contact force distribution 

should be explored to understand how the shear contact velocity is 

developed during the earthquake. This is recommended as further work. 
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The evolution of shear contact force anisotropy is shown in figure 6-35. This 

figure clearly shows that the trend of changes in shear contact anisotropy is a 

sine form during loading such that the maximum shear contact anisotropy 

takes place when the shear seismic load is at its peak and the minimum 

shear contact anisotropy takes place when the shear seismic load is in its 

negative maximum value. 

 

 

Figure 6-35 The variation of shear contact distribution vs. time for two different sample ratios 

 

According to Eq. 3.15, the shear contact force anisotropy at each time step is 

related to the summation of shear contact forces of each bin and average 

normal contact forces of the RVE. As the average normal contact forces are 

approximately constant between 𝑡 = 0 [s] and 𝑡 = T [s], changes in the shear 

contact forces in each segment is the main influence on shear contact force 

anisotropy. Figure 6-35 also shows that the maximum shear contact force 

anisotropy of ratio 4 is 1.62 times bigger than the maximum shear contact 

force anisotropy of ratio 1. 

As the contact arrangement and normal contact forces during loading is 

almost constant, it can be expected that the bulk density is constant during 

loading (see figure 6-31).  
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Figures 3-38, 3-39 and 3-40 show the effect of fabric evolution on the micro-

mechanical stress tensor RVE obtained from Eq. 3.16 and 3.17 where the 

magnitude of stress tensors is mainly related to D50 (it is 8.75*10-4 [m] for two 

models), average normal contact force (𝑓0̅
𝑐), normal contact, normal contact 

force and shear contact force anisotropies, the orientation of normal contact 

distribution (𝜃a) and 𝑚𝑣. 𝑚𝑣  is dependent on the average coordination 

number, (see figure 6-30), the number of particles and the volume of RVE 

which were all constant during these two simulations (it is 0.01 [m2] for 

sample ratio 4 and it is 0.0025 [m2] for sample ratio 2). The number of 

particles in the RVE for samples ratio=4 and ratio=1 is 3658 and 914, 

respectively. Thus, the trend of 𝑚𝑣 is similar to the trend of average 

coordination number for each case. The maximum deviation in the variations 

of 𝜃a (i.e. the relative rotation of normal contact distribution) during loading is 

2.8̊ and 2.4̊ for ratio=4 and ratio=1, respectively (see figure 6-37). This 

indicates that the rotation of contact points at each time step during loading is 

very small relative to the previous time step. The variations of average 

normal contact forces during time for two cases are shown in figure 6-36. It is 

also seen that the ratio of the average contact normal force of sample ratio=4 

to the average contact force sample ratio=1 is 4, which is equal to the sample 

ratio of these two samples.  

 

 

Figure 6-36 The variation of average normal contact force 
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Figure 6-37 The variations of θ vs. time 

 

Thus, changing in shear contact force anisotropy developed during 

earthquake mainly has a significant role on developing and evolution of 

stress tensor quantities.  

Figure 6-38 shows the variations of micro-force-fabric shear stress tensor vs. 

time. It is seen that the evolution of fabric quantities, number of particles, 

volume of RVE and inter-particle contact forces can show the development of 

shear stress tensor. It can be argued that the trend of this variable is strongly 

dependent on the trend of combination of fabric anisotropies, while the 

magnitude of this variable at each time is mainly related to the average 

normal contact forces of particles within RVE at that time. For instance, the 

ratio of maximum shear stress developed for sample ratio=4 to that 

developed for sample ratio=1 is nearly 4.1. Thus, increasing the average 

normal contact forces leads to increase the shear stress demand during the 

earthquake. Moreover, increase in fabric anisotropies during earthquake 

result in raise the shear stress demand of RVE. Thus, if the ability of 

particulate system to develop the fabric anisotropies rises, the shear demand 

of RVE during an earthquake therefore increases.   

The trend of micro-force-fabric principle stresses is shown in figures 6-39 and 

6-40. The confining pressure in the static situation during loading is 100 [kPa] 

for the two samples. Applying earthquake leads to oscillate the confining 
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pressure and principle stresses around confining pressure due to static 

situation. However, the derived principle stresses for the sample with a ratio 

of 1 are significantly less than the confining pressure suggesting that this 

sample size is too small. The principle stresses for the sample with a ratio of 

4 are similar to the confining pressure.  

 

 

Figure 6-38 The micro-mechanical shear stress vs. time for two different sample ratios 

 

 

 

 

 

Figure 6-39 Principle stress of ratio 4 vs. time 
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Figure 6-40 Principle stress of ratio 1 vs. time  

 

It is necessary to investigate the effect of amplitude and frequency on the 

normal contact forces and fabric for different inter particle properties and 

porosity.  These tests show that there was little change in the normal contact 

forces which may be related to the amplitude and frequency of the input.    

6.7 The sensitivity of sand fabric to the various frequencies 

during earthquake 

An earthquake signal includes various frequencies. The Fast Fourier 

transformation of 10 well-known earthquakes, which was shown in chapter 3, 

shows that earthquakes generally produce low frequencies (Marketos and 

O’Sullivan, 2013). The frequencies of these ten earthquake’s was generally 

between 1 and 6 [Hz]. It is more precise to apply an earthquake signal for 

DEM simulations but given the diverse range of signals and the complex 

pattern of a single earthquake. However, it is necessary to study the effect of 

a single periodic wave to understand the impact of dynamic loading of sand. 

Six DEM simulations were performed. The initial conditions of these six 

models were similar. The samples were isotropically consolidated to 100 

[kPa] after generating a uniform particle size distribution of particles ranging 

from 1.5 [mm] to 2 [mm]. Dynamic deformable boundary particles were used.  

Table 6-6 displays the input parameters of these DEM simulations. The 

variation in the normal contact anisotropy with time for the six frequencies is 
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shown in Figure 6.41. The normal contact force anisotropy is shown in figure 

6.42 and the shear force contact force anisotropy in figure 6.43. The 

evolution of the shear contact force distribution is shown in figure 6-44. The 

variations in bulk density, average coordination number and average 

symmetric geometric deviation index with time for the six frequencies are 

shown in figures 6-45 to 6-47.  

 

 

Test 

No. 

𝑘𝑛 

[N/m] 

*10
7
 

𝑘𝑠 

 [N/m] 

*10
7
 

𝜇 𝑐𝑛 𝑐𝑠 𝑛  

Range  

of PSD 

[mm] 

Amplitude 

[m/s] 

Sample 

ratio 

𝑓 

[Hz] 

1 8.45 8.45 0.9 0.01 0.01 0.12 1.5-2 1*10
-3

 4 1 

2 8.45 8.45 0.9 0.01 0.01 0.12 1.5-2 1*10
-3

 4 2 

3 8.45 8.45 0.9 0.01 0.01 0.12 1.5-2 1*10
-3

 4 3 

4 8.45 8.45 0.9 0.01 0.01 0.12 1.5-2 1*10
-3

 4 4 

5 8.45 8.45 0.9 0.01 0.01 0.12 1.5-2 1*10
-3

 4 5 

6 8.45 8.45 0.9 0.01 0.01 0.12 1.5-2 1*10
-3

 4 6 

 

Table 6:6 Input parameters of six different DEM simulations with various frequencies in order 
to study the fabric response 

 

A sinusoidal shear wave was applied to the base of the sample.  The figures 

are expressed in terms of the total time, T, for one cycle. 

Figure 6.41 shows that the normal contact anisotropy follows the input motion 

with the maximum anisotropy at 0.25T and 0.75T. Figure 6.41 shows that the 

maximum normal anisotropy increases as the frequency reduces. This may 

be due to the fact that at low frequencies the system has enough time to 

redistribute the external shear load through the sample. The minimum 

anisotropy occurs a 0T, 0.5T and T and is not affected by the frequency.  

Changes in normal contact distribution are also the result of changes in 

normal and shear contact forces. Figures 6-43 and 6-44 show the shear 
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contact force anisotropy and shear contact force distribution of these six 

DEM models. Figure 6.43 shows that the variation in shear contact force 

anisotropy differs between the frequencies. 

Figure 6.44 shows that the shear contact force distribution is similar for each 

of the frequencies at each point investigated. For example, compare the 

distribution at 0.5T for the six frequencies. The figure also shows that the 

shear contact force distribution aligns with the input motion. The initial 

distribution shows a preferential alignment in the vertical and horizontal 

directions. At 0.25T, when the input motion is a maximum the shear force is 

strongly aligned with the vertical direction. This rotates to the horizontal 

direction at 0.5T and then reverses at 0.75T and T. While the shear contact 

force distribution at each time interval is similar in shape between each 

frequency, the number of contacts slightly varies. The shear contact force 

distribution at a frequency of 1Hz is a maximum of 400; 340 at 2Hz, 325 at 

3Hz, 310 at 4Hz, 300 at 5Hz and 275 at 6Hz.  

 

 

 

 

 

Figure 6-41 Normal contact anisotropy of six DEM simulations vs. time 
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Figure 6-42 Normal contact force anisotropy of six DEM simulations vs. time 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-43 Shear contact force anisotropy of six DEM simulations vs. time 
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Shear contact force distribution at t = 0 [s] Shear contact force distribution at t = 0.25T [s] 

Shear contact force distribution at t = 0.5T [s] Shear contact force distribution at t = 0.75T [s] 

Shear contact force distribution at t = T [s] 

(a) Frequency = 1 [Hz] 
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(b) Frequency = 2 [Hz] 
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(c) Frequency = 3 [Hz] 
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(d) Frequency = 4 [Hz] 
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Shear contact force distribution at t = 0 [s] Shear contact force distribution at t = 0.25T [s] 

Shear contact force distribution at t = 0.5T [s] Shear contact force distribution at t = 0.75T [s] 
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(e) Frequency = 5 [Hz] 
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Shear contact force distribution at t = 0 [s] Shear contact force distribution at t = 0.25T [s] 

Shear contact force distribution at t = 0.75T [s] Shear contact force distribution at t = T [s] 

Shear contact force distribution at t = T [s] 

(f) Frequency = 6 [Hz] 

Figure 6-44 Shear contact force distribution for various frequencies: (a) Frequency=1 [Hz], (b) 

Frequency=2 [Hz], (c) Frequency=3 [Hz], (d) Frequency=4 [Hz], (e) Frequency=5 [Hz] and (f) 

Frequency=6 [Hz],     
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Figure 6-45 Bulk density vs. time 

 

Figure 6-45 shows the variation of bulk density with time. As seen in this 

figure there is very little change 0T to T for all frequencies and there is no 

difference between the frequencies. This is because the normal contact force 

anisotropy remains constant within this range as the normal contact forces 

controls the stability of the particulate system (see chapter 5). The variation 

of average coordination number with time is drawn in figure 6-46. As seen in 

this figure the variation in average coordination number follows the input 

motion and is different between the frequencies. The trend of this micro-scale 

behaviour is in good agreement with the trend of normal contact anisotropy. 

This leads to a change in average symmetric geometric deviation index 

which is shown in Figure 6-47. The average symmetric geometric deviation 

index decreases with time though the actual variation depends on the 

frequency. 
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Figure 6-46 Average coordination number vs. time 

 

 

Figure 6-47 Average symmetric geometric deviation index vs. time 

 

Figures 6-49, 6-50 and 6-51 show the effect of fabric evolution on the micro-

mechanical stress tensor of RVE. Figure 6-48 shows the variations of 

average normal contact force with time. The frequency has a negligible 

influence on this parameter. In addition, the variation of average coordination 

number within the RVE is negligible and the number of particles within the 

RVE is similar for these six DEM models. Thus, changes in 𝑚𝑣 during the 

simulation are small for these six models. This leads to the conclusion that 

the magnitude of micro-mechanical stress tensor values is mainly a function 

of the average normal contact force and a combination of fabric anisotropies. 
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The magnitude of normal contact and normal contact force anisotropies are 

larger than the magnitude of shear contact force anisotropy.  Increasing the 

frequencies from 1 to 6 [Hz] leads to a slight reduction in the shear stress 

tensor (see figure 6-49). The trend of micro-mechanical shear stress (figures 

6-49) is in good agreement with the trend of shear contact force anisotropy. 

 

 

Figure 6-48 The variation of average normal contact force vs. time 

 

 

 

 

Figure 6-49 Micro-mechanical shear stress vs. time 
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The trend of micro-mechanical principle stresses of RVE is shown in figures 

6-50 and 6-51.  As can be seen increasing the frequency has little influence 

on their magnitude oat any time. It is because the average normal contact 

forces which control the stability of particulate system do not change 

considerably. The trend of these stresses is in good agreement with the trend 

of fabric anisotropies.  

