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Abstract

This thesis develops a modelling framework for learning route choice behaviour
of travellers on an underground railway system?, with a major emphasis on the

use of smart-card data.

The motivation for this topic comes from two respects. On the one hand, in a
metropolis, particularly those furnished with massive underground services
(e.g. London, Beijing and Paris), severe passenger-traffic congestion may often
occur, especially during rush hours. In order to support the public transport
managers in taking actions that are more effective in smoothening the passenger
flows, there is bound to be a need for better understanding of the passengers’
routing behaviour when they are travelling on such public transport networks.
On the other hand, a wealth of travel data is nowadays readily obtainable, largely
owing to the widespread implementation of automatic fare collection systems
(AFC) as well as popularity of smart cards on the public transport. Nevertheless,
a core limitation of such data is that the actual route-choice decisions taken by
the passengers might not be available, especially when their journeys involve
alternative routes and/or within-station interchanges. Mostly, the AFC systems
(e.g. the Oyster system in London) record only data of passengers’ entry and exit,
rather than their route choices. We are thus interested in whether it is possible

to analytically infer the route-choice information based on the ‘incomplete’ data.

Within the scope of this thesis, passengers’ single journeys are investigated on a
station basis, where sufficiently large samples of the smart-card users’ travel
records can be gained. With their journey time data being modelled by simple
finite mixture distributions, Bayesian inference is applied to estimate posterior

probabilities for each route that a given passenger might have chosen from all

1 The ‘underground’ system is also known as the ‘Tube’ (especially in London), ‘metro’ (e.g. in
Moscow, Paris, Shanghai, Madrid and Santiago), ‘subway’ (e.g. in Beijing, New York City and
Seoul), ‘mass rapid transit’ (especially in Singapore), and ‘U-Bahn’ (especially in Germany),
etc. See also “List of metro systems” (Wikipedia, the free encyclopedia, 2014), available
online at https://en.wikipedia.org/wiki/List of metro systems; last accessed on 30th
September 2014.
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possible alternatives. We learn the route-choice probabilities of every individual
passenger in any given sample, conditional on an observation of the passenger’s
journey time. Further to this, the estimated posterior probabilities are also
updated for each passenger, by taking into account additional information
including their entry times as well as the timetables. To understand passengers’
actual route choice behaviour, we then make use of adapted discrete choice
model, replacing the conventional dependent variable of actual route choices by
the posterior choice probabilities for different possible outcomes. This proposed
methodology is illustrated with seven case studies based in the area of central
zone of the London Underground network, by using the Oyster smart-card data.
Two standard mixture models, i.e. the probability distributions of Gaussian and
log-normal mixtures, are tested, respectively. The outcome demonstrates a good
performance of the mixture models. Moreover, relying on the updated choice
probabilities in the estimation of a multinomial logit latent choice model, we
show that we could estimate meaningful relative sensitivities to the travel times
of different journey segments. This approach thus allows us to gain an insight
into passengers’ route choice preferences even in the absence of observations of

their actual chosen routes.
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Chapter 1
Introduction

1.1 Background

Public transport! in almost every metropolis, such as in London, Beijing and
Paris, to name but a few, has furnished travellers with a highly sophisticated and
interconnected mass transit system. Meanwhile, a boom in travel demand in the
urban areas, particularly a surge in passenger traffic during a certain period (e.g.
rush hour), could make cumulative impact on regularity as well as reliability of
the transit services. An in-depth understanding of the passengers’ travel
behaviour in the network is interestingly significant to transit planning,

operations and the travel demand management.

In the case of an underground rail system?, such as the London Underground
(LU), a number of stations may serve for ‘interchanges’ at which two or more
‘transit lines’ intersect and/or the service directions change. A transit line, or
simply a line, refers to a fleet of trains running along a particular ‘route’ that links
two terminal stations within the network (cf. Ortizar and Willumsen, 2011,
p.376), with one terminal being an origin and another a destination. Given this
definition, there could be either a single or multiple alternative routes ready for
carrying passenger traffic in both directions between a pair of origin and
destination (O-D) stations. Each of the alternatives is referred to as a travel route
(or simply a route), which is composed of one or several route sections; and a
route section can be a portion of a route, which is between two adjacent

interchange stations (cf. De Cea and Fernandez, 1993).

1 The terms ‘public transport’ and ‘transit’ will be used interchangeably in this thesis.

2 According to the Office of Rail Regulation (ORR) (2014), “an underground system is defined as
an electric railway public transport network (a metro or subway system) that runs both
above and underground” (cf. Footnote 1 on page v). The term ‘underground’ being referred
to throughout this thesis is in line with this definition.


http://orr.gov.uk/about-orr
http://orr.gov.uk/about-orr/who-we-work-with/rail-infrastructure/underground-railways

Suppose that there is availability of a few routes for passengers travelling on the
underground network. All the passengers choose from among available lines to
complete their journeys; and they might need to transfer between different lines
that are serving the same specific route. It is noteworthy that the total travel time
through a certain route would vary (within a day as well as between days) for
many reasons, such as engineering work and adjustment for operation schemes.
Furthermore, there are likely to be both similarities as well as differences in the
passengers’ perceptions and sensitivities to different attributes shared by the
alternative routes. Such attributes, in addition to the travel time that we have
mentioned already, could also involve fare, number of interchanges, preference
of a certain line and so forth. Moreover, for any given O-D pair, the passengers’
choice sets of the travel routes can differ from individual-to-individual. That is to
say, there are also differences among their ‘route-choice tasks’, in each of which
one individual must choose one and only one of the alternative routes from
his/her own route-choice set for a certain pair of O-D stations. In view of these
facts, effective approaches to reproducing and analysing the passengers’ route
choice behaviour are certainly attracting interest from public-transport planners
and operators. This is because such modelling instruments could provide those
professionals with necessary knowledge of passenger-flow distributions across
the network, and thereby assisting them in identifying traffic bottlenecks and
delivering a more efficient transit service, especially at rush hour. And what is
more important, such information is vital for system managers to grasp the usage
patterns of different transit lines, thereby offering insight into the network
utilization, especially for dealing with planned and unexpected disruptions.
Additionally, the aggregate passenger traffic or ridership on the different lines
can, if needed, serve as evidence for transport authorities to cope with the
settlement of fare revenues among stakeholders, such as multiple line operating

companies.

On the other hand, in a bid to maintain or strengthen the operational efficiency,
it is also of critical importance that the policy makers have a collection of facts
and data of the passengers’ evolving travel behaviour. From the perspective of
modelling, the passengers’ travel behaviour is learnt from diverse mathematical
models of their route choices, which could inform the passengers’ relative
sensitivities to a range of factors underlying their decision-making process. So

far, numerous studies have been devoted to developing these sorts of models,



which may be broadly divided into two very different approaches: the route
choice modules used for transit assignment models and the discrete choice
modelling approaches. Although the former methodology, which will be
discussed in Chapter 2, might reproduce the choice process in more detail, the
latter, which will be discussed in Chapter 6, may have more advantages in
understanding the behaviour and causes of the passengers’ choices. However, it
is also noted that the development of such models must rely on analysts
observing data of each individual passenger’s actual route choice. In other words,
only when the real data is explicitly presented, parameters for the model can

then be estimated.

Usually, the real route-choice data could be acquired via conducting manual
surveys and passive monitoring. Either way can be very costly to gather data of
sufficiently large samples; and in some circumstances, the data might be
inexplicable due to a lack of accuracy or even loss of key information. In this
connection, the availability, as well as the accessibility, of the data about each
individual’s actual choice would act as a prime determinant of developing the

route choice models that offer predictive value.

In another regard, the automatic fare collection (AFC) system driven by smart
cards on the public transport can gather a wealth of individual passengers’ travel
data, which is readily accessible.3 Nevertheless, the route-choice information is
still not available in its database; commonly, just entry and exit stations are
recorded. This is indeed worth our best thinking and efforts in exploiting that
data in connection with travel demand forecasting and management for public
transport, especially because of the huge amounts of individual journey histories
being recorded. In addition, it leads us to envisage the possibility of finding out
the information relevant to the individuals’ route choices from the AFC database.
Again, however, given the fact that there is no firm or any direct evidence of
passengers’ route choices, any route-choice information gained from the smart-
card data would have to be represented in a probabilistic setting. That is, the

actual chosen route of each individual could only be known up to a choice

3 The travel data recorded by the smart-card system is hereafter referred to as smart-card data.
More details about it are described in Chapter 2.



probability. This thus presents us with a new research topic that is going to be

addressed and discussed in this thesis.

1.2 Research scope and objectives

From the issues pointed out in the previous section, this research is principally
aimed at developing a route choice model in order to gain an understanding of
route choice behaviour of public-transport users. Our interest and efforts are
focused only on the underground system. As has also been mentioned in the
previous section, the data shortage is a main obstacle to the model development.
It is our initiative to explore the possibility of digging for information about
passengers’ route choices from the smart-card data. In this regard, two
additional objectives, which serve as the prerequisites for the stated aim stated,

are to:

1.  examine the connection between the smart-card data and passengers’
route choices; and

2.  analyse and discuss the ways of learning the information, particularly

about every passenger’s route choices and choice probabilities.

Further (depending on the excavated information), another aim of the thesis is

to reveal the traffic loadings of passengers on different possible travel routes.

Moreover, this thesis conducts case studies on the LU using the Oyster smart-
card data# from the Oyster system implemented across the public-transport
network in London. It is expected that the established approach would be

adaptable and applicable to other similar underground network.

1.3 Methodological framework

Following the background introduced above, the methodological framework of

this thesis is illustrated in Figure 1.1 (see next page).

4 More details about the Oyster smart-card system and its data are described in Section 4.2.1.
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The directed lines coloured in show the structure of the thesis, and the
black ones demonstrate the flow of data. From the top of this framework,

, and set the context in which the research
problem in the thesis is addressed. The problem includes two strands: a naive
Bayesian framework for the modelling of passengers’ route choices, which is
elaborated in , and ; and a latent route choice

model, which is elaborated in

The processing of a bundle of available data used in this thesis is in parallel with
the delivery of , as well as . As part of the naive
Bayesian modelling framework, the finite mixture model is elaborated in

; and its application (including the model estimation, interpretation
and validation) is demonstrated in , using data from the LU network.
Such data includes the Oyster smart-card data, historical route-choice data, and
walking time data (for access, egress and interchange) as well as data for layout
of the passageways within the underground stations. Then, the estimates of the

mixture model is updated in , by incorporating additional information.

Finally, the outputs from the naive Bayesian modelling framework serve as
inputs for estimation of the latent route choice model expounded in

That is, in view of the fact that the actual route choices of passengers are not
observed, their route choice probabilities are used as the data for model

estimation.

1.4 Outline

Given the context presented in this introductory chapter, the remaining part of

this thesis is constructed as follows:

Chapter 2 presents a review of studies on the modelling of passengers’ route
choice behaviour on underground systems, focusing particularly on the route
choice modules that serve as the core for transit assignment models. Different
behavioural assumptions on passengers’ choice decision-making processes are
compared and discussed. The issues relevant to route-choice data and choice

modelling are also pointed out.



Chapter 3 provides a completely different viewpoint of representing the route
choices of passengers for a given O-D pair. The chapter elaborates on the
applicability of a finite mixture model to allow for a probabilistic representation,
namely, posterior probabilities, of each individual passenger’s route choice,

given the observation of his/her journey time.

Chapter 4 demonstrates the application of the mixture models proposed from
its precious chapter, Chapter 3, with two different types of standard mixtures.
The chapter presents a range of case studies based on the LU network, taking
advantage of the Oyster smart-card data together with ancillary information
available for the LU system (as shown in Figure 1.1, p.5). A comparison of the

estimation results from two the types of mixture models is presented.

Chapter 5 proposes an approach to update individually each passenger’s route-
choice probabilities in order to obtain relatively more robust estimates, which is
still based on Bayes’ theorem. Relying on the estimates from Chapter 4, the
chapter involves more evidence, that is, the timetable as well as each individual’s
actual entry time. A comparison of the individual route-choice probabilities

before and after the update is presented.

Chapter 6 demonstrates a new approach to the development of a discrete choice
model by using the estimated posterior probabilities of passengers’ route
choices, instead of their actual route choices, which is referred to as a latent
choice model. The chapter uses the two sets of posterior estimates, which are
derived from the case studies in its previous two chapters, to test the proposed
approach separately, by estimating a simple multinomial logit (MNL) model. A

comparison between the estimation results is presented.

Chapter 7 concludes this thesis with a summary of main limitations of the
methodological framework illustrated in Figure 1.1 (see p.5). Furthermore, the
chapter also provides a set of recommendations for improving its structure and

important avenues for future research (illustrated with Figure 7.1, p.177).



1.5 Contributions

This thesis makes worthwhile contributions to the modelling and understanding
of the passengers’ route choice behaviour within the context of the underground

system. They are achieved in four respects as follow.

The work of this thesis

L. establishes a preliminary methodological framework for the modelling
and understanding of passengers’ route choice behaviours without
actual route-choice data;

II. assesses and demonstrates applicability of the finite mixture models
for discovering passengers’ route choices at both the aggregate and the
individual levels;

I[II. attainsinitial development of a latent route choice model, which allows
for the estimation of discrete choice models without actual route-
choice data; and

IV. further explores potentialities of the use of smart-card data on public

transport.



Chapter 2
Modelling route choices on public transport

2.1 Introduction

For decades, the modelling and the prediction of passengers’ route choices - as
well as that of passenger-traffic distribution over public transport network, have
long been a challenging subject for transport planners and researchers. Many
specialists, especially the modellers, have continuously strived to build and
refine various effective platforms for developing more and more efficient
mathematical approaches. By far, a wide spectrum of mathematical models for
the route choice on the public transport have been established, which are mostly
serving as a vital module for tackling transit assignment problems. In that regard,
a transit assignment model is devoted to reproduce the passengers’ route choice
behaviour at each of decision-making points along their journeys, hence their
route choices and the traffic between any O-D pairs of a given transit network.
Additionally, it may also act as an assessment tool for validation and analyses of
operation schemes for the transit system. On that basis, this chapter scrutinises
a diverse range of route choice models built in the numerous existing transit
assignment models, which are later referred to as route-choice modules, and
further explains the homogeneity and heterogeneity of underlying factors and
choice behaviour addressed by those models. This is based mainly on the surveys
reported by Fu et al. (2012b), which identified issues that remain outstanding in
gaining a deeper insight into passengers’ route choice behaviour. The principal
aim of the review is to elucidate the essential aspects of the route-choice
decision-making process, so as to lay the foundation for further exploration of
solutions to handle the crux of the research problem on how the choice

behaviour can be better understood.

On the whole, the transit assignment problem has been well inspected from two
distinct standpoints: the frequency-based approach (e.g. Chriqui and Robillard,
1975; Nguyen and Pallottino, 1988; Spiess and Florian, 1989; Wu et al., 1994;
Cominetti and Correa, 2001; and Cepeda et al., 2006); as well as the schedule-
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based approach (e.g. Tong, 1986; Hickman and Bernstein, 1997; Florian, 1999;
Tong and Wong, 1999; Nuzzolo et al., 2001; and Poon et al., 2004).1 A wealth of
researches have been conducted, and provided insights into both methods.
Among the earliest comprehensive reviews on the relevant modelling methods
were contributed by Bouzaiene-Ayari et al. (1998). According to their findings,
the function that underlies the route choice models could be summarised in the
following three aspects: (a) characteristics of the supply on transit networks and
services; (b) information about the supply that passengers could have before and
during their journeys; and (c) passengers’ responses towards current situations
given related travel information. Later, Nuzzolo et al. (2003) and Nuzzolo and
Crisalli (2004) paid special attentions to the schedule-based transit assignment
models and particularly elaborate the differences of the adaptability of schedule-
based models to services with low and high frequencies; and the frequency-
based models were reviewed in more detail by Schmocker (2006) and Teklu
(2008a). Furthermore, Nuzzolo and Crisalli (2009) extended the predecessor
models to a broader scope, taking into account multi-modal transportation
networks of both transit and freight services. More recently, Liu et al. (2010)
inspected plenty of studies on passengers’ route choice behaviours, ranging from
the conventional deterministic models to various dynamic ones, given e.g. the

effect of real-time information.

In the context of the above?, the rest of this chapter is arranged as follows. The
basic concepts and definitions of the route-choice modules are described in
Section 2.2, which lays the foundation for the subsequent sections. Section 2.3
elaborates in greater detail on passengers’ choice behaviour at different stages

of their journeys, and also the behavioural assumptions that underlie the module

1 The frequency-based approaches are also known as headway-based, line-based models, etc.;
and the schedule-based ones are often referred to as timetable-based, run-based, etc.

2 Note that some of transit assignment models focus particularly on the bus network, and some
others are based only on the underground railway network. In practice, though, the terms
‘stop’ and ‘station’ could be used interchangeably, the former is often referred to in the bus
system while the latter is often referred to in the cases of underground networks. In this
thesis, we are investigating only the latter cases, i.e. the underground system; and the two
terms will also be exchangeable in the following texts where the term ‘station’ will be more
frequently used. Additionally, it must be noted that a ‘station’ (and a ‘stop’) is explicitly
distinguished from a ‘platform’ in this thesis.
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building processes. Section 2.4 discusses the interaction between the route
choices of passengers and their journey time variability, as well as the issue
about the route-choice data. On the strength of the discussions of various
concerns related to the choice behaviours, Section 2.5 points out the matter of

our interest and concludes this chapter.

2.2 The foundation of modelling route choices

2.2.1 Transit network and alternative routes

In order to learn about passengers’ route choice on a given transit network, it
would entail a mathematical imitation of the choices as well as the passengers’
decision-making process starting from their origin stations, with all onward
‘journey segments’ in sequence, to planned destinations. Consider a passenger is
travelling on an underground system. Since the scope of this thesis is confined to
the level of transit network rather than the practical 0O-D3, in general, a single
journey of the passenger between any given pair of O-D stations can be

segmented into a series of such journey segments as follows:
e Access: starting from a ticket gate# or a ticket hall at the origin station
and walking/moving® towards a platform for a transit line;

e Waiting: waiting on the platform for departure from the origin
platform, until climbing aboard a train;
e Traveling: riding in the train from the current (origin station) platform

to another (at the destination station), and getting off-board; and

e Egress: leaving from the destination platform and moving to a gateline,

and exit from the destination station.

When passengers have to transfer from one line to another between different

platforms, additional journey segments shall then be involved in: (See next page)

3 On the level of the practical 0-D, the network of interest may extend to travellers’ actual origins
and destinations, such as homes, offices and shopping centres.

4 The location of any ticket gate within a station may also be referred as a ‘gateline’.

5 In this thesis, the terms ‘walking’ and ‘moving’ are exchangeable.
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e Interchange walking: leaving from the current platform (for a line of a
certain direction) and moving to another (for a line of a certain
direction), in order to transfer from one line to another;®

e Interchange waiting: waiting on the platform for departure from the
interchange station, until getting aboard a train on a connecting line.

e Onward travelling: riding in the connecting train from the current

platform to another at the destination station, and getting off-board.

Each of these journey segments is associated with a travel cost (or disutility). A
passenger’s cost of a journey could generally be regarded as a sum - or rather a
weighted sum - of the costs for all the journey segments, which is hereinafter
termed the journey cost. However, different assumptions made by modellers on
the specification of the cost function would bring about different travel cost for

each journey segment and hence the journey cost for a travel route.

For modelling purpose, a transit network is described by nodes and directed
arcs, with simulated passenger flows being transmitted via the different
functional arcs between the nodes that act as decision-making points. On this
basis, a sub-network that defines a station is usually taken for the focal issue (cf.
Bouzaiene-Ayari et al., 2001; and Billi et al., 2004). At each station, passengers
will need to choose one of ‘attractive lines’ and travel to the next stop. The
definition of the attractive lines was given by De Cea and Fernandez (1993), and
it indicates the fact that not all transit lines available at a station/platform would
be taken into account by passengers, as they might simply ignore the lines that
could conceivably lead to a relatively disadvantageous route. In practice, the
attractive lines, which passengers may face and choose from at each of the
interchange stations, build different possible routes connecting to their
destination station. Given the passengers’ perceptions to the journey cost, the
passenger flow sourced from an origin station may then split up among the
attractive lines and hence among the alternative routes. It must be pointed out

that, in effect, the true set of alternatives for route choices cannot be determined

6 In the case of cross-platform interchange (i.e. interchange between lines at an island platform),
this journey segment could be ignored, or integrated into the subsequent journey segment
as ‘interchange waiting’. In this thesis, we assume that each of platforms at a station is
served by only one transit line.
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accurately in that the reasonableness of any of the alternatives may not be
verified (cf. Guo, 2008, pp.262-263).

With regard to the schedule-based models, every move of trains and passengers
in the transit network is marked with a time-stamp. Thus, these entities can be
located, described, and differentiated from each other in both the temporal and
the spatial dimension. Representation of the transit network is thereby adapted
from the line-based spatial-only graph (i.e. without time dimension), which is
used for frequency-based models, into a run-based spatiotemporal graph that
can show each of a series of runs as scheduled. Therefore, the characteristics of

each service run can be taken into account and modelled separately.

2.2.2 Journey cost

The core belief that underlies the outcomes of any route choice models is that a
traveller always chooses a ‘cost-efficient’ route to complete his/her journey. That
is, for each passenger, the journey cost of his/her chosen route is supposed to be
the minimum or the optimum, in comparison with other alternative routes. A key
issue is to properly specify how the cost should be calculated. Such journey cost
can be analysed either based on every single route (especially in early models,
such as Dial, 1967; Fearnside and Draper, 1971; and le Clercq, 1972), or in the
context of a hyperpath (e.g. Nguyen and Pallottino, 1988; as well as Spiess and
Florian, 1989). In the light of the definition by Nguyen and Pallottino (1988), a
hyperpath consists of a set of routes considered simultaneously by a passenger,
with each being referred to as an ‘elementary path’ or an attractive route. It
involves a set of sequential decisions of the passenger choosing from among
attractive lines at an origin (and every intermediate stop), in order to start (and
continue) his/her journey. Taken in this sense, the journey cost of the passenger
is effectively treated (by modellers) as a probabilistic cost over a set of attractive
routes. On the same basis, Spiess and Florian (1989) termed the series of
decisions a strategy whereby the passenger can reach his/her destination
subject to route choice probabilities. As multiple transit lines exist, more than
one hyperpath can be available and utilised, and so different strategies can be

applied by passengers based on their own considerations.

In some cases, the term ‘cost’ can be merely regarded as the total travel time

through the journey, namely, the weighted sum of observations or estimates for
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the travel time for every journey segment of a route. While in other cases, it can
be dealt with as a generalised cost in a synthetic manner, which takes into
account not merely travel time but also other stochastic attributes and
uncertainties up to the complexities of modelling perspectives of analysts (e.g.
Szeto et al., 2011; and Szeto et al., 2013). They may include reliability of transit
services, crowdedness, discomfort, value of time, seat availability, as well as

passengers’ perceptions to these issues and so on.

2.2.3 Fundamental behavioural assumptions

As a matter of fact, passengers may not be able to know exactly the true journey
cost of each alternative route (or any hyperpath). Instead, they may estimate it,
given their own preferred route-choice sets and thus can make trade-off choice
decisions. In this context, another major issue with respect to modelling the
route choices is a (mathematical) representation of the passengers’ decision-

making processes, which would have to rely on related behavioural assumptions.

In the real world, the travellers’ route choices are essentially the outcomes of
their reacting to supply of a transit network. The network supply could relate to
attributes of the network as well as the transit services - basically, layouts of the
stations, transit lines, operation schemes (e.g. timetables), service capacities, as
well as provision of both offline and real-time information on the services. By the
force of the interplay over time between the travel demand and the supply, the
passenger flows merge and split at the start of every journey segment (as defined
in Section 2.2.1). As a consequence, all available routes of the transit network
are loaded with the traffic. Such process could also be referred to the
construction of a hyperpath/hyperpaths as well as strategy/strategies (as
described in Section 2.2.2), which are typically considered by most of the
existing, especially the frequency-based, transit assignment models to deal with

the passenger traffic distribution.

Moreover, consider that passengers are travelling on an underground network
with a high frequency of trains. Under this circumstance, intuitively, it does not
seem to concern the majority of the travellers that whether there would be a
train available as soon as they arrive at a platform. In other words, a short wait
would be supposed to be acceptable for most passengers. In addition, it is

commonly assumed that an individual passenger’s arrival at a station or a
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platform is independent of each other; and it is also supposed to be irrespective
of any vehicle’s arrivals. These two assumptions in many transit assignment
models bring about a uniformly random passengers’ arrival rate (e.g. Spiess and
Florian, 1989); and this underlies the classic assumption that passengers always
choose to board the firstly arriving vehicle that belongs to their attractive lines
set, given a Poisson process of the transit vehicles’ arrival. In contrast, when the
line service frequency is relatively low, those passengers would be more likely
to plan in advance for their access as well as possible interchanges. This is in
order to minimise the waiting cost such as the waiting time for a specific

train/run of an attractive line.

In general, a transit map may often serve as the most important (or even sole)
source of information about the transit network. Practically all travellers would
use it as a reference to make route-choice decisions. In that situation, the transit
map would tend to have the utmost impact on the passengers’ travel strategies
(cf. Guo, 2011), especially when there is no additional information provided to
those who are unfamiliar with the network. Nevertheless, those experienced or
frequent travellers, e.g. commuters, may have rather fixed route choices among
all the alternatives, based on their prior knowledge about the transit system.
They may have already made a decision on which route to choose before they
arrive at the origin station. On the other hand, real-time information during the
course of the passengers’ journeys may also influence their choice decisions (cf.
Hickman and Wilson, 1995). For instance, if the information about waiting times
for the next trains of all attractive lines is available prior to the passengers’
heading to the platform for a preferred line, some of the them may reckon that
their predetermined routes would become less or no longer satisfactory, and
thus potentially turn to alternative attractive routes (cf. Gentile et al., 2005; and
Catsetal.,, 2011).

In the frequency-based models without considering the common lines problem,
the headway can be treated as the time interval between two trains in a row that
serve for the same line, with the mean being the average waiting time for that
line. While the common lines problem is included, trains on different lines arrive
at a platform alternately according to their respective scheduled headways. In
this regard, the average inter-arrival time between runs is shorter due to the
joint services, namely, a passenger's average waiting time for boarding (an

attractive line) is dependent on a combined service frequency of all the attractive
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lines. What is more, the exponential distribution has been the most common
assumption prescribed for the headways; whereas Bouzaiene-Ayari et al. (2001)
argues it may not be appropriate in the case of reliable service regularity, as
extremely irregular headways are not frequently encountered which however
might be the case for exponential distribution. The Erlang distribution was later
proposed and used for approximating the headways (e.g. Bouzaiene-Ayari et al.,
2001). For the common lines problem, conventionally, the probability of anyone
boarding an attractive line is calculated as the proportion of its service frequency
among all alternatives. This implies that the more frequent a line service is, the
higher probability that a vehicle of the transit line would be firstly arriving, and
the greater chance it could obtain of being chosen. Each alternative route can be
assigned a probability of being chosen, even though illogical ones are never used

that have zero probabilities.

2.3 Route choice behaviours

Each journey segment has its own service capacity, and offers limited ability to
accommodate and manage the flows of passenger traffic. The passengers may
often experience congestion (or even overcrowding) when walking within the
stations, waiting on the platforms as well as travelling in the trains, especially at
rush hour when passenger-traffic reaches a peak. It arises since the network
supply of the corresponding journey segment is not able to meet the extra travel
demand during a given operational period. Such a traffic situation could be very
typical of rush hours, such as the morning and evening peaks, which is in stark
contrast to off-peak times dealing mostly with a normal (or even free) flow of

passenger traffic. Unlike bus systems where bunched services may be available

In addition, any planned engineering work would cause delay or cancellation of
trains; and particularly, unexpected emergencies would also hinders the system
from releasing the surges of incoming passenger flows. These incidents may have
a major impact on passengers’ journey cost, and hence their travel behaviours.
On the basis of the foundation laid by the previous section, this section provides
deeper insight about the passengers’ possible route-choice behaviours

throughout the passengers’ journeys.
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2.3.1 Moving through passageways

The service capacity for passengers moving within any underground station
shall involve in all types of pedestrian facilities inside the station. Generally, such
facilities include ticket halls (or concourses), level/ramp passages, pedestrian
conveyors, escalators, lifts and staircases.” A number of different types of such
passageways together construct a pedestrian pathway for passengers’ access
from gatelines to platforms, transfer between platforms, as well as egress from
platforms to gatelines (cf. Section 2.2.1). Thus, the measure of the capacity of
the pedestrian service would largely depend on the attributes of these
passageways, including e.g. total numbers, lengths, rises/runs and layout, which

are closely related to the pedestrian passenger flows.

Hankin and Wright (1958) were among the first to carry out experiments
concerning the within-station pedestrian traffic flows of passengers. They
investigated the relationships between the pedestrian speed, flow of passengers
and the capacity of passageways (including both level passages and staircases)
for the LU stations. According to their studies, the pedestrian flow within a
station was measured by the number of passengers per foot width per minute,
while the speed was calculated as the time of their movement over a certain
length; and both were based on a given pre-measured area. It was also illustrated
in their analysis results that crowdedness would slow down passengers’ walking
speeds. Daly et al. (1991) illustrated the findings on the relationships between
flow and walking time for each passageways within station that the speed-flow
relationship was similar to that of the road traffic conditions. In addition, they all
presented their experiment results about walking speeds on different types of
passageways, on the conditions of free passenger flow and when the facility
capacity was reached, etc. Those important conclusions drawn from their
experiments were also confirmed in relevant studies, conducted by e.g. Harris

(1991); Cheung (1998) and Lam and Cheung (2000). Furthermore, Lam and

7 We use the term ‘passageway’ as a generic term. Note that in some other studies, .g. Daly et al.
(1991), the platforms and intersection area of different passageways were also were also
examined, however, which are not considered as the passageways in the current context.
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Cheung (2000)8 derived and calibrated the travel time function for each type of
passageways with the data collected on the Hong Kong metro system, and

compared the average speeds with the findings on the LU.

Moreover, not only is it the disutility of crowdedness and walking speed/time
that may be considered by passengers, but they may also have different tastes in
walking distance. At the origin station, the pathways with shorter walking
distance to the platforms for attractive lines might usually be more preferable to
passengers, especially those who are commuters, older or disabled people. This
factor may potentially dominate their route choices, in the absence of real-time
information around the gateline area (i.e. at the start of access). Note, however,
that some of the travellers with limited walking ability may need assistance of
lifts (and might also tend to avoid the crowd). Such facilities may or may not

necessarily be on the shorter (or the shortest) pathways.

Besides, the interchange (including the platform-to-platform walking and
waiting on the platform) is considered particularly sensitive to passengers, as it
might be deemed to cause an ‘interruption’ in one’s single journey. Regarding the
journey cost specification, usually, the extra disutility would be associated with
both the interchange walking and waiting, which can be termed a ‘transfer
penalty’ (e.g. Guo, 2008). Moreover, at different stations, passengers suffer
different levels of transfer penalties. Surveys and behavioural modelling are the

two main methods to understand the transfer behaviours.

2.3.2 Waiting and failures of boarding

As for the passenger traffic gathered on the platforms, whether and when the
passengers would be able to board a train is another one of the key issues for the
formulation of a route-choice module for any transit assignment models. This is
particularly significant for modelling the rush-hour traffic, due to the fact that
the limited loading capacity of trains/carriages imposes restrictions on extra
boarding demand. A portion of the passengers waiting on platforms may fail to

get aboard (after one or several attempts). Such boarding failure(s) prolongs a

8 The average walking speeds about the LU presented in this study will be later used as reference
materials in Chapter 4.
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passenger’s waiting (hence their waiting time), and might significantly increase

the possibility of a longer total journey time.

A common assumption for passengers’ boarding is that all the passengers would
choose to board the firstly arriving train among attractive lines, if additional
information (e.g. remaining waiting time for a certain service) is not available. In
uncongested situations, all the wait-to-board passengers are assumed to be
always able to get aboard a train on an attractive line, since the capacity of
carriages is treated as unlimited. However, with respect to models for congested
transit networks, the train/carriage capacity should be strictly constrained, and
that the situation that passengers may fail to board is explicitly considered.
Under such circumstances, there could be continuously accumulated volume of
traffic as those fail-to-board passengers would be still waiting, which aggravates
the crowding on the platform and thereby affects the service that follows at a
subsequent scheduled time interval. The increasingly intensive congestion may

maintain during peak period.

In reality, the fail-to-board passengers could be generally classified into two
groups. One group includes those who do intend but are not able to climb aboard
the train, due to limited standing space in trains; whereas the other group
contains passengers who actually decline or are not willing to board. Basically,
these two groups could be referred to two situations, respectively, as follows: (a)
the train capacity has been completely fulfilled and the carriages cannot
accommodate all the wait-to-board passengers; and (b) at the same time, some
of the wait-to-board passengers are sensitive to congestion in a train (and/or
chances of having a seat) and hence give up the chance to board, despite
availability of standing room. Consequently, at least a headway is added to the

waiting time that each of those fail-to-board passengers spend in both situations.

Besides, it is arguable that every wait-to-board passenger on the platform may
have the same chance of boarding. This statement could be reasonable, but
mainly in uncongested conditions, as passengers are more likely to mingle and
those who arrive later could wait by any carriage door. Nonetheless, the first-
come-first-serve rule should be more appropriate given that passengers queue

by each door of the carriages, especially in congested situation.

For the waiting time specification, early models, such as De Cea and Fernandez

(1993), considered it to be monotonically increasing as the passenger volume
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increases, which was then specified as a congestion cost function relating to the
notion of effective frequency (e.g. Wu et al., 1994; and Cominetti and Correa,
2001). An effective frequency was used to characterise an attractive line or
common lines. That is, if the passengers’ chances of encountering a full train rise,
the effective frequency of the relevant service should decrease, and thus the
waiting time for that train shall become longer. However, the congestion cost
function does not actually restrain train capacities from being overloaded by
excess travel demand. Later models then (e.g. Lam et al., 1999; Nguyen et al.,
2001; Lam et al., 2002; Hamdouch et al., 2004; Yin et al., 2004; and Hamdouch
and Lawphongpanich, 2008; Teklu, 2008b) specified explicit constraints to
impose restrictions on the excess passenger-traffic flows being assigned onto

any route sections with limited capacities.

Moreover, special attention to the probability of failing-to-board that affects the
search for the shortest hyperpath was paid by researchers such as Kurauchi et
al. (2003), Schmocker et al. (2008) as well as Schmocker and Bell (2009). The
choice set of lines considered by passengers who fail to board may change in
different time intervals, and it depends only on the current condition, which is
known as Markov property and also discussed by Teklu et al. (2007). Fail-to-
board passengers who keep waiting on the same platform obey with the Markov
properties. Whether or not they would be able to board a train that has currently
arrived is not related to where they started their journey or how long they have
been waiting. The boarding and alighting demand at the current platform are
necessary, which also requires the knowledge of the traffic volumes at the
upstream stops each associates with a timestamp. Consequently, the waiting
time at a given platform depends on the variations of traffic volume over time or
time intervals, and the passengers in the train and that on the platform would

practically have a longer the waiting time.

Another issue that may also impede passengers’ boarding is seat availability,
which may influences passengers’ travel strategies and can be taken into account
only in less- or un-congested circumstances; whereas, this is not the case when
the network is suffering from high congestion during periods of peak demand of
rush-hour traffic. Because in highly congested conditions whether a passenger
could be seated on-board would not be the main concern. Instead, whether there

is a chance for passengers to get aboard would be valued, given that the vehicle
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still has capacity of extra boarding demand and that the on-board crowding does

not outstrip passengers’ tolerance limits to the congestion.

2.3.3 Travelling and on-board crowdedness

If a chosen line remains crowded for several trains (i.e. runs), some fail-to-board
passengers would rather keep waiting for a following train, notwithstanding an
extra waiting time. A less crowded train/line may be more attractive to some
passengers, even though it tends to give rise to a longer total journey time
compared to its alternatives (cf. Leurent, 2010). That is to say, the passengers’
perceptions to their on-board travel (or their perceived on-board travel cost)
may not be as bad as the actual travel cost. In this regard, the passengers’
aversion to congestion or overcrowding is involved in modelling their choice

decisions.

Furthermore, passengers who stand and those who are seated on board may
experience different levels of travel discomforts (cf. Tian et al., 2007; Sumalee et
al., 2009; Leurent, 2010; Hamdouch et al., 2011; and Schmocker et al., 2011). As
such, the fact that some passengers are sensitive to seats would also lead to
different specifications of the on-board travelling cost, thus affecting the
formation of passengers’ travel strategies. While a train is crowded, the
discomfort level is assumed to be much higher for the standing-on-board
passengers compared to the seated ones. It may be assumed that passengers
being seated would be less influenced by the on-board crowdedness. In other
words, they would be likely to have similar level of discomfort as being travelling
under less congested (or even uncongested) conditions. On the other hand, the
degrees of the seat-sensitive passengers’ incentives of pursuing vacant seats
would differ, which can hardly be quantified. Before passengers board a train,
the key influencing factors may involve the total journey distance as well as the
seat occupancy. For the passengers who have been standing and travelling on-
board, the elapsed time of standing and the remaining distance for their journeys

would be likely to become more predominant.

What is more, suppose that a train is approaching or has already arrived at a
platform at either an origin or an interchange station. Passengers who have been
waiting on the platform will start boarding as soon as the on-board passengers

who intend to alight are all cleared. The wait-to-board passengers may estimate
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how much boarding capacity there could be available by then. Those who are
seat-sensitive may also consider whether there is a chance of being seated
and/or even calculate the chance of obtaining a seat at a subsequent station.
Thus, their decisions will be made as to whether to board or still keep waiting on
the current platform for next coming trains. At the same time, the standing-on-
board passengers would also decide whether to alight and transfer at the current
station, or travel to any of the following alternative interchange stations. In
practice, decisions on whether to board the arriving train of an attractive line,
keep waiting for the next run of the same line, or transfer to any of alternative
services (or even transport modes), would largely be dependent upon what
information (especially, the real-time information) and where/when such
information would be provided in the passenger’s decision-making process (cf.

Nokel and Wekeck, 2009).

2.4 Discussions

2.4.1 Route choice and journey time variability

Evidently, from the above, the passengers do not necessarily make a journey by
the shortest/fastest routes or with least interchanges in order to obtain a
maximum savings on their journey times. In some situations, an alternative route
may be more attractive and preferred by different individuals for various
reasons. Still, as also mentioned above, the passengers’ journey cost may be just
referred to their total journey time; and in practice, the journey time variability
is often considered to weigh up the reliability of the transit service. It can also
exert effect on passengers’ travel strategies based on their different perceptions

to the system performance.

Unlike car traffic on road networks, the underground trains run on fixed tracks
and are each associated with a timetable. Ideally, timestamps of arrival and
departure of trains at a platform are strictly scheduled. Passengers’ on-board
travel time could be expected as ascertainable, conditional on the presence of
punctuality of the trains running on a passenger’s chosen path. Depending on
information of the passenger’s access and egress, his/her journey time could
thus be well predictable, provided the absence of any incidents. However, for the

most part, this may not be the case in practice, given varied attributes of the
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transit network as well as uncertainties, which potentially affect passengers’
journey times, such as over-crowding, delay of transit services. While the level of
service degrades in view of their comfort and/or preferences, their choice
behaviour would be subject to a higher degree of riskiness of having an uncertain
journey time. In particular, passenger-traffic congestion occurs frequently with
surging travel demand, not only on-board, but also on platforms and
passageways within transit stations, especially during rush hours. It can have
significant impacts on service regularity as well as reliability, which in turn
influence passengers’ travel behaviour. Also insufficient service capacity (e.g.
vehicle capacity or seat availability) may cause passengers’ boarding failures,
thereby delaying their journey times. Moreover, when a train breaks down
and/or is suspended at a certain platform (say due to train system fault), an on-
board passenger could possibly choose to keep waiting, interchange to any
alternative line serving the same station/platform, or even egress and go for any
other modes. Nevertheless, if there were not any alternative service available,
the passenger would have to wait until the fault is cleared, or transfer to the next

coming train.

