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Chapter 1

Introduction

First conjectured in the late 1950s, the Taniyama-Shimura Conjecture (now
the Modularity Theorem) posited a connection between rational elliptic curves
and classical modular forms. The combined efforts of Breuil, Conrad, Diamond,
Taylor and Wiles at the turn of the 21st century confirmed this connection, by
proving that the Galois representation attached to a rational elliptic curve is
equivalent to a representation attached to a rational weight 2 Hecke eigenform.

Viewed within the framework of the Langlands program, this is one of many
conjectured results linking Galois representations to automorphic forms and
representations of reductive algebraic groups, and as such readily lends itself to
generalisation. Indeed, it is well-known that classical modular forms correspond
to automorphic forms for GL2(Q) (exploiting the fact that the complex upper
half-plane h is the globally symmetric space for the Q-group GL2) and so, even
restricting our attention to general linear groups, there are two clear paths to
choose from: we can change the dimension, or we can change the base field.

Both approaches have their merits, but, in keeping with the spirit of the
Taniyama-Shimura Conjecture, the focus of this thesis is the latter case, which
allows one to consider the modularity of elliptic curves defined over a number
field. The question of modularity has already been extensively studied for both
totally real and imaginary quadratic fields. In the former case, work by Kisin
and Taylor shows that all elliptic curves over totally real fields are potentially
modular, in the sense that any such curve becomes modular over some totally
real field extension (and it has recently been shown by Freitas, Hung and Siksek
that any elliptic curve defined over a real quadratic field is truly modular).
Modular forms over imaginary quadratic fields have been studied in great depth
computationally, with a substantial body of work produced by Cremona and a
number of his students.
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2 CHAPTER 1. INTRODUCTION

As such, we consider perhaps the next logical case: that of a quartic CM
field (a totally imaginary quartic field which is a quadratic extension of a real
quadratic field). This is inspired by a recent result due to C.P. Mok, which
shows how one can attach Galois representations to automorphic forms defined
over such fields (two recent papers; one by Harris, Lan, Taylor and Thorne, and
another by Scholze, study this question in greater generality, but Mok’s result
suffices for forms that we expect to correspond to elliptic curves). The represen-
tations are in fact attached to classes in the group cohomology H∗(Γ,C), where
Γ is an arithmetic subgroup of the Q-group G = ResF/Q(GL2) (here F denotes
our CM field). By a generalization of the Eichler-Shimura isomorphism, it is
known that certain automorphic forms for G can be realized as such cohomology
classes, and moreover that the Hecke action translates to this new setting.

The Galois representations thus obtained satisfy certain local-to-global com-
patibility conditions. Indeed, let ρ : Gal(F/F ) → GL2(Q`) denote the repre-
sentation attached to the automorphic representation π = ⊗vπv, where v runs
through the places of F . Then, for each finite place v at which πv is unramified,
the representation ρv obtained by restriction to the local absolute Galois group
Gal(F v/Fv), and the local component πv are connected as described by the local
Langlands correspondence for GL2. In particular, the characteristic polynomial
of ρ on a Frobenius element at such places is described by the Langlands class
of πv, which can be determined through knowledge of the Hecke action on those
vectors which are fixed by certain compact subgroups of G(A) under the action
of π.

We therefore follow in the footsteps of Cremona et al by working with auto-
morphic forms computationally, in a setting that allows us to compute the Hecke
action. As is standard in the field, rather than work with the forms directly,
we exploit the connection between automorphic forms and group cohomology,
which is more amenable to computation. Given an arithmetic subgroup Γ of the
Q-group G, we identify H∗(Γ,C) with the cohomology of the locally symmetric
space XΓ := Γ\G(R)/A0

G(R)K∞, where K∞ denotes a maximal compact sub-
group of G(R), and A0

G(R) the split component lying in the centre of G (these
are the analogues of the modular curves of classical theory).

The globally symmetric space X := G(R)/A0
G(R)K∞ can be identified with

the space of binary Hermitian forms over our field F . Work by Voronöı, which
was later generalized by Koecher, shows that such spaces admit a decomposition
into convex polytopes which is stable under the action of any arithmetic sub-
group of G, and that, moreover, there are only finitely many equivalence classes
of polytopes under this Γ-action. We can therefore compute the cohomology
of XΓ by working with a finite polytopic cell complex, known as the Koecher
complex.
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To compute the Hecke action, however, we need a new approach. While
the spaces XΓ are acted on by Hecke operators, the cells in the corresponding
complex are not preserved, making computation impossible. We therefore fol-
low the approach of Gunnells in his paper [Gun99], which is expanded upon
in the papers [AGM02], [GY08], [GHY13] and [GY13], by looking at a
larger combinatorial cell complex S , known as the sharbly complex, whose Γ-
equivariant homology is known to compute the group cohomology H∗(Γ,C), and
which also admits a Hecke action. In these papers, the authors describe how
one can construct a finite subcomplex of S using cells of the Koecher complex,
which moreover computes the homology of the whole complex.

The Hecke action on S does not preserve this subcomplex, but the au-
thors describe a theoretical algorithm which, given a homology class in HΓ

∗ (S ),
produces an equivalent class whose support lies wholly in this subcomplex. In
particular, they show how to implement this algorithm practically for certain
number fields, including a quartic CM field, giving us a means for computing
the Hecke action for such fields.

The paper [GHY13] describes this procedure for the quartic CM field Q(ζ5),
where ζ5 denotes a fifth root of unity. In particular, they consider arithmetic
subgroups of the form Γ0(n) comprising matrices whose lower left entry vanishes
modulo some ideal n, and compute the action of several Hecke operators on such
forms for a large range of levels n. I transfer this approach to three different
quartic CM fields of small discriminant (the fields Q(ζ8) and Q(ζ12) of eighth
and twelfth roots of unity, and the field generated by the roots of the quartic
polynomial x4−x3+2x2+x+1), finding examples of rational Hecke eigenclasses,
and computing the Hecke action on them, using my own adaptation of the
authors’ algorithm in MAGMA. I also study the symmetric spaces X for such
fields, identifying certain phenomena which were not apparent in [GHY13],
as well as providing data for the polytopic decomposition of Koecher for such
spaces.

Having computed the action of the Hecke operators on the group cohomology
H∗(Γ0(n),C), Gunnells et al seek to pair the corresponding eigenclasses with
elliptic curves over the field F . In my analysis I do the same, but seek to go one
step further and prove the Galois representation attached to an elliptic curve is
equivalent to that of the corresponding automorphic form.

To prove equivalence of the two Galois representations, I adapt an idea pre-
sented in [DGP10], in which the authors use the Faltings-Serre-Livnè method
to prove modularity of elliptic curves over imaginary quadratic fields. I show
that these methods extend to CM fields, using the Galois representations estab-
lished by Mok’s result. I have implemented my own version of the algorithm
described in [DGP10] using PARI, which, given an elliptic curve, provides a
finite list of primes of the quartic field F . If [φ] is a Hecke eigenclass whose
eigenvalues equate to the local data of our chosen elliptic curve at each such
prime, then the associated Galois representations are provably equivalent.
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Using this algorithm, it is possible to prove modularity of all but one of the
elliptic curves over F that have appeared during my previous analysis. For each
such curve, I compute the required Hecke eigenvalues and establish modularity
of the curves. In practice, the number of Hecke eigenvalues to compute varies
depending on the residual image of the 2-adic Galois representations - if the
residual image is degenerate, a significant number of eigenvalues must be com-
puted - and so I also discuss some of the practical issues which arise during the
course of our computations.



Chapter 2

Classical Theory

We begin with a discussion of the classical theory behind the Modularity
Theorem for rational elliptic curves, which lays the groundwork for our study.

In Section 2.1, we discuss classical modular forms, and discuss some of their
properties. This is followed by a discussion of the action of Hecke operators on
spaces of modular forms in Section 2.2. Such Hecke actions will be a recurring
theme throughout our discussion, as one can define these actions on a variety
of objects, several of which we shall see in time.

Section 2.3 discusses rational elliptic curves, and gives the simplest state-
ment of modularity - an equivalence between the local data of an elliptic curve
and the eigenvalues of a certain cusp form under the action of the Hecke opera-
tors. Section 2.4 follows this up with a second statement of modularity, which
states a correspondence between representations of the absolute Galois group of
the rationals attached to both elliptic curves and modular forms.

In Section 2.5, we discuss L-functions, which are complex analytic func-
tions that we can attach to a variety of objects. In particular, we can attach
them to elliptic curves, modular forms and Galois representations, and can once
again rephrase modularity in terms of equality of the corresponding L-functions.
Finally, in Section 2.6 we provide an alternative realization of modular forms
as certain cohomology classes, an idea which will be exploited later in our study.

5



6 CHAPTER 2. CLASSICAL THEORY

2.1 Classical Modular Forms

Modular forms can loosely be described as complex-valued functions which
satisfy a number of functional equations, derived from an action of a finite-index
subgroup of the modular group SL(Z). More precisely, for a positive integer N ,
define the group

Γ0(N) =

{(
a b
c d

)
∈ SL(Z), c ≡ 0 (mod N)

}
(we call Γ0(N) a congruence subgroup of level N). Fix a positive integer k, let
f : h→ C be holomorphic (where h denotes the complex upper half-plane), and
let γ ∈ SL2(Z). We denote by f |γ the function

f |γ(z) = (cz + d)−kf(γz),

where γ =
(
a b
c d

)
and SL2(Z) acts on h via fractional linear transformations. For

future reference, we note that the action of SL2(Z) on h extends naturally to an
action of the group GL+

2 (R) of 2 × 2 real matrices with positive determinant,
and that we can similarly define the function f |γ for γ ∈ GL+

2 (R) by

f |γ(z) = det(γ)
k
2 (cz + d)−kf(γz).

We define a modular form of weight k and level N to be a function f as
above which satisfies the functional equation

f |γ = f for all γ ∈ Γ0(N),

and which is holomorphic at the cusps of h.

We explain this last notion by considering the open and closed modular
curves Y0(N) = Γ0(N)\h and X0(N) = Γ0(N)\h∗, where we obtain h∗ by ad-
joining the cusps P1(Q) to h. These are Riemann surfaces, and any holomorphic
function f : h → C extends to a meromorphic function in the local coordinate
systems around each cusp. If in fact f extends to a holomorphic function at
every cusp, then we say that f is holomorphic at the cusps. If, moreover, f
vanishes at every cusp, we call f a cusp form.

We denote byMk(N) and Sk(N) the spaces of modular (respectively cusp)
forms of weight k and level N . As the name suggests, these are complex vector
spaces, and are in fact finite-dimensional.

We will later want to consider modular forms that are twisted by the action
of some character. To this end, let ψ denote a Dirichlet character modulo N ,
and denote by Mk(N,ψ) and Sk(N,ψ) the spaces of functions satisfying the
functional equations

f |γ = ψ(d)f
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for all γ =
(
a b
c d

)
∈ Γ0(N), and which possess all the other properties required

of modular forms and cusp forms respectively.

One can define an inner-product on the space of cusp forms, the Petersson
inner product

〈 , 〉 : Sk(N)× Sk(N)→ C.

While this does not extend to a functionMk(N)×Mk(N)→ C, it does extend
partially to allow us to take the inner product of a cusp form with an arbitrary
modular form. Under this understanding, the space of modular forms admits a
decomposition

Mk(N) = Eisk(N)⊕ Sk(N),

where the space Eisk(N) of Eisenstein series is the “orthogonal complement”
of Sk(N) in Mk(N).

Note that not all cusp forms of level N are unique to that level. In particular,
if M is a divisor of N , then (since Γ0(N) ⊆ Γ0(M)), it is clear that any cusp
form of level M is also a cusp form of level N . In addition, if d is a divisor of
N
M , we can raise the level of an element f of Sk(M) by considering the function
g defined by

g(z) = dk−1f(dz).

We define the space of newforms, Sk(N)new to be the orthogonal complement
in Sk(N) under the Petersson inner product of the space of forms arising from
lower levels in this manner.
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2.2 Hecke Operators

A common idea throughout our study of modular forms (and their gener-
alizations) is that of a Hecke correspondence. In the classical situation, such
correspondences are manifested through certain operators on spaces of modular
forms, which we refer to as Hecke operators. Since these correspondences are
central to our study, we shall spend some time discussing them now.

Let Γ denote a subgroup of SL2(Z) of finite index (typically we shall consider
the congruence subgroup Γ0(N)) and let g ∈ GL+

2 (R) satisfy the condition that
the subgroups Γ1 := Γ∩g−1Γg and Γ2 := Γ∩gΓg−1 have finite index in Γ. One
can relate the groups Γ, Γ1 and Γ2 by the following diagram:

Γ1

ι1

��

αg
// Γ2

ι2

��

Γ Γ

where ιi denotes the inclusion Γi ↪→ Γ, and αg is the homomorphism

Γ1 → Γ2, γ 7→ gγg−1.

Then, denoting by X(Γ) the modular curve Γ\h, one can define relations
between the modular curves associated to the above groups by the diagram:

X(Γ1)

π1

��

α̃g
// X(Γ2)

π2

��

X(Γ) X(Γ)

where πi denotes the projection map from X(Γi) to X(Γ) and α̃g the diffeomor-
phism from X(Γ1) to X(Γ2) induced by the map αg, sending the orbit Γ1x to
the orbit Γ2gx.

The composition π2 ◦ α̃g ◦ π−1
1 is our Hecke correspondence. This can be

thought of as a multi-valued function on X(Γ), and we can in fact provide an
explicit description of this function. First, given a set {γi} of coset representa-
tives for the space Γ1\Γ, an orbit Γx is mapped to the set of preimages {Γ1γix}
via π−1

1 . This is subsequently mapped to the set {Γ2gγix} via α̃g, which is
finally sent to the set {Γgγix} via the projection π2.



2.2. HECKE OPERATORS 9

For calculation purposes, we make note of the following fact (see, for exam-
ple, [DS05], Lemma 5.1.2):

Lemma 2.2.1. There is a natural bijection between the coset space Γ1\Γ and
the orbit space Γ\ΓgΓ induced by left multiplication:

Γ 7→ ΓgΓ, γ 7→ gγ.

In particular, {γi} is a set of coset representatives for Γ1\Γ if, and only if, {gγi}
is a set of orbit representatives for ΓgΓ.

Thus the Hecke correspondence can be viewed as a multi-valued function

Γx 7→ {Γgix},

where {gi} is a set of representatives of the orbit space Γ\ΓgΓ (one can easily
check that this function is well-defined).

Our interest in Hecke correspondences lies in the fact that such correspon-
dences give rise to operators on spaces of modular forms, which we refer to as
Hecke operators. In particular, suppose we set Γ = Γ0(N) and, for a prime p not
dividing N , we set g =

(
1 0
0 p

)
. Then, from the resulting Hecke correspondence,

we obtain a Hecke operator, which we denote by Tp, which acts on the spaces
Mk(N) and Sk(N) via:

Tp(f) =

p+1∑
i=1

f |gi ,

where f |gi is as defined in the previous section, and

Γ0(N)
(

1 0
0 p

)
Γ0(N) =

p+1∐
i=1

Γ0(N)gi.

One can check that the operators Tp and Tq commute for distinct primes p and
q. A standard choice of representatives gi is given by the set{(

1 0
0 p

)
,
(

1 1
0 p

)
, . . . ,

( 1 p−1
0 p

)
,
(
p 0
0 1

)}
.

Recall from the previous section that we have a decomposition

Mk(N) = Eisk(N)⊕ Sk(N).

Since the Hecke operator Tp preserves bothMk(N) and Sk(N), it also preserves
the space Eisk(N) of Eisenstein series. In fact, one can show (see, for example,
[DS05], Proposition 5.2.3) that there exists a basis of Eisenstein series, each
of which is a simultaneous eigenform for the operators Tp.
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Eisenstein series are not the only eigenforms for the Hecke operators. Indeed,
it is known (see, for example, [DS05], Theorem 5.8.2) that one can exhibit a
basis of the space Sk(N) of newforms of level N which consists entirely of cusp
forms that are simultaneous eigenforms for the Hecke operators Tp, with p not
dividing N . Given such an eigenform f , we write ap(f) for the eigenvalue of f
with respect to the operator Tp.
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2.3 Elliptic Curves and Modularity

Modular forms play a key role in Wiles’ proof of Fermat’s Last Theorem,
and as such they (and their more recent generalizations) are of great interest to
modern-day number theorists. Their importance lies in the Taniyama-Shimura
conjecture (now often referred to as the Modularity Theorem), which states that
all rational elliptic curves are modular (which we shall expand upon soon, but
for now it suffices to understand that modularity implies some connection to
modular forms). The idea behind the proof of Fermat’s Last Theorem is that a
non-trivial solution to the Fermat equation

an + bn = cn, a, b, c ∈ Z, n ≥ 3

can be used to construct an elliptic curve which is not modular, and the Mod-
ularity Theorem then tells us that no such solution can exist.

We shall now expand on some of these concepts, beginning with the notion
of an elliptic curve. The standard definition is that an elliptic curve E is a non-
singular projective algebraic curve of genus one, together with a distinguised
point OE , often referred to as the point at infinity. For our purposes, it is
enough to think of an elliptic curve defined over the rationals to be the set of
solutions (over an algebraic closure Q of the rationals) of a Weierstrass equation,

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, ai ∈ Q,

together with the point at infinity OE . The requirement that E be non-singular
simply means that the curve has a well-defined tangent at each point.

Elliptic curves are interesting objects in their own right; for example, one
can define an abelian group structure on the set of points on an elliptic curve,
in which the point at infinity becomes the identity element. Since our interest is
to establish a link between such curves and modular forms, we shall concentrate
on the properties that are directly related to the topic at hand.

We say that two elliptic curves E1 and E2 are isogenous if there exists a
surjective rational map ϕ : E1 → E2 such that ϕ(OE1) = ϕ(OE2), and which
preserves the group structure on the curves. Such a map necessarily has finite
kernel, and if an isogeny with trivial kernel exists between E1 and E2 then we
say that they are isomorphic. It is known that every elliptic curve over the
rationals is isomorphic to one defined by a Weierstrass equation of the above
form, all of whose coefficients are integral. Moreover, each isomorphism class
of curves contains an integral Weierstrass model whose discriminant is minimal
among all such models (see, for example, [Sil09], Corollary 8.3); henceforth,
we shall assume without loss of generality that any rational elliptic curve is
defined by such an equation.
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Given a prime p, it makes sense to define the reduction of the curve E at
p – it is simply the set of solutions over the finite field Fp to the Weierstrass
equation obtained by reducing the coefficients ai modulo p (together with the
point at infinity). For all but finitely many primes p, this reduction in fact
defines an elliptic curve over the field Fp, and we say that E has good reduction
at p. At all other primes, we say that E has bad reduction.

In the same way that we have Hecke eigenvalues ap associated to a cuspidal
newform f for primes p away from the level N of f , one can attach local data
to a given elliptic curve at all but finitely many primes. Given an elliptic curve
E, one can define an integer NE , the conductor of E, which is divisible only by
those primes at which E has bad reduction. At all primes not dividing NE , we
let |Ẽ(Fp)| denote the number of points on the reduced curve Ẽ at p. We may
then define

ap = ap(E) = p+ 1− |Ẽ(Fp)|.

The Modularity Theorem, in its most basic form, then states (see, for ex-
ample, [DS05], Theorem 8.8.1):

Theorem 2.3.1. Let E be an elliptic curve defined over the rationals, with
conductor N . Then there exists a cuspidal newform of weight 2 and level N ,
which is an eigenform for the Hecke operators Tp such that, for every prime p
not dividing N , we have

ap(f) = ap(E).

Thus we can understand modularity, in a sense, to denote an equivalence
between local data attached to elliptic curves and that attached to modular
forms. To extend this idea to more general settings, we will need to consider
some of the underlying machinery, which we will do in the next section.
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2.4 Galois Representations

A key tool when studying modularity is the concept of a Galois representa-
tion, that is, a representation of the absolute Galois group GQ = Gal(Q/Q) of
the rationals. It turns out that one can define Galois representations attached
to both elliptic curves and modular forms, which encapsulate the local data ap
associated to each of these objects at all but finitely many primes. The Mod-
ularity Theorem can then be rephrased as an equivalence between these Galois
representations, from which our statement in the previous section follows as an
immediate consequence.

We now discuss these ideas in more detail. Given a prime `, an `-adic Galois
representation is a continuous representation

ρ : GQ → GLn(Q`),

for some n ∈ N (for our discussion, we shall consider only the case n = 2).
Equivalently, we have a Q`-vector space V which is also a GQ-module, for which
the action of GQ is continuous. We say that ρ is irreducible if V contains no
proper GQ-submodules, else we say it is reducible.

Since we require our representations to be continuous, it makes sense to
briefly describe the topologies we are using: the group GQ, defined to be the
profinite limit

GQ = lim←−
F/Q Galois

Gal(F/Q),

is given the Krull topology, in which a neighbourhood basis of the identity is
given by the subgroups Gal(F/K), where F/K is a finite Galois extension.
On the other hand, the topology on GL2(Q`) is derived from the usual `-adic
topology.

As stated previously, we are interested in local data. To this end, we will
define a family of elements of the absolute Galois group GQ, indexed by the
rational primes. Given a prime p, let p denote a maximal ideal of the integral
closure Z which contains p. We can then define a reduction map

Z→ Z/p ' Fp.

Define the decomposition group at p to be

Dp = {σ ∈ GQ, σ(p) = p},

so that elements of Dp can be viewed (under the above reduction map) as
elements of the absolute Galois group GFp = Gal(Fp/Fp). The latter group is

isomorphic to the profinite group Z, and is known to be generated topologically
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by the geometric Frobenius element. This is defined to be the inverse of the
arithmetic Frobenius element, which is the standard automorphism

σp : Fp → Fp, x 7→ xp.

It can be shown that the elements of Dp cover the group GFp , and thus in partic-
ular the absolute Galois group contains a preimage of the geometric Frobenius;
we call any such preimage a Frobenius element at p, and denote it by Frobp.

As it stands, Frobenius elements are not well-defined: for each choice of
maximal ideal p above p, Frobp is defined only up to the inertia group, which is
defined to be the kernel

Ip = ker(Dp → GFp).

We can sidestep this irregularity by restricting our attention to primes p at
which our Galois representation ρ is unramified, meaning that the inertia group
Ip lies in the kernel of ρ.

This still leaves one slight problem, as our definition of Frobenius elements
remains dependent on our choice of maximal ideal p above p. However, for the
objects we are interested in, this difficulty will not prove insurmountable. It
is not too difficult to see that any two maximal ideals p and p′ above p are
related by an element of GQ, and that the resulting decomposition groups must
be conjugate in GQ. Thus the idea of ramification is independent of our choice
of ideal, and the Frobenius elements at p form a well-defined conjugacy class
in GQ. We shall mostly be interested in conjugation-invariant properties of our
representation ρ (in particular, the trace), and so it is enough to choose an
arbitrary representative of this class to be the Frobenius element at p.

It is known that the Frobenius elements Frobp, as we range over all rational
primes p, are dense in the absolute Galois group GQ. We shall therefore usually
restrict our attention to evaluating our Galois representation ρ at Frobenius
elements. In particular, it will turn out that the local data we are interested
in can be found by evaluating the trace of our representations at Frobenius
elements.

Before discussing the Galois representations associated to elliptic curves and
modular forms, we would like to know how to compare two representations.
Fortunately, there is a simple notion of isomorphism between Galois represen-
tations: we say that ρ1 and ρ2 are isomorphic (denoted ρ1 ' ρ2) if there exists
some element g ∈ GL2(Q`) such that

ρ2(σ) = g ρ1(σ) g−1

for all σ ∈ GQ.

Now, given an elliptic curve E defined over the rationals, how can we define
an `-adic Galois representation ρE,` associated to it? It turns out that the group
structure defined on E is key here, as we will wish to consider the `-torsion of
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E. More precisely, for any positive integer r, define the `r-torsion points of E
to be the subgroup

E[`r] = {P ∈ E(Q), `rP = OE}.

This is known to be an abelian group, isomorphic to (Z/`rZ)2. We define the
`-adic Tate module T`(E) of E to be the profinite limit

Ta`(E) = lim←−
r

E[`r].

By fixing appropriate bases for each of the torsion groups E[`r], we obtain an
isomorphism

Ta`(E) ' Z2
` ,

and similarly an isomorphism

Aut(Ta`(E)) ' GL2(Z`).

We now bring the absolute Galois group into play. The coordinates of the `r

torsion points are known to be algebraic integers, and so, defining Q(E[`r]) to
be the number field generated by these coordinates, we obtain an action of GQ
on Q(E[`r]) for each r, which induces an automorphism of the torsion subgroup
E[`r]. These actions are compatible with the Tate module structure, and thus
we can define a homomorphism

ρE,` : GQ → GL2(Z`)

for each prime `. In fact, we have the following result (see, for example,
[Wie08], Theorem 1.3.3):

Theorem 2.4.1. Let E be a rational elliptic curve of conductor N , and let `
be prime. Then there exists an irreducible Galois representation

ρE,` : GQ → GL2(Q`)

which is unramified at all primes p not dividing `N . For each such prime, the
characteristic polynomial of ρE,`(Frobp) is

X2 − ap(E)X + p.

Moreover, the determinant of ρE,` is the `-adic cyclotomic character of Q.

We briefly recall that the `-adic cyclotomic character of Q is the one-dimensional
Galois representation χ` defined by

σ(ζ) = ζχ`(σ)

for all `-power roots of unity ζ ∈ Q. It is unramified at all primes apart from `.
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And what of modular forms? Although more complicated to define com-
pletely, the representation one attaches to a modular form turns out to bear
similarities to that for an elliptic curve, in that one defines a Tate module
related to modular curve X0(N), and a GQ-action on this module. Given a
cuspidal newform f of level N and weight 2, which is an eigenform for the
Hecke operators Tp, one can also define a Tate module Ta`(f) for f , and the
aforementioned GQ-action will descend to an action on Ta`(f).

We now flesh out this idea (for a more detailed exposition, see [DS05],
Chapter 9.5). For each N , define the divisor group Div(X0(N)) to be the
group of formal finite Z-linear combinations of points on X0(N),

Div(X0(N)) =
{∑

nP · P, nP ∈ Z, P ∈ X0(N)
}
.

We say a divisor is principal if it is of the form

D =
∑

nP · P − nQ ·Q,

where P and Q denote the zeros and poles respectively of some meromorphic
function on the Riemann surface X0(N), and nP and nQ denote their multi-
plicities. We define the Picard group Pic0(X0(N)) to be the quotient{

D ∈ Div(X0(N));
∑

nP = 0
}
/ {D ∈ Div(X0(N)), D is principal} .

It is known that the Picard group is isomorphic to the Jacobian Jac(X0(N))
of X0(N), which can be thought of as a means of measuring the behaviour of
complex linear maps from the space of holomorphic differentials on the mod-
ular curve. Since an in-depth discussion of the Jacobian is superfluous to our
purposes, we shall simply make note of the fact that it has the structure of a g-
dimensional complex torus, where g is the genus of the Riemann surface X0(N).
With this in mind, it is clear that, given a prime ` and a positive integer r, we
have an isomorphism of `r-torsion

Pic0(X0(N))[`r] ' (Z/`rZ)2g.

We can therefore define the `-adic Tate module of X0(N),

Ta`(Pic0(X0(N))) = lim←−
r

Pic0(X0(N))[`r].

Similarly to the case of elliptic curves, choosing compatible bases for these
torsion groups leads to an isomorphism

Ta`(Pic0(X0(N))) ' Z2g
` .

Now, it turns out that the modular curve X0(N) can be defined algebraically,
as can any function defined upon it. As a result, we obtain an action of GQ
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on the divisor group, which descends to an action on the Picard group. The
fields generated by the torsion groups Pic0(X0(N))[`r] are seen to be Galois
extensions of the rationals, and thus are also acted on by GQ, and moreover this
action is compatible with the structure of the Tate module. We can therefore
define a homomorphism

ρX0(N) : GQ → Aut(Ta`(Pic0(X0(N)))) ' GL2g(Z`).

This is not yet the representation we seek, however, as there has been no
mention of a specific modular form. It is now that the restriction of our at-
tention to cusp forms which are eigenforms for the Hecke operators comes into
play. Define the Hecke algebra TZ to be the Z-algebra generated by the Hecke
operators Tp. Then it is possible to define an action of TZ on the Picard group
Pic0(X0(N)), which restricts to `-power torsion, and thus extends to an ac-
tion on the Tate module Ta`(X0(N)). Moreover, this action can be defined
algebraically, and so commutes with the GQ-action on the Tate module.

We now fix a weight 2 cuspidal Hecke eigenform f of level N , and let If
denote the ideal in TZ given by

If = {T ∈ TZ, T f = 0}.

The action of TZ on the Picard group descends to an action on the Jacobian
Jac(X0(N)), and we can define an abelian variety

Af = Jac(X0(N))/IfJac(X0(N)).

Let Qf denote the number field generated by the Hecke eigenvalues ap(f),
and let d denote its degree over the rationals. In an analogous manner to the
case of elliptic curves, one can define an `-adic Tate module

Ta`(Af ) = lim←−
r

Af [`r] ' Z2d
` ,

and we have a natural action of GQ on this module. Tying this together, we
obtain the following result:

Theorem 2.4.2. Let f ∈ S2(Γ0(N)) be an eigenform for the Hecke operators
Tp, and let Qf denote the number field generated by its Hecke eigenvalues. Then,
given a prime ` and a maximal ideal λ of the ring of integers OQf lying above
`, we have a 2-dimensional irreducible `-adic Galois representation

ρf,` : GQ → GL2(Qf,λ),

which is unramified at all primes p not dividing `N . For each such prime, the
characteristic polynomial of ρf,`(Frobp) is

X2 − ap(f)X + p.
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Since the characteristic polynomial is conjugation-invariant, it is indepen-
dent of our choice of Frobenius element at each unramified prime, and is pre-
served under isomorphism of Galois representations. We may therefore rephrase
the statement of the Modularity Theorem, resulting in:

Theorem 2.4.3. Let E be a rational elliptic curve, with conductor N . Then
there exists an eigenform f ∈ S2(Γ0(N)) for the Hecke operators Tp with number
field Qf ' Q such that

ρf,` ' ρE,`
for all primes `.

Since this implies equality of the characteristic polynomials at the Frobenius
elements Frobp, Theorem 2.3.1 follows immediately.
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2.5 L-functions

With a view to what we shall consider in the next chapter, we shall touch
upon another important concept in modern number theory: that of an L-
function. These are meromorphic functions defined on the complex plane, which
can be attached to a variety of mathematical objects.

L-functions arise by means of analytically continuing an L-series, which is
an infinite series that converges absolutely on some complex half-plane, defining
a function there. The most common example of an L-series is that of a Dirichlet
L-series, which are constructed using Dirichlet characters. Specifically, let χ :
(Z/NZ)× → C× be a Dirichlet character for some N , and extend it to a function
on the integers by composition with the reduction map modulo N . Then we
define the Dirichlet L-series

L(s, χ) =

∞∑
n=1

χ(n)

ns
.

Here s denotes a complex variable, and L(s, χ) converges absolutely for Re[s] > 1.

Since Dirichlet characters are multiplicative, and the L-series converges ab-
solutely, we have a decomposition of L(s, χ) into a product of local factors
Lp(s, χ), where

Lp(s, χ) =

{
(1− χ(p)p−s)−1; if p - N,

1; if p|N

for Re[s] > 1, which we call the Euler product expansion of L(s, χ).

The Riemann zeta function is a well-known example of a Dirichlet L-function,
obtained by taking the trivial character with N = 1. The resulting L-series is
given by

ζ(s) =

∞∑
n=1

1

ns

for Re[s] > 1, which can be shown to extend to a meromorphic function on the
whole of C, with a simple pole located at the point s = 1. Study of the Riemann
zeta function has important applications to number theory, most notably with
regards to the distribution of primes.

We shall proceed by discussing L-series attached to our three main objects
of interest, namely modular forms, elliptic curves, and Galois representations.
Over Q, each of these is known to extend to a true L-function, but this need
not be true for general number fields, and so we shall restrict our attention to
the Euler product form of these L-series, which is a concept that will readily
generalize to other settings.
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To begin with, then, let f ∈ Sk(N,χ) be a cusp form. Then we can define
an L-series L(s, f) attached to f , which converges absolutely for Re[s] > k

2 + 1,
by means of an Euler product, whose local factors Lp(s, f) are given by

Lp(s, f) = (1− app−s + χ(p)pk−1−2s)−1

at each prime not dividing N . Here ap denotes the eigenvalue of f under the
action of the Hecke operator Tp. One can also define local factors at the finitely
many primes which divide N , but we shall not do so here.

Similarly, to an elliptic curve E defined over Q we attach an L-series L(s, E),
which converges absolutely for Re[s] > 3

2 , by means of an Euler product with
local factors Lp(s, E) given by

Lp(s, E) = (1− app−s + p1−2s)−1

for each prime at which E has good reduction. In this case ap denotes the
quantity ap(E) defined previously. We note that this resembles the L-series
attached to a cusp form of weight 2 and trivial character.

Finally, let ρ : GQ → GLn(Q`) be an `-adic Galois representation. Then
one can attach an Artin L-series L(s, ρ) to ρ which converges absolutely for
Re[s] > 1. The local factors Lp(s, ρ) in the Euler product expansion are given
by

Lp(s, ρ) = det(1− ρ(Frobp)p
−s)−1

at all but finitely many primes.

One can easily check that the L-series attached to modular forms and elliptic
curves are equivalent to the Artin L-series attached to their respective Galois
representations, and thus the Modularity Theorem can be rephrased in terms
of an equivalence of L-functions. We shall return to this topic later, when we
discuss generalizations of modularity within the framework of the Langlands
programme, in which L-functions play a key role.
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2.6 The Eichler-Shimura Isomorphism

In practice, one often wishes to determine which modular form f corre-
sponds to a given elliptic curve E. As a result, we are interested in methods of
determining the Hecke eigenvalues ap(f), and then comparing these to the local
data ap(E). This idea will prove to have great significance when we move to
non-classical modular forms defined over number fields, where we do not know
whether all elliptic curves are modular, but where there exist techniques to prove
isomorphism of Galois representations given the characteristic polynomials of
Frobenius elements at a finite set of primes.

A result which shall motivate our methods is the Eichler-Shimura isomor-
phism, which states that modular forms can be viewed as certain classes in the
cohomology of the congruence subgroup Γ0(N). More importantly, it turns out
that the action of Hecke operators on modular forms can be realized in this new
setting, so that the arithmetic data we seek is preserved. Since the topological
setting lends itself more amenably to computational methods, it provides us
with an easier pathway to identifying Galois representations.

We begin with some basic notions from group cohomology. Given a group G
and a G-module M , we define the first cohomology group of G with coefficients
in M H1(G;M) to be the quotient of the group of “twisted homomorphisms”,
or cocycles

{f : G→M,f(g1g2) = g1 · f(g2) + f(g1)},

modulo the subgroup of coboundaries, which are cocycles that take the form

f(g) = g(m)−m, g ∈ G,

for some m ∈M .

We apply this to the group Γ0(N). For our purposes, we will restrict our
attention to cohomology with coefficients in C, on which Γ0(N) acts trivially.
From the definition we observe that H1(Γ0(N),C) is simply the group of homo-
morphisms Hom(Γ0(N),C) from Γ0(N) to the additive group C. Now, for any
cusp s ∈ P1(Q), let Γs denote the stabilizer of s in Γ0(N). By definition, we
have a map of cohomology groups

H1(Γ0(N),C)→ H1(Γs,C)

obtained by restriction. We therefore obtain a map

P : H1(Γ0(N),C)→
⊕

s∈P1(Q)

H1(Γs,C),

and we define the parabolic cohomology of Γ0(N), H1
P(Γ0(N),C), to be the

kernel of this map (in other words, the elements of Hom(Γ0(N),C) which vanish
on the stabilizers of cusps).
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We are now in a position to state the Eichler-Shimura isomorphism:

Theorem 2.6.1. We have isomorphisms

Eis2(N)⊕ S2(N)⊕ S2(N) ' H1(Γ0(N),C),

S2(N)⊕ S2(N) ' H1
P(Γ0(N),C),

where
S2(N) := {f, f ∈ S2(N)}.

The theorem exists in greater generality; one can replace trivial coefficients
with more exotic systems to obtain higher-weight modular forms. Since we are
primarily interested in the correspondence between elliptic curves and weight 2
modular forms, the above statement is sufficient for our needs.

We make note of the fact that the above cohomology groups have an alter-
native realisation as cohomology groups of the open and closed modular curves
Y0(N) and X0(N); indeed, we have isomorphisms

H1(Γ0(N),C) ' H1(Y0(N),C),

H1
P(Γ0(N),C) ' H1(X0(N),C).

This is a standard result (see for example the appendix of [Hid93]) and
essentially involves constructing a simplicial complex from the modular curve,
and then proving that the cohomology of the resulting resolution is isomorphic
to the group cohomology.

The idea behind the proof of the Eichler-Shimura isomorphism is simple;
given a form f ∈M2(N), we wish to somehow construct a function from Γ0(N)
to C which is dependent on f . We do this by utilising differentials. Given
f ∈M2(N), define a holomorphic differential ωf on h by

ωf := f(z)dz.

One can then define a function Ψf : Γ0(N)→ C by

Ψf (γ) :=

∫ γ(z0)

z0

ωf ,

for some choice of base-point z0 ∈ h. This in fact gives rise to a well-defined
cohomology class, which moreover is independent of our choice of base-point.

In the same manner, we can define a holomorphic differential

ωf := f(z)dz

for any f ∈ S2(N). The isomorphism in the theorem is then obtained by sending
a pair (f, g) to the cohomology class of the map Ψf + Ψg.
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If f is in fact a cusp form, then the differential ωf extends to a holomorphic
differential at the cusps P1(Q). In particular, we may take the base-point z0 to
be a cusp s, in which case it is clear that Ψf |Γs is trivial, and thus Ψf defines
a class in the first parabolic cohomology group.

Recall from Section 2.2 the Hecke correspondence on modular curves:

X(Γ1)

π1

��

α̃g
// X(Γ2)

π2

��

X(Γ) X(Γ)

where Γ is a congruence subgroup of SL2(Z), Γ1 = Γ∩g−1Γg and Γ2 = Γ∩gΓg−1

have finite index in Γ for some g ∈ GL+
2 (R), πi denotes the projection map from

X(Γi) to X(Γ) and α̃g is the diffeomorphism from X(Γ1) to X(Γ2) sending a
point Γ1x to the point Γ2gx.

This induces a correspondence between cohomology groups:

H1(X(Γ1),C)
α̃g,∗
// H1(X(Γ2),C)

π2,∗

��

H1(X(Γ),C)

π∗1

OO

H1(X(Γ),C)

We refer to the map (π2α̃g)∗π
∗
1 as the Hecke operator arising from this corre-

spondence. A stronger version of the Eichler-Shimura isomorphism than that
which we have presented states that the isomorphism preserves the action of
Hecke operators, which we shall now explain.

As in the case of Hecke operators acting on modular forms, let Γ = Γ0(N)
and, for a prime p not dividing N , set g =

(
1 0
0 p

)
. In this particular case, we can

give an explicit description of the resulting Hecke operator (which we shall also
denote by Tp) through the action induced by the maps between modular curves
on the corresponding spaces of differentials.

Let ωf = f(z)dz denote a differential on the modular curve X(Γ). The
map π∗1 simply pulls ωf back to a differential on X(Γ1), which we shall (by a
minor abuse of notation) also refer to as ωf . The map (π2α̃g)∗ corresponds to
integration along the fibres of the map π2α̃g. Since the groups Γ1 and Γ2 have
been chosen to have finite index in Γ, this map has only finitely many fibres,
and so we obtain a finite sum of differentials.
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More precisely, let {γi} be a set of representatives for the coset space Γ2\Γ.
The fibres of a point Γx ∈ X(Γ) under π2 are then given by the set of points
{Γ2γix}, and the fibres of these points under the map α̃g are given by the set
{Γ2g

−1γix}. Now, by Lemma 2.2.1 (replacing the element g in the lemma
with g−1), we see that the elements {g−1γi} are a set of representatives of the
orbit space Γ\ΓgΓ, and thus we can simplify the fibres of the point Γx under the
map π2α̃g to the set {Γ1gix}, where gi is a set of representatives of the above
orbit space.

As a result, we find that

(π2α̃g)∗(ωf ) =

p+1∑
i=1

f(giz)d(giz).

Observe that for g =
(
a b
c d

)
∈ GL+

2 (R),

d(gz) = d

(
az + b

cz + d

)
= det(g)(cz + d)−2dz,

and so

(π2α̃g)∗(ωf ) =

p+1∑
i=1

f |gi(z)dz = ωTp(f).

Thus the action of the Hecke operator Tp on differentials by the formula

Tp(ωf ) = ωTp(f).

Note that, under this action, if f ∈ M2(N) is an eigenform for the operator
Tp, then the corresponding differential ωf is an eigenfunction, with the same
eigenvalue. The induced Hecke action on cohomology classes is then defined by

Tp([Ψf ]) = [ΨTp(f)]

(one can check that this is well-defined).



Chapter 3

Automorphic Forms and
Representations

In this chapter, we discuss an important generalization of modular forms,
the notion of an automorphic form, which allows us to consider forms defined
over arbitrary number fields.

We begin in Section 3.1 by discussing automorphic forms, which are func-
tions on adele groups that obey certain functional equations, which reflect those
imposed on modular forms. In particular, we show how a classical modular form
gives rise to an automorphic form. Moreover, we discuss a generalization of the
classical Hecke action to the space of automorphic forms, and establish that,
for an automorphic form constructed from a classical modular form, the two
actions are equivalent.

Section 3.2 provides an exposition of automorphic representations, which
are a useful construction that allow us to study automorphic forms through
the representation theory of local fields. We also rephrase the Hecke action
on automorphic forms in terms of such objects. Section 3.3 states how the
local representations which define an automorphic representation are associated
with Galois representations over local fields, and the properties shared by such
representations.

Echoing Section 2.6, Section 3.4 then shows how we can view certain
automorphic representations as cohomology classes of symmetric spaces (which
take the place of the upper-half plane in the classical theory), which moreover
preserves the Hecke action on automorphic representations. Finally, Section
3.5 gives an example of a global correspondence, in which one can attach global
Galois representations to certain automorphic representations, which is compat-
ible with the local correspondences discussed in Section 3.3.

25
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3.1 Automorphic Forms for GL2

A theorem as beautiful as the Modularity Theorem doesn’t deserve to lan-
guish forever in the realm of the rationals, especially since the definition of an
elliptic curve can easily be extended to arbitrary number fields simply by chang-
ing our coefficient field. However, things are not so simple when dealing with
modular forms; a priori, their definition has little to do with the rationals, save
for their behaviour under the modular group. This leads us to ask the question:
can we “free” classical modular forms from the upper half-plane, and instead
give a definition which is more amenable to altering the coefficient field? It turns
out that we can, and in fact the modular group plays a key role in this. The
material in the following sections can be found in [JL70], or the expositions in
[Bum98], Chapter 3 and [Gel97], Chapter VI.

It is a standard fact that the upper half-plane h can be identified with a
quotient of the group SL2(R). Indeed, this group acts transitively on h, and the
subgroup SO(2) stabilizes the point i ∈ h, so we obtain a bijection

SL2(R)/SO(2) −→ h, gSO(2) 7−→ g(i).

We can therefore think of a cusp form f ∈ Sk(N), for k a positive integer,
as a function on SL2(R) which is right-invariant under the group SO(2), and
which exhibits the usual properties under the left action of Γ0(N). Things
become interesting if we twist this idea, and instead consider functions φ on
SL2(R) which are left-invariant under Γ0(N), and satisfy a certain symmetry
with respect to the right action of SO(2). More precisely, denoting by kθ the
element of SO(2) corresponding to an anti-clockwise rotation through an angle
θ, we require

φ(γgkθ) = e−ikθφ(g),

for all γ ∈ Γ0(N), g ∈ SL2(R).

