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Abstract 

 

This thesis develops a modelling framework for learning route choice behaviour 

of travellers on an underground railway system1, with a major emphasis on the 

use of smart-card data.  

The motivation for this topic comes from two respects. On the one hand, in a 

metropolis, particularly those furnished with massive underground services 

(e.g. London, Beijing and Paris), severe passenger-traffic congestion may often 

occur, especially during rush hours. In order to support the public transport 

managers in taking actions that are more effective in smoothening the passenger 

flows, there is bound to be a need for better understanding of the passengers’ 

routing behaviour when they are travelling on such public transport networks. 

On the other hand, a wealth of travel data is nowadays readily obtainable, largely 

owing to the widespread implementation of automatic fare collection systems 

(AFC) as well as popularity of smart cards on the public transport. Nevertheless, 

a core limitation of such data is that the actual route-choice decisions taken by 

the passengers might not be available, especially when their journeys involve 

alternative routes and/or within-station interchanges. Mostly, the AFC systems 

(e.g. the Oyster system in London) record only data of passengers’ entry and exit, 

rather than their route choices. We are thus interested in whether it is possible 

to analytically infer the route-choice information based on the ‘incomplete’ data.  

Within the scope of this thesis, passengers’ single journeys are investigated on a 

station basis, where sufficiently large samples of the smart-card users’ travel 

records can be gained. With their journey time data being modelled by simple 

finite mixture distributions, Bayesian inference is applied to estimate posterior 

probabilities for each route that a given passenger might have chosen from all 

                                                        

1 The ‘underground’ system is also known as the ‘Tube’ (especially in London), ‘metro’ (e.g. in 

Moscow, Paris, Shanghai, Madrid and Santiago), ‘subway’ (e.g. in Beijing, New York City and 

Seoul), ‘mass rapid transit’ (especially in Singapore), and ‘U-Bahn’ (especially in Germany), 

etc. See also “List of metro systems” (Wikipedia, the free encyclopedia, 2014), available 

online at https://en.wikipedia.org/wiki/List_of_metro_systems; last accessed on 30th 

September 2014.  

https://en.wikipedia.org/wiki/List_of_metro_systems
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possible alternatives. We learn the route-choice probabilities of every individual 

passenger in any given sample, conditional on an observation of the passenger’s 

journey time. Further to this, the estimated posterior probabilities are also 

updated for each passenger, by taking into account additional information 

including their entry times as well as the timetables. To understand passengers’ 

actual route choice behaviour, we then make use of adapted discrete choice 

model, replacing the conventional dependent variable of actual route choices by 

the posterior choice probabilities for different possible outcomes. This proposed 

methodology is illustrated with seven case studies based in the area of central 

zone of the London Underground network, by using the Oyster smart-card data. 

Two standard mixture models, i.e. the probability distributions of Gaussian and 

log-normal mixtures, are tested, respectively. The outcome demonstrates a good 

performance of the mixture models. Moreover, relying on the updated choice 

probabilities in the estimation of a multinomial logit latent choice model, we 

show that we could estimate meaningful relative sensitivities to the travel times 

of different journey segments. This approach thus allows us to gain an insight 

into passengers’ route choice preferences even in the absence of observations of 

their actual chosen routes.  
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Chapter 1  

Introduction 

 

1.1 Background 

Public transport1  in almost every metropolis, such as in London, Beijing and 

Paris, to name but a few, has furnished travellers with a highly sophisticated and 

interconnected mass transit system. Meanwhile, a boom in travel demand in the 

urban areas, particularly a surge in passenger traffic during a certain period (e.g. 

rush hour), could make cumulative impact on regularity as well as reliability of 

the transit services. An in-depth understanding of the passengers’ travel 

behaviour in the network is interestingly significant to transit planning, 

operations and the travel demand management.  

In the case of an underground rail system2, such as the London Underground 

(LU), a number of stations may serve for ‘interchanges’ at which two or more 

‘transit lines’ intersect and/or the service directions change. A transit line, or 

simply a line, refers to a fleet of trains running along a particular ‘route’ that links 

two terminal stations within the network (cf. Ortúzar and Willumsen, 2011, 

p.376), with one terminal being an origin and another a destination. Given this 

definition, there could be either a single or multiple alternative routes ready for 

carrying passenger traffic in both directions between a pair of origin and 

destination (O-D) stations. Each of the alternatives is referred to as a travel route 

(or simply a route), which is composed of one or several route sections; and a 

route section can be a portion of a route, which is between two adjacent 

interchange stations (cf. De Cea and Fernández, 1993).  

                                                        

1 The terms ‘public transport’ and ‘transit’ will be used interchangeably in this thesis.  

2 According to the Office of Rail Regulation (ORR) (2014), “an underground system is defined as 

an electric railway public transport network (a metro or subway system) that runs both 

above and underground” (cf. Footnote 1 on page v). The term ‘underground’ being referred 

to throughout this thesis is in line with this definition.  

http://orr.gov.uk/about-orr
http://orr.gov.uk/about-orr/who-we-work-with/rail-infrastructure/underground-railways
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Suppose that there is availability of a few routes for passengers travelling on the 

underground network. All the passengers choose from among available lines to 

complete their journeys; and they might need to transfer between different lines 

that are serving the same specific route. It is noteworthy that the total travel time 

through a certain route would vary (within a day as well as between days) for 

many reasons, such as engineering work and adjustment for operation schemes. 

Furthermore, there are likely to be both similarities as well as differences in the 

passengers’ perceptions and sensitivities to different attributes shared by the 

alternative routes. Such attributes, in addition to the travel time that we have 

mentioned already, could also involve fare, number of interchanges, preference 

of a certain line and so forth. Moreover, for any given O-D pair, the passengers’ 

choice sets of the travel routes can differ from individual-to-individual. That is to 

say, there are also differences among their ‘route-choice tasks’, in each of which 

one individual must choose one and only one of the alternative routes from 

his/her own route-choice set for a certain pair of O-D stations. In view of these 

facts, effective approaches to reproducing and analysing the passengers’ route 

choice behaviour are certainly attracting interest from public-transport planners 

and operators. This is because such modelling instruments could provide those 

professionals with necessary knowledge of passenger-flow distributions across 

the network, and thereby assisting them in identifying traffic bottlenecks and 

delivering a more efficient transit service, especially at rush hour. And what is 

more important, such information is vital for system managers to grasp the usage 

patterns of different transit lines, thereby offering insight into the network 

utilization, especially for dealing with planned and unexpected disruptions. 

Additionally, the aggregate passenger traffic or ridership on the different lines 

can, if needed, serve as evidence for transport authorities to cope with the 

settlement of fare revenues among stakeholders, such as multiple line operating 

companies.  

On the other hand, in a bid to maintain or strengthen the operational efficiency, 

it is also of critical importance that the policy makers have a collection of facts 

and data of the passengers’ evolving travel behaviour. From the perspective of 

modelling, the passengers’ travel behaviour is learnt from diverse mathematical 

models of their route choices, which could inform the passengers’ relative 

sensitivities to a range of factors underlying their decision-making process. So 

far, numerous studies have been devoted to developing these sorts of models, 
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which may be broadly divided into two very different approaches: the route 

choice modules used for transit assignment models and the discrete choice 

modelling approaches. Although the former methodology, which will be 

discussed in Chapter 2, might reproduce the choice process in more detail, the 

latter, which will be discussed in Chapter 6, may have more advantages in 

understanding the behaviour and causes of the passengers’ choices. However, it 

is also noted that the development of such models must rely on analysts 

observing data of each individual passenger’s actual route choice. In other words, 

only when the real data is explicitly presented, parameters for the model can 

then be estimated.  

Usually, the real route-choice data could be acquired via conducting manual 

surveys and passive monitoring. Either way can be very costly to gather data of 

sufficiently large samples; and in some circumstances, the data might be 

inexplicable due to a lack of accuracy or even loss of key information. In this 

connection, the availability, as well as the accessibility, of the data about each 

individual’s actual choice would act as a prime determinant of developing the 

route choice models that offer predictive value.  

In another regard, the automatic fare collection (AFC) system driven by smart 

cards on the public transport can gather a wealth of individual passengers’ travel 

data, which is readily accessible.3 Nevertheless, the route-choice information is 

still not available in its database; commonly, just entry and exit stations are 

recorded. This is indeed worth our best thinking and efforts in exploiting that 

data in connection with travel demand forecasting and management for public 

transport, especially because of the huge amounts of individual journey histories 

being recorded. In addition, it leads us to envisage the possibility of finding out 

the information relevant to the individuals’ route choices from the AFC database. 

Again, however, given the fact that there is no firm or any direct evidence of 

passengers’ route choices, any route-choice information gained from the smart-

card data would have to be represented in a probabilistic setting. That is, the 

actual chosen route of each individual could only be known up to a choice 

                                                        

3 The travel data recorded by the smart-card system is hereafter referred to as smart-card data. 

More details about it are described in Chapter 2.  
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probability. This thus presents us with a new research topic that is going to be 

addressed and discussed in this thesis.  

 

1.2 Research scope and objectives 

From the issues pointed out in the previous section, this research is principally 

aimed at developing a route choice model in order to gain an understanding of 

route choice behaviour of public-transport users. Our interest and efforts are 

focused only on the underground system. As has also been mentioned in the 

previous section, the data shortage is a main obstacle to the model development. 

It is our initiative to explore the possibility of digging for information about 

passengers’ route choices from the smart-card data. In this regard, two 

additional objectives, which serve as the prerequisites for the stated aim stated, 

are to:  

1. examine the connection between the smart-card data and passengers’ 

route choices; and  

2. analyse and discuss the ways of learning the information, particularly 

about every passenger’s route choices and choice probabilities.  

Further (depending on the excavated information), another aim of the thesis is 

to reveal the traffic loadings of passengers on different possible travel routes.  

Moreover, this thesis conducts case studies on the LU using the Oyster smart-

card data 4  from the Oyster system implemented across the public-transport 

network in London. It is expected that the established approach would be 

adaptable and applicable to other similar underground network.  

 

1.3 Methodological framework 

Following the background introduced above, the methodological framework of 

this thesis is illustrated in Figure 1.1 (see next page).  

                                                        

4 More details about the Oyster smart-card system and its data are described in Section 4.2.1.  
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Figure 1.1  Methodological framework of the thesis. 
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The directed lines coloured in orange show the structure of the thesis, and the 

black ones demonstrate the flow of data. From the top of this framework, 

Chapter 1, Chapter 2 and Chapter 3 set the context in which the research 

problem in the thesis is addressed. The problem includes two strands: a naive 

Bayesian framework for the modelling of passengers’ route choices, which is 

elaborated in Chapter 3, Chapter 4 and Chapter 5; and a latent route choice 

model, which is elaborated in Chapter 6.  

The processing of a bundle of available data used in this thesis is in parallel with 

the delivery of Chapter 3, Chapter 4 as well as Chapter 5. As part of the naive 

Bayesian modelling framework, the finite mixture model is elaborated in 

Chapter 3; and its application (including the model estimation, interpretation 

and validation) is demonstrated in Chapter 4, using data from the LU network. 

Such data includes the Oyster smart-card data, historical route-choice data, and 

walking time data (for access, egress and interchange) as well as data for layout 

of the passageways within the underground stations. Then, the estimates of the 

mixture model is updated in Chapter 5, by incorporating additional information.  

Finally, the outputs from the naive Bayesian modelling framework serve as 

inputs for estimation of the latent route choice model expounded in Chapter 6. 

That is, in view of the fact that the actual route choices of passengers are not 

observed, their route choice probabilities are used as the data for model 

estimation.  

 

1.4 Outline 

Given the context presented in this introductory chapter, the remaining part of 

this thesis is constructed as follows:  

Chapter 2 presents a review of studies on the modelling of passengers’ route 

choice behaviour on underground systems, focusing particularly on the route 

choice modules that serve as the core for transit assignment models. Different 

behavioural assumptions on passengers’ choice decision-making processes are 

compared and discussed. The issues relevant to route-choice data and choice 

modelling are also pointed out.  
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Chapter 3 provides a completely different viewpoint of representing the route 

choices of passengers for a given O-D pair. The chapter elaborates on the 

applicability of a finite mixture model to allow for a probabilistic representation, 

namely, posterior probabilities, of each individual passenger’s route choice, 

given the observation of his/her journey time.  

Chapter 4 demonstrates the application of the mixture models proposed from 

its precious chapter, Chapter 3, with two different types of standard mixtures. 

The chapter presents a range of case studies based on the LU network, taking 

advantage of the Oyster smart-card data together with ancillary information 

available for the LU system (as shown in Figure 1.1, p.5). A comparison of the 

estimation results from two the types of mixture models is presented.  

Chapter 5 proposes an approach to update individually each passenger’s route-

choice probabilities in order to obtain relatively more robust estimates, which is 

still based on Bayes’ theorem. Relying on the estimates from Chapter 4, the 

chapter involves more evidence, that is, the timetable as well as each individual’s 

actual entry time. A comparison of the individual route-choice probabilities 

before and after the update is presented.  

Chapter 6 demonstrates a new approach to the development of a discrete choice 

model by using the estimated posterior probabilities of passengers’ route 

choices, instead of their actual route choices, which is referred to as a latent 

choice model. The chapter uses the two sets of posterior estimates, which are 

derived from the case studies in its previous two chapters, to test the proposed 

approach separately, by estimating a simple multinomial logit (MNL) model. A 

comparison between the estimation results is presented.  

Chapter 7 concludes this thesis with a summary of main limitations of the 

methodological framework illustrated in Figure 1.1 (see p.5). Furthermore, the 

chapter also provides a set of recommendations for improving its structure and 

important avenues for future research (illustrated with Figure 7.1, p.177).  
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1.5 Contributions 

This thesis makes worthwhile contributions to the modelling and understanding 

of the passengers’ route choice behaviour within the context of the underground 

system. They are achieved in four respects as follow.  

The work of this thesis  

I. establishes a preliminary methodological framework for the modelling 

and understanding of passengers’ route choice behaviours without 

actual route-choice data;  

II. assesses and demonstrates applicability of the finite mixture models 

for discovering passengers’ route choices at both the aggregate and the 

individual levels;  

III. attains initial development of a latent route choice model, which allows 

for the estimation of discrete choice models without actual route-

choice data; and  

IV. further explores potentialities of the use of smart-card data on public 

transport.  
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Chapter 2  

Modelling route choices on public transport 

 

2.1 Introduction 

For decades, the modelling and the prediction of passengers’ route choices – as 

well as that of passenger-traffic distribution over public transport network, have 

long been a challenging subject for transport planners and researchers. Many 

specialists, especially the modellers, have continuously strived to build and 

refine various effective platforms for developing more and more efficient 

mathematical approaches. By far, a wide spectrum of mathematical models for 

the route choice on the public transport have been established, which are mostly 

serving as a vital module for tackling transit assignment problems. In that regard, 

a transit assignment model is devoted to reproduce the passengers’ route choice 

behaviour at each of decision-making points along their journeys, hence their 

route choices and the traffic between any O-D pairs of a given transit network. 

Additionally, it may also act as an assessment tool for validation and analyses of 

operation schemes for the transit system. On that basis, this chapter scrutinises 

a diverse range of route choice models built in the numerous existing transit 

assignment models, which are later referred to as route-choice modules, and 

further explains the homogeneity and heterogeneity of underlying factors and 

choice behaviour addressed by those models. This is based mainly on the surveys 

reported by Fu et al. (2012b), which identified issues that remain outstanding in 

gaining a deeper insight into passengers’ route choice behaviour. The principal 

aim of the review is to elucidate the essential aspects of the route-choice 

decision-making process, so as to lay the foundation for further exploration of 

solutions to handle the crux of the research problem on how the choice 

behaviour can be better understood.  

On the whole, the transit assignment problem has been well inspected from two 

distinct standpoints: the frequency-based approach (e.g. Chriqui and Robillard, 

1975; Nguyen and Pallottino, 1988; Spiess and Florian, 1989; Wu et al., 1994; 

Cominetti and Correa, 2001; and Cepeda et al., 2006); as well as the schedule-
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based approach (e.g. Tong, 1986; Hickman and Bernstein, 1997; Florian, 1999; 

Tong and Wong, 1999; Nuzzolo et al., 2001; and Poon et al., 2004).1 A wealth of 

researches have been conducted, and provided insights into both methods. 

Among the earliest comprehensive reviews on the relevant modelling methods 

were contributed by Bouzaïene-Ayari et al. (1998). According to their findings, 

the function that underlies the route choice models could be summarised in the 

following three aspects: (a) characteristics of the supply on transit networks and 

services; (b) information about the supply that passengers could have before and 

during their journeys; and (c) passengers’ responses towards current situations 

given related travel information. Later, Nuzzolo et al. (2003) and Nuzzolo and 

Crisalli (2004) paid special attentions to the schedule-based transit assignment 

models and particularly elaborate the differences of the adaptability of schedule-

based models to services with low and high frequencies; and the frequency-

based models were reviewed in more detail by Schmöcker (2006) and Teklu 

(2008a). Furthermore, Nuzzolo and Crisalli (2009) extended the predecessor 

models to a broader scope, taking into account multi-modal transportation 

networks of both transit and freight services. More recently, Liu et al. (2010) 

inspected plenty of studies on passengers’ route choice behaviours, ranging from 

the conventional deterministic models to various dynamic ones, given e.g. the 

effect of real-time information.  

In the context of the above2, the rest of this chapter is arranged as follows. The 

basic concepts and definitions of the route-choice modules are described in 

Section 2.2, which lays the foundation for the subsequent sections. Section 2.3 

elaborates in greater detail on passengers’ choice behaviour at different stages 

of their journeys, and also the behavioural assumptions that underlie the module 

                                                        

1 The frequency-based approaches are also known as headway-based, line-based models, etc.; 

and the schedule-based ones are often referred to as timetable-based, run-based, etc.  

2 Note that some of transit assignment models focus particularly on the bus network, and some 

others are based only on the underground railway network. In practice, though, the terms 

‘stop’ and ‘station’ could be used interchangeably, the former is often referred to in the bus 

system while the latter is often referred to in the cases of underground networks. In this 

thesis, we are investigating only the latter cases, i.e. the underground system; and the two 

terms will also be exchangeable in the following texts where the term ‘station’ will be more 

frequently used. Additionally, it must be noted that a ‘station’ (and a ‘stop’) is explicitly 

distinguished from a ‘platform’ in this thesis.  
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building processes. Section 2.4 discusses the interaction between the route 

choices of passengers and their journey time variability, as well as the issue 

about the route-choice data. On the strength of the discussions of various 

concerns related to the choice behaviours, Section 2.5 points out the matter of 

our interest and concludes this chapter.  

 

2.2 The foundation of modelling route choices 

2.2.1 Transit network and alternative routes 

In order to learn about passengers’ route choice on a given transit network, it 

would entail a mathematical imitation of the choices as well as the passengers’ 

decision-making process starting from their origin stations, with all onward 

‘journey segments’ in sequence, to planned destinations. Consider a passenger is 

travelling on an underground system. Since the scope of this thesis is confined to 

the level of transit network rather than the practical O-D3, in general, a single 

journey of the passenger between any given pair of O-D stations can be 

segmented into a series of such journey segments as follows:  

 Access: starting from a ticket gate4 or a ticket hall at the origin station 

and walking/moving5 towards a platform for a transit line;  

 Waiting: waiting on the platform for departure from the origin 

platform, until climbing aboard a train;  

 Traveling: riding in the train from the current (origin station) platform 

to another (at the destination station), and getting off-board; and  

 Egress: leaving from the destination platform and moving to a gateline, 

and exit from the destination station.  

When passengers have to transfer from one line to another between different 

platforms, additional journey segments shall then be involved in: (see next page)  

                                                        

3 On the level of the practical O-D, the network of interest may extend to travellers’ actual origins 

and destinations, such as homes, offices and shopping centres.  

4 The location of any ticket gate within a station may also be referred as a ‘gateline’.  

5 In this thesis, the terms ‘walking’ and ‘moving’ are exchangeable.  
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 Interchange walking: leaving from the current platform (for a line of a 

certain direction) and moving to another (for a line of a certain 

direction), in order to transfer from one line to another;6  

 Interchange waiting: waiting on the platform for departure from the 

interchange station, until getting aboard a train on a connecting line.  

 Onward travelling: riding in the connecting train from the current 

platform to another at the destination station, and getting off-board.  

Each of these journey segments is associated with a travel cost (or disutility). A 

passenger’s cost of a journey could generally be regarded as a sum – or rather a 

weighted sum – of the costs for all the journey segments, which is hereinafter 

termed the journey cost. However, different assumptions made by modellers on 

the specification of the cost function would bring about different travel cost for 

each journey segment and hence the journey cost for a travel route.  

For modelling purpose, a transit network is described by nodes and directed 

arcs, with simulated passenger flows being transmitted via the different 

functional arcs between the nodes that act as decision-making points. On this 

basis, a sub-network that defines a station is usually taken for the focal issue (cf. 

Bouzaïene-Ayari et al., 2001; and Billi et al., 2004). At each station, passengers 

will need to choose one of ‘attractive lines’ and travel to the next stop. The 

definition of the attractive lines was given by De Cea and Fernández (1993), and 

it indicates the fact that not all transit lines available at a station/platform would 

be taken into account by passengers, as they might simply ignore the lines that 

could conceivably lead to a relatively disadvantageous route. In practice, the 

attractive lines, which passengers may face and choose from at each of the 

interchange stations, build different possible routes connecting to their 

destination station. Given the passengers’ perceptions to the journey cost, the 

passenger flow sourced from an origin station may then split up among the 

attractive lines and hence among the alternative routes. It must be pointed out 

that, in effect, the true set of alternatives for route choices cannot be determined 

                                                        

6 In the case of cross-platform interchange (i.e. interchange between lines at an island platform), 

this journey segment could be ignored, or integrated into the subsequent journey segment 

as ‘interchange waiting’. In this thesis, we assume that each of platforms at a station is 

served by only one transit line.  
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accurately in that the reasonableness of any of the alternatives may not be 

verified (cf. Guo, 2008, pp.262-263).  

With regard to the schedule-based models, every move of trains and passengers 

in the transit network is marked with a time-stamp. Thus, these entities can be 

located, described, and differentiated from each other in both the temporal and 

the spatial dimension. Representation of the transit network is thereby adapted 

from the line-based spatial-only graph (i.e. without time dimension), which is 

used for frequency-based models, into a run-based spatiotemporal graph that 

can show each of a series of runs as scheduled. Therefore, the characteristics of 

each service run can be taken into account and modelled separately.  

 

2.2.2 Journey cost 

The core belief that underlies the outcomes of any route choice models is that a 

traveller always chooses a ‘cost-efficient’ route to complete his/her journey. That 

is, for each passenger, the journey cost of his/her chosen route is supposed to be 

the minimum or the optimum, in comparison with other alternative routes. A key 

issue is to properly specify how the cost should be calculated. Such journey cost 

can be analysed either based on every single route (especially in early models, 

such as Dial, 1967; Fearnside and Draper, 1971; and le Clercq, 1972), or in the 

context of a hyperpath (e.g. Nguyen and Pallottino, 1988; as well as Spiess and 

Florian, 1989). In the light of the definition by Nguyen and Pallottino (1988), a 

hyperpath consists of a set of routes considered simultaneously by a passenger, 

with each being referred to as an ‘elementary path’ or an attractive route. It 

involves a set of sequential decisions of the passenger choosing from among 

attractive lines at an origin (and every intermediate stop), in order to start (and 

continue) his/her journey. Taken in this sense, the journey cost of the passenger 

is effectively treated (by modellers) as a probabilistic cost over a set of attractive 

routes. On the same basis, Spiess and Florian (1989) termed the series of 

decisions a strategy whereby the passenger can reach his/her destination 

subject to route choice probabilities. As multiple transit lines exist, more than 

one hyperpath can be available and utilised, and so different strategies can be 

applied by passengers based on their own considerations.  

In some cases, the term ‘cost’ can be merely regarded as the total travel time 

through the journey, namely, the weighted sum of observations or estimates for 
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the travel time for every journey segment of a route. While in other cases, it can 

be dealt with as a generalised cost in a synthetic manner, which takes into 

account not merely travel time but also other stochastic attributes and 

uncertainties up to the complexities of modelling perspectives of analysts (e.g. 

Szeto et al., 2011; and Szeto et al., 2013). They may include reliability of transit 

services, crowdedness, discomfort, value of time, seat availability, as well as 

passengers’ perceptions to these issues and so on.  

 

2.2.3 Fundamental behavioural assumptions 

As a matter of fact, passengers may not be able to know exactly the true journey 

cost of each alternative route (or any hyperpath). Instead, they may estimate it, 

given their own preferred route-choice sets and thus can make trade-off choice 

decisions. In this context, another major issue with respect to modelling the 

route choices is a (mathematical) representation of the passengers’ decision-

making processes, which would have to rely on related behavioural assumptions.  

In the real world, the travellers’ route choices are essentially the outcomes of 

their reacting to supply of a transit network. The network supply could relate to 

attributes of the network as well as the transit services – basically, layouts of the 

stations, transit lines, operation schemes (e.g. timetables), service capacities, as 

well as provision of both offline and real-time information on the services. By the 

force of the interplay over time between the travel demand and the supply, the 

passenger flows merge and split at the start of every journey segment (as defined 

in Section 2.2.1). As a consequence, all available routes of the transit network 

are loaded with the traffic. Such process could also be referred to the 

construction of a hyperpath/hyperpaths as well as strategy/strategies (as 

described in Section 2.2.2), which are typically considered by most of the 

existing, especially the frequency-based, transit assignment models to deal with 

the passenger traffic distribution.  

Moreover, consider that passengers are travelling on an underground network 

with a high frequency of trains. Under this circumstance, intuitively, it does not 

seem to concern the majority of the travellers that whether there would be a 

train available as soon as they arrive at a platform. In other words, a short wait 

would be supposed to be acceptable for most passengers. In addition, it is 

commonly assumed that an individual passenger’s arrival at a station or a 
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platform is independent of each other; and it is also supposed to be irrespective 

of any vehicle’s arrivals. These two assumptions in many transit assignment 

models bring about a uniformly random passengers’ arrival rate (e.g. Spiess and 

Florian, 1989); and this underlies the classic assumption that passengers always 

choose to board the firstly arriving vehicle that belongs to their attractive lines 

set, given a Poisson process of the transit vehicles’ arrival. In contrast, when the 

line service frequency is relatively low, those passengers would be more likely 

to plan in advance for their access as well as possible interchanges. This is in 

order to minimise the waiting cost such as the waiting time for a specific 

train/run of an attractive line.  

In general, a transit map may often serve as the most important (or even sole) 

source of information about the transit network. Practically all travellers would 

use it as a reference to make route-choice decisions. In that situation, the transit 

map would tend to have the utmost impact on the passengers’ travel strategies 

(cf. Guo, 2011), especially when there is no additional information provided to 

those who are unfamiliar with the network. Nevertheless, those experienced or 

frequent travellers, e.g. commuters, may have rather fixed route choices among 

all the alternatives, based on their prior knowledge about the transit system. 

They may have already made a decision on which route to choose before they 

arrive at the origin station. On the other hand, real-time information during the 

course of the passengers’ journeys may also influence their choice decisions (cf. 

Hickman and Wilson, 1995). For instance, if the information about waiting times 

for the next trains of all attractive lines is available prior to the passengers’ 

heading to the platform for a preferred line, some of the them may reckon that 

their predetermined routes would become less or no longer satisfactory, and 

thus potentially turn to alternative attractive routes (cf. Gentile et al., 2005; and 

Cats et al., 2011).   

In the frequency-based models without considering the common lines problem, 

the headway can be treated as the time interval between two trains in a row that 

serve for the same line, with the mean being the average waiting time for that 

line. While the common lines problem is included, trains on different lines arrive 

at a platform alternately according to their respective scheduled headways. In 

this regard, the average inter-arrival time between runs is shorter due to the 

joint services, namely, a passenger's average waiting time for boarding (an 

attractive line) is dependent on a combined service frequency of all the attractive 
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lines. What is more, the exponential distribution has been the most common 

assumption prescribed for the headways; whereas Bouzaïene-Ayari et al. (2001) 

argues it may not be appropriate in the case of reliable service regularity, as 

extremely irregular headways are not frequently encountered which however 

might be the case for exponential distribution. The Erlang distribution was later 

proposed and used for approximating the headways (e.g. Bouzaïene-Ayari et al., 

2001). For the common lines problem, conventionally, the probability of anyone 

boarding an attractive line is calculated as the proportion of its service frequency 

among all alternatives. This implies that the more frequent a line service is, the 

higher probability that a vehicle of the transit line would be firstly arriving, and 

the greater chance it could obtain of being chosen. Each alternative route can be 

assigned a probability of being chosen, even though illogical ones are never used 

that have zero probabilities.  

 

2.3 Route choice behaviours 

Each journey segment has its own service capacity, and offers limited ability to 

accommodate and manage the flows of passenger traffic. The passengers may 

often experience congestion (or even overcrowding) when walking within the 

stations, waiting on the platforms as well as travelling in the trains, especially at 

rush hour when passenger-traffic reaches a peak. It arises since the network 

supply of the corresponding journey segment is not able to meet the extra travel 

demand during a given operational period. Such a traffic situation could be very 

typical of rush hours, such as the morning and evening peaks, which is in stark 

contrast to off-peak times dealing mostly with a normal (or even free) flow of 

passenger traffic. Unlike bus systems where bunched services may be available   

In addition, any planned engineering work would cause delay or cancellation of 

trains; and particularly, unexpected emergencies would also hinders the system 

from releasing the surges of incoming passenger flows. These incidents may have 

a major impact on passengers’ journey cost, and hence their travel behaviours.  

On the basis of the foundation laid by the previous section, this section provides 

deeper insight about the passengers’ possible route-choice behaviours 

throughout the passengers’ journeys.  
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2.3.1 Moving through passageways 

The service capacity for passengers moving within any underground station 

shall involve in all types of pedestrian facilities inside the station. Generally, such 

facilities include ticket halls (or concourses), level/ramp passages, pedestrian 

conveyors, escalators, lifts and staircases.7 A number of different types of such 

passageways together construct a pedestrian pathway for passengers’ access 

from gatelines to platforms, transfer between platforms, as well as egress from 

platforms to gatelines (cf. Section 2.2.1). Thus, the measure of the capacity of 

the pedestrian service would largely depend on the attributes of these 

passageways, including e.g. total numbers, lengths, rises/runs and layout, which 

are closely related to the pedestrian passenger flows.  

Hankin and Wright (1958) were among the first to carry out experiments 

concerning the within-station pedestrian traffic flows of passengers. They 

investigated the relationships between the pedestrian speed, flow of passengers 

and the capacity of passageways (including both level passages and staircases) 

for the LU stations. According to their studies, the pedestrian flow within a 

station was measured by the number of passengers per foot width per minute, 

while the speed was calculated as the time of their movement over a certain 

length; and both were based on a given pre-measured area. It was also illustrated 

in their analysis results that crowdedness would slow down passengers’ walking 

speeds. Daly et al. (1991) illustrated the findings on the relationships between 

flow and walking time for each passageways within station that the speed-flow 

relationship was similar to that of the road traffic conditions. In addition, they all 

presented their experiment results about walking speeds on different types of 

passageways, on the conditions of free passenger flow and when the facility 

capacity was reached, etc. Those important conclusions drawn from their 

experiments were also confirmed in relevant studies, conducted by e.g. Harris 

(1991); Cheung (1998) and Lam and Cheung (2000). Furthermore, Lam and 

                                                        

7 We use the term ‘passageway’ as a generic term. Note that in some other studies, e.g. Daly et al. 

(1991), the platforms and intersection area of different passageways were also were also 

examined, however, which are not considered as the passageways in the current context.  
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Cheung (2000)8 derived and calibrated the travel time function for each type of 

passageways with the data collected on the Hong Kong metro system, and 

compared the average speeds with the findings on the LU.  

Moreover, not only is it the disutility of crowdedness and walking speed/time 

that may be considered by passengers, but they may also have different tastes in 

walking distance. At the origin station, the pathways with shorter walking 

distance to the platforms for attractive lines might usually be more preferable to 

passengers, especially those who are commuters, older or disabled people. This 

factor may potentially dominate their route choices, in the absence of real-time 

information around the gateline area (i.e. at the start of access). Note, however, 

that some of the travellers with limited walking ability may need assistance of 

lifts (and might also tend to avoid the crowd). Such facilities may or may not 

necessarily be on the shorter (or the shortest) pathways.  

Besides, the interchange (including the platform-to-platform walking and 

waiting on the platform) is considered particularly sensitive to passengers, as it 

might be deemed to cause an ‘interruption’ in one’s single journey. Regarding the 

journey cost specification, usually, the extra disutility would be associated with 

both the interchange walking and waiting, which can be termed a ‘transfer 

penalty’ (e.g. Guo, 2008). Moreover, at different stations, passengers suffer 

different levels of transfer penalties. Surveys and behavioural modelling are the 

two main methods to understand the transfer behaviours.  

 

2.3.2 Waiting and failures of boarding 

As for the passenger traffic gathered on the platforms, whether and when the 

passengers would be able to board a train is another one of the key issues for the 

formulation of a route-choice module for any transit assignment models. This is 

particularly significant for modelling the rush-hour traffic, due to the fact that 

the limited loading capacity of trains/carriages imposes restrictions on extra 

boarding demand. A portion of the passengers waiting on platforms may fail to 

get aboard (after one or several attempts). Such boarding failure(s) prolongs a 

                                                        

8 The average walking speeds about the LU presented in this study will be later used as reference 

materials in Chapter 4.  
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passenger’s waiting (hence their waiting time), and might significantly increase 

the possibility of a longer total journey time.  

A common assumption for passengers’ boarding is that all the passengers would 

choose to board the firstly arriving train among attractive lines, if additional 

information (e.g. remaining waiting time for a certain service) is not available. In 

uncongested situations, all the wait-to-board passengers are assumed to be 

always able to get aboard a train on an attractive line, since the capacity of 

carriages is treated as unlimited. However, with respect to models for congested 

transit networks, the train/carriage capacity should be strictly constrained, and 

that the situation that passengers may fail to board is explicitly considered. 

Under such circumstances, there could be continuously accumulated volume of 

traffic as those fail-to-board passengers would be still waiting, which aggravates 

the crowding on the platform and thereby affects the service that follows at a 

subsequent scheduled time interval. The increasingly intensive congestion may 

maintain during peak period.  

In reality, the fail-to-board passengers could be generally classified into two 

groups. One group includes those who do intend but are not able to climb aboard 

the train, due to limited standing space in trains; whereas the other group 

contains passengers who actually decline or are not willing to board. Basically, 

these two groups could be referred to two situations, respectively, as follows: (a) 

the train capacity has been completely fulfilled and the carriages cannot 

accommodate all the wait-to-board passengers; and (b) at the same time, some 

of the wait-to-board passengers are sensitive to congestion in a train (and/or 

chances of having a seat) and hence give up the chance to board, despite 

availability of standing room. Consequently, at least a headway is added to the 

waiting time that each of those fail-to-board passengers spend in both situations.  

Besides, it is arguable that every wait-to-board passenger on the platform may 

have the same chance of boarding. This statement could be reasonable, but 

mainly in uncongested conditions, as passengers are more likely to mingle and 

those who arrive later could wait by any carriage door. Nonetheless, the first-

come-first-serve rule should be more appropriate given that passengers queue 

by each door of the carriages, especially in congested situation.  

For the waiting time specification, early models, such as De Cea and Fernández 

(1993), considered it to be monotonically increasing as the passenger volume 
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increases, which was then specified as a congestion cost function relating to the 

notion of effective frequency (e.g. Wu et al., 1994; and Cominetti and Correa, 

2001). An effective frequency was used to characterise an attractive line or 

common lines. That is, if the passengers’ chances of encountering a full train rise, 

the effective frequency of the relevant service should decrease, and thus the 

waiting time for that train shall become longer. However, the congestion cost 

function does not actually restrain train capacities from being overloaded by 

excess travel demand. Later models then (e.g. Lam et al., 1999; Nguyen et al., 

2001; Lam et al., 2002; Hamdouch et al., 2004; Yin et al., 2004; and Hamdouch 

and Lawphongpanich, 2008; Teklu, 2008b) specified explicit constraints to 

impose restrictions on the excess passenger-traffic flows being assigned onto 

any route sections with limited capacities.  

Moreover, special attention to the probability of failing-to-board that affects the 

search for the shortest hyperpath was paid by researchers such as Kurauchi et 

al. (2003), Schmöcker et al. (2008) as well as Schmöcker and Bell (2009). The 

choice set of lines considered by passengers who fail to board may change in 

different time intervals, and it depends only on the current condition, which is 

known as Markov property and also discussed by Teklu et al. (2007). Fail-to-

board passengers who keep waiting on the same platform obey with the Markov 

properties. Whether or not they would be able to board a train that has currently 

arrived is not related to where they started their journey or how long they have 

been waiting. The boarding and alighting demand at the current platform are 

necessary, which also requires the knowledge of the traffic volumes at the 

upstream stops each associates with a timestamp. Consequently, the waiting 

time at a given platform depends on the variations of traffic volume over time or 

time intervals, and the passengers in the train and that on the platform would 

practically have a longer the waiting time.  

Another issue that may also impede passengers’ boarding is seat availability, 

which may influences passengers’ travel strategies and can be taken into account 

only in less- or un-congested circumstances; whereas, this is not the case when 

the network is suffering from high congestion during periods of peak demand of 

rush-hour traffic. Because in highly congested conditions whether a passenger 

could be seated on-board would not be the main concern. Instead, whether there 

is a chance for passengers to get aboard would be valued, given that the vehicle 
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still has capacity of extra boarding demand and that the on-board crowding does 

not outstrip passengers’ tolerance limits to the congestion.  

 

2.3.3 Travelling and on-board crowdedness 

If a chosen line remains crowded for several trains (i.e. runs), some fail-to-board 

passengers would rather keep waiting for a following train, notwithstanding an 

extra waiting time. A less crowded train/line may be more attractive to some 

passengers, even though it tends to give rise to a longer total journey time 

compared to its alternatives (cf. Leurent, 2010). That is to say, the passengers’ 

perceptions to their on-board travel (or their perceived on-board travel cost) 

may not be as bad as the actual travel cost. In this regard, the passengers’ 

aversion to congestion or overcrowding is involved in modelling their choice 

decisions.  

Furthermore, passengers who stand and those who are seated on board may 

experience different levels of travel discomforts (cf. Tian et al., 2007; Sumalee et 

al., 2009; Leurent, 2010; Hamdouch et al., 2011; and Schmöcker et al., 2011). As 

such, the fact that some passengers are sensitive to seats would also lead to 

different specifications of the on-board travelling cost, thus affecting the 

formation of passengers’ travel strategies. While a train is crowded, the 

discomfort level is assumed to be much higher for the standing-on-board 

passengers compared to the seated ones. It may be assumed that passengers 

being seated would be less influenced by the on-board crowdedness. In other 

words, they would be likely to have similar level of discomfort as being travelling 

under less congested (or even uncongested) conditions. On the other hand, the 

degrees of the seat-sensitive passengers’ incentives of pursuing vacant seats 

would differ, which can hardly be quantified. Before passengers board a train, 

the key influencing factors may involve the total journey distance as well as the 

seat occupancy. For the passengers who have been standing and travelling on-

board, the elapsed time of standing and the remaining distance for their journeys 

would be likely to become more predominant.  

What is more, suppose that a train is approaching or has already arrived at a 

platform at either an origin or an interchange station. Passengers who have been 

waiting on the platform will start boarding as soon as the on-board passengers 

who intend to alight are all cleared. The wait-to-board passengers may estimate 
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how much boarding capacity there could be available by then. Those who are 

seat-sensitive may also consider whether there is a chance of being seated 

and/or even calculate the chance of obtaining a seat at a subsequent station. 

Thus, their decisions will be made as to whether to board or still keep waiting on 

the current platform for next coming trains. At the same time, the standing-on-

board passengers would also decide whether to alight and transfer at the current 

station, or travel to any of the following alternative interchange stations. In 

practice, decisions on whether to board the arriving train of an attractive line, 

keep waiting for the next run of the same line, or transfer to any of alternative 

services (or even transport modes), would largely be dependent upon what 

information (especially, the real-time information) and where/when such 

information would be provided in the passenger’s decision-making process (cf. 

Nökel and Wekeck, 2009).  

 

2.4 Discussions 

2.4.1 Route choice and journey time variability 

Evidently, from the above, the passengers do not necessarily make a journey by 

the shortest/fastest routes or with least interchanges in order to obtain a 

maximum savings on their journey times. In some situations, an alternative route 

may be more attractive and preferred by different individuals for various 

reasons. Still, as also mentioned above, the passengers’ journey cost may be just 

referred to their total journey time; and in practice, the journey time variability 

is often considered to weigh up the reliability of the transit service. It can also 

exert effect on passengers’ travel strategies based on their different perceptions 

to the system performance.  

Unlike car traffic on road networks, the underground trains run on fixed tracks 

and are each associated with a timetable. Ideally, timestamps of arrival and 

departure of trains at a platform are strictly scheduled. Passengers’ on-board 

travel time could be expected as ascertainable, conditional on the presence of 

punctuality of the trains running on a passenger’s chosen path. Depending on 

information of the passenger’s access and egress, his/her journey time could 

thus be well predictable, provided the absence of any incidents. However, for the 

most part, this may not be the case in practice, given varied attributes of the 
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transit network as well as uncertainties, which potentially affect passengers’ 

journey times, such as over-crowding, delay of transit services. While the level of 

service degrades in view of their comfort and/or preferences, their choice 

behaviour would be subject to a higher degree of riskiness of having an uncertain 

journey time. In particular, passenger-traffic congestion occurs frequently with 

surging travel demand, not only on-board, but also on platforms and 

passageways within transit stations, especially during rush hours. It can have 

significant impacts on service regularity as well as reliability, which in turn 

influence passengers’ travel behaviour. Also insufficient service capacity (e.g. 

vehicle capacity or seat availability) may cause passengers’ boarding failures, 

thereby delaying their journey times. Moreover, when a train breaks down 

and/or is suspended at a certain platform (say due to train system fault), an on-

board passenger could possibly choose to keep waiting, interchange to any 

alternative line serving the same station/platform, or even egress and go for any 

other modes. Nevertheless, if there were not any alternative service available, 

the passenger would have to wait until the fault is cleared, or transfer to the next 

coming train.  

On station-to-station level, every passenger has his/her own expected journey 

time from the origin to the destination, and the range of this expectation and 

itself depends on various travel information the passenger could obtain. 

Meanwhile, they may value much on the reliability of the services between which 

they are going to choose, in association with the variations of journey times that 

they may experience on their chosen paths. In high frequency service, a delay of 

a few seconds may result in a series of delays of the runs that follow, which in 

turn leads to reallocation of passenger distributions.  

What’s more, travel patterns vary potentially due to the travellers’ responses 

towards the reliability of the transit service, especially as for those commuters 

who could gain experience of the network performance in terms of day-to-day 

variations in their travel times. Therefore, a good understanding of such different 

travel patterns under various backgrounds is essential to the efficient public 

transport planning, operations and travel demand management.  

