A Business User Model-Driven
Engineering Method for Developing
Information Systems

Ahmad F Subahi

22 February 2015

This Thesis is submitted for the degree of Doctor of Philosophy

Verification and Testing Group
Department of Computer Science

University of Sheffield

Supervisor: Dr. Anthony J.H. Simons

Abstract

With the rapid development of general-purpose programming languages and platform tech-
nologies, software engineers have faced more various challenges in software development
to those that occurred in the past decades. Requirements Change might cause several
project management and technical conflicts associated with requirement elicitation, inter-
communication and later changes of specifications.

In the real-world, there is a demand to adopt an accurate information system that
satisfies the requirements and is used effectively for the business. However, having vague
or misinterpreted requirements causes errors and extra costs. Therefore, domain experts,
who clearly understand the business logic and goals, and are aware of what exactly they
need inside an organisation without professional software developing skills, should play key
roles in the development lifecycle using high level tools. Model-Driven Engineering, is a
software engineering discipline that aims at raising the level of abstraction by capturing
system specifications through the employment of Models. MDE supports integration and
interoperability, improves software quality, and reduces development cost by supporting the
automatic creation of software systems using appropriate toolsets.

This thesis is all about raising the level of abstraction at which information systems are
built, using business end-users knowledge and MDE to achieve the result. The work intro-
duces, first, Micro-Modelling Language (¢ML), a lightweight modelling language that is used
to express basic structural and behavioural aspects of information systems using effectively
business-users knowledge of their desired system. Throughout the work, graphical notation
and semantics for the language concepts are identified, providing a simpler and semantically
cleaned modelling language than standard UML and other UML-based languages.

The work also proposes BUILD (Business-User Information-Led Development), an End-
User MDE approach to support the construction of information systems using high-level
specifications and accelerate the development process using layered model transformation
and code generation. Throughout the thesis, a number of development phases and model
transformation steps are identified to allow the low-level technical detail be introduced and
developed automatically by rules, with less end-users engagement. Domain-Specific code
generators, for generating executable Java Swing Applications code and MySQL script, are
used to demonstrate the validity of the research.

Acknowledgements

I would like to use this opportunity to express my gratitude and love to all the people in my
life, who were there for me and were a part of the process during which this thesis would not
have happened without the generous support and encouragement of many people.

The first person I would like to thank is my supervisor Dr. Anthony J.H. Simons, as
this PhD research is the synthesis of five years of work whereby I have been accompanied and
guided by him. During these years I have known Anthony (Tony) as both a clever researcher,
and a genuine and friendly person. Together with him, I would like to thank Prof. Georg
Struth for his valuable advice, ideas and suggestions during the design of the formal logic,
which surely improved the quality of the thesis. Moreover, many thanks to Dr. Simon Foster
for his worthy assistance in the theoritical side of Graph Transformation at the early stage
of the research.

I would like to mention all members of the Verification and Testing (vt) group. To
those I have spent most of these years together with in the Department of Computer Science,
University of Sheffield. Many thanks to all of them. Moreover, huge thanks go to my dear
wife and all friends for putting up with me and for their support and patience that were
fundamental in concluding my PhD.

I feel a deep sense of gratitude and I owe sincere and earnest thankfulness to my valuable
Irish friends for their special caring, Dr. Hayder Ahmed, his lovely family, Dr. A Almanea,
and Mrs L Ahmed, You are a part of my life who were here for me when I needed any
piece of advice and encouragement. My special thanks and love to the special one who was
never-ending support and inspiration in every conceivable way. Without the patience, love
and endless support this thesis wouldn’t have been written.

iii

List of Acronyms

ADISSA
AOSD
ASL
AST
ATL

BPMN
BUILD

CASE
CBD
CBEADS
CIM
CRUD

DBQ
DFD
DSL

DSM
DTD

ECA
EIS

EMF
EUD

FOOM
FOPL

GEF
GMF
GPL
GReAT
GSD
GUI

HCI
HTML

IS

J2EE
JaMDA
JDBC
JMermaid

JSP

KerMeta

Architectural Design of Information Systems Structure Analysis Methodology
Aspect Oreinted Software Development

Action Specification Language

Abstract Syntax Tree

AtlanMod Transformation Language

Business Process Modeling Notation
Business-User Information-Led Development

Computer Aided Software Engineering

Component-Based Development

Component-Based EBusiness Application Development and Deployment Shell
Computation Independent Model

Create, Read, Update and Delete effects

DataBase and Query
DataFlow Diagram
Domain Specific Language
Domain-Specific Modelling
Document Type Definition

Event-Condition-Action
Enterprise Information System
Eclipse Modeling Framework
End-User Development

Functional and Object-Oriented Methodology
First-Order Predicate Logic

Graphical Editing Framework

Graphical Modeling Framework
General-Purpose Programming Language
Graph Rewriting and Transformation
Generative Software Development
Graphical User Interface

Human-Computer Interaction
HyperText Markup Language

Information System

Java 2 Platform Enterprise Edition
Java Model-Driven Architecture
Java Database Connectivity

Java MERode Modelling AID

Java Server Page

Kernel Metamodeling

iv

KM3
LDE

MDA
MDD
MDD4EU
MDE
MERODE
MIC
MIDAS
ML
MOF
MOSYS

OCL
OMG
OOAD
OPCAT
OPD
OPL
OPM

PervML
PIM
PSM

QVT
ReMoDeL

SiTra
SQL

UML

UML-RSDS

UWE

WebML
WIS

XML
xUML

Z00M

Kernel Meta Meta Model
Language-Driven Engineering

Model-Driven Architecture

Model-Driven Development

Model-Driven Development for End-Users
Model-Driven Engineering

Model driven Existence dependency Relation Object oriented DEvelopment

Model-Integrated Computing

Model Driven Architecture framework for development of Web ISs

Micro-Modelling Language
Meta Object Facility

Methodology for Automatic Object Identification from System Specification

Object Constraint Language

Object Management Group
Object-Oriented Analysis and Design
Object Process CASE Tool

Object Process Diagram

Object Process Language

Object Process Methodology

Pervasive Modelling Language
Platform-Independent Model
Platform-Specific Model

Query/View/Transformation
Reusable Modelling Design Language

Simple Transformer
Structured Query Language

Unified Modelling language
UML Reactive System Development Support
UML-Based Web Engineering

Web Modelling Language
Web Information System

Extensible Markup Language
Executable Unified Modeling Language

Z-Based Object Oriented Modelling

List of Publications

e Ahmad F. Subahi, Anthony .J.H. Simons. A Multi-level Transformation from Conceptual
Data Models to Database Scripts Using Java Agents, Proceedings in the Workshop on
Composition and Fvaluation of Model Transformations, King’s College London, 2011.

e Ahmad F. Subahi and Anthony J.H. Simons, A model transformation approach for trans-
lating conceptual database schemas into executable database systems, Technical Report,
Department of Computer Science, University of Sheffield, 2011, 1-10.

e Ahmad F. Subahi and Anthony J.H. Simons, Domain-Specific Language for Enabling End-
Users Model-Driven Information System Engineering, World Academy of Science, Engi-
neering and Technology, International Science Index 79, International Journal of Com-
puter, Information, Systems and Control Engineering, 7(7), 2013, 318 - 321.

e Anthony J.H. Simons, Ahmad F. Subahi and Stephen M.T. Eyre, Practical model-to-
code transformation in four object-oriented programming languages, Technical Report,
Department of Computer Science, University of Sheffield, 2011, 1-25.

vi

Declaration

I hereby declare that this thesis is my own work and effort and that it has not been submitted
anywhere for any award. Where other sources of information have been used, they have been
acknowledged.

Ahmad F Subahi

vii

Contents

1 Introduction

1.1
1.2
1.3
14
1.5
1.6
1.7
1.8

1.9

Context e s

Grand Challenges in Software Development

Recent Possible Solutions for the Problems
Model-Driven Engineering (MDE)

Motivation e e

Research Problems oo

Contribution of the Research
Objective of the Research,

Organisation of the Thesis

2 Literature Review
2.1 Context e e e e
2.2 Overview of Related Methodologies,

2.3

24

2.21
2.2.2
2.2.3
2.24

2.2.5
2.2.6

2.2.7

Model Driven Architecture (MDA)
Model-integrated Computing (MIC)
Aspect-oriented Software Development (AOSD)
Executable UML (xUML)

Software Factories o

Generative Software Development (GSD)

SUMMATY o o o s e e e e e

Overview of Model Transformations

23.1
2.3.2
2.3.3
2.34

Model transformation Paradigms
Composition of Model Transformations
Limitations in the Current Model Transformation Approaches.

Summary e

Software System Modelling Techniques

2.4.1
2.4.2

Object-Process Methodology (OPM)
Pure Object-Oriented Method

viil

© 00 N N O W w NN

CONTENTS CONTENTS

2.4.3 Imtegrated Methods L o 30
2.5 Metamodelling approaches 32
2.5.1 EIS . . o e 32
2.5.2 UWE . . . e e 33
2.5.3 Weaving Models 33
2.5.4 UWE and MDUWE 34
2.5.5 Model-Driven Web Engineering (WebML) 34
2.5.6 MERODE e 35
2.5.7 Reactive System Development Support (UML-RSDS) 36
2.5.8 Summary ... e e e e 36
2.6 End-user and MDE e 39
2.6.1 Component Based EBusiness Application Development and Deployment
Shell (CBEADS)« . 39
2.6.2 Model-Driven Development for End-User development (MDD4EU) 39
2.6.3 Summary e e e 40
2.7 Outlook on the Chapter 40
3 Framework Overview and Analysis 41
3.1 Context e 41
3.2 The BUILD Approach 41
3.2.1 What is Micro Modelling Language (uML)? 42
3.2.2 Development Phases in BUILD 44
3.2.3 Model Transformation Strategy in BUILD 52
3.2.4 Code Generation in BUILD 53
3.3 Foundation of pMLo 54
3.3.1 Preliminary Principles Lo 55
3.4 puML Metamodel Spec. L o7
3.5 Outlook on the Chapter 60
4 uML Concepts and Notations: In the Requirement Sketching Phase 61
4.1 Context 61
4.2 Task Model 61
4.2.1 Notation and Semantics of the Task Model 62
4.2.2 The Significance of Task Model 68
4.3 Impact Model L 68
4.3.1 Notation and Semantics of the Impact Model 69
4.3.2 The Significance of Impact Model 75
4.4 Information Model L 75

ix

CONTENTS CONTENTS
4.4.1 Information Model 76

4.4.2 The Significance of The Information Model 82

4.5 Outlook on the Chapter 82

5 uML Concepts and Notations: In the Analysis Phase 83
5.1 Context e e 83
5.2 DataModel 83
5.2.1 Notation and Semantics of the Data Model 84

5.3 DataFlow Model 87
5.3.1 Notation and Semantics of the DataFlow Model 88

5.4 State Model 96
5.4.1 State Model Notations 97

5.5 Outlook on the Chapter 99

6 uML Concepts and Notations: In the Design Phase 100
6.1 Context e 100
6.2 DBQ Model e 100
6.2.1 Notation and Semantics of the Database and Query Model 102

6.2.2 The Query Language and Functional Algebra 107

6.2.3 The Significance of the Database and Query Model 111

6.3 GUI Model 111
6.3.1 Notation and Semantics of the Graphical User Interface (GUI) Model . . 113

6.3.2 The Significance of the GUI Model 115

6.4 Code Model 116
6.4.1 Code Model 117

6.5 Outlook on the Chapter 119

7 The Architecture of Model-Transformation Approach 120
7.1 Comtext e 120
7.2 Brief Overview of the MT Framework 121
7.3 Transformations of the Top Level Architecture 121
7.4 Framework Architecture at The Concrete Level 123
7.5 Requirement-to-Analysis 124
7.5.1 Translating Task and Impact Models into (initial) DataFlow 124

7.5.2 Translating the Information Model into the Data (Dependency) Model . . 126

7.5.3 Translating (initial) DataFlow Model into Detailed DataFlow Model . . . 128

7.5.4 Translating DataFlow Model into (Screen) State Model 129

7.6 Analysis-to-Design 130

CONTENTS CONTENTS

7.6.1 Translating the State Model into the GUI Model 131
7.6.2 Translating the DataFlow and Data Model into the DBQ Model 132

7.7 Alternative Translation 134
7.7.1 Translating the Impact Model into the (Initial) Information Model 134
7.7.2 Translating the DataFlow and DBQ Model into the Code Model 135

7.8 The Implementation of uML Models 136
7.9 The Implementation of the Transformation Rules 139
7.9.1 Example of Top-Level Rule Implementation 139
7.9.2 Example of Concrete Rule Implementation 140

7.10 Brief Overview of the Code Generation Framework 142
7.11 Design-to-Code e 142
7.12 Outlook on the Chapter 144
8 The Rules of Model Transformation 146
8.1 Context e 146
8.2 Requirement to Analysis L 146
8.2.1 Translating Task and Impact Models into (initial) DataFlow 146
8.2.2 Translating Information Model into Data (Dependency) Model 151
8.2.3 Transforming (initial) DataFlow Model into Detailed DataFlow Model . . 155
8.2.4 Translating DataFlow Model into (Screen) State Model 159

8.3 Analysisto Design 161
8.3.1 Translating State into GUI Model 161
8.3.2 Translating DataFlow and Data Model into the DBQ Model 163

8.4 Generating the Information Model 165
8.4.1 Translating the Impact Model into an (initial) Information Model 165

8.5 Outlook on the Chapter 166
9 Case Studies 167
9.1 Context o 167
9.2 Overview of the University Administration System 167
9.3 Overview of the Module Management Sub-system 168
9.3.1 Information System Representation at the Requirements Sketching Phase 168
9.3.2 Running the Experiment on the BUILD Framework (1) 169

9.4 Overview of the Student Enrolment Sub-system 179

9.4.1 Information System Representation at the Requirements Sketching Phase 179
9.4.2 Running the Experiment on the BUILD Framework (2) 180
9.4.3 Information System Representation at the Design Phase 184

xi

CONTENTS CONTENTS
9.5 Overview of the Extended Information Model 185
9.5.1 Running the Experiment on the BUILD Framework (3a) 186

9.6 Outlook on the Chapter 193
10 Evaluation and Testing 194
10.1 Context o o e 194
10.2 Evaluating The Generated Results from BUILD 195
10.2.1 Assuring the Determinism of the Transformation Rules 195
10.2.2 Criterion Two 199
10.2.3 Generating Correct Code 202
10.2.4 Generating All What We Want 203
10.2.5 Filling the Implementation Gap 205
10.2.6 Can We Execute the Generated Code? 205
10.2.7 Things Were Wrong or Missing 207

10.3 Analysis of Time Complexity 208
10.3.1 Big-O Analysisof Rules, 208
10.3.2 Big-O Analysis of Translation Step, 210
10.3.3 The Overall Time Complexity Analysis of BUILD 211

10.4 Evaluation Experiment of pML Notation. 211
10.4.1 Design of the Experiment, 212
10.4.2 Analysis of the Results, 212

10.5 Outlook on the Chapter 215
11 Conclusion and Future Work 216
11.1 Context o o o 216
11.2 In Support of the Thesis e 216
11.3 Discussion of Research Questions L. 218
11.4 Summary of Findings 219
11.4.1 Semi-Automated Construction of Data Dependency Model 219
11.4.2 Alternative Strategy For Information Modelling 220

11.5 Future Work oL e 220
11.5.1 Additional Types of Top-Level Rules, 221
11.5.2 Merging rule for Constructing Data Dependency Model 221
11.5.3 Additional Types of Constraints in the Information Model 221
11.5.4 Additional Business Workflow Patterns 222
11.5.5 DataFlow-to-State Model Optimisation 222
11.5.6 Designing Three-Tier Architecture of Information Systems. 222

xii

CONTENTS CONTENTS

11.5.7 Eclipse GMF Integration 223

11.6 Final Remarks 223
Appendices 234
Appendix A Models and Results of Experiment (1) 235
Al Appendix A 235
Appendix B Models and Results of Experiment (2) 269
B.1 Appendix B 269
Appendix C Models and Results of Experiment (3) 283
C.1 Appendix C e 283
Appendix D End-User Evaluation Experiment of ML Notation 299
D.1 Appendix Do 299
D.1.1 Description of the Online System 299

D.1.2 Description of Business Items (Entities) 300

D.1.3 Description of How the System Data interact with system 300

xiii

List of Figures

1.1

1.2
1.3

14
1.5
1.6

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2
4.3
4.4

4.5
4.6

4.7

The Relationship between Models and Metamodels 4
MOF Levels o o e 4
An example of M2 level models (metamodels) 4
An example of M1 model 5
An Example of models at MO level, 5
Types of model transformations oL 6
Concepts of Model Transformation 15
A graph representation of an Object Diagram 19
Example to M-to-M mapping using TGG 20
BUILD. A wider picture e 43
The Metamodel for pML 0 o0 44
Task Model. Library Circulation System example 45
Impact Model. Library Circulation System example 46
Information Model. Library System example 47
Generated Data Model. Library Circulation System example 48
Generated DFD Model. Library Circulation System example 49
Generated State Model. Library System (Issue Loan) example 50
Generated State Model. Library System (Issue Loan) example 50
The Generated DBQ Model. Library System example 51
Task model. Goals e 64
Task model. Tasks 64
Task model. Actors. e 65
Task model. Participation 65
Task model. Generalisation 66
Task Model. Compositions 67
Impact model. Tasks L 70

Xiv

LIST OF FIGURES LIST OF FIGURES

4.8

4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17

4.18
4.19
4.20
4.21

5.1
5.2
9.3
5.4

5.5
5.6
5.7
5.8
2.9
5.10

6.1
6.2

7.1

7.2
7.3
7.4

7.5
7.6
7.7
7.8
7.9

Impact model. Objects 71
Impact model. Impacts L L 72
Impact Model. Read/Write Object 72
Impact model. Update 73
Impact Model. Create/Delete Object 73
Impact model. Disjoint Impact Combinator 74
Information model. Objects (Entities) 78
Impact model. Associations 78
Information model. Composition 79
Information model. Total Composition 80
Information model. Generalisation 80
Information model. Generalisation 81
Information model. Attributes L 81
Information model. Multiplicity oL oo 81
Data model. (A) Entity, (B) Dependency 84
Generated Data model. Dependencies 86
Generated Data model. Primary Key 86
Generated Data model. Foreign Key 86
Generated DataFlow model. Tasks 90
Generated DataFlow model. Entites 90
Generated DataFlow model. Actors 91
DataFlow model. Flows 91
Generated DataFlow model. Create and Delete Flow 91
Generated State model. Core Elements. 97
Generated Database and Query model. Structure of a Table 105
Generated Database and Query model. Table’s Structure 106
Model Transformation in BUILD. The Top Level Framework 122
Translation Rule Structureo oo 122
Translation Rule Structure oo 123
Reg-to-Analysis: Task & Impact to (initial) DataFlow Model 125
Reg-to-Analysis: Information to Data Dependency Model 127
Reg-to-Analysis: (initial) DataFlow to Detailed DataFlow Model 129
Reqg-to-Analysis: DFD to State Model 130
Analysis-to-Design: State to GUI Model 131
Analysis-to-Design: Data Dependency to Database and Query Model 133

XV

LIST OF FIGURES LIST OF FIGURES

7.10
7.11
7.12

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10

9.11
9.12
9.13

9.14
9.15
9.16
9.17
9.18
9.19
9.20
9.21
9.22
9.23
9.24
9.25
9.26

9.27
9.28

10.1
10.2
10.3

Alternative Transformation: Impact to Information Model 134
The Architecture of the Java Swings Ul Generator 143
The Architecture of the (MySQL) Database Generator 145
Task model. Module Management System 168
Impact model. Module Management System 169
Information model. Module Entity. 169
Data model. Module Entityo oo 171
(initial) DFD model. Manage Module System 172
DFD model. Manage Module Sys. (with data on flows) 172
DDFD model. Delete Module subtask. 173
DDFED model. Manage Add Module subtask. 174
DDFD model. Manage Modify Module subtask. 174
DDFD model. See Module Description subtask. 175
State model. Add Module subtask. oL 175
State model. Delete Module subtask. oL 176
State model. Modify Module subtask., 177
DBQ model. Module Entity oo 177
Task model. Enrol a Student sub-Sys. 179
Impact model. Enrol a Student sub-Sys. 0L 179
Information model. Enrolment Entity 0. 180
Data model. Enrollment Entity L. 181
(initial) DFD model. Enrol a Student sub-Sys. 182
(initial) DFD model. Enrol a Student sub-Sys. with data of flows 182
(detailed) DFD model. Manage Module Sys. 183
State model. Manage Module Sys. oL 183
DBQ model. Enrollment Entity oo 184
Information model. University Administration Sys. 186
Data model. University Administration Sys. 188
DBQ model. University Administration System 189
The Initial Information Model 190
The derived Data Dependency Model 191
Student attempt at drawing a Task Model 213
Student attempt at drawing an Information Model 213
Student attempt at drawing an Impact Model 214

Xvi

List of Tables

21
2.2

3.1

4.1
4.2
4.3
4.4

5.1
5.2
5.3
0.4

6.1
6.2
6.3

7.1
7.2

8.1

10.1
10.2
10.3
10.4
10.5
10.6
10.7

Features of Model Transformations 27
Drawbacks of other MDE approaches 38
Predicates for uML Metamodel 57
Predicates for pML Task Model 63
Predicates for uML Impact Model 69
Examples of multiplicity 74
Predicates for uML Information Model 7
Predicates for uML Data Dependency Model 85
Predicates for uML DataFlow Model 89
Textual Expressions for Describing Data on Flows 95
Predicates for uML State Model, 97
Predicates for uML Database and Query Model 103
Predicates for uML GUI Model 113
Predicates for uML Code Model 117
Java Package of the Core yuML Elements 137
Java Package of the main yML Concrete Elements 138
Priority ranking of different typesof tasko 159
Task Model concepts and Related Agents 195
Impact Model concepts and Related Agents 196
Information Model concepts and Related Agents 196
Data Dependency Model concepts and Related Agents 197
DataFlow Model concepts and Related Agents 197
State Model concepts and Related Agents 197
GUI Model concepts and Related Agents. 198

xXvil

LIST OF TABLES LIST OF TABLES

10.8 DBQ Model concepts and Related Agents 199
10.9 Evolution of Requirement concepts to Java 200
10.10Evolution of Requirement concepts to MySQL 201
10.11pML Evaluation Criteria o 202
10.12Atomic Business Tasks and their Corresponding Windows 203
10.130rder of Windows (Student Enrolment) 203
10.140rder of Windows (Module Management - Modify Module) 203
10.15Atomic Business Tasks and their Corresponding Windows 204
10.16Data Model Normalisation L 205
10.17Criteria for Evaluating the Generated Information System 207
10.18Different Complexity Types in the Transformation Approach 209
10.19Complexity of Each Transformation Step 211
10.20Summary of All Student Answers (Question 1) 213
10.21Summary of All Student Answers (Question 2) 214
10.22Summary of All Student Answers (Question 3) 214

Introduction

“Walking on water and developing software from a specification are easy if both are frozen”

Edward V. Berard

1.1 Context

The thesis is about raising the level of abstraction at which information systems are built, and
this requires a user-friendly modelling language and an appropriate Model-Driven Engineering
(MDE) method to achieve the result. In this chapter an overview of the general area addressed
by this thesis is presented, highlighting certain aspects such as the principles of MDE and some
comparisons of different MDE concepts and techniques. The outline of the thesis is presented
next, in the rest of the chapter, including the motivation, aims and a summary of contributions
and objectives.

1.2 Grand Challenges in Software Development

With the rapid development of general-purpose programming languages and platform technolo-
gies, software engineers have in the current decade faced more varied challenges in software
development than those encountered in earlier decades. According to [23], these challenges are
a result of three major factors, which lead to the accidental increase in lines of code: Imple-
mentation Complexity, Platform Diversity, and Requirements Change. For instance, building
a robust software system that is feasible, distributed, secure, and portable requires additional
sophisticated requirements and more stakeholders to be involved in the development process.
This might cause several project management and technical conflicts associated with require-
ment elicitation, inter-communication and later changes of specifications. Consequently, there
will be a demand to expand the project size, which leads to an increase in the development and
maintenance cost, extra testing and bug-fixing tasks, and a delay in time of market delivery [62].

CHAPTER 1. INTRODUCTION 1.3. RECENT POSSIBLE SOLUTIONS FOR THE PROBLEMS

Besides this, dealing with the variety of existing platforms brings other issues to developers
and their knowledge. It is unattainable for a developer to be a specialist of every programming
language, and domain technology. For example, there is no standard way, adopted in all pro-
gramming languages and platform technologies, to deal with a particular requirement. Each
domain has an appropriate approach to handle some types of requirements, which cannot be
applied to other domains. Thus, developers must be capable of coping with a variety of domains,
implementation technologies and languages to produce good-quality systems. Furthermore, as
an on-going process, the clients might change the requirements during the development lifecycle.
The major changes might require code rewriting, and disturbing other processes, which increases
cost [23].

1.3 Recent Possible Solutions for the Problems

A number of software development approaches, such as Model-Driven Engineering (MDE), and
Language-Driven Engineering (LDE) [23], have introduced the idea of raising the level of abstrac-
tion beyond the General-Purpose Programming Languages (GPLs) through the usage of Models
and high-level programming languages tailored to a specific domain, known as Domain-Specific
Languages (DSLs). These various strategies are commonly adopted in software development,
as Domain-Specific Modelling Frameworks (DSMs) [62], to tackle the challenges stated above.
The DSM approaches are based on the usage of DSL with an associated compiler to model and
capture system specifications of a particular domain at a higher level of abstraction [62]. They
bring a remarkable contribution for reducing software complexity, achieving the separation of
concerns between the design and implementation phases, and providing a better view of the
system. This enables developers to specify their system and capture its requirements and design
problems independently from any platform-specific implementation, associated with a particular
technology. Then the mappings from design to code are defined in order to derive the executable
software automatically from high-level specifications. As a result, the overall software quality
and productivity will be increased [23].

1.4 Model-Driven Engineering (MDE)

In MDE, a model is considered a primary entity in the development lifecycle that provides
an abstract representation of a system. It supports integration and interoperability, improves
software quality, and reduces a development cost [6]. The general strategy of MDE aims to
capture system specifications through the employment of models that are expressed at a very
high level of abstraction. The models can be defined using a metamodel or an appropriate DSL
for a particular domain [62]. In Model-Driven approaches, the metamodel, a model of a model,
defines the abstract syntax and the relationship between concepts of the model. Figure 1.1
demonstrates the relationship between model and metamodels.

The Meta-Object Facility (MOF) [87] is a metamodelling strategy that is provided by the
Object Management Group (OMG) [86] and supported in Model Driven Architecture (MDA).
It has a hierarchical structure that consists of four layers from MO to M3 (Figure 1.2), each
one defines the level below to ensure the consistency and the correctness of the instance model
syntax and semantics at each level of abstraction [22].

CHAPTER 1. INTRODUCTION 1.4. MODEL-DRIVEN ENGINEERING (MDE)

Instance of

Metamodel

Defines

Figure 1.1: The Relationship between Models and Metamodels

>| M3: MOF '— Defines

Instance
;| M2: UML 'i
Defines

;' M1: User Model Ii
Defines

Instance

Instance

Figure 1.2: MOF Levels

e M3 is the meta-meta-model layer and defines models (metamodels) in the layer below it,
the M2 layer. For example UML [70] node and arc diagrams that provide meta language
to define UML modelling language [70].

e M2 is the metamodel layer and is a language that describes the models in the M1 layer.
For example, UML [70] elements, namely, Class, Association, and Attribute are defined at
M2, as illustrated in a snapshot of the UML [70] metamodel (Figure 1.3).

source 1 0..1 super

1
Association Class attributes Attribute
>
1 *
1
target 1
Classifier
-name : String

Figure 1.3: An example of M2 level models (metamodels)

CHAPTER 1. INTRODUCTION 1.4. MODEL-DRIVEN ENGINEERING (MDE)

e M1 is the model layer. This is where instances of UML [70] diagrams are categorised and
is a level where user designed elements are defined. It contains the application model, such
as the classes of an object-oriented system, or the table definitions of a relational database.
Figure 1.4 illustrates an example of models at M1 level.

:Association
source name= ‘lives” targ et
:Class :Class
name= “Person” name= “Address”
1 1
:Attribute :Attribute :Attribute :Attribute :Attribute :Attribute
name= “id” name= “foreName” name= “surName” name= “postCode” name= “uniNo” name= “Street”

Figure 1.4: An example of M1 model

e MO is the runtime layer that contains data about the objects that have been created from
the definitions in the model to represent an instance of the system at run time. Figure
1.5 shows an example of M0 models of the relationship, called lives, between Person and
Address classes.

‘Person -Address

-id : Integer 1 lives 1
-foreName : String
-surName : String

-postCode : String
-Unitld : Integer
-street : String

Figure 1.5: An Example of models at M0 level

By using models and metamodels, the automation can be fulfilled via the utilisation of model
transformation approaches or tools. In MDE for example, a series of model transformations,
that are defined by rules, is applied to an abstract model conforming to a metamodel to form
a more concrete target model conforming to the same or different metamodel. The model
transformations can be categorised into two types: horizontal and vertical transformations. A
horizontal one resides at the same abstraction level in which it might present different views of
the system or performs a refactoring process [62]. It might be a model in-place optimisation or
Refactoring as in Figure 1.6 (A, E). On the other hand, a vertical transformation, Figure 1.6
(B, C, D) not only presents a distinct view of the system, but also it moves models between
different abstraction levels [62]. It might be a refinement or abstraction (Figure 1.6 (C)), code
generation or visualisation (Figure 1.6 (B), and (D)) respectively.

The model transformations, shown in Figure 1.6, can also be classified, based on the direc-
tion, into two types, namely, Unidirectional, and Bidirectional transformation. Forward, and
Reverse Engineering, Figure 1.6 (B) and (D) respectively, are examples of the Unidirectional
transformations. Whereas Figure 1.6 (C) illustrates a Bidirectional transformation.

CHAPTER 1. INTRODUCTION 1.5. MOTIVATION

| Model | | Model | | Model |
| Model |%| Model
L Model
| Code | | Model | | Code |
(A) (B) ©) (D) (E)

Figure 1.6: Types of model transformations

1.5 Motivation

When developing an information system to satisfy a business need, the expectation is that
such a system will accurately satisfy its well-specified requirements. However, having vague
or misinterpreted requirements causes errors and extra costs. Therefore, domain experts, who
clearly understand the business logic and goals, and are aware of what exactly they need inside
an organisation without professional software developing skills, should play key roles in the
development lifecycle using high level tools. There are many approaches that aim to tackle these
issues and reduce the gap between initial requirements and implementation and accelerating the
development process, such as Model-Driven Engineering (MDE), Domain-Specific Languages
(DSL) and End-user Development (EUD).

Although the Unified Modelling Language, UML [70], is commonly used to express the
structure and behaviour of a system within MDE approaches, it suffers from semantic ambiguity
and complexity issues. While it is possible to create designs in UML 2.x, from which complete
code can be generated, this can only be done at the expense of supplying complete low-level
detail in the models; that is, UML cannot at the same time be both abstract and sufficient for
code generation. These fully-detailed UML models must necessarily contain far more detailed
technical information than a typical end-user would be expected to understand; indeed if they
have to create such models, there is a risk that these will be inconsistent, incomplete or simply
difficult to understand.

To sum up, we find that current MDE tools require a degree of technical skills when dealing
with complex models that are syntactically and semantically unclear. This prevents end-users
from expressing directly their functional requirements. Researchers focus on developing appro-
priate modelling languages and DSLs to accelerate and enhance the development process led by
skilful developers. As we will see in the literature review (Chapter 2), there is less attention
on the role of business end-users during the MDE development lifecycle, than we would hope
to see.. Even though some MDE approaches allow the end-user, at some point of development,
to work side by side with developers just for customising system artefacts, it is worth exploring
and improving the role of business users by allowing them to lead the development process using
their conceptual knowledge of their business.

CHAPTER 1. INTRODUCTION 1.6. RESEARCH PROBLEMS

1.6 Research Problems

In MDE, a model has to be designed in such away that is able to express all critical aspects of
the system. This requires skilful developers to construct these artefacts. This need for technical
skills prevents the MDE approaches from being suitable for end-users [91]. As in the reviewed
approaches (Chapter 2), end-users require a degree of technical knowledge in order to be qualified
to model their system at a higher level of specification. For example, in MDA [89], end-users
might be overwhelmed by the need to learn various OMG [86] standards, such as UML [70],
OCL [85], and QVT [88], to be able to construct a rich Platform-Independent-Model (PIM)
model that consists of adequate details for enabling a full code generation.

Adopting a DSM approach might solve this issue partially. Although the DSM approach
succeeds in raising the level of abstraction, focusing on the problem domain instead of the
implementation details, end-users still need to learn a new limited language for a particular
domain, even if they were familiar with its concepts. For instance, end-users in the WebML
[124] approach should specify all composition and navigation features of their web application
using a number of design languages. The modelling process starts with constructing the data
model and ends up with designing the hypertext and presentation view. According to that,
end-users must act as a web designer to design each part of the system. From that, it can be
argued that these approaches are appropriate for designers or engineers rather than business
end-users. The highest level of abstraction requires, to some extent, technical skills to express
constraints and behaviours.

The premise for this thesis is that UML [70] is too unwieldy to serve as the basis for
model-driven engineering. The models in UML [70] are too complex and eclectic to be given
a single, clear interpretation, while paradoxically not covering all of the views that are needed
to completely specify a software system. We propose some ideas for a simpler notation, with a
cleaner semantics, in which the iconography is more consistent. Individual models are smaller
and more restricted, but there are more kinds of model to cover the different interlinking views
of a system. As a result, it is possible to specify partial and total transformations between
different kinds of model. The result is known as uML, or the Micro-Modelling Language.

uML aims at raising the level of abstraction to suit business end-users, enabling them
to construct their system easily. Furthermore, it reduces the ambiguity of requirements and
troubles that occur during client-designer communication.

1.7 Contribution of the Research

The research contribution here aims at raising the level of abstraction to suit business users,
enabling them to construct their system easily by themselves, using less technical knowledge
in a more efficient way than existing approaches. It can be said, this tackles some software
engineering issues in requirement elicitations to accelerate the development process and meet
end-user requirements. For instance, allowing end-users to act as system designers to express,
model, and customise their functional requirements might reduce the ambiguity of requirements
and troubles that occur during client-designer communication. The investigation aims at explor-
ing to what extent the captured functional requirements, supplied by end-users, can generate
a complete information system that meets their need. This raises a number of initial research
questions as follows:

CHAPTER 1. INTRODUCTION 1.8. OBJECTIVE OF THE RESEARCH

e What is the required interaction mechanism between the end-user and the transformation
approach to capture their desired system specifications?

e What kind of abstract system views do we need to capture in order to have comprehensive
knowledge and behaviour of a system?

e What transformation rules are required to fold and optimise high-level views and intro-
duce extra detailed design information of a system?

e What transformation rules are required to refine high-level models and introduce richer
design information to a system?

e At which level of development is end-user engagement required to supply new knowledge
in order to be considered by model translators at the next translation step?

e To what extent are end-users able to generate a complete system for their demand?

e With respect to code generation, to what extent are we able to construct and link the
information system layers from a generic and less technical specifications?

1.8 Objective of the Research

In technical terms, we are aiming to introduce a Model-Driven Engineering framework that
supports various model transformation mechanisms to generate information systems (ISs) with
a backend relational databases. Although, there are several MDE/MDA and DSL approaches,
our work, to some extent, is distinct in its modelling and transformation approach, in which:

e Our transformations implement folding strategies between different views of ISs rather
than translating each high-level view into a target code to represent a part of the system
(user interfaces, or business classes). This means, new concepts might appear in models
during the transformation to be used at the code generation phase.

e End-users are able to customise, modify and then generate their updated systems from
intermediate level, rather than executing the whole transformation from the beginning
(highest level), as it occurs in forward engineering.

Besides this, we are following such a liberal modelling strategy of the construction of high-
level models using simple Java approach for constructing models and rules, which is more ac-
cessible than having to learn transformation languages such as ATL [33], Kermeta [52] or other
OMG standards (OCL [85] and QVT [88]). Models in the proposed approach are expressed using
simpler and more constrained models associated with underlying XML [122] representation in
place of rich and unconstrained models in traditional UML [70]. The intermediate models and
a final system are derived by model transformations supplied with end-user customisations or
some decisions.

CHAPTER 1. INTRODUCTION 1.9. ORGANISATION OF THE THESIS

1.9 Organisation of the Thesis

The rest of this thesis is organised as follows:

Chapter 2 - Literature Review discusses relevant literature in the field of Model-Driven En-
gineering (MDE) and End-User Development (EUD). Different paradigms of model-transformation
are presented and exemplified using commonly used model-transformation languages. Further-
more, several development approaches of information systems are explored with respect to a
metamodel that are used, system’s veiws that are considered, development stages, and the suit-
ability to end-users.

Chapter 3 - Framework Overview and Analysis introduces a general overview of the
proposed MDE method (BUILD) for developing information systems, including its four develop-
ment phases. In addition to this, a lightweight modelling language (#ML) and the foundation of
the concepts of its metamodel are presented formally using First-Order Predicate Logic (FOPL).
This chapter is considered a key chapter of the thesis.

Chapter 4 - ML Concepts and Notations in the Requirement Sketching Phase
describes, in detail, the specification of Micro Modelling Language (uML) models appearing in
the Requirement Sketching Phase. For each model, the definition of its syntax and semantics is
provided graphically, and formally using FOPL.

Chapter 5 - ML Concepts and Notations in the Analysis Phase presents, in depth,
the specification of (uML) models appearing in the Analysis Phase. For each model, concept
specification and notation is discussed and formalised using FOPL.

Chapter 6 - uML Concepts and Notations in the Design Phase defines, in detail,
the syntax and semantics of Micro Modelling Language (uML) artefacts appearing in the De-
sign Phase. For each model, concept and notation is discussed and defined formally using FOPL.

Chapter 7 - The Architecture of Model Transformation Approach discusses the over-
all structure and mechanism of model transformation approach. The design of the top level
framework and the architecture of the concrete model transformation frameworks, via the var-
ious development stages of BUILD, are discussed with in detail. Moreover, the architecture of
the Code Generation Framework is discussed, including the internal structure of the two domain-
specific generators, namely, Java Swing and MySQL code generators.

Chapter 8 - The Rules of Model Transformation explains and discusses, in depth,
mapping rules that are used to derived each element in the intermediate and design models. For
each translation step, First-Order Predicate Logic statements are utilised to express formally
every rule in that step.

CHAPTER 1. INTRODUCTION 1.9. ORGANISATION OF THE THESIS

Chapter 9 - Case Studies illustrates the adoption of the designed framework (BUILD) via
its associated uML models to develop a real-world information system using the University Ad-
ministration System case study. The chapter includes three main running experiments with a
demonstration of their generated intermediate models and final executable code.

Chapter 10 - Evaluation and Testing presents criteria to evaluate the method. Com-
pleteness and correctness of results and transformations, as well as the simplicity and the ex-
pressiveness of uML are checked, traced and inspected using the final output produced from
both JDBC Java Swing Applications and MySQL databases generators. Limitations of the pro-
posed framework are also highlighted.

Chapter 11 - Conclusion and Future Work concludes the overall work presented in the
thesis, including a summary of findings, contributions with respect to four main dimensions,
namely, modelling language, MDE development approach, model transformation strategy, busi-
ness users participation in the development process. Moreover, possible avenues for future work
are highlighted briefly.

10

Literature Review

“The difficulty of literature is not to write, but to write what you mean”

Robert Louis Stevenson

2.1 Context

This chapter reviews the literature in the field of Model-Driven Information Systems Engineering
and highlights some issues that need to be considered in order to enhance end-user model driven
information systems engineering.

The chapter starts first by presenting a brief overview of some of the related model-based
methodologies that are used to raise the level of abstraction in software development compared
with writing code. Then a more detailed overview of model-transformation paradigms is in-
troduced, including simple examples. This part of the chapter focuses on how each language
is able to express, manage the order of execution, design and compose, and reuse, rules of
transformation.

The third part of the literature survey discusses some of the software engineering approaches,
such as MDE, OOD, and Functional approaches for web applications, enterprise and software
systems development. It highlights the features, system views (aspects), semantics and notation
of their adopted modelling language (UML Profile or DSL). Furthermore, the last part of the
literature highlights end-user rules in some of current MDE approaches that allow business user
participations.

2.2 Overview of Related Methodologies

This section provide a general review of the related Model-based development approach, includ-
ing the type of modelling language, system artefacts (views), trasformation strategies, adopting
technologies and related tools.

11

CHAPTER 2. LITERATURE REVIEW 2.2. OVERVIEW OF RELATED METHODOLOGIES

2.2.1 Model Driven Architecture (MDA)

The MDA standard specification explicitly aims to integrate many Object Management Group
(OMG) standards, UML [70], Object Constraint Language (OCL) [85], Meta-Object Facility
(MOF) [87], and Query/View/ Transformation (QVT) [88] to produce a coherent MDE ap-
proach for managing models, and provide executable systems that are automatically-generated
from specifications [93]. According to [62], MDA has three types of models: Computational-
Independent Model (CIM), Platform-Independent Model (PIM), and Platform-Specific Model
(PSM) [89].

The CIM model acts as use cases and feature-oriented diagrams to represent the business
requirements and features [40]. It also describes the system domain and requirements, from a
high perspective, without including any computational implementation. Moreover, a Platform-
Independent Model (PIM) can be defined as a model of a system, that is completely independent
of the specific technological implementation. The third model in MDA [89], the Platform-Specific
model (PSM), is a model of a system that holds technical implementation detail relating to a
specific platform or environment [89].

The PIM model is always considered a source model of the transformation program within
within the MDA approach [89] approach to derive PSMs [6]. On the other hand, the PSM
model, the output of the transformation phase, is considered the lowest-level model in MDA
[89], which contains ideal and adequate information about a targeted platform used [15].

2.2.2 Model-integrated Computing (MIC)

Model Integrated Computing (MIC) [54] is an example of the Model Integrated Development
(MID) approach that has been developed over the past two decades as a software development
methodology for building embedded software systems. It uses models as primary entities in the
development lifecycle to synthesize, analyze, integrate, test, and operate real-time systems [61].
MIC [54] realises MDE using a different strategy than MDA [89], with fairly similar concepts.

MIC [54] emphasises the employment of Domain-Specific modelling techniques (DSM) using
well-tailored Domain-Specific modelling Languages (DSMLs) and multiple views of the system
to model comprehensively embedded system domains [61] rather than concentrating on the usage
of UML [70] only for modelling tasks as in MDA [89]. Models in MIC [54] consist of logical and
functional requirements of a system as well as the physical characteristic of its hardware such as
power, time, fault, and size. These physical features are included as physical properties within
the platform models and are mapped to the requirements of the application models [111].

The MIC framework [54] consists of a built-in metamodelling mechanism to support the
creation of DSMLs, and a meta-generation facility to create DSM tools. Instance models, con-
structed using these tools, can be translated into other presentations using meta-generation
features [61]. The graph-based model transformation tool, GReAT [53], is considered an exam-
ple of existing tools that support the MIC [54] software development.

12

CHAPTER 2. LITERATURE REVIEW 2.2. OVERVIEW OF RELATED METHODOLOGIES

2.2.3 Aspect-oriented Software Development (AOSD)

AOSD [39] is another model-based software development methodology that provides more pow-
erful localization and encapsulation mechanisms than traditional component technologies [39,
18, 24, 11]. It aims to describe a system using multiple views, such as a data view, a security
view, and a business process view, in which the design concerns are separated as different as-
pects. It emphasises providing a clear separation of crosscutting concerns at the models level.
These concerns, together with a primary (base) model, are composed to produce an integrated
view of the logical architecture of a particular system in technology-independent terms.

The model transformation process then takes the responsibility for folding these associated
aspects together to form the target system. Using AOSD [39] with MDE can contribute in
maintaining this separation during the vertical transformation from a high level specification
model into low level implementation ones via the designing of an appropriate DSL to demonstrate
the localisation ability of AOSD ([7].

The Theme [48] approach, for example, is an AOSD [39] method that covers various soft-
ware development phases, including requirements, analysis, design and implementation. This
approach uses a UML extension, called Theme/UML [11] for designing of mobile, context-aware
applications, which supports, via an implemented toolset, the automatic generation of PSMs
and executable code from a number of generic PIMs (instead of one large PIM) [11, 18].

