

Department of Computer Science

Labelling Dynamic XML Documents:

A GroupBased Approach

Submitted for the degree of Doctor of Philosophy

(PhD Thesis)

Alaa Abdulbasit Almelibari

March 2015

Supervisor: Dr Siobhán North

Abstract

 I

Abstract

Documents that comply with the XML standard are characterised by inherent

ordering and their modelling usually takes the form of a tree. Nowadays,

applications generate massive amounts of XML data, which requires accurate and

efficient query-able XML database systems. XML querying depends on XML

labelling in much the same way as relational databases rely on indexes. Document

order and structural information are encoded by labelling schemes, thus

facilitating their use by queries without having to access the original XML

document. Dynamic XML data, data which changes, complicates the labelling

scheme. As demonstrated by much research efforts, it is difficult to allocate unique

labels to nodes in a dynamic XML tree so that all structural relationships between

the nodes are encoded by the labels.

Static XML documents are generally managed with labelling schemes that use

simple labels. By contrast, dynamic labelling schemes have extra labelling costs

and lower query performance to allow random updates irrespective of the

document update frequency. Given that static and dynamic XML documents are

often not clearly distinguished, a labelling scheme whose efficiency does not

depend on updating frequency would be useful.

The GroupBased labelling scheme proposed in this thesis is compatible with static

as well as dynamic XML documents. In particular, this scheme has a high

performance in processing dynamic XML data updates. What differentiates it from

other dynamic labelling schemes is its uniform behaviour irrespective of whether

the document is static or dynamic, ability to determine all structural relationships

between nodes, and the improved query performance in both types of document.

The advantages of the GroupBased scheme in comparison to earlier schemes are

highlighted by the experiment results.

Declaration

 II

Declaration

I declare that the composition of this thesis and the work within are entirely my

own, apart from the specified exceptions. This work has not been put forward for

any other degree or professional qualification, except as stated.

Alaa Abdulbasit Almelibari

Acknowledgements

 III

Acknowledgements

First of all, I wish to praise God for endowing me with the perseverance and

dedication to bring this research to fruition.

Secondly, I wish to express my gratitude to my supervisor, Dr Siobhan North, who

not only offered me invaluable advice and assistance throughout this research, but

also supported me tirelessly. She is an exceptional supervisor and an extraordinary

person.

I am beyond grateful to my parents for their unconditional love, support,

encouragement and, most importantly, for having faith in me. I would not have

been able to overcome the many hurdles and complete this work without their

help and guidance and therefore I wish to dedicate my success to them. I am also

thankful to my siblings (Abdullah, Mohammed, Ammar and Arwa) for encouraging

me throughout my research. I love them more than words can say.

I am incredibly grateful to my husband (Hani) and our amazing little princess

(Danah) without whom I could have finished this work a whole year earlier!

You are the most beautiful things in my life and I feel blessed because of you both;

you have made me believe in myself. Thank you from the bottom of my heart for

giving me the motivation I needed to undertake this work, for being patient and

making sacrifices to ensure I had a positive study environment, and for inspiring

me to pursue my dreams and ambitions.

I am much obliged to the Saudi Government and Umm-Al-Qura University for

offering me the opportunity and funding I needed to undertake higher education

studies in the United Kingdom.

Finally, I am highly appreciative of all my friends in Sheffield for their help and

encouragement which gave me confidence to persevere with this research.

List of Figures

 IV

List of Figures

Fig. 1.1:

an example of XML document ………...

4

Fig. 1.2:

Representation of XML document in Fig.1.1..

5

Fig. 1.3:

Research Process Onion...

10

Fig. 2.1:

Simple XML Document ………...

23

Fig. 2.2:

Order in XML Elements ..

24

Fig. 2.3:

Order in XML Attributes ...

26

Fig. 2.4:

XML Tree for Document in Fig. 2.1 ..

27

Fig. 2.5:

DTD for Document in Fig. 2.1 ..

29

Fig. 2.6:

XML Schema for Document in Fig. 2.1 ...

30

Fig. 3.1:

Dewey Labelling Scheme..

46

Fig. 3.2:

LSDX Labelling Scheme...

48

Fig. 3.3:

ImprovedBinary Labelling Scheme...

50

Fig. 3.4:

Containment Labelling Scheme...

53

Fig. 3.5:

Pre/Post Labelling Scheme...

54

Fig. 3.6:

Order/Size Labelling Scheme...

55

Fig. 3.7:

Insertion in Containment Labelling Scheme..

58

Fig. 3.8:

DDE Labelling Scheme (Initial Labelling)...

66

Fig. 3.9:

DDE Labelling Scheme (Handling Insertions)...

67

Fig. 4.1.1:

GroupBased Scheme Initial Labelling ..

80

Fig. 4.1.2:

GroupBased Scheme Full Labels ...

81

Fig. 4.2:

GroupBased Scheme Leftmost Insertion ..

88

List of Figures

 V

Fig. 4.3:

GroupBased Scheme Rightmost Insertion ..

89

Fig. 4.4:

GroupBased Scheme InsertBetween two nodes ...

91

Fig. 4.5:

GroupBased Scheme InsertBelow leaf node ..

93

Fig 4.6.1:

GroupBased Scheme Handling Insertions ……………………………………………….

94

Fig 4.6.2:

GroupBased Scheme Full Labels after Insertions……………………………………..

95

Fig. 5.1:

Implementation’s Design: an overview ..

105

Fig. 5.2:

General Pseudo code ...

109

Fig. 5.3.1:

Flowchart of the initial labelling (GroupBased) scheme

111

Fig. 5.3.2:

Pseudo code of the initial labelling (GroupBased) scheme

112

Fig. 5.3.3:

Pseudo code of the initial labelling (GroupBased) scheme

112

Fig. 5.4:

Flowchart & Pseudo code of the initial labelling (DDE)

114

Fig. 5.5:

Flowchart & Pseudo code of the search mechanism ..

115

Fig. 5.6.1:

Flowchart of the leftmost insertion (GroupBased) ..

117

Fig. 5.6.2:

Pseudo code of the leftmost insertion (GroupBased) ...

118

Fig 5.7:

Flowchart & Pseudo code of the leftmost insertion (DDE)

119

Fig. 5.8.1:

Flowchart of the rightmost insertion (GroupBased) ...

121

Fig. 5.8.2:

Pseudo code of the rightmost insertion (GroupBased)

122

Fig. 5.9:

Flowchart & Pseudo code of the right insertion (DDE)

123

Fig. 5.10.1:

Flowchart of the ‘lastDescendant’ method ...

124

Fig. 5.10.2:

Pseudo code of the ‘lastDescendant’ method ...

125

Fig. 5.11.1:

Flowchart of inserting between two nodes (GroupBased) ………………………

127

Fig. 5.11.2:

Pseudo code of inserting between two nodes (GroupBased) ……………………..

128

Fig. 5.12.1:

Flowchart of inserting between two nodes (DDE) ..

129

Fig. 5.12.2:

Pseudo code of inserting between two nodes (DDE) ...

130

List of Figures

 VI

Fig. 5.13.1:

Flowchart of inserting below a leaf node (GroupBased) ……………………………

132

Fig. 5.13.2:

Pseudo code of inserting below a leaf node (GroupBased) ………………………

133

Fig. 5.14:

Example of ‘isSimplified’ & ‘simplify’ methods ...

134

Fig. 5.15.1:

Flowchart of inserting below a leaf node (DDE) ...

136

Fig. 5.15.2:

Pseudo code of inserting below a leaf node (DDE) ..

136

Fig. 6.1:

The Structure of XMach-1 Benchmark ..

149

Fig. 7.1.1:

Initial Labelling Time (GroupBased) ...

169

Fig. 7.1.2:

Initial Labelling Time (DDE) ...

169

Fig. 7.1.3:

Initial Labelling Time (GroupBased vs DDE) ...

170

Fig. 7.2.1:

Initial Labels’ Size (GroupBased) & (DDE) ...

171

Fig. 7.2.2:

Initial Labels’ Size (GroupBased vs DDE) ...

171

Fig. 7.3.1:

Initial Labelling Time (wide vs deep) XML tree structure

172

Fig. 7.3.2

Initial Labels’ Size (wide vs deep) XML tree structure ..

173

Fig. 7.3.3:

Initial Labelling Time(wide vs deep) (GroupBased vs DDE)

173

Fig. 7.3.4:

Initial Labels’ Size (wide vs deep) XML tree structure (GroupBased vs DDE)

174

Fig. 7.4.1:

The Boxplots and the p-value between DDE and the GroupBased Schemes
using XML files of size 0.5 and 1 MB for the initial labelling experiment

175

Fig. 7.5.1:

The Boxplots and the p-value between DDE and the GroupBased Schemes
using the dataset lineitem and xml13 for the initial labelling experiment

176

Fig. 7.6.1:

Determining Different Relationships (GroupBased)..

177

Fig. 7.6.2:

Determining Different Relationships (DDE) ..

177

Fig. 7.6.3:

Determining Different Relationships (GroupBased vs DDE) ……………………

178

Fig. 7.7.1:

The Boxplots and the p-value between DDE and the GroupBased Schemes

179

List of Figures

 VII

when identifying the Order between two nodes in a static XML document

Fig. 7.8.1:

Query Evaluation (GroupBased) ..

180
181

Fig. 7.8.2:

Query Evaluation (DDE) ...

181
182

Fig. 7.8.3:

Query Evaluation (GroupBased vs DDE) ..

183

Fig. 7.9.1:

The Boxplots and the p-value between DDE and the GroupBased Schemes
when evaluating the queries on static XML document (Q1)

184

Fig. 7.10.1:

Uniform Insertion Time (GroupBased) ...

186

Fig. 7.10.2:

Uniform Insertion Time (GroupBased vs DDE) ...

187
188

Fig. 7.10.3:

Uniform Insertion Labels’ Size (GroupBased vs DDE) ...

188

Fig. 7.11.1:

The Boxplots and the p-value between DDE and the GroupBased Schemes
when performing the Uniform Insertion using XML file of size 0.5 MB

189

Fig. 7.12.1:

Ordered Skewed Insertion Time (GroupBased vs DDE)

190

Fig. 7.12.2:

Ordered Skewed Insertion Labels’ Size (GroupBased vs DDE)

190

Fig. 7.13.1:

The Boxplots and the p-value between DDE and the GroupBased Schemes
when performing the Ordered Skewed Insertion (500 nodes were
inserted) …………………………………………………………………………………………....

191

Fig. 7.14.1:

Random Skewed Insertion Time (GroupBased vs DDE)

192

Fig. 7.14.2:

Random Skewed Insertion Labels’ Size (GroupBased vs DDE)

193

Fig. 7.15.1:

The Boxplots and the p-value between DDE and the GroupBased Schemes
when performing the Random Skewed Insertion (500 nodes were
inserted) …………………………………………………………………………………………....

194

Fig. 7.16.1: Relationships After Uniform Insertion .. 195

Fig. 7.16.2: Relationships After Ordered Skewed Insertion .. 195

Fig. 7.16.3: Relationships After Random Skewed Insertion .. 196

Fig. 7.17.1:

The Boxplots and the p-value between DDE and the GroupBased Schemes

197

List of Figures

 VIII

when identifying the Order between two nodes after the uniform insertion

Fig. 7.18.1:

The Boxplots and the p-value between DDE and the GroupBased Schemes
when identifying the Order between two nodes after ordered skewed
insertion …………………………………………………………………………………………......

198

Fig. 7.19.1:

The Boxplots and the p-value between DDE and the GroupBased Schemes
when identifying the Order between two nodes after random skewed
insertion …………………………………………………………………………………………......

199

Fig. 7.20.1: Query Evaluation on Dynamic Document (DDE) .. 200
201

Fig. 7.20.2: Query Evaluation on Dynamic Document (GroupBased) 201
202

Fig. 7.20.3:

Query Evaluation on Dynamic Document (GroupBased vs DDE)

202
203

Fig. 7.21.1:

The Boxplots and the p-value between DDE and the GroupBased Schemes
when evaluating the queries on dynamic XML document (Q1) …………………

204

Fig. 8.1:

Labels’ Size before & after Insertions (GroupBased) ...

216

Fig. 8.2:

Labelling Time before & after Insertions (GroupBased)

217

Fig. 8.3:

Relationships before & after Insertions (GroupBased)

218

Fig. 8.4:

Query Evaluation before & after Insertions (GroupBased)

219
220

Fig. 8.5:

Labels’ Size before & after Insertions (DDE) ...

221

Fig. 8.6:

Labelling Time before & after Insertions (DDE) ...

221

Fig. 8.7: Relationships before & after Insertions (DDE) ... 222

Fig. 8.8: Query Evaluation before & after Insertions (DDE) ... 223
224

List of Tables

 IX

List of Tables

Table 2.1:

XPath Axis ………...

32

Table 4.1:

GroupBased initial labels for XML tree in Fig 4.1.1..................................

82

Table 4.2:

GroupBased labels after insertions ..

96

Table 6.1:

Some features of XML Benchmarks ...

150

Table 6.2:

Some features of XML real-datasets ..

156

Table 6.3:

Experimental Queries ..

159

Table 7.1:

XML files used in the experiments ..

167

Table Of Contents

 X

Chapter 1: Introduction ... 1
1.1 Introduction.. 1
1.2 Research Motivation .. 2

1.2.1 The Importance of XML Databases ... 3
1.2.2 The Importance of XML Labelling ... 3

1.3 Research Methodology and Research Hypothesis ... 10
1.3.1 Research Process .. 10
1.3.2 Research Philosophy ... 11
1.3.3 Research Approach .. 12
1.3.4 Research Strategy ... 13
1.3.5 Time Horizon .. 14
1.3.6 Data Collection Method .. 14

1.3.6.1 Formulating a Tentative Hypothesis .. 15
1.3.6.2 Observation and Patterns Identification .. 15
1.3.6.3 Testing the Hypothesis ... 15
1.3.6.4 Develop a Theory .. 16

1.4 The Scope of the Research .. 16
1.5 Research Aims and Objectives .. 16
1.6 Structure of the Thesis ... 18
1.7 Conclusion .. 20

Chapter 2: XML Background .. 21
2.1 Introduction... 21
2.2 XML Overview ... 22
2.3 XML Syntax ... 24

2.3.1 Elements ... 24
2.3.2 Attributes ... 24
2.3.4 Ordering.. 26

2.4 XML Tree Structure ... 27
2.5 Document Type Definitions (DTDs) .. 28
2.6 XML Schema ... 29
2.7 XML Query Languages .. 31

2.7.1 XML Path Language (XPath) ... 31
2.7.2 XML Query Language (XQuery) .. 33

2.7.2.1 FLWOR Expression ... 34

Table Of Contents

 XI

2.8 XML Parsing.. 36
2.8.1 Document Object Model (DOM) .. 36
2.8.2 Simple API for XML (SAX) ... 37

2.9 XML Databases .. 38
2.10 Conclusion .. 40

Chapter 3: Related Work on XML Labelling Schemes ... 41
3.1 Introduction ... 41
3.2 Labelling Schemes: An Overview .. 42
3.3 Common labelling schemes used for XML data ... 45

3.3.1 Prefix-based Labelling Schemes ... 46
3.3.1.1 Structure and Description ... 46
3.3.1.2 Strengths of Prefix-based Labelling Schemes ... 48
3.3.1.3 Weaknesses and Limitation .. 50

3.3.2 Interval-based Labelling Schemes ... 52
3.3.2.1 Structure and Description ... 52
3.3.2.2 Strengths of Interval-based Labelling Schemes ... 55
3.3.2.3 Weaknesses and Limitation .. 56

3.3.3 Multiplication-based Labelling Schemes .. 59
3.3.3.1 Structure and Description ... 59
3.3.3.2 Strengths of Multiplication-based Labelling Schemes .. 60
3.3.3.3 Weaknesses and Limitation .. 60

3.3.4 Vector-based Labelling Schemes .. 63
3.3.4.1 Structure and Description ... 63
3.3.4.2 Strengths of Vector-based Labelling Schemes.. 63
3.3.4.3 Weaknesses and Limitation: .. 64
3.3.4.4 DDE Labelling Schemes .. 66

3.3.5 Summary of major labelling schemes... 68
3.4 Functional characteristics of ideal labelling schemes .. 69

3.4.1 Time needed to determine the different relationships ... 70
3.4.2 Queries’ performance before and after insertions .. 71
3.4.3 Scheme’s ability to handle different types of insertion ... 72
3.4.4 New labelling scheme that is appropriate to support dynamic update 73

3.5 Summary of the review .. 74
3.6 Conclusion .. 75

Chapter 4: GroupBased Labelling Scheme for Dynamic XML Databases 77

Table Of Contents

 XII

4.1 Introduction... 77
4.2 An Overview of the Scheme .. 78
4.3 The Initial Labelling .. 79

4.3.1 The Scheme’s Properties ... 83
4.4 Handling Insertions .. 88

4.4.1 The Scheme’s Properties after Insertions: ... 97
4.5 Validating the Scheme’s Properties .. 100
4.6 Conclusion .. 103

Chapter 5: Design and Implementation .. 104

5.1 Introduction... 104
5.2 Overview ... 105
5.3 Initial Labelling .. 110

5.3.1 The GroupBased Labelling Scheme: ..110
5.3.2 DDE Labelling Scheme ..113

5.4 Search Mechanism ... 114
5.5 Performing Insertions.. 115
5.6 Determining Different Relationships ... 136

5.6.1 Level ...136
5.6.2 Label Order ..137
5.6.3 Ancestor/Descendant Relationship (AD) ...138
5.6.4 Parent/Child Relationship (PC) ..138
5.6.5 Computing the Lowest Common Ancestor (LCA)..139

5.7 Conclusion .. 139

Chapter 6: Experimental Framework .. 140

6.1 Introduction... 140
6.2 The Experimental Setup and the Implementation Platform 140
6.3 An overview of the experimental framework ... 141

6.3.1 Objectives of the Experiments ...144
6.4 The Experimental Evaluation Criteria ... 145
6.5 A Review of Existing XML Datasets .. 146

6.5.1 XML Benchmarks ..146
6.5.2 Real-Life XML Datasets ...152
6.5.3 The Experimental Datasets ...157
6.5.4 The XMark Benchmark ...157

Table Of Contents

 XIII

6.6 The Objectives of the Experimental Queries ... 159

Chapter 7: Results and Analysis ... 162

7.1 Introduction .. 162
7.2 Statistical significance of the results .. 163

7.2.1 Overview of Statistical Significance Tests ... 164
7.2.2 Significance interpretation of results .. 166

7.3 Experimental Data .. 166
7.4 Static Document Experiments .. 168

7.4.1 Initial Labelling Experiment .. 168
7.4.1.1 Results’ Analysis ... 168
7.4.1.2 Statistical Interpretation of the Results ... 174

7.4.2 Determining Different Relationships... 176
7.4.2.1 Results’ Analysis ... 177
7.4.2.2 Statistical Interpretation of the Results ... 178

7.4.3 Query Performance ... 179
7.4.3.1 Results’ Analysis ... 179
7.4.3.2 Statistical Interpretation of the Results ... 184

7.5 Dynamic Document Experiments .. 185
7.5.1 Handling Insertions .. 186
7.5.2 Determining Different Relationships... 194

7.5.2.1 Results’ Analysis ... 195
7.5.2.2 Statistical Interpretation of the Results ... 196
7.5.2.2.1 Different relationships after Uniform insertion .. 196
7.5.2.2.2 Different relationships after Ordered insertion .. 197
7.5.2.2.3 Different relationships after Random insertion.. 198

7.5.3 Query Performance ... 200
7.5.3.1 Results’ Analysis ... 200
7.5.3.2 Statistical Interpretation of the Results ... 203

7.6 Conclusion ... 204

Chapter 8: Evaluation .. 206
8.1 Introduction .. 206
8.2 Threats to the experiments ... 207

8.2.1 Presenting equal computer tasks to pairs of experiments 208
8.2.2 Test-retest reliability.. 209

8.3 Evaluation of the Experiments ... 211

Table Of Contents

 XIV

8.3.1 Evaluation of the Initial Labelling Experiment ...211
8.3.2 Evaluation of Relationships Experiment...212
8.3.3 Evaluation of the Queries Experiment ...213
8.3.4 Evaluation of Handling Insertions Experiment ..214

8.4 The Schemes’ Self-Comparisons ... 215
8.4.1 The GroupBased Schemes’ Self-Comparisons...216
8.4.2 DDE Scheme’s Self-Comparisons ..220

8.5 The Proposed Scheme: General Evaluation ... 224
8.5.1 The Main Experimental Findings ...227

8.6 The Consequences of Some Practical Decisions ... 229
8.7 Experimental Limitations ... 231
8.8 Conclusion .. 232

Chapter 9: Conclusion ... 233

9.1 Introduction... 233
9.2 Thesis Summary ... 233
9.3 Research’s Main Contributions ... 236
9.4 How the Hypothesis is supported by the Outcomes .. 236
9.5 Further Research Developments and Future Directions 237
9.6 Finally .. 238

References ... 239

Appendix A: Full Box Plots ... 262

a.1 Initial Labelling Experiments: ... 262
a.2 Determining Different Relationships on Static XML: .. 266
a.3 Queries on Static XML:.. 268
a.4 Uniform Insertions: ... 275
a.5 Ordered-Skewed Insertions: .. 278
a.6 Random-Skewed Insertions: .. 281
a.7 Relationships after Uniform-Insertions: ... 283
a.8 Relationships after Ordered-Skewed Insertions: ... 285
a.9 Relationships after Random-Skewed Insertions: ... 286
a.10 Queries on Dynamic XML: .. 288

Chapter 1: Introduction

 1

Chapter 1: Introduction

1.1 Introduction

It has become increasingly important to manage web-based information to keep

up with the accelerated pace of the expansion of the Internet. This necessity has

promoted the development of XML, which has become the norm for data exchange

on the Web (Abiteboul et al., 2000, Assefa and Ergenc, 2012, Champion, 2001,

Chang et al., 2012, Choi et al., 2014, Davis et al., 2003, Deng et al., 2013, Härder and

Mathis, 2010, Jonge, 2008, Luo et al., 2009, Ogbuji, 2004, Tatarinov et al., 2002,

Thimma et al., 2013, Tidwell, 2002, Vakali et al., 2005, W3schools, 2013d, Xu et al.,

2012, Zhuang and Feng, 2012). This has resulted in extensive study of XML

databases and associated technologies, with an emphasis on data storage, access,

retrieval and updating.

The XML labelling scheme is the key to managing XML data competently and

rigorously. XML labelling basically means the act of assigning labels or

identification nomenclature to nodes in XML trees (Bosak and Bray, 1999).

Labelling gives each node a unique identification, it ensures that it is to establish

the relationship that exists between any two nodes in an XML tree. At first, the

concern of most studies of XML was navigating and retrieving data in static

documents, which do not require node labels to have wide-ranging functionality.

This is because, well formed XML documents were not considered to require any

externally aided approach such as labelling to make them identifiable (Chung et al.,

2002, Jiang et al., 2011, Kaushik et al., 2002a). Because the XML documents were

considered well formed, they were thought to have the ability to be read and

understood by the use of the XML parsers without node labels (Kaushik et al.,

2002b, Li and Ling, 2005b, Tatarinov et al., 2002, Wan and Liu, 2008, Wang and

Meng, 2005, Zhang et al., 2001).

Chapter 1: Introduction

 2

Nowadays XML is not static, documents change. It is important that dynamic XML

documents are managed effectively as the majority of well-developed and popular

database products now incorporate XML processing. In the context of dynamic and

complex XML documents, labelling becomes essential to aid query processing.

Query processing refers to the ability of data retrieval, update, delete and

manipulate.

Numerous researchers (Amagasa et al., 2003, Cohen et al., 2010, Eda et al., 2005, Li

and Ling, 2005a, Li and Ling, 2005b, Li et al., 2006a, O'Neil et al., 2004, Wu et al.,

2004, Xu et al., 2009) have put forward dynamic schemes, but none of these is

entirely satisfactory, thus warranting further exploration. In response, this thesis

has created a new dynamic labelling scheme entitled ‘GroupBased’, which is

primarily geared towards enhancing the performance of both dynamic and static

XML documents.

The current chapter presents the research motivation in Section 1.2, the research

methodology and hypothesis in Section 1.3, and the scope of the research is

described in Section 1.4. The research aims and objectives are outlined in Section

1.5. Moreover, the chapter provides an overview of the structure of the thesis in

Section 1.6 before ending with a conclusion in Section 1.7.

1.2 Research Motivation

Overall, this thesis seeks to propose a labelling scheme that supports the effective

management of dynamic XML trees. To underscore this motivation, the

significance of XML databases and of labelling schemes is discussed in Sections

1.2.1 and 1.2.2 respectively.

Chapter 1: Introduction

 3

1.2.1 The Importance of XML Databases

Data storage, transfer and management are the main functions of XML. As argued

by several researchers (Abiteboul et al., 2000, Champion, 2001, Connolly and Begg,

2005, Tidwell, 2002, W3schools, 2013d), XML is advantageous not only because it

can be read by people and machines alike, but also because of its flexibility,

simplicity and self-definition. Recently, XML’s properties of standardisation, and

especially its flexibility, have been applied in many contexts, among others, in data

mapping, cardinality variations, optional or non-existing structures, have become

the catalysts for drawing complex write/read applications, allowing non-uniform

data stores, as well as promoting the fusion of data (Abiteboul et al., 2000, Assefa

and Ergenc, 2012, Champion, 2001, Choi and Wong, 2014, Chung et al., 2002, Deng

et al., 2013, Härder et al., 2007, Jonge, 2008, Liu et al., 2013, Luo et al., 2009,

Noaman and Al Mansour, 2012, Tatarinov et al., 2002, Thimma et al., 2013, Tidwell,

2002, Vakali et al., 2005, W3schools, 2013d, Xu et al., 2009, Zhuang and Feng,

2012).

In most industries, business models employ large and constantly developing sets

of barely populated attributes (Cunningham, 2006, Duong and Zhang, 2005).

Increasingly, firms have come to rely on XML, even going so far as to establish

corporations (Bosak and Bray, 1999, Gou and Chirkova, 2007) to create XML

schemas compatible with their data modelling requirements. Since many

applications demand data flexibility, it is no surprise that XML databases are used

with growing frequency not only in collaborative contexts, but also in competitive

ones (Loeser et al., 2009). The increasing popularity of XML databases has

intensified investigations focusing on enhancing their performance.

1.2.2 The Importance of XML Labelling

Large volumes of data are managed directly in XML data format. The current XML

technology is however facing many challenges due to the particularities of data

Chapter 1: Introduction

 4

management in concrete applications (Abiteboul et al., 2000, Bouganim et al.,

2004). The issues can be generalised as the need for handling data that is

imprecise and uncertain, through application of fuzzy logic, probability and even

soft computing (Ma and Yan, 2010).

Increased volumes of data handled by XML document has necessitated the

development of XML databases. This is due to the need to manage XML documents

since nowadays many applications are using it to store their configurations and

data. Such applications include Microsoft Office and Open Office (Barbosa and

Bonifati, 2007).

The XML tree structure basically refers to the unique nature in which the XML

document is arranged to form a tree which starts at the root, having branches and

developing further on to form leaves (Abiteboul et al., 2000, Darugar, 2000, Harold

et al., 2004, Ray, 2003, W3schools, 2013k). The XML tree is underpinned by the

interconnection of nodes and specific edges. In a typical XML document such as the

one given in Figure 1.1, the correspondening XML tree is shown in Figure 1.2.

Chapter 1: Introduction

 5

The root element, acting as ‘parent’ for the other elements, is the starting point of

the tree which is node ‘menu’ in Figure 1.2.

Various relationships and family orientations can be identified within an XML tree.

The first of these is the parent/child relationship, which can be identified between

a node and any immediate node resulting from it (Wu, Lee & Hsu, 2008). Using

Figure 1.2, it can be said that node ‘drinks’ and node ‘hot-drinks’ form a

parent/child relationship. Another relationship is sibling, which exists between

nodes that share the same parent node (Cunningham, 2006); such as node ‘drinks’

and node ‘food’ in Figure 1.2. Writing on the ancestor/descendant relationship,

Yun and Chung (Yun and Chung) explained that any child that a parent has forms a

descendant of the parent. By extension, all children and their siblings are

descendants of the parent. Zhang et al. (Zhang et al.) also added that it does not

really matter how far down the family tree is, all children of children remain the

descendants of the parent. From the XML tree in Figure 1.2 therefore, it can be said

that ‘hot-drink’ is a descendant of ‘menu’. Using all the explanations given here,

any element that comes above another in the family tree is an ancestor. This means

Chapter 1: Introduction

 6

that the node is ancestor to all its descendants; from Figure 2.1, ‘drinks’ is an

ancestor to ‘hot-drink’, ‘cold-drink’ and all their children nodes.

The tree structure limits the storage capacity of the XML document. As a result,

pointers in the trees occupy most of the storage space. However, a solution to this

is to avoid the storage of pointers, and instead, store the tree as a sequence in a

link list, and to make use of layers by using them to store the content of every node

(Shen et al., 2010).

In XML, the document order is significant and affects the data that is returned by

queries. However, in relational databases, the data is stored in tables with rows

and columns. The order of the rows in relational data does not give a clue to the

ordering of the data (Hunter et al., 2007). As a result, the main reason why XML

databases have been so slow to take off could be attributed to the fact that the

storage of XML documents on file systems works extremely well (Shen et al.,

2010).

To cater for the increasing importance in XML data management, XML labelling

schemes were invented and much research has been done to develop more

efficient labelling schemes. XML labelling schemes refer to tools, which are

basically used to assign unique labels to the nodes in the tree such that constant

time is taken in the determination of the relationship between two nodes from the

labels. A good labelling scheme is, therefore, measured by how well it determines

the relationship between XML elements and how it quickly offers access to the

desired data (i.e. provide better query performance) (Haustein and Härder, 2007,

Min et al., 2009).

The performance of a query in any database depends on the data being indexed

and in XML the indexing process is based on the labelling schemes (Johnson et al.,

2012). Thus, XML querying depends on XML labelling in much the same way that

relational databases rely on indexes. Labelling schemes permit the identification of

structural relationships between elements and attributes (e.g. parent-child,

Chapter 1: Introduction

 7

ancestor-descendant, and document order) based on comparison to their labels. As

specified in (Sans and Laurent, 2008), at present there are two major categories of

labelling scheme: namely, interval-based schemes and prefix-based (Dewey)

schemes. The labelling method of interval-based schemes involves the

representation of identifiers as intervals. To establish the connection between two

specific nodes, it uses the associated containment information.

In general, the interval-based scheme offers limited information, particularly with

regard to the lowest common ancestor (LCA) of a series of nodes. The prefix-based

scheme employs a depth-first tree traversal to achieve the direct encoding of the

father of a node in a tree as a prefix of its label. Structural relationships can be

successfully identified with the prefix-based scheme. In addition, this labelling

technique is the preferred option for the query processing of XML keywords (Gou

and Chirkova, 2007, Sun et al., 2007, Xu and Papakonstantinou, 2005) that use LCA

assessments due to the fact that the labels in the scheme encompass path

information. This is discussed further in Chapter 3.

There has been a surge in the need for XML updates thanks to the growing

preference for XML as a data exchange format. A labelling scheme supporting

solely static XML queries is not enough for XML to become a general standard for

data representation and exchange; a labelling scheme that effectively supports

dynamic XML trees is also necessary. A dynamic document is one that is

continually edited and updated. It may or not have a framework for making these

changes. This type of document though, without the proper contextualization can

change the content of the document to something very different from the original

document. A static document on the other hand does not allow changes to be made

(Behrends, 2007). It is written in advance anticipating a particular process. XQuery

usually in the form of XML is a functional programming language as well as a query

designed to query and change both structured and unstructured data for other

data formats (Groppe, 2008). It enables data transfer from virtual or real

documents in the wide world web to or from databases providing an interaction

that is much needed. A static XML query is concerned with the retrieval of

Chapter 1: Introduction

 8

information and updating the node contents. It does not involve any other changes

to the structure of the document (Olteanu, 2005). A dynamic XML query not only

retrieves information and updates the content of the document in question; it also

inserts new nodes or deletes existing nodes or both often resulting in a change in

the document structure.

However, dynamic queries are problematic and difficult to handle because they

require the updating of the labels of many nodes simultaneously with the updating

of the original XML document to preserve the efficiency of the labelling scheme.

This issue has been addressed by a number of researchers (Amagasa et al., 2003,

Cohen et al., 2010, Eda et al., 2005, Gou and Chirkova, 2007, Li and Ling, 2005a, Li

and Ling, 2005b, Li et al., 2006a, O'Neil et al., 2004, Sun et al., 2007, Wu et al., 2004,

Xu et al., 2009).

To prevent re-labelling, earlier researchers left gaps between labels. Drawing on

the Dewey labelling scheme, O’Neil et al. (2004) developed the ORDPATH labelling

scheme. For initial labelling, this scheme employs positive, odd integers, while for

subsequent ‘careting-in’ insertions it uses negative integers. Due to the gaps left,

however, ORDPATH is insufficiently compact and, moreover, the label insertions

are made more complicated by the ‘careting-in’ mechanism. Eliminating initial

label gaps, Li et al. (2006a) designed a new labelling scheme for processing

updates in XML documents by modifying the labels to be more compact and

enhanced update efficiency.

The downside of converting labels into dynamic formats is that it enhances the

complexity of updating and querying. Xu et al. (2009) aimed to increase the

encoding performance even more by developing two new labelling schemes for

dynamic XML trees on the basis of mathematical operations on Dewey elements.

Although the performance of the labelling schemes during the updating of XML

documents has improved, their labels continue to lack compactness, producing

additional storage cost. Furthermore, data querying is time-consuming and the

frequent insertion of nodes between two sequential siblings can diminish the

Chapter 1: Introduction

 9

performance of the two labelling schemes. Thus, the capability of XML database

management depends on efficient dynamic labelling.

Generally, labelling schemes need to be dynamic such that they can update XML

data dynamically and avoid re-labelling or even recalculating of the value of the

existing labels (Tian and Georganas, 2002). Efficient schemes have to avoid

completely re-labelling in XML updates (Mirabi et al., 2010). They should also be

compact, meaning the length of the labels ought to be as small as possible. Finally,

they need to facilitate the identification of various relationships existing between

the nodes, to be effective (Duong and Zhang, 2008).

All these aspects will be discussed in more details in the next chapters.

Chapter 1: Introduction

 10

1.3 Research Methodology and Research Hypothesis

1.3.1 Research Process

The research’s methodology was directly influenced by the research process onion

developed by Saunders et al (Collis et al.). This research process comprises five

major modalities that influence the overall methodology to the research. These five

major modalities are research philosophy, research approach, research strategy,

time horizons, and data collection methods. The methods followed in the usage of

the research process onion have been summarised in the diagram below and

subsequently explained in detail.

Chapter 1: Introduction

 11

1.3.2 Research Philosophy

The research philosophy basically explains how available knowledge influences

the research and how the research seeks to develop new lines of knowledge

(Diriwächter and Valsiner, 2006). Saunders et al.(2003) therefore posited that the

research philosophy shows the researcher’s overall perception of the way

knowledge is constructed. To use and construct knowledge for any research of this

nature, three major types of research philosophies may be selected. These are

positivism, realism and interpretivism (Remenyi, 1998). The current research

made use of the positivism research philosophy. The positivism research

philosophy has been explained as an approach to knowledge where the researcher

uses scientific reasoning and law-like generalisations in the knowledge

construction process (Adams, 2011). This means that using positivism required

the research to be based on scientific processes that are generally empirical and

evidence based. Thus, this thesis shows how the GroupBased scheme could

improve XML labelling (Alstrup and Rauhe, 2002). It was also important to make

use of law-like generalisations which could be interpreted in the form of

hypotheses that could easily be tested for their validity.

In keeping with the research motivation explained above, the hypothesis that this

research seeks to assess is:

Applying a second layer of labels and grouping the nodes based on the parent-

child relationship may facilitate node insertions in dynamic XML data in an

efficient way, offering inexpensive labels without excessive label size growth

rate in which it is easy to maintain structural relationships, as well as

improved query performance.

The rationale that influenced the selection and use of positivism was the need to

ensuring that the findings that resulted from the study could easily be assessed by

other for validity and authenticity. This is because Green, Johnson and Adams

(Green et al.) saw the positivism research philosophy as a very transparent

structure that enhances the replication of findings from the study. Because of the

Chapter 1: Introduction

 12

scientific reasoning and law-like generalisations, it is always possible that the

researcher’s reasons for drawing conclusions based on the hypothesis can be

tested.

1.3.3 Research Approach

The research approach generally describes the means by which the researcher will

go about the implementation of the research philosophy. In the current context,

the research approach was to establish way the researcher must test the

hypothesis set as part of the positivism research philosophy. In research practice,

two major research approaches are known; deductive and inductive. Given (2008)

explained that the deductive research approach is highly suitable for scientific

research as it ensures that the researcher develops a hypothesis and

systematically tests it in establishing a theory. This means that for a deductive

approach to be used effectively, the researcher must approach data collection from

the known to the unknown. This is because the hypothesis is based on what the

researcher already knows from a preliminary data collection exercises (Hart,

2008). Based on the hypothesis, the researcher then establishes a theory that is not

known or is relatively new in the field of study. Given the fact that the research

used the positivism research philosophy which makes the study scientific research,

the deductive approach became the main approach that underlined the

performance of the research.

Throughout this research, the above hypothesis is tested based on the deductive

research approach which originates from a specific case and proceeds to derive

generalizations and theories (Jebreen, 2012, Meheus and Nickles, 2009). In

deductive research, the propositions made in the beginning in the study only

support the truth of the conclusion but do not guarantee it. As such, a deductive

researcher conducts the study cognizant that the conclusion might not be true. A

deductive proposition helps the researcher to derive universal theories or

statements. Strong deductive propositions increase the probability of the

conclusion being true but they do not confirm that truth (Khan and Ullah, 2010).

Deductive reasoning is chosen because it takes into account the impact of

Chapter 1: Introduction

 13

researcher bias on the outcome of the study (Sans and Laurent, 2008). This is

important because different researchers will have different notions and

orientations on a given subject, such as in various labelling schemes that cope with

dynamic XML documents from different perspectives, and this affects the outcome

of studying such a subject (HAMMAWA and SAMPSON, 2011, Stadler, 2004). The

fact that deductive research helps in developing a solution to a specific problem is

another reason why it is an appropriate approach to use in this research (Khan and

Ullah, 2010, Lorenz et al., 2013); as it can also be used to generate

recommendations on how to improve various techniques.

Inductive research was however not excluded entirely from the research.

Saunders, Lewis and Thornhill (2003) explained an inductive research approach as

one in which the researcher formulates the research theory through the critical

evaluation of available research variables. This means that instead of using a

hypothesis as the main route to forming conclusions and theories, the researcher

in an inductive study modifies various research variables based on accumulated

findings (Cooper, 2008). Aspects of an inductive approach were also used in the

study even though they did not form the main basis on which conclusions were

drawn. For example knowledge of what has already been studied on XML labelling

schemes in literature was used to set themes or research variables. The review of

literature did not become the main basis for drawing conclusions but served as a

guide for discussing the researcher’s own findings gathered through the deductive

approach. In effect, both inductive and deductive approaches were used but with

major emphasis and focus on deductive approach so as to maintain the scientific

nature of the study.

1.3.4 Research Strategy

The research strategy gives the underling approach used by the researcher in

collecting data (Hunter and Leahey, 2008). In this, as many as six possible research

strategies are recommended by Saunders et al (2003). Of these, experiment was

selected as the most appropriate for this research. The major rationale for

selecting experiment is due to its direct relationships with the positivism research

Chapter 1: Introduction

 14

philosophy. It should be noted that the positivism research philosophy is

appropriate for a scientific study (Robson, 2011). Meanwhile, when used as a

research strategy, an experiment requires the researcher to engage in the

systematic manipulation of controlled testing with the aim of understanding a

causal process (Kasim et al.). The aim with which experiment is used as research

strategy is to ensure that the researcher can manipulate variables and controls

with the aim of measuring any changes that may occur in the variables

(Moghaddam and Moballeghi, 2008). In the context of the current study, the

researcher was concerned with understanding the behaviours of the GroupBased

scheme as a means of improving XML labelling by providing a scheme that deals

with insertions without having to re-label or sacrificing the queries’ performance,

construction time and memory usage. This means that the GroupBased scheme

was the independent variable based on which dependent variables including query

performance, construction time and memory usage were all tested.

1.3.5 Time Horizon

The time horizon basically shows the duration or period within which the

phenomena or variables of the study are experimented on (Sapsford and Jupp,

2006). In the literature, two major time horizons were identified longitudinal time

horizon and cross-sectional time. The longitudinal time horizon examines a

situation or phenomenon over a given period of time, wherease the cross-sectional

time horizon focuses on a particular moment (Dellinger and Leech, 2007). A cross-

sectional time horizon was used on this study as design and implementation was

developed purposely for the research. These design and implementation

specifications ensured that the performance of GroupBased scheme was tested

over a very specific time frame to discover the impact of re-labelling on queries’

performance, construction time and memory usage.

1.3.6 Data Collection Method

The overall data collection method used was observations. Observation has been

described as a systematic collection of data from a research setting or an

experiment through visual interpretation of findings (Creswell, 2007). To use

Chapter 1: Introduction

 15

observation as part of the positivism research philosophy where a hypothesis was

developed and gradually tested, a number of processes were followed. These

processes have been discussed below.