The journey time variability is measured based on many factors, such as 

individuals’ preferred choices of departure times in view of their desired arrival 

times and the deviations between expected and actual journey times. The actual 
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journey time experienced by a passenger may be very much different from that 

was expected or desired, with the average difference being concerned by both 

the passenger as well as transport operators. Transport for London (TfL) defines 

the excess journey time as “the average time added to journeys by delays, 

crowding and queuing, over and above the nominal scheduled journey time” 

(Transport for London, 2010). It could be also drawn to a wider extent on 

considering that the passenger completes his/her journey faster than expected 

or desired. In the latter case, a redundant amount of time is unnecessarily 

budgeted, which is supposed to be minimised. And this is also the excess journey 

time defined in the former case. In practice, this extra budgeted time is observed 

from the departure time actually chosen by passengers who may allocate a 

considerable amount of ‘buffer’ time in order to flatten the journey time 

variability caused by any uncertainties. It was defined by Uniman (2009) as 

‘reliability buffer time’, namely, the difference between the observed travel times 

of the 95th-percentile and the median for an given O-D over certain period of time 

under normal conditions (Uniman et al., 2010).  

 

2.4.2 Data for route choices 

To gain an understanding of passengers’ route choice behaviour, the data for 

their actual choices is vital. At an aggregate level, the passengers’ average route 

choices – or rather, average proportions of the entire passenger-traffic flowing 

over the multi-route O-D – among the alternative routes could be estimated. We 

can gain this knowledge via random sampling of a group of individuals, from 

whose actual route choices a statistical result could be generalised to the overall 

passenger population. Usually, such data is acquired through surveys, such as 

online and paper-based questionnaires, as well as interviews. Besides, we may 

also draw support from mobile technology, such as global positioning system 

(GPS) devices and take full advantage of a range of applications developed for 

smartphones. Such tracking techniques are expected to effectively save on the 

time and cost of the traditional survey approaches, as well as to improve the scale 

and accuracy of the raw data.  

In practice, however, all the above-mentioned methods can still be quite 

expensive and time-consuming to attain sizable, representative data samples. 

For one thing, many of the travellers who receive the information requests might 
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be unavailable for participation in the surveys. For another, most people may 

express concerns about issues such as their privacy and the security of the real-

time personal data residing online, hence less willingness to be involved with 

passive monitoring programmes using any of the ‘privacy-surrendering’ means. 

Moreover, some technical restrictions would just directly prevent passengers 

from using the mobile/wireless devices. For instance, the absence of mobile 

coverage on the LU network renders the passengers being unable to use their 

mobile phones.9 Under these circumstances, the sample size of the data collected 

may tend to be limited. Otherwise, acquisition of an adequate data sample might 

necessitate a high cost of carrying out numerous repeated surveys.  

With the widespread implementations of the AFC systems in the past decade, the 

ever-increasing popularity of smart cards among public-transport users enables 

a wealth of individual travel data to be conveniently available (cf. Pelletier et al., 

2011), which is also referred to as smart-card data. This has drastically reduced 

the need and expenditure for conducting the manual surveys, but also extended 

our ability to gather miscellaneous travel information of passengers (cf. Bagchi 

and White, 2005).  

When travelling by underground rail services, smartcard users are required to 

touch their smart cards on card readers at the start and end stations respectively 

of their journeys, in order for fares to be properly deducted. In addition, when a 

passenger enters and exists a station by using a smart card, a card reader at a 

ticket gate processes the information of locations and timestamps at which the 

passenger’s entry and exit occurs. Therewith the smart-card system holds vast 

quantities of journey records for all its anonymous users travelling within the 

system, such as ticket types and fare purchases, as well as total amounts of 

entries/exits at each station. What is more, a sufficiently large sample of those 

smart-card users’ journey times can also be easily obtained from calculating the 

differences of their time-stamped ‘touch-in-entry’ (at the origin station) and 

‘touch-out-exit’ (at the destination station).  

                                                        

9 By far, mobile phone connectivity is not available on the LU network. Although the Wireless 

Fidelity (Wi-Fi) signal has been provided lately to about half of all the LU stations, it is not 

or has only been conditionally free for use.  
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So far, there have been many studies exploring the potentials of using the smart-

card data. Pelletier et al. (2011) conducted a comprehensive overview of various 

aspects of its applications to public transport systems. And meanwhile, specific 

examples have been demonstrated on a number of different AFC systems all 

around the world, such as the Chicago Card and Chicago Card Plus (replaced by 

Ventra Card since July 2014) in Chicago (e.g. Utsunomiya et al., 2006; and Zhao 

et al., 2007); the EZ-Link card in Singapore (e.g. Chakirov and Erath, 2011; and 

Lee et al., 2012); the Oyster smart-card in London (e.g. Chan, 2007; Zhao et al., 

2007; Wilson et al., 2009; Uniman et al., 2010; and Kurauchi et al., 2012); the 

Passe-Partout PLUS in Gatineau (e.g. Morency et al., 2007; and Trépanier et al., 

2009); and the ‘Tarjeta Bip!’ in Santiago (e.g. Munizaga and Palma, 2012); and 

the T-money Card in Seoul (e.g. Park et al., 2008; and Jang, 2010); to name but a 

few. Among all the above-mentioned, focuses were centred mostly on estimation 

of the O-D travel demand matrix, metrics for transit service and journey time 

reliability, as well as interchange patterns of passengers transferring between 

different transit modes (e.g. between the underground and buses). In the cases 

of EZ-Link (e.g. Chakirov and Erath, 2011), as well as the T-money in Seoul (e.g. 

Jang, 2010), fare is charged on a distance basis. In that way, the transfer data for 

passengers using multiple modes is readily available. However, those researches 

investigated only the O-D pairs that are connected by a single/direct line or a 

single route.  

An important issue that has been rarely addressed by the existing literatures is 

that the possible interchanges passengers may make during their journeys. This 

is mainly due to the unavailability of the data. The smart-card scheme for the 

underground system has practical limitations on data completeness. Generally, 

it does not allow for either tracking the passengers’ movements during the 

course of their journeys, or recording their within-station interchanges, if any. 

Although the total of entries is counted at the gateline, the entry-flow splits 

towards different passageways. The passenger-traffic on any of the passageways 

is not available in the smart-card data. Likewise, the count of exits does not 

inform that from which lines the passengers travelled. Moreover, when a certain 

pair of O-D stations afford multiple alternative routes, a passenger’s journey 

history recorded by the smart-card system would not give details on which 

specific route he/she has actually used for travelling between the O-D. In this 
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situation, the smart-card data could not inform each individual passengers’ route 

choice.  

It is also arguable that such information could actually be gathered by drawing 

support from other technological means in addition to the smart-card scheme. In 

practice, however, it would entail levering in extra investment into the system, 

with respect to infrastructure, equipment, maintenance, as well as the delivery 

of those technologies. Even so, passengers’ socio-demographic characteristics 

may still not be captured, but additional data from traditional surveys or other 

information systems should be necessary to supplement and boost both practical 

and theoretical research (cf. White et al., 2010).  

By and large, the shortage of sufficient and reliable data presents a major 

obstacle to further progress in studying the patterns of passenger-traffic flow as 

well as the passengers’ travel behaviour.  

 

2.5 Summary and conclusions 

This chapter has presented various aspects of the behavioural processes of 

passengers’ route choice on an underground system, with the emphases being 

placed on their choice behaviours at different journey segments.  

As elaborated above, a route choice model simulates passengers’ responses to 

different network attributes regarding the implementation of transit assignment 

models. Technically, it generates, at each decision point for passengers boarding 

and/or transferring, either deterministic or stochastic choices as to how the 

passengers would complete the rest of their journeys. The deterministic method 

is popular among frequency-based transit assignment models that are usually 

built on the formulation of the ‘shortest hyperpath’ (Nguyen and Pallottino, 1988) 

or, equivalently, the ‘optimal strategy’ (Spiess and Florian, 1989). Typical models 

consider passengers’ choice probability of taking a line/train to be the ratio of its 

service frequency to the combined frequency of all viable alternatives. This is a 

fixed measure by which the passenger flow is apportioned on uncongested 
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networks. As for more sophisticated stochastic cases10, such as Lam et al. (1999), 

Nielsen (2000) and Sumalee et al. (2009), additional variables are taken into 

account such that the assignment of passenger-traffic has been further modelled 

with uncertainties, including level of discomfort, on-board crowding, seat 

availability and service reliability, etc., which might influence passengers’ 

perceptions in their route choices. However, these types of models are mostly 

looking at the route choices at an aggregate level.  

It has been pointed out that different individual passengers have different 

perceptions as to how the transit system works, hence different sensitivities to 

the performance of the transit service, which in turn lead to their different route 

choices. It will be of importance and more interest to us to gain a better 

understanding of why one of alternative routes would be chosen by individual 

passengers and how they would react to changes of different attributes (about 

e.g. the walking, waiting, service reliability) of the transit network. As Nökel and 

Wekeck (2009) pointed out, there could hardly be a bundle of behavioural 

assumptions that perfectly represents the passengers’ route choice behaviours. 

Therefore, a random utility model should be more suitable for the representation 

of the disutility that different passengers would have for different alternative 

routes. Micro-simulation approaches and/or discrete choice models11 shall be 

necessary to accommodate such personal features that vary among individuals.  

Although a variety of discrete choice models have been also studied by looking 

into contributing factors, to implement transit assignment models, the 

coefficients to those attributes were either simulated/calibrated (e.g. Nielsen, 

2000) or estimated relying on survey data (e.g. Cats, 2011; and Cats et al., 2011). 

Therefore, the main limitation of this technique is still the data availability. This 

thus leads to the crux of our problem, that is, data that shows each individual 

passenger’s actual route choice is not easily accessible, which however may 

always be collected from surveys.  

To overcome these issues, we explore new solutions in the following chapters.  

The fundamentals we have gained from the review of modelling passengers’ 

                                                        

10 Note that the modelling approaches based on the hyperpaths/strategies also serve as a way 

of describing stochastic route choices.  

11 The discrete choice modelling approaches are discussed in more detail in Chapter 6.  
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route choices on public transport, along with all the principles being presented, 

will greatly contribute to our understanding of how the choice-making process 

is like and how we may consider route choice models work. In addition, this 

would also provide guidance for us to derive the expected journey time of a travel 

route in the following chapter.  
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Chapter 3  

Bayesian inference of probabilistic route choices 

 

3.1 Introduction 

As stated from Section 2.4.2, the modelling of passengers’ route choice 

behaviour at the individual level would be largely subject to the availability of 

route-choice data gathered for each individual passenger. Rather than solely 

relying on the traditional survey methods for the collection of such data, this 

chapter offers a completely different standpoint of representing and learning the 

individuals’ route choices for any given pair of multi-route O-D. That is, in this 

chapter, we aim to explore possibility of gaining knowledge about the route 

choices of passengers from interrogating data held in some databases1 that we 

already have or are easily obtainable, especially the smart-card data.  

The smart-card database for the underground system, as we mentioned earlier, 

is capable of supplying abundant data samples of individual passengers’ journey 

times on a gateline-to-gateline basis and across all operating periods. In the case 

that a pair of O-D stations is served by a single transit line, where there could be 

one sensible route, the journey time information extracted from the smart-card 

data can be an ideal aid for examining the service performance of this O-D (cf. 

Section 2.4.1). As a significant measure of the level of service, the journey time 

variability, in turn, should then also characterise the only route between that O-

D. With regard to other cases where alternative routes exist, the passengers’ 

journey times would be directly affected by attributes of the particular route on 

which they choose to travel, such as the timetable, service delay and pedestrian 

facilities within stations. For the most part, such attributes shall differ between 

those alternative routes (cf. Train, 2009, p.21). In this regard, any sample data of 

passengers’ journey times of a certain route would presumably exhibit a pattern, 

                                                        

1 In addition to the smart-card data, some ancillary sources of information are also needed; and 

they are specified at appropriate stages in the subsequent sections of this chapter. The real 

data for practical use (on the LU system) is detailed in Chapter 4.  
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which differentiates that route from its alternatives. This point of view 

encourages us to contemplate potential use of the journey time data, in an 

attempt to understand the passengers’ route choices, despite the absence of this 

route-choice information in the observed records.  

Now consider a pair of O-D stations connected by more than one transit line, 

where we are fully aware of the existence of all the available alternative routes. 

Suppose that we have already managed to get hold of a huge data sample of 

individual passengers’ journey times from smart-card records, with none 

detailing their travel routes. The following two research questions could be 

brought forward:  

(I) Would we be able to find a way of relating a passenger’s journey time 

from the available data to the ‘unknown’ route that has been actually 

used by the passenger, and/or what relationship might there 

potentially be between the two classes?  

(II) Would it be possible for us to find out every individual’s actual route 

choice according to his/her journey time (or by whatever means is 

appropriate)?  

As stated in Chapter 1, the actual chosen route of each individual in this context 

could only be treated as being unobservable, but may still be known up to a 

choice probability. On this account, we shall have to take a theoretical 

consideration of the individual passengers’ probabilistic route choices in order 

to address question (I) posed above. That is to say, everyone’s route choice is 

turned into a probabilistic variable, which must therefore be investigated and 

learnt in a probability space. As such, we would seek only the choice probabilities 

that a passenger might have placed on each of the alternative routes.  

As aforementioned, an observation that a passenger has spent a certain amount 

of journey time must be rooted in some attributes peculiar to his/her only 

chosen route. However, if we are given only the observed journey time, there can 

be multiple hypotheses in respect of the passenger’s route-choice decision in the 

real world. Being inspired by the concept of Bayesian networks (Heckerman, 

1997), we may anticipate, from a Bayesian perspective, a logical and causal 

connection between the passenger’s journey time and his/her route choice in 

terms of a conditional choice probability. Such a probabilistic term is supposed 

to describe (and measure) how likely a passenger might have chosen any 
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alternative route, on condition that we have already known his/her journey time. 

On this basis, we can then proceed to challenge whether or not it could afford an 

affirmative answer to question (I). Further, in response to question (II), an 

individual’s route choice seems impossible to be explicitly identified in this 

probabilistic setting. Still, it would possibly be understood from statistical 

inference. An obvious initial inference to make might be that: a passenger must 

have chosen the route that is estimated as having the highest such choice 

probability among all the alternatives.  

It is also worth noting that, with the choice probabilities for all the individual 

passengers, the average probability of any route being chosen can then be 

estimated accordingly within the passenger population. Nevertheless, to what 

extent we could draw such kind of conclusions, the focal issue will depend on 

whether and/or how we would be able to work out those conditional choice 

probabilities.  

Overall, this chapter aims at building on Bayesian framework with an approach 

to finding out, on any given pair of multi-route O-D stations, each individual’s 

probabilistic route choices, as well as passenger-flow distribution among the 

different alternative routes. The smart-card data records, from which samples of 

passengers’ journey times, would serve as the prerequisite for the estimation of 

their route-choice probabilities.2 Much of the work that had been accomplished 

by Fu (2012a) and Fu et al. (2014) paves the way for this whole chapter that 

contributes a refined, and greater, elaboration.  

The rest of this chapter is arranged as follows. Section 3.2 gives a detailed 

description of the probability space wherein the problem of passengers’ 

probabilistic route choices is defined. In the subsequent sections, a possible 

solution to this problem is provided, with a probe into the finite mixture model. 

Section 3.3 presents the formulation, data input as well as estimation method of 

the suggested model. In Section 3.4, a set of validation criteria are proposed in 

order to understand the model estimates in terms of the hidden variables of the 

route choices. Then, Section 3.5 illuminates the use of the estimates of each 

individual’s route-choice probabilities to infer the passenger-traffic distribution 

                                                        

2 The passengers referred hereinafter are all assumed to be smart-card users.  
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among different alternative routes. A summary of limitations of this modelling 

approach is presented in Section 3.6 for a conclusion of this chapter.  

 

3.2 Problem description 

The following notation listed below is used for facilitating a mathematical 

formulation of the probabilistic route-choice problem at issue. 

 

Notation:  

o   origin station of a give O-D pair 

d   destination station of a give O-D pair 

2   set of the natural numbers that are greater than or equal to 2  

r   travel route 

RN   total number of travel routes (connecting o  to d ); 2RN   

R   set of all alternative travel routes (connecting o  to d ) 

1   set of the natural numbers that are greater than or equal to 1  

q   individual passenger (travelling from o  to d ) 

QN   total number of passengers (travelling from o  to d ); 1QN   

Q   statistical population of passengers (travelling from o  to d ) 

qR   personal route-choice set of q  

, q r   possible outcome that q  has chosen r  to make a single journey 

q   set of all possibilities of q  

qC   set of all elementary events within the sigma-field given q  

qrchoice  event that q  chose r  to make a single journey 

Pr( )  probability measure 

q   journey time of q  

q
OBS  journey time observation (OBS) of q  

, , qq r  OBS  possible outcome that q  has chosen r  to make a single journey, 
with a journey time of q

OBS  

( )

q

  set of all possible route choices of q , given q
OBS  

 (Continued) 
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Notation: (Continued.) 

( )

qC   set of all elementary events of route choices of q , given q
OBS   

( )

qrchoice   event that q  chose r  to make a single journey and spent a 
journey time of q

OBS   

qδ   elementary event that q  spent a journey time of q
OBS  

( )   set of all possible route choices of Q  , given q
OBS  q  

( )C   set of all elementary events of route choices of Q , given q
OBS

q  

 

Now, let us take a look at a simple underground network, which is outlined in 

Figure 3.1 below.  

 

 Route 1

… … … 

 Route NRR

do

(Route r)

R
 

Figure 3.1  A single O-D network with multiple travel routes. 

 

Basically, our focus here is only on a single pair of underground stations of origin 

and destination, denoted by o  and d , respectively. As can be seen from the 

sketch above, there are supposed to be a total of RN  travel routes, where 

2RN  , with 2  denoting a set of the natural numbers that are greater than 

or equal to 2 . All these routes are deemed rational and numbered arbitrarily 

from 1  to RN , which collectively form a finite set of alternatives available for 

every passenger travelling from o  to d . We let R  denote this universal route-

choice set and define it as : { :  1, , }RR r r N   , with r  denoting a travel route.  

Suppose that the overall passenger traffic (i.e. the travel demand) between this 

-o d  amounts to QN  in a certain time period, where QN  is a positive integer (i.e.  

1QN  ). We use the symbol q  to denote an individual passenger, and number 
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all the individuals arbitrarily from 1  through QN . Denote by Q  the statistical 

population of passengers; and we define Q  to consist of all the QN  individuals 

by setting : { :  1, , }QQ q q N   .  

It is highly likely that prior to commencing a journey every passenger, say q , 

would customise R  and have his/her own personal route-choice set (cf. Ben-

Akiva and Boccara, 1995). Let qR  denote the customised route-choice set of q . 

Apparently, it can be any of the non-empty subsets of all those alternative routes. 

Namely, 2R

qR  { }    q Q   and |  |  q RR N , where 2R  is the power set of R . As 

such, qR  may also refer to a set of hyperpaths, from which passenger q  chooses 

the optimal (cf. Schmöcker et al., 2013). Yet, such individualised choice set can 

hardly be fully understood or predicted by anyone except passenger q  

himself/herself. Hence, within the scope of this chapter (and also the thesis), we 

postulate that  

qR R .   (3-1) 

It is presumed by this identity that every individual would be taking into account 

the full set of available alternatives whilst making his/her route-choice decision.  

Looking at a real underground network (e.g. the LU), mostly, there are actually 

limited sensible routes for each O-D pair. In view of this fact, the presumption of 

identity (3-1) would plausibly be the case, especially for non-commuters (e.g. 

tourists) who are not familiar with the transit services on the network. However, 

a commuter passenger may regularly take the route that he/she is accustomed 

to, and would barely use other alternatives unless necessary (for instance, as 

disruptions occur on the frequently-used route). In this regard, there would be a 

risk that identity (3-1) might be inappropriate, because in reality qR  might be 

merely a unit set, particularly if q  is a frequent traveller between the given O-D. 

To some extent, such risk could be diminished as we contextualise passengers’ 

route choices probabilistically.  

Since every passenger’s actual route choice is not known to us, we may say that 

a passenger might choose any one of the alternative routes. As a presupposition, 

identity (3-1) then allows us to enumerate a set of all possible outcomes of the 

route-choice decision made by the passenger. For each q , we let q  denote the 

set of all his/her possible route choices; and it is defined as  

 : , :    q q r r R     ,   (3-2) 
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where the 2-tuple, , q r  , is defined to be a possible outcome that passenger q  

has chosen route r  from R . Clearly,  | | q RN  . This equality implies that any of 

the RN  alternative routes might have been actually chosen by q .  

In view of definition (3-2), a sigma-field over q  could simply be defined up to 

2 q
, which includes all events that might potentially be drawn to our attention.3 

With regard to each of the individual passengers, of particular interest to us in 

the practice is a set of elementary events, which we represent by a symbol, qC .4 

It is actually a subset of 2 q
, defined as  

  :  :  q qrC choice r R  ,   (3-3) 

where we let qrchoice  denote an elementary event corresponding to a possible 

outcome, that is, : { , }qrchoice q r    q Q  , r R  . As such, the occurrence of  

qrchoice  should be described by a probability function, which we represent by 

Pr( )qrchoice ; and of course, 0 Pr( ) 1qrchoice  .  

Since a passenger chooses only one route, the following condition must hold:  

Pr( ) Pr( ) 1
q

qr qr

r RC

choice choice


  .  (3-4) 

Moreover, we use the symbol q  to represent the journey time of q  travelling 

from o  to d , with q
OBS  denoting the corresponding real-valued observation. 

Assuming that q  has made only this one single journey, as urged by question (I) 

posed in Section 3.1 (see p.32), we shall further consider a 3-tuple, which is 

expressed in the form of , , qq r   OBS  or , , qq r  OBS .5 This is thus defined to be a 

possible outcome that passenger q  has chosen route r , and that he/she has 

spent a journey time of q
OBS  to complete the journey.  

                                                        

3  The definition of the sigma-field, 2 q


, at this point, is to ensure the completeness of the 

definition and generality of the probability space under discussion. It does not affect the 

following descriptions in this thesis.  

4 Besides 
q

C , in some cases, researchers may also be interested in joint probabilities of two or 

more (elementary) events occurring at the same time, such as when a certain number of 

passengers, as experiment participants, are travelling together between a given O-D pair.  

5 , , , ,
q q

q r q r      
OBS OBS

.  
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Let , , qq r  OBS  substitute for , q r   of q . In this way, we obtain a parallel set of 

all possible outcomes of the route choice made by q , which we represent by the 

symbol ( )

q

 . It is defined as follows:  

 ( ) : , , :    q qq r r R     OBS .   (3-5) 

Likewise, a parallel event set is formed as well, denoted by ( )

qC  , concerning q ’s 

route choices with an actual observation of his/her journey time. We define it by 

setting  

 ( ) ( ): :    q qrC choice r R   ,   (3-6) 

where ( )

qrchoice   is defined to be an elementary event corresponding to a single 

possible outcome included in ( )

q

 , that is, ( ) : { , , }qr qchoice q r   OBS .  

Given ( )

qC  , we also have  

( )Pr( ) 1qr

r R

choice 



 .   (3-7) 

It is noted that ( )Pr( )qrchoice   is in essence a conditional probability function, 

because passenger q ’s journey time, q
OBS , has been already known. Still, his/her 

actual route choice is not observable. In this sense, we may only speculate on the 

passenger’s route choice in the event of his/her journey time being observed. To 

elucidate this point, we may as well consider the observation of passenger q ’s 

journey time as an independent event, which we represent by { }q qδ
OBS . From 

this, we acquire  

( )Pr( ) Pr( | )qr qr qchoice choice  δ .   (3-8) 

As such, equation (3-7) is adapted straightforwardly as follows:  

Pr( | ) 1qr q

r R

choice


 δ ;   (3-9) 

and this new term, Pr( | )qr qchoice δ , should be interpreted as the probability that 

passenger q  might have chosen route r , given the evidence that his/her journey 

time is q
OBS . It may serve as an acceptable answer to question (I) posed in the 

previous section thus.  

In Bayesian statistics, Pr( | )qr qchoice δ  is termed as a posterior probability of 

passenger q ’s route choice, in that it would only be learnt after taking into 

account his/her journey time observation. We would expect to work out this 
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conditional choice probability for all alternative routes within R . Furthermore, 

a certain route r R  could be deemed to be the most probable (rather than the 

actual) choice of q  if the following statements would be true:  

( ) ( )

arg max Pr( | )

:    arg max Pr( | )

 ;

  .

qr q
r R

qr q qr q
r R

choice

choice C r choice 










   


δ

δ
  (3-10) 

But to approach an answer to question (II) posed in Section 3.1 (see p.32), it 

would fundamentally depend on whether the conditions (3-10) stated above 

could be met. It must be noted, however, that r  may not be the actual route 

choice – even if Pr( | ) max Pr( | )q qr qqr r R
choice choice


δ δ .  

In conformity with Bayes’ theorem (see Laplace, 1995, pp.135-142), the 

following formula is fully acknowledged:  

Pr( ) Pr( | )
Pr( | )

Pr( )

qr q qr

qr q

q

choice choice
choice 

δ
δ

δ
,  (3-11) 

which certainly ensures that equation (3-9) holds true, in that Pr( )qδ , the 

denominator on the right-hand side of formula (3-11), remains the same for 

every alternative route. In addition, this term indicates that the probability that 

the journey time of q  is q
OBS , irrespective of occurrence of any other events. 

According to the law of total probability (see Zwillinger and Kokoska, 1999, 

p.31), Pr( )qδ  can be factored as  

Pr( ) Pr( ) Pr( | )q qr q qr

r R

choice choice


δ δ .  (3-12) 

That is, it is also equivalent to the sum of the corresponding numerator over all 

routes.  

As regards the numerator, Pr( )qrchoice  is termed a prior probability in this 

context. As mentioned earlier, this term may be interpreted as the probability 

that q  might have chosen r . From the perspective of discrete choice modelling, 

it may be perceived as the personal propensity of q  to choose r  from qR . In 

order to learn or predict such a preference, we commonly resort to the methods 

of discrete choice analysis, which, however, require data of the actual or stated 

route choice having been made by q  (cf. Section 2.5). In this respect, we have 

made it quite plain that when such data is not available, the discrete choice 

models would not be manageable. Besides, Pr( | )q qrchoiceδ  is correspondingly 
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termed a likelihood function, which indicates the likelihood that qδ  would take 

place, on condition that the event, qrchoice , has already occurred. Since Pr( )qδ

  q Q   is positive, the posterior probability, Pr( | )qr qchoice δ , should be directly 

proportional to the product of the prior probability and the likelihood function 

below:  

Pr( | ) Pr( )Pr( | )qr q qr q qrchoice choice choiceδ δ .  

It is clear that if there exists a route r , in which case the product – the numerator 

of the fraction in formula (3-11) – can be maximised, it also maximises the 

posterior probability of our interest. However, neither Pr( )qrchoice  nor 

Pr( | )q qrchoiceδ  is understandable per se in light of information of only one 

individual. On this account, they would have to be learnt from the frequentist 

view based on data at an aggregate level.  

As ( )

q

  gathers all possible route choices of q , a sample space of all such 

possibilities for the population, Q , on the given network of -o d  can be 

formulated upon ( )

qq Q




 . We represent this sample space by ( ) , which is 

defined as  

 ( ) : , , : ,  qq r q Q r R      OBS .  (3-13) 

This is based on an assumption that each passenger has completed only one 

single journey. 6  In reality, different passengers might have chosen the same 

route and happened to have the same journey time. It should be noted that 

, , qq r  OBS  q Q   under consideration is actually different from one passenger 

to another, in that each observation of q
OBS  is peculiar to q  and all individuals 

within Q  are assumed to be independent of one another.  

We let ( )C   denote a set of events for the pair of -o d . It is defined accordingly as  

 ( ) ( ): : ,  qrC choice q Q r R    .   (3-14) 

                                                        

6 It should be pointed out on this occasion that the practical data of observed journey time may 

be (unbalanced) panel data (e.g. the Oyster data), where one passenger may make a number 

of journeys between the same O-D at different periods. However, the mixture model (that 

will be described in Section 3.3) cannot deal with such panel characteristics. In that case, 

we can only assume that the route-choice decisions made by the same individual are 

independent over time; and every journey record is associated with a virtually ‘different’ 

individual.  
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Within the range of ( )C  , in practice, the prior probability Pr( )qrchoice  r R   

indicates an average probability that any individual passenger (drawn randomly 

from the whole passenger population Q ) might have used route r , regardless of 

his/her journey times. In other words, Pr( )qrchoice  could be perceived, and 

hence measured, as the proportion of passengers who have actually chosen r . 

As such, this can be understood as the relative frequency of counts of the 

passengers (or journeys) on route r  in the context of frequentist statistics. 

Meanwhile, the likelihood function Pr( | )q qrchoiceδ  q Q   should express a 

probability that the observed journey time of q  would have been q
OBS , given the 

fact that he/she actually chose r . Since every individual who chose r  is assumed 

to be identical, Pr( | )q qrchoiceδ  essentially becomes a probability distribution of 

the journey time distribution of the -thr  route.  

Now that the problem of passenger’s route choices has been being surveyed in a 

probabilistic context, the risk of identity (3-1) being a false statement would 

substantially diminishes, and that should be defused by differences in choice 

probabilities among available alternative routes. In general, we would expect 

that the passenger’s choice probability, measured between 0 and 1, shall 

approximate 1 for the chosen route, while those for other alternatives included 

in R  must be approaching, but not necessarily, 0 (cf. Section 6.3).  

Based on the probability space specified above, we are thus driven towards 

looking at the problem of passengers’ probabilistic route choices in terms of the 

conditional probability distribution of their journey times. Within the scope of 

Bayesian framework, we therefore introduce, in the next section, another 

formulation of the problem and more specifically, a mixture distribution of the 

passengers’ journey times.  

 

3.3 Finite mixture model for journey time distribution 

In this section, we follow up the example network of -o d  depicted in Figure 3.1 

(see p.35), and formulate the probabilistic route-choice problem from another 

angle, in order to explore a possible solution to this problem.  

Considering the availability of the RN  alternative routes, the whole passenger 

population Q  is presumably composed of RN  subpopulations, each of which 
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aggregates all the passengers in Q  who have chosen one of the alternative 

routes. We let rQ  denote the subpopulation of route r , and use r  to represent 

a random variable of journey time of passengers travelling through the -thr  

route. It is plausible that individual journeys completed by the passengers from 

rQ  must collectively yield a certain distribution of r  for each alternative route; 

and the mean values (and/or medians) for all those journey time variables 

1, ,
RN   would be likely to be statistically different from one route to another 

(though this presupposition would not necessarily be the case if the alternative 

routes are practically similar).  

Moreover, all the individual journeys based on 1, ,
RNQ Q , in the aggregate, 

would also contribute a distribution of journey times of the heterogeneous 

population as a whole. In fulfilment of definition of the mixture distribution, by 

reference to McLachlan and Peel (2000, pp.6-8) as well as Frühwirth-Schnatter 

(2006, pp.1-23), such a journey time distribution can be considered as a mixture 

of the journey time distributions of 1, ,
RN  , each being termed a component 

distribution of the mixture. More specifically, in our case, this is in essence a finite 

mixture distribution for a collection of a finite number of the journey time 

variables. Therewith it would also show, albeit not necessarily, the presence of 

heteroscedasticity among the RN  component distributions for the varied 

subpopulations 1, ,
RNQ Q .  

It is also noteworthy at this point that we may actually redefine the 

subpopulation as well as the corresponding variables, whereby we use a mixture 

distribution to describe other statistical events for a given O-D. For instance, in 

the context that passengers choose from among a set of hyperpaths (cf. Section 

2.2), a group of passengers travelling on the same hyperpath could then be 

referred to as a subpopulation. In this case, we shall consider passengers’ choices 

of alternative hyperpaths, instead of a single route described above. Similarly, 

we may also distinguish different classes of travellers, such as slower and faster 

walkers. Then a component distribution should correspond to a probability 

distribution of journey times of a specific passenger class.  

In the scope of this thesis, we consider only the general case introduced at the 

beginning of this section.   
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3.3.1 Model formulation 

Now we take a step further to inspect the posterior probability, Pr( | )qr qchoice δ , 

in the setting of the mixture distribution. In line with our specific target set in the 

previous section, the notation below is used to set the stage for the formulation 

of a finite mixture distribution of passengers’ journey times.  

 

Notation:  

rQ  subpopulation of all passengers who chose route r  

r  journey time of r  between o  and d  (referring to Figure 3.1) 

  journey time of travelling from o  to d  

( )m   probability density function7 of a mixture distribution of  8 

( )rc   probability density function of probability distribution of r , 
also referred to as component distribution associated with r   

r  mixture weight placed on ( )rc   

ω  RN -dimensional vector of all r  for ( )m   

rθ  vector of the distribution parameter(s) of ( )rc   

Θ  RN -dimensional vector of all rθ  for ( )m   

 

According to the common definition, a mixture distribution or, equivalently, a 

probabilistic mixture model (cf. McLachlan and Peel, 2000, p.6), is generally 

specified to be a weighted sum of probability density functions (PDFs) of all the 

relevant component distributions. In that sense, the mixture weight 9  that is 

placed on each of the components should indicate an average probability that 

any given value (or any observed value at random) within the whole statistical 

population may be sourced from that component distribution. For practical 

                                                        

7 In this thesis, the probability density function may also be treated as a probability mass function 

whereby the probability of the journey time taking any given value could be figured out.  

8 Note that   of the function, ( )m  , indicates a vector of the random variables, i.e. 

1
( )

R
N

   .  

9 In different literatures, it is also called mixing/mixture probabilities or proportions, etc. In this 

thesis, it is referred to as ‘mixture weight’, to avert any confusion. 
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applications, the most commonly used mixture is the finite mixture with the 

components all (being assumed to be) having the same distributional form, and 

hence the same estimator(s) for parameter(s). In the scope of this thesis, we only 

examine this class of mixture distributions, which is referred to as the standard 

mixture model, and later applied to data of passengers’ journey times.  

We use the symbol   to represent passengers’ journey time for travelling 

between -o d , and treat it as a random variable. Then we let ( )m   denote its PDF. 

It shall be a mixture of RN  components, each of which can be represented by 

( )rc   as the PDF of r . Further, denote by ω  a random vector of the mixture 

weights, that is, 1( , , )
RN  ω  with r r R   being a random variable of the 

mixture weight placed on the -thr  component PDF ( )rc  . Now a finite mixture 

model of passengers’ journey time could be represented in the form as follows:  

( | ) ( )r r

r R

m c  


ω ,   (3-15) 

where 0 1r   r R  , and  

1r

r R




 .   (3-16) 

It is noticeable that there appears to be a formal resemblance between the 

mixture PDF specified by formula (3-15) and the total probability presented as 

formula (3-12). In fact, there is a close correspondence in nature between the 

two formulas. Based on the premises stated in Section 3.2 that all passengers 

share the same route-choice set and that they choose their own travel routes 

independently, the passengers are deemed identical individuals. In that sense, 

any samples of q
OBS  drawn randomly from the passenger population are 

independent, and identically distributed. At the aggregate level, this assumption 

allows the term Pr( )qδ  to generalise the probability distribution of all the 

passengers’ journey times. As such, Pr( )qδ  does correspond to the mixture PDF 

( )m  .  

Moreover, ( )rc   is specific to route r , and it gives information about how likely 

it is that a certain journey time would have been experienced by any passenger 

who have actually chose the -thr  route. Thus, this PDF is, in effect, a general form 

of the likelihood function Pr( | )q qrchoiceδ  being presented as formula (3-12).  

Additionally, in our case, the mixture weight r  should, as explained above, refer 

to the probability that route r  would be chosen by any individual within the 
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whole passenger population Q . Therefore, for each individual, there is general 

equivalence between r  and qrchoice , as well as that between ω  and qC  in 

accordance with definition (3-3). For each alternative route, Pr( )qrchoice  also 

corresponds with the probability distribution of r , again based on the same 

underlying assumption. Besides, due to the constraint specified by equation 

(3-16), values taken by ω  should depend only on 1RN   of all the mixture 

weights.  

It must be pointed out that in the common specification of the mixture model, r  

is usually perceived as a real-valued quantity. As a matter of fact, it shall appear 

as a probability function. At this stage, we may also suppose that Pr( )qrchoice  

refer to a known quantity. Therefore, we could have  

Pr( | ) ( )q qr r qchoice c   δ
OBS ;   (3-17) 

while for all q Q ,  

Pr( )qr rchoice  ,   (3-18) 

In line with formula (3-11), the posterior probability of passenger q  choosing 

route r , given his/her journey time q
OBS , could be calculated by the formula as 

follows:  

( )
Pr( | )

( | )

r r q

qr q

q

c
choice

m

  

 





δ

ω

OBS

OBS
.  (3-19) 

Now if we could solve both the components and their mixture weights, each 

individual’s probabilistic route choices would be learnt in terms of the route-

choice probabilities that are contingent upon observing his/her journey time. A 

set of the choice probabilities for all alternative routes would then provide a 

feasible, complete answer to question (I) posted in Section 3.1 (see p.32) and 

would also lay a foundation for inferring, rather than determining, each 

passenger’s route choice.  

To figure out formula (3-19), we shall consider further a parametric equivalent 

of formula (3-15). Let Θ  denote a random vector of parameters for the mixture 

component distributions, i.e. 1( , , )
RN Θ θ θ , with rθ  r R   being specifically 

for ( )rc  . In this way, formula (3-15) is adapted to:  

( | , ) ( | )r r r

r R

m c  


ω Θ θ .   (3-20) 
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Note that rθ  is also a random vector with its dimension depending upon the total 

number of parameters of ( )rc  . It could be either a unit vector (in the case that 

( )rc   corresponds to a probability distribution with only one parameter) or a 

multi-dimensional case otherwise.  

 

3.3.2 Incomplete data 

In order for the model (3-20) to fit in a specific case, data is a matter of vital 

importance for learning its parameters. We use the following notation below for 

a mathematical representation of our available data as well as the posterior 

probabilities of individual’s route choices estimator upon the data.  

 

Notation:  

n   sample size of a given data set; 1  n   and   Qn N  

DES  set of desired (DES) data, which includes both of passengers’ 
route choices and their journey times 

( )qr   categorical variable of component-label, indicating the route 
choice of passenger q ; ( )qr R  

  set of all journey time observations for -o d  (see Figure 3.1) 

ˆ
r  estimate of mixture weight r  

ω̂   estimate of vector 1( , , )
RN  ω  

Θ̂  estimate of vector 1( , , )
RN Θ θ θ  

ˆ
rθ  estimate of vector rθ  

( )   posterior probability (density) function for passengers’ route 
choices given their journey times 

qr MIX  posterior probability that q  chose route r  (given q
OBS ), 

estimated from a mixture (MIX ) model 

Π
MIX  Rn N  matrix that enumerates all qr MIX  estimated from a 

mixture model on   

 

Consider a random sample of n  passengers, where 1  n   and   Qn N . Ideally, 

we would expect to get a set of data that shows every individual’s journey time 

as well as his/her actual chosen route. We can represent the desired data set by 
( ){ , : 1, , } q

q r q n     DES OBS , with ( )qr R  being a route-label for q , where 
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each data point, ( ), q

q r OBS , would correspond to a piece of record showing that 

q  has actually used the ( )-thqr  route, and his/her journey time is q
OBS . As per the 

individual route-labels, the full data sample can be directly divided into RN  sub-

data sets, whereby we would be able to derive an estimate of r  r R  . Also, 

for each of the alternative routes, rθ  could be learnt as well based on the sub-

data set associated with route r .  

In our case, however, since we are using the smart-card data, it only provides us 

with a data set of the passengers’ journey times. We may represent this data set 

by { : 1, , } q q n   OBS . It is hereby referred to as incomplete data due to its 

lack of the information on the route-labels (1) ( ){ , , }nr r , compared to DES . In 

this regard, we perceive   to be a sample of journey time observations each 

being attached with a hidden route-label (still denoted by ( )qr  1, ,q n   ). As 

such, ( )qr  turns into a random variable that follows a categorical distribution. It 

is noted that this distribution also corresponds to that of r  on the premise that 

all sampled individuals are identical to each other. On this basis, we use a 

function, denoted by ( )( | )qr  , to report each individual’s probabilistic route 

choices, or rather, probabilities of his/her route choice, conditional on his/her 

journey time. More specifically,  

( ) ( | )
( | , , )

( | , )

q r r rc
r r

m

 
 


 

θ
ω Θ

ω Θ
.   (3-21) 

As stated in Section 3.2, we are expecting to estimate a set of such posterior 

probabilities of every individual facing all alternative routes. For convenience, 

we use qr MIX  to represent the estimate of Pr( | )qr qchoice δ  1, ,q n  , r R  , 

where the superscript ‘MIX ’ stands for ‘mixture model’ and it indicates that the 

mixture distribution per se is actually a naive Bayes model 10  (cf. Lowd and 

Domingos, 2005). Therefore, we could have  

ˆˆ ( | )

ˆˆ( | , )

r r q r

qr

q

c

m

  


 






θ

ω Θ

OBS

MIX

OBS
,   (3-22) 

(see next page) 

                                                        

10 The mixture model here will be used as a basis for further updating of the estimator of each 
individual passenger’s posterior probabilities of route choices. The superscript used here 
also serves as an identifier that will distinguish the posterior probability estimates of a 
mixture model in this chapter from the updated ones in Chapter 5. 
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where 1
ˆ ˆ ˆ( , , )

RN  ω  and 1
ˆ ˆ ˆ( , , )

RN Θ θ θ , with ˆr  and ˆ rθ  r R   being the 

parameter estimates relating to ( )rc  . Note that  

1qr

r R




 MIX ,   (3-23) 

Based on the dataset,  , the set of posterior probability estimates can then be 

enumerated by 
Π
MIX  in the form of a Rn N  matrix:  

11 1

21 2

1

R

R

R

N

N

n nN

 

 

 



 
 
 
 
 
 
 

Π

MIX MIX

MIX MIX

MIX

MIX MIX

,   (3-24) 

Also, Π
MIX  would actually serve as the probability measure defined on ( )C   that 

has been defined in Section 3.2 (see definition (3-14), p.40). To gain knowledge 

of Π
MIX , our goal now is to seek the estimates, ω̂  and Θ̂ .  

 

3.3.3 Model estimation 

In this section, the notation listed below is used for a description of the general 

estimation procedure of the mixture model parameters.  

 

Notation:  

( )l  likelihood function 

r
KMS  set of journey time observations, which is produced by K-means 

(KMS) clustering and labelled r  

r
KMS  median (or centroid-value) of r

KMS  

( )qa r OBS  function that relates journey time observation q
OBS  to r

KMS  

( )    objective function to be minimised for K-means clustering 

r
KMS  standard deviation of set r

KMS  

r
KMS  proportion of sub-dataset r

KMS  in data set   

r   subpopulation mean of rQ  

r   subpopulation standard deviation of rQ  

μ   RN -dimensional vector containing all subpopulation means r  

σ   RN -dimensional vector containing all subpopulation standard 
deviations r  
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The Expectation-Maximisation (EM) algorithm introduced by Dempster et al. 

(1977) can be employed to estimate the parameters, ω  and Θ , of the mixture 

model as specified by formula (3-20). In practice, as elucidated by Redner and 

Walker (1984, p.197), this algorithm effectively provides an iterative procedure 

that searches for the most likely – or rather the optimal – values of the unknown 

distribution parameters with respect to a data sample. The acquisition of the 

estimates is predicated on the maximisation of its likelihood or log-likelihood 

function of which the value shall increase at every iteration.  