2.2.4 Executable UML (xUML)

Constructing a complete PIM model, which is totally separated from any implementation details,
and then deriving one or more PSMs from it via a series of transformations until generating the
final code, are considered common steps in various MDA approaches [89, 24, 54]. Stephen Mellor
and Marc Balcer introduced an approach called Executable UML (xUML) [2], implemented as
an object-oriented analysis (OOA) tool, that jumps from PIM level to a direct code without a
model-to-model transformation step (PIM-to-PSM). They consider the executable code a PSM
model that conforms to a particular language definition (grammar). The xUML [2] approach
promises to express a system in a platform-independent way using rich UML [70] diagrams to
represent its structural and behavioural views. As a starting point of model transformation,
UML Class and State Machine Diagrams are adopted to model the structure and behaviour
parts of the system respectively.

The detailed procedure, including the execution algorithm and constraints, for each state
in the behaviour model are expressed formally using an Action Specification Language (ASL)
[1] to express the detailed control flows of a system. This enables and supports the direct
transformation from this abstracted level into the target code using a model compiler, unlike
other MDA approaches that tend to derive PSMs first, as an entry point for code generation.

The ASL [1] is expressed in a higher level of abstraction than General-Purpose Languages
(GPLs), which support the mapping between ASL [1] and various programming languages, such
as C++, and Java. However, it is a designer responsibility to write ASL code that is syntactically
and semantically correct in order to generate the correct code at the end. Therefore, writing
ASL [1] code at the modelling level requires a degree of knowledge about its correct syntax and
semantics. From this, it can be argued that raising the level of abstraction at ASL [1] to express
the detailed behaviour of a system is not adequate for end-users who do not have this technical
knowledge.

13

CHAPTER 2. LITERATURE REVIEW 2.2. OVERVIEW OF RELATED METHODOLOGIES

2.2.5 Software Factories

Software Factories [47] is a software development methodology introduced by Microsoft, and it is
motivated by two existing software development paradigms, namely, Model-Driven Development
(MDD) and Component-Based Development (CBD). According to [47], Software Factories is a
product line that configures extensible development tools such as the Microsoft Visual Studio
Team System (VSTS) with packaged content and guidance, designed for building particular
types of applications.

Assembling components is the general strategy of this methodology, in which system func-
tionalities are distributed across these components or assets to form the product family. The
Integrated Development Environment (IDE) is used then to collect product family members into
a Software Factory template and deliver it as a plug-in to the IDE.

Abstraction, as a core dimension in Software Factory innovation, aims to reduce complexity,
hide implementations, and specify product features. Its purpose is overlapping with the purpose
of raising the level of abstraction in MDE. The MDE approaches have a number of platform-
specific model compilers/generators to generate implementation for target platforms from a
single specification model. Therefore MDE and DSL play a role in Software Factories such as
maintaining the synchronisation between components and constructing the system from high
level specifications [47].

2.2.6 Generative Software Development (GSD)

Generative Software Development (GSD) is a software development methodology that aims to
achieve an automatic creation of system-family members. The system can be generated from its
high level generic specifications. The essence of this approach is based on the usage of reusable
assets such as models, and components for building systems that are developed using appropriate
Domain-Specific Languages. According to several resources, GSD shares some principles of the
Component-based, the Software Factory [47], and the MIC [54] approaches, in which all of them
seek an ideal integration of associated members to form the final system [61, 24, 47].

Besides this, GSD is considered one of the related approaches to MDE and MDA [89] due to
their trend to capture system specifications and to represent them using DSLs, or UML profiles
[70]. The mapping from a PIM to the PSMs in MDA matches the mapping from a Problem
Space to a Solution Space in GSD. Therefore, the technologies and techniques used to construct
the problem space model might contribute to the process of creating the PIM in MDA [24].

2.2.7 Summary

e It is clear that MDA [89] and Software Factories [47] are distinct in their delivery. Software
Factories delivers plug-ins that are embedded into the used IDE as an extension forming
a new product, whereas MDE and MDA [89] aim to generate a complete software system,
that can run in the target environment.

e MIC and Software Factories are somewhat related to the Component-Based Development
(CBD), for example, a product of Software Factories is based on assembling the product
family members or assets as plug-in components to form a target system [47]. MIC [54]

14

CHAPTER 2. LITERATURE REVIEW 2.3. OVERVIEW OF MODEL TRANSFORMATIONS

develops the run-time components and maps them to hardware resources to form the
embedded system [61].

e Aspect-oriented Software Development (AOSD) and Model-Integrated Computing (MIC)
[54] have a strong similarity in describing a system using multiple views in which they
separate the design concerns in different aspects; the process of folding them together is
considered a part of the model transformation process.

2.3 Overview of Model Transformations

Model transformation plays a significant role for supporting and achieving the automation of
various Model-Driven Engineering (MDE) tasks such as refining, normalising and refactoring
models, synchronizing and merging and weaving [15, 25, 81]. Model transformation is defined as
a process of converting one model into another form using transformation rules acting on models
at different levels of abstraction [79]. It consists of one or more defined rules for expressing the
mapping between the source and target model. Tratt in [115] also defined model transformation
as a program or compiler that converts one model into another. The following figure (2.1)
demonstrates a general overview of the main concepts of model transformation, by showing the
simplest scenario of mapping between an input (source) model and an output (target) model.

Source Metamodel |Target Metamodel |
Transformation
Model (Definition)

Conform to Conform to

Execute

Transformation

. Target Model
Engine

Source Model

Read Write

Figure 2.1: Concepts of Model Transformation

Transformation in general can be divided into three types, endogenous, exogenous, and in-
place, based on the languages of the source and target models. On the one hand, the endogenous
transformation is a transformation between models expressed in the same modelling language.
Model refactoring and normalising are regarded as obvious examples of this type of transforma-
tion. On the other hand, the Fzogenous transformation occurs between different languages as
in code generation (from a model to a target code), and model translation (translate a model
into an equivalent model) [79]. When having only one model involved in the transformation,
it means that all modifications occur on this model, called in-place model transformation or
modification [81].

Based on the definitions above, model transformations can be divided into two main cat-
egories: model-to-code and model-to-model transformation. The model-to-code mapping (code
generation) is considered a special case of model-to-model transformation in which a detailed
model that conforms to a metamodel is translated into a target programming language that
defined using language grammar [81]. It is considered a final transformation stage in all MDE
approaches for obtaining a complete executable code. However, model-to-model transformation
is known as layered transformation steps for constructing models in the lowest level of ab-
straction. In Model-Driven Architecture (MDA) [89] for instance, the process of obtaining the

15

CHAPTER 2. LITERATURE REVIEW 2.3. OVERVIEW OF MODEL TRANSFORMATIONS

Platform-Specific Model (PSM) model from one or more Platform-Independent Model (PIM)
models reflects the model-to-model transformation stage.

2.3.1 Model transformation Paradigms

Model transformations are classified into various paradigms based on the chosen presentation
style of the concrete syntax of the transformation rules, which are the atomic units of the trans-
formations considered in different approaches. The following is a brief survey of the existing
model transformation classifications. The taxonomies proposed in [25, 81] and a survey con-
ducted by [15] discusses the transformation mechanisms offered in a number of transformation
paradigms and tools.

2.3.1.1 Direct Manipulation

In this approach, the rules of transformation are implemented directly using one of the well-
known General-Purpose Programming Language (GPLs), e.g. Java. This approach is developed
as an Object-Oriented framework for facilitating model management tasks such as organising,
scheduling, and controlling model transformations. The user is responsible for implementing the
rules of transformation from scratch with little support from the tool [81]. Appropriate reading
and writing, and possibly traversing, mechanisms are used to visit and read elements in the
source model, apply transformation rules, and then attach translated elements into the output
models [15]. Here we review two model transformation frameworks: SiTra [9] and JaMDA [105].

The Simple Model Transformations, SiTra [9], can be considered one example of the direct-
manipulation approach. It is regarded as a minimal Java-based model transformation framework
that consists of a simple Java library for supporting the implementation of algorithms that
executes a transformation based on rules. SiTra [9] is not introduced as an alternative to other
model transformation paradigms; it only aims to introduce the concepts of transformation rules
for experienced programmers without the need to learn any transformation language. It is not
designed as a new transformation specification or full transformation framework [5].

SiTra [9] presents transformation rules by considering two interfaces (Rule and Transformer)
and a class for implementing a transformation algorithm. In this regard, they provide a standard
way of representing rules and transformations using pure Java code (classes) to mimic the
behaviour of rule-based transformation system. The Transformer interface is implemented by
transformation algorithm class [5], which is based on pattern-matching rules that implements
the Rule interface.

The Rule interface is implemented using Java in which a transformation is broken up into a
number of rules. This interface includes different methods for checking whether or not the rule
is applicable to an input element from the source model, and constructing an output element in
the target model. Moreover, the implementation consists of four main methods (two methods
for invoking rules, and two methods for mapping between the objects in the source and target
models). It takes a transformation rule and an object expected to be transformed as parameters
and executes the algorithm explicitly [5]. Listing 2.1 demonstrates the definition of a rule that
maps a class to a relational table [9].

16

CHAPTER 2. LITERATURE REVIEW 2.3. OVERVIEW OF MODEL TRANSFORMATIONS

Listing 2.1: An example of a transformation class written in Java

1| class Class2Table {

2 Table build(Class cls) {

3 Table tbl = new Table(cls.getName());
4 for (Attribute att: cls.getAttribute()) {
5 tbl.addColumn (

6 new Column(att.getName (), att.getType ()
7 .getName ())

8)i

9 }

10 return tbl;

11 }

12 }

As SiTra [9] is introduced as a framework to support the implementation of simple model trans-
formations, its limitations appear when dealing with complex transformations. For instance, in
the case of having multiple rules map to the same target object, SiTra [9] has no way to deter-
mine which rule is responsible for target object construction and which rule retrieves the object
from the target model. Thus, manual contributions, by the designer, are required to decide the
creation rule [5].

The second example reviewed here is the Java Model-Driven Architecture, JaMDA [105]. It
is another object-oriented framework for generating Java code from UML diagrams [70] of core
business classes using their underlying representations (XMI standards). According to [105], the
developer usually writes a business logic code in the target programming language, which can
be merged into the generated system. It is expected that the developers manually write about
20% of the total code.

JaMDA [105] is noted as a model compiler that follows the direct-manipulation technique of
model transformations that consists of a library of independent transformers. Each transformer
is designed to handle a special type of transformation [81, 105]. Thus a user can implement
horizontal transformations that can optimise a model or vertical transformations that can refine
a model towards code. Jamda implements transformers and generators using a visitor-based
approach where the input model is traversed and each element has the appropriate transformer
to apply the mapping rules [105].

Jamda can be said to be platform-independent, as it is written in Java and produces the
source code in Java. However, it does not output any other executable programming languages.
For instance, it is used for generating N-tier web applications based on Enterprise Java Beans
technology (EJB). Complete UML models [70] that represent the whole application are used to
generate each tier. Each tier has a collection of generated java classes that have been derived
from the initial UML [70] input models and classes of the previous tier [105].

2.3.1.2 Model transformation approaches for Declarative (Relational) rules.

In this approach, the rules of transformation are expressed declaratively using a set of constraints
to specify what the relations between source and target models are [110]. A number of languages
and tools that support this relational approach are used, such as QVT Relations [95], Tefkat
[73], and XMF-Mosaic. Here we review in detail the QVT Relations language [95].

17

CHAPTER 2. LITERATURE REVIEW 2.3. OVERVIEW OF MODEL TRANSFORMATIONS

The QVT Relations language [95] is considered a domain-specific model transformation
language that expresses the mapping logic between two models as a set of relations. The re-
lationships between source and target elements are encoded as pattern-matching expressions
including predicates (preconditions) that must be satisfied by the input elements [95, 44]. The
precondition normally consists of two expressions: an enabling (when clause) that returns a
Boolean value, and an enforced (where clause) expression that causes side effects on the target
model [95]. Unlike other declarative graph-based model transformation frameworks, namely,
GReAT [53], VIATRA2 [32], and AGG [112], that provides unidirectional transformations only,
the QVT Relations supports both unidirectional and bidirectional transformations [95]. Listing
2.2 illustrates snapshots of a transformation program writing in Tefkat [73], a model transfor-
mation language based on F-logic, to express the relation between persistent UML [70] classes
and RDBMS tables.

Listing 2.2: An example of the declarative representation of rules using QVT-Relations

1| transformation umlRdbms (uml : SimpleUML, rdbms:
2 SimpleRDBMS) {
3 relation ClassToTable {

4 enforce domain uml c:Class {

5 namespace = p:Package {};
6 kind = ’Persistent’;

7 name = cnj;

8 }i

9 enforce domain rdbms t:Table {
10 schema = s:Schema {};

11 name = cn;

12 bi

13 when { PackageToSchema (p, s); }

14 where { AttributeToColumn (c, t); }
15 b}

Listing 2.3 demonstrates a transformation rule for translating OO Class to a relational Table
using QVT-Relations [95].

Listing 2.3: An example of the declarative representation of rules using Tefkat

RULE ClassAndTable(C, T)
FORALL Class C {
is_persistent: true;
name: N;

}

MAKE Table T {

Name: N;

}

LINKING ClsToTbl WITH
class = C, table = T;

O © 00O U WN =

—_

In the case of having more than one transformation rule to derive a particular element in the tar-
get model, QVT-Relations takes into account the ability to check whether or not a target object
is already created by one rule in the target model. As a result the second rule only updates the
created element rather than constructing it twice. Unlike the direct-manipulation framework
(SiTra [9]), QVT Relations [95] may offer a strategy to avoid any duplicate creation, or deletion
task of target elements and replaces it by an appropriate update task. This is achieved by intro-
ducing the notion of identity to target elements [95, 44]. According to the UML-to-RDBMS case

18

CHAPTER 2. LITERATURE REVIEW 2.3. OVERVIEW OF MODEL TRANSFORMATIONS

study presented in [95], QVT-Relations adopts the concept of a key from relational databases
[95] to handle this issue. This new concept is described as a set of properties, or fields, that
uniquely identify an object instance of the class in a model.

Model transformation for Graph-based rules

As a formal approach of the declarative model transformation strategy, Graph Transforma-
tion has been widely utilised for expressing model transformations. It provides a theoretical
foundation and a formal flavour to transformation frameworks, so, in general usage, source and
target models can be expressed visually and textually using the notion of a graph (graph-like
structure). The graph consists of a set of vertices V = vl,v2,,v, and edges E = el,e2,,e, in
which each edge e in E has a source(s) and target(t), vertex s(e) and t(e) in V, respectively.
Several types of graphs, such as typed graphs and instance graphs, are specially designed to
represent the abstract syntax of diagrammatic class, and the instance models respectively, e.g.
a metamodel of the UML Class diagram and an Object diagram [25, 12, 114]. Figure 2.2 il-
lustrates and example of the representation of a system using the visual notation of a graph
[110].

Al: Account has B:Bill
balance=10
pays
A2:Account to C:.Client
balance=2 total=6

Figure 2.2: A graph representation of an Object Diagram

A graph transformation rule (GT') between models is formally considered a function f :
L — R that maps elements in a source graph SG to elements in the target one T'G. The
transformation typically consists of a pair of graph patterns [25], left-hand side and right-hand
side graph GT = (L, R) in which the union L U R is defined. For instance, edges that appear
in both L and R are connected to the same vertices in both graphs. The left-hand side pattern
is considered a sub-graph of the source model that describes the precondition of a particular
rule, whereas the right-hand side pattern is regarded as a sub-graph of the target model that
describes the post-condition of the rule [15, 12].

The above technique is successful in one-to-one and many-to-one mappings between source
and target graphs. However, in the case of many-to-many, the transformation (function) has
to be reconsidered as a relation (R) in order to allow this kind of mappings. The Triple Graph
Grammars (TGG) [63] technique introduces a solution of this issue to represent the concrete
syntax of transformation rules as a graph-like structure. Each mapping rule consists of two
graphs (left and right), as well as a Correspondence Graph TGG = (L, C, R) to enable the double
push out strategy between the three graphs. This strategy has been adopted in many graph-
based model transformation tools such as AGG [112]. For example, in the basic mapping between
Attributes and Fields in the Class-to-RDBMS transformation, the many-to-many mapping can
be found in translating Attributes to either columns or key columns. Figure 2.3(A) shows
how many-to-many mapping is splitting up into two many-to-ones using correspondence graphs
(Attr2Fld, and Attr2KFld), whereas this is not obvious in the (B) side of Figure 2.3.

19

CHAPTER 2. LITERATURE REVIEW 2.3. OVERVIEW OF MODEL TRANSFORMATIONS

* *

. Attr2Fld Field

SG element CG element 1 16 element SG element | « i TG element

Attribute Attribute
* TG element
CG element TG element *

g — : —————>{ KeyFien |
Attr2KFld Key Field

1 (b) Double Graph
(a) Triple Graph Grammar

Figure 2.3: Example to M-to-M mapping using TGG

There are a number of frameworks and tools for graph-based model transformation, such
as Fujaba [114], VIATRA2 [32], AGG [112] and GReAT [53]. Fujaba [114] is considered one of
the most popular general-purpose graph transformation tools [98] for generating Java code from
the UML specification [70] and for round-trip engineering. It has the ability to transform many
source models to many target models. It provides an endogenous transformation only [61, 80,
121] in which the source and the target models conform to the same metamodel. Fujaba [114]
uses the graph technology to represent the underlying representation of UML [70] diagrams with
formal foundations. The transformation rules that are declared using the TGG [63] technique
are implemented as method bodies with a control structure [114].

Fujaba [114] is able to generate code from the UML Class Diagram, a collection of Story
Diagrams, and rules of transformation expressed using TGG [63]. The Story Diagrams are used
to model the system behaviour. A story is used to specify the body of methods related to a
class. Whereas, the UML Class Diagrams are used to model the structure part of the system.
Consequently, a code generator can generate Java code for these story and class diagrams [13].

2.3.1.3 Model transformation approaches for Imperative (Operational) rules
KerMeta

KerMeta [52] is considered an Object-Oriented meta language that is used to specify the struc-
ture and concrete syntax of models with the ability to define their behaviour using operational
semantics. It is fully integrated into Eclipse, in which it offers an EMF-based metamodel, and
is used as a MDA [89] model transformation language or tool to specify the mappings between
source and target models [52, 57]. It is an extension to Essential MOF (EMOF) with an ac-
tion language. The language is designed based on two existing languages, namely Xion, and
MTL. Therefore many features of these two languages, such as the action language (Xion), and
multiple inheritance (MTL), can be re-expressed in KerMeta [84].

This action language is an imperative OO language used for defining operations and con-
straints [55] in metamodels. It is also used for implementing executable metamodels to provide
all model management tasks [57, 65|, and for performing transformations [15]. KerMeta [52]
supports many OO language features such as static typing, and multiple inheritance, and also
it supports more specific concepts to be suitable for modelling and model transformation tasks.
For example, many OCL [85] operations such as collect, select, and each are available in KerMeta
[52] to apply such a condition and dealing with a certain collection (Listing 2.4).

20

CHAPTER 2. LITERATURE REVIEW 2.3. OVERVIEW OF MODEL TRANSFORMATIONS

Listing 2.4: An example of the representation of the transformation rules using KerMeta

getAllClasses (inputModel)

.select{c| c.is_persistent}

.each{c| var table:Table init Table.new
Table.name:= c.name
Class2Table.storeTrace (c, table)
Result.table.add{table}

N O ULk W N

2.3.1.4 Model transformation approaches for Hybrid rules

AtlanMod Transformation Language (ATL)

ATL [33] is a MOF-based model transformation language that supports both imperative and
declarative representation (hybrid) of mapping models (Figure 2.5). This allows users to express
a complex transformation that is hard represent declaratively using an ATL [33] imperative
structure. Its representation of mapping rules forms a transformation model (program) that
describes how to create the output model of transformation [15]. ATL transformation models
are implemented as ATL Modules that consist of a number of transformation rule definitions
(rules), and some helper methods. Listing 2.5 demonstrates a snapshot of an ATL module for
defining the transformation between OO Classes to Relational Tables.

The ATL [33] approach delivers only part of what MDE promises, in that it supports only
the model-to-model transformation [33]. ATL [33] is not directly based on the mathematical
foundation of graph transformation techniques [59]. ATL [33] has abstract and concrete syntax
that are expressed textually [15, 41], and a particular compiler and virtual machine [110]. It is
essential to make a clear distinction between source and target models, since ATL [33] cannot
use the same model for both. The input model here is considered a read-only model. The
navigation task on the input model is achieved using ATL query units. These queries define the
navigation over one or more source models to produce a value. Conversely, the output model is
not navigated and considered a write-only model [123].

Listing 2.5: An example of the representation of the transformation rules using ATL

1| module Class2Relational;

2| create OUT : Relational from IN : Class;
3

4| rule ClassAttribute2Column {

5 from

6 a : Class!Attribute (

7 a.type.oclIsKindOf (Class!Class) and not
8 a.multivalued)

9 to

10 out : Relational!Column (

11 name <- a.name + ’Id’,

12 type <- thisModule.objectIdType)
13| 1}

21

CHAPTER 2. LITERATURE REVIEW 2.3. OVERVIEW OF MODEL TRANSFORMATIONS

Epsilon Transformation Language (ETL)

Epsilon [34] provides a framework called the Epsilon Model Management Infrastructure that
consists of a family of task-specific modelling languages such as the Epsilon Merging Language
(EML), Epsilon Comparison Language (ECL), and Epsilon Transformation Language (ETL)
[34]. The ETL [66] is another hybrid model-to-model transformation language that is designed in
such a way to be integrated smoothly with other task-specific languages within Epsilon [34, 100].
Unlike ATL [33] that is designed to perform many model management tasks such as model val-
idation and merging, ETL [66] is a DSL for implementing transformations [67].

Listing 2.6: An example of the representation of the transformation rules using ETL

1

2| rule Tree2Node

3 transform t : Tree!Tree

4 to n : Graph!Node {

5

6 n.name = t.label;

7

8 // If t is not the top tree create an edge connecting n
9 // with the Node created from t’s parent
10

11 if (t.parent.isDefined()) {

12 var e : new Graph!Edge;

13 e.source ::= t.parent;

14 e.target = nj;

15 }

16| 1}

Epsilon has an OCL-based core language, Epsilon Object Language (EOL) [64], that is used
in developing the Epsilon family of task-specific modelling languages. The ETL [66] uses the
navigational features and other imperative features of EOL [64], such as accessibility to multiple
models, model modifications, programming constructs (e.g. loops, branches) to express complex
transformations [66]. Similar to ATL [33], transformations in ETL [66] are implemented as a
number of modules, containing a set of rules and operations to support the imperative side of
the rule [66]. Listing 2.6 above illustrates a snapshot of an ETL [66] module for defining the
transformation from a 7ree node to a Graph node.

2.3.1.5 Rule Scheduling Mechanisms

The order of rules execution can be specified using two styles: implicit and explicit forms. In
the implicit style, rules call another rule without referencing explicitly the rule name; that is,
in which the calling mechanism is based on rule dependencies. The transformation engine has a
scheduling algorithm that determines the order. In general, a rule A is executed when another
rule B is waiting for the result produced by the rule A. This mechanism is common in declarative
model transformation languages such as QVT-Relations discussed above [69].

In contrast, the explicit style might use control flow structure within a rule including explicit
rule invocations (internal). It also can be external by using logic to separate transformation rules
without a direct invoking of each other. This style is usually found in imperative and hybrid
model transformation languages such as ATL [69] and ETL [66].

22

CHAPTER 2. LITERATURE REVIEW 2.3. OVERVIEW OF MODEL TRANSFORMATIONS

2.3.1.6 Template-based Approach For Code Generation

According to [15, 25], a template-based approach is widely adopted in the majority of MDA [89]
tools such as AndroMDA [8], OptimalJ [19], and Acceleo [3], for supporting the model-to-text
transformation. A template of a target model that contains a meta-code is accessed, mapped,
and filled from the source model. The structure of the template is closely related to the gener-
ated code [26].

AndroMDA

AndroMDA [8] is an open-source Model-Driven Architecture (MDA) framework. It takes one
or more graphical UML models [70] and produces a target component in one of the J2EE
technologies such as Java, PhP, and EJB. In the MDA [89] process, AndroMDA [8] takes the
Platform-Independent Model (PIM), resulting from the analysis phase, and refines it to con-
struct a Platform-Specific Model (PSM) for a target technology with a template for producing
the final code.

AndroMDA is regarded as a template-based approach for code generation that is able to gen-
erate different code based on the language of the template [8] using language-specific cartridges.
The user can customise these template files to produce a source code in any programming lan-
guage. The metamodel in AndroMDA [8] is based on MOF [87]. The cartridges are designed to
get the information necessary to generate a target code from MOF models inside a MOF repos-
itory. The AndroMDA Cartridges, primary plug-ins in the framework, are designed to perform
this process by parsing the underlying XMI representation of UML diagrams collaborating with
transformation libraries. These cartridges consist of code templates that are written using the
Apache Velocity template engine [8].

Acceleo

Acceleo [3] is a template-based MDA [89] code generator approach for generating code for various
platforms such as Java, C++, C#, PHP, JEE, and Python. It is fully integrated with Eclipse
and the EMF framework (GMP) in which it offers a user-friendly template editor for organising
the template of target code. The framework consists of a number of separate technology-specific
modules for code generation. Each module is created from templates that express the infor-
mation required to generate executable code from a metamodel. Within each template, several
scripts allows the user to customise the generator accurately [3]. The basic idea of this approach
is that the generation program (script) is applied to a source model, which conforms to an EMF
based metamodel, to fill the target template.

The modularity supported in the Acceleo architecture enables adding new generators as
plug-ins without any problem, which accelerates the implementation process in general [3]. It
could be argued that Acceleo can deliver a complete MDA [89] solution or implementation when
it is integrated with other Eclipse-based tools such as ATL that supports model-to-model trans-
formation.

Z00M
Z-based Object-Oriented Modelling notation (ZOOM) is a model-driven engineering framework
that is based on a formal modelling notation. It aims at improving the quality and productivity

of software development processes by handling existing drawbacks, such as incomplete modelling

23

CHAPTER 2. LITERATURE REVIEW 2.3. OVERVIEW OF MODEL TRANSFORMATIONS

notations, and the lack of an effective model transformation mechanism. It is a template-based
model transformation approach that is supported by a CASE tool, called Hierarchical Relational
Metamodel Transformation (HRMT) [56]. Transformation templates (cartridges) are considered
a collection of transformation rules that define the mapping between source and target models.
The framework consists of a set of templates; each one is used for performing a specific trans-
formation task on a target platform [76]. End users are able to add their preference only at user
interface generation [56].

ZOOM has a simplified metamodel called Hierarchical Relational Metamodel (HRM) that
maintains a tree structure and relationships representation between PIM elements. The mod-
elling notation, which is consistent with UML 2 [70], has a textual syntax defined by BNF and a
similar internal representation of models to programming languages, which is an Abstract Syn-
tax Tree (AST). It uses mathematical collections to depict such complicated modelling language
constructs as associations [76].

The functional requirements in the framework derive the structural, behavioural and Ul
models. ZOOM provides a pre-defined event model, which is processed by an event-driven
framework, to bind the structural, behavioural, and Ul models together. The integrated ZOOM
model will be processed by the Knowledge-based Model Compilation Tools resulting in different
implementations of the software system based on the specific platform and knowledge base. To
start the MDE process, the developer needs to build a platform-independent model and other
models are mostly generated using several steps. Firstly, the textual representation of ZOOM
notation is parsed into an abstract syntax tree (AST). Then a post-order traversing mechanism
is used to visit all elements in the AST and applies mapping rules to generate the code [56].

2.3.2 Composition of Model Transformations

Model transformation plays a significant role for supporting and achieving the automation of
various Model-Driven Engineering (MDE) tasks, such as creating, refining and refactoring mod-
els, as well as synchronizing and merging and weaving. As a result of its critical roles within
various MDE tasks that are focused on the mapping, checking and validation of models, the
transformation units are becoming more complex and harder maintain. Therefore, the composi-
tion of model transformations has emerged as an important research topic in its own right, allied
to model transformation in general. Tasks include designing a suitable orchestrating mechanism
for controlling the execution of the decomposed transformations, in order to produce a single
consistent result.

Many composition techniques have appeared to handle this issue. For instance, one tech-
nique is achieved by simply linking several pre-designed model transformations (external) whether
they are expressed using one or different languages and executed by one or several tools. On
the other hand, the other technique is based on decomposing the rules of transformation into
independent units (internal) to collaborate as a big transformation unit to perform a complete
transformation [46]. Here, we discuss some of the limitations that exist in the current model
transformation approaches, particularly, the rule-based and direct manipulation approach, and
review an example of a composition technique in the graph-based and rule-based, model trans-
formation paradigm.

24

CHAPTER 2. LITERATURE REVIEW 2.3. OVERVIEW OF MODEL TRANSFORMATIONS

2.3.2.1 Composition Techniques

Hidaka et al. [50] developed a composition strategy for a graph-based model transformation
approach, inspired by the Unstructured Data Query Language (UnQL), the compositional graph
querying language. UnQL is a powerful query language that is based on a pattern-matching
technique to express queries in a structural recursion style. This style enables the composition
of two or more queries that are designed in a structural recursion way to be expressed as a single
query [17].

Hidaka et al. [50] extended the UnQL by adding three editing structures that support the
direct specification of graph transformation, namely, deleting, extending, and replacing a sub-
graph. At the end, they came up with a graph transformation language UNQL+ that supports
the composition of graph-based model transformation. This homogenous composition approach
is implemented as a framework that supports the development of model transformations in-the-
large. In this instance, a large model transformation can be systematically designed by gluing
simpler model transformation units together via efficient intermediate models, as illustrated in
the Class-to-RBDMS transformation case study [50].

When transforming attributes to columns of a particular table, there is a need to gather
all information from directly and indirectly associated classes that have relationships with that
table. Therefore, designing an intermediate model to associate directly all indirect associated
classes to a particular table as a simple transformation (query) is an example of efficient inter-
mediate models. From that query result, it is possible to generate directly primary /foreign keys
for the specific table.

Wagelaar [123] proposes a technique for rule-based model transformations which he calls
Module Superimposition. It is implemented using the ATL transformation language [33]. Mod-
ule Superimposition is an internal composition style that allows for the constructing of smaller
maintainable and reusable transformation modules, based on transformation rules, to perform
together a mega transformation.

The basic idea of this technique aims at splitting up transformation modules into modules of
manageable size, which each consists of a number of rules that are superimposed on top of each
other and are executed as one rule. It is equivalent to applying a union with override operation
to transformation rules that have the same names in a pair of transformation modules, in which
the original rule is replaced (overridden) by the new one. The rule then will be executed once.
Therefore, the approach is about a rule overriding technique that operates at the ATL helper
methods and helper attributes levels [33]. It can also work in the QVT Relations [95] language
by considering the transformation rules (relations) as the atomic level of modularity [123].

Goknil et al. [46] provide a composition approach based on two levels of granularity us-
ing two transformation languages (ATL [33] and Tefkat [73]). The first level is a traditional
rule-based composition supported by ATL [33], whereas the second one is an operation-based
composition for handling complex structures in the source model, supported by Tefkat [73]. The
external level of composition aims to improve the quality of transformation rules by reducing
the number of rules used in each transformation module. It considers the basic transformation
operations such as Create, Read, Update, and Delete operation as atomic parts of transformation
instead of whole transformation rules.

25

CHAPTER 2. LITERATURE REVIEW 2.3. OVERVIEW OF MODEL TRANSFORMATIONS

The idea behind this approach is to avoid the problem of scattering changes on several
mapping rules when a change has occurred on the source pattern. This problem affects negatively
the consistency and modifiability of transformation rules. Their solution, proposed here, is to
consider the source’s complex structure (pattern) as a distinct construct and then map it into a
single module provided by a language that supports the finer grained decomposition (e.g. Tefkat
[73]); then it will be executed as a single transformation rule. In rule-based model transformation
languages such as ATL, the transformation rule consists of three patterns, namely, source pattern
(SP), target pattern (TP) and action.

TR = SP, TP, Action

The source and target patterns are elements in the input and output models, which might be
simple or complex constructs, whereas the action is an atomic part of the rule, which might
include one or more operations, such as the basic CRUD operations. These operations might be
composed into a single transformation rule, which is not supported in ATL (action part,which
cannot be composed of multiple operations). However, using another model transformation
language such as Tefkat [73] enables having multiple operations to be composed as one action
part in a single rule. The action performs one or more operations, which part have three
patterns, namely, source pattern (SP), target pattern (TP) and operation type (OpTy). The
types of composition operations are specified in the operation type part.

Action = (Opl 4+ Op2 + + Opn)
Operation = SP, TP, OpTy

From that we achieve two compositions at different levels of granularity. The first composition is
between the transformation module (specification) and rules, whereas the second level is between
the action part of the rule and basic operations.

2.3.3 Limitations in the Current Model Transformation Approaches

According to [119], the rule-based model transformation approach suffers from several deficien-
cies that prevent a full implementation of reusable transformation components forming as a
transformation chain. For instance, in the Relational approach, e.g. MTF, where declarative
mapping rules express the relationships between source and target elements, the transformation
can be initiated from any of these rules resulting in (producing) different outputs. Therefore,
there is a need to determine an initial rule and also the direction of transformation (forward, or
backward).

Furthermore, in the hybrid model transformation approach (ATL) where the transforma-
tions might be considered metamodel-independent, there is a need to select concrete metamodels
when executing a transformation. This requires studying the implementations in order to iden-
tify a set of valid metamodels for each mapping rule. From these it can be said that the problem
of having incomplete knowledge of the transformation’s implementation exists in various types
of rule-based approaches.

The direct-manipulation approach also has limitations in developing reusable transforma-
tions; particularly where there is a demand to specify the entry point of the transformation and
to have complete implementation knowledge in order to use the designed transformations. As

26

CHAPTER 2. LITERATURE REVIEW 2.3. OVERVIEW OF MODEL TRANSFORMATIONS

seen in SiTra [9] and ReMoDeL [101], each framework adopts a specific way to use models and
to implement the mapping rules using the general-purpose programming language, Java. There
is no standard technique to develop, construct, manipulate and specify source and target mod-
els. Therefore, extra specifications of a transformation are required in order to design reusable
transformation components.

Unlike the declarative rule-based approach, the entry point (initial rule) of a transformation
and the order of rule execution are imperatively determined in the old version of the ReMoDeL
Database Generator [108] by the transformation engineer during the creation of the transforma-
tion. The framework handles this issue using an execution algorithm implemented imperatively
as a series of method invocations in the top class of the translators/generators hierarchy, and
controlled invocations within other methods in other sub- translators/generators classes. The
translation algorithm is generic for all database normalisation scenarios, in which we follow
logical normalisation steps taken by database designers, whereas it might be varied in gener-
ating constraints based on the target database vendor (e.g. generating triggers instead of field
constraints).

2.3.4 Summary

This part of the survey discussed various model transformation paradigms and languages. In
the direct manipulation approach, two frameworks are considered, namely SiTra [9] and JaMDA
[105]. For both approaches, the use of Java for encoding the transformation rules, as well as the
design of transformers (Java classes) are discussed.

Regarding the rule-based transformation style, the imperative, declarative and hybrid ap-
proaches are demonstrated with some transformation language examples. For each approach,
the policy for rule definition, rule ordering and rule invocation are discussed and supported by
small examples to show the ability of the language for expressing the transformation.

In relation to the above, the work developed in this thesis adopts the hybrid approach for
expressing transformation rules using Java. The related works are reviewed in this part of the
survey. Any rule may be a top-rule; and there is no distinction (as with some other MT ap-
proaches) between top-rules and dependent rules. The following table (2.1) summarises general
model transformation features (reviewed in the literature) that are adopted in the proposed
method in the thesis.

’ Approach ‘ Comments ‘

Modularity A vertical modularisation (composition) strategy is adpoted to minimise
to bridge the semantic gap between high-level requirement models and
low-level design ones, then generating code dirctly from them.

Reusability Each transformation component (agent or rule) is independent. Any
rule might be applied in any order (e.g. top or dependent)

Rule Scheduling | A transformation algorithm is specified by a designer to determine the
order of execution. This is based on dependencies between rules.

MT language & | The proposed method aims at using simple and available technologies,
Technology Java and XML, for expressing features of the hybrid transformation style
and model concepts.

Table 2.1: Features of Model Transformations

27

CHAPTER 2. LITERATURE REVIEW 2.4. SOFTWARE SYSTEM MODELLING TECHNIQUES

2.4 Software System Modelling Techniques

Whereas the above considered approaches used in model transformation, below we consider
general modelling approaches in software engineering. We select those approaches which bear
some affinity with model-driven engineering.

2.4.1 Object-Process Methodology (OPM)

Object-Process Methodology (OPM) [31] is regarded as a holistic approach for system develop-
ment. It is supported by a CASE tool (OPCAT) [90] for enabling the generation of complete
systems from specifications. It integrates the object-oriented and process-oriented paradigms to
introduce a single-view MDE approach. This approach produces a size-wise (fewer lines) code
in contrast to other approaches based on UML models. This is demonstrated in the comparison
between the UML CASE tool Rhapsody [51], invented by ILogiz, and OPCAT [90] tool proposed
in [96].

In a multi-view approach, the generated code from each view is limited and represents a
partial code that needs be filled by further details generated from other views. This might cause
inconsistencies in the code output by different generators, as well as causing incompetence of
generated behaviour. OPM [31] tries to tackle this issue due to the crosscutting representation of
the system specifications using multiple views. This is achieved by providing a complete model
of a system in a single model (view) [96].

The OPM [31] model consists of a set of interconnected OPM [31] concepts or entities, rep-
resented graphically via a workflow-like Object-Process (graph) Diagrams (OPD), and textually
via a dual-purpose and natural-like Object-Process Language (OPL) based on context-free gram-
mar [60]. The metamodel introduces two general concepts (things with states, and links). The
thing concept is to represent an object or a process, and the link is used to express structural or
procedural connections between things to connect objects to processes. Processes are considered
as transformation behaviours for translating objects [60]. Therefore, it can be argued that OPM
[31] has a notation that combines static and dynamic aspects of the system in one view, which
facilitates generating a complete code at the end rather than code skeletons [96].

OPM [31] has its refinement/abstraction mechanisms that enable the representation of a
complete system at different levels of abstraction without losing the overall consistency of its
internal components. These techniques are applied to OPM [31] entities as follows:

e Folding/unfolding mechanism for refining/abstracting the structure hierarchy of OPM [31]
objects.
e In-zooming/out-zooming for hiding/exposing the inner details of OPM processes.
e State expressing/suppressing for hiding/exposing the state of OPM objects.
As the OPM methodology [31] is supported by a CASE tool (OPCAT) [90], the OPM-GCG

is the generator component for generating generic code. It consists of two main parts, namely,
Template for Implementation Programming (OPCAT TIP), and Implementation Generator [96].

The OPCAT TIP enables users to encode transformation rules in a language-specific tem-
plate (Template and Translation DB). The translation is expressed imperatively as an ordered set

28

CHAPTER 2. LITERATURE REVIEW 2.4. SOFTWARE SYSTEM MODELLING TECHNIQUES

of operations that contains conditions and actions (Event-Condition-Action (ECA) paradigms).
The TIP then generates corresponding XML [122] files. These XML [122] documents are used
as inputs to the Implementation Generator [96].

The system uses the underlying representation of the OPM model, which is an OPL-XML
[122] script (automatically generated from the graphical notation OPD), with a template to cre-
ate the actual system, including Ul, code, and database schema. The Implementation Generator
takes a language-specific OPL template and OPL-XML [122] scripts as inputs, and captures the
match between corresponding elements. It executes required operations, and then generates
programming languages encoded into XML [122] format. The next step is parsing these out-
put XML [122] files of the system, which is based on user preferences to select transformation
options: code (e.g. Java), mark-up (e.g. HTML), or comment [96, 31].

2.4.2 Pure Object-Oriented Method

It is a widely-recognised that a multi-view modelling approach is adopted by various development
methodologies and tools, such as the Model-Driven Architecture (MDA) [89]. Generally, in the
UML-based approach, each UML [70] model is used for representing a system from a different
angle; for example, the approach proposed earlier by Chow et al. [20]. is regarded as a two-stage
multi-view MDE approach for generating Java code based on five UML models [70], namely,
Class, Component, Statechart, Sequence, and Activity diagrams. The approach captures the
static structure of a system at the first stage and then adds the behaviour in the second one
[20].

Rhapsody [51] by ILogix is another example that is able to generate partial behaviour of
a system. It uses the UML Class and Statechart [49] with translation rules for generating the
system, the UML Interaction diagrams to define objects and their interconnections, and the
UML Use case and Activity diagrams for analysing and documenting the system [96]. In both
examples, it can be argued that maintaining the consistency between these UML views (models)
is not a trivial task.

ZOOM Approach

ZOOM separates software modelling into three components: the structural, behavioural and
User Interface (UI) models. This separation of concerns allows each aspect of the system to
be specified separately, and makes it possible for us to use an appropriate formal specification
language to specify each of these unique aspects. The Structural model is defined formally, and
visually represented by UML 2 class diagrams. It is completely separated from the other aspects.

Besides this, the Behaviour model is regarded as a communication component that links
the structural model with the UI model. It is formalised using state diagrams. It is represented
visually using a UML 2 Statechart diagram, and textually using a UML 2 Finite State Machine
(FSM) that contains rich syntactical grammar with formal semantics. Therefore, the behaviour
model will consist of a number of FSMs for different user behaviours. The changes (transitions)
from one state to another are based on user inputs and commands.

Z0OOM uses a separate model for representing the UI. As a result, any change of the interface
specification will lead to a change in the Ul models only without any crosscutting effect in other
types of model. The UI model is formally defined using pre-defined XML [122] schemas ZOOM-

UIDL as a textual and concrete syntax.

29

CHAPTER 2. LITERATURE REVIEW 2.4. SOFTWARE SYSTEM MODELLING TECHNIQUES

2.4.3 Integrated Methods

The examples mentioned above are based only on the OO method for modelling system specifica-
tions. Several attempts have been made to integrate the OO method with the Process-Oriented
and Structured (Functional) Methods to enable better and more comprehensive capturing of
the system specifications at the design level. Here, we consider some of them to show how this
integration contributes to the MDE strategy.

FOOM Approach

Functional and Object-Oriented Methodology (FOOM) is an analysis and design methodol-
ogy for developing Information Systems (IS). It combines two well-known software engineering
paradigms, namely, the OO approach and the Functional approach. FOOM aims to cover the
structural and behaviour representations of ISs [60].

FOOM adopts the ADISSA methodology (Architectural Design of Information Systems)
that extends the Structured Analysis Methodology, during the analysis and design stages. ADISSA
is used to extract: (a) menu-tree interface, as an external view of the system to users, and (b)
system basic transactions, as an internal view to represent the user interaction with the system
via different events. In addition to this, (c¢) database schema, and (d) system Input/Outputs
are also obtained from above using the ADISSA method, which is supported by a CASE tool
[60].

The analysis phase of FOOM produces a data model and a functional model. The data
model is noted as an initial class diagram without methods. It represents only real-world data
entities derived from the requirement analysis stage. The detailed methods will be added later in
the design phase. The functional model is considered a hierarchical Object-Oriented Data Flow
Diagram (OO-DFD) that includes initial classes instead of data stores (external entities). It is
used to specify the functional requirements of a system. Like traditional DFD, the OO-DFD
consists of a number of functions (decomposable and elementary), and external entities (e.g.
user, time entities) [60].

The design phase produces a complete class diagram and user interfaces (Uls) based on the
ADISSA methodology. The class diagram contains detailed descriptions of methods, including
input and output screens. This phase is organised in sub-levels, one for extracting system
transactions from the OO-DFD model. Each transaction contains a chain of functions and
external entities to perform a particular process of the system. This will produce the detailed
descriptions of the transaction-methods (high-level descriptions) attached to classes. The process
logic of transaction at this level is expressed textually using standard structured programming
such as pseudo code, or visually using message charts [60].

The next step is constructing a menu-tree interface that is derived from the OO-DFD (the
second level according to ADISSA methodology). A menu item is created for each function
connected to a user entity and attached in a parent menu forming a hierarchal menu tree. A
generic class Menu will be added to the Class diagram, and all extracted menus become objects
of it [60].