On station-to-station level, every passenger has his/her own expected journey
time from the origin to the destination, and the range of this expectation and
itself depends on various travel information the passenger could obtain.
Meanwhile, they may value much on the reliability of the services between which
they are going to choose, in association with the variations of journey times that
they may experience on their chosen paths. In high frequency service, a delay of
a few seconds may result in a series of delays of the runs that follow, which in

turn leads to reallocation of passenger distributions.

What's more, travel patterns vary potentially due to the travellers’ responses
towards the reliability of the transit service, especially as for those commuters
who could gain experience of the network performance in terms of day-to-day
variations in their travel times. Therefore, a good understanding of such different
travel patterns under various backgrounds is essential to the efficient public

transport planning, operations and travel demand management.

The journey time variability is measured based on many factors, such as
individuals’ preferred choices of departure times in view of their desired arrival

times and the deviations between expected and actual journey times. The actual
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journey time experienced by a passenger may be very much different from that
was expected or desired, with the average difference being concerned by both
the passenger as well as transport operators. Transport for London (TfL) defines
the excess journey time as “the average time added to journeys by delays,
crowding and queuing, over and above the nominal scheduled journey time”
(Transport for London, 2010). It could be also drawn to a wider extent on
considering that the passenger completes his/her journey faster than expected
or desired. In the latter case, a redundant amount of time is unnecessarily
budgeted, which is supposed to be minimised. And this is also the excess journey
time defined in the former case. In practice, this extra budgeted time is observed
from the departure time actually chosen by passengers who may allocate a
considerable amount of ‘buffer’ time in order to flatten the journey time
variability caused by any uncertainties. It was defined by Uniman (2009) as
‘reliability buffer time’, namely, the difference between the observed travel times
of the 95M-percentile and the median for an given O-D over certain period of time

under normal conditions (Uniman et al., 2010).

2.4.2 Data for route choices

To gain an understanding of passengers’ route choice behaviour, the data for
their actual choices is vital. At an aggregate level, the passengers’ average route
choices - or rather, average proportions of the entire passenger-traffic flowing
over the multi-route O-D - among the alternative routes could be estimated. We
can gain this knowledge via random sampling of a group of individuals, from
whose actual route choices a statistical result could be generalised to the overall
passenger population. Usually, such data is acquired through surveys, such as
online and paper-based questionnaires, as well as interviews. Besides, we may
also draw support from mobile technology, such as global positioning system
(GPS) devices and take full advantage of a range of applications developed for
smartphones. Such tracking techniques are expected to effectively save on the
time and cost of the traditional survey approaches, as well as to improve the scale

and accuracy of the raw data.

In practice, however, all the above-mentioned methods can still be quite
expensive and time-consuming to attain sizable, representative data samples.

For one thing, many of the travellers who receive the information requests might
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be unavailable for participation in the surveys. For another, most people may
express concerns about issues such as their privacy and the security of the real-
time personal data residing online, hence less willingness to be involved with
passive monitoring programmes using any of the ‘privacy-surrendering’ means.
Moreover, some technical restrictions would just directly prevent passengers
from using the mobile/wireless devices. For instance, the absence of mobile
coverage on the LU network renders the passengers being unable to use their
mobile phones.? Under these circumstances, the sample size of the data collected
may tend to be limited. Otherwise, acquisition of an adequate data sample might

necessitate a high cost of carrying out numerous repeated surveys.

With the widespread implementations of the AFC systems in the past decade, the
ever-increasing popularity of smart cards among public-transport users enables
a wealth of individual travel data to be conveniently available (cf. Pelletier et al.,
2011), which is also referred to as smart-card data. This has drastically reduced
the need and expenditure for conducting the manual surveys, but also extended
our ability to gather miscellaneous travel information of passengers (cf. Bagchi
and White, 2005).

When travelling by underground rail services, smartcard users are required to
touch their smart cards on card readers at the start and end stations respectively
of their journeys, in order for fares to be properly deducted. In addition, when a
passenger enters and exists a station by using a smart card, a card reader at a
ticket gate processes the information of locations and timestamps at which the
passenger’s entry and exit occurs. Therewith the smart-card system holds vast
quantities of journey records for all its anonymous users travelling within the
system, such as ticket types and fare purchases, as well as total amounts of
entries/exits at each station. What is more, a sufficiently large sample of those
smart-card users’ journey times can also be easily obtained from calculating the
differences of their time-stamped ‘touch-in-entry’ (at the origin station) and

‘touch-out-exit’ (at the destination station).

9 By far, mobile phone connectivity is not available on the LU network. Although the Wireless
Fidelity (Wi-Fi) signal has been provided lately to about half of all the LU stations, it is not
or has only been conditionally free for use.
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So far, there have been many studies exploring the potentials of using the smart-
card data. Pelletier et al. (2011) conducted a comprehensive overview of various
aspects of its applications to public transport systems. And meanwhile, specific
examples have been demonstrated on a number of different AFC systems all
around the world, such as the Chicago Card and Chicago Card Plus (replaced by
Ventra Card since July 2014) in Chicago (e.g. Utsunomiya et al., 2006; and Zhao
et al., 2007); the EZ-Link card in Singapore (e.g. Chakirov and Erath, 2011; and
Lee et al., 2012); the Oyster smart-card in London (e.g. Chan, 2007; Zhao et al.,
2007; Wilson et al., 2009; Uniman et al., 2010; and Kurauchi et al., 2012); the
Passe-Partout PLUS in Gatineau (e.g. Morency et al., 2007; and Trépanier et al.,
2009); and the ‘Tarjeta Bip!” in Santiago (€.g. Munizaga and Palma, 2012); and
the T-money Card in Seoul (e.g. Park et al., 2008; and Jang, 2010); to name but a
few. Among all the above-mentioned, focuses were centred mostly on estimation
of the O-D travel demand matrix, metrics for transit service and journey time
reliability, as well as interchange patterns of passengers transferring between
different transit modes (e.g. between the underground and buses). In the cases
of EZ-Link (e.g. Chakirov and Erath, 2011), as well as the T-money in Seoul (e.g.
Jang, 2010), fare is charged on a distance basis. In that way, the transfer data for
passengers using multiple modes is readily available. However, those researches
investigated only the O-D pairs that are connected by a single/direct line or a

single route.

An important issue that has been rarely addressed by the existing literatures is
that the possible interchanges passengers may make during their journeys. This
is mainly due to the unavailability of the data. The smart-card scheme for the
underground system has practical limitations on data completeness. Generally,
it does not allow for either tracking the passengers’ movements during the
course of their journeys, or recording their within-station interchanges, if any.
Although the total of entries is counted at the gateline, the entry-flow splits
towards different passageways. The passenger-traffic on any of the passageways
is not available in the smart-card data. Likewise, the count of exits does not
inform that from which lines the passengers travelled. Moreover, when a certain
pair of O-D stations afford multiple alternative routes, a passenger’s journey
history recorded by the smart-card system would not give details on which

specific route he/she has actually used for travelling between the O-D. In this
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situation, the smart-card data could not inform each individual passengers’ route

choice.

It is also arguable that such information could actually be gathered by drawing
support from other technological means in addition to the smart-card scheme. In
practice, however, it would entail levering in extra investment into the system,
with respect to infrastructure, equipment, maintenance, as well as the delivery
of those technologies. Even so, passengers’ socio-demographic characteristics
may still not be captured, but additional data from traditional surveys or other
information systems should be necessary to supplement and boost both practical

and theoretical research (cf. White et al., 2010).

By and large, the shortage of sufficient and reliable data presents a major
obstacle to further progress in studying the patterns of passenger-traffic flow as

well as the passengers’ travel behaviour.

2.5 Summary and conclusions

This chapter has presented various aspects of the behavioural processes of
passengers’ route choice on an underground system, with the emphases being

placed on their choice behaviours at different journey segments.

As elaborated above, a route choice model simulates passengers’ responses to
different network attributes regarding the implementation of transit assignment
models. Technically, it generates, at each decision point for passengers boarding
and/or transferring, either deterministic or stochastic choices as to how the
passengers would complete the rest of their journeys. The deterministic method
is popular among frequency-based transit assignment models that are usually
built on the formulation of the ‘shortest hyperpath’ (Nguyen and Pallottino, 1988)
or, equivalently, the ‘optimal strategy’ (Spiess and Florian, 1989). Typical models
consider passengers’ choice probability of taking a line/train to be the ratio of its
service frequency to the combined frequency of all viable alternatives. This is a

fixed measure by which the passenger flow is apportioned on uncongested
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networks. As for more sophisticated stochastic cases1?, such as Lam et al. (1999),
Nielsen (2000) and Sumalee et al. (2009), additional variables are taken into
account such that the assignment of passenger-traffic has been further modelled
with uncertainties, including level of discomfort, on-board crowding, seat
availability and service reliability, etc., which might influence passengers’
perceptions in their route choices. However, these types of models are mostly

looking at the route choices at an aggregate level.

It has been pointed out that different individual passengers have different
perceptions as to how the transit system works, hence different sensitivities to
the performance of the transit service, which in turn lead to their different route
choices. It will be of importance and more interest to us to gain a better
understanding of why one of alternative routes would be chosen by individual
passengers and how they would react to changes of different attributes (about
e.g. the walking, waiting, service reliability) of the transit network. As Nokel and
Wekeck (2009) pointed out, there could hardly be a bundle of behavioural
assumptions that perfectly represents the passengers’ route choice behaviours.
Therefore, a random utility model should be more suitable for the representation
of the disutility that different passengers would have for different alternative
routes. Micro-simulation approaches and/or discrete choice models!! shall be

necessary to accommodate such personal features that vary among individuals.

Although a variety of discrete choice models have been also studied by looking
into contributing factors, to implement transit assignment models, the
coefficients to those attributes were either simulated/calibrated (e.g. Nielsen,
2000) or estimated relying on survey data (e.g. Cats, 2011; and Cats et al., 2011).
Therefore, the main limitation of this technique is still the data availability. This
thus leads to the crux of our problem, that is, data that shows each individual
passenger’s actual route choice is not easily accessible, which however may

always be collected from surveys.

To overcome these issues, we explore new solutions in the following chapters.

The fundamentals we have gained from the review of modelling passengers’

10 Note that the modelling approaches based on the hyperpaths/strategies also serve as a way
of describing stochastic route choices.

11 The discrete choice modelling approaches are discussed in more detail in Chapter 6.
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route choices on public transport, along with all the principles being presented,
will greatly contribute to our understanding of how the choice-making process
is like and how we may consider route choice models work. In addition, this
would also provide guidance for us to derive the expected journey time of a travel

route in the following chapter.
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Chapter 3
Bayesian inference of probabilistic route choices

3.1 Introduction

As stated from Section 2.4.2, the modelling of passengers’ route choice
behaviour at the individual level would be largely subject to the availability of
route-choice data gathered for each individual passenger. Rather than solely
relying on the traditional survey methods for the collection of such data, this
chapter offers a completely different standpoint of representing and learning the
individuals’ route choices for any given pair of multi-route O-D. That is, in this
chapter, we aim to explore possibility of gaining knowledge about the route
choices of passengers from interrogating data held in some databases! that we

already have or are easily obtainable, especially the smart-card data.

The smart-card database for the underground system, as we mentioned earlier,
is capable of supplying abundant data samples of individual passengers’ journey
times on a gateline-to-gateline basis and across all operating periods. In the case
that a pair of O-D stations is served by a single transit line, where there could be
one sensible route, the journey time information extracted from the smart-card
data can be an ideal aid for examining the service performance of this O-D (cf.
Section 2.4.1). As a significant measure of the level of service, the journey time
variability, in turn, should then also characterise the only route between that O-
D. With regard to other cases where alternative routes exist, the passengers’
journey times would be directly affected by attributes of the particular route on
which they choose to travel, such as the timetable, service delay and pedestrian
facilities within stations. For the most part, such attributes shall differ between
those alternative routes (cf. Train, 2009, p.21). In this regard, any sample data of

passengers’ journey times of a certain route would presumably exhibit a pattern,

1In addition to the smart-card data, some ancillary sources of information are also needed; and
they are specified at appropriate stages in the subsequent sections of this chapter. The real
data for practical use (on the LU system) is detailed in Chapter 4.
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which differentiates that route from its alternatives. This point of view
encourages us to contemplate potential use of the journey time data, in an
attempt to understand the passengers’ route choices, despite the absence of this

route-choice information in the observed records.

Now consider a pair of O-D stations connected by more than one transit line,
where we are fully aware of the existence of all the available alternative routes.
Suppose that we have already managed to get hold of a huge data sample of
individual passengers’ journey times from smart-card records, with none
detailing their travel routes. The following two research questions could be

brought forward:

(I)  Would we be able to find a way of relating a passenger’s journey time
from the available data to the ‘unknown’ route that has been actually
used by the passenger, and/or what relationship might there
potentially be between the two classes?

(I) Would it be possible for us to find out every individual’s actual route
choice according to his/her journey time (or by whatever means is

appropriate)?

As stated in Chapter 1, the actual chosen route of each individual in this context
could only be treated as being unobservable, but may still be known up to a
choice probability. On this account, we shall have to take a theoretical
consideration of the individual passengers’ probabilistic route choices in order
to address question (I) posed above. That is to say, everyone’s route choice is
turned into a probabilistic variable, which must therefore be investigated and
learnt in a probability space. As such, we would seek only the choice probabilities

that a passenger might have placed on each of the alternative routes.

As aforementioned, an observation that a passenger has spent a certain amount
of journey time must be rooted in some attributes peculiar to his/her only
chosen route. However, if we are given only the observed journey time, there can
be multiple hypotheses in respect of the passenger’s route-choice decision in the
real world. Being inspired by the concept of Bayesian networks (Heckerman,
1997), we may anticipate, from a Bayesian perspective, a logical and causal
connection between the passenger’s journey time and his/her route choice in
terms of a conditional choice probability. Such a probabilistic term is supposed

to describe (and measure) how likely a passenger might have chosen any



-33-

alternative route, on condition that we have already known his/her journey time.
On this basis, we can then proceed to challenge whether or not it could afford an
affirmative answer to question (I). Further, in response to question (II), an
individual’s route choice seems impossible to be explicitly identified in this
probabilistic setting. Still, it would possibly be understood from statistical
inference. An obvious initial inference to make might be that: a passenger must
have chosen the route that is estimated as having the highest such choice

probability among all the alternatives.

It is also worth noting that, with the choice probabilities for all the individual
passengers, the average probability of any route being chosen can then be
estimated accordingly within the passenger population. Nevertheless, to what
extent we could draw such kind of conclusions, the focal issue will depend on
whether and/or how we would be able to work out those conditional choice

probabilities.

Overall, this chapter aims at building on Bayesian framework with an approach
to finding out, on any given pair of multi-route O-D stations, each individual’s
probabilistic route choices, as well as passenger-flow distribution among the
different alternative routes. The smart-card data records, from which samples of
passengers’ journey times, would serve as the prerequisite for the estimation of
their route-choice probabilities.2 Much of the work that had been accomplished
by Fu (2012a) and Fu et al. (2014) paves the way for this whole chapter that

contributes a refined, and greater, elaboration.

The rest of this chapter is arranged as follows. Section 3.2 gives a detailed
description of the probability space wherein the problem of passengers’
probabilistic route choices is defined. In the subsequent sections, a possible
solution to this problem is provided, with a probe into the finite mixture model.
Section 3.3 presents the formulation, data input as well as estimation method of
the suggested model. In Section 3.4, a set of validation criteria are proposed in
order to understand the model estimates in terms of the hidden variables of the
route choices. Then, Section 3.5 illuminates the use of the estimates of each

individual’s route-choice probabilities to infer the passenger-traffic distribution

2 The passengers referred hereinafter are all assumed to be smart-card users.
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among different alternative routes. A summary of limitations of this modelling

approach is presented in Section 3.6 for a conclusion of this chapter.

3.2 Problem description

The following notation listed below is used for facilitating a mathematical

formulation of the probabilistic route-choice problem at issue.

Notation:

choiceq
Pr(-)

5q

5(;)}33

(1,87

r

(4)
(I)q

origin station of a give O-D pair

destination station of a give O-D pair

set of the natural numbers that are greater than or equal to 2
travel route

total number of travel routes (connecting 0 to d ); N; eN_,
set of all alternative travel routes (connecting 0 to d )

set of the natural numbers that are greater than or equal to 1
individual passenger (travelling from 0 to d)

total number of passengers (travelling from o to d ); N, eN,,
statistical population of passengers (travelling from 0 to d )
personal route-choice set of q

possible outcome that g has chosen r to make a single journey
set of all possibilities of q

set of all elementary events within the sigma-field given @
event that q chose r to make a single journey

probability measure

journey time of q

journey time observation (OBS) of ¢

possible outcome that g has chosen r to make a single journey,
with a journey time of &,

set of all possible route choices of g, given 5,

(Continued)
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Notation: (Continued.)

cl set of all elementary events of route choices of q, given &,

choice’ event that q chose r to make a single journey and spent a
journey time of ;"

d, elementary event that g spent a journey time of 5,

®) set of all possible route choices of Q , given 5, vq

c® set of all elementary events of route choices of Q, given 5;’35 vq

Now, let us take a look at a simple underground network, which is outlined in

Figure 3.1 below.

Route 1

(Router)

Route N,

Figure 3.1 A single O-D network with multiple travel routes.

Basically, our focus here is only on a single pair of underground stations of origin
and destination, denoted by 0 and d, respectively. As can be seen from the
sketch above, there are supposed to be a total of N travel routes, where
N, eN,,, with N, denoting a set of the natural numbers that are greater than
or equal to 2. All these routes are deemed rational and numbered arbitrarily
from 1 to Ny, which collectively form a finite set of alternatives available for
every passenger travelling from 0 to d. We let R denote this universal route-

choice set and defineitas R:={r: r=1,...,N;}, with r denoting a travel route.

Suppose that the overall passenger traffic (i.e. the travel demand) between this
0-d amounts to N, in a certain time period, where N, is a positive integer (i.e.

N, €N, ). We use the symbol g to denote an individual passenger, and number
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all the individuals arbitrarily from 1 through N,. Denote by Q the statistical

population of passengers; and we define Q to consist of all the N, individuals
by setting Q:={q: q=1,...,No}.

It is highly likely that prior to commencing a journey every passenger, say (,
would customise R and have his/her own personal route-choice set (cf. Ben-
Akiva and Boccara, 1995). Let R, denote the customised route-choice set of q.
Apparently, it can be any of the non-empty subsets of all those alternative routes.
Namely, R, €2°\{&} VqeQ and |R,|< N, where 2° is the power set of R. As
such, R, may also refer to a set of hyperpaths, from which passenger g chooses
the optimal (cf. Schmocker et al., 2013). Yet, such individualised choice set can
hardly be fully understood or predicted by anyone except passenger (
himself/herself. Hence, within the scope of this chapter (and also the thesis), we

postulate that

R =R. (3-1)

q

Itis presumed by this identity that every individual would be taking into account

the full set of available alternatives whilst making his/her route-choice decision.

Looking at a real underground network (e.g. the LU), mostly, there are actually
limited sensible routes for each O-D pair. In view of this fact, the presumption of
identity (3-1) would plausibly be the case, especially for non-commuters (e.g.
tourists) who are not familiar with the transit services on the network. However,
a commuter passenger may regularly take the route that he/she is accustomed
to, and would barely use other alternatives unless necessary (for instance, as
disruptions occur on the frequently-used route). In this regard, there would be a
risk that identity (3-1) might be inappropriate, because in reality R, might be
merely a unit set, particularly if q is a frequent traveller between the given O-D.
To some extent, such risk could be diminished as we contextualise passengers’

route choices probabilistically.

Since every passenger’s actual route choice is not known to us, we may say that
a passenger might choose any one of the alternative routes. As a presupposition,
identity (3-1) then allows us to enumerate a set of all possible outcomes of the
route-choice decision made by the passenger. For each q, we let @, denote the

set of all his/her possible route choices; and it is defined as

®,:={(q,r: reRr}, (3-2)
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where the 2-tuple, (q, r), is defined to be a possible outcome that passenger ¢
has chosen route r from R. Clearly, |®,|= N. This equality implies that any of

the N; alternative routes might have been actually chosen by ¢.

In view of definition (3-2), a sigma-field over @ could simply be defined up to
2%, which includes all events that might potentially be drawn to our attention.3
With regard to each of the individual passengers, of particular interest to us in
the practice is a set of elementary events, which we represent by a symbol, C, .

It is actually a subset of 2%, defined as

C,:={choice, : reR}, (3-3)

q

where we let choice, denote an elementary event corresponding to a possible
outcome, that is, choice, :={(q,r} VqeQ, VreR. As such, the occurrence of
choice, should be described by a probability function, which we represent by
Pr(choice,,); and of course, 0 < Pr(choice, ) <1.

Since a passenger chooses only one route, the following condition must hold:

Pr(|_Jchoice,,) = > Pr(choice,,) =1. (3-4)
C, reR
Moreover, we use the symbol &, to represent the journey time of q travelling
from 0 to d, with 6;”° denoting the corresponding real-valued observation.
Assuming that g has made only this one single journey, as urged by question (I)
posed in Section 3.1 (see p.32), we shall further consider a 3-tuple, which is
expressed in the form of ((q,r),5,”*) or (q,r,5,”*) .5 This is thus defined to be a
possible outcome that passenger g has chosen route r, and that he/she has

spent a journey time of 5;’35 to complete the journey.

3 The definition of the sigma-field, 2% , at this point, is to ensure the completeness of the
definition and generality of the probability space under discussion. It does not affect the
following descriptions in this thesis.

4 Besides C,, in some cases, researchers may also be interested in joint probabilities of two or
more (elementary) events occurring at the same time, such as when a certain number of
passengers, as experiment participants, are travelling together between a given 0-D pair.

5. (a1, 87 =(qr,8).
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Let (q, r,5q°Bs> substitute for (g, r) of @ . In this way, we obtain a parallel set of
all possible outcomes of the route choice made by q, which we represent by the

symbol @ It is defined as follows:
o :={q,r,6°): reR}. (3-5)

Likewise, a parallel event set is formed as well, denoted by Cé‘s) , concerning Qs
route choices with an actual observation of his/her journey time. We define it by

setting
C{” :={choice{’ : reR}, (3-6)

where Choiceéf) is defined to be an elementary event corresponding to a single

. . . (9) . s A(8) o OBS
possible outcome included in @, that s, choice,” :={(q,r,5; ")}

Given Cé‘” , we also have

> Pr(choicel’) =1. (3-7)
reR

It is noted that Pr(choiceéf)) is in essence a conditional probability function,
because passenger (’s journey time, 5;’35, has been already known. Still, his/her
actual route choice is not observable. In this sense, we may only speculate on the
passenger’s route choice in the event of his/her journey time being observed. To
elucidate this point, we may as well consider the observation of passenger q’s
journey time as an independent event, which we represent by 8, ={5,”"}. From

this, we acquire
Pr(choice(”) = Pr(choice,, |3,). (3-8)
As such, equation (3-7) is adapted straightforwardly as follows:

> Pr(choice,, |8,) =1; (3-9)

reR

and this new term, Pr(choice, |8,), should be interpreted as the probability that
passenger ¢ might have chosen route r, given the evidence that his/her journey
time is 5;’35. It may serve as an acceptable answer to question (I) posed in the

previous section thus.

In Bayesian statistics, Pr(choice, |8,) is termed as a posterior probability of
passenger (’s route choice, in that it would only be learnt after taking into

account his/her journey time observation. We would expect to work out this
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conditional choice probability for all alternative routes within R. Furthermore,
a certain route r* € R could be deemed to be the most probable (rather than the

actual) choice of q if the following statements would be true:

argmax Pr(choice,, [8,) # D ;

reR
(3-10)
ica® ) - g :
Vchoice,’ € C;”’ 1 Ir” eargmax Pr(choice, [3,).

reR

But to approach an answer to question (II) posed in Section 3.1 (see p.32), it
would fundamentally depend on whether the conditions (3-10) stated above
could be met. It must be noted, however, that r* may not be the actual route

choice - even if Pr(choiceqr* 18,) = max Pr(choice,, 3,).

In conformity with Bayes’ theorem (see Laplace, 1995, pp.135-142), the

following formula is fully acknowledged:

Pr(choice. ) Pr(é_ | choice
Pr(choiceqr |6q): ( qu)) 5( q| qr)
re,)

, (3-11)

which certainly ensures that equation (3-9) holds true, in that Pr(3,) , the
denominator on the right-hand side of formula (3-11), remains the same for
every alternative route. In addition, this term indicates that the probability that
the journey time of q is 6,°°, irrespective of occurrence of any other events.
According to the law of total probability (see Zwillinger and Kokoska, 1999,
p-31), Pr(3,) can be factored as

Pr(3,) = > _Pr(choice,) Pr(3, | choice,). (3-12)

reR

That is, it is also equivalent to the sum of the corresponding numerator over all

routes.

As regards the numerator, Pr(choice,) is termed a prior probability in this
context. As mentioned earlier, this term may be interpreted as the probability
that g might have chosen r. From the perspective of discrete choice modelling,
it may be perceived as the personal propensity of g to choose r from R;. In
order to learn or predict such a preference, we commonly resort to the methods
of discrete choice analysis, which, however, require data of the actual or stated
route choice having been made by q (cf. Section 2.5). In this respect, we have
made it quite plain that when such data is not available, the discrete choice

models would not be manageable. Besides, Pr(8, |choice ) is correspondingly
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termed a likelihood function, which indicates the likelihood that 6q would take

place, on condition that the event, choice, , has already occurred. Since Pr(s,)

ar’
Vg eQ is positive, the posterior probability, Pr(choice, |8,), should be directly
proportional to the product of the prior probability and the likelihood function

below:
Pr(choice,, |8,) o« Pr(choice, ) Pr(3, | choice,,).

Itis clear that if there exists a route r, in which case the product - the numerator
of the fraction in formula (3-11) - can be maximised, it also maximises the
posterior probability of our interest. However, neither Pr(choice,) nor
Pr(8, |choice,) is understandable per se in light of information of only one
individual. On this account, they would have to be learnt from the frequentist

view based on data at an aggregate level.

As dbff) gathers all possible route choices of q, a sample space of all such
possibilities for the population, Q , on the given network of o0-d can be
formulated upon quQ . We represent this sample space by @, which is

defined as
@ :={(q,r,5;°): qeQ, reR}. (3-13)

This is based on an assumption that each passenger has completed only one
single journey.® In reality, different passengers might have chosen the same
route and happened to have the same journey time. It should be noted that
(q,r, 5qOBS> V(q € Q under consideration is actually different from one passenger
to another, in that each observation of 6, is peculiar to g and all individuals

within Q are assumed to be independent of one another.

Welet C denote a set of events for the pair of o-d . It is defined accordingly as

C :={choice{ : qeQ, reR}. (3-14)

6 It should be pointed out on this occasion that the practical data of observed journey time may
be (unbalanced) panel data (e.g. the Oyster data), where one passenger may make a number
of journeys between the same O-D at different periods. However, the mixture model (that
will be described in Section 3.3) cannot deal with such panel characteristics. In that case,
we can only assume that the route-choice decisions made by the same individual are
independent over time; and every journey record is associated with a virtually ‘different’
individual.
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Within the range of C'?, in practice, the prior probability Pr(choice, ) VreR
indicates an average probability that any individual passenger (drawn randomly
from the whole passenger population Q ) might have used route r, regardless of
his/her journey times. In other words, Pr(choice,) could be perceived, and
hence measured, as the proportion of passengers who have actually chosen r.
As such, this can be understood as the relative frequency of counts of the
passengers (or journeys) on route r in the context of frequentist statistics.
Meanwhile, the likelihood function Pr(3, |choice,) VqeQ should express a
probability that the observed journey time of q would have been 5™, given the
fact that he/she actually chose r. Since every individual who chose r is assumed
to be identical, Pr(8, | choice ) essentially becomes a probability distribution of

the journey time distribution of the r-th route.

Now that the problem of passenger’s route choices has been being surveyed in a
probabilistic context, the risk of identity (3-1) being a false statement would
substantially diminishes, and that should be defused by differences in choice
probabilities among available alternative routes. In general, we would expect
that the passenger’s choice probability, measured between 0 and 1, shall
approximate 1 for the chosen route, while those for other alternatives included

in R must be approaching, but not necessarily, 0 (cf. Section 6.3).

Based on the probability space specified above, we are thus driven towards
looking at the problem of passengers’ probabilistic route choices in terms of the
conditional probability distribution of their journey times. Within the scope of
Bayesian framework, we therefore introduce, in the next section, another
formulation of the problem and more specifically, a mixture distribution of the

passengers’ journey times.

3.3 Finite mixture model for journey time distribution

In this section, we follow up the example network of 0-d depicted in Figure 3.1
(see p.35), and formulate the probabilistic route-choice problem from another

angle, in order to explore a possible solution to this problem.

Considering the availability of the N alternative routes, the whole passenger

population Q is presumably composed of N, subpopulations, each of which
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aggregates all the passengers in Q who have chosen one of the alternative
routes. We let Q, denote the subpopulation of route r, and use ¢, to represent
a random variable of journey time of passengers travelling through the r-th
route. It is plausible that individual journeys completed by the passengers from
Q, must collectively yield a certain distribution of 6, for each alternative route;
and the mean values (and/or medians) for all those journey time variables
51,...,5NR would be likely to be statistically different from one route to another
(though this presupposition would not necessarily be the case if the alternative

routes are practically similar).

Moreover, all the individual journeys based on Ql,...,QNR , in the aggregate,
would also contribute a distribution of journey times of the heterogeneous
population as a whole. In fulfilment of definition of the mixture distribution, by
reference to McLachlan and Peel (2000, pp.6-8) as well as Frithwirth-Schnatter
(2006, pp.1-23), such a journey time distribution can be considered as a mixture
of the journey time distributions of 51,...,5NR , each being termed a component
distribution of the mixture. More specifically, in our case, this is in essence a finite
mixture distribution for a collection of a finite number of the journey time
variables. Therewith it would also show, albeit not necessarily, the presence of
heteroscedasticity among the N; component distributions for the varied

subpopulations Q,,...,Qy_.

It is also noteworthy at this point that we may actually redefine the
subpopulation as well as the corresponding variables, whereby we use a mixture
distribution to describe other statistical events for a given O-D. For instance, in
the context that passengers choose from among a set of hyperpaths (cf. Section
2.2), a group of passengers travelling on the same hyperpath could then be
referred to as a subpopulation. In this case, we shall consider passengers’ choices
of alternative hyperpaths, instead of a single route described above. Similarly,
we may also distinguish different classes of travellers, such as slower and faster
walkers. Then a component distribution should correspond to a probability

distribution of journey times of a specific passenger class.

In the scope of this thesis, we consider only the general case introduced at the

beginning of this section.
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3.3.1 Model formulation

Now we take a step further to inspect the posterior probability, Pr(choice, [d,),
in the setting of the mixture distribution. In line with our specific target set in the
previous section, the notation below is used to set the stage for the formulation

of a finite mixture distribution of passengers’ journey times.

Notation:

Q, subpopulation of all passengers who chose route r

o, journey time of r between 0 and d (referring to Figure 3.1)

1) journey time of travelling from 0 to d

m(o) probability density function” of a mixture distribution of ¢ 8

c,(0) probability density function of probability distribution of &,
also referred to as component distribution associated with r

o, mixture weight placed on c, (J)

[0 N, -dimensional vector of all o, for m(o)

0, vector of the distribution parameter(s) of c, (o)

0 N, -dimensional vector of all 8, for m(o)

According to the common definition, a mixture distribution or, equivalently, a
probabilistic mixture model (cf. McLachlan and Peel, 2000, p.6), is generally
specified to be a weighted sum of probability density functions (PDFs) of all the
relevant component distributions. In that sense, the mixture weight? that is
placed on each of the components should indicate an average probability that
any given value (or any observed value at random) within the whole statistical

population may be sourced from that component distribution. For practical

7 In this thesis, the probability density function may also be treated as a probability mass function
whereby the probability of the journey time taking any given value could be figured out.

8 Note that § of the function, m(J), indicates a vector of the random variables, i.e.
S = (51...5NR).

9 In different literatures, it is also called mixing/mixture probabilities or proportions, etc. In this
thesis, it is referred to as ‘mixture weight’, to avert any confusion.
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applications, the most commonly used mixture is the finite mixture with the
components all (being assumed to be) having the same distributional form, and
hence the same estimator(s) for parameter(s). In the scope of this thesis, we only
examine this class of mixture distributions, which is referred to as the standard

mixture model, and later applied to data of passengers’ journey times.

We use the symbol 6 to represent passengers’ journey time for travelling
between 0-d , and treat it as a random variable. Then we let m(o) denote its PDF.
It shall be a mixture of N, components, each of which can be represented by
C,(0) as the PDF of &, . Further, denote by @ a random vector of the mixture
weights, that is, ® = (a)l,...,a)NR) with @, Vr e R being a random variable of the
mixture weight placed on the r-th component PDF ¢ (J). Now a finite mixture
model of passengers’ journey time could be represented in the form as follows:

mS o)=Y ac,(5), (3-15)

reR

where 0< @, <1 VreR, and

> o =1. (3-16)

reR

It is noticeable that there appears to be a formal resemblance between the
mixture PDF specified by formula (3-15) and the total probability presented as
formula (3-12). In fact, there is a close correspondence in nature between the
two formulas. Based on the premises stated in Section 3.2 that all passengers
share the same route-choice set and that they choose their own travel routes
independently, the passengers are deemed identical individuals. In that sense,
any samples of &,°° drawn randomly from the passenger population are
independent, and identically distributed. At the aggregate level, this assumption
allows the term Pr(8,) to generalise the probability distribution of all the
passengers’ journey times. As such, Pr(8,) does correspond to the mixture PDF
m(J).

Moreover, C, (o) is specific to route r, and it gives information about how likely
it is that a certain journey time would have been experienced by any passenger
who have actually chose the r-th route. Thus, this PDF is, in effect, a general form

of the likelihood function Pr(8, | choice, ) being presented as formula (3-12).

Additionally, in our case, the mixture weight o, should, as explained above, refer

to the probability that route r would be chosen by any individual within the
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whole passenger population Q. Therefore, for each individual, there is general

equivalence between @, and choice, , as well as that between ® and C, in

o
accordance with definition (3-3). For each alternative route, Pr(choice,) also
corresponds with the probability distribution of ®,, again based on the same
underlying assumption. Besides, due to the constraint specified by equation
(3-16), values taken by ® should depend only on N, -1 of all the mixture

weights.

It must be pointed out that in the common specification of the mixture model, @,
is usually perceived as a real-valued quantity. As a matter of fact, it shall appear
as a probability function. At this stage, we may also suppose that Pr(choice, )

refer to a known quantity. Therefore, we could have

Pr(8, |choice ) =c (5 =6,7); (3-17)
while forall geQ,

Pr(choice, ) = o, (3-18)

In line with formula (3-11), the posterior probability of passenger q choosing
route r, given his/her journey time 5;’35, could be calculated by the formula as

follows:

C 5:§OBS
Pr(choice,, [8,) = a o) (3-19)

M =5 |m)’
Now if we could solve both the components and their mixture weights, each
individual’s probabilistic route choices would be learnt in terms of the route-
choice probabilities that are contingent upon observing his/her journey time. A
set of the choice probabilities for all alternative routes would then provide a
feasible, complete answer to question (I) posted in Section 3.1 (see p.32) and
would also lay a foundation for inferring, rather than determining, each

passenger’s route choice.

To figure out formula (3-19), we shall consider further a parametric equivalent
of formula (3-15). Let ® denote a random vector of parameters for the mixture
component distributions, i.e. @ = (Gl,...,BNR), with 0, Vr e R being specifically
for c,(0). In this way, formula (3-15) is adapted to:

m(S @, ®)=> w.c,(519,). (3-20)

reR
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Note that 0, is also a random vector with its dimension depending upon the total
number of parameters of c (). It could be either a unit vector (in the case that
C,(0) corresponds to a probability distribution with only one parameter) or a

multi-dimensional case otherwise.

3.3.2 Incomplete data

In order for the model (3-20) to fit in a specific case, data is a matter of vital
importance for learning its parameters. We use the following notation below for
a mathematical representation of our available data as well as the posterior

probabilities of individual’s route choices estimator upon the data.

Notation:

n sample size of a given data set; neN,, and n<N,

A" set of desired (DES) data, which includes both of passengers’
route choices and their journey times

r® categorical variable of component-label, indicating the route
choice of passenger ¢; r'” eR

A set of all journey time observations for 0-d (see Figure 3.1)

D, estimate of mixture weight o,

[0) estimate of vector o =(a,..., a)NR)

[0) estimate of vector @ =(0,,.. .,ONR)

0, estimate of vector 0,

() posterior probability (density) function for passengers’ route
choices given their journey times

T posterior probability that g chose route r (given &,"),
estimated from a mixture (MIX) model

I, nx Ng matrix that enumerates all 7, estimated from a

mixture model on A

Consider a random sample of n passengers, where neN_, and n<N,,. Ideally,
we would expect to get a set of data that shows every individual’s journey time
as well as his/her actual chosen route. We can represent the desired data set by

A" ={<5qOBS,r(“)): q=1...,n}, with r' eR being a route-label for ¢, where
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each data point, (5;”35, r(“)>, would correspond to a piece of record showing that
q has actually used the r®-th route, and his/her journey time is 5,°°. As per the
individual route-labels, the full data sample can be directly divided into N sub-
data sets, whereby we would be able to derive an estimate of @, VreR. Also,
for each of the alternative routes, 0, could be learnt as well based on the sub-

data set associated with route r.

In our case, however, since we are using the smart-card data, it only provides us
with a data set of the passengers’ journey times. We may represent this data set
by A={56,”: q=1...,n}. It is hereby referred to as incomplete data due to its
lack of the information on the route-labels {r®,...,r™}, compared to A™. In
this regard, we perceive A to be a sample of journey time observations each
being attached with a hidden route-label (still denoted by r'® vq=1,...,n). As
such, r' turns into a random variable that follows a categorical distribution. It
is noted that this distribution also corresponds to that of ®, on the premise that
all sampled individuals are identical to each other. On this basis, we use a
function, denoted by z(r'®|5), to report each individual’s probabilistic route
choices, or rather, probabilities of his/her route choice, conditional on his/her

journey time. More specifically,

©,¢,(519,)

z(r' =r|5,®,0) = :
m(J | o, O)

(3-21)

As stated in Section 3.2, we are expecting to estimate a set of such posterior

probabilities of every individual facing all alternative routes. For convenience,
MIX . - _

we use 7, " to represent the estimate of Pr(choice, [8,) Vq=1,...,n, VreR,

where the superscript ‘MIX’ stands for ‘mixture model’ and it indicates that the

mixture distribution per se is actually a naive Bayes model10 (cf. Lowd and

Domingos, 2005). Therefore, we could have

MIX C?)rcr (5 = é‘c?BS | 6r)
T = ~)
T mS =5 @, 0)

(3-22)

(see next page)

10 The mixture model here will be used as a basis for further updating of the estimator of each
individual passenger’s posterior probabilities of route choices. The superscript used here
also serves as an identifier that will distinguish the posterior probability estimates of a
mixture model in this chapter from the updated ones in Chapter 5.
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where @=(a,...,@, ) and @:(61,...,§NR), with &, and 8, VreR being the
parameter estimates relating to ¢, (o). Note that

27 =1, (3-23)

reR

Based on the dataset, A, the set of posterior probability estimates can then be

enumerated by II,"™ in the form of a nx N, matrix:

MIX MIX
Tyt Ty,
MIX MIX
7Z' R 7Z'
e 2| 7 N (3-24)
MIX MIX
Top 0 T,

Also, I} would actually serve as the probability measure defined on C*” that
has been defined in Section 3.2 (see definition (3-14), p.40). To gain knowledge

of I,™, our goal now is to seek the estimates, ® and 0.

