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Abstract

Nowadays, in the post-genomics era, one of the major tasks and chal-

lenges is to decipher how genes are regulated. The miRNAs play an essential

regulatory role in both plants and animals. It has been estimated that about

30% of the genes in the human genome are down-regulated by microRNAs

(miRNAs), short RNA molecules which repress the translation of proteins of

mRNAs in animals and plants. Genes which are regulated by a miRNA are

called targets of this given miRNA. Hence, the task is to try to determine

which miRNAs regulate which genes, in order then to build a network of

these DNA components. Knowledge of the functional miRNAs-genes inter-

actions can help find the source or reason of a genetic disease, then we can

focus on drugs and their effects such we get more efficient treatments.

In this thesis, we aim to build a Bayesian graphical model that infers

a regulatory network by integrating miRNAs expression levels with their

potential mRNA targets. We incorporate biological information, such as

structure and sequence information, via the prior probability model. The

method is broken down to 3 stages. First, a dimensionality reduction is

performed; the gene expressions are narrowed down by using biological in-

formation (association scores and type of probe set), and distance similarity

procedures such as clustering of correlated or co-expressed variables. Second,

a Bayesian graphical model is proposed, according to which associations of

gene and miRNA expressions are inferred, and an association matrix is ex-

tracted. The methodology uses simulation-based methods, as Markov Chain

Monte Carlo, and benefits by managing uncertainty at a complex network.

Finally, using the association matrix, the regulatory network is constructed.





Contents

1 Introduction and motivations 2

1.1 Introduction and aim of the thesis . . . . . . . . . . . . . . . . 2

1.2 Thesis layout . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background and Literature Review 7

2.1 Introduction-Background . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Non-technical introduction to genetics . . . . . . . . . 7

2.1.2 DNA and synthesis of proteins . . . . . . . . . . . . . . 8

2.1.3 Gene . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.4 Messenger RNAs . . . . . . . . . . . . . . . . . . . . . 13

2.1.5 MicroRNAs . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.6 Next-generation sequencing . . . . . . . . . . . . . . . 16

2.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 MiRNA target prediction . . . . . . . . . . . . . . . . . 18

vi



2.2.2 miRNA target prediction algorithms . . . . . . . . . . 28

2.2.3 General presentation of networks . . . . . . . . . . . . 31

2.2.4 Review of statistical models for biological networks . . 38

2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Presentation of the data and study 40

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Clinical study . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.1 Acute Coronary Syndromes . . . . . . . . . . . . . . . 43

3.2.2 MiRNA profiles . . . . . . . . . . . . . . . . . . . . . . 45

3.2.3 TargetScan scores . . . . . . . . . . . . . . . . . . . . . 45

3.2.4 Target genes profiles . . . . . . . . . . . . . . . . . . . 47

3.3 Reducing the dimensionality . . . . . . . . . . . . . . . . . . . 49

3.3.1 Reducing the number of target genes . . . . . . . . . . 49

3.3.2 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Bayesian Graphical Modeling 57

4.1 Introduction to graphical models . . . . . . . . . . . . . . . . 57

4.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.1 Framework . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.2 Selection of regressors under the regulatory network . . 63

4.2.3 Target scores in the prior model . . . . . . . . . . . . . 64

4.2.4 Graphical representation . . . . . . . . . . . . . . . . . 65

4.3 Estimation procedure . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.1 Posterior inference . . . . . . . . . . . . . . . . . . . . 67

vii



4.3.2 Estimation of the regression coefficients . . . . . . . . . 72

4.3.3 MCMC algorithm . . . . . . . . . . . . . . . . . . . . . 72

4.4 Summary and pseudo-code of the algorithm . . . . . . . . . . 75

4.5 Setting up the parameters . . . . . . . . . . . . . . . . . . . . 75

4.6 Case study on simulated data . . . . . . . . . . . . . . . . . . 80

4.6.1 Building of the network . . . . . . . . . . . . . . . . . 81

4.6.2 Covariance matrix assumed to be known . . . . . . . . 84

4.6.3 Genes assumed to be independent . . . . . . . . . . . . 87

4.6.4 Estimation of the covariance matrix . . . . . . . . . . . 91

4.6.5 Monte Carlo study . . . . . . . . . . . . . . . . . . . . 106

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5 A regulatory network for Acute Coronary Syndromes 110

5.1 Clustering of the data . . . . . . . . . . . . . . . . . . . . . . 111

5.2 Application to the data in clusters . . . . . . . . . . . . . . . . 112

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.3.1 Special case: cluster of independent genes . . . . . . . 121

5.3.2 Estimation of Σ . . . . . . . . . . . . . . . . . . . . . . 121

5.4 Interpretation of the different networks . . . . . . . . . . . . . 123

5.4.1 Precautions to take into account . . . . . . . . . . . . . 123

5.4.2 Main observations from the graphs . . . . . . . . . . . 125

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6 Conclusion and Discussion 129

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.2 Extensions and future work . . . . . . . . . . . . . . . . . . . 131

viii



A Appendix 134

A.1 Kronecker product and vec operator . . . . . . . . . . . . . . . 134

A.2 Distribution theory . . . . . . . . . . . . . . . . . . . . . . . . 137

A.3 Graphs from the different chains run in Chapter 5 . . . . . . . 145

ix



List of Figures

2.1 Representation of DNA . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Synthesis of proteins . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Structure of a mature mRNA . . . . . . . . . . . . . . . . . . 13

2.4 Biogenesis of miRNAs . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Principal types of miRNA and target matches: from top to

bottom, 6mer site, 7mer-A1 site, 7mer-m8 site, 8mer site. For

each match, the first line represent the poly(A) tail of the

mRNA in the 3’ UTR end, and the second line the 5’ UTR

end of the miRNA. The red nucleotides represent a comple-

mentarity between these nucleotides (A with U and C with

T), where the blue color shows the lack of complementarity. . 21

x



2.6 Atypical miRNA target sites: 3’ supplementary site and 3’

complementarity site. For each match, the first line represent

the poly(A) tail of the mRNA in the 3’ UTR end, and the sec-

ond line the 5’ UTR end of the miRNA. Red nucleotides show

complementarity in the seed of the miRNA, green nucleotides

supplementary or compensatory complementarity outside the

seed region, blue nucleotides no complementarity. The black

nucleotides are the non complementory nucleotides between

the two matching regions, and the mismatch in the seed re-

gion in the case of the compensatory site. . . . . . . . . . . . . 22

2.7 Directed or undirected networks . . . . . . . . . . . . . . . . . 34

3.1 Histograms of miRNAs expression levels . . . . . . . . . . . . 46

3.2 Histograms of genes expression levels . . . . . . . . . . . . . . 49

3.3 Histograms of genes and miRNAs expression levels . . . . . . 50

3.4 QQ-plots for miRNAs and genes datasets, under each condi-

tion: STEMI, NSTEMI, and Unstable Angina . . . . . . . . . 50

3.5 Subset of genes composed of two different clusters with dif-

ferent patterns: one cluster with an average expression level

close to 8, a second one with an average close to 4. . . . . . . 53

4.1 A graphical representation of regulatory network between 3

miRNAs and 7 genes. . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Graphical representation of the model, with the dependencies

between the parameters and variables within the model . . . . 66

4.3 Simulated correlations of Y |X. . . . . . . . . . . . . . . . . . 82

xi



4.4 Number of included arrows (left) and number of selected ar-

rows (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.5 Log-relative probabilities of the visited models, for all itera-

tions (left), and for after the burn-in (right). . . . . . . . . . . 87

4.6 Log-likelihood f(Y |X,R,Σ), for all iterations (left), and for

after the burn-in (right). . . . . . . . . . . . . . . . . . . . . . 88

4.7 Values of τ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.8 Log-probability (left panel), and number of arrows included in

the network (right panel), for all iterations. . . . . . . . . . . . 90

4.9 Number of arrows selected, with a threshold of 50% (left panel),

and 75% (right panel), after the burn-in. . . . . . . . . . . . . 91

4.10 Number of selected arrows, at a 75% confidence level. . . . . . 95

4.11 Log-probability of the model and relative log-likelihood of the

covariance matrix . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.12 Number of arrows included in the model (left panel), and num-

ber of arrows selected at a 50% confidence level (right panel). 96

4.13 Values of τ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.14 Number of arrows included in the network (left panel), and

the log-likelihood of the model (right panel). . . . . . . . . . . 100

4.15 Log-relative likelihood of Σ (left panel), and log-likelihood

f(Y |X,R,Σ) (right panel), after the burn-in. . . . . . . . . . 101

4.16 Number of arrows selected, with a threshold of 50% (left panel),

and 75% (right panel), after the burn-in. . . . . . . . . . . . . 102

4.17 Log-relative probabilities of the visited models, through all

iterations (left) and after burn-in (right). . . . . . . . . . . . . 104

xii



4.18 Number of arrows included in the network (left panel), and

number of arrows selected with th = 75% (right panel), after

the burn-in. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.19 Boxplots of the sensitivity (left panel) and false positive rate

(right panel) of the Monte Carlo study. . . . . . . . . . . . . . 108

5.1 Number of arrows included in the visited models, STEMI con-

dition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.2 Number of arrows included in the visited models, NSTEMI

condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.3 Number of arrows included in the visited models, Unstable

Angina condition . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.4 Network for the STEMI condition . . . . . . . . . . . . . . . . 118

5.5 Network for the NSTEMI condition . . . . . . . . . . . . . . . 119

5.6 Network for the UA condition . . . . . . . . . . . . . . . . . . 120

A.1 Log-relative probabilities of the visited models, STEMI condition146

A.2 Log-relative probabilities of the visited models, NSTEMI con-

dition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

A.3 Log-relative probabilities of the visited models, Unstable Angina

condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

A.4 Log-relative probabilities of the visited models after burn-in,

STEMI condition . . . . . . . . . . . . . . . . . . . . . . . . . 149

A.5 Log-relative probabilities of the visited models after burn-in,

NSTEMI condition . . . . . . . . . . . . . . . . . . . . . . . . 150

A.6 Log-relative probabilities of the visited models after burn-in,

Unstable Angina condition . . . . . . . . . . . . . . . . . . . . 151

xiii



List of Tables

4.1 Framework of the model . . . . . . . . . . . . . . . . . . . . . 76

4.2 Posterior inference: derivation of f(Y ,X,R,Σ,γ) . . . . . . 77

4.3 Pseudo-code of the MCMC approach . . . . . . . . . . . . . . 78

4.4 Comparison of the different chains, with a threshold th = 0.75 105

4.5 Summary of the Monte Carlo study performed on 100 analyses

of simulated data: mean and standard of sensitivity and false

positive rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.1 Summary of the regulatory networks for each condition. For

example, the regulatory network created for the STEMI con-

dition contains 98 interactions, between 50 different genes and

12 different miRNAs. . . . . . . . . . . . . . . . . . . . . . . 114

5.2 Interactions present under the 3 conditions . . . . . . . . . . . 125

1



CHAPTER 1

Introduction and motivations

1.1 Introduction and aim of the thesis

Nowadays, in the post-genomics era, one of the major tasks and challenges

is to decipher how genes are regulated. The microRNAs (miRNAs) play an

essential regulatory role in both plants and animals. As an illustration, it

has been estimated that about 30% of the genes in the human genome are

down-regulated by miRNAs, short RNA molecules which repress the transla-

tion of proteins of mRNAs in animals and plants. Genes which are regulated

by a miRNA are called targets of this given miRNA. Hence, the task is to try

to determine which miRNAs regulate which genes, in order then to build a

network of these DNA components. The aim of the study is then to identify

with high confidence a small set of potential miRNA-gene interactions, which
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will then require more investigation to determine if they can be considered

functional and as a genetic cause of a disease. Knowledge of the functional

miRNAs-genes interactions can help find the biomarker (source or reason) of

a genetic disease, then we can focus on drugs and their effects such we get

more efficient treatments.

Several algorithms have already been developed to determine and pre-

dict potential miRNA-messengerRNA (mRNA) interactions, based on the

sequence and structure characteristics of the miRNAs and their target sites.

The main factors used by these algorithms are the sequence complementar-

ity, hybridization energy and comparison across species. Generally, these

algorithms predict loads of potential miRNA-mRNA interactions, sometimes

different ones as they use different factors to establish their targets. So it can

quickly become too difficult for researchers to find, among these hundreds of

thousand of potential interactions, those who are functional under particular

clinical conditions and thus play a crucial regulatory role under these condi-

tions.

The aim of the thesis is to develop a statistical model which identifies with

high confidence a set of potential targets and functional interactions. The

regulatory relationships can be inferred by integrating expression levels of

both miRNAs and their candidate target genes. The proposed methodology

consists of a directed Bayesian graphical model, in which biological knowl-

edge is incorporated, such as negative regression coefficients, as it is believed

that miRNAs down-regulate the expression of the genes. We also take into
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account in our prior model the target scores predicted by TargetScan [19]

based on sequence and structure information. A Markov Chain Monte Carlo

(MCMC) procedure is proposed to select the variables of interest from the

association matrix, before creating the networks.

In this thesis, we propose that correlated genes (which are likely to share

some functional relationship) should not be treated as independent. One

challenge of our approach is that we wish to relax an assumption that is

often made in genomics: the independence of the genes given the miRNAs.

Indeed, even if it is commonly admitted that some genes, especially the ones

part of a group of genes responsible of one specific biological function, are

correlated, this characteristic is often omitted, partly for computational con-

venience. We apply a gene-clustering algorithm in order to form groups of

correlated genes, these groups assumed to be independent from each other.

We then perform a Bayesian graphical modeling approach to each of these

clusters, where we attempt to estimate the main parameters of the model,

such as the matrix of interactions. From these analyses, we then draw the

regulatory networks, which are composed of much more arrows than the ones

built assuming the genes independent [58].

1.2 Thesis layout

The remainder of the thesis is organised as follows. Chapter 2 offers a liter-

ature review of the different topics present in the thesis. In a first section,

we give an introduction to the genetics, especially a description of genes and
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miRNAs, what are their role in the living cell, etc. In a second section,

we present the principles of miRNA target prediction algorithms, like the

sequence information, and details about two of them, TargetScan and Mi-

Randa. We then give a presentation of the characteristics of networks and

graphs, as well as a description of the Metropolis-Hastings procedure. Fi-

nally, an introduction to graphical models is provided.

This PhD thesis is motivated by considering interaction networks of miRNA-

gene for Acute Coronary Syndromes (ACS). Chapter 3 describes the ACS

data and provides an exploratory data analysis. We explain the character-

istics of the different conditions we are interested in, as well as the different

methods we use to narrow down the number of genes, in order to make the

dataset manageable and perform an efficient study. This will serve as a

preparatory data analysis before we apply the model in Chapter 5.

Chapter 4 develops the proposed Bayesian graphical modeling estimation

approach. After describing the model (framework, assumptions, parameters,

etc), we perform our methodology on a case study of simulated data, evaluate

its efficiency and also to compare it with the approach from Stingo et al.[58],

where the genes are assumed independent given the miRNAs. This provides

an aid to fix and set up some parameters before we apply the model to the

real data.

In Chapter 5, we apply our proposed approach to the real data, divided

into the different clusters, and under the three different Acute Coronary

5



Syndromes conditions. Regulatory networks are then constructed, and their

main characteristics are commented. This allows us to make suggestions

about the meaning of these networks, which can be seen as guidelines for

further investigation to find a potential genetic source of the given condition.

However, we also explain that these ideas can not be considered as final con-

clusions.

Chapter 6 gives a summary of the thesis, with the advantages and limita-

tions of the methodology. We also discuss some suggestions for further work

and/or improvement of the proposed methodology.

The main analysis has been performed with the R software, when the

drawing of the different networks has been realized with the Cytoscape soft-

ware [57]. Both softwares are freely available.
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CHAPTER 2

Background and Literature Review

2.1 Introduction-Background

In this chapter, we are going to describe some biological knowledge which

is required to assimilate and understand the biological project of research:

what is DNA, what is a gene and miRNA, how do they link... Also, as we

aim to build a network of functional interactions, we will provide a small

introduction to networks and graph theory.

2.1.1 Non-technical introduction to genetics

Genetics is the science related to the study of genes, whose purpose is to find

out and explain what they are and how they work. Genes are molecular units

of heredity of living organisms, and, technically, stretches of DNA (deoxyri-

7



bonucleic acid) and RNA (ribonucleic acid) that code for a type of protein or

for an RNA chain that has a function in the organism. This is the reason why

children usually look like their parents because they inherited their parents’

genes. Genes are made from a long molecule called DNA, which is copied and

inherited across generations. DNA is made of simple units that line up in a

particular order within this large molecule. These units are ordered in such

a way that they carry the genetic information of the organisms, using the

genetic code. This is what provides any living organism to be ”constructed”

and functional. The information within a particular gene is not always ex-

actly the same between two organisms, which means that different copies of

a same gene can carry different instructions. Each variant of a given gene

is called an allele. An easy example to illustrate this point is to consider

the eye color. There exist various alleles for the eye color, this is the reason

why some people have blue eyes (the ones who have the allele responsible on

the blue eyes), green eyes, etc. Such changes in genomic sequences creating

new alleles are called mutations. They can occur randomly but also due to

environment, and this is a key point to evolution. More details about we are

going to present or further information on the topic can be found in [1, 2].

2.1.2 DNA and synthesis of proteins

DNA is a double-stranded helix

As previously mentioned, the hereditary information of all living cells,

without any exception, is stored in DNA. DNA is formed of double-stranded

molecules, long unbranched paired polymer chains, always formed of four

different monomers. Each monomer, also called nucleotide, consists of two
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parts: a sugar (deoxyribose) with a phosphate group attached to it, and a

base, which can be either adenine (A), guanine (G), cytosine (C), or thymine

(T). The phosphate group allows to link each sugar to another one, creating

polymer chain which can be extended by adding monomers at one end. In

theory, if we consider a single isolated strand, since the link between any

two monomers is the same, any nucleotide should be able to join the chain.

However, in reality, DNA is synthesized on a template formed by a preexisting

DNA strand. Each base from one strand has to link with another base from

the second strand, according to the rule of the complementary structures of

the bases: A and T binds to each other while C and G binds to each other,

as it can be seen in Figure (2.1). This base-pairing controls which monomer

has to added to the new strand. Hence, two complementary sequences form

a double-stranded structure. Since both strands twist around each other,

they finally form a double helix.

To carry the hereditary information, DNA has to be replicated. The

bonds between the base pairs are weak compared with the sugar-phosphate

links. Then the two strands can be pulled apart, and then each strand can

serve as a template to synthesize a new DNA strand complementary to itself.

Synthesis of mRNAs and proteins: transcription and translation

DNA also has to express its information, for then this information to

allow the production of other molecules. That mechanism, visible in Figure

1From [1] Alberts B, Johnson A, Lewis J, et al. Molecular Biology of the Cell. 4th
edition. New York: Garland Science; 2002. Figure 4-3, DNA and its building blocks.
Available from: http://www.ncbi.nlm.nih.gov/books/NBK26821/figure/A598/
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Figure 2.1: Representation of DNA: (top left) composition of a nucleotide,
(top right) DNA strand, with the four different bases, (bottom left) comple-
mentary DNA strands, (bottom right) double helix structure 1
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(2.2), consists of the production of two other classes of polymers: RNAs

and proteins. The first step of this process is called transcription, in which

segments of the DNA sequence are used as templates for the synthesis of

shorter molecules called RNA. Then, in the second step of the process, the

translation, these RNA molecules direct the synthesis of another class of

polymers, the proteins. RNA is slightly differently formed from DNA. The

main difference for our point is that uracil (U) replaces thymine (T), while

the three other bases are the same with the same pairing: A with U and

C with G. The RNA outcome of the transcription is a polymer molecule

whose sequence of nucleotides represent the cell’s genetic information, just

with RNA monomers instead of DNA monomers. The same segment of

DNA can be used repeatedly to guide the synthesis of many identical RNA

transcripts. These RNA transcripts work as intermediates in the transfer of

genetic information. This is the reason why we often call them messenger

RNA (mRNA) to guide the synthesis of proteins. The translation (synthesis

of proteins) is a bit more complex. The information in the sequence of a

mRNA is read out in groups of three nucleotides at a time: each triplet of

nucleotides, called codon, codes for a single amino acid in a corresponding

protein. There exist 20 different amino acids, which means that several

codons code for the same amino acid. This reading process is complex, we can

just say it is carried by a giant multimolecular machine called ribosome and

more than 50 other different proteins. At the end, the amino acid are linked

together to form a new protein chain. Proteins are the principal catalysts for

most of the chemical reactions in the cell; their specific function depends of

the amino acid sequence, specified by the nucleotide sequence of the segment
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Figure 2.2: Synthesis of proteins: RNA molecules are first transcribed from
DNA segments and then guide the synthesis of proteins. 2

of DNA which codes for that protein.

2.1.3 Gene

As just mentioned, individual segments of DNA are transcribed into separate

mRNA molecules, with each segment coding for a different protein. Each

such DNA segment represents one gene. However, it is actually a bit more

complicated since RNA molecules transcribed from the same DNA segment

can often be processed in several ways. This is why we generally define a

gene as the segment of DNA sequence corresponding to a single protein.