In our case, we let ( , ; )ω Θl  denote the likelihood function of the combined set 

of ω  and Θ , given the data set, Δ . The corresponding log-likelihood function of 

the mixture journey time distribution can be represented in the form (3-25) as 

follows:  

1 1

log ( , ; ) log ( | )
RNn

r r q r

q r

c  
 

 
   

 
 ω Θ θ

OBSl .  (3-25) 

Note that the iteration of the estimation may stop at either a local or the global 

maximum of log-likelihood function above.  

Generally, the EM algorithm handles the data sample in accord with the following 

steps (cf. McLachlan and Peel, 2000, pp.48-50):  

(i) Initialise both ω  and Θ , and label the initial values as ( )
ω

0  and ( )
Θ

0 , 

respectively, which will be entered into the next step.  

To be more specific, we shall be considering that ( ) ( )ω ω
E 0  and 

( ) ( )Θ Θ
E 0 , where the superscript ‘(E)’ on the symbols signifies that 

the values are used for step (ii) – referred to as ‘Expectation’ (or 

commonly, ‘E-step’).  

(ii) For the ‘Expectation’: calculate Π
MNB  according to formula (3-22), with 

the data of  , given that ( )ˆ ω ω
E  and ( )ˆ Θ Θ

E . The calculation result 

thus yields a conditional distribution of ( )qr .  

On this basis, the ‘Expectation’ function of the log-likelihood, which is 

formulated as (3-26) below, is computed; and it will be maximised in 

step (iii) – referred to as ‘Maximisation’ (or commonly, ‘M-step’):  

 
1 1

log log  | ) (
RNn

qr r r r

q r

c  
 

 θ
MNB .  (3-26) 
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(iii) For ‘Maximisation’: find optimal values of the parameters, labelled 
( ) ( )( , )ω Θ
M M , which maximise (or increase the current value of) the 

‘Expectation’ function (3-26); and then let ( ) ( )( , )ω Θ
E E  be updated with 

( ) ( )( , )ω Θ
M M .  

(iv) Repeat (ii) and (iii) until the improvement on the value of function 

(3-26) is no more than a pre-specified small constant – referred to as a 

threshold.  

It should be noted that to gain  ( ) ( )( , )ω Θ
M M  at step (iii) is in fact to search for 

optimal values of 1 1
ˆ ˆˆ ˆ( , , , , , )

R RN N  θ θ . For this purpose, we shall need to take 

the derivatives of function (3-25) with respect to each of the parameters, and set 

them to equal 0 , respectively. By doing so, we would have ( )

1( , , )
RN ω

M (M) (M)  

with  

1

n

qrq

r
n


 


 MNB

(M) .   (3-27) 

On the other hand, however, ( )

1( , , )
RNΘ θ θ

M (M) (M)  would be derived on the 

understanding that the distributional form of r  is available.   

Besides, it has been demonstrated by Seidel et al. (2000) that specifications for 

the initialiser of the model parameters for step (i), as well as the stopping criteria 

regarding step (iv), might exert some influence on the model estimation. A 

decent set of initial values as well as a threshold that terminates the iterations 

could play a sensitive role in securing credible, practical estimates via the general 

EM algorithm described above.  

There are a number of studies (e.g. McLachlan, 1988; Melnykov and Melnykov, 

2012; as well as Blömer and Bujna, 2013) having been devoted to the efforts to 

test different initialising strategies. In most cases, the -meansK 11  clustering 

method (cf. Forgy, 1965; and MacQueen, 1967) is well-qualified to afford an 

acceptable starting point. The symbol ‘ K ’ refers literally to the total number of 

clusters into which a data set shall be categorised. In our case, K  is equal to the 

size of route-choice set, i.e. RK N ; and all the journey time observations, 

1 , , n OBS OBS , should be divided into K  subsets. As for the term ‘means’, it may 

refer to a vector of K  centroid-values, which we represent by 1( , , )
RN

 KMS KMS , 

                                                        

11 It is also referred to as the ‘k-means’ in many literatures, e.g. MacQueen (1967).  
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with 
r
KMS  denoting the centroid-value of a sub-dataset denoted by 

r
KMS . In this 

way, the superscript, ‘KMS’, indicates that both the centroid-value and the sub-

dataset are generated based on the K-means (KMS).  

In general, we use the K-means clustering method to include q
OBS  (from  ) into 

Δr

KMS  by minimising the total ‘distances’ from q
OBS  1, ,q n    to 

r
KMS  over all 

the RN  sub-datasets. In this thesis, we measure this ‘distance’ by the absolute 

difference between each q
OBSand the median based on the corresponding sub-

dataset. Within 
r
KMS , each of journey time observations is supposed to be tightly 

close to r
KMS , and is as far from the observations of other sub-datasets as 

possible. The objective function to be minimised is:  

( ) ( )

1

( ( ), )   
n

a a

q

a      


 KMS KMS ,   (3-28) 

where ( )a   acts as a classifier, namely, a function that iteratively (re-)labels an 

observed journey time as belonging to one of the sub-datasets, 1 , ,
RN  KMS KMS , 

until function (3-28) reaches a local (or, though not necessarily, a global) 

minimum. More specifically, given that ( )qa r  OBS , the observation, q
OBS , is 

classified as an element in r
KMS . Hereby the method of K-means clustering may 

provide a rudimentary (but sensible) partition of the sample data into RN  

mutually exclusive sub-datasets. So, with Δr

KMS  r R  , in addition to r
KMS , initial 

values for parameters such as the standard deviation (denoted by r
KMS  r R  ) 

could also be obtained in the light of specific mixture models. Moreover, an initial 

value for r  (denoted by r
KMS ) could be gained by calculating the proportion of 

all observations clustered in r
KMS  among all those included in  . As such, this 

method is similar to the EM algorithm but confined to deterministic clustering 

with the data (cf. Bishop, 2006, pp.443-444).  

Equally important to setting initial values is the selection of the threshold value. 

This would mainly be related to the speed of convergence of the algorithm, and 

determine whether the iteration should proceed or stop. As Karlis and Xekalaki 

(2003) pointed out, a smaller value of the threshold affords a more demanding 

stopping condition of the iterative computation, and hopefully would be more 

likely to make for the global maximum likelihood; but it may also cause a slower 

convergence of the estimates, or even worse, a failure of convergence when a 

predefined maximum number of the iterations for estimation has been reached. 

As a matter of fact, it must be noted that the distribution type of the components 
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and hence the mixture is not known to us in our case. We should avoid blindly 

pursuing the global maximum of the log-likelihood function, because doing so 

may potentially lead to the problem of overfitting (see Guyon and Elisseeff, 2003; 

and Guyon et al., 2010). That is to say, a model being estimated might be almost 

perfectly fit for a data sample, yet the estimates of the model parameters might 

not be explicable. In that sense, we may test a range of threshold values for model 

estimation, so as to locate the optimal values that practically imitate the actuality 

given the data available, regardless of whether the estimated results refer to a 

local or the global optimisation.  

Now that for each of the alternative routes, we know nothing about its journey 

time distribution ( )rc  , an immediate thought (in most practical applications) is 

to assume that each of the route-specific journey time variables r  may be 

following some common statistical distribution, such as a Gaussian distribution 

(also known as normal distribution) or a log-normal distribution. Suppose, for 

example, that ( | )r rc  θ  is a PDF of a Gaussian distribution that we could 

represent by ( , )r r N . That is to say, ( , )r r r  N  r R  , with r  and r  

denoting, respectively, the mean and the standard deviation of the sub-

population, rQ . In that case, for each r R , r  is a Gaussian (or normal) random 

variable; and rθ  corresponds to a vector, ( , )r r  . The mixture distribution thus 

formed is a Gaussian mixture distribution, with its PDF being parameterised by 

ω  and ( , )Θ μ σ , where 1( , , )
RN  μ  and 1( , , )

RN  σ . Accordingly, we 

could adapt function (3-20) for a Gaussian mixture as follows:  

( |   ) ( | , )r r r r

r R

m , , c    


ω μ σ .  (3-29) 

The adaptation to any other probability distributions, e.g. the aforementioned 

log-normal distribution, would do likewise with their own specific distribution 

parameters.  

 

3.4 Inference of passenger traffic distribution 

By applying the EM algorithm to cluster an available data set of journey time 

observations, { : 1, , } q q n   OBS  (referring to Section 3.3.2), Π
MIX  could be 

acquired through the acquisition of ˆˆ( , )ω Θ . As explained in Section 3.3.1, ˆr  

reflects the proportion of passenger-traffic on route r . Besides this aggregate 
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measure, we are also interested in trying to infer each individual’s real route 

choice from 
Π
MIX  (see question (II) posed in Section 3.1, p.32), and attempting 

to find out route-specific sub-datasets of the smart-card data.  

The notation used to illuminate the methods of inference is listed below.  

 

Notation:  

( )    assignment function used for the naive inference of each 
passenger’s route choice, based on mixture model 

0

r
INF   set of journey time data of passengers who chose r , based on 

the naive inference ( 0INF ) 

 0

rn
INF   number of passengers using r , based on the naive inference 

 0

r
INF   proportion of passengers using route r , according to the naive 

inference 

q   random variable for passenger q , which follows the standard 
uniform variable; (0,1)q U  

   vector of all q , for a given data set of journey times 

q   generated (real-valued) number of q  

( )    assignment function used for the effective inference of each 
passenger’s route choice, based on mixture model 

r
INF  set of journey time data of passengers using r , based on the 

effective inference (INF ) from a mixture model 

rnINF   number of passengers using r , based on the effective inference 

r
INF   proportion of passengers using route r , according to the 

effective inference  

 

3.4.1 Naive inference 

Recall the initial assumption that has been made on each individual’s possible 

route choices from Section 3.2 (see the conditions formulated by (3-10), p.39). 

If ( ) ( )( | ) ( | )q q

q qr i r j     OBS OBS  , i j R  , then it might be relatively more 

likely that q  chose the -thi  route. Following this logic, the simplest inference 

could be drawn that route i  is the actual route choice made by q . Accordingly, 

we define an assignment function ( )   by setting  

( ) argmax qr
r R

q 


 MNB .   (3-30) 
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The function, ( )q , as defined by equation (3-30), labels passenger q  (hence 

his/her journey time observation q
OBS ) as being from route r , given the highest 

qr MNB  among all r R . By doing so, a rough estimate of every individual’s actual 

route choice could be learnt; and a total of RN  sub-datasets of   are also sorted 

out accordingly, with each being related to one of the alternative routes. We let 

r
0INF  denote the -thr  sub-dataset according to such inference, and it could be 

expressed as follows:  

  :  ( ) { }r q q r   0INF OBS .   (3-31) 

On this basis, the sum of passengers in  , who chose route r , should then be 

equal to the size of r
0INF , which we represent by rn 0INF . That is,  

r rn  0 0INF INF .   (3-32) 

Furthermore, denote by r
0INF  the proportion of passenger-traffic shared by 

route r  to the entire passenger traffic. It could thus be estimated as follows:  

r
r

n

n
 

0

0

INF

INF .   (3-33) 

Note that in fact this is a marginal inference (cf. Leonard et al., 1989) such the 

estimates derived from it will be referred to here as a naive Bayesian inference. 

This may be more advisable in a situation that the observations are entirely 

distinguishable or the true sub-datasets are mostly non-overlapping.  

 

3.4.2 Effective inference 

It should again be noted that any route r  (or say the r  presented in condition 

(3-10), see Section 3.2, p.39), albeit with the highest posterior choice probability 

among all the alternatives, may or may not be the actual choice of the passenger 

q . On that account, we further allow for such uncertainty for each individual.  

In addition to the naive inference above, some unknown/random factor shall be 

taken into consideration for the comparisons of qr MNB  r R  ; while still, we give 

priority to r  of which the posterior estimate is relatively higher. Thus, we draw 

support from the order statistics of 1 , ,
Rq qN MNB MNB , which we represent by 

(1) ( ), ,
Rq q N MNB MNB , with ( )q r MNB  r R   being the -thr  smallest estimate of qr MNB . What 

is more is that we bring in a n -dimensional random vector, denoted by Λ , where 
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1( , , )n  Λ , with q  following the standard uniform distribution – namely, 

(0,1)q U  1, ,q n   . For each q  within the data sample, a random number 

– or rather, a pseudo-random number, denoted by q , is generated from the unit 

interval, wherein all the values, denoted by 1, , n  , are equally likely, and 

0 1q   (cf. Riley and Goucher, 2009, pp.131-132).  

We hereby define another assignment function, which we represent by ( )q , and 

it is expressed as follows:  

i. if ( )Rq q N  MNB , then ( ) { : } Rq r r N   , which corresponds to ( )q  (see 

function (3-30));  

ii. otherwise, for 0, , 1Rj N  , if ( ) ( )( 1)
  

R R

R R

N N

q i q q ii N j i N j
  

    
  MNB MNB , 

then  ( ) :  Rq r r N j    .  

Similar to the naive inference (cf. formula (3-31), see previous page), we now use 

Δr

INF  to represent the sub-data set relating to route r  based on ( )q ; and so then  

 Δ : ( ) { } r q ξ q r INF OBS .   (3-34) 

Likewise, we let rnINF  and r
INF  denote, respectively, the total number of 

passengers in   who chose route r  and the estimated proportion of passenger-

traffic shared by r . In contrast to formulas (3-32) and (3-33) (see previous page), 

we have  

r rn  INF INF ,   (3-35) 

and hence 

r
r

n

n
 

INF

INF ,   (3-36) 

which is believed to afford a more robust estimate than r
0INF  at the aggregate 

level.  

 

3.5 Interpretation and validation of mixture model estimates 

So far, all the estimates derived from the mixture model have actually been based 

on the posterior probability distribution of the hidden route-labels, ( )qr  q . 

According to the sub-dataset of journey time data that are inferred for each route 

r , the real sub-dataset might be learnt from its corresponding component 
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distribution ( )rc  , with some essential statistical features, e.g. the mean journey 

time. Notwithstanding this, however, there is a lack of evidence of a one-to-one 

correspondence between an estimated component of the mixture and an 

alternative route in the real world. This factual circumstance could not be 

immediately determined. In other words, it is not yet known which one of the 

components (labelled r ) mirrors the journey time distribution of which route in 

reality, nor is it confirmed if the estimates per se are credible. As such, the 

implementation of the finite mixture models is a process of an ‘unsupervised 

classification’ (also known as ‘unsupervised learning’), which detects and 

attempts to reveal latent categories of the observational data (cf. Bousquet et al., 

2004, pp.77-112). Besides, as stated by James et al. (2013, p.374), the estimated 

results are in fact difficult to evaluate – not just because of the independence of 

the data, but also because of unavailability of a benchmark for validation. To 

tackle these issues, as rules of thumb, it would be necessary to  

(a) identify comparable features between the estimated components from 

the mixture model and the routes in the real world; and  

(b) ponder how to make a judgement about those comparable features.  

In this section, we propound some general criteria for the assessment of 

applicability of the mixture model in our case.  

 

3.5.1 Expectation of journey time for a given pair of O-D 

Following the two principles outlined above, the first thought upon comparable 

features is the mean journey time. This is because, on the one hand, the mixture 

model under discussion is examining the probability distributions of journey 

time between a given pair of O-D, wherein the mean value plays an essential role. 

We would also expect there to be differences among the mean journey times of 

the different routes, whereby the component distributions of the alternatives 

could be distinguished from one another in terms of their central locations.  

On the other hand, in practice, it would be possible for us to calculate an expected 

journey time for each alternative route completely independently of the mixture 

model. In that regard, the following notation (see next page) is employed to 

formulate the computation of the route-specific journey time.  
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Notation:  

T ENT  time-stamp at which passengers pass through a ticket gate to 
enter o , referred to as ‘entry time’ (ENT ) 

l   transit line for the first leg of a single journey 

, l ot 

ACC  access (ACC) walking time from a gateline to the -platforml  at o  

, l oT 

ARR   time of passengers’ arrival (ARR ) on a -platforml  at o  

, l ot 

WFD   waiting time to board a -trainl  for departure (WFD ) from the 
-platforml  at o  

, l oT 

DEP  time of passengers’ departure (DEP) from the -platforml  at o  

, l oT 

dep  time of departure (dep ) of a -trainl  from the -platforml  at o  

s  interchange station between o  and d  

, [ , ]l o st 

OBT  on-board travel (OBT ) time in a -trainl  running from o  to s  

, [ , ]l o st 

run  running (run ) time of a -trainl , from o  to s  

, l sT 

ARR   time of passengers’ arrival (ARR ) on the -platforml  at s  

l  transit line for the second leg of a single journey 

[ , ], l l st  

TIC  walking time to transfer from the -platforml  to the -platforml  at 
interchange (TIC ) station s   

, l dT 

ARR   time of passengers’ arrival (ARR ) on the -platforml  at d  

, l sT 

DEP  time of passengers’ departure (DEP) from the -platforml  at s  

, [ , ]l s dt 

OBT  on-board travel (OBT ) time in a -trainl  running from s  to d  

, l sT 

dep  time of departure (dep ) of -trainl  from the -platforml  at s  

, [ , ]l s dt 

run   running (run ) time of a -trainl , from s  to d  

, l st 

WIC   waiting time to board a -trainl  for departure from the 
-platforml  at interchange (WIC ) station s  

, l dt 

EGR  egress (EGR ) time from the -platforml  to a gateline at d  

T EXT  time-stamp at which passengers pass through a ticket gate to exit 
from d , referred to as ‘exit time’ (EXT ) 

h  label of travel route, referred to as ‘route-label’ 

( , )ht    journey time of passengers travelling by h , given that he/she 
boards the -th  arriving train at o  (and, if h  involves 
interchange, the -th  arriving train at s ) 

yPSG  walking speed on level/ramp passageways (PSG ) 

yUPS  walking speed of going upstairs (UPS) 

 (Continued) 
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Notation: (Continued.) 

yDNS  walking speed of going downstairs (DNS) 

yESC  escalators/lifts (ESC ) speed 

y  vector that contains passengers’ walking/moving speeds on each 
type of pathways 

u  underground station (representing o , d  or s ) 

hu WLK  expected walking (WLK ) time at u  along h  

uhxPSG  total length of level/ramp passageways (PSG ) at u  on h  

uhxUPS  total run of stairs for going to upper (UPS) levels at u  on h  

uhxDNS  total run of stairs for going down (DNS) to lower levels at u  on h  

uhxESC  total run of escalators/lifts (ESC ) at u  on h  

uhx  vector that contains reciprocals of distances for each type of 
pathways at u  on h ;  

   number of attempts to successfully board a train at o  

   number of attempts to successfully board a train at s  

ht
REF   expected average journey time of travelling by h , serving as a 

reference (REF ) value for interpreting estimates from a mixture 
model 

hv  indicator that equals one if h  is a direct service, and zero if it is an 
indirect service 

( )hu v  function that indicates whether a station on h  is s  or d   

( )hl v  function that indicates whether a transit line on h  is l  or l  

ˆ
h  estimate of a sample standard deviation of journey time of h  

ˆ
h
SEM  estimate of a standard error of the mean journey time of h  

( ) t  Student's t -value with certain degrees of freedom and a given 
probability level   

 

We let T ENT  denote the time-stamp at which passengers pass through a ticket 

gate of the origin station o . This information is easily obtainable from smart-

card data. Denote by l  a transit line the passengers decide to take; and further 

to this, let , l ot 

ACC  and , l oT 

ARR  denote, respectively, the passengers’ walking time from 

the gateline to a platform for l  and their arrival time on that platform. Then we 

can have: (see next page) 
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, , l o l oT T t  ARR ENT ACC .  

Furthermore, we let , l ot 

WFD  and , l oT 

DEP  denote, respectively, the passengers’ waiting 

time to board a train of l  and their departure time with l  from o . Apparently,  

, , , l o l o l ot T T   WFD DEP ARR ;   (3-37) 

Assuming that all trains on the underground network are running on schedule, 

thus, in accordance with the timetable, , l oT 

DEP  is equal to the scheduled departure 

time of the train, which we represent by , l oT 

dep . In that way,  

, , l o l oT T DEP dep ;  

and  

, , , l o l o l ot T T   WFD dep ARR .  

If line l  serves an indirect route, in which case a transfer is necessary at an 

interchange station. We use the letter s  to represent the interchange station, and 

let , [ , ]l o st 

OBT  denote the expected on-board travel time on l  between the platforms 

of o  and s . Based on the assumption above, , [ , ]l o st 

OBT  would be equivalent to the 

corresponding train’s scheduled running time, which we represent by , [ , ]l o st 

run . 

That is to say,  

, [ , ] , [ , ]l o s l o st t OBT run .   (3-38) 

Thus, the time of passengers’ arrival at s , denoted by , l sT 

ARR  accordingly, is 

expected to be calculated as follows: 

, , , [ , ]l s l o l o sT T t   ARR DEP OBT ,  

and also,  

, , , [ , ]l s l o l o sT T t   ARR dep run .  

Suppose the passengers need to transfer at s  from l  to a connecting line, 

denoted by l , which links s  to the destination station d . We then use [ , ], l l st  

TIC  to 

represent their transfer/walking time from the platform for l (at o ) to another 

for l  at s . With this information, the time of their arrival on l -platform, which 

is denoted by , l sT 

ARR , is expected to be calculated as follows:  

, , [ , ], l s l s l l sT T t    ARR ARR TIC ;  



- 60 - 

Similar to the first journey leg, the expected departure time of the passengers 

from s , denoted by , l sT 

DEP , and their on-board travel time between platforms of s  

and d , denoted by , [ , ]l s dt 

OBT , are both assumed to be in line with the service 

timetable. Namely,  

, , l s l sT T DEP dep ;  

and  

, [ , ] , [ , ]l s d l s dt t OBT run .   (3-39) 

where , l sT 

dep  and , [ , ]l s dt 

run  denote correspondingly the scheduled departure time 

and the running time of the train, respectively. On this basis, the passengers’ 

waiting time to board a train of l  for departure from s , which we represent by 

, l st 

WIC , is expected to be  

, , , l s l s l st T T   WIC dep ARR ;   (3-40) 

and the time of the passengers’ arrival on the platform of the destination d , 

denoted by , l dT 

ARR , can be calculated as follows:  

, , , [ , ]l d l d l s dT T t   ARR DEP run .  

Moreover, we let , l dt 

EGR  denote the passengers’ egress/walking time from the 

platform for l  to a gateline at the destination d . So the time-stamp of their exit, 

denoted by T EXT , is expected to be  

, , l d l dT T t  EXT ARR EGR .  

Given the fact that the above derivation process is independent from the mixture 

model where the letter, r , has been serving as a component-label (i.e. a hidden 

route-label), we use another letter, h , to represent each of the alternative routes 

in the real world. That is, h  acts as a real-world counterpart of r .  

The expected journey time of route h , which we represent by ht  is identified by 

( , , , , )o d s l l  . Thus it is straightforwardly calculated as follows:   

, , , [ , ] [ , ], , , [ , ] , h l o l o l o s l l s l s l s d l dt t t t t t t t             ACC WFD OBT TIC WIC OBT EGR ;  (3-41) 

and if l  connects o  and d  directly, formula (3-41) would then become  

, , , [ , ] , h l o l o l o d l dt t t t t      ACC WFD OBT EGR .   (3-42) 
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Note that information about , l ot 

ACC , [ , ], l l st  

TIC  and , l dt 

EGR  could be obtained from either 

field surveys or approximate calculation based on existing research findings.  

Here we describe a simple method for gaining a practical approximation of their 

expected values. Let ( , , , )y y y yy
PSG UPS DNS ESC  denote a vector of speeds of 

passengers’ walking on the different types of passageways at any station (cf. 

Section 2.3.1), where yPSG , yUPS , yDNS  and yESC denote the walking speeds of 

passengers moving along level/ramp passages (PSG ), climbing upstairs (UPS), 

downstairs (DNS ), and on the stationary escalators/lifts (ESC ), respectively. 

Then we could represent the layout of each station in terms of the type and 

length of its passageways. We use u  to represent an underground station. It 

represents any station of the origins, destinations or interchanges. For each u , 

let uhxPSG , uhxUPS , uhxDNS  and uhxESC , denote the total lengths measured for each type of 

passageways of h . Note that the measurement for the stringer lengths of a 

stairway/escalator may depend on both the angle and height (see e.g. Davis and 

Dutta, 2002); or the total run or the total rise may be measured instead. Thus, a 

simple linear expression could be considered to relate all the above-mentioned 

factors to passengers’ average walking time along route h  at station u . Let this 

average be denoted by uh WLK , with superscript ‘WLK ’ being short for ‘walking 

time’. It is specified as follows:  

uh uh  y x
WLK ,   (3-43) 

where (1 , 1 , 1 , 1 )uh uh uh uh uhx x x xx
PSG UPS DNS ESC . It must also be noted that y  may vary 

between different periods of a day, and should be non-linearly related to the 

pedestrian flows in different passageways. For practical purpose, we might only 

take consideration of the average values of the speeds for each type of 

passageways (see e.g. Daly et al., 1991; as well as Lam and Cheung, 2000) during 

given a specific period, such as morning peak, off-peak, evening peak.  

Besides, in uncongested conditions, as has been mentioned in Section 2.3.2, 

every passenger is assumed to be able to board the first arriving train of a line 

they choose when he/she arrives at the platform. Nonetheless, when the train 

arrives with carriages being almost fully loaded or overcrowded, there would be 

barely room available for extra boarding demand. In that situation, some 

passengers may fail, or reject, to board but would rather wait for the next coming 

trains; but also their waiting time spent on the platform would increase by, say a 

headway according to the timetable. This may happen at either the origin or the 
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interchange station, or at both of the stations, especially at the morning/evening 

rush hour. As a result of boarding failure, an increase in the total journey time of 

individual passengers is foreseeable in light of their whereabouts (e.g. origin 

station or interchange) and the number of attempts-to-board they make. In view 

of this fact, we use , , l ot 

WFD  to represent passengers’ waiting time to successfully 

board a train at the -th  attempt at an origin station; and denote by , , l st 

ICW  the 

waiting time for boarding a train on a connecting line at the -th  attempt. Based 

on formulas (3-41) and (3-42), the journey time of passengers travelling by h  

could be generally specified by  

 , , , , [ , ( )] [ , ], , , , [ , ] ( ), ( , )
h hh l o l o l o u v h l l s l s l s d l v dt t t t v t t t t                ACC WFD OBT TIC WIC OBT EGR ,  (3-44) 

where  
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To present a general picture of the average journey time of each alternative 

route, we may consider the following four straightforward cases as follows.  

I. For direct services:  

i. passengers get aboard the firstly arriving train after they arrive at 

the platform and depart from the origin station, i.e. 1  ; and  

ii. passengers get on board a train at the second attempt at the origin 

station, i.e. 2  ;  

II. For indirect services:  

i. passengers can always get aboard the firstly arriving train after 

they arrive at the platforms of both the origin and the interchange 

stations, i.e. 1   and 1  ;  

ii. passengers get aboard a train at the second attempt at the origin 

station, and board the firstly arriving train at the interchange 

station, i.e. 2   and 1  ; (see next page)  
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iii. passengers board the firstly arriving train at the origin station 

after they arrive at a platform at the origin station, and get aboard 

at the second attempt at the interchange station, i.e. 1   and 

2  ; and  

iv. passengers get aboard at the second attempt at both the origin and 

the interchange station, i.e. 2   and 2  .  

Note that the expected journey time of h  should be represented by a weighted 

average of ( , )ht    considering the four circumstances stated above (or even 

more complex situations). However, those weights for each circumstance are not 

known. In a simplistic way of calculation, we consider in this thesis only an 

average of ( , )ht    under the different circumstances specified above, that is,  

2 2

1 1

1
( , )

4
h ht t

 

 
 

 REF .   (3-45) 

It is hereinafter referred to as the (presumptive) expected journey time of 

travelling by h , and considered a prime indicator manifesting differences of 

journey time between alternative routes. This ht
REF , together with ( , )ht   , will all 

be used as reference values for matching a component-label (associated with the 

mixture model) to a route-label.  

What is more, a confidence interval (CI) for ht
REF  at, say, the 95% confidence level 

(CL) would be further needed, so as to provide a reference range allowing for 

inherent errors in the specification and calculation of ht
REF . In this regard, firstly, 

we may perceive each of ( , )ht    ,    as an observation of journey time; and 

they together form a small sample of four observations. As such, ht
REF  actually 

serves as the sample mean, and we could estimate the corresponding sample 

standard deviation (denoted by ˆh ) as  

2 2
2

1 1

1
ˆ ( , )

3
h h ht t

 

  
 

    REF .   (3-46) 

Secondly, we may also perceive each ( , )ht    itself as a sample mean of an 

arbitrary sample of journey times on route h , from which a standard error of the 

mean (denoted by ˆh
SEM ) could be estimated as follows: 

ˆ
ˆ

4

h
h


 SEM .   (3-47) 
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For the estimation of a CI for 
ht
REF  at a certain CL, it would depend on the size of 

the available sample size as well as the distribution of the journey time of route 

h . For example, suppose the journey time distribution of h  is Gaussian, where 

the variance or standard deviation of the population is unknown. We shall then 

consider 
ht
REF  to be a variable of sample mean for the Gaussian subpopulation of 

passengers who chose h . As such, ˆ( )h ht  REF SEM  is following a Student's t -

distribution12 with three degrees of freedom, i.e. ˆ( ) (3)h ht   REF SEM t ; on this 

basis, the true mean of the Gaussian subpopulation would be likely to be within 

the range of 0.025
ˆ (3)h ht REF SEM t  to 0.025

ˆ (3)h ht REF SEM t , which refers to the CI at the 

95% CL (cf. Johnson and Bhattacharyya, 2009, pp.351-358). Note that the CI for 

other types of distributions, such as log-normal distribution  (e.g. Parkin et al., 

1990) would be different. In this thesis, we assume that the CI derived from 

Gaussian population could suffice to provide the reference range for most cases.  

A set of criteria are proposed in the following subsection; and details will be 

explained with specific case studies in the next chapter.  

 

3.5.2 General principles 

The following notation is used to in this section to clarify the proposed some 

general principles for the interpretation and validation of the estimation results 

obtained from the mixture model.  

 

Notation:  

ˆ
r   estimate of subpopulation mean r  

ˆ
r   estimate of subpopulation standard deviation r  

GOF   indicator of goodness-of-fit between observed and simulated 
journey time data 

SIM   simulated (SIM ) data set of passengers’ journey times, which is 
generated from a mixture model (being estimated) 

 SIM

q
  simulated journey time, with subscript q  being its index; 1q  

                                                        

12 We use the symbol, t , to represent this distribution in order to avoid confusion with the 
variables represented by using the letter, t .  
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To have a preliminary review of the model rationality, as a rule of thumb, the first 

is to compare the estimate of mean journey time for each mixture component 

and ht
REF  for each alternative route. Ideally, as mentioned above, it would be 

expected that 
ht
REF  h  would be distinguishable from one another. For each r , 

we let ˆr  and ˆr  denote the (real-valued) estimates of the mean and standard 

deviation of journey time, respectively. Ideally, it would also be expected that 

1
ˆ ˆ, ,

RN   are distinguishable from one another, and so would be 1 , ,
RNt tREF REF . 

Note that differences among derived values from either way may not necessarily 

be clearly identifiable. That is to say, in some cases, we may obtain, for example, 

it
REF  and jtREF  ( ,i j R   and i j ), which are fairly close or nearly the same. This 

might be because in actual fact the attributes of the two routes i  and j  are 

similar in almost every aspect, such as service timetable and common 

passageways. In this situation, we would then expect that ˆr  r R   would 

differ. Otherwise, the estimates of the mixture model might imply that the 

passenger-traffic are approximately equally distributed among the alternative 

routes, in the light of ˆr .  

Further to the above consideration, ˆr  would also be expected to approximate a 

certain ht
REF  among all the alternative routes, whereby we may pre-match the 

component-label r  to a route labelled h . For any of the pre-matched pair, there 

is bound to be a difference in the estimates. Yet the extent to which the difference 

might be acceptable should be on a case-by-case basis. A CI for ht
REF  at the 95% CL 

could be estimated and used further to provide a possible range of the mean 

journey time. As ˆh
SEM  is necessary for the calculation (cf. formulas (3-46) and 

(3-47)), how reliable the ˆh
SEM  is, is arguable (cf. Nagele, 2003). Meanwhile, we 

should also check ˆr  with ( , )ht    separately under each of the four specified 

circumstances. Extreme cases, e.g. ,  2   , may also be taken into account, 

especially for rush-hour traffic, as this could be a case such that a fairly large 

difference between a pre-matched pair of component-label, r , and a route-label, 

h , would be interpreted. Otherwise, we shall consider that the model is not 

suitable.  

Furthermore, we should look at the proportions of passenger-flow between the 

effective inference r
INF  from the model and the actual usage of r . In this respect, 

information about the latter may be based on earlier surveys. Likewise, in an 

ideal situation, it would be expected that both results would roughly equal each 

other. This comparison may largely be affected by the accuracy of the latter, the 
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model per se notwithstanding, especially when the survey sample is quite small. 

If there appear to be considerable gaps between the sets of values, a larger 

survey sample should be required, and/or  0

r
INF  (based on the naive inference), 

could be further checked. Otherwise, we shall test some other parametric 

distribution as the components, or abandon the test model.  

A final issue that needs to be addressed is selection from among all acceptable 

models. Suppose several different mixture models are tested and all of them can 

meet the criteria set out above. In that case, we shall not arbitrarily reject any of 

the test models, but should choose the one that provides a relatively better fit to 

the sample data of journey times. With regard to the selection of a Bayesian 

model, usually, penalised-likelihood information criteria are used as a reference 

(Dziak et al., 2012), such as Akaike's information criterion (AIC) as well as 

Bayesian information criterion (BIC). Both AIC and BIC evaluate a model’s 

goodness of fit; and for each of the two criterion, the lower value is yielded for a 

fitted model, the better the model should be. Their pros and cons have been 

discussed in a wide range of studies (e.g. Kuha, 2004). However, there may be 

potential for concern about inconsistency of data scale. In some circumstances, 

given the limitation of the software package for estimating the mixture models,13 

we may change the scale of the original data. For example, we may fit a Gaussian 

distribution to natural logarithms of log-normal data, as the logarithm of a log-

normal variable is normally distributed (Mood et al., 1974, pp.540-541). In that 

case, the scales of AIC/BIC differ between mixture models fitted for different 

scaled data set, and thus cannot be compared between the different test models. 

On that account, we use the measure of normalised root mean square error as an 

indicator of goodness of fit of a mixture model, which we represent by gof . It 

measures normalised differences between the sample data set (still denoted by

{ : 1, , } q q n   OBS ; see Section 3.3.2) and a set of simulated data of the same 

size (Farmer and Sidorowich, 1987). We use SIM  to represent the simulated 

data set, which should be generated from the test mixture model. In this case, it 

can be further expressed in the form of a set, { : 1, , } n   SIM SIM

q
q , where 

 SIM

q
 denotes a single simulated data point, with q  being its index. Let both   

                                                        

13 For example, for our case studies in Chapter 4, the software package is available only for 

Gaussian mixture model.  
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and SIM  be treated as dimen- sionaln  vectors, gof  is computed as follows (cf. 

Chan and Cannon, 2002):  

1

1 n

q

q

gof

n




  


  

SIM

OBS

.   (3-48) 

It must be noted that, for computation of the numerator of formula (3-48), both 

the sampled journey time data and the simulated data should be sorted in an 

ascending order. We use the order statistics for both the data sets, which we 

could represent by (1) ( ), , n OBS OBS  (for the sampled data) and (1) ( ), , n SIM SIM  (for the 

simulated data), respectively, with the subscript, ( )q , indicating that the statistic 

is the -thq  smallest value. In that way, formula (3-48) is equivalent to formula 

(3-49) as follows:  
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 



 









 

OBS SIM

OBS OBS

   (3-49) 

Then we shall need to compare the values of gof  between all the test models; 

and the mixture model with a lower gof  should be considered a better fit. Since 

SIM  is randomly generated given a candidate model, this comparison would 

need to be repeated a number of times, from which the model having the higher 

rate of gaining a better fit (i.e. a lower value of gof ) would be preferable.  

 

3.6 Summary and conclusions 

Relying on Bayes’ theorem, this chapter has formulated and discussed a 

probabilistic framework for the use of the finite mixture model to obtain 

passengers’ route choices between a pair of O-D stations on the underground 

system. It has also proposed a set of complementary approaches to evaluate the 

model applicability in practical use. The model allows for each individual’s route 

choice being learnt up to their choice probabilities for all alternative routes. It 

attempts to seek out passengers’ route-choice probabilities in a situation where 

the passenger’s actual route choice is not known. Such choice probabilities are, 

in essence, posterior probabilities estimated on condition that the passengers’ 
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journey time is observed (cf. Appendix A). The estimates are fundamentally 

reliant on observational data of the passengers’ journey times being modelled by 

finite mixture distributions. Proportions of the passenger traffic flowing on 

different alternative routes could also be estimated accordingly, given the O-D 

travel demand. The inferences of traffic distributions are validated by comparing 

them to survey findings, which in turn provides corroborative evidence 

supporting the estimates of the individuals’ probabilistic route choices.  

In practice, there are several issues of applying the mixture model for practical 

use. Firstly, it should be noted that one aspect of this general mathematical 

problem is determining the optimal number of mixture components to fit. In that 

case, the number of the components is treated as a variable and shall be 

estimated together with the model parameters. However, in the scope of this 

thesis, we will consider only the situation that this number is a given constant. 

Also note that the specification of the model (including the number of alternative 

routes) must ensure that the estimated components would be explicable. In 

other words, whether the estimated mixture and the components are meaningful 

will depend on whether we are able to interpret them as being a mixture or 

components. For practical application, we could either refer to the existing data 

(e.g. survey data) or draw support from a choice-set generation model, in order 

to identify possible alternative routes hence an appropriate number of the 

mixture components.  

Secondly, the distributional form of the component PDFs will have to be pre-

specified for any mixture model. This prior knowledge can be of significant 

importance for the application of the mixture model, particularly about the types 

of journey time distributions, and the passenger-traffic proportion, of each 

alternative route. Still, characteristics of the journey time distribution for each of 

the alternative routes are not really known, unless a subset of route-specific 

journey time observations is available. In practical application, a range of 

different standard mixture distributions can be considered. Also, note that the 

journey times of different alternative routes on the same O-D may be following 

different types of statistical distribution, and more advanced mixture models can 

be studied for future research.  

Thirdly, all the alternative routes (hence the universal route-choice set) must be 

identified. This thesis has only assumed every individual passenger would take 
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into account the same choice set, i.e. the universal set, when starting a journey at 

the origin station. However, as has been also discussed in Section 3.2, different 

passengers travelling between the same O-D, might have their own different 

perceived route-choice sets. This refers to two aspects. For one thing, the choice 

sets may differ among those passengers, because different people might take into 

account different alternative routes and carry out different choice tasks. For 

another, the alternatives encompassed in a choice set may not be equally 

perceived by an individual in terms of their own preferences and different 

attributes of the alternative routes. Such attributes involve a variety of factors 

influencing passengers’ travel decisions, including systematic variables (e.g. 

service frequency, walking distance for interchange), individual perceptions to 

over-crowding and seat availability, provision of real-time information, and 

other uncertainties, etc. Take a two-alternative case, for instance, while one route 

may be more likely to be used due to e.g. shorter travel time, the other is 

supposed to have relatively less chance of being selected. Therefore, the 

probability that an alternative route is chosen will also depend on to which 

choice set it belongs. Not all the alternatives would be simultaneously preferred 

by every passenger, especially when more alternatives become available. Then a 

challenge will be on how to explicitly specify or identify each individual’s 

perceived choice set.  

Fourthly, as emphasised in previous sections, the journey time variability, hence 

journey time distributions, over longer periods is uncertain. In this respect, a 

simulation-based transit assignment model may be useful for the estimation of 

the distribution of journey times.  

Lastly, the context of the application of the mixture model has been confined in 

this thesis to the underground system only. Nevertheless, this method could be 

easily adapted to other transport systems, such as a road network and even a 

multi-modal transpiration system, provided that the essential data is accessible 

(cf. Section 4.2; see also Figure 1.1, p.5). For example, to estimate drivers’ route 

choices on a detector/monitor-equipped road network, a mixture distribution of 

travel times could be specified for a given pair of monitoring points. This would 

rely largely on the corresponding data of the timestamps at which each car 

passes the monitors. In a multi-modal context, some travellers may transfer from 

one mode to another, or even use more modes to make a single trip between a 

given pair of O-D points. If information about their interchanges between the 
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different modes is not available, we may also make use of the mixture model to 

estimate the ridership share on each mode based on the modelling of the O-D 

travel times.  
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Chapter 4  

Application of mixture models of route choices: case 

studies on the London Underground 

 

4.1 Introduction 

This chapter presents a set of case studies on the London Underground (LU, also 

commonly known as the Tube) system. The LU provides us with a massive and 

well-developed transit network under the management of Transport for London 

(TfL)1; and the full network is shown in Appendix B, which is abridged from the 

original standard Tube map (Transport for London, 2013b).  

In accordance with the zonal fare scheme 2  adopted by TfL, the rail network 

(including the LU, DLR, LO and National Rail services; see also Footnote 1) is 

carved out into eleven fare zones. A central zone (Zone-1) is based in the centre 

of London, which is surrounded by five concentric ring-zones (ranging from 

Zone-2 to Zone-6) radiating outward one by one. In addition, there exist three 

ancillary zones (Zone-7 to Zone-9) that are positioned to the northwest central 

London, plus 2 further zones (Watford Junction and Grays). Unlike buses and 

trams where flat fare regime is adopted, fare charged on using the rail services 

mostly depends on how many zones a passenger travels through.  

In this context, the scope of the case studies was focused only within Zone-1 of 

the LU network. This area is illustrated in Figure 4.1 (see next page), within 

which flat fare applies.  

                                                        

1 As an integrated part of the local government, TfL undertakes responsibility for the transport 

system and its services across the Greater London area; and takes charge of the 

management and operations for multifarious public transport services. It involves a variety 

of transport modes including London Buses (Bus), LU, Dockland Light Railway (DLR), 

London Overground (LO), London Tramlink (Tram), London River Services (LRS), and some 

other customised services such as Dial-a-Ride particularly for disabled people, etc. 

2 Service fare on the LU is calculated on the basis of a zonal system, that is, a passenger would be 

charged a certain amount of fare according to the Zones in which his/her journey started 

and ended. 
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Figure 4.1  Tube map for Zone-1, abridged from the original standard Tube map (© 2013 Transport for London). 
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The main aims of conducting these case studies are (a) to demonstrate the 

application of the mixture models discussed in Chapter 3; as well as (b) to test 

the model applicability, namely, in what situation and to what extent the mixture 

models could be suitable for understanding passengers’ route choices. In 

addition, a secondary objective of this chapter is to reveal what sorts of 

information the smart-card data may contain, as well as the role that it would 

potentially play for further research.  

The rest of this chapter is arranged as follows. Section 4.2 describes the data 

that will be used for applying the mixture models. In Section 4.3, considering a 

range of network-scales, case studies about the application of mixture models 

are looking at different O-D pairs with two or more alternative routes. A 

summary of findings is presented in Section 4.4.  

 

4.2 Data description 

4.2.1 The Oyster-card data 

Individual passengers’ journey times is without doubt the most important data 

for applying mixture models, particularly for estimating the model parameters. 

