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Abstract

This thesis is an econometric investigation of wage inequality in the UK. It consists of

three pieces of empirical work using large UK micro-datasets. The datasets used include

the individual level New Earnings Survey (NES), Annual Survey of Hours and Earnings

(ASHE), and the Labour Force Survey (LFS). Use is also made of firm level data from the

Annual Respondents Database (ARD). The first piece of empirical work aims to identify

trends in the UK wage distribution over time at the aggregate level and at the level of

population sub-groups. This analysis is performed by fitting parametric distributions to

annual cross sections of data using maximum likelihood estimation. The second piece

of analysis is an investigation into the driving factors behind the change in the distribu-

tion of wages over this period using the LFS. This is analysed using a human capital

framework and a decomposition analysis, dividing changes in wage inequality into price,

quantity, and residual effects. The final empirical investigation contributes to the litera-

ture investigating the relationship between wage inequality and firm performance. Using

matched employer/employee data, a Cobb-Douglas production function with a wage in-

equality term is used to estimate the relationship between the performance of enterprises

and wage inequality. Overall, the findings in this thesis show that the finance sector stands

out sharply in the UK as a high inequality industry both in levels and in growth. Despite

a slow-down compared to the 1980s, wage inequality has continued to grow. Human cap-

ital effects have played a role in the changes in wage inequality but a more sophisticated

model is needed to more fully explain these changes at the within-group level. There

is only weak evidence of a link between inequality and corporate performance overall.

Results for manufacturing are, however, consistent with earlier work by Beaumont and

Harris (2003).
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Chapter 1 Introduction

1.1 Aims and Motivation

The issue of inequalities has long been of interest to economists, with a large literature

studying its patterns, causes, and consequences. Inequality remains a significant issue to-

day, of interest not just to economic researchers but also to governments and international

organisations such as the International Monetary Fund (IMF) and the Organisation for

Economic Co-operation and Development (OECD).

Economic growth can be impacted on by inequality by making investment in education

difficult for the poor. At the same time, some inequality is necessary to provide incentives.

Berg and Ostry (2000) find longer spells of economic growth to be associated with more

equality in the income distribution, accounting for other macroeconomic determinants of

growth.

Perotti (1994) and Alesina and Perotti (1996) examine the relationship between the dis-

tribution of income and investment. In these papers support is found for a mechanism by

which higher inequality increases political instability which in turn reduces investment.

As investment is the driver of long-run growth, this inverse relationship between invest-

ment and income inequality therefore implies an indirect channel through which income

inequality can reduce growth.

Social cohesion and mobility are also affected by income inequality, with links being

drawn between income inequality and inter-generational mobility (Corak (2013)) and the

incidence of violent crime (Fajnzylber et al. (2002)).

The distribution of pay has recently become a central issue in the UK with the pay of exec-

utives in the public sector coming under scrutiny by the government. A review of fair pay
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in the public sector, Hutton (2011), recommended (amongst other things) the reporting of

ratios of top to median pay in public sector organisations, making these available to the

public, and a fair pay code to integrate principles of fairness into executive pay. Impor-

tantly, this report also suggested that the reporting of pay ratios should become common

practice across the whole economy.

The public sector is not the only part of the economy where the pay of those at the top

has gained increasing interest. The issue of banker’s pay has become a high profile issue

in the UK due to the necessity of bail-outs during the financial crisis leading to majority

government (and therefore tax payer) shareholding in some banks, particularly notable

examples of which are Northern Rock and the Royal Bank of Scotland (RBS). Hutton

(2011) also indicates that the growth rate of the earnings of those at the top of the distri-

bution is driven by the private sector, with median pay for FTSE 100 CEO’s rising from

47 times UK median earnings in 2000 to 88 times by 2009.

The growth in earnings at the top end of the distribution is not necessarily an issue by it-

self, however the key concern is that the observed growth in the pay of the top earners (in

particular, executives) has not been matched by a corresponding increase in productivity.

This suggests that the top earners are extracting rents from firms rather than pay increases

being linked to marginal productivity and this makes earnings inequality an issue on fair-

ness grounds. This decoupling of earnings growth from productivity growth is suggested

by Hutton (2011) Chart 1C which shows that the earnings of the top 1% grew by approx-

imately 55% between 2000 and 2009 while GDP per worker only grew by approximately

35%.

The Hutton Review also illustrates the fact that earnings inequality is something which

is misunderstood by the general public. Despite the fact that of the top 1% of earnings

only 1% is earned by public sector employees, 25% of individuals surveyed believed

public sector executives earn more than private sector executives. The growth in the pay

of executives of both sectors has been faster than that of the median worker. In 2008 the

median worker earned approximately 10% more than in 2000 compared to 30% for Local

Authority chief executives, 50% for FTSE 250 chief executives and almost 80% for FTSE

100 chief executives (Chart 1D).
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There has also been greater scrutiny in the media of the remuneration of top executives

in the banking sector, with large bonuses being perceived as unfair against the backdrop

of failures in the banking sector and the rising unemployment/falling real wages due to

the recession. As recently as January 2012, the £963,000 bonus of RBS CEO Stephen

Hester and £1.4 million bonus of Chairman Philip Hampton were still controversial issues

receiving media attention BBC (2012).

Inequality therefore remains a relevant and interesting area for research. This thesis fo-

cuses on inequality in wages as opposed to income. Labour market earnings represent the

dominant component of income for the majority of individuals and so inequality in wages

is a significant area of interest for empirical research.

The aim of this thesis is to highlight recent trends in UK wage inequality and set this in

the context of the longer term shifts in wage inequality. This analysis is conducted at the

level of population sub-groups in addition to considering the economy as a whole. It then

addresses what has caused the recent changes in wages inequality, and finally considers

the potential economic impact of wage inequality by analysing its relationship with firm

performance. The thesis makes use of high quality individual and firm level micro-data

recently made available to researchers via the Secure Data Service in order to address

these research questions.

1.2 Thesis Structure

The following three chapters each consist of a micro-econometric investigation related to

the theme of wage inequality.

Chapter 2 examines the change in wage inequality in the UK over the last four decades

with a particular focus on more recent developments using maximum likelihood estima-

tion of parametric distribution models. As well as examining the changes in wage inequal-

ity at the aggregate level, industry and occupation sub-groups are separately analysed and

particular attention is given to the top end of the wage distribution.
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The underlying drivers of these recent changes in UK wage inequality are analysed in

Chapter 3 using a decomposition analysis and a human capital framework. The par-

ticular decomposition technique which is used enables any distributional statistic to be

decomposed into price, quantity, and unobservables effects and is therefore suitable for

decomposing changes in wage inequality. This chapter makes use of the Labour Force

Survey.

Chapter 4 adds to the literature studying the relationship between wage inequality and

firm performance. In order to do this both the New Earnings Survey and the Annual

Respondents Database are utilised and matched at an industry level. A variety of regres-

sion methods including OLS, fixed effects, and system GMM are then used to estimate a

parameter measuring the sensitivity of firm performance to wage inequality.

Chapter 5 summarises the conclusions obtained from the preceding chapters and discusses

areas for further research.
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Chapter 2 Changes in the Wage Distribution 1975-2011

2.1 Introduction

This chapter highlights the recent experience of the UK in terms of changes in wage

inequality. This is motivated by the current interest in issues of inequality discussed in

the introduction to the thesis.

Given the level of interest of pay in the public sector (which can be seen in the com-

missioning of the Hutton (2011) Review of Fair Pay) and in banking, it is of interest to

see to what extent the wage distribution in the UK has changed recently and to examine

all sectors of the economy to isolate those sectors which are the main drivers of wage

inequality. This chapter examines the distribution of wages and wage inequality over the

period 1975 to 2011 at the aggregate level and also for several population sub-groups;

private and public sectors, industries, and occupations.

The chapter also uses regression analysis to assess how inequality differs between sectors

once other factors are controlled for, as composition effects may be causing differing

levels of wage inequality between sectors. For example, inequality is higher amongst

more highly educated individuals, therefore if wage inequality is higher in the finance

sector than the rest of the economy this may reflect a higher proportion of highly educated

individuals in that sector.

In order to address these issues this chapter makes use of a parametric distribution mod-

elling approach. This technique is a relatively popular approach in the income distribution

literature but applications to wages are much less common. This approach has the advan-

tage of providing a unified framework from which a variety of inequality measures can

be calculated as functions of the distribution parameters, also allowing for statistical in-

ference to be made on the inequality measure estimates.
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This technique is particularly useful for the analysis of inequality amongst the highest

earners where observations are relatively sparse and calculations are more sensitive to

extreme values. Fitting a distribution to the upper tail of the overall wage distribution

makes use of all of the observations and, as will be shown later in the chapter, unbiased

and normally distributed estimates of the Pareto distribution parameter which is used to

model high earnings can be achieved for reasonable sample sizes.

The remainder of this chapter is structured as follows; section 2.2 gives some background

to inequality measurement and reviews the literature on the estimation of parametric dis-

tribution models, 2.5 presents results of a simulation study into the properties of the Pareto

distribution, section 2.3 describes the main datasets used in the analysis, section 2.4 out-

lines the methodological approach, section 2.6 presents the results and section 2.7 con-

cludes.

2.2 Background and Literature Review

This section gives a brief overview of the trends in wage inequality in the UK over the

last approximately 50 years. It also gives some background to the concept of inequality

and how it can be measured. It then presents a review of the literature which makes use

of parametric techniques to estimate empirical distributions. This draws mostly from the

income distribution literature, where these methods have been most commonly applied.

2.2.1 Wage Inequality in the UK

Gosling et al. (1994) show that male wage inequality remained relatively stable until the

early 1980s using Family Expenditure Survey (FES) data. Real hourly wages grew at

approximately the same rate at the 90th, 50th, and 10th percentiles between 1966 and

1978. From 1978 to 1992 there was a divergence in real wage growth rates across the

distribution. The growth in the 10th percentile levelled off and remained at approximately

the same level whereas median wages continued to grow (by 27% between 1978 and
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1992) and wages at the 90th percentile grew even faster at a rate of 44% over the same

period.

Estimates of the 90th/50th and 50th/10th percentile differentials for full time male manual

workers as far back as 1886 show that by the 1990s inequality in wages was both at

its highest level and that the changes since the 1970s was larger than anything that can

be observed previously. The trend in the 90/10 differential of hourly wages between

1966 and 1992 is also comparable to the trend in the 90/10 differential of household

income. Gosling et al. (2000) show the same trends in inequality, using the same FES

data extended to 1995. Both Gosling et al. (1994) and Gosling et al. (2000) highlight the

importance of the role of growing inequality within education sub-groups as well as the

growing returns to observable skill in this period.

More recently, Machin and Van Reenen (2010) and Van Reenen (2011) have shown that

wage inequality continued to increase into the 21st century, at a slower rate than previ-

ously observed in the 1980’s and 1990’s.

2.2.2 Inequality Measurement

Inequality in wages occurs because some individuals earn higher wages than others, and

therefore possess a proportionately larger share of the total wage bill in the economy.

Analysis of inequality is based on an underlying social welfare function, which is de-

creasing in the level of inequality. With perfect wage equality every individual earns the

same wage and x% of the population earns x% of total wages. If there is wage inequality,

then the bottom x% of the wage distribution earns less than x% of the total wage bill and

the top (1− x)% earns greater than (1− x)% of total wages. Inequality can be shown

graphically by the Lorenz curve, as depicted in Figure 2.1 for the UK in 2011.

The perfect equality line is a 45 degree line representing the Lorenz curve if all individuals

earned the same wage. The Lorenz curve shows the level of inequality; at each point on

the Lorenz curve the given proportion of the population earns less than that proportion of

wages. A summary measure of inequality which can be obtained from the Lorenz curve

is the Gini coefficient. The Gini coefficient is calculated as the area between the Lorenz
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curve and the 45 degree line divided by the total area under the 45 degree line. This

produces a coefficient value between 0 and 1, with 0 representing no inequality and 1

representing complete inequality.

The advantage of having a single coefficient to describe the level of inequality in a dis-

tribution is that it allows distributions to be ranked in order of inequality. In the context

of social welfare there are a number of properties which it is desirable for a measure of

inequality to possess1:

• Symmetry; Inequality does not depend on the characteristics of individuals; if two

individuals were to swap incomes, inequality would be unchanged.

• Transfer Principle; A transfer from a richer individual to a poor individual reduces

inequality

• Scale invariance/ Mean Independence; An equally proportionate increase or de-

crease to all wages should leave overall inequality unchanged.

• Decomposability; Overall inequality can be expressed as a weighted sum of in-

equality values as calculated for a given number of population subgroups

The only class of inequality measures which fulfil the property of additive decompos-

ability is the generalised entropy class of inequality measures (denoted I(γ)). Additive

decomposability means that overall inequality can be expressed as the sum of a within-

group and between-group term, where the within-group term is a weighted sum of the

sub-group levels of inequality (Shorrocks (1980)). The parameter γ in the generalised

entropy family represents the sensitivity of the measure to changes at the top of the dis-

tribution. A higher value of γ indicates that the measure gives relatively more weight to

inequality at the top of the wage distribution.

The generalised entropy class of measures is connected to the Atkinson class of inequality

measures developed by Atkinson (1970) (denoted Aε ) but the latter is not additively de-

composable. Similar to the generalised entropy measures, the parameter ε in the Atkinson

1 Lambert (2001) describes each of these in detail
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family of inequality measures represents the degree of inequality aversion with sensitivity

to transfers at the bottom of the distribution increasing with ε .

2.2.3 Models of Income/Earnings Distribution

A variety of distributions have been considered appropriate for the modelling of income,

earnings, and wages. Most of these distributions are related to each other, with the more

complex distributions nesting the simpler ones. Figure 2.2 summarises the relationships

between each of the distributions discussed in this section2.

A two parameter distribution which has been proposed for the modelling of income distri-

butions is the log-logistic, which is considered by Fisk (1961). An advantage of using this

distribution is ease of estimation and interpretation of a limited number of parameters.

Using UK and US earnings data, the distribution is considered to be more useful when

modelling homogeneous income distributions such as at a single occupational level.

The log-normal distribution is fitted to UK New Earnings Survey data for the year 1972

by Harrison (1981). A two parameter3 Pareto distribution is also used in order to model

the upper tail of the distribution. The log-normal distribution is found to fit the earnings

distribution poorly, particularly to the tails of the distribution but also for the bulk of the

data. When extreme values are removed the log-normal distribution is found to perform

better. It is therefore concluded that the inability of the log-normal distribution to cope

with the extreme upper tail of the earnings distribution is the cause of its poor fit overall.

Log-normal distributions are also estimated for disaggregated occupational groups and

at this level the fit of the distribution is found to improve. This corresponds to the Fisk

(1961) finding for the log-logistic distribution that a simple two parameter distribution

is more appropriate for more homogeneous groups of incomes. The Pareto distribution

is found to fit the upper tail better than the log-normal, although it is concluded that

2 This is taken from Bandourian et al. (2002) Figure 1
3 Only one of which is estimated, the second parameter is the mode of the distribution and is chosen by the

researcher.
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the previously held convention that the top 20% of the distribution can be adequately

modelled this way does not hold. Once the data are disaggregated it is found that Pareto

distribution estimates are unstable.

The Pareto distribution is also considered by Cowell et al. (1998) to model the tail of

the household income distribution in Brazil between 1981 and 1990. Brazil is charac-

terised by a highly skewed distribution and so the bulk of the distribution is modelled

non-parametrically and a Pareto distribution is fitted to the upper tail of the distribution.

Incomes over $1,000 and incomes over $5,000 are modelled in this way. A Pareto’s α

(the estimated parameter of the Pareto distribution) for the former group of 2.925 and

for the latter of 3.684 in 1981 suggested inequality within the very rich was lower than

amongst the rich as a whole. This is because Pareto’s α is inversely related to the level

of inequality in the distribution. Throughout the 1980’s Pareto’s α fell indicating rising

inequality.

Thurow (1970) estimates a two parameter beta distribution to US Bureau of Census house-

hold income data between 1949 and 1966. A limitation of the beta distribution for estimat-

ing income distributions is that it is bounded between 0 and 1. Income therefore needs to

be converted to a 0-1 scale, which implies a maximum income value (this is chosen to be

$15,000 at 1959 prices which affects less than 5% of the sample). These beta distributions

are estimated separately for white and black households and Gini coefficient estimates are

calculated from the parameters. The parameters are also modelled as functions of macroe-

conomic indicators such as the employment rate and government expenditure. R2 values

greater than 0.9 suggest this distribution fit the US income data well.

Salem and Mount (1974) highlight the ease of interpretation of the parameters of distri-

butions such as these and estimate log-normal and gamma densities for the distribution

of household income in the US using the Current Population Survey in 1960 and 1969.

Their results show that both distributions exaggerate the skew of the income distributions

but that the gamma distribution outperforms the log-normal. Additionally they model the

inequality parameter of the gamma distribution as a function of macroeconomic variables,

as in Thurow (1970), and find reducing unemployment and inflation to be associated with

a more equal income distribution.
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The log-normal and gamma distributions are also compared by Prieto-Alaiz and Victoria-

Feser (1996) who estimate the income distribution for Spain. Three income measures are

used - total household income, equivalised household income, and per capita household

income. For the first of these measures the gamma distribution is found to out-perform

the log-normal distribution but the reverse is true for the latter two measures.

Given the drawback that two parameter distributions are potentially too inflexible, Singh

and Maddala (1976) propose a three parameter distribution, referred to thereafter in the

literature as the Singh-Maddala distribution. This is a generalisation of the Weibull and

log-logistic distributions. The Singh-Maddala distribution was found to provide a signifi-

cantly better fit than both the log-normal and gamma distributions using the same 1960’s

US data as the Salem and Mount (1974) study. Another three parameter distribution which

is also a generalisation of the log-logistic distribution was developed by Dagum (1977).

Kloek and van Dijk (1978) estimate the distribution of Dutch earnings in 1973. Their

paper initially estimates log-normal and gamma distributions but conclude them to be

overly simplistic and therefore inappropriate. The three parameter generalisation of the

gamma distribution is found to provide a much better fit to the data but this is subject to the

trade-off between goodness of fit and parameter interpretation. The generalised gamma

distribution parameters do not have a direct economic interpretation, and it is reported

that there are substantial estimation problems for this distribution.

McDonald and Ransom (1979) provide a comparison of the Singh-Maddala, gamma, beta,

and log-normal distributions. The same 1960-1969 US family income data as used by

Salem and Mount (1974) and Singh and Maddala (1976) is utilised to compare the perfor-

mance of these distributions by a number of estimation techniques. Regardless of the es-

timation technique used, the log-normal distribution is found to be inferior to the gamma

distribution and likewise the three parameter beta and Singh-Maddala distributions are

superior to the gamma.

The Singh-Maddala, generalised gamma and beta distributions are generalised to the four

parameter generalised beta of the first (GB1) and second kind (GB2) distributions by Mc-

Donald (1984). The GB2 is found to significantly outperform all models, followed by the

Singh-Maddala, in an application to US data 1970-1980. Amongst the two parameter dis-
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tributions the Weibull is found to perform best. McDonald and Mantrala (1995) perform

similar comparisons, additionally including the Dagum distribution. Their findings are

consistent with McDonald (1984) with the additional finding that the Dagum distribution

is the best performing three parameter distribution - rather than the Singh-Maddala.

Kleiber (1996) compares the Dagum and Singh-Maddala distributions theoretically. The

Dagum distribution is closely related to the Singh-Maddala as both are nested special

cases of the GB2 distribution and are generalisations of the log-logistic distribution. Re-

ferring to the McDonald and Mantrala (1995) results, this paper indicates that the Dagum

distribution provides a better fit to income distributions than the Singh-Maddala distribu-

tion and performs almost as well as the GB2.

The ability to fit distributions almost as well as the GB2 while maintaining the relative

simplicity of a three parameter model makes the Dagum distribution an ideal one to fit

income distributions. In terms of wages, the superiority of the GB2 is further supported

by Parker (1999) who shows that under neo-classical assumptions the theoretical wage

distribution will correspond to the GB2.

McDonald and Xu (1995) develop the five parameter generalised beta (GB) model which

nests the GB1 and GB2. Using US family income data, the GB model performs better

than the GB1 and GB2 but not significantly better than GB2. Their findings regarding the

fit of other distributions are consistent with other work; the GB2 and Dagum distributions

are the best fitting four and three parameter models respectively.

The five parameter GB and its nested models are estimated for 23 different countries over

time by Bandourian et al. (2002) using household income data from the Luxembourg

Income Study. In the case of the US in 1997, the Weibull and Dagum distributions are

found to fit best of the two and three parameter models respectively. The improvement of

the GB over the GB2 and the GB2 over the Dagum were both found to be insignificant

using the likelihood ratio test. Overall, the Dagum distribution was found to be the best

fitting three parameter model in all time periods considered for 15 of the 23 countries and

the best model in at least 50% of time periods considered for all but 3 of the countries. The

GB2 is the best four parameter model but is only significantly better than the respective

best three parameter model in 44% of cases.
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In summary, the GB distribution is the most flexible at five parameters but has not been

found to significantly outperform the nested four parameter GB2 distribution. The GB2

distribution in turn nests the Dagum, Singh-Maddala, generalised gamma, and beta 2

distributions, with the Dagum typically being the best performing of these three parameter

models and in many cases performing just as well as the GB2. This suggests that a three

or four parameter distribution is an appropriate choice for modelling incomes/earnings.

2.2.4 Estimation Techniques for Parametric Distribution Models

A number of methods of estimating the parameters of parametric distribution models have

been used. Common estimators are the minimum χ2 - Harrison (1981), Kloek and van

Dijk (1978)), McDonald and Ransom (1979), and Majumder and Chakravarty (1990)

- and maximum likelihood approaches - McDonald (1984), McDonald and Mantrala

(1995), McDonald and Xu (1995), Prieto-Alaiz and Victoria-Feser (1996), Bandourian

et al. (2002) and Jenkins (2009).

Other less frequently used estimation techniques include non-linear least squares (NLS)

- used by Singh and Maddala (1976), and McDonald and Ransom (1979) - a modified

method of moments estimator used by Parker (1997), and the optimal B-robust estimator

(OBRE) used by Prieto-Alaiz and Victoria-Feser (1996).

Some studies use more than one estimation technique, allowing for comparisons. Mc-

Donald and Ransom (1979) compare three estimators in fitting Singh-Maddala and other

models; minimum χ2, NLS and an MLE based technique method of scoring. The results

showed that the method of scoring and minimum χ2 methods provide better estimates

(and more comparable to each other) than NLS based on sum of squared errors and χ2

value criterion. This is due to the asymptotic efficiency of MLE and the asymptotic equiv-

alence of the minimum χ2 and method of scoring estimators.

McDonald (1984) argues that MLE is the most efficient estimator when using grouped

data, and maximum likelihood estimation on individual data is more efficient than that.

MLE and minimum χ2 are both used by McDonald and Mantrala (1995). Maximum

likelihood produces sum of squared errors and sum of absolute levels either equal to or
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slightly less than those obtained by minimum chi squared when fitting lognormal, gamma,

generalised gamma, Dagum, Singh-Maddala, and GB2 distributions.

Prieto-Alaiz and Victoria-Feser (1996) compare the OBRE and MLE. The OBRE is an

estimator based on robust statistics and accounts for the possibility of errors in the data or

extreme observations which may prevent the data from exactly following the parametric

model. In the OBRE framework the data is assumed to be generated by a distribution

which approximates a parametric model but accounts for a small probability that the data

comes from a “contamination” distribution. The data are therefore modelled as a mixture

distribution of the contamination distribution and the parametric distribution, weighted by

the probabilities that an observation comes from either distribution.

The OBRE technique is found to be more robust than maximum likelihood estimation, and

is found to give better gamma and lognormal distribution fits to Spanish income data. In

using the OBRE there is, however, a trade-off between robustness and efficiency whereas

MLE is the most efficient estimator. MLE is therefore more efficient but under the poten-

tially strong assumption that the parametric functional form is correctly specified.

2.3 Data

This section describes the two datasets used in the analysis in this chapter. These are the

New Earnings Survey (NES) and the Annual Survey of Hours and Earnings (ASHE).

2.3.1 The New Earnings Survey

The New Earnings Survey4 is a 1% random sample of all employees in the UK registered

to pay income tax through PAYE (Pay As You Earn). The sample is obtained by exam-

ining individuals whose National Insurance numbers end with a specific two digits. The

4 Office for National Statistics, New Earnings Survey, 1975-2011: Secure Data Service Access [computer
file]. Colchester, Essex: UK Data Archive [distributor], May 2012. SN: 6706.
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survey is completed by employers for their employees using company payroll records,

as a result of which the data relating to earnings collected from this survey can be con-

sidered more reliable than those from self-completed questionnaires such as those used

by the Labour Force Survey. The NES data covers the period 1975-2011 and is used to

estimate the aggregate level wage distributions as a complement to the ASHE data which

is used to model the wage distribution in more recent years.

2.3.2 The Annual Survey of Hours and Earnings

The ASHE5 was introduced in 2004 in order to address the shortcomings of the NES.

The design of the NES can lead to biased estimation of earnings statistics etc for four

main reasons; coverage of employees is incomplete, responses are un-weighted, differ-

ential non-response, and also it misses employees who change jobs between the sample

selection and survey dates.

The first issue - incomplete coverage - is specifically related to the under-representation of

low earners i.e. people who earn below the PAYE threshold. Employees in businesses not

included on the Inter-Departmental Business Register (IDBR) cannot be identified and

therefore cannot be included in the survey. These types of workers would tend to earn

below the PAYE threshold but this bias is not thought to be large based on the number and

size of businesses not in the IDBR.

Within the IDBR there are other sources of potential bias; VAT only businesses - where

employees are paid less than the PAYE threshold. Selected businesses in this category

are asked if they have employees outside the PAYE scheme and if so are sent an ASHE

questionnaire for each of these employees. The other source of bias is employees paid

outside of PAYE, however it is thought to be too difficult to obtain data for this group and

they are therefore excluded from the survey (but are accounted for in the weights). Unit

non-response - in particularly that which occurs when individuals change jobs between

the survey date and the sample being identified - is also dealt with using a supplementary

5 Office for National Statistics, Annual Survey of Hours and Earnings, 1997-2011: Secure Data Service
Access [computer file]. Colchester, Essex: UK Data Archive [distributor], May 2012. SN: 6689.
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survey.

The issue of weighting (required due to the sample no longer being a 1% purely random

sample) is dealt with by creating a calibration weight; responses are divided into calibra-

tion groups (108 in total) based on occupation, sex, age, and workplace region. The total

number of employee first and second jobs in the Labour Force Survey (spring quarter) is

used to create calibration totals for the 108 groups.

Item non-response can cause problems when results are weighted and so missing values

for certain ASHE variables are imputed using a stochastic imputation method - the miss-

ing variable is estimated from the responses of individuals with similar characteristics

to the employee with the missing value. Similarity of two employees is determined by

occupation, region, sex, age, and whether or not they are paid the full adult rate. The

ASHE therefore represents a better coverage of employees than the NES, particularly at

the bottom end of the distribution. A more detailed description of the ASHE methodology

and its improvement over the NES is given in Bird (2004). The ASHE methodology has

been retrospectively applied to the NES, providing ASHE data for the period 1997-2003.

ASHE data used in this study covers the period 1997-2011.

2.3.3 Variables

The variable which is modelled is the individual’s average hourly wage, as opposed to

earnings or total income. Total income is not modelled as this thesis focuses on labour

market income. An individual’s earnings are their total payments from their employment

over a given period of time, whereas the wage is labour market earnings per hour; the

price per unit of labour. Earnings are driven by an individual’s labour supply decision and

firms’ labour demand decisions (on hours) as well as wages and DiNardo et al. (1996)

argue that it is better to model wages than earnings as the wage is more directly linked to

models of wage determination and can therefore be related to economic theory.

The hourly wage variable used here consists of all aspects of the employees pay; their

basic pay, incentive pay, overtime pay, and other pay which consists of, for example,

additional payments for working at “unsociable” hours. This total earnings figure is av-
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eraged across the employee’s total working hours - basic hours plus overtime hours. The

distribution models are estimated based on the hourly wage earned from the individual’s

main job (if the individual has more than one job). The wage variable is adjusted for

inflation using the Retail Prices Index (RPI) at 2011 prices.

The histogram in Figure 2.3 illustrates a typical wage distribution (truncated to £50 or

less per hour), in this case from the ASHE data for 1997. The skew of the distribution is

positive, indicating the bulk of the data is located in the bottom of the distribution with

outliers in the right hand tail, as would be expected from a wage distribution.

The standard industrial and occupational classification codes are used to create population

sub-groups for which the distributions are also estimated. Five industrial groups are used:

primary industries (which consists of agriculture, fishing, mining, construction, energy,

and water supply); manufacturing; finance; distribution (consisting of wholesale, retail,

motor vehicles, and hotels and catering); and all other services.

Two occupational groups are created termed ”high skilled” and ”low skilled”. These

groups are composed of, respectively, SOC major groups 1-3 (managers and senior of-

ficials, professional, and associate professional/technical occupations) and the remaining

groups 4-9 (administrative, skilled trades, personal services, sales, plant and machine op-

eratives, and elementary occupations). A dummy variable is also used to split the sample

into public and private sector employees.

2.4 Methodology

The methodology of this chapter is to use parametric distribution modelling techniques

to model the distribution of UK wages using the NES and ASHE data. An advantage

of using non-parametric techniques such as the kernel density approach of Cowell et al.

(1998) is that the distribution can be modelled without making any assumptions about

the appropriate functional form of the distribution. The drawback to this approach is that

the lack of parametrisation of the model means quantitative results cannot be obtained for

analysis. A parametric approach is therefore the preferred option for this chapter in order
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to estimate measures of wage inequality.

Parametric modelling of the wage distribution involves choosing and imposing a specific

functional form on the data, and estimating the parameters of the chosen functional form

by an appropriate estimation technique. Appropriate distributions for modelling wage

data are those which are supported for all strictly positive values of the wage and are posi-

tively skewed to allow for outliers in the upper tail of the distribution, and the distributions

considered are those identified in the literature review.

Three parameter models of distributions represent a compromise between two parameter

models (which are simpler to estimate and interpret, but relatively inflexible and provide

poorer fits) and four/five parameter models (which provide better fits to data but are more

difficult to estimate and interpret). A common finding in the literature is that the Dagum

(1977) distribution is the best fitting three parameter size distribution to income/wage

data and often performs just as well as the four parameter Generalised Beta 2 distribution.

Figure 2.3 compares the log-normal, Dagum, and GB2 distributions estimated for 1997

using the ASHE data.

As Figure 2.3 shows, the log-normal distribution provides a relatively poor fit to the dis-

tribution of wages, whereas the Dagum and GB2 distributions both fit well and cannot

easily be distinguished from each other visually. The null hypothesis that q = 1 for the

GB2 distribution is, however, rejected at the standard significance levels, therefore sig-

nificantly distinguishing it from a Dagum distribution. The Dagum distribution is still

preferred, however, as the maximum likelihood estimator of the GB2 distribution suffers

from convergence problems for a number of the annual cross-sections.

2.4.1 Dagum Distribution

The probability and cumulative distribution functions for the Dagum distribution are given

by:

f (x;a,b, p) =
apxap−1

bap[1+( x
b)

a]p+1 ;(a,b, p > 0),x ∈ (0,∞) (2.1)
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F(x;a,b, p) = [1+(
x
b
)−a]−p;(a,b, p > 0),x ∈ (0,∞) (2.2)

The estimated parameters of the distributions can be used to calculate estimates of differ-

ent features of interest of the distribution such as the moments or the quantiles as functions

of those parameters. Measures of inequality can also be calculated for the empirical dis-

tributions. The measures which are calculated are the Gini coefficient, the 90/10, 50/10,

and 90/50 percentile ratios, and three indices from the generalised entropy (GE) family of

inequality measures. Estimates of Pareto’s α are also obtained to analyse wage inequality

at the top of the distribution at the aggregate level and sectoral level. Further disaggrega-

tion results in an insufficient sample size with which to estimate Pareto models, Pareto’s

α estimates are consequently not estimated for the industry and occupation level models.

The GE measures - denoted I(γ) - are calculated for γ = 0, 1, and 2. The γ term is a

parameter indicating the sensitivity of the GE measure to inequality at the top of the dis-

tribution, with the sensitivity increasing with the value of γ . The formulae for obtaining

the GE measures from the Dagum distribution are adapted from those presented by Jenk-

ins (2009) for the GB2 distribution. The Gini coefficient for this distribution was derived

by Dagum (1977).

The formulae for calculating these measures of inequality from the Dagum distribution

parameters are6:

Gini =
Γ(p)Γ(2p+ 1

a)

Γ(2p)Γ(p+ 1
a)
−1 (2.3)

I(0) = γ(p+
1
a
)+ γ(1− 1

a
)− γ(p)− ψ(p)

a
− ψ(1)

a
(2.4)

6 In these formulae Γ denotes the gamma function, ψ denotes the digamma function (first derivative of the
gamma function), and γ denotes the log-gamma function.
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I(1) =
ψ(p+ 1

a)

a
−

ψ(1− 1
a)

a
− γ(p+

1
a
)− γ(1− 1

a
)+ γ(p) (2.5)

I(2) =−1
2
+

Γ(p)Γ(p+ 2
a)Γ(1−

2
a)

2Γ2(p+ 1
a)Γ

2(1− 2
a)

(2.6)

and the quantile function used to calculate the percentile ratios is given by:

F−1(u) = b[u−
1
p −1]−

1
a , f or0 < u < 1 (2.7)

2.4.2 Pareto Distribution

While the Dagum distribution is useful for modelling the entire distribution, the top of

the distribution can be independently modelled using a Pareto distribution. The Pareto

distribution is given by the probability and cumulative density functions:

f (x;α,x0) =
αα

0
xα+1 ,(α,x0 > 0),x ∈ (x0,∞) (2.8)

F(x;α,x0) = 1− (
x0

x
)α ,(α,x0 > 0),x ∈ (x0,∞) (2.9)

Kleiber and Kotz (2003) show that all measures of inequality are inversely proportional

to the α parameter - also known as ”Pareto’s α”. The parameter itself can therefore be

interpreted as a measure of inequality. In addition to the Dagum distribution estimates and

the inequality measures derived from their parameters, the analysis also includes estimates

of the Pareto distribution where the x0 parameter (representing the minimum point of the

support of the Pareto distribution) is chosen a priori so as to model the upper 10%, 5%,

and 1% of the wage distribution.
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2.4.3 Estimation

The empirical wage distributions are estimated by maximum likelihood (ML) estimation

- this is due to the asymptotic properties of ML which can be exploited due to the large

sample sizes of the datasets. It has also been commonly used in the literature for fitting

parametric distribution models to income and wage data. The distributions are estimated

in repeated cross sections for each year of the available data in order to show how the

distributions and various inequality measures have changed over time.

This approach is applied at the aggregate level, the sectoral (public/private) level, the

industry level, and the occupational level. Maximum likelihood estimation of the dis-

tribution parameters involves maximising the following log-likelihood functions for the

Dagum, and Pareto distributions7 respectively:

`(θ |xi) = log(a)+ log(p)+(ap−1)log(xi)

−(ap)log(b)− (p+1)log[1+(
xi

b
)a]

(2.10)

`(θ |xi) = log(α)+(α)log(x0)− (α +1)log(xi) (2.11)

2.4.4 Regression Models

The analysis also consists of regression models, showing the impact of various character-

istics on wage inequality once other factors are accounted for. Inter-quantile regression

models are estimated in a similar approach to Stewart (2011) which models wage inequal-

ity as measured by the log of the percentile ratios as a function of the included variables.

Variables included are occupation, industry, sector, regional dummies, and gender.

The inter-quantile regression is an extension of standard quantile regressions in which the

7 These are expressed as the likelihoods for a single observation, which are aggregated over all observations.
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conditional quantile of the dependent variable y (as opposed to the mean) is modelled for

some given quantile q as a linear function of independent variables x. The inter-quantile

regression technique models the difference between two quantiles in the distribution of y

yi,q = x′iβq + εi,q (2.12)

The inter-quantile regression approach estimates an equation which is the difference be-

tween two equations of the form in equation 2.12 which are distinguished by two different

values of q. If, for example, the two values of q chosen are 90 and 10 (the 90th and 10th

percentiles), the inter-quantile regression model is the difference between two quantile

regressions, one for the 90th percentile and one for the 10th:

yi,90− yi,10 = x′i(β90−β10)+ εi,90− εi,10 (2.13)

yi,90− yi,10 = x′iβ
∗+ ε

∗
i (2.14)

The estimated coefficient in the inter-quantile regression model for a given independent

variable is therefore the difference between the coefficients from two separate quantile

regressions. In using this approach to model wage inequality the difference in wage in-

equality between population sub-groups can be analysed while controlling for compo-

sitional factors. For example, a significant positive coefficient on a dummy variable for

being male would indicate greater wage inequality amongst males than females having ac-

counted for the fact that males may be disproportionately represented in higher inequality

sectors such as finance.