2From [1] Alberts B, Johnson A, Lewis J, et al. Molecular Biology of the Cell. 4th
edition. New York: Garland Science; 2002. Figure 1-4, From DNA to protein. Available
from: http://www.ncbi.nlm.nih.gov/books/NBK26864/figure/A11/)
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2.1.4 Messenger RNAs

We already discussed about the function of the mRNAs in the previous sec-

tions, when we described the synthesis of proteins. Here in this section, we

will briefly describe the structure of mRNAs. A fully processed mRNA is

composed of: a 5’ cap, 5’ UTR, a coding region, 3’ UTR, and poly(A) tail.

The 5’ cap is a modified guanine nucleotide added to the ”front” (5’ end)

of the mRNA . It provides recognition and proper attachment to the ribo-

some. The 3’ poly(A) tail is a long sequence of adenine nucleotides added

to the 3’ end of the mRNA. One of its function is to protect the mRNA

from degradation. The 5’ UTR is the section before the coding region. It

begins at the transcription start site and ends one nucleotide before the start

codon of the coding region. The 3’ UTR follows the coding region. These

untranslated regions (UTRs) are transcribed with the coding region but are

not translated. They have been attributed several roles in gene expression,

for example in our case, the miRNAs bind to the 3’ UTR. On average, the 5’

UTR is 150 nucleotide long, and the 3’ UTR tends to be twice longer. The

coding region is the region which codes for protein. This is also commonly

called open reading frames (ORFs).

Figure 2.3: Structure of a mature mRNA.3

3From ”MRNA structure” by Daylite - Own work. Licensed under Public domain via
Wikimedia Commons - http://commons.wikimedia.org/wiki/File:MRNA structure.svg
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2.1.5 MicroRNAs

Biogenesis

MicroRNAs are short RNA molecules, 22 nucleotides long on average.

Binding to the 3’UTR of mRNAs, they are post-transcriptional regulators,

repressing the translation of proteins or degrading the mRNA (cleavage).

The miRNA precursors (pre-miRNA) are first synthesized by the enzyme

RNA polymerase II (at that stage, they are called primary miRNAs (pri-

miRNA)), then they are cleaved by Drosha RNAse III. These pre-miRNAs

are about 60-70 nucleotides long and form an imperfect stem loop structure.

Then the loop and the terminal base pairs are cut off by the enzyme Dicer,

so this stage is called dicing, resulting in a miRNA:miRNA duplex, the ma-

ture miRNA and its complementary strand. That duplex is then assembled

with a set of proteins to form an RNA-induced silencing complex (RISC).

Finally, the duplex is separated, the mature miRNA is conserved while the

complementary strand is degraded. The main steps of this process are briefly

illustrated in Figure (2.4).

Biological function

Once formed, the RISC looks for target mRNAs by searching for comple-

mentary nucleotide sequences, in order to bind its 5’ region to the 3’ region

#mediaviewer/File:MRNA structure.svg
4From ”MiRNA-biogenesis” by Narayanese (talk) - Own work (Original text: ”I

created this work entirely by myself.”)References:Esquela-Kerscher A, Slack FJ (2006)
Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 6: 259-69. Pub-
MedOkamura K, Hagen JW, Duan H, Tyler DM, Lai EC (2007) The mirtron
pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130: 89-
100. PubMed. Licensed under Creative Commons Attribution-Share Alike 3.0 via
Wikimedia Commons - http://commons.wikimedia.org/wiki/File:MiRNA-biogenesis.jpg
#mediaviewer/File:MiRNA-biogenesis.jpg
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Figure 2.4: Biogenesis of miRNAs: pri-miRNA, pre-miRNA, then incorpo-
ration to the RISC complex, before repressing the mRNA translation or
degrading the mRNA. 4
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of the miRNA and hence regulate the expression of its target site. This reg-

ulation can be done in two possible ways, depending on how extensive the

base-pairing is.

If the base-pairing is extensive, the mRNA is cleaved by the Argonaute

protein present in the RISC, by removing the poly-A tail, leading to the

degradation of the mRNA. After cleaving one mRNA, the RISC and its as-

sociated miRNA are released and can search for other mRNAs, meaning that

a single miRNA can cleave many mRNAs.

If the base-pairing is less extensive, the translation of the mRNA is re-

pressed and the mRNA destabilized. In few words, the poly-A tail is short-

ened, the mRNA separated from the ribosome and eventually degraded.

2.1.6 Next-generation sequencing

The technical framework which is commonly used to sequence the genome

is the microarray (collection of microscopic DNA spots attached to a solid

surface) technology. DNA microarrays can also be used to measure changes

in expression levels, or to detect single nucleotide polymorphisms (SNPs),

besides of sequencing genomes. However, after few decades of continuous im-

provement, new alternative techniques have emerged: the second-generation

DNA sequencing techniques (or next-generation DNA sequencing, or NGS).

The application of any next-generation technique is called RNA sequencing

(RNA-seq). A technique using miccroarray technology is PCR amplification

whereas Illumina or SOLiD use second-generation sequencing. Although the

latest have clear advantages and bring improvements, they also have limita-

tions. Two disadvantages of the second-generation techniques are the read-
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length and the raw accuracy. Indeed, read-lengths for all the new platforms

are much shorter than conventional sequencing, and the base predictions are

about tenfold less accurate than base predictions from microarrays. So it is

pretty clear that these limitations imply challenges for the future. However,

as conventional techniques kept improving over the years, we can think that

these new techniques will improve with respect to these issues to reach an

higher level of performance. Meanwhile, microarrays also have disadvantages.

If we don’t perform a very careful data analysis, it can lead to misleading

results. But even if the data analysis is perfectly carefully done, the next-

generation sequencing techniques still can bring improvements. The main

advantage of new technologies is clearly their cost. Indeed, because the high

interest in this area and the need to decrease the cost, these second-generation

sequencing platforms are able to parallelize the sequencing process, which

means they can produce thousands of sequences at once. Consequently, in

the immediate future, quite small-scale projects will still depend on conven-

tional technologies. However, larger-scale projects, as miRNA profiling, will

quickly become dependent on second-generation sequencing. Hence it is pos-

sible to believe that in the future, second-generation sequencing techniques

will become as widespread as microarrays and conventional platforms are,

and will be more useful to achieve ambitious and challenging projects. For

more details about NGS and mRNA-seq, reviews can be found in [41], [17],

[7].

In this section, we have presented the main biological concepts we need

to have in mind for the understanding of the study, in particular which DNA

components (gene and miRNA) are involved, and what is their main func-
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tions in the living cell. In the next section, we will describe how these two

entities can be linked together.

2.2 Literature review

2.2.1 MiRNA target prediction

Introduction

In this section, we are going to present the main principles of miRNA target

prediction, such as the sequence complementarity and conservation across

species. A good and non too technical review can be found in [38].

MicroRNAs (miRNAs) are small non-coding endogenous RNAs, around

22 nucleotides long on average, that play an important role in the gene down-

regulation in both plants and animals. They pair to the messenger RNAs

(mRNAs) of protein-coding genes to control their post-transcriptional repres-

sion. They generally bind their 5’ UTRs to the 3’ untranslated region (3’

UTR) of the mRNA, even if it has been found that some of them can bind to

the open reading frames (ORFs) or to the 5’ UTRs [4, 56]. However, these

target sites are less effective and less frequent than target sires located in the

3’ UTRs, especially the 5’ UTR targeting which is very rare.

Historically, the first miRNA discovered is lin-4 in 1993, a miRNA in-

volved in the timing of larval development in worms C.elegans [36]. The

second miRNA, let-7, was discovered 7 seven years later [47]. It has a similar

role as lin-4, regulating developmental timing in C. elegans. It has been re-

ported quite soon after that both lin-4 and let-7 are part of a popular class

of small endogenous RNAs we can find in worms, flies and mammals, and
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that is when they were officially called microRNAs [33, 34, 37]. Since then,

thousands of miRNAs have been identified in various and diverse organisms,

through sequencing and/or computational prediction.

Some miRNAs can have hundreds of targets, if they are highly conserved

across several species [4]. The identification of miRNA-target interactions

is made easier when we observe a perfect complementarity (or near perfect

complementarity) between the miRNA and target site sequences. This fea-

ture is particularly true for plants [48]. For animals, it is a little bit more

complicated because only few miRNAs present perfect complementarity to

their targets.

Principles of miRNA target identification

Sequence complementarity

The Watson-Crick sequence complementarity (or pairing) is probably the

major criterion for target identification. Indeed, it highly improves the per-

formance of the prediction, especially reduces the false positive rate, and that

is why this criterion is used in the most renowned prediction algorithms.

Watson-Crick pairing implies sequence complementarity between the mRNA

(target) and the ”seed” of the miRNA, which is located in the 5’ end of the

miRNA, on nucleotides 2-7. Then we can define several types of ”matches” or

sites. We can make the distinction between the most common and principal

types of matches, and some atypical matches which remain rare. The main

matches are illustrated in Figure (2.5) and are composed of the following 4

types of matches:

• 6mer site: seed match. 6 nucleotides sites match the seed region. Such
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sites are conserved by chance more frequently than the other sites and

have a low efficacy. Thus, prediction algorithms that involve stringent

seed-pairing do not take 6mer sites into account.

• 7mer-A1 site: seed match + A at position 1. An outperforming site

occurs when we require a 7nt match, with an A across position 1 (1A-

anchor) of the miRNA over a Watson-Crick match. For example, the

algorithm TargetScan uses it.

• 7mer-m8 site: seed match + match at position 8. Instead of requiring

an 1A-anchor, other algorithms, as miRanda, rewards 7nt match sites

with a supplementary match at position 8.

• 8mer site: seed match + A at position 1 + match at position 8.

These are the result of both 7mer-A1 and 7mer-m8 sites, which means

Watson-Crick pairing at position 2-8 plus an 1A-anchor.

We can note that most miRNAs targets have a 7nt match. Requiring perfect

pairing (8mer) increases specificity whereas a ”simple” 6mer site increases

sensitivity. Finally, if we wish to describe which site is the most outperform-

ing one, we can write that 8mer > 7mer-m8 > 7mer-1A > 6mer.

As mentioned earlier, two other kinds of ”atypical” sites can also be con-

sidered, as illustrated in Figure (2.6). The first one is called 3’ supplementary

site. It supplements seed pairing and therefore improves the chances of bind-

ing. Such sites ideally centers on miRNA nucleotides 13-16 and are at least

3 or 4 nucleotides long, uninterrupted by mismatches or wobbles. Sites with

supplementary pairing are predicted with a significant better specificity, but

it appears that they are rare and only have a slight effect. Consequently, it
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Seed match: 6mer site

- - - - N N N N N N - Poly(A)
| | | | | |

N N N N N N N N N N N 5’ miRNA
8 7 6 5 4 3 2 1

Seed match + Anchor at position 1: 7mer-A1 site

- - - - N N N N N N A Poly(A)
| | | | | | |

N N N N N N N N N N N 5’ miRNA
8 7 6 5 4 3 2 1

Seed match + match at position 8: 7mer-m8 site

- - - N N N N N N N - Poly(A)
| | | | | | |

N N N N N N N N N N N 5’ miRNA
8 7 6 5 4 3 2 1

Seed match +A1 + m8: 8mer site

- - - N N N N N N N N Poly(A)
| | | | | | | |

N N N N N N N N N N N 5’ miRNA
8 7 6 5 4 3 2 1

Figure 2.5: Principal types of miRNA and target matches: from top to
bottom, 6mer site, 7mer-A1 site, 7mer-m8 site, 8mer site. For each match,
the first line represent the poly(A) tail of the mRNA in the 3’ UTR end, and
the second line the 5’ UTR end of the miRNA. The red nucleotides represent
a complementarity between these nucleotides (A with U and C with T),
where the blue color shows the lack of complementarity.
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Seed match with supplementary pairing: 3’ supplementary site

N N N N N N — N N N N N N N A
| | | | | | | | | |

N N N N N N NNN N N N N N N N N
17 16 15 14 13 12 9-11 8 7 6 5 4 3 2 1

Seed mismatch with compensatory pairing: 3’ compensatory site

N N N N N N — N N N N N N N A
| | | | | | | | |

N N N N N N NNN N N N N N N N N
17 16 15 14 13 12 9-11 8 7 6 5 4 3 2 1

Figure 2.6: Atypical miRNA target sites: 3’ supplementary site and 3’ com-
plementarity site. For each match, the first line represent the poly(A) tail of
the mRNA in the 3’ UTR end, and the second line the 5’ UTR end of the
miRNA. Red nucleotides show complementarity in the seed of the miRNA,
green nucleotides supplementary or compensatory complementarity outside
the seed region, blue nucleotides no complementarity. The black nucleotides
are the non complementory nucleotides between the two matching regions,
and the mismatch in the seed region in the case of the compensatory site.

is suggested and assumed that supplementary 3’ pairing only plays a modest

role in miRNA-target identification.

The other atypical site is the ”3’ compensatory site”. They have been

given that name for the simple reason that they compensate for a single-

nucleotide mismatch in the seed region. Such sites center on nucleotides

13-17 of the miRNA, last at least 4 or 5 pairs, and can extend to 9 consecu-

tive Watson-Crick pairs. However, 3’ compensatory sites are quite rare.

Conservation

Another feature for target identification is the principle of conservation.

It appears that some binding sites are conserved across several species. In
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that case, they are likely to be biologically functional, and thus these sites

are potential miRNA target sites. That requires knowing several genomes.

Fortunately, enough genomes have been sequenced and aligned such that

study is feasible. Therefore, sites can be predicted as targets with more

confidence. Indeed, the use of conserved site sequences reduces significantly

the false-positive rate.

Thus, a protocol to predict evolutionarily conserved targets for a miRNA

can be split in three steps, as follows:

• identify 7 nt matches (either 7mer-m8 or 7mer-1A) to the seed region.

• use whole-genome alignments from other species to draw up a list of

orthologous 3’ UTRs.

• within these orthologous UTRs, search for conserved occurrence of ei-

ther 7 nt match. These are predicted regulatory sites.

Some miRNAs present the same seed region, the same sequence at positions

2-8. These form a miRNA family, and hence all share the same predicted

targets.

However, we need to precise what we mean by conservation, because some

prediction programs do not always use the same definition for that concept.

In general, sites are regarded as conserved when they appear at the exact

same position in the 3’ UTRs alignments. But it is sometimes considered

sufficient when the regions matching the region seed fall in overlapping posi-

tions. They also can be considered as conserved just if the matching region

is located somewhere not in the aligned positions. Finally, when we are

studying conservation in several genomes, it sometimes appear that the site
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of interest is missing or has changed (because of a mutation for example) in

just one of the organisms taken into account. In that case, the site is called

poorly conserved.

Thermodynamics and site accessibility

Another principle used in some prediction algorithms is the thermody-

namics stability, especially the free energy Eduplex of the miRNA-target du-

plex. From an energetic point of view, it is preferable when two complemen-

tary strands of RNA are hybridized, together. That means that, the lower

(more negative) the free energy of the duplex or two RNA strands, the more

energy is needed to break this structure. Consequently, the binding link be-

tween a miRNA and a target mRNA is stronger when Eduplex is low, and

therefore the duplex of interest has an higher probability to be biologically

functional.

We also might have to look at the secondary structure of the mRNA,

since it also plays quite an important role. To facilitate the binding, the

target site has to be accessible. That means it has to be opened and not to

interact with other sites within the mRNA. That includes that it is better

when a length of 15nt upstream and downstream the target site are also

open. That requires an energetic cost Eopen to open the site, a cost that we

need to consider. We then introduce the total free energy score Etotal, which

represents a score for the accessibility of the site, and hence the probability

for the miRNA to bind to this target site of interest. This total free energy

score is defined as the difference between the free energy of the duplex and
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the energy required to open the site:

Etotal = Eduplex − Eopen. (2.1)

Evaluating the performance

As already said, several prediction programs and algorithms exist to pre-

dict miRNA target sites. Since they do not have the same approaches and

use different principles in their implementations, they can not get the ex-

act same results and conclusions. For example, one program will predict a

miRNA-target interaction to be functional whereas a second program will

conclude that this same interaction is not. Then, how can we decide between

two results, and how can we know if a given method is more likely better

than the others?

To do so, we use some quantities already mentioned. The first one is

called the sensitivity, or also true positive rate (TPR), and is defined as

follows:

Sensitivity =
True positives

True positives + False negatives
, (2.2)

where ”true positives” (TP) is the number of predicted miRNA-target inter-

actions that do actually exist (number of interactions the program correctly

predicted), and ”false negatives” (FN) is the number of miRNA-target inter-

actions that exist but that the algorithm did not predict.

A second quantity used to estimate the performance of a prediction pro-

gram is the specificity, which can be seen as the ratio between the correctly

non-predicted interactions and the number of total non-existing interactions
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(correctly non-predicted and uncorrectly predicted). Thus it is defined as:

Specificity =
True negatives

True negatives + False positives
, (2.3)

where ”true negatives” (TN) is the number of correctly non-predicted inter-

actions, and ”false positives” is the number of interactions which have been

predicted as functional by the algorithm but actually do not exist.

The false-positive-rate (FPR) is also often mentioned in studies, most

often instead of the specificity. That is defined as the ratio between the false

positives and the total number of functional miRNA-target interactions:

FPR =
False positives

False positives + True negatives
= 1− Specificity. (2.4)

Then, for a given program to be performing, we need to get as few as pos-

sible false positives and false negatives, which means we need to maximize

both sensitivity and specificity at the same time. Sensitivity can for instance

be improved by setting less stringent thresholds, but meanwhile specificity

will be reduced because we will have gotten more false positives. That is why

we need to get the best compromise between these two quantities.

The most suitable to optimize the relation between sensitivity and speci-

ficity is a Receiver Operating Characteristic Analysis (ROC) analysis [63]. In

a ROC curve, sensitivity, which is the true positive rate, is plotted in func-

tion of the false-positive rate (1- specificity) for different points, where each

point represents a sensitivity-FPR pair corresponding to a particular decision

threshold. A perfect test’s ROC curve, with no overlap between both dis-

tributions, passes through the upper left corner, point and conditions which
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give both perfect 100% sensitivity and specificity. Hence the bigger the area

curve is, the more accurate the method is.

To be able to determine sensitivity and specificity, the data set of interest

has to contain a sufficient number of unbiased miRNA-target interactions

which have previously been defined experimentally, either verified or refuted,

thus we get enough knowledge to compute the false positive number, true

positive...

A final tool used to evaluate the efficiency of a prediction algorithm is the

signal-to-noise ratio (SNR). This is done by using shuffled miRNA sequences,

which means randomly permuted [39]. The signal, number of predicted tar-

gets, is compared to the noise, number of targets predicted for loads shuffled

miRNAs, since we can get loads of different shuffled sequences for one single

miRNA. Since these shuffled sequences are unlikely to be biologically rele-

vant, the noise is lower than the signal. Thus, that suggests that most of the

predicted conserved targets are biologically functional. Finally, the higher

the SNR is, the more significant the results of the method of interest are.

Experimental verification

Since the existing prediction tools still lack sensitivity and specificity,

and since interactions need to be confirmed or infirmed to compute these

quantities, it is essential to verify experimentally the predictions done by

the algorithms. Few techniques are currently available to do so. The most

common one is the reporter gene assay, which provides direct evidence about

the functionality of a miRNA-mRNA pair. We call a reporter gene a protein

or enzyme which allow us to say if a gene is expressed in a cell. The two

most common reporter genes are the Green Fluorescent Protein (GFP) and
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Luciferase. When genes are expressed in a cell and exposed to blue light,

GFP fluoresces while Luciferase causes bioluminescence. Hence the expres-

sion of the genes can be quite easily quantified. So, when we wish to verify a

miRNA-mRNA interaction, we attach the 3’ UTR of observed mRNA down-

stream of the reporter gene and introduce it into a cell of interest. We then

measure the expression level of the reporter gene, in both absence and pres-

ence of a specific miRNA. It is thus quite easy to draw conclusions about the

miRNA-mRNA interaction.

Other techniques can also be used, as microarray analysis for example,

which measures changes of mRNA levels, which then allows us to detect

interactions which cause mRNA cleavage and degradation. The main draw-

back of this method is that it only provides indirect evidence of interaction

because it just detects changes in expression profiles and not the direct in-

teraction of a miRNA-mRNA pair. Another possibility is to overwhelm the

miRNA gene and observe the effects on rotein changes. However, we can not

deduce with confidence an interaction with this method since a miRNA can

target a large number of genes.

2.2.2 miRNA target prediction algorithms

Introduction

It is now established that predicting miRNA target genes is very important

for a better understanding of the genes regulation. That is the reason why

several algorithms have been developed. Since we will use some of these pre-

diction target scores, we need to have an idea how these scores are computed.

Thus now, we will give the main steps of two of these algorithms.
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TargetScan

TargetScan has first been developed in 2003 by Lewis et al [39]. This algo-

rithm uses a set of perfectly conserved miRNAs, and several sets of ortholo-

gous 3’ UTRs from different organisms (human, mouse, rat, Fugu). The idea

is that it compares and analyses the sequences to predict miRNA targets

conserved across these different genomes, it also the modeling of RNA-RNA

duplex interactions, modeling which is based on thermodynamics.