Input and output screens are designed in the third step. For each input/output command in
the high-level descriptions of transaction, there is a form and report screen respectively. Generic
form and report classes will be added to the class diagram and all form and report screens
become become instances of these classes. Then behaviour methods are designed in the last

30

CHAPTER 2. LITERATURE REVIEW 2.4. SOFTWARE SYSTEM MODELLING TECHNIQUES

(fourth) step by converting the high-level transaction descriptions into a detailed description of
methods, such as CRUD operations [60].

MOSYS Approach

In addition to this, MOSYS is another integrated approach that is aimed at the construction of
Distributed Real-Time Systems (DRTS). It combines the functional and OO methodology and
uses UML [70] with an extended DFD (E-DFD) in order to enable the automatic identification
of objects and classes from high-level specifications. The components of E-DFD are weighted
processes and weighted attributes. The weights are used to model the time constraints and
complexity of processes [13].

After identifying the entities that interact with the system, a use case model is created to
describe the system functionality. Then activity diagrams or E-DFDs are used to model the
use case functionality. Then the functional model (e.g. E-DFD) is mapped into a graph that
consists of edges and tasks (nodes). Based on clustering criteria, different object identifications
might be obtained [13].

Besides that, [38] a practical technique in integrating notations of UML [70] and the DFD
is proposed that aimed at the development of embedded systems. The combined approach is
introduced as a part of an MDE process in which a system is modelled using different views;
model transformations then force the integration rules between these views. In this approach,
the designed DFDs can be transformed into UML object or class diagrams according to the
transformation algorithm.

The development process consists of a series of mapping between different models (views).
It starts decomposing each use case of an embedded system into three objects: data, control and
interface. Therefore, a transformation step is performed on the use case model to produce an
initial object diagram (IOD) including refactoring processes on it. Then the data flow model is
obtained from the initial object diagram representing different details of the system. This step
involves specifying data stores and processes, and identifying the connection between them [38].
Then an object-oriented model is derived from the constructed DFD using one of the following
approaches:

e Applying a direct mapping to an object diagram, in which processes and data store will
be mapped into objects.

e Applying advanced mapping into a class diagram, which classifies processes and data stores
within the DFD based on their type. Processes become logical methods, whereas each data
store is translated into a separate class.

DFD net Approach

Another novel approach has been introduced by [113] to complement the OO method with
functional decomposition for realising uses case using extended DFDs (DFD net) at the analysis
stage. This means that all processes and data flows are transformed into OO classes, including
attributes and operations, at the design stage.

31

CHAPTER 2. LITERATURE REVIEW 2.5. METAMODELLING APPROACHES

In DFD net, a distinction between various data flows has been considered. For instance,
distinctions between main-input, inter-process, and non-inter-process data flows are made using
double-solid, single-solid, and single-open arrowhead respectively. The process starts by specify-
ing a main-input data flow for a collection of primitive processes in the lowest-level DFD net and
connecting them with a local buffer to form a single group. Similarly, processes that share the
same data as input or output are grouped together, then classes are generated for each separate
group. The development process at the design stage is automatable and supported by a tool to
perform transformations [113].

2.5 Metamodelling approaches for Automatic Generation of In-
formation Systems

This section aims to highlight different metamodelling approaches for generating information
systems. It considers system aspects that are taken into account during different modelling stages
(analysis and design), as well as the degree of automation for generating a complete executable
code, user interface and business logic. A domain-specific language framework (MOD4J) [77] for
developing administrative enterprise applications, and a framework for developing Data-Driven
Applications (XPage) are not included in this survey.

Different metamodelling approaches are proposed for developing web-based information
systems (IS) such as [28, 118]. These approaches are normally based on capturing the structural
aspects of ISs (entities, relationships, and constraints) using metamodels or appropriate domain-
specific languages. They allow the automatic generation of user interfaces (UI) and in other cases
basic CRUD operations. These approaches have remarkable limitations in which they suffer from
the lack of business logic support and UI development [27].

2.5.1 Enterprise Information Systems (EIS) Metamodel

With regard to these limitations, several approaches have appeared to overcome the issues
mentioned above. For example, the EIS approach [27, 28] for developing information systems
that integrate business domain, processes and user interface descriptions is proposed to enable
automatic code generation. Three separate metamodels for each aspect are introduced, namely
the, Business Domain, Human-Interaction, and Business Process Metamodel.

The Business Domain Metamodel (BDM) uses the specialisation strategy instead of using
logic at another modelling level to solve data modelling problems when a given entity type
participates in an association type with various roles. On the other hand, the Human-Computer
Interaction (HCI) metamodel expresses the appearance and behaviour of UI concepts at a higher
level of abstraction. Each behaviour triggered by the Ul is treated by either a business rule or
application functionality generated to connect to one or more UI rules. This information is
specified in the metamodel as application rules for providing the integration of Ul with the
information system [27, 28].

The framework contributes to integrating concepts of HCI patterns with business data
aspects, for forming an Information System metamodel. Thus, the integration between these
aspects is promoted via metamodels. It also supports the usage of OCL [85] for generating
stored procedures in the backend database system that implements the modelled business rules.
It does not offer any end users customisation. [27].

32

CHAPTER 2. LITERATURE REVIEW 2.5. METAMODELLING APPROACHES

2.5.2 Metamodel to support End user Development of Web-based Business
Information Systems

Another metamodelling approach has been introduced for enabling end-users to contribute in
web-based information systems development [29]. The semantics of the proposed metamodel
helps end-users, using their logical thinking and domain knowledge, to start the development
process with little knowledge in the technical domain.

The proposed concepts in the hierarchical metamodel are similar to those in the metamodel
of the UML-based Web Engineering (UWE) approach. The main difference is the three levels of
abstraction in [29] approach. They indeed grouped related common aspects at a separate level of
abstraction and produced a three-level hierarchal metamodel for describing information systems,
namely, Shell, Application, and Function level. Common aspects in all web applications such
as user, object, access control and navigation are four models that are expressed at the shell
level. Access control and other specific aspects (inherited from shell level), such as workflow
(business rules) are modelled at the application level. The detailed implementation of functions
is modelled at the function level [29].

End users might contribute in the development at a particular stage or level; for example,
to configure a specific web application they only need the knowledge presented in the shell
metamodel. Moreover, in order to specify the application level, users need to use the domain
knowledge presented in the application metamodel.

2.5.3 Using Weaving Models to Automate Model-Driven Web Engineering

In [120], a model-driven approach for the development of Service-Oriented Web applications
(SOD-M) the use of model weaving is proposed. It is noted as a part of the MIDAS frame-
work for developing Web Information Systems (WIS) to use the MDE approach. Unlike the
promise of MDD to enable a full automation of the whole development process, SOD-M aims to
include designer-decisions during the development stages and consider it before executing each
model transformation (customisation). This is done in order to reduce the complexity of model
transformation resulting from the nature of the behavioural model specified at an early stage.

Modelling PIMs consists of constructing and mapping two models, namely, Extended Use
Case (EUC), and Service Process models. The first model is used to capture the service func-
tionalities of the system at a lower granularity, whereas the second model is a type of Activity
Diagram used to represent processes. The mapping between these PIMs is defined from the EUC
to the Service Process one. The Weaving Model is used as an annotation model to introduce
design decisions during executing transformations. It is a container for the extra data absent
from the behavioural metamodels, but required for transformation execution. For instance, it
helps in mapping the order of executing include relationships in the case of having a use case
with more than one include-case [120].

The annotated model is also used to establish and handle the links between model elements
using ATLAS Model Weaver (AMW). Both it and a source model are then used as an input
to the transformation to generate the target model. The annotation in the source model (e.g.
EUC) is used to fill the missing data that is required to execute transformation. It also allows
the customisation of model transformation [120].

33

CHAPTER 2. LITERATURE REVIEW 2.5. METAMODELLING APPROACHES

The development process starts normally by transforming a high-level business model into a
service composition model using several layers of transformation. As a common task in MIDAS,
the rules of transformation are expressed with natural language at the initial stage, then it is
formalised using graph transformation rules. ATL [33] is used to implement the formalised rules
to be used in expressing the mapping between PIM and PSM within the framework [120].

2.5.4 UWE and MDUWE Metamodelling Approaches

Koch [117] proposes a model-driven engineering framework in UML-based Web Engineering
(UWE), which is supported by a CASE tool integrated with Eclipse. In UWE [117], aspects of
web applications are captured using different models (UML profiles|[70]). These models are then
integrated and transformed to produce a business logic code, web pages and configuration files.
In MDA [89] terms, these models are CIMs (UWE profile use case models), PIMs, and PSMs
(other UML profiles). The MagicUWE tool and any tool that supports UML modelling might
be used to design web applications using UWE in order to provide a semi-automatic generation
of web software. A UME approach employs various transformation languages such as ATL [33],
QVT-P, and Java for implementing model transformations [117].

Kraus, Knapp, and Koch in [68], also proposed a complementary approach, called the
Model-Driven UWE (MDUWE) approach, which is a based on transformations and metamodels.
On the one hand, the transformation rules are implemented using the ATL transformation
language [33]. A number of transformations are designed to obtain different aspects of the web
systems, such as Requriement2Content for deriving the content model from the use cases.

On the other hand, the metamodel of UWE is structured into requirements, content, nav-
igation, process, presentation and more packages or sub- metamodels using UML 2.0 profiles
[70]. For example, the presentation metamodel defines elements that are used to specify the
layout and user interface Ul elements on the web page reflecting underplaying processes and
navigation [68]. From that, it can be said that end-users still need to learn the UWE modelling
language and some technical (designing) skill to model the different views of the web system.

2.5.5 Model-Driven Web Engineering (WebML)

WebML [124] is a domain-specific language for expressing the concepts and mechanisms of
the domain of web engineering. It allows the specification of the conceptual model of web
applications, such as data, service, navigation, and processes. It has its own formalism and
abstraction levels of models. WebML [124] is supported by the WebRatio [4] tool for enabling
automatic code generation for the J2EE platform [16].

The WebML [124] metamodel consists of several views, namely, the data model, the hy-
pertext model, and the presentation model. The data model is used for presenting the data
schema including entities, attributes and relationships. It is based on the standard ER model
(Entity-Relationship). The hypertext model is regarded as a graph of linked pages that repre-
sent different information (view of the site) and also the navigation path between these pages.
It establishes the overall structure of the domain as a collection of units, such as views, areas,
pages, and content units. These units are connected together forming the WebML [124] hyper-
text model. The presentation is concerned with the visual representations and corresponding
styles of the pages on screen [83].

34

CHAPTER 2. LITERATURE REVIEW 2.5. METAMODELLING APPROACHES

Authors describe in [16] a transformation approach, integrated with Eclipse, for transform-
ing WebML [124] to MDA [89] representations (MOF metamodelling layers [87]). The approach
consists of three transformation stages, namely, Metamodel Generation, model Generation, and
Higher Order Transformation. In Metamodel Generation stage, the mapping between the DSL
metamodel and MOF M2 [87] is considered by mapping DTD and EBNF representations of
the DSL metamodel into Ecore. The generation starts by parsing the concrete syntax of DTD
and EBNF in order to derive the instance of the defined metamodel (DSL Injection). The next
step is applying a model transformation that is implemented using ATL [33] between the DSL
Metamodel and the Ecore one [16].

In the following stage, Model Generation, a transformation from an XML [122] represen-
tation of a WebML [124] project to an instance of the WebML [124] metamodel (generated at
previous stage) is performed. Similar to the Metamodel Generation stage, this phase consists
of an injection and transformation step. A Java injector is used in the DMS Injection step to
convert the XML [122] document to an instant XML [122] metamodel. In the next step, an ATL
[33] transformation is used to map an XML [122] and EBNF model to an Ecore model (MOF
M1 [87]), which is an instance of the generated DSM metamodel [16].

2.5.6 Model driven, Existence dependency Relationship, Object oriented De-
velopment (MERODE)

MERODE is a model-driven engineering approach for developing enterprise systems. It adopts
the MDA strategy, in which it aims at the creation of a complete platform-independent domain
model (PIM) that is translated into a platform-specific one (PSM) and executable code [75, 21].
The method tackles the problem of UML semantics ambiguity by using a limited number of
formally defined and semantically clear UML models (Class and State Machine), supplying them
with an existence dependency graph and Object-Event Table [21]. Moreover, it uses the Process
Diagrams from the BPMN as a behavioural business domain model to capture topmost concepts
of the system functional requirements at the early stage of development (requirement/analysis)
[21, 103].

MERODE has several modelling activities during the development process of IS, namely,
data modelling, interaction modelling and life cycle modelling [103]. The data modelling step in
MERODE is a process of creating structural aspects of business objects. A refined UML Class
Diagram is used to construct the existence dependency graph using MERODE specific notation
[21, 103]. This diagram has a key benefit to MERODE, in which it performs better consistency
checking between the three MERODE diagrams rather than other modelling approaches [103].

Furthermore, the interaction modelling step in MERODE is achieved via the creation of
the Object-Event Table (OET). It is a tabular representation that consists of all business objects
with related business event types. The type of interaction can be either create (C), modify (M)
or end (E). In addition, life cycle modelling is drawn according to each object in the domain to
prevent events occurring in a wrong or random order during the life cycle of that object [103].

It is worth saying that the MERODE method is supported by an object-oriented tool
(JMermaid) that consists of graphical editors for constructing and modifying specific system
artifacts consistently. The tool aims to help software engineers to construct enterprise systems
using a number of formal models [74]. TheJMermaid adopts a template-based code generator
mechanism that is able to successfully generate a multi-layer system that consists of a GUI,
event handling (session beans) and persistence layer [104].

35

CHAPTER 2. LITERATURE REVIEW 2.5. METAMODELLING APPROACHES

2.5.7 Reactive System Development Support (UML-RSDS)

The Reactive System Development Support (UML-RSDS) is a subset of UML with a precise
semantics [71]. It aims at generating executable code from high-level specifications, in which it
is supported by an MDE tool [71] to provide a rapid automatic creation of software systems from
high-level standard UML artefacts, namely, Class, Use case Diagram and OCL [85] language.

The targeted multi-tier EIS applications, which are developed from UML-RSDS MDE tool,
consist of five tiers, namely, Client, Presentation, Business, Integration and Resource tier. The
Client tier consists of a number of HTML files as interfaces to the end-users. Moreover, the
Presentation tier contains Java servlets classes and JSP files. In addition, the Business tier has
some session, entity beans and value objects to represent the business services. Furthermore,
the Integration and Resource tier consist of database interface, as well as web services, and the
back-end data stores of the system respectively [71].

In UML-RSDS, two forms of use case can be constructed and used, EIS and General,
using the standard mechanisms of structuring and composing use cases (via extend, include,
inheritance and more). The EIS use case represents a simple straightforward operation (e.g.
CRUD), whereas, the General ones are used to specify model transformations [71].

The UML-RSDS approach provides a formal specification approach for model transforma-
tion [72]. The transformation is defined in a hybrid style using OCL constraints that express
the relationships between system models. In the approach, OCL is used in various places, such
as, class invariants, class diagram constraints, operation preconditions and postconditions, use
case pre-, postconditions and invariants, state invariant and transition guards [72, 71].

In order to generate more efficient code, the constraints are defined explicitly as operations,
specified by pre- and postconditions, determining how a source element is translated to the
target one in the target model [72]. The precondition of each rule identifies when this rule is
applicable to which source element in the source model, whereas, the postcondition identifies
what utilisations to elements and links should be constructed between the source and the target
element [71].

2.5.8 Summary

This part of the literature review discussed some general modelling approaches in software
engineering that are supported by MDE CASE tools. From the modelling perspective, we
considered single-view modelling approaches and multi-view modelling approaches. It is noticed
that many pure OO approaches employ, or adopt the UML [70] Class Diagram as a central
artefact for capturing the structural view of systems, while, the UML [70] State Machine Diagram
is used for capturing the behaviour side of the systems. On the other hand, in the integrated
approaches, a modified version of Data Flow Diagram are used to capture system’s behaviour
and then mapped to OO models, such as the UML Class Diagram and other models.

Besides this, examples of DSL-based approaches are also considered in this part of the
literature. We tried to identify what are essential and minimal views to be used at early phases
of development. Furthermore, we tried to justify how complex the artefact(s) are, in both types
of approaches, with respect to their suitability to business end-users. The following table (2.2)
summarises drawbacks of the above approaches that are covered and improved in the proposed
method in the thesis.

36

CHAPTER 2. LITERATURE REVIEW

2.5. METAMODELLING APPROACHES

Approach Artefacts Comments
‘WebML (DSL) Data, Complete design details of web applications are ex-
Hypertext & pressed explicitly, manually by developers, in the re-
Presentation lated models, such as navigation links, GUI control
Model types & specifications, pages structure and back-end
data that appears in each page.
MERODE UML Class & Business objects are defined in the Class Diagram,
State and BPMN including their internal structure, relationships be-
Process Diagram tween objects (with correct multiplicities) and as-
soctation classes. This diagram is equivalent to the
Class Diagram at the Design level in the traditional
sotware development methodologies. Additionally
a default finite state machine is specified for each
obejct using a State Diagram. These technical spec-
ifications might be error-prone.
MDUWE Use case, Class, Different UML Profiles are used to define CIM,
& Activity PIM, PSM, and UL These complicated diagrams re-
quire technical details, expressed using OCL. This
does not suit business users knowledge. Further-
more, the lack of Use case formal semantics might
lead to have different interpretations for a same con-
struct. The way of expressing include and extend
dependency may raise a confusion when using them.
UML-RSDS UML Class, Use A developer writes system specifications in UML
case, State and OCL. It can be said that specifying constraints
Machine and in OCL is not a simple task from a business user
OCL perspective. Additionally, defining transformations
using Use cases may raise similar arguments men-
tioned in MDUWE regarding the semantics-free
zones and expressing dependencies.
SOD-M Extended Use Even after extending the Use case Diagram, it still
case, Service expresses the dependencies between use cases in
Process Model the traditional way. Arguments in MDUWE &
(UML Activity) UML-RSDS for Use cases can be used. Addition-
ally, a detailed Activity model (complicated) is con-
structed for realising and capturing the control flow
of each Use case.
EIS UML Profiles & A number of UML Profiles are used to express differ-

Business Process
Diagram
(BPMN)

ent IS layers. OCL is used to specify constraint on
these profiles. Argument for expressing constraints
using OCL mentioned in UML-RSDS can be used
in this approach.

37

CHAPTER 2. LITERATURE REVIEW

2.5. METAMODELLING APPROACHES

MoSys Extended Data Modelling a system behaviour requires a number of
Flow Diagram, Activity Diagrams for specifying the behaviour for
UML Use case & each system function modelled using Use case Dia-
Activity gram. This raises the issue related to ambiguty of

Use case semantics and semantics-free zones, argu-
ments mentioned in MDUWE, as well as designing
complicated Activity models.

ED-UWE Use case, Class, All important design details must be expressed by
& Activity end-users, such as Ul appearance, navigation links,

process work flows. Arguments raised in MDUWE
for using UML Diagrams can be used.

FOOM OO-Data Flow, Three types of Class Diagrams are desgined to de-
UML Class, fine system data (initial and complete) and UIL. The
Transaction approach requires further detail about methods in
Diagram, the complete Class Diagram to represent system be-
message chart & haviour. This is captured using message chart or
pseudo-code pseudo-code.

Z00M UML Class, Detailed UML artefacts are required to represent
Activity, the system. Modelling superstates and their inter-
Statechart & anl states and transitions in Statechart Diagram [49]
Finite State requires design knowledge (low-level), which might
Machine be error-prone from the end-user perspective.

MOD4J DSLs: Business, It is designed for developing Data-Centric Appli-
Data Contract, cations that support the basic CRUD operations.
Service & No control flow of business process (logic) is sup-
Presentation ported. Additionally, a developer constructs all

models manually.

Rhapsody UML Class, It generates a partical behaviour of a system. The
Statechart, Use Use case semantics and notation arguments UML-
case & Activity RSDS & MDUWE are issues arise in this ap-

proach.

oPM Object-Process No separation of concerns, the structure and be-

Diagram
(Workflow-like)

haviours of a system are expressed in one complex
model. This increases the number of elements, no-
tation types and constructs in the model. A com-
plete OPD can be expressed as five UML Diagrams:
Sequence, Class, State, Activity, Use case and De-
ployment diagram. Additionally, developers has to
consider the state of each object before, after and
during a process occurence.

Table 2.2: Drawbacks of other MDE approaches

38

CHAPTER 2. LITERATURE REVIEW 2.6. END-USER AND MDE

2.6 Overview of End-User Development (EUD) With Respect
To MDE

The End-User Development (EUD) [106] is a development technique that aims to empower end-
users, who have limited technical knowledge, to become involved in the process of designing
and/or customising their systems to increase their productivity and satisfaction [107]. It also
aims to translate accurately and comprehensively the informal description of domain problems
to reduce the gap between what the exact user desires and what functionalities the implemented
system has [30].

2.6.1 Component Based EBusiness Application Development and Deploy-
ment Shell (CBEADS)

Producing end-user tools for constructing web applications, such as DEMIN and Mashups,
CBEADS [45] is a widely-known example of applying EUD [106] in the real-world to tackle
the problem of the lack of web developing skills for non-programmers [97]. This kind of tool
considers the business-users perspectives or mental model [97], encodes developers knowledge as
rules [92] and enables users to easily tailor software to meet their individual needs [107].

Ginige and De Silva, in [45], have introduced a meta-modelling approach for enabling end-
users to be involved in the continuous development process, side by side with developers, end
users with little technical knowledge. It also aims to enable them to employ effectively the meta-
models in such as customisable environment [45]. The concepts in the meta-model are similar
to those in the UWE approach (UWE, 2011). However, all common aspects are grouped at a
separate level of abstraction for describing information systems, namely, Shell, Application and
Function level [30]. These models are embedded into a component-based Shell introduced as
developers templates for end-users to instantiate a meta-model instance and populate it at one
or more levels. The CBEADS and other related (SMART) tools are used to generate business
objects as well as functions, users interfaces and SQL queries [45].

2.6.2 Model-Driven Development for End-User development (MDD4EU)

This approach provides a mechanism to allow end-users to collaborate with developers at the
early development stage, rather than transform end-users description of their needs into de-
velopers. It is supported by a modelling language (DSL) called Pervasive Modeling Language
(PervML). PervML is used on the construction of pervasive services in the context of smart
home systems [91].

MDDA4EU is mastered by developers, in which they determine what knowledge (properties)
end-users are allowed to supply to models during the development process. After that, developers
also determine an appropriate language that is familiar to end-users for enabling them to supply
and edit models using the language. At the end of the story, a model that holds user preferences
is created with a degree of quality [91].

39

CHAPTER 2. LITERATURE REVIEW 2.7. OUTLOOK ON THE CHAPTER

In order to achieve this, the MDD4EU approach is introduced to end-users via a toolkit
that is specially designed in such a way that it suits end-users. The toolkit is designed to be
domain-independent, in which it has an interface that might be reusable in other domains when
adopting the MDD4EU [91].

2.6.3 Summary

This part of the literature discussed some model-driven engineering approaches that allow end-
user participation in the development process. Both approaches provide mechanisms for allowing
end-user to participate and work with developers. In contrast, the thesis aims at going beyond
this and allow business end-user to lead and master the development process of information
systems using less technical knowledge. The movement from this business knowledge to more
technical one is performed and managed by transformation rules.

2.7 Outlook on the Chapter

This chapter discussed the related literature, including a brief comparison between alternative
methodologies such as, AOSD, MDA, xtUML and Software Factory. From this, it is possible to
realised where the proposed approach fits, in contrast to other related model-based approaches,
which is a multi-view MDE framework for developing enterprise information systems. The ap-
proach employs a user-friendly and semantically clear UML-like modelling language to describe
system specifications at a higher level of abstraction than existing UML approaches.

Furthermore, the second part of the literature investigated model transformations, including
the languages, paradigms, composition techniques for model transformations and code genera-
tion strategies. This formulated the adopted model transformation mechanism and language in
the proposed MDE method in the thesis, which is a hybrid model transformation style, encoded
using Java programming language.

Additionally, a number of model-driven engineering approaches are covered in the rest
of this chapter. The discussion focused, mainly, on the complexity of metamodels, modelling
languages and notation, used for defining and expressing domain concepts, and the ability to
generate complete executable code from abstracted models. Core concepts of the proposed
modelling language are defined using a metamodel rather than an UML profile. Moreover, end-
users participation, in some approaches, is highlighted and compared in order to introduce a
development process led by business end-users.

40

Framework Overview and Analysis

“Make everything as simple as possible, but not simpler”

Albert Einstein

3.1 Context

The chapter presents a general overview of the proposed solution showing how it supports
Business-user Model-Driven Engineering. It introduces, in brief, the notion of a simplified
user-friendly modelling language, which we call the Micro Modelling Language (uML); and,
it discusses briefly the purposes and engineering activities in each development phase of the
proposed Business-User Information-Led Development (BUILD) framework.

In each stage, the chapter motivates the idea of adopting one or more uML model(s), and
shows how this suits the conceptual (natural) thinking of business users. It also demonstrates
how the uML models collaborate for capturing critical aspects of the system, which lead to
significant design decisions. Each model is exemplified by a small portion of a real-world business
process.

The adopted structure of model transformations throughout the development lifecycle is also
reviewed, including modularisation, reusability and composition. The chapter also formalises
the basic foundation of the language metamodel that will be used frequently in the following
chapters.

3.2 BUILD: Business-User Information-Led Development

The proposed Business-User Information-Led Development (BUILD) framework is a model
driven engineering approach to enterprise information systems development. It aims to de-
rive detailed implementations of information system layers from high-level business-user speci-
fications using a lightweight modelling language called the Micro Modelling Language (uML).
The inspiration for this methodology is the Reusable Modelling Design Language (ReMoDeL)
approach[101], which is based on a multi-layered, forward-transformation strategy that turns

41

CHAPTER 3. FRAMEWORK OVERVIEW AND ANALYSIS 3.2. THE BUILD APPROACH

multiple abstract representations of the requirements into concrete design models and generated
code.

As discussed in earlier chapters, end-users understand their business well in a whole, but
it is difficult for them to articulate, systematically, the software system that they require using
their limited technical skills. BUILD encourages end-users to employ their business knowledge
to construct a number of user-friendly ML models, and let the transformation rules evolve
an executable prototype system. This strategy avoids the mistake of asking users to construct
complicated models that are full of technical design detail and formal constraints.

In contrast, end-users express business processes, entities and the impact of each process on
one or more business entities, using three simple requirements models with semantically clear no-
tation (Task, Impact and Information Model). The following figure (Figure 3.1) presents a wider
picture of BUILD using a traditional flowchart. The development process within the framework
is divided into four main phases (illustrated by horizontal dashed lines), namely, Requirements
Sketching, Analysis, Design and Code Generation (Section 3.2.2). The development progress,
from one stage to another, is handled and proceeds by model transformation rules (steps) that
are responsible for the evolution of the model artefacts representing the system, from initial
requirements through to generated executable code.

In Figure 3.1, the pML models used in each phase of the BUILD method are depicted as
Document nodes in the flowchart notation. These models are sorted as ASTs in memory and
XML files to express various system views to be used during the model transformation steps.
Additionally, all forward translations from a single aspect (model) to a new one, merging two
aspects into a new one and performing in-place modification of a particular aspect, are depicted
in Figure 3.1 using the Arrow flowchart notation. External human participation, which is needed
to construct models or supply additional data, is also depicted in the figure using manual input
notation.

3.2.1 What is Micro Modelling Language (¢ML)?

The Micro Modelling Language (uML) is a user-friendly modelling language that is used to ex-
press basic structural and behavioural aspects of enterprise information systems. It has graphical
UML-like representations that correspond to underlying XML parse trees. It aims to simplify
the modelling activity using simpler notation with cleaner semantics than existing UML-based,
or Model Driven Architecture (MDA) approaches. It accelerates the development process by
using effectivily business-users’ knowledge of their desired system.

It can be argued that the simplicity and clarity are achieved in the proposed uML when each
notation has the same meaning in each model, but in appropriate way that suits the context of
each model. For instance, uML unifies the visual notation of the generalisation and compostion
relationship between elements in each model it appears in. This issue is discussed in more detail
in chapters 4, 5 and 6, where the notation and its semantics is described.

In BUILD, uML models are used to represent various information system views. There
are three major groups of models, with each group being associated with a specific development
stage in order to capture the essential characteristics of the system. The models in the top group
are employed by model transformation to produce further detail and new aspects (models) of
the following group to be used in the next stage of development. uML concepts, notations and
their formal foundation are discussed in detail in chapters 4, 5 and 6, according to the BUILD

42

CHAPTER 3. FRAMEWORK OVERVIEW AND ANALYSIS 3.2. THE BUILD APPROACH

User
Requirements

Requirements Sketching

DataFlow
Data on flows Model

I | |

tziMod/eJ Impact Model Information Model

Analysis

4

Database & Query
Model

Design

Figure 3.1: BUILD. A wider picture

stage that the model belongs to.

3.2.1.1 The Conceptual tML Metamodel Hierarchy

Conceptually, the uML main concepts are organised in a hierarchical structure of model nodes
(elements), which form a core metamodel for the language. The following Figure (3.2) illustrates
the main generalisation and composition relationships between pML elements. It consists of
higher level concepts of the metamodel that express the core elements of the language. These
concepts are: Flement, Node, Edge and Model.

The pML metamodel includes a number of intermediate nodes that group some terminal
nodes based on their common features. For instance, the kinds of Arcs subdivide into the
Flow, Transition and Participation arcs. Additionally, the kinds of Relationships subdivide into:
Association, Generalisation, Composition and Dependency relationships. The metaclass Model
consists of a collection of the kinds Flement.

In puML model(s), all Arcs and Relationships are defined as instances of one of their de-
scendant (metaclasses). Each of the leaf (terminal) nodes, appears in the metamodel (Figure
3.2), corresponds to a concept in one or some ML model(s), which has a specific meaning and

43

CHAPTER 3. FRAMEWORK OVERVIEW AND ANALYSIS 3.2. THE BUILD APPROACH

| Y
e
N\ - /\

[Teskvoss || s]

| Impact Model l— JAN

| Information Model l— |

Arc | | Relation |

| Data Model l—

Database Model l— Type | Flow |
State Model l—_ Property | Transition |

Widget | Participation |

DataFlow Model l—

GUI Model |—

| Code Model l—

Figure 3.2: The Metamodel for uML

a graphical notation. Furthermore, there is an element in the underlying representation (AST)
of the models to represent each terminal concept.

3.2.2 Development Phases in BUILD

The overall structure of BUILD can be divided into four main phases: Requirements Sketching,
Analysis, Design and Code Generation. Each phase in BUILD focuses on a variety of abstract
system views to present the system on several levels of detail and encapsulates various model
transformation activities that occur during the process of software development.

3.2.2.1 Requirement Sketching Phase

In this context, requirements engineering can be introduced as common practice in the software
development lifecycle. It refers to the elicitation of stakeholders’ desires and all other activities
involved in discovering the requirements for a SE process. This stage involves the initiation of
communication and collaboration between end-users and the developer team in order to map
system requirements and objectives onto a collection of formally designed software characteristics
and functions.

Engaging different stakeholders in the initial phase of the development process is considered
critical in all traditional software development approaches, such as Waterfall Model, V-Model,
Incremental Model and Spiral Model [94]. The functional requirements have to be explained
clearly and transferred precisely from the business users to the developer team. This happens
via holding a number of formal meetings to discuss requirements and the ability to accommodate
them within the system. In the end, all details are stated textually in the contract.

44

CHAPTER 3. FRAMEWORK OVERVIEW AND ANALYSIS 3.2. THE BUILD APPROACH

By contrast, the current trend in new approaches to software development, e.g. Model
Driven Software Development (MDSD) and Domain Specific Language (DSL), is to assign the
task of expressing the functional requirements and system structure to skilful designers. These
designers must have enough knowledge to deal with complex modelling language and models
rich in detail. They are responsible for modelling the system to meet the functional requirements
provided by the users. From there, the initial step of passing the end-users requirements to the
designers must also be taken.

In BUILD, the business-user engagement is different from that found in traditional ap-
proaches. During the Requirement Sketching Phase, the business analyst, who is aware of the
exact requirements of the organisation, establishes formal agreements by describing the func-
tional and structural requirements of an information system, in models, using clean and simple
modelling language. The adopted ML notations are lightweight and tailored to capture, visu-
ally, the intellectual logical thinking of end-users about their business. The artifacts produced
are evolved directly through a chain of model transformations.

Practically, business-users describe the real world business data in terms of entities and
relationships, making the entities organised, structured and easy to understand. Moreover, they
describe a skeleton structure of the system that contains business tasks, goals and real world
interactions with stakeholders. Additionally, users also express how the task affects the business
entities in terms of the impact on the system object during the execution.

A number of system aspects must be prepared in order to progress to the second stage
(Analysis). The proposed pML models, Task, Impact and Information Model, can adequately
cover the end-users specifications that act as a starting point for the first collection of transfor-
mation steps to satisfy the requirements of the analysis phase.

Task Model

The Task Model is a manually-constructed structural model that describes the structure
of all significant enterprise activities. It typically captures the wider context of the business,
including interactions with external stakeholders. By using the conceptual (natural) thinking
of business-users to express the functional requirements, in terms of the business process and
stakeholder interactions (Figure 3.3), the Task Model can be constructed naturally in a straight-
forward way, stating the business tasks and the stakeholders involved in them. The notation
and concepts of the Task Model are presented and discussed in detail in Chapter 4.

.

Borrower

Reader Services

Discharge Loan

Figure 3.3: Task Model. Library Circulation System example

45

CHAPTER 3. FRAMEWORK OVERVIEW AND ANALYSIS 3.2. THE BUILD APPROACH

Figure 3.3 above illustrates a Task Model example of a small portion of Library Circula-
tion System. It indicates that the Circulation consists of two business tasks: Issue Loan and
Discharge Loan, modelled using a part-of relationship. Furthermore, a Borrower and Service
Reader participate by supplying the system with some information and/or receiving back some
responses from it.

Impact Model

The Impact Model is a kind of behavioural model, manually-constructed by business users,
that describes the impact of business tasks on the internal objects portion of the system data.
Exploiting the end-users awareness and understanding of the business to sketch the interconnec-
tion between tasks and objects enables the capturing of the internal behaviour of these tasks.
This is extracted by model transformations to estimate the control flow between tasks (the order
of execution). The following figure demonstrates an example of the Impact Model of a Library
Circulation System. The notation is discussed and formalised in Chapter 4.

Borrower

Figure 3.4: Impact Model. Library Circulation System example

Figure 3.4 above demonstrates an Impact Model example of a small portion of Library Cir-
culation System. It shows the internal behaviour of the Circulation task components: Issue Loan
and Discharge Loan, collaborating with the logical business objects: Copy, Loan and Borrower.
The figure indicates that the Issue Loan task reads Copy and Borrower objects to create a Loan,
whereas the Discharge Loan reads only a Copy to destroy the related Loan.

Information Model

The Information Modelis a manually-constructed structural (abstracted) representation that
describes real-world business aspects and the relationships that might exist between them. This
model is obtained through two different methods: a partial model is derived (automatically)
from a pre-defined Impact Model or a complete one is provided (manually) by end-users. The
first method is considered a simpler approach for Information Model construction because the
framework takes responsibility for manufacturing the required relationships between entities,
and leaves the task of specifying their end-role multiplicities to the end-users.

The structural relationships between objects in the Information Model can automatically be
extracted from the Impact Model in the first approach. A number of mapping rules are applied
to achieve this shift between these system views. This leads to the construction of Information
Model Aggregation and Association relationships between the captured business entities. Then
the properties of the entities (attributes) and the end-role multiplicities are added as part of a
separate design activity.

46

CHAPTER 3. FRAMEWORK OVERVIEW AND ANALYSIS 3.2. THE BUILD APPROACH

On the other hand, in the second method, the end-users are in charge of maintaining con-
sistency during the construction of each model to avoid any clash of inter-relationships between
objects. They must model manually all business entities and their relationships. The objects
that appear in the Information Model might be physical objects and documents, logical infor-
mation about stakeholders or other physical items used in the business. The inter-relationships
between these objects are presented in an un-normalised form. It is worthwhile emphasising
that the current implementation of BUILD supports this construction approach.

I Copy | I Loan | I Borrower |

| ¢ |

Figure 3.5: Information Model. Library System example

The above figure (Figure 3.5)shows an example of the Information Model of a Library
Circulation System. It illustrates a conceptual whole/parts relationship (Composition) between
three objects: Loan, Copy and Borrower. The Loan object represents the whole side of the
relationship, whereas Copy and Borrower are its parts. The notation is discussed and formalised
in Chapter 4.

3.2.2.2 Analysis Phase

Several intermediate models that contain extended detail about the required system are con-
structed in the Analysis Phase. This stage is inspired by the early Structured Systems Analysis
and Design Methodology [43]. Our method attempts to specify the requirements in terms of
initial business tasks that need to be decomposed into a number of atomic ones, based on a
functional decomposition technique and the use of a data flow diagram.

As the outcome of this stage, a number of artifacts are produced in an attempt to reveal
more detailed aspects of the system. The internal behaviour of each business task and the state
of the system are clearly identified to the designers in terms of data flow (detailed DataFlow
Model) and state-transition (State Model). In addition to this, the business entities captured
previously during the Requirement Sketching Phase are refined and re-described in the notion
of the Data (Dependency) Model. All artefacts at this stage are automatically-generated by
rules, except the initial DFD model that needs end-users engagement via annotating data on
flows.

It is worthwhile noting that during the shift from the Requirement Phase, the number
of complex transformations varies for each model, for instance, the creation of the detailed
DataFlow requires two forward translating steps; the initial DataFlow (DF) is created first and
then the detailed DF is derived from it. On the other hand, the compilation of the State Model
construction requires one forward translating step from the detailed DF model and one in-place
modification for generating states of failure business scenarios. In contrast, the Data Dependency
Model is constructed directly using a single translating step from the Information and/or Impact
Model(s).

Indeed, the Model Transformation Framework takes Task and Impact Models as source
models and then applies translation rules to fold their concepts and generate the initial DataFlow
Model. For each task that appears in both source models, new components in the target model
arise after combining the external interactions provided /received by actors and the internal ones

47

CHAPTER 3. FRAMEWORK OVERVIEW AND ANALYSIS 3.2. THE BUILD APPROACH

with objects that lie within a logical boundary representing this task. The resulting boundaries
introduce a number of independent event-driven business process transactions of the system.

To exemplify this, new Input/Output subtasks are generated after extracting the system
interactions with the actors. Furthermore, CRUD subtasks are produced after translating the
internal interactions with the system objects (back-end entities). Both kinds of subtasks are
linked and grouped within a logical boundary of the original business task. It is important to
mention that the boundaries in the initial DataFlow have no knowledge about the data on flows
and there are no interconnections between subtasks. These missing parts are considered in the
next transformation step.

The existence of data on flows is fundamental to the approach in order to estimate the
possible order of task execution. Thus, the manual engagement of business end-users is required
to specify the kind of data flow on the initial DataFlow artifact. As a consequence of visualising
the DataFlow Model using pML notations, users can add data to related flows on the model
in a straightforward way. These extra details are used simultaneously with the type of CRUD
operation assigned to tasks during the task decomposition step in order to construct the detailed
DataFlow Model.

Accordingly, boundaries in the detailed model express the data flow between linked subtasks.
This version of DataFlow is used as a source in a second translating step in order to generate
a State Model, after prioritising the atomic tasks in the previous translating step, whereas the
Data (Dependency) Model is derived directly from the predefined Information Model. It is worth
emphasising that the Analysis Phase ends after decomposing all the business tasks that require
a number of atomic actions into tasks with a single action that are presented with a logical order
of execution.

Data (Dependency) Model

The Data Model is an intermediate view, automatically-generated from a pre-defined In-
formation Model, that describes the dependency of the logical data in the system, and supports
the development to a point where a logical database schema may be generated. The model con-
sists of logical objects linked by a number of dependency relationships, representing the direction
of data dependency.

Figure 3.6: Generated Data Model. Library Circulation System example

Figure 3.6 illustrates a part of a Data (Dependency) Model of a Library Circulation System.
It demonstrates dependency relationships between three objects: Loan, Copy and Borrower. The
Loan object depends on both Copy and Borrower.

DataFlow Model
The DataFlow Model is an automatically-generated intermediate model that describes how

information data is transformed in tasks, flows via system components and is manipulated into
data sources at a particular level of abstraction. The model consists of a number of entities

48

CHAPTER 3. FRAMEWORK OVERVIEW AND ANALYSIS 3.2. THE BUILD APPROACH

and participants (agents) that are connected to some tasks via a variety of flows. It provides a
detailed description of the business tasks and their aggregated subtasks that supply and perform
operations on data in terms of data flows.

It is worth mentioning that the creation of a complete DataFlow Model requires two inde-
pendent mapping steps. The first one performs automatic merging and gathers concepts from
both Task and Impact Models to derive a number of business tasks that are connected by some
(typed) flows with system stakeholders and internal objects. The second step starts by a man-
ual engagement from end-users who annotate the generated data flow model by data on flows.
Then, the automatic task decomposition step is applied to the annotated intermediate DFD to
produce the complete DFD. The detailed description of these construction steps is presented
later in chapter 7.

Sign In

“Welcome Msg”

[@name= uName,
Validate ID @pass =pw]

uName, pw

User

Figure 3.7: Generated DFD Model. Library Circulation System example

Figure 3.7 above shows a portion of a DataFlow Model of a Library Circulation System. It
illustrates the contents of the Sign In business task. It can clearly be seen that the task consists
of only one task, Validate ID, that is connected to three flows: Input, Read and Output. A
stakeholder, User, interacts with the system by supplying login details to be checked via the
task against the data stored in the login entity. The Validate ID then responds back to the user
with a suitable message.

Screen State Model

The Screen State Model is an automatically-generated intermediate representation, derived
from a pre-generated detailed DataFlow Model, to demonstrate, in an abstract way, the be-
haviour of the system in terms of screens and their navigations. It is mainly based on the notion
of a State Machine[116] in which each screen appears as a state and associated navigations
appear as transitions.

DataFlow Boundaries and Tasks are mapped into boundaries that contain States (each
represents a systems state after executing an action) and Transitions, which trigger their actions,
respectively. Any flow connected to an object (either source or target) is translated into a Ready
state, and any Input/Output flow connected to an actor is translated into a Waiting state.
The Waiting state indicates that the system is waiting for some external activity related to
stakeholders, such as input or output information. On the other hand, the Ready state indicates
that the system is ready to execute a back-end operation (e.g. a database action), such as an
update, insert or delete of a record.

49

CHAPTER 3. FRAMEWORK OVERVIEW AND ANALYSIS 3.2. THE BUILD APPROACH

initialise()

Waiting Scan
Borrower

Waiting Scan
Copy

Ready Create
Loan

input() input()

Figure 3.8: Generated State Model. Library System (Issue Loan) example

The above figure (Figure 3.8) demonstrates the content of the Issue Loan business process.
It consists of two Waiting states for inputting copy and borrower detail and one Ready state for
(creating) inserting a new Loan record.

It is worth mentioning that the creation of a complete State Model requires an in-place
model modification step, which it considered to be a separate transformation step. A number
of Error states are generated to handle failure cases of the business task, such as invalid/null
inputs or database connection failure. The following figure (Figure. 3.9) illustrates a complete
State Model of the Issue Loan task after applying the in-place modification step.

Waiting Scan
Borrower

Waiting Scan Ready Create

input()

), pm()

Reporting
Invalid or Null
input

initialise() input()

exception()

create()

Reporting
Invalid or Null
input

Reporting
System Error

initialise()

Figure 3.9: Generated State Model. Library System (Issue Loan) example

3.2.2.3 Design Phase

The Design Phase is considered to be a stage that is led by model transformations to construct a
number of low-level design models. This phase aims to reach an adequate level of detail to enable
a full code generation of an implemented solution. This involves the creation of the technical
Database and Query (DBQ), Graphical User Interface (GUI) and Code Model. All constructed
models are automatically-generated, platform-independent and are ready for the Automatic
Code Generation Phase to produce a platform-specific code.

