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Abstract 

A simple and efficient procedure to prepare libraries of diverse heterocycles IV by the 

direct N-acylation of imines I with functionalised benzoic acids II is described. This 

procedure involves N-acyliminium ion III generation via a novel direct imine acylation 

(DIA) reaction followed by in situ intramolecular trapping by a range of nucleophiles 

built into the acid coupling partner. An overview of the existing methods for the 

synthesis and cyclisation reactions of N-acyliminium ions is provided (Chapter 1). The 

scope and limitations of the methodology are discussed thoroughly and preliminary 

mechanistic studies, including an in situ React IR study, are outlined (Chapter 2). 

 

 

 

DIA methodology has been successfully applied in the efficient synthesis of the 

Evodiae fructus derived natural product, (±)-evodiamine V (Chapter 2). Efforts to apply 

this methodology towards the synthesis of the structurally related natural product, 

dievodiamine IX, are also described (Chapter 3). The total synthesis of 

(±)-dievodiamine IX, was completed with keys steps including organometallic addition 

into DHED adduct VI and the Stille coupling of advanced intermediates VII and VIII.  

 

 

 

 

An overview of the reported synthetic approaches and biological activity of a class of 

protoberberine alkaloids is also provided (Chapter 4). The application of DIA 

methodology in the synthesis of the protoberberine alkaloid (±)-cavidine X is described 

together with preliminary studies towards the synthesis of the more complex 

protoberberine alkaloid, (±)-pallimamine XI.  
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Chapter 1   Introduction 

1.1 Reactivity of Iminium vs N-Acyliminium Ions 

Iminium ions 1 are widely used in organic synthesis as reactive species for the 

construction of carbon-carbon and carbon-heteroatom bonds. The well known Mannich 

reaction,
1
 which has had an important role in synthetic organic chemistry for over 100 

years, makes effective use of electrophilic iminium ions which serve as the reactive 

species for α-aminoalkylation reactions (Scheme 1). Moreover, the well known 

Pictet-Spengler
2
 and Bischler-Napieralski reaction,

3
 which are both subtypes of the 

Mannich reaction involving a cyclisation process, represent intramolecular 

α-aminoalkylation reactions with the iminium ions again serving as the electrophiles. 
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Scheme 1: Mannich aminoalkylation reaction  

Throughout the last three decades it has been well established that substituting the 

nitrogen atom of the iminium species with electron-withdrawing groups renders the 

Mannich-intemediate 1 considerably more reactive.
4
 Of the modified cations in Figure 

1, the N-acyl derivative 2 has been most widely exploited although the use of other 

electronegative substituents such as esters, amides and tosyl groups has also been 

examined.
4b

 

N

R3

R2 R1

R

1, R = alkyl 4, R = CONR

2, R = acyl 5, R = Ts

3, R = COOR R1, R2, R3 = H, alkyl, aryl 

Figure 1: Electron-withdrawing groups at the nitrogen atom of the iminium species 
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The highly reactive nature of N-acyliminium ions requires that they are generated in 

situ; however, their transient formation has been detected in some NMR and IR 

spectroscopic studies.
5
 In general, these intermediates are formed from more stable, 

isolable α-substituted acylamines of type 6 by treatment with Lewis acids or sometimes 

protic acids (Scheme 2). It is reported that N-acyliminium ions 7 exist in equilibrium 

with covalent adducts 6 and that the proportion of the ionic and covalent forms depends 

on the nature of the anion and on experimental conditions.
6
 However, in the presence of 

suitable nucleophiles, ions of type 7 can react irreversibly to give α-substituted 

N-acylamines 8. Note that acyclic and cyclic variants of N-acyliminium ions are both 

well established (Figure 2).
4
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R1 N
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(Lewis acid)
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LAX

6 7
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8
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Scheme 2: N-acyliminium ions 7 exist in equilibrium with covalent adducts 6   
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Figure 2: Acyclic and cyclic α-substituted acylamines  

The use of N-acyliminium ions in heterocycle synthesis is well documented and this 

area has been thoroughly reviewed.
4,6 

The higher reactivity profile of the N-acyliminium 

ions compared to their iminium analogues has been experimentally demonstrated. For 

example, while the iminium ion 10a failed to cyclise to form the erythrinane skeleton 

11a, the analogous N-acyliminium species 10b and 10c cyclised successfully to give the 

erythrinane intermediates 11b and 11c in good yields (Scheme 3).
7
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Scheme 3: The synthesis of the erythrinane intermediates 11b and 11c  

The intramolecular reactions of N-acyliminium ions have received considerable 

attention in organic chemistry, especially for the synthesis of alkaloid natural products. 

The advantages of using N-acyliminium ions over iminium ions are plenty; in particular, 

the enhanced reactivity of N-acyliminium ions broadens the range of nucleophiles that 

can be used in carbon-carbon or carbon-heteroatom bond formation. In contrast, the 

Bischler-Napieralski and Pictet-Spengler reactions are more limited to small structural 

changes around the carbonyl or aromatic groups, because of the lower reactivity of the 

iminium intermediates.
6
 In addition, N-acyliminium cyclisations are typically 

irreversible reactions.
4,6

 The products of N-acyliminium cyclisations, which are amides, 

are less prone to fragmentation reactions, while the products of iminium cyclisations, 

which are amines, usually exist in equilibrium with the corresponding iminium ions 

(Scheme 4).
6  

N N

HNu Nu

O O

amide

 H

N N

HNu Nu

amine

 H

N-Acyliminium cyclisations Iminium cyclisations

12 13 14 15

 H


 

Scheme 4: N-Acyliminium cyclisations are typically irreversible reactions 

An important side-reaction to be aware of in N-acyliminium ion chemistry is the 

formation of enamides via loss of a proton.
4a,6

 This reaction may be reversible in an 

acidic medium, but this is not always the case. Enamides may then react as nucleophiles 

with the N-acyliminium ions still present to give dimeric structures. These problems 

arise if the N-acyliminium ion is not trapped quickly enough by the nucleophile.  This 

may occur if the nucleophile is poorly reactive, or in the case of intramolecular 

reactions, if thermodynamic or stereoelectronic factors are unfavourable (e.g., formation 
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of large rings or anti-Baldwin products).
6
 A detailed discussion on the formation of 

enamides from N-acyliminium ions is included in a following section (Section 1.2.2). 

1.2 Generation of N-Acyliminium Ions 

N-Acyliminium species can be accessed in a number of different ways, however 

because of their high reactivity they are always generated in situ. Generally, there are 

three major synthetic pathways: a) heterolysis of amides, bearing a leaving group on the 

α-carbon to nitrogen, b) electrophilic addition to enamides, c) N-acylation of imines 

(Scheme 5).
4,6
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Scheme 5: The three major synthetic pathways leading to N-acyliminium ions. 

1.2.1 Heterolysis of Amides Bearing a Leaving Group on the α-Carbon to 

Nitrogen 

Heterolysis of α-substituted amides is by far the most common route to N-acyliminium 

ions (Scheme 6). In the majority of examples, the amide is substituted with an oxygen 

substituent such as hydroxyl, alkoxyl or carboxyl group; however, it can be also 

substituted with sulfur, silicon, halogen or nitrogen. There are several methods for the 

preparation of α-substituted amides, the most common of which are discussed below.  

R1 N

O

R

R3

R2

X

19

R1, R2, R3, R = alkyl, H

X = OH, OR, CO2R, SR2, SiR3,

halogen, N3, etc.

R1 N

O

R

R3

R2

X

16

 

Scheme 6: Heterolysis of α-substituted amides 
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1.2.1.1 Reaction of Amides with Aldehydes or Ketones 

Secondary amides can react with aldehydes or ketones to provide α-oxygenated 

intermediates which can be converted into N-acyliminium ions on treatment with an 

acid. An intramolecular example of an amide-aldehyde condensation can be seen in the 

synthesis of alkaloid (−)-eburnamonine 24 (Scheme 7).
8

 The readily available 

carboxaldehyde 20 cyclised effectively under acid-catalyzed conditions to give lactam 

23 via the formation an α-hydroxylactam 21. Note that traces of the C(3)-epimer
 
were 

also observed. Lactam 23 was then converted into the natural product 24 in 2 steps.  

N
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88%

N
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3

N
O

Et

N
H

N
O

Et

HO

H

20 22

23

21

H+

24

N
N

O

H

Et

 

Scheme 7: The synthesis of lactam 23 via an N-acyliminium intermediate  

An example of a ketone reacting with a secondary amide is included in the synthesis of 

the erythrinane skeleton 11b and 11c from amides 9b and 9c respectively as outlined in 

Scheme 3, Section 1.1. Note that in some cases dehydration to an enamide may take 

place and although in many instances this reaction can be reversible (especially under 

protic acid conditions), this is not always the case since enamides can further react to 

generate dimeric products in situ.
4a,6,9

  

Primary amides can also react with aldehydes or ketones, to form N-acylimines which 

can then converted into N-acyliminium ions by reaction at nitrogen with an electrophile, 

usually a proton. This approach has been applied to the synthesis of lactam 29 as shown 

in Scheme 8; the condensation of (E)-3-pentanamide 25 with benzaldehyde in 

polyphosphoric acid afforded the tricyclic lactam 29 as a single diastereomer.
10

 It is 

likely that N-acylimine 26 was formed first and then protonated under the strong acidic 

conditions to give the N-acyliminium ion 27. A nucleophilic attack of the alkene to the 

N-acyliminium ion 27 followed by a second nucleophilic attack of the electron-rich 
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phenyl ring at the positive charged carbon of intermediate 28 then furnished the product. 

Note that more reactive carbonyl compounds like formaldehyde, trichloroacetaldehyde, 

glyoxylic acid and other α-dicarbonyl compounds are better substrates because they 

react with primary amides to form N-acylimines that are more stable and less 

susceptible to hydrolysis. Note also that N-acylimines can readily tautomerise to the 

corresponding enamides, therefore systems with no α-hydrogen atoms are better suited 

to this method of N-acyliminium ion formation. 

H2N O

PhCHO

PPA
35 °C
74%

N OPh N
H

OPh
N
H

Me

O

Me

H+

N OPh

Me

H

Me H

H

25 26 27 28 29

Me

 

Scheme 8: The synthesis of lactam 29 via an N-acylimine intermediate 26 

1.2.1.2 Regioselective Partial Reduction of Imides 

α-Oxygenated amides can be also prepared by the selective addition of hydride to one 

carbonyl of an imide. The main drawbacks of this conversion are the risk of 

overreduction or reductive ring opening. Speckamp et al. have developed this partial 

reduction of cyclic imides into a high yielding procedure by using excess sodium 

borohydride in ethanol (Scheme 9).
11

 During the reaction, a dilute solution of 

hydrochloric acid in ethanol is slowly added to prevent the medium from becoming too 

basic, to avoid ring-opening of the product. The N-acyliminium ion 32 is then trapped 

with ethanol to give the N,O-acetal 33. Note that problems with the regiochemistry of 

the reduction arise when unsymmetrical cyclic imides are used. 

NO O

Me

NO OH

Me

NO

Me

NO OEt

Me

NaBH4

EtOH/HCl

0C

80%30 31 32 33

H+

 

Scheme 9: Partial reduction of imide 30 with sodium borohydride 

Organometallic reagents, such as Grignard and organolithium reagents, can also react 

with imides producing hemiaminals which are a source of N-acyliminium ions (Scheme 

10).
12 

Succinimide 34 was treated with MeLi in THF to give hemiaminal 35 in 87% 
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yield which was then treated with trifluoroacetic acid in dichloromethane to afford the 

desired tetrahydro-pyrroloisoquinolone 37 in 98% yield. Problems related with 

undesired ring opening were observed when bulkier organolithiums such as n-BuLi or 

PhLi were used. Note also that hemiaminals are very susceptible to dehydration making 

isolation and purification sometimes difficult.  

N

O

O

O

O

MeLi

THF
78 C
87%

N

O

HO

O

O

Me

TFA

DCM
rt

98%

O

O
N O

Me

O

O

34 35 36

37

N
O

Me

 

Scheme 10: Partial reduction of symmetric succinimide 34 with an organolithium reagent 

A regioselective Grignard addition to unsymmetrical cyclic imide 38 was achieved 

using MeMgI in THF affording hemiaminal 39 in 89% yield (Scheme 11).
13

 The 

reductive cleavage of the carbon-oxygen bond of hemiaminal 39 to give product 41 was 

achieved using boron trifluoride diethyl etherate and triethylsilane, invoking 

the intermediacy of an N-acyliminium ion 40.  

NO O

Bn

38

BnO

MeMgI

THF
78 C

89% (1:1)

N
HO O

Bn

39

BnO

Me

Et3SiH
BF3·Et2O

DCM
78 C

90%, 10:1, trans:cis

N O

Bn

41

BnO

Me
N O

Bn

40

BnO

Me

 

Scheme 11: Partial reduction of unsymmetrical imide 38 with a Grignard reagent 

1.2.1.3 Oxidation of Amides at the Carbon α- to Nitrogen 

N-Acyliminium ions can also be obtained by the removal of hydride from the α-carbon 

of an amide and the most common way to effect this transformation is using 

electrochemical oxidation (Scheme 12).
14

 The initial removal of an electron from the 

lone pair on nitrogen, followed by loss of a proton and another electron forms the 

unstable N-acyliminium ion 46. This anodic oxidation was conducted in the presence of 

a nucleophile, MeOH, and the N-acyliminium ion 46 is trapped as soon as it is 
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generated to give the α-methoxy carbamate 47. Treatment of the carbamate 47 with 

TiCl4 formed the tropane alkaloid 49 via N-acyliminium ion intermediate 48. Note that 

although this method can work well, oxidative side-products are often observed.
15

 

e-

N

Me

O

CO2Me

anodic oxidn

Et4N+ OTs

N

Me

O

CO2Me
MeO

52%

TiCl4

DCM

05 oC, 2 h

50%

N

O

CO2Me

MeOH N

Me

O

CO2Me

e


N

Me

O

CO2Me

N

Me

O

CO2Me

42 43

46 47 48 49

N

Me

O

CO2Me

44

N

Me

O

CO2Me

45

H

 

Scheme 12: Electrochemical oxidation of the carbamate 42  

Chemical oxidation is also possible (Scheme 13). An interesting method is to use a 

silane to promote oxidation at a specific site, followed by an N-acyliminium ion 

cyclisation; the high regiocontrol associated with these processes is due to the more 

rapid rates of tertiary aminium radical α-desilylation compared with competitive 

α-deprotonation.
16

 For example, compound 50 was subjected to cerium(IV) oxidation 

which led to the generation of N-acyliminium ion 53 followed by cyclisation onto the 

2-position of the indole to give product 54.
17

 Note that this method is intolerant of 

functionalities which are oxidatively unstable.   
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Scheme 13: Chemical oxidation of the carbamate 50  
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The oxidation of N-acyl pyrrolidines with iodosylbenzene and trimethylsilyl azide 

produces 2-azido derivatives which are effective N-acyliminium ion precursors when 

treated with Lewis acids (Scheme 14).
18

 The oxidation of pyrrolidine 55 gave 

2-azido-pyrrolidine 56 in excellent yield. N-Acyliminium ion 57 was then formed from 

the α-azido derivative 56 in the presence of TiCl4 and cyclised to give product 58 in 

49% yield.  
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Scheme 14: Chemical oxidation of the N-acyl pyrrolidine 55 to form the α-azido derivative 56  

Chemical oxidation using Mn(OAc)3 as the oxidative reagent is also possible. For 

example, the oxidation of the enamide 60 with Mn(OAc)3 in methanol resulted in the 

formation of the α-methoxy amide 64 via an N-acyliminium intermediate 63 (Scheme 

15).
19

 In this case, the radical 61 was likely generated from the reaction of the enamide 

60 with Mn(III). Cyclisation followed by subsequent oxidation by a second equivalent 

of Mn(III) produced the N-acyliminium ion 63. The nucleophilic addition of methanol 

then gave the methoxy derivative 64.  
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Scheme 15: Chemical oxidation of enamide 60 with Mn(III)  
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An analogous reaction, in which Cu(II) is the oxidant, was reported recently (Scheme 

16).
20

 A SET mechanism is proposed to form the key N-acyliminium ion intermediate 

66, and subsequent nucleophilic attack of the phenolate oxygen at the iminium carbon 

centre provided the desired dihydro-oxazinone derivative 67. However, imide 

side-product 68 was also observed in the reaction mixture. The high reaction 

temperature (130 °C) and the imide side-products are significant drawbacks of this 

method. 

N

O

OH

CuCl22H2O (5 mol%), pyridine (15 mol%)

m-xylene, 130 C, O2, 24 h

N

O

OH

N

O

O

N

O

65
66

67 66% 68 21%

O
OH

 

Scheme 16: Chemical oxidation of amide 65 with Cu(II) catalyst  

1.2.1.4 Decarboxylation of α-Amido Acids 

α-Oxygenated amides can be formed by the oxidative removal of a carboxylic acid 

group from an α-amido acid. One such method involving the use of a hypervalent iodide 

oxidant, is shown in Scheme 17.
21

 A carboxyl radical 70 was proposed to form when 

α-amido acid 69 was treated with diacetoxy-iodo-benzene and iodine. This followed by 

loss of CO2 to generate the alkyl radical 71.  The latter, being α-located to a nitrogen 

atom was easily oxidised by excess reagent to form an N-acyliminium ion 72 which was 

trapped by MeOH to give α-methoxy-lactam 73 in 80% yield. Lactam 73, which is an 

N-acyliminium precursor itself, could then be trapped by various nucleophiles after 

elimination of the methoxy group (usually under acidic conditions). For example 

treatment of lactam 73 with boron trifluoride diethyl etherate and allyltrimethylsilane in 

dichloromethane furnished allyl-pyrrolidine 75 in 90% yield. An important drawback of 

this method is that side-reactions related to N-radical intermediates can take place.
22 
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Scheme 17: Oxidative decarboxylation of α-amido acid 69 with DAIB/I2 

1.2.1.5 Miscellaneous 

Although the heterolysis of α-oxygenated amides is the most common route to 

N-acyliminium ion intermediates, a variety of other α-substituted amides have been also 

employed, including α-silyl amides (Scheme 13), α-azido amides (Scheme 14) and 

α-amido acids (Scheme 17) as shown in the previous Sections (Sections 1.2.1.3 and 

1.2.1.4). Moreover, halogen or sulfur substituents can be also effective leaving groups 

on the α-carbon to an amide and lead to N-acyliminium ion intermediates.  

α-Halogenated amides are most straightforwardly prepared through the acylation of 

imines with acyl halides, examples of which will be given in Section 1.2.3. The major 

drawback of using α-halogenated amides as N-acyliminium ion precursors is that the 

elimination of HCl can be too facile, leading to their conversion into the corresponding 

enamides.  

α-Thioalkyl amides are effective N-acyliminium ion precursors, however activation of 

the sulfur atom is required before it leaves to give the N-acyliminium ion intermediate. 

An example where an activation using chlorine gas is utilised for the electrophilic 

opening of the thiazolidine ring in penicillins is shown in Scheme 18.
23

 The reaction of 

methyl 6-phthalimidopenicillanate 76 with chlorine gas, presumably proceeds through 

initial formation of sulfonium salt intermediate 77 and subsequent C-S bond cleavage to 

form the N-acyliminium ion 78. The N-acyliminium ion 78 was then susceptible to 

nucleophilic attack by chloride anion to form the α-chloroamide 79.  
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Scheme 18: α-Thioalkyl amides are effective N-acyliminium ion precursors 

1.2.2 Electrophilic Addition to Enamides 

Enamides are easily obtained via the elimination of water or alcohol from α-hydroxyl or 

α-alkoxy amides or via the elimination of HCl from α-chloroalkyl amides. Although 

enamides are usually undesired intermediates in N-acyliminium ion chemistry, as they 

can lead to dimeric side-products, they can also serve as N-acyliminium ion precursors 

as their formation is usually reversible in acidic medium.  

An example featuring an enamide formation which leads to an undesired dimeric 

side-product is illustrated in Scheme 19.
9
 A 5:1 mixture of the desired cyclic product 82 

and the dimer 84 is obtained when the reaction of 0.5 mmol of compound 80 was 

carried out in 3 mL of formic acid. However, in a more dilute solution (40 mL formic 

acid), the formation of the dimer 84 was not observed and only the bicyclic ketone 82 

was isolated in 88% yield.  
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Scheme 19: The ring-closure of acetylene 80 to afford bicycle 82 and the enamide side-reaction 

which leads to dimeric product 84 

Another interesting example where an enamide serves as an N-acyliminium ion 

precursor is illustrated in Scheme 20. The conversion of imide 85 into tetracyclic 

isoquinoline derivative 88 was achieved via the enamide intermediate 86.
24

 The 

Wittig-type olefination of imide 85 provided enamide 86 which was then converted into 

N-acyliminium ion 87 via an electrophilic addition of a proton using p-toluenesulfonic 

acid in refluxing toluene. The electron-rich benzene ring then attacked the 

N-acyliminium ion 87 to generate the tetracyclic compound 88 as a single 

diastereoisomer. The high stereoselectivity of N-acyliminium ion cyclisation can be 

rationalised by the fact that the nucleophilic attack of the aromatic ring takes place on 

the side opposite to the lactone substituent to give the less-strained cis-fused tetracyclic 

isoquinoline derivative 88. Note that compound 88 is a potential intermediate for the 

synthesis of the naturally occurring alkaloid 3-demethoxy-erythratidinone 89. 
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Scheme 20: Electrophilic addition of a proton to the enamide 86 followed by an N-acyliminium 

cyclisation 

Another example of electrophilic addition reaction to enamides is the Vilsmeier reaction 

of the ene-carbamate 90 to give the β-formyl-ene-carbamate 92 (Scheme 21).
25

 The 

reaction of ene-carbamate 90 with DMF and POCl3 in 1,2-dichloroethane followed by 

hydrolysis gave β-formyl-ene-carbamate 92 in 94% yield, presumably via an 

N-acyliminium intermediate 91. 

N

CO2Me

N

CO2Me

CHO
i) DMF, POCl3, DCE

ii) NaOAc, H2O

94%

N

CO2Me

N

Cl

90 91 92  

Scheme 21: Electrophilic addition of a formyl group to the enamide 90 under Vilsmeier 

reaction conditions 

1.2.3 N-Acylation of Imines 

The most direct route to N-acyliminium ions is via the N-acylation of imines with acid 

halides
26

 and anhydrides.
27 

For example, Johannes et al. showed that the treatment of 

salicyclic chloride 93 and 2,5-dihydrooxazole 94 in benzene at reflux afforded 

N,O-acetal 96 in 60% yield (Scheme 22).
26k

 It was proposed that an N-acyliminium ion 

95 was formed first, before the nucleophilic attack of the phenol at the imine carbon 

took place.  
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Scheme 22: N-Acylation of imine 94 with acid chloride 93 

Johannes et al. also showed that refluxing anthranilic acid 97 in the presence of thionyl 

chloride gave sulfinamide anhydride 98, which was then reacted with 

2,5-dihydrooxazole 94 to give dihydroquinazoline 101 (Scheme 23).
26k

 

Dihydroquinazoline 101 was then subsequently oxidised to afford product 102 in 48% 

yield over the 3 steps. In this reaction the unstable sulfinamide anhydride 98 was 

formed and probably converted into the imino-ketene intermediate 99 which then 

reacted with 2,5-dihydrooxazole 94 in a concerted (π
4
+π

2
)-cycloaddition to form 

product 101. A stepwise mechanism via the N-acyliminium ion intermediate is also 

possible, according to reports by Kametani et al.
27b,c
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Scheme 23: N-Acylation of imine 94 with sulfinamide anhydride 98 

Recently, the reaction of isoquinoline 103 with α-aminoacyl fluoride 104 to afford the 

tricyclic product 107 via an N-acyliminium salt formation was reported (Scheme 24).
26h

 

Isoquinoline 103 and α-aminoacyl fluoride 104 reacted at −78 °C in dichloromethane in 

the presence of 0.2 equivalent of AlCl3 and 1 equivalent of trimethylsilyl chloride. It 

was proposed that the complex of the α-aminoacyl fluoride with AlCl3 (105) is attacked 

by the isoquinoline nitrogen atom, to give the N-acyliminium salt 106. The salt 106 

could be in an equilibrium with the corresponding covalent adduct 106a, but the silyl 
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reagent trapped the fluoride ion revealing the highly reactive N-acyliminium ion 106. 

The latter then cyclised to form the imidazolisoquinoline 107 in 47% yield (95:5 dr). It 

was reported that the yield was low due to formation of polyamides which could not be 

isolated and analysed.  
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Scheme 24: The reaction of isoquinoline 103 with α-aminoacyl fluoride 104 

Strumberg et al. reported the direct acylation of imine 109 with homophthalic anhydride 

108 to generate the substituted isoquinolone 112, presumably via an N-acyliminium ion 

intermediate 110 (Scheme 25).
27d

 The enolate 111 then trapped the N-acyliminium ion 

to give product 112 in 88% yield. 
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Scheme 25: Direct acylation of imine 109 with homophthalic anhydide 108 
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As can be seen, the use of activated acids (acid chlorides, acid fluorides and anhydrides) 

for N-acyliminium generation has some precedent. However, this method suffers from 

limited substrate scope, as the internal nucleophile as well as other functional groups 

built into the coupling partners must be compatible with the acylating agent itself which 

is highly reactive.  

To the best of our knowledge, apart from a single report, 
28

 which appeared after the 

start of this project, the direct acylation of imines with carboxylic acids is not known in 

the literature. This single reference reported the reaction of the dihydrocarboline 113 

and carboxylic acid 114 under peptide coupling conditions (DCC/DMAP) to give 

N,N-acetal 116 in good yield (Scheme 26). A tandem N-acylation/intramolecular 

aza-cyclisation mechanism was proposed, involving an N-acyliminium cation of type 

115.  
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Scheme 26: The reaction of dihydrocarboline 113 with N-Boc protected carboxylic acid 114 

1.3 Construction of Ring Systems Using N-Acyliminium Cyclisations  

The use of N-acyliminium ions in cyclisation reactions has emerged as a powerful tool 

for the construction of novel heterocycles and natural products.
4,6

 In particular, these 

cyclisations have been utilised as the key carbon-carbon or carbon-heteroatom bond 

forming reactions in the synthesis of several pharmaceutically relevant cyclic scaffolds. 

Such scaffolds include the Erythrina alkaloid ring-systems (Schemes 3 and 20), indole 

alkaloid ring-systems (Scheme 7 and 13), oxazinone (Schemes 16 and 22) and 

quinazolinone ring-systems (Scheme 23), examples of which are given in the previous 

sections.  

There are two important advantages of intramolecular N-acyliminium ion reactions over 

intermolecular N-acyliminium ion reactions. First, the generation of products from a 

substrate containing a relatively unreactive nucleophile, such as an unactivated 
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benzenoid or alkene group, is more facile and second, the stereochemical control is 

often better.  This section is concerned exclusively with carbon-centered nucleophiles, 

including furan, thiophene, pyrrole, pyridine, alkene and alkyne derivatives.  

1.3.1 Intramolecular Amidoalkylations with Aromatic π-Nucleophiles 

N-Acyliminium cyclisations have been widely studied using aromatic π-nucleophiles.
4,6

  

As well as benzene rings, which are commonly used for these processes, there is a large 

range of other aromatic π-nucleophiles that can be also used for this purpose. 

Electron-rich heterocycles like indole, furan, thiophene and pyrrole, as well as a 

electron-deficient heterocycles such as pyridine, are effective nucleophiles in 

N-acyliminium cyclisation reactions. Examples of N-acyliminium cyclisations with 

benzene and indole nucleophiles have already been included in the previous sections 

(Schemes 3, 7, 10, 13, 14 and 20) and so here some additional examples with furan, 

thiophene, pyrrole and pyridine will be provided.  

An interesting example of a highly diastereoselective N-acyliminium ion cyclisation 

which involves a tethered furan as the π-nucleophile was reported recently.
29

 The fused 

tricyclic system 119 was formed with high cis-selectivity via N-acyliminium ion 

cyclisation of intermediate 118 which was formed from the diol 117 (Scheme 27). The 

Lewis acid BF3·Et2O in dichloromethane was used for this transformation. The 

cis-adduct formation could be attributed to an intramolecular interaction between the 

hydroxyl group and the electron-rich furan ring. Note that the furan reacted cleanly at 

the less reactive β-position as it is linked to the N-acyliminium ion at its α-position.  
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Scheme 27: N-Acyliminium cyclisation using furan as the π-nucleophile 

 

 

Thiophene cyclisations are usually straightforward with the reaction being favoured at 

the more reactive α-position of the heterocycle. Cyclisations to form strained 
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five-membered-ring products are possible as shown in the example below (Scheme 28); 

hemiaminal 120 was treated with trifluoroacetic acid to give the cyclised product 122 in 

58% yield.
30
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Scheme 28: N-Acyliminium cyclisation using thiophene as the π-nucleophile 

N-Acyliminium ions linked to a pyrrole nitrogen also cyclise at the α-position. The 

seven-membered-ring lactam 126 was synthesised from compound 123 via treatment 

with 2 M HCl in THF (Scheme 29).
31

 The reaction likely proceeds via intermediate 124 

which forms the corresponding N-acyliminium ion 125 in the acidic medium. This 

subsequently cyclises to give lactam 126. 
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Scheme 29: N-Acyliminium cyclisation using pyrrole as the π-nucleophile 

Moreover, pyridines, which are electron-deficient heterocycles, can be suitable 

nucleophiles for N-acyliminium ion cyclisation reactions. Although this area is much 

less developed, N-acyliminium ion cyclisations do proceed when the pyridine nucleus is 

activated by electron-donating substituents such as methoxy groups. Padwa et al. 

showed that refluxing hemiaminal 127 in benzene in the presence of a catalytic amount 

of p-toluenesulfonic acid provided the tetracyclic compound 129 in good yield (Scheme 

30).
32
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Scheme 30: N-Acyliminium cyclisation using an activated pyridine as the π-nucleophile 

1.3.2 Intramolecular Amidoalkylations with Non-Aromatic π-Nucleophiles 

The study of the reactions of non-aromatic π-nucleophiles in N-acyliminium ion 

cylisations has been a very fruitful and diverse area of research.
4,6

 N-Acyliminium ions 

are well suited to cyclisation onto alkenes, alkynes, vinyl enol ethers, vinyl silanes, 

allylsilanes, enols and enolates.  

Alkenes and alkynes can attack N-acyliminium ions to furnish carbocation 

intermediates which can be transformed to the final products either by solvent capture, 

the addition of external nucleophiles or elimination. Representative examples are 

illustrated in previous sections (Scheme 8 and 19). An additional example where a 

spirocyclic system is formed from the reaction of an alkene with an N-acyliminium ion 

is shown below (Scheme 31).
33

 The addition of the Grignard reagent 131 to the 

iodomagnesium salt of glutarimide 130 in dichloromethane afforded the hemiaminal 

132 which was then treated with anhydrous formic acid to give the 6,6-spirolactam 

formate ester 134 as a single diastereoisomer in 33% overall yield.  A chair-like 

transition state was proposed, with the N-acyliminium ion adopting a pseudo-equatorial 

position, permitting an anti-periplanar addition to give the desired spirocyclic amide 

134 as a single diastereosiomer.  
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Scheme 31: N-Acyliminium cyclisation using an alkene as the π-nucleophile to form a 

spirocyclic system 

Cyclisations of activated alkenes substituted with ether groups are also known in the 

literature. In particular, the condensation of silyl enol ethers with N-acyliminium ion 

intermediates is very efficient and has been used as the key step in several synthetic 

sequences. An interesting example is shown in Scheme 32.
34

 The Z-isomer of the 

triisopropylsilyl enol ether 135 was treated with excess trimethylsilyl 

trifluoromethanesulfonate in dichloromethane to afford the crystalline product 137 in 

90% yield as a single diastereoisomer. The same result was obtained when the E-isomer 

of enol ether 135 was used. The formation of only one diastereoisomer is rationalised by 

assuming that both isomers adopt a chair-like conformation prior to cyclisation, 

regardless of the geometry of the double bond.  
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Scheme 32: N-Acyliminium cyclisation using a silyl enol ether as the π-nucleophile  

Similarly, enol or enolate nucleophiles can attack the N-acyliminium ion effectively. 

Examples of N-acyliminium cyclisations of enols/enolates include the 

cyclocondensation of imines with anhydrides and the formation of tropane alkaloids 

from substituted pyrrolidines, as discussed in previous sections (Scheme 12 and 25).  

Vinylsilane nucleophiles can also participate in N-acyliminium ion cyclisation reactions 

giving adducts in good to excellent yields. In this case, the cyclisation is directed by the 

“β-silyl effect”; for example, hemiaminal 138 was dissolved in dry trifluoroacetic acid 
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and stirred for 15 minutes at rt to give quinazolizidine 141 in 92% yield exclusively 

(Scheme 33).
35

  

N

TFA

15 min, rt
92%

ONO
SiMe3

NO
SiMe3

139138 141140

NO OH

SiMe3

 

Scheme 33: N-Acyliminium cyclisation using a vinylsilane as the π-nucleophile  

Allylsilanes are normally good participants in N-acyliminium cyclisations and often 

engender excellent regiocontrol. The β-effect of the silicon atom is the determinant of 

the regiochemistry and a new carbon-carbon bond is generally formed at the vinyl 

carbon γ- to silicon. An example of cyclisation of a nitrogen-linked allylsilane is 

illustrated below (Scheme 34); hemiaminal 142 was treated with trifluoroacetic acid in 

dichloromethane to give product 145 in quantitative yield.
36
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Scheme 34: N-Acyliminium cyclisation using an allylsilane as the π-nucleophile 

A number of N-acyliminium ion cyclisation reactions have been summarised, 

demonstrating the high utility of these processes in heterocycle synthesis. The 

development of a new synthetic approach to form and cyclise in situ N-acyliminium ion 

intermediates, from relatively unreactive starting materials, is the subject of this project 

and will be discussed in detail in the following Chapter. 
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2.1 Chapter 2   Direct Imine Acylation Methodology 

2.1 Introduction to the Direct Imine Acylation Methodology: Project 

Aims 

Having given an overview of existing methods for the synthesis of diverse heterocycles 

via the formation of N-acyliminium ions, it is clear that in the vast majority of 

examples, the N-acyliminium species is generated from a preformed system, usually via 

regioselective partial reduction
11–13

 or regioselective amide oxidation.
14,15,17–20

 A 

convergent approach to N-acyliminium species has also some precedent, involving the 

acylation of imines with acid halides
26

 or anhydrides.
27

 However, only a single example 

of the direct acylation of imines with carboxylic acids has been reported to date.
28 

It was envisioned that a novel scaffold diversity approach which involves the formation 

of N-acyliminium ions via the direct acylation of imines with carboxylic acids could be 

a valuable addition to existing methods. The access to such approach would be 

beneficial over the traditional methods, which typically suffer from undesirable 

side-reactions and harsh reaction conditions. 

The concept of our Direct Imine Acylation (DIA) project is illustrated in Scheme 35. 

The main aim of the research was to explore the generation of an N-acyliminium ion 

148 by acylation of an imine 146 with a functionalised carboxylic acid 147. The 

N-acyliminium ion 148 would then be primed to undergo in situ cyclisation, via 

nucleophilic attack by a nucleophile or pro-nucleophile built into the acid coupling 

partner to give adduct 149. 

HX

HO

O

N N

OX = O, S, NR, CR2

N

O

X

148

coupling agent

146

147

149

HX

 

Scheme 35: Direct Imine Acylation (DIA) methodology 

The key advantage of the direct use of carboxylic acids rather than activated derivatives 

(acid chlorides or anhydrides) is that it negates the need to perform and isolate these 

intermediates, meaning that this method is compatible with many functional groups on 

the acid coupling partners. In addition, many suitable acid coupling partners are 



24 

 

commercially available and easy to handle. These features give DIA a great potential 

with regards to diversity-oriented synthesis, the aim of which is the rapid access to 

molecular diversity from simple starting materials.
37

 Once established, the aim was then 

to apply the DIA methodology in natural product synthesis.   

2.2 Initial Studies 

The emergence of DIA methododology as a useful synthetic tool began during model 

studies, run within the group, towards the synthesis of the ABC fragment of the 

complex natural product, ‘upenamide 150 (Figure 3).
38

 Studies conducted by Dr. Will 

Unsworth had shown that the coupling of the cyclic imine 146a and salicyclic acid 147a 

was really efficient, affording adduct 149a in 83% yield after column chromatography 

(Scheme 36). Imine 146a was chosen for these initial studies as it is non-volatile and 

cannot tautomerise to the corresponding enamine and so competing side-reactions 

and/or self condensation/polymerisation are negated. Propylphosphonic acid anhydride 

(T3P, 151)
39

 was used as the coupling agent and DIPEA as the base. T3P was chosen to 

effect the direct coupling, as it is nontoxic and the by-products are easily removed by 

aqueous extraction. The DIA reaction was performed by simply mixing the coupling 

partners, 146a and 147a, with T3P and DIPEA in toluene and heating to 90 °C for 20 h.   

'upenamide, 150

N

O

O

HO

N

O

H H

AB

C

 

Figure 3: The natural product ‘upenamide 150 
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Scheme 36: DIA reaction of imine 146a with acid 147a 
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Additional experiments, in which the same coupling was attempted using CDI and DCC 

in place of T3P, led to the formation of adduct 149a, albeit in lower yield (Table 1, 

entry ii, iii). The same reaction was also tested using EDC as the coupling agent (entry 

iv) but it failed, most likely because of the poor solubility of EDC in toluene. Thus, T3P 

proved to be the most effective coupling agent but other coupling reagents can also be 

used in cases where T3P is either unavailable or unsuitable.  

               Table 1: Alternative coupling reagents
[a] 

  

 

 

 

 

 

 

 

 

 

 

 

[a] 
This screening of conditions was conducted by Dr. Graeme Coulthard. 

[b]
 Reactions were 

performed on a 0.1–0.3 mmol scale using imine 146a (1 equiv.), salicyclic acid 147a (1.2 

equiv.), coupling reagent (1.5 equiv.) and DIPEA (1.85 equiv.) in toluene at 90 °C for 20 h.       
[c]

 Isolated yield following column chromatography. 

 

Although the above example proceeded in an excellent unoptimised yield (83%), 

somewhat harsh conditions (90 
o
C, 20 h) had been used. Hence, in this research, it was 

next examined if milder conditions could give similar results (Table 2). The imine 146a 

and salicyclic acid 147b were used as the test substrates and the effect of temperature 

and reaction time were explored. The reaction gave full conversion to adduct 149b 

when heated for 20 h at 90 °C (Table 2, entry i) while at 70 °C (entry ii), 50 °C (entry 

iii) and rt (entry iv) it gave lower yields. Reducing the reaction time to 1 h at 90 °C 

(entry v) or 70 °C (entry vi) gave 50% and 40% yield, respectively. Also the same 

coupling was attempted in the absence of either T3P (entry vii) or DIPEA (entry viii) 

but the reaction led only to the recovery of the starting materials proving that both T3P 

and DIPEA are necessary for the reaction to take place. 

 

 

 

 

 

N

BnBn

HO

HO

O

N

Bn Bn
O

O
146a

147a

149a

coupling reagent
DIPEA, toluene

 
Entry

[b]
 Coupling reagent Yield

[c]
 

i T3P 83% 

ii CDI 52% 

iii DCC 77% 

iv EDC 0% 
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         Table 2: Screening for optimal reaction conditions 

N

BnBn

HO

HO

O

N

Bn Bn
O

O
146a

147b

149b

T3P, DIPEA
toluene

Cl

Cl

 
Entry

[a]
 Temp. (°C) Time (h) Outcome (Conversion) 

i 90 20 100% 

ii 70 20 90% 

iii 50 20 70% 

iv rt 20 20% 

v 90 1 50% 

vi 70 1 40% 

vii
[b]

 90 48 No reaction 

viii
[c]

 90 48 No reaction 
[a] 

Reactions were performed on a 0.1–0.3 mmol scale using imine 146a (1 equiv.), salicyclic 

acid 147b (1.2 equiv.), T3P (1.5 equiv.) and DIPEA (1.85 equiv.) with conditions shown unless 

stated. 
[b] 

The reaction was performed without the use of T3P. 
[c] 

The reaction was performed 

without the use of DIPEA. 

2.3 Benzoic Acid Scope in DIA Reactions 

2.3.1 The Synthesis of the Imine 146a 

Having established optimal DIA reaction conditions, we then went on to explore DIA 

using a range of substituted salicyclic acid derivatives. The novel cyclic imine 146a was 

synthesised on large scale and used as the test substrate to establish the acid scope. An 

efficient 4-step sequence, developed within the group,
40

 was used to synthesise imine 

146a from piperidin-2-one 152. Boc-Protection of piperidin-2-one 152 gave product 

153 which was then benzylated to give intermediate 154 in good yield (Scheme 37). 

The partial reduction of product 154 with LiEt3BH (Super-Hydride
TM

) followed by 

protecting group cleavage with trifluoroacetic acid furnished imine 146a in 63% yield 

over the two steps. Note that in the current research project gram-scale quantities of 

high purity imine 146a (~3g) were synthesised with the same percentage yield. 
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NH

O
Boc2O,TEA

DMAP

THF
99%

NBoc

O
LHMDS, BnBr

NBoc

O
Bn Bn

LiEt3BH, THF

then EtOH/HCl

NBoc

OR
Bn BnTFA

N

BnBn

146a

DCM
63%

(over 2 steps)

152 153 154

155

THF
74%

R = H or Et  

Scheme 37: Synthesis of imine 146a 

2.3.2 Ortho-Hydroxy Aromatic Acids 

Commercially available salicyclic acid derivatives substituted with electron-deficient 

(147b–d), electron-donating (147e–h) and electron-neutral groups (147a) were used to 

afford N,O-acetals 149a–h in excellent yields (Table 3, entries i-viii). Note that when 

the reaction in entry iii was performed on a large scale (3 mmol scale) it afforded 

product 149c without a reduction in yield. All of these reactions were performed using 

the same conditions (90 °C, 20 h) with the exceptions of entries v and vii where a higher 

reaction temperature (120 °C) was required in order to achieve full conversion into the 

respective products 149e and 149g. We reasoned that the higher temperature is needed 

because the activated carboxylic acids in entries v and vii are presumably less 

electrophilic than the other systems tested as a result of the presence of the electron-rich 

methoxy groups, thus making the initial N-acylation slower. Naphthalene and pyridine 

derivatives 147i–l are also well tolerated, affording products 149i–l in very good yields 

(entries ix–xii). All of the novel products 149a–l were fully characterised by 
1
H-NMR 

and 
13

C-NMR spectroscopy and by HRMS spectrometry. 
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Table 3: Acid scope in DIA with ortho-hydroxy aromatic acids and imine 146a 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[a] 
Reactions were performed on a 0.1–0.3 mmol scale using imine 146a (1 equiv.), acid 147 (1.2 

equiv.), T3P (1.5 equiv.) and DIPEA (1.85 equiv.) with conditions shown unless stated.             
[b]

 Isolated yield following column chromatography. 
[c]

 Reaction performed also on a 3 mmol 

scale and gave product 149c in 90% yield. 
[d] 

Reaction performed at 120 °C for 20 h.  

 

 

 

 

N

BnBn

N

Bn Bn
O

O

X

146a 149

T3P, DIPEA
toluene

90 °C, 20 h

ArCO2H 147

R

 
Entry

[a]
 Acid Product Yield

[b]
 

 

 

 

 

 

 

HO

HO

O

R

1

2
3

4

5
6

 

 

N

O

O

BnBn

R

 
 

 

i 147a, R = H 149a, R = H 83% 

ii 147b, R = 5-Cl 149b, R = 5-Cl 96% 

iii
[c]

 147c, R = 5-NO2 149c, R = 5-NO2 91% 

iv 147d, R = 3-NO2 149d, R = 3-NO2 89% 

v
[d] 

147e, R = 4-OMe 149e, R = 4-OMe 82% 

vi 147f, R = 5-OMe 149f, R = 5-OMe 60% 

vii
[d] 

147g, R = 6-OMe 149g, R = 6-OMe 64% 

viii 147h, R = 4,6-OH 149h, R = 4,6-OH 60% 

ix 

HO

HO

O  

N

Bn Bn
O

O  

95% 

 147i 149i  

x 
HO

HO

O  

N

Bn Bn
O

O  

92% 

 147j 149j  

xi 

NHO

O

HO

 

NO

N

O

Bn Bn

 

97% 

 147k 149k  

xii 
N

HO

O

HO

 
N

O

N

O

Bn Bn

 

63% 

 147l 149l  
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It is noteworthy that the DIA concept is not limited to acylation as demonstrated by the 

formation of the sulfonamide-containing dioxo(dihydro)-benzoxathiazine 157 from the 

reaction of the imine 146a with the commercially available sulfonyl chloride 156. This 

reaction was performed without the use of T3P (Scheme 38). 

Cl

Cl

HO

ClO2S

N
S

O
Bn

O O

Cl

Cl

Bn

N

BnBn

DIPEA, toluene
90 °C, 20 h

92%
146a

156

157  

Scheme 38: The formation of dioxo(dihydro)-benzoxathiazine 157. 

2.3.3 Sulfur and Nitrogen Nucleophiles 

The DIA methodology is also not restricted to trapping the intermediate N-acyliminium 

ion with oxygen nucleophiles. Thiosalicyclic acid 147m and anthranilic acids 147n and 

147o provided thiazinone 149m (Table 4, entry i) and diazinones 149n and 149o (entry 

ii, iii) respectively in almost quantitative yields. Interestingly, the reaction with 

thiosalicyclic acid 147m could be performed in the absence of T3P giving 20% 

conversion to adduct 149m. This result is not surprising since the condensation of 

imines with thiols has been reported previously.
26k, 41  

However, no reaction was 

observed when T3P was excluded from the reaction of imine 146a with N-methyl 

anthranilic acid 147n (entry ii). The consequences of these findings have important 

mechanistic implications which are discussed in Section 2.8 in more detail.  
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Table 4: Acid scope in DIA with ortho-nitrogen and sulfur-substituted aromatic acids and imine 

146a   

 

 

 

 

 

 

 

 

 

 
 

[a] 
Reactions were performed on a 0.1–0.3 mmol scale using imine 146a (1 equiv.), benzoic acid 

147 (1.2 equiv.), T3P (1.5 equiv.) and DIPEA (1.85 equiv.) with conditions shown unless stated.     
[b]

 Isolated yield following column chromatography. 
[c]

 Reaction performed in the absence of 

T3P gave 20% yield product. 
[d] 

Reaction performed in the absence of T3P gave 0% yield 

product. 

2.3.4 Carbon Nucleophiles 

We were also interested to examine the ability of DIA reaction to form C–C bonds by 

trapping the N-acyliminium ion with carbon-centered nucleophiles. Pleasingly, when 

the readily available diester 147p
42

 was subjected to DIA reaction conditions (T3P, 

DIPEA, 90 
o
C, 20 h, toluene), it generated the tricyclic lactam 149p in excellent yield 

(Scheme 39). Note that no product was observed when the reaction was performed in 

the absence of T3P.  

N

BnBn

DIPEA, T3P
toluene

90 °C, 20 h
84%

146a

147p

149p

HO

O

(CH3O2C)2HC

N

O

Bn Bn CO2CH3

CO2CH3

 

Scheme 39: The synthesis of tricyclic lactam 149p 

 

 

N

BnBn

N

Bn Bn
Nu

O
146a 149

T3P, DIPEA
toluene

90 °C, 20 h

ArCO2H 147

R

 
Entry

[a]
 Acid Product Yield

[b]
 

i
[c]

 

HS

HO

O  

N

Bn Bn
S

O  

96% 

 147m 149m  

 
RHN

HO

O  

N

Bn Bn R
N

O
 

 

ii
[d]

 147n 149n, R = Me 97% 

iii 147o 149o, R = Ph 95% 
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2.4 Synthesis of Imine Substrates 

Having examined the DIA reaction using imine 146a, we next went on to synthesise a 

series of cyclic imines to test the substrate scope with respect to the imine component. 

The cyclic imine 146b, which was first synthesised by Dr. Will Unsworth following the 

same general procedure that was used to synthesise imine 146a (Scheme 37), was 

prepared starting from tert-butyl 3,3-dibenzyl-2-oxopyrrolidine-1-carboxylate 158.
42

 

The substituted pyrrolidinone 158 was synthesised in good yield via Boc-protection of 

pyrrolidinone, followed by benzylation. The partial reduction of the substituted 

pyrrolidinone 158 with LiEt3BH followed by Boc-cleavage gave imine 146b in 63% 

yield over the two steps (Scheme 40).  

LiEt3BH,THF

then EtOH/HCl

TFA, DCM

146b

63% (over
2 steps)

158

NBoc

OBn
Bn

NBoc

OEtBn
Bn

N

Bn
Bn

159  

Scheme 40: The synthesis of imine 146b 

Two novel cyclic imines, 146c and 146d, were also synthesised using a similar 

procedure (Scheme 41). The allylation of the readily available Boc-protected lactam 153 

afforded intermediate 160 which was a common intermediate for the synthesis of both 

imines 146c and 146d.  Partial reduction of intermediate 160 with LiEt3BH followed by 

Boc-cleavage furnished imine 146c in 29% yield over the two steps. Imine 146d was 

obtained when Pd/C hydrogenation of the allyl groups of the lactam 160 was performed 

before the partial reduction of the lactam with LiEt3BH and the subsequent 

Boc-cleavage. Unfortunately, lactam 162 was observed together with imine 146d in the 

1
H-NMR spectrum of the columned product (inseparable mixture 1:1) revealing that the 

LiEt3BH reduction was not complete before the trifluoroacetic acid was added.  
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i) Pd/C

EtOH,H2

83%

N

146d

NBoc

O
LHMDS,

allyl
bromide

THF
54%

NBoc

O

i) LiEt3BH,THF

then EtOH/HCl

ii) TFA, DCM

29% (over 2 steps)
N

146c

ii) LiEt3BH,THF

then EtOH/HCl
iii) TFA, DCM

22% (1:1, 146d:162)

(over 2 steps)

160153

NH

162

O

NBoc

O

161

 

Scheme 41: The synthesis of imines 146c and 146d 

The known 3,4-dihydroisoquinoline 146e was synthesised from the corresponding 

1,2,3,4-tetrahydroisoquinoline 163 based on a literature procedure (Scheme 42).
43

 

N-Bromination of amine 163 using N-bromosuccinimide followed by HBr elimination 

with aq. NaOH afforded imine 146e in good yield. The same procedure was 

successfully applied to the synthesis of the known imine 146f from 

6,7-dimethythoxy-1,2,3,4-tetrahydroisoquinoline 164. 

NH N

NBS

146e R = H, 70%
146f R = OMe, 61%

R

R

R

R

163 R = H
164 R = OMe

N
Br

R

R

aq. NaOH

HBr

165
 

Scheme 42: The synthesis of imines 146e and 146f 

The known imine 146g was synthesised from the corresponding amide 166
42

 under 

modified Bischler–Napieralski conditions following a literature procedure.
44

 Amide 166 

was treated with trifluoromethanesulfonic anhydride and 2-chloropyridine in 

dichloromethane to give imine 146g in 70% yield (Scheme 43). 
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N

Ph

Tf2O, 2-Cl-Pyr

DCM, 70%

146g166

HN

Ph

O

 

Scheme 43: The synthesis of imine 146g 

We have also successfully synthesised the 1-ethoxy and 1-methoxy-3,4-

dihydroisoquinoline 146h and 146i from the 1,2,3,4-tetrahydroisoquinolin-1-one 167 

using triethyloxonium and trimethyloxonium tetrafluoroborate with K2CO3 in 

dichloromethane, based on a literature procedure (Scheme 44).
45

 The lactam 167 was 

synthesised from 3,4-dihydroisoquinoline 146e via oxidation, using sodium chlorite 

under buffered conditions, following a known literature procedure.
46

  

N NH

O

Et3OBF4

K2CO3, 4Å MS

DCM
75%

Me3OBF4

K2CO3, 4Å MS

DCM
47%

N

OEt

N

OMe

146e 167

146h

146i

NaClO2

NaH2PO4

THF/H2O

85%

 

Scheme 44: The synthesis of imidates 146h and 146i 

The 3H, 4H, 9H-pyrido[3,4-b]indole 146j was synthesised by oxidising commercially 

available amine 168 using IBX following a procedure described by Nicolaou et al. 

(Scheme 45, path a).
47

 However, the yield of the IBX reaction was low (our yield 32% 

and literature yield 40%) and an alternative way to achieve this transformation was 

found (Scheme 45, path b). Tryptamine 169 was treated with ethyl formate to give the 

known amide 170 in quantitative yield.
48

 The amide 170 then underwent a Bischler–

Napieralski reaction on treatment with neat POCl3 to afford imine 146j, albeit in lower 

yield than the one reported (our yield was 45% compared with a literature yield of 

82%).
49
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N
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N
H
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N
H
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O
N
H

N

quant.

POCl3

then aq. NaOH
45%

146jb)

169  

Scheme 45: The synthesis of imine 146j 

Two more imines were synthesised based on a procedure described by Liu et al.
50

 A 

mixture of phenylhydrazine 171 and cyclohexane-carboxaldehyde 172 was heated at 60 

o
C under mildly acidic conditions, a typical procedure for Fischer indole reactions, 

affording the known indolenine 146k in 83% yield (Scheme 46). The same reaction 

conditions were applied to isobutyraldehyde 173 affording indolenine 146l in 60% yield 

(Scheme 47). Note that although indolenine 146l has been reported previously in the 

literature, no data has been reported to date. Interestingly, the 
1
H-NMR spectrum of 

indolenine 146l is more complex than expected; three weak singlet resonances in the 

4.95–4.26 ppm region of the spectrum were observed and are thought to be due to 

protons in the Ph-N-CH-N environment if the indolenine 146l partially forms the cyclic 

trimer 146l′. The formation of the cyclic trimer 146l′ from indolenine 146l has been 

reported previously by Jackson et al.
51

 

N
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Scheme 46: The synthesis of imine 146k 
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Scheme 47: The synthesis of imine 146l 

2.5 Imine Scope in DIA Reactions 

With a variety of imines in hand, we tested the coupling of each of them with various 

substituted benzoic acids in order to confirm that the scope of DIA methodology is 

versatile in terms of the imine substrate. The readily available imines 146b–n and the 

commercially available imines 146o–r were tested for their ability to undergo the DIA 

reaction under our standard conditions (T3P, DIPEA, 90 °C, 20 h, toluene). As can be 

seen in Table 5, the basic procedure is clearly very broad in scope and a diverse library 

of compounds, of which most are novel and which were fully characterised, has been 

created.  
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     Table 5: Imine scope in DIA with aromatic acid derivatives 

N

Nu

O
149

T3P, DIPEA
toluene

90 °C, 20 h

ArCO2H 147

N

146  
Entry

[a]
 Imine Acid Product Yield

[b]
 

 

N

Bn
Bn

 

 

X

N

Bn
Bn

O  

 

i
[c]

 146b 147a 149q X = O 48% 

ii 146b 147m 149r X = S 99% 

iii 146b 147n 149s X = NMe 87% 

 

N  

 
O

N

O  

 

iv 146c 147a 149t 20% 

 

N  

 
O

N

O  

 

v 146d 147a 149u 24% 

 

N  

 
N

X

O  

 

vi
[c]

 146e 147a 149v X = O 89% 

vii
[c]

 146e 147m 149w X = S 97% 

viii
[f]

 146e 147p
[d]

 149x X = CH(CO2Me)2 69% 

 

N

O

O

 

 

N

O

O

X

O  

 

ix 146f 147a 149y X = O 48% 

x 146f 147n 149z X = NMe 87% 

 

N

R

 

 
N

S

O

R

 

 

xi 146g R = Ph 147m 149aa R = Ph 0% 

xii 146h R = OEt 147m 149ab R = OEt 0% 

xiii 146i R = OMe 147m 149ac R = OMe 0% 

xiv
[c]

 146m
[d]

 R = Me 147m 149ad R = Me 80% 
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[a] 
Reactions were performed on a 0.1–0.3 mmol scale using imine 146 (1 equiv.), benzoic acid 

147 (1.2 equiv.), T3P (1.5 equiv.) and DIPEA (1.85 equiv.) with conditions shown unless stated.          
[b]

 Isolated yield following column chromatography. 
[c]

 Reaction performed at 120 °C for 20 h. 
[d] 

Material provided by Dr. Will Unsworth. 
[e]

 Imine 146n was generated by de-oligomerisation 

of dodecahydro-4a,8a,12a-triazatriphenylene in situ. 
[f]

 When the reaction was performed on a 

9.77 mmol scale the yield dropped to 41%. 
[g]

 Material provided by Dr. Graeme Coulthard.  

 

N

NH

 

 

NH

N

O

O  

 

xv 146j 147a 149ae 46% 

 

N

 

 
N

N

O

Me

 

 

xvi 146k 147n 149af 54% 

 
N

 

 N

X

O  

 

xvii 146l 147m 149ag X = S 53% 

xviii 146l 147n 149ah X = NMe 41% 

 
N  

 N

X

O  

 

xix 146n
[d,e]

 147a 149ai X = O 7% 

xx 146n 147n 149aj X = NMe 40% 

xxi 146n 147m 149ak
[g]

 X = S  31% 

 
N

 

 
N

N

O

Me

 

 

xxii 146o 147n 149al 8% 

 

NMe

Ph

 

 MeN

XPh

O  

 

xxiii 146p 147m 149am X = S 99% 

xxiv 146p 147o 149an X = NPh 68% 

 
NH

Ph Ph

 
 

O

HN

Ph

Ph

O  

 

xxv
[c]

 146q 147a 149ao  60% 

 

N  

 
N

N

O

Me

 

 

xxvi
[c]

 146r 147n 149ap 94% 
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DIA reactions using the 5-membered ring imine 146b with benzoic acids bearing O-, S- 

and N-nucleophiles were tested affording products in good yields (Table 5, entries i–iii). 

Note that a higher temperature was used in the salicylic acid case (entry i) as the t.l.c. 

analysis showed that the reaction was incomplete under the standard conditions (90 °C). 

Moreover, the imines 146c and 146d were coupled successfully with salicyclic acid 

147a, albeit in lower yield, but it is important to recognise that these reactions were 

unoptimised (entries iv, v).  

DIA reactions using imines 146e and 146f with benzoic acids bearing O-, S-, N- and C-

nucleophiles were tested, affording a diverse range of products in moderate to excellent 

yield (entries vi–x). We believe that the comparative stabilities of the products may 

partially explain this variability in yield. For example, the DIA of 

3,4-dihydroisoquinoline 146e and acid 147a proceeded in high yield, but the analogous 

reaction with the dimethoxy imine 146f proceeded in lower yield (entries vi, ix). This 

may be explained by the increased propensity of the product 149y to ring-open and thus 

regenerate an N-acyliminium ion (which can be then hydrolyzed during the aqueous 

work-up or column  chromatography) as a result of the electron-donating groups. It is 

also noteworthy that when the DIA coupling of imine 146e and acid 147p was 

performed on a large scale the yield dropped from 69% to 41% and benzopyran 176 

(Scheme 48) was observed in the reaction mixture and isolated in 21% yield. The 

benzopyran 176 was formed from the self-condensation of acid 147p, and its formation 

is known in the literature via treatment of the corresponding acid chloride with 

triethylamine.
52

 It is important to note that the substructure of adducts 149v–z features 

heavily in natural products and pharmaceutically important compounds.
53

 

176174

LG O

CH3O2C

CH3O2C

O
P

O

O
P

O
P

O

OO

Pr Pr Pr

LG =

LGO

CH3O2C

OCH3O
O OCH3O

OCH3

O

175

 

Scheme 48: The benzopyran 176 formation 
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The coupling of dihydroisoquinolines substituted on C-1 (ketimines 146g, 146m and 

imidates 146h, 146i) was examined next. Note that the reaction of ketimines and 

imidates with acid halides or anhydrides has a limited precedent in the literature.
26j,27b,c 

Pleasingly, ketimine 146m, which can tautomerise to an enamine, is compatible with 

DIA reacting with thiosalicyclic acid 147m to generate product 149ad in excellent yield 

(entry xiv). However, the analogous reactions using benzoic acids substituted with O-, 

N- and C-nucleophiles 147a, 147n or 147p (not shown in Table 5) were not successful. 

Interestingly, the reaction of 146m with salicyclic acid 147a resulted in the formation of 

the novel enaminone 177, presumably via a C-acylation on the enamine tautomer of the 

imine (Scheme 49). This is not surprising as similar processes which proceed by 

imine-enamine tautomerisation, followed by C-acylation, have been reported 

previously.
54

 The enaminone 177 was formed as a single geometrical isomer, thought to 

be the Z-isomer, based on comparisons with similar enaminones in the literature; the 

proton on the nitrogen atom of the enaminone 177 forms a H-bond with the oxygen of 

the carbonyl group and thus, it is characterised by a significant downfield shift (δH/ppm 

11.4) in agreement with similar observations in the literature.
54a,b
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Scheme 49: The synthesis of enaminone 177 

The analogous reaction with phenyl substituted ketimine 146g (which cannot undergo 

such C-acylation) was also screened (entry xi) but this imine did not react with any of 

the acids most likely because of the increased steric hindrance around the imine which 

inhibits the requisite N-acylation reaction. The imidates 146h and 146i (entries xii, xiii) 

also did not react with any acid tested, further supporting the idea that the steric 

hindrance around the imine inhibits the DIA reaction. The contrasting reactivity of 

thiosalicyclic acid 147m over the other benzoic acids (147a, 147n or 147p) (in ketimine 

146m example) indicates that an alternative mechanism possibly operates; it seems 

likely that in sulfur-containing systems, the nucleophilic thiol moiety attacks the imine 

first, before the N-acylation takes place. Additional support for this mechanism is found 
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in the fact that partial product formation (20% yield) was observed in a related example 

in the absence of T3P (Table 4, entry i).  

Moderate to low yields were achieved when we tested the DIA reaction on imines  

146j–o (entries xv–xxii). Note that the dodecahydro-4a,8a,12a-triazatriphenylene,
55

 the 

trimeric form of imine 146n, successfully underwent DIA reaction (entry xix) 

demonstrating that even unstable imines, which are prone to oligomerization and 

enamine formation, can be compatible substrates in the DIA process. 

Dihydro-β-carboline 146j and indolenines 146k and 146l were also suitable imine 

substrates (entries xv–xviii) further testifying to the broad scope of the DIA protocol. 

Traces of adduct 149al were obtained when imine 146o was coupled with acid 147n 

(entry xxii) showing that even highly hindered imines can undergo DIA reaction 

partially.  

Synthetic applications of acyclic N-acyliminium ions are limited as they are much less 

stable than their cyclic analogues, particularly with respect to hydrolysis.
4,6 (a,b),26a 

DIA 

methodology overcomes this problem by forming and trapping the unstable 

N-acyliminium ions in situ. Thus, the acyclic imines 146p and 146q were successfully 

coupled with acids 147a, 147m and 147o to give adducts 149am–149ao in good to 

excellent yields (entry xxiii–xxv). Note also that although cyclic ketimines have so far 

proven to be incompatible with DIA, imine 146q which is itself a ketimine, furnished 

the N,O-acetal 149ao (entry xxv) in good yield under standard DIA reaction conditions 

at 120 °C.  

Finally, the high yielding DIA reaction of isoquinoline 146r with anthranilic acid 147n 

is important, given that it proceeds despite the loss of aromaticity (entry xxvi). Note that 

similar dearomatising reactions of isoquinoline 146r to prepare related scaffolds have 

been previously reported.
26h,56 

Unfortunately, the dearomatising DIA reaction appears 

not to be general as the analogous reaction of isoquinoline 146r with acids 147a, 147m 

and 147p (not shown in Table 5) failed to furnish any product. We also did not detect 

any desired products when other aromatic heterocycles containing C=N bonds 

(pyridine, DMAP, pyrimidine, pyrazine, oxazole, benzoxazole, thiazole, N-Boc 

imidazole and 1,3,5-triazine) were coupled with anthranilic acid 147n under DIA 

reaction conditions at 120 °C. 
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2.6 DIA Methodology Variation 

This project was focused on the DIA coupling between imines and aromatic acid 

derivatives and it demonstrated that DIA methodology is a reliable and versatile tool for 

the synthesis of a range of polycyclic heterocycles. However, studies within the group 

(conducted by Dr. Graeme Coulthard and Dr. Will Unsworth) showed that DIA is not 

limited to aromatic acids but is also compatible with aliphatic carboxylic acids with 

tethered nucleophiles.
57

  

For example, the silyl-protected acid 178 was coupled with imine 146a followed by 

aqueous work-up and subsequent silyl-group cleavage with SnCl2·2H2O to give product 

179 in 86% yield (Scheme 50). The silyl protecting group is required to prevent 

competing O-acylation of the hydroxy acid analogue of 178. Note that this was not a 

problem in the earlier studies due to the reduced nucleophilicity of ortho-substituted 

benzoic acids. A number of compounds have been synthesised using the above general 

procedure (Figure 4).  

N HO

O

TBDMSO
i) T3P, DIPEA
THF, rt, 20 h

ii) aq. work up
iii) SnCl2·2H2O

rt, 20 h

N

O

O

86%

Bn Bn Bn Bn

146a 178 179  

Scheme 50: DIA reaction between the silyl-protected acid 178 and imine 146a 
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Figure 4: Examples of DIA products synthesised from aliphatic acids containing a tethered 

oxygen nucleophile 

The analogous DIA process using amine-containing coupling partners was also 

successful. For instance, the imine 146a was coupled with N-Cbz-protected amino acid 

184a and N-Boc-protected amino acid 184b followed by an aqueous work-up and 

protecting group cleavage. This resulted in cyclisation and formation of the expected 
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products 185a and 185b in good yields (Scheme 51). A range of nitrogen-containing 

heterocycles have been synthesised following the same procedure as shown in Figure 5.  

N O

HO

NHR

i) T3P, DIPEA
CHCl3, 70 °C, 1h

ii) aq. work up
iii) For 184a: H2, Pd(OH)2,

MeOH, rt
For 184b: TFA, DCM, rt

N

H
N

O

H
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184a n = 1, R = Cbz
184b n = 2, R = Boc

185a 86% (from 184a)
185b 76% (from 184b)

Bn Bn

n
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Scheme 51: DIA reaction between the acids 184a and 184b and imine 146a 
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Figure 5: Examples of DIA products synthesised from aliphatic acids containing a tethered 

nitrogen nucleophile 

The sulfur variant of this DIA sequence was also efficient, affording sulfur-containing 

heterocycles in a one-pot procedure, in this case with no protecting group required on 

the thiol. For example, when the thio-acid 189 was coupled with imine 146j at rt in 

chloroform, thiazolidinone 190 was obtained in 97% yield (Scheme 52). Various other 

thiazolidinone scaffolds were synthesised in high yields following the same procedure 

(Figure 6). 

N
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97%
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Scheme 52: DIA reaction between the thio acid 189 and imine 146j 
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Figure 6: Examples of DIA products synthesised from aliphatic acids containing a tethered thiol 

It was also demonstrated that carbon nucleophiles tethered on an aliphatic acid are well 

tolerated. In these reactions the addition of Lewis acids to the crude reaction mixture 

promoted cyclisation after coupling. A representative example is shown in Scheme 53; 

diester 196 was coupled with imine 146e under T3P coupling conditions and then 

cyclised upon the addition of AlCl3 to give product 197 in good yield. Note that the 

cyclisation step could also be promoted by using other Lewis acids like BF3·Et2O or by 

using protic acids such as trifluoroacetic acid depending on the particular substrate. 

Many different heterocycles have been synthesised using the above procedure as shown 

in Figure 7. 

N
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Scheme 53: DIA reaction between the diester 196 and imine 146e 
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Figure 7: Examples of DIA products synthesised from aliphatic acids containing a tethered 

carbon nucleophile 

The use of Lewis acids to promote the cyclisation step augured well for a similar 

optimisation of some DIA reactions on this project, especially for the lower yielding 

ones. Keen to investigate this, in this research we tested the DIA reaction of 

dihydroisoquinoline 146e with dimethoxy-naphthoic acid 147q under our standard DIA 

conditions (T3P, DIPEA, 90 °C, 20 h), but the reaction failed, giving back the starting 

materials. Pleasingly, the addition of BF3·Et2O directly into the reaction mixture, after 

20 minutes of stirring at rt, generated adduct 149q in excellent yield (Scheme 54). The 

above optimisation proved to be very useful in research focused on the synthesis of the 

berberine natural products, cavidine 280 and pallimamine 283 (Chapter 4).   

146e 149q
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rt, 20 min
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Scheme 54: DIA reaction of imine 146e with acid 147q with the aid of BF3·Et2O 
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2.7 Synthesis of Evodiamine 205 

The value of DIA has been illustrated by the rapid and efficient synthesis of evodiamine 

205, a natural product isolated from Evodia fructus.
58

Evodiamine 205 is a known 

thermogenic and stimulant and is included in a number of dietary supplements, mainly 

to promote weight-loss. Recently, it has been shown that evodiamine 205 is a novel 

inhibitor of human DNA topoisomerase I.
58b

 Also, SAR studies have recently shown 

that evodiamine analogues are highly promising anti-tumour candidates.
59

 As to its 

biosynthesis, Yamasaki et al. proposed a biosynthetic pathway starting from tryptophan 

and anthranilic acid.
60

  

Evodiamine 205, which has most commonly been synthesised from dihydrocarboline 

146j and N-methylisatoic anhydride in 70–84% yield,
58b, 61

 was obtained extremely 

efficiently using our standard DIA reaction conditions (T3P, DIPEA, toluene, 90 °C, 20 

h) (Scheme 55). The readily available dihydrocarboline 146j coupled with the 

N-methyl-anthranilic acid 147n, in an one-pot process, to generate evodiamine 205 as a 

crystalline solid. All the spectral data were in full accord with those previously 

reported.
61
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Scheme 55: The total synthesis of evodiamine 205 
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2.8 Mechanistic Studies-ReactIR 

Two mechanistic pathways were envisaged for the DIA reaction process: a) an 

intermolecular N-acylation takes place first and is followed by an intramolecular 

cyclisation (Mechanism A) or b) an intermolecular nucleophilic attack of the 

ortho-substituent on to the imine takes place first followed by an intramolecular 

acylation (Mechanism B) (Scheme 56). An added complication is that imino-ketenes 

206 have been proposed for the acylation step in related anthranilic acid processes.
26k, 

27b,c
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Scheme 56: The two possible mechanistic pathways 

It is important to note that these two contrasting mechanistic pathways may operate in 

competition and that the exact mechanism that occurs each time may depend on the 

particular substrate that is involved in the process. For example, the small amount 

(20%) of the adduct 149m (Table 4, entry i) that was obtained in the absence of T3P, 

suggests that an intermolecular nucleophilic attack on to the imine may take place first 

in the S-series (Mechanism B) as the intermolecular condensation of an imine with an 

unactivated carboxylic acid appears extremely unlikely. The lack of such reactivity in 

each of the O-, N- and C-series offers some support in favor of the theory that the initial 

step in those cases involves N-acylation of the imine (Mechanism A). 

Further support for the mechanism A is provided by the fact that those salicyclic acid 

derivatives which were substituted with electron-deficient groups (Table 3, entries ii–iv) 
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tended to be more efficient performing the DIA reaction compared to those which were 

neutral (Table 3, entry i) or substituted with electron-donating groups (Table 3, entries 

v–viii). Therefore we reasoned that for those substrates which were electron-deficient, 

the electrophilicity of the analogous activated acid was increased and thus the rate of the 

imine acylation was accelerated resulting in higher yields. Conversely, if a 

condensation-type mechanism operated (Mechanism B), the addition of an 

electron-donating group would increase the nucleophilicity of the ortho-nucleophile and 

thus it would accelerate the rate of the intermolecular nucleophilic attack of the imine 

resulting in the opposite trend from the one observed.  

To test the above theory in a more direct way, we performed a competition experiment 

in the O-series; imine 146a was reacted with one equivalent of acids 147c and 147f, in 

one-pot, under our standard DIA conditions (T3P, DIPEA, toluene, 90 °C, 20 h). The 

electron-deficient salicylic acid 147c reacted preferentially thus supporting the 

DIA-type mechanism (Mechanism A); 5-NO2 substituted product 149c was formed 

remarkably cleanly with only traces of 5-OMe substituted 149f observed in the 
1
H NMR 

spectrum of the crude material (Scheme 57).  

N

T3P, DIPEA

toluene
20 h, 90 C
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149f R = OMe
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isolated yield 149c = 90%

146a

Bn Bn

R R

Bn Bn

147c R = NO2, 1 equiv.
147f R = OMe, 1 equiv.

 

Scheme 57: The competition experiment in the O-series 

The importance of DIPEA in the process was then examined (Scheme 58). Imine 146a 

reacted with acid 147c in toluene using T3P and DIPEA to give product 149c in 95% 

yield (Scheme 58, entry a). The acid 147c was chosen as this substrate is particularly 

reactive (Table 3, entry iii); the reaction proceeded efficiently at 50 °C in one hour, 

suggesting that reaction times and temperatures of other DIA variants could be reduced 

similarly. Note that a lower temperature was needed to be compatible with the sensitive 

ReactIR probe for the ReactIR studies that would follow. We then tested the same 

reaction with sodium carboxylate 147r and T3P (Scheme 58, entry b). This reaction 

gave back the imine 146a indicating that the role of DIPEA is more complicated than 

that of a simple base to deprotonate the acid prior to its activation. In addition, the 
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coupling of imine 146a and acid chloride 147s (Scheme 58, entry c) proceeded 

successfully (albeit in lower yield) and that indicated that DIPEA is not essential in the 

cyclisation step since it was shown to proceed without the need of a base (Scheme 58c). 

Hence, it appeared that DIPEA might be somehow involved in the N-acylation step. 

a) 95%
b) 0%
c) 69%

N N

O

O
146a

Bn Bn

NO2

Bn Bn

a) 147c (X = OH), T3P, DIPEA
b) 147r (X = ONa), T3P
c) 147s (X = Cl)

HO

O

X
NO2

147c,r,c

toluene, 50 °C, 1 h

149c

 

Scheme 58: Examination of the exact role of DIPEA in DIA process 

With the role of DIPEA still unclear, an in situ ReactIR study was carried out (this study 

was carried out together with Dr. Will Unsworth) to examine the nature of the activated 

carboxylic acid. For this purpose, T3P was added to a solution of acid 147c and DIPEA 

in toluene at 50 °C with in situ ReactIR monitoring (Scheme 59, eqn a). A rapid 

formation of a new carbonyl peak was observed within one minute (υc=o 1784 cm
-1

) 

indicating that the conversion of acid 147c to its activated form was complete within 

this time. The acid chloride analog 147s was then reacted with DIPEA in the absence of 

T3P under the same reaction conditions in a second ReactIR experiment (Scheme 59, 

eqn b). This is also led to a rapid formation of a new carbonyl peak, within one minute, 

however at a lower wavenumber (υc=o 1761 cm
-1

). This peak most likely represents the 

carbonyl stretch of N-acyl ammonium salt 208 and the fact that this stretch is not 

observed in the first ReactIR experiment indicates that DIPEA does not act as 

nucleophilic catalyst under these conditions and that the triphosphate 207 is the active 

acylating agent in the DIA reaction. Interestingly, no peaks were observed in the region 

of υc=o 2100-2200 cm
-1

, where ketene carbonyls 209 usually appear,
62 

seemingly ruling 

out ketene intermediates. 
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Scheme 59: An in situ ReactIR study was carried out to examine the nature of the activated 

carboxylic acid 

To shed more light on the mechanism of the DIA reaction, another in situ ReactIR 

experiment was carried out on the DIA reaction of acid 147c and imine 146a. The 

results of this are shown in Figures 8 and 9. It should be noted that due to severe 

overlapping of the signals with wavenumbers below 1650 cm
-1

 it was not possible to 

confidently derive any information from this region of the spectra, meaning that the 

fates of both the starting imine and acid could not be monitored (Figure 8). Within one 

minute of adding T3P to a 50 
o
C solution of imine 146a, acid 147c and DIPEA in 

toluene, three new peaks were observed and monitored. An intense peak (peak 2 = 1668 

cm
-1

) appeared quickly together with a much less intense peak (peak 1 = 1786 cm
-1

). 

The intensity of peak 2 quickly began to decrease (see Figure 9) and was accompanied 

by the formation of a third peak (peak 3 = 1684 cm
-1

). Note that the absorption for peak 

2 does not appear to reach zero due to peak overlap between itself and peak 3. Peak 3 is 

known to represent the carbonyl stretch of the product 149c, since a purified sample of 

product 149c was tested under the same ReactIR conditions (50 
o
C, toluene) and 

displayed the same peak at 1684 cm
-1

. Peak 3 continued to increase in intensity reaching 

a maximum after one hour. Meanwhile, peak 1 maintained a steady low concentration 

before dropping away over one hour near completion of the reaction.  
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Figure 8: 3D ReactIR plot of atomic absorption against wavenumber and time (same time 

period to that shown in Figure 9 (ca. 70 min) 

 

Figure 9: 2D ReactIR plot of atomic absorption units of the wavenumbers 1668 cm
-1

 (yellow), 

1684 cm
-1

 (blue) and 1786 cm
-1

 (pink) against time. 

These observations suggest that an intermediate (peak 2) was formed rapidly, and 

slowly collapses via a short-lived reactive intermediate (peak 1), before reacting to give 

the product (peak 3). This is consistent with a mechanism where activation of 
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carboxylic acid 147c to 207 takes place rapidly, but this intermediate is trapped as 

quickly as it is forms by imine 146a generating the short-lived N-acyliminium ion 210a 

(peak 1) (Scheme 60). N-Acyliminium ions are rarely isolable and, as such, there is no 

precedent for the measurement of the IR carbonyl stretches of any compounds directly 

comparable to 210a. The IR stretches of the few N-acyliminium ions that have been 

measured appear in the range 1725–1810 cm
-1

.
5
 Therefore, the low intensity peak 1 

(1786 cm
-1

) is reasonable for the N-acyliminium ion. This reactive intermediate is then 

primed to undergo intramolecular cyclisation to generate the final product 149c. 

However, this simple mechanism does not account for the presence of peak 2 or explain 

why the measured absorption of peak 1 is so low, considering that the product formation 

required a full hour to reach completion. It is therefore more likely that prior to 

cyclisation the N-acyliminium ion 210a is trapped by excess DIPEA in the reaction 

mixture, generating the ammonium salt 210b. Note that the wavenumber of the IR 

absorption of the peak representing intermediate 210b (peak 2 = 1668 cm
-1

) is not 

consistent with that of an N-acyliminium ion carbonyl stretch, which normally appears 

at higher wavenumbers, however is reasonable for an amide carbonyl stretch. Limited 

examples of ammonium adducts of N-acyliminium ions similar to salt 210b have been 

found in the literature and have similar IR data.
63 

Finally, it is likely that the formation 

of the intermediate 210b is reversible, meaning that the extrusion of DIPEA can take 

place to regenerate the N-acyliminium ion 210a which only exists in low concentration 

as it quickly cyclises to form the DIA product 149c (peak 3 = 1684 cm
-1

). The 

mechanism proposed is consistent with the persistent weak absorption of peak 1, the 

relatively long reaction time and the observation of peak 2 (Scheme 60).  
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Scheme 60: Proposed mechanism for the DIA reaction of imine 146a and acid 147c 
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A final ReactIR experiment was performed to provide an additional support for the 

above mechanism (Scheme 61). Imine 146a reacted with o-anisic acid derivative 147t, 

in place of salicyclic acid 147c, under the same conditions used for the rest of the 

ReactIR experiments (50 
o
C, toluene). This experiment was performed in expectation 

that product 211 (an intermediate similar to 210b) would form, but in this case persist 

given that the cyclisation pathway had been negated. Within one minute after the T3P 

was added, the coupling was complete and a new IR peak at 1665 cm
-1

, which is similar 

to that of intermediate 210b (1668 cm
-1

), was formed. No absorptions above 1700 cm
-1

 

were observed which ruled out the possibility of the coupled product existing as a 

discrete N-acyliminium ion. Thus, the carbonyl stretch of intermediate 211 most likely 

accounts for this peak and its rapid formation is in line with that observed for the 

formation of its phenol analog 210b. 
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Scheme 61: The formation of DIPEA adduct 211 
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2.9 Summary 

In summary, a reliable and versatile methodology has been developed based on the 

concept of ‘Direct Imine Acylation’ (DIA). This methodology uses readily available 

nontoxic reagents, is operationally simple, is high yielding and capable of generating a 

broad range of polycyclic heterocyclic scaffolds without significant optimisation. A 

detailed substrate scoping study of the DIA reaction using a range of imines and 

ortho-substituted benzoic acids has been completed. The versatility of this method has 

been shown by its compatibility with Lewis acid additives which could be added 

straight into the reaction mixture when the cyclisation step is slow. A rapid and efficient 

synthesis of the biologically important natural product evodiamine 205, is also 

described. Finally, an in situ ReactIR study was carried out to study the DIA reaction 

mechanism which seems to involve an equilibrium between the N-acyliminium ion and 

an ammonium salt generated by the addition of DIPEA to the N-acyliminium ion.  

The work described in this Chapter is included in three recent publications (Appendix II 

(A, B and C)).
57,64,65 
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3.1 Chapter 3   Total Synthesis of (±)-Dievodiamine 212 

3.1 Introduction to the Natural Product (±)-Dievodiamine 212 

 (+)-Dievodiamine 212 was recently isolated (2010) from Evodia fructus together with 

the alkaloid evodiagine 213 (Figure 10).
66

 Evodia fructus or Evodia fruits (Wu Zhu Yu) 

refers to the nearly ripe, dried fruit of the plant Evodia rutaecarpa (Rutaceae) that is 

native to China and Korea. It is classified, along with cinnamon bark, dry ginger, chilli 

peppers and others, as being a herb with a ‘hot nature’ which causes a ‘warming 

feeling’.  
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Figure 10: Two new indole alkaloids, (+)-dievodiamine 212 and evodiagenine 213  

None of dievodiamine’s biological properties have been reported to date, although the 

Evodia fruit is among the most popular herbal drugs in traditional Chinese medicine. 