 

 

Figure 6-50 Micro-mechanical stress 22 vs. time 

 

 

 

Figure 6-51 Micro-mechanical stress 11 vs. time 
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6.8 The sensitivity of sand fabric to the various amplitudes 

during earthquake 

The range of acceleration of the 10 earthquake signals used to determine the 

frequency range is approximately between 0.03 and 0.5 [m/s2]. In addition to 

this range, a greater acceleration was investigated to establish the influence 

of rare, greater acceleration on fabric evolution and micro-mechanical 

behaviour of idealized sand. The same approach was used; i.e. a single sine 

periodic wave with a unique amplitude and frequency. To study the influence 

of earthquake’s amplitudes on fabric evolution of granular sand, three DEM 

simulations with three different amplitudes were performed. The initial 

conditions of these three models were the same. After generation of uniform 

particle size distribution within sand range - i.e. 1.5 [mm] to 2 [mm], all these 

models were isotropically consolidated to 100 [kPa]. The amplitude of input 

motion was between 0.0377 and 3.77 [m/s2]. The input frequency of these 

three DEM simulations is 6 [Hz]. Table 6-7 displays the input parameters of 

these DEM simulations. The normal contact, normal contact force and shear 

contact force distribution of amplitudes of 3.77 [m/s2] and 0.37 [m/s2] models 

is drawn in figures 6-52(a), 6-52(b), 6-53(a), 6-53(b), 6-54(a), 6-54(b), 

respectively. The normal contact, normal contact force and shear contact 

force distribution of amplitudes of 0.0377 [m/s2] is drawn in figures 6-27, 6-32 

and 6-34 when the sample ratio is 4. The variation of normal contact, normal 

contact force and shear contact force anisotropies with time of these three 

simulations is shown in figures 6-55, 6-56 and 6-57, respectively. The 

average coordination number, average symmetric geometric deviation index 

and bulk density of these three DEM simulations are shown in figures 6-58 to 

6-60. 
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Test 

No. 

𝑘𝑛 

[N/m] 

*10
7
 

𝑘𝑠 

 [N/m] 

*10
7
 

𝜇 𝑐𝑛 𝑐𝑠 𝑛  

Range  

of PSD 

[mm] 

Amplitude 

[m/s] 

Sample 

ratio 

𝑓 

[Hz] 

1 8.45 8.45 0.9 0.01 0.01 0.12 1.5-2 1*10
-3

 0.0377 6 

2 8.45 8.45 0.9 0.01 0.01 0.15 1.5-2 1*10
-2

 0.377 6 

3 8.45 8.45 0.9 0.01 0.01 0.16 1.5-2 1*10
-1

 3.77 6 

 

Table 6:7 Input parameters of three different DEM simulations with various amplitudes in 
order to study the fabric response 

 

From 𝑡=0 [s] to 𝑡=0.25T [s] when the magnitude of external load reaches to 

its positive maximum value, increasing the amplitude has a significant 

influence on the evolution of normal contact distribution of higher amplitude 

while this rise in amplitude has a less effect on the re-arrangement of 

contacts in the case of lower amplitudes (see figure 6-52(a), 6-52(b) and 6-

27). That is, increasing the amplitude causes that the radius of each bin and 

the orientation of the polar diagram of higher the higher amplitude 

considerably changes. It is to be noted that the radius of each bin 

corresponds to the number of contacts that bin. This indicates that the re-

arrangement in contacts is being formed to represent the maximum bearing 

capacity, which is more evidence in the case of higher amplitude. Thus, the 

normal contact anisotropy in the case of higher amplitude considerably alters 

in comparison to lower amplitudes (see figure 6-55). As the principle axes in 

normal contact distribution corresponds to the principle stresses (see chapter 

5 and (Yimsiri and Soga, 2010)), the principle stresses in the case of higher 

amplitude in figure 6-52(a) is clearly rotated at 𝑡 = 0.25T [s]. Increasing the 

amplitude also results in rise the speed of loading. For example, 

𝑎:𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒=0.037

𝑡=0.25T
= 0.55 [

1

𝑠
], 

𝑎:𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒=0.37

𝑡=0.25T
= 0.65 [

1

𝑠
] while the ratio 

𝑎:𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒=3.7

𝑡=0.25T
= 2.0 [

1

𝑠
]. It is to be noted that “𝑎” is normal contact anisotropy. 

This indicates in the same time, the rate of re-arrangement in contacts 

considerably increases by elevating the amplitude. For instance, considering 

the normal contact distribution of lower and higher amplitudes in figures 6-27 
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and 6-52, respectively. As discussed already, the reason of contact re-

arrangement is back to the arrangement of contact forces. Figures 6-53and 

6-32 show the normal contact force distribution of these three DEM models. 

As seen, normal contact force distribution within each bin in the case of 

higher amplitude significantly changes in comparison to lower amplitudes. 

Thus, normal contact force anisotropy in the case of higher amplitude is 

considerably bigger than that in lower amplitudes (see figure 6-56). 

Comparing the normal contact force anisotropies of these three simulations 

shows that changing the anisotropy degree of normal contact force of 

amplitude = 3.7 [m/s2] is 19.0 and 9.5 times bigger than the anisotropy 

degree of normal contact force of amplitude = 0.037 [m/s2] and amplitude = 

0.37 [m/s2], respectively at 𝑡 = 0.25T [s]. Since, the sliding friction at each 

contact is greatly dependant on its counterpart normal contact force, the 

shear capacity of the idealized sand significantly increases by increasing the 

contact force and the rate of re-arrangement in contacts. This orientation of 

normal contact force distribution at 𝑡 = 0.25T [s] is qualitatively the same as 

the orientation of normal contact distribution at 𝑡 = 0.25T [s]. As the direction 

of normal contact force distribution alters at 𝑡 = 0.25T [s] in the case of higher 

amplitude, the ordination of force chains change.  

In terms of shear contact force distribution, increasing the amplitude leads to 

considerably rise in shear contact force in each segment (see figures 6-54 

and 6-34). It is because the input motion imported to the system is in shear 

direction so that increase in the amplitude of this motion leads to generate 

the higher shear contact force across the particulate media. Thus, another 

reason with respect to contact re-arrangement is to re-distribute shear 

contact forces beside the re-distribution of normal contact forces. Figure 6-57 

shows the variation of shear contact anisotropy. As seen in this figure, the 

anisotropy degree of shear contact force from 𝑡 = 0 [s] significantly increases 

by increasing the amplitude of input motion. That, is the value of shear 

contact forces at 𝑡 = 0.25T [s] increases significantly from 𝑡 = 0 [s] (i.e. static 

state) when the amplitude of input motion rises from 0.037 to 3.7 [m/s2] (see 

figure 6-53). Increasing this anisotropy also represents the increase in shear 

strength of system. 
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Figure 6-52 The evolution of normal contact distribution vs. time: (a) Amplitude=3.7[m/s
2
], (b) 

Amplitude=0.37[m/s
2
] 
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Figure 6-53 The evolution of normal contact force distribution vs. time: (a) 
Amplitude=3.7[m/s

2
], (b) Amplitude=0.37[m/s

2
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Figure 6-54 The evolution of shear contact force distribution vs. time: (a) 
Amplitude=3.7[m/s

2
], (b) Amplitude=0.37[m/s

2
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Figure 6-55 Normal contact anisotropy of these three DEM simulations vs. time 

 

Figure 6.55 shows that the normal contact anisotropy follows the input motion 

but as the amplitude increases there is a significant change to the normal 

contact anisotropy.  

 

 

 

 

 

 

Figure 6-56 Normal contact force anisotropy of these three DEM simulations vs. time 
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Figure 6-57 Shear contact force anisotropy of these three DEM simulations vs. time 

 

The average coordination number of the system for 0.037 [m/s2] and 0.37 

[m/s2] is very nearly constant over the cycle of loading (figure 6.58) but for 

3.7 [m/s2] the number decreases. Figure 6-59 shows that by increasing the 

amplitude, the arrangement of contacts around each particle remains the 

same for 0.037 [m/s2] and 0.37 [m/s2] but fluctuates for 3.7 [m/s2]. Figure 6-

60 shows that by increasing the amplitude, the bulk density reduces by a 

small amount for 0.037 [m/s2] and 0.37 [m/s2] but drops for 3.7 [m/s2]. This 

means that the sample expands and, more importantly, leads to a significant 

loss of strength since strength is related to density. 

 

Figure 6-58 The evolution of bulk density of these three DEM simulations vs. time 
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Figure 6-59 The evolution of average symmetric geometric deviation index of these three 

DEM simulations vs. time 

 

 

Figure 6-60 The evolution of average coordination number of these three DEM simulations 
vs. time 

 

Figure 6-61 shows the variation of average normal contact force with time. 

The change in average normal contact force follows the input motion with the 

amplitude increasing with the acceleration. As seen increasing the amplitude 

has a considerable influence on this parameter especially in the case of 

higher amplitude. 

 

 



265 

 

 

Figure 6-61 The variation of average normal contact force vs. time 

 

The shear stress of the RVE for 0.037 [m/s2] and 0.37 [m/s2] is very nearly 

zero but for 3.7 [m/s2] there is a significant change in shear stress.  

 

 

Figure 6-62 The variation of micro-mechanical shear stress vs. time 

 

The change in shear stress is also reflected in the change in the vertical and 

horizontal stresses (figures 6-63 and 6-64). The mean stress is similar to the 

confining stress but, in the case of 3.7 [m/s2] the vertical and horizontal 
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stresses change suggesting that the sample is undergoing cyclic behaviour 

driven by the change in normal stresses. 

 

 

Figure 6-63 Micro-mechanical stress 22 vs. time 

 

 

Figure 6-64 Micro-mechanical stress 11 vs. time 

 

6.9 The sensitivity of sand fabric to the various confining 

pressures during earthquake 

In this section, the influence of the confining pressure on a system subject to 

seismic loading was investigated. The initial conditions of these two models 

are shown in Table 6-8.  
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Test 

No. 

𝑘𝑛 

[N/m] 

*10
7
 

𝑘𝑠 

 [N/m] 

*10
7
 

𝜇 𝑐𝑛 𝑐𝑠 𝑛  

Range  

of PSD 

[mm] 

Amplitude 

[m/s] 

Confining 

pressure 

[kPa] 

𝑓 

[Hz] 

1 8.45 8.45 0.9 0.01 0.01 0.12 1.5-2 1*10
-3

 100.0 6 

2 8.45 8.45 0.9 0.01 0.01 0.12 1.5-2 1*10
-3

 50.0 6 

Table 6:8 The input properties used for the sensitivity analysis of the system subject to 

different confining pressures  

 

Figure 6-65 shows that increasing the confining pressure reduces the initial 

normal contact anisotropy. In both cases the normal contact anisotropy 

varies with time.   

Figure 6.66 shows that the normal contact force anisotropy changes, the 

change reflecting the input motion. However, the magnitude of the change is 

much greater for 50 [kPa] than 100 [kPa] showing the confining pressure 

influences the behaviour of the system. 

 

 

 

 

Figure 6-65 The variation of normal contact anisotropy vs. time 
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Figure 6-66 The variation of normal contact force anisotropy vs. time 

 

Figures 6-66 and 6-73 shows the variation of normal contact force anisotropy 

and average normal contact force (i.e. �̅�0
𝑐
) during the periodic loading for 

these two DEM samples. As seen increasing the confining pressure leads to 

significant rise in �̅�0
𝑐
.  The ratio 

�̅�0
𝑐
100 [𝑘𝑃𝑎]

�̅�0
𝑐
50 [𝑘𝑃𝑎]

 is exactly equal 2.0. The initial normal 

contact force anisotropy for 100 [kPa] confining pressure is 1.3 times larger 

than that for the confining pressure of 50 [kPa].  

Since the systems are dense and �̅�0
𝑐
 is constant during loading, the contact 

shear forces produced due to the same earthquake load through the models 

are similar (see figure 6-68 and 6-44(f)). As the evolution of shear contact 

force anisotropy is directly related to the shear contact force and inversely 

related to �̅�0
𝑐
, the ratio of maximum 

𝑎𝑠:50 [𝑘𝑃𝑎]

𝑎𝑠:100[kPa] 
 is nearly equal 2.0 which 

inversely corresponds to ratio 
100 [𝑘𝑃𝑎]

50 [𝑘𝑃𝑎]
 and 

�̅�0
𝑐
100 [𝑘𝑃𝑎]

�̅�0
𝑐
50 [𝑘𝑃𝑎]

 (see figure 6-67). Thus, 

increasing the confining pressure leads to a reduction in the shear contact 

force anisotropy.  

 

 

 



269 

 

 

Figure 6-67 The variation of shear contact force anisotropy vs. time 
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Figure 6-68 Shear contact force distribution of 50 [kPa] vs. time 
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Figure 6-69 Average coordination number vs. time 

 

 

 

 

 

 

 

 

 

 

Figure 6-70 Average symmetric geometric deviation index vs. time 
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The bulk density remains constant during dynamic loading (figure 6-71).  