Cusp forms give rise to such functions: indeed, given f ∈ Sk(N) we can
define such a function φf by

φf (g) = f |g(i)

(it is a straightforward check to see that this function satisfies the desired prop-
erties). Ideally this mapping would be a bijection, but it is not: indeed, any
modular function f will give rise to such a φf , so we expect that both the holo-
morphicity of a modular form f and its behaviour at the cusps should somehow
be mirrored in φ.

Perhaps unsatisfyingly, we shall not provide the full details here, as we would
soon like to generalize this idea to account for a different base field, which will
include the rational setting as a special case, for which we shall provide a more
detailed description. Suffice to say, the holomorphicity of f translates to the
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vanishing of φ under the action of a certain differential operator on the Lie
group SL2(R), and the behaviour of f at the cusps translates to a certain growth
condition on φ.

We now take what may seem a radical departure, in keeping with the modern
theory, by considering functions adelically. Justification for this move can be
found by considering the seminal work of John Tate in his thesis, produced
in 1950, which concerns generalizations of Dirichlet L-series to number fields.
Such objects, known as Hecke L-series due to their discovery by Erich Hecke,
were already known to extend analytically to L-functions, but Tate provided
greater insight into their behaviour by realizing them as functions on adele
class groups. The local factors of a Dirichlet L-function then correspond to
functions on the local field at each prime. Since we have already seen that the
important arithmetic properties of classical modular forms are reflected in their
L-functions, it is unsurprising that we should choose to follow this path when
moving to arbitrary number fields.

We begin by considering the adelic analogue of a Dirichlet character: a
Hecke character. We can consider such characters as one-dimensional analogues
of modular forms (which can be thought of as two-dimensional objects, given
their connection with the group SL2) , and thus they provide a more accessible
introduction to the concepts we will be working with.

Fix, therefore, a number field F , with ring of integers OF , and let AF denote
the ring of adeles over F . We define a character χ : A×F → C× to be a product

χ =
⊗
v

χv,

running over all places v of F , where all but finitely many of the χv are unram-
ified, meaning that χv is trivial on the unit group O×v of the valuation ring. A
Hecke character is then a character which is trivial on F×, embedded diagonally
into A×F , i.e., a character of the idele class group F×\A×F .

Since A×F = GL1(AF ), we can think of Hecke characters as “automorphic
forms for GL1”. Typically, we would like our algebraic group (GL1 in this
case) to be defined over the rationals. Since we would like to consider arbitrary
number fields, we replace GL1 with the Q-group ResF/Q(GL1) for a number
field F , where ResF/Q denotes Weil restriction of scalars (this has the prop-
erty that ResF/Q(GL1(A)) ' GL1(A⊗Q F ) for any Q-algebra A; in particular,

ResF/Q(GL1(AQ)) ' A×F , and ResF/Q(GL1(Q)) ' F×). Henceforth we shall
denote by A the adele ring AQ over the rationals.

In the special case in which F = Q, we can obtain a Hecke character on A
from a Dirichlet character ψ : (Z/NZ)× → C×. Indeed, suppose for each prime
p we define subgroups Kp(N) and K∗p (N) of Zp by

Kp(N) =

{
{x ∈ Zp; x = 1 (mod N)}, if p|N,

Z×p , if p - N,
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and

K∗p (N) =

{
{x ∈ Zp; x = 1 (mod N)}, if p|N,

Q×p , if p - N.

If we let

K(N) = R×+ ×
∏
p

Kp(N) and K∗(N) = R×+
∏
p

K∗p (N),

then we have identifications

A×/Q× ' K∗(N)/(Q× ∩K∗(N))

and
K∗(N)/(K(N)(Q× ∩K∗(N))) ' (Z/NZ)×

(see, for example, [Bum98], Section 3.1). Precomposing χ with this second
map gives us a character on K∗(N) which is trivial on Q ∩ K∗(N), which by
the first identification can be realized as a Hecke character on A×/Q×.

We move on to the two-dimensional case. In a departure from the classical
theory, we shall work with the group GL2 rather than SL2; in part this is due
to the fact that the centre of the group GL2 is a torus, and thus has nicer
properties than the centre of SL2, which simply consists of the matrices ±I. In
particular, we will be able to define Hecke characters on the centre of the group,
which shall be important later.

To this end, fix a number field F , let G = ResF/Q(GL2), and denote by Z
the centre of G. Note that G(R) ' GL2(R)r×GL2(C)s, where F has r real and
s pairs of complex conjugate embeddings. Let K∞ denote the compact open
subgroup of G(R) given by

K∞ ' O(2)r ×U(2)s,

and let
Kf =

∏
p

Kp,

where each Kp is a compact open subgroup of the group G(Qp) (we shall not
specify a choice just yet). Let K = Kf ·K∞.

Finally, let g denote the Lie algebra of G(R), and gC its complexification.
In addition, denote by U(gC) the universal enveloping algebra of gC. We shall
not discuss this in too much detail, merely noting that it can be identified with
the space of left-invariant differential operators on G(R). We denote by Z the
centre of U(gC).
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As mentioned previously, automorphic forms for G are the two-dimensional
analogue of Hecke characters, and thus are functions on G(A) which are left-
invariant under the subgroup G(Q). To give the full definition, an automorphic
form for G of level Kf is a function

ϕ : G(Q)\G(A)→ C

which satisfies the following properties:

• The restriction of ϕ to G(R) is smooth.

• ϕ is invariant under the right regular action of Kf , and the image of ϕ
under the right regular action of K∞ is a finite-dimensional vector space
(such a function is called K-finite).

• ϕ lies in a finite-dimensional vector space that is invariant under the action
of Z (such a function is called Z-finite).

• ϕ is of moderate growth. To explain this notion, define a local height
function ‖·‖v : GL2(Fv)→ R at each finite place v of F by

‖g‖v = max(|gi,j |v, |det(gv)|−1
v ),

where the gi,j run through the matrix coefficients of g. We then define a
global height function ‖·‖ to be the product of the local heights. Then ϕ
is of moderate growth if there exist constants C and N such that

|ϕ(g)| < C ‖g‖N for all g ∈ G(A).

If, in addition, ϕ satisfies the following cuspidal condition, namely that

•
∫

F\AF

ϕ (( 1 x
0 1 ) g) dx = 0 for all g ∈ G(A),

then we say that ϕ is a cuspidal automorphic form for G.

The form φf obtained from a cusp form f ∈ Sk(N) can be realized as
an automorphic form for GL2 according to this definition, once we specify an
appropriate open compact subgroup Kf and extend φf to a function on GL2(A).
For our choice of subgroup Kf we take the group

K0(N) =
∏
p

Kp(N),

where

Kp(N) =

{ {(
a b
c d

)
∈ GL2(Zp); c = 0 (mod N)

}
, if p|N,

GL2(Zp), if p - N.
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We then exploit the homeomorphism

Γ0(N)\SL2(R) ' GL2(Q)\GL2(A)/A0
G(R)Kf ,

where A0
G(R) denotes the elements in the centre of GL2(R) with positive eigen-

values (and thus is isomorphic to R+), to extend φf to a function on GL2(A),
where it defines an automorphic form.

Explicitly, we make use of the strong approximation theorem (see [Bum98],
Theorem 3.3.1) to express any element g ∈ GL2(A) as a product

g = γg∞k0,

where γ ∈ GL2(Q), g∞ ∈ GL+
2 (R) and k0 ∈ K0(N). We then define a function

ϕf on GL2(A) by

ϕf (g) = φf (g∞).

The function ϕf is in fact an automorphic form, and is said to have trivial
central character, meaning that

ϕf (zg) = ϕf (g)

for all z ∈ Z(A), the centre of GL2(A), and all g ∈ GL2(A). This is easy to see:
the Qp-component of any such z in fact lies in GL2(Zp) for all but finitely many
primes p so, after clearing denominators, we may assume that

z = z′z∞k0

with z′ ∈ GL2(Q), z∞ ∈ GL+
2 (R) and k0 ∈ K0(N) (since each Qp-component is

diagonal, once it lies in GL2(Zp) we know it lies in Kp(N)).

Thus, letting z∞ =
(
z0 0
0 z0

)
, and decomposing g = γg∞k

′
0, we have

ϕf (zg) = φf (z∞g∞)

= f |z∞g∞(i)

= f |g∞z∞(i)

= det(z∞)
k
2 z−k0 f |g∞(i)

= f |g∞(i)

= ϕf (g),

as required.

It is clear that this depends on the fact that f has trivial character. If we
were to consider a cusp form f ∈ Sk(N,χ), for some Dirichlet character χ on
(Z/NZ)×, we would like the corresponding form ϕf to mirror the effect of χ on
f .
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We therefore consider automorphic forms with non-trivial character. Pre-
cisely, fix a Hecke character χ : A×F → C×, and extend it to a function ω = ωχ
on Z(A), where Z is the centre of GL2, by defining

ω (( a 0
0 a )) = χ(a).

We then say that an automorphic form ϕ for GL2 has central character ω if

ϕ(zg) = ω(z)ϕ(g)

for all z ∈ Z(A), g ∈ G(A). We denote by A0(G(Q)\G(A), ω) the space of
cuspidal automorphic forms with central character ω.

We state without proof that a cusp form f ∈ Sk(N,χ) does indeed corre-
spond to an automorphic form ϕf with central character ωχ, where ωχ is the
character on Z(A) induced by realizing χ as a Hecke character as described
previously (see, for example, [Bum98], Section 3.6, but note that we have to
slightly alter our construction of the form ϕf ). For future reference, we note that
the conditions we have imposed on automorphic forms imply in particular that
they are square-integrable, and thus lie in the Hilbert space L2

0(G(Q)\G(A), ω)
of square-integrable functions on G(A) which are trivial on the component G(Q),
have central character ω, and satisfy the cuspidal condition (in fact, they form
a dense subset).

Just as we can translate classical modular forms into this new, adelic setting,
so too can we translate the action of Hecke operators. Since the role of the
congruence subgroups Γ0(N) in classical theory is taken on by the compact
subgroups K0(N) when considering automorphic forms, it should not be too
much of a surprise to see that these operators arise from Hecke correspondences
of the form

K1

ι1

��

αgf
// K2

ι2

��

K K

where K is a compact subgroup of GL2(Af ), gf ∈ GL2(Af ) is an element such
that K1 := K ∩ g−1

f Kgf and K2 := K ∩ gfKg−1
f have finite index in K, ιi

denotes the inclusion Ki ↪→ K, and αgf is the homomorphism:

K1 → K2, k0 7→ gfk0g
−1
f .

Analogously to the classical case, let {g1, . . . , gn} be a set of representatives
for the orbit space KgfK/K (note that, while the congruence subgroups of
classical theory act on the left, our compact subgroups act on the right) so that

KgfK =

n∐
i=1

giK.
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Then we can define an operator Tgf on automorphic forms of level K by setting

Tgf (ϕ)(g) =

n∑
i=1

ϕ(ggi).

We shall soon see how to recover the action of Hecke operators on classical
forms in terms of automorphic forms. Before proceeding, however, we shall need
to establish the following notation:

For a prime p, let
ιp : GL2(Q) ↪→ GL2(Af )

denote the embedding sending a matrix in GL2(Q) to the Qp-component of
GL2(Af ). Similarly, let

ι∞ : GL2(Q) ↪→ GL2(A)

denote the embedding sending a matrix to the real component of GL2(A).

Additionally, for a prime p, let

ι̂p : GL2(Q) ↪→ GL2(Af )

denote the embedding sending a matrix in GL2(Q) to all Qq-components with
q 6= p. Finally, let

ι = ιp · ι̂p · ι∞
denote the diagonal embedding of a matrix in GL2(Q) into GL2(A) (note that
the latter two maps are well-defined, in that an element of GL2(Q) lies in
GL2(Zp) for all but finitely many primes p).

Now, let G = GL2, let K = K0(N) and, for a prime p not dividing N , let
gf = ιp

(
p 0
0 1

)
. A set of representatives for the orbit space KgfK is then given

by {ιp(g0), . . . , ιp(gp−1), ιp(gp)}, where

gi =


(
p i
0 1

)
, if i ∈ 0, . . . , p− 1,(

1 0
0 p

)
, if i = p.

We then define the Hecke operator Tp by the action

Tp(ϕ)(g) =

p∑
i=0

ϕ(gιp(gi)).
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For an arbitrary element g ∈ GL2(A), write

g = γg∞k0

with γ ∈ GL2(Q), g∞ ∈ GL2(R) and k0 ∈ K, using the strong approximation
theorem. Then

Tp(ϕ)(g) =

p∑
i=0

ϕ(γg∞k0ιp(gi))

=

p∑
i=0

ϕ(γg∞ιp(gi)k
′
0,i)

=

p∑
i=0

ϕ(γιp(gi)g∞k
′
0,i)

noting that, by the double coset decomposition

KgfK =

p∐
i=0

ιp(gi)K,

we have k0ιp(gi) = ιp(gj)k
′
0,j for some k′0,j ∈ K and some j ∈ 0, . . . , p (we rely

on the fact that distinct gi give rise to distinct gj for a fixed choice of k0, which
follows from the disjointness of the right cosets ιp(gi)).

Note that, for q 6= p, g−1
i ∈ GL2(Zq), and moreover the lower-left entry of

each g−1
i is equal to zero, implying that ι̂p(g

−1
i ) ∈ K. Thus, in the decomposi-

tion
ιp(gi) = ι(gi)ι∞(g−1

i )ι̂p(g
−1
i ),

we have ι(gi) ∈ GL2(Q), ι∞(g−1
i ) ∈ GL+

2 (R) and ι̂p(g
−1
i ) ∈ K.

Suppose now that ϕ = ϕf for some f ∈Mk(N). Then

Tp(ϕf )(g) =

p∑
i=0

ϕf (γι(gi)ι∞(g−1
i )g∞ι̂p(g

−1
i )k′0,i)

=

p∑
i=0

φf (g−1
i g∞).

For each i ∈ {0, . . . , p}, we have g−1
i =

(
p−1 0

0 p−1

)
ĝi, where

ĝi =


(

1 −i
0 p

)
, if i ∈ {0, . . . , p− 1},(

p 0
0 1

)
, if i = p,

i.e., {ĝ0, . . . , ĝp} is a set of representatives for the orbit space Γ0(N)
(

1 0
0 p

)
Γ0(N)

associated to the classical Hecke operator Tp.
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Since we have already seen that φf acts trivially on scalar matrices, we find
that

Tp(ϕf )(g) =

p∑
j=0

φf (ĝjg∞)

=

p∑
j=0

f |ĝjg∞(i)

=

p∑
j=0

(f |ĝj )|g∞(i)

= φTp(f)(g∞)

= ϕTp(f)(g).

Thus if f is an eigenform for the Hecke operators Tp, so too is ϕf , and the
eigenvalues of f are preserved under this correspondence.

It will prove useful later on to explain precisely how we came to the definition

Tp(ϕ)(g) =

p∑
i=0

ϕ(gιp(gi)).

To this end, given a compact subgroup Kf of GL2(Af ), define the Hecke algebra
Hp at the prime p to be the set of locally constant functions with compact
support on GL2(Qp), and the Hecke algebra HKp to be the subset of functions
that are both left- and right-invariant under the action of the subgroup Kp of
Kf . The Hecke algebra is a commutative unital ring under convolution (see, for
example, [Bum98], Section 4.6).

The ring HKp admits an action on automorphic forms of level Kf , given by

σ(ϕ)(g) =

∫
GL2(A)

σ(h)ϕ(gh)dh

for σ ∈ HKp .

For our particular example, in which Kf = K0(N), let p be a prime not
dividing N , and define Tp ∈ HKp to be the characteristic function of the double
coset

Kp

(
p 0
0 1

)
Kp,

normalised by a factor of 1
vol(Kp) , so that∫

Kp

Tp(h)dh = 1.
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Then, letting {g0, . . . , gp} be our set of representatives for this double coset, we
have

Tp(ϕ)(g) =
1

vol(Kp)

∫
Kp
(
p 0
0 1

)
Kp

ϕ(gh)dh

=
1

vol(Kp)

p∑
i=0

∫
giKp

ϕ(gh)dh

=
1

vol(Kp)

p∑
i=0

∫
Kp

ϕ(ggi)dh

=

p∑
i=0

ϕ(ggi),

as required.
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3.2 Representation Theory of GL2

Recall that our definition of an automorphic form with central character
ω implies that such objects lie in the Hilbert space L2(GL2(Q)\GL2(A), ω) of
square-integrable functions on GL2(A). This space is acted on by G(A) under
the right regular action, and we can study this behaviour by considering the
representation theory of G(A) (this statement is not entirely accurate - at the
archimedean places v of F we will study objects known as (g,K)-modules rather
than true representations of G(Fv) - but suffices for the moment). We shall
therefore spend this section describing the representation theory of GL2.

In order to understand the representation theory of GL2(AF ), we first con-
sider the corresponding theory of the groups GL2(Fv), where v is a place of the
number field F , and then piece together these local theories to obtain a global
theory.

We begin with the non-archimedean places. Let v be a finite place of F , Fv
the completion of F with respect to v, and Ov the valuation ring of Fv. For
ease of notation, we will denote by G the group GL2(Fv) for the duration of
this discussion.

We define an admissible representation of G on a complex vector space V to
be a homomorphism

π : G→ GL(V )

that is smooth, by which we mean that the stabilizer in G of any point v ∈ V is
open, and that satisfies the property that for any compact open subgroup K of
G, the space

V K := {v ∈ V, π(k)v = v for all k ∈ K}

of K-fixed vectors is finite-dimensional. We will be interested in irreducible
representations; i.e., those V which admit no smaller G-invariant subspace. It
can be shown that any smooth, irreducible representation of G is automatically
admissible. We say that π is unramified if the space of GL2(Ov)-fixed vectors
is non-trivial. Analogously to the example of Hecke characters, the adelic rep-
resentations we shall consider will be unramified at all but finitely many places.

We now discuss our main source of admissible representations: induced rep-
resentations. These are constructed from characters applied to the Borel sub-
group of upper-triangular matrices. Explicitly, let χ1, χ2 : F×v → C× be two
characters, and define B(χ1, χ2) to be the set of functions f : G → C× which
are smooth under the right regular action of G, and satisfy

f

((
a1 x
0 a2

)
g

)
= χ1(a1)χ2(a2)

∣∣∣∣a1

a2

∣∣∣∣ 12 f(g)

for all g ∈ G (we understand | · | to mean the non-archimedean absolute value
| · |v).
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It is simple to see that the B(χ1, χ2) are admissible. Indeed, the smoothness
of each f implies that B(χ1, χ2) is smooth as a G-representation. Moreover, the
Iwasawa decomposition of G shows that G = B ·K, where B denotes the Borel
subgroup and K = GL2(Ov) is a maximal compact open subgroup of G, and so
any f ∈ B(χ1, χ2) is defined completely by its values on K. In particular, since
any compact open subgroup K ′ has finite index in K, any f ∈ B(χ1, χ2)K

′

is defined by its values on a finite set of representatives for K/K ′, and thus
B(χ1, χ2)K

′
is finite-dimensional.

The representations we will be interested in can be derived from induced
representations. Although B(χ1, χ2) need not be irreducible, the following result
(see [Kud04], Theorem 3.1) shows that every induced representation contains
a unique irreducible subrepresentation or quotient:

Theorem 3.2.1. Let χ1, χ2 : F×v → C× be two characters. Then:

(i) If χ1χ
−1
2 6= | · |±1, then the representation B(χ1, χ2) is irreducible.

(ii) If χ1χ
−1
2 = | · |, write χ1 = χ| · | 12 and χ2 = χ| · |− 1

2 , for χ : F×v → C×
a character. Then B(χ1, χ2) has a one-dimensional quotient on which
G acts by the character χ ◦ det, and an infinite-dimensional irreducible
subrepresentation σ(χ).

(iii) If χ1χ
−1
2 = | · |−1, write χ1 = χ| · |− 1

2 and χ2 = χ| · | 12 , for χ : F×v → C×
a character. Then B(χ1, χ2) has a one-dimensional submodule on which
G acts by the character χ ◦ det, and an infinite-dimensional irreducible
quotient σ(χ).

We call the B(χ1, χ2) principal series representations, and the σ(χ) special
representations. In the special case where χ is the trivial character, we call σ(χ)
the Steinberg representation, which we denote by St. One can easily see that for
any character χ, σ(χ) ' St⊗χ, and thus special representations are also known
as twists of the Steinberg representation.

The above examples are all that we shall require: indeed, it is known that
every irreducible admissible representation of G is either an irreducible principal
series, a twist of the Steinberg representation, a one-dimensional representation
of the form χ ◦ det, for χ a character of F×v , or else is a supercuspidal repre-
sentation, which we shall not define. Each of these types of representation are
known to be inequivalent.

Since we will require most of our representations to be unramified, we would
like to classify such representations. Recall that for a representation π to be
unramified, we require that it has a non-trivial GL2(Ov)-fixed vector. In par-
ticular, an unramified character χ : F×v → C× is trivial on the unit group O×v ,
and thus is defined completely by its value on a uniformiser $. The following
result (see [Kud04], Theorem 3.3) says that unramified representations can
be classified by pairs of unramified characters:
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Theorem 3.2.2.

(i) For every pair of unramified characters χ1, χ2 : Fv → C×, there is an un-
ramified irreducible admissible representation π(χ1, χ2) of G. If χ1χ

−1
2 6=

| · |±1, then π(χ1, χ2) is given by the irreducible principal series B(χ1, χ2).
Otherwise, π(χ1, χ2) is given by the one-dimensional representation χ◦det,

where χ1 = χ| · |± 1
2 , χ2 = χ| · |∓ 1

2 .

(ii) Every unramified irreducible representation of G is isomorphic to one of
the π(χ1, χ2). Moreover, any two such representations are inequivalent,
with the exception that

π(χ1, χ2) ' π(χ2, χ1).

The unramified representations we shall consider will always take the form
of an irreducible principal series. To each such representation, we can assign a
semisimple conjugacy class in GL2(C), obtained via the mapping

π = π(χ1, χ2) 7→
[(

χ1($) 0
0 χ2($)

)]
.

In fact (see [Kud04], Corollary 3.4), this map is a bijection, and we call the
conjugacy class corresponding to π the Langlands class tπ of π.

For an unramified representation πv of G, we can define a local L-factor
L(s, πv) by setting

L(s, πv) = [(1− χ1($)q−s)(1− χ2($)q−s)]−1,

where q is the cardinality of the residue field of Fv. We shall bear this in mind
for later, when we shall consider local Galois representations.

At this juncture, we would like to return to the action of Hecke operators on
automorphic forms, and see how this can be extended to the setting of admissible
representatives of GL2 over non-archimedean local fields. For a place v of F ,
fix a compact open subgroup Kv of GL2(Fv), and recall that the Hecke algebra
HKv is a commutative ring consisting of locally constant functions on GL2(Fv)
with compact support, which are Kv-biinvariant.

Given an admissible representation (π, Vπ), we can define an action of HKv
on V by

π(σ)w =

∫
GL2(Fv)

σ(g)π(g)wdg

for all σ ∈ HKv and w ∈ V . It is not difficult to see that this is in fact a
representation of the ring HKv (which we recall is a ring under convolution).
Moreover, the space V Kv of Kv-fixed vectors in V is preserved under this action,
and thus forms a HKv -module.
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The following fact (see [Bum98], Proposition 4.2.3) will be useful to us:

Proposition 3.2.3. Let (π, Vπ) be an irreducible admissible representation of
GL2(Fv). Then the space V Kv of Kv-fixed vectors in V is either trivial or a
finite-dimensional admissible HKv -module, for all compact open subgroups Kv

of GL2(Fv).

Now, suppose further that Kv = GL2(Ov). In this case, HKv is commutative
(a proof of which can be found in [Bum98], Theorem 4.6.1), and Schur’s
lemma, combined with the finite-dimensionality of V Kv , implies that in fact
V Kv (if non-trivial) is a one-dimensional representation of HKv . In particular,
fixing a vector wKv ∈ V Kv , we obtain a character θ : HKv → C by setting

π(σ)wKv = θ(σ)wKv .

We consider this in the context of the adelic extension of classical Hecke
operators. For an integer N and a prime p not dividing N , set Kp = GL2(Zp),
and let π = π(χ1, χ2) be an unramified principal series. The corresponding
space V Kp of Kp-fixed vectors can easily be seen to be spanned by the function
φp, where

φp (( a1 x
0 a2 ) k0) = χ1(a1)χ2(a2)

∣∣∣∣a1

a2

∣∣∣∣ 12
p

for a1, a2 ∈ Fv and k0 ∈ Kp.

Recall that the Hecke operator Tp is defined to be the normalized character-
istic function of the double coset Kp

(
p 0
0 1

)
Kp. Letting {g0, . . . , gp−1, gp} be the

set of representatives for this double coset established in the previous section,
we therefore see that

π(Tp)φp =

∫
GL2(Qp)

Tp(g)π(g)φpdg

=
1

vol(Kp)

∫
Kp
(
p 0
0 1

)
Kp

π(g)φpdg

=
1

vol(Kp)

p∑
i=0

∫
giKp

π(g)φpdg

=
1

vol(Kp)

p∑
i=0

∫
Kp

π(gig)φpdg

=

p∑
i=0

φp(gi)φp.
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Now, recalling that the representatives gi are given by

gi =


(
p i
0 1

)
, if i ∈ {0, . . . , p− 1},(

1 0
0 p

)
, if i = p,

we see that

φp(gi) =

{
χ1(p)|p| 12φp, if i ∈ {0, . . . , p− 1},
χ2(p)|p|− 1

2φp, if i = p,

and thus deduce that

π(Tp)(φp) = p
1
2 (χ1(p) + χ2(p))φp = p

1
2 Tr(tπ)φp,

where tπ denotes the Langlands class of π.

Thus
θ(Tp) = p

1
2 Tr(tπ),

a result which we shall return to later.

Having discussed the non-archimedean theory, let us now consider the case
where v is an archimedean place of F . As before, let G denote GL2(Fv), and
let K be a maximal compact subgroup of G (so K ' O(2) or U(2), depending
on whether v corresponds to a real or complex embedding). A representation
π : G → GL(V ), for V a complex vector space, is called admissible if it is
smooth (i.e., infinitely differentiable) and if, when restricted to the subgroup K,
the resulting representation contains each irreducible unitary representation of
K with finite multiplicity.

As alluded to in the previous section, we do not want to consider such
representations. The reason for this can be seen by considering automorphic
forms. Recall that such forms span a finite-dimensional vector space under the
right regular action of the maximal compact subgroup at the archimedean places
of F .

Analogously, given a representation π : G → GL(V ) as above, one defines
the subspace VK of K-finite vectors of V to be

VK := {v ∈ V ; π(K)v spans a finite-dimensional vector space}.

One would hope that the space VK is preserved under the action of π(G), but
this need not be the case. It is the case, however, that VK is preserved under the
corresponding action of the Lie algebra g of G, which motivates the following
definition:
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A (g,K)-module is a complex vector space V with actions of both g and K,
satisfying the following conditions:

1. The actions of g and K are compatible, in the sense that

k(Xv) = (Ad(k)X)(kv),

for all k ∈ K,X ∈ g, where Ad denotes the adjoint action of K on g, and

Xv =
d

dt
(exp(tX)) |t=0

for all x ∈ k, the Lie algebra of K, for all v ∈ V .

2. For all v ∈ V , the K-translates of v span a finite-dimensional vector space.

Given any irreducible admissible representation π of G, the space of K-
finite vectors is a (g,K)-module. As such, we will sometimes make reference to
representations of G as (g,K)-modules, implicitly meaning the corresponding
space of K-finite vectors.

The condition of K-finiteness implies that a (g,K)-module V admits a de-
composition into finite-dimensional irreducible representations of K. We say
that V is admissible if every isomorphism class of representations of K occurs
with finite multiplicity in any such decomposition.

As in the non-archimedean case, we can define a principal series B(χ1, χ2),
where χ1 and χ2 are two (not necessarily unitary) characters of Fv, and once
again all irreducible admissible (g,K)-modules arise from these principal series.
However, the classification of these representations differs, and so we shall briefly
discuss it.

It turns out that the irreducible admissible (g,K)-modules are characterized
by the irreducible representations of the subgroup K0 of K, given by

K0 =

{
SO(2); if K = O(2),
SU(2); if K = U(2).

To begin with, we consider the case in which Fv ' R. The irreducible
representations of SO(2) take the form

ρn : SO(2)→ C×, ρn(kθ) = einθ,

where Kθ ∈ SO(2) corresponds to an anticlockwise rotation through an angle θ.
Using the Iwasawa decomposition GL2(R) = B ·SO(2), we can define a function
φn ∈ B(χ1, χ2) by

φn

((
a1 x
0 a2

)
kθ

)
= χ1(a1)χ2(a2)

∣∣∣∣a1

a2

∣∣∣∣ 12 einθ.
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The functions φn span B(χ1, χ2), and so we can define the irreducible admis-
sible representations of GL2(R) in terms of them. In fact, we have the following
classification (see [JL70], Theorem 5.11):

Theorem 3.2.4. Let χ1 and χ2 be two characters of R×.

(i) If χ1χ
−1
2 is not of the form x 7→ xrsgn(x), where r a non-zero integer, then

the representation B(χ1, χ2) is irreducible, and we denote by π(χ1, χ2) any
(g,K)-module equivalent to B(χ1, χ2).

(ii) If χ1χ
−1
2 (x) = xrsgn(x), where r is a positive integer, then the space

B(χ1, χ2) contains an infinite-dimensional irreducible subrepresentation,
Bs(χ1, χ2), spanned by the functions

{. . . , φ−r−3, φ−r−1, φr+1, φr+3, . . .} .

The quotient, Bf (χ1, χ2) := B(χ1, χ2)/Bs(χ1, χ2), is finite-dimensional.
We denote by π(χ1, χ2) and σ(χ1, χ2) any (g,K)-modules equivalent to
Bf (χ1, χ2) and Bs(χ1, χ2) respectively.

(iii) If χ1χ
−1
2 (x) = xrsgn(x), where r is a negative integer, then the space

B(χ1, χ2) contains a finite-dimensional irreducible subrepresentation,
Bf (χ1, χ2), spanned by the functions

{φr+1, . . . , φ−r−1} .

The quotient, Bs(χ1, χ2) := B(χ1, χ2)/Bf (χ1, χ2), is infinite-dimensional.
We denote by π(χ1, χ2) and σ(χ1, χ2) any (g,K)-modules equivalent to
Bf (χ1, χ2) and Bs(χ1, χ2) respectively.

(iv) Any irreducible admissible (g,K)-module is equivalent to π(χ1, χ2) or σ(χ1, χ2)
for some characters χ1 and χ2 of R×.

Recall that when we say a (g,K)-module is equivalent to a representation
of GL2(R), we really mean that it is equivalent to the (g,K)-module arising
by considering the K-finite vectors of the representation. In keeping with the
notation established in the non-archimedean setting, we have denoted by π any
irreducible principal series or finite-dimensional representation, and by σ any of
the remaining infinite-dimensional representations, which are known as discrete
series representations. The weight of a discrete series is the integer r+1, where

χ1χ
−1
2 (x) = xrsgn(x).
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The complex case is similar, but now we have to utilise the irreducible rep-
resentations of SU(2). Unlike those of SO(2), these are not one-dimensional;
rather, there is a unique irreducible representation of degree n+ 1 for each pos-
itive integer n, which we denote by ρn. This can be realised by the action of
SU(2) on the space of homogeneous polynomials of degree n in two variables
with complex coefficients, given by(

α β

−β α

)
f(X,Y ) = f(αX − βY, βX + αY ),

(
α β

−β α

)
∈ SU(2).

For each n, let B(χ1, χ2, ρn) denote the set of functions in B(χ1, χ2) which
transform according to ρn (where again we use the Iwasawa decomposition
GL2(C) = B · SU(2)). Then we have the following classification (see [JL70],
Theorem 6.2):

Theorem 3.2.5. Let χ1 and χ2 be two characters of C×.

(i) If χ1χ
−1
2 is not of the form z 7→ zpzq or z 7→ z−pz−q for integers p, q ≥

1 then B(χ1, χ2) is irreducible, and we denote by π(χ1, χ2) any (g,K)-
module equivalent to B(χ1, χ2).

(ii) If χ1χ
−1
2 (z) = zpzq, with p, q ≥ 1, then the space B(χ1, χ2) contains an

infinite-dimensional irreducible subrepresentation, Bs(χ1, χ2), defined by

Bs(χ1, χ2) =
∑

n≥p+q
n≡p+q (mod 2)

B(χ1, χ2, ρn).

The quotient, Bf (χ1, χ2) := B(χ1, χ2)/Bs(χ1, χ2), is finite-dimensional.
We denote by π(χ1, χ2) and σ(χ1, χ2) any (g,K)-modules equivalent to
Bf (χ1, χ2) and Bs(χ1, χ2) respectively.

(iii) If χ1χ
−1
2 (z) = z−pz−q with p, q ≥ 1, then the space B(χ1, χ2) contains a

finite-dimensional irreducible subrepresentation, Bf (χ1, χ2), defined by

Bf (χ1, χ2) =
∑

|p−q|≤n<p+q
n≡p+q (mod 2)

B(χ1, χ2, ρn).

The quotient, Bs(χ1, χ2) := B(χ1, χ2)/Bf (χ1, χ2), is infinite-dimensional.
We denote by π(χ1, χ2) and σ(χ1, χ2) any (g,K)-modules equivalent to
Bf (χ1, χ2) and Bs(χ1, χ2) respectively.

(iv) Any irreducible admissible (g,K)-module is equivalent to π(χ1, χ2) or σ(χ1, χ2)
for some characters χ1 and χ2 of C×.
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Finally, we can return to the global theory. Once again, let F be a number
field, and set G to be the Q-group ResF/Q(GL2). Let Af denote the finite adeles
(i.e., the restriction of the adeles to the non-archimedean places), so that

G(Af ) '
∏
v|p

p prime

GL2(Fv),

let g denote the Lie algebra of G(R), and let K∞ = O(2)r×U(2)s, where F has
r real and s pairs of complex conjugate embeddings.

We define a (g,K∞)×G(Af )-module (π, Vπ) to be a (g,K∞)-module equipped
with a smooth action of G(Af ) (in the sense that every vector v ∈ V is fixed
by a compact open subgroup of G(Af )) such that the actions of (g,K∞) and
G(Af ) commute.

We say that a (g∞,K∞) × G(Af )-module (π, Vπ) is irreducible if it has no
proper subspaces preserved by the actions of g, K∞ and G(Af ), and that it is
admissible if the multiplicity of every irreducible representation of the compact
open subgroup K∞ ×

∏
GL2(Ov) in V is finite.

It is known (see [Kud04], Theorem 2.5), that any irreducible admissible
(g,K∞) × G(Af )-module π takes the form π = ⊗πv, where we run over all
places v, and where each πv is either a representation of GL2(Fv) (if v is a
non-archimedean place of F ) or a (g,K)-module for GL2(R) or GL2(C) (if v
is a real or complex place of F ) such that all but finitely many of the πv are
unramified.

The following result (see, for example, [Kud04], Theorem 2.6) justifies
our interest in these objects:

Theorem 3.2.6.

(i) The space A0(G(Q)\G(A), ω) decomposes as an algebraic direct sum

A0(G(Q)\G(A), ω) =
⊕

(π,Vπ)

mπVπ,

where the sum runs over all irreducible admissible (g,K∞)×G(Af )-modules
(π, Vπ), and the mπ are non-negative integers.

(ii) (Strong Multiplicity One) Each irreducible admissible (g,K∞) × G(Af )-
module appears in the above decomposition with multiplicity at most one
(that is, the integers mπ ∈ {0, 1} for all (π, Vπ)). Moreover, if (π1, Vπ1

)
and (π2, Vπ2) are two admissible (g,K∞) × G(Af )-modules appearing in
the above decomposition, with π1 = ⊗π1,v and π2 = ⊗π2,v, such that π1,v

and π2,v are equivalent for all but finitely many places v, then Vπ1
= Vπ2

.
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Thus we can better understand automorphic forms through the study of
(g,K∞)×G(Af )-modules. Any irreducible admissible (g,K∞)×G(Af )-module
which appears as a summand in A0(G(Q)\G(A), ω) with multiplicity one is
known as a cuspidal automorphic representation (with central character ω).
It is known (see for example [Bum98], Chapter 3.5, p. 332) that, given a
cuspidal automorphic representation π, the representations πv at the unramified
non-archimedean places are all irreducible principal series.

Returning once again to the classical situation, let f ∈ Sk(N) be a cusp
form of weight k and level N , which we suppose is an eigenform for the Hecke
operators Tp with p not dividing N . We have seen that the corresponding
automorphic form ϕf of level K0(N) and trivial character is also an eigenform
for the operators Tp (realized adelically). Moreover, we have the following result
(see, for example, [Bum98], Theorem 3.6.1):

Proposition 3.2.7. If f ∈ Sk(N) is an cuspidal eigenform for the Hecke op-
erators Tp, with p not dividing N , then ϕf lies in an irreducible subspace of
A0(GL2(Q)\GL2(A),1) of automorphic forms with trivial central character, and
thus corresponds to an automorphic representation πf .

Now, since ϕf is an eigenform for the Hecke operators, we know that

Tp(ϕf ) = ap(f)ϕf ,

where ap(f) is the eigenvalue of f with respect to Tp, for a prime p not di-
viding N . Moreover, since ϕf is of level K0(N), and Kp(N) = GL2(Zp) if
p does not divide N , it is clear that the components πf,p are unramified at
such primes. They therefore take the form of an unramified principal series
πf,p(χ1, χ2) for some pair of characters χ1, χ2, for which we have seen that the
space of Kp(N)-fixed vectors is one-dimensional, on which the Hecke operator
Tp acts as multiplication by the scalar

θ(Tp) = p
1
2 Tr(tπf,p),

where tπf,p is the Langlands parameter of πf,p.

Thus
ap(f) = p

1
2 Tr(tπf,p),

and we may henceforth restrict our attention solely to automorphic represen-
tations, safe in the knowledge that the arithmetic information we covet is pre-
served.
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3.3 The Local Langlands Correspondence

Having introduced automorphic representations as a generalization of classi-
cal modular forms, we would like to discuss the Galois representations attached
to them. Unfortunately, this is not as straightforward as the classical case -
indeed, in general it is not known how to construct such representations. What
one can say is what behaviour we would expect the Galois representation at-
tached to an automorphic representation to exhibit, which is what we aim to
describe in this section.

As before, let F be a number field, and G = ResF/Q(GL2). Given an `-adic
Galois representation

ρ : Gal(F/F )→ GL2(Q`),

one can define local representations

ρv : Gal(F v/Fv)→ GL2(Q`)

for each place v by composing ρ with the natural map (up to conjugation)
Gal(F v/Fv)→ Gal(F/F ).

Now, given a cuspidal automorphic representation π = ⊗πv of G(A), there
is a well-defined notion of what it means for a local Galois representation ρv
to be attached to the admissible representation πv (which we shall explain in
more detail later). Our hope, therefore, is that given π, one can find a global
representation ρ such that the local representations ρv are attached to the local
components πv in this manner (at least for all but finitely many primes). In
a later section, we shall describe a result proving the existence of such a ρ
for certain number fields F (with appropriate conditions on the automorphic
representation π), but for now we shall make the correspondence between local
representations more explicit (for a more detailed reference, see [Cog04]).

Let v be a non-archimedean place of F , and let Iv and Frobv denote the
inertia subgroup and a geometric Frobenius element of Gal(F v/Fv) respectively.
Define the Weil group Wv to be the subgroup of Gal(F v/Fv) generated by Frobv
and Iv; this can be seen to have dense image in Gal(F v/Fv). We have a valuation
map

v : Wv → Z, v(Frobrvx) = r for all r ∈ Z, x ∈ Iv,

and consequently define a map

‖·‖ : Wv → Fv, w 7→ q−v(w),

where the residue field of Fv has cardinality q.

Any representation of Gal(F v/Fv) immediately gives rise to a representation
of Wv, and much of the information we are interested in is preserved under this
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correspondence (since it is linked to the geometric Frobenius). We can extend
Wv to a group scheme W ′v, known as the Weil-Deligne group, defined by setting

W ′v = Wv nGa,

where Wv acts on the additive group Ga via

wxw−1 = ‖w‖x.

The main reason for studying the Weil-Deligne group is that its represen-
tation theory is simpler: effectively it allows us to ignore the topology of the
target field. To expand on this, we define a representation ρ′ of W ′v to be a pair
(ρ,N), where

ρ : Wv → GL(V )

is a homomorphism from Wv to the group of automorphisms of an n-dimensional
vector space V , which is continuous with respect to the discrete topology on
V (i.e., the kernel of ρ contains an open subgroup of Iv) and N is a nilpotent
endomorphism of V such that

ρ(w)Nρ(w)−1 = ‖w‖N

for all w ∈Wk.

We call a representation ρ′ of W ′v irreducible if the corresponding represen-
tation ρ of Wv is. Note that, being nilpotent, N has non-trivial kernel, and
that this kernel is a ρ-invariant subspace of V . Thus for any irreducible rep-
resentation of W ′v, we must have N = 0, and so irreducible representations of
W ′v simply correspond to irreducible representations of Wv that are continuous
with respect to the discrete topology on V .

We call a representation ρ′ of W ′v Frobenius semisimple if the representation
ρ of Wv is semisimple (that is, a direct sum of irreducible representations). Any
representation ρ′ has a canonical Frobenius semisimplification ρ′Frob, which we
define as follows: given a lift φ of Frobv to Wv, we can decompose ρ(φ) as a
product ΦuΦs = ΦsΦu, where Φu is unipotent and Φs semisimple (that is, every
Φs-invariant subspace of the vector space V has a Φs-invariant complement).
We obtain ρ′Frob by leaving N and ρ|Iv unchanged, and replacing ρ(Frobv) with
Φs.

For our purposes, we will choose the vector space V to be defined over
either Q` or C. In fact, since the definition of a representation of W ′v makes
no mention of the topology on V , any choice of isomorphism Q` ' C gives
rise to an identification between `-adic and complex representations of W ′v, so
for practical purposes we consider only the latter. Moreover, when considering
irreducible representations, we can restrict ourselves to complex representations
of the Weil group Wv.
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With these ideas in place, one can easily define the local L-factor attached
to a Frobenius semisimple representation ρ′ = (ρ,N) of W ′v. To do this, define
VN to be the subspace of ker(N) fixed by the action of Iv under ρ. We then set

L(s, ρ) = det(1− q−sρ(Frobv)|VN )−1,

where we recall that q is the cardinality of the residue field of Fv.

We shall omit a discussion of the archimedean places, as these will not play
a prominent role in our work. It turns out that the irreducible admissible rep-
resentations of GL2(Fv) and the irreducible representations of the Weil-Deligne
group W ′v are closely linked:

Theorem 3.3.1. Let v be a non-archimedean place of F . Then there is a
bijection between the 2-dimensional irreducible admissible representations of
GL2(Fv) and the 2-dimensional representations of W ′v.

We denote the image of an irreducible admissible representation πv under
this correspondence by ρπv . One can show that if πv is an unramified principal
series πv = π(χ1, χ2), then ρπv is the direct sum χ̃1⊕χ̃2 of unramified characters,
where χ̃i(Frobv) = χi($), for a uniformiser $ of Fv. With this in mind, it is
straightforward to see that we have an equivalence of local L-factors

L(s, πv) = L(s, ρπv ).

In particular, we note that

Tr(ρπv (Frobv)) = Tr(tπv ),

where tπv denotes the Langlands class of πv.

We now return to the global situation. As mentioned previously, a global
Galois representation ρ gives rise to a local Galois representation ρv for each
non-archimedean place v, which in turn gives rise to a representation of the
Weil group Wv. If this is irreducible, then it corresponds to a representation
of the Weil-Deligne group W ′v, which we denote by WD(ρv). By fixing an
isomorphism ι : Q` → C if necessary, we will always assume that WD(ρv) is a
complex representation.