1.3.6.1 Formulating a Tentative Hypothesis

Based on the observations and the patterns identified, a tentative hypothesis is

formulated. In this thesis, after analysing the existing XML labelling schemes (see

Chapter 3) and providing explanations for the patterns and problems detected, a

more general theory was formulated and the research hypothesis (in Section 1.3)

was suggested. As a result, a new labelling scheme called ‘GroupBased’ is proposed

(see Chapter 4) that may have the potential to improve the performance of current

XML labelling schemes was proposed.

1.3.6.2 Observation and Patterns Identification

The first phase of the deductive approach begins by collecting data that is related

to the research area and observes them to highlight any patterns or meaning that

can be extracted from them in order to identify the problem under study. In this

thesis, the research problems emerged from a critical investigation of the existing

XML labelling schemes (see Chapter 3), which results in determining the research

aims and objectives.

1.3.6.3 Testing the Hypothesis

In the third phase of the deductive approach the hypothesis is subjected to tests to

see whether it is verifiable. This thesis relies on the testing and assessment of an

empirical implementation to explore the research hypothesis (see Chapters 5 and

6). This process comprises a number of aspects, including appraisal of the original

labelling time and size to determine the extent to which the suggested scheme can

be applied in both static and dynamic XML documents; measurement of the length

of time necessary for the identification of structural relationships prior to and

following insertions; the impact of various types of insertion on the scheme with

regard to the size of the labels and time measurements; and the response time for

queries prior to and following insertions (see Chapter 7).

Chapter 1: Introduction

 16

1.3.6.4 Develop a Theory

Evaluating the experiments that used to test the hypothesis and their results (see

Chapter 8) should help in generalising a theory and determining the main

contributions and limitations of this research (see Chapter 9). Obtaining

persistent results after several tests would mean that the hypothesis is supported.

Inconsistent results would mean that the hypothesis needs to be changed or

rejected. However, in the end a general theory or statement ought to be defined

that can help explain similar cases (Li et al., 2014, Weinstein, 2010).

1.4 The Scope of the Research

The aim of this thesis is to propose a new XML labelling scheme that may provide

better performance in managing dynamic XML data. To test the performance of the

scheme, several factors have been analysed, including labelling time, label size,

query response time, and managing updates. It must be noted here that the queries

in this context refer to those determining the structural relationships between

nodes, node access and information retrieval. Furthermore, updates signify that

new nodes are inserted, as opposed to mere modification of current node content.

However, the scope of this thesis does not extend to XML document parsing and

storage mechanisms; i.e. the thesis does not address how the XML document are

parsed and how the labels and the data associated with them are stored.

1.5 Research Aims and Objectives

Taking into account the limitations of current labelling schemes (Section 1.2.2) and

the research hypothesis (Section 1.3), the following five research objectives were

intended to be accomplished by the proposed scheme:

x Compatibility with static as well as dynamic XML documents

There are strengths and weaknesses to both dynamic and static labelling

schemes. In cases where XML documents require regular updating, dynamic

Chapter 1: Introduction

 17

labelling schemes are normally used as the static ones are less efficient due

to the number of nodes that have to be re-labelled. Static labelling schemes

are usually employed in XML documents that require sporadic or no

updating, as dynamic schemes would generate additional encoding cost and

make querying less efficient. Therefore, to improve performance, the

selection of either static or dynamic schemes should theoretically be made

based on the update frequency of the XML documents. However, things are

not as straightforward in reality due to the fact that the updating frequency

exhibits time-dependent variations; thus making the distinction between

static and dynamic XML documents less clear. This increases the difficulty

of choosing between a static and a dynamic scheme, the outcome being

often different from the initial plan. These issues highlight the importance

of creating a labelling scheme that can be applied to static as well as

dynamic XML documents.

x Efficient identification of all structural relationships

Documents to which the XML standard applies follow an inherent order and

their modelling takes the form of a tree. Document order and structural

information are encoded by labelling schemes to facilitate their exploitation

by queries. The encoding of document order is imperative, but a certain

variation is permitted in the quantity of structural information the labels

contain. To give an example, prefix-based labelling schemes enable the

extraction of sibling relationships, but range-based labelling schemes do

not.

x Cost-efficiency with regard to labelling time and size

Time: It is essential that the creation and allocation of labels are time-

effective, as otherwise both static and dynamic documents would have

lower performance.

Chapter 1: Introduction

 18

Size: This is a key factor underpinning query and updating performance,

but it is beyond the scope of this research.

x Avoidance of re-labelling and preserving the label quality when

processing insertions

Using a persistent labelling scheme is ideal, as XML document updates do

not necessitate the re-labelling of current labels. As noted by Cohen et al.

(Cohen et al.), this lowers the cost of updating and enables users to query

the modifications brought to the XML data over time.

x Improved query performance

Accomplishing high query performance depends on the efficient extraction

of structural information from labels.

1.6 Structure of the Thesis

In this section the structural organisation of the thesis is described. In a general

sense, the thesis is divided into three parts where Chapters 1-3 represent the first

part as they introduce the research and discuss the related background and

literature. Chapters 4 and 5 represent the second part since they discuss the main

idea of the research in detail from both theoretical and practical points of view.

The third part consists of Chapters 6-9 which cover the experimental setup, the

analysis of the results, evaluation and the thesis conclusion. The description of the

thesis chapters is outlined below:

Chapter 1: The title of this chapter is ‘Introduction’ and it introduces the thesis in

general, explaining the research motivations along with its aims and objectives. It

also introduces the research hypothesis and outlines the structure of the thesis.

Chapter 1: Introduction

 19

Chapter 2: Entitled ‘XML Background’, this chapter provides a descriptive

illustration of the basic concepts of XML and its parsing mechanisms.

Chapter 3: This chapter discusses the existing XML labelling schemes from a

comparative perspective. Thus, its title is ‘Related Work in XML Labelling

Schemes’.

Chapter 4: GroupBased Labelling Scheme. This chapter discusses the proposed

scheme theoretically by describing the underlying structure of the scheme,

defining the rules that serve its intended purposes, and validating these rules using

simple algebra.

Chapter 5: Design and Implementation. This chapter describes the design and

implementation of the GroupBased scheme from a practical perspective based on

the rules specified in Chapter 4. Furthermore, justifications for some practical

decisions are provided.

Chapter 6: Experimental Framework. This chapter describes the experiments

used to evaluate the proposed scheme and their objectives. The platform used and

the chosen datasets are specified, and the existing datasets are described.

Chapter 7: This chapter presents the experimental results along with their

analysis in order to assess the proposed scheme’s performance and scalability. A

comparative discussion is provided and graphical illustration is used to support

the analysis. Thus, the title of this chapter is ‘Results and Analysis’.

Chapter 8: Evaluation. This chapter discusses the experiments and their results

from an evaluative point of view. Then the whole scheme is evaluated and its

limitations are identified.

Chapter 9: Conclusion. This chapter summarises the whole thesis and discusses

the research’s main findings, contributions and limitations. Moreover, some

Chapter 1: Introduction

 20

recommendations to improve the proposed scheme’s development are presented

and the research’s future direction is highlighted.

1.7 Conclusion

To conclude, this chapter offered a brief introduction to the thesis. Then, the

motivations behind this research were described and the hypothesis was stated.

The research aims and objectives were discussed and finally the structure of the

thesis was outlined.

Chapter 2: XML Background

 21

Chapter 2: XML Background

2.1 Introduction

The World Wide Web Consortium (W3C) has facilitated data sorting and sharing

between applications through the implementation of a standard called eXtensible

Markup Language 'XML' (Abiteboul et al., 2000, Bray et al., 2008, Connolly and

Begg, 2005), as a result of which application homogeneity is no longer necessary.

The popularity of the XML data model is on the rise, because the XML language is

not only convenient and simple, but also supports the storage, transfer, display and

retrieval of data in both homogeneous and heterogeneous applications (Abiteboul

et al., 2000, Anderson, 2008, Bray et al., 2008, Champion, 2001, Connolly and Begg,

2005, Jonge, 2008, Oqbuji, 2004a, Oqbuji, 2004b, Palani, 2011, Powell, 2007,

Tidwell, 2002, Vakali et al., 2005, W3c., 2010, W3schools, 2013d, Whatley, 2009).

This has led to a surge in the number of XML-supported technologies and

applications. Database technology developers have responded to the growing

demand for XML data management primarily by upgrading the strategies of XML

database management, to include the storage, retrieval and security of XML data.

Furthermore, labelling schemes, which encrypt the data related to the XML tree

order and structure into highly compact labels, have attracted significant interest.

This is a commonly used method of supporting XML data management (Cohen et

al., 2010, Li and Moon, 2001, Milo and Suciu, 1999, Silberstein et al., 2005,

Tatarinov et al., 2002, Xu et al., 2009). Nonetheless, despite the comprehensive

analysis of labelling methods, considerable difficulties have been encountered in

developing an appropriate labelling scheme; given its importance for the effective

management of XML data, this area is currently intensely researched. As specified

in the last chapter, this thesis aims to address the issue by attempting to design a

new dynamic labelling scheme and comparing it to other available labelling

schemes.

Chapter 2: XML Background

 22

This chapter presents an overview of XML to provide a better understanding of the

basic concepts starting with an overview of the XML in section 2.2. Followed by a

description of XML syntax in section 2.3. Next, the concept of XML tree structure is

explained in section 2.4. XML document type definitions and schema are described

in sections 2.5 and 2.6 respectively. Section 2.7, describes the most popular XML

query languages. Then, XML parsing techniques are described in section 2.8. The

concept of XML databases is briefly discussed in section 2.9. Finally, the chapter

concludes in section 2.10.

2.2 XML Overview

Nowadays, the Extensible Mark-up Language (XML) is one of the most commonly

employed tools for structured data representation (Abiteboul et al., 2000,

Cameron, 2008, Jonge, 2008, Oqbuji, 2004a, Oqbuji, 2004b, Palani, 2011, Thimma

et al., 2013, Tidwell, 2002, Vakali et al., 2005, W3c., 2010, W3schools, 2013d,

Whatley, 2009). Developed from SGML in 1996, the use of XML was advocated by

W3C two years later (Oqbuji, 2004b, Tidwell, 2002, W3c., 2010, Whatley, 2009, Al-

Badawi, 2010). What distinguishes XML from HTML is the fact that it is not

concerned with appearance control, but with data storage and transfer. XML is

advantageous for a number of reasons. As a self-describing language, it enables

users to design their own tags, which is a feature which makes it highly flexible

(Tidwell, 2002). Moreover, the XML language is straightforward and text-based,

with a portable data format (Abiteboul et al., 2000, Harold et al., 2004, Palani,

2011, Ray, 2003, Tidwell, 2002, W3c., 2010, W3schools, 2013d, Whatley, 2009). It

can also be exchanged among various applications as it is read by the majority of

platforms.

An XML document for employees’ information named ‘EmpRecordList’ is

illustrated in Figure 2.1. XML files comprise a range of components, such as

elements (e.g. <Emp>), attributes (e.g. DeptNo=”D003”), and comments (e.g. <!—

Chapter 2: XML Background

 23

Author Name -- >) (Abiteboul et al., 2000, Tidwell, 2002, W3schools, 2013d, Walsh,

1998). In the following section, each XML file component is presented.

Chapter 2: XML Background

 24

2.3 XML Syntax

2.3.1 Elements

In the XML document, data representation is textual. An ‘element’ encompasses

everything circumscribed by matching tags when names are case sensitive (e.g.

<Emp> and </Emp> in Fig.2.1) (Abiteboul et al., 2000, W3schools, 2013i). An

element or tag represents the fundamental component of the XML document. The

start-tag and the end-tag, referred to as markups, are, respectively, the starting and

end point of an element (e.g. <EmpName> and </EmpName>) (Abiteboul et al.,

2000; Connolly and Begg, 2005). Furthermore, an element can consist of additional

element(s), text value(s) or both, and it can also be void. A root element,

representing the initial element in the document (e.g. <EmpRecordList>), is a

crucial component of any XML document. A ‘sub-element’ is an element

incorporated in another element. For instance, the sub-element of the <Emp>

element is <DateOfBirth>. In general, the arrangement of elements (tags) in an

XML document must be balanced, while the opening and closing of tags should be

diametric (Abiteboul et al., 2000, Connolly and Begg, 2005, Tidwell, 2002, Walsh,

1998, W3schools, 2013i).

2.3.2 Attributes

Formed through the association of a name and a value, attributes provide a more

expansive description of an element in XML. The position of an attribute is within

the start-tag of the element, after its name (Walsh, 1998; Abiteboul et al., 2000;

Tidwell, 2002; Connolly and Begg, 2005; Whatley, 2009). Moreover, single or

double quotes are required to delimit the value of an attribute, which is always a

string value (Connolly and Begg, 2005; W3School (XML Attributes), 2013). The

data of XML more often than not have no use for the information that an attribute

supplies; nevertheless, the information is of significance for data management. The

following is an example of an attribute (deptNum), representing the department in

which a staff member works, within the previously established element (Nolan and

Lang):

Chapter 2: XML Background

 25

<Emp deptNum="D003">

The distinction between an element and an attribute in XML is the fact that an

attribute cannot be repeated, unlike a sub-element included in the same tag

(Abiteboul et al., 2000; Connolly and Begg, 2005).

What is more, despite the fact that the use of attributes or elements is not specified

by any rule, there is a general preference for elements over attributes. The reason

for this preference is that an attribute has just a single value and therefore it is

more challenging not only to expand it, but also to maintain and read it (Abiteboul

et al., 2000, Ray, 2003, Tidwell, 2002, Whatley, 2009, W3schools, 2013f).

2.3.3 Comments

In spite of the simplicity and clarity of the XML language, comments are still

necessary to elucidate complex code or to include further notes for the writer or

reader. Although the location within the XML document of the comments is not

fixed, they have to be inserted between <!-- and --> tags. Apart from the literal

string '--', all data can take the form of comments. However, an XML processor does

not transfer comments to an application (Connolly and Begg, 2005, Harold et al.,

2004, Ray, 2003, Tidwell, 2002, Whatley, 2009, W3schools, 2013j).

Chapter 2: XML Background

 26

2.3.4 Ordering

As elements in XML are ordered, the fragments in figure 2.2 are not the same

(Abiteboul et al., 2000, Connolly and Begg, 2005):

On the other hand, attributes in XML are not ordered, meaning that the fragments

in figure 2.3 are equivalent (Abiteboul et al., 2000, Connolly and Begg, 2005)

Chapter 2: XML Background

 27

2.4 XML Tree Structure

The usual representation of an XML document is that of a tree graph, where it is

mandatory for the tree to have a root. Tree branches extend to the lower level from

this parent element, depicting additional elements that take the form of nodes

(Abiteboul et al., 2000, Darugar, 2000, Harold et al., 2004, Ray, 2003, W3schools,

2013k). The XML data model is underpinned by the interconnection of nodes and

specific edges. As noted by Teorey et al. (2011), the representation of this tree

model assumes the form of structured parent and child relationships.

As previously mentioned, the root element, acting as ‘parent’ for the other

elements, is the starting point of the tree; the additional elements – the child nodes

- are conventionally depicted in a lower level. The tree ramifies until the end of the

document, as any element may incorporate a sub-element. The tree structure of

the document in Figure 2.1 is illustrated in Figure 2.4:

Chapter 2: XML Background

 28

In the next sections, the literature related to methods and standards associated

with the XML data model is reviewed.

2.5 Document Type Definitions (DTDs)

The format of an XML document can be outlined by a Document Type Definition

(DTD), which indicates, among other things, the names of the elements that can be

included in the document, the frequency with which an element can occur in the

document, the order of the elements, the connections between elements and the

manner of their arrangement, as well as the attributes for every element type

(Connolly and Begg, 2005, Elmasri, 2008, W3schools, 2013c, W3schools, 2013a). It

can therefore be said that DTD is the grammar that underpins the XML document.

The DTD can be defined either within the XML document or as an external file,

before being subsequently employed as a reference in the actual XML document

(Abiteboul et al., 2000, Chase, 2003, Harold et al., 2004, Lee and Chu, 2000, Molina

et al., 2009, Ray, 2003).

Given its capacity to define a data schema and type, the DTD can simulate the

relational database schema. However, the relational database schema has an

advantage over the DTD, which lacks numerous constraints; for instance, only

‘String’ data can be declared (Abiteboul et al., 2000, Connolly and Begg, 2005,

Elmasri, 2008).

A potential DTD declaration of the ‘EmpRecordList’ example is presented in Figure

2.5:

Chapter 2: XML Background

 29

2.6 XML Schema

To address the shortcomings of the DTD and provide a more inclusive definition of

XML document content, the W3C recommended the implementation of the ‘XML

Schema’ language in May 2001 (Connolly and Begg, 2005, Fallside and Walmsley,

2004). A schema can be defined as a relatively static database description which is

formulated during the database design phase (Elmasri, 2008, Molina et al., 2009).

In terms of data types and configuration, the structure of a given XML document is

outlined via the ‘XML Schema’ definition. This involves indicating the manner in

which every element is defined, as well as the type of data corresponding to its

value. Furthermore, the ‘Schema’ is actually represented as an XML document, the

inherent elements and attributes being used to express the ‘Schema’. The ‘Schema’

is identical to XML with regard to its viewing, editing and processing, as well as the

tools necessary to accomplish these procedures (Abiteboul et al., 2000, Connolly

and Begg, 2005, Harold et al., 2004, Lee and Chu, 2000, Molina et al., 2009, Radiya

and Dixit, 2000, W3schools, 2013b, Waldt, 2010).

Chapter 2: XML Background

 30

Furthermore, the ‘Schema’ does not have the shortcomings of a DTD as it is more

expressive than DTD in terms of supporting various types of data, the domains of

the values, and the number of times an element occurs in an XML document

(Fallside and Walmsley, 2004).

An XML Schema for the ‘EmpRecordList’ example is illustrated in Figure 2.6:

Chapter 2: XML Background

 31

2.7 XML Query Languages

The relevance of database systems in the management of data derives from the

procedures for data retrieval, processing, extraction, conversion and integration,

which are dealt with on the basis of query language (Boag et al., 2011, Connolly

and Begg, 2005, Elmasri, 2008).

SQL cannot be used to query XML data, as they share similarities with semi-

structured data. Consequently, XML data have to be queried using specific

languages. The most commonly used languages for querying XML data are XPath

and XQuery, which are discussed in the following sections.

2.7.1 XML Path Language (XPath)

W3C recommends XML data to be queried with the use of the XML query language

XPath, which employs a simple syntax to manipulate the elements and attributes in

an XML document (W3schools, 2013m). XPath treats the XML document as a

logically ordered tree-structure. There are seven distinct nodes that make up the

XPath tree, namely, element, attribute, text, namespace, processing instruction,

comment, and the document's root. Every component of the XML document has an

equivalent node in XPath (Berglund et al., 2010b, Boag et al., 2007, Connolly and

Begg, 2005, W3schools, 2013n). XPath deals with the XML document based on the

mechanism which determines the start node as well as the so-called ‘location path’

from one node to another (Berglund et al., 2010b, Harold et al., 2004, Molina et al.,

2009, Ray, 2003, W3schools, 2013l). Similar to the location path in the directory,

the ‘location path’ in XPath comprises a number of steps linked by '/' to identify

the location, its root and final destination being the starting and end point,

respectively. Every step in the ‘location path’ is underpinned by the axis and ‘node

test’ pair. The axis denotes the direction of navigation, whereas the ‘node test’

indicates the node type in the document. In addition to this, a predicate condition

may also be present within square brackets, acting as a filter condition to identify a

particular node or a nodes with a certain value (Harold and Means, 2002; Ray,

Chapter 2: XML Background

 32

2003; Molina et al., 2009; W3C, 2010; Elmasri and Navathe, 2011Connolly and

Begg, 2005; W3School (XPath Syntax), 2013). Table 2.1 shows the thirteen types

of axis associated with XPath:

 Table 2.1: XPath Axis

Chapter 2: XML Background

 33

To explain how these marks are used, here are some examples of XPath

expressions for the EmpRecordList

a) / EmpRecordList/Emp/JOB_POS

The JOB_POS node, which is attached to the parent Emp node, can be accessed via

this expression.

b) / EmpRecordList /Emp@deptNum

The identifier (deptNum) attribute of the Emp node can be selected through the

above expression.

In XPath expressions, the role of predicates, represented in square brackets “[]”, is

to facilitate the identification of particular nodes and values (Berglund et al.,

2010b, Connolly and Begg, 2005, Elmasri, 2008, Harold et al., 2004, Molina et al.,

2009, Ray, 2003, W3schools, 2013o).

2.7.2 XML Query Language (XQuery)

The W3C Query Working Group has recommended the XML query language

XQuery (Boag et al., 2011), developed on the basis of the ‘Quilt’ XML query

language. XQuery is comparable to SQL, in that the representation of a query takes

the form of an expression that can undertake functional tasks, while the value of

the expression consists of ordered nodes or atomic values (Al-Badawi, 2010).

Given that it is an extension of XPath, XQuery has path expressions identical to

those of XPath (Al-Badawi, 2010, Connolly and Begg, 2005). The result of the

expression is an ordered series of nodes; however, the result may be affected by

redundancy due to repetition of the same node with the same name and type.

Moreover, similar to the XPath, the XPath axis dictates the direction of movement

of every step in the expression. Additionally, predicate condition(s) can be applied

to narrow down or exclude nodes in every step (Connolly and Begg, 2005). Several

Chapter 2: XML Background

 34

other new expressions were developed, apart from the XQuery path expression.

‘FLWOR’ is one such expressions, being an acronym for FOR, LET, WHERE, ORDER

BY and RETURN clauses. FOR or LET (multiple clauses are permissible) represent

the starting point of the expression, while the subsequent WHERE and ORDER are

optional. RETURN is necessarily the end point of the expression (Boag et al., 2011,

Cameron, 2008, Connolly and Begg, 2005, Elmasri, 2008, Molina et al., 2009,

W3schools, 2013e).

2.7.2.1 FLWOR Expression

x The FOR and LET clauses:

These two clauses bind values and variables. Values may have multiple

variables, an association which is known as ‘tuple’. The FOR and LET

clauses are employed, respectively, with and without the repetition. In

addition, multiple FOR or LET clauses may be included in an expression

(Connolly and Begg, 2005).

x The WHERE clause:

It contains a predicate, which specifies one or more conditions, to minimise

and control the result generated by FOR or LET clause (Connolly and Begg,

2005).

x The RETURN and ORDER BY clauses:

Each FLWOR expression must include a RETURN clause. The evaluation of

each tuple is the aim of the application of this clause, while the result of the

FLWOR expression is given by the combination of all evaluations (Connolly

and Begg, 2005, W3schools, 2013e). The sequence of the resulting tuples is

denoted by the ORDER BY clause, when it is included (Connolly and Begg,

2005, W3schools, 2013e).

Chapter 2: XML Background

 35

To explain how these clauses are used, here are some simple examples of FLOWR

expressions for the EmpRecordList document (See Fig. 2.1)

a) Return all employees with salary more than £25,000

LET $EmpSalary := £25,000

RETURN doc(“EmpRecordList.xml”)//Emp[Salary > $EmpSalary]

b) Return all male employees at the department D003

FOR $E IN doc(“EmpRecordList.xml”)//Emp

WHERE $E /@ deptNum=”D003” AND $E /@ Sex=”M”

RETURN $E/EmpID

c) Return all departments that have less than 20 employees

<SmallDepartments>

FOR $D IN distinct-values (doc(“EmpRecordList.xml”)//Emp@deptNum)

LET $E := doc(“EmpRecordList.xml”)//Emp[@deptNum=$D]

WHERE count($E) < 20

RETURN

 <deptNum> {$D/text()} </deptNum>

</SmallDepartments>

Chapter 2: XML Background

 36

2.8 XML Parsing

The parser plays an essential role in XML file processing, and therefore all XML-

based applications incorporate it. The parser is designed to break down the XML

text and generate a representation in the shape of a tree or stream. DOM, SAX,

JDOM and Xerces2 are just some of the parsers employed in the construction of

XML files. Among these, the most commonly used are DOM and SAX, which form

the focus of the following sections.

2.8.1 Document Object Model (DOM)

This API represents a ‘tree-based’ model and the view of the data that employ DOM

is from an object-oriented perspective. W3C proposed DOM as a standard of

managing XML documents with the use of specific techniques and classes. During

the parsing process, based on the DOM interface, the representation of the XML

document takes the form of a tree; moreover, this process is performed for the

entire document at the same time (Abiteboul et al., 2000, Al-Badawi, 2010,

Connolly and Begg, 2005, Eriksen, 2004, He garet et al., 2005, Whitmer, 2004).

As observed by Frank et al. (2003), DOM facilitates the navigation, access and

manipulation of XML data. In addition, it enables not only traversal in any

direction, but it also permits the concurrent performance of reading and writing

processes, and based on the tree structure, it affords random access to XML data.

What is more, DOM provides an appropriate context for XPath (Berglund et al.,

2010a), while also managing queries and updates (Al-Badawi, 2010. The platforms

that support this parser include .NET, C++ and Java (Zhang, 2006).

DOM defines a ‘Node’ interface that comprises the sub-classes Element, Attribute

and Character-Data, which are applied during XML file processing. The Node

interface supplies several techniques through which the components of each node

can be accessed; these techniques include the ‘parentNode()’, which returns a

parent node of a particular node, and the ‘childNode()’, which returns all child

nodes for the requesting node (W3schools, 2013h, W3schools, 2013g).

Chapter 2: XML Background

 37

However, despite its efficiency in facilitating rapid access and processing of the

nodes, the DOM interface has a significant drawback, in that all the objects of the

tree, including their structure, are uploaded onto the computer’s memory; hence,

any memory limitations may have a negative impact on the performance of the

interface (Al-Badawi, 2010, Harold, 2002).

2.8.2 Simple API for XML (SAX)

An ‘event-based’ API, the SAX interface is an alternative to DOM and is the product

of collaborative work undertaken on the XML-DEV mailing list. Each event

corresponds to an element in the XML document and therefore the sequence of

events emulates that of the elements. Compared to DOM, SAX is straightforward,

rapid and highly efficient at parsing because does not store the XML tree in

memory and therefore facilitates the parsing of large XML documents (Abiteboul et

al., 2000, Brownell and Megginson, Connolly and Begg, 2005, Idris, 1999,

Megginson, 2001, Project, 2013a).

As SAX is event-based, the tree is not constructed in the memory; rather, it reports

the event, such as the start and end tags of an element, straight to the application

during the parsing of the XML file. However, this makes reading the XML data

without manipulation difficult. It offers only a top down traversal and ordered

access to data, thus restricting navigation and making back navigation completely

impossible (Abiteboul et al., 2000, Al-Badawi, 2010, Connolly and Begg, 2005,

Project, 2013b).

The DOM and SAX parsers both have advantages as well as disadvantages. The

system requirements constitute the determining factor in the selection of one or

the other. In this thesis, the parser chosen for the implementation stage was DOM

because its application is straightforward. However, DOM’s storage limitations

mean that its use reduces the range of the scalability test when large XML

databases are assessed. This issue is addressed later on in Chapter 5 (Section 5.).

Chapter 2: XML Background

 38

2.9 XML Databases

There are two types of XML files: data-centric and document-centric. In a data-

centric XML file, data are highly structured and usually stored in databases. By

contrast, in a document-centric XML file, the textual content is semi-structured, as

is the case with books (Bourret, 2005, Noaman and Al Mansour, 2012, Noaman and

Almansour, 2012, Sun and Wang, 2012). This research applies only to data-centric

XML files because of its link to databases application.

The issue of whether or not XML is a database has been intensely discussed.

Similar to other types of databases, XML is capable of data storage and retrieval

and therefore can be perceived to be a technology that facilitates the construction

of databases (Bourret, 2005, Noaman and Al Mansour, 2012, Sun and Wang, 2012).

Moreover, it displays numerous properties common in databases, including

storage of data in XML files, possession of schemas (DTD and XML Schemas) and

query languages (XPath and XQuery), as well as the provision of interfaces thanks

to programming languages like DOM and SAX. On the other hand, several

properties of database management systems, including update, multi-access,

recovery and security, are not exhibited efficiently by XML (Bourret, 2005,

Noaman and Al Mansour, 2012, Steegmans, 2004). It is these shortcomings that are

at the root of the debate as to whether XML should be considered to be a database.

Responding to the shortcomings, many researchers have attempted to improve the

XML’s database like characteristics. In line with such attempts, this research

generally seeks to enhance the dynamic update of XML databases.

Enabled XML database and native XML database are the two existing categories of

XML databases (Bourret, 2005, Elmasri, 2008, Molina et al., 2009, Papamarkos et

al., 2009, Steegmans, 2004). The first category relies on traditional databases like

relational databases to store data, and its primary use is in supporting current

applications, as many XML files have already been stored in relational databases

(Abd El-Aziz and Kannan, 2012, Papamarkos et al., 2009, Steegmans, 2004).

Employing standard approaches, enabled XML databases achieve the transfer of

Chapter 2: XML Background

 39

data from the XML structure to the relational structure with the help of mapping

methods (SAXProject). However, it has some weaknesses. Papamarkos et al.

(2009) indicated that, because of the number of joins, it is inefficient at managing

large XML files. Furthermore, it does not take into account the hierarchical

structure, nested data and sequence of elements. It may also lose information

during the conversion process (Bourret, 2005, Noaman and Al Mansour, 2012,

Steegmans, 2004, Sun and Wang, 2012)

A native XML database has as its basic unit an XML file, and therefore it constitutes

a suitable method for managing XML databases (Fiebig et al., 2002, Steegmans,

2004, Sun and Wang, 2012). Due to the fact that it is compact, it can be searched

with ease and its content can be managed (Bourret, 2005, Sun and Wang, 2012).

Additionally, native XML databases enhance the efficiency of retrieval as they

supports XML query languages (Bourret, 2005, Papamarkos et al., 2009,

Steegmans, 2004, Sun and Wang, 2012). It also has greater flexibility than enabled

XML database (Bourret, 2005). The inability of the native XML database to provide

data in formats other than XML constitutes its greatest weakness (Abd El-Aziz and

Kannan, 2012, Bourret, 2005). There are two types of native XML database: text-

based and model-based (Bourret, 2005, Papamarkos et al., 2009). The XML file is

managed by the text-based type in the form of text and stored as a file in file

systems or as a CLOB/BLOB in relational databases. By contrast, XML data are

managed by the model-based type as objects, while file representation takes the

form of a tree, like in DOM (Bourret, 2005, Harold et al., 2004, Noaman and

Almansour, 2012, Staken, 2001, Steegmans, 2004, Sun and Wang, 2012). Only

native XML databases are relevent in this thesis.

Chapter 2: XML Background

 40

2.10 Conclusion

This chapter briefly covered the fundamental topics of XML technology, as it is a

huge subject and cannot be totally covered in this limited chapter. However, the

described topics provide adequate background and introduction to XML before

exploring the XML labelling technology in the next chapter since it is the concern of

this thesis.

Chapter 3: Related Work on XML Labelling Schemes

 41

Chapter 3: Related Work on XML Labelling
Schemes

3.1 Introduction

Native XML storage and query support have been the focus of much research due

to the growing significance of managing XML data. This task is made more

challenging by the ordered tree-structured model of the data, which offers

extensive semantic content. To query XML data, there is need to adopt an effective

and efficient labelling scheme. XML tree order and structural information, such as

parent/child or ancestor/descendant are encoded into highly compact labels by

labelling schemes; the result of significant research in the recent past. It is

important to note that the metrics for a labelling scheme are the compactness of

the encoded labels and the speed of the algorithm for both creation and use of the

labels. To develop an efficient labelling scheme that can handle an ordered tree-

structured data model, various scholars have focused on the aim of developing a

labelling scheme that is efficient and effective in handling both static and dynamic

XML documents and these approaches are discussed below.

In the introductory chapter of this thesis, there were specific objectives which

defined the motivation of this study, and its goals. The first area of literature

relevant to this goal is an overview of labelling schemes. The second part of the

literature review presents and discusses other labelling schemes that have

commonly been used with XML documents. The first theme is different from the

second because in the first, only the overall approach to the functionality of the

schemes is presented but in the second, there is more detail of the schemes

reviewing their strengths, weaknesses and limitations. By so doing, it exposes the

research challenges. Lastly, the literature review will identify the weaknesses and

limitations of other labelling schemes to propose alternative ideas for new scheme

which helps to address the identified weaknesses and limitations.

Chapter 3: Related Work on XML Labelling Schemes

 42

Section 3.2 of the chapter provides an overview of the labelling schemes, while

Section 3.3 presents common labelling schemes used for XML data along with their

strengths and weaknesses, such as prefix-based schemes (Section 3.3.1), interval-

based schemes (Section 3.3.2), multiplication-based schemes (Section 3.3.3) and

vector-based schemes (Section 3.3.4). A summary of the major XML labelling

schemes is provided in Section 3.3.5. Section 3.4 discusses the characteristics to be

seen in any ideal scheme. Section 3.5 summarises the literature review and Section

3.6 concludes the chapter.

3.2 Labelling Schemes: An Overview

Four major schemes are overviewed in this section. These are prefix-based

schemes, interval-based schemes, multiplication-based schemes and vector-based

schemes. After the overview, these will be discussed in later sections of the

chapter.

Data representation and information exchanges over the web have increased

remarkably over the past decade. To ensure that there is a universal query

language that is used in the performance of these web activities, eXtensible Mark-

up Language (XML) has emerged as a common data format which defines the rules

used for encoding documents in a way that can be considered as both human-

readable and machine-readable (Amato et al., 2003). Since XML has been accepted

as a standard of exchanging data on the Internet, the improvement of its efficiency

through development of robust management schemes has been identified as a

potential method of reducing the cost of data searching (Bruno et al., 2002, Catania

et al., 2005, Liu et al., 2009, Lu et al., 2005, Sun et al., 2007, Xu and

Papakonstantinou, 2005). Murata et al. (2009) lamented that regardless of the

universal acclamation given to XML, some irregularities may arise from its usage in

its most original format. Most of the irregularities have been found to focus on the

query function of XML (Zhang et al., 2001). Query as used in this context refers to

the permission granted to the human and machine users in establishing contact

with the base of the XML document (Abiteboul et al., 2001). In the light of this, a

Chapter 3: Related Work on XML Labelling Schemes

 43

number of query languages have been developed, particularly by W3C group to be

used for XML. Two of these are XPath and XQuery, which have declarative queries

and path expressions characteristics (Rousseeuw et al., 1999). These

characteristics help to overcome the irregularities of XML. But even with these two

query languages, Yun et al. (2008) still contended that the need to increase query

performance remained necessary to make the functionality of XML over the web

useful and effective. As a solution to the quest for an increase in query

performance, the creation of effective indexing has been developed over the years

(O'Neil et al., 2004). Duong and Zhang (2008) noted that these indexes work

mainly by allowing queries to bypass the need to scan a whole table of results.

It is based on the functionality of the all important index that the issue of labelling

schemes arises, where the study’s major emphasis is on dynamic labelling scheme.

Goldman and Widom (1997) explained dynamic labelling scheme (henceforth

referred simply to as labelling scheme) as dynamic data used in XML format being

extracted from a strange database and placed in a deserved XML format. The

presence of labelling schemes have been noted to be important for index

functioning because as Murata et al. (2009) observed to ensure that the index can

function by allowing queries to bypass the entire scanning process, noted it is vital

to have a unique label assigned to each node in the XML trees in a way that makes

it easy to determine the relationship between any two given nodes. The nodes are

basically the identification parameters given to components on the XML tree. In

this context relationship means relation such as ancestor- descendant relationship

or sibling. The labelling is therefore needed to allow structural queries that can be

answered only by the use of index (Yu et al., 2005). What this implies in this case is

that the need to access the actual documents is eliminated, making the whole

query process fast and effective (Wang et al., 2003). Because the creation of the

index is largely based on the presence of the unique labels assigned to each node in

the XML tree, several researchers have focused their attention on the development

of labelling schemes that are used to achieve this purpose. It is important to note

that the various forms of labelling schemes work with path indexing and

numbering schemes to facilitate the query process for XML data. The motivation of

Chapter 3: Related Work on XML Labelling Schemes

 44

this study is however focused on labelling schemes due to their unique roles in the

indexing processes.

Several schemes have been proposed to help in making the function of labelling

easier in both the contexts of computer and human user of XML documents. For

instance Bruno (2002), developed a method consisting of connected stacks. This

method facilitates the compact representation of the partial results of a query path

and the combination of these paths yields the final matches for a twig query. With

the query established therefore, the labelling is further facilitated as because the

query in itself is a clue to what the label should be (Bruno et al., 2002). This

method has also been advanced by Lu (2005), in processing of twig queries. It was

mainly successful due to its efficiency in supporting queries with the help of

wildcards and branching nodes which are used in labelling processes.

The identification of structural relationships in data elements such as parent–child,

ancestor–descendant and document order is achieved through a comparison of the

labels. Sans and Lauren (2008), categorise labelling schemes into two: interval-

based (range-based) and prefix-based schemes. Prefix-based schemes are also

referred to as Dewey schemes. In interval-based schemes, the identifiers are

represented as intervals. To determine the associated link between two nodes, the

scheme relies on the containment information. Prefix-based schemes on the other

hand employ a depth-first tree traversal to directly encode the parent of a node in

a tree as a prefix to its label. This implies that interval-based schemes are likely to

yield considerably more limited information than the prefix-based schemes. For

example, information regarding the Lowest Common Ancestor (LCA) for a group of

nodes is hardly ever provided by interval labels. By contrast, structural

relationships can be effectively identified based on the prefix-based scheme. Thus,

prefix-based schemes has also become the primary choice for query processing of

XML keywords as its labels comprise path information (Gou and Chirkova, 2007,

Sun et al., 2007, Xu and Papakonstantinou, 2005). This is of significant relevance

for LCA assessment.

Chapter 3: Related Work on XML Labelling Schemes

 45

The position of Sans and Lauren (2008), who categorised labelling schemes into

two broad categories have however been advanced with the introduction of other

newer schemes. Other labelling schemes that have been identified include

multiplication-based and vector-based labelling schemes. In multiplication-based

schemes, the nodes in a XML document are labelled by multiplying atomic

numbers (Kha et al., 2002, Wu et al., 2004). In vector-based schemes, this is done

by vector orders as derived from mathematics (Xu et al., 2007, Xu et al., 2012, Xu et

al., 2009).

All these labelling schemes have significant strengths and weaknesses. It is

important to point out that to harness specific strengths possessed by different

schemes, hybridization of the labelling schemes has been tried. A hybrid scheme

integrates the approaches of different schemes with the aim of developing a

scheme with the strengths of several schemes (Haw and Lee, 2009, Yun and Chung,

2008).

3.3 Common labelling schemes used for XML data

As indicated earlier, labelling schemes are highly relevant in the use of XML data as

they optimise query retrieval by providing a quick way to determine the

relationships that exist between nodes (Zhang et al., 2001). This section of the

review is dedicated to the presentation and discussion of some of the existing

labelling schemes.

Labelling schemes can be divided into prefix-based schemes (Section 3.3.1),

interval-based schemes (Section 3.3.2), multiplication-based schemes (Section

3.3.3) and vector-based schemes (3.3.4).

Chapter 3: Related Work on XML Labelling Schemes

 46

3.3.1 Prefix-based Labelling Schemes

3.3.1.1 Structure and Description

A prefix-based scheme has the characteristic of directly encoding the father of a

node in an XML tree as the prefix of its label (K., 2006). Several prefix-based

schemes are have been proposed. They include are Dewey encoding (Tatarinov et

al., 2002), LSDX Duong et al.(2005), ORDPATH O’Neil et al.(2004), and Cohen et al.

(2010). Of these prefix based schemes, there has been extensive study of Dewey

encoding, making it possible to refer to it as the embodiment of prefix labelling

schemes in general (Wang et al., 2003). Typical of prefix-based schemes, the

Dewey encoding (Tatarinov et al., 2002) is structured such that each node has a

label that represents the path from the document’s root (Harold, 2004). Of the

identified labels, each of them stands for the local order of an ancestor node

present in the document’s root. In the labelling process, nodes that have the same

number of delimiters in their label are assigned to the same level (Wu et al., 2004).

The explanation to this is that such nodes with same number of delimiters in their

labels are siblings and thus do not require a differentiated labelling processing as

their outcomes will be the same. Figure 3.1, illustrates the Dewey scheme.

Chapter 3: Related Work on XML Labelling Schemes

 47

The structural information between two given Dewey labels, deweyA : da1.da2 ...dam

and deweyB : db1.db2 . . . dbn, can be extracted based on the following rules:

x Ancestor/Descendant. For deweyA to be the ancestor of deweyB, m<n and

da1 = db1, da2 =db2,...,dam = dbm.

x Parent/Child. For deweyA to be the parent of deweyB, deweyA must be an

ancestor of deweyB and m = n-1.

x Sibling. For deweyA to be the sibling of deweyB, the parent labels of deweyA

and deweyB must match, in other words, if m=n and a1 = b1, a2=b2, ..., am-1

= bm-1.

For example, from Figure 3.5, node B (1.1) is a prefix of node D (1.1.2) and

therefore B is an ancestor of D. Furthermore, node F (1.2) is compatible with the

parent label of node G (1.2.1) and thus F is the parent of G.

The structure of the Dewey scheme strongly resembles other prefix-based

schemes including ORDPATH and Labelling Scheme for Dynamic Xml data (LSDX)

which were developed by O’Neil et al. (2004)and Duong et al. (2005) respectively.