A regression approach is also taken to analyse wage inequality at the top of the distribu-

tion. As in Thurow (1970) and Salem and Mount (1974), the parameters of the maximum

likelihood estimated distributions can be modelled conditional on a set of explanatory

variables. This is performed for the Pareto distribution in this case to model the inequality

at the top of the distribution as a function of the same variables used in the inter-quantile
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regressions.

As the estimated parameter of the Pareto distribution can itself be considered a measure

of inequality it is straightforward to extend the estimates of this parameter to the case

where the parameter is conditioned on explanatory variables. As in the inter-quantile

regressions, this will show the differences in inequality between groups having controlled

for composition effects.

2.5 Simulation

This section presents the results of a simulation study of the maximum likelihood estima-

tor of Pareto’s α . A similar study of the properties of the maximum likelihood estimator

of the Dagum distribution parameters is provided by Domanski and Jedrzejczak (1998).

It finds that estimates of the scale parameter, b, of the Dagum distribution are biased for

sample sizes less than 4,000 and are not normally distributed for any of the sample sizes

they consider (up to 10,000). The scale parameter does not, however, affect the inequality

of the distribution. The parameters which do influence the level of inequality are unbi-

ased when estimated by maximum likelihood for samples of 2,000 - 3,000 and are also

normally distributed and efficient. Given the large sample sizes available in the ASHE

(even when disaggregating the analysis) the results of their simulation study suggest that

the MLE of the Dagum distribution in this chapter will produce reliable estimates of the

parameters and inequality measures and also valid statistical inference.

The simulation of the Pareto distribution is based on the same procedure as the Domanski

and Jedrzejczak (1998) paper. The finite sample properties of the MLE of the Pareto

distribution are examined by selecting a range of sample sizes and for each sample size

examining the performance of the estimator for a range of values of the α parameter. The

parameter values should be chosen so as to cover plausible situations in the real data. The

lower bound parameter of the distribution x0 is fixed at 25.76 for all simulations as this is

the 90th percentile of the pooled 1997-2011 real wage data in the Labour Force Survey.

The values of Pareto’s α used are 2, 3, 4, and 5 and the sample sizes selected are 1,000,
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2,000, 3,000, 40,00, 5,000, 6,000, 7,000, 8,000, 9,000, and 10,000.

For each simulation random samples of size n = 1,000,2,000, ...,10,000 are drawn from

a Pareto distribution with parameter values of x0 = 25.76 and α = 2,3,4,5 in turn. The

maximum likelihood estimator is then used to fit an empirical Pareto distribution to the

random samples. The simulation is performed with 5,000 replications for each combina-

tion of sample size and parameter value and the empirical bias and variance calculated.

The Shapiro-Francia test for normality is also performed. Under the null hypothesis for

this test, the parameter estimate is normally distributed.

Table 2.1: Empirical Bias of the Pareto Distribution MLE

α=2 α=3 α=4 α=5

Sample Size Bias t statistic Bias t statistic Bias t statistic Bias t statistic
1,000 0.002 2.106 0.003 2.364 0.001 -0.291 0.006 2.772
2,000 0.000 0.285 0.003 2.735 0.000 0.235 0.002 1.482
3,000 0.000 -0.687 0.001 0.876 0.000 -0.168 0.001 -0.528
4,000 0.000 0.496 0.000 0.269 0.000 -0.208 0.002 1.652
5,000 0.000 1.106 0.001 1.377 0.001 1.508 0.002 1.733
6,000 0.000 0.652 0.000 -0.214 0.001 -0.905 0.002 1.835
7,000 0.000 0.538 0.000 -0.547 0.000 -0.279 0.001 1.023
8,000 0.000 0.596 0.001 1.296 0.001 1.298 0.000 0.529
9,000 0.001 2.628 0.001 -1.866 0.000 -0.798 0.001 -0.852

10,000 0.001 2.493 0.000 -0.513 0.001 1.614 0.001 0.924

Table 2.1 reports the first of the simulation results. For each of the four parameter values

and each sample size considered the absolute value of the empirical bias and a t statistic

for the null hypothesis that the expected value of the estimates of α is equal to the value

for the underlying data generating process (i.e. that the bias is equal to zero). With the

exception of when α is equal to two the estimator is unbiased for relatively small sample

sizes (3,000 and higher). Where the bias is significantly different from zero it is still small

in magnitude. The consequences of any bias in the estimator therefore do not appear to

have any economic significance.

Table 2.2 reports the results of the simulation for the variance and normality of the pa-

rameter estimates. The p values for the Shapiro-Francia test show that the null hypothesis

cannot be rejected at the 5% level for samples larger than 7,000. For feasible sample sizes

it is therefore valid to perform statistical inference on the MLE of the Pareto distribution.

The variance in the estimator is also declining asymptotically for each value of α .

24



Table 2.2: Empirical Variance and Normality of the Pareto Distribution MLE

α=2 α=3 α=4 α=5

Sample Size σ2 SF Test σ2 SF Test σ2 SF Test σ2 SF Test
1,000 0.004 0.001 0.009 0.000 0.016 0.004 0.026 0.018
2,000 0.002 0.145 0.005 0.003 0.008 0.189 0.013 0.387
3,000 0.001 0.001 0.003 0.034 0.005 0.002 0.008 0.009
4,000 0.001 0.374 0.002 0.324 0.004 0.034 0.006 0.178
5,000 0.001 0.102 0.002 0.097 0.003 0.187 0.005 0.465
6,000 0.001 0.272 0.002 0.016 0.003 0.915 0.004 0.033
7,000 0.001 0.616 0.001 0.959 0.002 0.643 0.003 0.091
8,000 0.000 0.625 0.001 0.286 0.002 0.308 0.003 0.676
9,000 0.000 0.152 0.001 0.069 0.002 0.240 0.003 0.373

10,000 0.000 0.058 0.001 0.610 0.002 0.912 0.003 0.143
Note: SF Test columns report p values for the Shapiro-Francia test

2.6 Analysis

This section presents the results of the analysis previously outlined. Table 2.3 summarises

the results of the aggregate and sub-group analyses, showing percentage changes in each

level of wage inequality between 1997 and 2011 calculated from the Dagum distribution

estimates using the ASHE data. Figures which show the year-on-year changes in inequal-

ity can be found in Appendix 2A to this chapter and further quantitative results showing

the estimated levels of inequality in select years can be found in Appendix 2B.

Table 2.3: Percentage Changes in Inequality (ASHE)

Aggregate Private Public High Skilled Low Skilled Primary Manufacturing Distribution Finance Services

Gini 2.76 -0.5 0.01 8.11 -11.9 -1.57 6.43 -17.31 21.04 1.47

90/50 3.70 1.15 1.56 7.48 -3.13 0.17 5.84 -9.72 17.48 3.22

50/10 -6.95 -7.99 -5.75 -3.49 -11.40 -4.95 -3.25 -11.12 5.19 -9.07

90/10 -3.52 -6.93 -4.28 3.74 -14.17 -4.78 2.39 -19.76 23.57 -6.15

I(0) 4.73 -1.71 -0.94 14.13 -23.84 -4.20 12.67 -31.81 48.01 1.41

I(1) 13.69 5.10 4.46 24.20 -19.47 -0.77 21.00 -32.42 68.63 11.22

I(2) 59.91 34.35 17.54 50.04 -16.39 4.70 50.58 -42.22 141.89 49.85
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2.6.1 Aggregate Level Wage Inequality

The aggregate levels of wage inequality are estimated using both the NES and ASHE

data. Table 2.5 gives the estimates of the inequality measures for selected years from the

ASHE data for selected years between 1997 and 2011. Gini coefficient estimates shown

in Figure 2.4 indicate increasing inequality over time until the late 1990’s, at which point

the increases slow down substantially. Both datasets show comparable trends in inequality

with the exception of a peak in the NES data around the year 2000.

The ASHE data yields significantly higher estimates of wage inequality than NES, as

would be expected due to the sampling of both datasets in which ASHE gives better

coverage of the bottom of the wage distribution. The increase in the Gini coefficient is

2.76% points. As can be seen in Figure 2.4 the rate of the increase in inequality between

1997 and 2011 has declined in comparison to the 1980’s/early 1990’s. This Figure is

similar to Van Reenen (2011) Figure 2 which also showed the rapid increase in wage

inequality - measured by the 90/10 ratio - until the late 1990’s, followed by a slowdown

but continued increase.

Figures 2.5 and 2.6 show the change over time in the three generalised entropy measures

of wage inequality, respectively using the NES and the ASHE. In both cases inequality

can be seen to have increased over the 1975-2011 period as well as from 1997-2011 by

each of the measures. The increase in inequality is the most dramatic by the I(2) level of

inequality - 60% between 1997 and 2011 compared to 14% by I(1) and 5% by I(0).

The 90/50 ratio has significantly increased since 1975, meanwhile the 50/10 ratio in-

creased up to around 1995 in the models estimated from the NES data, the ASHE results

suggesting a peak at 1998. After 1998 both the NES and ASHE results show a significant

and sharp decline in the 50/10 ratio. This decline coincides with the introduction of the

National Minimum Wage (NMW) in 1999 and persists until 2011. Between 1997 and

2011 the decline in the 50/10 ratio was 6.95% compared to a 3.70% increase in the 90/50

ratio.

Figures 2.7 to 2.9 show the change in Pareto’s α - the estimated parameter of the Pareto

distribution which is inversely related to the level of inequality. For the top 10% and 5%
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of the distribution, inequality has significantly increased from 1975 to 2011 and for the

top 1% has increased until approximately 1995 and remained relatively constant since.

These increases in the top 5% and 10% mainly occurred during the 1980’s and 1990’s, in

common with the changes in inequality in the wage distribution as a whole.

Unlike the estimates of wage inequality for the entire distribution, there is no significant

difference between the estimated level or patterns over time of Pareto’s α between the

ASHE and the NES data. This is likely due to the fact that the methodological differences

between ASHE and NES were to better account for the bottom end of the distribution, it

should therefore be expected that there would be no significant impact on estimates based

on the top 10% of the wage distribution between the two datasets.

The aggregate level results therefore give a picture of increasing wage inequality, and

that this is being driven by the top of the wage distribution. The exception to this is the

90/10 differential which declined despite an increase in the (more comprehensive) Gini

coefficient. This indicates that the increases in wage inequality picked up by the other

measures are driven at least in part by the extremes (the top and bottom deciles) of the

distribution and most likely the top 10%. The 90/50 and 50/10 differentials indicate the

increase in wage inequality is a high-earners phenomenon.

The introduction of the minimum wage in 1999 also makes it unlikely that inequality

increased in the very bottom tail of the distribution. The Pareto distribution estimates

provide evidence that there has been an increase in inequality within the top 10% of

the aggregate wage distribution. The generalised entropy measures also indicate the im-

portance of inequality amongst the highest earners, with the estimated increase in wage

inequality increasing as more weight is attached to the top of the distribution.

These range of inequality measures calculated here give some indication of why inequality

growth has slowed down. The figures indicate that the top of the wage distribution has

played a role, with the change in inequality within the top 10%, 5%, and 1% levelling off

in the last few years of the sample. The decline in inequality within the bottom of the

distribution also clearly has some role in slowing down overall inequality growth.
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2.6.2 Sectoral Level Wage Inequality

Private and public sector level estimates are presented in Tables 2.6 and 2.7. The Gini

coefficient did not change substantially for either sector, with a 0.5% decline for the pri-

vate sector and a 0.01% increase for the public sector. These changes can be seen to be

insignificant in Figure 2.10. The Figure shows that private sector wage inequality has

remained consistently greater than public sector wage inequality.

Both private and public sector saw a slight increase in the 90/50 ratio (1.15% and 1.56%

respectively) over time but much more apparent significant declines in the 50/10 ratio

(7.99% and 5.75% respectively). This results in an overall decline in the 90/10 ratios for

both sectors. As with the Gini coefficient these results suggest that the gap between public

and private sector wage inequality has declined.

Whether inequality increased or decreased depends on the sensitivity placed on the top

end of the distribution, as shown by the GE estimates. Interpreting the I(0) measure, both

sectors saw a decline in wage inequality. The I(1) and I(2) measures both saw an increase

between 1997 and 2011, however, with particularly large increases by the I(2) measure

of 34% in the private sector and 18% in the public sector. This relatively large change in

I(2) compared to the other GE measures is apparent in Figures 2.11 and 2.12.

In contrast to the percentile ratios and the I(0) measure, the I(1) and I(2) inequality

measures indicate rising wage inequality in both sectors and also suggest the gap between

the two is rising rather than falling, so the comparison of these two sectors is sensitive to

the inequality measure interpreted.

Compared to the other levels of analysis the change in inequality is particularly sensitive

to the measure chosen, both in terms of comparing the change in inequality within the

sector and when comparing the two together. There are some indications that the gap

between the two has narrowed with only the measures most sensitive to the top of the

distribution suggesting the the gap has continued to widen.

Higher inequality in the private sector than the public sector has an intuitive explanation.

As public sector workers are paid for by taxation there is greater scrutiny of public sector
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pay than that of employees in private firms. This is especially the case at the top of the

distribution, particularly as it is harder to justify high pay on the grounds of performance.

Performance in a public sector firm is more difficult to measure compared to a private firm

where performance can be judged as profits or shareholder return. There are therefore

tighter “outrage” constraints on top pay in the public sector which restricts growth in

wage inequality compared to in the private sector.

2.6.3 Occupational Level Wage Inequality

The two different levels of occupation - high and low skilled - exhibit different trends

in inequality over time. As can be seen in Table 2.3, wage inequality unambiguously

declined amongst low skilled occupations, and, with the exception of the 50/10 ratio,

increased by every inequality measure in high skilled occupations.

Figures 2.13 to 2.15 show the changes in each of the inequality measures for the high

skilled and low skilled occupational subgroups. In each figure it is clear that the change

in the inequality measures over time are all significant.

The Gini coefficient increased by approximately 8% for high skilled occupations and

declined by 12% for low skilled occupations. The change in the 90/10 ratio is driven pri-

marily by the bottom of the distribution for low skilled occupations, with an 11% decline

in the 50/10 ratio contributing to an overall decline in the 90/10 ratio of 14% which is

suggestive of the NMW affecting the bottom end of the wage distribution after 1999 for

the low skilled occupations.

The 50/10 ratio declined by a smaller magnitude of 3.5% points in high skilled occu-

pations and partially offset an increase in the 90/50 ratio of 7.5% points, leading to an

overall increase in the 90/10 ratio.

As in the aggregate and sectoral cases, the GE measures change by a monotonically in-

creasing amount moving from the I(0) measure to I(2). In the case of low skilled oc-

cupations this means the magnitude of the decline in wage inequality decreases, from

24% points by the I(0) measure to 16% points by the I(2) measure. For high skilled
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occupations I(0) increased by 14%, I(1) by 24%, and I(2) by 50%.

The occupational level results could be indicative of an effect of changes in the skill

distribution on wage inequality. All measures of inequality for the low skilled decline and

all of them (except the 50/10 differential) increase for the high skilled.

The explanation for these results could be greater educational attainment. The widen-

ing of participation in higher education in the UK would be expected to have introduced

a larger variety of abilities into the high-skilled occupations which require a university

degree by inducing those with less ability to acquire higher education. Consequently

(assuming individuals are paid according to their marginal product of labour) the distri-

bution of wages within the higher skilled occupations will have widened. Assuming those

individuals would have been at the top of the distribution of wages in the lower skilled

occupations, the distribution of wages for those occupations will have narrowed.

These results link back to the aggregate level analysis, where falling inequality was found

at the bottom of the distribution and rising inequality at the top. These occupational level

results provide an indication for why this has been observed, as the low skilled occupa-

tions will be found primarily within the bottom of the aggregate wage distribution and the

high skilled occupations at the top. This educational attainment explanation for the dif-

ferent trends in wage inequality within the occupational level distributions can therefore

potentially explain the observed trends in the aggregate distribution.

2.6.4 Industry Level Wage Inequality

The results for the industry level analysis are presented in Tables 2.10 to 2.14 and Figure

2.16.

The Gini coefficient results in Figure 2.16 show two industries in which wage inequality

has declined (primary and distribution). The decline of 1.57% in primary industries is

not significant but the 17.31% decline in the wholesale/retail distribution and catering

industries is. In the other industries the Gini coefficient has increased, particularly in

finance where the increase was 21.04%. The Gini coefficient for the remaining industries
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- manufacturing and other services - increased significantly. Although relatively small in

magnitude, the increase in the Gini coefficient for other services of 1.47% is significant.

The finance industry is the only one for which inequality increased according to each of

the estimated measures. It is also the only population sub-group for which the estimated

50/10 ratio increased over the 1997-2011 period. Table 2.3 shows that the magnitudes

of these changes also substantially exceed the changes seen in other industries, or at the

occupational/sectoral/aggregate level. This can particularly be seen for the I(2) measure,

for example, which increased by 142% in finance - 91% points more than the increase for

manufacturing, which exhibited the next largest increase in the I(2) measure.

I(0) and I(1) decreased for primary industries but I(2) increased (although not signifi-

cantly). Wholesale/retail distribution and catering is the only industry in which inequal-

ity unambiguously declined by all inequality measures with a significant fall in I(2) of

42%. It is notable that the wholesale/retail and catering industries are the only case of

the change in the GE measures monotonically decreasing rather than increasing as more

weight is given to observations at the top of the distribution. The decline in the I(0)

measure is 32% compared to a 42% decline in I(2). In all other industries and occupa-

tional/sectoral/aggregate level analysis, giving more weight to the top of the distribution

increases the observed change in wage inequality - either increasing the growth in in-

equality or reducing the decline.

In the services sector, the decline in the 50/10 ratio offset the increase in the 90/50 ratio

which results in an overall decline in the 90/10 ratio of 6.15% despite the other measures

of inequality exhibiting significant increases in wage inequality. The increases in the I(0)

and I(1) measures are smaller than those of manufacturing and finance but the increase in

the I(2) measure of 50% is comparable to the increase for manufacturing.

The industry level results add to the conclusion that the top of the distribution is an im-

portant factor in the recent trends in wage inequality. In each case, regardless of whether

inequality increased or decreased, the largest magnitudes are found for I(2) than I(1) and

in turn I(0).

Changes in, and levels of, inequality may differ across industries because of composi-
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tional factors. For example, the distribution sector consists of retail and catering which

are both relatively low-waged industries. This greater proportion of low-wage jobs com-

pared to other industries make it more susceptible to the introduction of the minimum

wage which could partially account for the decline in wage inequality which is observed.

The minimum wage can only at best be a partial explanation for declining wage inequality

in this sector, as amongst the generalised entropy measures the decline in wage inequality

is greater when the most weight is put on the top of the distribution. Also, the 90/50

differential indicates that inequality within the top of the distribution declined and this

would not be affected by the minimum wage.

As wage inequality within low skilled occupations declined while increasing within high

skilled occupations, the relative proportions of these types of occupation in each indus-

try will impact on the change in inequality within each industry as these proportions are

likely to differ across industries. Wage inequality falling in distribution but increasing in

financial services could in part be a reflection of the fact that finance is likely to have a

greater proportion of high skilled occupations and therefore the impact of growing wage

inequality within those occupations will have a stronger impact on finance than distri-

bution. This is another composition effect which will account for differences in wage

inequality growth across industries.

If the factors which affect the relative demand for skilled labour have differential impacts

across industries this would explain the differences in wage inequality found in this anal-

ysis. There are likely to be differences in the adoption of production processes which

require skilled labour across industries, for example, the increasing adoption of computer

technology. Industries which make heavier use of computer technology will increase their

relative demand for skilled labour by more than industries which do not and this could be

part of the difference between the catering, retail, and wholesale sectors and finance.

2.6.5 Regression Results

This section extends the analysis of the previous sections by considering differences in

inequality by population sub-group once other factors are controlled for. For example,

greater wage inequality in finance compared to manufacturing may be due to a greater
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proportion of high skilled labour. A regression approach allows for an interpretation

of the difference in inequality between those two industries when controlling for other

compositional factors.

Interquantile Regressions

Following the approach of Stewart (2011), who performed a similar analysis for earn-

ings inequality between 1997 and 2002, Table 2.15 presents the results of inter-quantile

regressions for the 90/10, 90/50, and 50/10 percentile ratios. For this analysis the wage

variable is transformed into logs as the difference in two log percentiles of the distribution

is equivalent in interpretation to the log of the ratio of the two percentiles. Coefficients

are therefore interpretable as the impact of the independent variable on the log percentile

ratio.

The regressions include four industry dummies with primary industries as the base cate-

gory, a private sector dummy, high skilled occupations dummy (indicating an individual

in the SOC major groups 1 to 3), a gender dummy equal to one if the individual is male,

and regional dummies (only the coefficient for London is reported for these). Results are

reported for each of the three percentile ratios from separate cross-sectional regressions

for 1997 and 2011. Standard errors are estimated by bootstrapping with 400 replications.

The results show that in 1997 wage inequality was not significantly different in the finance

sector than the base category for all three percentile ratios, despite the unconditional in-

equality estimates reporting a 90/10 ratio of 3.53 in primary industries (Table 2.10) and

4.38 in finance (Table 2.13). In 1997, therefore, the difference between inequality in fi-

nance and primary industries can be explained by accounting for occupational, sectoral,

gender, and regional composition.

Overall wage inequality in wholesale/retail and catering was also insignificantly differ-

ent from primary industries in 1997, however inequality in the top of the distribution -

the 90/50 ratio - was significantly higher but significantly lower in the bottom of the dis-

tribution - the 50/10 ratio. Controlling for other factors still leaves some inter-industry

wage inequality differences, with a significantly higher 90/10 ratio in the other service
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industries and significantly lower in manufacturing.

The picture changes by 2011. In 2011 the 90/10 ratio for manufacturing and services is

insignificantly different from primary industries. The 90/10 ratio for finance is approx-

imately 10% points larger than primary industries despite the 50/10 ratio in 2011 being

significantly lower by 3% points. Controlling for other factors, the increase in wage in-

equality in finance relative to other industries is still apparent and driven by the top end of

the wage distribution. Similarly, the wholesale/retail distribution and catering 90/10 ratio

moved to being significantly less than primary industries by 16% points.

In both 1997 and 2011 high skilled occupations are more unequal than low skilled occu-

pations once the other factors are controlled for. All six coefficients for the high skilled

dummy are highly significant. This difference is large in magnitude with a 26% points

larger 90/10 ratio for high skilled occupations in 1997 which increased to 40% points by

2011. This pattern is reflected in the coefficients for both the 90/50 and 50/10 ratios which

increased from 0.133 to 0.181 and from 0.126 to 0.220 respectively.

For both the male and London dummy variables the coefficients can be interpreted simi-

larly but with much smaller magnitudes. Wage inequality amongst males is significantly

larger than females and by each of the three inequality measures this wage inequality

has increased between 1997 and 2011, with a 3% point increase in the additional wage

inequality amongst males over females from 10% to 13%. The 90/10 ratio in London

compared to the base region (Scotland and Wales) increasing from 9% points to 21%

points.

All six coefficients are also highly significant for the private sector. In this case, the level

of wage inequality in the private sector relative to the public sector has fallen between

1997 and 2011, with the 90/10 ratio falling from 20% points larger than that of the public

sector to 12%, driven mainly by a relative fall in the 50/10 ratio coefficient of 0.076

points to 0.012 point. The gap between public and private sector wage inequality has

therefore fallen but wage inequality remains significantly higher in the private sector.

This narrowing of the private/public sector difference in wage inequality contrasts with

the faster growth of private sector wage inequality during the 1980’s and 1990’s found by

Disney and Gosling (1998).
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Pareto Regressions

As well as overall wage inequality, inequality at the top of the distribution is similarly

analysed by modelling the Pareto distribution as a function of the same independent vari-

ables used in the interquantile regression analysis. Table 2.16 presents the results of this

analysis. The models are estimated for the top 10% and 5% of the wage distribution in

1997 and 2011. As the value of α is inversely proportional to the level of wage inequality

a negative coefficient indicates a greater level of wage inequality.

For each of the four industries, inequality amongst the top 10% and top 5% has declined

relative to the base industry. In the case of manufacturing the value of Pareto’s α is

not significantly different from the base industry. In both time periods for both the top

10% and 5% of the wage distribution finance is the most unequal industry, followed by

wholesale/retail/catering and services. In 2011, for the top 5%, the only significant in-

dustry coefficient is that for finance, for the remaining three industries inequality is not

significantly different from that of primary industries.

Unlike for the wage distribution as a whole, the coefficients for the male and London

dummy variables have declined in magnitude for both the top 10% and 5%. This is also

the case for the private sector. This means that in each case the difference in wage inequal-

ity between the variables and their base categories has declined. Inequality amongst the

highest earners is therefore significantly higher in London, for males, and in the private

sector but the gap has shrunk. The difference in inequality between high and low skilled

occupations remained approximately the same between 1997 and 2011 for the top 10%

but in the top 5% the coefficient is negative and significant for 1997 but insignificant in

2011.

In the top 10%, the most important factor determining the level of wage inequality is

whether or not the individual is high skilled or low skilled in 2011. This differs from the

case in 1997 where the coefficients for finance, gender, and working in the private sector

are all larger in magnitude than being high skilled.

Amongst the top 5% the factor which exerts the largest impact on the level of wage in-

equality is whether or not the individual is in the finance industry in 2011. In 1997 the
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impact of working in the finance industry is still one of the most important determinants

of the level of inequality, smaller in magnitude only than the effect of working in the

private sector.

2.6.6 Comparison of Measures of Pay

Results are likely to be sensitive to the decision to model hourly wages rather than earn-

ings. The impact of this on the results of the analysis is examined by comparing the previ-

ously estimated distributions with equivalent distributions modelled for weekly earnings

- the same variable used in the construction of the gross hourly wage variable but not

divided by hours.

The results may also be affected by using gross weekly earnings and total hours in the

construction of the hourly wage variable, therefore a comparison is also made with a wage

measure calculated from basic weekly earnings and basic hours. Basic weekly earnings

omits any earnings accrued which is not basic pay, including overtime pay, shift/premium

pay for working “unsociable” hours, and incentive pay. This wage measure therefore also

omits overtime hours from the construction of the wage variable.

The results of these comparisons are presented in Figure 2.17. Tables 2.17 and 2.18

present aggregate level results equivalent to Table 2.5 for basic pay and weekly earnings

respectively. As seen in Figure 2.17 the Gini coefficient for weekly earnings follows

a similar pattern as that for hourly wages but produces a significantly larger estimated

Gini coefficient, indicating that some inequality in earnings is due to differences in labour

supply across the earnings distribution. The qualitative conclusion of a gradual significant

increase in inequality since 1997 holds for earnings as well as wages.

Comparing basic pay to total pay also reveals some differences in the results of the anal-

ysis. Until 2004 the level of wage inequality estimated using basic pay/hours does not

differ significantly from the estimates using total pay/hours. After 2004 however the two

series’ diverge and inequality calculated from basic pay/hours can be seen to be signif-

icantly lower. It appears therefore that after 2004 differences in incentive and overtime

pay per hour across the wage distribution forms a significant component of the patterns in
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wage inequality.

Table 2.17 shows that the Gini coefficient declined slightly, with a much more substantial

and significant decline in the 90/10 ratio also observed. The I(0) generalised entropy

measure of inequality also declined but I(1) and I(2) both increased significantly. This

runs contrary to the less ambiguous results obtained for total pay, for which I(0) and the

Gini coefficient also increased.

2.6.7 Comparison to the Labour Force Survey

This section presents the results of the aggregate level analysis when using data from the

Labour Force Survey (LFS). The sample is restricted in the same way as the NES and

ASHE data (i.e. uses only hours and earnings from the individual’s main job) and the

wage variable constructed in the same way as the main wage measure used so far in the

analysis - gross weekly earnings divided by actual hours.

Figure 2.18 presents results equivalent to those of Figure 2.4. Overall, the Gini coeffi-

cient increases in the LFS data results as in the NES/ASHE. There are, however, some

differences. The LFS results show the Gini coefficient declining significantly until 2005

before beginning to increase again. The increase in the Gini coefficient in the ASHE data

is more continuous over the 1997-2011 period. The estimated Gini coefficients in the LFS

are also smaller than those from ASHE. The values from the LFS range between 0.305

and 0.315 The ASHE estimates of the Gini coefficient range from 0.341 and 0.351, and

the difference is clearly significant.

Similar conclusions can be drawn from the comparison of generalised entropy estimates

between the LFS data, (presented in Figure 2.19) which is the equivalent of the ASHE

results in 2.6. The trends in the LFS and ASHE generalised entropy measures look similar,

including the relative ranking of the measures in terms of the higher the sensitivity to the

top of the distribution, the higher the estimated inequality. As with the Gini coefficient,

however, the LFS understates the level of wage inequality compared to the ASHE. This

can be most clearly seen with the I(2) measure which is consistently larger than 0.4 in the

ASHE data but remains between 0.25 and 0.30 in the LFS.
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Unlike the Gini coefficient, the generalised entropy estimates from the LFS data do not

show a distinct decline in wage inequality between 1997 and 2005 followed by a subse-

quent increase.

Table 2.4 shows the percentage change in each inequality measure for the same sectors,

occupational groups, and industries as the analysis using the ASHE data. It is comparable

to Table 2.3. The column for the aggregate level results shows that the magnitude of all

changes in wage inequality are smaller when using the LFS data. The sign of each change

is the same for both datasets with the exception of I(0) which increased by 4.73% in the

ASHE estimates but declined by 0.15% in the LFS estimates.

Table 2.4: Percentage Change in Inequality 1997-2011 (LFS)

Aggregate Private Public High Skilled Low Skilled Primary Manufacturing Distribution Finance Services

Gini 0.92 1.00 -1.57 1.87 -13.43 0.23 3.17 -11.63 12.17 -0.65

90/50 2.08 2.14 -0.21 1.75 -6.47 1.89 3.95 -6.71 9.94 1.18

50/10 -5.06 -5.38 -3.1 -0.82 -9.74 -5.52 -4.55 -6.37 1.38 -6.38

90/10 -3.09 -3.35 -3.3 0.92 -15.58 -3.73 -0.78 -12.65 11.45 -5.28

I(0) -0.15 0.21 -4.29 2.75 -26.46 -2.36 3.92 -22.3 25.07 -3.84

I(1) 5.14 5.86 -2.49 4.76 -25.5 2.82 10.7 -23.39 34.98 1.33

I(2) 16.21 19.69 -0.86 8.26 -28.08 10.35 24.03 -29.46 93.72 9.39

The occupational level results are similar in the LFS and ASHE estimates. Each of the

magnitudes for the high skilled occupations are larger in the ASHE results than the LFS.

The same is true of the magnitudes of the decreases in wage inequality in the low skilled

occupations (which decreased by 11.4% in the ASHE estimates but only 9.74% in the

LFS). Each change in inequality is the same sign for both sets of results.

All changes in wage inequality are negative for the wholesale/retail distribution indus-

try and positive for the finance industry, as in the ASHE results. The finding that the

increases in wage inequality were much larger in the finance industry than any other is

again observed in the LFS estimates. Again, the changes in wage inequality are smaller

in magnitude for both of these industries in the LFS compared to the ASHE results.

In manufacturing the 90/10 ratio declined by 0.78% in the LFS estimates as opposed

to the increase of 2.39%. Otherwise the manufacturing sector exhibits the second largest
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increases in wage inequality after finance as was found in the ASHE results. The direction

of change for the Gini coefficient and I(1) changes from negative in the ASHE results to

positive in the LFS, however in both cases the magnitudes of the changes in each measure

of wage inequality are relatively small.

2.7 Conclusions

The results presented here give some indication of what has happened to wage inequal-

ity on the whole in Great Britain, along with underlying differences between public and

private sectors, industries, and occupations in the period 1997-2011. It also sets this

in the context of the sharp increases in UK wage inequality throughout the 1980’s and

early 1990’s. While this chapter primarily aimed to give a descriptive account of the

changes in wage inequality some attempt has been made to speculate on the potential

causes of these changes, using comparisons of different inequality measures and differen-

tial changes across industries and occupations. The causes of change in inequality is the

focus of the next chapter where some of these speculative ideas will be revisited.

At the aggregate level, both the ASHE and NES based estimates show increasing wage

inequality from 1975 until the mid-late 1990’s. From this point onwards, the interpretation

of what has happened to wage inequality is more sensitive to the choice of inequality

measure. The NES and ASHE results give similar estimates of wage inequality but those

from ASHE are consistently significantly larger. However, both estimates result in the

same time trend due to ASHE being an extension of NES aimed at better accounting

for the lower end of the distribution. Estimates of the Pareto distribution indicate that

inequality amongst the top earners in the distribution also increased significantly from

1975 until the late 1990’s, and continued to increase but at a slower rate after this. For

these estimates the disparity between the NES and ASHE results disappears as the main

differences between the two relate to the bottom end of the earnings distribution.

The private sector has consistently remained a higher inequality sector than the public

sector, however the results differ on whether or not the gap is shrinking or widening -
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the results which put greater emphasis on the top of the wage distribution give stronger

evidence that growth in wage inequality has been faster in the private sector. Regression

results indicate that public sector inequality has been catching up to that of the private

sector. Certain sections of the economy have experienced a reduction in wage inequality -

low skilled occupations have seen a reduction in wage inequality while inequality amongst

high skilled occupations have grown. The wholesale/retail distribution and catering in-

dustries have also experienced unambiguous declines in wage inequality. The finance

sector stands out as the greatest source of increasing wage inequality during this period

with the most conservative estimate being a 21% increase in inequality but with estimates

reaching as high as 142%.

Conditional models of wage inequality show that being in a high skilled occupation and

being in the private sector are amongst the most important determinants of higher wage

inequality both overall and within the top 10% of the wage distribution. Inter-quantile

regressions show that, even controlling for compositional factors, within-group inequality

is still significantly higher for the high skilled than the low skilled, in the private sector

than the public sector, and for males than females.

The results of this chapter also offer some insight into the differences between the con-

sidered measures of inequality and when one might be preferred over another. In general,

the Gini coefficient may be considered the preferred measure as it is a single coefficient

which is representative of the entire distribution while remaining neutral about the rela-

tive importance that may be attached to high or low earners. It can therefore be used to

describe inequality in the whole distribution without making normative judgements about

the relative importance of certain observations over others.

Unlike the Gini coefficient, the generalised entropy family of inequality measures implies

a judgement on the relative importance of high earners. In an empirical application, the

choice of a particular inequality measure from this family implies a value judgement on

the part of the researcher regarding the weight which should be attached to inequality at

the top of the distribution. As is the case in this chapter when using a generalised entropy

measure of inequality a selection of these measures should be calculated in order to show

how sensitive the preferred measure is to changes in the weight placed on high earners.

As has been demonstrated in this chapter the magnitude in the change in inequality can
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vary substantially. If the aim of calculating the level of inequality involves examining the

importance of those higher earners then these are appropriate measures to use.

The use of percentile differentials, in focussing on the difference between two specific

data points, is problematic in that they ignore the rest of the distribution. The 90/10 dif-

ferential says nothing about inequality amongst the very lowest and very highest earners.