Now, given a cuspidal automorphic representation π = ⊗πv, we will say that
a Galois representation ρ is attached to π if, for all but finitely many places v
of F , we have

WD(ρv) ' Lv(πv),

where Lv(πv) denotes the representation of W ′v corresponding to πv under The-
orem 3.3.1.

We shall soon give an explicit example of a class of automorphic representa-
tions to which we can attach Galois representations. These representations will
be connected to the cohomology of certain arithmetic groups, and so we shall
begin with a discussion of precisely what this means.
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3.4 Automorphic Representations and Cohomol-
ogy

We now discuss the promised generalization of the Eichler-Shimura isomor-
phism. As before, fix a number field F , with ring of integers OF , and let G
denote the Q-group ResF/Q(GL2). The group cohomology of G can be decom-
posed into two summands - the cuspidal and Eisenstein cohomology of G, the
former of which is connected to cuspidal automorphic representations for G,
and is our main object of interest. We shall give a more detailed description of
this cuspidal cohomology in the following exposition, which follows the spirit of
Joachim Schwermer’s treatment in [Sch06].

Before proceeding further, we establish some notation. Let A denote the
ring of adeles over the rationals, which we decompose into finite and infinite
parts

A = Af × R

as standard. If Sf and S∞ denote the sets of finite and infinite places of F
respectively, then we obtain a similar decomposition

G(A) = G(Af )×G(R) '
∏
v∈Sf

′
GL2(Fv)×

∏
v∈S∞

GL2(Fv),

where the product over the finite places Sf is restricted with respect to the
subgroups GL2(Ov).

Noting that
G(R) ' GL2(R)r ×GL2(C)s,

where the number field F has signature [r, s], we fix a standard choice of compact
open subgroup K∞ of G(R) by setting

K∞ = O(2)r ×U(2)s.

We shall not yet specify a compact open subgroup Kf of G(Af ), instead we
shall simply state that all such subgroups under our consideration will be of the
form

Kf =
∏
v∈Sf

′
Kv,

where Kv is a compact subgroup of GL2(Fv), which we take to be GL2(Ov) for
all but finitely many places v ∈ Sf .

Let AG denote the maximal Q-split torus in the centre of G, which can be
identified with the multiplicative Q-group Gm. Moreover, let AG(R) denote
the set of real points of AG, and A0

G(R) the connected component of AG(R)
containing the identity, so that A0

G(R) ' R+, embedded diagonally into the
components of G(R) (we refer to A0

G(R) as the split component of G).
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Recall from Section 3.1 that we have an identification

Γ0(N)\SL2(R) ' GL2(Q)\GL2(A)/A0
G(R)K0(N),

and thus can identify the open modular curve Y0(N) with the double coset space

GL2(Q)\GL2(A)/A0
G(R)K∞K0(N),

where K∞ = SO(2). Motivated by this, we would like to consider spaces of the
form

XKf := G(Q)\G(A)/A0
G(R)K∞Kf

for various choices of compact open subgroup Kf ⊂ G(Af ).

We shall be interested in cohomology with trivial coefficients (in keeping with
the classical connection between elliptic curves and modular forms of weight 2).
Given a compact subgroup Kf , we define the de Rham complex Ω(XKf ,C) to
be the complex of smooth, complex-valued differential forms on XKf , and let
H∗(XKf ,C) denote the cohomology of Ω(XKf ,C).

While we will be interested in spaces XKf for a specific choice of Kf , it is
useful at first to consider all such subgroups at once by means of a direct limit
over the cohomology groups H∗(XKf ,C). Explicitly, given a second compact
subgroup K ′f of G(A), with K ′f ⊂ Kf , we obtain an inclusion H∗(XKf ,C) ↪→
H∗(XK′f

,C), thus forming a directed system of cohomology groups. We denote

the direct limit by
H∗(G,C) = lim−→

Kf

H∗(XKf ,C).

We note that H∗(G,C) admits a natural G(Af )-module structure, induced
by the natural map g : XKf → Xg−1Kfg for g ∈ G(Af ). Thus, given a particular
compact subgroup Kf ⊂ G(Af ), one may recover the cohomology of XKf simply
by taking Kf -invariants.

Now, let MG denote the connected component of the intersection of the
kernels of all Q-rational characters ofG, and mG the corresponding Lie algebra of
MG(R). Denoting by g and aG the Lie algebras of G(R) and A0

G(R) respectively,
we have a decomposition

g = aG ⊕mG,

and so we can view mG as the Lie algebra of A0
G(R)\G(R).
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For ease of notation, write A(G) and A0(G) for the spaces A(G(Q)\G(A),1)
andA0(G(Q)\G(A),1) of automorphic (respectively cuspidal automorphic) forms
for G with trivial central character (in which we run through all possible com-
pact subgroups Kf ). Then we have an isomorphism of G(Af )-modules:

H∗(G,C) ' H∗(mG,K∞; A(G)),

where the cohomology on the right-hand side is the relative Lie algebra coho-
mology with respect to (mG,K∞) (see, for example, [Sch06], Section 3.2).

There is a decomposition

H∗(G,C) = H∗Eis(G,C)⊕H∗cusp(G,C)

of H∗(G,C) into Eisenstein and cuspidal cohomology, where

H∗cusp(G,C) ' H∗(mG,K∞; A0(G)).

We are primarily interested in the cuspidal cohomology, but we briefly men-
tion that the Eisenstein cohomology can be thought of as being connected to
automorphic forms for parabolic subgroups of G (i.e., it arises from subgroups
of G of strictly smaller rank).

Since we are concerned with the cuspidal cohomology H∗cusp(G,C), we would
like to understand more about its structure. Given a cuspidal automorphic
representation π, let Vπ = Vπ∞ ⊗ Vπf denote the (g,K∞) × G(Af )-module
associated with the representation π. Then we have a decomposition of G(Af )-
modules

H∗cusp(G,C) =
⊕
π

H∗(mG,K∞;Vπ∞)⊗ Vπf ,

where the sum ranges over those cuspidal automorphic subrepresentations of
the space A(G) (see [Sch06], Theorem 4.1).

In particular, fixing a compact open subgroup Kf and taking Kf -invariants,
we find that

H∗cusp(XKf ,C) =
⊕
π

H∗(mG,K∞;Vπ∞)⊗ V Kfπf ,

where now the sum is restricted to those cuspidal automorphic representations
of level Kf of the space A0(G).

For our purposes, we will say that a cuspidal automorphic representation
π is of cohomological type and weight two if the summand H∗(mG,K∞;Vπ∞)
is non-zero. Higher weight representations correspond to non-trivial coefficient
systems in the cohomology.
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As in the classical case, the cohomology H∗(XKf ,C) admits a Hecke action.
Indeed, let K = Kf , and choose g ∈ G(Af ) such that each of the subgroups
K1 := K ∩ g−1Kg and K2 := K ∩ gKg−1 have finite index in K. Then the
Hecke correspondence

K1

ι1

��

αgf
// K2

ι2

��

K K

from Section 3.1 induces a correspondence on the cohomology groups

H∗(XK1
,C)

αgf ,∗
// H∗(XK2

,C)

ι2,∗

��

H∗(XK ,C)

ι∗1

OO

H∗(XK ,C)

via the action on the corresponding de Rham complexes. We shall not give an
explicit computation here, rather we shall wait until later, when we have shaped
the cohomology into a more computationally accessible form.

We will make one final observation regarding the action of Hecke operators
on cohomology. Suppose first that we restrict to cohomology with rational co-
efficients. According to [Har06], Chapter 2, Proposition 2.2, H∗(G,Q) is a
G(Af )-module, and by taking Kf -coinvariants we obtain the rational cohomol-
ogy groups H∗(XKf ,Q), on which the Hecke operators act as defined previously.
Crucially, it can be shown that the rational cuspidal cohomology in fact gener-
ates the complex vector space H∗cusp(XKf ,C), and so in particular the action of
the Hecke operators on cuspidal cohomology groups can be defined rationally.
We will bear this in mind for future reference.

While we do not have an explicit description of the (mG,K∞)-cohomology
appearing in the decomposition of H∗cusp(XKf ,C), we can at least state a result
concerning the degrees in which we can have non-vanishing cuspidal cohomology.
Indeed, let X denote the symmetric space

X = G(R)/A0
G(R)K∞,

and let `0(G) = rk(g)− rk(k)− 1, where g and k denote the Lie algebras of the
(real) Lie groups G(R) and K∞ respectively (here the rank of a real Lie algebra
is given by the dimension of a Cartan subalgebra). Then we have the following
result:

Proposition 3.4.1.

Hi
cusp(G,C) = 0 if i /∈

[
1

2
(dim(X)− `0(G)),

1

2
(dim(X) + `0(G))

]
.
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This is similar to, but differs slightly from, [Sch06], Theorem 6.2, in that
the result there allows arbitrary coefficient systems, and makes no mention of
the split component A0

G(R). Justification for this result can be found on page
34 of [Gun11].

For our example, in which G = ResF/Q(GL2), we can give a simple formula
for the degrees in which the cuspidal cohomology is non-vanishing. As before,
let F have signature [r, s], so that

G(R) ' GL2(R)r ×GL2(C)s,

and
K∞ ' O(2)r ×U(2)s.

In the next chapter, we shall see that the dimension of the symmetric space
X is given by

dim(X) = 3r + 4s− 1,

which makes use of the identifications

SL2(R)/SO(2) ' h2 and SL2(C)/SU(2) ' h3,

where h2 and h3 denote hyperbolic 2- and 3-space respectively.

To work out the value `0(G), we note that the Lie algebras gl2(R) and gl2(C)
comprise all 2 × 2 real (respectively complex) matrices, while o(2) and u(2)
comprise all 2 × 2 real skew-symmetric (respectively complex skew-hermitian)
matrices. For each of the above, with the exception of o(2), the subalgebra of
all diagonal matrices is a Cartan subalgebra, while o(2) is a 1-dimensional (and
thus abelian) Lie algebra. Thus

rk(g) =


2; if g = gl2(R),
4; if g = gl2(C),
1; if g = o(2),
2; if g = u(2),

and so
`0(G) = r + 2s− 1.

Combining this information, we have the following result:

Corollary 3.4.2. Let G = ResF/Q(GL2), where F is a number field with sig-
nature [r, s]. Then Hi(G,C) is non-zero only if

i ∈ [r + s, 2r + 3s− 1].
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3.5 A Global Langlands Correspondence

We now give the promised example of a Galois representation attached to
a cuspidal automorphic representation, as presented by C.P. Mok in [Mok14],
which will form the basis for our later study. While Mok’s result is more gen-
eral, we shall restrict our attention to automorphic representations with trivial
central character, echoing the classical treatment in which elliptic curves corre-
spond to modular forms without character.

We begin by stating the result (an adaptation of [Mok14], Theorem 1.1).
Recall that we say a cuspidal automorphic representation π is of cohomological
type if it corresponds to a non-zero summand in the cohomology H∗cusp(G,C).

Theorem 3.5.1. Let F be a CM field, and let π be a cuspidal automorphic rep-
resentation of ResF/Q(GL2) of cohomological type, with trivial central character,
and fix a prime `. Then there exists an `-adic Galois representation

ρπ : Gal(F/F )→ GL2(Q`)

such that, for each place v of F not dividing `, we have the local-to-global com-
patibility statement, up to semisimplification:

WD(ρπ,v)
ss ' Lv(πv ⊗ |det|−

1
2

v )ss.

Furthermore, if πv is not a twist of Steinberg (e.g., is an unramified princi-
pal series) then we have the full local-to-global compatibility statement, up to
Frobenius semisimplification:

WD(ρπ,v)Frob ' Lv(πv ⊗ |det|−
1
2

v ).

We will require a few details regarding the representation ρπ. Note first
that for each place v at which the representation πv is unramified, so too is the

representation Lv(πv ⊗ |det|−
1
2

v ). Since Frobenius semisimplification preserves
the action on inertia groups, this implies that ρ is similarly unramified at these
places.

Next, for each unramified place v, we have

Tr(Lv(πv ⊗ |det|−
1
2

v )(Frobv)) = q
1
2 Tr(tπv ),

where q is the cardinality of the residue field of Fv, and tπv denotes the Langlands
class of πv.
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In particular, suppose that ϕ is an automorphic form of level K0(n), for some
ideal n of F , which is an eigenform for the Hecke operators Tp, and let π be
its associated automorphic representation. If v is a place of F not dividing n,
then the subgroup Kv(n) of K0(n) is, by definition, the group GL2(Ov). Since
ϕ is invariant under K0(n), it follows that there is a non-trivial vector fixed
by the action of GL2(Ov) under πv (which in fact spans the one-dimensional
space of GL2(Ov)-fixed vectors, by the results of Section 3.2), and thus πv is

unramified. In this case, q
1
2 Tr(tπv ) is equal to θ(Tv) as in Section 3.2 (where

we extend the notion of a Hecke operator to arbitrary fields in the obvious
manner).

Finally, by Theorem 3.3.1, the determinant of the local Galois representa-

tion ρv is equivalent to |det|−
1
2

v . Denoting by $ a uniformiser of Fv, we have

|det($)|−
1
2

v = q,

where q is the cardinality of the residue field of Fv. Under the aforementioned
correspondence, we observe that

det(ρv(Frobv)) = q,

and thus the determinant of ρv is given by the local cyclotomic character, which
we recall is the same as the determinant of the Galois representation attached
to a rational elliptic curve.
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Chapter 4

Koecher Theory

Motivated by the results of Section 3.4, we aim to study automorphic repre-
sentations through the corresponding cohomology of certain symmetric spaces
for the group ResF/Q(GL2), with the aim of being able to compute the data
attached to the Galois representations constructed in Section 3.5 in the case
where F is a CM quartic field.

We begin by establishing the structure of the global symmetric spaces we
will study in Section 4.1, and show that they can be realised as cones of
binary Hermitian forms over the field F . Such cones are examples of positivity
domains, and in Section 4.2 we recall the theory of Koecher (generalising work
of Voronöı) which provides us with a decomposition of such domains. In Section
4.3 we continue our exploration of this theory by studying the Koecher polytope,
an infinite polytope which captures the information of this decomposition in a
manner that will lend itself more readily to our future calculations.

Finally, in Sections 4.4 and 4.5 we return, armed with the knowledge of
the previous sections, to our case of interest, and provide some details of the
Koecher polytope specific to our global symmetric space.

57
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4.1 A Model for the Symmetric Space of GL2

Let F be a number field, with signature [r, s] and ring of integers OF , and let
G denote the reductive Q-group ResF/Q(GL2), where ResF/Q denotes the Weil
restriction of scalars. By the results of Section 3.4, we can study automorphic
forms for G by instead looking at the cohomology of certain symmetric spaces

XKf = G(Q)\G(A)/A0
G(R)K∞Kf ,

where A0
G(R) is the split component of G, and Kf is a compact open subgroup of

G(Af ). These spaces can, in turn, be realized as quotient spaces of the globally
symmetric space

X = G(R)/A0
G(R)K∞.

As touched upon earlier, there is a geometric realization of this space, echoing
the role of the complex upper half-plane in the theory of classical modular forms.
Indeed, note that

G(R) ' GL2(R)r ×GL2(C)s,

while
K∞ ' O(2)r ×U(2)s.

In addition, we have identifications

GL2(R)/O(2) ' h2 × R+

and
GL2(C)/U(2) ' h3 × R+,

where h2 and h3 denote hyperbolic 2- and 3-space respectively. Recalling that
A0
G(R) ' R+, we obtain the final identification

X ' hr2 × hs3 × Rr+s−1
+ .

We will now present an alternative description of the symmetric space X, in
terms of a cone of binary Hermitian forms over F , which will have the benefit of
being more amenable to computations. The field F has r real embeddings and s
conjugate pairs of complex embeddings; for each conjugate pair, fix a particular
embedding F ↪→ C. For each infinite place v, define

Vv =

{
Sym2(R); if v is real;
Herm2(C); if v is complex,

where Sym2(R) and Herm2(C) denote the real vector spaces of real symmetric
and complex Hermitian 2× 2 matrices respectively.
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Define the space of Hermitian forms over F to be

V =
∏
v

Vv.

This is a real vector space, with

dimR(V) = 3r + 4s.

We can equip V with an inner product 〈 , 〉 by setting

〈X,Y 〉 =
∑
v

cvTr(XvYv),

where cv = 1 if v is a real place of F , and cv = 2 if v is a complex place of F .

The vector space V admits an action of the group G(R). Indeed, identifying
G(R) ' GL2(R)r × GL2(C)s via the embeddings corresponding to the infinite
places of F , we have, for an arbitrary element g = (gv) ∈ G(R):

g ·X = (gvXvg
∗
v) for all X ∈ V,

where g∗v denotes the transpose of gv if v is a real embedding, and the complex
conjugate transpose of gv if v is a complex embedding.

We can define a cone C contained in V by setting Cv to be the cone of positive
definite matrices in Vv for each v, and then defining

C =
∏
v

Cv.

With respect to the inner product 〈 , 〉 previously defined on V, C is self-
adjoint, meaning that we have a characterization

C = {X ∈ V; 〈X,Y 〉 > 0 for all Y ∈ C \ {0}},

where the closure C of C consists of all positive semi-definite forms (in the sense
that we allow each component to be positive semi-definite).

The group action of G(R) on V restricts to an action on C, and in fact any
linear automorphism of C arises in this way. Moreover, we have the following
result:



60 CHAPTER 4. KOECHER THEORY

Proposition 4.1.1. The action of G(R) on the cone C described above is tran-
sitive.

Proof. Since both C and G(R) decompose into products indexed by the
infinite places of F , it suffices to prove transitivity of the action componentwise.
LetX1, X2 ∈ Cv for some place v. Since both are positive definite real symmetric
(respectively Hermitian) matrices, there exist orthogonal (respectively unitary)
matrices M1 and M2 such that the matrices MiXiM

∗
i are diagonal, say

MiXiM
∗
i =

(
αi 0
0 βi

)
,

where the αi and βi are positive real numbers.

If we define

g = M∗2

(
(α2

α1
)

1
2 0

0 (β2

β1
)

1
2

)
M1,

then g ∈ G(R), and we have g ·X1 = X2, as required. �

Now, consider the point I = (Iv) ∈ C, where each Iv is the 2×2 identity ma-
trix in the factor Sym2(R) or Herm2(R). It is clear to see that under the action
of G(R), each Iv is fixed by the orthogonal subgroup O(2) or unitary subgroup
U(2) of GL2(Fv), depending on whether v is real or complex. It therefore follows
that C ' G(R)/K∞, where K∞ is the standard maximal compact subgroup of
G(R) defined previously. Furthermore, if we quotient out C by positive real
homotheties, we obtain an isomorphism

C/R+ ' G(R)/A0
G(R)K∞,

thus confirming our earlier statement that we can realise our symmetric space
X as a cone of Hermitian forms over F .



4.2. KOECHER’S REDUCTION THEORY 61

4.2 Koecher’s Reduction Theory

As stated previously, the benefit of viewing the symmetric space X as a
cone of positive definite Hermitian forms is that it makes computations more
straightforward. To clarify this statement, we will now give a brief exposition
of the work of Koecher on positivity domains ([Koe60]), which will give us a
computable model for this cone. We follow the treatment given by Paul Gunnells
(see for example, [Gun11] or [GY13]).

Let V be a finite-dimensional real vector space, equipped with an inner
product 〈 , 〉, and give V the standard topology induced by this inner product.
For a subset C ⊂ V , let C denote its closure (with respect to the aforementioned
topology), Int(C) its relative interior, and ∂C = C \ Int(C) its boundary.

We call a subset C ⊂ V a positivity domain if the following are satisfied:
i. C is open and non-empty;
ii. 〈X,Y 〉 > 0 for all X,Y ∈ C; and
iii. For each X ∈ V \ C there exists a non-zero Y ∈ C such that 〈X,Y 〉 ≤ 0.

Proposition 4.2.1. The cone C of positive definite Hermitian forms over F de-
fined in the previous section (viewed as a subset of the full space V of Hermitian
forms) is a positivity domain.

Proof. This follows immediately from the fact that C is self-adjoint. �

In fact, it is easy to see that any positivity domain is a cone (in the sense
that it is convex and closed under positive real homotheties) and cannot contain
any lines.

Now, let D be a discrete non-empty subset of C \ {0}. For each Φ ∈ C, let

mD(Φ) = inf
X∈D
{〈Φ, X〉},

the minimum of Φ (with respect to D). In [Koe60] it is shown that mD(Φ) ≥ 0,
and furthermore that the infimum is achieved only on a finite set of points. We
call this set the set of minimal vectors of Φ, and denote it by MD(Φ):

MD(Φ) := {X ∈ D; 〈Φ, X〉 = mD(Φ)}.

We call a point Φ ∈ C perfect (with respect to D) if the linear span of its
minimal vectors MD(Φ) is the full space V .
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In the specific example of the cone C of positive definite Hermitian forms
over F , we refer to perfect points as perfect forms. We have the following
characterization of such forms:

Proposition 4.2.2. Let C denote the cone of positive definite Hermitian forms
over F , and let D be a discrete non-empty subset of C. Then a point Φ ∈ C is per-
fect if, and only if, it can be recovered uniquely from the data {mD(Φ),MD(Φ)}
(that is, if Φ′ ∈ C satisfies mD(Φ′) = mD(Φ) and MD(Φ′) = MD(Φ), then
Φ′ = Φ).

Proof. Let v1, . . . , vr and vr+1, . . . , vr+s denote the set of real and complex
places of F respectively, and define an R-basis for V by giving each Vvi the basis

Bi =

{
{xi,1, xi,2, xi,3}; i ∈ {1, . . . , r}
{xi1, xi2, xi3, xi4}; i ∈ {r + 1, . . . , r + s},

where
xi1 = ( 1 0

0 0 ) , xi2 = ( 0 0
0 1 ) , xi3 = ( 0 1

1 0 ) , xi4 =
(

0 α
−α 0

)
,

and α2 = −1.

Now, let

A =
∑
i,j

aijxij , and B =
∑
i,j

bijxij

be any two points in V. Then

〈A,B〉 =

r+s∑
i=1

(ai1bi1 + ai2bi2 + 2ai3bi3) + 2

r+s∑
i=r+1

ai4bi4 = ab̂T ,

where
aij = aij ,

and

b̂ij =

{
bij ; if j = 1, 2,
2bij ; if j = 3, 4.

Given Φ ∈ C, let MD(Φ) = {P1, . . . , Pt} denote the set of minimal vectors
of Φ, and let

Pk =
∑
i,j

p
(k)
ij xij for each k, and Φ =

∑
i,j

φijxij .

We obtain a linear system of equations

p(k)φ̂T = mD(φ), k = 1, . . . , t,

as above. From this it is clear that we have a unique solution for Φ if, and only
if, the p(k) form the rows of a matrix of rank 3r+ 4s, which occurs if, and only
if, Φ is perfect. �
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Throughout our work, we will fix a choice of discrete set D, taking the set
Ξ consisting of points of the form q(x), x ∈ O2

F \ {0}, where

q(x) = (xvx
∗
v),

with each xv the image of x under the embedding F 2 ↪→ F 2
v . Note that each

matrix xvx
∗
v has rank one, and thus q(x) ∈ C.

It is clear that a point Φ in a positivity domain C is perfect if, and only
if, λΦ is also perfect for any λ ∈ R+, in which case mD(λΦ) = λmD(Φ). We
may therefore consider only those perfect forms Φ for which mD(Φ) = 1. Given
a discrete set D, we denote by Perf(D) the set of perfect points for D whose
minimum is 1.

One of the benefits of studying positivity domains is that they exhibit a re-
duction theory : given a positivity domain C, we will find that we can decompose
C into a family of cones Σ which has only finitely many orbits under the action
of certain discrete subgroups Γ of the automorphism group GC ⊂ GL(V ) of C.
This is reminiscent of the classical situation, and the fundamental domains for
the action of congruence subgroups Γ ⊂ SLn(Z) on the complex upper half-plane
h2.

In the case of binary Hermitian forms over a number field, this theory will
utilize the discrete set Ξ we have described previously. More generally, given a
positivity domain C, call a non-empty discrete set D ⊂ C \ {0} admissible if for
any sequence (Φi) in C converging to a point in ∂C, we have mD(Φi)→ 0.

Proposition 4.2.3. The set Ξ defined above is an admissible subset of the cone
C of positive definite Hermitian forms over F .

Proof. See [Koe60], Lemma 11. �

We are almost in a position to discuss the aforementioned reduction theory.
Before we proceed, we need a few basic notions from the field of convex geometry.

A polyhedral cone in a real vector space V is a subset σ of the form

σ = σ(v1, . . . , vt) =
{∑

λivi; λi ≥ 0
}
,

where v1, . . . , vt ∈ V is a fixed set of vectors. We say that the set {v1, . . . , vt}
is a spanning set for σ. If σ admits a linearly independent spanning set, then
we call σ simplicial. The dimension of a polyhedral cone σ is the dimension of
its linear span; if d = dim(σ), we call σ a d-cone.
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Fix an inner product space V , with positivity domain C, and let D ⊂ C \ {0}
be an admissible subset. Given a perfect point Φ ∈ Perf(D), one can naturally
define a polyhedral cone σ(Φ) = σ(P1, . . . , Pt), where {P1, . . . , Pt} = M(Φ) is
the set of minimal vectors of Φ. We call such a cone the perfect pyramid asso-
ciated to Φ. By definition, it is a cone of dimension dimR(V ), although it need
not be simplicial. Let Σ = ΣD denote the set of perfect pyramids, together with
all their proper faces, as we range over all perfect points Φ ∈ Perf(D). Then
Koecher proves in [Koe60] the following result:

Theorem 4.2.4. The perfect pyramids have the following properties:

(i) Any compact subset of C meets only finitely many perfect pyramids.

(ii) Two different perfect pyramids have no interior point in common.

(iii) Given a perfect pyramid σ, there are only finitely many perfect pyramids
σ′ such that σ ∩ σ′ contains a point of C. By part (ii), this must lie on
the boundaries of σ and σ′.

(iv) The intersection of any two perfect pyramids is a common face of each.

(v) Let σ be a perfect pyramid and τ a codimension one face of σ. If τ does
not lie completely in the boundary ∂C, then there exists precisely one other
perfect pyramid σ′ such that σ ∩ σ′ = τ .

(vi)
⋃
σ∈Σ σ ∩ C = C.

By a facet of a perfect pyramid σ, we shall mean a codimension one face. If
two perfect pyramids σ and σ′ meet in a facet τ as in condition (v) above, we
say that σ and σ′ are neighbours.

We call Σ the Koecher fan, and the cones in Σ the Koecher cones.

Let GC ⊂ GL(V ) denote the group of automorphisms of V which fix the cone
C, and let Γ ⊂ GC be a discrete subgroup which preserves the admissible set D.
In [Koe60], Section 5.4 it is shown that Γ admits a properly discontinuous
action on C. Then:

Theorem 4.2.5. We have an explicit reduction theory for Γ in the following
sense:

(i) There are finitely many Γ-orbits in Σ.

(ii) Every X ∈ C is contained in a unique cone in Σ.

(iii) If σ ∈ Σ does not lie completely in the boundary ∂C, the stabilizer

Sσ := {γ ∈ Γ; γ(σ) = σ}

is finite.
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If we choose representatives σ1, . . . , σk of the orbits of Γ ∈ Σ, and let

Ω = Ω(Γ) =

k⋃
i=1

(σi ∩ C),

then the intersection of each cone σ ∈ Σ with C has a Γ-translate which is
contained in Ω. This is not quite a fundamental domain, as we have non-trivial
stabilizers to worry about, but since these are finite groups, it doesn’t in practice
cause a problem.
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4.3 The Koecher Polytope

For computational purposes, we will use an alternative realization of the
Koecher fan and perfect pyramids, which accounts for the scaling present in the
identification

X = C/R+.

Given an admissible set D in a positivity domain C, call a point P ∈ D primitive
if it is a minimal vector of some perfect point, and define Dprim to be the set
of all primitive points. We then define the Koecher polytope Π to be the convex
hull in C of Dprim. This is an infinite polytope, of dimension dimR(V). By
a facet of Π we shall mean any subpolytope of Π of codimension one, while a
face of Π refers to a subpolytope of arbitrary dimension (which is necessarily a
subpolytope of some facet of Π). We say that two facets of Π are neighbours if
their boundaries intersect in a face of Π of codimension two.

Given an arbitrary face F of Π, we define the cone above F to be the
polyhedral cone σ(P1, . . . , Pn), where the Pi are the vertices of F . The following
result gives a justification for considering Π in lieu of the Koecher fan Σ.

Proposition 4.3.1. Given a perfect point Φ ∈ C, the convex hull of the minimal
vectors of Φ defines a facet of the Koecher polytope Π. Moreover, if no facet τ
of a perfect pyramid σ ∈ Σ is contained in the boundary ∂C, then this in fact
establishes a bijection between perfect points and facets of Π.

Proof. (See also [GY13], Proposition 2.7). Let Φ be a perfect point,
with minimal vectors P1, . . . , Pk. The perfect pyramid σ(Φ) is defined to be the
set of non-negative linear combinations of the Pi, and so its intersection with
the hyperplane

HΦ := {X ∈ C; 〈Φ, X〉 = 1}

is precisely the convex hull of the Pi (recalling that we have chosen our perfect
forms such that the minimum mD(Φ) = 1). Since the vectors Pi span V , this
intersection must be a convex polytope of codimension one. Moreover, since
〈Φ, P 〉 > 1 for any P ∈ D \MD(Φ), it follows that all other points of Π lie in
the half-plane

{X ∈ C; 〈Φ, X〉 > 1}

cut out of V by HΦ (we call HΦ a supporting hyperplane for Π). Thus σ(Φ)∩HΦ

is a proper subpolytope of Π, of codimension one, i.e., a facet.

Thus to each perfect point Φ we can associate a unique facet FΦ of the
Koecher polytope Π. Conversely, the requirement that no facet of a perfect
pyramid is contained in the boundary means that we can apply Theorem 4.2.4
(v), and so any neighbour of FΦ corresponds to a unique perfect point Φ′. It
therefore follows that the facets of Π are in bijection with the perfect pyramids,
as required. �
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We shall see later (in Proposition 4.4.3) that the hypothesis of Proposi-
tion 4.3.1 is satisfied in our case of interest. Thus we shall often refer to cones
in Σ and faces of Π interchangeably. For each face F of Π, we define M(F) to
be the set of vertices of F (that is, the minimal subset of D of which F is the
convex hull). If F is a facet of Π, and ΦF is the perfect point associated to F ,
then every vertex of F is necessarily a minimal vector of ΦF , but the converse
need not hold (which we shall see later in our specific case).

Henceforth, we shall restrict our attention to the space C of Hermitian forms
over a number field F , under the assumption that the above hypothesis holds.
Moreover, motivated by the results of Section 3.5, we shall assume further that
F is a CM field, and that F/Q is a Galois extension. Unless otherwise stated,
proofs in the remainder of Section 4.3 are (to the best of our knowledge)
original, and often specifically tailored to our special case. Where a result exists
in greater generality, we shall endeavour to make this clear.

Since F is a CM field, there is a unique totally real subfield K of F , such that
F/K is a quadratic extension, and a unique non-trivial element τ ∈ Gal(F/Q)
which fixes this subfield. Fixing an initial embedding of F into C, we identify our
choice of complex embeddings with a set {σ1, . . . , σn} of coset representatives
for the quotient group Gal(F/Q)/〈τ〉, and note that τ acts on F via complex
conjugation, regardless of which embedding we choose.

Recall that, for our admissible subset, we take the set Ξ comprising points
of the form {q(x); x ∈ O2

F } defined previously (for ease of notation, we shall
henceforth denote by m(Φ) and M(Φ) the minimum and minimal vectors of a
perfect form Φ respectively, suppressing any mention of Ξ). Note that in the
classical example of F = Q the subset Ξprim is precisely the set

Ξ = {q(x); x ∈ Z2 is primitive},

where we call a vector x = ( ab ) primitive if gcd(a, b) = 1. For more general
fields, however, this need not be the case (in the next section we will see that
Ξprim always contains the latter set - a consequence of Corollary 4.4.2 - and
shall also see an example of a minimal vector which is not an element of this
set).

The group GL2(OF ) admits an action on the sets Ξ and Ξprim, given by

g · q(x) = q(gx), g ∈ GL2(OF ), x ∈ O2
F .

We will typically identify GL2(OF ) with its image in G(R), obtained by
embedding GL2(OF ) into each component. Thus GL2(OF ) can be realized as a
discrete subgroup of G(R), and its action on Ξ is induced by the action of G(R)
on C. In particular, by Theorem 4.2.5 (combined with Proposition 4.3.1)
there are only finitely many orbits of faces of Π under the action of GL2(OF ).
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The main aim of this section is twofold. Firstly, we wish to construct a set
of representatives of the faces of Π under this GL2(OF )-action. In doing so, we
shall present an algorithm which allows one to, given a facet F of Π, construct
all neighbouring facets F ′. Using this, we will present a second algorithm which,
given a point X ∈ Π, allows one to determine the precise facet F = F(X) in
which X lies.

Before proceeding, it will be useful to define subsets of the space V and cone
C which can be defined rationally. Since each point in Ξ can be defined by a
series of rational equations (for example, by defining an Q-basis for F ) these
shall be our starting point. Define, therefore, V(Q) and C(Q) to be the subsets
of V and C respectively comprising all points which can be defined as a rational
linear combination of elements of Ξ. Note that, since the minimal vectors of a
perfect form span the entire space V, we have V(Q)⊗Q R ' V.

We make the following alternative characterization:

Proposition 4.3.2. Let F be as described above. Let Φ ∈ V (respectively C).
Then Φ ∈ V(Q) (respectively Φ ∈ C(Q)) if, and only if, 〈Φ, X〉 ∈ Q for all
X ∈ Ξ.

Proof. Note first that 〈X,Y 〉 ∈ Q for any X,Y ∈ Ξ. Indeed, let X = q(x),
Y = q(y), with x, y ∈ O2

F . Then, noting that Tr(xx∗yy∗) is invariant under
complex conjugation, we find that

〈X,Y 〉 = 2

n∑
i=1

σi(Tr(xx∗yy∗))

= TrF/Q(Tr(xx∗yy∗)),

which is clearly rational. Consequently, 〈Φ, X〉 ∈ Q for any Φ ∈ V(Q) and all
X ∈ Ξ.

Conversely, suppose 〈Φ, X〉 ∈ Q for all X ∈ Ξ, for some Φ ∈ V. In particular,
choose any R-basis for V of such points (from the set of minimal vectors of some
perfect form, for example). Then, since 〈X,Y 〉 ∈ Q for all X,Y ∈ Ξ, we can
define an orthogonal R-basis for V consisting of rational linear combinations of
elements in Ξ, using the Gram-Schmidt algorithm. For each such basis vector,
the inner product with Φ remains rational, and consequently Φ is a rational
linear combination of these basis vectors, and thus of the original elements of
Ξ. �

Note that the same result holds if we replace the condition 〈Φ, X〉 ∈ Q for
all X ∈ Ξ with the weaker condition that 〈Φ, X〉 ∈ Q for all X in some finite
subset of Ξ which spans V as a real vector space. In particular, all perfect forms
lie in C(Q).
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We shall now proceed with the task of constructing the Koecher polytope.
This relies heavily on the fact, which we shall now prove, that, given any facet
F of the Koecher polytope Π, we can construct all facets G of Π which are
neighbours of F . Thus, by translation (noting that, being a convex subset of a
real vector space, Π is connected), we can understand the entire polytope.

Our first step towards this construction is to prove a finiteness result, namely
that there are only finitely many points of Ξ within a certain distance of any
given facet of Π (where we measure the distance of a point X from a facet F
by evaluating the inner product 〈ΦF , X〉).

Lemma 4.3.3. Let F be as above, and fix λ ∈ R+. Then the set

{x ∈ OF ; |σ(x)|2 ≤ λ for all σ ∈ Gal(F/Q)}

is finite.

Proof. The hypothesis that all Galois conjugates of x be bounded in abso-
lute value implies that the coefficients of the characteristic polynomial of x are
bounded, and since these coefficients must be integral the result follows. �

In fact, we have the following, more general result:

Proposition 4.3.4. Let F be as above, and fix λ ∈ R+. Given Φ ∈ C(Q), the
set

{X ∈ Ξ; 0 < 〈Φ, X〉 ≤ λ}

is finite.

Proof. (For a more general proof, see [Gun99], Proposition 3). Let
Φ = (φi), with each φi positive definite, and let X = q(x), for x ∈ O2

F . Then

〈Φ, X〉 = 2

n∑
i=1

x∗iφixi,

where xi = σi(x). Since 〈Φ, X〉 is bounded, the elements x∗iφixi ∈ R are all

bounded. Write φi =
(
ai bi
bi ci

)
, where ai, ci, and det(φi) ∈ R are positive, and

let xi = (wizi ). Then:

x∗iφixi = ai|wi|2 + biw̄izi + b̄iwiz̄i + ci|zi|2 = ai

(
|wi +

bi
ai
zi|2 +

det(φi)

a2
i

|zi|2
)
.

It follows that |zi|2 is bounded for each element σi, and thus there are only
finitely many choices for z ∈ OF , by Lemma 4.3.3. For each value of z, the
conjugates wi are bounded in absolute value with respect to z, and so are also
bounded, proving the result. �
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Suppose, now, that we are given a facet F of Π (and so, by Proposition
4.2.2, we know the perfect form ΦF ). The following result (whose proof we
borrow from [Gun99], Lemma 1) gives a means of constructing the perfect
forms corresponding to neighbouring facets of Π:

Proposition 4.3.5. Let F and G be neighbouring facets of Π, and let E = F∩G.
Choose a point Ψ ∈ V(Q) orthogonal to the cone above the polytope E, such that
〈Ψ, X〉 ≥ 0 for all X ∈ F . Then

ΦG = ΦF + ρ̄Ψ

for a unique ρ̄ ∈ R+.

Proof. The cones above F and G are perfect pyramids, and so the cone
above E , being a facet of both of these pyramids, is of codimension 1, i.e., a
hyperplane in V. Thus Ψ is unique up to a scalar multiple. If Ψ′ = ΦG − ΦF ,
then 〈Ψ′, X〉 = 0 for all X ∈ E , and Ψ′ 6= 0, so ρ̄Ψ = Ψ′ for some non-zero
ρ̄ ∈ R, and thus ΦG = ΦF + ρ̄Ψ. Now, let X ∈ F \ E , so that 〈Ψ, X〉 > 0. Then

1 < 〈ΦG , X〉 = 〈ΦF , X〉+ ρ̄〈Ψ, X〉 = 1 + ρ̄〈Ψ, X〉,

and so ρ̄ > 0, as required. �

Computation of the point Ψ in the above proposition is a straightforward
application of linear algebra, given knowledge of F , E and Ψ. Computation of
ρ̄, on the other hand, requires a little more work. If we can find a point X ∈ Ξ
which lies in G \ E , then we can easily compute ρ̄, so our plan is to search over
“nearby” points X ∈ Ξ and determine whether or not the points (Ξ∩ E)∪ {X}
define a unique form. To begin with, we define a function ρ on the set Ξ by

ρ(X) =
1− 〈ΦF , X〉
〈Ψ, X〉

.

Proposition 4.3.6. Given X ∈ Ξ, we have ρ(X) = ρ if, and only if, X ∈ G\E.

Proof. Suppose first that X ∈ G \ E , so that 〈ΦG , X〉 = 1 < 〈ΦF , X〉, and
〈Ψ, X〉 6= 0. Then

ρ(X) =
1− 〈ΦF , X〉
〈Ψ, X〉

=
〈ΦG , X〉 − 〈ΦF , X〉

〈Ψ, X〉
= ρ.

Conversely, if ρ(X) = ρ then clearly 〈Ψ, X〉 6= 0, hence X /∈ E , and

〈ΦG , X〉 = 〈ΦF , X〉+ ρ(X)〈Ψ, X〉 = 〈ΦF , X〉+ 1− 〈ΦF , X〉 = 1,

so X ∈ G, as required. �
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Thus we seek to find a point X ∈ Ξ with ρ(X) = ρ̄. To this end, define a
set S by

S := {X ∈ Ξ; 〈Ψ, X〉 < 0 and Φ + ρ(X)Ψ ∈ C}.

We claim that S is non-empty. Indeed, if X ∈ Ξ lies in G \E , then the above
result shows that ΦF + ρ(X)Ψ = ΦG ∈ C, and moreover ρ(X) = ρ̄ ∈ R+, so
〈Ψ, X〉 < 0, and thus X ∈ S.

Proposition 4.3.7. The minimal value of ρ(X) as X runs over all elements
of S is ρ̄, and this minimum is attained.

Proof. (See also [Gun99], Lemma 2). We have already seen that ρ(X) = ρ̄
for some elements of S, so suppose X ∈ S with ρ(X) < ρ̄. Then

〈ΦG , X〉 = 〈ΦF , X〉+ ρ̄〈Ψ, X〉
< 〈ΦF , X〉+ ρ(X)〈Ψ, X〉
= 1,

which is a contradiction. �

If we could construct the set S and find an element X ∈ S with ρ(X)
minimal, then we would have our perfect form ΦG . However, a priori, S need
not be finite, so we shall attempt to restrict our attention to a set which is
provably finite, allowing us to perform a search over all of its elements. Given
an arbitrary point P ∈ S, define ΦP = ΦF + ρ(P )Ψ ∈ C, and let TP be the set

TP := {X ∈ Ξ; 〈ΦP , X〉 ≤ 1}.

Proposition 4.3.8. The set TP is finite, and contains those points of Ξ which
lie in G \ E.

Proof. (We use the proof from [Gun99], Lemma 3) Note first that the
points P,ΦF and Ψ ∈ V(Q), and consequently so too is ΦP . Thus by Propo-
sition 4.3.4 the set TP is finite. Now, given X ∈ Ξ lying in G \ E , we have seen
that X ∈ S, and so

〈ΦP , X〉 = 〈Φ, X〉+ ρ(P )〈Ψ, X〉
≤ 〈ΦF , X〉+ ρ̄〈Ψ, X〉
= 〈ΦG , X〉
= 1,

so X ∈ TP , as required. �
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We finally have all the information we require. Indeed, the above result
shows that the set TP ∩ S is non-empty. Thus, if we choose an element X of
this set such that ρ(X) is minimal, then by Propositions 4.3.6 and 4.3.7,
X ∈ G \ E , and so we can construct ΦG .

With this in mind, it is straightforward to determine a set of representatives
for the faces of Π modulo the action of GL2(OF ). It suffices to determine a set
of representatives of the facets of Π, since any lower-dimensional face of Π will
be contained in one of these.

Equivalently, we wish to define a set Perf of GL2(OF )-representatives of
perfect forms. To do this, we begin with an initial perfect form Φ1 ∈ C, and
define Perf := {Φ1}. We then proceed to determine all perfect forms which are
neighbours of Φ1, find a subset of representatives of the orbits under GL2(OF )
of these forms, and add to the set Perf any of these resulting perfect forms
which are not GL2(OF )-equivalent to Φ1. We continue this process inductively.

Now, if Φ and Φ′ are two GL2(OF )-equivalent perfect forms, then the sets
of neighbouring forms of Φ and Φ′ are similarly GL2(OF )-equivalent. It fol-
lows, therefore, that if the set Perf stabilizes (that is, if at any point we do not
add any new forms the Perf) then we must have a complete set of GL2(OF )-
representatives of perfect forms. Since we know that there are only finitely many
GL2(OF )-orbits of perfect forms, we will eventually find that Perf stabilizes un-
der this process, at which point we have found a complete set of representatives.

Note that, having found a set of representative perfect forms (and thus facets
of the Koecher polytope) one can easily find a set of representatives faces of any
lower dimension, simply by decomposing each of the facets, and testing the
resulting faces for GL2(OF )-equivalence (which we shall do in Section 4.5).