In more details, given the different sets of UTR sequences, and a con-

served miRNA in the organisms of interest, TargetScan can be split into

several steps:

• in the first organism, after numbering the miRNA bases from the 5’ end,

it looks for segments of the UTRs which perfectly match the bases 2-

8 of the miRNA (in the sense of Watson-Crick complementarity). If

at least one match is found between the miRNA and the UTR, the 7

nucleotides segment of the miRNA is called the ”miRNA seed” and the

one(s) of the UTR the ”seed matches”.

• tries to extend the seed matches in both directions, stopping when it

finds a mismatch.

• optimizes base pairing of the remaining 3’ portion of the miRNA to the

bases of the UTR immediately 5’ of each seed match, using RNAfold

program, thus extending each seed match to a longer potential target

site.

• assigns a folding free energy G to each miRNA-target site duplex, using

RNAeval (RNAlib). For further information on these two programs just
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mentioned, see Hofacker et al [22].

• assigns a score, Z, to each UTR, score defined as Z =
∑n

k=1 exp(−Gk/T ),

where n is the number of seed matches in the UTR, Gk the folding free

energy, calculated in the previous step, of the kth miRNA-target site

for that UTR, and T a preassigned parameter. If an UTR does not

have any seed match, is is assigned a Z score of 1.

• the UTRs of the organism are then arranged by Z score and are thus

assigned a rank Ri, i = 1, . . . , number of seed matches in the UTR.

• it repeats these first six steps for each organism.

• the genes which are finally predicted as targets are the ones for which

both Zi ≥ Zc and Ri ≤ Rc for an orthologous UTR sequence in all

organisms, where Zc and Rc are prechosen Z score and rank cutoffs.

Later, an updated and simplified version of this algorithm, called Tar-

getScanS, was published in 2005 [39]. The main difference with the first

version is that in this procedure, we only require a 6mt Watson-Crick seed

match at positions 2-7. This 6nt match can be followed by a match at po-

sition 8 (so we have a 7 nt match) and/or by an ”A anchor” (nucleotide A

at position 1). It was also required that these matches occur at conserved

positions in a multiple alignment of orthologous UTRs. However, the ther-

modynamics criterion described in the first version of the algorithm is no

longer taken into account.

A more recent version was published in 2008 [19]. As the others, it looks

for conserved 7 or 8 nt sites which math the miRNA seed. This algorithm al-

lows us to predict nonconserved sites, as well as nonperfect sites (mismatches
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with the miRNA seed) which have 3’ compensatory pairing. In details, a score

is computed by studying four differents features: the site-type contribution,

the 3’ pairing contribution, the local AU contribution, and the position con-

tribution. The site-type contribution represents the type of seed match, while

the 3’ pairing contribution reflects any consequential complementarity out-

side the seed region, in particular between nucleotides 12 and 17. The local

AU contribution refers to the concentration of A and U nucleotides flank-

ing the corresponding seed region of the miRNA, as it is believed that the

match in the 3’ end of the mRNA is more likely to accur in a rich AU context

[19]. Finally, the position contribution analyzes the position of the target site

within the mRNA. For all these features, a more negative score is associated

with a more favorable site, and the contect score is the sum of these four

scores. Even if most of the targets predicted are quite the same as those pre-

dicted in the earlier versions of TargetScan, it considers site conservation in

more genomes (10 in total), conservation is better detected, and gives when

needed probabilities of preferentially conserved targeting.

In this section, we described the principles for miRNA targeteing, how

miRNAs can bind to target genes, and we also gave the main details of one

particular algorithm, TargetScan, which we will use in our framework, as we

will in Chapter 4.

2.2.3 General presentation of networks

In this section, we are about to describe a concept more mathematical than

biological, with noneless applications to biology. As our aim is to infer a
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network of biological interactions, we need to present the main properties of

networks, especially metabolic or biological networks, such as their scale-free

property.

Introduction

A living cell is composed of many molecules, molecules which interact to-

gether. It is essential to understand how these molecules determine the func-

tion of the cell, both on their own but also together. At the beginning of

biological research, people were focused on reductionism, which means they

were more interested in individual components and their functions. It has

been very successfull and provided a lot of knowledge. But it is now quite

clear that most of the biological functions are due to complex interactions

between the several cell’s components, such as proteins, DNA, RNA etc, and

not to an individual one. Thus, it is getting more and more important and

challenging to understand the structure and the dynamics of that complex

intercellular network of interactions, which determine the structure and the

function of a cell.

Basic vocabulary

Nodes and links

As said earlier, most of the complex systems, from the cell to the Inter-

net, work from the synergistic activity of many components which interact

through pairwise interactions. Mathematically speaking, each component is

called a node, and the interactions between two nodes is called a link. In

biological networks, the links between nodes represent the chemical reactions
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that can convert a substrate into another one. Then the nodes and the links

together form a network, or a graph in a more formal mathematical language.

Each node k can be characterized by a number Deg, which represents the

number of nodes linked to this node of interest. This number is called the

degree, or connectivity, of the node.

Directed or undirected networks

According to the nature of the interactions between nodes, networks can

be directed or not directed. In undirected networks, the links do not have an

assigned direction, and the relationship can go in both ways, which means

that both node of the link can have an effect on the other one. On the other

hand, in directed networks, the relationship has a well-defined direction. The

first node can affect the second one, but the second one does not have any

effect on the first one. Biological networks are directed because chemical re-

actions are irreversible. For example, if we focus on a chemical or metabolic

reaction, the direction can represent the direction of flow from the substrate

to a product. In a miRNA-gene network, since it is well-known that miRNAs

down-regulate genes, the direction can mean that the expression level of the

miRNA has an effect on the gene expression level. To give a graphical repre-

sentation, if we have a look at Figure (2.7), we can see that the link between

nodes B and D is undirected (two arrows in both ways) so they mutually can

affect each other, whereas the one between E and F is directed, and thus E

can have an effect on F but this is not reciprocal.
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Figure 2.7: Directed or undirected networks

Random, scale-free and cellular networks

Random networks

Some quite complex networks can be modelled by simple models, even

sometimes by completely random networks. Random networks were intro-

duced by Erdos and Renyi in 1959 [10]. That defines a graph with N nodes

and with n links which are chosen randomly from the N(N − 1)/2 possible

links. So we have Cn
N(N−1)/2 equiprobable possible graphs. We can model

it with a binomial model. We have N nodes and let p be the probability

of connecting each pair of node (N(N − 1)/2 Bernoulli experiments). As a

result, the total number of links in the network follows a Binomial distribu-

tion, and the expectation is naturally the mean of a Binomial distribution:

pN(N − 1)/2. The maximum number of possible links is N − 1 for each

node. Thus, if we define Deg the degree of a node, Deg follows a Binomial

34



distribution with parameters p and N − 1:

D = Pr(Deg = k) = Ck
N−1p

k(1− p)N−1−k.

Then the expected number E(Xk), where Xk is the random variable of the

number of nodes having k links (nodes of degree k) can be derived quite

simply: ND = λk. If we consider that the nodes are independent, so are

their degrees, we can use a theorem from Bollobas’ probability used on graphs

which states that Xk follows a Poisson distribution with parameter λk:

P (Xk = r) = e−λk
λrk
r!
,

If we simplify, we can say that Xk = ND = λk, for large N , the Binomial

distribution with probability p and N nodes, with Np fixed and p small, can

be approximated by a Poisson distribution, thus the probability for a node

to get exactly k links is:

P (Deg = k) = e−p(N−1) (p(N − 1))k

k!
= e<k>

< k >k

k!
.

where < k >= p(N−1) is the average degree of the network. More details can

be found in [44, 5]. That means that most of the nodes have roughly the same

number of links, close to the network’s average degree < k > (= p(N − 1))

and that there are no (or very rare) nodes with significantly more or less

links.

Scale-free networks

The problem is that random networks can not explain the topologies of
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real networks, because ”real life is not randomly regulated”. That is why we

need to introduce another kind of networks: the scale-free networks. They

are very important, because it has been observed that many networks are

scale-free. The main characteristic of such networks is that the number a

nodes with a given degree follows a power law. Therefore, the probability

that a chosen node has exactly k links follows P (k) ∼ k−γ, where γ is the

degree exponent, comprised between 2 and 3 for most of the networks. It

results that such networks are characterized by the fact that most nodes have

only a few links, and only a small number of nodes have many links. These

nodes with many links are called hubs, and hold all the nodes of the network

together. Furthermore, we can even say that it is very difficult to find a

typical node which could be used to describe all the others, contrary to the

random networks, where most of the nodes have roughly the same number

of links.

We will keep considering that model because it has been found that

most cellular networks are approximately scale-free. The nodes represent

the metabolites, while the links represent the enzyme-catalysed biochemical

reactions. Since these chemical reactions are irreversible, it is admitted that

cellular networks are directed. Finally, to do the link between the cellular

and the scale-free networks, it is essential to note most metabolic substrates

participate in only one or two reactions only, whereas only a few substrates

participate in loads of reactions as metabolic hubs. For example, genetic

regulatory networks are thought to be scale-free, since most of the miRNAs

regulate only a few genes, but some of them regulate many genes.
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Some properties of scale-free networks

We can mention few properties of scale-free networks. First, the properties

of growth and preferial attachment consist of the fact that networks are not

fixed, that new nodes can join the existing network, and that these new nodes

will tend to connect to hubs. These two characteristics are jointly the reasons

of the emergence of the scale-free networks. Indeed, the nodes with many

links, which are the oldest nodes to appear in the network, are more likely

to get even more connections thanks to that ”rich-gets-richer” mechanism.

Then, modularity refers to a group of physically or functionally linked

nodes that work together to achieve a distinct and precise function, as for

instance in biology, protein-RNA complexes which are the core of many basic

biological functions. Indeed, most of the cellular molecules are either part

of an intracellular complex such as the ribosome, with a modular activity,

either they contribute to a distinct process, in an extended module. When

studying the modularity of a given network, we need to clearly identify the

different modules, their relationships, how they interact...

Robustness is the system’s ability to respond to changes in the external

conditions and/or internal organization while maintaining normal behaviour.

Scale-free networks are amazingly robust against accidental failures. Indeed,

random failure will mainly affect the numerous small degree nodes, the ab-

sence of which does not affect the whole network’s integrity. However, it

is true that if some important hubs are affected, the network will be very

vulnerable, not having the suitable behaviour, maybe leading to the collapse

of the network.

We can mention many other properties of scale-free networks, as dissor-
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tativity, clustering, hierarchy, small-world effect, etc. Further information on

all of this is available in [3].

After this presentation of networks, we are going to provide a brief re-

view of statistical models which have been proposed in the similar topic of

biological networks, one of them being the base of our proposed methodology.

2.2.4 Review of statistical models for biological net-

works

Bayesian graphical models have already been used to study miRNA targeting.

Huang, Morris and Frey in [25], Huang, Frey and Morris in [23], proposed

a Bayesian model for the regulatory process of targets and miRNAs. In

these papers, the authors proposed a variational learning procedure, with a

minimized Kullback-Leibler divergence and EM algorithm to predict a set

of functional interactions. In this approach, the regression coefficients are

assumed constant for each miRNA, meaning that one given miRNA will have

the same regulatory effect on all its potential targets. In [58], Stingo et al.

proposed a MCMC (Monte Carlo Markov Chain) approach with regression

coefficients different for every single functional gene-miRNA pair, where each

target gene is assumed independent of the others given the miRNAs. This

paper was the starting point of our methodology, where we try to relax this

major assumption made in the latter matter. We can also mention that in

[59], Stingo and Vanucci proposed a variable selection with a Markov random

field prior to infer undirected gene-gene networks, where the subjects are

classified according to their phenotypes. In this approach, genes part of a

same functional group are assumed correlated with a Inverse-Wishart prior,
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an assumption similar to the one we will present in the following chapter.

2.3 Conclusion

In this chapter, we have presented the most important biological knowledge

we require to understand the project and study we want to perform, including

both genetics and target recognition in one side, and some properties of

graphs on the other side. Finally, we provided a small review of similar

studies with statistical models which aim to infer biological networks. In the

next chapter, we will describe in more details the study and the available

data, before we explain in Chapter 4, the proposed framework to infer a

gene-miRNA network.
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CHAPTER 3

Presentation of the data and study

3.1 Introduction

Trying to understand how genes and proteins are regulated is one of the ma-

jor tasks in genomics and biology, if not the most challenging. Regulation

can happen at transcriptional, post-transcriptional, translation and post-

translational levels. Transcription is the process in which segments of the

DNA sequence are used as templates for the synthesis of shorter molecules

called RNA. Then, in the translation process, these RNA molecules direct

the synthesis of proteins. MicroRNAs (miRNAs) are endogenous short non-

coding RNA molecules, 22 nucleotides long on average, which play an impor-

tant regulatory role in living cells [11], as it has been estimated that at least

30% of the genes in the human genome are regulated by miRNAs [45]. Genes
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regulated by miRNAs are commonly called targets. The exact mechanism

of miRNA regulation is still unclear and to be understood, thus consists of

an important area of genomics research, so is the complete process of reg-

ulation. According to current knowledge, it is believed that miRNAs are

post-transcriptional down-regulators, which bind to 3’-untranslated region

(UTR) of its target mRNAs, leading to either the degradation of the mRNA,

or the repression of the translation of proteins, depending on how extensive

the base-pairing between the mature miRNA and the target mRNA is.

Several algorithms have already been developed to predict and determine

potential miRNA-mRNA interactions, based on the sequence and structure

characteristics of the miRNAs and their target sites. The main factors used

by these algorithms are the sequence complementarity, hybridization energy

and comparison across species. But they also often take into account differ-

ent other factors that can influence the interactions, such as different seed

matches complementarity, the conservation, thermodynamics stability, site

accessibility. We can briefly mention some of the more widely used predic-

tion algorithms: TargetScan [40, 39, 19, 13], miRanda [9, 27], DIANA-microT

[30], PicTar [32], and PITA [29]. Some reviews of these methods and factors

can be found in [4], [62] and [38]. Generally, these algorithms predict loads

of potential miRNA-mRNA interactions, sometimes different ones as they

use different factors to establish their targets. So it can quickly become too

difficult for researchers to find, among these hundreds of thousands of poten-

tial interactions, those who are functional under particular clinical conditions

and thus play a crucial regulatory role under these conditions.

Our aim is to develop a statistical model which identifies with high con-
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fidence a set of potential targets and functional interactions. The regulatory

relationships can be inferred by integrating expression levels of both miR-

NAs and their candidate target genes. Our approach consists of a directed

Bayesian graphical model, in which we also incorporate biological knowledge,

such as the negative regression coefficients, as it is believed that miRNAs

down-regulate the expression of the genes. We also take into account in our

prior model the target scores that have been predicted by TargetScan [19]

based on the sequence and structure information. We then perform MCMC

(Monte Carlo Markov Chain) methodology to select the variables of interest

from the association matrix, before creating the network.

Bayesian graphical models have been introduced to study the regulatory

process of target genes by miRNAs by Huang, Morris and Frey [25] in 2007

and Huang, Frey and Morris [23] in 2008. In their approach, these authors

conducted a variational learning method by minimizing the KL-divergence,

where the regression coefficients were considered constant with respect to

the miRNAs, meaning that one given miRNA will have the same regulatory

affect on all the target mRNAs. This is the reason why in 2010, Stingo et

al [58] proposed a full MCMC procedure which allows different regression

coefficients for every candidate gene-miRNA pair, making the variable selec-

tion more effective. Our approach is similar to the latter, in the sense that

we also want to predict gene-miRNA interactions. However, the important

difference is that Stingo et al. [58] assume that the genes are independent

given the miRNAs, while we are trying to relax this assumption. Indeed,

in the living cells, groups of genes are often part of group responsible of a

distinct biological function, and thus are likely to be correlated. However,
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due to the size of data and thus computational issues, we still have to as-

sume some independence between genes, by separating the genes in clusters

of correlated variables, the clusters being independent of each other. The

idea of this thesis is to compare both approaches, and study the differences,

the advantages and inconveniences of each method.

In this chapter, first we describe the clinical study and the data, con-

sisting of expression levels of miRNAs and potential target genes, and the

scores from the TargetScan algorithm corresponding to our set of miRNAs

and mRNAs. Then we describe few approaches we used for the required

dimensionality reduction, as well as a clustering method to group correlated

genes together.

3.2 Clinical study

3.2.1 Acute Coronary Syndromes

Acute Coronary Syndromes (ACS) is a term which refers to several condi-

tions attributed to the obstruction of the coronary arteries. The common

problem of these conditions is the formation of a blood clot in a coronary

artery, leading to a sudden reduction of blood flow to the heart muscle. A

myocardial infarction (MI), also called heart attack, occurs when a coro-

nary artery is blocked. The blood clot prevents the blood flow reaching the

heart muscle, which is then at risk of dying if the blockage is not quickly

undone, since the heart muscle beyond the blockage is strained of oxygen.

The two main types of MI are ST elevation MI (STEMI) and non-ST eleva-

tion MI (NSTEMI). The difference, determined after an electrocardiograph,
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lies in the fact that in a NSTEMI, the artery which supplies one part of

the heart muscle is partially blocked, not totally as it is in a STEMI. Apart

from these two MI conditions, we also need to distinguish the less severe

unstable angina (UA) condition, which occurs when the blood clot does not

completely block the blood flow, and cell death is not seen. The blood flow

is reduced but still effective, preventing the infarction of the heart muscle

supplied by the affected artery. For further information or details about

ACS, a well-explained review is available on the health and disease website

http://www.patient.co.uk/health/acute-coronary-syndrome.

In this thesis, we consider a clinical study on ACS. Patients were admitted

to hospital with acute chest pain. After the patients got provided a diagnos-

tic of myocardial infarction, and after giving written informed consent, 30

patients with ACS were recruited less than 24 hours after their admission to

hospital: 10 with unstable angina, 10 with STEMI and 10 with NSTEMI.

Expression of miRNAs was quantified in individual patients by qRT-PCR at

7 and 30 days after the admission to hospital, and global gene expression

was quantified in the same samples using Affymetrix human arrays. After

RNA got extracted from these blood samples, we determine the expression

levels of miRNAs and mRNAs, defined by the Ct number. The Ct number is

the number of cycles which are necessary to reach a predetermined threshold

level of log2-based fluorescence. These expression levels were quantified with

Affymetrix genechip arrays and normalised using puma package for microar-

ray data analysis. Since some patients did not come back after their first

admission, and/or a few samples could not be exploited, the numbers of dif-

ferent samples are 19 for unstable angina, 19 for NSTEMI and 16 for STEMI.
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Also, due to the lack of patients and time points, each different sample was

treated as a single biological sample.

3.2.2 MiRNA profiles

MiRNA data was analysed using Sequence Detection System and DataAssist

(Applied Biosystems). The expression levels were estimated based on the

comparative threshold cycle (Ct) method.

As a regulatory network can quickly become complex due to the size of the

data, and also in our methodology to the model, we need to focus on small

sets of miRNAs and mRNAs. That is why, after personal communication

with collaborators from the Department of Cardiovascular Science who work

on a similar topic, we decided to focus on a set of 13 miRNAs, which are

believed to have a crucial role in the regulation process of genes responsible

of ACS. A previous study, using the same type of data, has indeed provided

evidence of changes in the expression of miRNAs after a myocardial infection,

indicating the role of miRNAs as biomarkers for risk estimation, classification

of disease and therapeutic interventions. Further information can be found

in [51].

The levels of these 13 miRNAs, under each condition and without regarding

the disease condition in the last panel, can be visualized in the following

histograms in Figure (3.1).

3.2.3 TargetScan scores

As we mentioned and we will detail in Section 3, we want to integrate pre-

diction scores in our prior model. The scores we use were computed from
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Figure 3.1: Histograms of miRNAs expression levels, patients suffering from
STEMI (top-left), NSTEMI (top-right), Unstable Angina (bottom-left), and
all levels for the three conditions (bottom-right)

the TargetScan algorithm [19], one of the most widely used target predic-

tion algorithm. In this release of the algorithm, a score, called the total

context score, for a specific miRNA-target gene is computed, being the sum

of the contribution of four features: the site-type contribution, the 3’ pair-

ing contribution, the local AU contribution, and the position contribution.

The site-type contribution represents the type of seed match (8mer, 7mer-m8,

7mer-1A or 6mer, the types described in Figure 2.5), while the 3’ pairing con-

tribution reflects any consequential complementarity outside the seed region,

in particular between nucleotides 12 and 17 (like the atypical matches de-
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scribed in Figure 2.6). The local AU contribution refers to the concentration

of A and U nucleotides flanking the corresponding seed region of the miRNA,

as it is believed that the match in the 3’ end of the mRNA is more likely to

accur in a rich AU context (complementarity between A and U) [19]. Finally,

the position contribution analyzes the position of the target site within the

mRNA. For all these features, a more negative score is associated with a

more favorable site, and the contect score is the sum of these four scores.