 

 

Figure 6-71 Bulk density vs. time 

 

Figure 6-72 shows the variation of micro-shear stress with time. The 

maximum shear stress for a confining pressure of 100 [kPa] is nearly twice 

as large as the magnitude of maximum shear stress for a confining pressure 

of 50 [kPa], which corresponds to the 
�̅�0
𝑐
100 [𝑘𝑃𝑎]

�̅�0
𝑐
50 [𝑘𝑃𝑎]

= 2.0. The trend of shear 

contact stresses are in good agreement with their counterpart shear contact 

force anisotropies. Thus, increasing the normal contact force and fabric 

anisotropies leads to increase the micro-shear stress. 
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Figure 6-72 The variation of shear stress vs. time 

 

 

 

 

 

 

 

Figure 6-73 Average normal contact force (𝑓0̅
𝑐) vs. time 

 

The variation of the principle stresses is displayed in figures 6-74 and 6-75, 

respectively. They show that for both confining pressures they remain 

constant. 
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Figure 6-74 The variation of normal principle stress 22 vs. time 

 

 

 

Figure 6-75 The variation of normal principle stress 11 vs. time 

 

6.10 The sensitivity of sand fabric to the inter-particle 

coefficient friction  

In this section, the influence of seismic loading on two DEM samples with two 

different inter-particle coefficient of friction was investigated. The initial 

conditions of these two models are shown in Table 6-9. It is known from 
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micro-mechanical point of view that an increase in the inter-particle 

coefficient friction leads to elevate the shear strength of the contact points 

(see Eq. 2.8) and consequently increasing the shear demand of particulate 

system. It is to be noted that inter-particle coefficient friction for sand is 

normally between 0.9 and 1.2.  

 

Test 

No. 

𝑘𝑛 

[N/m] 

*10
7
 

𝑘𝑠 

 [N/m] 

*10
7
 

𝜇 𝑐𝑛 𝑐𝑠 𝑛  

Range  

of PSD 

[mm] 

Amplitude 

[m/s] 

Confining 

pressure 

[kPa] 

𝑓 

[Hz] 

1 8.45 8.45 0.9 0.01 0.01 0.12 1.5-2 1*10
-3

 100 6 

2 8.45 8.45 1.2 0.01 0.01 0.12 1.5-2 1*10
-3

 100 6 

  

Table 6:9 The input properties used for sensitivity analysis of sand fabric to the different 
friction 

 

As friction between particles helps to propagate the induced shear wave 

across the particulate media, changing this inter-particle property may have 

an influence on the phenomena of wave propagation. Eq. 2.8, shows that 

((𝐹𝑡𝑜𝑡𝑎𝑙𝑙
𝑠 )𝑡 = (𝐹𝑡𝑜𝑡𝑎𝑙𝑙

𝑠 )𝑡−1 + (∆𝐹𝑠)𝑡 < 𝜇(𝐹𝑡𝑜𝑡𝑎𝑙𝑙
𝑛 )𝑡), so at each time step the shear 

contact force (𝐹𝑡𝑜𝑡𝑎𝑙𝑙
𝑠 ) can be compared with the Coulomb friction (𝜇(𝐹𝑡𝑜𝑡𝑎𝑙𝑙

𝑛 )𝑡) 

by PFC compiler. Since the shear contact force in the case of a linear elastic 

contact model is only related to the shear contact stiffness and shear contact 

deformation, the only parameter can increase the magnitude of shear contact 

force is the shear contact deformation. As the evolution of normal contact 

anisotropy (see figure 6-76), normal contact force anisotropy (see figure 6-

77) and shear contact force anisotropy (see figure 6-78) are similar during 

loading, it can be concluded that the shear contact forces developed for 

these two models during loading cannot exceed the sliding friction capacity. 

Thus, the contacts network during seismic excitation is similar is independent 

of the inter-particle friction which means the micro-mechanical stress tensors 

of the RVE are unaffected (see figures 6.79 to 6-81).  
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Figure 6-76 The variation of normal contact anisotropy vs. time 

 

 

 

 

 

 

 

 

 

 

Figure 6-77 The variation of normal contact force anisotropy vs. time 
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Figure 6-78 The variation of shear contact force anisotropy vs. time 

 

 

 

 

 

 

 

 

 

 

Figure 6-79 The variation of micro-mechanical shear stress vs. time 
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Figure 6-80 The variation of principle micro-mechanical normal stress 22 vs. time 

 

 

 

Figure 6-81 The variation of principle micro-mechanical normal stress 11 vs. time 

 

6.11 The sensitivity of sand fabric to the normal particle 

stiffnesses  

In this section, the influence of the inter particle stiffness on the behaviour of 

the system subject to seismic loading was investigated. The initial conditions 

of these two models are shown in Table 6-10. 



279 

 

Test 

No. 

𝑘𝑛 

[N/m] 

*10
7
 

𝑘𝑠 

 [N/m] 

*10
7
 

𝜇 𝑐𝑛 𝑐𝑠 𝑛  

Range  

of PSD 

[mm] 

Amplitude 

[m/s] 

Confining 

pressure 

[kPa] 

𝑓 

[Hz] 

1 8.45 8.45 0.9 0.01 0.01 0.12 1.5-2 1*10
-3

 100 6 

2 100 100 0.9 0.01 0.01 0.12 1.5-2 1*10
-3

 100 6 

 

Table 6:10 The input properties used for sensitivity analysis of sand fabric to the different 
normal stiffness 

 

Figure 6-82 shows that an increase in the normal contact stiffness leads to 

an increase in the normal contact anisotropy. This is because an increased 

stiffness increases the confinement of the particles; i.e. the particles are less 

able to move. In the case of the normal contact force anisotropy (figure 6-83) 

there is no difference during the static loading but there are differences 

during the dynamic loading with the system with higher inter particle stiffness 

responding more.   

Figure 6-84 shows the trend of shear contact force anisotropy during loading. 

It is seen that for the same imposed dynamic load, the particulate system 

having lower normal stiffness has larger shear contact anisotropy. 

 

 

Figure 6-82 The variation of normal contact anisotropy vs. time 
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Figure 6-83 The variation of normal contact force anisotropy vs. time 

 

 

 

 

 

Figure 6-84 The variation of shear contact force anisotropy vs. time 

 

Figure 6-85 shows the variation in micro-mechanical shear stress with time. It 

was seen that the peak shear stress at 0.25T is greater than that for 0.75T. 

This figure also shows that increase in normal contact stiffness leads to 𝑎n 

increase in the micro-mechanical shear stress of the RVE.   
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Figure 6-85 Micro-mechanical shear stress vs. time 

 

 

The variations in principle stresses are shown in figures 6-86 and 6-87. As 

seen their trends more follows the trend of normal contact anisotropy (figure 

6-82). 

 

 

 

 

 

Figure 6-86 Micro-mechanical normal principle stress 22 vs. time 
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Figure 6-87 Micro-mechanical normal principle stress 11 vs. time 

 

6.12 The sensitivity of sand fabric in the present of rigid pile 

element during earthquake 

As mention the pile foundation at seismic hazardous regions has been 

damaged by earthquakes due to the effect of seismic soil-pile interaction on 

the fabric of soil-pile system and the development of sand particles’ instability 

adjacent to the pile during earthquake. To understand the seismic soil-pile 

interaction, a DEM model was developed to simulate section of an inflexible 

pile-soil system subjected to cyclic shear load. As seen above the macro-

mechanical behaviour of granular system is directly related to its fabric 

quantities. Thus, by investigating the macro-mechanical stress tensor 

obtained from the its fabric in the presence of a pile element and then 

comparing these variables to those obtained without the pile, the effect of 

seismic soil-pile interaction on the fabric and macro-mechanical behaviour of 

RVE will be clearer.  

In this section, the effect of pile foundation on the fabric evolution including 

fabric anisotropies of the system and consequently the evolution of micro-

mechanical shear stress during single shear sine load is investigated. The 

graphical normal and shear contact force distributions and the shear wave 

propagation with and without a pile element is also considered to gain an 

insight into the phenomena of wave propagation with and without a pile. 
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Similar boundary conditions were applied for wave propagation as discussed 

in previous sections (see figure 6-88). The pile foundation is assumed to be 

inflexible. The scale of the model is shown in figure 6-89. Table 6-11 displays 

the input properties used for this simulation. Note that the normal and shear 

contact stiffnesses and pile coefficient friction are assumed to be similar to 

those of the soil particles. The input motion is the same as shown in figure 6-

20. Only one DEM simulation was performed for this problem. 

 

Figure 6-88 The soil-pile system 

 

 

Figure 6-89 The scale of the soil-pile system  
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𝑘𝑛 

[N/m] 

*10
7
 

𝑘𝑠 

 [N/m] 

*10
7
 

𝜇 𝑐𝑛 𝑐𝑠 𝑛  

Range  

of PSD 

[mm] 

Amplitude 

[m/s] 

Confining 

pressure 

[kPa] 

𝑓 [Hz] 

8.45 8.45 0.9 0.01 0.01 0.12 1.5-2 0.1 100 6 

 

Table 6:11 The input properties used for sensitivity analysis of sand fabric to the different 
normal stiffness 

 

After generation of particles, their radiuses were expanded so that the 

system achieved an initial porosity of 0.12. Four rigid walls were then moved 

to apply the confining pressure (100 [kPa]). Next, three walls were removed 

and replaced with deformable boundary particles. The left rigid wall (red 

boundary in figure 6-88) is considered as a pile element. Extra cycles were 

then performed to bring the system to equilibrium. The servo-mechanism, 

mentioned in section 4.3.5.1, was applied to maintain the confining stress at 

100 [kPa] on the pile element. In the next stage, the external shear single 

sine load was applied. The fabric anisotropies evolution and macro-

mechanical stress tensor were recorded at five times: 𝑡 = 0 [s], 𝑡 = 0.25T [s], 

𝑡 = 0.5T [s], 𝑡 = 0.75T [s] and 𝑡 = T [s].  

 

 

Figure 6-90  Normal contact anisotropy against time 
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Figure 6-90 shows the evolution of normal contact anisotropy during 

earthquake. It is seen from 0T [s] to 0.25T [s] (T is the period of load) the 

trend of normal contact anisotropy in the case of presence of pile and without 

pile are similar. This is also seen for normal contact force anisotropies in 

figure 6-91. From 0.25T [s] to 0.5T [s] the change in normal contact 

anisotropy with the pile is significantly more than that without the pile. Normal 

contact force anisotropies with and without pile in this period also reduces but 

the reduction in the case of no pile is slightly bigger than that with pile (see 

figure 6-91). When the seismic load is reversed, a re-arrangement of 

contacts took place so that the slope of normal contact anisotropies in the 

case of with pile is deeper than that for no pile. It is seen that peak of normal 

contact and normal contact force anisotropies at 0.75T [s] in the case of pile 

is larger than that at 0.25T [s]. This leads to the conclusion that the effect of 

inflexible pile increases the normal contact and normal contact force 

anisotropies.  

 

 

 

 

 

Figure 6-91 Normal contact force anisotropy against time 
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Figure 6-92 shows the evolution of shear contact force anisotropy during the 

periodic loading. It is seen that the effect of inflexible pile element leads to an 

increase of the shear contact force anisotropy during the periodic loading.  

 

 

Figure 6-92 Shear contact force anisotropy against time 

 

Figure 6-93 shows the variation of average coordination number during 

seismic loading. It seen from this figure that the presence of an inflexible pile 

has a positive effect on the average coordination number as it is the same as 

that for the static state. This fact is also shown in figure 6-94 where the 

stability of particles increases with rigid pile. Indeed, the presence of an 

inflexible pile element acts as obstacle. That is, the movements of particles 

are influenced by the pile, while deformable boundary particles allow the 

particulate system to move more freely.  
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Figure 6-93 Average coordination number against time 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-94 Average symmetric geometric deviation index against time 
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As the presence of rigid pile causes to increase the stability of its adjacent 

sand particles, the shear stress capacity of soil-pile system increases. Figure 

6-95 clearly shows that the effect of inflexible pile leads to an increase in the 

shear capacity.  

 

 

Figure 6-95 Shear stress vs. time 

 

The arrangements of normal and shear chain forces with and without a pile at 

the five increments during are the periodic loading is shown in figures 5-96 

and 5-97. The particles velocities during seismic shear wave propagation 

with and without pile are also shown in figure 5-97. Tracking the figures 

shows that the presence of a pile leads to an expansion of the system. 

Comparing figures 5-96 (a) and 5-96 (b) shows that the density of normal 

contact forces in the case of pile is more than that in the case of no pile. It 

also seen that the normal chains force at 𝑡 = 0T and at 𝑡 =T [s] are similar for 

two cases. Note, the thickness of normal and shear contact forces is 

proportional to their magnitude. 

Comparing the figures 5-97 (a) and 5-97 (b) shows that the presence of the 

inflexible pile has a significant effect on the density and distributions of  shear 

contact forces at 𝑡 = 0T. Afterwards, the increase in the magnitude of shear 

chains force in the case of pile is more than that for no pile. It was seen that 
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the shear contact forces at the circumference of the sample were more than 

the rest of sample. It is because the load including static and dynamic loads. 