To determine an initial perfect form, we use a method discussed in [Sch09],
which was suggested to us by Dan Yasaki. A generalisation of Proposition
4.3.5 states the following:

Proposition 4.3.9. Let Φ be a positive definite Hermitian form over F , and
choose a point Ψ ∈ V(Q) orthogonal to the cone σ(Φ), such that 〈Ψ, P 〉 ≥ 0 for
all minimal vectors P of Φ. Then there exists ρ ∈ R+ such that the linear span
of the minimal vectors of the Hermitian form Φ + ρΨ has dimension strictly
greater than that of the minimal vectors of Φ.

Proof. See the discussion in [Sch09], Section 7. �

One can find this constant ρ in the same manner as discussed previously.
In practice, therefore, we choose an arbitrary positive definite form, determine
its minimal vectors, and repeatedly apply Proposition 4.3.9 until we obtain
a form whose minimal vectors span the entire space V, which must therefore be
perfect (if necessary, we then scale this form so that its minimum is equal to 1).
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The final goal of this section is to determine, given a point X ∈ C, the facet
F(X) of Π above which X lies (equivalently, given any point on the Koecher
polytope, the facet in which it is contained). The algorithm for doing this is
the same as stated in [Gun99] for the Voronoi polyhedron, and applies to the
more general setting of the Koecher polytope.

The idea behind the algorithm is to choose a perfect form Φ, and then re-
peatedly pass to a neighbouring perfect form Φ′ such that 〈Φ′, X〉 < 〈Φ, X〉. We
continue this until this inner product stabilizes, at which point the required facet
F(X) is that associated to the perfect form we have reached. We now provide
some justification (which differs somewhat from that presented in [Gun99]) for
this argument.

Proposition 4.3.10. Let Φ ∈ C(Q) be a perfect form, let X ∈ Π, and fix
λ ∈ R+. Then the set

{g ·X; g ∈ GL2(OF ), 〈Φ, g ·X〉 ≤ λ}

is finite.

Proof. This follows as a result of Proposition 4.3.4. Indeed, let

X =

r∑
i=1

λiXi, λi ∈ R+,

r∑
i=1

λi = 1

for some Xi ∈ Ξ, and suppose on the contrary that the above set is infinite. If
each point Xi had a finite orbit under the action of GL2(OF ), then there would
be only a finite number of possible images of X; thus, without loss of generality,
we may assume that X1 has infinitely many GL2(OF )-translates.

However, by Proposition 4.3.4, there are only finitely many points Y ∈ Ξ
such that 〈Φ, Y 〉 ≤ λ

λ1
, so we must have 〈Φ, g ·X1〉 > λ

λ1
for some g ∈ GL2(OF ),

whence 〈Φ, g ·X〉 > λ, a contradiction. �

Corollary 4.3.11. Let X ∈ C(Q) and fix λ ∈ R+. Then the set of values

{〈Φ, X〉; Φ a perfect form, 〈Φ, X〉 ≤ λ}

is finite.

Proof. By Theorem 4.2.5, there are only finitely many GL2(OF )-orbits of
perfect forms, so let Φ1, . . . ,Φr be a set of representatives. Thus for an arbitrary
perfect form Φ, we have Φ = g · Φi for some i and some g ∈ GL2(OF ), and so

〈Φ, X〉 = 〈g · Φi, X〉 = 〈Φi, g∗ ·X〉,

by definition of the inner product on V.
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By Proposition 4.3.10, only finitely many members of the orbit GL2(OF ) ·
X satisfy the required inequality, and the result follows. �

We require the following classification of the facet F(X) in which a point
X ∈ Π lies:

Proposition 4.3.12. Let F be a facet of Π, and let X ∈ Π. Then X is
contained in F if, and only if, 〈ΦF , X〉 ≤ 〈ΦG , X〉 for all neighbouring facets G
of F .

Proof. (For an alternative proof, see [Gun99], Lemma 4). If X is con-
tained in F , then 〈ΦF , X〉 = 1, and we may write

X =
n∑
i=1

λiXi, λi ∈ R+,

r∑
i=1

λi = 1

for some Xi ∈ M(F). Since for any neighbouring facet G of F , 〈ΦG , Xi〉 ≥ 1,
we have

〈ΦG , X〉 =

n∑
i=1

λi〈ΦG , Xi〉 ≥
n∑
i=1

λi = 1,

as required.

Conversely, suppose X /∈ F , and let

BF :=
∑

Xi∈M(F)

Xi

denote the (scaled) barycenter of F . Parametrize the line in C joining X and
BF by defining

Pt := (1− t)BF + tX, t ∈ [0, 1]

(note that, since C is a convex cone, Pt is indeed contained in C).

Now, Pt lies in the cone above F for small t, but must eventually leave this
cone, as for t close to 1, Qt lies in the same cone as X, and X /∈ F . Thus
Pt0 must lie in the cone above E for some codimension two face E of Π and
some t0 ∈ (0, 1). Let G be the facet which meets F in the face E , so we have
〈ΦF , Pt0〉 = 〈ΦG , Pt0〉 (by the construction in Proposition 4.3.5). Equating
the two, we obtain

(1− t0)〈ΦF ,BF 〉+ t0〈ΦF , X〉 = (1− t0)〈ΦG ,BF 〉+ t0〈ΦG , X〉.

But 〈ΦG ,BF 〉 > 〈ΦF ,BF 〉, since not every vertex of F is a minimal vector
of ΦG , and thus we must have 〈ΦF , X〉 > 〈ΦG , X〉, as required. �
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As a consequence, we note the following:

Corollary 4.3.13. Let F be a facet of Π, and let X ∈ Π. Then 〈ΦG , X〉 =
〈ΦF , X〉 for some neighbouring facet G of F if, and only if, X ∈ F ∩ G.

The reduction algorithm as presented in [Gun99], Theorem 3 is then:

Theorem 4.3.14. Given X ∈ Π, define an algorithm as follows. Choose a facet
F of Π, and choose the neighbouring facet G of F such that 〈ΦG , X〉 is minimal
amongst all such neighbours. If 〈ΦG , X〉 < 〈ΦF , X〉, then replace F with G, and
repeat. Otherwise, terminate the procedure.

This algorithm terminates after a finite number of steps, and the facet F(X)
containing X is the final facet of Π selected by the procedure.

Note that, since any point in C lies above a facet of Π, the algorithm works
equally well when applied to an arbitrary point in C, since some scalar multiple
of it lies in Π.

Proof. By Proposition 4.3.12, the algorithm will produced the required
facet of Π if it terminates, so it remains to prove termination. At each non-
terminating stage, we replace a perfect form Φ with a perfect form Φ′ such that
〈Φ′, X〉 < 〈Φ, X〉. Corollary 4.3.11 shows that there are only finitely many
possible values of 〈Φ, X〉 ≤ 〈ΦF , X〉, where F is our initial choice of facet, and
consequently the algorithm must terminate after a finite number of steps. �

We note, finally, that for an arbitrary point X ∈ C, we have λX ∈ Π for
some λ ∈ R+. Thus the above algorithm will, given a point X in C which does
not lie in the Koecher polytope, produce the perfect pyramid in which X lies
(being the cone above the facet in which λX lies).
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4.4 Facets of the Koecher Polytope

As we have seen previously, in order to understand the Koecher polytope
Π it suffices to understand a set of representatives for the finite number of
GL2(OF )-orbits of facets of Π, as every face is a subpolytope of such a facet.
For our future computations, we will require knowledge of both the facets of
Π and the perfect forms associated to them, and we shall therefore use this
section to discuss a few observations which arose during our study. Throughout
this section, we shall assume that F is a quartic CM field (we shall discuss the
reasons for our further specialization to quartic fields in the next chapter).

Let F = Q(t) be our quartic CM field, which we shall continue to assume is
Galois, and suppose for simplicity that the class group of F is trivial. Denote
by K the real quadratic subfield of F . Fix a choice v1, v2 of non-conjugate
embeddings of F into the complex numbers, and denote by σ the element of
Gal(F/Q) satisfying v2 = v1 ◦ σ.

We begin by briefly discussing the practical means by which we switch be-
tween facets of Π and their corresponding perfect forms. Moving from a facet
to a form is simple: by Proposition 4.2.2, knowledge of the vertices of a facet
F (the set of which contains a subset of minimal vectors of ΦF which spans V
as a real vector space) immediately allows us to compute ΦF by solving a linear
system of equations.

Conversely, given a perfect form Φ, we can define a quadratic form
Q : O2

F → Q by
Q(x, y) = 1

2 〈Φ, q(x+ y)− q(x)− q(y)〉

(note that by Proposition 4.3.2, since Φ ∈ C(Q), this does indeed define a
map into Q).

By fixing a Z-basis for OF , we can identify O2
F with Z8, and compute the

rational matrix AQ of Q with respect to this matrix (note that, since Φ is a
positive definite Hermitian form, AQ is positive definite). We can then define
an integral lattice LQ equipped with an inner product given by

〈P1, P2〉Q = PT1 AQP2,

which can be constructed using MAGMA. Note that, if the point x ∈ O2
F

corresponds to Px in LQ, then

〈Φ, q(x)〉 = Q(x, x) = 〈Px, Px〉Q =: ‖Px‖2Q ,

and so all minimal vectors of Φ correspond to points in LQ of unit norm, and
similarly all points in LQ of unit norm give rise to a minimal vector (although
multiple points can correspond to the same minimal vector).
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Since AQ is positive definite, the set of such vectors is finite, and may be
enumerated (using standard routines in MAGMA), allowing us to reconstruct
the minimal vectors of our form Φ.

We can therefore choose to work either with the set M(Φ) of minimal vectors
of a perfect form Φ, or the set

{x ∈ O2
F ; q(x) ∈M(Φ)}.

For computational efficiency, we prefer to work with smaller sets, and so choose
to use M(Φ). However, there is in fact a potentially smaller set, which still
retains all the information about the Koecher polytope, namely the set M(FΦ)
of vertices of the facet FΦ.

Recall from the previous section that we define the subset Ξprim to be the
points q(x), x ∈ O2

F that are minimal vectors of some perfect form, and that Π
is the convex hull of Ξprim. In the classical situation, it is easy to see that

Ξprim =
{
q(x); x ∈ Z2 is primitive

}
,

where we say that x = ( ab ) is primitive if gcd(a, b) = 1. In fact, each such point
corresponds to a vertex of Π, but this need not be the case for all fields.

We would therefore like to know how to determine precisely which minimal
vectors are vertices. While this can be done simply by constructing the convex
hull, this can be time consuming, so we would like to find a swifter method.
The following result provides this:

Proposition 4.4.1. Let F be a Galois quartic CM field, with trivial class group,
and let Φ be a perfect form. Then there exists a minimal vector q(x) ∈ M(Φ)
which is not a vertex of Π if, and only if, there exist at least three vectors
x1, x2, x3 ∈ O2

F such that:

(i) The points q(x1), q(x2) and q(x3) are distinct minimal vectors of Φ; and

(ii) x1, x2 and x3 are scalar multiples of each other.

Proof. Suppose first that q(x) ∈ M(Φ) does not correspond to a vertex of
Π. Multiplying by an element of GL2(OF ) if necessary, we may assume that
x = ( z0 ) for some z ∈ OF (since if q(x) is a convex linear combination of points
in C, so too must q(gx) be). Then we have λ1, . . . , λr ∈ R+ and x1, . . . , xr ∈ O2

F

(where necessarily r ≥ 2) such that

r∑
i=1

λiq(xi) = q(x)

and so, letting xi = ( uivi ), we have in particular

r∑
i=1

λi

(
|ui|2 uivi
uivi |vi|2

)
=
(
|z|2 0
0 0

)
.
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Since all of the λi are positive, it follows that we must have vi = 0 for each
i, and the result follows.

Conversely, suppose that we have three vectors x1, x2, x3 ∈ O2
F satisfying

conditions (i) and (ii) and, without loss of generality, suppose they take the
form xi = ( ui0 ) for some ui ∈ OF . Note that if |u2|2 = λ|u3|2 for some λ ∈ Q,
then 〈Φ, q(x2)〉 = λ〈Φ, q(x3)〉, whence λ = 1, and q(x2) = q(x3). Since the q(xi)
are assumed distinct, this is not possible, and so |u2|2 and |u3|2 are two Q-
linearly independent elements of the quadratic field K, and thus form a Q-basis
for K. In particular, we have |u1|2 = λ|u2|2 + µ|u3|2 for some λ, µ ∈ Q.

Now, since |u1|2 > 0, at most one of λ, µ can be negative. Thus (re-
labeling the xi if necessary) we may assume that q(x1) = λq(x2) + µq(x3),
where λ, µ ∈ Q+. Then

1 = 〈Φ, q(x1)〉 = λ〈Φ, q(x2)〉+ µ〈Φ, q(x3)〉 = λ+ µ,

and so q(x1) is a convex linear combination of q(x2) and q(x3), and thus is not
a vertex of Π. �

Thus, given a perfect form Φ, we can construct the set of points x ∈ O2
F

such that q(x) ∈M(Φ), and take a representative for each minimal vector. From
these, it is a quick check to see whether or not we have a set of three vectors
satisfying conditions (i) and (ii) above, and from each such set, it is easy to
determine which of the corresponding minimal vectors is a convex combination
of the other two. Omitting all such minimal vectors, we obtain the set M(FΦ)
of vertices of the facet Φ.

To see that this is a valid concern, consider the field F = Q(t), where t
denotes a primitive eighth root of unity. As we shall see in the next section,
there is a perfect form Φ = [M,Mσ], where

M =
1

8

(
−t3 + t+ 2 t3 + t2 − 1
−t2 − t− 1 −t3 + t+ 2

)
.

Now, for x ∈ O2
F , we have

〈Φ, q(x)〉 = 2Tr(Mxx∗) + 2Tr(Mσxσx∗,σ))

= TrF/Q(x∗Mx).

Using this, one can see that the points

X1 = q ( 1
0 ) , X2 = q

(
t3−t+1

0

)
, X3 = q

(
1−t

0

)
are all minimal vectors of Φ, and we have

X3 = 1
2X1 + 1

2X2,

as expected (note too that the vector
(

1−t
0

)
is not primitive, as

NormF/Q(1− t) = 2).
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We remark that, as we would hope, primitive vectors in O2
F do still corre-

spond to vertices of Π:

Corollary 4.4.2. If x ∈ O2
F is primitive, then q(x) is a vertex of Π.

Proof. Without loss of generality, we may assume that x = ( 1
0 ). If q(x) is

not a vertex of Π, then we have x1, x2 ∈ O2
F and λ1, λ2 ∈ Q+, with λ1 +λ2 = 1,

such that q(x) = λ1q(x1) + λ2q(x2), and thus xi = ( ai0 ) for some ai ∈ OF . It
therefore suffices to show that it is not possible to write

1 = λ|a1|2 + (1− λ)|a2|2

where 0 < λ < 1 and a1, a2 ∈ OF , with neither of the ai torsion units.

More generally, we will show that it is not possible to express

1 = λw1 + (1− λ)w2

where 0 < λ < 1 and w1, w2 ∈ OK are totally positive, unless w1 = w2 = 1.
Indeed, since K is a real quadratic field, it is isomorphic to Q(

√
d) for some

positive square-free integer d. If d 6≡ 1 (mod 4), then write wi = ui + vi
√
d.

Then
1 = Re[λw1 + (1− λ)w2] = λu1 + (1− λ)u2.

Since the wi are totally positive, ui ≥ 1, with equality if, and only if, vi = 0.
But since λ > 0, this equation can only hold if u1 = u2 = 1, as required.

If d ≡ 1 (mod 4), then write wi = (ui + 1
2vi) + 1

2vi
√
d. Then

1 = Re[λw1 + (1− λ)w2] = λ(u1 +
1

2
v1) + (1− λ)(u2 +

1

2
v2).

Note that, since each wi is totally positive, we must have (ui + 1
2vi) ≥ 1.

Indeed, if (ui+
1
2vi) = 1

2 , then vi = 1−2ui, so |vi| ≥ 1. Since d ≥ 5, | 12vi
√
d| > 1

2 ,
and so either wi or its conjugate is negative, contradicting the assumption that
wi be totally positive. Thus we must have (ui + 1

2vi) = 1, whence vi = 2− 2ui,
so either vi = 0 or |vi| ≥ 2. The latter assumption again leads us to conclude
that wi is not totally positive, so vi = 0, and wi = 1, as required. �

As a final note, we recall that throughout the previous chapter, we had
assumed that the Koecher polytope satisfied the conditions of Proposition
4.3.1, namely that no facet of Π was contained completely in the boundary
∂C = C \ C of C. We can now justify this claim:
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Proposition 4.4.3. If a face E of the Koecher polytope Π is contained com-
pletely in the boundary ∂C, then E has at most two vertices.

Moreover, a non-vertex point in Π lies in the boundary ∂C if, and only if, it
is contained in such a face.

Proof. Let Φ be a perfect form, and let x, y ∈ O2
F such that q(x) and

q(y) are distinct minimal vectors of Φ. Without loss of generality, assume that
x = ( a0 ) and y = ( uv ) for some a, u, v ∈ OF , with a non-zero. Then the cone
spanned by q(x) and q(y) is contained in the boundary if, and only if

λ
(
|a|2 0
0 0

)
+ (1− λ)

(
|u|2 uv̄

ūv |v|2

)
is semi-definite for all λ ∈ [0, 1], i.e., if, and only if,

λ(1− λ)|a|2|v|2 = 0

for all λ ∈ [0, 1], which occurs if, and only if, v = 0, i.e., x and y lie in the same
F -span.

Thus a face is contained within the boundary if, and only if, the vectors corre-
sponding to its vertices span a 1-dimensional vector space. But by Proposition
4.4.1, these can correspond to at most two such vertices in any given cone.

For the second statement, suppose we have vertices q(x1), . . . , q(xr) and
λ1, . . . , λr ∈ R+ such that

r∑
i=1

λiq(xi) ∈ ∂C,

and assume without loss of generality that x1 = ( a0 ). Then, writing the remain-
ing sum as ( u v

v̄ w ), where u,w ∈ O+
K and uw − |v|2 ∈ O+

K ∪ {0} (since the sum
defines a point in C), we must have λ1|a|2w+(uw−|v|2) = 0, whence v = w = 0.
Thus x1, . . . , xr all lie in the same F -span, so r ≤ 2, and the result follows. �

Thus clearly no facet of Π (whose vertices by definition must span the real
vector space V) can be contained fully in the boundary of C.
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4.5 Examples

We illustrate these ideas by providing details of the decomposition of the
Koecher polytope for three examples of quartic CM fields F of small discrimi-
nant.

4.5.1 The Field F1

Let F1 = Q(t), where t = ζ12 denotes a primitive twelfth root of unity. Let σ ∈
Gal(F/Q) be the automorphism of F sending t to t7. There are two equivalence
classes of perfect forms under the action of GL2(OF ), with representatives given
by the Hermitian forms [M1,M

σ
1 ] and [M2,M

σ
2 ], where

M1 =
1

12

(
−t3 + 2t+ 3 2t3 + t2 − t− 2
−t3 − t2 − t− 1 −t3 + 2t+ 3

)
and

M2 =
1

12

(
−t3 + 2t+ 3 3t3 + t2 − t− 2
t3 − t2 − t− 1 −t3 + 2t+ 5

)
,

whose corresponding perfect pyramids have 20 and 8 vertices respectively.

We present details of the decomposition of the Koecher polytope below. By
a boundary face we mean a face of Π that lies completely within the bondary
∂C of the cone of positive definite forms; the columns denoted simplicial and
non-simplicial faces implicitly refer to faces which have non-trivial intersection
with C.

Dimension Simplicial Faces Non-Simplicial Faces Boundary Faces Total
1 1 0 1 2
2 4 0 0 4
3 12 1 0 13
4 15 2 0 17
5 11 3 0 14
6 4 2 0 6
7 1 1 0 2

We also note:

• There is a single 3-dimensional non-simplicial face, with 6 vertices.

• There are two 4-dimensional non-simplicial faces, each with 7 vertices.

• There are three 5-dimensional non-simplicial faces, each with 8 vertices.

• There is one 6-dimensional non-simplicial face with 10 vertices, and one
with 11 vertices.

• The single 7-dimensional non-simplicial face has 20 vertices, as noted pre-
viously.
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4.5.2 The Field F2

Let F2 = Q(t), where t is a root of the polynomial x4 − x3 + 2x2 + x + 1. Let
σ ∈ Gal(F/Q) be the automorphism of F sending t to t3 − t2 + 2t + 1. There
are two equivalence classes of perfect forms under the action of GL2(OF ), with
representatives given by the Hermitian forms [M1,M

σ
1 ] and [M2,M

σ
2 ], where

M1 =
1

60

(
3t3 + 21 −12t3 + 14t2 − 22t− 8

6t3 − 14t2 + 22t− 4 3t3 + 21

)
and

M2 =
1

60

(
3t3 + 51 −28t3 + 30t2 − 40t− 16

7t3 − 30t2 + 40t− 11 30

)
,

whose corresponding perfect pyramids have 40 and 8 vertices respectively.

As before, we present details of the decomposition of the Koecher polytope:

Dimension Simplicial Faces Non-Simplicial Faces Boundary Faces Total
1 1 0 1 1
2 4 1 0 5
3 9 2 0 11
4 7 7 0 14
5 4 6 0 10
6 2 4 0 6
7 1 1 0 2

We also note:

• There is a single 2-dimensional non-simplicial face, with 4 vertices.

• There are two 3-dimensional non-simplicial faces, each with 5 vertices.

• There are four 4-dimension non-simplicial faces with 6 vertices, and three
with 7 vertices.

• There is a single 5-dimensional non-simplicial face with 8 vertices, two
with 9 vertices, and three with 10 vertices.

• There is a single 6-dimensional non-simplicial face with 12 vertices, two
with 15 vertices, and one with 20 vertices.

• The single 7-dimensional non-simplical face has 40 vertices, as noted pre-
viously.
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4.5.3 The Field F3

Let F3 = Q(t), where t = ζ8 denotes a primitive eighth root of unity. Let
σ ∈ Gal(F/Q) denote the automorphism of F sending t to t3. There are three
equivalence classes of perfect forms under the action of GL2(OF ), with rep-
resentatives given by the Hermitian forms [M1,M

σ
1 ], [M2,M

σ
2 ] and [M3,M

σ
3 ],

where

M1 =
1

16

(
−2t3 + 2t+ 4 −t2 − 2t− 2
2t3 + t2 − 2 −2t3 + 2t+ 4

)
,

M2 =
1

8

(
−t3 + t+ 2 −t3 − 2t2 − 2t− 1

2t3 + 2t2 + t− 1 −4t3 + 4t+ 6

)
and

M3 =
1

8

(
−t3 + t+ 2 t3 + t2 − 1
−t2 − t− 1 −t3 + t+ 2

)
,

whose corresponding perfect pyramids have 12, 12 and 24 vertices respectively.

As before, we present details of the decomposition of the Koecher polytope:

Dimension Simplicial Faces Non-Simplicial Faces Boundary Faces Total
1 2 0 1 3
2 8 0 0 8
3 23 1 0 24
4 33 4 0 37
5 27 7 0 34
6 4 10 0 14
7 0 3 0 3

We also note:

• There is a single 3-dimensional non-simplicial face, with 6 vertices.

• There are two 4-dimensional non-simplicial faces with 6 vertices, and two
with 7 vertices.

• There are four 5-dimensional non-simplicial faces with 7 vertices, and three
with 8 vertices.

• There are four 6-dimensional non-simplicial faces with 8 vertices, four with
9 vertices, one with 10 vertices, and one with 11 vertices.

• There are two 7-dimensional non-simplicial faces with 12 vertices, and one
with 24 vertices, as noted previously.
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Chapter 5

The Cohomology of
Arithmetic Subgroups

This chapter concerns the practical computation of both the group coho-
mology H∗(Γ0(n),C) and the Hecke action on cohomology classes. We begin in
Section 5.1 by presenting a cell complex, known as the sharbly complex, whose
homology is dual to the group cohomology we wish to study, and which exhibits
a Hecke action.

Section 5.2 provides an in-depth explanation of how we can compute the
group cohomology via the homology of the sharbly complex, and the techniques
required in order to compute the Hecke action on classes in the sharbly homol-
ogy. In Section 5.3 we present details of Hecke eigenclasses in the sharbly
homology which correspond to cuspidal automorphic forms, while in Section
5.4 we discuss some of the practical issues regarding our computations.

85
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5.1 The Sharbly Complex

We now move towards our main task of finding modular elliptic curves,
beginning by studying the automorphic representations with which we hope to
match such curves. As before, let F be a number field, with ring of integers
OF , and set G = ResF/Q(GL2). We shall assume throughout that F has trivial
class group, and signature [r, s]. Given an ideal n of F , define an arithmetic
subgroup Γ0(n) of G(Q) ' GL2(F ) to be the subgroup

Γ0(n) :=
{(

a b
c d

)
∈ GL2(OF ); c ∈ n

}
.

Let Sf denote the set of finite places of F . Similarly to the classical case in
Section 3.2, define a compact subgroup K0(n) of

G(Af ) '
∏
v∈Sf

GL2(Fv)

to be the product of the subgroups Kv(n) for v ∈ Sf , where

Kv(n) =
{(

a b
c d

)
∈ GL2(Ov); c ≡ 0 (mod n)

}
if v divides n, and Kv(n) = GL2(Ov) otherwise.

Then, denoting by X the symmetric space G(R)/A0
G(R)K∞, we have (since

F is assumed to have trivial class group) an identification

Γ0(n)\X ' A0
G(R)G(Q)\G(A)/K∞K0(n),

as in Section 3.4. By the results of that section, we can realise automor-
phic representations through the cohomology of the locally symmetric space
Γ0(n)\X. In turn (as for the classical case in Section 2.6), we can identify this
with the group cohomology H∗(Γ0(n),C).

There are two main approaches for computing this cohomology. The first is
perhaps the most obvious; using the Koecher decomposition of the symmetric
space X, one can naturally construct a cell complex using the resulting Koecher
cells. One can then compute the cohomology of Γ0(n)\X by computing the
Γ0(n)-equivariant cohomology of this complex - since there are only finitely
many Koecher cells under the action of Γ0(n), this computation can indeed be
performed in practice.

We shall take a second approach, which has noticeable advantages over the
first. The trouble with working with the Koecher cell complex is that it is fairly
restrictive - the Hecke operators which we shall later want to compute do not
preserve the Koecher cells, and so we cannot hope to compute their action on
the cohomology using this method. The approach which we shall now explain
allows us to compute both the cohomology and the Hecke action, by working
with a much larger space.
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To begin with, we require a few preliminary notions. Let Γ be an arbitrary
arithmetic subgroup of G(Q), for G a reductive algebraic group defined over Q.
If Γ is torsion-free, we define the cohomological dimension of Γ to be the smallest
integer ν such that Hν+1(Γ,M) = 0 for all coefficient systems M . For an
arbitrary arithmetic subgroup Γ, we define the virtual comological dimension ν
of Γ to be the cohomological dimension of any finite-index torsion-free subgroup
(this is known to be well-defined).

A formula for the virtual cohomological dimension is given by the following
result (see [BS73], Theorem 11.4.4):

Theorem 5.1.1. Let G be a reductive Q-group, R its radical, and

X = G(R)/A0
G(R)K

a globally symmetric space, where A0
G(R) denotes the split component of G(R)

and K is a maximal compact subgroup of G(R). Then for any arithmetic sub-
group Γ of G(Q), we have

ν = dim(X)− rkQ(G/R).

Returning to the case of G = ResF/Q(GL2), where we recall that F has
signature [r, s], the radical R is the subgroup of diagonal matrices, and subse-
quently rkQ(G/R) = 1, while we have seen previously that dim(X) = 3r+4s−1,
and so

ν = 3r + 4s− 2

for each arithmetic subgroup Γ of G(Q).

Next, let P1(F ) denote the projective line over our field F , and let Z[P1(F )]
denote the free abelian group generated by it. One defines the augmentation
map ε : Z[P1(F )]→ Z by

ε
(∑

nPP
)

=
∑

nP ,

and subsequently we define the Steinberg module St2 for GL2(F ) by the short
exact sequence

0 −→ St2 −→ Z[P1(F )]
ε−→ Z −→ 0.

This clearly admits an action of GL2(F ), induced by the action on P1(F ).

The Steinberg module is a dualizing module for Γ0(n) (in the sense of [BS73],
Section 11.4) and so we have

Hν−k(Γ0(n),C) ' Hk(Γ0(n),St2 ⊗Z C),

a result known as Borel-Serre duality.
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To compute the homology of Γ0(n) with coefficients in the Steinberg module,
we require an appropriate resolution of St2. Such a resolution is provided for us
by the sharbly complex. This is defined as follows: for each k, let Ak denote the
Z-module of Z-linear combinations of (k + 2)-tuples u = [u1, . . . , uk+2], where
ui ∈ O2

F . In addition, let Rk denote the submodule generated by the relations:

• [u1, . . . , uk+2]− sgn(σ)[uσ(1), . . . , uσ(k+2)], for any permutation σ ∈ Sk+2;

• [u, u2, . . . , uk+2] − [v, u2, . . . , uk+2], for any u, v ∈ O2
F with q(u) = λq(v),

for some λ ∈ R+;

• [u1, . . . , uk+2], if the F -span of the vectors u1, . . . , uk+2 is 1-dimensional
(we call such sharblies degenerate).

We then define the Z-module of k-sharblies to be the quotient

Sk = Ak/Rk.

Using the relations in Rk, we shall always assume that the vectors ui ∈ O2
F

satisfy the property that there is no point of Ξ on the line segment joining q(ui)
with the origin (that is, if vi ∈ O2

F with q(vi) = λq(ui) for some λ ∈ R+, then
λ ≥ 1).

One can define a boundary map ∂ : Sk → Sk−1 by

∂([u1, . . . , uk+2]) =

k+2∑
i=1

(−1)i+1[u1, . . . , ûi, . . . , uk+2],

where ûi indicates that we omit ui. The resulting complex S∗ is called the
sharbly complex. The sharbly complex admits an obvious action of GL2(OF ),
given by

g · [u1, . . . , uk+2] = [gu1, . . . , guk+2], g ∈ GL2(OF ),

and this clearly commutes with the boundary map. In particular, for any sub-
group Γ of GL2(OF ), we can define the quotient of Γ-coinvariants, (S∗)Γ, by
enforcing the additional relation

• [u1, . . . , uk+2]− γ · [u1, . . . , uk+2] for all γ ∈ Γ.

One can define a map φ : S0 → St2 as follows: given u ∈ O2
F , let [u]

denote the line spanned by u, viewed as an element of P1(F ). Then, given
u = [u1, u2] ∈ S0, we define

φ(u) = [u1]− [u2].
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This map is well-defined: indeed, the first and third relations defining the
sharbly complex clearly have no effect on φ. For the second, suppose that
q(u) = λq(v) for some λ ∈ R+ and u, v ∈ O2

F . Without loss of generality (since
the map φ is GL2(F )-equivariant) we may assume that u = ( a0 ) and so v = ( b0 ),
whence u = ba−1v. Since a, b ∈ OF , ba−1 ∈ F , and so [u] = [v], as required.

Consequently, we can define a sequence

. . .
∂−→ Sk

∂−→ . . .
∂−→ S1

∂−→ S0
φ−→ St2

ε−→ 0.

In fact (see [AGM11], Theorem 5) this sequence is exact, and thus pro-
vides an acyclic resolution of the Steinberg module. In particular, we have an
isomorphism

Hν−k(Γ0(n),C) ' Hk((S∗)Γ0(n),C),

the latter of which is straightforward to determine computationally.

All the results we have stated apply to an arbitrary number field. Henceforth,
with the results of Section 3.5 in mind, we shall specialize to CM fields. In fact,
we shall restrict ourselves further to quartic CM fields, for reasons which shall
soon become apparent. In this case, F has signature [0, 2], and thus the virtual
cohomological dimension of any subgroup Γ0(n) is 6, by Theorem 5.1.1. In
addition, by Corollary 3.4.2, we have

Hi
cusp(Γ0(n),C) = 0 if i /∈ [2, 5],

so the smallest degree of the sharbly homology in which we could hope to study
cuspidal classes is degree 1. In the next section, we shall describe a method for
computing the Hecke action on these particular homology groups.
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5.2 Hecke Operators and Sharbly Reduction

The action of GL2(OF ) on (S∗)Γ (for an arithmetic subgroup Γ of GL2(OF ))
extends readily to an action of the subgroup M2(OF ) ∩GL2(F ) of GL2(F ). In
particular, suppose g ∈ GL2(F ) such that the groups Γ1 := Γ ∩ g−1Γg and
Γ2 := Γ∩gΓg−1 have finite index in Γ. Then the resulting Hecke correspondence:

Γ1

ι1

��

αg
// Γ2

ι2

��

Γ Γ

where ιi denotes the inclusion Γi ↪→ Γ, and αg is the homomorphism

Γ1 → Γ2, γ 7→ gγg−1

defines in turn a correspondence on homology groups:

H1(SΓ1
,C)

αg,∗
// H1(SΓ2

,C)

ι2,∗

��

H1(SΓ,C)

ι∗1

OO

H1(SΓ,C)

.

Working through the definitions, it is not difficult to see that the correspond-
ing Hecke operator Tg acts on (S∗)Γ via

Tg(u) =

n∑
i=1

gi · u,

where we have a decomposition of the double coset space

ΓgΓ =

n∐
i=1

Γgi.

Most importantly, the isomorphism

Hν−k(Γ0(n),C) ' Hk((S∗)Γ0(n),C),

is Hecke equivariant (see, for example, [AGM13], Theorem 2.4), meaning
that it commutes with the action of the Hecke operators on the respective spaces.

In particular, let Γ = Γ0(n) for some ideal n of F , and let g = ( 1 0
0 ν ), where ν

generates a prime ideal p of F not dividing n. Then, by the results of Section
3.4 and the previous section, we can use the homology of the sharbly complex
to compute the Hecke action on the corresponding spaces of cusp forms.
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It is straightforward to compute a set of representatives gi for the double
coset Γ0(n) ( 1 0

0 ν ) Γ0(n), as the following result shows:

Proposition 5.2.1. Let p be a prime ideal of a number field F with trivial class
group, with generator ν, and let α0, . . . , αq−1 be a representative set of lifts of
the elements of OF /p. Then a set of representatives for the gi is given by{(

1 α1

0 ν

)
, . . . ,

(
1 αq−1

0 ν

)
,

(
ν 0
0 1

)}
.

Moreover, any set of representatives gives the same Hecke action.

Proof. This is a standard result, but for the sake of completeness we give
a proof. Let γ =

(
a b
c d

)
∈ Γ0(n), and note that(

1 0
0 ν

)(
a b
c d

)(
1 αi
0 ν

)−1

=

(
a ν−1(b− aαi)
νc d

)
,

and (
1 0
0 ν

)(
a b
c d

)(
ν 0
0 1

)−1

=

(
ν−1a b
c νd

)
.

If a ∈ p, then the right-hand matrix in the second equation lies in Γ0(n). If
a /∈ p, then b− aαi ∈ p for some αi, and thus the right-hand matrix in the first
equation belongs to Γ0(n). Thus the cosets Γ0(n)gi cover Γ0(n) ( 1 0

0 ν ) Γ0(n).

Next, we note that Γ0(n)gi 6= Γ0(n)gj if i 6= j, i.e., the union is disjoint. To
see this, we note that(

1 αi
0 ν

)(
1 αj
0 ν

)−1

=

(
1 ν−1(αi − αj)
0 1

)
,

while (
1 αi
0 ν

)(
ν 0
0 1

)−1

=

(
ν−1 αi

0 ν

)
.

The latter is clearly not an element of GL2(OF ) while the former only belongs
to Γ0(n) if ν−1(αi − αj) ∈ OF , i.e., if αi and αj project to the same element in
OF /p, which implies that i = j.

Now, suppose we have two sets of representatives {g1, . . . , gn} and {g′1, . . . , g′n}.
Then, after reordering if necessary, we must have g′i = γjgj for some γi ∈ Γ0(n).
But then

n∑
i=1

g′i · u =

n∑
i=1

γi · (gi · u) =

n∑
i=1

gi · u

for any sharbly u, using the relations on (S∗)Γ0(n), and thus both sets of repre-
sentatives yield the same Hecke action. �
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One problem soon becomes apparent: the operators Tp do not preserve any
finitely-generated submodule of Sk for any k. Indeed, suppose we define a
notion of the “size” of a sharbly as follows (a definition that we borrow from
[GHY13]): given a 0-sharbly u = [u1, u2], define the size of u to be the absolute
value of NormF/Q (det (u1|u2)), where (u1|u2) is the matrix with columns given
by the vectors u1 and u2. One can see that this is well-defined: indeed, we
observe that det (u1|u2) = det(u1u

∗
1+u2u

∗
2), and the conditions we have imposed

on the sharbly complex means that the points u1u
∗
1 and u2u

∗
2 are uniquely

determined (since the points q(u1) and q(u2) are).

We can extend this notion to an arbitrary k-sharbly u by defining the size of
u to be the maximal size of a 0-sharbly u′ formed using any of the columns of
u. Then, given any prime ideal p and a sharbly u, we have NormF/Q(det(γi)) =
NormF/Q(p) for each representative γi from the corresponding double coset de-
composition, and so the Hecke operator will, in general, increase the size of any
given sharbly.

We therefore take the following approach: for each value of k, we choose
a finite set of k-sharblies, and consider the subcomplex of (S∗)Γ0(n) generated
by these sets. Suppose that the homology in degree k of this subcomplex is
isomorphic to that of the whole complex (S∗)Γ0(n) (which can be ascertained by
comparing Betti numbers, for example) and that, given a cycle ξ ∈ (Sk)Γ0(n),
one can construct a homologous cycle ξ′ whose support consists entirely of
sharblies contained in our finite set. Then, given a basis for the homology in
degree k of our subcomplex, we can apply a given Hecke operator to each basis
cycle in turn, and then rewrite the resulting cycle in terms of our original basis,
allowing us to effectively compute the Hecke action.

Our choice of subcomplex is as follows: call a k-sharbly u = [u1, . . . , uk+2]
totally reduced if the points {q(u1), . . . , q(uk+2)} are the vertices of a face of the
Koecher polytope Π. Then we take the subcomplex generated by the totally re-
duced sharblies to be our object of study. Note that, since there are only finitely
many faces of Π modulo the action of Γ0(n), there are only finitely many totally
reduced sharblies up to Γ0(n)-equivalence, and so this subcomplex is indeed
finitely-generated. For each of the fields we have studied, this particular choice
of subcomplex proves to be sufficient, in that the algorithm which follows always
produces a sharbly chain whose support consists of totally reduced sharblies.

At this point we remark that our choice of subcomplex differs from that
in [GHY13]. They define a sharbly u = [u1, . . . , uk+2] to be reduced if the
points {q(u1), . . . , q(uk+2)} are a subset of the vertices of some face of Π. This
produces, in general, a much larger subcomplex than that generated by totally
reduced sharblies, but (after enforcing some additional relations on the sharbly
complex) accounts for non-simplicial faces of Π - our definition of a totally
reduced sharbly only corresponds to a simplicial face of Π. However, all of our
computations match up to those of the aforementioned paper. We shall make
use of both the terms reduced and totally reduced in the sequel.
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We will give a new definition of the size of a sharbly. Given a sharbly
u = [u1, . . . , uk+2], let

B(u) =

k+2∑
i=1

q(ui),

and let Fu and Φu denote the facet of Π above which B(u) lies and the perfect
form corresponding to Fu respectively (so that 〈Φu,B(u)〉 is minimal amongst
all perfect forms). We then define the size N(u) of u to be

N(u) = 〈Φu,B(u)〉.

Note that N(u) ≥ k + 2, with equality if, and only if, u is totally reduced
(as N(u) = k + 2 if, and only if, 〈Φu, q(ui)〉 = 1 for all i = 1, . . . , k + 2, i.e.,
if, and only if, each q(ui) is a vertex of Fu). This does not distinguish between
reduced and totally reduced sharblies, however.

It seems that the two notions of size (ours and that given in [GHY13])
appear to correspond, in the sense that if a sharbly has small size according
to one definition, then it has according to the other also, although we are un-
able to prove an exact relation between the two. The definition of [GHY13]
seems, in practice, to distinguish between reduced and totally reduced shar-
blies (for example, a totally reduced non-degenerate 0-sharbly u often satisfies
NormF/Q(det(u1|u2)) = 1), while ours extends readily to more general positivity
domains.

Given a sharbly chain ξ which defines a cycle in the homology of (Sk)Γ0(n),
we would like to find a second sharbly chain, homologous to the first, whose
support consists of totally reduced sharblies. In the remainder of this section,
we shall define an algorithm which, given a 1-sharbly u in the support of such
a cycle ξ, produces a 1-sharbly chain whose support comprises 1-sharblies that
are “closer” to being totally reduced than u (in the sense that either the sizes
of the resulting 1-sharblies are smaller than that of u, or these 1-sharblies are
totally reduced). Moreover, the resulting chains should satisfy the condition
that, when we perform one iteration of the algorithm for each of the sharblies in
the support of ξ, then the chain produced by summing over all the resulting 1-
sharblies should in fact be a cycle homologous to ξ, thus enabling us to compute
the Hecke action on the sharbly homoloy H1((S∗)Γ0(n),C).

For illustrative purposes, we will first give an algorithm which works for
0-sharblies. Let u = [u1, u2] be an arbitrary 0-sharbly, which is not totally
reduced, and let B(u), Fu and Φu be as above. Note that, for any x ∈ O2

F , we
have

∂[u2, u1, x] = [u1, x] + [x, u2] + [u2, u1],

so that

[u1, x] + [x, u2] = u + ∂[u2, u1, x]
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is homologous to u. Our aim is to find a point x ∈ O2
F such that the sharblies

[u1, x] and [x, u2] are in a sense more reduced than u, by which we mean that
they either have smaller size than u (if u is not reduced) or are totally reduced
(if u is reduced, but not totally reduced). We call such a point a reducing point
for u.

Note first that the points q(u1) and q(u2) need not be vertices of Π. While
in practice this doesn’t cause an issue, the following result shows that we can,
without loss of generality, assume that both are vertices:

Lemma 5.2.2. Let u = [u1, u2] be a 0-sharbly. Then we can find a chain

ξ =
∑

λvv

of 0-sharblies v = [v1, v2] such that each q(vi) is a vertex of Π, and ξ is homol-
ogous to u.

Proof. For each i, let ui = ( xiyi ), zi = gcd(xi, yi), and wi = z−1
i ui ∈ O2

F

(recall that we have restricted attention to fields with trivial class group, and
so the notion of gcd makes sense). Then

∂([u2, u1, w1] + [u2, w1, w2]) = [u2, u1] + [w1, w2],

(since the sharblies [ui, wi] are degenerate) and the q(wi) are vertices of Π (by
Corollary 4.4.2, since each wi is primitive). Thus

ξ = u + ∂([u2, u1, w1] + [u2, w1, w2])

is our desired chain. �

We shall henceforth suppose that both q(u1) and q(u2) are vertices of Π.
Suppose first that u is also non-degenerate. There are three possibilities:

(i) u is reduced, but not totally reduced;

(ii) u is not reduced, but exactly one of the q(ui) is a vertex of Fu;

(iii) Neither q(u1) nor q(u2) is a vertex of Fu.

In the first case, we choose a reducing point x ∈ O2
F with q(x) ∈ M(Fu)

such that both [u1, x] and [x, u2] are totally reduced (or, if this is not possible,
at least one of these sharblies is).
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In the second case, suppose, without loss of generality, that q(u1) is a vertex
of Fu. Since q(u2) /∈ Fu, there is some neighbouring facet G such that

〈ΦG , q(u2)〉 < 〈Φu, q(u2)〉,

by Corollary 4.3.13. Then, if q(x) ∈ M(Fu) ∩M(G), the 0-sharbly [u1, x] is
reduced, and we have

N([x, u2]) = 〈Φ[x,u2], q(x)+q(u2)〉 ≤ 〈ΦG , q(x)+q(u2)〉 < 〈Φu, q(x)+q(u2)〉 = N(u),

as required, so we choose a reducing point from amongst all such points x ∈ O2
F .