The Database and Query Model is derived by translating business entities that appear in
the pre-constructed Data (Dependency) Model and by consulting the type of CRUD effects for
each entity in the detailed DataFlow of the previous stage. As an outcome, a complete definition
of relational database tables with clear information about their keys is presented in the model.
Moreover, a number of predefined stored procedures and triggers associated with the tables also
appear, including their implementations. The resulting artifact is generic in that it can be used
as an entry point for generating executable relational database schemas, such as MySQL and
Oracle.

50

CHAPTER 3. FRAMEWORK OVERVIEW AND ANALYSIS 3.2. THE BUILD APPROACH

Additionally, the Screen State Model is used as a source in the translating step to construct
a GUI Model. The produced artifact consists of multiple connected event-driven screens that
perform the business, triggered by the system end-users. Furthermore, states of the possible
failure scenarios are also translated into screens linked to the related screen in the successful
scenarios or to the termination of the process.

The resulting GUI Model is considered to be platform-independent and complete enough to
be employed in the next Code Generation Phase. For each generated screen, minimal component
features, e.g. size, name and text, are inferred in the model as a consequence of crosschecking
with object specifications and types in the Data Dependency Model. Moreover, tracing the type
of CRUD operation and its carried data indicates the most appropriate type of generated GUI
control. For example, in the case of Insert action, the possible type of generated G'UI control
on the screen is TextField.

Apart from this, there is a room for a separate folding transformation step that is applied to
a number of analysis models: Task, DataFlow, and State Model, to construct the (System) Code
Model. This step is independent and not part of the main IS development process (optional), as
the current version of BUILD aims at generating 2-tier applications. This model is optionally
used to represent the business logic layer in the 3-tier applications, because the business logic
is by default translated into stored procedure logic in the database schema directly. The gener-
ated Code Model is also crosschecked with entities and attributes in the Data Model in order to
maintain consistency in the object-relational mapping process when required.

Database and Query (DBQ) Model

The Database and Query Model is an automatically-generated lowest level representation
that describes the normalised design of the logical schema in a relational database, as opposed
to a conceptual information model. A model is considered platform-independent that includes
the generic data schema definitions, query expressions, and logical representation of tables and
fields. The main objective is that a comprehensive level of abstraction for representing all generic
specifications, required for any database generation, is achieved and expressed at this level of
detail. This low-level model is used as a source model in the code generation approach. Fig-
ure (3.10) illustrates an example of the generated DBQ model, taken from the Library System
example.

Loan
Borrower c
dewy : Integer opy
forename : String cardNo : Integer dewv : Integer

surname : String
cardNo : Integer

issueDate : Date
dueDate : Date

Figure 3.10: The Generated DBQ Model. Library System example

Graphical User Interface (GUI) Model
The Graphical User Interface Specification Model is an automatically-generated lowest level

textual representation AST (XML format) that describes the structure and the components of
information system screens, in terms of windows with some controls and events. It is an ab-

51

CHAPTER 3. FRAMEWORK OVERVIEW AND ANALYSIS 3.2. THE BUILD APPROACH

stracted platform-independent model in which there is no implementation detail presented in
the model. This model does not have a graphical representation in the current version of the
proposed uML ver.1.0.

Code Model

The Code Model is an automatically-generated lowest level AST (XML) representation that
describes the abstract specification for Object-Oriented (OO) code of the system in terms of
business entities and tasks (classes), their methods, attributes, and expressions. It aims at
representing a comprehensive business logic layer that determines how to manipulate the data
in a separate layer, as part of an (optional) three-tier architecture. In the Current version of
BUILD, the model can be constructed independently using a separate folding step, as it is not
a mandatory part of the main development process of IS. Similar to the GUI Model, this model
does not have a graphical representation in the current version of the proposed uML ver.1.0.

3.2.3 Model Transformation Strategy in BUILD

The transformation strategy in BUILD consists of a number of independent translation steps,
where each step contains a collection of Translator agents. It takes the given knowledge from
one level and evolves it to a new more detailed level. As an outcome, several intermediate
and lower level design artifacts are constructed based on end-user specifications. Generally, the
strategy attempts to reach an adequate level of detail that enables full code generation, which
is a completely independent phase.

The transformation approach relies on a hybrid (imperative - declarative) style. Each rule is
designed separately, in which it does not know how other rules work or how they are implemented.
There are dependency relationships between rules. Each rule fires selectively, if its input matches
a conditional guard, and may employ further rules to execute part of the transformation. The
design of the rule-tree typically follows the compositional structure of the model. While rules are
always invoked in some given order on collections of artefacts, this order is not significant, in the
sense that rule-dependency is the only constraint, and multiple firings of the same rule on the
same inputs are idempotent. The rules of transformation are directly encoded in Java classes to
define the map between input elements and output ones. Each set of classes represents a Java-
translator that is responsible for orchestrating the translation rules in order to derive target
models from source ones.

At each development stage, these transformations are capable of initiating an automatic
shift from the current phase to the next one, introducing more detailed artifacts without the
direct engagement of business users. However, on a specific layer of the Analysis Phase, the
designer supplies manual data flow detail to be considered in the next step of the transformation.
It is worth mentioning that the BUILD framework has two model-to-model transformation
layers: Requirement-to-Analysis and Analysis-to-Design, whereas the Code Generation Phase is
a completely independent layer and is totally automatic.

The Translator agents resemble the Visitor and Composite design patterns. All models can
be regarded as a kind of content containing other similarly-structured content. This feature
makes it possible to apply transformations as a kind of Composite design pattern, in which
each rule delegates to other rules to continue the transformation, recursively. In addition, each
translating agent has knowledge (rules) embedded within it to be applied to a source model.

52

CHAPTER 3. FRAMEWORK OVERVIEW AND ANALYSIS 3.2. THE BUILD APPROACH

Additionally, the translators behave like the Visitor pattern in the way they traverse a model.
Each translator is responsible for a scope of the source model (parse tree). It focuses only on a
particular part and applies translation rules to generate a part of the target model. The agent
names are based on the source and target mappings. The following list addresses the translation
steps within the Requirement-to-Analysis transformation step:

e Information to Data Dependency Model: This one-to-one translator derives the depen-
dency relationships, between business entities, from binary association, generalisation,
and aggregation relationships that appear in the sketched Information Model.

o Task and Impact to DataFlow Model: This two-to-one translator merges concepts from
given Task and Impact Models and produces output elements in the (initial) DataFlow
Model.

o [Initial DataFlow to Detailed DataFlow Model: Based on the business-user supplying extra
information about the nature of the data on each flow, this transformation takes the initial
DataFlow with the additional information, provided by users, and construct the detailed
DataFlow Model that contains the interconnections between atomic tasks.

e Task, DataFlow and Data Dependency to State Model: A merge of DataFlow and Data
Dependency Model and a one-to-one translation from Task Model are considered together
to produce to produce a Screen State Model.

As an outcome of the transformations described above, the artefacts of the Analysis phase are
completely constructed and ready to act as source models for the next transformation step
(Analysis-to-Design). This step of transformation adopts the identical structure to the previous
one, in which it consists of a number of Java-translators for producing richer detail artefacts as
follows:

e State to GUI Model: This translator is responsible for constructing GUI detail from the
generated State Model, including actions and widgets controls based on the screen type.

e Data Dependency to Database and Query Model: The translator employs the dependency
information, expressed in the source model to manufacture foreign keys, for the final form
the translated business entities (normalised database tables). For each table, all fields
are formally typed and specified in the way that it is interoperable by the relevant code
generator to produce complete table definition syntax in SQL.

e DataFlow to Database and Query Model: The translator considers tasks attached to
objects in the source model in order to create equivalent stored procedures.

As a result of the above transformations, all required design models are constructed and ready
for the Code Generation phase. This stage is presented with further detail in the next section.

3.2.4 Code Generation in BUILD

The Code Generation Phase, the final stage of development, performs model-to-code generation
in a particular running environment. It consists of a collection of generators that take the
responsibility for generating executable code from detailed models. The overall architecture
of the Code Generation Phase in BUILD also exemplifies the Visitor and Composite design

53

CHAPTER 3. FRAMEWORK OVERVIEW AND ANALYSIS 3.3. FOUNDATION OF pML

patterns, in that it consists of a number of independent Java-generators. These generators are
designed to support code generation for different specific platforms.

Unlike the overall structure of the Java-translators in the previous model-to-model trans-
formation stage, we assign a Java-generator to produce the implementation for each information
system tier: Presentation, Business processes and Data. These generators are:

e Database Schema Generator: The Database Schema Generator takes concepts from the
design DB(Q Model to generate executable dump files that contain SQL scripts. In this
thesis, MySQL Java-generator is presented as a proof of concept, Chapter 7.

e GUI Generator: This generator creates Windows application screens with their widgets to
visualise the designed system. A Java-generator for Java Swing Application with JDBC
is presented as a proof of concept, Chapter 7.

e OOP Code (System) Generator (Optional): This generator is responsible for constructing
a separate business logic layer that consists of a number of business entity classes, if
required, Chapter 7.

3.3 Foundation of ML

It is worth emphasising that, in formalising yML, we are not looking for a degree of automated
analysis and verification, all we are seeking is to add a formal flavour to the semantics of ML
concepts and notation. This section presents an approach to formalise pML using standard First-
Order Predicate Logic (FOPL) with extensions for subtyping (<:), equality (=), membership
(€), exclusive disjunction (@) and uniqueness quantification (!).

According to previous work in this field [14, 58, 82, 99, 125], it can be noted that using
FOPL is a widely adopted approach for formalising the constructs of UML diagrams and other
DSLs. It mainly used for describing the language semantics and the interrelationships between
its elements via mapping the concepts to a number of FOPL predicates and symbols.

The spirit behind the proposed strategy for formally specifying the semantics of uML con-
cepts is similar to approaches introduced in [99, 125] particularly. In [99], for instance, a formal
approach is presented to define the descriptive semantics of modelling languages by mapping
metamodels concepts to a number of FOPL sentences, representing the core concepts of the
language via predicates and functions. In the same context, [125] proposes mappings from UML
models and metamodels to FOPL statements for describing their semantics. As an outcome,
models creation policies and mapping rules can be expressed formally using FOPL.

In Comparison with OCL

OCL is based on FOPL and set theory, but it uses a syntax similar to programming languages
and closely related to the syntax of UML. OCL is intended to be a light-weight formal spec-
ification language for annotation purposes e.g. invariants, guards, pre- and post-conditions
for methods or UML diagrams, rather than to be used as the basis for extensive automated
behaviour analysis [78].

54

CHAPTER 3. FRAMEWORK OVERVIEW AND ANALYSIS 3.3. FOUNDATION OF pML

3.3.1 Preliminary Principles

This thesis represents the basic concepts of yML through predicate logic. The predicates are
derived from the concepts appear in the uML metamodel, such as, Model, Node, and Arc. Thus,
the description of each concept in pML models is provided with respect to its equivalent concept
that appears in the metamodel. For instance, given m is a Node, a unary predicate Node(x)
denotes x is an instance of Node.

Similarly at the model level, concepts like Task and Object are both considered Nodes at
the metamodel level. By applying the notion of subtyping, we can express this in our logic as:
given Task(z) — Node(z), Object(x) — Node(z) denotes that if = is a Task then it is
also a Node, this can be expressed in our logic as (Task <: Node), or if x is an Object then it
is also a Node, this can be written in logic as (Object <: Node).

Two syntactic sugar declarations are used for these predicates. The unary predicate for
assigning the type, e.g Model(x), can be shorten and re-expressed as x : Model. In addition,
the symbol (,) is also used to replace the logical And (A) operator some occasions. For example,
the statement nl,n2 : Node is equivalent to (nl: Node) A (n2: Node).

On some occasions, we need to reason about the logical value of properties. For example,
one of the main features of uML language is that each Element in the Model has a unique Iden-
tifer. This means the distinction of Elements is based on the value of their Identifiers. From
that, if we want to say that Node (a) and Node (b), in such a Model (m), are distinct, we need
to prove logically that their Identifiers are not the same. As a consequence, the need for equality
(=, #) emerges to add this expressive feature to our logic. In order to add equality to our logic,
three axioms must be declared:

o Reflexivity: V = o (x = z) (a variable x is equal to itself).

e Function substitution: Vz,y & (z = y) — (f(...,z,...) = f(..,y,...))
(if you substitute y for x in function f, the results are equal).

e Formula substitution: V z,y e (zr = y) — (p(...,z,...) — p(...,y,...))
(if you substitute y for x in the predicate p, the truth-value is the same.

From that, other properties of equality can be expressed as follows:

e Commutativity: x = y — y = =z.

e Transitivity: (z = y) A (y = 2) — x = =z

In our context, based on the axioms mentioned above, given id! and id2 are Identifiers,
idl = 1id2 denotes that id1 and id2 are equal. Similarly the statement idl # id2 denotes that

that id1l and id2 are different (not equal). Moreover, in order to say that y has the name of z,
a simple logic function nameO f(z,y) is declared.

55

CHAPTER 3. FRAMEWORK OVERVIEW AND ANALYSIS 3.3. FOUNDATION OF pML

Besides this, a binary predicate is used to express the notion of membership in our approach.
For instance, given Model(x) and Node(y), Member(z,y) denotes that element y is a member
of the model z. This predicate can be re-written using (€,,) symbol as y €, x. Therefore, the
statement says that the node y is a member of the model x can be expressed as: x : Model,y :
Node o (y €, x)

In the same context, a binary predicate is used to express the notion of property. For
instance, given Node(x) and Property(y), PropertyO f(x,y) denotes that property y belongs to
the node x. This predicate can be re-written using (€,) symbol as y €, x. Therefore, the
statement says that y is a property of the node x can be expressed as: x : Node,y : Property e

(v €p x).

Furthermore, another binary predicate is used to express the notion of widget. For instance,
given Node(x) and Widget(y), WidgetIn(z,y) denotes that widget y is a control in node z.
The node x must be a GUI window. This predicate can be re-written using (€.) symbol as
y €. x. Therefore, the statement says that y is a GUI control in the node = can be expressed
as: x: Node,y : Widget o (y €. x).

To abbreviate this, the symbol € without any subscript character is used for indicating
Member, Widgetln and PropertyOf predicates. The interpretation of € is obtained based on the
types of elements appearing in the logic statement.

Additionally, in our formalisation appraoch, there is a need for the use of an exclusive
disjunction operator (&) operation to emphisize that only one of the operand predicates is true
but not both. For instance, any Element in the Model can be either a Node or an Fdge. This
cannot be expressed adequately using the direct logical (V), in which it produces true output
when one or both operand predicates are true. The statement Node(z) @ FEdge(z) can be
bootstrapped using logical And (A), Or (V), and Negation (=) operations as: (Node(z) A
- Edge(x)) V (- Node(z) N Edge(x)).

Moreover, the uniqueness quantifier (!) is used, here, to indicate that exactly one and
only one unique property exists in a certain Element. For instance, the phrase a Node has a
unique Identifier cannot be expressed without (!) to emphisize that the Identifier is unique and
only one. The uniqueness quantifier 3! id : Identifier e Id(n,id) appears in the statement:
V' n:Node o (3 id: Identifier o Id(m,id)) can be bootstrapped using basic existential (3)
and universal (V) quantifiers with the logical And (A), Or (V), and Negation (—) operations as:
Jidl e (Id(n,idl) A =3 id2 e (Id(n,id2) A id2 # idl)).

Regarding the transformation rule definition, it is required to consider, for each rule, what
is the next-level-down translation issue in order to specify exactly what goes where. Therfore, it
is assumed that a general polymorphic translation function ¢r is defined: V Source, Target o tr:
Source — Target. Each of subsequent translation rules, presented later in Chapter 8, is a
particular type-instantiation of this function, with a different overloaded rule. This means that
the function ¢r(z) can be used in a rule-body to refer to the translation of the next bit of
sub-structure x. Section 8.3.2.1 in Chapter 8 is an example of translating DEntity — Table.

56

CHAPTER 3. FRAMEWORK OVERVIEW AND ANALYSIS

3.4. pML METAMODEL SPEC.

3.4 Specifications of the yML Metamodel

This section introduces a set of common policies that are applicable to all pML model elements.
The presented laws are used to specify the concepts of pML metamodel using FOPL. In order
to construct valid instance models, the following laws must not be violated. The following table

(3.1) summaries all predicates used in describing pML Metamodel.

Predicate Meaning Syntactic Suger
Model(x) z is a Model z:Model
Node(z) z is a Node z:Node
Edge(z) z is an Edge z:FEdge

Are(x) x is an Arc z:Are
Flow(z) z is a Flow xz:Flow
Transition(z) z is a Transition x: Transition
Relationship(z) z is a Relationship x:Relationship
Identifier(x) z is an Identifier z:Identifier

Id(x, m, y) y is an Id of z in the model m

Member(z, y) y is a member of z T Em Y
PropertyOf(z, y) y is a property of x T €p Yy
WidgetIn(z, y) y is a GUI widget in T €.y

NameOf(z, y)
Source(z, y)
Target(z, y)

Connects(z, y, z)

Links(z, y, z)

y has the name of =
y is a source of the Flow z
y is a target of the Flow z
An Arc x connects a source y
to a target z

A Relationship z links y and z

Table 3.1: Predicates for pML Metamodel

Law 1. Each model m has one identifier id.

¥V m : Model

—

3 id : Identifier e Id(m,id)

57

CHAPTER 3. FRAMEWORK OVERVIEW AND ANALYSIS 3.4. pML METAMODEL SPEC.

Law 2. Each model m has some nodes.

¥V m : Model
—

In:Node o(n € m) (3:2)

Law 3. Each node n in a model m has one unique identifier id.

V m: Model,n : Node
e(n €En m)
— (3.3)
3lid : Identifier o Id(n,m,id)

Law 4. The node can be either a task, goal, object, entity, actor, state, or window.

vV n: Node
.
Task(n) @ Object(n) & Entity(n) & Actor(n) (3.4)
@ Goal(n) @& State(n) & Window(n)

Law 5. Each model m has some edges.

¥V m : Model
- (35)
Je: Edge o (e € m) '
Law 6. Any edge can be either an arc or a relationship.
VY a: Edge
—
(3.6)

Arc(a) @ Relationship(a)

Law 7. Any arc can be either a flow or a transition or a stakeholder interaction (participation).
Va:Are

—
Flow(a) & Transition(a) @© Participation(a)

58

CHAPTER 3. FRAMEWORK OVERVIEW AND ANALYSIS 3.4. pML METAMODEL SPEC.

Law 8. A relationship can be a generalisation, composition, dependency or an association.

Y r : Relationship
—
Generalisation(r) @ Composition(r)

@ Dependency(r) @ Association(r)

Law 9. Each Node n has one unique identifier id.

Y n: Node
—
3lid : Identifier o Id(n,id)

Law 10. In the model, each edge connects two nodes

V' m: Model,a : Edge,(nl,n2) : Node

e (a,nl,n2 € m), Connects(a,nl,n2)

Law 11. In the Model, each Edge connects a Source Node to a Target Node

V' m : Model,a : Edge,(nl,n2 : Node)
e (a,nl,n2 € m)
A Connects(a,nl, n2)
—
Source(a,nl) A Target(a,n2)

Law 12. In the Model, each Dependency connects a Source Node to a Target Node

V m : Model,d : Dependency, (nl,n2 : Node)
e (d,nl,n2 € m)
A Connects(d,nl,n2)
N
Source(d,nl) A Target(d,n2)

(3.8)

(3.10)

(3.11)

(3.12)

Law 13. In the Model, each relationship links two nodes nl and n2, when it connects nl to

n2 and connects n2 to nl.

V' m : Model,r : Relationship, (n1,n2 : Node)
e ((r,nl,n2 € m)
A Links(r,nl,n2))
N
(Connects(r,nl,n2) v Connects(r,n2,nl))

(3.13)

59

CHAPTER 3. FRAMEWORK OVERVIEW AND ANALYSIS 3.5. OUTLOOK ON THE CHAPTER

Law 14. In the Model, each association links two nodes.

YV m : Model,a : Association, (nl,n2 : Node)

, (3.14)
e ((a,nl,n2 € m) A Links(a,nl,n2))

According to the yuML metamodel (Figure 3.2), the concept Relationship serves to declare
directed and undirected relationships between two nodes or a node with itself. End-roles of this
kind of Edge hold some additional features and accept further boolean predicates than those
roles appear in Arc, such as multiplicities. Based on the type of relationship, the end-role might
be, for instance, a whole/part, as it appears in Composition relationships, and a parent/child as
it occurs in Generalisation relationships.

It worth saying that the predicate Links(x,y,z) represents the undirected relationship
(connection) between the node y and the node z, whereas, the Connects(a, b, c) expresses the
directed relationship between the node a and the node b, in which the relationship a connects
the source b to the target c.

3.5 Outlook on the Chapter

The chapter introduced an overview of the proposed solution for the research problem, idenfitied
earlier in Chapter 1. More specifically, the overall structure of the BUILD method is discussed,
including the related system views, example of the graphical notation of models and critical
transformation steps at each stage of developement. Development activities that are mastered
by end-users or are led automatically by rules are also highlighted for each phase.

Furthermore, the overall structure and components of model transformation and code gen-
eration phase, within BUILD, are presented. This includes the internal architecture of transfor-
mation steps, the style of designing mapping rules (hybrid), and programming language that is
used to implement them (Java).

Moreover, the modelling language (uML), which is used in BUILD, for expressing required
system specifications is presented briefly in this chapter. The core elements of the language were
defined using metamodelling strategy in order to express all critical concepts of the information
system domain. Semantics of the metamodel elements are formalised using First-Order Predicate
Logic (FOPL) with a number of selected extensions, namely, subtyping, equality, membership,
exclusive disjunction and uniqueness quantification.

60

ML Concepts and Notations

In the Requirement Sketching Phase

“The most difficult part of requirements gathering is not the act of recording what the user wants, it is
the exploratory development activity of helping users figure out what they want”

Steve McConnell

4.1 Context

This chapter describes, in detail, the Micro Modelling Language (uML) models appearing in the
Requirement Sketching Phase, namely, Task, Impact and Information Model. For each model,
the chapter presents how the model satisfies its purpose within the framework. Additionally it
discusses each model concept and graphical notation for that concept, also providing a formally
defined semantics using a set of FOPL policies.

4.2 Overview of the Task Model

A Task Model is the highest level, manually-constructed, diagrammatic representation of a
business in terms of stakeholders, the tasks they perform and the goals to be achieved. It is a
structural model that captures the wider context and the initial requirements of the business in
a straightforward way by linking every task with a purpose or goal that is significant and worth
recording in the business domain.

The participation of stakeholders, human or external system, in tasks is depicted in a
clear way to be modelled naturally by the business end-user. Stakeholders might be specified /
generalised to appear at different levels of abstraction. Precise types of participation and task
occurrence, namely, multiplicity and optionality, are adopted to reflect the designer’s natural
intuitions about the ways in which they interact with the system and how the business is
performed. These basic specifications are developed during the transformation stages into further
design decisions used for implementation, such as iterations and conditional branches.

61

CHAPTER 4. NOTATIONS & MT IN REQUIREMENT PHASE 4.2. TASK MODEL

Apart from this, business tasks in the Task Model are fully compositional, and they may
be aggregated or decomposed as desired to reveal their part/whole structure. Additionally, they
may be presented at different degrees of abstraction to reveal their general/specialised structure.
There is no restriction on the ideal granularity of a task; a stakeholder might perceive tasks
arbitrarily at different levels of detail.

The possible ways in which parts collaborate in order to perform the main task and meet the
intended goal are considered from the end-users perspective. One part, for instance, might be
executed independently to perform all aspects of the original task. Consequently, the parts are
noted as options or choices. In some cases, internal flows between the parts might conceptually
exist, each part performing an aspect of the main task. Both features can be captured by
end-users using a simple notation.

Each group of business tasks that falls within the scope of a business practice might be
modelled as a boundary that represents a separate part of the system. This feature can be
adopted in order to document and organise the incremental delivery phases if planned. Tech-
nically, boundaries are used to describe the details of a composed task, including subtasks and
their interactions with stakeholders.

The Task Model, in the proposed metamodelling hierarchy, is considered a kind of Model.
Thus, concepts of the Task Model can be defined using FOPL and relate to the corresponding
pML metamodel concepts.

Law 15. The TaskModel is a kind of the Model. Thus, every TaskModel is a Model.

TaskModel <: Model
V' m e TaskModel(m)
N

Model(m)

4.2.1 Notation and Semantics of the Task Model

In this section, each concept that appears in the Task Model is introduced with some details
about its usage and how it is visualised graphically in the model. It is worth emphasising that
a number of UML notations in the Use Case and Class Diagram are adopted and reused with
some differences in their semantics. The differences allow us to apply the same notations in
more modelling contexts, with a well-defined interpretation. This means our concepts might
have a slightly different meaning from standard UMLI[70]. The following table (4.1) summaries
all predicates used in describing uML Task Model.

In order to motivate the list of policies that specifies the Task Model, some definitions must
be identified first. According to the uML metamodel hierarchy, the core elements of the Task
Model are subtypes of either Node or Are:

(Actor <: Node) N (Task <: Node) N (Goal <: Node) A (Participation <: Arc)
A (Input <: Participation) A (Output <: Participation)

62

CHAPTER 4. NOTATIONS & MT IN REQUIREMENT PHASE

4.2. TASK MODEL

Predicate Meaning Syntactic Sugar
TaskModel(x) z is a Task Model z: TaskModel
Task(x) z is a Business Task x:Task
Goal(x) z is a Business Goal z:Goal
Actor(z) z is an Actor z:Actor

Human(z) z is (Human) user
EzSystem(z) z is an external system
Participation(z) z is a Participation x:Participation
Input(x) z is an Input participation z:Input
Output(x) x is a Output participation x:Qutput
Composition(z) x is a Composition x:Composition
Total(x) z is a Total Composition
Generalisation(z) x is an Generalisation x:Generalisation
Disjoint(x) z is a Disjoint Generalisation
Role(z) z is an end-role z:Role

General(z, y)

Specific(s, y)
Whole(z, y)
Part(z, y)

z is general in Generalisation y
x is specific in Generalisation y
x is whole in Composition y

z is part in Composition y

Table 4.1: Predicates for uML Task Model

From that, any Node in the model can be either a Task, Goal or an Actor. This can be expressed

in logic as:

V n: Node, ¥V m: TaskModel

e (n €mn m)

—

Actor(n) & Task(n) & Goal(n)

In the same context, any Arc appears in the Task Model is a Participation:

Ya:Arc, YV m:TaskModel

e (a €n m)

—

Participation(a)

63

CHAPTER 4. NOTATIONS & MT IN REQUIREMENT PHASE 4.2. TASK MODEL

4.2.1.1 Business Goal

The notion of a business goal is used to express some high-level aim, which is not directly
measurable. It is an essential concept in the model from business management prespective.
Some business tasks might be restructured during transformation steps. Relating some business
tasks to a goal, at the early stage, enables the achievement of that goal to be measured, in the
later design.

Because it is more abstract than a business task, we use a dashed outline ellipse to represents
abstract aims in the model, as it illustrated in Figure 4.1. The semantics of Goals can be
formalised using the following FOPL policies:

Figure 4.1: Task model. Goals

According to the pML metamodel, Business Goal is defined as a subtype of the Node element
(Goal <: Node). Thus, it is identified using a unique identifier. This can be written formally
in logic as:

V' m:TaskModel, ¥ g : Goal & (a €, m),
3lid : Identifier o Id(g,m,id)

4.2.1.2 Business Task

To depict tasks, we reuse the ellipse notation for a UML use case, but do not restrict this to
mean a single, small-scale interaction, or use case. This allows for larger, aggregated tasks to
be described, as well as single use cases. Tasks always achieve measurable objectives, within the
business domain. Figure 4.2 illustrates the graphical notation of tasks in Task model.

CPRED

Figure 4.2: Task model. Tasks

Similar to Business Goal, Business Task is defined as a subtype of the Node element (Task <:
Node). Thus, it is identified using a unique identifier that formalised in FOPL as:

V' m: TaskModel, ¥Vt : Task o (t €, m),
3lid : Identifier o Id(t,m,id)

64

CHAPTER 4. NOTATIONS & MT IN REQUIREMENT PHASE 4.2. TASK MODEL

4.2.1.3 Participant

The system stakeholders are represented as UML actors that appear in the model as Human or
an external system participant V a : Actor — Human(a) & ExzSystem(a). Human actors are
depicted as stick figures, Figure 4.3 (left), whereas external systems are depicted as box nodes,
reused from the UML deployment diagram, Figure 4.3 (right).

Figure 4.3: Task model. Actors

As it described in the uML metamodel, Actors in the Task Model are Nodes, (Actor <: Node),
each participant (actor) has only one unique identifier:

V' m: TaskModel, ¥ a: Actor e (a €, m),
3! id : Identifier o Id(a,m,id)

4.2.1.4 Participation

Participation arrows capture system interactions with stakeholders, which can be represented as
Input or Output participation. Both types are considered subtypes of Participation in the pML
metamodel ((Input, OQutput) <: Participation). Therefore, any Participation arrow appears
in the Task Model either a Input or an Output arrow:

V p: Participation, ¥ m : TaskM odel
b (p Em m)
—

Input(p) @ Output(p)

The input arrow indicates that an actor participates in a task by supplying some external inputs
(e.g information). This is determined by the direction of the arrow from the actor toward the
task. Similarly, the output arrow indicates that an actor participates in a task by receiving some
information from the system. Figure 4.4 illustrates the graphical notation of participation in
the Task model.

: : Sys

Act

Figure 4.4: Task model. Participation

65

CHAPTER 4. NOTATIONS & MT IN REQUIREMENT PHASE 4.2. TASK MODEL

The Input participation can be defined in the following theorem that follows law (axiom) 10,
substituting variously Task or Actor for Node, and Input for Fdge. This can be written as:

Vp:Input, Vt:Task, Va: Actor
e (Connects(p,a,t)
A Source(p,a) N Target(p,t))

Following the similar way of defining Input participation, It can be said that any Output connects
a task, as Source, to an actor, as Target. This can be written as:

YV p: Output, ¥V t: Task, V a: Actor
e (Connects(p,t,a)
A Source(p,t) A Target(p,a))

4.2.1.5 Generalisation

Tasks may be described in general, or specific terms, in order to express the “is-a” relationship.
In consequence, a task is regarded as an ancestor if it has a specialised task that inherits from it.
In the same context, actors are treated likewise. We reuse the UML white triangle arrowhead
notation for generalisation (inheritance), pointing to the general task (Figure 4.5) . The following
figure illustrates that the Task A is a task generalisation of the Task B and C.

T o

Figure 4.5: Task model. Generalisation

According to the pML metamodel, generalisation is considered a kind of Relationship
(Generalisation <: Relationship) in which it connects the more specific task to the general
one. The following logic expression represents the notion of Generalistion in the TaskModel:

YV t1,t2 : Task, V g : Generalisation, ¥ m : TaskModel
o ((t1,12,9 €m m) A Connects(g,t1,12)) —
General(g,t2) N Specific(g,tl)

4.2.1.6 Composition

Aggregate tasks may be composed of other tasks to represent the “is part of” relationship. The
notion of composition is a primary concept in compositional systems. We therefore prefer this
term to the alternative term aggregation. We reuse the UML white diamond arrowhead and
disjoint notations for whole/parts structures, pointing to the composed task (as a consequence,
the include-dependency is redundant).

66

CHAPTER 4. NOTATIONS & MT IN REQUIREMENT PHASE 4.2. TASK MODEL

According to the pML metamodel, composition is considered a kind of Relationship (Composition <:
Relationship) thatconnects the part tasks to the whole one. This relationship appears in the
Task Model in two styles: total or partial composition V ¢ : Composition, m : TaskModel e
((c €m m) A (Total(c) @ — Total(c))). The following logic expression represents the notion
of Composition in the TaskModel:

V t1,t2 : Task, V¥V c: Composition, ¥ m : TaskM odel
o ((t1,t2,¢ €m m) A Connects(c,tl,t2))
N

Whole(c,t2) A Part(c,tl)

From the business-user perspective, all “part” tasks involved in a white diamond (with disjoint)
arrowhead composition represent options, or choices. In each execution, one part may perform
independently the complete job of the ancestor task. This feature can be expressed using a
unary predicate as: ¢ : Composition N\ Disjoint(c). Figure 4.6 (a) below illustrates the visual
representation of task optionality feature in the Task Model.

T & o o

(a) Task model. White diamond (b) Task model. White diamond
Composition (with disjoint) Composition

Figure 4.6: Task Model. Compositions

Besides, part tasks involved in a white diamond arrowhead composition indicate that there
are such data flows and sequence interconnections between them, that they must be consid-
ered as all collaborating together to perform the complete job of their ancestor. Technically,
there are internal variables that hold and pass data from a task to another to complete the
ancestor mission. This feature can be expressed using the negation of Disjoint predicate as:
¢ : Composition A — Disjoint(c). Figure 4.6 (b) demonstrates this.

As previously discussed, it is worth saying that the Task Model takes a different position
from the use case model, where composition would create something larger than a use case. The
current UML Use Case Diagram, does not formally compose use cases (the composition would
no longer be a use case). The Composition relationship used here obviates the need for extra
“include dependency” relationships. UMLI[70] uses composition to denote a specific flavour of
aggregation, which unfairly limits the use of the term composition, which is used more generally
in English to describe composed relationships.

4.2.1.7 Boundary

A rectangular system boundary may be drawn around groups of tasks, to indicate that these
tasks fall within the scope of the system to be developed, while other tasks fall outside. Therefore,
the Task Model might contain a number of logical Boundary nodes: V m : TaskModel, 3 b :
Boundary e (b €, m).

67

CHAPTER 4. NOTATIONS & MT IN REQUIREMENT PHASE 4.3. IMPACT MODEL

4.2.2 The Significance of Task Model

The importance of Task Model emerges through its use of subtle concepts that allow the model
transformation process to take different design decisions. These features are highlighted below
and discussed later in detail in Chapter 4.

e Differentiating between the two types of stakeholders at early stage contributes to critical
design decisions of user interfaces or system inter-operations, which will later be required.

e Differentiating between the two types of participations, Input and Qutput, at early stage
allows the automatic prediction of the Graphical User Interface (GUI) components and
controls required in systems’ screens.

e Differentiating between the two types of compositions at this stage automatically deter-
mines the control flow between the part tasks. Each subtask, produced at later stages,
might be independently executed to perform the main task, or a particular flow might
exist between them based on their atomic CRUD operations.

4.3 Overview of the Impact Model

The Impact Model is the highest level, manually-constructed, diagrammatic representation of
a business task’s interaction with the logical data within a system. It does not describe the time
or order of processing but rather what information is produced and consumed by each task. It
is assumed that each task has an effect on objects of reading, writing or updating (both reading
and writing). These influences appear in the model via several kinds of arcs, each with a distinct
meaning, that represent each CRUD (create, read, update and delete) operation.

The model might be compositional, expanding the level of detail at which a task is described.
Like the Task Model, this feature is captured using system boundaries that contain the parts
of the decomposed task with their interactions with the data. It is essential that the tasks in
both the Task and Impact Model remain at the same level of granularity in order to generate a
consistent layer in our layered model transformation approach.

The business data appears in the Impact Model as objects, corresponding to physical objects
and documents, or logical data used by the business. It can be said that any object holds useful
information about stakeholders or physical business items. Each object in the model has a
lifespan that is determined by tracing the effects of CRUD on it.

The notions of object multiplicity and alternatives are also presented in the Impact Model
to reflect end-user logical thoughts about how an object might participate in a task. This is
determined from the perspective of the tasks using simple and easily-adopted notations. For each
execution of the task, we identify how many other objects are affected. In addition, alternative
kinds of data may be acceptable as inputs to or outputs from certain tasks. This is captured
using a simple notation that does not complicate the model.

68

CHAPTER 4. NOTATIONS & MT IN REQUIREMENT PHASE 4.3. IMPACT MODEL

Law 16. The ImpactModel is a kind of Model.

ImpactModel <: Model
V' m e ImpactModel(m)
—

Model(m)

4.3.1 Notation and Semantics of the Impact Model

In this section, each concept that occurs in the Impact Model is introduced with some details
about its usage and how it is visualised graphically in the model. Similar to our strategy
in adopting UML for the Task Model notation, a number of UML notations taken from the
Class and Use Case Diagram are reused with slightly different meanings than the usual UML
semantics. The semantics of the proposed concepts are expressed in the following sub-sections.
The following table (4.2) summaries all predicates used in describing uML Impact Model.

Predicate Meaning Syntactic Suger
ImpactModel(z) 2 is an Impact Model x:ImpactModel
ImpBoundary(z) z is an Impact Boundary z:ImpBoundary

ImpTask(x) z is an Impact Task x:ImpTask

ImpObject(x) x is an Impact Object x:ImpObject
Flow(z) z is an Impact Flow z:Flow
InputFlow(x) z is an Input Flow z:InputFlow
OutputFlow(x) z is a Output Flow x:QutputFlow
CreateFlow(z) z is an Create Flow z:CreateFlow
ReadFlow(z) z is a Read Flow x:ReadFlow
UpdateFlow(z) x is an Update Flow x:UpdateFlow
DeleteFlow(x) z is a Delete Flow x:DeleteFlow
ImpConjunction(z) x is a disjoint impact combinator z:Imp Conjunction
ImpRole(x) z is an end-role z:ImpRole

Table 4.2: Predicates for uML Impact Model

In order to motivate the list of policies that specifies the Impact Model, two basic laws must be

identified first as follows:

Law 17. Any node in the ImpactModel can be either a task or an object or a conjunction.

(ImpTask <: Node) A (ImpObject <: Node)

Vn:Node, ¥V m:ImpactModel o (n €, m)

—

ImpTask(n) & ImpObject(n) & ImpConjunction(n)

69

CHAPTER 4. NOTATIONS & MT IN REQUIREMENT PHASE 4.3. IMPACT MODEL

Law 18. Any flow in the ImpactModel can be either create, read, update, delete, write, input,
or output flow.

(Flow <: Arc) A (InputFlow <: Flow) A
(OutputFlow <: Flow) A (CreateFlow <: Flow) A
WriteFlow <: Flow) A (ReadFlow <: Flow) A
(UpdateFlow <: Flow) A (DeleteFlow <: Flow)
Y f: Flow, ¥ m: ImpactModel o (f €, m)
.
CreateFlow(f) & ReadFlow(f) & UpdateFlow(f)
@ DeleteFlow(f) @ WriteFlow(f) @& InputFlow(f)
@ OutputFlow(f)

Law 19. Any node in the ImpactModel is involved in at least one flow as a source or a target.

V n: Node, ¥V m : ImpModel
o (n €, m)
s

3 f e Flow(f) (f €m m) A (Source(f,n) & Target(f,n))

4.3.1.1 Impact Task
Tasks are depicted as in the task model, using the ellipse node. In this model, the emphasis is
on the impact that tasks have upon objects at a given level of granularity, so no task structure

is shown. Likewise, no actors or external systems are depicted. Figure 4.7 below demonstrates
the A and B are two Impact tasks.

SPRED

Figure 4.7: Impact model. Tasks

In regard to the pML metamodel, Impact Task is considered a subtype of the metaclass Node
element (ImpTask <: Node). Therefore, it is identified using a unique identifier. This can be
written formally in logic as:

Y m : ImpactModel, ¥ t : ImpTask e (t €m m),
3lid : Identifier o Id(t,m,id)

70

CHAPTER 4. NOTATIONS & MT IN REQUIREMENT PHASE 4.3. IMPACT MODEL

Given (ImpTask <: Node) from the defined metamodel, it can be deduced that any ImpTask
in the ImpactModel can be either a source or a target of such a flow. This is a theorem that
follows from the earlier law 19, given previously in Chapter 3, by substituting of Node.

YV t: ImpTask, ¥ m:ImpModel o (t €, m)
—
3 f eFlow(f) o (f €m m) A (Source(f,t) & Target(f,t))

4.3.1.2 Impact Object

The UML rectangular nodes, taken from the UML class diagram, are used to represent informa-
tion objects, corresponding to physical business objects (entities) and documents, or logical data
used by the business in the real-world (Figure 4.8). Any object that bears useful information
may be modelled. This may include objects storing logical information about human actors, or
other physical things.

Figure 4.8: Impact model. Objects

Similar to the way of declaring Impact Task according to the uML metamodel, Impact Object is
also considered a subtype of the Node element (ImpObject <: Node). Therefore, it is identified
using a unique identifier. This can be written formally in logic as:

YV m : ImpactModel, ¥ obj : ImpObject o (obj €, m),
3l id : Identifier e Id(obj,m,id)

Similar to the ImpTask, given (ImpObject <: Node) from the defined metamodel, it can be
deduced that any ImpObject in the ImpactModel can be either a source or a target of such a
flow. This is a theorem that follows from the earlier law 19, by substitution of Node.

Y obj : ImpObject, ¥V m : ImpModel o (obj €., m)
—>
3f e Flow(f) @ (f €m m)
A (Source(f,obj) @ Target(f,obj))

71

CHAPTER 4. NOTATIONS & MT IN REQUIREMENT PHASE 4.3. IMPACT MODEL

4.3.1.3 Impacts (flows)

The impacts that occur on objects are shown visually by diverse-headed arrows. The style of
arrowhead indicates the direction of information flow, or the impact, between a task and an
object. Figure 4.9! below illustrates the various types of impacts in the Impact Model.

< X

(a) Create (b) Read/Write (¢) Update (d) Destroy

Figure 4.9: Impact model. Impacts

Given (Flow <: Arc <: Edge), (ImpModel <: Model) from the constructed metamodel,
it can be deduced that each Flow connects two distinct nodes. This is a theorem that follows
from Law 10, by substituting for Model and Edge.

V (nl,n2) : Node, ¥ m : ImpactModel, Vf : Flow
o ((f €n m) A Connects(f,nl,n2))

In order to define formally the various types of impacts in the model, a basic law is presented:

Law 20. Any flow, in the Impact Model, that connects an object to a task is a read flow,
whereas any flow connects a task to an object can be any flow out of a create, delete or write
flow. This can be expressed in FOPL as:

V m: ImpactModel, ¥ f: Flow, ¥ e: ImpObject,
Vt:ImpTask o (e,t,f €n m) A Connects(f,e,t)
N
ReadFlow(f)
A Connects(f,t,e)
N
CreateFlow(f) @& WriteFlow(f) & DeleteFlow(f)

Visually, the open-headed arrows are utilised to represent the impact on objects, which may be
read, or written, Figure 4.9(B). Figure 4.10a below demonstrates that the Object Obj1 is read
by the the Task A, whereas, Figure 4.10b shows that the Obj! is written by a Task A.

Cn T (a o]

(a) Impact model. Read (b) Impact model. Write

Figure 4.10: Impact Model. Read/Write Object

!The interpretation of Read/Write flows depends on whether the source or target is an object.

72

CHAPTER 4. NOTATIONS & MT IN REQUIREMENT PHASE 4.3. IMPACT MODEL

In addition to this, a double-ended arrow indicates both reading and writing from the same
object, which presents an updating effect, Figure 4.9(C). The following law expresses the de-
composition of an Update into separate Read and Write flows.

Law 21. Any flow, in the Impact Model, that connects bi-directionally an object to a task is
an update flow. This can be expressed in FOPL as:

V m: ImpactModel, ¥ f: Flow, ¥ e: ImpObject, ¥ t : ImpTask
o (e,t,f €m m) A Connects(f,e,t) N Connects(f,t,e)
SN

UpdateFlow(f)

The basic interpretation of this decomposition step means that each object, involved in this type
of impact, must be read first, before it can be updated or written. This interpretation comes
into play later on, when timing becomes significant, since the current model is simply concerned
with flow structure. The following figure (4.11) shows that the ObjI is updated by a Task B.

(o Do

Figure 4.11: Impact model. Update

Furthermore, two additional types of arrows are used to express the creation and deletion of
objects, as illustrated in Figure 4.9(a) and 4.9(d) respectively. These Impacts are presented via
the following figures. Figure 4.12(a) demonstrates that the object Objl is created by the the
Task C, whereas, Figure 4.12(b) illustrates that the Obj1 is destroyed (deleted) by a Task B. It
is significant to note that objects must already exist (created) first to participate in any other
type of dataflow.