Evodia fruit is used to treat various conditions such as gastrointestinal disorders 

(diarrhoea, dysentery, abdominal pain), nausea, migraine, menstrual pain, mouth ulcers, 

chill limbs, postpartum haemorrhage and obesity.
66, 67  

The anti-inflammatory, 

anti-nociceptic and anti-cancer activities of Evodia rutaecarpa extracts have also been 

examined.
68

  

(+)-Dievodiamine 212 was obtained as white crystals ([α]D
24

 +48.86 (c 0.1, CHCl3)) and 

its structure was elucidated by comprehensive spectroscopic analysis.
66

 Its structure is 

closely related to evodiamine 205, whose synthesis using DIA methodology was 

described in Chapter 2 (Scheme 55). Note, however, that although dievodiamine 

contains the basic framework of two evodiamine subunits (red and black), it is not a 

simple dimer of evodiamine, as its name may suggest. It does seem plausible though 

that evodiamine 205 is a possible biosynthetic precursor (Scheme 62). 
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Scheme 62: Evodiamine 205 and dievodiamine 212  

(+)-Dievodiamine 212 belongs to a class of natural products known as bisindole 

alkaloids which have been extensively investigated for their interesting biology.
69

 The 

isolation, synthesis and biological evaluation of bisindole alkaloids is an active area of 

research
70

 with their anti-malarial properties receiving prominent attention 

recently.
70c,d,e 

Despite this promise of potent biological activity, no synthesis of 

(+)-dievodiamine 212 has been reported to date. 
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3.2 Linear Route to (±)-Dievodiamine 212 

A route to (±)-dievodiamine 212 based on a late stage DIA reaction between imine 216 

and N-methylanthranilic acid 147n was investigated. It was envisioned that imine 216 

could be delivered via coupling of the intermediate 214 with tryptamine 215 followed 

by Bischler-Napieralski dehydration.  The initial retrosynthetic plan is shown in Scheme 

63.  
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Scheme 63: Linear route to (±)-dievodiamine 212 

It was envisaged that the key intermediate 214 could be synthesised from indole 221 

after functionalization at its C-3 position. The known aniline 218 was prepared from 

N-methylisatoic anhydride 217 via treatment with 33% aq. NH3 (Scheme 64, eqn a).
71

 

The novel indole 221 was then synthesised from the commercially available 

indole-2-carboxylic acid 219 and aniline 218 (Scheme 64, eqn b). The acid 219 was 

treated with oxalyl chloride and aniline 218 to give the novel amide 220 based on a 

literature procedure.
72

 When amide 220 was heated at reflux in aq. KOH,
73

 it afforded 

an insoluble material which was then collected by filtration and was shown to be the 

novel quinazolinone 221 in excellent yield after the 3-steps sequence. 
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Scheme 64: a) The synthesis of aniline 218 from N-methylisatoic anhydride 217, b) The 

synthesis of indole 221 

With indole 221 in hand, a number of conditions to functionalise its C-3 position were 

tested. A recently reported literature procedure for the regioselective synthesis of 

3-indolylacrylic acid 223a and 3-indolylacrylates 223b and 223c using a catalyst system 

of FeCl3/AgOTf was examined (Scheme 65).
74

 Unfortunately, the more complex indole 

system 221 didn’t react under these conditions, and was recovered cleanly after 24 h 

(Scheme 66). 
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Scheme 65: Reported regioselective synthesis of 3-indolylacrylic acid 223a and 

3-indolylacrylates 223b and 223c 
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Scheme 66: Attempted synthesis of intermediate 214 from indole 221 under the catalytic system 

of FeCl3/AgOTf 
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A Vilsmeier reaction
75

 on indole 221 was attempted with a view to forming the 

aldehyde 224, before performing a Wittig olefination to give intermediate 214 (Scheme 

67). Unfortunately, the starting material 221 was recovered cleanly after it was treated 

with POCl3 in DMF (Table 6, entries i, ii). Only traces of product 224 were observed in 

the 
1
H-NMR spectrum of the crude mixture when a stoichiometric amount of DMF was 

used and the solvent switched to DCE (Table 6, entry iii) and decomposition was 

observed when N-methylformanilide was used in the place of DMF (Table 6, entry iv).  

214
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N
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Scheme 67: Attempted synthesis of intermediate 214 via aldehyde 224 

Table 6: Attempted Vilsmeier reaction of indole 221 

[a]
 Reactions were performed on a 0.4–0.8 mmol scale using indole 221 (1 equiv.) and POCl3 

(1.5 equiv.). 
[b]

 1.6 Equiv. of DMF or HCON(CH3)C6H5 were used. 

The reason for the unsuccessful functionalisation at the C-3 position of indole 221 is 

considered to be a combination of both steric hindrance and electronic effects caused by 

the quinazolinone species attached at the C-2 position of the indole. Thus, it was 

decided to change the order of events to perform the functionalisation of the C-3 

position of the indole at an earlier stage (Scheme 68). The formylation of commercially 

available ethyl indole-2-carboxylate 225 gave aldehyde 226 in quantitative yield based 

on a literature procedure.
75a,76

 The Wittig reaction of aldehyde 226 followed by basic 

hydrolysis gave the novel compound 228. The quinazolinone moiety present on C-2 of 

compound 214a was established following the same reaction sequence we used to make 

intermediate 221, via coupling of the acyl chloride derivative of acid 228 with aniline 

N
H N

N
O

H3C

221

POCl3
DMF or

HCON(CH3)C6H5

solvent
224

N
H N

N
O

H3C

CHO

 
Entry

[a]
 Solvent Reagent Temp./Time Outcome 

i DMF POCl3 0 °C/30 min Recovery of SM  

ii DMF POCl3 80 °C/6 h Recovery of SM  

iii
[b]

 DCE DMF/POCl3 80 °C/6 h Traces of 224 

iv
[b]

 DCE HCON(CH3)C6H5/POCl3 80 °C/18 h Decomposition 
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218 followed by treatment with aq. KOH. The tert-butyl ester 230 was then hydrolysed 

in formic acid to give novel acid 214a.  
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Scheme 68: The synthesis of the key intermediate 214a 

Having acid 214a in hand, its conversion into the key intermediate 216 via amide 

coupling, followed by a Bischler-Napieralski reaction was examined next (Scheme 69). 

Pleasingly, when acid 214a was treated with tryptamine 215, T3P and DIPEA in 

chloroform, this generated intermediate 231 in good yield.
77

 However, the 

Bischler-Napieralski reaction of intermediate 231 gave only traces of imine 216.
77

 The 

poor yield of the Bischler-Napieralski reaction, which was also not reproducible, was 

proposed to be in part due to the poor solubility of compound 231.  

The final DIA coupling was now attempted using the small amount of compound 216 

available (Scheme 69), but the poor solubility of the bisindole material 216 was again 

problematic;
77

 different solvents for the DIA coupling such as toluene, DMF, pyridine 

were examined, but none led to a successful result. Higher temperatures than the 

standard 90 °C did not prove to be beneficial either, giving back the imine 216. 

Although, the coupling of anhydrides with imines is known in the literature
27

 the 
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treatment of imine 216 with N-methylisatoic anhydride 217 also resulted in the recovery 

of imine 216. These observations are in line with the previous results in Chapter 2 

where ketimines have been proven to be mostly incompatible with the DIA protocol. 
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Scheme 69: Attempted linear generation route to synthesise (±)-dievodiamine 212 

3.3 Convergent Route to (±)-Dievodiamine 212 

3.3.1 Convergent Retrosynthetic Strategy  

Although we were only one step away from the synthesis of (±)-dievodiamine 212 

following the linear route described above, the problems related with the poor solubility 

of imine 216, as well as the low reactivity of ketimines in DIA reactions, were deemed 

to be too difficult to overcome. Therefore, we decided to consider alternative routes, not 

utilizing a DIA reaction. The unusual, although not unique,
70b

 structural figure of 

dievodiamine 212 is its ethylene bridge linking the two indole-containing portions. This 

is convenient from a synthetic point of view as it potentially facilitates a convergent 

synthesis of dievodiamine 212 via the cross coupling of two evodiamine-like fragments.  

Therefore, we embarked on a convergent retrosynthetic strategy involving a final stage 

Stille coupling between the two indole-containing fragments 235 and 236 (Scheme 70). 

It was thought that the requisite stannane 235 could be obtained via the nucleophilic 

addition of a metallated alkyne into dehydroevodiamine hydrochloride (DHED·HCl) 
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233 followed by hydrostannylation. Note that dehydroevodiamine (DHED) itself is a 

bioactive constituent of Evodia rutaecarpa which possess an interesting biological 

profile.
67,78

 It was envisioned that the 3-iodo-indole fragment 236 could be synthesised 

from the readily available quinazolinone 221 via iodination.  
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Scheme 70: A convergent retrosynthetic strategy to form (±)-dievodiamine 212 
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3.4 The Synthesis of the two Indole-Containing Fragments 235 and 236 

3.4.1 The Synthesis of the Stannane Coupling Partner 235 

We first tested if the key DHED·HCl salt 233 could be obtained directly via the 

oxidation of evodiamine 205 (Scheme 71). Evodiamine 205 was synthesised via the 

DIA coupling between readily available imine 146j and N-methylanthranilic acid 147n, 

as described in Chapter 2, and was reacted with MnO2 in different solvents. However, 

no oxidation was observed and complex mixtures of products were obtained. 
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Scheme 71: Attempted oxidation of evodiamine 205 to the dehydroevodiamine salt 

(DHED·HCl) 155 

DHED·HCl salt 233 was instead synthesised from the known lactam 239 using a 

procedure modified from that published by Pachter et al. (Scheme 72).
79

 Lactam 239 

was synthesised from indole-3-propionic acid 237 via a modified Curtius rearrangement 

and subsequent intramolecular Friedel-Crafts acylation of the resulting isocyanate 

intermediate 238 following a literature procedure.
80

 It was then heated with the 

commercially available dimethyl anthranilate 240 and POCl3 in toluene to afford the 

DHED·HCl salt 233 in excellent yield. Note that a simple work-up was developed 

which involved pouring the crude reaction mixture into cold water (0 °C) and filtering 

the resulting yellow precipitate. The 
13

C-NMR chemical shift of C-1 of DHED·HCl salt 

233 at low field (150.0 ppm) is characteristic.
81
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Scheme 72: The synthesis of dehydroevodiamine salt (DHED·HCl) 233 

It was then planned to trap the DHED·HCl salt 233 with an organometallic species. To 

the best of our knowledge, prior to this work, very little was known about the reactivity 

of DHED systems apart from limited examples of the reduction and hydrolysis of 

DHED adducts.
59,78

 Attempts to trap the DHED·HCl salt 233 using 

((trimethylsilyl)ethynyl) lithium (1.1 equiv.) in THF were made (Scheme 73). 

Unfortunately, only trace amounts of the alkyne 241 was isolated and the bulk of 

starting material recovered from the crude mixture by filtration. However, when an 

excess (3 equiv.) of ((trimethylsilyl)ethynyl)lithium was used, nucleophilic attack took 

place successfully, affording the alkyne 241 cleanly, suggesting that one equivalent of 

the organolithium species deprotonates the indole (or quenches the HCl) before the 

nucleophilic addition takes place. Note that the progress of this reaction can be 

monitored visually as the suspension of DHED·HCl salt 233 in THF becomes 

homogeneous upon completion of the reaction. Treatment of the intermediate alkyne 

241 with TBAF gave the novel alkyne 242 in 90% yield over the two step sequence. 

Note that this is the first report of a C-C bond formation at the electrophilic C-1 position 

of a DHED system. 
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Scheme 73: The synthesis of alkyne 242 with ((trimethylsilyl)ethynyl)lithium 
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Efforts were made into shortening the route by using other organometallic reagents 

(Scheme 74). First, treatment of the salt 233 with bis(tributylstannyl)ethene to give 

organostannane 235 in one step was studied (Scheme 74, path a). However, this reaction 

was unsuccessful, affording a complex mixture of products. Disappointingly, the salt 

233 also did not react as planned when treated with an excess of the commercially 

available lithium acetylide ethylenediamine complex (Scheme 74, path b) and instead 

hydrolysis to the known alkaloid rhetsinine 244
79, 82

 occurred after the work-up.
77 

Rhetsinine 244 was also observed in the 
1
H-NMR spectrum of the crude mixture when 

salt 233 was treated with an excess of lithiated tributyl(ethynyl)stannane (Scheme 74, 

path c) and there was no evidence for the formation of the desired compound 243.  
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Scheme 74: Attempts to achieve functionalisation of  DHED·HCl 233 at C-1 
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Attempts to trap the DHED·HCl salt 233 with the commercially available 

ethynylmagnesium chloride in THF were then made (Scheme 75). The initial results 

were disappointing giving only traces of the alkyne 242 while the bulk of the starting 

material remained insoluble in THF and hydrolysed to rhetsinine 244 after the work-up. 

Pleasingly, when the solvent was switched to toluene and lithium chloride
83

 was 

included as an additive, alkyne 242 was isolated in 74% yield. Note that although this 

route does not employ a protecting group and thus is shorter, the yield is lower than the 

original TMS-acetylene route (see Scheme 73, 90% over the two steps).  
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Scheme 75: The synthesis of alkyne 242 with ethynylmagnesium chloride 

Next, the novel stannane coupling partner 235 was synthesised via the radical 

hydrostannylation of alkyne 242 with tributyltin hydride and AIBN in refluxing benzene 

(Scheme 76). We were pleased to find that stannane 235 was isolated as a single regio- 

and stereoisomer (J = 18.9 Hz).  
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Scheme 76: The synthesis of stannane 235 

Scheme 77 shows the complete synthesis of stannane coupling partner 235 from indole 

acid 237. Note that column chromatography was only used in the final step from lactam 

239 and therefore the route was easy to scale-up. 
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Scheme 77: The complete synthesis of stannane coupling partner 235 from indole acid 237 

3.4.2 The Synthesis of the Iodide Coupling Partner 236 

The synthesis of the novel 3-iodo-indole fragment 236 was achieved extremely 

efficiently by the reaction of the previously synthesised quinazolinone 221 with 

N-iodosuccinimide in acetone, based on a literature procedure (Scheme 78).
84

 It is 

noteworthy that column chromatography was performed only at the final step of the 

4-step synthesis, from indole-acid 219, which again was advantageous during scale-up.  

219
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Scheme 78: The synthesis of iodide coupling partner 236 from indole-acid 219 

Having in hand the two coupling partners 235 and 236, we moved on to establish the 

conditions for the final Stille coupling. Commercially available vinyl tributylstannane 

246 was used in the place of stannane 235 as a test system (Table 7).  
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Table 7: Optimisation of Stille reaction of indole 236 and stannane 246 

[a]
 Reactions were performed on a 0.4–0.5 mmol scale using iodide 236 or 245 (1 equiv.), 

stannane 246 (1.5 equiv.), Pd catalyst [A = Pd(PPh3)4, B = PdCl2(PPh3)2] (0.05 equiv) in DMF 

with the additives and conditions shown unless stated. 
[b]

 Isolated yield following 

chromatography.  
[c]

 Reaction performed in THF. 
[d]

 Reaction performed with 0.2 equiv. of Pd 

catalyst B. 

Heating iodide 236 at reflux with stannane 246 and Pd(PPh3)4 in THF gave no reaction 

(Table 7, entry i). Baldwin’s conditions,
85

 which exploit the synergistic effect of CuI 

and CsF, were also ineffective on this system, affording no product at 45 °C (entry ii) 

and resulted in the partial reduction of iodide 236 at 80 °C (entry iii) and eventually its 

decomposition at higher temperatures (entry iv). It was then tested if the addition of 

Et4NCl salt, which is more commonly used in Heck reactions
86

 but has also found 

limited use in Stille reactions,
87

 could be effective. However, no reaction was observed 

under the conditions trialled (Pd(PPh3)2Cl2, Et4NCl at 80 °C in DMF, entry v). At that 

point, it was decided to test the Stille reaction on the tosylated protected iodide 245 to 

investigate if the nitrogen lone pair on the indole moiety is responsible for the 

unsuccessful results. The tosylated protected iodide 245 was synthesised from iodide 

236 in high yield as shown in Scheme 79 and subjected to the same reaction conditions 

as those in entry v.  

 

236 R = H
245 R = Ts

N
R N
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H3C

I
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246Bu3Sn

N
R N

N
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Entry

[a]
 Iodide Pd cat. Additives 

(equiv.) 

Temp.(°C)/ 

Time(h) 

Outcome 

(Yield)
[b]

 

i
[c]

 236 A  none 70/20 No reaction 

ii 236 A  CsF (2), CuI (0.1) 45/1 No reaction 

iii 236 A  CsF (2), CuI (0.1) 80/1 3:2, 236:221  

iv 236 A  CsF (2), CuI (0.1) 100/1 Decomp. 

v 236 B  Et4NCl (1.0) 80/20 No reaction 

vi 245 B Et4NCl (1.0) 80/20 248, 41%  

vii 236 B  Et4NCl (1.0), CuI (0.1) 80/20 247, 10% 

viii 236 B  Et4NCl (1.0), CuI (1.5) 80/2 247, 82% 

ix
[d]

 236 B Et4NCl (2.0), CuI (1.5) 80/2 247, 28% 
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Scheme 79: Synthesis of the tosylated iodide 245 

Pleasingly, the novel product 248 was formed in 41% yield (entry vi) suggesting that 

protection of the indole moiety would be beneficial. Although this result was 

encouraging, an additional protection step entered in the reaction sequence which 

wasn’t appealing and so we decided to put some more effort on the coupling of the 

unprotected iodide 236 before we focus wholly on the coupling of the protected iodide 

245. Copper salts are known to accelerate Stille reactions by promoting an initial 

transmetallation of the organostannane to generate a more reactive organocopper 

intermediate.
88

 Pleasingly, the combination of CuI and Et4NCl with Pd(PPh3)2Cl2 in 

DMF at 80 °C gave the novel product 247, albeit in low yield (entry vii). The yield was 

increased dramatically by using an excess of CuI under otherwise identical conditions 

(82%, entry viii) but decreased significantly when a larger excess of the catalyst and 

Et4NCl were used (entry ix). 

With the above results in mind, we embarked on the coupling of the stannane 235 with 

the iodide 236 to complete the total synthesis of (±)-dievodiamine 212 (Table 8). 

Pleasingly, when the reaction conditions developed above were applied on the real 

system (Table 8, entry i), (±)-dievodiamine 212 was obtained in 35% yield, but with a 

20 h reaction time, showing that the coupling of  iodide 236 with stannane 235 is 

significantly slower than the analogous test reaction with stannane 246. Pleasingly, 

increasing the amounts of the catalyst to 0.2 equivalents and Et4NCl  to 2 equivalents 

led to a reduced reaction time (2 h) and a cleaner reaction mixture to give dievodiamine 

212 in a much improved yield (65%), following column chromatography and 

recrystallization (entry ii). A lower yield (22%) was obtained when Et4NCl was omitted 

(entry iii) and no product was isolated in the absence of CuI (entry iv), thus confirming 

the importance of both additives. Only traces of product were obtained when catalytic 

amount of CuI was used (entry v) or when the temperature was decreased (entry vi) or 

increased (entry vii). Finally, the use of Pd(PPh3)2Br(NBS)
89  

as a catalyst let to 

decomposition (entry viii). 
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Table 8: Optimisation of Stille reaction of indole 236 and stannane 235 

[a]
 Reactions were performed on a 0.1–0.2 mmol scale using iodide 236 (1 equiv.), stannane 235 

(1.5 equiv.), Pd catalyst [B = PdCl2(PPh3)2, C = Pd(PPh3)2Br(NBS)] (0.2 equiv) with the 

additives and conditions in DMF shown unless stated. 
[b]

 Isolated yield following 

chromatography. 
[c]

 Reaction performed with 0.05 equiv. of Pd catalyst B.
 [d]

 Reaction 

performed with 0.1 equiv. of Pd catalyst B. 

 

The first total synthesis of the (±)-dievodiamine 212 has therefore been completed. The 

two advanced intermediates 235 and 236 were each synthesised in four steps, in 33% 

and 77% yield respectively. The final Stille coupling gave the natural product in 65% 

yield completing the total synthesis of (±)-dievodiamine 212 in 26% over the longest 

linear sequence (5 steps).  A considerable amount of (±)-dievodiamine 212 (~200 mg in 

total) has been synthesised and is available for biological testing. The spectral properties 

of the racemic synthetic material closely matched those reported for the natural product 

(Appendix I (A and B)), thus confirming its assigned structure.
66

 The mp of the material 

was found to be 229–233 °C (no literature mp was reported
66

 in the isolation paper). We 

predict that asymmetric induction may be possible via the organometallic addition of 

lithium acetylides to DHED·HCl salt 233 in the presence of a chiral catalyst based on 

literature precedent for such additions into carbonyl groups and imines.
90

 

 

 

 

 

Pd cat., additive(s), DMF

()-dievodiamine 212

236

N
H

I

N

N
O

H3C

stannane 235

 
Entry

[a]
 Cat. Additives 

(equiv.) 

Temp.(°C)/ 

Time(h) 

Outcome 

(Yield)
[b]

 

i
[c]

 B  Et4NCl (1.0), CuI (1.5) 80/20 212, 35% 

ii B  Et4NCl (2.0), CuI (1.5) 80/2 212, 65% 

iii B  CuI (1.5) 80/2 212, 22% 

iv
[d]

 B  Et4NCl (1.0) 80/1 No reaction 

v B  Et4NCl (2.0), CuI (0.4) 80/2 Traces 

vi B  Et4NCl (2.0), CuI (1.5) 50/2 Traces 

vii B  Et4NCl (2.0), CuI (1.5) 100/2 Traces 

viii C  Et4NCl (2.0), CuI (1.5) 50/2 Decomp. 
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3.5 Attempted Biomimetic Synthesis of the Evodiamine Derived 

Subunit of (±)-Dievodiamine 212 

Having developed a viable route to dievodiamine 212 we set out to investigate a 

potential biomimetic strategy leading to the natural product based on the fact that its 

framework contains two evodiamine subunits (red and black) (Scheme 80). It was 

considered that the bottom fragment of dievodiamine 212 (black) may be derived from 

an evodiamine unit (red) following oxidation and ring opening as shown in Scheme 80. 

The rearrangement shown below (250 to 212) may proceed via a 6π-azaelectrocyclic 

ring-opening; a similar process, in which a 6π-azaelectocyclic ring-closure is used to 

form a C-N bond intramolecularly, has been reported recently.
91
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Scheme 80: The bottom fragment of dievodiamine 212 (black) is an evodiamine unit (red) 

following oxidation and ring-opening 

The studies were started by the formation of the DHED adduct 255 which is a simple 

model system of intermediate 249 (Scheme 81). D,L-Tryptophan 251 was treated with 

thionyl chloride in methanol to give tryptophan methyl ester 252. The ester 252 was 

then cyclised to lactam 254 via the isocyanate 253 following a literature procedure;
92

 

the indole 252 was treated with 2.4 equivalents of Boc-anhydride and 1 equivalent of 

DMAP for 10 minutes before it was subjected to excess of trifluoroacetic acid to cleave 

the N-Boc protecting group and give lactam 254. Lactam 254 was then heated at reflux 

with dimethyl anthranilate 240 in neat POCl3 to give the novel DHED analogue 255. 
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Scheme 81: The synthesis of the DHED analogue 255 

Once compound 255 was synthesised, different ways to effect the desired rearrangement 

were tested (Table 9). Heating compound 255 with DBU, resulted in decomposition 

while heating it with a strong base, NaH, gave the novel hydrolysis product 257 

exclusively after aqueous work-up (Figure 11). Microwave irradiation of compound 255 

in toluene resulted in decomposition, while simultaneous demethylation and 

decarboxylation took place when compound 255 was irradiated in DMF to give 

rutaecarpine 258, a known alkaloid from Evodia fructus (Figure 11).
26j, 93

  

Table 9: Attempts to achieve the ring-opening of compound 255 to form compound 256 

[a]
 Reactions were performed on a 0.1–0.3 mmol scale. 

[b]
 1.5 Equiv. of base was used. 

 

N
H

N

1

OCH3

O

N

H3C

N
H

N

1

O

N

H3C

O

Cl
(±)-255 (±)-256

O

OCH3

 
Entry

[a]
 Solvent Base

[b]
 Temp. Time Outcome 

i THF DBU 70 °C 20 h decomposition 

ii CHCl3 DBU 70 °C 20 h decomposition 

iii THF  NaH rt 1.5 h 257 (40% yield) 

iv toluene  – 140 °C  (MW) 10 min decomposition 

v DMF  – 200 °C  (MW) 10 min 258 (31% yield) 
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Figure 11: Compound 257 and rutaecarpine 258 

It was speculated that installing a bulkier group than an ester on C-1 may promote the 

desired transformation to take place by providing a steric driving force to the reaction. 

Therefore, we set out to synthesise the novel DHED analogue 261 from the readily 

available ester 254 (Scheme 82). The hydrolysis of ester 254 gave the corresponding 

acid 259 which was then converted into the amide 260 via coupling with 

tetrahydroisoquinoline 163. However, treatment of amide 260 with dimethyl 

anthranilate 240 in neat POCl3 didn’t give any of the desired salt 261. 
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Scheme 82: Attempts to synthesise salt 261 
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The novel lactam 263 was then synthesised from acid 259 using piperidine and CDI in 

THF and treated with dimethyl anthranilate 240 in neat POCl3 (Scheme 83). 

Unfortunately, the reaction gave a complex mixture and no salt 264 was observed in the 

1
H-NMR spectrum of the crude mixture.  

neat POCl3
110 °C

()-264

N
H

NH

O

O
OH

HN

CDI, THF N
H

NH

N
O

O

()-259

27%

()-263

262

N
H

N

N
O

N

H3C

O

Cl

HN

O

CH3
240

H3CO

 
Scheme 83: Attempt to synthesise salt 264 

The Weinreb amide 265 was then synthesised from the acid 259 using 

N,O-dimethylhydroxylamine hydrochloride and CDI in DMF (Scheme 84). The 

treatment of the amide 265 with n-BuLi resulted in the formation of amide 266 while 

treatment with PhLi gave the amide 267 (Scheme 85). Disappointingly, neither amide 

266 nor amide 267 gave the desired salts 268 and 269 when treated with dimethyl 

anthranilate 240 in POCl3. 
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Scheme 84: The synthesis of Weinreb amide 265 
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Scheme 85: Attempts to synthesise salts 268 and 269 

Pleasingly, when the Weinreb amide 265 was treated with dimethyl anthranilate 240 in 

POCl3, it gave the desired DHED adduct 270 in 54% yield (Scheme 86). It was then 

tested if the DHED adduct 270 could undergo the desired ring-opening (Table 10). 

Unfortunately, heating the compound 270 with NaH at different temperatures resulted 

in decomposition while MW irradiation in DMF gave the novel demethylated product 

272 shown in Figure 12. 
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Scheme 86: The synthesis of salt 270 
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Table 10: Attempts to achieve the ring-opening of compound 270 to form compound 271 

[a]
 Reactions were performed on a 0.03–0.2 mmol scale. 

[b]
 1.5 Equiv. of NaH was used.  

 

 

N
H

N

N

O
N CH3

OCH3

O

(±)-272  
 
Figure 12: The novel demethylated product 272 
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O

N
OCH3
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Entry

[a]
 Solvent Base

[b]
 Temp. Time Outcome 

i THF NaH rt 4 h decomposition 

ii DMF NaH 60 °C 1.5 h decomposition 

iii DMF NaH 90 °C 20 h decomposition 

iv DMF NaH 150 °C 3 h decomposition 

v DMF  – 200 °C (MW) 10 min 272 (42% yield) 
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3.6 Summary 

The first total synthesis of (±)-dievodiamine 212 has been achieved using a Stille 

coupling between the two key coupling partners 235 and 236. Each coupling partner 

was synthesised efficiently in just 4 steps.  The brevity and efficiency of the synthesis 

was undoubtedly aided by the absence of protecting groups. This also imparted suitable 

solubility properties that enable minimisation of chromatography and thus, facilitated 

scale-up. Key steps include the first example of an organometallic addition into DHED 

adduct and the Stille coupling between the two sterically hindered components using 

PdCl2(PPh3)2 and the unusual combination of  Et4NCl and CuI as additives. Studies on a 

possible biomimetic route to dievodiamine 212 were also conducted, albeit without 

success. 

The work described in this Chapter was published recently (Appendix II (D)).
94
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4.1 Chapter 4 Total Synthesis of Berberine Alkaloids  

4.1 Introduction to Protoberberine Alkaloids  

4.1.1 Protoberberine Skeleton 

Protoberberines are alkaloids based on a bis-isoquinoline skeleton as their basic 

building block. Most protoberberine alkaloids exist in nature either as 

tetrahydroprotoberberines 273 or as quaternary protoberberine salts 274 (Figure 13).
95

  

 

 

 

 

Figure 13: Tetrahydroprotoberberine 273 and quaternary protoberberine skeleton 274 

Such systems are usually substituted with hydroxyl, methoxy, or methylenedioxy 

groups at positions 2, 3, 9, 10 or 2, 3, 10, 11 and the prefix pseudo- is often used for the 

latter substitution pattern. Protoberberines that are substituted on the D-ring at C-12 

usually take the prefix retro-. In the past, the prefix epi- was used inter-changeably for 

2,3 and 9,10 substitution patterns. In some cases methyl groups are present at C-8 and 

C-13 and hydroxyl groups at C-5 or at C-13. More rarely, they are substituted on the 

A-ring at C-4 with methyl or methoxy groups. Recently, tetrahydroprotoberberines with 

nitro-substituents at C-1, C-4 and/or C-5 were isolated.
96

 Berberine 275, nandinine 276, 

anisocycline 277, PO-5 (alborine) 278, coralyne 279, cavidine 280, thalidastine 281,   

2,9-dihydroxy-3,11-dimethoxy-1,10-dinitrotetrahydroprotoberberine 282 and 

pallimamine 283 are representative examples of naturally occurring protoberberines 

(Figure 14).
95
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Figure 14: Examples of naturally occurring protoberberines  

Protoberberines have been found in many plant families such as Papaveraceae, 

Berberidaceae, Fumariaceae, Menispermaceae, Ranunculaceae, Rutaceae and 

Annonaceae. Berberine 275 itself is probably the most widely distributed of all 

protoberberines alkaloids with a wide spectrum of pharmacological activities.
97

 It has 

been shown that the amino acid tyrosine 284 is the biosynthetic precursor of berberine 

and it is incorporated into both the top (rings A and B) and the bottom (ring C and D) 

parts of the alkaloid.
98

 Although not all of the individual steps of the biosynthesis have 

been completely established, the general sequence shown in Schemes 87 and 88 prevails 

in the literature.
95

 Several enzymes participate in the biosynthetic pathway.
99

 Dopa 285 

which comes from tyrosine 284, loses carbon dioxide to form dopamine 286 (Scheme 

87). Likewise, 3,4-dihydroxyphenylpyruvic acid 287 which also comes from tyrosine 

284, loses carbon dioxide to form 3,4-hydroxyphenyl-acetaldehyde 288.  Dopamine 286 

then reacts with 3,4-dihydroxyphenylacetaldehyde 288 to form norlaudanosoline 289  in 

a reaction similar to the Mannich reaction (Scheme 88). This reaction is catalysed by 

(S)-norlaudanosoline synthase (NLS).
100

 After oxidation and methylation by S-adenosyl 

http://en.wikipedia.org/wiki/Dopamine
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methionine (SAM), laudanosoline 290 is formed which is then transformed to the 

pivotal intermediate, reticuline 291. The formation of the berberine bridge is promoted 

by a berberine bridge enzyme.
101

 The iminium ion 292, undergoes a Mannich-like 

cyclisation to form product 293. Product 293 undergoes keto-enol tautomerism to form 

scoulerine 294, which is then methylated by SAM to form tetrahydrocolumbamine 295. 

Product 295 is then oxidised to form the methylenedioxy ring from 

the ortho-methoxyphenol, with the aid of an O2-, NADPH- and cytochrome 

P-450-dependent enzyme (canadine synthase),
102

 giving canadine 296. Canadine 296 is 

then oxidised to give the quaternary isoquinolinium system of berberine 275 by the 

(S)-tetrahydroprotoberberine oxidase (STOX). This happens in two separate oxidation 

steps, both requiring molecular oxygen. Subsequently, the berberine 275 can be 

converted into other protoberberines. 
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Scheme 87: The amino acid tyrosine 14 is the biosynthetic precursor of protoberberine alkaloids 
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Scheme 88: Proposed berberine 275 biosynthesis
95,98–102 
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4.1.2 Biological Activity 

Protoberberines have been extensively investigated for their biological properties which 

include cytotoxic,
103

 anti-fungal,
104

 anti-microbial,
103b, 105

anti-flammatory,
103b, 106

and 

anti-malarial
107 

activities. The ability of the protoberberines to act as inhibitors against 

topoisomerase I and II has been linked to their anti-tumour activity.
103b,108

 Recently, 

berberine derivatives substituted with lipophilic groups had been evaluated as human 

cancer cell growth inhibitors.
109

  

Tetrahydroprotoberberines also display a variety of biological and pharmacological 

properties. Tetrahydroprotoberberines possess a unique pharmacological profile as D2 

dopamine receptor antagonists and D1 receptor agonists suggesting that they are 

potential drug candidates for the treatment of psychiatric and neurological disorders.
110

 

Two tetrahydroprotoberberines, 297 and 298 (Figure 15), were shown to have potential 

clinical use in anti-nociception (inhibition of the sensation of pain), and therefore in 

pain management for the recovering drug addicted patients, related to their affinity to 

D2 dopamine receptors.
110c

 Moreover, the anti-psychotic actions of two other 

tetrahydroprotoberberine derivatives, 299 and 300 on animal models were reported 

recently, suggesting that novel lead drugs based on tetrahydroprotoberberines could 

potentially be used to treat schizophrenia.
110d 

Additionally, studies on the anti-bacterial 

activities of two tetrahydroprotoberberines, 301 and 302, were published recently.
111

 

N
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298 R1 = R4 = H, R2 = R3 = CH3

299 R1 = R2 = R3 = Me, R4 = OH
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301 R1, R2 = -CH2-, R3, R4 = -CH2-
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Figure 15: Tetrahydroprotoberberines 297–302 display a variety of biological and 

pharmacological activities  
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4.1.3 Reported Synthetic Approaches to Protoberberines 

The Bischler-Napieralski reaction is one of the major approaches for the synthesis of 

protoberberine ring systems, usually used for the construction of the B-ring.
110d,e,112 

Recently, several tetrahydroprotoberberine derivatives with diverse substituents on the 

A- and D-rings were synthesised using this approach, in order to test their 

pharmacological profiles for the treatment of schizophrenia.
110d 

For example, 

phenylethylamine 303 and lactone 304 were heated at reflux in ethanol to give amide 

305 (Scheme 89). Subsequent acylation of the alcohol species of compound 305 to 

generate product 306 is followed by a Bischler-Napieralski reaction to give imine 307. 

Asymmetric hydrogenation catalysed by a chiral Ru-(II) complex (Noyori’s catalyst)
113

 

followed by hydrolysis of the acetate 308 gave alcohol 309. Closure of the C-ring was 

accomplished in one pot using thionyl chloride followed by aq. NaHCO3 to give 

tetrahydroprotoberberine 297.  
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Scheme 89: Bischler-Napieralski reaction for the construction of the B-ring of 

tetrahydroprotoberberines 
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The Bischler-Napieralski reaction has also been used for the construction of the B-ring 

of 13-methyl-tetrahydroprotoberberines.
114

 The condensation of 2-bromo-4,5-

dimethoxy-phenylethylamine 311 with 2,3-dimethoxybenzaldehyde 312 followed by 

reduction with lithium aluminum hydride afforded amine 313 (Scheme 90). Acylation 

of the brominated amine with α-(methylthio)acetyl chloride followed by its treatment 

with SnCl4 afforded intermediate 314 which was then treated with LDA and methyl 

iodide to afford lactam 315. Treatment of lactam 315 with Raney-Ni
TM

 effected the 

reductive cleavage of both the bromine and methylthio group to furnish compound 316. 

Finally, Bischler-Napieralski reaction and subsequent NaBH4 reduction provided (±)-

corydaline 317. 

NH2
Br

H3CO

H3CO

OHC OCH3

OCH3

HN
Br

H3CO

H3CO OCH3

OCH3

H3CO

H3CO N

OCH3

OCH3

S
H3C

Br
O

H3CO

H3CO N

OCH3

OCH3

S

Br
O

H3C

H3CO

H3CO N

OCH3

OCH3

O

H3C

H3CO

H3CO
N

OCH3

OCH3

H3C

H

H

i) DCM
ii) LiAlH4, THF

S COCl

Cl

Et3N, CH2Cl2

ii) SnCl4

i)

78%

i) LDA, THF
ii) MeI

80%

Raney-Ni

EtOH
88%

i) POCl3, K2CO3, CH3CN

ii) NaBH4, MeOH

61%

311 312 313

()-314 ()-315

()-316 ()-corydaline, 317

H3C

H3C

85%

 

Scheme 90: Bischler-Napieralski reaction for the construction of the B-ring of 

13-methyl-tetrahydroprotoberberines 

The Pictet-Spengler sequence is also used frequently for the synthesis of the C-ring of 

protoberberines.
110d,e,112b

 For example, piperidine 320,
110d

 which was formed via the 

condensation of phenylethylamine 318 and acid 319 using EDC, HOBt and TEA in 

dichloromethane followed by Bischler-Napieralski dehydration and asymmetric 

hydrogenation with Noyori’s catalyst,  as detailed previously in Scheme 89, was treated 

with formaldehyde in formic acid to give product 321. Benzyl cleavage was achieved by 

refluxing product 321 in ethanol with concentrated HCl to give 

tetrahydroprotoberberine 322 in high yield (Scheme 91). 
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Scheme 91: Pictet-Spengler reaction for the synthesis of the C-ring of tetrahydroprotoberberines 

The Pictet-Spengler reaction has also been used for the construction of the C-ring of 

13-methyl-tetrahydroprotoberberines (Scheme 92).
115

 First, imine 324 was prepared 

from phenylethylamine 303 and acid chloride 323 via a condensation/Bischler-

Napieralski cyclisation sequence. It was found that the reduction of imine 324 with 

sodium borohydride in ethanol at 0 °C gives benzyl-isoquinoline 325 with >95% de and 

in high yield. The C-ring of the 13-methyl-tetrahydroprotoberberine 326 was 

constructed via a Pictet-Spengler reaction of benzyl-isoquinoline 325 using 

formaldehyde in formic acid.  
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Scheme 92: Pictet-Spengler reaction for the synthesis of 13-methyl-tetrahydroprotoberberines 

Ring closing metathesis (RCM) has been used to construct the B-ring of protoberberine 

alkaloids (Scheme 93).
116

 N,N-Diethyl-o-toluamide 327 was treated with n-BuLi and 

benzonitrile 328 to afford product 329 which was then converted into compound 330 by 

N-vinylation with tetravinyltin in the presence of Cu(OAc)2 under an O2 atmosphere.
117
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Next, cleavage of the PMB protecting group using DDQ gave alcohol 331. PDC 

oxidation of the alcohol 331 gave the corresponding aldehyde 332 which then 

underwent a Wittig reaction to provide the diene 333. RCM of the diene 333 afforded 

the cyclised compound 334 which was selectively reduced, by catalytic hydrogenation 

with Pd/C under hydrogen, to give 8-oxo-protoberberine 335 in moderate yield. 
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Scheme 93: RCM has been applied to the construction of the B-ring of 8-oxo-protoberberine 

alkaloids 

The construction of the B-ring of 8-oxo-protoberberines via an SN2 reaction was 

reported by the same group (Scheme 94).
118

 The coupling reaction between o-toluamide 

336 and benzonitrile 337 gave product 338. Cleavage of the MOM protecting group 

gave alcohol 339 which was then reacted with p-TsCl in DMF in the presence of K2CO3 

to provide 8-oxo-protoberberine 340 via an intramolecular SN2 reaction. 

CH3

NEt2

O

H3CO

H3CO

n-BuLi

33%
NH

O

OBn

OMOM

OCH3

MeO

MeO

HCl
THF

75%

NH

O

OBn

OH

OCH3

H3CO

H3CO

TsCl, K2CO3

DMF
63%

N

O

OBn

OCH3

H3CO

H3CO

336

337 338

339 340

OBn

OCH3

OMOM

NC
THF

 



86 

 

Scheme 94: An intramolecular SN2 reaction constructs the B-ring of 8-oxo-protoberberine 

alkaloids 

Ring closing metathesis (RCM) has also been applied to the construction of the D-ring 

of the protoberberine alkaloid (±)-gusanlung D, 351 (Scheme 95).
119

 After the reaction 

of α-sulfonyl acetamide 341 with two equivalents of NaH, the resulting dianion reacted 

with methyl acrylate 342 to afford the cyclised product glutarimide 343.
120

 

Regioselective reduction of the C6-carbonyl in glutarimide 343 provided hydroxylactam 

344.
121

 Without purification, hydroxylactam 344 was converted into tricyclic product 

345 in the presence of BF3·OEt2, via an N-acyliminium ion intermediate. Bromination 

followed by dehydrobromination of product 345 using NBS and sodium methoxide 

gave an α,β-unsaturated lactam, which was then further oxidised to tricyclic pyridinone 

346 with DDQ. 1,4-Conjugate addition of allyl magnesium bromide into adduct 346 

followed by alkylation with allyl bromide produced the diallyl lactam 348. The RCM 

reaction of diene 348 then furnished the D-ring of the protoberberine. 

Dehydrosulfonation and spontaneous oxidation formed product 350 which underwent 

catalytic hydrogenation with ammonium formate in the presence of Pd/C in methanol
122

 

to complete the synthesis of (±)-gusanlung D, 351. 
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Scheme 95: RCM has been applied to the construction of D-ring of 8-oxo-protoberberine 

alkaloids 

The synthesis of the tetracyclic berberine ring system has also been achieved via a 

palladium-catalysed carbonylation (Scheme 96).
123

 Heating the substituted 

1,2,3,4-tetrahydroisoquinoline 352 with catalytic Pd(OAc)2 and triphenylphosphine 

under a carbon monoxide atmosphere gave adduct 353 which was reduced to the desired 

protoberberine 354 with lithium aluminium hydride. 
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Scheme 96: The synthesis of the tetracyclic berberine ring system has been achieved via a 

palladium-catalysed carbonylation 



88 

 

A different catalytic method was reported recently for the preparation of 

8-oxo-protoberberines 356 and 358 in a single step, via a direct aromatic carbonylation 

using a Pd(OAc)2-Cu(OAc)2 catalytic system (Scheme 97).
124

 The 9,10-methylenedioxy 

group in compound 355 chelates with the palladium species and directs ortho-

palladation at the C-1 position, before the incorporation of CO (359i, Figure 16). Thus, 

the aromatic carbonylation of compound 355 gave 8-oxo-protoberberine 356 

exclusively. In contrast, steric repulsion caused by the 9,10-dimethoxy group in 

compound 357 (359ii, Figure 16) overrides the chelation of the palladium species and 

the insertion of CO at the C-2 position is preferred  (359iii, Figure 16). Thus, the 

aromatic carbonylation of compound 357 gave 8-oxo-protoberberine 358 as the major 

product.  
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Scheme 97: Direct aromatic carbonylation for the preparation of 8-oxo-protoberberines 
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Figure 16: Chelation vs steric repulsion for the preparation of 8-oxo-protoberberines 356 and 

358 
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Recently, tetrahydroprotoberberine alkaloids have been synthesised from protopine 

alkaloids as the starting material.
125

 The reaction of protopine 360 with oxalyl chloride 

provided the N-methyl-13,14-dehydroprotoberberine quaternary salt 361 (Scheme 98). 

A dimethyl sulfoxide solution of the salt 361 was heated at 120 °C to yield coptisine 

362 which was then reduced with NaBH4 to yield the tetrahydroprotoberberine alkaloid, 

stylopine 301. 
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Scheme 98: Tetrahydroprotoberberine alkaloids were synthesised from protopine alkaloids 

Other synthetic approaches to this group of alkaloids are the photocyclisation of 

enamides
126

 (Scheme 99) and the condensation of imines with anhydrides
127

 (Scheme 

101) or phthalide anions (Scheme 102).
128

 These approaches are discussed in detail in 

the following section.  
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4.2 The Total Synthesis of (±)-Cavidine 280 

4.2.1 Introduction to the Natural Product Cavidine 280 

Cavidine 280 belongs to the family of protoberberine alkaloids, specifically those 

known as 13-methyl-tetrahydroprotoberberine alkaloids. 13-Methyl-

tetrahydroprotoberberine alkaloids constitute a group of secondary metabolites which 

occur in various species of Corydalis plants. Corydalis is a genus of about 350 species 

of herbaceous plants in the family Papaveraceae (poppy family),
129

 and the name 

Corydalis comes from the Greek word κορυδαλός (“crested lark”), alluding to the shape 

of the flowers, which are native chiefly to northern temperate regions (Himalayan 

mountains in particular) and the high mountains of tropical eastern Africa. They are 

particularly diverse in China which has over 290 species, mainly distributed in Xizang 

Province (Tibet Autonomous Region of the Republic of China). 

Extracts of Corydalis plants have been used in traditional Chinese medicine for the 

treatment of hepatitis and stomach aches.
96

 It has been demonstrated that these extracts 

possess many pharmacological properties, including anti-bacterial, anti-viral and 

anti-cancer activities.
129

 They can also be used for alleviating fever, rheumatic pain and 

to induce a fall in blood pressure.
129c 

It is likely that 13-methyl-

tetrahydroprotoberberines such as cavidine 280, which are constituents of these plants, 

are among their biologically active constituents. In addition, a paper by Bhakuni et al. in 

1983 details the spasmolytic activity of cavidine 280.
130

 

Cavidine 280 has been isolated from different Corydalis plant sources over the years. 

Some literature reports describe the isolation of cavidine 280 as a single (+)-enantiomer, 

while others report the isolation of the racemic form of cavidine 280.
130,131,132

 In 1964, 

Taguchi et al. reported the isolation of (+)- and (±)-cavidine 280 from the plant 

Corydalis ambigua together with its stereoisomer thalictrifoline 363 (Figure 17).
131

 

Cavidine 280 was later assigned as an optically inactive alkaloid, when isolated from 

Corydalis thalictrifolia by Manske et al. in 1970.
132

 In 1983, the enantiomerically pure 

(+)-cavidine 280 was isolated from the plant Corydalis meifolia, together with five other 

tetrahydroprotoberberines.
130

 It is unclear whether or not cavidine 280 is produced as a 

single (+)-enantiomer and then racemises, in certain plants, or if it racemises later 

during the isolation process.  
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Figure 17:  Cavidine 280 and thalictrifoline 363  

Cavidine 280 is typically referred to as the “cis-diastereoisomer”, because the protons 

HA and HB are cis to each other while thalictrifoline 363 is referred to as the 

“trans-diastereoisomer” because these protons are trans (Figure 18). This should not be 

confused with the conformation of the quinazolidine ring system as portrayed in Figure 

18; cavidine 280 adopts the trans-quinazolizidine conformation shown below, while 

thalictrifoline 363 adopts a cis-quinazolizidine conformation in solution in order to 

avoid the steric clash between the C-13 methyl group and the C-1 hydrogen atom.
127, 132
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Figure 18: Cavidine 280 adopts the trans-quinazolizidine conformation and thalictrifoline 363 

adopts a cis-quinazolizidine conformation in solution  

Three main differences are present in the 
1
H-NMR spectrum of the two groups of 

diastereoisomers.
132, 133  

Firstly, the 13-methyl group appears near δΗ 1.0 ppm in 

cis-diastereoisomers (cis H-13 and H-14) and near δΗ 1.5 ppm in trans-diastereoisomers 

(trans H-13 and H-14). The 13-methyl group is deshielded in trans-diastereoisomers 

because it lies nearly in the plane of the aromatic D-ring. Secondly, the coupling 

constant between H-13 and H-14 in cis-diastereoisomers is around 3.0 Hz as expected 

for a dihedral angle which approaches 90°, whereas the coupling constant for the 

trans-hydrogens in trans-diastereoisomers is around 7.5 Hz as expected for systems in 
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which the dihedral angle is closer to 180°. Thirdly, the chemical shift of the equatorial 

C-8 proton is unusually high in the cis-compounds. That happens because the equatorial 

C-8 proton is deshielded by the aromatic D-ring, the lone pair on the adjacent nitrogen 

and the oxygen at C-9 and so appears at much more lower field than the axial C-8 

proton.
133

 This effect is not observed in the trans-compounds.  

Full characterisation data of (±)-cavidine 280
126b,127,129a, 134  

and (±)-thalictrifoline 

363
127,134

 can be found in many reports. 

4.2.2 Reported Syntheses to Cavidine 280 

In 1975 Ninomiya et al. reported that the enamides prepared from 

1-ethyl-6,7-dimethoxy-3,4-dihydroisoquinoline 364 undergo photocyclisation to form 

13-methylberberin-8-ones.
126 

This reaction was applied in the first total synthesis of 

(±)-cavidine 280 by the same group (Scheme 99).
126b

 Acylation of the 

3,4-dihydroisoquinoline 364 with 6-methoxy-2,3-methyldioxybenzoyl chloride 365 

afforded enamide 366 in 77% yield. Irradiation of the enamide 366 in methanol afforded 

two photoproducts, 367 and 368, in 41 and 29% yield respectively. Reduction of the 

major photoproduct 367 with lithium aluminium hydride followed by sodium 

borohydride afforded (±)-cavidine 280 in 37% yield (over the two steps).  
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Scheme 99: Ninomiya’s synthesis of (±)-cavidine 280 via photocyclisation of enamide 366 

The above transformation from 366 to 367 was proposed to proceed via an 

electrocyclisation (369a to 370a) followed by a [1,5]-sigmatropic shift of the 

methoxy-group (370a to 371a) (Scheme 100, proposed mechanism a).
126b

 The migrated 

methoxy-group in 371a can then be eliminated to afford the lactam 367. However, it 
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was speculated that it can also proceed through a stepwise cyclisation involving the 

electron donor ortho-methoxy group based on literature precedent (Scheme 100, 

proposed mechanism b).
135

 None of these intermediates were isolated and thus no 

conclusive deduction about the mechanism can be drawn. 
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Scheme 100: The two possible mechanisms for the transformation from enamide 366 to lactam 

367  
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In 1981 Cushman et al. proposed a different synthetic approach to (±)-cavidine 280 and 

its stereoisomer, (±)-thalictrofoline 363 (Scheme 101).
127 

The condensation of 

compounds 146f and 372 in chloroform at room temperature afforded (±)-trans-acid 

373. Heating the acid 373 in acetic acid promotes epimerisation to generate the 

thermodynamically more stable (±)-cis-acid 374. The (±)-trans-acid 373 gave the 

corresponding (±)-trans methyl ester 375 following its treatment with diazomethane and 

was then converted into its (±)-cis-isomer 376 via treatment with sodium methoxide in 

methanol. Both (±)-trans-ester 375 and (±)-cis-ester 376 were reduced to the 

corresponding amino alcohols (±)-377 and (±)-378 with lithium aluminium hydride. 

Mesylation of alcohols (±)-377 and (±)-378 and subsequent reduction of the 

corresponding mesylates with lithium aluminum hydride completed the synthesis, 

affording (±)-thalictrifoline 363 and (±)-cavidine 280 respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



95 

 

N

H3CO

H3CO

O

O

O

O O

N

O

O

O

H

H
HOOC

N

O

O

O

H
H

HOOC

N

O

O

O

H

H
CH3O2C

N

O

O

O

H
H

CH3O2C

N

O

O
H

H
HOH2C

N

O

O
H
H

HOH2C

N

O

O
H

H
H3C

N

O

O
H
H
H3C

CH3ONa

MeOH

CH2N2

CHCl3-MeOH

LiAlH4

THF/Et2O

i) MsCl, pyridine
ii) LiAlH4, THF/Et2O

i) MsCl, pyridine

ii) LiAlH4, THF/Et2O

H3CO

H3CO

H3CO

H3CO

H3CO

H3CO

H3CO

H3CO

H3CO

H3CO

H3CO

H3CO

H3CO

H3CO

H3CO

H3CO

15%

96%

88%

91%56%

52% 46%

146f 372

()-373 ()-374

()-375 ()-376

()-377 ()-378

()-thalictrifoline, 363 ()-cavidine, 280

LiAlH4

THF/Et2O

AcOH

CHCl3

78%

 

Scheme 101: Cushman’s synthesis of (±)-thalictifoline 363 and (±)-cavidine 280 

The first total syntheses of enantiomerically pure (+)-cavidine 280 and 

(+)-thalictrifoline 363 were achieved by the same group via chiral resolution with the 

aid of (−)-strychnine. The (±)-trans-acid 373 was treated with (−)-strychnine to give the 

(–)-trans-acid 373 as the first crop of salt crystals and (+)-trans-acid 373 as the second. 

Interestingly, heating the single enantiomer (+)-trans-acid 373 in refluxing acetic acid 
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resulted in epimerisation and racemisation, affording the thermodynamically more 

stable (±)-cis-acid 374 as a racemate, suggesting that an achiral intermediate, most 

likely compound 379, is involved (Figure 19). Next, (+)-trans methyl ester 375 was 

converted into its (+)-cis-isomer 376 without racemisation using sodium methoxide in 

methanol.  
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Figure 19:  The achiral intermediate 379  

In 1984 Marsden et al. proposed a synthetic approach to 13-hydroxy-8-oxo-

tetrahydroprotoberberines 382a–c via a reaction between 3,4-dihydroisoquinolines 146f 

or 380 and lithiated phthalide species 381a–c (Scheme 102).
128 

An initial attack of a 

phthalide anion at the imine carbon was followed by nitrogen attack of the phthalide 

carbonyl carbon to form a tetrahedral intermediate which opens to form 

tetrahydroprotoberberines 382a–c in a single step.  
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Scheme 102: Marsden’s synthetic approach to 13-hydroxy-8-oxo-tetrahydroprotoberberines 

382a–c 

(±)-Cavidine 280 was formed from 6,7-dimethoxy-3,4-dihydroisoquinoline 146f and 

3-methylphthalide anion 383 as starting materials (Scheme 103). The reaction of 

dihydroisoquinoline 146f and phthalide anion 383 was highly stereoselective and led to 

the formation of only one of the two possible diastereoisomers as shown in Scheme 103. 

Dehydration of product 384 with p-toluenesulfonic acid afforded compound 385, and 
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finally the reduction of enamide 385 with lithium aluminium hydride, followed by 

sodium borohydride furnished (±)-cavidine 280.  
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Scheme 103: Marsden’s synthetic approach to (±)-cavidine 280 via reaction between 

3,4-dihydroisoquinoline 146f and 3-methylphthalide anion 383 

A model 386 that explains the stereospecificity of the initial reaction was proposed 

(Figure 20). The lone pair of the nitrogen atom of imine and the two oxygen atoms of 

the phthalide ring coordinate with lithium. The forth ligand may be the negative charged 

C-atom of another lithium phthalide or a solvent molecule. Such a model would require 

that cyclic imines, which are constrained in the Z-configuration, orient themselves with 

respect to the phthalide as in Figure 20 to form the trans-isomers exclusively.  
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Figure 20: Marsden model to explain the stereospecificity of the reaction of the phthalide anion 

383 and imine 146f 

The most recent synthesis of (±)-cavidine 280 was reported by Bhakuni et al. in 1986.
136

 

Bhakuni et al. were testing if suitably substituted 1-benzyltetrahydroisoquinolines were 

efficient biosynthetic precursors of Corydalis meifolia alkaloids. They reported that 

(±)-norreticuline 387a and (±)-reticuline 387b were metabolised by young cut branches 

of Cocculus laurifolius to furnish (±)-cavidine 280 (Scheme 104). Noteworthily, parallel 

work using (−)-reticuline furnished (+)-cavidine 280. 
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Scheme 104: Biosynthetic (±)-cavidine 280 from (±)-norreticuline 387a and (±)-reticuline 387b 

4.2.3 Initial Studies on (±)-Cavidine 280 

Although (±)-cavidine 280 has been synthesised before, it was considered that DIA 

methodology would expedite an efficient convergent synthesis. The studies were started 

by running some test reactions to examine the efficiency of DIA coupling between the 

imine 146e and acid coupling partner of type 388 (EWG = CO2CH3 or CN) (Scheme 

105). If this proved successful, the reduction of DIA adduct 389 should then furnish the 

13-methyl-tetrahydroprotoberberine 390, a model system of cavidine 280. Alternatively, 

the methylated coupling partner 391 could coupled with imine 146e to give intermediate 

392 which should then furnish product 390 after hydrolysis and decarboxylation 

followed by reduction of the amide species (Scheme 106).  
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Scheme 105: Initial approach to the construction of cavidine’s framework using imine 146e and 

acid 388 
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Scheme 106: Initial approach to the construction of cavidine’s framework using imine 146e and 

acid 391 

Simple literature procedures were used to synthesise acids 388a, 388b and 391 as 

shown in Scheme 107. Acid 388a was easily formed from anhydride 393 using 
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BF3·Et2O in methanol (Scheme 107, eqn a).
137

 Acid 388b was synthesised from ester 

394 via bromination with N-bromosuccinimide,
138

 followed by nucleophilic substitution 

with cyanide
139

 and ester hydrolysis (Scheme 107, eqn b). Acid 391 was synthesised via 

a LDA-promoted deprotonation of acid 388a followed by methylation based on a 

literature procedure (Scheme 107, eqn c).
140
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Scheme 107: The synthesis of acids 388a, 388b and 391 

Acids 388a, 388b and 391 were then reacted with imine 146e using our standard DIA 

coupling conditions (T3P, DIPEA, 90 °C, toluene) (Scheme 108). Unfortunately, the 

DIA reaction was not successful; in each case complex mixtures of products were 

observed in the 
1
H-NMR spectrum of the crude reaction mixture. Previous studies in 

our group have shown that in some cases the addition of Lewis acids to the crude 

reaction mixture following N-acylation can lead to improved yields,
57 

and therefore 

additional optimisation reactions were performed using BF3·Et2O and AlCl3. 

Disappointingly, the Lewis acid additives did not promote the formation of the expected 

DIA products and gave also complex mixtures.  

388a, R = H, EWG = CO2CH3

388b, R = H, EWG = CN

391, R = CH3, EWG = CO2CH3
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Scheme 108: Attempts to couple imine 146e with acids 388a, 388b and 391  
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The most likely explanation for these unsuccessful DIA reactions is that the α-hydrogen 

of esters 388a and 391 and cyanide 388b is not acidic enough for the intramolecular 

cyclisation to take place after the formation of the N-acyliminium ion. 

4.2.4 The Synthesis of 13-Methyl-Tetrahydroprotoberberine 390 

It has been already found (Chapter 2, table 5, entry viii) that diester 147p successfully 

undergoes DIA coupling with imine 146e under the standard DIA coupling conditions 

(T3P, DIPEA, 90 °C, toluene) giving adduct 149x in 69% yield (Scheme 109).  
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69%

 

Scheme 109: DIA coupling between imine 146e and diester 147p  

It was envisioned that using an approach based on that in Cushman’s route
127

 (Scheme 

101) would then complete the synthesis of the model system, 13-methyl-

tetrahydroprotoberberine 390; ester hydrolysis and decarboxylation of diester 149x 

followed by reduction and mesylation would give intermediate 399 which can be then 

reduced further to furnish the desired product 390 (Scheme 110). 
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Scheme 110: The synthetic approach to 13-methyl-tetrahydroprotoberberine 390  

We were pleased to find that the double hydrolysis and decarboxylation of diester 149x 

was achieved in 78% yield using LiOH·H2O in THF at reflux (Scheme 111). Note that 

the purified product 397 was isolated as a mixture of two inseparable diastereoisomers 
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in 1:1 to 1:4 ratio (ratio varies, possibly due to epimerisation in the NMR solvent). 

Oxidised side-products, possibly 400 and 401, were also observed in the mass spectrum 

of the crude reaction mixtures but they were not isolated at this stage.  
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Scheme 111: The double hydrolysis and decarboxylation of diester 149x 

Pleasingly, when the diasteroisomeric mixture of acid 397 was heated in AcOH at 

reflux, this led to isolation of the thermodynamically more stable diastereoisomer 402 in 

52% yield together with the oxidised side-product 400 which was now isolated and fully 

characterised (Scheme 112). The double reduction of the novel acid 402 gave alcohol 

403 in 64% yield which was then treated with MsCl to give mesylate 404 in 54% yield. 

Finally, deoxygenation of the mesylate 404 with NaBH4 in refluxing ethanol, following 

the procedure reported by Cushman et al. for (±)-thalictricavine synthesis,
141

 gave the 

13-methyl-tetrahydroprotoberberine 390 in 38% yield. It is worth mentioning that when 

the deoxygenation was attempted by using LiAlH4 in THF/ether, as reported by the 

same group during the synthesis of cavidine,
127 

cleavage
 
of the mesylate 404 back to the 

corresponding alcohol 403 was observed instead. 
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Scheme 112: The synthesis of 13-methyl-tetrahydroprotoberberine 390 from acid 397 

Therefore, the synthesis of the model system 13-methyl-tetrahydroprotoberberine 390 

was achieved, with most of the steps not fully optimised. Note that while this compound 
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has been reported previously in the literature, none of its spectroscopic data were 

reported.
142

 The stereochemistry of compounds 402 and 390 were assigned based on the 

J values of their H-1 and H-10 protons (J1-10 = 4 Hz for 402 and J1-10 = 3.2 Hz for 390) 

which suggest that these protons are cis-relative to each other (see Section 4.2.1). 

Further support for this assignment is found in the fact that the J coupling constant for 

the novel cis-acid precursor 402 (J1-10 = 4.2 Hz) matches closely with that of the 

methoxy-analogue acid 374 (J = 4.0 Hz) from Cushman’s synthesis.
127

  

4.2.5 The Total Synthesis of (±)-Cavidine 280 

Having established an efficient synthetic sequence to make the 

13-methyl-tetrahydroprotoberberine 390, we were keen to apply the same synthetic 

approach to the synthesis of the alkaloid (±)-cavidine 280. Our retrosynthetic plan is 

shown in Scheme 113; the DIA coupling between methylenedioxy-acid 405 and imine 

146f would generate the key intermediate 406 which would then provide (±)-cavidine 

280 using a procedure modified from that of Cushman,
127

 involving 

hydrolysis/decarboxylation, reduction, mesylation and a second reduction. 

HO O

CH3O2C

CH3O2C

O

O

N

CH3O2C

CH3O2C

N

HO

O

N

H3C

O

()-cavidine, 280

405()-406

()-374

ON

OMs

HH

H

()-407

O

O

O

O

O

O

O

O
N

146f

DIA
hydrolysis &

decarboxylation

reduction &
mesylationreduction

H3CO

H3CO

H3CO

H3CO

H3CO

H3CO

H3CO

H3CO H3CO

H3CO

H

 

Scheme 113: Retrosynthesis of (±)-cavidine 280 

To begin, the novel diester 405 was synthesised from the commercially available 

bromide 408 based on a modified Hurtley reaction
52,143

 reported by McKillop et al.
143c 

Dimethyl malonate itself was used as the reaction solvent and the bromide 408 was 

heated with CuBr and NaH for 24 h to afford the novel diester 405 in 74% yield 

(Scheme 114). Although the mechanism of the Hurtley reaction has not been established 

conclusively, two possible mechanisms prevail in the literature; Mayer et al.
143b

 

proposed that a copper(I) carboxylate 409 is the key intermediate and that the 
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polarisation of the carbon-halogen bond is augmented by intramolecular coordination of 

the halogen to the copper(I) atom (Scheme 115, eqn a), while McKillop et al.
143c

 

proposed tetrahedrally coordinated copper(I) intermediates 412–414 (Scheme 115, eqn 

b). 
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Scheme 114: The synthesis of diester 405 
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Scheme 115: a) Proposed intermediates by Mayer et al., b) Proposed intermediates by McKillop 

et al. 

Diester 405 was then reacted with imine 146f using the standard DIA coupling 

conditions (T3P, DIPEA, 90 °C, toluene). Pleasingly, the DIA coupling was successful, 

furnishing lactam 406, albeit in moderate yield (39%). Additional optimisation reactions 

were performed using Lewis acids additives in an attempt to improve the yield (Table 

11). 
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Table 11: Optimisation of DIA coupling between imine 146f and acid 405 
 

[a]
 Reactions were performed on a 0.1–0.3 mmol scale using imine 146f (1 equiv.), benzoic acid 

405 (1.2 equiv.), T3P (1.5 equiv.), DIPEA (1.85 equiv.) and Lewis acid additive (2 equiv.) with 

conditions shown unless stated. 
[b] 

Isolated yield following column chromatography. 
[c]

 The 

reaction was performed on a 1.21 mmol scale. 
[d]

 The reaction was performed on a 2.53 mmol 

scale. 

Although BF3·Et2O proved to be an effective Lewis acid additive in previous DIA 

coupling reactions involving C-C bond formation,
57

 it did not improve the isolated yield 

of product 406 (36%). However, switching the additive to AlCl3 allowed product 406 to 

be obtained in 64% yield, after heating at 50 °C in chloroform. It is important to note 

that poor phase separation in the work-up was a considerable problem and the reaction 

was not easily reproducible. Pleasingly, this problem was overcome by using BCl3 as 

the Lewis acid additive, to give product 406 in 69% yield. This reaction was completed 

at room temperature; it was also tested at 50 °C under otherwise identical conditions but 

as the 
1
H-NMR spectrum of the crude reaction mixture appeared to show less product 

406 than the analogous rt reaction, the product was not isolated. It is also noteworthy 

that no competing demethylation products were observed in either AlCl3 or BCl3, in 

spite of literature precedent for such transformations on similar substrates.
144

 

Interestingly, the novel benzopyran 418, formed from the self-condensation of acid 405 

(Scheme 116), was observed in the 
1
H-NMR spectrum of the crude reaction mixture of 

most of the above DIA reactions and the compound was isolated and fully characterised. 

The formation of this side-product is not surprising as similar observations were 

reported previously (Chapter 2, Scheme 48).  
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Entry
[a]

 Solvent  Additive Temp. Outcome (Yield)
[b]

 

i
[c]

 toluene – 90 °C 39% 

ii toluene BF3·Et2O rt No reaction 

iii toluene BF3·Et2O 90 °C 36% 

iv CHCl3 AlCl3 rt 37% 

v CHCl3 AlCl3 70 °C 30% 

vi CHCl3 AlCl3 50 °C 64% 

vii 
[d]

 CHCl3 BCl3 rt 69% 
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Scheme 116: The formation of benzopyran 418  

Having optimised the DIA coupling, it was envisioned that following the same reaction 

sequence as for the synthesis of the model system (13-methyl-tetrahydroprotoberberine 

390, Schemes 111 and 112), would complete the synthesis of (±)-cavidine 280. Ester 

hydrolysis and decarboxylation using LiOH in aqueous THF to give acid 374 was 

followed by reduction with LiAlH4 to afford alcohol 419a in 43% yield following 

column chromatography (Scheme 117). Note that in this instance, the intermediate acid 

374 could not be epimerised by refluxing in AcOH and it was used as a mixture of 

diastereoisomers in the next step; the desired cis-alcohol 419a was then separated by 

column chromatography (43% cis-alcohol 419a, ~13% trans-alcohol 419b). Also, an 

oxidised side-product presumed to be 419c (Figure 21) was observed in the mass 

spectrum of the crude mixture but, as with trans-alcohol 419b, it was difficult to isolate 

this compound cleanly. Finally, the formation of the natural product (±)-cavidine 280 

was completed via mesylation and subsequent deoxygenation with NaBH4 in refluxing 

ethanol. (±)-Cavidine 280 was synthesised in 12% overall yield and fully characterised. 

The characteristic 
1
H- and 

13
C-NMR chemical shifts of the methyl group of (±)-cavidine 

280 at 0.94 ppm and 18.4 ppm respectively (literature values: 0.94 ppm and 18.5 ppm 

accordingly) distinguish (±)-cavidine 280 from its stereoisomer, thalictrifoline 363 

(corresponding chemical shifts appear at 1.44 ppm and 22.4 ppm). All the spectral data 

were in full accord with those previously reported (Appendix I (C and D)).
127,129a,c,134  
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Scheme 117: The total synthesis of (±)-cavidine 280 
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Figure 21: The oxidised side-product 419c  
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4.3 Studies Towards the Synthesis of (±)-Pallimamine 283 

4.3.1 Introduction to the Natural Product (±)-Pallimamine 283 

The novel berberine alkaloid (±)-pallimamine 283 was isolated, in the form of pale 

yellow prisms, from the whole plant of Corrydalis pallida var sparsimamma in 1989 

(Figure 22).
145

 The plant material was collected in Nan-Shan village, Yilan-Hsier in 

Taiwan in July 1973. Other alkaloids isolated from the same source were protopine 360, 

α-allocryptopine 421, (±)-tetrahydropalmatine 297 and (–)-capaurimine 422 (Figure 22), 

all of which were previously known. 
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Figure 22: Alkaloids isolated from Corrydalis pallida var sparsimamma. 

(±)-Pallimamine 283 was found to be racemic, unlike the other alkaloids isolated from 

the same plant, and it adopts a trans-quinazolizidine conformation. Unequivocal 

evidence for the structure of (±)-pallimamine 283 was provided by single crystal X-ray 

diffraction analysis and clearly shows that the methyl group at C-13 and the hydrogen 

atom at C-13a are mutually trans.      

4.3.2 First Retrosynthetic Plan of (±)-Pallimamine 283 

Having established an efficient synthetic sequence to make the berberine alkaloid 

(±)-cavidine 280, we were keen to apply a similar retrosynthetic approach to synthesise 

the novel berberine alkaloid (±)-pallimamine 283. Our first retrosynthetic strategy is 

shown in Scheme 118. We envisaged the synthesis of (±)-pallimamine 283 would be 

achieved via DIA reaction between the bromo-substituted 
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dimethoxy-dihydroisoquinoline 424 and dimethoxy-benzoic acid 423 to form the key 

tetracyclic-intermediate 425. The fifth ring of (±)-pallimamine 283 would then be 

constructed via reduction of the two esters to the corresponding primary alcohols 

followed by an Ullman-type cyclisation between the aryl bromide and one of the newly 

formed primary alcohols to give intermediate 426; at this stage, the amide may also be 

reduced to the corresponding tertiary amine. The reduction of the primary alcohol at 

C-13 to the corresponding methyl group would complete the synthesis of (±)-

pallimamine 283. It is speculated that the most stable diastereoisomer will be the one 

leading to the natural product (trans-relationship between the proton at C-13a and the 

methylene alcohol at C-13). First, the existence of the natural product offers reassurance 

that this pentacyclic system is reasonably stable. Secondly, molecular models of the two 

possible diasteroisomers appear to involve considerably less ring strain and steric 

hindrance in the desired diasteroisomer (which is based on a trans-decalin core) than the 

alternative diasteroisomer (which is based on a cis-decalin core). More detailed 

calculations would be needed to gain greater clarity on this question, but the qualitative 

methods described were deemed sufficient to proceed with the synthesis and test these 

theories synthetically.  
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Scheme 118: First retrosynthetic approach to (±)-pallimamine 283 

It was hoped that the required bromo-substituted dimethoxy-dihydroisoquinoline 424 

could be obtained via bromination of the readily available amide 427 with 1.1 

equivalents of bromine in the presence of FeCl3.
144a

 However, this reaction is not 

regioselective and a statistical mixture of the two possible bromo-substituted amides 

428 and 429 together with the dibromo-substituted amide 430 and traces of starting 
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material 427 were obtained (Scheme 119).
77 

All attempts to separate these compounds 

failed.  
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Scheme 119: Attempt to synthesise the monobromo amide 1  

It should be noted that the dibromo-substituted amide 430 can be easily made 

exclusively in high yield when amide 427 is treated with 2.2 equivalents of bromine.
144a

 

The presence of a second bromine atom in the dihydroisoquinoline system might even 

be beneficial later in the synthesis since Ullman condensation gives generally better 

yields with electron-poor aryl halides. Thus, it was decided to synthesise the 

dibromo-substituted dimethoxy-dihydroisoquinoline 432 instead, as shown in Scheme 

120, and remove the extra bromine atom at C-5 later in the synthesis.  The treatment of 

dimethoxy-tetrahydroisoquinoline 164 with trifluoroacetic anhydride gave amide 427
42

 

which was then treated with 2.2 equivalents of bromine to furnish dibromo-intermediate 

430 in high yield. Dibromo-intermediate 430 was then hydrolysed to the corresponding 

secondary amine 431 and oxidised with MnO2 to give 5,8-dibromo-6,7-dimethoxy-3,4-

dihydroisoquinoline 432. 
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Scheme 120: Synthesis of 5,8-dibromo-6,7-dimethoxy-3,4-dihydroisoquinoline 432 
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Having imine 432 in hand, we embarked on the synthesis of the acid coupling partner 

423 (Scheme 121). To begin, the commercially available 2,3-dimethoxybenzoic acid 

433 was brominated using 1,3-dibromo-5,5-dimethylhydantoin following a known 

literature procedure.
146

 Bromide 434 was then converted into the novel diester 423 in 

36% yield via a modified Hurtley reaction.
143c–e
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Scheme 121: Synthesis of the acid coupling partner 423 

The yield for the Hurtley reaction was somewhat disappointing and also, was not easily 

reproductible, prompting us to seek an alternative way to synthesise the required diester 

423 in better yield. Clive et al.
147

 reported the formation of diester 436 from the 

benzyl-protected iodobenzoic acid 435 using 1,4-dioxane as a solvent and 

stoichiometric amount of dimethyl malonate (Scheme 122). Intrigued by this report, we 

were keen to test this reaction in our system. 
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Scheme 122: Clive’s reported synthesis of diester 436 

6-Iodo-2,3-dimethoxybenzoic acid 437 was synthesised from commercially 

available 2,3-dimethoxybenzoic acid 433 via a carboxylate-directed C-H iodination 

following the procedure of Yu et al. (Scheme 123).
148

 It was then benzylated using 

BnBr and KHCO3 to give the novel iodide 438 based on another literature 

procedure.
149

 Unfortunately, iodide 438 did not react when treated with NaH, CuBr 

and dimethyl malonate in 1,4-dioxane; not even traces of diester 439 were observed 

in the 
1
H-NMR spectrum of the crude reaction mixture and the bulk of the starting 

material 438 was recovered cleanly. 
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Scheme 123: Attempted alternative synthesis of 423  

It was then tested whether the bromide-analogue 440 could be converted into the 

corresponding diester 439 in the same way (Scheme 124). The readily available 

bromide 434 was benzylated to give the novel bromide 440,
149 

however when treated 

with
 
NaH, CuBr and dimethyl malonate in 1,4-dioxane again no product formation 

was observed and the bulk of the starting material 440 was recovered cleanly.  
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Scheme 124: Attempted synthesis of diester 439 

It is important to note that there is no literature precedent for ortho-halogenated 

benzoic acids substituted with electron-donating groups undergoing halogen/dialkyl 

malonate exchange under the Hurtley reaction conditions (NaH, CuBr and dimethyl 

malonate).
143

 All the substituted ortho-halogenated benzoic acids in the literature 

that successfully undergo halogen/dialkyl malonate exchange are substituted with 

electron-withdrawing groups and so may proceed via nucleophilic aromatic 

substitution processes.
150

  

Having failed to find a higher yielding route to dimethoxy-acid 423, we reverted to the 

first synthetic route. Thus, the DIA reaction of the dimethoxy-acid 423 with imine 

432, was tested, and pleasingly the DIA adduct 441 was successfully synthesised in 

38% yield using AlCl3 as the Lewis acid at 50 °C (Table 12).    
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Table 12: Optimisation of DIA coupling between imine 432 and acid 423  

[a]
 Reactions were performed on 0.05–0.20 mmol scale using imine 432 (1 equiv.), benzoic acid 

423 (1.2 equiv.), T3P (1.5 equiv.), DIPEA (1.85 equiv.) and Lewis acid additive (2 equiv.) with 

conditions shown, unless stated. 
[b] 

Isolated yield following column chromatography. 
 

The DIA coupling between the methylenedioxy-acid 405 and imine 432 has been also 

tested for comparison (Table 13). Pleasingly, the DIA reaction using either AlCl3 or 

BCl3 as additives gave adduct 442 in reasonable yields (31-41%). Note that the yields 

were lower compared to related DIA reactions, possibly because the dibromo-imine 432 

is more sterically hindered than previous DIA coupling partners. 

Table 13: Optimisation of DIA coupling between imine 432 and acid 405  

[a]
 Reactions were performed on 0.1–0.2 mmol scale using imine 432 (1 equiv.), benzoic acid 

405 (1.2 equiv.), T3P (1.5 equiv.), DIPEA (1.85 equiv.) and Lewis acid additive (2 equiv.) with 

conditions shown, unless stated. 
[b]

 Isolated yield following column chromatography.  
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20 h
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E = CO2CH3

 
Entry

[a]
 Solvent Additive Temp. Outcome (yield)

[b]
 

i toluene – 90 °C Complex mixture, small product formation 

ii CHCl3 AlCl3 50 °C 38% 

iii toluene AlCl3 90 °C Complex mixture 

iv CHCl3 AlCl3 rt Complex mixture, small product formation 

v CHCl3 BF3·Et2O 50 °C Complex mixture 
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H3CO

E = CO2CH3

O

O

O

O

 
Entry

[a]
 Solvent Additive Temp Outcome (yield)

[b]
 

i CHCl3 AlCl3 50 °C 41% 

ii toluene BCl3 80 °C 39% 

iii CHCl3 BCl3 rt 31% 
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4.3.3 Second Retrosynthetic Plan of (±)-Pallimamine 283 

Once the key DIA adduct 441 was formed, our work should have next focused on the 

construction of the fifth ring of (±)-pallimamine 283 via reduction of the two esters 

followed by an Ullman-type cyclisation. However this was not pursued, as a slightly 

different retrosynthetic approach under investigation concurrently was proving to be 

more promising. This strategy uses a hydroxyl-substituted imine 443 as starting material 

in the place of the dibromo-substituted imine 432 (Scheme 125).  

It was envisaged that the key intermediate 444 would be formed via an initial DIA 

reaction between the hydroxyl-substituted imine 443 and the dimethoxy-benzoic acid 

423. The fifth ring of (±)-pallimamine 283 would then be constructed via reduction of 

the two esters to yield the corresponding primary alcohols. The conversion of these 

alcohols into better leaving groups followed by an SN2 reaction with the phenol should 

furnished the fifth ring of (±)-pallimamine 283. Further reduction of the primary alcohol 

at C-13 to the corresponding methyl group would furnish the natural product.  
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Scheme 125: Second retrosynthetic approach of (±)-pallimamine 283 

There are a number of reports in the literature which use vanillin 445 as a precursor for 

phenyl ring systems with methoxy, methoxy, hydroxyl sequential substitution 

patterns.
151

 Thus, we set out to prepare the required 8-hydroxyl-6,7-dimethoxy-3,4-

dihydroisoquinoline 443 from vanillin 445 (Scheme 126). The synthesis started with the 

selective bromination of vanillin 445 using bromine in AcOH following a literature 

procedure.
151a–c,e 

Although the reaction of the aldehyde 446 with copper powder in 
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the presence of aqueous sodium hydroxide to afford the catechol 447 is a known 

reaction,
151c–e

 no product was observed in our hands. 
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Scheme 126: Attempted synthesis of hydroxyl-substituted imine 443 starting from vanillin 

445 

A paper by Nicolaou et al. reported the conversion of bromo-species into phenolic 

species via a borate intermediate (Scheme 127).
152

 The readily available bromide 

448 was treated with B(OCH3)3 and n-BuLi to give phenol 449 after an oxidative 

work-up with H2O2 in aqueous NaOH. 

n-BuLi, B(OCH3)3

ether

H2O2/NaOH
90%

OO

H3C CH3

BnO

BnO

Br

OO

H3C CH3

BnO

BnO

OH
448 449  

Scheme 127: Conversion of bromo-species 448 to phenolic species 449 via a borate 

intermediate  

Intrigued by the above report, we decided to test this reaction on our system. First, 

we methylated intermediate 446 with dimethyl sulfate and K2CO3 following a 

literature procedure (Scheme 128).
153

The resulting 3-bromo-4,5-

dimethoxybenzaldehyde 450 was then reacted with nitromethane and ammonium 

acetate in a Henry reaction, followed by a subsequent dehydration to give the novel 

nitro-compound 451 in 89% based on a literature procedure.
112 

Reduction of 

compound 451 with lithium aluminum hydride at −5 °C gave the corresponding 

ethanamine 452 in 57% yield. Note that debromination occurs together with the 

reduction, when the nitro-compound 451 was treated with lithium aluminum hydride 

at higher temperatures (e.g. 70 °C, rt). Amine 452 was then treated with ethyl 

formate to give the novel formamide 453 in 61% yield.  
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Scheme 128: Synthesis of the formamide 453 from vanillin 446 

Having bromo-substituted formamide 453 in hand, we tested if we could convert it 

into the corresponding hydroxyl-substituted formamide 455 using Nicolaou’s 

conditions (Scheme 129).
152

 Phenylformamide 453 was treated with trimethyl borate 

and n-BuLi to give the debrominated phenylformamide 454 rather than the phenolic 

formamide 455 after the oxidative work-up. The same disappointing results were 

observed when triisopropyl borate and isopropoxyboronic acid pinacol ester [
i
PrOBPin] 

were used. These results signify that the lithium-halogen exchange took place but the 

borate formation and the subsequent oxidation did not.  
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Scheme 129: Attempt to convert bromo-substituted formamide 453 into hydroxyl-substituted 

formamide 455 via a borate intermediate 

Due to the previous observations, it was decided to consider an alternative way to 

prepare imine 443 (Scheme 130). We discovered that lactam 459 could be synthesised 

from carboxylic acid 456 via a known literature procedure.
80

 The isocyanate 

intermediate 457, generated from the carboxylic acid 456 via a modified Curtius 

rearrangement, was captured by the electron-rich tethered aromatic ring in the presence 

of concentrated BF3·Et2O to generate the BF2-complex 458. Caggiano et al. obtained 

an X-ray structure of the BF2-complex 458 which revealed that the BF2-group is 

strongly coordinated to the Lewis basic lactam in a six-membered ring rearrangement 



116 

 

explaining the selectivity of demethylation at C-8.
80 

The BF2-complex 458 was then 

hydrolysed via a basic work-up to give lactam 459 in high yield. 
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Scheme 130: Synthesis of lactam 459 from carboxylic acid 456 

Lactam 459 constituted a convenient precursor to imine 443 as it contained a phenyl 

ring system with the required substitution pattern (methoxy, methoxy, hydroxy) already 

established in its structure. To begin, it was tested whether the imine 443 could be 

synthesised via the reduction of lactam 459 with lithium aluminum hydride and 

subsequent oxidation (Scheme 131). Following the reaction of lactam 459 with lithium 

aluminum hydride in THF at reflux an additional methylene group peak (3.84–3.82 

ppm, 2H, m, CH2) was observed in 
1
H-NMR spectrum of the purified product 

suggesting the formation of the amine 460. However, mass spectrometry failed to show 

the expected mass peak and also the product was difficult to isolate cleanly due to its 

high polarity. The poor yields and the inconsistent product quality suggested that 

protection of the phenol and/or the amide species of intermediate 459 would be useful.  

NH

O

NH

LiAlH4

THF
1h, 70 °C

18%
OH OH

N

OH

oxidation
H3CO

H3CO

H3CO

H3CO

H3CO

H3CO

459 460 443  

Scheme 131: Attempt to synthesise imine 443 via the reduction of the corresponding lactam 

459 and subsequent oxidation 

Thus, we developed an orthogonal protecting group strategy as shown in Scheme 132. 