The advantage of this measure is however in the ease with which a particular section of

the distribution can be analysed independently from the rest, as was the case in this appli-

cation in order to separately examine inequality above and below the median. This is an

important feature when the two regions of the wage distribution appear to behave differ-

ently, as they do here. This type of measure also has the advantage of being an intuitive

and reliable way of describing inequality within the bulk of the distribution. As with the

Gini coefficient, these measures do not attach any weight to any observations over the

others.
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Chapter Appendices

2.A Chapter 2 Figures

Figure 2.1: Lorenz Curve: UK Wages 2011
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Source: Labour Force Survey
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Figure 2.2: Models of Income and Earnings Distribution

Source: Bandourian et al. (2002)

Figure 2.3: Comparison of Distributions
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Figure 2.4: Aggregate Gini Coefficient Estimates

Figure 2.5: Aggregate Generalised Entropy Estimates - NES
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Figure 2.6: Aggregate Generalised Entropy Estimates - ASHE

Figure 2.7: Aggregate Pareto’s α - Top 10%
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Figure 2.8: Aggregate Pareto’s α - Top 5%

Figure 2.9: Aggregate Pareto’s α - Top 1%
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Figure 2.10: Sectoral Level Gini Coefficients

Figure 2.11: Private Sector Generalised Entropy
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Figure 2.12: Public Sector Generalised Entropy

Figure 2.13: Occupational Level Gini Coefficients

48



Figure 2.14: High Skilled Generalised Entropy

Figure 2.15: Low Skilled Generalised Entropy
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Figure 2.16: Industry Level Gini Coefficients

Figure 2.17: Comparison of Pay Measures
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Figure 2.18: Aggregate Gini Coefficient - LFS
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Figure 2.19: Aggregate Generalised Entropy Estimates - LFS
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2.B Chapter 2 Tables

Table 2.5: Aggregate Wage Inequality

1997 2000 2003 2005 2008 2011

Gini 0.341 0.344 0.345 0.347 0.345 0.351
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

90/50 2.169 2.185 2.195 2.22 2.209 2.249
(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

50/10 1.878 1.868 1.853 1.792 1.791 1.747
(0.004) (0.004) (0.004) (0.003) (0.004) (0.003)

90/10 4.073 4.081 4.068 3.979 3.957 3.929
(0.012) (0.012) (0.012) (0.011) (0.012) (0.011)

I(0) 0.193 0.195 0.196 0.198 0.195 0.202
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

I(1) 0.231 0.237 0.24 0.25 0.246 0.263
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

I(2) 0.478 0.511 0.537 0.633 0.606 0.764
(0.008) (0.009) (0.010) (0.013) (0.013) (0.020)

N 139,904 148,379 151,344 158,607 133,846 171,689
Standard errors in parentheses
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Table 2.6: Wage Inequality in the Private Sector

1997 2000 2003 2005 2008 2011

Gini 0.349 0.35 0.354 0.349 0.351 0.347
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

90/50 2.212 2.219 2.242 2.234 2.243 2.237
(0.006) (0.006) (0.006) (0.006) (0.006) (0.007)

50/10 1.875 1.869 1.865 1.778 1.789 1.725
(0.005) (0.005) (0.006) (0.004) (0.005) (0.004)

90/10 4.147 4.146 4.182 3.97 4.012 3.859
(0.016) (0.015) (0.016) (0.014) (0.016) (0.014)

I(0) 0.201 0.202 0.207 0.2 0.203 0.198
(0.001) (0.001) (0.001) (0.001) (0.001) (0.002)

I(1) 0.246 0.249 0.258 0.256 0.259 0.259
(0.002) (0.002) (0.002) (0.002) (0.002) (0.003)

I(2) 0.56 0.577 0.634 0.682 0.699 0.752
(0.012) (0.014) (0.016) (0.018) (0.019) (0.025)

N 96,220 103,127 102,766 106,122 92,055 113,397
Standard errors in parentheses
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Table 2.7: Wage Inequality in the Public Sector

1997 2000 2003 2005 2008 2011

Gini 0.304 0.311 0.309 0.315 0.302 0.304
(0.001) (0.002) (0.001) (0.002) (0.002) (0.002)

90/50 1.992 2.03 2.032 2.066 2.001 2.023
(0.008) (0.009) (0.008) (0.009) (0.009) (0.008)

50/10 1.794 1.791 1.751 1.742 1.729 1.69
(0.007) (0.008) (0.007) (0.006) (0.007) (0.005)

90/10 3.572 3.635 3.557 3.598 3.46 3.419
(0.017) (0.016) (0.016) (0.016) (0.017) (0.015)

I(0) 0.152 0.159 0.157 0.163 0.149 0.151
(0.001) (0.002) (0.001) (0.002) (0.002) (0.002)

I(1) 0.175 0.186 0.186 0.197 0.176 0.183
(0.002) (0.003) (0.003) (0.003) (0.003) (0.002)

I(2) 0.285 0.322 0.331 0.374 0.304 0.335
(0.007) (0.010) (0.010) (0.012) (0.010) (0.009)

N 35,242 37,393 38,965 41,709 33,063 46,876
Standard errors in parentheses
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Table 2.8: Wage Inequality in High Skilled Occupations

1997 2000 2003 2005 2008 2011

Gini 0.274 0.279 0.293 0.288 0.293 0.296
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

90/50 1.824 1.852 1.929 1.907 1.935 1.961
(0.006) (0.006) (0.007) (0.006) (0.007) (0.006)

50/10 1.833 1.835 1.822 1.802 1.797 1.77
(0.006) (0.006) (0.005) (0.005) (0.005) (0.004)

90/10 3.344 3.399 3.514 3.436 3.478 3.469
(0.016) (0.017) (0.017) (0.016) (0.017) (0.015)

I(0) 0.127 0.132 0.143 0.138 0.143 0.145
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

I(1) 0.133 0.14 0.158 0.152 0.159 0.166
(0.001) (0.001) (0.002) (0.002) (0.002) (0.002)

I(2) 0.175 0.188 0.234 0.221 0.24 0.262
(0.003) (0.003) (0.004) (0.004) (0.005) (0.005)

N 48,944 52,463 55,987 58,345 52,051 67,426
Standard errors in parentheses
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Table 2.9: Wage Inequality in Low Skilled Occupations

1997 2000 2003 2005 2008 2011

Gini 0.231 0.226 0.221 0.213 0.21 0.203
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

90/50 1.671 1.661 1.646 1.639 1.63 1.619
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

50/10 1.632 1.603 1.578 1.5 1.495 1.446
(0.004) (0.004) (0.004) (0.003) (0.003) (0.002)

90/10 2.727 2.662 2.598 2.458 2.436 2.34
(0.008) (0.007) (0.007) (0.006) (0.007) (0.005)

I(0) 0.0884 0.0847 0.0808 0.0739 0.0723 0.0673
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

I(1) 0.0932 0.09 0.0861 0.0812 0.0792 0.0751
(0.001) (0.001) (0.001) (0.001) (0.001) (0.000)

I(2) 0.114 0.111 0.106 0.103 0.0994 0.0956
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

N 90,960 95,916 95,357 100,262 81,795 104,263
Standard errors in parentheses
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Table 2.10: Wage Inequality in Primary Industries

1997 2000 2003 2005 2008 2011

Gini 0.296 0.286 0.284 0.283 0.293 0.291
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

90/50 1.944 1.898 1.887 1.888 1.941 1.948
(0.016) (0.015) (0.016) (0.016) (0.016) (0.016)

50/10 1.816 1.802 1.797 1.777 1.77 1.726
(0.015) (0.016) (0.017) (0.014) (0.014) (0.012)

90/10 3.531 3.421 3.392 3.354 3.437 3.362
(0.045) (0.043) (0.045) (0.042) (0.043) (0.040)

I(0) 0.146 0.137 0.134 0.133 0.142 0.139
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

I(1) 0.162 0.15 0.147 0.147 0.16 0.161
(0.004) (0.004) (0.004) (0.004) (0.004) (0.005)

I(2) 0.246 0.216 0.209 0.211 0.247 0.257
(0.011) (0.009) (0.009) (0.009) (0.012) (0.013)

N 7,113 7,985 7,906 7,795 7,869 8,440
Standard errors in parentheses
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Table 2.11: Wage Inequality in Manufacturing

1997 2000 2003 2005 2008 2011

Gini 0.288 0.29 0.298 0.301 0.302 0.306
(0.002) (0.002) (0.002) (0.002) (0.003) (0.002)

90/50 1.932 1.929 1.981 2.001 2.003 2.044
(0.009) (0.009) (0.011) (0.011) (0.013) (0.012)

50/10 1.72 1.766 1.736 1.713 1.732 1.664
(0.006) (0.008) (0.009) (0.007) (0.009) (0.006)

90/10 3.322 3.407 3.439 3.428 3.47 3.401
(0.020) (0.022) (0.023) (0.024) (0.030) (0.025)

I(0) 0.136 0.139 0.146 0.148 0.15 0.153
(0.002) (0.002) (0.002) (0.002) (0.003) (0.002)

I(1) 0.156 0.157 0.171 0.176 0.177 0.189
(0.002) (0.002) (0.003) (0.003) (0.004) (0.004)

I(2) 0.245 0.239 0.284 0.307 0.305 0.369
(0.007) (0.006) (0.010) (0.011) (0.013) (0.016)

N 29,112 26,981 23,405 22,006 14,459 17,807
Standard errors in parentheses

58



Table 2.12: Wage Inequality in Wholesale/Retail and Catering

1997 2000 2003 2005 2008 2011

Gini 0.303 0.296 0.289 0.264 0.264 0.251
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

90/50 2.018 1.986 1.954 1.869 1.87 1.822
(0.009) (0.009) (0.008) (0.007) (0.009) (0.008)

50/10 1.701 1.683 1.667 1.556 1.555 1.512
(0.008) (0.009) (0.009) (0.005) (0.007) (0.005)

90/10 3.433 3.341 3.257 2.907 2.908 2.754
(0.025) (0.026) (0.025) (0.019) (0.022) (0.017)

I(0) 0.151 0.143 0.136 0.114 0.114 0.103
(0.002) (0.002) (0.002) (0.001) (0.002) (0.001)

I(1) 0.181 0.171 0.162 0.136 0.136 0.123
(0.003) (0.003) (0.002) (0.002) (0.002) (0.002)

I(2) 0.328 0.297 0.271 0.217 0.217 0.189
(0.009) (0.008) (0.007) (0.005) (0.006) (0.005)

N 25,867 27,404 28,770 33,575 27,834 38,259
Standard errors in parentheses

59



Table 2.13: Wage Inequality in Finance

1997 2000 2003 2005 2008 2011

Gini 0.372 0.376 0.392 0.403 0.413 0.451
(0.004) (0.004) (0.004) (0.005) (0.004) (0.006)

90/50 2.336 2.342 2.428 2.483 2.533 2.745
(0.023) (0.022) (0.022) (0.025) (0.024) (0.031)

50/10 1.875 1.954 1.956 1.976 2.044 1.972
(0.014) (0.019) (0.019) (0.022) (0.021) (0.016)

90/10 4.38 4.576 4.749 4.907 5.178 5.413
(0.060) (0.067) (0.068) (0.071) (0.076) (0.077)

I(0) 0.229 0.235 0.255 0.269 0.285 0.339
(0.006) (0.005) (0.006) (0.006) (0.006) (0.009)

I(1) 0.295 0.295 0.331 0.355 0.375 0.497
(0.010) (0.009) (0.010) (0.012) (0.011) (0.019)

I(2) 0.947 0.865 1.336 1.816 2.214 2.29
(0.107) (0.082) (0.176) (0.347) (0.437) (0.892)

N 7,780 7,954 8,407 8,111 7,975 8,124
Standard errors in parentheses
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Table 2.14: Wage Inequality in Other Services

1997 2000 2003 2005 2008 2011

Gini 0.336 0.341 0.34 0.341 0.335 0.341
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

90/50 2.13 2.169 2.168 2.187 2.157 2.198
(0.006) (0.007) (0.006) (0.007) (0.007) (0.006)

50/10 1.922 1.871 1.854 1.791 1.784 1.748
(0.006) (0.006) (0.006) (0.005) (0.005) (0.003)

90/10 4.094 4.058 4.02 3.918 3.848 3.842
(0.016) (0.015) (0.015) (0.014) (0.014) (0.012)

I(0) 0.188 0.192 0.191 0.191 0.184 0.191
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

I(1) 0.218 0.231 0.231 0.238 0.227 0.243
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

I(2) 0.408 0.481 0.487 0.554 0.497 0.611
(0.008) (0.012) (0.012) (0.016) (0.013) (0.015)

N 70,507 78,450 83,169 87,363 76,031 99,340
Standard errors in parentheses
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Table 2.15: Conditional Inequality Models: Interquantile Regressions

90/10 1997 90/10 2011 90/50 1997 90/50 2011 50/10 1997 50/10 2011

Finance 0.0113 0.0984*** -0.000356 0.132*** 0.0116 -0.0333***
(0.467) (0.000) (0.976) (0.000) (0.292) (0.000)

Manufacturing -0.0283* 0.00574 -0.0220** 0.0530*** -0.00632 -0.0472***
(0.012) (0.592) (0.010) 0.000 (0.449) (0.000)

Distribution 0.00827 -0.156*** 0.0309*** 0.0209** -0.0227* -0.177***
(0.469) (0.000) (0.001) (0.005) (0.014) (0.000)

Services 0.0931*** -0.00509 0.0366*** 0.0747*** 0.0565*** -0.0798***
(0.000) (0.624) (0.000) (0.000) (0.000) (0.000)

High Skilled 0.259*** 0.401*** 0.133*** 0.181*** 0.126*** 0.220***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Private Sector 0.202*** 0.124*** 0.126*** 0.112*** 0.0757*** 0.0115***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Male 0.0964*** 0.133*** 0.0480*** 0.0739*** 0.0484*** 0.0586***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

London 0.0895*** 0.213*** 0.0621*** 0.113*** 0.0274*** 0.0991***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

N 139,904 171,689 139,904 171,689 139,904 171,689
P values in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 2.16: Conditional Inequality Models: Pareto Regressions

1997 Top 10% 2011 Top 10% 1997 Top 5% 2011 Top 5%

Finance -1.126*** -0.901*** -0.994*** -0.884***
(0.000) (0.000) (0.000) (0.000)

Manufacturing -0.480** 0.000938 -0.347 -0.0297
(0.005) (0.995) (0.179) (0.904)

Distribution -0.735*** -0.380** -0.692** -0.427
(0.000) (0.006) (0.007) (0.069)

Services -0.658*** -0.276* -0.489* -0.325
(0.000) (0.032) (0.048) (0.143)

High Skilled -1.021*** -1.069*** -0.468** 0.200
(0.000) (0.000) (0.008) (0.525)

Private Sector -1.054*** -0.552*** -1.164*** -0.300***
(0.000) (0.000) (0.000) (0.000)

Male -1.117*** -0.659*** -0.842*** -0.629***
(0.000) (0.000) (0.000) (0.000)

London -0.954*** -0.632*** -0.957*** -0.513***
(0.000) (0.000) (0.000) (0.000)

Constant 6.911*** 5.253*** 6.338*** 3.942***
(0.000) (0.000) (0.000) (0.000)

N 13,991 17,169 6,994 8,584
P values in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 2.17: Aggregate Wage Inequality - Basic Pay

1997 2000 2003 2005 2008 2011

Gini 0.343 0.343 0.343 0.34 0.336 0.341
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

90/50 2.182 2.19 2.192 2.19 2.171 2.204
(0.004) (0.005) (0.005) (0.005) (0.005) (0.005)

50/10 1.862 1.837 1.828 1.764 1.756 1.718
(0.004) (0.004) (0.004) (0.003) (0.004) (0.003)

90/10 4.063 4.024 4.008 3.863 3.812 3.788
(0.012) (0.012) (0.012) (0.011) (0.011) (0.010)

I(0) 0.194 0.194 0.194 0.19 0.185 0.19
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

I(1) 0.236 0.239 0.24 0.239 0.233 0.246
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

I(2) 0.507 0.534 0.544 0.577 0.541 0.653
(0.008) (0.010) (0.010) (0.011) (0.010) (0.015)

N 139,902 148,237 151,179 158,465 133,805 171,659
Standard errors in parentheses
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Table 2.18: Aggregate Wage Inequality - Weekly Earnings

1997 2000 2003 2005 2008 2011

Gini 0.372 0.378 0.382 0.383 0.385 0.387
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

90/50 2.135 2.176 2.215 2.22 2.234 2.248
(0.005) (0.005) (0.005) (0.005) (0.006) (0.005)

50/10 3.342 3.276 3.12 3.133 3.12 3.143
(0.014) (0.013) (0.012) (0.012) (0.012) (0.011)

90/10 7.134 7.13 6.911 6.955 6.97 7.066
(0.036) (0.036) (0.033) (0.032) (0.035) (0.031)

I(0) 0.284 0.287 0.285 0.287 0.289 0.293
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

I(1) 0.239 0.248 0.256 0.258 0.261 0.265
(0.001) (0.001) (0.001) (0.001) (0.002) (0.001)

I(2) 0.292 0.317 0.35 0.352 0.363 0.372
(0.003) (0.003) (0.004) (0.004) (0.004) (0.004)

N 147,948 149,262 152,098 159,015 134,342 172,926
Standard errors in parentheses
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Chapter 3 Decomposition Analysis of Changes in the UK

Wage Distribution

3.1 Introduction

This chapter builds on the work of the previous chapter which examined the patterns in

wage inequality in the UK over the 1975-2011 period. In this chapter the focus is on the

causes of change. A large literature has grown on this subject with a lot of attention being

given to factors on the demand side of the labour market. A main feature of this literature

has been the debate between technological change and international trade as the dominant

cause of increasing shifts in the relative demand for labour. This chapter investigates the

effects of supply-side changes in the UK labour market in recent years.

Figure 3.1 outlines the basic model of wage inequality based on relative supply and de-

mand for skilled labour presented by Katz and Murphy (1992). The y axis shows the

relative wage (the ratio of skilled wages to unskilled wages) and the x axis shows rela-

tive employment (the ratio of skilled employment to unskilled employment). This model

was put forward by Katz and Murphy (1992) who found that the relative wage of more

skilled workers in the USA had increased, despite an increase in the labour market share

of skilled labour.

Referring to Figure 3.1 the effect of relative labour supply shifting from L0
S to L1

S, in-

creasing relative employment from L1 to L2 should decrease the relative wage of skilled

workers - from w1 to w2. As the relative wage of skilled workers had also increased, the

only explanation for this is that there was also a shift in the relative labour demand curve

favouring skilled workers from L0
D to L1

D, of a magnitude which would result in an overall

increase in the relative skilled wage to w3.

Figure 3.2 illustrates how the relative supply/demand of skilled labour has changed in the
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Figure 3.1: Relative Supply and Demand for Skills and Wage Inequality

UK between 1997 and 2012 using data from the Labour Force Survey. The premium is

defined as the difference in mean log wages between those with some university level

education and those without university level education1. It shows that since the late 1990s

the skill premium in the UK has been declining as the skilled have substantially increased

their share of employment (approximately by 15% points from 25% to 40%). This is a

reversal of the findings of Machin (1996) that throughout the 1980’s there was increasing

relative employment and wages of skilled workers relative to unskilled, with similar pro-

cesses at work for non-manual relative to manual workers, and older workers relative to

younger. In terms of Figure 1 this would suggest that the growth in the relative supply of

skilled labour started to outpace the growth in relative demand from the late 1990s.

This does not mean that the effect of increasing educational attainment amongst the pop-

ulation on wage inequality is as straightforward as a decline through the narrowed skill

premium. The skill premium represents between-group wage inequality - the difference in

1 The observed patterns in the skilled wage premium and employment shares hold for other definitions of
“skilled”, ranging from a postgraduate degree to anyone with any post-compulsory education i.e. more
educated than GCSE level or equivalent.
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Figure 3.2: Change in Skilled Wage Premium and Employment Share
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average wages of the skilled and unskilled. Within-group wage inequality should also be

considered. This is wage inequality within the population of skilled workers and within

the population of unskilled workers and increasing the relative supply of skilled labour

is likely to have an impact on this. Considering individuals with university education as

skilled and those without university education as unskilled, as higher education participa-

tion rates increase the marginal individual who participates will be lower in the population

distribution of ability which would ultimately widen the distribution of wages for skilled

workers at the lower end. Machin (1996) also finds that there is growing within-group

(i.e. within education/experience groups) inequality as well as between-group (across

education/experience groups) inequality.

There is also a composition effect to consider. Even if changes in the relative supply

of skilled workers had no effect on the between-group and within-group levels of wage

inequality, wage inequality overall would still change because of the changing structure

of the workforce. Unless wage inequality was equivalent for both the skilled and the

unskilled, increasing the proportion of skilled workers will change wage inequality by

increasing the proportion of workers in a higher-inequality skill group even if that level

of inequality itself is held constant.

The effect of increases in the relative supply of skilled labour on wage inequality are,
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therefore, not straightforward to identify. The aim of this chapter is to identify these ef-

fects of the changes in the supply side of the labour market on UK wage inequality. Use

is made of a decomposition technique which is able to separate out the effects discussed

above so that the contribution of each to the overall change in wage inequality can be

identified. The decomposition can be applied to any distributional statistic and can there-

fore be used for this analysis. It is hypothesised that the between group effect on wage

inequality is negative, but the within-group and composition effects have had a positive

effect on wage inequality.

The remainder of this chapter is structured as follows; section 3.2 gives an overview of

the literature covering, in particular, UK and US wage inequality; the framework within

which the change in the wage distribution is analysed. Methods which can be used to

decompose changes in wage distributions over time based on the paper by Juhn et al.

(1993) followed by the specific methodological approach taken in this study are explained

in section 3.3. A description of the main dataset used in the analysis and some descriptive

results are presented in section 3.4. Section 3.5 presents the results of the analysis and

section 3.6 concludes.

3.2 Background and Literature Review

This section examines the development of the empirical literature which seeks to explain

changes in wage inequality. This is a large literature which began with relatively simple

demand and supply models which have over time become more refined. A summary of

much of this literature with respect to UK wage inequality is given by Machin (2008).

This section is divided into sections to cover the demand-side, supply-side, and labour

market institutions explanations respectively.
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3.2.1 Demand-Side Effects on Wage Inequality

Skills-Biased Technological Change

A common explanation for rising wage inequality in the US and UK is skills-biased tech-

nological change (SBTC). SBTC means that new technology is complementary to skilled

labour and/or a substitute for unskilled labour. This means that the demand for skilled

labour relative to unskilled labour will increase, increasing the skilled wage premium

and the share of skilled workers in total employment2. This results in a higher relative

expected wage for the high skilled and hence greater wage inequality.

The SBTC explanation can be formally modelled using a constant elasticity of substitution

(CES) production function with skilled and unskilled labour as inputs:

Y = [(AuLu)
ρ +(AsLs)

ρ ]
1
ρ (3.1)

Equation 3.1 is an aggregate production function for the economy at a given time period

(time subscripts are omitted to simplify notation). Subscripts u and s denote unskilled and

skilled labour respectively and A and L respectively represent the labour augmenting tech-

nology terms for each type of labour and the quantity of each type of labour respectively.

The elasticity of substitution between these types of labour is given by σ = 1/(1−ρ).

Obtaining the marginal products of each type of labour and equating the ratio of the skilled

and unskilled wage to the ratio of the skilled and unskilled marginal products gives the

relative labour demand function:

(
ws

wu
) = (

As

Au
)

σ−1
σ (

Ls

Lu
)−

1
σ (3.2)

2 Depending on the nature of the technological progress, this SBTC can occur at the aggregate level or be
industry specific.
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In this model SBTC is represented by an increase in the ratio As
Au

. Equation 3.2 shows

that when σ > 1 - as is typically found in the literature e.g. the Katz and Murphy (1992)

estimate of 1.4 - increasing relative supply of skilled labour will reduce the skill premium

and SBTC will increase it. This model can be empirically estimated by simple linear

regression techniques, taking a logarathmic transformation of equation 3.2.

Autor et al. (1998) examine the role of technological change in affecting the US labour

market by measuring SBTC as the adoption of computers. Their results indicate stronger

shifts in the relative demand for skilled labour in the computer intensive industries, and

that growth in the relative demand for skilled labour has been a consistent phenomenon

throughout the whole 1940-1996 period which they analyse, with the most rapid increases

occurring in the 1980’s. They do acknowledge however that their results leave room for

other forces to have affected the skill premium in the US such as international trade and

changing labour market institutions.

Machin and Van Reenen (1998) investigate the SBTC explanation of changes in wage in-

equality by creating industry level data from the USA, UK, Denmark, France, Germany,

Sweden, and Japan. This is done by estimating a regression model of the non produc-

tion share of the wage bill as a function of capital, value added, the stock of technology

(measured as both R&D expenditure and computer usage as a robustness check) and the

relative wages of non production workers. This model is estimated in first differences in

order to eliminate the industry fixed effects. A significant positive effect of technolog-

ical progress is found on the skilled labour share of the wage bill supporting the SBTC

argument. They conclude however that factors other than technology are likely to ac-

count for the changing structure of the labour market but favour the role of labour market

institutions rather than a direct effect of trade.

Haskel (1999) also supports the SBTC argument, investigating the growth in wage in-

equality in the UK in the 1980’s. His paper concludes that around 50% of the increase in

the skill premium during the 1980’s can be explained by the introduction of computers.

This paper is limited to UK manufacturing firms.

Similarly, computer usage is found to explain around 60% of the increase in relative de-

mand for skilled labour (defined as college graduates) over the 1970-1998 period in the
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US by Autor et al. (2003). The paper finds a significant positive association between

changes in technology and changes in the skill structure and technology accounts for a

larger fraction of the change in the skill shares in those countries where changes were

smaller. Results are also robust to the potential endogeneity of R&D i.e. a higher pro-

portion of skilled workers might induce extra R&D as it is more profitable to do so when

there is a larger skilled workforce capable of applying/using the new technology3. An-

other result of the paper was that controlling for spillover effects (change in R&D in

other countries) did not have a significant impact on the UK/USA but made own R&D

insignificant for the other countries.

Berman and Machin (2000) extend this type of analysis to look for the existence of SBTC

in the manufacturing industries of developing countries. They find evidence that SBTC

has occured in middle income countries as well as OECD economies, although there is no

evidence of it in low income countries. Gregory et al. (2001) conclude that technological

change is the main cause of shifts in relative demand to favour skilled workers, and that

the effect of international trade is relatively minor.

The results of the analysis by Acemoglu (2003) are supportive of the SBTC argument as

it helps to explain international differences in changes in wage inequality, in particular

the experiences of the UK and US compared to continental Europe. In his analysis, the

relative supply and demand for labour framework provides a good explanation of these

differences when the shifts in relative labour demand are allowed to vary between coun-

tries. The argument of the paper is that wage compression in Europe, due to relatively

strong trade unions and high levels of unemployment benefit, provides encouragement

for firms to invest in technology which is complementary to low skilled workers. This re-

duces the extent of skills biased technological progress in Europe compared to countries

such as the US where such institutions are not so strong. The SBTC argument therefore

can explain the differential rates in the shift of the relative labour demand curve across

countries.

3 This argument is also developed as a formal theoretical model of endogenous SBTC by Acemoglu (1998)
and Acemoglu (2002)
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International Trade

The theoretical underpinning of the international trade aspect of the debate around rising

wage inequality is a Heckscher-Ohlin type model of trade, of the kind outlined by Wood

(1995a).

The simplest version of this theory is a 2 x 2 x 2 model. It assumes two countries - one a

developing country and one a developed country, two factors of production (skilled labour

and unskilled labour), and two goods, one of which intensively uses skilled labour in its

production and the other which intensively uses unskilled labour in its production. The

example used by Wood is machinery (skilled) and apparel (unskilled).

The developed country has a larger relative endowment of skilled labour than the devel-

oping country, and therefore has a comparative advantage in the production of the skilled-

labour intensive good and likewise the developing country has a comparative advantage

in production of the unskilled-labour intensive good.

A result of the Heckscher-Ohlin model is that international trade and factor prices (in this

case, the wages of the skilled and the unskilled) are linked through the changes in the

prices of the finished products. This is called the Stolper-Samuelson theorem.

Under the Heckscher-Ohlin model assumptions (technology is given, perfect competition,

constant returns to scale) there are two ways through which the domestic producer prices

of the two goods can change. The first is a reduction in trade barriers. Tariffs and other

barriers to trade keep the price of goods lower in the country which has a comparative ad-

vantage in their production. Removal of these barriers should reduce the price differences

between countries.

The second way prices can change in this model is a change in the relative supplies of

skilled and unskilled labour. If there was an increase in unskilled labour in the developing

country, production and exports of the unskilled-labour intensive good would increase,

therefore driving down the price of the good worldwide.

Leamer (1994) and Wood (1995a) present a supply and demand model to show the effects
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Figure 3.3: Effect of Different Trade Regimes on Wages

of price changes on relative wages depending on the trade situation of the country. This

model is illustrated in Figure 3.3. In the case where trade barriers are high the demand

curve is given by the straight downward sloping curve d. Relative labour supply is per-

fectly inelastic. If a country’s endowment of skilled labour is relatively low compared to

unskilled labour, the supply curve will be at S3 and the relative wage is high.

Demand curve d represents a country without trade barriers. The infinitely elastic section

of the demand curve is a range where changes in the composition of labour supply do not

affect world prices and therefore do not affect the wage structure. Shifts in relative labour

supply only affect the composition of trade and output, not relative wages. For countries

on this section of the relative demand curve trade is diversified - a mixture of low and

high skilled-intensive production.

A country operating on one of the downward sloping parts of demand curve d specialises

in trade according to the relative endowments of skilled and unskilled labour - at S3 in

unskilled-intensive products and at S1 in skilled-intensive products. Where trade is spe-
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cialised, changes in domestic labour supply will affect relative wages. Point B indicates

the factor endowments - the factors being skilled and unskilled labour - at which a country

which is open to trade will not actually do so. This is the intersection point of the demand

curves for when the country is open to trade and when it has high trade barriers.

This framework can be used to compare the relative wages of skilled and unskilled labour

under different regimes. To the left of point B a country which is open to trade with a

relatively large endowment of unskilled labour will have a smaller relative wage than a

country closed to trade or which has high trade barriers. Conversely, to the right of point

B, a country has a relatively high endowment of skilled labour. In this case a country

which is more open to trade has a higher relative skilled wage than one which is not.

More sophisticated theoretical models have since been developed in the trade literature to

explain the link between trade liberalization and technology upgrading, for example by

Bustos (2011a) who develops a heterogeneous firms model in which a reduction in tarrifs

by trade partners induces incentives for firms to increase their productivity. In Bustos

(2011b) this model is extended to one where there are skilled and unskilled labour in the

economy.

In this model, simultaneous reduction in trade tariffs by two countries will increase the

market share of high technology firms causing an increase in the relative demand for skills

and consequently an increase in the skill premium. Trade liberalisation also makes high

technology adoption profitable, incentivising more firms to invest in technology and con-

sequently increasing the relative demand for skills. In this model trade therefore prompts

SBTC

Borjas and Ramey (1994) use time series econometric techniques to examine the long

run trend in the US wage structure over the 1964-1991 period (covering periods of both

declining and increasing wage inequality). Two measures of wage inequality are used; the

difference in mean log wages of college graduates and high school graduates, and college

graduates and high school dropouts. They find that the only variable they consider which

shares the same long run trend as their wage inequality measures is the durable goods

trade deficit as a proportion of GDP.
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Prior to 2005 estimates of the effects of trade flows on wages were obtained by Sachs and

Shatz (1994) using the factor content method. An issue with the factor content method is

non-competing imports. Estimates can be biased downwards because non-competing im-

ports - imports of goods no longer produced in developed economies - will have their un-

skilled factor share over-stated because the higher level of wages in developed economies

means if those goods were produced domestically, they would be produced under more

capital-intensive production techniques.

Wood (1995a) compares the results of these estimates when controlling for this issue and

finds the Sachs and Shatz (1994) estimates of the effect of trade on labour demand in man-

ufacturing is downward biased compared to the Wood (1995b) estimates. Wood (1995b)

found that trade reduced overall labour demand by 11% compared to no trade and the

Sachs and Shatz (1994) figure is almost half of this. In both cases the fall in demand for

unskilled labour was greater than that for skilled labour, but with very different magni-

tudes - respectively 1.9% and 22%. As well as increasing the estimated magnitude, the

Wood (1995a) estimate suggests that the reduction is entirely due to reduction in demand

for unskilled labour

Wood (1995a) argues that this 22% figure is still an understatement of the true impact of

trade on relative labour demand because it ignores the contribution of trade to technolog-

ical progress. It is also limited to the manufacturing sector and does not take into account

the expansion of trade in services and growing demand from developing countries for

skill-intensive services.

A number of other potential criticisms of this estimate are noted; they depend on assumed

elasticities of substitution in production/consumption, and there are also several criticisms

of the factor content approach in general. One of these criticisms is that in the Heckscher-

Ohlin framework it is through product prices that trade affects wages, however there is less

clear evidence from prices which is supportive of the trade explanation of the changing

wage structure.

Sachs and Shatz (1996) highlight the arguments against international trade as providing

anything more than a small role in the explanation in changing wage inequality. Their

argument is that skills-biased technological change is a long term trend which pre-dates
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the rapid increases in US wage inequality, whereas the timing of increases in international

trade correspond more closely to the increase in wage inequality. They do, however,

conclude that there is no convincing empirical work on the role of trade in the increase in

wage inequality in the US, but that theory and circumstantial evidence supports the link

between the two.

Machin and Van Reenen (1998) investigate the potential role of international trade in ex-

plaining the changes in relative labour demand as an extension to their model looking at

the SBTC explanation. They include a variable to measure import competition, which

according to the trade argument more internationally competitive industries should expe-

rience larger changes in relative demand for skilled labour. In none of their specifications

is their measure of import competition a significant explanatory factor of changing skill

shares and the R&D coefficient is robust to the inclusion of this variable. Desjonqueres

et al. (1999) also use this data with a primary focus on the international trade argument

using a Heckscher-Ohlin trade model, however they fail to find any significant relation-

ship between the proportion of skills and international trade for any country, except for

the USA.

The standard model of the linkages between trade and wage inequality has testable impli-

cations for developing countries as well as developed countries. In developing countries

- where unskilled labour is assumed to be relatively abundant - increasing trade with de-

veloped countries should result in a fall in wage inequality as the relative demand for

unskilled labour increases. This did not, however, happen in the case of Mexico where

wage inequality continued to increase despite trade liberalisation - Verhoogen (2008) - or

in Brazil where the level of wage inequality remained roughly constant for a variety of

measures of inequality over the period of trade liberalisation (Green et al. (2001)). In this

latter case the skill premium is also examined, but the college premium is found to have

increased rather than decreased (without having a significant impact on wage inequality).

This is found to be due to an increase in the relative demand for skilled labour, potentially

a result of SBTC.

Galiani and Sanguinetti (2003) also look at the effect of trade liberalisation on wage in-

equality in Latin America, focusing on the experience of Argentina. Their conclusion is

that the increase in the skilled (or college) wage premium is positively correlated with
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import penetration, however only 15% of the increase in the skill premium can be ex-

plained by international trade. They therefore conclude that international trade is not one

of the important causes of wage inequality growth in Argentina. Beyer et al. (1999) con-

clude that their empirical results for Chile are consistent with the Heckscher-Ohlin model;

increasing openness to trade led to an increase in wage inequality.

Both technology and globalisation are deemed important factors in the change in the skill

structure of UK manufacturing industries between 1982 and 1996 by Hijzen et al. (2005).

They find that outsourcing increased from 33% to 40% of value added between 1984 and

1995 and that this has had a negative effect on the demand for unskilled labour. Their

approach is to estimate cost-share equations for high skilled, semi-skilled, and unskilled

labour (skill level being defined by occupational group). R & D is also found to have

increased the demand for skilled labour.

In addition to the debate regarding the relative importance of the technology and trade

arguments, foreign direct investment is considered by Taylor and Driffield (2005). They

argue that the theoretical literature attempting to link inward FDI to wage inequality is

ambiguous and models have been developed which lead to both positive and negative

relationships between the two.

The paper hypothesises that increases in FDI will lead to technology spillovers which will

influence domestic wage inequality. Using UK manufacturing data over the period 1983-

1992 this paper estimates that 11% of the increase in wage inequality over this period can

be explained by FDI.

Autor et al. (2013) examine the effects of trade and technology on the US economy be-

tween 1990 and 2007, although focussing on employment effects rather than wages. The

focus of the international trade component is on exposure of US industries to imports from

China and finds that greater exposure to trade from China results in reduced employment

across all occupation groups in manufacturing.

The paper concludes that the growing impact of trade with China has increased the impor-

tance of the international trade effects on the labour market compared to the technological

progress based arguments. This is particularly the case in manufacturing, as technological
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progress has shifted away from automation of production and towards computerisation in

other industries.

Task-Biased Technological Change and Job Polarisation

More recently the literature has moved beyond the relatively simple SBTC theory. Goos

and Manning (2007) presented the idea that technological change is not biased towards

skills but towards tasks, developing the idea put forward in Autor et al. (2003) that tech-

nological change does not favour skilled jobs over unskilled, but non-routine tasks over

routine.

This task-biased technological change (TBTC) affects jobs located in the middle of the

wage distribution and so demand for workers with intermediate skills relative to low or

high skills falls. This would be expected to have an effect of narrowing the wage gap

between low and intermediate skilled workers while widening the wage gap between the

intermediate and high skilled workers.

Job polarisation is also found to be occurring in Europe by Goos et al. (2009) - techno-

logical change favours non-routine tasks which has an adverse effect on the demand for

labour in the middle of the wage distribution. The Lemieux (2008) paper considers the

distinction between routine/non-routine and skilled/unskilled as the correct perspective

from which to view the effects of technological change, but also suggests there is little

direct empirical evidence on the contribution of this to wage inequality.