3.3.3 Model estimation

In this section, the notation listed below is used for a description of the general

estimation procedure of the mixture model parameters.

Notation:
L() likelihood function
AT set of journey time observations, which is produced by K-means
(KMS) clustering and labelled r
ne median (or centroid-value) of A}

a(o;”°)=r function that relates journey time observation &, * to A"

x(*) objective function to be minimised for K-means clustering
o standard deviation of set A;™

o proportion of sub-dataset A in data set A

H, subpopulation mean of Q,

o, subpopulation standard deviation of Q,

1) N, -dimensional vector containing all subpopulation means g,
c N -dimensional vector containing all subpopulation standard

deviations o,
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The Expectation-Maximisation (EM) algorithm introduced by Dempster et al.
(1977) can be employed to estimate the parameters, ® and ®, of the mixture
model as specified by formula (3-20). In practice, as elucidated by Redner and
Walker (1984, p.197), this algorithm effectively provides an iterative procedure
that searches for the most likely - or rather the optimal - values of the unknown
distribution parameters with respect to a data sample. The acquisition of the
estimates is predicated on the maximisation of its likelihood or log-likelihood

function of which the value shall increase at every iteration.

In our case, we let /(®, ®;A) denote the likelihood function of the combined set
of ® and O, given the data set, A. The corresponding log-likelihood function of
the mixture journey time distribution can be represented in the form (3-25) as

follows:
n Ng
log /(m, ©; A) :Zlog[Zwrcr(ézég’Bs |9r)J. (3-25)
g=1 r=1

Note that the iteration of the estimation may stop at either a local or the global

maximum of log-likelihood function above.

Generally, the EM algorithm handles the data sample in accord with the following
steps (cf. McLachlan and Peel, 2000, pp.48-50):

(i) Initialise both ® and @, and label the initial values as ®® and ©,

respectively, which will be entered into the next step.

To be more specific, we shall be considering that ®® = and
0" =@, where the superscript ‘(E)’ on the symbols signifies that
the values are used for step (ii) - referred to as ‘Expectation’ (or
commonly, ‘E-step’).

(ii) For the ‘Expectation’: calculate IT,” according to formula (3-22), with
the data of A, given that ® = ®® and ® = 0™ The calculation result

thus yields a conditional distribution of r'®.

On this basis, the ‘Expectation’ function of the log-likelihood, which is
formulated as (3-26) below, is computed; and it will be maximised in

step (iii) - referred to as ‘Maximisation’ (or commonly, ‘M-step’):

n Ng
> 7w *[logw, +logc, (516,)]. (3-26)
q=1 r=1
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(iii) For ‘Maximisation’: find optimal values of the parameters, labelled

(0",®"), which maximise (or increase the current value of) the
‘Expectation’ function (3-26); and then let (o™ ,®®) be updated with
(O)(M) ’ @(M)) )

(iv) Repeat (ii) and (iii) until the improvement on the value of function
(3-26) is no more than a pre-specified small constant - referred to as a
threshold.

It should be noted that to gain (0™ ,®%™) at step (iii) is in fact to search for
optimal values of (é)l,...,c?)NR,ﬁl, ...,ﬁNR). For this purpose, we shall need to take
the derivatives of function (3-25) with respect to each of the parameters, and set
0 _

them to equal 0, respectively. By doing so, we would have o™ = (a",..., )

with
n MNB
(M) Zq:l ﬂqf

o == T (3-27)
n

On the other hand, however, ®" =(0/",...,8y") would be derived on the

understanding that the distributional form of o, is available.

Besides, it has been demonstrated by Seidel et al. (2000) that specifications for
the initialiser of the model parameters for step (i), as well as the stopping criteria
regarding step (iv), might exert some influence on the model estimation. A
decent set of initial values as well as a threshold that terminates the iterations
could play a sensitive role in securing credible, practical estimates via the general

EM algorithm described above.

There are a number of studies (e.g. McLachlan, 1988; Melnykov and Melnykov,
2012; as well as Blomer and Bujna, 2013) having been devoted to the efforts to
test different initialising strategies. In most cases, the K-means!! clustering
method (cf. Forgy, 1965; and MacQueen, 1967) is well-qualified to afford an
acceptable starting point. The symbol ‘K’ refers literally to the total number of
clusters into which a data set shall be categorised. In our case, K is equal to the
size of route-choice set, i.e. K=N;; and all the journey time observations,
6.%%,...,6°%, should be divided into K subsets. As for the term ‘means’, it may

refer to a vector of K centroid-values, which we represent by (7"*,...,77."),

111t is also referred to as the ‘k-means’ in many literatures, .g. MacQueen (1967).
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with 7" denoting the centroid-value of a sub-dataset denoted by A™. In this
way, the superscript, ‘KMS’, indicates that both the centroid-value and the sub-
dataset are generated based on the K-means (KMS).

In general, we use the K-means clustering method to include 5;’35 (from A)into

S

A" by minimising the total ‘distances’ from 6,° Vq=1,...,n to " over all

the N; sub-datasets. In this thesis, we measure this ‘distance’ by the absolute
difference between each 5;’35 and the median based on the corresponding sub-

dataset. Within A, each of journey time observations is supposed to be tightly

KMS
r

close to 7, , and is as far from the observations of other sub-datasets as

possible. The objective function to be minimised is:

(@(©).7i5) = 2| 5l (3-28)
=

where a(o) acts as a classifier, namely, a function that iteratively (re-)labels an

observed journey time as belonging to one of the sub-datasets, A{"",...,A("”,

until function (3-28) reaches a local (or, though not necessarily, a global)

minimum. More specifically, given that a(é = 5;”35) =r, the observation, 5;’35, is

classified as an element in A’**. Hereby the method of K-means clustering may

provide a rudimentary (but sensible) partition of the sample data into Ng

mutually exclusive sub-datasets. So, with A’ Vr e R, in addition to 7™, initial
values for parameters such as the standard deviation (denoted by ;™ VreR)
could also be obtained in the light of specific mixture models. Moreover, an initial

value for @, (denoted by @™

) could be gained by calculating the proportion of
all observations clustered in A among all those included in A. As such, this
method is similar to the EM algorithm but confined to deterministic clustering
with the data (cf. Bishop, 2006, pp.443-444).

Equally important to setting initial values is the selection of the threshold value.
This would mainly be related to the speed of convergence of the algorithm, and
determine whether the iteration should proceed or stop. As Karlis and Xekalaki
(2003) pointed out, a smaller value of the threshold affords a more demanding
stopping condition of the iterative computation, and hopefully would be more
likely to make for the global maximum likelihood; but it may also cause a slower
convergence of the estimates, or even worse, a failure of convergence when a
predefined maximum number of the iterations for estimation has been reached.

As a matter of fact, it must be noted that the distribution type of the components



-52-

and hence the mixture is not known to us in our case. We should avoid blindly
pursuing the global maximum of the log-likelihood function, because doing so
may potentially lead to the problem of overfitting (see Guyon and Elisseeff, 2003;
and Guyon et al., 2010). That is to say, a model being estimated might be almost
perfectly fit for a data sample, yet the estimates of the model parameters might
not be explicable. In that sense, we may test a range of threshold values for model
estimation, so as to locate the optimal values that practically imitate the actuality
given the data available, regardless of whether the estimated results refer to a

local or the global optimisation.

Now that for each of the alternative routes, we know nothing about its journey
time distribution c, (J), an immediate thought (in most practical applications) is
to assume that each of the route-specific journey time variables §, may be
following some common statistical distribution, such as a Gaussian distribution
(also known as normal distribution) or a log-normal distribution. Suppose, for
example, that ¢ (0]0,) is a PDF of a Gaussian distribution that we could
represent by N(y,,o,). That is to say, 6, ~N(x,,0,) VreR, with x4 and o,
denoting, respectively, the mean and the standard deviation of the sub-
population, Q, . In that case, for each r e R, &, is a Gaussian (or normal) random
variable; and 0, corresponds to a vector, (4,,o,). The mixture distribution thus
formed is a Gaussian mixture distribution, with its PDF being parameterised by
o and @ =(p,0), where p=(z,...,14y ) and 6=(o;,...,0 ). Accordingly, we
could adapt function (3-20) for a Gaussian mixture as follows:

m(&|,pn,6) = @ (5| 4, 0,). (3-29)

reR

The adaptation to any other probability distributions, e.g. the aforementioned
log-normal distribution, would do likewise with their own specific distribution

parameters.

3.4 Inference of passenger traffic distribution

By applying the EM algorithm to cluster an available data set of journey time
observations, A={5,"": q=1,...,n} (referring to Section 3.3.2), II;"* could be
acquired through the acquisition of (&, ®). As explained in Section 3.3.1, @,

reflects the proportion of passenger-traffic on route r. Besides this aggregate
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measure, we are also interested in trying to infer each individual’s real route
choice from IT;™* (see question (II) posed in Section 3.1, p.32), and attempting

to find out route-specific sub-datasets of the smart-card data.

The notation used to illuminate the methods of inference is listed below.

Notation:

40 assignment function used for the naive inference of each
passenger’s route choice, based on mixture model

A set of journey time data of passengers who chose r, based on
the naive inference (INE )

n e number of passengers using r, based on the naive inference

" proportion of passengers using route r, according to the naive
inference

A, random variable for passenger ¢, which follows the standard
uniform variable; Aq ~U(0,1)

A vector of all A, for a given data set of journey times

A4 generated (real-valued) number of A,

40 assignment function used for the effective inference of each
passenger’s route choice, based on mixture model

A set of journey time data of passengers using r, based on the
effective inference (INF) from a mixture model

n- number of passengers using r, based on the effective inference

o proportion of passengers using route r, according to the

effective inference

3.4.1 Naive inference

Recall the initial assumption that has been made on each individual’s possible
route choices from Section 3.2 (see the conditions formulated by (3-10), p.39).
If z(r' =i |5,7°) = z(r® = j |6,°°) Vi, jeR, then it might be relatively more
likely that g chose the i-th route. Following this logic, the simplest inference
could be drawn that route i is the actual route choice made by . Accordingly,
we define an assignment function £'(-) by setting

£(q)=argmax . (3-30)

qr
reR
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The function, £(q), as defined by equation (3-30), labels passenger q (hence
his/her journey time observation ¢,"") as being from route r, given the highest
7, among all r € R. By doing so, a rough estimate of every individual’s actual
route choice could be learnt; and a total of N, sub-datasets of A are also sorted
out accordingly, with each being related to one of the alternative routes. We let
A" denote the r-th sub-dataset according to such inference, and it could be

expressed as follows:

A =87 £ (a) ={r3). (3-31)

On this basis, the sum of passengers in A, who chose route r, should then be

equal to the size of A", which we represent by n;". That is,

e —

r

AINB

r

: (3-32)

Furthermore, denote by @, the proportion of passenger-traffic shared by

route r to the entire passenger traffic. It could thus be estimated as follows:

INF,

o =" (3-33)
n

Note that in fact this is a marginal inference (cf. Leonard et al., 1989) such the
estimates derived from it will be referred to here as a naive Bayesian inference.
This may be more advisable in a situation that the observations are entirely

distinguishable or the true sub-datasets are mostly non-overlapping.

3.4.2 Effective inference

It should again be noted that any route r (or say the r* presented in condition
(3-10), see Section 3.2, p.39), albeit with the highest posterior choice probability
among all the alternatives, may or may not be the actual choice of the passenger
g. On that account, we further allow for such uncertainty for each individual.

In addition to the naive inference above, some unknown/random factor shall be

MNB
qr

priority to r of which the posterior estimate is relatively higher. Thus, we draw

taken into consideration for the comparisons of 7.~ Vr € R; while still, we give

support from the order statistics of ﬂé/[lNB,...,ﬂéﬁf, which we represent by
Ty -+ Fqny» With 7y ) Vr € R being the r-th smallest estimate of 7,”. What

ismore is that we bring in a n -dimensional random vector, denoted by A, where
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A=(A,...,A,), with Aq following the standard uniform distribution - namely,
A, ~U(0,1) Vg=1,...,n.For each g within the data sample, a random number
- or rather, a pseudo-random number, denoted by 4, is generated from the unit
interval, wherein all the values, denoted by A4,,..

0< 4, <1 (cf. Riley and Goucher, 2009, pp.131-132).

are equally likely, and

n )

We hereby define another assignment function, which we represent by £(q), and

it is expressed as follows:

i if 4, <7y, then £(q) ={r: r=N.}, which corresponds to ¢(q) (see
function (3-30));

ii.  otherwise, for j=0,...,N, -1, if Z (i) Toiy <Aq < Z. N Toiy »
then £(q) ={r: r=N; - j}.

Similar to the naive inference (cf. formula (3-31), see previous page), we now use

A" torepresent the sub-data set relating to route r based on £(q); and so then

A ={870: Egq)=1{r. (3-34)

" and @™ denote, respectively, the total number of

Likewise, we let n,
passengers in A who chose route r and the estimated proportion of passenger-

traffic shared by r.In contrast to formulas (3-32) and (3-33) (see previous page),

we have
N =AM, (3-35)
and hence
o = ﬁ (3-36)
n

which is believed to afford a more robust estimate than ;"™ at the aggregate

level.

3.5 Interpretation and validation of mixture model estimates

So far, all the estimates derived from the mixture model have actually been based
on the posterior probability distribution of the hidden route-labels, r¥ Vvq.
According to the sub-dataset of journey time data that are inferred for each route

r, the real sub-dataset might be learnt from its corresponding component
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distribution c,(J), with some essential statistical features, e.g. the mean journey
time. Notwithstanding this, however, there is a lack of evidence of a one-to-one
correspondence between an estimated component of the mixture and an
alternative route in the real world. This factual circumstance could not be
immediately determined. In other words, it is not yet known which one of the
components (labelled r ) mirrors the journey time distribution of which route in
reality, nor is it confirmed if the estimates per se are credible. As such, the
implementation of the finite mixture models is a process of an ‘unsupervised
classification’ (also known as ‘unsupervised learning’), which detects and
attempts to reveal latent categories of the observational data (cf. Bousquetet al.,
2004, pp.77-112). Besides, as stated by James et al. (2013, p.374), the estimated
results are in fact difficult to evaluate - not just because of the independence of
the data, but also because of unavailability of a benchmark for validation. To

tackle these issues, as rules of thumb, it would be necessary to

(a) identify comparable features between the estimated components from

the mixture model and the routes in the real world; and

(b) ponder how to make a judgement about those comparable features.

In this section, we propound some general criteria for the assessment of

applicability of the mixture model in our case.

3.5.1 Expectation of journey time for a given pair of O-D

Following the two principles outlined above, the first thought upon comparable
features is the mean journey time. This is because, on the one hand, the mixture
model under discussion is examining the probability distributions of journey
time between a given pair of O-D, wherein the mean value plays an essential role.
We would also expect there to be differences among the mean journey times of
the different routes, whereby the component distributions of the alternatives

could be distinguished from one another in terms of their central locations.

On the other hand, in practice, it would be possible for us to calculate an expected
journey time for each alternative route completely independently of the mixture
model. In that regard, the following notation (see next page) is employed to

formulate the computation of the route-specific journey time.



-57 -

Notation:

T time-stamp at which passengers pass through a ticket gate to
enter 0, referred to as ‘entry time’ (ENT )

I’ transit line for the first leg of a single journey

t'y access (ACC) walking time from a gateline to the |’-platform at o

Tio time of passengers’ arrival (ARR) on a |’-platform at o

ty waiting time to board a |'’-train for departure (WED) from the
I’-platform at o

T time of passengers’ departure (DEP) from the I’-platform at o

Tf time of departure (dep) of a I'-train from the I’-platform at o

S interchange station between 0 and d

.o on-board travel (OBT) time in a I'-train running from 0 to s

o) running (run) time of a I'-train, from 0 to s

T time of passengers’ arrival (ARR ) on the I’-platform at s

1" transit line for the second leg of a single journey

thiis walking time to transfer from the I’-platform to the I"-platform at
interchange (TIC) station S

Ty time of passengers’ arrival (ARR ) on the |"-platform at d

Ty time of passengers’ departure (DEP) from the |"-platform at s

e a1 on-board travel (OBT) time in a |”-train running from s to d

T time of departure (dep) of |I"-train from the |"-platform at s

i running (run) time of a I"-train, from s to d

th's waiting time to board a I"-train for departure from the
I"-platform at interchange (WIC) station s

thy egress (EGR) time from the |"-platform to a gateline at d

T time-stamp at which passengers pass through a ticket gate to exit
from d, referred to as ‘exit time’ (EXT)

h label of travel route, referred to as ‘route-label’

t. (4, v) journey time of passengers travelling by h, given that he/she
boards the ¢-th arriving train at 0 (and, if h involves
interchange, the w-th arriving train at s)

PSG

walking speed on level /ramp passageways (PSG)

UPS

walking speed of going upstairs (UPS)

(Continued)
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Notation: (Continued.)

DNS

y walking speed of going downstairs (DNS)
Bse escalators/lifts (ESC) speed

y vector that contains passengers’ walking/moving speeds on each
type of pathways

u underground station (representing 0, d or s)

To expected walking (WLK) time at u along h

X © total length of level/ramp passageways (PSG)at U on h

X © total run of stairs for going to upper (UPS) levels at u on h

X total run of stairs for going down (DNS) to lower levels at u on h

X © total run of escalators/lifts (ESC) at u on h

Xuh vector that contains reciprocals of distances for each type of
pathways at u on h;

@ number of attempts to successfully board a train at 0

7% number of attempts to successfully board a train at s

o expected average journey time of travelling by h, serving as a
reference (REF ) value for interpreting estimates from a mixture
model

A indicator that equals one if h is a direct service, and zero if it is an
indirect service

u(v,) function that indicates whether a station on h is s or d

[(v,) function that indicates whether a transit line on h is |" or |”

G, estimate of a sample standard deviation of journey time of h

6" estimate of a standard error of the mean journey time of h

A() Student's #-value with certain degrees of freedom and a given

probability level *

We let T*™" denote the time-stamp at which passengers pass through a ticket
gate of the origin station 0. This information is easily obtainable from smart-
card data. Denote by |’ a transit line the passengers decide to take; and further
to this, let t," and T,”;" denote, respectively, the passengers’ walking time from
the gateline to a platform for | and their arrival time on that platform. Then we

can have: (see next page)
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ARR __ ENT ACC
T,,'O =T +4 -

Furthermore, we let t,"” and T,’;" denote, respectively, the passengers’ waiting

time to board a train of I’ and their departure time with |I" from 0. Apparently,

G =T T (3-37)

I'’'o

Assuming that all trains on the underground network are running on schedule,
thus, in accordance with the timetable, T,”;" is equal to the scheduled departure

time of the train, which we represent by T,’;". In that way,

DEP _ = dep,
TI’,o _TI',o )

and
WED __ T dep T ARR
t, =T o =T

If line |I" serves an indirect route, in which case a transfer is necessary at an
interchange station. We use the letter s to represent the interchange station, and
let t;}, ; denote the expected on-board travel time on |" between the platforms

of 0 and s. Based on the assumption above, t.}; ; would be equivalent to the

run

corresponding train’s scheduled running time, which we represent by t,'; ;.

That is to say,

tl(?,B[g,s] = tIr',u[z,s] ' (3'38)

Thus, the time of passengers’ arrival at s, denoted by T (" accordingly, is

expected to be calculated as follows:
ARR DEP OBT
Tos =To thps
and also,

d
T =T

1',[0,s] *

Suppose the passengers need to transfer at s from |" to a connecting line,
denoted by |, which links s to the destination station d . We then use )., ; to
represent their transfer/walking time from the platform for |’ (at 0 ) to another
for I” at s. With this information, the time of their arrival on |” -platform, which

is denoted by T,/%%, is expected to be calculated as follows:

I",s ?

T|nA1:R — T ARR + tTIC

I's {17,s’
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Similar to the first journey leg, the expected departure time of the passengers
from s, denoted by T,\", and their on-board travel time between platforms of s

and d, denoted by t.7; ,;, are both assumed to be in line with the service

timetable. Namely,

DEP _ T dep .
T.o =T

1",s
and

tOBT :trun (3_39)

1",[s,d] 1",[s,d] *

where T,'?" and t;7; ;, denote correspondingly the scheduled departure time
and the running time of the train, respectively. On this basis, the passengers’

waiting time to board a train of |” for departure from s, which we represent by

WIC
t s,

is expected to be

tlv"q,Isc — Tliesp _TARR. (3-40)

1",s 7

and the time of the passengers’ arrival on the platform of the destination d,
denoted by T,.'y", can be calculated as follows:
T.?ER = Tl]”j,%P +t|r"tl[r;,d]-
EGR

Moreover, we let t.; denote the passengers’ egress/walking time from the

I!I

platform for |” to a gateline at the destination d . So the time-stamp of their exit,

denoted by T*, is expected to be
TH =T+

Given the fact that the above derivation process is independent from the mixture
model where the letter, r, has been serving as a component-label (i.e. a hidden
route-label), we use another letter, h, to represent each of the alternative routes

in the real world. That is, h acts as a real-world counterpart of r.

The expected journey time of route h, which we represent by t, is identified by

(o,d,s,I",1") . Thus it is straightforwardly calculated as follows:
=t ) e g F s Fhs e T (3-41)

I',[o,s [1",s

and if I' connects 0 and d directly, formula (3-41) would then become

o=ty +t e g T (3-42)
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Note that information about ", t,/}.,; and t:’ could be obtained from either

field surveys or approximate calculation based on existing research findings.

Here we describe a simple method for gaining a practical approximation of their

Y
passengers’ walking on the different types of passageways at any station (cf.

UPS DNS

expected values. Let y=(y™°,y , ¥*°°) denote a vector of speeds of

® and y**° denote the walking speeds of

Section 2.3.1), where y**°, y”*°, y™
passengers moving along level /ramp passages (PSG ), climbing upstairs (UPS),
downstairs (DNS ), and on the stationary escalators/lifts (ESC), respectively.
Then we could represent the layout of each station in terms of the type and
length of its passageways. We use U to represent an underground station. It
represents any station of the origins, destinations or interchanges. For each u,
let x;7°, Xun', X and x;°°, denote the total lengths measured for each type of
passageways of h . Note that the measurement for the stringer lengths of a
stairway/escalator may depend on both the angle and height (see e.g. Davis and
Dutta, 2002); or the total run or the total rise may be measured instead. Thus, a
simple linear expression could be considered to relate all the above-mentioned
factors to passengers’ average walking time along route h at station u. Let this
WLK

average be denoted by 7, , with superscript ‘WLK’ being short for ‘walking

time’. It is specified as follows:
T =Y Xy (3-43)

where X, = (1/x5%,1/x5%,1/x2% 1/ x2°°) It must also be noted that y may vary
between different periods of a day, and should be non-linearly related to the
pedestrian flows in different passageways. For practical purpose, we might only
take consideration of the average values of the speeds for each type of
passageways (see e.g. Daly et al., 1991; as well as Lam and Cheung, 2000) during

given a specific period, such as morning peak, off-peak, evening peak.

Besides, in uncongested conditions, as has been mentioned in Section 2.3.2,
every passenger is assumed to be able to board the first arriving train of a line
they choose when he/she arrives at the platform. Nonetheless, when the train
arrives with carriages being almost fully loaded or overcrowded, there would be
barely room available for extra boarding demand. In that situation, some
passengers may fail, or reject, to board but would rather wait for the next coming
trains; but also their waiting time spent on the platform would increase by, say a

headway according to the timetable. This may happen at either the origin or the
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interchange station, or at both of the stations, especially at the morning/evening
rush hour. As a result of boarding failure, an increase in the total journey time of
individual passengers is foreseeable in light of their whereabouts (e.g. origin

station or interchange) and the number of attempts-to-board they make. In view

WED
1:I’,o,(/ﬁ

board a train at the ¢-th attempt at an origin station; and denote by t.";, the

of this fact, we use to represent passengers’ waiting time to successfully

waiting time for boarding a train on a connecting line at the y-th attempt. Based
on formulas (3-41) and (3-42), the journey time of passengers travelling by h
could be generally specified by

ACC WED OBT TIC WIC OBT EGR
t, (Py) = tl’,o + tl’,o,¢ + tl',[o,u(vh)] +V, '(t[l’,l"],s + tl",s,(// +tl",[s,d] ) + tl(vh),d , (3-44)

where

1, ifhisan indirectroute;
0, ifhisadirectroute;

s, ifv,=1;
u(v,) = .
d, ifv,=0;

and

I, ifv, =0;
I(Vh):

", ifv, =1.

To present a general picture of the average journey time of each alternative

route, we may consider the following four straightforward cases as follows.

[. Fordirect services:

i. passengers get aboard the firstly arriving train after they arrive at
the platform and depart from the origin station, i.e. ¢ =1; and

ii. passengers get on board a train at the second attempt at the origin
station, i.e. ¢ =2;

II. Forindirect services:

i. passengers can always get aboard the firstly arriving train after
they arrive at the platforms of both the origin and the interchange
stations, i.e. ¢=1and v =1;

ii. passengers get aboard a train at the second attempt at the origin
station, and board the firstly arriving train at the interchange
station, i.e. ¢ =2 and y =1; (See next page)
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iii. passengers board the firstly arriving train at the origin station
after they arrive at a platform at the origin station, and get aboard
at the second attempt at the interchange station, i.e. ¢ =1 and
w =2;and

iv. passengers get aboard at the second attempt at both the origin and

the interchange station, i.e. ¢ =2 and y = 2.

Note that the expected journey time of h should be represented by a weighted
average of t.(¢,i) considering the four circumstances stated above (or even
more complex situations). However, those weights for each circumstance are not
known. In a simplistic way of calculation, we consider in this thesis only an

average of t, (¢,) under the different circumstances specified above, that is,

=), (3-45)

=1 y=1

It is hereinafter referred to as the (presumptive) expected journey time of
travelling by h, and considered a prime indicator manifesting differences of
journey time between alternative routes. This t**, together with t, (¢,), will all
be used as reference values for matching a component-label (associated with the
mixture model) to a route-label.

What is more, a confidence interval (CI) for t** at, say, the 95% confidence level

(CL) would be further needed, so as to provide a reference range allowing for
inherent errors in the specification and calculation of t;". In this regard, firstly,
we may perceive each of t,(4,iy) V¢, as an observation of journey time; and
they together form a small sample of four observations. As such, t*" actually
serves as the sample mean, and we could estimate the corresponding sample

standard deviation (denoted by &, ) as

2

G, = \/%iZ[th (bw) -t T . (3-46)
¢=1 y=1

Secondly, we may also perceive each t, (¢,y) itself as a sample mean of an
arbitrary sample of journey times on route h, from which a standard error of the

mean (denoted by 6, ) could be estimated as follows:

6 = O (3-47)
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t."" at a certain CL, it would depend on the size of

For the estimation of a CI for
the available sample size as well as the distribution of the journey time of route
h. For example, suppose the journey time distribution of h is Gaussian, where
the variance or standard deviation of the population is unknown. We shall then

consider t,*" to be a variable of sample mean for the Gaussian subpopulation of

passengers who chose h. As such, (" — u)/&5™ is following a Student's i -
distribution!2 with three degrees of freedom, i.e. (t: — 1)/62™ ~ #(3); on this
basis, the true mean of the Gaussian subpopulation would be likely to be within
the range of t,"" — 67" 4,405 (3) to 1" + 67" Ay 005 (3) , which refers to the CI at the
95% CL (cf. Johnson and Bhattacharyya, 2009, pp.351-358). Note that the CI for
other types of distributions, such as log-normal distribution (e.g. Parkin et al.,
1990) would be different. In this thesis, we assume that the CI derived from

Gaussian population could suffice to provide the reference range for most cases.

A set of criteria are proposed in the following subsection; and details will be

explained with specific case studies in the next chapter.

3.5.2 General principles

The following notation is used to in this section to clarify the proposed some
general principles for the interpretation and validation of the estimation results

obtained from the mixture model.

Notation:

[, estimate of subpopulation mean g,

G, estimate of subpopulation standard deviation o,

GOF indicator of goodness-of-fit between observed and simulated
journey time data

A simulated (SIM) data set of passengers’ journey times, which is
generated from a mixture model (being estimated)

s simulated journey time, with subscript 4 being its index; 4N,

12 we use the symbol, 1, to represent this distribution in order to avoid confusion with the
variables represented by using the letter, t .



-65 -

To have a preliminary review of the model rationality, as a rule of thumb, the first
is to compare the estimate of mean journey time for each mixture component
and t°° for each alternative route. Ideally, as mentioned above, it would be
expected that " Vh would be distinguishable from one another. For each r,
we let 4 and &, denote the (real-valued) estimates of the mean and standard
deviation of journey time, respectively. Ideally, it would also be expected that
fb;..-, fty are distinguishable from one another, and so would be thEF,...,tE‘EF.
Note that differences among derived values from either way may not necessarily
be clearly identifiable. That is to say, in some cases, we may obtain, for example,
t"" and t;*" (Vi, jeR and i # ), which are fairly close or nearly the same. This
might be because in actual fact the attributes of the two routes i and j are
similar in almost every aspect, such as service timetable and common
passageways. In this situation, we would then expect that 6, VreR would
differ. Otherwise, the estimates of the mixture model might imply that the
passenger-traffic are approximately equally distributed among the alternative
routes, in the light of @, .

Further to the above consideration, . would also be expected to approximate a
certain t.** among all the alternative routes, whereby we may pre-match the
component-label r to a route labelled h. For any of the pre-matched pair, there
is bound to be a difference in the estimates. Yet the extent to which the difference
might be acceptable should be on a case-by-case basis. A CI for t;** at the 95% CL
could be estimated and used further to provide a possible range of the mean
journey time. As 6, is necessary for the calculation (cf. formulas (3-46) and
(3-47)), how reliable the 6™ is, is arguable (cf. Nagele, 2003). Meanwhile, we
should also check z, with t, (¢, ) separately under each of the four specified
circumstances. Extreme cases, €.g. ¢, v > 2, may also be taken into account,
especially for rush-hour traffic, as this could be a case such that a fairly large
difference between a pre-matched pair of component-label, r, and a route-label,

h, would be interpreted. Otherwise, we shall consider that the model is not

suitable.

Furthermore, we should look at the proportions of passenger-flow between the
effective inference @, from the model and the actual usage of r. In this respect,
information about the latter may be based on earlier surveys. Likewise, in an
ideal situation, it would be expected that both results would roughly equal each

other. This comparison may largely be affected by the accuracy of the latter, the
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model per se notwithstanding, especially when the survey sample is quite small.
If there appear to be considerable gaps between the sets of values, a larger
survey sample should be required, and/or @,"° (based on the naive inference),
could be further checked. Otherwise, we shall test some other parametric

distribution as the components, or abandon the test model.

A final issue that needs to be addressed is selection from among all acceptable
models. Suppose several different mixture models are tested and all of them can
meet the criteria set out above. In that case, we shall not arbitrarily reject any of
the test models, but should choose the one that provides a relatively better fit to
the sample data of journey times. With regard to the selection of a Bayesian
model, usually, penalised-likelihood information criteria are used as a reference
(Dziak et al., 2012), such as Akaike's information criterion (AIC) as well as
Bayesian information criterion (BIC). Both AIC and BIC evaluate a model’s
goodness of fit; and for each of the two criterion, the lower value is yielded for a
fitted model, the better the model should be. Their pros and cons have been
discussed in a wide range of studies (e.g. Kuha, 2004). However, there may be
potential for concern about inconsistency of data scale. In some circumstances,
given the limitation of the software package for estimating the mixture models,3
we may change the scale of the original data. For example, we may fit a Gaussian
distribution to natural logarithms of log-normal data, as the logarithm of a log-
normal variable is normally distributed (Mood et al., 1974, pp.540-541). In that
case, the scales of AIC/BIC differ between mixture models fitted for different

scaled data set, and thus cannot be compared between the different test models.

On that account, we use the measure of normalised root mean square error as an
indicator of goodness of fit of a mixture model, which we represent by gof . It
measures normalised differences between the sample data set (still denoted by
A={5,": q=1,...,n}; see Section 3.3.2) and a set of simulated data of the same
size (Farmer and Sidorowich, 1987). We use A®™ to represent the simulated
data set, which should be generated from the test mixture model. In this case, it
can be further expressed in the form of a set, A°™" = é;SIM : ¢=1,...,n}, where

5:”4 denotes a single simulated data point, with ¢4 being its index. Let both A

13 For example, for our case studies in Chapter 4, the software package is available only for
Gaussian mixture model.
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and A°™ be treated as n-dimensional vectors, gof is computed as follows (cf.
Chan and Cannon, 2002):

(3-48)

It must be noted that, for computation of the numerator of formula (3-48), both
the sampled journey time data and the simulated data should be sorted in an
ascending order. We use the order statistics for both the data sets, which we
could represent by d;,°,...,6,,  (for the sampled data) and ¢;,",...,5,,," (for the
simulated data), respectively, with the subscript, (q), indicating that the statistic
is the g-th smallest value. In that way, formula (3-48) is equivalent to formula

(3-49) as follows:

oy
\/2(50135 725(;)35)2

q—l

gof = (3-49)

Then we shall need to compare the values of gof between all the test models;
and the mixture model with a lower gof should be considered a better fit. Since
A*™ is randomly generated given a candidate model, this comparison would
need to be repeated a number of times, from which the model having the higher

rate of gaining a better fit (i.e. a lower value of gof ) would be preferable.

3.6 Summary and conclusions

Relying on Bayes’ theorem, this chapter has formulated and discussed a
probabilistic framework for the use of the finite mixture model to obtain
passengers’ route choices between a pair of 0-D stations on the underground
system. It has also proposed a set of complementary approaches to evaluate the
model applicability in practical use. The model allows for each individual’s route
choice being learnt up to their choice probabilities for all alternative routes. It
attempts to seek out passengers’ route-choice probabilities in a situation where
the passenger’s actual route choice is not known. Such choice probabilities are,

in essence, posterior probabilities estimated on condition that the passengers’
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journey time is observed (cf. Appendix A). The estimates are fundamentally
reliant on observational data of the passengers’ journey times being modelled by
finite mixture distributions. Proportions of the passenger traffic flowing on
different alternative routes could also be estimated accordingly, given the O-D
travel demand. The inferences of traffic distributions are validated by comparing
them to survey findings, which in turn provides corroborative evidence

supporting the estimates of the individuals’ probabilistic route choices.

In practice, there are several issues of applying the mixture model for practical
use. Firstly, it should be noted that one aspect of this general mathematical
problem is determining the optimal number of mixture components to fit. In that
case, the number of the components is treated as a variable and shall be
estimated together with the model parameters. However, in the scope of this
thesis, we will consider only the situation that this number is a given constant.
Also note that the specification of the model (including the number of alternative
routes) must ensure that the estimated components would be explicable. In
other words, whether the estimated mixture and the components are meaningful
will depend on whether we are able to interpret them as being a mixture or
components. For practical application, we could either refer to the existing data
(e.g. survey data) or draw support from a choice-set generation model, in order
to identify possible alternative routes hence an appropriate number of the

mixture components.

Secondly, the distributional form of the component PDFs will have to be pre-
specified for any mixture model. This prior knowledge can be of significant
importance for the application of the mixture model, particularly about the types
of journey time distributions, and the passenger-traffic proportion, of each
alternative route. Still, characteristics of the journey time distribution for each of
the alternative routes are not really known, unless a subset of route-specific
journey time observations is available. In practical application, a range of
different standard mixture distributions can be considered. Also, note that the
journey times of different alternative routes on the same O-D may be following
different types of statistical distribution, and more advanced mixture models can

be studied for future research.

Thirdly, all the alternative routes (hence the universal route-choice set) must be

identified. This thesis has only assumed every individual passenger would take
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into account the same choice set, i.e. the universal set, when starting a journey at
the origin station. However, as has been also discussed in Section 3.2, different
passengers travelling between the same O-D, might have their own different
perceived route-choice sets. This refers to two aspects. For one thing, the choice
sets may differ among those passengers, because different people might take into
account different alternative routes and carry out different choice tasks. For
another, the alternatives encompassed in a choice set may not be equally
perceived by an individual in terms of their own preferences and different
attributes of the alternative routes. Such attributes involve a variety of factors
influencing passengers’ travel decisions, including systematic variables (e.g.
service frequency, walking distance for interchange), individual perceptions to
over-crowding and seat availability, provision of real-time information, and
other uncertainties, etc. Take a two-alternative case, for instance, while one route
may be more likely to be used due to e.g. shorter travel time, the other is
supposed to have relatively less chance of being selected. Therefore, the
probability that an alternative route is chosen will also depend on to which
choice set it belongs. Not all the alternatives would be simultaneously preferred
by every passenger, especially when more alternatives become available. Then a
challenge will be on how to explicitly specify or identify each individual’s

perceived choice set.

Fourthly, as emphasised in previous sections, the journey time variability, hence
journey time distributions, over longer periods is uncertain. In this respect, a
simulation-based transit assignment model may be useful for the estimation of

the distribution of journey times.

Lastly, the context of the application of the mixture model has been confined in
this thesis to the underground system only. Nevertheless, this method could be
easily adapted to other transport systems, such as a road network and even a
multi-modal transpiration system, provided that the essential data is accessible
(cf. Section 4.2; see also Figure 1.1, p.5). For example, to estimate drivers’ route
choices on a detector/monitor-equipped road network, a mixture distribution of
travel times could be specified for a given pair of monitoring points. This would
rely largely on the corresponding data of the timestamps at which each car
passes the monitors. In a multi-modal context, some travellers may transfer from
one mode to another, or even use more modes to make a single trip between a

given pair of O-D points. If information about their interchanges between the
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different modes is not available, we may also make use of the mixture model to
estimate the ridership share on each mode based on the modelling of the O-D

travel times.
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Chapter 4
Application of mixture models of route choices: case
studies on the London Underground

4.1 Introduction

This chapter presents a set of case studies on the London Underground (LU, also
commonly known as the Tube) system. The LU provides us with a massive and
well-developed transit network under the management of Transport for London
(TfL)?1; and the full network is shown in Appendix B, which is abridged from the
original standard Tube map (Transport for London, 2013b).

In accordance with the zonal fare scheme? adopted by TfL, the rail network
(including the LU, DLR, LO and National Rail services; see also Footnote 1) is
carved out into eleven fare zones. A central zone (Zone-1) is based in the centre
of London, which is surrounded by five concentric ring-zones (ranging from
Zone-2 to Zone-6) radiating outward one by one. In addition, there exist three
ancillary zones (Zone-7 to Zone-9) that are positioned to the northwest central
London, plus 2 further zones (Watford Junction and Grays). Unlike buses and
trams where flat fare regime is adopted, fare charged on using the rail services

mostly depends on how many zones a passenger travels through.

In this context, the scope of the case studies was focused only within Zone-1 of
the LU network. This area is illustrated in Figure 4.1 (see next page), within

which flat fare applies.

1 As an integrated part of the local government, TfL undertakes responsibility for the transport
system and its services across the Greater London area; and takes charge of the
management and operations for multifarious public transport services. It involves a variety
of transport modes including London Buses (Bus), LU, Dockland Light Railway (DLR),
London Overground (LO), London Tramlink (Tram), London River Services (LRS), and some
other customised services such as Dial-a-Ride particularly for disabled people, etc.

2 Service fare on the LU is calculated on the basis of a zonal system, that is, a passenger would be
charged a certain amount of fare according to the Zones in which his/her journey started
and ended.