Lactam 459 was treated with n-BuLi and 1 equivalent of di-tert-butyl dicarbonate to 

give the novel N-Boc protected lactam 461 exclusively in 80% yield. The N-Boc 

protected lactam 461 was then heated at reflux with BnBr and K2CO3 in toluene, based 
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on a literature procedure,
154

 to give the orthogonally protected novel lactam 462 in 80% 

yield. 
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Scheme 132: Synthesis of the orthogonally protected lactam 462 

In Chapter 2 we detailed a reaction procedure for the synthesis of imines from the 

corresponding N-Boc protected lactams via a partial reduction with Super-Hydride
TM

 

and subsequent Boc-cleavage with TFA (Scheme 37, Section 2.3.1). Interestingly, when 

this reaction sequence was applied to lactam 462, ethylated amine 466 was the only 

product observed (Scheme 133). It is speculated that the N,O-acetal derivative 463, 

which is presumed to form after partial reduction with Super-Hydride,
TM

 collapses to an 

N-acyliminium ion 464 during the work-up and is then trapped by triethylborane present 

in the crude reaction mixture. Boc-cleavage then revealed the cyclic amine 466.   
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Scheme 133: Synthesis of the cyclic amine 466 

A paper by Robertson et al. came to our attention reporting an oxidative work-up for 

L-selectride reductions of ketones and lactols.
155

 In this report, quenching the 

L-selectride reactions by the sequential addition of methanol, water and an aqueous 

solution of H2O2 and NaOH provided purer products, avoiding borane-related side-

products. We were pleased to find that the application of this oxidative work-up to our 

Super-Hydride
TM

 reduction, followed by Boc cleavage with TFA, gave imine 467 in a 

good yield over the two steps (50%) (Scheme 134). Under the conditions described 

above, any borane present in the reaction mixture is likely to be oxidised to the 
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corresponding borate, and thus does not react as a nucleophile to trap the N-

acyliminium ion as in the original procedure.  
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Scheme 134: Synthesis of the imine 467 

4.3.4 Synthesis of the Key DIA Intermediates 468 and 469 

Having imine 467 in hand, we moved on to test the key DIA coupling required for the 

synthesis of pallimamine 283. Methylenedioxy acid 405, which was synthesised in 

ample amounts during the cavidine synthesis described previously (see Section 4.2.5), 

was used as the test substrate to perform a screen for the optimal DIA reaction 

conditions (Table 14). The DIA coupling of acid 405 and imine 467 under our standard 

DIA reaction conditions (T3P, DIPEA, 90 °C, 20 h, toluene) was not successful, 

furnishing a complex mixture of products (Table 14, entry i), while a complex mixture 

was also obtained when the temperature was decreased to rt, along with some starting 

material (entry ii). As was demonstrated before, the addition of Lewis acid to the crude 

reaction mixture often promotes the DIA coupling, hence different Lewis acids were 

tested for this purpose. Although BCl3 proved to be the most effective additive for the 

key DIA coupling in cavidine synthesis, giving DIA adduct 406 in  69% yield, it did not 

have similar success for the synthesis of the DIA adduct 468, which was isolated in just 

21% yield (entry iii). Pleasingly,  switching the additive to AlCl3 allowed product 468 

to be obtained in a more respectable 50% yield, after heating at 50 °C in chloroform 

(entry iv).  
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Table 14: Optimisation of DIA coupling between imine 467 and acid 405  
 

 

 

 

 

 

 

[a]
 Reactions were performed on 0.1–0.8 mmol scale using imine 467 (1 equiv.), acid 405 (1.2 

equiv.), T3P (1.5 equiv.) and DIPEA (1.85 equiv.) with conditions shown, unless stated. The 

Lewis acid additive (2 equiv.) was added after stirring the reaction at rt for 20 minutes.             
[b]

 Isolated yield following column chromatography.   

At this stage the project was passed on to a collaborator (Dr Will Unsworth) for further 

investigation. Pleasingly, the optimised DIA conditions were successful on the 

pallimamine system; the key coupled intermediate 469 was obtained in 51% yield when 

the requisite dimethoxy acid 423 was coupled with imine 467 using the optimised 

conditions (AlCl3, 50 °C, chloroform) (Scheme 135). It is noteworthy that a small 

amount of demethylated product 470 was also observed in the reaction mixture, in line 

with literature precedent for such transformations on similar substrates (Scheme 136).
144 
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Scheme 135: Synthesis of the key DIA intermediate 469 
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Scheme 136: The formation of the demethylated product 470 
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Entry

[a]
 Solvent Additive Temp Outcome (Yield)

[b]
 

i toluene – 90 °C Complex mixture 

ii toluene – rt Starting material & complex mixture 

iii CHCl3 BCl3 rt 21% 

iv CHCl3 AlCl3 50 °C 50% 
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4.4 Summary 

A new synthetic approach for the synthesis of tetrahydroprotoberine alkaloids, which 

utilises DIA coupling reaction as a key step, has been successfully developed. The 

synthesis of 13-methyl-tetrahydroprotoberberine 390, a model system of the natural 

product cavidine 280, has been achieved using a DIA reaction between the imine 146e 

and the diester 147p as the key step. The synthesis was then completed using an 

approach based on that in Cushman’s route;
127

 double hydrolysis and decarboxylation 

followed by reduction, mesylation and deoxygenation with NaBH4 gave the 

tetrahydroprotoberberine 390 in good yield.  

The total synthesis of (±)-cavidine 280 has also been completed; in this instance the 

DIA coupling between the imine 146f and the novel diester 405 was low yielding under 

the standard conditions, but was improved significantly by using a Lewis acid additive. 

The fact that the coupling reagents (T3P and DIPEA) are compatible with Lewis acid 

additives is important as this allows such one-pot optimisation processes to be 

developed, further expanding the scope of the methodology. The efficient convergent 

synthesis of (±)-cavidine 280 described in this Chapter was included in a recent 

publication (Appendix II (C)).
65

 

Finally, the DIA coupling between the novel trisubstituted dihydroisoquinoline 467 and 

the novel diesters 405 and 423 has been achieved, highlighting the potential application 

of the DIA methodology towards the synthesis of the berberine alkaloid 

(±)-pallimamine 283 which has never been prepared to date. The completion of this 

synthesis is ongoing in the Taylor group. 
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5.1 Chapter 5   Future Plans and Perspectives 

5.1 Total Synthesis of Pallimamine 283 

With the synthesis of the key DIA intermediate 469 achieved, efforts to complete the 

synthesis of (±)-pallimamine 283 are ongoing within the group (Scheme 137). It is 

envisioned that the condensation of phenol, after cleavage of the benzyl group in the 

DIA adduct 469, with one of the two diastereoisotopic esters will give intermediate 472. 

Subsequent selective reduction of lactone 472, to afford the corresponding ether, will 

then give pentacyclic intermediate 471. Finally, it is hoped that following the same 

reaction sequence as that used during the synthesis of (±)-cavidine 280 (reduction, 

mesylation and deoxygenation), will complete the synthesis of (±)-pallimamine 283.  
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Scheme 137: Current retrosynthetic plan for the synthesis of (±)-pallimamine 283 
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5.2 Synthesis of Spirocycles and β-Lactams Using DIA Methodology 

Parallel work currently under investigation in the Taylor group
156

 has uncovered the 

potential of DIA for the synthesis of spirocyclic scaffolds and also β-lactams. For 

example, the substituted 2-methylindole 473 reacted with the isoquinoline 146e under 

DIA reaction conditions (T3P, DIPEA, THF, rt, 16 h) to give the spirocycle 475 in 

excellent yield (Scheme 138). Similarly, the substituted 2-iodoindole 474 reacted with 

isoquinoline 146e to generate the spirocycle 476 again in excellent yield (Scheme 137).  
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Scheme 138: Synthesis of spirocycles 475 and 476 using DIA reaction conditions 

Moreover, pyrrole substrates are well tolerated, giving spirocycles in good yields 

(Scheme 139). For instance, the substituted pyrrole 477 and isoquinoline 146e were 

coupled under DIA coupling conditions to give product 478 in 62% yield. Note that 

spirocyclic scaffolds are being increasingly utilised in drug discovery, due to increasing 

interest in fragments with greater three-dimensionality.
157

    

N

T3P, DIPEA

CHCl3
70 C,16 h

62% (10:1 dr)
146e

N
HEtO2C

477

OH

O

N

N
O

H

478

EtO2C

 

Scheme 139: Synthesis of spirocycle 478 using DIA reaction conditions 

In addition, a range of β-lactam scaffolds have been synthesised efficiently (Scheme 

140).
158

 For example, the reaction of imine 479 and acid 480 under DIA coupling 

conditions gave β-lactam 481 in 89% yield. This augurs well for a potential use of DIA 

reaction in antibiotic drug discovery.
159
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Scheme 140: Synthesis of β-lactams 481–485 using DIA reaction conditions 

Further investigation of the above reactions and their use in target synthesis is ongoing. 

5.3 Asymmetric Induction 

Recently, N-acyliminium ions have been demonstrated to engage successfully in 

asymmetric catalytic reactions.
160,161

 Jacobsen’s studies in this area led to the discovery 

that chiral thiourea catalysts can promote highly enantioselective acyl-Pictet-Spengler 

and Mannich-type reactions to provide products in high enantiomeric excess.
161

 A 

representative example, which involves a chiral thiourea catalyst 487 in the presence of 

TMSCl, is shown in Scheme 141.
161g 
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Scheme 141: Asymmetric cyclisation catalysed by thiourea catalyst 487 

Inspired by the above Jacobsen’s work, preliminary studies to impart asymmetric 

induction in DIA were conducted within the group (Dr. Graeme Coulthard). To begin, 
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imine 146e and acid 480 were treated with T3P and DIPEA in chloroform for two hours 

before catalyst 489 and TMSCl were added (Scheme 142). Disappointingly, no product 

was observed in the 
1
H-NMR spectrum of the crude mixture, even after 5 days.  
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Scheme 142: Attempt to achieve DIA reaction of imine 146e and acid 480 in the presence of 

catalyst 489 

Pleasingly, when acyl chloride 490, imine 146e, and catalyst 489 were dissolved in 

toluene and the mixture was stirred for 5 days at rt, compound 199 was isolated in 50% 

yield, after column chromatography (Scheme 143).  
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Scheme 143: DIA reaction of imine 146e with acid chloride 490 using catalyst 489 

It was then hoped that asymmetric induction could be achieved when a chiral thiourea 

catalyst was used in the place of the catalyst 489. Pleasingly, some enantiomeric excess 

was achieved after a short screen of different chiral thiourea catalysts and solvents (10% 

ee using catalyst 491 in ether, Scheme 144). This proves that this strategy is viable in 

principal but further investigation of these reactions is required to provide a 

synthetically useful procedure.  
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Scheme 144: The coupling of imine 146e with acid chloride 490 using the chiral catalyst 491 in 

ether. 

In conclusion, it has been demonstrated that DIA methodology is a reliable and versatile 

tool for the synthesis of diverse heterocycles. It has been also demonstrated that this 

procedure can be applied successfully in target synthesis. In future, efforts will continue 

to investigate the possibility of performing the reaction asymmetrically, and further 

applications in target synthesis will also be pursued.  
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6.1 Chapter 6   Experimental 

General Information 

Except where stated, all reagents were purchased from commercial sources and used 

without further purification. All reactions were performed in oven-dried glassware 

under an atmosphere of argon unless specified otherwise. Where necessary, solvents 

(THF, toluene, dichloromethane, ether) were dried on an Innovative Technology Inc. 

PureSolv
®
 solvent purification system by passing the solvent through activated alumina 

and copper catalyst columns, as appropriate.  In some reactions, anhydrous THF was 

obtained by distillation over sodium benzophenone ketyl immediately before use. 

Anhydrous benzene was obtained by distillation over calcium hydride and stored over 4 

Å molecular sieves. Petrol refers to the fractions of petroleum ether which boil between 

40 °C and 60 °C. Aqueous solutions are saturated unless specified otherwise. 

Alkyllithium reagents were titrated against N-benzylbenzamide before use. Reaction 

temperatures of −78 °C were achieved using dry ice/acetone mixtures and reaction 

temperatures of −5 °C were achieved using salt/ice mixtures. Flash column 

chromatography was carried out using slurry packed Fluka silica gel (SiO2), 35–70 μm, 

60 Å, under a light positive pressure, eluting with the specified solvent system. Thin-

layer chromatography (t.l.c) was carried out on Merck silica gel 60F254 pre-coated 

aluminium foil sheets and were visualised using UV light (254 nm) and stained with 

either basic aqueous potassium permanganate or ethanolic p-anisaldehyde as 

appropriate. NMR spectra were recorded on a Jeol ECX-400 NMR or Jeol ECS400 

spectrometer operating 400 MHz (
1
H) and 100 MHz (

13
C) respectively. All spectra was 

acquired at 295 K. Chemical shifts (δ) are quoted in parts per million (ppm). Couplings 

constants (J) are reported in Hertz (Hz) to the nearest 0.1 Hz. The multiplicity 

abbreviations used are: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad 

or combinations of these. Where coincident coupling constants have been observed in 

the NMR spectru m, the apparent multiplicity of the proton resonance concerned is 

reported. Signal assignment was achieved by analysis of DEPT, COSY, NOESY, 

HSQC and HMBC experiments where required. The residual solvent peak, δΗ 7.26 and 

δC 77.0 for CDCl3 and δΗ 2.50 and δC 39.50 for (CD3)2SO was used as a reference. 

Infrared spectra (IR) were recorded on a ThermoNicolet IR-100 spectrometer with NaCl 

plates as a thin film or Perkin Elmer FT-IR spectrometer dispersed from either CH2Cl2 

or CDCl3. High Resolution Mass Spectra (HRMS) were obtained by University of York 
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Mass spectrometer service, using electrospray ionisation (ESI) on a Bruker Daltonics, 

Micro-tof spectrometer. Melting points were measured on a Gallenkamp melting point 

apparatus and are uncorrected. An FTIR analyser, ReactIR 4000 with a MCT detector, a 

KBr bean splitter and an ATR probe (DiComp) were used for all ReactIR experiments. 

The probe was fitted to a 50 mL glass round bottom flask containing a magnetic stirrer 

bar to provide agitation. A nitrogen purge was maintained on tha system throughout the 

experiment, and a nitrogen background was used in computing the absorbance spectra. 

Each spectrum represents 256 co-added scans measured at a spectral resolution of 4 

cm
−1

 in the 4000–650 cm
-1 

range with the Happ-Genzel apodisation function. All 

numbering on the structures below is for the benefit of structure characterisation and 

does not conform to IUPAC rules.  

Reaction Procedures and Compound Characterisation 

tert-Butyl 2-oxopiperidine-1-carboxylate (153):
162
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Triethylamine (14.1 mL, 100 mmol), DMAP (0.616 g, 5.04 mmol) and Boc2O (16.5 g, 

75.6 mmol) were added to a solution of the piperidin-2-one 152 (5.00 g, 50.4 mmol) in 

THF (250 mL). The solution was stirred at rt for 24 h. The mixture was washed with 

sat. aq. NH4Cl (350 mL), extracted with ethyl acetate (3 × 200 mL), dried over MgSO4 

and concentrated in vacuo. Purification by column chromatography (SiO2,  10:1→1:1 

petrol:ethyl acetate) afforded compound 153 as a colourless solid (8.27 g, 82%); Rf 1.7 

(1:1 petrol:ethyl acetate); 
 
δH (400 MHz, CDCl3) 3.64 (2H, t, J = 4.9 Hz, H-2), 2.50 (2H, 

t, J = 7.2 Hz, H-5), 1.81–1.79 (4H, m, H-3,4), 1.51 (9H, s, H-8). Obtained data in 

accord with those reported in the literature.
162
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5, 5-Dibenzyl-2,3,4,5-tetrahydropyridine (146a):  

LHMDS, BnBr

THF

i) LiEt3BH,THF

ii) TFA, DCM
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This compound was first synthesised by Dr. Will Unsworth. 

To a solution of tert-butyl 2-oxopiperidine-1-carboxylate 153 (4.0 g, 20.1 mmol) in 

THF (80 mL) at −78 °C was added LHMDS (48.2 mL, 48.2 mmol, 1 M solution in 

THF) and the resulting solution was stirred at −78 °C for 1 h. Benzyl bromide (5.74 mL, 

48.2 mmol) was then added and the mixture warmed to rt and stirred at this temperature 

for 2 h, before the reaction was quenched by the addition of sat. aq. NH4Cl (200 mL), 

extracted with ethyl acetate (3 × 200 mL), dried over MgSO4 and concentrated in vacuo. 

Purification by column chromatography (SiO2, 20:1→7:3 petrol:ethyl acetate) afforded 

the 3,3-dibenzylpiperidin-2-one 154 as a colourless solid (5.70 g, 74%, mixture of 

rotamers (ratio 4:1)); [νmax (thin film)/cm
−1 

3029, 2979, 2934, 1766, 1715, 1633, 

1495, 1455, 1393, 1368; δH (400 MHz, CDCl3) 7.27–7.17 (10H, m, ArH, both), 3.50 

(2H, d, J = 13.0 Hz, CHHPh, minor),  3.38 (2H,  d, J = 13.2 Hz, CHHPh, major), 3.17 

(2H, t, J = 5.9 Hz, H-2, major), 2.73 (2H, t, J = 5.8 Hz, H-2, minor), 2.64 (2H, d, J = 

13.2 Hz, CHHPh, major) 2.60 (2H, d, J = 13.0 Hz, CHHPh, minor), 1.59 (9H, s, H-8, 

major), 1.53 (9H, s, H-8, minor), 1.72–1.69 (2H, m, H-4, both), 1.39–1.33 (2H, m, H-3, 

both); δC (100 MHz, CDCl3) 176.1 (C-1 major), 173.6 (C-1 minor), 153.1 (C-6 both), 

138.2 (Ar C major), 137.4 (Ar C minor), 130.9 (Ar CH major), 130.9 (Ar CH 

minor), 128.2 ( Ar CH major), 128.1 (Ar CH minor), 126.7 (Ar CH major), 126.5 

(Ar CH minor), 82.6 (C-7 both), 48.4 (C-5 both), 47.6 (C-2 major), 46.0 (C-2 

minor), 46.0 (C-CH2Ph major), 45.9 (C-CH2Ph minor), 28.2 (C-4 minor), 28.2 (C-4 

major), 28.1 (C-8 both) 20.0 (C-3 major), 19.9 (C-3 minor); HRMS (ESI
+
): Found: 

380.2234; C24H30NO3 (MH
+
) Requires: 380.2220 (−3.7 ppm error)]; A portion of the 

3,3-dibenzylpiperidin-2-one 154 (6.66 g, 17.5 mmol) was next dissolved in THF (180 

mL) and cooled to −78 °C. Super-Hydride
TM

 (52.4 mL, 27.9 mmol, 1 M solution in 

THF) was added dropwise over 5 min and stirring continued at −78 °C for a further 30 

min after the addition was complete. The excess reducing agent was quenched by the 
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addition of 10:1 ethanol:conc. aq. HCl (180 mL) and the resulting mixture diluted with 

dichloromethane (2000 mL), washed with water (1000 mL), dried over MgSO4 and 

concentrated in vacuo. The crude material was used directly to the next step without 

further purification; A 1:1 mixture of DCM:TFA (60 mL), that had been pre-cooled to 0 

°C, was then added immediately to the crude product and the resulting solution was 

stirred at 0 °C for 15 min. The majority of the volatile organics were then quickly 

removed in vacuo, before the crude residue was dissolved in dichloromethane (1000 

mL), washed with sat. aq. NaHCO3 (400 mL), dried over MgSO4 and concentrated in 

vacuo. Purification by column chromatography (SiO2, 1:1→1:2 petrol:ethyl acetate) 

afforded compound 146a as a colourless solid (2.87 g, 63%); Rf  0.15 (1:1 petrol:ethyl 

acetate); mp 63–65 °C;  νmax (thin film)/cm
−1 

1645, 1602, 1493, 1453, 1265, 1194, 

1059, 939; δH (400 MHz, CDCl3) 7.73 (1H, br s, H-1), 7.31–7.20 (6H, m, ArH), 7.17–

7.12 (4H, m, ArH), 3.10 (2H, td, J  = 5.7, 2.5 Hz, H-2), 2.86 (2H, d, J  = 13.4 Hz, 

CHHPh), 2.65 (2H, d, J  = 13.4 Hz, CHHPh), 1.58–1.54 (2H, m, H-4), 1.30–1.24 (2H, 

m, H-3); δC (100 MHz, CDCl3) 168.8 (C-1), 137.1 (Ar C), 130.4 (Ar CH), 128.1 (Ar 

CH), 126.4 (Ar CH), 48.9 (C-2), 45.0 (C-CH2Ph), 42.4 (C-5), 27.2 (C-4), 18.7 (C-3); 

HRMS (ESI
+
): Found: 264.1742; C19H22N (MH

+
) Requires: 264.1747 (2.8 ppm 

error). 

[20% overall yield starting from tert-butyl 2-oxopiperidine-1-carboxylate 153] 

Lab Notebook Reference: CHK 1/2 p.4 and CHK 1/3 p.29 

4,4-Dibenzyl-3,4-dihydro-2H-pyrrole (146b): 

i) LiEt3BH,THF

ii) TFA, DCM
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This compound was first synthesised by Dr. Will Unsworth. 

The tert-butyl 3,3-dibenzyl-2-oxopyrrolidine-1-carboxylate 158
42

 was dissolved in THF 

(85 mL) and cooled to −78 °C. Super-Hydride
TM

 (24.6 mL, 24.6 mmol, 1 M solution in 

THF) was added dropwise over 5 min and stirring continued at −78 °C for a further 30 
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min after the addition was complete. The excess reducing agent was quenched by the 

addition of 10:1 ethanol:conc. aq. HCl (88 mL) and the resulting mixture diluted with 

dichloromethane (1000 mL), washed with water (500 mL), dried over MgSO4 and 

concentrated in vacuo. A 1:1 mixture of DCM:TFA (28 mL), that had been pre-cooled 

to 0 °C, was then added immediately to the crude product and the resulting solution was 

stirred at 0 °C for 15 min. The majority of the volatile organics were then quickly 

removed in vacuo, before the crude residue was dissolved in dichloromethane (500 mL), 

washed with sat. aq. NaHCO3 (200 mL), dried over MgSO4 and concentrated in vacuo. 

Purification by column chromatography (SiO2, 2:1→1:1 petrol:ethyl acetate) afforded 

compound 146b as a colourless oil (1.60 g, 79%); νmax (thin film)/cm
−1 

2980, 2956, 

1600, 1578, 1472, 1432, 1081, 1194, 743, 691; δH (400 MHz, CDCl3) 7.48 (1H, br s, 

H-1), 7.31–7.21 (6H, m, ArH), 7.16–7.12 (4H, m, ArH), 3.27 (td, J  = 7.2, 2.3 Hz, H-2), 

2.95 (2H, d, J = 13.4 Hz, CHHPh), 2.87 (2H, d, J = 13.4 Hz, CHHPh), 1.77 (2H, t, J = 

7.2 Hz, H-3); δC (100 MHz, CDCl3) 172.3 (C-1), 137.5 (Ar C), 130.2 (Ar CH), 128.2 

(Ar CH), 126.4 (Ar CH), 60.9 (C-2), 58.7 (C-4), 43.8 (C-CH2Ph), 31.0 (C-3); HRMS 

(ESI
+
): Found: 250.1586; C18H20N (MH

+
) Requires: 250.1590 (0.7 ppm error). 

Lab Notebook Reference: CHK 1/45 p.66 

5,5-Bis(prop-2-en-1-yl)-2,3,4,5-tetrahydropyridine (146c):  
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To a solution of tert-butyl 2-oxopiperidine-1-carboxylate 153 (6.00 g, 30.2 mmol) in 

THF (120 mL) at −78 °C was added LHMDS (72.36 mL, 72.36 mmol, 1 M solution in 

THF) and the resulting solution was stirred at −78 °C for 1 h. Allyl bromide (6.26 mL, 

72.36 mmol) was then added and the mixture warmed to rt and stirred at this 

temperature for 2 h, before the reaction was quenched by the addition of sat. aq. NH4Cl 

(100 mL), extracted with ethyl acetate (3 × 100 mL), dried over MgSO4 and 

concentrated in vacuo. Purification by column chromatography (SiO2, 10:1→5:1 

petrol:ethyl acetate) afforded the tert-butyl 2-oxo-3,3-bis(prop-2-en-yl)piperidine-1-

carboxylate 160 as a yellow oil (4.58 g, 54%); Rf  0.51 (5:1 petrol:ethyl acetate); [δH 
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(400 MHz, CDCl3) 5.80–5.70 (2H, m, H-7), 5.10–5.04 (4H, m, H-8), 3.56 (2H, t, J = 

6.3 Hz, H-2), 2.49 (2H, dddd, J = 13.6, 6.9, 1.1, 1.1 Hz, H-6a), 2.25 (2H, dd, 13.6, 7.9 

Hz, H-6b), 1.83–1.77 (2H, m, H-4), 1.75–1.72 (2H, m, H-3), 1.50, (9H, s, H-11); δC 

(100 MHz, CDCl3) 176.1 (C-1), 153.7 (C-9), 133.8 (C-7), 118.7 (C-8), 82.6 (C-10), 

48.0 (C-5), 47.3 (C-2), 42.9 (C-6), 30.1 (C-4), 28.1 (C-11), 20.0 (C-3)]. A portion of 

the compound 160 (1.43 g, 5.13 mmol) was next dissolved in THF (50 mL) and cooled 

to −78 °C. Super-Hydride
TM

 (15.4 mL, 15.4 mmol, 1 M solution in THF) was added 

dropwise over 5 min and stirring continued at −78 °C for a further 30 min after the 

addition was complete. The excess reducing agent was quenched by the addition of 10:1 

ethanol:conc. aq. HCl (40 mL) and the resulting mixture diluted with dichloromethane 

(40 mL), washed with water (80 mL), dried over MgSO4 and concentrated in vacuo. A 

1:1 mixture of DCM:TFA (15 mL), that had been pre-cooled to 0 °C, was then added 

immediately to the crude product and the resulting solution was stirred at 0 °C for 15 

min. The majority of the volatile organics were then quickly removed in vacuo, before 

the crude residue was dissolved in dichloromethane (40 mL), washed with sat. aq. 

NaHCO3 (20 mL), dried over MgSO4 and concentrated in vacuo. Purification by 

column chromatography (SiO2, 1:2 petrol:ethyl acetate→pure ethyl acetate) afforded 

compound 146c as a yellow oil (0.41 g, 29%); Rf  0.11 (1:1 petrol:ethyl acetate); νmax 

(thin film)/cm
−1 

2889, 1656, 1416, 1352, 1261, 1109, 981, 902; δH (400 MHz, CDCl3) 

7.48 (1H, br s, H-1), 5.78–5.67 (2H, m, H-7), 5.10–5.03 (4H, m, H-8), 3.44–3.43 (2H, 

m, H-2), 2.13–2.10 (4H, m, H-6), 1.57–1.51 (4H, m, H-3,4); δC (100 MHz, CDCl3) 

168.8 (C-1), 133.3 (C-7), 118.5 (C-8), 49.2 (C-2), 42.0 (C-6), 39.4 (C-5), 28.0 (C-

3/4), 18.9 (C-3/4); HRMS (ESI
+
): Found: 164.1437; C11H18N (MH

+
) Requires: 

164.1434 (−2.2 ppm error). 

[13% overall yield starting from tert-butyl 2-oxopiperidine-1-carboxylate 153] 

Lab Notebook Reference: CHK 1/4 p. 14 and CHK 1/8 p.18 
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5,5-Dipropyl-2,3,4,5-tetrahydropyridine (146d):  
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The tert-butyl 2-oxo-3,3-bis(prop-2-en-yl)piperidine-1-carboxylate 160 (150 mg, 0.535 

mmol) was dissolved in ethanol (6 mL) and treated with Pd/C (25 mg, 5% w/w on 

activated carbon). The reaction mixture was then allowed to stir under a positive 

pressure of hydrogen (balloon) overnight at room temperature. The solution was filtered 

through Celite
TM

 and concentrated under reduce pressure to give tert-butyl 2-oxo-3,3-

dipropylpiperidine-1-carboxylate 161 as colourless oil (126 mg, 83%); [δH (400 MHz, 

CDCl3) 3.58 (2H, t, J = 5.6 Hz, H-2), 1.82–1.76 (2H, m, H-3), 1.72–1.70  (2H, m, H-4), 

1.66–1.58 (2H, m, H-6a), 1.49 (9H, s, H-11, overlapping), 1.51–1.42 (2H, m, H-6b, 

overlapping), 1.32–1.22 (4H, m, H-7), 0.88 (6H, m, H-8); δC (100 MHz, CDCl3) 177.2 

(C-1), 153.8 (C-9), 82.2 (C-10), 48.1 (C-2), 47.2 (C-5), 40.9 (C-4), 31.1 (C-6/7), 

28.0 (C-11), 20.3 (C-6/7), 17.3 (C-3), 14.6 (C-8)]. A portion of the compound 161 

(1.2 g, 4.26 mmol) was next dissolved in THF (50 mL) and cooled to −78 °C. Super-

Hydride
TM

 (12.8 mL, 12.8 mmol, 1 M solution in THF) was added dropwise over 5 min 

and stirring continued at −78 °C for a further 30 min after the addition was complete. 

The excess reducing agent was quenched by the addition of 10:1 ethanol:conc. aq. HCl 

(33.3 mL) and the resulting mixture diluted with dichloromethane (33.3 mL), washed 

with water (66.7 mL), dried over MgSO4 and concentrated in vacuo. A 1:1 mixture of 

DCM:TFA (12.5 mL), that had been pre-cooled to 0 °C, was then added immediately to 

the crude product and the resulting solution was stirred at 0 °C for 15 min. The majority 

of the volatile organics were then quickly removed in vacuo, before the crude residue 

was dissolved in dichloromethane (33.3 mL), washed with sat. aq. NaHCO3 (16.7 mL), 

dried over MgSO4 and concentrated in vacuo. Purification by column chromatography 

(SiO2, 1:2 petrol:ethyl acetate→pure ethyl acetate) afforded an inseparable  mixture 1:1 

of compound 146d and 3,3-dipropylpiperidin-2-one 162  (153 mg, 22%); Rf  0.4 (1:1 

petrol:ethyl acetate); νmax (thin film)/cm
−1 

1633, 1466, 1444, 1389, 1330, 1292, 1188, 

1092; 
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5,5-Dipropyl-2,3,4,5-tetrahydropyridine (146d): δH (400 MHz, CDCl3) 7.42 (1H, s, H-

1), 3.42–3.39 (2H, m, H-2), 1.74–1.18 (12H, m, H-3,4,6,7), 0.87–0.83 (6H, m, H-8); δC 

(100 MHz, CDCl3) 170.5 (C-1), 49.2 (C-2), 40.5 (C-3,4,6,7), 39.4 (C-5), 28.5 (C-

3,4,6,7), 19.4 (C- C-3,4,6,7), 16.9 (C-3,4,6,7), 14.6 (C-8); HRMS (ESI
+
): Found: 

168.1748; C11H22N (MH
+
) Requires: 168.1747 (−0.8 ppm error).  

3,3-Dipropylpiperidin-2-one (162): δH (400 MHz, CDCl3) 6.21 (1H, br s, NH), 3.22–

3.19 (2H, m, H-2), 1.74–1.18 (12H, m, H-3,4,6,7), 0.87–0.83 (6H, m, H-8); δC (100 

MHz, CDCl3) 177.4 (C-1), 44.6 (C-5), 42.6 (C-2), 41.1 (C-3,4,6,7), 29.6 (C-3,4,6,7), 

20.0 (C-3,4,6,7), 17.4 (C-3,4,6,7), 14.8 (C-8). Obtained data in accord with those 

reported in the literature.
163
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3,4-Dihydroisoquinoline (146e):
43
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To a stirred solution of 1,2,3,4-tetrahydroisoquinoline 163 (10.2 g, 76.6 mmol) in 

dichloromethane (150 mL) was added slowly N-bromosuccinimide (15.0 g, 84.3 mmol) 

under ice-cooling. After stirring for 30 min, 30% NaOH (50 mL) was added to the 

reaction mixture. The resulting solution was stirred at rt for 1 h. Water (150 mL) was 

added, the layers were separated and the aqueous layer was extracted with 

dichloromethane (3 × 100 mL). The combined organic layers were washed with brine 

(100 mL), dried over MgSO4, filtered and concentrated in vacuo. Purification by 

column chromatography (SiO2, 1:1 petrol:ethyl acetate→pure ethyl acetate) afforded 

compound 146e as an orange oil (6.81 g, 70%); Rf  0.29 (ethyl acetate); δH (400 MHz, 

CDCl3) 8.35 (1H, t, J = 2.2 Hz, H-1), 7.36 (1H, ddd, J = 7.2, 7.2, 1.8 Hz, H-7/8), 7.32–

7.26 (2H, m, ArH), 7.16 (1 H, d, J = 7.2 Hz H-6/9), 3.78 (2H, td, J = 8.1, 2.2 Hz, H-3),  

2.75 (2H, t, J = 8.1 Hz, H-4), δC (100 MHz, CDCl3) 160.1 (C-1), 136.1 (C-10), 130.9 

(C-8), 128.3 (C-5), 127.2 (C-9), 126.9 (C-6/7), 127.0 (C-6/7), 47.2 (C-3), 24.8 (C-4). 

Obtained data in accord with those reported in the literature.
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6,7-Dimethoxy-3,4-dihydroisoquinoline (146f):
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To a solution 6,7-dimethythoxy-1,2,3,4-tetrahydroisoquinoline 164 (105mg, 0.545 

mmol) in dichloromethane (2.43 mL) at 0 °C is added N-bromosuccinimide (107 mg, 

0.600 mmol). After stirring for 30 mins at 0 °C, 30% aq. NaOH (1 mL) is added and the 

mixture is stirred for an additional 60 mins at rt. The organic layer is separated, washed 

with water (1.2 mL), dried over MgSO4, filtered and concentrated in vacuo. Purification 

by column chromatography (SiO2, pure ethyl acetate→ethyl acetate, 5% MeOH) 

afforded compound 146f as a brown oil (64.0 mg, 61%); Rf  0.29 (9:1 ethyl acetate: 

MeOH);
 
δH (400 MHz, CDCl3) 8.22 (1H, s, H-1), 6.80 (1H, s, H-6/9), 6.66 (1H, s, H-

6/9), 3.90 (3H, s, H-11/12), 3.88 (3H, s, H-11/12), 3.71 (2H, t, J = 7.7 Hz, H-3), 2.67 
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(2H, t, J = 7.7 Hz, H-4); HRMS (ESI
+
): Found: 192.1026; C11H14NO2 (MH

+
) 

Requires: 192.1019 (−3.1 ppm error). Obtained data in accord with those reported in 

the literature.
165

 

Lab Notebook Reference: CHK 2/117 p.170 

1-Phenyl-3,4-dihydroisoquinoline (146g):
44
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Trifluoromethanesulfonic anhydride (3.63 mL, 21.2 mmol) was added via syringe over 

1 min to a stirred mixture of amide 166
42

 (3.38 g, 19.2 mmol) and 2-chloropyridine 

(2.18 mL, 23.1 mmol) in dichloromethane (100 mL) at −78 °C. After 5 min, the reaction 

mixture allowed to warm slowly to rt. The reaction vessel was placed into a preheated 

oil bath at 45 °C and maintained at that temperature for 2 h. Then the reaction mixture 

was allowed to cool to rt and was diluted with dichloromethane (50 mL). Then aq. 

NaOH (60 mL, 1 M) was introduced to neutralize the trifluoromethanesulfonate salts 

and the layers were separated. The organic layer was washed with brine (100 mL), dried 

over MgSO4, filtered and concentrated in vacuo. Purification by column 

chromatography (SiO2, 2:1 petrol:ethyl acetate→1:1 petrol:ethyl acetate) afforded 

compound 146g as an orange oil. (2.12 g, 70%); Rf  0.31 (ethyl acetate); δH (400 MHz, 

CDCl3) 7.62–7.59 (2H, m, ArH), 7.44–7.35 (4H, m, ArH), 7.28–7.20 (3H, m, ArH), 

3.87–3.83 (2H, m, H-3), 2.78–2.71 (2H, m, H-4), δC (100 MHz, CDCl3) 167.0 (C-1), 

138.8 (Ar C), 138.6 (Ar C), 130.4 (Ar CH), 129.1 (Ar CH), 128.6 (Ar CH), 128.5 

(Ar C), 127.9 (Ar CH), 127.7 (Ar CH), 127.2 (Ar CH), 126.4 (Ar CH), 47.4 (C-3), 

26.1 (C-4). Obtained data in accord with those reported in the literature.
44

 

Lab Notebook Reference: CHK 1/27 p.44 
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1,2,3,4-Tetrahydroisoquinolin-1-one (167):
46
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An aqueous solution of NaH2PO4 (1.54 mL, 1.54 mmol, 1.0 M) was added to a solution 

of NaClO2 (464 mg, 5.13 mmol) in THF (4.0 mL). To the resulting pale yellow 

solution, was added a solution of imine 146e (134 mg, 1.02 mmol) in THF (1.6 mL) 

dropwise over 5–10 min. The mixture was vigorously stirred for 5 mins. Then, the 

reaction mixture was diluted with ethyl acetate (30 mL) and washed with water (30 

mL), 10% Na2S2O3 (10 mL) and brine (10 mL). The organic layer was dried over 

Mg2SO4 and concentrated in vacuo. Purification by column chromatography (SiO2, 1:1 

petrol:ethyl acetate→ethyl acetate→ethyl acetate, 5% MeOH) afforded compound 167 

as a colourless solid (94.9 mg, 63%); Rf  0.11 (1:1 petrol:ethyl acetate);
 
δH (400 MHz, 

CDCl3) 7.97 (1H, d, J = 7.6 Hz, H-6/9), 7.77 (1H, br s, NH), 7.34 (1 H, dd, J = 7.6, 7.6 

Hz, H-7/8), 7.25 (1 H, dd, J = 7.6, 7.6 Hz, H-7/8), 7.11 (1 H, d, J = 7.6 Hz, H-6/9), 3.47 

(2H, td, J = 6.4, 2.9 Hz, H-3), 2.88 (2H, t, J = 6.4 Hz, H-4); HRMS (ESI
+
): Found: 

148.0759; C9H10NO (MH
+
) Requires: 148.0757 (−1.3 ppm error). Obtained data in 

accord with those reported in the literature.
46

  

Lab Notebook Reference: CHK 2/96 p.144 

1-Ethoxy-3,4-dihydroisoquinoline (146h):
45
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To a solution of 1,2,3,4-tetrahydroisoquinolin-1-one 167 (90.3 mg, 0.614 mmol)  in 

dichloromethane (7.57 mL) was added  triethyloxonium tetrafluoroborate (272 mg, 1.84 

mmol), K2CO3 (339 mg, 2.45 mmol) and 4 Å MS (313 mg). The mixture was stirred at 

rt for 1 h. The organic layer was diluted in ethyl acetate (10 mL), washed with sat. 

NaHCO3 (10 mL), dried over MgSO4 and concentrated in vacuo to provide compound 

146h as colourless oil (80.6 mg, 75%). Compound 146h was used without further 

purification;
 
δH (400 MHz, CDCl3) 7.65 (1H, d, J = 7.6 Hz H-6/9), 7.31–7.26 (1H, m, 
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H-7/8), 7.21–7.18 (1H, m, H-7/8), 7.11 (1H, d, J = 7.4 Hz, H-6/9), 4.18 (2H, q, J = 7.1 

Hz, H-11), 3.57 (2H, t, J = 7.0 Hz, H-3), 2.68 (2H, t, J = 7.0 Hz, H-4), 1.31 (3H, t, J = 

7.1 Hz, H-12). The salt of this compound with methyl-hydrogen sulphate is known, 

but no spectroscopic data was reported.
166

 

Lab Notebook Reference: CHK 2/97 p.146  

1-Methoxy-3,4-dihydroisoquinoline (146i):
45 
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To a solution of 1,2,3,4-tetrahydroisoquinolin-1-one 167 (534 mg, 3.62 mmol) in 

dichloromethane (45 mL) was added  trimethyloxonium tetrafluoroborate (1.14 g, 7.71 

mmol), K2CO3 (2.00 g, 14.5 mmol) and 4 Å MS (1.85 g). The mixture was stirred at rt 

for 1 h. The organic layer was diluted in ethyl acetate (50 mL), washed with sat. aq. 

NaHCO3 (50 mL), dried over MgSO4 and concentrated in vacuo to provide 484 mg of 

crude material. Purification by column chromatography (SiO2, 2:1 petrol:ethyl 

acetate→ethyl acetate) afforded compound 146i as a yellow oil  (277 mg, 47%); Rf  0.34 

(ethyl acetate);
 
δH (400 MHz, CDCl3) 7.59 (1H, d, J = 7.6 Hz, H-6/9), 7.30–7.27 (1H, 

m, H-7/8), 7.22–7.18 (1H, m, H-7/8), 7.11 (1H, d, J = 7.5 Hz, H-6/9), 3.78 (1H, s, H-

11), 3.59 (2H, t, J = 7.1 Hz, H-3), 2.69 (2H, t, J = 7.1 Hz, H-4). This compound has 

been reported previously in the literature, but no data was reported.
45

  

Lab Notebook Reference: CHK 2/99 p.150 
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N-[2-(1H-Indol-3-yl)ethyl]formamide (170):
48
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A solution of tryptamine 169 (2 g, 12.5 mol) in ethyl formate (15.9 mL, 0.198 mol) 

was heated at reflux for 24 h. The solvent was evaporated under reduced pressure to 

give compound 170 as a brown oil (2.46 g, quantitative); Rf  0.5 (ethyl acetate, 10 % 

MeOH); [δH (400 MHz, DMSO-d6) 10.84 (1H, br s, H-13), 8.10  (1H, br s, NH), 8.03 

(1H, br s, NH), 7.54 (1H, d, J = 7.9, 1.1 Hz, H-5/8), 7.35 (1H, dd, J = 8.1, 1.0 Hz, H-

5/8), 7.17 (1H, d, J = 2.3 Hz, H-2), 7.07 (1 H, ddd, J = 8.1, 7.0, 1.1 Hz, H-6/7), 6.99 

(1H, ddd, J = 7.9, 7.0, 1.0 Hz, H-6/7), 3.42–3.46 (2H, m, H-11), 2.85 (2H, t, J = 7.2 Hz, 

H-10); δC (100 MHz, DMSO-d6) 161.0 (C-13), 136.2 (C-4/9), 127.1 (C-4/9), 122.7 

(C-2), 120.9 (C-6/7), 118.2 (C-6/7), 118.2 (C-5/8), 111.5 (C-3), 111.3 (C-5/8), 38.0 

(C-11), 25.1 (C-10). Obtained data in accord with those reported in the literature.
48

  

Lab Notebook Reference: CHK 2/91 p.137. 

3H, 4H, 9H-Pyrido[3,4-b]indole (146j): 
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Procedure A:
47

 

IBX (95.5 mg, 0.341 mmol) was dissolved in DMSO (0.5 mL) with vigorous stirring 

for 30 min at rt. This IBX solution was then added to a solution of amine 168 (53.4 

mg, 0.310 mmol) in DMSO (0.5 mL) and allowed to stir at rt for 20 min. The 

mixture was quenched by addition of sat. aq. Na2S2O3 (1 mL) and then basified with 

saturated aq. NaHCO3 (1 mL). Following extraction with ethyl acetate (5 mL), the 

organic phase was washed with water (2 × 10 mL) and brine (10 mL), and then dried 

over MgSO4, filtered and concentrated in vacuo. Purification by column 

chromatography (SiO2, DCM, 1% MeOH→DCM, 2% MeOH→DCM, 5% 

MeOH→DCM, 10% MeOH) afforded compound 146j as an orange solid (580 mg, 

32%); Rf  0.51 (5:1 DCM:MeOH). 
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Procedure B:
49

  

N-[2-(1H-Indol-3-yl)ethyl]formamide 170 (1.85 g, 9.84 mmol) was added in small 

portions with rapid stirring under argon, in phosphorus oxychloride (5.00 mL, 53.2 

mmol). The reaction mixture was kept at rt by means of an ice-water bath. Stirring 

was continued until complete disappearance of the starting material (60 min). The 

bright yellow suspension was slowly poured into anhydrous diethyl ether with rapid 

stirring (30 mL). The hydrochloride salt of compound 146j which precipitated was 

then collected by filtration and washed several times with ether. Recrystallization of 

the solid in a mixture of ethyl acetate and 95% ethanol afforded the pure salt of 

compound 146j. The latter was dissolved in water (50 mL) and the solution was 

made basic by slow addition of aq. NaOH (1 M), leading to precipitation of 

compound 146j. The mixture was extracted with ether (3 × 50 mL), the organic 

extracts were combined, washed with brine (50 mL), dried over MgSO4 and the 

solvent removed under reduced pressure, leaving compound 146j as a pale yellow 

amorphous solid (757 mg, 45%); Rf  0.09 (ethyl acetate).  

δH (400 MHz, DMSO-d6) 8.36 (1 H, t, J =  2.3 Hz, H-1), 7.56 (1H, dd, J = 7.9, 1.1 Hz, 

H-7/10 ), 7.40 (1 H,  dd, J = 8.2, 0.8 Hz,  H-7/10), 7.19 (1H, ddd, J =  8.2, 7.0, 1.1 Hz, 

H-8/9), 7.04 (1 H, ddd,  J = 7.9, 7.0, 0.8 Hz, H-8/9), 3.78 (2 H, td, J = 8.6, 2.3 Hz, H-3), 

2.80 (2 H, t, J =  8.6 Hz, H-4). Obtained data in accord with those reported in the 

literature.
47

  

Lab Notebook Reference: CHK 1/38 p.59 (Procedure A) and CHK 2/94 p.145 

(Procedure B) 

Spiro[cyclohexane-1,3’-indole] (146k):
50
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A mixture of phenylhydrazine 171 (0.165 mL, 1.68 mmol) and cyclohexane-

carbaldehyde 172 (0.205 mL, 1.68 mmol) in AcOH (16.8 mL) was stirred at 60 °C for 

30 min. The solvent was removed in vacuo. Purification by column chromatography 

(SiO2, pure petrol→10:1 petrol: ethyl acetate) afforded compound 146k as a brown 

solid (258 mg, 83%); Rf  0.14 (9:1 petrol:ethyl acetate);
 
δH (400 MHz, CDCl3) 8.36 (1H, 
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s, H-2), 7.64 (1H, dd, J = 7.5, 1.1 Hz, H-8/5), 7.39 (1H, dd, J = 7.5, 1.3 Hz, H-5/8), 

7.33 (1 H, ddd, J = 7.5, 7.5, 1.3 Hz, H-6/7), 7.24 (1H, ddd, J = 7.5, 7.5, 1.1 Hz, H-6/7), 

1.93–1.55 (10H, m, H-10,11,12 ); HRMS (ESI
+
): Found: 186.1269; C13H16N (MH

+
) 

Requires: 186.1277 (3.7 ppm error). Obtained data in accord with those reported in 

literature.
167

 

Lab Notebook Reference: CHK 2/115 p.168 

3,3-Dimethyl-3H-indole (146l):
50,51
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A mixture of phenylhydrazine 171 (0.496 mL, 5.04 mmol) and isobutyraldehyde 173 

(0.458 mL, 5.04 mmol) in AcOH (50.4 mL, 0.880 mol) was stirred at 60 °C for 30 min. 

The solvent was removed in vacuo. Purification by column chromatography (SiO2, pure 

petrol→19:1→10:1 petrol:ethyl acetate) afforded compound 146l as a yellow solid (437 

mg, 60%); Rf  0.23 (5:2 petrol:ethyl acetate); νmax (thin film)/cm
−1 

2917, 2818, 1493, 

1578, 1454, 1432, 1367, 1253, 895, 729; δH (400 MHz, CDCl3) (The NMR  spectrum 

is complex since compound 146l is present in the monomeric form as well as in the 

trimer form 146l′, in ratio 2.5:1).  

Monomer 146l: δH (400 MHz, CDCl3) 8.03 (1H, s, H-1), 7.65–7.62 (1H, m, ArH), 7.36–

7.32 (2H, m, ArH), 7.29–7.25 (1H, m, ArH), 1.37 (6H, s, H-10); δC (100 MHz, CDCl3) 

180.1 (C-1), 154.2 (C-3/8), 144.8 (C-3/8), 127.6 (Ar CH), 126.2 (Ar CH), 121.1 (Ar 

CH), 121.1 (Ar CH), 53.5 (C-9) 21.6 (C-10). 

Trimer 146l′: δH (400 MHz, CDCl3) 7.21–7.15 (2H, m, ArH), 7.10–6.99 (3 H, m, ArH), 

6.87 (1H, ddd, J = 7.5, 7.5, 0.9 Hz, ArH), 6.78 (1H, ddd, J = 7.4, 7.4, 0.9 Hz, ArH), 

6.66 (1H, ddd, J = 7.4, 7.4, 0.9 Hz, ArH), 6.56 (1H, ddd, J = 7.4, 8.2, 1.5 Hz, ArH), 

6.49 (1H, d, J = 8.0 Hz, ArH), 6.22 (1H, d, J = 7.8 Hz, ArH), 5.66 (1H, d,  J = 8.0 Hz, 

ArH), 4.95 (1H, s, PhNCHN), 4.46 (1H, s, PhNCHN), 4.26 (1H, s, PhNCHN), 1.64 (3H, 

s, CH3), 1.40 (3H, s, CH3), 1.36 (3H, s, CH3), 1.33 (6H, s, 2x CH3), 1.24 (3H, s, CH3); 

δC (100 MHz, CDCl3) 150.5 (Ar C), 148.6 (Ar C), 145.8 (Ar C), 140.8 (Ar C), 138.3 
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(Ar C), 137.0 (Ar C), 129.3 (Ar CH), 127.3 (Ar CH), 126.4 (Ar CH), 123.6 (Ar CH), 

122.2 (Ar CH), 120.8 (Ar CH), 119.5 (Ar CH), 119.0 (Ar CH), 117.7 (Ar CH), 115.0 

(Ar CH), 107.1 (Ar CH), 105.1 (Ar CH), 88.8 (PhNCHN), 86.9 (Ph-NCHN), 83.0 

(PhNCHN), 47.2 (C-9a/b/c), 44.1 (C-9a/b/c), 42.9 (C-9a/b/c), 31.7 (C-CH3), 29.7 (C-

CH3), 28.4 (C-CH3), 23.6 (C-CH3), 21.5 (C-CH3), 20.0 (C-CH3); HRMS (ESI
+
): 

Found: 146.0964; C10H12N (MH
+
) Requires: 146.0964 (−0.1 ppm error).  

These compounds have been reported previously in the literature, but no 

spectroscopic data were reported.
50,51

 

Lab Notebook Reference: CHK 2/120 p.175 

2-(1,3-Dimethoxy-1,3-dioxopropan-2-yl)benzoic acid (147p):
52 
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Sodium hydride (2.40 g, 60.0 mmol, 60 % in mineral oil) was added portionwise to a 

rapidly stirred cold suspension (0 °C) of 2-bromobenzoic acid (5.05 g, 25.1 mmol), 

copper bromide (360 mg, 2.51 mmol) and dimethyl malonate (50.2 mL). After the 

addition of the sodium hydride had been completed, the mixture was stirred for 10 

min at rt and then for 1.5 h at 70 °C. The suspension, which had turned to a solid 

mass, was dissolved in water (50 mL), washed with ether (3 × 50 mL) and then 

acidified with 10% aq. HCl. The acidic aqueous layer was extracted with ethyl 

acetate (3 × 50 mL), and the organic extracts were dried over MgSO4 and 

concentrated in vacuo. Purification by column chromatography (SiO2, 8:1→1:1→1:2 

petrol:ethyl acetate) afforded compound 147p as a white solid (5.80 g, 92%); Rf  0.7 

(2:1 petrol:ethyl acetate); δH (400 MHz, CDCl3) 8.15 (1H, d, J = 7.9 Hz, H-3/6), 7.61 

(1H, ddd, J = 7.6, 7.6, 1.5 Hz, H-4/5), 7.48–7.44 (2H, m, H-3/6, 4/5), 5.83 (1H, s, H-8), 

3.79 (6H, s, CO2CH3); HRMS (ESI
+
): Found: 275.0526 C12H12NaO6 (MNa

+
) 

Requires: 275.0526 (−0.1 ppm error). Obtained data in accord with those reported in 

the literature.
147

  

Lab Notebook Reference: CHK 4.247 p.51 
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General DIA procedure A: 

N

(X = O, S, NR, CR2)

N

O

X

HX

O

HO

T3P, DIPEA,
toluene

R'

R'

 

To a solution of imine (1 mmol) and acid (1.2 mmol) in dry toluene (10 mL) was added 

sequentially DIPEA (1.85 mmol) and then T3P (1.5 mmol, 50% solution in THF). The 

resulting solution was heated at either 50 °C, 90 °C or 120 °C in a sealable tube for the 

specified time, before cooling to rt and pouring into sat. aq. NaHCO3 (20 mL). The 

aqueous layer was extracted with dichloromethane (3 × 30 mL), concentrated in vacuo 

and purified by column chromatography. 

General DIA procedure B: 

N
N

O

R2

C

R2HC

O

HO

i) T3P, DIPEA,
solvent, rt, 20 min

ii) Lewis acid
solvent

R'

R'

 

To a solution of imine (1 mmol) and acid (1.2 mmol) in chloroform (10 mL) was added 

sequentially DIPEA (1.85 mmol) and T3P (1.5 mmol, 50% solution in THF). The 

resulting solution was stirred at rt in a sealable tube for 20 min before adding a Lewis 

acid (BF3·Et2O or AlCl3 or BCl3) (2 mmol) and stirred at rt or 50 °C for the specified 

time. The reaction mixture was poured into sat. aq. NaHCO3 (20 mL) and the aqueous 

layer was extracted with dichloromethane (for BF3·Et2O and BCl3) or ethyl acetate (for 

AlCl3) (3 × 30 mL). The combined organic extracts were washed with brine (for AlCl3), 

concentrated in vacuo and purified by column chromatography. 
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6,6-Dibenzyl-6,7,8,9-tetrahydro-5aH,11H-pyrido[2,1-b][1,3]benzoxazin-11-one 

(149a):  
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Synthesised using general DIA procedure A from imine 146a (45.0 mg, 0.171 mmol), 

acid 147a (28.3 mg, 0.205 mmol), DIPEA (55.0 μL, 0.316 mmol) and T3P (163 mg, 

0.256 mmol) in toluene (1.5 mL) at 90 °C for 20 h. Purification by column 

chromatography (SiO2, 5:1 petrol:ethyl acetate) afforded cmpound 149a as a colourless 

oil (54.5 mg, 83%); Rf  0.29 (5:1 petrol:ethyl acetate); νmax (thin film)/cm
−1 

1640, 1588, 

1448, 1310, 1212, 1053, 896, 742; δH (400 MHz, CDCl3) 7.94 (1H, dd, J  = 7.7, 1.7 

Hz, H-10), 7.49 (1H, ddd, J = 8.3, 7.3, 1.7 Hz, H-8), 7.35–7.05 (12H, m, ArH, H-7,9), 

5.09 (1H, s, H-1), 4.71–4.64 (1H, m, H-2eq), 3.23 (1H, d, J = 13.4 Hz, CHHPh-13), 

3.22 (1H, d, J = 13.7 Hz, CHHPh-14), 2.91 (1H, d, J = 13.7 Hz, CHHPh-14), 2.48–2.40 

(2H, m, H-2ax, CHHPh-13), 2.19–2.05 (1H, m, H-3a), 1.64–1.56 (2H, m, H-3b,4a), 

1.42–1.32 (1H, m, H-4b); δC (100 MHz, CDCl3) 162.6 (C-12), 156.1 (C-6), 137.2 (Ar 

C), 136.4 (Ar C), 134.3 (C-8), 131.1 (Ar CH), 131.1 (C-10), 128.1 (Ar CH), 126.5 

(Ar CH), 122.0 (C-7/9), 116.1 (C-11), 115.7 (C-7/9), 89.2 (C-1), 42.4 (C-5), 41.8 

(C-2), 41.4 (C-13), 35.8 (C-14), 27.6 (C-4), 19.6 (C-3); HRMS (ESI
+
): Found: 

384.1940 (3.5 ppm error); C26H26NO2 (MH
+
) Requires: 384.1958  Found: 348.1940 

(4.6 ppm error).  

Lab Notebook Reference: CHK 1/16 p.32 
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6,6-Dibenzyl-2-chloro-6,7,8,9-tetrahydro-5aH,11H-pyrido[2,1-b][1,3]benzoxazin-

11-one (149b):  
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Synthesised using general DIA procedure A from imine 146a (66.9 mg, 0.254 mmol), 

acid 147b (52.6 mg, 0.305 mmol), DIPEA (81.9 μL, 0.470 mmol) and T3P (242 mg, 

0.381 mmol) in toluene (1.5 mL) at 90 °C for 20 h. Purification by column 

chromatography (SiO2, 5:1 petrol:ethyl acetate) afforded compound 149b as a white 

solid (46.7 mg, 96%); mp 198–201 °C; Rf  0.29 (5:1 petrol:ethyl acetate); νmax (thin 

film)/cm
−1 

1668, 1608, 1475, 1441, 1325, 1283, 704; δH (400 MHz, CDCl3) 7.90 (1H, 

d, J = 2.7 Hz, H-10), 7.42 (1H, dd, J = 8.8, 2.7 Hz, H-8), 7.34–7.20 (9H, m, ArH), 7.11–

7.09 (1H, m, ArH), 7.05 (1H, d, J = 8.8 Hz, H-7), 5.09 (1H, s, H-1), 4.68–4.62 (1H, m, 

H-2eq), 3.21–3.16 (2H, m, CHHPh-13, CHHPh-14), 2.86 (1H, d, J = 13.5 Hz, CHHPh-

14), 2.49–2.40 (2H, m, H-2ax, CHHPh-13), 2.18–2.04 (1H, m, H-3a), 1.65–1.56 (2H, 

m, H-3b,4a), 1.42–1.31 (1H, m, H-4b); δC (100 MHz, CDCl3) 161.4 (C-12), 154.5 (C-

6), 137.0 (Ar C), 136.3 (Ar C), 134.2 (C-8), 131.0 (Ar CH), 131.0 (Ar CH), 128.1 

(Ar CH), 128.1 (Ar CH), 127.7 (C-10) 127.3 (C-9), 126.6 (Ar CH), 126.6 (Ar CH), 

117.3 (C-11), 117.2 (C-7), 89.5 (C-1), 42.5 (C-2), 42.0 (C-13), 41.4 (C-5), 35.8 (C-

14), 27.6 (C-4), 19.5 (C-3); HRMS (ESI
+
): Found: 418.1585; C26H25

35
ClNO2 (MH

+
) 

Requires: 418.1568 (−3.9 ppm error). 

Lab Notebook Reference: CHK 1/5 p.9 
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6,6-Dibenzyl-2-nitro-6,7,8,9-tetrahydro-5aH,11H-pyrido[2,1-b][1,3]benzoxazin-11-

one (149c) :  
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Synthesised using general DIA procedure A from imine 146a (37.0 mg, 0.141 mmol), 

acid 147c (30.9 mg, 0.169 mmol), DIPEA (45.5 μL, 0.261 mmol) and T3P (135 mg, 

0.212 mmol) in toluene (1.4 mL) at 90 °C for 20 h. Purification by column 

chromatography (SiO2, 4:1 petrol:ethyl acetate) afforded compound 149c as a colourless 

oil (55.0 mg, 91%). 

Also synthesised using general DIA procedure A from imine 146a (33.0 mg, 0.125 

mmol), acid 147c (27.6 mg, 0.150 mmol), DIPEA (40.3 μL, 0.231 mmol) and T3P (119 

mg, 0.188 mmol) in toluene (1.3 mL) at 50 °C for 2 h. Purification by column 

chromatography (SiO2, 4:1 petrol:ethyl acetate) afforded compound 149c as a colourless 

oil (51.0 mg, 95%). 

Rf  0.8 (ethyl acetate); νmax (thin film)/cm
−1 

1646, 1597, 1571, 1503, 1459, 1426, 

1321, 1268, 693; δH (400 MHz, CDCl3) 8.83 (1H, d, J = 2.8 Hz, H-10), 8.36 (1H, dd, J 

= 9.2, 2.8 Hz, H-8), 7.35–7.19 (9H, m, ArH), 7.14–7.10 (2H, m, H-7, ArH), 5.26 (1H, s, 

H-1), 4.76–4.70 (1H, m, H-2eq), 3.18 (1H, d, J = 13.5 Hz, CHHPh-13, overlapping), 

3.17 (1H, d, J = 13.5 Hz, CHHPh-14, overlapping), 2.78 (1H, d, J = 13.5 Hz, 

CHHPh-14), 2.52–2.43 (2H, m, H-2ax, CHHPh-13), 2.17–2.04 (1H, m, H-3a), 1.68–

1.58 (2H, m, H-3b,4a), 1.47–1.35 (1H, m, H-4b); δC (100 MHz, CDCl3) 160.4 (C-12), 

159.5 (C-6), 142.5 (C-9), 136.3 (Ar C), 135.9 (Ar C), 130.9 (Ar CH) , 131.0 (Ar 

CH), 129.5 (C-8), 128.3 (Ar CH), 128.2 (Ar CH), 126.8 (Ar CH), 126.7 (Ar CH), 

124.6 (C-10), 116.7 (C-7), 115.8 (C-11), 90.4 (C-1), 43.0 (C-5), 42.2 (C-2), 41.3 

(C-13), 35.6 (C-14), 27.8 (C-4), 19.6 (C-3); HRMS (ESI
+
): Found: 429.1817; 

C26H25N2O4 (MH
+
) Requires: 429.1809 (−1.8 ppm error). 

 Lab Notebook Reference: CHK 1/55 and CHK/WPU 1241 
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6,6-Dibenzyl-4-nitro-6,7,8,9-tetrahydro-5aH,11H-pyrido[2,1-b][1,3]benzoxazin-11-

one (149d):  

N

1

12
11

6O

10

9

8
7

O

54

3

2

13/14
13/14 NO2

 

Synthesised using general DIA procedure A from imine 146a (56.1 mg, 0.213 mmol), 

acid 147d (46.9 mg, 0.256 mmol), DIPEA (68.6 μL, 0.394 mmol) and T3P (204 mg, 

0.320 mmol) in toluene (1.5 mL) at 90 °C for 20 h. Purification by column 

chromatography (SiO2, 5:1 petrol:ethyl acetate) afforded compound 149d as a 

colourless oil (81.1 mg, 89%); Rf  0.43 (5:1 petrol:ethyl acetate); νmax (thin film)/cm
−1 

1647, 1589, 1506, 1449, 1311, 1275; δH (400 MHz, CDCl3) 8.24 (1H, dd, J = 7.7, 1.7 

Hz, H-10), 8.19 (1H, dd, J = 8.2, 1.7 Hz, H-8), 7.34–7.13 (11H, m, H-9, ArH), 5.31 

(1H, s, H-1), 4.75–4.68 (1H, m, H-2eq), 3.35 (1H, d, J = 13.4 Hz, CHHPh-13), 3.17 

(1H, d, J = 13.4 Hz, CHHPh-14), 2.85 (1H, d, J = 13.4 Hz, CHHPh-14), 2.53–2.42 (2H, 

m, H-2ax, CHHPh-13), 2.18–2.05 (1H, m, H-3a), 1.68–1.59 (2H, m, H-3b,4a), 1.50–

1.40 (1H, m, H-4b); δC (100 MHz, CDCl3) 159.4 (C-12), 150.2 (C-6), 137.0 (C-7), 

136.4 (Ar C), 136.1 (Ar C), 133.7 (C-10), 131.2 (Ar CH), 131.0 (Ar CH), 130.2 (C-

8), 128.2 (Ar CH), 126.6 (Ar CH), 121.0 (C-9), 118.2 (C-11), 90.6 (C-1), 43.2 (C-2), 

42.2 (C-13), 40.9 (C-5), 35.6 (C-14), 27.6 (C-4), 19.6 (C-3); HRMS (ESI
+
): Found: 

429.1827; C26H25N2O4 (MH
+
) Requires: 429.1809 (−4.3 ppm error).   

Lab Notebook Reference: CHK 1/11 p.23 
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6,6-Dibenzyl-3-methoxy-6,7,8,9-tetrahydro-5aH,11H-pyrido[2,1-b][1,3] 

benzoxazin-11-one (149e):  

N

1

12

11

6O

10

9

8

7

O

54

3

2

13/14 13/14

OMe

 

Synthesised using general DIA procedure A from imine 146a (31.2 mg, 0.118 mmol), 

acid 147e (23.9 mg, 0.142 mmol), DIPEA (38.0 μL, 0.219 mmol) and T3P (113 mg, 

0.178 mmol) in toluene (1.5 mL) at 120 °C for 20 h. Purification by column 

chromatography (SiO2, 3:1→1:1 petrol:ethyl acetate→pure ethyl acetate) afforded 

compound 149e as a white solid (40.0 mg, 82%); mp 158–162 °C; Rf  0.7 (ethyl 

acetate); νmax (thin film)/cm
−1 

1635, 1593, 1562, 1473, 1423, 1381, 1352, 1257, 

1181; δH (400 MHz, CDCl3) 7.85 (1H, d, J = 8.6 Hz, H-10), 7.34–7.19 (8H, m, ArH), 

7.13–7.09 (2H, m, ArH), 6.63–6.56 (2H, m, H-7,9), 5.06 (1H, s, H-1), 4.67–4.60 (1H, 

m, H-2eq), 3.90 (3H, s, OMe) 3.24–3.19 (2H, m, CHHPh-13,14), 2.89 (1H, d, J = 13.7 

Hz, CHHPh-14 ), 2.45–2.37 (2H, m, H-2ax, CHHPh-13), 2.16–2.03 (1H, m, H-3a), 

1.63–1.54 (2H, m, H-3b,4a), 1.42–1.28 (1H, m, H-4b); δC (100 MHz, CDCl3) 164.8 

(C-12), 163.0 (C-8), 157.8 (C-6), 137.5 (Ar C), 136.6 (Ar C), 131.2 (Ar CH), 131.2 

(Ar CH), 129.7 (C-10), 128.2 (Ar CH), 128.2 (Ar CH), 126.6 (Ar CH), 126.5 (Ar 

CH), 109.5 (C-11), 109.0 (C-7/9), 100.2 (C-7/9), 89.5 (C-1), 55.8 (C-OMe), 42.5 (C-

2), 41.8 (C-13), 41.5 (C-5), 35.9 (C-14), 27.8 (C-4), 19.8 (C-3); HRMS (ESI
+
): 

Found: 414.2076; C27H28NO3 (MH
+
) Requires: 414.2064 (−2.9 ppm error). 

Lab Notebook Reference: CHK 1/42 p.77 
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6,6-Dibenzyl-2-methoxy-6,7,8,9-tetrahydro-5aH,11H-pyrido[2,1-b][1,3] 

benzoxazin-11-one (149f):  

N

1

12
11

6O

10

9

8

7

O

54

3

2

13/14
13/14

OMe

 

Synthesised using general DIA procedure A from imine 146a (37.0 mg, 0.141 mmol), 

acid 147f (28.4 mg, 0.169 mmol), DIPEA (45.5 μL, 0.261 mmol) and T3P (135 mg, 

0.212 mmol) in toluene (1.4 mL) at 90 °C for 20 h. Purification by column 

chromatography (SiO2, 4:1 petrol:ethyl acetate) afforded compound 149f as a colourless 

solid (35.0 mg, 60%). mp 108–109 °C; Rf  0.7 (ethyl acetate); νmax (thin film)/cm
−1 

1641, 1471, 1447, 1431, 1413, 1375, 1309, 1264, 1193, 692; δH (400 MHz, CDCl3) 

7.41 (1H, d, J = 2.6 Hz, H-10), 7.33–7.16 (8H, m, ArH), 7.11–7.02 (4H, m, ArH), 5.01 

(1H, s, H-1), 4.67–4.60 (1H, m, H-2eq), 3.81 (3H, s, OMe) 3.22–3.18 (2H, m, CHHPh-

13,14), 2.92 (1H, d, J = 13.9 Hz, CHHPh-14), 2.48–2.40 (2H, m, H-2ax, CHHPh-13), 

2.17–2.05 (1H, m, H-3a), 1.66–1.55 (2H, m, H-3b,4a), 1.38–1.28 (1H, m, H-4b); δC 

(100 MHz, CDCl3) 163.1 (C-12), 154.6 (C-6), 150.2 (C-9), 137.3 (Ar C), 136.5 (Ar 

C), 131.1 (Ar CH), 131.0 (Ar CH), 128.1 (Ar CH), 126.4 (Ar CH), 126.4 (Ar CH), 

122.4 (C-7/8), 116.9 (C-7/8), 116.5 (C-11), 109.9 (C-10), 89.1 (C-1), 55.9 (C-OMe), 

42.2 (C-5), 41.9 (C-1), 41.5 (C-13), 35.9 (C-14), 27.6 (C-4), 19.5 (C-3); HRMS 

(ESI
+
): Found: 414.2074; C27H28NO3 (MH

+
) Requires: 414.2064. (−0.6 ppm error). 

Lab Notebook Reference: CHK/WPU 125 
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6,6-Dibenzyl-1-methoxy-6,7,8,9-tetrahydro-5aH,11H-pyrido[2,1-b][1,3] 

benzoxazin-11-one (149g):  

N

1

12
11

6O

10
9

8

7

O

54

3

2

13/14 13/14

OMe  

Synthesised using general DIA procedure A from imine 146a (50.1 mg, 0.190 mmol), 

acid 147g (38.3 mg, 0.228 mmol), DIPEA (61.3 μL, 0.352 mmol) and T3P (182 mg, 

0.286 mmol) in toluene (1.5 mL) at 120 °C for 20 h. Purification by column 

chromatography (SiO2, 3:1→1:1 petrol:ethyl acetate→pure ethyl acetate) afforded 

compound 149g as a white solid (51 mg, 64%); mp 186–187 °C; Rf  0.29 (1:1 ethyl 

acetate); νmax (thin film)/cm
−1 

1641, 1581, 1560, 1457, 1432, 1248, 1090; δH (400 

MHz, CDCl3) 7.37 (1H, dd, J = 8.3, 8.3 Hz, H-8), 7.03-7.14 (8H, m, ArH), 7.10–7.05 

(2H, m, ArH), 6.72 (1H, d, J = 8.3 Hz, H-7/9), 6.60 (1H, d, J = 8.3 Hz, H-7/9), 4.95 

(1H, s, H-1), 4.67–4.60 (1H, m, H-2eq), 3.91 (3H, s, OMe) 3.23 (1H, d, J = 13.8 Hz, 

CHHPh-13), 3.19 (1H, d, J = 13.4 Hz, CHHPh-14), 2.90 (1H, d, J = 13.8 Hz, 

CHHPh-13), 2.47–2.37 (2H, m, H-2ax, CHHPh-14), 2.17–2.04 (1H, m, H-3a), 1.65–

1.53 (2H, m, H-3b,4a), 1.35–1.24 (1H, m, H-4b); δC (100 MHz, CDCl3) 162.1 (C-12), 

160.7 (C-10), 158.3 (C-6), 137.5 (Ar C), 136.6 (Ar C) , 134.3 (C-8), 131.1 (Ar CH), 

128.1 (Ar CH), 126.4 (Ar CH), 126.3 (Ar CH), 108.4 (C-7/9), 109.5 (C-11), 105.4 

(C-7/9), 88.4 (C-1), 56.3 (C-OMe), 42.0 (C-5), 41.5 (C-2), 41.4 (C-14), 36.0 (C-13), 

27.5 (C-4), 19.6 (C-3); HRMS (ESI
+
): Found: 414.2075; C27H28NO3 (MH

+
) 

Requires: 414.2064 (−2.8 ppm error). 

Lab Notebook Reference: CHK 1/15 p.28 
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6,6-Dibenzyl-1,3-dihydroxy-6,7,8,9-tetrahydro-5aH,11H-pyrido[2,1b][1,3] 

benzoxazin-11-one (149h):  

N

1

12
11

6O

10
9

8

7

O

54

3

2

13/14 13/14

OH

OH

 

Synthesised using general DIA procedure A from imine 146a (41.3 mg, 0.157 mmol), 

acid 147h (35.7 mg, 0.188 mmol), DIPEA (50.9 μL, 0.290 mmol) and T3P (151 mg, 

0.235 mmol) in toluene (1.5 mL) at 90 °C for 20 h. Purification by column 

chromatography (SiO2, 3:1→2:1 petrol:ethyl acetate) afforded compound 149h as a 

white solid (39.0 mg, 60%); mp 135–136 °C; Rf 0.57 (1:1 petrol:ethyl acetate); νmax 

(thin film)/cm
−1 

3269, 1619, 1589, 1491, 1471, 1441, 1293, 1257, 1137; δH (400 

MHz, CDCl3) 12.10 (1H, br s, OH), 7.35–7.20 (8H, m, ArH), 7.10–7.06 (2H, m, ArH), 

6.09 (1H, d, J = 2.0 Hz, H-7/9), 6.01 (1H, d, J = 2.0 Hz, H-7/9), 5.48 (1H, br s, OH), 

4.96 (1H, s, H-1), 4.55–4.47 (1H, m, H-2eq), 3.18 (1H, d, J = 13.7 Hz, CHHPh-13), 

3.17 (1H, d, J = 13.4 Hz, CHHPh-14), 2.90 (1H, d, J = 13.7 Hz, CHHPh-13), 2.46–2.37 

(2H, m, H-2ax, CHHPh-14), 2.15–2.05 (1H, m, H-3a), 1.67–1.55 (2H, m, H-3b,4a), 

1.37–1.22(1H, m, H-4b); δC (100 MHz, CDCl3) 167.0 (C-12), 162.8 (C-8/10), 162.8 

(C-8/10), 157.5 (C-6), 137.0 (Ar C), 136.3 (Ar C), 131.0 (Ar CH), 128.2 (Ar CH), 

128.2 (Ar CH), 126.6 (Ar CH), 126.5 (Ar CH), 97.2 (C-11), 95.2(C-7/9), 93.8 

(C-7/9), 88.9 (C-1), 42.1 (C-5), 41.4 (C-2), 41.1 (C-14), 35.7 (C-13), 27.4 (C-4), 

19.4 (C-3); HRMS (ESI
+
): Found: 416.1847; C26H26NO4 (MH

+
) Requires: 416.1856 

(2.3 ppm error). 

Lab Notebook Reference: CHK 1/22 p.40 
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4,4-Dibenzyl-2,3,4,4a-tetrahydro-1H,12H-naphtho[2,3-e]pyrido[2,1-b][1,3]oxazin-

12-one (149i):  

N

1

16
15

6O

14
13

8
7

O

54

3

2

17/18 17/18

12

11

10

9

 

Synthesised using general DIA procedure A from imine 146a (56.2 mg, 0.214 mmol), 

acid 147i (48.2 mg, 0.256 mmol), DIPEA (69.0 μL, 0.396 mmol) and T3P (204 mg, 

0.321 mmol) in toluene (1.5 mL) at 90 °C for 20 h. Purification by column 

chromatography (SiO2, 7:1→5:1 petrol:ethyl acetate) afforded compound 149i as a 

white solid (88.4 mg, 95%); mp 204–205 °C; Rf  0.37 (5:1 petrol:ethyl acetate); νmax 

(thin film)/cm
−1 

1640, 1608, 1580, 1491, 1438, 1388, 1338, 1264, 1233, 869; δH (400 

MHz, CDCl3) 8.53 (1H, s, H-14), 7.89 (1H, d, J = 8.2, ArH), 7.80 (1H, d, J = 8.2, ArH), 

7.56–7.48 (1H, m, ArH), 7.48 (1H, s, H-7) 7.42–7.37 (1H, m, ArH), 7.34–7.16 (10H, m, 

ArH), 5.16 (1H, s, H-1), 4.80–4.74 (1H, m, H-2eq), 3.29 (1H, d, J = 13.4 Hz, CHHPh-

17), 3.21 (1H, d, J = 13.7 Hz, CHHPh-18), 2.91 (1H, d, J = 13.7 Hz CHHPh-18), 2.52 

(1H, ddd, J = 12.6, 12.6, 2.9 Hz, H-2ax), 2.45 (1H, d, J = 13.4 Hz, CHHPh-17), 2.22–

2.08 (1H, m, H-3a), 1.66–1.56 (2H, m, H-3b,4a), 1.45–1.35 (1H, m, H-4b); δC (100 

MHz, CDCl3) 162.3 (C-16), 152.6 (C-6), 137.3 (Ar C), 136.9 (Ar C), 136.6 (Ar C), 

131.3 (Ar CH), 131.1 (C-14), 129.9 (Ar C), 129.6 (Ar C), 129.2 (Ar C), 128.7 (Ar 

CH), 128.3 (Ar CH), 128.2 (Ar CH), 126.7 (Ar CH), 126.6 (Ar CH), 126.5 (Ar CH), 

124.8 (Ar CH), 117.1 (Ar C), 110.8 (C-7),  89.2 (C-1), 43.0 (C-5), 42.3 (C-2), 41.7 

(C-17), 35.8 (C-18), 27.9 (C-4), 19.9 (C-3); HRMS (ESI
+
): Found: 434.2126; 

C30H28NO2 (MH
+
) Requires: 434.2115 (−2.6 ppm error); Elemental Analysis: 

calculated for C30H27NO2 requires C, 83.11; H, 6.28; N, 3.23; found C, 82.84; H, 

6.33; N, 3.27. 

Lab Notebook Reference: CHK 1/12 p.23 
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12,12-Dibenzyl-10,11,12,12a-tetrahydro-7H,9H-naphtho[2,1-e]pyrido[2,1-

b][1,3]oxazin-7-one (149j):  

N

1

16
15

6O

14

13

12

7

O

54

3

2

17/18
17/18

11

10
9

8

 

Synthesised using general DIA procedure A from imine 146a (50.6 mg, 0.192 mmol), 

acid 147j (43.5 mg, 0.231 mmol), DIPEA (62.0 μL, 0.356 mmol) and T3P (183 mg, 

0.288 mmol) in toluene (1.5 mL) at 90 °C for 20 h. Purification by column 

chromatography (SiO2, 7:1 petrol:ethyl acetate) afforded compound 147j as colourless 

oil (76.7 mg, 92%); Rf  0.37 (5:1 petrol:ethyl acetate); νmax (thin film)/cm
−1 

1626, 

1574, 1491, 1442, 1418, 1380, 1264, 1237; δH (400 MHz, CDCl3) 9.58 (1H, d, J = 8.6, 

ArH), 7.98 (1H, d, J = 8.8, ArH), 7.79 (1H, d, J = 8.1, ArH), 7.61 (1H, ddd, J = 8.6, 6.9, 

1.3 Hz, ArH), 7.43 (1H, ddd, J = 8.1, 6.9, 1.3 Hz, ArH), 7.35–7.15 (9H, m, ArH), 7.12–

7.07 (2H, m, ArH), 5.12 (1H, s, H-1), 4.74–4.66 (1H, m, H-2eq), 3.32 (1H, d, J = 13.7 

Hz, CHHPh-17), 3.26 (1H, d, J = 13.4 Hz, CHHPh-18), 3.00 (1H, d, J = 13.7 Hz, 

CHHPh-17), 2.51 (1H, J = 13.4 Hz, CHHPh-18, overlapping), 2.55 (1H, ddd, J = 13.2, 

13.2, 3.95 Hz, H-2ax, overlapping), 2.25–2.10 (1H, m, H-3a), 1.70–1.60 (2H, m, H-

3b,4a), 1.42–1.32 (1H, m, H-4b); δC (100 MHz, CDCl3) 165.0 (C-16), 157.3 (C-6), 

137.5 (Ar C), 136.7 (Ar C), 136.0 (C-14), 132.1 (Ar C), 131.2 (Ar CH), 130.1 (Ar 

C), 129.0 (Ar CH), 128.5 (Ar CH), 128.3 (Ar CH), 126.6 (Ar CH), 126.5 (Ar CH), 

126.3 (Ar CH), 124.7 (Ar CH), 117.0 (Ar CH), 107.9 (Ar CH), 88.8 (C-1), 41.9 (C-

5), 41.7 (C-1), 41.7 (C-18), 36.3 (C-17), 27.6 (C-4), 19.6 (C-3); HRMS (ESI
+
): 

Found: 434.2138; C30H28NO2 (MH
+
) Requires: 434.2115 (−5.0 ppm error). 

Lab Notebook Reference: CHK 1/13 p.24 

 

 

 

 



153 

 

10,10-Dibenzyl-8,9,10,10a-tetrahydro-5H,7H-dipyrido[2,1-b:3',2'-e][1,3]oxazin-5-

one (149k):  

N

1

11
10

6O

9

8

7N

O

54

3

2

12/13 12/13

 

Synthesised using general DIA procedure A from imine 146a (43.5 mg, 0.165 mmol), 

acid 147k (27.6 mg, 0.198 mmol), DIPEA (53.3 μL, 0.306 mmol) and T3P (158 mg, 

0.248 mmol) in toluene (1.5 mL) at 90 °C for 20 h. Purification by column 

chromatography (SiO2, 5:1→3:1 petrol:ethyl acetate) afforded compound 147k as a 

colourless oil (61.7 mg, 97%); Rf  0.37 (3:1 petrol:ethyl acetate); νmax (thin film)/cm
−1 

1642, 1575, 1471, 1450, 1415, 1394, 1318, 1231; δH (400 MHz, CDCl3) 8.41 (1H, dd, 

J = 4.9, 1.8 Hz, H-7), 8.28 (1H, dd, J = 7.5, 1.8 Hz, H-9), 7.33–7.17 (10H, m, ArH), 

7.10 (1H, dd, J = 7.5, 4.9 Hz, H-8), 5.29 (1H, s, H-1), 4.73–4.65 (1H, m, H-2eq), 3.34 

(1H, d, J = 13.5 Hz, CHHPh-12), 3.16 (1H, d, J = 13.5 Hz, CHHPh-13), 2.87 (1H, d, J 

= 13.5 Hz, CHHPh-13 ), 2.39 (1H, ddd, J = 13.3, 13.3, 3.9 Hz, H-2ax), 2.34 (1H, J = 

13.5 Hz, CHHPh-12), 2.17–2.03 (1H, m, H-3a), 1.67–1.55 (2H, m, H-3b,4a), 1.46–1.36 

(1H, m, H-4b); δC (100 MHz, CDCl3) 161.4 (C-11), 160.9 (C-6), 152.8 (C-7), 137.8 

(C-9), 136.7 (Ar C), 136.2 (Ar C), 131.2 (Ar CH), 130.9 (Ar CH), 128.2 (Ar CH), 

126.5 (Ar CH), 119.0 (C-8), 110.7 (C-10), 89.5 (C-1), 42.9 (C-5), 42.2 (C-2), 41.1 

(C-12), 35.3 (C-13), 27.6 (C-4), 19.7 (C-3); HRMS (ESI
+
): Found: 407.1734 (1.0 

ppm error); C25H24N2NaO2 (MNa
+
) Requires: 407.1730, Found: 385.1907; 

C25H25N2O2 (MH
+
) Requires: 385.1911 (−0.9 ppm error).  

Lab Notebook Reference: CHK 1/28 p.45 
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6,6-Dibenzyl-6,7,8,9-tetrahydro-5aH,11H-dipyrido[2,1-b:2',3'-e][1,3]oxazin-11-one 

(149l):  

N

1

11
10

6O

N 9

8

7

O

54

3

2

12/13
12/13

 

Synthesised using general DIA procedure A from imine 146a (43 mg, 0.163 mmol), 

acid 147l (27.2 mg, 0.196 mmol), DIPEA (52.6 μL, 0.302 mmol) and T3P (156 mg, 

0.245 mmol) in toluene (1.5 mL) at 90 °C for 20 h. Purification by column 

chromatography (SiO2, 3:1→petrol:ethyl acetate→pure ethyl acetate→ethyl acetate, 

10% MeOH) afforded compound 149l as an orange oil (39.1 mg, 63%); Rf  0.23 (ethyl 

acetate); νmax (thin film)/cm
−1 

1654, 1450, 1415, 1382, 1314, 1228, 718; δH (400 

MHz, CDCl3) 8.47–8.43 (1H, m, H-9), 7.49–7.40 (2H, m, H-7,8), 7.34–7.19 (8H, m, 

ArH) 7.12–7.06 (2H, m, ArH), 5.19 (1H, s, H-1), 4.80–4.73 (1H, m, H-2eq), 3.25–3.17 

(2H, m, CHHPh-12,13), 2.86 (1H, d, J = 13.7 Hz, CHHPh-12/13), 2.55–2.42 (2H, m, 

H-2ax, CHHPh-12/13), 2.17–2.04 (1H, m, H-3a), 1.64–1.56 (2H, m, H-3b,4a), 1.42–

1.32 (1H, m, H-4b); δC (100 MHz, CDCl3) 161.3 (C-11), 153.6 (C-6), 144.5 (C-9), 

136.9 (Ar C), 136.3 (Ar C), 133.7 (C-10), 131.1 (Ar CH), 131.1 (Ar CH), 128.4 (C-

8), 128.3 (Ar CH), 128.3 (Ar CH), 126.8 (Ar CH), 126.7 (Ar CH), 124.3 (C-7), 89.9 

(C-1), 42.7 (C-5), 42.5 (C-2), 41.5 (C-12), 35.9 (C-13), 27.8 (C-4), 19.6 (C-3); 

HRMS (ESI
+
): Found: 385.1906; C25H25N2O2 (MH

+
) Requires: 385.1911 (−1.1 ppm 

error).  