 

Figure 6-96 The arrangement of normal chains forces with and without pile at five times 
during earthquake: (a) without pile (b) with pile  

                                                

 

(a) Normal contact forces without pile 

 

              

 

(b) Normal contact forces with pile 

 

 

 

     

      At t = 0 [s]                 At t = 0.25T [s]              At t = 0.5T [s]               At t = 0.75T [s]          At t = T [s]            

  At t = 0 [s]                 At t = 0.25T [s]              At t = 0.5T [s]               At t = 0.75T [s]          At t = T [s]            
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Figure 6-97 The arrangement of shear chains forces with and without a pile at five times 
during earthquake: (a) without pile (b) with pile 

                            

 

(a) Shear contact forces without pile  

      

 

(b) Shear contact forces with pile  

 

     

At t = 0 [s]                At t = 0.25T [s]          At t = 0.5T [s]            At t = 0.75T [s]          At t = T [s]            

At t = 0 [s]                At t = 0.25T [s]          At t = 0.5T [s]            At t = 0.75T [s]          At t = T [s]            
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Figure 6-98 Particle velocities during seismic shear wave propagation with and without pile: 
(a) no pile (b) with pile 

                                           

 

 

(a) Shear wave propagation without pile  

           

 

(b) Shear wave propagation with pile  

         

 

  

 

  
 

At t = 0 [s]             At t = 0.25T [s]          At t = 0.5T [s]                  At t = 0.75T [s]          At t = T [s]            

At t = 0 [s]                  At t = 0.25T [s]           At t = 0.5T [s]                  At t = 0.75T [s]            At t = T [s]            
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The following issues can be derived from snapshots of particles velocities for 

these two cases.   

 The trends of particles velocities at 0.25T were similar for the two 

cases. However, the velocity of those particles in contact with the pile 

is horizontal while the velocities of left boundary particles are oblique. 

It is because the pile is rigid and cannot rotate. A rotation in those 

particles velocities near the right deformable boundary can be seen.  

 At 𝑡 = 0.5T where the magnitude of external load is zero, a vortex-like 

motion was taking place adjacent to the right boundary in the case of 

pile. In addition, the velocities of those particles adjacent to the pile 

are lower in comparison to the rest of sample. Moreover, a rotation for 

those particles adjacent to the right boundary was seen, while this was 

not seen in the case of no pile. 

  At 𝑡 = 0.75T where the external load reverses, the conditions are 

similar for the two cases but a rotation in the left boundary particles (in 

the case of no pile) can be seen.  

 At 𝑡 = T where the earthquake was terminated, a vortex-like motion 

was taking place adjacent to the right boundary in the case of a pile. In 

addition, the velocities of those particles adjacent to the pile are lower 

in comparison to the rest of sample. Moreover, a rotation for those 

particles adjacent to the right boundary was seen, while this was not 

seen in the case of no pile. 

6.13 Conclusion 

As boundary forces are transmitted through the contact networks in granular 

material, a change in these networks has a profound influence on its macro-

mechanical behaviour. The ability of DEM to model dynamic problems such 

as earthquakes has not been proved well (Marketos and O’Sullivan, 2013). 

The fabric quantities applied for static problems describe how well changes 

at micro-scale take place at each time step during loading. Thus, following 

the fabric evolution increases our insight into the micro-macro-scale 

behaviour of granular sand during earthquake. The main aims of this chapter 

were to investigate the fabric evolution and consequently the micro-fabric-
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stress of idealized two-dimensional sand using DEM and understand how 

DEM is able to study the seismic behaviour of granular sand. The effect of 

pile element on the fabric evolution of sand adjusted to the pile was also 

investigated. For this purpose, a new algorithm of dynamic deformable 

boundary particles with nearly 1300 lines was proposed to simulate the 

seismic wave propagation problems including seismic soil-pile system. The 

accuracy of the shear wave velocity obtained from this approach to compute 

𝐺max has only 4.9% error in comparison with 𝐺max obtained from biaxial test 

simulation in chapter 5.  

The influence of rigid boundaries on the phenomena of wave propagation 

was also investigated. It was seen that applying rigid boundaries amplifies 

the seismic waves while dynamic deformable boundary particles absorbs the 

wave when waves travels upward. The effect of various sample ratios on the 

horizontal and vertical particle velocities and kinetic energy of each particle 

subjected to a similar single period sine load was also studied. It was seen 

that increasing the sample ratio results in a decrease in the effect of side 

boundaries. Moreover, applying this periodic shear load develops vertical 

particle motion. It was shown that applying a sample ratio=1 produces 

unrealistic micro-macro stress tensors while the micro-macro stresses 

tensors obtained from sample ratio = 4 were more reasonable.  

It was also seen that the trend of stress tensor is greatly dependent on the 

combination of fabric anisotropies such that a change in this combination 

alters the trend of macro-mechanical stress tensors. Tracking the fabric 

anisotropies of these two samples also shows that plastic deformation is 

developed during an earthquake is mainly based on the evolution of shear 

contact force distribution. The effects of six common earthquake frequencies 

on the fabric evolution and micro-mechanical stress tensors were studied. It 

was seen that increasing the frequency leads to a slight decrease in the 

normal contact and normal contact force distributions as the shear contact 

force anisotropy increases. However, the macro-mechanical stress tensor is 

similar for these six cases. Tracking the fabric anisotropies of these six 

samples also shows that the plastic deformation is mainly due to the 

evolution of the shear contact force distribution during an earthquake.  
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The effect of various earthquake amplitudes on the fabric evolution and 

micro-mechanical stress tensors was investigated. In contrast to frequency 

effects, increasing the amplitude leads to a considerable change in fabric 

anisotropies. It was also found that a relationship can be established 

between plastic deformation of idealized sand and their fabric anisotropies. It 

is also seen that the periodic change in the fabric of a RVE produces a 

periodic micro-mechanical stress tensor. Moreover, it was found that there is 

a reasonable link between fabric anisotropy and rate of loading.  

The effect of various confining pressures on the fabric evolution and micro-

fabric stress tensors was investigated. It was seen that a change in confining 

pressure has a profound influence on the fabric evolution and micro-

mechanical behaviour. The effect of various inter-particle coefficient frictions 

on the fabric evolution and micro-fabric stress tensors was also investigated. 

It was seen when the amplitude of load is small increasing this parameter 

between 0.9 and 1.2 does not influence the fabric evolution and micro-

mechanical behaviour. The effect of various contact stiffnesses on the fabric 

evolution and micro-fabric stress tensors was also investigated.  

The presence of a rigid pile element on the fabric evolution of sand during 

seismic loading was investigated. It was seen that the presence of a pile 

element increases the fabric anisotropies and average normal contact forces. 

It is also seen that the average coordination number in the presence of a pile 

fluctuates around that in a static state. Moreover, the shear capacity of dense 

sand is significantly increased in the presence of rigid pile during seismic 

load. Tracking the chains force showed that the shear contact forces at the 

circumference of the samples were more than the rest of samples. A vortex-

like motion takes place adjacent to the opposite boundary to the pile 

boundary; this does not happen when there is no pile. 
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Chapter 7 

7 Conclusions and Recommendations 

7.1 Introduction 

Piled foundations in seismic hazardous regions are damaged by earthquakes 

because of the effect of seismic loads on the soil-pile interaction and the 

development of sand particles’ instability adjacent to the pile. Therefore, in 

order to understand how a seismic load affects the capacity of a pile it is 

necessary to study the changes in that interaction which is affected by the 

volume changes in the soil. The pile capacity is formed of the interface 

friction and end bearing capacity. This research focused on the interface 

friction because the visual evidence suggests that a seismic load has a 

dramatic effect on the volume of the soil adjacent to a pile. Since the pile 

capacity is a function of the interaction between individual soil particles and 

the pile, the discrete element method of analysis was considered to be the 

most appropriate method. Thus a DEM model of an element of soil adjacent 

to a pile was created and that model was subjected to cyclic shear load. This 

meant developing appropriate boundary conditions that allowed not only 

shear to be applied but also a viscous boundary to absorb the reflecting 

energy. This had to be carried out in stages. The first stage was to determine 

the characteristic inter particle properties of the particles using a sensitivity 

analysis to investigate the impact the properties had upon the mass 

behaviour. Mass behaviour was used as the outcome as it provided a link to 

experimental behaviour, which provides the macro mechanical properties. 

The second stage was to create an appropriate stress controlled boundary 

which allowed the soil model to deform in a similar manner to experimental 

studies of soil behaviour. The third stage was to subject the soil model to a 

cyclic shear load to represent a seismic load. Finally a study of an element of 

soil adjacent to a pile was studied under that same cyclic shear load. This 

chapter summarises the main conclusions of this thesis and provides 

recommendations for further works in this field. 
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7.2 The conclusions  

7.2.1 The analysis of granular sand media  

An axially loaded pile can be considered to be an axisymmetric problem 

which means it is possible to consider a 2D analysis of an element of soil 

adjacent to a pile. However, when a shear load is applied this is no longer the 

case. Ideally 3D analysis would be undertaken. DEM assumes unbreakable 

disk or spherical particles but sand particles are neither disks nor spheres 

and can break. However, it is possible to create DEM particles to represent 

that type of behaviour by agglomeration of disks and spheres. There are two 

methods to validate a DEM analysis; adjusting the inter particle properties to 

fit the macro response to experimental data and varying the inter-particle 

properties to determine the relationship between the inter particle properties 

and the macro properties and comparing those macro properties with 

published data. 

The literature review highlighted the fact that there were very few DEM 

studies into seismic behaviour of soils and none addressing soils adjacent to 

piles. The literature review did highlight the need to generate appropriate 

boundary conditions if realistic results were to be generated. Since the focus 

of this research was to study the use of DEM to analyse seismic loading 

which meant selecting the most appropriate inter particle properties, a 

sensitivity analysis was considered most appropriate. Curve fitting would only 

be relevant to a particular test and a number of combinations of inter-particle 

properties would produce that fit. In order to produce the macro properties of 

the element it was necessary to use a homogenisation method. Given that 

macro properties are normally determined from triaxial tests this meant it was 

necessary to create a deformable vertical boundary and rigid horizontal 

boundaries to replicate the test conditions. The range of inter particle 

properties were selected from published data.  

2D DEM analysis was studied. This was acceptable for the axisymmetric 

case under static loading. In the case of seismic loading it was assumed that 

the element was in line with the direction of loading so a 2D analysis was 

considered acceptable. The main limitation of a DEM model is that the 
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simulation is limited by the speed of the computer. This limits the number of 

particles that can be analysed and the number of agglomerated particles that 

can be created. It was necessary to balance the number of particles with the 

speed of the analysis and ensure that the outcome was acceptable. Given 

that the focus of the research was on the seismic response in which volume 

changes are associated with changes in direction of applied load rather than 

the value of the applied load, it was considered acceptable to study the 

behaviour of a randomly generated assembly of disks. The strains in the soils 

should not generate sufficient load to crush or break the particles. 

7.2.2 The development of the DEM model for static loads 

Recent developments in computational technology have allowed the 

simulation of sand as a heterogeneous material using DEM. PFC2D has been 

shown to be a powerful numerical program for modelling soil, thus, it was 

chosen as the DEM programming code for this research. A number of user-

defined functions had to be developed including algorithms for 

homogenisation, a flexible continuous boundary, a dynamic boundary and 

the application of a seismic cyclic load. PFC2D included an in built scripting 

language, FISH, which allowed these functions to be created. 

The outcome of the sensitivity analysis was to compare the macro behaviour 

of the element with published intrinsic properties of sand (stiffness and 

strength). These are normally obtained from triaxial tests on samples of sand. 

It was assumed that the results of biaxial tests and triaxial tests are similar so 

the biaxial modelling used in the sensitivity analysis would be acceptable. It is 

appreciated that this assumption is not correct but given the fact that there 

are no unique values of strength or stiffness for sand, the 2D sensitivity 

analysis would indicate the trend. However, this would only be acceptable if 

the vertical boundaries were flexible. Therefore it was necessary to create an 

algorithm to numerically simulate the latex membrane of a biaxial test 

(section 4.3.5.2). This produced a continuous membrane latex to which a 

constant external load could be applied to simulate the cell pressure in a 

triaxial test. 
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It was found that applying the Hertz contact model used in granular 

mechanics to disk-shaped particles in a DEM analysis produces an 

unrealistic response. For this reason, a non-linear normal contact model, 

which takes into account the inter-particle parameters, elastic modulus and 

Poisson’s ratio, was used (figures 4-7 and 4-8). 

The method chosen to create the model was to generate a random particle 

size distribution of particles specifying the number of particles and the 

porosity. The soil element was filled with the specified number of particles but 

in the first stage the size of the particles was reduced to prevent any overlap. 

The particle diameter was increased until the element was filled. This meant 

the final particle size distribution was different from the initial distribution 

though it was still random. The external load (confining pressure) was then 

applied. 

A number of fabric quantities (e.g. average coordination number, contact 

force distribution, normal contact distribution) can be used to study the 

response of the element to external loads. These are average values thus 

give an indication of the response and bulk instability. However, instability 

can occur at a particle level which may progress causing local instability. 

Therefore, a new fabric quantity called “symmetric geometric deviation index” 

was developed to show the deviation of the contact points from a symmetric, 

stable distribution (see section 4.3.2). The threshold of bulk instability (e.g. 

peak deviatoric stress) can be observed by tracking this quantity (see figures 

5-44 and 5-46).  