This is because in the ORDPATH scheme, Thonangi (2006) noted that a child or

descendant of a given parent are represented by odd numbers while insertions are

given even numbers. Meanwhile in the Dewey scheme also, parent and child nodes

are given different non-identical numerical formats of identification. LSDX also has

the capability of combining numbers and letters to label each tree as shown in

Figure 3.2.

Chapter 3: Related Work on XML Labelling Schemes

 48

Based on the figure above, it would be noted that Cohen et al. (2010) uses a similar

structure but this was not represented due to the similarities involved. Moreover,

it is the Dewey encoding that has been extensively studied, making it possible to

make reference to it as the embodiment of prefix labelling schemes in general.

3.3.1.2 Strengths of Prefix-based Labelling Schemes

The use of prefix-based schemes has been associated with a number of strengths

or merits when used as the major labelling scheme to facilitate query processing of

XML data. In the first place, Duong and Zhang (2005) posited that prefix-based

schemes such as the LSDX act as a persistent labelling scheme that does not

require re-labelling of existing labels before it can support the demand for

updating XML data. It was for this reason that Alstrup and Rauhe (2002) described

prefix-based schemes as being ideal for facilitating fast update of XML data.

Yun and Chung (2008) also mentioned that most forms of prefix-based schemes

can handle the representation of ancestor-descendant relationships together with

the sibling relationships that exist between nodes. This way it is possible to

establish the relationship between any two nodes merely by viewing their unique

codes (Amato et al., 2003). This implies that there is much efficiency when using

Chapter 3: Related Work on XML Labelling Schemes

 49

the prefix-based scheme for querying purposes. Meuss and Strohmaier (1999) also

touched on the important role that knowledge of the depth of XML tree plays in

facilitating query processing for XML data, stating that such knowledge ensures

different node’s relatives are given different preferential labelling. Meanwhile,

Duong and Zhang (2005) defended their LSDX scheme by stating that it has the

ability to show the depth of the tree used in the XML document. This is done

mainly by the unique code that is assigned to each level of the nodes. This can be

said to be a multi-variant strength that ensures that the tasks of retrieving,

inserting, deleting or updating documents is done with so much ease (Hou et al.,

2001).

There are other strengths with prefix-based schemes that have mainly been

attributed to the Dewey label and ORDPATH. For example Duong and Zhang

(2008) indicated that a Dewey label has the capability to single handedly

determining the path from the root to an element. This is because it integrates the

parent label with its own order. Already, it has been noted that the prefix-based

scheme has the ability to provide structural information involving ancestor-

descendant relationship, parent-child relationship and sibling relationship

(Tatarinov et al., 2002) as described in the previous section.

As an improvement to Duong and Zhang schemes (2005, 2008), Li and Lang

(2005a) developed the ‘ImprovedBinary’ scheme which is a different prefix-based

scheme designed to allocate unique and permanent labels to nodes by employing

bit strings combined with a recursive algorithm as shown in Figure 3.3.

Chapter 3: Related Work on XML Labelling Schemes

 50

Writing on the ORDPATH scheme, Duong and Zhang (2005) noted that the scheme

has the strength of being very effective in managing updates and insertions. This is

due to the fact that in the case of insertions, odd numbers are assigned to parent

nodes alone while insertions are labelled with even numbers. One major

characteristic with the prefix-based scheme is its potential to function on a group

basis through the formation of group-based prefix (GRP) labelling scheme (Wang

et al., 2003). Once this is done, it is possible to tap the functional strengths and

merits associated with the different schemes that are brought together to form the

GRP (Gabillon and Fansi, 2006). In such cases, the GRP combines a group ID and a

group prefix.

3.3.1.3 Weaknesses and Limitation

The strengths and merits identified above notwithstanding, there are very specific

weaknesses of the use of prefix-based schemes that make their use problematical

for query processing of XML data. One such limitation of the prefix-based schemes

was identified by Yun and Chung (2008) in the formation of non-tree edges for use

in the creation of structural relationship among nodes. The non-tree edges have

been explained to be nodes or edges that do not appear in the spanning tree used

in a typical tree relationship (Gabillon and Fansi, 2006). This is because apart from

Chapter 3: Related Work on XML Labelling Schemes

 51

the difficulty associated with the construction of non-tree edge relationships for

prefix-based schemes; the resulting non-tree relationships have been noted to lack

the strength of deterministic tree label characters. This shows an extensive

weakness of prefix-based schemes in the construction of non-tree edge

relationships (Boag et al., 2007). To avoid the weaknesses involved, Fennell (2013)

recommended the need to apply only deterministic tree labels when using prefix-

based schemes. But once the non-tree labels have been used, it can be expected

that additional time will be spent in performing such extra tasks such as making

provisions for additional storage that will make up for the lapses or serve as

backup to the functions that the deterministic tree labels would have played

(Duong and Zhang, 2005). Again additional tasks may be required with respect to

query processing. Meanwhile, efficiency with time is crucial in the labelling

processing. It is not surprising that Hou et al. (2001) claimed the prefix-based

scheme required special effort to achieve query processing.

Another limitation of the use of prefix-based scheme such as Dewey Encoding

(Tatarinov et al., 2002) is the inability to assign extensive labels. Elaborating on

this, Murata et al. (2009) explained that such limitations show up most when

dealing with complex XML documents. This is because these complex XML

documents are made up of longer paths than may be seen in simpler XML

documents (Bosak and Bray, 1999). These long paths are formed as vector paths in

Dewey Encoding as a means of establishing an ancestor-descendant relationship

(Cunningham, 2006). The behaviour of such complex XML documents in producing

longer paths makes the assessment of extensive labels to a node unfeasible. This is

mainly due to the time needed to perform the assessment of extensive labels,

where only selected labels or less complex XML documents could be deemed to

achieve effective assessment. Wu et al. (2008) also opined that in prefix-based

schemes, the support for dynamic update is often highly complicated. This makes

most researchers avoid dynamic updates. Dynamic updates come with their own

benefits, which are lost when using prefix-based labelling schemes. Whenever a

dynamic update is started, changes to the parent label causes adjustments to both

the child and descendant labels (Fisher et al., 2006). Because when the parent

Chapter 3: Related Work on XML Labelling Schemes

 52

label is altered, the ancestor’s labels will be inherited throughout the document

(Yu et al., 2005). As expected, once this is done, the overall updating processing

will be complicated, leading to reduce efficiency.

3.3.2 Interval-based Labelling Schemes

3.3.2.1 Structure and Description

An interval-based labelling scheme has a structure where the identifiers of all the

nodes are allocated as the start and end position numbers. These are positive

numbers distributed in the depth first traverse of the data tree that forms as part

of the label numbers (Wu et al., 2004). This process takes place so as to make the

identification process possible by constructing an explicit structural relationship

between all the nodes. According to Duong and Zhang (2005), this scheme is so

called the interval-based labelling scheme because there is an interval created

within the nodes, which joins directly with the parent or ancestor to create a

parent-child relationship.

Interval-based labelling schemes have been described in a number of papers

where researchers have independently identified unique interval-based labelling

schemes with different qualities and functionality. There are three common forms

of interval-based labelling schemes; the containment labelling scheme proposed

by(Zhang et al., 2001), the pre-post labelling proposed by (Dietz, 1982) and the

order/size scheme proposed by (Li and Moon, 2001) (2001).

Every element node in a containment labelling scheme is assigned a label with a

start, end, and level format, in which a range bounded by start and end comprises

all its descendant ranges as shown in Figure 3.4.

Chapter 3: Related Work on XML Labelling Schemes

 53

From the figure, it can be noted that the element node ‘A’ is assigned the start

format, with ‘C, D, E, and G’ assigned the end format based on the containment

labelling scheme.

Where there are three values for each node, each of these is given a value either as

pre or post of the node Zhang et al. (2001). This pre or post value generally

represents the position of the node, say A, whether in a pre-order or post-order of

the traversal of the tree. From this point on therefore, there is a change from

containment to pre/post labels. In the pre/post labelling scheme, every label has a

pre, post and level format; pre-representing the ordinal number of the element

node in a pre-order traversal sequence, while post is the ordinal number of the

element node in a post-order traversal sequence, as shown in Figure 3.5.

From the figure given below, the level in both labelling schemes refers to the level

of the element node in the XML tree. The structural information that can be

extracted from two given containment labels, A (start1, end1, level1) and B (start2,

end2, level2), is as follows:

Chapter 3: Related Work on XML Labelling Schemes

 54

x Ancestor/Descendant (AD). B is the descendant of A if and only if

start1 < start2 < end2 < end1, which can be reduced to the more

simple form (start1 < start2 < end1). The simplification is justified as

(start1 < start2 < end1 < end2) is not possible as it would signify the

improper nesting of the elements.

x Parent/Child (PC). B is a child of A if and only if B is a descendant of

A and level1 = level2 - 1.

For example, in Figure 3.1, 1<5<14, node A (1, 14, 1) is an ancestor of node D (5, 6,

3). Furthermore, 2 < 5 < 9 and 2 =3-1, node B (2, 9, 2) is the parent of node D (5, 6,

3).

It is possible to extract AD and PC relationships from pre/post labels with the

following:

In the case of two given pre/post labels A (preorder1, postorder1, level1) and B

(preorder2, postorder2, level2), the condition preorder1 < preorder2 and postorder2

< postorder1 must be fulfilled for A to be an ancestor of B. Unlike the condition of

the containment labelling scheme, this condition cannot be subjected to

simplification.

Chapter 3: Related Work on XML Labelling Schemes

 55

For example, from Figure 3.2, given that 2<3 and 1<4, node B (2, 4, 2) is an ancestor

of node C (3, 1, 3).

In Li and Moon (2001), the order/ size scheme of labelling is described to be a

triplet. The size of a node in a scheme is the property that determines the number

of children the scheme can hold (Li and Moon, 2001). The order on the other hand

is the format in which the labelling is performed. This implies that there are three

aspects of the node that are taken into consideration. In this case the order/size

scheme is seen to be similar to the containment labelling scheme that takes the

node’s order and order + size.

Figure 3.6, shows an example of order/size labelling scheme.

3.3.2.2 Strengths of Interval-based Labelling Schemes

In the interval-based scheme, it is possible to have labels which can function

perfectly as start position number and end position number as depicted in figures

3.5 and 3.6. This ability was classified by Eda et al. (2005) to be a major merit

when dynamism is important concern in the query processing. This is because

when there is a tree label and the same branch of the tree is present in the query

process, the start and end position numbers could both be used simultaneously or

Chapter 3: Related Work on XML Labelling Schemes

 56

interchangeable when the node is traversed back from the branch of the tree

(Tatarinov et al., 2002). What is more, the interval that is created between the

start-position and end-position in interval-based labelling schemes plays a

significant role in establishing both ancestor-descendant relationship and parent-

child relationship (Cunningham, 2006). Indeed unlike the prefix-based scheme, the

interval-based scheme supports XML tree and this is a major advantage because

tree labels have been said to be more efficient than non-tree labels (O'Neil et al.,

2004). The basis for the support of XML tree is in the ability of interval-based

scheme to take both start and end position numbers, which are often used to

describe child and parent relationships on the tree. Fallside and Walmsley (2004)

explained that not only does the interval-based scheme support the tree label but

that there are both pre and post labelling schemes to which each label is assigned a

pre, post and level format to be a pre-representation of the ordinal number of the

element node found in the pre-order traversal sequence. Already, the pre/post

labelling scheme has been explained and so it can be expected that while there is a

pre-order traversal sequence with the pre-order, the post-order found in the

ordinal number of the element node is also traversed in a sequence independently

(Wu et al., 2004).

3.3.2.3 Weaknesses and Limitation

There are circumstances in which the use of interval-based labelling scheme may

be challenging. Similar to the problems with prefix-based scheme, Tatarinov et al.

(2002) noted that dynamic update is not supported in some cases of interval-based

schemes. Specially, when there are more nodes inserted than the interval allocated

between the existing nodes (Cooper et al., 2001). This limitation can be attributed

to the structure and functioning of the interval-based labelling scheme where

greater part of its workability and functionality is dependent on the interval

allocated to the nodes. The interval between the start position number and end

position number is allocated when the node is traversed back from the same

branch of the tree such as a child and its sibling (Duong and Zhang, 2005). This

simply shows the efficiency of the interval allocated between the existing nodes

Chapter 3: Related Work on XML Labelling Schemes

 57

over the inserted nodes. As a result, dynamic update will either be slowed or

entirely halted when more nodes are inserted than the interval between the

existing nodes (Amato et al., 2003). This is because in this case, it is the inserted

nodes rather than the interval allocated that determines the outcome of the

dynamic updating process. The frequency of changes of XML documents have been

noted to be a major reason why dynamic updating is important and must be

considered to take place on a regular basis (Cooper et al., 2001).

Another limitation identified in the literature on interval-based labelling schemes

had to do with the fact that re-labelling takes place only under extreme

circumstances. In the opinion of Harold (Harold, 2005), this is actually the worst

case scenario with interval-based schemes, raising considerable overhead for the

scheme and almost nullifying its potential as the most compact labelling scheme.

Because the prefix labelling scheme has an advantage in terms of re-labelling, most

researchers have either selected to use prefix labelling schemes above interval-

based scheme when their priority is to minimise re-labelling or have used a

combination of a prefix labelling schemes and an interval-based labelling schemes

in order to attain better re-labelling functionality (Sean, 2006). Also writing on the

weaknesses associated with interval-based labelling scheme, Duong and Zhang

(2005) noted that re-labelling becomes difficult because of the introduction of a

node after a consecutive sibling cannot be computed from the existing solution.

The result of this is that re-labelling is always automatically triggered as illustrated

in Figure 3.7, which shows the number of nodes that required re-labelling when a

new node is inserted.

Chapter 3: Related Work on XML Labelling Schemes

 58

From the figure above, it is seen that when ‘Q’ is inserted as a new node, automatic

relabeling is triggered with ‘C’, indicating that there is only one node required for

relabelling.

Meanwhile, Gou and Chirkova (2007) were of the opinion that when engaging in

query processing, the automatic offset of re-labelling means that the user of the

document cannot have any control over the process. Certainly, an alternative

labelling scheme that avoids the stress of using a combined scheme in achieving

that would be beneficial.

Chapter 3: Related Work on XML Labelling Schemes

 59

3.3.3 Multiplication-based Labelling Schemes

3.3.3.1 Structure and Description

A major descriptive characteristic of multiplication-based labelling schemes is the

positioning and numbers used in identifying their nodes. This is because Zhang et

al. (2001) saw that multiplication-based labelling schemes exhibit nodes that are

determined based on the use of atomic numbers. When it comes to the

determination and computation of the relationship between nodes however, it is

not these numerical labels that are used (Wu et al., 2004). There are a number of

multiplication-based labelling schemes that have been used in optimising query

processing for XML. Common among these are the identifier labelling scheme

which was used by Kha et al (2002) and the prime number labelling scheme used

by Wu et al.(2004). Like other labelling schemes, the multiplication-based scheme

such as the prime number labelling scheme that is often used along with directed

acyclic graph (Sjoberg et al.) makes use of parents, siblings, ancestors, and

descendants’ nodes (Schmidt et al., 2002). One unique feature of the

multiplication-based scheme however has to do with the fact that it has additional

relations such as children and nearest common ancestor (NCA) (Yun and Chung,

2008). In such DAG, the NCA is the lowest node that has two independent nodes on

the tree as ancestors. For example given two nodes X and Y, in a tree or DAG, the

NCA is the lowest node that possesses both X and Y as ancestors (Boag et al.,

2003). Multiplication-based schemes function mainly based on the formation of

index structures which are reorganised when there is vertex updated during query

processing (Thonangi, 2006). Duong and Zhang (2005) observed a unique

behaviour in multiplication-based schemes where before the creation of node

labels, schemes such as the prime number labelling scheme allocate unique prime

numbers as the labels to every node. The number that results from this then

becomes the combination of the self-label of the node and its parent’s label. In

effect, the self-label which is created that becomes the unique path based on which

XML nodes are identified (Meuss and Strohmaier, 1999).

Chapter 3: Related Work on XML Labelling Schemes

 60

3.3.3.2 Strengths of Multiplication-based Labelling Schemes

When compared to other labelling schemes, Yun and Chung (2008) asserted that

the multiplication-based scheme has the ability of facilitating simultaneous

processing outcomes when used in indexing tree or graph structured data. The

primary need for having labelling schemes is to avoid expensive join operations

when undertaking transitive closure computations as part of indexing. To achieve

this, it is expected that such qualitative outcomes including determinacy,

compaction, dynamicity, and flexibility will all be achieved (Li et al., 2006b). Even

though other forms of labelling schemes such as prefix-based schemes may

successfully achieve all these outcomes, doing so simultaneously has always been a

major challenge. But when such data structures as DAGs are introduced to

represent subsumption hierarchies in multiplication-based schemes such as the

prime number labelling scheme, it then becomes possible to achieve the preferred

outcomes in a simultaneous manner.

Another strength with the use of multiplication-based labelling schemes is the fact

that they are able to create tree edge relationships, which is absent in other

labelling schemes such as prefix-based scheme (Gou and Chirkova, 2007).

Meanwhile, when there is a non-tree relationship leading to a non-tree label, the

labelling process does not have the strength of the deterministic tree label

characters (Wu et al., 2004). This means that the multiplication-based schemes

which comes with a tree edge relationship and tree label do not need any special

storage and additional efforts to facilitate the query processing (Amagasa et al.,

2003). On the whole, the multiplication-based scheme can be said to have a very

rich re-labelling ability for updates as the tree labels trigger such abilities.

3.3.3.3 Weaknesses and Limitation

From the description and structure given above, there are number of limitations to

the multiplication-based labelling scheme. In the first place, Harold (2004) saw the

multiplication-based scheme as being costly in its computation processes. This is

because multiplication-based labelling schemes make use of such complex

Chapter 3: Related Work on XML Labelling Schemes

 61

labelling parameters as atomic numbers and prime numbers (Cormen et al., 2001).

Gabillon and Fansi (2006) also saw a situation where multiplication-based

schemes function based on subsumption hierarchies when they are applied in

applications such as OO programming, software engineering and knowledge

representation. Once this is done, a growing number and volume of DAGs are

needed in the systems to support the demands that are expected to make the

appropriate index structures for XML query processing functional (Zhang et al.,

2001).

These are all processes that come together to make the use of multiplication-based

labelling schemes based on costly computations which may be discouraging for

most novices who attempt to use XML data. In a related development, Hou, Zhang

& Kambayashi (2001) saw that the costly computation processes associated with

the use of multiplication-based labelling schemes makes it very difficult to apply to

large scale XML documents. The reason for this assertion is that its computation

process tends to make the size of resulting nodes very large and therefore

impacting on labelling negatively. The reason for this is that the more computation

processes are undertaken, the larger the size of the resulting scheme as internal

updating takes place internally (Zhang et al., 2001). This is why it is always difficult

to apply multiplication-based labelling schemes on large-scale XML documents

(Eda et al., 2005).

There is a unique characteristic of multiplication-based labelling schemes that is

often debated in literature as to whether it constitutes a strength or a weakness.

This has to do with the ability of the multiplication-based scheme to establish a

global order based on document order and the mapping of the self-label that are

involved in the functioning of the node labels (Yu et al., 2005). These global orders

are formed on the basis of the ‘simulation congruence’ (SC) value as used by

Harder et al. (2007). Tatarinov et al. (2002)opined that as far as the fact that global

order makes the multiplication-based labelling scheme integrative and universal, it

counts as an strength. However, this point is vehemently disagreed with other

researchers such as O’Neil et al. (2004) who lamented that the only condition

Chapter 3: Related Work on XML Labelling Schemes

 62

under which the global orders become viable and useful is when simulation

congruence (SC) value stay small. This is because the SC value has the potential of

preventing scheme sizes from becoming very large when internal updating

processes are going on. However, there was evidence with a study by (Schmidt et

al., 2002) who saw that the SC value rarely stays small because the list of SC values

employed to determine the global ordering come in five nodes. As a result of this

situation, the SC value that results in global orders has been identified to produce

storage and maintenance that is very costly, especially in large XML documents

(Wu et al., 2004). The latter school of thought, that the limitations and demerits

that the global orders produce far outweigh the benefits that are expected from

them.

In addition to the points above, Cormen, Leiserson, Rivest and Stein (2001) saw

the multiplication-based scheme as being slow in processing and implementation.

This is largely due to the fact that when undertaking insertions and deletions with

the various multiplication labelling schemes, there is the need to engage in

recalculation of greater parts of the SC values. In one such instance, Fallside &

Walmsley (2004) found that almost half of the SC values that are used with the

Euler’s quotient function are recalculated. In such instances, query processing will

be very slow. Such lengthy processing, even though it may result in accurate

results undermines the updating processing and updating frequency. Supporting

this perspective, Tatarinov et al. (2002) observed that in the most basic form,

updating of XML requires the computation of existing labels. But in cases where

insertion and deletion of labels also demand recalculations, it would be expected

that the updating process will not only demand computing of its existing labels but

re-computations of the labels.

The re-computation process alone takes so much time, that it makes the use of

multiplication-based labelling schemes inappropriate when time or efficiency is a

priority in the query processing for XML data (Arion et al., 2007).

Chapter 3: Related Work on XML Labelling Schemes

 63

3.3.4 Vector-based Labelling Schemes

3.3.4.1 Structure and Description

Zhang et al. (2001) described the vector-based scheme as having a static structure

and requiring a global rebuilding of labels triggered by the occurrence of an

update. This static nature notwithstanding, it has been found to have the ability to

be intrinsically ordered and typically modelled as a tree (Bosak and Bray, 1999).

The result is that vector-based schemes are able to function with documents that

obey the XML standards. The ability to intrinsically order and model a tree ensures

that like most other labelling schemes, the vector-based scheme encode not only

the document order but also the structural information within the document (Yun

and Chung, 2008). It is important so that the queries can exploit the labels without

accessing the original XML file. Xu et al. (2009, 2007) was one of the authors who

placed particular emphasis on the mechanisms that make the vector-based scheme

functional in XML document query processing. It was explained that a vector code

is a binary tuple that is expressed as (x, y), x being greater than zero. In the case of

two vector codes, A: (x1, y1) and B: (x2, y2), the relationship

 must exist for

vector A to precede vector B in the vector order. When a new vector C is inserted

between vectors A and B, the vector code of C takes the form (x1+x2, y1 +y2). Since

the relationship

 is valid, the vector order is A<B<C (Xu et al.,

2007).

3.3.4.2 Strengths of Vector-based Labelling Schemes

One important strength or advantage of the use of vector-based schemes is that

they are easily compatible with other labelling schemes (Gou and Chirkova, 2007).

For example Xu et al., (2009) discovered that it is possible to use the vector-based

labelling approach together with interval-based and prefix-based labelling

schemes. This possibility is an important strength with vector-based labelling

scheme. This is because as has been seen with other labelling schemes discussed

earlier and those that will be discussed later, there are always limitations with

individual labelling schemes. The effect of these limitations on practical

Chapter 3: Related Work on XML Labelling Schemes

 64

experimentation and use of labelling schemes in XML documents is that functional

outcomes with query processing that are limited may never be able to take place.

In such situations, it is only expected that other labelling approaches may be used

in addition to the substantive approach in achieving the limited function

(Cunningham, 2006).

Unfortunately though, it is not always the case that labelling schemes allow this

opportunity of being combined with other schemes. It is therefore very important

that in vector-based schemes, it is possible to introduce other approaches,

particularly the interval-based and prefix-based labelling schemes. Xu et al. (2012,

2009) actually discovered that some very specific schemes that are perfectly

compatible with vector order approach are Dewey ID encompass Dynamic Dewey

(DDE) and Compact-DDE (CDDE). Xu et al. (2012) also indicated that application

of the vector labelling scheme to the interval containment-labelling scheme is

possible but this happens largely as a V-containment and not an independently

formed scheme.

3.3.4.3 Weaknesses and Limitation:

The strength discussed above gives an impressive outlook for the use of vector-

based labelling scheme. However there are some key weaknesses and limitations

with the use of vector-based labelling schemes in query processing of XML

documents. In the first place, (Harold, 2004) lamented that even though it is a

positive development that vector-based scheme can work with other labelling

schemes, this comes with a major resultant challenge. During the combination

process, the path may grow very large, having a significant effect on speed and

updating efficiency (Gou and Chirkova, 2007). In what is a slight contradiction to

the assertion just made, Tatarinov et al. (2002) argued that this increase in path

growth does not always happen but is highly dependent on a number of factors

including the complexity of the XML document in question. The latter therefore

opines that when the XML document is complex, it is possible to achieve the

combined labelling scheme approach without any difficulty with size and speed.

Having said this, it must be acknowledged that the complexity with which web

Chapter 3: Related Work on XML Labelling Schemes

 65

activities and document reading are performed lately makes it necessary to make

provisions for complex XML documents in any endeavour with query processing

(Rousseeuw et al., 1999).

The fact that there may be path growth with the use of vector-based labelling

schemes depending on the complexity of the XML document cannot be overlooked

as a limitation. This limitation also serves as a motivation for further work on the

labelling scheme by emphasising on the need to achieve combined use of internal

schemes without any effect on the growth or size of the path.

Another major weakness with the use of the vector-based labelling scheme as

observed by Thonangi (2006) was the fact that there is often an outcome from the

combined labelling scheme approach where re-labelling is prevented. Zhang et al.

(2001) however emphasised that prevention of re-labelling only occurs when the

need to undertake frequent updating contexts arises. It would however be unwise

assume that in a typical modern setup the need to frequently update can be

excluded in a typical query-processing scheme. It is in the light of this that the need

to ensure that the necessary provisions for re-labelling under any circumstance

with updating contexts is important.

Another weakness associated with the use of vector-based labelling scheme is that

the identification of relationships between nodes requires computation (Cohen et

al., 2010). These computations may deter ordinary users of XML documents as

they are mostly complex to implement. As it was mentioned in the initial sections

of the chapter, XML documents are designed to be read by both human users and

machine users of web content. If the exclusive reading is centred on machine users

then it would be expected that the complicity with the identification of relationship

between nodes which comes about due to the use of computations will not be a

major challenge.

Chapter 3: Related Work on XML Labelling Schemes

 66

3.3.4.4 DDE Labelling Schemes

Xu et al., (2009) created a new labelling scheme known as Dynamic Dewey (DDE)

on the basis of the Dewey labelling scheme. The DDE scheme is capable of

managing both static and dynamic XML documents. The scheme consists of labels

that take the form of sequences of components to constitute a unique path from

the document root to a node. In the case of a DDE label a1.a2. … .am, the parent

label is a1.a2. … .am-1 while the local order is am. Figure 3.8 illustrates that the DDE

scheme and the Dewey scheme are identical with regard to the initial labelling.

The fact that the initial component of a DDE label is invariably a positive number is

taken into account by DDE label ordering. This is clearly valid for the initial labels

as the first component of all of them is 1.

As in the Dewey scheme, the level information is automatically stored by a DDE

label as its number of components. Arbitrary insertions and deletions do not affect

the validity of this property.

In the case of two DDE labels, ddeA: a1.a2. … .am and ddeB: b1.b2. … .bn, the labels

exhibit the following properties:

Chapter 3: Related Work on XML Labelling Schemes

 67

x For ddeA to be an ancestor of ddeB, m<n and

x For ddeA to be the parent of B, ddeA has to be an ancestor of ddeB and m=n-

1.

x For ddeA to take precedence over ddeB in document order, A <dde B

where the following conditions must apply so that A <dde B:

� m < n and

� ()

x For ddeA to be a sibling of ddeB, m=n and  

Since 1 is the first component of all Dewey labels, the above properties of the DDE

labels can be applied in the scenario where a1 = b1 > 0 the same way as the Dewey

labels. Given that the initial DDE labels are identical to Dewey labels, the scheme

can be applied to static documents. However, the DDE labelling scheme was

developed to avoid re-labelling in dynamic XML documents during the process of

update. Figure 3.9 illustrates the ability of the DDE labelling scheme to handle

several insertions in XML documents:

Chapter 3: Related Work on XML Labelling Schemes

 68

3.3.5 Summary of major labelling schemes

However, a labelling scheme that supports only querying static XML would be

disadvantageous. This is because although relationships of the nodes are efficiently

determined by a static labelling scheme, dynamic updates which are essential to

performance are not provided in static schemes (Lu, 2013). In Mesiti (2004), the

combination of several schemes just to get the different advantages would not be

realistic due to the storage space cost that it comes with. To counter this challenge,

there is need to develop a robust XML labelling scheme that is applicable for both

static and dynamic XML documents. To improve on the effectiveness of the

dynamic XML scheme, many studies have focused on the need to maintain

efficiency (Amagasa et al., 2003, Cohen et al., 2010, Eda et al., 2005, Li and Ling,

2005a, Li and Ling, 2005b, O'Neil et al., 2004, Wu et al., 2004, Xu et al., 2009). In all

these cases the main idea was to eliminate or substantially reduce the need for re-

labelling all the nodes. One such application of the reduction is in Mesiti (2004),

who proposes the development of a dynamic labelling system that performs sparse

labelling. In this method, a number of nodes around the updated position are

randomly selected and labelled. Not all the nodes are re-labelled in the database

thus the cost of bulk labelling and the re-labelling of the entire group of nodes is

avoided. The reason for this is to allow for effective processing of the selected

nodes within the time frame given for the update to take place as labelling several

nodes within a limited time frame may affect effectiveness (Xu et al., 2009). These

earlier approaches meant that at the initial level, gaps would be created and then

their main concern remained developing methodologies to maintain the efficiency

of the schemes despite the gaps.

O’Neil et al. (2004) is an example of a scheme that leaves such gaps in the initial

nodes. It describes a scheme called the ORDPATH labelling scheme. For initial

labelling, this scheme solely employs positive, odd integers, while for subsequent

insertions it uses negative integers. However, ORDPATH is not compact due to the

gaps left, while the label insertions are made more complex by the insertion

Chapter 3: Related Work on XML Labelling Schemes

 69

mechanism that it uses. To enhance the compactness of labelling schemes and

increase update performance, as well as to avoid having to leave gaps in the initial

labels when processing updates in XML documents, Li et al. (2006a) developed a

labelling scheme that involved converting the labels from their original format to a

different ones, which are the updated versions.

The complexity of updating and querying is increased by the conversion of labels

into dynamic formats, thus raising the cost of labelling. More recently, Xu et al.

(2009) sought to enhance the encoding performance by developing two new

labelling schemes for encoding dynamic XML trees on the basis of the

mathematical operations of Dewey components. The Dewey component is a

labelling scheme that has been tailored to perform in both static and dynamic XML

documents (Warfield, (2010)). Although updating XML documents was

demonstrated to improve the performance of the labelling schemes somewhat, the

labels within them remained verbose, therefore increasing the cost of storage.

Additionally, the insertion of nodes between two sequential siblings may make any

of the four major labelling schemes which are prefix-based, interval-based,

multiplication-based, and vector-based schemes inefficient.

To overcome this gap, it is expected that any new labelling scheme surfaces which

ensures that even if the difficulty to overcome re-labelling persists, then the need

for re-labelling all the nodes will be eliminated as part of the scheme. This is

however something that cannot be guaranteed when using the interval-based

scheme (Amagasa et al., 2003).

3.4 Functional characteristics of ideal labelling schemes

The review and discussion on existing labelling schemes have clearly outlined the

strengths and weaknesses associated with these schemes. But to have a better

understanding of how the existing labelling schemes serve the purpose of XML

labelling, it is important to review literature on what is seen as expected functional

characteristics of labelling schemes. By so doing it will be possible to determine

the extent of gaps that exists with the existing labelling schemes, especially their

Chapter 3: Related Work on XML Labelling Schemes

 70

weaknesses. In this section of the literature review, some important functional

characteristics that are expected from labelling schemes to ensure they take

advantage of the strengths identified, whilst overcoming the weaknesses are

reviewed and discussed.

3.4.1 Time needed to determine the different relationships

When creating query processes, Rusty (Harold, 2004) noted that there is the need

to ensure that the relationships between nodes can be established using labels.

The authors of existing labelling schemes, researchers and developers of the

schemes are silent on the time used in determining the different relationships that

exists between the nodes. This is not to say that the functionalities of various

relationships such as ancestor/descendant and parent/child relationships are not

stressed. However, in the course of actually identifing the relationship, it is

important that the time needed to determine the relationship is made very clear

(Cunningham, 2006). The reason for emphasising time is that the timing used to

establish the relationship could go a very long way to affect the overall efficiency of

the labelling process (Rousseeuw et al., 1999). This is because most labelling

schemes would require the relationships to be determined before other

procedures can follow in the query processing.

There is also the level, which explains the node’s level within the XML tree where

the document root level is given as one (Amagasa et al., 2003). This relationship is

also normally established even though Cunningham (2006) saw that order and

level are very difficult to establish in most known schemes. Three other

relationships that are very common with the previously discussed schemes are

ancestor/descendant (AD), parent/child (PC) and lowest common ancestor (LCA).

Together, these three relationships are determine based on specified rules. For this

reason, Harold (Harold, 2004) identified these three relationships as some of the

most time consuming when talking about time needed to determine the different

relationships. Meanwhile, existing labelling schemes such as the vector-based

schemes highly rely on individual relationship establishment between these three

Chapter 3: Related Work on XML Labelling Schemes

 71

relatives (Li and Moon, 2001). Finally there is the sibling relationship, which

determines whether two nodes share the same parent node (Cooper et al., 2001).

3.4.2 Queries’ performance before and after insertions

Ideally, this could be said to be the most important outcome with any labelling

scheme. This is because the overall goal of having a labelling scheme together with

other schemes like indexing and numbering schemes is to ensure that query

processing for XML data is facilitated (Li et al., 2006a). In effect, the extent and

level of query performance can be said to be the overall representation of the

efficacy of the labelling scheme. Most of the labelling schemes discussed did not

show much prospects when it comes to query performance for the XML data.

Several factors account for this, including the structure and procedural functions of

these schemes (Xu et al., 2007). Most interval-based labelling schemes which have

been discussed above can certainly be said to fail in addressing this expected

characteristic. This is because these interval-based labelling schemes have a

structure that makes it overwhelmingly complex to achieve efficient query

performance (Milo and Suciu, 1999). To ensure that the query performance is not

negatively affected, there are some obstacles that Eda et al. (2005) felt must be

overcome. One of these is the need to avoid re-computation in the context of

frequent updates. Again, Fennell (2013)indicated that the query performance must

show a relatively constant competence at all levels of insertion, that means both

before and after insertion.

A number of researchers have clearly outlined the parameters that may be used in

determining query performance before and after the insertions. One of these was

suggested to be the query response time before and after the insertions

(Cunningham, 2006). By implication, it is expected that both before and after the

insertions, the query response will not be seriously degraded. One other

determinant of performance that was proposed in the literature was the need to

have as wide a range of queries tested as possible (Gou and Chirkova, 2007).

Chapter 3: Related Work on XML Labelling Schemes

 72

The vector-based scheme was criticised for having a re-labelling performance that

is compromised when the complexity of the XML document is high. It is against

this backdrop that the need to ensure that as many queries with different

complexities and objectivity are evaluated as possible.

Also writing on the examination of query performance, Yoshikawa, Amagasa &

Uemura (2003) suggested that to obtain the best result with the query

performance of any two given schemes before and after insertions, it is important

that the evaluation of all the queries involved in the schemes are performed on the

same platform.

3.4.3 Scheme’s ability to handle different types of insertion

To activate query processing in an XML document, there is the need to perform

several types of insertions of nodes (Gou and Chirkova, 2007). Some of these may

be new nodes while others may be existing nodes. On the whole, Fisher et al.

(2006)posited that one important characteristic feature that can be in any model

labelling scheme is the ability of the scheme to handle different types of insertions.

Meanwhile, from the beginning of the review, it will be noted that mention of

insertion handling ability by the other labelling schemes has not been discussed.

This exhibits a significant gap in literature. Because the ability to handle different

types of insertion is important, some common types of insertions that are

attributed to XML documents have been reviewed.

Alstrup and Rauhe (2002)mentioned uniform insertions as one of the types that

must be handled effectively by any model labelling scheme. Uniform insertions

mean insertions made on new nodes found between any two consecutive nodes.

That is, when there are two existing nodes, an insertion of a new node made in-

between the two forms a uniform insertion. Using the cases of multiplication-

based scheme and prefix-based schemes as example, it can be noted that schemes’

ability to handle uniform insertions has often been triggered by the numbering

systems used by these. To effectively identify the ability to handle uniform

Chapter 3: Related Work on XML Labelling Schemes

 73

insertion, the time spent in executing the insertions and the new label’s size after

the insertion may be measured (Cooper et al., 2001).

Ordered skewed insertions were the second types of insertions that ought to be

handled by any ideal labelling scheme. The description of an ordered skewed

insertion is that the insertion is done before or after a particular node repeatedly

(Cohen et al., 2010). This means that when there is an existing node and several

new nodes are introduced either before or after the existing node, the scheme

should exhibit an ability to handle the resulting insertion. Cormen, Leiserson,

Rivest & Stein (2001) argued that the number of insertions made will be influential

in determining the ease with which the scheme can handle the resulting insertion.

Most forms of existing labelling schemes have failed to address this phenomenon

because for them, there is a high rate of efficiency reduction when it comes to

increasing the number of nodes that are introduced as part of the ordered skewed

insertions.

The third type of insertion that was identified in the literature was random skewed

insertion. Like the name suggests, random skewed insertion is said to occur when

new nodes are randomly inserted between existing nodes (Li et al., 2006b). The

reason the scheme’s ability to handle random skewed insertions will be said to be

very important is that some of the existing labelling schemes have a fixed node

structures that makes it difficult to introduce random insertions (Sean, 2006). An

example of this is a prefix-based scheme.

3.4.4 New labelling scheme that is appropriate to support dynamic update

Throughout the review and discussion of other labelling schemes, two factors or

parameters for ascertaining the strength and weaknesses of the schemes were re-

labelling and dynamic update. These two have further been highlighted as being

important for any labelling scheme that supports dynamic update (Fisher et al.,

2006). Writing on the subject, Alstrup and Rauhe (2002) noted that most modern

usage of the World Wide Web requires frequent updates of the XML documents

Chapter 3: Related Work on XML Labelling Schemes

 74

which are used as the universal language between the web and human users.

Because of this, an ideal labelling scheme will be one that supports dynamic

updating, no matter what new nodes are added (Bosak and Bray, 1999). One

serious challenge with most existing schemes is that even though they may allow

updating, this is only limited to static XML documents (Amagasa et al., 2003).

Based on this understanding, it can be reiterated that a labelling scheme that

exhibit a high sense of compatibility with dynamic updates whilst embracing

updates with static XML is needed.

Fennell (2013) opined that a labelling scheme that supports only querying of static

XML would be disadvantageous in this case. This is because although relationships

of the nodes are efficiently determined by a static labelling scheme, the dynamic

update that is essential to the issue of performance is not provided in static

schemes (Lu, 2013). It is not surprising that even with some of the earlier labelling

schemes such as LSDX, attention has been on the need to creating a labelling

scheme which supports the process of updating XML data without having to re-

label the existing labels (Xu et al., 2007). This is because if existing labels have to

be replaced before updating can take place, then the overall performance will be

significantly slower (Cohen et al., 2010).

3.5 Summary of the review

On the whole, the literature review revealed that these other labelling schemes

have unique structures and characteristics that make it possible for them to

perform the roles in query processing as far as the use of labelling is concerned

(Milo and Suciu, 1999). Even more, most of these have a strengths which make the

selection of one form of labelling scheme over the other possible, based on the

specific goal that a researcher or an experimenter may be aiming to achieve.

For example, the prefix-based labelling scheme has the strength of forming a group

based scheme, while the multiplication-based schemes have the strength of

achieving simultaneous processing outcomes without having to implement

Chapter 3: Related Work on XML Labelling Schemes

 75

individual schemes to come out with the processing outcomes or factors

(McCreight, 1976, Milo and Suciu, 1999).

The literature review has also outlined the weaknesses and limitations of existing

labelling schemes. Some recurring weaknesses such as issues with updating

efficiency, insertion of new nodes and maintaining performance of queries

performance before and after insertion were found with almost all existing

labelling schemes. It was rightly appreciated in literature that older labelling

schemes have constantly been updated and improved but most of these

weaknesses persist (Li and Moon, 2001). A typical example of such weakness was

the need to engage in regular re-computing in the XML data whenever there was a

deletion and/or insertion (Goldman and Widom, 1997). Apart from the fact that

the review showed that such a re-computing processes was expensive, it was also

time consuming and thus degraded efficiency.

On the whole, four major expectations were set and reviewed. The first was the

time needed for the initial labelling process to the take place along with the label’s

size. The second was on the time needed to determine the different relationships

existing in the nodes, while the third focused on queries’ response time before and

after insertions took place. The final metric is that any proposed scheme must have

the ability to handle different types of insertion (Kaplan et al., 2002). The next

chapter of the thesis is presents the proposed scheme in detail.

3.6 Conclusion

In this chapter, the various aspects of efficiency and effectiveness of the different

existing schemes have been discussed. As demonstrated in the discussion, the

proposed labelling scheme will borrow the strengths of several schemes that have

been reviewed by several studies.

Meanwhile, the fact that there is massive and active human usage in web

processing as manifested through the use of XML documents cannot be

Chapter 3: Related Work on XML Labelling Schemes

 76

underestimated. There is therefore a motivation to work out on a new labelling

scheme which makes the identification of relationships between nodes less

dependent on computations.