More information can be found in the original paper [19], and in other pub-

lications from other releases of the algorithm [40, 39, 13]. These scores can

be downloaded from the TargetScan website: http://www.targetscan.org/.

If a given miRNA-mRNA interaction does not have a score, it indicates that

the algorithm did not predict any regulatory association between the miRNA

and mRNA of interest.

In this study, we consider only one source of target scores. However,

as there exist other sources, it is possible to use another source, and also

to combine different sources for our prior model, as we will see in Section

(4.2.3).

3.2.4 Target genes profiles

Gene expression was estimated using probabilistic models implemented in

puma package [43, 46]. These models provide estimates for the variance

and credibility interval for probe level errors of each transcript and generate

accurate estimates of low gene expression. Further information can be found

in the original papers.

RNA was extracted from each sample to quantify the expression level of
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the genes. After selecting the unique probe sets among our set of genes, the

Gene Symbols of these mRNAs were linked to the potential targets of the

13 miRNAs we previously selected. Genes were conserved in the analysis

only if the TargetScan algorithm predicted at least one potential regulatory

miRNA among our set. This is done in order to reduce the complexity of our

approach, to reduce our number of target genes. Indeed, the initial number

of target genes, few thousands, was too high and not reasonable in order to

conduct an efficient analysis. This the reason why we apply few methods,

described in Section 3.3.1, to narrow down the number of genes to 897. The

expression levels of these 897 target genes are shown in Figure 3.2, in the

same order as the miRNAs expression levels.

As we will see in Section 4.2.1, we assume in our model that the expression

levels data, composed of both genes and miRNAs, are normally distributed.

To validate the approach, we can check this assumption is reasonable, by

looking at the distribution of all the data, under each condition, in Figure

3.3. However, since we may observe some slight skewness, we can look at

the QQ-plots of the data, under each condition, in Figure 3.4 to see that the

data can be assumed to be normal. Also, by computing marginal Shapiro

tests on each of the different variables, we find that the average p-value is

' 0.37.
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Figure 3.2: Histograms of genes expression levels, patients suffering from
STEMI (top-left), NSTEMI (top-right), Unstable Angina (bottom-left), and
all levels for the three conditions (bottom-right)

3.3 Reducing the dimensionality

3.3.1 Reducing the number of target genes

As mentioned, the number of genes is very large. As an illustration, we ini-

tially had available expression levels of over 54,000 transcripts with 38,500

different probes. This high number number of variables would definitely lead

to computational issues: length, cost, feasibility etc. This is particularly true

when it comes to compute the multivariate cumulative density function (cdf)

ΦG∗M(0,−UV T ,U) from Equation (4.12) in Section 4.3.1, and the inversion
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Figure 3.3: Histograms of genes and miRNAs expression levels, patients
suffering from STEMI (top-left), NSTEMI (top-right), Unstable Angina
(bottom-left), and all levels for the three conditions (bottom-right)

Figure 3.4: QQ-plots for miRNAs and genes datasets, under each condition:
STEMI, NSTEMI, and Unstable Angina
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of the covariance matrix Σ. This is why the genes first need to be filtered

before we introduce the statistical model for infering the regulatory network

in Chapter 4.

We first select the genes transcripts which are unique probe sets. A

probe set is a sequence of DNA used to detect the presence of a comple-

mentary sequence by binding (hybridizing) to that site. There exists dif-

ferent types of probes sets, which depend on the specificities of the probe

set. A unique probe set is designed to detect a unique sequence of a sin-

gle gene, while other types can detect different sequences of one gene, or

two different sequences of two different genes, or one sequence that can be

detected by several other probe sets. As unique probe sets are character-

istic of a specific gene, we choose to conserve only these variables. Fur-

ther information about probe sets can be found on the Affymetrix website

http://www.affymetrix.com/support/help/faqs/mouse 430/faq 8.jsp.This se-

lection of unique probe sets reduced the number of potential genes to 8,225.

Then, as mentioned in the description of the data, we conserve the genes

in the analysis only if they had at least one potential regulating miRNA

with a positive TargetScan score, the other genes being disregarded. Indeed,

if it is biologically not possible for any miRNA in our dataset to bind to a

given gene based on their sequence information, it is not relevant to study a

possible regulatory association involving that given gene. Once this second

filtering process done, it remains 4,215 potential targets out of the previous

8,225.

Thirdly, we assume that targets which have an impact on different con-

ditions are the ones with a different behaviour given a given specific condi-
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tion. Thus, comparing the expression levels of patients suffering from STEMI

(most severe condition) and UA (less severe condition), we conserve the genes

which show a significant different behaviour, either an increase or a decrease

of their expression level. This last pre-processing step allows us to disregard

more than 3,000 other genes.

Finally, these three different filters allow us to narrow down the number

of our variables to G = 897 target genes.

3.3.2 Clustering

The high dimension G of the genes can still introduce computational prob-

lems, in particular regarding the inversion of covariance matrices, leading

to long running times and/or crashes. A possible approach to reduce the

complexity is to define clusters of more reasonable size, composed of corre-

lated genes. This classification might be suitable, especially when genes have

different patterns. For example, in Figure 3.5, by checking the expression

levels of a subset of genes, we distinctly observe two groups of genes, with

different average levels. It would then be suitable to divide this subset in

two smaller clusters, where the genes within the same cluster are assumed

correlated. On the other hand, genes belonging to different clusters will be

assumed independent.

With this approach, we can divide our set of data into several clusters

of correlated genes, then assume that these clusters are independent of each

other. In this case the covariance matrix of the genes is block diagonal:
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Figure 3.5: Subset of genes composed of two different clusters with different
patterns: one cluster with an average expression level close to 8, a second
one with an average close to 4.

Σ =


Σ1 0 · · · 0

0 Σ2 · · · 0

...
...

. . .
...

0 0 · · · ΣC


,

where C is the number of different clusters. However, it is likely that sev-

eral genes will not fit in any cluster, or many clusters will be very small,

composed of a few genes. All these genes can then be assumed independent

and grouped together in the last cluster, with a diagonal covariance matrix

ΣC , resulting in C − 1 clusters of correlated variables. Our approach can

still be applied, however, the proposed covariance matrix sampled from the

Inverse-Wishart distribution would be non-diagonal, indicating correlations

between the variables, which is not the case for that cluster. Therefore, it

is more suitable to apply the approach from Stingo et al. [58]. Once the
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clustering is performed, it is then possible to run each cluster independently.

The clustering is independent from the model, then any suitable clustering

approach can be performed. For this study, we choose to use the AutoSOME

algorithm, proposed by Newman and Cooper [42], where they described a

Self-Organizing Map (SOM) which can identify up-regulated genes associ-

ated within the same biological function by analysing the co-expression of

the data. However, other methods have been developped to cluster mir-

croarray data. A first approach uses hierarchical clustering [16, 21], to build

a dendrogram of clusters and sub-clusters, the number of clusters which can

vary between 1 and the number of data point (between all data in one cluster

and each variable in its own cluster). A second approach consists of K-means

clustering [16, 21], which separates the dataset by minimizing the statisti-

cal variance within k clusters. Another method is the non-Negative matrix

Factorization [12], which efficiently identify well-defined clusters. However,

these three methods share a common inconvenience, in the sense they need

a priori knowledge or an external method to predict the number of clusters.

A machine learning method used for high-dimensional data is the Self-

Organizing Map (SOM) [31, 61]. To identify k clusters, it randomly initializes

a lattice of k nodes, and then data points iteratively move similar points to-

wards each other and move similar points away from each other. However,

the recurrent inconvenience of the a priori knowledge of the number of clus-

ters still remains.

AutoSOME is a SOM-based method. It uses its advantages for dimen-

sionality reduction and spatial organization of large datasets. After that

initial organization of the input data, it computes an error surface which
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measure the similarity between nodes. A high error represents a high dissim-

ilarity between adjacent nodes, while a low error represents a high similarity

between nodes which are likely to be part of the same cluster. A density-

equalization procedure then forces highly similar data to aggregate, while

separating the dissimilar variables. Discrete clusters are then identified from

this resulting SOM using the minimum spanning tree from graph theory.

Using Monte Carlo sampling, only the relationships between variables which

reach a specified threshold are conserved, ensuring the statistical significance

of the clustering identification. To avoid the recurrent issue of output vari-

ation in clustering methods, by merging several iterations of the procedure,

the method uses an ensemble strategy to send uncertain data points, whose

clusters may vary among the scheme iterations, to the clusters they are most

frequently part of.

The main advantage of that method is that it does not need prior knowl-

edge of cluster number, however, parameters can be modified to obtain clus-

ters of desired size for example. More details can be found in the original

paper [42].

The choice of the clustering method is not actually crucial. It is fair to

say that our approach depends on the clustering method, as another method

would produce different clusters of genes. However, it does not rely on that

choice, as the inference can then still be performed on each cluster. That is

the reason why it is absolutely possible to chose another clustering method

if it is more appropriate.
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3.4 Conclusion

In this chapter, we described the study and the data, as well as the process

which allowed us to reduce the number of genes in the study. In a first

section, a description of the different diseases was provided, underlying the

differences between MI and unstable angina, and alo between STEMI and

NSTEMI, the two types of MI. Then, a description of the data collected is

given, explaining how and when the data were collected, how many patients

were recruited per condition, and which techniques were used to quantify the

expression levels. Also, the target scores from TargetScan were introduced,

as we will use these scores as prior information in our approach, as we can

see in Section [?]. Finally, we described the three steps we performed to

reduce the number of potential target genes, as dimensionality can quickly

become, so we had to select the most likely genes. That is the reason why we

first chose the transcripts characteristic of a gene (unique probe sets), before

selecting only the ones which were among potential targets (via the target

scores), before selecting the genes which showed a significant change in their

expression level within the different ACS conditions.

Now that we have a final dataset, we can focus on the statistical model

and framework we will present in details In Chapter 4, in order to try to

answer the main investigation: can we estimate an ACS regulatory network

between miRNAs and genes? To do so, we want to study if it is possible

to infer these functional gene-miRNA interactions with high confidence so it

can become possible to identify such biological interactions as the potential

source of a genetic condition.
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CHAPTER 4

Bayesian Graphical Modeling

4.1 Introduction to graphical models

Graphical models have been introduced and developed around the end of the

20th century, by Dawid and Lauritzen in [8] and by Lauritzen in [35], be-

fore Jensen introduced Bayesian networks in 1996 in [26]. Bayesian graphical

models have then been used to study the regulatory process of target genes by

miRNAs by Huang, Morris and Frey [25] in 2007 and Huang, Frey and Morris

[23] in 2008. In their approach, the authors conducted a variational learning

method by minimizing the KL-divergence, where the regression coefficients

were considered constant with respect to the miRNAs, meaning that one

given miRNA will have the same regulatory effect on all the target mRNAs.

This is why in 2010, Stingo et al [58] proposed a full MCMC approach which
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allows different regression coefficients for every candidate gene-miRNA pair,

making the variable selection more effective. Our approach is very similar

to the latter, the main difference being that Stingo et al. [58] assume that

the genes are independent given the miRNAs, assumption we are trying to

relax, as in the living cells, groups of genes are often part of group responsible

of a distinct biological function. However, due to the size of data and thus

computational issues, we still have to assume some independence between

genes, by separating the genes in clusters of correlated variables, the clus-

ters being independent of each other. This clustering approach, AUTOSOM

[42], is described in more details in Section 3.3.2. The idea of this thesis is

to compare both approaches, and study the differences, the advantages and

inconveniences of each method.

In this chapter, we will define the framework of the proposed methodol-

ogy, describing the assumptions and choices of priors. We will then present

the estimation procedure via a MCMC algorithm. After setting up the pa-

rameters, we will apply the approach first to case study of simulated data,

where we will compare in details its performance with the performance of

the algorithm where the genes are assumed independent. Finally, we will

perform a Monte Carlo study of 100 simulated cases, which will allow us to

have a better idea of the general performance of our methodology.
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4.2 Model

4.2.1 Framework

Having expression levels of miRNAs and potential targets, we aim to build

a directed graphical model which allows us to identify a small number of

regulatory associations, in order to be able to answer the underlying ques-

tion: ”which miRNAs regulate which genes”. The inference of the regulatory

network is performed by integrating the expression profiles and the sequence

information of our variables in the prior probability model. The model needs

to be adapted to the data, but also to biological considerations: concept of

sparsity, down-regulation of the genes by the miRNAS, etc.

Graphical models are graphs or networks, where the random variables are

represented by nodes, and the interactions between variables by arrows or

edges. The absence of arrow between two variables mean that the interac-

tion of interest is not functional, and the two variables are then conditionally

independent given the other variables. Graphs can be undirected, when the

dependency between variable is symmetric, or directed when there is only

one direction of dependence. A graphical example of a directed network be-

tween three miRNAs and seven genes is given in Figure 4.1. In our approach,

we consider a directed graph, due to the fact that it is the miRNAs which

regulate the targets.

In a directed graph, we need to order our variables, in order to define

the conditional independences, such that a target gene can only be regulated

by the miRNAs and that a miRNA can only regulate the genes. We then

define Z = (Y ,X), where Y = (Y 1, . . . ,Y G) and X = (X1, . . . ,XM), are
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Figure 4.1: A graphical representation of regulatory network between 3 miR-
NAs and 7 genes.

the matrices representing respectively the genes and miRNAs profiles, G and

M being the respective numbers of genes and miRNAs included in the study.

Specifically, for each target profile Y g (respectively miRNA profile Xm), yng

(xnm) represent the expression level of gene g (miRNA m) in the nth sample,

n = 1, . . . , N . In our study, G = 897,M = 13, and we have N = 16 for the

STEMI condition, N = 19 for the NSTEMI condition and N = 19 for the

unstable angina condition.

Our first assumption is that Z follows a matrix-variate normal distribu-

60



tion (Section A.2), with zero mean, among-row covariance matrix IN , and

among-column covariance matrix Ω:

Z ∼ NN,G+M(0, IN ,Ω).

Due to the ordering of variables, Ω can be partitioned in blocks as follows:

Ω =

ΩY Y ΩY X

ΩXY ΩXX

 ,

where ΩY Y and ΩXX can be seen as the marginal covariance matrices of the

genes and the miRNAs respectively, and ΩY X the G×M matrix containing

the covariances between each gene and miRNA.

This ordering also allows us to factorize the likelihood of Z as:

f(Z) = f(Y |X)f(X) = f(Y |X)
M∏
m=1

f(Xm), (4.1)

where Y |X ∼ N(XβT , IN ,Σ), and Xm ∼ N(0, σmIN), assuming the miR-

NAs are independent, without losing generality of the gene-miRNA depen-

dencies, as we are not interested in this thesis in the possible relationships

between miRNAs. Here, σm represents the variance of miRNA m, Σ the

genes covariance matrix, and β = {βgm}, each βgm being the regression co-

efficient between gene g and miRNA m.

As it is believed that miRNAs down-regulate the expression of their gene

targets, it seems legitimate that this knowledge should be included in our

statistical model. This is why we impose the regression coefficients to be
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negative, now leading to Y |X ∼ N(−XβT , IN ,Σ):

Y = −XβT + ε, (4.2)

where ε follows a matrix-variate normal distribution, with zero mean, among-

row covariance matrix IN , and among-column covariance matrix Σ. We then

complete the biological constraint by imposing a gamma prior for each of

our regression coefficients, βgm|γg ∼ Ga(1, cγg), where γg follows an inverse-

gamma distribution, γg ∼ IGa((δ+M)/2, 2/d). We then define γ = (γ1, . . . , γG).

These parameters γg represent the variances of the genes in the model of

Stingo et al., [58]. In these distributions, c represents a correction factor, δ

the minimum integer such that the expected value of this distribution ex-

ists, and d is set up such that the mean is comparable to the error variance.

More details will be provided in Section 4.5, where we set up the different

hyperparameters of the model. In our approach, we want to study the effect

of the covariance matrix on the regulatory network, however we still need to

conserve and update those parameters due to their role in the prior for the

regression coefficients. Finally, we impose an Inverse-Wishart prior for the

covariance matrix Σ, Σ ∼ IWνΣ

(
νΣ, (νΣ + G + 1)IG

)
, with νΣ = G + 2,

the smaller value such that the expected value of Σ exists. Definitions and

notations of the different distributions can be found in Section A.2.
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4.2.2 Selection of regressors under the regulatory net-

work

The aim of the study is to predict for each gene, a subset of miRNAs which

regulate that gene, which is equivalent to determine for each gene g, the

βgm which are not zero. These non-zero regression coefficients would then

indicate the functional relationships between the corresponding genes and

miRNAs. This variable selection problem can be computed by introducing

a (G×M) association matrix R = {rgm}, with its elements being Bernoulli

variables. More precisely, rgm = 1 if there is an interaction between the gene

and miRNA of interest, or zero otherwise:

rgm =

 1 if the m-th miRNA regulates the g-th gene,

0 otherwise.

Given the association tableR, the regression coefficients βgm are then stochas-

tically independent, thus we can modify our prior and impose the following

mixture prior distribution:

π(βgm|R, γg) = rgmGa(1, cγg) + (1− rgm)Iβgm=0. (4.3)

Then βgm still follows a gamma distribution if the given interaction is func-

tional, but is zero otherwise. We can check from this prior that rgm = 0 if

and only if βgm = 0.

Similarly, we can now modify our prior for the parameters γg’s and say that

under the regulatory network, γg ∼ IGa
(
(δ + kg)/2, 2/d)

)
, where kg is the

number of βgm 6= 0 for a given gene g, which is equivalent to the number of

63



miRNAs included in the regulation of each target g.

4.2.3 Target scores in the prior model

As previously described, we aim to estimate prior probabilities of func-

tional miRNA-gene interactions, via the target scores obtained from se-

quence/structure information. These scores need to be positive, or zero when

it is believed that there is no association between a given miRNA and a given

target. Given these scores, prior probabilities of the variables rgm, indicating

miRNA m regulating gene g, can be computed via a logistic model:

P (rgm = 1|τ) =
exp(η + τsgm)

1 + exp(η + τsgm)
, (4.4)

where sgm is the score of possible association between miRNA m and gene g

obtained from sequence information, and where τ is an unknown parameter,

following as hyperprior a gamma distribution, τ ∼ Ga(aτ , bτ ). We can check

that higher scores, which represent more likely regulating associations, lead

to higher prior probabilities of association. However, as the scores we down-

loaded from the 2003 TargetScan release [19] get more negative and lower

when the binding between a miRNA and its target gets more likely, the scores

have to be transformed in a suitable way that conserves the ranking of the

more likely associations. Our choice of transformation will be discussed in

Section 4.5, where we set up the various parameters of the model.

The parameter η gives the prior belief of interaction, especially if we do

not have access to the sequence and structure knowledge of the sgm’s, assum-

ing all the scores are equal to 0. Since it is believed that genes are on average

regulated by one or two miRNAs, we set η close to log( 1
M−1

), which gives a
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prior expected number of regulating miRNAs close to 1 per gene. If we have

more information available about the target scores, from one or more sources,

we can assume that the prior probability increases. Thus, the parameters aτ

and bτ are set up in such a way that the prior number of regulating miRNAs

per gene is close to 2. Further details will be given in 4.5, after we explained

the transformation applied to the target scores.

In the case where more than one source of information is available, as it

is in the study by Stingo et al [58], it is sensible to integrate these different

sources and thus incorporate the different scores in the prior model. If for

example, we have three different sources from three algorithms (TargetScan,

miRanda, PicTar for instance), the logistic model (4.4) can be updated as:

P (rgm = 1|τ) =
exp(η + τ1sgm,1 + τ2sgm,2 + τ3sgm,3)

1 + exp(η + τ1sgm,1 + τ2sgm,2 + τ3sgm,3)
, (4.5)

where sgm,i, i = 1, 2, 3, represent the scores from TargetScan, miRanda and

PicTar respectively, with respective hyperprior parameters τi, i = 1, 2, 3, and

τ = (τ1, τ2, τ3).

4.2.4 Graphical representation

The proposed graphical model can then be defined as

f(Y ,X,R,Σ, τ,β,γ) ∝ f(Y |X,R,Σ, τ,β,γ)× π(β|R, γ)

×π(Σ)× π(γ)× π(R|τ)× π(τ),
(4.6)

and a graphical representation of its structure is given in Figure 4.2, where

the directed arrows indicate the dependencies between the parameters, rep-
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Figure 4.2: A graphical representation of the model, with the dependen-
cies between the parameters and variables within the model. The observed
random variables are represented by squares, the parameters by circles.

resented by squares, and the variables, represented by circles. The logarithm

of this density will be referred as the log-probability of the model, as we will

study its convergence in later sections when we apply the proposed approach.
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4.3 Estimation procedure

4.3.1 Posterior inference

The main goal of the thesis is the estimation of the association matrix R,

in particular the posterior probability P (R|Y ,X), or the marginal posterior

probabilities of each single interaction P (rgm|Y ,X). We use a Metropolis-

Hastings within Gibbs procedure to perform a Stochastic Search Variable

Selection method and to identify the most influential miRNA-target relation-

ships. Such a method allows us to spend more time in the most likely config-

urations, which are the ones with higher marginal probabilities of rgm = 1,

which is necessary due to the size and complexity of our model space.