The Katz and Murphy (1992) analysis of US wage inequality is updated by Autor et al.

(2008), updating the period studied from 1963-1987 to 1963-2005. They find that after

1992 there has been a significant slowdown in the growth of the relative demand for

skilled labour, which they find to be inconsistent with a simple SBTC story given that

computerisation continued at a rapid rate in the 1990s. They also find a divergence in the

trends of within-group inequality, with inequality growing within the college educated

group but levelling off or declining within the non-college educated group. This is taken

to be a polarisation of wages which the Katz and Murphy (1992) CES two-factor model

of the labour market cannot explain.
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Autor et al. (2008) find more of a U-shaped relationship in the change in log wages by

percentile for the period 1990-2000 than the monotonic relationship in the 1980s. This

reflects a similar change in the relationship between share of employment and skill per-

centile across the two periods and is taken to be an indication that job polarisation began

around this time, shifting the bias of technological change towards tasks rather than skills.

They conclude from this that demand shifts have played a key role in the evolution of the

wage distribution, although they also consider supply factors, institutions, and interna-

tional trade all to be equally important.

The paper attempts to provide some evidence of the impact on wage inequality by regress-

ing changes in wages between 1983 and 2002 within two-digit occupations on a quartic

function of the average level of education within the occupation. The regression produces

a u-shaped relationship, consistent with the occupations which are in the middle of the

education distribution performing the worst. This paper only puts this result forward as

indicative evidence of the effect of job polarisation on the change in the wage distribution,

however, and argues that detailed decompositions are still required to assess the exact role

of this possible explanation on wage inequality.

The impact of job polarisation on the UK labour market is considered by Holmes (2010)

using two waves of the National Child Development Study. The conclusion of the paper

on the effect on the wage distribution is that the changes could also reflect changes in

the skill distribution and returns to education. It is also acknowledged, however, that the

nature of the data could introduce bias into the calculation of the wage distributions by

studying a single cohort which may not generalise to the population as a whole.

Holmes and Mayhew (2012) also consider whether job polarisation in the UK has trans-

lated into polarisation of the wage distribution. Using Family Expenditures Survey data

between 1987 and 2001 they show that there was limited polarisation of wages in the UK

wage distribution, only occuring below the 10th percentile. They conclude that the polari-

sation that has occurred is due more to supply factors (educational attainment) and labour

market policies than to shifts in the demand for non-routine tasks. Their conclusion is

also that the effect of polarisation has been more in terms of job titles than earnings, with

good non-routine jobs beginning to appear in the middle of the distribution as the supply

of graduate labour and variability at the top of the distribution increasing.
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Shierholz et al. (2013) also examine the role of TBTC in explaining patterns of wage

inequality. They conclude that there is no causal relationship between the two, and that

the tasks based explanation cannot explain trends in wages since the 1980s, arguing that

the decline of middle-wage jobs and growth of high-wage jobs is a phenomenon that pre-

dates the increases in wage inequality beginning in the 1970s. The consistency of this

trend in job quality is also contrary to the changes in the nature of wage inequality over

the same period.

3.2.2 Supply-Side Effects on Wage Inequality

Katz and Murphy (1992) consider supply-side factors and highlight the puzzle of rising

wage inequality in conjunction with increasing wage differentials. Over the 1963-1987

period they find that the share of those with 13 to 15 and more than 16 years of education

in the US labour force increased while the share of those with less education fell. Breaking

this down into sub-periods, they find that the fastest increase in the supply of skilled labour

(defined as college graduates) occured when the college premium was declining.

They conclude that within-group inequality increased as well as education differentials,

however these phenomena did not occur simultaneously and so were likely to be distinct

processes. The changing age structure of the US economy during the period studied (the

entry of the “baby boom” generation into the labour market) had the impact of widening

experience differentials.

Juhn et al. (1993) give some insight into the role of the supply side of the labour market

using the same decomposition technique that is adopted by this chapter. Their approach

is to decompose changes in the coefficients, distribution of covariates, and distribution of

residuals between two OLS wage equations estimated as functions of education dummies,

a quartic function in experience, and region dummies. This decomposition (as will be

explained in greater detail later in the chapter) is able to distinguish between composition,

between-group, and within-group effects.

They find that between 1964 and 1988 the biggest contributor to changing US male wage

inequality is the increase in within-group inequality which when broken down into the
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90-50 and 50-10 differentials is a much larger component of the change in the 50-10

differential than the 90-50, thus the rise in top-level inequality can be explained by ob-

servable human capital factors to a greater extent than the rise in bottom-level inequality.

Within-group inequality is important in both parts of the distribution, however. The next

most important component of the decomposition is the increase in skill prices, consistent

with the rapid increase in the relative demand for skills over this period.

An alternative approach to decomposing changes in wage distributions is developed by

Lemieux (2002) whose conclusions for the change in male wage inequality in the US

are similar to those of Juhn et al. (1993). The finding of this paper is that throughout

the 1980s the change in the skill premium or returns to education accounted for over

half of the change in inequality, with within-group effects amounting to around 40% of

the decomposition and leaving a negligible effect of the composition of the labour force.

This increase in wage inequality within human capital groups is interpreted as increasing

returns to unmeasured skills. These conclusions are based on a similar empirical model

of wages as estimated by Juhn et al. (1993), with a regression including age, education,

marital status, and ethnicity.

Lemieux (2008) attempts to explain changes in the nature of wage inequality in the US

since the late 1990s and argues that unlike during the 1980s inequality growth was con-

centrated in the top of the wage distribution. Amongst other explanations of the change

in wage inequality, the paper presents a possible relationship between human capital and

wage inequality.

wit = αtai +(βtbi)Si +(γtci)Xi + eit (3.3)

In the random coefficients model represented by equation 3.3 the human capital pricing

equation consists of individual heterogeneity terms bi and ci which affect the individ-

ual returns to, respectively, schooling (Si) and experience (Xi). ai is unobserved ability.

Within this framework the variance of wages is given by:

Var(wit |Si,Xi) = α
2
t σ

2
a +(β 2

t σ
2
b )S

2
i +(γ2

t σ
2
c )Xi +σ

2
t (3.4)
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The part of this variance which is given by education shows that the variance will be

larger for more educated workers and rising returns to education will increase the vari-

ance in wage for more educated more than it will for less educated workers. Rising returns

to schooling can therefore explain increases in both between and within-group wage in-

equality.

Autor et al. (2008) find the changing composition of the labour force to be a relatively

unimportant factor in the growth of residual wage inequality between 1973 and 2005 in

the US. While it is a contributory factor, rising within-group inequality was found to be

more important. After 1989 however, the composition effect is positive while the within-

group effect is negative (and larger) for the bottom of the wage distribution, showing that

within-group effects account for the net decline in the 50-10 differential for the US after

the 1980s, but that changes in the composition of the labour force prevented this effect

from being greater.

Their findings contradict those of Lemieux (2006) who finds that composition effects can

explain all of the change in wage inequality during this period, however that paper only

considered overall inequality while Autor et al. (2008) breaks down the analysis into the

effects of the top and bottom of the wage distribution by considering the 90-50 and 50-10

differentials. They argue that because composition over explains one phenomenon and

under explains the other, it appears to be a good fit to the behaviour of overall inequality

when aggregated but cannot satisfactorily explain either upper or lower tail inequality,

which is important given the differing behaviour of the two.

3.2.3 Labour Market Institutions

Labour market institutions are another potential explanation for changes in wage inequal-

ity. Two main labour market institutions which may have influenced the level of wage

dispersion in the UK are trade unions and the national minimum wage (NMW) intro-

duced in 1999.

Dickens and Manning (2004) conclude that the effect of the introduction of the NMW

had a negligible effect on wage inequality (in contrast to findings in the US literature,
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where the minimum wage is found to have important effects e.g. DiNardo et al. (1996).

It was found that the NMW only affected the wages of those directly impacted by it, with

little or no effects at the 10th percentile and higher (this also contrasts with the US, where

spillover effects of changes in the real minimum wage have been found to be relatively

large). The effects were also found to be very short term, mostly occurring within the first

two months of the NMW’s introduction.

The decline of trade union power throughout the 1980’s and 1990’s is considered to be

an important factor in explaining the growth in UK wage inequality during this period.

Machin (1996) finds that union decline can explain around 20% of the rise in wage in-

equality, as well as important effects of incomes policies and Machin (1997) finds the

weakening of both minimum wages4 and trade unions throughout the 1990’s to be an

important explanation of the rise in UK wage inequality in this period.

Haskel (1999) also finds evidence in support of the decline of unionisation as a factor in

explaining increasing wage inequality in the UK. In addition to the 50% of the increase in

the manufacturing skilled premium he also attributes 16% of the increase to the decline

of trade unions (and potentially more, which may have been picked up as a “small firm

effect”).

This effect of de-unionisation on wage inequality could at least in part be attributed to an

indirect effect of SBTC. Acemoglu et al. (2001) argue that SBTC causes de-unionisation

because it widens the productivity gap between skilled and unskilled labour and therefore

increases the opportunity cost to skilled workers of working in a unionised firm/industry

(i.e. the benefits of joining a unionised workplace may no longer offset the wage com-

pression over workers with different skills, reducing the incentive of skilled workers to

take jobs in unionised firms/industries).

Lemieux (2008) considers the role of labour market institutions. Relative wage gains in

the US have been located increasingly in the top of the distribution, with the 90-50 per-

centile differential increasing in the 1990’s while the 50-10 differential remained roughly

4 As set by wage councils prior to their abolition in 1993 - wage councils set minimum wages for specific
industries as opposed to the NMW which applies to all workers.
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constant. This rules out factors such as the minimum wage in explaining recent inequality

trends but not the role of institutional factors more broadly.

De-unionisation is considered a more attractive institutional explanation for increasing

wage inequality because it can explain cross-country differences. Countries which ex-

perienced the sharpest increases in wage inequality (the UK and US) are also the ones

experiencing the sharpest declines in unionisation. Pay-for-performance is another pos-

sible explanation for rising wage inequality, as it is most likely to be found in the top

end of the distribution amongst senior managers and executives. Institutional changes are

considered better able to explain the concentration of wage inequality growth within the

top of the distribution compared to SBTC.

Unionisation changes are also considered by Western and Rosenfeld (2011). In the US

between 1973 and 2007 unionisation fell by approximately 20% points for men and 10%

points for women. Using a variance decomposition approach the paper attempts to esti-

mate how much of the increase in US wage inequality can be explained by de-unionisation

by holding the unionisation rate constant and comparing counterfactual wage distribu-

tions. They conclude that between a fifth and a third of rising male wage inequality in the

US can be attributed to de-unionisation.

Summary

The determinants of wage inequality have received a lot of attention in the labour eco-

nomics literature over the past 20 years. Demand-side factors have featured heavily in the

literature, particularly in the debate between SBTC and international trade as explanations

for the growth in wage inequality in the US and UK during the 1980’s.

More recent research has distinguished the role of technological change as having a tasks

or job bias rather than a skills bias on the demand for different types of labour. The em-

pirical literature has so far not established a firm causal link between the job polarisation

aspects of TBTC and the more recent patterns in wage inequality. In addition to the more

commonly discussed demand-side factors, the supply side of the labour market has had

an impact on wage inequality, with the changing labour force composition in terms of ed-
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ucation and skills as well as changing wage distributions within education and experience

groups playing a role.

As was found in the previous chapter for the UK, the US also experienced a change in the

nature of wage inequality after the 1980’s with a slowdown in the growth of inequality

and a divergence of the evolution of the top and bottom of the wage distribution. This

highlights the importance of not only explaining changes in overall inequality, but also

finding the differential roles that these potential explanations have played in both parts of

the wage distribution separately.

3.3 Methodology

This section describes the methodologies by which changes in wages can be decomposed

and the particular approach taken in this study. It starts with the relatively simply Oaxaca-

Blinder decomposition of the mean. A more sophisticated methodology for decompos-

ing changes in the whole distribution of wages which is a generalisation of the Oaxaca-

Blinder mean decomposition was developed by Juhn et al. (1993) is also discussed in

detail. It is this latter approach which is utilised in this chapter.

3.3.1 Oaxaca-Blinder Decomposition

The decomposition of the mean is performed using the technique developed by Oaxaca

(1973) and Blinder (1973). This is based on a standard OLS regression model of a depen-

dent variable y as a function of independent variables x for individual i at time t:

yit = x′itβt +uit (3.5)

Taking the mean of equation 3.5 relates the mean of the dependent variable to the mean of

the independent variables in period t. Taking the mean of the equation for another period
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s and subtracting this from the equation in period t yields an equation for the change in

the mean of the dependent variable between periods t and s:

ȳt− ȳs = x̄t(βt−βs)+(x̄t− x̄s)βs (3.6)

In equation 3.6 the first term on the right hand side represents the effect of the change in

the coefficients. The second term isolates the effect on changes in the mean value of the

independent variables. Under the OLS assumption that E(uit |xit) = 0 for all periods t the

residuals have no effect on the change in the mean of the dependent variable.

In the context of a simple human capital model of wages (i.e. log wages modelled as

a function of education and experience) the coefficients effect isolates the impact of the

change in the returns to human capital over time on wages. The effect of the change in the

mean of the independent variables is the impact of changes in the mean level, or quantity,

of human capital.

3.3.2 Juhn, Murphy, and Pierce Decomposition

Juhn et al. (1993) - denoted JMP hereafter - develop a generalisation of the Oaxaca-

Blinder decomposition by which the entire wage distribution can be decomposed, and the

change in any distributional statistic of interest can be split into the effects of quantities,

prices, and unmeasured price and quantities (residuals). The decomposition is based on

an OLS regression model for two mutually exclusive groups (in this case time periods) 1

and 2, as in the following equations:

y1 = x1β1 +u1 (3.7)

y2 = x2β2 +u2 (3.8)
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In these models y j is the outcome variable for group j, x j is a vector of quantities of ob-

served variables, β j is the corresponding vector of observed prices/coefficients and u j is

the regression residual - the unobserved component of the outcome variable. Correspond-

ing to these two models, the cumulative distribution functions for the residuals are also

defined:

pi1 = F1(ui1|xi1) (3.9)

pi2 = F2(ui2|xi2) (3.10)

Figure 3.4 illustrates that F() shows the rank - p - of the residual - u - in the distribution.

The residuals can therefore be expressed as the inverse cumulative distribution function

of p.

Decomposing the distribution into price, quantity, and unobserved effects entails using a

reference model and isolating the three effects seperately. F(.) and b (without subscripts)

are used to define, respectively, the reference cumulative distribution of the residuals and

the reference coefficients. The reference model in this application is the period 1 model.

Equations 3.11 and 3.12 give the value of the outcome variable for the two groups when

the coefficients and residual distributions are fixed at their reference model values i.e. us-

ing the coefficients and residuals for the period 1 regression. Only the quantities differ

between the two models. A comparison of the distributions generated by these two equa-

tions would therefore isolate the effect that the differing distributions of the independent

variables in the model has on a given statistic of interest.

y1
i1 = xi1β1 +F−1

1 (pi1|xi1) (3.11)

y1
i2 = xi2β1 +F−1

1 (pi2|xi2) (3.12)
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Equations 3.13 and 3.14 give the value of the outcome variable for the two groups when

the residual distributions are fixed at the reference model values. Quantities and coeffi-

cients are both allowed to vary between the two groups. If for a chosen statistic of interest

these two distributions were compared the result would be the effect of the different quan-

tities and different coefficients on that statistic. Deducting the quantity effect calculated

from equations 3.11 and 3.12 isolates the effect of differences in coefficients between the

two groups.

y2
i1 = xi1β1 +F−1

1 (pi1|xi1) (3.13)

y2
i2 = xi2β2 +F−1

1 (pi2|xi2) (3.14)

Equations 3.15 and 3.16 give the value of the outcome variable for the two groups when

the coefficients, residual distributions, and quantities are all allowed to vary between the

two models. This is the case of the two models estimated separately with no reference

model components as in equations 3.7 and 3.8, therefore simply returning the observed

values of the dependent variable. Removing the effect of differing coefficients and distri-

bution of independent variables from this isolates the effect of different residual distribu-

tions.

y3
i1 = xi1β1 +F−1

1 (pi1|xi1) (3.15)

y3
i2 = xi2β2 +F−1

2 (pi2|xi2) (3.16)

Using the mean - µ - as an example (which can be replaced with any chosen distributional

statistic of interest in the analysis), the full JMP decomposition can therefore be written

as follows:
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µ1−µ2︸ ︷︷ ︸
Total

= ([µ1
1 −µ

1
2 ])︸ ︷︷ ︸

Quantities

+([µ2
1 −µ

2
2 ]− [µ1

1 −µ
1
2 ])︸ ︷︷ ︸

Prices

+([µ3
1 −µ

3
2 ]− [µ2

1 −µ
2
2 ])︸ ︷︷ ︸

Unobservables

(3.17)

Equation 3.17 breaks down the difference in a distributional statistic between the two

groups into three components. The first term on the right hand side corresponds to the

difference in equations 3.11 and 3.12 and therefore indicates the difference in the two

groups which is due to differing quantities.

The second term takes the difference between equations 3.13 and 3.14 - the difference

between the groups when both observable prices and observable quantities differ between

the two groups. It then deducts the first term in order to isolate the pure price effect.

The final term in turn takes the difference between equations 3.15 and 3.16 - where all

the components differ between the two groups. Deducting the second term (to hold price

and quantity differences constant) from this isolates the contribution of the difference in

the distribution of residuals, or the unmeasured prices and quantities. In this example the

third term should be equal to zero as the mean should not depend on the residuals which

have an expectation of zero. For other statistics it is likely that the distribution of residuals

will play a role in explaining changes in the overall distribution.

In the analysis which follows the unobservables component represents “within-group”

effects. These are within-group effects as they represent changes in inequality in the

residuals i.e. differences in wages which remain once the human capital endowments

of the individuals are controlled for. The price component represents “between-group”

effects as these are the coefficients, and show how wages vary between different groups

defined by the human capital variables. The quantity effect then represents compositional

differences - changes in wage inequality which occur because of the changing proportions

of individuals in different human capital groups. For example, an increasing proportion

of individuals in groups with greater within-group inequality will increase the level of

overall inequality, holding both within-group and between-group inequality constant.
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3.3.3 Empirical Approach

The approach of this paper is to estimate JMP decompositions as outlined in the previous

section. The aim is to decompose the change over time in the wage distribution into

the effects of observed prices, observed quantities, and unobservables. The time period

studied here is 1997-2012. This time period is chosen so as to be comparable to the

analysis of the previous chapter. The decomposition is based on the following regression

model estimated by OLS.

log(wi) = X ′β + εi (3.18)

In equation 3.18 log(wi) is the natural logarithm of the hourly wage, X is a vector of hu-

man capital variables - education and experience - and β the corresponding vector of co-

efficients and εi is the error term, assumed to be normally distributed with an expectation

of zero. These chosen functional forms are typical of the kind that have been estimated in

the decomposition literature, for example Lemieux (2002) estimates an OLS regression

using education dummies, years of schooling, a quartic in experience, marital status, and

ethnicity in his decomposition using US data.

These decompositions are estimated using the jmpierce command in Stata. In order to

perform statistical inference on the results, this program is bootstrapped with 500 replica-

tions for each model. As the decomposition involves two cross sectional regressions, each

year is treated as a separate stratum and the bootstrap samples are drawn independently

from both strata.

The overall period studied is 1997-2012. Regression models are estimated for each an-

nual cross section and a decomposition between 1997 and each year from 1998-2012 is

estimated and the results presented graphically. Quantitative results are presented for the

overall period and two sub-periods. The sub-periods chosen are 1997-2005 and 2005-

2012. These are analysed separately because the graphical results in Section 3.5 suggest a

structural break in the evolution of wage inequality around this point which is of interest

to decompose independently.
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The main statistics of interest that are decomposed are the mean and measures of in-

equality. The main inequality measure considered is the 90-10 log wage differential. In

order to independently analyse the top and bottom of the distribution the 90-50 and 50-10

differentials are also included.

3.4 Data

3.4.1 Dataset

This paper draws upon the UK’s Labour Force Survey (LFS). The LFS is a nationally

representative survey of the UK population which has been conducted on a quarterly

basis since 1992. Sampling for the LFS is stratified rather than random and therefore

the data includes sampling weights to ensure that statistics can be calculated which are

representative of the population. The LFS is utilised as opposed to the Annual Survey of

Hours and Earnings (ASHE) because the latter does not contain the required independent

variables for the analysis.

The LFS information is gathered through responses by the individual or a proxy respon-

dent on that individual’s behalf. Each respondent is retained within the sample for five

quarters with the sample staggered such that each quarter contains respondents in their

first, second, third, fourth, or final wave of participation in the survey.

There is, therefore, a panel element to the data. This panel element to the data does not

have any bearing on the methodological approach of this study as the quarterly data are

pooled into years which are treated as repeated cross sections. The first quarters of 2001,

2004, and 2005 are excluded. This is because the earnings variable is not available in the

2001 first quarter, and the highest qualification variable is not available in the 2004 first

quarter. Although these variables are referred to in the LFS documentation they are not

provided in the respective datasets. The change from seasonal to calender quarters for the

survey impacted the highest qualification variable - 30% of the observations do not have

a response for this variable and this affects the data for the first quarter of 2005.
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Table 3.1: OLS Log Wage Regressions 2005

All 2005 Q1 Q2 Q3 Q4
Postgraduate 0.614∗∗∗ 0.0482∗ 0.801∗∗∗ 0.826∗∗∗ 0.791∗∗∗

(0.0113) (0.0215) (0.0208) (0.0184) (0.0220)

1st Degree 0.600∗∗∗ 0.756∗∗∗ 0.721∗∗∗ 0.732∗∗∗ 0.707∗∗∗

(0.00889) (0.0203) (0.0174) (0.0165) (0.0171)

Higher Education 0.408∗∗∗ 0.498∗∗∗ 0.472∗∗∗ 0.522∗∗∗ 0.458∗∗∗

(0.00890) (0.0207) (0.0166) (0.0164) (0.0171)

A Levels 0.256∗∗∗ 0.369∗∗∗ 0.321∗∗∗ 0.345∗∗∗ 0.316∗∗∗

(0.00778) (0.0178) (0.0146) (0.0143) (0.0148)

GCSE A*-C / O Levels 0.0832∗∗∗ 0.175∗∗∗ 0.146∗∗∗ 0.173∗∗∗ 0.164∗∗∗

(0.00781) (0.0180) (0.0148) (0.0140) (0.0149)

Other Qualification 0.0566∗∗∗ 0.149∗∗∗ 0.117∗∗∗ 0.151∗∗∗ 0.122∗∗∗

(0.00874) (0.0206) (0.0163) (0.0159) (0.0168)

Experience 0.0356∗∗∗ 0.0359∗∗∗ 0.0361∗∗∗ 0.0368∗∗∗ 0.0341∗∗∗

(0.000589) (0.00126) (0.00111) (0.00112) (0.00119)

Constant 1.770∗∗∗ 1.659∗∗∗ 1.688∗∗∗ 1.658∗∗∗ 1.713∗∗∗

(0.00913) (0.0207) (0.0174) (0.0165) (0.0180)
R2 0.247 0.271 0.271 0.278 0.242
Observations 50502 9668 13602 13968 13264
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 3.1 shows a regression of the log wage on education dummies (with no qualifica-

tions as the omitted category) and experience for the year 2005. The regression using

just the first quarter of 2005 clearly differs from those using quarters 2, 3, and 4. The

clearest difference is in the coefficient for having a postgraduate degree. Not only does

this coefficient differ significantly and substantially from the other quarters but it also has

an interpretation inconsistent with the other quarters and with economic theory. As the

highest level of education possible it should be associated with the highest wage relative

to someone with no qualifications. In quarter 1 a postgraduate degree is associated with

a 5% higher wage than someone with no qualifications. This is compared to someone

whose highest qualification is GCSE grade A*-C level who earn an 18% higher wage.

As the income questions (i.e. including wages) are only asked in the first and fifth wave

of participation in the survey each individual will only appear once in any given year
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when only observations for which wage data are available are included in the estimation

sample. Each observation can therefore be treated as independent in the pooled annual

cross sections.

The analysis focuses on full time workers, both male and female, and observations are

included only if both alternative measures of the wage considered are available - one

calculated using the individual’s usual weekly hours and one calculated using the actual

hours worked in the reference week. This gives a sample over the period considered

(1997-2012) of 585,536.

Dependent Variable

The dependent variable is the natural logarithm of the individual’s hourly wage. Since not

all individuals are paid a set hourly wage5, this figure is calculated for all individuals as

their gross weekly earnings divided by total weekly hours worked. This measure of log

wages is adjusted for inflation using the retail prices index (RPI).

There is potential for the results to be sensitive to the hours measure chosen. The LFS

data allows for three potential hours totals; hours excluding any overtime, basic hours plus

paid overtime, and basic hours plus paid and unpaid overtime. These totals can either be

applied to actual hours (the actual hours worked in the reference week) or the individual’s

stated usual hours. This gives a potential 6 different measures which could be used to get

an estimate of hourly wages.

For the main analysis, the measure used will be total (basic plus paid and unpaid overtime)

usual hours. The sensitivity of the results to this particular choice is examined more

closely in the analysis section. As can be seen in Table 3.2 the use of usual hours gives

a lower estimate of the wage than with actual hours but the mean follows the same trend

over time. There is, however, potential for other distributional statistics to be impacted on

more seriously by the choice between the two measures.

5 and those who are paid an hourly wage are disproportionately located in the bottom of the wage distribution
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Table 3.2: Descriptive Statistics - Sample Means

1997 2002 2005 2007 2012
Log Hourly (Usual) Wage 2.21 2.36 2.41 2.40 2.37
Log Hourly (Actual) Wage 2.28 2.43 2.46 2.46 2.42
Independent Variables
Postgraduate Degree 0.04 0.05 0.07 0.08 0.09
1st Degree 0.11 0.13 0.15 0.16 0.21
Higher Education 0.10 0.10 0.11 0.11 0.11
A Levels 0.23 0.24 0.24 0.23 0.23
GCSE A*-C / O Levels 0.24 0.23 0.24 0.23 0.22
Other Qualification 0.15 0.13 0.12 0.12 0.08
No Qualifications 0.13 0.11 0.09 0.09 0.05
Experience 21.86 22.85 23.57 23.72 24.22
Male 0.49 0.49 0.48 0.48 0.48
Observations 68106 65149 42831 56277 44704

Independent Variables

The key independent variables are the human capital variables. The main variables in

the standard human capital model are education and experience. These are measured in

the LFS by a continuous variable experience, and 7 education dummy variables with no

qualifications representing the base category. The experience variable (more precisely,

potential labour market experience) is calculated as the individual’s age minus the age

they left full time education.

3.4.2 Descriptive Statistics

Figure 3.5 shows the change in real log wages at each percentile of the distribution for

all workers over 1997-2012 . As the figure shows, over the whole period real log wages

increased at each point in the distribution. The downward sloping portion of the line

further indicates that the largest increases in real wages were obtained at the bottom end

of the distribution and generally suggests decreases in wage inequality in this part of the

distribution. This increase in wages at the bottom of the distribution is partly attributable

to the minimum wage which was introduced in this period. The U shaped curve however

suggests that inequality at the top end of the distribution increased. This highlights the

importance of analysing both halves of the distribution independently in addition to the
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overall distribution.

The distribution of educational attainment has changed to reflect greater participation in

higher education. This is illustrated in Figure 3.6. The proportion of individuals whose

highest qualification is a degree has increased by approximately 10 percentage points and

those with a postgraduate degree by 5 percentage points. The proportion of individu-

als whose highest qualification is an A level or equivalent has declined slightly over this

period . Meanwhile there have also been slight declines in those whose highest qualifica-

tion is a GCSE (both A*-C grades and D-G grades) and the proportion of those with no

qualifications has fallen by around 5 percentage points.

The distribution of labour market experience has also shifted to indicate greater levels

of human capital as shown in Figure 3.7 and the descriptive statistics given in Table 3.2.

Between 1997 and 2007 the distribution became distinctly bimodal but with a larger pro-

portion of the density accounted for by those with more than 20 years of experience in

2007. The 2012 distribution looks similar to that of 2007 but shifted to the right. It can

be seen in Table 3.2 that the average level of experience has consistently increased since

1997.

Figure 3.8 gives an illustration of how the changes in inequality suggested by Figure 3.5

break down into within and between group changes. These two groups are a “more”

experienced (21-40 years) and “less” (1-20 years) experienced group.

Both groups show the U shaped relationship between position in the wage distribution

and the change in real log wage over the 1997-2012 period shown in Figure 3.5. Within

group inequality has fallen in the bottom half of both distributions (more so in the less

experienced group) and has increased in the top half. The between group comparison

appears to show decreasing inequality - at almost all points in the respective distributions,

real wages have grown faster for the less experienced group therefore closing the gap

between the two. The mean wage differential between the two groups has fallen from

0.147 log points in 1997 to 0.091 in 2012.

A more detailed breakdown of the inequality change of the less experienced group into

further groups defined by highest level of education is provided in Figure 3.9. Amongst
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the less educated groups - GCSE’s and no qualifications - within group inequality has

fallen, and more so in the bottom end of the distribution than the top. This also appears to

hold true (although less obviously) for those with A Levels. There appears to have been

slight increases in inequality for postgraduates and those with first degrees.

Looking at the case between groups potentially explains the U shaped relationship found

in Figure 3.8. Wages for those with no qualifications have grown the fastest up to the

median of each respective distribution which can explain the compression of the bottom

half of the overall distribution of this experience group, and across the entire distributions

faster than any group except postgraduates. Meanwhile at the top end of the distribution,

growth in real wages for postgraduates has been consistently faster than for those with

only a first degree (for this group the growth in real wages was negative).

For the less experienced group both within and between group comparisons suggest in-

creasing inequality at the top end of the distribution, and similarly at the bottom end of the

distribution both the within and between group comparisons are suggestive of decreasing

inequality.

It is difficult to draw meaningful conclusions from this descriptive analysis alone even

using a limited number of education categories and one experience group, and the con-

clusions which can be drawn may not generalise. This highlights the usefulness of the

more formal decomposition approach to assessing the role of between-group and within-

group effects in the changes in wage inequality.
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3.5 Analysis

3.5.1 OLS Regression Results

Table 3.3 reports the results of the OLS regressions6 corresponding to equation 3.18. The

columns report, respectively, results for cross sectional regressions estimated for 1997,

2002, 2005, 2007, and 2012

Each regression produces results consistent with a basic human capital model. All co-

efficients on the education dummies are positive, reflecting the fact that individuals with

education of any level would be expected to earn a higher wage than an individual with no

qualifications. The magnitude of the coefficients also make sense, indicating that higher

quality qualifications result in a higher expected wage.

The coefficients on the experience variables are also as would be expected. All coeffi-

cients on age are positive and all coefficients on age squared are negative. The simplified

nature of the econometric specification of the human capital model means the returns to

education reported here are overestimated i.e. they do not account for selection into ed-

ucation by those with greater ability and would consequently have been expected to earn

more than those who choose not to undertake further non-compulsory education even

without having undertaken the additional education themselves.

All estimated coefficients are significant at the 5% level at least and in most cases even at

the 0.1% level using standard errors robust to heteroscedasticity. The R2 values for each

model suggest this specification can explain between 25% and 30% of the cross-sectional

variation in log wages.

The columns of Table 3.4 correspond to those of Table 3.3 but for females. These results

are again as would be expected from a regression model of this type and produce similar

R2 values to the male regressions.

6 Reported coefficients are limited to the training dummy, the experience and experience squared variables
and the education dummies
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Table 3.3: OLS Log Wage Regression Results - Males

1997 2002 2005 2007 2012
Postgraduate 0.801∗∗∗ 0.804∗∗∗ 0.757∗∗∗ 0.829∗∗∗ 0.822∗∗∗

(0.0165) (0.0138) (0.0172) (0.0151) (0.0184)

1st Degree 0.771∗∗∗ 0.747∗∗∗ 0.697∗∗∗ 0.712∗∗∗ 0.705∗∗∗

(0.0122) (0.0117) (0.0145) (0.0137) (0.0162)

Higher Education 0.519∗∗∗ 0.475∗∗∗ 0.476∗∗∗ 0.491∗∗∗ 0.490∗∗∗

(0.0127) (0.0121) (0.0146) (0.0143) (0.0173)

A Levels 0.318∗∗∗ 0.300∗∗∗ 0.301∗∗∗ 0.335∗∗∗ 0.332∗∗∗

(0.0102) (0.00961) (0.0118) (0.0118) (0.0150)

GCSE A*-C / O Levels 0.235∗∗∗ 0.217∗∗∗ 0.180∗∗∗ 0.222∗∗∗ 0.215∗∗∗

(0.0115) (0.0107) (0.0130) (0.0131) (0.0155)

Other Qualification 0.111∗∗∗ 0.106∗∗∗ 0.120∗∗∗ 0.142∗∗∗ 0.0900∗∗∗

(0.0114) (0.0115) (0.0137) (0.0134) (0.0166)

Experience 0.106∗∗∗ 0.0862∗∗∗ 0.0942∗∗∗ 0.0900∗∗∗ 0.0867∗∗∗

(0.00325) (0.00312) (0.00382) (0.00346) (0.00393)

Experience Sq/100 -0.431∗∗∗ -0.330∗∗∗ -0.385∗∗∗ -0.365∗∗∗ -0.328∗∗∗

(0.0250) (0.0234) (0.0282) (0.0260) (0.0280)
R2 0.296 0.295 0.290 0.271 0.272
Observations 32068 30170 19561 25808 20294
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 3.4: OLS Log Wage Regression Results - Females

1997 2002 2005 2007 2012
Postgraduate 0.872∗∗∗ 0.817∗∗∗ 0.828∗∗∗ 0.800∗∗∗ 0.828∗∗∗

(0.0151) (0.0129) (0.0151) (0.0129) (0.0156)

1st Degree 0.785∗∗∗ 0.743∗∗∗ 0.727∗∗∗ 0.706∗∗∗ 0.662∗∗∗

(0.0109) (0.0103) (0.0124) (0.0111) (0.0144)

Higher Education 0.596∗∗∗ 0.525∗∗∗ 0.512∗∗∗ 0.489∗∗∗ 0.472∗∗∗

(0.0100) (0.00965) (0.0120) (0.0111) (0.0147)

A Levels 0.316∗∗∗ 0.306∗∗∗ 0.295∗∗∗ 0.293∗∗∗ 0.280∗∗∗

(0.00945) (0.00919) (0.0113) (0.0103) (0.0137)

GCSE A*-C / O Levels 0.235∗∗∗ 0.212∗∗∗ 0.190∗∗∗ 0.184∗∗∗ 0.178∗∗∗

(0.00814) (0.00799) (0.0102) (0.00934) (0.0131)

Other Qualification 0.128∗∗∗ 0.130∗∗∗ 0.129∗∗∗ 0.143∗∗∗ 0.0792∗∗∗

(0.00882) (0.00895) (0.0120) (0.0111) (0.0147)

Experience 0.0942∗∗∗ 0.0818∗∗∗ 0.0830∗∗∗ 0.0767∗∗∗ 0.0676∗∗∗

(0.00321) (0.00307) (0.00379) (0.00321) (0.00377)

Experience Sq/100 -0.502∗∗∗ -0.429∗∗∗ -0.413∗∗∗ -0.385∗∗∗ -0.290∗∗∗

(0.0246) (0.0231) (0.0288) (0.0231) (0.0288)
R2 0.254 0.264 0.282 0.256 0.263
Observations 32737 31829 21273 27798 22318
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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3.5.2 JMP Decomposition Results

This section presents the results of the JMP decompositions. Appendix 3A contains fig-

ures allowing for a visual analysis of the decompositions of the mean and percentile dif-

ferentials to complement the quantitative analysis presented here.

Full period Analysis

Quantitative results including bootstrap standard errors of the estimates for males are

presented for the 1997-2012 decomposition in Table 3.5.

The results of the mean decomposition for males are illustrated in Figure 3.10. The top

left panel shows the change in the mean relative to 1997 for each year up to 2012. The re-

maining panels then respectively show the contribution of the quantity, price (or returns),

and unobservables effects to the decomposition.

Until 2005 the effect of prices grows along with the total change in the mean and is clearly

the dominant component of the decomposition up to this point. After 2005 the role of

prices becomes less important until by 2012 almost the entirety of the change in the mean

wage since 1997 is attributable to the quantity effect, accounting for 0.103 of the 0.113

increase in mean log real wages. These results suggest that until 2005 the rising mean

wage was predominantly due to increases in the return to human capital, complemented

by the shifts in the distribution of human capital illustrated in Figures 3.6 and 3.7. The

levelling off and decrease in mean wages is attributable to the decrease in the price effect

relative to 2005 due to declining labour demand impacting on the real returns to human

capital due to the Great Recession.