Passengers’ journey records captured via Oyster smart-card system (hereafter 

referred to as Oyster) on the LU network is the only source of the journey time 

data used in this thesis.  

The Oyster system implemented within the Greater London area and managed 

by TfL, is one of the most successful applications of AFC systems. Due to 

widespread usage of the smart-card, named as Oyster card, more than 80% of 

journeys across the TfL network are being paid via the Oyster (cf. Transport for 

London, 2012), taking advantage of its discounts in comparison to traditional 

paper tickets. Such a high market share sufficiently warrants the potential of the 

Oyster card data (hereafter referred to as Oyster data) for measuring various 

aspects of the quality of transit service, and being an effective data source for 

statistical analyses of exploring and revealing travel patterns on the TfL network. 

The Oyster data is collected automatically as the Oyster card being touched on a 

card reader. Miscellaneous information is then generated and appropriately 

stored in separate data subsets. They gather both aggregated statistical data (e.g. 
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the count of entries and exits at each station, and the number of journeys 

grouped by different transport modes, time periods, stations and ticket types) 

and, on the individual level, detailed (but anonymised) travel history of all Oyster 

card users (hereafter referred to as Oyster user) and the fare payment 

information. In addition, each of Oyster card users’ journeys is presented 

seriatim as per transaction in the data set of travel history, which is mainly 

targeted in our following analysis.  

Similar to many other AFC systems, the Oyster scheme records timestamps of 

every individual Oyster user’s touch-in and a following touch-out, respectively, 

along with identities of the corresponding stations (cf. Chapter 2). This process 

corresponds to a single journey under the scope of this thesis, whereof the 

gateline-to-gateline journey time is referred to by Chan (2007) as Oyster journey 

time, which we represent by OJT  and treat as a random variable. Clearly, OJT  

is equivalent to the previously defined journey time variable,  , that is discussed 

in the previous chapter. That is to say, for any O-D pair, which is connected by 

multiple alternative routes, it is believed that a sample of OJT  observations (i.e. 

real-valued Oyster journey times) collected from all passengers (during a given 

period) would be following a mixture distribution. Still, we use T ENT  and T EXT  to 

denote, respectively, the timestamps of any Oyster user’s entry and exit logged 

by the Oyster system, and treat them as random variables (cf. Section 3.5.1). 

Accordingly, OJT  could be further represented as follows:  

OJT T T EXT ENT ,   (4-1) 

which provides a straightforward calculation of the Oyster users’ journey times. 

For convenience, we represent an observation of OJT  by OJT OBS , with the 

superscript ‘ OBS ’ being short for ‘observed value’ (or ‘observation’). Also, 

OJT OBS  of an Oyster user is equivalent to q
OBS , which represents a journey time 

observation of a passenger labelled q  (cf. Chapter 3). It must be noted that 

because of system constraints, all recorded timestamps of entry and exit are only 

accurate to minute, and so is the computed OJT OBS  (Chan, 2007). The Oyster 

system omits the time of seconds but rounds the timestamps to the nearest 

minute that is less than or equal to the actual clock time. This thus results in an 

error of up to 59  seconds (or 59  seconds) in the calculation of OJT OBS . As such, 

this error could be regarded as purely random (e.g. a random variable following 

a uniform distribution over the interval of [ 59,59]  in seconds). In this thesis, 
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however, only the computed OJT OBS  is taken into account. In line with the 

premise stated before (see Section 3.2), each count of the journey records in the 

Oyster data is associated with only one OJT OBS .  

As the main data source for this study, a processed data set that reveals the 

distributions of OJT OBS  was provided by TfL and filed in the format of a 

combination of origin, destination, date and time-band. Moreover, the data set 

was sorted into four time-bands, as specified in Table 4.1 below.  

 

Table 4.1  Time-bands set by TfL 

Time-band applying to an OJT OBS , given T ENT  falling into the period:  

AM Peak between 07:00 and 10:00 (a.m.) on a weekday (Monday – Friday) 

PM Peak between 16:00 and 19:00 on a weekday (Monday – Friday) 

Off-Peak of any time during a weekday other than AM Peak and PM Peak 

Weekend of any time during Saturday and Sunday, and also bank holiday 

 

The journey time distribution for each O-D is calculated in 99 percentiles each 

representing 1% of Oyster users travelling from the given origin to destination 

during a specified time period (date and time-band). It starts with the fastest 1% 

travellers followed by the second fastest and so on, and goes up to 99% in 

ascending order of recorded Oyster journey times of all complete Oyster 

journeys. The journey counts by time-band are given as well. Presumably, those 

OJT OBS  that are greater than 99th-percentile records for each time period are 

considered as outliers. By this, data for every combination of date and time-band 

shapes a cumulative distribution of OJT  in that period; whereby the percent 

distribution is also calculated. However, those OJT OBS  whose values are not 

exceeding the upper outer fence, i.e. three times interquartile range (IQR) more 

than the 75th quartile, would be considered to be valid entries (cf. Frigge et al., 

1989) for estimating the mixture models. Because, above that level, the data 

volatility is such that any observations are supposed to be uncorrelated with the 

provided transit services, hence treated as outliers. Also note that although OJT  

should be taken for a continuous variable, it can only take discrete values in 

minutes due to constraint of the Oyster system. Empirical distributions could be 

acquired from observed values that fall into minute-blocks.  
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In addition, supplementary information that is independent of the OJT OBS  data 

would also be indispensable to proceed to validate the results being estimated 

from the mixture models. Above all, knowledge of the route-specific average 

journey times (i.e. 
ht
REF  h R  ), which is clearly not affected by the mixture 

model (cf. Section 3.5.1), would afford underlying evidence to relate a mixture 

component to an alternative route in real life. In this respect, several different 

sources have been also available to provide relevant information, presented in 

the following subsections.  

 

4.2.2 Data for computation of route average journey time 

A database established from the ‘Access, Egress and Interchange’ (AEI) survey 

on the LU system gives simple random samples of individual travellers’ walking 

time on pre-determined pedestrian paths within the LU stations. From this, 

expected values of , l ot 

ACC , , l dt 

EGR  and [ , ], l l st  

TIC  (defined in Section 3.5.1) for each of the 

identified alternative route can be obtained. Note that there could possibly be 

several alternative passages for access, egress as well as interchange at some of 

the LU stations, though, only one pre-specified passage, as the mostly used 

pedestrian path, for each of station had been timed in the AEI survey. In that case, 

an online database, called Direct Enquiries1 (DE), providing information about 

all available passages within each of the LU stations, will also be utilised to adjust 

the data of average walking times from the AEI survey (see formula (3-43), p.61).  

The third data source sustaining the computation of ( , )ht    is the timetable of 

the LU lines services, which is available for all passengers. It provides the 

scheduled departure times, , l oT 

dep  and , l sT 

dep , of each run of the transit lines, as well 

as their platform-to-platform running times, , [ , ]l o st 

OBT  and , [ , ]l s dt 

OBT . Therewith , l ot 

WFD  

and , l st 

WIC  are also derived (from formulas (3-37) to (3-42), pp.59-60), whereby 

ht
REF  h R   could be derived according to definition given by formula (3-44) 

(see p.62).  

 

                                                        

1 Available online at http://www.directenquiries.com/londonunderground.aspx; last accessed 

on 30 September 2014. 

http://www.directenquiries.com/londonunderground.aspx
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4.2.3 Data from Rolling Origin and Destination Survey 

We also cross-validate the empirical route-choice set of each of the O-D networks 

with the feedbacks on the alternative routes via Rolling Origin and Destination 

Survey (RODS) 2  (up till 2010). The RODS is an annual project, having been 

conducted by TfL since 1998. From this database, we may learn information 

about each respondent’s actual travel route, including the stations at which 

his/her journey started and ended, where he/she made an interchange, and also 

some basic socio-demographic data, including such as age and purpose of the 

journey (cf. Guo and Wilson, 2011).  

According to TfL, this programme looks into the travel patterns on weekdays 

only, when the system is operating normally; and any undesirable actions (e.g. 

long-term closures) are not covered. Therefore, between a given O-D pair, what, 

or which, routes most passengers would commonly use for day-to-day commute 

could be learnt. What’s more, the sum totals of the respondents choosing each of 

the alternative routes are counted as well, whereby proportions of passenger-

traffic on each route can be roughly obtained from the relative frequency.  

We let rnROD  and r
ROD  denote the count and the percentage of all respondents 

who made their journeys by using route r , respectively. It must be pointed out 

that rnROD  and r
ROD  are counted on the rolling twelve-year basis; and thus, they 

may not represent the true usage of r . Notwithstanding, r
ROD  would still serve 

as a comparatively good reference for us to assess the estimates from the mixture 

models in our case.  

 

4.3 Case studies on the London Underground 

This section elaborates on the manipulation of specific case studies with the data 

described above to demonstrate the application of the method elaborated in 

Chapter 3. Seven O-D pairs3 within Zone-1 of the LU network were selected as 

                                                        

2 Data descriptions available online at http://data.london.gov.uk/datastore/package/tfl-

rolling-origin-and-destination-survey; last accessed on 30 September 2014.  

3 In total, there are seven cases of O-D pairs, only five of which will be presented in the current 

chapter, with the results of the rest two cases being exhibited in Appendix C.  

http://data.london.gov.uk/datastore/package/tfl-rolling-origin-and-destination-survey
http://data.london.gov.uk/datastore/package/tfl-rolling-origin-and-destination-survey
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typical examples for the demonstration, which will be investigated separately in 

the following sections.  

The selection of these example networks is based primarily on the standard Tube 

map (see Figure 4.1, p.72), complying with conditions as follows.  

 There are at least two travel routes available, which connect the 

stations of the origin and the destination.  

 There must be no more than one interchange for each route between 

the O-D stations.  

 All the alternative routes4 (between the O-D stations) are empirically 

identified from the standard Tube map, and also checked with the 

RODS data for AM Peak (i.e. between 7:00 a.m. and 10:00 a.m. on 

weekdays, see Table 4.1, p.75).  

 There is a relatively high volume of passenger traffic on the network, 

especially during the AM Peak, which thus makes for a sufficiently large 

data sample.  

For each case study, the network will be illustrated in a map-view, which is 

tailored in the scope of the standard Tube map with essential elements being 

retained. Only the transit lines as well as intermediate stations pertinent to the 

O-D will maintain their original appearance on the Tube map, with the rest of the 

network being presented in monochrome.5  

To apply the proposed method, a few prerequisites will have to be met. First of 

all, the type of journey time distribution of each alternative route, and hence the 

distributional form of the mixture model, need to be pre-specified. In this section, 

for each case study, we will look at two standard mixture distributions for a 

comparative test: a Gaussian mixture (GM), i.e. ( , )r r r  N  r R  , as well as 

a log-normal mixture (LNM), i.e. log ( , )r r r   N  r R  ; and compare the 

estimates for the two models. As stated by Marron and Wand (1992), the family 

                                                        

4 Any travel route that does not involve interchange will be hereinafter referred to as a direct 

route/service; otherwise, an indirect route/service.  

5 It should be noted that confluences of passenger flows of those monochrome and coloured lines 

certainly will, in reality, affect the traffic and (hence) the (average) journey time of the O-D. 

However, this effect would not be relevant in that the traffic and journey times will both be 

statistically analysed given probability distributions, and that the transit lines and stations 

in monochrome could be left out of account.  
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of GM has a great flexibility such that it usually provides close approximation to 

arbitrary probability distributions in various contexts (cf. Section 3.3.3). Yet it 

should also be noted that the shape of a univariate Gaussian distribution is 

symmetric to its mean (and its median), whereas in reality a journey time 

distribution seems more often to be positively skewed (see Fu et al., 2012a). On 

this account, the log-normal distribution may potentially be more suitable. For 

all this, both GM and LNM will be estimated for each of the selected single O-D 

pairs, by taking advantage of the Oyster data.  

Within the scope of this thesis, the issues concerning the threshold value for 

estimating the mixture models are not addressed (cf. Section 3.3.3). For each of 

the case studies being conducted in this thesis, several threshold values were 

tested in the model estimation; and only the sensible and explicable results are 

presented in the following subsections for a demonstration of the application of 

the mixture model.  

The available data of OJT OBS  for the model estimation were collected during the 

period from 27th June 2011 (Monday) to 30th March 2012 (Friday), spanning 

over 193 weekdays, which do supply each case with an adequate sample. It must 

be pointed out that since the logarithmic journey times should then follow a GM 

distribution, the two data sets, i.e. the raw data and its logarithms, were both 

fitted by GM model, respectively, given the same sample of journey times.  

A summary of basic information about all the seven pairs of O-D is reported in 

Table 4.2 (see next page), where 0n  and n  denote the sample size before and 

after the extreme outlying values being excluded, respectively. Besides, the data 

sample of each of the case studies is for 193 weekdays, except that the Case-6 

and Case-7 contain journey records data for 192 days and 162 days, respectively. 

The databases of AEI, RODS and the published timetable are all ready to use.  
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Table 4.2  An introductory summary of the LU case studies 

EB, WB, NB and SB are short for eastbound, westbound, northbound and southbound, respectively.  

Case 

- 

Origin o  

(LU station) 

Destination d  

(LU station) 

 Interchange   Journey time  RODS result  Sample size 

Line, l  LU station, s  Connecting line, l   
ht
REF (minute)  ROD (%) nROD   

0/n n  

1 Victoria Holborn Victoria  (NB) Oxford Circus Central (EB)  19.6  71.3 
526 

 
24,760 / 25,122 

   Victoria  (NB) Green Park Piccadilly (EB)  23.0  28.7  

2 Euston St. James's Park Victoria  (SB) Victoria Circle District (WB)  18.8  42.8 
437 

 
22,379 / 22,968 

   Northern  (SB) Embankment Circle District (WB)  22.1  57.2  

3 Victoria Liverpool Street Victoria  (NB) Oxford Circus Central (EB)  25.0  48.1 
557 

 
36,262 / 36,668 

   Circle  (EB)  – –  33.3  51.9  

4 Angel Waterloo Northern  (SB) Bank/Monument Waterloo & City (SB)  25.2  42.9 

77 

 

14,419 / 14,637    Northern  (SB) London Bridge Jubilee (WB)  26.9  13.0  

   Northern  (NB) Euston Northern (SB)  29.8  44.2  

5 Liverpool Street Green Park Central (WB) Oxford Circus Victoria (SB)  21.5  71.9 

196 

 

17,102 / 17,423    Central (WB) Holborn Piccadilly (WB)  26.3  17.9  

   Central (WB) Bond Street Jubilee (SB)  27.1  10.2  

6 Euston South Kensington Victoria  (SB) Victoria Circle District (WB)  22.4  57.4 

209 

 

8,116 / 8,277 

(192 days) 

   Victoria  (SB) Green Park Piccadilly (WB)  26.2  21.1  

   Northern  (SB) Leicester Square Piccadilly (WB)  28.4  21.1  

   Northern  (SB) Embankment Circle District (WB)  29.7  0.4  

7 Victoria Waterloo Circle District (EB) Embankment Bakerloo (SB)  20.9  
15.3 1 

386 

 

7,935 / 8,140 

(162 days) 

   Circle District (EB) Embankment Northern (SB)  18.1   

   Circle District (EB) Westminster Jubilee (SB)  15.4  48.2  

   Victoria  (NB) Green Park Jubilee (SB)  16.4  36.5  

                                                        

1 In Case-7, according to the RODS result, 15.3% of all the respondents chose to transfer at Embankment, without detailing which connecting lines were chosen. 
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4.3.1 Two alternative routes (Case-1 – Case-3) 

This section examines three pairs of O-D stations selected from the LU network. 

Each of the O-D pairs is connected by two alternative routes, and has its own 

distinct characteristics. For the first two cases, which are code-named ‘Case-1’ 

and ‘Case-2’, respectively, only indirect routes are available. For the third case 

code-named ‘Case-3’, one of its two alternative routes actually offers a direct 

service, whereby an interchange between transit lines might not be necessary 

during passengers’ travel. Additionally, all passengers in Case-1 may have an 

only line option for the first journey leg but must choose between alternative 

transfer stations, while those in Case-2 should make a choice between lines at 

their origin station. Case-3, by contrast, presents a ‘dilemma’ for the passengers: 

whether to choose a direct or an indirect route.  

 

4.3.1.1 Case-1: Victoria – Holborn 

The abridged Tube map illustrated in Figure 4.2 below shows the single O-D 

network, Victoria – Holborn, for our first case study. Both of the O-D stations are 

highlighted with red-shaded circles,  .  

 

 

Figure 4.2  The LU network connecting the O-D pair: Victoria – Holborn. 
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In this case, all passengers heading from Victoria to Holborn would start their 

journeys by taking a northbound Victoria line train. Then they shall choose to 

change onto an eastbound train of either the Piccadilly line at Green Park or the 

Central line at Oxford Circus. The two alternative interchange stations are each 

being marked with a red-dotted circle  . We could represent the former route 

by 1h   and the latter by 2h  . This route-choice set was initially identified 

based only on the Tube map. It also corresponds with the evidence from the 

RODS about this O-D pair. Moreover, on the rolling basis, the survey result 

suggested, as shown in Table 4.2 (see p.80), that more than 70% of the 

passengers travelling on this O-D might choose to make an interchange at 

Oxford Circus, i.e. to use the route labelled 2h  .  

 

 
(a) 

 
(b) 

Figure 4.3  Summary of OJT OBS  data for Victoria – Holborn: 

(a) a box-and-whisker plot of the raw data 
0

25 2)( ,12n  ; and  

(b) a histogram of the valid data 24, 0)( 76n  . 
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Throughout the observation period from 27th June 2011 (Monday) to 30th 

March 2012 (Friday), there were 25,122 journeys in total recorded by the Oyster 

within the time-band of AM Peak (i.e. between 07:00 a.m. and 10:00 a.m.). In this 

context, we would test whether a mixture model could deliver the same or 

similar results from the sample set of OJT OBS  obtained from the Oyster system.  

A graphical summary of the sample data in this case is presented in Figure 4.3 

(see previous page). Figure 4.3(a) provides a box-and-whisker plot of the entire 

data set. The red bar on the rectangle ‘box’ (bordered in blue) marks the median 

of the sample. The left and right edges of the blue box indicate the 25th and the 

75th quartiles, respectively, which are also referred to as the lower and upper 

fences of the data (cf. Section 4.2.1); and the box width (of the horizontal side) 

showing the IQR. The bar located to the left side of the box marks the lower inner 

fence (i.e. 1.5 times IQR less than the 25th quartiles), within which the minimum 

journey time being observed falls.1 As the ‘whisker’ extends to the right of the 

box, upper boundaries of both the inner and outer fence are marked 2  (cf. 

Freeman et al., 2008, p.41). The magenta crosses, ×, which are beyond the upper 

outer fence, stand for extreme outliers; but those were all excluded for 

subsequent analyses. As stated in Section 4.2.1, we regarded the data (displayed 

as blue circles, ○) lying between the upper inner and outer fences to be, albeit 

suspicious, within the acceptable range of valid data. Finally, 24,760 of OJT OBS  

were statistically covered by the upper outer fence (with 24,028 inside the upper 

lower fence).  

The frequency distribution of the valid data is shown in Figure 4.3(b) (see 

previous page). Given the existence of two alternative routes as described above, 

the histogram shall resemble a two-component mixture distribution, which 

ideally would exhibit bimodality; whereas here it appears only a unimodal 

profile. As such, this might generally imply two possibilities. One is that the two 

presumptive components might largely overlap, suggesting further, perhaps, 

that the passengers had similar perception on both routes. In that situation, we 

                                                        

1 Since the smallest value of journey time observations in a data set is considered valid, the inner 

lower fence could be ignored for the case studies in this thesis. It is presented in the box-

and-whisker plots for demonstration purpose only.  

2 This is slightly different from the standard or conventional representation of box-and-whisker 

plots where the whisker normally ends at the upper inner fence.  
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may anticipate that the measures of the central tendency of the two components 

would be similar. Another possibility is that if in fact there was a difference of 

centrality between the two components, one of the alternatives shall be weighted 

less while the other must be given a much higher mixture weight. Bearing the 

conjecture in mind, we conducted parallel testing of GM and LNM models on the 

same data set of OJT OBS .  

For the estimation of the two mixture models, initial values of all the model 

parameters were also estimated but from K-means clustering method (described 

in Section 3.3.3) with the same sample. The initial estimates are presented in 

Table 4.3 below.  

 

Table 4.3  Parameter estimates of GM and LNM models based on OJT OBS  data 
for Victoria – Holborn 

The initial values and the model parameters were estimated using the K-means 
clustering and the EM algorithm, respectively. 24,760n  . 

  GM  LNM 

Component-label  1r   2r    1r   2r   

Initial values       

r
KMS  (minute)  16.0 21.0  15.7 22.0 

r
KMS  (minute)  1.7 3.4  1.7 3.1 

r
KMS  (%)  64.1 35.9  64.1 35.9 

Parameter estimates       

ˆ
r   (minute)   16.6 22.2  16.5 21.3 

ˆ
r   (minute)  2.3 4.5  2.4 4.4 

ˆ
r   (%)  75.4 24.6  69.1 30.9 

 

In addition, the presumptive component distributions in each model are labelled, 

respectively, by 1r   (also ‘Route1’) and 2r   (also ‘Route2’), representing the 

two alternative routes. They will hereafter be referred to as component-labels.3  

                                                        

3 For illustrative purposes only, the component, whose value of 
r


KMS

 was relatively smaller, was 

labelled by a smaller real number, whereby the estimates will always be present in 

ascending order of 
r


KMS

 as the component-labels increases. This will also apply to all the 

subsequent case studies. 
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Note in the case of LNM model that we applied K-means clustering to the natural 

logarithms of OJT OBS  data, instead of the data set being originally derived. As a 

result, it numerically narrowed down the extent of dispersion of the data. The 

initial values for estimating LNM were thus more statistically centralised. 

Consequently, the medians (denoted by 
r
KMS ) and standard deviations (denoted 

by r
KMS) turned out to be slightly different from their counterparts for GM model. 

At this stage, the clustered sub-datasets for 1r   and 2r  , were mutually 

exclusive (cf. Section 3.3.3), where the preliminary sub-dataset being clustered 

for 1r   encompassed all the relatively shorter journey times being around 16 

minutes. That sub-dataset should contain a majority of the observations.  

Given the initial values, the parameters for both GM and LNM distributions of 

OJT OBS  were then estimated, using the EM algorithm. The estimation results are 

also presented in Table 4.3 (see previous page). The estimates from both models 

suggested that roughly 70%-75% of passengers might have actually chosen the 

quicker route, Route1; while the rest, about 25% to 30%, might have travelled 

between the O-D by using Route2. This profile showed a close similarity to the 

RODS results of this O-D. Moreover, compared to r
KMS , the increases in ˆr  r  

largely reflect a partial overlap between the two component distributions.  

Furthermore, the probabilities that any passenger might have chosen each of the 

alternative routes, conditional on his/her journey time, are illustrated in Figure 

4.4 (see next page), where the dotted and solid curves are related to GM and LNM, 

respectively. As can be seen from the graphs, if a passenger’s journey time was 

about 20 to 21 minutes, both models would suggest that he/she might have 

similar or the same preference of both the alternative routes. Route1 had a 

higher probability of being chosen by faster passengers whose journey times 

were less than that critical value, while those who spent longer journey time in 

travelling on this O-D might be more likely to have chosen Route2. What is more, 

if anyone’s journey time was longer than 26 minutes, given GM, or 30 minutes, 

given LNM, both the mixture models would simply make us believe that the 

journey time observation should be in no doubt from Route2, though this 

conjecture might not necessarily be the case in reality.  
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 (a) (b) 

 
 (c) (d) 

Figure 4.4  Posterior probabilities of route choices given OJT OBS  for 
Victoria – Holborn 24, 0)( 76n  : 

(a) for both routes, based on GM; (b) for both routes, based on LNM;  

(c) for Route1, based on GM and LNM; and (d) for Route2, based on GM and LNM.   

 

Table 4.4  Inferences of proportion of passenger traffic on each alternative 
route connecting Victoria to Holborn 24, 0)( 76n   

  GM  LNM 

Component-label  1r   2r    1r   2r   

ˆ
r  (%)  75.4 24.6  69.0 31.0 

rn 0INF   21,027 3,733  19,751 5,009 

r
0INF

 (%)  84.9 15.1  79.8 20.2 

rnINF   18,693 6,067  17,082 7,678 

r
INF  (%)  75.5 24.5  69.0 31.0 

 

Based on the estimates of posterior route-choice probabilities of every individual 

passenger, both the naive and the effective inferences of passenger-traffic 
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distributions between the two routes were also made. The results are presented 

in Table 4.4 (see previous page), together with ˆr  for comparisons. As specified 

in Section 3.4.1, rn 0INF  and r
0INF  represent the total number and proportion of 

passengers who chose the -thr  route, respectively, from the naive inference. 

This was drawn based on the condition that a passenger might have most likely 

chosen the route assigned the highest posterior probability. In comparison, rnINF  

and 
r
INF  were calculated according to the effective inference (see Section 3.4.2). 

Each of the inferences demonstrate an aggregation of every sampled individual’s 

probabilistic choices between the two alternative routes. The results in this case 

indicated that r
 INF  was practically consistent with the estimates ˆr  from the 

mixture models for each component, or rather, for each alternative route. To this 

point, an issue remaining to be solved was to match the estimated components 

to the real routes. That is, we needed to understand that which specific routes in 

reality ‘Route1’ and ‘Route2’ shall represent.  

 

Table 4.5  Expected journey times of simulated samples for each alternative 
route connecting Victoria to Holborn 

  Calculated average travel time (minutes) 

l  – l   Victoria – Central  Victoria – Piccadilly 
s   Oxford Circus  Green Park 

Journey segment     

, l ot 

ACC    2.7  2.7 

, , 1l ot 

WFD  / , , 2l ot 

WFD   0.8 / 2.8   0.8 / 2.8  

, [ , ]l o st 

OBT    3.0  1.0 

[ , ], l l st  

ICT    3.3  3.7 

, , 1l st 

ICW  / , , 2l st 

ICW   1.3 / 3.6  1.1 / 3.5  

, [ , ]l s dt 

OBT    3.0  6.0 

, l dt 

EGR   2.8  4.5 

Route-label  1h    2h   

Total average     

(1,1)ht   16.9  19.9 

(2,1)ht   18.9  21.9 

(1, 2)ht   19.3  23.3 

(2, 2)ht   21.3  24.3 

ht
REF   19.6  23.0 
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Following the computation procedure of route-specific average journey time, as 

demonstrated in Section 3.5.1, 
ht
REF  for both of the alternative routes on this O-

D were calculated using the AEI data, and adjusted with the stations layout data; 

and the results are presented in Table 4.5 (see previous page). It showed that 
1t
REF  

and 
2t
REF  were clearly distinguishable between the two routes.  

Further to the calculation of ht
REF , we shall then made a sequence of comparisons 

in order to find out what the route-labels mean. We compared between the 

estimated means (see also Table 4.3, p.84) and the average journey times for 

each alternative route, as well as between the estimated mixture weights 

(including proportions of passenger traffic; see also Table 4.4, p.86) and the 

RODS results. All the information for such comparisons is summarised in Table 

4.6 below.  

 

Table 4.6  Matching the estimated mixture components with the real-world 
routes for Victoria – Holborn 

   r  matches h  

Component-label r   1r    2r   

Journey time (minutes)     

ˆ
r    

GM  16.6  22.2 

LNM  16.5  21.3 

ht
REF ˆ( )h

SEM   19.1 (0.9)  22.1 (0.9) 

CI for h   95% CL  [16.3, 21.9]  [19.3, 25.0] 
      

Traffic distribution (%)     

ˆ
r   

GM  75.4  24.6 

LNM  69.1  30.9 

h
ROD ( )hnROD  

AM Peak  71.3 (375)  28.7 (151) 

A weekday  66.2 (612)  33.8 (313) 
      

Route-label h   1h    2h   

   Victoria – Central  Victoria – Piccadilly 
   Oxford Circus  Green Park 

 

Take the estimates from GM model for example. In line with Table 4.5 (see 

previous page), 1t
REF  and 2t

REF  denotes, respectively, the calculated average 

journey times of the routes, “Victoria – Central, via Oxford Circus station” and 
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“Victoria – Piccadilly, via Green Park station”. At first glance, it is noticeable 

that 
1 2t tREF REF , and also that 1 2

ˆ ˆ  . Additionally, 
2 2

ˆt REF . Such an outcome 

would largely imply that Route1 (i.e. 1r  ) might correspond to the former 

route, which was labelled by 1h  ; and similarly, Route2 (i.e. 2r  ) could be 

regarded as the alternative labelled by 2h  . Although 
1 1
ˆ t  REF , it still fell within 

the 95% CI of 
1t
REF , given ( , )ht    1, 2   and 1, 2   (cf. Section 3.5.1). If 

all the conjectures above were true, 1r   must be equivalent to 1h  ; and 2r   

must also be the same as 2h  . A strong supporting evidence to this supposition 

was that ˆ
r  1, 2r   showed a close similarity to the corresponding RODS 

results, h
ROD  1, 2h  . According to the criteria laid down in Section 3.5.2, it 

could then be concluded in this case that Route1 was extremely likely the route, 

1h  , and Route2 the other, 2h  . With regard to the estimates of LNM model, 

we could derive the same conclusion from Table 4.6 (see previous page).  

Based on all the results above, Figure 4.5 below (and also next page) delineates 

a graphical view of the estimated the PDFs of the GM and LNM distributions as 

well as all the components.  

 

 
(a) 

Figure 4.5  Estimated mixture distributions, and weighted components thereof, 
of OJT  for Victoria – Holborn 24, 0)( 76n  : 

(a) estimated GM model; and  

(b) estimated LNM model (see next page).  
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(b) 

Figure 4.5  (Continued.) 

 

Evidently, both the GM and LNM models could be deemed to perform very well 

on this O-D; and they both were eligible in terms of the judging criterion for 

estimated parameters.  

With the aid of gof , the indicator for goodness of fit calculated by formula (3-46) 

(see p.63), we compared the statistical performance of the two models by 

repeating the computation 1,000 times; and the results are presented in Table 

4.7 below.  

 

Table 4.7  Goodness-of-fit test result for Victoria – Holborn 

The calculation of gof  was repeated 1,000 times for each model. 

  GM  LNM 

Rate of obtaining lower gof  (%)  0.3  99.7 

Average gof   0.109  0.096 

 

In this case, LNM was deemed to be more suitable, due to its lower average gof  

and a far higher rate of gaining a lower value of gof . 
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4.3.1.2 Case-2: Euston – St. James’s Park 

For the second case study, code-named Case-2, we also scrutinise an O-D pair 

with two indirect routes: Euston – St. James’s Park. Its network is illustrated in 

Figure 4.6 below.  

 

 

Figure 4.6  The LU network connecting the O-D pair: Euston – St. James’s Park. 

 

In contrast with Case-1, all passengers travelling on this O-D must firstly choose 

between two different lines at Euston, the origin station. They will have to make 

a decision whether to take the Victoria line (southbound) or the Northern line 

(southbound) for their first journey leg. On the second journey leg, those who 

take the Victoria line will transfer at Victoria station to either the District line 
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(eastbound) or the Circle line (eastbound).4 In a similar way to Case-1, we let 

this route be labelled 1h  . All the other passengers, who choose the Northern 

line at the origin and alight at Embankment station, will then have to transfer to 

a westbound train on either of the two common lines. This latter route was 

labelled 2h  . The data of OJT OBS  collected during the period of observation for 

this O-D is summarised in Figure 4.7 below, with Figure 4.7(a) describing the 

original data set and Figure 4.7(b) depicting a histogram of all the valid data for 

use.  

 

 
(a) 

 
(b) 

Figure 4.7  Summary of OJT OBS  data for Euston – St. James’s Park: 

(a) a box-and-whisker plot of the raw data 
0

22 8)( ,96n  ; and  

(b) a histogram of the valid data 22, 9)( 37n  . 

                                                        

4 Within Zone-1 of the LU network, the operational routes of the District line and the Circle line 

are parallel and share the same platform at the stations they stop along the way.  



- 93 - 

What was similar to Case-1 was that the shape of the histogram shown in Figure 

4.7(b) (see previous page) still did not demonstrate distinct characteristics of a 

bimodal distribution, despite the availability of two alternative routes. Again, 

this might be due to either a substantial overlap between the journey time 

distributions of the two routes or a significant weighting disparity between the 

two in the mixture distribution (cf. Section 4.3.1, p.78). Notwithstanding such 

unimodality, we applied K-means clustering method to the valid OJT OBS  data to 

gain two sets of initial values for the estimation of GM and LNM models, 

respectively.  

The estimation results of the initial values as well as the mixture model 

parameters are presented in Table 4.8 below.   

 

Table 4.8  Parameter estimates of GM and LNM models based on OJT OBS  data 
for Euston – St. James’s Park 

The initial values and the model parameters were estimated using the K-means 
clustering and the EM algorithm, respectively. 22,379n  . 

  GM  LNM 

Component-label  1r   2r    1r   2r   

Initial values       

r
KMS  (minute)  17.0 20.0  17.0 20.1 

r
KMS  (minute)  1.2 2.2  1.3 2.0 

r
KMS  (%)  55.5 44.5  55.5 44.5 

Parameter estimates       

ˆ
r   (minute)  17.6 21.2  17.8 22.3 

ˆ
r   (minute)  1.8 3.0  2.0 2.7 

ˆ
r   (%)  72.4 27.6  82.8 17.2 

 

We could see that the estimates of the component means (denoted by ˆr ) did 

not differ very much from their initial values, while the standard deviations 

(denoted by ˆr ) and the mixture weights (denoted by ˆr ) changed dramatically, 

which accounted for the expected overlap between the mixture components. On 

the other hand, it is noticeable that 1 2
ˆ ˆ   and 1 2

ˆ ˆ  . This again implied that 

much more passengers might have taken the faster route, which was similarly 

labelled by 1r   and referred to as Route1. Correspondingly, the slower route, 
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labelled by 2r  , was referred to as Route2. The LNM model even suggested a 

relatively more lopsided situation that Route1 might have taken more than 80% 

of the passenger traffic between this O-D.  

In line with the process of model testing as demonstrated in Case-1, the 

distributions of the estimated posterior choice probabilities of passengers are 

illustrated in Figure 4.8 below.  

 

 
 (a) (b) 

 
 (c) (d) 

Figure 4.8  Posterior probabilities of route choices given OJT OBS  for 
Euston – St. James’s Park 22, 9)( 37n  : 

(a) for both routes, based on GM; (b) for both routes, based on LNM;  
(c) for Route1, based on GM and LNM; and (d) for Route2, based on GM and LNM. 

 

On the basis of that, the inference of passenger-flow proportions between the 

alternative routes on this O-D were calculated, and the results are presented in 

Table 4.9 (see next page). Furthermore, the computation of the route-specific 

average journey times are shown in Table 4.10 (see next page).  
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Table 4.9  Inferences of proportion of passenger traffic on each alternative 
route connecting Euston to St. James’s Park 22, 9)( 37n   

  GM  LNM 

Component-label  1r   2r    1r   2r   

ˆ
r  (%)  72.4 27.6  82.8 17.2 

rn 0INF   17,766 4,613  19,322 3,057 

r
0INF  (%)  79.4 20.6  86.3 13.7 

rnINF   16,152 6,227  18,512 3,867 

r
INF  (%)  72.2 27.8  82.7 17.3 

 

Table 4.10  Expected journey times of simulated samples for each alternative 
route connecting Euston to St. James’s Park 

  Calculated average travel time (minutes) 

l  – l   Victoria – Circle/District  Northern – Circle/District 
s   Victoria  Embankment 

Journey segment     

, l ot 

ACC    4.0  2.4 

, , 1l ot 

WFD  / , , 2l ot 

WFD   0.6 / 2.6  1.8 / 5.1 

, [ , ]l o st 

OBT    7.0  8.0 

[ , ], l l st  

TIC    2.0  2.2 

, , 1l st 

WIC  / , , 2l st 

WIC   1.6 / 3.8  1.5 / 3.6 

, [ , ]l s dt 

OBT    1.0  3.0 

, l dt 

EGR   0.5  0.5 

Route-label  1h    2h   

Total average     

(1,1)ht   16.7  19.4 

(2,1)ht   18.7  22.7 

(1, 2)ht   18.9  21.5 

(2, 2)ht   20.9  24.8 

ht
REF   18.8  22.1 

 

Table 4.11 (see next page) demonstrates the comparisons between the models’ 

estimates and the survey results in order to interpret the route-labels and to 

validate those estimates.  
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Table 4.11  Matching the estimated mixture components with the real-world 
routes for Euston – St. James’s Park 

   r  matches h  

Component-label r   1r     2r   

Journey time (minutes)     

ˆ
r    

GM  17.6  21.2 

LNM  17.8  22.3 

 ( ˆ
h
SEM )  18.8 (0.9)  22.1 (1.1) 

CI for h  95% CL  [16.1, 21.5]  [18.5, 25.7] 
      

Traffic distribution (%)     

ˆ
r   

GM  72.4  27.6 

LNM  82.8  17.3 

h
ROD  ( hnROD ) 

AM Peak  42.8 (187)  57.2 (250) 

A weekday  46.4 (225)  53.6 (260) 
      

Route-label h   1h    2h   

   Victoria –   Northern –  
   Circle/District  Circle/District 
   Victoria  Embankment 

 

By comparing ˆr  with ht
REF  for each alternative route in this case, the situation 

was also very similar to that in Case-1. In view of the fact that 1̂  and 2̂  fell 

within the 95% CI of 1t
REF  and 2t

REF , respectively, we could preliminarily match 

Route1 (i.e. 1r  ) to the route that goes through Victoria station (i.e. 1h  : 

Victoria – Circle/District); and also regard Route2 (i.e. 2r  ) as the alternative 

route via Embankment station (i.e. 2h  : Northern – Circle/District).  

However, in this case, there was an issue on validating the mixture models with 

the RODS results. Take the estimates from GM model for example. According to 

the RODS, 1
ROD  (= 42.8%) was slightly smaller than 2

ROD  (= 57.2%), which 

suggested that the quicker route shared less of the total passenger traffic than 

the slower transit service. Given the existing information, we could not find out 

the reason to this point; but we might doubt that the h
ROD  in this case was not 

quite credible. On the other hand, ˆr  derived from either GM or LNM model in 

this case seemed to make more sense, as a much larger proportion of passenger 

traffic was assigned to Route1 for a quicker service. The following three 

possibilities might account for puzzled situation: (see next page)  

ht
REF
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i. the RODS results for this case might not be accurate mainly because 

they were aggregated on a rolling basis, notwithstanding the presence 

of a large sample;  

ii. some attributes of the slower route were possibly more preferable to 

passengers5, e.g. shorter walking distance and wait time; and/or  

iii. neither the GM nor LNM model were suitable for this case, but other 

models should be further tested.  

Despite all this, we should accept both GM and LNM models in this case, given 

their sensible estimates.  

Figure 4.9 below (and also next page) shows the estimated PDFs of the GM and 

LNM distributions, which showed that both models could fit the journey time 

data very well. Yet, the difference between the two was not as immediately 

noticeable as that in Case-1.  

 

 
(a) 

Figure 4.9  Estimated mixture distributions, and weighted components thereof, 
of OJT  for Euston – St. James’s Park 22, 9)( 37n  : 

(a) estimated GM model; and  
(b) estimated LNM model (see next page).  

                                                        

5 This will be further examined in Chapter 6. 
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(b) 

Figure 4.9  (Continued.) 

 

Furthermore, as shown in Table 4.12 below, the result of the goodness-of-fit test 

suggested that the LNM model should be more suitable in this case, as it gave a 

lower average gof  as well as has a much greater rate of gaining a better fit.  

 

Table 4.12  Goodness-of-fit test result for Euston – St. James’s Park 

The calculation of gof  was repeated 1,000 times for each model. 

  GM  LNM 

Rate of obtaining lower gof  (%)  19.1  80.9 

Average gof   0.115  0.113 

 

4.3.1.3 Case-3: Victoria – Liverpool Street 

The last of the three cases involving two alternative routes being studied was the 

O-D pair: Victoria – Liverpool Street. Its network is illustrated in Figure 4.10 

(see next page), where both the O-D stations are highlighted with green-shaded 

circles.  

 



 
- 9

9
 - 

 

 

Figure 4.10  The LU network connecting the O-D pair: Victoria – Liverpool Street. 

 

As mentioned earlier, this O-D provides travellers with both direct and indirect services. More specifically, all the passengers at the origin 

station, Victoria, could use either the Circle line (eastbound) serving as a direct route, labelled 1h  ; or choose to take the Victoria line 

(northbound) first but would then transfer to the Central line (eastbound) at Oxford Circus, labelled by 2h  . 
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It is noted that anyone choosing the Circle line may also jump to the Central line 

at the station of Monument/Bank complex (or simply Bank). However, that route 

was not considered in this case, because of its overlong connection paths for 

interchange; and we also assumed that any passenger who had already chosen a 

direct service would not usually change to an indirect service during his/her 

journey. Moreover, as reported by RODS, this route was rarely used in practice.  

Figure 4.11 below summarises the OJT OBS  data to be modelled in this case. 

Unlike Case-1 and Case-2, the frequency distribution of OJT OBS  for this O-D, as 

shown in Figure 4.11(b), appeared to be a bimodal profile, with the major and 

minor modes being 22 and 27 minutes, respectively, though the minor one was 

less obvious. 

 

 
(a) 

 
(b) 

Figure 4.11  Summary of OJT OBS  data for Victoria – Liverpool Street: 

(a) a box-and-whisker plot of the raw data 
0

36 8)( ,66n  ; and  

(b) a histogram of the valid data 36, 2)( 26n  .  
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Based on the sample of 36,262 individuals’ journey times, the initial values as 

well as the estimates of mixture model parameters were obtained, which are 

presented in Table 4.13 below.  

 

Table 4.13  Parameter estimates of GM and LNM models based on OJT OBS  data 
for Victoria – Liverpool Street 

The initial values and the model parameters were estimated using the K-means 
clustering and the EM algorithm, respectively. 36,262n  . 

  GM  LNM 

Component-label  1r   2r    1r   2r   

Initial values       

r
KMS  (minute)  23.0 30.0  22.1 30.2 

r
KMS  (minute)  2.1 3.9  1.8 3.8 

r
KMS  (%)  55.6 44.5  49.2 50.8 

Parameter estimates       

ˆ
r   (minute)   22.8 30.3  22.3 29.7 

ˆ
r   (minute)  2.3 4.6  2.1 4.5 

ˆ
r   (%)  50.6 49.4  43.6 56.4 

 

We discerned that both the major and minor modes shown in the frequency 

distribution had been roughly captured and retrieved by the estimation of the 

two mixture models, where 1̂  and 2̂  were around 22.5 and 30.0 minutes, 

respectively. By comparison with the previous two O-D cases, a significant 

difference in the estimation results for this case was reflected in the estimates of 

mixture weights, ˆr . So far, all the testing mixture models (in the previous two 

cases) suggested that the traffic volume on faster routes would be higher than 

the slower alternative. However, notwithstanding a large gap between 1̂  and 

2̂  in this case, 1̂  was almost the same as 2̂  for the GM model; and the 

situation was even the opposite given the LNM model, namely, 1 2
ˆ ˆ   while 

1 2
ˆ ˆ  . The LNM estimates then suggested that a larger proportion of 

passengers tended to pay nearly eight minutes more for the slower service. The 

most likely reason might be that more travellers would be inclined to avoid the 
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interchange when making a journey.1 Figure 4.12 below depicts the estimates 

of posterior probabilities of the passengers’ route choices.   