Lab Notebook Reference: CHK 1/32 p.52 

 

 

 

 

 



155 

 

10,10-Dibenzyl-1,3-dichloro-8,9,10,10a-tetrahydro-7H-pyrido[1,2 b] [4,1,2] 

benzoxathiazine 5,5-dioxide (157):  

N

1

S 11

6O

10

9

8
7

54

3

2

12/13 12/13

O O

Cl

Cl

 

To a solution of imine 146a (45.3 mg, 0.172 mmol) and 3,5-dichloro-2-

hydroxybenzenesulfonic chloride 156 (53.9 mg, 0.206 mmol) in dry toluene (1.5 mL) 

was added DIPEA (55.4 μL, 0.318 mmol). The resulting solution was heated at 90 °C in 

a sealable tube for 20 h, before cooling to rt and pouring into sat. aq. NaHCO3 (3 mL). 

The aqueous layer was extracted with dichloromethane (3 × 5 mL), and the organic 

extracts combined, concentrated in vacuo and purified by column chromatography 

(SiO2, 3:1→2:1 petrol:ethyl acetate) affording compound 157 as white solid (77.9 mg, 

93%); mp 188–191 °C; Rf  0.57 (2:1 petrol:ethyl acetate); νmax (thin film)/cm
−1 

1431, 

1337, 1217, 1161, 944, 690; δH (400 MHz, CDCl3) 7.64 (1H, d, J = 2.5 Hz, H-8/10), 

7.59 (1H, d, J = 2.5 Hz, H-8/10), 7.46–7.24 (10H, m, ArH) 5.50 (1H, s, H-1), 3.65–3.61 

(1H, m, H-2eq), 3.11 (1H, d, J = 14.2 Hz, CHHPh-12), 3.00 (1H, d, J = 14.2 Hz, 

CHHPh-12), 2.98 (1H, d, J = 14.7 Hz, CHHPh-13), 2.88 (1H, d, J = 14.7 Hz, CHHPh-

13), 2.79–2.72 (1H, m, H-2ax), 2.14–2.01 (1H, m, H-3a), 1.82–1.65 (2H, m, H-3b,4a), 

1.57–1.50 (1H, m, H-4b); δC (100 MHz, CDCl3) 146.9 (C-6), 136.4 (Ar C), 136.3 (Ar 

C), 134.3 (C-8/10), 131,0 (Ar CH), 130.9 (Ar CH), 128.4 (Ar CH), 129.4 (Ar CH), 

127.2 (Ar CH), 126.8 (Ar CH), 124.4 (C-8/10), 124.1 (Ar C), 123.9 (C-11) 90.0 (C-

1), 42.2 (C-5), 41.9 (C-2), 39.6 (C-12), 35.3 (C-13), 27.6 (C-4), 19.5 (C-3); HRMS 

(ESI
+
): Found: 488.0861; C25H24

35
Cl2NO3S (MH

+
) Requires: 488.0848 (−2.5 ppm 

error).  

Lab Notebook Reference: CHK 2/132 p.194 
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6,6-Dibenzyl-6,7,8,9-tetrahydro-5aH,11H-pyrido[2,1-b][1,3]benzothiazin-11-one 

(149m):  

N

1

12
11

6S

10

9

8

7

54

3

2

13/14 13/14

O  

Synthesised using general DIA procedure A from imine 146a (50.1 mg, 0.190 mmol), 

acid 147m (35.2 mg, 0.228 mmol), DIPEA (61.3 μL, 0.352mmol) and T3P (182 mg, 

0.286 mmol) in toluene (1.5 mL) at 90 °C for 20 h. Purification by column 

chromatography (SiO2, 5:1 petrol:ethyl acetate) afforded compound 149m as a white 

solid (72.5 mg, 96%); mp 182–184 °C; Rf  0.57 (5:1 petrol:ethyl acetate); νmax (thin 

film)/cm
−1 

1616, 1566, 1471, 1433, 1396, 1266, 896; δH (400 MHz, CDCl3) 8.18 (1H, 

dd, J = 7.9, 0.9 Hz, H-10), 7.38–7.16 (9H, m, ArH), 7.13–7.07 (4H, m, ArH), 4.96 (1H, 

ddd, J = 12.9, 2.1, 2.1 Hz, H-2eq), 4.63 (1H, s, H-1), 3.19 (1H, d, J = 13.7 Hz, 

CHHPh-13), 2.90 (1H, d, J = 13.1 Hz, CHHPh-14), 2.67 (1H, d, J = 13.1 Hz, 

CHHPh-14), 2.53 (1H, ddd, J = 12.9, 12.9, 2.6 Hz, H-2ax), 2.26 (1H, d, J = 13.7 Hz, 

CHHPh-13), 2.20–2.07 (1H, m, H-3a), 1.77–1.70 (1H, m, H-4a), 1.64–1.50 (2H, m, H-

3b,4b); δC (100 MHz, CDCl3) 162.6 (C-12), 137.0 (Ar C), 136.5 (Ar C), 134.1 (Ar C) 

134.1 (Ar C), 132.3 (Ar CH), 131.2 (Ar CH), 131.1 (Ar CH), 130.5 (C-10), 128.4 

(Ar CH), 128.2 (Ar CH), 126.7 (Ar CH), 126.6 (Ar CH), 125.8 (Ar CH), 65.5 (C-1), 

48.0 (C-2), 47.2 (C-5), 40.9 (C-13), 36.5 (C-14), 30.5 (C-4), 21.6 (C-3); HRMS 

(ESI
+
): Found: 400.1739; C26H26NOS (MH

+
) Requires: 400.1730 (−2.3 ppm error). 

Lab Notebook Reference: CHK 1/14 p.24 
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6,6-Dibenzyl-5-methyl-5,5a,6,7,8,9-hexahydro-11H-pyrido[2,1-b]quinazolin-11-one 

(149n):  

N

1

12
11

6N

10

9

8

7

54

3

2

O

13/14
13/14

 

Synthesised using general DIA procedure A from imine 146a (39.0 mg, 0.148 mmol), 

acid 147n (26.9 mg, 0.178 mmol), DIPEA (47.7 μL, 0.273 mmol) and T3P (141 mg, 

0.222 mmol) in toluene (1.5 mL) at 90 °C for 20 h. Purification by column 

chromatography (SiO2, 4:1 petrol:ethyl acetate) afforded compound 149n as a 

colourless oil (72.0 mg, 97%); Rf  0.55 (ethyl acetate); νmax (thin film)/cm
−1 

1623, 

1580, 1471, 1452, 1432, 1397, 1280, 1253; δH (400 MHz, CDCl3) 7.97 (1H, dd, J = 

7.7, 1.3 Hz, H-10), 7.45–7.40 (1H, m, ArH), 7.30–7.14 (8H, m, ArH), 7.07–6.98 (4H, 

m, ArH), 4.87 (1H, ddd, J = 12.8, 2.4, 2.4 Hz, H-2eq), 4.33 (1H, s, H-1), 3.16 (3H, s, 

CH3), 3.05 (1H, d, J = 13.5 Hz, CHHPh-13), 2.81 (1H, d, J = 13.2 Hz, CHHPh-14), 

2.49 (1H, ddd, J = 12.8, 12.8, 2.9 Hz, H-2ax), 2.45 (1H,d, J = 13.5 Hz, CHHPh-13), 

2.23 (1H, d, J = 13.2 Hz, CHHPh-14), 2.15–2.01 (1H, m, H-3a), 1.68–1.62 (1H, m, 

H-4a), 1.56–1.45 (2H, m, H-3b,4b); δC (100 MHz, CDCl3) 162.1 (C-12), 150.3 (C-6), 

137.7 (Ar C), 137.6 (Ar C), 133.4 (Ar CH), 131.5 (Ar CH), 131.1 (Ar CH), 128.1 

(Ar CH), 128. 0 (Ar CH), 126.5 (Ar CH), 126.3 (Ar CH), 122.0 (Ar CH), 121.4 (C-

11), 120.7 (Ar CH), 82.1 (C-1), 48.2 (C-CH3), 48.0 (C-5), 44.8 (C-2), 40.9 (C-13), 

37.1 (C-14), 31.1 (C-4), 21.7 (C-3); HRMS (ESI
+
): Found: 397.2286; C27H29N2O 

(MH
+
) Requires: 397.2274 (−2.9 ppm error). 

Lab Notebook Reference: CHK/WPU 1222 
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6,6-Dibenzyl-5-phenyl-5,5a,6,7,8,9-hexahydro-11H-pyrido[2,1-b]quinazolin-11-one 

(149o):  

N

1

12
11

6N

10

9

8

7
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3

2

13/14

O

Ph
13/14

 

Synthesised using general DIA procedure A from imine 146a (38.0 mg, 0.144 mmol), 

acid 147o (36.9 mg, 0.173 mmol), DIPEA (46.4 μL, 0.266 mmol) and T3P (137 mg, 

0.216 mmol) in toluene (1.4 mL) at 90 °C for 20 h. Purification by column 

chromatography (SiO2, 2:1 petrol:ethyl acetate) afforded compound 149o as a white 

solid (63.0 mg, 95%); Rf  0.59 (ethyl acetate); mp 177–178 °C; νmax (thin film)/cm
−1 

1625, 1579, 1469, 1451, 1431, 1410, 1362, 1280, 1198, 739, 693; δH (400 MHz, 

CDCl3) 8.05 (1H, dd, J = 7.7, 1.5 Hz, H-10), 7.62–7.57 (2H, m, ArH), 7.52–7.46 (2H, 

m, ArH), 7.40–7.20 (5H, m, ArH), 7.13–6.92 (7H, m, ArH), 6.35 (2H, d, J = 7.3 Hz, 

ArH), 5.21 (1H, s, H-1), 4.94 (1H, ddd, 12.7, 2.1, 2.1 Hz, H-2eq), 3.27 (1H, d, J = 13.9 

Hz, CHHPh-13), 3.02 (1H, d, J = 13.2 Hz, CHHPh-14), 2.58 (1H, d, 13.2 Hz, 

CHHPh-14, overlapping), 2.52 (1H, ddd, 12.7, 12.7, 2.95 Hz, H-2ax, overlapping), 2.52 

(1H, d, 13.9 Hz, CHHPh-13) 2.15–2.04 (1H, m, H-3a), 1.62–1.55 (1H, m, H-4a), 1.51–

1.44 (1H, m, H3b), 1.19–1.09 (1H, m, H-4b); δC (100 MHz, CDCl3) 162.4 (C-12), 

151.2 (C-6), 147.8 (Ar C), (Ar C), 137.5 (Ar C), 137.3 (Ar CH), 133.2 (Ar CH), 

131.4 (Ar CH), 131.1 (Ar CH), 130.1 (Ar CH), 128.9 (Ar CH), 128.4 (Ar CH), 128.1 

(Ar CH), 127.9 (Ar CH), 127.0 (Ar CH), 126.4 (Ar CH), 126.1 (Ar CH), 121.8 (Ar 

CH), 119.8 (C-11), 119.7 (Ar CH), 81.4 (C-1), 47.9 (C-5), 45.1 (C-2), 38.5 (C-13), 

36.6 (C-14), 30.9 (C-4), 21.4 (C-3); HRMS (ESI
+
): Found:459.2436; C32H31N2O 

(MH
+
) Requires: 459.2431 (−1.2 ppm error). 

Lab Notebook Reference: CHK/WPU 1230 
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Dimethyl 1,1-dibenzyl-6-oxo-1,3,4,11a-tetrahydro-2H-pyrido[1,2-b]isoquinoline-11, 

11 (6H)-dicarboxylate (149p):  

N

1

13
12

7
6

11

10

9
854

3

2

O

CO2CH3

CO2CH3
14/15

14/15

 

Synthesised using general DIA procedure A from imine 146a (38.0 mg, 0.144 mmol), 

acid 147p (46.3 mg, 0.173 mmol), DIPEA (46.4 μL, 0.266 mmol) and T3P (137 mg, 

0.216 mmol) in toluene (1.4 mL) at 90 °C for 20 h. Purification by column 

chromatography (SiO2, 4:1 petrol:ethyl acetate) afforded compound 149p as a yellow 

solid (62.0 mg, 97%); Rf  0.72 (ethyl acetate); mp 160–163 °C; νmax (thin film)/cm
−1 

1711, 1624, 1577, 1448, 1412, 1235, 1210, 1163, 731, 692; δH (400 MHz, CDCl3) 

8.16 (1H, dd, J = 7.7, 1.4 Hz, H-11), 7.65 (1H, dd, J = 8.0, 1.0 Hz, H-8), 7.57–7.52 (1H, 

ddd, J = 8.0, 7.5, 1.4 Hz, H-9), 7.43 (1H, ddd, 7.7, 7.5, 1.0 Hz, H-10), 7.25–7.12 (6H, 

m, ArH), 7.04–7.00 (2H, m, ArH), 6.95–6.92 (2H, m, ArH), 5.17 (1H, s, H-1), 4.64 (1H, 

ddd, J = 12.6, 6.6, 6.6 Hz, H-2a), 3.98 (3H, s, CH3), 3.69 (3H, s, CH3), 2.85 (1H, ddd, J 

= 12.6, 5.9, 5.9 Hz, H-2b) 2.75 (1H, d, J = 13.2 Hz, CHHPh-14), 2.58 (1H, d, J = 14.6 

Hz, CHHPh-15), 2.46 (1H, d, J = 14.6 Hz, CHHPh-15), 2.43 (1H, d, J = 13.2 Hz, 

CHHPh-14), 1.69–1.58 (1H, m, H-3a), 1.55–1.46 (1H, m, H-4a), 1.41–1.36 (1H, m, H-

4b), 0.99–0.89 (1H, m, H-3b); δC (100 MHz, CDCl3) 169.6 (C-CO2CH3), 169.0 (C-

CO2CH3), 162.3 (C-13), 137.9 (Ar C), 137.7 (Ar C), 133.4 (Ar C), 131.9 (C-9), 

131.3 (Ar CH), 130.7(Ar CH), 129.8 (C-8), 128.6 (C-10), 128.4 (Ar CH), 128.0 (Ar 

C), 128.0 (Ar CH), 127.7 (C-11), 126.4 (Ar CH), 126.4 (Ar CH), 63.2 (C-1), 60.0 

(C-6), 53.9 (C-CH3), 53.2 (C-CH3), 44.8 (C-2), 44.5 (C-5), 40.5 (C-14), 39.9 (C-15), 

33.5 (C-3), 20.0 (C-4); HRMS (ESI
+
):  Found: 498.2278; C31H32NO5 (MH

+
) 

Requires: 498.2275 (−0.7 ppm error). 

Lab Notebook Reference: CHK/WPU 1246 
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3,3-Dibenzyl-1,2,3,3a-tetrahydro-9H-pyrrolo[2,1-b][1,3]benzoxazin-9-one 

(149q): 

3

2

N

1
4

11
10

5O

9

8

7
612/13

12/13

O  

Synthesised using general DIA procedure A from imine 146b (33.2 mg, 0.133 mmol), 

acid 147a (22.1 mg, 0.160 mmol), DIPEA (42.9 μL, 0.246 mmol) and T3P (127 mg, 

0.200 mmol) in toluene (1.5 mL) at 120 °C for 20 h. Purification by column 

chromatography (SiO2, 3:1 petrol:ethyl acetate) afforded compound 149q as a yellow 

oil (23.7 mg, 48%); Rf  0.27 (2:1 petrol:ethyl acetate); νmax (thin film)/cm
−1

 2980, 1647, 

1587, 1446, 1412, 1329, 1195, 1083, 1059, 693; δH (400 MHz, CDCl3) 7.85 (1H, dd, J 

= 7.7, 1.7 Hz, H-9), 7.40 (1H, ddd,  J = 8.2, 7.4, 1.7 Hz, H-7),  7.28–7.13 (8H, m, ArH), 

7.07–7.00 (4H, m, ArH), 5.21 (1H, s, H-1), 3.49–3.37 (2H, m, H-2), 2.95 (1H, d, J = 

14.1, CHHPh-12, overlapping), 2.96 (1H, d, J = 13.8 Hz, CHHPh-13, overlapping), 

2.89 (1H, d, J = 14.1 Hz, CHHPh-12), 2.73 (1H, d, J = 13.8 Hz, CHHPh-13), 1.81 (1H, 

ddd, J = 13.3, 6.7, 1.4 Hz, H-3eq), 1.62–1.56 (1H, m, H-3ax); δC (100 MHz, CDCl3) 

161.3 (C-11), 157.2 (C-5), 137.4 (Ar C), 136.4 (Ar C), 134.0 (Ar CH), 131.0 (Ar 

CH), 130.9 (Ar CH), 128.4 (Ar CH), 128.4 (Ar CH), 127.9 (C-9), 126.8 (Ar CH), 

126.8 (Ar CH), 122.7 (Ar CH), 119.3 (C-10), 116.7 (Ar CH), 90.5 (C-1), 48.0 (C-4), 

40.8 (C-2), 40.2 (C-13), 37.9 (C-12), 26.4 (C-3); HRMS (ESI
+
): Found: 370.1792; 

C25H24NO2 (MH
+
) Requires: 370.1802 (2.7 ppm error). 

Lab Notebook Reference: CHK 1/17 p.79 

 

 

 

 

 

 



161 

 

3,3-Dibenzyl-1,2,3,3a-tetrahydro-9H-pyrrolo[2,1-b][1,3]benzothiazin-9-one (149r):  

3

2

N

1
4

11

10

5S

9

8

7
612/13

12/13

O  

Synthesised using general DIA procedure A from imine 146b (49.5 mg, 0.199 mmol), 

acid 147m (36.74 mg, 0.238 mmol), DIPEA (64.0 μL, 0.367 mmol) and T3P (189 mg, 

0.298 mmol) in toluene (1.5 mL) at 90 °C for 20 h. Purification by column 

chromatography (SiO2, 5:1 petrol:ethyl acetate) afforded compound 149r as a white 

solid (66.4 mg, 87%); Rf  0.8 (3:1 petrol:ethyl acetate); νmax (thin film)/cm
−1

 2874, 

1620, 1567, 1424, 1387, 732, 694; δH (400 MHz, CDCl3) 8.00 (1H, d, J = 7.7 Hz, 

H-9), 7.32–7.25 (5H, m, ArH),  7.20–7.13 (7H, m, ArH), 6.98 (1H, d, J = 8.0 Hz, H-6), 

4.91 (1H, s, H-1), 3.77–3.72 (1H, m, H-2a), 3.67–3.60 (1H, m, H-2b), 3.10 (1H, d, J = 

13.6 Hz, CHHPh-12), 2.83 (1H, d, J = 14.0 Hz, CHHPh-13), 2.78 (1H, d, J = 14.0 Hz, 

CHHPh-13), 2.77 (1H, d, J = 13.6 Hz, CHHPh-12), 1.78 (1H, ddd, J = 12.3, 5.8, 0.9 Hz, 

H-3eq), 1.51–1.42 (1H, m, H-3ax); δC (100 MHz, CDCl3) 163.4 (C-11), 137.1 (Ar C), 

135.8 (Ar C), 134.8 (C-5), 131.8 (Ar CH), 130.9 (Ar CH), 130.6 (Ar CH), 129.9 (C-

9), 129.8 (C-10), 128.4 (Ar CH), 127.7 (Ar CH), 126.9 (Ar CH), 126.8 (Ar CH), 

126.0 (Ar CH), 65.8 (C-1), 49.8 (C-4), 44.1 (C-2), 41.1 (C-12), 39.4 (C-13), 27.1 

(C-3); HRMS (ESI
+
): Found: 386.1574; C25H24NOS (MH

+
) Requires: 386.1573 

(−0.2 ppm error). 

Lab Notebook Reference: CHK 1/52 p.76 
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3,3-Dibenzyl-4-methyl-2,3,3a,4-tetrahydropyrrolo[2,1-b]quinazolin-9(1H)-one 

(149s):  
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Synthesised using general DIA procedure A from imine 146b (34.0 mg, 0.136 mmol), 

acid 147n (24.8 mg, 0.164 mmol), DIPEA (43.8 μL, 0.252 mmol) and T3P (130 mg, 

0.204 mmol) in toluene (1.4 mL) at 90 °C for 20 h. Purification by column 

chromatography (SiO2, 4:1 petrol:ethyl acetate) afforded compound 149s as a colourless 

oil (52.0 mg, 87%); Rf  0.68 (ethyl acetate); νmax (thin film)/cm
−1 

1677, 1626, 1464, 

1381, 1292, 1244; δH (400 MHz, CDCl3) 7.92 (1H, dd, J = 7.5, 1.7 Hz, H-9), 7.42 (1H, 

ddd,  J = 8.4, 7.5, 1.7 Hz, H-7), 7.35–7.20 (5H, m, ArH), 6.90 (1H, ddd, J = 7.5, 7.5, 0.9 

Hz, H-8), 6.85 (1H, dd, J = 8.4, 0.9 Hz, H-6), 4.70 (1H, s, H-1), 3.54–3.46 (2H, m, H-

2), 3.24 (3H, s, CH3), 3.19 (1H, d, J = 14.3 Hz, CHHPh-12), 3.17 (1H, d, J = 14.1 Hz, 

CHHPh-13), 2.97 (1H, d, J = 14.1 Hz, CHHPh-13), 2.90 (1H, d, J = 14.3 Hz, 

CHHPh-12), 1.84–1.65 (2H, m, H-3); δC (100 MHz, CDCl3) 162.5 (C-11), 149.9 (C-

10), 137.5 (Ar C), 136.2 (Ar C), 133.6 (C-7), 131.4 (Ar CH), 131.0 (Ar CH), 128.4 

(Ar CH), 128.1 (C-9), 126.9 (Ar CH), 126.8 (Ar CH), 119.1 (C-8), 117.7 (C-5), 

112.7 (C-6), 77.9 (C-1), 50.0 (C-4), 42.4 (C-12), 41.1 (C-2), 37.7 (C-13), 35.3 (C-

CH3), 28.1 (C-3); HRMS (ESI
+
): Found: 405.1934; C26H26N2NaO (MNa

+
) Requires: 

405.1937 (0.7 ppm error). 

Lab Notebook Reference: CHK/WPU 1247 
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6,6-Di[(1E)-prop-1-en-1-yl]-6,7,8,9-tetrahydro-5aH,11H pyrido [2,1b] [1,3] 

benzoxazin-11-one (149t): 
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Synthesised using general DIA procedure A from imine 146c (43.0 mg, 0.263 mmol), 

acid 147a (43.6 mg, 0.316 mmol), DIPEA (84.8 μL, 0.487 mmol) and T3P (251 mg, 

0.395 mmol) in toluene (1.5 mL) at 90 °C for 20 h. Purification by column 

chromatography (SiO2, 3:1→1:1 petrol:ethyl acetate) afforded compound 149t as a 

colourless oil (14.4 mg, 20%); Rf  0.57 (2:1 petrol:ethyl acetate); νmax (thin film)/cm
−1

 

2893, 1643, 1614, 1588, 1566, 1448, 1380, 1353, 1307, 1265, 745; δH (400 MHz, 

CDCl3) 7.92 (1H, dd, J = 7.7, 1.7 Hz, H-10), 7.41 (1H, ddd, J = 8.2, 7.3, 1.7 Hz, H-8), 

6.89 (1H, ddd, J = 7.7, 7.3, 1.0 Hz,  H-9), 6.90 (1H, d, J = 8.2, 1.0 Hz, H-7), 5.96–5.72 

(2H, m, H-14,14’), 5.18 (1H, s, H-1), 5.18–5.06 (4H, m, H-15,15’), 4.64–4.58 (1H, m, 

H-2eq), 2.66 (1H, ddd, 13.5, 13.5, 4.0 Hz, H-2ax), 2.50 (1H, dd, J = 14.4, 8.0 Hz, 

H-13a), 2.40 (1H, dd, 14.1, 8.4 Hz, H-13’a), 2.28 (1H, dd, J = 14.4, 7.0 Hz, H-13b), 

2.22 (1H, dd, J = 14.1, 7.2 Hz, H-13’b), 1.78–1.65 (2H, m, H-3), 1.48–1.36 (2H, m, 

H-4); δC (100 MHz, CDCl3) 163.1 (C-12), 156.2 (C-6), 134.1 (C-8), 133.5 

(C-14/14’), 133.2 (C-14/14’), 128.0 (C-10), 121.9 (C-9), 118.9 (C-15), 118.5 

(C-15’), 116.3 (C-11), 115.7 (C-7), 90.8 (C-1), 41.8 (C-2), 40.7 (C-5), 40.7 (C-13’), 

29.5 (C-13) (C-4), 18.7 (C-3); HRMS (ESI
+
): Found: 284.1652; C18H22NO2 (MH

+
) 

Requires: 284.1645 (−2.4 ppm error) .  

Lab Notebook Reference: CHK 1/21 p.36 
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6,6-Dipropyl-6,7,8,9-tetrahydro-5aH,11H-pyrido[2,1-b][1,3]benzoxazin-11-one 

(149u):  
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Synthesised using general DIA procedure A from imine 146d (1:1 mixture of imine 

146d and lactam 162) (36.2 mg, 0.216 mmol), acid 147a (35.9 mg, 0.260 mmol), 

DIPEA (69.7 μL, 0.400 mmol) and T3P (206 mg, 0.324 mmol) in toluene (1.5 mL) at 

90 °C for 20 h. Purification by column chromatography (SiO2, 5:1 petrol:ethyl acetate) 

afforded compound 149u as a colourless oil (14.7 mg, 24%); Rf  0.43 (3:1 petrol:ethyl 

acetate); νmax (thin film)/cm
−1

 2828, 1643, 1588, 1567, 1448, 1416, 1382, 1355, 

1308, 1265, 1148; δH (400 MHz, CDCl3) 7.91 (1H, dd, J = 7.6, 1.7 Hz, H-10), 7.39 

(1H, ddd, J = 8.2, 7.6, 1.7 Hz, H-8),  7.02 (1H, ddd, J = 7.6, 7.6, 1.0  H-9), 6.86 (1H, 

dd, J = 8.2, 1.0 Hz, H-7), 5.13 (1H, s, H-1), 4.63–4.57 (1H, m, H-2eq), 2.68 (1H, ddd, J 

= 13.1, 13.1, 4.4 Hz, H-2ax), 1.72–1.20 (12H, m, 6 × CH2), 0.95–0.85 (6H, m, 2 × 

CH3); δC (100 MHz, CDCl3) 163.1 (C-12), 156.4 (C-6), 134.0 (C-8), 127.9 (C-10), 

121.7 (C-9), 116.3 (C-11), 115.7 (C-7), 92.3 (C-1), 41.9 (C-2), 41.3 (C-5), 39.4 

(C-CH2), 31.5 (C-CH2), 30.5 (C-CH2), 19.0 (C-CH2), 16.9 (C-CH2), 16.0 (C-CH2), 

15.1 (C-CH3), 15.0 (C-CH3); HRMS (ESI
+
): Found: 288.1954; C18H26NO2 (MH

+
) 

Requires: 288.1958 (1.3 ppm error) .  

Lab Notebook Reference: CHK 1/30 p.47 
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5,13a-Dihydro-6H,8H-isoquinolino[1,2-b][1,3]benzoxazin-8-one (149v):  
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Synthesised using general DIA procedure A from imine 146e (30.0 mg, 0.229 mmol), 

acid 147a (37.9 mg, 0.275 mmol), DIPEA (73.8 μL, 0.424 mmol) and T3P (219 mg, 

0.344 mmol) in toluene (2.3 mL) at 90 °C for 20 h. Purification by column 

chromatography (SiO2, 3:1 petrol:ethyl acetate) afforded compound 149v as a 

colourless oil (51.0 mg, 89%); νmax (thin film)/cm
−1 

1643, 1588, 1446, 1395, 1211, 

1014, 746; δH (400 MHz, CDCl3) 8.03 (1H, dd, J = 7.7, 1.5 Hz, H-14), 7.62–7.58 (1H, 

m, ArH), 7.48 (1H, ddd, 8.3, 7.4, 1.7 Hz, ArH), 7.41–7.35 (2H, m, ArH), 7.28–7.24 

(1H, m, ArH), 7.15 (1H, ddd, J = 7.7, 7.5, 1.0 Hz, ArH), 7.07 (1H, dd, J = 8.2, 0.9 Hz, 

ArH), 6.28 (1H, s, H-1), 4.52 (1H, ddd J = 12.8, 4.4, 4.4 Hz, H-2eq), 3.42 (1H, ddd, 

12.8, 10.7, 3.8 Hz, H-2ax), 3.10 (1H, ddd, J = 15.7, 10.7, 4.4 Hz, H-3ax), 2.86 (1H, 

ddd, 15.7, 4.4, 3.8 Hz, H-3eq); δC (100 MHz, CDCl3) 163.1 (C-16), 157.6 (C-10), 

136.2 (C-4/9), 134.3 (Ar CH), 130.8 (Ar CH), 129.5 (C-4/9), 128.7 (Ar CH), 128.6 

(Ar CH), 128.2 (Ar CH), 127.3 (Ar CH), 122.8 (Ar CH), 118.8 (C-15), 116.6(Ar 

CH), 84.1 (C-1), 38.3 (C-2), 28.6 (C-3); HRMS (ESI
+
): Found: 252.1021; 

C16H14NO2 (MH
+
) Requires: 252.1019 (−0.9 ppm error). 

Lab Notebook Reference: CHK 1/19 p.34 
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13a-Methyl-5, 13a-dihydro-6H, 8H-isoquinolino[1,2-b][1,3]benzothiazin-8-one 

(149w):  
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Synthesised using general DIA procedure A from imine 146e (37.7 mg, 0.287 mmol), 

acid 147m (53.2 mg, 0.345 mmol), DIPEA (92.6 μL, 0.532 mmol) and T3P (274 mg, 

0.431 mmol) in toluene (1.5 mL) at 120 °C for 20 h. Purification by column 

chromatography (SiO2, 4:1 petrol:ethyl acetate) afforded compound 149w as a white 

solid (74.4 mg, 97%); Rf  0.8 (2:1 petrol:ethyl acetate); νmax (thin film)/cm
−1 

1664, 

1656, 1618, 1579, 1434, 1358, 1290, 1216, 1126, 731; δH (400 MHz, CDCl3) 8.19 

(1H, ddd, J = 7.7, 1.5, 0.6 Hz, H-14), 7.44–7.24 (7H, m, ArH),  6.24 (1H, s, H-1), 4.83–

4.79 (1H, m, H-2eq), 3.24–3.11 (2H, m, H-2ax,3a), 3.00–2.93 (1H, m, H-3b); δC (100 

MHz, CDCl3) 164.9 (C-16), 137.8 (Ar C), 136.4 (Ar C), 131.8 (Ar CH), 131.2 (Ar 

CH), 130.8 (Ar C), 129.1 (Ar C), 128.9 (Ar CH), 128.6 (Ar CH), 127.7 (Ar CH), 

127.3 (Ar CH), 127.0 (Ar CH), 126.3 (Ar CH), 60.7 (C-1), 40.7 (C-2), 29.6 (C-3); 

HRMS (ESI
+
): Found: 268.0785; C16H14NOS (MH

+
) Requires: 268.0791 (2.2 ppm 

error).  

Lab Notebook Reference: CHK 1/46 p.72  
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Dimethyl 8-oxo-5,13a-dihydro-6H-isoquino[3,2-a]isoquinoline-13,13(8H)-

dicarboxylate (149x):  
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Small scale: Synthesised using general DIA procedure A from imine 146e (25.0 mg, 

0.191 mmol), acid 147p (57.4 mg, 0.229 mmol), DIPEA (61.6 μL, 0.353 mmol) and 

T3P (182 mg, 0.287 mmol) in toluene (1.9 mL) at 90 °C in a sealable tube for 20 h. 

Purification by column chromatography (SiO2, 4:1 petrol:ethyl acetate) afforded 

compound 149x as a colourless oil (48.0 mg, 69%).  

Large scale: : Synthesised using general DIA procedure A from imine 146e (1.28 g, 

9.77 mmol), acid 147p (2.96 mg, 11.7 mmol), DIPEA (3.15 μL, 18.1 mmol) and T3P 

(9.33 g, 14.7 mmol, 50% solution in THF) in toluene (51 mL) at 90 °C in a sealable 

tube for 20 h. Purification by column chromatography (SiO2, 5:1→4:1→3:1→1:1 

petrol:ethyl acetate) afforded compound 149x as a yellow solid (1.48 mg, 41%) together 

with compound 176 as a side product (0.755 mg, 21%). 

Dimethyl 8-oxo-5,13a-dihydro-6H-isoquino[3,2-a]isoquinoline-13,13(8H)-

dicarboxylate (149x): mp 85–87 °C; Rf  0.5 (ethyl acetate); νmax (thin film)/cm
−1

 1710, 

1627, 1437, 1384, 1234, 716; δH (400 MHz, CDCl3) 8.19 (1H, dd, J = 7.7, 1.8 Hz, 

H-15), 7.56–7.46 (2H, m, ArH),  7.30–7.14 (5H, m, ArH), 5.71 (1H, s, H-1), 4.88 (1H, 

ddd, J = 12.4, 4.3, 2.1 Hz, H-2eq), 3.90 (3H, s, CH3), 3.49 (3H, s, CH3), 3.15–3.07 (1H, 

m, H-3a), 2.97 (1H, ddd, J = 12.4, 12.4, 2.5 Hz, H-2ax), 2.81–2.74 (1H, m, H-3b); δC 

(100 MHz, CDCl3) 170.2 (C-CO2CH3), 166.8 (C-CO2CH3), 164.3 (C-17), 139.0 (Ar C), 

137.2 (Ar C), 132.3 (Ar CH), 132.0 (Ar C), 128.9 (Ar CH), 128.9 (Ar CH), 128.7 (Ar 

CH), 128.3 (Ar C), 127.9 (Ar CH), 127.7 (Ar CH), 126.6 (Ar CH), 126.5 (Ar CH), 66.1 

(C-10), 61.2 (C-1), 53.1 (C-CH3), 53.0 (C-CH3), 39.9 (C-2), 29.6 (C-3); HRMS (ESI
+
): 

Found: 366.1342; C21H20NO5 (MH
+
) Requires: 366.1336 (−1.8 ppm error).  

Methyl-3-methoxy-1-oxo-1H-isochromene-4-carboxylate (176): mp 90–103 °C; νmax 

(thin film)/cm
−1

 2966, 1739, 1698, 1602, 1698, 1485, 1365, 1313, 1245, 1220, 1078, 

1050, 1013, 784, 750, 734, 683; δH (400 MHz, CDCl3) 8.19 (1H, d, J = 8.0 zHz, ArH), 

8.01  (1H, d, J = 8.3 Hz, ArH), 7.68 (1H, m, ArH), 7.35 (1H, m, ArH), 4.10 (3H, 
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s,CH3),  3.91 (3H, s, CH3); δC (100 MHz, CDCl3) 165.2 (C-10), 159.5 (C-1/2), 159.3 

(C-1/2), 137.4 (C-4/9), 135.6 (Ar CH), 129.9 (Ar CH), 125.8 (Ar CH), 124.1 (Ar CH), 

116.1 (C-4/9), 89.0 (C-3), 56.7 (C-11/12), 52.0 (C-11/12); HRMS (ESI
+
): Found: 

257.0427 C12H10NaO5 (MNa
+
) Requires: 257.0420 (−2.7 ppm error); This compound 

has been reported previously in the literature, but the available NMR data were 

obtained in a DMSO-d6 solution.
52 

 

Lab Notebook Reference: CHK/WPU 1249 (small scale) and CHK 4.257 p.70 (large 

scale) 

2,3-Dimethoxy-5,13a-dihydro-6H,8H-isoquinolino[1,2-b][1,3]benzoxazin-8-one 

(149y): 
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Synthesised using general DIA procedure A from imine 146f (66.6 mg, 0.348 mmol), 

acid 147a (57.7 mg, 0.418 mmol), DIPEA (112 μL, 0.644 mmol) and T3P (332 mg, 

0.522 mmol) in toluene (1.5 mL) at 90 °C for 20 h. Purification by column 

chromatography (SiO2, 1:1 petrol:ethyl acetate) afforded compound 149y as a white oil 

(51.6 mg, 48%); Rf  0.33 (ethyl acetate); νmax (thin film)/cm
−1

 1641, 1587, 1494, 1446, 

1394, 1247, 1209, 1095; δH (400 MHz, CDCl3) 8.03 (1H, dd, J = 7.8, 1.7 Hz, H-14), 

7.48 (1H, ddd, J = 8.2, 7.3, 1.7 Hz, H-12),  7.16 (1H, ddd, J = 7.8, 7.3, 0.5 Hz, H-13), 

7.08 (1H, dd, J = 8.2, 0.5 Hz, H-11), 7.03 (1H, s, H-5/8), 6.71 (1H, s, C-5/8), 6.23 (1H, 

s, H-1) 4.58 (1H, ddd, J = 12.8, 4.8, 3.5 Hz, H-2eq), 3.95 (3H, s, OCH3), 3.92 (3H, s, 

OCH3), 3.33 (1H, ddd, J = 12.8, 11.3, 3.5 Hz,  H-2ax), 3.05 (1H, ddd, J = 15.6, 11.3, 

4.8 Hz, H-3ax), 2.77 (1H, ddd, J = 15.6, 3.5, 3.5 Hz, H-3eq); δC (100 MHz, CDCl3) 

163.1 (C-16), 157.6 (C-10), 150.0 (C-6/7), 148.4 (C-6/7), 134.2 (C-12) , 129.1 (Ar 

C), 128.7 (C-14), 122.8 (C-13), 122.4 (Ar C), 118.8 (C-15), 116.6 (C-11), 111.0 (C-

5/8), 110.6 (C-5/8), 84.2 (C-1), 56.2 (C-CH3), 56.1 (C-CH3), 38.4 (C-2), 28.1 (C-3); 

HRMS (ESI
+
): Found: 312.1242; C18H18NO4 (MH

+
) Requires: 312.1230 (−3.7 ppm 

error).  

Lab Notebook Reference: CHK 2/123 p.179 
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2,3-Dimethoxy-13-methyl-5,6,13,13a-tetrahydro-8H-isoquinolino[1,2-b]quinazolin-

8-one (149z):  
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Synthesised using general DIA procedure A from imine 146f (76.9 mg, 0.402 mmol), 

acid 147n (73.0 mg, 0.483 mmol), DIPEA (130 μL, 0.744 mmol) and T3P (384 mg, 

0.603 mmol) in toluene (1.5 mL) at 90 °C for 20 h. Purification by column 

chromatography (SiO2, 1:1 petrol:ethyl acetate) afforded compound 149z as a colourless 

oil  (114 mg, 87%); Rf  0.54 (ethyl acetate); νmax (thin film)/cm
−1

 1625, 1583, 1492, 

1446, 1401, 1342, 1318, 1241, 1215, 1094, 1001, 746; δH (400 MHz, CDCl3) 8.07–

8.04 (1H, m, H-14), 7.47–7.42 (1H, m, H-12),  7.13–7.09 (2H, m, H-11,13), 6.87 (1H, s, 

H-5/8), 6.67 (1H, s, H-5/8), 5.66 (1H, m, H-1), 4.64 (1H, ddd, J = 12.8, 5.0, 2.7 Hz, 

H-2eq), 3.89 (3H, s, OCH3), 3.88 (3H, s, OCH3), 3.20–3.13 (1H, m, H-2ax), 2.95–2.87 

(1H, m, H-3a), 2.78–2.71 (1H, m, H-3b), 2.47 (3H, s, NCH3); δC (100 MHz, CDCl3) 

164.6 (C-16), 151.2 (C-6/7/10), 149.1 (C-6/7/10), 148.3 (C-6/7/10), 133.0 (C-12), 

129.7 (Ar C), 128.9 (C-14), 123.7 (Ar C), 122.9 (Ar C), 122.8 (C-11/13), 121.0 (C-

11/13), 111.0 (C-5/8), 110.8 (C-5/8), 71.3 (C-1), 56.2 (C-CH3), 56.0 (C-CH3), 39.1 

(C-NCH3), 36.0 (C-2), 28.3 (C-3); HRMS (ESI
+
): Found: 325.1535; C19H21N2O3 

(MH
+
) Requires: 325.1547 (3.7 ppm error).  

Lab Notebook Reference: CHK 2/122 p.178 
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5,13a-Dihydro-6H,8H-isoquinolino[1,2-b][1,3]benzothiazin-8-one (149ad):  
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Synthesised using general DIA procedure A from imine 146m (40.0 mg, 0.275 mmol), 

acid 147m (51.0 mg, 0.330 mmol), DIPEA (88.7 μL, 0.510 mmol) and T3P (263 mg, 

0.413 mmol) in toluene (1.5 mL) at 120 °C for 20 h. Purification by column 

chromatography (SiO2, 5:1 petrol:ethyl acetate) afforded 149ad as an orange oil (58.5 

mg, 80%); Rf  0.34 (5:1 petrol:ethyl acetate); νmax (thin film)/cm
−1

 2879, 1657, 1618, 

1609, 1564, 1422, 1366, 1332, 1275, 1231, 732; δH (400 MHz, CDCl3) 8.15 (1H, ddd, 

J = 7.8, 1.5, 0.5 Hz, H-14), 7.42 (1H, dd, J =7.8, 1.6 Hz, ArH),  7.35 (1H, ddd, J = 7.7, 

7.7, 1.6 Hz, ArH), 7.30–7.15 (5H, m, ArH), 5.04 (1H, ddd, 12.6, 9.7, 1.9 Hz, H-2eq), 

3.03 (1H, ddd, J = 15.4, 12.6, 9.7 Hz, H-3ax), 2.93 (1H, ddd, J = 12.6, 12.6, 2.8 Hz, H-

2ax, overlapping), 2.86 (1H, ddd, J = 15.4, 2.8, 1.9 Hz, H-3eq, overlapping), 1.91 (3H, 

s, CH3); δC (100 MHz, CDCl3) 163.6 (C-16), 135.8 (Ar C), 135.4 (Ar C), 134.8 (Ar 

C), 132.1 (Ar CH), 130.9 (C-14), 129.4 (Ar CH), 128.2 (Ar C), 128.1 (Ar CH), 

127.3 (Ar CH), 127.1 (Ar CH), 126.2 (Ar CH), 126.1 (Ar CH), 65.9 (C-1), 37.3 

(C-2), 29.7 (C-3), 28.5 (C-CH3); HRMS (ESI
+
): Found: 282.0950; C17H15NOS 

(MH
+
) Requires: 282.0947 (−1.0 ppm error).  

Lab Notebook Reference: CHK 1/53 p.82 
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7,8,13,13b-Tetrahydro-5H-indolo[2’,3’:3,4]pyrido[2,1-b][1,3]benzoxazin-5-one 

(149ae):  
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Synthesised using general DIA procedure A from β-carboline 146j (26.8 mg, 0.157 

mmol), acid 147a (26.1 mg, 0.189 mmol), DIPEA (50.7 μL, 0.291 mmol) and T3P (150 

mg, 0.236 mmol) in toluene (1.5 mL) at 90 °C for 20 h. Purification by column 

chromatography (SiO2, DCM, 1% MeOH→DCM, 2% MeOH→DCM, 4% 

MeOH→DCM, 7% MeOH→DCM, 9% MeOH) afforded compound 149ae as a white  

oil (14.4 mg, 46%); Rf  0.43 (DCM, 1% MeOH); δH (400 MHz, CDCl3) 8.35 (1H, br s, 

NH), 8.06 (1H, dd, J = 7.9, 1.7 Hz, ArH),  7.61 (1H, d, J = 7.9, ArH), 7.49 (1H, ddd, 

8.2, 7.3, 1.7 Hz, ArH), 7.43 (1H, ddd, J = 8.2, 0.9, 0.9 Hz, ArH), 7.29 (1H, ddd, J = 7.1, 

7.1, 1.2 Hz, ArH), 7.21–7.15 (2H, m, ArH), 7.04 (1H, d, J = 8.2 Hz, ArH), 6.48 (1H, s, 

H-1), 4.94 (1H, ddd, J = 13.1, 5.1, 2.3, H-2eq), 3.32 (1H, ddd, J = 13.1, 10.8, 4.9 Hz, 

H-2ax), 3.09–2.94 (2H, m, H-3); δC (100 MHz, CDCl3) 163.1 (C-18), 156.8 (C-12), 

137.2 (Ar C), 134.3 (Ar CH), 128.9 (Ar CH), 127.1 (Ar C), 126.0 (Ar C), 123.8 (Ar 

CH), 123.1 (Ar CH), 120.4 (Ar CH), 119.4 (Ar CH), 118.7 (Ar C), 116.4 (Ar CH), 

113.8 (Ar C), 111.7 (Ar CH), 81.2 (C-1), 39.2 (C-2), 20.3 (C-3); Obtained data in 

accord with those reported in literature.
26j

 

Lab Notebook Reference: CHK 1/40 p.73 
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5'-Methyl-5',5a'-dihydro-12'H-spiro[cyclohexane-1,6'-indolo[2,1-b]quinazolin]-12'-

one (149af): 
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Synthesised using general DIA procedure A from imine 146k (41.3 mg, 0.223 mmol), 

acid 147n (40.5 mg, 0.268 mmol), DIPEA (71.7 μL, 0.412 mmol) and T3P (212.6 mg, 

0.334 mmol) in toluene (1.5 mL) at 120 °C for 20 h. Purification by column 

chromatography (SiO2, 19:1 petrol:ethyl acetate) afforded compound 149af as a 

colourless oil  (38.3 mg, 54%); Rf  0.59 (1:1 petrol:ethyl acetate); νmax (thin film)/cm
−1

 

2883, 2812, 1635, 1581, 1460, 1406, 1387, 1300, 1251, 1193, 1153, 740; δH (400 

MHz, CDCl3) 8.34 (1H, dd, J = 7.9, 1.1 Hz, H-13), 8.07 (1H, dd, J = 7.8, 1.7 Hz, H-7),  

7.64 (1H, dd, J = 7.6, 1.1 Hz, H-10 ), 7.44 (1H, ddd, J = 8.4, 7.6, 1.7 Hz, H-5), 7.30 

(1H, ddd, J = 7.9, 7.6, 1.1 Hz, H-12), 7.10 (1H, ddd, J = 7.6, 7.6, 1.1 Hz, H-11), 6.93 

(1H, ddd, J = 7.8, 7.6, 0.9 Hz, H-6), 6.87 (1H, dd, J = 8.4, 0.9 Hz, H-4), 4.92 (1H, s, 

H-1), 3.09  (3H, s, CH3), 2.12–1.32 (10 H, m, CH2); δC (100 MHz, CDCl3) 161.2 

(C-15), 149.6 (Ar C), 139.6 (Ar C), 138.6 (Ar C), 134.1 (C-5), 128.6 (C-7), 127.9 

(C-12), 124.8 (C-10), 124.2 (C-11), 119.3 (C-6) , 117.5 (C-13), 116.9 (Ar C), 113.0 

(C-4), 85.3 (C-1), 48.8 (C-2), 36.8 (C-CH3), 33.1 (C-CH2), 28.9 (C-CH2), 25.4 

(C-CH2), 23.4 (C-CH2), 20.6 (C-CH2); HRMS (ESI
+
): Found: 341.1618; 

C21H22N2NaO (MNa
+
) Requires: 341.1624 (1.7 ppm error). 

Lab Notebook Reference: CHK 2/118 p.174 
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6,6-Dimethyl-5a,6-dihydro-12H-indolo[2,1-b][1,3]benzothiazin-12-one (149ag): 
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Synthesised using general DIA procedure A from imine 146l (38.8 mg, 0.267 mmol), 

acid 147m (49.4 mg, 0.321 mmol), DIPEA (86.1 μL, 0.494 mmol) and T3P (255 mg, 

0.401 mmol) in toluene (1.5 mL) at 90 °C for 20 h. Purification by column 

chromatography (SiO2, 19:1 petrol:ethyl acetate) afforded compound 149ag as a 

colourless oil  (39.7 mg, 53%); Rf  0.76 (1:1 petrol:ethyl acetate); νmax (thin film)/cm
−1

 

2918, 1625, 1572, 1457, 1369, 1310, 1269, 1143, 1078, 739; δH (400 MHz, CDCl3) 

8.35 (1H, ddd, J = 8.1, 1.0, 0.6 Hz, H-13), 8.22 (1H, ddd, J = 7.8, 1.5, 0.5 Hz, ArH),  

7.44–7.28 (4H, m, ArH), 7.21 (1H, ddd, J = 7.5, 1.4, 0.6 Hz, ArH), 7.14 (1H, ddd, J = 

7.4, 7.4, 1.1 Hz, ArH), 5.43 (1H, s, H-1), 1.53 (1H, s, CH3), 1.45 (1H, s, CH3); δC (100 

MHz, CDCl3) 162.1 (C-15), 140.2 (Ar C), 138.5 (Ar C), 135.1 (Ar C), 132.1 (Ar 

CH), 130.4 (Ar CH), 130.4 (Ar C), 128.3 (Ar CH), 127.8 (Ar CH), 126.4 (Ar CH), 

124.6 (Ar CH), 121.8 (Ar CH), 116.3 (C-13), 73.4 (C-1), 44.2 (C-2), 27.6 (C-CH3), 

26.4 (C-CH3); HRMS (ESI
+
): Found: 282.0958; C17H16NOS (MH

+
) Requires: 

282.0947 (−3.8 ppm error).  

Lab Notebook Reference: CHK 2/126 p.182 

5,6,6-Trimethyl-5a,6-dihydroindolo[2,1-b]quinazolin-12(5H)-one (149ah): 
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Synthesised using general DIA procedure A from imine 146l (31.8 mg, 0.219 mmol), 

acid 147n (39.7 mg, 0.263 mmol), DIPEA (70.6 μL, 0.405 mmol) and T3P (210 mg, 

0.329 mmol) in toluene (1.5 mL) at 90 °C for 20 h. Purification by column 

chromatography (SiO2, 19:1 petrol:ethyl acetate) afforded compound 149ah as a 

colourless oil  (25.0 mg, 41%); Rf  0.64 (5:2 petrol:ethyl acetate); νmax (thin film)/cm
−1

 

2924, 1636, 15577, 1461, 1435, 1409, 1390, 741; δH (400 MHz, CDCl3) 8.35 (1H, dd, 

J = 8.0, 1.1 Hz, H-13), 8.10 (1H, dd, J = 7.8, 1.7 Hz, H-7),  7.45 (1H, ddd, J = 8.4, 7.3, 

1.7 Hz, H-5), 7.31–7.27 (1H, m, H-12), 7.21 (1H, dd, J = 7.5, 1.4 Hz, H-10), 7.13 (1H, 
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ddd, J = 7.5, 7.5, 1.1 Hz, H-11), 6.96 (1H, ddd, J = 7.8, 7.3, 0.8 Hz, H-6), 6.88 (1H, d, J 

= 8.4 Hz, H-4), 4.98 (1H, s, H-1), 3.02 (3H, s, NCH3), 1.70 (3H, s, CH3), 1.34 (3H, s, 

CH3); δC (100 MHz, CDCl3) 160.9 (C-15), 149.5 (Ar C), 139.0 (Ar C), 138.8 (Ar C), 

134.0 (Ar CH) , 128.6 (Ar CH), 128.2 (C-12), 124.5 (C-11), 121.6 (C-10), 119.3 (Ar 

CH), 116.8 (Ar C), 116.8 (C-13), 112.4 (Ar CH), 85.2 (C-1), 46.0 (C-2), 34.8 

(C-NCH3), 26.0 (C-CH3), 23.3 (C-CH3); HRMS (ESI
+
): Found: 279.1492; 

C18H19N2O (MH
+
) Requires: 279.1492 (−0.1 ppm error).  

Lab Notebook Reference: CHK 2/121 p.177 

6,7,8,9-Tetrahydro-5aH,11H-pyrido[2,1-b][1,3]benzoxazin-11-one (149ai):  
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Synthesised using general DIA procedure A from imine 146n (28.0 mg, 0.250 mmol), 

acid 147a (55.8 mg, 0.404 mmol), DIPEA (108 μL, 0.623 mmol) and T3P (321 mg, 

0.505 mmol) in toluene (1.5 mL) at 90 °C for 20 h. Purification by column 

chromatography (SiO2, 3:1→1:1 petrol:ethyl acetate) afforded compound 149ai as a 

white oil (4.3 mg, 7%); Rf  0.57 (1:1 petrol:ethyl acetate); νmax (thin film)/cm
−1 

2901, 

1643, 1587, 1564, 1448, 1391, 1311, 1262, 1242, 748; δH (400 MHz, CDCl3) 7.94 

(1H, dd, J = 7.6, 1.6 Hz, H-10), 7.42 (1H, ddd, J = 8.3, 7.6, 1.6 Hz, H-8),  7.07 (1H, 

ddd, J = 7.6, 7.6, 0.8 Hz,  H-9), 6.90 (1H, dd, J = 8.3, 0.8 Hz, H-7), 5.21 (1H, dd, J = 

9.88, 4.18 Hz, H-1), 4.51–4.46 (1H, m, H-2eq), 2.78 (1H, ddd, J = 13.6, 13.6, 3.5 Hz, 

H-2ax), 2.26–2.22 (1H, m, H-5a), 1.96–1.93 (1H, m, H-3/4), 1.86–1.81 (2H, m, H-5b, 

H3/4), 1.63–1.42 (2H, m, H-3/4); δC (100 MHz, CDCl3) 163.4 (C-12), 156.6 (C-6), 

134.0 (C-8), 128.1 (C-10), 122.2 (C-9), 117.5 (C-11), 116.0 (C-7), 85.9 (C-1), 41.3 

(C-2), 31.4 (C-5), 23.5 (C-3/4), 21.2 (C-3/4); HRMS (ESI
+
): Found: 204.1020; 

C12H14NO2 (MH
+
) Requires: 204.1019 (−0.6 ppm error) .  

Lab Notebook Reference: CHK 1/18 p.33 
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5-Methyl-5,5a,6,7,8,9-hexahydro-11H-pyrido[2,1-b]quinazolin-11-one (149aj):  

N
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Synthesised using general DIA procedure A from dodecahydo-4a,8a,12a-

triazatriphenylene 146n (26.1 mg, 0.173 mmol), acid 147n (43.0 mg, 0.173 mmol), 

DIPEA (55.7 μL, 0.320 mmol) and T3P (165 mg, 0.260 mmol) in toluene (1.7 mL) at 

90 °C for 20 h. Purification by column chromatography (SiO2, 4:1 petrol:ethyl acetate) 

afforded compound 149aj as a colourless oil (15.0 mg, 40%); Rf  0.39 (ethyl acetate); 

νmax (thin film)/cm
−1 

1624, 1581, 1463, 1449, 1290, 1156; δH (400 MHz, CDCl3) 7.92 

(1H, dd, J = 7.6, 1.7 Hz, H-10), 7.32 (1H, ddd, J = 8.3, 7.6, 1.7 Hz, H-8), 6.76 (1H, 

ddd, J = 7.6, 7.6, 1.0 Hz, H-9), 6.51 (1H, dd, J = 8.3, 1.0 Hz, H-7), 4.83–4.76 (1H, m, 

H-2eq), 4.64 (1H, dd, J = 10.6, 2.4 Hz, H-1), 2.88 (3H, s, CH3), 2.67–2.60 (1H, m, 

H-2ax), 2.02–1.95 (1H, m, H-3/4/5), 1.82–1.55 (5H, m, H-3,4,5); δC (100 MHz, CDCl3) 

162.6 (C-12), 146.4 (C-6), 133.9 (C-8), 128.8 (C-10), 117.4 (C-9), 114.8 (C-11), 

111.0 (C-7), 78.1 (C-1), 45.0 (C-2), 34.8 (C-CH3), 28.3 (C-3/4/5), 24.7 (C-3/4/5), 

24.4 (C-3/4/5); HRMS (ESI
+
): Found: 217.1340; C13H17N2O (MH

+
) Requires: 

217.1335 (−2.1 ppm error). 

Lab Notebook Reference: CHK/WPU 1255 

9-Methyl-8b, 9-dihydro-14H-quinazolino [3,2 -f]phenanthridin-14-one (149al):  
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Synthesised using general DIA procedure A from phenanthridine 146o (45.6 mg, 0.254 

mmol), acid 147n (46.2 mg, 0.305 mmol), DIPEA (82.0 μL, 0.471 mmol) and T3P (243 

mg, 0.382 mmol) in toluene (1.5 mL) at 120 °C for 20 h. Purification by column 

chromatography (SiO2, 1:1 petrol:ethyl acetate→pure ethyl acetate) afforded compound 

149al as a yellow oil (6.6 mg, 8%); Rf  0.8 (ethyl acetate); νmax (thin film)/cm
−1

 2875, 

2808, 1635, 1583, 1482, 1460, 1417, 1365; δH (400 MHz, CDCl3) 7.91 (1H, dd, J = 

7.6, 2.9 Hz, ArH), 7.42 (1H, dd, J = 7.7, 1.6 Hz, ArH),  7.75 (1H, dd, J = 7.6, 0.7 Hz,  
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ArH, ), 7.66 (1H, dd, J = 7.7, 1.5 Hz, ArH), 7.48–7.37 (4H, m, ArH), 7.26 (1H, ddd, J = 

7.5, 7.5, 1.1 Hz, ArH), 7.06 (1H, d, J =7.4 Hz, ArH), 6.86 (1H, d, J = 8.2 Hz, ArH), 

6.80 (1H, ddd, J = 7.6, 7.6, 1.0 Hz, ArH) 5.74 (1H, s, H-1), 3.37 (3H, s, NCH3); δC (100 

MHz, CDCl3) 164.3 (C-20), 149.4 (Ar C), 139.2 (Ar C), 135.2 (Ar C), 134.0 (Ar 

CH), 132.9 (Ar C), 129.3 (Ar CH), 128.8 (Ar CH), 128..4 (Ar CH), 128.0 (Ar CH), 

127.4 (Ar C), 127.1 (Ar CH), 126.6 (Ar CH), 124.9 (Ar CH), 124.0 (Ar CH), 122.5 

(Ar CH), 118.1 (Ar CH), 115.3 (Ar C), 112.1 (Ar CH), 75.4 (C-1), 38.8 (C-CH3); 

HRMS (ESI
+
): Found: 313.1334; C21H17N2O (MH

+
) Requires: 313.1335 (0.5 ppm 

error).  

Lab Notebook Reference: CHK 2/85 p.127 

3-Methyl-2-phenyl-2,3-dihydro-4H-1,3-benzothiazin-4-one (149am):  

1
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Synthesised using general DIA procedure A from imine 146p (51.8 mg, 0.435 mmol), 

acid 147m (80.43 mg, 0.522 mmol), DIPEA (140 μL, 0.804 mmol) and T3P (415 mg, 

0.652 mmol) in toluene (2.0 mL) at 90 °C for 20 h. Purification by column 

chromatography (SiO2, 2:1 petrol:ethyl acetate) afforded compound 149am as an 

orange solid (11.5 mg, 99%); mp 77–79 °C [Lit. mp 79–81 °C];
168

 Rf 0.37 (2:1 

petrol:ethyl acetate); δH (400 MHz, CDCl3) 8.16 (1H, dd, J = 7.7, 1.6 Hz, H-4), 7.33–

7.19 (7H, m, ArH), 7.09 (1H, dd, J = 7.7, 1.3 Hz, H-7), 5.64 (1H, s, H-1), 3.25 (3H, s, 

CH3); δC (100 MHz, CDCl3)  164.2 (C-2), 138.4 (Ar C), 132.9 (Ar C), 132.0 (Ar 

CH), 130.0 (C-4), 128.8 (Ar C), 128.6 (Ar CH), 128.4 (Ar CH), 127.3 (Ar CH), 

126.2 (Ar CH), 126.2 (Ar CH), 63 (C-1), 36.0 (C-CH3); HRMS (ESI
+
): Found: 

256.0794; C15H14NOS (MH
+
) Requires: 256.0791 (−1.3 ppm error). This compound 

has been reported previously in the literature, but no NMR data was reported.
168

 

Lab Notebook Reference: CHK 1/48 p.69 
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3-Methyl-1,2-diphenyl-2,3-dihydroquinazolin-4(1H)-one (149an):  

1
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Synthesised using general DIA procedure A from imine 146p (24.6 μL, 0.200 mmol), 

acid 147o (51.2 mg, 0.240 mmol), DIPEA (64.5 μL, 0.370 mmol) and T3P (191 mg, 

0.300 mmol) in toluene (2.0 mL) at 90 °C for 20 h. Purification by column 

chromatography (SiO2, 4:1 petrol:ethyl acetate) afforded compound 149an as a white 

solid (43.0 mg, 68%); mp 220–223 °C; Rf  0.57 (ethyl acetate); νmax (thin film)/cm
−1 

1625, 1581, 1471, 1373, 1279, 1238, 1207; δH (400 MHz, CDCl3) 8.02 (1H, dd, J = 

7.9, 1.2 Hz, H-4), 7.37–7.24 (8H, m, ArH),  7.19–7.13 (3H, m, ArH), 6.96 (1H, ddd, J = 

7.9, 7.9, 1.1 Hz, H-5), 6.85 (1H, dd, J = 8.2, 1.1 Hz, H-7), 5.96 (1H, s, H-1), 3.18 (3H, 

s, CH3); δC (100 MHz, CDCl3) 162.8 (C-2), 146.1 (Ar C), 143.9 (Ar C), 139.3 (Ar 

C), 133.0 (Ar CH), 129.8 (Ar CH), 128.9 (Ar CH), 128.8 (Ar CH), 128.6 (Ar CH), 

126.5 (Ar CH), 124.8 (Ar CH), 123.3 (Ar CH), 121.3 (Ar CH), 120.5 (Ar C), 118.8 

(Ar CH), 80.0 (C-1), 34.3 (C-CH3); HRMS (ESI
+
): Found: 315.1493; C21H19N2O 

(MH
+
) Requires: 315.1492 (−0.5 ppm error). 

Lab Notebook Reference: CHK/WPU 1239 

2,2-Diphenyl-2,3-dihydro-4H-1,3-benzoxazin-4-one (149ao):  
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Synthesised using general DIA procedure A from imine 146q (35.6 μL, 0.200 mmol), 

acid 147a (33.1 mg, 0.240 mmol), DIPEA (64.5 μL, 0.370 mmol) and T3P (191 mg, 

0.300 mmol) in toluene (2.0 mL) at 90 °C for 20 h. Purification by column 

chromatography (SiO2, 4:1 petrol:ethyl acetate) afforded compound 147ao as a white 

solid (36.0 mg, 60%); mp 220–223 °C; Rf  0.60 (ethyl acetate); νmax (thin film)/cm
−1 

1647, 1627, 1589, 1448, 1354, 1219; δH (400 MHz, CDCl3) 7.85 (1H, dd, J = 7.9, 1.5 

Hz, H-4), 7.52–7.48 (4H, m, ArH),  7.44–7.34 (7H, m, ArH), 7.05–6.98 (2H, m, ArH), 

6.72 (1H, br s, NH); δC (100 MHz, CDCl3) 162.6 (C-2), 156.0 (C-8), 141.3 (C-Ph), 

134.8 (Ar CH), 129.1 (Ar CH), 128.5 (Ar CH), 127.8 (Ar CH), 127.1 (Ar CH), 122.3 
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(Ar CH), 118.0 (C-3), 117.5 (Ar CH), 92.0 (C-1); HRMS (ESI
+
): Found: 302.1174; 

C20H16NO2 (MH
+
) Requires: 302.1176 (0.6 ppm error) 

Lab Notebook Reference: CHK/WPU 1240 

13-Methyl-13,13a-dihydro-8H-isoquinolino[1,2-b]quinazolin-8-one (149ap):  
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Synthesised using general DIA procedure A from isoquinoline 146r (29.8 μL, 0.250 

mmol), acid 147n, (45.4 mg, 0.300 mmol), DIPEA (80.6 μL, 0.463 mmol) and T3P 

(239 mg, 0.375 mmol) in toluene (2.5 mL) at 90 °C for 20 h. Purification by column 

chromatography (SiO2, 4:1 petrol:ethyl acetate) afforded compound 149ap as a 

colourless oil (62.0 mg, 94%); Rf  0.80 (ethyl acetate); νmax (thin film)/cm
−1 

1641, 

1618, 1581, 1432, 1395, 1362, 1304, 1238, 1154, 884; δH (400 MHz, CDCl3) 8.08 

(1H, dd, J = 8.2, 1.5 Hz, H-14), 7.53 (1H, ddd, J = 8.1, 7.3, 1.6 Hz, ArH), 7.44 (1H, d, J 

= 7.1 Hz, ArH), 7.40 (1H, d, J = 8.0 Hz, H-2), 7.30–7.18 (4H, m, ArH), 7.05 (1H, dd, J 

= 7.4, 1.7 Hz, ArH), 6.44 (1H, s, H-1), 5.71 (1H, d, J = 8.0 Hz, H-3), 2.63 (3H, s, CH3); 

δC (100 MHz, CDCl3) 162.0 (C-16), 150.5 (C-10), 134.2 (Ar CH), 131.7 (Ar C), 

129.3 (Ar CH), 129.2 (Ar CH), 127.8 (Ar CH), 127.3 (Ar CH), 126.7 (Ar C), 125.7 

(Ar CH), 124.1 (Ar CH), 123.5 (Ar C), 123.3 (C-2), 122.8 (Ar CH), 106.0 (C-3), 

72.1 (C-1), 36.7 (C-CH3); HRMS (ESI
+
): Found: 263.1176; C17H15N2O (MH

+
) 

Requires: 263.1179 (1.1 ppm error) .  

Lab Notebook Reference: CHK/WPU 1257 
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1-(2-Hydroxyphenyl)-2-[(1Z)-1,2,3,4-tetrahydroisoquinolin-1-ylidene]ethan-1-

one (177): 
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Synthesised using general DIA procedure A from imine 146m (32.0 mg, 0.220 mmol), 

acid 147a (36.5 mg, 0.264 mmol), DIPEA (71.1 μL, 0.408 mmol) and T3P (211 mg, 

0.331 mmol) in toluene (1.5 mL) at 90 °C for 20 h. Purification by column 

chromatography (SiO2, 5:1→3:1→2:1 petrol:ethyl acetate) afforded compound 177 as a 

coloureless oil (12.4 mg, 21%); Rf  0.50 (2:1 petrol:ethyl acetate); νmax (thin film)/cm
−1

 

2879, 1588, 1572, 1532, 1462, 1304, 1269, 1133; δH (400 MHz, CDCl3) 11.37 (1H, s, 

NH), 7.83 (1H, d, J = 7.8 Hz, ArH), 7.77 (1H, dd, J = 8.0, 1.4 Hz, ArH),  7.46 (1H, 

ddd, J = 7.4, 7.4, 1.4 Hz, ArH), 7.40–7.32 (2H, m, ArH), 7.28–7.26 (1H, m, ArH), 6.94 

(1H, dd, J = 8.3, 1.2 Hz, ArH), 6.86–6.82 (1H, m, ArH), 6.36 (1H, s, H-10), 3.60–3.56 

(1H, m, H-2), 2.99 (1H, t, J = 6.7 Hz, H-3); δC (100 MHz, CDCl3) 190.9 (C-11), 162.0 

(C-17), 159.1 (C-1), 136.7 (C-4/9), 133.3 (Ar CH), 131.5 (Ar CH), 129.1 (C-4/9), 

128.4 (Ar CH), 127.5 (Ar CH), 127.3 (Ar CH), 125.8 (Ar CH), 121.0 (C-12), 118.2 

(Ar CH), 118.2 (Ar CH), 85.7 (C-10), 38.8 (C-2), 28.2 (C-3); HRMS (ESI
+
): Found: 

266.1169; C17H16NO2 (MH
+
) Requires: 266.1176 (2.6 ppm error).  

Lab Notebook Reference: CHK 1/20 p.35 
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11,14-Dimethoxy-5,14b-dihydro-6H,8H-benzo[de]isoquino[1,2-a]isoquinolin-8-one 

(149q): 
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Synthesised using general DIA procedure B from imine 146e (53.4 mg, 0.407 mmol), 

acid 147q (113 mg, 0.489 mmol), DIPEA (131 μL, 0.753 mmol), T3P (388 mg, 0.611 

mmol) and BF3·Et2O (0.250 mL, 2.04 mmol) in toluene (2.5 mL) at rt for 20 h. 

Purification by column chromatography (SiO2, 4:1 petrol:ethyl acetate→1:1 petrol:ethyl 

acetate→pure ethyl acetate) afforded compound 149q as a pink solid (125 mg, 89%); 

mp 242–248 °C; Rf  0.2 (1:1 petrol:ethyl acetate); νmax (thin film)/cm
−1

 2944, 2845, 

1638, 1586, 1518, 1461, 1412, 1349, 1261, 1242, 1186, 1055, 1048, 1093, 736; δH 

(400 MHz, CDCl3) 8.30 (1H, d, J = 9.2 Hz, ArH), 8.24 (1H, d, J = 8.1 Hz, ArH), 

7.38 (1H, d, J = 9.2 Hz, ArH), 7.20–7.12 (2H, m, ArH), 6.96 (1H, t, J = 7.8 Hz, 

ArH), 6.75 (1H, d, J = 8.1 Hz, ArH), 6.49 (1H, d, J = 7.8 Hz, ArH), 6.22 (1H, s, H-

1), 4.70 (1H, ddd, J = 13.5, 7.1, 6.6 Hz, H-2a), 4.03 (3H, s, CH3), 3.97 (3H, s, CH3), 

3.61 (1H, ddd, J = 13.5, 7.1, 7.1 Hz, H-2b), 3.34 (1H, ddd, J = 16.1, 7.1, 7.1 Hz, H-

3a), 3.07 (1H, ddd, J = 16.1, 7.1, 6.6 Hz, H-3b); δC (100 MHz, CDCl3) 163.7 (C-10), 

158.5 (C-14/18), 154.4 (C-14/18), 138.0 (Ar C), 135.6 (Ar C), 130.7 (Ar C), 128.9 

(Ar CH), 128.5 (Ar CH), 127.2 (Ar CH), 125.7 (Ar CH), 123.9 (Ar CH), 123.6 (Ar 

CH), 119.3 (Ar C), 116.7 (Ar C), 113.7 (Ar C), 111.2 (Ar CH), 102.1 (Ar CH), 55.9 

(C-CH3), 55.7 (C-1), 55.6 (C-CH3), 42.3 (C-2), 27.2 (C-3); HRMS (ESI
+
): Found: 

346.1440; C22H20INO3 (MH
+
) Requires: 346.1438 (0.6 ppm error). 

Lab Notebook Reference: CHK 4/240 p.44 
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Evodiamine (205): 
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Synthesised using general DIA procedure A from β-carboline 146j (34.0 mg, 0.200 

mmol), acid 147n (36.2 mg, 0.240 mmol), DIPEA (64.5 μL, 0.370 mmol) and T3P (191 

mg, 0.300 mmol) in toluene (2.0 mL) at 90 °C for 20 h. Purification by column 

chromatography (SiO2, 4:1 petrol:ethyl acetate) afforded evodiamine 205 as a pale 

yellow solid (58.0 mg, 95%); mp 262–264 ºC [Lit. mp 268–270 
o
C];

27b
 Rf  0.5 (ethyl 

acetate); νmax (thin film)/cm
−1

 2285, 1602, 1485, 1365, 1287, 1258, 1207, 1147 ; δH 

(400 MHz, DMSO-d6) 11.08 (1H, br s, NH), 7.80 (1H, dd, J = 7.9, 1.6 Hz, ArH), 7.51–

7.45 (2H, m, ArH), 7.36 (1H, dd, J = 7.9, 0.6 Hz, ArH), 7.12–6.94 (4H, m, ArH), 6.13 

(1H, s, H-1), 4.64 (1H, ddd, J = 12.7, 4.5, 4.5 Hz, H-2eq), 3.21 (1H, ddd, 12.7, 12.7, 

4.8, H-2ax), 2.96–2.87 (1H, m, H-3a), 2.88 (3H, s, CH3), 2.83–2.76 (1H, m, H-3b); δC 

(100 MHz, DMSO-d6) 164.3 (C-18), 148.8 (Ar C), 136.5 (Ar C), 133.5 (Ar CH), 130.6 

(Ar C), 128.0 (Ar CH), 126.0 (Ar C), 121.9 (Ar CH), 120.3 (Ar CH), 119.3 (Ar C), 

118.9 (Ar CH), 118.2 (Ar CH), 117.5 (Ar CH), 111.7 (Ar CH), 111.5 (Ar C), 69.8 (C-

1), 40.8 (C-2), 36.4 (C-CH3), 19.5 (C-3); HRMS (ESI
+
): Found: 304.1445; C19H18N3O 

(MH
+
) Requires: 304.1444 (−0.1 ppm error). Obtained data in accord with those 

reported in the literature.
61 

 

Lab Notebook Reference: CHK 2/98 p.148 
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2-(Methylamino)benzamide (218):
71 
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To a stirred suspension of N-methylisatoic anhydride 217 (10.0 g, 56.0 mmol) in 

ethanol (40 mL) was added dropwise 33% aq. NH3 (10 mL). After addition, the 

solution was refluxed at 88 °C for 2 h. On cooling, a solid formed which was then 

collected by filtration and washed several times with cooled ethanol (5.58 g, 66%); 

δH (400 MHz, CDCl3) 7.84–7.79 (br s, NH2), 7.33–7.39 (2H, m, ArH), 6.70 (1H, d,  J = 

8.1 Hz, ArH), 6.59 (1H, dd, J = 8.1, 8.1 Hz, ArH), 5.74–5.71 (br s, NH), 2.88 (3H, s, 

CH3); δC (100 MHz, CDCl3) 172.2 (C-7), 151.1 (Ar C), 133.6 (Ar CH), 128.2 (Ar 

CH), 114.4 (Ar CH), 112.9 (Ar C), 111.4 (Ar CH), 29.6 (C-CH3); HRMS (ESI
+
): 

Found: 151.0867; C8H11N2O (MH
+
) Requires: 151.0866 (−0.3 ppm error). Obtained 

data in accord with those reported in the literature.
71

  

Lab Notebook Reference: CHK 1/61 p.91 

2-(1H-Indol-2-yl)-1-methyl-1,4-dihydroquinazolin-4-one (221):  
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 To a solution of indole-2-carboxylic acid 219 (5.00 g, 31.0 mmol) in chloroform, 

(350 mL) oxalyl chloride (4.42 mL, 52.3 mmol) and 2 drops of DMF were added. 

The reaction was heated to reflux (70 °C) for 1 h. Then the solvent was evaporated 

to dryness in vacuo to give indole-2-carbonyl chloride (6.79 g). The residue was 

taken up with chloroform (763 mL) and DMAP (462 mg, 3.78 mmol) and aniline 

218 (16.0 g, 107 mmol) were added. The reaction mixture was stirred at 70 °C for 1 h, 

before quenching with water (800 mL). Following extraction with dichloromethane (3 

× 800 mL), the organic phase was washed with water (2 × 500 mL) and brine (500 

mL), and then dried over MgSO4, filtered and concentrated in vacuo affording amide 

220 as an orange solid (10.4 g). [mp 185–188 °C; νmax (thin film)/cm
−1 

3128, 1643, 
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1596, 1550, 1497, 1400, 1371, 1322, 738, 723; δH (400 MHz, DMSO-d6) 11.51 (1H, 

br s, NH), 7.69 (1H, br, NH), 7.64–7.62 (1H, m, ArH), 7.55–7.52 (2H, m, ArH), 

7.39–7.36 (3H, m, ArH, H-2), 7.27 (1H, d, J = 7.3 Hz, ArH), 7.10 (1H, dd, J = 7.3, 

7.3 Hz, ArH), 6.90 (1H, dd, J = 7.3, 7.3 Hz, ArH), 5.28 (1H, br, NH), 3.35 (3H, s, 

CH3); δC (100 MHz, DMSO-d6) 168.9 (C-9), 162.0 (C-10), 142.2 (Ar C), 136.1 (Ar 

C), 135.8 (Ar C), 131.7 (Ar CH), 130.8 (Ar C), 130.3 (Ar CH), 129.3 (Ar CH), 

128.9 (Ar CH), 127.4 (Ar C), 122.0 (C-2), 119.9 (Ar CH), 112.6 (Ar CH), 39.09 (C-

CH3); HRMS (ESI
+
): Found: 294.1236; C17H16N3O2 (MH

+
) Requires: 294.1237 (0.4 

ppm error)]. The crude product was added in 1 M aq. KOH (13.6 g in 242 mL in water, 

242 mmol) and was stirred for 1 h at 105 °C. The resultant solid was isolated by 

filtration and washed with cold water (800 mL), 10 % aq. HCl  (300 mL), ether (300 

mL) and dried in vacuo, affording compound 221 as a yellow solid. (7.69 g, 90 %); mp 

decompose at 210 °C; νmax (thin film)/cm
−1 

1604, 1576, 1498, 1482, 1464, 1422, 

1410, 1365, 1324, 1241, 1129; δH (400 MHz, DMSO-d6) 12.02 (br, 1H, NH), 8.13 

(1H, dd, J = 7.9, 1.4, ArH), 8.13 (1H, dd, J = 7.9, 1.4, ArH), 7.91 (1H, ddd, J = 8.4, 

7.0, 1.6, ArH), 7.83 (1H, d, J = 8.4 Hz, ArH), 7.69 (1H, dd, J = 7.9, 0.7, ArH), 

7.60–7.55 (2H, m, ArH), 7.30–7.25 (2H, m, ArH/H-2), 7.10 (1H, ddd, J = 7.9, 7.0, 

1.0 Hz, ArH), 4.09 (3H, s, CH3); δC (100 MHz, DMSO-d6) 167.1 (C-9/10), 154.4 

(C-9/10), 142.2 (Ar C), 136.8 (Ar C), 134.0 (Ar CH), 129.2 (Ar C), 127.9 (Ar C), 

126.9 (Ar CH), 126.1 (Ar CH), 124.3 (C-2), 121.6 (Ar CH), 120.1 (Ar C), 119.9 (Ar 

CH), 117.1  (Ar CH), 112.6 (Ar CH), 108.8 (Ar CH), 38.3 (C-CH3); HRMS (ESI
+
): 

Found: 276.1134; C17H14N3O (MH
+
) Requires: 276.1131 (−0.9 ppm error).  

Lab Notebook Reference: CHK 2/135 p.197 

Ethyl 3-formyl-1H-indole-2-carboxylate (226):
75a,76
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POCl3 (2.71 mL, 29.1 mmol) was added dropwise to a stirred solution of DMF (7.9 

mL, 102 mmol) at 0 °C to obtain the chloroiminium ion. A solution of indole 225 

(5.00 g, 26.4 mmol) in DMF (8 mL, 102 mmol) and chloroform (30 mL) was added 

to the vessel containing the formylating agent and the resulting mixture was stirred 
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at rt for 1 h and at 70 °C for 4 h. The chloroform was removed in vacuo and then the 

reaction mixture was poured into cold water (100 mL) and neutralized with 2 M 

NaOH. The yellow precipitate was collected by filtration to give product 226 as a 

yellow powder (5.6 g, 99%); Rf  0.8 (1:1, petrol:ethyl acetate); δH (400 MHz, 

DMSO-d6) 10.61 (1H, s, H-10), 8.24 (1H, dd, J = 8.0, 1.1 Hz, H-5/8), 7.57 (1H, dd, 

J = 8.3, 1.1 Hz, H-5/8), 7.39 (1H, ddd, J = 8.3, 7.1, 1.1 Hz, H-6/7), 7.30 (1H, ddd, J 

= 8.0, 7.1, 1.1 Hz, H-6/7), 4.45 (2H, q, J = 7.1 Hz, H-12), 1.40 (3H, t, J = 7.1 Hz, 

H-13); δC (100 MHz, DMSO-d6) 187.5 (C-10), 160.1 (C-11), 135.7 (Ar C), 132.6 

(Ar C), 125.9 (Ar CH), 124.7 (Ar C), 123.4 (Ar CH), 122.3 (Ar CH), 118.3 (Ar C), 

113.1 (Ar CH), 61.8 (C-12), 14.0 (C-13); Obtained data in accord with those 

reported in the literature.
76

  

Lab Notebook Reference: CHK 2/82 p.120 

Ethyl 3-[(1E)-3-(tert-butoxy)-3-oxoprop-1-en-1-yl]-1H-indole-2-carboxylate 

(227): 
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A magnetically stirred solution of [(tert-butoxycarbonyl)ethenyl]triphenyl 

phosphorane (4.07 g, 10.8 mmol) and ethyl 3-formyl-1H-indole-2-carboxylate 226 

(1.81 g, 8.32 mmol) in a 1:1 mixture of CH3CN/dioxane (43 mL) was heated at 70 

°C for 17 h under nitrogen atmosphere. The solvent was evaporated under reduced 

pressure and the crude residue purified by column chromatography (SiO2, 2:1→1:1 

petrol:ethyl acetate) to give compound 227 as a white solid (2.52 g, 96%) (only 

E-isomer was observed); Rf  0.8 (2:1 petrol:ethyl acetate); mp 148–151 °C; νmax (thin 

film)/cm
−1

 3254, 2929, 1657, 1595, 1546, 1487, 1437, 1417, 1313, 1276, 1234, 

1124; δH (400 MHz, CDCl3) 8.50 (1H, d, J = 16.3 Hz, H-10), 7.97 (1H, dd, J = 8.2, 1.0 

Hz, H-5/8),  7.54 (1H, ddd, J = 8.3, 1.0, 1.0 Hz, H-5/8), 7.39–7.34 (1H, m, H-6/7), 7.23 

(1H, ddd, J = 8.2, 7.0, 1.0 Hz, H-6/7), 6.52 (1H, d, J = 16.3 Hz, H-11), 4.41 (2H, q, J = 

7.1 Hz, H-16), 1.51 (9H, s, H-14), 1.40 (3H, t, J = 7.1 Hz, H-17); δC (100 MHz, 

DMSO-d6) 166.1 (C-12), 160.8 (C-15), 136.6 (C-10), 136.4 (Ar C), 127.0 (Ar C), 
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125.4 (Ar CH), 124.7 (Ar C), 122.0 (Ar CH), 121.6 (Ar CH), 118.8 (C-11), 115.4 

(Ar C), 113.2 (Ar CH), 79.5 (C-13), 61.1 (C-16), 27.9 (C-14), 14.1 (C-17); HRMS 

(ESI
+
): Found: 316.1546; C18H22NO4 (MH

+
) Requires: 316.1543 (−0.5 ppm error). 

Lab Notebook Reference: CHK 2/83 p.122. 