The schemes discussed in this chapter also form a basis for evaluating any

proposed scheme. The specific weaknesses that have been identified in these

schemes and their mitigation form strong grounds for the selection of the

modalities in dealing with the related issues of schemes like re-labelling in the case

of an update. The characteristics that the proposed labelling scheme aims to

provide are highlighted.

Chapter4: GroupBased Labelling Scheme for Dynamic XML Databases

 77

Chapter 4: GroupBased Labelling Scheme for
Dynamic XML Databases

4.1 Introduction

Labelling a node of an XML document to reflect the structure is an important

process that helps in indexing and retrieving XML data effectively. However,

designing a dynamic labelling scheme which can handle insertions of new nodes

without the need to re-label the existing labels, as well as taking the size of the

labels and the query performance into consideration, is a challenging task; this was

mentioned earlier in the literature chapter (Ch. 3).

This chapter presents the principles of the dynamic labelling scheme proposed in

this thesis before the design and implementation details are examined in Chapter

5. In this chapter, an overview is given in Section 4.2. Then, Section 4.3 illustrates

how the initial labels are allocated and how the different relationships are

determined. Section 4.4 describes how insertions are handled and how different

relationships are preserved. A validation of the relationships using algebra is

shown in Section 4.5. Finally, in Section 4.6, the chapter ends with a general

conclusion that leads to the following chapter which discusses the scheme from

the point of view of implementation.

Chapter4: GroupBased Labelling Scheme for Dynamic XML Databases

 78

4.2 An Overview of the Scheme

The proposed scheme is based on the parent-child grouping to facilitate faster

identification of parent-child and sibling relationships, based on a simple

comparison. Parent-child grouping was also selected due to the fact that all XML

documents come with this type of relationship (Goldman and Widom, 1997).

Again, parent-child and sibling grouping facilitate smoother insertions of new

nodes, given the fact that in this form of grouping only a simple tree structure will

be dealt with rather than the whole tree (Kaplan et al., 2002). Gusfield (1997) also

observed that when dealing with parent-child groupings, labelling can be thought

of as being easier, faster and more accurate as it deals with a simple tree structure.

The simple structure has to do with a root node and its direct child nodes. The

advantage of allowing smoother insertion builds on the prefix GroupID labelling

scheme but does not restrict the number of nodes that can be inserted.

Another critical characteristic of the scheme is that it uses two labels for each node

in order to facilitate the processing of nodes within the same group using their

simple local labels. Where as the global label is used to connect a group to the

whole tree, which helps in identifying relationships between nodes, which belong

to different group (Milo and Suciu, 1999). Based on existing schemes such as the

DDE labelling scheme (Xu et al., 2009), in this scheme to create the first part global

label has its advantage as it facilitates the insertion without re-labelling of the

existing labels. It also ensures the identification of all relationships.

What is more, the scheme is designed to allow fast identification of relationships.

This is because as fast as the relationships between nodes can be determined, the

query processing will be optimised (Li and Moon, 2001).

This labelling scheme is divided into two parts. Each label has a local and a global

part. The local label, which is given to each node, can be duplicated although not

within a group whereas the global label uniquely identifies a group of local labels.

Chapter4: GroupBased Labelling Scheme for Dynamic XML Databases

 79

This is generated based on the Dynamic Dewey labelling scheme (Xu et al., 2009).

Xu’s scheme is a Dewy labelling scheme (Tatarinov et al., 2002) used when the

document is static; i.e. when no insertions have occurred. Each node has local and

global labels and they are assigned as follows:

x Every node except the root node is grouped with its child nodes and is given

a global label.

x The local label is assigned for each node within a group starting from the

parent node; then, the child nodes are labelled in a serial order.

x The root node refers to the document root. And the child nodes for a

specific node are the immediate child nodes without the grandchildren or

further descendants (i.e. the nodes that have direct parent/child

relationship with a specific node)

4.3 The Initial Labelling

Firstly, ‘1’ is assigned to the document root as its global and local labels. Then two

phases of the process are performed.

Phase 1:

This starts by grouping every node and its child nodes to form a sub-tree. Each

sub-tree is given a global label, which consists of two components if the node is not

a child of the root. The first component is the Dewey label. The second one is either

the number of the child node, starting from left to right 1,2,3…ith where ith is the

last child node; or it is information about a new inserted node when random

skewed insertion has occurred. This second component of the global label is used

to preserve the document order after insertions have been made. More details are

provided in the next section.

Chapter4: GroupBased Labelling Scheme for Dynamic XML Databases

 80

Phase 2:

This phase involves assigning a local label to each node where all the document

root’s child nodes have the same local label, which is ‘1.0’. Then, the local label of

the first child within a group is calculated by incrementing its parent’s local label

by one; the next sibling node’s local label is then derived by adding one to the

previous sibling local label and so on until the end of the document. Figure 4.1.1

shows the initial labelling of the scheme and the nodes’ full labels are presented in

Figure 4.1.2 and Table 4.1

Chapter4: GroupBased Labelling Scheme for Dynamic XML Databases

 81

Chapter4: GroupBased Labelling Scheme for Dynamic XML Databases

 82

Node

Name

1st part of the

Global Label

(Mesiti et al.)

2nd part of the

Global Label

(SG)

Complete

Global Label

Local Label

(L)

A 1 null 1 1

B

1.1

null 1.1 1.0

C 1 1.1 , 1 2.0

D 2 1.1 , 2 3.0

E

1.2

null 1.2 1.0

F 1 1.2, 1 2.0

G 2 1.2, 2 3.0

H

1.2.1

1 1.2.1 , 1 3.0

I 2 1.2.1, 2 4.0

J

1.2.1.1

1 1.2.1.1 , 1 4.0

K 2 1.2.1.1 , 2 5.0

Table 4.1: The GroupBased Scheme Initial labelling for XML tree in Fig.4.1

As seen in Figure 4.1.1: A node can belong to two groups, which seems to overlap.

However, this is not an issue because when such overlap occurs, the node can be

treated in two ways as required to handle the situation. The first is to handle the

overlapped node as a child node in a group, while the second is to handle it as a

root node in another group (Zhang et al., 2001). For example, given a node H which

belongs to a group with label 1.2.1 as child node, this same node is also a root in

Chapter4: GroupBased Labelling Scheme for Dynamic XML Databases

 83

another group which is labelled 1.2.1.1. In this example, the group label where H is

a root can be seen to have been assigned by simply concatenating the H node’s first

part of the global label (Mesiti et al.) where it appears as child node and its second

part of the global label (SG). Thus, from this explanation, two nodes belong to the

same group based on the following definition:

Definition 1:

n1 and n2 same group if, and only if, one of the two following conditions holds:

1. Their 1st part of their global labels are the same

2. The 1st part of the global label of one of them was extrapolated from the

global labels of the other one.

 e.g. from Fig 4.1.1 and Table 4.1, ‘J’ ,‘K’ and ‘H’ same group because the FGs of

‘J’ and ‘K’ are the same which is 1.2.1.1. And was extrapolated by concatenating the

FG and SG of ‘H’; ie: “12.1” +”.1” .

4.3.1 The Scheme’s Properties

Given two nodes, n1, n2, with level1, level2 as their levels (the level refers to the level

of the element node in the XML tree), and with labels A and B, where global labels

are a1.a2…am , ith and b1.b2…bn, , jth respectively and their local labels are La1. La2

and Lb1. Lb2, the label properties can be defined as in the following:

x Node Level:

The level information of each node can be derived from its global label as

follows:

The level is the number of components in the first part of the node’s global

label plus 1 if the second part of the global label exists; i.e. if the SG equals

null, the level is the number of component in FG.

e.g. As shown in Fig. 4.1.1 and Table 4.1, the level of node ‘B’ is (Kasim et al.),

whereas the level of node ‘J’ is (5) based on their global labels, as shown in

Table 4.1.

Chapter4: GroupBased Labelling Scheme for Dynamic XML Databases

 84

x Label Order:

Case 1: label order between nodes within the same group; i.e. the first parts

of their global label are equal or the global label of one of them forms the

first part of the global label of the other. In this case, the order is based on

the nodes’ local labels and can be simply determined as follows:

Definition 2:

n1 (is before) n2 if, and only if, one of the two following conditions holds:

C1: level1 < level2

C2: level1 = level2 and La1. La2 < Lb1. Lb2

e.g. from Fig. 4.1.1 and Table 4.1, node ‘B’ with level (Kasim et al.) is before

node ‘D’ as its level is (3), and node ‘H’ is before ‘I’ as ‘H’ local (3.0)< ‘I’ local

(4.0).

Case 2: label order between nodes within a different group. In this case, the

order is based on the first part of nodes’ global labels and is determined

using the DDE pre-order definition (Xu et al., 2009) which states that:

Adopted from (Xu et al., 2009)

Chapter4: GroupBased Labelling Scheme for Dynamic XML Databases

 85

e.g 1. from Fig. 4.1.1 and Table 4.1, node ‘C’ <DDE node ‘G’ because :

FG for node ‘C’ Æ 1.1 & FG for node ‘G’ Æ 1.2 , thus,

As their FGs consist of two components Æ the minimum (2,2) = 2 such that

k can be equal 2 as it <= 2, such that

 Æ

 and

a1=1, ak=1 , b1=1, bk=1 Æ and the ‘G’ <DDE ‘C’ is

false as a1=1, ak=2 , b1=1, bk=1 Æ

e.g 2. Assuming node ‘W’, which is not present in the tree, is the first child of

node ‘I’, its FG will be 1.2.1.2 and from Fig. 4.1.1 and Table 4.1, node ‘J with

FG 1.2.1.1<DDE node ‘Q’ because :

As their FGs consist of four components Æ the minimum (4,4) = 4 such that

k can be equal 4 as it <= 4, such that

 Æ

 and

a1=1, ak=1 , b1=1, bk=2 Æ

x Ancestor/Descendant (AD) Relationship:

Definition 3:

n1 (is ancestor of) n2 if, and only if, one of the two following conditions holds:

C1: level1 < level2 and m <= n: n1 & n2 same group

C2: level1 < level2 and m < n ,such that, n1 global label Æ FG.SG Æ a1.a2….am

and n2 global label Æ FG.SG Æ b1.b2….bn

 where

 .

If n1 is the document root, which means m=1, AD is true by default as the

document root is ancestor to any other node.

 e.g. from Fig 4.1.1 and Table 4.1, ‘F’ is an ancestor of ‘H’ as they are both in

the same group and ‘F’ level < ‘H’ level Æ (C1 applies). However, based on

(C2),‘E’ is an ancestor of ‘K’ such that, global label of ‘E’ is 1.2 (as ‘E’ doesn’t

have SG) and the global label of ‘K’ is 1.2.1.1.2 which is the result of

concatenate ‘E’ FG and SG. Thus,

Æ

Chapter4: GroupBased Labelling Scheme for Dynamic XML Databases

 86

x Parent/Child (PC) Relationship:

Case 1: n1 & n2 same group. The following definition applies.

Definition 4: n1 (is parent of) n2 if, and only if, n1 (is ancestor of) n2 under C1 of

Definition 2.

Case 2: n1 & n2 same group where n1 is the root document and n2 its child,

such that, n2 level = 2.

e.g. from Fig. 4.1.1 and Table 4.1, node ‘E’ is the parent of node ‘G’ as ‘E’ is an

ancestor of ‘G’ based on C1 of Definition 2. Furthermore, node ‘A’ is the parent

of node ‘E’ as ‘A’ is the root document and ‘E’ level =2.

x Sibling Relationships:

Definition 5:

n1 & n2 are siblings if, and only if, one of the two following conditions holds:

C1: level1 = level2 and n1 & n2 same group (i.e. a1.a2…am = b1.b2…bn):

 a.FG /b.FG =1.

C2: level1 = level2 =2 (i.e. the root document is their parent).

e.g. from Fig. 4.1.1 and Table 4.1, node ‘C’ & node ‘D’ are siblings as they

belong to the same group and their levels are equal. Node ‘B’ and node ‘E’ are

also siblings as their level =2.

x Lowest Common Ancestor (LCA):

Definition 6:

The LCA between n1 and n2 is n3 where the global label of n3 is d1.d2…dk , ith

and n3 is an ancestor of both nodes and one of the following two conditions

also apply:

Chapter4: GroupBased Labelling Scheme for Dynamic XML Databases

 87

C1:

 : k is the min (m,n).

C2: n1 , n2 and n3 same group : a1.a2…am = b1.b2…bn= d1.d2…dk : && n3 is the

parent node of n1 and n2

e.g1. from Fig. 4.1.1 and Table 4.1, the LCA between node ‘J’ and node ‘I’ is

node ‘F’ where their global labels (FG concatenate SG (if SG exists) are 1.2.1.1.1

, 1.2.1.2 and 1.2 respectively, and ‘F’ is the ancestor of both ‘J’ and ‘I’ from

Definition 3. C1 applies such that, the number of components in ‘J’ and ‘I’

global labels is 5 and 4 respectively Æ the minimum (5,4) = 4; and the

following is true

.

e.g2. Node ‘B’ is the LCA between node ‘C’ and node ‘D’ based on C2 where the

first part of their global labels are equal and ‘B’ is an ancestor of both of them

based on C1 of Definition 3.

Chapter4: GroupBased Labelling Scheme for Dynamic XML Databases

 88

4.4 Handling Insertions

This section shows how the re-labelling of the existing nodes is avoided during

different types of insertion (Figures 4.2-4.6).

x Leftmost Insertion: Insert a new node, nx, before n

Case 1: If n is a child of the document root, a new group is created where nx is

the root and the first part of the global label is set based on the DDE scheme’s

leftmost insertion mechanism, as described below:

Adopted from (Xu et al., 2009)

Chapter4: GroupBased Labelling Scheme for Dynamic XML Databases

 89

As with the other child nodes of the document root, the local label of this nx is

‘1.0’ and the second part of its global label is null: e.g. node ‘T’ in Fig. 4.2.

Case 2: In the case of inserting nx within a group where n is the first child, the

node’s local label is calculated by decrementing the first component of the n

local by one. Then, if the resulting local equals the local of the parent node, the

same component must be decremented again. However, the node’s global

label is set as follows:

o FG: is the same as the FG of the node n because they are siblings and

elements within the same group.

o SG: is calculated by decrementing the SG of n by one:

 e.g. node ‘M’ in Fig. 4.2.

x Rightmost Insertion: Insert a new node, nx, after n

Chapter4: GroupBased Labelling Scheme for Dynamic XML Databases

 90

Case 1: If n is a child of the document root, the procedure outlined for Case 1

in the leftmost insertion applies in terms of creating a new group where nx is

the root, nx local label is ‘1.0’ and the second part of its global label is null. But

the first part of nx global label is set based on DDE’s rightmost insertion

mechanism, as follows:

 e.g. node ‘R’ in Fig. 4.3.

Case 2: In the case of inserting nx within a group where n is the last child, the

node’s local label is calculated by incrementing the first component of the

local of n by one. However, the node’s global label is set as follows:

o FG: is the same as for the first part of node n.

o SG: is calculated by incrementing the second part of n by one:

 e.g. node ‘X’ in Fig. 4.3.

Adopted from (Xu et al., 2009)

Chapter4: GroupBased Labelling Scheme for Dynamic XML Databases

 91

x Insertion between two siblings: Insert a new node, nx, between n1 and n2

Case 1:

If the document root is the parent node of n1 and n2, the procedure noted in

Case 1 for the leftmost insertion applies in terms of creating a new group

where nx is the root, nx local label is ‘1.0’ and the second part of its global label

is null. But the first part of nx global label is set based on the DDE insert-

between mechanism as follows:

Adopted from (Xu et al., 2009)

Chapter4: GroupBased Labelling Scheme for Dynamic XML Databases

 92

Thus, nx FG is the result of adding each component in n1 FG to its

correspondence in n2 FG.

 e.g. node ‘Q’ in Fig. 4.4.

Case 2:

In the case of inserting nx within a group, and if n1, n2 were labelled during the

initial labelling (i.e. they exist in the original document before any insertion),

or n1 is newly inserted and n2 is not, the procedure used in Case 2 for the

rightmost insertion applies for the local label and the first part of the global

label. However, the second part of the global label holds references of both n1

and n2 locals.

e.g. node ‘S’ between ‘C’ & ‘D’ , then node ‘U’ between ‘S’ & ‘D’ in Fig. 4.4.

Case 3:

In the case of inserting nx within a group, and when n1, n2 are themselves

newly inserted, the node’s local label is calculated by adding each component

of the local of n1 to its corresponding n2 local. On the other hand, the node’s

global label is set as in Case 2:

 e.g. node ‘V’ between ‘S’ & ‘U’ in Fig. 4.4.

Chapter4: GroupBased Labelling Scheme for Dynamic XML Databases

 93

x Insertion Below a Leaf Node: Insert new node, nx below n.

Case 1: if the leaf node initially exists or it is a child of the document root:

A new group is created and given a global label, which is a concatenation

between the first and second parts of n’s global label. However, the node’s

local label is calculated by adding one to n’s local label and its SG is set to

‘1’:e.g. node ‘L’ in Fig. 4.5.

Case 2: if the leaf node is inserted between two nodes within a group:

This is similar to Case 1 in terms of SG and the local label. But the FG is set by

adding the FG of the left node’s child node to the FG of the right node’s child

node; these FGs can be extrapolated if the nodes are leaf nodes.

Chapter4: GroupBased Labelling Scheme for Dynamic XML Databases

 94

e.g. node ‘P in Fig. 4.5; the child(s) nodes of ‘C’ and ‘D’ have ‘1.1.1’ and ‘1.1.2’

as their FGs respectively. Thus, the FG of node ‘P’ is (1+1 . 1+1 . 1+2 = 2.2.3).

This also indicates that ‘S’ and ‘P’ same group as FG of ‘P’ was extrapolated

from ‘S’ global labels where the SG of ‘S’ holds references.

Figures 4.6.1 and 4.6.2 show the XML tree in Figures 4.1.1 and 4.1.2

respectively after all types of insertion and Table 4.2 shows the labels after

insertions.

Chapter4: GroupBased Labelling Scheme for Dynamic XML Databases

 95

Chapter4: GroupBased Labelling Scheme for Dynamic XML Databases

 96

Node

Name

1st part of the

Global Label

(Mesiti et al.)

2nd part of the

Global Label

(SG)

Complete

Global Label

Local Label

(L)

A 1 null 1 1

T 1.0 null 1.0 1.0

R 1.3 null 1.3 1.0

Q 2.3 null 2.3 1.0

B

1.1

null 1.1 1.0

C 1 1.1 , 1 2.0

D 2 1.1 , 2 3.0

M 0 1.1 , 0 0.0

S Ref(C&D) 1.1, Ref(C&D) 2.1

U Ref(S&D) 1.1 , Ref(S&D) 2.2

V Ref(S&U) 1.1 , Ref(S&U) 4.3

E

1.2

null 1.2 1.0

F 1 1.2.1 , 1 2.0

G 2 1.2, 2 3.0

Chapter4: GroupBased Labelling Scheme for Dynamic XML Databases

 97

Node

Name

1st part of the

Global Label

(Mesiti et al.)

2nd part of

the Global

Label (SG)

Complete

Global Label

Local Label

(L)

H

1.2.1

1 1.2.1 , 1 3.0

I 2 1.2.1, 2 4.0

J

1.2.1.1

1 1.2.1.1 , 1 4.0

K 2 1.2.1.1 , 2 5.0

X 3 1..2.1.1 , 3 6.0

L 1.2.2 1 1.2.2, 1 4.0

P 2.2.3 1 2.2.3, 1 3.1

Table 4.2: The GroupBased Scheme Labels after Insertions

4.4.1 The Scheme’s Properties after Insertions:

When n1 and n2 are inserted between two nodes, the SGs of their global label

are (i1, i2) and (j1, j2).

x Node Level:

The same as before insertions.

e.g. As shown in Fig. 4.6.1 and Table 4.2, the level of node ‘U’ is (Kasim et al.),

whereas the level of node ‘P’ is (4) based on their global labels, as shown in

Table 4.2.

Chapter4: GroupBased Labelling Scheme for Dynamic XML Databases

 98

x Label Order:

Case 1: label order between nodes within the same group. In this case, the

order is based on either the nodes’ local labels or the second part of their

global labels as follows:

Definition 2.1:

n1 (is before) n2 ,if and only if, one of the four following conditions holds:

C1: level1 < level2

C2: level1 = level2 and La1. La2 < Lb1. Lb2 : n1 & n2 are initially labelled OR

n1Local & n2Local are not resulted from locals addition.

C3: level1 = level2 and n1 & n2 are inserted (not initially labelled) and at least

one of their locals is resulted from locals addition Æ La2 Lb1 < La1 Lb2

C4: level1 = level2 and n2 local is resulted from locals addition and n1 is

initially labelled; aSG Lb2 < La1 Lb1

C5: level1 = level2 and n1 local is resulted from locals addition and n2 is

initially labelled; La2 bSG <= La1 Lb1

Note: SG is the second part of n2 global label.

e.g. from Fig 4.6.1 and Table 4.2, node ‘C’ is before node ‘D’ as 2.0<=3.0 and

node ‘S’ is before node ‘U’ based on C2; node ‘S’ is before node ‘V’ based on C3

where their local labels are 2.1 and 4.3 respectively and the following

equation is true: 1 4 < 2 3 Æ 4<6. Based on C4 node ‘C’ is before node ‘V’

where their locals are 2.0 and 4.3 and the SG of ‘C’ is 1: 1 3 <2 4 Æ3 < 8.

Based on C5 node ‘V’ is before node ‘D’ where their locals are 4.3 and 3.0 and

the SG of ‘D’ is 2: 3 2 < 4 3 Æ6 < 12.

Chapter4: GroupBased Labelling Scheme for Dynamic XML Databases

 99

Case 2: label order between nodes within a different group. In this case, as

same as before insertions, the order is determined using the DDE pre-order

definition (Xu et al., 2009).

e.g . from Fig. 4.6.1 and Table 4.2, node ‘P’ <DDE node ‘L’ because :

FG for node ‘P’ Æ 2.2.3 & FG for node ‘L’ Æ 1.2.2, thus,

a1=2, ak=3 , b1=1, bk=2 Æ

x Ancestor/Descendant (AD) Relationship:

The same definition applies as same as before insertions.

 e.g. from Fig 4.6.1 and Table 4.2, ‘B’ is an ancestor of ‘P’ such that, global

label of ‘B’ is 1.1(as ‘B’ doesn’t have SG) and the global label of ‘P’ is 2.2.3.1.

Thus,

Æ

x Parent/Child (PC) Relationship:

The same definition applies as same as before insertions.

e.g. from Fig. 4.6.1 and Table 4.2, node ‘B’ is the parent of node ‘V’ as ‘B’ is an

ancestor of ‘V’ based on C1 of Definition 3.

x Sibling Relationships:

The same definition applies as same as before insertions.

e.g. from Fig. 4.6.1 and Table 4.2, node ‘K’ & node ‘X’ are siblings as they

belong to the same group and their levels are equal.

x Lowest Common Ancestor (LCA):

The same definition applies as same as before insertions.

e.g. from Fig. 4.6.1 and Table 4.2, the LCA between node ‘P’ and node ‘D’ is

node ‘B’ where their global labels (FG concatenate SG (if SG exists) are 2.2.3.1 ,

1.1.2 and 1.1 respectively, and ‘B’ is the ancestor of both ‘P’ and ‘D’ from

Chapter4: GroupBased Labelling Scheme for Dynamic XML Databases

 100

Definition 3. C1 applies such that, the number of components in ‘P’ and ‘D’

global labels is 4 and 3 respectively Æ the minimum (4,3) = 3; and the

following is true

.

4.5 Validating the Scheme’s Properties

Given three nodes, n1, n2, n3, with l1 , l2 , l3 as their levels and with labels A, B and C

and where their global labels are {a1.a2…am , (ith (i1, i2)) } , {b1.b2…bn , (jth (j1, j2)) }

{c1.c2…cr , (kth (k1, k2)) } and local labels are aL , bL and cL respectively:

From the notation given to the global label, it would be deduced that the global

label consists of two part namely ‘First Global’ (Mesiti et al.) and ‘Second Global’

(SG). The global label notation can be explained by example as follow:

Label A has global label {a1.a2…am , (ith 𝒐𝒓 (i1, i2)) } :

Where a1.a2…am Æ FG and (ith 𝒐𝒓 (i1, i2)) Æ SG as SG can be a number that

represent the child node number (e.g: first, second ,… , ith) child and is assigned

during the initial labelling. Or SG can hold references of two nodes locals if the

node was inserted between two nodes.

x Label Order:

Case 1:

 level1 < level2 & n1, n2 same group

 Æ this verifies C1

C2 , C3 , C4 and C5 can be verified as follows:

 level1 = level2 & n1, n2 same group

Chapter4: GroupBased Labelling Scheme for Dynamic XML Databases

 101

 this verifies C2

 This verifies C3.

If

 and

 and

Chapter4: GroupBased Labelling Scheme for Dynamic XML Databases

 102

Case 2: The DDE label order has already been verified in Xu et al. (2009)

x AD Relationship:

If n1 is an ancestor of n2 and n3 is a sibling of n2:

 n3 : either n3 is inserted or originally exists.

To verify:

from def.2: if n1 is an ancestor of n2 m < n &

from def.4: if n2 & n3 are siblings n=r & b1.b2…bn = c1.c2…cr

 n3

x Sibling Relationships:

(Symmetry of sibling relationships):if n1 is a sibling of n2 , then n2 is a sibling of

n1.

from def.4: if n1 & n2 are siblings m=n & a1.a2…am = b1.b2…bn

 Equivalently,

 n1

(The transitivity of sibling relationships):if n1 is a sibling of n2 and n2 is a sibling

of n3, then n1 is a sibling of n3

To verify:

from def.4: if n1 & n2 are siblings m=n & a1.a2…am = b1.b2…bn

 , Similarly, n=r & b1.b2…bn = c1.c2…cr

 =

 n3

Chapter4: GroupBased Labelling Scheme for Dynamic XML Databases

 103

x PC Relationship & LCA:

These are valid if, and only if, the AD relationship is valid which has already

been verified.

4.6 Conclusion

This chapter described the dynamic labelling scheme presented in this thesis. It

illustrated how labelling works theoretically by showing the mechanism of the

initial labelling and how different relationships are determined. Then, it

demonstrated how the scheme handles different types of insertion and how the

relationships are preserved after insertions; simple examples were provided.

Finally, a correctness of the scheme’s properties was given using simple algebra.

Describing the scheme from a design and implementation point of view is

discussed in the next chapter.

Chapter 5: Design and Implementation

 104

Chapter 5: Design and Implementation

5.1 Introduction

After describing the mechanism of the labelling scheme theoretically (in Ch.4), this

chapter discusses the scheme from a design and implementation point of view. As

shown in the previous chapter, the labelling scheme presented in this thesis is

based on the Dynamic Dewey labelling scheme (DDE), so the main comparisons

are made between these two. Thus, in addition to implementing the new scheme, a

DDE scheme was also implemented. This was necessary in order to cover the more

experimental aspects as no published open sources were available. This is shown

in Chapter 6 which describes the experimental design.

This chapter explains the design and implementation of both schemes in parallel,

starting with a general explanation of the design and implementation of both

schemes in Section 5.2. Then, the initial labelling mechanisms of both techniques

are described in Section 5.3 while performing the search through the labelled

nodes is shown in Section 5.4. The way each scheme handles different types of

insertion is discussed in Section 5.5 and the implementation of different

relationships is discussed in Section 5.6. Finally, the chapter concludes in Section

5.7.

Chapter 5: Design and Implementation

 105

5.2 Overview

Generally, both schemes share the same external design but differ in the

implementation of their inner methods, which are defined based on the labelling

characteristics of each scheme. NetBeans IDE 8.0 and Java JDK 1.8 were used in

the implementation phase of both schemes. Figure 5.1 shows the design overview.

As shown in Fig. 5.1, each scheme starts by parsing the XML file using one of the

XML parsers (Ch.2). The choice of the most suitable parser between a streaming

API parser, such as SAX, and a tree-based API parser, such as DOM, was based on

the program’s characteristics. If the size of the XML documents exceeds the

available memory, the only possibility is a streaming API parser. In addition, this

parser can be used if it is possible to process the document as small sequential

input sections without a requirement that the whole document be available prior

to processing a certain part, or else if the processing of the document can be

undertaken in a series of separate operations (Brownell and Megginson, 2002,

Project, 2013a).

Chapter 5: Design and Implementation

 106

However, there are several circumstances when a tree-based API is a more

suitable choice, including when the program requires simultaneous access to

different document parts, when the complexity of internal data structures matches

that of the actual document, or when the program has constantly to adjust the

document (Berglund et al., 2010a, Frank et al., 2003). Given that the main objective

of this study is to assess the capacity of the scheme to manage insertions, thus

involving frequent alterations of the document, a DOM parser was considered to be

the most appropriate choice. This type of parser is not only well-known, but also

easy to apply due to its ‘pull model’, which enables the client program to employ

different methods to obtain the desired information from a document. By contrast,

in the ‘push model’ of SAX, the parser specifies what and when it reads, regardless

of whether or not the information is required (Harold, 2002). However, this

decision has consequences and they are discussed in Chapter 8.

After parsing the document, two lists are created for each scheme. The first one

holds the nodes which are being labelled and the other one holds the label of each

node in its correspondence index within the first list. ‘ArrayList’ was chosen from

the java collections for the implementation for reasons discussed below.

Some of the tasks that java developers implement entail the storage and retrieval

of objects in collections. Java offers a number of collection classes that have unique

and overlapping characteristics. Possibly, the most used collection implementation

classes are ‘ArrayList’, ‘Vector’, and ‘LinkedList’. It can be difficult to deal with these

collection classes particularly within a multithreading setting since majority of

these do not offer default-synchronised access. Even though ‘Vector’ provides

default-synchronised access, ‘ArrayList’ compensates for this through

synchronization methods (Sanghera, 2006). The structure required in the

implementation of both indexing methods must have multiple threads that insert,

remove, and iterate through elements of the collection.

Chapter 5: Design and Implementation

 107

As the name implies, the ‘ArrayList’ List interface involves defining an object array

and increasing the size of the array as needed to support elements contained in the

collection (Naftalin and Wadler, 2006). The appealing characteristics of ‘ArrayList’

include its capability to contain duplicate elements and null values. Even though it

is not a naturally thread-safe class when an instance needs to be used by several

threads, ‘ArrayList’ provides methods for synchronising modifications made to the

list. In this application, thread safety is not necessary. Because, creating and

populating the ‘ArrayList’ occurs in a single thread, which makes it safe for

multiple threads to retrieve values from the ‘ArrayList’. Another useful feature

associated with ‘ArrayList’ is that it does not compel the developer to set or even

update its capacity since the capacity increases automatically (Drozdek, 2004,

Matha, 2011, Spell, 2005).

Although the implementation of the ‘LinkedList’ interface does not provides

behaviour that is visibly different from ‘ArrayList’, it is different in the way the list

is maintained. ‘LinkedList’ class utilises double linked list to handle the collection of

objects. This implies that every node within the list has pointers to nodes that

precede and follow it, which allows a list to be navigated in either direction.

Although in theory ‘LinkedList’ ought to offer performance advantages compared

to ‘ArrayList’ when inserting or removing an element, in practice the performance

advantage is insignificant and ‘LinkedList’ is slower compared to ‘ArrayList’ when

inserting an element to the end of the list. The explanation lies in operations

performed in the middle of ‘LinkedList’ because nodes must be traversed to get to

their location in the list; therefore, ‘LinkedList’ execute more slowly than ‘ArrayList’

because accessing an element in the middle of an ‘ArrayList’ is not slower or faster

than accessing one in any other location (Spell, 2005).

Apart from offering better performance, ‘ArrayList’ has an extra advantage over

‘LinkedList’ because it uses less memory. ‘LinkedList’ need to create a node object

for every element inserted in the ‘LinkedList’, while ‘ArrayList’ only needs to

maintain a single object array and the only instance it creates a new object is when

Chapter 5: Design and Implementation

 108

the array needs to increase. The process of creating an object not only uses more

memory but also is time consuming making ‘LinkedList’ slower than ‘ArrayList’

(Spell, 2005). In addition, random access is faster in ‘ArrayList’ compared to

‘LinkedList’ (Sanghera, 2006).

‘ArrayList’ is an essential class implementation for Java’s Collection framework.

‘ArrayList’ implements “Serializable, Coneable, Iterable<E>, Collection<E>, List<E>,

and RandomAccess” (Lewis and Chase, 2010). The defining quality of ‘ArrayList’ is

its capability to grow or shrink in response to the needs of a program (Dale et al.,

2012, Flanagan, 2005, Weiss, 1992). Therefore using this approach, the developer

does not have to worry about bounded stacks. Although, it is possible to

implement BoundedStackInterface, the developer is also able to implement

UnboundedStackInterface making sure the constructor does not need to establish

the stack size (Dale et al., 2012).

Similar to the ‘Vector’ class, the ‘ArrayList’ implementation is resizable, which

indicates that addition of a new element would cause overflow in the ‘ArrayList’

that in return causes the underlying array to resize automatically (Sikora, 2003). In

managing the array size, ‘ArrayList’ contains two extra operations: ensureCapacity

that increases array size to the precise size if the array is not that large or even

larger and trimToSize that trims the array to fit the current list size. Moreover,

‘ArrayList’ class inherits a considerable number of extra methods from its super

classes (Lewis and Chase, 2010).

Although Vector provides the thread-safe feature, which is desirable, thread safety

is not necessary in many circumstances; besides, synchronisation is a time-

consuming process. Since the implementation of the schemes does not need a

synchronised collection class, the use of ‘ArrayList’ enables constant time access to

any element due to fast random read access (Documentation, 2014, Horstmann

and Cornell, 2002, Schildt, 2006) and eliminates the possibility of using

synchronisation that can slow down the application (Spell, 2005). Therefore in this

thesis, ‘ArrayList’ seems to be the optimum implementation since other classes

Chapter 5: Design and Implementation

 109

would not fully address the needs in the manner ‘ArrayList’ does. However, The

consequences of this decision are discussed in Chapter 8.

The next step in the implementation begins by examining each node and assigning

a label to it. Figure 5.2 shows the pseudo code that represents the implementation

process generally.

Chapter 5: Design and Implementation

 110

5.3 Initial Labelling

5.3.1 The GroupBased Labelling Scheme:

First, to simplify the demonstration, the following abbreviations are used.

x First part of the global label Æ FG

x Second part of the global label Æ SG

x Local label Æ L

x Note: if the global label consists of two parts, the first part is referred to as FG

and the second as SG.

As mentioned in the previous section, two lists are used to store the nodes and

their labels; however, the data type of the first list, which stores the nodes, is

obviously ‘Node’. The second list type is ‘NodeInfo, where ‘NodeInfo’ is a Java class

that has the global and local labels of its members; thus, the second list stores both

labels together. Even though defining the node as a member of the ‘NodeInfo’ class

leads to using only one list in the program (as will be illustrated in Section 5.4), it

makes the search process slow. Figures 5.3.1, 5.3.2 and 5.3.3 show the flow chart

and pseudo code of the initial labelling process of the new scheme.

Chapter 5: Design and Implementation

 111

Chapter 5: Design and Implementation

 112

Chapter 5: Design and Implementation

 113

As seen in Fig. 5.3, and as demonstrated in the previous chapter, an instance of

‘NodeInfo’ is created for the document root and both its global and local labels are

set to ‘1’. Then, the root node and this instance are added to the first and second

lists respectively. Then, all the document’s nodes are obtained and examined

starting from index (Kasim et al.); the root node is excluded as it is already

labelled. After this, each node is tested to see whether it is a child of the document

root or not. If it is, the local label is set to ‘1.0’ and the global label is calculated

based on the DDE labelling scheme.

If the examined node is not a child of the root, the node’s global label will consist of

two parts, as described in the previous chapter. It starts by checking whether a

previous sibling exists and, if so, the node’s FG is set to be equal to the previous

sibling FG while its SG and L are calculated by adding one to their corresponding

values in the previous sibling’s labels. Thus, if the examined node is the first child,

its SG is set to ‘1’ and its L is calculated by adding one to the parent node’s L; and

the nodes FG is set based on the parent node’s SG such that, if it exists, the

examined node’s FG is formed by concatenating the parent node’s FG and SG;

otherwise, the FG is set to be equal to the parent node’s FG.

After determining the node’s label, an instance of type ‘NodeInfo’ is created to

contain the global and local labels; this is then added to the second list while the

labelled node is added to the first list. These processes continue until all the nodes

have been labelled.

5.3.2 DDE Labelling Scheme

As with the new scheme, two lists are used and the first one is of type ‘Node’ to

store the labelled nodes; the second one is of type ‘String’ as there is only one label

so there is no need to define a class. From the description available in Xu et al.

(2009) on how DDE labelling is calculated, Figure 5.4 shows the flow chart and the

pseudo code of the initial labelling process of the DDE scheme.

Chapter 5: Design and Implementation

 114

The labelling starts by assigning ‘1’ to the document root, and the root node and its

label are added to the lists. Then, a list of all document nodes is obtained and

examined, ignoring the root node. If the node is a first child, the label is calculated

from its parent label; otherwise, the previous sibling label is used in the

calculation. Every time, the node and its label are added to the nodes’ and labels’

lists respectively.

5.4 Search Mechanism

As stated in the previous section, storing the nodes in a separate list facilitates the

search for a certain node and its label(s). For example, if the node is defined as a

class member besides its label(s), obtaining a specific node’s label means

traversing the list until the matching node is found; the object is returned and is

used to get the label(s) which is a time-consuming process. However, because the

nodes are in a different list, finding the index of a specific node and using that

Chapter 5: Design and Implementation

 115

index to access the label is much faster and more efficient as each label is stored

under the same index in the second list. Figure 5.5 shows the flow chart and the

pseudo code of the search mechanism.

5.5 Performing Insertions

This section describes how each labelling scheme performs insertions in practice.

5.5.1 Leftmost Insertion (new node (n2) is inserted before node (n1)).

The leftmost insertion refers to insert a node before the first child node of any

parent node. A method called ‘leftmost_Insertion’ handles this type of insertion in

both schemes, ‘void’ is the method’s return type and n2, n1 are the method’s

argument. The process starts by calling the search, as described in the previous

section, to obtain the label(s) of n1 (the existing node) ; so, n2 (the new node)

label(s) can be calculated based on the scheme’s characteristics as follows:

Chapter 5: Design and Implementation

 116

x The GroupBased Labelling Scheme:

 When performing a leftmost insertion, the inserted node’s n2 label is

calculated based on the n1 parent node, as described in Chapter 4. If the

document root is the parent, the n2 global label is formed based on the DDE

scheme; then ‘1.0’ is assigned as the n2 local label. But, if the n1 parent is not

the root, the FG of n2 equals n1 FG and the SG of n2 is calculated by

decrementing the n2 SG by one. The n2 local label is formed by subtracting

one from the first component of the n1 local label until the new local label is

less than the parent’s local label. Then, a new instance of ‘NodeInfo’ is

created using the calculated labels. Finally, in order to keep the document

order, n2 is added to the labelled nodes’ list at index(n1-1). Similarly, the

‘NodeInfo’ instance is added at this index in the second list and n2 is added

to the XML tree using the DOM method ‘insertBefore’. Figures 5.6.1 and 5.6.2

show the flowchart and the pseudo code of this method.

Chapter 5: Design and Implementation

 117

Chapter 5: Design and Implementation

 118

Chapter 5: Design and Implementation

 119

x DDE Labelling Scheme:

Calculating the new DDE label is less complicated as it is sufficient to use

the search mechanism outlined in Section 5.4 (where the n2 label is formed

by reducing the last component of the n1 label by one) to obtain the n1 label.

Finally, n2 and its label are added to the first and second lists at index(n1-1)

and n2 is added to the XML tree using the DOM method ‘insertBefore’. Figure

5.7 shows the flowchart and the pseudo code of this method.

Chapter 5: Design and Implementation

 120

5.5.2 Rightmost Insertion (new node (n2) is inserted after node (n1)).

The rightmost insertion refers to insert a node after the last child node of any

parent node. Similar to the leftmost insertion, a method called

‘rightmost_Insertion’ is responsible for processing this type of insertion; it returns

‘void’ and takes n2, n1 as its argument. The method starts by obtaining the n1 label,

as described in Section 5.4. Then the new label is calculated as follows:

x The GroupBased Labelling Scheme:

The new label is calculated as in the leftmost insertion method expect when

the root document is not the parent of n1. In this case, the new SG is

computed by adding one to the n1 SG while the n2 local label is computed by

adding one to the last component of the n1 local label. Then, a ‘NodeInfo’

instance is created and added to the labels’ list at

index(lastDescendant(n1)+1); the node is also added at the same index.

Finally, n2 is added to the XML tree using ‘appendChild’ in the DOM method.

Figures 5.8.1 and 5.8.2 show the flowchart and the pseudo code of the

rightmost insertion.

Chapter 5: Design and Implementation

 121

Chapter 5: Design and Implementation

 122

Chapter 5: Design and Implementation

 123

x DDE Labelling Scheme:

The only difference between this insertion and the leftmost insertion is that

the new DDE label is calculated by adding one to the last component of the

n1 label. Then, n2 and its label are added to the first and second lists at

index(lastDescendant(n1)+1) and n2 is added to the XML tree using

‘appendChild’ in the DOM method. Figure 5.9 shows the flowchart and the

pseudo code of this method.