The overall growth in wages over the 1997-2012 period is therefore almost completely

due to the shift in the human capital distribution, with real prices almost unchanged from

1997 levels. A major factor in this result is the decline in real wages since the onset of

the Great Recession - had the human capital distribution remained fixed at its 1997 level,

these results suggest the real mean log wage in 2012 would be no different from its 1997

level. The effect of the unobservables in explaining the change in the mean is statistically
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Table 3.5: JMP Decomposition: Males 1997-2012

T Q P U
Mean 0.113∗∗∗ 0.103∗∗∗ 0.010∗ 0.000∗∗

(0.005) (0.003) (0.005) (0.000)

Standard Deviation -0.016∗ -0.001 -0.010∗∗∗ -0.005
(0.006) (0.001) (0.002) (0.006)

5th Percentile 0.192∗∗∗ 0.174∗∗∗ 0.018∗ 0.000
(0.014) (0.009) (0.008) (0.007)

10th Percentile 0.109∗∗∗ 0.095∗∗∗ 0.022∗∗∗ -0.008
(0.007) (0.007) (0.006) (0.004)

50th Percentile 0.086∗∗∗ 0.082∗∗∗ 0.011∗ -0.007∗∗

(0.007) (0.005) (0.005) (0.002)

90th Percentile 0.127∗∗∗ 0.117∗∗∗ -0.001 0.012∗∗

(0.008) (0.007) (0.006) (0.004)

95th Percentile 0.171∗∗∗ 0.162∗∗∗ -0.004 0.012∗

(0.013) (0.009) (0.007) (0.006)

90-10 Percentile Differential 0.018 0.022∗ -0.023∗∗ 0.019∗∗

(0.011) (0.009) (0.007) (0.007)

90-50 Percentile Differential 0.041∗∗∗ 0.035∗∗∗ -0.012∗∗ 0.019∗∗∗

(0.009) (0.008) (0.004) (0.004)

50-10 Percentile Differential -0.023∗∗ -0.013 -0.011∗ 0.001
(0.009) (0.008) (0.005) (0.005)

Standard errors in parentheses
T=Total, Q=Quantity, P=Price, U=Unobservable
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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significant, however the effect is zero when rounding to three decimal places and so has

no economic significance as can be seen in the bottom-right panel of figure 3.10.

Figures 3.11 to 3.13 show the decompositions for the 90-10, 90-50, and 50-10 differentials

respectively. The 90-10 differential initially falls between 1997 and a minimum point

reached in 2005. This is due to a negative price and unobservable effect which is offset

slightly by a positive quantity effect. The magnitude of the price effect diminishes after

this point but remains consistently negative and is significant in 2012. The positive effect

of prices on the mean log wage but negative effect on wage inequality suggests rising

returns to human capital across the wage distribution but faster for those with relatively

little human capital.

The overall rise in the 90-10 differential by 2012 is due to the complementary effects of

quantities and unobservables. This suggests overall increases in within group inequality

and a shift in the human capital distribution towards those groups with higher and/or grow-

ing within group inequality. Both within-group and between-group effects are clearly

therefore playing a role in the change in wage inequality. The change in the 90-10 differ-

ential is, however, not significant.

Breaking down the analysis of the whole wage distribution reveals differences in the

mechanisms by which inequality has changed in the bottom and the top of the distri-

bution. The 90-50 differential is consistently greater than it was in 1997 and the 50-10

differential is consistently lower. The 50-10 differential, similar to the 90-10, reaches a

minimum point relative to 1997 in 2005 and thereafter increases. Overall 90-10 inequal-

ity fell until 2005 because the magnitude of the falling 50-10 differential offset that of

the rising 90-50 differential. After 2005 these positions reversed, leading to the overall

increase in the 90-10.

The quantity effect is the major component of the changes in the 90-50 differential, ac-

counting for 0.035 of the 0.041 increase. This is complemented by the unobservables but

offset by the price effect (as in the case of the 90-10). The quantity and price effects ac-

count for most of the overall change in the 50-10 differential, offset slightly by a positive

unobservables effect. Only the price effect is significant, however.
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The quantity effect on inequality in both sides of the distribution reflect the implied shifts

in between group inequality suggested by Figures 3.8 and 3.9. Faster wage growth of

the unqualified compared to those with GCSEs, and of those with GCSEs compared to

A Levels suggest this compression of the bottom end of the wage distribution. Likewise,

at the top end of the distribution, postgraduate degree holders experienced faster wage

growth than those who hold only an undergraduate degree.

The price effect on inequality is consistently negative for each of the three wage differ-

entials. By 2012 in each case, as with the mean, the price effect appears to be of little or

no importance in explaining the change over time relative to the other components, with

the exception of the 50-10 differential. Changing prices of human capital had a positive

effect on average wages and a negative one on each inequality measure initially (up to

2005). By 2012 the price effect is reduced in magnitude but negative and significant for

all inequality measures.

The price effect is the only significant component of the decomposition of the change

in the 50-10 differential. For the 90/10 and 90/50 differentials each component of the

decomposition is statistically significant.

The overall increase in wage inequality appears therefore to be explainable mostly in

terms of within group inequality for males. The competing effects of changes in the

distribution of human capital and the returns to human capital render the between-group

effect small. In the distribution breakdown however the distribution of human capital is

the most important component of both the changes in the 90-50 and 50-10 differentials.

The opposing signs of these two changes means that they offset each other in the 90-10

differential decomposition. The change in the 50/10 differential is explained completely

by human capital factors.

Table 3.6 presents the results of the decomposition for females. The results of the mean

decomposition for females are qualitatively similar to the findings for males. Mean wages

increased significantly (and more than for males) primarily due to the price effect until

2005, after which the price of human capital appeared to fall again and by 2012 quanti-

ties account for 0.140 of the 0.186 log point increase in the mean wage for females i.e.

increasing average wages are due to a greater proportion of females having higher levels
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Table 3.6: JMP Decomposition: Females 1997-2012

T Q P U
Mean 0.186∗∗∗ 0.140∗∗∗ 0.046∗∗∗ 0.000∗∗

(0.004) (0.003) (0.004) (0.000)

Standard Deviation -0.026∗∗∗ 0.012∗∗∗ -0.016∗∗∗ -0.021∗∗∗

(0.005) (0.001) (0.002) (0.005)

5th Percentile 0.261∗∗∗ 0.174∗∗∗ 0.069∗∗∗ 0.017∗

(0.007) (0.008) (0.006) (0.007)

10th Percentile 0.218∗∗∗ 0.133∗∗∗ 0.069∗∗∗ 0.017∗∗∗

(0.004) (0.005) (0.005) (0.005)

50th Percentile 0.163∗∗∗ 0.124∗∗∗ 0.051∗∗∗ -0.012∗∗∗

(0.009) (0.007) (0.005) (0.002)

90th Percentile 0.185∗∗∗ 0.169∗∗∗ 0.019∗∗∗ -0.002
(0.009) (0.007) (0.006) (0.004)

95th Percentile 0.199∗∗∗ 0.176∗∗∗ 0.021∗∗ 0.002
(0.009) (0.008) (0.006) (0.005)

90-10 Percentile Differential -0.033∗∗∗ 0.036∗∗∗ -0.050∗∗∗ -0.019∗∗

(0.009) (0.008) (0.007) (0.007)

90-50 Percentile Differential 0.022∗ 0.044∗∗∗ -0.032∗∗∗ 0.009∗

(0.010) (0.009) (0.005) (0.004)

50-10 Percentile Differential -0.055∗∗∗ -0.008 -0.018∗∗∗ -0.028∗∗∗

(0.009) (0.009) (0.004) (0.005)
Standard errors in parentheses
T=Total, Q=Quantity, P=Price, U=Unobservable
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

of human capital in 2012.

The 90-10 differential decreased significantly between 1997 and 2012 by 0.033 as Table

3.6 indicates. The effect of prices on wage inequality is consistently negative over time

for each of three measures of inequality. Also similar to the male case, the quantity and

unobservables effects are positive for the 90/50 differential. The results of the 90-50

differential for females look qualitatively similar to the results for males, with an overall

increase driven by quantities and unobservables.

The change in the 50-10 differential is also similar to the male case but the change is
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larger in magnitude than the 90/50 differential. Each component of the this decomposition

is negative. Table 3.6 shows that the unobservable effect explains around half of the

decrease in the 50-10 differential. The price component complements this but is smaller

in magnitude. The quantity effect is the most minor component of the decomposition and

is insignificant.

Sub-period Analysis

These results so far suggest that it would be of interest to break down the period of analysis

around 2005. In each of the statistics considered so far, given that this is where in each

case the price effect reaches its peak (in explaining the mean) or trough (in explaining

inequality). These results are presented quantitatively in Tables 3.8 and 3.9 for the 1997-

2005 and 2005-2012 periods respectively for males. Tables 3.10 and 3.11 repeat this

analysis for females.

For males in the 1997-2005 period, the rise in mean wages was due more to changes in the

price of human capital though the positive contribution of changes in quantities of human

capital is also strongly significant.

The 90-10 differential decreased significantly and this was due mainly to the price effect

complemented by the unobservables. These two factors jointly over-explain the decrease

and are offset by a positive quantity effect.

The decrease in the 90-10 differential is driven entirely by a fall in lower-end wage in-

equality, the 50-10 differential falls significantly and by much more than the 90-50 differ-

ential increases (which was insignificant). Each component of the decomposition in the

50-10 complement each other. Unobservables account for the major component of the

decrease with a significant contribution from the price effect as well. The quantity effect

is not significant.

In the 2005-2012 period the fall in mean log wages is statistically significant and driven

by a negative price effect. Continuing shifts in the human capital distribution towards

higher average amounts of human capital results in a significant positive quantity effect
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which is outweighed by the price effect. This qualitative result is found at each percentile

of the distribution except for the 95th percentile which increased (though insignificantly)

The overall increase in the 90-10 differential is due to the increase of 0.077 in this latter

period more than offsetting the decrease of 0.059 in the period before. The unobserv-

ables effect is still the most important component of the decomposition in the 2005-2012

period, explaining around three quarters of the increase in wage inequality. The price

effects complement the unobservables but the quantity effects counter it for each of the

differentials. All of the effects are significant except for the quantity effect for the 50-10

differential.

For females in the 1997-2005 period, as for males, the price effect was the major con-

tributor to increasing mean wages. Wage inequality decreased, driven by the bottom half

of the distribution. Another similarity with the male decompositions for this period is

that the 90/50 differential did not change significantly. This rise in the 90-50 differential

is explained by the quantity and unobservable effects, though only the quantity effect is

significant. Offsetting this to an extent is the price effect, accounting for the insignificant

overall change.

The 1997-2005 sub-period analysis gives the same pattern of results for both males and

females in terms of the signs of the effects and in which effects are significant.

As with males the 50-10 differential decrease is due to all three components of the de-

composition with unobservables accounting for the largest component and the quantity

effect being significant. The 90-10 differential case is also identical to that of males with

negative price and unobservable effects outweighing a positive (although in this case,

significant) quantity effect.

The 2005-2012 period also looks very similar for females as it did for males. Mean

log wages fell significantly because of a negative price effect outweighing a significant

quantity effect. Negative price effects also dominated positive quantity effects at each

different percentile of the female wage distribution and overall wages fell by more at the

bottom of the distribution.

Wage inequality for females in this period increased by all three measures but the change
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in the 90-50 differential is insignificant. The increase in 90-10 wage inequality is statis-

tically significant and is explainable in terms of the quantity effect and the unobservables

which are both positive and significant. A significant negative quantity effect lessened the

impact of these two factors.

In both the male and female cases, the significant and negative influence of the unobserv-

ables on the 50-10 differential in the 1997-2005 period may be a result of the introduction

of the NMW in 1999. The lack of a significant effect of the unobservables in the 2005-

2012 period for females and a positive effect for males would suggest that this influence

was limited to a static effect when the minimum wage was introduced, with no long term

effects.

3.5.3 Interpretation and Discussion of the Results

The overall results for males support the initial hypothesis. Increasing attainment of

higher education in the 1997-2012 period was accompanied by a negative effect on be-

tween group wage inequality as would be expected given the declining skill premium. The

effect on within-group inequality was positive and the impact of increasing the proportion

of skilled labour (the composition effect) was also positive.

This effect differs across the distribution. This pattern is reflected in the top half of the

distribution, which saw a significant increase in wage inequality due to positive within-

group and and composition effects, also experiencing a negative effect on between-group

inequality.

With skilled labour being defined as anyone with university level education and the expan-

sion of the proportion of the labour force composed of both first degrees and postgraduate

degrees it makes sense that the hypothesised effect which is found for overall inequality

would occur primarily in the section of the wage distribution above the median.

Table 3.7 shows the changes in wage inequality within education and experience groups.

High education is defined as anyone with a university level education, medium education

is anyone with any qualification below university level, and low education is defined as
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Table 3.7: Change in the log 90/10 Wage Differential by Education/Experience
Group

Education Level: High Medium Low
Years of Experience: 0-9 10-19 20+ 1-10 10-20 20+ 1-10 10-20 20+

AGGREGATE 0.056 0.094 0.154 -0.258 -0.090 -0.115 -0.371 -0.246 -0.181

INDUSTRY

Agriculture 0.408 0.370 0.408 -0.912 0.285 -0.006 -1.291 -0.546 0.020

Manufacturing 0.005 0.166 0.097 -0.184 -0.093 0.005 -0.239 -0.265 -0.143

Construction 0.073 0.270 0.525 -0.294 0.011 -0.008 -0.352 0.202 0.278

Wholesale/Retail -0.170 -0.162 -0.045 -0.203 -0.169 -0.176 -0.304 -0.414 -0.294

Transport and Comms -0.202 0.046 -0.074 -0.205 0.120 0.109 -0.625 -0.355 -0.021

Finance -0.088 0.125 0.009 0.012 -0.050 -0.055 -0.148 -0.536 -0.291

Other Services 0.073 0.021 0.115 -0.369 -0.151 -0.128 0.356 0.179 -0.123

OCCUPATION

High Skilled 0.030 0.030 0.116 -0.118 0.004 -0.008 1.456 0.144 0.017

Low Skilled -0.106 -0.272 -0.119 -0.270 -0.190 -0.183 -0.416 -0.290 -0.193

no qualifications. The figures show that wage inequality within groups is only growing

(at the aggregate level) for graduates, and this pattern is broadly found for most of the

disaggregated industry groups.

The occupation groups are defined as in the previous chapter; SOC major groups 1-3

comprise high skilled occupations while the remaining groups comprise low skilled occu-

pations. High skilled occupations experienced rising within-group inequality regardless

of education/experience level (with the exception of medium educated workers with more

than 20 years of experience) whereas the low skilled occupations had the opposite.

These figures support the idea that as participation in higher education increases the con-

sequent widening of the ability distribution amongst university graduates increases in-

equality amongst this group. The results of the decomposition indicate that this effect is

greater than the effect of reduced inequality within the groups of less educated workers as

the net effect is an increase in within-group wage inequality.

The bottom half of the male wage distribution does not conform to this pattern, with a fall
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in wage inequality to be explained by the decomposition. The only significant effect in

this case is a decline in between group wage inequality.

One explanation for this could be the effect of job polarisation. As the demand for inter-

mediate skilled routine tasks falls the relative intermediate to low skilled wage would also

be expected fall, which would explain the compression of the bottom half of the wage

distribution.

Job polarisation would be expected to have a positive between-group effect on the top of

the distribution as the relative demand for high over intermediate skills increases. The fact

that this is not observed suggests that the growth in the relative supply of highly skilled

workers outpaced the growth in relative demand implied by polarisation.

The introduction of the NMW in 1999 could also be playing a role. As an effective

minimum wage will push up wages at the bottom of the distribution, this will also have

a compression effect on the bottom end of the wage distribution by narrowing the gap

between the average wages of the lowest skilled and the median worker.

The sub-period analysis suggests that there was some effect of the NMW, as the decline

in lower level wage inequality was restricted to the earlier 1997-2005 period which could

indicate an effect of the NMW on its introduction which did not persist. This is consistent

with the literature which has suggested that the impact of the minumum wage was short

term. In the latter period inequality grew significantly throughout the wage distribution

for males.

Both within-group and between-group inequality significantly declined at the bottom of

the distribution in the 1997-2005 period, consistent with the NMW increasing the average

wage of the lowest skilled relative to other workers and also the price floor reducing the

potential for dispersion in wages amongst the lowest skilled.

In the 2005-2012 period inequality significantly increased throughout the distribution of

male wages. There appear to be no composition or between-inequality effects in this

case, as only the within-group inequality effect is significant for any of the inequality

changes. The results therefore continue to conform partially to the hypothesised effects

of increasing relative skilled labour supply but without the expected composition and
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between-group effects.

Female wage inequality at the bottom of the distribution went through the same process

as the male wage distribution, with the effects in each decomposition being identical

in terms of significance and relative importance (with the exception of the insignificant

within-group inequality effect in the 2005-2012 period decomposition). The overall fall

in wage inequality at the bottom of the distribution over the whole period occured in the

1997-2005 period due to both declining within and between-group inequality.

The top half of the distribution also behaved in a similar manner to the male wage distribu-

tion, with the results again being consistent with the hypothesis stated in the introduction

that growth in relative skilled labour supply reduced between-group wage inequality, in-

creased within-group wage inequality, and a positive composition effect.

Unlike in the male wage distribution, however, overall inequality fell in the female wage

distribution between 1997 and 2012. Despite the similar patterns in the inequality in

the two halves of the distribution the difference is clearly driven by the within-group

inequality effects. For females, this is negative and significant for the 50/10 differential

in the 1997-2012 period but insignificant for males. The positive within-group inequality

effect in the top of the distribution is also weaker for females than for males.

The result of this is a decline in within-group inequality for females as opposed to the

increase for males. This decline in the within-group inequality is limited to the 1997-

2005 period and so as discussed above, this could be a minimum wage effect which had a

much a stronger impact on female wage inequality than male.

The results of the 2005-2012 sub-period analysis for females does not conform to the hy-

pothesised effects of increasing relative labour supply. The negative composition effect

and positive between-group inequality effect contradict the hypothesised effects. This

may be an impact of the Great Recession, with demand for skilled female labour falling

less than the demand for less skilled labour. This would increase the relative demand for

skilled labour and put upward pressure on the skill premium and between-group inequal-

ity.
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3.5.4 Robustness Checks

The results presented so far are subjected to robustness checks to take account of uncer-

tainty due to the nature of the data. These uncertainties are around the construction of

the log wage variable used in the analysis and potential measurement error in the wage

variable. All of the results tables for the robustness checks can be found in Appendix 3B.

Payslip data

The first source of uncertainty that is subjected to robustness checks is the accuracy of

the self-reported gross earnings of the individual. The LFS contains a variable which

indicates if any documentation was used by the individual to report their earnings - either

a pay slip, bank/ building society details, or some other source. The results obtained in the

main part of the analysis are compared to the same results obtained just from those who

provided payslip data7. It is only possible to make the comparison with the sub-sample

who used payslips to provide information for the wage variable for the period 2005-2012

due to the timing of this variable becoming available in the LFS (the third quarter of

1998).

Tables 3.13 and 3.14 show the results of the decomposition using only the payslip data

for the period 2005-2012 for males and females respectively.

Comparing Tables 3.13 and 3.9 reveals some differences but qualitatively the results are

very similar. The mean still falls with a stronger negative price effect than positive quan-

tity effect and this pattern holds throughout the distribution with the lower percentiles

falling by more than the higher percentiles. The interpretation of the decompositions of

the inequality measures still holds but the magnitudes of the inequality increases have

diminished. Overall inequality increased due mostly to the unobservables effect.

The elements of the decomposition have also been reduced in significance with only the

7 In what follows, the term “payslip data” refers to the sub-sample of individuals who used either their pay
slip or bank/building society details to provide the information about earnings.
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unobservable effect for the 90-10 and 50-10 differential being significant at the 5% level.

The unobservables remain the main component of the decomposition for the inequality

measures.

The results for females are similar and obtained by comparing Tables 3.14 and 3.11. The

conclusions and inference around the mean are qualitatively the same as the full sample

case but there are some notable differences when it comes to interpreting the inequality

measures. The increase in the 90-10 and 50-10 differentials and their components are

now not significant. For the 90-10 differential the unobservables effect is the major com-

ponent of the decomposition and is complemented by the quantity effect (though this is

insignificant). The price effect is negative but also insignificant.

Most of the difference between the full and payslip samples for males is the loss or weak-

ening of significance of results. For females only the unobservables effect on the 90-10

differential remains significant when restricting the sample to those who used payslip

information. For both genders, components of the decomposition change sign.

This difference in results is likely due to the problem of reduced sample size which is

severe when restricting the sample in this way, the proportion of individuals in the pooled

2005 and 2012 data who used payslip details to provide income information is only 20%.

Selection of the individuals who use payslip information is also likely to be systematic

and therefore influencing these results.

The selection issue is that unobservable characteristics of individuals which are corre-

lated with their education levels are also likely to be correlated with the propensity to

use a payslip to give income information. More highly educated individuals are likely

to be better organised and have ready access to their payslips and may also be more

likely/willing to want to give an accurate answer to questions in the survey.

Construction of the wage variable

The other source of uncertainty in the data examined is the way in which the wage variable

is constructed. The LFS provides two main measures of hours; usual hours - the hours
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measure used to define wages in the main analysis - and actual hours. Usual hours are the

total hours an individual works in a typical week whereas actual hours are the hours the

individual actually worked in the reference week of the survey.

Arguments can be made for the use of both of these measures; using actual hours will

give a precise value (assuming no measurement error) for the hours the individual worked

in the reference week. Usual hours on the other hand will give an indication of the indi-

vidual’s average working week which may be a better measure if the reference week was

atypical for that worker (and if the reference week was similar to an average week the two

measures should not differ).

Table 3.15 shows the same results as the decomposition in Table 3.5 - for males over the

1997-2012 period - using actual hours to define the wage rather than usual. The results for

the mean hold - a large quantity effect explains all of the change in real wages - however

there is also a negative price effect which is significant and offsets the total change in the

mean. This is also found throughout the wage distribution although the price effect is not

significant at the 5th and 50th percentiles.

In examining the total changes of each percentile an obvious difference between these re-

sults and the main analysis is observed - the U shaped relationship between the percentile

and the change in the wage seen in Table 3.5 is not repeated for this wage measure; while

real wages still increase throughout the distribution the magnitude of the increase mono-

tonically declines, indicating decreasing wage inequality by each of the three differentials.

This result is found, contradicting the results of the main analysis where the 50-10 differ-

ential decreased and the 90-50 differential increased by a larger amount leading to overall

rising wage inequality. In this case all three differentials decline, with 90% of the fall in

the 90-10 differential attributable to the decline in the 50-10 differential. None of these

changes are, however, significant.

Comparing Table 3.16 to Table 3.6 gives a comparison between the different hours mea-

sures for females. The insignificant increase in wage inequality measured by the 90-10

differential initially found becomes a significant decrease. The observed components of

the decomposition remain similar in size and magnitude with prices and unobservables
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driving the changes in the 90-10 and 50-10 differential. The mean, similarly to males, has

a significant negative price effect when using actual hours.

The main difference between the results of analysing these two wage measures is a sub-

stantial change in the decomposition mainly in the top half of the wage distribution. In-

equality is found to decrease insignificantly rather than increase significantly and lead to

an overall increase in wage inequality. The difference between the two hours measures is

much greater for males and females.

Why do the hours measures give different results?

As the results are sensitive to this choice of how the dependent variable is constructed the

issue is examined more closely using a variable constructed as the ratio of usual hours

to actual hours. Table 3.17 shows the results of logit models estimated for the entire

sample to model the probability that an individual’s reported usual hours are equal to

reported actual hours (which is the case for 328,060 observations out of 582,487 (or 56%

of the sample). These probability models are estimated as a function of the human capital

variables in the wage equations on which the decomposition is based plus a series of time

dummies.

The results in column one are for the probability that the hours ratio is equal to one (the

two measures are equivalent), column two models the probability that the ratio is greater

than or equal to one (so usual hours are greater than or equal to actual hours). The results

reported in column one indicate that individuals with more levels of human capital, or the

higher skilled, are less likely to have their actual hours equal to their usual hours. All

coefficients are highly significant and negative (except the experience squared term) and

the education dummy coefficients monotonically increase in magnitude as the education

level relative to no qualifications increases.

As these individuals are higher earners it points to these individuals as driving the differ-

ence between the decomposition results when a different hours measure is used to calcu-

late the wage. The second column tells a similar story to column one but shows that not

only are actual and usual hours more likely to differ between workers with higher levels
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of human capital but actual hours are increasingly likely to be larger than usual hours.

An intuitive explanation for this would be that individuals in highly paid jobs are less

routine in terms of the hours worked on a week by week basis. This would make actual

hours worked on a weekly basis more volatile for these types of workers and usual hours

are then a reflection of the average week. If the individual worked an abnormally large

number of hours in the reference week their average hourly pay will be understated. As the

measure of usual hours implies a longer time horizon over which the individual considers

their work pattern, this measure is likely to reduce the impact of isolated weeks with

abnormally long hours worked and better reflect a “typical” working week.

The results of Tables 3.18 and 3.19 re-estimate the decomposition for males and females

respectively, including only wage observations for the 56% of the sample for whom usual

equal actual hours. Bearing in mind the results of the logit models, this means higher earn-

ers will be disproportionately under-represented in these results. For males, comparing

Table 3.18 to 3.15 (actual hours full sample) and 3.5 (usual hours full sample) reveals that

this sub-sample yields results more in common with the full sample where usual hours is

used to define the wage variable.

The U shaped relationship between the change in the real log wage and the position in the

distribution found for usual hours is again found here, rather than the strictly downward

sloping relationship given by actual hours. In this case, however, the change in the 90-10

differential is negative but still insignificant.

In examining the elements of the decomposition for the three percentile differentials, the

signs for each element is the same for this sub-sample as it is for the usual hours case. The

only exceptions to this are the quantity and unobservable effects for the 50-10 differential,

however as in the usual hours case both are insignificant. In this instance the overall

changes in the differentials are all insignificant, with the 90-50 and 50-10 differential

changes having fallen in magnitude but are all of the same sign as in the results for usual

hours.

These results suggest that it may be more reliable to interpret the results of the main

analysis based on usual hours rather than actual hours. When restricting the sample to
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those observations where actual and usual hours are the same, the results more closely

resemble the full sample usual hours case than the actual hours case. The differences

between the actual and usual hours results seem to be driven by a tendency for reported

actual hours to over-state usual hours which is disproportionately located within the top

of the wage distribution.

3.6 Summary and Conclusions

The aim of this chapter was to examine the change over time in the UK wage distribution

within a human capital framework. This was undertaken using a decomposition analysis

in order to investigate the role of the supply side of the labour market in recent trends in

wage inequality. The hypothesis being investigated was that shifts in the relative supply

of labour caused a decline in between-group inequality

The decomposition was also able to give an insight into changes in the level of wages as

well as inequality. The increase in average wages between 1997 and 2012 for both males

and females is attributable almost entirely to shifts in the human capital distribution. Had

this remained at its 1997 level mean wages would not have significantly changed. Overall

real wage growth is therefore a consequence of the changing skill composition of the

workforce. Given the timing of the decline in the impact of the price of human capital

and its equivalent impact on both males and females, the neutral effects of prices over the

whole period is interpretable as a consequence of falling labour demand due to the Great

Recession.

For both males and females, inequality grew significantly within the top of the distribution

but declined significantly within the bottom of the distribution. This contributed towards

a positive but insignificant change in wage inequality for males and significant decline in

wage inequality for females. Changes in the price of human capital over time have had a

negative impact on the level of wage inequality throughout the distribution for both males

and females via a decline in between-group inequality, as would be expected given the

declining skill premium.
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This decline in the skill premium has, however, been accompanied by upward pressure

on wage inequality from the supply side of the labour market. The positive composition

effect suggests that shifts in the skill distribution have increased the proportion of work-

ers in skill groups with higher levels of inequality and the positive change in within-group

inequality suggests that this increase in educational attainment has expanded those wage

distributions further. The overall results are therefore consistent with the initial hypothe-

sis.

Two distinct periods can be identified during which inequality behaved differently. Up to

2005 wage inequality fell for both males and females driven predominantly by the bottom

end of the distribution. In each case the unobservable within-group inequality effect was

the strongest component. In this period the 90-50 differential did not change significantly

for either gender. This is interpreted of a strong effect of the NMW around the period

of its introduction in 1999 which narrowed the between-group inequality in the bottom

of the wage distribution and also compressed within-group inequality amongst the lowest

skilled workers.

After 2005 wage inequality increased again with falling human capital prices accounting

for the fall in average wages and affecting the bottom of the distribution more than the

top - a reversal of the role played by the price effect pre 2005. The increase in inequality

for males by all three inequality measures is due mostly to the within-group inequality

effects. Similarly for females, all three inequality measures increased between 2005 and

2012 due primarily to within-group effects.

The robustness of these results is an issue. In particular the way in which the hours

variable is constructed has a significant impact on the analysis of changes in inequality at

the top of the wage distribution. The results for the bottom of the distribution are much

more robust to this, with significantly falling wage inequality over the 1997-2012 period

for both males and females but driven by different factors for both. There may also be a

problem in the change in the response rate to the LFS over time. Figure 3.18 illustrates

this by plotting the number of observations in each year over time, displaying a very

clear downward trend. Systematic attrition rates of particular subgroups may influence

the results of analysis of trends over time as in this chapter.
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Chapter Appendices

3.A Chapter 3 Figures

Figure 3.4: Residual Cumulative Distribution Function
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Figure 3.5: Change in Real Log Wages by Percentile 1997-2012
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Figure 3.6: Change in Educational Attainment
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Figure 3.7: Experience Distributions
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Figure 3.8: Change in Real Log Wages by Experience Groups 1997-2012
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Figure 3.9: Change in Real Log Wages by Education for the Less Experienced Group
1997-2012
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Figure 3.10: JMP Mean Decomposition: Male
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Figure 3.11: JMP 90-10 Differential Decomposition: Male
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Figure 3.12: JMP 90-50 Differential Decomposition: Male
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Figure 3.13: JMP 50-10 Differential Decomposition: Male
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Figure 3.14: JMP Mean Decomposition: Female
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Figure 3.15: JMP 90-10 Differential Decomposition: Female
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Figure 3.16: JMP 90-50 Differential Decomposition: Female
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Figure 3.17: JMP 50-10 Differential Decomposition: Female
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Figure 3.18: Observations in the LFS over time
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3.B Chapter 3 Tables

Table 3.8: JMP Decomposition: Males 1997-2005

T Q P U
Mean 0.161∗∗∗ 0.044∗∗∗ 0.118∗∗∗ 0.000∗∗∗

(0.005) (0.002) (0.004) (0.000)

Standard Deviation -0.043∗∗∗ 0.009∗∗∗ -0.027∗∗∗ -0.025∗∗∗

(0.006) (0.001) (0.002) (0.006)

5th Percentile 0.267∗∗∗ 0.076∗∗∗ 0.166∗∗∗ 0.024∗∗

(0.013) (0.007) (0.007) (0.008)

10th Percentile 0.197∗∗∗ 0.031∗∗∗ 0.151∗∗∗ 0.016∗∗∗

(0.008) (0.006) (0.005) (0.004)

50th Percentile 0.133∗∗∗ 0.023∗∗∗ 0.122∗∗∗ -0.011∗∗∗

(0.007) (0.004) (0.005) (0.002)

90th Percentile 0.138∗∗∗ 0.066∗∗∗ 0.076∗∗∗ -0.004
(0.006) (0.005) (0.005) (0.004)

95th Percentile 0.149∗∗∗ 0.080∗∗∗ 0.073∗∗∗ -0.005
(0.011) (0.008) (0.007) (0.007)

90-10 Percentile Differential -0.059∗∗∗ 0.036∗∗∗ -0.074∗∗∗ -0.020∗∗

(0.009) (0.008) (0.007) (0.007)

90-50 Percentile Differential 0.005 0.043∗∗∗ -0.045∗∗∗ 0.007
(0.008) (0.007) (0.004) (0.004)

50-10 Percentile Differential -0.064∗∗∗ -0.007 -0.029∗∗∗ -0.027∗∗∗

(0.008) (0.006) (0.004) (0.005)
Standard errors in parentheses
T=Total, Q=Quantity, P=Price, U=Unobservable
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 3.9: JMP Decomposition: Males 2005-2012

T Q P U
Mean -0.051∗∗∗ 0.051∗∗∗ -0.103∗∗∗ 0.000∗∗∗

(0.006) (0.003) (0.005) (0.000)

Standard Deviation 0.027∗∗∗ -0.001 0.005 0.023∗∗∗

(0.007) (0.002) (0.003) (0.007)

5th Percentile -0.086∗∗∗ 0.078∗∗∗ -0.119∗∗∗ -0.044∗∗∗

(0.010) (0.010) (0.007) (0.007)

10th Percentile -0.095∗∗∗ 0.049∗∗∗ -0.109∗∗∗ -0.035∗∗∗

(0.007) (0.007) (0.006) (0.005)

50th Percentile -0.046∗∗∗ 0.052∗∗∗ -0.103∗∗∗ 0.005
(0.008) (0.005) (0.005) (0.003)

90th Percentile -0.011 0.052∗∗∗ -0.095∗∗∗ 0.031∗∗∗

(0.009) (0.007) (0.007) (0.006)

95th Percentile 0.021 0.083∗∗∗ -0.091∗∗∗ 0.028∗∗∗

(0.014) (0.010) (0.008) (0.008)

90-10 Percentile Differential 0.084∗∗∗ 0.003 0.014 0.066∗∗∗

(0.011) (0.009) (0.008) (0.009)

90-50 Percentile Differential 0.035∗∗∗ 0.000 0.009 0.026∗∗∗

(0.010) (0.009) (0.006) (0.007)

50-10 Percentile Differential 0.049∗∗∗ 0.003 0.006 0.040∗∗∗

(0.008) (0.009) (0.005) (0.006)
Standard errors in parentheses
T=Total, Q=Quantity, P=Price, U=Unobservable
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 3.10: JMP Decomposition: Females 1997-2005

T Q P U
Mean 0.220∗∗∗ 0.063∗∗∗ 0.157∗∗∗ 0.000∗∗∗

(0.004) (0.002) (0.004) (0.000)

Standard Deviation -0.040∗∗∗ 0.015∗∗∗ -0.024∗∗∗ -0.030∗∗∗

(0.005) (0.001) (0.002) (0.004)

5th Percentile 0.305∗∗∗ 0.080∗∗∗ 0.189∗∗∗ 0.036∗∗∗

(0.010) (0.007) (0.006) (0.007)

10th Percentile 0.267∗∗∗ 0.050∗∗∗ 0.192∗∗∗ 0.025∗∗∗

(0.006) (0.004) (0.005) (0.004)

50th Percentile 0.196∗∗∗ 0.043∗∗∗ 0.166∗∗∗ -0.013∗∗∗

(0.006) (0.004) (0.004) (0.002)

90th Percentile 0.205∗∗∗ 0.101∗∗∗ 0.113∗∗∗ -0.009∗∗

(0.006) (0.005) (0.005) (0.003)

95th Percentile 0.216∗∗∗ 0.110∗∗∗ 0.112∗∗∗ -0.006
(0.009) (0.007) (0.006) (0.005)

90-10 Percentile Differential -0.062∗∗∗ 0.050∗∗∗ -0.079∗∗∗ -0.033∗∗∗

(0.009) (0.006) (0.006) (0.006)

90-50 Percentile Differential 0.009 0.058∗∗∗ -0.053∗∗∗ 0.004
(0.007) (0.006) (0.005) (0.004)

50-10 Percentile Differential -0.071∗∗∗ -0.007 -0.026∗∗∗ -0.038∗∗∗

(0.007) (0.006) (0.003) (0.005)
Standard errors in parentheses
T=Total, Q=Quantity, P=Price, U=Unobservable
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 3.11: JMP Decomposition: Females 2005-2012

T Q P U
Mean -0.035∗∗∗ 0.061∗∗∗ -0.096∗∗∗ 0.000∗∗

(0.005) (0.003) (0.004) (0.000)

Standard Deviation 0.014∗∗ -0.007∗∗∗ 0.012∗∗∗ 0.009∗

(0.005) (0.001) (0.003) (0.004)