In the third and final case, note that for x ∈ O2
F with q(x) ∈M(Fu),

N([u1, x]) +N([x, u2]) ≤ 〈Φu, q(u1) + q(u2) + 2q(x)〉
= N(u) + 2.

Without loss of generality, suppose N([u1, x]) ≤ N([u2, x]), so that (noting
that, since u is not reduced, N(u) > 2)

N([u1, x]) ≤ 1
2N(u) + 1 < N(u).

Moreover, if [u1, x] is not reduced, then, since

N([u1, x]) +N([u2, x]) ≤ N(u) + 2,

we must have N([u2, x]) < N(u) as well. On the other hand, if [u1, x] is reduced,
then the barycentre B([u1, x]) must lie above the facet of Π containing both q(u1)
and q(x). Since q(u1) is not a vertex of Fu, B([u1, x]) cannot lie above Fu, and
so

N([u1, x]) +N([u2, x]) < N(u) + 2,

and so once again N([u2, x]) < N(u). Thus we can choose as a reducing point
for u any point x ∈ O2

F with q(x) ∈M(Fu).

Finally, suppose that u is degenerate (that is, u2 = λu1 for some λ ∈ F ).
Without loss of generality, we may assume that u1 = ( 1

0 ). Since B(u) must
be a positive linear combination of vertices of Fu, it is clear that each vertex
appearing in this sum must be of the form q(x), where x also lies in the same F -
span as u1. Thus we may choose for our reducing point any such point x ∈ O2

F .

The case of 1-sharblies is significantly more complicated. To begin with, let

ξ =
∑
u

λuu

be a cycle in (S1)Γ0(n). The cycle condition then implies that

∂ξ =
∑
u

∑
v

λuv = 0 (mod Γ0(n)),

where v is an edge of u.
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Fix a set {w1, . . . ,wn} of Γ0(n)-representatives for the edges v ∈ Supp(∂ξ),
up to sign. There are three possibilities for each wi that we must consider:

• wi is degenerate;

• wi is non-degenerate, and there is no element of Γ0(n) which reverses the
orientation of wi (we call such sharblies non-trivial);

• wi is non-degenerate, but there is some element of Γ0(n) which reverses
the orientation of wi (we call such sharblies trivial).

While trivial 0-sharblies vanish in (S0)Γ0(n) (as their name suggests), we
shall still need to consider them. Suppose that to each 0-sharbly v ∈ Supp(∂ξ),
where v ∈ Γ0(n)wi, we assign a point x(v) ∈ O2

F as follows:

• If wi is degenerate, then x(v) lies in the same F -span as v1 and v2;

• If wi is non-trivial, then we can write v = εvγvwi where γv ∈ Γ0(n), and
εv = ±1 is well-defined. After fixing an initial choice of point x(wi), we
set x(v) = γvx(wi).

• If wi is trivial, then we can find some γwi ∈ Γ0(n) such that wi = −γwiwi.
Choose an initial point x(wi), and replace wi with 1

2 (w+
i + w−i ), where

w±i = wi, but we set x(w+
i ) = x(wi) and x(w−i ) = γwix(wi). Since wi is

trivial, we can always find γv ∈ Γ0(n) such that v = γvwi. Then replace
v with 1

2 (v+ + v−), where v± = v, and we set x(v±) = γvx(w±i ).

We say such a set of points has been chosen Γ0(n)-equivariantly.

Suppose, then, that we have a cycle ξ ∈ (S1)Γ0(n) together with a set of
Γ0(n)-equivariant points x(v) for each v ∈ Supp(∂ξ). For each representative
0-sharbly wi, we obtain a chain

ηi =
∑

v∈Γ0(n)wi

εvλuγvwi,

where v is an edge of u ∈ Supp(ξ). Since ξ is a cycle in (S1)Γ0(n), its boundary,
which is the sum of the ηi, must vanish modulo Γ0(n), and thus, since the edges
in the support of distinct ηi are inequivalent, each ηi must vanish in (S0)Γ0(n).

In particular, if wi is non-trivial, then, since each γvwi is equivalent to wi

under the action of Γ0(n), we find that

ηi =
∑

v∈Γ0(n)wi

εvλuwi (mod Γ0(n)),

and so ∑
v∈Γ0(n)wi

εvλu = 0.
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The following result is key to the implementation of our algorithm:

Proposition 5.2.3. Let

ξ =
∑

λuu

be a cycle in (S1)Γ0(n), and choose a set of points x(v) ∈ O2
F for the edges

v ∈ Supp(∂ξ) Γ0(n)-equivariantly. Then∑
v∈Supp(∂ξ)

λu[v1, v2, x(v)] = 0 (mod Γ0(n)),

where v = [v1, v2] is an edge of u ∈ Supp(ξ).

Proof. We use the notation established above. It suffices to show that for
each representative wi, the chain

νi =
∑

v∈Γ0(n)wi

λu[v1, v2, x(v)]

vanishes modulo Γ0(n). We consider the three separate cases:

Firstly, if wi is degenerate, then by definition the point x(v) for each v =
[v1, v2] ∈ Γ0(n)wi lies in the same F -span as v1 and v2, so [v1, v2, x(v)] is also
degenerate. Thus νi, being a chain of degenerate sharblies, must vanish.

Secondly, if wi is non-trivial, then we have

νi =
∑

v∈Γ0(n)wi

λu[v1, v2, x(v)]

=
∑

v∈Γ0(n)wi

εvλuγv[w1, w2, x(w)]

=
∑

v∈Γ0(n)wi

εvλu[w1, w2, x(w)] (mod Γ).

Thus, since ∑
v∈Γ0(n)wi

εvλu = 0,

νi must vanish modulo Γ0(n).

Finally, if wi is trivial, then by our definition of Γ0(n)-equivariance we have∑
v∈Γ0(n)wi

λu[v1, v2, x(v)] = 1
2

∑
v∈Γ0(n)wi

(λuγv[w1, w2, x(w+
i )] + λuγv[w1, w2, x(w−i )])

= 1
2

∑
v∈Γ0(n)wi

(λuγv[w1, w2, x(w+
i )] + λuγvγw[w2, w1, x(w+

i )]).

Each pair of terms cancels, and thus νi vanishes modulo Γ0(n), as required. �
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Note that, since the notions of totally reduced, reduced and non-reduced
sharblies are preserved under the action of GL2(OF ), Proposition 5.2.3 applies
equally well if we restrict our attention to the subset of edges of ξ which are not
totally reduced.

Throughout our algorithm, we will require the existence of a Γ0(n)-equivariant
set of reducing points for the edges of ξ. Since, by the nature of our algorithm,
we will often be replacing sharblies in Supp(ξ) with sharblies that are “closer” to
being reduced, we also need to ensure that reducing points chosen for any new
edges that occur are also selected Γ0(n)-equivariantly. We do this by assigning
to each non-reduced sharbly v a matrix Mv, known as a lift of v (see [Gun99],
Definition 5.3).

Our choice of lifts reflects our definition of Γ0(n)-equivariance. To begin
with, we assign to each degenerate or non-trivial representative wi = [w1, w2]
the lift Mwi = (w1|w2) (that is, the matrix with columns w1 and w2). For all
other v ∈ Γ0(n)wi, we write v = εvγvwi for some γv ∈ Γ0(n), and give v the
lift γvMwi . Note that, if Mv = (m1|m2), then the sharblies v and [m1,m2]
must be equal.

If wi is trivial then, as in our definition, we rewrite it as wi = 1
2 (w+

i + w−i ),
and define Mw+

i
= (w1|w2) and Mw−i

= (w2|w1). Given v ∈ Γ0(n)wi, we can

find γv ∈ Γ0(n) such that v = γvwi; we then rewrite v as 1
2 (v+ + v−), and

define Mv+ = γvMw+
i

and Mv− = γvMw−i
.

To ensure that our reducing points are chosen Γ0(n)-equivariantly, we store
the lifts Mwi of our representatives wi, and assign to each such edge a reducing
point x(wi). Then, given an arbitrary 1-sharbly v for which we want to select
a reducing point, we check whether its lift Mv is equivalent to one of our rep-
resentative lifts under the left action of Γ0(n). If so, say Mv = γvMwi , then
we assign to v the reducing point γvx(wi). If Mv is inequivalent to all our
representatives, we choose an arbitrary reducing point, and add Mv to our list
of representatives.

We need a final word on how to select lifts for the new edges which arise
during the course of our algorithm. Given a representative edge wi = [w1, w2]
and a point x(wi) chosen Γ0(n)-equivariantly, the edge wi is replaced during
our algorithm by the edges [w1, x(wi)] and [x(wi), w2]. Assign to these edges
the lifts (w1|x(wi)) and (x(wi)|w2) respectively.
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If v is an arbitrary edge, with v = εvγvwi for some γv ∈ Γ0(n), and the
point x(v) is chosen Γ0(n)-equivariantly, then we have

[v1, x(v)] =

{
γv[w1, x(wi)], if εv = 1,
γv[w2, x(wi)], if εv = −1,

and similarly

[x(v), v2] =

{
γv[x(wi), w2], if εv = 1,
γv[x(wi), w1], if εv = −1.

Note that, if v has lift Mv = (m1|m2), then

[m1,m2] =

{
[v1, v2], if εv = 1,
[v2, v1], if εv = −1.

Thus, if the edge v has lift Mv = (m1|m2), the choice of lifts

M[v1,x(v)] =

{
(m1|x(v)), if [m1,m2] = [v1, v2],
(x(v)|m2), if [m1,m2] = [v2, v1],

and

M[x(v),v2] =

{
(x(v)|m2), if [m1,m2] = [v1, v2],
(m1|x(v)), if [m1,m2] = [v2, v1],

ensure that any future points will also be selected Γ0(n)-equivariantly.

Finally, it is not hard to see that if {Mv}v∈Supp(ξ) is a set of lifts of the edges
v of ξ, and {γ1, . . . , γn} denotes a set of representatives as in Proposition
5.2.1, then {γ1Mv, . . . , γnMv}v∈Supp(ξ) is a set of lifts of the edges of the chain
Tp(ξ), which are still Γ0(n)-equivariant.

Thus, in practice, we will choose a set of lifts for our chain ξ, apply the
Hecke operator Tp, and give the cycle Tp(ξ) the corresponding lifts. This cycle,
together with the set of lifts, forms the input for our algorithm.
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Before proceeding to discuss the algorithm in full, we establish an analogue
of Lemma 5.2.2:

Lemma 5.2.4. Let ξ ∈ (S1)Γ0(n) be a 1-sharbly cycle. Then we can find a
chain

ξ′ =
∑

λvv

of 1-sharblies v = [v1, v2, v3] such that each q(vi) is a vertex of Π and ξ′ is
homologous to ξ.

Proof. For each edge [u1, u2] of ξ, let ui = ( xiyi ), zi = gcd(xi, yi) and
wi = z−1

i ui, so that in particular q(wi) is a vertex of Π, and wi lies in the same
F -span as ui. To each such edge, assign one of the wi for which q(ui) is not a
vertex of Π, and assign these points Γ0(n)-equivariantly (which is possible, since
ξ is a cycle).

u1 u2

u3

w2 w1

w3

Now, given u = [u1, u2, u3] ∈ Supp(ξ), let w1, w2, w3 be the points cho-
sen for the edges [u2, u3], [u3, u1] and [u1, u2] respectively. Define four tetra-
hedra T1 = [u1, u2, u3, w1], T2 = [u3, u1, w1, w2], T3 = [u1, u2, w1, w3] and
T4 = [u1, w1, w2, w3]. Then

∂T1 = [u2, u3, w1]∗ + [u3, u1, w1] + [u1, u2, w1] + [u2, u1, u3],

∂T2 = [u1, w1, w2] + [w1, u3, w2] + [u3, u1, w2]∗ + [u1, u3, w1],

∂T3 = [u2, w1, w3] + [w1, u1, w3] + [u1, u2, w3]∗ + [u2, u1, w1],

∂T4 = [w1, w2, w3] + [w2, u1, w3] + [u1, w1, w3] + [w1, u1, w2],

and u+∂T1 +∂T2 +∂T3 +∂T4 is homologous to u. By Proposition 5.2.3, the
starred terms cancel when we consider the whole cycle ξ, so we replace u with

u+∂T1+∂T2+∂T3+∂T4 = [w1, u3, w2]+[u2, w1, w3]+[w1, w2, w3]+[w2, u1, w3].
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Note in particular that each of the resulting sharblies contains at most one
point which does not correspond to a vertex of Π. Let v = [v1, v2, v3] be such a
sharbly, and, after permuting if necessary, assume that q(v1) is not a vertex of Π.
Let p2 and p3 be the points chosen for the edges [v3, v1] and [v1, v2] respectively,
and note that p2 and p3 both lie in the same F -span as v1.

v1 v2

v3

p3

p2

Define two tetrahedra T1 = [v1, v2, v3, p3] and T2 = [v3, v1, p3, p2]. Then

∂T1 = [v2, v3, p3] + [v3, v1, p3] + [v1, v2, p3]∗ + [v2, v1, v3],

∂T2 = [v1, p3, p2] + [p3, v3, p2] + [v3, v1, p2]∗ + [v1, v3, p3],

and u + ∂T1 + ∂T2 is homologous to u. As before, the starred terms cancel, so
we replace u with

u + ∂T1 + ∂T2 = [v2, v3, p3] + [v1, p3, p2] + [p3, v3, p2].

Now, since p2 and p3 have been chosen to lie in the same F -span as v1, the
sharbly [v1, p3, p2] is degenerate, and the result follows. �

Thus we may, if we so choose, assume that all the sharblies in the support
of our cycle ξ define a set of vertices of Π.
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We now proceed to discuss the algorithm with which we reduce an arbitrary
1-sharbly cycle ξ. Given a 1-sharbly u = [u1, u2, u3] ∈ Supp(ξ), we perform one
of the following steps, based on the reduction type of u (that is, based on the
configuration of reduced and non-reduced edges of u). Note that this algorithm
is essentially the same as that found in, for example, [GHY13], but we treat
reduction types III.i and V.ii differently. As is the case in [GHY13], we have
no proof that the algorithm will terminate, but in practice it always does so.

Reduction Type I

If u is already totally reduced, we leave it untouched.

Reduction Type II

u1 u2

u3

p

If all three edges of u are totally reduced, but u itself is not totally reduced,
we begin by selecting a central point p ∈ O2

F from among the vectors mapping
to the vertices of Fu. We choose p such that the number of totally reduced
sharblies in the set

{[u1, u2, pi], [u2, u3, pi], [u3, u1, pi]}

is maximal among all such vectors.

Define a tetrahedron T = [u1, u2, u3, p]. Then

∂T = [u2, u3, p] + [u3, u1, p] + [u1, u2, p] + [u2, u1, u3],

and u + ∂T is homologous to u. We therefore replace u with

u + ∂T = [u2, u3, p] + [u3, u1, p] + [u1, u2, p].
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Reduction Type III

If u has one edge which is not totally reduced, then after cyclic permutation
of the vectors ui we may assume, without loss of generality, that the edge [u1, u2]
is not totally reduced. We select a reducing point x3 for this edge, and consider
the new edges [u1, x3], [u2, x3] and [u3, x3]. We have two separate cases:

Reduction Type III.i

u1 u2

u3

x3

pn

p1

If [u1, x3] and [u2, x3] are both totally reduced, but [u3, x3] is not totally
reduced, then we attempt to construct a chain of points p1, . . . , pn such that

• The 0-sharblies [u1, pi] and [u2, pi] are totally reduced for i = 1, . . . , n;

• The 0-sharblies [pi, pi+1] are totally reduced for i = 1, . . . , n− 1; and

• The 0-sharblies [x3, p1] and [u3, pn] are totally reduced.

Suppose we can find such a chain. Then, setting p0 = x3, and pn+1 = u3,
we define tetrahedra T0, . . . , Tn by Ti = [u1, u2, pi+1, pi]. Then

∂Ti = [u2, pi+1, pi] + [pi+1, u1, pi] + [u1, u2, pi] + [u2, u1, pi+1],

and so

n∑
i=0

∂Ti =

n∑
i=0

([u2, pi+1, pi] + [pi+1, u1, pi]) + [u1, u2, x3]∗ + [u2, u1, u3].

By Proposition 5.2.3 the starred term cancels when this reduction is per-
formed across the whole chain ξ, so we replace u with

u +

n∑
i=0

∂Ti =

n∑
i=0

([u2, pi+1, pi] + [pi+1, u1, pi]).
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In practice, we were either able to find such a chain or find a vector p ∈ O2
F

mapping to a vertex of FΦ such that:

• Three of the 0-sharblies in

{[u1, p], [u2, p], [u3, p], [x3, p]}

were totally reduced;

• The single non-reduced sharbly in the above set was either [u1, p], [u2, p]
or [x3, p]; and

• We were able to find such a chain for the 1-sharbly [u3, u1, x3], [u2, u3, x3]
or [u1, u2, p] in each respective case.

u1 u2

u3

x3

p

u1 u2

u3

x3

p

u1 u2

u3

x3

p

If either [u1, p] or [u2, p] is non-reduced, define a tetrahedron T = [u1, u2, u3, x3],
so that

∂T = [u2, u3, x3] + [u3, u1, x3] + [u1, u2, x3]∗ + [u2, u1, u3].

As before, the starred term cancels, so we replace u with

u + ∂T = [u2, u3, x3] + [u3, u1, x3].

Since each resulting 1-sharbly contains the edge [u3, x3] with opposite orienta-
tions, it cancels upon applying the boundary map. Thus, assigning the point p
as a reducing point for this edge in both 1-sharblies, we ensure that the terms
[u3, x3, p] still cancel, as per Proposition 5.2.3.

If [x3, p] is non-reduced, define a tetrahedron T = [u1, u2, u3, p], so that

∂T = [u2, u3, p] + [u3, u1, p] + [u1, u2, p] + [u2, u1, u3].

We then replace u with

u + ∂T = [u2, u3, p] + [u3, u1, p] + [u1, u2, p],

retaining the point x3 as a reducing point for the edge [u1, u2].
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Reduction Type III.ii

u1 u2

u3

x3

If [u3, x3] is totally reduced, or at least one of [u1, x3] and [u2, x3] is not
totally reduced, we define a single tetrahedron
T = [u1, u2, u3, x3]. Then

∂T = [u2, u3, x3] + [u3, u1, x3] + [u1, u2, x3]∗ + [u2, u1, u3],

and u + ∂T is homologous to u. As before, the starred term cancels, so we
replace u with

u + ∂T = [u2, u3, x3] + [u3, u1, x3].
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Reduction Type IV

u1 u2

u3

x3

x2

u1 u2

u3

x3

x2

If u has two edges which are not totally reduced then, after cyclic permuta-
tion of the vectors xi, we may assume, without loss of generality, that the edges
[u3, u1] and [u1, u2] are not totally reduced. We select reducing points x2 and
x3 respectively for these edges.

We have a choice of decomposition. To decide which one to use, define new
sharblies

w11 = [x2, x3, u3], w12 = [x3, u2, u3] and w21 = [x3, u2, x2], w22 = [u2, u3, x2].

If N(w11) +N(w12) ≤ N(w21) +N(w22), we define two tetrahedra
T1 = [u1, u2, u3, x3] and T2 = [u3, u1, x3, x2]. Then

∂T1 = [u2, u3, x3] + [u3, u1, x3] + [u1, u2, x3]∗ + [u2, u1, u3],

∂T2 = [u1, x3, x2] + [x3, u3, x2] + [u3, u1, x2]∗ + [u1, u3, x3],

and u + ∂T1 + ∂T2 is homologous to u. As before, the starred terms cancel, so
we replace u with

u + ∂T1 + ∂T2 = [u2, u3, x3] + [u1, x3, x2] + [x3, u3, x2].

If N(w11) +N(w12) > N(w21) +N(w22), define two tetrahedra
T1 = [u1, u2, u3, x2] and T2 = [u1, u2, x2, x3]. Then

∂T1 = [u2, u3, x2] + [u3, u1, x2]∗ + [u1, u2, x2] + [u2, u1, u3],

∂T2 = [u2, x2, x3] + [x2, u1, x3] + [u1, u2, x3]∗ + [u2, u1, x2],

and u + ∂T1 + ∂T2 is homologous to u. Once again, the starred terms cancel,
so we replace u with

u + ∂T1 + ∂T2 = [u2, u3, x2] + [u2, x2, x3] + [x2, u1, x3].
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Reduction Type V.i

u1 u2

u3

x2 x1

x3

If all three edges [u2, u3], [u3, u1] and [u1, u2] are not reduced, we choose
reducing points x1, x2 and x3 for these edges respectively. Define four tetrahedra
T1 = [u1, u2, u3, x1], T2 = [u3, u1, x1, x2], T3 = [u1, u2, x1, x3] and
T4 = [u1, x1, x2, x3]. Then

∂T1 = [u2, u3, x1]∗ + [u3, u1, x1] + [u1, u2, x1] + [u2, u1, u3],

∂T2 = [u1, x1, x2] + [x1, u3, x2] + [u3, u1, x2]∗ + [u1, u3, x1],

∂T3 = [u2, x1, x3] + [x1, u1, x3] + [u1, u2, x3]∗ + [u2, u1, x1],

∂T4 = [x1, x2, x3] + [x2, u1, x3] + [u1, x1, x3] + [x1, u1, x2],

and u + ∂T1 + ∂T2 + ∂T3 + ∂T4 is homologous to u. As usual, the starred terms
cancel, so we replace u with

u + ∂T1 + ∂T2 + ∂T3 + ∂T4 = [x1, u3, x2] + [u2, x1, x3] + [x1, x2, x3] + [x2, u1, x3].

Reduction Type V.ii

u1 u2

u3

x2 x1

x3

p

If all three edges [u2, u3], [u3, u1] and [u1, u2] are reduced, but not totally
reduced, we proceed as above. However, if the resulting 1-sharbly [x1, x2, x3]
has the properties that:
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• The edges [x1, x2], [x2, x3] and [x3, x1] are all reduced, but not totally
reduced; and

• {NormF/Q(xi|xj); i < j} = {NormF/Q(ui|uj); i < j},

then we perform an additional step. In this case, we choose a central point p for
the 1-sharbly [x1, x2, x3] as for Reduction Type II, and define an additional
tetrahedron T5 = [x1, x2, x3, p], so that

∂T5 = [x2, x3, p] + [x3, x1, p] + [x1, x2, p] + [x2, x1, x3].

We then proceed as in the previous case, except we replace the 1-sharbly
[x1, x2, x3] with

[x1, x2, x3] + ∂T5 = [x2, x3, p] + [x3, x1, p] + [x1, x2, p].
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5.3 Examples

The following pages give details of cuspidal Hecke eigenclasses defined over the
fields F1, F2 and F3. For the field F1, we were able to provide an in-depth
analysis, by investigating the cohomology H5(X0(n),C) for all levels n with
norm at most 5500. Due to time constraints, however, we were unable to repeat
this process for the fields F2 and F3, and instead focused on a restricted set of
levels n.

In order to detect non-trivial cuspidal cohomology, we required data regard-
ing the rank of the corresponding Eisenstein cohomology. This is provided in the
following table, which collates heuristic data from [GHY13] (to determine these
ranks, one observes that the Hecke operator Tv, where v does not divide the
level n, acts on the Eisenstein subspace via multiplication by NormF/Q(v) + 1):

Factorisation Type p p2 p3 p4 p5 p6 pq
dim H5

Eis(X0(n),C) 3 5 7 9 11 13 7

Factorisation Type p2q p3q p4q p2q2 p3q2 pqr p2qr
dim H5

Eis(X0(n),C) 11 15 19 17 23 15 23

Before proceeding to discuss each individual case, we make a mention of
two ways in which cuspidal eigenclasses in H∗(X0(n),C) can arise from other
cohomology groups, namely level lifting and cyclic base change, examples of
which were observed for the field F1.

Firstly, suppose that the level n = dm, for ideals d and m of F . The inclusion
K0(n) ↪→ K0(m) induces a map H∗(X0(m),C) → H∗(X0(n),C) of cohomology
groups. Consequently, one expects cuspidal eigenclasses at level m to contribute
to the cohomology at level n (one draws an obvious analogy to classical modular
forms, in which oldforms at level n = dm are cuspidal eigenforms arising from
the smaller level n).

Just as eigenclasses can arise from lower levels, so too can they arise from
subfields of F . Let F/K be a cyclic extension of number fields of degree n,
and let ω be a non-trivial character of Gal(F/K), which we can regard as a
character of A×F /F×. Given an automorphic representation π of ResK/Q(GL2),
the base change of π to F is an automorphic representation π̃ of ResF/Q(GL2),
which satisfies the property

L(s, π̃) =
∏
i=1

L(s, ωi ⊗ π).



110 CHAPTER 5. THE COHOMOLOGY OF ARITHMETIC SUBGROUPS

In particular, suppose that F/K is a quadratic extension, and observe that
the non-trivial character ω ∈ Gal(F/K) (viewed as a Hecke character) is defined
locally at unramified non-archimedean places v by

ωv($) =

{
1; if v splits in F,
−1; if v is inert in F,

where $ is a uniformiser of Kv.

If π is the automorphic representation associated to some automorphic form
over K, then we have

L(s, πv) = (1− av(π)q−s + q1−2s)−1,

where q denotes the size of the residue field of OKv , and av(π) denotes the
eigenvalue of the Hecke operator Tv on the corresponding automorphic form.
Then:

• If v splits in F , with corresponding places w1, w2, then

L(s, π̃w1
)L(s, π̃w2

) = L(s, πv)
2,

• If v is inert in F , with corresponding place w, then

L(s, π̃w) = (1− (av(π)2 − 2q)q−2s + q2−2s)−1.

We therefore deduce that the Hecke eigenvalues on the corresponding eigen-
class should be given by

aw(π̃) =

{
av(π); if v splits,

av(π)2 − 2q; if v is inert.
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5.3.1 The Field F1

Let F = F1 = Q(t), where t denotes a primitive twelfth root of unity. We
searched over a range of levels n to detect those for which the cuspidal cohomol-
ogy H5

cusp(X0(n),C) was non-trivial. As mentioned previously, we investigated
all levels of norm at most 5500, of which there are 544, up to Galois conjuga-
tion. We discovered non-Eisenstein cohomology at 55 of these levels, with a
total of 99 non-Eisenstein Hecke eigenclasses spread across these levels. Table
5.3.1.1 below lists a set of generators for the levels studied, together with their
factorization type and the discrepancy d between the rank of H1((S∗)Γ0(n),C)
and the expected rank of the Eisenstein cohomology:

Level Generator Type d Level Generator Type d

169 2t3 − 3t2 − 3t+ 2 pq 1 3721a 7t3 − 6t2 − t− 1 pq 3

441 5t2 − 1 pq 1 3721b 6t2 − 5t− 6 pq 1

484 t3 + 4t2 − 4t− 1 pq 1 3844 5t3 − t2 + t+ 6 pq 1

576 2t3 + 2t2 + 2t− 4 p3q 1 3969 9t2 − 6 p2q 2

625 5 pq 2 4033a −8t3 + 9t− 9 pq 1

676 3t3 − t2 + 3t pqr 2 4033b −11t3 + 6t2 + 5t− 9 pq 1

1089 −t3 + 2t− 6 pq 2 4057 6t3 + 2t2 − 9t− 2 p 1

1156 3t2 + 5t− 3 pq 1 4069 −7t3 − 6t2 + 6t+ 2 pq 1

1369 2t3 + 2t2 + 3t− 5 pq 2 4096 8 p6 1

1521 4t3 + 4t2 − 5t+ 1 pqr 2 4225a −5t3 + 3t2 + 9t− 3 pqr 2

1764 t3 + 4t2 + 4t− 5 pqr 2 4225b −9t3 + 3t2 + 6t− 1 p2q 1

1936 4t3 − 4t2 − 6t− 2 p2q 2 4225c −4t3 + 7 pqr 1

2041 −t3 + 6t2 − t− 7 pq 1 4356 5t3 + 3t2 + 5t pqr 6

2116 5t3 − 5t2 + t+ 6 pq 2 4516 −4t3 − 3t2 + 9t+ 1 pq 1

2197a t3 − 2t2 + 3t+ 7 pqr 2 4624 −8t3 − 2 p2q 2

2197b t3 + 2t2 − 7t− 2 p2q 2 4672 8t3 + 6t2 − 6t− 2 p3q 1

2209 4t3 − 8t− 1 p 1 4761 −7t3 + 5t2 + 2t+ 2 pq 3

2257 −2t3 + 6t2 + 5t+ 1 pq 1 4852 −4t3 + 7t2 + 3t+ 1 pq 1

2304 8t3 − 4t p4q 2 5041 −8t3 + 3t2 + 3t− 8 p 2

2401 7 pq 3 5184 −6t2 + 6t+ 6 p3q2 2

2452 −7t3 + t2 + t+ 2 pq 1 5317 −7t3 + 3t2 − 2t− 4 pq 1

2500a −t3 − 7t2 + t p2q 1 5329a t3 + 5t2 + 3t− 9 p2 2

2500b 5t2 + 5t− 5 pqr 4 5329b 3t3 − 8t2 − 3t pq 2

2704 −2t3 − 6t2 + 6t+ 2 p2qr 4 5329c 3t3 − 6t− 10 pq 4

2916 3t3 − 3t2 + 3t+ 6 p3q 2 5329d 8t3 − 9t pq 1

2977 4t3 + 2t2 − 9t+ 2 pq 1 5473 −9t− 8 pq 1

3328 4t3 + 8t2 − 4t− 4 p4q 1 5476 −5t2 − t− 5 pqr 5

3481 5t3 − 5t2 − 6t− 1 p 2

Table 5.3.1.1: Levels with non-Eisenstein cohomology classes
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Of the 99 non-Eisenstein Hecke eigenclasses we detected:

• 68 admitted rational eigenvalues;

• 18 admitted eigenvalues lying in a quadratic extension of Q;

• 9 admitted eigenvalues lying in a cubic extension of Q; and

• 4 admitted eigenvalues lying in a quartic extension of Q.

Of the 68 eigenclasses which admitted rational Hecke eigenvalues:

• 31 had eigenvalues matching an eigenclass appearing at a lower level;

• 15 had eigenvalues matching those expected from the base change of an
automorphic form defined over a quadratic subfield of F ;

• 2 had eigenvalues matching those from the Eisenstein cohomology, up to
sign; and

• 20 classes could not be attributed to any of these phenomena, and we were
able to find elliptic curves defined over F whose local data matched the
eigenvalue data for each of these classes. We list these classes in Table
5.3.1.2 below, together with their Hecke eigenvalues for a number of primes
of small norm, while the corresponding elliptic curves are listed in Table
5.3.1.10 (a discussion of how these curves were discovered can be found in
Section 6.6).

Class p2 p3 p13,1 p13,2 p13,3 p13,4 p5,1 p5,2

441 0 ∗ −6 4 4 −6 −4 −4
1156 ∗ 0 4 4 −6 −6 6 6
2041 2 −2 2 2 ∗ −4 −4 −10
2257 −3 −4 −1 1 −6 −3 1 −8
2452 ∗ 1 −4 −4 −4 5 −1 8
2500a ∗ 0 4 4 −1 −1 1 ∗
2977 2 4 2 −4 ∗ −4 2 −10
3328 ∗ 2 −2 −2 6 ∗ 2 −6
3721b 2 −2 −4 −4 2 2 8 8
3844 ∗ −5 −1 −6 −6 −1 1 1
4033a −1 4 2 −4 2 2 2 −4
4033b 2 −2 −4 2 2 2 −4 2
4057 −3 −2 −4 −1 −4 1 −5 −2
4069 −3 −4 −3 1 ∗ −5 7 1
4225b −2 −2 −4 ∗ −2 −6 ∗ 4
4516 ∗ 5 4 −1 −6 4 −4 6
4672 ∗ 2 −2 −2 −2 6 −6 2
4852 ∗ −3 −1 −7 −2 −4 3 −8
5317 −3 2 −2 6 −2 ∗ 2 2
5473 −1 −2 2 2 −4 ∗ 2 8

Table 5.3.1.2: Rational Hecke eigenclasses over F1
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Table 5.3.1.3 below lists generators for the prime ideals of norm up to 25:

p Generator p Generator

p2 −t2 + t+ 1 p13,3 −t3 − t+ 1
p3 t2 + 1 p13,4 t3 + t2 + 1

p13,1 −t3 + t2 + 1 p5,1 2t2 − t− 2
p13,2 t3 + t+ 1 p5,2 t3 − 2t2 − t

Table 5.3.1.3: Generators for prime ideals of F1 of small norm

In Table 5.3.1.4, we list the “old” classes we discovered: those which corre-
spond to classes appearing at a lower level. We observe that in each case, the
set of Hecke eigenvalues matches those of the original eigenclass. Lower case
Roman numerals are used to denote each eigenclass.

Class p2 p3 p13,1 p13,2 p13,3 p13,4 p5,1 p5,2 Original Class

676 (i-ii) ∗ −4 0 ∗ 0 ∗ −2 −2 169

1521 (i-ii) −2 ∗ 0 ∗ 0 ∗ −2 −2 169

1764 (i-ii) ∗ ∗ −6 4 4 −6 −4 −4 441

1936 (i-ii) ∗ −5 −1 −1 −1 −1 −4 −4 484

2197a (i-ii) −2 −4 0 ∗ ∗ ∗ −2 −2 169

2197b (i-ii) −2 −4 0 ∗ 0 ∗ −2 −2 169

2304 (i-ii) ∗ ∗ −2 −2 −2 −2 −6 −6 576

2704 (ii-iv) ∗ −4 0 ∗ 0 ∗ −2 −2 169

3969 (i-ii) 0 ∗ −6 4 4 −6 −4 −4 441

4225a (i-ii) −2 −4 0 ∗ 0 ∗ −2 ∗ 169

4356 (i-ii) ∗ ∗ −2 6 −2 6 −6 −6 1089 (I)
4356 (iii-iv) ∗ ∗ 4 −6 4 −6 6 6 1089 (II)
4356 (v-vi) ∗ ∗ −1 −1 −1 −1 −4 −4 484

4624 (i-ii) ∗ 0 4 4 −6 −6 6 6 1156

5184 (i-ii) ∗ ∗ −2 −2 −2 −2 −6 −6 576

Table 5.3.1.4: “Old” cohomology classes

In Table 5.3.1.5 we list the eigenclasses which correspond to the base change
of an automorphic representation π′ defined over a subfield of F , such that the
Hecke eigenvalues ap(π′) are rational. For each of these classes, we were able to
find an elliptic curve defined over the corresponding subfield whose local data
matched these eigenvalues (listed in Table 5.3.1.11).

Class p2 p3 p13,1 p13,2 p13,3 p13,4 p5,1 p5,2 Base Field

484 ∗ −5 −1 −1 −1 −1 −4 −4 Q(
√

3)

576 ∗ ∗ −2 −2 −2 −2 −6 −6 Q(
√

3)

1089 (i) −3 ∗ −2 6 −2 6 −6 −6 Q(
√

3)

1089 (ii) 0 ∗ 4 −6 4 −6 6 6 Q(
√

3)

2209 −3 −2 −6 0 −6 0 −6 −6 Q(
√

3)

2704 (i) ∗ −2 2 ∗ 2 ∗ 2 2 Q(
√

3)

2916 (i) ∗ ∗ 5 −4 5 −4 −1 −1 Q(
√

3)

2916 (ii) ∗ ∗ −4 5 −4 5 −1 −1 Q(
√

3)

4225c −4 −2 ∗ ∗ −4 −4 ∗ −10 Q(
√
−1)

5041 (i) 0 5 −6 −1 −6 −1 1 1 Q(
√

3)

5041 (ii) −4 5 2 −1 2 −1 −7 −7 Q(
√

3)

5329d −1 −2 2 2 2 2 2 2 Q(
√
−3)

5476 (i) ∗ −5 −4 −7 −4 −7 2 2 Q(
√

3)

Table 5.3.1.5: Base change from rational Hecke eigenclasses
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In Table 5.3.1.6 we list the remaining eigenclasses which correspond to the
base change of an automorphic representation π′ defined over a subfield of F .
In each case, the Hecke eigenvalues ap(π′) lie in a quadratic extension of Q, and
so there is no elliptic curve defined over the corresponding subfield of F whose
local data matches these eigenvalues. However, for each class, we were able to
find an elliptic curve defined over F whose local data matched the eigenvalues
ap(π) (listed in Table 5.3.1.12).

Class p2 p3 p13,1 p13,2 p13,3 p13,4 p5,1 p5,2 Base Field

169 −2 −4 0 ∗ 0 ∗ −2 −2 Q(
√

3)

4096 ∗ 2 −2 −2 −2 −2 2 2 Q(
√

3)

Table 5.3.1.6: Base change from non-rational Hecke eigenclasses

In Table 5.3.1.7 we list the remaining two eigenclasses with rational Hecke
eigenvalues, which match those of the Eisenstein cohomology, up to sign. We
observe that the ray class group Cl(OF , n) of the corresponding level admits
a single non-trivial quadratic character χ, and that the Hecke eigenvalues are
given by

ap(π) = χ(p)(NormF/Q(p) + 1).

Class p2 p3 p13,1 p13,2 p13,3 p13,4 p5,1 p5,2 p37,1 p37,2 p37,3 p37,4

5329a (i) −5 −10 14 −14 −14 −14 26 −26 −38 −38 38 38
5329a (ii) −5 −10 14 −14 −14 −14 26 −26 −38 −38 38 38

Table 5.3.1.7: Remaining rational eigenclasses

In Tables 5.3.1.8 and 5.3.1.9 we list the remaining eigenclasses, whose eigen-
values lie in a proper extension of Q. For the classes appearing in Table 5.3.1.8,
the field Q(ap(π)) generated by these eigenvalues is a quadratic extension of
Q, and we list the pair of Galois conjugate eigenvalues for each prime. For
the classes appearing in Table 5.3.1.9, the field Q(ap(π)) is either a cubic or a
quartic extension of Q, and for each prime we list the polynomial whose roots
are the corresponding eigenvalues.

Class p2 p3 p13,1 p13,2 p13,3 p13,4 Q(ap(π))

625 (i-ii) 1±
√

17
2

−1 ±
√

17 −1 ±
√

17 −1 ±
√

17 −1 ±
√

17 −1 ±
√

17 Q(
√

17)

1369 (i-ii) −3±
√

17
2

−5±
√

17
2

3±
√

17
2

1 ±
√

17 3±
√

17
2

1 ±
√

17 Q(
√

17)

2116 (i-ii) ∗ −2 ± 2
√

3 −1 ± 3
√

3 2 ± 2
√

3 −1 ± 3
√

3 2 ± 2
√

3 Q(
√

3)

2500b (i-iv) ∗ −1 ±
√

17 −1 ±
√

17 −1 ±
√

17 −1 ±
√

17 −1 ±
√

17 Q(
√

17)

3481 (i-ii) −5±
√

5
2

−5±3
√

5
2

−1 ± 2
√

5 −7±3
√

5
2

−1 ± 2
√

5 −7±3
√

5
2

Q(
√

5)

5329b (i-ii) ±
√

7 ±2
√

7 −4 −4 1 ±
√

7 1 ±
√

7 Q(
√

7)

5476 (ii-v) ∗ −5±
√

17
2

1 ±
√

17 3±
√

17
2

1 ±
√

17 3±
√

17
2

Q(
√

17)

Table 5.3.1.8: Eigenclasses with eigenvalues lying in a quadratic extension of Q
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Class p2 p3 Q(ap(π))

2401 (i-iii) x3 + 2x2 − 11x − 20 x3 + 2x2 − 32x − 80 Q(x3 + x2 − 8x − 10)

3721a (i-iii) x3 + 2x2 − 9x − 6 x3 + 5x2 − x − 2 Q(x3 − x2 − 9x + 12)

4761 (i-iii) x3 + 3x2 − 4x − 4 ∗ Q(x3 − x2 − 4x + 2)

5329c (i-iv) x4 + 4x3 − 3x2 − 16x − 8 x4 + 8x3 + 6x2 − 48x − 64 Q(x4 − 9x2 − 2x + 2)

Table 5.3.1.9: Eigenclasses with eigenvalues lying in a cubic or quartic extension of Q

In Table 5.3.1.10 (on the next page) we list the coefficients ai of the Weier-
strass polynomial

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ 6

defining the global minimal model of an elliptic curve E over F whose local data
matches the Hecke eigenvalues of the classes appearing in Table 5.3.1.2.

In Table 5.3.1.11 (below) we list the coefficients ai of the Weierstrass poly-
nomial defining the global minimal model of an elliptic curve E over a subfield
of F such that the Hecke eigenvalues of the classes appearing in Table 5.3.1.5
match the local data of the base change of E to F .

In Table 5.3.1.12 (on the next page) we list the coefficients of the Weierstrass
polynomial defining the global minimal model of an elliptic curve E over F
whose local data matches the Hecke eigenvalues of the classes appearing in
Table 5.3.1.6.

Class a1 a2 a3 a4 a6

484
√

3
√

3 + 1
√

3 2
√

3 + 2
√

3 + 1

576
√

3 + 1 −
√

3 + 1 0 −5
√

3− 6 3
√

3 + 6

1089(i) 1 −
√

3 0 1 0

1089(ii)
√

3 + 1 −
√

3 1 5
√

3− 9 −6
√

3 + 10

2209 1 −
√

3 1 −
√

3− 1 0

2704(i) 0
√

3− 1 0 2 2
√

3 + 3

2916(i) 1 −1
√

3 + 1 −23
√

3− 41 217
√

3 + 377

2916(ii) 1 −1
√

3 + 1 22
√

3− 41 −218
√

3 + 377

4225c
√
−1 + 1 −

√
−1

√
−1 1 0

5041(i) 0 −1
√

3 −2
√

3− 4 3
√

3 + 5

5041(ii) 0 1
√

3
√

3 + 2
√

3 + 1

5329d 3
√
−3

√
−3 + 7 1

2 (
√
−3− 5) 4

√
−3 + 1 1

2 (
√
−3− 3)

5476 1 −
√

3 + 1
√

3 −
√

3 + 1 −
√

3 + 1

Table 5.3.1.11: Elliptic curves corresponding to the classes in Table 5.3.1.5
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5.3.2 The Field F2

Let F = F2 = Q(t), where t is a root of the polynomial x4 − x3 + 2x2 + x+ 1.
As mentioned previously, due to time constraints we were unable to perform
such an in-depth analysis as for the field F1, so we restricted our attention to
levels n which were unfixed by the Galois group Gal(F/Q), as we expect that
eigenclasses arising from such levels should not occur as a base change from a
subfield.