However, the ‘lastDescendant’ method is used to extrapolate the index of the last

descendant node of n1 in order to add the new node and its labels at the correct

position based on the DOM parser. The method starts by examining the last child

node of n1 and checking whether or not it is a leaf node. If it is a leaf node, its index

is returned; otherwise this node’s last child is examined and so on until the last

descendant node is reached. Figures 5.10.1 and 5.10.2 show how the

‘lastDescendant’ method works.

Chapter 5: Design and Implementation

 124

Chapter 5: Design and Implementation

 125

Chapter 5: Design and Implementation

 126

5.5.3 Inserting Between Two Consecutive Nodes (Inserting new node (n3))

between (n1, n2).

The method’s name is ‘InsertBetween’; it returns void and takes n3, n1, n2 as its

arguments. Using the search mechanism described in Section 5.4, the label(s) of n1,
n2 are obtained and each scheme forms the new label(s) as follows:

x The GroupBased Labelling Scheme:

Like the previous two types of insertion, the new local label is ‘1.0’ and the

new global label is based on the DDE scheme where the parent of n1 is the

document root. Otherwise, as described in the previous chapter, two cases

are available and, in both of them, the FG of n3, the new node, is equal to the

FG of n1 & n2, the nodes that it is to be inserted between, while n3 SG holds

references to the local labels of n1, n2. However, the n3 local label is

calculated differently, as follows:

1. When n1, n2 have not been inserted after the initial labelling or only

n1 has been inserted: the n3 local label is calculated by adding one to

the last component of the n1 local label.

2. When n1, n2 were both inserted: the n3 local label is calculated by

performing an addition between n1, n2 local labels, as described in the

previous chapter.

Then, a ‘NodeInfo’ instance is created and added to the labels’ list at

index(n2); the node is also added at the same index. Finally, n3 is added to

the XML tree using DOM’s ‘insertBefore’ method on n2. Figures 5.11.1 and

5.11.2 show the flowchart and the pseudo code of the insertBetween

method.

Chapter 5: Design and Implementation

 127

Chapter 5: Design and Implementation

 128

Chapter 5: Design and Implementation

 129

x DDE Labelling Scheme:

The new label is calculated by adding each component of the n1 label to its

correspondence in the n2 label. Then, n3 and its label are added to the lists at

index(n2) and n3 is added to the XML tree using DOM’s ‘insertBefore’

method on n2. Figures 5.12.1 and 5.12.2 show the flowchart and the pseudo

code of this method.

Chapter 5: Design and Implementation

 130

Chapter 5: Design and Implementation

 131

5.5.4 Inserting below a Leaf Node (new node (n2) is inserted below node (n1)).

It starts by obtaining n1 label(s), then the new label(s) is calculated as follows:

x The GroupBased Labelling Scheme: Two cases are available and in both of

them n2 SG is set to ‘1’ and the n2 local label is calculated by adding one to

the n1 local label. However, FG is calculated differently, as follows:

1. When n1 parent is the document root: n2 FG equals the n1 global

label.

2. Otherwise: n2 FG is calculated based on n1SG as follows:

o If n1SG contains a number; this means that n1 has not been

inserted after initial labelling. In this case, n2 FG is formed by

concatenating n1FG and n1SG, with ‘.’ is between them.

o n1SG contains references to other nodes; this means that n1 is

inserted between two nodes. Thus, the process to form the new

FG starts by using ‘isSimplified’ and ‘Simplify’ methods in order

to extrapolate the FGs of the first and second referenced nodes.

Then, these two FGs are added to each other where each

component of the first FG is added to its correspondence

component in the second FG; the result is n2FG.

Figures 5.13.1 and 5.13.2 show the flowchart and the pseudo code of this type of
insertion.

Chapter 5: Design and Implementation

 132

Chapter 5: Design and Implementation

 133

Chapter 5: Design and Implementation

 134

Explanation of ‘isSimplified’ and ‘Simplify’ methods:

1. ‘isSimplified’:

This method takes the referenced node as an argument and returns true if,

and only if, the referenced node originally existed within the document

which means that the second component of its local label is ‘0’.

2. ‘Simplify’:

This method is used to calculate the referenced node FG, when the

‘isSimplified’ method returns false, which means this node was inserted

between two nodes. The process performs an addition between the FGs of

the child nodes of the right and the left nodes surrounding the referenced

node. This addition may be performed recursively if the surrounding

nodes were also inserted until an original node is reached (i.e. initially

labelled).

Figure 5.14 shows an output example of these two methods.

Chapter 5: Design and Implementation

 135

x DDE Labelling Scheme:

Based on the DDE scheme, when adding below a leaf node, the new DDE

label is formed by adding ‘1’ as a last component of the n1 label. Figure 5.15

shows how this is implemented.

Chapter 5: Design and Implementation

 136

5.6 Determining Different Relationships
Five methods have been developed to determine the different relationships.

Generally, the implementation phase of these methods was straightforward in both

schemes and based on the relationship definitions provided in the previous

chapter for the GroupBased scheme and in Xu et al. (Xu et al.) for the DDE scheme.

5.6.1 Level

x The GroupBased Labelling Scheme:

For each node the level is calculated by counting the number of components

in the first part of the global label. This number is the level unless the

second part of the global label does not equal null; in this case the number

is incremented by one.

Chapter 5: Design and Implementation

 137

x DDE Labelling Scheme:

The number of the level is the number of components within the DDE label.

5.6.2 Label Order

x The GroupBased Labelling Scheme:

The order between two nodes, n1 and n2, is determined by checking their

levels first; if the n1 level is less than the n2 level, n1 is before n2 in the

document order and vice versa. However, if they are in the same level, two

conditions are checked:

1. If they belong to the same group, the order is based on a comparison

of their local labels or SGs, as described in the previous chapter.

2. Otherwise, the order is based on the DDE order.

x DDE Labelling Scheme:

Similar to the GroupBased scheme, the order between two DDE labels is

determined from their levels. However if the nodes are in the same level,

the order is determined as follows:

n1 precedes n2 if the result of multiplying the last component in the n1 label

by the 1st component in the n2 label is less than the result of multiplying the

last component in the n2 label by the 1st component in the n1 label; and vice

versa.

Chapter 5: Design and Implementation

 138

 5.6.3 Ancestor/Descendant Relationship (AD)

x The GroupBased Labelling Scheme:

n1 is an ancestor of n2 if the level of n1 is less than the n2 level and one of

the following is true:

1. Their FGs are equal or the FG of n2 is formed from the n1 global label,

which means they belong to the same group.

2. The results of dividing each component in n1GlobalLabel by its

correspondence in n2 GlobalLabel are equal.

x DDE Labelling Scheme:

In the DDE scheme, the AD relationship is determined as it is in the

GroupBased scheme, such that, n1 is an ancestor of n2 if the level of n1 is less

than the n2 level and the results of dividing each component in the n1 label

by its corresponding component in the n2 label are equal.

5.6.4 Parent/Child Relationship (PC)

x The GroupBased Labelling Scheme:

n1 is a parent of n2 if the level of n2- n1 level = 1 and they belong to the same

group or if the n1FG = 1 and n2 level =2.

x DDE Labelling Scheme:

n1 is a parent of n2 if the level of n2- n1 level = 1 and the results of dividing

each component in the n1 label by its corresponding component in the n2

label are equal.

Chapter 5: Design and Implementation

 139

5.6.5 Computing the Lowest Common Ancestor (LCA)

In both schemes, the computation of LCA is based on the AD relationship

computation.

5.7 Conclusion

To conclude, this chapter described how the new labelling scheme was designed

and implemented based on the theoretical discussion presented in the previous

chapter. In addition to the new scheme’s implementation, the DDE labelling

scheme was also implemented because of its role in forming the new scheme. Both

schemes were discussed in parallel from a practical point of view; thus, each aspect

of the implementation was described in terms of both schemes in order to show

the differences between the two. Flowcharts and pseudo codes were presented to

offer more clarification and to give visual guidance.

Chapter 6: Experimental Framework

 140

Chapter 6: Experimental Framework

6.1 Introduction

The proposed labelling scheme was explained in detail in Chapters 4 and 5. Testing

the scheme’s performance and scalability is a key to evaluating the scheme

accurately and so a set of experiments was carried out. This chapter describes the

experiments and data used in the evaluation process.

Four experiments were performed to test different aspects of the proposed

GroupBased labelling scheme. Each experiment was carried out on both the

GroupBased scheme and the DDE scheme; thus, comparisons between the two

schemes were possible. These experiments were designed to evaluate the

scheme’s ability when the XML documents were static with no insertions, and

when the XML documents were dynamic. All the experiments evaluated the

scheme’s performance in terms of time and the size of labels.

The remainder of this chapter is divided as follows: Section 6.2 describes the

experimental setup and the platform used in the experiments. Then, the objective

of each experiment is explained in Section 6.3. The evaluation criteria are outlined

in Section 6.4 while some of the available XML datasets are reviewed and the

experimental data chosen is specified in Section 6.5. The aim of each query used in

the experiments is described in Section 6.6. Finally, the chapter is concluded in

Section 6.7.

6.2 The Experimental Setup and the Implementation Platform

For the comparison between different dynamic labelling schemes, DDE was chosen

as it plays a role in forming the proposed labelling scheme, as mentioned in

Chapter 4. In addition, in choosing between the comparable schemes, supporting

Chapter 6: Experimental Framework

 141

the efficient computation of different relationships was considered as a primary

factor, as well as the ability to handle insertions without the need for re-labelling.

These factors are available in the DDE scheme. Then, the published results from

other schemes, which were compared to the DDE scheme, were also used in the

comparison.

The data sets used in the experiment and their characteristics are described in

Section 6.4. All experiments were conducted on a laptop with 2.7 GHz Intel Core i7

CPU, 4 GB for main memory and with an OS X 10.9.2 operating system. NetBeans

IDE 8.0 and Java JDK 1.8 were used in the implementation of both the proposed

labelling scheme and the DDE scheme.

6.3 An overview of the experimental framework

The main objective of running the experiments described in this chapter was to

evaluate the proposed labelling scheme as accurately as possible in order to assess

the hypothesis stated in Chapter 1. The setup of these experiments was designed

based on the details described in Chapters 4 and 5 in order to determine whether

the scheme’s design and implementation met the objectives of the scheme

mentioned in Chapter 1. Four experiments were carried out to evaluate the

scheme’s performance, scalability and efficiency. However, the lack of a universal

platform in which all XML labelling schemes can be experimented on in the same

test-bed in order to prove their effectiveness, led to a challenge in verifying the

scheme’s credibility. Hence, the DDE labelling scheme was also implemented from

scratch, so that the characteristics of the proposed scheme could be tested against

the characteristics of the DDE scheme. Then, transitivity logic was used to compare

the results of the experiments on the proposed scheme with other published

results where the DDE scheme was compared to other schemes. These

experiments served the overall scientific approach of this kind of work where a

more specialised approach requires intensive experiments involving software

engineering tests. Thus, no rigorous hypotheses can be developed from these

experiments.

Chapter 6: Experimental Framework

 142

By implication, even though there was a hypothesis from the first chapter of the

study, the experimental framework provided that the study was conducted with

focus on an inductive and deductive research approaches. As explained by O’Leary

(2006), a deductive approach is generally suitable for scientific research of this

nature. This is because in thus scientific research, a deductive approach is used by

developing a hypothesis which is tentatively tested and examined to establish a

theory (Creswell, 2007 , Hardy and Bryman, 2004, Ridley, 2012, Saunders et al.,

2011).

It was not possible to use deductive approach alone because no rigorous

hypothesis was developed based on the experiment. As has been explained earlier,

the use of deductive approach alone would have required a common test-bed

based on which the performance, scalability and efficiency of labelling schemes can

be assessed and none exists. Meanwhile, Sapsford & Jupp (2006) indicated that for

a rigorous hypothesis to be set, on which deductive research could be carried out,

it is important that there is an easily substantiated framework or platform on

which the hypothesis can be tested. In the absence of such a framework or

platform, the hypothesis cannot consider a rigorous hypothesis but only a guide

hypothesis that specifies what needs to be achieved by the study.

Also writing on research approaches, Riley et al. (2000) suggested that in such a

scientific research as this where cannot be a rigorous hypothesis due to lack of a

test-bed based on which the hypothesis can be justified, it is important that a

combined approach that involves an inductive approach is used. It was based on

this that the experimental framework used a combined approach comprising both

a deductive and inductive approach. Yin (2009) explained an inductive research

approach is one which provides the researcher with greater flexibility and

opportunity to modify the research emphasis depending on the accumulated

findings throughout the research process. As a result of this, instead of exclusively

basing the work on the hypothesis defined in the first chapter, part of the research

approach was inductive, where the researcher’s main basis for drawing

Chapter 6: Experimental Framework

 143

conclusions on the performance, scalability and efficiency of the proposed labelling

scheme was taken from the accumulated findings throughout the research process.

It is important to emphasise here that the research process as used in this case was

experiment. As a result of the inductive approach, the researcher was afforded the

opportunity of using transitivity logic in which a qualitative approach to analysis,

together with quantitative analysis, where the differences in readings between the

DDE and GroupBased experiments were interpreted to draw conclusion on the

performance, scalability and efficiency of the proposed scheme. Having said this, it

must be acknowledged that such software engineering testing strategies as unit

testing, integration testing and system testing could all be used in developing a

rigorous hypothesis from experiments.

The experiments can be grouped based on the type of XML document: either static

or dynamic. All the experiments were run both on the proposed scheme and the

DDE scheme. The first three experiments are applicable for both types of

document while the last experiment was designed to run on dynamic XML

documents. These experiments were as follows:

x The initial labelling

x Determining different relationships

x Query performance

x Handling insertions

The following section describes these experiments in detail, along with their

objectives

Chapter 6: Experimental Framework

 144

6.3.1 Objectives of the Experiments

x The Initial Labelling:

This experiment aimed to evaluate the initial labelling process by

measuring two factors: the time required to label the document and the

growth of the label’s size, and how these factors are affected by the

document size. Then, the results of each scheme are compared. It would be

logical to expect the labelling time to increases as the document size

increases but the rate of increase in the two schemes is of interest as a

comparison of memory required. The proposed scheme labels are shorter

in complex documents and so could be expected to take less storage but the

level of complexity at which this occurs is not initially obtained.

x Determining Different Relationship:

This experiment was run on both static and dynamic XML documents. The

aim of this experiment is to find out how fast the five relationships

mentioned in Chapter 4 can be determined from the labels before and after

insertions. The experiment consisted of five mini experiments where each

one was run to test a specific relationship. These relationships are:

o Finding the order between two nodes

o Finding the node’s level

o Finding the ancestor/descendant relationship

o Finding the parent/child relationship

o Finding the lower common ancestor between two nodes

These experiments were run on both schemes before and after document

modification.

Chapter 6: Experimental Framework

 145

x Query Performance:

This experiment aimed to test the performance of different types of query

on the labelled document before and after insertions. Nineteen types of

query were executed; these were varied in their purpose and complexity.

Section 5.6 describes these queries and their purposes. The expected result

was that the queries’ response times in the proposed scheme would be less

than in the DDE scheme, especially when the document is dynamic.

x Handling Insertions:

This experiment was only applicable to the dynamic document. It tested the

scheme’s scalability in handling different types of insertion: ordered

skewed insertions and random skewed insertions. Ordered skewed

insertions refer to those which repeatedly perform leftmost and rightmost

insertions on a particular node, whereas random skewed insertions refer to

nodes which are repeatedly inserted between two consecutive nodes in

random order. This experiment measured two factors: the size of the labels

after the insertions and the time required for each type of insertion. Then,

how the number of insertions affected the time was tested. The expected

result was that the DDE scheme would show a slightly better performance

in terms of time and memory allocation for the labels.

6.4 The Experimental Evaluation Criteria

To achieve the aims of the experiments the following criteria must be specified:

x The experimental environment in terms of hardware and software are

identified (Sec. 6.2)

x The datasets used in the experiments are specified, based on the

experiments’ aims and objectives (Sec. 6.5)

x The boundaries of each experiment, as well as the measurement’s unit, are

stated (Sec. 6.3)

Chapter 6: Experimental Framework

 146

x The expected results from each experiment are outlined (Sec. 6.3)

x Finally, the experimental results are analysed and the scheme is evaluated,

as are described in Chapter 7 and Chapter 8.

6.5 A Review of Existing XML Datasets

In this section, some of the most widely used XML datasets are briefly reviewed

and the datasets used in the experiments are specified. XML datasets can be

divided into two types: XML benchmarks, which are used to generate synthetic

datasets in XML format where the size of the generated XML document can be

specified as required; and XML datasets, based on real public data where each

dataset is a validated XML document (this type of dataset is referred to as a real-

life dataset). However, both types of dataset were commonly used to assess the

performance and the functionality of XML schemes or systems. In addition to

evaluating the characteristics of the XML schemes, XML benchmarks allow the

query performance to be evaluated by providing a set of range queries that

simulate real-world scenarios in order to assess the XML database when applying

the new scheme; this facilitates comparisons to be made between different XML

schemes(Schmidt et al., 2001).

6.5.1 XML Benchmarks

Designed for the storage of data and the processing of queries (Schmidt et al.,

2001), XML benchmarks are divided into application benchmarks and micro

benchmarks. The purpose of application benchmarks is to assess how the XML

database performs overall, in terms of data as well as queries. On the other hand,

micro benchmarks are geared towards the assessment of features of a particular

system component, such as query processing (Barbosa et al., 2002, Mlýnková,

2008, Runapongsa et al., 2006b, Yao et al., 2004). In the following, the most

commonly used XML benchmarks are presented.

Chapter 6: Experimental Framework

 147

x XOO7 Benchmark:

Initially formulated by Carey et al. (1994), the Object Oriented RDBMS

benchmark (OO7) was applied by Li et al. (2001) to the XML environment.

In order to be employed in the XML version of the benchmark (XOO7), the

OO7 data and query sets were subjected to modifications. In addition, XOO7

produces an XML data set as a separate XML file in three different sizes:

small, medium and large. However, the assessment of scalability is limited

by the size restrictions on the data sets. This data set has a constant depth

of five levels, regardless of size. The query set consists of twenty-three

queries that target search processes without update (Li, 2003). This

benchmark is available for free from the XOO7 benchmark website (Li,

2003).

x XMark Benchmark:

Designed by Schmidt et al. (2002), the XMark benchmark is frequently

employed in the assessment of XML Applications (Arion et al., 2004, Chen et

al., 2006, Davis et al., 2003, Lawrence, 2004, Lee et al., 2010, Li et al., 2007,

Lu et al., 2005, Wang et al., 2003, Wang et al., 2005). It can reproduce an

XML database in a range of sizes, while the query set encompasses the

majority of query-related aspects. The dataset is produced by XMark as a

single XML file incorporating simulated data pertaining to an auction

website. Understanding an XMark dataset is straightforward. The XMark

dataset generator can be downloaded free of charge from the XMark project

website (Schmidt, 2003). A scaling factor regulates the database size,

therefore enabling developers to produce data sets that suit their

requirements. Moreover, the assessment of system performance can be

effectively conducted with the use of XMark data sets, particularly with

regard to scalability. Similar to the XOO7, irrespective of the XML file size,

the XML tree or depth has a constant number of twelve levels; it presents a

repetitive structure with a considerable number of recursions (Chen et al.,

2005, Zhang et al., 2005) and it includes a query set intended for the

Chapter 6: Experimental Framework

 148

evaluation of a number of features of databases. However, it does not

include update transactions; its twenty queries address only searching

transactions (Schmidt, 2003).

x XBench Benchmark:

A template-based benchmark, XBench produces a broad range of XML files,

including data centric XML files (DC) and text centric XML files (TC). The

database can take the form of either a single XML document (SD) or a

multiple one (MD). The toXgen tool can be used to generate four types of

XML database: namely, DC/SD, DC/MD, TC/SD, and TC/MD. The sizes of the

XML databases supported by this benchmark are four: small (10 MB),

normal (100 MB), large (1 GB) and extra large (10 GB) (Yao et al., 2003, Yao

et al., 2004). Similar to XOO7, the database sizes are constant. However, this

benchmark differs from XMark and XOO7 in that it enables a restricted

choice of the number of levels established by parameter. The benchmark

comprises twenty queries designed to search without update.

x XMach-1 Benchmark:

Böhme and Rahm (2003) first created XMach-1 as a multi-user benchmark.

As such, it is underpinned by a web-based application scenario and is

composed of four parts: namely, the XML database, server, loader and

client. The structure of the XMach-1 benchmark is presented in Figure 6.1.

The data set encompasses a great number of small XML files. According to

the number of XML files, the data set displays four versions. All XML files

range in size from 2 KB to 100 KB. The maximum number of levels is six,

while the query set consists of eleven queries. Of these queries, eight focus

on search processes, whilst the remaining three are concerned with update

transactions (Bo hme and Rahm, 2003).

Chapter 6: Experimental Framework

 149

x The Michigan Benchmark:

The Michigan Benchmark was designed by Runapongsa et al. (2006a), who

labelled it as a micro benchmark intended for the assessment of particular

system features (Runapongsa et al., 2006a, Yao et al., 2004). The data set

takes the form of a single XML file consisting of at least 728,000 nodes and

can be ten times the size. The data set has a depth of sixteen levels and an

adjustable breadth. The latter is set by a fan-out parameter, with a

minimum and maximum value of, respectively, two and thirteen nodes at

each level. The thirty-one queries included in the query set focus on the

assessment of a number of dimensions of databases, including update

processes (Runapongsa et al., 2006c). The benchmark is available on the

project website (Runapongsa et al., 2006c).

x TPoX benchmark:

Transaction Processing over XML (TPoX) is an application benchmark

intended for the assessment of the entire system. Templates influence the

production of XML file. The size of the XML files is regulated by an XML

Schema, which establishes database depth and breadth. The database takes

the form of numerous small XML files, ranging from 2 KB to 20 KB (Nicola et

al., 2007). The query set comprises seventeen queries which, in contrast to

other benchmarks that focus more on search processes, are concerned with

updating the XML database.

The benchmark is available on the project website (Nicola et al., 2007).

Figure 6.1: XMach-1 Structure of the Benchmark(Böhme and Rahm, 2003)

Chapter 6: Experim

ental Fram
ew

ork

150

Table 6.1, show
s certain features of certain XM

L benchm
arks.

XO
O

7
XM

ark
XBench

XM
ach-1

The M
ichigan

TPoX

Type
Application-Level

Application-Level
Application-Level

Application-Level
M

icro
Application-Level

N
o. Users

Single
Single

Single
M

ultiple
Single

M
ultiple

N
o.

Applications
1

1
4 (TC/SD, TC/M

D,

DC/SD, DC/M
D)

1
1

1 (Com
plex)

D
ocum

ent in

D
ata Set

Single
Single

Single/ M
ultiple

M
ultiple

Single
M

ultiple

D
ata

Generator
9

9

9

9

9

9

K
ey

Param
eters

Depth, fan-out, size

of textual data

Size
Size

N
um

ber of

docum
ents /

elem
ents / w

ords

in a sentence,

probability of

phrases and links

Size
Size + num

ber of

users

The size
3 sizes (sm

all,
Differs from

 tiny
Sm

all (10M
B) ,

The size starts
Single docum

ent
The

size
starts

Chapter 6: Experim

ental Fram
ew

ork

151

m
edium

, large) w
ith

pre-defined

param
eters

(KB)
to

huge

(Ogbuji)

norm
al (100M

B),

large (1GB) ,huge

(10GB) docum
ent

from
 2 to 100 KB

per docum
ent

w
ith 728 000

nodes as a m
in

and 10 tim
es

m
ore as a m

ax

from
 2 to 25 KB

per docum
ent

Schem
a of

D
ocum

ent

DTD derived from

OO7 relational

schem
a

DTD of an

internet auction

database

DTD/XSD

DTD of an

docum
ent having

chapters,

paragraphs and

sections

DTD/XSD of the

recursive

elem
ent

XSD

Average /

M
ax D

epth
5/7

6/12
Lim

ited
3/6

5/16
Controlled by

tem
plate

N
o. Q

ueries
23

20
20

11
31

17

N
o. Updates

0
0

0
3

3
10

Chapter 6: Experimental Framework

 152

6.5.2 Real-Life XML Datasets

Compared to synthetic benchmark data sets, realistic data and structures

encompassed in these datasets facilitate the assessment process. In the following

sections, an overview of the available real-life datasets employed in XML

assessments is provided. Each dataset can be accessed and downloaded free of

charge from the XML Data Repository website (Suciu, 2002).

x Protein Sequence Database:

Created by Georgetown University, the protein sequence database provides

information about integrated bioinformatics, including protein sequences.

Similar to the DBLP, this dataset is an XML file of 683 MB in size with a

simple, broad and regular structure (Wong et al., 2007) while its depth

expands over seven levels. Among the applications that use it for the

assessment are of experiments on XML storage (Wong et al., 2007), XML

stream processing (Green et al., 2003, Jittrawong and Wong, 2007), and

filtering (Silvasti et al., 2009, Suciu, 2002).

x SWISS-PROT:

The size of the XML file of the swiss-port dataset is 109 MB (Suciu, 2002). It

provides a high quality, annotated, protein sequence database that manages

to maintain a minimal redundancy level. It also efficiently supports

integration with other databases. (Suciu, 2002, UniPort, 2014). This dataset

is employed in the assessment of a variety of XML technologies such as

query processing (Gulhane and Ali, 2013, Rao and Moon, 2004).

Chapter 6: Experimental Framework

 153

x Auction Data:

The auction dataset represents auction data from web sources such as

EBay, Yahoo and UBid. Besides the lack of attributes in this dataset, the XML

files of these auctions are very small since the largest file is only 34 KB

(Suciu, 2002); this may limit its usage in an evaluation of XML technologies.

x DBLP Computer Science Bibliography:

The Digital Bibliography Library Project (DBLP) database is a large XML file

that contains authentic bibliographic information related to computer

science publications, including important conferences (e.g. VLDB, ICDE),

journals (e.g. TODS), series (e.g. LNCS/LNAI), as well as books (Suciu, 2002,

DBLP, 2013). This dataset is employed by a wide range of XML database

applications (Al-Badawi, 2010, Chen et al., 2006, Lawrence, 2004, Li et al.,

2007, Liefke and Suciu, 2000, Lu et al., 2005, Wang and Liu, 2003, Xu and

Papakonstantinou, 2005) for assessment experiments. The structure of the

dataset is straightforward and wide (Chen et al., 2006, Lee et al., 2010, Lu et

al., 2005). It is possible to download the original version of the dataset from

the DBLP website (DBLP, 2013). However, the dataset is very large, being,

as of March 14th 2013, approximately 1.1 GB (DBLP, 2013).

x University Courses:

This database includes information related to the courses provided by three

different academic institutions. It presents three small versions of 277 KB, 1

MB and 2MB, respectively. The first and second versions each have four

levels, while the third version has two levels. As noted by Suciu (2002),

despite the low number of versions, the data set enables, to some degree,

the performance of scalability tests due to its varying sizes.

x Treebank:

Designed by the Computer and Information Science Department at the

University of Pennsylvania, the Treebank Database comprises English

sentences explained for linguistic structures. To safeguard copyright for

Chapter 6: Experimental Framework

 154

text nodes, the database has partial encryption; this has no impact

whatsoever on the XML structure. Moreover, the dataset exhibits a deep

recursive structure, which makes it relevant to assessment experiments

(Chen et al., 2006, Chen et al., 2005, Lu et al., 2005, Onizuka, 2003, Wong et

al., 2007). Deemed to be a complex XML database, the tree encompasses a

large number of nested structures (386,614) (Onizuka, 2003). The most

frequent use of this data set is in the assessment of various dimensions of

different XML applications (Chen et al., 2006, Chen et al., 2005, Green et al.,

2003, Li et al., 2007, Liefke and Suciu, 2000, Lu et al., 2005, Onizuka, 2003,

Steedman et al., 2003, Wong et al., 2007). The XML file is 82 MB in size

(Suciu, 2002, Treebank, 1999).

x NASA:

The NASA database consists of authentic astronomical data, having been

developed from a flat file format during the GSFC/NASA XML Project. The

XML file is 23 MB in size (Suciu, 2002, Nasa, 2001). In comparison to

Treebank, this dataset has a shallow structure, displaying only 18 recursive

elements (Onizuka, 2003). Its primary use is in the evaluation of various

XML applications intended for XPath and XML query processing (Green et

al., 2003, Jittrawong and Wong, 2007, Onizuka, 2003, Wong et al., 2007,

Zhang et al., 2005), indexing methods (He and Yang, 2004), labelling (Wu et

al., 2004), filtering (Silvasti et al., 2009), and searching (Lee et al., 2010).

x SIGMOD Record:

With an XML file size of about 0.5 MB (Merialdo, 1999, Suciu, 2002) sigmod

record is usually used in the performance evaluation of small XML

databases (Lawrence, 2004, Lee et al., 2010, Li et al., 2007, Li and Moon,

2001, Rafiei et al., 2006, Wu et al., 2004), this database contains real data

pertaining to certain articles circulated by the ACM SIGMOD website(Suciu,

2002).

Chapter 6: Experimental Framework

 155

x TPC-H Relational Database Benchmark:

TPC-H dataset is a well-known relational benchmark and it has been widely

used in a relational context (Duan et al., 2011). However, this benchmark is

converted to XML as a representation of transactional processes (Suciu,

2002). It has been used in assessments of XML technologies (Baralis et al.,

2007, Shah et al., 2009) but not as widely as in relational database

evaluations.

x Mondial:

Mondial dataset provides statistical geographic information about the

world’s countries (Suciu, 2002). It has been used in evaluating the

performance of XML applications such as query related technologies

(Atique and Raut, 2012, Senellart and Souihli, 2010), XML comparisons

techniques (Sakr, 2009) and XML search analysis (Balmin et al., 2009).

Chapter 6: Experim

ental Fram
ew

ork

156

Table 6.2: Som
e features of the existing real-life dataset

Dataset N
am

e
Protein Sequence

Sw
issProt

A
uction D

ata
D

B
LP

U
niversity C

ourses

Size
683 M

B

109 M
B

23

K
B

34

K
B

19

K
B

24

K
B

172 M
B

277 K

B

2 M

1M

N
o. N

odes
21,305,818

2,977,031
311

156
342

342
3,332,130

10,546
66729

74557

N
o. Attributes

1,290,647
2,189,859

0
404276

0
6

0

Avg. Depth
5.15147

3.55671
3.7

2.90228
3.19979

3.95243
3.15787

M
ax Depth

7
5

5
6

4
5

4

Dataset N
am

e
N

asa
SIG

M
O

D

TPC
-H

Treebank

M
ondinal

Size
32 M

B

467 K
B

603 K

B

30 M
B

2 M

B

28 K
B

5 M

B

4 K
B

787 K

503 K

82 M

B

1 M
B

N
o. N

odes
476,646

11,526
20,001

1,022,976
48001

801
150001

126
21

13501
2,437,666

22423

N
o. Attributes

56317
3,737

 1

1
47423

Avg. Depth
5.58314

5.14107
2.8999

2.94117
2.8333

2.87266
2.89999

2.78571
2.66667

2.88875
7.87279

3.59274

M
ax Depth

8
6

3
36

5

Chapter 6: Experimental Framework

 157

6.5.3 The Experimental Datasets

Both real and artificial datasets were chosen. From the XML benchmarks (Sec.

6.4.1), XMark was chosen, along with its queries set, as a baseline dataset for all the

experiments described in Section 6.3. This benchmark was used in DDE scheme

experiments and in other comparable schemes and beside has all the features and

characteristics needed in evaluating the proposed labelling scheme as discussed in

Section 6.5.4. From the real-life datasets (Sec. 6.4.2), ‘Nasa’ and the ‘TPC-H’ were

used, for the initial labelling experiment; in order to test the scalability of the

proposed scheme in terms of the type of the tree (i.e. wide and deep tree

structure). Table 6.3 shows the chosen datasets along with their sizes.

6.5.4 The XMark Benchmark

Data is a critical part of any experiment, and all precautions have to be taken in

ensuring that the data covers all experimental aspects such as being retrievable

whenever it is needed. However in the relational database management systems

(DBMS), the challenge to store data in well-arranged tables, which is not the case

for Extensible Markup Language (XML). XMark, a benchmark specifically for XML

(Al-Khalifa et al., 2002, Franceschet, 2005, Yao et al., 2004) was invented to solve

this problem. The XMark suite assists the users and developers to gain insights

into the behaviour of their XML storehouses (Wang and Meng, 2005. This section

first discusses the various features of the XMark benchmark, which make it a

useful tool for many developers and users. The range of queries of the XMark

benchmark is examined, showing how each of them makes this dataset a good

choice in the evaluation of the XML labelling schemes. In an XML tree, there is a

node for each document’s element, attribute and value (O'Neil, 2004).

Chapter 6: Experimental Framework

 158

The XMark benchmark is able to generate various sizes of XML files by making use

of a data generator called XMLGen, which enables it to create synthetic XML

documents according to a fixed number of DTD (Document Type Definitions) of an

internet auction database (Kochmer and Frandsen, 2002). This benchmark

features a tool kit for evaluation of the retrieval performance of XML stores and

query processors. The benchmark is scalable and allows a comprehensive set of

queries designed to feature natural and intuitive semantics (see Section 6.6). To

the facilitate the analysis and interpretation, each specific query is meant to utilise

a primitive of the query language; this generally challenges the query processor.

Since XMark benchmark is platform independent, any user interested in running it

can download the binary and generate the same document regardless of the

hardware or operating system the developer is using; thus, making experiments

reproducible. It is also accurately scalable and therefore can be restricted by the

system's capacity. It is both time and resource efficient, and therefore elapsed time

will scale linearly when the resource allocation is constant, regardless of the size of

the generated document (Yoshikawa et al., 2010). The ability of the XMark

benchmark to meet the above demands by making use of the XMLGen makes it

desirable in evaluating the proposed scheme. There are alternative to XMark (see

Section 6.5.1) but none of them offer this linear scalability.

Chapter 6: Experimental Framework

 159

6.6 The Objectives of the Experimental Queries

As mentioned in the previous section, the XMark queries set was chosen to test the

query performance. Nineteen out of twenty queries were implemented and were

grouped based on their objectives, as described in the following table:

 Table 6.3: The experimental queries set and their description

No.

Query

Purpose Description

Q1 Exact match Return the name of the person with ID

‘person0’.

Q2

Ordered access

Return the initial increases of all open auctions

Q3

Return the first and current increases of all

open auctions whose current increase is at least

twice as high as the initial increase

Q4 List the reserves of those open auctions where a

certain person issued a bid before another

person.

Q5 Casting How many sold items cost more than 40?

Q6

Regular Path

Expression

How many items are listed on all continents?

Q7 How many pieces of prose are in our database?

Q8

Chasing references

List the names of persons and the number of

items they bought. (joins person, closed

auction)

Q9 List the names of persons and the names of the

items they bought in Europe. (joins person,

closed auction, item)

Chapter 6: Experimental Framework

 160

No.

Query

Purpose Description

Q10

Joins on values

For each person, list the number of items currently

on sale whose price does not exceed 0.02% of the

person’s income.

Q11 For each person with an income of more than

50000, list the number of items currently on sale

whose price does not exceed 0.02% of the person’s

income.

Q12 Reconstruct

portions of the

original XML

document.

List the names of items registered in Australia

along with their descriptions.

Q13 Full text Return the names of all items whose description

contains the word ‘gold’.

Q14

Path traversals

Print the keywords in emphasis in annotations of

closed auctions.

Q15 Return the IDs of the sellers of those auctions that

have one or more keywords in emphasis.

Q16 Finding missing

elements

Which persons don’t have a homepage?

Chapter 6: Experimental Framework

 161

Only query 10 in the XMark queries (Schmidt et al., 2002) was ignored as it tests

the database’s ability to translate the constructed results into another language to

avoid the simple copying of the original database; this is not related to the

proposed scheme’s characteristics (i.e. it will not provide any pros or cons regard

to labelling scheme) and so was irrelevant.

6.7 Conclusion

 In order to evaluate the performance and scalability of the proposed scheme, four

sets of experiments were performed on static and dynamic XML documents. This

chapter outlined these experiments along with their objectives. Then, the

experimental setup was discussed and the datasets used were determined after

briefly examining some real-life datasets and the existing XML benchmarks. The

expected result from each experiment was outlined and the aims of the

experimental queries were described.

The following chapter presents the results from these experiments along with

their analysis.

No. Query Purpose Description
Q17 Function

Application
Convert the currency of
the reserves of all open
auctions to another
currency.

Q18 Sorting Give an alphabetically

ordered list of all items
along with their location.

Q19 Aggregation Group customers by their
income and output the
cardinality of each group.

Table 6.3: shows the experimental queries and their description

Chapter 7: Results and Analysis

 162

Chapter 7: Results and Analysis

7.1 Introduction

In this chapter, the results of the experiments are described and analysed. Chapter

6 described the experiments used in evaluating the GroupBased labelling scheme.

Four experiments were designed to evaluate the scheme’s functionality and

performance in both static and dynamic XML documents. The first experiment

evaluated the time needed for the initial labelling process along with the labels’

size. The second experiment focused on assessing the time needed to determine

the different relationships. The third experiment evaluated the queries’ response

times before and after insertions. Finally, the fourth experiment evaluated the

scheme’s ability to handle different types of insertion. As mentioned in the

previous chapter, these experiments were also run on the Dynamic Dewey

labelling scheme (DDE) to permit comparable evaluations to be made between

both schemes under the same circumstances.

In similar research by Fennell (2013) to test the performance and functionality of

labelling schemes on XML documents, Fennell (2013) noted that outcomes of test

the same could fluctuate between repeated experiments. This means that relying

on only a few tests for each experiment in the design of the new scheme could

damage the credibility of outcome Murata, Kohn and Lilley (2009). Based on this,

for each of these four different experiments, tests were repeated. This was done to

find the most consistent line of results to use in the study’s results and analysis.

The results that are presented in this chapter of the study therefore represent the

outcome of the average of 20 different test runs performed on each variable that

was tested under each of the four experiments. Once this was done, statistical

analysis was performed on the outcomes to validate the results

Chapter 7: Results and Analysis

 163

As far as the presentation of results and analysis is concerned, it is important to

stress that this chapter has two major types of approaches to the presentation of

findings. The first has to do with the use of graphs, which give a pictorial outcome

of the experiments. The results from the graphs are more or less descriptive in

nature as they describe the performance or behaviour of the two major schemes,

GroupBased labelling scheme and DDE scheme. The second type of presentation of

finding takes a more statistical approach to the results that were gathered as it

gives the outcome of the significance of the results using the Wilcoxon rank-sum

test. Thus the rest of the chapter is organised as follow:

Section 7.2 discusses how the statistical significance of the results is computed.

Section 7.3 presents the different sizes of the XML files used in the experiments.

Section 7.4 discusses the graphical outcomes of the static document experiments

along with their statistical interpretation. Similarly, the outcomes of the dynamic

document experiments are discussed in Section 7.5. The chapter concludes in

Section 7.6.

7.2 Statistical significance of the results

The graphical presentation of results is very important in providing a descriptive

overview of the differences that exists between the GroupBased labelling scheme

and the DDE scheme. However, Harold (2004) argued that differences recorded

between the performance and functionality of two schemes for XML documents

may not necessarily imply that the two schemes cannot be used interchangeably to

achieve the same outcomes. To get the real import of the differences therefore,

Benjamini (2008) recommended finding the statistical significance of the results

obtained between the two schemes. This is because finding the statistical

significance deals with the introduction of a null hypothesis, which seeks to

equalise the viability and usability of the two schemes until the equalisation is

proven otherwise with an alternative hypothesis. For this study, the statistical

significance was focused on the time-related experiments. The study featured the

use of time-related performance and size-related performance. Only the time-

Chapter 7: Results and Analysis

 164

related experiments were further tested for statistical significance as the size-

related experiments gave almost the same line of results in both schemes, making

it easier to draw conclusions that there was no significance difference between the

results in terms of size. To find the statistical significance of the time-related

results, two important statistical procedures or tests were used, which are box plot

technique and Wilcoxon rank-sum test. These two were used in an interrelated

manner but were relevant for separate purposes. The reason for using each and

how the two contributed to the determination of statistical significance of the

results is outlined below.

7.2.1 Overview of Statistical Significance Tests

One of the statistical significance techniques used was the box plot method. Box

plots have been found to be ideal for graphically presenting groups of numerical

data through the use of quartiles. Even though the box plot method also makes use

of graphical presentation and could be said to be a type of descriptive statistics, it

was described under the statistical significance because of the need to use the

outcome with the quartiles to find p-values using Wilcoxon rank-sum test. By

implication, the box plot was not used totally in isolation from the Wilcoxon rank-

sum test. The major rationale for selecting the box plots is that there are non-

parametric in nature. What this means is that they make use of statistics that are

not based on parameterised families of probability distributions. Meanwhile, the

outcomes with the two samples namely GroupBased labelled scheme and DDE

scheme were not decided based on parameters necessary for achieving relevant

specification of the XML document as done with a typical parameterised family of

probability distribution (Cunningham, 2006). The box plots therefore made it

possible to obtain information about the probability distribution in terms of how

the two samples impacted on the dependent variable of time. Visually, this was

done as the box plots portrayed extreme values by showing differences between

distributions.

Chapter 7: Results and Analysis

 165

The Wilcoxon rank-sum test was used as a non-parametric statistical hypothesis

test to compare the two related samples, which are GroupBased labelled scheme

and DDE scheme. The reason for doing this was in order to discover if the two

related samples have population mean ranks that differ. This makes the Wilcoxon

rank-sum test a paired difference test given the fact that its statistical numeration

of outcomes with results among the two related variables was done in pairs as

showed with the box plot instead of individually. This further brings out reason the

statistical significance test is regarded as non-parametric as the outcomes with the

two schemes were not based on parameterised families of probability distribution.