2
King’s Cross

St. Pancras
i Edgware Great ) =
Paddington== —Re_ad—'f‘ Marylebone == Baker Portland Euston @ -I.'
\ Py Street  Street & / D |
=== N et \‘)'-'»: Hoxton {3}
v
Ed Warren Street () Euston () Old street ==
Eware Square
Road ; Farringdon )
Regent's Park > = Liverpool Shoreditch &
Bayswater Russell Stree High Street &
Square Barbican @ 1 @) |
Notting = Lancaster  Bond Chancery Moorgate = : i)
Hill Gate Gate Street Lane

Tottenham
Court Road

Aldgate o
Queensway Marble ! East 4

Arch

Covent Garden

High Street Green Park
Kensington ,3)

Leicester Square

Hyde Park Corner Piccadilly

T# Cannon Street

i ) Circus Monument ;
Knightsbridge Mansion House < Hill 9 T
==Charing ® 2= Fenchurch Street G°‘:’er
Gloucester <& 2= Blackfriars N @ ELEWaY:
= Road St.James's @ y River Thames
Elt) Park //*
\¢ 4
¥ : () \ g
Earl's South gloane Westmlns::ﬁenr Embankment <= / = London
i uare # —
Court Kensington q Bridge
— L - X B | ee— Bakerloo
O T Waterloo {5} — Central
- = Circle
é) — District
Tooooooexxs District open weekends, public
Pimlico Southwark holidays and some Olympia events
—————— Hammersmith & City
— Jubilee
L Lambeth Borough ——  Metropolitan
North — Northern
// —— Piccadilly
= —— V/\CtOr A
. Waterloo & City
DLR
Valg:lall Elephant & Castle == R Y
g4 w7 (W]

Figure 4.1 Tube map for Zone-1, abridged from the original standard Tube map (© 2013 Transport for London).

_ZL_



-73 -

The main aims of conducting these case studies are (a) to demonstrate the
application of the mixture models discussed in Chapter 3; as well as (b) to test
the model applicability, namely, in what situation and to what extent the mixture
models could be suitable for understanding passengers’ route choices. In
addition, a secondary objective of this chapter is to reveal what sorts of
information the smart-card data may contain, as well as the role that it would

potentially play for further research.

The rest of this chapter is arranged as follows. Section 4.2 describes the data
that will be used for applying the mixture models. In Section 4.3, considering a
range of network-scales, case studies about the application of mixture models
are looking at different O-D pairs with two or more alternative routes. A

summary of findings is presented in Section 4.4.

4.2 Data description

4.2.1 The Oyster-card data

Individual passengers’ journey times is without doubt the most important data
for applying mixture models, particularly for estimating the model parameters.
Passengers’ journey records captured via Oyster smart-card system (hereafter
referred to as Oyster) on the LU network is the only source of the journey time

data used in this thesis.

The Oyster system implemented within the Greater London area and managed
by TfL, is one of the most successful applications of AFC systems. Due to
widespread usage of the smart-card, named as Oyster card, more than 80% of
journeys across the TfL network are being paid via the Oyster (cf. Transport for
London, 2012), taking advantage of its discounts in comparison to traditional
paper tickets. Such a high market share sufficiently warrants the potential of the
Oyster card data (hereafter referred to as Oyster data) for measuring various
aspects of the quality of transit service, and being an effective data source for
statistical analyses of exploring and revealing travel patterns on the TfL network.
The Oyster data is collected automatically as the Oyster card being touched on a
card reader. Miscellaneous information is then generated and appropriately

stored in separate data subsets. They gather both aggregated statistical data (e.g.
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the count of entries and exits at each station, and the number of journeys
grouped by different transport modes, time periods, stations and ticket types)
and, on the individual level, detailed (but anonymised) travel history of all Oyster
card users (hereafter referred to as Oyster user) and the fare payment
information. In addition, each of Oyster card users’ journeys is presented
seriatim as per transaction in the data set of travel history, which is mainly

targeted in our following analysis.

Similar to many other AFC systems, the Oyster scheme records timestamps of
every individual Oyster user’s touch-in and a following touch-out, respectively,
along with identities of the corresponding stations (cf. Chapter 2). This process
corresponds to a single journey under the scope of this thesis, whereof the
gateline-to-gateline journey time is referred to by Chan (2007) as Oyster journey
time, which we represent by OJT and treat as a random variable. Clearly, OJT

is equivalent to the previously defined journey time variable, ¢, thatis discussed
in the previous chapter. That is to say, for any O-D pair, which is connected by
multiple alternative routes, it is believed that a sample of OJT observations (i.e.
real-valued Oyster journey times) collected from all passengers (during a given
period) would be following a mixture distribution. Still, we use T*" and T** to
denote, respectively, the timestamps of any Oyster user’s entry and exit logged
by the Oyster system, and treat them as random variables (cf. Section 3.5.1).

Accordingly, OJT could be further represented as follows:

OJT =T T, (4-1)

which provides a straightforward calculation of the Oyster users’ journey times.
For convenience, we represent an observation of OJT by OJT“*°, with the
superscript ‘ OBS’ being short for ‘observed value’ (or ‘observation’). Also,
OJT** of an Oyster user is equivalent to &,"°, which represents a journey time
observation of a passenger labelled q (cf. Chapter 3). It must be noted that
because of system constraints, all recorded timestamps of entry and exit are only
accurate to minute, and so is the computed OJT°*® (Chan, 2007). The Oyster
system omits the time of seconds but rounds the timestamps to the nearest
minute that is less than or equal to the actual clock time. This thus results in an
error of up to 59 seconds (or —59 seconds) in the calculation of OJT “*°. As such,
this error could be regarded as purely random (e.g. a random variable following

a uniform distribution over the interval of [-59,59] in seconds). In this thesis,
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however, only the computed OJT“*° is taken into account. In line with the
premise stated before (see Section 3.2), each count of the journey records in the

Oyster data is associated with only one OJT °*°.

As the main data source for this study, a processed data set that reveals the
distributions of OJT**° was provided by TfL and filed in the format of a
combination of origin, destination, date and time-band. Moreover, the data set

was sorted into four time-bands, as specified in Table 4.1 below.

Table 4.1 Time-bands set by TfL

Time-band applying to an OJT °*°, given T™" falling into the period:

AM Peak between 07:00 and 10:00 (a.m.) on a weekday (Monday - Friday)
PM Peak between 16:00 and 19:00 on a weekday (Monday - Friday)
Off-Peak of any time during a weekday other than AM Peak and PM Peak
Weekend of any time during Saturday and Sunday, and also bank holiday

The journey time distribution for each O-D is calculated in 99 percentiles each
representing 1% of Oyster users travelling from the given origin to destination
during a specified time period (date and time-band). It starts with the fastest 1%
travellers followed by the second fastest and so on, and goes up to 99% in
ascending order of recorded Oyster journey times of all complete Oyster
journeys. The journey counts by time-band are given as well. Presumably, those
OJT °*° that are greater than 99th-percentile records for each time period are
considered as outliers. By this, data for every combination of date and time-band
shapes a cumulative distribution of OJT in that period; whereby the percent
distribution is also calculated. However, those OJT°*° whose values are not
exceeding the upper outer fence, i.e. three times interquartile range (IQR) more
than the 75th quartile, would be considered to be valid entries (cf. Frigge et al.,
1989) for estimating the mixture models. Because, above that level, the data
volatility is such that any observations are supposed to be uncorrelated with the
provided transit services, hence treated as outliers. Also note that although OJT

should be taken for a continuous variable, it can only take discrete values in
minutes due to constraint of the Oyster system. Empirical distributions could be

acquired from observed values that fall into minute-blocks.
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In addition, supplementary information that is independent of the OJT °*° data
would also be indispensable to proceed to validate the results being estimated
from the mixture models. Above all, knowledge of the route-specific average
journey times (i.e. tr"" VheR), which is clearly not affected by the mixture
model (cf. Section 3.5.1), would afford underlying evidence to relate a mixture
component to an alternative route in real life. In this respect, several different
sources have been also available to provide relevant information, presented in

the following subsections.

4.2.2 Data for computation of route average journey time

A database established from the ‘Access, Egress and Interchange’ (AEI) survey
on the LU system gives simple random samples of individual travellers’ walking
time on pre-determined pedestrian paths within the LU stations. From this,
expected values of t;", t.; and t,,, ; (defined in Section 3.5.1) for each of the
identified alternative route can be obtained. Note that there could possibly be
several alternative passages for access, egress as well as interchange at some of
the LU stations, though, only one pre-specified passage, as the mostly used
pedestrian path, for each of station had been timed in the AEI survey. In that case,
an online database, called Direct Enquiries! (DE), providing information about

all available passages within each of the LU stations, will also be utilised to adjust

the data of average walking times from the AEI survey (see formula (3-43), p.61).

The third data source sustaining the computation of t, (¢, ) is the timetable of
the LU lines services, which is available for all passengers. It provides the

scheduled departure times, Tlfip and T.2°?, of each run of the transit lines, as well

I"s »

as their platform-to-platform running times, 7, ; and t." ;. Therewith t"

and t.’; are also derived (from formulas (3-37) to (3-42), pp.59-60), whereby

.S

t“" VYheR could be derived according to definition given by formula (3-44)
(see p.62).

1 Available online at http://www.directenquiries.com/londonunderground.aspx; last accessed
on 30 September 2014.
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4.2.3 Data from Rolling Origin and Destination Survey

We also cross-validate the empirical route-choice set of each of the O-D networks
with the feedbacks on the alternative routes via Rolling Origin and Destination
Survey (RODS)? (up till 2010). The RODS is an annual project, having been
conducted by TfL since 1998. From this database, we may learn information
about each respondent’s actual travel route, including the stations at which
his/her journey started and ended, where he/she made an interchange, and also
some basic socio-demographic data, including such as age and purpose of the

journey (cf. Guo and Wilson, 2011).

According to TfL, this programme looks into the travel patterns on weekdays
only, when the system is operating normally; and any undesirable actions (e.g.
long-term closures) are not covered. Therefore, between a given O-D pair, what,
or which, routes most passengers would commonly use for day-to-day commute
could be learnt. What's more, the sum totals of the respondents choosing each of
the alternative routes are counted as well, whereby proportions of passenger-

traffic on each route can be roughly obtained from the relative frequency.

We let n°” and @ " denote the count and the percentage of all respondents
who made their journeys by using route r, respectively. It must be pointed out
that n’®” and " are counted on the rolling twelve-year basis; and thus, they

may not represent the true usage of r. Notwithstanding, »°° would still serve

r

as a comparatively good reference for us to assess the estimates from the mixture

models in our case.

4.3 Case studies on the London Underground

This section elaborates on the manipulation of specific case studies with the data
described above to demonstrate the application of the method elaborated in

Chapter 3. Seven O-D pairs3 within Zone-1 of the LU network were selected as

2 Data descriptions available online at http://data.london.gov.uk/datastore/package /tfl-
rolling-origin-and-destination-survey; last accessed on 30 September 2014.

3 In total, there are seven cases of 0-D pairs, only five of which will be presented in the current
chapter, with the results of the rest two cases being exhibited in Appendix C.
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typical examples for the demonstration, which will be investigated separately in

the following sections.

The selection of these example networks is based primarily on the standard Tube

map (See Figure 4.1, p.72), complying with conditions as follows.

e There are at least two travel routes available, which connect the
stations of the origin and the destination.

e There must be no more than one interchange for each route between
the O-D stations.

e All the alternative routes* (between the O-D stations) are empirically
identified from the standard Tube map, and also checked with the
RODS data for AM Peak (i.e. between 7:00 a.m. and 10:00 a.m. on
weekdays, see Table 4.1, p.75).

e There is a relatively high volume of passenger traffic on the network,
especially during the AM Peak, which thus makes for a sufficiently large

data sample.

For each case study, the network will be illustrated in a map-view, which is
tailored in the scope of the standard Tube map with essential elements being
retained. Only the transit lines as well as intermediate stations pertinent to the
0-D will maintain their original appearance on the Tube map, with the rest of the

network being presented in monochrome.>

To apply the proposed method, a few prerequisites will have to be met. First of
all, the type of journey time distribution of each alternative route, and hence the
distributional form of the mixture model, need to be pre-specified. In this section,
for each case study, we will look at two standard mixture distributions for a
comparative test: a Gaussian mixture (GM), i.e. 5, ~N(x,,0,) VreR,aswell as
a log-normal mixture (LNM), i.e. 6, ~logN(x,,0,) VreR; and compare the
estimates for the two models. As stated by Marron and Wand (1992), the family

4 Any travel route that does not involve interchange will be hereinafter referred to as a direct
route/service; otherwise, an indirect route/service.

5 It should be noted that confluences of passenger flows of those monochrome and coloured lines
certainly will, in reality, affect the traffic and (hence) the (average) journey time of the O-D.
However, this effect would not be relevant in that the traffic and journey times will both be
statistically analysed given probability distributions, and that the transit lines and stations
in monochrome could be left out of account.
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of GM has a great flexibility such that it usually provides close approximation to
arbitrary probability distributions in various contexts (cf. Section 3.3.3). Yet it
should also be noted that the shape of a univariate Gaussian distribution is
symmetric to its mean (and its median), whereas in reality a journey time
distribution seems more often to be positively skewed (see Fu et al., 2012a). On
this account, the log-normal distribution may potentially be more suitable. For
all this, both GM and LNM will be estimated for each of the selected single O-D
pairs, by taking advantage of the Oyster data.

Within the scope of this thesis, the issues concerning the threshold value for
estimating the mixture models are not addressed (cf. Section 3.3.3). For each of
the case studies being conducted in this thesis, several threshold values were
tested in the model estimation; and only the sensible and explicable results are
presented in the following subsections for a demonstration of the application of

the mixture model.

The available data of OJT“*° for the model estimation were collected during the
period from 27th June 2011 (Monday) to 30th March 2012 (Friday), spanning
over 193 weekdays, which do supply each case with an adequate sample. It must
be pointed out that since the logarithmic journey times should then follow a GM
distribution, the two data sets, i.e. the raw data and its logarithms, were both

fitted by GM model, respectively, given the same sample of journey times.

A summary of basic information about all the seven pairs of O-D is reported in
Table 4.2 (see next page), where n, and n denote the sample size before and
after the extreme outlying values being excluded, respectively. Besides, the data
sample of each of the case studies is for 193 weekdays, except that the Case-6
and Case-7 contain journey records data for 192 days and 162 days, respectively.

The databases of AEI, RODS and the published timetable are all ready to use.



Table 4.2 An introductory summary of the LU case studies
EB, WB, NB and SB are short for eastbound, westbound, northbound and southbound, respectively.

Case Origin 0 Destination d Interchange Journey time  RODS result Sample size
- (LU station) (LU station) Line, I’ LU station, S Connecting line, I”  t" (minute) ™" (%) n*” n/n,
1 Victoria Holborn Oxford Circus Central (EB) 19.6 71.3
Green Park Piccadilly  (EB) 23.0 28.7 526 24,760/25122
2 Euston St. James's Park Victoria Circle 18.8 42.8
WOy OIS Embankment Circle 22.1 57.2 437 22,379/22,968
3 Victoria Liverpool Street Victoria [\J]  Oxford Circus 25.0 48.1
Circle (EB) - - 33.3 51.9 557 36,262/36,668
4 Angel Waterloo Northern (SB) Bank/Monument Waterloo & City (SB) 25.2 42.9
Northern (SB) London Bridge Jubilee (WB) 26.9 13.0 77 14,419/ 14,637
Northern (NB) SV 29.8 44.2
5 Liverpool Street Green Park Oxford Circus 215 71.9
Central  (WB) RS 26.3 179 196 17,102/17,423
Bond Street 27.1 10.2
6 Euston South Kensington IR H(0)yE] (B3 Victoria (81yd Y District (WB) 22.4 57.4
Victoria 158  Green Park Piccadilly (WB) 26.2 211 209 8,116 /8,277
Northern (SB) BECILEHCELOERY Piccadilly (WB) 28.4 21.1 (192 days)
Northern (SB) Embankment (61yd (Y District (WB) 29.7 0.4
7  Victoria Waterloo Circle Embankment Bakerloo  (SB) 20.9 1531
Circle Embankment Northern  (SB) 18.1 ' agg  7:935/8,140
Circle QUBAENI]  Westminster 15.4 48.2 (162 days)
Victoria 0\3)8 Green Park 16.4 36.5

1In Case-7, according to the RODS result, 15.3% of all the respondents chose to transfer at Embankment, without detailing which connecting lines were chosen.

-08_
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4.3.1 Two alternative routes (Case-1 - Case-3)

This section examines three pairs of O-D stations selected from the LU network.
Each of the O-D pairs is connected by two alternative routes, and has its own
distinct characteristics. For the first two cases, which are code-named ‘Case-1’
and ‘Case-2’, respectively, only indirect routes are available. For the third case
code-named ‘Case-3’, one of its two alternative routes actually offers a direct
service, whereby an interchange between transit lines might not be necessary
during passengers’ travel. Additionally, all passengers in Case-1 may have an
only line option for the first journey leg but must choose between alternative
transfer stations, while those in Case-2 should make a choice between lines at
their origin station. Case-3, by contrast, presents a ‘dilemma’ for the passengers:

whether to choose a direct or an indirect route.

4.3.1.1 Case-1: Victoria - Holborn

The abridged Tube map illustrated in Figure 4.2 below shows the single O-D
network, Victoria — Holborn, for our first case study. Both of the O-D stations are

highlighted with red-shaded circles,

Tottenham
Court Road

Piccadilly
Circus

Key to lines
meeeesssssss Central

L=
Victoria

e Piccadilly

meesssssssssm  Victoria

Figure 4.2 The LU network connecting the O-D pair: Victoria — Holborn.
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In this case, all passengers heading from Victoria to Holborn would start their
journeys by taking a northbound line train. Then they shall choose to
change onto an eastbound train of either the line at Green Park or the
line at Oxford Circus. The two alternative interchange stations are each
being marked with a red-dotted circle .. We could represent the former route
by h=1 and the latter by h=2. This route-choice set was initially identified
based only on the Tube map. It also corresponds with the evidence from the
RODS about this O-D pair. Moreover, on the rolling basis, the survey result
suggested, as shown in Table 4.2 (see p.80), that more than 70% of the
passengers travelling on this O-D might choose to make an interchange at

Oxford Circus, i.e. to use the route labelled h=2.

Upper inrsl‘er fen‘ce/Upper outer fence

R S0RRRERAARK S K R K e
10 20 30 40 50 60 70 80
Oyster Journey Time (minutes)
(a)
3500 . . . . .
Statistics (minutes)
30001 .
min. : 11
max. : 35
25007 mean : 17.9
med. : 17
2000 mode : 16 s

3.9

Frequency

1500+
1000 +
500
0
10 15 20 25 30 35 40
Oyster Journey Time (minutes)
(b)

Figure 4.3 Summary of OJT °*° data for Victoria — Holborn:

(a) a box-and-whisker plot of the raw data (n, = 25,122) ; and
(b) a histogram of the valid data (n = 24,760).
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Throughout the observation period from 27th June 2011 (Monday) to 30th
March 2012 (Friday), there were 25,122 journeys in total recorded by the Oyster
within the time-band of AM Peak (i.e. between 07:00 a.m. and 10:00 a.m.). In this
context, we would test whether a mixture model could deliver the same or

similar results from the sample set of OJT °*° obtained from the Oyster system.

A graphical summary of the sample data in this case is presented in Figure 4.3
(see previous page). Figure 4.3(a) provides a box-and-whisker plot of the entire
data set. The red bar on the rectangle ‘box’ (bordered in blue) marks the median
of the sample. The left and right edges of the blue box indicate the 25th and the
75th quartiles, respectively, which are also referred to as the lower and upper
fences of the data (cf. Section 4.2.1); and the box width (of the horizontal side)
showing the IQR. The bar located to the left side of the box marks the lower inner
fence (i.e. 1.5 times IQR less than the 25th quartiles), within which the minimum
journey time being observed falls.1 As the ‘whisker’ extends to the right of the
box, upper boundaries of both the inner and outer fence are marked 2 (cf.
Freeman et al., 2008, p.41). The magenta crosses, X, which are beyond the upper
outer fence, stand for extreme outliers; but those were all excluded for
subsequent analyses. As stated in Section 4.2.1, we regarded the data (displayed
as blue circles, O) lying between the upper inner and outer fences to be, albeit
suspicious, within the acceptable range of valid data. Finally, 24,760 of OJT °**
were statistically covered by the upper outer fence (with 24,028 inside the upper

lower fence).

The frequency distribution of the valid data is shown in Figure 4.3(b) (see
previous page). Given the existence of two alternative routes as described above,
the histogram shall resemble a two-component mixture distribution, which
ideally would exhibit bimodality; whereas here it appears only a unimodal
profile. As such, this might generally imply two possibilities. One is that the two
presumptive components might largely overlap, suggesting further, perhaps,

that the passengers had similar perception on both routes. In that situation, we

1 Since the smallest value of journey time observations in a data set is considered valid, the inner
lower fence could be ignored for the case studies in this thesis. It is presented in the box-
and-whisker plots for demonstration purpose only.

2 This is slightly different from the standard or conventional representation of box-and-whisker
plots where the whisker normally ends at the upper inner fence.



-84 -

may anticipate that the measures of the central tendency of the two components
would be similar. Another possibility is that if in fact there was a difference of
centrality between the two components, one of the alternatives shall be weighted
less while the other must be given a much higher mixture weight. Bearing the
conjecture in mind, we conducted parallel testing of GM and LNM models on the

same data set of OJT °®°.

For the estimation of the two mixture models, initial values of all the model
parameters were also estimated but from K-means clustering method (described
in Section 3.3.3) with the same sample. The initial estimates are presented in

Table 4.3 below.

Table 4.3 Parameter estimates of GM and LNM models based on OJT °*° data
for Victoria — Holborn

The initial values and the model parameters were estimated using the K-means
clustering and the EM algorithm, respectively. n =24,760.

GM LNM

Component-label r=1 r=2 r=1 r=2
Initial values

7" (minute) 16.0 21.0 15.7 22.0

o™ (minute) 1.7 3.4 1.7 3.1

o (%) 64.1 35.9 64.1 35.9
Parameter estimates

4. (minute) 16.6 22.2 16.5 21.3

6, (minute) 2.3 4.5 2.4 4.4

o, (%) 75.4 24.6 69.1 30.9

In addition, the presumptive component distributions in each model are labelled,
respectively, by r =1 (also ‘Routel’) and r =2 (also ‘Route2’), representing the

two alternative routes. They will hereafter be referred to as component-labels.?

3 For illustrative purposes only, the component, whose value of n'" was relatively smaller, was
labelled by a smaller real number, whereby the estimates will always be present in
ascending order of 17" as the component-labels increases. This will also apply to all the
subsequent case studies.
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Note in the case of LNM model that we applied K-means clustering to the natural
logarithms of OJT °*° data, instead of the data set being originally derived. As a
result, it numerically narrowed down the extent of dispersion of the data. The

initial values for estimating LNM were thus more statistically centralised.

KMS
r

Consequently, the medians (denoted by 7, ) and standard deviations (denoted

KMS
r

by o, ) turned out to be slightly different from their counterparts for GM model.
At this stage, the clustered sub-datasets for r=1 and r=2, were mutually
exclusive (cf. Section 3.3.3), where the preliminary sub-dataset being clustered
for r =1 encompassed all the relatively shorter journey times being around 16

minutes. That sub-dataset should contain a majority of the observations.

Given the initial values, the parameters for both GM and LNM distributions of
OJT °** were then estimated, using the EM algorithm. The estimation results are
also presented in Table 4.3 (see previous page). The estimates from both models
suggested that roughly 70%-75% of passengers might have actually chosen the
quicker route, Routel; while the rest, about 25% to 30%, might have travelled
between the O-D by using Route2. This profile showed a close similarity to the
RODS results of this 0-D. Moreover, compared to o, the increases in &, Vr

largely reflect a partial overlap between the two component distributions.

Furthermore, the probabilities that any passenger might have chosen each of the
alternative routes, conditional on his/her journey time, are illustrated in Figure
4.4 (see next page), where the dotted and solid curves are related to GM and LNM,
respectively. As can be seen from the graphs, if a passenger’s journey time was
about 20 to 21 minutes, both models would suggest that he/she might have
similar or the same preference of both the alternative routes. Routel had a
higher probability of being chosen by faster passengers whose journey times
were less than that critical value, while those who spent longer journey time in
travelling on this O-D might be more likely to have chosen Route2. What is more,
if anyone’s journey time was longer than 26 minutes, given GM, or 30 minutes,
given LNM, both the mixture models would simply make us believe that the
journey time observation should be in no doubt from Route2, though this

conjecture might not necessarily be the case in reality.
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Figure 4.4 Posterior probabilities of route choices given OJT °** for
Victoria — Holborn (n=24,760):

(a) for both routes, based on GM; (b) for both routes, based on LNM;
(c) for Routel, based on GM and LNM; and (d) for Route2, based on GM and LNM.

Table 4.4 Inferences of proportion of passenger traffic on each alternative
route connecting Victoria to Holborn (n = 24,760)

GM LNM
Component-label =1 =2 =1 =2
o, (%) 75.4 24.6 69.0 31.0
n o 21,027 3,733 19,751 5,009
@ (%) 84.9 15.1 79.8 20.2
n" 18,693 6,067 17,082 7,678
@ (%) 75.5 24.5 69.0 31.0

Based on the estimates of posterior route-choice probabilities of every individual

passenger, both the naive and the effective inferences of passenger-traffic
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distributions between the two routes were also made. The results are presented
in Table 4.4 (see previous page), together with @, for comparisons. As specified
in Section 3.4.1, n,"™ and @, represent the total number and proportion of
passengers who chose the r-th route, respectively, from the naive inference.

This was drawn based on the condition that a passenger might have most likely

INF
r

chosen the route assigned the highest posterior probability. In comparison, n

and o™

. were calculated according to the effective inference (see Section 3.4.2).

Each of the inferences demonstrate an aggregation of every sampled individual’s
probabilistic choices between the two alternative routes. The results in this case
indicated that @, was practically consistent with the estimates &, from the
mixture models for each component, or rather, for each alternative route. To this
point, an issue remaining to be solved was to match the estimated components
to the real routes. That is, we needed to understand that which specific routes in

reality ‘Routel’ and ‘Route2’ shall represent.

Table 4.5 Expected journey times of simulated samples for each alternative
route connecting Victoria to Holborn

Calculated average travel time (minutes)

-1 VictorialJCentrall VictorialiPiccadilly

S Oxford Circus Green Park
Journey segment

tﬁic 2.7 2.7

tf“FODl / t|WFOD2 0.8/28 0.8/28

tﬁ’,B[E,s] 3.0 1.0

t[ﬁff”]’s 3.3 3.7

tfcfl / tﬁf:z 1.3/3.6 1.1/35

) 3.0 6.0

e 2.8 45
Route-label h=1 h=2
Total average

t.(1,1) 16.9 19.9

t.(2,1) 18.9 21.9

t.(1,2) 19.3 23.3

t,(2,2) 21.3 24.3

(e 19.6 23.0
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Following the computation procedure of route-specific average journey time, as
demonstrated in Section 3.5.1, t.°° for both of the alternative routes on this O-
D were calculated using the AEI data, and adjusted with the stations layout data;
and the results are presented in Table 4.5 (see previous page). It showed that t**
and t;°° were clearly distinguishable between the two routes.

Further to the calculation of t*", we shall then made a sequence of comparisons

in order to find out what the route-labels mean. We compared between the
estimated means (see also Table 4.3, p.84) and the average journey times for
each alternative route, as well as between the estimated mixture weights
(including proportions of passenger traffic; see also Table 4.4, p.86) and the
RODS results. All the information for such comparisons is summarised in Table
4.6 below.

Table 4.6 Matching the estimated mixture components with the real-world
routes for Victoria — Holborn

r matches h

Component-label r r=1 r=2

Journey time (minutes)

. GM 16.6 22.2
H LNM 16.5 21.3
t (6.7) 19.1 (0.9) 22.1(0.9)
CI for h 95% CL [16.3, 21.9] [19.3, 25.0]
Traffic distribution (%)
A GM 75.4 24.6
“ LNM 69.1 30.9
o (nE) AM Peak 71.3 (375) 28.7 (151)
A weekday 66.2 (612) 33.8 (313)
Route-label h h=1 h=2
lvicioriaBlpiccadilyJi
Oxford Circus Green Park

Take the estimates from GM model for example. In line with Table 4.5 (see
previous page), t™° and t;*" denotes, respectively, the calculated average
journey times of the routes, “ - , via Oxford Circus station” and
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“— |9ty via Green Park station”. At first glance, it is noticeable
that ™" <t;*", and also that /4 < 4, . Additionally, t;*" ~ z,. Such an outcome

would largely imply that Routel (i.e. r=1) might correspond to the former
route, which was labelled by h =1; and similarly, Route2 (i.e. r=2) could be
regarded as the alternative labelled by h =2. Although z <t it still fell within
the 95% CI of t*7, given t, (¢, ) V#=12 and Vi =12 (cf. Section 3.5.1). If
all the conjectures above were true, r =1 must be equivalent to h=1; and r=2
must also be the same as h =2. A strong supporting evidence to this supposition
was that @, Vr=12 showed a close similarity to the corresponding RODS
results, @,°" Vh=1,2. According to the criteria laid down in Section 3.5.2, it
could then be concluded in this case that Routel was extremely likely the route,
h =1, and Route2 the other, h =2. With regard to the estimates of LNM model,

we could derive the same conclusion from Table 4.6 (see previous page).

Based on all the results above, Figure 4.5 below (and also next page) delineates
a graphical view of the estimated the PDFs of the GM and LNM distributions as

well as all the components.
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(a)
Figure 4.5 Estimated mixture distributions, and weighted components thereof,
of OJT for Victoria — Holborn (n=24,760) :

(a) estimated GM model; and
(b) estimated LNM model (see next page).
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Figure 4.5 (Continued.)

Evidently, both the GM and LNM models could be deemed to perform very well

on this 0-D; and they both were eligible in terms of the judging criterion for

estimated parameters.
With the aid of gof , the indicator for goodness of fit calculated by formula (3-46)

(see p.63), we compared the statistical performance of the two models by

repeating the computation 1,000 times; and the results are presented in Table

4.7 below.

Table 4.7 Goodness-of-fit test result for Victoria — Holborn
The calculation of gof was repeated 1,000 times for each model.

GM LNM
Rate of obtaining lower gof (%) 0.3 99.7
Average gof 0.109 0.096

In this case, LNM was deemed to be more suitable, due to its lower average gof

and a far higher rate of gaining a lower value of gof .



-91 -

4.3.1.2 Case-2: Euston - St. James'’s Park

For the second case study, code-named Case-2, we also scrutinise an 0-D pair
with two indirect routes: Euston — St. James’s Park. Its network is illustrated in

Figure 4.6 below.
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Figure 4.6 The LU network connecting the O-D pair: Euston — St. James’s Park.

In contrast with Case-1, all passengers travelling on this O-D must firstly choose
between two different lines at Euston, the origin station. They will have to make
a decision whether to take the line (southbound) or the line
(southbound) for their first journey leg. On the second journey leg, those who
take the m line will transfer at Victoria station to either the line
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(eastbound) or the Circle line (eastbound).* In a similar way to Case-1, we let
this route be labelled h =1. All the other passengers, who choose the
line at the origin and alight at Embankment station, will then have to transfer to
a westbound train on either of the two common lines. This latter route was
labelled h =2. The data of OJT°** collected during the period of observation for
this O-D is summarised in Figure 4.7 below, with Figure 4.7(a) describing the
original data set and Figure 4.7 (b) depicting a histogram of all the valid data for

use.
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Figure 4.7 Summary of OJT °*° data for Euston — St. James’s Park:

(a) a box-and-whisker plot of the raw data (n, = 22,968) ; and
(b) a histogram of the valid data (n =22,379).

4 Within Zone-1 of the LU network, the operational routes of the [)1§li line and the Circle line
are parallel and share the same platform at the stations they stop along the way.
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What was similar to Case-1 was that the shape of the histogram shown in Figure
4.7(b) (see previous page) still did not demonstrate distinct characteristics of a
bimodal distribution, despite the availability of two alternative routes. Again,
this might be due to either a substantial overlap between the journey time
distributions of the two routes or a significant weighting disparity between the
two in the mixture distribution (cf. Section 4.3.1, p.78). Notwithstanding such
unimodality, we applied K-means clustering method to the valid OJT °*° data to
gain two sets of initial values for the estimation of GM and LNM models,

respectively.

The estimation results of the initial values as well as the mixture model

parameters are presented in Table 4.8 below.

Table 4.8 Parameter estimates of GM and LNM models based on OJT °*° data
for Euston — St. James’s Park

The initial values and the model parameters were estimated using the K-means
clustering and the EM algorithm, respectively. n =22,379.

GM LNM

Component-label r=1 r=2 r=1 r=2
Initial values

n" (minute) 17.0 20.0 17.0 20.1

o (minute) 1.2 2.2 1.3 2.0

@ (%) 55.5 44.5 55.5 445
Parameter estimates

A, (minute) 17.6 21.2 17.8 22.3

6, (minute) 1.8 3.0 2.0 2.7

o, (%) 724 27.6 82.8 17.2

We could see that the estimates of the component means (denoted by £, ) did
not differ very much from their initial values, while the standard deviations
(denoted by &, ) and the mixture weights (denoted by @, ) changed dramatically,
which accounted for the expected overlap between the mixture components. On
the other hand, it is noticeable that /4 < /1, and @ > &, . This again implied that
much more passengers might have taken the faster route, which was similarly

labelled by r =1 and referred to as Routel. Correspondingly, the slower route,
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labelled by r =2, was referred to as Route2. The LNM model even suggested a
relatively more lopsided situation that Route1 might have taken more than 80%

of the passenger traffic between this O-D.

In line with the process of model testing as demonstrated in Case-1, the

distributions of the estimated posterior choice probabilities of passengers are

Posterior probability of route choice

Posterior probability of route choice

illustrated in Figure 4.8 below.
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Figure 4.8 Posterior probabilities of route choices given OJT °** for

30

Euston — St. James’s Park (n=22,379):

(a) for both routes, based on GM; (b) for both routes, based on LNM;
(c) for Routel, based on GM and LNM; and (d) for Route2, based on GM and LNM.

On the basis of that, the inference of passenger-flow proportions between the
alternative routes on this O-D were calculated, and the results are presented in
Table 4.9 (see next page). Furthermore, the computation of the route-specific

average journey times are shown in Table 4.10 (see next page).
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Table 4.9 Inferences of proportion of passenger traffic on each alternative
route connecting Euston to St. James’s Park (n=22,379)

GM LNM
Component-label r=1 r=2 r=1 r=2
o, (%) 724 27.6 82.8 17.2
n; o 17,766 4,613 19,322 3,057
@™ (%) 79.4 20.6 86.3 13.7
n" 16,152 6,227 18,512 3,867
@ (%) 72.2 27.8 82.7 17.3

Table 4.10 Expected journey times of simulated samples for each alternative

route connecting Euston to St. James’s Park

I! _ III

Calculated average travel time (minutes)

S Victoria Embankment
Journey segment

tf?ff 4.0 2.4

£/, 0.6/2.6 1.8/5.1

o 7.0 8.0

t[T,,I',C”]YS 2.0 2.2

t,WISC1 / tfﬁfz 1.6/3.8 15/3.6

tﬁi’d] 1.0 3.0

tlEGf 0.5 0.5
Route-label h=1 h=2
Total average

t. (1,1 16.7 194

t.(2,1) 18.7 22.7

t,(1,2) 18.9 21.5

t.(2,2) 20.9 24.8

o 18.8 22.1

Table 4.11 (see next page) demonstrates the comparisons between the models’

estimates and the survey results in order to interpret the route-labels and to

validate those estimates.
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Table 4.11 Matching the estimated mixture components with the real-world
routes for Euston — St. James’s Park

r matches h

Component-label r r=1 r=2

Journey time (minutes)

R GM 17.6 21.2
H LNM 17.8 22.3
t (657) 18.8 (0.9) 22.1 (1.1)
CIfor h 95% CL [16.1, 21.5] [18.5, 25.7]
Traffic distribution (%)
X GM 72.4 27.6
@ LNM 82.8 17.3
o (1) AM Peak 42.8 (187) 57.2 (250)
A weekday 46.4 (225) 53.6 (260)
Route-label h h=1 h=2

Victorials Northern[ SN
(e YDistrict (I YDistrict

Victoria Embankment

By comparing z, with t*" for each alternative route in this case, the situation
was also very similar to that in Case-1. In view of the fact that 4, and £, fell
within the 95% CI of t*" and t;*", respectively, we could preliminarily match
Routel (i.e. r=1) to the route that goes through Victoria station (i.e. h=1:
- Circle/) ; and also regard Route?2 (i.e. r =2) as the alternative
route via Embankment station (i.e. h=2: oo ivs (Y District)}

However, in this case, there was an issue on validating the mixture models with
the RODS results. Take the estimates from GM model for example. According to
the RODS, & " (= 42.8%) was slightly smaller than )" (= 57.2%), which
suggested that the quicker route shared less of the total passenger traffic than
the slower transit service. Given the existing information, we could not find out
the reason to this point; but we might doubt that the ;" in this case was not
quite credible. On the other hand, @, derived from either GM or LNM model in
this case seemed to make more sense, as a much larger proportion of passenger
traffic was assigned to Routel for a quicker service. The following three

possibilities might account for puzzled situation: (see next page)
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the RODS results for this case might not be accurate mainly because
they were aggregated on a rolling basis, notwithstanding the presence

of a large sample;

ii.  some attributes of the slower route were possibly more preferable to
passengers>, e.g. shorter walking distance and wait time; and/or

iili. neither the GM nor LNM model were suitable for this case, but other
models should be further tested.

Despite all this, we should accept both GM and LNM models in this case, given

their sensible estimates.
Figure 4.9 below (and also next page) shows the estimated PDFs of the GM and
LNM distributions, which showed that both models could fit the journey time

data very well. Yet, the difference between the two was not as immediately

noticeable as that in Case-1.

0.18 . I I I I
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0.16 - N Est. Gaussian mixture H
YL YO Routel:- Circle /[NTela (Victoria)
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7] ’ 1
: INEE
a 0.1F 3 H =
= 1 \
= 0.08} ! A -
E ] .
=] '] !.
£ 0.06 ] ' .
] [}
l" \‘
0.04 / 3.l -
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o i LY Ty,
J, -.‘,-' \~ 'a.'.-
0 e L | I Raon g S Doy | I
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Figure 4.9 Estimated mixture distributions, and weighted components thereof,
of OJT for Euston — St. James’s Park (n=22,379):

(a) estimated GM model; and
(b) estimated LNM model (see next page).

5 This will be further examined in Chapter 6.
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Figure 4.9 (Continued.)

Furthermore, as shown in Table 4.12 below, the result of the goodness-of-fit test
suggested that the LNM model should be more suitable in this case, as it gave a

lower average gof as well as has a much greater rate of gaining a better fit.

Table 4.12 Goodness-of-fit test result for Euston — St. James’s Park

The calculation of gof was repeated 1,000 times for each model.

GM LNM
Rate of obtaining lower gof (%) 19.1 80.9
Average gof 0.115 0.113

4.3.1.3 Case-3: Victoria - Liverpool Street

The last of the three cases involving two alternative routes being studied was the
O-D pair: Victoria — Liverpool Street. Its network is illustrated in Figure 4.10

(see next page), where both the O-D stations are highlighted with green-shaded

circles.
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Figure 4.10 The LU network connecting the O-D pair: Victoria — Liverpool Street.

As mentioned earlier, this O-D provides travellers with both direct and indirect services. More specifically, all the passengers at the origin
station, Victoria, could use either the Circle line (eastbound) serving as a direct route, labelled h =1; or choose to take the line

(northbound) first but would then transfer to the line (eastbound) at Oxford Circus, labelled by h=2.