 

 
 (a) (b) 

 
 (c) (d) 

Figure 4.12  Posterior probabilities of route choices given OJT OBS  for 
Victoria – Liverpool Street 36, 2)( 26n  : 

(a) for both routes, based on GM; (b) for both routes, based on LNM;  

(c) for Route1, based on GM and LNM; and (d) for Route2, based on GM and LNM. 

 

Generally, what was happening on this point was very much similar to Case-2. If 

passengers’ journey times were shorter than the sample mean of the given data 

set for this O-D, their choice probabilities for Route1 (i.e. the faster route) were 

believed to be higher than for Route2; whereas for those who spent more than 

about 26 or 27 minutes, the probability of choosing the slower route would 

                                                        

1 This will be further examined in Chapter 6. 
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become higher. This could be reasonable given the fact that the minor mode was 

about 27 minutes and the estimated mean for Route2 was greater than that.  

The inference of passenger-traffic distribution on this O-D is presented in Table 

4.14 (see next page). For each of the two mixture models, the traffic share 0

r
INF  

(that was based on the naive inference) showed the same trend as 
r
INF  (that was 

based on the effective inference), notwithstanding the difference of implications 

between the two models.  

Similar to the previous two cases, the average travel times for each alternative 

route as well as for each of their journey segments are presented in Table 4.15 

(see next page); and the comparison of the mixture models is set out in Table 

4.16 (see p.105).  

Now we also take the GM model as an example to demonstrate the way of 

matching a component-label to a real route. From the information in Table 4.15, 

we could see that 1 1
ˆt REF , and also that 2 2

ˆt REF . This was mainly because the 

calculation of ht
REF  1, 2h   considered equally the four distinct circumstances 

specified in Section 3.5.1 (see p.62) However, it could also be noticed that 1̂  

was close to 1(1 ,1)t  of the indirect route, while 2̂  approximated 2(1,1)t  of the 

direct route. Additionally, as shown in Table 4.16, 1̂  and 2̂  fell within the 95% 

CI of 1t
REF  and 2t

REF , respectively. In view of these evidence, Route1 and Route2 

could be deemed as the indirect service and the direct service, respectively. This 

should then suggest that most passengers travelling on this O-D could 

successfully board the firstly arriving train at both the origin and interchange 

stations (cf. circumstance II-i, see also p.62).  

 

Table 4.14  Inferences of proportion of passenger traffic on each alternative 
route connecting Victoria to Liverpool Street 36, 2)( 26n   

  GM  LNM 

Component-label  1r   2r    1r   2r   

ˆ
r  (%)  50.6 49.4  43.6 56.4 

rn 0INF
  20,145 16,117  17,835 18,427 

r
0INF  (%)  55.6 44.4  49.2 50.8 

rnINF   18,077 18,185  15,617 20,645 

r
INF  (%)  49.9 50.1  43.1 56.9 
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Table 4.15  Expected journey times of simulated samples for each alternative 
route connecting Victoria to Liverpool Street 

  Calculated average travel time (minutes) 

l  – l   Victoria – Central  Circle 
s   Oxford Circus  – 

Journey segment     

, l ot 

ACC    2.7  1.7 

, , 1l ot 

WFD  / , , 2l ot 

WFD   0.8 / 2.8  4.8 / 14.8 

, [ , ]l o st 

OBT    3.0  20.0 

[ , ], l l st  

ICT    3.3     - 

, , 1l st 

ICW  / , , 2l st 

ICW   1.3 / 3.6     - 

, [ , ]l s dt 

OBT    10.0     - 

, l dt 

EGR   1.7  1.8 

Route-label   1h    2h   

Total average     

(1,1)ht   22.8  28.4 

(2,1)ht   24.8  38.3 

(1, 2)ht   25.2      - 

(2, 2)ht   27.2      - 

ht
REF   25.0  33.3 

 

In regard to the proportions of passenger traffic, neither the GM estimates nor 

the corresponding naive inference were consistent with the RODS result; the GM 

model might lead to a contradictory conclusion on the traffic shared between 

Route1 and Route2. By reference to h
ROD  h  for a typical whole day on this O-D, 

which was based on a much larger sample (see also Table 4.16), it showed that 

a majority of passengers would rather spend a relatively longer journey time 

than make an interchange for a quicker transit service.  

From a combined view of the information in both Table 4.15 and Table 4.16, 

we shall conclude that Route1 (i.e. 1r  ) was most likely the indirect route (i.e. 

1h  ); and Route2 (i.e. 2r  ) must be the direct service (i.e. 2h  ). And we shall 

also consider both models to be eligible.  

Figure 4.13 (see next page) shows the estimated PDFs of the GM and LNM 

distributions.  
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Table 4.16  Matching the estimated mixture components with the real-world 
routes for Victoria – Liverpool Street 

   r  matches h  

Component-label r   1r    2r   

Journey time (minutes)     

ˆ
r  

GM  22.8  30.3 

LNM  22.3  29.7 

ht
REF  ( ˆ

h
SEM )  25.0 (0.9)  33.3 (2.9) 

CI for h   95% CL  [22.2, 27.8]  [24.2, 42.5] 
      

Traffic distribution (%)     

ˆ
r  

GM  50.6  49.4 

LNM  43.8  56.4 

h
ROD  ( hnROD ) 

AM Peak  48.1  (268)  51.9  (289) 

A weekday  38.9  (1,042)  61.1  (1,634) 
      

Route-label h   1h    2h   

   Victoria – Central  Circle 

   Oxford Circus  – 

 

 

 
(a) 

Figure 4.13  Estimated mixture distributions, and weighted components 
thereof, of OJT  for Victoria – Liverpool Street 36, 2)( 26n  : 

(a) estimated GM model; and  

(b) estimated LNM model (see next page). 
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(b) 

Figure 4.13  (Continued.) 

 

Table 4.17  Goodness-of-fit test result for Victoria – Liverpool Street 

The calculation of gof  was repeated 1,000 times for each model. 

  GM  LNM 

Rate of obtaining lower gof  (%)  0  100 

Average gof   0.11  0.07 

 

From Table 4.17 above, the goodness-of-fit results in this case showed that the 

LNM could always provide a relatively lower gof , of which the average was very 

close to 0; and compared with the GM model, the LNM model had an absolute 

better-fit to the sample data.  

 

4.3.2 More than two alternative routes (Case-4 and Case-6) 

In this section, we further challenge the applicability of GM and LNM model in 

the context that more than two alternative routes are available for a given O-D. 

For this purpose, we selected four typical O-D pairs, where two were for cases of 

three routes, with each associating with a three-component mixture distribution, 

and the other two for the cases of four alternative routes, with each associating 
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with a four-component mixture distribution, accordingly. However, here we only 

describe one case study in each of the two circumstances. This is because the 

modelling process for three or more components are essentially the same as for 

the two component case studies in Section 4.3.1. The main difference between 

different case studies lies mostly in the conditions for matching a route-label to 

a real route.  

To start this section, a case study given the availability of three alternative routes 

is presented in Section 4.3.2.1, which is code-named Case-4. Then Section 

4.3.2.2 examines an O-D pair connected by four alternative routes, which is 

code-named Case-6. For the other remaining two case studies, we present in 

Appendix C only the relevant estimation results, as the basic principles have 

been demonstrated in the previous section. We code-name the case with three 

alternative routes Case-5 and that with four alternative routes Case-7.  

In the same way as we dealt with the two-route examples, both GM and LNM 

models were applied to fit the OJT OBS  data available for all these four cases, so 

as to test whether the two standard mixture models could also be suitable. The 

identification of the route-choice set for each of the four O-D’s had also been 

verified with the RODS results, and are described based on the edited Tube maps 

presented in the corresponding subsections.  

 

4.3.2.1 A case of three routes (Case-4): Angel – Waterloo  

This section describes a case study on an O-D pair connected by three alternative 

routes, where the origin and destination are the stations of Angel and Waterloo, 

respectively. The network linking this O-D pair is illustrated in Figure 4.14 (see 

next page), with both the O-D stations being marked with shaded circles, and the 

relevant interchange stations being circled with dots.  

In this case, all passengers starting their journeys from Angel station (shown in 

the upper right corner of the map) may choose either a northbound or a 

southbound train of the Northern line for the first journey leg.  
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Figure 4.14  The LU network connecting the O-D pair: Angel – Waterloo. 

 

For the former option (i.e. a northbound train), the passengers would need to 

transfer at Euston station, to a southbound Northern Line train. For the latter 

(i.e. a southbound train), two alternative interchange stations are available. That 

is to say, the passengers could choose to alight at Bank station and transfer to a 

connecting service on the Waterloo & City line (southbound); or they may 

remain on the southbound Northern line train (via Bank) and travel a bit further 

to the station of London Bridge, where they could transfer to a southbound train 

of the Jubilee line so as to reach Waterloo station. According to the map-view, to 

make an interchange at Bank would seem to be more attractive than the others, 

as that route involve only three intermediate stops in total. By contrast, it might 

possibly cost a much longer journey time to transfer at Euston.  
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Within the specified AM Peak (from 07:00 a.m. to 10:00 a.m.), 25,122 journeys 

were recorded during the observation period of 193 days, with a sample size of 

24,760 OJT OBS  being considered valid. Figure 4.15 below gives the statistical 

summary of the sample data set for this case. As shown in Figure 4.15(b), the 

frequency distribution still presented a unimodal profile, with the single mode 

being 22 minutes. This might also imply that the locations (or rather, the location 

parameters) of the journey time distributions for the three alternative routes 

were possibly close to each other, which stacked around the mode of the mixture. 

Otherwise, in light of experience gained from the previous case studies, the 

journey time distribution of the relatively slower route among the three 

alternatives might have a higher degree of dispersion.  

 

 
(a) 

 
(b) 

Figure 4.15  Summary of OJT OBS  data for Angel – Waterloo: 

(a) a box-and-whisker plot of the raw data 
0

14 3)( ,67n  ; and  

(b) a histogram of the valid data 14, 9)( 41n  . 
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Using this data sample, we obtained the estimates of the initial values from the 

K-means clustering and that of the mixture model parameters by the EM 

algorithm. The estimated results are presented in Table 4.18 below.  

 

Table 4.18  Parameter estimates of GM and LNM models based on OJT OBS  data 
for Angel – Waterloo 

The initial values and the model parameters were estimated using the K-means 
clustering and the EM algorithm, respectively. 14,419n  . 

  GM  LNM 

Component-label  1r    2r   3r    1r   2r   3r   

Initial values         

r
KMS  (minute)  20.0 23.0 28.0  19.0 22.0 27.1 

r
KMS  (minute)  1.4 1.1 2.9  1.2 1.1 2.7 

r
KMS  (%)  38.7 38.3 23.0  27.3 42.1 30.6 

Parameter estimates         

ˆ
r   (minute)  20.3 24.0 29.2  20.5 24.4 36.0 

ˆ
r   (minute)  1.9 2.9 4.5  2.2 3.5 2.3 

ˆ
r   (%)  38.8 49.6 10.6  39.0 59.7 1.3 

 

For Route1 (i.e. 1r  ) and Route2 (i.e. 2r  ) , we could see that 1
KMS  and 2

KMS  

were around the mixture mode for both GM and LNM, while Route3 (i.e. 3r  ) 

tended to be representing a slower route as 3
KMS  appeared to be much larger. 

For the GM model, 1
KMS  and 2

KMS  were nearly equal to each other. Nonetheless, 

for the LNM model, 1
KMS  was the smallest among the three routes/components. 

This might potentially lead to a similar situation in the estimation of ˆr  for the 

mixture models.  

As also exhibited in Table 4.18 above, the estimates of both the mixture models 

indicated that the journey time distribution of Route1 (that provides the fastest 

service among the three routes) was shaped by a relatively smaller proportion 

of the sample OJT OBS . In comparison, Route2 (i.e. a slightly slower route) shared 

the largest portion of the whole passenger traffic. For Route3, the slowest 

service, 3̂  differed significantly between the GM and LNM. This might serve as 

a crucial point to judge whether the model was acceptable or not.  
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 (a) (b) 

 
 (c) (d) 

 
 (e) 

Figure 4.16  Posterior probabilities of route choices given OJT OBS  for 
Angel – Waterloo 14, 9)( 41n  : 

(a) for all alternatives, based on GM; (b) for all alternatives, based on LNM;  

(c) for Route1, based on GM and LNM; (d) for Route2, based on GM and LNM; and  

(e) for Route3, based on GM and LNM.  

 

A batch of graphs presented in Figure 4.16 above illustrates the posterior 

probabilities of passengers’ route choices estimated from the GM as well as LNM 
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models.  Take the estimates of the GM for example. As shown in Figure 4.16(a) 

(see previous page), the solid curve suggested that if passengers’ journey times 

were less than about 22 minutes, the probability of choosing Route1 was higher 

than the other two alternative routes. Route2 was believed to be more likely to 

be chosen by those passengers whose journey times were within the range 

between about 22 and 30 minutes. If the journey times were longer than about 

35 minutes, it was believed by GM model that the passengers had definitely 

chosen Route3, because in that case both the posterior probabilities of choosing 

Route1 and Route2 were estimated as approximating zero. Comparing the 

estimates of each alternative route between the two mixture models, the LNM 

also suggested a similar trend. In the case of Route1, as shown in Figure 4.16(c), 

GM and LNM gave similar results; whereas for each of Route2 (see Figure 

4.16(d)) and Route3 (see Figure 4.16(e)), there existed a substantial gap 

between the GM and LNM estimates of the choice probabilities.  

The distribution of passenger traffic, inferred from the estimated posterior 

probabilities of individuals’ choices, among the alternative routes on this O-D is 

presented in Table 4.19 below.  

 

Table 4.19  Inferences of proportion of passenger traffic on each alternative 
route connecting Angel to Waterloo 14, 9)( 41n   

  GM  LNM 

Component-label  1r    2r   3r    1r   2r   3r   

ˆ
r  (%)  39.8 49.6 10.6  39.0 59.7 1.3 

rn 0INF   7,254 6,250 915  5,580 8,645 194 

r
0INF  (%)  50.3 43.3 6.3  38.7 60.0 1.3 

rnINF   5,688 7,189 1,542  5,604 8,626 189 

r
INF  (%)  39.4 49.4 10.7  38.9 59.8 1.3 

 

The consistency between ˆr  and r
INF  in both GM and LNM models again assures 

the practical significance of the method for effective inference. Note that in the 

case of the GM model, r
0INF

 from the naive inference suggested that a larger 

portion of the passengers might take Route1 (i.e. the fastest route), which also 

seemed to be reasonable. Notwithstanding this, the judgement had to be made 

after further review of, in our case, the RODS data.  
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Similar to all the previous cases, the computation of route-specific average 

journey times is demonstrated in Table 4.20 below, which was used to support 

the examination of the estimation results.  

 

Table 4.20  Expected journey times of simulated samples for each alternative 
route connecting Angel to Waterloo 

  Calculated average travel time (minutes) 

l  –  Northern –  Northern –  Northern – 
l   Waterloo & City  Jubilee  Northern 
s   Bank  London Bridge  Euston 

Journey segment       

, l ot 

ACC    3.8  3.8  3.8 

, , 1l ot 

WFD  / , , 2l ot 

WFD   1.5 / 4.8  1.5 / 4.8  1.3 / 4.4 

, [ , ]l o st 

OBT    6.0  8.0  4.0 

[ , ], l l st  

ICT    5.2  3.4  3.3 

, , 1l st 

ICW  / , , 2l st 

ICW   1.7 / 4.6  1.4 / 3.7  1.7 / 5.1 

, [ , ]l s dt 

OBT    3.0  3.0  10.0 

, l dt 

EGR   1.0  3.1  2.5 

Route-label  1h    2h    3h   

Total average        

(1,1)ht   22.1  24.1  26.5 

(2,1)ht   25.4  27.4  29.7 

(1, 2)ht   25.0  26.4  29.9 

(2, 2)ht   28.3  29.7  33.0 

ht
REF   25.2  26.9  29.8 

 

Given ht
REF  h , the route labelled 3h  , i.e. “Northern – Northern, via Euston 

station”, was believed to be the longest among all the three alternatives; and 

another route labelled 1h  , i.e. “Northern – Waterloo & City, via Bank station”, 

appeared to be the fastest. This was consistent with our conjecture based on the 

Tube map for this O-D (see Figure 4.14). On this basis, in the first instance, we 

could simply perceive that the estimated mixture component with the largest ˆr  

(i.e. 3r  , referred to as Route3) should be possibly the slowest route that goes 

through Euston, and that the component with the smallest ˆr  (i.e. 1r  , referred 

to as Route1) should be likely to be the fastest route via Bank. Thus, Route2 (i.e. 
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2r  ) was believed to be referring to the route, “Northern – Jubilee, via London 

Bridge”, which was labelled 2h  . All these matching pairs are displayed in 

Table 4.21 below.  

 

Table 4.21  Matching the estimated mixture components with the real-world 
routes for Angel – Waterloo 

   r  matches h  

Component-label r   1r    2r    3r   

Journey time (minutes)       

ˆ
r  

GM  20.3  24.0  29.2 

LNM  20.5  24.4  36.0 

ht
REF  ( ˆh

SEM )  25.2 (1.3)  26.9 (1.2)  29.8 (1.3) 

CI for h   95% CL  [21.2, 29.2]  [25.6, 34.0]  [23.2, 30.6] 
        

Traffic distribution (%)       

ˆ
r  

GM  39.8  49.6  10.6 

LNM  39.0  59.7  1.3 

h
ROD  ( hnROD ) 

AM Peak  42.9 (33)  44.1 (34)  13.0 (10) 

A weekday  54.9 (508)  24.2 (224)  20.9 (193) 
        

Route-label h   1h    2h    3h   

   Northern –   Northern –    Northern –  

   Waterloo & City  Jubilee  Northern 

   Bank  London Bridge  Euston 

 

Let us take for example the estimates of GM model. We could see from Table 

4.21 that 2̂  and 3̂  were both within the 95% CI of their corresponding ht
REF . 

Despite 1̂  being slightly smaller than the lower CI boundary, it was still 

perceived acceptable in view of 1̂  being closely approximated that boundary; 

whereas in the case of LNM model, 3̂  ( 36.0  minutes) was far beyond the 

upper boundary of the corresponding 95% CI. Thus, that estimate was deemed 

not appropriate, and hence the LNM model would not be considered to be 

suitable in this case.  

For further examination, we compared ˆr  to h
ROD . Two issues here should be 

noted. On the one hand, the sample size of RODS data for the AM Peak was small. 

There might be a higher risk of lack of credibility. On the other hand, in each of 
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the mixture models, a higher mixture weight was assigned to Route2 (via 

London Bridge), than to Route1 (via Bank). In other words, 1 2
ˆ ˆ  . This was 

also reflected by the RODS result, notwithstanding the presence of the small 

sample size. However, for the estimated mean journey times, we had 1 2
ˆ ˆ  . 

Considering both the Tube map as well as the results of 
ht
REF , Route1 (via Bank) 

would be expected to be more attractive. This supposition could be supported by 

evidence from the RODS data in the context of a much larger sample size. As also 

shown in Table 4.21, nearly 55% of passengers chose the quickest route on a 

typical weekday. On this account, the estimates from GM were still acceptable, 

though both testing models, especially the LNM, were potentially over-fitting the 

data.  

The estimated mixture distributions are illustrated in Figure 4.17 below (and 

also next page). From the appearances of the two graphs, both the GM and LNM 

models could fit the sample OJT OBS  data very well. Nevertheless, given the 

estimated parameters for the LNM, it did not seem possible to put a plausible 

interpretation on which route each of the mixture components might refer to. 

The LNM would therefore be ignored, compared with the GM.  

 

 
(a) 

Figure 4.17  Estimated mixture distributions, and weighted components 
thereof, of OJT  for Angel – Waterloo 14, 9)( 41n  : 

(a) estimated GM model; and  

(b) estimated LNM model (see next page).  
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(b) 

Figure 4.17  (Continued.) 

 

From the analyses above, the test of goodness of fit in this case was actually not 

necessary, since we have already made a judgement that the GM model would be 

relatively more suitable than the LNM. For demonstration purpose, we still 

present, in Table 4.22 below, the goodness-of-fit test result. The LNM model, 

though could have a much better fit than the GM model, might over-fit the sample 

data in this case.  

 

Table 4.22  Goodness-of-fit test result for Angel – Waterloo 

The calculation of gof  was repeated 1,000 times for each model. 

  GM  LNM 

Rate of obtaining lower gof  (%)  17.7  82.3 

Average gof   0.081  0.078 

 

4.3.2.2 A case of four routes (Case-6): Euston – South Kensington  

In this section, we turn our attention to test the applicability of the GM and LNM 

models on an O-D pair being served by four alternative routes. The origin and 

destination are Euston and South Kensington, respectively. The network of the 

O-D is illustrated in Figure 4.18 (see next page).  
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Figure 4.18  The LU network connecting the O-D pair: 
Euston – South Kensington. 

 

In this case, all passengers departing from Euston station are supposed to choose 

between the Victoria line and the Northern line (southbound). For those who 

take the former, they may then choose to transfer to a westbound train of the 

Piccadilly line at Green Park station, or alight at Victoria station but transfer to 

another westbound train on one of the Circle/District lines. For those who go 

for the latter option (i.e. taking the Northern line for the first journey leg), they 

may make an interchange at either the stations of Leicester Square or 

Embankment. Likewise, it would also lead to a line choice between the Piccadilly 

line and the common lines.  

A summary of the OJT OBS  data available for this O-D is illustrated in Figure 4.19 

(see next page). A total of 8,277 journey records were recorded within the AM 

Peaks during the 192-day observation period, where a sample size of 8,116 

OJT OBS  were valid and thus used for estimation of four-component GM and LNM 

in this case.  
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(a) 

 
(b) 

Figure 4.19  Summary of OJT OBS  data for Euston – South Kensington: 

(a) a box-and-whisker plot of the raw data 
0

8, 7)( 27n  ; and  

(b) a histogram of the valid data 8, 6)( 11n  . 

 

As shown in Figure 4.19(b) above, the bimodality is presented in the frequency 

distribution of the valid data, with the major and minor modes being about 22 

and 20 minutes, respectively. This was also reflected in the estimates of r
KMS  as 

shown in Table 4.23 (see next page); and similar ˆr  were obtained for two of all 

the component distributions, which should characterise the two fastest routes 

among all the four alternatives. In addition, it appeared that ˆr  r  were fairly 

reasonable, which generally suggested that most passengers might prefer faster 

routes.  
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Table 4.23  Parameter estimates of GM and LNM models based on OJT OBS  data 
for Euston – South Kensington 

The initial values and the model parameters were estimated using the K-means 
clustering and the EM algorithm, respectively. 8,116n  . 

  GM  LNM 

Component-label  1r   2r   3r   4r    1r   2r   3r   4r   

Initial values           

r
KMS  (minute)  20.0 23.0 26.0 31.0  19.0 22.0 25.0 30.1 

r
KMS  (minute)  1.2 0.8 1.1 2.9  1.0 0.8 1.1 2.8 

r
KMS  (%)  37.5 31.5 21.1 9.9  25.9 34.5 26.2 13.3 

Parameter estimates           

ˆ
r   (minute)  20.0 22.9 26.0 30.3  19.5 22.0 25.2 29.3 

ˆ
r   (minute)  1.4 1.0 1.4 3.7  1.3 1.2 1.7 3.8 

ˆ
r   (%)  40.9 26.6 19.8 12.7  28.4 30.9 24.3 16.4 

 

Moreover, the estimated posterior probabilities of passengers’ route choices are 

illustrated in Figure 4.20 below (and also next page). Figure 4.20(a) and (b) 

below present the estimation results from the GM and LNM models, respectively.  

 

 
 (a) (b) 

Figure 4.20  Posterior probabilities of route choices given OJT OBS  for 
Euston – South Kensington 8, 6)( 11n  : 

(a) for all alternatives, based on GM; (b) for all alternatives, based on LNM;  

(c) for Route1, based on GM and LNM (see next page);  

(d) for Route2, based on GM and LNM (see next page);  

(e) for Route3, based on GM and LNM (see next page); and  

(f) for Route4, based on GM and LNM (see next page).  
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 (c) (d) 

 
 (e) (f) 

Figure 4.20  (Continued.) 

 

Figure 4.20(c)–(f) above show comparisons of the choice probabilities for each 

alternative route between the two models. It could be seen from the four graphs 

that those both models suggested a similar trend of the route-choice probability 

condition on journey time.  

The inferences of the passenger-traffic distributions among the four alternative 

routes were presented in Table 4.24 (see next page). For both models, r
0INF  was 

close to r
INF  for each route. This would largely reduce the indeterminacy of the 

judgement on route-matching and model validation.  

To proceed to find out each route-label in this case, the computation of expected 

average journey times is presented in Table 4.25 (see next page), where the four 

routes were labelled by 1, 2, 3, 4   and h  , respectively. It is noticeable that ht
REF  

h  were clearly distinct from one another. This would greatly facilitate the 

route-matching process.  
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Table 4.24  Inferences of proportion of passenger traffic on each alternative 
route connecting Euston to South Kensington 8, 6)( 11n   

  GM  LNM 

Component-label  1r   2r   3r   4r    1r   2r   3r   4r   

ˆ
r  (%)  40.9 26.6 19.8 12.7  28.4 30.9 24.3 16.4 

rn 0INF   3,047 2,563 1,712 804  2,107 2,807 2,132 1,080 

r
0INF  (%)  37.5 31.5 21.1 9.9  25.9 34.5 26.2 13.3 

rnINF   3,314 2,147 1,654 1,011  2,315 2,514 1,934 1,363 

r
INF  (%)  40.8 26.4 20.4 12.4  28.5 30.9 23.8 16.8 

 

Table 4.25  Expected journey times of simulated samples for each alternative 
route connecting Euston to South Kensington 

  Calculated average travel time (minutes) 

l  –  Victoria –  Victoria –  Northern –  Northern – 
l   Circle/District  Piccadilly  Piccadilly  Circle/District 
s   Victoria  Green Park  Leicester Sq.  Embankment 

Journey segment         

, l ot 

ACC    4.0  4.0  2.4  2.4 

, , 1l ot 

WFD  / , , 2l ot 

WFD   0.6 / 2.6  0.6 / 2.6  1.8 / 5.1  1.8 / 5.1 

, [ , ]l o st 

OBT    7.0  5.0  5.0  8.0 

[ , ], l l st  

TIC    2.1  3.4  2.6  2.2 

, , 1l st 

WIC  / , , 2l st 

WIC   1.6 / 3.8  1.5 / 3.9  1.2 / 3.6  1.5 / 3.6 

, [ , ]l s dt 

OBT    4.0  6.0  9.0  10.0 

, l dt 

EGR   1.1  3.6  3.6  1.1 

Route-label  1h    2h    3h    4h   

Total average         

(1,1)ht   20.3  24.0  25.6  27.0 

(2,1)ht   22.3  26.0  28.9  30.3 

(1, 2)ht   22.5  26.4  27.9  29.1 

(2, 2)ht   24.5  28.4  31.3  32.5 

ht
REF   22.4  26.2  28.4  29.7 

 

According to the criteria specified in Section 3.5.2 and experience gained from 

the previous case studies, we could always preliminarily match a route-label to 

a real route given the similarity between ˆ
r  and ht

REF . Since no relevant 

information was available, the validation of such conjecture must be further 
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supported by evidence that ˆr  should fall within the CI of 
ht
REF  (at a given CL) for 

each alternative route. Meanwhile, ˆr  also need to be checked with some prior 

information (e.g. h
ROD  in our case, though, which was not completely reliable).  

We take for example the estimates from GM model to illustrate the component-

route matching in this case. As demonstrated in Table 4.26 below, we had two 

important facts here: (a) 1 2 3 4
ˆ ˆ ˆ ˆ       and (b) 1̂ , 2̂ , 3̂  and 4̂  were 

within the 95% CI of 
1t
REF , 

2t
REF , 

3t
REF  and 

4t
REF , respectively. This information could 

then shed light on the preliminary route-matching. That is, Route1 (i.e. 1r  ), 

Route2 (i.e. 2r  ), Route3 (i.e. 3r  ) and Route4 (i.e. 4r  ) correspond, 

respectively, to the alternative routes via Victoria, Green Park, Leicester Square 

and Embankment.  

 

Table 4.26  Matching the estimated mixture components with the real-world 
routes for Euston – South Kensington 

   r  matches h  

Component-label r   1r    2r    3r    4r   

Journey time (minutes)         

  
GM  20.0  22.9  26.0  30.3 

LNM  19.5  22.0  25.2  29.3 

ht
REF

 ( ˆh
SEM

)  22.4 (0.8)  26.2 (0.9)  28.4 (1.2)  29.7 (1.1) 

CI for h   95% CL  [19.7, 25.1]  [22.8, 29.5]  [24.7, 32.2]  [26.1, 33.4] 
          

Traffic distribution (%)         

ˆ
r  

GM  40.9  26.6  19.8  12.7 

LNM  28.4  30.9  24.3  16.4 

h
ROD

( hnROD
) 

AM Peak  57.4 (120)  21.1  (44)  21.1  (44)  0.5  (1) 

A whole day  44.0 (176)  31.8  (127)  23.3  (93)  1.0  (4) 
          

Route-label h   1h    2h    3h    4h   

   Victoria –   Victoria –   Northern –   Northern –  

   Circle/District  Piccadilly  Piccadilly  Circle/District 

   Victoria  Green Park  Leicester Sq.  Embankment 

 

In the comparison between ˆr  and h
ROD  for each of the mixture components, the 

general trend of ˆr  r  also appeared to be consistent with the RODS results. 

ˆ
r
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Therefore, we could then confirm the preliminary judgement and that could be 

deemed as the conclusion in this case.  

Given all the parameter estimates, Figure 4.21 below illustrates the estimated 

mixture distributions of both the GM and LNM models.  

 

 
(a) 

 
(b) 

Figure 4.21  Estimated mixture distributions, and weighted components 
thereof, of OJT  for Euston – South Kensington 8, 6)( 11n  : 

(a) estimated GM model; and  

(b) estimated LNM model.  
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Notwithstanding the goodness-of-fit test results presented in Table 4.27 below, 

the GM model was considered more suitable for this O-D case due to its more 

reasonable parameter estimates.  

 

Table 4.27  Goodness-of-fit test result for Euston – South Kensington 

The calculation of gof  was repeated 1,000 times for each model. 

  GM  LNM 

Rate of obtaining lower gof  (%)  17.4  82.6 

Average gof   0.091  0.087 

 

4.4 Summary and conclusions 

Following the idea proposed and the method discussed in the previous chapter, 

this chapter has implemented the mixture models of passengers’ journey times 

on a real underground network. The applications and features of both GM and 

LNM models have been demonstrated separately, and compared, on seven 

different O-D pairs based on the LU network, whereof five cases have been 

described in detail in this chapter. The other two cases have been exhibited in 

Appendix C that shows only the estimation results.  

Among all the seven cases, there was barely bi- or multi-modality exhibited in 

the mixture journey time distributions per se. This intrinsic feature, however, 

does not matter much for the application of the mixture models. In most cases, 

K-means could effectively capture the modes of the mixture distribution, which 

would greatly facilitate the delivery of sensible estimates by EM algorithm. It has 

been noted that the mixture model estimates, especially the estimated values of 

means, did not differ greatly from the initial values given by K-means. This might 

be partly because K-means is a special case of the EM algorithm; and partly 

because in some cases, K-means clustering might afford satisfied estimates, to a 

certain extent. For future research, more experiments could be done to test the 

influence of different initial values may have on the estimation results, using 

different methods other than K-means.  

In addition, when the number of alternative routes is small, say only two, GM and 

LNM models could afford similar results, where LNM may often provide a 
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relatively better goodness of fit. As the route-choice set grows larger, LNM may 

be more likely to produce ‘extreme’ component estimates, whereas GM would 

suit better the cases with an increasing number of alternative routes.  

In all case studies, the calculated average journey times 
ht
REF  h  were always 

greater than the estimated means, ˆr h . The most likely reason for this was that 

the computation of ht
REF  h  always considered ( , )ht    equally for all the four 

circumstances specified in Section 3.5.1 (i.e. 1, 2   and 1, 2  ); and 

(2,2)ht  accounted for 25% of 
ht
REF , which might be too high. It will surely be 

better to have a weighted average of ht  hence a better reference value of ht
REF . 

Still, it has been shown that ˆr  in most cases could fall within the 95% CI of ht
REF , 

which largely supports the identification of each route-label. Nevertheless, as has 

been briefly summarised in Section 4.3.2.2, the identification process in this 

thesis was rather subjective (cf. Section 3.5.2). On this account, an algorithm for 

automatic identification of the route-labels should be further studied in future 

research.  

In another regard, the level of traffic congestion would vary even within the 

specified three-hour period of study (i.e. the AM-Peak, defined as between 7:00 

a.m. and 10:00 a.m.), so that passengers’ perceptions to route choices may 

change as well. The case studies carried out in this thesis investigated only the 

AM-Peak as a whole. Further studies should be devoted to a shorter term with a 

larger sample given a relatively stable congestion level. Also, it is possible to 

obtain different mixture/component distributions given data from different 

time-bands of a day. Comparisons between the distributions by different time-

band of a day (e.g. between the Peaks and Off-peak) may thus assist us to draw 

some more general conclusions about passengers’ travel behaviour, such as 

whether they would tend to avoid busy stations at rush hour.  

In general, the outcomes of those case studies have shown that the finite mixture 

models could be a qualified inference framework for passengers’ probabilistic 

route choices at the aggregate level. It also enhances the potential of making use 

of the smart-card data to estimate passengers’ probabilistic route choices on any 

other similar public transport networks.  

Additionally, in some special cases on the LU network, the Oyster travellers are 

advised to swipe their Oyster cards on a ‘pink’ reader at some interchange 

stations, except for the ticket validation required at both the O-D gatelines. In 
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that way, the cardholders’ fares would be calculated properly according to the 

specific routes they have chosen. Otherwise, the maximum fare will be charged 

for travelling between the corresponding O-D. Accordingly, in such cases, the 

information about where and when passengers made interchanges is readily 

available. It will thus be worth examining these cases for future work, where we 

may firstly put aside the interchange data but estimate a mixture model; and then 

compare the model estimates with the real information of interchanges. This will 

greatly assist in testing the applicability of the mixture model in estimating 

passengers’ probabilistic route choices, and also improve the odds of obtaining 

a more appropriate model.  

It needs to be stated again that the mixture model allows for the observed 

journey time (i.e. OJT OBS

 in our case) to be an only condition for estimating the 

posterior probabilities. Therefore, different passengers, who were observed to 

have spent the same amount of r
KMS  travelling on this (and any other) O-D, are 

supposed to share an identical posterior probability of choosing each alternative 

route. This issue will be further investigated in the following chapter.  
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Chapter 5  

Updating route choice probabilities 

 

5.1 Introduction 

In this chapter, we revaluate and update every passenger’s choice probabilities 

with additional consideration of the determinants in each of their journey times. 

To this end, we recall two elementary events, qrchoice  as well as qδ , which have 

been discussed in Chapter 3; and trace them back to the simple network of -o d  

illustrated in Figure 3.1. As has been defined in Section 3.2, for each individual 

passenger, qrchoice  represents a statistical event that passenger q  chose route 

r  when he/she travelled from o  to d ; and the symbol qδ  represents another 

event that the observed journey time of q  is q
OBS . For Bayesian inference, 

Pr( | )qr qchoice δ , as a conditional probability function of the two events recalled, 

represents a posterior probability of q  choosing r . It was conceived to be a 

straightforward representation of the probabilistic route choices made by q , 

given the common set, R , of route choices (cf. Section 3.4). Additionally, the 

likelihood of qrchoice  occurring was predicated on the understanding that the 

journey time of q  has been known.  

Up to this point, it must be noted that the journey time has been serving as the 

only explanatory variable for the measurement of the route-choice probabilities. 

According to the mixture models (that has been implemented and demonstrated 

in the Chapter 4), passengers who were observed to have the same journey 

times were assumed to have the same choice probabilities for all the alternative 

routes. In other words, for any two individuals sampled from the passenger 

population, who are labelled i  and j  (where ,i j Q , i j  ), respectively, if 

i j OBS OBS , then it should be taken for granted by the mixture model that the 

posterior probabilities that they might have chosen the same route, say route r  

( r R  ), are equivalent. In that case, we should obtain the following equation: 

Pr( | ) Pr( | )ir i jr jchoice choiceδ δ . The two passengers may be thus regarded as 

having the same preference for every alternative route, even if they had actually 

used different routes. Or conversely, although the two passengers i  and j  made 
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their journeys by the same route, the fact that different journey time 

observations (i.e. i j OBS OBS ) might result in them having different posterior 

route-choice probabilities, thereby leading to biased estimates at the individual 

level. This is actually an inherent drawback of the posterior probabilities directly 

derived from the mixture models. Although the mixture model appeared to 

perform well for the estimation of route choice probabilities at aggregate level, 

we cannot infer that Pr( | )qr qchoice δ  presents individuals’ probabilistic route 

choices with a high degree of confidence.  

Basically, the mixture model allows for an oversimplified assumption on the 

probabilistic relationship between the two variables: passengers’ journey time, 

 , and their possible route choice, r . Such correlation could be simplistically 

represented by a graphic structure, as shown in Figure 5.1(a) below (see also 

Appendix A). The solid, orange coloured arc that joins the -noder  to the 

-node  represents a real-world causality. It indicates that any passenger’s 

journey time can be observed only after his/her journey has been completed, for 

which the passenger must have made a route choice. That is to say, a journey 

through route r  brings about (the observations of)  , with a probability 

distribution ( | )p r .  

 

r r

EXT
T



ENT
T

 (a) (b) 

Figure 5.1  Bayesian-network structures for investigating passengers’ 
probabilistic route choices: 

(a) a simplistic graphic structure showing probabilistic relationship between 

journey time and route choice; and 

(b) an extended structure showing causal conditions between entry time, exit 

time, journey time and route choice.  

 

But since r  is unobservable, we may only be able to learn about it in view of the 

journey time observation, with a posterior probability distribution ( )( | )qp r  , 
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where ( )qr  represents a possible route choice that q  might have made. This 

dependency is indicated by the dashed arc in Figure 5.1(a), which has also been 

our primary concern in the previous two chapters.  

In essence, the journey time   in the mixture model is treated as an independent 

variable. This implies that evidence about different entry times T ENT  (or exit 

times T EXT ) among the individual passengers would not have effect on learning 

about the distribution of  . Accordingly, two equations hold: ( ) ( | )p p T  ENT  

and ( ) ( | )p p T  ENT . That is, T ENT  and   were assumed to be independent and 

so were   and T EXT , but only the difference, T T  EXT ENT , matters. As has 

been mentioned at the outset of this chapter, it is only the variation in the journey 

times that causes the individual passengers to be assigned different choice 

probabilities by the mixture model. In this sense, the estimates from the mixture 

model purely suggest the average route-choice probability (or average level of 

preference to each alternative route) of passengers who spent about the same 

journey time.  

However, passengers’ entry time T ENT  actually acts as an important influencing 

factor in the journey time variations. In addition, their exit time T EXT  would be 

largely dependent on the specific routes they choose after they touch in, and 

hence the corresponding journey times differ. That is to say, the passengers’ 

journey times are caused jointly by T ENT , T EXT  as well as their route choices. The 

dependencies among these three variables are illustrated in Figure 5.1(b) (see 

previous page). Now in this renewed framework, by comparison to the structure 

in Figure 5.1(a), T ENT  becomes an independent variable, so that passengers’ 

journey times are considered to have an indirect dependency on their route 

choices given both T ENT  and T EXT .  

Nevertheless, suppose that we have known which route the passengers have 

chosen. As discussed in Chapter 2, their journey times would also hinge upon 

the linkage between the passengers’ within-station movements at each journey 

segment and the transit services (e.g. the timetable of different transit lines). It 

involves a bunch of factors, such as layouts of passages within the stations, 

individuals’ walking speeds, how many attempts made to successfully board 

trains, and the trains’ timetable as well as service reliability. Considered from 

this perspective, Figure 5.1(b) simplistically skips over a sequence of serially 

dependent time variables that cause observations of T EXT .  
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A main objective of this chapter is to explore a way of involving the linkage in 

learning the route choice probabilities for each individual passenger. Efforts 

would be focused on combining the passengers’ entry and the trains’ running 

schedule, which provides extra evidence for the implications of the passengers’ 

route choices. We will then attempt to factor such additional information in the 

individual choice probabilities estimated from the mixture model, in order to 

acquire a set of more credible posterior probabilities of each individual possible 

route choice.  

The rest of this chapter is arranged as follows. Section 5.2 expands on the points 

that have raised in the current section, where the problem being concerned are 

reduced to a single variable. It is demonstrated in Section 5.3 that how the single 

variable, as an additional condition, could be involved into the previously 

estimated posterior probabilities from the mixture model. This is followed by 

Section 5.4, where we draw detailed Oyster data samples1 from the same LU O-

D pairs studied in Chapter 4, so as to present an illustrative example showing a 

comparison of the before-and-after individual route-choice probabilities. 

Section 5.5 summarises and concludes this chapter.  

A set of symbols that will be used in the following sections is listed below.  

 

Notation:  

qT ENT  entry (ENT ) time of passenger q  

qrT EXT  exit (EXT ) time of q , given that he/she chooses r   

qr  journey time of passenger q  making a single journey by r   

qr EXP  expected (EXP ) journey time of q  using r , given qT ENT , average 
walking time and trains’ timetables 

qrδ   elementary event that the expected journey time of passenger q  
is qr EXP , given that he/she chooses route r  and his/her entry 
time is qT ENT  

n   sample size of a given data set 

( )qr qrf    PDF of distribution of qr   

 (Continued) 

                                                        

1 The information of each individual passenger’s entry and exit times is available. 
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Notation: (Continued.) 

qr   vector of a parameter (or parameters) for ( )qr qrf   

ˆ
r   estimate of mean of journey time of r  

ˆ
r   estimate of standard deviation of journey time of r  

qr UMM  updated posterior probability of passenger q  choosing route r , 
based on the estimate, qr MIX , from a mixture model (UMM ) 

5%Π
UMM  Rn N  matrix that enumerates all qr UMM  

ˆ
qr

 estimate of the location parameter for PDF of ( )qr qrf 
 

ˆ
r  estimate of the scale parameter for PDF of ( )qr qrf   

r
UPD  proportion of passenger using route r , based on effective 

inference from updated (UPD ) route-choice probabilities 

 

5.2 Correlation between passengers’ entry and trains’ 

timetable 
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Figure 5.2  A Bayesian-network structure showing the causality between 
passengers’ entry time and exit time. 
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From the considerations above, it is necessary for us to expand the arcs which, 

in Figure 5.1(b), indicate the causal relationships between T ENT  and T EXT , as 

well as between r  and T EXT . To this end, a much more complex structure is built 

accordingly, as illustrated in Figure 5.2 (see previous page). This framework 

incorporates a sequence of time variables relating to different journey segments 

of a specific route, which delineates the way that the determinants of any 

individual’s journey time and the transit service interrelate.  