We searched over all such levels of norm up to 2150, of which there are
196, up to Galois conjugation. We detected non-Eisenstein cohomology at 4 of
these levels, with a total of 6 non-Eisenstein Hecke eigenclasses spread across
these levels. Table 5.3.2.1 below lists a set of generators for the levels studied,
together with their factorization type and the discrepancy d between the rank
of H1((S∗)Γ0(n),C) and the expected rank of the Eisenstein cohomology:

Level Generator Type d Level Generator Type d

244 −t3 + 3t2 − 6t+ 2 pq 1 976b t3 − 2t2 + 6t− 5 pqr 2

976a 3t2 − 2t+ 7 p2q 2 2071 1
2 (9t3 − 16t2 + 28t+ 3) pq 1

Table 5.3.2.1: Levels with non-Eisenstein cohomology classes

Each of the 6 non-Eisenstein Hecke eigenclasses we detected admitted ratio-
nal eigenvalues, of which:

• 4 had eigenvalues matching an eigenclass appearing at a lower level;

• 2 classes appear to be defined purely over F , and we were able to find
elliptic curves defined over F whose local data matched the eigenvalue
data for both of these classes. We list these classes in Table 5.3.2.2 below:

Class p2,1 p2,2 p3 p19,1 p19,2 p19,3 p19,4 p5

244 ∗ ∗ −2 −4 −4 −4 8 2
2071 −1 −1 −2 2 ∗ 2 2 8

Table 5.3.2.2: Rational Hecke eigenclasses over F2

Table 5.3.2.3 below lists generators for the prime ideals of norm up to 25:

p Generator p Generator

p2,1
1
2
(−t3 + 2t2 − 4t− 1) p19,2

1
2
(−t3 + 2t2 − 4t− 3)

p2,2 t3 − t2 + 2t p19,3
1
2
(−t3 − 2t− 5)

p3
1
2
(t3 − 2t2 + 2t− 3) p19,4 t− 2

p19,1
1
2
(3t3 − 4t2 + 4t+ 1) p5

1
2
(−3t3 + 2t2 − 6t− 3)

Table 5.3.2.3: Generators for prime ideals of F2 of small norm
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Table 5.3.2.4 lists the “old” classes we detected at the two levels of norm
976:

Class p2,1 p2,2 p3 p19,1 p19,2 p19,3 p19,4 Original Class

976a (i-ii) ∗ ∗ −2 −4 −4 −4 8 244
976b(i-ii) ∗ ∗ −2 −4 −4 −4 8 244

Table 5.3.2.4: “Old” cohomology classes

In Table 5.3.2.5 we list the coefficients ai of the Weierstrass polynomial
defining the global minimal model of an elliptic curve E over F whose local
data matches the Hecke eigenvalues of the classes appearing in Table 5.3.2.1.

Class a1 a2 a3 a4 a6

244 2t2 − 3t t3 + 3t2 − 3t+ 3 −t3 − t2 − t+ 1 −6t3 − t2 − 8t− 3 −t3 + 6t2 + 2t− 1

2071 t3 + t+ 1 −2t3 + 4t2 − 6t− 1 1
2 (−3t3 − 2t− 1) −3t3 − 2t2 + t− 5 3t3 − 3t2 + 2t

Table 5.3.2.5: Elliptic curves corresponding to the classes in Table 5.3.2.2
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5.3.3 The Field F3

Let F = F3 = Q(t), where t is a primitive eighth root of unity. As was the case
for the field F2, we restricted our attention to levels n which were unfixed by
the Galois group Gal(F/Q).

We searched over all such levels of norm up to 1000, of which there are 90,
up to Galois conjugation. We detected non-Eisenstein cohomology at only a
single level, which we list in Table 5.3.3.1 below:

Level Generator Type d

881 −4t2 + 5t p 1

Table 5.3.3.1: Level with a non-Eisenstein cohomology class

This class did not appear to correspond to the base change of an automorphic
representation over a subfield of F , and we were able to find an elliptic curve
whose local data matched the Hecke eigenvalues for this class. We list these
eigenvalues for a number of primes of small norm in Table 5.3.3.2.

Class p2 p3,1 p3,2 p17,1 p17,2 p17,3 p17,4 p5,1 p5,2

881 0 4 −2 −6 0 0 0 2 2

Table 5.3.3.2: Rational Hecke eigenclass over F3

Table 5.3.3.3 below lists generators for the prime ideals of norm up to 25:

p Generator p Generator

p2 t+ 1 p17,3 2 ∗ t+ 1
p3,1 t3 + t2 − t p17,4 2 ∗ t3 + 1
p3,2 t3 − t2 − t p5,1 2 ∗ t3 − t
p17,1 t+ 2 p5,2 t3 − 2 ∗ t
p17,2 t3 + 2

Table 5.3.3.3: Generators for prime ideals of F3 of small norm

In Table 5.3.3.4 we list the coefficients ai of the Weierstrass polynomial
defining the global minimal model of an elliptic curve E over F whose local
data matches the Hecke eigenvalues of this class.

Class a1 a2 a3 a4 a6

881 −2t2 − t− 1 −7t3 − 7t2 − 2t+ 3 14t3 − 2t2 − 17t− 22 55t3 − 88t2 − 75t+ 29 138t3 + 192t2 − 515t− 81

Table 5.3.3.4: Elliptic curve corresponding to the class in Table 5.3.3.2
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5.4 Practical Considerations

We shall now briefly mention a few technical issues relating to our computation.
To begin with, as per [AGM02], we choose to work with the finite field F12379

rather than the complex numbers as our coefficient field. While this runs the
risk of introducing additional cohomology classes (as would be the case if the
torsion subgroup of the integral cohomology H∗(Γ0(n),C) had order divisible
by 12379, this can be remedied by computing Betti numbers for various large
primes, and ensuring that they match. Working with coefficients in a finite field
makes several calculations both quicker and less susceptible to error, which we
illustrate with the following example:

Let n be the ideal of norm 2977 in F1 generated by 4t3+2t2−9t+2, where t is
a primitive twelfth root of unity. To construct the homologyH1((S )Γ0(n),F12379),
we first determine a set of representatives for the Γ0(n)-orbits of totally reduced
sharblies (as per [AGM02], Section 3). We find that there are a total of 135
non-trivial Γ0(n)-orbits of totally reduced 0-sharblies (where by a non-trivial
sharbly we mean one whose stabilizer in Γ0(n) contains no orientation-reversing
elements), 4024 non-trivial Γ0(n)-orbits of totally reduced 1-sharblies, and 20269
non-trivial Γ0(n)-orbits of totally reduced 2-sharblies.

We construct matrices D1 and D2 corresponding to the differentials

∂1 : (S1)Γ0(n) → (S0)Γ0(n)

∂2 : (S2)Γ0(n) → (S1)Γ0(n).

Consequently, D1 is a 135× 4024 matrix, and D2 is a 4024× 20269 matrix. For
such large matrices (and these are by no means the largest we will be dealing
with) working with coefficients in a finite field is much more efficient.

Using MAGMA, we can compute the kernel of the matrix D2 and the image
of the matrix D1, and then construct the quotient space ker(D2)/Im(D1), which
is isomorphic to the homology H1((S∗)Γ0(n),F12379) (we remark that this differs
from the method outlined in [AGM02], Section 5.2, in which one instead
constructs the kernel of the matrix

D =

(
D1

DT
2

)
,

which is also isomorphic to the homology of the sharbly complex. In practice,
our method seems to yield a “better” choice of basis for the homology, in the
sense that the resulting vectors have significantly fewer non-zero entries, mean-
ing we have fewer sharblies to reduce in order to compute the Hecke action).

We can therefore construct a basis for the first homology group, which we
find is an 8-dimensional space. Since the ideal n is prime, this corresponds to
the expected 7-dimensional Eisenstein space and a 1-dimensional cuspidal space.
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The basis sharbly cycles ξ1, . . . , ξ8 have, respectively, 55, 5, 66, 1, 2, 1, 1 and 1
non-trivial sharblies in their support. This is fairly typical, in our experience;
quite often we can find basis sharbly cycles with both quite large and very small
support.

The matrix for the action of the Hecke operator Tp2
, where p2 lies above the

rational prime 2, on this basis is given by

10321 0 0 5158 0 5158 7221 7221
4120 5 0 2060 0 2060 10319 10319
4126 0 5 2063 0 2063 10316 10316

0 0 0 5 0 0 0 0
4123 0 0 8251 5 8251 4128 4128

0 0 0 0 0 5 0 0
8259 0 0 10319 0 10319 2065 2060

0 0 0 0 0 0 0 5


which we see has eigenvalues 5 (with multiplicity seven) and 2.

A basis for the Eisenstein subspace (with respect to our original basis ξ1, . . . , ξ8)
is then given by the vectors

0
0
0
0
0
0
2


,



0
1
0
0
0
0
0
0


,



0
0
1
0
0
0
0
0


,



0
0
0
1
0
0
0
1


,



0
0
0
0
1
0
0
0


,



0
0
0
0
0
1
0
1


,



0
0
0
0
0
0
1

12378


while the cuspidal cycle is given by

1
12341
12377

0
12359

0
38
0


.

In particular, if we denote by Eis1, . . . ,Eis7 the above basis for the Eisenstein
subspace, and by Cusp the cuspidal cycle, we have

Cusp = Eis1 + 12341Eis2 + 12377Eis3 + 12359Eis5 + 38Eis7 + 36ξ8.
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This is key to our ability to compute Hecke operators efficiently. Suppose,
for example, that reducing a single 1-sharbly u (that is, applying the algorithm
in the previous section as many times as necessary to produce a chain whose
support is all totally reduced) were to take 15 seconds (in practice, some shar-
blies can take much, much longer to reduce, and the time increases with the size
of the sharbly). The cycle Cusp has 79 sharblies in its support, so computing
the Hecke operator Tp2 would take 5925 seconds, or just under 1.6 hours. For a
Hecke operator at a prime ideal of norm roughly 400, this increases to roughly
5.5 days.

Fortunately, in our case we can rapidly speed up proceedings. Indeed, since
we can express Cusp in terms of Eisenstein cycles and the cycle ξ8, we can (since
we know the action of the Hecke operators on the Eisenstein cycles) compute the
action of Cusp simply by computing the corresponding action on ξ8, which has
only a single sharbly in its support. In this case, computing a Hecke operator
at a prime of ideal of norm roughly 400 will take only around 1.6 hours. For
many of our examples, we were able to use this method to compute many more
Hecke eigenvalues than would otherwise be possible.



Chapter 6

Proving Modularity of an
Elliptic Curve

In this, the final chapter, we discuss a method for determining the equivalence
of two Galois representations

ρ1, ρ2 : Gal(F/F )→ GL2(Q`),

subject to certain constraints. We begin in Section 6.1 by discussing residual
Galois representations, and show that the residual representation ρ̃ of a repre-
sentation ρ can be defined over any field which contains the coefficients of the
characteristic polynomials of ρ̃ on Frobenius elements.

In Section 6.2, we recall the Galois representations that we wish to com-
pare, namely those attached to elliptic curves defined over a number field F ,
and the representation presented in Section 3.5 attached to certain cuspidal
automorphic forms.

Section 6.3 is dedicated to the method of proving equivalence of the resid-
ual reprsentations ρ̃1 and ρ̃2. Sections 6.4 discuss the method of Livné for
proving equivalence of the original representations when the ρ̃i are not abso-
lutely irreducible, while Section 6.5 discuss the method of Faltings and Serre
for proving equivalence when the representations ρ̃i are absolutely irreducible.

Finally, in Sections 6.6 we apply these methods to prove modularity of all
but one of the elliptic curves found in Section 5.3.

123
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6.1 Residual Galois Representations

Let F be a number field, let GF denote the absolute Galois group Gal(F/F ),
and let ρ : GF → GL2(Q`) be a continuous `-adic Galois representation. In this
section we will show that one can define a residual representation

ρ̃ : GF → GL2(F`),

related to ρ, such that two isomorphic representations ρ1, ρ2 have isomorphic
residual representations. Moreover, we shall show that the image of this rep-
resentation is contained in the finite group GL2(F`r ), for some r ≥ 1, which
depends only on the coefficients of the characteristic polynomial of ρ̃ on Frobe-
nius elements of GF .

We begin with the following standard result, a proof of which we borrow
from a note by C. Skinner ([Ski09], Section 2).

Proposition 6.1.1. Let ρ : GF → GL2(Q`) be a continuous `-adic Galois
representation. Then there exists a finite extension V of Q` such that the image
of ρ is contained in GL2(V ).

Proof. It is known (see, for example, Chapter 3, Section 1.6 of [Rob00])
that for each positive integer n, there are only finitely many extensions of Q`
of degree n. The finite extensions W of Q` contained in Q` therefore form a
countable set, and for each such fieldW , GL2(W ) is closed in GL2(Q`). Since ρ is
by definition continuous, the subgroups GW := ρ−1(GL2(W )) form a countable
set of closed subgroups of GF , whose union is GF itself. Since GF is compact,
it carries a Haar measure with total measure finite and non-zero. In particular,
since the countable union of measurable sets each having measure zero must
also have measure zero, it follows that some GW must have non-zero measure,
and hence finite index in GF . Write GF as the disjoint union

GF =

n∐
i=1

giGW

for some choice of coset representatives gi. Then the image of ρ is contained in
GL2(V ), where V is the finite extension of Q` generated by W and the entries
of the ρ(gi). �

To construct the residual representation, we first show that any represen-
tation ρ : GF → GL2(V ) with V a finite extension of Q` fixes a lattice in V
(that is, an OV -module Π such that Π⊗OV V ' V 2, where OV is the valuation
ring of V ). We then show that the representation in fact factors through the
group GL(Π), so that, up to isomorphism, we may consider ρ as a representation
ρ : GF → GL2(OV ), which we may then compose with the reduction map from
GL2(OV ) to GL2(kV ), where kV is the residue field of V .
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Proposition 6.1.2. Let ρ : GF → GL2(V ) be a Galois representation, with V
a finite extension of Q`, and let OV denote the valuation ring of V . Then, up
to isomorphism, we may realise ρ as a representation ρ : GF → GL2(OV ).

Proof. Let Λ be any lattice in V 2. Since Λ is open in V 2, the group
GΛ := {g ∈ GL2(V ); g(Λ) = Λ} is open in GL2(V ), and so HΛ := ρ(G) ∩ GΛ

is open in ρ(G). Since ρ is continuous, ρ(G) is compact and thus HΛ has finite
index in ρ(G).

Choose a set {g1, . . . , gn} of coset representatives of ρ(G)/HΛ. Now, for each
i, gi(Λ) has finite index in O2

V , and thus in particular

Π :=
n∑
i=1

gi(Λ)

is a lattice in V 2, which is GF -stable by construction.

Since by definition Π ⊗OV V ' V 2, any element ρ(g) ∈ GL2(V ) which acts
trivially on Π must also act trivially on V 2, and so ρ factors through GL(Π).
Since Π is of full rank, we can find some matrix in GL2(V ) which maps the
generators of Π to the standard generators of O2

V , and thus after conjugation
by this matrix we may assume that ρ : GF → GL2(OV ), as required. �

As mentioned previously, we then obtain a reduction ρ̃ by composing ρ
with the homomorphism GL2(OV ) → GL2(kV ) given by reducing the matrix
coefficients. However, this particular reduction is dependent on our choice of
lattice Λ in Proposition 6.1.2. Since any two choices of lattice differ by an
element of GL2(V ), this means that our reduced representation is unique up to
conjugation by an element of this group. As representations over kV , however,
they need not be isomorphic.

To remedy this, we want to fix a choice of representation, and call this our
residual representation ρ̃. To this end, we will require some results from general
representation theory, the statements of which we quote from G. Wiese’s lecture
notes ([Wie08], Theorems 2.1.8, 2.4.6.).

Theorem 6.1.3. (Jordan-Hölder) Let k be a field, A a k-algebra, and V an A-
module which is a finite-dimensional k-vector space. Then V has a composition
series, i.e., a descending chain of submodules

V = V0 ) V1 ) V2 ) . . . ) Vn = 0,

such that all composition factors Vi/Vi+1 are simple.

Theorem 6.1.4. (Brauer-Nesbitt) Let k be a field, A a k-algebra, and V,W
two A-modules which are finite-dimensional k-vector spaces. If for all a ∈ A,
the characteristic polynomials on V and W are equal, then V and W have the
same composition factors.
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We adapt this to our setting. Let ρ1 and ρ2 be two different realisations of our
original representation ρ over OV (so that ρ1(σ) = gρ2(σ)g−1 for all σ ∈ GF , for
some fixed element g ∈ GL2(V )). Since the characteristic polynomial of a matrix
is invariant under conjugation, the characteristic polynomials of ρ1 and ρ2 must
be identical on GF . Moreover, since ρ1 and ρ2 take values in GL2(OV ), the
coefficients of this polynomial are integral, and so the corresponding reductions
also have equal characteristic polynomials. Applying Brauer-Nesbitt with
k = kV , A = k[GF ], and V andW the vector space k2 with k[GF ] action defined
by the reductions of ρ1 and ρ2 respectively, we deduce that the composition
series have identical composition factors.

To this end, we now define the residual representation ρ̃ of the representation
ρ to be the semisimplification of any of our previously obtained reductions, by
which we mean the direct sum of the associated composition factors, which
thus frees us from our choice of lattice, leaving us with a well-defined (up to
isomorphism) representation

ρ̃ : GF → GL2(kV ).

From this argument it is clear that isomorphic representations must have
isomorphic residual representations, and thus, given two representations ρ1 and
ρ2 which we suspect are isomorphic, it is natural to first look at their residual
representations. Since this reduces to a finite problem, establishing isomorphism
of the residual representations should be a simpler task than establishing iso-
morphism of the original representations. In fact, the methods we shall describe
later for comparing the full representations will assume that their residual rep-
resentations are isomorphic, so it is necessary for our purposes to develop tools
for comparing these reductions.

Since this will result in a computational task, it is in our best interests to
find as small a field as possible over which to define our residual representations.
That is, given a representation ρ : GF → GL2(V ), for some finite extension V
of Q`, we wish to find the smallest subfield k of the residue field kV for which
GL2(k) contains the image of the reduction ρ̃.

In fact, we shall show that the residual representation may be defined over
the field kρ, the subfield of kV generated over F` by the coefficients of the
characteristic polynomials of ρ̃(Frobv), for all finite places v of F . In particular,
if the trace and determinant of our representation ρ are integer-valued, then ρ̃
is defined over F`.

To show this, we begin with a variant of a standard result from cohomological
algebra. Given two groups G and X, with an action of G on X, we define the
first cohomology set H1(G;X) to be the set of cocycles {γ : G → X, σ 7→ γσ}
satisfying γστ = γσ · σ(γτ ) for all σ, τ ∈ G, modulo the relation ∼, where γ ∼ γ̂
if, and only if, γ̂σ = x · γσ · σ(x)−1 for all σ ∈ G, for some x ∈ X.
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Theorem 6.1.5. (Hilbert′s Theorem 90) Let L/K be a finite Galois exten-
sion, and let G = Gal(L/K). Then H1(G,GLn(L)) is trivial.

We shall make use of the following result. While it is no doubt well-known
to experts, we were unable to find a reference, and so we provide a full proof.

Proposition 6.1.6. Let ρ : GF → GL2(V ) be a Galois representation, with V a
finite extension of Q`, and let ρ̃ : GF → GL2(kV ) be its residual representation.
Then ρ̃ may be realised over the subfield kρ of kV generated over F` by the
coefficients of the characteristic polynomials of ρ̃(Frobv), for all finite places v
of F , in the sense that we may conjugate ρ̃ by some element of GL2(F`) so that
its image lies in GL2(kρ).

Proof. The group Gal(kV /kρ) is cyclic, generated by the Frobenius element

σ : x 7→ x`
[kρ:F`] . Since by definition σ fixes kρ, the representations ρ̃ and σ ◦ ρ̃

have the same characteristic polynomial. Since ρ̃ (and thus σ◦ρ̃) are semisimple,
Brauer-Nesbitt implies that they must be isomorphic, and so there exists some
element s ∈ GL2(kV ) such that σ(ρ̃(g)) = s−1ρ̃(g)s for all g ∈ GF .

Now, let πs = NormkV /kρ(s) =

[kV :kρ]∏
i=1

σi(s). Since πs ∈ GL2(kρ), it must

have finite order, r, say. Let kr denote a field extension of kV of degree r. Then
Normkr/kV (πs) = πrs = Id, and thus Normkr/kρ(s) = Normkr/kV (πs) = Id.

Let G = Gal(kr/kρ), and let τ be the generator of G, so that in particular
τ |kV = σ. Then the map

γ : G→ GL2(kr); τ
m 7→ γτm :=

m−1∏
i=0

τ i(s)

is a G-cocycle, which can easily be deduced from the definition and the fact that
γτ |G| = Normkr/kρ(s) = Id.

By Hilbert’s Theorem 90, H1(G,GL2(kr)) is trivial, so in particular (since
γτ = s) there exists some t ∈ GL2(kr) such that tsτ(t)−1 = Id, i.e., s = t−1τ(t).

Embedding GL2(kV ) into GL2(kr), we may view ρ̃ as a representation
ρ̃ : GF → GL2(kr), which is fixed by Gal(kr/kV ). In particular,

τ ◦ ρ̃ = ρ̃τ |kV = σ ◦ ρ̃.

Then for each g ∈ GF ,

τ(tρ̃(g)t−1) = τ(t)σ(ρ̃(g))τ(t)−1 = τ(t)s−1ρ̃(g)sτ(t)−1 = tρ̃(g)t−1,

and so the image of tρ̃t−1 is contained in GL2(kρ), as required. �
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In particular:

Corollary 6.1.7. Let ρ : GF → GL2(V ) be a Galois representation, with V a
finite extension of Q`, and let ρ̃ : GF → GL2(kV ) be its residual representation.
If the coefficients of the characteristic polynomial of ρ(Frobv) are rational for
all finite places v of F , then we may realise ρ̃ over the field F`.
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6.2 Sources of Galois Representations

In this section we will provide a brief recap of the particular Galois repre-
sentations with which we will be concerned, namely those arising from elliptic
curves, and those arising from automorphic forms.

The Galois representation attached to an elliptic curve E over a number field
F is constructed in the same manner as for rational elliptic curves (as in Sec-
tion 2.4), namely by considering the action of GF on the `-adic Tate module.
Theorem 2.4.3 extends naturally to elliptic curves defined over number fields,
and as a consequence we have the following result (see [Wie08], Theorem
1.3.3):

Theorem 6.2.1. Let E be an elliptic curve over F , with conductor n, and let
` be a rational prime. Then the above action of GF on Ta` defines an `-adic
Galois representation

ρE : GF → GL2(Q`),

which is unramified at all finite places not dividing `n. At each such unramified
place p, the characteristic polynomial of Frobp is given by

Φp(X) = X2 − apX + NormF/Q(p),

where
ap = NormF/Q(p)− |Ẽ(OF /p)|+ 1,

where Ẽ(OF /p) denotes the reduction of the curve E at the prime p ⊆ OF .
Moreover, the determinant of ρE is given by the `-adic cyclotomic character of
F .

The residual representation ρ̃E is straightforward to describe, it is the semisim-
plification of the representation induced by the action of GF on the set of `-
torsion points E(F )[`]. In particular, if ` = 2, then we can determine the image
of ρ̃, from the Weierstrass equation

E : y2 = x3 + ax+ b.

Since GL2(F2) ' S3, the image of ρ̃E must be a subgroup of S3. In fact, it
must be either S3 itself, the cyclic group C3 or the trivial group {Id}. Indeed, it
is not hard to see that any representation with S3- or C3-image is irreducible, and
thus unchanged by semisimplification. On the other hand, a representation with
C2-image is not irreducible (as F2

2 contains a line invariant under each subgroup
of GL2(F2) of order 2) and so has trivial image after semisimplification. To
determine which image our residual representation has, it suffices to compute
the splitting field of the cubic x3 + ax+ b, as the field F (E[2]) generated by the
coefficients of the 2-torsion points of E is isomorphic to this field.
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On the automorphic side, we use the representation presented in Section
3.5, which we recall below:

Theorem 3.5.1. Let F be a CM field, and let π be a cuspidal automorphic rep-
resentation of ResF/Q(GL2) of cohomological type, with trivial central character,
and fix a prime `. Then there exists an `-adic Galois representation

ρπ : Gal(F/F )→ GL2(Q`)

such that, for each place v of F not dividing `, we have the local-to-global com-
patibility statement, up to semisimplification:

WD(ρπ,v)
ss ' Lv(πv ⊗ |det|−

1
2

v )ss.

Furthermore, if πv is not a twist of Steinberg (e.g., is an unramified princi-
pal series) then we have the full local-to-global compatibility statement, up to
Frobenius semisimplification:

WD(ρπ,v)Frob ' Lv(πv ⊗ |det|−
1
2

v ).

In particular, we use the automorphic representation π corresponding to
a cuspidal automorphic form of level K0(n) attached to one of the cuspidal
Hecke eigenclasses found in Section 5.3. In particular, we recall the following
properties of ρπ from Section 3.5:

• ρπ is unramified at all primes not dividing `n;

• The determinant of ρπ is equal to the `-adic cyclotomic character of F ;

• The traces ρπ(Frobv) of Frobenius elements at unramified primes are given
by the eigenvalues of the Hecke operators Tv acting on the corresponding
Hecke eigenclass.

• Since the eigenclasses we are interested in have rational eigenvalues, the
residual representation ρ̃π takes values in GL2(F`) by Proposition 6.1.6.

We shall call an elliptic curve E defined over F modular if, for some prime
`, the representation ρE is equivalent to the representation ρπ for some π, up to
semisimplification (due to the compatibility of families of such representations,
equivalence of ρE and ρ` for some prime ` implies equivalence for all but finitely
many primes `).
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6.3 Comparing Residual Representations

Suppose now that we have 2-adic representations ρE and ρπ, associated to
an elliptic curve and an automorphic representation respectively, and we wish
to check whether or not they are isomorphic.

We shall follow the spirit of [DGP10]. The first step we shall take is to
determine whether or not the residual representations ρ̃E and ρ̃π are isomor-
phic, which we shall do by investigating the fields cut out by their respec-

tive kernels. More precisely, let LE denote the fixed field F
ker(ρ̃E)

, and Lπ

the fixed field F
ker(ρ̃π)

, so that Gal(LE/F ) ' GF /ker(ρ̃E) ' Im(ρE), and
Gal(Lπ/F ) ' GF /ker(ρ̃π) ' Im(ρπ). Since the coefficients of the characteristic
polynomials of each representation are rational, the residual representations can
be assumed to take values in GL2(F2), and thus their images are isomorphic to
subgroups of S3. Now, elements of GL2(F2) of the same order share the same
characteristic polynomial so, applying Brauer-Nesbitt, we see that if the images
of the residual representations are isomorphic then in fact ρ̃E ' ρ̃π as represen-
tations. Thus our task reduces to determining whether or not the fixed fields
LE and Lπ are isomorphic, for which we can use class field theory, following the
treatment established in [DGP10].

We begin by establishing an isomorphism between GL2(F2) and S3, which
we shall use throughout the remaining discussion. This isomorphism is induced
by the action of GL2(F2) on the three elements of P1(F2), and can be defined
by the mapping

(12) 7→
(

0 1
1 0

)
, (13) 7→

(
1 0
1 1

)
.

From the statements of the previous section, we are considering representa-
tions unramified outside of those places which divide the rational prime 2 and
the conductor of the elliptic curve E (since we restrict our attention to F a CM
field, all infinite places are unramified). Consequently, the fields LE and Lπ are
also unramified outside of these primes (by definition, if a representation ρ is
unramified at p, then the absolute inertia group Ip ⊂ GF lies in ker(ρ). If Fρ

denotes the fixed field F
ker(ρ)

, then for any prime q ⊂ OFρ above p the elements
of the inertia group Iq/p ⊂ Gal(Fρ/F ) lift to elements of the absolute inertia
group, and thus act trivially on Fρ, so p has trivial inertia in Fρ, and thus is
unramified).



132 CHAPTER 6. PROVING MODULARITY OF AN ELLIPTIC CURVE

Our aim is to establish isomorphism of the fields LE and Lπ, which we do by
building up these fields by abelian extensions of F , leading us to consider ideas
from class field theory. Recall that, for an ideal m in a number field K (known as
a modulus), the ray class group Cl(OK ,m) is defined to be the quotient group
Im/Pm, where Im denotes the group of fractional ideals of K coprime to m,
and Pm is the group of principal ideals of K generated by elements which are
congruent to 1 modulo m (while the notion of ray class groups can be extended to
include behaviour at infinite places, we shall not require such a generalization).

The ray class group Cl(OK ,m) is a finite abelian group, and it is known
that there exists an abelian extension K(m)/K, known as a ray class field,
which is unramified away from the primes dividing m, and whose Galois group
is isomorphic to Cl(OK ,m). This isomorphism is established via the Artin map
ArtK(m)/K , which is defined as follows: any element of Cl(OK ,m) can be defined
as the image of a product of integral powers of prime ideals of K, not dividing
m. The Artin map sends the image of such a prime p to the Frobenius element
FrobK(m)/K(p) in Gal(K(m)/K), and is extended to the entire ray class group
multiplicatively. Moreover, the Artin map establishes a correspondence between
the subgroups of Cl(OK ,m) and subextensions of K(m)/K.

The following result states that, if K is a CM field, then every cyclic Galois
extension of K of prime degree appears as a subextension of some K(m)/K, for
a prescribed choice of modulus m:

Theorem 6.3.1. Let K be a CM field, and let L/K be an abelian Galois
extension of prime degree p, unramified away from the finite set of primes
S = {p1, . . . , pn}. Denote by m the modulus

m =
∏
p∈S

pe(p),

where

e(p) =

{
1; if p - p,

bpe(p/p)p−1 c+ 1; if p|p.

Then Gal(L/K) is isomorphic to a subgroup of Cl(OK ,m).

Proof. See [Coh00], Propositions 3.3.21 and 3.3.22. �

Every cyclic order p subgroup of Cl(OK ,m) defines a character χ of order p,
and vice-versa. Thus we can identify degree p extensions L/K with characters
of ray class groups, assigning to each such extension the character defined by the
Galois group Gal(L/K). For example, if L/K is a quadratic extension whose
Galois group is a subgroup of Cl(OK ,m), evaluation of the Artin map shows
that the corresponding character χL is defined on the image of a prime p of K
not dividing m by

χL(p) =

{
0; if p splits in L,
1; if p is inert in L.
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The following result (an extension of [DGP10], Proposition 5.4) will be
used regularly:

Proposition 6.3.2. Let K be a number field, m an ideal of K, and define an
(Z/pZ)-basis {ψ1, . . . , ψs, χ1, . . . , χt} of the order p characters of Cl(OK ,m) for
some prime p. Then there exists a set {p1, . . . , pr} of prime ideals of OK such
that ψi(pj) = 0 for all i, j, and the vectors (χ1(pj), . . . , χt(pj)) for j = 1, . . . , r
span (Z/pZ)t.

Moreover, for any set {p1, . . . , pr} of prime ideals of OK satisfying the above
conditions, if χ is a non-trivial order p character of Cl(OK ,m) not lying com-
pletely in the span of the characters {ψ1, . . . , ψs}, then χ(pj) 6= 0 for some ideal
pj.

Proof. The first statement follows from Chebotarev’s density theorem. In-
deed, let K(m) be the ray class field of K with respect to m, so that Cl(OK ,m)
is isomorphic to Gal(K(m)/K). In particular, the latter group is abelian,
and thus Chebotarev’s theorem implies that it is covered by Frobenius ele-
ments FrobK(m)/K(p), for the primes p of K which do not divide m. For each
character χi, it is possible to find an element of Cl(OK ,m) which has triv-
ial image under all other order p characters, and the corresponding element of
Gal(K(m)/K) is therefore of the form FrobK(m)/K(pi) for some prime pi of K
– the set {p1, . . . , pr} satisfies the required conditions.

For the second statement, we may write χ in the form

χ = ψ +

t∑
i=1

εiχi,

for some εi ∈ Z/nZ, not all zero, and where ψ lies in the span of the characters
{ψ1, . . . , ψs}. Suppose then that χ(pj) = 0 for all 1 ≤ j ≤ r. Since χ(pi) = 0
for each pi, it follows that χ1(p1) . . . χt(p1)

...
. . .

...
χ1(pr) . . . χt(pr)


 ε1

...
εt

 = 0.

Since the matrix (χi(pj))ij has maximal rank, it follows that εi = 0 for all
i, and χ = ψ, contradicting our assumption. �

We now proceed to compare the residual representations, which we shall do
on a case-by-case basis, depending on the image of ρ̃E .
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Case 1: Im(ρ̃E) ' {Id}.

If ρ̃E has trivial image, then it suffices to establish that ρ̃π does not have
image isomorphic to either C3 or S3. Suppose then that Im(ρ̃π) = C3 or S3.

We begin by noting that if this is the case, then the fixed field Lπ = F
ker(ρ̃π)

contains a subfield Fπ such that [Lπ : Fπ] = 3 (if Im(ρ̃π) = C3, then Fπ is simply
F itself, while if Im(ρ̃π) = S3 then Fπ is a quadratic extension of F ). Let n
denote the conductor of the elliptic curve E, and denote by m the modulus

m =
∏
p|2n

pe(p),

where

e(p) =

{
1; if p - 2,

2e(p/2) + 1; if p|2.

By Theorem 6.3.1, any quadratic extension of F unramified away from the
primes dividing 2n (and, consequently, the extension Fπ) must correspond to a
quadratic character of Cl(OF ,m).

Now, for each such character, we construct the corresponding field Fπ, and
let mπ denote the modulus

mπ =
∏

q|2nOFπ

qe(q),

where

e(q) =

{
1; if q - 3,

3b e(q/3)
2 c+ 1; if q|3.

Since Lπ is a cubic extension of Fπ, Theorem 6.3.1 implies that it corresponds
to a cubic character χπ of Cl(OFπ ,mπ). Let {χ1, . . . , χt} denote a (Z/3Z)-basis
of these characters, let {q1, . . . , qs} be a set of prime ideals in OFπ not dividing
mπ such that the vectors (χ1(qi), . . . , χt(qi)) span (Z/3Z)t, and let {p1, . . . , pr}
denote the set of prime ideals in OF lying below the qi.

By Proposition 6.3.2, since χπ is assumed non-trivial, there must be some
prime qi for which χπ(qi) 6= 0. We claim that this means that ρ̃π(Frobp) must
have odd trace, where p lies below qi. Indeed, if χπ(qi) is non-trivial then it
must have order 3 in Z/3Z, whence the image of Frobp must also have odd order
in GL2(F2) ' S3. By observation, the only such elements of GL2(F2) are those
with trace equal to 1.

Thus if the traces of ρπ(Frobpi) are even for each pi defined above, then
ρ̃π has trivial image, while if any of these traces are odd, the character χπ is
non-trivial and thus Lπ is not isomorphic to LE .
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Case 2: Im(ρ̃E) ' C3.

In this case, there are two steps: we first prove that the residual represen-
tation ρ̃π has image isomorphic to C3, which we do by showing that its image
is non-trivial, and contains no order 2 elements. We then prove that its image
factors through the extension LE , which we do by looking at all possible cu-
bic extensions of F and showing that Lπ can only correspond to the character
associated to LE .

We will need to consider both quadratic and cubic extensions of L and so,
guided by Theorem 6.3.1, we let m denote the modulus

m =
∏
p|2n

pe(p),

where

e(p) =


1; if p - 6,

2e(p/2) + 1; if p|2,
3b e(p/3)

2 c+ 1; if p|3,

where n denotes the conductor of the elliptic curve E as before.

Now, if ρ̃π contains an order 2 element in its image, then there must be some
quadratic extension Fπ of F contained in Lπ, which therefore corresponds to a
quadratic character of Cl(OF ,m). Now, suppose p ⊂ OF is a prime which is
inert in Fπ. Since Im(ρ̃π) ⊆ S3, ρ̃π(Frobp) must have order exactly 2, and in
particular has trace equal to 0.

Let {χ1, . . . , χt} be a (Z/2Z)-basis for the quadratic characters of Cl(OF ,m),
and let {p1, . . . , pr} be a set of prime ideals of OF not dividing m, such that
the vectors (χ1(pi), . . . , χt(pi)) span (Z/2Z)t. By Proposition 6.3.2, for any
quadratic extension K of F unramified away from the primes dividing 2n, there
must be some prime pi that is inert in K. Thus if Tr(ρπ(Frobpi)) is odd for all
primes pi, ρ̃π can contain no order 2 elements. In addition, since the identity
matrix has even trace, this implies that ρ̃π must have C3-image.

Next, let ψE denote the cubic character associated to the cubic extension
LE , and extend it to a (Z/3Z)-basis {ψE , χ1, . . . , χt} of the cubic characters
of Cl(OF ,m). Compute a second set {p1, . . . , ps} of prime ideals of OF , not
dividing m, such that ψE(pi) = 0 for all i and the vectors (χ1(pi), . . . , χt(pi))
span (Z/2Z)t.

Let ψπ be the cubic character of Cl(OF ,m) corresponding to Lπ, and write

ψπ = εψE +

t∑
i=1

εiχi, ε, εi ∈ Z/3Z.
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If ψπ = εψE , then Lπ ' LE , so suppose ψπ 6= εψE . By Proposition 6.3.2,
we must have ψπ(pi) 6= 0 for some prime pi. In particular, ρ̃π(Frobpi) must
have odd order in S3, while ρ̃E(Frobpi) has even order, or is the trivial element.
Thus Tr(ρ̃π(Frobpi)) 6= Tr(ρ̃E(Frobpi)).

We therefore evaluate the traces of ρ̃π and ρ̃E on the Frobenius elements
at the primes pi above. If these all coincide, then we indeed have Lπ ' LE ,
and so ρ̃π ' ρ̃E . If any of these traces differ, the residual representations are
non-isomorphic.

Case 3: Im(ρ̃E) ' S3.

This case is slightly more involved than the previous two. We begin by
noting that the group S3 contains a unique (up to inner isomorphism) subgroup
of order 2, and thus it follows that F has a unique quadratic extension FE
contained in LE . We wish to show that Lπ can contain no quadratic extension
of F other than FE .

As before, let m denote the modulus

m =
∏
p|2n

pe(p),

where

e(p) =


1; if p - 6,

2e(p/2) + 1; if p|2,
3b e(p/3)

2 c+ 1; if p|3,

where once again n denotes the conductor of the elliptic curve E.

Let ψFE denote the quadratic character of Cl(OF ,m) corresponding to FE .
After evaluating the Artin map, it is clear that

ψFE (p) =

{
0; if p splits in FE ,
1; if p is inert in FE .

Now, extend ψFE to a (Z/2Z)-basis {ψFE , χ1, . . . , χt} of the quadratic char-
acters of Cl(OF ,m), and let {p1, . . . , pr} be a set of prime ideals in OF , not
dividing m, such that ψFE (pi) = 0 and the vectors (χ1(pi), . . . , χt(pi)) span
(Z/2Z)t. To ensure that ψFE (pi) = 0, we can restrict our attention to primes
with inertial degree 3 on LE ; any such prime must necessarily split on FE . For
any such prime pi, ρ̃E(Frobpi) must have order 3 in GL2(F2), and thus must
have trace equal to 1.

Let χ be a quadratic character of Cl(OF ,m) corresponding to a subfield of
Lπ, and write

χ = εψFE +

t∑
i=1

εiχi, ε, εi ∈ Z/2Z.
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If χ = εψFE , then χ corresponds to either F itself (if ε = 0) or FE (if ε = 1).
If χ 6= εψFE , then Lπ contains a quadratic extension of F not isomorphic to FE ,
and we wish to prove that this is not possible. By Proposition 6.3.2, we must
have χ(pi) 6= 0 for some pi, so in particular pi must have even inertial degree
in Lπ, and the image of ρ̃π(Frobpi) must have even order, and hence has trace
equal to 0. Thus if Tr(ρπ(Frobpi)) is odd for all primes pi above, Lπ can contain
no quadratic extension of F other than FE . If any of these traces are even, we
can immediately deduce that the residual representations are non-isomorphic.

We now wish to eliminate the possibility that Im(ρ̃π) ' C3. If this were
the case, let χπ denote one of the cubic characters of Cl(OF ,m) associated to
Lπ, and let {χ1, . . . , χt} be a (Z/3Z)-basis of the cubic characters of Cl(OF ,m).
By Chebotarev, we can choose a set {p1, . . . , pr} of prime ideals of OF which
either split completely in LE or are inert in the quadratic extension FE of F
mentioned above, such that the vectors (χ1(pi), . . . , χt(pi)) span (Z/3Z)t. Note
that for any such prime pi, ρ̃E(Frobpi) has order at most 2 in GL2(F2), and
thus has trace equal to 0.

Since χπ is non-trivial, by Proposition 6.3.2 we must have χπ(pi) 6= 0 for
some prime pi. Thus χπ(pi) has order 3 in Z/3Z, and subsequently so too must
ρ̃π(Frobpi) in Gal(Lπ/F ). It follows that ρπ(Frobpi) must have odd trace, so
if Tr(ρπ(Frobpi)) is even for all primes pi, we know that Lπ cannot be a C3-
extension. Since we know that the image of ρ̃π is isomorphic to a subgroup of
S3, it follows that it must be S3 itself.

If the residual representations have not yet been shown to be non-isomorphic,
then we know that Lπ is an S3-extension, containing the same quadratic exten-
sion FE of F as LE . We therefore wish to ascertain that the only possible cubic
extension of FE contained in Lπ is LE itself. Using Theorem 6.3.1 once more,
we consider the ray class group Cl(OFE ,mE), where

mE =
∏

q|2nOFE

qe(q),

where

e(q) =

{
1; if q - 3,

3b e(q/3)
2 c+ 1; if q|3,

.
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Denote by ψE one of the cubic characters of Cl(OFE ,mE) associated to the
extension LE , and extend it to a (Z/3Z)-basis {ψE , χ1, . . . , χt} of the cubic char-
acters of Cl(OFE ,mE). Compute a set {q1, . . . , qs} of prime ideals of OFE such
that ψE(qi) = 0 for each i, and the vectors (χ1(qi), . . . , χt(qi)) span (Z/3Z)t,
and let {p1, . . . , pr} denote the set of prime ideals of OF lying beneath the qi.
Now, since ψE(qi) = 0, each prime qi must split completely in LE , so every
prime pi has inertial degree at most 2 in LE . Consequently, ρ̃E(p) has order at
most 2 in GL2(F2), and thus ρE(p) has even trace.

Let ψπ be the cubic character of Cl(OFE ,mE) corresponding to Lπ, and
write

ψπ = εψE +

t∑
i=1

εiχi. ε, εi ∈ Z/3Z.

Now, if ψπ = εψE , then ψπ and ψE must both correspond to the same
extension, and thus Lπ ' LE , so suppose that this is not the case. Then
by Proposition 6.3.2 ψπ(qi) 6= 0 for some qi, and so qi must have inertial
degree 3 in Lπ, and subsequently so too must the prime pi beneath qi. Thus
ρ̃π(Frobpi) must have order 3 in GL2(F2), and so ρπ(Frobpi) has odd trace. Thus
if Tr(ρπ(Frobpi)) is even for all primes pi, we can conclude that the residual
representations ρ̃π and ρ̃E are isomorphic.



6.4. LIVNÉ’S CRITERION 139

6.4 Livné’s Criterion

Having shown how to decide isomorphism of the residual representations, we
are now in a position to determine whether or not the full representations ρE and
ρπ are isomorphic, up to semisimplification. We shall use one of two different
approaches, depending on what the images of the residual representations look
like. The first of these, using a result due to Livné, may be used in the cases
where the residual images are either trivial or cyclic.

We begin by stating the main result:

Theorem 6.4.1. Let F be a number field, and Vλ a finite extension of Q2 with
ring of integers Oλ and maximal ideal λ. Let

ρ1, ρ2 : GF → GL2(Vλ)

be two continuous representations unramified outside a finite set S of places of
F , such that

Tr(ρ̃1) ≡ Tr(ρ̃2) ≡ 0 (mod λ), and det(ρ̃1) ≡ det(ρ̃2) ≡ 1 (mod λ).

Let F2,S denote the compositum of all quadratic extensions of F unramified
outside S, and suppose there exists a set of prime ideals T of OF , disjoint from
S, such that:

(i) {Frobp; p ∈ T} surjects onto Gal(F2,S/F ); and

(ii) The characteristic polynomials of ρ1 and ρ2 at the Frobenius elements
{Frobp; p ∈ T} are equal.

Then ρ1 and ρ2 have isomorphic semisimplifications.

Proof. See [Liv87] (our statement of the theorem comes from [Chê08],
Theorem 5.4.9). �

If both ρ̃π and ρ̃E have trivial image, we may use Theorem 6.4.1 imme-
diately. The Galois group Gal(F2,S/F ) may be identified with the subgroup of
quadratic characters of Cl(OF ,m) from Section 6.3, Case 1, where S is the
set of prime ideals of OF dividing 2n.