_66_
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Itis noted that anyone choosing the Circle line may also jump to the line
at the station of Monument/Bank complex (or simply Bank). However, that route
was not considered in this case, because of its overlong connection paths for
interchange; and we also assumed that any passenger who had already chosen a
direct service would not usually change to an indirect service during his/her

journey. Moreover, as reported by RODS, this route was rarely used in practice.

Figure 4.11 below summarises the OJT°*° data to be modelled in this case.
Unlike Case-1 and Case-2, the frequency distribution of OJT **° for this 0-D, as
shown in Figure 4.11(b), appeared to be a bimodal profile, with the major and
minor modes being 22 and 27 minutes, respectively, though the minor one was

less obvious.
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(b)
Figure 4.11 Summary of OJT °** data for Victoria — Liverpool Street:

(a) a box-and-whisker plot of the raw data (n, = 36,668) ; and
(b) a histogram of the valid data (n = 36,262) .
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Based on the sample of 36,262 individuals’ journey times, the initial values as
well as the estimates of mixture model parameters were obtained, which are

presented in Table 4.13 below.

Table 4.13 Parameter estimates of GM and LNM models based on OJT °*° data
for Victoria — Liverpool Street

The initial values and the model parameters were estimated using the K-means
clustering and the EM algorithm, respectively. n = 36,262 .

GM LNM

Component-label r=1 r=2 r=1 r=2
Initial values

7" (minute) 23.0 30.0 22.1 30.2

o, (minute) 2.1 3.9 1.8 3.8

o™ (%) 55.6 44.5 49.2 50.8
Parameter estimates

4, (minute) 22.8 30.3 22.3 29.7

6, (minute) 2.3 4.6 2.1 4.5

o, (%) 50.6 49.4 43.6 56.4

We discerned that both the major and minor modes shown in the frequency
distribution had been roughly captured and retrieved by the estimation of the
two mixture models, where f; and j, were around 22.5 and 30.0 minutes,
respectively. By comparison with the previous two O-D cases, a significant
difference in the estimation results for this case was reflected in the estimates of
mixture weights, @,. So far, all the testing mixture models (in the previous two
cases) suggested that the traffic volume on faster routes would be higher than
the slower alternative. However, notwithstanding a large gap between /; and
[, in this case, @ was almost the same as @, for the GM model; and the
situation was even the opposite given the LNM model, namely, & < &, while
L < f, . The LNM estimates then suggested that a larger proportion of
passengers tended to pay nearly eight minutes more for the slower service. The

most likely reason might be that more travellers would be inclined to avoid the
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interchange when making a journey.! Figure 4.12 below depicts the estimates

of posterior probabilities of the passengers’ route choices.
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Figure 4.12 Posterior probabilities of route choices given OJT °** for
Victoria — Liverpool Street (n=36,262):

(a) for both routes, based on GM; (b) for both routes, based on LNM;
(c) for Routel, based on GM and LNM; and (d) for Route2, based on GM and LNM.

Generally, what was happening on this point was very much similar to Case-2. If
passengers’ journey times were shorter than the sample mean of the given data
set for this O-D, their choice probabilities for Routel (i.e. the faster route) were
believed to be higher than for Route2; whereas for those who spent more than

about 26 or 27 minutes, the probability of choosing the slower route would

1 This will be further examined in Chapter 6.
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become higher. This could be reasonable given the fact that the minor mode was

about 27 minutes and the estimated mean for Route2 was greater than that.

The inference of passenger-traffic distribution on this O-D is presented in Table
4.14 (see next page). For each of the two mixture models, the traffic share @™
(that was based on the naive inference) showed the same trend as ;" (that was
based on the effective inference), notwithstanding the difference of implications

between the two models.

Similar to the previous two cases, the average travel times for each alternative
route as well as for each of their journey segments are presented in Table 4.15
(see next page); and the comparison of the mixture models is set out in Table
4.16 (see p.105).

Now we also take the GM model as an example to demonstrate the way of
matching a component-label to a real route. From the information in Table 4.15,
we could see that t™ > 1, and also that t;*" > ji,. This was mainly because the
calculation of t.** Yh=1,2 considered equally the four distinct circumstances
specified in Section 3.5.1 (see p.62) However, it could also be noticed that /i,
was close to t,(1,1) of the indirect route, while /i, approximated t,(1,1) of the
direct route. Additionally, as shown in Table 4.16, 4, and /i, fell within the 95%
CI of ;" and t;*", respectively. In view of these evidence, Routel and Route2
could be deemed as the indirect service and the direct service, respectively. This
should then suggest that most passengers travelling on this O-D could
successfully board the firstly arriving train at both the origin and interchange

stations (cf. circumstance II-i, see also p.62).

Table 4.14 Inferences of proportion of passenger traffic on each alternative
route connecting Victoria to Liverpool Street (n=36,262)

GM LNM
Component-label r=1 r=2 r=1 r=2
@, (%) 50.6 494 43.6 56.4
n;o 20,145 16,117 17,835 18,427
@ (%) 55.6 44.4 49.2 50.8
n" 18,077 18,185 15,617 20,645

r

@ (%) 49.9 50.1 43.1 56.9

r
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Table 4.15 Expected journey times of simulated samples for each alternative
route connecting Victoria to Liverpool Street

Calculated average travel time (minutes)

-1 VictorialCentral Circle

S Oxford Circus —
Journey segment
tro 2.7 1.7
'[,WFODl / tlw?z 0.8/238 4.8/14.8
tﬁB[aS] 3.0 20.0
ter 3.3 :
6 /e, 13/3.6 -
e 10.0 i
tlEGj 1.7 1.8
Route-label h=1 h=2
Total average
t,(1,1) 22.8 28.4
t.(2,1) 24.8 38.3
t,(1,2) 25.2 -
t.(2,2) 27.2 -
t" 25.0 33.3

In regard to the proportions of passenger traffic, neither the GM estimates nor
the corresponding naive inference were consistent with the RODS result; the GM
model might lead to a contradictory conclusion on the traffic shared between
Routel and Route2. By reference to @,”” Vh for a typical whole day on this O-D,
which was based on a much larger sample (see also Table 4.16), it showed that
a majority of passengers would rather spend a relatively longer journey time

than make an interchange for a quicker transit service.

From a combined view of the information in both Table 4.15 and Table 4.16,
we shall conclude that Routel (i.e. r =1) was most likely the indirect route (i.e.
h=1); and Route2 (i.e. r =2) mustbe the direct service (i.e. h=2). And we shall

also consider both models to be eligible.

Figure 4.13 (see next page) shows the estimated PDFs of the GM and LNM

distributions.
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Table 4.16 Matching the estimated mixture components with the real-world
routes for Victoria — Liverpool Street

r matches h

Component-label r r=1 r=2

Journey time (minutes)

A GM 22.8 303
# LNM 22.3 29.7
£ (655 25.0 (0.9) 33.3(2.9)
CI for h 95% CL [22.2, 27.8] [24.2, 42.5]

Traffic distribution (%)

A GM 50.6 49.4
,
' LNM 43.8 56.4
— AM Peak 48.1 (268) 51.9 (289)
n
il A weekday 38.9 (1,042) 61.1 (1,634)
Route-label h h=1 h=2
- Circle
Oxford Circus
0.]. T T T T T T T
Oyster data
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Figure 4.13 Estimated mixture distributions, and weighted components
thereof, of OJT for Victoria — Liverpool Street (n=36,262) :

(a) estimated GM model; and
(b) estimated LNM model (see next page).
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Figure 4.13 (Continued.)

Table 4.17 Goodness-of-fit test result for Victoria — Liverpool Street

The calculation of gof was repeated 1,000 times for each model.

GM LNM
Rate of obtaining lower gof (%) 0 100
Average gof 0.11 0.07

From Table 4.17 above, the goodness-of-fit results in this case showed that the
LNM could always provide a relatively lower gof , of which the average was very

close to 0; and compared with the GM model, the LNM model had an absolute
better-fit to the sample data.

4.3.2 More than two alternative routes (Case-4 and Case-6)

In this section, we further challenge the applicability of GM and LNM model in
the context that more than two alternative routes are available for a given O-D.
For this purpose, we selected four typical O-D pairs, where two were for cases of
three routes, with each associating with a three-component mixture distribution,

and the other two for the cases of four alternative routes, with each associating
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with a four-component mixture distribution, accordingly. However, here we only
describe one case study in each of the two circumstances. This is because the
modelling process for three or more components are essentially the same as for
the two component case studies in Section 4.3.1. The main difference between
different case studies lies mostly in the conditions for matching a route-label to

areal route.

To start this section, a case study given the availability of three alternative routes
is presented in Section 4.3.2.1, which is code-named Case-4. Then Section
4.3.2.2 examines an 0-D pair connected by four alternative routes, which is
code-named Case-6. For the other remaining two case studies, we present in
Appendix C only the relevant estimation results, as the basic principles have
been demonstrated in the previous section. We code-name the case with three

alternative routes Case-5 and that with four alternative routes Case-7.

In the same way as we dealt with the two-route examples, both GM and LNM
models were applied to fit the OJT °** data available for all these four cases, so
as to test whether the two standard mixture models could also be suitable. The
identification of the route-choice set for each of the four 0O-D’s had also been
verified with the RODS results, and are described based on the edited Tube maps

presented in the corresponding subsections.

4.3.2.1 A case of three routes (Case-4): Angel - Waterloo

This section describes a case study on an O-D pair connected by three alternative
routes, where the origin and destination are the stations of Angel and Waterloo,
respectively. The network linking this O-D pair is illustrated in Figure 4.14 (see
next page), with both the O-D stations being marked with shaded circles, and the

relevant interchange stations being circled with dots.

In this case, all passengers starting their journeys from Angel station (shown in
the upper right corner of the map) may choose either a northbound or a

southbound train of the line for the first journey leg.
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Figure 4.14 The LU network connecting the O-D pair: Angel — Waterloo.

For the former option (i.e. a northbound train), the passengers would need to
transfer at Euston station, to a southbound Line train. For the latter
(i.e. a southbound train), two alternative interchange stations are available. That
is to say, the passengers could choose to alight at Bank station and transfer to a
connecting service on the Waterloo & City line (southbound); or they may
remain on the southbound line train (via Bank) and travel a bit further
to the station of London Bridge, where they could transfer to a southbound train
of the line so as to reach Waterloo station. According to the map-view, to
make an interchange at Bank would seem to be more attractive than the others,
as that route involve only three intermediate stops in total. By contrast, it might

possibly cost a much longer journey time to transfer at Euston.
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Within the specified AM Peak (from 07:00 a.m. to 10:00 a.m.), 25,122 journeys
were recorded during the observation period of 193 days, with a sample size of
24,760 OJT °*° being considered valid. Figure 4.15 below gives the statistical
summary of the sample data set for this case. As shown in Figure 4.15(b), the
frequency distribution still presented a unimodal profile, with the single mode
being 22 minutes. This might also imply that the locations (or rather, the location
parameters) of the journey time distributions for the three alternative routes
were possibly close to each other, which stacked around the mode of the mixture.
Otherwise, in light of experience gained from the previous case studies, the
journey time distribution of the relatively slower route among the three

alternatives might have a higher degree of dispersion.
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Figure 4.15 Summary of OJT °*° data for Angel — Waterloo:

(a) a box-and-whisker plot of the raw data (n, =14,673) ; and
(b) a histogram of the valid data (n =14,419).
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Using this data sample, we obtained the estimates of the initial values from the
K-means clustering and that of the mixture model parameters by the EM

algorithm. The estimated results are presented in Table 4.18 below.

Table 4.18 Parameter estimates of GM and LNM models based on OJT °*° data
for Angel — Waterloo

The initial values and the model parameters were estimated using the K-means
clustering and the EM algorithm, respectively. n =14,419.

GM LNM

Component-label r=1 r=2 r=3 r=1 r=2 r=3
Initial values

7" (minute) 20.0 23.0 28.0 19.0 220 27.1

o, (minute) 1.4 1.1 2.9 1.2 1.1 2.7

o' (%) 38.7 38.3 23.0 27.3 42.1 30.6
Parameter estimates

4. (minute) 20.3 24.0 29.2 20.5 24.4 36.0

6, (minute) 1.9 2.9 4.5 2.2 3.5 2.3

o, (%) 38.8 49.6 10.6 39.0 59.7 1.3

For Routel (i.e. r=1) and Route2 (i.e. r=2), we could see that 7" and 7,
were around the mixture mode for both GM and LNM, while Route3 (i.e. r =3)
tended to be representing a slower route as o, = appeared to be much larger.
For the GM model, @™ and @, were nearly equal to each other. Nonetheless,
for the LNM model, & was the smallest among the three routes/components.
This might potentially lead to a similar situation in the estimation of &, for the

mixture models.

As also exhibited in Table 4.18 above, the estimates of both the mixture models
indicated that the journey time distribution of Routel (that provides the fastest
service among the three routes) was shaped by a relatively smaller proportion
of the sample OJT °*°. In comparison, Route2 (i.e. a slightly slower route) shared
the largest portion of the whole passenger traffic. For Route3, the slowest
service, /1, differed significantly between the GM and LNM. This might serve as

a crucial point to judge whether the model was acceptable or not.
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Figure 4.16 Posterior probabilities of route choices given OJT *** for
Angel — Waterloo (n=14,419):

(a) for all alternatives, based on GM; (b) for all alternatives, based on LNM;
(c) for Routel, based on GM and LNM; (d) for Route2, based on GM and LNM; and
(e) for Route3, based on GM and LNM.

A batch of graphs presented in Figure 4.16 above illustrates the posterior

probabilities of passengers’ route choices estimated from the GM as well as LNM



-112 -

models. Take the estimates of the GM for example. As shown in Figure 4.16(a)
(see previous page), the solid curve suggested that if passengers’ journey times
were less than about 22 minutes, the probability of choosing Routel was higher
than the other two alternative routes. Route2 was believed to be more likely to
be chosen by those passengers whose journey times were within the range
between about 22 and 30 minutes. If the journey times were longer than about
35 minutes, it was believed by GM model that the passengers had definitely
chosen Route3, because in that case both the posterior probabilities of choosing
Routel and RouteZ were estimated as approximating zero. Comparing the
estimates of each alternative route between the two mixture models, the LNM
also suggested a similar trend. In the case of Routel, as shown in Figure 4.16(c),
GM and LNM gave similar results; whereas for each of Route2 (see Figure
4.16(d)) and Route3 (see Figure 4.16(e)), there existed a substantial gap
between the GM and LNM estimates of the choice probabilities.

The distribution of passenger traffic, inferred from the estimated posterior
probabilities of individuals’ choices, among the alternative routes on this O-D is

presented in Table 4.19 below.

Table 4.19 Inferences of proportion of passenger traffic on each alternative
route connecting Angel to Waterloo (n=14,419)

GM LNM
Component-label r=1 r=2 r=3 r=1 r=2 r=3
o, (%) 39.8 49.6 10.6 39.0 59.7 1.3
no 7,254 6,250 915 5580 8,645 194
@ (%) 50.3 43.3 6.3 38.7 60.0 1.3
n" 5688 7,189 1,542 5,604 8,626 189
@ (%) 39.4 49.4 10.7 38.9 59.8 1.3

The consistency between &, and @™ in both GM and LNM models again assures

.
the practical significance of the method for effective inference. Note that in the
case of the GM model, @™ from the naive inference suggested that a larger
portion of the passengers might take Routel (i.e. the fastest route), which also
seemed to be reasonable. Notwithstanding this, the judgement had to be made

after further review of, in our case, the RODS data.
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Similar to all the previous cases, the computation of route-specific average
journey times is demonstrated in Table 4.20 below, which was used to support

the examination of the estimation results.

Table 4.20 Expected journey times of simulated samples for each alternative
route connecting Angel to Waterloo

Calculated average travel time (minutes)

" - Northernfg Northernfg Northernfg

1" Waterloo & City

S Bank London Bridge Euston
Journey segment

ty 3.8 3.8 3.8

tos /s 15/48 15/48 13/44

tf,"B[aS] 6.0 8.0 4.0

t[I,,C]fﬂ]’s 5.2 3.4 3.3

ter /e, 1.7/4.6 14737 1.7/5.1

tﬁ%[l;’d] 3.0 3.0 10.0

thy 1.0 3.1 2.5
Route-label h=1 h=2 h=3
Total average

t.(1,1) 22.1 24.1 26.5

t,(2,1) 25.4 27.4 29.7

t.(1,2) 25.0 26.4 29.9

t,(2,2) 28.3 29.7 33.0

t 25.2 26.9 29.8

Given t** Vh, the route labelled h=3, i.e. “ - , via Euston

station”, was believed to be the longest among all the three alternatives; and
another route labelled h =1, i.e. ‘N siitast - Waterloo & City, via Bank station”,
appeared to be the fastest. This was consistent with our conjecture based on the
Tube map for this O-D (see Figure 4.14). On this basis, in the first instance, we
could simply perceive that the estimated mixture component with the largest /,

(i.e. r=3, referred to as Route3) should be possibly the slowest route that goes
through Euston, and that the component with the smallest £, (i.e. r =1, referred

to as Route1) should be likely to be the fastest route via Bank. Thus, Route2 (i.e.
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r =2) was believed to be referring to the route, “ - ,viaLondon
Bridge”, which was labelled h=2. All these matching pairs are displayed in

Table 4.21 below.

Table 4.21 Matching the estimated mixture components with the real-world
routes for Angel — Waterloo

r matches h

Component-label r r=1 r=2 r=3

Journey time (minutes)

. GM 20.3 24.0 29.2
H LNM 20.5 24.4 36.0
t (6,7) 25.2 (1.3) 26.9 (1.2) 29.8 (1.3)
CI for h 95% CL [21.2, 29.2] [25.6, 34.0] [23.2, 30.6]
Traffic distribution (%)
. GM 39.8 49.6 10.6
“ LNM 39.0 59.7 1.3
oo (oo AM Peak 42.9 (33) 44.1 (34) 13.0 (10)
A weekday 54.9 (508) 24.2 (224) 20.9 (193)
Route-label h h=1 h=2 h=3

Waterloo & City
Bank London Bridge Euston

Let us take for example the estimates of GM model. We could see from Table
4.21 that £, and z, were both within the 95% CI of their corresponding t.**.
Despite j; being slightly smaller than the lower CI boundary, it was still
perceived acceptable in view of f being closely approximated that boundary;
whereas in the case of LNM model, /4, (=36.0 minutes) was far beyond the
upper boundary of the corresponding 95% CI. Thus, that estimate was deemed
not appropriate, and hence the LNM model would not be considered to be
suitable in this case.

For further examination, we compared &, to @, ””. Two issues here should be

noted. On the one hand, the sample size of RODS data for the AM Peak was small.
There might be a higher risk of lack of credibility. On the other hand, in each of
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the mixture models, a higher mixture weight was assigned to Route2 (via
London Bridge), than to Routel (via Bank). In other words, & < @,. This was
also reflected by the RODS result, notwithstanding the presence of the small
sample size. However, for the estimated mean journey times, we had [ < f,.
Considering both the Tube map as well as the results of t;°*, Routel (via Bank)
would be expected to be more attractive. This supposition could be supported by
evidence from the RODS data in the context of a much larger sample size. As also
shown in Table 4.21, nearly 55% of passengers chose the quickest route on a
typical weekday. On this account, the estimates from GM were still acceptable,
though both testing models, especially the LNM, were potentially over-fitting the
data.

The estimated mixture distributions are illustrated in Figure 4.17 below (and
also next page). From the appearances of the two graphs, both the GM and LNM
models could fit the sample OJT°*° data very well. Nevertheless, given the
estimated parameters for the LNV, it did not seem possible to put a plausible
interpretation on which route each of the mixture components might refer to.

The LNM would therefore be ignored, compared with the GM.

0.12F Oyster data I
Est. Gaussian mixture
o1 Routel: - Waterloo & City(Bank)
A A . 1 bt Route2: NLiyditayil - (London Bridge)
=*="= Route3: : (Euston)
£0.08} .
%]
=
5]
a ..
E 0.06 - -
=
[2+]
fa]
E L
= 0.04} ,
!_.'
0.02~ 4 .
P T : "':"" -
0 At 1-"'"'-“. 1 1 [+ .T-“ ''''' - 1
10 15 20 25 30 35 40 45 50
Oyster Journey Time (minutes)
()

Figure 4.17 Estimated mixture distributions, and weighted components
thereof, of OJT for Angel — Waterloo (n=14,419):

(a) estimated GM model; and
(b) estimated LNM model (see next page).



-116 -

Oyster data I
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Figure 4.17 (Continued.)

From the analyses above, the test of goodness of fit in this case was actually not
necessary, since we have already made a judgement that the GM model would be
relatively more suitable than the LNM. For demonstration purpose, we still
present, in Table 4.22 below, the goodness-of-fit test result. The LNM model,
though could have a much better fit than the GM model, might over-fit the sample

data in this case.

Table 4.22 Goodness-of-fit test result for Angel — Waterloo

The calculation of gof was repeated 1,000 times for each model.

GM LNM
Rate of obtaining lower gof (%) 17.7 82.3
Average gof 0.081 0.078

4.3.2.2 A case of four routes (Case-6): Euston - South Kensington

In this section, we turn our attention to test the applicability of the GM and LNM
models on an O-D pair being served by four alternative routes. The origin and
destination are Euston and South Kensington, respectively. The network of the

0-D is illustrated in Figure 4.18 (See next page).
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Figure 4.18 The LU network connecting the O-D pair:
Euston — South Kensington.

In this case, all passengers departing from Euston station are supposed to choose
between the line and the line (southbound). For those who
take the former, they may then choose to transfer to a westbound train of the
line at Green Park station, or alight at Victoria station but transfer to
another westbound train on one of the Circle/ lines. For those who go
for the latter option (i.e. taking the line for the first journey leg), they
may make an interchange at either the stations of Leicester Square or
Embankment. Likewise, it would also lead to a line choice between the

line and the common lines.

A summary of the OJT °*° data available for this O-D is illustrated in Figure 4.19
(see next page). A total of 8,277 journey records were recorded within the AM
Peaks during the 192-day observation period, where a sample size of 8,116
OJT °** were valid and thus used for estimation of four-component GM and LNM

in this case.
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Figure 4.19 Summary of OJT °*° data for Euston — South Kensington:

(a) a box-and-whisker plot of the raw data (n, =8,277); and
(b) a histogram of the valid data (n =8,116).

As shown in Figure 4.19(b) above, the bimodality is presented in the frequency
distribution of the valid data, with the major and minor modes being about 22
and 20 minutes, respectively. This was also reflected in the estimates of 7" as
shown in Table 4.23 (see next page); and similar z, were obtained for two of all
the component distributions, which should characterise the two fastest routes
among all the four alternatives. In addition, it appeared that @, Vr were fairly
reasonable, which generally suggested that most passengers might prefer faster

routes.
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Table 4.23 Parameter estimates of GM and LNM models based on OJT °*° data
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for Euston — South Kensington

The initial values and the model parameters were estimated using the K-means
clustering and the EM algorithm, respectively. n =8,116.

GM LNM

Component-label r=1 r=2 r=3 r=4 r=1 r=2 r=3 r=4
Initial values

7" (minute) 200 23.0 26.0 310 190 220 250 301

o™ (minute) 1.2 0.8 1.1 2.9 1.0 0.8 1.1 2.8

@' (%) 375 315 211 9.9 259 345 262 133
Parameter estimates

4, (minute) 200 229 26.0 303 195 220 252 293

6, (minute) 14 1.0 1.4 3.7 1.3 1.2 1.7 3.8

o, (%) 409 26.6 198 127 284 309 243 164

Moreover, the estimated posterior probabilities of passengers’ route choices are
illustrated in Figure 4.20 below (and also next page). Figure 4.20(a) and (b)

below present the estimation results from the GM and LNM models, respectively.
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Figure 4.20 Posterior probabilities of route choices given OJT **° for
Euston — South Kensington (n=8,116):

45

(a) for all alternatives, based on GM; (b) for all alternatives, based on LNM;
(c) for Routel, based on GM and LNM (see next page);
(d) for Route2, based on GM and LNM (see next page);
(e) for Route3, based on GM and LNM (see next page); and
(f) for Route4, based on GM and LNM (see next page).

50
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Oyster Journey Time (minutes)

)

Figure 4.20(c)-(f) above show comparisons of the choice probabilities for each
alternative route between the two models. It could be seen from the four graphs
that those both models suggested a similar trend of the route-choice probability

condition on journey time.

The inferences of the passenger-traffic distributions among the four alternative
routes were presented in Table 4.24 (see next page). For both models, o™ was
close to ;™" for each route. This would largely reduce the indeterminacy of the

judgement on route-matching and model validation.

To proceed to find out each route-label in this case, the computation of expected
average journey times is presented in Table 4.25 (see next page), where the four
routes were labelled by h=1, 2, 3, and 4, respectively. It is noticeable that t**
Vh were clearly distinct from one another. This would greatly facilitate the

route-matching process.

50
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Table 4.24 Inferences of proportion of passenger traffic on each alternative
route connecting Euston to South Kensington (n=8,116)

GM LNM
Component-label r=1 r=2 r=3 r=4 =1 r=2 r=3 r=4
o, (%) 409 266 198 127 284 309 243 164
ne 3,047 2,563 1,712 804 2,107 2,807 2,132 1,080
@™ (%) 375 315 211 99 259 345 262 133
n™* 3,314 2,147 1,654 1,011 2,315 2,514 1,934 1,363
o (%) 408 264 204 124 285 309 238 168

Table 4.25 Expected journey times of simulated samples for each alternative
route connecting Euston to South Kensington

Calculated average travel time (minutes)

I" - Victoriafg ictoriafg Northernfg Northernfg

1" (%1 yo [ DistrictiillPiccadilly] Piccadillyjil %! v [ District

S Victoria Green Park Leicester Sq. Embankment
Journey segment

ty 4.0 4.0 2.4 2.4

60, / 1, 0.6/26 0.6/26 1.8/5.1 1.8/5.1

L 7.0 5.0 5.0 8.0

t[Tl,I'f"]’S 2.1 3.4 2.6 2.2

trs /s, 1.6/3.8 15/39 1.2/3.6 1.5/3.6

tﬁi’d] 4.0 6.0 9.0 10.0

thg 1.1 3.6 3.6 1.1
Route-label h=1 h=2 h=3 h=4
Total average

t. (1,1 20.3 24.0 25.6 27.0

t.(2,1) 22.3 26.0 28.9 30.3

t.(1,2) 22.5 26.4 27.9 29.1

t.(2,2) 24.5 28.4 31.3 32.5

o 22.4 26.2 28.4 29.7

h

According to the criteria specified in Section 3.5.2 and experience gained from
the previous case studies, we could always preliminarily match a route-label to
REF

a real route given the similarity between 4 and t = . Since no relevant

information was available, the validation of such conjecture must be further
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REF
th

supported by evidence that z, should fall within the CI of (atagiven CL) for
each alternative route. Meanwhile, @, also need to be checked with some prior

information (e.g. @.°" in our case, though, which was not completely reliable).

We take for example the estimates from GM model to illustrate the component-
route matching in this case. As demonstrated in Table 4.26 below, we had two
important facts here: (a) 4 </, <j,<g, and (b) 4, f,, [, and f, were
within the 95% Cl of t*", t;°", t;°" and t,”", respectively. This information could
then shed light on the preliminary route-matching. That is, Routel (i.e. r=1),
Route2 (i.e. r=2), Route3 (i.e. r=3) and Route4 (i.e. r=4) correspond,
respectively, to the alternative routes via Victoria, Green Park, Leicester Square

and Embankment.

Table 4.26 Matching the estimated mixture components with the real-world
routes for Euston — South Kensington

r matches h

Component-label r r=1 r=2 r=3 r=4

Journey time (minutes)

) GM 20.0 22.9 26.0 30.3
Hr LNM 19.5 22.0 25.2 29.3
t (607) 22.4 (0.8) 26.2 (0.9) 28.4 (1.2) 29.7 (1.1)
CIfor h 95% CL [19.7,25.1]  [22.8,29.5] [24.7,32.2] [26.1,33.4]

Traffic distribution (%)

) GM 40.9 26.6 19.8 12.7
(0]
' LNM 28.4 30.9 24.3 16.4
(e AM Peak 57.4 (120) 21.1 (44) 21.1 (44) 0.5 (1)
" 7 Awholeday 44.0(176)  31.8(127)  23.3 (93) 1.0 (4)
Route-label h h=1 h=2 h=3 h=4

VictoriaElilVictoriaEllliNor thernllINor thernfg
e BLYDistrictiillPiccadillyliillPiccadillyll S RE B¥District

Victoria Green Park Leicester Sg. Embankment

In the comparison between @, and @ for each of the mixture components, the

general trend of @, Vr also appeared to be consistent with the RODS results.
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Therefore, we could then confirm the preliminary judgement and that could be

deemed as the conclusion in this case.

Given all the parameter estimates, Figure 4.21 below illustrates the estimated

mixture distributions of both the GM and LNM models.
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Figure 4.21 Estimated mixture distributions, and weighted components
thereof, of OJT for Euston — South Kensington (n=8,116):

(a) estimated GM model; and
(b) estimated LNM model.
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Notwithstanding the goodness-of-fit test results presented in Table 4.27 below,
the GM model was considered more suitable for this O-D case due to its more

reasonable parameter estimates.

Table 4.27 Goodness-of-fit test result for Euston — South Kensington

The calculation of gof was repeated 1,000 times for each model.

GM LNM
Rate of obtaining lower gof (%) 17.4 82.6
Average gof 0.091 0.087

4.4 Summary and conclusions

Following the idea proposed and the method discussed in the previous chapter,
this chapter has implemented the mixture models of passengers’ journey times
on a real underground network. The applications and features of both GM and
LNM models have been demonstrated separately, and compared, on seven
different O-D pairs based on the LU network, whereof five cases have been
described in detail in this chapter. The other two cases have been exhibited in

Appendix C that shows only the estimation results.

Among all the seven cases, there was barely bi- or multi-modality exhibited in
the mixture journey time distributions per se. This intrinsic feature, however,
does not matter much for the application of the mixture models. In most cases,
K-means could effectively capture the modes of the mixture distribution, which
would greatly facilitate the delivery of sensible estimates by EM algorithm. It has
been noted that the mixture model estimates, especially the estimated values of
means, did not differ greatly from the initial values given by K-means. This might
be partly because K-means is a special case of the EM algorithm; and partly
because in some cases, K-means clustering might afford satisfied estimates, to a
certain extent. For future research, more experiments could be done to test the
influence of different initial values may have on the estimation results, using

different methods other than K-means.

In addition, when the number of alternative routes is small, say only two, GM and

LNM models could afford similar results, where LNM may often provide a
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relatively better goodness of fit. As the route-choice set grows larger, LNM may
be more likely to produce ‘extreme’ component estimates, whereas GM would

suit better the cases with an increasing number of alternative routes.

In all case studies, the calculated average journey times t,"* Vh were always
greater than the estimated means, /. Vh.The mostlikely reason for this was that
the computation of t;°° Vh always considered t, (¢,y) equally for all the four
circumstances specified in Section 3.5.1 (i.e. V¢=1,2 and Vy =12 ); and
t.(2,2) accounted for 25% of t**, which might be too high. It will surely be

better to have a weighted average of t, hence a better reference value of t*".

Still, it has been shown that £, in most cases could fall within the 95% CI of t*",
which largely supports the identification of each route-label. Nevertheless, as has
been briefly summarised in Section 4.3.2.2, the identification process in this
thesis was rather subjective (cf. Section 3.5.2). On this account, an algorithm for
automatic identification of the route-labels should be further studied in future

research.

In another regard, the level of traffic congestion would vary even within the
specified three-hour period of study (i.e. the AM-Peak, defined as between 7:00
a.m. and 10:00 a.m.), so that passengers’ perceptions to route choices may
change as well. The case studies carried out in this thesis investigated only the
AM-Peak as a whole. Further studies should be devoted to a shorter term with a
larger sample given a relatively stable congestion level. Also, it is possible to
obtain different mixture/component distributions given data from different
time-bands of a day. Comparisons between the distributions by different time-
band of a day (e.g. between the Peaks and Off-peak) may thus assist us to draw
some more general conclusions about passengers’ travel behaviour, such as

whether they would tend to avoid busy stations at rush hour.

In general, the outcomes of those case studies have shown that the finite mixture
models could be a qualified inference framework for passengers’ probabilistic
route choices at the aggregate level. It also enhances the potential of making use
of the smart-card data to estimate passengers’ probabilistic route choices on any

other similar public transport networks.

Additionally, in some special cases on the LU network, the Oyster travellers are
advised to swipe their Oyster cards on a ‘pink’ reader at some interchange

stations, except for the ticket validation required at both the O-D gatelines. In
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that way, the cardholders’ fares would be calculated properly according to the
specific routes they have chosen. Otherwise, the maximum fare will be charged
for travelling between the corresponding O-D. Accordingly, in such cases, the
information about where and when passengers made interchanges is readily
available. It will thus be worth examining these cases for future work, where we
may firstly put aside the interchange data but estimate a mixture model; and then
compare the model estimates with the real information of interchanges. This will
greatly assist in testing the applicability of the mixture model in estimating
passengers’ probabilistic route choices, and also improve the odds of obtaining

a more appropriate model.

It needs to be stated again that the mixture model allows for the observed
journey time (i.e. OJT °*° in our case) to be an only condition for estimating the

posterior probabilities. Therefore, different passengers, who were observed to

KMS
r

have spent the same amount of 7, travelling on this (and any other) O-D, are
supposed to share an identical posterior probability of choosing each alternative

route. This issue will be further investigated in the following chapter.
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Chapter 5
Updating route choice probabilities

5.1 Introduction

In this chapter, we revaluate and update every passenger’s choice probabilities
with additional consideration of the determinants in each of their journey times.
To this end, we recall two elementary events, Choiceqr as well as 6q, which have
been discussed in Chapter 3; and trace them back to the simple network of o-d
illustrated in Figure 3.1. As has been defined in Section 3.2, for each individual
passenger, choice, represents a statistical event that passenger ¢ chose route
r when he/she travelled from o to d ; and the symbol &, represents another
event that the observed journey time of q is &, . For Bayesian inference,
Pr(choice,, |8,), as a conditional probability function of the two events recalled,
represents a posterior probability of g choosing r. It was conceived to be a
straightforward representation of the probabilistic route choices made by q,
given the common set, R, of route choices (cf. Section 3.4). Additionally, the
likelihood of choice, occurring was predicated on the understanding that the

journey time of q has been known.

Up to this point, it must be noted that the journey time has been serving as the
only explanatory variable for the measurement of the route-choice probabilities.
According to the mixture models (that has been implemented and demonstrated
in the Chapter 4), passengers who were observed to have the same journey
times were assumed to have the same choice probabilities for all the alternative
routes. In other words, for any two individuals sampled from the passenger
population, who are labelled i and j (where i, jeQ, Vi=# ), respectively, if
5% = 67", then it should be taken for granted by the mixture model that the
posterior probabilities that they might have chosen the same route, say route r
(VreR), are equivalent. In that case, we should obtain the following equation:
Pr(choice, |,) = Pr(choice,, |3;). The two passengers may be thus regarded as
having the same preference for every alternative route, even if they had actually

used different routes. Or conversely, although the two passengers i and j made
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their journeys by the same route, the fact that different journey time
observations (i.e. 57 #6;”") might result in them having different posterior
route-choice probabilities, thereby leading to biased estimates at the individual
level. This is actually an inherent drawback of the posterior probabilities directly
derived from the mixture models. Although the mixture model appeared to
perform well for the estimation of route choice probabilities at aggregate level,
we cannot infer that Pr(choice, [8,) presents individuals’ probabilistic route

choices with a high degree of confidence.

Basically, the mixture model allows for an oversimplified assumption on the
probabilistic relationship between the two variables: passengers’ journey time,
0, and their possible route choice, r. Such correlation could be simplistically
represented by a graphic structure, as shown in Figure 5.1(a) below (see also
Appendix A). The solid, coloured arc that joins the r-node to the
o-node represents a real-world causality. It indicates that any passenger’s
journey time can be observed only after his/her journey has been completed, for
which the passenger must have made a route choice. That is to say, a journey
through route r brings about (the observations of) & , with a probability
distribution p(d|r).

(a) (b)
Figure 5.1 Bayesian-network structures for investigating passengers’
probabilistic route choices:

(a) a simplistic graphic structure showing probabilistic relationship between
journey time and route choice; and

(b) an extended structure showing causal conditions between entry time, exit
time, journey time and route choice.

But since r is unobservable, we may only be able to learn about it in view of the

journey time observation, with a posterior probability distribution p(r'”|s),
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where r'® represents a possible route choice that q might have made. This
dependency is indicated by the dashed arc in Figure 5.1(a), which has also been

our primary concern in the previous two chapters.

In essence, the journey time ¢ in the mixture model is treated as an independent
variable. This implies that evidence about different entry times T™" (or exit
times T**) among the individual passengers would not have effect on learning
about the distribution of §. Accordingly, two equations hold: p(5) = p(5|T™")
and p(d) = p(S|T™").Thatis, T*" and & were assumed to be independent and
so were & and T, but only the difference, § =T —T™", matters. As has
been mentioned at the outset of this chapter, it is only the variation in the journey
times that causes the individual passengers to be assigned different choice
probabilities by the mixture model. In this sense, the estimates from the mixture
model purely suggest the average route-choice probability (or average level of
preference to each alternative route) of passengers who spent about the same

journey time.

However, passengers’ entry time T actually acts as an important influencing
factor in the journey time variations. In addition, their exit time T*** would be
largely dependent on the specific routes they choose after they touch in, and
hence the corresponding journey times differ. That is to say, the passengers’
journey times are caused jointly by T*", T*" as well as their route choices. The
dependencies among these three variables are illustrated in Figure 5.1(b) (see
previous page). Now in this renewed framework, by comparison to the structure
in Figure 5.1(a), T™" becomes an independent variable, so that passengers’
journey times are considered to have an indirect dependency on their route

choices given both T*" and T*.

Nevertheless, suppose that we have known which route the passengers have
chosen. As discussed in Chapter 2, their journey times would also hinge upon
the linkage between the passengers’ within-station movements at each journey
segment and the transit services (e.g. the timetable of different transit lines). It
involves a bunch of factors, such as layouts of passages within the stations,
individuals’ walking speeds, how many attempts made to successfully board
trains, and the trains’ timetable as well as service reliability. Considered from
this perspective, Figure 5.1(b) simplistically skips over a sequence of serially

dependent time variables that cause observations of T**".
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A main objective of this chapter is to explore a way of involving the linkage in
learning the route choice probabilities for each individual passenger. Efforts
would be focused on combining the passengers’ entry and the trains’ running
schedule, which provides extra evidence for the implications of the passengers’
route choices. We will then attempt to factor such additional information in the
individual choice probabilities estimated from the mixture model, in order to
acquire a set of more credible posterior probabilities of each individual possible

route choice.

The rest of this chapter is arranged as follows. Section 5.2 expands on the points
that have raised in the current section, where the problem being concerned are
reduced to a single variable. It is demonstrated in Section 5.3 that how the single
variable, as an additional condition, could be involved into the previously
estimated posterior probabilities from the mixture model. This is followed by
Section 5.4, where we draw detailed Oyster data samples! from the same LU O-
D pairs studied in Chapter 4, so as to present an illustrative example showing a
comparison of the before-and-after individual route-choice probabilities.

Section 5.5 summarises and concludes this chapter.

A set of symbols that will be used in the following sections is listed below.

Notation:
ENT .
T, entry (ENT ) time of passenger (
T, exit (EXT) time of ¢, given that he/she chooses r
Oyr journey time of passenger  making a single journey by r
EXP : : : : ENT
Oy expelcted_(EXP) journey ‘Flme of g using r, given T, ™", average
walking time and trains’ timetables
0, elementary event that the expected journey time of passenger ¢
is 6, , given that he/she chooses route r and his/her entry
time is T,
n sample size of a given data set
for (O4) PDF of distribution of &,

(Continued)

1 The information of each individual passenger’s entry and exit times is available.
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Notation: (Continued.)