3-[(1E)-3-(tert-Butoxy)-3-oxoprop-1-en-1-yl]-1H-indole-2-carboxylic acid (228): 
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To a round bottom flask containing ester 227 (1.79 g, 5.68 mmol) in a 1:1 mixture of 

EtOH/H2O (57 mL), LiOH·H2O (714 mg, 17.0 mmol) was added. The reaction mixture 

was stirred at 50 °C for 1 h. The ethanol was removed in vacuo and the crude was 

dissolved in water (100 mL) and then acidified with 10% aq. HCl. The precipitate was 

collected by filtration to give product 228 as a yellow solid (1.49 g, 91%) mp 185–

190 °C; νmax (thin film)/cm
−1

 3363, 3296, 2983, 1679, 1623, 1315, 1290, 1210, 1148, 

1130, 986, 863, 849, 739; δH (400 MHz, CDCl3) 12.28 (1H, s, COOH), 8.55 (1H, d, J 

= 16.4 Hz, H-10), 7.95 (1H, d, J = 8.2 Hz, H-5/8), 7.51 (1H, d, J = 8.2 Hz, H-5/8), 

7.36–7.33 (1H, m, H-6/7), 7.24–7.20 (1H, m, H-6/7), 6.49 (1H, d, J = 16.4 Hz, H-11), 

3.35 (1H, br s, NH), 1.47 (9H, s, H-14); δC (100 MHz, CDCl3) 166.3 (C-12), 162.4 

(C-15), 137.0 (C-10), 136.4 (Ar C), 128.3 (Ar C), 125.1 (Ar CH), 124.8 (Ar C), 

121.9 (Ar CH), 121.5 (Ar CH), 117.9 (C-11), 114.9 (Ar C), 113.2 (Ar CH), 79.4 (C-

13), 27.9 (C-14); HRMS (ESI
+
): Found: 310.1039; C16H17NaO4 (MNa

+
) Requires: 

310.1050 (3.0 ppm error). 

 Lab Notebook Reference: CHK 2/84 p.131 
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tert-Butyl (2E)-3-[2-(1-methyl-4-oxo-1,4-dihydroquinazolin-2-yl)-1H-indol-3-

yl]prop-2-enoate (230): 
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To a solution of indole-2-carboxylic acid derivative 228 (740 mg, 2.58 mmol) in 

chloroform (50 mL), oxalyl chloride (0.654 mL, 17.7 mmol) and 2 drops of DMF 

were added. The reaction was heated to reflux (70 °C) for 1 h. Then the solvent was 

evaporated to dryness in vacuo to give indole-2-carbonyl chloride. The residue was 

taken up with chloroform (52 mL) and DMAP (31.5 mg, 0.258 mmol) and aniline 

218 (1.16 g, 7.74 mmol) were added. The reaction mixture was stirred at 70 °C for 1 h, 

before quenching with water (120 mL). Following extraction with dichloromethane (3 

× 120 mL), the organic phase was washed with water (2 × 80 mL) and brine (80 

mL), and then dried over MgSO4, filtered and concentrated in vacuo affording amide 

229. The crude product was added in 3.5 M aq. KOH (926 mg in 4.7 mL water, 16.5 

mmol) and was stirred for 1 h at 105 °C. The resultant solid was isolated by filtration 

and washed with cold water (120 mL), 10 % aq. HCl (50 mL) and dried in vacuo, 

affording compound 230 as a yellow solid (818 mg, 79%); mp 215–223 °C; νmax (thin 

film)/cm
−1 

2971, 1705, 1622, 1600, 1511, 1493, 1440, 1396, 1365, 1324, 1296, 

1252, 1144, 1072; δH (400 MHz, DMSO-d6) 8.21 (1H, dd, J = 7.9, 1.4 Hz, ArH), 

8.03–7.95 (2H, m, ArH), 7.88 (1H, d, J = 8.4, ArH), 7.78 (1H, d, J = 16.1 Hz, 

H-10), 7.69–7.65 (1H, m, ArH), 7.60–7.58 (1H, m, ArH), 7.40–7.36 (1H, m, ArH), 

7.31–7.27 (1H, m, ArH), 6.44 (1H, d, J = 16.1 Hz, H-11), 3.67 (3H, s, CH3), 1.45 

(9H, s, H-14); δC (100 MHz, DMSO-d6) 166.2 (C-12), 154.2 (C-15/16), 141.4 

(C-15/16), 136.6 (C-10), 135.9 (Ar CH), 134.5 (Ar CH), 131.5 (Ar CH), 131.4 (Ar 

C), 128.8 (Ar CH) , 128.7 (Ar CH), 127.2 (Ar C), 124.5 (Ar CH), 122.0 (Ar C), 

121.0 (Ar C), 119.9 (Ar C), 117.0 (C-11), 116.5 (Ar CH), 112.9 (Ar CH), 112.2 (Ar 

C), 79.5 (C-13), 37.9 (C-CH3), 27.8 (C-14); HRMS (ESI
+
): Found: 402. 1801; 

C24H24N3O3 (MH
+
) Requires: 402.1812 (2.8 ppm error).  

 Lab Notebook Reference: CHK 2/89 p.133 and CHK 2/90 p.135  
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(2E)-3-[2-(1-Methyl-4-oxo-1,4-dihydroquinazolin-2-yl)-1H-indol-3-yl)prop-2-

enoic acid (214a): 
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To a round bottom flask containing ester 230 (3.15 g, 7.85 mmol), formic acid (105 

mL) was added at rt. The reaction mixture was stirred at 50 °C for 1 h. Then the solvent 

was evaporated to dryness in vacuo to give compound 214a as a yellow solid (2.71 g, 

100 %); mp 220–223 °C; νmax (thin film)/cm
−1

 3206, 2820, 1679, 1604, 1588, 1521, 

1494, 1429, 1415, 1398, 1320, 1302, 1206; δH (400 MHz, CDCl3) 12.48 (1H, br s, 

COOH), 8.20 (1H, d, J = 7.9 Hz, ArH), 8.02 (1H, d, J = 8.1 Hz, ArH), 7.97–7.93 

(1H, m, ArH), 7.85 (1H, d, J = 8.4 Hz, ArH), 7.79 (1H, d, J = 16.1 Hz, H-10), 7.67–

7.57 (2H, m, ArH), 7.39–7.35 (1H, m, ArH), 7.31–7.27 (1H, m, ArH), 6.46 (1H, J = 

16.1 Hz, H-11), 3.66 (3H, s, CH3); δC (100 MHz, CDCl3) 168.6 (C-12), 154.9 

(C-13/14), 142.0 (C-13/14), 137.1 (Ar C), 136.8 (C-10), 135.0 (Ar CH), 133.4 (Ar 

C), 132.1 (Ar C), 127.8 (Ar CH), 127.4 (Ar CH), 125.2 (Ar C), 124.9 (Ar CH), 

122.5 (Ar CH), 121.4 (Ar CH), 120.4 (Ar C), 117.5 (Ar CH), 116.6 (C-11), 113.4 

(Ar CH), 112.6 (Ar CH), 38.2 (C-CH3); HRMS (ESI
+
): Found: 346.1180; 

C20H16N3O3 (MH
+
) Requires: 346.1186 (1.3 ppm error).  

Lab Notebook Reference: CHK/WPU 1348 
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1H, 2H, 3H, 4H, 9H-Pyrido[3,4-b]indol-1-one (239):
80 
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Dimethylphosphoryl azide (3.42 mL, 15.8 mmol) was added dropwise to a stirred 

solution of indole-3-propionic acid 237 (3.00 g, 15.8 mmol) and NEt3 (2.06 mL, 

15.8 mmol) in toluene (48 mL) at rt under N2. The reaction was then heated with 

stirring at 90 °C for 90 min. Most of the solvent was removed under reduced pressure 

to afford mobile oil. After cooling to 0 °C, BF3·OEt2 (7.95 mL, 193 mmol) was added 

dropwise to the rapidly stirred mixture, which was then warmed to rt and stirred for 16 

h. The reaction was basified with 1 M aq. NaOH (to pH = 10) and ethyl acetate (64 mL) 

was added. The rapidly stirred mixture was heated at 50 °C for 1 h, until all the crude 

material was dissolved.  The reaction mixture was cooled to rt and extracted with ethyl 

acetate (3 × 100 mL), washed with brine (100 mL), and then dried over MgSO4. 

Purification by column chromatography (SiO2, 1:1 petrol:ethyl acetate→pure ethyl 

acetate) afforded compound 239 as a colorless oil (2.78 g, 94%); Rf  0.3 (ethyl acetate); 

δH (400 MHz, DMSO-d6) 11.59 (1H, br s, NH), 7.59–7.57 (2H, m, H-6/9, NH), 7.38 

(1H, d, J = 8.2 Hz, H-6/9), 7.21 (1H, dd, J = 8.2, 7.0 Hz, H-7/8), 7.05 (1H, dd, J = 

8.2, 7.0 Hz, H-7/8), 3.50 (2H, t, J = 7.0 Hz, H-2), 2.91 (2H, t, J = 7.0 Hz, H-3); 

HRMS (ESI
+
): Found:187.0861; C11H11N2O (MH

+
) Requires: 187.0866 (2.4 ppm 

error); Obtained data in accord with those reported in the literature.
80

  

Lab Notebook Reference: CHK 3/140 p.8 

Dehydroevodiamine hydrochloride (233):
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To a round bottom flask containing lactam 239 (8.85 g, 47.5 mmol) in toluene (400 

mL), dimethyl athranilate 240 (9.27 mL, 63.2 mmol) was added at rt. Then POCl3 (29.4 

mL, 316 mmol) was added and the resulting pale orange solution was heated at 110 °C 

for 1 h before pouring carefully into ice cold water (2 L). The resultant precipitate was 
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isolated by filtration, washed with water (1 L) and collected with methanol, 

concentrated and dried under high vacuum, affording compound 233 as a yellow solid 

(16.1 g, 88%); mp 204–207 °C (Lit. mp 215–218 °C);
81

 νmax (thin film)/cm
−1

 1703, 

1544, 1499, 1425, 1335, 1207, 1103, 769, 683, 520; δH (400 MHz, DMSO-d6) 8.35 

(1H, dd, J = 7.9, 1.5 Hz, H-14), 8.20–8.11 (2H, m, H-16,17), 7.88 (1H, d, J = 8.1 

Hz, H-6), 7.82–7.78 (1H, m, H-15), 7.73 (1H, d, J = 8.3 Hz, H-9), 7.52 (1H, ddd, J 

= 8.3, 6.9, 1.0 Hz, H-8), 7.27 (1H, ddd, J = 8.1, 6.9, 1.0 Hz, H-7), 4.47 (2H, t, J = 

6.7 Hz, H-2), 4.41 (3H, s, CH3), 3.33 (2H, t, J = 6.7 Hz, H-3); δC (100 MHz, 

DMSO-d6) 158.2 (C-12), 150.0 (C-1), 141.4 (C-10), 139.6 (C-18), 136.6 (C-16), 

130.1 (C-4), 128.7 (C-8), 128.6 (C-15), 127.7 (C-14), 123.3 (C-5), 121.6 (C-7), 

121.5 (C-6), 120.1 (C-11), 118.7 (C-13), 118.5 (C-17), 113.6 (C-9), 42.0 (C-2), 41.0 

(C-CH3), 18.5 (C-3); HRMS (ESI
+
): Found: 302.1274; C19H16N3O (MH

+
) Requires: 

302.1288 (4.7 ppm error). Obtained data in accord with those reported in the 

literature.
81

  

Lab Notebook Reference: CHK 3/141 p.16 

13b-Ethynyl-14-methyl-8,13,13b,14-tetrahydroindolo[2',3':3,4]pyrido[2,1-

b]quinazolin-5(7H)-one (242): 
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Procedure A: 

n-BuLi (2.78 mL, 4.44 mmol, 1.6 M in hexanes) was added to a solution of 

trimethylsilylacetylene (0.84 mL, 5.92 mmol) in THF (15 mL) at −78 °C and the 

mixture was stirred for 30 min. The resulting ((trimethylsilyl)ethynyl) lithium solution 

was then added to a suspension of DHED salt 233 (500 mg, 1.48 mmol) in THF (15 

mL) at −78 °C via cannula. The mixture was stirred at −78 °C for 30 min and then 

allowed to stir at rt for another 30 min before quenching with water (30 mL). Following 

extraction with dichloromethane (3 x 30 mL), the organic phase was washed with water 

(2 × 20 mL) and brine (20 mL), and then dried over MgSO4, filtered and concentrated in 

vacuo affording aklyne 241 as an orange solid (634 g). The crude material was used 

directly to the next step without further purification. TBAF (1 M, 1.78 mL, 1.78 mmol) 



190 

 

was added to the solution of alkyne 241 at 0 °C in THF (15.8 mL) and the resulting 

solution was stirred at 0 °C for 10 min. Then, the reaction mixture was poured into the 

water, extracted with ether (3 x 30 mL) and then dried over MgSO4, filtered and 

concentrated in vacuo affording compound 242 as an orange solid (435 mg, 90%).  

Procedure B: 

Ethynylmagnesium chloride (0.750 mL, 0.375 mmol) was added to a stirred suspension 

of DHED salt 233 (42.2 mg, 0.125 mmol) in toluene (1.5 mL) at 0 °C. Then LiCl (16.9 

mg, 0.400 mmol) was added. The reaction mixture was stirred for 5 mins at 0 °C and 

then allowed to warm at rt and stirred for an additional 1 h before quenching with water 

(20 mL). Following extraction with dichloromethane (3 x 20 mL), the organic phase 

was washed with water (2 × 20 mL) and brine (20 mL), and then dried over MgSO4, 

filtered and concentrated in vacuo affording compound 242 as an orange solid (30.3 mg, 

74%). 

Rf  0.4 (3:1 petrol:ethyl acetate); mp 220–223 °C; νmax (thin film)/cm
−1 

3194, 1597, 

1554, 1443, 1397, 1329, 1294, 1243, 1219, 740, 717; δH (400 MHz, DMSO-d6) 

11.64 (1H, br s, NH), 7.98 (1H, dd, J = 7.7, 1.5 Hz, ArH), 7.64–7.59 (2H, m, ArH), 

7.46 (1H, d, J = 8.1 Hz, ArH), 7.31–7.21 (3H, m, ArH), 7.1 (1H, ddd, J = 7.1, 7.1, 

1.0 Hz, ArH), 4.90–4.86 (1H, m, H-2a), 3.60 (1H, s, H-21), 3.10–2.99 (2H, m, 

H-2b,3a), 2.87–2.78 (1H, m, H-3b), 2.58 (3H, s, CH3); δC (100 MHz, DMSO-d6) 

162.8 (C-12), 148.7 (Ar C), 136.9 (Ar C), 133.6 (Ar CH), 128.5 (Ar C), 127.8 (Ar 

CH), 125.1 (Ar CH), 123.0 (Ar CH), 122.6 (Ar CH), 121.8 (Ar C), 121.2 (Ar CH), 

119.1 (Ar CH), 118.9 (Ar CH), 111.9 (Ar C), 111.8 (Ar C), 82.0 (C-1/20), 75.1 (C-

1/20), 69.7 (C-21), 38.0 (C-2), 36.9 (C-CH3), 20.1 (C-3); HRMS (ESI
+
): Found: 

328.1453; C21H18N3O (MH
+
) Requires: 328.1444 (2.5 ppm error). 

Lab Notebook Reference: CHK 2/134 p.196 (Procedure A) and CHK 3/180 p.61 

(Procedure B) 
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14-Methyl-13b-[(E)-2-(tributylstannyl)vinyl]-8,13,13b,14-tetrahydroindolo 

[2',3':3,4] pyrido[2,1-b]quinazolin-5(7H)-one (235): 
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Tributyltin hydride (1.02 mL, 3.77 mmol) was added to a mixture of alkyne 242 (1.00 g, 

3.05 mmol) and AIBN (94.2 mg, 0.611 mmol) in degassed anhydrous benzene (15 mL). 

The rapidly stirred suspension was heated at 100 °C for 1 h. The solvent was removed 

in vacuo. Purification by column chromatography (SiO2, pure petrol→19:1 petrol:ethyl 

acetate→10:1 petrol:ethyl acetate) afforded compound 235 as an orange oil. (1.02 g, 54 

%) (only E-isomer); Rf  0.5 (3:1 petrol:ethyl acetate); mp 148–154 °C; νmax (thin 

film)/cm
−1

 2911, 2879, 2826, 2808, 1607, 1581, 1446, 1399, 1280; δH (400 MHz, 

CDCl3) 8.11 (1H, br s, NH), 8.03 (1H, dd, J = 7.8, 1.4 Hz, ArH),  7.59 (1H, d, J = 8.0 

Hz, ArH), 7.45–7.40 (2H, m, ArH), 7.28–7.24 (1H, m, ArH), 7.19–7.11 (3H, m, ArH), 

6.18 (1H, d, J = 18.9 Hz, H-20/21), 5.97 (1H, d, J = 18.9 Hz, H-20/21), 5.16 (1H, ddd, 

J = 12.9, 4.9, 1.6 Hz, H-2eq), 3.21 (1H, ddd, J = 12.9, 11.5, 4.4 Hz, H-2ax), 3.03–2.88 

(2H, m, H-3a,b), 2.45 (3H, s, H-19), 1.27–1.08 (12H, m, n-Bu (CH2)), 0.81–0.77 (9H, 

m, n-Bu (CH3)), 0.72–0.68 (6H, m, n-Bu (CH2)); δC (100 MHz, CDCl3) 163.7 (C-12), 

152.3 (Ar C), 144.7 (C-20/21), 136.7 (Ar C), 132.9 (Ar CH), 130.5 (C-20/21), 130.3 

(Ar CH), 128.4 (Ar CH), 126.3 (Ar C), 125.0 (Ar C), 124.3 (Ar CH), 123.9 (Ar CH), 

123.0 (Ar CH), 120.0 (Ar CH), 119.0 (Ar CH), 113.2 (Ar C), 111.4 (Ar C), 100.0 

(C-1), 40.1 (C-19), 38.8 (C-2), 28.9 (n-Bu (CH2)), 27.2 (n-Bu (CH2)), 20.7 (C-3), 

13.7 (n-Bu (CH3)), 9.5 (n-Bu (CH2)); HRMS (ESI
+
): Found: 620.2641; 

C33H46N3O
120

Sn (MH
+
) Requires: 620.2664 (2.7 ppm error). 

Lab Notebook Reference: CHK 3/139 p.20 
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Rhetsinine (244):
79 
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n-BuLi (0.555 mL, 0.888 mmol, 1.6 M in hexanes) was added to a solution of 

tributyl(ethynyl)stannane (0.343 mL, 1.18 mmol) in THF (3 mL) at −78 °C and the 

mixture was stirred for 30 min. The resulting ((tributylstannyl)ethynyl)lithium solution 

was then added to a suspension of DHED salt 233 (100 mg, 0.296 mmol) in THF (3 

mL) at −78 °C via cannula. The mixture was stirred at −78 °C for 30 min and then 

allowed to stir at rt for another 30 min before quenching with water (20 mL). Following 

extraction with dichloromethane (3 x 20 mL), the organic phase was washed with water 

(2 × 20 mL) and brine (20 mL), and then dried over MgSO4, filtered and concentrated in 

vacuo affording compound 244 as an orange solid (488 mg, 52%); mp 160–168 °C; 

νmax (thin film)/cm
−1

 3270, 2932, 1652, 1620, 1609, 1573, 1552, 1516, 1483, 1280; 

δH (400 MHz, CDCl3) 11.76 (1H, br s, NH), 7.70 (1H, d, J = 8.0 Hz, ArH), 7.41 

(1H, d, J = 8.3 Hz, ArH), 7.34–7.29 (3H, m, ArH), 7.12 (1H, ddd, J = 8.0, 7.9, 0.8 

Hz, ArH), 6.92–6.89 (1H, m), 6.70 (1H, d, J = 8.3 Hz, ArH), 6.49 (1H, 7.9, 7.9, 0.8 

Hz, ArH), 4.11 (2H, t, J = 6.2 Hz, H-2), 3.18 (2H, t, J = 6.2 Hz, H-3), 2.81 (3H, d, J 

= 5 Hz, CH3); δC (100 MHz, CDCl3) 175.2 (C-11), 161.6 (C-1), 150.2 (Ar C), 138.9 

(Ar C), 134.0 (Ar CH), 132.0 (Ar CH), 126.6 (Ar C), 126.2 (Ar CH), 125.0 (Ar C), 

123.0 (Ar C), 121.4 (Ar CH), 120.6 (Ar CH), 117.5 (Ar C), 114.7 (Ar CH), 113.3 

(Ar CH), 111.4 (Ar CH), 47.4 (C-2), 30.1 (C-CH3), 21.1 (C-3); HRMS (ESI
+
): 

Found: 302.1297; C19H16N3O (MH
+
) Requires: 302.1288 (−3.0 ppm error). Obtained 

data in accord with those reported in the literature (only Mass spectrometry and IR 

spectroscopy data available).
79

  

Lab Notebook Reference: CHK 3/157 p.33 
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2-(3-Iodo-1H-indol-2-yl)-1-methyl-1,4-dihydroquinazolin-4-one (236):  
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To a solution of quinazolinone 221 (4.00 g, 14.5 mmol) in acetone (500 mL) was added 

N-iodosuccinimide (3.43 g, 15.3 mmol). After stirring for 2 h at rt, sat. aq. Na2S2O3 

(300 mL) was added and the mixture was stirred for an additional 5 min at rt. The 

resulting precipitate was isolated by filtration and washed with cold water (1 L). The 

resulting white solid was collected and dried in vacuo. Purification by column 

chromatography (SiO2,  DCM→DCM, 1% MeOH→DCM, 2% MeOH→ DCM, 4% 

MeOH) afforded compound 236 as a white solid (4.94 g, 85%); Rf  0.5 (18:1 

DCM:MeOH); mp 214–219 °C; νmax (thin film)/cm
−1 

1625, 1572, 1503, 1469, 1445, 

1425, 1410, 1377, 1353, 1157, 1129, 1057, 755; δH (400 MHz, DMSO-d6) 12.41 

(1H, br, NH), 8.22 (1H, dd, J = 8.0, 1.6 Hz, ArH), 7.99 (1H, ddd, J = 8.4, 7.1, 1.6 

Hz, ArH), 7.91 (1H, dd, J = 8.4, 1.0 Hz, ArH), 7.69 (1H, ddd, J = 8.0, 7.1, 1.0 Hz, 

ArH), 7.55 (1H, dd, J = 8.2, 0.9 Hz, ArH), 7.47 (1H, dd, J = 8.0, 1.2 Hz, ArH), 7.37 

(1H, ddd, J = 8.2, 7.0, 1.2 Hz, ArH), 7.27 (1H, ddd, J = 8.0, 7.0, 0.9 Hz, ArH), 3.81 

(3H, s, CH3); δC (100 MHz, DMSO-d6) 167.8 (C-9/10), 155.8 (C-9/10), 141.9 (Ar 

C), 136.7 (Ar CH), 134.9 (Ar C), 133.1 (Ar C), 130.2 (Ar C), 127.8 (Ar CH), 127.3 

(Ar CH), 124.9 (Ar CH), 121.5 (Ar CH), 121.5 (Ar CH), 120.4 (Ar C), 117.5 (Ar 

CH), 113.1 (Ar CH), 62.8 (C-2), 38.0 (C-CH3); HRMS (ESI
+
): Found: 402.0090; 

C17H13IN3O (MH
+
) Requires: 402.0098 (1.9 ppm error); Elemental Analysis: 

calculated for C17H12IN3O requires C, 50.89; H, 3.01; N, 10.47; found C, 51.43; H, 

2.98; N, 10.24 

Lab Notebook Reference: CHK 2/137 p.201 
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2-[3-Iodo-1-(4-methylbenzenesulfonyl)-1H-indol-2-yl]-1-methyl-1,4 

dihydroquinazolin-4-one (245): 
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To a solution of iodide 236 (3.00 g, 7.48 mmol) in DMF (25 mL) was added sodium 

hydride (449 mg, 11.2 mmol, 60% dispersion in mineral oil) at 0 °C. After stirring for 

10 min at 0 °C, tosyl chloride (2.14 g, 11.2 mmol) was added. The mixture was stirred 

for an additional 30 min at rt before quenching with water (800 mL). The resulting 

precipitate was isolated by filtration and washed with cold water (1 L). The resulting 

white solid was collected (DCM soluble) and dried in vacuo. Purification by column 

chromatography (SiO2, DCM→DCM, 1% MeOH→DCM, 1% MeOH) afforded 

compound 245 as a colourless oil (3.80 g, 92%); Rf  0.6 (10:0.2 DCM:MeOH); νmax 

(thin film)/cm
−1 

1625, 1573, 1503, 1470, 1444, 1426, 1410, 1377, 1353, 1157; δH 

(400 MHz, CDCl3) 8.28 (1H, d, J = 7.9, 1.4, ArH), 8.09–8.07 (3H, m, ArH), 8.04–

8.00 (1H, m, ArH), 7.94 (1H, d, J = 8.3 Hz, ArH), 7.73 (1H, ddd, J = 7.9, 7.9, 0.9, 

ArH), 7.60 (1H, ddd, J = 8.5, 8.5, 1.5 Hz, ArH), 7.56–7.44 (4H, m, ArH), 3.72 (3H, 

s, H-22), 2.37 (3H, s, H-21); δC (100 MHz, CDCl3) 168.3 (C-9/10), 155.4 (C-9/10), 

147.4 (Ar C), 141.8 (Ar C), 135.0 (Ar CH), 134.0 (Ar C), 133.8 (Ar C), 132.0 (Ar 

C), 131.2 (Ar C), 128.6 (Ar CH), 128.5 (Ar CH), 128.4 (Ar CH), 128.0 (Ar CH), 

126.1 (Ar CH), 123.6 (Ar CH), 123.6 (Ar CH), 120.7 (Ar C), 117.9 (Ar CH), 115.1 

(Ar CH), 76.8 (C-2), 37.2 (C-22), 22.0 (C-21); HRMS (ESI
+
): Found: 577.9997; 

C24H19IN3NaO3S (MNa
+
) Requires: 578.0006 (1.5 ppm error). 

Lab Notebook Reference: CHK 2/137 p.201 
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2-(3-Ethenyl-1H-indol-2-yl)-1-methyl-1,4-duhydroquinazolin-4-one (247): 
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NEt4Cl (82.5 mg, 0.498 mmol) was added to a Schlenk tube under Ar and flame dried in 

vacuo. Iodide 236 (200 mg, 0.498 mmol), stannane 246 (273 mg, 0.748 mmol) and 

PdCl2(PPh3)2 (17.4 mg, 0.0249 mmol) were then added to the Schlenk tube under Ar. 

Degassed DMF (4 mL) was added and the reaction mixture was stirred at rt until 

everything dissolved. The rapidly stirred mixture was then heated at 80 °C for 10 min 

before CuI (142.5 mg, 0.748 mmol) was added. The reaction mixture was stirred at 80 

°C for 2 h, before cooling to rt and quenching with water (20 mL). Following 

extraction with dichloromethane (3 × 20 mL), the organic phase was washed with 

water (20 mL) and then dried over MgSO4. Purification by column chromatography 

(10% K2CO3 in SiO2,
169

 DCM→DCM, 2% MeOH→DCM, 3% MeOH) afforded 

compound 247 as a yellow solid (89 mg, 82%); mp 182–186 °C; Rf  0.6 (DCM, 10% 

MeOH); νmax (thin film)/cm
−1

 3109, 2923, 1629, 1605, 1519, 1492, 1448, 1397, 

1339, 1260, 765, 748; δH (400 MHz, DMSO-d6) 12.00 (1H, br s, NH), 8.17 (1H, d, J 

= 7.7 Hz, ArH), 7.98 (1H, d, J = 8.0 Hz, ArH), 7.92 (1H, dd, J = 8.4, 8.5 Hz, ArH), 

7.81 (1H, d, J = 8.4 Hz, ArH), 7.61 (1H, dd, J = 8.5, 7.7 Hz, ArH), 7.51 (1H, d, J = 

8.1 Hz, ArH), 7.30 (1H, dd, J = 8.1, 7.9 Hz, ArH), 7.19 (1H, dd, J = 8.0, 7.9 Hz, 

ArH), 6.90 (1H, dd, J = 17.8, 11.5 Hz, H-17), 5.73 (1H, dd, J = 17.8, 1.2 Hz, 

H-18a), 5.27 (1H, dd, J = 11.5, 1.2 Hz, H-18b), 3.70 (3H, s, CH3); δC (100 MHz, 

DMSO-d6) 167.3 (C-9/10), 155.2 (C-9/10), 141.6 (Ar C), 136.4 (Ar C), 134.1 (Ar 

CH), 128.8 (C-17), 128.7 (Ar CH), 127.1 (Ar CH), 126.4 (Ar CH), 124.8 (Ar C), 

123.7 (Ar CH), 120.7 (Ar CH), 120.6 (Ar C), 119.8 (Ar C), 116.9 (Ar CH), 114.7 

(Ar C), 113.5 (C-18), 112.3 (Ar CH), 37.3 (C-CH3); HRMS (ESI
+
): Found: 

302.1286; C19H16N3O (MH
+
) Requires: 302.1288 (0.8 ppm error). 

Lab Notebook Reference: CHK 3/152 p.27 
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2-[3-Ethenyl-1-(4-methylbenzenesulfonyl)-1H-indol-2-yl]-1-methyl-1,4-

dihydroquinazolin-4-one (248): 
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NEt4Cl (59.7 mg, 0.360 mmol) was added to a Schlenk tube under Ar and flame dried in 

vacuo. Iodide 163 (200 mg, 0.360 mmol) and stannane 162 (172 mg, 0.541 mmol) and 

PdCl2(PPh3)2 (12.6 mg, 0.0170 mmol) were then added to the Schlenk tube under Ar. 

Degassed DMF (4 mL) was added and the reaction mixture was stirred at rt until 

everything dissolved. The rapidly stirred mixture was then heated at 80 °C for 20 h 

before cooling and quenching with water (20 mL). Following extraction with ethyl 

acetate (3 × 20 mL), the organic phase was washed with water (20 mL) and then 

dried over MgSO4. Purification by column chromatography (SiO2, 3:1→1:1 

petrol:ethyl acetate→pure ethyl acetate) afforded the title compound as a colourless oil. 

(70 mg, 41%); Rf  0.3 (Ethyl acetate); νmax (thin film)/cm
−1 

2910, 2879, 1625, 1580, 

1502, 1472, 1446, 1431, 1416, 1376, 1355, 1159; δH (400 MHz, CDCl3) 8.47 (1H, 

ddd, J = 8.0, 1.6, 0.5 Hz, ArH), 8.13 (1H, ddd, J = 8.4, 1.0, 0.8 Hz, ArH), 7.91–7.88 

(2H, m, ArH), 7.85–7.79 (2H, m, ArH), 7.58 (1H, ddd, J = 8.0, 7.2, 1.0 Hz, ArH), 

7.52 (1H, d, J = 8.7 Hz, ArH), 7.44 (1H, ddd, J = 8.5, 7.3, 1.3 Hz, ArH), 7.34 (1H, 

ddd, J = 8.0, 7.3, 1.1 Hz, ArH), 7.24–7.22 (2H, m, ArH), 6.73 (1H, dd, J = 17.9, 

11.6 Hz, H-17), 5.81 (1H, dd, J = 17.9, 1.0 Hz, H-18b), 5.43 (1H, dd, J = 11.6, 1.0 

Hz, H-18a), 3.68 (3H, s, H-24), 2.30 (3H, s, H-23); δC (100 MHz, CDCl3) 168.8 

(C-9/1-), 154.7 (C-9/10), 145.7 (Ar C), 141.4 (Ar C), 135.7 (Ar C), 134.2 (Ar CH), 

133.6 (Ar C), 129.9 (Ar CH), 128.8 (Ar CH), 128.6 (Ar C), 127.9 (Ar C), 127.8 (Ar 

CH), 126.6 (Ar CH), 126.5 (Ar CH), 126.2 (C-17), 124.6 (Ar CH), 122.7 (Ar C), 

121.4 (Ar CH), 120.4 (Ar C), 119.5(C-18), 115.2 (Ar CH), 114.7 (Ar CH), 36.3 (C-

24), 21.6 (C-23); HRMS (ESI
+
): Found: 456.1358; C26H22N3O3S (MH

+
) Requires: 

456.1376 (4.0 ppm error). 

Lab Notebook Reference: CHK 3/138 p.3 
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(±)-Dievodiamine (212): 
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NEt4Cl (82.5 mg, 0.498 mmol) was added to a Schlenk tube under Ar and flame dried in 

vacuo. Iodide 236 (100 mg, 0.249 mmol), stannane 235 (231 mg, 0.374 mmol) and first 

batch of PdCl2(PPh3)2 (17.4 mg, 0.0249 mmol) were then added to the Schlenk tube 

under Ar. Degassed DMF (2.5 mL) was added and the reaction mixture was stirred at rt 

until everything dissolved. The rapidly stirred mixture was then heated at 80 °C for 10 

min. A second batch of PdCl2(PPh3)2 (17.4 mg, 0.0249 mmol) and CuI (71.2 mg, 0.374 

mmol) were then added. The reaction mixture was stirred at 80 °C for 2 h, before 

cooling and quenching with water (20 mL). Following extraction with ethyl acetate (3 

× 20 mL), the organic phase was then dried over MgSO4. Purification by column 

chromatography (SiO2, DCM→DCM, 1% MeOH→DCM, 2% MeOH) followed by 

recrystallisation (DCM/hexane) afforded (±)-dievodiamine 212 as a pale yellow solid. 

(98 mg, 65%); Rf  0.6 (DCM, 10 % MeOH); mp 229–233 °C (no Lit. mp has been 

reported); νmax (thin film)/cm
−1

 3216, 3057, 2928, 1629, 1604, 1522, 1490, 1446, 

1396, 1396, 1355, 1299, 1262, 1174, 1150, 733, 761. 703, 693; δH (400 MHz, 

DMSO-d6) 12.00 (1H, br s, NH), 11.42 (1H, br s, NH), 8.18 (1H, d, J = 7.9 Hz, H-

19’), 7.93 (1H, t, J = 8.3, 7.2 Hz, H-17’), 7.78 (1H, d, J = 7.7 Hz, H-19), 7.70–7.64 

(2H, m, H-9’,18’), 7.55–7.50 (2H, m, H-9,16’), 7.43 (1H, d, J = 8.1 Hz, H-12’), 

7.37–7.32 (2H, m, H-12,17), 7.23 (1H, t, J = 8.1, 7.4 Hz, H-11’), 7.17–7.03 (5H, m, 

H-11,10’,16,10,18), 6.55 (1H, d, J = 16.0 Hz, H-6’), 6.35 (1H, d, J = 16.0 Hz, 

H-5’), 4.91–4.88 (1H, m, H-5eq), 3.28 (3H, s, H-22’), 3.16–3.10 (1H, m, H-5ax), 

2.95–2.91 (1H, m, H-6eq), 2.82–2.73 (1H, m, H-6ax), 2.47 (3H, m, H-22); δC (100 

MHz, DMSO-d6) 167.3 (C-21’), 162.6 (C-21), 154.9 (C-3’), 149.1 (C-15), 141.4 (C-

15’), 136.8 (C-13), 136.3 (C-12’), 134.1 (C-17’) , 133.2 (C-17), 130.7 (C-2), 128.9 

(C-2’), 128.4 (C-5’), 127.5 (C-19), 127.1 (C-19’), 126.5 (C-18’), 125.5 (C-8), 124.5 

(C-8’), 123.8 (C-11’), 123.3 (C-18), 122.9 (C-20), 122.4 (C-16), 122.2 (C-11), 121.5 
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(C-6’), 120.7 (C-10’), 120.3 (C-9’), 119.9 (C-20’), 118.9 (C-10), 118.6 (C-9), 116.9 

(C-16’), 112.8 (C-7’), 112.4 (C-12’), 111.7 (C-12), 111.2 (C-7), 72.6 (C-3), 38.7 (C-

22), 38.6 (C-5), 36.8 (C-22’), 20.2 (C-6); HRMS (ESI
+
): Found: 625.2307; 

C38H30N6NaO2 (MNa
+
) Requires: 625.2322 (2.4 ppm error). 

Lab Notebook Reference: CHK 3/150 p. 25 

Methyl 2-amino-3-(1H-indol-3-yl)propanoate (252):
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To a suspension of tryptophan 251 (6.24 g, 30.6 mmol) in methanol (61.2 mL), SOCl2 

(5.36 mL, 73.4 mmol) was added dropwise at 0 °C. The reaction mixture was stirred for 

20 h at rt. The solvent was evaporated and the residue was dissolved in water (100 mL) 

and basified to pH = 8 by adding sat. aq. K2CO3. The ester was extracted with 

dichloromethane (3 × 200 mL) and the organic layer was dried over MgSO4 and 

evaporated under reduced pressure yielding compound 252 as a colourless oil (5.80 g, 

87%); δH (400 MHz, CDCl3) 8.18 (1H, br, NH), 7.62 (1H, dd, J = 7.9 Hz, H-4/7), 

7.35 (1H, ddd, J = 8.1, 1.0, 1.1 Hz, H-4/7), 7.20 (1H, dd, J = 8.1, 7.0, 1.1 Hz, H-

5/6), 7.13 (1H, ddd, J = 7.9, 7.0, 1.0 Hz, H-5/6), 7.06 (1H, d, J = 2.3 Hz, H-1), 3.84 

(1H, dd, J = 4.8, 7.7 Hz, H-10), 3.72 (3H, s, OCH3), 3.29 (1H, ddd, J = 14.4, 4.8, 

0.7 Hz, H-9a), 3.06 (1H, ddd, J = 14.4, 7.7, 0.7 Hz, H-9b), 1.58 (1H, br, NH2); 

HRMS (ESI
+
): Found: 219.1126; C12H15N2O2 (MH

+
) Requires: 219.1128 (0.9 ppm 

error). Obtained data in accord with those reported in the literature.
170

 

Lab Notebook Reference: CHK 3/171 p.49 

 

 

 

 

 



199 

 

Methyl 1-oxo-1H, 2H, 3H, 4H, 9H-pyrido[3,4-b]indole-3-carboxylate (254):
92
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A solution of methyl 2-amino-3-(1H-indol-3-yl)propanoate 252 (207 mg, 0.947 mmol) 

in dichloromethane (1.3 mL) was added to a solution of DMAP (116 mg, 0.947 

mmol) and (Boc)2O (496 mg, 2.27 mmol) in dichloromethane (1.3 mL) and the 

reaction mixture was stirred for 10 minutes at rt. TFA (0.725 mL, 9.47 mmol) was 

added and the reaction mixture was stirred for 1 h before quenching with sat. aq. 

NaHCO3 (10 mL). Following extraction with dichloromethane (3 × 10 mL), the 

organic phase was washed with brine (10 mL) and then dried over MgSO4. 

Purification by column chromatography (SiO2, 2:1→1:1→1:2 petrol:ethyl 

acetate→pure ethyl acetate) afforded compound 254 as a yellow solid (120 mg, 52%); 

mp 183–186 °C; Rf  0.4 (1:2 petrol:ethyl acetate); νmax (thin film)/cm
−1

 3190, 2908, 

1704, 1640, 1596, 1465, 1430, 1351, 1309, 1205, 1138; δH (400 MHz, CDCl3) 9.34 

(1H, br, NH), 7.61 (1H, dd, J = 8.0, 1.2 Hz, H-6/9), 7.46 (1H, dd, J = 8.2, 0.9 Hz, 

H-6/9), 7.34 (1H, ddd, J = 8.2, 7.0, 1.2 Hz, H-7/8), 7.18 (1H, ddd, J = 8.0, 7.0, 0.9 

Hz, H-7/8), 6.18 (1H, br NH), 4.58 (1H, ddd, J = 9.8, 6.0, 1.9 Hz, H-2), 3.82 (3H, s, 

OCH3), 3.47 (1H, dd, J = 16.2, 6.0, H-3eq), 3.30 (1H, dd, J = 16.2, 9.8 Hz, H-3ax); 

δC (100 MHz, CDCl3) 172.2 (C-1/12), 171.1 (C-1/12), 161.6 (Ar C), 137.5 (Ar C), 

125.6 (C-7/8), 120.6 (C-7/8), 120.4 (C-6/9), 117.7 (Ar C), 112.6 (C-6/9), 99.9 (Ar 

C), 55.0 (C-2), 53.0 (C-OCH3), 24.1 (C-3); HRMS (ESI
+
): Found: 245.0925; 

C13H13N2O3 (MH
+
) Requires: 245.0921 (−1.9 ppm error). This compound has been 

reported previously in the literature but no data were obtained.
92

   

Lab Notebook Reference: CHK 3/166 p.100 
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7-(Methoxycarbonyl)-14-methyl-5-oxo-5,7,8,13-tetrahydroindolo [2',3':3,4] 

pyrido[2,1-b] quinazolin-14-ium (255): 
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To a round bottom flask containing methyl 1-oxo-1H, 2H, 3H, 4H, 9H-pyrido[3,4-

b]indole-3-carboxylate 254 (217 mg, 0.887 mmol), methyl athranilate 240 (0.130 mL, 

0.887 mmol) was added at rt. Then POCl3 (1.33 mL, 14.2 mmol) was added and the 

resulting solution was heated at 110 °C for 1 h before pouring carefully into ice cold 

water (100 mL). The resultant precipitate was isolated by filtration, washed with water 

(200 mL) and collected with dichloromethane, concentrated and dried under high 

vacuum, affording compound  255 as a yellow solid (299 mg, 85%); mp 80–85 °C; νmax 

(thin film)/cm
−1

 1710, 1611, 1553, 1500, 1428, 1361, 1340, 1204, 1131, 1102; δH 

(400 MHz, CDCl3) 8.38 (1H, dd, J = 7.9, 1.4 Hz, ArH), 8.26–8.18 (2H, m, ArH), 

7.93 (1H, d, J = 8.1 Hz, ArH), 7.88–7.84 (1H, m, ArH), 7.75 (1H, d, J = 8.3 Hz, 

ArH), 7.53 (ddd, J = 8.3, 6.9, 1.0 Hz, ArH), 7.27 (ddd, J = 8.1, 6.9, 1.0 Hz, ArH), 

6.42 (dd, J = 6.7, 1.4 Hz, H-2), 4.49 (3H, s, H-19), 4.00 (1H, dd, J = 17.4, 1.4, H-

3eq), 3.58 (1H, dd, J = 17.4, 6.7 Hz, H-3ax), 3.53 (3H, s, H-21); δC (100 MHz, 

CDCl3) 168.4 (C-20), 157.6 (C-12), 148.8 (C-1), 142.0 (Ar C), 139.6 (Ar C), 137.5 

(Ar CH), 129.4 (Ar CH), 129.3 (Ar CH), 128.1 (Ar C), 127.5 (Ar CH), 123.5 (Ar C), 

122.1 (Ar CH), 121.7 (Ar CH), 119.2 (Ar CH), 119.2 (Ar C), 117.9 (Ar C), 113.9 

(Ar CH), 53.6 (C-2), 53.3 (C-21), 41.6 (C-19), 21.7 (C-3); HRMS (ESI
+
): Found: 

360.1327; C21H18N3O3 (MH
+
) Requires: 360.1343 (4.3 ppm error).  

Lab Notebook Reference: CHK 3/169 p.47 
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Methyl 2-[2-(methylamino)benzoyl]-1-oxo-1H, 2H, 3H, 4H, 9H-pyrido[3,4-b] 

indole-3-carboxylate (257): 
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Sodium hydride (91.7 mg, 2.29 mmol, 60% dispersion in mineral oil) was added in a 

suspension of the salt 255 (605 mg, 11.5 mmol) in THF (20 mL) at 0 °C. The reaction 

mixture was stirred for 10 min at 0 °C and then was stirred at rt for 1.5 h. The resultant 

precipitate was isolated by filtration, washed with water (100 mL), concentrated and 

dried under high vacuum, affording compound 257 as a brown solid (241 mg, 40%); 

νmax (thin film)/cm
− 1

 3293, 3054, 2950, 1713, 1740, 1670, 1611, 1555, 1502, 1429, 

1363, 1261, 1216, 1175, 749
 
; δH (400 MHz, CDCl3) 9.24 (1H, br, NH), 7.63 (1H, d, 

J = 8.0 Hz, ArH), 7.42 (1H, dd, J = 8.0, 1.6 Hz, ArH), 7.39–7.31 (2H, m, ArH), 7.24 

(1H, d, J = 8.4 Hz, ArH), 7.18 (1H, ddd, J = 8.0, 6.9, 1.0 Hz, ArH), 6.75 (1H, d, J = 

8.4 Hz, ArH), 6.53 (1H, ddd, J = 8.0, 7.1, 1.1 Hz, ArH), 5.20 (1H, dd, J = 6.0, 2.5 

Hz, H-2), 3.69 (3H, s, H-21), 3.64–3.60 (2H, m, H-3), 2.93 (3H, d, J = 5.0 Hz, H-

19); δC (100 MHz, CDCl3) 172.1 (C-1/12/20), 171.6 (C-1/12/20), 170.9 (C-1/12/20), 

151.0 (Ar C), 134.7 (Ar CH), 132.3 (Ar CH), 127.0 (Ar C), 126.3 (Ar CH), 126.1 

(Ar C), 124.9 (Ar C), 121.1 (Ar C), 120.9 (Ar CH), 120.7 (Ar CH), 118.8 (Ar C), 

114.4 (Ar CH), 111.2 (Ar CH), 100.0 (Ar CH), 59.2 (C-2), 53.0 (C-21), 29.7 (C-19), 

24.5 (C-3); HRMS (ESI
+
): Found: 400.1287; C21H19N3NaO4 (MH

+
) Requires: 

400.1268 (−4.9 ppm error).  

Lab Notebook Reference: CHK 3/182 p.68 
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Rutaecarpine (258): 
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Salt 255 (30.0 mg, 0.076 mmol) was diluted in DMF (1 mL) and irradiated under 

microwave heating (200 watts, 200 °C) for 10 min. The solvent was evaporated to 

afford rutaecarpine 258 as a white solid (6.70 mg, 31%); Rf  0.7 (ethyl acetate); νmax 

(thin film)/cm
−1 

3337, 2926, 1651, 1595, 1470, 1401, 1327, 1229, 159, 127; δH (400 

MHz, CDCl3) 9.48 (1H, br, NH), 8.32 (1H, dd, J = 8.0, 1.4 Hz, ArH), 7.71 (1H, ddd, 

J = 8.2, 6.9, 1.4 Hz, ArH), 7.67–7.63 (2H, m, ArH), 7.43 (1H, ddd, J = 8.0, 6.9, 1.4 

Hz, ArH), 7.38 (1H, d, J = 8.1 Hz, ArH), 7.32 (1H, ddd, J = 8.1, 6.9, 1.1 Hz, ArH), 

7.18 (1H, ddd, J = 8.0, 6.9, 1.1 ArH), 4.60 (2H, t, J = 6.9 Hz, H-2), 3.24 (2H, t, J = 

6.9 Hz, H-3); δC (100 MHz, CDCl3) 161.6 (C-12), 147.4 (Ar C), 145.0 (Ar C), 138.3 

(Ar C), 134.4 (Ar CH), 127.2 (Ar CH), 127.1 (Ar C), 126.5 (Ar CH), 126.2 (Ar CH), 

125.7 (Ar C), 125.6 (Ar CH), 121.1 (Ar C), 120.6 (Ar CH), 120.1 (Ar CH), 118.4 

(Ar C), 112.1 (Ar CH), 41.1 (C-2), 19.6 (C-3); HRMS (ESI
+
): Found: 288.1134; 

C18H14N3O (MH
+
) Requires: 288.1131 (-0.8 ppm error); Obtained data in accord 

with those reported in the literature.
26j

  

Lab Notebook Reference: CHK 3/173 p.51 

1-Oxo-1H, 2H, 3H, 4H, 9H-pyrido[3,4-b]indole-3-carboxylic acid (259): 
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To a round bottom flask containing ester 254 (2.08 g, 8.52 mmol) in THF (25.6 mL), 

LiOH·H2O (1.07 g, 25.6 mmol) in water (25.6 mL) was added at rt. The reaction 

mixture was stirred for 10 min. The yellow solution was dissolved in water (50 mL), 

washed with dichloromethane (100 mL) and then acidified with 10% aq. HCl. The 

acidic aqueous layer, was extracted with ethyl acetate (3 × 100 mL), and the organic 

extracts were dried over MgSO4 and concentrated in vacuo, affording compound 259 as 

a yellow solid (1.65 g, 84%); mp 234–237 °C; νmax (thin film)/cm
−1

 3322, 1614, 
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1469, 1402, 1308, 1212, 1001; δH (400 MHz, CDCl3) 11.64 (1H, br s, COOH), 7.67 

(1H, d, J = 3.9 Hz, NH), 7.60 (1H, d, J = 7.9 Hz, H-6/9), 7.37 (1H, d, J = 8.2 Hz, 

H-6/9), 7.21 (1H, ddd, J = 8.2, 7.0, 1.0 Hz, H-7/8), 7.05 (1H, ddd, J = 7.9, 7.0, 1.0 

Hz, H-7/8), 4.34–4.31 (1H, m, H-2), 3.32–3.23 (2H, m, H-3); δC (100 MHz, CDCl3) 

173.8 (C-12), 161.5 (C-1), 137.0 (Ar C), 126.8 (Ar C), 124.8 (Ar CH), 124.1 (Ar C), 

120.1 (Ar CH), 119.5 (Ar CH), 115.3 (Ar C), 112.4 (Ar CH), 53.9 (C-2), 23.4 (C-3); 

HRMS (ESI
+
): Found: 231.0765; C12H11N2O3 (MH

+
) Requires: 231.0764 (−0.6 ppm 

error).  

Lab Notebook Reference: CHK 4/198 p.6 

3-(1,2,3,4-Tetrahydroisoquinoline-2-carbonyl)-1H, 2H, 3H, 4H, 9H-pyrido[3,4-b]-

1-one (260): 
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CDI (59.3 mg, 0.366 mmol) was added in a suspension of acid 259 (84.3 mg, 0.366 

mmol) in THF (0.59 mL). The resulting solution was stirred for 1.5 h at rt after 

which 1,2,3,4-tetrahydroisoquinoline 163 (46.5 μL) was added. The resulting 

solution was stirred for 24 h at rt and then was concentrated to dryness. The reaction 

mixture was diluted in ethyl acetate (10 mL) and washed with NaHCO3 (10 mL), water 

(10 mL) and brine (10 mL), dried over MgSO4 and concentrated in vacuo. Purification 

by column chromatography (SiO2, 2:1 petrol:ethyl acetate→pure ethyl acetate) afforded 

compound 260 as a white solid (77.3 mg, 61%); mp 107–110°C; Rf 0.2 (ethyl 

acetate); νmax (thin film)/cm
−1

 3190, 2884, 1635, 1625, 1559, 1431, 1309, 1266, 

1211, 1138, 895; NMR spectra showed rotameric broadening; δH (400 MHz, CDCl3) 

10.73 (1H, br s, NH), 7.55–7.49 (2H, m, ArH), 7.27–7.10 (6H, m, ArH), 6.76 (1H, 

br s, NH), 5.01–4.95 (1H, m, H-2), 4.84–4.66 (2H, m, CH2), 3.82–3.76 (2H, m, 

CH2), 3.32–3.13 (2H, m, CH2), 2.97–2.89 (2H, m, CH2); Some of the 
13

C-NMR 

peaks were doubled due to rotameric broadening; δC (100 MHz, CDCl3) 168.9 (C-

1/12), 162.0 (C-1/12), 137.9 (Ar C), 134.7 (Ar C), 133.4 (Ar C), 132.6 (Ar C), 131.7 

(Ar C), 129.1 (Ar CH), 128.3 (Ar CH), 127.3 (Ar CH), 126.7 (Ar CH), 126.6 (Ar 

CH), 126.5 (Ar CH), 126.5 (Ar CH), 125.9 (Ar CH), 125.1 (Ar C), 124.7 (Ar CH), 
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120.2 (Ar CH), 119.8 (Ar CH), 116.9 (Ar C), 113.0 (Ar CH), 54.4 (C-2), 47.4 (C-

21), 45.1 (C-21’), 43.2 (C-13/14), 41.0 (C-13’/14’), 29.4 (C-13/14), 28.1 (C-

13’/14’), 24.6 (C-3); HRMS (ESI
+
): Found: 346.1558; C21H20N3O2 (MH

+
) Requires: 

346.1550 (−2.3 ppm error). 

Lab Notebook Reference: CHK 3/199 p.86 

3-(Piperidine-1-carbonyl)-1H, 2H, 3H, 4H, 9H-pyrido[3,4-b]indol-1-one (263): 
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CDI (142 mg, 0.876 mmol) was added in a suspension of acid 259 (202 mg, 0.876 

mmol) in THF (1.41 mL). The resulting solution was stirred for 1 h at rt. Piperidine 

262 (0.086 mL, 0.876 mmol) was then added and the resulting solution was stirred 

for 24 h. The reaction mixture was quenched with water (10 mL) at −78 °C and 

extracted with dichloromethane (20 mL). The organic extracts were washed with water 

(20 mL), brine (20 mL), dried over MgSO4 and concentrated in vacuo. Purification by 

column chromatography (SiO2, 1:1 petrol:ethyl acetate→pure ethyl acetate) afforded 

compound 263 as a yellow oil (70.9 mg, 27%); νmax (thin film)/cm
−1

 3244, 2941, 

1638, 1487, 1449, 1330, 1248, 1330, 1186, 727; δH (400 MHz, CDCl3) 10.45 (1H, br 

s, NH), 7.55 (1H, d, J = 8.1 Hz, ArH), 7.48 (1H, d, J = 8.3 Hz, ArH), 7.31–7.27 

(1H, m, ArH), 7.16–7.11 (1H, m, ArH), 6.47 (1H, br, NH), 4.90 (1H, ddd, J = 12.2, 

5.4 Hz, H-2), 3.64–3.49 (4H, m, H-13,17), 3.26–3.11 (2H, m, H-3), 1.70–1.51 (6H, 

m, H-14,15,16); HRMS (ESI
+
): Found: 298.1541; C17H20N3O2 (MH

+
) Requires: 

298.1550 (2.9 ppm error).  

Lab Notebook Reference: CHK 4/219 p.19 
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N-Methoxy-N-methyl-1-oxo-1H, 2H, 3H, 4H, 9H-pyrido[3,4-b]indol-3-carboxamide 

(265): 
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To a stirred solution of acid 259 (1.27 g, 5.52 mmol) in DMF (8.5 mL), CDI (1.34 g, 

8.27 mmol) was added at rt. The resulting suspension was stirred at rt for 1 h, before 

N,O-dimethylhydroxylamine hydrochloride (861 mg, 8.83 mmol) was added. The 

orange solution was stirred at rt for 48 h. The reaction mixture was diluted in ethyl 

acetate (20 mL) and washed with 10% aq. HCl. The acidic aqueous layer was extracted 

with ethyl acetate (3 × 50 mL), and the organic extracts were washed with sat. aq. 

NaHCO3 (50 mL), brine (50 mL), dried over MgSO4 and concentrated in vacuo. The 

resulting solid was washed with water (6 × 50 mL) affording compound 265 as a 

yellow solid without any further purification (966 mg, 64%); mp 75–85 °C; νmax 

(thin film)/cm
−1

 3228, 1655, 1550, 1488, 1370, 1324, 1281, 1154, 980, 743, 507; δH 

(400 MHz, CDCl3) 9.86 (1H, br, NH), 7.58 (1H,dd, J = 8.0, 1.1 Hz, H-6/9), 7.47 

(1H, dd, J = 8.2, 0.9 Hz, H-6/9), 7.30 (1H, ddd, J = 8.2, 7.0, 1.1 Hz, H-7/8), 7.15 

(1H, ddd, J = 8.0, 7.0, 0.9 Hz, H-7/8), 6.28 (1H, br, NH), 4.87 (1H, dd, J = 10.9, 5.5 

Hz, H-2), 3.78 (3H, s, OCH3), 3.50 (1H, dd, J = 15.9, 5.5 Hz, H-3eq), 3.29 (3H, s, 

CH3), 3.18 (1H, dd, 15.9, 10.9 Hz, H-3ax); δC (100 MHz, CDCl3) 171.0 (C-1/12), 

170.4 (C-1/12), 161.8 (Ar C), 137.6 (Ar C), 125.2 (Ar CH), 125.0 (Ar C), 120.3 (Ar 

CH), 120.1 (Ar CH), 117.6 (Ar C), 112.7 (Ar CH), 61.6 (C-OCH3), 54.5 (C-2), 32.6 

(C-CH3), 23.9 (C-3); HRMS (ESI
+
): Found: 274.1182; C14H16N3O3 (MH

+
) Requires: 

274.1186 (1.4 ppm error).  

Lab Notebook Reference: CHK 4/211 p.10 
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3-Pentanoyl-1H, 2H, 3H, 4H, 9H-pyrido[3,4-b]indol-1-one (266): 
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To a stirred solution of Weinreb amide 265 (298 mg, 1.09 mmol) in THF (13.1 mL), 

n-BuLi (2.05 mL, 3.28 mmol, 1.6 M solution in hexanes) was added at −78 °C. The 

resulting solution was stirred for 15 min at −78 °C and then for additional 15 min at 

−40 °C. The reaction mixture was quenched with water (20 mL) at −40 °C and 

extracted with dichloromethane (30 mL). The organic extracts were washed with sat. aq. 

NH4Cl (30 mL), brine (30 mL), dried over MgSO4 and concentrated in vacuo. 

Purification by column chromatography (SiO2, 1:1 petrol:ethyl acetate) afforded 

compound 266 as a brown oil (134 mg, 45%); Rf  0.7 (ethyl acetate); νmax (thin 

film)/cm
−1

 3225, 2937, 1649, 1620, 1488, 1415, 1326, 1282, 908, 129, 627, 480; δH 

(400 MHz, CDCl3) 10.69 (1H, br, NH), 7.58 (1H, d, J = 8.0 Hz, ArH), 7.50 (1H, d, J 

= 8.3 Hz, ArH), 7.31–7.26 (1H, m, ArH), 7.16–7.12 (1H, m, ArH), 6.88 (1H, br s, 

NH), 4.53 (1H, dd, J = 11.3, 5.7 Hz, H-2), 3.48 (1H, dd, J = 15.6, 5.7, H-3eq), 3.16 

(1H, dd, J = 15.6, 11.3 Hz, H-3ax), 2.69–2.52 (2H, m, H-13), 1.66–1.58 (2H, m, H-

14), 1.37–1.26 (2H, m, H-15), 0.93–0.89 (3H, m, H-16); δC (100 MHz, CDCl3) 

206.5 (C-12), 161.9 (C-1), 137.9 (Ar C), 126.3 (Ar C), 125.3 (Ar CH), 124.8 (Ar C), 

120.4 (Ar CH), 119.9 (Ar CH), 117.3 (Ar C), 113.0 (Ar CH), 61.6 (C-2), 38.2 (C-

13), 25.4 (C-14), 24.0 (C-3), 22.2 (C-15), 13.8 (C-16); HRMS (ESI
+
): Found: 

271.1440; C16H19N2O2 (MH
+
) Requires: 271.1441 (0.4 ppm error).  

Lab Notebook Reference: CHK 4/214 p.14 
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3-Benzoyl-1H, 2H, 3H, 4H, 9H-pyrido[3,4-b]indol-1-one (267): 

7

8

9
10

5
6

N
H

11

4

1
NH

23 12

O 13

18 17

16

1514

O
 

To a stirred solution of Weinreb amide 265 (156 mg, 0.569 mmol) in THF (5.7 mL), 

PhLi (1.26 mL, 2.28 mmol, 1.8 M solution in ether) was added at −78 °C. The 

resulting solution was stirred for 3.5 h at −78 °C. The reaction mixture was quenched 

with water (10 mL) at −78 °C and extracted with dichloromethane (20 mL). The 

organic extracts were washed with water (20 mL), brine (20 mL), dried over MgSO4 

and concentrated in vacuo. Purification by column chromatography (SiO2, 1:1 

petrol:ethyl acetate) afforded compound 267 as a yellow solid (95.6 mg, 58%); mp 

218–220 °C; Rf 0.6 (ethyl acetate); νmax (thin film)/cm
−1

 3249, 2932, 1691, 1658, 

1489, 1448, 1331, 1227, 1156, 746, 695, 665; δH (400 MHz, CDCl3) 9.72 (1H, br, 

NH), 7.97–7.95 (1H, m, ArH), 7.70-7.65 (1H, m, ArH), 7.58–7.42 (4H, m, ArH), 

7.36–7.28 (2H, m, ArH), 7.13 (1H, ddd, J =8.0, 7.0, 1.0 Hz, ArH), 6.44 (1H, br s, 

NH), 5.55 (1H, ddd, J = 12.0, 5.6, 1.4 Hz, H-2), 3.51 (1H, dd, J = 16.3, 5.6 Hz, H-

3eq), 3.12 (1h, dd, J = 16.3, 12.0 Hz, H-3ax); δC (100 MHz, CDCl3) 196.2 (C-12), 

161.7 (C-1), 134.1 (Ar CH), 134.0 (Ar C), 129.1 (Ar CH), 128.5 (Ar CH), 128.1 (Ar 

CH), 126.8 (Ar C), 126.1 (Ar CH), 125.8 (Ar C), 125.4 (Ar CH), 124.9 (Ar C), 

120.5 (Ar CH), 120.1 (Ar CH), 117.2 (Ar C), 112.7 (Ar CH), 58.7 (C-2), 25.9 (C-3) 

HRMS (ESI
+
): Found: 291.1140; C18H15N2O2 (MH

+
) Requires: 291.1128 (−4.1 ppm 

error). 

Lab Notebook Reference: CHK 4/218 p.20 
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7-[Methoxy(methyl)carbamoyl]-14-methyl-5-oxo-5,7,8,13-tetrahydroindolo 

[2',3':3,4] pyrido[2,1-b] quinazolin-14-ium (270): 
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To a round bottom flask containing Weinreb amide 265 (101 mg, 0.371 mmol), methyl 

athranilate 240 (0.054 mL, 0.371 mmol) was added at rt. Then POCl3 (0.557 mL, 5.96 

mmol) was added and the resulting solution was heated at 110 °C for 1 h before pouring 

carefully into ice cold water (40 mL). The resultant precipitate was isolated by filtration, 

washed with water (100 mL) and collected with methanol, concentrated and dried under 

high vacuum, affording compound 270 as a brown solid (84.9 mg, 54%); mp 178–182 

°C; νmax (thin film)/cm
−1 

1703, 1604, 1544, 1499, 1426, 1335, 1256, 1207, 1103, 

1175, 1049, 769; δH (400 MHz, CDCl3) 8.35 (1H, dd, J = 7.9, 1.2 Hz, ArH), 8.27–

8.18 (2H, m, ArH), 7.90 (1H, d, J = 8.0 Hz, ArH), 7.85 (1H, dd, J = 7.9, 7.9 Hz, 

ArH), 7.73 (1H, d, J = 8.1 Hz, ArH), 7.53-7.50 (1H, m, ArH), 7.25 (1H, dd, J = 8.0, 

7.8 Hz, ArH), 6.44–6.42 (1H, m, H-2), 4.51 (3H, s, H-20), 4.51 (3H, s, H-22), 3.81–

3.77 (2H, m, H-3), 3.05 (3H, s, H-21); δC (100 MHz, CDCl3) 166.3 (C-12), 157.8 

(C-13), 150.4 (C-1), 141.9 (Ar C), 139.5 (Ar C), 137.5 (Ar CH), 129.3 (Ar CH), 

128.9 (Ar CH), 127.9 (Ar CH), 125.6 (Ar C), 123.7 (Ar C), 121.9 (Ar CH), 121.5 

(Ar CH), 119.8 (Ar C), 119.1 (Ar CH), 117.6 (Ar C), 113.8 (Ar CH), 61.6 (C-22), 

52.5 (C-2), 41.8 (C-20), 32.0 (C-21), 21.7 (C-3); HRMS (ESI
+
): Found: 389.1599; 

C22H21N4O3 (MH
+
) Requires: 389.1608 (2.3 ppm error).  

Lab Notebook Reference: CHK 4/216 p.13 
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N-Methoxy-N-methyl-5-oxo-5,7,8,13-tetrahydroindolo[2',3':3,4]pyrido[2,1-b] 

quinazoline-7-carboxamide (272): 
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Salt 270 (14.4 mg, 0.034 mmol) was diluted in DMF (1.5 mL) and irradiated under 

microwave heating (200 watts, 200 °C) for 10 min. The reaction mixture was diluted 

in dichloromethane (10 mL) and washed with water (2 × 10 mL), dried over MgSO4 and 

concentrated in vacuo. Purification by column chromatography (SiO2, 3:1→1:1 

petrol:ethyl acetate→pure ethyl acetate) afforded compound 272 (5.2 mg, 42%); Rf  0.7 

(ethyl acetate); νmax (thin film)/cm
−1 

3299, 2938, 1663, 1595, 1550, 1471, 1291, 

1235, 1172, 770, 734, 696; δH (400 MHz, CDCl3) 9.17 (1H, br s, NH), 8.24 (1H, d, J 

= 7.9 Hz, ArH), 7.75–7.69 (2H, m, ArH), 7.57 (1H, d, J = 8.0 Hz, ArH), 7.43–7.39 

(2H, m, ArH), 7.29 (1H, ddd, J = 8.2, 7.0, 1.0 Hz, ArH), 7.15 (1H, ddd, J = 8.0, 7.0, 

1.0 Hz, ArH), 6.37 (1H, dd, J = 7.0, 2.4 Hz, H-2), 4.03 (3H, s, OCH3), 3.60 (2H, m, 

H-3), 3.18 (3H, s, CH3); δC (100 MHz, CDCl3) 169.2 (C-19), 162.1 (C-12), 156.7 

(Ar C), 147.9 (Ar C), 142.8 (Ar C), 138.3 (Ar C), 132.8 (Ar C), 134.7 (Ar CH), 

127.3 (Ar C), 127.1 (Ar CH), 127.0 (Ar CH), 126.3 (Ar CH), 125.9 (Ar CH), 120.9 

(Ar CH), 119.9 (Ar CH), 113.5 (Ar C), 112.2 (Ar CH), 61.7 (C-OCH3), 51.7 (C-2), 

32.3 (C-CH3), 22.6 (C-3); HRMS (ESI
+
): Found: 375.1451; C21H19N4O3 (MH

+
) 

Requires: 375.1452 (0.3 ppm error).  

Lab Notebook Reference: CHK 4/225 p.28 
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2-(2-Methoxy-2-oxoethyl) benzoic acid (388a):
137 
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To a well stirred solution of anhydride 393 (500 mg, 3.08 mmol) in methanol (2 mL, 

49.4 mmol), BF3·Et2O (0.285 mL, 2.31 mmol) was added dropwise. The reaction 

mixture was stirred 24 h and was added to sat. aq. NaHCO3 (25 mL) and extracted with 

ether (3 × 30 mL) to remove the traces of any unreacted anhydride. The aqueous layer 

was neutralised with conc. aq. HCl at 0 °C and extracted with ether (3 × 30 mL). The 

organic phase was washed with brine (3 × 30 mL), dried over MgSO4 and the solvent 

removed under reduced pressure to give compound 388a (600 mg, quantitative) as a 

white solid; No futher purification was required; Rf  0.5 (ethyl acetate, 10 % MeOH); 

δH (400 MHz, CDCl3)  8.20 (1H, dd, J = 7.7, 1.4 Hz, H-7), 7.55  (1H, ddd, J = 7.7, 7.7, 

1.4 Hz, H-5), 7.41 (1H, ddd, J = 7.7, 7.7, 1.1 Hz,  H-6), 7.29 (1H, dd, J = 7.7, 1.1 Hz, 

H-4), 4.07 (2H, s, H-8), 3.71 (3H, s, OCH3); δC (100 MHz, CDCl3) 172.4 (C-1/9), 

172.0 (C-1/9), 136.8 (C-2), 133.3 (C-6), 132.4 (C-7), 131.9 (C-4), 128.5 (C-3), 

127.6 (C-5), 52.0 (C-OCH3), 40.6 (C-8); HRMS (ESI
+
): Found: 217.0473; 

C10H10NaO4 (MNa
+
) Requires: 217.0471 (−0.8 ppm error). Obtained data in accord 

with those reported in the literature.
137

  

Lab Notebook Reference: CHK 1/36 p.54 

Methyl 2-(bromomethyl)benzoate (395):
138
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N-Bromosuccinimide (9.35 g, 50.0 mmol) was added to a solution of methyl 

2-methylbenzoate 394  (7.5g, 50.0 mmol) in carbon tetrachloride (100 mL) and the 

mixture was refluxed with catalytic amount of benzoyl peroxide (2.43 g, 10 mmol) for 

24 h. After cooling to rt, the precipitate was removed by filtration and the filtrate was 

concentrate under vaccum to give compound 395 as a white solid (11.4 g, quantitative); 

δH (400 MHz, CDCl3) 8.07–8.05 (1H, m, ArH), 7.98–7.95 (1H, m, ArH), 7.53–7.44 
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(1H, m, ArH), 7.37–7.34 (1H, m, ArH), 4.97 (2H, s, H-8), 3.94 (3H, s, OCH3). 

Obtained data in accord with those reported in the literature.
171 

 

Lab Notebook Reference: CHK 4/237 p.42 

Methyl 2-(cyanomethyl)benzoate (396):
139 
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The benzyl bromide 395 (459 mg, 2.00 mmol) was diluted in ethanol (15.0 mL) and 

KCN (261.1 mg, 4.01 mmol) in boiled water (2.5 mL) was added. The mixture was 

heated under reflux at 70 °C for 1.5 h. The resulting solution poured into sat. aq. 

NaHCO3 (20 mL). The aqueous layer was extracted with ether (2 × 20 mL), dried over 

MgSO4 concentrated in vacuo and purified by column chromatography (SiO2, 9:1→7:1 

petrol:ethyl acetate) to afford compound 396 (152 mg, 43%); Rf  0.3 (7:1 ethyl acetate); 

νmax (thin film)/cm
−1

 2961, 2251, 1715, 1605, 1493, 1450, 1435, 1261, 1194, 1138, 

1080, 971, 739, 707; δH (400 MHz, CDCl3) 8.06 (1H, d, J = 7.9 Hz, ArH), 7.57–7.56  

(2H, m, ArH), 7.44–7.40 (1H, m, ArH), 4.22 (2H, s, H-8), 3.92 (3H, s, OCH3); δC 

(100 MHz, CDCl3) 166.8 (C-1), 133.2 (Ar CH), 132.1 (Ar C), 131.7 (Ar CH), 130.3 

(Ar CH), 128.4 (Ar CH), 128.4 (Ar C), 118.0 (C-9), 52.4 (C-OCH3), 23.3(C-8); 

HRMS (ESI
+
): Found: 198.0524 C10H9NaO2 (MNa

+
) Requires: 198.0525 (0.8 ppm 

error). Obtained data in accord with those reported in the literature.
172 

 

Lab Notebook Reference: CHK 4/242 p.46 

2-(Cyanomethyl)benzoic acid (388b):
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To a round bottom flask containing ester 396 (151.4 mg, 0.864 mmol) in THF (2.6 

mL), LiOH·H2O (108.8 mg, 2.59 mmol) in water (2.6 mL) was added at rt. The reaction 

mixture was stirred for 1 h. The solution was dissolved in water (20 mL) and then 

acidified with 10% aq. HCl. The acidic aqueous layer, was extracted with ethyl acetate 

(3 × 20 mL), and the organic extracts were dried over MgSO4 and concentrated in 
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vacuo, affording compound 388b as a yellow solid (94.9 mg, 68%); mp 149–152 °C; 

νmax (thin film)/cm
−1

 2973, 2827, 2647, 2252, 1671, 1577, 1500, 1577, 1454, 1411, 

1399, 1311, 1292, 1281, 1266, 1081, 912, 739, 674; δH (400 MHz, CDCl3) 8.22 (1H, 

d, J = 7.3 Hz, ArH), 7.68–7.62  (2H, m, ArH), 7.52–7.47 (1H, m, ArH), 4.27 (2H, s, 

H-8); δC (100 MHz, CDCl3) 171.4 (C-1), 134.22 (Ar CH), 132.8 (Ar C), 132.6 (Ar 

CH), 130.4 (Ar CH), 128.8 (Ar CH), 127.0 (Ar C), 117.7 (C-9), 23.4 (C-8); HRMS 

(ESI
+
): Found: 184.0370 C9H7NaO2 (MNa

+
) Requires: 184.0369 (−0.8 ppm error). 

This compound has been reported previously in the literature but no data were 

obtained.
173

 

Lab Notebook Reference: CHK 4/243 p.47 

2-(1-Methoxy-1-oxopropan-2-yl)benzoic acid (391):  
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A solution of diisopropylamine (0.362 mL, 2.59 mL) in THF (6.15 mL) under Ar 

atm was cooled to −78 °C and n-BuLi (1.62 mL, 2.59 mmol) was added. The 

solution was stirred for 30 min at −78 °C before the acid 388a (202 mg, 1.04 mmol) 

in THF (6.15 mL) was added dropwise. The solution was stirred for 2 h at −78 °C 

and then iodomethane (0.129, 2.08 mmol) was added dropwise and the solution was 

stirred for 48 h. The reaction mixture was quenched with sat. aq. NH4Cl (20 mL), 

extracted with ether (3 × 20 mL) dried over MgSO4 and concentrated in vacuo, 

affording compound 391 as a yellow solid(174 mg, 80 %); mp 65–67 °C; νmax (thin 

film)/cm
−1

 2986, 2953, 1724, 1693, 1602, 1577, 1492, 1454, 1407, 1377, 1301, 

1212, 1143, 1090, 1059, 861, 762, 710, 646, 555; δH (400 MHz, CDCl3) 8.07 (1H, 

dd, J = 7.9, 1.4 Hz, ArH), 7.56 (1H, ddd, J = 7.6, 7.6, 1.5 Hz, ArH), 7.41–7.34  (2H, 

m, ArH), 4.78 (1H, q, J = 7.1 Hz, H-8), 3.67 (3H, s, OCH3), 1.55 (3H, d, J = 7.1 Hz, 

CH3); δC (100 MHz, CDCl3) 175.2 (C-1/9), 172.6 (C-1/9), 143.1 (Ar C), 133.5 (Ar 

CH), 131.8 (Ar CH), 128.7 (Ar CH), 128.0 (Ar C), 127.1(Ar CH), 52.2 (C-OCH3), 

42.0 (C-8), 18.5 (C-CH3); HRMS (ESI
+
): Found: 231.0632 C11H12NaO4 (MNa

+
) 

Requires: 231.0628 (−1.6 ppm error). 

Lab Notebook Reference: CHK 4/259 p.63 
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cis-5-Oxo-7,8,12b,13-tetrahydro-5H-6-azatetraphene-13-carboxylic acid (402):  
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To a round bottom flask containing diester 149x (1.48 g, 4.05 mmol) in THF (12.2 mL), 

LiOH·H2O (510 mg, 12.2 mmol) in water (12.2 mL) was added at rt. The reaction 

mixture was stirred for 24 h at 80 °C. The solution was dissolved in water (50 mL), 

washed with dichloromethane (100 mL) and then acidified with 10% aq. HCl. The 

acidic aqueous layer was extracted with ethyl acetate (3 × 100 mL) and the organic 

extracts were dried over MgSO4, concentrated in vacuo and purified by column 

chromatography (SiO2, 3:1→2:1→1:1 petrol:ethyl acetate) to afford a mixture of 

diastereosisomers as a yellow solid (930 mg, 78%); A solution of the two 

diasteroisomers (138.4 mg, 0.472 mmol) in acetic acid (18.2 mL) was refluxed at 120 

°C for 24 h. The solvent was evaporated in vacuo and purification by column 

chromatography (SiO2, 3:1→2:1 petrol:ethyl acetate) afforded compound 402 as a 

single diastereoisomer (72.6 mg, 52%) together with compound 400 as a side product 

(14 mg, 10%). 

cis-8-Oxo-5,8,13,13a-tetrahydro-6H-isoquino[3,2-a]isoquinoline-13-carboxylic acid 

(402): Rf  0.4 (ethyl acetate); νmax (thin film)/cm
−1 

3268, 2925, 2556, 1725, 1624, 

1602, 1575, 1465, 1427, 1364, 1340, 1303, 1258, 1169, 909, 796, 733; δH (400 

MHz, CDCl3) 8.12 (1H, dd, J = 7.6, 1.5 Hz, ArH), 7.51–7.41  (2H, m, ArH), 7.38–

7.37  (1H, m, ArH), 7.26–7.25 (2H, m, ArH), 7.22–7.18 (1H, m, ArH), 7.11 (1H, d, 

J = 7.4 Hz, ArH), 6.60–6.51 (1H, br s, COOH), 5.22 (1H, d, J = 4.2 Hz, H-1),  

4.91–4.88 (1H, m, H-2a), 4.19 (1H, d, J = 4.2 Hz, H-10), 2.99–2.95 (2H, m, 

H-2b,3a), 2.70–2.66 (1H, m, H-3b); δC (100 MHz, CDCl3) 172.7 (C-18), 164.0 

(C-17), 136.6 (Ar C), 134.6 (Ar C), 133.0 (Ar C), 132.2 (Ar CH), 129.2 (Ar CH), 

129.1 (Ar C), 129.0 (Ar CH), 128.8 (Ar CH), 127.7 (Ar CH), 127.3 (Ar CH), 126.9 

(Ar CH), 126.1 (Ar CH), 56.4 (C-1), 50.8 (C-10), 38.9 (C-2), 28.7(C-3); HRMS 

(ESI
+
): Found: 270.0886; C17H13NNaO (MNa

+
) Requires: 270.0889 (0.7 ppm error). 

 



214 

 

7,8-Dihydro-5H-azatetraphen-5-one (400): mp 120–124 °C; νmax (thin film)/cm
−1

 

3063, 2944, 1646, 1619, 1595, 1491, 1466, 1403, 1341, 1315 1252, 1167, 765; δH 

(400 MHz, CDCl3) 8.44 (1H, d, J = 8.1 Hz, ArH), 7.87-7.83  (1H, m, ArH), 7.65  

(1H, ddd, J = 7.9, 6.9, 1.3 Hz, ArH), 7.59 (1H, d, J = 7.9 Hz, ArH), 7.47 (1H, ddd, J 

= 8.1, 6.9, 1.3 Hz, ArH), 7.38-7.37 (2H, m, ArH), 7.29-7.27 (1H, m, ArH), 7.05 

(1H, s, H-10), 4.39 (2H, t, J = 6.2 Hz, H-2), 3.03 (2H, t, J = 6.2 Hz, H-3); δC (100 

MHz, CDCl3) 162.2 (C-17), 137.4 (Ar C), 136.5 (Ar C), 136.4 (Ar C), 132.3 (Ar 

CH), 130.2 (Ar C), 129.3 (Ar CH), 128.0 (Ar CH), 128.0 (Ar CH), 127.4 (Ar CH), 

126.6 (Ar CH), 126.2 (Ar CH), 125.0 (Ar CH), 124.9 (Ar C), 102.9 (C-10), 39.6 

(C-2), 28.6 (C-3); HRMS (ESI
+
): Found: 248.1074; C17H14NO (MH

+
) Requires: 

248.1070 (−1.7 ppm error). Obtained data in accord with those reported in the 

literature.
174

  

Lab Notebook Reference: CHK 4/263 p.76 and CHK 4/275 p.86  

cis-7,8,12b,13-Tetrahydro-5H-6-azatetraphen-13-ylmethanol (403):  
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The cis-acid 402 (305, 1.04 mmol) was added to a solution of LiAlH4 (197 mg, 5.20 

mmol) in THF (66 mL). The reaction mixture was heated at 70 °C for 24 h before it 

was cooled to 0 °C and decomposed by addition of water (0.197 mL), 15 % NaOH 

(0.197 mL) and water (0.592 mL). The aluminates were filtered and washed with 

ethyl acetate. The combined filtrates were dried and evaporated. Purification by 

column chromatography (SiO2, 4:1→3:1 petrol:ethyl acetate) yield 403 as a brown oil 

(177 mg, 64%); Rf  0.6 (ethyl acetate); νmax (thin film)/cm
−1

 3263, 3024, 2905, 2760, 

1494, 1454, 1360, 1285, 1141, 1105, 1084, 1043, 1032, 998, 776; δH (400 MHz, 

CDCl3) 7.31–7.12 (8H, m, ArH), 4.16–4.11 (2H, m, H-1,17a), 3.79–3.72 (2H, m 

H-17b,18a), 3.62 (1H, ddd, J = 10.4, 2.8, 1.5 Hz, H-18b), 3.32–3.17 (3H, m, 

H-3a,2a, 10), 2.78–2.74 (1H, m, H-3b), 2.60 (1H, ddd, J = 12.1, 10.9, 2.9 Hz, H-2b); 

δC (100 MHz, CDCl3) 136.7 (Ar C), 135.5 (Ar C), 134.7 (Ar C), 134.7 (Ar C), 129.2 

(Ar CH), 128.5 (Ar CH), 126.8 (Ar CH), 126.6 (Ar CH), 126.4 (Ar CH), 126.4 (Ar 

CH), 125.8 (Ar CH), 125.7 (Ar CH), 65.6 (C-18), 63.6 (C-1), 58.3 (C-17), 51.0 (C-
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2), 44.2 (C-10), 29.3 (C-3); HRMS (ESI
+
): Found: 266.1547; C18H20INO (MH

+
) 

Requires: 266.1539 (−3.1 ppm error).  

Lab Notebook Reference: CHK 4/276 p.90 

cis-7,8,12b,13-Tetrahydro-5H-6-azatetraphen-13-ylmethyl methanesulfonate (404):  
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Methanesulfonyl chloride (49.3 μL, 0.637 mmol) was added to a solution of alcohol 

403 (52.8 mg, 0.200 mmol) in pyridine (1.27 mL). The reaction mixture was stirred 

at rt for 3 h and then quenched with water (10 mL). The mixture was extracted with 

ether (3 × 20 mL). The organic extract was dried and evaporated. Purification by 

column chromatography (SiO2, 5:1→3:1 petrol:ethyl acetate) yield mesylate 404 as a 

brown oil (36.6 mg, 54%); Rf  0.6 (1:1 petrol:ethyl acetate); νmax (thin film)/cm
−1

 

3437, 2925, 2854, 1642, 1491, 1459, 1328, 1174, 1040, 767; δH (400 MHz, CDCl3) 

7.34–7.31 (2H, m, ArH), 7.26–7.17 (4H, m, ArH), 7.15–7.12 (2H, m ArH), 4.24–

4.23 (2H, m, H-18), 4.12 (1H, d, J = 15.3 Hz, H-17a), 3.99 (1H, br s, H-1), 3.74 

(1H, d, J = 15.3 Hz, H-17b), 3.66–3.62 (1H, m, H-10), 3.18–3.12 (2H, m, H-2a,3a), 

3.73–2.68 (1H, m, H-3b), 2.64–2.58 (1H, m, H-2b), 2.49 (3H, s, CH3(Ms)); δC (100 

MHz, CDCl3) 135.8 (Ar C), 135.3 (Ar C), 134.6 (Ar C), 130.2 (Ar CH), 129.0 (Ar 

CH), 127.2 (Ar CH), 126.5 (Ar CH), 126.4 (Ar CH), 126.3 (Ar CH), 126.3 (Ar CH), 

126.1 (Ar CH), 125.9 (Ar C), 72.2 (C-18), 61.7 (C-1), 58.4 (C-17), 50.9 (C-2), 43.9 

(C-10), 36.3 (C-CH3(Ms)), 29.5 (C-3); HRMS (ESI
+
): Found: 344.1310; 

C19H22NO3S (MH
+
) Requires: 344.1315 (1.4 ppm error). 