(a) Impact model. Create (b) Impact model. Delete

Figure 4.12: Impact Model. Create/Delete Object

4.3.1.4 Multiplicity and Optionality of Impacts

The proposed pML language adopts the UML style for expressing cardinality to represent the
number of elements involved in such a relationship or flow. It generally expresses the statement:
at least m but no more than n objects, in the UML multiplicity adornment as (m..n). The notion
of upper bound and lower bound are also exists to specify the range of elements. Each bound
might be an exact positive integer number or unlimited number of elements, denoted by asterisk
symbol (x). The following table (4.3) exemplifies multiplicity:

73

CHAPTER 4. NOTATIONS & MT IN REQUIREMENT PHASE 4.3. IMPACT MODEL

Multiplicity Meaning
0..1 Optional (no instances or one instance)
0..% (or *) Zero or more instances
1.% At least one instance
2 (or 2..2) Exactly two instances

Table 4.3: Examples of multiplicity

As a default interpretation of the model, any Impact represents a one-to-one correspondence.
This means that one instance of each datum, modelled as an Impact Object, read or written for
each execution of the task. For simplicity, there is no need to attach (1..1) multiplicity for each
flow unless the impact correspondence is not one-to-one.

4.3.1.5 Disjoint Impact Combinator (Alternative)

The disjoint flow combinator joins two or more optional flows, where these alternate exclusively.
This ezclusive alternation concept is shown in the Impact Model by placing a clear circle symbol
between a number of flows. Figure 4.13 below illustrates this.

Figure 4.13: Impact model. Disjoint Impact Combinator

Drive Licence

Passport

In the foundation of the Impact Model, a unary predicate (ImpConjunction) is defined to
determine Nodes that are disjoint flow combinators in the model. Following the similar way of
declaring Impact Task and Object according to the pML metamodel, Disjoint flow combinator
is also considered a subtype of the Node element (ImpConjunction <: Node). Therefore, it
is identified using a unique identifier. This is a theorem that follows from the earlier law 9, by
substituting for Node.

YV m : ImpactModel, ¥ ¢ : ImpConjunction e (¢ €, m),
3! id : Identifier o Id(c,m,id)

Because disjoint flow combinators link some flows in ImpactModel, it can be either a source or
a target similar to the ImpTask, any ImpObject. This is a theorem that follows from the earlier
law 19, by substituting for Node.

Y ¢ : ImpConjunction, ¥ m : ImpModel o (¢ €, m)
SN
3 f e Flow(f) e (f €m m)
A (Source(f,c) & Target(f,c))

74

CHAPTER 4. NOTATIONS & MT IN REQUIREMENT PHASE 4.4. INFORMATION MODEL

4.3.1.6 Impact Boundary

Similar to the previously presented Task Model, a rectangular system boundary may be drawn
around groups of tasks, to indicate that these tasks fall within the scope of the system to be
developed, while other tasks fall outside. From that, the Impact Model might contain a number
of logical ImpBoundary nodes: ¥ m : ImpactModel, 3 b: ImpBoundary e (b €, m).

4.3.2 The Significance of Impact Model

The Impact Model aims to generate a partial ordering of tasks by realising data dependency
captured via data participation in tasks. This contributes to predicting and constraining the
possible orders of task execution in later design stages. The execution of a task may depend on
the prior existence of certain data, and it may in turn enable other tasks to be performed due
to the data it produces.

Therefore, the order of execution can in part be determined by tracing the CRUD effects
of tasks on a single object or multiple objects that fall in the same business scope (system
boundary). By considering each task in Figure 3.4, shown previously in Chapter 3, the creation
of the Loan object, for instance, depends on the completion of reading the Copy and Borrower
objects. Likewise, the deletion of Loan requires reading Copy first.

Furthermore, partial object life histories can also be determined by tracing the CRUD effects
of tasks on single objects. Each creation and deletion event occurs only once, but other events
may occur multiple times in any unspecified order. As a consequence, data dependency, the
fundamental property of the Data Model, may be determined directly via analysis of the object
lifetimes in the impact model. When more than one obejct is involved in the same task, with
different types of impacts, this means that there exist dependency relationships between these
objects, in which shorter-lived objects always depend on longer-lived ones.

Tracing the CRUD effects of a single task execution on individual objects (viz. a set of
individuals) also provides useful information for the Data Model since knowing the relative
extent (life expectancy) of each object also informs the notion of data dependency. From this,
we can assume that it is possible to predict target concepts to generate a partial Data Model to
express the interdependency of the business entities.

4.4 Overview of the Information Model

The Information Model is the highest level, manually-constructed, diagrammatic represen-
tation of the structure of business objects. The main purpose of the Information Model is to
capture sufficient information on business data to generate a complete Data Model. We are
following the standard approach taken in software engineering in which the model is presented
in terms of conceptual entities (objects), attributes and inter-relationships. As a basic inspira-
tion, we view conceptual modelling as a separate activity from database design, performed by
business analysts or users in a very abstract way.

Entities in the model represent physical objects and documents or logical data used by the
business that may, or may not, be in normal form. Any object that bears useful information
may be modelled, including those storing logical information about stakeholders or other physical

75

CHAPTER 4. NOTATIONS & MT IN REQUIREMENT PHASE 4.4. INFORMATION MODEL

items. It is common for these kinds of objects to require further logical decomposition, especially
if they contain repeating groups of data.

An entity consists of properties, modelled as attributes, which describe that entity (object).
It is important for a business-user who is a domain expert to test the properties of each object
in order to ensure that they are atomic and that their values depend fully on the object instance
owning them. For each object instance, the attribute may take on a distinct value.

Apart from this, in the real-world, business objects relate and interact to present the domain
of the business. The Information Model represents this via undirected conceptual associations,
which link objects together, indicating that the related objects are acquainted in some fashion.
Additionally, relationships that require grouping sets of objects that are treated together or share
common properties, such as composition and generalization, respectively, can be expressed as
other types of association to imply further semantics.

The various relationships provide clean and precise semantics about the notation of the
model elements for the business-user. They show details, such as multiplicity constraints, which
hide technically significant information to determine data dependency, using our promoting and
qualifying policies until relationships are all of the many-to-one kind, with the many always
depending on the one.

The Information Model, in the proposed metamodelling hierarchy, is considered a kind of
Model. As a consequence, concepts of the Information Model can be defined using FOPL and
relate to the corresponding uML metamodel concepts.

Law 22. The InformationModel is a kind of Model.

(InformationModel <: Model)
vV m e InformationModel(m)
—

Model(m)

4.4.1 Notation and Semantics of the Information Model

In this section, each concept that appears in the Information Model is introduced with some
details about its usage and how it is visualised graphically in the model. The following table
(Table 4) summaries all predicates used in describing pML Information Model.

In order to motivate the list of policies that specifies the Information Model, two basic laws
must be identified first as follows:

Law 23. Any node in the InformationModel is an object.

(InfEntity <: Node)
¥V n: Node, ¥ m: InformationModel

e(n €n m)
—>
InfEntity(n)

76

CHAPTER 4. NOTATIONS & MT IN REQUIREMENT PHASE 4.4. INFORMATION MODEL

Predicate Meaning Syntactic Suger
InformationModel(x) z is an Information Model z:InformationModel
InfEntity(x) z is an Information Object (Entity) x:InfEntity
InfAttribute(z) z is an Information Attribute x:InfAttribute
Relationship(x) z is a Relationship z:Relationship
Association(x) z is an Association x:Association
Generalisation(x) z is a Generalisation z:Generalisation

Parent(x) z is a Parent
Child(z) z is a Child

Disjoint(z) z is Disjoint

Composition(z) z is a Composition x:Composition

Whole(z) z is a Whole
Part(x) z is a Part
Total(x) z is a Total Composition

InfRole(x) z is an end-role

Table 4.4: Predicates for uML Information Model

Law 24. Any edge in the Information Model is a relationship.

(Relationship <: Edge)
Y a: Edge, ¥ m: InformationM odel

o (a €n m)
—
Relationship(a)

Law 25. Any relationship in the Information Model can only be one out of: a generalisation
or composition or association.

(Generalisation <: Relationship A
Composition <: Relationship A
Association <: Relationship)

V r : Relationship, ¥ m : InformationM odel
o (r €, m)

N

Generalisation(r) @ Association(r) @& Composition(r)

4.4.1.1 Object
Similar to the object’s notation used in the Impact model, the UML rectangular nodes, taken
from the UML class diagram are adopted to present information objects in the model (Figure

4.14). The information objects correspond to physical business entites and documents, or logical

7

CHAPTER 4. NOTATIONS & MT IN REQUIREMENT PHASE 4.4. INFORMATION MODEL

data used by the business. Any object that bears useful information may be modelled. This
may include objects storing logical details about human actors, or other physical things.

Figure 4.14: Information model. Objects (Entities)

It is worth saying, physical objects are often more complex than their logical counterparts,
because they may contain repeating groups of data that should eventually be split. According
to the pML metamodel, Information Object is also considered a subtype of the Node element
(InfEntity <: Node). Therefore, it is identified using a unique identifier. This can be defined
in FOPL as:

V' 'm: InfModel, ¥V obj : InfEntity e (obj €, m),
3!id : Identifier o Id(obj,m,id)

Each object in the model might involved in one or more than one relationship with other objects.
This can be expressed formally as:

V m: InformationModel, ¥V r : Relationship,
3 objl,0bj2 : InfEntity e ((objl,0bj2,r Em m)
—

(Connects(r, objl,0bj2) V Connects(r,obj2,0bjl)))

4.4.1.2 Association

Associations express conceptual “has a” relationships between objects, between objects of any
class, expressed formally as Association <: Relationship. The UML straight lines are used
to represent the links, that are usually bounded by events that involve the objects concerned.
These relationships are undirected, meaning that the dependency of one object upon another is
not yet known or understood. Figure 4.15 below, A is an object associated with another object
B. Associations may optionally be named.

Figure 4.15: Impact model. Associations

The object might involved in one or more than one association with other objects, or it might
refer to itself (self-relationship). This theorem follows from Law 13 by substituting for Model,
Node and Relationship:

V m: InformationModel, ¥V r : Association,
3 objl,0bj2 : InfEntity e ((objl,0bj2,r Em m)
—

(Connects(r, objl,0bj2) V Connects(r,obj2,0bjl)))

78

CHAPTER 4. NOTATIONS & MT IN REQUIREMENT PHASE 4.4. INFORMATION MODEL

4.4.1.3 Composition

Composition is a conceptual whole/parts relationship, or “is part of”, in the domain, expressed
formally as: Composition

<: Relationship. It groups sets of objects that are treated together, indicating data dependency
of the whole on the parts, which is assumed by default. The parts may exist independently of the
whole. Composition is shown using the white UML diamond arrowhead notation, with the arrow
pointing to the whole concept (Figure 4.16). The notion of composition is a primary concept
in compositional systems. We therefore prefer this term to the alternative term aggregation.
UML uses composition to denote a specific flavour that we call total composition (section 4.4.1.4
below).

Figure 4.16: Information model. Composition

The following policy defines the concepts of Composition in the Information Model and the no-
tion of its Parts and Whole.

Law 26. Any compostion, in the Information Model connects Part objects to the Whole one.
This can be expressed in FOPL as:

V m: InformationModel, ¥ ¢ : Composition, ¥ objl,0bj2 : InfEntity
e ((c,0bj1,0bj2 €, m) A Connects(c,obj2,objl))
N

Whole(objl) A Part(obj2)

4.4.1.4 Total Composition

A total composition is one in which the parts belong entirely to the whole, in the sense that they
cannot exist independently without the whole. Total compositions are significant, because the
direction of data dependency is reversed: the parts depend on the whole. For instance, deletion
of the whole must result in a cascading deletion of the parts. This is shown by placing a filled
circlel over the composition, to indicate total ownership of the parts. The following figure (4.17)
indicates that A is composed of B and C, which cannot exist without the A. It can be declared
using Law 28 above, as Total is irrelevant to deducing the whole and part.

79

CHAPTER 4. NOTATIONS & MT IN REQUIREMENT PHASE 4.4. INFORMATION MODEL

Figure 4.17: Information model. Total Composition

4.4.1.5 Generalisation

Generalisation is a conceptual general/specific, or “is a”, relationship in the domain. It groups
sets of objects that share some common properties, indicating data dependency of the specific
on the general. Generalisation is expressed using the UML triangle arrowhead notation, with
the arrow pointing towards the more general concept. The following figure (4.18) illustrates that
B and C are specialised cases of A.

Figure 4.18: Information model. Generalisation

Law 27. In the InformationModel, each Generalisation Connects Child objects to a Parent
one. This can be formally expressed as:

V m: InformationModel, ¥ g : Generalisation, ¥ objl, 0bj2 : Inf Entity
e ((f,0bjl,0bj2 €, m) A Connects(g,obj2,0bjl))
N

Parent(objl) A Child(obj2))

4.4.1.6 Disjoint Generalisation

A disjoint generalisation is one in which the specific concepts are mutually exclusive, in the sense
that no object from the domain could be an instance of both concepts simultaneously. This is
shown by placing a clear circle over the generalisation, to indicate that the specialisations are
disjoint. Figure (4.19) indicates that A may be either B, or C, but not both in the given domain.

Using the same law for defining the (overlapping) generalisation (law 29), the disjoint generali-
sation also connects Child objects to a Parent one.

V m: InformationModel, ¥ g : Generalisation, ¥ objl, 0bj2 : InfEntity
o ((f,0bj1,0bj2 €,, m) A Disjoint(g) A Connects(g,obj2,objl))
N

Parent(objl) A Child(obj2))

80

CHAPTER 4. NOTATIONS & MT IN REQUIREMENT PHASE 4.4. INFORMATION MODEL

Figure 4.19: Information model. Generalisation

4.4.1.7 Attribute

Attributes represents the atomic properties of entities (objects), in which each entity has one
or more attribute (V obj : InfEntity, Ja : Attribute o (a €, obj)). Similar to the UML
class diagram, they are visually located in the usual drop-down partition of the Information
Model obejcts the following Figure (4.20) illustrates the representation of properties, including
the name and the data type, for two information entities: A and B.

A B
X : String Z - Date
y @ Integer

Figure 4.20: Information model. Attributes

4.4.1.8 Multiplicity

In the Information Model, objects are related to each other with a given multiplicity. For each
instance of object at one end of the association, there exist zero, one or more instances of
the second object at the opposite end. The usual UML multiplicity adornments, examplified
previously in table 4.3, are adopted to mark various kinds of multiplicity, namely, one-to-many,
zero-to-many, many-to-many, and optional.

X 1
: | 8 |

GV

Figure 4.21: Information model. Multiplicity

Figure 4.21 (A) indicates that there are zero-to-many A(s) for each entity B. However, binary
associations in Figure 4.21 (B) represents the decomposition of a ternary or higher-arity associ-
ation between three entities: C, D, and E. Each N-arity association must be broken down into
a set of binary associations in order to be analysed in a later stage.

81

CHAPTER 4. NOTATIONS & MT IN REQUIREMENT PHASE 4.5. OUTLOOK ON THE CHAPTER

4.4.2 The Significance of The Information Model

e Associations are analysed later to reveal data dependencies, using rules based on multi-
plicity. This analysis is later used to normalise tables ready for database implementation.

e Properties (Attributes) are captured for each entity. The attributes later become the
columns of database tables. Some attributes may be marked as uniquely identifying the
owning entity.

e In circumstances where it is impossible to find a unique identifier for an entity, this may
be manufactured automatically.

e The Information Model may still capture atomic data at a high level of abstraction, for
example, using types such as Currency, Text, Time, which may need translation in later
stages.

4.5 Outlook on the Chapter

This chapter discussed, in-depth, the concepts, adopted graphical notations, and formal seman-
tics for each Micro Modelling Language (¢ML) model appearing in the Requirement Sketching
phase. It covered all critical elements, their usage, and their all possible interpretations within
the various contexts of the uML Task, Impact and Information Model.

Additionally, the chapter discussed how the selected system views contribute to the main
goals of the thesis. More specifically, it showed how the proposed user-friendly modelling lan-
guage, which has simpler and cleaner semantics than current UML-based approaches, captured
the most critical aspects of the system using business user knowledge. Moreover, the chapter
discussed how the core elements of this uML notation succeed in raising the level of abstraction,
compared to UML, at which business-users may express their model specifications.

The semantics and notation for each model and element are compared to similar or closely
related UML concepts and notation, showing the simplicity and clarity of the proposed lan-
guage. A number of unary and n-ary predicates were introduced for defining concepts and their
interrelationships within each model in respect of the previously defined metamodel.

82

ML Concepts and Notations

In the Analysis Phase

“The Analyst wants to get at the simplest form of the system which has the features they
are interested in”

Analysis Wisdom - ultradark

5.1 Context

This chapter describes in detail the Micro Modelling Language models used in the Analysis
Phase, namely, Data (Dependency), DataFlow (initial and detailed) and (Screen) State Model.
For each model, the chapter presents how the model satisfies its purpose within the framework.
The chapter also discusses each model concept and its corresponding graphical notation, defining
the concept formally using FOPL.

5.2 Overview of the Data Dependency Model

The Data Dependency Model is an automatically-generated intermediate level diagrammatic
representation that is intended to describe the logical data of the system and support the de-
velopment to a point where a logical database schema may be generated. The model consists
of a number of logical objects linked by a number of dependency relationships, representing the
direction of data dependency. This also determines which additional attributes will be used for
references between objects and handled in the next stage of the layered transformation to gener-
ate the Database Schema Model. In other words, this determines where the forthcoming foreign
keys will be located. The following figure (Figure 5.1) demonstrates the visual representation of
the Data Model elements.

The entities represent logical, rather than physical, data used by the business in the real-
world from which all repeating groups have been isolated. Any entity (object) bearing useful
logical information, including stakeholders or other business items, is modelled. It contains

83

CHAPTER 5. NOTATIONS & MT IN ANALYSIS PHASE 5.2. DATA MODEL

[~ | —

(A) (8)

Figure 5.1: Data model. (A) Entity, (B) Dependency

attributes corresponding to the named columns of tables in a relational database that will be
generated in the next stage of transformation.

Attributes are the atomic properties of objects. They are wholly functionally dependent on
their owning object for their value; for each object instance, the attribute may possibly take
on a distinct value. Only simple properties that are not further decomposable are modelled
as attributes. Decomposable properties must be modelled as distinct objects instead, unless
the target database can treat them in the same way as a basic type. At a higher level, the
business-user specifies one or more attributes that eventually identify the object uniquely. This
is taken for granted in the generated Data Model. Otherwise, if the identifier cannot be found,
an artificial identifier is created.

In the current version of BUILD, a complete Data Dependency Model is constructed auto-
matically from a multiplicity analysis of conceptual associations in the pre-designed Information
Model. All associations are either promoted or translated directly into directed dependencies
in which the many-sided object depends on the one-sided one. In worth mentioning that the
Data Dependency Model may be, alternatively, constructed partially from an impact analysis of
events in the Impact Model, an object being created from a pre-existing one. Either or both of
these prior business user predefined models may be used as a source for the data model and may
be crosschecked for consistency.

The Data Dependency Model, in the proposed metamodelling hierarchy, is considered a kind
of Model. Thus, conepts of the Data Dependency Model can be defined using FOPL and relate
to the corresponding pML metamodel concepts.

Law 28. The DataModel is a kind of Model.

DataModel <: Model
V' m e DataModel(m)
N

Model(m)

5.2.1 Notation and Semantics of the Data Model

In this section, each concept that appears in the Data Model is discussed in detail. This includes
its usage and how it is visualised graphically in the model. It is worth emphasising that a number
of UML notations in the Class Diagram are adopted and reused with slight different meaning
from its original semantics. For instance, underlining attributes in the UML Class Diagram
is used to express static attributes. The meaning of underlining attributes is changed here to
express primary keys The following table (5.1) summaries all predicates used in describing pML
Data Dependency Model.

84

CHAPTER 5. NOTATIONS & MT IN ANALYSIS PHASE 5.2. DATA MODEL

Predicate Meaning Syntactic Sugar
DataModel(z) z is a Data Model z:DataModel
DEntity(x) z is a Data Model Entity z:DEntity
DAttribute(x) z is a Data Model Attribute z:DAttribute
Dependency(z) x is a Dependency x:Dependency

DependsOn(z, y) z depends on y
DRole(x) z is a Data Model Role z:DRole

Table 5.1: Predicates for uML Data Dependency Model

In order to motivate some policies that specifies Data (Dependency) Model, basic decla-
rations of core elements must be identified first. According to the uML metamodel hierarchy
where Data Model entity is a subtype of Node and Dependency is a subtype of Arc, expressed
as: (DEntity <: Node N Dependency <: Arc), then any Node and Arc in the Data Model
represents an entity and a dependency respectively. This can be expressed formally as:

V n:Node, ¥V a: Arc,m : DataModel
e (n,a €n m)
N

DEntity(n) A Dependency(a)

5.2.1.1 Entity and Attributes

Similar to Information Model objects and their properties, entities in the Data Model are drawn
as rectangular nodes and their attributes are treated likewise in the previously described model,
in which each entity has some attributes V e : DEntity, 3 a : DAttribute (a €, e). The
representation of Entity and Attribute are adopted from the well-known UML class diagram.
This can be shown in Figure 5.1 (A) above, Figures 5.3 and 5.4 below.

5.2.1.2 Dependency

As illustrated in Figure 5.1 (B) above, dependencies in the Data Model are drawn as a directed
edge, with an open arrowhead pointing toward the target from the dependent source on which
it depends. Figure (5.2) demonstrates that the object A is dependent upon the object B, which
can be formalised in FOPL as:

(DEntity <: Node A Dependency <: Arc

)
YV m : DataModel,d : Dependency, (el,e2 : DEntity)
o ((d,el,e2 €, m) A Connects(d,el,e2))
N
DependsOn(el, e2)

85

CHAPTER 5. NOTATIONS & MT IN ANALYSIS PHASE 5.2. DATA MODEL

Figure 5.2: Generated Data model. Dependencies

5.2.1.3 Identifier

In the Data Model, each object (entity) must have at least a single attribute that identifies it
uniquely, or several attributes, whose values taken together uniquely identify the object.

(Identifier <: DAttribute)
¥V m: DataModel, ¥V e : DEntity,
3l id : Identifier o ((Id(obj,m,id)) A id €, e)

Under all circumstances, if no identifier can be found in such an entity, an artificial identifier is
created. In the model, identifiers are shown by underlining the attributes concerned.

A B
X . String 7 - Date
y ! Integer —

Figure 5.3: Generated Data model. Primary Key

This contrasts with the usual meaning of underlining in UML notation, which denotes a static
(shared or class) attribute. From a data modelling perspective, a static attribute is not wholly
functionally dependent on its owning entity, so logically should belong to a separate single entity,
representing the constants of the class, on which the current entity depends by association.

5.2.1.4 References

For each dependency between one object and another, certain additional attributes must be
chosen for the source object to uniquely refer to the target object. The references of an object
correspond exactly to the identifiers of the objects to which they refer by association. The
references are simple, if the identifier of the target is simple, and compound if the identifier is
compound. From that, it can be said that the structure of each reference is identical to the
structure of the identity of the obejct it refers to.

A B
X : String Z : Integer
y - Integer =

Figure 5.4: Generated Data model. Foreign Key

86

CHAPTER 5. NOTATIONS & MT IN ANALYSIS PHASE 5.3. DATAFLOW MODEL

References are implicit in the dependency structure, but may optionally be visually shown in a
second drop-down box (Figure 5.4). This replaces the use of the second drop-down box in the
UML class diagram, which represents the methods of a class.

5.3 Overview of the DataFlow Models

The DataFlow Model is an automatically-generated intermediate level diagrammatic repre-
sentation that that shows how data flows between the internal tasks and data stores, and external
entities at a particular level of abstraction. The model consists of a number of entities and par-
ticipants (agents) that are connected to some tasks via various flows. It provides a detailed
description of the business tasks and aggregated subtasks that s perform operations on data in
terms of data flow.

Unlike the Impact Model, which demonstrates how a single object is impacted by tasks,
the DataFlow Entity represents a collection of objects that are directly matched to a formalised
entity appearing in the Data Model. This allows the representation of crosschecked instances
and attributes that are carried on the flows linked to an entity.

In addition, data on flows is expressed using formal expressions in terms of attributes,
instances of entities (objects), local variables and values. This textual notation also represents
filtering, projecting and assigning values when read from or written to an entity. It is worth
saying that the design of the textual statements considers the business-users capability to express
the data flows and related operations without any difficulty. As a result, the produced DataFlow
Model holds readable data with more accurate interpretations of the flows.

Much like the previously introduced Impact Model, it does not describe the time-order of
processing but rather what data passes between tasks, users and entities. A partial graph of
flows between the system components of each part of the system is automatically derived by
merging concepts from the matched boundaries that appear in the pre-constructed Task and
Impact models. This produces a number of artifacts that are divided into boundaries equivalent
to those existing in the requirement models, forming an initial DataFlow Model. It is worth
mentioning that flows between tasks are not allowed, at this level of abstraction, in which there
is insufficient information about task ordering that prevents predicting these additional flows.

The initial DataFlow Model is considered to be a top level partial model with no precise
information about the data on flows. Business users, who are aware of the kinds of data trans-
ferred between the system components, are responsible for specifying the data and expressing
basic operations meant by flows, using restricted statements recognized by the model. Using
this external information enables the complete evolution of the detailed DataFlow Model. Figure
3.7, Chapter 3, demonstrates the contents of DataFlow Model, including, a task, flow, entity
and boundary concept.

The detailed DataFlow Model is considered to be a bottom level comprehensive model that
consists of a number of boundaries of decomposed tasks (atomic tasks) based upon their atomic
actions. Each subtask, which is also a task, has only one associated flow and one atomic action.
This new collection of boundaries forms the final DataFlow Model that contains comprehensive
information regarding data flows and related operations. Figure 9.21, Chapter 9, illustrates a
detailed DFD model including its concepts similar to the initial DFD model.

87

CHAPTER 5. NOTATIONS & MT IN ANALYSIS PHASE 5.3. DATAFLOW MODEL

The DataFlow Model, in the proposed metamodelling hierarchy, is considered a kind of
Model. Thus, concepts of the DataFlow Model can be defined using FOPL and relate to the
corresponding ML metamodel concepts.

Law 29. The DataFlowModel is a kind of Model.

DataFlowModel <: Model
V m e DataFlowModel(m)
—

Model(m)

5.3.1 Notation and Semantics of the DataFlow Model

In this section, each concept that appears in the DataFlow Model is introduced with some details
about its usage and how it is visualised graphically in the model. It is worth mentioning that the
notation introduced in the previously defined Task, Impact and Information Model are resused
in the DataFlow to indicate slightly different meanings. The following table (5.2) summaries all
predicates used in describing uML DataFlow Model.

Predicate Meaning Syntactic Suger
DataFlowModel(z) z is a DataFlowModel xz:DataFlowModel
DfBoundary(x) x is a boundary x:DfBoundary
DfTask(x) z is a business task z:DfTask
DfActor(z) z is an actor xz:DfActor
DfEntity(z) x is an entity x:DfEntity
Instance(x) x is an instance of an entity z:Instance
Datum(z) z is a piece of data z:Datum

DfInputFlow(x) z is an input flow z:DfInput
DfOutputFlow(z) z is a output flow z:DfOutput
DfCreateFlow(x) x is an create flow x:DfCreate
DfReadFlow(x) z is a read flow z:DfRead
DfUpdate(x) z is an update flow x:DfUpdate
DfDelete(x) z is a delete flow z:DfDelete

DfWriteFlow(x) x is an write flow z:DfWriteFlow

DfRole(x) z is an end-role z:DfRole

InstanceOf(x, y)
FlowTypeOf(z, y)
CreatedBy(x, y)

y is an instance of z
y has flow type of z
y is created by x

88

CHAPTER 5. NOTATIONS & MT IN ANALYSIS PHASE 5.3. DATAFLOW MODEL

DeletedBy(x, y) y is deleted by z
ReadBy(z, y) y is read by z
UpdatedBy(z, y) y is updated by z
Assigns(z, y, z) z assigns y value to z
Transmits(z, y) 2 transmits datum y

AtomicTaskOf(x, y) y is an atomic subtask of z

Table 5.2: Predicates for pML DataFlow Model

In order to motivate the list of policies that describes DataFlow Model, two basic laws must be
declared first as follows:

Law 30. Using the notion of subtyping in our FOPL approach, any Node in the DataFlowModel
can be either a DfTask , a DfEntity or a DfActor.

(DfActor <: Node) N (DfTask <: Node) N (DfEntity <: Node)

¥V n: Node,m : DataFlowModel ® (n €, m)
N
DfActor(n) ® DfTask(n) ®
D f Entity(n)

Law 31. Using the notion of subtyping in our FOPL approach, any Flow in the DataFlowModel
can be either DfCreateFlow, DfReadFlow, DfUpdateFlow, DfDeleteFlow, DfWriteFlow, DfInput-
Flow, or DfOutputFlow. In the following sections, each concept that appears in the DataFlow
Model is introduced with some details about its usage and how it is visualised graphically in the
model.

(Flow <: Arc) A (DfInputFlow <: Flow) A
(DfOutputFlow <: Flow) A (DfCreateFlow <: Flow) A
(DfWriteFlow <: Flow) A (DfReadFlow <: Flow) A
(DfUpdateFlow <: Flow) A (DfDeleteFlow <: Flow)

YV f: Flow,m : DataFlowModel o (f €, m)
—
DfCreateFlow(f) @& DfReadFlow(f) @
D fUpdateFlow(f) @& DfDeleteFlow(f) ®
DfWriteFlow(f) @ D fInputFlow(f) ®
D fOutputFlow(f)

5.3.1.1 Task

Similar to the notation adopted for tasks in the Task and Impact model, DataFlow Tasks are
depicted using the ellipse node. In this model, the emphasis is on the actual data produced/con-
sumed by business tasks from/to system entities at a given level of granularity. The external data
usage and production with actors or external systems are also depicted. It is worth mentioning

89

CHAPTER 5. NOTATIONS & MT IN ANALYSIS PHASE 5.3. DATAFLOW MODEL

that during the development process, the decomposed DataFlow Tasks are also presented in the
detailed DFD using the same notation (ellipse node). Figure 5.5 below depicts the two Data

Flow tasks, A and B.

Figure 5.5: Generated DataFlow model. Tasks

According to the previously defined pML metamodel hierarchy (DfTask <: Node), each
dataflow task has only one unique identifier. This can be expressed using FOPL predicate as:
V' m: DataFlow, ¥ t: DfTask e (t €, m), 3 i: Identifier o Id(t,m,i)

5.3.1.2 Entity

Similar to the notation for objects in the Impact, Information and Data model, the UML rect-
angular nodes ar used to depict DataFlow Entity. The Entity is totally derived from the Impact
Model and might be cross-checked with the Data/Information Models. In this model, it refers to
a collection of objects, or a type, which is a distinct meaning compared to its meaning in other
models. Figure 5.6 below depicts two Data Flow entities A and B.

Figure 5.6: Generated DataFlow model. Entites

A DataFlow Entityis considered subtype of Node in the pML metamodel hierarchy (D f Entity <:
Node), therefore, it has only one unique identifier V. m : DataFlow, ¥V e : DfEntity o (e &€,
m), 3! i : Identifier e Id(e,m,i). They replace the notion of data sources in the tradi-
tional DFD, in which each entity consists of a number of instances V e : DfFEntity, 3 x :
Instance o (InstanceOf(e,x)). It worth mentioning that entities in the DataFlow Model have
no attributes shown in the diagram, but theythey are presumed to correspond to identically-
named objects (with attributes) that appear in other uML models.

5.3.1.3 Actor

Actors in the DataFlow Model are totally derived from Participant concept in the Task Model.
It is used to represent the same concept here. Therefore, to maintain the consistency between
models, an Actoris presented in the DFD using the same notation as the Task Model Participant,
that is, a human stick figure, or a 3D box to represent a human, or system actor, respectively
Va: DfActor — Human(a) & EzSystem(a). A stick figure node is used to represent a
human actor, as it seen in Figure 5.7 (left), whereas external systems are depicted as box nodes,
taken from the UML deployment diagram, Figure 5.7 (right).

90

CHAPTER 5. NOTATIONS & MT IN ANALYSIS PHASE 5.3. DATAFLOW MODEL

A

Figure 5.7: Generated DataFlow model. Actors

Each DfActor, in DataFlow Model, has only one unique identifier V m : DataFlow, Va :
DfActor o (a €, m), 3i: Identifier o Id(a,m,i).

5.3.1.4 Data Flows

Data flows describe the movement of information (data drift) within a system, between its
Tasks, Actors and Entities. The direction of such a flow is indicated by an arrow-head at one
end (unidirectional) to represent (Read, Write, Create, Destroy (Delete), Input and Output), or
at both ends (bi-directional) to represent (Update) at the initial DataFlow Diagram.

—_— < %
(a) Unidirectional (b) Bidirectional (c) Bidirectional flow
flow flow (breakdown)

Figure 5.8: DataFlow model. Flows

Figure 5.8 (a,b) above illustrates the notation of the unidirectional and the bi-directional flow
respectively, whereas (c) shows the way to express bi-directional update flows at the detailed
DataFlow Diagram.

><

<

A (®)

Figure 5.9: Generated DataFlow model. Create and Delete Flow

Figure 5.9 above shows the notation of two types unidirectional flows that are used in the DFD
model to express Create (left) and Delete (right) flow.

91

CHAPTER 5. NOTATIONS & MT IN ANALYSIS PHASE 5.3. DATAFLOW MODEL

Law 32. Any flow, in the DataFlow Model, that connects an actor to a task is an input flow,
whereas any flow that connects a task to an actor is an output flow. It can be expressed as:

V m : DataFlowModel, f : Flow,
a: DfActor,t: DfTask e (a,t,f €m m)
A Connects(f,a,t) —
D fInputFlow(f)
A Connects(f,t,a)
SN
D fOutputFlow(f)

Law 33. Any flow, in the DataFlow Model, that connects a task to an entity can be either a
create, a write, or a delete flow. On the other hand, any flow that connects an entity to a task
is a read flow. This can be expressed in FOPL as:

V m: DataFlowModel, f : Flow,e : D fEntity,
t:DfTask e ((e,t,f Em m) A
Connects(f,e,t)

—

DfCreateFlow(f) @& DfDeleteFlow(f) & DfWriteFlow(f)
A Connects(f,t,e)
N
D fReadFlow(f)

Law 34. In the DataFlowModel, each Flow links two distinct Nodes.

YV m : DataFlowModel, f : Flow e (f €, m)
SN
3 (nl1,n2: Node) e Connects(f,nl,n2)
A (nl # n2)

Law 35. Any Flow in the DataFlowModel transmits some data.
YV m: DataFlowModel, f : Flow e (f €, m)

—
3 dl: Datum e (Transmits(f,dl))

Law 36. Every Node in the DataFlowModel is involved in at least one Flow as a Source or a
Target.

V n: Node,m : DataFlowModel o (n €, m)
—
3f e Flow(f) (f €m m) N (Source(f,n) & Target(f,n))

92

CHAPTER 5. NOTATIONS & MT IN ANALYSIS PHASE 5.3. DATAFLOW MODEL

Law 37. Every DfTask, DfEntity and DfActor in the DataFlowModel can be either a Source
or a Target.

YV t: DfTask,m: DataFlowModel o (t €, m)
—
3f e Flow(f) N (Source(f,t) & Target(f,t))

V e: DfEntity,m : DataFlowModel ® (e €, m)
—
3 f e Flow(f) N (Source(f,e) @& Target(f,e))

Y ac: DfActor,m : DataFlowModel o (ac €, m)
—
3 f e Flow(f) N (Source(f,ac) @ Target(f,ac))

Law 38. Each create flow creates an instance of a target entity

V m : DataFlowModel, cf : CreateFlow,t: DfTask,
e: DfEntity o ((t,e,cf €m m) A Connects(f,t,e))
N

Jz : Instance o (InstanceOf(e,x) N CreatedBy(f,x))

Law 39. Each create flow assigns some carried data into some attributes of the target entity’s
instance

V m: DataFlowModel,cf : CreateFlow,t : D fTask,
e: DfEntity,dl : Datum e ((cf,t,e €mn m)
A Connects(cf,t,e) N Transmits(cf,dl)
N
d x : Instance, attl : D f Attribute
o ((attl €, z) A InstanceOf(e,z) N
CreatedBy(cf,x) N Assigns(cf,dl,attl)

Law 40. Each delete flow deletes some instances (one or more) of a target entity

V m : DataFlowModel,df : DeleteFlow,t : DfTask,
e: DfEntity o ((t,e,df €m, m) A Connects(df,t,e))
—

3z : Instance o (InstanceOf(e,x) A Deleted By(df,x))

Law 41. Each flow, in the DataFlow Model, that connects an entity to a task is a read flow

V m : DataFlowModel, f : Flow,e : DfEntity,t: DfTask
o ((e,t,f €m m) A Source(f,e) N Target(f,t))
N

DfReadFlow(f) N Connects(f,e,t)

93

CHAPTER 5. NOTATIONS & MT IN ANALYSIS PHASE 5.3. DATAFLOW MODEL

Law 42. FEach read flow reads one or more instance(s) of a target entity

Y m : DataFlowModel,rf : ReadFlow,
t: DfTask,e: DfEntity o ((t,e,rf E€m m)
A Connects(rf,t,e))
.
3 z,y: Instance o (InstanceOf(e,x)
A InstanceOf(e,z) N ReadBy(rf,z)
A ReadBy(rf,z) N (z # vy))

Law 43. Each flow, in the DataFlow Model, that connects bi-directionally an entity to a task
is an update flow

V m : DataFlowModel, f : Flow,e : D fEntity,
t:DfTask o ((e,t,f €m m) A (Source(f,e)
A Target(f,t)) A (Source(f,t) N Target(f,e)))
s

DfUpdateFlow(f) N Connects(f,e,t) N Connects(f,t,e)

Law 44. Each update flow that connects bi-directionally an entity e to a task ¢, in the DataFlow
Model, consists of a read flow that connects e to ¢ and a write flow that connects ¢t to e.

V m : DataFlowModel,uf : UpdateFlow,
e: DfEntity,t: DfTask o (e, t,uf €m m)
N
Jrf: ReadFlow,wf : WriteFlow
o ((rf,wf €m m) A Breakdown(uf,rf,wf)
A Connects(rf,e,t) N Connects(wf,t,e))

Law 45. Each write flow updates an instance of a target entity

V m : DataFlowModel,wf : WriteFlow,
t: DfTask,e: DfEntity o ((t,e,wf €m m)
A Connects(wf,t,e))
—
3 x : Instance o (InstanceOf(e,z) N UpdatedBy(wf,x))

94

CHAPTER 5. NOTATIONS & MT IN ANALYSIS PHASE

5.3. DATAFLOW MODEL

Law 46. Each write flow modifies some attibute values of the target entity’s instance by some

carried data.

V m : DataFlowModel,rf : ReadFlow,wf : WriteFlow,
t: DfTask,e: DfEntity,dl,d2 : Datum

o ((rf,wf,t,e €m m) N Connects(rf,e,t)

A Connects(wf,t,e) N Transmits(wf,dl)

5.3.1.5 Boundary

A Transmits(wf,d2) A (d1 # d2)

—
J x : Instance, attl, att2 : D f Attribute
o ((attl,att2 €, =) N InstanceOf(e,zx)
A ReadBy(rf,z) N Assigns(wf,dl,attl)
A Assigns(wf,d2,att2) A (attl # att2))

The final generated DataFlow artefact is the detailed DataFlow Model. 1t consists of a number

of logical boundaries: VYm : DataFlowModel,3b : DF Boundary e (b €, m).

The DataFlow

DfBoundary represents a business task that is decomposed into its atomic actions (tasks) within
this boundary. The rectangular system boundary notation is drawn around groups of tasks and
entities, to indicate that these element fall within the scope of the original business task.

5.3.1.6 Textual Expressions For Describing Data of Flows

Business users are able to annotate the generated initial DFD model using a structured textual
expressions on flows. The following table (5.3) describes this:

Concept Textual expression Comment

Single variable x Java naming convention of primitive
datatypes

Multiple variables x,Y, 2 separated by commas

Single object Y Java naming convention of objects

Value (number) 665 numbers only without quotation

Value (text) "value” any valid value within quotation

Condition expression

]

a logical operator between brackets

Multiple conditions

[.. AND ... AND ..]

logical operators between brackets separated
by "AND, OR” or comma

Logical operator

> <=,<>, AND,OR

Attributes Qz, Qy 7@" symbol for indicating attribute
Projection [...] Qz the attribute ”@x” is projected
Assignment Qy =5 assignment operator without brackets

Table 5.3: Textual Expressions for Describing Data on Flows

95

CHAPTER 5. NOTATIONS & MT IN ANALYSIS PHASE 5.4. STATE MODEL

For each flow connected to an entity, the type of the return value on that flow is the type of
entity, unless a projection expression exists. For instance, suppose we have an entity called
Student and we want to retrieve the name of the one who has id = 10012. This is written as:

Student[@id = 10012] Qname

The following expression represents how the status of a particular student is updated after
completing their degree.

Student[@id = 10012]Q@Qstatus = ” graduated”

5.4 Overview of the (Screen) State Model

The Screen State Model is the lowest level, automatically-generated, analysis representation
that demonstrates, in very abstract detail, the behaviours of the system in terms of states and
transitions. It is mainly based on the notion of the UML State Machine Diagram[116], which
contains characteristics from both Mealy and Moore finite state machines[10]. Each state is used
to indicate a current system status (displayed screen), and when an event occurs, the system will
transit to the next state due to a transition triggered (labelled) by an event and/or conditions.

The model is regarded as navigational, the specifications of the GUI widgets in each screen
being out of its scope. The purpose of the model is to describe, in an abstract way, the legal and
illegal scenarios involved in business processes and the effects of actions within each process. As
a consequence, the complete State Model expresses the most successful scenario of a process as
well as all possible unsuccessful ones in order that any errors that occur during their execution
can be reported and dealt with. Those scenarios occurring in a particular task are grouped
together and modelled inside a logical boundary. As a result, a collection of boundaries that
represent the internal behaviours of business tasks jointly form the content of the State Model.

Two kinds of errors are captured in the model, one being regarded as user-input validation
and the other as related to failures caused by data source operations. The user-input error
might be raised when feeding the system with values that have an unexpected data type or
a null value. This issue is handled by reporting the error to the user and going back to the
current state (screen). On the other hand, errors related to the back-end database system, such
as connection failure, denial of access, or query/update failure, raise exceptions that notify the
user about the type of error and give the option of terminating or resetting the task again.

Achieving a complete State Model leads to a comprehensive picture of the behaviours of the
information system. This model can be understood by business users as being organised within
a set of boundaries. Figure 9.11, 9.12 and other figures, Chapter 9, demonstrate some examples
of the generated State Model including its core concepts. Each boundary represents the business
task with the internal behaviours of its subtasks.

Additionally, transition labels, containing an action’s name and precondition (if applicable)
only, with the descriptive states name, showing whether the system is waiting for the users input
or is ready to perform a database action, produce a more a readable model from an analysis
perspective. The State Model, in the metamodelling, is considered a Model. Their concepts are
defined using FOPL and relate to the corresponding ML metamodel concepts.

96

CHAPTER 5. NOTATIONS & MT IN ANALYSIS PHASE 5.4. STATE MODEL

Law 47. The StateModel is a kind of Model.

StateModel <: Model

V m e StateModel(m)
—
Model(m)

5.4.1 Graphical Notations of the State Model

In this section, each concept that appears in the State Model is introduced with some details

about its usage and how it is visualised graphically in the model.

¢ ()

(a) Start (b) State (¢) Transition (d) End

Figure 5.10: Generated State model. Core Elements

This model can be similar to state machine diagrams, employed in other approachs, in which
each boundary of the system starts start off by an initial state (pseudostate) and end up by an
end state. Each boundary has at most one initial and one end pseudostate. These states show

only the start or end of the main business task, which do not have any internal behaviour.

Predicate Meaning Syntactic Suger
StateModel(x) z is a State Model x:StateModel
State(z) x is a Screen State x:State
Waiting(x) x is a Waiting State
Ready(z) z is a Ready State
Transition(z) z is a Transition x: Transition
Variable(x) z is a local Variable x: Variable
Start(z) x is an initial pseudostate x:Start
End(z) z is a final pseudostate z:End
StBoundary(x) z is a logical boundary (region) x:StBoundary

Table 5.4: Predicates for uML State Model

In order to motivate the list of policies that specifies State Model, two basic laws must be

identified first as follows:

97

CHAPTER 5. NOTATIONS & MT IN ANALYSIS PHASE 5.4. STATE MODEL

Law 48. Any Node in the StateModel can be either a State , Start, or End.