3, vector of a parameter (or parameters) for f (5,)

i estimate of mean of journey time of r

G, estimate of standard deviation of journey time of r

7[;1:@4 updated posterior probability of passenger ¢ choosing route r,

MIX

based on the estimate, 7,

, from a mixture model (UMM)

p nx Ng matrix that enumerates all 7™
Var estimate of the location parameter for PDF of f_(5,)
¢, estimate of the scale parameter for PDF of f  (,)
™" proportion of passenger using route r, based on effective

inference from updated (UPD ) route-choice probabilities

5.2 Correlation between passengers’ entry and trains’
timetable

Passages Walk Passages Walk Passages Walk
layout speed layout speed layout speed

Service | Service
delay delay

Service
delay

Timetable

Figure 5.2 A Bayesian-network structure showing the causality between
passengers’ entry time and exit time.
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From the considerations above, it is necessary for us to expand the arcs which,
in Figure 5.1(b), indicate the causal relationships between T and T*", as
well as between r and T***. To this end, a much more complex structure is built
accordingly, as illustrated in Figure 5.2 (see previous page). This framework
incorporates a sequence of time variables relating to different journey segments
of a specific route, which delineates the way that the determinants of any

individual’s journey time and the transit service interrelate.

Particularly, we use T, to represent the entry time of an individual passenger
q at his/her origin station; and suppose that q has chosen route r. His/her exit
time, which we represent by T, would therefore be affected by all of the
variables relating to r shown in Figure 5.2. In addition, we let 5, denote the
journey time that the passenger ( has spent in travelling on the route r, and so
we have 6, =T = —T"". Apparently, given a certain entry time T, then T
(and hence 6, ) may vary for ¢ due to various circumstances, such as delays in
transit services (or inconsistency of train punctuality) as well as passenger-
traffic congestion (or even overcrowding) leading to passengers’ failures to
board the trains. As a matter of fact, this framework could be viewed as a Markov
chain (Kleinrock, 1975, pp.21-22). However, we turn to a general way of looking

at this problem by reducing its inherent complexity.

It is commonly assumed that arrivals of passengers, and hence the arrival times,
at their origin stations would be uniformly distributed during a certain period.
In our case, we consider their entry times at the gateline, which similarly follow
a uniform distribution and T;"" Vq are independent of each other. Recall the
calculated average travel time of each alternative route, which is represented by
t,(#,w). Itis defined as a sum of all the travel time variables of journey segments
(cf. Section 3.5.1) and has been used for the interpretation and validation of the
mixture model. Since each of the component-labels, r, has been paired up with
a route-label, h, they are exchangeable, and hence t,(4,y) =t,(4,¥), given that

r matches h.

As T, is independent, J,, is equivalent to t (4,y) on condition that T is

known:

5qr = tr (¢’ !//) | TqENT '
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Let o, denote the (conditional) mean of &, . It is then regarded as a

conditional expectation of the route average journey time, and represented by

5 =E[L 6w . (5-1)

where E[t,(¢,w)] was calculated as the sum of the averages for all the journey
segments. Note that ¢, does not necessarily equal E[t, (4, y)]; nevertheless, as
a conditional variable, it is supposed to differ among passengers having different
entry times. This is mainly because of the variations among passengers’ wait
times for boarding a train, at the origin and/or interchange station. To a large
extent, 5;“ could account for the facts that (a) passengers might experience the
same journey time but actually travelled by different routes, and (b) passengers
might experience different journey times though travelled by the same route. It
could therefore be of great value for refreshing the passengers’ route-choice

probabilities estimated from the mixture models.

To obtain the values of 6, vqeQ and Vr R, several assumptions are made
as follows. We assume that the station facilities, especially the layouts of all the
passages, are fixed. In this way, the average walking times to access, egress and
interchange are calculated given the average speeds within the passenger
population. In addition, we assume that there is consistent punctuality of transit

services, whereby individuals’ wait times could be calculated.

The proximate cause of journey time variation is reduced to only the entry time
and trains’ timetables, but reflected by the wait time. Figure 5.3 below depicts a
simplified structure, compared to that in Figure 5.2 (see p.131), where those
shaded nodes with dashed outlines represent the averages of the corresponding
variables based on the assumptions above. The plain nodes with dashed outlines

would then be fixed given the observation of TqENT, and thereby 5;,” is derived.

/ / N
( t;c: ) [ tT”J \ ( tELR )

\// \// \,

/ / \ / \ / ~
\ > t " TI > TI LsK / ’ t \TI ld / I\TEXT )
\ , N~ /

Figure 5.3 A simplified structure of passengers’ journey.
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Let 8, represent an elementary event that the expected journey time of
passenger  travelling by route r is &, , given his/her entry time TS is
observed. This additional information would be considered for updating each
individual route-choice probability Pr(choice, |8,) estimated from the mixture
model in Chapter 4. That is, we are now trying to calculate the choice probability
of passenger q by taking account of two conditions including both 8, and &, .

This posterior probability is denoted by Pr(choice, |8,,8,) accordingly.

For all alternative routes, all the corresponding probabilities must also sum to

one:

> Pr(choice,, |8,,8,,) =1. (5-2)

reR

This constraint is again to specify that passenger q only chooses one of all the
alternative routes. Of central interest to us now is that how we could deal with

the additional information of 8, and work out Pr(choice, [8,,8,) VreR.

5.3 Updating the posterior route-choice probabilities

5.3.1 Factoring additional condition

By definition of conditional probability, we have

Pr(choice,,d,,8,)
Pr(s,,9,,)

Pr(choice,, |8,,8,) = , (5-3)
provided that Pr(3,,8,) exist and that Pr(3,,8,)>0. In conformity with the
product rule (cf. Russell and Norvig, 2010, pp.485-486), Pr(3,,6,) can be

further expressed as follows:
Pr(d,,6,)="Pr(3,|d,)Pr(,)=Pr(3, |3,)Pr(3,). (5-4)

It should be noted that, 8, would occur for sure given the observation of ¢'s
entry time T;™", which does not affect the probability of 8,. The two events

and 9, are conditionally independent given the entry time of q is observed.

For the numerator, Pr(choice,d,,8,), it is a joint probability that all the three
events would occur simultaneously. By applying the chain rule (cf. Russell and

Norvig, 2010, pp.514-515), it could be factored in several ways as the order of
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events in the joint probability does not matter. Besides the equivalence

presented by equation (5-3) itself, we also have

Pr(choice,,d,d,) = Pr(3, |8, choice, ) Pr(s,, |choice,)Pr(choice, )
= Pr(8, |9, choice, ) Pr(choice, |8,)Pr(3,)
= Pr(d,, |8,, choice, ) Pr(3, | choice, ) Pr(choice,)
= Pr(d,, |8,, choice, ) Pr(choice, |8,)Pr(3,).

ar?

Moreover, it should also be noted that the expected journey time &, is derived

under the premise that g has actually chosen route r. The event, choice_, as a

ar’
condition, would provide no more information about the occurrence of 8, and

vice versa. On this account, the two events, choiceqr and o, are deemed to be

ar”’

independent. That is,

Pr(8,, |choice,)=Pr(3,,), (5-5)
and

Pr(choice,, |8,) = Pr(choice, ) . (5-6)
Therefore, the number of alternatives for equation (5-3) could be reduced to

three, and so

Pr(choice,, d,,d,) = Pr(3,|9,, choice,)Pr(s,) Pr(choice, )
= Pr(d,, |9,, choice, ) Pr(3, | choice, ) Pr(choice, )
= Pr(d,, |9,, choice, ) Pr(choice, |3,)Pr(3,).

Still, there are six combinations for the fraction on the right-hand side of

equation (5-3), which are enumerated as follows:

Q) Pr(s, |9, choice,, ) Pr(choice, )
1
Pr(3, |3,,)
(ii) Pr(s, |9, choice, ) Pr(d,) Pr(choice,)
11
Pr(3,, 19,)Pr(s,)
(i) Pr(3,, |3,, choice,,) Pr(3, | choice,,) Pr(choice,)

Pr(8, 18,,) Pr(3,)

(see next page)
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Pr(s,, |8,, choice, ) Pr(3, | choice, ) Pr(choice,)

(iv)
Pr(s,, |8,)Pr(s,)
@) Pr(8,, |8,, choice, ) Pr(choice, |8,)Pr(3,)
Pr(d, 19,)Pr(d,.)
(i) Pr(s,, |8,, choice, ) Pr(choice, |3,)

Pr(3, 15,)

To find a solution to Pr(choice, [8,,8,), the focal issue to be addressed now is
to select the most suitable form. Certainly, the following selection criteria must
be fulfilled: firstly, the knowledge derived from the mixture model must be
considered to be furthering the learning process on this issue; and secondly, 6qr
must act as a condition. By looking through all the six formulas, only the term (i)

can meet both the criteria. Therefore, we consider

Pr(8, |9,, choice, ) Pr(choice, )

Pr(d,9,)

ar’

Pr(choice,, |3,,98,) = , (5-7)
where Pr(choice,) is the prior probability and has been estimated from the
mixture model. Regarding the other term of the numerator, it is reasonable that
Pr(s,|o

given the fact that q has chosen r and the expected journey time was &,

o»choice ) could be interpreted as the likelihood of observing &,

according to his/her entry. In this sense, this term actually corresponds to the
journey time distribution of the individual g conditional on T;™", which is in

essence the probability distribution of the variable &, .

Let f, (5, |9,) represent the PDF of the distribution of 5, , where 9, denotes

a vector of parameter(s). Thus, we could have

Pr(s, |

ar’

choice, ) = fo. (5, =&, 19,) - (5-8)

Now our focus is shifted to learn the conditional PDF, f (5, [9,).

5.3.2 Conditional journey time distribution

For each individual g, his/her journey time 6, may be following a certain

distribution. Suppose that we have obtained a huge data sample of passengers’
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journey times between the 0-d , which is collected in a given period. One possible
way to learn about f (5, |8,) is to sort out each individual’s journey time
observations from the whole sample. If we could obtain a sufficiently large
subsample for @, it would be most likely that ¢, as a frequent traveller, might
always choose the same route. But obviously this is not suitable for every

individual within the data sample or the passenger population.

An alternative way is to assume, for any passenger q (q=1,...,n, n is the
sample size), that &, is distributed according to the probability distribution of
o, , but with its own measures of central tendency. By dint of the mixture model,
we have already gained some knowledge about each of the component
distributions, c (o, ]0,), where 0, represents a vector of parameter(s) being
estimated. In this regard, we are actually assuming that the variables ¢, ..., J,,

Vr are independent and share the same statistical parameters 0, except for the

location parameters.

In order to better illuminate this point, let us suppose, for example, that o, is
normally distributed, i.e. 5, ~ N (x,,57), where 4, and o, denote its mean and
standard deviation, respectively. Based on the hypotheses stated in Chapter 3,
both x4, and o,, hence the distribution c (3, | &,,0,), could be obtained from
estimating the corresponding GM model relying on a data sample. Given the
estimates of the mean and standard deviation (still denoted by 4 and &, ,
respectively), we shall therefore believe that 8, ~ N (,,8,). Meanwhile, based
on the current assumption (stated in the previous paragraph), the probability
distribution of &, is also considered to be Gaussian. That is, for all passengers
within the sample data, the journey-time variables J,,,...,5,, are homoscedastic,
and would be assumed independently, normally distributed. Note that 6, and
o, are not necessarily identically distributed. In this case, still, the standard
deviation of 5qr remains unknown, which would then be assumed to be the
estimated value according to the GM model, that is, we would have
\§qr =(J, ,6,), hence 5, ~N(5,,6,). In this way, the likelihood that the
journey time of q would be 5(;)35 can be roughly approximated to the probability
density f, (5, =6,"°15,",6,), given the information of his/her entry time and
trains’ timetable.
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5.3.3 Deriving updated posterior probabilities

Now the only term that remains unknown in the fraction of formula (5-7) is
Pr(8,|d,). Since 8, and choice, are independent, as stated by formula (5-6),
we could also apply the law of total probability to Pr(3,|d,,):

Pr(3, |8,) = >_Pr(3, |8, choice,) Pr(choice,, | 3,),

reR

namely,

Pr(3, |8,) = >_Pr(3, |8, choice,) Pr(choice,,). (5-9)

reR

Assuch, Pr(8,|8,,) is actually equivalent to the sum of the numerator of the right
part of formula (5-7), which also guarantees the condition (5-2). Therefore, we

have

Pr(s, |9, choice, ) Pr(choice, )
> Pr(3, |8, choice, ) Pr(choice,,)

reR

Pr(choice,, [6,,d,,) =

(5-10)

Given equation (3-18), i.e. Pr(choice, ) = @, and equation (5-8), all the terms in
formula (5-10) can be computed depending on the knowledge that has been
held. Therefore, for each individual passenger, the updated posterior probability

of each alternative route being chosen is derived.

a)r fqr (5qr = 5(;)BS | Sqr)
Za)r fqr (5qr = 5(?]35 |Sqr)

reR

Pr(choice,, [6,,d,) =

(5-11)

UMM

We use 7, o

ar
Pr(choice, |8,,8,) Vq=1...,n, Vr eR, with the superscript ‘UMM’ indicating

(in contrast to 7, *, cf. formula (3-22)) to represent the estimate of

that is an updated estimate based on the result of a mixture model.

Similar to IT,"*, the updated set of posterior estimates are also enumerated in a

n x N, matrix, which we represent by

UMM UMM
7 TN,
UMM UMM
72' .o ﬂ'

21 2N

o |2 TN | (5-12)

UMM UMM
1 T,

with (see next page)
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é)r 1:qr (5qr = 5qOBS | 9qr)

U'MM - A OBS | Q ; (5'13)
’ za’r for (O =4 [8¢,)
reR
and evidently,
> gt =1. (5-14)

reR

The following section will compare the estimates between IT,"™* and I1;™.

5.4 Implementation of the updating approach

It is the quality of the update - the extent to which 8, as extra information,

ar
would modify the estimates of each individual passenger’s choice probabilities -
that is vital for the inference as well as understanding of the passengers’ actual
route choices. For illustrating what effect of such alteration of conditions would
be, we follow up the seven cases of O-D pairs, which have been previously
examined, and implement the proposed updating method by exploiting the
estimates derived from Chapter 4. So far, for each of the single O-D networks,
we have employed both GM and LNM distributions to fit their respective data
sample of OJT***. We will only take advantage of the model that performed
relatively better than the competitor in each case (in light of the test results of
gof ). From the elected mixture model, we have already obtained II,™*, along
with the model parameters. On that basis, we would then be able to update
individually those estimated posterior probabilities by bringing in the further

consideration about 8, .

With respect to the application of the mixture model, it might be confronted with
completely different situations given different O-D cases and different number
of alternative routes, especially for matching up route-labels with their real-
world counterparts. Unlike that situation, in this section, the application of the
update would be only to change the posterior probabilities of passengers’ route
choices for each alternative routes, wherein the demonstration per se would be
analogous for all the O-D cases. For this reason, in this section, we present only
one case, Case-1: Victoria — Holborn, as an illustrative example, with the results

of the other six cases (Case-2 - Case-7) exhibited in Appendix D.
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5.4.1 Data issue

Information of passengers’ entry times is one of the essentials for the updating
approach. However, the data samples used for the mixture model estimation, as
has been declared in Chapter 4, were each retrieved from a processed data set
where the entry time data for each individual was unavailable, but merely
OJT °*°. In that situation, the updating approach was not be able to be applied on

the same samples.

Instead, we had to draw support from another sample of Oyster data, which
details the timestamps of everyone’s entry as well as exit. This data was gathered
in a period of 28 consecutive days, from 6th February (Sunday) to 5th March
(Saturday) in 2011; and it is confined to (a sample of) 5% of the Oyster journey
records across the whole LU network (during the 28-day period). Given the 5%-
sample data, which we represent by A, (in contrastto A as the larger sample),
for each of the 0-D cases being considered, its valid OJT °** is also delimited by
an upper outer fence. The value of this fence was set to be the same as that of the
sample used for estimating the mixture models, rather than using the upper
outer fence of the 5%-sample itself. This is because the sample size of the latter
is much larger and that data was collected during a much longer period, which is
believed to deliver a more representative statistical boundary. Moreover,
although the sampled passengers may have several journey records presented
in the sample data, different journey records made by the same individual were
each regarded as an independent journey of the others. The sample size and the
mixture model used for each of the O-D cases is briefly summarised in Table 5.1

below.

Table 5.1 Summary of sample sizes and elected mixture models for seven case

studies
Case- N The relatively better mixture model Sample size of A,
1 2 LNM 105
2 2 LNM 89
3 2 LNM 140
4 3 GM 85
5 3 GM 92
6 4 GM 48
7 4 GM 42
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5.4.2 An example based on Case-1

With the individual Oyster journey records of the valid 5%-sample of Case-1, in
total, 105 valid records were obtained in respect of this O-D within the period of
AM Peak (07:00 a.m. - 10:00 a.m.), which is still denoted by A, . This section
compares I, * and II, " at both the individual and aggregate level, where I, *
represents the posterior estimates of IT,"* for the sample data set A, , while
HZ? represents the corresponding updated choice probabilities. Note that for
most of the sampled passengers, A, did also contain multiple observations for
each of them. However, we still assume that all the journey time observations are
independent of each other. As such, the context is equivalent to that each
passenger has completed only one journey; and more specifically, A, were

supposed to be a sample of 105 passengers.

Further to Case-1: Victoria — Holborn

Recall Case-1 from Chapter 4. For this case study, we investigated the pair of O-
D stations: Victoria — Holborn, which is connected by two indirect routes. Every
passenger (still denoted by q ) travelling between this O-D would have to
transfer at either Oxford Circus (referred to as Routel, and labelled r=1) or
Green Park (referred to as Route2, and labelled r=2 ). Details about this

network has been described in Section 4.3.1.

Given A, , the OJT“* of each of the 105 passengers (each being denoted by
OJT,™ and represented by an orange cross, *) are depicted against their entry
times in Figure 5.4 (see next page). It is noted that there was a ‘gap’ in the data
between about 07:15 and 07:30 a.m. The main reason for this is that the data was
sourced from the 5% of all the Oyster data sampled on the basis of a certain group
of travellers on the entire LU network. It was possible that none of the sampled
travellers for this O-D made journeys during that 15-minute interval. Similar
situations also occurred to all the other O-D cases in this thesis, except Case-3

and Case-4 (see Appendix D).

Additionally, given the entry time of each individual sampled, the expected
journey times 5;” of each passenger in the sample is also illustrated, with the
purple triangles, A , and blue circles, ®, representing 5;1” and 5qEZXP , respectively.
The computation of &, and J,," followed the steps of deriving the expected

route-specific journey time (referring to formula (5-1); see also Section 3.5.1).
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Sample Oyster data
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Figure 5.4 Comparisons between OJT™ and &6, Vq,r, given A, for
Victoria = Holborn.

As can be seen from Figure 5.4, given passengers’ entry times (within AM Peak),
0, and J,,” turned out to be bouncing between roughly 17 and 20 minutes,
and between 20 and 23 minutes, respectively. These ranges also approximate the
95% Cls for Case-1 (as shown in Table 4.6, p.88). Moreover, given different entry
times, passengers’ OJT °*° fluctuated significantly; and their journey times might
differ sharply given the same entry time. These facts have effectively verified our

previous statements (See Section 5.1).

According to the test results of gof for this case (see Table 4.7, p.90), the LNM
model was believed to have outperformed the GM, given the data set A
containing a sample size of 24,760 individuals’ OJT°** . On that basis, the
estimates of the mixture weights (still denoted by &, ; see Table 4.6) of the LNM
was entered into the revaluation/update of each of the sampled individual’s

posterior route-choice probabilities.

In addition, in this case, the journey time of any passenger (still denoted by q)
travelling by any of the two alternative routes (denoted by r) was treated as a
random variable, denoted by 5qr Vr=12 and Vq. And 5qr was assumed to be

log-normally distributed accordingly, with scale parameter being the same as the
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estimated scale parameter (denoted by &, ) of the r-th LNM component
distribution. That is, there shall be two hypothetical log-normal distributions for
each (. Note that the estimators of parameters for a log-normal distribution is
different from a Gaussian case exemplified in Section 5.3.2. In this case, 5;,” and
6, are not parameters of the conjectural log-normal distribution. In this case, we
use the symbols y, and ¢, to represent, respectively, the location and scale
parameters of the r-th hypothetical log-normal distribution for passenger g, In
turn, we could represent the hypothetical distributions by &, ~log N(y,,,s;)
and o, ~logN(y,,.5,) -

Denote by 7, and ¢, the parameter estimates. They should then be calculated,
respectively, as follows (cf. Walck, 1996, p.86):

=mqam>/Afﬂﬁ?f) (5-15)

and

$wl+w/¥”) (5-16)
Given f)qr = (¥4+6,), according to formula (5-13), we would have

t c?afql(é"“wa,@l)
N B
DR M Sl PN

(5-17)

and

o O T30 54208
q2 2
> @ (5 5l

(5-18)

whereby IT,”" could be gained according to equation (5-12). Note that here &,

is equivalent to OJT “*° of individual q.

Both I, * (based on LNM) and I, for this O-D pair (Case-1) are depicted in
Figure 5.5 (see next page), showing the differences between the two sets of

posterior choice probabilities. The plus signs, coloured in purple in Figure

MIX
q,r=1

MIX

ar2 ONthe

5.5(a) and in Figure 5.5(b), illustrate, respectively, 7, -, and

basis of the sample data set A, .
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Figure 5.5 Comparisons between 7, (based on LNM) and 7z, for
Victoria — Holborn:

(a) Routel: - (via Oxford Circus); and

(b) Route2: - |9ty (via Green Park).

The interval between the tick-marks on the horizontal axis spans 10 bars each
relating to an individual /journey record in the Oyster data.

For comparison, the purple empty-triangles A as well as the blue empty-circles,

O, illustrate, respectively, 7 q ", and 7z..,. Each of the symbols represents one

q,r=2"
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observation of the data set A, . In addition, a grey bar indicates the related entry

MIX

time of the passenger. Take, for instance, Routel. Given the same OJT °*°, Ty

UMM

o could vary significantly

was a constant (for all passengers (). In contrast, =

as passengers’ entry times differed.

Let us look further at one of the sampled individuals, labelled i, who entered
Victoria station at T,""" =07:39 a.m. and exited from Holborn at 07:57 a.m. Then
his/her journey time OJT,”** was 18 minutes. According to the estimation result
from the LNM model for this O-D, given OJT,”*°, the posterior probability of i
choosing Routel was 7;",”; = 76.3%, while that for Route2 was 7z;,”, = 23.7%.0On
the other hand, given T,"", along with the information of timetable as well as
average walking times for AEI between this O-D, the expected journey times that
each alternative route for this passenger could be calculated as per formula
(3-45). That is, an expected journey time for i travelling by Routel were
calculated to be ¢; 5, =19 minutes; and &, = 21 minutes by Route2. From this,
intuitively, we could say that passenger i might be more likely to have chosen

Routel, since OJT,”* was less than and closer to &; 7. This conjecture was also

MIX

i .1 was much

supported by the evidence that the mixture model estimate 7

MIX
i,r=2"

higher than =
In order to justify the conjecture, we updated 7z, Vr=1,2 by taking into
account the information about the differences between the OJT.”*° and &
Vvr=1,2. To this end, it was assumed that &, _, and J, ,_, were each following a
log-normal distribution. The distribution parameters were calculated using
formulas (5-15) and (5-16), given &, (estimated from the LNM model, where
6,=24 and 6,=4.4; see Table 4.3) as well as 6, Vr=1,2. In this case,
0, 4 ~logN(2.9,0.1) and &, ,_, ~log N (3.0,0.2). Note again that the journey time
variable &, might possibly follow any other probability distributions in reality;

however, for simplicity, we considered it being log-normally distributed only in

the scope of his thesis (cf. Section 5.3.2).

Then the updated choice probabilities could be derived from calculations based
on formulas (5-17) and (5-18), respectively, where the estimated LNM weights
were also involved (i.e. @ =69.1% and &, =30.9%; see also Table 4.3, p.84).

For passenger i, 7", =81.5% and 7", =18.5%. 7", was greater than 7z "

i i,r=1

MIX

while 7", was less than 7z;,”, . Evidently, this result further justified the

conjecture that i might be more likely to have chosen Routel.
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It is noticeable that the application of the proposed updating method caused

some sharp reversals of the choice probabilities for those faster travellers. That

UMM

is, 7, was diametrically opposed to 7z, " that were estimated from the LNM

model. And among those quickest journeys (with journey times being less than,

say, 15 minutes), the updating had dramatically altered, or rather, decreased the

MIX

w - Apossible reason was that when OJT %% was small, both the

probabilities 7,
hypothetical distributions of 6, and J,, might suggest that there was a small
likelihood of choosing either route given the OJT “*°. As a consequence, both of
f (OJT*|7,1,¢) and f,(OJT*|7,,,¢,) were rather small. In that case, if the

former were slightly less than the latter, then that would result in a huge

UMM

difference between 7" and 7,",

since their sum should be equal to one (see
also formulas (5-13) as well as (5-14)). It must be recognised that this is actually
a drawback of the proposed updating approach, which would potentially bias the
naive inference of passenger traffic distribution between this O-D (cf. Section
3.4.1). Notwithstanding, But for future research, a possible way to improve it
could be to test different probability distributions for each passenger for each
alternative route.

UMM

a would

Besides, as OJT “*° became longer, the updated choice probabilities 7

MIX

be much higher than 7",

given the corresponding entry times. This could be
reasonable, because the estimated 95% CI upper boundary of the mean journey
time of Routel was nearly 22 minutes, which may imply that the sampled
passengers might experience longer journey time on Routel (as well as on
Route2) in the context of rush hour. In that sense, the update, to some extent,
might also reflect the impact of passenger-traffic congestion or service delay,
which possibly lead to passengers’ boarding failures.

Moreover, aggregate measures are presented in Table 5.2 (see next page), where

ROD INF

o', o™ and @""

, respectively, represent the proportion of respondents who
chose route r according to the RODS result (up to 2010), the proportion of
passenger-traffic on route r given effective inference from the mixture model

and that according to updated choice probabilities.
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Table 5.2 Proportion of passenger traffic for each alternative route on
Victoria — Holborn

In this case, @, is calculated on the basis of LNM model estimates.

Sample size Proportion of passenger-traffic (%)
Oxford Circus Green Park

r=1 r=2
" 526 71.3 28.7
o, 24,760 69.1 30.9
o 24,760 69.2 30.8
" 105 69.8 30.2
" 105 69.7 30.3

=

and o are almost the same before and

As can be seen from Table 5.2, o™ .

after the update. The estimates derived from the larger sample of journey times
modelled by mixture distribution were retrieved from the much smaller sample.
Thus the updating method is believed not to affect the inference of passengers’

average choice probabilities of different alternative routes.

5.5 Summary and conclusions

On the basis of the mixture model of passengers’ journey times, this chapter
proposes an approach to update the previously estimated choice probabilities
for each individual passenger. The update is achieved by taking into account
additional information about the occurrence of Sqr , which refers to a conditional
expected average journey time of each route for each passenger. In that way, the
posterior probability Pr(choice, [8,) estimated from the mixture model in
Chapter 4 has now been updated to a newly formed posterior route-choice
probability, i.e. Pr(choice, d,,8,,) . It should be particularly noted that it is the
prior probability, Pr(choice, ), rather than the posterior probability per se, that
directly enters the calculation of Pr(choice, |8,,8,), where Pr(choice,) is an
estimate of the mixture weight for a mixture model. However, the estimation of

Pr(choice,, ) is reliant on the posterior estimates. Thus, the mixture model in

effect provides prior knowledge for updating the posterior choice probabilities.
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This extra condition &, was derived given the following assumptions. First,
every passenger’s journey time is examined by a set of hypothetical probability
distributions, each of which is based on a situation that the passenger always
chooses one of the alternative routes. The number of such distributions for a
passenger was in line with the size of route-choice set for the passenger. In that
way, the likelihood that an observed data 6, was from a certain route was
learnt for each individual passenger, which is distinct from the likelihood
function Pr(8, |choice,) considered in the mixture models. Additionally, it was
assumed that consistent punctuality for all trains was assured, in which case the
timetable data is practical for use. Third, all station facilities (e.g. passages, ticket
gates) were assumed to remain unchanged. These assumptions thus made allow
the calculation of the expected average journey time of each alternative route for

every passenger, given the observation of the individual’s entry time.

With the use of detailed Oyster card data gathered from the seven O-D pairs
studied in Chapter 4, for each case, a comparison is made between the choice
probabilities before and after the update. It must be pointed out that a major
issue here is the inconsistency of the observation period of the two data sets: the
data used for demonstrating the updating of choice probabilities and the OJT °**
samples used in estimating the mixture model. This is due to the shortage of the
detailed individual Oyster data. Notwithstanding, at the aggregate level, the
average shares of passenger traffic distribution among alternative routes
presents little difference between the two scenarios. In view of the limited
sample size of the detailed data, the mixture model shows high adaptability for
estimation of aggregate measures. At the individual level, passengers’ choice
probabilities will fluctuate significantly as their entry times vary. To some extent,
such differences demonstrate that the influences of the additional condition, as
well as reflects a more realistic range of individual taste variance in different
alternative routes. Still, there is not convincing evidence that demonstrate
whether the update exerts positive or negative influence on the learning of
passengers’ probabilistic route choices. This will be further tested in the next

chapter.
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Chapter 6
A latent route choice model

6.1 Introduction

From the previous chapters, we have already contrived to obtain two different
sets of posterior probabilities of passengers’ route choices between any given
pair of multi-route O-D. Based on the GM and LNM models, the probabilities that
an individual might have chosen each of the alternative routes have been derived
for all passengers in a data sample of their actual journey times, which we
represented by A . That set of estimates was represented by IT,* (derived from
Chapter 3 and Chapter 4), and later by II, " relating to the detailed individual
data sample A, (in Chapter 5). On that basis, such posterior probabilities for
each individual have been updated in light of supplementary knowledge on the
expectation of their journey times that were deterministically calculated. The
updated set of posterior estimates was then represented by I, ". Nonetheless,
the extent to which either of the two sets can reflect the passengers’ true choice
probabilities has not been evaluated, though, theoretically, l'[fi“ should be more
sensible than IT}™. In other words, the credibility of those estimated posterior

probabilities may not be fully guaranteed.

As mentioned in Chapter 3, the true choice probability that a passenger q would
place on a route r would essentially be due to his/her own personal propensity
(cf. Section 3.2). From the theory of random utility models (McFadden, 2000),
g may be more willing to choose r if he/she perceives it to have a relatively
higher utility than other alternatives, and will thus choose the one that offers the
highest utility. It is noted, however, that the estimates of those posterior
probabilities of q having likely chosen r were actually compliant with Bayes’
theorem. Moreover, it in effect quantifies a subjective degree of our belief about
the occurrence of the route-choice event, irrespective of how/why the route
choices were actually made by . Notwithstanding this irrelevance, ideally, we
would still expect that the posterior estimates of the passengers’ choice

probabilities for each route would be as close to the true values as possible.
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Nevertheless, to gain insight into the true choice probabilities would then entail
the modelling of the passengers’ decision-making process per se. We are thus
again led to think of the means of discrete choice models, as it fundamentally
takes into consideration a range of factors that relate to passengers’ travel
behaviour. Depending on the model specification, the parameter estimates of
those factors may shed light on how/why passengers would choose a specific
route. An understanding of such route choice behaviour of the passengers is of
great interest to us; and it would also be a valuable asset for effective planning of
local public transport (cf. Section 1.1). Yet, again, the development of such route
choice models, or more specifically, the estimation of the models’ parameters,
would necessarily be reliant on observations of each individual’s actual route
choice, which, however, are not available in our case. In this regard, the
conventional process for estimating the discrete choice models would be

suspended for the lack of the route-choice data (cf. Section 2.5).

In such a context, this chapter pursues a route choice model, which will cope with
the passengers’ route choices within the probabilistic setting, rather than the
actual route-choice observations. It is hereby referred to as a latent route choice
model, wherein the term ‘latent route choice’ is interpreted to mean that the
passengers’ actual route choices are not observed (or not observable), but could
be known up to a choice probability; and such probabilities of all alternatives

correspond to the posterior probabilities being estimated otherwise.

This chapter is intended for two objectives of equal importance. On the one hand,
we seek to assess the previously estimated posterior probabilities of route
choices and to validate the updating approach proposed in Chapter 5. On the
other hand, we also aim to gain an understanding of why passengers would
choose a specific route between any given 0-D pair. Accordingly, this chapter is
to develop a latent route choice model, with the posterior probabilities of
passengers’ route choices being used as input into the representation of choice
probability as well as the estimation of the choice model. Therefore, whether the
posterior probabilities are trustworthy would largely depend on whether the
latent choice model could yield meaningful estimates of relative sensitivities to

explanatory variables that are specified.

To these ends, the rest of this chapter is arranged as follows. Section 6.2

presents a brief review on the choice modelling techniques. The latent choice
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model is then introduced in Section 6.3 that illuminates the idea of how the
previously estimated posterior probabilities play a part in the model estimation.
Section 6.4 presents two empirical examples of applying the proposed approach
by estimating a simple multinomial logit model, with use of the detailed Oyster
data on the LU. At the end, a summary and conclusions are presented in Section
6.5.

6.2 Choice modelling

6.2.1 Standard logit choice probability

Any perceptible changes in the transit services (concerning e.g. frequency of
lines/trains, transfer cost as well as accessibility of passageways) between a
given 0-D might easily have influence on passengers’ route choice behaviour.
Discrete choice models have certainly been the predominant approach to
understand such behavioural process as to how the route-choice decisions are

made.

In contrast to the route-choice modules embedded in most deterministic transit
assignment models, which typically minimise the passengers’ generalised travel
cost function (cf. Section 2.2.2), discrete choice models, however, look at their
perceived ‘utilities’ of each alternative route, with the specification of utility
functions. As such, in general, a utility function measures the ‘attractiveness’ of a
particular route - relative to its alternatives - to each individual passenger.
Based on the premise that a passenger would always seeks the most attractive
route to him/her, only the route that can offer the highest, or the maximum

utility will be chosen by the passenger.

Let us keep looking at the 0-d network with N alternative routes (illustrated
in Figure 3.1, in Section 3.2). In this background, we could let U, denote the
utility that passenger ( perceives he/she may gain from choosing route r; and

it can be specified in the simplistic form as follows:
Uqr =Vqr +Egs

where V expresses the deterministic utility of r, and &, acts as an error term.

Intrinsically, V, is linked to a number of factors that potentially affect q’s

qr
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decision on whether to choose r, which could be related to various attributes of
the route r (e.g. their transit services) and of the passenger q per se. We shall
treat these factors as quantitative random variables that can be numerically
measured for each individual passenger. As such, V. could be further expressed
as a function of the variables, which is parameterised by a vector of coefficients.
In reality, there must be some other factors that also exert impact on the true
utility perceived by g but might not (be able to) be represented by V, .
Concerning those unknown/unobservable factors, they are then ascribed to &,

as a completely random variable.

As the most popular discrete choice model, the logit model is based on the
premise that ¢, VqeQ, Vr eR are independent and each following the type I
extreme value distribution (cf. Train, 2009, p.34). This assumption then serves
as the necessary and sufficient condition for the derivation of the standard
structure of logit probability formula, which, in the context of this chapter, could

be expressed as follows:

exp (Vqr )

= exp(Vy )

This is the probability of passenger  choosing route r.

6.2.2 Route choice models

A variety of applications of discrete choice models for route choices have been
developed by looking into many factors (e.g. travel time variability, fare) that
may have effect on the travellers’ route-choice behaviour, which allow for
varying degrees of responses of the individual passengers. Prato (2009)
conducted a comprehensive review of the choice modelling approaches. A range
of route choice models with diverse modifications on the structure of the
standard logit formula were surveyed in the context of the route choice on road

traffic network.

Given a multi-route O-D pair, alternative routes may potentially correlate with
each other due to their overlaps, in which cases a station or some route sections
might be shared by more than one transit lines (e.g. the overlap between the

Circle and lines on the LU). Without consideration on such correlated
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issues, the estimates of the sensitivities to attributes affecting route choice may
be biased when developing the relative choice models. For modelling this
common lines problem and approximating the correlation among these routes,
based on the simple logit structure, correlation terms have been introduced into
the utility functions, where amendments are made to the deterministic part of
the function (Cascetta et al., 1996; Ben-Akiva and Bierlaire, 1999; and Bovy et al.,
2008). Cascetta et al. (1996) firstly brought forward a commonality factor (CF),
which is used to capture the similarity between each route and its alternatives
within the choice set. Each CF is associated with each route choice. From this, the
degree of the similarity could be measured. On the basis of the standard logit

structure, the choice probability function of C-Logit is specified as follows:

_exp (Ve + 8 CE,,)
Ty exp(V,, + BT CE, )

where B represents the coefficient of the CF as an additional variable. It is
supposed to be negative, so as to indicate the utility of a route is in inverse

proportion to that of the other alternative routes.

Ben-Akiva and Bierlaire (1999) took into account a path size (PS) attribute for
each alternative route, given those alternatives overlap, or rather, share some
route sections. The PS, as a correction factor, enters the deterministic part of the
utility associated with each route, which result in the original logit choice

probability turning into the following expression:

_exp (Vy + 87 -log(PS,) )
T > exp(V, + B log(PS,,))

where S°° is to be estimated as the parameter of the PS. Such a choice model is
termed thus path size logit (PSL). Further, Bovy et al. (2008) updated the PS with
a path size correction term, in which case the model is known as path size
correction logit (PSCL) and may yet yield similar estimation results to PSL. It is
noted that the correlations between alternative routes could only be partially

explained by PSL or PSCL.

Likewise, more intuitive corrections to the utility function hence the choice
probability have also been made to improve the interpretation through more

advanced generalised extreme value models. Typical examples include paired
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combinatorial logit model and the more general cross nested logit model. Both
were adapted for route choice modelling by Prashker and Bekhor (1998), and
the generalised nested logit model by Bekhor and Prashker (2001). Still, both of
the follow issues remain: restricted taste variation and disability of handling
with temporally correlation in error terms. Besides, models within mixed logit
structure, €.g. multinomial probit model (Daganzo and Sheffi, 1977) and logit
kernel approaches (Bekhor et al., 2002), are computationally expensive due to

their choice probabilities taking a non-closed form.

The subnetwork model, which is an error components logit model developed by
Frejinger and Bierlaire (2007), considers that the correlation between different
routes is primarily caused by overlapping route sections of key routes. It is noted
that such correlations involve not only physical overlapping but also perceptual

relevance. The context, though, was specific to road networks.

As noted above, the evolution in the discrete choice models for route choices rely
on researchers to customise the modification of and to improve the structure of
the logit probability term. But all in all, to estimate the parameters for the
variables specified in those models would essentially still depend on the
observations of travellers’ actual choices. In other words, the estimation of the
models requires availability of data of each individual’s route choice that either
is stated or has actually been made. In this regard, a shortage and/or an absence

of the route-choice data may often be an obstacle for the model development.

6.2.3 Data for choice modelling

In a conventional way, as aforementioned, the estimation of a discrete route
choice model is essentially reliant on us obtaining the data of each individual’s
actual route choice. On this account, collection of the data is often supposed to be
a vital issue for the analysts to deal with. Either unavailability or shortage of the
data would cause the model estimation to fail, which may be an obstacle to the

model development.

As mentioned in Section 2.4.2, the route-choice data could be collected through
two approaches. One is by conducting surveys verbally or in a written form,
which could obtain the respondents’ text descriptions; and the other turns to

employ intelligent devices of passive monitoring, e.g. GPS tracking units, which
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automatically gathers digitised information. In practice, however, either
approach could be very costly for gathering sufficiently large data samples.
Occasionally, the data that has been acquired might be inexplicable due to a lack
of accuracy or loss of crucial information. For instance, as stated by Bierlaire and
Frejinger (2008), a GPS unit may track a traveller in terms of formatted
geographical coordinates recording his or her routes, and as a consequence, the
observed data would not yet be immediately interpretable. That is, effective data
of route choices would have to be retrieved through certain conversion prior to
its being put into estimating the models. Meanwhile, such manipulation itself
might also induce error information unexpectedly, and hence biased model

estimates.