Lab Notebook Reference: CHK 4/278 p.93 
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cis-13-Methyl-7,8,12b,13-tetrahydro-5H-6-azatetraphene (390):  
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The mesylate 404 (36.7 mg, 0.107 mmol) was suspended in 95% EtOH (6.6 mL) and 

NaBH4 (62.5 mg, 1.65 mmol) was added to the stirred mixture. The mixture was 

refluxed at 80 °C for 48 h and then poured into water (20 mL). The aqueous phase 

was extracted with chloroform (3 × 20 mL). The organic extracts were dried over 

MgSO4 and concentrated in vacuo to yield the crude product. Purification by column 

chromatography (SiO2,  5:1 petrol:ethyl acetate) yielded compound 390 as a colourless 

oil (10 mg, 38%); Rf  0.6 (3:1 petrol:ethyl acetate); νmax (thin film)/cm
−1

 3022, 2965, 

2907, 2798, 2750, 1494, 1452, 1391, 1362, 1337, 1283, 1250, 1150, 1112, 1035, 

1022, 907, 759, 734, 726; δH (400 MHz, CDCl3) 7.26–7.08 (8H, m, ArH), 4.05 (1H, 

d, J = 15.0 Hz, H-17a), 3.86 (1H, d, J = 3.2 Hz, H-1), 3.71 (1H, d, J = 15.0 Hz, 

H-17b), 3.36 (1H, qd, J = 7.0, 3.2 Hz, H-10), 3.22–3.14 (2H, m, H-2a,3a), 2.72–2.59 

(2H, m, H-2b,3b), 0.98 (3H, d, J = 7.0 Hz, CH3); δC (100 MHz, CDCl3) 141.4 (Ar 

C), 136.7 (Ar C), 136.0 (Ar C), 134.1 (Ar C), 128.9 (Ar CH), 128.7 (Ar CH), 126.2 

(Ar CH), 126.1 (Ar CH), 126.0 (Ar CH), 125.8 (Ar CH), 125.7 (Ar CH), 125.7 (Ar 

CH), 63.5 (C-1), 58.9 (C-17), 51.1 (C-2), 38.7 (C-10), 29.7 (C-3), 18.3 (C-CH3); 

HRMS (ESI
+
): Found: 250.1582; C18H20N (MH

+
) Requires: 250.1590 (3.4 ppm 

error). This compound has been reported previously in the literature, but no data were 

reported.
142

 

Lab Notebook Reference: CHK 5/283 p.2 
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5-(1,3-Dimethoxy-1,3-dioxopropan-2-yl)-2H-1,3-benzodioxole-4-carboxylic acid 

(405):  
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Sodium hydride (419 mg, 10.5 mmol, 60 % in mineral oil) was added portionwise to a 

rapidly stirred cold suspension (0 °C) of 5-bromobenzo[1,3]dioxole-4-carboxylic acid 

408 (1.00 g, 4.37 mmol), copper bromide (62.6 mg, 0.437 mmol) and dimethyl 

malonate (17.3 mL). After the addition of the sodium hydride had been completed, the 

mixture was stirred for 10 min at rt and then for 20 h at 70 °C. The suspension, which 

had turned to a solid mass, was dissolved in water (30 mL), washed with ether (3 × 80 

mL) and then acidified with 10% aq. HCl. The acidic aqueous layer, was extracted with 

ethyl acetate (3 × 100 mL), and the organic extracts were dried over MgSO4 and 

concentrated in vacuo. Purification by column chromatography (SiO2, 5:1 petrol:ethyl 

acetate→pure ethyl acetate) afforded compound 405 as a colourless solid (1.01 g, 74%); 

Rf  0.1 (1:1 petrol:ethyl acetate); mp 88–93 °C; νmax (thin film)/cm
−1

 2912, 2877, 1704, 

1688, 1456, 1431, 1216, 1137, 1039, 1012; δH (400 MHz, CDCl3) 6.95 (1H, d, J = 8.2 

Hz H-5/6), 6.88 (1H, d, J = 8.2 Hz, H-5/6), 6.11 (2H, s, H-9),  5.53 (1H, s, H-8), 3.76 

(6H, s, CO2CH3); δC (100 MHz, CDCl3) 169.2 (C-1), 168.5 (C-CO2CH3), 149.7 (Ar 

C), 148.5 (Ar C), 127.1 (Ar C), 123.9 (C-5/6), 111.9 (C-5/6), 102.5 (C-9), 100.0 (Ar 

C), 54.2 (C-8), 53.0 (C-CO2CH3); HRMS (ESI
+
): Found: 319.0424; C13H12NaO8 

(MNa
+
) Requires: 319.0424 (0.2 ppm error); Elemental Analysis: calculated for 

C13H12O8 requires C, 52.71; H, 4.08; found C, 52.15; H, 4.07. 

Lab Notebook Reference: CHK 2/127 p.187 
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Dimethyl 8,9-dimethoxy-14-oxo-11,12-dihydro-6aH-[1,3]dioxolo[4,5-h]isoquino 

[2,1-b] isoquinoline-6,6(14H)-dicarboxylate (406): 
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406 418  

Synthesised using general DIA procedure A from imine 146f (230 mg, 1.21 mmol), acid 

405 (408 mg, 1.38 mmol), DIPEA (315 μL, 1.81 mmol) and T3P (1.42 g, 2.23 mmol) in 

toluene (5.8 mL) at 90 °C for 20 h. Purification by column chromatography (SiO2,  

4:1→2:1→1:1 petrol:ethyl acetate→pure ethyl acetate→ethyl acetate, 5% MeOH) 

afforded compound 406 as a yellow oil (214 mg, 38%) together with traces of 

compound 418.  

Synthesised using general DIA procedure B from imine 146f (34.3 mg, 0.179 mmol), 

acid 405 (63.7 mg, 0.215 mmol), DIPEA (57.6 μL, 0.331 mmol), T3P (171 mg, 0.269 

mmol) and AlCl3 (47.7 mg, 0.358 mmol) in chloroform (1 mL) at 50 °C for 20 h. 

Purification by column chromatography (SiO2, 1:1 petrol:ethyl acetate→pure ethyl 

acetate) to afford compound 406 as a yellow oil (54.2 mg, 64%).  

Synthesised using general DIA procedure B from imine 146f (484 mg, 2.53 mmol), acid 

405 (900 mg, 3.04 mmol), DIPEA (0.815 mL, 4.68 mmol), T3P (2.42 g, 3.80 mmol) 

and BCl3 (5.10 mL, 5.10 mmol, 1.0 M solution in DCM) in chloroform (25 mL) at rt for 

20 h. Purification by column chromatography (SiO2, 1:1→1:2 petrol:ethyl acetate) to 

afford compound 406 as a yellow solid (819 mg, 69%).  

Dimethyl 8,9-dimethoxy-14-oxo-11,12-dihydro-6aH-[1,3]dioxolo[4,5-h]isoquino [2,1-b] 

isoquinoline-6,6(14H)-dicarboxylate (406): mp 152–156 C; Rf  0.4 (ethyl acetate); νmax 

(thin film)/cm
−1

 2908, 1707, 1626, 1588, 1494, 1440, 1412, 1103, 1029, 718; δH (400 

MHz, CDCl3) 6.91 (1H, d, J = 8.1 Hz, H-12/13), 6.81 (1H, s, H-5/8),  6.69 (1H, s, 

H-5/8), 6.54 (1H, d, J = 8.1 Hz, H-12/13), 6.22 (1H, d, J = 1.3 Hz, H-18a), 6.10 (1H, d, 

1.3 Hz, H-18b), 5.58 (1H, s, H-1), 4.85–4.78 (1H, m, H-2eq), 3.88 (3H, s, OCH3), 3.87 

(3H, s, OCH3), 3.80 (3H, s, CO2CH3), 3.51 (3H, s, CO2CH3),  2.92–2.87 (2H, m, H-2ax, 

H-3a), 2.67–2.64 (1H, m, H-3b); δC (100 MHz, CDCl3) 170.1 (C-CO2CH3), 167.0 (C-

CO2CH3), 162.0 (C-17), 149.0 (Ar C), 148.3 (Ar C), 148.2 (Ar C), 147.1 (Ar C), 
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131.6 (Ar C), 130.3 (Ar C), 123.1 (Ar C), 120.1 (Ar CH), 112.2 (Ar C), 111.1 (Ar 

CH), 110.9 (Ar CH), 110.7 (CH), 102.7 (C-18), 65.9 (C-10), 61.2 (C-1), 55.9 (C-

OCH3), 55.7 (C-OCH3), 53.0 (C-CO2CH3), 52.9 (C-CO2CH3), 39.3 (C-2), 28.9 (C-3). 

HRMS (ESI
+
): Found: 470.1454; C24H24NO9 (MH

+
) Requires: 470.1446 (−1.7 ppm 

error).  

Methyl-7-methoxy-9-oxo-9H-[1,3]dioxolo[4,5-h]isochromene-6-carboxylate (418): νmax 

(thin film)/cm
−
 2936, 1752, 1699, 1633, 1601, 1584, 1483, 1435, 1353, 1266, 1100, 

1063, 1032, 955, 813; δH (400 MHz, CDCl3) 7.43 (1H, d, J = 8.6 Hz, H-5/6), 7.17  

(1H, d, J = 8.6 Hz, H-5/6), 6.22 (2H, s, H-10), 4.07 (3H, s, OCH3), 3.90 (3H, s, 

OCH3); δC (100 MHz, CDCl3) 165.6 (C-1/2/10), 158.1 (C-1/2/10), 156.1 (C-1/2/10), 

149.2 (Ar C), 146.2 (Ar C), 130.2 (Ar C), 127.2 (Ar C), 116.9 (C-5/6), 116.0 (C-

5/6), 115.6 (Ar C), 103.3 (C-10), 57.1 (C-OCH3), 52.3 (C-OCH3); HRMS (ESI
+
): 

Found: 301.0330 C13H10NaO7 (MNa
+
) Requires: 301.0319 (−3.6 ppm error). 

Lab Notebook Reference: CHK 2/129 p.189, CHK 5/290 p.11 and CHK 5/345 p.79 

cis-2,3-Dimethoxy-9,10-(methylenedioxy)-13-(hydroxymethyl)-7,8,12b,13-

tetrahydro-5H-6-azatetraphene (419a):  
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To a round bottom flask containing diester 406 (106.5 mg, 0.227 mmol) in THF (0.7 

mL), LiOH·H2O (28.6 mg, 0.681 mmol) in water (0.7 mL) was added at rt. The reaction 

mixture was stirred for 16 h at 90 °C. The solution was dissolved in water (10 mL), 

washed with dichloromethane (10 mL) and then acidified with 10% aq. HCl. The acidic 

aqueous layer, was extracted with ethyl acetate (3 × 20 mL), and the organic extracts 

were dried over MgSO4 and concentrated in vacuo to give a crude mixture of acid 374 

(64.2 mg); [complex due to diastereoisomers and rotamers; δH (400 MHz, CDCl3) 

6.89–6.79 (2H, m, H-12,13), 6.71 (1H, br s, H-5/8 ), 6.62 (1H, br s, H-5/8), 6.13–6.02 

(2H, m, H-18), 5.19–5.10 (1H, m, H-1/10), 4.93–4.81 (1H, m, H-1/10), 3.66–3.71 (6H, 

group of br singlets, 2 × OCH3), 3.02–2.87 (2H, m, H-2), 2.71–2.58 (2H, m, H-3)]. The 

crude mixture was then added to a solution of LiAlH4 (30.7 mg, 0.808 mmol) in 
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THF (10 mL) and heated at 70 °C for 2 h, before it was cooled to 0 °C and quenched 

by the sequential addition of water (0.031 mL), 15 % NaOH (0.031 mL) and water 

(0.092 mL). The aluminates were filtered and washed with ethyl acetate. The 

remaining solids were then collected and refluxed in ethyl acetate for 2 h and 

filtered a second time. The combined filtrates were dried with MgSO4 and 

evaporated. Purification by column chromatography (SiO2, 1:1 petrol: ethyl 

acetate→ethyl acetate) yield compound 419a as a yellow solid (35.7 mg, 43%); Rf  

0.6 (ethyl acetate); mp 145–147 °C (Lit. mp 193-195 °C);
127

 νmax (thin film)/cm
−1

 

3261, 2924, 1609, 1516, 1462, 1360, 1257, 1232, 11209, 1138, 1044; δH (400 MHz, 

CDCl3) 6.78 (2H, s, H-5,8), 6.64 (1H, br s, H-12/13),  6.61 (1H, br s, H-12/13), 6.01 

(1H, d, J =1.5 Hz, H-18a), 5.95 (1H, d, J = 1.5 Hz, H-18b), 4.14 (1H, d, J = 15.2 Hz, 

H-17a), 4.00 (1H, br s, H-1), 3.88 (3H, s, OCH3), 3.66 (3H, s, OCH3), 3.75 (1H, dd, J = 

10.4, 2.0 Hz, H-19a), 3.58–3.54 (1H, m, H-19b),  3.53 (1H, d, J = 15.2 Hz, H-17b), 

3.19–3.15 (3H, m, H-10,2), 2.68–2.56 (2H, m, H-3); δC (100 MHz, CDCl3) 147.8 (Ar 

C), 147.8 (Ar C), 145.5 (Ar C), 143.1 (Ar C), 131.0 (Ar C), 127.9 (Ar C), 126.3 (Ar 

C), 120.9 (C-5/8), 117.2 (Ar C), 111.5 (C-12/13), 108.4 (C-12/13), 107.4 (C-5/8), 

101.2 (C-18), 66.0 (C-19), 63.4 (C-1), 56.1 (C-OCH3), 55.9 (C-OCH3), 53.0 (C-17), 

51.2 (C-2), 43.9 (C-10), 29.0 (C-3); HRMS (ESI
+
): Found: 370.1632; C21H24NO5 

(MH
+
) Requires: 370.1649 (4.4 ppm error). Obtained data in accord with those 

reported in the literature.
127

 

cis-2,3-Dimethoxy-9,10-(methylenedioxy)-13-(hydroxymethyl)-7,8,12b,13-tetrahydro-

5H-6-azatetraphene (419b):  δH (400 MHz, CDCl3) 6.78 (1H, d, J = 8.0 Hz, H-12/13), 

6.69 (1H, d, J = 8.0 Hz, H-12/13), 6.59 (2H, br s, H-5/8),  5.89 (1H, d, J =1.5 Hz, 

H-18a), 5.88 (1H, d, J = 1.5 Hz, H-18b), 4.37 (1H, br s, H-1), 4.21 (1H, dd, J = 10.3, 

3.0 Hz, H-19a), 3.99 (1H, dd, J = 10.3, 3.0 Hz, H-19b), 3.83 (1H, d, J = 15.8 Hz, 

H-17a), 3.82 (3H, s, OCH3), 3.74 (3H, s, OCH3), 3.61 (1H, d, J = 15.8 Hz, H-17b), 3.39 

(2H, m, H-10,2), 3.24 (1H, m, H-2), 3.09 (1H, m, H-3a), 2.73 (1H, m, H-3b); δC (100 

MHz, CDCl3) 147.9 (Ar C), 147.1 (Ar C), 145.4 (Ar C), 143.3 (Ar C), 127.4 (Ar C), 

126.6 (Ar C), 126.0 (Ar C), 120.9 (C-12/13), 117.0 (Ar C), 111.8 (C-5/8), 108.9 

(C-5/8), 107.2 (C-12/13), 101.1 (C-18), 70.1 (C-19), 59.6 (C-1), 55.9 (C-OCH3), 

55.8 (C-OCH3), 48.5 (C-2), 43.7 (C-17), 40.1 (C-10), 29.9 (C-3);  
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Lab Notebook Reference: CHK 5/356 p.94cis-2,3-Dimethoxy-9,10-

(methylenedioxy)-13-(methanesulfonylmethyl)-7,8,12b,13-tetrahydro-5H-6-

azatetraphene (420):
127
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Methanesulfonyl chloride (23.8 μL, 0.308 mmol) was added to a solution of alcohol 

419a (35.5 mg, 0.096) in pyridine (1 mL). The reaction mixture was stirred at rt for 

1.5 h and then quenched with water (10 mL). The mixture was extracted with ether 

(3 × 20 mL). The organic extract was dried and evaporated. Purification by column 

chromatography (SiO2, 2:1→1:1 hexene:ethyl acetate→ethyl acetate) afforded the 

mesylate as a yellow oil (25.5 mg, 68%); Rf  0.9 (ethyl acetate); νmax (thin film)/cm
−1

 

2936, 1517, 1462, 1353, 1334, 1172, 1142, 1041, 955, 730; δH (400 MHz, CDCl3) 

6.84 (1H, d, J = 8.0 Hz, H-12/13), 6.75 (1H, s, H-5/8), 6.73 (1H, d, J = 8.0 Hz, 

H-12/13), 6.61 (1H, s, H-5/8), 6.00 (1H, d, J = 1.4 Hz, H-18a), 5.97 (1H, s, J = 1.4 Hz, 

H-18b), 4.22–4.08 (3H, m, H-1, CH2), 3.92–3.86 (2H, m, CH2), 3.90 (3H, s, OCH3), 

3.88 (3H, s, OCH3), 3.56–3.52 (2H, m, H-10, CH2), 3.11–3.00 (2H, m, CH2), 2.63–2.55 

(1H, m, CH2), 2.62 (3H, s, CH3(Ms)); δC (100 MHz, CDCl3) 147.8 (Ar C), 147.4 (Ar 

C), 145.3 (Ar C), 142.9 (Ar C), 132.9 (Ar C), 128.1 (Ar C), 126.3 (Ar C), 126.1 (Ar 

C), 123.1 (Ar CH), 111.4 (Ar CH), 108.5 (Ar CH), 106.7 (Ar CH), 101.4 (C-18), 

72.4 (C-19), 61.5 (C-1), 56.2 (C-OCH3), 56.0 (C-OCH3), 53.2 (C-17), 51.2 (C-2), 

43.7 (C-10), 36.8 (C-CH3(Ms)), 29.2 (C-3); HRMS (ESI
+
): Found: 448.1427; 

C22H26NO7S (MH
+
) Requires: 448.1424 (−1.3 ppm error). Obtained data in accord 

with those reported in the literature.
127

  

Lab Notebook Reference: CHK 5/297 p.22 
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(±)-Cavidine (280):
141
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The mesylate 420 (22.4 mg, 0.058 mmol) was dissolved in 95% ethanol (3.5 mL) 

and NaBH4 (32.8 mg, 0.867 mmol) was added to the stirred mixture. The mixture 

was refluxed at 80 °C for 2 h and then poured into water (15 mL). The aqueous 

phase was extracted with dichloromethane (3 × 20 mL). The organic extracts were 

dried over MgSO4 and evaporated to yield the crude product. Purification by column 

chromatography (SiO2, 5:1 hexane:ethyl acetate) afforded cavidine 280 as a white 

solid (13.6 mg, 67%); Rf  0.4 (1:1 hexane:ethyl acetate); mp 180–184 °C (Lit. mp 

188–189 °C);
127

 νmax (thin film)/cm
−1

 2909, 2757, 1514, 1457, 1333, 1356, 1254, 

1228, 1042, 729; δH (400 MHz, CDCl3) 6.72 (1H, d, J = 8.0 Hz, H-13), 6.68 (1H, s, H-

8),  6.67 (1H, d, J = 8.0 Hz, H-12), 6.61 (1H, s, H-5), 5.97 (1H, d, J = 1.5 Hz, H-18a), 

5.93 (1H, d, J = 1.5 Hz, H-18b), 4.09 (1H, d, J = 15.3 Hz, H-17a), 3.88 (3H, s, OCH3), 

3.88 (3H, s, OCH3), 3.73 (1H, br s, H-1), 3.50 (1H, d, J = 15.3 Hz, H-17b), 3.28–3.22 

(1H, m, H-10), 3.16–3.07 (2H, m, H-2a,3a), 2.63–2.57 (2H, m, H-2b,3b), 0.94 (3H, d, J 

= 6.9 Hz, CH3); δC (100 MHz, CDCl3) 147.6 (C-6), 147.1 (C-7), 144.6 (C-15), 143.0 

(C-14), 135.9 (C-11), 128.3 (C-4), 128.26 (C-9), 121.2 (C-12), 116.8 (C-16), 111.1 

(C-5), 108.5 (C-8), 106.7 (C-13), 101.0 (C-18), 63.1 (C-1), 56.1 (C-OCH3), 55.8 

(C-OCH3), 53.3 (C-17), 51.2 (C-2), 38.5 (C-10), 29.3 (C-3), 18.4 (C-CH3); HRMS 

(ESI
+
): Found: 354.1683; C21H24NO4 (MH

+
) Requires: 354.1700 (4.3 ppm error). 

Obtained data in accord with those reported in the literature.
127,129a,c,134

 

Lab Notebook Reference: CHK 6/359 p.1  
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1-(6,7-Dimethoxy-1,2,3,4-tetrahydroisoquinolin-2-yl)-2,2,2-trifluoroethanethan-

1-one (427):
144a
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This material was provided by Dr. Will Unsworth as a 2:1 mixture of rotamers and the 

characterisation data of the major and minor rotamer are provided here for reference:  

major: δH (400 MHz, CDCl3) 6.62 (1H, s, H-5/6), 6.62 (1H, s, H-5/6), 4.72 (2H, s, H-1), 

3.89–3.81 (2H, m, H-2), 3.87 (3H, s, OCH3), 3.86 (3H, s, OCH3), 2.90–2.87 (2H, m, 

H-3); minor: δH (400 MHz, CDCl3) 6.65 (1H, s, H-5/6), 6.56 (1H, s, H-5/6), 4.67 (2H, s, 

H-1), 3.89–3.81 (2H, m, H-2), 3.87 (3H, s, OCH3), 3.86 (3H, s, OCH3), 2.88–2.85 (2H, 

m, H-3); HRMS (ESI
+
): Found: 312.0823; C13H14F3NNaO3 (MNa

+
) Requires: 

312.0818 (−1.7 ppm error). Obtained data in accord with those reported in the 

literature.
144a

 

1-(5,8-Dibromo-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-2-yl)-2,2,2-

trifluoroethanethan-1-one (430):
144a
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A round bottom flask was charged with trifluoroacetamide 427 (2 g, 6.91 mmol) and 

FeCl3 (2.33 g, 14.4 mmol) in dichloromethane (13.5 mL). The resulting mixture was 

cooled to 0 °C. To the flask was added Br2 (0.780 mL, 15.2 mL) in dichloromethane 

(7.36 mL) dropwise over 15 min. The reaction mixture was stirred at 0 °C for 30 min. 

To the flask was added dichloromethane (30 mL) followed by crushed ice. The mixture 

was stirred vigorously and extracted with dichloromethane (2 × 30 mL). The combined 

organic extracts were washed with sat. aq. NaHCO3 (30 mL), sat. aq. NaS2O3 (30 mL), 

brine (30 mL), dried over MgSO4 and filtered. The filtrate was concentrated under 

reduce pressure to give compound 430 as a solid (2.67 g, 86% crude yield), which was 

used without further purification. NMR spectra showed rotameric broadening; δH (400 

MHz, CDCl3) 4.72 (2H, couple of singlets, CH2), 3.90–3.80 (8H, m, CH2, CH3), 2.96–
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2.90 (2H, m, CH2); HRMS (ESI
+
): Found: 467.9057; C13H12

79
Br2F3NNaO3 (MNa

+
) 

Requires: 467.9028 (−1.7 ppm error). Obtained data in accord with those reported in 

the literature.
144a

 

Lab Notebook Reference: CHK 5/299 p.24 

5,8-Dibromo-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (431):
144a
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A round bottom flask was charged with crude trifluoroacetamide 430 (2.67 g, 5.97 

mmol), methanol (24.7 mL) and dichloromethane (6.20 mL). To the suspension was 

added K2CO3 (2.48 g, 17.9 mmol) and the mixture was stirred vigorously for 24 h at rt. 

K2CO3 was removed by filtration and the filtrate was concentrated under reduced 

pressure. The residue was dissolved in dichloromethane (50 mL) and the solution was 

washed with water (50 mL), brine (50 mL), dried over MgSO4 and filtered. The filtrate 

was concentrated under reduced pressure to give the crude secondary amine 431 (1.38 

g, 66% crude yield) which was used for the next reaction without further purification. 

δH (400 MHz, CDCl3) 3.92 (2H, br s, CH2), 3.88 (3H, s, CH3), 3.87 (3H, s, CH3), 3.10–

3.07 (2H, m, CH2), 2.71–2.70 (2H, m, CH2); HRMS (ESI
+
): Found: 349.9373; 

C11H14
79

Br2NO2 (MH
+
) Requires: 349.9386 (3.2 ppm error). Obtained data in accord 

with those reported in the literature.
144a

 

Lab Notebook Reference: CHK 5/300 p.25 

5,8-Dibromo-6,7-dimethoxy-3,4-dihydroisoquinoline (432):
144a
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A round bottom flask was charged with crude amine 431 (1.38 g, 3.96 mmol), 

dichloromethane (37 mL) and manganese oxide (7.46 g, 85.7 mmol). The resulting 

mixture was stirred vigorously at rt for 48 h. The reaction mixture was filtered through 

Celite
TM

 pad and the filtrate was concentrated under reduced pressure. The residue was 

purified by column chromatography (SiO2, 7:1→5:1→3:1 petrol:ethyl acetate) to 
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provide compound 432 as an orange oil (730 mg, 53%); Rf  0.3 (1:1 petrol:ethyl acetate); 

δH (400 MHz, CDCl3) 8.58 (1H, br s, H-1), 3.93 (3H, s, OCH3), 3.88 (3H, s, OCH3), 

3.74 (2H, t, J = 7.5 Hz, H-2), 2.75 (2H, t, J = 7.5 Hz, H-3); HRMS (ESI
+
): Found: 

347.9232; C11H12
79

Br2NO2 (MH
+
) Requires: 347.9229 (−1.2 ppm error). Obtained 

data in accord with those reported in the literature.
144a

 

Lab Notebook Reference: CHK 5/303 p.27 

6-Bromo-2,3-dimethoxybenzoic acid (434):
146 
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In an ice bath, 2,3-dimethoxybenzoic acid 433 (10 g, 54.9 mmol) and 1,3-dibromo-5,5-

dimethylhydantoin (8.63g, 30.2 mmol) were added to 0.7 M NaOH (86 mL). The 

reaction mixture was stirred at rt for 1 h, then 1 M HCl (150 mL) was added and the 

aqueous layer was extracted with ethyl acetate (3 × 200 mL). The combined organic 

layers were dried with MgSO4 and concentrated to give compound 434 as a solid (14.3 

g, quantitative), which was used without further purification; δH (400 MHz, CDCl3) 

11.46 (1H, br s, COOH), 7.21 (1H, d, J = 8.9 Hz, H-4/5),  6.81 (1H, d, J = 8.9 Hz, H-

4/5), 3.88 (3H, s, OCH3), 3.82 (3H, s, OCH3); HRMS (ESI
+
): Found: 282.9575; 

C9H9
79

BrNaO4 (MNa
+
) Requires: 282.9576 (0.6 ppm error). Obtained data in accord 

with those reported in the literature.
146 

Lab Notebook Reference: CHK 5/301 p.26 

6-(1,3-Dimethoxy-1,3-dioxopropan-2-yl)-2,3-dimethoxybenzoic acid (423):  
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Sodium hydride (748 mg, 18.7 mmol, 60 % in mineral oil) was added portionwise to a 

rapidly stirred cold suspension (0 °C) of 6-bromo-2,3-dimethoxybenzoic acid  434 (2 

g, 7.66 mmol), copper bromide (110 mg, 0.766 mmol) and dimethyl malonate (30 mL). 

After the addition of the sodium hydride had been completed, the mixture was stirred 

for 10 min at rt and then for 20 h at 70 °C. The suspension, which had turned to a solid 
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mass, was dissolved in water (60 mL), washed with ether (3 × 160 mL) and then 

acidified with 10% hydrochloric acid. The acidic aqueous layer, was extracted with 

ethyl acetate (3 × 200 mL) and the organic extracts were dried over MgSO4 and 

concentrated in vacuo. Purification by column chromatography (SiO2, 10:1→2:1→1:1 

petrol:ethyl acetate→ethyl acetate) afforded compound 423 as a white solid (870 mg, 

36%); Rf   0.47 (DCM, 2% MeOH); mp 104-108 °C; νmax (thin film)/cm
−1

 3223, 2955, 

1735, 1581, 1494, 1438, 1264, 1150, 1055; δH (400 MHz, CDCl3) 7.22 (1H, d, J = 8.7 

Hz H-4/5), 7.08 (1H, d, J = 8.7 Hz, H-4/5), 5.36 (1H, s, H-8), 3.99 (3H, s, OCH3), 3.91 

(3H, s, OCH3), 3.78 (6H, s, CO2CH3); δC (100 MHz, CDCl3) 169.0 (C-7), 167.3 

(C-CO2Me), 152.3 (Ar C), 147.6 (Ar C), 126.5 (C-4/5), 125.5 (Ar C), 124.8 (Ar C), 

115.2 (C-4/5), 62.2 (C-OCH3), 56.0 (C-OCH3), 54.2 (C-8), 52.9 (C-CO2CH3); HRMS 

(ESI
+
): Found: 335.0728; C14H16NaO8 (MNa

+
) Requires: 335.0737 (2.9 ppm error). 

Lab Notebook Reference: CHK 5/305 p.30 

6-Iodo-2,3-dimethoxybenzoic acid (437):
148
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In a a round bottom flask, acid 433 (2.52g, 13.9 mmol), Pd(OAc)2 (156 mg, 0.693 

mmol), iodobenzene diacetate (4.46 g, 13.9 mmol) and I2 (3.52 g, 13.9 mmol) were 

dissolved in DMF (69 mL) under air atmosphere. The reaction mixture was stirred at 

100 °C for 24 h. The reaction mixture was cooled to rt and 10% aq. Na2CO3 (350 mL) 

was added. The organic layer was separated and the aqueous layer was washed with 

ether (2 × 350 mL). The aqueous layer was acidified with 2 M HCl, extracted with ethyl 

acetate (3 × 700 mL), dried over MgSO4 and concentrated in vacuo. The residue was 

purified by column chromatography (SiO2, 7:1→5:1→3:1→2:1 petrol:ethyl acetate) to 

afford compound 437 as a white solid (2.86 g, 67%); Rf 0.26 (9:1 DCM:MeOH); δH 

(400 MHz, CDCl3) 10.55 (1H, br s, COOH), 7.49 (1H, d, J = 8.7 Hz, H-4/5), 6.73 (1H, 

d, J = 8.7 Hz, H-4/5),  3.91 (3H, s, OCH3), 3.86 (3H, s, OCH3); HRMS (ESI
+
): Found: 

330.9445; C9H9INaO4 (MNa) Requires: 330.9438 (−2.7 ppm error). Obtained data in 

accord with those reported in the literature.
175

 

Lab Notebook Reference: CHK 5/329 p.59 
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Benzyl 6-iodo-2,3-dimethoxybenzoate (438): 
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To a solution of 6-iodo-2,3-dimethoxybenzoic acid 437 (397.7 mg, 1.29 mmol) in 

DMF (2.8 mL) were added KHCO3 (194 mg, 1.94 mmol) and benzyl bromide (184 

μL, 1.55 mmol) and the mixture was stirred at rt for 1.5 h. The reaction mixture was 

quenched with water (20 mL) and extracted with ether (3 × 30 mL). The organic 

layer was washed with brine (20 mL), dried over MgSO4 and concentrated in vacuo. 

The residue was purified by column chromatography (SiO2, 10:1 petrol:ethyl acetate) to 

afford compound 438 as a colourless oil (489 mg, 55%); Rf 0.45 (3:1 petrol:ethyl 

acetate); νmax (thin film)/cm
−1

 2940, 1733, 1571, 1472, 1412, 1294, 1264, 1154, 

1054, 1003; δH (400 MHz, CDCl3) 7.50–7.48 (2H, m, ArH), 7.45 (1H, d, J = 8.7 Hz, 

H-4/5),  7.39–7.31 (3H, m, Ar-H), 6.68 (1H, d, J = 8.7 Hz, H-4/5), 5.40 (2H, s, H-7), 

3.83 (3H, s, OCH3), 3.78 (3H, s, OCH3); δC (100 MHz, CDCl3) 166.8 (C-12), 152.9 

(Ar C), 146.8 (Ar C), 135.2 (Ar C), 134.2 (C-4/5), 128.6 (C-9/10/11), 128.5 (Ar C), 

128.4 (C-9/10/11), 128.3 (C-9/10/11), 115.1 (C-4/5), 79.3 (C-6), 67.6 (C-7), 61.6 

(C-OCH3), 55.9 (C-OCH3); HRMS (ESI
+
): Found: 420.9916; C16H15INaO4 (MNa

+
) 

Requires: 420. 9907 (−2.4 ppm error). 

Lab Notebook Reference: CHK 5/330 p.57 

Benzyl 6-bromo-2,3-dimethoxybenzoate (440): 

6

5

4
3

2

1
12

OO

Br OCH3

OCH3

7
8

11

10

9

 

To a solution of 6-bromo-2,3-dimethoxybenzoic acid 434 (239.8 mg, 0.919 mmol) in 

DMF (2 mL) were added KHCO3 (138 mg, 1.38 mmol) and benzyl bromide (112 μL, 

0.938 mmol) and the mixture was stirred at rt for 1.5 h. The reaction mixture was 

quenched with water (10 mL) and extracted with ethyl acetate (3 × 10 mL). The 
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organic layer was washed with water (10 mL) and brine (10 mL), dried over MgSO4 

and concentrated in vacuo. The residue was purified by column chromatography (SiO2, 

7:1 petrol:ethyl acetate) to afford compound 440 as a colourless oil (209.3 mg, 65%); Rf 

0.57 (3:1 petrol:ethyl acetate); νmax (thin film)/cm
−1

 2940, 2839, 1732, 1576, 1473, 

1414, 1372, 1295, 1261, 1218, 1156, 1052, 1003; δH (400 MHz, CDCl3) 7.48–7.45 

(2H, m, ArH), 7.40–7.31 (3H, m, ArH),  7.22 (1H, d, J = 8.8 Hz, H-4/5), 6.81 (1H, d, J 

= 8.8 Hz, H-4/5), 5.41 (2H, s, H-7), 3.83 (3H, s, OCH3), 3.79 (3H, s, OCH3); δC (100 

MHz, CDCl3) 165.7 (C-12), 152.0 (Ar C), 146.9 (Ar C), 135.2 (Ar C), 131.1 (Ar C), 

128.5 (C-9/10/11), 128.4 (C-9/10/11), 128.3 (C-9/10/11), 127.8 (C-4/5), 114.5 (C-

4/5), 108.8 (C-6), 67.5 (C-7), 61.6 (C-OCH3), 56.0 (C-OCH3); HRMS (ESI
+
): Found: 

373.0043; C16H15
79

BrNaO4 (MNa
+
) Requires: 373.0046 (0.4 ppm error). 

Lab Notebook Reference: CHK 5/327 p.54 

13,13-Dimethyl 9,12-dibromo-3,4,10,11-tetramethoxy-5-oxo-7,8,12b,13-

tetrahydro-5H-6-azatetraphene-13,13-dicarboxylate (441): 
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Synthesised using general DIA procedure B from imine 432 (41.5 mg, 0.119 mmol), 

acid 423 (44.6 mg, 0.143 mmol), DIPEA (38.3 μL, 0.220 mmol), T3P (114 mg, 0.179 

mmol) and AlCl3 (31.7 mg, 0.238 mmol) in chloroform (1.5 mL) at rt for 20 h. 

Purification by column chromatography  (SiO2, 3:1→1:1 petrol:ethyl acetate) afforded 

compound 441 as a yellow oil (29.1 mg, 38%); Rf 0.4 (ethyl acetate); νmax (thin 

film)/cm
−1

 2941, 1742, 1657, 1486, 1455, 1423, 1393, 1301, 1272, 1223, 1025; δH (400 

MHz, CDCl3) 7.20 (1H, d, J = 8.8 Hz, H-12/13), 7.07 (1H, d, J = 8.8 Hz, H-12/13), 

5.99 (1H, s, H-1), 4.91 (1H, ddd, J = 13.0, 5.3, 1.8 Hz, H-2eq), 4.05 (3H, s, OCH3), 

3.96 (3H, s, OCH3), 3.93 (3H, s, OCH3), 3.86 (3H, s, OCH3), 3.68 (3H, s, CO2CH3), 

3.55 (3H, s, CO2CH3), 3.34 (1H, ddd, J = 16.5, 12.9, 5.3 Hz, H-3ax), 3.05 (1H, ddd, 

J = 16.5, 3.4, 1.8 Hz, H-3eq), 2.76 (1H, ddd, J = 13.0, 12.9, 3.4 Hz, H-2ax); δC (100 

MHz, CDCl3) 167.8 (CO2CH3), 166.5 (CO2CH3), 162.0 (C-17), 153.7 (Ar C), 150.9 

(Ar C), 149.8 (Ar C), 148.8 (Ar C), 139.0 (Ar C), 129.3 (Ar C), 128.5 (Ar C), 124.7 
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(C-12/13), 123.8 (Ar C), 120.1 (Ar C), 119.2 (Ar C), 114.8 (C-12/13), 64.6 (C-10), 61.7 

(C-OCH3), 60.8 (C-1), 60.7 (C-OCH3), 60.2 (C-OCH3), 56.0 (C-OCH3), 53.1 

(C-CO2CH3), 52.9 (C-CO2CH3), 38.7 (C-2), 30.6 (C-3); HRMS (ESI
+
): Found: 

663.9804; C25H25
79

Br2NNaO9 (MNa
+
) Requires: 663.9788 (−2.3 ppm error). 

 Lab Notebook Reference: CHK 5/307 p.32 

13,13-Dimethyl 9,12-dibromo-10,11-dimethoxy-3,4-methylenedioxy-5-oxo-

7,8,12b,13-tetrahydro-5H-6-azatetraphene-13,13-dicarboxylate (442): 

6

7
8

9

4
5

1 N

2
3

10

11

16
17

13
14

15

O

18

O

H3CO

O

Br

Br

12

H3CO

E = CO2CH3

E
E

 

Synthesised using general DIA procedure B from imine 432 (42.1 mg, 0.121 mmol), 

acid 405 (43.1 mg, 0.146 mmol), DIPEA (39.2 μL, 0.224 mmol), T3P (115.8 mg, 0.182 

mmol) and AlCl3 (32.4 mg, 0.243 mmol) in chloroform (1 mL) at 50 °C for 20 h. 

Purification by column chromatography (SiO2, 5:1→3:1 petrol:ethyl acetate) afforded 

compound 442 as a colourless oil (31.3 mg, 41%); Rf  0.38 (ethyl acetate); νmax (thin 

film)/cm
−1

 2948, 2870, 1743, 1642, 1448, 1404, 1299, 1253, 1238, 1221, 1021; δH 

(400 MHz, CDCl3) 7.32 (1H, d, J = 8.7 Hz, H-12/13), 7.06 (1H, d, J = 8.7 Hz, 

H-12/13),  6.02 (1H, s, H-1), 5.99 (2H, s, H-18), 4.76 (1H, ddd, J = 12.8, 4.7, 1.7 Hz, 

H-2eq), 3.97 (3H, s, OCH3), 3.87 (3H, s, OCH3), 3.71 (3H, s, CO2CH3), 3.52 (3H, s, 

CO2CH3), 3.49–3.44 (1H, m, H-2ax), 3.06 (1H, ddd, 16.3, 3.1, 1.7 Hz, H-3eq), 2.82 

(1H, ddd, J =12.8, 12.8, 3.1 Hz, H-3ax); δC (100 MHz, CDCl3) 167.7 (CO2CH3), 

167.3 (CO2CH3), 165.9 (C-17), 152.6 (Ar C), 150.9 (Ar C), 148.8 (Ar C), 143.9 (Ar 

C), 138.9 (Ar C), 130.9 (Ar C), 127.8 (Ar C), 127.8 (Ar C), 121.7 (C-12/13), 120.0 

(C-12/13), 119.3 (Ar C), 112.2 (Ar C), 99.9 (Ar C), 78.4 (C-18), 63.3 (C-10), 60.9 

(C-OCH3), 60.7 (C-OCH3), 59.9 (C-1), 53.3 (C-CO2CH3), 53.0 (C-CO2CH3), 39.5 

(C-2), 30.5 (C-3); HRMS (ESI
+
): Found: 647.9496; C24H21

79
Br2NNaO9 (MNa) 

Requires: 647.9475 (−3.1 ppm error).  

Lab Notebook Reference: CHK 5/333 p.62 
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3-Bromo-4-hydroxy-5-methoxybenzaldehyde (446):
151a-c,e 
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 A round bottom flask was charged with vanillin 445 (5.00 g, 32.9 mmol) and glacial 

acetic acid (30 mL) was added. Vanillin 445 was dissolved to form a pale yellow 

solution. Neat bromine (1.85 mL, 36.2 mL) was added dropwise to the stirring solution 

to produce a deep red-orange solution. The reaction was stirred for 1 h to result in the 

formation of a bright yellow participate when nearing completion. The reaction mixture 

was poured onto cold water (0 °C, 60 mL) resulting in further precipitation of a pale 

yellow solid. The solid was collected by filtration, washed with cold water and dried in 

vacuo to afford compound 446 as a yellow solid (6.96 g, 91%). The crude was used to 

the next step without further purification; δH (400 MHz, CDCl3) 9.79 (1H, s, H-7), 7.64 

(1H, d, J = 1.7 Hz, H-2/6), 7.36 (1H, d, J = 1.7 Hz, H-2/6),  6.51 (1H, s, OH), 3.99 (3H, 

s, OCH3); HRMS (ESI
+
): Found: 252.9476; C8H7

79
BrNaO3 (MNa

+
) Requires: 

252.9471 (−2.1 ppm error). Obtained data in accord with those reported in the 

literature.
151e

 

Lab Notebook Reference: CHK 6/369 p.11 

3-Bromo-4,5-dimethoxybenzaldehyde (450):
153
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To a round bottom flask containing 3-bromo-4-hydroxy-5-methoxybenzaldehyde 446 

(7.44, 32.2 mmol) in acetone (70 mL), anhydrous K2CO3 (11.1 g, 80.5 mmol) was 

added. To the stirring mixture was added Me2SO4 (7.62 g, 80.5 mmol) and the 

reaction was stirred vigorously at rt for 16 h. K2CO3 was removed by filtration and the 

filtrate was washed with acetone (2 × 70 mL) and methanol (70 mL). The combined 

filtrate was concentrated under reduced pressure to an orange oil and purified by 

column chromatography (SiO2, 10:1 petrol:ethyl acetate) to afford compound 450 as a 

yellow oil (5.96 g, 74%); Rf  0.25 (1:1 petrol:ethyl acetate); δH (400 MHz, CDCl3) 9.83 

(1H, s, H-7),7.64 (1H, d, J = 1.8 Hz, H-2/6), 7.38 (1H, d, J = 1.8 Hz, H-2/6), 3.94 (3H, 
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s, OCH3), 3.93 (3H, s, OCH3); HRMS (ESI
+
): Found: 266.9620; C9H9

79
BrNaO3 

(MNa
+
) Requires: 266.9627 (1.8 ppm error). Obtained data in accord with those 

reported in the literature.
153

 

Lab Notebook Reference: CHK 6/373 p.35 

1-Bromo-2,3-dimethoxy-5[(E)-2-nitroethenyl]benzene (451):
112
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To a solution of 3-bromo-4,5-dimethoxybenzaldehyde 450 (3.54 g, 14.4 mmol) in 

acetic acid (12 mL) was added nitromethane (2.34 mL, 43.3 mmol) and ammonium 

acetate (1.11 g, 14.4 mmol). The mixture was heated to 90 °C for 24 h. The cooled 

mixture was quenched with cold water (80 mL) to favor the precipitation of a solid. 

The solid was collected by filtration and washed with more cold water. The filtrate was 

extracted with ethyl acetate (3 × 80 mL). The solid and the combined organic layers 

were dried in vacuo and purified by column chromatography (SiO2, 8:1 petrol:ethyl 

acetate) to afford compound 451 as a yellow solid (3.72 g, 89%); Rf 0.67 (7:1 

petrol:ethyl acetate); mp 85–88 °C; νmax (thin film)/cm
−1

 3114, 2940, 1630, 1593, 

1554, 1504, 1488, 1414, 1357, 1321, 1283, 1239, 1046; δH (400 MHz, CDCl3) 7.88 

(1H, d, J = 13.7 Hz, H-7), 7.51 (1H, d, J = 13.7 Hz, H-8),  7.37 (1H, d, J = 2 Hz, 

H-2/6), 6.98 (1H, d, J = 2 Hz, H-2/6), 3.92 (3H, s, OCH3), 3.92 (3H, s, OCH3); δC (100 

MHz, CDCl3) 154.0 (Ar C), 149.7 (Ar C), 137.5 (C-7), 137.1 (C-8), 126.8 (Ar C), 

126.3 (C-2/6), 118.5 (Ar C), 111.4 (C-2/6), 60.9 (C-OCH3), 56.2 (C-OCH3); HRMS 

(ESI
+
): Found: 287.9862; C10H11

79
BrNO4 (MH

+
) Requires: 287.9866 (2.6 ppm 

error). This compound has been reported previously in the literature, but no spectral 

data are reported to date.
176

 

Lab Notebook Reference: CHK 6/377 p.20 
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2-(3-Bromo-4,5-dimethoxyphenyl)ethan-1-amine (452): 
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1-Bromo-2,3-dimethoxy-5[(E)-2-nitroethenyl]benzene 451 (132.5 mg, 0.460 mmol) 

was dissolved in THF (2 mL) at −5 °C (salt/ice water) and LiAlH4 (52.4 mg, 1.38 

mmol) was added portionwise. The reaction mixture was stirred for 20 min before it 

was acidified with HCl 1 M to pH = 1. The aqueous layer was extracted with 

dichloromethane (3 × 20 mL), dried over MgSO4 and concentrated in vacuo. The 

crude compound 452 was used to the next step without further purification (68.1 mg, 

57% crude yield); νmax (thin film)/cm
−1

 3363, 2999, 2935, 2835, 2665, 1591, 1515, 

1463, 1417, 1261, 12351141, 1026; δH (400 MHz, CDCl3) 6.98 (1H, s, H-2/6), 6.70 

(1H, s, H-2/6), 3.84 (3H, s, OCH3), 3.82 (3H, s, OCH3), 3.15 (2H, t, J = 7.0 Hz, H-8), 

2.80 (2H, t, J = 7.0 Hz, H-7); δC (100 MHz, CDCl3) 153.7 (Ar C), 145.0 (Ar C), 

136.5 (Ar C), 124.8 (C-2/6), 117.7 (Ar C), 112.4 (C-2/6), 60.6 (C-OCH3), 56.2 

(C-OCH3), 54.6 (C-8), 32.8 (C-7); HRMS (ESI
+
): Found: 260.0275; C10H15

79
BrNO2 

(MH
+
) Requires: 260.0281 (2.1 ppm error). This compound has been reported 

previously in the literature, but no spectral data are reported to date.
176

 

Lab Notebook Reference: CHK 6/390 p.39 

N-[2-(3-Bromo-4,5-dimethoxyphenyl)ethyl]formamide (453): 
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2-(3-Bromo-4,5-dimethoxyphenyl)ethan-1-amine 452 (1.02 g, 3.92 mmol) was 

dissolved in ethyl formate (40 mL). The reaction mixture was stirred for 20 h at 65 

°C. The solvent was evaporated and the residue was purified by column 

chromatography (SiO2, 1:1→1:3→1:5 petrol:ethyl acetate→pure ethyl acetate) to afford 

compound 453 as a colourless oil (689 mg, 61%); Rf 0.58 (9:1 ethyl acetate:MeOH); 

νmax (thin film)/cm
−1

 3287, 2875, 2936, 1659, 1596, 1566, 1515, 1488, 1463, 1414, 

1384, 1271, 12341140, 1044, 999; δH (400 MHz, CDCl3) 8.13 (1H, s, H-9), 6.95 (1H, 

d, J = 1.9 Hz, H-2/6), 6.67 (1H, d, J = 1.9 Hz, H-2/6), 5.81 (1H, br s, NH), 3.84 (3H, s, 
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OCH3), 3.81 (3H, s, OCH3), 3.52 (2H, q, J = 6.9 Hz, H-8), 2.76 (2H, t, J = 6.9 Hz, H-

7); δC (100 MHz, CDCl3) 161.3 (C-9), 153.8 (Ar C), 145.2 (Ar C), 135.8 (Ar C), 

124.7 (C-2/6), 117.7 (Ar C), 112.2 (C-2/6), 60.7 (C-OCH3), 56.2 (C-OCH3), 39.1 

(C-8), 35.2 (C-7); HRMS (ESI
+
): Found: 310.0054; C11H14

79
BrNNaO3 (MNa

+
) 

Requires: 310.0049 (−1.5 ppm error) 

Lab Notebook Reference: CHK 6/394 p.45 

N-[2-(3,4-Dimethoxyphenyl)ethyl]formamide (454): 
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To a solution of N-[2-(3-bromo-4,5-dimethoxyphenyl)ethyl]formamide 453 (135 mg, 

0.467 mmol) in THF was added n-BuLi (0.411 mL, 1.03 mmol) dropwise at –78 °C 

and the resulting reaction mixture was stirred at –78 °C for 2 h. B(OMe)3 (0.156 mL, 

1.40 mmol) was then added dropwise and the mixture was allowed to warm to 0 °C 

over a period of 1 h. A cooled solution of H2O2 (0.238 mL, 2.34 mmol, 35% w/w) in 

10% aq. NaOH (89.6 mg, 2.24 mmol) was added and the reaction mixture was 

stirred at 0 °C for 0.5 h.  The aqueous phase was extracted with ethyl acetate (3 × 20 

mL) and the combined organic layers were washed with brine (20 mL) and dried 

over MgSO4 to give the crude compound 454 (94.2 mg, 96%); Rf 0.58 (9:1 ethyl 

acetate:MeOH); δH (400 MHz, CDCl3) 8.13 (1H, s, H-9), 6.80 (1H, d, J = 8.0 Hz, ArH), 

6.74–6.71 (2H, m, ArH), 5.67 (1H, br s, NH), 3.86 (3H, s, OCH3), 3.85 (3H, s, OCH3), 

3.54 (2H, q, J = 6.8 Hz, H-8), 2.78 (2H, t, 6.8 Hz, H-7); HRMS (ESI
+
): Found: 

232.0944; C11H15NNaO3 (MNa
+
) Requires: 232.0944 (−0.1 ppm error); Obtained 

data in accord with those reported in the literature.
177
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8-Hydroxy-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-1-one (459):
80 
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Diphenyl azide (8.96 mL, 0.0420 mol) was added dropwise to a stirred solution of 

carboxylic acid 456 (10.0 g, 0.0420 mol) and triethylamine (5.80 mL, 0.0420 mol) in 

toluene (125 mL) at rt. The reaction was then stirred at 90 °C for 1.5 h. Most of the 

solvent was removed in vacuo to afford a mobile oil. The flask was cooled to 0 °C 

under nitrogen atmosphere and BF3·OEt2 (20.8 mL) was added dropwise. The 

reaction mixture was stirred for 20 h at rt before it was quenched with 1 M NaOH to 

pH = 10. Ethyl acetate (300 mL) was added and the rapidly stirred mixture was 

heated for 1 h at 50 °C solvating all the crude material. The mixture was cooled to rt, 

the layers separated and the aqueous fraction further extracted with ethyl acetate (2 × 

300 mL). The combined organic layers were washed with brine (300 mL), dried over 

MgSO4 and the solvent removed in vacuo to give the crude product. Column 

chromatography (SiO2, 1:1 petrol:ethyl acetate→pure ethyl acetate) gave compound 459 

(7.34 g, 80%) as a white solid; Rf  0.4 (ethyl acetate); δH (400 MHz, CDCl3) 12.37 (1H, 

s, OH), 6.45 (1H, br s, NH), 6.25 (1H, s, H-5), 3.88 (3H, s, OCH3), 3.86 (3H, s, OCH3), 

3.52 (2H, dt, J = 6.7, 2.7 Hz, H-2), 2.90 (2H, t, J = 6.7 Hz, H-3); HRMS (ESI
+
): 

Found: 246.0736; C11H13NNaO4 (MNa
+
) Requires: 246.0737 (0.2 ppm error); 

Elemental Analysis: calculated for C11H13NO4 requires C, 59.19; H, 5.87; N, 6.27; 

found C, 59.20; H, 5.95; N, 6.17. Obtained data in accord with those reported in the 

literature.
80

  

Lab Notebook Reference: CHK 6/396 p.71 
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6,7-Dimethoxy-1,2,3,4-tetrahydroisoquinolin-8-ol hydrochloride (460): 
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8-Hydroxy-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-1-one 459 (146 mg, 0.453 

mmol) was dissolved in THF (7.7 mL) at rt and LiAlH4 (99.2 mg, 2.61 mmol) was 

added portionwise. The reaction mixture was stirred for 1 h at 70 °C before it was 

poured in to water (20 mL) and acidified with HCl 1 M to pH = 1. The aqueous layer 

was extracted with ethyl acetate (3 × 20 mL), dried over MgSO4 and concentrated in 

vacuo. Purification by column chromatography (SiO2, DCM→DCM, 5% 

MeOH→DCM, 8% MeOH) afforded compound 460 as a colourless oil (24.5 mg, 18%); 

Rf  0.5 (9:1, DCM:MeOH); δH (400 MHz, CDCl3) 12.32 (1H, br s, OH), 6.26 (1H, s, 

H-5), 6.09 (1H, br s, NH), 3.89 (3H, s, OCH3), 3.88 (3H, s, OCH3), 3.84–3.82  

(2H, m, H-1), 3.54–3.53 (2H, m, H-2), 2.93–2.90 (2H, m, H-3). Note that mass spec 

failed to show the expected mass peak. This compound has been reported previously 

in the literature.
178

 

Lab Notebook Reference: CHK 6/398 p.51 

tert-Butyl 8-hydroxy-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline-2-

carboxylate (461): 

6

7

8 9

4
5

1 N

2
3

H3CO

H3CO

OH O

10

O

O
11

12

12

12  

n-BuLi (11.0 mL, 27.6 mmol, 2.5 M in hexanes) was added in a stirred solution of 

amide 459 (2.05 g, 9.18 mL) in dry THF (110 mL) at −78 °C. After 10 minutes a 

solution of Boc2O (2.21 g, 10.1 mmol) in THF (28 mL) was transferred via syringe 

at −78 °C. The reaction mixture was then allowed to warm to rt and left to stir for 20 h. 

The reaction was quenched with sat. aq. NH4Cl (100 mL) at rt. The aqueous layer was 

extracted with ethyl acetate (3 × 100 mL) and the combined organic extracts dried over 

MgSO4 and filtered. The filtrate was concentrated in vacuo and purified by column 

chromatography (SiO2, 4:1 petrol:ethyl acetate→pure ethyl acetate) to afford compound 
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461 as colorless crystals (2.35 g, 80%); Rf  0.6 (1:1 petrol:ethyl acetate); mp 115–117 

°C; νmax (thin film)/cm−1 3007, 2977, 2941, 1711, 1643, 1575, 1450, 1420, 1368, 

1291, 1254, 1228; δH (400 MHz, CDCl3) 12.24 (1H, s, OH), 6.23 (1H, s, H-5), 3.90 

(2H, t, J = 6.3 Hz, H-2), 3.88 (3H, s, OCH3), 3.83 (3H, s, OCH3), 2.90 (2H, t, J = 6.3 

Hz, H-3), 1.55 (9H, s, H-12); δC (100 MHz, CDCl3) 169.3 (C-1), 157.5 (Ar C), 157.2 

(Ar C), 152.0 (Ar C), 136.1 (Ar C), 135.2 (Ar C), 106.3 (Ar C), 101.6 (C-5), 83.6 

(C-11), 60.6 (C-OCH3), 55.9 (C-OCH3), 44.6 (C-2), 28.4 (C-12), 27.9 (C-3); HRMS 

(ESI
+
): Found: 346.1248; C16H21NNaO6 (MNa

+
) Requires: 346.1261 (3.3 ppm 

error); Elemental Analysis: calculated for C16H21NO6 requires C, 59.43; H, 6.55; N, 

4.33; found C, 59.66; H, 6.46; N, 4.25 

Lab Notebook Reference: CHK 6/427 p.85 

tert-Butyl 8-(benzyloxy)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline-2-

carboxylate (462): 
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Amide 461 (115 mg, 0.355 mmol) and benzyl bromide (0.063 mL, 0.532 mmol) 

were dissolved in toluene (3 mL). K2CO3 was added and the reaction mixture was 

stirred at 120 °C for 20 h. The reaction was cooled to rt before it was quenched with 

water (10 mL). The aqueous layer was extracted with ethyl acetate (3 × 10 mL) and the 

combined organic extracts dried over MgSO4 and filtered. The filtrate was concentrated 

in vacuo and purified by column chromatography (SiO2, 4:1 petrol:ethyl acetate) to 

afford compound 462 as colourless oil (118 mg, 80%); Rf   0.5 (1:1 petrol:ethyl acetate); 

νmax (thin film)/cm
−1

 2977, 2936, 1761, 1708, 1592, 1489, 1454, 1423, 1379, 1309, 

1279, 1248, 1146, 1121; δH (400 MHz, CDCl3) 7.59–7.57 (2H, m, ArH), 7.36–7.26 

(3H, m, ArH), 6.47 (1H, s, H-5), 5.16 (2H, s, H-13), 3.98 (3H, s, OCH3), 3.83 (3H, s, 

OCH3, overlapping), 3.81 (2H, t, J = 6.2 Hz, H-2, overlapping), 2.84 (2H, t, J = 6.2 Hz, 

H-3), 1.57 (9H, s, H-12); δC (100 MHz, CDCl3) 161.2 (C-1), 156.4 (Ar C), 154.3 (Ar 

C), 152.6 (C-10), 142.4 (Ar C), 137.4 (Ar C), 137.0 (Ar C), 129.0 (Ar CH), 128.1 

(Ar CH), 127.8 (Ar CH), 117.7 (Ar C), 105.6 (C-5), 82.6 (C-11), 75.8 (C-13), 61.0 
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(C-OCH3), 56.0 (C-OCH3), 44.1 (C-2), 29.5 (C-3), 28.0 (C-12); HRMS (ESI
+
): 

Found: 436.1728; C23H27NNaO6 (MNa
+
) Requires: 436.1731 (0.5 ppm error). 

Lab Notebook Reference: CHK 6/421 p.84 

8-(Benzyloxy)-1-ethyl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (466): 
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Compound 462 (118 mg, 0.285 mmol) was dissolved in THF (3 mL) and cooled to −78 

°C. Super-Hydride
TM

 (0.428 mL, 0.428 mmol, 1 M solution in THF) was added 

dropwise and stirring continued for 30 min at −78 °C. The excess reducing agent was 

quenched by the addition of 10:1 EtOH:conc. aq. HCl (3 mL) and the resulting mixture 

diluted with dichloromethane (33 mL), washed with water (17 mL), dried over MgSO4 

and concentrated in vacuo. The crude material was used directly to the next step without 

further purification. A 1:1 mixture of DCM:TFA (2 mL), that had been pre-cooled to 0 

°C, was added immediately to the crude product and the resulting solution was stirred at 

0 °C for 15 min. The majority of the volatile organics were then removed in vacuo, 

before the crude residue was dissolved in dichloromethane (17 mL), washed with sat. 

aq. NaHCO3 (7 mL), dried over MgSO4 and concentrated in vacuo. Purification by 

column chromatography (SiO2, 1:1 petrol:ethyl acetate→pure ethyl acetate→ethyl 

acetate, 5 % MeOH→ ethyl acetate, 10 % MeOH) afforded compound 466 as yellow oil 

(30.9 mg, 33%);  Rf  0.2 (DCM, 10 % MeOH); νmax (thin film)/cm
−1

 2935, 1674, 1602, 

1494, 1453, 1424, 1374, 1346, 1277, 1199, 1117, 1027; δH (400 MHz, CDCl3) 7.44–

7.42 (2H, m, ArH), 7.41–7.30 (3H, m, ArH), 6.42 (1H, s, H-5), 5.68 (1H, br s, NH), 

5.19 (1H, d, J = 11.2 Hz, H-12a), 5.01 (1H, d, J = 11.2 Hz, H-12b), 4.11 (1H, dd, J = 

9.4, 2.9 Hz, H-1), 3.85 (3H, s, OCH3), 3.85 (3H, s, OCH3), 3.28–3.22 (1H, m, H-2a), 

3.15–3.09 (1H, m, H-2b), 2.96–2.87 (1H, m, H-3a), 2.83–2.76 (1H, m, H-3b), 1.93–1.85 

(1H, m, H-10a), 1.79–1.70 (1H, m H-10b), 0.97 (3H, t, J = 7.4 Hz, H-11); δC (100 

MHz, CDCl3) 152.5 (Ar C), 149.4 (Ar C), 140.4 (Ar C), 137.6 (Ar C), 128.6 (Ar C), 

128.4 (Ar CH), 128.0 (Ar CH), 127.9 (Ar CH), 122.4 (Ar C), 107.3 (C-5), 74.9 (C-

12), 60.9 (C-OCH3), 55.9 (C-OCH3), 53.1 (C-1), 37.7 (C-2), 27.2 (C-3/10), 27.0 (C-
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3/10), 11.0 (C-11); HRMS (ESI
+
): Found: 328.1894; C20H26NO3 (MH

+
) Requires: 

328.1907 (4.0 ppm error).  

Lab Notebook Reference: CHK 6/428 p.86 

8-(Benzyloxy)-6,7-dimethoxy-3,4-dihydroisoquinoline (467): 
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Compound 462 (102 mg, 0.247 mmol) was dissolved in THF (2.6 mL) and cooled to 

−78 °C. Super-Hydride
TM

 (0.371 mL, 0.371 mmol, 1 M solution in THF) was added 

dropwise and stirring continued for 30 min at −78 °C. The excess reducing agent was 

quenched at −78 °C by the sequential addition of methanol (0.213 mL), water (0.107 

mL), aq. H2O2 solution 30% w/v (0.107 mL) and aq. NaOH solution 6 M (0.107 mL). 

Stirring was continued while the mixture warmed to rt. The resulting mixture was then 

diluted with water (5 mL) and extracted with ethyl acetate (3 × 15 mL). The combined 

organic extracts were washed with sat. aq. NaHCO3 solution (10 mL), sat. aq Na2CO3 

solution (10 mL) and brine (10 mL). The organic solution was dried over MgSO4 and 

concentrated in vacuo. The crude material was used directly to the next step without 

further purification. A 1:1 mixture of DCM:TFA (2 mL), that had been pre-cooled to 0 

°C, was added immediately to the crude product and the resulting solution was left to 

stir for 1 h at rt. The majority of the volatile organics were then removed in vacuo, 

before the crude residue was dissolved in dichloromethane (20 mL), washed with sat. 

aq. NaHCO3 (10 mL), dried over MgSO4 and concentrated in vacuo. Purification by 

column chromatography (SiO2, 1:1 ethyl acetate:petrol→2:1 ethyl acetate:petrol→pure 

ethyl acetate) afforded compound 467 as colourless oil (37.1 mg, 50%); Rf  0.15 (9:1 

ethyl acetate:MeOH); νmax (thin film)/cm
−1

 2938, 1619, 1597, 1570, 1492, 1454, 

1427, 1379, 1348, 1311, 1234, 1123, 1093, 1191; δH (400 MHz, CDCl3) 8.49 (1H, br 

s, H-1), 7.44–7.42 (2H, m, ArH), 7.39–7.30 (3H, m, ArH), 6.47 (1H, s, H-5), 5.13 (2H, 

s, H-10), 3.89 (3H, s, OCH3 ), 3.87 (3H, s, OCH3), 3.63 (2H, t, J = 7.8  Hz, H-2), 2.60 

(2H, t, J = 7.8 Hz, H-3); δC (100 MHz, CDCl3) 155.8 (Ar C), 155.4 (C-1), 150.5 (Ar 

C), 140.4 (Ar C), 136.8 (Ar C), 133.3 (Ar C), 128.4 (Ar CH), 128.4 (Ar CH), 128.2 
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(Ar CH), 115.8 (Ar C), 106.4 (C-5), 76.1 (C-10), 61.0 (C-OCH3), 56.0 (C-OCH3), 

46.8 (C-2), 25.3 (C-3); HRMS (ESI
+
): Found: 298.1427; C18H20NO3 (MH

+
) 

Requires: 298.1438 (3.7 ppm error). 

Lab Notebook Reference: CHK 6/431 p.94 

13,13-Dimethyl 12-(benzyloxy)-10,11-dimethoxy-3,4-methylenedioxy-5-oxo-

7,8,12b,13-tetrahydro-5H-6-azatetraphene-13,13-dicarboxylate (468): 
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Synthesised using general DIA procedure B from imine 467 (59.3 mg, 0.199 mmol), 

acid 405 (70.9 mg, 0.239 mmol), DIPEA (64.3 μL, 0.369 mmol), T3P (190 mg, 0.299 

mmol) and AlCl3 (53.2 mg, 0.399 mmol) in chloroform (2 mL) at 50 °C for 20 h. 

Purification by column chromatography (SiO2, 3:1→2:1→1:1 petrol:ethyl 

acetate→pure ethyl acetate) afforded compound 468 as a colourless oil (56.8 mg, 50%) 

Rf  0.7 (ethyl acetate); νmax (thin film)/cm
−1

 2951, 2248, 1741, 1656, 1600, 1496, 

1461, 1428, 1346, 1309, 1235, 1124, 1043; δH (400 MHz, CDCl3) 7.96–7.17 (5H, m, 

Ar-H), 6.91 (1H, d, J = 8.4 Hz, H-20/21),  6.83 (1H, d, J = 8.4 Hz, H-20/21), 6.53 (1H, 

s, H-5), 6.21 (1H, d, J = 1.3 Hz, H-18a), 6.12 (1H, d, J = 1.3 Hz, H-18b), 5.23 (1H, s, 

H-1), 4.91 (1H, d, J = 10.8 Hz, H-10a), 4.77 (1H, d, J = 10.8 Hz, H-10b), 4.76–4.72 

(1H, m, H-2eq), 3.89 (3H, s, OCH3), 3.87 (3H, s, OCH3), 3.51 (3H, s, CO2CH3), 3.45 

(3H, s, CO2CH3), 3.36–3.28 (1H, m, H-3a), 2.57–2.50 (2H, m, H-2ax,3b); δC (100 

MHz, CDCl3) 168.7 (C-CO2CH3), 166.6 (C-CO2CH3), 161.9 (C-15), 152.7 (Ar C), 

150.3 (Ar C), 148.5 (Ar C), 147.6 (Ar C), 139.6 (Ar C), 136.4 (Ar C), 136.1 (Ar C), 

129.5 (Ar CH), 129.4 (Ar C), 128.4 (Ar CH), 128.1 (Ar CH), 124.0 (C-20/21), 117.7 

(Ar C), 112.5 (Ar C), 110.7 (C-20/21), 107.3 (C-5), 102.5 (C-18), 75.7 (C-10), 64.2 

(C-23), 60.9 (C-OCH3), 56.8 (C-1), 55.7 (C-OCH3), 52.8 (C-CO2CH3), 52.5 

(C-CO2CH3), 39.5 (C-2), 29.8 (C-3);  HRMS (ESI
+
): Found: 576.1883; C31H30NO10 

(MH
+
) Requires: 576.1864 (−3.3 ppm error). 

Lab Notebook Reference: CHK 7/443 p.11 
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The following compounds (compounds 469 and 470) were prepared by Dr. Will 

Unsworth and their characterisation data are provided below for reference:  

13,13-Dimethyl 12-(benzyloxy)-3,4,10,11-tetramethoxy-5-oxo-7,8,12b,13-

tetrahydro-5H-6-azatetraphene-13,13-dicarboxylate (469): 
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mp 70–72 °C; νmax (thin film)/cm
−1

 2949, 1740, 1654, 1602, 1580, 1453, 1487, 

1424, 1308, 1272, 1236, 1124, 1068; δH (400 MHz, CDCl3) 7.26–7.22 (1H, m, ArH), 

7.18–7.11 (4H, m, Ar-H), 7.04 (2H, br s, H-19/10), 6.53 (1H, s, H-5), 5.09, (1H, s, H-1), 

4.90 (1H, d, J = 11.0 Hz, H-10a), 4.81 (1H, ddd, J = 13.3, 5.3, 2.5 Hz, H-2eq), 4.77 

(1H, d, J = 11.0 Hz, H-10b), 4.03 (3H, s, OCH3), 3.93 (3H, s, OCH3),  3.89 (3H, s, 

OCH3), 3.87 (3H, s, OCH3), 3.53 (3H, s, CO2CH3), 3.48 (3H, s, CO2CH3),  3.33 (1H, 

ddd, J = 13.3, 13.3, 4.1 Hz, H-3ax), 2.56–2.48 (2H, m, H-2ax, 3eq); δC (100 MHz, 

CDCl3) 168.8 (CO2CH3), 166.7 (CO2CH3), 162.2 (C-15), 153.2 (Ar C), 152.7 (Ar 

C), 150.3 (Ar C), 149.2 (Ar C), 139.6 (Ar C), 136.3 (Ar C), 136.1 (Ar C), 129.9 (Ar 

C), 129.5 (Ar CH), 128.5 (Ar CH), 128.1 (Ar CH), 126.0 (C-19/20), 123.3 (Ar C), 

117.9 (Ar C), 114.5 (C-19/20), 107.3 (C-5), 75.7 (C-10), 64.6 (C-22), 61.5 (C-

OCH3), 60. 9 (C-OCH3), 56.2 (C-1), 55.9 (C-OCH3), 55.7 (C-OCH3), 52.8 (C-

CO2CH3), 52.6 (C-CO2CH3), 39.1 (C-2), 29.7 (C-3); HRMS (ESI
+
): Found: 

592.2183; C32H34NO10 (MH
+
) Requires: 592.2177 (1.0 ppm error). 
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13,13-Dimethyl 12-(benzyloxy)-4-hydroxy-3,10,11-trimethoxy-5-oxo-7,8,12b,13-

tetrahydro-5H-6-azatetraphene-13,13-dicarboxylate (470): 
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mp 93–95 °C; νmax (thin film)/cm
−1

 2951, 1739, 1638, 1602, 1582, 1496, 1454, 

1436, 1360, 1345, 1310, 1234, 1260, 1123, 1068; δH (400 MHz, CDCl3) 7.28–7.23 

(1H, m, Ar-H), 7.21–7.13 (4H, m, Ar-H), 6.98 (1H, d, J = 8.6 Hz, H-19/20), 6.80 (1H, 

d, J = 8.6 Hz, H-19/20), 6.54 (1H, s, H-5), 5.04, (1H, s, H-1), 4.92 (1H, d, J = 11.0 Hz, 

H-10a), 4.79 (1H, d, J = 11.0 Hz, H-10b), 4.62 (1H, ddd, J = 13.1, 5.1, 2.7 Hz, H-2eq), 

3.93 (3H, s, OCH3), 3.90 (3H, s, OCH3), 3.88 (3H, s, OCH3), 3.58 (3H, s, CO2CH3), 

3.45 (3H, s, CO2CH3),  3.43–3.34 (1H, m, H-3a), 2.57–2.48 (2H, m, H-2ax, 3b); δC (100 

MHz, CDCl3) 168.7 (CO2CH3), 168.3 (CO2CH3), 166.7 (C-15), 152.7 (Ar C), 151.1 

(Ar C), 150.2 (Ar C), 148.0 (Ar C), 139.7 (Ar C), 136.0 (Ar C), 136.0 (Ar C), 129.7 

(Ar CH), 128.5 (Ar CH), 128.1 (Ar CH), 127.5 (Ar C), 120.5 (C-19/20), 117.6 (Ar 

C), 114.6 (C-19/20), 110.8 (Ar C), 107.4 (C-5), 75.7 (C-10), 63.5 (C-22), 61.0 

(C-OCH3), 56.7 (C-1), 55.9 (C-OCH3), 55.8 (C-OCH3), 52.9 (C-CO2CH3), 52.5 

(C-CO2CH3), 39.7 (C-2), 29.7 (C-3); HRMS (ESI
+
): Found: 578.2007; C31H32NO10 

(MH
+
) Requires: 578.2021 (−2.4 ppm error). 
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Appendices 

Appendix I: NMR Comparison Tables  

A. Comparison table of the 
1
H NMR data of the natural (δΗ ref)

66
 and synthetic (δH 

exp) (±)-dievodiamine 212.  

The  
1
H NMR data of (±)-dievodiamine 212 (DMSO-d6 at 300 MHz ) 

 

δH ref   δH exp
[a]

  

 NH 11.92 1H, br s 12.00 1H, br s 

NH 11.34 1H, br s 11.42 1H, br s  

19' 8.16 1H, d, J = 6.6 Hz 8.18 1H, d, J = 7.9 Hz 

17' 7.88 1H, t, J = 8.4, 7.8 Hz 7.93 1H, t, J = 8.3, 7.2 Hz 

19 7.74 1H, d, J = 7.5 Hz 7.78 1H, d, J = 7.7 Hz 

9' 7.64 1H, d, J = 8.1 Hz 7.70–7.64 2H, m 

18' 7.60 1H, t, J = 7.8, 6.6 Hz 

  9 7.51 1H, t, J = 7.8 Hz 7.55–7.50 2H, m 

16' 7.46 1H, t, J = 8.4 Hz 

  12' 7.40 1H, d, J = 8.1 Hz 7.43 1H, d, J = 8.1 Hz 

12 7.33 1H, d, J = 8.1 Hz 7.37–7.32 2H, m 

17 7.28 1H, t, J = 8.1, 7.2 Hz 

  11' 7.21 1H, t, J = 8.1, 7.2 Hz 7.23 1H, t, J = 8.1, 7.4 Hz 

11 7.13 1H, t, J = 8.1, 7.5 Hz 7.17–7.03 5H, m 

10' 7.11 1H, t, J = 8.1, 7.2 Hz 

  16 7.07 1H, t, J = 7.8, 7.5 Hz 

  10 7.05 1H, t, J = 7.2, 7.5 Hz 

  18 7.01 1H, t, J = 7.2, 7.5 Hz 

  6' 6.54 1H, d, J = 16.0 Hz 6.55 1H, d, J = 16.0 Hz 

5' 6.31 1H, d, J = 16.0 Hz 6.35 1H, d, J = 16.0 Hz 

5eq 4.86  1H, dd,  J = 12.6, 3.9, 3.7 Hz 4.91–4.88 1H, m 

22' 3.26 3H, s  3.28 3H, s 

5ax 3.08  1H, dt, J = 12.6, 4.5, 5.1 Hz 3.16–3.10 1H, m 

6eq 2.90 1H, dd, J = 11.1, 3.9, 5.1 Hz 2.95–2.91 1H, m 

6ax 2.76 1H, dt, J = 11.1, 3.7, 4.5 Hz 2.82–2.73 1H, m 

22 2.47 3H, s 2.47 3H, s 
 

[a]
 Solvent reference peak at δΗ 2.50 
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B. Comparison table of the 
13

C NMR data of the natural (δC ref)
66

 and synthetic (δC 

exp) (±)-dievodiamine 212. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
   

      [a]
 Solvent reference peak at δC 39.50

 

The  
13

C NMR data  of (±)-dievodiamine 212 

(DMSO-d6 at 300 MHz) 

  δC ref δC exp
[a]

  ∆δC 

21' 167.6 167.3 +0.3 

21 163.0 162.6 +0.4 

3' 155.3 154.9 +0.4 

15 149.5 149.1 +0.4 

15' 141.8 141.4 +0.4 

13 137.2 136.8 +0.4 

12' 136.7 136.3 +0.4 

17' 134.4 134.1 +0.3 

17 133.5 133.2 +0.3 

2 131.0 130.7 +0.3 

2' 129.2 128.9 +0.3 

5' 128.8 128.4 +0.4 

19 127.9 127.5 +0.4 

19' 127.5 127.1 +0.3 

18' 126.8 126.5 +0.3 

8 125.9 125.5 +0.4 

8' 125.0 124.5 +0.5 

11' 124.2 123.8 +0.4 

18 123.6 123.3 +0.3 

20 123.1 122.9 +0.2 

16 122.7 122.4 +0.3 

11 122.5 122.2 +0.3 

6' 121.9 121.5 +0.4 

10' 121.0 120.7 +0.3 

9' 120.6 120.3 +0.3 

20' 120.3 119.9 +0.4 

10 119.3 118.9 +0.4 

9 119.0 118.6 +0.4 

16' 117.1 116.9 +0.4 

7' 113.2 112.8 +0.4 

12' 112.7 112.4 +0.3 

12 112.1 111.7 +0.4 

7 111.6 111.2 +0.4 

3 76.6 76.2 +0.4 

22 39.1 38.7 +0.4 

5 38.9 38.6 +0.3 

22' 37.1 36.8 +0.3 

6 20.6 20.2 +0.4 

Note that all of 
13

C-NMR peaks for 

the synthetic material were all ca. 

0.3–0.4 ppm lower than those of the 

natural product. Given that all of the 

resonances differed to approximately 

the same degree, we believe that it is 

highly likely that the difference is 

caused by a difference in the 

reference peak of the NMR spectra. 

(We referenced DMSO-d6 at δC 39.50 

for the centre of the septet)  
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C. Comparison table of the 
1
H NMR data of the natural (δH ref)

129c
 and synthetic (δH 

exp) (±)-cavidine 280. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

               
[a]

 Solvent reference peak at δΗ 7.26 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The  
1
H NMR data  of (±)-cavidine 280 (CDCl3 at 300 MHz) 

 

δH ref 

 

δH exp
[a] 

 H-13 6.71 1H, d, J = 8.0 Hz 6.72 1H, d, J = 8.0 Hz 

H-8 6.68 1H, s 6.68 1H, s 

H-12 6.67 1H, d, J = 8.0 Hz 6.67 1H, d, J = 8.0 Hz 

H-5 6.61 1H, s 6.61 1H, s 

H-18a 5.96 1H, d, J = 1.6 Hz 5.97 1H, d, J = 1.5 Hz 

H-18b 5.92 1H, d, J = 1.6 Hz 5.93 1H, d, J = 1.5 Hz 

H-17a 4.07 1H, d, J = 15.6 Hz 4.09 1H, d, J = 15.3 Hz 

H-20/21 3.87 3H, s 3.88 3H, s 

H-20/21 3.87 3H, s 3.88 3H, s 

H-1 3.73 1H, br s 3.73 1H, br s 

H-17b 3.50 1H, d, J = 15.6 Hz 3.50 1H, d, J = 15.3 Hz 

H-10 3.25 1H, m 3.28–3.22 1H, m 

H-2a,3a 3.12 2H, m 3.16–3.07 2H, m 

H-2b,3b 2.60 2H, m 2.63–2.57 2H, m 

H-19 0.94 3H, d, J = 7.0 Hz 0.94 3H, d, J = 6.9 Hz 
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D. Comparison table of the 
13

C NMR data of the natural (δC ref)
134

 and synthetic (δC 

exp) (±)-cavidine 280. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      [a]
 Solvent reference peak at δC 77.0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The  
13

C NMR data of (±)-cavidine 280 

(CDCl3 at 300 MHz) 

 

δC ref δC exp
[a]

 ∆δC 

6 147.9 147.6 −0.3 

7 147.3 147.1 −0.2 

15 144.8 144.6 −0.2 

14 143.2 143.0 −0.2 

11 136.1 135.9 −0.2 

4 128.5 128.3 −0.2 

9 128.5 128.3 −0.2 

12 121.3 121.2 −0.1 

16 116.9 116.8 −0.1 

5 111.3 111.1 −0.2 

8 108.8 108.5 −0.3 

13 106.8 106.7 −0.1 

18 101.1 101.0 −0.1 

1 63.2 63.1 −0.1 

20/21 56.1 56.1 – 

20/21 55.9 55.8 −0.1 

17 53.4 53.3 −0.1 

2 51.3 51.2 −0.1 

10 38.7 38.5 −0.2 

3 29.3 29.3 0.0 

19 18.5 18.4 −0.1 
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ABSTRACT

A simple and efficient procedure to prepare a range of diverse heterocycles by the direct acylation of imines using a variety of functionalized
benzoic acids is described. Themethodology features a novel method forN-acyliminium ion generation followed by in situ intramolecular trapping
by oxygen-, nitrogen-, sulfur- and carbon-based nucleophiles. Preliminary mechanistic studies, using ReactIR, are also reported.

Newmethods for the synthesis of polycyclic heterocycles

are invaluable in the pharmaceutical and agrochemical

industries.1 The potential of such methodology is at its

greatest when it facilitates the synthesis of a diverse range

of substrate classes, is high yielding and operationally

simple, and results in a rapid increase in molecular com-

plexity from simple readily available starting materials.2,3

We report a novel scaffold diversity approach built
around the concept of direct imine acylation (DIA) as

illustrated in Scheme 1. It was planned that acylation of an

imine (1) with a suitably functionalized carboxylic acid (2)

would generate an N-acyliminium ion (3) in anticipation

that a nucleophile or pronucleophile built into the acid

coupling partner would initiate in situ cyclization.We now

report the successful implementation of theDIA approach

using functionalized benzoic acids to generate a range of

diverse heterocycles (4).

The use ofN-acyliminium ions in heterocycle synthesis is
well documented,4 but in the vastmajority of examples, the
N-acyliminium species are generated from preformed sys-
tems, usually by a regioselective partial imide reduction or
a regioselective amide oxidation.4 The key advantage to
our convergent approach is the direct use of a carboxylic
acid (rather than activated derivatives)5,6 in N-acylimi-
nium generation allowing a range of ortho-functional
groups to be tolerated. The ready availability of starting
materials and the convergent nature of the process gives
DIA great potential, particularly with regards to diversity-
oriented synthesis.2

Scheme 1. Direct Imine Acylation

(1) (a)Horton,D.A.; Bourne,G. T.; Smythe,M.L.Chem.Rev. 2003,
103, 893. (b) Comprehensive Heterocyclic Chemistry III; Katritzky, A. R.,
Ramsden, C. A., Scriven, E. F. V., Taylor, R. J. K., Eds.; Elsevier: Oxford,
2008 and references therein.

(2) (a) Morton, D.; Leach, S.; Cordier, C.; Warriner, S.; Nelson, A.
Angew. Chem., Int. Ed. 2009, 48, 104. (b) Spandl, R. J.; Bender, A.;
Spring, D. R. Org. Biomol. Chem. 2008, 6, 1149. (c) Lipkus., A. R.;
Yuan, Q.; Lucas, K. A.; Funk, S. A.; Bartelt, W. F., III; Schenck, R. J;
Trippe, A. J. J. Org. Chem. 2008, 73, 4443.

(3) (a) Taylor, R. J. K.; Reid, M.; Foot, J. S.; Raw, S. A. Acc. Chem.
Res. 2005, 38, 851. (b) Raw, S. A.; Taylor, R. J. K. J. Am. Chem. Soc.
2004, 126, 12260. (c) Klein, J. E. M. N.; Perry, A.; Pugh., D. S.; Taylor,
R. J. K. Org. Lett. 2010, 12, 3446 and references therein.

(4) (a) Speckamp, W. N.; Hiemstra, H. Tetrahedron 1985, 41, 1985.
4367. (b) Speckamp, W. N.; Moolenaar, M. J. Tetrahedron 2000, 56,
3817. (c) Maryanoff, B. E.; Zhang, H.-C.; Cohen, J. H.; Turchi, I. J.;
Maryanoff, C. A. Chem. Rev. 2004, 104, 1431.