Particularly, we use qT ENT  to represent the entry time of an individual passenger 

q  at his/her origin station; and suppose that q  has chosen route r . His/her exit 

time, which we represent by qrT EXT , would therefore be affected by all of the 

variables relating to r  shown in Figure 5.2. In addition, we let qr  denote the 

journey time that the passenger q  has spent in travelling on the route r , and so 

we have qr qr qT T  EXT ENT . Apparently, given a certain entry time qT ENT , then qrT EXT  

(and hence qr ) may vary for q  due to various circumstances, such as delays in 

transit services (or inconsistency of train punctuality) as well as passenger-

traffic congestion (or even overcrowding) leading to passengers’ failures to 

board the trains. As a matter of fact, this framework could be viewed as a Markov 

chain (Kleinrock, 1975, pp.21-22). However, we turn to a general way of looking 

at this problem by reducing its inherent complexity.  

It is commonly assumed that arrivals of passengers, and hence the arrival times, 

at their origin stations would be uniformly distributed during a certain period. 

In our case, we consider their entry times at the gateline, which similarly follow 

a uniform distribution and qT ENT  q  are independent of each other. Recall the 

calculated average travel time of each alternative route, which is represented by 

( , )ht   . It is defined as a sum of all the travel time variables of journey segments 

(cf. Section 3.5.1) and has been used for the interpretation and validation of the 

mixture model. Since each of the component-labels, r , has been paired up with 

a route-label, h , they are exchangeable, and hence ( , ) ( , )h rt t    , given that 

r  matches h .  

As qT ENT  is independent, qr  is equivalent to ( , )rt    on condition that qT ENT  is 

known:  

( , ) |qr r qt T   ENT .  
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Let qr EXP  denote the (conditional) mean of qr . It is then regarded as a 

conditional expectation of the route average journey time, and represented by  

( , ) |qr r qE t T     
EXP ENT .   (5-1) 

where  ( , )rE t    was calculated as the sum of the averages for all the journey 

segments. Note that qr EXP  does not necessarily equal [ ( , )]rE t   ; nevertheless, as 

a conditional variable, it is supposed to differ among passengers having different 

entry times. This is mainly because of the variations among passengers’ wait 

times for boarding a train, at the origin and/or interchange station. To a large 

extent, qr EXP  could account for the facts that (a) passengers might experience the 

same journey time but actually travelled by different routes, and (b) passengers 

might experience different journey times though travelled by the same route. It 

could therefore be of great value for refreshing the passengers’ route-choice 

probabilities estimated from the mixture models.  

To obtain the values of qr EXP  q Q   and r R  , several assumptions are made 

as follows. We assume that the station facilities, especially the layouts of all the 

passages, are fixed. In this way, the average walking times to access, egress and 

interchange are calculated given the average speeds within the passenger 

population. In addition, we assume that there is consistent punctuality of transit 

services, whereby individuals’ wait times could be calculated.  

The proximate cause of journey time variation is reduced to only the entry time 

and trains’ timetables, but reflected by the wait time. Figure 5.3 below depicts a 

simplified structure, compared to that in Figure 5.2 (see p.131), where those 

shaded nodes with dashed outlines represent the averages of the corresponding 

variables based on the assumptions above. The plain nodes with dashed outlines 

would then be fixed given the observation of qT ENT , and thereby qr EXP  is derived.  
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Figure 5.3  A simplified structure of passengers’ journey. 
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Let qrδ  represent an elementary event that the expected journey time of 

passenger q  travelling by route r  is qr EXP , given his/her entry time qT ENT  is 

observed. This additional information would be considered for updating each 

individual route-choice probability Pr( | )qr qchoice δ  estimated from the mixture 

model in Chapter 4. That is, we are now trying to calculate the choice probability 

of passenger q  by taking account of two conditions including both qδ  and qrδ . 

This posterior probability is denoted by Pr( | , )qr q qrchoice δ δ  accordingly.  

For all alternative routes, all the corresponding probabilities must also sum to 

one:  

Pr( | , ) 1qr q qr

r R

choice


 δ δ .   (5-2) 

This constraint is again to specify that passenger q  only chooses one of all the 

alternative routes. Of central interest to us now is that how we could deal with 

the additional information of qrδ  and work out Pr( | , )qr q qrchoice δ δ  r R  .  

 

5.3 Updating the posterior route-choice probabilities 

5.3.1 Factoring additional condition 

By definition of conditional probability, we have  

Pr( , , )
Pr(  | , )

Pr( , )

qr q qr

qr q qr

q qr

choice
choice 

δ δ
δ δ

δ δ
,  (5-3) 

provided that Pr( , )q qrδ δ  exist and that Pr( , ) 0q qr δ δ . In conformity with the 

product rule (cf. Russell and Norvig, 2010, pp.485-486), Pr( , )q qrδ δ  can be 

further expressed as follows: 

Pr( , ) Pr( | )Pr( ) Pr( | )Pr( )q qr q qr qr qr q q δ δ δ δ δ δ δ δ .  (5-4) 

It should be noted that, qrδ  would occur for sure given the observation of q ’s 

entry time qT ENT , which does not affect the probability of qδ . The two events qδ  

and qrδ  are conditionally independent given the entry time of q  is observed.  

For the numerator, Pr( , , )q q qrchoice δ δ , it is a joint probability that all the three 

events would occur simultaneously. By applying the chain rule (cf. Russell and 

Norvig, 2010, pp.514-515), it could be factored in several ways as the order of 
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events in the joint probability does not matter. Besides the equivalence 

presented by equation (5-3) itself, we also have  

Pr( , , ) Pr(  | , ) Pr( | ) Pr( )

Pr(  | , ) Pr( | ) Pr( )

Pr(  | , ) Pr( | ) Pr( )

Pr(  | , ) Pr( |

qr q qr q qr qr qr qr qr

q qr qr qr qr qr

qr q qr q qr qr

qr q qr qr

choice choice choice choice

choice choice

choice choice choice

choice choice









δ δ δ δ δ

δ δ δ δ

δ δ δ

δ δ δ ) Pr( ) .q qδ

 

Moreover, it should also be noted that the expected journey time qr EXP  is derived 

under the premise that q  has actually chosen route r . The event, qrchoice , as a 

condition, would provide no more information about the occurrence of qrδ , and 

vice versa. On this account, the two events, qrchoice  and qrδ , are deemed to be 

independent. That is,  

Pr(  | ) Pr( )qr qr qrchoice δ δ ,   (5-5) 

and  

Pr( | ) Pr( )qr qr qrchoice choiceδ .   (5-6) 

Therefore, the number of alternatives for equation (5-3) could be reduced to 

three, and so  

Pr( , , ) Pr(  | , ) Pr( ) Pr( )

Pr(  | , ) Pr( | ) Pr( )

Pr(  | , ) Pr( | ) Pr( ) .

qr q qr q qr qr qr qr

qr q qr q qr qr

qr q qr qr q q

choice choice choice

choice choice choice

choice choice







δ δ δ δ δ

δ δ δ

δ δ δ δ

 

Still, there are six combinations for the fraction on the right-hand side of 

equation (5-3), which are enumerated as follows:  

(i) 
Pr(  | , ) Pr( )

Pr( | )

q qr qr qr

q qr

choice choiceδ δ

δ δ
  

 

(ii) 
Pr(  | , ) Pr( ) Pr( )

Pr( | ) Pr( )

q qr qr qr qr

qr q q

choice choiceδ δ δ

δ δ δ
  

 

(iii) 
Pr(  | , ) Pr( | ) Pr( )

Pr( | ) Pr( )

qr q qr q qr qr

q qr qr

choice choice choiceδ δ δ

δ δ δ
  

 
(see next page) 
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(iv) 
Pr(  | , ) Pr( | ) Pr( )

Pr( | ) Pr( )

qr q qr q qr qr

qr q q

choice choice choiceδ δ δ

δ δ δ
  

 

(v) 
Pr(  | , ) Pr( | ) Pr( )

Pr( | ) Pr( )

qr q qr qr q q

q qr qr

choice choiceδ δ δ δ

δ δ δ
  

 

(vi) 
Pr(  | , ) Pr( | )

Pr( | )

qr q qr qr q

qr q

choice choiceδ δ δ

δ δ
  

 

To find a solution to Pr(  | , )qr q qrchoice δ δ , the focal issue to be addressed now is 

to select the most suitable form. Certainly, the following selection criteria must 

be fulfilled: firstly, the knowledge derived from the mixture model must be 

considered to be furthering the learning process on this issue; and secondly, qrδ  

must act as a condition. By looking through all the six formulas, only the term (i) 

can meet both the criteria. Therefore, we consider  

Pr(  | , ) Pr( )
Pr(  | , )

Pr( | )

q qr qr qr

qr q qr

q qr

choice choice
choice 

δ δ
δ δ

δ δ
,  (5-7) 

where Pr( )qrchoice  is the prior probability and has been estimated from the 

mixture model. Regarding the other term of the numerator, it is reasonable that 

Pr(  | , )q qr qrchoiceδ δ  could be interpreted as the likelihood of observing q
OBS  

given the fact that q  has chosen r  and the expected journey time was qr EXP  

according to his/her entry. In this sense, this term actually corresponds to the 

journey time distribution of the individual q  conditional on qT ENT , which is in 

essence the probability distribution of the variable qr .  

Let ( | )qr qr qrf    represent the PDF of the distribution of qr , where qr  denotes 

a vector of parameter(s). Thus, we could have  

Pr( | , ) ( | )q qr qr qr qr q qrchoice f   δ δ
OBS  .  (5-8) 

Now our focus is shifted to learn the conditional PDF, ( | )qr qr qrf   .  

 

5.3.2 Conditional journey time distribution 

For each individual q , his/her journey time qr  may be following a certain 

distribution. Suppose that we have obtained a huge data sample of passengers’ 
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journey times between the -o d , which is collected in a given period. One possible 

way to learn about ( | )qr qr qrf    is to sort out each individual’s journey time 

observations from the whole sample. If we could obtain a sufficiently large 

subsample for q , it would be most likely that q , as a frequent traveller, might 

always choose the same route. But obviously this is not suitable for every 

individual within the data sample or the passenger population.  

An alternative way is to assume, for any passenger q  ( 1, , q n , n  is the 

sample size), that qr  is distributed according to the probability distribution of 

r , but with its own measures of central tendency. By dint of the mixture model, 

we have already gained some knowledge about each of the component 

distributions, ( | )r r rc  θ , where rθ  represents a vector of parameter(s) being 

estimated. In this regard, we are actually assuming that the variables 1 , ,r nr    

r  are independent and share the same statistical parameters rθ , except for the 

location parameters.  

In order to better illuminate this point, let us suppose, for example, that r  is 

normally distributed, i.e. 2( , )r r r  N , where 
r  and r  denote its mean and 

standard deviation, respectively. Based on the hypotheses stated in Chapter 3, 

both r  and r , hence the distribution ( | , )r r r rc    , could be obtained from 

estimating the corresponding GM model relying on a data sample. Given the 

estimates of the mean and standard deviation (still denoted by ˆ
r  and ˆr , 

respectively), we shall therefore believe that  ˆ ˆ,r r r  N . Meanwhile, based 

on the current assumption (stated in the previous paragraph), the probability 

distribution of qr  is also considered to be Gaussian. That is, for all passengers 

within the sample data, the journey-time variables 1 , ,r nr   are homoscedastic, 

and would be assumed independently, normally distributed. Note that qr  and 

r  are not necessarily identically distributed. In this case, still, the standard 

deviation of qr  remains unknown, which would then be assumed to be the 

estimated value according to the GM model, that is, we would have 

ˆ ˆ( , )qr qr r  EXP , hence ˆ( , )qr qr r   EXPN . In this way, the likelihood that the 

journey time of q  would be q
OBS  can be roughly approximated to the probability 

density ˆ( | , )qr qr q qr rf     OBS EXP , given the information of his/her entry time and 

trains’ timetable.  
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5.3.3 Deriving updated posterior probabilities 

Now the only term that remains unknown in the fraction of formula (5-7) is 

Pr( | )q qrδ δ . Since qrδ  and qrchoice  are independent, as stated by formula (5-6), 

we could also apply the law of total probability to Pr( | )q qrδ δ :  

Pr( | ) Pr( | , ) Pr( | )q qr q qr qr qr qr

r R

choice choice


δ δ δ δ δ ,  

namely,  

Pr( | ) Pr( | , ) Pr( )q qr q qr qr qr

r R

choice choice


δ δ δ δ .  (5-9) 

As such, Pr( | )q qrδ δ  is actually equivalent to the sum of the numerator of the right 

part of formula (5-7), which also guarantees the condition (5-2). Therefore, we 

have  

Pr( | , ) Pr( )
Pr( | , )

Pr( | , ) Pr( )

q qr qr qr

qr q qr

q qr qr qr

r R

choice choice
choice

choice choice





δ δ
δ δ

δ δ
.  (5-10) 

Given equation (3-18), i.e. Pr( )qr rchoice  , and equation (5-8), all the terms in 

formula (5-10) can be computed depending on the knowledge that has been 

held. Therefore, for each individual passenger, the updated posterior probability 

of each alternative route being chosen is derived.  

( | )
Pr( | , )

( | )

r qr qr q qr

qr q qr

r qr qr q qr

r R

f
choice

f

  

  






δ δ

OBS

OBS




,  (5-11) 

We use qr UMM  (in contrast to qr MIX , cf. formula (3-22)) to represent the estimate of 

Pr( | , )qr q qrchoice δ δ  1, ,q n  , r R  , with the superscript ‘UMM ’ indicating 

that is an updated estimate based on the result of a mixture model.  

Similar to Π
MIX , the updated set of posterior estimates are also enumerated in a 

Rn N  matrix, which we represent by  

11 1

21 2

1

R

R

R

N

N

n nN

 

 

 



 
 
 
 
 
 
 

Π

UMM UMM

UMM UMM

UMM

UMM UMM

,   (5-12) 

with (see next page) 
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ˆˆ ( | )

ˆˆ ( | )

r qr qr q qr

qr

r qr qr q qr

r R

f

f

  


  







OBS

UMM

OBS




;   (5-13) 

and evidently,  

1qr

r R




 UMM .   (5-14) 

The following section will compare the estimates between 
Π
MIX  and 

Π
UMM .  

 

5.4 Implementation of the updating approach 

It is the quality of the update – the extent to which qrδ , as extra information, 

would modify the estimates of each individual passenger’s choice probabilities – 

that is vital for the inference as well as understanding of the passengers’ actual 

route choices. For illustrating what effect of such alteration of conditions would 

be, we follow up the seven cases of O-D pairs, which have been previously 

examined, and implement the proposed updating method by exploiting the 

estimates derived from Chapter 4. So far, for each of the single O-D networks, 

we have employed both GM and LNM distributions to fit their respective data 

sample of OJT OBS . We will only take advantage of the model that performed 

relatively better than the competitor in each case (in light of the test results of 

gof ). From the elected mixture model, we have already obtained Π
MIX , along 

with the model parameters. On that basis, we would then be able to update 

individually those estimated posterior probabilities by bringing in the further 

consideration about qrδ .  

With respect to the application of the mixture model, it might be confronted with 

completely different situations given different O-D cases and different number 

of alternative routes, especially for matching up route-labels with their real-

world counterparts. Unlike that situation, in this section, the application of the 

update would be only to change the posterior probabilities of passengers’ route 

choices for each alternative routes, wherein the demonstration per se would be 

analogous for all the O-D cases. For this reason, in this section, we present only 

one case, Case-1: Victoria – Holborn, as an illustrative example, with the results 

of the other six cases (Case-2 – Case-7) exhibited in Appendix D.  
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5.4.1 Data issue 

Information of passengers’ entry times is one of the essentials for the updating 

approach. However, the data samples used for the mixture model estimation, as 

has been declared in Chapter 4, were each retrieved from a processed data set 

where the entry time data for each individual was unavailable, but merely 

OJT OBS . In that situation, the updating approach was not be able to be applied on 

the same samples.  

Instead, we had to draw support from another sample of Oyster data, which 

details the timestamps of everyone’s entry as well as exit. This data was gathered 

in a period of 28 consecutive days, from 6th February (Sunday) to 5th March 

(Saturday) in 2011; and it is confined to (a sample of) 5% of the Oyster journey 

records across the whole LU network (during the 28-day period). Given the 5%-

sample data, which we represent by 5%  (in contrast to   as the larger sample), 

for each of the O-D cases being considered, its valid OJT OBS  is also delimited by 

an upper outer fence. The value of this fence was set to be the same as that of the 

sample used for estimating the mixture models, rather than using the upper 

outer fence of the 5%-sample itself. This is because the sample size of the latter 

is much larger and that data was collected during a much longer period, which is 

believed to deliver a more representative statistical boundary. Moreover, 

although the sampled passengers may have several journey records presented 

in the sample data, different journey records made by the same individual were 

each regarded as an independent journey of the others. The sample size and the 

mixture model used for each of the O-D cases is briefly summarised in Table 5.1 

below.  

 

Table 5.1  Summary of sample sizes and elected mixture models for seven case 
studies 

Case- RN  The relatively better mixture model  Sample size of 5%  

1 2 LNM  105 

2 2 LNM  89 

3 2 LNM  140 

4 3 GM  85 

5 3 GM  92 

6 4 GM  48 

7 4 GM  42 
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5.4.2 An example based on Case-1 

With the individual Oyster journey records of the valid 5%-sample of Case-1, in 

total, 105 valid records were obtained in respect of this O-D within the period of 

AM Peak (07:00 a.m. – 10:00 a.m.), which is still denoted by 5% . This section 

compares 
5%Π

MIX  and 
5%Π

UMM  at both the individual and aggregate level, where 
5%Π

MIX  

represents the posterior estimates of 
Π
MIX  for the sample data set 5% , while 

5%Π
UMM  represents the corresponding updated choice probabilities. Note that for 

most of the sampled passengers, 5%  did also contain multiple observations for 

each of them. However, we still assume that all the journey time observations are 

independent of each other. As such, the context is equivalent to that each 

passenger has completed only one journey; and more specifically, 5%  were 

supposed to be a sample of 105 passengers.  

 

Further to Case-1: Victoria – Holborn  

Recall Case-1 from Chapter 4. For this case study, we investigated the pair of O-

D stations: Victoria – Holborn, which is connected by two indirect routes. Every 

passenger (still denoted by q ) travelling between this O-D would have to 

transfer at either Oxford Circus (referred to as Route1, and labelled 1r  ) or 

Green Park (referred to as Route2, and labelled 2r  ). Details about this 

network has been described in Section 4.3.1.  

Given 5% , the OJT OBS  of each of the 105 passengers (each being denoted by 

qOJT OBS  and represented by an orange cross, ⨯) are depicted against their entry 

times in Figure 5.4 (see next page). It is noted that there was a ‘gap’ in the data 

between about 07:15 and 07:30 a.m. The main reason for this is that the data was 

sourced from the 5% of all the Oyster data sampled on the basis of a certain group 

of travellers on the entire LU network. It was possible that none of the sampled 

travellers for this O-D made journeys during that 15-minute interval. Similar 

situations also occurred to all the other O-D cases in this thesis, except Case-3 

and Case-4 (see Appendix D).  

Additionally, given the entry time of each individual sampled, the expected 

journey times qr EXP  of each passenger in the sample is also illustrated, with the 

purple triangles, , and blue circles, , representing 1q
EXP  and 2q

EXP , respectively. 

The computation of 1q
EXP  and 2q

EXP  followed the steps of deriving the expected 

route-specific journey time (referring to formula (5-1); see also Section 3.5.1).  
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Figure 5.4  Comparisons between qOJT OBS  and qr EXP  , q r , given 5%  for 
Victoria – Holborn. 

 

As can be seen from Figure 5.4, given passengers’ entry times (within AM Peak), 

1q
EXP  and 2q

EXP  turned out to be bouncing between roughly 17 and 20 minutes, 

and between 20 and 23 minutes, respectively. These ranges also approximate the 

95% CIs for Case-1 (as shown in Table 4.6, p.88). Moreover, given different entry 

times, passengers’ OJT OBS  fluctuated significantly; and their journey times might 

differ sharply given the same entry time. These facts have effectively verified our 

previous statements (see Section 5.1).  

According to the test results of gof  for this case (see Table 4.7, p.90), the LNM 

model was believed to have outperformed the GM, given the data set   

containing a sample size of 24,760 individuals’ OJT OBS . On that basis, the 

estimates of the mixture weights (still denoted by ˆr ; see Table 4.6) of the LNM 

was entered into the revaluation/update of each of the sampled individual’s 

posterior route-choice probabilities.  

In addition, in this case, the journey time of any passenger (still denoted by q ) 

travelling by any of the two alternative routes (denoted by r ) was treated as a 

random variable, denoted by qr  1, 2r   and q . And qr  was assumed to be 

log-normally distributed accordingly, with scale parameter being the same as the 
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estimated scale parameter (denoted by ˆ
r ) of the -thr  LNM component 

distribution. That is, there shall be two hypothetical log-normal distributions for 

each q . Note that the estimators of parameters for a log-normal distribution is 

different from a Gaussian case exemplified in Section 5.3.2. In this case, qr EXP and 

ˆ
r  are not parameters of the conjectural log-normal distribution. In this case, we 

use the symbols qr  and r  to represent, respectively, the location and scale 

parameters of the -thr  hypothetical log-normal distribution for passenger q , In 

turn, we could represent the hypothetical distributions by 1 1 1log ( , )q q   N  

and 2 2 2log ( , )q q   N .  

Denote by ˆqr  and ˆr  the parameter estimates. They should then be calculated, 

respectively, as follows (cf. Walck, 1996, p.86):  

 2 2 2ˆ ˆlog ( ) ( )qr qr r qr    EXP EXP   (5-15) 

and  

 2ˆ ˆlog 1 ( )r r qr    EXP .   (5-16) 

Given ˆ ˆ ˆ( , )qr qr r  , according to formula (5-13), we would have 

1 1 1 1

1 2

1

ˆ ˆ ˆ( | , )

ˆ ˆ ˆ( | , )

q q q

q

r qr q qr rr

f

f

   


   






OBS

UMM

OBS
   (5-17) 

and  

2 2 2 2

2 2

1
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ˆ ˆ ˆ( | , )

q q q

q

r qr q qr rr

f

f

   


   






OBS

UMM

OBS
,   (5-18) 

whereby 
5%Π

UMM  could be gained according to equation (5-12). Note that here q
OBS  

is equivalent to OJT OBS  of individual q .  

Both 
5%Π

MIX  (based on LNM) and 
5%Π

UMM  for this O-D pair (Case-1) are depicted in 

Figure 5.5 (see next page), showing the differences between the two sets of 

posterior choice probabilities. The plus signs, coloured in purple in Figure 

5.5(a) and blue in Figure 5.5(b), illustrate, respectively, , 1q r 

MIX  and , 2q r 

MIX  on the 

basis of the sample data set 5% .  
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(a) 

 
(b) 

Figure 5.5  Comparisons between qr MIX  (based on LNM) and qr UMM  for 
Victoria – Holborn: 

(a) Route1: Victoria – Central (via Oxford Circus); and  

(b) Route2: Victoria – Piccadilly (via Green Park).  

The interval between the tick-marks on the horizontal axis spans 10 bars each 
relating to an individual/journey record in the Oyster data. 

 

For comparison, the purple empty-triangles as well as the blue empty-circles, 

, illustrate, respectively, , 1q r 

UMM  and , 2q r 

UMM . Each of the symbols represents one 
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observation of the data set 5% . In addition, a grey bar indicates the related entry 

time of the passenger. Take, for instance, Route1. Given the same OJT OBS , , 1q r 

MIX  

was a constant (for all passengers q ). In contrast, , 1q r 

UMM  could vary significantly 

as passengers’ entry times differed.  

Let us look further at one of the sampled individuals, labelled i , who entered 

Victoria station at iT ENT 07:39 a.m. and exited from Holborn at 07:57 a.m. Then 

his/her journey time 
iOJT OBS  was 18 minutes. According to the estimation result 

from the LNM model for this O-D, given 
iOJT OBS , the posterior probability of i  

choosing Route1 was , 1 76.3%i r  MIX , while that for Route2 was , 2 23.7%i r  MIX . On 

the other hand, given iT ENT , along with the information of timetable as well as 

average walking times for AEI between this O-D, the expected journey times that 

each alternative route for this passenger could be calculated as per formula 

(3-45). That is, an expected journey time for i  travelling by Route1 were 

calculated to be , 1 19i r  EXP  minutes; and , 2 21i r  EXP  minutes by Route2. From this, 

intuitively, we could say that passenger i  might be more likely to have chosen 

Route1, since iOJT OBS  was less than and closer to , 1i r 

EXP . This conjecture was also 

supported by the evidence that the mixture model estimate , 1i r 

MIX  was much 

higher than , 2i r 

MIX .  

In order to justify the conjecture, we updated ir MIX  1, 2r   by taking into 

account the information about the differences between the iOJT OBS  and ir
EXP  

1, 2r  . To this end, it was assumed that , 1i r   and , 2i r   were each following a 

log-normal distribution. The distribution parameters were calculated using 

formulas (5-15) and (5-16), given ˆr  (estimated from the LNM model, where

1
ˆ 2.4   and 2

ˆ 4.4  ; see Table 4.3) as well as ir
EXP  1, 2r  . In this case, 

, 1 log (2.9,0.1)i r   N  and , 2 log (3.0,0.2)i r   N . Note again that the journey time 

variable ir  might possibly follow any other probability distributions in reality; 

however, for simplicity, we considered it being log-normally distributed only in 

the scope of his thesis (cf. Section 5.3.2).  

Then the updated choice probabilities could be derived from calculations based 

on formulas (5-17) and (5-18), respectively, where the estimated LNM weights 

were also involved (i.e. 1
ˆ 69.1%   and 2

ˆ 30.9%  ; see also Table 4.3, p.84). 

For passenger i , , 1 81.5%i r  UMM  and , 2 18.5%i r  UMM . , 1i r 

UMM  was greater than , 1i r 

MIX  

while , 2i r 

UMM  was less than , 2i r 

MIX . Evidently, this result further justified the 

conjecture that i  might be more likely to have chosen Route1.  
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It is noticeable that the application of the proposed updating method caused 

some sharp reversals of the choice probabilities for those faster travellers. That 

is, qr UMM  was diametrically opposed to qr MIX  that were estimated from the LNM 

model. And among those quickest journeys (with journey times being less than, 

say, 15 minutes), the updating had dramatically altered, or rather, decreased the 

probabilities 1q
MIX . A possible reason was that when OJT OBS  was small, both the 

hypothetical distributions of 1q  and 2q  might suggest that there was a small 

likelihood of choosing either route given the OJT OBS . As a consequence, both of 

1 1 1
ˆ ˆ( | , )q qf OJT  OBS  and 2 2 2

ˆ ˆ( | , )q qf OJT  OBS  were rather small. In that case, if the 

former were slightly less than the latter, then that would result in a huge 

difference between 1q
UMM  and 2q

UMM , since their sum should be equal to one (see 

also formulas (5-13) as well as (5-14)). It must be recognised that this is actually 

a drawback of the proposed updating approach, which would potentially bias the 

naive inference of passenger traffic distribution between this O-D (cf. Section 

3.4.1). Notwithstanding, But for future research, a possible way to improve it 

could be to test different probability distributions for each passenger for each 

alternative route.  

Besides, as OJT OBS  became longer, the updated choice probabilities 1q
UMM  would 

be much higher than 1q
MIX , given the corresponding entry times. This could be 

reasonable, because the estimated 95% CI upper boundary of the mean journey 

time of Route1 was nearly 22 minutes, which may imply that the sampled 

passengers might experience longer journey time on Route1 (as well as on 

Route2) in the context of rush hour. In that sense, the update, to some extent, 

might also reflect the impact of passenger-traffic congestion or service delay, 

which possibly lead to passengers’ boarding failures.  

Moreover, aggregate measures are presented in Table 5.2 (see next page), where 

r
ROD , r

INF  and r
UPD , respectively, represent the proportion of respondents who 

chose route r  according to the RODS result (up to 2010), the proportion of 

passenger-traffic on route r  given effective inference from the mixture model 

and that according to updated choice probabilities.  
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Table 5.2  Proportion of passenger traffic for each alternative route on 
Victoria – Holborn 

In this case, 
r


INF  is calculated on the basis of LNM model estimates. 

  Sample size  Proportion of passenger-traffic (%) 

    Victoria – Central  Victoria – Piccadilly 

    Oxford Circus  Green Park 

    1r    2r   

r
ROD   526  71.3  28.7 

ˆ
r   24,760  69.1  30.9 

r
INF   24,760  69.2  30.8 

r
INF   105  69.8  30.2 

r
UPD   105  69.7  30.3 

 

As can be seen from Table 5.2, r
UPD  and r

INF  are almost the same before and 

after the update. The estimates derived from the larger sample of journey times 

modelled by mixture distribution were retrieved from the much smaller sample. 

Thus the updating method is believed not to affect the inference of passengers’ 

average choice probabilities of different alternative routes.  

 

5.5 Summary and conclusions 

On the basis of the mixture model of passengers’ journey times, this chapter 

proposes an approach to update the previously estimated choice probabilities 

for each individual passenger. The update is achieved by taking into account 

additional information about the occurrence of qrδ , which refers to a conditional 

expected average journey time of each route for each passenger. In that way, the 

posterior probability Pr( | )qr qchoice δ  estimated from the mixture model in 

Chapter 4 has now been updated to a newly formed posterior route-choice 

probability, i.e. Pr(  | , )qr q qrchoice δ δ . It should be particularly noted that it is the 

prior probability, Pr( )qrchoice , rather than the posterior probability per se, that 

directly enters the calculation of Pr(  | , )qr q qrchoice δ δ , where Pr( )qrchoice  is an 

estimate of the mixture weight for a mixture model. However, the estimation of 

Pr( )qrchoice  is reliant on the posterior estimates. Thus, the mixture model in 

effect provides prior knowledge for updating the posterior choice probabilities.  
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This extra condition qrδ  was derived given the following assumptions. First, 

every passenger’s journey time is examined by a set of hypothetical probability 

distributions, each of which is based on a situation that the passenger always 

chooses one of the alternative routes. The number of such distributions for a 

passenger was in line with the size of route-choice set for the passenger. In that 

way, the likelihood that an observed data q
OBS  was from a certain route was 

learnt for each individual passenger, which is distinct from the likelihood 

function Pr( | )q qrchoiceδ  considered in the mixture models. Additionally, it was 

assumed that consistent punctuality for all trains was assured, in which case the 

timetable data is practical for use. Third, all station facilities (e.g. passages, ticket 

gates) were assumed to remain unchanged. These assumptions thus made allow 

the calculation of the expected average journey time of each alternative route for 

every passenger, given the observation of the individual’s entry time.  

With the use of detailed Oyster card data gathered from the seven O-D pairs 

studied in Chapter 4, for each case, a comparison is made between the choice 

probabilities before and after the update. It must be pointed out that a major 

issue here is the inconsistency of the observation period of the two data sets: the 

data used for demonstrating the updating of choice probabilities and the OJT OBS  

samples used in estimating the mixture model. This is due to the shortage of the 

detailed individual Oyster data. Notwithstanding, at the aggregate level, the 

average shares of passenger traffic distribution among alternative routes 

presents little difference between the two scenarios. In view of the limited 

sample size of the detailed data, the mixture model shows high adaptability for 

estimation of aggregate measures. At the individual level, passengers’ choice 

probabilities will fluctuate significantly as their entry times vary. To some extent, 

such differences demonstrate that the influences of the additional condition, as 

well as reflects a more realistic range of individual taste variance in different 

alternative routes. Still, there is not convincing evidence that demonstrate 

whether the update exerts positive or negative influence on the learning of 

passengers’ probabilistic route choices. This will be further tested in the next 

chapter.  

 

 



- 149 - 

Chapter 6  

A latent route choice model 

 

6.1 Introduction 

From the previous chapters, we have already contrived to obtain two different 

sets of posterior probabilities of passengers’ route choices between any given 

pair of multi-route O-D. Based on the GM and LNM models, the probabilities that 

an individual might have chosen each of the alternative routes have been derived 

for all passengers in a data sample of their actual journey times, which we 

represented by  . That set of estimates was represented by Π
MIX  (derived from 

Chapter 3 and Chapter 4), and later by 
5%Π

MIX  relating to the detailed individual 

data sample 5%  (in Chapter 5). On that basis, such posterior probabilities for 

each individual have been updated in light of supplementary knowledge on the 

expectation of their journey times that were deterministically calculated. The 

updated set of posterior estimates was then represented by 
5%Π

UMM . Nonetheless, 

the extent to which either of the two sets can reflect the passengers’ true choice 

probabilities has not been evaluated, though, theoretically, 
5%Π

UMM  should be more 

sensible than Π
MIX . In other words, the credibility of those estimated posterior 

probabilities may not be fully guaranteed.  

As mentioned in Chapter 3, the true choice probability that a passenger q  would 

place on a route r  would essentially be due to his/her own personal propensity 

(cf. Section 3.2). From the theory of random utility models (McFadden, 2000), 

q  may be more willing to choose r  if he/she perceives it to have a relatively 

higher utility than other alternatives, and will thus choose the one that offers the 

highest utility. It is noted, however, that the estimates of those posterior 

probabilities of q  having likely chosen r  were actually compliant with Bayes’ 

theorem. Moreover, it in effect quantifies a subjective degree of our belief about 

the occurrence of the route-choice event, irrespective of how/why the route 

choices were actually made by q . Notwithstanding this irrelevance, ideally, we 

would still expect that the posterior estimates of the passengers’ choice 

probabilities for each route would be as close to the true values as possible. 
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Nevertheless, to gain insight into the true choice probabilities would then entail 

the modelling of the passengers’ decision-making process per se. We are thus 

again led to think of the means of discrete choice models, as it fundamentally 

takes into consideration a range of factors that relate to passengers’ travel 

behaviour. Depending on the model specification, the parameter estimates of 

those factors may shed light on how/why passengers would choose a specific 

route. An understanding of such route choice behaviour of the passengers is of 

great interest to us; and it would also be a valuable asset for effective planning of 

local public transport (cf. Section 1.1). Yet, again, the development of such route 

choice models, or more specifically, the estimation of the models’ parameters, 

would necessarily be reliant on observations of each individual’s actual route 

choice, which, however, are not available in our case. In this regard, the 

conventional process for estimating the discrete choice models would be 

suspended for the lack of the route-choice data (cf. Section 2.5).  

In such a context, this chapter pursues a route choice model, which will cope with 

the passengers’ route choices within the probabilistic setting, rather than the 

actual route-choice observations. It is hereby referred to as a latent route choice 

model, wherein the term ‘latent route choice’ is interpreted to mean that the 

passengers’ actual route choices are not observed (or not observable), but could 

be known up to a choice probability; and such probabilities of all alternatives 

correspond to the posterior probabilities being estimated otherwise.  

This chapter is intended for two objectives of equal importance. On the one hand, 

we seek to assess the previously estimated posterior probabilities of route 

choices and to validate the updating approach proposed in Chapter 5. On the 

other hand, we also aim to gain an understanding of why passengers would 

choose a specific route between any given O-D pair. Accordingly, this chapter is 

to develop a latent route choice model, with the posterior probabilities of 

passengers’ route choices being used as input into the representation of choice 

probability as well as the estimation of the choice model. Therefore, whether the 

posterior probabilities are trustworthy would largely depend on whether the 

latent choice model could yield meaningful estimates of relative sensitivities to 

explanatory variables that are specified.  

To these ends, the rest of this chapter is arranged as follows. Section 6.2 

presents a brief review on the choice modelling techniques. The latent choice 
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model is then introduced in Section 6.3 that illuminates the idea of how the 

previously estimated posterior probabilities play a part in the model estimation. 

Section 6.4 presents two empirical examples of applying the proposed approach 

by estimating a simple multinomial logit model, with use of the detailed Oyster 

data on the LU. At the end, a summary and conclusions are presented in Section 

6.5.  

 

6.2 Choice modelling 

6.2.1 Standard logit choice probability 

Any perceptible changes in the transit services (concerning e.g. frequency of 

lines/trains, transfer cost as well as accessibility of passageways) between a 

given O-D might easily have influence on passengers’ route choice behaviour. 

Discrete choice models have certainly been the predominant approach to 

understand such behavioural process as to how the route-choice decisions are 

made.  

In contrast to the route-choice modules embedded in most deterministic transit 

assignment models, which typically minimise the passengers’ generalised travel 

cost function (cf. Section 2.2.2), discrete choice models, however, look at their 

perceived ‘utilities’ of each alternative route, with the specification of utility 

functions. As such, in general, a utility function measures the ‘attractiveness’ of a 

particular route – relative to its alternatives – to each individual passenger. 

Based on the premise that a passenger would always seeks the most attractive 

route to him/her, only the route that can offer the highest, or the maximum 

utility will be chosen by the passenger.  

Let us keep looking at the -o d  network with RN  alternative routes (illustrated 

in Figure 3.1, in Section 3.2). In this background, we could let qrU  denote the 

utility that passenger q  perceives he/she may gain from choosing route r ; and 

it can be specified in the simplistic form as follows:  

qr qr qrU V   ,  

where qrV  expresses the deterministic utility of r , and qr  acts as an error term. 

Intrinsically, qrV  is linked to a number of factors that potentially affect q ’s 
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decision on whether to choose r , which could be related to various attributes of 

the route r  (e.g. their transit services) and of the passenger q  per se. We shall 

treat these factors as quantitative random variables that can be numerically 

measured for each individual passenger. As such, qrV  could be further expressed 

as a function of the variables, which is parameterised by a vector of coefficients. 

In reality, there must be some other factors that also exert impact on the true 

utility perceived by q  but might not (be able to) be represented by qrV . 

Concerning those unknown/unobservable factors, they are then ascribed to qr  

as a completely random variable.  

As the most popular discrete choice model, the logit model is based on the 

premise that qr  q Q  , r R   are independent and each following the type I 

extreme value distribution (cf. Train, 2009, p.34). This assumption then serves 

as the necessary and sufficient condition for the derivation of the standard 

structure of logit probability formula, which, in the context of this chapter, could 

be expressed as follows:  

 
 

exp

exp

qr

qr

qr

r

V
P

V



.  

This is the probability of passenger q  choosing route r .  

 

6.2.2 Route choice models 

A variety of applications of discrete choice models for route choices have been 

developed by looking into many factors (e.g. travel time variability, fare) that 

may have effect on the travellers’ route-choice behaviour, which allow for 

varying degrees of responses of the individual passengers. Prato (2009) 

conducted a comprehensive review of the choice modelling approaches. A range 

of route choice models with diverse modifications on the structure of the 

standard logit formula were surveyed in the context of the route choice on road 

traffic network.  

Given a multi-route O-D pair, alternative routes may potentially correlate with 

each other due to their overlaps, in which cases a station or some route sections 

might be shared by more than one transit lines (e.g. the overlap between the 

Circle and District lines on the LU). Without consideration on such correlated 
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issues, the estimates of the sensitivities to attributes affecting route choice may 

be biased when developing the relative choice models. For modelling this 

common lines problem and approximating the correlation among these routes, 

based on the simple logit structure, correlation terms have been introduced into 

the utility functions, where amendments are made to the deterministic part of 

the function (Cascetta et al., 1996; Ben-Akiva and Bierlaire, 1999; and Bovy et al., 

2008). Cascetta et al. (1996) firstly brought forward a commonality factor (CF), 

which is used to capture the similarity between each route and its alternatives 

within the choice set. Each CF is associated with each route choice. From this, the 

degree of the similarity could be measured. On the basis of the standard logit 

structure, the choice probability function of C-Logit is specified as follows: 

 
 

exp

exp

CF

CF

qr qr

qr

qr qr

r

V
P

V





 


 

CF

CF
,  

where  CF  represents the coefficient of the CF as an additional variable. It is 

supposed to be negative, so as to indicate the utility of a route is in inverse 

proportion to that of the other alternative routes.   

Ben-Akiva and Bierlaire (1999) took into account a path size (PS) attribute for 

each alternative route, given those alternatives overlap, or rather, share some 

route sections. The PS, as a correction factor, enters the deterministic part of the 

utility associated with each route, which result in the original logit choice 

probability turning into the following expression:  

 
 

exp log( )

exp log( )

PS

PS

qr qr

qr

qr qr

r

V
P

V





 


 

PS

PS
. 

where  PS  is to be estimated as the parameter of the PS. Such a choice model is 

termed thus path size logit (PSL). Further, Bovy et al. (2008) updated the PS  with 

a path size correction term, in which case the model is known as path size 

correction logit (PSCL) and may yet yield similar estimation results to PSL. It is 

noted that the correlations between alternative routes could only be partially 

explained by PSL or PSCL.  

Likewise, more intuitive corrections to the utility function hence the choice 

probability have also been made to improve the interpretation through more 

advanced generalised extreme value models. Typical examples include paired 
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combinatorial logit model and the more general cross nested logit model. Both 

were adapted for route choice modelling by Prashker and Bekhor (1998), and 

the generalised nested logit model by Bekhor and Prashker (2001). Still, both of 

the follow issues remain: restricted taste variation and disability of handling 

with temporally correlation in error terms. Besides, models within mixed logit 

structure, e.g. multinomial probit model (Daganzo and Sheffi, 1977) and logit 

kernel approaches (Bekhor et al., 2002), are computationally expensive due to 

their choice probabilities taking a non-closed form.  

The subnetwork model, which is an error components logit model developed by 

Frejinger and Bierlaire (2007), considers that the correlation between different 

routes is primarily caused by overlapping route sections of key routes. It is noted 

that such correlations involve not only physical overlapping but also perceptual 

relevance. The context, though, was specific to road networks.  

As noted above, the evolution in the discrete choice models for route choices rely 

on researchers to customise the modification of and to improve the structure of 

the logit probability term. But all in all, to estimate the parameters for the 

variables specified in those models would essentially still depend on the 

observations of travellers’ actual choices. In other words, the estimation of the 

models requires availability of data of each individual’s route choice that either 

is stated or has actually been made. In this regard, a shortage and/or an absence 

of the route-choice data may often be an obstacle for the model development.  

 

6.2.3 Data for choice modelling 

In a conventional way, as aforementioned, the estimation of a discrete route 

choice model is essentially reliant on us obtaining the data of each individual’s 

actual route choice. On this account, collection of the data is often supposed to be 

a vital issue for the analysts to deal with. Either unavailability or shortage of the 

data would cause the model estimation to fail, which may be an obstacle to the 

model development.  

As mentioned in Section 2.4.2, the route-choice data could be collected through 

two approaches. One is by conducting surveys verbally or in a written form, 

which could obtain the respondents’ text descriptions; and the other turns to 

employ intelligent devices of passive monitoring, e.g. GPS tracking units, which 
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automatically gathers digitised information. In practice, however, either 

approach could be very costly for gathering sufficiently large data samples. 

Occasionally, the data that has been acquired might be inexplicable due to a lack 

of accuracy or loss of crucial information. For instance, as stated by Bierlaire and 

Frejinger (2008), a GPS unit may track a traveller in terms of formatted 

geographical coordinates recording his or her routes, and as a consequence, the 

observed data would not yet be immediately interpretable. That is, effective data 

of route choices would have to be retrieved through certain conversion prior to 

its being put into estimating the models. Meanwhile, such manipulation itself 

might also induce error information unexpectedly, and hence biased model 

estimates.  