Because the two independent samples were non-parametric, they could not meet

the requirements for the t-test. In cases like this, Rousseeuw, Ruts and Tukey

(1999) noted that the Wilcoxon rank-sum test becomes useful in drawing

statistical significance based on the p-value.

In line with the above position to use the p-value instead of the t-test, the box plot

was used to perform r-statistic that calculated the significance of the results using

the Wilcoxon rank-sum test. This is why it was said earlier that the two tests were

used interchangeably. When used with the p-value, the statistical significance of

the two samples, which in this case are the GroupBased labelled scheme and DDE

scheme are determined by setting a null hypothesis that neutralises their

significance. In this context, the null hypothesis (H0) states that at significance level

of 0.05, scheme has no effect on time. Based on the box plot, the null hypothesis

will be accepted upon the probability that the populations for each sample have

the same medians. In the next sub-section therefore, the results of p-values as

found for ten different parameters within the time-related experiments are

presented and interpreted for significance.

Chapter 7: Results and Analysis

 166

7.2.2 Significance interpretation of results

There is a very simple interpretation given to the figures produced by way of the

box plot and the Wilcoxon rank-sum test that was performed. The interpretation is

regarded as simple because it emphasises the use of the p-values in determining

the significance between the tests. The significance interpretation of results is

based on ten experimental measures, under each of which the null hypothesis will

be tested based on the p-values obtained. The 109 figures of box plots were shown

in Appendix A.

7.3 Experimental Data

As mentioned in Chapter 6, XMark benchmark, Nasa and TPC-H in various sizes

were the datasets chosen for the experiments. As shown in Table 7.1, the XML file

(xml2) was used in all experiments because of its small size (1 MB) which

simplifies the tracking the changes in the document when performing insertions; it

also contains all the necessary information to answer the 20 different queries

described in the previous chapter. Additionally, the XMark file sizes differed by 5

MB, starting from xml1 to xml12, where xml13 was generated with a size of 32 MB

so that it could be compared with the lineitem file which is a wide tree of the same

size (32 MB). Similarly, the xml14 was generated to be compared with the nasa file,

which represents deeper tree structure than XMark data.

Chapter 7: Results and Analysis

 167

Dataset Name File Name File Size (MB) Experiment

XMark

Benchmark

xml1 0.5 Initial labelling (time, size)

xml2

1

x Initial labelling (time, size)
x Determining relationships
x Query performance
x Handling insertions

xml3 5 Initial labelling (time, size)
xml4 10 Initial labelling (time, size)
xml5 15 Initial labelling (time, size)
xml6 20 Initial labelling (time, size)
xml7 25 Initial labelling (time, size)
xml8 30 Initial labelling (time, size)
xml9 35 Initial labelling (time, size)

xml10 40 Initial labelling (time, size)
xml11 45 Initial labelling (time, size)
xml12 50 Initial labelling (time, size)
xml13 32 Initial labelling (time, size)
xml14 23 Initial labelling (time, size)

Nasa nasa 23 Initial labelling (time, size)
TPC-H lineitem 32 Initial labelling (time, size)

Table 7.1: XML Files used in the experiments

Chapter 7: Results and Analysis

 168

7.4 Static Document Experiments

7.4.1 Initial Labelling Experiment

The initial labelling experiment, as explained in Chapter 6, focused on evaluating

the initial labelling process in terms of time and size. Thus, the experiment was

divided into two sub experiments as follows:

x Initial Labelling Time: this measure was the time spent calculating and

assigning the labels to each node. The labels were calculated and assigned

based on the rules and the implementation methods described in Chapters 4

and 5 respectively.

x Label Sizes: this experiment evaluated the growth in the labels’ size in terms

of memory allocation.

However, these two experiments were carried out using different file sizes (Table

7.1) in order to evaluate how increasing the file’s size affected the labels’

calculation time and size.

7.4.1.1 Results’ Analysis

This section discusses the results of the initial labelling experiments in the

GroupBased labelling scheme and in the DDE scheme.

x Initial Labelling Time:

Figure 7.1.1 shows the line chart that represents the time needed to label the

whole XML document when using the GroupBased scheme. As shown in the

chart, there is an exponential correlation between time and file size where the

time increases rapidly when the file’s size increases by only 5 MB. The average

percentage of this increase is 53%.

Chapter 7: Results and Analysis

 169

Performing the same experiment using the DDE scheme gave the same results with

regard to the exponential correlation between the file’s size and the average time

increase, as shown in Figure 7.1.2.

 Although both schemes show significant time growth, by comparing the results

from both schemes (as shown in Figure 7.1.3), the time taken for the initial

labelling using the DDE scheme was 40% higher than the initial labelling time in

Chapter 7: Results and Analysis

 170

the GroupBased scheme when the file size was only 0.5 MB; additionally, this time

increased by 180% when the file was 50 MB.

x Label Size:

 Monitoring the growth of the labels’ sizes during the initial labelling showed

that, in both schemes, starting from a file size of 5 MB and then increasing the

size by 5MB increments to 50 MB, each increase in the labels’ size was steady at

0.056 MB. This is shown in Figure 7.2.1.

Chapter 7: Results and Analysis

 171

However, the labels’ sizes when using the GroupBased scheme were surprisingly

only slightly higher (0.002 %) than those using the DDE scheme because the

GroupBased scheme’s label actually consists of two labels, as illustrated in

previous chapters (Ch.4 & Ch.5) while a DDE label consists of one which might

lead to an expectation that the difference between the two would be higher.

Figure 7.2.2 shows this difference.

Chapter 7: Results and Analysis

 172

In order to test the GroupBased scheme’s ability using a wider tree structure, the

same experiment was performed on ‘linitem.xml’, ‘xml13.xml’ and ‘nasa.xml’ files

where the first two were of the same size (Table 7.1). Their tree structures were of

wide and medium depth respectively while the ‘nasa.xml’ file had more depth than

the ‘xml13.xml’, which is an XMark file (Ch.6). The results obtained show that both

schemes are more effecient with a deep tree structure in terms of time and label

size. Using the GroupBased and DDE schemes with the ‘linitem.xm’ file, the initial

labelling time was five times higher; both schemes showed a double increase in the

initial labelling time in the ‘nasa.xml’ file compared to the ‘xml14.xml’ file and with

a 42% increase in terms of the labels’ size. Figures 7.3.1 and 7.3.2 present these

results.

Despite the similarity between the results of both schemes, the GroupBased

scheme offers better performance in terms of time than the DDE scheme using

wide (linitem.xml) and deeper tree structures, as the DDE labelling time was 165%

higher than with the GroupBased scheme, although the DDE scheme provided

slightly more concise labels, as shown in Figures 7.3.3 and 7.3.4.

Chapter 7: Results and Analysis

 173

Chapter 7: Results and Analysis

 174

In addition to these findings, a review of literature shows that the GroupBased

scheme provides better performance in terms of time in the initial labelling

experiments than the QED-based labelling schemes (Li and Ling, 2005b), ORDPATH

(O'Neil et al., 2004) and the vector-order based labelling scheme (Xu et al.,

2012)(Ch.3) because the published results in Xu et al.(2009), Xu et al. (2012), and

Qin et al.(2012) confirm that the DDE scheme is better than these schemes.

Moreover, based on the results published in Qin et al.(2012) and Liu et al.(Liu et

al.), the GroupBased scheme shows that less labelling time is needed than with the

Dynamic float-point Dewey scheme (Liu et al., 2013) or the Dynamic Common Prefix

scheme (Qin et al., 2012) as they both consume either the same initial labelling

time or more than the DDE scheme’s labelling time.

7.4.1.2 Statistical Interpretation of the Results

Difference in initial labelling time was found between the GroupBased scheme and

DDE scheme as a measure of time spent calculating and assigning the labels to each

node. Between the two samples, the initial labelling time was measured using

populations of document sizes from 0.5 MB to 50MB with each population having a

gradual increase in size by 5 MB with the exception of the first and second, which

were increased only by 0.5 MB. The dataset lineitem, xml13 and nasa were also

included in the populations, giving a total of 15 populations for this variable of

initial labelling time. Importantly, it was noted that in all 15 populations, the box

Chapter 7: Results and Analysis

 175

plot showed distributions that were shifted towards GroupBased scheme as

against DDE scheme, giving the indication that the former provides a better

labelling time than the latter as showed in Figure 7.4.1.

In the figure above, the p-value obtained at a size of 0.5MB was 6.691x10-8 whilst

that obtained for 1MB of document size was 6.748x10-8. There were 11 other

similar results gathered -using different size of documents- with the use of the box

plot which have been made available in Appendix a.1.

As far as the p-value which gives significance using the Wilcoxon rank-sum test is

concerned, it was noted that in all cases, extremely low values were obtained. The

p-value ranged from as low as 6.691x10-8 to 1.451x10-11. This means that with this

variable, the test supports the alternative hypothesis that GroupBased scheme had

an effect on time and that it is faster than compared to the use of DDE scheme.

Meanwhile, Bosak and Bray (1999) stated that one important parameter for which

XML has been formulated is to ensure that there is efficient initial labelling time.

This advantage with initial labelling time is achieved with the GroupBased scheme.

As explained earlier, the dataset lineitem and nasa were used to test the schemes

ability in labelling wide and deep XML trees. These dataset also exhibited very low

p-values of 1.451x10-11 each. This means that, the alternative hypothesis for the

Chapter 7: Results and Analysis

 176

GroupBased scheme will also be accepted. Figure 7.5.1, shows the box plots of the

datasets lineitem and xml13 whereas the box plots of nasa and xml14 datasets can

be found in There were two sets used for the nasa and xml14, one of which can be

found in Appendix a.1

7.4.2 Determining Different Relationships

This experiment measured the time needed to calculate the six relationships

between two nodes using their labels (Ch.4 & Ch.6). These relationships are:

x Order: this determines which node is first in the XML document.

x Level: this determines the node’s level within the xml tree where the document

root level is one.

x Ancestor/Descendant (AD), Parent/Child (PC) and Lowest Common Ancestor (LCA):

these relationships are determined based on the rules defined in Chapter 4

where the parent/child and the lowest common ancestor are established based

on the AD relationship.

x Sibling: this determines whether two nodes share the same parent node.

Chapter 7: Results and Analysis

 177

7.4.2.1 Results’ Analysis

Figure 7.6.1 shows the time spent when determining the relationships using the

GroupBased scheme’s labels. Calculating the node’s level represents the minimum

time consumption, where PC and LCA relationships represent the higher

consumption, equaling a 20% time increase in the level calculation. The second

smallest time is represented by the order determination with only a 4% time

increase over the level calculation. The results for the AD and the sibling

relationships are placed in the middle with increases of 7% and 9% more than the

level calculation.

 Using DDE labels, computing the level is also faster while the longest time is

represented by the LCA calculation which required 43% more time, as shown in

Figure 7.6.2.

Chapter 7: Results and Analysis

 178

Figure 7.6.3 compares the results of both schemes and from this, it emerged that,

determining different relationships using DDE labels gave quite similar results to

the GroupBased scheme labels in terms of level, order and sibling calculations with

only 1.5% increases. However, AD, PC and LCA showed a higher time consumption

of 18%.

As with the initial labelling experiment, the GroupBased scheme shows better

performance in determining different relationships when the document is static

compared to the DDE scheme. Thus, this finding can be extended to state that the

GroupBased scheme determines relationships faster than QED-based labelling

schemes (Li and Ling, 2005b) and the ORDPATH scheme (O'Neil et al., 2004), as

mentioned in Xu et al., (2009), Xu et al., (2012) and Liu et al.,(2013).

7.4.2.2 Statistical Interpretation of the Results

Different relationships in static XML were also examined to the time needed to

calculate six different relationships between two given nodes using their labels.

The relationships have already been outlined and explained in detail under 7.4.2.

From the statistical techniques, six populations tested under this variable. These

were order between nodes, nodes level, AD relationship, PC relationship, LCA

relationship, and sibling relationships. Using outcomes from the box plot, it was

seen that in all six populations, there was a shift in distribution towards the

GroupBased scheme as against the DDE scheme. The indication that this gives in a

Chapter 7: Results and Analysis

 179

holistic perspective is that GroupBased sceheme provides faster calculation of the

six relationships than the DDE scheme. To discover how significant the difference

in time of calculation was, the p-value was found as the outcome of Wilcoxon rank-

sum test for each population. Six box plots were created for this purpose, one of

which has been shown in Figure 7.7.1 below. The remaining box plot results have

been given in Appendix a.2

7.4.3 Query Performance

As explained in the previous chapter, this experiment evaluates the query

response time on the labelled XML document using 19 different queries that vary

in their complexity and objectivity (Ch.6: Sec. 6.6). As mentioned earlier, all queries

were evaluated on ‘xml2.xml’ file an XMark file of 1 MB (Table 7.1).

7.4.3.1 Results’ Analysis

 Figures 7.8.1 (a, b, c and d) show the response times of the tested queries when

using the GroupBased scheme labels. Q13, the full text search, shows the shortest

time among all the queries at 7 milliseconds. However, Q12, which evaluates the

scheme’s ability to extract and reconstruct a portion of the original XML document,

represents the longest response time at 895 milliseconds; this may be because of

the nested nature of the XML document. The second longest time is for Q8, which

evaluates a complex case of chasing references by traversing the XML tree

Chapter 7: Results and Analysis

 180

horizontally; the response time of this query is 57% less than Q12. The ordered

access queries (Q2, Q3 and Q4) and values’ joining queries (Q10 and Q11), which

evaluate the scheme’s ability to handle large intermediate results where join

operations are performed on the basis of values, consume about 108-228

milliseconds but they require multiple join, an operation which can be expected to

be slow. The response times of the rest of the queries were within (10-122)

milliseconds.

Chapter 7: Results and Analysis

 181

The results of evaluating the same queries using DDE labels are shown below in

Figure 7.8.2 (a, b and c).

Chapter 7: Results and Analysis

 182

Similar to the GroupBased scheme’s queries’ evaluation but the other way around,

Q8 and Q12 achieved the longest time with (5024) and (1079) milliseconds

respectively. The third longest time was for Q3 with 67% less than Q12 while the

execution time of the other queries was within (6-371) milliseconds.

However, a comparison of the queries’ performance of both schemes shows that

the GroupBased scheme offered a better response time in thirteen queries out of

nineteen. Q7 showed equal performance in both schemes and the other five

queries (Q1, Q2, Q16, Q17 and Q19) showed better performance using the DDE

scheme as shown in Figures 7.8.3 (a, b and c).

Chapter 7: Results and Analysis

 183

Chapter 7: Results and Analysis

 184

7.4.3.2 Statistical Interpretation of the Results

As stated earlier, nineteen different queries were employed to evaluate the query

response time on the labelled XML document that vary in complexity and

objectivity. For each of these, box plot readings were made, the outcome of which

has been produced as Appendix a.3. In the literature, this query performance is

important to establish the relationship between performance and time, as some

have argued that efficiency with time always compromises performance (Frigge et

al., 2009). The box plots and Wilcoxon rank-sum tests were therefore used to

discover if the GroupBased scheme or DDE scheme could overcome this limitation.

Using the nineteen queries which have already been explained in 7.4.3.1, very

different behaviours with queries were seen between the GroupBased scheme and

DDE scheme. First, using the box plots, it was seen that in queries 1, 2, 16, and 19,

the DDE scheme clearly provides better performance than the GroupBased

scheme.

Chapter 7: Results and Analysis

 185

As Figure 7.9.1 shows with query 1, the Wilcoxon rank-sum test was used to test

for significance. In this a p-values of 1.451x10-11 was recorded in all cases. This

means that the named queries, were faster.

When it came to query 7, a very interesting line of results were obtained. This is

because even though the box plots showed that the DDE gave better performance,

the Wilcoxon rank-sum test showed that this did not amount to a significant

difference as the p-value was 0.4777 when the significance level was 0.05. For all

the remaining queries namely 3, 4, 5, 6, 8-15, 17, and 18, both the box plots and

Wilcoxon rank-sum test favoured the GroupBased scheme, meaning that there was

better performance. This line of data confirms why Bosak and Bray (1999)

admonished thorough consideration with the selection of schemes when dealing

with questions on static XML documents. This is because as shown in this study,

different queries could show different behaviour on performance between

different schemes.

7.5 Dynamic Document Experiments

As mentioned in the previous chapters, handling XML insertions without re-

labelling the existing labels is one of the most important features provided by the

GroupBased scheme. This section presents the results and analyses of experiments

that evaluated the scheme’s ability to handle different types of insertion, as well as

its performance after the insertions. These experiments are categorised as:

x Handling insertions

x Determining different relationships

x Query performance

Chapter 7: Results and Analysis

 186

7.5.1 Handling Insertions

The handling insertions experiment evaluates the time and the label sizes when

performing different types of insertion: namely, uniform insertions, ordered

skewed insertions and random skewed insertions.

7.5.1.1.1 Uniform Insertions

The uniform insertions refer to the insertion of a new node between two

consecutive nodes. The time spent in executing the insertions and calculating

the new labels is measured, as well as the labels’ sizes after the insertions,

which are then compared to the sizes before the insertions. This experiment

was run on 12 XMark files as in the initial labelling experiment. Figure 7.10.1

shows the results of performing the uniform insertions on different sizes of

XML file using the GroupBased scheme. This experiment shows that the

execution time of insertions increased when the file’s size increased; this is

because the number of insertions increased when the file size increased.

 The uniform insertions were also performed using the DDE scheme with very

similar results. Nevertheless, using the GroupBased scheme led to a slightly faster

execution time (faster by 6%), as shown in Figures 7.10.2 (a, b, c and d).

Chapter 7: Results and Analysis

 187

Chapter 7: Results and Analysis

 188

The size of the labels after performing the uniform insertions was almost identical

using both schemes, with a negligible improvement of 0.03% when using the DDE

scheme. This is shown in Figure 7.10.3.

7.5.1.1.2 Statistical Interpretation of the Results

When working on XML documents, ‘Uniform-insertion’ means the insertion of new

nodes between two consecutive nodes. Because the consecutive nodes in-between

which the insertion is made may have their own characteristics, some experts have

argued that uniform insertions could introduce efficiency challenges (McGill et al.,

1978). It was for this reason that the GroupBased scheme and DDE were both

Chapter 7: Results and Analysis

 189

tested for their effect on time when performing uniform insertions. In this case, the

uniform insertion was performed based on size of file whereby XML documents

with sizes from 0.5 MB to 50 MB were used as populations. There were a total of

twelve populations for each sample because after the 0.5MB, the next file size was

1MB, and then 5MB before a steady increase of 5MB was performed for each

subsequent XML document till 50MB was reached. Per the box plots produced, it is

seen that in all cases between the GroupBased scheme and DDE scheme, labelling

was faster in the former than the latter.

This made it necessary to find the statistical significance of the difference in

performance. With the null hypothesis that scheme does not have any effect on

time, the p-value measured in all cases were far lower than 0.05. As showed with

the uniform insertion at 0.5MB in Figure 7.11.1, the range of p-value recorded

were 6.771x10-8 to 1.451x10-11. This shows that the alternative hypothesis will be

accepted that difference in labelling performance between GroupBased scheme

and DDE scheme has a direct impact on time. The remaining outcomes for the box

plots have been displayed in Appendix a.4 where the p-value and performance for

12 other figures are given.

Chapter 7: Results and Analysis

 190

7.5.1.2.1 Ordered Skewed Insertions

 The Order Skewed of insertion refers to the process of inserting before or after a

particular node repeatedly. An ‘xml2.xml’ file was used in this experiment but the

change factor was the number of insertions. The results, which are presented in

Figure 7.12.1, show that the insertions’ execution time when using the DDE

scheme was faster, and with a non-steady increase, than when using the

GroupBased scheme.

Similar to the labels’ size after uniform insertions, both schemes showed almost

identical label sizes, with only 0.2% more concise labels when using the DDE

scheme, as shown in Figure 7.12.2.

Chapter 7: Results and Analysis

 191

7.5.1.2.2 Statistical Interpretation of the Results

As has been outlined in 7.5.1.2.1, ordered skewed insertion is performed when

there is an insertion made before or after a particular node in a repeated manner.

Because the insertion made before or after an existing node is done in a repeated

manner, the emphasis with the comparison between GroupBased scheme and DDE

was done based on the increases made in the number of nodes added. The initial

node was 500, after which this was increased to 1000 nodes. Thereafter, there was

systematic increase of 1000 nodes till 10000 nodes were reached. This means that

the number of populations used in finding the Wilcoxon rank-sum test were eleven

in each case. The outcome with these eleven tests has been showed as box plots in

Appendix a.5.

The plot box depicted a very strong advantage with the use of DDE scheme over

the GroupBased scheme in all eleven populations because the distributions were

shifted in favour of the DDE scheme as seen in Figure 7.13.1 for ordered skewed

insertion at 500 nodes.

When Wilcoxon rank-sum test was performed to see if the performance was

significance, it was found that the null hypothesis was rejected in all cases. This is

because for all eleven populations, the same p-value was produced between the

Chapter 7: Results and Analysis

 192

GroupBased scheme and DDE scheme. As in Figure 7.13.1, the p-value produced

was 1.451x10-11, which is far less than the significance level of 0.05. Because of this

the alternative hypothesis was accepted that the difference was significant and

that it had effect on time.

7.5.1.3.1 Random Skewed Insertions

The Random Skewed of insertion refers to randomly inserting between two nodes;

‘xml2.xml’ was used in this experiment. Using the GroupBased scheme, this type of

insertion was performed in 176 milliseconds on average and with a 22% average

increase, while the average execution time when using the DDE scheme was 188

milliseconds with a 19% increase rate. Comparing both schemes’ results shows

that, with this type of insertion, the GroupBased scheme was 6% faster than the

DDE scheme. This is shown in Figure 7.14.1.

Regarding the labels’ sizes, both schemes offered very similar results with only

0.06% better performance when using the DDE scheme, as shown in Figure 7.14.2.

Chapter 7: Results and Analysis

 193

7.5.1.3.2 Statistical Interpretation of the Results

The third type of insertion performed was the random skewed insertions. As the

name implies, this type of insertions was performed randomly between two nodes.

Bosak and Bray (1999) had argued that due to the random nature of the insertions,

their effect on performance and time are hardly felt with the introduction of new

schemes. This was the rationale that informed the testing with GroupBased

scheme and DDE scheme. As with the ordered skewed insertion, the populations

used were based on number of nodes instead of file size. This gave rise to eleven

populations just as was done with the ordered skewed insertion. The outcomes of

all these eleven populations have been given in Appendix a.6.

From the box plots that were performed, it was seen that the labelling

performance distribution was shifted towards the GroupBased scheme as seen in

Figure 7.15.1.

Chapter 7: Results and Analysis

 194

The shift towards the GroupBased scheme indicates that the GroupBased scheme

provides better labelling performance than the DDE scheme. When the Wilcoxon

rank-sum test was performed, the labelled performance differences were noted to

be significant at 0.05. This is because with the exception of the 9000 nodes which

had a p-value of 5.804x10-11, all the others, including the random-skewed insertion

at 500 nodes as in the Figure 7.15.1 above produced p-value of 1.451 x1011. In

either case however, the values produced showed that the alternative hypothesis

was true as the p-value was far less than its significant point. This line of result

shows that unlike ordered-insertion, the GroupBased scheme has the potential to

improve performance with random skewed insertion.

7.5.2 Determining Different Relationships

As mentioned in Section 7.4.2, this experiment evaluated the time spent in

determining different relationships but the experiment here was run after the

insertions had been made (Sec. 7.4.2).

Chapter 7: Results and Analysis

 195

7.5.2.1 Results’ Analysis

Figures 7.16.1, 7.16.2 and 7.16.3 present the results from this experiment after

each type of insertion. Determining the order and the level took the same time in

both schemes after the three types of insertion with (0.08 ms) and (0.05 ms)

respectively. The GroupBased scheme shows the same calculation time for AD, LCA

and sibling relationships after the uniform and ordered-skewed insertions, and

53%, 57%, 172% and 1% more time for the PC, LCA, AD and sibling relationships

after the random-skewed insertions; this is in fact less than 0.20 millisecond for

them all. On the other hand, the DDE scheme shows the same calculation for the

AD, LCA and sibling relationships after all types of insertion while the PC

relationship calculation time was the same after the uniform and the random-

skewed insertions and with 3 times more time after the ordered-skewed

insertions. However, after all types of insertion the GroupBased scheme was 86%,

40%, 18% and 10% faster than the DDE scheme in AD, PC, LCA and sibling

calculations respectively.

Chapter 7: Results and Analysis

 196

Since the GroupBased scheme shows better performance than the DDE scheme in

handling insertions and in determining different relationships when the document

is dynamic, it is fair to state that it also provides better performance than QED-

based labelling schemes (Li and Ling, 2005a) and the ORDPATH scheme (O'Neil et

al., 2004), as mentioned in Xu et al. (2009), Xu et al.(2012); and Liu et al. (2013).

7.5.2.2 Statistical Interpretation of the Results

7.5.2.2.1 Different relationships after Uniform insertion

Based on the insertions that were performed, the different relationships that were

established were also tested for their time related performance. The first focused

on different relationships after the uniform insertion. Here, the population used for

each sample was six, based on the six relations already outlined in Section 7.4.2.

The outcome of the experiment has been displayed with the use of box plots for all

six samples given in Appendix a.7. As can be seen in Figure 7.17.1 for order

between nodes after the uniform insertion, in all six samples, the time spent in

determining different relationships with DDE scheme was better than that of

GroupBased scheme.

Chapter 7: Results and Analysis

 197

Based on the outcome explained above the Wilcoxon rank-sum test which was

used to determine the significance of the performance. It was here that interesting

outcomes were manifested. This is because at significance level of 0.05, most of the

relationship performances were showed to be significant but this was not the case

with all relationships. For example, the p-value for nodes level after uniform

insertions was 0.3408, which showed that there was weak evidence against the

null hypothesis, meaning that the performance did not have effect on time. Apart

from this, all the others including the one in Figure 7.17.1 showed p-values that

were far less than 0.05 with the closest to that value being 0.0002277 recorded in

the order between nodes after uniform insertions. This means that with the

exception of nodes after uniform insertions, the performance difference was

significant in all other relationships.

7.5.2.2.2 Different relationships after Ordered insertion

After the ordered insertions had also been performed, the relationships that exist

with order between nodes after the skewed insertions, nodes after ordered

skewed insertion, AD relationship, PC relationship, LCA relationship, and sibling

relationship were all tested for performance efficiency in the GroupBased scheme

as against the DDE scheme. The total number of samples under this experiment

were therefore six. The results from each of these have been given in the form of

Chapter 7: Results and Analysis

 198

box plots in Appendix a.8. Using the box plots, it was found that in this aspect, the

distributions were shifted towards the GroupBased scheme.

The shift towards the GroupBased scheme as in Figure 7.18.1 implies that the

GroupBased scheme was faster than that of the DDE scheme. When it came to the

Wilcoxon rank-sum test, the outcome with results was very similar to what was

determined in the uniform skewed insertion where the DDE scheme was noted to

be faster. This is because there was one and the same population, which were

nodes levels after ordered skewed insertions that there was weak evidence to

reject the null hypothesis. This is because the p-value recorded for this was 0.6783,

which was far higher than the significance level of 0.05. All the other populations

such as the one in Figure 7.18.1 gave strong evidence to reject the null hypothesis

and thus justified the significance of the relationship. This is because the p-value

for these was 0.01548, which was less than the significance level.

7.5.2.2.3 Different relationships after Random insertion

A similar experiment was performed for random skewed insertion to find the

different relationships as had been done with the uniform and random. This means

that there were six populations for each of the samples as had been the case

before. Using the box plots, it was found that the GroupBased scheme was faster in

Chapter 7: Results and Analysis

 199

all six populations as against the DDE scheme. The outcome for these six

populations has been given in Appendix a.9. Figure 7.19.1 however gives the

results for the order skewed nodes after random skewed insertion.

In terms of significance however, the case was somewhat different. This is because

with significance level of 0.05, it was found that two of the six populations did not

show strong evidence to reject the null hypothesis that the scheme did not have

effect on time. These two were order between nodes after random skewed

insertions and nodes after random skewed insertions (Appendix a.9). The p-value

recorded in the two cases was 0.09109 and 0.9042 respectively, including the one

showed in Figure 7.19.1. The implication here is that for these populations,

GroupBased scheme may be selected for performance related advantages but

when it comes to time related advantages, either GroupBased scheme or DDE

scheme could be used to achieve the same purpose. With the four other

relationships, there was strong evidence to reject the null hypothesis because the

p-values were far below the significance level. The range of p-value for the four

was 2.898 x10-05 to1.451 x10-11.

Chapter 7: Results and Analysis

 200

7.5.3 Query Performance

In this section, the nineteen queries that were used to evaluate the query

performance in the static document (Sec. 7.4.3) were run again after the insertions.

7.5.3.1 Results’ Analysis

 Using the GroupBased and DDE schemes, the queries’ performance on dynamic

XML documents showed a significant increase in the queries’ response time

compared to the results using static documents. As mentioned in Section 7.4.3, the

DDE scheme offers a shorter execution time for (Q1, Q2, Q16, Q17 and Q19) when

the document was static but, when the document was dynamic, the performance of

the GroupBased scheme was better for dynamic documents. Thus, all the queries

tested showed better performance using the GroupBased scheme when the

document was dynamic. Figures 7.20.1 (a, b and c), 7.20.2 (a, b and c) and 7.20.3 (a

and b) present the evaluations of the queries.

Chapter 7: Results and Analysis

 201

Chapter 7: Results and Analysis

 202

Chapter 7: Results and Analysis

 203

7.5.3.2 Statistical Interpretation of the Results

After insertion into dynamic XML was performed also, queries were undertaken by

the use of the same nineteen queries already used in this study. It would be

recalled that when the queries were performed ahead of the insertions, there were

instances where the DDE scheme proved to be more effective while in other

instances, the GroupBased scheme showed more efficiency. Almost the same range

of results was obtained after the insertion. This is because in queries 1, 2, 16, 17,

and 19, the DDE scheme showed to be executed in shorter time under the box

plots. All the others however favoured the GroupBased scheme. This necessitated

the need to test for significance. The individual outcomes for these 19 populations

have been given in Appendix a.10. Figure 7.21.1 shows the outcome for the query 1

after insertion.

Chapter 7: Results and Analysis

 204

For the DDE scheme dominated performance, p-values produced showed that the

null hypothesis could be rejected in all cases. This is because the p-values

produced ranged from 0.02272 in query 16 to 1.451x10-11 for all the others. In

terms of the GroupBased scheme, the pattern of significance was not different with

what was obtained earlier. This is because in all cases, there was very strong

evidence to reject the null hypothesis, meaning that for the GroupBased scheme

was faster.

7.6 Conclusion

In this chapter, the experimental results were presented and analysed based on

the document type: static or dynamic. For each type, three experiments were

performed. The static document experiments show, firstly, how the GroupBased

scheme is an improvement on the DDE scheme’s initial labelling process in terms

of time and label sizes; it also shows how these factors are affected by the size of

the XML document. Then, the time needed to determine different relationships

using the labels and the performance of nineteen different queries were evaluated.

The dynamic document experiments started by testing the scheme’s ability to

handle different types of insertion by avoiding the re-labelling process and how

fast the new label was constructed compared to the DDE scheme, as well as the

growth rate in the labels’ size. Then, the relationships were evaluated again to see

Chapter 7: Results and Analysis

 205

how the insertions affected their calculations. Finally, an evaluation of all queries

was performed again to assess the queries’ response times.

After obtaining the descriptive results by the use of graphs, a statistical

significance test was performed where the box plots and Wilcoxon rank-sum test

were used. From these two, p-values were produced, based on which it was

possible to find the significance in differences of results obtained between the use

of GroupBased labelled scheme and DDE scheme for XML documents. Out of this

also, there was an strong statistical endorsement that not only were differences

obtained when it comes to time-related experiments but that the differences are

significant. Because of the statistical differences obtained, future experimenters

and users of XML documents may want to use the GroupBased scheme over the

DDE scheme in order to avoid the limitation with the DDE when it comes to time-

related performance and functionality.

Generally, the results with a few exceptions from GroupBased scheme were better

than those from DDE regardless of their limitations. A discussion of each

experiment is provided in the next chapter, which also evaluates the findings

based on the research hypotheses in order to outline the research’s limitations and

offer suggestions for future work.

Chapter 8: Evaluation

 206

Chapter 8: Evaluation

8.1 Introduction

The process of evaluation refers to the activities undertaken to determine if a

given technique best suits the intended purpose. The aim of the evaluation process

is to ascertain if the proposed scheme is working as expected and also whether the

scheme fits the intended purpose: i.e., if it has fulfilled the research’s hypothesis.

There are a number of methods can be used for evaluation. All of these methods

test a range of criteria which include robustness, reliability, efficiency,

maintainability, functionality and portability (April and Abran, 2012). The

evaluation task results in several outcomes that can be utilised in the planning of

further outcomes. Evaluation techniques can be classified into two major

categories: predictive and descriptive techniques (Perlis et al., 1981). The process

of evaluation is goal oriented and the goals towards which an evaluation process is

addressed define the importance of such a process. One of the goals for this

research is to determine if the proposed scheme is better than existing schemes.

This process entails comparing the proposed scheme with other existing schemes,

as described in Chapter 7, with the aim of determining the value of the proposed

scheme (Clements et al., 2003). This is significant since it helps in assessing the

proposed scheme with respect to schemes which already exist and thus to

determine its viability.

Another goal of the evaluation process is to find out how effective the proposed

scheme is. This process is important since it facilitates the assessment of the

proposed scheme to determine if it has the qualities it was intended to possess.

Furthermore, the process of evaluation is also aimed at determining the

weaknesses of the proposed scheme if any. This attempts to detect any weaknesses

in the scheme; this is important since, by using these weaknesses, suggestions for

further development can be generated (Farooq and Quadri, 2011).

Chapter 8: Evaluation

 207

Thus, this chapter discusses the proposed scheme from an evaluative point of

view. As mentioned in the previous chapters (Ch.6 & Ch.7) a number of

experiments were performed in order to evaluate the proposed scheme. These

experiments tested different aspects of the proposed labelling scheme; their

results and analyses were presented in Chapter 7. These experiments are

evaluated in this chapter so that the weaknesses and limitations of the proposed

scheme, as well as the future trend of this work, can be highlighted.

The chapter starts by describing the potential threats to the experiments and the

precautions that were taken to minimise theses threats in Section 8.2. Then, Each

experiment is evaluated in Section 8.3. Then, a self-comparison of the proposed

and the DDE schemes is provided in Section 8.4. Section 8.5 provides a general

evaluation of the proposed scheme, along with the experiments’ main findings. The

consequences of some implementation decisions (Ch.5) are discussed in Section

8.6 while the experiments’ limitations are outlined in Section 8.7. Finally, the

chapter concludes in Section 8.8.

8.2 Threats to the experiments

Hakim (2000) noted that in the performance of any scientific experiment such as

this one, there are a number of things that can reduce the impact of the results on

science, especially things that can be controlled. These things that may impact on

the results of the study and its contribution to science are referred to as threats

(Bell, 2006, Sapsford and Jupp, 2006). If these threats are not well controlled, they

affect the study’s validity, reliability and authenticity (Creswell and Clark, 2007,

Robson, 2011). A number of such threats were identified in the current study, all of

which were addressed with to ensure that the study’s findings could be justified as

being valid rather than the outcome of chance. These threats are generally referred

to as noise.

Chapter 8: Evaluation

 208

Noise represent extraneous events that affected the timing of the outcomes of the

various experiments undertaken by the two major schemes which were the

control and experimental schemes. The experimental scheme use in the study was

the GroupBased labelling scheme proposed by the researcher while the

experimental scheme was the DDE labelling scheme, which was used to test the

effectiveness of the proposed scheme. A total of four experiments were designed to

evaluate the proposed scheme’s functionality and performance in both static and

dynamic XML documents. Each of the four forms of experiments involved

recording time with the use of the wall-clock. The sections below addresses noise

was controlled in each of the four major experiments where wall-clock time

measurements were used.

8.2.1 Presenting equal computer tasks to pairs of experiments

Time was a very important exercise in the whole experiment. In all four

experiments, the researcher needed to record the time used by the GroupBased

scheme and DDE scheme to undertake different activities. For example in the first

experiment, the researcher needed to record the time that the two schemes used

to undertake their initial labelling processes. It is important to stress that all these

experiments were performed with the use of the computer while taking reading

from a wall clock. The rationale for using a wall clock was in the guarantee it gave

over the use of the computer’s own clock. For example the computer could

suddenly go off or get frozen and this might have affected the timing measurement.

Whiles using the wall clock to undertake the readings, one of the first things the

researcher did to ensure credibility with the readings for both sets of experiments

was to present the same tasks from the computers. To ensure this, the researcher

used the task manager to display all programs running in the background of the

computer.

Chapter 8: Evaluation

 209

The task manager also revealed the apps that were running on the computer as

well as windows processes. While some of the background processes and windows

processes were needed to keep the computer running smoothly, most of the apps

could be done away with. The researcher therefore closed all apps that were not

needed as part of the experiment. All background and windows processes that

could also be closed without any impact on the computer’s function were also

closed. The total number of background and windows processes was observed for

each pair of experiment to ensure that they were always the same. Once this was

done, the researcher did not have to worry about CPU, memory, disk, and network

consumption of the computers and how these affected the results. This is because

given the same number of apps, background processes and windows processes the

consumption was almost the same in all cases. Providing equal computer tasks to

each pair of experiments for all four experiments ensured that results gathered

were hardly influenced by other computer tasks that were running on the

computer used. This way, credibility of results was enhanced because there was

fair basis given for the experiments (Cooper, 2008, Remenyi, 1998).

8.2.2 Test-retest reliability

The second approach used to minimise or deal with the threat of noise was test-

retest reliability testing. In scientific experiment, reliability is said to be attained

when the results are more than one-off findings but inherently repeatable (Collis et

al., 2003, Saunders et al., 2011). What this implies is that when the researcher

repeats the experiment in any other research setting where the variables remain

the same, the results must be relatively same (Gill and Johnson, 2010). There are

several ways in which reliability can be guaranteed, including the use of test-retest

(Adams and Schvaneveldt, 2011). More particularly, the researcher selected the

use of test-retest as it afforded the opportunity to determine if there was any

hidden noise that affected a single experiment. A very simple approach was taken

to test-retest reliability. This was done by ensuring that for each of the four

experiments, a minimum of twenty tests were used to measure the same outcome.

For example in the second experiment the researcher assessed the time needed to

Chapter 8: Evaluation

 210

determine the different relationships that existed between different nodes in the

GroupBased scheme on one side and the DDE scheme on the other side. In order to

ensure test-retest reliability, the assessment of time for the GroupBased scheme

was performed on twenty different occasions for the same experiment.

While doing the above, the researcher ensured that the earlier provision of

providing the same computer tasks for each pair of assessment was in (Ghauri and

Grønhaug, 2005). When the test-retest was done, it was revealed that the timing or

readings made for each set of assessment were relatively close. Where there were

any differences, they varied by less than 0.05%. Nevertheless such differences

could have had an impact on the reliability of the study. In effect, the mean or

average reading made for the three sets of assessments were taken and are

presented in the final outcome of the study in Chapter 7. It is also important to

note that one other way in which the test-retest was done was by various different

computers, the researcher’s personal computer and the university’s lab-computer.

Even though it was difficult controlling the activities running in the background of

the university’s lab-computer, it was seen that the results collected from the lab-

computer were not significantly different from those collected from the personal

computer. This helps in concluding that computer did not have any major impact

as a noise threat to the study.

Chapter 8: Evaluation

 211

8.3 Evaluation of the Experiments

In this section, the design and the results of the experiments performed are

evaluated (Ch.6 & Ch.7).

8.3.1 Evaluation of the Initial Labelling Experiment

As explained in Chapters 6 & 7, the initial labelling experiment aimed to assess two

factors: the labels’ size and time needed for assigning each label, and how these

factors are affected by the size and the structure of the XML tree. In this section,

this experiment is evaluated.

Generally, the results met the aim and expectation of the experiment (Ch.6) as they

proved the exponential correlation between the initial labelling time and the size

of the XML file, as well as the depth of the XML tree. Additionally, better

performance was noticed in the XML tree with a deep rather than a wide structure.

With regards to the comparison between the proposed scheme and the ‘Dynamic

Dewey’ scheme (DDE), the former showed an exponential improvement in the

initial labelling time. This improvement can be justified based on how each scheme

calculated and assigned the labels (Ch.5). As explained in Chapter 4, calculating the

proposed scheme’s labels was achieved by using a simple addition operation while

calculating the DDE label involved string matching and concatenation which was

more time-consuming. As shown in the previous chapter, the DDE initial label sizes

were slightly smaller than the proposed scheme’s label sizes; this is to be expected

as the proposed scheme’s label consists of two labels: global and local (Ch.4).

Based on the results obtained, the proposed scheme was shown to outperform

other labelling schemes (Li and Ling, 2005a, Liu et al., 2013, O'Neil et al., 2004, Qin

et al., 2012, Xu et al., 2012) as regards time only.

Chapter 8: Evaluation

 212

Generally, the findings answered the research questions of this experiment.

However, the experimental results could be extended to test the scheme’s ability

with even larger XML files which might lead to a more reliable scalability

evaluation.