(5) For early examples using acid chlorides, acyl fluorides, anhy-
drides, etc., see (a) Ziegler, E.; Hanus, H. D. Monatsh. Chem. 1965, 96,
411. (b) Ziegler, E.; Kollenz, G.; Kappe, T. Monatsh. Chem. 1968, 99,
804. (c) Kametani, T.; Higa, T.; Van Loc, C.; Ihara, M.; Koizumi, M.;
Fukumoto, K. J. Am. Chem. Soc. 1976, 98, 6186. (d) Castagnioli, N., Jr.
J. Org. Chem. 1969, 34, 3187.
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The viability of the DIA concept was established
using the novel cyclic imine 1a and the benzoic acid 2a

(Scheme 2). Propylphosphonic acid anhydride (T3P, 5)7 in
toluene was chosen to effect the direct coupling, as it is
nontoxic and the byproducts are easily removed by aque-
ous extraction.8

We were delighted to observe the efficient formation of
tricyclic lactam 4a in 84% yield after chromatography.
Additional experiments in which the same coupling was
attempted in the absence of either DIPEA or T3P led only
to the recovery of the starting materials, with no evidence
of the cyclized product 4a.
We then went on to explore DIA using a range of

substituted benzoic acid derivatives (2b�2h, Table 1). As
can be seen, salicylic acid derivatives are extremely well
tolerated, affording products in excellent yields (Table 1,
entries i�vi).9 The DIA methodology is not restricted to
the trapping of the intermediate N-acyliminium salt with
carbon and oxygen nucleophiles. For example, under the
standard T3P conditions, treatment of imine 1a with
thiosalicylic acid 2g gave thiazinone 4g (entry vii), and
N-methyl anthranilic acid 2h underwent cyclization to the
diazine 4h (entry viii), both in near quantitative yields. The
final example in Table 1 (entry ix) illustrates that the DIA
concept need not be limited to acylation, as demonstrated
by the formation of sulfonamide-containing dioxo(dihydro)-
benzoxathiazine 7 from reaction of imine 1a with commer-
cially available sulfonyl chloride 6.
We next went on to confirm that the scope of this meth-

odology is equally versatile in terms of the imine substrate
(Table 2). First, 3,4-dihydroisoquinoline (1b) gave adducts
4i and 4j in reasonable and excellent yields, respectively
(entries i and ii); this substructure features heavily in
natural products and in pharmaceutically important com-
pounds,10 and applications of this DIA sequence in target
synthesis are anticipated. Further diversity can be achieved

by varying the ring size of the imine, as demonstrated
by the DIA reaction of the disubstituted 1-pyrroline 1c

affording adduct 4k in excellent yield (entry iii).
Synthetic applications of acyclic N-acyliminium salts

are limited as they are much less stable than their cyclic
analogues, particularly with respect to hydrolysis.4,11

Scheme 2. Reaction of Imine 1a with Acid 2a

Table 1. Acid Scope in Direct Imine Acylation/Cyclizationa

aUnless stated, reactions were performed on a 0.1�0.3 mmol scale
using T3P, DIPEA in PhMe at 90 �C for 20 h. b Isolated yields after
purification by column chromatography. cReaction performed in the
absence of T3P gave 0% yield of product. dReaction performed in the
absence of DIPEA gave 0% yield of product. eReaction performed on a
3mmol scale under the standard conditions. fReaction performed in the
absence of T3P gave 20% yield of product. gCompound 6 was stirred
with imine 1a and DIPEA in PhMe at 90 �C for 20 h.

(6) For more recent examples using acid chlorides, acyl fluorides,
anhydrides, etc., see (a) Strumberg, D.; Pommier, Y.; Paull, K.; Jayara-
man, M.; Nagafuji, P.; Cushman, M. J. Med. Chem. 1999, 42, 446. (b)
Sieck, O.; Ehwald, M.; Liebscher, J. Eur. J. Org. Chem. 2005, 4, 663. (c)
Chen, Z.; Hu, G.; Chen, J.; Li, D.; Chen, J.; Li, Y.; Zhou, H.; Xie, Y.
Bioorg. Med. Chem. 2009, 17, 2351. (d) Johannes, K.; Martens, J.
Tetrahedron 2010, 66, 242 and references therein.

(7) Wissmann, H.; Kleiner, H.-J. Angew. Chem., Int. Ed. 1980, 19, 133.
(8) Successful couplingwas also achievedusingT3P,HATUorDCC,

each with DIPEA, in refluxing CHCl3 or toluene at 90 �C.
(9) After the completion of this work, a single example ofN-acyliminium

ion formationbydirect carboxylic acid coupling to imineswas reportedusing
DCC/DMAP to couple a substituted benzoic acid to dihydrocarboline: Pin,
F.; Comesse, S.; Daι.ch, A. Tetrahedron 2011, 67, 5564.

(10) Chrzanowska, M.; Rozwadowska, M. D. Chem. Rev. 2004, 104,
3341 and references therein. (11) B€ohme, H.; Hartke, K. Chem. Ber. 1963, 96, 600.



260 Org. Lett., Vol. 15, No. 2, 2013

DIA technology overcomes this problem by forming and
trapping theunstableN-acyliminium ions in situ, andsoacylic
imines 1d and 1e undergo DIA reactions giving adducts 4l
and 4m (entries iv and v). Dodecahydro-4a,8a,12a-triaza-
triphenylene, the trimeric formof imine 1f,12was employed
directly in a DIA procedure with anthranilic acid 2h to
produce diazine 4n (entry vi), demonstrating that even
unstable imines, which are prone to oligomerization and
enamine formation, can be compatible with the DIA
protocol. Finally (entry vii), we demonstrated that isoqui-
noline (1g) could be successfully employed in a DIA

coupling with anthranilic acid 2h, overcoming loss of
aromaticity,13 to afford the tetracyclic nitrogen heterocycle
4o in 94% yield. This example indicates that DIA will not
be limited to simple imines. It should also be noted that, for
comparison purposes, all reactions were carried out using
the standard conditions and that optimization should lead
to an increase in yield in the majority of cases.
Two extreme mechanistic pathways could be envisaged

for these processes: (i) N-acylation takes place first and is
followed by an intramolecular cyclization (as we have
assumed, Scheme 1), or (ii) nucleophilic addition of the
ortho-substituent onto the imine occurs first, followed by
intramolecular acylation. An added complication is that
imino-ketene intermediates have been proposed for the
acylation step in related anthranilic acid processes.5c,6d Of
course, it is not unreasonable that the exact mechanism is
substrate-dependent, or that more than one mechanism
may operate in competition. However, the fact that no
reaction occurs with most examples in the absence of the
T3P coupling agent provides corroboration for the theory
that the initial step involvesN-acylation of the imine.14 To
shed more light on the process, an in situ ReactIR study
was carried out to study the DIA reaction of imine 1awith
5-nitro-salicylic acid 2c.15 A more detailed analysis is
included in the Supporting Information, but this ReactIR
study rules out a ketene intermediate and is consistent with
a process involving (i) rapid carboxylic acid activation, (ii)
imineN-acylation generating a short-livedN-acyliminium
ion 3c (Peak 1, Figures 1 and 2), (iii) reversible trapping of
the iminium intermediate by excess DIPEA in the reaction
mixture, affording an ammonium salt 8 (Peak 2, Figures 1
and 2), and (iv) regeneration of the N-acyliminium inter-
mediate 3c and cyclization to give the product 4c (Peak 3,
Figures 1 and 2).

Table 2. Imine Scope in Direct Imine Acylation/Cyclizationa

aReactions were performed on a 0.1�0.3 mmol scale using T3P,
DIPEA in PhMe at 90 �C for 20 h. b Isolated yields after purification by
column chromatography. c Imine 1fwas generated by deoligomerization
of dodecahydro-4a,8a,12a-triazatriphenylene in situ.

Figure 1. 3D ReactIR plot of atomic absorption against wave-
number and time.

(12) (a) Sch€opf, C.; Komzak, A.; Braun, F.; Jacobi, E.; Bormuth,
M.-L.; Bullnheimer, M.; Hagel, I. Liebigs Ann. 1948, 559, 1. (b) Barker,
G.; McGrath, J. L.; Klapars, A.; Stead, D.; Zhou, G.; Campos, K. R.;
O’Brien, P. J. Org. Chem. 2011, 76, 5936.

(13) Sieck, O.; Ehwald, M.; Liebscher, J. Tetrahedron Lett. 2000, 29,
5479.

(14) With thiosalicylic acid 2g (Table 1, entry vi) a small amount
(20%) of coupled product 4gwas observed in the absence of T3P, and so
some intermolecular imine addition may be taking place in this system.
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Finally, the value of DIA has been illustrated by the
rapid and efficient synthesis of evodiamine (9), a natural
product isolated from Evodiae fructus.16 Evodiamine has
been shown to reduce fat uptake in animal studies16b and
has been included in some dietary preparations, particularly
in the Chinese herbal weight loss supplement,Wu-Chu-Yu.
More recently, it has been demonstrated that evodiamine is
a novel inhibitor of humanDNA topoisomerase I.16c Start-
ing from dihydrocarboline 1h,17 treatment with N-methyl
anthranilic acid 2h andT3Punder standardDIA conditions
produced evodiamine (9) in a one-pot process in 95% yield
as a crystalline product (Scheme 3).
In summary, DIA methodology has been shown to be a

reliable and versatile tool for the synthesis of a range of
polycyclic heterocyclic scaffolds. The procedure uses read-
ily available nontoxic reagents, is operationally simple and
is relatively insensitive to both water and air. Crucially, the
in situ generation and trapping of the transientN-acylimi-
nium ion avoids the need to isolate unstable N-acylimi-
nium ion precursors. The mild nature of the reagents used

for theN-acylation is important in this regard, as they have
been shown to be compatible with unprotected nucleo-
philes, which may not survive the typically much harsher
conditions used in most of the existing procedures for
N-acyliminium ion generation. The potential substrate
scope is very large, and in most cases the isolated yields
were found to be very high under identical conditions,
suggesting that diverse targeted libraries of compounds
should be readily synthesized usingDIA, requiring little or
no optimization. It is also worth noting that while for the
purpose of the publication, column chromatography was
used to ensure analytically pure products were obtained,
in the majority of cases no discernible byproducts from
the reagents, or reaction side-products, were observable
in the 1H NMR spectra of the unpurified products. We
are confident that in time the reactions described will be
further optimized and augmented with new variants, as
well as finding use in target synthesis.18
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Figure 2. 2D ReactIR plot of atomic absorption units of the
wavenumbers 1786, 1668 and 1684 cm�1 against time.

Scheme 3. Application of DIA to Prepare Evodiamine

(15) Acid 2cwas chosen, as this substratewas found to be particularly
reactive; a lower temperature was needed to be compatible with the
ReactIR probe, and this reaction proceeded efficiently in 1 h at 50 �C.

(16) (a)Nakasato,T.;Asada., S.;Murai.,K.J.Pharm.Soc. Jpn.1962,82,
619. (b)Kobayashi,Y.;Nakano,Y.;Kizaki,M.;Hoshikuma,K.;Yokoo,Y.;
Kamiya, T.PlantaMed. 2001, 67, 628. (c) Dong,G.; Sheng, C. S.;Wang, S.;
Miao, Z.; Yao, J.; Zhang, W. J. Med. Chem. 2010, 53, 7521.
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ABSTRACT: Imines and carboxylic acids have been directly
coupled using propylphosphonic acid anhydride and NEt(i-
Pr)2 to give N-acyliminium ions, which were intramolecularly
trapped with oxygen, nitrogen, sulfur, and carbon nucleophiles
to provide a wide range of structurally diverse heterocycles.

■ INTRODUCTION

Heterocycles are important structures in the pharmaceutical,
agrochemical, and fine chemical industries.1,2 Much recent
attention has focused on diversity-oriented synthesis3−5 to
expand the variety of structures, including heterocycles,
populating unexplored “chemical space” to aid the discovery
of novel lead compounds.6

The chemistry of N-acyliminium ions is well established,7−9

and the formation of N-acyliminium ions by the direct acylation
of imines with acid halides10−21 and anhydrides22−24 has some
precedent. However, apart from a single example,25 previous to
our recent disclosures,26,27 the direct acylation of imines with
carboxylic acids was not known. We reported26 that imines can
be coupled, using propylphosphonic acid anhydride (T3P) and
NEt(i-Pr)2,

28 to benzoic acids in a direct imine acylation (DIA)
reaction to generate N-acyliminium ions, which were then
trapped intramolecularly with a range of nucleophilic ortho
substituents on the benzoic acids (Scheme 1, eq 1). This
provided a range of polycyclic heterocycles, and the method-
ology was applied to the synthesis of the natural product
evodiamine. However, this methodology was limited to benzoic
acids containing nucleophilic heteroatoms in the ortho position.
To date, only a single example of DIA using an aliphatic
carboxylic acid has been reported.27 We considered that the
direct coupling of imines and aliphatic carboxylic acids
containing nucleophiles, or pronucleophiles, would allow access
to a far greater variety of heterocyclic structures using this
simple coupling procedure.
Herein we report results which establish that DIA method-

ology has an extremely wide scope and is applicable to aliphatic
carboxylic acids containing oxygen, nitrogen, and sulfur
nucleophiles (Scheme 1, eq 2). Of particular note is the use
of aliphatic acids containing carbon pronucleophiles such as
active methylenes, aromatic groups, and alkenes, enabling

structural diversity to be generated via carbon−carbon bond
formation (Scheme 1, eq 3).

■ RESULTS AND DISCUSSION
To establish the validity of the DIA protocol with aliphatic
acids, we investigated the reaction of imine 1a with hydroxy
acid 2a and its TBDMS-protected analogue 2b (Scheme 2).
The reaction of hydroxy acid 2a led to the formation of the
desired heterocycle 3a, but in low yield. This appeared to be
due to competing O-acylation of the hydroxy acid; note that
this was not a problem in our previous work, when ortho-
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Scheme 1. Direct Imine Acylation (DIA)
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substituted benzoic acids were used due to their reduced
nucleophilicity. To avoid O-acylation, the silyl-protected acid
2b was coupled with 1a and following aqueous workup a
mixture of products was obtained, presumably arising from the
reaction of the N-acyliminium ion with water in the workup.
The unpurified product mixture was then treated with SnCl2·
2H2O

29,30 in CH2Cl2 at room temperature, which resulted in
concomitant silyl cleavage and cyclization, affording product 3a
in 68% yield, a significant improvement over the unprotected
variant.
The scope of this improved protocol was then explored

(Table 1). The coupling of imine 1a with TBDMS-protected 3-
hydroxypropanoic acid 2c and methyl-substituted acid 2d
provided the required heterocycles in good yield (Table 1,
entries 1 and 2). We also investigated the range of imines
tolerated in the DIA reaction (Table 1). The majority of the
imines tested as DIA substrates are stable, nonenolizable

imines; however, unsubstituted imine 1b (which exists largely
as a trimer31) was a suitable substrate (entry 3), showing that
imines which are prone to oligomerization are compatible. The
five-membered-ring imine 1c and tetrahydroisoquinoline
derivative 1d both reacted successfully, giving products 3e,f
(entries 4 and 5). Precedent for N-acyliminium chemistry using
acyclic precursors is extremely sparse due to their propensity to
hydrolyze.11 However, the use of DIA conditions allowed the
acyclic imine 1e to be effectively employed (entry 6); in this
case, the use of anhydrous triflic acid, rather than SnCl2·2H2O,
reduced unwanted hydrolysis, promoting a one-pot depro-
tection and cyclization. In this example, chloroform, rather than
CH2Cl2, was used to effect cyclization because it has a higher
reflux temperature and the analogous process in CH2Cl2 (either
at room temperature or 45 °C) was low yielding. The N-
acylation was also performed in chloroform, to avoid having to
perform a solvent switch. It is noteworthy that the T3P
coupling can be performed in a number of solvents with little
impact on the efficiency of the process; high-yielding DIA
reactions performed in toluene, CH2Cl2, chloroform, and THF
have all been reported, previously26,27 and herein. This
flexibility in terms of the solvent for the N-acylation is
important in examples in which additional reagents are required
to effect cyclization (e.g. Table 4), as the solvent that is most
compatible with the requisite additives can be used. Either
CH2Cl2 or chloroform was used in the majority of subsequent
examples for reasons of convenience, as they could be used as
obtained commercially with no additional drying. The stereo-
chemical assignments of the major diastereoisomers shown are
based on NMR analysis, on literature precedent, and by analogy
to our previous work.27,29,32,33 This direct imine acylation with
aliphatic carboxylic acids gives rise to a range of previously
unreported structures, the core of which is present in
compounds which have recently found use as herbicides.34

The analogous DIA process using amine-containing coupling
partners was investigated next (Table 2). Three imines were
reacted with commercially available N-Boc or N-Cbz-protected
amino acids. As with the oxygen variant, following the T3P
coupling, an aqueous workup was carried out. This was
followed by cleavage of the N-protecting group (using TFA in
CH2Cl2 for Boc cleavage or H2/Pd(OH)2 in MeOH for Cbz
cleavage), resulting in cyclization and formation of the expected
nitrogen-containing heterocycles in excellent yields. Both α-
and β-amino acids were suitable substrates (entries 1 and 2),
and substitution on the amino acid was fully compatible (entry
3). It was found that secondary amines were effective
nucleophiles, as evidenced by the use of N-Boc-(S)-proline
(entry 4). Other imines were compatible with the procedure,
including β-carboline 1f (entry 5). Note that, in all of these
examples, the N-acylation was performed at reflux, rather than
at room temperature. This is not because the N-acylation is
slower in this system but because the higher temperature also
promotes partial cyclization before protecting group cleavage. It
was found that this higher temperature led to higher overall
yields for the two-step sequence in comparison to the case
where the coupling was carried out at room temperature. The
assigned syn stereochemistry of the major diastereoisomers of
5c,d is based on analogy with the work of Liebscher35 and, for
5d, a NOESY correlation.
The sulfur variant of this DIA sequence is extremely efficient,

affording S-containing heterocycles in high yields in a one-pot
procedure with no protecting group required on the thiol
(Table 3). The reactions proceeded at room temperature and

Scheme 2. DIA with Aliphatic Carboxylic Acids

Table 1. DIA and Intramolecular Cyclization with Oxygen
Nucleophilesb

aNo intermediate workup carried out. bThe following reaction
conditions were used in this reaction: (i) T3P, NEt(i-Pr)2, CHCl3,
70 °C, 1 h; (ii) TfOH, room temperature, 1 h (one pot).
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are both reliable and high-yielding in comparison with known
syntheses of related heterocyclic systems.36 Variation in the
sulfur-containing carboxylic acid is tolerated, as 3-mercapto-
propionic acid 6a, N-acetyl-L-cysteine 6b, and thioglycolic acid
6c (entries 1−4) were suitable substrates. The reactions of
ketone-derived imines 1g,h (entries 3 and 4) are particularly
noteworthy, as these imines do not undergo DIA in any of the
other reaction systems tested (i.e. carboxylic acids bearing O-,
N-, or C-nucleophiles). This suggests that an alternative
mechanism, which was proposed in our previous communica-
tion,26 is likely to operate, whereby the nucleophilic thiol
attacks the imine before N-acylation in these examples. 3,4-
Dihydro-β-carboline 1f (entry 5) was also a suitable imine
substrate, as was the acyclic imine N-benzylidenemethylamine
1e, which gave the adduct 7f in 93% yield (entry 6). The
thiazolidinone scaffold is important in medicinal chemistry and
present in numerous biologically active compounds,37 and this
DIA methodology allows ready access to structurally diverse
thiazolidinone-containing substructures.
The value of this methodology is further enhanced by the

ability to form C−C bonds by trapping the N-acyliminium ion
with various carbon-centered nucleophiles (Table 4). In these
reactions a one-pot process was achieved by using a Lewis acid
to effect cyclization after the coupling (Table 4). Carboxylic
acids tethered to a diester or diketone (entries 1 and 2) were
used to generate an N-acyliminium ion, which cyclized upon
the addition of AlCl3. Keen to extend the scope of carbon
nucleophiles, we investigated electron-rich aromatic systems,
including 3,4-dimethoxyphenyl, indole, pyrrole, and dimethox-
ynaphthyl systems (entries 3−6). These substrates also

provided the expected products in good to excellent yields,
with BF3·OEt2 used to effect cyclization.
Finally, we explored the possibility that carboxylic acids

containing olefins could be successfully utilized and were
pleased to find that an alkene (entry 7) and an allylsilane (entry
8) were compatible, using either TFA or BF3·OEt2 as the
activating agent. The core substructures of 9a−c are prevalent
in a number of natural products,38−40 and the heterocyclic core
of 9e is present in aldose reductase inhibitors.41 Thus, DIA of
imines with aliphatic carboxylic acids, and subsequent
cyclization, can be considered to be of high importance in
the synthesis of medicinally important frameworks.
In conclusion, we have demonstrated that a range of imines

can be directly coupled with carboxylic acids using T3P and
NEt(i-Pr)2 to give N-acyliminium ions which can be intra-
molecularly trapped with oxygen, nitrogen, sulfur, and carbon
nucleophiles. These reactions enable a range of diverse
heterocyclic structures to be generated. Investigations into
asymmetric variants are ongoing, as are applications in target
synthesis.

■ EXPERIMENTAL SECTION
Preparation of Substrates for the DIA Reactions. The

following substrates were commercially available and used as supplied:
N-benzylidenemethylamine 1e, the amino acids 4a−d, the thioacids
6a−c, (3,4-dimethoxyphenyl)acetic acid 8c, 3-indoleacetic acid 8d, and
4,7-dimethoxy-1-naphthoic acid 8f. The following substrates were
prepared according to literature procedures: imines 1a−d,26 Me-
isoquinoline imine 1g,42 Ph-isoquinoline imine 1h,43 TBDMS-

Table 2. DIA and Intramolecular Cyclization with Nitrogen
Nucleophiles

Table 3. DIA and Intramolecular Cyclization with Sulfur
Nucleophiles
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protected 3-hydroxypropanoic acid 2b,44 TBDMS-protected 4-
hydroxybutanoic acid 2c, TBDMS-protected 3-hydroxybutanoic acid
2d,45 2-(methoxycarbonyl)pentanedioic acid 1-methyl ester 8a,46 and
3-methyl-3-butenonic acid 8g.47

4-Acetyl-5-oxohexanoic Acid (8b). The title compound was
prepared by modified literature procedures. According to the
procedure of Shrout and Lightner,48 ethyl acrylate (2.00 g, 2.16 mL,
20.0 mmol), 2,4-pentanedione (8.00 g, 8.22 mL, 79.9 mmol), and
K2CO3 (1.38 g, 9.99 mmol) were stirred together at 37 °C for 20 h.
The mixture was filtered through a sintered-glass funnel, and the solids
were washed with CH2Cl2 (2 × 10 mL). The filtrate was concentrated
in vacuo until excess 2,4-pentanedione was removed (judged by TLC).
This provided ethyl 4-acetyl-5-oxohexanoate (3.18 g, 79%) as a pale
yellow liquid: Rf 0.80 (ethyl acetate); νmax (thin film)/cm−1 2984,
2940, 1727, 1699, 1608, 1421, 1359, 1249, 1182, 1152, 1027; δH (400
MHz, CDCl3) data for keto form 3.74 (1H, t, J = 6.9), 4.14 (2H, q, J =
7.0), 2.33−2.27 (2H, m), 2.21 (6H, s), 2.19−2.12 (2H, m), 1.26 (3H,
t, J = 7.0), data for enol form 16.78 (1H, s), 4.15 (2H, q, J = 7.2),
2.63−2.57 (2H, m), 2.42−2.36 (2H, m), 2.17 (6H, s), 1.27 (3H, t, J =
7.2); HRMS (ESI) m/z calcd 201.1121 for C10H17O4 (MH+), found
201.1113. Ethyl 4-acetyl-5-oxohexanoate (500 mg, 2.50 mmol) was
dissolved in THF/H2O (1/1, 10 mL) and stirred at room temperature.
Concentrated H2SO4 (1.25 mL) was added and the reaction mixture
stirred at room temperature for 14 h. The reaction mixture was diluted
with water (10 mL) and extracted with CH2Cl2 (3 × 10 mL). The
combined organic phases were dried (MgSO4), filtered, and
concentrated to give the crude material. Purification by column
chromatography (1/1 petroleum ether/ethyl acetate) gave 4-acetyl-5-
oxohexanoic acid (8b; 224 mg, 52%) as a clear, colorless oil: Rf 0.25
(ethyl acetate); δH (400 MHz, CDCl3) data for keto form 3.76 (1H, t,
J = 7.0), 2.41−2.35 (2H, m), 2.22 (6H, s), 2.19−2.12 (2H, m), data for
enol form 16.78 (1H, s), 2.66−2.59 (2H, m), 2.50−2.43 (2H, m), 2.18
(6H, s); HRMS (ESI) m/z calcd 173.0808 for C8H13O4 (MH+), found
173.0812.

1H-Pyrrol-1-ylacetic Acid (8e). The title compound was prepared
using a modified procedure of Mitchell and co-workers;49 glycine ethyl
ester hydrochloride (2.50 g, 17.9 mmol) and sodium acetate (2.45 g,
29.9 mmol) were placed in a round-bottomed flask. Water (12.5 mL)
and acetic acid (25 mL) were then added, followed by 2,5-
dimethoxytetrahydrofuran (2.37 g, 2.32 mmol, 17.9 mmol). The
resulting mixture was stirred at 100 °C for 4 h and then cooled. The
reaction mixture was poured into water (50 mL) and washed with
EtOAc (30 mL). The aqueous phase was neutralized with solid
Na2CO3 and extracted with EtOAc (2 × 30 mL). The combined
organic phases were washed with water (50 mL) before being dried
(MgSO4), filtered, and concentrated to give a crude material which
was purified by column chromatography (4/1 petroleum ether/ethyl
acetate) to give ethyl 1H-pyrrol-1-ylacetate (1.79 g, 65%) as a brown
oil: Rf 0.56 (4/1 petroleum ether/ethyl acetate); νmax (thin film)/cm−1

2985, 2939, 1748, 1500, 1297, 1188, 1091, 1025, 722; δH (400 MHz,
CDCl3) 6.68 (2H, t, J = 2.1), 6.22 (2H, t, J = 2.1), 4.64 (2H, s), 4.24
(2H, q, J = 7.1), 1.3 (3H, t, J = 7.1); δC (100 MHz, CDCl3) 168.7
(CO), 121.7 (2 × CH), 109.0 (2 × CH), 61.5 (CH2), 51.8 (CH2),
14.1 (CH3); MS (ESI) m/z 154.09 (MH+) and 176.07 (MNa+). Ethyl
1H-pyrrol-1-ylacetate (1.0 g, 6.528 mmol) was dissolved in THF/H2O
(20 mL) and cooled to 0 °C. NaOH (1.31 g, 32.6 mmol) was added
and the reaction mixture stirred at 0 °C for 30 min before being
washed with CH2Cl2 (20 mL). The aqueous phase was acidified with
concentrated HCl and extracted with CH2Cl2 (3 × 20 mL) before
being dried (MgSO4), filtered, and concentrated to give 1H-pyrrol-1-
ylacetic acid (8e; 775 mg, 95%), as brown solids: Rf 0.26 (ethyl
acetate); νmax (thin film)/cm−1 3074 (br), 2968, 2935, 1726, 1505,
1390, 1297, 1092, 727; δH (400 MHz, CDCl3) 9.31 (1H, br s), 6.67
(2H, t, J = 2.1), 6.24 (2H, t, J = 2.1), 4.71 (3H, s); δC (100 MHz,
CDCl3) 174.9 (CO), 121.8 (2 × CH), 109.3 (2 × CH), 50.3
(CH2); MS (ESI) m/z 126.06 (MH+) and 148.04 (MNa+).

(E)-/(Z)-6-(Trimethylsilyl)hex-4-enoic Acid (8h). The title
compound was prepared using a modified procedure of Wardrop;50

4-pentenoic acid (500 mg, 510 μL, 4.99 mmol) and allyltrimethylsilane
(1.71 g, 2.38 mL, 1.50 mmol) were dissolved in CH2Cl2 (10 mL).
Hoveyda-Grubbs II catalyst (78.2 mg, 0.125 mmol) was added and the
resulting solution stirred at reflux for 5 h. The reaction mixture was
filtered through Celite and the filtrate concentrated to provide the
crude product. Purification by column chromatography (4/1

Table 4. DIA and Intramolecular Cyclization with Carbon
Nucleophiles

aAlCl3 (2.0 equiv) used instead of BF3·OEt2 and reaction run at 70 °C.
bToluene used in place of CHCl3, coupling time 20 min and
cyclization time 20 h. cCH2Cl2 used in place of CHCl3, TFA used in
place of BF3·OEt2, and reaction run at 45 °C.
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petroleum ether/Et2O) gave the acid 8h (461 mg, 50%) as a clear,
colorless oil, as an approximately 2.8:1 mixture of isomers: Rf 0.2 (4/1
petroleum ether/Et2O); νmax (thin film)/cm

−1 2954, 1709, 1412, 1247,
1153, 966, 837; δH (400 MHz, CDCl3) data for major isomer 5.53−
5.43 (1H, m), 5.30−5.20 (1H, m), 2.44−2.37 (2H, m), 2.37−2.27
(2H, m), 1.41 (2H, dd, J = 7.9 0.9), −0.02 (9H, s), data for minor
isomer 5.53−5.43 (1H, m), 5.30−5.20 (1H, m), 2.44−2.37 (2H, m),
2.37−2.27 (2H, m), 1.50 (2H, dd, J = 8.8, 1.2), 0.01 (9H, s); δC (100
MHz, CDCl3) data for major isomer 179.9 (CO), 128.1 (CH),
125.9 (CH), 34.6 (CH2), 27.9 (CH2), 22.7 (CH2), −2.1 (3 × CH3),
data for minor isomer 179.9 (CO), 127.4 (CH), 124.6 (CH), 34.2
(CH2), 22.3 (CH2), 18.5 (CH2), −1.8 (3 × CH3); HRMS (ESI) m/z
calcd 209.0968 for C9H18NaO2Si (MNa+), found 209.0962.
General Procedures for the DIA Reactions. General DIA

Procedure A (Table 1). To a solution of imine (1 mmol) and TBDMS-
protected carboxylic acid (1.2 mmol) in THF (10 mL) were added
sequentially NEt(i-Pr)2 (1.85 mmol) and then T3P (1.5 mmol, 50%
solution in THF). The resulting solution was stirred at room
temperature for 20 h, before it was poured into saturated aqueous
NaHCO3 (20 mL). The aqueous layer was extracted with ethyl acetate
(3 × 30 mL), washed with water (30 mL), and concentrated in vacuo.
The crude residue was then dissolved in CH2Cl2 (10 mL), SnCl2·
2H2O (5 mmol) was added, and the mixture was stirred at room
temperature for 20 h. The reaction was quenched by the addition of
excess solid K2CO3, and the mixture was then stirred for 5 min,
filtered, and concentrated in vacuo. Purification by column
chromatography (see individual entries for the solvents used for
chromatography) afforded the N,O-acetal product.
General DIA Procedure B (Table 2, Entries 1, 3, and 5). To a

solution of imine (1 mmol) and Cbz-protected amino acid (1.2 mmol)
in CHCl3 (10 mL) were added sequentially NEt(i-Pr)2 (1.85 mmol)
and then T3P (1.5 mmol, 50% solution in THF). The resulting
solution was stirred at 70 °C for 1 h, before it was cooled to room
temperature and poured into saturated aqueous NaHCO3 (20 mL).
The aqueous layer was extracted with CH2Cl2 (3 × 30 mL), washed
with water (30 mL), concentrated in vacuo, and passed through a
short silica column, with 1/1 petroleum ether/ethyl acetate as eluent.
The crude residue was then dissolved in methanol (10 mL) in a round-
bottomed flask that was purged with argon. Palladium hydroxide on
carbon (70 mg/mmol of imine, 20 wt %, 50% water) was then added
and the flask evacuated and back-filled with hydrogen several times.
The mixture was stirred under a small positive pressure of hydrogen
(balloon) for 1 h, before the hydrogen was evacuated and the reaction
flask back-filled with argon. The reaction mixture was then filtered
through Celite, rinsed with methanol, and concentrated in vacuo,
which afforded the product without the need for further purification.
General DIA Procedure C (Table 2, Entries 2 and 4). To a solution

of imine (1 mmol) and Boc-protected amino acid (1.2 mmol) in
CHCl3 (10 mL) were added sequentially NEt(i-Pr)2 (1.85 mmol) and
then T3P (1.5 mmol, 50% solution in THF). The resulting solution
was stirred at 70 °C for 1 h, before it was cooled to room temperature
and poured into saturated aqueous NaHCO3 (20 mL). The aqueous
layer was extracted with CH2Cl2 (3 × 30 mL), washed with water (30
mL), and concentrated in vacuo. The crude residue was then dissolved
in CH2Cl2 (5 mL) and cooled to 0 °C, and TFA (5 mL) was added.
The reaction mixture was warmed to room temperature and stirred for
15 min, before the solvent and TFA were removed in vacuo. The
residue was dissolved in CH2Cl2 (50 mL), and the solution was
washed with saturated aqueous NaHCO3 (25 mL), dried over MgSO4,
and concentrated in vacuo. Purification by column chromatography
(see individual entries for the solvents used for chromatography)
afforded the product.
General DIA Procedure D (Table 3). To a solution of imine (1

mmol) and thiol-carboxylic acid (1.2 mmol) in CHCl3 (10 mL) were
added sequentially NEt(i-Pr)2 (1.85 mmol) and then T3P (1.5 mmol,
50% solution in THF). The resulting solution was stirred at room
temperature for 1 h, before it was poured into 10% aqueous K2CO3
(20 mL). The aqueous layer was extracted with CH2Cl2 (3 × 30 mL),
and the extract was washed with water (30 mL) and concentrated in

vacuo. Purification by column chromatography (see individual entries
for the solvents used for chromatography) afforded the product.

General DIA Procedure E (Table 4). Imine 1d (100 mg, 0.762
mmol) and the appropriate carboxylic acid (0.915 mmol) were
dissolved in CHCl3 (4 mL) in a microwave vial and stirred at room
temperature. NEt(i-Pr)2 (182 mg, 246 μL, 1.410 mmol) and T3P (364
mg, 1.14 mmol, 728 mg of a 50% solution in THF) were added via
syringe. The reaction mixture was stirred at room temperature, 45 °C,
or 70 °C for 1 h. The appropriate acid or Lewis acid (1.525 mmol) was
added and the reaction mixture stirred at room temperature, 45 °C, or
70 °C for a further 1 h. The reaction was quenched with saturated
NaHCO3 (10 mL) and extracted with CH2Cl2 (3 × 10 mL). The
combined organic phases were dried (MgSO4), filtered, and
concentrated to give the crude material, which was purified by column
chromatography (see individual entries for the solvents used for
chromatography).

8,8-Dibenzyltetrahydro-2H-oxazolo[3,2-a]pyridin-3(5H)-one
(3a; Scheme 1). The compound was synthesized using general DIA
procedure A from imine 1a (24.9 mg, 0.0963 mmol) and acid 2b (22.0
mg, 0.116 mmol). Purification by column chromatography (4/1
petroleum ether/ethyl acetate) afforded the title compound 3a as a
colorless oil (21.0 mg, 68%): Rf 0.60 (ethyl acetate); νmax (thin film)/
cm−1 1713, 1445, 1287, 1084, 703; δH (400 MHz, CDCl3) 7.34−7.18
(8H, m), 7.08−7.04 (2H, m), 4.81 (1H, s), 4.37 (1H, d, J = 15.5) and
4.33 (1H, d, J = 15.5, AB system), 4.15−4.10 (1H, m), 2.96 (1H, d, J =
13.5), 2.92 (1H, d, J = 13.5), 2.72 (1H, d, J = 13.5), 2.60−2.51 (1H,
m), 2.38 (1H, d, J = 13.5), 2.04−1.92 (1H, m), 1.60−1.53 (2H, m),
1.28−1.18 (2H, m); δC (100 MHz, CDCl3) 168.2 (C), 137.1 (C),
136.4 (C), 131.1 (CH), 130.8 (CH), 128.2 (CH), 128.0 (CH), 126.4
(CH), 126.4 (CH), 91.7 (CH), 68.3 (CH2), 41.9 (C), 41.3 (CH2),
38.8 (CH2), 34.0 (CH2), 26.8 (CH2), 19.6 (CH2); HRMS (ESI+): m/z
calc. 344.1621 for C21H23NNaO2 (MNa+), found 344.1630.

9,9-Dibenzylhexahydropyrido[2,1-b][1,3]oxazin-4(6H)-one
(3b; Table 1, Entry 1). The compound was synthesized using general
DIA procedure A from imine 1a (53.0 mg, 0.201 mmol) and acid 2c
(49.2 mg, 0.241 mmol). Purification by column chromatography (4/1
→ 2/1 petroleum ether/ethyl acetate) afforded the title compound 3b
as a colorless oil (58.0 mg, 86%): Rf 0.65 (ethyl acetate); νmax (thin
film)/cm−1 2898, 1625, 1471, 1422, 1391, 1261, 1114, 1015, 720; δH
(400 MHz, CDCl3) 7.33−7.18 (8H, m), 7.10−7.06 (2H, m), 4.74−
4.67 (1H, m), 4.33 (1H, s), 4.25 (1H, dd, J = 11.0, 6.4), 3.76−3.69
(1H, m), 3.08 (1H, d, J = 13.1), 3.00 (1H, d, J = 13.5), 2.86 (1H, d, J =
13.5), 2.77−2.68 (1H, m), 2.38−2.20 (3H, m), 2.05−1.89 (1H, m),
1.54−1.46 (2H, m), 1.35−1.25 (1H, m); δC (100 MHz, CDCl3) 167.3
(C), 137.7 (C), 137.0 (C), 130.9 (CH), 130.9 (CH), 128.0 (CH),
127.9 (CH), 126.2 (CH), 126.2 (CH), 88.9 (CH), 62.3 (CH2), 41.7
(CH2), 41.4 (C), 40.1 (CH2), 35.2 (CH2), 33.1 (CH2), 27.8 (CH2),
20.2 (CH2); HRMS (ESI+) m/z calcd 336.1958 for C22H26NO2
(MH+), found 336.1953.

9,9-Dibenzyl-2-methylhexahydropyrido[2,1-b][1,3]oxazin-
4(6H)-one (3c; Table 1, Entry 2). The compound was synthesized
using general DIA procedure A from imine 1a (65.0 mg, 0.247 mmol)
and acid 2d (64.6 mg, 0.296 mmol). Purification by column
chromatography (2/1 → 1/1 petroleum ether/ethyl acetate) afforded
the title compound 3c as a colorless oil (71.0 mg, 82%) as a 2/1 (A/B)
mixture of diastereoisomers: Rf 0.55 (ethyl acetate); νmax (thin film)/
cm−1 2941, 1658, 1463, 1451, 1358, 1280, 1142, 703; δH (400 MHz,
CDCl3) 7.33−7.16 and 7.14−7.05 (20H, m, 10 from A and 10 from
B), 4.76−4.64 (2H, m, A and B), 4.36 (1H, s, A), 4.32 (1H, s, B),
3.85−3.77 (1H, m, B), 3.10 (1H, d, J = 13.2, B), 3.05−2.94 (3H, m, 2
from A and B), 2.89−2.77 (3H, m, 2 from A and B), 2.40−2.18 (7H,
m, 3 from A and 4 from B), 2.01−1.89 (2H, m, A and B), 1.55−1.45
(4H, m, A and B), 1.42 (3H, d, J = 6.2, B), 1.38−1.28 (2H, m, A and
B), 1.25 (3H, d, J = 6.6, A); δC (100 MHz, CDCl3) 167.6 (C, B), 166.4
(C, A), 137.9 (C, A and B), 137.2 (C, B), 137.0 (C, A), 131.1 (CH,
A), 131.0 (CH, B), 131.0 (CH, A), 130.9 (CH, B), 128.0 (CH, A),
128.0 (CH, B), 127.9 (CH, B), 127.8 (CH, A), 126.3 (CH, A), 126.2
(CH, B), 126.2 (CH, A and B), 88.6 (CH, B), 83.4 (CH, A), 68.8
(CH, B), 67.1 (CH, A), 41.7 (C, A), 41.6 (C, B), 41.5 (CH2, B), 41.3
(CH2, A), 40.2 (CH2, B), 40.1 (CH2, B), 39.8 (CH2, A), 37.9 (CH2,
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A), 35.3 (CH2, B), 35.2 (CH2, A), 28.0 (CH2, A), 27.9 (CH2, B), 21.1
(CH2, B), 20.4 (CH2, A), 20.2 (CH2, B), 17.2 (CH2, A); HRMS
(ESI+) m/z calcd 350.2115 for C23H28NO2 (MH+), found 350.2104.
2-Methylhexahydropyrido[2,1-b][1,3]oxazin-4(6H)-one (3d;

Table 1, Entry 3). The compound was synthesized using general
DIA procedure A from dodecahydro-4a,8a,12a-triazatriphenylene (the
trimer of imine 1b; 50.0 mg, 0.201 mmol) and acid 2d (131 mg, 0.603
mmol). Purification by column chromatography (2/1 → 1/1
petroleum ether/ethyl acetate → ethyl acetate) afforded the title
compound 3d as a pale yellow oil (61.0 mg, 60%) as an 8/1 (A/B)
mixture of diastereoisomers: Rf 0.20 (ethyl acetate); δH (400 MHz,
CDCl3) 4.77−4.70 (1H, m, B), 4.70−4.66 (2H, m, A and B), 4.62−
4.57 (1H, m, A), 4.26−4.18 (1H, m, B), 3.91−3.82 (1H, m, A), 2.55−
2.18 (6H, m, 3 from A and 3 from B), 2.04−1.64 (6H, m, 3 from A
and 3 from B), 1.55−1.30 (6H, m, 3 from A and 3 from B), 1.27 (6H,
d, J = 6.2, 3 from A and 3 from B); δC (100 MHz, CDCl3) 166.8 (C, A
and B), 88.2 (CH, A), 83.9 (CH, B), 69.5 (CH, A), 65.8 (CH, B), 41.1
(CH2, B), 40.1 (CH2, A), 39.8 (CH2, A), 39.1 (CH2, B), 32.8 (CH2,
A), 32.0 (CH2, B), 24.8 (CH2, B), 24.5 (CH2, A), 23.4 (CH2, B), 22.6
(CH2, A), 21.0 (CH3, A), 19.8 (CH3, B). Spectral data are in accord
with those reported in the literature.11

8,8-Dibenzyl-2-methyltetrahydro-2H-pyrrolo[2,1-b][1,3]-
oxazin-4(3H)-one (3e; Table 1, Entry 4). The compound was
synthesized using general DIA procedure A from imine 1c (50.0 mg,
0.201 mmol) and acid 2d (48.2 mg, 0.221 mmol). Purification by
column chromatography (2/1 → 1/1 petroleum ether/ethyl acetate)
afforded the title compound 3e as a colorless oil (42.0 mg, 62%) as a
6/1 (A/B) mixture of diastereoisomers: Rf 0.40 (ethyl acetate); νmax
(thin film)/cm−1 2930, 1644, 1455, 1391, 1126, 757, 703; δH (400
MHz, CDCl3) 7.34−7.16 (16H, m, 8 from A and 8 from B), 7.08−
7.03 (4H, m, 2 from A and 2 from B), 4.74 (1H, s, B), 4.64 (1H, s, A),
4.52−4.47 (1H, m, B), 3.95−3.87 (1H, m, A), 3.60−3.43 (2H, m, A
and B), 3.30−3.19 (2H, m, A and B), 2.91 (1H, d, J = 13.7, A), 2.86
(1H, d, J = 13.7, B), 2.79−2.61 (7H, m, 3 from A and 4 from B), 2.39
(1H, dd, J = 17.6, 4.0, A), 2.26−2.09 (2H, m, A and B), 1.77−1.67
(2H, m, A and B), 1.57−1.45 (2H, m, A and B), 1.42 (3H, d, J = 6.0,
A), 1.34 (3H, d, J = 6.6, B); δC (100 MHz, CDCl3) 166.7 (C, A and
B), 137.6 (C, B), 137.5 (C, A), 136.7 (C, A), 136.6 (C, B), 130.9 (CH,
B), 130.8 (CH, A), 128.2 (CH, A and B), 128.1 (CH, A and B), 126.6
(CH, B), 126.5 (CH, A), 126.5 (CH, A and B), 90.4 (CH, A), 84.0
(CH, B), 72.0 (CH, A), 69.1 (CH, B), 47.4 (C, B), 47.1 (C, A), 40.7
(CH2, B), 40.4 (CH2, A and B), 39.9 (CH2, A), 38.6 (CH2, A), 37.3
(CH2, A and B), 37.0 (CH2, B), 24.9 (CH2, B), 24.7 (CH2, A), 21.4
(CH3, A), 19.7 (CH3, B); HRMS (ESI+) m/z calcd 336.1958 for
C22H26NO2 (MH+), found 336.1958.
2-Methyl-2,3,6,7-tetrahydro[1,3]oxazino[2,3-a]isoquinolin-

4(11bH)-one (3f; Table 1, Entry 5). To a solution of imine 1d (210
mg, 1.60 mmol) and TBDMS-protected carboxylic acid 2d (419 mg,
1.92 mmol) in CH2Cl2 (11.1 mL) were added sequentially NEt(i-Pr)2
(0.520 mL, 2.96 mmol) and then T3P (1.53 g, 2.40 mmol, 50%
solution in THF). The resulting solution was stirred at room
temperature for 20 h. SnCl2·2H2O (2.49 mmol, 11.2 mmol) was
then added directly to the reaction mixture, which was stirred at room
temperature for a further 24 h. The reaction was quenched by the
addition of 10% aqueous K2CO3, and the mixture was diluted with
water (50 mL), extracted with CH2Cl2 (3 × 50 mL), washed with
water (50 mL), dried over MgSO4, and concentrated in vacuo.
Purification by column chromatography (1/1 petroleum ether/ethyl
acetate) afforded the title compound 3f as a colorless oil (254 mg,
73%) as a 20/1 (A/B) mixture of diastereoisomers: Rf 0.40 (ethyl
acetate); νmax (thin film)/cm−1 2800, 1650, 1463, 1391, 1374, 1307,
1166, 1123, 747; δH (400 MHz, CDCl3; data for the major
diastereoisomer A only) 7.51−7.47 (1H, m), 7.28−7.22 (2H, m),
7.14−7.09 (1H, m), 5.86 (1H, s), 4.67−4.60 (1H, m), 4.20−4.10 (1H,
m), 3.09−2.92 (1H, m), 2.73−2.67 (1H, m), 2.52 (1H, dd, J = 17.2,
3.7), 2.37 (1H, dd, J = 17.2, 11.4), 1.37 (3H, d, J = 6.2); δC (100 MHz,
CDCl3) 166.2 (C), 134.8 (C), 133.5 (C), 128.3 (CH), 128.2 (CH),
126.6 (CH), 126.0 (CH), 84.1 (CH), 70.3 (CH), 39.3 (CH2), 37.4
(CH2), 27.8 (CH2), 21.1 (CH3); HRMS (ESI+) m/z calcd 240.0995
for C13H15NNaO2 (MNa+), found 240.0991.

Characteristic NMR data for the minor diastereoisomer B: δH (400
MHz, CDCl3) 5.98 (1H, s); δC (100 MHz, CDCl3) 82.3 (CH).

3,6-Dimethyl-2-phenyl-1,3-oxazinan-4-one (3g; Table 1,
Entry 6). To a solution of imine 1e (98.0 μL, 0.795 mmol) and
TBDMS-protected carboxylic acid 2d (208 mg, 0.954 mmol) in
chloroform (5.5 mL) were added sequentially DIPEA (0.260 mL, 1.47
mmol) and then T3P (1759 mg, 1.19 mmol, 50% solution in THF).
The resulting solution was heated to reflux for 1 h and then cooled to
0 °C. Triflic acid (0.700 mL, 7.95 mmol) was then added directly to
the reaction mixture, which was warmed to room temperature and
stirred for a further 1 h. The reaction was quenched by the addition of
1 M aqueous NaOH (25 mL), extracted with CH2Cl2 (3 × 50 mL),
washed with water (50 mL), dried over MgSO4, and concentrated in
vacuo. Purification by column chromatography (1/1 petroleum ether/
ethyl acetate) afforded the title compound 3g as a colorless oil (106
mg, 65%) as a 12/1 (A/B) mixture of diastereoisomers: Rf 0.25 (ethyl
acetate); νmax (thin film)/cm−1 3432, 1643, 1456, 1389, 1350, 1301,
1152, 755, 701; δH (400 MHz, CDCl3) 7.42−7.35 (10H, m, 5 from A
and 5 from B), 5.81 (1H, s, B), 5.58 (1H, s, A), 4.14−4.05 (1H, m, A),
3.93−3.85 (1H, m, B), 2.87 (3H, s, B), 2.58 (3H, s, A), 2.55−2.51
(4H, m, 2 from A and 2 from B), 1.32 (3H, d, J = 6.1, A), 1.15 (3H, d,
J = 6.1, B); δC (100 MHz, CDCl3; data for the major diastereoisomer
A only) 167.9 (C), 137.5 (C), 129.8 (CH), 128.9 (CH), 127.5 (CH),
90.9 (CH), 70.7 (CH), 40.0 (CH2), 29.8 (CH3), 21.1 (CH3); HRMS
(ESI+) m/z calcd 206.1176 for C12H16NO2 (MH+), found 206.1176.

8,8-Dibenzylhexahydroimidazo[1,2-a]pyridin-3(5H)-one (5a;
Table 2, Entry 1). Synthesis using general DIA procedure B from
imine 1a (27.0 mg, 0.103 mmol) and protected amino acid 4a (25.9
mg, 0.124 mmol) afforded the title compound 5a as a colorless oil
(28.5 mg, 86%): Rf 0.25 (ethyl acetate); νmax (thin film)/cm−1 3344
(br), 2940, 1680, 1452, 1293, 910; δH (400 MHz, CDCl3) 7.34−7.10
(8H, m), 7.08−6.98 (2H, m), 4.30 (1H, s), 4.15 (1H, dd, J = 12.8,
4.8), 3.69 (1H, d, J = 15.8), 3.55 (1H, d, J = 15.8), 2.99 (1H, d, J =
13.5), 2.86 (1H, d, J = 13.0), 2.79 (1H, d, J = 13.0), 2.57−2.48 (1H,
m), 2.37 (1H, d, J = 13.5), 2.05−1.90 (1H, m), 1.63−1.50 (2H, m),
1.35−1.20 (1H, m); δC (100 MHz, CDCl3) 182.5 (C), 137.4 (C),
137.1 (C), 131.0 (CH), 130.9 (CH), 128.3 (CH), 128.3 (CH), 126.6
(CH), 126.5 (CH), 76.7 (CH), 49.3 (CH2), 43.0 (C), 41.8 (CH2),
39.5 (CH2), 34.1 (CH2), 27.9 (CH2), 20.1 (CH2); HRMS (ESI+) m/z
calcd 321.1961 for C21H25N2O (MH+), found 321.1955.

9,9-Dibenzylhexahydro-1H-pyrido[1,2-a]pyrimidin-4(6H)-
one (5b; Table 2, Entry 2). The compound was synthesized using
general DIA procedure C from imine 1a (53.0 mg, 0.201 mmol) and
acid 4b (49.2 mg, 0.241 mmol). Purification by column chromatog-
raphy (1/1 petroleum ether/ethyl acetate → ethyl acetate) afforded
the title compound 5b as a pale yellow solid (82.0 mg, 76%): Rf 0.65
(ethyl acetate); mp 102−104 °C; νmax (thin film)/cm−1 3344 (br),
2943, 1632, 1454, 1360, 1280, 910; δH (400 MHz, CDCl3) 7.34−7.17
(10H, m), 4.78−4.72 (1H, m), 3.92 (1H, s), 3.30−3.24 (1H, m), 3.17
(1H, d, J = 13.1), 3.01 (1H, d, J = 13.1), 2.86−2.79 (1H, m), 2.62 (1H,
d, J = 13.1), 2.44−2.36 (3H, m), 2.27−2.17 (1H, m), 1.98−1.85 (1H,
m), 1.53−1.40 (2H, m), 1.36−1.25 (1H, m); δC (100 MHz, CDCl3)
169.8 (C), 137.2 (C), 137.1 (C), 131.0 (CH), 130.9 (CH), 128.2
(CH), 127.8 (CH), 126.5 (CH), 126.3 (CH), 75.2 (CH), 42.0 (CH2),
41.2 (C), 40.8 (CH2), 40.1 (CH2), 36.4 (CH2), 34.6 (CH2), 29.6
(CH2), 20.4 (CH2); HRMS (ESI+) m/z calcd 335.2118 for
C22H27N2O (MH+), found 335.2107.

(2S)-2-Methyl-1,2,5,6-tetrahydroimidazo[2,1-a]isoquinolin-
3(10bH)-one (5c; Table 2, Entry 3). Synthesis using general DIA
procedure B from imine 1d (57.0 mg, 0.434 mmol) and protected
amino acid 4c (116 mg, 0.521 mmol) afforded the title compound 5c
as a colorless oil (79 mg, 90%) as a 4/1 (A/B) mixture of
diastereoisomers: Rf 0.10 (ethyl acetate); νmax (thin film)/cm−1 3406
(br), 1682, 1439, 1354, 1306, 737; δH (400 MHz, CDCl3) 7.51−7.14
(8H, m, 4 from A and 4 from B), 5.70 (1H, s, B), 5.57 (1H, s, A),
4.20−4.13 (2H, m, A and B), 3.75−3.64 (2H, m, A and B), 3.27−3.14
(2H, m, A and B), 3.03−2.92 (2H, m, A and B), 2.84−2.73 (2H, m, A
and B), 1.44 (3H, d, J = 6.8, B), 1.37 (3H, d, J = 6.8, A); δC (100 MHz,
CDCl3) 173.4 (C, A and B), 134.2 (C, B), 134.0 (C, A), 133.8 (C, A
and B), 129.2 (CH, A), 129.1 (CH, B), 128.6 (CH, B), 128.4 (CH, A),
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127.2 (CH, A), 127.1 (CH, B), 125.4 (CH, A), 125.4 (CH, B), 69.7
(CH, B), 69.6 (CH, A), 56.4 (CH, A), 55.9 (CH, B), 37.2 (CH2, B),
36.8 (CH2, A), 28.3 (CH2, A), 27.9 (CH2, B), 16.4 (CH3, B), 15.9
(CH2, A); HRMS (ESI+) m/z calcd 203.1179 for C12H15N2O (MH+),
found 203.1174.
(8aS)-5,6,8a,9,10,11-Hexahydropyrrolo[1′,2’:3,4]imidazo-

[2,1-a]isoquinolin-8(12aH)-one (5d; Table 2, Entry 4). The
compound was synthesized using general DIA procedure C from imine
1d (57.0 mg, 0.434 mmol) and acid 4d (106 mg, 0.521 mmol).
Purification by column chromatography (100/1→ 50/1 ethyl acetate/
methanol) afforded the title compound 5d as a colorless oil (74.0 mg,
75%): Rf 0.10 (100/1 ethyl acetate/methanol); νmax (thin film)/cm−1

3442, 2967, 1694, 1650, 1433, 1368, 1303, 1199, 1057, 748; δH (400
MHz, CDCl3) 7.44 (1H, d, J = 7.5), 7.31−7.23 (2H, m), 7.14 (1H, d, J
= 7.3), 5.82 (1H, s), 4.25 (1H, ddd, J = 13.2, 5.7, 1.5), 3.94 (1H, dd, J
= 8.6, 4.6), 3.11−3.02 (1H, m), 2.92−2.74 (2H, m), 2.59−2.53 (1H,
m), 2.23−2.07 (2H, m), 1.95−1.87 (1H, m), 1.76−1.67 (2H, m); δC
(100 MHz, CDCl3) 174.6 (C), 134.8 (C), 131.7 (C), 129.2 (CH),
127.9 (CH), 127.3 (CH), 127.0 (CH), 73.4 (CH), 66.4 (CH), 48.1
(CH2), 36.9 (CH2), 29.0 (CH2), 25.4 (CH2), 24.3 (CH2); HRMS
(ESI+) m/z calcd 229.1335 for C14H17N2O (MH+), found 229.1335;
[α]D

22 −21.0° (c 0.9, CHCl3).
5,6,11,11b-Tetrahydro-1H-imidazo[1′,2’:1,2]pyrido[3,4-b]-

indol-3(2H)-one (5e; Table 2, Entry 5). The compound was
synthesized using general DIA procedure B from imine 1f (35.0 mg,
0.206 mmol) and protected amino acid 4a (51.7 mg, 0.247 mmol),
affording the title compound 5e as a colorless oil (40 mg, 85%): Rf
0.10 (100/1 ethyl acetate/methanol); νmax (thin film)/cm

−1 3141 (br),
1643, 1424, 1285, 734; δH (400 MHz, d6-DMSO) 11.09 (1H, br s),
7.39 (1H, d, J = 7.9), 7.31 (1H, d, J = 7.9), 7.05 (1H, dd, J = 7.9, 6.7),
6.95 (1H, dd, J = 7.9, 6.7), 5.71 (1H, s), 4.19−4.13 (1H, m), 3.42 (1H,
d, J = 15.8), 3.20−3.08 (2H, m), 2.73−2.65 (1H, m); δC (100 MHz,
d6-DMSO) 173.1 (C), 136.3 (C), 132.8 (C), 126.2 (C), 121.5 (CH),
118.6 (CH), 118.2 (CH), 111.5 (CH), 107.7 (C), 69.6 (CH), 49.6
(CH2), 37.4 (CH2), 20.4 (CH2); HRMS (ESI+) m/z calcd 228.1131
for C13H14N3O (MH+), found 228.1134.
9,9-Dibenzylhexahydropyrido[2,1-b][1,3]thiazin-4(6H)-one

(7a; Table 3, Entry 1). The compound was synthesized using general
DIA procedure D from imine 1a (25.0 mg, 0.0950 mmol) and thioacid
6a (9.9 μL, 0.247 mmol). Purification by column chromatography (1/
1 petroleum ether/ethyl acetate) afforded the title compound 7a as a
colorless oil (30 mg, 90%): Rf 0.60 (ethyl acetate); νmax (thin film)/
cm−1 2941, 1642, 1454, 1360, 1327, 1185, 912; δH (400 MHz, CDCl3)
7.34−7.16 (10H, m), 5.00−4.94 (1H, m), 4.40 (1H, s), 3.10−2.91
(4H, m), 2.88−2.74 (3H, m), 2.40 (1H, d, J = 14.0), 2.28−2.18 (1H,
m), 2.06−1.94 (1H, m), 1.62−1.49 (2H, m), 1.40−1.30 (1H, m); δC
(100 MHz, CDCl3) 169.6 (C), 137.4 (C), 136.4 (C), 131.0 (CH),
130.9 (CH), 128.1 (CH), 128.0 (CH), 126.5 (CH), 126.4 (CH), 64.9
(CH), 44.8 (CH2), 44.3 (C), 42.0 (CH2), 36.6 (CH2), 35.5 (CH2),
29.9 (CH2), 23.0 (CH2), 20.1 (CH2); HRMS (ESI+) m/z calcd
352.1730 for C22H26NOS (MH+), found 352.1728.
N-((3R)-9,9-Dibenzyl-4-oxooctahydropyrido[2,1-b][1,3]-

thiazin-3-yl)acetamide (7b; Table 3, Entry 2). The compound was
synthesized using general DIA procedure D from imine 1a (34 mg,
0.129 mmol) and thioacid 6b (25.3 mg, 0.155 mmol). Purification by
column chromatography (1/1 petroleum ether/ethyl acetate) afforded
the title compound 7b as a colorless oil (47 mg, 89%) as a 4/1 (A/B)
mixture of diastereoisomers: Rf 0.2 (ethyl acetate); νmax (thin film)/
cm−1 3260, 2894, 1608, 1419, 720; δH (400 MHz, CDCl3) 7.35−7.15
(18H, m, 8 from A and 10 from B), 7.05 (2H, d, J = 6.6, A), 6.94−6.91
(1H, m, B, NH), 6.78−6.75 (1H, m, A, NH), 4.89−4.82 (2H, m, A
and B), 4.64−4.52 (2H, m, A and B), 4.49 (1H, s, B), 4.16 (1H, s, A),
3.49−3.40 (2H, m, A and B), 3.24−3.18 (2H, m, A and B), 3.05−2.97
(3H, m, A), 2.96−2.82 (2H, m, B), 2.67−2.60 (1H, m, B), 2.42−2.30
(4H, m, 2 from A and 2 from B), 2.02 (3H, s, B), 2.01 (3H, s, A),
2.00−1.90 (2H, m, A and B), 1.64−1.52 (4H, m, 2 from A and 2 from
B), 1.45−1.35 (1H, m, A), 1.35−1.25 (1H, m, B); δC (100 MHz,
CDCl3) 170.6 (C, A), 170.4 (C, B), 169.0 (C, B), 168.2 (C, A), 137.2
(C, B), 136.7 (C, A), 136.3 (C, A), 135.9 (C, B), 131.0 (CH, A and
B), 130.9 (CH, A and B), 128.2 (CH, 2 from A and 1 from B), 128.0

(CH, B), 126.6 (CH, A), 126.5 (CH, B), 65.0 (CH, B), 63.5 (CH, A),
53.3 (CH, B), 52.3 (CH, A), 46.5 (CH2, A), 46.2 (C, A), 45.5 (CH2,
B), 43.3 (C, B), 42.1 (CH2, A), 41.1 (CH2, B), 37.0 (CH2, A), 36.2
(CH2, B), 29.7 (CH2, A), 29.6 (CH2, B), 28.1 (CH2, A), 26.9 (CH2,
B), 23.3 (CH3, A), 23.2 (CH3, B), 21.2 (CH2, A), 21.0 (CH2, B);
HRMS (ESI+) m/z calcd 409.1944 for C24H29N2O2S (MH+), found
409.1945.

11b-Methyl-2,3,6,7-tetrahydro[1,3]thiazino[2,3-a ]-
isoquinolin-4(11bH)-one (7c; Table 3, Entry 3). The compound
was synthesized using general DIA procedure D from imine 1g (57.0
mg, 0.393 mmol) and thioacid 6a (41.0 μL, 0.471 mmol). Purification
by column chromatography (1/1 → 1/2 petroleum ether/ethyl
acetate) afforded the title compound 7c as a colorless oil (82 mg,
89%): Rf 0.10 (ethyl acetate); νmax (thin film)/cm−1 1607, 1372, 1330,
1067, 751; δH (400 MHz, CDCl3) 7.43 (1H, d, J = 7.5), 7.26−7.17
(2H, m), 7.12 (1H, d, J = 7.3), 5.10 (1H, ddd, J = 13.0, 4.9, 1.7), 3.24
(1H, ddd, J = 15.6, 9.9, 5.1), 3.03−2.93 (1H, m), 2.87−2.67 (4H, m),
2.04 (3H, s); δC (100 MHz, CDCl3) 168.0 (C), 139.1 (C), 134.1 (C),
129.1 (CH), 127.4 (CH), 126.7 (CH), 126.1 (CH), 65.3 (C), 36.7
(CH2), 33.8 (CH2), 30.5 (CH3), 29.1 (CH2), 22.5 (CH2); HRMS
(ESI+) m/z calcd 234.0947 for C13H16NOS (MH+), found 234.0948.

10b-Phenyl-5,6-dihydro-2H-thiazolo[2,3-a]isoquinolin-3-
(10bH)-one (7d; Table 3, Entry 4). The compound was synthesized
using general DIA procedure D from imine 1h (58.0 mg, 0.280 mmol)
and thioacid 6c (23.3 μL, 0.336 mmol). Purification by column
chromatography (3/1 petroleum ether/ethyl acetate) afforded the title
compound 7d as a colorless oil (73 mg, 93%): Rf 0.30 (ethyl acetate);
νmax (thin film)/cm−1 1653, 1380, 1271, 1157, 739; δH (400 MHz,
CDCl3) 7.50−7.46 (1H, m), 7.33−7.13 (8H, m), 4.12 (1H, ddd, J =
13.0, 7.0, 4.6), 3.98 (1H, d, J = 15.5), 3.73 (1H, d, J = 15.5), 3.17 (1H,
ddd, J = 13.0, 9.0, 6.0), 3.06−3.00 (1H, m), 2.64 (1H, ddd, J = 16.3,
6.0, 4.6); δC (100 MHz, CDCl3) 169.8 (C), 144.0 (C), 138.8 (C),
133.4 (C), 128.8 (CH), 128.4 (CH), 128.2 (CH), 128.1 (CH), 127.6
(CH), 126.8 (CH), 126.4 (CH), 73.4 (C), 38.1 (CH2), 34.3 (CH2),
27.1 (CH3); HRMS (ESI+) m/z calcd 282.0947 for C17H16NOS
(MH+), found 282.0954.

5,6,11,11b-Tetrahydrothiazolo[3′,2’:1,2]pyrido[3,4-b]indol-
3(2H)-one (7e; Table 3, Entry 5). The compound was synthesized
using general DIA procedure D from imine 1f (35.0 mg, 0.206 mmol)
and thioacid 6c (17.2 μL, 0.247 mmol). Purification by column
chromatography (1/1 petroleum ether/ethyl acetate) afforded the title
compound 7e as a colorless oil (49 mg, 97%): Rf 0.35 (ethyl acetate);
νmax (thin film)/cm−1 3168, 1624, 1420, 1302, 1214, 885; δH (400
MHz, d6-DMSO) 11.51 (1H, br s), 7.40 (1H, d, J = 7.7), 7.29 (1H, d, J
= 8.1), 7.07−7.03 (1H, m), 6.98−6.94 (1H, m), 6.22 (1H, s), 4.34
(1H, dd, J = 13.2, 4.4), 3.81 (1H, d, J = 15.2), 3.57 (1H, d, J = 15.2),
3.19−3.11 (1H, m), 2.78−2.62 (2H, m); δC (100 MHz, d6-DMSO)
170.1 (C), 137.0 (C), 132.6 (C), 126.5 (C), 122.3 (CH), 119.5 (CH),
118.9 (CH), 112.0 (CH), 107.8 (C), 56.1 (CH), 40.9 (CH2), 33.5
(CH2), 21.2 (CH3); HRMS (ESI+) m/z calcd 245.0743 for
C13H13N2OS (MH+), found 245.0753.

3-Methyl-2-phenylthiazolidin-4-one (7f; Table 3, Entry 6).
The compound was synthesized using general DIA procedure D from
imine 1e (90.8 mg, 0.726 mmol) and thioacid 6c (84.3 mg, 63.8 μL,
0.915 mmol). Purification by column chromatography (1/1 petroleum
ether/ethyl acetate) afforded the title compound 7f as a colorless oil
(173 mg, 93%): Rf 0.35 (ethyl acetate); νmax (thin film)/cm−1 3031,
2922, 1670, 1389, 697; δH (400 MHz, CDCl3) 7.44−7.34 (3H, m),
7.33−7.28 (2H, m), 5.52 (1H, d, J = 2.1), 3.84 (1H, dd, J = 15.4, 2.1),
3.72 (1H, d, J = 15.4), 2.74 (3H, s); δC (100 MHz, CHCl3) 171.13
(CO), 139.12 (C), 129.1 (2 × CH), 129.0 (2 × CH), 126.8 (CH),
65.3 (CH), 32.9 (CH2), 30.1 (CH3); HRMS (ESI+) m/z calcd
194.0634 for C10H12NOS (MH+), found 194.0630. These data were
consistent with those reported in the literature.12

Dimethyl 4-Oxo-3,4,6,7-tetrahydro-1H-pyrido[2,1-a]-
isoquinoline-1,1(2H,11bH)-dicarboxylate (9a, Table 4, entry
1). Imine 1d (50 mg, 0.381 mmol) and carboxylic acid 8a (93 mg,
0.457 mmol) were dissolved in CHCl3 (2 mL) in a microwave vial.
NEt(i-Pr)2 (91.1 mg, 123 μL, 0.705 mmol) and T3P (182 mg, 0.572
mmol, 364 mg of a 50% solution in THF) were added via syringe. The
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reaction mixture was stirred at 70 °C for 1 h. AlCl3 (102 mg, 0.762
mmol) was added and the reaction mixture stirred at 70 °C for 1 h.
The reaction mixture was quenched with saturated NaHCO3 (5 mL)
and extracted with CH2Cl2 (3 × 5 mL). The combined organic phases
were dried (MgSO4), filtered, and concentrated to give the crude
material. Purification by column chromatography (ethyl acetate) gave
the title compound 9a (92 mg, 76%) as a yellow solid: mp 130−133
°C (from CHCl3); Rf 0.48 (ethyl acetate); νmax (thin film)/cm−1 2952,
2874, 1741, 1713, 1668, 1399, 1276, 1159, 1078, 759; δH (400 MHz,
CDCl3) 7.27−7.12 (4H, m), 5.49 (1H, m), 4.67−4.55 (1H, m), 3.82
(3H, s), 3.36 (3H, s), 2.94−2.83 (2H, m), 2.77−2.65 (1H, m), 2.66−
2.43 (4 H, m); δC (100 MHz, CDCl3) 171.2 (CO), 170.9 (CO),
169.1 (CO), 137.5 (C), 132.9 (C), 128.3 (CH), 127.4 (CH), 126.5
(CH), 126.1 (CH), 60.1 (C), 59.0 (CH), 53.1 (CH3), 52.5 (CH3),
39.7 (CH2), 29.5 (CH2), 28.7 (CH2), 28.7 (CH2); HRMS (ESI) m/z
calcd 318.1336 for C17H20NO5 (MH+), found 318.1335.
1,1′-(4-Oxo-2,3,4,6,7,11b-hexahydro-1H-pyrido[2,1-a]-

isoquinoline-1,1-diyl)diethanone (9b; Table 4, Entry 2). The
compound was synthesized using general DIA procedure E (at 70 °C
and with AlCl3 as the Lewis acid) from imine 1d (100 mg, 0.762
mmol) and carboxylic acid 8b (158 mg, 0.915 mmol). Purification by
column chromatography (ethyl acetate) gave the title compound 9b
(141 mg, 65%) as a colorless solid: mp 146−147 °C (from petroleum
ether/EtOAc); Rf 0.25 (ethyl acetate); νmax (thin film)/cm−1 3014,
2947, 2921, 1687, 1660, 1464, 1402, 1356, 1186, 1136, 759; δH (400
MHz, CDCl3) 7.26−7.20 (1H, m), 7.20−7.14 (2H, m), 7.09−7.04
(1H, m), 5.67 (1H, s), 4.36 (1H, dt, J = 12.7, 5.8), 3.18−3.09 (1H, m),
2.87 (2H, app t, J = 6.6), 2.59−2.40 (3H, m), 2.38−2.29 (1H, m), 2.28
(3H, s), 1.82 (3H, s); δC (100 MHz, CDCl3) 204.2 (CO), 203.8
(CO), 170.3 (CO), 137.2 (C), 133.8 (C), 129.0 (CH), 127.9
(CH), 126.6 (CH), 125.5 (CH), 71.2 (C), 56.2 (CH), 40.3 (CH2),
29.1 (CH2), 28.2 (CH3), 28.0 (CH2), 26.8 (CH3), 24.2 (CH2); HRMS
(ESI) m/z calcd 286.1438 for C17H20NO3 (MH+), found 286.1430.
2,3-Dimethoxy-8,9-dihydro-5H-isoquinolino[1,2-a]-

isoquinolin-6(13bH)-one (9c; Table 4, Entry 3). The compound
was synthesized using general DIA procedure E (at room temperature
and with BF3·OEt2 as the Lewis acid) from imine 1d (100 mg, 0.762
mmol) and carboxylic acid 8c (179 mg, 0.915 mmol). Purification by
column chromatography (ethyl acetate) gave the title compound 9c
(212 mg, 90%) as a yellow solid: mp 175−177 °C (from EtOAc/
MeOH) (lit.13 mp 141−142 °C (from EtOH/petroleum ether)); Rf
0.30 (ethyl acetate); νmax (thin film)/cm−1 2932, 1629, 1520, 1461,
1251, 758, 601; δH (400 MHz, CDCl3) 7.31−7.28 (3H, m), 7.03 (1H,
d, J = 7.3), 6.73 (1H, s), 6.57 (1H, s), 5.64 (1H, s), 4.61 (1H, ddd, J =
13.0, 6.2, 5.2), 3.91 (3H, s), 3.80 (3H, s), 3.60 (1H, d, J = 18.9), 3.51
(1H, d, J = 18.9), 3.29 (1H, ddd, J = 13.0, 8.8, 5.2), 3.03 (1H, ddd, J =
15.4, 8.8, 6.2), 2.91 (1H, app dt, J = 15.9, 5.2); δC (100 MHz, CDCl3)
169.5 (CO), 148.7 (C), 147.4 (C), 136.0 (C), 135.7 (C), 128.8
(CH), 127.6 (CH), 126.1 (CH), 125.8 (CH), 125.3 (C), 125.2 (C),
110.3 (CH), 109.7 (CH), 59.0 (CH), 56.0 (CH3), 56.0 (CH3), 40.9
(CH2), 37.3 (CH2), 28.1 (CH2); HRMS (ESI) m/z calcd 310.1438 for
C19H20NO3 (MH+), found 310.1437.
5,6,14,14b-Tetrahydroindolo[2′,3′ :3,4]pyrido[2,1-a]-

isoquinolin-8(9H)-one (9d; Table 4, Entry 4). The compound was
synthesized using general DIA procedure E (at room temperature and
with BF3·OEt2 as the Lewis acid) from imine 1d (100 mg, 0.762
mmol) and carboxylic acid 8d (160 mg, 0.915 mmol). Purification by
column chromatography (ethyl acetate) gave the title compound 9d
(176 mg, 80%) as a light brown solid: mp decomposition noted at 205
°C (from EtOAc/MeOH); Rf 0.51 (ethyl acetate); νmax (thin film)/
cm−1 3063, 2953, 1603, 1454, 1226, 1216, 756, 738, 710; δH (400
MHz, CDCl3) 11.51 (1H, s), 7.50−7.43 (2H, m), 7.30−7.13 (5H, m),
7.04 (1H, ddd, J = 7.9, 7.0, 0.9), 6.02 (1H, s), 4.25 (1H, app dt, J =
12.8, 6.4), 3.67 (1H, dd, J = 20.7, 2.4), 3.47 (1H, dd, J = 20.7, 2.4),
3.48−3.39 (1H, m), 3.13−2.94 (2H, m); δC (100 MHz, CDCl3) 167.1
(CO), 137.7 (C), 137.0 (C), 135.4 (C), 128.5 (CH), 128.3 (C),
127.6 (CH), 126.2 (CH), 125.5 (C), 124.3 (CH), 121.8 (CH), 118.9
(CH), 118.3 (CH), 111.4 (CH), 105.0 (C), 54.9 (CH), 41.9 (CH2),
29.2 (CH2), 27.1 (CH2); HRMS (ESI) m/z calcd 289.1335 for
C19H17N2O (MH+), found 289.1334.

8,9-Dihydro-5H-pyrrolo[2′,1’:3,4]pyrazino[2,1-a]isoquinolin-
6(13bH)-one (9e; Table 4, Entry 5). The compound was
synthesized using general DIA procedure E (at room temperature
and with BF3·OEt2 as the Lewis acid) from imine 1d (100 mg, 0.762
mmol) and carboxylic acid 8e (115 mg, 0.915 mmol). Purification by
column chromatography (1/1 petroleum ether/ethyl acetate) gave the
title compound 9e (140 mg, 77%) as a brown oil: Rf 0.65 (ethyl
acetate); νmax (thin film)/cm−1 2944, 2897, 1651, 1448, 1427, 1317,
908, 724; δH (400 MHz, CDCl3); 7.41−7.35 (1H, m), 7.31−7.24 (2H,
m), 7.24−7.19 (1H, m), 6.70 (1H, dd, J = 2.6, 1.6), 6.23 (1H, dd, J =
3.6, 2.6), 5.99 (1H, ddd, J = 3.6, 1.6, 1.0), 5.90 (1H, s), 4.76 (1H, ddd,
J = 12.6, 5.4, 3.6), 4.69 (1H, d, J = 17.1), 4.62 (1H, d, J = 17.1), 3.22−
3.13 (1H, m), 3.12−3.01 (1H, m), 2.86 (1H, app dt, J = 15.8, 3.6); δC
(100 MHz, CDCl3) 165.3 (CO), 134.8 (C), 133.5 (C), 129.0
(CH), 127.6 (CH), 126.3 (CH), 125.5 (CH), 119.2 (CH), 108.9
(CH), 105.7 (CH), 54.2 (CH), 48.9 (CH2), 40.4 (CH2), 28.2 (CH2);
HRMS (ESI) m/z calcd 239.1179 for C15H15N2O (MH+), found
239.1179.

11,14-Dimethoxy-5,6-dihydrobenzo[de]isoquinolino[1,2-a]-
isoquinolin-8(14bH)-one (9f; Table 4, Entry 6). Imine 1d (53.4
mg, 0.407 mmol) and carboxylic acid 8f (113 mg, 0.489 mmol) were
dissolved in toluene (2.5 mL). NEt(i-Pr)2 (97.3 mg, 131 μL, 0.753
mmol) and T3P (194 mg, 0.611 mmol, 386 mg of a 50% solution in
THF). The resulting solution was stirred at room temperature for 20
min. BF3·Et2O (0.25 mL, 2.04 mmol) was added and the reaction
mixture stirred at room temperature for 20 h. The reaction mixture
was poured into saturated aqueous NaHCO3 (20 mL) and extracted
with CH2Cl2 (3 × 30 mL). The combined organic phases were dried
(MgSO4), filtered, and concentrated to give the crude material.
Purification by column chromatography (4/1 petroleum ether/ethyl
acetate → 1/1 petroleum ether/ethyl acetate → EtOAc) gave the title
compound 9f (125 mg, 89%) as a pink solid: mp 242−248 °C; Rf 0.31
(ethyl acetate); νmax (thin film)/cm−1 2944, 2845, 1638, 1586, 1518,
1461, 1412, 1349, 1261, 1242, 1186, 1055, 1048, 1093, 736; δH (400
MHz, CDCl3); 8.30 (1H, d, J = 9.2), 8.24 (1H, d, J = 8.1), 7.38 (1H, d,
J = 9.2), 7.20−7.12 (2H, m), 6.96 (1H, t, J = 7.8), 6.75 (1H, d, J =
8.1), 6.49 (1H, d, J = 7.8), 6.22 (1H, s), 4.70 (1H, ddd, J = 13.5, 7.1,
6.6), 4.03 (3H, s), 3.97 (3H, s), 3.61 (1H, ddd, J = 13.5, 7.1, 7.1), 3.34
(1H, ddd, J = 16.1, 7.1, 7.1), 3.07 (1H, ddd, J = 16.1, 7.1, 6.6); δC (100
MHz, CDCl3) 163.7 (CO), 158.5 (C), 154.4 (C), 138.0 (C), 135.6
(C), 130.7 (C), 128.9 (CH), 128.5 (CH), 127.2 (CH), 125.7 (CH),
123.9 (CH), 123.6 (CH), 119.3 (C), 116.7 (C), 113.7 (C), 111.2
(CH), 102.1 (CH), 55.9 (CH3), 55.7 (CH), 55.6 (CH3), 42.3 (CH2),
27.2 (CH2); HRMS (ESI) m/z calcd 346.1438 for C22H20NO3
(MH+), found 346.1440.

2-Methyl-6,7-dihydro-1H-pyrido[2,1-a]isoquinolin-4(11bH)-
one (9g; Table 4, Entry 7). Imine 1d (38 mg, 0.290 mmol) and 3-
methylbut-3-enoic acid 8g (34.8 mg, 0.348 mmol) were dissolved in
CH2Cl2 (2.9 mL). NEt(i-Pr)2 (69.3 mg, 93.5 μL, 0.536 mmol) and
T3P (13.8 mg, 0.435 mmol, 27.7 mg of a 50% solution in THF) were
added, and the reaction mixture was stirred at 45 °C for 1 h. TFA (165
mg, 111 μL, 1.449 mmol) was added and the reaction mixture stirred
at 45 °C overnight. The reaction was poured into saturated aqueous
NaHCO3 (5 mL) and extracted with CH2Cl2 (3 × 5 mL). The
combined aqueous layers were dried (MgSO4), filtered, and
concentrated to give the crude material. Purification by column
chromatography (2/1 petroleum ether/ethyl acetate) gave the title
compound 9g (48 mg, 78%) as a colorless oil: Rf 0.52 (ethyl acetate);
νmax (thin film)/cm

−1 2974, 2936, 2909, 2851, 1670, 1623, 1415, 1299,
760; δH (400 MHz, CDCl3) 7.26−7.15 (4H, m), 5.88 (1H, app dq, J =
2.6, 1.4), 4.83−4.72 (2H, m), 3.00−2.75 (3H, m), 2.59 (1H, dd, J =
17.1, 4.9), 2.43−2.31 (1H, m), 1.99 (3H, s); δC (100 MHz, CDCl3)
165.4 (CO), 150.2 (C), 135.9 (C), 134.9 (C), 129.0 (CH), 126.7
(CH), 126.6 (CH), 125.6 (CH), 120.7 (CH), 54.3 (CH), 38.6 (CH2),
37.7 (CH2), 29.5 (CH2), 22.7 (CH3); HRMS (ESI) m/z calcd
214.1226 for C14H16NO (MH+), found 214.1223.

1-Vinyl-2,3,6,7-tetrahydro-1H-pyrido[2,1-a]isoquinolin-4-
(11bH)-one (9h; Table 4, Entry 8). The compound was synthesized
using general DIA procedure E (at room temperature and with BF3·
OEt2 as the Lewis acid) from imine 1d (100 mg, 0.762 mmol) and
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carboxylic acid 8h (170 mg, 0.915 mmol). Purification by column
chromatography (1/1 petroleum ether/ethyl acetate) gave the title
compound 9h (122 mg, 70%) as a clear, colorless oil, as a 5/1 (A/B)
mixture of diastereoisomers: Rf 0.39 (ethyl acetate); νmax (thin film)/
cm−1 2933, 2870, 1635, 1461, 1433, 1409, 1360, 1286, 1248, 916, 741;
δH (400 MHz, CDCl3) data for major diastereoisomer 7.26−7.10 (4H,
m), 5.53 (1H, ddd, J = 17.6, 10.1, 7.3), 4.97 (3H, m), 4.91 (1H, d, J =
3.4), 3.17−3.11 (1H, m), 2.88−2.67 (3H, m), 2.61 (1H, ddd, J = 18.0,
11.6, 7.0), 2.53 (1H, ddd, J = 18.0, 7.3, 2.8), 2.26−2.14 (1H, m), 2.09−
2.00 (1H, m), data for minor diastereoisomer 7.26−7.10 (4H, m), 6.05
(1H, ddd, J = 17.5, 10.3, 7.3), 5.26 (1H, dt, J = 17.5, 1.2), 5.24 (1H, dt,
J = 10.3, 1.1), 4.56 (1H, d, J = 7.3), 4.39 (1H, dt, J = 12.6, 5.6), 3.22−
3.16 (1H, m), 3.10−3.00 (1H, m), 2.88−2.67 (3H, m), 2.44−2.31
(1H, m), 1.97−1.78 (2H, m); δC (100 MHz, CDCl3) data for major
diastereoisomer 169.7 (CO), 135.8 (C), 134.4 (CH), 128.8 (CH),
126.5 (CH), 126.3 (CH), 126.2 (CH), 118.0 (CH2), 60.0 (CH), 42.3
(CH), 38.5 (CH2), 29.1 (CH2), 28.1 (CH2), 25.7 (CH2), one
quaternary carbon signal not observed, data for minor diastereoisomer
140.2 (CH), 136.5 (C), 134.9 (C), 128.5 (CH), 127.2 (CH), 126.1
(CH), 125.0 (CH), 116.4 (CH2), 59.6 (CH), 41.9 (CH2), 41.7 (CH),
30.6 (CH2), 28.5 (CH2), 26.2 (CH2), carbonyl signal not observed;
HRMS (ESI) m/z calcd 228.1383 for C15H18NO (MH+), found
228.1386.