With regard to road traffic networks, much progress has been made to tackle the
aforementioned issues. For the purpose of narrowing down the differences
between the observed data and the real choices on road traffic networks,
initially, Ben-Akiva et al. (1984) assigned descriptive labels to choices of e.g.
fastest or shortest route. Later, in the context of route choice of long-distance
travels by car, Bierlaire et al. (2006) looked at ‘aggregate observations’ instead
of exact data of route choices, which allows for several routes to correspond to
one ‘observation’ given a shrunken choice set. In this case, survey respondents
only need to list sequentially approximate locations that they passed through
during the course of a journey, rather than the specific positions. A possible
approach to forming a whole route that is the most likely actual choice is to
assume the route sections as the shortest routes between each of these
sequential location points. This concept was later formulated, by Bierlaire and
Frejinger (2008), as ‘Domain of Data Relevance (DDR)’ that relates an area to a
list of network elements including notional nodes/links, etc. It was then further
illustrated by Chen (2013) and Bierlaire et al. (2013). On this understanding,
more valid data becomes accessible since the precise information would not be
indispensable, although explicit rules of delimitating a DDR is uncertain and

would largely depend on specific situations in practice.

While much progress has been made to tackle issue with the indeterminate data
of individual route choice in context of road traffic networks, no applications in
particular to that on the public transport have been made, mainly due to its

complexity and data accessibility.
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6.3 Latent choice probability

This section describes a modelling approach to overcome the challenge of
modelling route choices on public transport without observing the route choices.
Consider the estimation process of the standard logit model. As for the
traditional procedure, we are used to employ a binary indicator being 0 or 1 as
an exponent of a passenger’s choice probability, P, . In that case, for all the
alternative routes that are surely not chosen by the passenger, the exponents
must be equal to 0, while only the probability term associated with the chosen
route is raised to the power of 1 (cf. Train, 2009, pp.60-63). Namely, the choice
probabilities for each individual passenger’s actual chosen route are finally
entered into the likelihood function for estimating the model coefficients
(denoted by a vector, B ). And more specifically, in the context of this thesis, the

log-likelihood function of B, given a data set, say A of sample size n, should be:

log /(B; A) = Zn:iaqr log P, .

g=1 r=1

where ¢, represents the binary indicator. From that, if an individual was
observed to have chosen a certain route, denoted by i, it is anticipated from the
model that the probability of the route i being chosen by passenger g would be

as close as possible - though not exactly - to 1, given the estimates of f§.

In view of the fact that the route choices that passengers have actually made are
unknown in our case, we have postulated in Chapter 3 that each alternative
route has its own probability of being chosen from Bayesian perspective. And
such has been further estimated as being the posterior probability of a passenger
choosing a given route that he/she might have actually chosen, which are
expected to reflect the true individual preference on different alternatives. We
now replace the 0-1 indicators in the contribution by passenger q or the
likelihood function through a weighted average of the probabilities of all possible
choices for that passenger, where the weights are given by the posterior
probabilities. In the case where the route choices would be observed with
certainty, a single one of these would be equal to 1, with all others being 0,
bringing us back to the original log-likelihood function. Therefore, we expect that
the choice model could reproduce as close to the true choice probabilities as
possible. On this account, we shall weigh each of the exponentials of the observed

utilities, exp (Vqr), in the logit choice probability by the corresponding estimates
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of the posterior probabilities (which we represent here by the 7, as a general
form).! Then, in the estimation of a latent choice model, qu would thus become

a weighted average:

Ty €XP (Vql) oot Ty XD (VqNR )
exp(Vql) FeootEXp (VqNR )

q

which is further generalised to

Zﬂ'qr exp (Vqr)
P =R , (6-1)

T Y exp(Vy)

reR

In formula (6-1), 7, Vq,r are the posterior probabilities of all passengers’

chose routes.

This probability term can be interpreted as the likelihood of observing the actual
route choice that is unknown to us. In other words, when we are predicting a
given passenger’s route choice thatis being unobserved, P, is supposed to be the
probability with which the actual choice could be predicted. More specifically,
we are predicting the choice with a probability of P, ; thatis to say, we are having
a probability of P, to find out the real choice. Finally, P, given by formula (6-1)

will be entered into the likelihood function.

Thus, with the given data sample, A, we could estimate a number of model
parameters (still denoted by p ) associated with the attributes of the alternative
route (e.g. travel time, fare and interchange) based on the maximum likelihood
estimation. The traditional procedures of deriving the likelihood function of §,
hence its log-likelihood function, would be adapted accordingly, as the likelihood

function turns out to be
LB:A)=]]P,;
g=1
and the log-likelihood

log £ (B;A) = anlog P,.
=L

UMM

11t could be either 7Z'::X or .
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6.4 Empirical examples on the London Underground network

To test the proposed approach, this section presents an empirical study, making
use of the previously estimated posterior probabilities of route choices as inputs
into choice model estimation. Relying on some notation used in Section 3.5.1,
we employ the following notation to elaborate on how the latent route choice

model works.

Notation:
Ty posterior probability that q chose route r (given 5,"°), estimated
from a mixture model on a data set
i matrix that contains 7., for all observations in A, (cf. II}™*
Asgp ar 5% A
defined in Section 3.3.2)
T updated posterior probability that g chose route r (given 5,
and ¢,/ ) based on 7,
o matrix that contains 7, for all observations in A,
tyr total walking (WLK ) time of passenger s access at an origin
station and egress at a destination station by using route r
tyr (’s waiting time to board a train for departure (WED) from an
origin station by using route r
tyr (’s total on-board travel (OBT ) time by using r
tyr g’s walking time to transfer between platforms at an interchange
(TIC)stationon r
tyr g’s waiting time to board a train for departure from an
interchange (WIC) station on r
ty vector that contains all travel time variables for q choosing r
L coefficient of t ™"
pr coefficient of t; "™
B coefficient of t.*
pe coefficient of '
B coefficient of
] vector that contains all coefficients, each being associated with a
travel time variable
Ve deterministic (or observable) portion of utility U,

(Continued)
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Notation: (Continued.)

U, utility that q perceives he/she may gain from choosing r to make
ajourney

Eqr error term in utility U

Nq=2 set of posterior probabilities of passengers’ route choice for
selected O-D pairs, each of which involves two alternative routes
( N = 2)

Ay set of posterior probabilities of passengers’ route choice for
selected O-D pairs, any one of which involves no more than three
alternative routes (N, <3)

Ay s set of posterior probabilities of passengers’ route choices for
selected O-D pairs, any one of which involves no more than four
alternative routes (N; <4)

té”fl total walking time of ’s journey by using r, including access and
egress, as well as his/her walking time for interchange (AETI)

ty total waiting time of g’s journey by using r, including his/her
waiting times at both the origin and interchange stations

v, dummy variable that indicates whether r involves an interchange

L coefficient of t;**

B coefficient of

pe coefficient of v, for interchange/non-interchange (I/C)

6.4.1 Data description

The data is comprised of (a) the posterior route-choice probabilities (i.e. I, *
and IT,’") for every passenger being sampled and (b) ‘observed values’ of the

travel time variables for those individuals.

Firstly, IT, * and II, ", have been already obtained from Chapter 4 and Chapter
5, respectively (see also Appendix C and Appendix D). With regard to the data
for the explanatory variables, in practice, each individual’s travel times along
different journey segments were not observed for each of the seven O-D pairs
under study, nor were they available from the smart-card, especially for the
journeys involving interchanges from one line to another. On this account, we
could utilise the calculated average travel times for each journey segment for

each O-D pair (see Section 4.3).
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However, it is obviously the case that for any given pair of O-D (still denoted by

ACC TIC
t t

0-d ), the walking times (including and t.§",) as well as the on-

q,1'’0? *q,[lI'1"],s
board travel times (including t;}', ;; and ;. 4;) were actually all assumed to

be constants and equal for each passenger travelling between that O-D, but only
the individuals’ wait times (including t", and t,’, ) differ (cf. Section 5.1). For
this reason, we may put together all the smart-card samples from the seven 0-D
pairs, which provided us with a combined data set with 601 journey records in
total. This thus allowed for all the observed values of the explanatory variables
to be varied among all the sampled individual passengers. Since the study area
covers a large portion of Zone-1 of the LU network (shown in Figure 4.1, p.72),
the choice model to be estimated may reflect, to some extent, the passengers’

route choice behaviour within that area.

6.4.2 Utility function specification

Given the combined data set, the travel time along different journey segments
are taken into account as explanatory variables. It might be arguable that the
factors that influence passengers’ route-choice decisions are quite subjective and
may not be quantitatively measured. Notwithstanding, given the data available
in this thesis, it would be necessary to assume that passengers would base their
choices on the travel times of different journey segments. On that basis, we
would like to see the passengers’ sensitivities to the travel time for different
journey segments. Particularly, we would like to understand how much different
the passengers’ sensitivities towards travel times would be at the interchanges
from that when they are travelling at the origin/destination stations. Therefore,
the walking time and waiting time at the interchange station will also be

considered separately.

Let t, denote a vector of observed variables with respect to route r. Given

r:<(o,l',s,1",d), we can represent the travel time variable of each journey

tWLK tWFD tOBT tTIC tWIC

o oty oty oty sty ), where

segment of route r by t, = (
tg?K ::tch'+t;?R;

tWFD WED
ty" = % ; (see next page)
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OBT __ 4OBT OBT
tqr _tl',[o,s]+tl”,[s,d]'

TIC _ 4TIC
=t e
and
WIC WIC
tw:[c _ tI',s,l +tl’,s,2
ar 2 '

Note that t,” and t, " are considered as possible average waiting times of
passenger ( onroute r,where every passenger may fail to board at his/her first

attempt given the rush hour traffic (cf. Section 3.5.1).

Moreover, denote by B= (8", 8", B, B, ") a vector of the coefficients,

WLK WED OBT TIC WIC .
t, &, , &, andt, —, respectively, and

with each being associated with t,", t;

representing passengers’ sensitivities to each of these time variables. In this
example, we consider that those variables are linear in parameters. Thus, the

observable utility could be specified as V,, =B -t . ; and hence the utility function:

qf;

Uqr :ﬂWLKt;\]rLK +ﬂWFDt;\;FD +ﬂOBTt;)rBT +ﬂTIthTrIC +ﬂWICt;\:IC +gqr' (6'2)

It would be expected that all the coefficients would be negative values. The
passengers’ sensitivities to those specified travel time variables could then be
learnt from further analyses of the estimates of the behavioural coefficients. Note
that any transit-line specific constants or any line specific time coefficient is not
specified in this case, this is because our data sample is rather small and the
correlations between the transit lines and journey times could not be handled by

the simple logit model.

6.4.3 Estimation results

On the basis of the utility function specified as formula (6-2), MNL models were
then estimated for the three data sets, by using HX;X and Hzfjf as input data,

respectively.

The difference between those data sets is as follows:
i. the first set involves data for the O-D pairs each having two alternative
routes, denoted by Ay _,;

ii. the second set further involve the data for the O-D cases with three

routes, denoted by A _;; and (see next page)
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iii. the third data set consider all the seven O-D cases that have been

studied in the previous chapters, denoted by A, ,.

The estimation results, including estimates of the coefficients for all the travel
time variables as well as their significance levels, are presented in Table 6.1
below and Table 6.2 (see next page) - the former results estimated using the
mixture model estimates IT,* and the latter using the updated choice

Y UMM
probabilities IT, .

Table 6.1 Estimation results for MNL models using the posterior probabilities
derived from the mixture models

g MIX
Using IT,,

N, =2 <3 <4
n 334 511 601
Log-likelihood —186.67 —385.77 —496.14
Est. A-stat. Est. A-stat. Est. A-stat.
s —0.42 —1.65 —-0.07 —0.60 —0.02 —-0.27
pP -0.12 -1.49 -0.07 -1.07 -0.08 -1.23
Bt —0.84 —-5.23 —-0.40 -6.97 -0.37 —7.69
pe -1.97 -5.29 —-0.85 —5.37 —0.66 —5.07
pe 0.12 0.37 -0.11 -0.72 -0.29 -2.16
Ratio t-ratios Ratio A-ratios Ratio A-ratios

BB 050 166 —1.66 016 059 —-3.01 007 026 —3.79
B0/ 014 137 -835 018 101 -451 022 114 403
B B 234 694 397 213 743 377 179 626 277
B/ BT ~015 -037 -286 029 071 -178 080 205 —051
B/ 355 115 082 089 058 —007 030 027 —0.65
BUC/BTC -1593 038 041 742 067 058 224 167 092
AU/ g 021 153 563 0.08 059 -7.05 004 026 —6.96
B/ pC 096 -035 —072 064 068 -038 028 122 —3.19
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Table 6.2 Estimation results for MNL models using the updated posterior

probabilities
Using I,
N =2 <3 <4
n 334 511 601
Log-likelihood —164.90 —343.09 —430.95
Est. #-stat. Est. A-stat. Est. A-stat.
s —-0.20 —-0.28 —0.53 -3.81 —0.50 —4.17
L —0.61 —4.01 —0.45 —-4.61 —0.43 -4.71
L -1.14 -191 —0.52 —6.98 —0.49 -8.15
pe -2.92 -1.97 -0.94 —5.26 —0.89 -5091
pe —-0.20 —0.44 —0.58 -2.81 —0.53 —-3.05
Ratio s-ratios Ratio A-ratios Ratio t-ratios

(vs.0) (vs. 1) (vs.0) (vs.1) (vs.0) (vs.1)
B gt 018 025 -115 102 337 007 1.02 361 008

B g 053 186 -162 087 350 —0.50 0.89 358 —0.44
B g 256 647 394 18 661 298 18 699 315
B goET 018 044 -206 113 273 031 108 291 0.21
BT g 033 027 -055 117 344 050 115 359 047
B/ pTC 1441 042 039 161 212 081 169 230 094
B e 007 025 -331 056 328 —-255 056 330 —257
B g 301 044 029 077 286 -0.83 0.83 3.08 —0.64

By comparing the two tables of results, it is noticeable that the different sets of
choice probabilities led to significantly different estimations in the choice
models. This was mainly due to the fact that the updating process substantially

relatively remained

altered IT, " (though the aggregate measures, €.g. o;""

unchanged).

For the case of A _, in Table 6.1, the coefficient of waiting time at interchange
stations were positive, which, though not significantly, might be unreasonable.
Commonly, though not always, both #**“ and "™ are expected to be negative
(cf. Wardman et al.,, 2001b). Also, the results indicated that passengers were
much more sensitive to the walking time for transferring from one line to

another, as well as the on-board travel time, whereas the disutility of waiting



-164 -

time at the origin station and that of the walking time for access and egress were

insignificant.

For each of the data sets (given N; =2, N; <3 and N, <4), we could draw a
comparison between the final log-likelihoods for two models estimated using the
same data set (i.e. same amount of data). In general, it is shown that the model
using the updated posterior probabilities, IT,”’, was achieved relatively better
results than that using the mixture model estimates, Hfzf This essentially
proves that Hiff is believed to be relatively more credible, hence more realistic,
than IT* derived from GM or LNM mixture models in our case, especially at the
individual level. Therefore, the proposed updating approach in Chapter 5 is
validated.

In view of the estimation results of all the three settings presented in Table 6.2,
the model fitted for the data set, ANng which examined all the seven O-D pairs,
provided with the most significant estimates of coefficients. It is therefore
regarded as the most suitable model among all being tested. This is what we
expected because A, _, contains more data and also has more variability that
would help the model estimation. Now we focus only on the estimation results
of this model. Firstly, it is noticeable, from the ratio 5"°/4°" that passengers
are more sensitive to being travelling on-board than to waiting at the origin
station. This may be explained by the fact that the trains might be often over-
crowded during the morning with the rush hour passenger traffic for work.
Whereas at the interchange stations, it showed the opposite, from the ratio,
B¢/ B, that waiting time for a connecting line is more undesirable than on-
board travelling. This may largely due to the negative effect of the interchange
per se. Such results notwithstanding, both of these differences are not significant
given the sample being used for the model estimation, as the results of t-ratios

(against 1) are rather small.

Besides, the results also show that the walking time between gatelines and
platforms (including access and egress) and the on-board travel time of both
journey legs have practically the same coefficient. Furthermore, the disutility
associated with the platform-to-platform walking time at the interchange
stations is nearly double that of on-board travel time (see S"*°/B%" ), where
one-minute walking for transfer is the equivalent in disutility to 1.82 minutes of

time spent travelling on board. This difference is highly significant as the #t-ratio
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against 1 reaches about 3.15. Moreover, from the ratios of the coefficients of
walking time to that of waiting time, i.e. £™*/4" and £"°/B"°, it is shown
that one-minute of walking time is about 1.15 and 1.69 times as unpleasant as the
time of waiting at the stations of origin and interchange, respectively. These,
however, are not significant. As such, it indicates that passengers are more

sensitive to walking than to waiting, especially for interchanges.

What is more, regarding the difference of passengers’ sensitivities to the walking
times between interchange and other journey segments (see S™*/g"°), the
disutility for interchange walking is more or less twice as much as that for
access/egress. Its t-ratio against 1 shows this difference is relatively significant.
Similarly, as can be seen from the last row of Table 6.2 (see ™"/ £"°), it shows
that one-minute of waiting time for transfer is more or less 1.2 times as much as
the disutility equivalent of waiting at the start of the journeys, but this is not very

significant.

On the whole, the estimation results are all interpretable; and this in turn
demonstrates that the proposed latent route choice model is also applicable, by

using the posterior probabilities instead of actual observations.

6.4.4 An extended example

Following the previous example, we illustrate, in this subsection, another MNL
model given a different specification of the representative utility. Because of the
availability of a direct route (see Case-3 described in Section 4.3.1.3) in respect
of our sample data, we included a dummy variable that indicates whether an
alternative route involves an interchange or not. Let it be denoted by v, . That is,
Vv, =1 if r is an indirect route, and v, =0 otherwise. Note that it is essentially
equivalent to the variable v, defined for formula (3-44) (see Section 3.5.1).
Further to this, in addition to the total on-board travel time variable, we then
considered only the total walking time and the total waiting time for each

A

individual, which we represent, respectively, by thI and t;“rTT. More specifically,

r

AEI __ ¢ACC EGR TIC
ty =t +h +t

with the superscript ‘ AET’ being short for ‘Access, Egress and Interchange’; and

tWTT _ tWFD + tWIC

o =l o (See next page)
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with ‘WTT’ being short for ‘waiting time’.
Based on the above, the utility function in this case is as follows:

_ AEI+AET WTT4WTT OBT4+OBT I/C
U, =871, +8" 1, +8 t, +87V, +&,,

where p***, ™", B°°" and B"° represent, respectively, the coefficients of the

AET WTT
t

variables t,, t,,

OBT
t, andv,.

By using each set of the choice probabilities, Hfs( and Hi“:f, we estimated these

parameters, p= (8", 8", ", B7°), for each of the three samples, Ay, =2

Ay, and Ay _, (as described in the previous example in Section 6.4.3).

The estimation results are presented in Table 6.3 below and Table 6.4 (see next

page), respectively, in the same manner as the previous example (cf. Table 6.1
as well as Table 6.2, pp.162-163).

Table 6.3 Estimation results for an additional example of MNL models using
the posterior probabilities derived from the mixture models

c MIX
Using IT,,

N, =2 <3 <4
n 334 511 601
Log-likelihood —186.94 —385.14 —491.50
Est. -stat. Est. A-stat. Est. A-stat.
L -063 -281 -0.13 -150 -012 —184
L -011 —142 -014  —207 -016 —236
L -1.05  —5.44 -041  —6.68 -041  -762
B -513 —3.36 -279  —437 -282  —542
Ratio A-ratios Ratio A-ratios Ratio A-ratios
(vs.0) (vs. 1) (vs.0) (vs.1) (vs.0) (vs.1)
B p" 486 520 413 677 655 558 691 793 6.78
B gt 060 268 —178 031 141 -316 029 1.75 —4.37
B B 011 1.34 -11.29 035 187 -347 039 2.09 —3.33

For convenience, here we code-name the previous example, ‘Test-1’, and the

current case, ‘Test-2’. Firstly, we compare each pair of the models fitted for the

same data.
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Table 6.4 Estimation results for an additional example of MNL models using
the updated posterior probabilities

o UMM
Using IT,,

N =2 <3 <4
n 334 511 601
Log-likelihood —165.26 —331.65 —418.56
Est. #-stat. Est. A-stat. Est. #-stat.
L —0.60 -1.39 —-0.26 —2.03 —0.36 -4.20
s —0.58 —4.15 —-0.51 —4.64 —0.48 —4.80
LB —1.53 —2.05 -0.71 -7.21 —0.68 -7.73
LY -9.00 -1.36 -457  -438 -3.87  -473
Ratio t-ratios Ratio A-ratios Ratio A-ratios
(vs.0) (vs. 1) (vs.0) (vs.1) (vs.0) (vs.1)

BY°/p™" 589 360 299 645 723 611 573 7.86 6.49
B=T/B%T 039 090 -141 036 179 —-315 053 335 —2.96
A7/ 038 202 —328 072 376 —149 071 379 —152

Similar to Test-1, for each sample, the model using the updated choice
probabilities IT,"" also outperformed that using the original mixture model
estimates IT, " in Test-2. This could again be due to the improvement in I, "

compared to TT,*.

Furthermore, values of the AIC and BIC were calculated to demonstrate and
compare the goodness of fits of the preferable models in Test-1 and Test-2 for

each data set (cf. Section 3.5.2). The results are presented in Table 6.5 below.

Table 6.5 Goodness of fit of models of Test-1 and Test-2

Test-1 Test-2 Test-1 Test-2 Test-1 Test-2

\ =2 <3 <4
n 334 511 601
Dimension of 5 4 5 4 5 4
Log-likelihood  —164.90 —165.26 —343.09 —-331.64 —430.95 -418.56
AIC 339.80  338.52 696.18  671.28 871.90  845.12

BIC 358.86  353.76 717.36  688.23 893.89  862.71
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Asillustrated in Table 6.5, the models of Test-2 could always achieve a relatively
lower value of AIC/BIC and hence have better fits than those of Test-1. In the
following discussions, we consider the case of the current example model being
fitted for A

Ny
As can be seen from Table 6.4 (see previous page), the coefficients of all variables
are negative as expected, which are also statistically significant. It should be
noted that the coefficient 8”° on the interchange/non-interchange dummy
variable is actually independent of the amount of time spent interchanging (cf.
Wardman et al., 2001b). We may express the interchange and the other travel
time variables as equivalent amounts of on-board travel time (cf. Wardman et al.,

2001a), where the ratio 57/ is also termed ‘interchange penalty’.

Early studies carried out by London Regional Transport (1988); and London
Regional Transport (1995)2, which were quoted by Wardman et al. (2001b),
have already analysed the interchange penalties on the LU. Their analyses relied
particularly on passengers’ actual choices between direct and indirect routes. In
both of the studies, an interchange penalty was considered, without including
the walking and waiting components. Based on a data set in 1980, their initial
finding showed that an average interchange penalty was 5.7 minutes. That is, one
interchange would be perceived by a typical passenger as equivalent to 5.7
minutes of on-board travel time. In the later analysis, the value was updated to
3.7 minutes, given another data set available from 1990. Furthermore, given that
the walking and waiting time variable is not involved in the utility function, the
research conducted by Guo and Wilson (2011) showed the interchange penalty
would be equivalent to 4.9 minutes of on-board travel time. More recently, the
value for the LU published by the Transport for London (2013a) was 3.5 minutes;
while the report by the Department for Transport (2014) indicated that the
interchange penalty on wider public transport is 5 to 10 minutes of on-board
travel time per interchange. As shown in Table 6.4, the ratio 5°/°" obtained
from our model suggests that the time value of the interchange penalty would be
5.73 minutes of on-board travel time, which appears plausible given the above

values as references.

2 London Regional Transport (1984-2000) is the predecessor to TfL.
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It should also be noted, in the first two cases mentioned above, that the walking
and waiting time were constrained to be weighted twice on-board travel time
(see also Guo, 2008, p.47). Similarly, for the calculation of the generalised journey
time on the LU (Transport for London, 2013a), walking time along congested
passageways at an origin or a destination should also be weighted by 2.0, while
at interchange stations the walking time would be weighted slightly higher, by
2.08. As for the time spent waiting for a train on a fairly crowded platform and
standing in a crowded train, the weights could be as large as 4.0 and 2.03,
respectively. Only being seated in an uncrowded train is not weighted. For this
reason, during rush hour (or in a congested environment), one-minute walking
and 1-minute waiting are roughly the equivalents in disutility to one minute and
1.97 minute of in-train time respectively. This is analogous to, though slightly
different from, the estimation results in Test-1, given IT " and A, _, (cf. Table

6.2, p.163).

By comparison, in the current model, the estimation results showed quite the

OBT

opposite. The coefficient of on-board travel time, ", was approximately twice

AET

(practically 1.9 times) that of the total walking time, ™, and about 1.4 times

"% though the latter difference was

that of the total waiting during a journey,
not significant. That s, the disutility associated with travelling aboard was nearly
double that of walking. One possible explanation could be that passengers might
be practically indifferent to the inevitable walk for access/egress, but may be
more concerned with on-train delays and congestion. A train might possibly be
stuck in a tunnel and/or take longer time than scheduled for loading/unloading
passengers. Analogous situations could be found from the research conducted by
Guo and Wilson (2011) and Raveau et al. (2014), where the walking and waiting
time spent interchanging were both modelled as explanatory variables in the

utility function.

6.5 Summary and conclusions

This chapter has presented a new approach to modelling passengers’ route
choice behaviour in a situation that each individual’s actual chosen route is
unobserved (or simply unobservable) but their probabilistic route choices are

considered. That is, each passenger’s route choice is only learnt and hence
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described by a set of posterior probabilities. All these posterior probabilities
were estimated in line with Bayes’ theorem, with each, as a conditional
probability, expressing the probability of one alternative route being chosen by
an individual, given the knowledge about his/her journey time. These posterior
probabilities vary across respondents; and they are used instead of the simple
deterministic 0-1 indicators typically used in a choice model. In other words, the
numerator in, say, a multinomial logit choice probability would no longer just be
the exponential of the utility of the chosen alternative, but would be a weighted
average of exponentials of such utilities, where the weights are given by the

posterior probabilities.

Testing of the proposed approach was conducted based on the MNL model. The
estimation results, based on the posterior probabilities as inputs into choice
model, have shown that we could estimate meaningful relative sensitivities to
the different journey time segments, thus allowing us to obtain an understanding
of the passengers of route choice even in the absence of observations of the
actual chosen routes. This is a key step forward to overcome the shortage of

revealed preference (RP) data for discrete choice analyses.

[t must be pointed out, however, that the estimation results of the discrete choice
models described and discussed in this chapter would depend crucially on the
feasibility of acquiring credible (posterior) route-choice probabilities of each
passenger in a given sample. On the other hand, there is still a need for the
validation of the coefficient estimates of the latent route choice model. To this
end, ideally, we should compare the results with previous/similar studies that
are based on real RP data, where passengers’ actual route choices are observed.
Additionally, we may use such RP data, if available, to estimate the same, say MNL
model. An alternative way could be that we may try to simulate data where
passengers’ actual route choices and the underlying sensitivities (to the specified
variables) that determine both the choice set and the actual choice are known.
Then, we also use that simulated data in the modelling framework to see whether
it could be retrieved. By doing so, we could then compare the estimated
coefficients from the posterior route-choice probabilities, and the estimates from
the data of actual/simulated route choices. If they were close enough, then the

development of the latent route choice model would ultimately be confirmed.
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Moreover, the utility specification could be refined, and take into account e.g. the
passengers’ sensitivities to different transit lines, as some travellers may have
strong preferences to a certain line while others may have different tastes. Also,
the crowdedness as well as seat availabilities could be considered further. In
addition, the testing of this proposed approach could be extended to the other
advanced route choice models, such as the path size logit, C-logit, as well as the
error components approach allowing for correlation between routes sharing key

parts of the network.
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Chapter 7
Concluding remarks and future research

7.1 Summary of the thesis

This thesis is devoted to making an attempt to develop a modelling approach
towards passengers’ route choice behaviour, where their actual route choices
are unobserved/unobservable and hence latent. At best, the route choice of a
passenger could only be known up to a choice probability. It is thus distinct from
standard discrete choice model that requires the actual choice is explicitly
known. The study is based on the LU system and the Oyster smart-card travel
time data; it focuses on the mechanisms and modelling techniques to cater to the
development of a latent route choice model. The work presented in this thesis
provides fundamental solutions to the model configuration, whereby the
implementation of the latent route choice model has been achieved under a
modelling framework combining two building blocks: data mining and discrete
choice modelling (cf. Figure 1.1, p.5). The outputs of the first building block

provide the input data for the second one.

For the data mining, we utilised the methods of Bayesian inference in a bid to
find out posterior probabilities of passengers’ route choices between a given pair

of O-D stations. This building block has three modules as follows.

(a) Data processing. It deals with all existing information from different
data sources, especially the smart-card data that provides the entry
times and journey times of each individual passenger on a given 0-D
pair.

(b) Finite mixture model. It produces a set of estimates of choice
probabilities for each individual passenger, given their journey times
being observed and the route-choice set being identified for each O-D.
Additionally, proportions of the passenger flow on each alternative

route are estimated as well.
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(c) Update. It updates the posterior probabilities obtained from the finite
mixture model for each individual, by further considering their entry

times and trains’ timetable, in addition to the actual journey times.

For the data processing, we consider the following additional information:

(1) timetable of each transit service;
(2) average walking time between gatelines and platforms, as well as that
between any two platforms within each station; and

(3)  historical route-choice data indicating the proportions of passenger-

traffic flow among alternative routes.

For the finite mixture model, the passengers’ journey times for each O-D are
modelled by a finite mixture distribution. The prior knowledge, especially about
the component distributions and their mixture weights, are of significant
importance, as that could provide ideal initial values for the model estimation. In
the case studies on the LU network, the information about the passenger-flow
proportions of each route was available from the RODS data; however, it was not
used as the initial value, but served as the only reference for validation of the
estimated mixture weights (and the inference of passenger-flow proportions).1
In this respect, we applied the K-means clustering method to estimate initial
values for the parameters of the mixture model, which were then estimated by
applying the EM algorithm. Since the estimation by itself does not show a one-
to-one correspondence between an estimated component of the mixture and an
alternative route in the real world, we put forward a set of principles for
matching a component-label to a real alternative route, in order to interpret as
well as validate the model estimates. Note that the interpretation and validation
of the model estimates are crucial to determining whether the mixture
distribution (or the model) would be suitable. This in turn largely depends on
the credibility and accuracy of the expected average journey times of each
alternative (calculated based on the information sources (1) and (2)) as well as

the existing information about the traffic distribution (based on source (3)).

For the updating of the posterior probabilities of each individual passenger’s

route choices, we further considered the expected journey times that every one

1 It was also pointed out that the RODS results were derived from aggregation on a rolling basis
and hence may not be accurate.
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might have for each alternative route, according to their actual entry times and
the information sources (1) and (2) as mentioned above. From that, the posterior
probabilities are re-estimated by allowing for two conditions, where the mixture
weights estimated from the finite mixture model serve as prior knowledge. We

demonstrated that the process was fully complying with Bayes’ theorem.

Further, we presented seven case studies on the LU system, where these three
modules were implemented in the context of different network scales. Within the
scope of this thesis, the applicability of module is confined only to a single O-D
network, and only GM and LNM models were tested for the LU case studies. Still,
it has been demonstrated that the finite mixture model could offer an effective
solution to estimating passengers’ route choices at the aggregate level. It was
also noted that GM had a relatively greater capacity than LNM in this context
since it could always provide feasible estimates. Although LNM might fit the
journey time data well in each case study, the model estimates were clearly less
interpretable as the size of route-choice set becomes larger. What is more, at the
individual level, we illustrated the posterior probabilities, which were estimated
before and after the update was applied for each passenger. Then, the two sets
of estimates were used as input data for estimation and development of the
latent route choice model, which acts as the second building block of the

established modelling framework.

Conventionally, a standard choice model relies on having real data of individuals’
route choices, which are further coded as binary indicators, 0 and 1, and enter
the choice probabilities for the estimation of the model coefficients. Suppose that
we can know exactly which alternative route a passenger has actually chosen.
The choice probability for the chosen route is equal to 1, while the probabilities
for all other alternatives should be 0. It would then be expected that the standard
choice model could predict the choice probability for this passenger to be as close
to 1 as possible. However, each of the alternative routes may in fact have its own
probability of being chosen for reasons. Suppose if all the alternatives are treated
as having the same choice probability (i.e. 1/N, , where N, is the total number
of the alternative routes), the standard choice model would not be able to

capture these true probabilities.

We modified the formula of choice probabilities for each individual passenger to

be a weighted average of exponentials of the utilities of all alternative routes that
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might possibly have been chosen, rather than just the exponential of the utility
of the chosen alternative. For each of the modified choice probabilities, the
estimated posterior probabilities for each individuals served as the weights for
the exponentials. In that way, the latent route choice model is expected to
retrieve the posterior probabilities as those being put in, whereby the estimated
model coefficients should thus present passengers’ sensitivities that underlie

and determine their actual choices in a more realistic manner.

We implemented the latent choice modelling approach based on a simple MNL
model, using the two sets of posterior probability estimates derived from the
first building block. Then we compared and analysed the two sets of estimated
coefficients of the different journey time segments as we specified for the utility
function. The outcome demonstrated that the updated posterior probabilities

yielded meaningful coefficients.

[t should be noted however that the credibility of the posterior estimates could
not be assured because of the fact that the passengers’ actual chosen routes are
latent. In this sense, not only would the posterior probabilities serve as the input
data for estimation of the latent route choice model, but also the estimation
results of the latter would in turn serve as evidence to verify whether those are
reasonable. Therefore, the first building block is expected to provide a set of
posterior probabilities of choosing each of the alternative routes as realistic as it
possibly can. The better the posterior probabilities are generated, the less
uncertainty there would be in a choice model, and we would then gain a better
understanding of passengers’ route choice behaviour. In general, this research
will have immediate practical implications to the underground network
managers, and would be applicable to other cities with major and complex public

transport networks.

7.2 Directions for future research

The modelling framework is still an incomplete structure where there is room
for more experiments, practices and crucial modules to be included. Several
important issues merit future research. On the strength of the established
structure in this thesis (cf. Figure 1.1, p.5), we propose a relatively more robust

version for future research, which is illustrated in Figure 7.1 (see next page).
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Figure 7.1 A modelling framework to be developed for future research.
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In this modified framework, improvements will be necessary for the modules
coloured in . Furthermore, the modules coloured in (including the
directed line) will also need to be built in order to provide robustness to

the modelling framework.

7.2.1 Refinement of naive Bayesian modelling framework

The purposes of improving the naive Bayesian modelling framework is intended,
on the one hand, to acquire posterior probabilities of passengers’ route choices
with better credibility; and also, on the other hand, to have a more realistic
inference of passenger-traffic distribution. The more accurate the posterior

probabilities are estimated to be, the closer such inference is to the truth.

The implementation of this model, in reference to the case studies conducted on
the LU system, was predicated on the premise of some simplistic assumptions
being made in each module. The major issues and possible solutions are

summarised as follows.

The universal route-choice set of a given O-D pair had to be identified through
our own judgement. As such, in practical applications, this would largely be
dependent on modellers’ own senses and perceptions of the O-D network and
the possible alternative routes, rather than the passengers’ perspective. In this
regard, a model for generating a choice set will be indispensable. More details

are presented in Section 7.2.2.

For testing of the finite mixture model in each of the LU case studies, we
considered the component distribution, i.e. the journey time distribution of an
alternative route, to be either Gaussian or log-normal. This was due to the true
component distributions were not known. It would be better to test other,
different types of statistical distributions hence different mixture models for
fitting the journey time data of a given O-D. Moreover, a simulation-based transit
assignment model may be employed, or developed for the estimation of the
distribution of journey times. However, note that different behavioural
assumptions of how passengers make route choices may have different impacts
on the estimation of the latent route choice model. Therefore, we need also check
that what assumption is the best or have least impact in this regard. Additionally,

the mixture distribution of journey time for a given O-D pair may not be a
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standard mixture, but may virtually be a mixture of different types of
components distributions, where each route has its own distributional form.

Such advanced mixture models can also be studied in the future.

Furthermore, setting initial values and a stopping threshold for estimating the
mixture model parameters may potentially pose some challenges for future
research. Admittedly, there is no guarantee that the general EM algorithm
converges to the global optimisation, though, which was not what we pursued
either. Given a set of initial values, the estimated parameters might be different.
The smaller the threshold value is, the more likely that the estimated results
would be the global optimal, and the longer time the estimation would take. In
contrast, a larger threshold may achieve a faster convergence, though, which
would be more likely to a local optimal. Given a threshold value, different initial
values may result in different estimates of the model parameters. The combined
impact that the initial values and the threshold may have on the estimation
results needs to be further assessed and analysed; and meanwhile, a variety of
methods for the generation of initial values for the estimating models could also

be tested.

What is more important is that it will be vital to develop a more effective
algorithm for matching an estimated component from mixture models to a real-
life alternative route. In this thesis, we had only suggested a set of general
principles; and its practical application (e.g. in the LU case studies) were still

indefinite and rather subjective.

Then, for the approach to the updating of the posterior probabilities, we
considered that each individual passenger had a set of hypothetical journey time
distributions, each of which was based on the premise that he/she had chosen
one of the alternative routes. From that, we obtained the likelihood that he/she
was travelling on that route, given the actual journey time. However, the same
type of hypothetical journey time distribution was assumed and used in the
mixture model. As a matter of fact, that was not necessary. It would be useful to
consider that such hypothetical distribution could have various types of
statistical distributions for different individual passengers; and that each
individual could have different types of hypothetical journey time distributions

for different alternative routes.
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One last major issue is that we were short of detailed individual Oyster data. For
that reason, in each of the LU O-D cases, the updated posterior probabilities were
derived from a very small sample of OJT °*°, which was neither the same as, nor
sourced from, the data sample used for the estimation of the mixture model. For

future research, a large sample of detailed individual data will be essential.

7.2.2 Route-choice set generation

As mentioned in the previous section, it would be important to consider further
developing a choice-set generation model for the modelling framework (see
Figure 7.1). Once a set of alternatives (i.e. route-choice set) has been
determined, a passenger, for example, would then be expected to choose one
alternative (at a time) within this given choice set. In reality, however, any
individual passenger’s choice set is unable to be observed. Also as mentioned in
Section 3.2, not all the available alternative routes are necessarily included in
each passenger’s choice set. Biased estimates of parameters for the attributes in
the choice models might be yielded if it is simply supposed that all the possible

alternative routes are considered by the passengers.

The generation of the choice set is regarded as a learning process to dynamically
adapt passengers’ own perceptions on reasonable alternatives (Richardson,
1982). In a dense public transport network, such as the LU, there might be a large
number of different possible routes for some O-D pairs. Obviously, it may not be

known or observed that which alternative routes are considered by a passenger.

Ben-Akiva and Boccara (1995) discussed the approaches to modelling a latent
process of reproducing a choice set. As such, the choice set is probabilistic and
influenced by some random factors that are not observable but varying across
decision makers. More detailed discussions on this issue can be referred to

Cascetta and Papola (2001) and Bierlaire et al. (2010).

7.2.3 Refinement and validation of latent route-choice model

To refine the latent route choice model, as mentioned in Section 6.5, it would be
interesting to re-specify the utility function by further involving line-specific

constants, and other significant attributes given the available data. The path size
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logit, C-Logit, and error components approach could be tested in future research,

so as to capture the effect of routes with overlap.