5th Percentile -0.044∗∗∗ 0.082∗∗∗ -0.109∗∗∗ -0.017∗

(0.009) (0.008) (0.006) (0.006)

10th Percentile -0.049∗∗∗ 0.075∗∗∗ -0.115∗∗∗ -0.009∗

(0.005) (0.005) (0.006) (0.004)

50th Percentile -0.032∗∗∗ 0.062∗∗∗ -0.095∗∗∗ 0.000
(0.008) (0.007) (0.005) (0.002)

90th Percentile -0.020∗ 0.044∗∗∗ -0.071∗∗∗ 0.008
(0.008) (0.007) (0.006) (0.004)

95th Percentile -0.017 0.037∗∗∗ -0.063∗∗∗ 0.009
(0.012) (0.008) (0.008) (0.007)

90-10 Percentile Differential 0.029∗∗ -0.031∗∗∗ 0.043∗∗∗ 0.017∗

(0.009) (0.009) (0.009) (0.008)

90-50 Percentile Differential 0.013 -0.019∗ 0.024∗∗∗ 0.007
(0.010) (0.009) (0.006) (0.005)

50-10 Percentile Differential 0.017∗ -0.012 0.020∗∗∗ 0.009
(0.008) (0.009) (0.005) (0.005)

Standard errors in parentheses
T=Total, Q=Quantity, P=Price, U=Unobservable
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 3.12: Percentage Change in Employment by Education/Experience Group

Education: High Medium Low
Years of Experience: 0-9 10-19 20+ 1-10 10-20 20+ 1-10 10-20 20+

4.304 4.701 6.246 -2.246 -8.175 3.602 -0.553 -1.041 -6.058
INDUSTRY

Agriculture 0.007 0.029 0.053 -0.075 -0.183 -0.023 -0.013 -0.028 -0.116

Manufacturing -0.231 0.042 0.195 -1.721 -2.914 -2.118 -0.244 -0.408 -1.995

Construction 0.118 0.114 0.219 0.092 -0.233 0.361 -0.051 -0.057 -0.126

Wholesale/Retail 0.912 0.382 0.504 0.035 -1.285 0.941 -0.105 -0.247 -1.385

Transport and Comms 0.690 0.797 0.648 -0.245 -0.508 0.764 -0.006 -0.066 -0.187

Finance 0.272 0.410 0.214 -0.432 -0.704 -0.003 -0.004 -0.004 -0.106

Other Services 2.521 2.933 4.404 0.081 -2.353 3.656 -0.131 -0.235 -2.154

OCCUPATION

High Skilled 2.504 3.643 4.819 -0.613 -2.311 1.031 -0.014 -0.058 -0.469

Low Skilled 1.800 1.058 1.427 -1.633 -5.864 2.572 -0.540 -0.983 -5.590
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Table 3.13: JMP Decomposition: Males 2005-2012 - Payslip Sub-sample

T Q P U
Mean -0.089∗∗∗ 0.029∗∗∗ -0.118∗∗∗ 0.001∗∗

(0.012) (0.006) (0.011) (0.000)

Standard Deviation 0.015 -0.004 0.002 0.016
(0.015) (0.003) (0.006) (0.013)

5th Percentile -0.072∗∗∗ 0.086∗∗∗ -0.126∗∗∗ -0.032∗

(0.016) (0.017) (0.017) (0.014)

10th Percentile -0.103∗∗∗ 0.041∗∗ -0.118∗∗∗ -0.027∗

(0.016) (0.014) (0.016) (0.011)

50th Percentile -0.099∗∗∗ 0.013 -0.117∗∗∗ 0.005
(0.015) (0.011) (0.012) (0.005)

90th Percentile -0.053∗∗ 0.034∗ -0.107∗∗∗ 0.020∗

(0.018) (0.015) (0.017) (0.009)

95th Percentile -0.052∗ 0.029 -0.110∗∗∗ 0.029
(0.025) (0.020) (0.019) (0.016)

90-10 Percentile Differential 0.050∗ -0.007 0.011 0.047∗∗

(0.023) (0.021) (0.021) (0.017)

90-50 Percentile Differential 0.046∗ 0.021 0.010 0.015
(0.020) (0.019) (0.015) (0.010)

50-10 Percentile Differential 0.005 -0.028 0.001 0.032∗

(0.019) (0.017) (0.012) (0.013)
Standard errors in parentheses
T=Total, Q=Quantity, P=Price, U=Unobservable
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 3.14: JMP Decomposition: Females 2005-2012 - Payslip Sub-sample

T Q P U
Mean -0.079∗∗∗ 0.058∗∗∗ -0.137∗∗∗ 0.001∗∗∗

(0.011) (0.006) (0.009) (0.000)

Standard Deviation 0.025∗ 0.005∗∗ -0.005 0.025∗∗

(0.010) (0.002) (0.004) (0.009)

5th Percentile -0.129∗∗∗ 0.045∗∗ -0.133∗∗∗ -0.041∗∗∗

(0.017) (0.015) (0.012) (0.013)

10th Percentile -0.074∗∗∗ 0.065∗∗∗ -0.129∗∗∗ -0.011
(0.011) (0.010) (0.011) (0.008)

50th Percentile -0.070∗∗∗ 0.057∗∗∗ -0.134∗∗∗ 0.006
(0.013) (0.010) (0.010) (0.005)

90th Percentile -0.055∗∗ 0.076∗∗∗ -0.153∗∗∗ 0.022∗

(0.017) (0.012) (0.013) (0.009)

95th Percentile -0.048∗ 0.079∗∗∗ -0.155∗∗∗ 0.028∗

(0.023) (0.017) (0.015) (0.011)

90-10 Percentile Differential 0.020 0.011 -0.024 0.032∗

(0.020) (0.014) (0.015) (0.015)

90-50 Percentile Differential 0.015 0.019 -0.019 0.015
(0.018) (0.016) (0.012) (0.010)

50-10 Percentile Differential 0.004 -0.008 -0.005 0.017
(0.014) (0.014) (0.008) (0.009)

Standard errors in parentheses
T=Total, Q=Quantity, P=Price, U=Unobservable
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 3.15: JMP Decomposition: Males 1997-2012 - Actual Hours

T Q P U
Mean 0.090∗∗∗ 0.109∗∗∗ -0.019∗∗∗ -0.000

(0.006) (0.003) (0.005) (0.000)

Standard Deviation -0.019∗∗ 0.001 -0.006∗ -0.014
(0.007) (0.001) (0.003) (0.007)

5th Percentile 0.135∗∗∗ 0.158∗∗∗ -0.012 -0.011
(0.012) (0.009) (0.008) (0.008)

10th Percentile 0.093∗∗∗ 0.118∗∗∗ -0.019∗∗ -0.005
(0.008) (0.006) (0.007) (0.005)

50th Percentile 0.085∗∗∗ 0.091∗∗∗ -0.010 0.004
(0.008) (0.005) (0.006) (0.003)

90th Percentile 0.083∗∗∗ 0.127∗∗∗ -0.032∗∗∗ -0.011
(0.011) (0.007) (0.008) (0.006)

95th Percentile 0.065∗∗∗ 0.137∗∗∗ -0.036∗∗∗ -0.037∗∗∗

(0.014) (0.009) (0.009) (0.010)

90-10 Percentile Differential -0.010 0.009 -0.013 -0.006
(0.013) (0.009) (0.009) (0.010)

90-50 Percentile Differential -0.001 0.036∗∗∗ -0.022∗∗∗ -0.015∗

(0.011) (0.008) (0.006) (0.007)

50-10 Percentile Differential -0.009 -0.027∗∗∗ 0.009 0.010
(0.009) (0.008) (0.006) (0.006)

Standard errors in parentheses
T=Total, Q=Quantity, P=Price, U=Unobservable
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 3.16: JMP Decomposition: Females 1997-2012 - Actual Hours

T Q P U
Mean 0.129∗∗∗ 0.142∗∗∗ -0.013∗ -0.000

(0.006) (0.004) (0.006) (0.000)

Standard Deviation -0.033∗∗∗ 0.004∗∗ -0.009∗∗ -0.028∗∗∗

(0.008) (0.001) (0.003) (0.007)

5th Percentile 0.188∗∗∗ 0.155∗∗∗ 0.010 0.023∗∗

(0.011) (0.009) (0.009) (0.008)

10th Percentile 0.144∗∗∗ 0.129∗∗∗ 0.003 0.012∗

(0.007) (0.007) (0.008) (0.005)

50th Percentile 0.116∗∗∗ 0.137∗∗∗ -0.016∗∗ -0.006
(0.008) (0.007) (0.006) (0.003)

90th Percentile 0.107∗∗∗ 0.142∗∗∗ -0.022∗ -0.013∗

(0.011) (0.008) (0.009) (0.006)

95th Percentile 0.136∗∗∗ 0.178∗∗∗ -0.017 -0.025∗

(0.022) (0.014) (0.011) (0.011)

90-10 Percentile Differential -0.036∗∗ 0.013 -0.024∗ -0.025∗

(0.013) (0.010) (0.010) (0.010)

90-50 Percentile Differential -0.009 0.005 -0.006 -0.007
(0.012) (0.010) (0.007) (0.007)

50-10 Percentile Differential -0.028∗∗ 0.008 -0.018∗∗ -0.018∗∗

(0.009) (0.009) (0.006) (0.006)
Standard errors in parentheses
T=Total, Q=Quantity, P=Price, U=Unobservable
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 3.17: Logit Models: Probability Usual = Actual Hours

Usual = Actual Usual ≥ Actual

Postgraduate Degree -0.548∗∗∗ -0.560∗∗∗

(0.0142) (0.0211)

1st Degree -0.545∗∗∗ -0.486∗∗∗

(0.0120) (0.0185)

Higher Education -0.518∗∗∗ -0.471∗∗∗

(0.0127) (0.0193)

A Levels -0.459∗∗∗ -0.430∗∗∗

(0.0111) (0.0173)

GCSE A*-C / O Levels -0.323∗∗∗ -0.292∗∗∗

(0.0114) (0.0179)

GCSE D-G / CSE’s -0.316∗∗∗ -0.242∗∗∗

(0.0178) (0.0273)

Other Qualification -0.273∗∗∗ -0.294∗∗∗

(0.0132) (0.0204)

Experience -0.0258∗∗∗ -0.0339∗∗∗

(0.000793) (0.00120)

Experience Sq/100 0.0507∗∗∗ 0.0588∗∗∗

(0.00169) (0.00254)

Training -0.201∗∗∗ -0.193∗∗∗

(0.00715) (0.00996)
Observations 582487 582487
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 3.18: JMP Decomposition: Males 1997-2012 - Usual = Actual

T Q P U
Mean 0.142∗∗∗ 0.110∗∗∗ 0.032∗∗∗ 0.000∗∗

(0.007) (0.005) (0.006) (0.000)

Standard Deviation -0.038∗∗∗ 0.000 -0.017∗∗∗ -0.021∗

(0.009) (0.002) (0.004) (0.008)

5th Percentile 0.254∗∗∗ 0.182∗∗∗ 0.054∗∗∗ 0.017
(0.022) (0.013) (0.011) (0.011)

10th Percentile 0.155∗∗∗ 0.099∗∗∗ 0.056∗∗∗ -0.000
(0.008) (0.008) (0.009) (0.005)

50th Percentile 0.124∗∗∗ 0.101∗∗∗ 0.033∗∗∗ -0.010∗∗

(0.009) (0.007) (0.007) (0.003)

90th Percentile 0.145∗∗∗ 0.138∗∗∗ 0.007 0.001
(0.014) (0.011) (0.008) (0.006)

95th Percentile 0.160∗∗∗ 0.156∗∗∗ 0.006 -0.002
(0.016) (0.012) (0.009) (0.008)

90-10 Percentile Differential -0.010 0.039∗∗ -0.049∗∗∗ 0.001
(0.016) (0.013) (0.011) (0.010)

90-50 Percentile Differential 0.021 0.036∗∗ -0.026∗∗∗ 0.011
(0.015) (0.012) (0.007) (0.007)

50-10 Percentile Differential -0.031∗∗ 0.003 -0.023∗∗ -0.010
(0.010) (0.010) (0.007) (0.006)

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
T=Total, Q=Quantity, P=Price, U=Unobservable
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Table 3.19: JMP Decomposition: Females 1997-2012 - Usual = Actual

T Q P U
Mean 0.221∗∗∗ 0.149∗∗∗ 0.071∗∗∗ 0.000∗∗∗

(0.006) (0.004) (0.006) (0.000)

Standard Deviation -0.022∗∗∗ 0.014∗∗∗ -0.011∗∗∗ -0.025∗∗∗

(0.006) (0.002) (0.003) (0.006)

5th Percentile 0.301∗∗∗ 0.184∗∗∗ 0.092∗∗∗ 0.025∗

(0.012) (0.011) (0.009) (0.010)

10th Percentile 0.232∗∗∗ 0.136∗∗∗ 0.085∗∗∗ 0.012∗

(0.006) (0.008) (0.008) (0.005)

50th Percentile 0.191∗∗∗ 0.140∗∗∗ 0.068∗∗∗ -0.017∗∗∗

(0.007) (0.005) (0.006) (0.004)

90th Percentile 0.218∗∗∗ 0.184∗∗∗ 0.044∗∗∗ -0.011∗

(0.009) (0.007) (0.007) (0.005)

95th Percentile 0.222∗∗∗ 0.172∗∗∗ 0.048∗∗∗ 0.003
(0.015) (0.010) (0.008) (0.007)

90-10 Percentile Differential -0.015 0.048∗∗∗ -0.040∗∗∗ -0.023∗∗

(0.010) (0.009) (0.009) (0.008)

90-50 Percentile Differential 0.026∗∗ 0.045∗∗∗ -0.024∗∗∗ 0.006
(0.010) (0.008) (0.007) (0.007)

50-10 Percentile Differential -0.041∗∗∗ 0.004 -0.016∗∗∗ -0.029∗∗∗

(0.008) (0.008) (0.005) (0.007)
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
T=Total, Q=Quantity, P=Price, U=Unobservable
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Chapter 4 Wage Inequality and Firm Performance

4.1 Introduction

The purpose of this chapter is to investigate the impact of wage dispersion on firm per-

formance. The aim is to exploit the availability of two large datasets which contain the

largest quantity of detailed information about individual wages and firm characteristics

in the UK - respectively the New Earnings Survey (NES) and the Annual Respondents

Database (ARD).

There exists a body of empirical literature which has researched this relationship but there

are relatively few applications to UK data which is partially due to data limitations. One

notable paper which has examined the issue for the UK is Beaumont and Harris (2003)

which uses the ARD to examine the relationship between pay dispersion and performance.

The data used in their study is, however, from the period 1978-1995 and so relatively out-

dated now. This is because their measure of pay dispersion (the ratio of non-manual to

manual wages) which is obtained from the ARD is only available in the years examined

in their paper. Analyses using more up to date data require the matching in of other data

sources from which pay dispersion measures need to be calculated. This is the contribu-

tion of this study.

Another contribution of this study is that it examines the UK economy more widely.

The Beaumont and Harris (2003) paper looks specifically at five detailed manufacturing

industries. Another advantage which is obtained by using more recent ARD data is that

it now samples firms from eight broadly defined industries, of which manufacturing is

only one (and the only one until the mid 1990’s). Sectors which are sampled in more

recent data include services, property, catering, construction, wholesale, retail, and motor

vehicles in addition to manufacturing.
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Using data from the Labour Force Survey, Figure 4.1 shows the change over time in the

relative size of a number of industries in the UK by employment from 1997 to 2012. Two

clear trends can be identified from this figure, the increase in the employment share of the

service sector (by approximately 15 percentage points) and the simultaneous decline of

manufacturing by around 10 percentage points. Throughout this period the service sector

has accounted for a much larger share of employment than manufacturing and this gap has

widened, with wholesale/retail distribution and catering accounting for a slightly larger

share of employment than manufacturing by the end of the period.

This highlights the need for an analysis of the relationship between pay inequality and firm

performance which is wider in scope than an analysis focused on manufacturing firms.

While manufacturing is still a substantial component of the UK economy it accounts for

less than a fifth of total employment.

This chapter extends analysis beyond the manufacturing sector by including firms from

other industries in the analysis as well as estimates performed separately by industrial

sector to examine the effects of industry heterogeneity on the relationship between pay

inequality and performance.

The rest of this chapter is arranged as follows; sections 4.2 and 4.3 respectively out-

line the theoretical and empirical contributions to the dispersion-performance literature

to date. Section 4.4 provides an overview of the relevant datasets used in this analysis

and provides summary and descriptive statistics, Section 4.5 outlines the methodological

approach of this study, Section 4.6 presents the results of the analysis, and Section 4.7

presents conclusions.

4.2 Theoretical Literature

The theoretical literature consists of contradictory predictions in terms of the expected re-

lationship between pay differentials and firm performance. An influential paper is Akerlof

and Yellen (1990) which proposed the fair wage hypothesis and is a basis for establishing

a negative relationship between pay differentials and firm performance.
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The fair wage hypothesis is underpinned by the following assumed relationship:

ei = min(
wi

w∗i
,1) (4.1)

In equation 4.1 each worker type i provides full effort e (normalised to be equal to one)

if they are paid the fair wage w∗. Otherwise effort provided will be a fraction of the

maximum in proportion to how much less than the fair wage they are paid. Wages paid

must therefore be on the fair wage constraint to elicit maximum effort from workers.

The results of the model can be summarised in Figure 4.2. This diagram represents the

market for unskilled labour1. The wage of the unskilled is on the vertical axis and their

employment on the horizontal axis.

The vertical dashed line labeled LS represents full employment and the line labeled LD is

the demand curve for unskilled labour. The line labeled FWC is the “fair wage constraint”.

The slope is given by the relative weight that individuals place on the wages of others (in

this case, the skilled workers) compared to the market clearing wage when deciding what

the fair wage is. The unskilled workers are paid their fair wage w f which is in excess of the

market clearing wage w∗ and therefore generates unemployment (which is the outcome of

interest in the Akerlof and Yellen (1990) paper, not the wage distribution) of low skilled

workers of LS−L f .

This model provides a theoretical basis for arguing that greater wage inequality will re-

duce firm performance. If firms do not pay a fair wage then individuals will supply less

effort, therefore damaging firm performance. This is contingent upon workers taking the

wages of others into account in determining what the fair wage should be.

In the extreme case that only the market clearing wage is given any importance, the FWC

is vertical at LS and the wage paid is the market clearing wage. In this case, changes in

pay differentials will not impact on worker effort and performance. The greater is the

1 The model uses two types of labour, skilled and unskilled, the skilled are paid their market clearing wage
and are fully employed in this model
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weight put on fairness considerations, the higher the unskilled wage must be relative to

the skilled wage and the more compressed the wage distribution must therefore be to elicit

maximum effort.

Although this paper was originally developed to explain unemployment, it provides an

implicit link between the dispersion of pay and firm performance (through effects on

effort elicitation) and has been used as a basis in the empirical literature for arguing that

greater wage inequality may damage firm performance.

Levine (1991) also theoretically models a positive relationship between greater wage

equality and firm performance. Cohesiveness in firms can be achieved with a more com-

pressed wage structure and cohesiveness will lead to greater productivity in firms where

the performance of individual workers can affect each other. If firms have to pay higher

wages to its high skilled workers (because they possess a particularly high level of skills,

have bargaining power, or for efficiency wage reasons such as monitoring, turnover etc.)

cohesiveness concerns will necessitate that low skilled workers are paid a relatively high

wage as well.

The main strand of literature which argues for a different relationship is tournament the-

ory, which developed from Lazear and Rosen (1981). In these types of models pay dif-

ferentials act as an incentive towards increased worker effort, since each worker has a

probability of winning the “prize” through promotion or a bonus or other type of incen-

tive pay. Increased effort improves the probability of winning the tournament and the

larger the pay differential, the greater the expected value of winning the tournament.

The basic theory can be illustrated using the following model. Assuming a risk neutral

utility function:

U =U(w− c(e)) = w− c(e) (4.2)

Where w is the wage and e is worker effort. e gives the worker disutility via the cost

function c(e). Assume there are two possible wages that the individual could earn: w1

is the wage earned if the worker wins the tournament; and w2 is the wage earned if the
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worker loses the tournament. w1 exceeds w2 and could be interpreted as the basic wage

plus a performance related bonus, with w2 representing the basic wage. The worker has

a probability p of winning the tournament, which is endogenous to the level of effort and

denoted p(e).

The cost function is assumed to have the properties c′(e) > 0,c′′(e) > 0. The first and

second derivatives are both positive indicating that the cost of effort is increasing in effort

and the marginal cost is also increasing in the level of effort. The probability function has

the property p′(e)> 0, p′′(e)< 0. The probability of winning the tournament is increasing

in effort but at a decreasing rate. The expected utility function is given by:

E(u) = p(e)[w1− c(e)]+(1− p(e))[w2− c(e)] (4.3)

This simplifies to:

E(U) = p(e)[w1−w2]− c(e)+w2 (4.4)

Differentiating equation (4.4) with respect to effort and equating this to zero gives the util-

ity maximisation condition where the marginal benefit of effort is equated to its marginal

cost:

p′(e)[w1−w2] = c′(e) (4.5)

Equation (4.5) illustrates the relationship between wage differentials and worker perfor-

mance. The differential is given by the term w1−w2. If the wage earned by the tour-

nament winners relative to the losers increases this would raise the marginal benefit of

effort above that of the marginal cost. In this case utility maximising individuals increase

their effort. This establishes a link between wage inequality and firm performance that

suggests reducing wage compression will incentivise additional effort from workers and

therefore increased firm performance in aggregate.
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Lazear (1989) presents a model similar in nature to the tournament theory model in Lazear

and Rosen (1981). This model incorporates worker cohesion into the incentive framework

thereby extending the basic model - workers facing a tournament for a higher wage or

promotion may choose to increase their chances of success not by increasing their own

effort, but by actively sabotaging the output of others (if possible).

The effect of this would be for wage inequality to reduce firm performance. This is oppo-

site to the incentives of the basic tournament theory framework which predicts increasing

the wage differential will increase incentives for the players to win. In the basic model, the

only way in which workers could increase their chances of winning is by supplying extra

effort, therefore unambiguously raising firm performance. This assumes that there is not

an output maximising level of effort beyond which increased effort is counter-productive.

Introducing the ability for workers to influence each others’ output into the model intro-

duces a perverse incentive - the greater potential reward for the winner may motivate acts

of sabotage which reduce firm performance.

When both workers and the firm optimise, net output is lower when sabotage is possible

than when it is not. Effort is also lower when sabotage is a possibility. The optimal wage

dispersion is larger when sabotage is not possible. This is a key result of the analysis -

that it is profit maximising to have more equitable pay when workers have the ability to

influence each others’ output. If sabotage is possible higher wage inequality will have a

detrimental effect on performance.

The more the workforce is composed of “doves” in the terminology of this paper (em-

ployees who exhibit cooperative behaviour rather than attempt to sabotage each other -

described as “hawks”) the more effective a dispersed wage structure will be at enhancing

performance. Firms can sort between workers at the hiring stage and set an appropriate

compensation scheme for the workforce composition.

Acts of worker sabotage are most likely to be a problem at the top end of the wage dis-

tribution, as it is those jobs highest in the corporate hierarchy which have higher rates

of competitive individuals (this can be explained as those who are the most competitive

amongst those lowest in the hierarchy are most likely to win the tournaments which allow

them to rise to the higher levels of the hierarchy). This suggests that wage compression
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within the top of the wage distribution will have positive effects on firm performance.

4.3 Empirical Literature

This section presents a review of the literature which has attempted to estimate the impact

of wage inequality on firm performance.

The empirical literature discussed here (as relates to firms) is summarised in Table 4.9.

A wide variety of measures of wage dispersion have been used, such as the coefficient of

variation and the standard deviation of pay. Several papers also emphasise the difference

between dispersion in raw wages and the wage dispersion which is left unexplained by

worker characteristics. These papers calculate inequality measures from residual wages

instead of (or complementary to) measures from raw wages. Similarly there is variety in

the measure of firm performance used, with the most common being gross value added or

profits per employee.

Most of the papers mentioned here have found positive relationships between wage in-

equality and performance and so are more supportive of the competition theory rather

than fairness theory. There are, however, some exceptions which have found negative

relationships, as well as some which have found no significant relationship between wage

inequality and firm performance at all.

Some of the empirical work which has examined the relationship between dispersion in

wages and firm performance has come from applications to sport. Data on pay and per-

formance of sports teams are particularly useful in testing the predictions of tournament

theory.

Berri and Jewell (2004) study the effect of increasing wage inequality in the National

Basketball Association (NBA) on the performance of US basketball teams. “Firm” per-

formance in this case is measured as the team winning percentage. A fixed effects model

was used to estimate the effect of changes in a team’s relative wage disparity between

seasons on the change in the teams winning percentage between seasons (estimated over

145



six seasons of data). Controlling for factors such as player ability and coaching quality,

this study finds no significant effect of team wage dispersion on team performance. A

similar result is obtained by Langelett (2005), also for the NBA, using an OLS model in

levels rather than first differences.

The evidence from sport is, however, difficult to generalise to firm performance, as sports

players represent a particularly specialised labour market. It does, however, give an in-

dications of possible relationships which may exist between pay and performance in the

wider economy.

An early paper which analysed the relationship between pay dispersion and performance

of the firm is that of Leonard (1990). This paper focuses on executive and managerial pay

rather than the workforce as a whole. Using data from a sample of US firms the paper

estimates firm performance regressions (measured as the return on equity - ROE) as a

function of variables designed to capture the incentive pay and hierarchical structure of

the firm as well as the standard deviation of pay.

The coefficient on standard deviation of pay is positive for the mean ROE regression and

negative (but insignificant) for a change in ROE regression estimated on data from 1981

and 1985. This result suggests that higher wage dispersion firms perform better, in line

with the competition theory rather than fairness, but that wage dispersion levels do not

impact the longer term evolution of firm performance.

Winter-Ebmer and Zweimuller (1999) analyse the issue using a panel dataset of Austrian

firms covering the period 1975-1991. The total sample consists of 130 firms observed for

at least four periods in the time considered. The approach is to estimate Tobit regression

models (to account for top-coding in the wage data) of the log monthly wage for each

firm-year pair.

The tobit model is estimated separately for each annual cross section and each firm is

shown in equation 4.6 below for the wage of individual i. X is a vector of individual level

control variables including age, age squared, tenure, nationality, and a blue-collar worker

dummy.
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ln(wi) = α +X ′i β + εi (4.6)

The standard error of the regression is taken as the measure of wage inequality accounting

for observable differences. These wage inequality estimates are then included in regres-

sions modelling the performance (y) of firm j at time t as a function of wage dispersion.

This model is shown in equation 4.7 which accounts for firm fixed effects (α j) and addi-

tional controls Z jt including log firm size, proportion of blue collar workers, the propor-

tion of female workers, and the proportion of workers in different age bands.

ln(y jt) = α j +Z′jtβ +ζ jt (4.7)

A major weakness of this study is its lack of a direct measurement of firm performance.

The wage level is used as a proxy for productivity. Under the assumption that individuals

are paid their marginal product, the wage level represents the efficiency of the firm. In the

absence of a direct measure of productivity, this is the measure of performance used in

their study.

The relationship between pay dispersion and performance itself is examined using an

OLS regression separately for blue and white collar workers. The specification includes

the wage dispersion measure and its square, workforce composition and log firm size.

Another issue with this study is that investment and/or capital stock are not controlled for.

The conclusions drawn from the OLS results are that both white and blue collar workers

exhibit behaviour closer to the tournament theory type predictions - a positive association

between dispersion in pay and performance, however this relationship is non-monotonic,

and too high a level of wage inequality can have a detrimental effect.

Fixed effects results with a squared term to capture non-linearities suggest a U shaped re-

lationship between inequality and performance for blue collar workers but the coefficients

are statistically insignificant. Fixed effects results for white collar workers suggest a pos-

itive and significant relationship between inequality and performance with a negative but

insignificant coefficient on the squared term. Group (industry) means regressions produce
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a significant inverse U relationship for both white and blue collar workers.

When the analysis is repeated for inequality calculated for male employees only, both

the fixed effects and group means regressions for both type of workers return a positive

coefficient on inequality and a negative coefficient on its square. In the case of blue

collar workers each of these coefficients are insignificant. Overall, this paper produces no

evidence in support of the fairness hypothesis.

Hibbs and Locking (2000) examine the relationship between wage dispersion and firm

performance in Sweden. Contrary to the fairness argument, wage leveling in Sweden led

(by general presumption) to a reduction in the productivity of labour. Since this compres-

sion in the wage distribution was caused by a strong centralised trade union movement

(rather than firm decisions) it is considered that this may have been the objective of the

unions - to achieve a trade-off between efficiency and a more compressed wage distribu-

tion.

Their empirical model to estimate the relationship between dispersion and performance

is given by equation (4.8):

ln(Q) = ln[E f (σ2(w))F(.)] (4.8)

In this setup F(.) is a standard production function (i.e. with labour and capital as inputs

and a technology parameter). E f () denotes some impact of the wage distribution on out-

put of the firm for a given set of inputs. The main results of this paper are based on a

Cobb-Douglas specification for F(.) but results are reported to be similar for other func-

tional forms such as translog and constant elasticity of substitution production functions.

The independent variables in their regressions are the real prices of labour and capital

services, real value added, a one period lag of labour, and a time trend. Value added ap-

pears on both sides of the regression and is therefore treated endogenously. The measure

of wage dispersion used in the regression is the squared coefficient of variation and the

instruments used for the endogenous value added term on the right hand side of the re-

gression are lagged output and external demand for Swedish tradables given by imports
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for OECD countries. Plant and industry level regressions are estimated by OLS.

The results of the paper find no support for the “fair wage” view of the relationship be-

tween pay dispersion and performance. The conclusion is that the reductions in the vari-

ance of wages in Sweden from the 1960’s to the 1980’s reduced the growth of labour

productivity in Swedish firms.

Beaumont and Harris (2003) examine the relationship between firm performance and

wage differentials in the UK using the Annual Respondents Database. They use plant

level measures of both performance (measured as gross value added per worker) and wage

differentials (the ratio of the average non manual to manual labour costs). The functional

form is a double logarithmic specification and equations are estimated separately for five

major UK manufacturing industries; pharmaceuticals, electronic data processing, motor

vehicles and engines, aerospace, and miscellaneous foods.

Other variables included in the model are capital stock, employment, the ratio of non-

manual to manual employees, dummies indicating UK or US ownership of the firm, the

age of the plant, and time and regional dummies. An extended form of the model where

the wage differential variable is interacted with a dummy variable for if the plant has more

than 250 employees is also estimated. As in Hibbs and Locking (2000) the dependent

variable is real gross value added per worker.

The estimation technique used is the Arellano and Bond (1991) GMM estimator in order

to allow for a first order autoregressive process in the dependent variable and also to

control for endogeneity in the productivity, employment, capital, and wage differential

variables.

The results show that in four of the five industries (pharmaceuticals being the exception)

wage dispersion was associated with significantly higher plant productivity with elastic-

ities ranging from 0.05 to 0.45. In pharmaceuticals a significant negative elasticity was

found of 0.30. Unlike the previous studies there is therefore some support for the fair-

ness hypothesis in these results, however manufacturing as a whole (as represented by

the five specific manufacturing industries in this paper) conforms more to the competition

hypothesis.
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When interacting the wage differential variable with foreign ownership and firm size

dummies important additional effects were found, with a negative coefficient found for

UK owned large firms. Foreign owned large firms therefore gain greater productivity

increases when increasing wage dispersion.

Lallemand et al. (2004) employ an identical methodology to the Winter-Ebmer and Zweimuller

(1999) approach - a wage equation is estimated to derive a measure of residual wage in-

equality which is then used as an independent variable in a firm performance regression.

Measures of overall wage dispersion such as the standard deviation, coefficient of varia-

tion, and maximum to minimum wage ratio are also used.

In the firm performance regression wage dispersion is instrumented for in a two-stage least

squares (2SLS) estimator by the intra-firm standard deviation of income tax on earnings

excluding bonuses. This is instrument is used because it is assumed to be uncorrelated

with firm profits but highly correlated with wage dispersion.

Their sample is of Belgian private sector firms which have at least 200 employees. This

paper explicitly recognises the endogeneity between firm performance and wage disper-

sion, arguing for example that firms which perform better may pay higher bonuses which

leads to greater wage inequality. This necessitates the use of instrumental variables.

The key improvement to this paper over the Winter-Ebmer and Zweimuller (1999) paper

is that it utilises their methodology with a more direct measure of firm performance as

the dependent variable - the log of gross profits per worker. It also reports results for

four different measures of pay dispersion. In both the OLS and the 2SLS estimates the

coefficients for all four specifications of wage inequality are positive and significant at the

5% level. The coefficients are also larger in the 2SLS specifications than the OLS ones.

The conclusion from these baseline results is therefore that there is no evidence to support

the fairness hypothesis.

The wage inequality variables are interacted with a dummy variable equal to one if the

workforce is composed of more than 50% white collar workers to test for workforce com-

position effects and the results show that for all wage inequality measures the magnitude

of the relationship between inequality and performance is lower for firms with a greater
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white collar worker intensity. Possible explanations for this are that piece rates are used

more frequently with blue collar worker intensive firms and it is also more difficult to

monitor white collar workers.

The effect of monitoring is also examined using a dummy variable interaction, this time

equal to one if the share of supervisors in the total workforce is less than 20%. Results

indicate that the elasticity of performance to wage inequality is significantly higher in

firms with a high degree of monitoring.

Heyman (2005) directly tests four predictions of tournament theory: a positive relation-

ship between wage inequality and firm performance; a positive relationship between the

number of contestants in a tournament and wage inequality; a positive relationship be-

tween product market volatility and wage inequality; a convex relationship between wages

and position in the corporate hierarchy. Matched employer-employee Swedish data in

1991 and 1995 are used.

The main measure of wage dispersion is the variance of log wage regression residuals

(where the wage is estimated as a function of gender, education, labour market experience

and its square, and tenure). Other measures of wages used are the coefficient of variation

and the difference between the log 90th and 10th percentiles of raw wages.

The main findings are that residual wage inequality has a positive effect on firm perfor-

mance (which is here measured as profits per employee). This is found for both the work-

force as a whole and amongst managers. This finding is qualitatively robust to estimates

from OLS, first difference, random effects, and instrumental variables regressions. The

result is also robust to inclusion of large firms (larger than 50 employees) only, although

the coefficients on wage inequality increase in magnitude. These regressions restricted to

the large firms sample are unreported in the paper.

The effect of wage dispersion on firm performance is estimated for a cross section of Ger-

man manufacturing firms by Jirjahn and Kraft (2007). Using OLS firm productivity (the

log of gross value added per 1,000 employees) is modelled as a function of wage inequal-

ity (the percentage difference between the highest effective hourly wage of a skilled blue

collar worker and the lowest effective hourly wage of an unskilled blue collar worker) and
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a variety of firm level controls. Baseline results suggest an increase in wage inequality

of 1% leads to a 0.46% increase in productivity in a model where wage inequality is in-

teracted with other variables such as the existence of a collective agreement for wages, a

tenure variable, managerial profit sharing, and piece rates. In the model with no interac-

tions the effect of wage inequality is insignificant.

The presence of work councils and collective bargaining reduces this effect significantly,

respectively to 0.15% and 0.18%. This result makes sense in that firms with stronger

central bargaining over wages will face greater resistance to widening pay differentials

and limit the potential benefit this could have on performance. Conversely there is a

positive effect of individual piece rates which increases the effect of wage dispersion to

0.73%. Group piece rates have an even stronger impact, increasing the effect to 0.94%.

The results of this paper are therefore broadly in line with the rest of the literature in

obtaining positive effects of wage dispersion on firm performance from OLS estimates,

as well as positive effects for blue collar workers and manufacturing firms. This paper

does not, however, use any of the more sophisticated estimators such as fixed effects

which the literature has shown to impact results substantially. This is due to a lack of

panel data in this instance.

Martins (2008) uses a large dataset of Portuguese firms which also contains detailed in-

formation on employees, including pay. This paper is motivated by the need to control

for unobserved worker heterogeneity in determining wages as previous papers implicitly

assume that the wage residuals from regressions controlling for human capital are a good

indicator for the dispersion of pay determined by firms’ wage setting policies.

It is argued that unobservable differences between workers such as school quality and

innate ability also play a large role in explaining wage determination. Without controlling

for all of these factors, higher wage differentials in some firms or industries may just be a

reflection of higher dispersion in unobserved human capital.