■ ASSOCIATED CONTENT
*S Supporting Information
Text giving general experimental details and figures giving 1H
and 13C spectra of all novel compounds. This material is
available free of charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION
Corresponding Author
*E-mail for R.J.K.T.: richard.taylor@york.ac.uk.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The authors thank the EPSRC and the University of York for
postdoctoral support (W.P.U., EP/G068313/1; G.C., EP/
J016128/1), the University of York Wild Fund for a Ph.D.
bursary (C.K.), and Archimica for the generous donation of
T3P.

■ REFERENCES
(1) Comprehensive Heterocyclic Chemistry III; Katritzky, A. R.,
Ramsden, C. A., Scriven, E. F. V., Taylor, R. J. K., Eds.; Elsevier:
Oxford, U.K., 2008, and references therein.
(2) Horton, D. A.; Bourne, G. T.; Smythe, M. L. Chem. Rev. 2003,
103, 893.
(3) Schreiber, S. L. Science 2000, 287, 1964.
(4) Morton, D.; Leach, S.; Cordier, C.; Warriner, S.; Nelson, A.
Angew. Chem., Int. Ed. 2009, 48, 104.
(5) Granger, B. A.; Kaneda, K.; Martin, S. F. Org. Lett. 2011, 13,
4542.
(6) Pitt, W. R.; Parry, D. M.; Perry, B. G.; Groom, C. R. J. Med. Chem.
2009, 52, 2952.
(7) Speckamp, W. N.; Moolenaar, M. J. Tetrahedron 2000, 56, 3817.
(8) Speckamp, W. N.; Hiemstra, H. Tetrahedron 1985, 41, 4367.
(9) Maryanoff, B. E.; Zhang, H.-C.; Cohen, J. H.; Turchi, I. J.;
Maryanoff, C. A. Chem. Rev. 2004, 104, 1431.
(10) James, T. C.; Judd, C. W. J. Chem. Soc., Trans. 1914, 105, 1427.
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1. Introduction

The controlled synthesis of diverse heterocycles is crucial in
both the pharmaceutical and agrochemical industries.1 Novel
methods that expedite their synthesis are therefore of great im-
portance, especially thosewhich furnish a range of diverse scaffolds
whose biological activity has not previously been well-examined.
Such diversity-oriented-synthesis2 has attracted widespread in-
terest in recent years as a strategy to accelerate the discovery of
new therapeutically important compounds.

In order for these methods to be widely adopted by the syn-
thetic community, both in industry and in academia, various con-
ditions must be satisfied: the new methods must be reliable,
operationally simple, high yielding and crucially be capable of
generating a broad range of structures without significant optimi-
sation. Our research group recently reported one such method,
based on the concept of ‘Direct Imine Acylation’ (DIA).3 This
methodology centres on a novel way to generate N-acyliminium
ions and their subsequent reaction with tethered nucleophiles. The
initial communication focused on the direct coupling of a range of
imines (1) with ortho-substituted benzoic acids (2) using propyl-
phosphonic acid anhydride (T3P)4 and NEt(i-Pr)2 (DIPEA) to acti-
vate the benzoic acid towards nucleophilic attack by the imine
c.uk (R.J.K. Taylor).

All rights reserved.
nitrogen to form the key N-acyliminium ion 3 (Scheme 1). An ac-
companying mechanistic study, in which the progress of the re-
action was monitored in situ by IR spectroscopy using ReactIR�,
shed further light on the process. It is proposed that the N-acyli-
minium ion 3 exists only briefly and is trapped by excess DIPEA in
the reaction mixture, affording ammonium salt 4. This process is
reversible and so the extrusion of DIPEA results in the regeneration
of the N-acyliminium ion 3, which is subsequently trapped by the
ortho-nucleophile in a one-pot process, driving the equilibrium
towards the formation of the desired heterocyclic product 5.
Scheme 1. Direct imine acylation.

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
mailto:tet@york.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tet.2014.04.066&domain=pdf
www.sciencedirect.com/science/journal/00404020
http://www.elsevier.com/locate/tet
http://dx.doi.org/10.1016/j.tet.2014.04.066
http://dx.doi.org/10.1016/j.tet.2014.04.066
http://dx.doi.org/10.1016/j.tet.2014.04.066
Christiana
Typewritten Text

Christiana
Typewritten Text

Christiana
Typewritten Text

Christiana
Typewritten Text
C.



Table 2
Benzoic acid scope in DIA with imine 1aa
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Diversity was initially examined both in terms of the imine 1
and the benzoic acid derivative 2. Most notably, the methodology
was shown to be compatible with phenols, anilines, thiols and
carbon pro-nucleophiles as the ortho-substituent on the benzoic
acid (2, X¼O, NMe, S, C(CO2Me)2). Furthermore, we more recently
disclosed preliminary results, which demonstrate that DIA is also
compatible with aliphatic carboxylic acids.5 Protected aliphatic al-
cohols, protected amines, thiols and a range of carbon pro-
nucleophiles can also be tethered to the carboxylic acid and react
with the N-acyliminium ion using broadly similar conditions to
those described above, dramatically increasing the range of het-
erocyclic scaffolds accessible. DIA has also been used in target
synthesis; the total synthesis of evodiamine 63,6 was completed in
high yield (95%, see later) and DIA methodology was also used to
construct the spirooxoquinolizidinone ring system of the proposed
structures of the complex marine natural product ‘upenamide 7
(Fig. 1).7
Fig. 1. The structure of evodiamine 6 and one of the proposed structures of ‘upena-
mide 7.

Entry Acylating agent Product Yieldb

1 2a R¼H 5a R¼H 83%*c,d

2 2b R¼3-NO2 5b R¼3-NO2 89%
3 2c R¼5-NO2 5c R¼5-NO2 91%*
4 2c 5c 90%*e

5 2d R¼5-Cl 5d R¼5-Cl 96%
6 2e R¼4-OMe 5e R¼4-OMe 82%f

7 2f R¼5-OMe 5f R¼5-OMe 60%
8 2g R¼6-OMe 5g R¼6-OMe 64%f

9 2h R¼4,6-OH 5h R¼4,6-OH 60%
Herein we report extended substrate scoping studies for DIA
using benzoic acid derivatives. We also describe the application of
DIA in the total synthesis of the natural product (�)-cavidine.
10 2i 5i 95%*

11 2j 5j 92%*

12 2k 5k 97%*
2. Results and discussion

In our initial communication, all of the DIA reactions reported
were performed by simply mixing the imine, carboxylic acid, T3P
and DIPEA in toluene and heating to 90 �C inmost cases, or 120 �C if
t.l.c. analysis indicated that the reaction was incomplete after 20 h.
All of the reagents were used as supplied, without drying or puri-
fication, and it was not necessary to exclude air from the reaction.
We have since discovered that both CDI and DCC may be used in
place of T3P in the reaction of imine 1awith salicylic acid 2a (Table
1, entries 1e3). The same reaction was also tested using EDC as the
coupling reagent but this failed, most likely because of the poor
solubility of EDC in toluene. Thus, the highest yield was obtained
Table 1
Alternative coupling reagentsa

Entry Coupling agent Yieldb

1 T3P 83%
2 CDI 52%
3 DCC 77%
4 EDC 0%

a Unless stated, reactions were performed on a 0.1e0.3mmol scale using imine 1a
(1 equiv), salicylic acid 2a (1.2 equiv), coupling reagent (1.5 equiv), DIPEA
(1.85 equiv) in PhMe at 90 �C for 20 h.

b Isolated yields after purification by column chromatography.
using our original T3P conditions, but it is important to note that
other coupling reagents can also be used, in cases where T3P is
either unavailable or unsuitable.

The scope of the T3P-meditated DIA conditions described above
(Table 1, entry 1) was first tested with regard to the acid coupling
partner 2 (Table 2). Note that examples reported in our prior
communication are indicatedwith an asterisk and that themajority
of the new examples led to the formation of novel compounds.
13 2l 5l 63%

14 2m 5m 96%*g

15 2n R¼Me 5n R¼Me 97%*c

(continued on next page)



Table 2 (continued )

Entry Acylating agent Product Yieldb

16 2o R¼Ph 5o R¼Ph 95%

17 2p E¼CO2Me 5p E¼CO2Me 84%*c

*Entries highlighted with an asterisk were reported in the earlier communication
(see Ref. 3).

a Unless stated, reactions were performed on a 0.1e0.3mmol scale using imine 1a
(1 equiv), benzoic acid 2aep (1.2 equiv), T3P (1.5 equiv), DIPEA (1.85 equiv) in PhMe
at 90 �C for 20 h.

b Isolated yields after purification by column chromatography.
c Reaction performed in the absence of T3P gave 0% yield of product.
d Reaction performed in the absence of DIPEA gave 0% yield of product.
e Reaction performed on a 3 mmol scale under the standard conditions.
f Reaction performed at 120 �C for 20 h.
g Reaction performed in the absence of T3P gave 20% yield of product.

Table 3
Imine scope in DIA with benzoic acid derivativesa

Entry Imine Acid Product Yieldb

1 1b 2a 5q X¼O 48%c

2 1b 2m 5r X¼S 99%
3 1b 2n 5s X¼NMe 87%*

4 1c 2a 5t X¼O 89%*c

5 1c 2m 5u X¼S 97%c

6 1c 2p 5v X¼CH(CO2Me)2 69%*c

7 1d 2a 5w X¼O 48%
8 1d 2n 5x X¼NMe 87%

9 1e 2m 5y X¼S 53%
10 1e 2n 5z X¼NMe 41%

11 1fd 2m 5aa X¼S 31%
12 1f 2n 5ab X¼NMe 40%*

13 1g R¼Me 2m 5ac R¼Me 80%c

14 1h R¼Ph 2m 5ad R¼Ph 0%

15 1i 2m 5ae X¼S 99%*
16 1i 2o 5af X¼NPh 68%

17 1j 2a 5ag 60%*c

18 1k 2n 5ah 94%*

*Entries highlighted with an asterisk were reported previously (see Ref. 3).
a Unless stated, reactions were performed on a 0.1e0.3 mmol scale using imines

1bek (1 equiv), benzoic acid 2aep (1.2 equiv), T3P (1.5 equiv), DIPEA (1.85 equiv) in
PhMe at 90 �C for 20 h.

b Isolated yields after purification by column chromatography.
c Reaction performed at 120 �C for 20 h.
d Imine 1f was generated by de-oligomerisation of dodecahydro-4a,8a,12a-

triazatriphenylene in situ.
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Imine 1a was reacted with a wide range of salicylic acid de-
rivatives 2aeh3 using the standard DIA procedure, affording N,O-
acetals 5aeh in good to excellent yields (Table 2, entries 1e9). All of
these reactions were performed using the same conditions with the
exceptions of entries 6 and 8; in both of these cases a higher reaction
temperature (120 �C)was required in order to achieve full conversion
into the respective products 5e and 5g. The initial N-acylation ap-
pears to be significantly slower in these two examples, which is un-
surprising as the activated carboxylic acid is presumably less
electrophilic than the other systems tested as a result of the presence
and position of the electron-rich methoxy groups. Naphthalene and
pyridine derivatives 2iel are also well tolerated, affording products
5iel again in good to excellent yields (entries 10e13). Clearly, ortho-
hydroxy aromatics are excellent substrates, but the real strength of
the DIA procedure is its versatility, which is demonstrated by the
similarly efficient reactions of thiosalicylic acid 2m and anthranilic
acids 2n and 2o (entries 14e16). Perhaps most impressively, diester
2palso takespart inDIA, demonstrating that CeCbond formation can
also be achieved in very good yield (entry 17). Crucially, all of these
examples were performed using the standard reaction conditions
and are unoptimised, highlighting the operational simplicity of the
process and its significant potential for the rapid synthesis of diverse
compound libraries for biological screening.

The substrate scope with respect to the imine component was
next examined (Table 3). The requisite imines 1aek were either
generated as described in our previous reports, were available
commercially or were made via literature methods.3,5,8,9 The basic
procedure is clearly very broad in scope, with a range of imines
compatible; DIA reactions using imines 1bee and benzoic acid
derivatives bearing O-, S-, N- and C-nucleophiles were tested,
affording a diverse range of products in moderate to excellent
yields (Table 3, entries 1e10). The yields for some of these reactions
are lower than for those using imine 1a, but it is important to
recognise that all of these reactions are unoptimised and the only
change made to the reaction conditions was to increase the tem-
perature to 120 �C if t.l.c. analysis showed that the reaction was
incomplete under the standard conditions (90 �C). We believe
that the comparative stabilities of the products may partially ex-
plain this variability in yield. For example, the DIA of 3,4-
dihydroisoquinoline 1c and acid 2a proceeded in high yield but
the analogous reaction with the dimethoxy imine 1d proceeded in
lower yield (entries 4 and 7), which may be explained by the in-
creased propensity for the product 5w to ring-open (and thus re-
generate the intermediateN-acyliminium ion) as a result of the two
electron-donating groups. Greater reversibility in the cyclisation
stepwould not only lead to an increased reaction time, but may also
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Scheme 3. The total synthesis of (�)-cavidine 8.
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lead to hydrolysis of the product during aqueous work-up and
during column chromatography. Nonetheless, significant quantities
of material were isolated in all cases and indeed some of the yields
(e.g., entries 2e5, 8) were excellent and comparable with those
reported in Table 2.

The coupling of imine 1f was examined next. This imine, which
exists primarily in its trimeric form dodecahydro-4a,8a,12a-tri-
azatriphenylene,9 is known to oligomerise and so must be gener-
ated in situ. Nevertheless, it reacted with acids 2m and 2n under
the standard DIA conditions to form products 5aa and 5ab, albeit in
moderate yield (entries 11 and 12). Note that none of the imine
systems 1aee can tautomerise to enamines and it is significant that
this comparatively unstable imine is also compatible with the
standard DIA procedure.

Ketimine 1g (which also is able to tautomerise to an enamine) is
compatible with DIA, reacting with thiosalicylic acid 2m, generat-
ing product 5ac in good yield (entry 13). However, the analogous
reactions using benzoic acids substituted with O-, N- and C-nu-
cleophiles (2a, 2n and 2p, not shown in the table) did not furnish
the expected products. Instead, C-acylation took place preferen-
tially (presumably via the enamine tautomer of the imine),
resulting in the predominant formation of Z-enaminones.10 The
analogous reaction with phenyl substituted ketimine 1h (which
cannot undergo such C-acylation) was also screened but this imine
did not react at all with thiosalicylic acid 2m (entry 14) or indeed
with any of the benzoic acid derivatives 2a, 2n or 2p (not shown in
the table). This result is in line with previous studies, which also
found that ketimines fail to undergo DIA with carboxylic acids
bearing O-, N- or C-nucleophiles and this is most likely because the
increased steric hindrance around the imine inhibits the requisite
N-acylation reaction. The contrasting reactivity of thiosalicylic acid
2m has intriguing mechanistic implications and is consistent with
our previous work. Of the two successful DIA-type reactions of
ketimines that were reported previously,7 both involved thiol-
substituted carboxylic acids, indicating that an alternative mecha-
nism most likely operates. Thus, it seems likely that in sulfur-
containing systems the nucleophilic thiol moiety attacks the im-
ine carbon first, before intramolecular N-acylation takes place.7

Additional support for this mechanism is found in the fact that
partial product formation (20% yield) was observed in a related
example even in the absence of T3P (Table 1, entry 14).

A significant advantage to DIA is its ability to generate acyclic N-
acyliminium ions, which are far less stable than their cyclic ana-
logues, particularly with respect to hydrolysis.11 This means that N-
acyliminium ion precursors are difficult to prepare and handle, but
DIA technology overcomes this by forming the unstable N-acyli-
minium ions in situ, and trapping them in one pot. This is exem-
plified by the formation of DIA products 5aeeag in good to
excellent yields from commercially available acylic imines 1i and 1j
(entries 15e17). Note also that imine 1j is a ketimine; N-substituted
ketimines have so far proven to be incompatible with DIA but
pleasingly this substituted ketimine furnished N,O-acetal 5ag in
good yield under standard DIA conditions at 120 �C (entry 17).

The high yielding DIA reaction of isoquinoline 1k with anthra-
nilic acid 2n is significant given that it proceeds despite the loss of
aromaticity (entry 18). Unfortunately, this dearomatising DIA re-
action appears not to be general; the analogous reactions of iso-
quinoline 1k with acids 2a, 2m and 2p under identical conditions
all failed to furnish any product. Other aromatic heterocycles con-
taining C]N bonds (quinolone, pyridine, DMAP, pyrimidine, pyr-
azine, oxazole, thiazole, N-Boc imidazole and 1,3,5-triazine) were
also examined under DIA conditions at 120 �C with anthranilic acid
2n but no products were isolated in any case. Note that similar
dearomatising reactions of isoquinolines have been reported,12 and
that the degree of aromaticity in the precursor is likely to be crucial
in the outcome of these reactions.
Finally, the formation of the natural product evodiamine 6 from
dihydrocarboline 1l and anthranilic acid 2n is a particularly note-
worthy example (Scheme 2). Evodiamine is a key component in
various weight-loss supplements and also is known to inhibit DNA
topoisomerase I.13 Its synthesis in 95% yield from two easily avail-
able coupling partners highlights well the potential of DIA in target
synthesis.

Scheme 2. The total synthesis of evodiamine 6.
Additional biologically important targets are also being pursued,
e.g., cavidine 8, a member of a large family of alkaloids known as
protoberberines14 with extremely broad biological activity.15 Cav-
idine was first isolated from a Corydalis plant in 1964 by Taguchi16

and its structure was later assigned by Manske.17 Its synthesis has
been completed previously,18 but nonetheless, we considered that
DIA methodology would expedite an efficient convergent synthesis
(Scheme 3).
To begin, commercially available bromide 9 was converted into
the novel dimethyl malonate derivative 2q via a known method
based on the Hurtley reaction.19 Acid 2q was then reacted with
imine 1d using our standard DIA coupling conditions. We were
pleased that the DIA was successful on this more complex system,
furnishing lactam 5ai in moderate yield (39%). Previous studies in
our group have shown that in some cases, the addition of Lewis
acids to the crude reaction mixture following N-acylation can lead
to improved yields,5 and therefore additional optimisation re-
actions were performed. The most common additive used in the
DIA reactions reported to date is BF3$OEt2, but on this system it did
not improve the isolated yield of product 5ai (36%). However,
switching the additive to BCl3 (2 equiv) allowed product 5ai to be
obtained in 69% yield at RT in chloroform.20 Importantly, the work-
up for this reaction was straightforward and this result is easily
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reproducible. It is also noteworthy that no competing demethyla-
tion products were observed.

The synthesis was then completed using an approach based on
that in Cushman’s route.18c Ester hydrolysis and decarboxylation
using LiOH in aqueous THF followed by reduction with LiAlH4,
afforded alcohol 10 as a single diastereoisomer following column
chromatography. Mesylation, followed by deoxygenation with
NaBH4 in refluxing ethanol21 then completed the synthesis,
affording (�)-cavidine 8, the spectral data of which were in full
accord with those previously reported (Scheme 3).14j,k,18c

3. Conclusion

A detailed substrate scoping study of the DIA reactions of
a range of imines and ortho-substituted benzoic acids has been
completed. The reaction has been shown to be very broad in scope,
proceeds under operationally simple conditions and generally af-
fords the desired product in good to excellent yield without opti-
misation of the reaction conditions. This should result in DIA being
used for the construction of diverse compound libraries for bi-
ological evaluation. The total synthesis of (�)-cavidine was also
completed; in this instance the DIA was low yielding under the
standard conditions, but could be improved significantly by using
a Lewis acid additive. The fact that the coupling reagents (T3P and
DIPEA) are compatible with Lewis acid additives is significant as
this allows such one-pot optimisation processes to be performed
easily. The success of this example also augurs well for the similar
optimisation of other DIA reactions (especially the lower yielding
cases) further expanding its wide scope. This in turn is expected to
lead to DIA being widely used in the synthesis of other biologically
important natural product/drug targets.

4. Experimental section

4.1. General

Except where stated, all reagents were purchased from com-
mercial sources and used without further purification. Anhydrous
dichloromethane and toluene were obtained from an Innovative
Technology Pure Solv solvent purification system. Anhydrous THF
was obtained by distillation over sodium benzophenone ketyl im-
mediately before use. Flash column chromatography was carried
out using slurry packed silica gel (SiO2), 35e70 mm, 60 �A, under
light positive pressure eluting with the specified solvent system.
Thin layer chromatography (TLC) was carried out on Merck silica
gel 60 F254 pre-coated aluminium foil sheets and were visualised
using UV light (254 nm) and stained with either basic aqueous
potassium permanganate or ethanolic p-anisaldehyde as appro-
priate. 1H NMR and 13C NMR spectra were recorded on a Jeol ECX-
400 NMR or Jeol ECS400 spectrometer operating 400 MHz and
100 MHz, respectively, or on a Bruker DRX500 spectrometer, op-
erating at 500 MHz and 125 MHz, respectively. All spectra was
acquired at 295 K. Chemical shifts (d) are quoted in parts per million
(ppm). The multiplicity abbreviations used are: s, singlet; d, dou-
blet; t, triplet; q, quartet; multiplet; br, broad or combinations of
these. Signal assignment was achieved by analysis of DEPT, COSY,
NOESY, HMBC and HSQC experiments where required. The residual
solvent peaks, dH 7.26 and dC 77.0 for CDCl3 were used as references.
Infrared spectra (IR) were recorded on a ThermoNicolet IR-100
spectrometer with NaCl plates as a thin film dispersed from ei-
ther CH2Cl2 or CDCl3. High Resolution Mass Spectra (HRMS) were
obtained by University of York Mass spectrometer Service, using
ionisation (ESI) on a Bruker Daltonics, MicrOTOF spectrometer.
Melting points were measured on a Gallenkamp melting point
apparatus and are uncorrected. Compounds 1iek, 2aeo were all
purchased from SigmaeAldrich and used as supplied. Compounds
1a,3 1b,3 1c,8a 1d,8b 1e,8c 1f,9 1g,8d 1h,8e 1l,8f 2p,3,22 5a,3 5c,3 5d,3

5iek,3 5m,3 5n,3 5p,3 5s,3 5t,3 5v,3 5ab,3 5ae,3 5ag,3 5ah,3 63 were
prepared using literature procedures.

4.2. General procedure for the DIA reaction

To a solution of imine (1 mmol) and acid (1.2 mmol) in dry
toluene (10 mL) was added sequentially DIPEA (1.85 mmol) and
then T3P (1.5 mmol, 50% in THF). The resulting solution was heated
at 90 �C or 120 �C in a sealable tube for the specified time, before
cooling to RT and pouring into satd aq NaHCO3 (20 mL). The
aqueous layer was extracted with DCM (3�30 mL), concentrated in
vacuo and purified by column chromatography.

4.2.1. 6,6-Dibenzyl-4-nitro-6,7,8,9-tetrahydro-5aH,11H-pyrido[2,1-b]
[1,3]benzoxazin-11-one (5b). Synthesised using the general DIA
procedure from imine 1a (56.1 mg, 0.213 mmol), acid 2b (46.9 mg,
0.256 mmol), DIPEA (68.6 mL, 0.394 mmol) and T3P (204 mg,
0.320 mmol) in toluene (1.5 mL) at 90 �C for 20 h. Purification by
column chromatography (5:1 petrol:ethyl acetate) afforded 5b as
a colourless oil (81.1 mg, 89%); Rf 0.43 (5:1 petrol:ethyl acetate);
nmax (thin film)/cm�1 1647, 1589, 1506, 1449, 1311, 1275; dH
(400 MHz, CDCl3) 8.24 (1H, dd, J¼7.7, 1.7 Hz), 8.19 (1H, dd, J¼8.2,
1.7 Hz), 7.34e7.13 (11H, m, H-9), 5.31 (1H, s), 4.75e4.68 (1H, m),
3.35 (1H, d, J¼13.4 Hz), 3.17 (1H, d, J¼13.4 Hz), 2.85 (1H, d,
J¼13.4 Hz), 2.53e2.42 (2H, m), 2.18e2.05 (1H, m), 1.68e1.59 (2H,
m), 1.50e1.40 (1H, m); dC (100 MHz, CDCl3) 159.4, 150.2, 137.0,
136.4, 136.1, 133.7, 131.2, 131.0, 130.2, 128.2, 126.6, 121.0, 118.2,
90.6, 43.2, 42.2, 40.9, 35.6, 27.6, 19.6; HRMS (ESIþ): Found:
429.1827; C26H25N2O4 (MHþ) Requires: 429.1809 (�4.3 ppm
error).

4.2.2. 6,6-Dibenzyl-2-chloro-6,7,8,9-tetrahydro-5aH,11H-pyrido[2,1-
b][1,3]benzoxazin-11-one (5d). Synthesised using the general DIA
procedure from imine 1a (66.9 mg, 0.254 mmol), acid 2d
(52.6 mg, 0.305 mmol), DIPEA (81.9 mL, 0.470 mmol) and T3P
(242 mg, 0.381 mmol) in toluene (1.5 mL) at 90 �C for 20 h.
Purification by column chromatography (5:1 petrol:ethyl ace-
tate) afforded 5d as a white solid (46.7 mg, 96%); mp
198e201 �C; Rf 0.29 (5:1 petrol:ethyl acetate); nmax (thin film)/
cm�1 1668, 1608, 1475, 1441, 1325, 1283, 704; dH (400 MHz,
CDCl3) 7.90 (1H, d, J¼2.7 Hz), 7.42 (1H, dd, J¼8.8, 2.7 Hz),
7.34e7.20 (9H, m), 7.11e7.09 (1H, m), 7.05 (1H, d, J¼8.8 Hz), 5.09
(1H, s), 4.68e4.62 (1H, m), 3.21e3.16 (2H, m), 2.86 (1H, d,
J¼13.5 Hz), 2.49e2.40 (2H, m), 2.18e2.04 (1H, m), 1.65e1.56 (2H,
m), 1.42e1.31 (1H, m); dC (100 MHz, CDCl3) 161.4, 154.5, 137.0,
136.3, 134.2, 131.0, 131.0, 128.1, 128.1, 127.7, 127.3, 126.6, 126.6,
117.3, 117.2, 89.5, 42.5, 42.0, 41.4, 35.8, 27.6, 19.5; HRMS (ESIþ):
Found: 418.1585; C26H25

35ClNO2 (MHþ) Requires: 418.1568
(�3.9 ppm error).

4.2.3. 6,6-Dibenzyl-3-methoxy-6,7,8,9-tetrahydro-5aH,11H-pyrido
[2,1-b][1,3] benzoxazin-11-one (5e). Synthesised using the general
DIA procedure from imine 1a (31.2 mg, 0.118 mmol), acid 2e
(23.9 mg, 0.142 mmol), DIPEA (38.0 mL, 0.219 mmol) and T3P
(113 mg, 0.178 mmol) in toluene (1.5 mL) at 120 �C for 20 h. Puri-
fication by column chromatography (3:1/1:1 petrol:ethyl aceta-
te/pure ethyl acetate) afforded 5e as a white solid (40.0 mg, 82%);
mp 158e162 �C; Rf 0.7 (ethyl acetate); nmax (thin film)/cm�1 1635,
1593, 1562, 1473, 1423, 1381, 1352, 1257, 1181; dH (400 MHz, CDCl3)
7.85 (1H, d, J¼8.6 Hz), 7.34e7.19 (8H, m), 7.13e7.09 (2H, m),
6.63e6.56 (2H, m), 5.06 (1H, s), 4.67e4.60 (1H, m), 3.90 (3H, s),
3.24e3.19 (2H, m), 2.89 (1H, d, J¼13.7 Hz), 2.45e2.37 (2H, m),
2.16e2.03 (1H, m), 1.63e1.54 (2H, m), 1.42e1.28 (1H, m); dC
(100 MHz, CDCl3) 164.8, 163.0, 157.8, 137.5, 136.6, 131.2, 131.2, 129.7,
128.2, 128.2, 126.6, 126.5, 109.5, 109.0, 100.2, 89.5, 55.8, 42.5, 41.8,
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41.5, 35.9, 27.8, 19.8; HRMS (ESIþ): Found: 414.2076; C27H28NO3
(MHþ) Requires: 414.2064 (�0.6 ppm error).

4.2.4. 6,6-Dibenzyl-2-methoxy-6,7,8,9-tetrahydro-5aH,11H-pyrido
[2,1-b][1,3] benzoxazin-11-one (5f). Synthesised using the general
DIA procedure from imine 1a (37.0 mg, 0.141 mmol), acid 2f
(28.4 mg, 0.169 mmol), DIPEA (45.5 mL, 0.261 mmol) and T3P
(135 mg, 0.212 mmol) in toluene (1.4 mL) at 90 �C for 20 h. Puri-
fication by column chromatography (4:1 petrol:ethyl acetate)
afforded 5f as a colourless solid (35.0 mg, 60%); mp 108e109 �C; Rf
0.7 (ethyl acetate); nmax (thin film)/cm�11641,1471,1447,1431,1413,
1375, 1309, 1264, 1193, 692; dH (400 MHz, CDCl3) 7.41 (1H, d,
J¼2.6 Hz), 7.33e7.16 (8H, m), 7.11e7.02 (4H, m), 5.01 (1H, s),
4.67e4.60 (1H, m), 3.81 (3H, s), 3.22e3.18 (2H, m), 2.92 (1H, d,
J¼13.9 Hz), 2.48e2.40 (2H, m), 2.17e2.05 (1H, m), 1.66e1.55 (2H,
m),1.38e1.28 (1H, m); dC (100MHz, CDCl3) 163.1, 154.6,150.2,137.3,
136.5, 131.1, 131.0, 128.1, 126.4, 126.4, 122.4, 116.9, 116.5, 109.9, 89.1,
55.9, 42.2, 41.9, 41.5, 35.9, 27.6,19.5; HRMS (ESIþ): Found: 414.2074;
C27H28NO3 (MHþ) Requires: 414.2064 (�2.8 ppm error).

4.2.5. 6,6-Dibenzyl-1-methoxy-6,7,8,9-tetrahydro-5aH,11H-pyrido
[2,1-b][1,3] benzoxazin-11-one (5g). Synthesised using the general
DIA procedure from imine 1a (50.1 mg, 0.190 mmol), acid 2g
(38.3 mg, 0.228 mmol), DIPEA (61.3 mL, 0.352 mmol) and T3P
(182 mg, 0.286 mmol) in toluene (1.5 mL) at 120 �C for 20 h. Pu-
rification by column chromatography (3:1/1:1 petrol:ethyl ace-
tate/pure ethyl acetate) afforded 5g as a white solid (51.0 mg,
64%); mp 186e187 �C; Rf 0.29 (1:1 ethyl acetate); nmax (thin film)/
cm�1 1641, 1581, 1560, 1457, 1432, 1248, 1090; dH (400 MHz, CDCl3)
7.37 (1H, dd, J¼8.3, 8.3 Hz), 7.03e7.14 (8H, m), 7.10e7.05 (2H, m),
6.72 (1H, d, J¼8.3 Hz), 6.60 (1H, d, J¼8.3 Hz), 4.95 (1H, s), 4.67e4.60
(1H, m), 3.91 (3H, s), 3.23 (1H, d, J¼13.8 Hz), 3.19 (1H, d, J¼13.4 Hz),
2.90 (1H, d, J¼13.8 Hz), 2.47e2.37 (2H, m), 2.17e2.04 (1H, m),
1.65e1.53 (2H, m), 1.35e1.24 (1H, m); dC (100 MHz, CDCl3) 162.1,
160.7,158.3,137.5,136.6,134.3,131.1,128.1,126.4,126.3,108.4,109.5,
105.4, 88.4, 56.3, 42.0, 41.5, 41.4, 36.0, 27.5, 19.6; HRMS (ESIþ):
Found: 414.2075; C27H28NO3 (MHþ) Requires: 414.2064 (�2.8 ppm
error).

4.2.6. 6,6-Dibenzyl-1,3-dihydroxy-6,7,8,9-tetrahydro-5aH,11H-pyr-
ido[2,1-b][1,3] benzoxazin-11-one (5h). Synthesised using the gen-
eral DIA procedure from imine 1a (41.3 mg, 0.157 mmol), acid 2h
(35.7 mg, 0.188 mmol), DIPEA (50.9 mL, 0.290 mmol) and T3P
(151 mg, 0.235 mmol) in toluene (1.5 mL) at 90 �C for 20 h. Puri-
fication by column chromatography (3:1/2:1 petrol:ethyl acetate)
afforded 5h as a white solid (39.0 mg, 60%); mp 135e136 �C; Rf 0.57
(1:1 petrol:ethyl acetate); nmax (thin film)/cm�1 3269, 1619, 1589,
1491, 1471, 1441, 1293, 1257, 1137; dH (400MHz, CDCl3) 12.10 (1H, br
s), 7.35e7.20 (8H, m), 7.10e7.06 (2H, m), 6.09 (1H, d, J¼2.0 Hz), 6.01
(1H, d, J¼2.0 Hz), 5.48 (1H, br s), 4.96 (1H, s), 4.55e4.47 (1H, m),
3.18 (1H, d, J¼13.7 Hz), 3.17 (1H, d, J¼13.4 Hz), 2.90 (1H, d,
J¼13.7 Hz), 2.46e2.37 (2H, m), 2.15e2.05 (1H, m), 1.67e1.55 (2H,
m),1.37e1.22 (1H, m); dC (100MHz, CDCl3) 167.0, 162.8,162.8,157.5,
137.0, 136.3, 131.0, 128.2, 128.2, 126.6, 126.5, 97.2, 95.2, 93.8, 88.9,
42.1, 41.4, 41.1, 35.7, 27.4, 19.4; HRMS (ESIþ): Found: 416.1847;
C26H26NO4 (MHþ) Requires: 416.1856 (2.3 ppm error).

4.2.7. 6,6-Dibenzyl-6,7,8,9-tetrahydro-5aH,11H-dipyrido[2,1-b:20,30-
e][1,3]oxazin-11-one (5l). Synthesised using the general DIA pro-
cedure from imine 1a (43.0 mg, 0.163 mmol), acid 2l (27.2 mg,
0.196 mmol), DIPEA (52.6 mL, 0.302 mmol) and T3P (156 mg,
0.245 mmol) in toluene (1.5 mL) at 90 �C for 20 h. Purification by
column chromatography (3:1/petrol:ethyl acetate/pure ethyl
acetate/ethyl acetate, 10% MeOH) afforded 5l as an orange oil
(39.1 mg, 63%); Rf 0.23 (ethyl acetate); nmax (thin film)/cm�1 1654,
1450, 1415, 1382, 1314, 1228, 718; dH (400 MHz, CDCl3) 8.47e8.43
(1H, m), 7.49e7.40 (2H, m), 7.34e7.19 (8H, m), 7.12e7.06 (2H, m),
5.19 (1H, s), 4.80e4.73 (1H, m), 3.25e3.17 (2H, m), 2.86 (1H, d,
J¼13.7 Hz), 2.55e2.42 (2H, m), 2.17e2.04 (1H, m), 1.64e1.56 (2H,
m), 1.42e1.32 (1H, m); dC (100 MHz, CDCl3) 161.3, 153.6, 144.5,
136.9,136.3,133.7, 131.1, 131.1, 128.4,128.3,128.3,126.8, 126.7, 124.3,
89.9, 42.7, 42.5, 41.5, 35.9, 27.8, 19.6; HRMS (ESIþ): Found:
385.1906; C25H25N2O2 (MHþ) Requires: 385.1911 (�1.1 ppm error).

4.2.8. 6,6-Dibenzyl-5-phenyl-5,5a,6,7,8,9-hexahydro-11H-pyrido
[2,1-b]quinazolin-11-one (5o). Synthesised using the general DIA
procedure from imine 1a (38.0 mg, 0.144 mmol), acid 2o (36.9 mg,
0.173 mmol), DIPEA (46.4 mL, 0.266 mmol) and T3P (137 mg,
0.216 mmol) in toluene (1.4 mL) at 90 �C for 20 h. Purification by
column chromatography (2:1 petrol:ethyl acetate) afforded 5o as
a white solid (63.0 mg, 95%); Rf 0.59 (ethyl acetate); mp
177e178 �C; nmax (thin film)/cm�11625,1579,1469,1451,1431,1410,
1362, 1280, 1198, 739, 693; dH (400 MHz, CDCl3) 8.05 (1H, dd, J¼7.7,
1.5 Hz), 7.62e7.57 (2H, m), 7.52e7.46 (2H, m), 7.40e7.20 (5H, m),
7.13e6.92 (7H, m), 6.35 (2H, d, J¼7.3 Hz), 5.21 (1H, s), 4.94 (1H, ddd,
J¼12.7, 2.1, 2.1 Hz), 3.27 (1H, d, J¼13.9 Hz), 3.02 (1H, d, J¼13.2 Hz),
2.58 (1H, d, J¼13.2 Hz), 2.52 (1H, ddd, J¼12.7, 12.7, 3.0 Hz), 2.52 (1H,
d, J¼13.9 Hz), 2.15e2.04 (1H, m), 1.62e1.55 (1H, m), 1.51e1.44 (1H,
m), 1.19e1.09 (1H, m); dC (100 MHz, CDCl3) 162.4, 151.2, 147.8, 137.5,
137.3, 133.2, 131.4, 131.1, 130.1, 128.9, 128.4, 128.1, 127.9, 127.0, 126.4,
126.1, 121.8, 119.8, 119.7, 81.4, 47.9, 45.1, 38.5, 36.6, 30.9, 21.4; HRMS
(ESIþ): Found: 459.2436; C32H31N2O (MHþ) Requires: 459.2431
(�1.2 ppm error).

4.2.9. 3,3-Dibenzyl-1,2,3,3a-tetrahydro-9H-pyrrolo[2,1-b][1,3]ben-
zoxazin-9-one (5q). Synthesised using general the DIA procedure
from imine 1b (33.2 mg, 0.133 mmol), acid 2a (22.1 mg,
0.160 mmol), DIPEA (42.9 mL, 0.246 mmol) and T3P (127 mg,
0.200 mmol) in toluene (1.5 mL) at 120 �C for 20 h. Purification by
column chromatography (3:1 petrol:ethyl acetate) afforded 5q as
a yellow oil (23.7 mg, 48%); Rf 0.27 (2:1 petrol:ethyl acetate); nmax
(thin film)/cm�1 2980, 1647, 1587, 1446, 1412, 1329, 1195, 1083,
1059, 693; dH (400MHz, CDCl3) 7.85 (1H, dd, J¼7.7, 1.7 Hz), 7.40 (1H,
ddd, J¼8.2, 7.4, 1.7 Hz), 7.28e7.13 (8H, m), 7.07e7.00 (4H, m), 5.21
(1H, s), 3.49e3.37 (2H, m), 2.95 (1H, d, J¼14.1), 2.96 (1H, d,
J¼13.8 Hz), 2.89 (1H, d, J¼14.1 Hz), 2.73 (1H, d, J¼13.8 Hz), 1.81 (1H,
ddd, J¼13.3, 6.7, 1.4 Hz), 1.62e1.56 (1H, m); dC (100 MHz, CDCl3)
161.3, 157.2, 137.4, 136.4, 134.0, 131.0, 130.9, 128.4, 128.4, 127.9,
126.8, 126.8, 122.7, 119.3, 116.7, 90.5, 48.0, 40.8, 40.2, 37.9, 26.4;
HRMS (ESIþ): Found: 370.1792; C25H24NO2 (MHþ) Requires:
370.1802 (2.7 ppm error).

4.2.10. 3,3-Dibenzyl-1,2,3,3a-tetrahydro-9H-pyrrolo[2,1-b][1,3]ben-
zothiazin-9-one (5r). Synthesised using general the DIA procedure
from imine 1b (49.5 mg, 0.199 mmol), acid 2m (36.7 mg,
0.238 mmol), DIPEA (64.0 mL, 0.367 mmol) and T3P (189 mg,
0.298 mmol) in toluene (1.5 mL) at 90 �C for 20 h. Purification by
column chromatography (5:1 petrol:ethyl acetate) afforded 5r as
a white solid (66.4 mg, 87%); Rf 0.80 (3:1 petrol:ethyl acetate); nmax
(thin film)/cm�1 2874, 1620, 1567, 1424, 1387, 732, 694; dH
(400 MHz, CDCl3) 8.00 (1H, d, J¼7.7 Hz), 7.32e7.25 (5H, m),
7.20e7.13 (7H, m), 6.98 (1H, d, J¼8.0 Hz), 4.91 (1H, s), 3.77e3.72
(1H, m), 3.67e3.60 (1H, m), 3.10 (1H, d, J¼13.6 Hz), 2.83 (1H, d,
J¼14.0 Hz), 2.78 (1H, d, J¼14.0 Hz), 2.77 (1H, d, J¼13.6 Hz), 1.78 (1H,
ddd, J¼12.3, 5.8, 0.9 Hz), 1.51e1.42 (1H, m); dC (100 MHz, CDCl3)
163.4,137.1,135.8,134.8,131.8,130.9,130.6,129.9,129.8,128.4,127.7,
126.9, 126.8, 126.0, 65.8, 49.8, 44.1, 41.1, 39.4, 27.1; HRMS (ESIþ):
Found: 386.1574; C25H24NOS (MHþ) Requires: 386.1573 (�0.2 ppm
error).

4.2.11. 13a-Methyl-5,13a-dihydro-6H, 8H-isoquinolino[1,2-b][1,3]
benzothiazin-8-one (5u). Synthesised using the general DIA
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procedure from imine 1c (37.7 mg, 0.287 mmol), acid 2m (53.2 mg,
0.345 mmol), DIPEA (92.6 mL, 0.532 mmol) and T3P (274 mg,
0.431 mmol) in toluene (1.5 mL) at 120 �C for 20 h. Purification by
column chromatography (4:1 petrol:ethyl acetate) afforded 5u as
a white solid (74.4 mg, 97%); Rf 0.80 (2:1 petrol:ethyl acetate); nmax
(thin film)/cm�11664,1656,1618,1579,1434,1358,1290,1216,1126,
731; dH (400MHz, CDCl3) 8.19 (1H, ddd, J¼7.7, 1.5, 0.6 Hz), 7.44e7.24
(7H, m), 6.24 (1H, s), 4.83e4.79 (1H, m), 3.24e3.11 (2H, m),
3.00e2.93 (1H, m); dC (100 MHz, CDCl3) 164.9, 137.8, 136.4, 131.8,
131.2, 130.8, 129.1, 128.9, 128.6, 127.7, 127.3, 127.0, 126.3, 60.7, 40.7,
29.6; HRMS (ESIþ): Found: 268.0611; C16H13NNaOS (MNaþ) Re-
quires: 290.0610 (�0.2 ppm error).

4.2.12. 2,3-Dimethoxy-5,13a-dihydro-6H,8H-isoquinolino[1,2-b][1,3]
benzoxazin-8-one (5w). Synthesised using the general DIA pro-
cedure from imine 1d (66.6 mg, 0.348 mmol), acid 2a (57.7 mg,
0.418 mmol), DIPEA (112 mL, 0.644 mmol) and T3P (332 mg,
0.522 mmol) in toluene (1.5 mL) at 90 �C for 20 h. Purification by
column chromatography (1:1 petrol:ethyl acetate) afforded 5w as
awhite solid (51.6 mg, 48%); Rf 0.33 (ethyl acetate); nmax (thin film)/
cm�1 1641, 1587, 1494, 1446, 1394, 1247, 1209, 1095; dH (400 MHz,
CDCl3) 8.03 (1H, dd, J¼7.8, 1.7 Hz), 7.48 (1H, ddd, J¼8.2, 7.3, 1.7 Hz),
7.16 (1H, ddd, J¼7.8, 7.3, 0.5 Hz), 7.08 (1H, dd, J¼8.2, 0.5 Hz), 7.03
(1H, s), 6.71 (1H, s), 6.23 (1H, s), 4.58 (1H, ddd, J¼12.8, 4.8, 3.5 Hz),
3.95 (3H, s), 3.92 (3H, s), 3.33 (1H, ddd, J¼12.8, 11.3, 3.5 Hz), 3.05
(1H, ddd, J¼15.6, 11.3, 4.8 Hz), 2.77 (1H, ddd, J¼15.6, 3.5, 3.5 Hz); dC
(100 MHz, CDCl3) 163.1, 157.6, 150.0, 148.4, 134.2, 129.1, 128.7, 122.8,
122.4, 118.8, 116.6, 111.0, 110.6, 84.2, 56.2, 56.1, 38.4, 28.1; HRMS
(ESIþ): Found: 334.1058; C18H17NNaO4 (MNaþ) Requires: 334.1050
(�2.6 ppm error).

4.2.13. 2,3-Dimethoxy-13-methyl-5,6,13,13a-tetrahydro-8H-iso-
quinolino[1,2-b]quinazolin-8-one (5x). Synthesised using the gen-
eral DIA procedure from imine 1d (76.9 mg, 0.402 mmol), acid 2n
(73.0 mg, 0.483 mmol), DIPEA (130 mL, 0.744 mmol) and T3P
(384 mg, 0.603 mmol) in toluene (1.5 mL) at 90 �C for 20 h. Puri-
fication by column chromatography (1:1 petrol:ethyl acetate)
afforded 5x as a colourless oil (114 mg, 87%); Rf 0.54 (ethyl acetate);
nmax (thin film)/cm�1 1625, 1583, 1492, 1446, 1401, 1342, 1318, 1241,
1215, 1094, 1001, 746; dH (400 MHz, CDCl3) 8.07e8.04 (1H, m),
7.47e7.42 (1H, m), 7.13e7.09 (2H, m), 6.87 (1H, s), 6.67 (1H, s), 5.66
(1H, m), 4.64 (1H, ddd, J¼12.8, 5.0, 2.7 Hz), 3.89 (3H, s), 3.88 (3H, s),
3.20e3.13 (1H, m), 2.95e2.87 (1H, m), 2.78e2.71 (1H, m), 2.47 (3H,
s); dC (100 MHz, CDCl3) 164.6, 151.2, 149.1, 148.3, 133.0, 129.7, 128.9,
123.7, 122.9, 122.8, 121.0, 111.0, 110.8, 71.3, 56.2, 56.0, 39.1, 36.0,
28.3; HRMS (ESIþ): Found: 347.1361; C19H21N2NaO3 (MNaþ) Re-
quires: 347.1366 (1.6 ppm error).

4.2.14. 6,6-Dimethyl-5a,6-dihydro-12H-indolo[2,1-b][1,3]benzothia-
zin-12-one (5y). Synthesised using the general DIA procedure from
imine 1e (38.8 mg, 0.267 mmol), acid 2m (49.4 mg, 0.321 mmol),
DIPEA (86.1 mL, 0.494 mmol) and T3P (255 mg, 0.401 mmol) in
toluene (1.5 mL) at 90 �C for 20 h. Purification by column chro-
matography (19:1 petrol:ethyl acetate) afforded 5y as a colourless
oil (39.7 mg, 53%); Rf 0.76 (1:1 petrol:ethyl acetate); nmax (thin
film)/cm�1 2918, 1625, 1572, 1457, 1369, 1310, 1269, 1143, 1078, 739;
dH (400MHz, CDCl3) 8.35 (1H, ddd, J¼8.1, 1.0, 0.6 Hz), 8.22 (1H, ddd,
J¼7.8, 1.5, 0.5 Hz), 7.44e7.28 (4H, m), 7.21 (1H, ddd, J¼7.5, 1.4,
0.6 Hz), 7.14 (1H, ddd, 7.4, 7.4, 1.1 Hz), 5.43 (1H, s, H-1), 1.53 (3H, s),
1.45 (3H, s); dC (100 MHz, CDCl3) 162.1, 140.2, 138.5, 135.1, 132.1,
130.4, 130.4, 128.3, 127.8, 126.4, 124.6, 121.8, 116.3, 73.4, 44.2, 27.6,
26.4; HRMS (ESIþ): Found: 282.0958; C17H16NOS (MHþ) Requires:
282.0947 (�3.8 ppm error).

4.2.15. 5,6,6-Trimethyl-5a,6-dihydroindolo[2,1-b]quinazolin-12(5H)-
one (5z). Synthesised using the general DIA procedure from imine
1e (31.8 mg, 0.219 mmol), acid 2n (39.7 mg, 0.263 mmol), DIPEA
(70.6 mL, 0.405 mmol) and T3P (210 mg, 0.329 mmol) in toluene
(1.5 mL) at 90 �C for 20 h. Purification by column chromatography
(19:1 petrol:ethyl acetate) afforded 5z as a colourless oil (25.0 mg,
41%); Rf 0.64 (5:2 petrol:ethyl acetate); nmax (thin film)/cm�1 2924,
1636, 1577, 1461, 1435, 1409, 1390, 741; dH (400 MHz, CDCl3) 8.35
(1H, dd, J¼8.0, 1.1 Hz), 8.10 (1H, dd, J¼7.8, 1.7 Hz), 7.45 (1H, ddd,
J¼8.4, 7.3, 1.7 Hz), 7.31e7.27 (1H, m), 7.21 (1H, dd, J¼7.5, 1.4 Hz), 7.13
(1H, ddd, 7.5, 7.5, 1.1 Hz), 6.96 (1H, ddd, J¼7.8, 7.3, 0.8 Hz), 6.88 (1H,
d, J¼8.4 Hz), 4.98 (1H, s), 3.02 (3H, s), 1.70 (3H, s), 1.34 (3H, s); dC
(100 MHz, CDCl3) 160.9, 149.5, 139.0, 138.8, 134.0, 128.6, 128.2,
124.5, 121.6, 119.3, 116.8, 116.8, 112.4, 85.2, 46.0, 34.8, 26.0, 23.3;
HRMS (ESIþ): Found: 279.1492; C18H19N2O (MHþ) Requires:
279.1492 (�0.1 ppm error).

4.2.16. 6,7,8,9-Tetrahydro-5aH,11H-pyrido[2,1-b][1,3]benzothiazin-
11-one (5aa).23 Synthesised using the general DIA procedure from
imine 1f (47.3 mg, 0.190 mmol), acid 2m (105 mg, 0.683 mmol),
DIPEA (184 mL, 0.510 mmol) and T3P (544 mg, 0.854 mmol) in
toluene (2 mL) at 90 �C for 20 h. Purification by column chroma-
tography (5:0.5:0.5 petrol:ethyl acetate:CH2Cl2) afforded 5aa as
a white solid (39.0 mg, 31%); Rf 0.76 (ethyl acetate); mp 52e54 �C
(literature 53.5e54.5 �C); 23 nmax (thin film)/cm�1 3062, 2939, 2858,
1635, 1440, 1275, 1204, 920, 742; dH (400 MHz, CDCl3) 8.16 (1H, dd,
J¼7.7, 1.2 Hz), 7.35 (1H, ddd, J¼7.7, 7.7, 1.2 Hz), 7.23 (1H, ddd, J¼7.7,
7.7, 1.2 Hz), 7.18 (1H, dd, J¼7.7, 1.2 Hz), 4.83 (1H, dd, J¼10.8, 3.8 Hz),
4.50e4.59 (1H, m), 2.98 (1H, ddd, J¼13.5, 11.8, 4.0 Hz), 2.10e2.01
(1H, m), 2.01e1.88 (2H, m), 1.87e1.75 (1H), 1.74e1.49 (2H, m); dC
(100MHz, CDCl3); 164.7, 134.8, 131.9, 130.6, 127.7, 126.4, 125.8, 59.0,
44.5, 31.9, 23.7, 23.1; HRMS (ESIþ): Found: 220.0792; C12H14NOS
(MHþ) Requires: 220.0791 (�0.8 ppm error).23

4.2.17. 5,13a-Dihydro-6H,8H-isoquinolino[1,2-b][1,3]benzothiazin-8-
one (5ac). Synthesised using the general DIA procedure from imine
1g (40.0 mg, 0.275 mmol), acid 2m (51.0 mg, 0.330 mmol), DIPEA
(88.7 mL, 0.510 mmol) and T3P (263 mg, 0.413 mmol) in toluene
(1.5 mL) at 120 �C for 20 h. Purification by column chromatography
(5:1 petrol:ethyl acetate) afforded 5ac as an orange oil (58.5 mg,
80%); Rf 0.34 (5:1 petrol:ethyl acetate); nmax (thin film)/cm�1 2879,
1657, 1618, 1609, 1564, 1422, 1366, 1332, 1275, 1231, 732; dH
(400 MHz, CDCl3) 8.15 (1H, ddd, J¼7.8, 1.5, 0.5 Hz), 7.42 (1H, dd,
J¼7.8, 1.6 Hz), 7.35 (1H, ddd, J¼7.7, 7.7, 1.6 Hz), 7.30e7.15 (5H, m),
5.04 (1H, ddd, 12.6, 9.7, 1.9 Hz), 3.03 (1H, ddd, J¼15.4, 12.6, 9.7 Hz),
2.93 (1H, ddd, J¼12.6, 12.6, 2.8 Hz), 2.86 (1H, ddd, J¼15.4, 2.8,
1.9 Hz), 1.91 (3H, s); dC (100 MHz, CDCl3) 163.6, 135.8, 135.4, 134.8,
132.1, 130.9, 129.4, 128.2, 128.1, 127.3, 127.1, 126.2, 126.1, 65.9, 37.3,
29.7, 28.5; HRMS (ESIþ): Found: 304.0766; C17H15NNaOS (MNaþ)
Requires: 304.0767 (0.3 ppm error).

4.2.18. 3-Methyl-1,2-diphenyl-2,3-dihydroquinazolin-4(1H)-one
(5af). Synthesised using the general DIA procedure from imine 1i
(24.6 mL, 0.200 mmol), acid 2o (51.2 mg, 0.240 mmol), DIPEA
(64.5 mL, 0.370 mmol) and T3P (191 mg, 0.300 mmol) in toluene
(2.0 mL) at 90 �C for 20 h. Purification by column chromatography
(4:1 petrol:ethyl acetate) afforded 5af as a white solid (43.0 mg,
68%). Mp 220e223 �C; Rf 0.57 (ethyl acetate); nmax (thin film)/cm�1

1625, 1581, 1471, 1373, 1279, 1238, 1207; dH (400 MHz, CDCl3) 8.02
(1H, dd, J¼7.9, 1.2 Hz), 7.37e7.24 (8H, m), 7.19e7.13 (3H, m), 6.96
(1H, ddd, J¼7.9, 7.9, 1.1 Hz), 6.85 (1H, dd, J¼8.2, 1.1 Hz), 5.96 (1H, s),
3.18 (3H, s); dC (100 MHz, CDCl3) 162.8, 146.1, 143.9, 139.3, 133.0,
129.8, 128.9, 128.8, 128.6, 126.5, 124.8, 123.3, 121.3, 120.5, 118.8,
80.0, 34.3; HRMS (ESIþ): Found: 315.1493; C21H19N2O (MHþ) Re-
quires: 315.1492 (�0.5 ppm error).

4.2.19. 5-(1,3-Dimethoxy-1,3-dioxopropan-2-yl)-1,3-benzodioxole-4-
carboxylic acid (2q). Sodium hydride (60% in mineral oil, 419 mg,
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10.5 mmol) was added portionwise to a rapidly stirred cold sus-
pension (0 �C) of 5-bromobenzo[1,3]dioxole-4-carboxylic acid 9
(1.00 g, 4.37 mmol), cuprous bromide (62.6 mg, 0.437 mmol) and
dimethyl malonate (17.3 mL). After the addition of the sodium
hydride had been completed, the mixture was stirred for 10 min at
rt and then for 20 h at 70 �C. The suspension, which had turned to
a solid mass, was dissolved in water (30 mL), washed with ether
(3�80 mL) and then acidified with 10% HCl. The acidic aqueous
layer, was extracted with ethyl acetate (3�100 mL), and the organic
extracts were dried over MgSO4 and concentrated in vacuo. Puri-
fication by column chromatography (5:1/pure ethyl acetate)
afforded 2q as a colourless solid (1.01 g, 74%); Rf 0.1 (1:1 petrol:ethyl
acetate); mp 88e93 �C; nmax (thin film)/cm�1 2912, 2877, 1704,
1688, 1456, 1431, 1216, 1137, 1039, 1012; dH (400 MHz, CDCl3) 6.95
(1H, d, J¼8.2 Hz), 6.88 (1H, d, J¼8.2 Hz), 6.11 (2H, s), 5.53 (1H, s),
3.76 (6H, s); dC (100 MHz, CDCl3) 169.2, 149.7, 148.5, 127.1, 123.9,
111.9, 107.3, 102.5, 100.0, 54.2, 53.0; HRMS (ESIþ): Found: 319.0424;
C13H12NaO8 (MNaþ) Requires: 319.0424 (0.2 ppm error).

4.2.20. Dimethyl 8,9-dimethoxy-14-oxo-11,12-dihydro-6aH-[1,3]di-
oxolo[4,5-h]isoquino [2,1-b] isoquinoline-6,6(14H)-dicarboxylate
(5ai). To a solution of imine 1d (484 mg, 2.53 mmol), and acid 2q
(900mg, 3.04mmol) in chloroform (25mL) was added sequentially
DIPEA (0.815 mL, 4.68 mmol) and T3P (2.42 g, 3.80 mmol, 50%
solution in THF). The resulting solution was stirred for 20 min at rt
before BCl3 (5.10 mL, 5.10 mmol, 1.0 M solution in DCM) was added.
The resulting solutionwas stirred at rt for 20 h before it was poured
into satd aq NaHCO3 (100 mL). The aqueous layer was extracted
with DCM (3�100 mL), dried over MgSO4, concentrated in vacuo
and purified by column chromatography (1:1/1:2 petrol:ethyl
acetate) to afford 5ai as a yellow solid (819 mg, 69%); Rf 0.5 (ethyl
acetate); mp 152e156 �C; nmax (thin film)/cm�1 2908, 1707, 1626,
1588, 1494, 1440, 1412, 1103, 1029, 718; dH (400 MHz, CDCl3) 6.91
(1H, d, J¼8.1 Hz), 6.81 (1H, s), 6.69 (1H, s), 6.54 (1H, d, J¼8.1 Hz),
6.22 (1H, d, J¼1.3 Hz), 6.10 (1H, d, 1.3 Hz), 5.58 (1H, s), 4.85e4.78
(1H, m), 3.88 (3H, s), 3.87 (3H, s), 3.80 (3H, s), 3.51 (3H, s),
2.92e2.87 (2H, m), 2.67e2.64 (1H, m); dC (100 MHz, CDCl3) 170.1,
167.0, 162.0, 149.0, 148.3, 148.2, 147.1, 131.6, 130.3, 123.1, 120.1, 112.2,
111.1, 110.9, 110.7, 102.7, 65.9, 61.2, 55.9, 55.7, 53.0, 52.9, 39.3, 28.9;
HRMS (ESIþ): Found: 470.1454; C24H24NO9 (MHþ) Requires:
470.1446 (�1.7 ppm error).

4.2.21. (�)-cis-2,3-Dimethoxy-8-oxo-9,10-(methylenedioxy)13-(hy-
droxymethyl) tetrahydro protoberberine (10). To a round bottom
flask containing diester 5ai (106.5 mg, 0.227mmol) in THF (0.7 mL),
lithium hydroxide monohydrade (28.6 mg, 0.681 mmol) in water
(0.7 mL) was added at rt. The reaction mixture was stirred for 16 h
at 90 �C. The solutionwas diluted with water (10 mL), washed with
DCM (10 mL) and then acidified with 10% aq HCl. The acidic
aqueous layer was then extracted with ethyl acetate (3�20 mL),
and the organic extracts were dried over MgSO4 and concentrated
in vacuo. The crude reaction mixture was then added to a solution
of LiAlH4 (30.7 mg, 0.808 mmol) in THF (10 mL) and heated at 70 �C
for 2 h, before it was cooled to 0 �C and quenched by the sequential
addition of water (0.031 mL), 15% aq NaOH (0.031 mL) and water
(0.092 mL). The resulting solids were removed by filtration and
washed with EtOAc. The solids were then collected and refluxed in
EtOAc for 2 h and filtered a second time. The combined filtrates
were dried with MgSO4 and evaporated. Purification by column
chromatography (1:1 petrol:ethyl acetate/EtOAc) afforded 10 as
a yellow solid; (35.7 mg, 43%); Rf 0.6 (ethyl acetate); mp:
145e147 �C (literature 193e195 �C);18c nmax (thin film)/cm�1 3261,
2924, 1609, 1516, 1462, 1360, 1257, 1232, 1209, 1138, 1044; dH
(400 MHz, CDCl3) 6.78 (2H, s), 6.64 (1H, br s), 6.61 (1H, br s), 6.01
(1H, d, J¼1.5 Hz), 5.95 (1H, d, J¼1.5 Hz), 4.14 (1H, d, J¼15.2 Hz), 4.00
(1H, br s), 3.88 (3H, s), 3.66 (3H, s), 3.75 (1H, dd, J¼10.4, 2.0 Hz),
3.58e3.54 (1H, m), 3.53 (1H, d, J¼15.2 Hz), 3.19e3.15 (3H, m),
2.68e2.56 (2H, m); dC (100 MHz, CDCl3) 147.8, 147.8, 145.5, 143.1,
131.0, 127.9, 126.3, 120.9, 117.2, 111.5, 108.4, 107.4, 101.2, 66.0, 63.4,
56.1, 55.9, 53.0, 51.2, 43.9, 29.0; HRMS (ESIþ): Found: 370.1632;
C21H24NO5 (MHþ) Requires: 370.1649 (4.4 ppm error); Obtained
data in accord with those reported in the literature.18c

4.2.22. (�)-cis-2,3-Dimethoxy-8-oxo-9,10-(methylenedioxy)13-
(methanesulfoxymethyl) tetrahydro protoberberine. Methanesulfonyl
chloride (23.8 mL, 0.308 mmol) was added to a solution of alcohol 10
(35.5mg, 0.096) in pyridine (1mL). The reactionmixturewas stirred
at rt for 1.5 h and then quenched with water (10 mL). The mixture
was extracted with Et2O (3�20 mL). The organic extract was dried
and evaporated. Purification by column chromatography (2:1/1:1
hexene:ethyl acetate/EtOAc) afforded the title compound as a yel-
low oil (25.5 mg, 68%); Rf 0.9 (ethyl acetate); nmax (thin film)/cm�1

2936,1517,1462,1353,1334,1172,1142,1041, 955, 730; dH (400MHz,
CDCl3) 6.84 (1H, d, J¼8.0 Hz), 6.75 (1H, s), 6.73 (1H, d, J¼8.0 Hz), 6.61
(1H, s), 6.00 (1H, d, J¼1.4 Hz), 5.97 (1H, d, J¼1.4 Hz), 4.22e4.08 (3H,
m), 3.92e3.86 (2H, m), 3.90 (3H, s), 3.88 (3H, s), 3.56e3.52 (2H, m),
3.11e3.00 (2H, m), 2.63e2.55 (1H, m), 2.62 (3H, s); dC (100 MHz,
CDCl3) 147.8, 147.4, 145.3, 142.9, 132.9, 128.1, 126.3, 1261, 123.1, 111.4,
108.5, 106.7, 101.4, 72.4, 61.5, 56.2, 56.0, 53.2, 51.2, 43.7, 36.8, 29.2;
HRMS (ESIþ): Found: 448.1427; C22H26NO7S (MHþ) Requires:
448.1424 (�1.3 ppm error).

4.2.23. (�)-Cavidine (8). To a solution of (�)-cis-2,3-dimethoxy-8-
oxo-9,10-(methylenedioxy)13-(methanesulfoxymethyl) tetrahydro
protoberberine (22.4 mg, 0.058 mmol) in 95% EtOH (3.5 mL) was
added NaBH4 (32.8 mg, 0.867 mmol). The resulting mixture was
heated at reflux (80 �C) for 2 h and then poured into H2O (15 mL).
The aqueous phase was extracted with CH2Cl2 (3�20 mL). The or-
ganic extracts were dried (MgSO4) and evaporated to yield the
crude product. Purification by column chromatography (5:1 hex-
ane:ethyl acetate) afforded cavidine 8 as a white solid (13.6 mg,
67%); Rf 0.4 (1:1 hexane:ethyl acetate); mp: 180e184 �C (literature
188e189 �C) nmax (thin film)/cm�1 2909, 2757, 1514, 1457, 1333,
1356, 1254, 1228, 1042, 729; dH (400 MHz, CDCl3) 6.72 (1H, d,
J¼8.0 Hz), 6.68 (1H, s), 6.67 (1H, d, J¼8.0 Hz), 6.61 (1H, s), 5.97 (1H,
d, J¼1.5 Hz), 5.93 (1H, d, J¼1.5 Hz), 4.09 (1H, d, J¼15.3 Hz), 3.88 (3H,
s), 3.88 (3H, s), 3.73 (1H, br s), 3.50 (1H, d, J¼15.3 Hz), 3.28e3.22
(1H, m), 3.16e3.07 (2H, m), 2.63e2.57 (2H, m), 0.94 (3H, d,
J¼6.9 Hz); dC (100MHz, CDCl3) 147.6,147.1,144.6,143.0,135.9,128.3,
128.3,121.2, 116.8,111.1, 108.5,106.7,101.0, 63.1, 56.1, 55.8, 53.3, 51.2,
38.5, 29.3, 18.4; HRMS (ESIþ): Found: 354.1683; C21H24NO4 (MHþ)
Requires: 354.1700 (4.3 ppm error); Obtained data in accord with
those reported in the literature.14j,k,18c
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ABSTRACT

The first total synthesis of the Evodia rutaecarpa derived natural product dievodiamine is described. The convergent synthesis was performed
without protecting groups, delivering a route that is short and high yielding and uses limited chromatography. Key steps include organometallic
addition into a DHED adduct and the Stille coupling of two advanced intermediates to complete the synthesis.

In recent years, protecting-group-free methods have
received widespread attention as ways to improve the
efficiency of synthesis. Furthermore, such an approach
provides an ‘opportunity for invention’, as the develop-
ment of novel synthetic methodology becomes necessary.1

Herein we report the successful application of these prin-
ciples in the first total synthesis of (()-dievodiamine 1.
Dievodiamine was recently isolated from Evodia

rutaecarpa.2 None of its biological properties have been
reported, although the Evodia fruits are used in numerous
traditional Chinese remedies to treat a wide range of con-
ditions including headaches, abdominal pain, migraine,
chill limbs, postpartum hemorrhage, nausea, inflamma-
tion, and cancer.2 Its structure is closely related to evodia-
mine 2, another Evodia rutaecarpa derived natural product,
which was recently synthesized by our group using direct
imine acylation methodology.3 Evodiamine is a known
thermogenic and stimulant and is included in a number of
dietary supplements, principally used to promote weight

loss. In addition, more recent studies have shown that it
binds to a diverse range of proteins; its therapeutic
potential against a number of diseases, including cancer,
Alzheimer’s disease, and cardiovascular disease, and its
ability to inhibit human DNA topoisomerase I have been
reported and reviewed.4 Furthermore, a recent SAR
study has shown evodiamine analogues to be highly
promising antitumor candidates.5 Dievodiamine 1 is not
a simple dimer of evodiamine, as its name may suggest,
but it does contain the basic framework of two evodi-
amine subunits (following oxidation and ring opening)
suggesting that evodiamine 2 is a likely biosynthetic
precursor.6 Bisindole alkaloids constitute a major class
of natural products, and their interesting biology has been
well documented.7 The isolation, synthesis, and biologi-
cal evaluation of bisindole alkaloids remains a highly

(1) Young, S. N.; Baran, P. S.Nat. Chem. 2009, 1, 193 and references
therein.

(2) Wang, Q. Z.; Liang, J. Y.; Feng, X. Chin. Chem. Lett. 2010, 21,
596.

(3) (a) Unsworth,W. P.; Kitsiou, C.; Taylor, R. J. K.Org. Lett. 2013,
15, 258. (b) Unsworth,W. P.; Gallagher, K. A.; Jean,M.; Schmidt, J. P.;
Diorazio, L. J.; Taylor, R. J. K. Org. Lett. 2013, 15, 262.

(4) (a) Jiang, J.; Hu, C. Molecules 2009, 14, 1852. (b) Dong, G.;
Sheng, C. S.; Wang, S.; Miao, Z.; Yao, J.; Zhang, W. J. Med. Chem.
2010, 53, 7521. (c) Yu, H.; Jin, H.; Gong, W.; Wang, Z.; Liang, H.
Molecules 2013, 18, 1826 and references therein.

(5) Dong, G.; Wang, S.; Miao, Z.; Yao, J.; Zhang, Y.; Guo, Z.;
Zhang, W.; Sheng, C. J. Med. Chem. 2012, 55, 7593.

(6) For the biosynthesis of related Evodia alkaloids, see: (a) Yamazaki,
M.; Ikuta, A.Tetrahedron Lett. 1966, 7, 3221. (b) Yamazaki,M.; Ikuta, A.;
Mori, T.; Kawana, T. Tetrahedron Lett. 1967, 8, 3317.

(7) Ryan, K. S.; Drennan, C. L. Chem. Biol. 2009, 16, 351 and
references therein.
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active area of research8 with their potential antimalarial
properties in particular receiving prominent attention
recently.8c�e An unusual, although not unique,8b struc-
tural feature of dievodiamine is the ethylene bridge link-
ing the two indole-containing portions. This is convenient
from a synthetic viewpoint, as it provides a handle for
a convergent synthesis, via the cross-coupling of two
evodiamine-like fragments (Figure 1). With this in mind,
and in view of the diverse biological profile of evodiamine
and related compounds, we decided to embark on the
total synthesis of (()-dievodiamine, to confirm the re-
ported structure and to enable its therapeutic potential to
be better examined.

Our convergent retrosynthetic strategy hinged upon the
Stille reaction of two indole-containing fragments 3 and 5.
It was thought that the requisite stannane 3 could be
obtained via the novel addition of a metalated alkyne into
dehydroevodiamine hydrochloride (DHED 3HCl, 4), itself
an alkaloid derived from Evodia rutaecarpa, followed by
hydrostannylation. It was hoped that the 3-iodo-indole
fragment 5 could be synthesized from 2-(methylamino)-
benzamide 6 and commercially available indole-2-
carboxylic acid 7 (Figure 1).
The synthesis began with the conversion of indole 8 into

known lactam 99 via a Curtius rearrangement and sub-
sequent electrophilic aromatic substitution (Scheme 1).

This was then converted to DHED 3HCl 4 by heating with
dimethyl anthranilate 10 and POCl3, using a procedure
modified from that of Decker.10 In our hands, a particu-
larly convenient purification was developed; the crude
reaction mixture was poured into water, and the resulting
precipitate was removed by filtration, rinsed with water,
and dried, affording the desired quinazolinium salt 4 as a
yellow solid in high yield. It was then planned to trap this
adduct with an organometallic species. However, sur-
prisingly little is known about the reactivity of DHED
systems11 and, to the best of our knowledge, there are no
reports of C�Cbond formation at the electrophilic carbon
of any DHED. To test this idea, a small excess of
((trimethylsilyl)ethynyl)lithiumwas added to a suspension
of DHED 3HCl 4 in THF at�78 �C and allowed to warm
to RT before quenching with water. As expected, only a
trace amount of alkyne 11 was isolated, with the bulk
of the starting material 4 recovered by filtration of the
crude reaction mixture. In contrast, when 3 equiv of
((trimethylsilyl)ethynyl)lithium were used all of the start-
ing material 4 was consumed and 11 was isolated cleanly,
suggesting that 1 equiv of the organolithium species must
deprotonate the indole, before the requisite nucleophilic
addition takes place. Conveniently, the progress of the
reaction could be monitored visually, as the mixture
became homogeneous upon completion of the reaction.
Following aqueous workup and treatment of the inter-
mediate alkyne 11 with TBAF, alkynyl dihydroquinazoli-
none 12 was isolated in 90% yield over the two-step
sequence. Of course, the TMS group present during this
sequence necessitates a separate cleavage step and there-
fore does not satisfy the ideals of a protecting group-free
synthesis. Thus, the same transformation was attempted
using an excess of a lithium acetylide ethylenediamine
complex. This was unsucessful, but the use of an excess
of commercially available ethynylmagnesium chloride did
give product 12. Initial results were disappointing, how-
ever, as under the conditions described above the desired
alkyne 12 was only isolated in trace amounts, with the
bulk of the material remaining insoluble as the reaction
progressed and was lost during aqueous workup. The
poor solubility of DHED 3HCl 4 was thought to be a
limiting factor in this reaction, and pleasingly, when the
solvent was switched to toluene, and lithium chloride12

was included as an additive, alkyne 12 was isolated in a
much improved yield following a single, truly protect-
ing-group-free transformation. Finally, hydrostannyl-
ation with tributyltin hydride and AIBN in refluxing
benzene completed the synthesis of stannane coupling
partner 3, which was isolated as a single regio- and
stereoisomer in reasonable yield. It should be noted
that column chromatography was only used in the final
step of either of these three- or four-step sequences from
lactam 9.

Figure 1. Retrosynthetic strategy.

(8) (a) Fernandez, L. S.; Buchanan, M. S.; Carroll, A. R.; Feng, Y. J.;
Quinn,R. J.;Avery,V.M.Org.Lett.2009,11, 329. (b)Vougogiannopoulou,
K.; Fokialakis,N.;Aligiannis,N.;Cantrell, C.; Skaltsounis,A.-L.Org. Lett.
2010, 12, 1908. (c) Dethe, D. H.; Erande, R. D.; Ranjan, A. J. Am. Chem.
Soc.2011,133, 2864. (d)Zeldin,R.M.;Toste,F.D.Chem.Sci.2011,2, 1706.
(e) Vallakati, R.;May, J. A. Synlett 2012, 2577. (f) Vallakati, R.;May, J. A.
J. Am. Chem. Soc. 2012, 134, 6936. (g) Welch, T. R.; Williams, R. M.
Tetrahedron 2013, 69, 770.

(9) Judd, K. E.; Mahon, M. F.; Caggiano, L. Synthesis 2009, 2809.

(10) Decker, M. Eur. J. Med. Chem. 2005, 40, 305.
(11) Limited examples of reduction or hydrolysis reactions ofDHED

adducts can be found in refs 5 and 10.
(12) Krasovskiy, A.; Knochel, P. Angew. Chem., Int. Ed. 2004, 43,

3333.
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The synthesis of iodide coupling partner 5 was achieved
extremely efficiently from commercially available indole-
2-carboxylic acid 7. Acid chloride formation was followed
by reaction with aniline 613 to form amide 14, which was
then heated at reflux in aqueous KOH.14 The insoluble
material was then collected by filtration, affording quina-
zolinone 15 in excellent yield over the three-step sequence.
The synthesis of indole 5 was completed by reaction with
N-iodosuccinimide in acetone, affording the desired pro-
duct 5 in 77% overall yield from 7 (Scheme 2) following
column chromatography. Note that this was the only
chromatography required throughout the four-step syn-
thesis, which could be performed on a multigram scale.
The limited use of chromatography is an important feature
in the syntheses of both coupling partners 3 and 5, espe-
cially during scale-up. Unprotected indoles are often diffi-
cult to handle due to their relatively low solubility in many
organic solvents, but pleasingly, we were instead able to
exploit this property to our advantage by developing
efficient workup conditions that may not have been pos-
sible had protecting groups been employed on the indole
nitrogen atoms.
Conditions for the final Stille coupling were established

using vinyl tributylstannane 16 with iodide 5 (Table 1).
First, no reaction was observed following their treatment
with Pd(PPh3)4 in refluxing THF (entry i). Baldwin’s
conditions,15 which exploit the synergistic effect of CuI
and CsF along with Pd(PPh3)4 in DMF, were also ineffec-
tive on this system, affording no product at 45 �C (entry ii)

and led only to the partial reduction of iodide 5 (entry iii)
and its eventual decomposition (entry iv) at elevated
temperatures. The additive Et4NCl, which is more com-
monly used as an additive in Heck reactions,16 has found
limited use in related Stille reactions,17 but under the
conditions trialled (Et4NCl, PdCl2(PPh3)2 at 80 �C in
DMF, entry v) no reactionwasobserved. Itwas considered
that the reason for the poor reactivity of 5may be due to its
steric bulk inhibiting the transmetalation step. Copper
salts are known to accelerate sluggish Stille couplings by
promoting an initial transmetalation of the organostan-
nane to generate a more reactive organocopper intermedi-
ate.18 Pleasingly when the additives CuI and Et4NCl were

Scheme 1. Synthesis of Stannane 3 Scheme 2. Synthesis of Indole 5

Table 1. Optimization of Stille Conditionsa

entry cat.

additives

(equiv)

temp (�C)/
time (h)

outcome

(yield)c

ib A none 70/20 no reaction

ii A CsF (2), CuI (0.1) 45/1 no reaction

iii A CsF (2), CuI (0.1) 80/1 3:2 15:5

iv A CsF (2), CuI (0.1) 100/1 decomp.

v B Et4NCl (1.0) 80/20 no reaction

vi B Et4NCl (1.0),

CuI (0.1)

80/20 17 (10%)

vii B Et4NCl (1.0),

CuI (1.5)

80/2 17 (81%)

aReactions were performed on a 0.2�0.5 mmol scale using iodide 5
(1.0 equiv), stannane 16 (1.5 equiv), and a Pd catalyst [A=Pd(PPh3)4 or
B=PdCl2(PPh3)2, 0.05 equiv], with the additives and conditions shown,
in DMF unless stated. bReaction performed in THF. c Isolated yield
following column chromatography.

(13) Coyne, W. E.; Cusic, J. W. J. Med. Chem. 1968, 46, 4179.
(14) Gardner, B.; Kanagasooriam, A. J. S.; Smyth, R. M.; Williams,

A. J. Org. Chem. 1994, 59, 6245.
(15) Mee, S. P. H.; Lee, V.; Baldwin, J. E. Angew. Chem., Int. Ed.

2004, 43, 1132.

(16) Jeffrey, T. Tetrahedron 1996, 52, 10113.
(17) Kanekiyo, N.; Kuwada, T.; Choshi, T.; Nobuhiro, J.; Hibino, S.

J. Org. Chem. 2001, 66, 8793.
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combined with PdCl2(PPh3)2 and heated at 80 �C in DMF
(entry vi), this led to the isolation of a small quantity of
coupled product 17. Furthermore, the yield was increased
dramatically by using an excess of CuI (81%, entry vii).
Focus then switched to completing the synthesis of (()-

dievodiamine 1 (Scheme 3). The coupling of iodide 5 with
stannane 3 was slower than with test substrate 17, but
nonetheless, the desired coupled product 1was obtained in
35% yield using the conditions developed above with a
20h reaction time.Furthermore, increasing the amounts of
PdCl2(PPh3)2 and Et4NCl (0.2 and 2.0 equiv respectively)
led to a reduced reaction time (2 h) and a cleaner reaction
mixture, allowing the target compound to be isolated in a
much improved 65% yield following column chromato-
graphy and recrystallization.19 The spectral properties of
the synthetic material (1H and 13C NMR data, IR, mass
spectrum)20 closelymatched those reported for the natural
product, with the 13C NMR data being particularly con-
clusive (see Supporting Information), thus confirming its
assigned structure.2

The first total synthesis of (()-dievodiamine 1 has there-
fore been completed. The two key coupling partners 3 and
5were each synthesized in just four steps, in 33% and 77%
yield respectively, and the final Stille coupling completed
the synthesis of this potentially valuable natural product in
65% yield. The brevity and efficiency of the synthesis was
undoubtedly aided by the absence of protecting groups.

Not only did this help to reduce the total number of steps,
but also imparted suitable solubility properties that en-
abled us to minimize chromatography, thus facilitating
scale-up. Key steps include the first example of an orga-
nometallic addition into a DHED adduct and a Stille
reaction in which two sterically hindered components
coupled using PdCl2(PPh3)2 and the unusual combination
of Et4NCl and CuI as additives. Future work will focus on
testing the biological properties of dievodiamine and, if
these results show promise, performing SAR studies on
related analogues.
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University of York Wild Fund for a PhD bursary (C.K.)

Supporting Information Available. Synthetic proce-
dures and spectral data. This material is available free
of charge via the Internet at http://pubs.acs.org.

Scheme 3. Total Synthesis of (()-Dievodiamine

(18) Han, X.; Stoltz, B.M.; Corey, E. J. J. Am. Chem. Soc. 1999, 121,
7600.

(19) A lower yield (22%) was obtained when Et4NCl was omitted
under otherwise identical conditions, and no product was isolated in the
absence of CuI, thus confirming the importance of both additives.

(20) We also obtained a melting point for 1, but no literature melting
point has been reported for comparison. The authors declare no competing financial interest.
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Abbreviations  

Å Ångstrom Me methyl 

AIBN azobisisobutyronitrile min minute(s) 

aq. aqueous MOM methoxymethyl  

Ar aryl mp melting point 

ax axial MS molecular sieves 

Bn benzyl Ms methanesulfonyl (mesyl) 

Boc tert-butoxycarbonyl MW microwave irradiation 

Bu butyl m/z mass/charge ratio 

Bz benzoyl n normal 

CAN cerium(IV) ammonium nitrate NADPH nicotinamide adenine dinucleotide  

cat. catalyst  phosphate 

Cbz carboxybenzyl NBS N-bromosuccinimide 

CDI carbonyl diimidazole NIS N-iodosuccinimide 

conc. concentrated NLS (S)-norlaudanosoline synthase 

p-cymene 4-isopropyltoluene NMR nuclear magnetic resonance 

DAIB diacetoxy-iodo-benzene Nu nucleophile 

DBU 1,8-diazabicyclo[5.4.0]undec-7-ene o ortho 

DCC dicyclohexyl carbodiimide OAc acetate 

DCE 1,1-dichloroethane OMs methanesulfonate (mesylate) 

DCM dichloromethane OTf trifluoromethanesulfonate (triflate) 

DDQ 2,3-dichloro-5,6-dicyano-1,4- p para 

 benzoquinone PDC pyridinium dichromate 

de diastereomeric excess Ph phenyl 

DMAP N,N-dimethylaminopyridine PMB p-methoxybenzyl  

DMF N,N-dimethylformamide PPA polyphosphoric acid 

DMSO dimethylsulfoxide Pr propyl 

DIPEA N,N-diisopropylethylamine quant. quantitative  

dr diastereomeric ratio Rf retention factor 

EDC 1-ethyl-3-(3-dimethylaminopropyl)  rt room temperature 

 carbodiimide SAM S-adenosyl methionine 

ee enantiomeric excess sat. saturated 

eq equatorial SET single-electron-transfer 

eqn equation STOX (S)-tetrahydroprotoberberine oxidase 

equiv. equivalent(s) t tert 

ESI electrospray ionisation TBAF tetra-n-butylammonium fluoride 

Et ethyl TBDMS tert-butyldimethylsilyl 

EWG electron-withdrawing group TBME tert-butyl methyl ether 

FAD flavin adenine dinucleotide TEA triethylamine 

h hour(s) temp. temperature 

HRMS high resolution mass spectrometry TFA trifluoroacetic acid 

i iso Tf trifluoromethanesulfonyl (triflyl) 

IBX 2-iodoxybenzoic acid THF tetrahydrofuran 

IR infrared t.l.c thin-layer chromatography 

LDA lithium diisopropylamide TMS trimethylsilyl 

LG leaving group Tsdpen N-tosyl-1,2-diphenylethylenediamine 

LHMDS lithium bis(trimethylsilyl)amide  Ts p-toluenesulfonyl (tosyl) 

Lit. literature T3P propane phosphonic acid anhydride 

m meta   

M molar   

M
+ 

parent molecular ion (in mass    

 spectrometry)   
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