8.3.2 Evaluation of Relationships Experiment

The evaluation of relationships experiment was designed to test how fast each

relationship was determined (Ch.4 & Ch.6). This experiment was evaluated using

static and dynamic documents employing both the proposed and the DDE labelling

schemes. The experimental design worked as intended and the results were better

than expected.

The results obtained when the experiment was run on static and dynamic XML

documents (Ch.7) met the research’s expectations by determining that on static

documents the different relationships were identified faster using the GroupBased

scheme than the DDE scheme. At the same time, this experiment on dynamic files also

exceeded expectations since the parent-child, ancestor-descendant and lowest-common

ancestor relationships were determined much faster than the DDE scheme, especially

after ‘uniform’ and ‘ordered’ types of insertion. This time improvement related to the

simple relationship calculation (Ch.4) for both types of document in the proposed

scheme unlike the scheme relationships calculations in the DDE (Ch.3 & Ch.4).

Although the experiment could be considered to be limited as it was run on only

one dataset, its results were compared to the QED-based labelling schemes (Li and

Ling, 2005a) and the ORDPATH scheme (O'Neil et al., 2004) as the same dataset

was used, as mentioned in Xu et al. (2009), Xu et al. (2012) and Liu et al. (2013).

The comparison supported the case that the proposed scheme was more effective than

these schemes mentioned above in determining different relationships.

Chapter 8: Evaluation

 213

8.3.3 Evaluation of the Queries Experiment

As illustrated in Chapter 6, nineteen out of twenty XMark queries were evaluated

using the proposed scheme and the DDE scheme. The experiments were

performed twice to test the schemes under both static and dynamic circumstances.

The experimental results (Ch.7) showed the benefit of using the proposed scheme

instead of the DDE scheme with both static and dynamic documents, as described

below:

x Static XML document:

The experimental results (Ch.7) on the static document were as expected

(Ch.6) for most of the queries tested, especially for complex queries where

several join operations were required. However, five queries were below

expectation as using the DDE scheme showed slightly better response

times. These queries (Ch.6) were based on a simple parent-child

relationship and because the document was static, this relationship was

determined based on the ‘Dewey’ labelling scheme instead of the DDE

scheme. In the Dewey scheme, the child node’s label equals the parent

node’s label plus ‘1’ as the last component of the child’s label; this is faster

than both the proposed and the DDE schemes.

x Dynamic XML document:

The results of repeating the same experiments on a dynamic document met

expectations (Ch.6) as using the proposed scheme provided an exponential

improvement in all query response times. This was due to the fast

relationship determination, as explained in Section 8.2.2.

The experimental design met its objectives and the results were promising.

Nevertheless, the experimental boundaries could be expanded to evaluate the

scheme on more complex queries, using other XML benchmarks that consider

update queries (Ch.6). This is because the XMark queries set lacks this type of

Chapter 8: Evaluation

 214

query and the ability to perform comparative tests between different benchmarks;

this would definitely facilitate more accurate and reliable results in terms of query

performance.

8.3.4 Evaluation of Handling Insertions Experiment

The design of the evaluation of handling insertions experiment (Ch.6) aimed to test

the proposed scheme’s ability to handle different types of insertion by measuring

the insertion time and the labels’ sizes after insertions. To recap, these types of

insertion are: ‘uniform insertions’ which refers to the insertion of a new node

between each consecutive node; ‘ordered skewed insertions’ which refers to an

insertion before and after a specific node repeatedly; and ‘random skewed

insertions’ which refers to randomly inserting nodes between two consecutive

nodes. The experiment was run on both schemes and the experiment’s framework

served its purposes; the results (Ch.7) were partially what were expected but

others were opposite to expectation, as illustrated below:

x Insertion Times:

The results obtained by measuring the time required to perform the

‘uniform’ and the ‘random skewed’ types of insertion was better than

expected and the proposed scheme was shown to be quicker than the DDE

scheme, whereas the DDE scheme showed slightly better performance in

the ‘ordered skewed’ insertions. The expected result was that the DDE

scheme would offer slightly better performance in all types of insertion; this

expectation was based on the simplicity of the scheme’s implementation.

However, as explained in the initial labelling evaluation (Sec. 8.2.1),

calculating the proposed scheme’s labels required a simple addition

operation, especially when inserting between two consecutive nodes; this

could explain the time improvement in the ‘uniform’ and the ‘random

skewed’ insertions. This did not apply to the ‘ordered skewed’ insertions

since the experiment was run on a worst-case scenario where the insertions

occurred before and after a node that was a child of the document-root.

Chapter 8: Evaluation

 215

This meant that, for every new inserted node, two labels were calculated

and assigned (Ch.4 & Ch.5).

x Label Sizes

In term of the labels’ sizes, the labels of the DDE scheme were allocated less

memory after all types of insertion, as shown in Chapter 7; this is

reasonable as the difference between both schemes was insignificant and

the proposed scheme’s label consisted of two labels (Ch.4).

8.4 The Schemes’ Self-Comparisons

In general, the process of evaluation is aimed at enhancing the usability of any

given technique while this process of enhancement is aimed at improving users’

experiences, detecting flaws in the technique, addressing concerns, and removing

unwanted features from the technique. This process is vital since it plays a

significant role in the development of the technique. Moreover, the formative

aspect of the evaluation process facilitates the detection of usability problems

associated with the technique (Vlahavas et al., 1999).

From this point of view, evaluating the scheme against itself was undertaken and

the results presented in this section. This evaluation intended to add more clarity

to the comparison as well as to determine the scheme’s limitations and offer

recommendations to improve it. Each scheme was evaluated using the

experimental results presented in Chapter 7 by comparing the schemes’ abilities in

static and dynamic documents in all experimental aspects (Ch.6). However, to

facilitate this evaluation, an XMark file (xml2.xml) was used (Ch.7) which consisted

of 17,132 nodes. Moreover, 12,503 nodes were inserted to assess the scheme after

the insertions; this number of nodes was determined based on the ‘uniform

insertions’ process and so the same number of nodes was used in all types of

insertion.

Chapter 8: Evaluation

 216

8.4.1 The GroupBased Schemes’ Self-Comparisons

In this section, the initial label sizes and the initial labelling times were compared

to their correspondences after different types of insertion. The query response

times and the time needed to determine different relationships before and after

insertions were also compared.

x Label Sizes:

The size of the labels after the initial labelling process was 0.015 MB. This

size was about five times more after the ‘uniform’ insertions whereas, it

increased by 70% and 34% respectively above the initial size after the

‘random’ and ‘ordered’ insertions. This is shown in Figure 8.1.

x Labelling Time:

Unlike the label sizes, ‘ordered skewed’ insertions indicated the longest label

construction time which was more than double the initial labelling time of

415 milliseconds. The ‘uniform’ and ‘random skewed’ insertions, on the

other hand, consumed 8% and 20% less time respectively than the initial

labelling, as shown in Figure 8.2.

Chapter 8: Evaluation

 217

x Determining Different Relationships:

Measuring the proposed scheme’s stability in determining different

relationships demonstrated its constancy in calculating most of the

relationships because, in calculating the order, sibling and parent-child

relationships, it consumed the same time before and after the three types of

insertion. Also, the level’s calculation time was consistent after the first

insertion but it increased by 25% compared to the times before any

insertions had been made. The calculation time for the ancestor-descendant

and lowest-common ancestor relationships was consistent before and after

the ‘uniform’ and ‘ordered-skewed’ insertions while it was increased by

200% and 57% after the ‘random-skewed’ insertions. Figure 8.3 shows a

comparison of the relationships in time before and after insertions.

Chapter 8: Evaluation

 218

x Queries’ Performance:

Due to the nature of the XML tree structure and the complexity of the

queries evaluated (Ch.6), most of them required multiple join operations

either on values or references and aggregations, their response times might

be considered high before any insertions, even though it was faster than the

DDE scheme (Ch.7) for most of them.

Generally, the query response time was affected by the complexity of the

query and the number of nodes examined. Thus, after the insertions, this

time showed a significant increase in six out of nineteen queries by more

than twice the time taken before any insertions. However, it is reasonable

to state that the time taken to answer some of these queries can be

considered small even after this increase; i.e. it was less than one second.

Figures 8.4(a, b, c) show these comparisons.

Chapter 8: Evaluation

 219

Chapter 8: Evaluation

 220

8.4.2 DDE Scheme’s Self-Comparisons

Similar to the proposed scheme, in this section, the DDE scheme’s capabilities

before any insertions are compared against itself after the insertions.

x Label Sizes:

The size of the labels after the initial labelling process was (14 MB). The

‘random skewed’ insertions hit the highest size increase (76%) whereas the

‘uniform’ and ordered skewed’ insertions showed 67% and 39% increases

respectively, as shown in Figure 8.5. This indicates that the DDE scheme

provides less memory allocation when performing ‘uniform’ insertions.

Chapter 8: Evaluation

 221

x Labelling Time:

Unlike the proposed scheme, none of the insertion types exceeded the time

consumed during the initial labelling, which was 56% more than the

GroupBased scheme’s initial labelling time. However, among the three types

of insertion, the ‘uniform’ insertions showed the better performance, at

75% less than the initial time, whereas the ‘ordered’ and ‘random’ skewed

insertions consumed only 19% and 14% less respectively, as shown in

Figure 8.6.

Chapter 8: Evaluation

 222

x Determining Different Relationships:

Similar to the proposed scheme, the DDE scheme showed partial stability in

computing different relationships. The level and order relationships were

consistent in terms of calculation time before and after insertions. However,

the parent-child relationship showed a significant time increase after the

‘ordered skewed’ insertions with more than twice the time before insertions,

and by 34% and 42% respectively after the ‘uniform’ and ‘random’ skewed

insertions. The calculation time for the ancestor-descendant and lowest-

common ancestor relationships was the same after insertions, which was

86% and 25% higher than their time before insertions. The sibling

relationship gave the same calculation time before and after the ‘uniform’

and ‘ordered-skewed’ insertions and increased by 28% after ‘random-

skewed’ insertions. Figure 8.7 shows the comparison of the relationships’

time before and after insertions.

Chapter 8: Evaluation

 223

x Queries’ Performance:

 Despite the high response time, the response times for 6 queries increased

by more than six times their time before insertions, even for the simplest

query such as Q1 which is a simple exact match query. Figure 8.8 shows the

queries’ response times before and after insertions.

Chapter 8: Evaluation

 224

8.5 The Proposed Scheme: General Evaluation

This section provides an overall evaluation of the proposed scheme based on the

research hypothesis stated in Chapter 1, i.e.:

“Applying a second layer of labels and grouping the nodes based on the parent-

child relationship may facilitate node insertions in dynamic XML data in an

efficient way, offering inexpensive labels without excessive label size growth

rate in which it is easy to maintain structural relationships, as well as

improved query performance.”

Then, the main experimental findings are highlighted.

The GroupBased scheme was designed to improve the XML labelling by providing

a scheme that deals with insertions without the need for re-labelling and without

sacrificing the performance, construction-time and memory usage of queries. The

overall rationale for this was that there are core qualities of all XML labelling

schemes which must be maintained, but it should be possible to improve on them.

These qualities were deemed essential because of the advantages they offer to data

Chapter 8: Evaluation

 225

interchange programming. As mentioned earlier, some of these qualities were

query performance, construction time and memory usage (Fennell, 2013). To get a

realistic measure of the GroupBased scheme’s performance or merits, it was

important to include something that would enable comparative measurement. This

necessitated the introduction of an implementation of the Dynamic Dewey

labelling scheme (DDE) on which the experiments were carried out to allow

comparable evaluation.

To test the research hypothesis, the scheme was implemented based on the rules

and characteristics defined above (Ch.4). The design and implementation

specifications were provided in detail in Chapter 5. As explained in the earlier

chapters, the DDE scheme was implemented as it contributed to the formation of

the proposed scheme and is currently the state of the art scheme. In order to

evaluate the performance of the proposed scheme, four main experiments were

performed to test whether the scheme fulfilled its intentions. The experimental

framework of these experiments and an analysis of their results were discussed in

Chapter 6 and Chapter 7.

Generally, it is fair to state that the research hypothesis was partly supported by

the results; some of the results obtained were fully supportive of the hypothesis.

For example, the hypothesis tested three major outcomes as far as performance is

concerned. These were the need for the scheme to facilitate node insertions

efficiently way, the need to provide inexpensive labels, and the need to achieve

improved query performance.

The result of node insertions in dynamic XML data are given in Chapters 6 and 7.

The GroupBased scheme gave better performance in determining different

relationships in static form as against the DDE scheme, with up to 1.5% of time

saved. For efficiency to be attained with the node insertions, it is important that

much insertion be done within a very short time frame (Murata et al., 2001). In this

regard, the first component of the hypothesis was slightly supported, with the

Chapter 8: Evaluation

 226

GroupBased scheme outperforming the DDE scheme in terms of determining

relationships. Nevertheless, the performance in calculating levels was variable.

The second component of the hypothesis was expected to offer an inexpensive

label with an adequate label size growth rate where the structural relationships

are easily maintained. To measure this, an experiment evaluated the growth of

label size in terms of memory allocation. The findings showed that there was only

a slight change in label size between the GroupBased scheme and the DDE scheme.

This is a weak indication that the hypothesis can be accepted in this context,

because the rate of difference was merely 0.002%. This was lower than expected,

given that the GroupBased scheme’s label was made up of two labels whereas that

of the DDE scheme had only one.

The last aspect of the hypothesis focused on improvement of query performance.

This was a very important aspect of the whole experiment, given the role played by

query performance in query response time. Again, the emphasis was on a

comparative analysis designed to measure how effective the proposed GroupBased

scheme was over the DDE scheme. Of the 19 queries that were used, the results

showed that different queries achieved different times. Overall however, there

were better responses with the GroupBased query performances, as shown in

Chapter 7. There were actually only 5 queries for which the DDE scheme

outperformed the GroupBased scheme. This means that the hypothesis can be

accepted on the grounds of improved query performance as well.

Accordingly, it can be stated that the scheme’s implementation worked as

intended, proving its superiority to other similar labelling schemes in many

comparable time-related aspects. Nevertheless, the scheme was found to be

inferior in some respects, such as label sizes and some other time-related features.

As a consequence of the evaluation process, some changes could be made to

improve the scheme’s efficiency. From a design standpoint, the proposed scheme

could be redesigned using another dynamic labelling scheme instead of the DDE

Chapter 8: Evaluation

 227

scheme in order to enhance the growth of the label. However, the DDE scheme was

chosen in the first place for its simple implementation and its feature of extracting

the different relationships from the label. This was one contribution of the thesis.

From an implementation perspective, the scheme was implemented as efficiently

as possible based on its design. However, the implementation was a complex

process due to the two labels that formed the proposed label. Thus, as each label

required a number of processes, this could be considered as a drawback. Also,

although synthetic and real datasets were used in the experiments to cover as

many scenarios as possible, lack of resources and time restrictions limited the

scalability experiments. The results gathered were sufficient, however, to analyse

and evaluate the hypothesis. More datasets could be used to provide more

analytical results.

8.5.1 The Main Experimental Findings

The most important finding confirms the hypothesis as the GroupBased scheme

showed better time performance than did the DDE scheme and other similar

labelling schemes. The flexible and fast calculation of different relationships led to

faster answering of queries. Despite the scheme’s complex implementation,

calculating the labels was fast, which resulted in handling ‘uniform’ and ‘random

skewed’ insertions efficiently. Even though label sizes grew slightly faster than the

DDE labels, and the proposed scheme was slower when performing ‘ordered

skewed’ insertions, it delivered better scalability by providing more consistent

results both before and after insertions. Moreover, it has been established the

proposed scheme showed better performance on a deep-tree structure rather than

a wide-tree structure. The whole research findings are presented in the next

chapter.

The main experimental findings above can be further evaluated with respect to the

two main objectives of the experiments, which were to check for initial labelling

time and label size. In data interchange on the web and on any other platform,

Chapter 8: Evaluation

 228

Rusty (2004) noted that the activities of debugging programs, storing small and

large amounts of data, and providing scalability for configuration files is very

important. It is for this reason that XML would mainly be relied upon to execute all

of these functions. Yet Cunningham (2006) emphasised the need to accept that in

XML, the initial labelling time and label size played crucial roles when talking

about efficiency and effectiveness respectively. It was for this reason that the place

of the GroupBased scheme in attaining such goals was measured as against the

conventional DDE schemes.

The experimental findings on initial labelling time showed three major outcomes.

The first is that both the GroupBased scheme and DDE scheme showed significant

growth of time consumption as the size of the file increased. This means that the

XML labelling as a collective entity does not necessarily guarantee lower

turnaround times. The second outcome was that regardless of the limitation of not

guaranteeing lower turnaround times during initial labelling time, the GroupBased

scheme was more efficient than the DDE scheme. This is because the time taken to

undertake the initial labelling via the DDE scheme was 40% greater at the initial

stage and then rose to much as 180% greater in latter stages. The implication here

is that even if the GroupBased scheme does not reduce the time for initial labelling,

using DDE would be worse. The third outcome was that the size of file plays an

important role in efficiency and initial labelling time. This is because the difference

in initial labelling time between the GroupBaseed scheme and the DDE scheme

kept increasing with increasing file size so the advantage of using GroupBased

increased with file size. The implication here is that for best initial labelling times,

the GroupBased scheme must be used.

With regard to label size, the experimental findings showed that file size was an

important determinant in the growth of label sizes. For both schemes, it was only

when there was an increase in the file size by a margin of 5MB that there was a

corresponding increase in growth of the label size by 0.056 MB. Indeed, the

increase in growth of the label size, when compared to the file size, can be said to

be marginal. Between the two schemes however, the growth of the label size was

Chapter 8: Evaluation

 229

higher for the proposed GroupBased scheme, though the difference was only

0.002%. It is important to emphasise that an increase in label growth size for the

GroupBased scheme was expected, but not at the rate at which it was recorded.

The increase in GroupBased scheme was expected because, as shown in Chapters 4

and 5, two labels are used in the GroupBased scheme compared to only one in the

DDE scheme. For this reason the hypothesis was not rejected, despite the fact that

the proposed GroupBased scheme brought about an increase in growth of the label

size.

8.6 The Consequences of Some Practical Decisions

In evaluating the main experimental findings, a very strong case can be made for

the relationship between time, size and query performance. Sean (2006) had

argued that there are several advantages over conventional data exchanging

programmes that make it preferred over HTML. One of the qualities of XML for

which it may be preferred includes the fact that it allows multiple functionality

based on its plasticity to dynamic add-ons and changes. The experimental findings

obtained however suggests the need to give this attribute a second look. This is

because even though XML labelling may cause overflow of space available,

overloading the programming outcome of the XML by the use of schemes may lead

to label sizes growing even faster and becoming slower (Bosak and Bray, 1999).

Future implementers may therefore have to make a case between having a full

XML labelling programme that produces multiple series of functionality with

increased label size and time-consuming pace, or one that is focused on fewer

functions in order to guarantee efficiency.

With reference to the tree structures on which the two schemes operated, there

are some practical implications for implementers. In particular, there are areas or

aspects in which the proposed GroupBased scheme has advantages over the DDE

scheme, but there are other times that the opposite is true. For example, the

findings showed that performance on a deep-tree structure gives essentially the

same value between the two schemes. Here, selection of scheme to operate on

Chapter 8: Evaluation

 230

deep-tree structures could go either way. But even on deep trees when it comes to

time used in performance, the proposed GroupBased scheme can be said to be

superior. This is because it offers better performance with respect to time whether

taken from a wide-tree structure or a deep-tree structure. The difference in

performance time between the two schemes was as much as 165%. The problem

arising, which requires careful consideration in making selection, has to do with

the more concise labels generated by the DDE scheme than the GroupBased

scheme. Thus, implementers have to be certain of their ultimate goal before

making a selection.

A DOM parser was applied for the implementation of the proposed scheme, as

discussed in Chapter 5. The features of the parser resulted in this decision being

made as it ensured that any section of the document could be easily accessed,

thereby allowing the XML tree to be effectively modified. Additionally, the

functionality of this parser further simplifies the access and retrieval processes

that occur. However, one of the major disadvantages of DOM is that it is highly

inefficient with regard to memory usage. It creates a tree of nodes that are stored

within the memory, and is reflective of the size of the documents, which can be

especially problematic for large document. The parsing and labelling processes can

consequently become slower, resulting in an 'out of heap' memory during the tree

loading process, and subsequently reducing the effectiveness of the operation.

The ArrayList suffers from the same disadvantage. If the array is completely full,

then any additional elements require further memory, often at a significant cost

(approximately 1.5 times the original array size). These elements are copied over

from the old source into the new source, which results in O (n). This issue is

especially problematic as the label number cannot be easily extrapolated before

the process takes place, as there is variation between different documents.

Additionally, the use of ArrayList results in a distortion of the element positions;

the latter elements having to be shifted to make new spaces, in spite of the

efficiency of the addition and removal process. This operation is highly slow,

especially when insertions are occurring.

Chapter 8: Evaluation

 231

8.7 Experimental Limitations

Despite the fact that all the experiments worked and served their purposes,

limitations were detected. These arose as a consequence of the simple

experimental design, which was selected to validate the scheme’s capabilities

before extending it to a more complex level. Generally, all the experiments might

be extended by using more datasets, more complex and varying queries, and

different comparable schemes in order to obtain more elaborate results. The

document size restrictions could be temporarily improved by using a more

efficient platform; however, this will always be an issue as the data increases.

Some calculation and storage approaches could also be improved to achieve better

performance.

In order to adhere to the hypothesis that was set from the beginning of the study

and restated in this chapter, it was important that the experiments be focused and

limited in design to testing the hypothesis. However, this requirement was itself

found to create a form of limitation since the study could not be extended to XML

document parsing and storage mechanisms. To this point, it is not certain whether

the proposed GroupBased scheme has any effect on how XML documents are

parsed and how the labels and data associated with them are stored. What is more,

even though the approach to the experiment was to avoid re-labelling for inserting

new nodes, this could not be entirely followed to the end. This is because re-

labelling was found to be required in cases where the structure of the XML

document was changed. (Sean, 2006) confirms the rapid speed at which XML

documents change in the real world.) In this respect, the proposed scheme did not

fully consider re-labelling.

Even though re-labelling was not fully considered in the research, re-labelling

could be required in certain complex situations. A typical example of such a

finding, backed by literature from Bosak and Bray (1999), is the high exponential

growth that was recorded in labelling time and label size. Notwithstanding the

exponential growth in labelling time in the DDE scheme was much higher, than in

Chapter 8: Evaluation

 232

the proposed GroupBased scheme. Having said this, it must be reiterated that the

general scheme evaluation which focused on testing the hypothesis, makes it

possible to conclude that the study has tested the hypothesis and covered all the

experimental aspects, particularly in terms of labelling time and label size.

8.8 Conclusion

The process of evaluation is paramount in every software development process,

although it is overlooked in some instances. It is important to evaluate closely any

process or technique in order to determine the limitations associated with it, and

to highlight future work to enhance usability. An evaluation of the experiments and

their results was presented in this chapter, demonstrating the proposed scheme’s

efficiency and scalability as compared to the DDE scheme. An overall evaluation of

the scheme was provided, along with the main findings of the experiments, while

taking into account the simple experimental frameworks and the limited datasets

used. This was intentional in order to ensure that the scheme worked properly

before extending it to further, more complex development. Some suggestions of

importance to the experiment were also briefly mentioned.

Chapter 9: Conclusion

 233

Chapter 9: Conclusion

9.1 Introduction

This thesis has highlighted the difficulties associated with employing a dynamic

labelling scheme for XML documents. The difficulties include the complexity of the

process, inefficient querying or labelling, and large storage needs. The fully

dynamic labelling scheme, GroupBased, was proposed to resolve these issues. The

goals of this scheme were discussed in the earlier chapters with reference to the

evaluation of perspectives, results, experiments, implementation and design.

Section 9.2 summarises the data and the work completed in order to conclude the

thesis. Section 9.3 discusses the main contributions of the research and Section 9.4

details how the results support the initial hypothesis. Section 9.5 addresses ways

in which the scheme’s development could be enhanced and suggests future

directions for investigation.

9.2 Thesis Summary

This study assessed the Groupbased labelling scheme which was created to handle

dynamic XML documents by responding quickly to queries and creating labels

after insertions while avoiding the need to re-label. Chapter 1 outlines the aims

and objectives of this study. XML has become a standard of information exchange

and representation on the web. Labelling schemes, such as ancestor-descendent,

are frequently employed to define the connections between two element nodes in

order to query the XML data efficiently. In static XML documents, queries are

processed efficiently by existing labelling schemes such as the containment

scheme (Zhang et al., 2001), the Dewey scheme (Tatarinov et al., 2002) or the

prime scheme (Wu et al., 2004) when the XML is static. However, XML databases

suffer from the bottleneck effect when the XML data are dynamic and a large

number of nodes require expensive re-labelling. Creating dynamic labelling

schemes that circumvent the re-labelling of a current node is a vital research

problem.

Chapter 9: Conclusion

 234

Various labelling schemes (Li et al., 2008, Li et al., 2005, O'Neil et al., 2004, Xu et al.,

2007, Xu et al., 2010) have been suggested to support dynamic XML documents. An

effective labelling scheme needs to label and respond to queries efficiently, create

unique labels continuously, be concise, avoid the re-labelling of nodes and be

capable of identifying structural relationships immediately. Finally, a successful

labelling scheme needs to be easy to comprehend and execute. Designing a

labelling scheme that possesses all of these properties is the purpose of this

investigation.

In general, labelling schemes that create small labels are not dynamic or they fail to

give enough information to classify all of the structural relationships between

nodes (Dietz, 1982, Li and Moon, 2001, Yun and Chung, 2008. However, dynamic

labelling schemes require additional storage space, are less efficient when

evaluating queries (Cohen, 2010, Duong and Zhang, 2005, Duong and Zhang, 2008,

Gabillon and Fansi, 2005, O'Neil et al., 2004, Tatarinov et al., 2002) or are unable to

create unique labels continuously (Duong and Zhang, 2005, Duong and Zhang,

2008).

The GroupBased labelling scheme delivers enhanced performance regarding

labelling time, avoids re-labelling, identifies structural data, and responds to

queries for both static and dynamic XML documents.

The research motivations and objectives, as well as the hypothesis, are described

in Chapter 1; the structural organisation of the thesis is also outlined in this

chapter. An overview of XML database technology, along with its main topics, such

as the basic component of XML documents, query languages and parsing methods,

are described in Chapter 2. Chapter 3 discusses different approaches and schemes

that are used in labelling XML documents; the advantages and disadvantages of

each scheme are also highlighted.

Chapter 4 defines the underlying structure of the GroupBased scheme emphasising

the necessity to form the GroupBased scheme’s labels using two labels: namely,

global and local labels. The global label is assigned to each group of nodes where

Chapter 9: Conclusion

 235

the nodes are grouped together based on the parent-child relationship (i.e. a node

and its child nodes belong to the same group) whereas the local label is assigned based

on the position of the node within a group. The chapter provided definitions and

rules on how the scheme works in terms of its initial labelling process, its handling

of insertions and its determination of different structural information before and

after insertions.

The GroupBased scheme’s practical design and implementation process are

described in Chapter 5, along with some justification of various implementation

choices. The ‘Dynamic Dewey’ labelling scheme (DDE) was chosen for use in

forming the proposed scheme’s labels due to its better performance compared to

other similar schemes, as well as its simple implementation. It was necessary to

implement this scheme, as no source code was available; it provided accurate and

fair comparisons.

To test the scheme’s design and implementation, four experiments were

performed to test different aspects of the scheme’s capability using different

datasets. In addition, in order to evaluate the experiments, the GroupBased scheme

and the DDE scheme were tested on both static and dynamic documents. The

experimental framework is described in Chapter 6, along with the chosen datasets,

while Chapter 7 describes the experimental results and their analysis.

The experiments and their results are evaluated in Chapter 8. The evaluation

outcomes can be summarised by saying that the GroupBased scheme

outperformed other schemes with similar objectives, especially the DDE scheme, in

terms of efficient labelling time and the performance of insertions, offering faster

and stable relationship determinations under static and dynamic circumstances,

and faster query response times. Although the GroupBased scheme did not provide

better memory allocation, which is justifiable due to the usage of two labels rather

than one, it provided more stability under dynamic circumstances. The research

contributions are discussed in the following section.

Chapter 9: Conclusion

 236

9.3 Research’s Main Contributions

The present study aimed to discuss the problems associated with dynamic XML

labelling schemes and proposed a new GroupBased scheme as a solution to those

problems, specifically re-labelling and scheme performance in terms of initial

labelling time, storage and query time. The following are the contributions that this

study has made to the existing literature:

x A new perspective in labelling XML documents, based on grouping the

nodes and using two labels, was proposed which suits both static and

dynamic documents.

x The GroupBased scheme provides greater capability and stability in

handling insertions by avoiding re-labelling.

x The GroupBased scheme provides faster labelling construction times in

both types of document.

x The GroupBased scheme identifies all structural relationships faster.

x The GroupBased scheme provides better query performance.

Empirical evidence supported all these contributions.

9.4 How the Hypothesis is supported by the Outcomes

The research hypothesis (Ch.1) stated that the GroupBased labelling scheme could

be applied with both dynamic and static XML documents without the need for re-

labelling and with better performance in terms of time, labels’ growth, identifying

structural relationships, and with different classes of queries. As can be seen from

the experimental results and the evaluation, the proposed scheme was

implemented successfully and worked as intended. Four experiments were used to

test the hypothesis using various sizes and structures of XML documents. The

hypothesis was generally supported by reasonable results. The first experiment

showed the positive relationships between the size of the document and the labels’

construction time and size; this experiment also proved the scheme offered better

performance with a deep tree structure rather than a wide structure. The second

Chapter 9: Conclusion

 237

experiment illustrated the efficiency and stability of the scheme in calculating all

structural relationships before and after insertions. The third experiment

evaluated the query performance before and after insertions using different

classes of query. The fourth experiment showed the scheme’s capability in

handling different types of insertion by measuring the labelling time and the

growth in the labels’ size. The results demonestrated that the GroupBased scheme

outperformed other similar schemes in terms of time which positively supported

the hypothesis but which provided less support for the hypothesis in terms of size.

9.5 Further Research Developments and Future Directions

Although the GroupBased scheme outperforms similar existing schemes in many

respects, it is not concise in terms of size, which indicates the need for further

investigation. The novel idea in this thesis is that the GroupBased scheme is group-

based and uses two labels instead of one. This allows the possibility of

improvement, but results in a more complicated scheme that is difficult to

implement compared to the simplicity of the DDE scheme. It is possible that some

enhancement could be applied in terms of implementation and experimental

aspects to achieve better performance.

From an implementation perspective, as argued in the previous chapter, using

‘ArrayList’ to store the labels and ‘DOM’ as the parser resulted in inefficient

memory usage. Therefore, using other approaches might improve the performance

of the current development.

From an experimental perspective, other datasets could be used in the

experiments, as well as more complex queries, in order to obtain more

comprehensive results. This would be useful in the evaluation process and would

help in highlighting future work that could be carried out with regard to the

technique, as well as in pinpointing limitations. Then, the identified limitations

could be used to highlight what needs to be added to the technique in the future in

order to reduce the limitations and enhance usability (Vlahavas et al., 1999). Also,

Chapter 9: Conclusion

 238

obtaining more results would facilitate comparisons with other existing

techniques.

Re-designing the GroupBased scheme using a different labelling scheme instead of

the DDE scheme could improve efficiency or lead to new theory. Moreover, storing

only one of the two labels and extrapolating the other when needed could result in

improving the memory usage and the time required to calculate the label.

Investigating XML compression methods is the next direction to follow after this

research, either to find a suitable compression technique that could be smoothly

applied or to build a more suitable one that would preserve the scheme’s

characteristics and provide better performance.

As discussed in this thesis, finding a labelling scheme that resolves all of the issues

is still a very challenging task and needs further investigation.

Lastly, as revealed by the limitations, it will be expected that future research

directions will focus on ways in which the proposed scheme can address the issue

of structural changes to XML documents. It is hoped that with such focus, the

problem of re-labelling will be well addressed.

9.6 Finally

This research focused on dynamic XML labelling mechanisms. It developed a

dynamic labelling scheme called the GroupBased labelling scheme. This new

scheme provided efficient performance and proved itself to be efficient with

regard to labelling and querying time; it was consistent in assuring unique labels

and was dynamic in that it avoided the re-labelling of nodes in an updated

intensive environment; it was also able to identify directly and stably all structural

relationships. Finally, carrying out this research raises other questions and reveals

other experiments worth investigating, as described in the previous section. These

will need to be addressed in the future.

References

 239

References

A., Gabillon. & M., Fansi. A Persistrent Labeling Scheme for XML and tree Database.

In Proc. of ACI, , 2006.

ABD EL-AZIZ, A. & KANNAN, A. 2012. Storing Xml Document and Xml Policies in

Relational Databases. The International Conference on Computer

Communication and Informatics (ICCCI) Coimbatore. India: IEEE.

ABITEBOUL, S., BUNEMAN, P. & SUCIU, D. 2000. Data on the Web: From relational

to Semistructured Data and XML, USA, Morgan Kaufmann.

ABITEBOUL, S., KAPLAN, H. & MILO, T. Compact labeling schemes for ancestor

queries. Proceedings of the twelfth annual ACM-SIAM symposium on

Discrete algorithms, 2001. Society for Industrial and Applied Mathematics,

547-556.

ADAMS, G. & SCHVANEVELDT, J. 2011. Understanding Research Methods., New

York, Longman.

AL-BADAWI, M. 2010. A Performance Evaluation of a New Bitmap-Based Xml

Processing Approach. PhD, University of Sheffield.

AL-KHALIFA, S., JAGADISH, H., KOUDAS, N., PATEL, J. M., SRIVASTAVA, D. & WU, Y.

Structural joins: A primitive for efficient XML query pattern matching. Data

Engineering, 2002. Proceedings. 18th International Conference on, 2002.

IEEE, 141-152.

ALSTRUP, S. & RAUHE, T. Improved labeling scheme for ancestor queries.

Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete

algorithms, 2002. Society for Industrial and Applied Mathematics, 947-953.

AMAGASA, T., YOSHIKAWA, M. & UEMURA, S. QRS: A robust numbering scheme for

XML documents. Data Engineering, 2003. Proceedings. 19th International

Conference on, 2003. IEEE, 705-707.

References

 240

AMATO, G., DEBOLE, F., ZEZULA, P. & RABITTI, F. 2003. YAPI: Yet another path

index for XML searching. Research and Advanced Technology for Digital

Libraries. Springer.

ANDERSON, T. 2008. Use an Xml Database in Php and Java Applications [Online].

http://harisetiaji.files.wordpress.com/2009/05/db2-application-with-php-

and-java.pdf: IBM. [Accessed 18-12-2013 2013].

APRIL, A. & ABRAN, A. 2012. Software maintenance management: evaluation and

continuous improvement, John Wiley & Sons.

ARION, A., BONIFATI, A., COSTA, G., D’AGUANNO, S., MANOLESCU, I. & PUGLIESE,

A. 2004. Efficient query evaluation over compressed XML data. Advances in

Database Technology-EDBT 2004. Springer.

ARION, A., BONIFATI, A., MANOLESCU, I. & PUGLIESE, A. 2007. XQueC: A query-

conscious compressed XML database. ACM Transactions on Internet

Technology (TOIT), 7, 10.

ASSEFA, B. G. & ERGENC, B. 2012. OrderBased Labeling Scheme for Dynamic XML

Query Processing. Multidisciplinary Research and Practice for Information

Systems. Springer.

ATIQUE, M. & RAUT, A. 2012. A non redundant compact XML storage for efficient

indexing and querying of XML documents. Global Trends in Computing and

Communication Systems. Springer.

BALMIN, A., COLBY, L., CURTMOLA, E., LI, Q. & OZCAN, F. 2009. Search driven

analysis of heterogenous XML data. arXiv preprint arXiv:0909.1773.

BARALIS, E., GARZA, P., QUINTARELLI, E. & TANCA, L. 2007. Answering XML

queries by means of data summaries. ACM Transactions on Information

Systems (TOIS), 25, 10.

BARBOSA, D. & BONIFATI, A. 2007. Database and XML Technologies: 5th

International XML Database Symposium, XSym 2007, Vienna, Austria,

September 23-24, 2007, Proceedings, Springer.

BARBOSA, D., MENDELZON, A., KEENLEYSIDE, J. & LYONS, K. ToXgene: a template-

based data generator for XML. Proceedings of the 2002 ACM SIGMOD

international conference on Management of data, 2002. ACM, 616-616.

References

 241

BEHRENDS, E. 2007. Evaluation of queries on linked distributed XML data.

University of Göttingen.

BELL, J. 2006. Doing Your Research Project: A Guide for First-time Researchers in

Education, Health and Social Science-4/E.

BENJAMINI, Y. 2008 Opening the Box of a Boxplot. The American Statistician, 42

257–262.

BERGLUND, A., BOAG, S., CHAMBERLIN, D., FERNA NDEZ, M., KAY, M., ROBIE, J. &

SIMÉON, J. 2010a. XML path language (XPath) 2.0 [Online].

http://www.w3.org/TR/xpath20/ W3C. [Accessed 01-04-2011 2011].

BERGLUND, A., BOAG, S., CHAMBERLIN, D., FERNA NDEZ, M., KAY, M., ROBIE, J. &

SIME ON, J. 2010b. Xml Path Language (Xpath) 2.0 [Online].

http://www.w3.org/TR/xpath20/: W3C. [Accessed 04-12-2013 2013].

BOAG, S., BERGLUND, A., CHAMBERLIN, D., SIMEON, J., KAY, M., ROBIE, J. &

FERNANDEZ, M. 2007. XML path language (XPath) 2.0. W3C, W3C

Recommendation, Jan.

BOAG, S., CHAMBERLIN, D., FERNANDEZ, M. F., FLORESCU, D., ROBIE, J. &

SIMACON, J. 2011. Xquery 1.0: An Xml Query Language [Online].

http://www.w3.org/TR/xquery/: W3C. [Accessed 22-10-2013 2013].

BOAG, S., CHAMBERLIN, D., FERNÁNDEZ, M. F., FLORESCU, D., ROBIE, J., SIMÉON, J.

& CONSORTIUM, W. C. W. W. W. 2003. XQuery 1.0: An XML Query Language,

November 2003. W3C Working Draft.

BÖHME, T. & RAHM, E. 2003. Multi-user evaluation of XML data management

systems with XMach-1. Efficiency and Effectiveness of XML Tools and

Techniques and Data Integration over the Web. Springer.

BO HME, T. & RAHM, E. 2003. Multi-User Evalaution of Xml Data Management

Systems with Xmach~1. VLDB 2002 Workshop EEXTT and CAiSE. London,

UK.

BOSAK, J. & BRAY, T. 1999. XML and the second-generation Web. Scientific

American, 280, 89-93.

BOUGANIM, L., NGOC, F. D. & PUCHERAL, P. Client-based access control

management for XML documents. Proceedings of the Thirtieth

References

 242

international conference on Very large data bases-Volume 30, 2004. VLDB

Endowment, 84-95.

BOURRET, R. 2005. Xml and Databases [Online].

http://www.rpbourret.com/xml/XMLAndDatabases.htm. [Accessed 22-03-

2011 2011].

BRAY, T., PAOLI, J., SPERBERG-MCQUEEN, C., MALER, E. & YERGEAU, F. 2008.

Extensible Markup Language (XML) 1.0 , W3C 2008. URL http://www. w3.

org/TR/xml.

BRENES, S., WU, Y., VAN GUCHT, D. & SANTA CRUZ, P. Trie Indexes for Efficient

XML Query Evaluation. WebDB, 2008. Citeseer.

BROWNELL, D. & MEGGINSON, D. 2002. SAX: Simple API for XML. SAX Project

Organization.

BRUNO, N., KOUDAS, N. & SRIVASTAVA, D. Holistic twig joins: optimal XML pattern

matching. Proceedings of the 2002 ACM SIGMOD international conference

on Management of data, 2002. ACM, 310-321.

CAMERON, D. 2008. How Xquery Extends Xpath [Online].

http://www.ibm.com/developerworks/xml/library/x-

queryxpath/index.html: IBM. [Accessed 26-10-2013 2013].

CAREY, M. J., DEWITT, D. J., KANT, C. & NAUGHTON, J. F. 1994. A status report on

the OO7 OODBMS benchmarking effort. ACM SIGPLAN Notices, 29, 414-426.

CATANIA, B., OOI, B. C., WANG, W. & WANG, X. Lazy XML updates: laziness as a

virtue, of update and structural join efficiency. Proceedings of the 2005

ACM SIGMOD international conference on Management of data, 2005. ACM,

515-526.

CHAMPION, M. 2001. Storing XML in databases. eAI journal, 10, 53-55.

CHANG, Y.-H., WU, C.-Y. & LO, C.-C. 2012. Processing xml queries with structural

and full-text constraints. Journal of Information Science and Engineering, 28,

221-242.

CHASE, N. 2003. Validating Xml [Online].

http://www.ibm.com/developerworks/xml/tutorials/x-

valid/section4.html: IBM. [Accessed 12-12-2012 2012].

References

 243

CHEN, S., LI, H.-G., TATEMURA, J., HSIUNG, W.-P., AGRAWAL, D. & CANDAN, K. S.

Twig 2 Stack: bottom-up processing of generalized-tree-pattern queries

over XML documents. Proceedings of the 32nd international conference on

Very large data bases, 2006. VLDB Endowment, 283-294.