Actually, the complexity of the model, combined with the fact that the

covariance-matrix is not diagonal, implies that the contribution of each re-

gression coefficient toward the posterior probability of the entire model is

very small. Thus, it is likely that many models have the same very small

posterior probability. That is the reason why we choose to perform the pos-

terior inference on the single marginal posterior probabilities of the presence

of association P (rgm = 1|Y ,X). These will be estimated directly from the

output of the analysis, by computing the proportion of MCMC iterations for

which we have rgm = 1.

In order to estimate the marginal posterior distribution ofR, P (R|Y ,X),

we need to compute the likelihood f(Y |X,R,Σ,γ) by integrating out β:

f(Y |X,R,Σ,γ) =

∫
f(Y |X,R,Σ,β,γ)πβdβ (4.7)
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To complete this task, it is sensible to vectorize the random and param-

eter matrices. The relationship between the matrix-variate normal distri-

bution and the multivariate distribution suggests that (Y |X,R,Σ,β,γ) ∼

N(−XβT , IN ,Σ) is equivalent to:

f(W |X,R,Σ,β,γ) ∼ N(AB,C), (4.8)

with W = vec(Y ), A = −IG ⊗X, B = vec(βT ), C = Σ ⊗ IN , which can

be written as:

W = AB + ε2, (4.9)

where ε2 follows a multivariate normal distribution, with zero mean and

covariance matrix C, and where ⊗ denotes the Kronecker product, defined

in Section A.1.

Conditionally upon R, the columns of AB which corresponds to rgm = 0 are

also zero vectors. We can then select only the columns corresponding to the

regressors included in the regulatory network:

W = ARBR + ε2, (4.10)

where AR and BR are respectively the matrix and vector formed by taking

only nonzeros columns and elements of A and B.

As the coefficients βgm’s are stochastically independent givenR, we can write

that:

π(β|R,γ) = π(B|R,γ) =
∏G

g=1

∏M
m=1 π(βgm|γg,R)

=
∏G

g=1( 1
cγg

)kg exp
(
−DB

)
,

(4.11)
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where for each g, kg is the number of βgm 6= 0, and D is the 1×GM vector,

composed of

Dg∗m =

 1/(cγg) if rgm = 1,

0 otherwise.

We also define K =
∑G

g kg the total number of functional associations of our

network.

We will prove that the likelihood (4.7) is:

f(Y |X,R,Σ,γ) = f(W |AR,Σ,R,γ) =
∫
f(W |AR,R,Σ,BR,γ)

×π(BR|R,γ)dBR

∝
∏G

g=1( 1
cγg

)kg |C|−1|U |1/2 exp(−1
2
Q)ΦG∗M(0,−UV T ,U)

∝
∏G

g=1( 1
cγg

)kg |Σ|K−N
2 exp(−1

2
Q)ΦG∗M(0,−UV T ,U),

(4.12)

where U = (AT
RC

−1AR)−1 = Σ ⊗ (XTX)−1,V = W TC−1AR + D,Q =

W TC−1W − V UV T , and ΦG∗M(0,−UV T ,U) is the cumulative density

function of a normal multivariate (G ∗ M) distribution, calculated at the

zero vector, with mean −UV T and covariance matrix U .

Proof. Given the mixture prior distribution for the βgm’s, π(βgm|R, γg) =

rgmGa(1, cγg) + (1− rgm)Iβgm=0, and the fact that given R, those regression

coefficients are stochastically independent, the prior for β, and thus for BR,
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can be derived as:

π(β|R,γ) =
∏G

g=1

∏M
m=1 π(βgm|γg,R)

=
∏G

g=1

[∏kg
m=1,rgm=1

1
cγg

exp(−βgm
cγg

)
∏M−kg

m=1,rgm=0 1
]

=
∏G

g=1( 1
cγg

)kg
∏kg

m=1,rgm=1 exp(−βgm
cγg

)

=
∏G

g=1( 1
cγg

)kg exp
(
− 1

cγg

∑kg
m=1,rgm=1 βgm

)
=

∏G
g=1( 1

cγg
)kg
∏G

g=1 exp
(
− 1

cγg

∑kg
m=1,rgm=1 βgm

)
=

∏G
g=1( 1

cγg
)kg exp

(
−
∑G

g=1

∑kg
m=1,rgm=1

1
γg
βgm
)

=
∏G

g=1( 1
cγg

)kg exp
(
−DB

)
= f(BR)

= π(BR|R,γ))

Hence we now have

f(W |AR,Σ,R,BR,γ)π(BR|R,γ)

= (2π)(−NG/2)|C|−1/2 exp
(
− 1

2
(W −ARBR)TC−1(W −ARBR)

)
×
∏G

g=1( 1
γg

)kg exp
(
−DBR

)
∝ exp

(
− 1

2
(W −ARBR)TC−1(W −ARBR)

)
exp

(
−DBR

)
= exp

(
− 1

2

(
W TC−1W −W TC−1ARBR −BT

RA
T
RC

−1W

+BT
RA

T
RC

−1ARBR + 2DBR

))
= exp

(
− 1

2

(
BT
RA

T
RC

−1ARBR − 2(W TC−1AR −D)BR +W TC−1W
))

= exp
(
− 1

2

(
BT
RU

−1BR − 2V BR + V UV T +Q
))

= exp(−1
2
Q) exp

(
− 1

2

(
BT
RU

−1BR − 2V UU−1BR + V UV T
))

∝ exp
(
− 1

2

(
BT
RU

−1BR − 2V UU−1BR + V UV T
))
.
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Then, by integrating out BR with the substitution α = −BR , we have:

f(W |AR,Σ,R,γ) α
∫∞

0
exp

(
− 1

2

(
BT
RU

−1BR − 2V UU−1BR + V UV T
))
dBR

=
∫ 0

−∞ exp
(
− 1

2

(
αTU−1α+ 2V UU−1α+ V UV T

))
dα

= ΦG∗M(0,−UV T ,U) ∗ (2π)(G∗M)/2 ∗ |U |1/2

So we can now write the distribution f(W |AR,Σ,R,γ) as:

f(W |X,Σ,R) = (2π)(−NG/2)
∏G

g=1( 1
cγg

)kg |C|−1/2 exp(−1
2
Q)(2π)(G∗M)/2

×|U |1/2ΦG∗M(0,−UV T ,U)

= (2π)G(M−N)/2
∏G

g=1( 1
cγg

)kg |C|−1/2|U |1/2 exp(−1
2
Q)

×ΦG∗M(0,−UV T ,U ).

To simplify it, we can show that since |C| = |Σ⊗ IN | = |Σ|N and also that:

U−1 = AT
RC

−1AR

= (−IG ⊗AR)T (Σ⊗ IN)−1(−IG ⊗AR)

= (IG ⊗AR
T )(Σ−1 ⊗ IN)(IG ⊗AR)

= (IG ⊗AT
R)(Σ−1 ⊗AR)

= Σ−1 ⊗AT
RAR,

which leads to |U−1| proportional to |Σ−1|K , thus |U | proportional to |Σ|K ,

so we can write |C|−1/2|U |1/2 proportional to |Σ|K−N
2 . That finally allows us

to write the equation (4.12) as:

f(Y |X,R,Σ,γ) =
G∏
g=1

(
1

cγg

)kg
|Σ|

K−N
2 exp

(
−1

2
Q

)
ΦG∗M(0,−UV T ,U),

as required.
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4.3.2 Estimation of the regression coefficients

The main objective of the study is to estimate the association matrix R,

defining the functional interactions. However, if we also wish to infer the

regression coefficients BR, these can estimated by their full conditional dis-

tribution, which follow a normal distribution. That can allow us to estimate

the strength of the functional interactions: the more negative βgm is, the

stronger the interaction of interest is.

π(BR|Y ,X,R,Σ,γ) = π(BR|W ,AR,R,Σ,γ)

∝ f(W |AR,Σ,R,BR,γ)π(BR|R,γ)

∝ exp
(
− 1

2

(
BT
RU

−1BR − 2V UU−1BR + V UV T
))
.

from Proof 4.3.1. We then have a normal distribution with mean −UV T

and covariance matrix U :

BR|Y ,X,R,Σ,γ ∼ N(−UV T ,U).

4.3.3 MCMC algorithm

The association matrix R can be estimated via a Metropolis-Hastings within

Gibbs algorithm, allowing us to select the variables of interest. The notations

Rold, τold, . . . represent the current values of the parameters, before their

update. Due to the size of the state space, due to the covariance matrix Σ,

computations are quite long, intensive and expensive. We then propose to

focus only on the potential interactions, the ones for which sgm > 0, assuming

that the interactions with an absent TargetScan score are not functional. The

algorithm can be divided into four steps.
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• First, we update the association matrix R by changing the value of one

element for which sgm > 0, randomly chosen, resulting in an add or a

deletion of an edge. The proposed Rnew is accepted with probability:

min

[
f(Y |X,Rnew,Σ,γ)π(Rnew|τ)

f(Y |X,Rold,Σ,γ)π(Rold|τ)
, 1

]
. (4.13)

• In the second step, we update the parameter τ , the hyperparameter

of the prior model. We sample τnew from a truncated normal distribu-

tion q(τnew|τold) with mean τold, truncated at 0, which is accepted with

probability:

min

[
π(R|τnew)π(τnew)q(τold|τnew)

π(R|τnew)π(τnew)q(τnew|τold)
, 1

]
. (4.14)

The truncature at 0 ensures us the positivity of our parameter, while

the variance of that proposal distribution has to be set such that we

obtain a suitable acceptance rate, in order to efficiently explore the

parameter space.

We can note that other proposal distributions can be chosen. It is

for example acceptable to choose a gamma distribution, or also a log-

normal distribution, with parameters ensuring that the mean or mode

of the proposal distribution is the current value of the parameter.

• Then, we update the prior parameter γg of the gene involved in the

edge update two steps before. The proposal distribution is a gamma

distribution, with parameters αγg = γ2
g/e and βγg = e/γg, where e is

the tuning parameter and has to bet up suitably to obtain a correct

acceptance rate. This gamma distribution q(γnewg |γoldg ) ensures the pos-
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itivity of the parameter, and is centered on the current value of γg. The

probability of acceptance is then:

min

[
f(Y |X,R,Σ,γnewg )π(γnewg )q(γoldg |γnewg )

f(Y |X,R,Σ,γoldg )π(γoldg )q(γnewg |γoldg )
, 1

]
. (4.15)

• Finally, we update the covariance matrix Σ using a Metropolis step

where the proposal distribution q(Σnew|Σold) is a Wishart with param-

eters νΣ and AΣ = Σold/νΣ. The proposed Σnew is then accepted

with probability:

min

[
f(Y |X,R,Σnew,γ)π(Σnew)q(Σold|Σnew))

f(Y |X,R,Σold,γ)π(Σold)q(Σnew|Σold))
, 1

]
. (4.16)

The setting of the parameters ensures that the mean of the proposed

covariance matrix is centered on the current one. The variance of the

proposal distribution, then the acceptance rate, is determined by the

degrees of freedom νΣ, which has to be set suitably.

Then, at the end of the analysis, we compute for each potential interaction

Pgm, the proportion of MCMC samples for which rgm = 1, in order to perform

posterior inference. To accomplish this task, we decide of a threshold th,

between 0 and 1. Then we declare functional all the interactions for which

Pgm ≥ th. The higher th is, the less interactions are considered functional, th

reflecting the confidence of those links.
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4.4 Summary and pseudo-code of the algo-

rithm

In this section, we give a summary of the proposed approach. In Table 4.1,

we give a summary of the framework of the methodology, with a description

of the data, the model, the parameters and their relative priors, concluded by

the relative probability of the model and regulatory network. In Table 4.2,

we describe the derivation of the likelihood f(Y ,X,R,Σ,γ), by giving the

principal steps. Finally, in Table 4.3, we describe the MCMC procedure of

our methodology: for each type of update, we give the proposal distribution

used, and the probability of acceptance.

4.5 Setting up the parameters

Before applying the proposed methodology to simulated and then to real

data, we first need to set up the values of our hyperparameters. The target

scores sgm available from TargetScan are negative values, the lowest values

representing the most likely gene-miRNA interactions. However, the scores

in our prior probability model (4.4) are supposed to be positive, the highest

values corresponding to the most likely interactions. as a result, we transform

the TargetScan scores to new values for our framework: sgm = cdf(−sogm),

where s0
gm are the original TargetScan scores. That makes our scores follow

an uniform distribution between 0 and 1, and importantly give the highest

values to the most probable interactions. Another possibility would have been

to just change the sign of the scores, so the most likely interactions would still

have the highest scores. However, due to the lack of available information
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Data:
Genes expression levels: Y , N ×G matrix,

miRNAs expression levels: X, N ×M matrix,
TargetScan scores: S, G×M matrix.

Model:
Z = (Y ,X) ∼ N(0, IN ,Ω),

Y = −XβT + ε,
β, G×M matrix of the regression coefficients,

ε ∼ N(0, IN ,Σ).
Parameters and prior distributions::

π(βgm|R, γg) = rgmGa(1, cγg) + (1− rgm)Iβgm=0,
γg ∼ IGa((δ + kg)/2, 2/d),

kg = number of miRNAs involved in the regression of the g-th target gene,

K =
∑G

g kg,

P (rgm = 1|τ) = exp(η+τsgm)

1+exp(η+τsgm)
,

τ ∼ Ga(aτ , bτ ),

Σ ∼ IWνΣ

(
νΣ, (νΣ +G+ 1)IG

)
.

f(Y ,X,R,Σ, τ,β,γ) ∝ f(Y |X,R,Σ, τ,β,γ)× π(β|R, γ),
×π(Σ)× π(γ)× π(R|τ)× π(τ).

Table 4.1: Framework of the model
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Derivation of f(Y ,X,R,Σ,γ):
W = vec(Y ),
A = −IG ⊗X,
B = vec(βT ),
C = Σ⊗ IN ,

f(W |X,R,Σ,β,γ) ∼ N(AB,C),
W = ARBR + ε2,

AR,BR: matrix and vector composed of the nonzeros columns
and elements of A and B respectively,

ε2 ∼ NN×G(0,C),

π(β|R,γ) =
∏G

g=1( 1
cγg

)kg exp
(
−DB

)
,

D : 1×GM vector,

Dg∗m =

{
1/(cγg) if rgm = 1,
0 otherwise

U = (AT
RC

−1AR)−1 = Σ⊗ (XTX)−1,
V = W TC−1AR +D,

Q = W TC−1W − V UV T ,
ΦG∗M(0,−UV T ,U): cdf of a normal multivariate (G ∗M) distribution,

calculated at the zero vector, with mean −UV T and covariance matrix U .

f(Y |X,R,Σ,γ) =
∏G

g=1

(
1
cγg

)kg
|Σ|K−N

2 exp
(
−1

2
Q
)

ΦG∗M(0,−UV T ,U).

Table 4.2: Posterior inference: derivation of f(Y ,X,R,Σ,γ)

77



Pseudo-code of the MCMC procedure:
Update 1: R
elem= element of R randomly chosen,
Rnew = R,
Rnew[elem] = 1−Rold[elem],

α = min
[
π(R|τnew)π(τnew)q(τold|τnew)

π(R|τnew)π(τnew)q(τnew|τold)
, 1
]
,

u = U(0, 1): u is sampled from a uniform distribution on (0, 1),
if (α ≥ u), then (R = Rnew).

Update 2: τ
Proposal distribution q(τnew|τold): truncated normal distribution,
with mean τold and truncated at 0,
τnew: sampled from q(τnew|τold),
α = min

[
π(R|τnew)π(τnew)q(τold|τnew)

π(R|τnew)π(τnew)q(τnew|τold)
, 1
]
,

u = U(0, 1),
if (α ≥ u), then (τ = τnew).
Update 3: γg
Proposal distribution q(γnewg |γoldg ) = Ga(αγg = γ2

g/e, βγg = e/γg),
γnewg : sampled from q(γnewg |γoldg ),

α = min

[
f(Y |X ,R,Σ,γnewg )π(γnewg )q(γoldg |γnewg )

f(Y |X ,R,Σ,γoldg )π(γoldg )q(γnewg |γoldg )
, 1

]
,

u = U(0, 1),
if (α ≥ u), then (γg = γnewg ).

Update 4: Σ
Proposal distribution q(Σnew|Σold) = WG(ν = νΣ,AΣνΣΣold),
Σnew: sampled from q(Σnew|Σold),

α = min
[
f(Y |X ,R,Σnew,γ)π(Σnew)q(Σold|Σnew))

f(Y |X ,R,Σold,γ)π(Σold)q(Σnew|Σold))
, 1
]
,

u = U(0, 1),
if (α ≥ u), then (Σ = Σnew).

Table 4.3: Pseudo-code of the MCMC approach
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concerning the scores, we chose to change the frequency distribution and

make the scores distribution uniform between 0 and 1, so that we have a flat

prior.

The parameter η gives the prior belief of interaction, especially if we

do not have access to the sequence and structure knowledge of the sgm’s,

assuming all the scores are equal to 0. Since it is believed that genes are on

average regulated by one or two miRNAs, we set η close to log( 1
M−1

), which

gives a prior expected number of regulating miRNAs close to 1 per gene.

If we have more information available about the target scores, from one or

more sources, we can assume that the prior probability increases. This is the

reason why we set the parameters aτ and bτ of the gamma distribution in such

a way that the mean aτbτ is close to 1
0.5

[log( 2
M−2

)− η], and the variance aτb
2
τ

allows high probability to a wide range of values for τ , where 0.5 represents

the mean of the scores sgm and 2 the prior number of expected regulating

miRNAs per gene.

The hyperparameter νΣ is given the value G + 2, the minimum value

such that the mean of Σ exists. Moreover, that allows the mode of Σ to be

equal to the identity matrix, resulting in a vague prior for the covariances,

as in practice, we may not know their strength and/or sign. The other

hyperparameters are set in a similar way as in [58]. The parameter c which

appears in the prior distribution of the regression coefficients βgm’s can be

seen as a correction factor. According to Section A.2, accepting only the

positive values of a normal distribution with zero mean and variance σ2

results in a truncated normal distribution with variance close to 0.36σ2 '

(0.6σ)2. The variance of the prior distribution of βgm being (cγg)
2 we can set
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c = 0.6 or a close value. Finally, we specify a vague prior on the γg’s, setting

δ = 3, the minimum integer value such that the expected value of γg exists

(in the case kg = 0) and d = 0.2 in such a way the mean of the distribution

is comparable to the error variances of Y given X.

4.6 Case study on simulated data

Before applying our model to real data, we want to study its efficiency, and

especially whether it improves on the estimation approach when the genes are

supposed to be independent. This is important because, even though some

genes may be assumed to be independent, it is generally accepted that some

genes are known or expected to be strongly correlated, which can be the case

of a group of genes involved in one specific biological function. Therefore we

set out to compare both methods on a set of simulated data. We will build a

network of gene-miRNA interactions, by sampling the data and parameters

under the assumptions of our model. Then, we will apply both methods,

whether the genes are assumed independent or not, in order to recreate from

a random network the original network built under our model. This will allow

us to compare the different ouputs, in particular if the predicted networks are

similar to the original one. For a first analysis, we will run our model with

the true and known (in this occasion) covariance matrix, without updating it.

Then later, we will discuss the whole algorithm, where we need to update and

estimate it, as it is the case for real data, when we ignore the true covariance

matrix.
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4.6.1 Building of the network

We obviously first need to build our network, under our assumptions. To do

so, we choose numbers of genes and miRNAs relatively close to the dimen-

sions of our real datasets: G = 20 and M = 8 We also chose N = 20, a

number close to the number of samples we have for our three different condi-

tions. We then sample the miRNAs data, X, from a normal distribution. As

the miRNAs are assumed independent, we can sample them independently

from the same normal distribution with zero mean. Since the marginal dis-

tribution of X, thus its variance, does not affect the regulatory network, we

choose a variance of 1. The covariance matrix of Y |X, Σ, is then sampled

from an inverse-Wishart distribution, with degrees of freedom νΣ = 22, the

minimum number such that the expectation of Σ exists, a value which still

specifies a vague prior. Since we want to consider the genes be correlated,

we deliberately set the scale matrix of the prior to be a covariance matrix of

highly correlated genes. That is why we chose a scale matrix such that the

mode of the inverse-Wishart prior is:

Ψ =


1 ρ · · · ρ

ρ 1 · · · ρ

...
...

. . .
...

ρ ρ · · · 1


,

with ρ being a high correlation, ρ = 0.9 for example. That leads, as we

can see in Figure 4.3, to high correlations of Y |X, with an average corre-

lation of ' 0.78. The choice of high positive correlations can be explained

by the fact as it is believed that genes are correlated, so we really wanted

81



Figure 4.3: Simulated correlations of Y |X.

to see the importance of these correlations compared to the model with ab-

sence of correlation. Moreover, it would be very unlikely that negatively

correlated genes get grouped in the same cluster, especially when using Au-

toSOME which groups together nodes with high similarities, thus positive

correlations. However, it has to be pointed out that, in we consider negative

correlations, we might encounter problems when sampling from a Wishart or

Inverse-Wishart distribution, as the determinant of such a matrix (with only

negative correlations) may be negative.