With regard to road traffic networks, much progress has been made to tackle the 

aforementioned issues. For the purpose of narrowing down the differences 

between the observed data and the real choices on road traffic networks, 

initially, Ben-Akiva et al. (1984) assigned descriptive labels to choices of e.g. 

fastest or shortest route. Later, in the context of route choice of long-distance 

travels by car, Bierlaire et al. (2006) looked at ‘aggregate observations’ instead 

of exact data of route choices, which allows for several routes to correspond to 

one ‘observation’ given a shrunken choice set. In this case, survey respondents 

only need to list sequentially approximate locations that they passed through 

during the course of a journey, rather than the specific positions. A possible 

approach to forming a whole route that is the most likely actual choice is to 

assume the route sections as the shortest routes between each of these 

sequential location points. This concept was later formulated, by Bierlaire and 

Frejinger (2008), as ‘Domain of Data Relevance (DDR)’ that relates an area to a 

list of network elements including notional nodes/links, etc. It was then further 

illustrated by Chen (2013) and Bierlaire et al. (2013). On this understanding, 

more valid data becomes accessible since the precise information would not be 

indispensable, although explicit rules of delimitating a DDR is uncertain and 

would largely depend on specific situations in practice.  

While much progress has been made to tackle issue with the indeterminate data 

of individual route choice in context of road traffic networks, no applications in 

particular to that on the public transport have been made, mainly due to its 

complexity and data accessibility.  
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6.3 Latent choice probability 

This section describes a modelling approach to overcome the challenge of 

modelling route choices on public transport without observing the route choices. 

Consider the estimation process of the standard logit model. As for the 

traditional procedure, we are used to employ a binary indicator being 0 or 1 as 

an exponent of a passenger’s choice probability, qrP . In that case, for all the 

alternative routes that are surely not chosen by the passenger, the exponents 

must be equal to 0, while only the probability term associated with the chosen 

route is raised to the power of 1  (cf. Train, 2009, pp.60-63). Namely, the choice 

probabilities for each individual passenger’s actual chosen route are finally 

entered into the likelihood function for estimating the model coefficients 

(denoted by a vector, β ). And more specifically, in the context of this thesis, the 

log-likelihood function of β , given a data set, say   of sample size n , should be:  

1 1

log ( ; ) log
RNn

qr qr

q r

P
 

 βl .  

where qr  represents the binary indicator. From that, if an individual was 

observed to have chosen a certain route, denoted by i , it is anticipated from the 

model that the probability of the route i   being chosen by passenger q  would be 

as close as possible – though not exactly – to 1, given the estimates of β .  

In view of the fact that the route choices that passengers have actually made are 

unknown in our case, we have postulated in Chapter 3 that each alternative 

route has its own probability of being chosen from Bayesian perspective. And 

such has been further estimated as being the posterior probability of a passenger 

choosing a given route that he/she might have actually chosen, which are 

expected to reflect the true individual preference on different alternatives. We 

now replace the 0-1 indicators in the contribution by passenger q  or the 

likelihood function through a weighted average of the probabilities of all possible 

choices for that passenger, where the weights are given by the posterior 

probabilities. In the case where the route choices would be observed with 

certainty, a single one of these would be equal to 1, with all others being 0, 

bringing us back to the original log-likelihood function. Therefore, we expect that 

the choice model could reproduce as close to the true choice probabilities as 

possible. On this account, we shall weigh each of the exponentials of the observed 

utilities,  exp qrV , in the logit choice probability by the corresponding estimates 
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of the posterior probabilities (which we represent here by the qr  as a general 

form).1 Then, in the estimation of a latent choice model, qrP  would thus become 

a weighted average:  

   
   

1 1

1

exp exp

exp exp

R R

R

q q qN qN

q

q qN

V V
P

V V

  


 
,  

which is further generalised to  

 

 

exp

exp

qr qr

r R
q

qr

r R

V

P
V










,   (6-1) 

In formula (6-1), qr  ,q r  are the posterior probabilities of all passengers’ 

chose routes.  

This probability term can be interpreted as the likelihood of observing the actual 

route choice that is unknown to us. In other words, when we are predicting a 

given passenger’s route choice that is being unobserved, qP  is supposed to be the 

probability with which the actual choice could be predicted. More specifically, 

we are predicting the choice with a probability of qP ; that is to say, we are having 

a probability of qP  to find out the real choice. Finally, qP  given by formula (6-1) 

will be entered into the likelihood function.  

Thus, with the given data sample,  , we could estimate a number of model 

parameters (still denoted by β ) associated with the attributes of the alternative 

route (e.g. travel time, fare and interchange) based on the maximum likelihood 

estimation. The traditional procedures of deriving the likelihood function of β , 

hence its log-likelihood function, would be adapted accordingly, as the likelihood 

function turns out to be  

1

( ; )
n

q

q

P


 βl ;  

and the log-likelihood  

1

log ( ; ) log
n

q

q

P


 βl .  

                                                        

1 It could be either 
qr


MIX

 or 
qr


UMM

. 
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6.4 Empirical examples on the London Underground network 

To test the proposed approach, this section presents an empirical study, making 

use of the previously estimated posterior probabilities of route choices as inputs 

into choice model estimation. Relying on some notation used in Section 3.5.1, 

we employ the following notation to elaborate on how the latent route choice 

model works.  

 

Notation:  

qr MIX  posterior probability that q  chose route r  (given q
OBS ), estimated 

from a mixture model on a data set 

5%Π
MIX  matrix that contains qr MIX  for all observations in 5%  (cf. 

Π
MIX  

defined in Section 3.3.2) 

qr UMM  updated posterior probability that q  chose route r  (given q
OBS  

and qr EXP ) based on qr MIX  

5%Π
UMM  matrix that contains qr UMM  for all observations in 5%  

qrtWLK  total walking (WLK) time of passenger q ’s access at an origin 
station and egress at a destination station by using route r  

qrtWFD  q ’s waiting time to board a train for departure (WFD ) from an 
origin station by using route r  

qrtOBT  q ’s total on-board travel (OBT ) time by using r  

qrtTIC  q ’s walking time to transfer between platforms at an interchange 
(TIC ) station on r  

qrtWIC  q ’s waiting time to board a train for departure from an 
interchange (WIC ) station on r  

qrt  vector that contains all travel time variables for q  choosing r  

 WLK  coefficient of qrtWLK  

 WFD  coefficient of qrtWFD  

 OBT  coefficient of qrtOBT  

 TIC  coefficient of qrtTIC  

 WIC  coefficient of qrtWIC  

β  vector that contains all coefficients, each being associated with a 
travel time variable 

qrV  deterministic (or observable) portion of utility qrU  

 (Continued) 
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Notation: (Continued.) 

qrU  utility that q  perceives he/she may gain from choosing r  to make 
a journey 

qr  error term in utility qrU  

2RN   set of posterior probabilities of passengers’ route choice for 
selected O-D pairs, each of which involves two alternative routes  
( 2RN  ) 

3RN   set of posterior probabilities of passengers’ route choice for 
selected O-D pairs, any one of which involves no more than three 
alternative routes ( 3RN  ) 

4RN   set of posterior probabilities of passengers’ route choices for 
selected O-D pairs, any one of which involves no more than four 
alternative routes ( 4RN  ) 

qrtAEI  total walking time of q ’s journey by using r , including access and 
egress, as well as his/her walking time for interchange (AEI) 

qrtWTT  total waiting time of q ’s journey by using r , including his/her 
waiting times at both the origin and interchange stations  

rv  dummy variable that indicates whether r  involves an interchange 

 AEI  coefficient of qrtAEI  

 WTT  coefficient of qrtWTT  

 I/C  coefficient of rv  for interchange/non-interchange (I/C ) 

 

6.4.1 Data description 

The data is comprised of (a) the posterior route-choice probabilities (i.e. 
5%Π

MIX  

and 
5%Π

UMM ) for every passenger being sampled and (b) ‘observed values’ of the 

travel time variables for those individuals.  

Firstly, 
5%Π

MIX  and 
5%Π

UMM , have been already obtained from Chapter 4 and Chapter 

5, respectively (see also Appendix C and Appendix D). With regard to the data 

for the explanatory variables, in practice, each individual’s travel times along 

different journey segments were not observed for each of the seven O-D pairs 

under study, nor were they available from the smart-card, especially for the 

journeys involving interchanges from one line to another. On this account, we 

could utilise the calculated average travel times for each journey segment for 

each O-D pair (see Section 4.3).  
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However, it is obviously the case that for any given pair of O-D (still denoted by 

-o d ), the walking times (including , , q l ot 

ACC , , [ , ], q l l st  

TIC  and , , q l dt 

EGR ) as well as the on-

board travel times (including , , [ , ]q l o st 

OBT  and , , [ , ]q l s dt 

OBT ) were actually all assumed to 

be constants and equal for each passenger travelling between that O-D, but only 

the individuals’ wait times (including , , 1l ot 

WFD  and , , 1l st 

WIC ) differ (cf. Section 5.1). For 

this reason, we may put together all the smart-card samples from the seven O-D 

pairs, which provided us with a combined data set with 601  journey records in 

total. This thus allowed for all the observed values of the explanatory variables 

to be varied among all the sampled individual passengers. Since the study area 

covers a large portion of Zone-1 of the LU network (shown in Figure 4.1, p.72), 

the choice model to be estimated may reflect, to some extent, the passengers’ 

route choice behaviour within that area.  

 

6.4.2 Utility function specification 

Given the combined data set, the travel time along different journey segments 

are taken into account as explanatory variables. It might be arguable that the 

factors that influence passengers’ route-choice decisions are quite subjective and 

may not be quantitatively measured. Notwithstanding, given the data available 

in this thesis, it would be necessary to assume that passengers would base their 

choices on the travel times of different journey segments. On that basis, we 

would like to see the passengers’ sensitivities to the travel time for different 

journey segments. Particularly, we would like to understand how much different 

the passengers’ sensitivities towards travel times would be at the interchanges 

from that when they are travelling at the origin/destination stations. Therefore, 

the walking time and waiting time at the interchange station will also be 

considered separately.  

Let qrt  denote a vector of observed variables with respect to route r . Given 

: ( , , , , )r o l s l d  , we can represent the travel time variable of each journey 

segment of route r  by ( , , , , )qr qr qr qr qr qrt t t t tt
WLK WFD OBT TIC WIC , where  

qr qr qrt t t WLK ACC EGR ; 

, , 1 , , 2

2

l o l o

qr

t t
t

 


WFD WFD

WFD ; (see next page) 
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, [ , ] , [ , ]qr l o s l s dt t t  OBT OBT OBT ; 

[ , ], qr l l st t  TIC TIC ;  

and  

, , 1 , , 2

2

l s l s

qr

t t
t

 


WIC WIC

WIC . 

Note that qrtWFD  and qrtICW  are considered as possible average waiting times of 

passenger q  on route r , where every passenger may fail to board at his/her first 

attempt given the rush hour traffic (cf. Section 3.5.1).  

Moreover, denote by ( , , , , )    β WLK WFD OBT TIC WIC  a vector of the coefficients, 

with each being associated with qrtWLK , qrtWFD , qrtOBT , qrtTIC  and qrtWIC , respectively, and 

representing passengers’ sensitivities to each of these time variables. In this 

example, we consider that those variables are linear in parameters. Thus, the 

observable utility could be specified as qr qrV  β t ; and hence the utility function:  

qr qr qr qr qr qr qrU t t t t t          WLK WLK WFD WFD OBT OBT TIC TIC WIC WIC ,  (6-2) 

It would be expected that all the coefficients would be negative values. The 

passengers’ sensitivities to those specified travel time variables could then be 

learnt from further analyses of the estimates of the behavioural coefficients. Note 

that any transit-line specific constants or any line specific time coefficient is not 

specified in this case, this is because our data sample is rather small and the 

correlations between the transit lines and journey times could not be handled by 

the simple logit model.  

 

6.4.3 Estimation results 

On the basis of the utility function specified as formula (6-2), MNL models were 

then estimated for the three data sets, by using 
5%Π

MIX  and 
5%Π

UMM  as input data, 

respectively.  

The difference between those data sets is as follows:  

i. the first set involves data for the O-D pairs each having two alternative 

routes, denoted by 2RN  ;  

ii. the second set further involve the data for the O-D cases with three 

routes, denoted by 3RN  ; and (see next page) 
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iii. the third data set consider all the seven O-D cases that have been 

studied in the previous chapters, denoted by 4RN  .  

 

The estimation results, including estimates of the coefficients for all the travel 

time variables as well as their significance levels, are presented in Table 6.1 

below and Table 6.2 (see next page) – the former results estimated using the 

mixture model estimates 
5%Π

MIX  and the latter using the updated choice 

probabilities 
5%Π

UMM .  

 

Table 6.1  Estimation results for MNL models using the posterior probabilities 
derived from the mixture models 

      Using 
5%Π

MIX      

RN   2   3   4  

n   334  511  601 

Log−likelihood  − 186.67  − 385.77  − 496.14 

  Est. t-stat.  Est. t-stat.  Est. t-stat. 

 WLK
  − 0.42 − 1.65  − 0.07 − 0.60  − 0.02 − 0.27 

 WFD
  − 0.12 − 1.49  − 0.07 − 1.07  − 0.08 − 1.23 

 OBT
  − 0.84 − 5.23  − 0.40 − 6.97  − 0.37 − 7.69 

 TIC
  − 1.97 − 5.29  − 0.85 − 5.37  − 0.66 − 5.07 

 WIC
  0.12 0.37  − 0.11 − 0.72  − 0.29 − 2.16 

  Ratio t-ratios  Ratio t-ratios  Ratio t-ratios 

   (vs. 0) (vs. 1)   (vs. 0) (vs. 1)   (vs. 0) (vs. 1) 

 WLK OBT
  0.50 1.66 − 1.66  0.16 0.59 − 3.01  0.07 0.26 − 3.79 

 WFD OBT
  0.14 1.37 − 8.35  0.18 1.01 − 4.51  0.22 1.14 − 4.03 

 TIC OBT
  2.34 6.94 3.97  2.13 7.13 3.77  1.79 6.26 2.77 

 WIC OBT
  − 0.15 − 0.37 − 2.86  0.29 0.71 − 1.78  0.80 2.05 − 0.51 

 WLK WFD
  3.55 1.15 0.82  0.89 0.58 − 0.07  0.30 0.27 − 0.65 

 TIC WIC
  −15.93 − 0.38 − 0.41  7.42 0.67 0.58  2.24 1.67 0.92 

 WLK TIC
  0.21 1.53 − 5.63  0.08 0.59 − 7.05  0.04 0.26 − 6.96 

 WFD WIC
  − 0.96 − 0.35 − 0.72  0.64 0.68 − 0.38  0.28 1.22 − 3.19 
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Table 6.2  Estimation results for MNL models using the updated posterior 
probabilities 

      Using 
5%Π

UMM      

RN   2   3   4  

n   334  511  601 

Log−likelihood  − 164.90  − 343.09  − 430.95 

  Est. t-stat.  Est. t-stat.  Est. t-stat. 

 WLK
  − 0.20 − 0.28  − 0.53 − 3.81  − 0.50 − 4.17 

 WFD
  − 0.61 − 4.01  − 0.45 − 4.61  − 0.43 − 4.71 

 OBT
  − 1.14 − 1.91  − 0.52 − 6.98  − 0.49 − 8.15 

 TIC
  − 2.92 − 1.97  − 0.94 − 5.26  − 0.89 − 5.91 

 WIC
  − 0.20 − 0.44  − 0.58 − 2.81  − 0.53 − 3.05 

  Ratio t-ratios  Ratio t-ratios  Ratio t-ratios 

   (vs. 0) (vs. 1)   (vs. 0) (vs. 1)   (vs. 0) (vs. 1) 

 WLK OBT
  0.18 0.25 − 1.15  1.02 3.37 0.07  1.02 3.61 0.08 

 WFD OBT
  0.53 1.86 − 1.62  0.87 3.50 − 0.50  0.89 3.58 − 0.44 

 TIC OBT
  2.56 6.47 3.94  1.82 6.61 2.98  1.82 6.99 3.15 

 WIC OBT
  0.18 0.44 − 2.06  1.13 2.73 0.31  1.08 2.91 0.21 

 WLK WFD
  0.33 0.27 − 0.55  1.17 3.44 0.50  1.15 3.59 0.47 

 TIC WIC
  14.41 0.42 0.39  1.61 2.12 0.81  1.69 2.30 0.94 

 WLK TIC
  0.07 0.25 − 3.31  0.56 3.28 − 2.55  0.56 3.30 − 2.57 

 WFD WIC
  3.01 0.44 0.29  0.77 2.86 − 0.83  0.83 3.08 − 0.64 

 

By comparing the two tables of results, it is noticeable that the different sets of 

choice probabilities led to significantly different estimations in the choice 

models. This was mainly due to the fact that the updating process substantially 

altered 
5%Π

MIX (though the aggregate measures, e.g. r
INF  relatively remained 

unchanged).  

For the case of 2RN   in Table 6.1, the coefficient of waiting time at interchange 

stations were positive, which, though not significantly, might be unreasonable. 

Commonly, though not always, both  TIC  and  WIC  are expected to be negative 

(cf. Wardman et al., 2001b). Also, the results indicated that passengers were 

much more sensitive to the walking time for transferring from one line to 

another, as well as the on-board travel time, whereas the disutility of waiting 
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time at the origin station and that of the walking time for access and egress were 

insignificant.  

For each of the data sets (given 2RN  , 3RN   and 4RN  ), we could draw a 

comparison between the final log-likelihoods for two models estimated using the 

same data set (i.e. same amount of data). In general, it is shown that the model 

using the updated posterior probabilities, 
5%Π

UMM , was achieved relatively better 

results than that using the mixture model estimates, 
5%Π

MIX . This essentially 

proves that 
5%Π

UMM  is believed to be relatively more credible, hence more realistic, 

than 
5%Π

MIX  derived from GM or LNM mixture models in our case, especially at the 

individual level. Therefore, the proposed updating approach in Chapter 5 is 

validated. 

In view of the estimation results of all the three settings presented in Table 6.2, 

the model fitted for the data set, 4RN  , which examined all the seven O-D pairs, 

provided with the most significant estimates of coefficients. It is therefore 

regarded as the most suitable model among all being tested. This is what we 

expected because 4RN   contains more data and also has more variability that 

would help the model estimation. Now we focus only on the estimation results 

of this model. Firstly, it is noticeable, from the ratio  WFD OBT  that passengers 

are more sensitive to being travelling on-board than to waiting at the origin 

station. This may be explained by the fact that the trains might be often over-

crowded during the morning with the rush hour passenger traffic for work. 

Whereas at the interchange stations, it showed the opposite, from the ratio, 

 WIC OBT
, that waiting time for a connecting line is more undesirable than on-

board travelling. This may largely due to the negative effect of the interchange 

per se. Such results notwithstanding, both of these differences are not significant 

given the sample being used for the model estimation, as the results of t-ratios 

(against 1) are rather small.  

Besides, the results also show that the walking time between gatelines and 

platforms (including access and egress) and the on-board travel time of both 

journey legs have practically the same coefficient. Furthermore, the disutility 

associated with the platform-to-platform walking time at the interchange 

stations is nearly double that of on-board travel time (see  TIC OBT ), where 

one-minute walking for transfer is the equivalent in disutility to 1.82  minutes of 

time spent travelling on board. This difference is highly significant as the -ratiot  



- 165 - 

against 1  reaches about 3.15. Moreover, from the ratios of the coefficients of 

walking time to that of waiting time, i.e.  WLK WFD  and  TIC WIC , it is shown 

that one-minute of walking time is about 1.15 and 1.69 times as unpleasant as the 

time of waiting at the stations of origin and interchange, respectively. These, 

however, are not significant. As such, it indicates that passengers are more 

sensitive to walking than to waiting, especially for interchanges.  

What is more, regarding the difference of passengers’ sensitivities to the walking 

times between interchange and other journey segments (see  WLK TIC ), the 

disutility for interchange walking is more or less twice as much as that for 

access/egress. Its t-ratio against 1  shows this difference is relatively significant. 

Similarly, as can be seen from the last row of Table 6.2 (see  WFD WIC ), it shows 

that one-minute of waiting time for transfer is more or less 1.2  times as much as 

the disutility equivalent of waiting at the start of the journeys, but this is not very 

significant.  

On the whole, the estimation results are all interpretable; and this in turn 

demonstrates that the proposed latent route choice model is also applicable, by 

using the posterior probabilities instead of actual observations.  

 

6.4.4 An extended example 

Following the previous example, we illustrate, in this subsection, another MNL 

model given a different specification of the representative utility. Because of the 

availability of a direct route (see Case-3 described in Section 4.3.1.3) in respect 

of our sample data, we included a dummy variable that indicates whether an 

alternative route involves an interchange or not. Let it be denoted by rv . That is,

1rv   if r  is an indirect route, and 0qrv   otherwise. Note that it is essentially 

equivalent to the variable hv  defined for formula (3-44) (see Section 3.5.1). 

Further to this, in addition to the total on-board travel time variable, we then 

considered only the total walking time and the total waiting time for each 

individual, which we represent, respectively, by qrtAEI  and qrtWTT . More specifically,  

qr qr qr qrt t t t  AEI ACC EGR TIC , 

with the superscript ‘AEI ’ being short for ‘Access, Egress and Interchange’; and 

qr qr qrt t t WTT WFD WIC , (see next page) 
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with ‘WTT ’ being short for ‘waiting time’.  

Based on the above, the utility function in this case is as follows:  

qr qr qr qr r qrU t t t v        AEI AEI WTT WTT OBT OBT I/C , 

where  AEI ,  WTT ,  OBT  and  I/C  represent, respectively, the coefficients of the 

variables qrtAEI , qrtWTT , qrtOBT  and rv .  

By using each set of the choice probabilities, 
5%Π

MIX  and 
5%Π

UMM , we estimated these 

parameters, ( , , , )   β AEI WTT OBT I/C , for each of the three samples, 2RN  , 

3RN   and 4RN   (as described in the previous example in Section 6.4.3).  

The estimation results are presented in Table 6.3 below and Table 6.4 (see next 

page), respectively, in the same manner as the previous example (cf. Table 6.1 

as well as Table 6.2, pp.162-163).  

 

Table 6.3  Estimation results for an additional example of MNL models using 
the posterior probabilities derived from the mixture models 

      Using 
5%Π

MIX      

RN   2   3   4  

n   334  511  601 

Log−likelihood  − 186.94  − 385.14  − 491.50 

  Est. t-stat.  Est. t-stat.  Est. t-stat. 

 AEI
  − 0.63 − 2.81  − 0.13 − 1.50  − 0.12 − 1.84 

 WTT
  − 0.11 − 1.42  − 0.14 − 2.07  − 0.16 − 2.36 

 OBT
  − 1.05 − 5.44  − 0.41 − 6.68  − 0.41 − 7.62 

 I/C
  − 5.13 − 3.36  − 2.79 − 4.37  − 2.82 − 5.42 

  Ratio t-ratios  Ratio t-ratios  Ratio t-ratios 

   (vs. 0) (vs. 1)   (vs. 0) (vs. 1)   (vs. 0) (vs. 1) 

 I/C OBT
  4.86 5.20 4.13  6.77 6.55 5.58  6.91 7.93 6.78 

 AEI OBT   0.60 2.68 − 1.78  0.31 1.41 -3.16  0.29 1.75 − 4.37 

 WTT OBT
  0.11 1.34 −11.29  0.35 1.87 -3.47  0.39 2.09 − 3.33 

 

For convenience, here we code-name the previous example, ‘Test-1’, and the 

current case, ‘Test-2’. Firstly, we compare each pair of the models fitted for the 

same data.  
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Table 6.4  Estimation results for an additional example of MNL models using 
the updated posterior probabilities 

      Using 
5%Π

UMM      

RN   2   3   4  

n   334  511  601 

Log−likelihood  − 165.26  − 331.65  − 418.56 

  Est. t-stat.  Est. t-stat.  Est. t-stat. 

 AEI
  − 0.60 − 1.39  − 0.26 − 2.03  − 0.36 − 4.20 

 WTT
  − 0.58 − 4.15  − 0.51 − 4.64  − 0.48 − 4.80 

 OBT
  − 1.53 − 2.05  − 0.71 − 7.21  − 0.68 − 7.73 

 I/C
  − 9.00 − 1.36  − 4.57 − 4.38  − 3.87 − 4.73 

  Ratio t-ratios  Ratio t-ratios  Ratio t-ratios 

   (vs. 0) (vs. 1)   (vs. 0) (vs. 1)   (vs. 0) (vs. 1) 

 I/C OBT
  5.89 3.60 2.99  6.45 7.23 6.11  5.73 7.86 6.49 

 AEI OBT   0.39 0.90 − 1.41  0.36 1.79 − 3.15  0.53 3.35 − 2.96 

 WTT OBT
  0.38 2.02 − 3.28  0.72 3.76 − 1.49  0.71 3.79 − 1.52 

 

Similar to Test-1, for each sample, the model using the updated choice 

probabilities 
5%Π

UMM  also outperformed that using the original mixture model 

estimates 
5%Π

MIX  in Test-2. This could again be due to the improvement in 
5%Π

UMM  

compared to 
5%Π

MIX .  

Furthermore, values of the AIC and BIC were calculated to demonstrate and 

compare the goodness of fits of the preferable models in Test-1 and Test-2 for 

each data set (cf. Section 3.5.2). The results are presented in Table 6.5 below.  

 

Table 6.5  Goodness of fit of models of Test-1 and Test-2 

  Test-1 Test-2  Test-1 Test-2  Test-1 Test-2 

RN   2   3   4  

n   334  511  601 

Dimension of β   5 4  5 4  5 4 

Log−likelihood  − 164.90 − 165.26  − 343.09 − 331.64  − 430.95 − 418.56 

AIC  339.80  338.52  696.18 671.28  871.90 845.12 

BIC   358.86 353.76  717.36 688.23  893.89 862.71 
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As illustrated in Table 6.5, the models of Test-2 could always achieve a relatively 

lower value of AIC/BIC and hence have better fits than those of Test-1. In the 

following discussions, we consider the case of the current example model being 

fitted for 4RN  .  

As can be seen from Table 6.4 (see previous page), the coefficients of all variables 

are negative as expected, which are also statistically significant. It should be 

noted that the coefficient  I/C  on the interchange/non-interchange dummy 

variable is actually independent of the amount of time spent interchanging (cf. 

Wardman et al., 2001b). We may express the interchange and the other travel 

time variables as equivalent amounts of on-board travel time (cf. Wardman et al., 

2001a), where the ratio  I/C OBT  is also termed ‘interchange penalty’.  

Early studies carried out by London Regional Transport (1988); and London 

Regional Transport (1995)2, which were quoted by Wardman et al. (2001b), 

have already analysed the interchange penalties on the LU. Their analyses relied 

particularly on passengers’ actual choices between direct and indirect routes. In 

both of the studies, an interchange penalty was considered, without including 

the walking and waiting components. Based on a data set in 1980, their initial 

finding showed that an average interchange penalty was 5.7 minutes. That is, one 

interchange would be perceived by a typical passenger as equivalent to 5.7 

minutes of on-board travel time. In the later analysis, the value was updated to 

3.7 minutes, given another data set available from 1990. Furthermore, given that 

the walking and waiting time variable is not involved in the utility function, the 

research conducted by Guo and Wilson (2011) showed the interchange penalty 

would be equivalent to 4.9 minutes of on-board travel time. More recently, the 

value for the LU published by the Transport for London (2013a) was 3.5 minutes; 

while the report by the Department for Transport (2014) indicated that the 

interchange penalty on wider public transport is 5 to 10 minutes of on-board 

travel time per interchange. As shown in Table 6.4, the ratio  I/C OBT  obtained 

from our model suggests that the time value of the interchange penalty would be 

5.73 minutes of on-board travel time, which appears plausible given the above 

values as references.  

                                                        

2 London Regional Transport (1984–2000) is the predecessor to TfL. 
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It should also be noted, in the first two cases mentioned above, that the walking 

and waiting time were constrained to be weighted twice on-board travel time 

(see also Guo, 2008, p.47). Similarly, for the calculation of the generalised journey 

time on the LU (Transport for London, 2013a), walking time along congested 

passageways at an origin or a destination should also be weighted by 2.0, while 

at interchange stations the walking time would be weighted slightly higher, by 

2.08. As for the time spent waiting for a train on a fairly crowded platform and 

standing in a crowded train, the weights could be as large as 4.0 and 2.03, 

respectively. Only being seated in an uncrowded train is not weighted. For this 

reason, during rush hour (or in a congested environment), one-minute walking 

and 1-minute waiting are roughly the equivalents in disutility to one minute and 

1.97 minute of in-train time respectively. This is analogous to, though slightly 

different from, the estimation results in Test-1, given 
5%Π

UMM  and 4RN   (cf. Table 

6.2, p.163). 

By comparison, in the current model, the estimation results showed quite the 

opposite. The coefficient of on-board travel time,  OBT , was approximately twice 

(practically 1.9 times) that of the total walking time,  AEI , and about 1.4 times 

that of the total waiting during a journey,  WTT , though the latter difference was 

not significant. That is, the disutility associated with travelling aboard was nearly 

double that of walking. One possible explanation could be that passengers might 

be practically indifferent to the inevitable walk for access/egress, but may be 

more concerned with on-train delays and congestion. A train might possibly be 

stuck in a tunnel and/or take longer time than scheduled for loading/unloading 

passengers. Analogous situations could be found from the research conducted by 

Guo and Wilson (2011) and Raveau et al. (2014), where the walking and waiting 

time spent interchanging were both modelled as explanatory variables in the 

utility function.  

 

6.5 Summary and conclusions 

This chapter has presented a new approach to modelling passengers’ route 

choice behaviour in a situation that each individual’s actual chosen route is 

unobserved (or simply unobservable) but their probabilistic route choices are 

considered. That is, each passenger’s route choice is only learnt and hence 
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described by a set of posterior probabilities. All these posterior probabilities 

were estimated in line with Bayes’ theorem, with each, as a conditional 

probability, expressing the probability of one alternative route being chosen by 

an individual, given the knowledge about his/her journey time. These posterior 

probabilities vary across respondents; and they are used instead of the simple 

deterministic 0-1 indicators typically used in a choice model. In other words, the 

numerator in, say, a multinomial logit choice probability would no longer just be 

the exponential of the utility of the chosen alternative, but would be a weighted 

average of exponentials of such utilities, where the weights are given by the 

posterior probabilities.  

Testing of the proposed approach was conducted based on the MNL model. The 

estimation results, based on the posterior probabilities as inputs into choice 

model, have shown that we could estimate meaningful relative sensitivities to 

the different journey time segments, thus allowing us to obtain an understanding 

of the passengers of route choice even in the absence of observations of the 

actual chosen routes. This is a key step forward to overcome the shortage of 

revealed preference (RP) data for discrete choice analyses.  

It must be pointed out, however, that the estimation results of the discrete choice 

models described and discussed in this chapter would depend crucially on the 

feasibility of acquiring credible (posterior) route-choice probabilities of each 

passenger in a given sample. On the other hand, there is still a need for the 

validation of the coefficient estimates of the latent route choice model. To this 

end, ideally, we should compare the results with previous/similar studies that 

are based on real RP data, where passengers’ actual route choices are observed. 

Additionally, we may use such RP data, if available, to estimate the same, say MNL 

model. An alternative way could be that we may try to simulate data where 

passengers’ actual route choices and the underlying sensitivities (to the specified 

variables) that determine both the choice set and the actual choice are known. 

Then, we also use that simulated data in the modelling framework to see whether 

it could be retrieved. By doing so, we could then compare the estimated 

coefficients from the posterior route-choice probabilities, and the estimates from 

the data of actual/simulated route choices.  If they were close enough, then the 

development of the latent route choice model would ultimately be confirmed.  
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Moreover, the utility specification could be refined, and take into account e.g. the 

passengers’ sensitivities to different transit lines, as some travellers may have 

strong preferences to a certain line while others may have different tastes. Also, 

the crowdedness as well as seat availabilities could be considered further. In 

addition, the testing of this proposed approach could be extended to the other 

advanced route choice models, such as the path size logit, C-logit, as well as the 

error components approach allowing for correlation between routes sharing key 

parts of the network.  
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Chapter 7  

Concluding remarks and future research 

 

7.1 Summary of the thesis 

This thesis is devoted to making an attempt to develop a modelling approach 

towards passengers’ route choice behaviour, where their actual route choices 

are unobserved/unobservable and hence latent. At best, the route choice of a 

passenger could only be known up to a choice probability. It is thus distinct from 

standard discrete choice model that requires the actual choice is explicitly 

known. The study is based on the LU system and the Oyster smart-card travel 

time data; it focuses on the mechanisms and modelling techniques to cater to the 

development of a latent route choice model. The work presented in this thesis 

provides fundamental solutions to the model configuration, whereby the 

implementation of the latent route choice model has been achieved under a 

modelling framework combining two building blocks: data mining and discrete 

choice modelling (cf. Figure 1.1, p.5). The outputs of the first building block 

provide the input data for the second one.  

For the data mining, we utilised the methods of Bayesian inference in a bid to 

find out posterior probabilities of passengers’ route choices between a given pair 

of O-D stations. This building block has three modules as follows.  

(a) Data processing. It deals with all existing information from different 

data sources, especially the smart-card data that provides the entry 

times and journey times of each individual passenger on a given O-D 

pair.  

(b) Finite mixture model. It produces a set of estimates of choice 

probabilities for each individual passenger, given their journey times 

being observed and the route-choice set being identified for each O-D. 

Additionally, proportions of the passenger flow on each alternative 

route are estimated as well.  
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(c) Update. It updates the posterior probabilities obtained from the finite 

mixture model for each individual, by further considering their entry 

times and trains’ timetable, in addition to the actual journey times.  

For the data processing, we consider the following additional information:  

(1) timetable of each transit service;  

(2) average walking time between gatelines and platforms, as well as that 

between any two platforms within each station; and  

(3) historical route-choice data indicating the proportions of passenger-

traffic flow among alternative routes.  

For the finite mixture model, the passengers’ journey times for each O-D are 

modelled by a finite mixture distribution. The prior knowledge, especially about 

the component distributions and their mixture weights, are of significant 

importance, as that could provide ideal initial values for the model estimation. In 

the case studies on the LU network, the information about the passenger-flow 

proportions of each route was available from the RODS data; however, it was not 

used as the initial value, but served as the only reference for validation of the 

estimated mixture weights (and the inference of passenger-flow proportions).1 

In this respect, we applied the K-means clustering method to estimate initial 

values for the parameters of the mixture model, which were then estimated by 

applying the EM algorithm. Since the estimation by itself does not show a one-

to-one correspondence between an estimated component of the mixture and an 

alternative route in the real world, we put forward a set of principles for 

matching a component-label to a real alternative route, in order to interpret as 

well as validate the model estimates. Note that the interpretation and validation 

of the model estimates are crucial to determining whether the mixture 

distribution (or the model) would be suitable. This in turn largely depends on 

the credibility and accuracy of the expected average journey times of each 

alternative (calculated based on the information sources (1) and (2)) as well as 

the existing information about the traffic distribution (based on source (3)).  

For the updating of the posterior probabilities of each individual passenger’s 

route choices, we further considered the expected journey times that every one 

                                                        

1 It was also pointed out that the RODS results were derived from aggregation on a rolling basis 

and hence may not be accurate. 
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might have for each alternative route, according to their actual entry times and 

the information sources (1) and (2) as mentioned above. From that, the posterior 

probabilities are re-estimated by allowing for two conditions, where the mixture 

weights estimated from the finite mixture model serve as prior knowledge. We 

demonstrated that the process was fully complying with Bayes’ theorem.  

Further, we presented seven case studies on the LU system, where these three 

modules were implemented in the context of different network scales. Within the 

scope of this thesis, the applicability of module is confined only to a single O-D 

network, and only GM and LNM models were tested for the LU case studies. Still, 

it has been demonstrated that the finite mixture model could offer an effective 

solution to estimating passengers’ route choices at the aggregate level. It was 

also noted that GM had a relatively greater capacity than LNM in this context 

since it could always provide feasible estimates. Although LNM might fit the 

journey time data well in each case study, the model estimates were clearly less 

interpretable as the size of route-choice set becomes larger. What is more, at the 

individual level, we illustrated the posterior probabilities, which were estimated 

before and after the update was applied for each passenger. Then, the two sets 

of estimates were used as input data for estimation and development of the 

latent route choice model, which acts as the second building block of the 

established modelling framework.  

Conventionally, a standard choice model relies on having real data of individuals’ 

route choices, which are further coded as binary indicators, 0 and 1, and enter 

the choice probabilities for the estimation of the model coefficients. Suppose that 

we can know exactly which alternative route a passenger has actually chosen. 

The choice probability for the chosen route is equal to 1, while the probabilities 

for all other alternatives should be 0. It would then be expected that the standard 

choice model could predict the choice probability for this passenger to be as close 

to 1 as possible. However, each of the alternative routes may in fact have its own 

probability of being chosen for reasons. Suppose if all the alternatives are treated 

as having the same choice probability (i.e. 1 RN , where RN  is the total number 

of the alternative routes), the standard choice model would not be able to 

capture these true probabilities.  

We modified the formula of choice probabilities for each individual passenger to 

be a weighted average of exponentials of the utilities of all alternative routes that 
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might possibly have been chosen, rather than just the exponential of the utility 

of the chosen alternative. For each of the modified choice probabilities, the 

estimated posterior probabilities for each individuals served as the weights for 

the exponentials. In that way, the latent route choice model is expected to 

retrieve the posterior probabilities as those being put in, whereby the estimated 

model coefficients should thus present passengers’ sensitivities that underlie 

and determine their actual choices in a more realistic manner.  

We implemented the latent choice modelling approach based on a simple MNL 

model, using the two sets of posterior probability estimates derived from the 

first building block. Then we compared and analysed the two sets of estimated 

coefficients of the different journey time segments as we specified for the utility 

function. The outcome demonstrated that the updated posterior probabilities 

yielded meaningful coefficients.  

It should be noted however that the credibility of the posterior estimates could 

not be assured because of the fact that the passengers’ actual chosen routes are 

latent. In this sense, not only would the posterior probabilities serve as the input 

data for estimation of the latent route choice model, but also the estimation 

results of the latter would in turn serve as evidence to verify whether those are 

reasonable. Therefore, the first building block is expected to provide a set of 

posterior probabilities of choosing each of the alternative routes as realistic as it 

possibly can. The better the posterior probabilities are generated, the less 

uncertainty there would be in a choice model, and we would then gain a better 

understanding of passengers’ route choice behaviour. In general, this research 

will have immediate practical implications to the underground network 

managers, and would be applicable to other cities with major and complex public 

transport networks.  

 

7.2 Directions for future research 

The modelling framework is still an incomplete structure where there is room 

for more experiments, practices and crucial modules to be included. Several 

important issues merit future research. On the strength of the established 

structure in this thesis (cf. Figure 1.1, p.5), we propose a relatively more robust 

version for future research, which is illustrated in Figure 7.1 (see next page).  
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Figure 7.1  A modelling framework to be developed for future research. 
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In this modified framework, improvements will be necessary for the modules 

coloured in blue. Furthermore, the modules coloured in gold (including the 

directed golden line) will also need to be built in order to provide robustness to 

the modelling framework.  

 

7.2.1 Refinement of naive Bayesian modelling framework 

The purposes of improving the naive Bayesian modelling framework is intended, 

on the one hand, to acquire posterior probabilities of passengers’ route choices 

with better credibility; and also, on the other hand, to have a more realistic 

inference of passenger-traffic distribution. The more accurate the posterior 

probabilities are estimated to be, the closer such inference is to the truth.  

The implementation of this model, in reference to the case studies conducted on 

the LU system, was predicated on the premise of some simplistic assumptions 

being made in each module. The major issues and possible solutions are 

summarised as follows.  

The universal route-choice set of a given O-D pair had to be identified through 

our own judgement. As such, in practical applications, this would largely be 

dependent on modellers’ own senses and perceptions of the O-D network and 

the possible alternative routes, rather than the passengers’ perspective. In this 

regard, a model for generating a choice set will be indispensable. More details 

are presented in Section 7.2.2.  

For testing of the finite mixture model in each of the LU case studies, we 

considered the component distribution, i.e. the journey time distribution of an 

alternative route, to be either Gaussian or log-normal. This was due to the true 

component distributions were not known. It would be better to test other, 

different types of statistical distributions hence different mixture models for 

fitting the journey time data of a given O-D. Moreover, a simulation-based transit 

assignment model may be employed, or developed for the estimation of the 

distribution of journey times. However, note that different behavioural 

assumptions of how passengers make route choices may have different impacts 

on the estimation of the latent route choice model. Therefore, we need also check 

that what assumption is the best or have least impact in this regard. Additionally, 

the mixture distribution of journey time for a given O-D pair may not be a 
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standard mixture, but may virtually be a mixture of different types of 

components distributions, where each route has its own distributional form. 

Such advanced mixture models can also be studied in the future.  

Furthermore, setting initial values and a stopping threshold for estimating the 

mixture model parameters may potentially pose some challenges for future 

research. Admittedly, there is no guarantee that the general EM algorithm 

converges to the global optimisation, though, which was not what we pursued 

either. Given a set of initial values, the estimated parameters might be different. 

The smaller the threshold value is, the more likely that the estimated results 

would be the global optimal, and the longer time the estimation would take. In 

contrast, a larger threshold may achieve a faster convergence, though, which 

would be more likely to a local optimal. Given a threshold value, different initial 

values may result in different estimates of the model parameters. The combined 

impact that the initial values and the threshold may have on the estimation 

results needs to be further assessed and analysed; and meanwhile, a variety of 

methods for the generation of initial values for the estimating models could also 

be tested. 

What is more important is that it will be vital to develop a more effective 

algorithm for matching an estimated component from mixture models to a real-

life alternative route. In this thesis, we had only suggested a set of general 

principles; and its practical application (e.g. in the LU case studies) were still 

indefinite and rather subjective.  

Then, for the approach to the updating of the posterior probabilities, we 

considered that each individual passenger had a set of hypothetical journey time 

distributions, each of which was based on the premise that he/she had chosen 

one of the alternative routes. From that, we obtained the likelihood that he/she 

was travelling on that route, given the actual journey time. However, the same 

type of hypothetical journey time distribution was assumed and used in the 

mixture model. As a matter of fact, that was not necessary. It would be useful to 

consider that such hypothetical distribution could have various types of 

statistical distributions for different individual passengers; and that each 

individual could have different types of hypothetical journey time distributions 

for different alternative routes.  
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One last major issue is that we were short of detailed individual Oyster data. For 

that reason, in each of the LU O-D cases, the updated posterior probabilities were 

derived from a very small sample of OJT OBS , which was neither the same as, nor 

sourced from, the data sample used for the estimation of the mixture model. For 

future research, a large sample of detailed individual data will be essential.  

 

7.2.2 Route-choice set generation 

As mentioned in the previous section, it would be important to consider further 

developing a choice-set generation model for the modelling framework (see 

Figure 7.1). Once a set of alternatives (i.e. route-choice set) has been 

determined, a passenger, for example, would then be expected to choose one 

alternative (at a time) within this given choice set. In reality, however, any 

individual passenger’s choice set is unable to be observed. Also as mentioned in 

Section 3.2, not all the available alternative routes are necessarily included in 

each passenger’s choice set. Biased estimates of parameters for the attributes in 

the choice models might be yielded if it is simply supposed that all the possible 

alternative routes are considered by the passengers.  