(State <: Node) A (Start <: Node) N (End <: Node)

V' n: Node,m : StateModel ® (n €, m)
—
State(n) @ Start(n) & End(n)

Law 49. Any Arc in the StateModel is a Transition.

(Transition <: Arc)

YV a: Arc,m : StateModel o (a €, m)
—

Transition(a)

Law 50. Any boundary in the StateModel contains one Start and one End pseudostate, and
some States and Transitions.

YV m : StateModel, ¥V b : StBoundary e (b €, m)
—
dt: Transition, 3 s: State, 3! init : Start,
le: End o (t,s,init,e €, b)

5.4.1.1 State

A State in the State Model is considered a simple state, in respect to the UML terminology,
in which it does not have substates. A State is depicted in the model, using the circle node,
to represent a current status of the system at a time. Figure 5.10(b) illustrates the graphical
notation of State. It is worth mentioning that there is no difference between the visual repre-
sentation of waiting, error and ready state. Every State that appears in the model can be either
waiting, error or ready. This can be formalised as:

YV m : StateModel, V¥ s : State ® (s €, m)
—
Waiting(s) @ Ready(s) @& Error(s)

State is defined as a subtype of the Node element (State <: Node). Thus, it is identified using
a unique identifier that formalised in FOPL as:

YV m: StateModel, ¥ s : State ® (s €, m),
3lid : Identifier o Id(s,m,id)

5.4.1.2 Transition

A Transition is a directed arrow drawn from the current state to the next state of a system.
The UML notation of transition is adopted, an open-headed arrow, to represent the Transitions
in the State Model. Figure 5.10(c) demonstrates the graphical notation of Transition. The
Transition can be defined in the following theorem that follows axiom (law 10) by substituting
Node with State, as well as substituting Fdge with Transition. This can be written as:

98

CHAPTER 5. NOTATIONS & MT IN ANALYSIS PHASE 5.5. OUTLOOK ON THE CHAPTER

Y m : StateModel, ¥V t : Transition V sl, s2 : State
o ((s,t €m m) A Connects(t, sl,s2))
N

Source(sl) A Target(s2)

5.4.1.3 Start and End Pseudostate

Two types of pseudostate are used in the State Model, namely Start and End. The Start one
is placed within a logical boundary to identify the starting state of the internal behaviour of a
business task. The UML notation of the initial pseudostate is used, Figure 5.10(a) above.

On the other hand, The End pseudostate is placed within a logical boundary to identify the
end of the execution of a state machine. Similar to the Start pseudostate, the UML notation of
the final pseudostate is used, Figure 5.10(d) above.

5.4.1.4 State Boundary

Similar to the previously presented boundary concepts in other uML models, such as Task,
Impact and DataFlow models, the StBoundary element in the State Model is used to bind a
complete simple state machine diagram that contains States, Transitions and Pseudostates. This
captures a complete behaviour of a part of the system that falls within such a subsystem scope.
StBoundary can be defined using FOPL as: V m : StateModel, 3 b: StBoundary e (b € m).

5.5 Outlook on the Chapter

This chapter presented, in detail, the concepts, adopted graphical notations, and formal se-
mantics for each Micro Modelling Language (ML) model appearing in the Analysis phase of
BUILD. It covered all significant concepts, their utilisation, and their all possible interpretations
within the various contexts of the uML Data Dependency, DataFlow and State Model.

In addition to this, the chapter represented how the generated intermediate system views
contribute to the main goals of the thesis. More specifically, it shows how the generated models
together hold a comprehensive detailed view of the system using small and semantically clean
notation. Moreover, the chapter discussed how notations of the designed core elements, in each
model, were reused to appear in ML analysis models.

The semantics and notation for each model and element are compared to similar or closely
related UML concepts and notation, showing the simplicity and clarity of the proposed lan-
guage. A number of unary and n-ary predicates were introduced for defining concepts and their
interrelationships within each model in respect of the previously defined metamodel.

99

ML Concepts and Notations

In the Design Phase

“Adding manpower to a late software project makes it later!” Brooks Law

6.1 Context

This chapter describes those Micro Modelling Language (uML) models that appear within the
Design Phase of BUILD, namely, Database and Query (DBQ), Graphical User Interface (GUI)
and Code Model. For each model, the chapter introduces, in detail, concepts, underlying ASTs
and graphical notations with formally defined semantics using a set of FOPL policies and dis-
cusses how the model satisfies its purpose within the framework.

6.2 Overview of the Database and Query Model

A Database and Query Model (DBQ), shortened to a Database Model, is the lowest level,
automatically-generated, model that describes, in a generic way, the common concepts and
behaviours that exist in various relational database systems, such as MySQL, Oracle and Mi-
crosoft SQL. The model consists of one or more data schemas that hold all data and query
definitions. It uses familiar database terminologies to describe the core concepts of relational
database systems.

Concepts in DBQ fall into two categories, namely, Data Definition and Data Manipulation
and Query concepts. The Data Definition concepts are used to describe the structure of tables,
constraints that are applied to fields and special fields (keys) that represent relationships between
tables. A schema element is used to define the logical database schema that consists of a number
of persistent tables that contain some atomic columns, defined using a DB Table and Column
concept, respectively.

100

0 O U WN -

CHAPTER 6. NOTATIONS & MT IN DESIGN PHASE 6.2. DBQ MODEL

The Table element reflects the definition of a database table, that is, the table type definition
with its associated column specifications, as found in a real database system. It has a number of
columns and special columns (a primary key and possible foreign keys) represented by Column,
PrimaryKey and ForeignKey concepts, respectively. DBQ Columns are considered to be atomic
elements in the model that cannot be further decomposed. Together they define the type of
each instance (new row) of the table they belong to.

It is worth mentioning that relationships between business entities are also expressed at this
level either by foreign keys or separate tables (Linkers). The decision to convert relationships
into either a table or a special column is made according to the application of a transformation
rule. This is discussed separately in Chapter 7 and 8.

In addition to the Data Definition concepts, Data Manipulation and Query concepts, which
are used for constructing appropriate queries about a domain, are also described in a declarative
way. For example, Trigger and Procedure elements are used to define, respectively, triggers
and pre-defined queries that exist in a particular schema. The trigger is used to capture range
constraints applied to some columns of a particular table. As a result, the generated SQL script
includes a BEFORE INSERT trigger attached to the table to enforce constraints that prevent
or allow new data to be inserted.

The format for query expressions is regarded sufficiently general in order to be translated
into relational model (SQL) for various database vendors. The declarative style of describing
database queries, including the Projection (m), Selection (o) and Join (1) operations, is inspired
by Functional Algebra, as it discussed later in section 6.2.2. The following example illustrates
the expression of a query using the DBQ query syntax, Relational Algebra syntax, and natural
language (English).

The query: ” Retrieve the name of a module that has a code equals to COM6006” can be
expressed declaratively using Relational Algebra as: mpame(0code='conmeoos (Module));. The
following listing (6.1) illustrates the equivalent DBQ query expression. Query as a higher-order
function is defined. It takes Project as a first argument and a Relation as a second argument,
to which the Project is applied.

Listing 6.1: The structure of the DBQ Query Expression

<dbs:Query id="14" name="Reteive_Module_Name">
<dbs:Project id="15">
<dbs:Column id="15" name="name" size="0" prefix="Module">
<mod:Type id="16" name="Integer"/>
</dbs:Column>
</dbs:Project>
<dbs:Relation id="17" name="Module">
<dbs:Filter id="18">
<dbs:Relation id="19" name="Module"/>
<dbs:Operator id="20" type="boolean" symbol="equals">
<dbs:Column id="21" name="code" size="20">
<mod:Type id="22" name="INTEGER"/>
</dbs:Column>
<dbs:Literal id="23" type="VARCHAR" value="COM6006"/>
</dbs:Operator>
</dbs:Filter>
</dbs:Relation>
</dbs:Query>

101

CHAPTER 6. NOTATIONS & MT IN DESIGN PHASE 6.2. DBQ MODEL

The query language starts from the assumption that the results of all operations on tables, e.g.
Filter (listing 6.1 above) and Join, are treated as Relations. It can be said that the Relation
element is an abstracted term of Table. This means that any Relation in DBQ refers to either
an actual database table or else filtered or joined tables.

As a consequence of using the notion of Relation in the model, direct navigation through
the data is clearly expressed in a unified way for all operations. The concrete path to data
within Relations is used without the necessity to be computed during transformation.

The Database Model, in the proposed metamodelling hierarchy, is considered a kind of
Model. Thus, conepts of the DB() model can be defined using FOPL and relate to the corre-
sponding uML metamodel concepts.

Law 51. The DatabaseModel is a kind of Model.

DatabaseModel <: Model

V m e DatabaseModel(m)
—
Model(m)

6.2.1 Notation and Semantics of the Database and Query Model

In this section, each concept that appears in the Database Model is discussed in detail. This
includes its usage and how it is visualised graphically in the model. It is worth emphasising that
a number of UML notations from the Class Diagram are adopted and reused with a slightly
different meaning compared to the usual UML semantics. The following table (6.1) summaries
all predicates used in describing ML Database and Query Model.

Predicate Meaning Syntactic Sugar
DatabaseModel(x) z is a Database & Query x:DatabaseModel
(DBQ) Model
Schema(x) z is a DBQ Schema x:Schema
Table(x) z is a DBQ Table z:Table
Relation(x) z is a DBQ Relation x:Relation
Column(z) z is a DBQ Column x:Column

Type(z,y) a column z’s value has a y

datetype where y € {INTEGER,
VARCHAR, DATE}

Child(z,y) the node z is a child of the node y
Trigger(z) z is a DBQ Trigger x:Trigger
Procedure(x) z is a DBQ Stored Procedure x:Procedure
PrimaryKey(x) z is a DBQ Primary Key z:PrimaryKey

102

CHAPTER 6. NOTATIONS & MT IN DESIGN PHASE

6.2. DBQ MODEL

CompositePK (x)

CompositeFK (x)

ForeignKey(z)
PartOfKey(z, y)

Create(x)
Query(z)
Update(x)
Delete(x)
Defines(x, y)

Refers(x, y, z)

Refers(x, y)
Join(z)
Joins(z, y, z)

Filter(x)
Project(z)

z is a DBQ Composite
Primary Key

z is a DBQ Composite
Foreign Key

x is a DBQ Foreign Key

z is a part (column) of a

Composite Key y

x is a DBQ Insert operation
x is a DBQ Select operation
z is a DBQ Update operation
z is a DBQ Delete operation

a column z defines the

characteristics of each row uniquely

in table y
a column z refers table y

to table z

the relation z refers to the table y

2 is a join operation

z is a join operation between

relation y and relation z
x is a filter function

z is a project function

x:CompositePK

z:CompositeFK

x:ForeignKey

z:Create

z:Query
x:Update
x:Delete

z:Join

x:Filter

x:Project

Table 6.1: Predicates for uML Database and Query Model

In order to motivate some policies that specify the DBQ Model, basic declarations of core
elements must be identified first. According to the pML metamodel hierarchy where DBQ Model
table is a subtype of Node as: (Table <: Node), then any Node in the Database Model or schema
represents a logical table: V n: Node, m : Schema o (n €, m) — Table(n).

In addition to this, the Procedure element in the DBQ Model is declared in the puML
metamodel as a Function element, in which the DBQ Procedure is a subtype of Function,
(Procedure <: Function <: FExpression). Therefore, any Function in the model repre-
sents a stored procedure: V p : Function, s : Schema o (p €, s) —> Procedure(n).

103

CHAPTER 6. NOTATIONS & MT IN DESIGN PHASE 6.2. DBQ MODEL

6.2.1.1 Schema

A Schema is the metadata for a database, consisting of data and query definitions. According
to the uML metamodel, the DBQ Schema element is also considered a subtype of the Node
element (Schema <: Node). Therefore, it is identified using a unique identifier. This can be
defined in FOPL as:

V s: Schema, ¥ d: DatabaseModel o (s €, d),
3l id : Identifier o Id(s,id)

A Schema is constructed by considering the internal structure of business entities (Table), e.g.
named and typed columns, and the relationships between entities that are represented via key
columns (PrimaryKey and ForeignKey), and finally the various kinds of pre-defined queries
(Procedure and Trigger) that will be executed over the data.

Law 52. In the DatabaseModel, each node in the schema is a table.

YV s : Schema,d : DatabaseModel, ¥ n : Node
o ((n €m s) A (s Em d))
—

Table(n)

Law 53. In the DatabaseModel, each function in the schema can be either a trigger or a stored
procedure.

V s: Schema,d : DatabaseModel, ¥ p : Function
e ((p Em s) A (s Em d))
N

Procedure(n) @ Trigger(n)

6.2.1.2 Relation

Based on the concept of a Relation in Relational Databases and also in the Relational Algebra, in
which everything is considered a relation, the DBQ Relation element serves the same purpose.
Whereas Table represents the type of a database table, Relation represents the actual table (the
collection of rows), and, recursively, the result of performing relational algebra operations on
relations. It is used for binding some internal database operations (functions), such as filter and
join and presenting their returned result as a Relation with a given name.

V s: Schema, ¥V r : Relation e (r €, s),
A ((f : Filter o (Child(r, f)) ® (5: Join e (Child(r,7)))

In addition to this, the DBQ Relation is also used to refer to the collection of rows in a table,
defined in another DBQ Table element represented within the same database schema. This

interpretation is intended when when the Relation node has no descendants.

V s:Schema, ¥V r: Relation e ((r €m s) A (Child(r,2))),
At:Table o ((t €m s) A (Refers(r,t)))

104

CHAPTER 6. NOTATIONS & MT IN DESIGN PHASE 6.2. DBQ MODEL

6.2.1.3 Table

As the intention for DBQ is to express low-level logical schemas that can be directly implemented
in a relational database system, business entities that appeared previously at the Requirement
Sketching and Analysis phases are declared at this level as Table types. Each Table reflects the
usual notion of a database table and its properties as found in real-world database systems.
Figure 6.1 illustrates the structure of the DBQ table.

Figure 6.1: Generated Database and Query model. Structure of a Table

According to the uML metamodel, DBQ Table is also considered a subtype of the Node element
(T'able <: Node). Therefore, it is identified using a unique identifier. This can be defined in
FOPL as:

V' s:Schema, Y t:Table o (t €, s),
3l id : Identifier o Id(t,id)

DBQ Tables always contains one or more columns that describe the shape of the data stored in
the table: V ¢ : T'able, V ¢ : Column e (c €, t). Additionally, tables have some key columns:
V't : Table, ¥V fk : ForeginKey o (fk €, t). The description of Column, PrimaryKey,
Composite Pk and ForeginKey are presented in the following sections.

Law 54. In the DatabaseModel, each table has a primary key.

YV s: Schema, V t: Table, c: Column
o ((c €p t) N (t €m s) A Defines(c,t))
—

PrimaryKey(c)

Law 55. In the DatabaseModel, a table has only one composite key.

V s: Schema, ¥V t: Table, (cl,c2) : Column
o (((c1,¢2) €p t) AN (t €Em s)
A (Defines(cl,t) A Defines(c2,t)) A (cl # c2)
—
3! ¢k : CompositeKeye (ck = clUc2)

6.2.1.4 Column

The Column element is used to define the actual columns of a table at DBQ. Additional features
exist, which include the ability to declare a recognised datatype for each column’s value, such
as VARCHAR, INTEGER and DATE:

105

CHAPTER 6. NOTATIONS & MT IN DESIGN PHASE 6.2. DBQ MODEL

YV c: Column, YV t:Table o (¢ €, t),Type(c, VARCHAR) & Type(c, INTEGER) & Type(c, DATE)

Moreover, at this level, a column can be defined whether it is special or not. Some columns
are also foreign keys that represent relationships or primary keys that represent a structure of a
table:

YV c: Column, Vt:Table o (¢ €, t)
—
(PrimaryKey(c) V ForeignKey(c)) V Column(c)

6.2.1.5 Primary Key

A Primary Key is regarded an essential feature of database tables. Each DBQ Table has one that
might be either manufactured (automatically generated) or specified manually by a user. This
can be defined using FOPL as: V pk : PrimaryKey, ¥Vt :Table o ((pk €, t) N (Auto(pk) &
— Auto(pk))). The following figure (6.2) shows the visual representation of Primary Key within
a table, which is the bold underlined attribute.

A

x:Strina(5)
y: Integer(7)

Modify_Y()

Figure 6.2: Generated Database and Query model. Table’s Structure

Law 56. In the Schema (DBQ) Model, each primary key in such a table defines each row of
that table.

s : Schema, Y pk : Column, ¥V t: Table
o ((pk €p t) N (t €m s) N Defines(pk,t))
N

PrimaryKey(pk)

In some cases, the table might contain two or more columns that identify the uniqueness of its
rows. Therefore, these columns are captured and treated as a composite primary key, (Compos-
iteKey), of that table.

Law 57. In the DatabaseModel, a composite key defines a table if that table has more than
one primary key.

s: Schema, V cl,c2 : Column, Vt : Table
o ((cl,c2 €, t) N(t €Em)
A (Defines(cl,t) A Defines(c2,t))
A (el # ¢2))
s
3! ¢k : CompositeKey o (PartOfKey(cl,ck)
A PartOfKey(c2,ck) N Defines(ck,t))

106

CHAPTER 6. NOTATIONS & MT IN DESIGN PHASE 6.2. DBQ MODEL

6.2.1.6 Foreign Key

Relationships among business objects that are previously expressed, using graphical notation,
in Information and Data Dependency model appear here as a number of Foreign Key columns
attached to Tables. It refers to the other table in the relationship. Figure 6.2 above illustrates
the visual representation of foreign keys, which is the underlined attribute.

Law 58. In the Schema (DBQ) Model, each foreign key in such a table refers to another table.

s : DatabaseModel, ¥ fk: ForeignKey, ¥V t1,t2: Table
o ((t1,t2 €m s) A (fk €p tl))
N

Refers(fk,tl,t2)

6.2.2 The Query Language and Functional Algebra

The query language in DBQ is inspired by two types of Algebra, namely, Relational Algebra and
Functional Algebra. Relational Algebra is a procedural query language that applies particular
operators to one or more relations. Additionally, Functional Algebra implies a higher-order
functional style, in which functions accept functions as arguments. The following subsections
discuss every database operation (function) taking into account how each one relates to Algebra
concepts.

6.2.2.1 Filter

A Filter function is one of the main operations of the algebra that maps a predicate over a set
and returns a subset of values which pass the predicate test. This is similar to a filter function
in Functional Algebra, which accepts a predicate and a list as arguments, returning a filtered
list as the result. Filter can be defined using the following signature:

filter(pred : T — Bool, Set : Set[T]) : Set[T].

Regarding to the DBQ query language, a Filter element, which is equivalent to filter in a
Functional Algebra, is considered parent of two child elements, namely, Relation and Operator:

V¥ m : DatabaseModel, ¥ f : Filter o (f €, m),
3 r : Relation, op : Operator e (Child(r, f) A Child(op, f))

The Operator is noted as a boolean function (Operator <: Function) that has comparison
operators, such as greater than (>), less than (<) and equals (=), and two arguments to be
examined. The arguments are expressed as child nodes of Operator element in DBQ, which
might be Column, Variable or Literal. Listing 4.1 examplifies the utilisation of Filter, in which
a substantial predicate is provided to return a subset of Module records (filtered).

6.2.2.2 Project

The second core function in the proposed DBQ query language is the Project function that
projects out a set of column values, determined by a function, from a set of records. Similar

107

CHAPTER 6. NOTATIONS & MT IN DESIGN PHASE 6.2. DBQ MODEL

to the Filter, the Project function corresponds to a map function in Functional Algebra, which
accepts a function over every element in the input list. Project can be defined using the following
signature:

project(func: T — U,Set: Set[T]) : Set[U].

In the DBQ query language, a Project element is utilised to express the project opration that
is equivalent to project in a Functional Algebra. The DBQ Project node consists of either
some Columns or Relations nodes as descendants. This makes Project is not a complete query
expression in the DBQ language, as the relation argument is missing, but Project is considered a
function to be applied to a relation in a higher-order way, by a DBQ Query operator. However,
the prefix name, which is an attribute of the Column element, is used to label the expected type
of the second (implicit) argument.

YV m : DatabaseModel, ¥ p : Project e (p €, m),
3 ¢: Column,r : Relation e (Child(c, f) @& Child(r, f))

On one hand, when Project has a number of Columns as descendants, it means these columns
are projected from the set declared in their prefix attribute. On the other hand, when the child
of Project is a Relation node, it means that whole columns (tuples) are projected, which is
equivalent to (%) in SQL. Listing 6.1 examplifies the utilisation of Project element, in which it
has only one child element (Column) to be projected from a set of Modules as declared in its
prefix attribute.

6.2.2.3 Query

The DBQ Project and Filter functions are often used together to to return data of interest after
a search. Therefore, another high-order function might be introduced, query that takes a project
function and a set and returns a selected set. The following signature defines the Query function:

query(func: T — U, Set: Set[T]) : Set[U]

The search operation is represented in DBQ via the Query element that consists of a Project
and Relation element. In the case that the Relation is filtered, it will contain a Filter element as
child. Listing 6.1 examplifies the use of Query element, where as the following FOPL specifies
the Query element:

YV m : DatabaseModel, ¥V q : Query o (p €, m),
3 p: Project,r : Relation e (Child(p,q) N Child(r,q))

6.2.2.4 Create

Create is a usual set- theoretic operation for adding new instances (rows) into a dataset (insert).
It is a destructive operation that modifies the base tables (dataset) by instantiating a new
distinct instance (object) of that table and inserting a new record into it. It is obvious that

108

OO Ut W

CHAPTER 6. NOTATIONS & MT IN DESIGN PHASE 6.2. DBQ MODEL

there is a predicate to prevent inserting duplicated records. The uniqueness of records is based
on the values of all fields and equality is judged on the basis of the declared primary keys.

From this, the Create function can be defined as a function that takes two arguments: an
original dataset (base) of some type (7), and a new tuple (extra) of the same type T that is going
to be inserted into the base. The function returns the number of inserted tuples(nat), which is a
Natural number (nat € N), and has the side-effect of a modified dataset (base’). The following
signature defines the Create function:

create(base : Set[T|, extra : Tuple[T)) : nat, base’

In the DBQ Create element, a number of assignment operator statements, Operator elements
with symbol="assign”, are used, as descendant nodes of Create, for each item in the new tuple
that is going to be adding to the dataset. The following listing (6.2) demonstrates the structure
of the DBQ C'reate element. It is clear to see that Create has a list of Operator elements that
are assignment instructions (symbol = ”assign”) to insert every item of the new tuple, supplied
as Variables, into the equivalent column in the dataset.

Listing 6.2: The structure of the DBQ Create Expression

<dbs:Create id="28" name="INSERT_Module">
<dbs:Operator id="29" type="boolean" symbol="assign">
<dbs:Column id="30" name="code" size="6">
<mod:Type id="31" name="INTEGER"/>
</dbs:Column>
<dbs:Variable id="32" type="INTEGER" name="code"/>
</dbs:Operator>
<dbs:Operator id="33" type="boolean" symbol="assign">
<dbs:Column id="34" name="title" size="20">
<mod:Type 1d="35" name="VARCHAR"/>
</dbs:Column>
<dbs:Variable id="36" type="VARCHAR" name="title"/>
</dbs:Operator>
<dbs:Operator id="37" type="boolean" symbol="assign">
<dbs:Column id="38" name="credit" size="2">
<mod:Type 1d="39" name="VARCHAR"/>
</dbs:Column>
<dbs:Variable id="40" type="VARCHAR" name="credit"/>
</dbs:Operator>
</dbs:Create>

6.2.2.5 Update

The Update function performs an update operation on every instance of a dataset. In algebra,
we assume that it is possible to have functions with side effects. The Update function iterates
over every row of a dataset and applies an arbitrary re-assignment operation to each record
that probably satisfies a predicate. It is assumed that the dataset is modified as a side-effect of
Update. The following signature defines the Update function:

update(pred : T — U, Set : Set[T]) : nat.

It is common in various database systems that the SQL UPDATE statement returns a Natural
number, indicating the number of records that were modified. In the proposed DBQ Update, a

109

0O Ut W

CHAPTER 6. NOTATIONS & MT IN DESIGN PHASE 6.2. DBQ MODEL

number of assignment operator statements are used to express modification to express modifi-
cations to column data without considering an expression to present the return value of Update.

The following listing (6.3) demonstrates the structure of the DBQ Update. It is clear to see
that Update has an Operator of the type assignment (symbol = ”assign”) to modify the value of
the column title by the value of the variable title.

Listing 6.3: The structure of the DB(Q Update Expression

<dbs:Update id="40">
<dbs:Operator id="41" type="Boolean" symbol="assign">
<dbs:Column id="42" name="title" size="20">
<mod:Type i1d="43" name="VARCHAR"/>
</dbs:Column>
<dbs:Variable id="44" type="VARCHAR" name="title"/>
</dbs:Operator>
</dbs:Update>

6.2.2.6 Delete

The Delete is another common data manipulation operation for removing existing records from
a dataset. Similar to Create, the Delete operation is defined as a destructive operation that
modifies a base tables (dataset) by removing records and reducing its size. As Delete function
removes some records from a dataset, it is clear that there is a predicate that must be applied
to every record in the dataset. Only records that pass the predicate are removed. That is why
Delete is often used with a independant sub-operation Query with a Filter to achieve this.

From this, the Delete operation can be defined as a function that takes two arguments,
an original dataset (base) of the type T, and a projected tuple, of the same type T from the
performed filter (sub-operation). The function returns the number of removed tuples(nat), which
is a Natural number (nat € N), has the side-effect of a modified dataset (base’). The following
signature defines the Delete function:

delete(base : Set[T), togo : Tuple[T)) : nat, base’

Regarding the DBQ Delete element, a child element Relation is used to wrap the Filter function
(sub-operation) and represents its return result set to the Delete function. This filtered Rela-
tion will be deleted (extracted and remove) from the original Relation defined inside the Filter
element. The following listing (6.4) demonstrates the structure of the DBQ Delete.

110

0O Ut W

CHAPTER 6. NOTATIONS & MT IN DESIGN PHASE 6.3. GUI MODEL

Listing 6.4: The structure of the DBQ Delete Expression

<dbs:Delete id="43" name="DELETE_Code">
<dbs:Relation id="44" name="Delete Module">
<dbs:Filter id="45">
<dbs:Relation id="46" name="Module"/>
<dbs:Operator id="47" type="boolean"
symbol="equals">
<dbs:Column id="48" name="code" size="6">
<mod:Type id="49" name="INTEGER"/>
</dbs:Column>
<dbs:Variable id="50" type="INTEGER"
name="code" />
</dbs:Operator>
</dbs:Filter>
</dbs:Relation>
</dbs:Delete>

6.2.2.7 Join

The join is a database operation () that computes the inner join of two tables, resulting in a
merged table, based on a constraint between the values of two columns, one from each table. It
is considered a binary cartesian product operation (x) with a selection condition (#). The join
concept can be expressed using algebra as: og(p X q), where p and ¢ are two relations. Therefore,
the resulting join outcome is another relation that consists of columns from both relations p and
g- The following signature defines the Join function:

join(Set : Set[T], Set : Set[U]) : Set : JSet[W]

6.2.3 The Significance of the Database and Query Model

The Database and Query Model is a key model in uML because it describes a comprehensive
representation all generic data schema specifications, required for any relational database gen-
eration. This platform-independent model is used as a source model in the code generation
approach to produce executable database schema code in various target database systems.

6.3 Overview of the Graphical User Interface (GUI) Model

A Graphical User Interface Model (GUI) is the lowest level,automatically-generated, struc-
tural model that describes, in an abstracted way, the detailed GUI architecture that is common
in various enterprise system environments. The model contributes to the development of system
GUTIs by representing the concrete structure of their controls (widgets) that can later generate
simple and user-friendly interfaces for their system. Familiar terminologies for describing basic
concepts of GUI are used to form the declarative GUI language. The model is considered to be
platform- independent as no implementation details are presented in the model.

Much like the modelling strategy adopted in uML, each group of application windows that
falls within a scope of a business practice is modelled as a boundary to represent a separate part
of the system. Thus, it can be said that the GUI Model consists of a number of independent

111

CHAPTER 6. NOTATIONS & MT IN DESIGN PHASE 6.3. GUI MODEL

boundaries expressed via Boundary nodes. As this is considered during the early development
phases in BUILD, a business task may, by this stage, already have been broken down into atomic
tasks (each task having an atomic action). It is assumed here that each atomic task requires
a user interface to support human-computer interaction throughout the execution of a business
process. As a consequence, an appropriate screen design appears in the model for each atomic
task that appeared previously in the (Screen) State Model.

It can be said that the Boundary contains a collection of Window nodes that represent IS
screens. Each window in a system boundary is prioritised to be linked to another one, forming
an ordered sequence or branches (choices) of screens. The screen order is based on the priority
number attached to each Window node, the window with the highest priority score appearing
before those with lower ones to reflect the internal behaviour (logic) of a business process. It
is worth mentioning that the priority score is allocated for each window, except error ones, by
a previous model transformation step for generating the State Model, in which the priority for
each state is passed to the corresponding window, as discussed later in Chapter 7.

Generally, information system screens are classified into two major types: entry form and
output report screen. The entry form is a screen that is waiting for an external input/event
from a system actor. This appears in the GUI Model as Waiting Windows with a main button
that triggers an input action when a click event occurs. The output report is a ready screen for
executing an atomic business task, such as retrieving or deleting information from the system.
It appears in the model as Ready Windows with a main button that initiates either create, read,
update, delete or output (display) actions. It simply notifies the user that an action is going to
be initiated or displays some output message to them.

In addition to this, a failure of a business task is captured by presenting an appropriate
Error Reporting Window that links to each window in a successful scenario. An Error Reporting
Window can be defined as a special kind of Reporting Window that is used to display (report)
a meaningful error message to the user. An Fzception event that is triggered when any error
occurs is attached to every window. As a result, an error reporting window may appear during
any step in a scenario.

In fact, the GUI model has one kind of node to represent the window concept, the Window
node. The type of window, whether it is Waiting or Ready, is extracted from the generated name
of each Window. A particular naming convention is adopted whereby the name of a window
must include its type, such as Input_title.Waiting or Input_title. Waiting_error.

In typical enterprise applications, business-users visualise and gain access to the backend
database of the system by interacting with a number of GUIs to execute some business actions
in order to retrieve or manipulate data. This is known as a presentation layer in the tradi-
tional architecture of any information system. The widgets in the GUI Model hold the required
information about the target database tables and fields, with their properties and constraints,
along with corresponding data that is shown via these screens. This offers a consistent mapping
between the presentation and database layers and leads to the correct visualisation of a window.

The GUI Model, in the produced metamodelling hierarchy, is considered a kind of M odel.
Thus, concepts of the GUI Model can be defined using FOPL and relate to the corresponding
uML metamodel concepts.

112

CHAPTER 6. NOTATIONS & MT IN DESIGN PHASE 6.3. GUI MODEL

Law 59. The GUIModel is a kind of Model.

GUIModel <: Model

vV m e GUIModel(m)
—
Model(m)

6.3.1 Notation and Semantics of the Graphical User Interface (GUI) Model

In this section, each concept that appears in the GUI Model is introduced with some details
about its usage and how it is visualised graphically in the model. The following table (6.2)
summaries all predicates used in describing pML GUI Model.

Predicate Meaning Syntactic Sugar
GuiModel(z) z is a Graphical User z:GuiModel
Interface (GUI) Model
GuiBoundary(zx) z is a IS boundary x:GuiBoundary

Window(z) x is an IS Screen z: Window
Label(z) z is a label control x:Label
Button(x) z is a button control x:Button

Textfield(x) z is a Textfield control x: Textfield

Widget(z, y) z is a widget in a window y

Table 6.2: Predicates for uML GUI Model

In order to motivate some policies that specify the GUI Model, basic declarations of core
elements must be identified first. According to the uML metamodel hierarchy where GUI Model
window is a subtype of Node as: (Window <: Node), any Node in the GUI Model represents
a GUI window:

V n:Node,m: GUIModel o (n €, m)
—
Window(n)

Additionally, various GUI controls are considered Widget concept in the metamodel. Accord-
ing to the uML metamodel hierarchy, the Widget element is denoted a subtype of Node as:
(Widget <: Node), any Node in the GUI window represents a GUI control:

V n: Node,w: Window e (n €. w)
—
Widget(n)

113

N O U W N

CHAPTER 6. NOTATIONS & MT IN DESIGN PHASE 6.3. GUI MODEL

Law 60. In the GUIModel, each widget in any window can be either a button, textfield, or
label.

V ¢ : Widget, ¥ w : Window, m : GUIM odel
o (w €m m) A (c €Ec w))
N

Textfield(c) & Button(c) ® Label(c)

6.3.1.1 GUI Window

The Window element is used to capture every information system screen. According to the pML
metamodel, GUI Window is considered a subtype of the Node element (Window <: Node).
Therefore, it is identified using a unique identifier. This can be defined in FOPL as:

V'm:GUIModel, ¥V w: Window o (w €, m),
3id : Identifier o Id(w,id)

Every Window cosists of many GUI controls; these are all Widget elements. This can be ex-
pressed as:

YV w: Window,m : GUIModel o (w €, m),
Jc: Widget o (c €. w)

Extra features are added to specify each window. For instance, the priority score of a window
is declared, for each Window element, using the order attribute. Moreover, the declaration of
Error Window is determind by the boolean attribute error attached the Window node.

Listing 6.5: The structure of the GUI Window node

<gui:Window id="22" name="Input_code_Waiting" order="4">
<gui:Textfield id="23" name="code" size="6"/>
<gui:Button id="24" name="Exception" event="Exception"
exit="false" hidden="true"/>
<gui:Button id="25" name="Input" event="Input"
exit="false"/>
</gui:Window>

The previous listing (9.8) illustrates a structure of a window for receiving code value from the
user that consists of a Textfield and a Button to read the input value. However, it is worth
mentioning that the button that fires the Ezeption is invisible (hidden =true).

6.3.1.2 GUI Textfield

The Textfield element is used to capture every user interface text field control that appears in
a window. It allows the actor to input textual information to be used by the system. The
additional specifications of each text field are determined by some attributes attached to a

114

CHAPTER 6. NOTATIONS & MT IN DESIGN PHASE 6.3. GUI MODEL

Textfield node, such as the name and size attributes. Listing 9.8 above exemplifies the GUI
Teztfield element including its attributes. According to the pML metamodel, GUI Teztfield is
considered a subtype of the Widget element (Textfield <: Widget). Therefore, it is identified
using a unique identifier. This can be defined in FOPL as:

Vtf: Textfield, ¥V w: Window e (tf €. w),
31 id : Identifier o Id(tf,id)

6.3.1.3 GUI Label

The label is a user interface control that is used to display textual information on a window. It is
represented in the GUI Model via the Label element that is used to capture every label appears
in a screen. Label is also specified by some attributes attached to it, such as the name and
text attribute. The text attribute the actual text that appears on a window. According to the
uML metamodel, GUI Label is considered a subtype of the Widget element (Label <: Widget).
Therefore, it is identified using a unique identifier. This can be defined in FOPL as:

V leb: Label, ¥V w : Window e (leb €. w),
31 id : Identifier o Id(lebf,id)

6.3.1.4 GUI Button

The button is another kind of user interface control that enables the user a direct way to trigger
an event. It is appeared in a window as a rounded rectangle with longer width than its hight,
and a text in its middle. Every button in such a window is expressed in the GUI Model through
the Button element. The GUI Button describes many features in regard to the button using a
number of attributes, such as, name and event attribute that define the button’s name and the
type of event triggered by this button. Listing 9.8 above examplifies the GUI Button element
including its attributes. According to the uML metamodel, GUI Button is considered a subtype
of the Widget element (Button <: Widget). Therefore, it is identified using a unique identifier.
This can be defined in FOPL as:

YV b: Button, ¥V w : Window e (b €. w),

3 id : Identifier o Id(b,id)

6.3.1.5 GUI Boundary

Similar to the previously presented boundary concepts in other pML, such as Task, Impact,
DataFlow and State, the GUIBoundary node in the GUI Model to bind one or more Window
elements. This indicates that some windows fall within a particular subsystem or (scope) to be
developed, while other windows fall within another scope. It can be defined using FOPL as:
V'm:GUIModel, 3b: GUIBoundary e (b € m).

6.3.2 The Significance of the GUI Model

As the Micro Modelling Language (uML) seeks simplicity for designers, business-users are re-
lieved from the task of designing the kinds of screens used, since the decision to create a waiting

115

CHAPTER 6. NOTATIONS & MT IN DESIGN PHASE 6.4. CODE MODEL

or ready window is determined automatically, based on information provided in the Screen
State Model. Additionally, some database tables might might be automatically assigned as data
sources, when required, in some screens without any end-user manual modification. Conse-
quently, reasonable chunks of boilerplate code for managing the database connection and excep-
tion handling may be manufactured directly at the code generation stage. Moreover, the fact
that this is all done automatically provides type crosschecking to preserve consistency between
the information system layers.

6.4 Overview of the Code Model

The Code Model is the lowest level, automatically-generated, AST representation that de-
scribes the abstract specification for the Object-Oriented (OO) code of the system in terms
of business entities and tasks (classes), their methods, attributes and expressions. It aims to
present a comprehensive business logic layer that determines how to manipulate the data in ei-
ther a separate layer or one combined with the user interfaces, that is, either in a 3-tier or 2-tier
architecture, respectively. At the current version of BUILD, it is worth mentioning that the
model is NOT a part of the transformation chain for generating complete 2-tier applications.
It might be used in later versions for developing 3-tier IS applications.

Following the code structure in the OOP languages, the Code Model consists of a number
of Clazz' elements that represent the actual OO classes of a system. Each Clazz node typically
has some Constructor, Attribute and Method nodes as descendants to express the actual class
attributes, constructors and methods at this level of detail.

Apart from this, this model is platform independent and intended to capture sufficient
details to generate idiomatic constructs of executable code for a target OOP language, e.g.Java,
along with adequate chunks of boilerplate code to establish and manage consistent protocols
between the invocation of methods and database predefined queries in the system layers.

Additionally, the model is completely derived from both the detailed Database and Query
Model and the DataFlow Model without any direct contribution from the end-user. This achieves
one of the goals of BUILD, by avoiding end-users from modelling these technical specifications
about their system. All modelling activities are done at a higher level of abstraction. As a
consequence, one goal of our approach is achieved by relieving users from writing these technical
specifications users from these technical specifications regarding their system and producing it at
a higher level of abstraction. Business-users, the designers, make no contribution to the detailed
architecture of their software system as our approach adopts a common architecture and is able
to generate all kinds of systems.

The classes are divided into two main categories, namely, entity classes and process (task)
classes. The entity classes are translated from the equivalent tables and exist in the Database
and Query Model, whereas the process classes are derived from boundaries that appear in the
DataFlow Model. Relationships between classes, such as composition and inheritance, are also
extracted from the Database and Query Model and might be implemented in the Code Model to
represent a consistent business logic layer.

!The name Clazz is chosen for this node to avoid a name-clash with the built-in type ”Class” in Java.

116

CHAPTER 6. NOTATIONS & MT IN DESIGN PHASE 6.4. CODE MODEL

The Code Model, in the produced metamodelling hierarchy, is considered a kind of Model.
Thus, concepts of the Code Model can be defined using FOPL and relate to the corresponding
uML metamodel concepts.

Law 61. The CodeModel is a kind of Model.

CodeModel <: Model
V' m e CodeModel(m)
—

Model(m)

6.4.1 Notation and Semantics of the Code Model

In this section, each concept that appears in the Code Model is introduced with some details
about its usage and how it is expressed in the model. The following table (6.3) summaries all
predicates used in describing pML Code Model.

Predicate Meaning Syntactic Suger
CodeModel(x) z is an Code Model x:CodeModel
Clazz(x) z is an OOP class z:Clazz
CAttribute(z) z is a class attribute x:CAttribute
CMethod(x) z is a class method x:CMethod
Constructor(z, y) y is a class z Constructor

Invokes(z, y) a method z calls a database

stored procedure y

Table 6.3: Predicates for pML Code Model

In order to motivate the list of policies that specifies the Code Model, two basic laws must be
identified first as follows:

Law 62. Any node in the CodeModel is a class.

CodeModel <: Model

V' m: CodeModel,n : Node ® (n €, m)
—
Clazz(n)

117

CHAPTER 6. NOTATIONS & MT IN DESIGN PHASE 6.4. CODE MODEL

Law 63. Any function in the CodeModel is a method in a class.

CodeModel <: Model

vV m : CodeModel, f : Function,c: Clazz ® (¢ €, m)
—
Method(f) N (f €p ¢)

6.4.1.1 Class

The Clazz element, in the Code Model, is used to define object-oriented class types. According
to the ML metamodel, Clazz is considered a subtype of the Node element (Clazz <: Node).
Therefore, it is identified using a unique identifier. This can be defined in FOPL as:

V m: CodeModel, ¥ c: Clazz e (¢ €n m),3 id: Identifier o Id(c,id)

A Clazz element consists of a number of attributes to describe its features and methods to
describe its operations, expressed using CAttribute and CMethod nodes as descendants of Clazz.
This can be formalised in FOPL as:

V' m: CodeModel, ¥ c: Clazz ® (¢ €m m),
3 ((a : CAttribute o (a €, ¢) A Child(c,a))
A (f:CMethod e (f €, ¢) N Child(c, f)))

An extra feature to specify the accessibility of a class (public, private and protected) is con-
sidered in the Code Model language using an XML attribute attached to the Clazz element
(visible="public”).

6.4.1.2 Attribute

A CAttribute element is used to declare every fields of a class in the Code Model. It is an atomic
node in the model that has no further childern. Additional features that specify the attribute
are attached, as XML attributes, to the CAttribute node, such as name, visible and type. The
CAttribute elements appear in the model as descendants of a Clazz node, indicating that these
attributes are properties of that class. This can be expressed in logic as:

V¥V m: CodeModel, ¥ c: Clazz o (¢ €m m),3 att : CAttribute o (att €, c)

6.4.1.3 Method

A CMethod element is utilised to define the structure of every method in a class.These act as
wrappers for binding internal database operations, in which they declare syntax for calling a
database stored procedure (pre-defined query) and/or for managing the database connectivity,
such as JDBC application in Jawva.

CMethod has two important kinds of child nodes, namely, an CArgument element to represent
its input parameter and a Call element to express a procedure invoked:

118

CHAPTER 6. NOTATIONS & MT IN DESIGN PHASE 6.5. OUTLOOK ON THE CHAPTER

YV c:Clazz, ¥V f: method e (f €, ¢),3a:CArgument N Child(f,a)

The Call element is used to declare a method invocation expression, which is typically a child
element of Method. It refers to a syntax (expression), which is a part of the body of a method,
that invokes a stored procedure located in a database schema, expressed previously in DBQ.
The name of the invoked pre-defined query is declared in the Call node via its name attribute.
The notion of Call can be defined using the following policy:

Law 64. Any method, in a class, might call a stored procedure, in a database schema.

V s : DatabaseModel, ¥ m : CodeModel, ¥ f : Method,
Ve:Clazz o ((c €m m) A (f €),
I p:procedure o ((p €m s) A Invokes(f,p))

In the same context, a Constructor element, which is used to declare a construction (initialising)
of a class, has a number of Variable elements and some assignment Operators, as its descendants,
to represent its input parameters and initialise the attributes of the class.

6.5 Outlook on the Chapter

This chapter represented, in-depth, the concepts, underlying ASTs (XML), and formal semantics
for each Micro Modelling Language (4ML) model appearing in the Design phase of BUILD. It
covered all critical concepts, their usage, and all their possible interpretations within the various
contexts of the ML Database and Query (DBQ), Graphical User Interface (GUI) and Code
Model.

The Code Model was introduced to be used in later versions of BUILD for developing 3-tier
ISs, whereas models may be used alone for generating complete 2-tier business applications.
Business logics were expressed using predefined stored procedures as a part of database schema.
Based on Relational and Functional Algebra, a query modelling language was introduced for
expressing a number of database operations in the DBQ model.