Now, knowing Σ, we can then compute ε = INε0Σ
1/2, ε0 being a matrix

of elements sampled from a standard normal distribution. Indeed, since ε0 ∼

NN,G(0, IN , IG), then according to A.2 and [20], we have ε ∼ NN,G(0, IN ,Σ).
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We still need to define the actual network of functional interactions. Since

we have 20 genes and 8 miRNAs, (160 potential interactions), and it is be-

lieved that genes are generally regulated by few miRNAs, we decide to make

25 interactions functional, so that the average number of regulating miRNAs

per gene is close to 1. We thus sample 25 elements out of 160 in order to

define our true R matrix, containing 25 elements equal to 1, and all other

elements being zero.

The last parameters we need to sample for our data are the regression

coefficients βgm’s. According to our model, we sample each βgm via a gamma

distribution Ga(1, cγg) with each γg following an inverse-Gamma distribu-

tion IGa((δ + kg)/2, 2/d), where kg is the number of miRNAs involved in

the regulation of each target gene g, according to the R matrix we have

just sampled. We choose δ = 3 and d = 0.2, values chosen by Stingo et al.

[58], values which result in a vague prior. Finally, we need to make sure the

regression coefficients correspond to the regulating network, that is why we

set to 0 the βgm’s which correspond to the rgm’s equal to 0.

We now have all the quantities we need to compute the gene expression

levels Y , following Equation (4.2):

Y = −XβT + ε.

The regulating network and the data have now been sampled and com-

puted, however, we still need to sample few parameters for the MCMC al-

gorithm. First, we sample the simulated target scores, each score sgm being

sampled from an uniform distribution U(0, 1). Then, the parameter η is set

to η = −1.9, which result in a prior expected number of regulating miRNAs
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per gene close to 1. The hyperparameters for τ are set to aτ = 2.5 and bτ = 1,

so the prior probability of interaction gets higher when we know the target

scores, and these values also give a variance of 2.5, thus a high probability

to a wide range of τ values.

4.6.2 Covariance matrix assumed to be known

Since the network is now simulated, we will find out how the MCMC proce-

dure performs. We will start from a random configuration, and we want to

recreate the initial scenario. We sample a new R interaction table, composed

of 20 elements set to 1, one interaction per gene on average. We then apply

the estimation procedure in order to predict the true network. To create our

inferred network, we compute for each potential interaction Pgm, the propor-

tion of MCMC samples for which rgm = 1. After deciding on a threshold th,

we select as functional all the arrows for which Pgm ≥ th.

However, in this first analysis, we do not apply the full estimation proce-

dure. In order to study the importance of the correlations between genes in

the regulatory network, we set out to compare our method in the best-case

scenario (when we know the true correlations), with the method when the

target genes are assumed independent. Thus, we can find out what is the

effect of correlated genes (which is likely to be the case in real data) for the

construction of regulatory networks.

The following graphs and results have been computed with a threshold

th = 0.75, and a number of 4,000 MCMC iterations, including a burn-in of

1,500 iterations.

First of all, we look at the arrows included and selected. In Figure 4.4,
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we can see on the left panel the number of interactions our model predicts at

each iteration. We can see that after the burn-in period, when the number of

arrows varies quite a lot with a huge increase, then its stabilizes after about

2,000 iterations, to 24 included functional interactions, a value very close to

the number of 25 interactions we set up as functional in the building of our

network. Similarly, we can see on the right panel that the number of interac-

tions, which reached the threshold of 75% after the burn-in period, quickly

stabilizes at 23 arrows, once again close to the true 25.

Figure 4.4: Number of included arrows (left) and number of selected arrows
(right).

After checking that the 23 inferred interactions were indeed included in

the simulated network, without any false positives, we can conclude that our

analysis correctly predicted back 23 out of the 25 initial functional arrows.

We now turn out attention to the two arrows which were not predicted by our

algorithm. The first observation we can make is that the actual regression
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coefficients of these two arrows are βgm ' 0.86 and βgm ' 0.71 respectively.

These two low values of βgm, even if they are not the lowest ones, indicate

that the given interactions were quite weak, as if the miRNAs of interest

only had a limited regulation over those targets. We can then assume that,

for those interactions, in our simulations and computation of Y , the white

noise ε played a bigger role than the miRNAs themselves. However, we can

also check the actual proportions Pgm of presence. Then we can notice that

one of those missing interactions actually has a proportion very close to the

threshold, Pgm ' 0.742, explaining the difference between the 24 included

arrows (left panel) and the 23 selected ones (right panel). We can then as-

sume that if we had run the analysis for a bit longer, or if we had actually

chosen a lower threshold, that given interaction would have selected as well.

The second one though, would not have been selected, having never been

included in the model after the burn-in period.

The convergence of our model can be seen in the trace plots of the log-

relative probability of the model, log-probability computed as explained in

Equation 4.6. In Figure 4.5, we plot the log-probability of the whole model,

for all iterations on the left panel, and only after the burn-in period on the

right panel. We see that, after that burn-in period, it converges quite quickly

and stabilizes to what we can now call as the true distribution. The exact

same observations can be made about the likelihood f(Y |X,R,Σ), which

was expected in that case. Indeed, in the whole model, the two quanti-

ties which have the biggest contributions to the probability of the model

are the contribution of the covariance matrix π(Σ), and then the likelihood
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f(Y |X,R,Σ). But since in this analysis, we do not update the true covari-

ance matrix, the shape of the log-relative probability really fits closely the

log-likelihood f(Y |X,R,Σ), the probabilities of R and of the γg’s having a

slight impact on the total probability.

Figure 4.5: Log-relative probabilities of the visited models, for all iterations
(left), and for after the burn-in (right).

Finally, we can have a look in Figure 4.7 at the converged chain of the τ

parameter, whose the shape fits the one of the number of arrows included,

Figure 4.4.

4.6.3 Genes assumed to be independent

After applying our procedure with the true covariance matrix, we apply, to

the same data and parameters (when applicable), the procedure from Stingo

et al. [58], when the targets are assumed independent upon the miRNAs.

We run this chain for 25,000 iterations with a burn-in of 5,000 iterations.

We run this one for many more iterations than the last one, in order to see
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Figure 4.6: Log-likelihood f(Y |X,R,Σ), for all iterations (left), and for
after the burn-in (right).

Figure 4.7: Values of τ .
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more clearly its convergence. Indeed, as we can see in the graphs later, we

observe more additions and deletions or arrows, having then an impact on

the probability of the model. That is why more iterations allow us to observe

and conclude that the chain always keeps moving a bit.

Also, the big increases of the probability are due to the appropriate addi-

tions or deletions of arrows in the inferred network, thus it greatly depends

on the number of arrows included at each time. Indeed, several different

networks, with approximately the same number of interactions, will have a

relatively close log-relative probability. That is why, for this chain, we start

from a random configuration of 100 arrows, a number far enough from the

actual value of 25, hence allowing us to distinguish the increase of probabil-

ity when the false interactions are deleted from the inferred network, which

would not have been obvious if we had started from a configuration with 20

arrows (graph not provided).

From Figure 4.8, we see that the chain seems to have converged once the

number of arrows had been reduced to between 20 and 40 arrows, a num-

ber consistent with the prior probabilities of interactions, between 1 and 2

regulating miRNAs per gene on average. However, we also still notice a lot

of variations, the number of arrows not really stabilizing around a narrowed

range of values.

This is why we need to look at the interactions which reach certain thresh-

olds of presence, interactions which are present most of the time. That would

indicate whether the functional interactions are predicted with lower confi-

dence, and/or if we have more false positives. Figure 4.9 show us the number

of arrows which are inferred 50% of the time (graph on the left) and 75% of
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Figure 4.8: Log-probability (left panel), and number of arrows included in
the network (right panel), for all iterations.

the time (graph on the right), once the burn-in period is over. We can then

realize that, after 15,000 iterations, the number of arrows predicted, at 50%

and 75% confidence, converges to only 15 and 11 respectively, two values

relatively distant from the original number of 25 functional interactions, and

especially the number of 23 interactions predicted by the previous analysis.

We need to use a threshold of 25% of presence to obtain 26 predicted arrows,

included 4 false positives, resulting in 3 missing functional interactions.

After checking the missing original arrows, we observe that most of them

are the weakest interactions, with the lowest βgm’s, most of the strong inter-

actions being predicted. However, we can notice that the second strongest

interaction, with a original regression coefficient βgm ' 14.3 is not inferred

by the algorithm, not even at a 50% confidence. More generally, the twelfth

interaction, with βgm ' 4.1 is the second and third strongest one not to

be predicted at 50% and 75% respectively, with the sixth one, βgm ' 6.8
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not being predicted at the highest threshold. All the other false negatives

interactions are among the weakest half of the original interactions.

Figure 4.9: Number of arrows selected, with a threshold of 50% (left panel),
and 75% (right panel), after the burn-in.

4.6.4 Estimation of the covariance matrix

In this section, we will apply the full procedure presented in Section 4.3.3,

estimating the covariance matrix, to recreate the original network. We can

then compare its efficiency with the two previous analyses. A priori, we can

expect it to work better than the case where the genes are assumed inde-

pendent given the miRNAs, as the model has been created with correlations

between variables. On the other hand, since we do not know the true covari-

ance and try to estimate it, we may not obtain results as precise as in the

first scenario.

However, as we might expect with the dimensions of the problem, con-

vergence can take long, leading to excessive computational cost. Moreover,
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the complexity of the model can also make convergence difficult to identify,

as we will see if we always update the matrix. These are the reasons why we

need to slightly alter the procedure, in order to improve its efficiency.

Starting configuration

The first thing we might wonder is the starting configuration: the table of

interactions R and the covariance matrix Σ in particular. Then, we want

to tune the priors, so we can start from a configuration not too far from the

true one, to limit the waiting time for convergence, but not too close, as in

practice we are not aware of the true distribution. This does not mean that

this configuration is close in practice to the real configuration, but that is

likely the best prior guess we can have at the start of the approach. For the

starting points, a solution is to consider the regression model linear:

Y = Xβl + εl,

where the errors εl are assumed independent, and βl are the ordinary least

squares estimated regression coefficients. This approach is possible only if

we have enough data, more observations than regressors, which is the case

in our study.

After estimating βl, we can estimateR0, the starting table of interactions.

As it is believed miRNAs down-regulate the gene expressions, we can identify

the interactions with the lowest (negative) βlgm, and set these interactions

up to 1 in R0. We chose the 25 lowest coefficients, as we know we created

a network of 25 functional interactions. However, it is perfectly feasible to

choose a different number of arrows for the starting configuration, as long as
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it is sensible to prior knowledge. For example, since most genes are regulated

by one or two miRNAs, it is possible to choose between 20 or 30 arrows. As

we might expect, the resulting R0 is relatively close to the true interaction

table, but not identical. Indeed, 18 of the 25 initial arrows are set up to 1,

resulting in 7 missing arrows, and thus 7 false positives.

Still under the assumption of linear regression, we compute an estimate

of the errors, ε̂ = Y − Xβl. We can then get a first estimation of Σ,

by computing the among-column variance Ŝ of ε̂. When we compare both

matrices, the true Σ and Ŝ, we observe that the values lie in the same range,

and have a similar mean. However, the likelihood of Ŝ is much lower than

the true one. If we use this estimate as a starting point, it will take a very

long time to reach convergence. An alternative is to sample a new matrix

S from the inverse-Wishart prior, and rescale it to S0 = S/v, v being a

constant such that S0 has a mean value similar to the mean of Ŝ and the

true Σ.

First chain: burn-in estimation of the covariance matrix without

any other update

Since we now have our starting configuration, we can apply the MCMC algo-

rithm. However, still in the aim of reducing the waiting time for convergence,

we chose to run two chains. In the first one, that we can call a burn-in estima-

tion or pre-estimation of Σ, we only update only the covariance matrix S0,

all the other parameters (R, τ, γg’s) remaining unchanged. By doing so, we

allow the chain to move faster to a point closer to the true distribution. This

is where R0 is useful. Since it is relatively close to the true R, the estimation
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of Σ under this condition is still reasonable. However, we need to be careful

though not to run this chain for too long, as the regulatory network defined

by R0 is not the true one. Indeed, we do not want to reach the likelihood

of the original configuration, just close enough, as we still want to apply the

four updates of the whole procedure in the second chain. In this case, we

ran this pre-estimation of Σ for 1,500 iterations. The resulting matrix, S1

will then be the starting matrix of the second chain, where the full MCMC

procedure is applied.

As we briefly said in Section 4.3.3, the degrees of freedom νΣ have to be

set such that we obtain a suitable acceptance rate. That is the reason why

we set νΣ = 10, 000, leading to an acceptance rate of 30% in the first burn-in

chain, and 20% in the second chain.

Second chain: parameters updated at each iteration

With all the parameters set up, and the final starting values from the first

chain, we can now apply the full MCMC algorithm to infer the original regu-

latory network. So we first run the chain for a total of 5,000 iterations, with

a burn-in of 1,000 iterations, where all the parameters are updated at each

iterations, as described in Section 4.3.3.

The first output we can have a look at is the number of selected arrows,

at a threshold or confidence level of 75%, meaning these arrows are included

in the network at least 75% of the time, visible in Figure (4.10). We notice

that 24 arrows are infered at that level. We can mention that there are no

false positives, and these 24 selected interactions are exactly the same as the

ones predicted in Section 4.6.2, where we ran a chain with the known covari-
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Figure 4.10: Number of selected arrows, at a 75% confidence level.

ance matrix. We can also add that 23 of these 24 arrows were predicted with

th = 0.9. These results then suggest a very good performance of the chain,

matching the results of the analysis where we assumed the matrix known.

This impression may be reinforced by the plots of the log-probability, which

seem to have converged, once the covariance matrix has converged and is no

longer updated, as we see in Figure (4.11).

However, we notice a significant difference in the values of the log-probabilities,

between this scenario and the one in Section 4.6.2. Indeed, in the first sce-

nario, which is the true one, it converges around -1370, while this time it

converges around +800, a much bigger value. The impression of passing con-

vergence and going beyond the true distribution level may be confirmed when

we observe the number of arrows included in the network at each iteration
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Figure 4.11: Log-probability of the model on the left, and the relative log-
likelihood of the covariance matrix on the right. Both graphs represent the
log-likelihoods after the burn-in period.

and the number of arrows selected at a 50% threshold, in Figure (4.12).

Figure 4.12: Number of arrows included in the model (left panel), and number
of arrows selected at a 50% confidence level (right panel).

Moreover, similarly at in Section 4.6.2, the shape of the τ parameter chain
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Figure 4.13: Values of τ .

in Figure (4.13) fits the shape of the number of arrows included at each

iteration.

These plots suggest that the chain had reached a reasonable configura-

tion, predicting a high proportion of the functional interactions. Indeed, we

observe that after about 2,000 iterations, around 25 arrows are included in

the regulatory network, with 24 having been for at least 50% of the time since

the burn-in. then, the number of arrows selected suddenly and drastically in-

creases, until reaching almost 160, meaning that almost all the gene-miRNA

interactions are said to be functional. Consequently, the number of arrows

reaching the threshold th = 0.5 also increases. Similarly, even if it does not

appear on the graph (4.10), if we had run the chain for longer, we can expect

that the number of arrows reaching the threshold th = 0.75 would have also

much increased, resulting in most of the potential arrows getting predicted.
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In this scenario, when we update and estimate the covariance matrix at

each iteration, we observe a problem of identifiability. We will discuss it in

the next section, and will try and propose few ways to rectify this problem.

Constraints on when to update the covariance matrix

As we have just seen in the last section, the estimation of the covariance

matrix leads to some new issues. Indeed, even though it looks like we are

about to converge to the true distribution, when the number of included ar-

rows is close to the true number, the chain reaches a point when the number

of arrows drastically increases. When we observe the graphs of the number

of arrows included (Figure 4.12) and the log-likelihood (Figure 4.11), we no-

tice that this increase takes place after around 2,000 iterations, when the

log-likelihood is close to -500. That log-likelihood is higher than the true

one, which we can see in Figure 4.5, is around -1370. We then assume that

estimating Σ without any constraints makes the chain pass beyond the con-

vergence point, because of a problem of identifiability and estimation of the

regulatory network, in the sense that the covariance matrix, and its update,

overshadow the other parameters of the model, such as R, or the γg’s, as we

are about to explain in more details.

Indeed, an update of Σ implies many changes of the model. For instance,

the update of all the values in the matrix implies changes in most of the

quantities involved in the variable selection, such as C,U,Q... Hence, up-

dating the covariance matrix too often, at each iteration, might not give

enough time to the other parameters of the chain to get adapted to this new

value. That is why we decide to update Σ only every G iterations. By doing
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so, we give time to other parameters to actually be affected by a possible

new estimated covariance matrix. That means that between two potential

updates of Σ, each gene will have on average one element of R updated, also

resulting in one update on average of the parameter γg of each gene g.

The second issue we need to work on is the log-probability level. We want

to make sure the chain does not reach a point where the model explodes, all

the potential interactions becoming functional. That is the reason why we

decide to stop updating Σ after a certain point, the other three steps of the

Metropolis-hastings algorithm remaining. Several solutions can be consid-

ered for that stopping point. Under the assumptions of the model, all the

original and true configurations simulated will have a likelihood in the same

range, with respect to the dimensions of the model. Then, we can decide

to stop updating Σ once its likelihood reaches a value close to the mean

likelihood of the matrices sampled under the assumptions. However, while

running the chain, we can notice that f(Y |X,R,Σ) seems to converge to its

true level slower than π(Σ) does. That is why we choose to stop the update

of Σ once the sum log(f(Y |X,R,Σ)) + log(π(Σ)) reaches a suitable value,

similar to what we observe by simulating several regulatory networks. That

is the option we chose for that simulated case study. However, if we actually

have no prior idea, we can decide of a second threshold, after which we keep

the current covariance matrix. This second threshold can be set up around

75% of the whole chain, leaving enough iterations to check for convergence

after that point.

The following results and graphs have been computed under these modifi-
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cations: Σ is updated only every G iterations, and is stopped being updated

once log(f(Y |X,R,Σ)) + log(π(Σ)) > −1100, a likelihood level slightly

higher than the true value. We observe in Figure (4.14) that the number of

included arrows remains between 23 and 32, a number matching the prior

assumptions. That number has some variations, before stabilizing between

25 and 27, once Σ is no longer updated, after ' 28, 000 iterations according

to Figure (4.15).

Figure 4.14: Number of arrows included in the network (left panel), and the
log-likelihood of the model (right panel).

We can also verify that after that point, the log-likelihoods, of both

f(Y |X,R,Σ) and the whole model, no longer vary (they actually do, but

slightly). That shows the importance of the covariance matrix in the update

of the chain, conditioning all the other parameters, including the table of

interactions. That also arises one disadvantage of the approach, which is

that in practice, we can not really know when to stop its update. We only

know that it has to be done once we reach a region close to the true distri-
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bution, but this is quite a vague precision. However, we have seen that this

is necessary, to avoid the model to explode. Moreover, providing we do not

pass far beyond the true distribution level, several chains run showed that

the exact moment of when we stop updating Σ does not have major changes

in the regulatory network, the most influential arrows having been predicted

for a long time.

Figure 4.15: Log-relative likelihood of Σ (left panel), and log-likelihood
f(Y |X,R,Σ) (right panel), after the burn-in.

Finally, we look at the selected arrows, given their proportion Pgm of

presence in the model. In Figure (4.16), we observe that 27 and 25 arrows

are predicted with respective thresholds th = 0.5 and th = 0.75. At th =

0.5, 24 out of the original 25 arrows are correctly predicted, leading to 3

false positives. The only false negative, with Pgm ' 0.05 is the arrow with

βgm ' 0.86, the one which was not predicted even when we ran the chain

with the known covariance matrix. At th = 0.75, 23 out of the 25 predicted

interactions were actually in the original network, with 2 false positives. In
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addition to the previous one, the second missing arrow is the arrow whose

coefficient βgm ' 0.71, which is present in the model slightly more than 50%

of the time. That was already the arrow with the second lowest Pgm in the

first analysis with the true Σ. Those results, even if not perfect, and not as

good as the ones with the true covariance matrix, are still accurate enough,

and especially more accurate than when assuming the genes independent.

Figure 4.16: Number of arrows selected, with a threshold of 50% (left panel),
and 75% (right panel), after the burn-in.

Another approach: multiple-speed chain

An inconvenience of the previous methodology is that, even if the startingR0

is a priori the best guess, we can not be sure of that statement when we are

confronted to real data whose we might ignore the distribution. Hence, the

start of the second chain is influenced by the first chain, and then depends

on that choice of starting configuration. Moreover, it implies that before

inferring the regulatory network, we only use the data and the starting choice
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of parameters to estimate Σ, when we then infer the other parameters and

Σ in the second chain. A possibility could be to run the first chain, plug-

in the output value of the covariance matrix in the second chain, and then

infer the regulatory network with that value of Σ, without updating it again.