Forty four biaxial tests with rigid and deformable boundaries were conducted 

to establish the effect of the type of boundary and the inter particle 

parameters had upon the macro response of the soil element. Particles of 

between 0.25 [mm] to 1.0 [mm], that is medium to coarse sand, were used in 

each of the tests. In order to reduce the processing time an investigation was 

undertaken to determine the effect of particle density on the macro 

mechanical behaviour. An increase in particle density reduces the processing 

time. It was found (Figures 5-8 – 5-17) using an initial porosity of 0.12, inter-

particle stiffness 4.62 * 108 [N/m]; inter-particle friction of 0.2; and particle’s 
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Poisson’s ratio of 0.15 that a particle density from 2650 [kg/m3] to 2*108 

[kg/m3] had little effect on the macro response. Therefore, particle density of 

2*108 [kg/m3] was used for biaxial tests to significantly decrease the time of 

simulations. 

 

The effect of inter particle stiffness for an initial porosity of 0.12, density of 

2*108 [kg/m3] and inter particle friction of 0.5, 0.9 and 1.2 (figure 5-18 to 5-21) 

was studied using a rigid wall biaxial test. They showed that the inter particle 

friction affected the angle of friction of the soil element which varied between 

25o and 35o (figure 5-19) and the inter particle stiffness affected the stiffness 

of the soil element (figure 5-20) for both plane stress and plane strain 

conditions. It was also found that the relationship between macro stiffness, 

𝐸50 and the inter particle normal stiffness was linear with the constant 

increasing with inter particle friction. The inter particle stiffness varied 

between 1.24 *107 [N/m] and 160 *107 [N/m] giving values of 𝐸50 of between 

5.8 [MPa] and 590 [MPa] though for values of normal stiffness between 

8.45*107 and 17.1*107 (N/m), this leads to values of 𝐸50 which are typical for 

medium and dense sand; i.e. between 25 and 50 [MPa] and 50 and 80 

[MPa], respectively (figure 5-27). 

 

The inter-particle stiffness also affects Poisson’s ratio though in order to 

obtain realistic values the inter particle parameters have to be restricted. 

Using a stiffness of between 8.45 and 17.1 * 107 [N/m] that produces realistic 

values of 𝐸50 means that the inter particle friction must lie between 0.5 and 

0.9. 

In these analyses the ratio 𝑘𝑠/𝑘𝑛 was kept constant and equal to 1. An 

investigation of the effect of this ratio showed that increasing the ratio 

increased 𝐸50 (figure 5-36) though the increase was less significant than an 

increase in the inter particle normal stiffness. 

The stability of the soil element can be expressed in terms of the average 

symmetric geometric deviation index which is the difference between the 

current contact distribution and that required for stability. Figure 5-34 and 5-
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35 shows that increasing the inter particle stiffness reduces the stability as 

the index increases. 

The effect of the inter particle properties was assessed using rigid 

boundaries yet the outcome was compared to macro properties measured in 

triaxial tests. A comparison between a biaxial test with rigid boundaries and 

flexible boundaries (figure 5-44 and 5-45) showed that the macro stress 

strain response with deformable boundaries was more representative of the 

actual behaviour than that with rigid boundaries since the post peak deviator 

stress was very nearly constant with the deformable boundaries and with the 

rigid boundaries it continued to increase. It is noted that the macro stiffness 

(𝐸50) for deformable and rigid boundaries are similar so the conclusions of 

the sensitivity analysis on macro stiffness carried out using the rigid 

boundaries applies to deformable boundaries. This is not the case for the 

strength as the deformable boundaries give a lower value of peak stress than 

tests with rigid boundaries. This means that angles of friction for the rigid 

boundaries were probably an overestimate of typical values. Further the 

shear surface shown with deformable boundaries is similar to that for a brittle 

sample. 

7.2.3 Studying the fabric of sand during earthquake 

The issues to be addressed when studying the effect of seismic loading on 

the pile/soil interface friction and, therefore, capacity, are the size of the 

element, the type of boundary. Once these were established it was possible 

to assess the behaviour of the model for different frequencies and amplitudes 

of a cyclical shear load confining pressures, normal contact stiffness and 

inter-particle friction 

A deformable boundary was created that could absorb the seismic energy 

due to a horizontal cyclic shear load applied to the base of the element. It is 

noted that the deformable boundary for the dynamic case is different from 

that for a static case since the external force in the static case is constant 

whereas in the dynamic case it varies. The input shear wave velocity was 

selected to ensure the response was elastic and the frequency typical of 

earthquakes. The optimum length to height of the element was 4. The 
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deformable boundaries (Figure 6-18) showed that the deformable boundaries 

absorbed some of the energy when compared to the rigid boundaries with 

the possibility that rigid boundaries amplify the signal. 

Typical frequencies of earthquakes at a constant amplitude have little effect 

on the magnitude of shear wave velocity (figure 6-12) and particle stability 

expressed in terms of the average symmetric geometric deviation index 

(figure 6-47). The shear stress developed during the seismic excitation within 

the element (figure 6-49) does change with frequency and for a six fold 

increase in frequency there is a 25% change in the peak shear stress.  

The amplitude and at a constant frequency of the input signal did have a 

significant effect on the particle stability (figure 6-59) and shear stress (figure 

6-62) suggesting that the it is the amplitude of the signal that is critical and 

that can lead to plastic deformation which is shown in figure 6-60 as a 

reduction in bulk density. 

It was found that depth of sample (expressed in terms of the confining stress) 

played a major role on the particle stability (figure 6-70) because the 

deviatoric index for 100 [kPa] confining stress was less than that for 50 [kPa] 

confining stress and average shear stress within the soil (figure 6-72). 

An increase in 𝜇 from 0.9 to 1.2 does not have any effect on the fabric 

evolution and micro-mechanical behaviour (see figures from 6-76 to 6-81), 

while the seismic micro-macro mechanical behaviour of soil is greatly 

dependent on 𝑘𝑛 (see figures from 6-82 to 6-87). This means that for the 

conditions applied in this analysis it is the inter particle stiffness that is critical. 

 

Installing a pile within the soil would be expected to change the response of 

the soil to a seismic load. This is the case. For example, figure 6-94 shows 

that the average symmetric geometric deviation index reduces because of 

the pile. This means the soil is more stable. The average shear stresses 

within the soil element also increase (figure 6-95) suggesting even the soil is 

more stable the stresses increase causing more deformation and possibly 

failure. This is consistent with observations with failure of piled foundations in 

seismic regions. 
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7.3 Recommendations for further work 

The following issues were identified during this research and, therefore, are 

recommendations for further research:  

7.3.1 The soil model  

The responses of granular material are highly dependent on the contact 

model. A simple elastic disk was selected. In practice, sand particles are 

three dimensional irregular shaped particles. It is possible to model as these 

agglomerates of spheres. This is important in simulating seismic loading 

because the particles may crush because of locally high contact forces. 

7.3.2 Saturated soil 

The DEM modelled developed for performing a biaxial test in this research 

was limited to dry particulate sand. However, in reality many sands are 

saturated or semi-saturated. Thus, an aim is to execute biaxial tests on 

saturated and semi-saturated sands taking into account the effect of pore 

water pressure. 

7.3.3 The sensitivity of sand fabric during an earthquake 

This research demonstrated that it is possible to simulate the seismic 

behaviour of an element of soil and the pile/soil interface behaviour but the 

study was limited. It is necessary to undertake a sensitivity analysis to the 

effect of particle shape, pore water, inter particle properties and the inter 

particle model under a variety of seismic loads. This will help explain the 

response of the soil using the macro response and change in fabric to 

monitor that response.   

The ultimate aim of this work is to develop a constitutive relationship for the 

pile/soil interaction which can be used in a continuum analysis to model piled 

foundations. Therefore it will be necessary to generate data against which 

these predictions can be validated. 
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Appendix 1: Fast Fourier Transform of 10 well-known earthquakes 

 

 

Appendix [1] Figure 1 acceleration-time history of ChiChi earthquakes 

 

 

 

 

 

 

 

Appendix [1] Figure 2 frequency contents of ChiChi earthquakes 
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Appendix [1] Figure 3 acceleration-time history of Friuli earthquakes 

 

 

 

 

 

 

 

 

Appendix [1] Figure 4 frequency contents of Friuli earthquakes 
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Appendix [1] Figure 5 acceleration-time history of Hollister earthquakes 

 

 

 

 

 

 

 

 

 

Appendix [1] Figure 6 frequency contents of Hollister earthquakes 
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Appendix [1] Figure 7 acceleration-time history of Imperial Valley earthquakes 

 

 

 

 

 

 

 

 

 

Appendix [1] Figure 8 acceleration-time history of Imperial Valley earthquakes 
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Appendix [1] Figure 9 acceleration-time history of Kobe earthquakes 

 

 

 

 

 

 

 

 

 

Appendix [1] Figure 10 acceleration-time history of Kobe earthquakes 
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Appendix [1] Figure 11 acceleration-time history of Kocaeli earthquakes 

 

 

 

 

 

 

 

 

 

Appendix [1] Figure 12 acceleration-time history of Kocaeli earthquakes 
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Appendix [1] Figure 13 acceleration-time history of Landers earthquakes 

 

 

 

 

 

 

 

 

 

Appendix [1] Figure 14 acceleration-time history of Landers earthquakes 
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Appendix [1] Figure 15 acceleration-time history of Loma Prieta earthquakes 

 

 

 

 

 

 

 

 

 

Appendix [1] Figure 16 acceleration-time history of Loma Prieta earthquakes 
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Appendix [1] Figure 17 acceleration-time history of Northridge earthquakes 

 

 

 

 

 

 

 

 

 

Appendix [1] Figure 18 acceleration-time history of Northridge earthquakes 
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Appendix [1] Figure 19 acceleration-time history of Trinidad earthquakes 

 

 

 

 

 

 

 

 

 

Appendix [1] Figure 20 acceleration-time history of Trinidad earthquakes 
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Appendix 2- Inter-particle properties of quartz sand 

𝜃 30° (Belheine et al., 2009) 

𝑠ℎ𝑒𝑎𝑟 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 2𝑒8 (𝑃𝑎) 

(Soroush and Ferdowsi, 2011) 𝜃 26.56° 

𝑃𝑜𝑖𝑠𝑠𝑜𝑛’𝑠 𝑟𝑎𝑡𝑖𝑜 0.35 

𝜃 26.56° 

(Sazzad and Suzuki, 2010, Zamani and El 

Shamy, 2012, Sitharam, 2003, El Shamy 

and Zeghal, 2007, El Shamy and 

Denissen, 2010, Jiang et al., 2011, 

Iwashita and Oda, 1998) 

𝑠ℎ𝑒𝑎𝑟 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 29𝑒9(𝑃𝑎) 

(Yimsiri and Soga, 2010) 𝜃 45°, 63°, 84° 

𝑃𝑜𝑖𝑠𝑠𝑜𝑛’𝑠 𝑟𝑎𝑡𝑖𝑜 0.35 

𝑌𝑜𝑢𝑛𝑔′𝑠 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 8.34 𝐺𝑃𝑎 

(Thornton and Zhang, 2003) 𝜃 26° 

𝑃𝑜𝑖𝑠𝑠𝑜𝑛’𝑠 𝑟𝑎𝑡𝑖𝑜 0.35 

𝑌𝑜𝑢𝑛𝑔′𝑠 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 7.9𝑒10 (𝑃𝑎) 

(O'Sullivan et al., 2008) 𝜃 5.4° 

𝑃𝑜𝑖𝑠𝑠𝑜𝑛’𝑠 𝑟𝑎𝑡𝑖𝑜 0.28 

𝑌𝑜𝑢𝑛𝑔′𝑠 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 7𝑒10 (𝑃𝑎) 

(Zamani and El Shamy, 2011) 𝜃 35° 

𝑃𝑜𝑖𝑠𝑠𝑜𝑛’𝑠 𝑟𝑎𝑡𝑖𝑜 0.15 

𝑌𝑜𝑢𝑛𝑔′𝑠 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 46.9𝑒 𝐺𝑃𝑎 

(Karrech et al., 2008) 𝜃 38.6° 

𝑃𝑜𝑖𝑠𝑠𝑜𝑛’𝑠 𝑟𝑎𝑡𝑖𝑜 0.25 

𝑆ℎ𝑒𝑎𝑟 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 34 𝐺𝑃𝑎 

(Van Baars, 1996) 𝜃 30° 

𝑃𝑜𝑖𝑠𝑠𝑜𝑛’𝑠 𝑟𝑎𝑡𝑖𝑜 0.16 

𝑆ℎ𝑒𝑎𝑟 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 10 𝐺𝑃𝑎 

(Pruiksma and Bezuijen, 2002) 𝜃 52° 

𝑃𝑜𝑖𝑠𝑠𝑜𝑛’𝑠 𝑟𝑎𝑡𝑖𝑜 0.16 

𝜃 42° (Pruiksma and Bezuijen, 2002) 

𝑌𝑜𝑢𝑛𝑔′𝑠 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 80 − 85 (𝐺𝑃𝑎) 

Bardet (1998) 𝜃 37 

𝑃𝑜𝑖𝑠𝑠𝑜𝑛’𝑠 𝑟𝑎𝑡𝑖𝑜 0.29 

 

Appendix [2] Table 1 The values of elastic modulus, Poisson’s ratio and inter-particle friction 
in literature 
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Appendix [2] Table 2 The values of inter-particle friction for quartz sand After (Rowe, 1962) 
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Appendix 3- The results of biaxial simulations tests 

 