The generation of the choice set is regarded as a learning process to dynamically 

adapt passengers’ own perceptions on reasonable alternatives (Richardson, 

1982). In a dense public transport network, such as the LU, there might be a large 

number of different possible routes for some O-D pairs. Obviously, it may not be 

known or observed that which alternative routes are considered by a passenger.  

Ben-Akiva and Boccara (1995) discussed the approaches to modelling a latent 

process of reproducing a choice set. As such, the choice set is probabilistic and 

influenced by some random factors that are not observable but varying across 

decision makers. More detailed discussions on this issue can be referred to 

Cascetta and Papola (2001) and Bierlaire et al. (2010).  

 

7.2.3 Refinement and validation of latent route-choice model 

To refine the latent route choice model, as mentioned in Section 6.5, it would be 

interesting to re-specify the utility function by further involving line-specific 

constants, and other significant attributes given the available data. The path size 
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logit, C-Logit, and error components approach could be tested in future research, 

so as to capture the effect of routes with overlap.  

As has also been mentioned in the previous chapter, the validation module that 

should come into the work is that: we might need to do either simulations or 

surveys to acquire data where we could know the actual routes that passengers 

took during their journeys. Then, the choice model shall be estimated via the 

conventional procedure and we would obtain a set of coefficients, which could 

be denoted by 
β . We would need to make a comparison between 

β  and the 

estimates from the latent route, denoted by β . If there would be a big gap 

between them, then it would be necessary to follow the ‘directed golden line’, as 

shown in Figure 7.1 (see p.177), to check the procedures and every aspect of the 

modelling framework.  

Clearly, the mechanism of the current modelling framework is to sequentially 

deal with the two building blocks (i.e. data mining and estimation of the latent 

choice model).  That is, we estimate the posterior probabilities and then the 

coefficients of the latent route-choice model. Further to this, we foresee the 

ultimate goal of future study would be to develop a platform where advanced 

latent choice model is integrated with a simulation-based transit assignment 

model and both evolve simultaneously to deliver a more robust modelling 

framework. As such, the proposed modelling framework could be extended to a 

broader transit network with multiple O-D pairs; and the prospective integrated 

framework should then contribute to a more realistic representation of the 

passengers’ route choice behaviour as well as a more accurate prediction of the 

passenger-traffic over the network. This would provide policy makers with much 

deeper insight into the passengers’ travel behaviour and a valuable asset for 

effective planning of the public transport.  
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Appendix A  

Explanatory notes on logical dependency and 

relationship between route choice and journey time 

 

Suppose there are two alternative routes (hereinafter referred to as Route1 and 

Route2) connecting a given pair of origin and a destination (O-D) stations. We let 

z  denote the travel demand (i.e. total number of passengers) on this O-D; and    

1 2z z z  ,   (A-1) 

where 1z  represents the total number of passengers who choose Route1, and 2z  

represents that on Route2.  

For any individual passenger, the probability of choosing Route1 is  

1
1Pr( )

z
choice

z
 ;   (A-2) 

and that the probability that an individual chooses Route2 is   

2 1
1Pr( ) 1

z z
choice

z z
   .   (A-3) 

Let us adapt an example from the Wikipedia1 to imitate the case of passengers’ 

route choices. Suppose that %A  of the passenger population chose Route1, and 

%B  chose Route2. Let 1
  and 2

  be the average journey times of travelling by 

Route1 and Route2, respectively. Further, we can observe each passenger’s 

journey time, but without knowing his/her route choice.  

If we have known that a passenger’s journey time is    minutes, %X  of 

passengers on Route1 spent    minutes, and %Y  of passengers on Route2 spent 

   minutes as well, but can we infer the probability that the passenger chose 

Route1 (or Route2)?  

According to equations (A-1) to (A-3), we may have (see next page) 

                                                        

1  Available online at http://en.wikipedia.org/wiki/Posterior_probability; last accessed on 30 

September 2014. 

http://en.wikipedia.org/wiki/Posterior_probability
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1Pr( ) %choice A ;  

2Pr( ) %choice B ;  

1Pr( | ) %choice X   ;  

and 

2Pr( | ) %choice Y   .  

The total number of passengers who chose Route1 and took    minutes to 

complete his/her journey is 
1 1Pr( ) Pr( | )z choice choice   ; and the amount of 

passengers who chose Route2 and took    minutes to complete his/her journey 

is 2 2Pr( ) Pr( | )z choice choice   . Therefore, the probability that the passenger 

chose Route1 is calculated as  

1

1 1

1 1 2 2

Pr( | )

Pr( ) Pr( | )

Pr( ) Pr( | ) Pr( ) Pr( | )

choice

z choice choice

z choice choice z choice choice





 





 



 

    
;  

and so  

1

1 1

1 1 2 2

Pr( | )

Pr( ) Pr( | )

Pr( ) Pr( | ) Pr( ) Pr( | )

choice

choice choice

choice choice choice choice





 





 





  
.  (A-4) 

That is,  

1

% %
Pr( | )

% % % %

A X
choice

A X B Y
  


  

.  

Likewise,  

2

% %
Pr( | )

% % % %

B X
choice

A X B Y
  


  

.  

In equation (A-4), the denominator is in fact the proportion of passengers who 

spent    minutes in travelling between the O-D, which we represent by Pr( )  . 

The numerator is equivalent to 1Pr( , )choice   . The conditional probability of 

route choice (say, the choice of Route-j ), Pr( , )jchoice   , is the probability of a 

passenger choosing Route-j  given that his/her journey time    has been 

already observed. We have  

1
1

Pr( , )
Pr( | )

Pr( )

choice
choice










 ,   (A-5) 
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or  

1 1Pr( , ) Pr( | ) Pr( )choice choice      ,  (A-6) 

or  

1 1
1

Pr( ) Pr( | )
Pr( | )

Pr( )

choice choice
choice












 .  (A-7) 

If the journey time    has no correlation with the route choice, then  

Pr( | ) Pr( )j jchoice choice   .  

Intuitively, we believe that, for an individual passenger, he/she may have 

different journey times when travelling by different routes. Note that jchoice  

and    are not independent of each other. The probability of both events 

occurring at the same time is defined by equation (A-6) and the conditional 

probability is obtained by equation (A-5).  

Given data of journey time observations, Pr( )   is certainly greater than 0; 

otherwise, journey time    is not observed and Pr( ) 0   .  
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Appendix B  

Standard Tube map (© Transport for London) 

 



 



- 199 - 

Appendix C  

Application of mixture models: Case-5 and Case-7 

 

In addition to the five case studies described in Section 4.3, two more cases are 

showcased in this appendix, which exhibits only the estimation results obtained 

from GM and LNM models.  

Further to Case-4 (see Section 4.3.2.1), Appendix C.1 shows a case study of a 

pair of O-D stations that are connected by three alternative routes. We code-

name this case study ‘Case-5’. And in addition to Case-6 (see Section 4.3.2.2), 

the results of another case of four alternative routes, code-named ‘Case-7’, are 

presented in Appendix C.2.  

 

C.1 Case-5: Liverpool Street – Green Park 

This section shows a case study of the mixture models applied on another O-D 

pair with three alternative routes. Its network is illustrated in Figure C.1 (see 

next page).  

Any passenger starting his/her journey at the origin, Liverpool Street station, 

may take a westbound train on the Central line (as the only option) for the first 

leg of his/her journey. In order to reach the destination, i.e. Green Park station, 

alternative interchange stations include Holborn (transferring to a westbound 

train on the Piccadilly line, for the shortest first journey leg among all of the 

three alternatives); Oxford Circus (transferring to a southbound train on the 

Victoria line train; and Bond Street (transferring to a southbound train on the 

Jubilee line, for the longest first journey leg).  

 

 



 
- 2

0
0

 - 

 

 

 

Figure C.1  The LU network that connects the O-D pair: Liverpool Street – Green Park. 
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(a) 

 
(b) 

Figure C.2  Summary of OJT OBS  data for Liverpool Street – Green Park: 

(a) a box-and-whisker plot of the raw data 
0

17 3)( ,42n  ; and  

(b) a histogram of the valid data 17, 2)( 10n  . 

 

Table C.1  Parameter estimates of GM and LNM models based on OJT OBS  data 
for Liverpool Street – Green Park 

The initial values and the model parameters were estimated using the K-means 
clustering and the EM algorithm, respectively. 17,102n  . 

  GM  LNM 

Component-label  1r   2r   3r    1r   2r   3r   

Initial values         

r
KMS  (minute)  19.0 22.0 27.0  18.0 21.0 26.2 

r
KMS  (minute)  1.2 1.1 3.3  0.9 1.1 3.0 

r
KMS  (%)  44.8 35.8 19.4  32.3 42.2 25.4 

(Continued) 
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Table C.1  (Continued.) 

  GM  LNM 

Component-label  1r   2r   3r    1r   2r   3r   

Parameter estimates         

ˆ
r   (minute)   18.7 22.0 27.6  18.4 21.5 26.6 

ˆ
r   (minute)  1.4 2.3 4.5  1.3 2.3 4.4 

ˆ
r   (%)  35.9 47.7 16.4  27.1 51.6 21.3 

 

 

  
 (a) (b) 

 
 (c) (d) 

Figure C.3  Posterior probabilities of route choices given OJT OBS  for 
Liverpool Street – Green Park ( 17,102)n  : 

(a) for all alternatives, based on GM; (b) for all alternatives, based on LNM;  

(c) for Route1, based on GM and LNM; (d) for Route2, based on GM and LNM; and  
(e) for Route3, based on GM and LNM (see next page).  
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 (e) 

Figure C.3  (Continued.) 

 

Table C.2  Inferences of proportion of passenger traffic on each alternative 
route connecting Liverpool Street to Green Park ( 17,102)n   

  GM  LNM 

Component-label  1r   2r   3r    1r   2r   3r   

ˆ
r  (%)  35.9 47.7 16.4  27.1 51.6 21.3 

rn 0INF   7,660 7,553 1,889  5,528 9,047 2,527 

r
0INF  (%)  44.8 44.2 11.0  32.3 52.9 14.8 

rnINF   6,060 8,257 2,785  4,672 8,801 3,629 

r
INF  (%)  35.4 48.3 16.3  27.3 51.5 21.2 

 

Table C.3  Expected journey times of simulated samples for each alternative 
route connecting Liverpool Street to Green Park 

  Calculated average travel time (minutes) 

l  –   Central –  Central –  Central – 
l   Victoria  Piccadilly  Jubilee 
s   Oxford Circus  Holborn  Bond Street 

Journey segment       

, l ot 

ACC    2.1  2.1  2.1 

, , 1l ot 

WTD  / , , 2l ot 

WTD   1.5 / 3.7  1.5 / 3.7  1.5 / 3.7 

, [ , ]l o st 

OBT    10.0  7.0  11.0 

[ , ], l l st  

ICT    2.0  3.4  3.1 

, , 1l st 

ICW  / , , 2l st 

ICW   0.7 / 2.7  1.4 / 3.8  1.4 / 3.6 

, [ , ]l s dt 

OBT    1.0  6.0  2.0 

, l dt 

EGR   2.1  2.6  3.8 

(Continued) 
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Table C.3  (Continued.) 

  Calculated average travel time (minutes) 

l  –   Central –  Central –  Central – 
l   Victoria  Piccadilly  Jubilee 
s   Oxford Circus  Holborn  Bond Street 

Route-labels  1h    2h    3h   

Total average        

(1, 1)ht   19.4  24.0  24.9 

(2,1)ht   21.6  26.2  27.1 

(1, 2)ht   21.4  26.5  27.0 

(2,2)ht   23.6  28.6  29.3 

ht
REF   21.5  26.3  27.1 

 

Table C.4  Matching the estimated mixture components with the real-world 
routes for Liverpool Street – Green Park 

   r  matches h  

Component-label r   1r    2r    3r   

Journey time (minutes)       

ˆ
r  

GM  18.7  22.0  27.6 

LNM  18.4  21.5  26.6 

ht
REF  ˆ( )h

SEM   21.5 (0.9)  26.3 (0.9)  27.1 (0.9) 

CI for h   95% CL  [18.7, 24.3]  [23.4, 29.2]  [24.2, 29.9] 
       

Traffic distribution (%)       

ˆ
r  

GM  35.9  47.7  16.4 

LNM  27.1  51.6  21.3 

h
ROD  ( )hnROD  

AM Peak  71.3 (141)  17.9 (35)  10.2 (20) 

A weekday  45.5 (298)  41.4 (271)  13.1 (86) 
        

Route-label  h   1h    2h    3h   

   Central –  Central –  Central – 
   Victoria  Piccadilly  Jubilee 
   Oxford Circus  Holborn  Bond Street 
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(a) 

 
(b) 

Figure C.4  Estimated mixture distributions, and weighted components thereof, 
of OJT  for Liverpool Street – Green Park ( 17,102)n  : 

(a) estimated GM model; and  

(b) estimated LNM model (see next page). 
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Table C.5  Goodness-of-fit test result for Liverpool Street – Green Park 

The calculation of gof  was repeated 1,000 times for each model. 

  GM  LNM 

Rate of obtaining lower gof  (%)  51.4  48.6 

Average gof   0.0834  0.0838 

 

C.2 Case-7: Victoria – Waterloo 

This section shows the results of a case study of another single O-D connected by 

four alternative routes. Its network is illustrated with Figure C.5 below, which 

involves six lines – the most among all the seven cases in this thesis.   

 

 

Figure C.5  The LU network that connects the O-D: Victoria – Waterloo. 

 

In this case, passengers starting from Victoria may choose to take an eastbound 

Circle/District line train and transfer to a southbound train on the Jubilee line 

at Westminster. Alternatively, they may travel further on the same line/train to 

Embankment, where they could choose to change onto a southbound train on 

either the Northern line or the Bakerloo line. The fourth option for the 

passengers is to take a northbound Victoria line train at the origin station and 

transfer at Green Park, where they may take a southbound Jubilee line train 

running towards the destination, Waterloo.  
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(a) 

 
(b) 

Figure C.6  Summary of OJT OBS  data for Victoria – Waterloo: 

(a) a box-and-whisker plot of the raw data 
0

( 8,140)n  ; and  

(b) a histogram of the valid data 7, 5)( 93n  . 

 

Table C.6  Parameter estimates of GM and LNM models based on OJT OBS  data 
for Victoria – Waterloo 

The initial values and the model parameters were estimated using the K-means 
clustering and the EM algorithm, respectively. 7,935n  . 

  GM  LNM 

Component-label  1r   2r   3r   4r    1r   2r   3r   4r   

Initial values           

r
KMS  (minute)  11.0 14.0 17.0 21.0  11.0 13.0 16.0 21.1 

r
KMS  (minute)  0.9 0.8 0.8 2.4  0.8 0.8 1.1 2.3 

r
KMS  (%)  30.8 39.5 18.9 10.8  16.3 43.1 29.8 10.8 

(Continued) 



- 208 - 

Table C.6  (Continued.) 

  GM  LNM 

Component-label  1r   2r   3r   4r    1r   2r   3r   4r   

Parameter estimates           

ˆ
r    (minute)   12.1 14.9 19.3 25.6  12.3 14.8 22.8 26.6 

ˆ
r   (minute)  1.5 2.1 2.9 1.5  1.6 2.9 2.0 1.0 

ˆ
r    (%)  43.0 42.6 13.0 1.4  27.3 68.9 3.1 0.7 

 

 

 
 (a) (b) 

 
 (c) (d) 

Figure C.7  Posterior probabilities of route choices given OJT OBS  for 
Victoria – Waterloo ( 7,935)n  : 

(a) for all alternatives, based on GM; (b) for all alternatives, based on LNM;  

(c) for Route1, based on GM and LNM; (d) for Route2, based on GM and LNM;  

(e) for Route3, based on GM and LNM (see next page); and  

(f) for Route4, based on GM and LNM (see next page). 
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 (e) (f) 

Figure C.7  (Continued.) 

 

Table C.7  Inferences of proportion of passenger traffic on each alternative 
route connecting Victoria to Waterloo ( 7,935)n   

  GM  LNM 

Component-label  1r   2r   3r   4r    1r   2r   3r   4r   

ˆ
r  (%)  43.0 42.6 13.0 1.4  27.3 68.9 3.1 0.7 

rn 0INF   3,665 3,412 741 117  1,164 6,522 172 77 

r
0INF (%)  46.2 43.0 9.3 1.5  14.7 82.2 2.2 1.0 

rnINF   3,380 3,377 1,070 108  2,237 5,412 229 57 

r
INF  (%)  42.6 42.6 13.5 1.4  28.2 68.2 2.9 0.7 

 

Table C.8  Expected journey times of simulated samples for each alternative 
route connecting Victoria to Waterloo 

  Calculated average travel times (minutes) 

l   Circle/District  Circle/District  Circle/District  Victoria 
 – l   – Bakerloo  – Northern  – Jubilee  – Jubilee 
s   Embankment  Embankment  Westminster  Green Park 

Journey segment         

, l ot 

ACC    2.1  2.1  2.1  2.7 

, , 1l ot 

WTD  / , , 2l ot 

WTD   1.5 / 3.7  1.5 / 3.7  1.5 / 3.7  0.8 / 2.8 

, [ , ]l o st 

OBT    5.0  5.0  3.0  1.0 

[ , ], l l st  

ICT    2.7  1.8  1.9  3.0 

, , 1l st 

ICW  / , , 2l st 

ICW   1.3 / 4.1  1.5 / 4.8  0.5 / 2.7  0.7 / 2.9 

, [ , ]l s dt 

OBT    1.0  1.0  1.0  3.0 

, l dt 

EGR    4.8  2.5  3.1  3.1 

(Continued) 
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Table C.8  (Continued.) 

  Calculated average travel times (minutes) 

l   Circle/District  Circle/District  Circle/District  Victoria 
 – l   – Bakerloo  – Northern  – Jubilee  – Jubilee 
s   Embankment  Embankment  Westminster  Green Park 

Route-labels  1h    2h    3h    4h   

Total average         

(1, 1)ht   18.5  15.3  13.2  14.3 

(2,1)ht   20.6  17.5  15.4  16.3 

(1, 2)ht   21.3  18.6  15.4  16.5 

(2,2)ht   23.4  20.7  17.6  18.5 

ht
REF   20.9  18.1  15.4  16.4 

 

Table C.9  Matching the estimated mixture components with the real-world 
routes for Victoria – Waterloo 

   r  matches h  

Component-label r   1r    2r    3r    4r   

Journey time (minutes)         

ˆ
r  

GM  12.1  14.9  19.3  25.6 

LNM  12.3  14.8  22.8  26.6 

ht
REF

 ˆ( )h
SEM

  15.4 (0.9)  16.4 (0.9)  18.1 (1.1)  20.9 (1.0) 

CI for h   95% CL  [12.6, 18.3 ]  [13.7,19.1 ]  [14.5,21.6 ]  [17.7, 24.2 ] 
          

Traffic distribution (%)         

ˆ
r  

GM  43.0  42.6  13.0  1.4 

LNM  27.3  68.9  3.1  0.7 

h
ROD ( )hnROD

 
AM Peak  48.2 (186)  36.5 (141)  15.3 (59) 

A whole day  40.9 (410)  20.5 (206)  38.6 (387) 
          

Route-label h   1h    2h    3h    4h   

   Circle/District  Victoria  Circle/District  Circle/District 

   – Jubilee  – Jubilee  – Northern  – Bakerloo 

   Westminster  Green Park  Embankment  Embankment 

 

Table C.10  Goodness-of-fit test result for Victoria – Waterloo 

The calculation of gof  was repeated 1,000 times for each model. 

  GM  LNM 

Rate of obtaining lower gof  (%)  44.6  55.4 

Average gof   0.0916  0.0911 
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(a) 

 
(b) 

Figure C.8  Estimated mixture distributions, and weighted components thereof, 
of OJT  for Victoria – Waterloo ( 7,935)n  : 

(a) estimated GM model; and  

(b) estimated LNM model. 
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Appendix D  

Updated posterior probabilities for Case-2 – Case-7 

 

D.1 Cases of two alternative routes 

D.1.1 Case-2: Euston – St. James’s Park 
 

 

Figure D.1  Comparisons between qOJT OBS  and qr EXP  , q r , given 5%  for 
Euston – St. James’s Park. 

 

Table D.1  Proportion of passenger traffic for each alternative route on 
Euston – St. James’s Park 

In this case, 
r


INF  is calculated on the basis of LNM model estimates. 

  Sample size  Proportion of passenger-traffic (%) 

    Victoria – Circle/District  Northern – Circle/District 
    (Victoria)  (Embankment) 
    1r    2r   

r
ROD   437  42.8  57.2 

ˆ
r   22,379  82.8  17.2 

r
INF   22,379  82.7  17.3 

r
INF   89  76.7  23.3 

r
UPD   89  78.3  21.7 
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(a) 

 
(b) 

Figure D.2  Comparisons between qr MIX  (based on LNM) and qr UMM  for 
Euston – St. James’s Park: 

(a) Route1: Victoria – Circle/District (via Victoria); and  

(b) Route2: Northern – Circle/District (via Embankment).  

The interval between the tick-marks on the horizontal axis spans 10 bars each 
relating to an individual/journey record in the Oyster data.  
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D.1.2 Case-3: Victoria – Liverpool Street 
 

 

Figure D.3  Comparisons between qOJT OBS  and qr EXP  , q r , given 5%  for 
Victoria – Liverpool Street. 

 

Table D.2  Proportion of passenger traffic for each alternative route on 
Victoria – Liverpool Street 

In this case, 
r


INF  is calculated on the basis of LNM model estimates. 

  Sample size  Proportion of passenger-traffic (%) 

    Victoria – Central  Circle 

    (Oxford Circus)  – 

    1r    2r   

r
ROD   557  48.1  51.9 

ˆ
r   36,262  35.5  64.5 

r
INF   36,262  35.2  64.8 

r
INF   140  37.7  62.3 

r
UPD   140  42.6  57.4 
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(a) 

 
(b) 

Figure D.4  Comparisons between qr MIX  (based on LNM) and qr UMM  for 
Euston – St. James’s Park: 

(a) Route1: Victoria – Central (via Oxford Circus); and  

(b) Route2: Circle (direct service).  

The interval between the tick-marks on the horizontal axis spans 10 bars each 
relating to an individual/journey record in the Oyster data.  
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D.2 Cases of three alternative routes 

D.2.1 Case-4: Angel – Waterloo 
 

 

Figure D.5  Comparisons between qOJT OBS  and qr EXP  , q r , given 5%  for 
Angel – Waterloo. 

 

Table D.3  Proportion of passenger traffic for each alternative route on 
Angel – Waterloo 

In this case, 
r


INF  is calculated on the basis of GM model estimates. 

  Sample size  Proportion of passenger-traffic (%) 

    Northern –   Northern –   Northern –  

    Waterloo & City  Jubilee  Northern 

    (Bank)  (London Bridge)  (Euston) 

    1r    2r    3r   

r
ROD   77  42.9  44.1  13.0 

ˆ
r   14,419  39.8  49.6  10.6 

r
INF   14,419  39.4  49.9  10.7 

r
INF   85  40.9  50.8  8.3 

r
UPD   85  50.3  38.0  11.8 
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(a) 

 
(b) 

Figure D.6  Comparisons between qr MIX  (based on GM) and qr UMM  for 
Angel – Waterloo: 

(a) Route1: Northern – Waterloo & City (via Bank); 

(b) Route2: Northern – Jubilee (via London Bridge); and 

(c) Route3: Northern – Northern (via Euston) (see next page). 

The interval between the tick-marks on the horizontal axis spans 10 bars each 
relating to an individual/journey record in the Oyster data.  
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(c) 

Figure D.6  (Continued.) 

 

D.2.2 Case-5: Liverpool Street – Green Park 
 

 

Figure D.7  Comparisons between qOJT OBS  and qr EXP  , q r , given 5%  for 
Liverpool Street – Green Park. 

 

07:00

07:30

08:00

08:30

09:00

09:30

10:00

0

0.2

0.4

0.6

0.8

1

16 19 21 22 24 26 33

E
n

tr
y

 t
im

e 
(h

h
:m

m
)

P
o

st
er

io
r 

p
ro

b
ab

il
it

y
 o

f 
ro

u
te

 c
h

o
ic

e

Oyster Journey Time (minutes)

Entry time Route2, GM Route2, Updated

10

15

20

25

30

35

40

45

0
7

:0
0

0
7

:1
5

0
7

:3
0

0
7

:4
5

0
8

:0
0

0
8

:1
5

0
8

:3
0

0
8

:4
5

0
9

:0
0

0
9

:1
5

0
9

:3
0

0
9

:4
5

1
0

:0
0

O
y

st
er

 J
o

u
rn

ey
 T

im
e 

(m
in

u
te

s)

 Sample Oyster data

 Central - Victoria (Oxford Circus)

 Central - Piccadilly (Holborn)

 Central - Jubilee (Bond Street)

Central 
Central 
Central 

Piccadilly 
Victoria 

Jubilee 

(Oxford Circus) 

(Bond Street) 

(Holborn) 



- 220 - 

Table D.4  Proportion of passenger traffic for each alternative route on 
Liverpool Street – Green Park 

In this case, 
r


INF  is calculated on the basis of GM model estimates. 

  Sample size  Proportion of passenger-traffic (%) 

    Central –   Central –   Central –  

    Victoria  Piccadilly  Jubilee 

    (Oxford Circus)  (Holborn)  (Bond Street) 

    1r    2r    3r   

r
ROD   196  71.3  17.9  10.2 

ˆ
r   17,102  35.9  47.7  16.4 

r
INF   17,102  35.4  48.3  16.3 

r
INF   92  35.9  46.3  17.8 

r
UPD   92  51.8  24.6  23.7 

 

 

 
(a) 

Figure D.8  Comparisons between qr MIX  (based on GM) and qr UMM  for 
Liverpool Street – Green Park: 

(a) Route1: Central – Victoria (via Oxford Circus);  

(b) Route2: Central – Piccadilly (via Holborn) (see next page); and 

(c) Route3: Central – Jubilee (via Bond Street) (see next page). 

The interval between the tick-marks on the horizontal axis spans 10 bars each 
relating to an individual/journey record in the Oyster data. 
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(b) 

 
(c) 

Figure D.8  (Continued.) 
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D.3 Cases of four alternative routes 

D.3.1 Case-6: Euston – South Kensington 

 

Figure D.9  Comparisons between qOJT OBS  and qr EXP  , q r , given 5%  for 
Euston – South Kensington. 

 

Table D.5  Proportion of passenger traffic for each alternative route on 
Euston – South Kensington 

In this case, 
r


INF  is calculated on the basis of GM model estimates. 

  Sample size  Proportion of passenger-traffic (%) 

    Victoria –    Victoria –    Northern –    Northern –   

    Circle/District  Piccadilly  Piccadilly  Circle/District 

    (Victoria)  (Green Park)  (Leicester Sq.)  (Embankment) 

    1r    2r    3r    4r   

r
ROD   209  57.4  21.05  21.05  0.5 

ˆ
r   8,116  40.9  26.6  19.8  12.7 

r
INF   8,116  40.8  26.4  20.4  12.4 

r
INF   48  43.3  31.6  17.5  7.6 

r
UPD   48  67.4  15.3  7.6  9.7 
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(a) 

  
(b) 

Figure D.10  Comparisons between qr MIX  (based on GM) and qr UMM  for 
Euston – South Kensington: 

(a) Route1: Victoria – Circle/District (via Victoria);  

(b) Route2: Victoria – Piccadilly (via Green Park);  

(c) Route3: Northern – Piccadilly (via Leicester Square) (see next page); and  

(d) Route4: Northern – Circle/District (via Embankment) (see next page).  

The interval between the tick-marks on the horizontal axis spans 5 bars each 
relating to an individual/journey record in the Oyster data.  
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(c) 

 
(d) 

Figure D.10  (Continued.) 
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D.3.2 Case-7: Victoria – Waterloo 
 

 

Figure D.11  Comparisons between qOJT OBS  and qr EXP  , q r , given 5%  for 
Victoria – Waterloo. 

 

Table D.6  Proportion of passenger traffic for each alternative route on 
Victoria – Waterloo 

In this case, 
r


INF  is calculated on the basis of GM model estimates. 

  Sample size  Proportion of passenger-traffic (%) 

    Circle/District  Circle/District  Circle/District  Victoria 

    – Bakerloo  – Northern  – Jubilee  – Jubilee 

    (Embankment)  (Embankment)  (Westminster)  (Green Park) 

    1r    2r    3r    4r   

r
ROD   386  15.3  48.2  36.5 

ˆ
r   7,935  1.4  13.0  43.0  42.6 

r
INF   7,935  1.4  13.5  42.6  42.6 

r
INF   42  1.6  15.5  35.7  47.2 

r
UPD   42  1.1  18.0  40.7  40.2 
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(a) 

 
(b) 

Figure D.12  Comparisons between qr MIX  (based on GM) and qr UMM  for 
Victoria – Waterloo: 

(a) Route1: Circle/District – Bakerloo (via Embankment);  

(b) Route2: Circle/District – Northern (via Green Park);  

(c) Route3: Circle/District – Jubilee (via Westminster) (see next page); and  

(d) Route4: Victoria – Jubilee (via Green Park) (see next page).  

The interval between the tick-marks on the horizontal axis spans 5 bars each 
relating to an individual/journey record in the Oyster data. 
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(c) 

 
(d) 

Figure D.12  (Continued.) 
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Appendix E  

Notation 

 

E.1 Symbols based on the English alphabet 

(Listed in alphabetical order) 

( )a   function used for -meansK  clustering, which labels an journey 
time observation as belonging to a certain cluster 

qC   set of all elementary events within the sigma-field on the set of all 
possible route choices of passenger q  

( )C   set of all elementary events of passengers’ possible route choices, 
given the observations of every individual’s journey time   

( )

qC   set of all elementary events of possible route choices of passenger 
q , given his/her journey time q

OBS  (as an observed value of 
journey time variable  ) 

( )rc    PDF of journey time distribution of route r  

qrchoice  elementary event that passenger q  chose route r  to make a 
single journey 

( )

qrchoice   elementary event that passenger q  chose route r  to make a 
single journey between a given O-D pair and spent a journey time 
of q

OBS  (as an observed value of journey time variable  ) 

d   destination station of a give O-D pair 

( )qrf    PDF of journey time distribution of passenger q  making a single 
journey by route r  between a given pair of O-D stations 

gof   indicator of goodness-of-fit between observed and simulated 
journey time data 

h  label of travel route, referred to as ‘route-label’ 

i , j   individual traveller/passenger (only used briefly so as to 
distinguish different individuals; i j ) 

K  total number of clusters used in K-means clustering 

l   transit line for the first leg of a single journey 

 (Continued) 
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(Continued)  

l  transit line for the second leg of a single journey, referred to as 
‘connecting line’ 

( )l   indicator function that indicates whether a transit line is l  or l  

( )l  likelihood function 

( )m    PDF of a mixture distribution of journey time for a given O-D pair 

QN   total number of passengers 

RN   total number of travel routes 

1   set of the natural numbers that are greater than or equal to 1   

2   set of the natural numbers that are greater than or equal to 2  

( , )r r N  normal distribution given mean r  and standard deviation r  

n   sample size of a given data set 

rnINF   number of passengers who chose route r , based on effective 
inference (INF ) from a mixture model 

 0

rn
INF   number of passengers who chose route r , based on naive 

inference (  0INF ) from a mixture model 

OJT  Oyster journey time 

OJT OBS  observed (OBS)  (or, observations of) Oyster journey time 

o   origin station of a give O-D pair 

Pr( )  probability measure 

Q   statistical population of passengers between a given O-D pair 

rQ   subpopulation of all passengers who chose route r  

q   individual traveller/passenger 

R   set of all alternative routes connecting a given pair of O-D 
stations, referred to as ‘route-choice set’ 

qR   personal route-choice set of passenger q  travelling between a 
given pair of O-D stations 

r   travel route between a given pair of O-D stations; also 
component-label for mixture models and (cluster-label for) 

-meansK  clustering 
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( )qr   categorical variable of component-label, indicating the route 
choice of passenger q  

s  interchange station between a given pair of O-D stations 

, l oT 

ARR   time of passengers’ arrival (ARR ) on a platform for line l  at 
origin station o  

, l dT 

ARR   time of passengers’ arrival (ARR ) on a platform for line l  at 
destination station d  

, l sT 

ARR   time of passengers’ arrival (ARR ) on a platform for line l  at 
interchange station s  

, l oT 

DEP  time of passengers’ departure (DEP) from a platform for line l  
at origin station o  

, l sT 

DEP  time of passengers’ departure (DEP) from a platform for line l  
at interchange station s  

, l oT 

dep  time of departure (dep ) of a -trainl  from its platform at origin 
station o  

, l sT 

dep  time of departure (dep ) of -trainl  from its platform at 
interchange station s  

T ENT  time-stamp at which passengers pass through a ticket gate to 
enter an origin station o , referred to as ‘entry time’ (ENT ) 

qT ENT  entry (ENT ) time of passenger q  

T EXT  time-stamp at which passengers pass through a ticket gate to exit 
from an destination station d , referred to as ‘exit time’ (EXT ) 

qT EXT  exit (EXT ) time of passenger q  

qrT EXT  exit (EXT ) time of passenger q , given that he/she chooses route 
r  to make a journey 

qrt  vector that contains all travel time variables for passenger q  
choosing route r  

( , )ht    journey time of any passenger travelling by route h , given that 
he/she boards the -th  arriving train at origin station (and, if h  
involves interchange, the -th  arriving train at an interchange 
station) 
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, l ot 

ACC  access (ACC) walking time from a gateline to a platform for line 
l  at origin station o  

qrtAEI  passenger q ’s total walking time by using route r , including 
his/her access and egress, and the walk for interchange (AEI) 

, l dt 

EGR  egress (EGR ) time from a platform for line l  to a gateline at a 
destination station d  

, [ , ]l o st 

OBT  on-board travel (OBT ) time in a train of line l  running from 
origin station o  to interchange station s  

, [ , ]l s dt 

OBT  on-board travel (OBT ) time in a train of line l  running from 
interchange station s  to destination station d  

qrtOBT  passenger q ’s total on-board travel (OBT ) time by using r  

ht
REF   expected average journey time of travelling by route h , serving as 

a reference (REF ) value for interpreting estimates from a 
mixture model 

, [ , ]l o st 

run  running (run ) time of a train of line l , from origin station o  to 
interchange station s  

, [ , ]l s dt 

run   running (run ) time of a train of line l , from interchange station 
s  to destination station d  

[ , ], l l st  

TIC  walking time to transfer from a platform for line l  to another for 
line l  at interchange (TIC ) station s  

qrtTIC  passenger q ’s walking time to transfer between platforms at an 
interchange (TIC ) station on route r  

, l ot 

WFD   waiting time to board a train of line l  for departure (WFD ) from 
the -l platform at origin station o  

qrtWFD  passenger q ’s waiting time to board a train for departure (WFD ) 
from an origin station by using route r  

, l st 

WIC   waiting time to board a train of line l  for departure from the 
-platforml  at interchange (WIC ) station s  

qrtWIC  passenger q ’s waiting time to board a train for departure from an 
interchange (WIC ) station on route r  

qrtWLK  passenger q ’s total walking (WLK ) time of both his/her access at 
an origin station and egress at a destination station by using 
route r  
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qrtWTT  passenger q ’s total waiting time on route r , including his/her 
waiting times at both the origin and interchange stations  

( ) t  Student's t -value with certain degrees of freedom and a given 
probability level   

qrU  utility that passenger q  perceives he/she may gain from choosing 
route r  to make a journey 

(0,1)U  standard uniform distribution 

u  underground station (representing station of origin o , 
destination d  or interchange s ) 

( )u   function that indicates whether a station is an interchange or the 
destination of a given pair of O-D stations 

qrV  deterministic (or observable) portion of utility qrU  

hv  (or rv ) indicator (or dummy variable) that equals one if route h  (or r ) is 
a direct service, and zero if it is an indirect service 

uhx  vector that contains reciprocals of distances for each type of 
pathways at station u  on route h ;  

uhxDNS  total run of staircases used for going down (DNS) to lower levels 
at station u  on route h  

uhxESC  total run of escalators/lifts (ESC ) at station u  on route h  

uhxPSG  total length of level/ramp passageways (PSG ) at station u  on 
route h  

uhxUPS  total run of staircases used for going to upper (UPS) levels at 
station u  on route h  

y  vector that contains passengers’ walking/moving speeds on each 
type of pathways 

yDNS  walking speed of going downstairs (DNS) 

yESC  escalators/lifts (ESC ) speed 

yPSG  walking speed on level/ramp passageways (PSG ) 

yUPS  walking speed of going upstairs (UPS) 
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E.2 Symbols based on the Greek alphabet 

(Listed in alphabetical order) 

qr  binary indicator that equals one if passenger q  actually chose 
route r , and zero otherwise 

β  vector that contains all coefficients, each being associated with a 
travel time variable 

 AEI  coefficient of passenger q ’s total walking time by using route r , 
including his/her access and egress, and the walk for interchange 
(AEI) between a given pair of O-D 

 I/C  coefficient of a dummy variable for interchange/non-interchange 

 OBT  coefficient of passengers’ total on-board travel (OBT ) time 
between a given pair of O-D 

 TIC  coefficient of passengers’ walking time to transfer between 
platforms at interchange (TIC ) stations 

 WFD  coefficient of passengers’ waiting time to board a train for 
departure (WFD) from an origin station 

 WIC  coefficient of passengers’ waiting time to board a train for 
departure from an interchange (WIC ) station 

 WLK  coefficient of passengers’ total walking (WLK ) time of both access 
(at an origin station) and egress (at a destination station) 

 WTT  coefficient of passenger q ’s total waiting time at both the origin 
and interchange stations on route r  

ˆ
qr

 
estimate of the location parameter for journey time distribution 
of passenger q  making a single journey by route r  

SIM   simulated (SIM ) data set of passengers’ journey times, which is 
generated from a mixture model (being estimated) 

  set of all journey time observations for a given O-D pair 

5%  set of individual journey time observations, containing a sample 
of 5% Oyster card data (from 6th February (Sunday) to 5th March 
(Saturday) in 2011) 

2RN   set of posterior probabilities of passengers’ route choice for 
selected O-D pairs, each of which involves two alternative routes 
( 2RN  ) 
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3RN   set of posterior probabilities of passengers’ route choice for 
selected O-D pairs, any one of which involves no more than three 
alternative routes ( 3RN  ) 

4RN   set of posterior probabilities of passengers’ route choices for 
selected O-D pairs, any one of which involves no more than four 
alternative routes ( 4RN  ) 

DES  set of desired (DES) data, which includes both of passengers’ 
route choices and their journey times 

r
INF  set of journey time data of passengers who chose route r , based 

on effective inference (INF ) from a mixture model 

0

r
INF   set of journey time data of passengers who chose route r , based 

on naive inference ( 0INF ) from a mixture model 

r
KMS  set of journey time observations, which is produced by -meansK

(KMS) clustering and labelled r  

qδ   elementary event that passenger q  spent a journey time of q
OBS  

travelling between a given pair of O-D stations 

qrδ   elementary event that the expected journey time of passenger q  
is qr EXP , given that he/she chooses route r  and his/her entry time 
is qT ENT  

  journey time of travelling between a given pair of O-D stations 

q   journey time of passenger q  travelling between a given pair of O-
D stations 

qr  journey time of passenger q  making a single journey by route r  

r   journey time of route r  between a given pair of O-D stations 

q
OBS  journey time observation (OBS) of passenger q  

qr EXP  expected (EXP ) journey time of passenger q  using route r , 
given an observation of his/her entry time qT ENT  

 SIM

q
 simulated journey time, with subscript q  being its index; 1q  

qr  error term in utility qrU  

( )    assignment function used for naive inference of each passenger’s 
route choice, based on a mixture model 

r
KMS  median (or centroid-value) of set r

KMS  
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Θ  vector that contains all parameters of a mixture model 

Θ̂  estimate of vector Θ  

rθ  vector of the distribution parameter(s) of ( )rc  , with ˆ
rθ  being its 

estimate 

ˆ
rθ   estimate of parameter vector ˆ

rθ  

qr   vector of a parameter (or parameters) for probability distribution 
of passenger q  making a single journey by route r  

ˆ
qr   estimate of parameter vector qr  

( )    objective function to be minimised for K-means clustering 

   vector of standard uniform variables used for the effective 
inference given data set of observed journey times, with each 
being associated with one of the observations 

q   random variable for passenger q , which follows the standard 
uniform variable; (0,1)q U  

q   generated (real-valued) number of standard uniform variable q  

μ   vector that contains all subpopulation means r  

r   mean of journey time distribution of route r  (also referred to as 
subpopulation mean of rQ ) 

ˆ
r   estimate of subpopulation mean r  

( )    assignment function used for effective inference of each 
passenger’s route choice, based on a mixture model 

Π
MIX  matrix (of size Rn N ) that enumerates all posterior probabilities 

of passengers’ route choices, estimated from a mixture (MIX ) 
model on data set   

5%Π
UMM  matrix (of size Rn N ) that enumerates all updated posterior 

probabilities of passengers’ route choices, based on estimates 
from a mixture model (UMM ) on data set 5%  

( )   posterior probability (density) function for passengers’ route 
choices given their journey times 

qr MIX  posterior probability that passenger q  chose route r  (given 
his/her journey time q

OBS ), estimated from a mixture (MIX ) 
model 
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qr UMM  updated posterior probability of passenger q  choosing route r , 
based on the estimate from a mixture model (UMM ) 

σ   vector that contains all subpopulation standard deviations r  

ˆ
h  estimate of a sample standard deviation of journey time of route 

h  (given that each of ( , )ht   ,    is treated an observation) 

ˆ
h
SEM  estimate of a standard error of the mean journey time of route h  

(given that each of ( , )ht   ,    is treated as a sample mean) 

r   standard deviation of journey time distribution of route r  (also 
referred to as subpopulation standard deviation of rQ ), with ˆr  
being its estimate 

ˆ
r   estimate of subpopulation standard deviation r  

r
KMS  standard deviation of set r

KMS  

ˆ
r  

estimate of the scale parameter for journey time distribution of 
passenger q  making a single journey by route r  

hu WLK  expected walking (WLK) time at station u  along route h  

q   set of all possible route choices of passenger q  

( )   set of all possible route choices of passengers travelling between 
a given pair of O-D stations, given their actual journey times 

( )

q

  set of all possible route choices of passenger q , given his/her 
actual journey time q

OBS  

   number of attempts that passengers make to successfully board a 
train at origin station o  

   number of attempts that passengers make to successfully board a 
train at interchange station s  

ω   vector that contains all mixture weights of a mixture model 

ω̂   estimate of vector ω  

r   mixture weight of journey time distribution of route r  

ˆ
r  estimate of mixture weight r  

 0

r
INF   proportion of passengers using route r , based on naive inference 

( 0INF ) from a mixture model of journey time 
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r
INF   proportion of passengers using route r , based on effective 

inference (INF ) from a mixture model of journey time 

r
KMS  proportion of sub-dataset r

KMS  in data set   

r
ROD  percentage of respondents who chose route r , according to the 

Rolling Origin and Destination (ROD ) Survey data 

r
UPD  proportion of passenger using route r , based on effective 

inference from updated (UPD ) route-choice probabilities 
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