However, we would still be unsure of its estimation, as it would depend on

the starting choice of R0, which may be different from the real R.

Those are the reasons why we may find more suitable to run only one

chain, and two with one depending on the other one. However, in order

to improve the convergence of all parameters, and especially Σ, we use a

multiple-speed process, in the sense that the frequency whom Σ is updated

and estimated varies:

• in the burn-in, Σ is updated at each iteration. That allows a fast start

of the chain to converge to the true distribution.

• after the burn-in, Σ is only updated every G times, now allowing the

other parameters to adapt themselves to the new value of Σ.

• at the end of the chain, for example the last 20%, we no longer update

it, assuming we are now approaching convergence, and we then infer

the other parameters, in particular R, with the last estimated value of

Σ.

We then run a chain of 25,000 iterations, with a burn-in of 5,000, and we

stop updating the covariance matrix after 20,000 iterations. The log-relative

probabilities of the models visited can be seen in Figure 4.17, when the num-

ber of arrows, included and predicted with a threshold th = 0.75 respectively,

are in Figure 4.18.
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Figure 4.17: Log-relative probabilities of the visited models, through all it-
erations (left) and after burn-in (right).

Figure 4.18: Number of arrows included in the network (left panel), and
number of arrows selected with th = 75% (right panel), after the burn-in.

The results of this analysis are similar to the ones from the previous

approach. From Figure 4.18, we observe that 25 arrows are predicted to

be functional with a threshold th = 0.75. Out of of these 25 arrows, 23

104



are correctly predicted, resulting then in 2 false positives, as well as 2 false

negatives. The 2 false negatives are once again the arrows whose βgm ' 0.86

and 0.71.

Consequently, the results between this multiple-speed approach and the

two-chain approach are identical, with the same sensitivity and specificity,

at a threshold of selection of 75%. However, the second one does not have

the inconvenience of using the data to tune the prior and estimate Σ, and

does not imply the inference of the network depending on a previous chain.

On the contrary, all the parameters are inferred in the same process, the

multiple speed of estimating Σ helping the convergence of the chain. That

is the reason why we will be using this methodology from now on.

Method Σ known Independent Σ estimated
Sensitivity 0.96 0.44 0.92
Specificity 1 1 0.985

Table 4.4: Comparison of the different chains, with a threshold th = 0.75

One critic one may have is that the poor sensitivity for the second ap-

proach can be expected, as the original regulatory network is built under

different conditions and assumptions. Hence these results may be biased by

these assumptions. Moreover, as we can see in Section 4.6.1 and Figure 4.3

when we built the network, we deliberately choose a prior for the covariance

matrix Σ such that the correlations are positively very strong, which is an

extreme situation compared to the assumption of independence. As a con-

sequence, we can admit that it is not really fair to this approach to apply it

to a model built under such different assumptions. However, it is likely that

some genes are strongly correlated, for example genes involved together in a
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specific biological function, hence the necessity to assume strong correlations.

The inconvenient is that in practice, we do not really know these correlations

between genes, we may not even have any prior idea, or a vague one. That

is the reason why we specified a vague prior on Σ, by choosing νΣ = G + 2,

the minimum value such that the expectation of Σ exists. Moreover, that

choice of parameters imply that the mode of this distribution, is the identity

matrix, a vague prior showing no correlations, as without prior knowledge,

we can not know in advance the strength and the sign of the correlations. In

practice, if biological knowledge allows us to have a better prior idea of the

links between genes included in the dataset, it may be possible and suitable

to modify the prior. Similarly, if it is believed that the variables of interest

are not correlated, or weakly, then the approach of Stingo et al. would be

more suitable, as outcomes should be similar, and the computational cost

will be much less expensive.

4.6.5 Monte Carlo study

In the last section, we presented detailed results from one particular case

study of simulated data. However, it would be sensible to perform a Monte

Carlo study, where we present general details of how our approach performed

on certain number of cases. That is what we will discuss in this section. We

will describe the details of the analyses, before presenting the performances

of the algorithm, performances illustrated by the sensitivity and the false

positive rate.

We performed a Monte Carlo study composed of 100 different analyses.

Similarly to the particular case study we presented in the previous section,
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each different network has been created in the same manner, although we

allowed the variance of the miRNAs to be higher than the latest, by setting

it up to 2 instead of 1.

For each different case study and output, we look at the number of ar-

rows the algorithm predicted, and how many of them are actually correctly

predicted. We then compare these two numbers with the known number of

functional interactions in the regulatory network. It then allows us to com-

pute the sensitivity of the analysis, as well as the specificity and hence the

false positive rate.

Having done for the 100 different cases, we can have a summary of the

performances. In Table 4.5, we can read that the average sensitivity is around

91%, with a standard deviation of 6%, while the average false positive rate

is around 4% with a standard deviation of 4%.

Sensitivity False positive rate
Mean 0.91 0.04

Standard deviation 0.06 0.04

Table 4.5: Summary of the Monte Carlo study performed on 100 analyses of
simulated data: mean and standard of sensitivity and false positive rate.

These results suggest quite a good performance of the algorithm in gen-

eral. However, we can also have a look at Figure 4.19, which show the

box-plots of both sensitivity and false positive rate to have a better idea of

their distributions. On the left panel, we can see that half the sensitivities

computed lie between 88% and 96%, with only a very small number of anal-

yses having a sensitivity less than 80%. Similarly, the right panel shows that

the 25 and 75% quantiles of the this distribution are respectively 2 and 4%,

with only 4 cases which resulted in false positive rate higher than 10%.
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Figure 4.19: Boxplots of the sensitivity (left panel) and false positive rate
(right panel) of the Monte Carlo study.

As a small conclusion, we can say that the Monte Carlo study performed

in this section provides us evidence that the proposed approach is capable

of inferring with good performance, and on a regular basis, a regulatory

network assuming correlated variables, suggesting the possibility of applying

this procedure to real-life projects.

4.7 Conclusion

In this chapter, we have presented a new approach to infer a miRNA-gene

regulatory network, when genes are assumed to be correlated. We then have

applied the method to a simulated case study, built under the assumptions

of the model. We have applied the method in three different scenarios. The

different approaches and regulatory networks can then be compared, as we

can see in Table 4.4, by computing the sensitivity and specificity of each
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chain. First, we ran the chain in the best case scenario, when we know the

true covariance matrix. This scenario has the best results, predicting 24 out

of the 25 original arrows, if we assume the interaction with Pgm = 0.74 to be

functional. However, this method can obviously not be computed in practice,

as it is very unlikely that we know that covariance matrix. In a second sce-

nario, we ran a chain where we assumed the genes independent, by applying

the approach from Stingo et al. [58]. In this scenario, the number of ar-

rows included is consistent with the prior knowledge of one or two regulating

miRNAs per gene on average. However, that number is subject to many vari-

ations, and by computing the proportions of presence Pgm, we observe that

the number of arrows being selected as functional, with Pgm ≥ th = 0.75, is

actually quite low, leading to a low sensitivity of 44%. In the third and final

scenario, we run the chain with the update and estimation of the covariance

matrix Σ. As we have seen it in the previous section, we need to introduce

some constraints on when to update it, via the multiple-speed process, in or-

der to avoid a problem of identifiability. Once these constraints are applied,

the model infers a regulatory network close to the original one, with both

sensitivity and specificity higher than 90%. Both these measures are sum-

marized for each method in Table 4.4. In the last section, we also perform a

Monte Carlo study on 100 analyses to compute average sensitivity and false

positive rate of the proposed methodology, resulting in results that indicate

good performance. These results suggest that it is preferable to apply the

method with correlated genes, rather than independent genes. Indeed, al-

though the specificities are all equal or close to 1, the sensitivity in the case

of independent genes is much lower than in the other two scenarios.
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CHAPTER 5

A regulatory network for Acute Coronary Syndromes

In this chapter, the proposed methodology described in Chapter 4 is ap-

plied to the Acute Coronary Syndromes data and we draw some regulatory

networks, with the genes assumed correlated given the miRNAs, and then in-

dependent given the miRNAs, in order to compare the performance of both

approaches. However, we will first need to describe the way the original

dataset of 897 genes has been divided in several clusters of various sizes.

The data consist of genes and miRNAs expression levels, from patients suf-

fering from three different ACS conditions: STEMI, NSTEMI and Unstable

Angina. As described in Section 3.2.1, STEMI and NSTEMI refer to my-

ocardial infarction (heart attack) where a coronary artery is blocked by a

blood clot, and then the blood flow is stopped. The difference between these

two conditions is that the artery which supplies the heart muscle is totally
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blocked in STEMI, and partially blocked in NSTEMI. Apart from these two

severe conditions, the Unstable Angina condition is less serious, in the sense

the blood flow is reduced by the clot, but still effective. Then, we will discuss

the resulting results and networks, in an attempt to interpret the biological

meaning of their similarities and differences. By doing so, we can make sug-

gestions which can benefit the biologists and medical researchers, in order to

find a biomarker, source of a disease, and maybe provide a medical diagnostic

sooner.

5.1 Clustering of the data

As previously described in Section 3.3.1, several methods have been used to

narrow down our dataset of thousands of genes to G = 897. Unfortunately,

this number of G is still too high for us to perform an efficient analysis of our

dataset. Indeed, this number would imply many computational problems,

such as the inversion of the G × G covariance matrix, the computation of

the cdf ΦG∗M(0,−UV T ,U), and of course a very long running time. This

is the reason why we still wish to separate the genes of interest into smaller

clusters of correlated genes, whom size will be reasonable to perform our

methodology.

We then apply the AutoSOME algorithm, described in Section 3.3.2. We

need to adjust some parameters of the algorithm, in particular the p-value

threshold, in order to obtain clusters of reasonable sizes. We indeed do not

want to obtain one big cluster with most of the variables in there, as the

main difficulty of the size of variables will remain. On the other hand, many

clusters composed of a very few genes are not desirable either, as this will
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involve many analyses to run, but it would particularly eliminate many strong

correlations of genes which might be in the same cluster.

We finally obtain six clusters of different sizes. We choose to have the

number of genes in clusters higher than the number of miRNAs, M = 13.

This results in 6 clusters of sizes: 36, 36, 32, 29, 19 and 16. All the others

will then be assumed independent, and grouped in the same seventh cluster.

The approach of Stingo et al. [58] can thus be applied to this dataset. For

more discussion about this case, see Section 5.3.1.

5.2 Application to the data in clusters

Having aggregated the genes in several clusters, we can now run our MCMC

chains to these different datasets. We then run 18 chains, one for each cluster,

and for each condition. The parameters are set up according to the descrip-

tion given in Section 4.5. We remind that the number of patients varies with

the condition: we have N = 16 for the STEMI condition, N = 19 for the

NSTEMI condition and N = 19 for theUnstable Angina condition. These

values of N remain the same for each cluster under the given condition. For

computational reasons, we chose to visit only the potential interactions for

which the target score sgm is positive, assuming the zero scores predicted by

TargetScan imply a biological near impossibility for the miRNA to bind to

these target mRNAs. This implies that the number of potential interactions

are, for each cluster, respectively: 75, 93, 56, 57, 32 and 30. In our case

study on simulated data, we observe that we obtained satisfying results with

a total of 25,000 iterations, with a burn-in of 5,000 iterations, and stopping

the estimation of Σ after 20,000 iterations, when the number of potential
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arrows was 160 (no zero scores in S). Having less configurations to visit, we

then decided to conserve these numbers of iterations for clusters 1 to 4, even

if the dimensions are higher, and so are the covariance matrices. For clusters

5 and 6, which are smaller, we set up a burn-in of 3,000 for a total of 20,000

iterations, stopping the estimation of Σ after 12,000 iterations.

The output of these chains will then be used to construct networks of

gene-miRNA interactions. In Figures 5.1, 5.2 and 5.3, we can see the num-

ber of arrows included in the visited models through the chain, under each

of the three conditions: STEMI, NSTEMI and Unstable Angina. In these

Figures, each graph corresponds to a different cluster, from cluster 1 (top

left) to cluster 6 (bottom-right). If desirable, the log-relative probabilities of

the visited models, both through the whole chain and only after the burn-in,

are available in the Appendix, Section A.3, Figures A.1 to A.6. We can see

that the highest number of arrows appears for the STEMI condition while

the UA condition shows the lowest number of arrows. As we will see, it will

result in bigger or smaller regulatory networks, depending on the condition.

Based on this, we can compute, for each potential arrows between gene g

and miRNA m the proportion of MCMC samples Pgm for which rgm = 1.

These proportions will then be used as estimations for the posterior probabil-

ities P(rgm = 1|Y ,X) of presence of interactions. The regulatory networks,

for each condition, are then built by selecting as functional all the arrows

whose probabilities of presence reach the given threshold th, Pgm ≥ th. That

threshold can vary, the higher it is, the higher the confidence of the arrows of

interest is. The networks shown in Figures 5.4, 5.5 and 5.6 have been built

using th = 0.9. In these networks, the miRNAs are colored in yellow, while
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the target genes remained white. The summaries of these networks (number

of arrows, genes and miRNAs involved) are given in Table 5.1. We can for

example read that the regulatory network created for the NSTEMI condition

contains 67 interactions, between 40 different genes and 12 different miRNAs.

Condition STEMI NSTEMI UA
Number of arrows 98 67 57
Number of genes 50 40 32

Number of miRNAs 12 12 12

Table 5.1: Summary of the regulatory networks for each condition. For
example, the regulatory network created for the STEMI condition contains
98 interactions, between 50 different genes and 12 different miRNAs.

From this table, and the graphical networks, we observe that the number

of arrows, hence also of genes, is higher for the STEMI condition than for

the other two. Otherwise, they all involve the same number of miRNAs.

However, the interpretation of these networks, and the potential conclusions

will be discussed in more detail in Section 5.4.

On the other hand, when we perform the approach from Stingo et al.

[58], we observe that very few arrows are predicted, and only if we use a low

threshold th, less than 0.5. Indeed, after the burn-in, the number of arrows

in the visited models never exceed 20, with a lot of variation, suggesting

that these arrows are not always the same. Thus, as we want to predict

some potential gene-miRNA interactions, and since biology also suggests

that genes are correlated, we decide not to apply this approach to the data,

including the remaining cluster.
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Figure 5.1: Number of arrows included in the visited models, STEMI condi-
tion
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Figure 5.2: Number of arrows included in the visited models, NSTEMI con-
dition
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Figure 5.3: Number of arrows included in the visited models, Unstable
Angina condition

117



Figure 5.4: Network for the STEMI condition: 98 arrows involving 50 genes
and 12 miRNAs.
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Figure 5.5: Network for the NSTEMI condition: 67 arrows involving 40 genes
and 12 miRNAs.
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Figure 5.6: Network for the UA condition: 57 arrows involving 32 genes and
12 miRNAs.
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5.3 Discussion

5.3.1 Special case: cluster of independent genes

Before discussing the advantages and inconveniences of the proposed method-

ology, in particular about the estimation of Σ, we briefly discuss how to deal

with the remaining cluster of independent genes upon the miRNAs.

The proposed methodology does not appear to be directly applied in this

case. Indeed, the estimation of the covariance matrix and the sample of Σnew

would imply a non-diagonal covariance matrix. Hence we need to consider

another approach. The intuitive possibility would of course be to apply the

method of Stingo et al. [58]. However, as we mentioned in Section 5.2, this

method only predicted with low confidence a small number of arrows for the

genes in clusters, we decide not to apply this approach to our dataset. A

second possibility could be to apply our approach, with Σ diagonal, with the

variances updated and estimated one after the other, rather than estimating

the matrix. However, the eventual high number K of functional arrows may

imply computational problems when we need to compute the K-dimensional

cdf ΦG∗M(0,−UV T ,U).

5.3.2 Estimation of Σ

The biggest challenge of the approach is how to deal with a large covariance

matrix, hence the difficulty to estimate it. The computational cost and the

long running time would obviously be the first ones coming to mind. Al-

though Σ has an influence on the regulatory associations and thus needs to

be estimated, we shall keep in mind that the priority is the estimation of the
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interaction matrix R, and not of Σ. This is the reason why we stop updating

it after some time. We assume that the covariance matrix at that time is

now reasonably estimated and can be used as the true one, in order to then

focus on the estimation of R. Moreover, updating it involves an update of all

the variances and covariances, hence all the other parameters of the model,

like R and γ, need time to adapt to the new value of Σ. As a result, after

the burn-in, the update now takes place only G times, such that on average,

each γg had the possibility to get updated between two updates of Σ. How-

ever, this number G can be modified, as we may wish to estimate Σ every

100 iterations for example. That would give more time to the chain to learn

more from the data and to be adapted to the new covariance matrix. The

main disadvantage of this possibility is that it would imply an even longer

running time, hence it is more expensive computationally. This is why we

opted to estimate it at each G iterations. We also have to point out that G

has to be manageable. Indeed, if we had bigger clusters, with for example

200 or 300 genes, computational issues could emerge, and we might not be

able to perform an efficient analysis of the data.

A difficulty is also observed on the diagnostic of convergence. Indeed,

with these dimensions, the relative probability of the visited models may be

affected by the impact of Σ. Moreover, we specified a vague prior for Σ, with

the mode of the Inverse-Wishart being the identity matrix. If we had more

biological knowledge about the eventual relationships between our variables,

we would be able to specify a more informative prior, with covariances differ-

ent than 0, and then the chain may converge quickly to the true distribution.

For example, if we believe that our variables are positively correlated, we
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may choose to set the covariances for the prior to a positive value, according

to how strongly we believe the variables are correlated.

5.4 Interpretation of the different networks

5.4.1 Precautions to take into account

In this section, we will discuss some results we can observe from the three

different networks built, which are shown in Figures 5.4, 5.5 and 5.6. We

will also attempt to give a biological interpretation of these results, which

could be used to devise a medical diagnostic, or to improve our knowledge

of these conditions. The purpose of this section is not to draw final conclu-

sions, but only to make suggestions. Indeed, one first reason is that due to

the complexity of the model, we can not claim to present concrete results.

As we have previously discussed, there are still some aspects we are not

able to fully understand and explain, for example we can not have a certain

prior knowledge of the correlations between genes, or even how the miRNAs

regulate the genes. In our model, we assume that they down-regulate the

genes. However, as it is believed that is the case when the regulation is di-

rect, other studies make the assumption that the regression coefficients can

be positive, especially when the regulation is indirect, when the miRNAs

control the genes through one or more entities. That is the case of Ročková

[52], where a miRNA regulatory network is infered via a factor augmented

multivariate regression, and where the variable selection is performed by an

EM algorithm.

Furthermore, we shall point out the small number of samples, a maxi-
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mum of N = 19 for the NSTEMI and UA conditions. That small number of

measurements or patients might imply a lack of power of our methodology.

Also, we made the choice to explore only the potential interactions predicted

by the TargetScan algorithm. However, as we mentioned, there exists other

algorithms, which can be combined in the prior model, as in equation (4.5).

By using other sources, we would have increased the number of potential

arrows, and then our graphs may also have been larger.

Our comparison and interpretation of the networks will consist of notic-

ing their main similarities and differences: which arrows are mostly present,

what does it mean if an arrow is present in a network of one condition but

not in the others, and so forth. As it is very difficult, if not impossible, to

create biology out of these, our suggestions can be used in a preventive aim.

If a patient is admitted to the hospital after a heart attack, and if their blood

samples show relationships we can observe in our graphs, we may be able to

diagnostic their condition, and possibly to assess the risk to aggravate that

condition. For a better understanding about comparison between graphs,

statistical methods can be found in [54] and [55].

Another difficulty about drawing conclusions from these results is that

we do not have available data from healthy patients, only expression levels

from patients suffering from one of the three conditions. That absence of

control group then does not allow us to have a regulatory network under a

healthy condition, thus we can not say if what we observe is specific to ACS,

or if these arrows are also observed in healthy people. Hence the necessity

to be measured in our suggestive conclusions. Moreover, some of the genes

in our dataset, even if they got through our several filters, may have already
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been identified as genes involved in complete different biological processes, a

function which is not related to ACS.

Finally, we point out that the length of the arrows does not imply a

stronger of weaker interaction, as the graphs have been designed for reason-

ably clear viewing. All the arrows present in these graphs are arrows which

have been included in the chains more than 90% of the time, Pgm ≥ 0.9.

5.4.2 Main observations from the graphs

The first observation we made in Table 5.1 is that the number of miRNAs

involved in the networks is always 12. Actually, we can also notice that these

are always the same set of 12, the last miRNA, miRNA-134, never regulating

any gene under any condition. That may suggest that this miRNA does

not have a role in ACS. Also, the number of arrows is quite consistent with

the prior suggestion that most genes are regulated by one or few miRNAs,

the average number of regulating miRNAs per gene in our networks being

between 1.7 (NSTEMI) ans 2 (STEMI).

The main similarity we then need to point out is if there are arrows

present under all three conditions. We can indeed observe six arrows always

functional, which are presented in Table 5.2: Also, if we compare the two

miRNA Gene
miR-20a SKI
miR-20a PDE5A
miR-96 AHCYL1
miR-340 SIAH2

miR-140-5p TBC1D22B
miR-101 PLEKHM1

Table 5.2: Interactions present under the 3 conditions
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more severe conditions, STEMI and NSTEMI together, with thes less severe

one Unstable Angina, we find 25 mutual arrows between these two groups.