Shear Stiffness (N/m) 1.24*10
7 

1.24*10
7 

1.24*10
7 

Normal Stiffness (N/m) 1.24*10
7
 1.24*10

7
 1.24*10

7
 

Coefficient friction 0.5 0.9 1.2 

E50 (P.Strain) (MPa) 5.8 6.30 6.55 

E50 (P.Stress) (MPa) 6.0 6.5 6.65 

v50  (P.Strain) 0.16 0.13 0.11 

v50  (P.Stress) 0.19 0.15 0.13 

σmax (kPa) 200.0 264.0 290.0 

ε11 at σmax 0.04 0.05 0.05 

θ(°) 19.5 26.8 29.1 

Appendix [3] Table 1 The sensitivity of sand to the different inter-particle friction when normal 
and shear stress is 1.24*10

7
 (N/m) 

 

 

 

 

Shear Stiffness (N/m) 8.45*10
7
 8.45*10

7
 8.45*10

7
 

Normal Stiffness (N/m) 8.45*10
7
 8.45*10

7
 8.45*10

7
 

Coefficient friction 0.5 0.9 1.2 

E50 (P.Strain) (MPa) 32.0 35.0 35.0 

E50 (P.Stress) (MPa) 34.0 36.0 36.0 

v50  (P.Strain) 0.21 0.18 0.18 

v50  (P.Stress) 0.27 0.23 0.22 

σmax (kPa) 200.0 263.0 290.0 

ε11 at σmax 0.01 0.01 0.01 

θ(°) 19.5 26.8 29.1 

Appendix [3] Table 2 The sensitivity of sand to the different inter-particle friction when normal 
and shear stress is 8.45*10

7
 (N/m) 

 

 

 

 

Shear Stiffness (N/m) 17.1*10
7
 17.1*10

7
 17.1*10

7
 

Normal Stiffness (N/m) 17.1*10
7
 17.1*10

7
 17.1*10

7
 

Coefficient friction 0.5 0.9 1.2 

E50 (P.Strain) (MPa) 61.0 67.0 68.0 

E50 (P.Stress) (MPa) 64.0 70.0 71.0 

v50  (P.Strain) 0.22 0.20 0.19 

v50  (P.Stress) 0.28 0.24 0.23 

σmax (kPa) 190.0 242.0 270.0 

ε11 at σmax 0.01 0.007 0.007 

θ(°) 18.0 24.5 27.3 

Appendix [3] Table 3 The sensitivity of sand to the different inter-particle friction when normal 
and shear stress is 17.1*10

7
 (N/m) 
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Shear Stiffness (N/m) 46.0*10
7
 46.0*10

7
 46.0*10

7
 

Normal Stiffness (N/m) 46.0*10
7
 46.0*10

7
 46.0*10

7
 

Coefficient friction 0.5 0.9 1.2 

E50 (P.Strain) (MPa) 162.0 173.0 180.0 

E50 (P.Stress) (MPa) 170.0 181.0 186.0 

v50  (P.Strain) 0.22 0.20 0.19 

v50  (P.Stress) 0.30 0.25 0.23 

σmax (kPa) 180.0 240.0 260.0 

ε11 at σmax 0.01 0.005 0.004 

θ(°) 16.6 24.3 26.4 

Appendix [3] Table 4 The sensitivity of sand to the different inter-particle friction when normal 
and shear stress is 46.0*10

7
 (N/m) 

 

 

 

 

 

Shear Stiffness (N/m) 133.0*10
7
 133.0*10

7
 133.0*10

7
 

Normal Stiffness (N/m) 133.0*10
7
 133.0*10

7
 133.0*10

7
 

Coefficient friction 0.5 0.9 1.2 

E50 (P.Strain) (MPa) 388.0 444.0 478.0 

E50 (P.Stress) (MPa) 417.0 470.0 500.0 

v50  (P.Strain) 0.26 0.23 0.21 

v50  (P.Stress) 0.33 0.3 0.27 

σmax (kPa) 210.0 277.0 305.0 

ε11 at σmax 0.01 0.045 0.004 

θ(°) 20.8 28.0 30.4 

Appendix [3] Table 5 The sensitivity of sand to the different inter-particle friction when normal 
and shear stress is 133.0*10

7
 (N/m) 

 

 

 

 

 

Shear Stiffness (N/m) 150.0*10
7
 150.0*10

7
 150.0*10

7
 

Normal Stiffness (N/m) 150.0*10
7
 150.0*10

7
 150.0*10

7
 

Coefficient friction 0.5 0.9 1.2 

E50 (P.Strain) (MPa) 463.0 535.0 540.0 

E50 (P.Stress) (MPa) 494.0 563.0 570.0 

v50  (P.Strain) 0.25 0.22 0.22 

v50  (P.Stress) 0.33 0.28 0.28 

σmax (kPa) 213.0 286.0 325.0 

ε11 at σmax 0.01 0.003 0.003 

θ(°) 21.1 29.0 32.0 

Appendix [3] Table 6 The sensitivity of sand to the different inter-particle friction when normal 
and shear stress is 150.0*10

7
 (N/m) 
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Shear Stiffness (N/m) 160.0*10
7
 160.0*10

7
 160.0*10

7
 

Normal Stiffness (N/m) 160.0*10
7
 160.0*10

7
 160.0*10

7
 

Coefficient friction 0.5 0.9 1.2 

E50 (P.Strain) (MPa) 476.0 564.0 590.0 

E50 (P.Stress) (MPa) 511.0 590.0 610.0 

v50  (P.Strain) 0.26 0.22 0.20 

v50  (P.Stress) 0.35 0.28 0.27 

σmax (kPa) 213.0 275.0 305.0 

ε11 at σmax 0.01 0.003 0.003 

θ(°) 21.1 27.8 30.4 

Appendix [3] Table 7 The sensitivity of sand to the different inter-particle friction when normal 
and shear stress is 160.0*10

7
 (N/m) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix [3] Figure 1 The sensitivity of sand to the different inter-particle friction when 
normal and shear stress is 1.24*10

7
 (N/m): deviatoric stress vs. axial strain 

0

50

100

150

200

250

300

350

0 0.02 0.04 0.06 0.08 0.1

D
ev

ia
to

ri
c 

st
re

ss
 (

k
P

a)

Axial Strain

Kn=Ks=1.24E7 Friction=0.5

Kn=Ks=1.24E7 Friction=0.9

Kn=Ks=1.24E7 Friction=1.2



318 

 

 

Appendix [3] Figure 2 The sensitivity of sand to the different inter-particle friction when 
normal and shear stress is 8.45*10

7
 (N/m): deviatoric stress vs. axial strain 

 

 

 

 

 

 

 

 

 

Appendix [3] Figure 3 The sensitivity of sand to the different inter-particle friction when 
normal and shear stress is 17.1*10

7
 (N/m): deviatoric stress vs. axial strain 
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Appendix [3] Figure 4 The sensitivity of sand to the different inter-particle friction when 
normal and shear stress is 46.0*10

7
 (N/m): deviatoric stress vs. axial strain 

 

 

 

 

 

 

 

 

 

Appendix [3] Figure 5 The sensitivity of sand to the different inter-particle friction when 
normal and shear stress is 133.0*10

7
 (N/m): deviatoric stress vs. axial strain 

0

50

100

150

200

250

300

0 0.02 0.04 0.06 0.08 0.1

D
ev

ia
to

ri
c 

st
re

ss
 (

k
P

a)

Axial Strain

Kn=Ks=46.0E7

Fric=0.5

Kn=Ks=46.0E7

Fric=0.9

Kn=Ks=46.0E7

Fric=1.2

0

50

100

150

200

250

300

350

0 0.02 0.04 0.06 0.08 0.1

D
ev

ia
to

ri
c 

st
re

ss
 (

k
P

a)

Axial Strain

Kn=Ks=133.0E7

Fric=0.5

Kn=Ks=133.0E7

Fric=0.9

Kn=Ks=133.0E7

Fric=1.2



320 

 

 

Appendix [3] Figure 6 The sensitivity of sand to the different inter-particle friction when 
normal and shear stress is 150.0*10

7
 (N/m): deviatoric stress vs. axial strain 

 

 

 

 

 

 

 

 

 

Appendix [3] Figure 7 The sensitivity of sand to the different inter-particle friction when 
normal and shear stress is 160.0*10

7
 (N/m): deviatoric stress vs. axial strain 
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Appendix [3] Figure 8 The sensitivity of sand to the different inter-particle friction when 

normal and shear stress is 1.24*10
7
 (N/m): volumetric strain vs. axial strain 

 

 

 

 

 

 

 

 

 

Appendix [3] Figure 9 The sensitivity of sand to the different inter-particle friction when 
normal and shear stress is 8.45*10

7
 (N/m): volumetric strain vs. axial strain 
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Appendix [3] Figure 10 The sensitivity of sand to the different inter-particle friction when 
normal and shear stress is 17.1*10

7
 (N/m): volumetric strain vs. axial strain 

 

 

 

 

 

 

 

 

 

Appendix [3] Figure 11 The sensitivity of sand to the different inter-particle friction when 
normal and shear stress is 46.0*10

7
 (N/m): volumetric strain vs. axial strain 
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Appendix [3] Figure 12 The sensitivity of sand to the different inter-particle friction when 
normal and shear stress is 133.0*10

7
 (N/m): volumetric strain vs. axial strain 

 

 

 

 

 

 

 

 

 

Appendix [3] Figure 13 The sensitivity of sand to the different inter-particle friction when 
normal and shear stress is 150.0*10

7
 (N/m): volumetric strain vs. axial strain 
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Appendix [3] Figure 14 The sensitivity of sand to the different inter-particle friction when 
normal and shear stress is 160.0*10

7
 (N/m): volumetric strain vs. axial strain 

 

 

 

 

 

 

 

 

Appendix [3] Figure 15 The sensitivity of sand to the different inter-particle friction when 
normal and shear stress is 1.24*10

7
 (N/m): Average symmetric geometric deviation index vs. 

axial strain 
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Appendix [3] Figure 16 The sensitivity of sand to the different inter-particle friction when 
normal and shear stress is 8.45*10

7
 (N/m): Average symmetric geometric deviation index vs. 

axial strain 

 

 

 

 

 

 

 

 

Appendix [3] Figure 17 The sensitivity of sand to the different inter-particle friction when 
normal and shear stress is 17.1*10

7
 (N/m): Average symmetric geometric deviation index vs. 

axial strain 
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Appendix [3] Figure 18 The sensitivity of sand to the different inter-particle friction when 
normal and shear stress is 46.0*10

7
 (N/m): Average symmetric geometric deviation index vs. 

axial strain 

 

 

 

 

 

 

 

 

Appendix [3] Figure 19 The sensitivity of sand to the different inter-particle friction when 
normal and shear stress is 133.0*10

7
 (N/m): Average symmetric geometric deviation index 
vs. axial strain 
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Appendix [3] Figure 20 The sensitivity of sand to the different inter-particle friction when 
normal and shear stress is 150.0*10

7
 (N/m): Average symmetric geometric deviation index 
vs. axial strain 

 

 

 

 

 

 

 

 

Appendix [3] Figure 21 The sensitivity of sand to the different inter-particle friction when 
normal and shear stress is 160.0*10

7
 (N/m): Average symmetric geometric deviation index 
vs. axial strain 
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Appendix [3] Figure 22 The sensitivity of sand to the different inter-particle friction when 
normal and shear stress is 1.24*10

7
 (N/m): Average fabric anisotropy vs. axial strain 

 

 

 

 

 

 

 

 

 

Appendix [3] Figure 23 The sensitivity of sand to the different inter-particle friction when 
normal and shear stress is 8.45*10

7
 (N/m): Average fabric anisotropy vs. axial strain 
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Appendix [3] Figure 24 The sensitivity of sand to the different inter-particle friction when 
normal and shear stress is 17.1*10

7
 (N/m): Average fabric anisotropy vs. axial strain 

 

 

 

 

 

 

 

 

 

Appendix [3] Figure 25 The sensitivity of sand to the different inter-particle friction when 
normal and shear stress is 46.0*10

7
 (N/m): Average fabric anisotropy vs. axial strain 
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Appendix [3] Figure 26 The sensitivity of sand to the different inter-particle friction when 
normal and shear stress is 1.24*10

7
 (N/m): Average normal force anisotropy vs. axial strain 

 

 

 

 

 

 

 

 

 

Appendix [3] Figure 27 The sensitivity of sand to the different inter-particle friction when 
normal and shear stress is 8.45*10

7
 (N/m): Average normal force anisotropy vs. axial strain 
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Appendix [3] Figure 28 The sensitivity of sand to the different inter-particle friction when 
normal and shear stress is 17.1*10

7
 (N/m): Average normal force anisotropy vs. axial strain 

 

 

 

 

 

 

 

 

 

Appendix [3] Figure 29 The sensitivity of sand to the different inter-particle friction when 
normal and shear stress is 46.0*10

7
 (N/m): Average normal force anisotropy vs. axial strain 
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Appendix [3] Figure 30 The sensitivity of sand to the different inter-particle friction when 
normal and shear stress is 1.24*10

7
 (N/m): Average shear force anisotropy vs. axial strain 

 

 

 

 