The econometric approach taken is to estimate a log wage regression with worker and

firm fixed effects and education, experience, tenure, and gender as control variables. Pay

dispersion is calculated from the residuals of this regression as the difference of the 90th
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and 10th percentiles and the standard deviation. this first stage regression model is:

log(wit) = X ′itβ +αi +ψ j(i,t)+ εit (4.9)

In equation 4.9 wit is the wage of individual i at time t, Xit is the vector of independent

variables, and αi is an individual fixed effect. ψ j(i,t) is a firm fixed effect for the firm j

that the individual works in at time t. The εit is the idiosyncratic error term.

The second stage of the analysis is a firm performance equation estimated as a function

of the pay dispersion calculated from the residuals of the first stage regression, worker

composition characteristics by average gender, schooling, tenure, and experience. Time

dummies, firm size and equity per worker are also included along with firm fixed effects.

The dependent variable is measured as log sales per worker. The second stage estimating

equation is:

log(y jt) = λσ̂ jt +Z′jtδ +θ j + τt +ζ jt (4.10)

in equation 4.10 y jt denotes the measure of performance for firm j at time t. The σ̂ jt

is the main variable of interest - the firm level wage dispersion calculated from the pre-

dicted residuals obtained from estimates of equation 4.9. The dispersion-performance

relationship is measured by the parameter λ . The Z jt is a vector of firm characteristics,

θ j captures the firm fixed effects, τt is a set of time dummies, and ζ jt is the error term.

The results indicate a positive relationship between wage premium dispersion and firm

performance when estimating by pooled OLS. When accounting for unobserved firm het-

erogeneity with a fixed effects model the effect is negative and statistically significant. A

one standard deviation increase in wage inequality is associated with an 18% reduction

in firm performance. The results of this paper are therefore supportive of the fairness

hypothesis.

The difference between the OLS and fixed effects can be explained as the difference

between within-firm and between-firm effects. The OLS results show between-firm dif-
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ferences in the relationship between wage inequality and firm performance. An OLS

regression predicts a positive relationship because individuals select into firms based on

the observed wage distribution - higher ability workers who are prepared to exert effort

to move up the hierarchy will select into firms with wider wage distributions as there is

a greater potential gain from doing so. These firms will therefore be more productive,

hence a positive relationship.

The within-firm estimator gives the opposite result - a negative relationship. This is be-

cause a widening of the wage distribution over time within firms is perceived as unfair,

or conversely a compression of the wage distribution is perceived as fair. Fairness con-

siderations will lead to a reduction in effort supplied as the wage distribution widens and

consequently firm productivity declines, producing the observed negative effect.

Grund and Westergaard-Nielsen (2008) examine not only wage dispersion but “wage in-

crease” dispersion. In addition to dispersion in the wage distribution which may impact

firm performance it is argued that dispersion in wage increases will also impact on per-

formance. Their data is a matched employer-employee dataset which has information

on Danish private sector firms and their employees and can be tracked over time in a

panel. For each year, firms are only included if there are at least 20 employees so that the

calculated wage dispersion measures are meaningful.

The key variables are the firm performance and wage measures. The wage is measured

as hourly gross wages and the dispersion measure of wage increases (the ratio of the in-

dividual’s wage in time t divided by the wage in time t−1) is the coefficient of variation

- the standard deviation divided by the mean. The square of the wage dispersion mea-

sure is also used to look for potential non-linear effects. The dependent variable, firm

performance, is measured as gross value added per employee.

Other independent variables included in the regressions are; percentage blue collar work-

ers, percentage female, mean workforce age and age dispersion (measured also using the

coefficient of variation). The empirical approach to estimating these regressions is pooled

OLS and fixed effects models to control for unobserved firm heterogeneity.

Their results indicate a statistically insignificant relationship between wage dispersion and

154



firm performance. The OLS model predicts an inverse U shaped relationship between

wage level dispersion and labour productivity but the model accounting for firm fixed

effects reveals no significant relationship (on aggregate). The models estimated for wage

growth dispersion give different results. Both the OLS and fixed effects models give a

statistically significant U shaped relationship between dispersion and performance. The

negative relationship (or the fairness effect) affects 98% of the firms in the sample and

the remaining 2% lie on the upward sloping portion of the curve (where the competition

effect dominates).

The paper therefore concludes the fairness effect to be more important in general than the

competition effect. Its key finding is that it may not be the wage distribution itself which

engenders feelings of unfairness and in turn directly affects productivity but marginal

changes to the wage distribution. Marginal increases in dispersion of the wage distribution

will, in general, reduce performance. The explanation for this is that each firm has an

equilibrium wage distribution which is accepted as fair by employees on the basis of

differences in human capital. Any change to that wage distribution is therefore perceived

of as unfair.

Esteves and Martins (2008) analyse Brazilian data to determine whether firm performance

is driven by tournaments or fairness. Their data is a census of establishments with over

30 employees and a random sample of smaller firms. They use a variety of economet-

ric techniques including OLS, quantile regression, 2SLS, fixed effects, and fixed effects

2SLS. With their data they also distinguish between manufacturing firms and service sec-

tor firms.

A distinction is made between conditional and unconditional wage inequality and uncon-

ditional measures used are the standard deviation, coefficient of variation, and minimum

to maximum wage ratio. The conditional measure of wage dispersion is the standard error

of a wage regression. The logarithm of value added is used as the dependent variable in

the firm performance regressions.

Results across the cross sectional regression techniques predict a positive relationship be-

tween pay dispersion and performance, with the quantile regression models indicating

a stronger relationship in more efficient firms. When using fixed effects, the effect for
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services is found to be negative but coefficients for both manufacturing and services are

insignificantly different from zero. In the fixed effects IV approach both manufacturing

and services coefficients are positive but only the one for services is significant. Esteves

and Martins (2008) therefore concludes there is no evidence to support the fairness hy-

pothesis. The weaker effect of wage inequality on performance in the services sector

relative to manufacturing is interpreted in the Lazear (1989) context; i.e. in services there

may be a larger share of non-cooperative workers who may compete with their workers

through sabotage, therefore necessitating a degree of wage compression.

In summary, there are a variety of ways in which the relationship between wage inequality

and firm performance has been estimated. Commonly used measures of firm performance

are profits or gross value added (Hibbs and Locking (2000), Beaumont and Harris (2003),

Lallemand et al. (2004), Heyman (2005), Esteves and Martins (2008), and Grund and

Westergaard-Nielsen (2008)) and in this chapter gross value added is the measure which

will be used. A variety of measures of wage inequality have also been used. A commonly

used measure is the standard deviation (Leonard (1990), Lallemand et al. (2004), Martins

(2008), and Esteves and Martins (2008)) which will also be utilised in this chapter in

addition to the log of the 90/10, 90/50, and 50/10 percentile differentials to investigate the

possibility of the effect differing across the wage distribution.

Another finding in the literature review is the large range of methodologies which have

been used to estimate this relationship. All papers make use of a baseline OLS regression

model but fixed effects estimators in particular have also been commonly used. This can

potentially lead to substantial differences in results, such as OLS results returning positive

coefficients but fixed effects returning negative coefficients as in Martins (2008). Notably,

only one paper - Beaumont and Harris (2003) - takes advantage of the availability of panel

data to estimate a dynamic model allowing for dependence over time in firm performance.

The GMM approaches of Arellano and Bond (1991) and Blundell and Bond (1998) allow

for dynamic specifications, endogenous variables, and unobserved firm heterogeneity to

be handled in a single framework. This chapter makes use of a variety of estimators

ranging from the simple OLS regression model to the dynamic system GMM estimator

and compares and contrasts the results.
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4.4 Data

This chapter makes use of three datasets; the New Earnings Survey, the Annual Respon-

dents Database, and the Capital Stock Dataset. These three datasets are each discussed in

turn in this section. The combined dataset used in the analysis is obtained by matching

these three together. The Capital Stock Dataset and Annual Respondents Database can

be matched on a one for one basis while the New Earnings Survey is matched at industry

level using SIC codes.

Limitations to the available data with which the research question of this chapter is ad-

dressed requires the assumption that industry level wage inequality is a proxy for firm

level inequality. This is because the firm level data in the ARD does not provide informa-

tion at the employee level which would be required to calculate firm level wage inequality

measures.

Smaller industries are likely to have less variation in the level of inequality between firms,

for example because of reduced variation in firm size and therefore the size of corporate

hierarchies. This will improve the likelihood that the industry level of inequality will

provide a reasonable proxy for firm level inequality. The wage inequality measures are

therefore calculated for as disaggregated a level as possible. This poses a problem in that

these smaller industries will, by definition, be less well represented in the NES data from

which the wage inequality measures are constructed.

The results of this chapter could be interpreted more directly as the impact of industry

wage inequality on firm performance, however the previous theoretical and empirical

literature relate inequality to performance at the firm level. In order to fit in with this

literature the interpretation of the industry level inequality measures as a proxy for wage

inequality is therefore more appropriate. Given the constraints in the data this is the best

that can be achieved and the results will be considered in light of this potentially strong

assumption.
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4.4.1 New Earnings Survey

The data on wage inequality are obtained from the New Earnings Survey (NES). The NES

is a 1% random sample of UK employees who earn above the income tax threshold con-

ducted annually. The sample is determined by the employees’ national insurance number,

therefore the data is a panel as the same individuals are included each year provided they

are still employed and earning a sufficient amount to be sampled.

The wage measure used is the log hourly wage calculated as the natural logarithm of gross

pay divided by total hours. Observations are included in the analysis if the individual

works a single job, is paid a full adult rate, and earnings are unaffected by absence.

Wage inequality is calculated at industry level. This differs from previous studies which

calculate inequality at the firm level - which is the ideal level, however it is not possi-

ble with the data used in this study. Industry is defined using the four digit level of the

standard industrial classification of 1992 (SIC-92).Wage inequality is calculated by the

difference between the 90th percentile and 10th percentile of the log hourly wage, equiv-

alently the log of the ratio of the 90th percentile of the wage distribution to the 10th, for

each industry in each year. Equivalent to the 90-10 differential, the 90-50 and 50-10 dif-

ferentials are also computed. Other wage inequality measures calculated are the standard

deviation and coefficient of variation.

These measures of wage inequality are also calculated from log wage residuals as well as

the wage itself. This follows the approaches of several papers discussed previously which

argued that observed and unobserved worker heterogeneity should be controlled for in

the measure of pay dispersion used. Any wage differentials used in the pay-performance

regressions can then be interpreted as reflecting demand-side factors assuming that all

supply side factors have been accounted for in the regression model (either as one of the

observed variables or included in the heterogeneity term).

The residuals are obtained from individual level log wage equations (which will be ex-

plained in more detail in the methodology section) estimated from the NES data using age

and occupation as explanatory variables. Ideally, measures of human capital such as ed-

ucation and experience, as are standard variables in empirical wage equations, would be
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used, however these are the only variables present in the NES which are also consistently

available throughout the sample.

There is an issue that some industries may not have sufficient observations in the NES

to obtain reliable estimates of wage inequality - for example an industry with only two

observations in a particular year cannot produce a meaningful value for the 90-10, 90-50,

and 50-10 differentials. A threshold of 20 observations is therefore used to determine the

adequacy of the inequality measure from this industry.

Industries are retained at the 4 digit SIC-92 level if they contain at least 20 wage observa-

tions in each year. To minimise the loss of information which the omission of industries

entails, those industries which do not have sufficient observations at the 4 digit level are

merged together with other industries which belong to the same 3 digit industry. Figure

4.3 illustrates the process.

In Figure 4.3 there are 7 four digit industries and two three digit industries. Each of the

four digit industries belongs to one of the three digit industries. The shaded industries

1, 4, and 5 indicate industries for which there are a sufficient number of observations

already to calculate a reliable measure of wage inequality. Industries 2 and 3 do not have

sufficient observations by themselves to calculate a reliable measure of wage inequality

so these two are merged together as they both belong to three digit industry A.

This creates a set of three digit industries which are composed of four digit industries

which did not have sufficient observations by themselves to calculate a time series of wage

inequality measures for. For the subset of artificially constructed three digit industries

which still do not consistently have sufficient observations for a series of inequality the

process is repeated, merging three digit industries together to the two digit level.

Table 4.1 shows the result of this process in the NES data. The final column in this table

shows the proportion of the four digit industries which are included in the analysis at each

level of the standard industrial classification. At the four digit level, 425 of the 729 total

industries consistently have sufficient observations to calculate wage inequality measures

for each year which represents 58% of the industries in NES. Using the threshold of 20

observations and only using the 4 digit level of the standard industrial classification to
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Table 4.1: Industry Classification

Digit Consistently < 20 Consistently > 20 Intermittent Total % Industries Retained Cumulative % Retained

4 154 472 131 757 62.35% 62.35%
3 8 93 30 131 70.99% 89.08%
2 4 4 19 27 14.81% 90.70%
1 0 3 5 8 37.50% 94.19%

match to the ARD therefore only allows less than two thirds of the industries to be used

in the analysis.

Aggregating the industries which cannot be used at the 4 digit level to the 3 digit level

results in 131 potential 3 digit industries of which 85, or 65%, are suitable for use in

the analysis. This increases the total proportion of all 4 digit industries included in the

analysis (whether at the 4 or 3 digit level) to 85%. Continuing this procedure to obtain

more industries at the 2 digit and finally the 1 digit level results in 95.5% of the industries

in NES being available to the analysis. The industries still excluded at this stage are

primarily from the agriculture, forestry, and fishing industries.

4.4.2 Annual Respondents Database

Firm level data are obtained from the Annual Respondents Database (ARD). The ARD is

the largest survey of business micro-data in the UK, containing a variety of firm charac-

teristic variables. Overviews of the ARD are given by Oulton (1997) and Griffith (1999).

The ARD is a stratified random sample of UK establishments. Griffith (1999) illustrates

how the sampling frame changed between 1970 and 1995. The sampling frame is biased

towards larger establishments and this has become increasingly more so over time. Be-

tween 1972 and 1977 all establishments with 20 or more employees were included. From

1978-1979 this was reduced to all establishments with 50 or more employees and half of

establishments with 20-49 employees. This continued to change until 1993-1995 when all

establishments with more than 100 employees were included, half of establishments with

50-99, and one in five establishments with 20-49 employees. Table 4.10 in the appendix

summarizes the changing ARD sampling frame over time.

Data are available at the local unit (plant), reporting unit, enterprise, and enterprise group
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level. A local unit is a plant or single geographic location but which may not be able

to provide all of the information required by the survey. Reporting units are units large

enough to provide the full information requested in the survey. Reporting units are not

economic units because they are not standardised in anyway - a firm may be entirely

represented as one reporting unit or it may be represented by several reporting units.

Reporting unit level data are therefore not meaningful for analysis, they are therefore

aggregated to enterprise level.

The dependent variable is performance and there are a number of variables in the ARD

which can be used to measure this. The main variable utilised here, following the litera-

ture, is gross value added. Each of these measures is divided by employment so that firm

performance is measured per worker. The ARD also provides all firm level characteristics

to be included in the firm performance regressions. Prominent variables included are the

factors of production - labour and capital. A major disadvantage of the ARD is that it

does not contain information on the capital stock, only capital expenditures.

Estimates of capital stock provided separately by the ONS are therefore used to supple-

ment the ARD data. The level of capital stock is integral to economic models of firm

production but information on this is not directly available in the ARD. The Capital Stock

Dataset is derived from the investment data in the ARD and is provided by a dataset cre-

ated by the ONS specifically for the purpose of deriving capital stock data at the reporting

unit level. The process of deriving the capital stock from the ARD is described in detail

in Martin (2002)

The capital stock is calculated using the perpetual inventory method (PIM). This is per-

formed at the reporting unit level and uses the investment data in the ARD. This is sum-

marised in equation 4.11.

Ki jt = Ki j,t−1(1−δ )+ Ii jt (4.11)

The capital stock K for reporting unit i in industry j at time t is calculated as investment

Ii jt plus the capital stock from the period before multiplied by a depreciation term deter-

mined by δ . These depreciation rates differ across three types of asset; buildings, plants
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and machinery, and vehicles and so the capital stock of each type of asset is calculated

individually. The overall capital stock is then the summation of these three individual

capital stocks.

The annual depreciation rates for the three types of capital are those used by the ONS for

calculating sectoral aggregates (Martin (2002)). These are 6% for plant and machinery,

2% for buildings, and 20% for vehicles. It could be argued that these may be unrealistic

depreciation rates. For example 6% for plant and machinery might be considered too low

as machinery might be expected to depreciate at a much faster rate relative to buildings

as implied here. As these rates have already been applied to the dataset they cannot be

changed and therefore the capital stock used in the analysis is subject to the assumptions

made when these depreciation rates were applied.

Other explanatory variables included in the regressions are a dummy for UK ownership

and time dummies. The dataset also consists of dummy variables indicating the broad sec-

tor of the enterprise; catering, construction, motors, wholesale, retail, services, property,

and manufacturing. These variables are used to estimate firm performance regressions

separately by sector.

As the ARD is a census of large firms and a sample of smaller firms the sample is biased

towards larger firms. As the estimated models include the variable which determines

the sampling frame (employment) the regression models do not need to be weighted

[Cameron and Trivedi (2010) p113]. All descriptive statistics do need to be weighted

however.

Within the ARD dataset there is a database containing (limited) information about all

firms in the sampling frame whether or not they are selected - including employment

and a dummy to indicate whether or not the firm was selected in that year. Firms are

grouped into eight size bands by employment and each individual weight is calculated

as the inverse probability that the establishment was selected. These weights are then

matched into the main ARD response dataset for those which were selected.

Figure 4.4 shows the distributions of key variables. The log of gross value added, capital

stock, and labour follow approximately normal looking symmetric distributions. The
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change over time in gross value added, capital stock, and labour are shown in Figures

4.7 to 4.9 for five of the sectors (with wholesale and retail combined into one). They

show that manufacturing/production is the largest sector by gross value added followed

by services, wholesale and retail, and construction.

In terms of inputs, the services sector is larger in 2004 than production having overtaken

it in size in terms of both capital stock and labour during this period. The relative decline

of production compared to services is also apparent in terms of value added - total log

GVA has been declining for production but increasing for services.

4.4.3 Matched Dataset

The matched dataset uses the period 1997 - 2004. This period is chosen for a number

of reasons. The SIC codes in both the NES and the ARD are consistent with SIC-92

throughout this period, this period in the ARD contains the required information for more

sectors (not just manufacturing) starting in 1997, and the capital stock data are available

up to 2004. This gives an unbalanced panel of eight years worth of data.

Observations are then retained for enterprises which are observed in each of the eight

years covered by the sample period. This is because the nature of the ARD (random

sampling of smaller firms) is such that a comparison of pooled OLS results with results

obtained from panel data estimators will be based on substantially different estimation

samples. An enterprise is retained if observed for the full eight year time horizon to allow

estimation of dynamic models using a comparable sample. As the estimators for these

models include lagged dependent variables and further lags as instruments, using firms

observed in each available time period ensures that the same set of enterprises is used

when utilising different panel data techniques and examining different lag structures.

As the ARD is a census of large firms and a random sample of smaller firms in any given

year it is important to note that restricting the sample in this way introduces a selection

issue and further biases the estimation sample towards the larger firms. The results of

the analysis will consequently reflect the larger firms rather than the full population of

firms. Restricting the estimation sample in this way is, however, necessary to maintain
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comparability between models as previously discussed. The analysis includes regression

models present weighted and unweighted results in order to show the impact of this large-

firm bias.

Table 4.2 provides some descriptive statistics for the main variables of interest. As the

sample is likely to be large enterprise biased due to including only those which appear in

each of the eight years a concern is that small firms may not be represented, however as

can be seen from Figure 4.4 the bottom end of the distribution of labour is represented in

the sample.

Figure 4.5 shows how wage inequality is distributed for the three percentile differential

measures calculated from the fixed effects residuals. The 90/50 and 50/10 differentials are

similarly distributed around a mode of approximately 0.1 with a substantial positive skew.

The 90/10 differential is distributed with a mode of around 0.2 and, as it is composed of

the other two, is more dispersed. It also has a substantial positive skew.

Summary statistics for the standard deviation measure of wage inequality are shown in

Table 4.2. This measure is shown calculated from the residuals of the fixed effects log

wage regression (the main measure used in the analysis), it is also shown calculated from

the pooled OLS residuals of the same regression model, and also from the raw wage

measure. The distributions of each measure are also shown in Figure 4.6.

Inequality calculated from the fixed effects has the smallest mean and mode and is also

the least dispersed. Moving from fixed effects to pooled OLS residuals both the mean and

standard deviation of wage inequality increase and again when comparing OLS residuals

to raw wages. As is the case for the percentile differentials, each of these three measures

of the standard deviation has a positive skew.

4.5 Methodology

The methodological approach of this study is in two parts. The first part involves the

derivation of inequality measures from the NES and matching this into the ARD data. The
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Table 4.2: Descriptive Statistics

Variable Mean Std. Dev. Observations

Log(GVA per Worker) overall 3.669 1.011 N = 17319
between 1.029 n = 2340

within 0.439 T-bar = 7.40128

UK Ownership overall 0.505 0.5 N = 18916
between 0.417 n = 2411

within 0.278 T-bar = 7.84571

Log(Labour) overall 6.125 1.303 N = 18903
between 1.27 n = 2406

within 0.335 T-bar = 7.85661

Log(Capital) overall 10.547 1.806 N = 18847
between 1.776 n = 2399

within 0.345 T-bar = 7.85619

Log(Capital per Worker) overall 4.423 1.407 N = 18847
between 1.354 n = 2399

within 0.373 T-bar = 7.85619

Std. Dev (Fixed Effects) overall 0.118 0.035 N = 18935
between 0.022 n = 2412

within 0.027 T-bar = 7.85033

Std. Dev (OLS) overall 0.325 0.058 N = 18935
between 0.045 n = 2412

within 0.036 T-bar = 7.85033

Std. Dev (Raw Wages) overall 0.454 0.085 N = 18935
between 0.075 n = 2412

within 0.041 T-bar = 7.85033
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second stage involves the estimation of firm performance models including a measure of

pay dispersion to examine the causal relationship between industry level wage inequality

and enterprise performance.

The first stage involves the calculation of measures of wage inequality. The approach in

this stage closely follows that of Martins (2008). The overall wage inequality measures

are simply calculated from the sample statistics by industry and year. The residual wage

inequality measures are estimated as the residuals from the following equation:

ln(wage)it = α +β1ageit +β2age2
it +β3Occit +β4Regit +β5t +ui + εit (4.12)

The Occ term is a vector of dummy variables indicating the individual’s occupation at the

two digit level, Reg is a vector of 9 regional dummies and t is a vector of time dummies.

The occupational dummies in particular add a large number of regressors to the model but

also improve the precision of the predicted wage and the large sample size of the NES can

support the cost in terms of degrees of freedom. This equation is estimated by individual

fixed effects in order to account for time invariant unobserved heterogeneity.

As the standard occupational classification changes throughout the NES sample these

fixed effects regressions are estimated separately for each distinct period within which

the occupational codes are consistent - prior to 2002 using SOC-90 and for 2002 and after

using SOC-2000.

The feature of interest from these regressions is the term εit - the random error component.

The rest of the regression is composed of the part of the wage which can be explained

by observables and the individual fixed effect. Residual wage inequality measures are

calculated from predictions of this term - ε̂it .

Inequality in the wage residuals is interpreted as a measure of unfairness as it represents

differences in wages amongst homogeneous workers i.e. differences which remain once

observed and unobserved heterogeneity are both accounted for. According to the fairness

theory a higher degree of dispersion in wages amongst equivalent workers is expected to

reduce firm performance. For this reason measures of wage inequality calculated from
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the residuals rather than raw wages are more appropriate in this context.

Having matched the information obtained from the NES data to the ARD the remainder

of the methodology relates to estimating regression models with the aim of obtaining

estimates of the elasticity relating pay dispersion to firm performance. The basic model

to be estimated is given by equation 4.13.

log(y)e jt = α +β1σ̂
w
jt +β2log(ke jt)+β

′
3Xe jt + ve jt (4.13)

In this equation log(ye jt) is the log of gross value added per worker of enterprise e in

industry j at time t. k is capital stock per worker, and X is a vector of additional control

variables - sector dummies, time dummies, and a dummy variable indicating UK owner-

ship. ve jt is the error term. The main coefficient of interest is β1 - the coefficient on the

wage dispersion variable denoted σw
jt . Only subscripts j and t apply to this variable as

it is only observed at the industry level and over time, hence standard errors need to be

clustered at the industry level.

log(y)e jt = α +β1σ
w
jt +β2log(ke jt)+β

′
3Xe jt +δ

′(Se jt ∗σ
w
jt )+ ve jt (4.14)

Equation 4.14 shows an extended version of the model in equation 4.13 with an extra

vector of variables. This additional variable is an interaction between the sector dum-

mies (contained in Xe jt) with the wage dispersion variable. The corresponding coefficient

vector δ allows estimates of the relationship between pay dispersion and performance in

individual sectors to be obtained in addition to the aggregate level measure obtained from

equation 4.13.

The percentile differentials of the log wage residuals are equivalent to the log of the ratio

of the 90th and 10th percentile of wage residuals. The estimated parameter for these

variables can therefore be calculated as an elasticity - the proportionate change in firm

performance which results from a 1% point increase in the ratio of the 90th percentile to

the 10th of the residual wage distribution. The coefficient for the standard deviation is

interpreted as the proportionate change in wage inequality for a one standard deviation
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increase in wage dispersion.

These equations are estimated initially by pooled OLS as a baseline. It is also important

to control for unobservable firm characteristics which may influence performance. The

longitudinal nature of the ARD data is such that the panel data techniques previously

described can be used to account for these issues. Standard fixed effects and random

effects models are considered.

Due to the issue of endogeneity first difference IV equations are also estimated. Within

this framework the issue of endogeneity can be addressed whilst continuing to account for

unobserved heterogeneity by using the fixed effects transformation. There are two main

issues which may cause endogeneity in this model.

The first of these issues is input bias. As well as output depending on the level of inputs

the relationship is likely to work in reverse. Firms react to productivity shocks by increas-

ing or reducing output which in turn respectively increases or decreases the demand for

labour and/or capital services. To the extent that the estimated model does not capture

productivity shocks to output there is an endogeneity problem in the labour and capital

variables which consequently need to be instrumented.

The second source of endogeneity is more important in this case because it affects the

main independent variable of interest. As explained by Esteves and Martins (2008) if

rent sharing with workers occurs disproportionately throughout the wage distribution (be-

cause, for example, higher skilled workers have greater bargaining power) then an ex-

ogenous shock to productivity will impact the wage distribution i.e. there is a reverse

relationship whereby increased firm performance increases wage inequality. This means

the wage dispersion variable may also be endogenous.

Estimates of the parameters of the model may still be inconsistent in the IV fixed ef-

fects/first difference analyses due to the omission of appropriate lags of the dependent

variable.

The difference GMM estimator uses lagged levels of variables as instruments for the

first differences of endogenous variables and the full system GMM estimator additionally

uses lagged differences as instruments for the endogenous variables in levels. Exogenous
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variables are used as their own instruments.

The parameter estimates - β̂ - are short run effects of the covariates on the dependent

variable, the dynamic model can be used to obtain long run effects as well.

4.6 Analysis

4.6.1 Log Wage Equations

Table 4.3 shows the results of the first stage regressions of log wages. Columns 1 and 2

respectively show the pooled OLS regressions, one for each distinct period covered by the

two different occupational classifications (1997-2001 and 2002-2004). Each specification

includes age and its square, regional dummies, 2 digit SOC occupational dummies, and

year dummies. Columns 3 and 4 are estimated using the same data as the columns 1 and

2 respectively but are estimated using individual fixed effects.

The coefficients for age and age squared are highly significant and have the expected sign

(positive and negative respectively) indicating decreasing returns to labour market expe-

rience - for which age is a proxy. The overall R squared are quite high in the OLS results

ranging between approximately 0.55 and 0.60 between the two periods but decrease in the

fixed effects estimates. The between and within R squared available from the fixed effects

result suggest that this model performs better at explaining between-individual variation

in wages rather than within-individual variation over time.

The inequality measures used in the main analysis are calculated from the residuals of

the fixed effects regressions. Alternative measures are calculated from the pooled OLS

residuals as well as the raw age measures as a robustness check.

The change over time in the average level of residual wage inequality for each sector is

shown in Figure 4.10. The series is discontinuous between 2001 and 2002 as the residu-

als are based on two separate regressions. The overall change in residual wage inequality

over this period has been a decline (despite being a period of increasing overall wage
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Table 4.3: Log Wage Regressions

OLS (97-01) OLS (02-04) FE (97-01) FE (02-04)

Age 0.0425*** 0.0396*** 0.0367*** 0.0544***
(0.000) (0.000) (0.000) (0.000)

Age Sq/100 -0.0475*** -0.0453*** -0.0378*** -0.0621***
(0.000) (0.000) (0.000) (0.000)

North-East -0.0226*** -0.0248*** -0.0129 0.0132*
(0.000) (0.000) (0.105) (0.019)

North-West 0.00508* -0.00045 -0.0172** 0.00367
(0.023) (0.788) (0.002) (0.356)

Yorkshire -0.0142*** -0.0201*** -0.0355*** -0.00665
(0.000) (0.000) (0.000) (0.114)

East Midlands -0.0191*** -0.0275*** -0.0234*** -0.00747
(0.000) (0.000) (0.000) (0.088)

West Midlands -0.00506* -0.00743*** -0.0144* 0.0165***
-(0.033) (0.000) (0.014) (0.000)

Southwest -0.00567* -0.0184*** -0.0175** -0.00867*
(0.019) (0.000) (0.002) (0.042)

East 0.0414*** 0.0263*** -0.00708 0.00725
(0.000) (0.000) (0.207) (0.069)

London 0.251*** 0.205*** 0.0332*** 0.0645***
(0.000) (0.000) (0.000) (0.000)

Southeast 0.0799*** 0.0543*** 0.0055 0.0225***
(0.000) (0.000) (0.278) (0.000)

Occupation Dummies Yes Yes Yes Yes
Time Dummies Yes Yes Yes Yes

Observations 410,222 670,253 410,222 670,253
Overall R Squared 0.555 0.602 0.38 0.437

Between R Squared 0.395 0.446
Within R Squared 0.0514 0.138
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inequality), particularly sharp between 2001 and 2004 following a decline/recovery be-

tween 1997 and 2001. This pattern in residual wage inequality over time is shared by

each of the sectors. The relative ranking of the sectors has remained the same - with

manufacturing being a relatively low inequality sector and services being relatively high

inequality.

4.6.2 Enterprise Performance Equations

The second stage regressions are reported in Tables 4.4 and 4.5. Each regression reported

is the aggregate level main effects model i.e. does not include sector dummy interactions.

The former table reports coefficients from a variety of techniques used to estimate the

same model of performance. These techniques are, from left to right; OLS, random ef-

fects, first differences, fixed effects, and IV fixed effects. The OLS results are presented

for different functional forms in the first three columns, respectively including no addi-

tional dummy variables, then adding in sector dummies, and in the third column adding

time dummies. Each of the reported models uses the standard deviation of log wage

residuals as the measure of wage inequality.

Table 4.4: Enterprise Performance Regressions

OLS (1) OLS (2) OLS (3) RE FD FE IV-FE

Log Capital per Worker 0.289*** 0.320*** 0.320*** 0.316*** 0.458*** 0.304*** 0.211***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Standard Deviation -0.960*** 0.524** 0.625** -0.317* -0.0275 -0.359* -0.217
(0.000) (0.007) (0.004) (0.028) (0.843) (0.013) (0.155)

UK Owned 0.0899*** 0.0913*** 0.0225 0.0134 0.00434 -0.00996
(0.000) (0.000) (0.063) (0.304) (0.730) (0.483)

Sector Dummies No Yes Yes Yes Yes Yes Yes

Time Dummies No No Yes Yes Yes Yes Yes

Observations 17,655 17,071 17,071 17,071 14,358 17,071 14,752
P values in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

The results look sensible with respect to the coefficient on the input factor of production.

In all regressions, the coefficient for capital per worker is positive and highly significant at

conventional levels. The OLS results also suggest a positive and significant effect of wage
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inequality on firm performance and also that UK owned firms are significantly more pro-

ductive. The wage inequality measure has a significant effect on enterprise performance

in each of the three OLS estimates, the inclusion of sector dummies in the second column

changes the sign from negative to positive and the additional inclusion of time dummies

increases the magnitude from 0.524 to 0.625.

This positive effect of UK ownership is contrary to the findings of Harris (2002) and

Harris and Robinson (2003) who find foreign owned plants perform better in the UK than

domestically owned ones. Harris and Robinson (2002) also find that manufacturing plants

acquired by foreign firms performed better than those acquired by UK firms. This could

be due to a selection issue; the size bias introduced into the sample by the imposed re-

quirement that the enterprises be consistently observed for the full period is likely to have

disproportionately removed UK owned firms. The effect of UK ownership is, however,

insignificant with all panel data estimators.

The remaining columns of Table 4.4 present the results of the panel data estimators. The

use of the panel data estimators substantially alter the results of the enterprise performance

models compared to the pooled OLS specifications. The coefficient on log capital per

worker in the random effects regression (0.316) is similar to the OLS results (0.320),

however the first difference estimator produces a much higher coefficient of 0.458. The

coefficient on log capital per worker from the fixed effects estimates is similar to the

random effects coefficient but is much lower at 0.211 with the IV fixed effects although

still positive and significant. The standard deviation is negative and significant at the 5%

level in both random effects and fixed effects estimates but not for first differences or IV

fixed effects.

Table 4.5 shows results of the same models as in Table 4.4 estimated by GMM and in-

cluding lags of the dependent variable as regressors. The coefficients reported are those

on the standard deviation, UK ownership, capital, and the lagged dependent variable. One

lag of the dependent variable was judged to be appropriate and as the p values indicate,

the lag of log GVA per worker has positive and significant coefficients in all six estimated

models.

The difference between each of the models is the lag structure used in the instruments.
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Table 4.5: Enterprise Performance Regressions - System GMM

AB (1) AB (2) AB (3) AB (4) AB (5) AB (6)

Log Capital per Worker 0.187*** 0.119*** 0.121*** 0.121*** 0.120*** 0.349***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Standard Deviation 0.225 -0.026 0.013 0.013 0.001 0.035
(0.147) (0.865) (0.934) (0.934) (0.996) (0.838)

UK Owned 0.0234 0.0179 0.0203* 0.0203* 0.0196* 0.0234
(0.071) (0.062) (0.035) (0.035) (0.042) (0.089)

Log(GVA) t-1 0.533*** 0.777*** 0.775*** 0.775*** 0.777*** 0.606***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Sector Dummies Yes Yes Yes Yes Yes Yes

Time Dummies Yes Yes Yes Yes Yes Yes

Hansen Test P Value 0.000 0.056 0.093 0.158 0.171 0.253
Instruments 26 25 22 23 24 25

Firms (n) 2,233 2,233 2,233 2,233 2,233 2,233
Observations (n*T) 14,202 14,202 14,202 14,202 14,202 14,202

P values in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

A variety of specifications were tested in order to find the appropriate model to use to

estimate the dispersion-performance relationship. The differences between these models

can be seen in the number of instruments which is reported for each model. An appro-

priate model minimises the number of instruments used to avoid the problem of weak

instruments. As can be seen only models AB(4), AB(5) and AB(6) have a p value for the

Hansen test sufficiently high as to fail to reject the null hypothesis of valid over-identifying

restrictions.

The chosen specification is that of AB(6). This specification passes the Hansen test with

the highest p value and uses 25 instruments (or 32 in the sectoral level models, with each

of the seven exogenous sectoral interactions used as their own instrument).

The results include a positive but insignificant effect of wage inequality on enterprise per-

formance in all GMM estimates, with the exception of AB(2) where it is negative but still

insignificant. The coefficients on capital per worker are all positive and significant. The

coefficients on the lagged dependent variable suggests significant persistence in GVA per

worker over time with a coefficient of over 0.5, which is evidence of the appropriateness

of the dynamic specification.
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4.6.3 Dispersion-Performance Relationship

Aggregate Level

Table 4.6 shows the estimated effect of each of the four wage dispersion measures as

estimated by OLS, fixed effects, first differences, IV fixed effects, IV first differences, and

system GMM. Random effects results are not reported as the existence of a correlation

between the unobserved heterogeneity and the observed independent variables means the

random effects assumption is violated and the estimates are therefore inconsistent.

The results generally indicate that there is no significant relationship between wage in-

equality and performance. There are some significant effects to be observed at the aggre-

gate level, however these are not consistent enough across estimators as to be convincing

that the few significant coefficients obtained are robust.