CHEN, T., LU, J. & LING, T. W. On boosting holism in XML twig pattern matching

using structural indexing techniques. Proceedings of the 2005 ACM

SIGMOD international conference on Management of data, 2005. ACM, 455-

466.

CHOI, H., LEE, K.-H. & LEE, Y.-J. 2014. Parallel labeling of massive XML data with

MapReduce. The Journal of Supercomputing, 67, 408-437.

CHOI, R. H. & WONG, R. K. 2014. VXQ: A visual query language for XML data.

Information Systems Frontiers, 1-21.

CHUNG, C.-W., MIN, J.-K. & SHIM, K. APEX: An adaptive path index for XML data.

Proceedings of the 2002 ACM SIGMOD international conference on

Management of data, 2002. ACM, 121-132.

CLARK, M., RILEY, M., SZIVAS, E., WILKIE, E. & WOOD, R. 2000. Researching and

writing dissertations in business and management. London: Thomson

Learning.

CLEMENTS, P., KAZMAN, R. & KLEIN, M. 2003. Evaluating software architectures, 清

华大学出版社.

COHEN, E., KAPLAN, H. & MILO, T. 2010. Labeling dynamic XML trees. SIAM Journal

on Computing, 39, 2048-2074.

COLLIS, J., HUSSEY, R., CROWTHER, D., LANCASTER, G., SAUNDERS, M., LEWIS, P.,

THORNHILL, A., BRYMAN, A., BELL, E. & GILL, J. 2003. Business research

methods. Palgrave Macmillan, New York.

CONNOLLY, T. M. & BEGG, C. E. 2005. Database systems: a practical approach to

design, implementation, and management, Pearson Education.

COOPER, B. F., SAMPLE, N., FRANKLIN, M. J., HJALTASON, G. R. & SHADMON, M. A

fast index for semistructured data. VLDB, 2001. 341-350.

COOPER, H. 2008. Synthesizing Research: A Guide for Literature Reviews. , Harlow:

Pearson Education Limited.

References

 244

CORMEN, T. H., LEISERSON, C. E., RIVEST, R. L. & STEIN, C. 2001. Introduction to

algorithms, MIT press Cambridge.

CRESWELL, J. 2007 Review of the Literature, Thousand Oaks: Sage Publications.

CRESWELL, J. W. & CLARK, V. L. P. 2007. Designing and conducting mixed methods

research.

CUNNINGHAM, L. A. 2006. Language, Deals, and Standards: The Future of XML

Contracts. Wash. UL Rev., 84, 313.

DALE, N. B., JOYCE, D. T. & WEEMS, C. 2012. Object-oriented data structures using

Java, Sudbury, MA, Jones & Bartlett Learning.

DARUGAR, P. 2000. Dare to Script Tree-Based Xml with Perl [Online].

http://www.ibm.com/developerworks/xml/library/xmlperl2/index.html:

IBM. 12-12-2012].

DAVIS, K. C., ZHAN, Y. & DAVIS, R. B. An XML/XPath query language and XMark

performance study. Applications and the Internet, 2003. Proceedings. 2003

Symposium on, 2003. IEEE, 422-427.

DBLP. 2013. DBLP: Computer Science Bibliography [Online]. http://dblp.uni-

trier.de/db/: DBLP. [Accessed 20-12-2013 2013].

DELLINGER, A. B. & LEECH, N. L. 2007. Toward a unified validation framework in

mixed methods research. Journal of Mixed Methods Research, 1, 309-332.

DENG, Z. H., XIANG, Y. Q. & GAO, N. 2013. LAF: a new XML encoding and indexing

strategy for keyword‐based XML search. Concurrency and Computation:

Practice and Experience, 25, 1604-1621.

DIETZ, P. F. Maintaining order in a linked list. Proceedings of the fourteenth

annual ACM symposium on Theory of computing, 1982. ACM, 122-127.

DIRIWÄCHTER, R. & VALSINER, J. Qualitative developmental research methods in

their historical and epistemological contexts. Forum Qualitative

Sozialforschung/Forum: Qualitative Social Research, 2006.

DOCUMENTATION, O. 2014. ArrayList [Online].

http://docs.oracle.com/javase/7/docs/api/java/util/ArrayList.html:

Oracle. [Accessed 02-01-2014 2014].

DROZDEK, A. 2004. Data structures and algorithms in Java, Cengage Learning.

References

 245

DUAN, S., KEMENTSIETSIDIS, A., SRINIVAS, K. & UDREA, O. Apples and oranges: a

comparison of RDF benchmarks and real RDF datasets. Proceedings of the

2011 ACM SIGMOD International Conference on Management of data, 2011.

ACM, 145-156.

DUONG, M. & ZHANG, Y. LSDX: a new labelling scheme for dynamically updating

XML data. Proceedings of the 16th Australasian database conference-

Volume 39, 2005. Australian Computer Society, Inc., 185-193.

DUONG, M. & ZHANG, Y. 2008. Dynamic Labelling Scheme for XML Data Processing.

On the Move to Meaningful Internet Systems: OTM 2008. Springer.

EDA, T., SAKURAI, Y., AMAGASA, T., YOSHIKAWA, M., UEMURA, S. & HONISHI, T.

Dynamic range labeling for XML trees. Current Trends in Database

Technology-EDBT 2004 Workshops, 2005. Springer, 230-239.

ELMASRI, R. 2008. Fundamentals of database systems, Pearson Education India.

ERIKSEN, L. 2004. Xml Parsing with Sax and Dom: A Code Comparision. The

Australia Open Source Developers' Confrence (OSDC2004). Melboyrne,

Australia.

FALLSIDE, D. C. & WALMSLEY, P. 2004. XML schema part 0: primer second edition.

W3C recommendation, 16.

FAROOQ, S. & QUADRI, S. 2011. Evaluating Effectiveness of Software Testing

Techniques With Emphasis on Enhancing Software Reliability. Journal of

Emerging Trends in Computing and Information Sciences, 2, 740-745.

FENNELL, P. 2013. Extremes of XML. XML LONDON 2013.

FIEBIG, T., HELMER, S., KANNE, C., MOERKOTTE, G., NEUMANN, J. & SCHIELE, R.

2002. Anatomy of a Native Xml Base Managment System. VLDB, 292-314.

FISHER, D. K., LAM, F., SHUI, M., W. & WONG, R. K. Dynamic labeling schemes for

ordered XML based on type information Proceedings of the 17th

Australasian Database Conference, 2006 Australia. Australian Computer

Society, Inc., 7-12.

FISHER, D. K., LAM, F., SHUI, W. M. & WONG, R. K. Dynamic labeling schemes for

ordered XML based on type information. Proceedings of the 17th

Australasian Database Conference-Volume 49, 2006. Australian Computer

Society, Inc., 59-68.

References

 246

FLANAGAN, D. 2005. Java in a Nutshell, " O'Reilly Media, Inc.".

FRANCESCHET, M. 2005. XPathMark: an XPath benchmark for the XMark

generated data. Database and XML Technologies. Springer.

FRANK, T., APEL, A. & SCHAEBEC, H. Web integration of gOcad using a 3d-Xml

application server. Proceedings of the 23rd Gocad Meeting, Nancy, France,

June, 2003. 10-11.

FRIGGE, M., HOAGLIN, D. C. & IGLEWICZ, B. 2009. Some implementations of the

boxplot. The American Statistician, 43, 50-54.

GABILLON, A. & FANSI, M. A persistent labelling scheme for XML and tree

databases. SITIS, 2005. 110-115.

GHAURI, P. N. & GRØNHAUG, K. 2005. Research methods in business studies: A

practical guide, Pearson Education.

GILL, J. & JOHNSON, P. 2010. Research methods for managers, Sage.

GIVEN, L. M. 2008. The Sage encyclopedia of qualitative research methods, Sage

Publications.

GOLDMAN, R. & WIDOM, J. 1997. Dataguides: Enabling query formulation and

optimization in semistructured databases.

GOU, G. & CHIRKOVA, R. 2007. Efficiently querying large XML data repositories: A

survey. Knowledge and Data Engineering, IEEE Transactions on, 19, 1381-

1403.

GREEN, B. N., JOHNSON, C. D. & ADAMS, A. 2006. Writing narrative literature

reviews for peer-reviewed journals: secrets of the trade. Journal of

Chiropractic Medicine, 5, 101-117.

GREEN, T. J., MIKLAU, G., ONIZUKA, M. & SUCIU, D. 2003. Processing XML streams

with deterministic automata. Database Theory—ICDT 2003. Springer.

GROPPE, J. 2008. SPEEDING UP XML QUERYING. Citeseer.

GULHANE, V. & ALI, M. Partial Query Processor For Compressed Xml. International

Journal of Engineering Research and Technology, 2013. ESRSA Publications.

GUSFIELD, D. 1997. Algorithms on strings, trees and sequences: computer science

and computational biology, Cambridge university press.

HAKIM, C. 2000. Research design: successful designs for social and economic

research, Psychology Press.

References

 247

HAMMAWA, M. & SAMPSON, G. 2011. Applying Data Mining Research

Methodologies on Information Systems.

HÄRDER, T., HAUSTEIN, M., MATHIS, C. & WAGNER, M. 2007. Node labeling

schemes for dynamic XML documents reconsidered. Data & Knowledge

Engineering, 60, 126-149.

HÄRDER, T. & MATHIS, C. 2010. Key concepts for native XML processing. From

active data management to event-based systems and more. Springer.

HARDY, M. A. & BRYMAN, A. 2004. Handbook of data analysis, Sage.

HAROLD, E. 2005. Managing Xml Data: Native Xml Databases Theory and Reality.

[Online]. http://www.ibm.com/developerworks/xml/library/x-mxd4.html:

IBM. [Accessed 13-06-2011 2011].

HAROLD, E. R. 2002. Processing XML with Java, Addison-Wesley Longman

Publishing Co., Inc.

HAROLD, E. R. 2004. Effective XML: 50 specific ways to improve Your XML, Addison-

Wesley Professional.

HAROLD, E. R., MEANS, W. S. & UDEMADU, K. 2004. XML in a Nutshell, O'reilly

Sebastopol, CA.

HART, C. 2008. Searching and Reviewing the Literature and Information Skills. The

Postgraduate's Companion, 162.

HAUSTEIN, M. & HÄRDER, T. 2007. An efficient infrastructure for native

transactional XML processing. Data & Knowledge Engineering, 61, 500-523.

HAW, S.-C. & LEE, C.-S. 2009. Extending path summary and region encoding for

efficient structural query processing in native XML databases. Journal of

Systems and Software, 82, 1025-1035.

HE, H. & YANG, J. Multiresolution indexing of XML for frequent queries. Data

Engineering, 2004. Proceedings. 20th International Conference on, 2004.

IEEE, 683-694.

HE GARET, P., WHITMER, R. & WOOD, L. 2005. Document Object Model (Dom)

[Online]. http://www.w3.org/DOM/ [Accessed 25-12-2013 2013].

HORSTMANN, C. S. & CORNELL, G. 2002. Core Java 2: Volume I, Fundamentals,

Pearson Education.

References

 248

HOU, J., ZHANG, Y. & KAMBAYASHI, Y. Object-oriented representation for XML

data. Cooperative Database Systems for Advanced Applications, 2001.

CODAS 2001. The Proceedings of the Third International Symposium on,

2001. IEEE, 40-49.

HUNTER, D., CAGLE, K. & DIX, C. 2007. Beginning XML: XML Schemas, SOAP, XSLT,

DOM, and SAX 2.0. Wrox Press.

HUNTER, L. & LEAHEY, E. 2008. Collaborative research in sociology: Trends and

contributing factors. The American Sociologist, 39, 290-306.

IDRIS, N. 1999. Should I use SAX or DOM.

JEBREEN, I. 2012. Using Inductive Approach as Research Strategy in Requirements

Engineering. International Journal of Computer and Information Technology,

1, 162-173.

JIANG, Y., HE, X., LIN, F. & JIA, W. 2011. An Encoding and Labeling Scheme Based on

Continued Fraction for Dynamic XML. Journal of Software, 6.

JITTRAWONG, K. & WONG, R. K. Optimizing XPath queries on streaming XML data.

Proceedings of the eighteenth conference on Australasian database-Volume

63, 2007. Australian Computer Society, Inc., 73-82.

JOHNSON, J., MILLER, A., KHAN, L. & THURAISINGHAM, B. Extracting semantic

information structures from free text law enforcement data. Intelligence

and Security Informatics (ISI), 2012 IEEE International Conference on,

2012. IEEE, 177-179.

JONGE, A. 2008. Comparing Xml Database Approaches [Online].

http://www.ibm.com/developerworks/library/x-comparexmldb/: IBM.

[Accessed 05-11-2012 2012].

K., S. 2006 Making Mistakes with XML, Texas, Addison-Wesley.

KAPLAN, H., MILO, T. & SHABO, R. A comparison of labeling schemes for ancestor

queries. Proceedings of the thirteenth annual ACM-SIAM symposium on

Discrete algorithms, 2002. Society for Industrial and Applied Mathematics,

954-963.

KASIM, R., ALEXANDER, K., HUDSON, J. & 2010 A choice of research strategy for

identifying community-based action skill requirements in the process of

References

 249

delivering housing market renewal., Research Institute for the Built and

Human Environment, University of Salford, UK.

KAUSHIK, R., BOHANNON, P., NAUGHTON, J. F. & KORTH, H. F. Covering indexes for

branching path queries. Proceedings of the 2002 ACM SIGMOD

international conference on Management of data, 2002a. ACM, 133-144.

KAUSHIK, R., SHENOY, P., BOHANNON, P. & GUDES, E. Exploiting local similarity for

indexing paths in graph-structured data. Data Engineering, 2002.

Proceedings. 18th International Conference on, 2002b. IEEE, 129-140.

KHA, D. D., YOSHIKAWA, M. & UEMURA, S. A structural numbering scheme for XML

data. XML-Based Data Management and Multimedia Engineering—EDBT

2002 Workshops, 2002. Springer, 91-108.

KHAN, W. & ULLAH, H. 2010. Scientific Reasoning: A Solution to the Problem of

Induction. International Journal of Basic & Applied Sciences, 10.

KOCHMER, C. & FRANDSEN, E. 2002. JSP and XML: From Web Services to XML in

Your JSP Application, Addison-Wesley Longman Publishing Co., Inc.

LAWRENCE, R. 2004. The space efficiency of XML. Information and Software

Technology, 46, 753-759.

LEE, D. & CHU, W. 2000. Comparative Analysis of Six Xml Schema Languages. ACM

SIGMOD Record, 76-87.

LEE, K.-H., WHANG, K.-Y., HAN, W.-S. & KIM, M.-S. 2010. Structural consistency:

enabling XML keyword search to eliminate spurious results consistently.

The VLDB Journal, 19, 503-529.

LEWIS, J. & CHASE, J. 2010. Java software structures: designing and using data

structures, New York, Addison-Wesley.

LI, C. & LING, T. W. An improved prefix labeling scheme: A binary string approach

for dynamic ordered XML. Database Systems for Advanced Applications,

2005a. Springer, 125-137.

LI, C. & LING, T. W. QED: a novel quaternary encoding to completely avoid re-

labeling in XML updates. Proceedings of the 14th ACM international

conference on Information and knowledge management, 2005b. ACM, 501-

508.

References

 250

LI, C., LING, T. W. & HU, M. Efficient processing of updates in dynamic XML data.

Data Engineering, 2006. ICDE'06. Proceedings of the 22nd International

Conference on, 2006a. IEEE, 13-13.

LI, C., LING, T. W. & HU, M. Reuse or never reuse the deleted labels in XML query

processing based on labeling schemes. Database Systems for Advanced

Applications, 2006b. Springer, 659-673.

LI, C., LING, T. W. & HU, M. 2008. Efficient updates in dynamic XML data: from

binary string to quaternary string. The VLDB Journal—The International

Journal on Very Large Data Bases, 17, 573-601.

LI, C., LING, T. W., LU, J. & YU, T. On reducing redundancy and improving efficiency

of XML labeling schemes. Proceedings of the 14th ACM international

conference on Information and knowledge management, 2005. ACM, 225-

226.

LI, G., FENG, J., WANG, J. & ZHOU, L. Effective keyword search for valuable lcas over

xml documents. Proceedings of the sixteenth ACM conference on

Conference on information and knowledge management, 2007. ACM, 31-40.

LI, M., JIANG, Q., TAN, C.-H. & WEI, K.-K. 2014. Enhancing User-Game Engagement

Through Software Gaming Elements. Journal of Management Information

Systems, 30, 115-150.

LI, Q. & MOON, B. Indexing and querying XML data for regular path expressions.

VLDB, 2001. 361-370.

LI, Y. 2003. TheXoo7Benchmark [Online].

http://www.comp.nus.edu.sg/~ebh/XOO7.html. [Accessed 01-12-2013

2013].

LIEFKE, H. & SUCIU, D. XMill: an efficient compressor for XML data. ACM Sigmod

Record, 2000. ACM, 153-164.

LIU, J., MA, Z. & YAN, L. Efficient processing of twig pattern matching in fuzzy XML.

Proceedings of the 18th ACM conference on Information and knowledge

management, 2009. ACM, 117-126.

LIU, J., MA, Z. & YAN, L. 2013. Efficient labeling scheme for dynamic XML trees.

Information Sciences, 221, 338-354.

References

 251

LOESER, H., NICOLA, M. & FITZGERALD, J. Index Challenges in Native XML

Database Systems. BTW, 2009. Citeseer, 508-525.

LORENZ, R. C., KRÜGER, J. K., NEUMANN, B., SCHOTT, B. H., KAUFMANN, C., HEINZ,

A. & WÜSTENBERG, T. 2013. Cue reactivity and its inhibition in pathological

computer game players. Addiction biology, 18, 134-146.

LU, J. 2013. XML Labeling Scheme. An Introduction to XML Query Processing and

Keyword Search. Springer.

LU, J., LING, T. W., CHAN, C.-Y. & CHEN, T. From region encoding to extended

dewey: On efficient processing of XML twig pattern matching. Proceedings

of the 31st international conference on Very large data bases, 2005. VLDB

Endowment, 193-204.

LUO, C., JIANG, Z., HOU, W.-C., YU, F. & ZHU, Q. A sampling approach for XML query

selectivity estimation. Proceedings of the 12th International Conference on

Extending Database Technology: Advances in Database Technology, 2009.

ACM, 335-344.

M., M., D., K. & C., L. 2009 Internet Drafts: XML Media Types Internet Engineering

Task Force, 2, 75-89.

MA, Z. & YAN, L. 2010. Soft Computing in XML Data Management: Intelligent

Systems from Decision Making to Data Mining, Web Intelligence and

Computer Vision, Springer.

MATHA, M. P. 2011. Core Java: a comprehensive study, New Delhi, PHI Learning.

MCCREIGHT, E. M. 1976. A space-economical suffix tree construction algorithm.

Journal of the ACM (JACM), 23, 262-272.

MCGILL, R., TUKEY, J. W. & LARSEN, W. A. 1978. Variations of box plots. The

American Statistician, 32, 12-16.

MEGGINSON, D. 2001. Sax 2.0: The simple api for xml. SAX project.

MEHEUS, J. & NICKLES, T. 2009. Models of discovery and creativity, Springer.

MERIALDO, P. 1999. Acm Sigmod Record: Xml Version [Online].

http://www.dia.uniroma3.it/Araneus/Sigmod/ [Accessed 22-02-2013

2013].

MESITI, W. L. M., TZITZIKAS, C. T. Y. & VAKALI, A. 2004. Current Trends in

Database Technology–EDBT 2004 Workshops.

References

 252

MEUSS, H. & STROHMAIER, C. M. Improving Index Structures for Structured

Document Retrieval. BCS-IRSG Annual Colloquium on IR Research, 1999.

Citeseer.

MILO, T. & SUCIU, D. 1999. Index structures for path expressions. Database

Theory—ICDT’99. Springer.

MIN, J.-K., LEE, J. & CHUNG, C.-W. 2009. An efficient XML encoding and labeling

method for query processing and updating on dynamic XML data. Journal of

Systems and Software, 82, 503-515.

MIRABI, M., IBRAHIM, H., MAMAT, A., UDZIR, N. I. & FATHI, L. 2010. Controlling

label size increment of efficient XML encoding and labeling scheme in

dynamic XML update. Journal of Computer Science, 6, 1535.

MLÝNKOVÁ, I. 2008. Xml benchmarking: Limitations and opportunities. Technical

Report, Department of Software Engineering, Charles University, Czech

Republic.

MOGHADDAM, G. G. & MOBALLEGHI, M. 2008. How do we measure the use of

scientific journals? A note on research methodologies. Scientometrics, 76,

125-133.

MOLINA, H., ULLMAN, J. & WIDOM, J. 2009. Database systems: the complete book,

USA, Pearson Education.

MURATA, M., LAURENT, S. S. & KOHN, D. 2001. XML media types. RFC3023,

January.

NAFTALIN, M. & WADLER, P. 2006. Java generics and collections, " O'Reilly Media,

Inc.".

NASA. 2001. Gsfc Open Source Softwere [Online].

http://developerlife.com/tutorials/?p=28. [Accessed 22-03-2014 2014].

NICOLA, M., KOGAN, I. & SCHIEFER, B. An XML transaction processing benchmark.

Proceedings of the 2007 ACM SIGMOD international conference on

Management of data, 2007. ACM, 937-948.

NOAMAN, A. Y. & AL MANSOUR, A. A. 2012. A Comparative Study Between Two

Types of Database Management Systems: XML-Enabled Relational and

Native XML. World Applied Sciences Journal, 19, 972-985.

References

 253

NOAMAN, A. Y. & ALMANSOUR, A. 2012. Towards Achieving an Optimum

Performanceof XML Data into Both Types of XML Databases: XML-Enabled

Databases and Native XML Databases. Middle-East Journal of Scientific

Research, 12, 182-194.

NOLAN, D. & LANG, D. T. 2014. XML and Web Technologies for Data Sciences with R,

Springer.

O'NEIL, P., O'NEIL, E., PAL, S., CSERI, I., SCHALLER, G. & WESTBURY, N. ORDPATHs:

insert-friendly XML node labels. Proceedings of the 2004 ACM SIGMOD

international conference on Management of data, 2004. ACM, 903-908.

O’LEARY, Z. 2006 Researching Real-World Problems – A Guide to Methods of

Inquiry. T. housand Oaks: SAGE.

OGBUJI, U. 2004. A hands-on introduction to Schematron. IBM.

OLTEANU, D. 2005. Evaluation of XPath queries against XML streams. lmu.

ONIZUKA, M. Light-weight XPath processing of XML stream with deterministic

automata. Proceedings of the twelfth international conference on

Information and knowledge management, 2003. ACM, 342-349.

OQBUJI, U. 2004a. A Hands-on Introduction to Schematron [Online].

http://www.ibm.com/developerworks/xml/tutorials/x-

schematron/section2.html IBM. [Accessed 22-11-2012 2012].

OQBUJI, U. 2004b. A Survey of Xml Standards [Online].

http://www.ibm.com/developerworks/xml/library/x-stand1/index.html:

IBM. 2012].

PALANI, G. 2011. Investigate Current Xml Tools [Online].

http://www.ibm.com/developerworks/xml/library/x-

xmltools/index.html: IBM. [Accessed 10-11-2012 2012].

PAPAMARKOS, G., ZAMBOULIS, L. & POULOVASSILIS, A. 2009. Xml Databases.

London, UK: School of Computer Science and Information Systems.

PERLIS, A. J., SAYWARD, F. & SHAW, M. 1981. Software metrics: an analysis and

evaluation, MIT Press.

POWELL, G. 2007. Beginning XML databases, John Wiley & Sons.

PROJECT, S. 2013a. About SAX [Online]. http://www.saxproject.org: SAX Project.

[Accessed 23-03-2013 2013].

References

 254

PROJECT, S. 2013b. Events vs Trees [Online].

http://www.saxproject.org/event.html: SAX Project. [Accessed 24-03-2013

2013].

QIN, Z. Y., TANG, Y. & XU, H. Z. 2012. A string approach for dynamic XML document.

Applied Mechanics and Materials, 220, 2512-2519.

RADIYA, A. & DIXIT, V. 2000. The Basics of Using Xml Schema to Define Elements

[Online]. http://www.ibm.com/developerworks/xml/library/xml-

schema/index.html: IBM. [Accessed 02-12-2012 2012].

RAFIEI, D., MOISE, D. L. & SUN, D. Finding syntactic similarities between xml

documents. Database and Expert Systems Applications, 2006. DEXA'06.

17th International Workshop on, 2006. IEEE, 512-516.

RAO, P. & MOON, B. PRIX: Indexing and querying XML using prufer sequences.

Data Engineering, 2004. Proceedings. 20th International Conference on,

2004. IEEE, 288-299.

RAY, E. T. 2003. learning XML, " O'Reilly Media, Inc.".

REMENYI, D. 1998. Doing research in business and management: an introduction to

process and method, Sage.

RIDLEY, D. 2012. The literature review: A step-by-step guide for students, Sage.

ROBSON, C. 2011. Real world research: a resource for users of social research

methods in applied settings, Wiley Chichester.

ROUSSEEUW, P. J., RUTS, I. & AND TUKEY, J. W. 1999. The Bagplot: A Bivariate

Boxplot The American Statistician 53 382–387.

RUNAPONGSA, K., PATEL, J. M., JAGADISH, H., CHEN, Y. & AL-KHALIFA, S. 2006a.

The Michigan benchmark: towards XML query performance diagnostics.

Information Systems, 31, 73-97.

RUNAPONGSA, K., PATEL, M., JAGADISH, H., CHEN, Y. & S., A.-K. 2006b. Michigan

Benchmark [Online].

http://www.eecs.umich.edu/db/mbench/description.html [Accessed 22-

12-2013 2013].

RUNAPONGSA, K., PATEL, M., JAGADISH, H., CHEN, Y. S. & A.-K. 2006c. The

Michigan Benchmark [Online].

References

 255

http://www.eecs.umich.edu/db/mbench/description.html. [Accessed 22-

01-2014 2014].

SAKR, S. 2009. XML compression techniques: A survey and comparison. Journal of

Computer and System Sciences, 75, 303-322.

SANGHERA, P. 2006. SCJP Exam for J2SE 5: A Concise and Comprehensive Study

Guide for the Sun Certified Java Programmer Exam, Apress.

SANS, V. & LAURENT, D. 2008. Prefix based numbering schemes for XML:

techniques, applications and performances. Proceedings of the VLDB

Endowment, 1, 1564-1573.

SAPSFORD, R. & JUPP, V. 2006. Data collection and analysis, Sage.

SAUNDERS, M. N., SAUNDERS, M., LEWIS, P. & THORNHILL, A. 2011. Research

methods for business students, 5/e, Pearson Education India.

SCHILDT, H. 2006. Java The Complete Reference, (Osborne Complete Reference

Series), McGraw-Hill Osborne Media.

SCHMIDT, A. 2003. Xmark [Online]. http://www.xml-benchmark.org/. [Accessed

11-11-2013 2013].

SCHMIDT, A., WAAS, F., KERSTEN, M., CAREY, M. J., MANOLESCU, I. & BUSSE, R.

XMark: A benchmark for XML data management. Proceedings of the 28th

international conference on Very Large Data Bases, 2002. VLDB

Endowment, 974-985.

SCHMIDT, A., WAAS, F., KERSTEN, M., FLORESCU, D., CAREY, M. J., MANOLESCU, I.

& BUSSE, R. 2001. Why and how to benchmark XML databases. ACM

SIGMOD Record, 30, 27-32.

SEAN, K. 2006. Making Mistakes with XML, Texas USA Addison-Wesley.

SENELLART, P. & SOUIHLI, A. Un système de gestion de données XML

probabilistes. Proc. BDA, 2010. Citeseer.

SHAH, B., RAO, P. R., MOON, B. & RAJAGOPALAN, M. 2009. A data parallel algorithm

for XML DOM parsing. Database and XML Technologies. Springer.

SHEN, H. T., PEI, J., ÖZSU, M. T., ZOU, L., LU, J., LING, T. W., YU, G., ZHUANG, Y. &

SHAO, J. 2010. Web-Age Information Management. WAIM 2010 Workshops:

WAIM 2010 International Workshops: IWGD 2010, WCMT 2010, XMLDM

References

 256

2010, Jiuzhaigou Valley, China, July 15-17, 2010, Revised Selected Papers,

Springer.

SIKORA, M. 2003. Java: Practical Guide for Programmers, Morgan Kaufmann.

SILBERSTEIN, A., HE, H., YI, K. & YANG, J. BOXes: Efficient maintenance of order-

based labeling for dynamic XML data. Data Engineering, 2005. ICDE 2005.

Proceedings. 21st International Conference on, 2005. IEEE, 285-296.

SILVASTI, P., SIPPU, S. & SOISALON-SOININEN, E. Schema-conscious filtering of

XML documents. Proceedings of the 12th International Conference on

Extending Database Technology: Advances in Database Technology, 2009.

ACM, 970-981.

SJOBERG, D. I., ANDA, B., ARISHOLM, E., DYBA, T., JORGENSEN, M.,

KARAHASANOVIC, A., KOREN, E. F. & VOKÁC, M. Conducting realistic

experiments in software engineering. Empirical Software Engineering,

2002. Proceedings. 2002 International Symposium n, 2002. IEEE, 17-26.

SPELL, B. 2005. Pro Java Programming, Springer.

STADLER, F. 2004. Induction and Deduction in the Sciences, Springer.

STAKEN, K. 2001. Introduction to Native Xml Databases [Online].

http://www.xml.com/pub/a/2001/10/31/nativexmldb.html: O'Reilly.

[Accessed 22-09-2011 2011].

STEEDMAN, M., OSBORNE, M., SARKAR, A., CLARK, S., HWA, R., HOCKENMAIER, J.,

RUHLEN, P., BAKER, S. & CRIM, J. Bootstrapping statistical parsers from

small datasets. Proceedings of the tenth conference on European chapter of

the Association for Computational Linguistics-Volume 1, 2003. Association

for Computational Linguistics, 331-338.

STEEGMANS, B. 2004. XML for DB2 Information Integration, IBM Corporation,

International Technical Support Organization.

SUCIU, D. 2002. Xml Data Repository [Online].

http://www.cs.washington.edu/research/xmldatasets/: University of

Washington. [Accessed 10-01-2014 2014].

SUN, C., CHAN, C.-Y. & GOENKA, A. K. Multiway slca-based keyword search in xml

data. Proceedings of the 16th international conference on World Wide

Web, 2007. ACM, 1043-1052.

References

 257

SUN, L. & WANG, H. 2012. A purpose-based access control in native XML databases.

Concurrency and Computation: Practice and Experience, 24, 1154-1166.

TATARINOV, I., VIGLAS, S. D., BEYER, K., SHANMUGASUNDARAM, J., SHEKITA, E. &

ZHANG, C. Storing and querying ordered XML using a relational database

system. Proceedings of the 2002 ACM SIGMOD international conference on

Management of data, 2002. ACM, 204-215.

TEOREY, T. J., LIGHTSTONE, S. S., NADEAU, T. & JAGADISH, H. 2011. Database

modeling and design: logical design, Elsevier.

THIMMA, M., TSUI, T. K. & LUO, B. HyXAC: a hybrid approach for XML access

control. Proceedings of the 18th ACM symposium on Access control models

and technologies, 2013. ACM, 113-124.

THONANGI, R. A Concise Labeling Scheme for XML Data. COMAD, 2006. 4-14.

TIAN, D. & GEORGANAS, N. D. A coverage-preserving node scheduling scheme for

large wireless sensor networks. Proceedings of the 1st ACM international

workshop on Wireless sensor networks and applications, 2002. ACM, 32-41.

TIDWELL, D. 2002. Introducti on to Xml [Online].

http://www.ibm.com/developerworks/xml/tutorials/xmlintro/section2.ht

ml: IBM. [Accessed 11-11-2012 2012].

TREEBANK. 1999. The Penn Treebank Project [Online].

http://www.cis.upenn.edu/~treebank/. [Accessed 29-01-2014 2014].

UNIPORT. 2014. Swiss-Port [Online]. http://www.uniprot.org: UniPort. [Accessed

22-03-2014 2014].

VAKALI, A., CATANIA, B. & MADDALENA, A. 2005. XML data stores: emerging

practices. Internet Computing, IEEE, 9, 62-69.

VLAHAVAS, I., STAMELOS, I., REFANIDIS, I. & TSOUKIÀS, A. 1999. ESSE: an expert

system for software evaluation. Knowledge-based systems, 12, 183-197.

W3C. 2010. What Is Xml? [Online]. http://www.w3.org/standards/xml/core

[Accessed 10-12-2011 2011].

W3SCHOOLS. 2013a. DTD Tutorial [Online]. http://www.w3schools.com/DTD/:

W3schools. [Accessed 05-01-2013 2013].

W3SCHOOLS. 2013b. Intoduction to XML Schema [Online].

http://www.w3schools.com/schema/schema_intro.asp: W3schools.

References

 258

W3SCHOOLS. 2013c. Introduction to DTD [Online].

http://www.w3schools.com/dtd/dtd_intro.asp: W3schools. [Accessed 03--

1-2013 2013].

W3SCHOOLS. 2013d. Introduction to Xml [Online].

http://www.w3schools.com/xml/xml_whatis.asp. [Accessed 22-10-2011

2011].

W3SCHOOLS. 2013e. Introduction to XQuery [Online].

http://www.w3schools.com/xquery/xquery_intro.asp: W3schools.

[Accessed 22-01-2013 2013].

W3SCHOOLS. 2013f. XML Attributes [Online].

http://www.w3schools.com/xml/xml_attributes.asp: W3schools.

[Accessed 20-01-2013 2013].

W3SCHOOLS. 2013g. XML DOM - Properties and Methods [Online].

http://www.w3schools.com/dom/dom_methods.asp: W3schools.

[Accessed 25-02-2013 2013].

W3SCHOOLS. 2013h. XML DOM Nodes [Online].

http://www.w3schools.com/dom/dom_nodes.asp: W3schools. [Accessed

20-02-2013 2013].

W3SCHOOLS. 2013i. XML Elements [Online].

http://www.w3schools.com/xml/xml_elements.asp: W3schools. [Accessed

22-1-2013 2013].

W3SCHOOLS. 2013j. XML Syntax Rules [Online].

http://www.w3schools.com/xml/xml_syntax.asp: W3schools. [Accessed

22-03-2013 2013].

W3SCHOOLS. 2013k. Xml Tree [Online].

http://www.w3schools.com/xml/xml_tree.asp: W3schools. [Accessed 03-

01-2013 2013].

W3SCHOOLS. 2013l. XPath Axes [Online].

http://www.w3schools.com/xpath/xpath_axes.asp: W3schools. [Accessed

13-01-2013 2013].

References

 259

W3SCHOOLS. 2013m. XPath Introduction [Online].

http://www.w3schools.com/xpath/xpath_intro.asp: W3schools. [Accessed

13-01-2013 2013].

W3SCHOOLS. 2013n. XPath Nodes [Online].

http://www.w3schools.com/xpath/xpath_nodes.asp: W3schools.

[Accessed 13-01-2013 2013].

W3SCHOOLS. 2013o. XPAth Syntax [Online].

http://www.w3schools.com/xpath/xpath_syntax.asp: W3schools.

[Accessed 15-01-2013 2013].

WALDT, D. 2010. Six Strategies for Extending Xml Schemas in a Single Namespace

[Online]. http://www.ibm.com/developerworks/xml/library/x-

xtendschema/index.html: IBM. [Accessed 12-11-2011 2011].

WALSH, N. 1998. A technical introduction to XML. Available on the World Wide Web

(accessed Oct 18, 2000): www. isgmlug. org, 2-49.

WAN, C. & LIU, X. 2008. XML database technology. Beijing: Tsinghua University

Press.

WANG, G. & LIU, M. Query processing and optimization for regular path

expressions. Advanced Information Systems Engineering, 2003. Springer,

30-45.

WANG, H. & MENG, X. On the sequencing of tree structures for XML indexing. Data

Engineering, 2005. ICDE 2005. Proceedings. 21st International Conference

on, 2005. IEEE, 372-383.

WANG, H., PARK, S., FAN, W. & YU, P. S. ViST: a dynamic index method for querying

XML data by tree structures. Proceedings of the 2003 ACM SIGMOD

international conference on Management of data, 2003. ACM, 110-121.

WANG, W., JIANG, H., WANG, H., LIN, X., LU, H. & LI, J. Efficient processing of XML

path queries using the disk-based F&B index. Proceedings of the 31st

international conference on Very large data bases, 2005. VLDB Endowment,

145-156.

WEINSTEIN, A. M. 2010. Computer and video game addiction-a comparison

between game users and non-game users. The American journal of drug and

alcohol abuse, 36, 268-276.

References

 260

WEISS, M. A. 1992. Data Structures and Algorithms, Benjamin/Cummings.

WHATLEY, K. 2009. Xml Basics for New Users [Online]. IBM. [Accessed 02-12-2012

2012].

WHITMER, R. 2004. Document Object Model (DOM) Level 3 XPath Specification.

W3C, http://www. w3. org/TR/DOM-Level-3-XPath.

WONG, R. K., LAM, F. & SHUI, W. M. Querying and maintaining a compact XML

storage. Proceedings of the 16th international conference on World Wide

Web, 2007. ACM, 1073-1082.

WU, X., LEE, M. L. & HSU, W. A prime number labeling scheme for dynamic ordered

XML trees. Data Engineering, 2004. Proceedings. 20th International

Conference on, 2004. IEEE, 66-78.

XU, L., BAO, Z. & LING, T. W. A dynamic labeling scheme using vectors. Database

and Expert Systems Applications, 2007. Springer, 130-140.

XU, L., LING, T. W., BAO, Z. & WU, H. Efficient label encoding for range-based

dynamic XML labeling schemes. Database Systems for Advanced

Applications, 2010. Springer, 262-276.

XU, L., LING, T. W. & WU, H. 2012. Labeling dynamic xml documents: an order-

centric approach. Knowledge and Data Engineering, IEEE Transactions on,

24, 100-113.

XU, L., LING, T. W., WU, H. & BAO, Z. DDE: from dewey to a fully dynamic XML

labeling scheme. Proceedings of the 2009 ACM SIGMOD International

Conference on Management of data, 2009. ACM, 719-730.

XU, Y. & PAPAKONSTANTINOU, Y. Efficient keyword search for smallest LCAs in

XML databases. Proceedings of the 2005 ACM SIGMOD international

conference on Management of data, 2005. ACM, 527-538.

YAO, B. B., ÖZSU, M. T. & KEENLEYSIDE, J. 2003. Xbench-a family of benchmarks for

xml dbmss. Efficiency and Effectiveness of XML Tools and Techniques and

Data Integration over the Web. Springer.

YAO, B. B., OZSU, M. T. & KHANDELWAL, N. XBench benchmark and performance

testing of XML DBMSs. Data Engineering, 2004. Proceedings. 20th

International Conference on, 2004. IEEE, 621-632.

References

 261

YIN, R. K. 2009 Case Study Research Design and Methods, London: SAGE., Harlow:

Pearson Education Limited.

YOSHIKAWA, M., MENG, X., YUMOTO, T., MA, Q., SUN, L. & WATANABE, C. 2010.

Database Systems for Advanced Applications: 15th International Conference,

DASFAA 2010, International Workshops: GDM, BenchmarX, MCIS, SNSMW,

DIEW, UDM, Tsukuba, Japan, April 1-4, 2010, Revised Selected Papers,

Springer.

YU, J. X., LUO, D., MENG, X. & LU, H. 2005. Dynamically updating XML data:

numbering scheme revisited. World Wide Web, 8, 5-26.

YUN, J.-H. & CHUNG, C.-W. 2008. Dynamic interval-based labeling scheme for

efficient XML query and update processing. Journal of Systems and Software,

81, 56-70.

ZHANG, C., NAUGHTON, J., DEWITT, D., LUO, Q. & LOHMAN, G. On supporting

containment queries in relational database management systems. ACM

SIGMOD Record, 2001. ACM, 425-436.

ZHANG, N., HAAS, P. J., JOSIFOVSKI, V., LOHMAN, G. M. & ZHANG, C. Statistical

learning techniques for costing XML queries. Proceedings of the 31st

international conference on Very large data bases, 2005. VLDB Endowment,

289-300.

ZHUANG, C. & FENG, S. Full Tree-Based Encoding Technique for Dynamic XML

Labeling Schemes. Database and Expert Systems Applications, 2012.

Springer, 357-368.

Appendices

 262

Appendix A: Full Box Plots

a.1 Initial Labelling Experiments:

Appendices

 263

Appendices

 264

Appendices

 265

Appendices

 266

a.2 Determining Different Relationships on Static XML:

Appendices

 267

Appendices

 268

a.3 Queries on Static XML:

Appendices

 269

Appendices

 270

Appendices

 271

Appendices

 272

Appendices

 273

Appendices

 274

Appendices

 275

a.4 Uniform Insertions:

Appendices

 276

Appendices

 277

Appendices

 278

a.5 Ordered-Skewed Insertions:

Appendices

 279

Appendices

 280

Appendices

 281

a.6 Random-Skewed Insertions:

Appendices

 282

Appendices

 283

a.7 Relationships after Uniform-Insertions:

Appendices

 284

Appendices

 285

a.8 Relationships after Ordered-Skewed Insertions:

Appendices

 286

a.9 Relationships after Random-Skewed Insertions:

Appendices

 287

Appendices

 288

a.10 Queries on Dynamic XML:

Appendices

 289

Appendices

 290

Appendices

 291

Appendices

 292