 

 

 

 

 

Appendix [3] Figure 31 The sensitivity of sand to the different inter-particle friction when 
normal and shear stress is 8.45*10

7
 (N/m): Average shear force anisotropy vs. axial strain 
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Appendix [3] Figure 32 The sensitivity of sand to the different inter-particle friction when 
normal and shear stress is 17.1*10

7
 (N/m): Average shear force anisotropy vs. axial strain 

 

 

 

 

 

 

 

 

 

Appendix [3] Figure 33 The sensitivity of sand to the different inter-particle friction when 
normal and shear stress is 46.0*10

7
 (N/m): Average shear force anisotropy vs. axial strain 
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Appendix [3] Figure 34 The sensitivity of sand to the different inter-particle friction when 
normal and shear stress is 1.24*10

7
 (N/m): Average coordination number vs. axial strain 

 

 

 

 

 

 

 

 

Appendix [3] Figure 35 The sensitivity of sand to the different inter-particle friction when 

normal and shear stress is 8.45*10
7
 (N/m): Average coordination number vs. axial strain 
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Appendix [3] Figure 36 The sensitivity of sand to the different inter-particle friction when 
normal and shear stress is 17.1*10

7
 (N/m): Average coordination number vs. axial strain 

 

 

 

 

 

 

 

 

 

Appendix [3] Figure 37 The sensitivity of sand to the different inter-particle friction when 
normal and shear stress is 46.0*10

7
 (N/m): Average coordination number vs. axial strain 
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Appendix [3] Figure 38 The sensitivity of sand to the different inter-particle friction when 
normal and shear stress is 133.0*10

7
 (N/m): Average coordination number vs. axial strain 

 

 

 

 

 

 

 

 

 

Appendix [3] Figure 39 The sensitivity of sand to the different inter-particle friction when 
normal and shear stress is 150.0*10

7
 (N/m): Average coordination number vs. axial strain 
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Appendix [3] Figure 40 The sensitivity of sand to the different inter-particle friction when 
normal and shear stress is 160.0*10

7
 (N/m): Average coordination number vs. axial strain 

 

 

Shear Stiffness (N/m) 1.24*10
7 

8.45*10
7
 

17.1*10
7
 

46.0*10
7
 133.0*10

7
 150.0*10

7
 160.0*10

7
 

Normal Stiffness (N/m) 1.24*10
7
 8.45*10

7
 

17.1*10
7
 

46.0*10
7
 133.0*10

7
 150.0*10

7
 160.0*10

7
 

Coefficient friction 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

E50 (P.Strain) (MPa) 5.8 32.0 61.0 162.0 388.0 463.0 476.0 

E50 (P.Stress) (MPa) 6.0 34.0 64.0 170.0 417.0 494.0 511.0 

v50  (P.Strain) 0.16 0.21 0.22 0.22 0.26 0.25 0.26 

v50  (P.Stress) 0.19 0.27 0.28 0.30 0.33 0.33 0.35 

σmax (kPa) 200.0 200.0 190.0 180.0 210.0 213.0 213.0 

ε11 at σmax 0.04 0.01 0.01 0.01 0.01 0.01 0.01 

θ(°) 19.5 19.5 18.0 16.6 21.0 21.1 21.1 

Appendix [3] Table 8 The sensitivity of sand to the different particle normal stiffness when 
inter-particle friction is 0.5 

 

 

Shear Stiffness (N/m) 1.24*10
7 

8.45*10
7
 

17.1*10
7
 

46.0*10
7
 133.0*10

7
 150.0*10

7
 160.0*10

7
 

Normal Stiffness (N/m) 1.24*10
7
 8.45*10

7
 

17.1*10
7
 

46.0*10
7
 133.0*10

7
 150.0*10

7
 160.0*10

7
 

Coefficient friction 0.9 0.9 0.9 0.9 0.9 0.9 0.9 

E50 (P.Strain) (MPa) 6.30 35.0 67.0 173.0 444.0 535.0 564.0 

E50 (P.Stress) (MPa) 6.5 36.0 70.0 181.0 470.0 563.0 590.0 

v50  (P.Strain) 0.13 0.18 0.20 0.20 0.23 0.22 0.22 

v50  (P.Stress) 0.15 0.23 0.24 0.25 0.3 0.28 0.28 

σmax (kPa) 264.0 264.0 242.0 240.0 277.0 286.0 275.0 

ε11 at σmax 0.05 0.01 0.007 0.005 0.045 0.003 0.003 

θ(°) 26.7 26.7 24.5 24.3 28.0 29.0 28.0 

Appendix [3] Table 9 The sensitivity of sand to the different particle normal stiffness when 
inter-particle friction is 0.9 
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Shear Stiffness (N/m) 1.24*10
7 

8.45*10
7
 

17.1*10
7
 

46.0*10
7
 133.0*10

7
 150.0*10

7
 160.0*10

7
 

Normal Stiffness (N/m) 1.24*10
7
 8.45*10

7
 

17.1*10
7
 

46.0*10
7
 133.0*10

7
 150.0*10

7
 160.0*10

7
 

Coefficient friction 1.2 1.2 1.2 1.2 1.2 1.2 1.2 

E50 (P.Strain) (MPa) 6.55 35.0 68.0 180.0 478.0 540.0 590.0 

E50 (P.Stress) (MPa) 6.65 36.0 71.0 186.0 500.0 570.0 610.0 

v50  (P.Strain) 0.11 0.18 0.19 0.19 0.21 0.22 0.20 

v50  (P.Stress) 0.13 0.22 0.23 0.23 0.27 0.28 0.27 

σmax (kPa) 290.0 290.0 270.0 260.0 305.0 325.0 305.0 

ε11 at σmax 0.05 0.01 0.007 0.004 0.004 0.003 0.003 

θ(°) 29.15 29.15 27.35 26.4 30.4 32.0 30.4 

Appendix [3] Table 10 The sensitivity of sand to the different particle normal stiffness when 
inter-particle friction is 1.2 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix [3] Figure 41 The sensitivity of sand to the different normal particle stiffness when 
inter-particle friction is 0.5- deviatoric stress vs. axial strain 
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Appendix [3] Figure 42 The sensitivity of sand to the different normal particle stiffness when 
inter-particle friction is 0.9: deviatoric stress vs. axial strain 

 

 

 

 

 

 

 

 

 

Appendix [3] Figure 43 The sensitivity of sand to the different normal particle stiffness when 
inter-particle friction is 1.2- deviatoric stress vs. axial strain 
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Appendix [3] Figure 44 The sensitivity of sand to the different normal particle stiffness when 
inter-particle friction is 0.5- volumetric strain vs. axial strain 

 

 

 

 

 

 

 

 

 

Appendix [3] Figure 45 The sensitivity of sand to the different normal particle stiffness when 
inter-particle friction is 0.9: volumetric strain vs. axial strain 
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Appendix [3] Figure 46 The sensitivity of sand to the different normal particle stiffness when 
inter-particle friction is 1.2- volumetric strain vs. axial strain 

 

 

 

 

 

 

 

 

 

Appendix [3] Figure 47 The sensitivity of sand to the different normal particle stiffness when 
inter-particle friction is 0.5- average fabric anisotropy vs. axial strain 
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Appendix [3] Figure 48 The sensitivity of sand to the different normal particle stiffness when 
inter-particle friction is 0.9: average fabric anisotropy vs. axial strain 

 

 

 

 

 

 

 

 

Appendix [3] Figure 49 The sensitivity of sand to the different normal particle stiffness when 
inter-particle friction is 1.2- average fabric anisotropy vs. axial 
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Appendix [3] Figure 50 The sensitivity of sand to the different normal particle stiffness when 
inter-particle friction is 0.5- average normal force anisotropy vs. axial strain 

 

 

 

 

 

 

 

 

Appendix [3] Figure 51 The sensitivity of sand to the different normal particle stiffness when 
inter-particle friction is 0.9: average normal force anisotropy vs. axial strain 
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Appendix [3] Figure 52 The sensitivity of sand to the different normal particle stiffness when 
inter-particle friction is 1.2- average normal force anisotropy vs. axial strain 

 

 

 

 

 

 

 

 

Appendix [3] Figure 53 The sensitivity of sand to the different normal particle stiffness when 
inter-particle friction is 0.5- average shear force anisotropy vs. axial strain 
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Appendix [3] Figure 54 The sensitivity of sand to the different normal particle stiffness when 
inter-particle friction is 0.9: average shear force anisotropy vs. axial strain 

 

 

 

 

 

 

 

 

Appendix [3] Figure 55 The sensitivity of sand to the different normal particle stiffness when 
inter-particle friction is 1.2- average shear force anisotropy vs. axial strain 
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Appendix [3] Figure 56 The sensitivity of sand to the different normal particle stiffness when 
inter-particle friction is 0.5- average symmetric geometric deviation index vs. axial strain 

 

 

 

 

 

 

 

 

 

Appendix [3] Figure 57 The sensitivity of sand to the different normal particle stiffness when 
inter-particle friction is 0.9: average symmetric geometric deviation index vs. axial strain 
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Appendix [3] Figure 58 The sensitivity of sand to the different normal particle stiffness when 
inter-particle friction is 1.2- average symmetric geometric deviation index vs. axial strain 

 

 

 

 

 

 

 

 

 

Appendix [3] Figure 59 The sensitivity of sand to the different normal particle stiffness when 
inter-particle friction is 0.5- average coordination number vs. axial strain 
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Appendix [3] Figure 60 The sensitivity of sand to the different normal particle stiffness when 
inter-particle friction is 0.9: average coordination number vs. axial strain 

 

 

 

 

 

 

 

 

 

Appendix [3] Figure 61 The sensitivity of sand to the different normal particle stiffness when 
inter-particle friction is 1.2- average coordination number vs. axial strain 
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Normal Stiffness (N/m) 1.24*10
7 

1.24*10
7
 

Kn/Ks 1.0 0.5 

Coefficient friction 0.5 0.5 

E50 (P.Strain) (MPa) 5.8 5.3 

E50 (P.Stress) (MPa) 6.0 5.5 

v50  (P.Strain) 0.16 0.21 

v50  (P.Stress) 0.19 0.26 

σmax (kPa) 200.0 190.0 

ε11 at σmax 0.04 0.05 

θ(°) 19.5 18.0 

Appendix [3] Table 11 The sensitivity of sand to the different shear particle stiffness 

 

 

 

 

 

Normal Stiffness (N/m) 1.24*10
7 

1.24*10
7
 

Kn/Ks 1.0 0.5 

Coefficient friction 0.9 0.9 

E50 (P.Strain) (MPa) 6.30 5.54 

E50 (P.Stress) (MPa) 6.5 5.76 

v50  (P.Strain) 0.13 0.20 

v50  (P.Stress) 0.15 0.25 

σmax (kPa) 264.0 250.0 

ε11 at σmax 0.05 0.05 

θ(°) 26.7 25.4 

Appendix [3] Table 12 The sensitivity of sand to the different shear particle stiffness 

 

 

 

 

 

 

Normal Stiffness (N/m) 1.24*10
7 

1.24*10
7
 

Kn/Ks 1.0 0.5 

Coefficient friction 1.2 1.2 

E50 (P.Strain) (MPa) 6.55 5.60 

E50 (P.Stress) (MPa) 6.65 5.80 

v50  (P.Strain) 0.11 0.19 

v50  (P.Stress) 0.13 0.24 

σmax (kPa) 290.0 290.0 

ε11 at σmax 0.05 0.05 

θ(°) 29.15 29.15 

Appendix [3] Table 13 The sensitivity of sand to the different shear particle stiffness 



350 

 

Normal Stiffness (N/m) 8.45*10
7 

8.45*10
7
 

Kn/Ks 1.0 0.5 

Coefficient friction 0.5 0.5 

E50 (P.Strain) (MPa) 32.0 27.0 

E50 (P.Stress) (MPa) 34.0 29.0 

v50  (P.Strain) 0.21 0.25 

v50  (P.Stress) 0.27 0.29 

σmax (kPa) 200.0 190.0 

ε11 at σmax 0.01 0.01 

θ(°) 19.5 18.0 

Appendix [3] Table 14 The sensitivity of sand to the different shear particle stiffness 

 

 

 

 

 

 

Normal Stiffness (N/m) 8.45*10
7 

8.45*10
7
 

Kn/Ks 1.0 0.5 

Coefficient friction 0.9 0.9 

E50 (P.Strain) (MPa) 35.0 28.0 

E50 (P.Stress) (MPa) 36.0 30.0 

v50  (P.Strain) 0.18 0.24 

v50  (P.Stress) 0.23 0.32 

σmax (kPa) 263.0 250.0 

ε11 at σmax 0.01 0.01 

θ(°) 26.7 25.4 

Appendix [3] Table 15 The sensitivity of sand to the different shear particle stiffness 

 

 

 

 

 

 

Normal Stiffness (N/m) 8.45*10
7 

8.45*10
7
 

Kn/Ks 1.0 0.5 

Coefficient friction 1.2 1.2 

E50 (P.Strain) (MPa) 35.0 29.0 

E50 (P.Stress) (MPa) 36.0 31.0 

v50  (P.Strain) 0.18 0.24 

v50  (P.Stress) 0.22 0.31 

σmax (kPa) 290.0 280.0 

ε11 at σmax 0.01 0.01 

θ(°) 29.15 29.15 

Appendix [3] Table 16 The sensitivity of sand to the different shear particle stiffness 
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Normal Stiffness (N/m) 17.1*10
7 