Let {χ1, . . . , χt} be a (Z/2Z)-basis of the quadratic characters of Cl(OF ,m).
Then any set {p1, . . . , pr} of primes for which the vectors (χ1(pi), . . . , χt(pi))
cover (Z/2Z)t \ {0} satisfies the criterion. Given such a set of primes, we check
for equality of the characteristic polynomials of ρπ(Frobpi) and ρE(Frobpi) for
all pi. If we have equality for each such prime, the representations are equal.
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If both ρ̃π and ρ̃E have image isomorphic to C3, the matter is slightly more
complicated, as the traces of the residual representations are no longer iden-
tically zero. However, we make the following observation: if we define the

fixed field L = F
ker(ρ̃)

(where ρ̃ is isomorphic to both our residual represen-
tations), then L/F is a cubic Galois extension, and GL is a normal subgroup
of GF . If ρ′E and ρ′π denote the restrictions of our original representations to
GL, then the corresponding residual representations are trivial, and thus we can
use Theorem 6.4.1 to determine isomorphism of ρ′E and ρ′π (as usual, up to
semisimplification).

If we impose the additional restriction that the base change of the elliptic
curve E to the field L does not possess complex multiplication, then the rep-
resentation ρ′E (and thus also ρ′π) is in fact irreducible. By Schur’s lemma,
HomGL(ρ′E , ρ

′
π) contains a copy of Vλ on which GL acts trivially, and thus

HomGL(1, (ρE ⊗ ρ∨π )|GL) is non-trivial (where 1 denotes the trivial represen-
tation). Frobenius reciprocity implies that the latter group is isomorphic to
HomGF (IndGFGL (1), ρE ⊗ ρ∨π ), which decomposes as a direct sum

HomGF (IndGFGL (1), ρE ⊗ ρ∨π ) '
⊕

χ|GL=1

HomGF (ρπ ⊗ χ, ρE).

Invoking Schur’s lemma once more, we observe that one of these summands
must be non-trivial, and that ρE ' ρπ ⊗ χ for some character χ of GF whose
restriction to GL is non-trivial. One can then determine whether this character
is trivial, by finding a prime p of F which is inert in L. In this case, Frobp is non-
trivial, and so χ is completely determined by the value it takes on this Frobenius
element. In particular, if Tr(ρπ(Frobp)) = Tr(ρE(Frobp)), then χ(Frobp) = 1,
χ is trivial, and ρπ and ρE have isomorphic semisimplifications, as required.
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6.5 The Faltings-Serre Method

This section concerns the remaining case: if the residual representations
ρ̃E and ρ̃π are isomorphic and both have full image in GL2(F2), how can we
determine whether the full representations ρE and ρπ are also isomorphic (as
usual, up to semisimplification)?

The Faltings-Serre method gives us a means to answer this. We follow the
spirit of [DGP10], Section 4.1. Let F be a number field, and suppose that

ρ1, ρ2 : GF → GL2(Z2)

are two representations such that:

• ρ1 and ρ2 have the same determinant;

• ρ1 and ρ2 are unramified outside a finite set S of primes of F ;

• The residual representations ρ̃1 and ρ̃2 are absolutely irreducible and iso-
morphic.

If ρ1 and ρ2 were not isomorphic, then by Brauer-Nesbitt there must exist
some prime p in F such that Tr(ρ1(Frobp)) 6= Tr(ρ2(Frobp)). The Faltings-Serre
method will allow us to construct a finite set of candidate prime ideals that will
contain such a prime, should it exist.

We will apply this to our representations ρE and ρπ. While it is clear that
ρE is defined over Z2, we need to show that ρπ is. For this, we use the following
result (adapted from [Car94], Theorem 2):

Theorem 6.5.1. Let V,W be finite extensions of Q2, with rings of integers OV
and OW , and suppose that W ⊃ V . If

ρW : G→ GL2(W )

is a representation of some group G such that the traces Tr(ρW (g)) lie in V for
all g ∈ G, and the residual representation ρ̃W is absolutely irreducible, then ρW
is equivalent to a representation

ρV : G→ GL2(V ).

Since the two-dimensional irreducible representation of S3 is in fact abso-
lutely irreducible over any field of characteristic 2 (see, for example, [LP10],
Example 1.3.5), we can apply Theorem 6.5.1 to ρπ, and deduce that it is
indeed equivalent to a representation defined over Z2.
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We now return to our original situation. Since the traces of ρ1 and ρ2 are
non-equal, there must be a maximal r ∈ N for which Tr(ρ1) ≡ Tr(ρ2) (mod 2r)
(if this were not so, then the traces, being defined over Z2, would necessarily be
equal). Thus we can define a non-trivial map φ : GF → F2 by

φ(σ) =
Tr(ρ1(σ))− Tr(ρ2(σ))

2r
(mod 2).

Now, φ(Frobp) = 1 precisely when the traces of ρi(Frobp) differ, so we wish to
find some prime p such that Frobp has non-trivial image under φ. The difficulty
lies in the fact that the group GF is too large for us to approach directly, so we
would like to factor the map φ through some finite group G.

More precisely, we wish to find a factorisation φ = ϕ ◦ θ, with θ a group
homomorphism, such that the following diagram commutes:

GF
φ

//

θ
  

F2

G

ϕ

>>

Thus φ is non-trivial if, and only if, ϕ is non-trivial on Im(θ), so we may
restrict our attention to the finite group G.

Now, we can associate a field Fθ to the map θ by defining Fθ := F
ker(θ)

, in
which case Fθ/F is a Galois extension, with

Gal(Fθ/F ) ' GF /ker(θ) ' Im(θ).

If we can choose θ appropriately, so as to control ramification in Fθ, then,
since Fθ must be a Galois extension of F with a finite number of potential
Galois groups, we can hope to use class field theory to determine a finite list of
candidates for Fθ. For each possible field, we can determine which elements of
Gal(Fθ/F ) can have non-trivial image under ϕ. If, for each possible Fθ, we can
then find a set of prime ideals p ∈ OF such that the images θ(Frobp) cover this
set, then φ(Frobp) should be non-trivial for at least one of them. The union of
all these primes thus gives us our desired set of candidates.

We now describe how we do this in practice. Since the residual representa-
tions ρ̃1 and ρ̃2 are isomorphic, we shall henceforth assume that ρ̃1 = ρ̃2 = ρ̃,
say. We note the following result (see [Car94], Theorem 1):

Theorem 6.5.2. Let A be a local ring, R an A-algebra, and let ρ, ψ be two
representations of R of the same dimension n. Suppose that the residual rep-
resentation ρ̃ is absolutely irreducible, and that ρ and ψ have the same trace.
Then ρ and ψ are equivalent.
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We apply this as follows: let A be the local ring A = Z2/2
rZ2, and let ρ

and ψ be the compositions of ρ1 and ρ2 with the projection Z2 → Z2/2
rZ2.

In particular, the residual representations ρ̃ and ψ̃ are equivalent to ρ̃1 and ρ̃2.
Since we have assumed the representations to be absolutely irreducible, and that
the traces of ρ1 and ρ2 are equal modulo 2r, it follows that the representations
ρ1 and ρ2 are in fact isomorphic modulo 2r.

We can therefore define a map µ : GF →M2(F2) by setting

ρ1(σ) = (1 + 2rµ(σ))ρ2(σ),

so that
φ(σ) ≡ Tr(ρ̃(σ)µ(σ)) (mod 2).

Note that
ρ1(στ) = (1 + 2rµ(στ))ρ2(στ),

but also

ρ1(στ) = ρ1(σ)ρ1(τ) = (1 + 2rµ(σ))ρ2(σ)(1 + 2rµ(τ))ρ2(τ).

Equating the two, we observe that

µ(στ) ≡ µ(σ) + ρ̃(σ)µ(τ)ρ̃(σ)−1 (mod 2),

and so we may define a homomorphism θ : GF 7→ Im(ρ̃) nM2(F2) by setting

θ(σ) ≡ (ρ̃(σ), µ(σ)) (mod 2).

Note that ker(θ) = {σ ∈ GF , µ(σ) = 0 (mod 2)} ∩ ker(ρ̃). In particular,
φ(σ) = 0 for all σ ∈ ker(θ), and so φ factors through Im(ρ̃)nM2(F2) as φ = ϕ◦θ,
where (by definition of φ) we find ϕ : Im(ρ̃) nM2(F2)→ F2 is defined by

ϕ((M1,M2)) := Tr(M1M2).

Let µ̃ denote the reduction of µ modulo 2. Since

det(ρ1(σ)) = det(1 + 2rµ(σ))det(ρ2(σ))

= (1 + 2rTr(µ(σ)) + 22rdet(µ(σ)))det(ρ2(σ))

≡ (1 + 2rTr(µ(σ)))det(ρ2(σ)) (mod 2r+1),

equality of the determinants of ρ1 and ρ2 implies that

Im(µ̃) ⊂M0
2 (F2) := {M ∈M2(F2),Tr(M) = 0 (mod 2)},

and hence has at most order 23. Thus we may take the group G mentioned
previously to be Im(ρ̃) nM0

2 (F2).
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Since the residual representations have S3-image, we are interested in the
structure of the group S3 nM0

2 (F2). The following result will be useful:

Lemma 6.5.3. We have an isomorphism S3 nM0
2 (F2) ' S4 × C2.

Proof. Recall our previous identification of S3 with GL2(F2), given by:

(12) 7→
(

0 1
1 0

)
, (13) 7→

(
1 0
1 1

)
.

Now, M0
2 (F2) ' (Z/2Z)3, where we may choose our generators to be

v1 =

(
1 1
0 1

)
, v2 =

(
1 0
1 1

)
, v3 =

(
1 0
0 1

)
,

and the group action corresponds to matrix addition. The action of S3 on
M0

2 (F2) is given by the usual conjugation of matrices.

It is clear that under this action, the generator v3 is fixed by all elements
of S3, and so we have an isomorphism S3 nM0

2 (F2) ' (S3 n V4) × C2, where
V4 is the Klein group generated by v1 and v2. A quick check reveals that the
S3-action induces a permutation on the set {v1, v2, v1 + v2}. More precisely, if
we set u1 = v1, u2 = v2, u3 = v1 + v2, then the action of S3 on {u1, u2, u3} is
given by

σ(ui) = uσ(i),

corresponding to the action of S3 on the subgroup V4 = 〈(14)(23), (13)(24)〉 of
S4 (where we identify S3 ⊂ S4 as the set of permutations fixing the element 4).
Indeed, the identification

v1 7→ (14)(23), v2 7→ (13)(24)

gives a concrete isomorphism S3 n 〈v1, v2〉 ' S4, and the result follows. �

As per our previous discussion, this means we may restrict our attention to
Galois extensions L/F with Gal(L/F ) ⊂ S4 ×C2. This still gives us an infinite
choice, so we attempt to control ramification in the field L. This turns out to
be straightforward: we claim that the only primes of OF which can ramify in
L are those lying in the finite set S. Indeed, if p is a prime not contained in
the set S, then ρ1 and ρ2 are unramified at p, so in particular Frobp ∈ ker(θ).
It therefore follows that p must be unramified in the field L = Fθ. Restricting
ramification in this manner results in a finite number of possible extensions. We
may reduce this even further by noting that Fθ must also contain the fixed field

Fρ := F
ker(ρ̃)

.
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As stated previously, we wish to know which elements of Im(ρ̃)nM0
2 (F2) have

non-trivial image under the map ϕ. A simple check reveals that the elements of
S4×C2 with non-trivial image are precisely those of order 4 or 6. These elements
split into three conjugacy classes: if we choose elements σ3 and σ4 of order 3
and 4 in S4 respectively, and let τ be the generator of C2, then representatives
of these conjugacy classes are (σ4, id), (σ4, τ) and (σ3, τ).

Thus for each extension L of F as described above, we need to find primes
pL in OF whose Frobenius elements correspond to these conjugacy classes in
Gal(L/F ), and compare the traces of ρ1 and ρ2 on FrobpL . Since we are looking
for elements of order 4 or 6, and since Gal(L/F ) must contain Im(ρ̃) ' S3, we
may restrict our attention to extensions L/F with Galois group isomorphic to
S3 × C2, S4, or S4 × C2.

In fact, we may make things even easier than this, by considering only those
extensions with Galois group S3 × C2 or S4. First of all, note that S4 × C2 fits
into the exact sequences

1 −→ V4 −→ S4 × C2 −→ S3 × C2 −→ 1,

1 −→ C2 −→ S4 × C2 −→ S4 −→ 1.

In the first sequence the map V4 −→ S4 × C2 is given by embedding the
Klein group V4 naturally into S4, while the map S4 × C2 → S3 × C2 is given
by the isomorphism S4 × C2 ' (S3 n V4) × C2, followed by the projection
((σ, τ), µ) 7→ (σ, µ). The maps in the second sequence are the obvious choices.
Also, every order 4 element of S4 ×C2 maps to an order 4 element in S4, while
every order 6 element of S4 × C2 maps to an order 6 element of S3 × C2 under
these surjections.

How does this help us? Suppose that L/F is an (S4 × C2)-extension, such
that L contains Fρ as a subfield. Then, denoting by G1 and G3 the first and
third non-trivial groups in either sequence respectively, we have the following
situation:

L

G1

S4×C2

LG1

G3Fρ

S3

F
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Since we wish to consider primes p ∈ OK whose Frobenius elements have
order 4 or 6 in S4 × C2, and each such element maps to an element of order 4
or 6 in G3, we may instead consider the extension LG1/F . As such, we shall
henceforth assume that Gal(L/F ) ' S4 or S3 × C2. Since these groups have
only a single conjugacy class of order 4 and order 6 elements respectively, this
means that for each such extension, we need only find a single prime p of inertial
degree either 4 or 6 in L.

We have therefore significantly reduced the number of cases we need to
consider, but there are still some fairly substantial difficulties which we need
to circumvent. Most notably, the groups S3 × C2 and S4, while small, are
non-abelian, and thus do not fall under the remit of class field theory, which we
would hope to use to characterize extensions of F . However, the extension L/Fρ
is much smaller, and will prove more tractable. Indeed, we shall show that L is
the normal closure of a quadratic extension of Fρ.

Let mρ be a modulus in Fρ invariant under the action of Gal(Fρ/F ). Then
Gal(Fρ/F ) acts on the ray class group Cl(OFρ ,mρ), and thus induces an action
on the additive characters of the group, given by ψσ = ψ ◦ σ, for a character ψ
and σ ∈ Gal(Fρ/F ).

Lemma 6.5.4. Let ψ be a character of Cl(OFρ ,mρ), corresponding to the

quadratic extension Fρ(
√
α), and let σ ∈ Gal(Fρ/F ). Then ψσ

−1

corresponds to

the quadratic extension Fρ(
√
σ(α)).

Proof. Any character is completely defined by its values on non-ramified
prime ideals of Fρ. Precisely, if p ⊂ OFρ , then

ψ(p) =

{
0; if p splits,
1; if p is inert.

If p does not divide the fractional ideal α, then p splits if, and only if, α is a
square modulo p, which holds if, and only if, σ(α) is a square modulo σ(p), and
the result is clear. �
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We will need the following result:

Proposition 6.5.5. Let L/F be a Galois extension, with Gal(L/F ) = V4, and
let L1, L2 and L3 denote the three intermediate quadratic extensions of F . Then
for any prime p ⊂ OF which does not ramify in L, p either has inertial degree
2 in precisely two of the Li, or splits completely in L.

Proof. Since V4 is a 2-group, any such prime p has either inertial degree 2
in L or splits completely, so we consider only the former case. Let Gal(L/F ) =
〈σ, τ〉, and suppose pOL = r1r2, where D(ri|p) ' C2. Without loss of generality,
r1 is fixed by σ, and, after reordering, we may assume that L1 = L〈σ〉, and thus

Gal(L/Lk) ∩D(ri|p) =

{
D(ri|p); if k = 1,
{Id}; if k = 2, 3.

Therefore, given a prime qk ⊂ OLi above p, we see that

D(ri|qk) =

{
D(ri|p); if k = 1,
{Id}; if k = 2, 3,

and the result follows. �

Proposition 6.5.6. Let Fρ/F be a Galois S3-extension, and let ψ be a quadratic
character of Cl(OFρ ,mρ), where mρ is a Gal(Fρ/F )-invariant modulus in L.
Then:

(i) The quadratic extension of Fρ corresponding to ψ is Galois over F if, and
only if, ψσ = ψ for all σ ∈ Gal(Fρ/F );

(ii) The quadratic extension of Fρ corresponding to ψ has normal closure over
F with Galois group isomorphic to S4 if, and only if, the elements fixing
ψ form an order 2 subgroup, and ψ + ψσ = ψσ

2

, where σ is any order 3
element of Gal(Fρ/F ).

Proof. Let Fρ(
√
α) be a quadratic extension of Fρ. Its normal closure over

F is the compositum

L =
∏

σ∈Gal(Fρ/F )

Fρ(
√
σ(α)),

and so in particular Gal(L/Fρ) is an abelian 2-group. By the previous lemma, if

Fρ(
√
α) corresponds to the character ψ, then the fields Fρ(

√
σ(α)) correspond

to the characters ψσ, for σ ∈ Gal(Fρ/F ), and so statement (i) is clear.
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We therefore consider the second statement. Suppose first that the stabilizer
of ψ in Gal(Fρ/F ) is a 2-group, and that ψ+ψσ = ψσ

2

, for σ an order 3 element
of Gal(Fρ/F ). The condition on the stabilizer of ψ implies that

L = Fρ(
√
α) · Fρ(

√
γ(α)) · Fρ(

√
γ2(α)),

for some order 3 element γ ∈ Gal(Fρ/F ).

Let σ = γ−1, so that the corresponding quadratic characters are given by ψ,
ψσ and ψσ

2

. Consider the compositum Fρ(
√
α) · Fρ(

√
γ(α)). By Proposition

6.5.5, the field corresponding to the character ϕ = ψ + ψσ is a quadratic
subfield of this compositum. However, the conditions in the statement imply
that ϕ = ψσ

2

, and so L = Fρ(
√
α) · Fρ(

√
γ(α)).

As a result, [L : Fρ] = 4, and Gal(L/Fρ) ' V4, and the situation is summed
up by the following diagram:

L

Gal(L/F )

V4

Fρ

S3

F

We therefore have a short exact sequence

1 −→ V4
ι−→ Gal(L/F ) −→ S3 −→ 1,

and so Gal(L/F ) ' S3 n V4, with the action of S3 on V4 given by

τσ = ι−1(σι(τ)σ−1), σ ∈ S3, τ ∈ V4,

where we embed S3 into Gal(L/F ) via the inclusion Gal(Fρ/F ) ↪→ Gal(L/F ).

We claim that this action induces a right action of Gal(Fρ/F ) ' S3 on the
quadratic characters of Cl(OFρ ,mρ), given by ψ · σ = σ−1 · ψ. Indeed, suppose
we embed V4 ↪→ Gal(L/F ) via the map ι. Each non-trivial element τ ∈ V4 gives
rise to a quadratic extension of Fρ, namely L〈τ〉. Say L〈τ〉 = Fρ(

√
β) for some

β ∈ Fρ. Then L〈τ
σ〉 = Fρ(σ(

√
β)) = Fρ(

√
σ(β)) for any σ ∈ S3. Associating

quadratic characters of Cl(OFρ ,mρ) with quadratic extensions of Fρ as before,
the previous lemma confirms our claim.
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As a result, the assumption (ii) means that, in the action of S3 on V4, any
order 3 element of S3 must act non-trivially (as the stabilizer of our character ψ
is a 2-group). Identifying V4 with a 2-dimensional F2-vector space, this S3-action
gives a morphism

α : S3 → GL2(F2),

whose image must therefore contain an order 3 element. Since the kernel of α
must be a normal subgroup of S3 containing no order 3 elements, it is trivial,
and thus α is an automorphism of GL2(F2). Now, there is a unique such auto-
morphism (up to inner automorphisms, which will not change the isomorphism
class of S3 n V4) and so Gal(L/F ) ' S4, as claimed.

Conversely, if Gal(L/F ) ' S4 then Gal(L/Fρ) ' V4. Thus there are pre-
cisely 3 intermediate quadratic extensions, so the stabilizer of ψ is a 2-group.
Moreover, since L = L1 ·L2 for any pair L1, L2 of these intermediate fields, the
relation ψ · ψσ = ψσ

2

must hold for any σ ∈ S3 of order 3. �

In summary, to find our list of primes we need to compute all Galois exten-
sions L/F which are unramified outside of S, which contain Fρ as a subfield,
and for which Gal(L/F ) ' S3 × C2 or S4. Having found these, we need to
find a prime p for which Frobp has maximal order in Gal(L/F ), and compare
the traces of ρ1 and ρ2 on Frobp. By Proposition 6.5.6, it is enough to find
all quadratic extensions of Fρ which satisfy either criterion (i) or (ii), and then
compute their normal closures.

Since we have already determined whether the residual representations are
isomorphic, we may use the Faltings-Serre method to determine whether the
representations themselves are isomorphic. We need to find all possible Galois
(S3 × C2)- or S4-extensions L of F , and compare the traces of ρπ and ρE at
Frobenius elements of maximal order in each extension. We do this by consid-
ering the Galois closures of quadratic extensions of LE ' Lπ. Using Theorem
6.3.1 once again, we consider the ray class group Cl(OLE ,mLE ), where

mLE =
∏

q|2nOLE

qe(q),

where

e(q) =

{
1; if q - 2,

2e(q/2) + 1; if p|2.

Then any quadratic extension of LE corresponds to a quadratic character
of Cl(OLE ,mLE ). For the rest of this section, fix a basis {χ1, . . . , χt} of these
characters, and a basis {a1, . . . , at} of even-order elements of Cl(OLE ,mLE ),
such that χi(aj) = δij .
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We begin by considering the (S3×C2)-extensions. By Proposition 6.5.6.(i),
we know that such extensions correspond to quadratic characters ψ which are
fixed by Gal(LE/F ) or, equivalently, that ψ + ψσ = 0 for all σ ∈ Gal(LE/F ).
In other words, writing ψ =

∑
εiχi, we are looking for exponents εi for which∑

εi(χi(a) + χi(σ(a))) = 0

for all ideals a.

Fixing an order 3 element σ and an order 2 element τ of Gal(LE/F ), we
therefore find the kernels Vσ and Vτ of the homogeneous systems χ1(a1) + χ1(γ(a1)) . . . χt(a1) + χt(γ(a1))

...
. . .

...
χ1(a1) + χ1(γ(a1)) . . . χt(at) + χt(γ(at))

 , γ ∈ {σ, τ}

and intersect them. The corresponding characters give rise to all (S3 × C2)-
extensions of F containing LE .

Let {ψ1, . . . , ψs} be a (Z/2Z)-basis of Vσ ∩ Vτ , and let {p1, . . . , pr}, be
a set of primes of OF with inertial degree 3 in LE , such that the vectors
(ψ1(qi), . . . , ψs(qi)) span (Z/2Z)s, where qi is any prime in OLE above pi.

Now, for any Galois (S3×C2)-extension L of F containing LE , let ψL be the
corresponding quadratic character on Cl(OLE ,mLE ). By Proposition 6.3.2,
we know that ψL(qi) is non-trivial for some prime qi, and so qi has inertial
degree 2 in L. By our choice of pi, this means that pi has inertial degree 6 in L,
as required. If the traces of Frobenius elements at the primes pi are equivalent
then, if the two representations were non-isomorphic, the map φ must factor
through an S4-extension.

Our last step is to eliminate this possibility. By Proposition 6.5.6, we
know that any S4-extension L of F containing LE arises as the normal closure
of a quadratic extension of LE such that, denoting by ψL the corresponding
quadratic character of Cl(OLE ,mLE ), the stabilizer of ψL in Gal(LE/F ) is an

order 2 subgroup, and ψL + ψσL = ψσ
2

L , where σ is any order 3 element of
Gal(LE/F ).

Since the stabilizer of any such character has order 2, σ cannot act trivially,
and thus ψ, ψσ and ψσ

2

are three distinct characters with these properties,
and all give the same normal closure. Thus, if we let S denote the set of all
characters with these properties, we see that we can write S as the union of
three disjoint sets.
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Moreover, since σ acts transitively by right multiplication on the order 2
elements of S3, we see that

S = Vτ ∪ Vτσ ∪ Vτσ2 ,

where Vτ denotes the quadratic characters belonging to S invariant under the
action of an order 2 element τ and the union is disjoint. Thus each of these
sets is in bijection with all extensions L of LE whose normal closure L̃ satisfies
Gal(L̃/F ) ' S4.

Analogously to the previous case, we are searching for characters ψ =
∑
εiχi

whose exponents satisfy∑
εi(χi(a) + χi(σ(a)) + χi(σ

2(a))) = 0

and ∑
εi(χi(a) + χi(τ(a))) = 0

for some order 3 and order 2 element σ and τ ∈ Gal(LE/F ). Fixing σ, we
compute the kernel Wσ to the homogeneous system χ1(a1) + χ1(σ(a1)) + χ1(σ2(a1)) . . . χt(a1) + χt(σ(a1)) + χt(σ

2(a1))
...

. . .
...

χ1(at) + χ1(σ(at)) + χ1(σ2(at)) . . . χt(at) + χt(σ(at)) + χt(σ
2(at))

 ,

and intersect it with the kernel Vτ obtained previously. The corresponding
characters give rise to all quadratic extensions of LE whose normal closure over
F is an S4-extension.

Let {ψ1, . . . , ψs} be a (Z/2Z)-basis of Wσ ∩ Vτ , and let {p1, . . . , pr} be
a set of primes of OF with inertial degree 2 in LE , such that the vectors
(ψ1(qi), . . . , ψs(qi)), (ψ1(σ(qi)), . . . , ψs(σ(qi))) and (ψ1(σ2(qi)), . . . , ψs(σ

2(qi)))
span (Z/2Z)s, where qi is any prime in OLE above pi.

Now, for any Galois S4-extension L̃ of F containing LE , let L be the
quadratic extension of LE contained within, and let ψL be the corresponding
quadratic character on Cl(OLE ,mLE ). By Proposition 6.3.2, we know that
ψL(qi) is non-trivial for some prime qi, and so qi has inertial degree 2 in L. By
our choice of pi, this means that pi has inertial degree 4 in L, as required. If
the traces of Frobenius elements at the primes pi are equivalent then we can
conclude that the semisimplifications of our two representations are isomorphic.
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6.6 Examples

In this section we provide examples of elliptic curves corresponding to each of
the cohomology classes listed in Section 5.3, and aim to prove that the Galois
representation ρE arising from each curve is isomorphic to the representation
ρπ attached to each cuspidal eigenclass (in the sense of Section 3.5).

For each isomorphism class of curves over F , we present a global minimal
model - an integral element of the isomorphism class whose discriminant has
minimal valuation at all prime ideals dividing it. Since each field we consider
has trivial class group, such a model is guaranteed to exist.

The elliptic curves were found using MAGMA - once a candidate cuspi-
dal eigenclass in H∗(Γ0(n),C) had been identified for a particular level n, we
were able to search for elliptic curves of conductor n using Steve Donnelly’s
EllipticCurveSearch routine. This process was accelerated by computing a num-
ber of Hecke eigenvalues, and providing these as input for the routine. In all
cases, with the exception of the class labelled 4516 over the field F1, this method
yielded the correct curve.

To find this remaining curve, we made use of an idea presented in [DGKY14],
Section 3.3, which involves considering the possible torsion subgroups of the
curve E. Noting that the groups of points on the reduced curves Ẽ(OF /p) have
order divisible by 5, we posit that the torsion subgroup of E(F ) is isomorphic
to Z/5Z (since for any prime p of good reduction, the torsion subgroup of E(F )

injects into Ẽ(OF /p), so the order of this torsion subgroup must divide 5).

According to [Kub76], Table 3, any rational elliptic curve E with 5-torsion
is isogenous to a curve E′ with a parametrization of the form

E′ : y2 + (1− r)xy − ry = x3 − rx2, r ∈ Z.

Inspired by this, we performed a search over values of r ∈ OF , which yielded the
required curve with the value r = t3 + t2 − 4t + 3, where t denotes a primitive
twelfth root of unity.

For each curve, we compute, using the ideas of the previous sections, a finite
set {p1, . . . , pn} of primes of F such that equality of the traces of ρE(Frobpi)
and ρπ(Frobpπ ) for each prime pi implies isomorphism of ρE and ρπ. We then
compute the eigenvalues for the Hecke operators Tpi for each of these primes to
ascertain the isomorphism.

We found that none of the curves had complex multiplication. In particular,
if the residual representation ρ̃E has S3-image, this implies absolute irreducibil-
ity, allowing us to apply the Faltings-Serre method.
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Of these curves, there are several that cannot be isogenous to the base change
of an elliptic curve defined over a subfield. We note that, in each of our examples,
if the conductor n of the given curve is not of the form n0OF , for some ideal n0

contained in a proper subfield of F , then we can find a rational prime p which
splits completely over the field F as pOF = p1p2p3p4, such that the traces of
the Hecke operators Tpi take on at least three distinct values. In particular, the
local L-factor at p has at least three distinct factors. By contrast, the L-factors
of a curve defined over a subfield K0 would have at most two distinct factors,
since such a curve is invariant under any element of Gal(F/K0). Since isogeny
preserves L-factors, the result is clear.

Computations to determine the set of primes as described in the previous
sections were performed with PARI ([PAR14]). For each of the elliptic curves
we discovered, the corresponding residual representation was either trivial, or
had image isomorphic to S3. For ease of reference, we shall briefly summarize
the methods of Sections 6.3, 6.4 and 6.5 for determining isomorphism in these
two cases:

If ρ̃E has trivial image, then:

• We compute the ray class group Cl(OF ,m) from Section 6.3, Case
1, whose quadratic characters correspond to quadratic extensions of F
unramified away from the primes dividing 2n.

• For each quadratic character of this group, we construct the correspond-
ing field Fπ, and compute the ray class group Cl(OFπ ,mπ), again from
Section 6.3, Case 1. We compute a (Z/3Z)-basis {χ1, . . . , χt} of the
cubic characters of this group, and determine a set of primes {p1, . . . , pr}
of F such that the vectors (χ1(qi), . . . , χt(qi)) span (Z/3Z)t, where qi is a
prime of Fπ lying above pi.

• If Tr(ρπ(Frobpi)) is even for each of these primes (running over all choices
of Fπ) then the residual representations are isomorphic.

• If this is the case, then we compute a (Z/2Z)-basis {χ1, . . . , χt} of the
quadratic characters of the ray class group Cl(OF ,m), and determine a
set {p1, . . . , pr} of primes of F for which the vectors (χ1(pi), . . . , χt(pi))
cover (Z/2Z)t \ {0}.

• If Tr(ρπ(Frobpi)) = Tr(ρE(Frobpi)) for each of these primes, then the
representations ρπ and ρE are isomorphic.
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If ρ̃E has image isomorphic to S3, then:

• We compute the ray class group Cl(OF ,m) from Section 6.3, Case 3,
whose quadratic and cubic characters correspond to quadratic and cubic
extensions of F unramified away from the primes dividing 2n.

• We compute the quadratic character ψFE of Cl(OF ,m) corresponding to
the unique quadratic extension of F contained in LE , extend this to a
(Z/2Z)-basis {ψFE , χ1, . . . , χt} of the quadratic characters of this group,
and determine a set of primes {p1, . . . , pr} of F such that ψFE (pi) = 0 and
the vectors (χ1(pi), . . . , χt(pi)) span (Z/2Z)t.

• If Tr(ρπ(Frobpi)) is even for any of these primes, then we deduce that the
residual representations are non-isomorphic, otherwise, we deduce that
the field Lπ can contain no quadratic extension of F other than FE .

• In this case, we compute a (Z/3Z)-basis {χ1, . . . , χt} of the cubic charac-
ters of Cl(OF ,m), and determine a set of primes {p1, . . . , pr} of F which
are either inert in FE , or split completely in LE , such that the vectors
(χ1(pi), . . . , χt(pi)) span (Z/3Z)t.

• If Tr(ρπ(Frobpi)) is odd for any of these primes, then we deduce that the
residual representations are non-isomorphic, otherwise, we deduce that Lπ
cannot be a cubic extension of F .

• If this is the case, we compute the ray class group Cl(OFE ,mE), again
from Section 6.3, Case 3, whose cubic characters correspond to cubic
extensions of the subfield FE of LE .

• We determine a cubic character ψE of Cl(OFE ,mE) corresponding to the
extension LE , extend it to a (Z/3Z)-basis {ψE , χ1, . . . , χt} of all such
cubic characters, and determine a set {p1, . . . , pr} of primes of F such
that ψE(qi) = 0, and the vectors (χ1(qi), . . . , χt(qi)) span (Z/3Z)t, where
qi is a prime of FE lying above pi.

• If Tr(ρπ(Frobpi)) is even for each of these primes, we deduce that the
residual representations are isomorphic.

• If this is the case, we then compute the ray class group Cl(OLE ,mLE )
from Section 6.5, whose quadratic characters correspond to quadratic
extensions of LE unramified away from the primes dividing 2n. We fix a
(Z/2Z)-basis {χ1, . . . , χt} of these characters, and a basis {a1, . . . , at} of
even-order elements of Cl(OLE ,mLE ) such that χi(aj) = δij .

• We compute the kernels Vσ, Vτ and Wσ of the homogeneous systems de-
scribed in Section 6.5, where σ and τ are elements of the Galois group
Gal(LE/F ) of order 3 and 2 respectively.
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• We compute a (Z/2Z)-basis {ψ1, . . . , ψs} of Vσ ∩ Vτ , and a set of primes
{p1, . . . , pr} of F with inertial degree 3 in LE , such that the set of vectors
of the form (ψ1(qi), . . . , ψs(qi)) span (Z/2Z)s, where qi lies above pi.

• Next, we compute a (Z/2Z)-basis {ψ1, . . . , ψs} of Wσ ∩ Vτ , and a set of
primes {p1, . . . , pr} of F with inertial degree 2 in LE , such that the set
of vectors of the form (ψ1(qi), . . . , ψs(qi)), (ψ1(σ(qi)), . . . , ψs(σ(qi))) and
(ψ1(σ2(qi)), . . . , ψs(σ

2(qi))) span (Z/2Z)s, where qi lies above pi.

• If Tr(ρπ(Frobpi)) = Tr(ρE(Frobpi)) for the primes pi in each of these sets,
then we deduce that the representations ρπ and ρE are isomorphic.
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6.6.1 The Field F1

Let F = F1, which we recall is defined to be Q(t), where t is a primitive twelfth
root of unity. The table below gives a list of the prime ideals of F of norm at
most 650, together with a generator for each ideal:

p Generator p Generator p Generator

p2 −t2 + t+ 1 p181,3 4t3 + t2 − t− 2 p397,1 −4t3 − 2t2 + 3t− 1
p3 t2 + 1 p181,4 2t3 + t2 − t− 4 p397,2 t3 + 3t2 + 2t− 4

p13,1 −t3 + t2 + 1 p193,1 −t3 + t2 + 4t− 1 p397,3 −t3 + 3t2 − 2t− 4
p13,2 t3 + t+ 1 p193,2 3t2 − t− 4 p397,4 −t3 + 3t2 + 4t− 2
p13,3 −t3 − t+ 1 p193,3 3t2 + t− 4 p409,1 −5t3 + t2 + t− 1
p13,4 t3 + t2 + 1 p193,4 t3 + t2 − 4t− 1 p409,2 −t3 + t2 + t− 5
p5,1 2t2 − t− 2 p229,1 −3t3 + 2t2 + 3t+ 1 p409,3 −3t3 + 4t2 − t− 4
p5,2 t3 − 2t2 − t p229,2 −t3 + 3t2 − 2t− 3 p409,4 4t3 − 5t− 1
p37,1 2t3 + t2 − 2 p229,3 2t3 − 3t2 − 3t p421,1 3t3 + t2 − 2t− 5
p37,2 t3 − 2t2 − 2t p229,4 −3t3 − 2t2 + 3t− 1 p421,2 2t3 + 4t2 − 3t− 5
p37,3 t3 + t2 − t− 3 p241,1 4t3 − 4t− 1 p421,3 5t3 − 3t− 2
p37,4 3t3 + t2 − t− 1 p241,2 −t3 + 4t2 − 4 p421,4 −3t3 + t2 + 2t− 5
p7,1 2t3 − 3t p241,3 t3 − t− 4 p433,1 −3t3 + 2t2 + t− 5
p7,2 t3 − 3t p241,4 −4t3 + t2 − 1 p433,2 5t3 + t2 − 2t− 3
p61,1 −t3 + t2 + 3t− 1 p277,1 3t2 + 2t− 4 p433,3 t3 − 2t2 − 5t
p61,2 2t2 − t− 3 p277,2 2t3 − t2 − 3t− 4 p433,4 3t3 + 2t2 − t− 5
p61,3 2t2 + t− 3 p277,3 t3 + 2t2 − 4t− 2 p457,1 3t2 + 3t− 4
p61,4 t3 + t2 − 3t− 1 p277,4 2t3 − 4t2 + t− 1 p457,2 −3t3 − 3t2 + 3t− 1
p73,1 −t3 − 3t2 p17,1 4t2 − t− 4 p457,3 3t3 − 3t2 − 3t− 1
p73,2 2t3 + 2t2 − 3 p17,2 t3 − 4t2 − t p457,4 t3 + 3t2 + 3t− 3
p73,3 −2t3 + 2t2 − 3 p313,1 −t3 + 2t2 + 3t− 5 p23,1 2t3 + 3t2 − 2t− 6
p73,4 −t3 + 3t2 + t− 3 p313,2 t3 − 4t2 − 2t p23,2 −2t3 + 3t2 + 2t− 6
p97,1 2t3 + t2 − 2t− 4 p313,3 3t3 + 3t2 − t− 5 p541,1 −2t3 + 2t− 5
p97,2 −2t3 + 4t2 − 1 p313,4 t3 + 2t2 − 3t− 5 p541,2 5t3 − 3t− 3
p97,3 −2t3 − 4t2 + 1 p337,1 5t3 + t2 − 2t− 2 p541,3 5t3 − 5t− 2
p97,4 −2t3 + t2 + 2t− 4 p337,2 −2t3 + 2t2 + t− 5 p541,4 −5t2 − 2t
p109,1 t3 + t2 − 2t− 4 p337,3 2t3 + 2t2 − t− 5 p577,1 −2t3 + 3t2 − 2t− 4
p109,2 −2t3 − 2t2 + 2t− 1 p337,4 −t3 + 3t2 + 2t− 5 p577,2 −4t3 − 2t2 + 3t− 2
p109,3 2t3 − 2t2 − 2t− 1 p349,1 −2t3 + 3t− 5 p577,3 4t3 − 2t2 − 3t− 2
p109,4 −t3 + t2 + 2t− 4 p349,2 4t3 − t2 − 2t− 2 p577,4 2t3 − 4t2 − 4t+ 1
p11,1 −3t3 + t2 + t− 3 p349,3 t3 + 2t2 + 2t− 4 p601,1 5t3 − 5t− 1
p11,2 t3 + 2t2 − 3t− 3 p349,4 2t3 − 3t− 5 p601,2 −t3 + 5t2 − 5
p157,1 −4t3 + 2t− 1 p19,1 2t3 − 5t p601,3 t3 − t− 5
p157,2 −t3 + 2t2 − 4 p19,2 3t3 − 5t p601,4 −5t3 + t2 − 1
p157,3 t3 + 2t2 − 4 p373,1 4t3 + 2t2 − 2t− 5 p613,1 t3 + 2t2 − 5t− 2
p157,4 4t3 − 2t− 1 p373,2 2t3 + 3t2 − 4t− 5 p613,2 4t2 − 2t− 5
p181,1 −2t3 + t2 + t− 4 p373,3 5t3 − 3t− 1 p613,3 4t2 + 2t− 5
p181,2 t3 − 2t2 − 4t p373,4 3t3 + t2 − 5t− 1 p613,4 −t3 + 2t2 + 5t− 2

The following pages provide, for each of the cuspidal classes with rational
eigenvalues found in Section 5.3.1, a list of primes which suffice to prove mod-
ularity of the corresponding elliptic curve, using the techniques of the previous
sections. For each example, we then list the Hecke eigenvalues ap(π) for these
primes, and are therefore able to prove that each of these curves is indeed mod-
ular.
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Class 441

• The level n = p3p7,2, and the residual representation attached to the
corresponding elliptic curve has trivial image.

• The modulus m = p5
2p3p7,2, and the corresponding ray class group Cl(OF ,m)

is isomorphic to Z/24Z× Z/8Z× (Z/2Z)3.

• The primes {p13,1, p13,2, p13,3, p13,4, p5,1, p5,2, p37,1, p37,2, p37,3, p7,1, p61,2,
p73,1} suffice to prove isomorphism of the residual representations.

• The primes {p13,1, p13,2, p13,3, p13,4, p5,1, p37,1, p37,2, p37,3, p37,4, p7,1,
p61,2, p61,3, p73,1, p73,2, p97,1, p97,2, p109,2, p109,3, p11,1, p181,2, p181,3, p193,1,
p17,1, p313,1, p337,1, p349,1, p349,4, p19,1, p409,2, p23,1, p601,2} satisfy the
conditions for Livné’s theorem, and therefore suffice to prove isomorphism
of the full representations.

Class 1156

• The level n = p2p17,2, and the residual representation attached to the
corresponding elliptic curve has trivial image.

• The modulus m = p5
2p17,2, and the corresponding ray class group Cl(OF ,m)

is isomorphic to Z/32Z× (Z/2Z)3.

• The prime p13,1 suffices to prove isomorphism of the residual representa-
tions.

• The primes {p3, p13,1, p13,2, p13,3, p13,4, p5,1, p37,1, p37,3, p7,1, p73,1, p73,3,
p97,3, p109,2, p109,4, p457,1} satisfy the conditions for Livné’s theorem, and
therefore suffice to prove isomorphism of the full representations.

Class 2041

• The level n = p13,3p157,3, and the residual representation attached to the
corresponding elliptic curve has trivial image.

• The modulus m = p5
2p13,3p157,3, and the corresponding ray class group

Cl(OF ,m) is isomorphic to Z/12Z× Z/4Z× (Z/2Z)3.

• The prime p13,1 suffices to prove isomorphism of the residual representa-
tions.

• The primes {p3, p13,1, p13,2, p13,4, p5,1, p5,2, p37,1, p37,2, p37,3, p37,4, p61,1,
p61,2, p61,3, p73,1, p73,3, p73,4, p97,1, p97,2, p97,4, p109,1, p109,2, p109,4, p181,1,
p193,1, p229,3, p17,1, p313,1, p313,4, p373,1, p409,1, p1321,1}, where p1321,1 is
generated by the element −3t3 − 8t2 − t + 3, satisfy the conditions for
Livné’s theorem, and therefore suffice to prove isomorphism of the full
representations.
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Class 2257

• The level n = p37,1p61,2, and the residual representation attached to the
corresponding elliptic curve has image isomorphic to S3.

• The modulus m = p5
2p37,1p61,2, and the corresponding ray class group

Cl(OF ,m) is isomorphic to Z/12Z× Z/4Z× (Z/2Z)3.

• The primes {p13,1, p13,2, p13,4, p5,1} suffice to show that Lπ can contain no
quadratic extension of F other than FE , while the prime p3 suffices to
show that Lπ cannot be a cubic extension of F .

• The modulus mE = q2q37q61, where the primes qi divide 2nOFE , and the
corresponding ray class group Cl(OFE ,mE) is isomorphic to (Z/3Z)3.

• The prime p3 suffices to deduce that the residual representations are iso-
morphic.

• The modulus mLE = r92,1r
9
2,2r

9
2,3r37,1r37,2r37,3r61,1r61,2r61,3, where the primes

ri,j divide 2nOLE , and the corresponding ray class group Cl(OLE ,mLE )
is isomorphic to Z/24Z× Z/8Z× (Z/4Z)5 × (Z/2Z)14.