Apart from this, the chapter showed how to reuse the graphical notation from the Data
Dependency Model for expressing DBQ concepts. There is no graphical representation in the
current version of uML for the GUI and Code model. The formal semantics and notation
for models and their elements are compared to similar or closely related UML concepts and
notation, showing the simplicity and clarity of the proposed language. A number of unary and
n-ary predicates were introduced for defining concepts and their relationships in each model in
respect of the previously defined metamodel.

119

The Architecture of the
Model-Transformation Approach

“If something is worth doing once, it’s worth building a tool to do it ”

Unknown

7.1 Context

This chapter is divided into two main sections. The first one provides an in depth description of
the overall structure and mechanism of the model transformation approach, highlighted briefly
in Chapter 3. The approach encompasses a two level transformation framework, namely, top
level and concrete level.

The first sections below discuss the generic design of the top level framework. This level
is an ancestor of all actual transformation rules used to generate several pML models via the
different BUILD development stages. The top level is adopted since it is the predecessor of
all actual transformation rules used to generate a variety of uML model(s) via the different
BUILD development stages, and the architecture of the concrete (actual) model transformation
framework.

In addition, the second part of the chapter clarifies, in depth, the overall structure and
mechanism of the code generation approach, mentioned briefly in Chapter 3. The current
version consists of two platform specific generators. Each generator has two levels of generator
agents. Throughout later sections, the overall and the detailed design of the code generation
framework is discussed.

120

CHAPTER 7. MT IN BUILD 7.2. BRIEF OVERVIEW OF THE MT FRAMEWORK

7.2 Brief Overview of the Model Transformation Framework

The transformation architecture developed for BUILD is simple and flexible. Every model
manipulation is classified either as a kind of translation, transformation, folding (merging) and
in-place modification. These four types of model transformation rules are supported by the
current version of the framework. A translation rule translates a concept from a source model
into an equivalent concept in a different type of target model (exogenous). A transformation
rule transforms between models expressed in the same language (endogenous). In the case of
optimising a model (where only one model is involved in a rule as both its source and target),
this rule is considered in-place modification. In contrast, when concepts from more than one
model are involved in a rule as source, the rule is regarded as afolding (merging) transformation
rule.

It is worth mentioning that the proposed architecture of transformations in BUILD differs
from the previous ReMoDeL [101] version that was used for the MySQL Database Generator,
presented in [109] and [108]. That code generation framework encodes transformation rules as
methods in each generator responsible for generating a part of the target (imperative). On the
other hand, the current version of BUILD encodes each rule of transformations as an independent
java class, representing the declarative side of the language. Chapter 8 explained how this
leads to a hybrid declarative/imperative approach, where individual transformations are both
independent and idempotent, while some order of execution is eventually imposed.

The overall architecture of BUILD is divided into two main layers: abstract (generic) and
specific. Two types of translation rules are used in our transformation approach, namely, (one-
to-one translating) Simple and (two-to-one merging) Merging rules. Our Simple rules take an
element from a model and generate a new element in another model. Translation, transformation
and in-place modification rules are implemented in the framework as Simple rules. On the other
hand, our Merging rules, in the current version of BUILD, take two elements from different
models and generate a new element in a target model.

A simple forward transformation (refinement or code generation) occurs when a source
model belongs to a different metamodel type than the target. This activity is frequently seen
in the majority of transformation components in BUILD. It enables the shift from a higher
development phase to a lower one, introducing new and richer knowledge. The following section
discusses these kinds of transformations in more detail.

7.3 The Top Level Architecture of the Model Transformation
Framework

The top level architecture of the model transformation framework is an Object-Oriented (OO)
approach that consists of five main classes, namely Rule, MergeRule, Translation, Merge Trans-
lation and Context, illustrated in Figure 7.1. The root classes of the framework are the Rule
and MergeRule class.

121

CHAPTER 7. MT IN BUILD 7.3. TRANSFORMATIONS OF THE TOP LEVEL ARCHITECTURE

f——————
[—————= 1 | Sourcel :
{ Source | 1 Source2 |
Rule e MergeRule -

+accept(Source) : Boolean +accept(Sourcel, Source2)() Boolean

Context
+Lookup(Rule):Map
F—————
P —— . | Sourcel :
| ?ource | context | context | Source2
; | arget | Target

Translation - ———- MergeTranslation L — _ rget_

+translate(Source): Target

+translate(Sourcel, Source2): Target
#doTranslate(Source): Target

#doTranslate(Sourcel, Source2): Target

Figure 7.1: Model Transformation in BUILD. The Top Level Framework

The Rule class is considered the ancestor of all rules applied to a single source that is regarded
a super class of a single subclass (so far), called Translation. Based on the type of source and
target, this subclass acts as a model translator that translates a source model to a target one
with a different metamodel, a model transformer that translates a source model to a target one
within the same metamodel, and an in-place modifier that modifies and evolves a source model.

Translation —— ==

+translate(Source): Target
#doTranslate(Source): Target

<<bind>>
<Souce - DAttribute,
Target > Column>

«SimpleRule»
DAttributeToColumn

#doTranslate(DAttribute):Column

Figure 7.2: Translation Rule Structure

The above Figure (7.2) exemplifies the Translation rule structure. It includes a simple rule
(class) from the concrete level, called DAttribute ToColumn class. that is used to translate every
Data Dependency attribute (DAttribute) into a DBQ column (Column).

In additon to this, MergeRule is considered a general class of a subclass (so far), called
MergeTranslation. It takes two source elements and translates (merges) them to produce a
target. The following Figure (7.3) exemplifies the Merge Translation rule structure. It includes a
simple rule (class) from the concrete level, called DDiagramToSchema class. that takes DataFlow
and Data Model element to translate them into a DBQ Schema.

Both Rule and MergeRule have an appropriate accept method when the rule has particular
restrictions on the valid source elements required to be examined and accepted. This method is
effectively the precondition of the rule, which returns true when the source element is valid for

122

CHAPTER 7. MT IN BUILD 7.4. FRAMEWORK ARCHITECTURE AT THE CONCRETE LEVEL

2

o

c

=

(@]

)

N -
l————

MergeTranslation = — — — r—

+translate(Sourcel, Source2): Target
#doTranslate(Sourcel, Source2): Target

<<bind>>

<Sourcel - DfDiagram,
Source2 - DDiagram,
Target - Schema>

DDiagramToSchema

+doTranslate(DfDiagram, DDiagram, Schema) : Boolean

Figure 7.3: Translation Rule Structure

the rule. An overriden version of accept may appear in any subclass of Rule and MergeRule if it
has particular restrictions on the valid source elements in the subclass.

The Context class is the fifth class in the top level framework. It is a record of the work done
by a tree of Translation rules. A new Contert is created whenever a Translation rule is created
at the top level, to perform a translation. The same Context is shared by every descendant rule
created by the top level Translation rule. The Context indexes all transformations performed
by the tree of Transformation rules, under the name of each rule. This allows individual rules
to access any existing translation and avoids repeated work.

7.4 Framework Architecture at The Concrete Level

The architecture of all translator components at the concrete level is directly influenced by the hi-
erarchical structure of elements in the source model of each. A naming convention for each agent
is specified using the following format: < sourceelementname > To < targetelementname >.

For instance, considering the structure of nodes in the Information Model, the step of trans-
lating the Information Model into the Data Model (section 7.5.2) consists of Diagrams, containing
Nodes (e.g. DEntity), which in turn contain Properties (e.g. DAttribute and Identifier). Addi-
tionally, it contains Relationship (e.g. Association, Generalisation and Composition), which in
turn contains Properties (Roles).

Thus, the internal structure of each translator is based upon the concept distribution strat-
egy. This means that each concept in a source model is handled separately by a particular agent
(sub-translator), represented via a java class in the framework. Each agent is responsible for
applying appropriate transformation rules to create the corresponding target concepts.

Agents present in a hierarchical series of layers delegate to other agents at the next finer
level of abstraction. Sometimes these sub-translators refer back to information previously pro-
cessed by the higher-level (parent) translator. Each translator, which might consist of a set of
either Translation or MergeTranslation or even both rules, behaves in the same manner as the
Composite and Visitor design pattern[42] as some agents, which are containers of others, have

123

CHAPTER 7. MT IN BUILD 7.5. REQUIREMENT-TO-ANALYSIS

a command translate() to delegate to their parts (sub-translators), and each agent traverses a
part of the model. It is worth mentioning that the translate() method is the top-level method.
It may either look up a cached result or invoke doTranslate() to compute the result for the first
time.

In addition to this, all mapping algorithms are encoded as methods of the framework. The
algorithms are imperative, using an ordered collection of transformations on Task and Impact
Models, represented as (as abstract syntax trees). The order of rules execution is controlled and
implemented through the body of the doTranslate() method in each agent.

7.5 Requirement-to-Analysis Model Transformation Approach

As previously presented in Chapter 3, the Requirement to Analysis Model Transformation step
is regarded as a first forward mapping step that shifts the end-users requirement models to-
wards the analysis phase. In order to construct the required models, which are conceptually
located within the BUILD Analysis phase, a number of Java-translator components are de-
signed to implement the (hybrid) mapping rules for each translator agent. These translators are:
(Information-to-DataDependency, Task-Impact-to-DataFlow, DataFlow-to-DetailedDataFlow,

DetailedDataFlow-to-State). Initially, the XML files representing the business user’s input are
parsed, creating source models. Then these rules are applied to the source models to generate
in-memory target models, which in turn will be used for the source models in the next stage.

7.5.1 Translating Task and Impact Models into (initial) DataFlow

Translating Task and Impact Models into (initial) DataFlow is considered to be a forward merge
translation step. This takes two elements as its source from a Task and Impact Model, producing
an equivalent target element in the DataFlow artefact. This translation step consists of 15
translating agents that are responsible for traversing both Task and Impact Model, applying
a set of transformation rules to perform the mapping between their elements and the target
elements in the DataFlow Model. The following figure (7.4) demonstrates the internal structure
of the translator.

From this, some agents are considered to be subclasses of the Merge Translation class, at the top
level of the framework. These translators are:

e DiagramToDfDiagram: The agent takes a Task Model Diagram and an Impact Model
Diagram as source and produces an equivalent DataFlow Model DfDiagram. This rule
consists of one subrule (BoundaryToDfBoundary).

e BoundaryToDfBoundary: The agent takes an (equivalent) Task Model Boundary and
an Impact Model Boundary as source and produces an equivalent DataFlow Model Df-
Boundary. This significant translator also exemplifies the merging process of two source
elements to obtain a single target. It consists of nine subrules that are responsible for
mapping other concepts from the source to corresponding ones in the target DataFlow
Model.

e MergeTaskToDfTask: The agent takes a Task Model Task and an Impact Model Task
as source and produces an equivalent DataFlow Model Task. This agent maps two source
elements, extracted from different models, and produces a single target element.

124

CHAPTER 7. MT IN BUILD 7.5. REQUIREMENT-TO-ANALYSIS

ImpObject to DfEntity

Participation to OutputFlow

< i
Role to DfRole
Participation to InputFlow
<> ‘—O [
Task to DfTask MergedTask to DfTask

Actor to DfActor Boundary to DfBoundary Diagram to DDiagram

CreateFlow to DfCreateFlow

Q

ImpRole to DfRole ReadFlow to DfReadFlow

Task to Boundary

UpdateFlow to DfUpdateFlow

DeleteFlow to DfDeleteFlow

Figure 7.4: Reg-to-Analysis: Task & Impact to (initial) DataFlow Model

The rest of the agents are subclasses of the Translation class (Simple rule), at the top level
framework. These translators are:

e TaskToBoundary: The agent takes a Task Model composite Task as source and trans-
lates it into an equivalent DataFlow DfBoundary. This agent is interesting because it is
controlled by a precondition that must be satisfied (a task is composite) to be translated
into a dataflow boundary.

e ParticipationToIlnputFlow: The agent takes a Task Model Participation as source and
translates it into an equivalent DataFlow InputFlow. The type of user interaction must
be an input to satisfies the precondition of this rule. ParticipationTolnputFlow consists
of one subrule to translate endroles of each Participation, RoleToDfRole rule.

e ParticipationToOutputFlow: The agent takes a Task Model Participation as source
and translates it into an equivalent DataFlow OutputFlow. The type of user interaction
must be an output to satisfies the precondition of this rule. ParticipationToOutFlow
consists of one subrule to translate the Participation endroles, namely, RoleToDfRole
rule.

125

CHAPTER 7. MT IN BUILD 7.5. REQUIREMENT-TO-ANALYSIS

7.5.2

RoleToDfRole: The agent takes a Task Model endrole Role of every Participation as
source and translates it into an equivalent DataFlow DfRole of either InputFlow or Out-
putFlow. Any source task from the Task Model must be simple (not composite) in order
to satisfy the precondition of this rule. RoleToDfRole consists of two subrules: TaskToDf-
Task and ActorToDfActor.

TaskToDfTask: The agent takes the Task referenced by an end Role either in the Task
Model or Impact Model and translates it into equivalent DataFlow Model DfTask.

ActorToDfActor: The agent takes a Task Model Actor as source and translates it into
an equivalent DataFlow DfActor.

CreateFlowToDfCreateFlow: The agent takes a Impact Model CreateFlow as source
and translates it into an equivalent DataFlow CreateFlow. This rule consists of one
subrule to translate the endroles, RoleToDfRole rule.

DeleteFlowToDfDeleteFlow: The agent takes a Impact Model DeleteFlow as source
and translates it into an equivalent DataFlow DeleteFlow. This rule consists of one
subrule to translate the endroles, RoleToDfRole rule.

UpdateFlowToDfUpdateFlow: The agent takes a Impact Model UpdateFlow as source
and translates it into an equivalent DataFlow UpdateFlow. This rule consists of one
subrule to translate the endroles, RoleToDfRole rule.

ReadFlowToDfReadFlow: The agent takes a Impact Model ReadFlow as source and
translates it into an equivalent DataFlow ReadFlow. This rule consists of one subrule to
translate the endroles, RoleToDfRole rule.

ImpObjectToDfEntity: The agent takes a refered Impact Model ImpObject by either
any Role in the Impact Model as source and translates it into an equivalent DataFlow
DfEntity.

ImpRoleToDfRole: The agent takes a Task Model endrole Role of every Flow as source
and translates it into an equivalent DataFlow DfRole of the equivalent DataFlow Flow.

Translating the Information Model into the Data (Dependency) Model

Translating an Information Model into a Data (Dependency) Model is regarded as a one-to-
one forward translation step. It takes one element as its source from an Information Model,
producing an equivalent target element in the Data Model. This mapping step consists of 10
translating agents that are responsible for traversing nodes in the Information Model, applying a
set of rules to perform the transformation. The following figure (7.5) shows the internal structure
of the translator.

For this step, all agents are considered subclasses of the Translation class, at the top level
framework. These translators are:

InfDiagramToDDiagram: The agent takes an Information Model Diagram as source
and produces an equivalent Data Model DDiagram. It is considered a root rule of this
transformation step that consists of seven subrules.

126

CHAPTER 7. MT IN BUILD 7.5. REQUIREMENT-TO-ANALYSIS

InfAssoc to mergedTable

< -
<

InfAttribute to DAttribute InfEntity to DEntity

Identifier to Unique InfGen to DDependency

infDiagram to DDiagram

InfGen to mergedTable ~

InfRole to DRole InfCom to DDpendency

InAssoc to DDependency

InAssoc to LinkerTable

Figure 7.5: Reqg-to-Analysis: Information to Data Dependency Model

e InfEntityToDEntity: This agent provides a direct mapping as it takes an Informa-
tion Model InfEntity as source and produces an equivalent Data Model DEntity. This
agent is interesting because it can produce knew knowledge in the target model (e.g.
manufactured identity), if needed.

e InfAttributeToDAttribute: The agent takes an Information Model Attribute as source
and produces an equivalent Data Model DAttribute. Data types and additional specifica-
tions (e.g. size and null) might be generated precisely, if needed.

e InfAssocToDDependency: The agent takes an Information Model Association as
source and produces an equivalent Data Model Dependency. This rule is restricted by a
precondition, in which the source association must be many-to-one. It consists on only
one subrule for translating endroles (InfRole ToDRole) of that association.

e InfAssocToMergedDEntity: The agent takes an Information Model Association as
source and produces an equivalent Data Model DEntity. This rule is applicable for trans-
lating many-to-many associations only (precondition). It consists of two subrules to
proceed the translation of attributes and identifiers for the generated target element.
These subrules are: InfAttributeToDAttribute and IdentifierTo Unique.

e InfCompToDDependency: The agent takes an Information Model Composition as
source and produces an equivalent Data Model Dependency. A precondition is used to
control this rule to be applied to not Total Composition. The InfCompToDDependency
rule consists of one subrule for translating endroles (InfRoleToDRole) of that composition.

127

CHAPTER 7. MT IN BUILD 7.5. REQUIREMENT-TO-ANALYSIS

e InfGenToDDependency: The agent takes an Information Model Generalisation (over-
lapping) as source and produces an equivalent Data Model Dependency. This rule consists
of one subrule for translating endroles (InfRoleToDRole) of that generalisation.

e InfGenToMergedDEntity: The agent takes an Information Model Generalisation as
source and produces an equivalent Data Model DFEntity. This rule is restricted to disjoint
Generalisation only, via a precondition. It consists of two subrules to complete the
mapping of attributes and identifiers for the generated entities. These subrules are:
InfAttributeToDAttribute and Identifier To Unique.

e IdentifierToUnique: The agent takes an Information Model Identifier as source and
produces an equivalent Data Model Unique concept.

e InfRoleToDRole: The agent takes an Information Model Role as source and produces
an equivalent Data Model DRole.

7.5.3 Translating (initial) DataFlow Model into Detailed DataFlow Model

Translating the (initial) DataFlow Model into the detailed one can be described as a one-to-one
forward translation step. In particular, it is regarded as a model optimisation and evolving
step that aims to decompose each business task that appears in the initial DataFlow into its
collection of atomic sub-tasks after applying a number of decompositional rules to each DfTask.
It is worth mentioning that the rule of transformation is presented in more detail further in
Chapter 8.

This mapping step consists of 8 translating agents that are responsible for traversing the
nodes in the initial DataFlow Model, applying a set of rules to perform the transformation. The
following figure (7.6) shows the internal structure of the translator. For this step, all agents are
considered to be subclasses of the Translation class, at the top level of the framework. These
translators are:

e ArcToArc: The agent takes one of the (initial) DataFlow Flow elements, where its
type is either create, read, delete, input or output, as source and produces an equivalent
(detailed) DataFlow Model Flow.

e ArcToArcs: The agent takes an (initial) DataFlow Flow element, where its type is
update, as source and produces an equivalent pair of read and write flows in the (detailed)
DataFlow Model. This rule is applicable for update flows only.

e ArcToDfActor: The agent takes one of the (initial) DataFlow Flow elements, where its
type is either input or output, as source and produces an equivalent (detailed) DataFlow
Model DfActor.

e ArcToDfObject: The agent takes one of the (initial) DataFlow Flow elements, where
its type is either create, read, update or delete, as source and produces an equivalent
(detailed) DataFlow Model DfObject.

e ArcToDfTask: The agent takes one of the (initial) DataFlow Flow elements, where its
type is either create, read, delete, input or output, as source and produces an equivalent
(detailed) DataFlow Model DfTask.

128

CHAPTER 7. MT IN BUILD 7.5. REQUIREMENT-TO-ANALYSIS

Arc to Arc

Arc to Arcs

Arc to DfTask

Arc to DfTasks DfTask to DfBoundary DfDiagram to DfDiagram

Arc to DfObject

Arc to DfActor

Figure 7.6: Req-to-Analysis: (initial) DataFlow to Detailed DataFlow Model

e ArcToDfTasks: The agent takes an (initial) DataFlow Flow elements, where its type is
update, as source and produces equivalent (detailed) DataFlow Model DfTask elements.

e DfdDiagramToDfdDiagram: The agent takes a DataFlow Model DfdDiagram as
source and produces an equivalent DataFlow Model DfdDiagram.

e DfTaskToDfBoundary: The agent takes a DataFlow Model DfTask as source and
produces an equivalent DataFlow Model DfBoundary.

7.5.4 Translating DataFlow Model into (Screen) State Model

Translating a (detailed) DataFlow Model into a State Model can be defined as a forward transla-
tion step that takes an element as a source from a DataFlow, constructing an equivalent target
element in the Screen State artefact. This step consists of 6 translating agents that traverse the
tree structure of the DataFlow Model, applying a set of transformation rules to map a source
element to a target one in the State Model. The following figure (7.7) illustrates the internal
structure of the translator.

For this step, all translating agents are considered subclasses of the Translation class, at the top
level framework. These translators are:

e DfdDiagramToStDiagram: The agent takes a DataFlow Model DfdDiagram as source
and produces an equivalent State Model StDiagram. This root rule consists of two main
subrules: DfdBoundaryToStBoundary and StBoundaryToStBoundary.

e DfdBoundaryToStBoundary: The agent takes a DataFlow Model DfBoundary as

129

CHAPTER 7. MT IN BUILD 7.6. ANALYSIS-TO-DESIGN

Task to StWaitingState DfDiagram to StDiagram

Y

DfDBoundary to StBoundary StBoundary to StBoundary

Y
| | |

Arc to StWaitingState| |Arc to StReadyState Task to Transition

Figure 7.7: Reqg-to-Analysis: DFD to State Model

source and produces an equivalent State Model StBoundary. This rule consists of three
subrules for translating the content the source model into equivalent States and Transi-
tions (ArcToStReadyState, ArcToStWaitingState and DfTaskTo Transition).

e StBoundaryToStBoundary: This is an in-place model modification step. The agent
takes a State Model StBoundary as source and produces generate a number of Error
States, which capture the failure scenarios of the business process, to be added to the
current boundary StBoundary.

e ArcToStReadyState: The agent takes a DataFlow Model Flow as source and produces
an equivalent State Model ReadyState. Each acceptable arc must be one of the CRUD
flows only.

o ArcToStWaitingState: The agent takes a DataFlow Model Flow as source and pro-
duces an equivalent State Model WaitingState. Each acceptable arc must be either input
or output flow. Otherwise, this rule is dismissed.

e DfTaskToTransition: The agent takes a DataFlow Model DfTask as source and pro-
duces an equivalent State Model Transition.

e TaskToStWaitingState: This rule takes every composite Task in the Task Model to
produce a waiting state.

7.6 Analysis-to-Design Model Transformation Approach

According to the overall structure of the BUILD framework, presented in chapter 3, the Analysis
to Design Model Transformation step is considered to be a second forward mapping step that
translates some intermediate analysis models, resulting from the previous Requirement to Anal-
ysis Model Transformation process, into lower level design artefacts that describe the system at
the design phase.

Similar to the previously discussed Requirement to Analysis Model Transformation step,
a number of Java-translator programs are designed to implement the (hybrid) transformation
rules for each agent. These translators are: State-to-GUI and Data-DFD-to-DataBaseQuery.

130

CHAPTER 7. MT IN BUILD 7.6. ANALYSIS-TO-DESIGN

They parse the XML representation of the pML analysis models, namely, DataFlow, Data
Dependency, and State Model and produce a number of design models: GUI, DBQ and (optional)
Code artefacts ready for the code generation phase.

7.6.1 Translating the State Model into the GUI Model

Translating State Model into a GUI Model is considered a direct forword translation step. It
takes an element from a State Model, as its source, producing an equivalent target element in
the GUI Specification Model. The internal structure of the translator is simple, in which the
current version consists of 6 translating agents that are responsible for traversing State Model,
applying transformation rules to perform the mapping to target elements in the GUI Model.
The following figure (7.8) demonstrates the internal structure of the translator.

StDiagram to GuiDiagram

¢

StBoundary to GuiBoundary

Y
| |

State to Window Transition to Button

¢

Svariable to TextField Svariable to Label

Figure 7.8: Analysis-to-Design: State to GUI Model

From this, all translating agents are considered subclasses of the Translation class, at the top
level framework. These translators are:

e StDiagramToGuiDiagram: The agent takes a State Model StDiagram as source and
produces an equivalent GUI Model GuiDiagram. This rule consists of one subrule for
translating boundaries.

e StBoundaryToGuiBoundary: The agent takes a State Model StBoundary as source
and produces an equivalent GUI Model GuiBoundary.

e StateToWindow: The agent takes a State Model State as source and produces an
equivalent GUI Model Window. This rule consists of two subrules for translating widget
controls for that window, namely, SvariableToLabel and Svariable To Textfield.

e SvariableToLabel: The agent takes a State Model Variable as source and produces an
equivalent GUI Model Label.

131

CHAPTER 7. MT IN BUILD 7.6. ANALYSIS-TO-DESIGN

e SvariableToTextfield: The agent takes a State Model Variable as source and produces
an equivalent GUI Model Tezxtfield.

e TransitionToButton: The agent takes a State Model Transition as source and produces
an equivalent GUI Model Button.

7.6.2 Translating the DataFlow and Data Model into the DBQ Model

Described previously in Chapter 6, the DBQ model consists of two kinds of concepts: data
definition and query expression. ”This translation step has two source models, the DataFlow
model and the Data Dependency model.

All agents that aim to produce data definition concepts in the target model are actually
designed and implemented as one-to-one forward translation components. Each of these takes
one element as its source from either a DataFlow or Data Dependency Model, producing an
equivalent target element in the Database Model (DBQ).

On the other hand, agents that aim to produce query expression concepts in the target
model are designed as two-to-one merging and one-to-one translation components. Each of
these takes elements from one or both the DataFlow and Data Model as source and translates
them into a target DBQ concept.

This mapping step consists of 12 translating agents, in total, that are responsible for travers-
ing nodes in either DataFlow or Data Dependency or even both models, and applying a set of
rules to perform the transformation. The following figure (7.9) shows the internal structure of
the translator.

From this, some agents are considered to be subclasses of the Merge Translation class, at the top
level framework. These translators are:

e CreateFlowToStoredProcedure: The agent takes a DataFlow Model CreateFlow and
an Data Model DDiagram as source and produces an equivalent DBQ Model Procedure.
The argument of the target procedure is translated by CulomnToArgument subrule.

e ReadFlowToStoredProcedure: The agent takes a DataFlow Model ReadFlow and
an Data Model DDiagram as source and produces an equivalent DBQ Model Procedure.
This rule consists of one subrule for translating required arguments of that procedure.

e DeleteFlowToStoredProcedure: The agent takes a DataFlow Model DeleteFlow and
an Data Model DDiagram as source and produces an equivalent DB(Q) Model Procedure.
The argument of the target procedure is translated by CulomnToArgument subrule.

e WriteFlowToStoredProcedure: The agent takes a DataFlow Model WriteFlow and
an Data Model DDiagram as source and produces an equivalent DB(Q) Model Procedure.
This rule consists of two subrules for translating required arguments and local variables
of that procedure.

The rest of agents are subclasses of the one-to-one Translation class, at the top level framework.
These translators are:

e DDiagramToSchema: The agent takes a Data Model DDiagram as source and trans-
lates it into a DBQ equivalent Schema. This rule consists of seven subrules to proceed

132

CHAPTER 7. MT IN BUILD 7.6. ANALYSIS-TO-DESIGN

DRole to ForeignKey Depend to ReferTable
— < -
>
DEntity to PrimaryKey ?
DEntity to Table

? —‘ <
DAttribute to Column

ReadFlow to StoredProcedure

Column to Argument DeleteFlow to StoredProcedure
<
<>
CreateFlow to StoredProcedure

Column to Variable WriteFlow to StoredProcedure

DDiagram to Schema

Foreignkey to StoredProcedure

Figure 7.9: Analysis-to-Design: Data Dependency to Database and Query Model

with this translation step.

e DEntityToTable: The agent takes a Data Model DEntity as source and translates it
into a DBQ equivalent Table. This rule consists of two subrules for translating attributes
and primary keys of that generated table.

e DEntityToPrimaryKey: The agent takes a Data Model DEntity as source and trans-
lates it into a DBQ equivalent PrimaryKey.

e DAttributeToColumn: The agent takes a Data Model DAtribute as source and trans-
lates it into a DBQ equivalent Column.

e DependToReferTable: The agent takes a Data Model Dependency as source and trans-
lates it into a DBQ equivalent Table. This rule consists of one subrule for translating a
foreignkey that referred to the generated table.

e DRoleToForeignKey: The agent takes a Data Model DRole as source and translates
it into a DBQ equivalent DfEntity.

e ForeignKeyToStoredProcedure: The agent takes a DBQ Model ForeignKey as source
and translates it into a DBQ equivalent Procedure. This rule consists of two subrules for
translating required arguments and local variables of that procedure.

e OopToDbType: The agent takes an OOP data type and translates it into an equivelant
target database datatype.

133

CHAPTER 7. MT IN BUILD 7.7. ALTERNATIVE TRANSLATION

7.7 Alternative Model Transformation Steps

In this section, the structure of the optional translation steps are discussed. The current version
of BUILD has two additional translation steps that are not a part of the information systems
development process, as currently implemented. These steps are: translating the Impact Model
into the (initial) Information Model and translating DataFlow and DBQ Models into the Code
Model.

7.7.1 Translating the Impact Model into the (Initial) Information Model

Translating an Impact Model into an (initial) Information Model in is an alternative one-to-one
translation step toward generating a complete data model of a system. It takes object and impact
elements from an Impact Model, as its source, generating an equivalent Information Model Entity
and Associations as target elements. This translation step consists of 6 Java agents, in total,
that are responsible for traversing nodes in an Impact Model, and applying a set of rules to
perform the dirct translation between elements and predict the association between them. The
following figure (7.10) shows the internal structure of this translator.

ImpConjunction to Association

ImpBoundary to Association

impDiagram to Diagram

ImpRole to Role ——

:

ImpObject to Entity ImpBoundary to Entity

Figure 7.10: Alternative Transformation: Impact to Information Model

From this, all translating components are regarded subclasses of the Translation class, at the
top level framework. These translators are:

e ImpBoundaryToDiagram: The agent takes a Impact Model ImpDiagram as source
and produces an equivalent Information Model Diagram.

e ImpBoundaryToEntity: The agent takes a boundary (ImpBoundary) from the Impact
Model as source; each enitity, within that boundary, is mapped into an equivalent enitity
(Entity) in the Information Model. This rule consists of one subrule (ImpObject ToEntity)
that continues the translation.

e ImpBoundaryToAssociation: The agent takes a Impact Model ImpBoundary as source;
each flow, in that boundary, is translated into an equivalent Information Model Associa-
tion. This rule consists of a single subrule (ImpRoleToRole) that is responsible for map-

134

CHAPTER 7. MT IN BUILD 7.7. ALTERNATIVE TRANSLATION

ping the types of endroles of each flow into the quivalent ones in the target Information
Model.

e ImpConjunctionToAssociation: The agent takes a Impact Model ImpBoundary that
has one or more conjunction ImpConjunction as source; for each conjunction within that
boundary, the rule generates equivalent Information Model Associations. This rule also
consists of one subrule (ImpRoleToRole) that is responsible for mapping endroles of each
conjunction into the quivalent ones in the Information Model.

e ImpObjectToEntity: The agent takes a Impact Model ImpObject as source and pro-
duces an equivalent Information Model Entity.

e ImpRoleToRole: The agent takes a Impact Model ImpRole as source and produces an
equivalent Information Model Role.

It is worth saying that this translation agent is implemented and used later in Chapter 9 for
generating the Information Model in a case study. The rule of transformation is presented later
with further detail in Chapter 8.

7.7.2 Translating the DataFlow and DBQ Model into the Code Model

Translating a Database and Query and DataFlow Model into an (OO) Code Model is considered
to be a forward merging step. It takes two elements as its source from a DBQ and DataFlow
Model, producing an equivalent target element in the Code model. Finalising the clean version
of this translation agent, which supports all possible OO code features, is not implemented
completely at the date of writing this thesis.

The agent consists of 15 translating agents that are responsible for traversing both Database
and Query and DataFlow Models, applying a set of transformation and merging rules to perform
the mapping between their elements and the target elements in the Code Model. For this step,
some agents are considered to be subclasses of the MergeTranslation class, at the top level
framework. These translators are:

e DDiagramToCDiagram: The agent takes a DBQ Schema and DFD Diagram as source
and produces an equivalent Code Model Diagram element. This rule consists of three main
subrules: TableToClass, DfBoundaryToClass and StoredProcedure ToMethod for generat-
ing entity classes, process classes and methods respectively.

The rest of the agents are subclasses of the one-to-one Translation class, at the top level frame-
work. These translators are:

e DfBoundaryToClass: The agent takes a DataFlow DfBoundary as source and trans-
lates it into a C'ode Model equivalent Clazz. The generated class represents a process class
(business task class). This rules consists of two main subrules: DfObjectToAttribute and
DfActorToAttribute for generating all required attributes (fields) of that process class.

e ColumnToCArgument: The agent takes a DBQ Model Column as source and trans-
lates it into a Code Model equivalent Argument element.

e ColumnToVariable: The agent takes a DBQ Model Column as source and translates
it into a Code Model equivalent Variable.

135

CHAPTER 7. MT IN BUILD 7.8. THE IMPLEMENTATION OF pML MODELS

e DbToOopType: The agent takes a DBQ Model datatype of every element as source
and translates it into an acceptable OO datatype that is equivalent to the source one.

e OopToDbType: The agent takes a Code Model datatype of every element as source
and translates it into an acceptable relational database datatype.

e DfActorToAttribute: The agent takes a DataFlow DfActor as source and translates
it into a Code Model equivalent Attribute. The generated attributes are a member of a
class that is represent a business task (not a business entity).

e DfObjectToAttribute: The agent takes a DataFlow DfObject as source and translates
it into a Code Model equivalent Attribute. The generated attributes are a member of a
class that is represent a business task (not a business entity).

e AttributeToldentifier: The agent takes a recently generated Code Model Attribute as
source and translates it into a Code Model equivalent Identifier, which might be used in
such a method or a constructor.

e StoredProcedureToMethod: The agent takes a DBQ Model Procedure as source and
translates it into an equivalent Code Mode’s Method. This rule consists of two subrules:
proArgument ToMethArgument and proArgumentToMethResult for translating its input
arguments and the type of its return result.

e ProArgumentToMethArgument: The agent takes an argument of DBQ Model Pro-
cedure as source and translates it into a Code Mode’s Method equivalent Argument.

e ProArgumentToMethResult: The agent takes an result (return value) of DBQ Model
Procedure as source and translates it into a Code Mode’s Method equivalent return value.

e TableToArgument: The agent takes a DBQ Model Table as source and translates it
into an equivalent Code Model’s Argument. This generated argument is used to pass
object to method and/or constructor.

e TableToClass: The agent takes a DBQ Table as source and translates it into a Code
Model equivalent Clazz. The generated class represents a business entity class. It is
consists of two subrules: ColumnToAttribute and Table ToConstructor for translating at-
tributes and constructor for that entity class.

e TableToConstructor: The agent takes a DBQ Table as source and translates it into a
Code Model equivalent Constructor for each generated business entity class.

e VariableToldentifier: The agent takes a recently generated Code Model Variable as
source and translates it into a Code Model equivalent Identifier, which might be used in
such a method or a constructor.

7.8 The Implementation of tML Models

Java is adopted both for constructing the model and for the transformation technology the model
and the transformation technology in BUILD. It is a widely known OO programming language
and does not force any further conceptual load on developers, unlike rule-based transformation
languages that require a a steep learning curve before introducing a new translation agent or

136

CHAPTER 7. MT IN BUILD

7.8. THE IMPLEMENTATION OF pML MODELS

a new system aspect into the framework. Models in BUILD are abstract syntax trees (ASTSs),

built in the same programming language (Java).

Two types of Java Packages are used to implement yuML models, namely, a core package
and several concrete packages. The current version of BUILD has one core package that contains
several Java classes for representing core implementation of the puML metamodel elements (see
Table 7.1). On the other hand, the framework contains seven concrete packages for representing
language concepts of each uML model (information system view), each package has a number

of classes for defining these concrete concepts (Table 7.2).

Package Classes

mde.model Element, Node, Model, Type, Arc, Expression, Widget

Table 7.1: Java Package of the Core uML Elements

At the core metamodel level, a concept might inherit from another one. The following listing
(7.1) illustrates the representation of Node.java class. It interits from the core Element class,
and has constructors, attributes and a number of get/set methods. The remaining of concepts

are defined using the same strategy.

Listing 7.1: Construction of Node Concept

1| public class Node extends Element {
2

3 protected String name;

4

5 public Node () {

6 }

7

8 public Node (String name) {

9 this.name = name;

10 }

11

12 public String getName () {

13 return name;

14 }

15

16 public Node setName (String name)
17 this.name = name;

18 return this;

19 }
20 }

{

As it is mentioned before, a number of concrete packages are used to represent the concept of
each uML model. The following table (Table 7.2) demonstrates uML concepts for each concrete

package that are defined using Java classes.

Package Classes

mde.task.model Task, Actor, Boundary Diagram, Generalisation, Composi-
tion, Participation, Role

137

CHAPTER 7. MT IN BUILD 7.8. THE IMPLEMENTATION OF pML MODELS

mde.impact.model ImpTask, ImpObject, ImpBoundary, ImpDiagram, Im-
pDeleteFlow ImpConjunction, ImpCreateFlow, ImpRead-
Flow, ImpUpdateFlow, , ImpRole

mde.information.model Entity, Association, Attribute, Role Diagram, Generalisa-
tion, Composition

mde.state.model State, Action, Variable, StRole, Transition, StDiagram,
StBoundary

mde.gui.model Window, GuiDiagram, GuiBoundary, Button, Variable,
GuiRole, Event, Label, Textfield

mde.data.model DEntity, DDependency, DAttribute, DDiagram, DRole

mde.dataflow.model DfEntity, DfActor, DfTask, DfDiagram, DfBoundary,

DfCreateFlow, DfReadFlow, DfUpdateFlow, DfDeleteFlow,
DfInputFlow, DfOutputFlow, DfWriteFlow, DfRole

Table 7.2: Java Package of the main uML Concrete Elements

Elements of memory models are indexed by their names. A Java LinkedHashMap object is
used to store memory elements in the same order as they appear in the model, because some
transformation rules need to check the order of occurrence of some elements to make a mapping
decision. The following listing (7.2) demonstrates the implementation of the Information Model
Entity.java concrete class:

Listing 7.2: Construction of the Entity element in the Information Model

1| public class Entity extends Type {

2

3 private Map<String, Attribute> attributes;

4

5 public Entity () {

6 attributes = new LinkedHashMap<String, Attribute> ();
7 }

8

9 public Entity (String name) {

10 super (name) ;

11 attributes = new LinkedHashMap<String, Attribute> ();
12 }

13

14 public List<Attribute> getAttributes() {

15 return new ArrayList<Attribute> (attributes.values());
16 }

17

18 public Entity addAttribute (Attribute datt) {

19 attributes.put (datt.getName (), datt);
20 return this;
21 }
22
23 public Attribute getAttribute (String name) {
24 return attributes.get (name);
25 }
26| }

138

CHAPTER 7. MT IN BUILD 7.9. THE IMPLEMENTATION OF THE TRANSFORMATION RULES

7.9 The Implementation of the Transformation Rules

In BUILD, the transformation rules are classified into two types, top level and concrete rule. The
top level rules are implemented as abstract classes in the top level framework. The current
version of BUILD has two abstract classes, namely, Rule and MergeRule. At the concrete
level, each rule is implemented as a concrete java class that inherits either from Translation or
Merge Translation abstract classes at the top level framework. The following sections present
examples of an abstract and concrete transformation rule.

7.9.1 Example of Top-Level Rule Implementation

The abstract Translation class is the ancestor of all translation rules, implemented in the
concrete level, mapping from one Source element to one Target element. Every concrete for-
ward translation rule must inherit from Translation, which is responsible for maintaining the
shared Context of completed work. Figure 7.3 demonstrates the content of the Translation.java
abstract class that expresses the generic translation rule at the top-level framework.

As mentioned earlier, the method translate() first checks whether a translation already exists
for the given source and, if so, it returns the corresponding target for that source. Otherwise
it invokes the abstract method doTranslate() and stores the translated target element in the
contedt.

The shared Context is used by the hasTranslation () method to check whether a transla-
tion exists for a particular source element. When such a translation exists, the getTranslation()
method is used to retrieve the translated target element for a given source, otherwise the method
returns the null value. In contrast, when such a translation does not exist, the method putTrans-
lation() stores a target element as the translation for a given source one and returns it.

Listing 7.3: Abstract root Translation class

1| public abstract class Translation<Source, Target> extends Rule<Source> {
2

3 private Context context;

4

5 public Translation (Context context) {

6 this.context = context;

7 }

8

9 public boolean hasTranslation (Source source) {

10 Map<Object, Object> map = context.lookup (this);
11 return map.containsKey (source) ;

12 }

13

14 protected Target getTranslation (Source source) {

15 Map<Object, Object> map = context.lookup (this);
16 return (Target) map.get (source);

17 }

18

19 public Target putTranslation(Source source, Target target) {
20 Map<Object, Object> map = context.lookup (this);
21 map.put (source, target);

22 return target;

23 }

24

25 protected abstract Target doTranslate (Source source);

139

CHAPTER 7. MT IN BUILD 7.9. THE IMPLEMENTATION OF THE TRANSFORMATION RULES

26
27
28
29
30
31
32
33
34

public Target translate (Source source) {
if (hasTranslation (source))
return getTranslation (source);
else
return putTranslation (source, doTranslate (source));

7.9.2 Example of Concrete Rule Implementation

The transformation rule for translating Data Model’s DEntity into DBQ’s Table is considered
in this section to exemplify its implementation and illustrate how the rule invokes another one
in an imperative style. Figure 7.4 represents the content of the DEntityToTable.java class that
expresses the translation rule for generating DB() table from a generated Data Model.

— =
= O © 00O Ui W~

W W WWWwWwh NNNNNNNNDLNFFH H ==
QR WD OO0 U WNFHE O ©OWO U WN

Listing 7.4: Construction of the Entity element in the Information Model

public class DEntityToTable extends Translation<DEntity, Table> {

private DAttributeToColumn dAttributeToColumn;
private DEntityToPrimaryKey dEntityToPrimKey;

public DEntityToTable () {
this (new Context ());

public DEntityToTable (Context context) {
super (context) ;
dAttributeToColumn = new DAttributeToColumn (context);
dEntityToPrimKey = new DEntityToPrimaryKey (context) ;

public boolean accept (DEntity dentity) {
return true;

public Table doTranslate (DEntity dentity) {
Table table = new Table();
table.setName (dentity.getName ()) ;
if (dEntityToPrimKey.accept (dentity)) {
PrimaryKey primary = dEntityToPrimKey.translate (dentity);
if (primary.isSynthetic())
table.addColumn (primary.getColumn ()) ;
table.addPrimaryKey (primary) ;
}
for (DAttribute dattr : dentity.getDAttributes()) {
if (dAttributeToColumn.accept (dattr))
table.addColumn (dAttributeToColumn.translate (dattr));
}

return table;

140

CHAPTER 7. MT IN BUILD 7.9. THE IMPLEMENTATION OF THE TRANSFORMATION RULES

The concrete DEntityToTable class inherits from the Translation class at the top level.
The rule has no preconditions to be fired, as it seen in the body of accept() method. Two
subrules are declared declaratively, without taking into account their order of execution, namely,
DAttribute ToColumn and DEntityToPrimaryKey.

The body of the DEntityToTable, which represents exactly how the target element is de-
veloped, is expressed imperatively as a body of the concrete doTranslate(...) method. The
following algorithm demonstrates how to translate Data Model DEntities into DBQ Tables:

Result: Table

initialise DAttributeToColumn object;

initialise DEntityToPrimaryKey object;

while DEntityToTable accepts a new source element do
translate the source element (DEntity);

if DEntityToPrimaryKey accept the source then
generate a primary key from the source;

add the generated key to the generated table;

end
forall the DAttribute in the current DEntity do

if DAttribute ToColumn accept the source then
translate the current DAttribute from the source;
add the generated Column to the generated table;
end

end
go back to translate the next DEntity in the source model;
end

Algorithm 1: Translating Data Model DEntities into DB(Q) Tables (Default)

In order to illustrate the degree of modularity of the designed agents (DAttributeToColumn
and DEntityToPrimaryKey), they can be reused in the opposite order to produce the same out-
put result. From that it can be concluded that these two agents are completely independent.
The following algorithm shows an alternative order to invoking the subrules than the order
shown in algorithm 1.