17.1*10
7
 

Kn/Ks 1.0 0.5 

Coefficient friction 0.5 0.5 

E50 (P.Strain) (MPa) 61.0 56.0 

E50 (P.Stress) (MPa) 64.0 60.0 

v50  (P.Strain) 0.22 0.26 

v50  (P.Stress) 0.28 0.35 

σmax (kPa) 190.0 190.0 

ε11 at σmax 0.01 0.007 

θ(°) 18.0 18.0 

Appendix [3] Table 17 The sensitivity of sand to the different shear particle stiffness 

 

 

 

 

 

 

Normal Stiffness (N/m) 17.1*10
7 

17.1*10
7
 

Kn/Ks 1.0 0.5 

Coefficient friction 0.9 0.9 

E50 (P.Strain) (MPa) 67.0 60.0 

E50 (P.Stress) (MPa) 70.0 63.0 

v50  (P.Strain) 0.20 0.25 

v50  (P.Stress) 0.24 0.32 

σmax (kPa) 242.0 250.0 

ε11 at σmax 0.007 0.01 

θ(°) 24.5 25.3 

Appendix [3] Table 18 The sensitivity of sand to the different shear particle stiffness 

 

 

 

 

 

 

Normal Stiffness (N/m) 17.1*10
7 

17.1*10
7
 

Kn/Ks 1.0 0.5 

Coefficient friction 1.2 1.2 

E50 (P.Strain) (MPa) 68.0 60.0 

E50 (P.Stress) (MPa) 71.0 63.0 

v50  (P.Strain) 0.19 0.25 

v50  (P.Stress) 0.23 0.32 

σmax (kPa) 270.0 280.0 

ε11 at σmax 0.007 0.01 

θ(°) 27.3 28.3 

Appendix [3] Table 19 The sensitivity of sand to the different shear particle stiffness 



352 

 

Normal Stiffness (N/m) 46.0*10
7 

46.0*10
7
 

Kn/Ks 1.0 0.5 

Coefficient friction 0.5 0.5 

E50 (P.Strain) (MPa) 162.0 128.0 

E50 (P.Stress) (MPa) 170.0 140.0 

v50  (P.Strain) 0.22 0.28 

v50  (P.Stress) 0.30 0.4 

σmax (kPa) 180.0 185.0 

ε11 at σmax 0.01 0.004 

θ(°) 16.6 17.3 

Appendix [3] Table 20 The sensitivity of sand to the different shear particle stiffness 

 

 

 

 

 

 

Normal Stiffness (N/m) 46.0*10
7 

46.0*10
7
 

Kn/Ks 1.0 0.5 

Coefficient friction 0.9 0.9 

E50 (P.Strain) (MPa) 173.0 141.0 

E50 (P.Stress) (MPa) 181.0 151.0 

v50  (P.Strain) 0.20 0.26 

v50  (P.Stress) 0.25 0.35 

σmax (kPa) 240.0 235.0 

ε11 at σmax 0.005 0.006 

θ(°) 24.3 23.7 

Appendix [3] Table 21 The sensitivity of sand to the different shear particle stiffness 

 

 

 

 

 

 

Normal Stiffness (N/m) 46.0*10
7 

46.0*10
7
 

Kn/Ks 1.0 0.5 

Coefficient friction 1.2 1.2 

E50 (P.Strain) (MPa) 180.0 143.0 

E50 (P.Stress) (MPa) 186.0 153.0 

v50  (P.Strain) 0.19 0.26 

v50  (P.Stress) 0.23 0.35 

σmax (kPa) 260.0 270.0 

ε11 at σmax 0.004 0.006 

θ(°) 26.4 27.35 

Appendix [3] Table 22 The sensitivity of sand to the different shear particle stiffness 
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Normal Stiffness (N/m) 133.0*10
7 

133.0*10
7
 

Kn/Ks 1.0 0.5 

Coefficient friction 0.5 0.5 

E50 (P.Strain) (MPa) 388.0 353.0 

E50 (P.Stress) (MPa) 417.0 380.0 

v50  (P.Strain) 0.26 0.29 

v50  (P.Stress) 0.33 0.38 

σmax (kPa) 210.0 220.0 

ε11 at σmax 0.01 0.003 

θ(°) 21.0 22.0 

Appendix [3] Table 23 The sensitivity of sand to the different shear particle stiffness 

 

 

 

 

 

Normal Stiffness (N/m) 133.0*10
7 

133.0*10
7
 

Kn/Ks 1.0 0.5 

Coefficient friction 0.9 0.9 

E50 (P.Strain) (MPa) 444.0 416.0 

E50 (P.Stress) (MPa) 470.0 445.0 

v50  (P.Strain) 0.23 0.25 

v50  (P.Stress) 0.3 0.34 

σmax (kPa) 277.0 270.0 

ε11 at σmax 0.045 0.003 

θ(°) 28.0 27.3 

Appendix [3] Table 24 The sensitivity of sand to the different shear particle stiffness 

 

 

 

 

 

 

 

Normal Stiffness (N/m) 133.0*10
7
 133.0*10

7
 

Kn/Ks 1.0 0.5 

Coefficient friction 1.2 1.2 

E50 (P.Strain) (MPa) 478.0 417.0 

E50 (P.Stress) (MPa) 500.0 450.0 

v50  (P.Strain) 0.21 0.26 

v50  (P.Stress) 0.27 0.35 

σmax (kPa) 305.0 320.0 

ε11 at σmax 0.004 0.003 

θ(°) 30.4 31.6 

Appendix [3] Table 25 The sensitivity of sand to the different shear particle stiffness 
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Normal Stiffness (N/m) 150.0*10
7
 150.0*10

7
 

Kn/Ks 1.0 0.5 

Coefficient friction 0.5 0.5 

E50 (P.Strain) (MPa) 463.0 380.0 

E50 (P.Stress) (MPa) 494.0 420.0 

v50  (P.Strain) 0.25 0.3 

v50  (P.Stress) 0.33 0.42 

σmax (kPa) 213.0 220.0 

ε11 at σmax 0.01 0.002 

θ(°) 21.2 22.0 

Appendix [3] Table 26 The sensitivity of sand to the different shear particle stiffness 

 

 

 

 

 

Normal Stiffness (N/m) 150.0*10
7
 150.0*10

7
 

Kn/Ks 1.0 0.5 

Coefficient friction 0.9 0.9 

E50 (P.Strain) (MPa) 535.0 445.0 

E50 (P.Stress) (MPa) 563.0 480.0 

v50  (P.Strain) 0.22 0.26 

v50  (P.Stress) 0.28 0.36 

σmax (kPa) 286.0 280.0 

ε11 at σmax 0.003 0.003 

θ(°) 29.0 28.3 

Appendix [3] Table 27 The sensitivity of sand to the different shear particle stiffness 

 

 

 

 

 

 

 

Normal Stiffness (N/m) 150.0*10
7
 150.0*10

7
 

Kn/Ks 1.0 0.5 

Coefficient friction 1.2 1.2 

E50 (P.Strain) (MPa) 540.0 447.0 

E50 (P.Stress) (MPa) 570.0 480.0 

v50  (P.Strain) 0.22 0.27 

v50  (P.Stress) 0.28 0.37 

σmax (kPa) 325.0 330.0 

ε11 at σmax 0.003 0.003 

θ(°) 32.0 32.3 

Appendix [3] Table 28 The sensitivity of sand to the different shear particle stiffness 
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Normal Stiffness (N/m) 160.0*10
7
 160.0*10

7
 

Kn/Ks 1.0 0.5 

Coefficient friction 0.5 0.5 

E50 (P.Strain) (MPa) 476.0 440.0 

E50 (P.Stress) (MPa) 511.0 480.0 

v50  (P.Strain) 0.26 0.28 

v50  (P.Stress) 0.35 0.40 

σmax (kPa) 213.0 220.0 

ε11 at σmax 0.01 0.002 

θ(°) 21.2 22.0 

Appendix [3] Table 29 The sensitivity of sand to the different shear particle stiffness 

 

 

 

 

 

Normal Stiffness (N/m) 160.0*10
7
 160.0*10

7
 

Kn/Ks 1.0 0.5 

Coefficient friction 0.9 0.9 

E50 (P.Strain) (MPa) 564.0 500.0 

E50 (P.Stress) (MPa) 590.0 540.0 

v50  (P.Strain) 0.22 0.26 

v50  (P.Stress) 0.28 0.35 

σmax (kPa) 275.0 280.0 

ε11 at σmax 0.003 0.002 

θ(°) 28.0 28.2 

Appendix [3] Table 30 The sensitivity of sand to the different shear particle stiffness 

 

 

 

 

 

 

 

Normal Stiffness (N/m) 160.0*10
7
 160.0*10

7
 

Kn/Ks 1.0 0.5 

Coefficient friction 1.2 1.2 

E50 (P.Strain) (MPa) 590.0 516.0 

E50 (P.Stress) (MPa) 610.0 550.0 

v50  (P.Strain) 0.20 0.25 

v50  (P.Stress) 0.27 0.34 

σmax (kPa) 305.0 330.0 

ε11 at σmax 0.003 0.002 

θ(°) 30.4 32.3 

Appendix [3] Table 31 The sensitivity of sand to the different shear particle stiffness 
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Appendix [3] Figure 62 The sensitivity of sand to the different shear particle stiffness when 
inter-particle friction is 0.5- deviatoric stress vs. axial strain 

 

 

 

 

 

Appendix [3] Figure 63 The sensitivity of sand to the different shear particle stiffness when 
inter-particle friction is 0.9: deviatoric stress vs. axial strain 
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Appendix [3] Figure 64 The sensitivity of sand to the different shear particle stiffness when 
inter-particle friction is 1.2- deviatoric stress vs. axial strain 

 

 

 

 

 

Appendix [3] Figure 65 The sensitivity of sand to the different shear particle stiffness when 
inter-particle friction is 0.5- volumetric strain vs. axial strain 
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Appendix [3] Figure 66 The sensitivity of sand to the different shear particle stiffness when 
inter-particle friction is 0.9: volumetric strain vs. axial strain 

 

 

 

 

 

Appendix [3] Figure 67 The sensitivity of sand to the different shear particle stiffness when 
inter-particle friction is 1.2- volumetric strain vs. axial strain 
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Appendix [3] Figure 68 The sensitivity of sand to the different shear particle stiffness when 
inter-particle friction is 0.5- average coordination number vs. axial strain 

 

 

 

 

 

Appendix [3] Figure 69 The sensitivity of sand to the different shear particle stiffness when 
inter-particle friction is 0.9: average coordination number vs. axial strain 
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Appendix [3] Figure 70 The sensitivity of sand to the different shear particle stiffness when 
inter-particle friction is 1.2- average coordination number vs. axial strain 

 

 

 

 

 

 

 

Appendix [3] Figure 71 The sensitivity of sand to the different shear particle stiffness when 
inter-particle friction is 0.5- average symmetric geometric deviation index vs. axial strain 
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Appendix [3] Figure 72 The sensitivity of sand to the different shear particle stiffness when 
inter-particle friction is 0.9: average symmetric geometric deviation index vs. axial strain 

 

 

 

 

Appendix [3] Figure 73 The sensitivity of sand to the different shear particle stiffness when 
inter-particle friction is 1.2- average symmetric geometric deviation index vs. axial strain 
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Shear Stiffness (N/m) 8.4510
7 

8.4510
7 

Normal Stiffness (N/m) 

Boundary Condition Rigid wall 
Deformable 
boundary  

Particle coefficient 
friction 

0.9 0.9 

E50 (P.Stress) (MPa) 36.0 33.0 

E50 (P.Strain) (MPa) 35.0 32.0 

v (P.Stress) 0.22 0.23 

v (P.Strain) 0.18 0.19 

σmax (kPa) 260.0 240.0 

ε11 at σmax 0.01 0.01 

θ(°) 26.7 24.3 

Initial porosity 0.12 0.12 

Appendix [3] Table 32 The macro-mechanical responses of sand: different boundary 
condition 

 

 

 

 

 

 

 

 

 

 

 

 

 

Confining pressure (kPa) 100 200 300 

Shear Stiffness (N/m) 8.45*10
7
 

8.45*10
7
 

8.45*10
7
 

Normal Stiffness (N/m) 8.45*10
7
 

8.45*10
7
 

8.45*10
7
 

Particle coefficient friction 0.9 0.9 0.9 

E50 (P.Stress) (MPa) 36.0 37.0 38.0 

E50 (P.Strain) (MPa) 35.0 36.0 39.0 

v (P.Stress) 0.22 0.20 0.18 

v (P.Strain) 0.18 0.17 0.15 

σmax (kPa) 260.0 530.0 820.0 

ε11 at σmax 0.01 0.01 0.01 

θ(°) 26.6 26.9 27.6 

Appendix [3] Table 33 The macro-mechanical responses of sand: different confinging 
pressures 
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