• The kernels Vσ, Vτ and Wσ are 14-, 9-, and 7-dimensional respectively,
and the intersections Vσ ∩ Vτ and Wσ ∩ Vτ are a 5- and a 7-dimensional
subspace of (Z/2Z)21 respectively. The set of primes {p3, p13,1, p13,2,
p13,3, p13,4, p5,1, p37,3, p61,1, p97,1, p97,3, p109,3, p193,1} suffice to prove
isomorphism of the full representations.

Class 2452

• The level n = p2p613,3, and the residual representation attached to the
corresponding elliptic curve has image isomorphic to S3.

• The modulus m = p5
2p613,3, and the corresponding ray class group Cl(OF ,m)

is isomorphic to Z/12Z× (Z/2Z)3.

• The primes {p3, p13,1, p5,2} suffice to show that Lπ can contain no quadratic
extension of F other than FE , while the prime p13,1 suffices to show that
Lπ cannot be a cubic extension of F .

• The modulus mE = q2q613,1q613,2, where the primes qi divide 2nOFE , and
the corresponding ray class group Cl(OFE ,mE) is isomorphic to Z/9Z ×
Z/3Z.

• The prime p13,3 suffices to deduce that the residual representations are
isomorphic.
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• The modulus mLE = r92,1r
9
2,2r

9
2,3r613,1r613,2, where the primes ri,j divide

2nOLE , and the corresponding ray class group Cl(OLE ,mLE ) is isomorphic
to Z/12Z× (Z/4Z)3 × (Z/2Z)13.

• The kernels Vσ, Vτ and Wσ are 10-, 8-, and 7-dimensional respectively,
and the intersections Vσ ∩ Vτ and Wσ ∩ Vτ are a 4- and a 5-dimensional
subspace of (Z/2Z)17 respectively. The set of primes {p3, p13,1, p13,3,
p5,2, p37,2, p37,3, p7,1, p7,2, p61,3} suffice to prove isomorphism of the full
representations.

Class 2500a

• The level n = p2p
2
5,1, and the residual representation attached to the

corresponding elliptic curve has image isomorphic to S3.

• The modulus m = p5
2p5,1, and the corresponding ray class group Cl(OF ,m)

is isomorphic to Z/8Z× (Z/2Z)3.

• The primes {p13,3, p13,4, p37,1} suffice to show that Lπ can contain no
quadratic extension of F other than FE . Since the ray class group ad-
mits no cubic characters, Lπ cannot be a cubic extension of F .

• The modulus mE = q2q5,1q5,2, where the primes qi divide 2nOFE , and the
corresponding ray class group Cl(OFE ,mE) is isomorphic to Z/3Z.

• Since this class group admits only a single cubic character, the only pos-
sible cubic extension of Fπ must be LE , and we deduce that the residual
representations are isomorphic.

• The modulus mLE = r92,1r
9
2,2r

9
2,3r5,1r5,2, where the primes ri,j divide 2nOLE ,

and the corresponding ray class group Cl(OLE ,mLE ) is isomorphic to
Z/8Z× (Z/4Z)3 × (Z/2Z)13.

• The kernels Vσ, Vτ and Wσ are 10-, 7-, and 7-dimensional respectively, and
the intersections Vσ∩Vτ and Wσ∩Vτ are a 4- and a 6-dimensional subspace
of (Z/2Z)13 respectively. The set of primes {p13,1, p13,3, p5,2, p37,1, p37,2,
p37,3, p61,3} suffice to prove isomorphism of the full representations.

Class 2977

• The level n = p13,3p229,4, and the residual representation attached to the
corresponding elliptic curve has trivial image.

• The modulus m = p5
2p13,3p229,4, and the corresponding ray class group

Cl(OF ,m) is isomorphic to Z/12Z× Z/4Z× (Z/2Z)3.

• The primes {p13,1, p13,2, p5,2} suffice to prove isomorphism of the residual
representations.
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• The primes {p3, p13,1, p13,2, p13,4, p5,1, p5,2, p37,1, p37,2, p37,3, p37,4, p7,2,
p61,1, p61,2, p73,1, p73,2, p73,3, p97,1, p97,2, p109,2, p109,3, p157,2, p157,4, p229,1,
p229,2, p241,3, p17,1, p313,1, p19,1, p397,3, p409,2, p409,3} satisfy the conditions
for Livné’s theorem, and therefore suffice to prove isomorphism of the full
representations.

Class 3328

• The level n = p4
2p13,4, and the residual representation attached to the

corresponding elliptic curve has trivial image.

• The modulus m = p5
2p13,4, and the corresponding ray class group Cl(OF ,m)

is isomorphic to Z/4Z× (Z/2Z)3.

• For each possible extension Fπ of F corresponding to a quadratic character
of Cl(OF ,m), the ray class group Cl(OFπ ,mπ) admits no cubic characters,
and thus we immediately deduce that the residual representations are
isomorphic.

• The primes {p3, p13,1, p13,2, p13,3, p5,1, p5,2, p37,1, p37,2, p37,4, p61,1, p61,2,
p73,1, p73,4, p97,1, p17,1} satisfy the conditions for Livné’s theorem, and
therefore suffice to prove isomorphism of the full representations.

Class 3721b

• The level n = p61,1p61,2, and the residual representation attached to the
corresponding elliptic curve has trivial image.

• The modulus m = p5
2p61,1p61,2, and the corresponding ray class group

Cl(OF ,m) is isomorphic to Z/60Z× Z/4Z× (Z/2Z)3.

• The primes {p13,1, p13,3} suffice to prove isomorphism of the residual rep-
resentations.

• The primes {p3, p13,1, p13,2, p13,3, p13,4, p5,1, p37,1, p37,3, p7,1, p7,2, p61,3,
p61,4, p73,1, p73,2, p97,1, p97,2, p109,1, p109,3, p157,1, p157,3, p181,1, p181,2,
p181,3, p181,4, p193,1, p17,1, p337,1, p19,1, p409,1, p409,3, p601,3} satisfy the
conditions for Livné’s theorem, and therefore suffice to prove isomorphism
of the full representations.
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Class 3844

• The level n = p2p31,2, and the residual representation attached to the
corresponding elliptic curve has image isomorphic to S3.

• The modulus m = p5
2p31,2, and the corresponding ray class group Cl(OF ,m)

is isomorphic to Z/120Z× (Z/2Z)3.

• The primes {p3, p13,3, p73,2} suffice to show that Lπ can contain no quadratic
extension of F other than FE , while the prime p13,1 suffices to show that
Lπ cannot be a cubic extension of F .

• The modulus mE = q2q31,1q31,2, where the primes qi divide 2nOFE , and
the corresponding ray class group Cl(OFE ,mE) is isomorphic to Z/360Z×
Z/3Z.

• The prime p13,1 suffices to deduce that the residual representations are
isomorphic.

• The modulus mLE = r92,1r
9
2,2r

9
2,3r31,1r31,2, where the primes ri,j divide

2nOLE , and the corresponding ray class group Cl(OLE ,mLE ) is isomorphic
to Z/1440Z× Z/48Z× Z/4Z× (Z/2Z)14.

• The kernels Vσ, Vτ and Wσ are 10-, 8-, and 7-dimensional respectively,
and the intersections Vσ ∩ Vτ and Wσ ∩ Vτ are a 4- and a 5-dimensional
subspace of (Z/2Z)17 respectively. The set of primes {p3, p13,1, p13,2, p5,1,
p37,2, p61,1, p73,2} suffice to prove isomorphism of the full representations.

Class 4033a

• The level n = p37,4p109,4, and the residual representation attached to the
corresponding elliptic curve has trivial image.

• The modulus m = p5
2p37,4p109,4, and the corresponding ray class group

Cl(OF ,m) is isomorphic to Z/36Z× Z/4Z× (Z/2Z)3.

• The prime p13,1 suffices to prove isomorphism of the residual representa-
tions.

• The primes {p3, p13,1, p13,2, p13,3, p13,4, p5,1, p5,2, p37,1, p37,2, p37,3, p7,1,
p61,1, p61,3, p61,4, p73,1, p73,2, p73,3, p73,4, p97,1, p97,2, p97,3, p109,1, p109,2,
p157,4, p277,1, p17,1, p17,2, p337,4, p349,2, p373,1, p409,3} satisfy the conditions
for Livné’s theorem, and therefore suffice to prove isomorphism of the full
representations.
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Class 4033b

• The level n = p37,4p109,3, and the residual representation attached to the
corresponding elliptic curve has trivial image.

• The modulus m = p5
2p37,4p109,3, and the corresponding ray class group

Cl(OF ,m) is isomorphic to Z/36Z× Z/4Z× (Z/2Z)3.

• The primes {p3, p13,2} suffice to prove isomorphism of the residual repre-
sentations.

• The primes {p3, p13,1, p13,2, p13,3, p13,4, p5,1, p5,2, p37,1, p37,2, p37,3, p7,1,
p61,1, p61,2, p61,3, p61,4, p73,1, p73,2, p73,3, p73,4, p97,1, p97,2, p97,3, p109,1,
p109,2, p109,4, p157,4, p17,2, p313,4, p373,1, p409,2, p409,3} satisfy the condi-
tions for Livné’s theorem, and therefore suffice to prove isomorphism of
the full representations.

Class 4057

• The level n = p4057,1, which is generated by the element 6t3 + 2t2 − 9t− 2,
and the residual representation attached to the corresponding elliptic
curve has image isomorphic to S3.

• The modulus m = p5
2p4057,1, and the corresponding ray class group Cl(OF ,m)

is isomorphic to Z/8Z× (Z/2Z)3.

• The primes {p13,1, p13,3, p5,2} suffice to show that Lπ can contain no
quadratic extension of F other than FE . Since the ray class group ad-
mits no cubic characters, Lπ cannot be a cubic extension of F .

• The modulus mE = q2q4057,1q4057,2, where the primes qi divide 2nOFE ,
and the corresponding ray class group Cl(OFE ,mE) is isomorphic to Z/6Z×
Z/2Z.

• Since this class group admits only a single cubic character, the only pos-
sible cubic extension of Fπ must be LE , and we deduce that the residual
representations are isomorphic.

• The modulus mLE = r92,1r
9
2,2r

9
2,3r4057,1r4057,2, where the primes ri,j divide

2nOLE , and the corresponding ray class group Cl(OLE ,mLE ) is isomorphic
to (Z/8Z)2 × (Z/4Z)4 × (Z/2Z)11.

• The kernels Vσ, Vτ and Wσ are 10-, 8-, and 7-dimensional respectively,
and the intersections Vσ ∩ Vτ and Wσ ∩ Vτ are a 4- and a 5-dimensional
subspace of (Z/2Z)17 respectively. The set of primes {p3, p13,1, p13,2,
p13,3, p5,1, p5,2, p37,2, p61,2, p61,4} suffice to prove isomorphism of the full
representations.
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Class 4069

• The level n = p13,3p313,4, and the residual representation attached to the
corresponding elliptic curve has image isomorphic to S3.

• The modulus m = p5
2p13,3p313,4, and the corresponding ray class group

Cl(OF ,m) is isomorphic to Z/24Z× Z/4Z× (Z/2Z)3.

• The primes {p13,1, p13,2, p13,4, p5,2} suffice to show that Lπ can contain no
quadratic extension of F other than FE , while the prime p37,2 suffices to
show that Lπ cannot be a cubic extension of F .

• The modulus mE = q2q13q313, where the primes qi divide 2nOFE , and the
corresponding ray class group Cl(OFE ,mE) is isomorphic to (Z/3Z)2.

• The prime p37,2 suffices to deduce that the residual representations are
isomorphic.

• The modulus mLE = r92,1r
9
2,2r

9
2,3r13,1r13,2r13,3r313,1r313,2r313,3, where the

primes ri,j divide 2nOLE , and the corresponding ray class group Cl(OLE ,mLE )
is isomorphic to Z/24Z× (Z/8Z)3 × (Z/4Z)3 × (Z/2Z)14.

• The kernels Vσ, Vτ and Wσ are 14-, 9-, and 7-dimensional respectively,
and the intersections Vσ ∩ Vτ and Wσ ∩ Vτ are a 5- and a 7-dimensional
subspace of (Z/2Z)21 respectively. The set of primes {p13,1, p13,2, p13,4,
p5,2, p37,1, p37,2, p37,3, p61,3, p73,2, p97,2, p97,3, p109,3} suffice to prove
isomorphism of the full representations.

Class 4225b

• The level n = p2
13,2p5,1, and the residual representation attached to the

corresponding elliptic curve has trivial image.

• The modulus m = p5
2p13,2p5,1, and the corresponding ray class group

Cl(OF ,m) is isomorphic to Z/24Z× Z/4Z× (Z/2Z)3.

• The primes {p3, p13,3} suffice to prove isomorphism of the residual repre-
sentations.

• The primes {p3, p13,1, p13,3, p13,4, p5,2, p37,1, p37,2, p37,3, p37,4, p7,1, p7,2,
p61,1, p61,3, p61,4, p73,1, p73,2, p73,3, p97,2, p97,3, p109,3, p11,1, p157,2, p157,4,
p181,4, p193,4, p229,1, p229,2, p17,1, p313,3, p409,1, p409,2} satisfy the condi-
tions for Livné’s theorem, and therefore suffice to prove isomorphism of
the full representations.
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Class 4516

• The level n = p2p1129,1, where p1129,1 is generated by 6t3−2t2−3t−1, and
the residual representation attached to the corresponding elliptic curve has
image isomorphic to S3.

• The modulus m = p5
2p1129,1, and the corresponding ray class group Cl(OF ,m)

is isomorphic to Z/24Z× (Z/2Z)3.

• The primes {p3, p13,2, p37,3} suffice to show that Lπ can contain no quadratic
extension of F other than FE , while the prime p13,3 suffices to show that
Lπ cannot be a cubic extension of F .

• The modulus mE = q2q1129, where the primes qi divide 2nOFE , and the
corresponding ray class group Cl(OFE ,mE) is isomorphic to (Z/3Z)2.

• The prime p13,3 suffices to deduce that the residual representations are
isomorphic.

• The modulus mLE = r92,1r
9
2,2r

9
2,3r1129,1r1129,2r1129,3, where the primes ri,j

divide 2nOLE , and the corresponding ray class group Cl(OLE ,mLE ) is
isomorphic to Z/48Z× (Z/4Z)4 × (Z/2Z)13.

• The kernels Vσ, Vτ and Wσ are 12-, 8-, and 6-dimensional respectively,
and the intersections Vσ ∩ Vτ and Wσ ∩ Vτ are a 4- and a 6-dimensional
subspace of (Z/2Z)18 respectively. The set of primes {p3, p13,1, p13,2, p13,3,
p5,1, p5,2, p37,1, p37,3, p7,1, p73,1} suffice to prove isomorphism of the full
representations.

Class 4672

• The level n = p3
2p73,1, and the residual representation attached to the

corresponding elliptic curve has trivial image.

• The modulus m = p5
2p73,1, and the corresponding ray class group Cl(OF ,m)

is isomorphic to Z/8Z× (Z/2Z)3.

• For each possible extension Fπ of F corresponding to a quadratic character
of Cl(OF ,m), the ray class group Cl(OFπ ,mπ) admits no cubic characters,
and thus we immediately deduce that the residual representations are
isomorphic.

• The primes {p3, p13,1, p13,2, p13,3, p13,4, p5,1, p5,2, p37,3, p61,3, p61,4, p73,2,
p73,3, p97,2, p109,1, p17,2} satisfy the conditions for Livné’s theorem, and
therefore suffice to prove isomorphism of the full representations.

Class 4852
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• The level n = p2p1213,1, where p1213,1 is generated by −t3+2t2+6t−2, and
the residual representation attached to the corresponding elliptic curve has
image isomorphic to S3.

• The modulus m = p5
2p1213,1, and the corresponding ray class group Cl(OF ,m)

is isomorphic to Z/12Z× (Z/2Z)3.

• The primes {p3, p13,1, p13,2} suffice to show that Lπ can contain no quadratic
extension of F other than FE , while the prime p13,3 suffices to show that
Lπ cannot be a cubic extension of F .

• The modulus mE = q2q1213, where the primes qi divide 2nOFE , and the
corresponding ray class group Cl(OFE ,mE) is isomorphic to (Z/3Z)2.

• The prime p13,3 suffices to deduce that the residual representations are
isomorphic.

• The modulus mLE = r92,1r
9
2,2r

9
2,3r1213,1r1213,2r1213,3, where the primes ri,j

divide 2nOLE , and the corresponding ray class group Cl(OLE ,mLE ) is
isomorphic to Z/24Z× (Z/4Z)3 × (Z/2Z)14.

• The kernels Vσ, Vτ and Wσ are 12-, 8-, and 6-dimensional respectively,
and the intersections Vσ ∩ Vτ and Wσ ∩ Vτ are a 4- and a 6-dimensional
subspace of (Z/2Z)18 respectively. The set of primes {p3, p13,1, p13,2, p5,1,
p5,2, p37,3, p61,2, p61,3, p73,2, p97,3} suffice to prove isomorphism of the full
representations.

Class 5317

• The level n = p13,4p409,3, and the residual representation attached to the
corresponding elliptic curve has trivial image.

• The modulus m = p5
2p13,4p409,3, and the corresponding ray class group

Cl(OF ,m) is isomorphic to Z/24Z× Z/4Z× (Z/2Z)3.

• The primes {p3, p13,2} suffice to prove isomorphism of the residual repre-
sentations.

• The primes {p3, p13,1, p13,2, p13,3, p5,1, p5,2, p37,1, p37,2, p37,4, p7,2, p61,1,
p61,2, p61,3, p73,1, p73,2, p73,4, p97,1, p97,3, p97,4, p109,3, p157,2, p157,3, p181,1,
p181,2, p193,2, p277,4, p17,1, p313,2, p373,3, p409,1, p457,1} satisfy the condi-
tions for Livné’s theorem, and therefore suffice to prove isomorphism of
the full representations.
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Class 5473

• The level n = p13,4p421,2, and the residual representation attached to the
corresponding elliptic curve has trivial image.

• The modulus m = p5
2p13,4p421,2, and the corresponding ray class group

Cl(OF ,m) is isomorphic to Z/12Z× Z/4Z× (Z/2Z)3.

• The primes {p3, p13,1} suffice to prove isomorphism of the residual repre-
sentations.

• The primes {p3, p13,1, p13,2, p13,3, p5,1, p5,2, p37,1, p37,2, p37,3, p37,4, p61,1,
p61,2, p73,1, p73,2, p73,4, p97,1, p97,3, p97,4, p109,1, p109,3, p109,4, p157,1, p157,2,
p181,4, p193,2, p17,1, p313,1, p313,3, p349,1, p409,2, p457,4} satisfy the condi-
tions for Livné’s theorem, and therefore suffice to prove isomorphism of
the full representations.
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p p13,1 p13,2 p13,3 p13,4 p5,1 p5,2 p37,1 p37,2

ap −6 4 4 −6 −4 −4 −2 −2

p p37,3 p37,4 p7,1 p61,2 p61,3 p73,1 p73,2 p97,1

ap −2 −2 10 2 2 14 4 −2

p p97,2 p109,2 p109,3 p11,1 p181,2 p181,3 p193,1 p17,1

ap 8 10 10 2 −8 −8 −26 −20

p p313,1 p337,1 p349,1 p349,4 p19,1 p409,2 p23,1 p601,2

ap 34 −22 −30 −30 2 30 10 22

Eigenvalues ap of the Hecke operators Tp on class 441

p p3 p13,1 p13,2 p13,3 p13,4 p5,1 p37,1 p37,3

ap 0 4 4 −6 −6 6 −2 −2

p p7,1 p73,1 p73,3 p97,3 p109,2 p109,4 p457,1

ap −10 4 −6 −2 10 10 18

Eigenvalues ap of the Hecke operators Tp on class 1156

p p3 p13,1 p13,2 p13,4 p5,1 p5,2 p37,1 p37,2

ap −2 2 2 −4 −4 −10 2 2

p p37,3 p37,4 p61,1 p61,2 p61,3 p73,1 p73,3 p73,4

ap 2 8 2 −10 8 −16 14 −10

p p97,1 p97,2 p97,4 p109,1 p109,2 p109,4 p181,1 p193,1

ap 2 2 −4 2 2 −10 2 −22

p p229,3 p17,1 p313,1 p313,4 p373,1 p409,1 p1321,1

ap −4 2 −10 14 −10 32 −10

Eigenvalues ap of the Hecke operators Tp on class 2041

p p3 p13,1 p13,2 p13,3 p13,4 p5,1

ap −4 −1 1 −6 −3 1

p p37,3 p61,1 p97,1 p97,3 p109,3 p193,1

ap −3 −12 0 −10 8 −10

Eigenvalues ap of the Hecke operators Tp on class 2257

p p3 p13,1 p13,3 p5,2 p37,2

ap 1 −4 −4 8 2

p p37,3 p7,1 p7,2 p61,3

ap 11 −4 −4 −10

Eigenvalues ap of the Hecke operators Tp on class 2452

p p13,1 p13,3 p13,4 p5,2

ap 4 −1 −1 1

p p37,1 p37,2 p37,3 p61,3

ap −7 −2 −7 −8

Eigenvalues ap of the Hecke operators Tp on class 2500a

p p3 p13,1 p13,2 p13,4 p5,1 p5,2 p37,1 p37,2

ap 4 2 −4 −4 2 −10 2 −10

p p37,3 p37,4 p7,2 p61,1 p61,2 p73,1 p73,2 p73,3

ap −10 2 8 −10 2 −4 14 2

p p97,1 p97,2 p109,2 p109,3 p157,2 p157,4 p229,1 p229,2

ap 2 14 14 −10 2 −16 8 2

p p241,3 p17,1 p313,1 p19,1 p397,3 p409,2 p409,3

ap 14 8 −10 2 2 14 2

Eigenvalues ap of the Hecke operators Tp on class 2977
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p p3 p13,1 p13,2 p13,3 p5,1 p5,2 p37,1 p37,2

ap 2 −2 −2 6 2 −6 −10 −2

p p37,4 p61,1 p61,2 p73,1 p73,4 p97,1 p17,1

ap 6 −2 −2 10 10 18 2

Eigenvalues ap of the Hecke operators Tp on class 3328

p p3 p13,1 p13,2 p13,3 p13,4 p5,1 p37,1 p37,3

ap −2 −4 −4 2 2 8 −10 −2

p p7,1 p7,2 p61,3 p61,4 p73,1 p73,2 p97,1 p97,2

ap 2 2 2 2 2 2 14 14

p p109,1 p109,3 p157,1 p157,3 p181,1 p181,2 p181,3 p181,4

ap −4 −4 −10 −10 2 2 2 2

p p193,1 p17,1 p337,1 p19,1 p409,1 p409,3 p601,3

ap 14 32 2 20 −22 −22 20

Eigenvalues ap of the Hecke operators Tp on class 3721b

p p3 p13,1 p13,2 p13,3

ap −5 −1 −6 −6

p p5,1 p37,2 p61,1 p73,2

ap 1 3 −13 4

Eigenvalues ap of the Hecke operators Tp on class 3844

p p3 p13,1 p13,2 p13,3 p13,4 p5,1 p5,2 p37,1

ap 4 2 −4 2 2 2 −4 2

p p37,2 p37,3 p7,1 p61,1 p61,3 p61,4 p73,1 p73,2

ap 2 2 −4 2 14 −10 2 2

p p73,3 p73,4 p97,1 p97,2 p97,3 p109,1 p109,2 p157,4

ap 2 2 −16 2 14 2 −16 −4

p p277,1 p17,1 p17,2 p337,4 p349,2 p373,1 p409,3

ap −10 2 2 2 32 14 −10

Eigenvalues ap of the Hecke operators Tp on class 4033a

p p3 p13,1 p13,2 p13,3 p13,4 p5,1 p5,2 p37,1

ap −2 −4 2 2 2 −4 2 2

p p37,2 p37,3 p7,1 p61,1 p61,2 p61,3 p61,4 p73,1

ap 2 2 −10 8 −4 8 2 2

p p73,2 p73,3 p73,4 p97,1 p97,2 p97,3 p109,1 p109,2

ap 2 2 −16 −10 8 −10 2 2

p p109,4 p157,4 p17,2 p313,4 p373,1 p409,2 p409,3

ap 2 −10 20 26 −34 2 14

Eigenvalues ap of the Hecke operators Tp on class 4033b

p p3 p13,1 p13,2 p13,3 p5,1

ap −2 −4 −1 −4 −5

p p5,2 p37,2 p61,2 p61,4

ap −2 4 −13 10

Eigenvalues ap of the Hecke operators Tp on class 4057

p p13,1 p13,2 p13,4 p5,2 p37,1 p37,2

ap −3 1 −5 1 −7 −10

p p37,3 p61,3 p73,2 p97,2 p97,3 p109,3

p −2 −12 14 10 8 −10

Eigenvalues ap of the Hecke operators Tp on class 4069
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p p3 p13,1 p13,3 p13,4 p5,2 p37,1 p37,2 p37,3

ap −2 −4 −2 −6 4 0 −2 −6

p p37,4 p7,1 p7,2 p61,1 p61,3 p61,4 p73,1 p73,2

ap −2 −6 2 −6 −10 −2 8 2

p p73,3 p97,2 p97,3 p109,3 p11,1 p157,2 p157,4 p181,4

ap −14 −2 6 14 −12 −6 4 −10

p p193,4 p229,1 p229,2 p17,1 p313,3 p409,1 p409,2

ap −2 −14 20 −24 −10 10 −38

Eigenvalues ap of the Hecke operators Tp on class 4225b

p p3 p13,1 p13,2 p13,3 p5,1

ap 5 4 −1 −6 −4

p p5,2 p37,1 p37,3 p7,1 p73,1

ap 6 −12 3 −10 −11

Eigenvalues ap of the Hecke operators Tp on class 4516

p p3 p13,1 p13,2 p13,3 p13,4 p5,1 p5,2 p37,3

ap 2 −2 −2 −2 6 −6 2 6

p p61,3 p61,4 p73,2 p73,3 p97,2 p109,1 p17,2

ap −2 −10 −6 10 2 14 −30

Eigenvalues ap of the Hecke operators Tp on class 4672

p p3 p13,1 p13,2 p13,3 p5,1 p5,2

ap −3 −1 −7 −2 3 −8

p p37,3 p61,2 p61,3 p73,2 p97,3

ap 2 −12 4 14 6

Eigenvalues ap of the Hecke operators Tp on class 4852

p p3 p13,1 p13,2 p13,3 p5,1 p5,2 p37,1 p37,2

ap 2 −2 6 −2 2 2 6 −10

p p37,4 p7,2 p61,1 p61,2 p61,3 p73,1 p73,2 p73,4

ap 6 2 −2 −10 −10 10 10 10

p p97,1 p97,3 p97,4 p109,3 p157,2 p157,3 p181,1 p181,2

ap −14 2 −6 −2 −2 −2 −2 22

p p193,2 p277,4 p17,1 p313,2 p373,3 p409,1 p457,1

ap 2 6 34 −22 22 10 −22

Eigenvalues ap of the Hecke operators Tp on class 5317

p p3 p13,1 p13,2 p13,3 p5,1 p5,2 p37,1 p37,2

ap −2 2 2 4 2 8 2 −4

p p37,3 p37,4 p61,1 p61,2 p73,1 p73,2 p73,4 p97,1

ap 2 2 14 8 14 14 14 8

p p97,3 p97,4 p109,1 p109,3 p109,4 p157,1 p157,2 p181,4

ap 8 2 2 14 −10 −4 −22 2

p p193,2 p17,1 p313,1 p313,3 p349,1 p409,2 p457,4

ap −22 −10 8 −10 2 −22 −12

Eigenvalues ap of the Hecke operators Tp on class 5473
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6.6.2 The Field F2

Let F = F2, which we recall is defined to be Q(t), where t is a root of the
polynomial x4−x3 +2x2 +x+1. The table below gives a list of the prime ideals
of F of norm at most 500, together with a generator for each ideal:

p Generator p Generator p Generator

p2,1
1
2 (−t3 + 2t2 − 4t− 1) p139,4 −t3 − 3t+ 1 p17,1

1
2 (−t3 − 8t− 5)

p2,2 t3 − t2 + 2t p151,1
1
2 (3t3 − 2t2 + 6t− 3) p17,2 −3t3 + 2t2 − 3t− 1

p3
1
2 (t3 − 2t2 + 2t− 3) p151,2 3t3 − 4t2 + 6t p331,1

1
2 (3t3 − 6t2 + 10t− 9)

p19,1
1
2 (3t3 − 4t2 + 4t+ 1) p151,3

1
2 (−t3 + 2t2 − 6t− 5) p331,2

1
2 (−5t3 + 6t2 − 10t− 11)

p19,2
1
2 (−t3 + 2t2 − 4t− 3) p151,4

1
2 (−3t3 + 2t2 − 6t− 9) p331,3

1
2 (7t3 − 12t2 + 18t− 5)

p19,3
1
2 (−t3 − 2t− 5) p13,1

1
2 (t3 − 2t2 + 2t− 7) p331,4 −4t3 + 6t2 − 9t− 4

p19,4 t− 2 p13,2
1
2 (3t3 − 6t2 + 6t− 5) p349,1

1
2 (5t3 − 2t2 + 2t+ 11)

p5
1
2 (−3t3 + 2t2 − 6t− 3) p181,1

1
2 (3t3 − 8t2 + 8t− 3) p349,2

1
2 (5t3 − 2t2 + 10t+ 3)

p31,1 −2t3 + 2t2 − 4t− 1 p181,2
1
2 (3t3 − 4t2 + 6t− 5) p349,3 3t3 − 5t2 + 6t− 1

p31,2
1
2 (t3 + 2t2 − 2t+ 3) p181,3 −t3 + 2t2 − 3t− 3 p349,4

1
2 (−7t3 + 6t2 − 14t− 9)

p31,3
1
2 (t3 + 2t2 − 2t+ 5) p181,4 2t3 − 3t2 + 4t− 2 p379,1 3t3 − 2t2 + 4t

p31,4
1
2 (−3t3 + 2t2 − 2t− 3) p199,1

1
2 (7t3 − 10t2 + 14t+ 1) p379,2

1
2 (5t3 − 2t2 + 8t− 1)

p7,1 t3 − 2t2 + 2t+ 2 p199,2 −3t3 + 3t2 − 6t− 1 p379,3
1
2 (3t3 − 10t2 + 14t− 7)

p7,2 −t3 + 2t2 − 2t+ 2 p199,3 −2t3 + 2t2 − 4t− 5 p379,4
1
2 (−t3 − 2t2 − 6t− 7)

p61,1
1
2 (3t3 − 2t2 + 6t− 1) p199,4

1
2 (3t3 − 6t2 + 2t+ 3) p409,1

1
2 (5t3 − 2t2 + 10t+ 1)

p61,2
1
2 (−3t3 + 2t2 − 6t− 7) p211,1

1
2 (3t3 − 6t2 + 8t− 7) p409,2 −t3 − 2t2 + 2t− 2

p61,3 −2t3 + 2t2 − 2t− 3 p211,2
1
2 (3t3 − 4t2 + 4t− 5) p409,3

1
2 (−7t3 + 6t2 − 14t− 11)

p61,4 −2t2 + 2t− 1 p211,3 −2t3 + 3t2 − 4t− 4 p409,4
1
2 (9t3 − 10t2 + 18t+ 5)

p79,1 t3 − 2t2 + 3t− 3 p211,4 t3 − 2t2 + t− 3 p421,1
1
2 (3t3 − 8t2 + 4t− 5)

p79,2
1
2 (−t3 + 4t2 − 4t− 3) p229,1 t3 − 3t2 + 2t− 3 p421,2

1
2 (5t3 − 8t2 + 6t− 3)

p79,3
1
2 (−3t3 + 4t2 − 6t− 7) p229,2

1
2 (3t3 − 8t2 + 8t− 5) p421,3

1
2 (−7t3 + 12t2 − 16t− 5)

p79,4
1
2 (3t3 − 4t2 + 4t− 3) p229,3 t3 − t2 + 2t− 3 p421,4

1
2 (−7t3 + 10t2 − 12t− 9)

p109,1
1
2 (−5t3 + 8t2 − 12t− 5) p229,4

1
2 (5t3 − 8t2 + 10t− 3) p439,1

1
2 (−t3 + 4t2 − 8t− 5)

p109,2
1
2 (3t3 − 6t2 + 10t− 7) p241,1

1
2 (3t3 − 8t2 + 12t− 1) p439,2

1
2 (5t3 − 4t2 + 8t− 3)

p109,3
1
2 (−5t3 + 6t2 − 10t− 9) p241,2 −t3 + t2 − 4t− 3 p439,3 −3t3 + 5t2 − 8t− 3

p109,4 2t3 − 2t2 + 2t− 1 p241,3
1
2 (3t3 − 4t2 + 10t− 5) p439,4

1
2 (7t3 − 10t2 + 16t− 3)

p11,1
1
2 (−5t3 + 8t2 − 10t− 5) p241,4

1
2 (3t3 − 2t2 + 8t− 3) p499,1

1
2 (t3 + 4t2 − 8t+ 9)

p11,2
1
2 (3t3 − 6t2 + 4t− 3) p271,1

1
2 (−7t3 + 10t2 − 14t− 9) p499,2

1
2 (−5t3 + 8t2 − 10t− 9)

p139,1 −2t3 + 3t2 − 6t+ 2 p271,2
1
2 (−7t3 + 12t2 − 16t− 3) p499,3 2t2 − 5t+ 4

p139,2
1
2 (−5t3 + 6t2 − 12t− 7) p271,3

1
2 (t3 − 4t2 + 6t− 11) p499,4 2t3 − 4t2 + 5t− 4

p139,3
1
2 (−t3 − 6t− 5) p271,4

1
2 (−3t3 + 8t2 − 4t− 1)

We now provide, for the two cuspidal classes with rational eigenvalues found
in Section 5.3.2, a list of primes which suffice to prove modularity of the
corresponding elliptic curve, using the techniques of the previous sections. For
the curve with conductor of norm 244, we list the Hecke eigenvalues ap(π) for
each of these primes, and are therefore able to prove that it is modular. For the
second curve, with conductor of norm 2071, we were unable to compute all of
the required Hecke eigenvalues, but list those that we were able to calculate.
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Class 244

• The level n = p2,2p61,3, and the residual representation attached to the
corresponding elliptic curve has trivial image.

• The modulus m = p3
2,1p

3
2,2p61,3, and the corresponding ray class group

Cl(OF ,m) is isomorphic to Z/12Z× Z/4Z× (Z/2Z)3.

• The prime p19,1 suffices to prove isomorphism of the residual representa-
tions.

• The primes {p3,1, p19,1, p19,2, p19,3, p19,4, p5, p31,1, p31,2, p31,4, p7,1, p7,2,
p61,1, p61,2, p61,4, p79,1, p79,2, p79,3, p109,4, p11,1, p139,3, p151,2, p181,1, p181,2,
p181,3, p199,1, p211,1, p211,4, p229,1, p241,3, p379,4, p1009,1}, where p1009,1 is
generated by 1

2 (11t3 − 14t2 + 20t + 5), satisfy the conditions for Livné’s
theorem, and therefore suffice to prove isomorphism of the full represen-
tations.

Class 2071

• The level n = p19,2p109,3, and the residual representation attached to the
corresponding elliptic curve has trivial image.

• The modulus m = p3
2,1p

3
2,2p19,2p109,3, and the corresponding ray class

group Cl(OF ,m) is isomorphic to Z/36/Z× Z/12Z× (Z/2Z)4.

• The primes {p3,1, p19,1, p19,4, p31,1} suffice to prove isomorphism of the
residual representations.

• The primes {p3,1, p19,1, p19,3, p19,4, p5, p31,1, p31,2, p31,3, p31,4, p7,1, p7,2,
p61,1, p61,2, p61,3, p61,4, p79,1, p79,2, p79,3, p79,4, p109,1, p109,4, p11,2, p139,2,
p139,3, p139,4, p151,1, p151,2, p13,1, p13,2, p181,1, p181,2, p181,4, p199,1, p199,2,
p211,1, p211,2, p211,4, p229,1, p229,2, p229,3, p229,4, p241,1, p241,3, p241,4, p271,2,
p331,1, p331,3, p331,4, p379,4, p409,1, p439,2, p439,4, p499,1, p541,1, p601,1, p691,1,
p739,1, p919,1, p1009,1, p1009,2, p1069,1, p1381,1, p41,1}, where the primes
p541,1, p601,1, p691,1, p739,1, p919,1, p1009,1, p1009,2, p1069,1, p1381,1 and p41,1

are generated by 1
2 (−7t3 + 8t2 − 16t− 11), 1

2 (9t3 − 8t2 + 14t+ 9),
1
2 (−3t3 + 10t2 − 4t− 1), t3 − 5t2 + 6t− 5, 1

2 (−5t3 − 12t− 3),
1
2 (−7t3 + 8t2 − 16t− 13), 1

2 (11t3 − 14t2 + 20t+ 5), 4t3 − 2t2 + 5t+ 2,
1
2 (7t3−14t2+22t−13), and 1

2 (−5t3+10t2−22t+5) respectively, satisfy the
conditions for Livné’s theorem, and therefore suffice to prove isomorphism
of the full representations.
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p p3,1 p19,1 p19,2 p19,3 p19,4 p5 p31,1 p31,2

ap −2 −4 −4 −4 8 2 −4 8

p p31,4 p7,1 p7,2 p61,1 p61,2 p61,4 p79,1 p79,2

ap −4 2 2 −10 2 −10 −16 8

p p79,3 p109,4 p11,1 p139,3 p151,2 p181,1 p181,2 p181,3

ap 8 14 −10 8 −16 −10 26 −10

p p199,1 p211,1 p211,4 p229,1 p241,3 p379,4 p1009,1

ap −16 −4 8 14 2 20 −22

Eigenvalues ap of the Hecke operators Tp on class 244

p p3,1 p19,1 p19,3 p19,4 p5 p31,1 p31,2 p31,3

ap −2 2 2 2 8 8 8 2

p p31,4 p7,1 p7,2 p61,1 p61,2 p61,3 p61,4 p79,1

ap 2 −10 −10 −4 −4 14 2 14

p p79,2 p79,3 p79,4 p109,1 p109,4 p11,2 p139,2 p139,3

ap −4 8 8 8 −16 2 −10 −4

p p139,4 p151,1 p151,2 p13,1 p13,2 p181,1 p181,2 p181,4

ap 20 20 2 8 2 −10 2 −16

p p199,1 p199,2 p211,1 p211,2 p211,4 p229,1 p229,2 p229,3

ap 2 −16 −16 2 −16 20 −22 2

p p229,4 p241,1 p241,3 p241,4 p271,2 p331,1 p331,3 p331,4

ap −10 20 2 8 −22 2 −16 8

p p379,4 p409,1 p439,2 p439,4 p499,1 p541,1 p601,1 p691,1

ap 20 20 −34 −4 8 −28 − −
p p739,1 p919,1 p1009,1 p1009,2 p1069,1 p1381,1 p41,1

ap − − − − − − −

Eigenvalues ap of the Hecke operators Tp on class 2071
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6.6.3 The Field F3

Let F = F3, which we recall is defined to be Q(t), where t is a primitive eighth
root of unity. The table below gives a list of the prime ideals of F of norm at
most 350, together with a generator for each ideal:

p Generator p Generator p Generator

p2 t+ 1 p97,1 −3t2 − 2t p233,4 −2t3 + t2 + 4t+ 2
p3,1 t3 + t2 − t p97,2 2t3 − t2 − t− 3 p241,1 −t3 + 4t+ 2
p3,2 t3 − t2 − t p97,3 t3 − t2 + 3t− 2 p241,2 −3t3 − t2 + 3t+ 2
p17,1 t+ 2 p97,4 t3 + t2 − 2t− 3 p241,3 −2t3 − 4t2 + 1
p17,2 t3 + 2 p113,1 t3 − t2 − 3t p241,4 −t3 − 3t2 − 2t− 3
p17,3 2t+ 1 p113,2 3t3 + t2 − t p257,1 t+ 4
p17,4 2t3 + 1 p113,3 −2t3 − t2 + 2t+ 4 p257,2 −4t3 − 3t2 − 3t+ 1
p5,1 2t3 − t p113,4 −2t3 + t2 + 2t+ 4 p257,3 4t+ 1
p5,2 t3 − 2t p11,1 t3 + 3t2 − t p257,4 −t3 + 3t2 + 3t+ 4
p41,1 −t3 + 2t2 + t− 1 p11,2 t3 − 3t2 − t p281,1 3t3 + 2t2 − 2t
p41,2 −t3 + t2 + 2t− 1 p137,1 2t3 + 2t2 − 2t− 1 p281,2 2t3 − 2t2 − 3t
p41,3 −2t3 − t2 − t− 1 p137,2 −2t3 − 2t2 + 2t− 1 p281,3 −4t3 − t2 + t+ 5
p41,4 t3 + t2 + 2t− 1 p137,3 2t3 − 2t2 − 2t− 1 p281,4 −5t3 − t2 + t+ 4
p7,1 −t3 − 2t2 + 2 p137,4 −2t3 + 2t2 + 2t− 1 p313,1 −3t3 − 2t2 + 3t+ 3
p7,2 t2 + 3t+ 1 p13,1 −3t3 − 2t p313,2 −2t3 − 2t2 + 3t+ 2
p73,1 −3t3 + t+ 3 p13,2 3t3 − 2t p313,3 −3t3 − 3t2 + 2t+ 3
p73,2 −3t3 − t2 + 3 p193,1 −3t3 − t2 − 2t− 1 p313,4 −2t3 − 3t2 + 2t+ 2
p73,3 t3 − 2t2 − 2t p193,2 2t3 + t2 + 3t− 1 p337,1 −4t2 − 3t
p73,4 2t3 + 2t2 − t p193,3 −3t3 − t2 + 2t− 1 p337,2 3t3 − t2 − t− 4
p89,1 −2t3 − 2t2 − 3t p193,4 −2t3 + t2 + 3t− 1 p337,3 −t3 + 4t2 − 3t− 1
p89,2 −3t3 + t+ 1 p233,1 −t3 + t2 + t+ 4 p337,4 t3 + t2 − 3t− 4
p89,3 −2t3 + 3t+ 2 p233,2 −2t3 − 2t2 − 4t− 1
p89,4 −3t2 − t− 1 p233,3 −2t3 + 2t2 − 4t+ 1

We now provide, for the single cuspidal class with rational eigenvalues found
in Section 5.3.3, a list of primes which suffice to prove modularity of the
corresponding elliptic curve, using the techniques of the previous sections. We
list the corresponding Hecke eigenvalues for each prime, and are therefore able
to conclude that the curve is indeed modular.
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Class 881

• The level n = p881,1, which is generated by the element −4t2 + 5t, and the
residual representation attached to the corresponding elliptic curve has
trivial image.

• The modulus m = p9
2p881,1, and the corresponding ray class group Cl(OF ,m)

is isomorphic to Z/8Z× (Z/2Z)3.

• For each possible extension Fπ of F corresponding to a quadratic character
of Cl(OF ,m), the ray class group Cl(OFπ ,mπ) admits no cubic characters,
and thus we immediately deduce that the residual representations are
isomorphic.

• The primes {p3,1, p3,2, p17,1, p17,2, p17,3, p5,1, p5,2, p41,2, p7,1, p7,2, p73,1,
p73,4, p97,2, p13,2, p337,3} satisfy the conditions for Livné’s theorem, and
therefore suffice to prove isomorphism of the full representations.

p p3,1 p3,2 p17,1 p17,2 p17,3 p5,1 p5,2 p41,2

ap 4 −2 −6 0 0 2 2 6

p p7,1 p7,2 p73,1 p73,4 p97,2 p13,2 p337,3

ap 2 2 −16 −10 2 −10 14

Eigenvalues ap of the Hecke operators Tp on class 881
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