Focussing on the first seven rows of the results table (the final three rows relate to alter-

native specifications which are used as robustness checks), there are no significant coeffi-

cients for the 90/10 differential or for the standard deviation and consequently no evidence

that overall wage inequality has an impact on firm performance.

Each of the OLS estimates suggest that the impact of wage inequality is positive but only

the effect of the 90/50 differential has a significant effect. The significance of the 90/50

differential is also found in the fixed effects and IV fixed effects results, although with

substantially reduced coefficients. The only significant results found for the aggregate

case are also obtained by the fixed effects and IV fixed effects estimators which in both

cases is a negative coefficient for the 50/10 differential.

The fixed effects results therefore provide some evidence in support of the fairness hy-

pothesis. This evidence is, however, limited to the bottom of the wage distribution with

no significant effects of inequality in the residual wage distribution as a whole.

There are no significant coefficients when accounting for persistence in the dependent

variable over time. Both the short and long run estimated effects of wage inequality on

firm performance are highly insignificant. The system GMM estimator therefore provides
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Table 4.6: Aggregate Level Inequality-Performance Coefficients

Log 90/10 Log 90/50 Log 50/10 Std. Dev.

OLS 1.435 2.437* 0.833 0.625
(0.213) (0.027) (0.618) (0.571)

N=16,735
Fixed Effects -0.138 0.314* -0.678* -0.359

(0.405) (0.032) (0.007) (0.106)
N=16,735

First Differences -0.060 0.163 -0.345 -0.028
(0.705) (0.145) (0.216) (0.852)

N=14,110
IV Fixed Effects -0.102 0.326* -0.582* -0.196

(0.571) (0.049) (0.026) (0.342)
N=14,335

IV First Differences -0.175 0.074 -0.435 0.027
(0.367) (0.587) (0.200) (0.876)

N = 11,963
GMM (Short Run) 0.183 0.410 -0.097 0.034

(0.630) (0.225) (0.850) (0.927)
N=14,202

GMM (Long Run) 0.466 1.033 -0.247 0.088
(0.606) (0.148) (0.852) (0.926)

N=14,202
GMM (Short Run - Weighted) 0.171 0.158 0.191 -0.501

(0.571) (0.754) (0.656) (0.391)
N=14,202

GMM (Short Run - Pooled OLS Residuals) 0.173 0.205 0.182 0.435*
(0.114) (0.191) (0.173) (0.043)

N=14,202
GMM (Short Run - Raw Wages) 0.175* 0.155** 0.250 0.456**

(0.03) (0.009) (0.259) (0.009)
N=14,202

P values in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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no evidence in favour of any relationship between wage inequality and firm performance.

While the lack of consistency achieved in the results across the estimators already sug-

gests that the few significant results obtained are not robust, the GMM approach is the

preferred estimator and definitively finds no evidence of a relationship.

The results presented here indicate that there is no significant relationship to be found

between wage inequality and firm performance at the aggregate level.

Sectoral Level

This section presents the results of the sectoral level breakdown of the relationship be-

tween pay dispersion and firm performance. Tables 4.7 and 4.8 display the short and long

run coefficients from the system GMM estimator, the preferred estimator. The results for

each of the other estimators can be found in Appendix 4B.

The short run effects presented in Table 4.7 consist of only two significant coefficients,

both for the 90/50 differential in the production and construction sectors. Table 4.8 shows

that there are no significant long run effects at all. Comparing these results to those of

the other estimators reveals that again, as in the aggregate level analysis, the inconsis-

tency in the significance of the results makes the existence of any significant effects found

unpersuasive.

Based on the OLS results there is particularly strong evidence of a positive relationship

between dispersion and performance in the production/manufacturing sector. All four

coefficients are significant at the 5% level and the 90/10 and 90/50 differentials are sig-

nificant at the 1% level.

The magnitudes suggest a strong relationship with each elasticity being greater than

one, indicating an elastic rather than inelastic relationship between dispersion and per-

formance. As in the aggregate case, this effect again is strongest at the top of the residual

wage distribution rather than the bottom when estimated by OLS.

Similar conclusions can be drawn from the retail sector coefficients. All four coefficients

are significant at the 5% level and the 90/10 differential is significant at the 1% level as
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Table 4.7: System GMM: Short Run Inequality-Performance Coefficients

Log 90/10 Log 90/50 Log 50/10 Std. Dev.

Production 0.443 0.584* 0.334 0.277
( 0.108) ( 0.020) ( 0.277) ( 0.544)

Services 0.518 1.084 0.178 0.488
( 0.642) ( 0.410) ( 0.902) ( 0.787)

Wholesale -1.689 -1.009 -3.121 -1.043
( 0.374) ( 0.390) ( 0.384) ( 0.321)

Retail 0.364 0.531 0.061 0.055
( 0.335) ( 0.141) ( 0.921) ( 0.921)

Motors 1.242 1.839 0.907 -0.933
( 0.641) ( 0.397) ( 0.861) ( 0.856)

Construction 0.581 1.173* -0.411 -0.524
( 0.232) ( 0.043) ( 0.515) ( 0.274)

Property -0.649 -1.654 -0.189 -1.069
( 0.828) ( 0.699) ( 0.965) ( 0.719)

Catering -1.497 -1.224 -1.666 -2.628
( 0.385) ( 0.441) ( 0.436) ( 0.118)

Observations 14,202 14,202 14,202 14,202
P values in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

in the production sector. The relative magnitudes are even larger than those found for the

production sector.

The motor vehicles sector also produces significant results, in this case just for the 90/10

and 90/50 differentials which are highly significant. The magnitudes are larger than in

retail with the 90/50 differential having a more than threefold impact on enterprise per-

formance and the 90/10 differential elasticity which is also of substantial magnitude at

2.60.

All other estimated coefficients are insignificant with services, wholesale, construction,

property, and catering all providing no significant coefficients for any of the inequality

measures considered.
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Table 4.8: System GMM: Long Run Inequality-Performance Coefficients

Log 90/10 Log 90/50 Log 50/10 Std. Dev.

Production 1.58 1.618 1.516 1.966
( 0.143) ( 0.101) ( 0.279) ( 0.122)

Services 1.698 2.403 1.268 2.299
( 0.325) ( 0.215) ( 0.594) ( 0.380)

Wholesale -1.802 -0.886 -3.981 -0.121
( 0.566) ( 0.666) ( 0.494) ( 0.950)

Retail 1.455 1.534 1.082 1.616
( 0.195) ( 0.154) ( 0.494) ( 0.211)

Motors 2.848 3.59 2.427 0.052
( 0.520) ( 0.320) ( 0.775) ( 0.995)

Construction 1.8 2.542 0.331 0.699
( 0.158) ( 0.061) ( 0.840) ( 0.575)

Property -0.152 -1.9 0.684 -0.163
( 0.975) ( 0.779) ( 0.922) ( 0.973)

Catering -2.374 -1.923 -2.651 -4.156
( 0.395) ( 0.449) ( 0.444) ( 0.129)

Observations 14,202 14,202 14,202 14,202
P values in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

These findings do not all hold when compared to the fixed effects results. The production

section coefficients all become insignificant compared to the OLS results with the only

90/50 differential maintaining a significant effect. As in the aggregate case the magnitude

of this coefficient is substantially reduced.

By comparison with the OLS results, the conclusions drawn for the retail sector change

completely. All coefficients are now negative and each of these elasticities and the effect

of the standard deviation are all insignificant.

The service sector yields a relatively elastic and negative dispersion-performance relation-

ship for the 50/10 differential but no other inequality measure yields a significant effect at

the 5% level. The effect of the 90/50 differential is positive but highly insignificant with

a p value of 0.60.
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The motor vehicles sector, which produced some positive and significant elasticities in

the OLS estimates, still returns significant results for the 90/10 and 90/50 differentials

in the fixed effects analysis. These estimates are reduced in magnitude but still exceed

unity. The wholesale, construction, property, and catering sectors continue to produce

insignificant results as in the pooled OLS estimates.

In these fixed effects results all significant elasticities are positive with the exception of

those for the services sector. Accounting for unobserved firm fixed effects produces some

limited evidence in favour of the fairness hypothesis at the sectoral level, but only in the

services sector.

Similar again to the aggregate level results, the IV fixed effects estimator produces results

which are similar to those from standard fixed effects. These are, however, not consistent

in terms of which effects are found to be significant. The standard deviation becomes sig-

nificant for the catering sector and the 90/10 and 90/50 differentials become insignificant

for, respectively, the motor vehicles and production sectors.

First difference results again produce different significant estimates (except for the motor

vehicles sector results, which are similar in magnitude as well as significance to the fixed

effects results). Only the 90/10 differential for the motor vehicles sector and the 90/50

differential for the retail, construction, and motor vehicles sectors are significant at the

5% level in the first difference estimates and are all positive.

The IV first difference results are not consistent with standard first differences in terms

of the significance of effects. The 90/50 differential is positive and significant in both

cases but this is the only consistency between the two results. All other effects which

were significant when estimated with first differences are insignificant with the IV first

differences estimator. The 90/50 differential has a significant negative coefficient with IV

first differences which was insignificant in the standard first difference results.
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4.6.4 Robustness Checks

This section discusses the results of robustness checks which show that the conclusion of

no significant results using the preferred estimator (system GMM) is not a consequence

of model specification.

Non-linearities

The presence of non-linearities in the dispersion-performance relationship is examined by

including the square of the wage inequality measure in the baseline regression model and

also interacting this squared term with the sector dummies in order to allow the nature of

the non-linearity to differ by sector. Use of the squared term allows the effect of wage

inequality on firm performance to depend on the level of wage inequality itself when

partially differentiating the firm performance equation with respect to wage inequality.

The models estimated are extended versions of the baseline models given in equations

4.13 (the aggregate model) and 4.14 (the sector level model) respectively:

log(y)e jt = α +β1σ jt +β2σ
2
jt + γ

′Xe jt + ve jt (4.15)

log(y)i jt = α +β1σ jt +β2σ
2
jt +δ

′
1(Se jt ∗σ jt)+δ

′
2(Se jt ∗σ

2
jt)+ γ

′Xe jt + ve jt (4.16)

In equations 4.15 and 4.16 the matrix X consists of all independent variables estimated in

the baseline models with the exception of the wage inequality measure. Partially differ-

entiating these models with respect to the wage inequality variable yields:

dlog(y)ejt

dσjt
= β1 +2β2σ jt (4.17)
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dlog(y)ejt

dσjt
= β1 +2β2σ jt +δ

′
1Se jt +2δ

′
2Se jtσ jt (4.18)

Equations 4.17 and 4.18 show how the effect of wage dispersion on performance can vary

by the level of wage dispersion itself at both the aggregate and sectoral level in these

models. Adding the extra terms to capture the non-linearities in the relationship to the

model and estimating by system GMM yields no significant aggregate or sectoral level

results.

Weighted Regressions

Due to the nature of the sampling of establishments for the ARD and the way the esti-

mation sample for this analysis has been chosen, this section presents the results of the

analysis when using sampling weights. Contained within the ARD is a database of each

unit which could have been sampled which also contains the number of employees. This

is used to calculate for each year and within 8 size bands the probability that an enterprise

was selected. The weight is calculated as the inverse of this probability, giving relatively

more weight to the smaller enterprises.

The 7th row in Table 4.6 shows the aggregate level results equivalent to those in the 5th

row (the short run effects estimated by system GMM) when using weights to account for

the large firm bias.

Although the coefficients change when using weights, none are significant. Table 4.16

shows the results of weighting the regression at the sectoral level and the same result

holds - weighting the regressions produces entirely insignificant results.

Alternative Wage Inequality Measures

The final two rows of Table 4.6 and Tables 4.17 and 4.18 show the results of calculating

alternative measures of wage inequality - one from the residuals of the pooled OLS log

wage regression (i.e. corresponding to the first two columns of Table 4.3), and one from
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the raw wages themselves rather than residuals.

The results are again reported for the system GMM estimates of the short run effects for

the purpose of comparison with the preferred estimator from the main analysis.

There is slightly stronger evidence of a relationship between wage inequality and firm

performance when using the pooled OLS residuals than the fixed effects residuals, but this

is still limited to two significant coefficients at the sectoral level and one at the aggregate

level (which is only marginally significant at the 5% level and not at the 1% level ). There

is therefore still little persuasive evidence of a link between residual wage inequality and

firm performance.

The results for raw wages suggest some relationship between inequality and performance.

At the aggregate level all measures of wage inequality yield a positive and significant co-

efficient except for the 50/10 differential. At the sectoral level three significant coefficients

are also found for the production sector (the exception being the 90/50 differential) and a

significant effect of the standard deviation for the catering sector.

These robustness checks have shown that the insignificance of the results are not due to

the particular specification chosen with an allowance for non-linearities in the inequality-

performance relationship, weighting to correct for large firm bias, and the calculation of

an alternative measure of residual wage inequality all resulting in largely insignificant

results as in the main analysis.

Raw, as opposed to residual, wage inequality produces significant results at the aggregate

level and in the production sector, but the other sector remain insignificant.

4.7 Summary and Conclusions

This chapter has provided evidence on the relationship between firm performance and

wage inequality. It aimed to improve on existing evidence on this issue for the UK by

considering a range of wage inequality measures and econometric techniques as well as
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expanding the scope of the analysis to sectors other than manufacturing.

The analysis presented here has shown that selecting the appropriate estimator is impor-

tant in determining the overall result. Many of the previous studies which have addressed

the same issue have not used a system GMM approach despite the persistence in firm

productivity.

The results are mixed and sensitive to the estimator used but with the preferred estimator

there is no evidence found for the fairness hypothesis. Depending on the wage measure

used there is either no effect to be found at either the aggregate or the sectoral level, or

the results suggest a positive relationship between wage inequality and firm performance.

A reason for the lack of evidence on a significant relationship between wage inequality

and firm performance could be that industry level wage inequality is a poor proxy for

firm wage inequality. This will be the case if there is large variation in inequality at the

firm level which cannot be represented by an industry level aggregate. This violates the

assumption which was imposed on the empirical approach.

The lack of significant results makes sense if the effects are interpreted directly as the

effects of industry level wage inequality on firm performance, rather than treating the in-

dustry level measures as proxies for firm level measures of inequality. In this case the lack

of relationship between the two can be explained as employees having no knowledge of

industry level wage inequality, and even if this was not the case individuals are less likely

to respond to changes in inequality within the industry rather than changes in inequality

within their own firm.

Despite these limitations this analysis provides new insight into the relationship between

wage inequality and firm performance in the UK by building on previous work. An im-

provement to this work could be made by using firm level wage inequality in the estimated

models, however there is no dataset currently available in the UK with the required level

of detail for such an improvement to be made.
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Chapter Appendices

4.A Chapter 4 Figures

Figure 4.1: Distribution of Employment in the UK by Industry
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Figure 4.2: Low Skilled Labour in the Akerlof-Yellen Fair Wage Model

184



Figure 4.3: Industry Classifications Example

Figure 4.4: Distributions of Value Added, Labour, and Capital
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Figure 4.5: Distribution of Percentile Differentials

Figure 4.6: Distribution of Standard Deviation
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Figure 4.7: Log Total Gross Value Added by Sector

Figure 4.8: Log Total Capital Stock by Sector
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Figure 4.9: Log Total Labour by Sector

Figure 4.10: Average Wage Inequality by Sector
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4.B Chapter 4 Tables

Table 4.9: Wage Inequality and Firm Performance Literature Summary

Author Methodology Data Key Variables Results

Leonard
(1990)

OLS regres-
sion in lev-
els and dif-
ferences

US firm data
for 1981 and
1985. A survey
of managerial
and executive
compensation.

Firm Performance: Re-
turn on Equity Disper-
sion: Standard Devia-
tion of Pay

No significant effect of
standard deviation of
pay on performance

Winter-
Ebmer and
Zweimuller
(1999)

Pooled OLS
and Fixed
Effects

Panel of Aus-
trian Firms
1975-1991

Firm Performance: Total
Wage Level Dispersion:
Standard Error of a To-
bit regression model of
wages

Positive relationship be-
tween wage dispersion
and performance but an
inverse U shaped rela-
tionship for white collar
workers

Hibbs and
Locking
(2000)

Pooled OLS Swedish plant
and industry
level data 1964
- 1993

Firm Performance: Log
Real Value Added per
Worker Dispersion:
Squared coefficient of
variation

No support for the
“fair wage” hypothesis
predictions - decreasing
variance in wages is as-
sociated with a decrease
in labour productivity

Beaumont
and Harris
(2003)

Arellano-
Bond GMM
estimator

UK plant level
data - Annual
Respondents
Database. Five
UK manufactur-
ing industries

Firm Performance: Log
Real Value Added per
Worker Dispersion: Ra-
tio of non-manual to
manual labour costs

Positive relationship
between dispersion and
performance for 4 of the
5 industries, negative for
the 5th. Elasticities are
significantly smaller for
UK owned firms

Lallemand
et al. (2004)

OLS and
2SLS

Belgian private
sector firms
with at least 200
employees

Firm Performance: Log
Gross Profits per Worker
Dispersion: standard de-
viation, coefficient of
variation, maximum to
minimum wage ratio

Positive and significant
coefficients on the wage
dispersion variables,
larger in magnitude in
the 2SLS models. There
is therefore no evidence
to support the fair wage
hypothesis predictions.

Heyman
(2005)

OLS, 2SLS,
First Differ-
ences, Ran-
dom Effects

Swedish firm
data 1991, 1995

Firm Performance: Log
Gross Profits per Worker
Dispersion: Variance of
log wage residuals, co-
efficient of variation and
90-10 percentile differ-
ential of raw wages

Residual wage inequal-
ity has a positive ef-
fect on firm performance
when inequality is mea-
sured for the workforce
as a whole and just
amongst managers

189



Table 4.9 (continued): Wage Inequality and Firm Performance Literature Summary
Author Methodology Data Key Variables Results

Martins
(2008)

OLS, Fixed
Effects

Census of Firms
in Portugal
1991-2000
(including only
firms with
at least 20
employees)

Firm Performance: To-
tal Sales per Worker Dis-
persion: Standard devia-
tion of log wage residu-
als, 90-10 percentile dif-
ferential of log wage
residuals

OLS results suggest a
positive and significant
relationship between
wage inequality and firm
performance but when
accounting for firm
heterogeneity with fixed
effects the relationship
is found to be negative
and significant.

Jirjahn
and Kraft
(2007)

OLS German manu-
facturing firms.

Firm Performance:
Gross Value Added per
Employee Dispersion:
Percentage difference
in highest hourly wage
of a skilled blue collar
worker and the lowest
hourly wage of an
unskilled blue collar
worker

Positive effect of wage
dispersion on firm
performance.

Esteves and
Martins
(2008)

OLS, 2SLS,
Quantile
Regres-
sion, Fixed
Effects,
IV Fixed
Effects

Brazilian man-
ufacturing and
service sector
establishments.

Firm Performance:
Gross Value Added per
Employee Dispersion:
Coefficient of variation,
Standard Deviation,
Min-Max ratio, Stan-
dard error of wage
regression

Positive relationship be-
tween pay and perfor-
mance found for most
specifications, with a
few exceptions all are
significant. No evidence
in support of the fairness
hypothesis.

Grund and
Westergaard-
Nielsen
(2008)

OLS, Fixed
Effects

Matched
Employer-
Employee data
from Denmark
- private sec-
tor firms with
at least 20
employees.

Firm Performance:
Gross Value Added per
Employee Dispersion:
Coefficient of variation

A statistically insignif-
icant relationship be-
tween wage dispersion
and firm performance
is found. The OLS
results give an inverse
U shaped relationship
but this effect becomes
insignificant when using
fixed effects. There is
a U shaped relationship
between wage growth
dispersion and perfor-
mance with 98% of
firms in the sample lo-
cated on the downward
sloping portion of the
relationship.

190



Table 4.10: ARD Sampling Frame

Sample Period Establishment Size Sampling Proportion

1970-1971 Under 25 0
25 or more All

1972-1977 Under 20 0
20 or more All

1978-1979 Under 20 0
20-49 0.5

50 or more All

1980-1983 Under 20 0
20-49 0.25
50-99 0.5

100 or more All

1984 Under 20 0
20-49 0.5

50 or more All

1985-1988 Under 20 0
20-49 0.25
50-99 0.5

100 or more All

1989 Under 20 0
20-49 0.5

50 or more All

1990-1994 Under 20 0
20-49 0.25
50-99 0.5

100 or more All

1995-1997 Under 10 0.2
10-49 0.25
50-99 0.5

100-199 0.75
200 or more All

1998 onwards Under 10 0.25
10-99 0.5

100-249 All or 0.5 (industry dependent)
250 or more All
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Table 4.11: Sector Level Pooled OLS Inequality-Performance Coefficients

Log 90/10 Log 90/50 Log 50/10 Std. Dev.

Production 1.454** 1.929*** 1.311* 1.097*
(0.003) (0.000) (0.034) (0.043)

Services 1.723 4.103 0.764 0.037
(0.437) (0.163) (0.809) (0.992)

Wholesale -0.513 -0.767 -1.409 -1.478
(0.573) (0.553) (0.293) (0.240)

Retail 2.040** 2.883* 1.992* 2.274*
(0.001) (0.000) (0.027) (0.024)

Motors 2.603*** 3.521** 2.509 0.321
(0.000) (0.001) (0.080) (0.897)

Construction 0.621 1.199 -0.741 -1.229
(0.445) (0.099) (0.431) (0.104)

Property -0.435 0.544 -2.298 7.184
(0.820) (0.733) (0.579) (0.200)

Catering 0.673 0.96 0.123 -1.661
(0.408) (0.521) (0.906) (0.223)

Observations 16,735 16,735 16,735 16,735
P values in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 4.12: Sector Level Fixed Effects Inequality-Performance Coefficients

Log 90/10 Log 90/50 Log 50/10 Std. Dev.

Production 0.162 0.49** -0.058 0.136
(0.249) (0.004) (0.792) (0.315)

Services -0.451 0.116 -1.229** -1.14
(0.148) (0.788) (0.006) (0.097)

Wholesale -0.675 -0.455 -1.45 -0.936
(0.398) (0.576) (0.301) (0.248)

Retail -0.046 0.494 -0.57 -0.49
(0.910) (0.268) (0.418) (0.490)

Motors 1.287** 2.026** 1.157 -2.303
(0.035) (0.005) (0.147) (0.338)

Construction -0.519 -0.05 -1.171 -1.309
(0.248) (0.919) (0.097) (0.135)

Property -1.2 -0.127 -2.964 -1.147
(0.443) (0.954) (0.107) (0.762)

Catering -0.744 -0.958 -0.97 -1.885
(0.334) (0.360) (0.371) (0.037)

Observations 16,735 16,735 16,735 16,735
P values in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 4.13: Sector Level IV Fixed Effects Inequality-Performance Coefficients

Log 90/10 Log 90/50 Log 50/10 Std. Dev.

Production 0.141 0.44 -0.011 0.197
( 0.295) ( 0.012) ( 0.959) ( 0.116)

Services -0.281 0.243 -0.895* -0.562
( 0.330) ( 0.542) ( 0.025) ( 0.390)

Wholesale -1.839 -1.139 -3.626 -1.575
( 0.133) ( 0.229) ( 0.115) ( 0.130)

Retail 0.122 0.491 -0.154 -0.055
( 0.732) ( 0.232) ( 0.781) ( 0.897)

Motors 1.394 2.574** 0.503 -2.368
( 0.061) ( 0.002) ( 0.588) ( 0.313)

Construction -0.398 0.303 -1.291 -0.845
( 0.386) ( 0.546) ( 0.064) ( 0.343)

Property -1.004 -0.066 -3.848 -1.903
( 0.426) ( 0.957) ( 0.137) ( 0.477)

Catering -0.907 -0.942 -0.856 -2.38*
( 0.303) ( 0.372) ( 0.458) ( 0.019)

J-Test P Value 0.648 0.702 0.657 0.626
Observations 14,335 14,335 14,335 14,335

P values in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 4.14: Sector Level First Difference Inequality-Performance Coefficients

Log 90/10 Log 90/50 Log 50/10 Std. Dev.

Production 0.114 0.204 0.047 0.196
(0.338) (0.147) (0.800) (0.192)

Services -0.147 0.071 -0.482 -0.304
(0.332) (0.712) (0.054) (0.360)

Wholesale -1.482 -0.667 -2.999 -0.682
(0.322) (0.466) (0.251) (0.482)

Retail 0.132 0.736* -0.592 -0.017
(0.670) (0.026) (0.271) (0.979)

Motors 1.16* 2.108** 0.42 0.394
(0.021) (0.006) (0.738) (0.889)

Construction 0.206 0.471* -0.142 0.24
(0.598) (0.024) (0.814) (0.584)

Property -1.223 -1.595 -1.785 -2.071
(0.216) (0.206) (0.240) (0.231)

Catering -0.578 -1.059 -0.167 -1.349
(0.453) (0.218) (0.873) (0.068)

Observations 14,110 14,110 14,110 14,110
P values in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 4.15: Sector Level IV First Difference Inequality-Performance Coefficients

Log 90/10 Log 90/50 Log 50/10 Std. Dev.

Production 0.026 0.114 0.094 0.229
( 0.847) ( 0.502) ( 0.665) ( 0.223)

Services -0.212 0.193 -0.642 -0.127
( 0.344) ( 0.482) ( 0.069) ( 0.782)

Wholesale -2.55 -1.374 -4.363 -0.726
( 0.194) ( 0.202) ( 0.192) ( 0.544)

Retail -0.205 0.007 -0.327 -0.139
( 0.604) ( 0.987) ( 0.570) ( 0.821)

Motors 0.403 1.242 -0.165 -2.11
( 0.544) ( 0.117) ( 0.929) ( 0.479)

Construction 0.172 0.888* -0.561 0.405
( 0.703) ( 0.021) ( 0.295) ( 0.521)

Property -1.906 -3.233 -1.512 -2.854
( 0.081) ( 0.112) ( 0.200) ( 0.412)

Catering -1.135 -1.755* 0.237 -1.009
( 0.238) ( 0.029) ( 0.853) ( 0.427)

J-Test P Value 0.260 0.263 0.265 0.259
Observations 11,963 11,963 11,963 11,963

P values in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 4.16: Sector Level Dynamic Model: Short Run (Weighted)

Log 90/10 Log 90/50 Log 50/10 Std. Dev.

Production 0.37 0.494 0.441 -0.015
( 0.210) ( 0.220) ( 0.301) ( 0.979)

Services 0.433 0.944 0.297 0.482
( 0.582) ( 0.376) ( 0.773) ( 0.747)

Wholesale -2.037 -2.922 -1.565 -3.387
( 0.357) ( 0.490) ( 0.737) ( 0.380)

Retail 0.303 0.65 -0.113 0.148
( 0.500) ( 0.268) ( 0.867) ( 0.838)

Motors -3.597 -5.523 -4.019 -7.584
( 0.373) ( 0.339) ( 0.487) ( 0.150)

Construction 0.378 1.402 -1.18 -0.541
( 0.543) ( 0.321) ( 0.443) ( 0.640)

Property -3.768 -5.185 -6.408 -6.882
( 0.416) ( 0.335) ( 0.530) ( 0.369)

Catering 0.014 1.428 -1.385 -5.476
( 0.994) ( 0.350) ( 0.458) ( 0.268)

Observations 14,202 14,202 14,202 14,202
P values in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 4.17: Sector Level Dynamic Model: Short Run (Pooled OLS Residuals)

Log 90/10 Log 90/50 Log 50/10 Std. Dev.

Production 0.162 0.229 0.089 0.332
( 0.179) ( 0.101) ( 0.579) ( 0.210)

Services 0.899* 1.303 1.148 2.010*
( 0.049) ( 0.063) ( 0.057) ( 0.033)

Wholesale -0.161 -0.644 0.748 0.121
( 0.766) ( 0.410) ( 0.106) ( 0.865)

Retail -0.021 -0.231 0.105 0.153
( 0.842) ( 0.569) ( 0.494) ( 0.674)

Motors -0.216 0.052 -0.802 -1.253
( 0.764) ( 0.948) ( 0.320) ( 0.436)

Construction -0.1 0.276 -0.613 -0.472
( 0.798) ( 0.636) ( 0.129) ( 0.432)

Property 1.163 1.226 1.896 1.549
( 0.240) ( 0.437) ( 0.235) ( 0.468)

Catering -0.338 0.093 -0.768 0.161
( 0.533) ( 0.803) ( 0.423) ( 0.851)

Observations 14,202 14,202 14,202 14,202
P values in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

198



Table 4.18: Sector Level Dynamic Model: Short Run (Raw Wages)

Log 90/10 Log 90/50 Log 50/10 Std. Dev.

Production 0.155* 0.101 0.335* 0.391*
( 0.029) ( 0.175) ( 0.011) ( 0.030)

Services 0.41 0.567 0.356 1.348
( 0.390) ( 0.066) ( 0.682) ( 0.210)

Wholesale 0.212 0.343 0.144 0.493
( 0.342) ( 0.265) ( 0.706) ( 0.480)

Retail 0.047 -0.07 0.478 -0.188
( 0.740) ( 0.676) ( 0.183) ( 0.720)

Motors 0.06 -0.056 0.525 -0.757
( 0.918) ( 0.921) ( 0.758) ( 0.541)

Construction 0.458 0.251 1.418 0.876
( 0.392) ( 0.631) ( 0.159) ( 0.495)

Property -0.212 -1.096 0.413 -1.946
( 0.706) ( 0.481) ( 0.632) ( 0.335)

Catering 0.367 0.183 0.841 0.938*
( 0.095) ( 0.654) ( 0.242) ( 0.006)

Observations 14,202 14,202 14,202 14,202
P values in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Chapter 5 Conclusions

The aim of this thesis has been to examine aspects of wage inequality in the UK. The

thesis has made three empirical contributions to the literature in this area. The first con-

tribution, which is the subject of chapter 2, is to give an overview of the recent changes

in wage inequality in the UK as a whole and putting this in context of the longer term

trends in wage inequality since the 1970’s. Chapter 3 presents the second contribution;

to decompose the more recent changes in wage inequality identified in the first piece of

work to examine the factors which have driven these changes in wage inequality. Chapter

4 provides the final contribution which is to add to the literature relating wage inequality

to the performance of firms. All of these contributions are empirical in nature and use UK

micro-data.

5.1 Summary of the Thesis

Chapter 2 provides an analysis of the trends in UK wage inequality over the period 1975-

2011. The aim is to identify changes in wage inequality for the UK as a whole and

also for disaggregated sections of the economy by industry, occupation, public/private

sector, and gender. This is performed by estimating the parameters of distributions for

annual cross sections of wage data and calculating measures of wage inequality from

the parameter estimates. The advantage of this technique is that it provides a unified

framework for calculating any measure of wage inequality for which expressions have

been derived as functions of the distribution of parameters, which also allows standard

errors to be estimated.

This approach has previously been most commonly applied to estimating distributions of

household income. This thesis contributes to the literature by applying the approach to
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UK wages over a long time horizon, using the recent availability of the NES and ASHE

datasets which provide the high quality of wage data required for this type of analysis.

The Dagum distribution was judged to be the appropriate distribution to model the wage

distribution as a whole, while the Pareto distribution was used to model the upper tail of

the distribution to facilitate an analysis of wage inequality amongst the highest earners.

This chapter produces a number of interesting results. At the aggregate level, wage in-

equality has increased significantly between 1997 and 2011, but when comparing this to

the earlier of experience of the UK economy using the NES data, this rate of increase

has slowed down substantially. The slowdown in wage inequality growth compared to

the 1980’s appears to be at least partially due to compression in the bottom of the distri-

bution, however the growth in extreme (top 10%) wage inequality has also slowed down

compared to this earlier period and so this also plays a role in explaining the slowdown.

At the sub-group level, the increase in wage inequality has been markedly faster in the

finance industry than in any other sub-group breakdown of the economy. When control-

ling for other factors, the finance sector is the factor with the strongest influence on wage

inequality in the top 5% of the wage distribution in 2011.

Other results in this chapter include the consistency of greater wage inequality in the pri-

vate sector compared to the public sector. This finding is robust to the measure of wage

inequality considered and controlling for other factors in the inter-quantile and Pareto re-

gressions. Controlling for other factors, wage inequality is higher for males than females

and has become even more so between 1997 and 2011. The largest difference in wage

inequality for the whole distribution is between the high skilled and low skilled occupa-

tions.

The second contribution made by this thesis to the literature is the decomposition analysis

of the change in the UK wage distribution presented in chapter 3. The aim is to identify

whether changes in UK wage inequality are due to within-group or between-group shifts

in wage inequality and relates this to a human capital model of wages. The approach is

to estimate wage equations by OLS where log wages are related to education and labour

market experience. The decomposition technique then allows changes in wage inequality

to be divided amongst “price” (or returns to human capital) effects, “quantity” (or the
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distribution of human capital) effects, and residual effects.

The results of this chapter found different trends in inequality for males and females,

with the change in inequality for males in particular showing a break around 2005. This

corresponds with the findings of the previous chapter for overall wage inequality using

the same dataset. For both males and females the overall change in wage inequality was

predominantly determined by within-group changes in wage inequality

Changes in wage inequality were predominantly driven by the bottom end of the distri-

bution during the decline in inequality observed for males until 2005. This, along with

the dominance of the unobservables effect in the decomposition, suggests that the intro-

duction of the National Minimum Wage in 1999 played some role in this. After 2005, the

increase in wage inequality was predominantly driven by the top of the wage distribution,

with the within-group effects still dominating the decomposition.

Chapter 4 provides an analysis of the relationship between wage inequality and the per-

formance of UK enterprises. There has been little work on this area for the UK, with the

exception of Beaumont and Harris (2003). This chapter attempts to build on their work

by using more recent ARD data than that used in their study, enabling sectoral level dif-

ferences to be analysed. Furthermore, the chapter is able to construct different measures

of inequality, also considering residual wage inequality (calculated from the residuals of

wage regression models rather than raw wages) following the work of Martins (2008)

using Portuguese data.

The final results indicated that there was no significant relationship between wage inequal-

ity and the performance of UK enterprises in either the long or short run when estimated

by system GMM at the aggregate level. Some short run significant effects are found at

the sectoral level, both of which are positive and associated with inequality within the top

of the residual wage distribution. These are, however, not robust to weighting the model

to account for the large establishment bias in the sample selection.

The previous literature has used different techniques to account for various issues with

the equation to be estimated, these include endogeneity of factor inputs in the production

function and the level of wage inequality, unobserved firm heterogeneity, and dynamic
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effects in the dependent variable. Due to this breadth of econometric issues and estimators

which have been used to deal with this issues, this chapter has presented results from a

range of estimators in order to assess the sensitivity of the results obtained.

The conclusions drawn regarding the relationship between inequality and performance

are sensitive to the estimator used. A standard OLS regression produces more significant

results than the other estimators which are also typically larger in magnitude. Use of panel

data estimators by comparison illustrate the importance of accounting for unobserved en-

terprise heterogeneity, with results changing substantially from the OLS estimates. There

are also differences between fixed effects and first difference estimators.

5.2 Potential for Further Research

The findings in this thesis present a number possibilities for future research. The second

chapter begins to model the parameters of distributions as functions of individual level

variables in order to assess changes in inequality within sub-groups while controlling for

other factors. An extension to this work could be to model these distribution parameters

as a function of macroeconomic variables which could provide insight into how macroe-

conomic policy could potentially be utilised to influence the growth in wage inequality.

The findings presented in chapter 3 gave some insight into how human capital has played

a role in the changes in wage inequality between 1997 and 2012. The results of this anal-

ysis suggested an important role of within-education/experience group effects on wage

inequality, with shifts in the demand for labour within industries towards more human

capital. An extension of the decomposition analysis would therefore be to account for

industry effects in the regression model. Also, the findings of this chapter are based on

LFS data. As this dataset provided a different picture of how wage inequality has changed

since 1997 than the NES/ASHE data in chapter 2 it would be of interest to replicate the

analysis presented in chapter 3 using the ASHE data in order to see how this impacts on

the decomposition. The LFS was chosen because of the availability of human capital data

(education and experience). Using the ASHE data to perform the decomposition analysis
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would require the use of proxies for these variables.

Future research could consider the other potential consequences of wage inequality. In

addition to the possible impact on firms, wage inequality is likely to affect individuals.

Further research could examine the impact of wage dispersion on individual well-being.

The findings from chapter 4 indicate a clear need for further work on the issue of the

effects of wage inequality on firm performance. The lack of strong robust evidence of a

relationship between residual wage inequality - or “fairness” and performance is likely

due to the inadequacy of industry level wage inequality as a proxy for firm level wage

inequality. Ideally, data would be available at the individual employee level within firms

in order to obtain reliable measures of wage inequality within firms. For the UK however,

such detailed data do not currently exist.
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