As has also been mentioned in the previous chapter, the validation module that
should come into the work is that: we might need to do either simulations or
surveys to acquire data where we could know the actual routes that passengers
took during their journeys. Then, the choice model shall be estimated via the
conventional procedure and we would obtain a set of coefficients, which could
be denoted by B*. We would need to make a comparison between B* and the
estimates from the latent route, denoted by P . If there would be a big gap
between them, then it would be necessary to follow the ‘directed golden line’, as
shown in Figure 7.1 (see p.177), to check the procedures and every aspect of the

modelling framework.

Clearly, the mechanism of the current modelling framework is to sequentially
deal with the two building blocks (i.e. data mining and estimation of the latent
choice model). That is, we estimate the posterior probabilities and then the
coefficients of the latent route-choice model. Further to this, we foresee the
ultimate goal of future study would be to develop a platform where advanced
latent choice model is integrated with a simulation-based transit assignment
model and both evolve simultaneously to deliver a more robust modelling
framework. As such, the proposed modelling framework could be extended to a
broader transit network with multiple O-D pairs; and the prospective integrated
framework should then contribute to a more realistic representation of the
passengers’ route choice behaviour as well as a more accurate prediction of the
passenger-traffic over the network. This would provide policy makers with much
deeper insight into the passengers’ travel behaviour and a valuable asset for

effective planning of the public transport.
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Appendix A
Explanatory notes on logical dependency and
relationship between route choice and journey time

Suppose there are two alternative routes (hereinafter referred to as Routel and
Route2) connecting a given pair of origin and a destination (0O-D) stations. We let

z denote the travel demand (i.e. total number of passengers) on this O-D; and
Z2=272,+1,, (A-1)

where z, represents the total number of passengers who choose Routel, and z,

represents that on Route2.

For any individual passenger, the probability of choosing Route1 is

4, (A-2)

Pr(choice)) ==
z

and that the probability that an individual chooses RouteZ2 is

z

L_1 4h (A-3)
VA

Pr(choice) =—==1-—+
z

Let us adapt an example from the Wikipedial to imitate the case of passengers’
route choices. Suppose that A% of the passenger population chose Routel, and
B% chose Route2. Let 6, and &, be the average journey times of travelling by
Routel and Route2, respectively. Further, we can observe each passenger’s

journey time, but without knowing his/her route choice.

If we have known that a passenger’s journey time is " minutes, X% of
passengers on Routel spent 6° minutes, and Y % of passengers on Route2 spent
0" minutes as well, but can we infer the probability that the passenger chose

Routel (or Route2)?

According to equations (A-1) to (A-3), we may have (See next page)

1 Available online at http://en.wikipedia.org/wiki/Posterior probability; last accessed on 30
September 2014.
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Pr(choice)) = A%;
Pr(choice,) =B%;

Pr(o™ | choice)) = X%;

and

Pr(o™ | choice,) =Y %.

The total number of passengers who chose Routel and took §° minutes to
complete his/her journey is z-Pr(choice)-Pr(5" |choice)) ; and the amount of
passengers who chose Route2 and took 6" minutes to complete his/her journey
is z-Pr(choice,) - Pr(¢™ | choice,) . Therefore, the probability that the passenger

chose Routel is calculated as

Pr(choice, | 6") =
z- Pr(choice,) - Pr(6™ | choice,) _
z - Pr(choice,) - Pr(5* | choice,) + z - Pr(choice, ) - Pr(5” | choice,) ’

and so

Pr(choice, |6") =
Pr(choice,) - Pr(6™ | choice,)
Pr(choice,) - Pr(5* | choice,) + Pr(choice,) - Pr(5™ | choice,) |

(A-4)

That is,

A% - X%

Pr(choice, |5") = .
A% - X%+ B%-Y%

Likewise,

B%- X %
A%-X%+B%-Y%

Pr(choice, | 8") =

In equation (A-4), the denominator is in fact the proportion of passengers who
spent 6" minutes in travelling between the O-D, which we represent by Pr(5).
The numerator is equivalent to Pr(choice,d5") . The conditional probability of
route choice (say, the choice of Route-j ), Pr(choice;,57), is the probability of a
passenger choosing Route-j given that his/her journey time &° has been

already observed. We have

Pr(choice,,5")

Pr(5") (8-5)

Pr(choice, |5") =
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or
Pr(choice,, 5) = Pr(choice, | 57) - Pr(67), (A-6)

or

Pr(choice,) - Pr(¢™ | choice,)

Pr(choice, |67) = Pr")

(A-7)

If the journey time ¢ has no correlation with the route choice, then
Pr(choice; | 5™) = Pr(choice; ).

Intuitively, we believe that, for an individual passenger, he/she may have
different journey times when travelling by different routes. Note that choice;
and §° are not independent of each other. The probability of both events
occurring at the same time is defined by equation (A-6) and the conditional

probability is obtained by equation (A-5).

Given data of journey time observations, Pr(57) is certainly greater than O;

otherwise, journey time ¢" is not observed and Pr(5") =0.
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Appendix C
Application of mixture models: Case-5 and Case-7

In addition to the five case studies described in Section 4.3, two more cases are
showcased in this appendix, which exhibits only the estimation results obtained
from GM and LNM models.

Further to Case-4 (see Section 4.3.2.1), Appendix C.1 shows a case study of a
pair of O-D stations that are connected by three alternative routes. We code-
name this case study ‘Case-5’. And in addition to Case-6 (see Section 4.3.2.2),
the results of another case of four alternative routes, code-named ‘Case-7’, are

presented in Appendix C.2.

C.1 Case-5: Liverpool Street - Green Park

This section shows a case study of the mixture models applied on another O-D
pair with three alternative routes. Its network is illustrated in Figure C.1 (see

next page).

Any passenger starting his/her journey at the origin, Liverpool Street station,
may take a westbound train on the line (as the only option) for the first
leg of his/her journey. In order to reach the destination, i.e. Green Park station,
alternative interchange stations include Holborn (transferring to a westbound
train on the line, for the shortest first journey leg among all of the
three alternatives); Oxford Circus (transferring to a southbound train on the
line train; and Bond Street (transferring to a southbound train on the

line, for the longest first journey leg).
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Figure C.1 The LU network that connects the O-D pair: Liverpool Street — Green Park.
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Figure C.2 Summary of OJT °*® data for Liverpool Street — Green Park:

(a) a box-and-whisker plot of the raw data (n, =17,423); and
(b) a histogram of the valid data (n =17,102).

Table C.1 Parameter estimates of GM and LNM models based on OJT ®*° data
for Liverpool Street — Green Park

The initial values and the model parameters were estimated using the K-means
clustering and the EM algorithm, respectively. n =17,102.

GM LNM
Component-label r=1 r=2 r=3 r=1 r=2 r=3
Initial values
7 (minute) 19.0 22.0 27.0 18.0 21.0 26.2
o™ (minute) 1.2 1.1 3.3 0.9 1.1 3.0
o (%) 44.8 35.8 19.4 32.3 42.2 254

(Continued)
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GM LNM
Component-label r=1 r=2 r=3 r=1 r=2 r=3
Parameter estimates
4, (minute) 18.7 22.0 27.6 18.4 21.5 26.6
&, (minute) 1.4 2.3 45 1.3 2.3 4.4
o, (%) 35.9 47.7 16.4 27.1 51.6 21.3
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Figure C.3 Posterior probabilities of route choices given OJT °*° for
Liverpool Street — Green Park (n=17,102):
(a) for all alternatives, based on GM; (b) for all alternatives, based on LNM;

(c) for Routel, based on GM and LNM; (d) for Route2, based on GM and LNM; and
(e) for Route3, based on GM and LNM (see next page).
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Figure C.3 (Continued.)

Table C.2 Inferences of proportion of passenger traffic on each alternative
route connecting Liverpool Street to Green Park (n=17,102)

GM LNM
Component-label r=1 r=2 r=3 r=1 r=2 r=3
o, (%) 35.9 47.7 16.4 27.1 51.6 21.3
n, e 7,660 7,553 1,889 5528 9,047 2,527
@™ (%) 44.8 44.2 11.0 32.3 52.9 14.8
n 6,060 8,257 2,785 4,672 8,801 3,629
o (%) 354 48.3 16.3 27.3 51.5 21.2

Table C.3 Expected journey times of simulated samples for each alternative
route connecting Liverpool Street to Green Park

Calculated average travel time (minutes)

" - Centralfg Centralfg Centralfg

1" Victoria Piccadilly

S Oxford Circus Holborn Bond Street
Journey segment

ty 2.1 2.1 2.1

ton / toa 15/3.7 15737 15/3.7

L 10.0 7.0 11.0

t 1 s 2.0 3.4 3.1

trey / e, 07127 14/338 14/36

b e 1.0 6.0 2.0

1.5 2.1 2.6 3.8

I".d

(Continued)
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Table C.3 (Continued.)

Calculated average travel time (minutes)

" - - - -

"

S Oxford Circus Holborn Bond Street
Route-labels h=1 h=2 h=3
Total average

t.(1 1) 194 24.0 24.9

t.(2,1) 21.6 26.2 27.1

t. (1, 2) 214 26.5 27.0

t.(2,2) 23.6 28.6 29.3

o 215 26.3 27.1

h

Table C.4 Matching the estimated mixture components with the real-world
routes for Liverpool Street — Green Park

r matches h

Component-label r r=1 r=2 r=3

Journey time (minutes)

i GM 18.7 22.0 27.6
H LNM 18.4 21.5 26.6
t= (677) 21.5(0.9) 26.3 (0.9) 27.1(0.9)
CI for h 95% CL [18.7, 24.3] [23.4,29.2] [24.2,29.9]

Traffic distribution (%)

X GM 35.9 47.7 16.4
@ LNM 27.1 51.6 21.3
0 () AM Peak 71.3 (141) 17.9 (35) 10.2 (20)

A weekday 45.5 (298) 41.4 (271) 13.1 (86)
Route-label h h=1 h=2 h=3

CentralSN ContrallR Centrall§
Piccadilly

Oxford Circus Holborn Bond Street
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Figure C.4 Estimated mixture distributions, and weighted components thereof,
of OJT for Liverpool Street — Green Park (n=17,102):

(a) estimated GM model; and
(b) estimated LNM model (see next page).
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Table C.5 Goodness-of-fit test result for Liverpool Street — Green Park

The calculation of gof was repeated 1,000 times for each model.

GM LNM
Rate of obtaining lower gof (%) 514 48.6
Average gof 0.0834 0.0838

C.2 Case-7: Victoria - Waterloo

This section shows the results of a case study of another single O-D connected by
four alternative routes. Its network is illustrated with Figure C.5 below, which

involves six lines — the most among all the seven cases in this thesis.

Key to lines

s Bakerloo
Circle

e District
Jubilee

meessssmm—— Northern

meessssssssmm  Victoria

> [ St.James's ...
Victoria Park I

Figure C.5 The LU network that connects the O-D: Victoria — Waterloo.

In this case, passengers starting from Victoria may choose to take an eastbound
Circle/ line train and transfer to a southbound train on the line
at Westminster. Alternatively, they may travel further on the same line/train to
Embankment, where they could choose to change onto a southbound train on
either the line or the line. The fourth option for the
passengers is to take a northbound line train at the origin station and
transfer at Green Park, where they may take a southbound line train

running towards the destination, Waterloo.
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Figure C.6 Summary of OJT °*° data for Victoria — Waterloo:

(a) a box-and-whisker plot of the raw data (n, = 8,140); and
(b) a histogram of the valid data (n=7,935).

Table C.6 Parameter estimates of GM and LNM models based on OJT °*° data
for Victoria — Waterloo

The initial values and the model parameters were estimated using the K-means
clustering and the EM algorithm, respectively. n =7,935.

GM LNM
Component-label r=1 r=2 r=3 r=4 r=1 r=2 r=3 r=4
Initial values
7" (minute) 11.0 140 170 210 110 13.0 16.0 211
o (minute) 09 08 08 24 08 08 11 23
™ (%) 308 395 189 108 163 431 298 108

(Continued)
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Table C.6 (Continued.)

35

GM LNM
Component-label r=1 r=2 r=3 r=4 r=1 r=2 r=3 r=4
Parameter estimates
4, (minute) 121 149 193 256 123 148 228 26.6
6, (minute) 1.5 2.1 2.9 1.5 1.6 2.9 2.0 1.0
o, (%) 43.0 426 130 1.4 27.3 68.9 3.1 0.7
1 — :
S Routel (LNM)
_g --------- Route2 (LNM)
1= R S EORR Route3 (LNM)
0.8 E L T Route4 (LNM) ||
5 y
0.6 S 061 B
Routel (GM) B '
Route2 (GM) || = s
Route3 (GM) || &
0.4 Routed (6M) || B O4[ S
a,
5
0.2t 802t
g
0 L L L L L 0 1 L ": " : 1 L
5 10 15 20 25 30 35 10 15 20 25 30
Oyster Journey Time (minutes) Oyster Journey Time (minutes)
(a) (b)
1 ‘ ‘ = ‘
Route1 (GM) || Route2 (GM)
Routel (INM) || . | % 7 % e Route2 (LNM)
0.8F £ 0.8F 8
@
E
2
0.6+ S 061
£
;.;
04r S 0.4}
&
k=
02" 8ozl
£
0 . . . . . 0 . . . .
5 10 15 20 25 30 35 10 15 20 25 30
Oyster Journey Time (minutes) Oyster Journey Time (minutes)
(0 (d)

Figure C.7 Posterior probabilities of route choices given OJT °*° for

Victoria — Waterloo (n=7,935):

(a) for all alternatives, based on GM; (b) for all alternatives, based on LNM;
(c) for Routel, based on GM and LNM; (d) for Route2, based on GM and LNM;
(e) for Route3, based on GM and LNM (see next page); and

(f) for Route4, based on GM and LNM (see next page).
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Figure C.7 (Continued.)

Table C.7 Inferences of proportion of passenger traffic on each alternative
route connecting Victoria to Waterloo (n=7,935)

GM LNM
Component-label r=1 r=2 r=3 r=4 r=1 r=2 r=3 r=4
o, (%) 43.0 426 13.0 1.4 27.3 68.9 3.1 0.7
n;te 3,665 3,412 741 117 1,164 6,522 172 77
@, (%) 46.2 43.0 9.3 15 147 82.2 2.2 1.0
n- 3,380 3,377 1,070 108 2,237 5,412 229 57
o (%) 426 426 135 14 28.2 68.2 2.9 0.7

Table C.8 Expected journey times of simulated samples for each alternative
route connecting Victoria to Waterloo

Calculated average travel times (minutes)

I (6T YiDistrictlie I YDistrictll e YiDistrict
-1 gibakerioolEINorthern N -

S Embankment Embankment Westminster Green Park

35

Journey segment

e 2.1 2.1 2.1 2.7
4 /1, 15137 1.5/3.7 1.5/3.7 0.8/2.8
e 5.0 5.0 3.0 1.0
e 2.7 1.8 1.9 3.0
A 1.3/4.1 15/4.8 0.5/2.7 0.7/2.9
0 o) 1.0 1.0 1.0 3.0
o 4.8 25 3.1 3.1

(Continued)
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Table C.8 (Continued.)

Calculated average travel times (minutes)

I (T YiDistrictll e R YDistrictll e e YDistrict
-1 gi52kerioolENorthern -

S Embankment  Embankment Westminster Green Park
Route-labels h=1 h=2 h=3 h=4
Total average

t (1, 1) 18.5 15.3 13.2 14.3

t.(2,1) 20.6 175 154 16.3

t. (1, 2) 21.3 18.6 154 16.5

t.(2,2) 23.4 20.7 17.6 18.5

tr 20.9 18.1 154 16.4

Table C.9 Matching the estimated mixture components with the real-world
routes for Victoria — Waterloo

r matches h

Component-label r r=1 r=2 r=3 r=4

Journey time (minutes)

) oM 12.1 14.9 103 256
Hr LNM 123 14.8 22.8 26.6
N 154(09)  164(0.9) 181(L1) 209 (1.0)

Ciforh  95%CL [12.6,18.3] [13.7,19.1] [145216] [17.7,24.2]

Traffic distribution (%)

A GM 43.0 42.6 13.0 1.4

“ LNM 27.3 68.9 31 0.7
s AMPeak  482(186)  36.5 (141) 15.3 (59)

@ Uh ) wholeday  40.9 (410)  20.5 (206) 38.6 (387)

Route-label h h=1 h=2 h=3 h=4

Circle/ TR Circle/METITE: Circle/ BIEHT:
- - g \or thernfiiiBakerioo

Westminster Green Park Embankment Embankment

Table C.10 Goodness-of-fit test result for Victoria — Waterloo

The calculation of gof was repeated 1,000 times for each model.

GM LNM

Rate of obtaining lower gof (%) 44.6 55.4
Average Qof 0.0916 0.0911
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Figure C.8 Estimated mixture distributions, and weighted components thereof,
of OJT for Victoria — Waterloo (n=7,935):

(a) estimated GM model; and
(b) estimated LNM model.
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Appendix D
Updated posterior probabilities for Case-2 - Case-7

D.1 Cases of two alternative routes

D.1.1 Case-2: Euston - St. James’s Park

35
Sample Oyster data
A [TE0EE - Circle/D T esta(Victoria)
— 30 | SINorthernBuigs District{SR LUl GI
[«]
E
£
g
— 25 F
(]
E ®o® ® d
& % @ ® o ‘c"o o‘l‘i ° )
EX 2 * °% &w o 08 Qem. 4
=
=l 2 & £ na AA A o &8 2RH 2 A
= M AD AA A
)
215 |
S
10 L L L L L L L L L L L
(@] n o n (e n o n (@] mn o n (@]
(=) — o < (=) — o < =) — o < =]
D~ D~ o~ D~ o] (o] (o] (o] (o)) (o)) (o)) (o)) o
(e} o o o (e} (e} [en) (e} (e} (e} o o i

Figure D.1 Comparisons between OJT™ and &, Vq,r, given A, for
Euston — St. James’s Park.

Table D.1 Proportion of passenger traffic for each alternative route on
Euston — St. James’s Park

In this case, @, is calculated on the basis of LNM model estimates.

Sample size Proportion of passenger-traffic (%)
(Victoria) (Embankment)

r=1 r=2
@’ 437 42.8 57.2
o, 22,379 82.8 17.2
o 22,379 82.7 17.3
o 89 76.7 23.3
" 89 78.3 21.7

=
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Figure D.2 Comparisons between 7,
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Euston - St. James’s Park:

(a) Routel: - Circle/ (via Victoria); and
(b) Route2: - Circle/[JTtgta: (via Embankment).

(based on LNM) and 7, for

10:00
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mm)
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08:00
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The interval between the tick-marks on the horizontal axis spans 10 bars each

relating to an individual /journey record in the Oyster data.
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D.1.2 Case-3: Victoria - Liverpool Street

55
Sample Oyster data
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Figure D.3 Comparisons between OJT,™ and &6, Vq,r, given A, for
Victoria — Liverpool Street.

Table D.2 Proportion of passenger traffic for each alternative route on
Victoria — Liverpool Street

In this case, @, is calculated on the basis of LNM model estimates.

Sample size Proportion of passenger-traffic (%)

- Circle

(Oxford Circus) -

r=1 r=2
;" 557 48.1 51.9
@, 36,262 35.5 64.5
o 36,262 35.2 64.8
o 140 37.7 62.3
@’"° 140 42.6 57.4

=
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Entry time + Routel, GM 4 Routel, Updated
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Figure D.4 Comparisons between 7, * (based on LNM) and 7" for

qr
Euston — St. James’s Park:

(a) Routel: - (via Oxford Circus); and

(b) Route2: Circle (direct service).
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The interval between the tick-marks on the horizontal axis spans 10 bars each

relating to an individual /journey record in the Oyster data.
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D.2 Cases of three alternative routes

D.2.1 Case-4: Angel - Waterloo

45

40

35

30

25

Oyster Journey Time (minutes)

20

15

Sample Oyster data
A — Waterloo & City(Bank)
SINortherny (London Bridge)
NortherngiNorthern(GIGEN)
]
: L
' - m N m B ® '@-l.-)m L
1 n -y Bu mnguam U g ™ .l Y .(gJ 0 a0 O
9 © 8 m" M ML ol = a5 0 o &L X2 o
8& . 2 OAAO d%OAd) ®© AOAA@ A®AAAA
A@AAAAO&A Agaua "AT A A Aax BB KTAXA A
a AL\ & A A ALK
A % A A X
(@] mn (@] mn (e n (@] mn (@] mn [e] mn (]
2 B m < 2 b m < 2 b m < 2
D~ D~ D~ D~ o [ee] [ee] (o] (e (o)} (o)) (o)) o
[e=) (=) o o (e} (e} (e} [e=) (e} [« o o —

Figure D.5 Comparisons between OJT,™ and 5,/ Vq,r, given A, for
Angel — Waterloo.

Table D.3 Proportion of passenger traffic for each alternative route on
Angel — Waterloo

In this case, @, is calculated on the basis of GM model estimates.

Sample size

Proportion of passenger-traffic (%)

Northern[g

NorthernfS

Northern[g

Waterloo & City

(Bank) (London Bridge) (Euston)
r=1 r=2 r=3
" 77 42.9 44.1 13.0
@, 14,419 39.8 49.6 10.6
" 14,419 39.4 49.9 10.7
" 85 40.9 50.8 8.3
@’ 85 50.3 38.0 11.8

=
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Entry time Routel, GM Routel, Updated
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Figure D.6 Comparisons between 7, (based on GM) and 7" for

qr r

Angel — Waterloo:
(a) Routel: - Waterloo & City (via Bank);
(b) Route2: - (via London Bridge); and

(c) Route3: - (via Euston) (see next page).
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The interval between the tick-marks on the horizontal axis spans 10 bars each

relating to an individual /journey record in the Oyster data.
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Figure D.6 (Continued.)

D.2.2 Case-5: Liverpool Street - Green Park
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Figure D.7 Comparisons between OJT,™ and &, Vq,r, given A, for
Liverpool Street — Green Park.
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Table D.4 Proportion of passenger traffic for each alternative route on
Liverpool Street — Green Park

In this case, @ is calculated on the basis of GM model estimates.

Sample size Proportion of passenger-traffic (%)

- - Centrallg
Victoria

(Oxford Circus) (Holborn) (Bond Street)
r=1 r=2 r=3
a)rROD 196 71.3 17.9 10.2
o, 17,102 35.9 47.7 16.4
o 17,102 35.4 48.3 16.3
a)rINF 92 35.9 46.3 17.8
a)rUPD 92 51.8 24.6 23.7
Entry time + Routel, GM A Routel, Updated
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Figure D.8 Comparisons between 7, (based on GM) and 7, for
Liverpool Street — Green Park:

(a) Routel: [#ilag]| - (via Oxford Circus);

(b) Route2: - |9t hlNy (via Holborn) (see next page); and
(c) Route3: - (via Bond Street) (See next page).

The interval between the tick-marks on the horizontal axis spans 10 bars each
relating to an individual /journey record in the Oyster data.
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Entry time + Route2, GM O Route2, Updated
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D.3 Cases of four alternative routes

D.3.1 Case-6: Euston - South Kensington

45
Sample Oyster data
FYVictorial e ¢s YDistrict{ISUIEY
. 40 SYVictorialPiccadilly[(RulEys)
&‘5’3 CINorthernfPiccadilly[(RIS S SIS
g 35 MINorthern8oive iDistrict{(ZUIERUE]
Y .
£ MEE R . *0 ¥
£ 30 FOSRREN € ¢ X LARNRNFY ¢ -t n .
> . il X L . " »
[ (]
S | 20°8% R0 u e’ »° o By
5 A A% A A A A% ma A A
§ AA AA M A
S 20
15 1 1 1 1 1 1 1 1 1 1 1
[} mn (=] mn (=] N (e} n [} n (=) n (=]
D~ D~ D~ o~ oo} (o] [ee) [ee) (o] (o [eN} [eN} o
o o o [} [} o o o o o o o i

Figure D.9 Comparisons between OJT,™ and 5,/ Vq,r, given A, for
Euston — South Kensington.

Table D.5 Proportion of passenger traffic for each alternative route on
Euston — South Kensington

In this case, @,"" is calculated on the basis of GM model estimates.

Sample size Proportion of passenger-traffic (%)

(%1 yo (YiDistrictiilPiccadilly Piccadillyjill 81 v (Y District]

(Victoria) (Green Park) (Leicester Sq.) (Embankment)
r=1 r=2 r=3 r=4
" 209 57.4 21.05 21.05 0.5
@, 8,116 40.9 26.6 19.8 12.7
" 8,116 40.8 26.4 20.4 124
o 48 43.3 31.6 17.5 7.6
" 48 67.4 15.3 7.6 9.7

=
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Entry time + Routel, GM Routel, Updated
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Figure D.10 Comparisons between 7,* (based on GM) and 7z," for

qr
Euston — South Kensington:

(a) Routel: — Circle/ (via Victoria);

(b) Route2: — (via Green Park);

(c) Route3: — (via Leicester Square) (see next page); and
(d) Route4: NI sinaes - Circle/[MTiesta: (via Embankment) (See next page).

The interval between the tick-marks on the horizontal axis spans 5 bars each
relating to an individual /journey record in the Oyster data.
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Entry time + Route3, GM ORoute3, Updated

0.4 -

0.2 -

Posterior probability of route choice

0 L sie mie il aite = = e aie il )

18 19 20

+++

++

21 22 22 23 24 26
Oyster Journey Time (minutes)

(9

Entry time + Route4, GM Route4, Updated

0.8 -

0.6 -

Posterior probability of route choice

0 J_J_J_J_J_J_J.J.J.J.J.J-J-J-J-IJ-J-J-J-+I+++++I+++++I+

¥ EF PP
T

++

18 19 20

Figure D.10 (Continued.)

21 22 22 23 24 26
Oyster Journey Time (minutes)

(d)

10:00
09:30
)
09:00 £
=
S
[}
08:30 £
-
g
08:00 =5
07:30
07:00
10:00
09:30
)
09:00 £
=
=
08:30 £
-
g
08:00 5
07:30
07:00



- 225 -

D.3.2 Case-7: Victoria - Waterloo
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Figure D.11 Comparisons between OJT* and 6, Vvq,r, given A, for
Victoria — Waterloo.

Table D.6 Proportion of passenger traffic for each alternative route on
Victoria — Waterloo

In this case, "

is calculated on the basis of GM model estimates.

Sample size

gBakerloo

Proportion of passenger-traffic (%)

Circle/pJRasts: Circle/)Eayta: Circle/MJEiote:

(Embankment) (

glNor thern IR Iubilcc I ubilee

Embankment) (Westminster) (Green Park)

r=1 r=2 r=3 r=4
" 386 15.3 48.2 36.5
o, 7,935 14 13.0 43.0 42.6
o 7,935 14 13.5 42.6 42.6
o 42 1.6 155 35.7 47.2
o 42 11 18.0 40.7 40.2

=
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Entry time + Routel, GM Routel, Updated
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Figure D.12 Comparisons between 7,* (based on GM) and 7z," for
Victoria — Waterloo:

(a) Routel: Circle/ - (via Embankment);
(b) Route2: Circle/ - (via Green Park);

(c) Route3: Circle/ - (via Westminster) (see next page); and
(d) Route4: - (via Green Park) (see next page).

The interval between the tick-marks on the horizontal axis spans 5 bars each
relating to an individual /journey record in the Oyster data.
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Appendix E

Notation

E.1 Symbols based on the English alphabet

(Listed in alphabetical order)

a()

C, ()

choice,,

ica(®)
choice,,

fqr ()

gof

function used for K-means clustering, which labels an journey
time observation as belonging to a certain cluster

set of all elementary events within the sigma-field on the set of all
possible route choices of passenger ¢

set of all elementary events of passengers’ possible route choices,
given the observations of every individual’s journey time &

set of all elementary events of possible route choices of passenger
g, given his/her journey time 5;’35 (as an observed value of
journey time variable §)

PDF of journey time distribution of route r

elementary event that passenger ( chose route r to make a
single journey

elementary event that passenger ( chose route r to make a
single journey between a given O-D pair and spent a journey time
of 5;’35 (as an observed value of journey time variable )

destination station of a give O-D pair

PDF of journey time distribution of passenger q making a single
journey by route r between a given pair of O-D stations

indicator of goodness-of-fit between observed and simulated
journey time data

label of travel route, referred to as ‘route-label’

individual traveller/passenger (only used briefly so as to
distinguish different individuals; i # j)

total number of clusters used in K-means clustering

transit line for the first leg of a single journey

(Continued)



(Continued)

I"

1()
L)
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transit line for the second leg of a single journey, referred to as
‘connecting line’

indicator function that indicates whether a transit line is |" or 1"
likelihood function

PDF of a mixture distribution of journey time for a given 0-D pair
total number of passengers

total number of travel routes

set of the natural numbers that are greater than or equal to 1

set of the natural numbers that are greater than or equal to 2
normal distribution given mean g, and standard deviation o,

sample size of a given data set

number of passengers who chose route r, based on effective
inference (INF ) from a mixture model

number of passengers who chose route r, based on naive
inference (INF,) from a mixture model

Oyster journey time

observed (OBS) (or, observations of) Oyster journey time
origin station of a give O-D pair

probability measure

statistical population of passengers between a given O-D pair
subpopulation of all passengers who chose route r
individual traveller/passenger

set of all alternative routes connecting a given pair of O-D
stations, referred to as ‘route-choice set’

personal route-choice set of passenger ( travelling between a
given pair of O-D stations

travel route between a given pair of O-D stations; also
component-label for mixture models and (cluster-label for)
K-means clustering

(Continued)
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r(@

S

T
s
T
Ty
T
T
Ty
T ENT

ENT
Tq

T EXT

EXT
Tq

EXT
Tor

qr

t. (4 v)
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categorical variable of component-label, indicating the route
choice of passenger q

interchange station between a given pair of O-D stations

time of passengers’ arrival (ARR ) on a platform for line |" at
origin station 0

time of passengers’ arrival (ARR ) on a platform for line 1" at
destination station d

time of passengers’ arrival (ARR ) on a platform for line |" at
interchange station S

time of passengers’ departure (DEP) from a platform for line I’
at origin station 0

time of passengers’ departure (DEP) from a platform for line |”
at interchange station s

time of departure (dep ) of a I'-train from its platform at origin
station 0

time of departure (dep ) of |"-train from its platform at
interchange station s

time-stamp at which passengers pass through a ticket gate to
enter an origin station 0, referred to as ‘entry time’ (ENT )

entry (ENT ) time of passenger (

time-stamp at which passengers pass through a ticket gate to exit
from an destination station d , referred to as ‘exit time’ (EXT)

exit (EXT ) time of passenger (

exit (EXT ) time of passenger (, given that he/she chooses route
I to make a journey

vector that contains all travel time variables for passenger q
choosing route r

journey time of any passenger travelling by route h, given that

he/she boards the ¢-th arriving train at origin station (and, if h
involves interchange, the y/-th arriving train at an interchange

station)

(Continued)



(Continued)

ACC
tl’ o]

AEI
[

EGR
e

OBT
tl', [o,s]

OBT
tI "[s,d]

OBT
Ty

REF
th

run
tl’, [o,s]

trun

1",[s,d]

TIC
t[l', 1"],s

TIC
[

WED
tI’,o

WED
[

WIC
e

WIC
[

WLK
ty
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access ( ACC) walking time from a gateline to a platform for line
I" at origin station 0

passenger ('s total walking time by using route r, including
his/her access and egress, and the walk for interchange (AET)

I!!

egress (EGR) time from a platform for line
destination station d

to a gateline ata

on-board travel (OBT ) time in a train of line |’ running from
origin station 0 to interchange station s

on-board travel (OBT ) time in a train of line 1" running from
interchange station s to destination station d

passenger (’s total on-board travel (OBT ) time by using r

expected average journey time of travelling by route h, serving as
areference (REF ) value for interpreting estimates from a
mixture model

running ( run ) time of a train of line ', from origin station 0 to
interchange station s

running (run ) time of a train of line 1", from interchange station
S to destination station d

walking time to transfer from a platform for line |’ to another for
line |” atinterchange (TIC) station s

passenger (’s walking time to transfer between platforms at an
interchange (TIC) station on route r

waiting time to board a train of line |’ for departure (WFD) from
the I'- platform at origin station 0

passenger (’s waiting time to board a train for departure (WED)
from an origin station by using route r

waiting time to board a train of line |” for departure from the
|”-platform at interchange (WIC) station S

passenger (’s waiting time to board a train for departure from an
interchange (WIC) station on route r

passenger (’s total walking (WLK) time of both his/her access at
an origin station and egress at a destination station by using
route r

(Continued)



(Continued.)
t;\IrTT
4.0)

U

qr

A(0,1)

u()

qr

Vh (Or Vr)

th

DNS
uh

ESC
uh

PSG
uh

UPS
uh

DNS

ESC

UPS

< << <
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passenger (’s total waiting time on route r, including his/her
waiting times at both the origin and interchange stations

Student's #-value with certain degrees of freedom and a given
probability level *

utility that passenger q perceives he/she may gain from choosing
route r to make a journey

standard uniform distribution

underground station (representing station of origin 0,
destination d or interchange s)

function that indicates whether a station is an interchange or the
destination of a given pair of O-D stations

deterministic (or observable) portion of utility U

indicator (or dummy variable) that equals one if route h (or r)is
a direct service, and zero if it is an indirect service

vector that contains reciprocals of distances for each type of
pathways at station u on route h;

total run of staircases used for going down (DNS) to lower levels
at station U on route h

total run of escalators/lifts (ESC) at station u on route h

total length of level /ramp passageways (PSG ) at station U on
route h

total run of staircases used for going to upper (UPS) levels at
station U on route h

vector that contains passengers’ walking/moving speeds on each
type of pathways

walking speed of going downstairs (DNS)
escalators/lifts (ESC) speed
walking speed on level/ramp passageways (PSG)

walking speed of going upstairs (UPS)
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E.2 Symbols based on the Greek alphabet

(Listed in alphabetical order)

aqr

IBAEI
ﬂI/C
ﬂOBT
ﬂTIC
ﬂWFD
ﬂWIC
ﬂWLK
IBWTT
7qr

AS M

5%

Ngp=

binary indicator that equals one if passenger ( actually chose
route r, and zero otherwise

vector that contains all coefficients, each being associated with a
travel time variable

coefficient of passenger q’s total walking time by using route r,
including his/her access and egress, and the walk for interchange
(AET) between a given pair of O-D

coefficient of a dummy variable for interchange/non-interchange

coefficient of passengers’ total on-board travel (OBRT ) time
between a given pair of O-D

coefficient of passengers’ walking time to transfer between
platforms at interchange ( TIC) stations

coefficient of passengers’ waiting time to board a train for
departure (WED) from an origin station

coefficient of passengers’ waiting time to board a train for
departure from an interchange (WIC) station

coefficient of passengers’ total walking (WLK ) time of both access
(at an origin station) and egress (at a destination station)

coefficient of passenger q’s total waiting time at both the origin
and interchange stations on route r

estimate of the location parameter for journey time distribution
of passenger  making a single journey by route r

simulated (SIM ) data set of passengers’ journey times, which is
generated from a mixture model (being estimated)

set of all journey time observations for a given O-D pair

set of individual journey time observations, containing a sample
of 5% Oyster card data (from 6th February (Sunday) to 5th March
(Saturday) in 2011)

set of posterior probabilities of passengers’ route choice for
selected O-D pairs, each of which involves two alternative routes
( Ng = 2)

(Continued)
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APES
AINE
AN

KMS
Ar

qr

OBS
5‘1

EXP
Our

SIM
5?

qr

¢()

KMS

T
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set of posterior probabilities of passengers’ route choice for
selected O-D pairs, any one of which involves no more than three
alternative routes (N, < 3)

set of posterior probabilities of passengers’ route choices for
selected O-D pairs, any one of which involves no more than four
alternative routes (N, <4)

set of desired (DES ) data, which includes both of passengers’
route choices and their journey times

set of journey time data of passengers who chose route r, based
on effective inference (INF ) from a mixture model

set of journey time data of passengers who chose route r, based
on naive inference (INE,) from a mixture model

set of journey time observations, which is produced by K-means
(KMS) clustering and labelled r

elementary event that passenger ¢ spent a journey time of 5,
travelling between a given pair of O-D stations

elementary event that the expected journey time of passenger q
is 6, ", given that he/she chooses route r and his/her entry time
is T

q

journey time of travelling between a given pair of O-D stations

journey time of passenger ( travelling between a given pair of O-
D stations

journey time of passenger q making a single journey by route r
journey time of route r between a given pair of O-D stations
journey time observation (OBS) of passenger (

expected (EXP ) journey time of passenger  using route r,
given an observation of his/her entry time T,

simulated journey time, with subscript 4 being its index; 4 e N,
error term in utility U,

assignment function used for naive inference of each passenger’s
route choice, based on a mixture model

median (or centroid-value) of set A

(Continued)
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Hy

Hy
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MIX
HA

HUMM

Asy,
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MIX
qr
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vector that contains all parameters of a mixture model
estimate of vector @

vector of the distribution parameter(s) of c (J), with ﬁr being its
estimate

estimate of parameter vector 0,

vector of a parameter (or parameters) for probability distribution
of passenger ( making a single journey by route r

estimate of parameter vector 8,
objective function to be minimised for K-means clustering

vector of standard uniform variables used for the effective
inference given data set of observed journey times, with each
being associated with one of the observations

random variable for passenger q, which follows the standard
uniform variable; Aq ~U(0,1)

generated (real-valued) number of standard uniform variable A,
vector that contains all subpopulation means g,

mean of journey time distribution of route r (also referred to as
subpopulation mean of Q, )

estimate of subpopulation mean g,

assignment function used for effective inference of each
passenger’s route choice, based on a mixture model

matrix (of size nx N ) that enumerates all posterior probabilities
of passengers’ route choices, estimated from a mixture (MIX)
model on data set A

matrix (of size nx N ) that enumerates all updated posterior
probabilities of passengers’ route choices, based on estimates
from a mixture model (UMM) on data set A,

posterior probability (density) function for passengers’ route
choices given their journey times

posterior probability that passenger ( chose route r (given
his/her journey time 5;"°), estimated from a mixture (MIX)
model

(Continued)
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UMM

INF,
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updated posterior probability of passenger g choosing route r,
based on the estimate from a mixture model (UMM )

vector that contains all subpopulation standard deviations o,

estimate of a sample standard deviation of journey time of route
h (given that each of t, (¢§,y) V¢, is treated an observation)

estimate of a standard error of the mean journey time of route h
(given that each of t, (¢4, i) V¢, v is treated as a sample mean)

standard deviation of journey time distribution of route r (also
referred to as subpopulation standard deviation of Q, ), with &,
being its estimate

estimate of subpopulation standard deviation o,
standard deviation of set A"

estimate of the scale parameter for journey time distribution of
passenger ( making a single journey by route r

expected walking (WLK ) time at station u along route h
set of all possible route choices of passenger ¢

set of all possible route choices of passengers travelling between
a given pair of O-D stations, given their actual journey times

set of all possible route choices of passenger (, given his/her
actual journey time &,

number of attempts that passengers make to successfully board a
train at origin station 0

number of attempts that passengers make to successfully board a
train at interchange station s

vector that contains all mixture weights of a mixture model
estimate of vector ®

mixture weight of journey time distribution of route r
estimate of mixture weight o,

proportion of passengers using route r, based on naive inference
(INE,) from a mixture model of journey time

(Continued)
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proportion of passengers using route r, based on effective
inference (INF) from a mixture model of journey time

proportion of sub-dataset A" in data set A

percentage of respondents who chose route r, according to the
Rolling Origin and Destination (ROD ) Survey data

proportion of passenger using route r, based on effective
inference from updated (UPD ) route-choice probabilities
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