Then, without any control group, it is difficult to affirm with confidence

if these interactions are characteristic of ACS, and reflect a possible genetic

source of the disease, or if they are interactions which might also be functional

in healthy people.

Another point to highlight is the number of common arrows between the

two severe conditions, STEMI and NSTEMI. We can count 21 of them, and

17 out of these 21 are shared by only 4 miRNAs: miR-20a, miR130b and

miR-340 and miR-128. We can then assume that these genes, and especially

these miRNAs may play an important role in ACS. Indeed, these interactions

are present in both severe conditions, but are not in the less severe one. Then,

if a patient has a heart attack or chest pain, and if we notice in his blood

samples some relationship between the genes and miRNAs involved in those

21 arrows, (for example high levels of these miRNAs and small levels of genes)

we must have in mind that this patient may develop one of these two serious

forms of Coronary Syndromes. Once again, that would be a guideline, a

suggestion for further test and samples, as a more advanced investigation

may show a different reason for the heart attack or chest pain, a reason

which may not even be genetic. Also, when we perform this first diagnostic,

we need to take into account the moment of sampling, how long it was after

the acute chest pain or heart attack. Indeed, the pain may have decreased

significantly, so has a potential evidence of gene-miRNA interaction if the

patient is sampled a long time after their incident. That is why further

investigation will still need to be performed.
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A last observation we may point out is that in all three graphs, some

miRNAs, and sometimes some genes, play a central role in the graph. For

example, for all three networks, between 72 and 82 % of the arrows involve a

subset of only six miRNAs: miR-20, miR-340, miR-130b, miR-128, miR-96

and miR-655. We can notice that 4 of these were mentioned in the source

of the STEMI and NSTEMI mutual arrows. Similarly, some genes may be

regulated by many miRNAs under a given condition: PDE5A (6 arrows)

and STK33 (5) in STEMI, TRIM7 and BCAT1 (3 arrows) in NSTEMI,

PRKACB (5 arrows) in UA, and so forth. We can also name PLEKHM1

which is relatively well important in all conditions, with respectively 4, 3 and

6 arrows(STEMI/NSTEMI/UA). This may as well give us some directions,

hints to look further, in order to target a potential genetic source causing

ACS, subject to further medical investigation.

5.5 Conclusion

In this chapter, we described some results we have obtained from applying

our methodology to the Acute Coronary Syndromes data. It resulted in the

construction of three different regulatory networks, one for each ACS con-

dition. We highlighted the main similarities and differences between them,

in particular the genes and miRNAs which seem to play an important role

in ACS, due to the number of arrows they are involved in. We have also

proposed some biological interpretation of these results, which may help to

diagnostic the source of a possible disease. However, as we have pointed out,

these suggestions will need further investigation to be verified, as our results

can not be taken as definite conclusions, due to several reasons: complexity
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of the model, absence of a control group to compare with healthy patients,

lack of knowledge about the gene-miRNA interactions, etc.

Even if the final results depend on the clustering method and the di-

mensionality reduction used (other methods would have probably selecting

a different subset of data), the methodology does not rely on them. Indeed,

it is possible to use other filtering methods one may find more suitable, and

then perform the proposed methodology.

Similarly, the model can be applied to other types of data, biological or

from another field. An example of another type of application in genomics

would be data obtained from RNA sequencing, a technique that uses the ca-

pabilities of next-generation sequencing. As described in Section 2.1.6, more

details about RNA sequencing and next-generation are available in [7], [17]

and [41].
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CHAPTER 6

Conclusion and Discussion

6.1 Conclusions

In this thesis, we have proposed a Bayesian graphical model that infers a gene-

miRNA regulatory network by integrating expression levels of both miRNAs

and their potential gene targets, and that also integrates sequence and struc-

ture information via the prior probability model. The regulatory network is

inferred using a stochastic search variable selection, via an MCMC procedure,

where the different parameters of the model are estimated and updated. In

this approach, genes are assumed correlated given the miRNAs, while they

are often assumed independent given the miRNAs, sometimes for practical

and computational reasons. These correlations need to be taken into ac-

count, as in real life, in the cell, genes (or at least some groups of genes)
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are believed to be correlated. However, also for practical and computational

reasons, the large original dataset needs to be filtered, and then separated

in several clusters. While variables within a same cluster are assumed corre-

lated, the different clusters however are assumed independent of each other

given the miRNAs.

We considered a case study on simulated data to evaluate the perfor-

mance of our approach, and to compare with the approach of Stingo et al.,

where the genes are independent upon the miRNAs. Then, we considered an

experimental study on Acute Coronary Syndromes, consisting of three differ-

ent conditions. The analysis involved 13 miRNAs and 168 potential target

gens, split in 6 clusters of various size. The aim was to identify a small

set of potential miRNA-gene interactions under each condition, and compare

the resulting networks. The main similarities and differences, for instance

an edge present in all networks or only in one, can give future ideas and

guidelines for further medical investigation, in order to identify biomarkers

related to a disease. However, these results and comments need to be taken

with caution, as the small number of samples and the absence of a control

group of healthy patients do not allow us to draw definite conclusions, but

only suggestions.

The proposed modeling approach is general and can easily be applied to

other types of data (next-generation sequencing [17]) and network inference,

like gene-gene networks [59]. The prior model also allows to integrate and

combine different sources of prior information.
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A limitation of such a study in genetics is that our knowledge of biological

processes remain incomplete, and can therefore imply errors. For example,

the prior information can vary from the source we use. Some potential arrows

predicted by TargetScan might not have been predicted by another algorithm

and then would not have been included in our study, and vice versa. It is

also challenging to establish an accurate prior about the covariance matrix,

as we can not know how all the genes are linked with each other. Under

our methodology and assumptions of correlated genes, this covariance ma-

trix plays an important role, and therefore deserves further investigation,

especially related to its optimization and estimation.

6.2 Extensions and future work

Extensions of the proposed approach are possible. In our study, we mostly

aimed to identify potential arrows, however it may be desirable to estimate

the strength of these arrows. As we mentioned it in Section 4.3.2, one possi-

bility would be to estimate the regression coefficientsBR. The more negative

a coefficient is, the stronger the corresponding arrow is assumed.

Moreover, we may be interested in studying the impact of some arrows in

different networks. That is the reason a comparison between graphs, obtained

from different conditions, may be desired in order to identify the structural

similarities and differences between the graphs. This may also help us to

identify the source of the disease. In [54], Ruan compare multiple graphs
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via a procedure based on Generalized Hamming Distance, and also provide

a review of statistical methods for comparing graphs; see also Ruan, Young

and Montana [55].

We also need to keep in mind that our knowledge of biological processes

in the cell, including the gene and miRNA regulation is still unclear and

incomplete. It is possible that miRNAs may also regulate each other, and

can regulate a target gene indirectly, via another gene or miRNA. In our

approach, we assumed the miRNAs independent, and the gene-miRNA in-

teractions to be direct and directed from the miRNA to the target gene,

without passing via another node. As it is also believed that miRNAs down-

regulate the genes, we integrated this prior knowledge by imposing negative

regression coefficients.

However, some approaches infer regulatory networks under different as-

sumptions or methodologies. Ročková in [52], and Ročková and George in

[53], infer the regulatory network via a factor augmented multivariate regres-

sion, and perform an EM algorithm for the variable selection. In [24], Huang,

Morris and Frey proposed a variational learning method using Kullback-

Leibler divergence and EM algorithm to obtain a set of functional miRNA-

gene interactions. In [59], Stingo and Vanucci proposed a variable selection

with a Markov random field prior to classify subjects according to pheno-

types via gene expression data, where they consider gene-gene networks as

undirected graphs. Another different approach is proposed by Johnson, Wel-

cker and Bass [28], where they develop a Dynamic Linear Model to identify
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candidate miRNAs regulating their target genes. Comparison with these

methods could be very interesting, in particular to evaluate the performance

of each methodology, both in terms of network estimation and computational

performance. For example, in [59], the authors consider some similar priors

as our approach, such as the Inverse-Wishart prior for the covariance matrix

of genes in the same group, but use a different one (Markov random field)

to map the connections between nodes. On the other hand, Expectation-

Maximization Variable Selection and variational learning approaches may

show better computational performances than our intensive MCMC proce-

dure. However, we may need to modify prior distributions to make the EM

steps tractable. Nonetheless, extending those methods to graphical modeling

is a challenging and interesting path to investigate.

Finally, the increasing amount of biological knowledge is essential to per-

form accurate and efficient studies and to identify biomarkers. It is there-

fore important to integrate into the different models as much accurate prior

biological information as possible, as considered in [60]. Additionally, the

improvement of computational technology can only help us to conduct such

high-dimensional analyses.
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APPENDIX A

Appendix

A.1 Kronecker product and vec operator

This section discusses some topics in matrix algebra, namely the Kronecker

product of two matrices and the vec operator.

Definition A.1. Let A an n× p matrix and B an m× q matrix. Then the

Kronecker product of A and B, denoted by A⊗B, is the mn× pq matrix

A⊗B =


a11B a12B . . . a1pB

a21B a22B . . . a2pB

...
...

...
...

an1B an2B . . . anpB


Properties:
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• Associativity: A⊗ (B ⊗C) = (A⊗B)⊗C,

• Distributivity: A⊗(B+C) = (A⊗B)+(A⊗C), (A+B)⊗C =

(A⊗C) + (B ⊗C),

• For some scalars a and b: aA⊗ bB = abA⊗B,

• For some matrices with right dimensions: (A ⊗B)(C ⊗D) = AC ⊗

BD,

• Transposition: (A⊗B)T = AT ⊗BT ,

• Trace: tr(A⊗B) = tr(A)tr(B),

• Rank: rank(A⊗B) = rank(A)rank(B),

• Determinant: det(A ⊗ B) = det(A)n det(B)m, where A and B are

respectively m×m and n× n matrices,

• Inverse: (A⊗B)−1 = A−1 ⊗B−1.

Definition A.2. The vec operator is an operator which creates a column

vector from a matrix A by stacking the column vectors of A = [a1a2...an]

below one another :

vec(A) =


a1

a2

...

an


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Example : If A =

 2 −7

14 6

, then vec(A) =


2

14

−7

6


.

Theorem A.1. Let A,B,X be 3 matrices of conforming sizes. Then

vec(AXB) = (BT ⊗A)vec(X)

Proof. Let B = [b1...bn],X = [x1...xm]. The k-th column of AXB is

(AXB)..k = AXbk = A
∑m

i=1 xibik

= [b1kA...bmkA]


x1

...

xm


= ([b1k...bmk]⊗A)vec(X) = bTk ⊗A)vec(X)

Then, stacking the colums below one another

vec(AXB) =


AXB..1

...

AXB..n

 =


bT1 ⊗A

...

bTn ⊗A

 vec(X)

= (BT ⊗A)vec(X)
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Corollary A.1.

vec(AB) = (BT ⊗A)vec(I)

= (BT ⊗ I)vec(A)

= (I ⊗A)vec(B)

Property:

tr(AB) = vec(AT )Tvec(B)

The proof is immediate writing the formula of the trace, using the expression

of the matrices coefficients.

A.2 Distribution theory

This section discusses some common distributions and their propoerties.

Normal distribution

A random variable X follows a normal distribution with mean µ and standard

deviation σ, denoted by N(µ, σ2), if and only if its density f(x) is:

f(x) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
.

The normal distribution with mean µ = 0 and standard deviation σ = 1 is

called the standard normal distribution.

Truncated normal distribution

The truncated normal distribution is the probability distribution of a nor-

mally distributed random variable, whose values are restricted to lie between
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two values a and b in the case of a two-tailed truncation, or higher than a or

lower than b in the case of an one-tailed truncation. If X follows a truncated

normal distribution N(µ, σ2) between a and b, its density function is:

1
σ
φ(x−µ

σ
)

Φ( b−µ
σ

)− Φ(a−µ
σ

)
,

for x ∈ [a, b], where φ and Φ respectively denote the probability density

function and cumulative distribution function of the standard normal distri-

bution. In the case of an one-tailed truncation x ≥ a, we can write b = ∞

and Φ( b−µ
σ

) = 1, then the density function becomes:

1
σ
φ(x−µ

σ
)

1− Φ(a−µ
σ

)
=

1
σ
φ(x−µ

σ
)

1− Φ(α)
,

with α = x−µ
σ

. The expected value and value are then:

E(X|x ≥ a) = µ+ σλ(α)

V(X| ≥ a) = σ2[1− δ(α)],

with

λ(α) = φ(α)/[1− Φ(α)]

δ(α) = λ(α)[λ(α)− α].

These results and other details can be found in Greene [18].

Exponential distribution

A random variable X > 0 follows an exponential distribution with rate pa-

rameter λ > 0, denoted by X ∼ Exp(λ), if and only if its density f(x)
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is:

f(x) = λ exp(−λx).

Gamma distribution

A random variable φ > 0 has a gamma distribution with shape parameter

a > 0 and scale parameter b > 0, denoted by φ ∼ Ga(a, b) if and only if its

density f(φ) is:

f(φ) =
1

Γ(a)ba
φa−1exp(−φ/b),

where Γ(.) is the gamma function.

Properties:

• Expected value: E(φ) = ab.

• Variance: V(φ) = ab2.

• If a = 1, then φ has an exponential distribution with parameter 1/b.

Inverse-gamma distribution

A random variable ψ > 0 has an inverse-gamma distribution with parameters

α > 0, β > 0, denoted by ψ ∼ IGa(α, β), if and only if its density f(ψ) is:

f(ψ) =
βα

Γ(α)
(1/ψ)α+1exp(−β/ψ).

Properties:

• Expected value: E(ψ) = β
α−1

.

• Variance: V(ψ) = β2

(α−1)(α−2)
.
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• If ψ ∼ IG(α, β), then φ = 1/Ψ ∼ G(α, 1/β).

Multivariate normal distribution

A random vectorX of size p is said to have a multivariate normal distribution

with mean vector µ and covariance matrix Σ, written as X ∼ N(µ,Σ) or

X ∼ Np(µ,Σ) , when its density function is:

(2π)−
p
2 |Σ|−

1
2 exp

(
− 1

2
(X − µ)TΣ−1(X − µ)

)
,

where |Σ| denotes the determinant of Σ.

Matrix-variate normal distribution

A n × p random matrix is said to have a matrix variate normal distribu-

tion with mean matrix M , n × n among-row covariance matrix U , p × p

among-column covariance matrix V , written as X ∼ N(M ,U ,V ), or X ∼

Nn,p(M ,U ,V ), if its density is:

exp
(
− 1

2
tr
[
V −1(X −M )TU−1(X −M)

])
(2π)

np
2 |V |n2 |U | p2

.

The matrix variate normal distribution is related to the the multivariate

normal distribution by the following equivalence:

X ∼ Nn,p(M ,U ,V ) ⇔ vec(X) ∼ Nnp(M ,V ⊗U).

This equivalence can be proved by using properties of the trace, textrmvec

operator and kronecker product; details can be found in [20].
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Property: If X ∼ Nn,p(M ,U ,V ), then, assuming matrices D and C

of appropriate dimensions and of full rank:

DXC ∼ Nn,p(DMC,DUDT ,CTV C).

A proof of that property is available in [20].

Wishart distribution

A p × p random symmetric positive definite matrix V is said to have a

Wishart distribution with parameters ν degrees od freedom, and scale matrix

S, written as V ∼ Wp(ν,S), if its density is:

1

2
νp
2 |S| ν2 Γp(

ν
2
)
|V |

ν−p−1
2 exp

(
− tr(S−1V )

2

)
,

where the scale matrix S is a p × p positive definite matrix and Γp is the

multivariate gamma function.

Properties:

• Expected value: E(V ) = νS.

• Mode: Mode(V ) = (ν − p− 1)S.

• Variance: V(Vij) = ν(s2
ij + siisjj).

• In Bayesian statistics, the Wishart distribution is the conjugate prior

to the precision matrix Ω = Σ−1, where Σ is the covariance matrix.
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Inverse-Wishart distribution

A p × p symmetric positive definite matrix X is said to have an inverse-

Wishart distribution, with ν degrees of freedom and positive definite scale

matrix Ψ, written as X ∼ IWp(ν,Ψ) if its density is:

|Ψ| ν2
2
νp
2 Γp(

ν
2
)
|X|−

ν+p+1
2 exp

(
− tr(ΨX−1)

2

)
.

Properties:

• Expected value: E(X) = Ψ
ν−p−1

.

• Mode: Mode(X) = Ψ
ν+p+1

.

• Variance: V(Xij) =
(ν−p+1)ψij+(ν−p−1)ψiiψjj

(ν−p)(ν−p−1)2(ν−p−3)
.

• If X ∼ IWp(ν,Ψ), then X−1 ∼ Wp(ν,Ψ
−1)

MCMC procedure: Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm is a MCMC method (Markov Chain Monte

Carlo) which is generally used to approximate a probability distribution

which it is difficult to sample from directly. It is generally computed for

multi-dimensions distributional distributions, especially when the dimensions

are high, the reason why it is difficult to directly sample from.

Let X1, X2, . . . , Xn be a Markov chain, generated from the stationary

distribution fX(x), also called the target density. If we wish to estimate

the following points Xn+1, Xn+2,..., we may compute the Metropolis-Hastings

procedure as follows:
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• let Xc be the current value of our Markov chain, and Xnew the next

point we wish to estimate;

• a candidate point Xp is sampled from a proposal distribution q(Xp|Xc);

This proposal distribution is defined and adapted according to the sit-

uation of interest. We can choose a normal distribution with mean Xc,

a gamma distribution if the random variable needs to be positive...

• we then compute the probability of acceptance α(Xc, Xp):

α(Xc, Xp) = min
(fX(Xp)q(Xc|Xp)

fX(Xc)q(Xp|Xc)
, 1
)

; (A.1)

If the proposal density is symmetric (normal distribution for example),

this probability is:

α(Xc, Xp) = min
(fX(Xp)

fX(Xc)
, 1
)

;

• we sample U from the U(0, 1) distribution;

• if U ≥ α(Xc, Xp), we accept the proposed value and we set Xnew = Xp.

On the contrary, if U ≤ α(Xc, Xp), we do not accept the proposed value

and do not update the chain, we set Xnew = Xc.

• and so on for the following steps, until we reach convergence to the

target distribution.

One difficulty lies in the choice of the proposal distribution q(Xp|Xc). For

better performance of the algorithm and convergence of the chain, it is prefer-
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able to choice a density which matches the shape of the target density fX(x).

For example, we choose a normal distribution if the variable is believed to

follow a distribution close to the normal. If we want the variable to lie in a

certain range of values, it may be suitable to use a truncated normal. Also,

if we assume the variable to be positive, we may want to use a gamma or

exponential distribution to satisfy this constraint. A good convergence also

requires a suitable acceptance rate, the proportion proposed samples which

are actually accepted. This acceptance rate depends on the variance of the

proposal density. This is why we need to tune the parameters of q(Xp|Xc)

during the burn-in period such that we obtain a suitable acceptance rate,

ideally around 25% for a multidimensional normal distribution [50]. If the

variance q(Xp|Xc) is too high, the proposed samples will lie in regions with

very low likelihoods, then the acceptance rate will be too small and the chain

will converge slowly. On the other hand, if the variance is too small, the pro-

posed samples will have high likelihoods, leading to a high acceptance rate,

but will remain very close to the current value, also resulting in very slow

convergence to the true distribution fX(x).

In practice, the main difficulty in implementing MCMC is to identify

whether or not the Markov chain has converged or not to its stationary dis-

tribution fX(x). A practical way to check convergence is to have a look at

plots of the chain. If we observe that the chain converges and stabilizes to-

wards a given value, if the likelihood of the model also stays in the same

region, we may conclude the chain has reached convergence. A convergence

diagnostic, often used as a formal way of checking for convergence, is the

Brooks, Gelman and Rubin (BGR) diagnostic [15, 6]. More detailed discus-
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sion about MCMC can be found in either [14] or [49].

A.3 Graphs from the different chains run in

Chapter 5

The Figures in this section give the trace plots of the log-relative proba-

bilities of the visited models, under each condition, in the order STEMI,

NSTEMI, Unstable Angina. Each graph corresponds to a chain run to build

the different networks presented in Section 5.2. Figures A.1 to A.3 show

the log-relative probabilities for the whole chains, when Figures A.4 to A.6

only show those probabilities from the end of the burn-in onwards. For each

Figure, the different graphs represent the different clusters, from cluster 1

(top left) to cluster 6 (bottom right).
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Figure A.1: Log-relative probabilities of the visited models, STEMI condition
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Figure A.2: Log-relative probabilities of the visited models, NSTEMI condi-
tion
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Figure A.3: Log-relative probabilities of the visited models, Unstable Angina
condition
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Figure A.4: Log-relative probabilities of the visited models after burn-in,
STEMI condition
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Figure A.5: Log-relative probabilities of the visited models after burn-in,
NSTEMI condition
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Figure A.6: Log-relative probabilities of the visited models after burn-in,
Unstable Angina condition
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