Result: Table

initialise DAttributeToColumn object;

initialise DEntityToPrimaryKey object;

while DEntityToTable accepts a new source element do

translate the source element (DEntity);

forall the DAttribute in the current DEntity do

if DAttributeToColumn accept the source then
translate the current DAttribute from the source;
add the generated Column to the generated table;

end

end

if DEntityToPrimaryKey accept the source then

generate a primary key from the source;

add the generated key to the generated table;

end
go back to translate the next DEntity in the source model;
end

Algorithm 2: Translating Data Model DEntities into DB(Q) Tables (Alternative)

141

CHAPTER 7. MT IN BUILD 7.10. BRIEF OVERVIEW OF THE CODE GENERATION FRAMEWORK

7.10 Brief Overview of the Code Generation Framework

As previously presented in Chapter 3, the Code Generation step is considered the final forward
mapping step, within BUILD framework, that generates executable code from a number of low-
level platform-independent design models. The input models for this phase are: the GUI and
DBQ@ Model, whereas, the output is a platform-specific executable OOP code and a relational
SQL schema script. The current version of BUILD is able to generate a Java Swings application
with a JDBC connection to a MySQL back-end database system is also generated from BUILD,
producing a runnable 2-Tier Information System.

As a proof of concept, two domain-specific generators, namely, a Java Swing and MySQL
generator, were designed. The overall architecture of the BUILD Code Generation Framework is
described as a two levels of code generator agents. The top-level framework consists of a number
of abstract classes, or Java agents, for holding common features of all sub-generators that are
platform-specific for a target environment, such as MySQL.

7.11 Code Generation Approach (Design-to-Code)

In order to achieve a complete code generation facility, a number of Java-generator components
are designed to implement the (imperative) mapping rules for each generator agent. These
generators are: State-to-GUI and DataFlow-DataModel-to-Database. They accept as source the
in-memory models produced by earlier transformation steps and produce executable code of
each input artefact providing an executable code for a target system.

As the approach aims to generate code for different working environments, two layers of
java classes are considered in the internal structure of each generator: abstract and concrete
classes. The layer of abstract classes is constructed on the top of all groups of sub-generators,
for a particular IS tier, to hold and share the common behaviours of the widely-known relational
database vendors and OOP languages, which might be duplicated within different kinds of
generators. Figure 7.11 demonstrates the sub-generators of the Java Swing GUI code generation
framework.

For instance, when constructing the data tier, generating back-end databases in MySQL,
Oracle, and other database system is possible when a relevant version of database generator
exists. The following figure (Figure 7.12) illustrates sub-generators for generating a MySQL
database system. These specific generators are implemented separately and grouped as concrete
classes in Java.

142

CHAPTER 7. MT IN BUILD

7.11. DESIGN-TO-CODE

Abstract Gen

| i |

CodeFile Gen Class Gen TextField Gen Button Gen Label Gen

Zﬁ 2\

JavaCodeFile Gen

? JavaClass Gen
JavaTextField Gen JavaButton Gen| |JavalLabel Gen

1=

Figure 7.11: The Architecture of the Java Swings Ul Generator

For each concept in the target model, a specific agent (Java generator) is introduced. The
transformation rules are implemented imperatively as methods within each agent. The following
listing (7.5) shows an example of a method in MySQLFieldGenerator class for generating fields
of a particular MySQL table.

00O Ui Wi+

e e el e e e e ol
= O © 00O Utk WwWhH—=OO

Listing 7.5: A method for generating fields of a MySQL table

public void writeField() throws TreeException

{

if (reservedWords.contains (((Column) model) .getName ()))
write(" "+ ((Column) model) .getName ()+"1");

else
write(" "+ ((Column) model) .getName());

write(" " + convertType (getType()));

if (! (convertType (getType ()) .equalsIgnoreCase ("BOOLEAN") ||

convertType (getType ()) .equalsIgnoreCase ("DATE") ||
convertType (getType ()) .equalsIgnoreCase ("DOUBLE")))

write (" ("+((Column) model) .getSize ()+")");

Table table = (Table) getOwner () .getModel () ;

PrimaryKey pk = table.getPrimaryKey();

for (Column col : pk.getColumns()) {
if (col.getName () .equalsIgnoreCase (getName ()))
write (" NOT NULL");
} }

143

CHAPTER 7. MT IN BUILD 7.12. OUTLOOK ON THE CHAPTER

7.12 Outlook on the Chapter

The chapter has discussed the overall architecture and mechanism of the transformation ap-
proach in BUILD. The transformation framework consists of two levels, an abstract top level
and concrete bottom level. In the top level, two root rules (Java classes) are designed to im-
plement the various types of mapping rules within the approach (e.g. one-to-one translation,
two-to-one merging rule). Furthermore, for each compositional layer of transformation, the ar-
chitecture of all translation agents at the concrete level is discussed in-depth in this chapter.
Independent rules for each translation step are highlighted, showing their roles in the transfor-
mation approach.

144

7.12. OUTLOOK ON THE CHAPTER

CHAPTER 7. MT IN BUILD

Abstract Gen

JAN

PK Gen FK Gen Field Gen Table Gen Schema Gen | |DumpFile Gen Trigger Gen StoredProc Gen Create Gen Delete Gen Update Gen Query Gen
VAN VAN JAN mw JAN JAN JAN JAN JAN
MySQLDumpFile Gen
MySQLSchema Gen Lv MySQLTrig Gen
MySQLTable Gen % Aw Q MySQLSP Gen
Avl4
MySQLField Gen bv Av Av Av MySQLCreate Gen
MySQLFK Gen MySQLDelete Gen
MySQLPK Gen MySQLUpdate Gen
MySQLQuery Gen

Figure 7.12: The Architecture of the (MySQL) Database Generator

145

The Rules of Model Transformation

“Simplicity is the soul of efficiency”

Austin Freeman

8.1 Context

This chapter presents and discusses the transformation rule for each translation step at the
concrete level of the framewok. The sections are divided based on the transformations between
the different development phases in BUILD, which mainly are Requirement to Analysis phase
and Analysis to Design phase. For each target model, the rule that is used for deriving each
target element is presented. The First-Order Predicate Logic (FOPL) statements are used to
express and formalise the transformation rules.

8.2 Transformation Rules at the Requirement to Analysis Phase

8.2.1 Translating Task and Impact Models into (initial) DataFlow

While each external interaction between tasks and actors is expressed in the Task Model, and
the internal interaction between the same tasks and system objects is described in the Impact
Model, the DataFlow Model brings together both interactions in one diagram as a result of
merging equivalent task from the Task and Impact Model.

146

CHAPTER 8. MT RULES IN BUILD 8.2. REQUIREMENT TO ANALYSIS

8.2.1.1 DataFlow Diagram

Equivalent Diagram elements in the Task and Impact Model are mapped into a DataFlow one.

mr : Diagram x ImpDiagram — D fDiagram

V dl : Diagram, Y bl : Boundary, ml : TaskM odel
YV d2 : ImpDiagram, ¥V b2 : ImpBoundary,
m2 : ImpactModel o ((b1 € d1) A
(dl €m ml) A (b2 € d2) A (d2 €n m2)
A NameOf(dl,d2) A NameO f(bl,b2))
—
A1 d3 : DfDiagram, b3 : D f Boundary,
m3 : DataFlowModel o ((d3 €, m3) A (b3 € d3)
A (NameOf(dl,d3) A NameO f(d2,d3))
A (b3 = mr(bl,b2)))

8.2.1.2 DataFlow Task

Each DfTask corresponds to the merge of both a Task Model Task and it is equivalent ImpTask in
the Impact Model. This translation is performed by the MergeTaskToDfTask agent. Therefore,
the rule can be stated as: for each two equivalent tasks in both Task and Impact Model, there
exist a task (DfTask) in the generated DataFlow Model. The main translation rule for this
translator can be expressed in logic as:

tr : Task, ImpTask — DjfDTask

V tl: Task,ml : TaskM odel,
V t2 : ImpTask, m2 : Impact M odel
o ((t1 €m ml) A (12 €m m2) A NameOf(t1,12))
N
' t3: DfTask,m3 : DataFlowModel
e ((t3 €m m3) N (NameOf(t1,t3)
A NameOf(t2,t3))

8.2.1.3 DataFlow Boundary

Composite tasks in the Task Model are treated differently, in that they are translated into a
DataFlow Boundary, containing its sub-tasks. This is handled by the TaskToBoundary agent.
Thus, the transformation rule is: For each composite task in the Task Model, there exists a
logical boundary in model of the DataFlow Model.

tr: Task — D fBoundary

V t: Task,c: Composition,ml : TaskM odel
o ((t,c €m ml) N (Whole(c,t)))
N
3 b: DfBoundary, m2 : DataFlowM odel
e ((b €m m2) A NameOf(t,b))

147

CHAPTER 8. MT RULES IN BUILD 8.2. REQUIREMENT TO ANALYSIS

In addition to this, a direct mapping rule exists: For each equivalent boundary in the Task Model
and Impact Model, there exists a logical boundary in the DataFlow Model. This can be expressed
in FOPL as:

mr : Boundary, ImpBoundary — D fBoundary

V bl : Boundary,V p : Participation,
V tl:Task, ¥ al : Actor,ml : TaskModel
o ((t1,p,al &€, bl) A (b1 €, ml)),
V b2 : ImpBoundary,¥ ar : Arc,V obj : ImpObject,
V t2 : ImpTask, m2 : Impact M odel
o ((t2,0bj,ar €m b2) A (b2 €m m2))
N
1 3 : DfBoundary,t3 : DfTask,a2 : D fActor,
f: Flow,e: DfEntity,m3 : DataFlowM odel
o ((t3,a2,f,e €m b3) A (b3 €, m3)
A (NameOf(b1,b3) A NameOf(b2,b3) A
(t3 = mr(tl1,t2)) A (a2 = tr(al)) A
(f = tr(p) N (f = tr(ar))))

8.2.1.4 DataFlow Entity

Each DfEntity is mapped directly to an Impact Model object (ImpObject). This translation is
performed by the ImpObject ToDfEntity agent. The rule of this translation is: for each object in
the Impact Model, there exist a DataFlow Entity in the generated DataFlow Model. It can be
expressed in FOPL as:

tr : ImpObject — D fEntity

¥ obj : ImpObject,ml : ImpactModel o (obj €m ml)
N

Al ent : D fEntity, m2 : DataFlowM odel

o ((ent €m m2) A NameO f(obj, ent))

8.2.1.5 DataFlow Actor

Each DfActor is translated simply to a Task Model actor (Actor). This translation is performed
by the ActorToDfActor agent. The rule of this translation is: for each actor in the Task Model,
there exist a DataFlow Entity in the generated DataFlow Model. It can be expressed in FOPL
as:

tr : Actor — D fActor

V al : Actor,ml : TaskModel o (al €,, ml)
N

I a2 : DfActor,m2: DataFlowM odel

e ((a2 €, m2) A NameOf(al,a2))

148

CHAPTER 8. MT RULES IN BUILD 8.2. REQUIREMENT TO ANALYSIS

8.2.1.6 DataFlow Flows

Each Task Model Participation is checked first to see whether or not it is an Input or an Qutput.
This check is carried out by BoundaryToDfBoundary merge translation agent. Based on the
kind of Participation, the decision to translate it into DataFlow DfInputFlow or DfOutputFlow
is made. The translation is perform by either ParticipationToDfInputFlow and Participation-
ToDfOutputFlow component. From that, two basic rules can be extracted:

1- For each Input participation in the Task Model, there exist an Input flow in the DataFlow
Model.

(DfInputFlow <: Arc)
tr : Participation — D fInputFlow

Y p: Participation, (r1,72) : Role,m1 : TaskM odel
e ((p,rl,r2 €m ml) A (Input(p)))
SN
3! f: DfInputFlow, (r3,r4) : DfRole,
m2 : DataFlowModel o ((r3 = tr(rl))
A (rd = tr(r2)) A (f,r3,74 €, m2))

2- For each Output participation in the Task Model, there exist an Output flow in the DataFlow
Model.

(DfOutputFlow <: Arc)
tr : Participation — D fOutputFlow

Y p: Participation, (r1,72) : Role,m1 : TaskM odel
e ((p,r1,72 € ml) A (Output(p)))
s

3! f: DfOutputFlow, (r3,r4) : DfRole,

m2 : DataFlowModel o ((r3 = tr(rl))

A (rd = tr(r2)) A (f,r3,14 €n m2)

Besides this, the kind of Impact in the Impact Model is also checked by the BoundaryToDf-
Boundary merge translation agent that traverse the Impact Model XML tree handling each kind
of Impact separately. Each Impact is mapped directly to an equivalent Flow in the DataFlow
Model. The translation is perform by either ParticipationToDfInputFlow and ParticipationToD-
fOutputFlow component. From that, four basic rules can be extracted:

149

CHAPTER 8. MT RULES IN BUILD 8.2. REQUIREMENT TO ANALYSIS

1- For each create impact in the Impact Model, there exist an create flow in the DataFlow Model.

(DfCreateFlow <: Arc)
tr : CreateFlow — D fCreateFlow

YV ¢f1: CreateFlow, (r1,r2) : ImpRole,
ml: ImpactModel o (cf1,71,72 €, ml)
—
A ¢f2: DfCreateFlow, (r3,r4) : DfRole,
m2 : DataFlowModel o ((r3 = tr(rl))
A (rd = tr(r2)) A (cf2,r3,14 €n m2)

2- For each read impact in the Impact Model, there exist an read flow in the DataFlow Model.

(DfReadFlow <: Arc)
tr : ReadFlow — D fReadFlow

YV rfl: ReadFlow, (r1,r2) : ImpRole,
ml: ImpactModel o (rfl,rl,r2 €, ml)
N
3! rf2: DfReadFlow, (r3,r4) : DfRole,
m2: DataFlowModel o ((r3 = tr(rl))
A (rd = tr(r2)) A (rf2,r3,74 €, m2)

3- For each update impact in the Impact Model, there exist an update flow in the DataFlow
Model.

(DfUpdateFlow <: Arc)
tr : UpdateFlow — D fUpdateFlow

YV ufl: UpdateFlow, (rl,r2) : ImpRole,
ml: ImpactModel o (ufl,rl,r2 €, ml)
N
I uf2: DfUpdateFlow, (r3,r4) : DfRole,
m2: DataFlowModel o ((r3 = tr(rl))
A (rd = tr(r2)) A (uf2,73,74 E€m m2)

4- For each delete impact in the Impact Model, there exist an delete flow in the DataFlow Model.

(DfDeleteFlow <: Arc)
tr : DeleteFlow — D fDeleteFlow

V df1: DeleteFlow, (rl,r2) : ImpRole,
ml : ImpactModel o (dfl,r1,r2 €, ml)
s
3 df2 : DfDeleteFlow, (r3,74) : DfRole,
m2: DataFlowModel o ((r3 = tr(rl))
A (rd = tr(r2)) A (df2,r3,14 €n m2)

150

CHAPTER 8. MT RULES IN BUILD 8.2. REQUIREMENT TO ANALYSIS

It is important to highlight that these agents use the ImpRoleToDfRole and Role ToDfRole agents
to translate the end-roles for each flow and participation, respectively, into correspondence ones
in the DataFlow Model.

tr : Role — DfRole

V rl: Role,ml : ImpactModel o (rl €, ml)
—

A r2: DfRole,m2 : DataFlowM odel

o ((r2 €m m2) A NameOf(rl,r2))

8.2.2 Translating Information Model into Data (Dependency) Model

8.2.2.1 Data Diagram (Model)

A direct one-to-one mapping exists between a given Information Model and the generated Data
Model, in which the Information Diagram element in the Information Modelis translated directly
into a Data Dependency Diagram node. This is expressed in the following rule:

tr : Inf Diagram — D Diagram

V dl : InfDiagram, V el : InfEntity,
Y a : Relationship, ¥V (r1,72) : InfRole,
ml: InformationModel o ((el,a,r1,72 €, dl)
A (dl €, ml))
N
3! d2 : DDiagram, (r3,74) : DRole,d : Dependency,
€2 : DEntity,m2 : DataModel o ((e2 = tr(el))
A (d = tr(a)) A (r3 = tr(rl)) A (14 = tr(r2))
A (€2,d,73,14 Em d2) N (d2 Em m2)
A NameO f(dl1,d2))

8.2.2.2 Data Entity

Deriving DFEntity is done by mapping an entity in Information Model into a corresponding one
in the Data Dependency Model. This translation is carried out by InfEntityToDEntity agent.
The rule of this translation is: For each entity in the Information Model, there exists an entity
in the Data Model. It can be expressed in FOPL as:

tr : InfEntity — D Entity

YV entl : InfEntity,V attl : Inf Attribute,
ml: InformationModel o ((attl €, entl)
A (entl €, ml))
—
3! ent2 : DEntity, att2 : D Attribute, m2 : DataM odel
o ((att2 €, ent2) A (ent2 €, m2)
A NameOf(entl,ent2) A (att2 = tr(attl)))

151

CHAPTER 8. MT RULES IN BUILD 8.2. REQUIREMENT TO ANALYSIS

In addition to this, DEntity may also correspond to an Information Model many-to-many Asso-
ciation. This kind of association is promoted to a full entity in the Data Model. The end-roles
are converted into named attributes storing the identities of the InfEntities of the association
as extra DAtiribute model the old end Roles.

This translation is performed by InfAssocToMergedTable agent. It searches in the source
model tree for many-to-many Association nodes, and then generates a new DEntity element in
the target model. This includes translating the Identifiers of each InfEntity into unique DAt-
tributes within the created entity. These sub-translations are carried out by IdentifierToUnique
agent. From above, two main roles can be expressed as:

1- For each many-to-many association in the Information Model, there exists an entity in the
Data Model.

tr : Association — D FEntity

Y a : Association, (objl, 0bj2) : Inf Entity,
(id1,4d2) : Identifier,ml : InformationModel
e ((a,0bjl,0bj2 €m ml) A ManyToMany(a)
A Links(a,o0bjl,0bj2) A Id(objl,idl)
A Id(obj2,id2))
N
3! e : DEntity, (att3, attd) : D Attribute,
m2: DataModel o ((e €, m2)
A (att3,attd €, e) A NameO f(a,ent)
A (att3 = tr(idl)) A (attd = tr(id2))

2- For each identifier of an entity involved in a many-to-many association, in the Information
Model, there exists an equivalent unique attribute in the corresponding entity of that association
in the Data Model.

tr : Identifier — D Attribute

V a: Association, ¥V e : Inf Entity,
Y id : Identifier,ml : InformationM odel
o ((a,e €n ml) A ManyToMany(a)
A Id(e,id) N (Source(a,e) @ Target(a,e)))
N
3! ent : DEntity, 3! att : DAttribute, m2 : DataModel
e ((ent €, m2) A (att €, ent)
A Unique(att) A NameO f(a,ent)))

It is worth emphasising an interesting case in regard to disjoint Generalisation, where it is
assumed that Child entities consist of the attributes of the Parent Entity, added to its original
attributes. At the end the Parent entity is deleted from the model and a new version of its Child
entities appear in the Data Dependency Model.

From this, a new rule might be stated: For each disjoint gemeralisation, which connects
child entities to a parent one, in the Information Model, there exists an equivalent entity to the
child entities that have the attributes of the parent. This can be written in logic as:

152

CHAPTER 8. MT RULES IN BUILD 8.2. REQUIREMENT TO ANALYSIS

tr : Generalisation — D Entity

Y g : Generalisation, V el,e2 : InfEntity,
YV al,a2 : InfAttribute,ml : InformationModel
o ((g,el,e2 €, ml) A (al €, el)
A (a2 €, e2) A Connects(g,e2,el)
A Disjoint(g) N (el # €2) A (al # a2))
N
d! ent : DEntity, 3 attl, att2 : D Attribute, m2 : DataM odel
o ((ent €n m2) A (attl,att2 €, ent)
A NameO f(e2, ent)
A (attl = tr(al)) A (att2 = tr(a2)))

8.2.2.3 Data Attribute

A straightforward mapping exists between Information Model Attribute to generate equivalent
Data Dependency DAttribute, in which each Attribute element is directly translated into a DAt-
tribute. The following logic formula expresses this:

tr : InfAttribute — D Attribute

Y attl : InfAttribute, ml : In formationM odel
e (attl €,, ml)
N
! att2 : DAttribute, m2 : DataM odel
o ((att2 €, m2) A NameO f(attl, att2))

8.2.2.4 Data Dependency

A Dependency in the Data Model might be derived by translating one of the three Information
Model concepts: many-to-one association, (overlapping) generalisation, and composition. In
regards to many-to-one association, the InfAssocToDDependency rule (agent) is responsible for
translating each detected Association into a Dependency in which the many always depend
on the one. Any many-to-many association must be promoted into a into a pair of many-to-
one associations first, then the multiplicity constraints must also be translated (see earlier rule
above).

From the above, the first translating rule can be summarised as: For each many-to-one
association between two entities in the Information Model, there exists an equivalent dependency
i between the equivalent entities the Data Dependency Model where the entity on the many-side
depends on the entity on the one-side. This can be expressed in FOPL as:

153

CHAPTER 8. MT RULES IN BUILD 8.2. REQUIREMENT TO ANALYSIS

tr : Association — Dependency

YV el,e2: InfEntity, ¥V a: Association,

ml: InformationModel o ((a,el,e2 €, ml)

A ManyToOne(a) N Connect(a,el,e2) N (el # e2))
—

3! d : Dependency, e3, ed : DEntity, m2 : DataM odel
o ((d,e3,ed €, m2) N Connects(d,e3,e2)

A NameOf(el,e3) A NameOf(e2,ed) A
Depends(e3,ed) A (e3 = tr(el)) A (ed = tr(e2)))

In addition to this, every (overlapping) Generalisation in the Information Model is resolved
by making the specific entities depend on the general one. This mapping is carried out by
the InfGenToDDependency agent. The second rule of translation can be defined as: For each
overlapping generalisation between entities in the Information Model, there exists an equivalent

dependency relationship between the equivalent entities in the Data Dependency Model. This can
be written in logic as:

tr : Generalisation — Dependency

Vel,e2: InfEntity, V g : Generalisation,
ml : InformationModel o ((g,el,e2 €, ml)
A = Disjoint(g) N Connect(g,el,e2) A (el # e2))
N
3! d : Dependency, e3,ed : DEntity, m2 : DataM odel
o ((d,e3,e4 €m m2) N Connects(d,e3,ed)
A (NameOf(el,e3) N NameOf(e2,ed) A
Depends(e3,ed) A (e3 = tr(el)) A (ed = tr(e2)))

Furthermore, every (not total) Composition in the Information Model is resolved by making
the whole depend on the parts. The InfComToDDependency rule is responsible for proceeding
with this mapping from Composition into Dependency. From this, the third rule for deriving
Dependency can be defined as: For each composition between entities in the Information Model,

there exists an equivalent dependency relationship between the equivalent entities in the Data
Dependency Model. This can be written in logic as:

tr : Composition — Dependency

YV el,e2: InfEntity, ¥V c: Composition,
ml: InformationModel o ((c,el,e2 €, ml)
A = Total(c) A Connect(c,el,e2) N (el # e2))
s
3! d : Dependency, e3, e4 : DEntity, m2 : DataM odel
o ((d,e3,e4 €m m2) N Connects(d,e3,ed)
A NameOf(el,e3) AN NameOf(e2,ed) A
Depends(e3,e4) N (e3 = tr(el)) A (ed = tr(e2)))

154

CHAPTER 8. MT RULES IN BUILD 8.2. REQUIREMENT TO ANALYSIS

8.2.3 Transforming (initial) DataFlow Model into Detailed DataFlow Model

8.2.3.1 Detailed DataFlow Diagram

This one-to-one mapping aims at applying a task decomposition strategy to DataFlow tasks
that are connceted to more than one flow. From that, For each DataFlow Model, there exists a
detailed DataFlow one generated from it. This can be formalised as follows:

tr : DfDiagram — D fDiagram

Y dl: DfDiagram,¥ bl : Boundary,
ml : DataFlowModel o ((b1 €, dl)
A (dl &€, ml)
N
AV d2 : DfDiagram,b2 : Boundary,
m2 : DataFlowModel o ((b2 €, d2)
A (d2 €n m2) A (b2 = tr(bl)))

8.2.3.2 Detailed DataFlow Boundary

Each DfTask that is connected to more than one Flow is translated into a DfBoundary in the
detailed DataFlow Model. This can be defined as: for each dataflow task that is connected to
more than one flow, there exists one equivalent boundary in the detailed dataflow model. The
following FOPL expresses this formally:

tr: DfTask — D fBoundary

Vtl: DfTask, f1, f2: Flow,al : D fActor,
ml: DataFlowModel o ((t1,f1,f2,al €, ml)
A(f1 # f2) A (Source(f1,t1) ®
Target(f1,t1)) A (Source(f2,t1)
@ Target(f2,t1)))
N
Al b: DfBoundary,t2: DfTask, f3, f4: Flow,
a2 : DfActor,m2 : DataFlowModel o ((b €, m2)
A NameOf(t1,b) N (f3 = tr(f1)) A
(f4 = tr(f2)) A (12 = tr(tl)) A (a2 = tr(al)))

8.2.3.3 Detailed DataFlow Task

As a general rule, each DfTask in an initial DFD model is translated into an equivalent DfTask
in the detailed DFD one. This mapping is applicable when the DfTask is the source of either
create, delete or update, or when it is target of either input or read. The following rule expresses
the cases when the flow is either a create, delete or update flow:

155

CHAPTER 8. MT RULES IN BUILD 8.2. REQUIREMENT TO ANALYSIS

tr: DfTask — DfTask

V f1: Flow,tl: DfTask,ml : DataFlowM odel
o ((t1, f1 €m ml) A (DfCreate(f1)
@ DfDelete(f1) @ DfUpdate(f1)) A (Source(f1,t1)))
SN
1 t2: DfTask,m2 : DataFlowModel
e ((t2 €m m2) A NameOf(t1,t2))

In addition to this, the following rule expresses the mapping when the flow is either an input
and a read flow.

tr: DfTask — DfTask

YV f1: Flow,tl: DfTask,ml : DataFlowM odel
e ((t1,f1 €, ml) A (DfRead(f1)
@ DfInput(f1)) A (Target(f1,t1)))
SN
31 t2: DfTask,m2: DataFlowM odel
e ((t2 €, m2) A NameOf(t1,t2))

Any DfTask that is connected to more than one Flow will be decomposed into a number of
atomic tasks based on the number of flows to which it is connected. The following rule expresses
this mapping when the task is a source in more than one flow:

tr: DfTask — DfTask

VY f1, f2: Flow,tl : DfTask,ml : DataFlowM odel
o ((t1, f1,f2 €m ml) A(f1 # f2)
A (Source(f1,t1) @ Source(f2,t1)))
SN
I tla,tld: D fTask,m2 : DataFlowM odel
o ((tla,t1b €, m2) N AtomicTaskO f(ta,tla)
A AtomicTaskOf(t1,t1b)
A (Source(f1,tla) @& Source(f2,t1d)))

It is worth saying that the rule expressed above might be rewritten by considering the task to
be target in more than a flow, or when it is source in one flow and target in another one. The
following rule expresses the second case:

tr: DfTask — DfTask

V f1, f2: Flow,t1 : DfTask,ml : DataFlowM odel
o ((t1,f1,f2 €m ml) A(f1 # [2)
A (Target(f1,t1) @ Target(f2,t1)))
N
dtla,tlb: DfTask,m2: DataFlowM odel
o ((tla,tlb €m m2) A AtomicTaskOf(t1,tla)
N AtomicTaskO f(t1,t1b)
A (Target(fl,tla) & Target(f2,t1b)))

156

CHAPTER 8. MT RULES IN BUILD 8.2. REQUIREMENT TO ANALYSIS

A priority scoring mechanism is introduced for prioritising each atomic task in the detailed DFD.
This technique is applied during decomposing initial DFD tasks into their atomic ones.

8.2.3.4 Detailed DataFlow Object

A DfObject is passed directly to the detailed DataFlow Model during the transformation step.
This mapping is carried out by the ArcToDfObject agent which maps the DfObject at both ends
both ends of each Flow. The following rule demonstrates the transformation in the case of
create, delete and update flows only.

tr: DfObject — D fObject

Vf1: Flow,objl : DfObject,ml : DataFlowM odel
o((objl, f1 €m ml) A (DfCreate(fl) @& D fDelete(f1)
@ DfUpdate(f1)) A (Target(f1,0bjl))
SN
3! obj2 : DfObject,m2 : DataFlowM odel
o ((obj2 €m m2) A NameO f(objl,0bj2))

By considering DfReadFlow:

tr : DfObject — D fObject

V f1: Flow,objl : DfObject, ml : DataFlowM odel
o ((obj1, f1 €m ml) A (DfRead(f1) A (Source(f1,0bjl))
SN
3! obj2 : DfObject,m2 : DataFlowM odel
e ((0bj2 €, m2) A NameOf(objl,obj2))

8.2.3.5 Detailed DataFlow Actor

A DfActor is passed directly to the detailed DataFlow Model during the transformation step.
This mapping is carried out by the ArcToDfActor agent by detecting DfActor at the both ends
of each Flow. The following formula illustrates the rule in the case of DfInputFlow:

tr: DfActor — DfActor

V f1: DfInputFlow,al : DfActor,ml : DataFlowM odel
o ((al, f1 &€m ml) A (Source(f1,al))
SN
A a2 : DfActor,m2 : DataFlowModel
e ((a2 €m m2) A (NameOf(al,a2)))

157

CHAPTER 8. MT RULES IN BUILD 8.2. REQUIREMENT TO ANALYSIS

by considering the DfOutputFlow:

tr: DfActor — DfActor

V f1: DfOutputFlow,al : DfActor,ml : DataFlowM odel
e ((al, f1 €m ml) A (Target(f1,al))
N
3! a2 : DfActor,m2 : DataFlowM odel
e (a2 €, m2)

8.2.3.6 Detailed DataFlow Flows

All Flow types are passed directly to the detailed DataFlow Model the transformation step except
DfUpdateFlow. This can be expressed in the following general FOPL law:

tr: Flow — Flow

V f1: Flow,ml: DataFlowModel o ((f1 €m ml
A (DfCreateFlow(fl) @ DfReadFlow(f1
@ DfDeleteFlow(fl) & DfInputFlow(f1
@ DfOutput Flow(f1)
N
3! f2: Flow,m2 : DataFlowM odel
o ((f2 €m m2) A
FlowTypeOf(f1, f2))

T — — —

In the case of DF UpdateFlow, it is decomposed into DfReadFlow and DfWriteFlow and attached
to the decomposed DfTask connected to that DfUpdateFlow. This can be expressed as:

tr : UpdateFlow — DfReadFlow x D fWriteFlow

vV f1: Flow,ml : DataFlowM odel
e ((f1 €m ml) N (UpdateFlow(f1))
N

Al f2: DfReadFlow, f3 : D fWriteFlow,

m2: DataFlowModel o (f2,f3 €, m2)

Priority Scoring Algorithm of Tasks

Two prioritising steps are used to extract (predict) the internal behaviour of each DfBound-
ary in the detailed DFD: analysing types of tasks and analysing data on flows . In the first step,
Partial Dependency from the task execution perspective is considered a strategy for prioritising
all atomic tasks at the detailed DFD model. For each DFD boundary, tasks are classified into
four levels of priority based on their types. The task that has a high priority score is executed
before the lower ones. It is assumed that the input tasks have the highest priority in a boundary
with a score of 4. The read tasks come next with a score of 3. Whereas, create, delete and write
come after with a score of 2. The output task, at the end, has a score of 1 (see Table 8.1).

158

CHAPTER 8. MT RULES IN BUILD 8.2. REQUIREMENT TO ANALYSIS

Score Type(s) of Tasks

4 Input

3 Read

2 Create, Delete, and Write
1 Output

Table 8.1: Priority ranking of different types of task

In the second step, data on flows is checked in order to be sure in which order tasks might be
executed. For example, suppose we have a piece of data (z) on an input flow and the same ()
on a create flow, it can be predicted (extracted) that x has to be input before it can be used in
a create task. As a result of these two steps, additional DfReadFlows are generated to connect
tasks that have higher priority scores to the lower ones, for each detailed DFD boundary.

8.2.4 Translating DataFlow Model into (Screen) State Model
8.2.4.1 State Diagram (model)

A StDiagram element in translated from an existing DfDiagram node in the detailed DataFlow
Model, in which For each detailed DFD, there exists a diagram in the State Model. This can be
expressed as:

tr : D fDiagram — StDiagram

V dl : DfDiagram,bl : DfBoundary,
ml : DataFlowModel o ((b1 €., dl)
A (dl €n ml))
N
3! d2 : StDiagram, b2 : StBoundary, m2 : StateM odel
o ((02 €y d2) A (d2 €, m2)
A NameOf(dl,d2) A (b2 = tr(bl)))

8.2.4.2 Boundary

Each StBoundary corresponds to a DfBoundary in the DataFlow Model. This mapping is
acheived using the DfdBoundaryToStBoundary agent that provides a one-to-one translation
step. The main rule of this mapping is: For each boundary in the DataFlow Model, there
exists a boundary in the State Model. The logic expression of this rule is:

159

CHAPTER 8. MT RULES IN BUILD 8.2. REQUIREMENT TO ANALYSIS

tr : D fBoundary — StBoundary

V ml: DataFlowModel,t : DfTask, f : Flow,
bl : DfBoundary e ((t,f €m bl) A (bl €, ml))
N
3! m2 : StateModel, b2 : StBoundary, s : State,
ts: Trainsition e ((s,ts €m b2) A
(b2 €, m2) A NameOf(bl,b2) A
(s = tr(f)) A (ts = tr(t)))

Is it worth saying that each generated boundary has a number of states that describe the
successful case of the business scenario. The step of adding Error States for handling possible
failure scenarios is a separate one-to-one translation step. The StBoundaryToStBoundary is
responsible for this by traversing each State in the StBoundary to produce and attach a related
error reporting state to the boundary.

8.2.4.3 State

Waiting State in the State Model corresponds to an DfInputFlow element in the DataFlow Model,
in which each input flow is translated into a State that is waiting for receiving some inputs. These
inputs, which are equivalent to the data on DfInputFlow, are translated into internal variables
(Variable) for that state. This mapping is achieved by the ArcToWaitingState translator for
each accepted source element in the DataFlow Model.

One the other hand, Ready State is derived by translating the other kinds of flows, namely:
DfCreateFlow, DfReadFlow, DfUpdate, DfOutputFlow and DfWriteFlow. This translation is
done by the ArcToReadyState agent for each accepted Flow in the DataFlow Model. From the
above, a number of basic transformation rules are formed:

1- For each Input flow in the DataFlow Model, there exists a State in the State Model that is
waiting for receiving some external inputs.

tr: DfInputFlow — State

vV ml: DataFlowModel, f : DfInputFlow e (f €, ml)
N
d s: State,m2 : StateModel
o ((s €m m2) N Waiting(s))

2- For each flow that is either Create, Read, Delete, Write or Output flow in the DataFlow
Model, there exists a State in the State Model that is ready to fire an internal system operation
or funtion.

160

CHAPTER 8. MT RULES IN BUILD 8.3. ANALYSIS TO DESIGN

tr: Flow — State

¥V ml: DataFlowModel, f : Flow e ((f €mn ml)
A (DfCreateFlow(f) @& DfReadFlow(f) &
D fDeleteFlow(f) & DfWriteFlow(f) & D fOutputFlow(f)))
—
d s : State,m2 : StateM odel
e ((s €m m2) A Ready(s))

8.2.4.4 Transition

In order to obtain Transition elements, a complex merge translation step is required. Thus,
a DfTaskToTransition agent is designed to fit this need. This translator must be fired after
deriving all States in the State Model. DfTaskToTransition takes each flow with its attached end
Roles to create a new Transition.

Therefore, the mapping rule of this agent is: For each source in a flow in the DataFlow
Model and its translated state in the State Model, there exists a transition in the State Model,
where the source of the transition is the state that is pased as an argument of this agent. This
can be expressed in FOPL as:

tr: DfTask — Transition

V ml: DataFlowModel,t : DfTask,
m2 : StateModel, f : Flow, s : State o ((f €, ml)
A (s €m m2) A Source(t, f) N(s = tr(f))
—
It : Transition o ((t €, m2) A Source(t,s))

8.2.4.5 Action

Each transition has an action attribute refering to its type. For example, if the Flow was a
DfCreateFlow. then the action type will be create. This Action takes some arguments that are
eqivalent to the internal Variable of the State passed to the DfTaskToTransition agent. The
body of the action might have assignment statements if the Flow is either DfCreateFlow or
DfWriteFlow, whereas it may have filter statements if the Flow is DfReadFlow.

8.3 Transformation Rules at the Analysis to Design Phase

8.3.1 Translating State into GUI Model
8.3.1.1 GUI Diagram

A GuiDiagram element in translated from an existing StDiagram node in the State Model, in
which for each State diagram, there exists a diagram in the GUI Model. This can be expressed
as:

161

CHAPTER 8. MT RULES IN BUILD 8.3. ANALYSIS TO DESIGN

tr : StDiagram — GuiDiagram

YV d1 : StDiagram,bl : St Boundary,
ml : StateModel o ((b1 €., dl)
A (dl €, ml))
N
3! d2 : GuiDiagram, b2 : GuiBoundary, m2 : GUIModel
o ((b2 €, d2) N (d2 €p, m2)
A NameOf(dl,d2)) A (b2 = tr(bl))

8.3.1.2 GUI Window

Each Window corresponds directly to a State in the State Model. This straightforward mapping
is implemented in StateTo Window agent. This can be expressed in logic as:

tr : State — Window

V s: State, ¥ v : Variable,m1 : StateM odel
e ((s €n ml) A (c € 9))
N
Al w : Window, ¢ : Widget,m2 : GUI M odel
o ((d2 €m m2) A (¢ €. w)
A NameOf(s,w) A (¢ = tr(v)))

Variables in the State is translated into Widget by an agent related to the type of the state. If
the state is waiting, then the variables will be handled by svariableToTextfield that translates
these variables into entry text fields. On the other hand, If the state is ready, then the variables
will be handled by svariableToLabel that translates these variables into displaying labels.

8.3.1.3 GUI Button Widget

Button control appears in all types of screens. The basic mapping rule for obtaining Button
can be defined: Fach generated window has a single button. Unlike other widgets, deriving the
Button control requires such a complex translation step than other widgets, because it has an
event that triggers (invokes) a particular stored procedure in the database. The following FOPL
statement express the main rule for deriving Button:

tr : State — Window

V s: State,ml : StateModel o ((s €, ml)
—
Al w : Window, b : Button, m2 : GUIM odel
o ((w €m m2) A (b €. w) A NameOf(s,w))

162

CHAPTER 8. MT RULES IN BUILD 8.3. ANALYSIS TO DESIGN

8.3.1.4 GUI Label Widget

Label widget appears in all type of windows, displaying the title, error message, names of
textfields and more. The basic mapping rule for obtaining Label can be defined: Fach gen-
erated window has some label. This can be expressed as:

(Label <: Widget)
tr : Variable — Label

V s: State, V v : Variable,ml : StateModel
o ((s €&m ml) A (v & 9))
N
3w : Window, !l : Label,m2 : GUIM odel
o (w €m m2) A (I € w)
A NameOf(s,w))

8.3.1.5 GUI Textfield Widget

Textfield widget appears in waiting windows only for receiving external inputs. The transfor-
mation rule for deriving Textfield can be expressed in english as: Fach generated wating window
has some text field. The associated FOPL formula can be expressed as:

(Textfield <: Widget)
tr : Variable — Textfield

V s: State, ¥V v : Variable,ml : StateModel
o ((s €m ml) AN(v € 9))
N
' w : Window, t : Textfield,m2 : GUIModel
o ((w €m m2) AN (t € w)
A NameO f(s,w))

8.3.2 Translating DataFlow and Data Model into the DBQ Model

8.3.2.1 Table

Deriving Table is achieve directly by translating an entity, in an Data Dependency Model, into
a corresponding logical tabel, in the Database and Query Model. This translation is carried out
by DEntityToTable agent. The rule of this translation is: For each entity in the Data Model,
there exists a table in the Database Model. It can be expressed in FOPL as:

tr : DEntity — Table

YV e: DEntity, V¥ a: DAttribute,ml : DataM odel
o ((e €m ml) A (a & e€))
N
3! t: Table,c: Column, m2 : Database M odel
o ((t €m m2) A (c€pt) N NameOf(e,t)
A (e = tr(a)

163

CHAPTER 8. MT RULES IN BUILD 8.3. ANALYSIS TO DESIGN

8.3.2.2 Column

A Column corresponds to a DAttribute of a Data Model DEntity. This mapping is performed
by the DAttributeToColumn agent that translate every attribute into a column of a relational
table. The main rule of this translation can be stated as: For each attribute in such an entity in
the Data Dependency Model, there exists a corresponding column in the equivalent table to that
entity. this can be written in FOPL as:

tr : DAttribute — Column

Y e: DEntity, ¥ a: DAttribute,m1 : DataM odel
V t: Table,m2 : DatabaseM odel
o ((e €m ml) A (a € €) A (t = tr(e)))
SN
3 ¢: Column
o ((cept) N NameOf(t,c))

It is significant to mention that some column might be ranged with upper and lower values. This
is translated into SQL Triggers at the code generation step. There is no element in the DBQ
model that refers directly to triggers, this because the variation of handling range constraint in
different database vendors.

8.3.2.3 Foreign Key

In order to construct a Table with a foreign key to represent its dependency on another table,
the agent DependToReferTable is used to do this task. It invokes the DEntityToTable agent,
described above to translate the entity at the many side end-role of the dependency into a table.
Additionally it invokes DRoleToForeignKey aget to translate the PK of the entity at the one
side end-role of the dependency into a foreign key attached to the table.

8.3.2.4 Stored Procedure

A Procedure is derived as a result of merging concepts from DataFlow and Data Model. As
the DBQ procedure is designed to bind a SQL statement (SELECT, UPDATE, DELETE and
INSERT), there are four kinds of agents each one is responsible for translating a particular type
of Flow in a DataFlow Model into a Procedure. These translators are: CreateFlowToStored-
Procedure, DeleteFlowToStoredProcedure, WriteFlowToStoredProcedure, ReadFlowToStoredPro-
cedure.

The CreateFlowToStoredProcedure agent takes a DfCreateFlow along with a DataModel as
arguments to produce a Procedure that consists of a Create element, and possibly a Query one.
The Data Model is used to access all Columns of the DFEntity that matches the one appears at
the target end of that DfCreateFlow. Then, each piece of data on the DfCreateFlow with its
related Columns in the DEntity forms a single assignment statement using the element Operator.

In the same context, the ReadFlowToStoredProcedure agent takes a DfReadFlow and a
DataModel as parameters of this translator. It then produces a Procedure that contains a Query
and Project node. The Data Model is used to access all Columns of the DEntity that matches the

164

CHAPTER 8. MT RULES IN BUILD 8.4. GENERATING THE INFORMATION MODEL

one appears at the source end of that DfReadFlow. Then, each data item on the DfReadFlow
is matched to its associated Columns in the DEntity to be considered a child of the Project
element. (filter)

Regarding the DfDeleteFlow, the DeleteFlowToStoredProcedure agent, which is responsible
for this translation, takes a DfDeleteFlow with a DataModel as arguments in order to produce
a Procedure that has a Delete element, and possibly a Query one. The Data Model is used

to access all Columns of the DFEntity that matches the one appears at the target end of that
DfDeleteFlow.

Similarly, the WriteFlowToStored Procedure agent is responsible for translating DfWriteFlow
into the related DBQ Procedure. It takes a DfWriteFlow and a Data Model to construct a stored
procedure Procedure with an Update and Query element. Data on the DfWriteFlow, which is
interpreted as data to be stored, is converted into an assignment statement.

8.4 Alternative Translation Step For Generating the Informa-
tion Model

Apart from the chain of model transformations that are designed to produce basic information
systems, there is a separate translation step that might be applied independently for constructing
intermediate artefacts. The following section presents the rules for translating a pre-defined
Impact Model into a partial Information Model.

8.4.1 Translating the Impact Model into an (initial) Information Model
8.4.1.1 Information Diagram (Model)

A Diagram element is translated from an existing ImpDiagram node in the Impact Model, in
which for each Impact Diagram, there exists an initial Information Model (diagram). This can
be expressed as:

tr : ImpactModel — InformationM odel

V ml: ImpactModel
—
3! m2 : InformationM odel

8.4.1.2 Information Entity

Entities in the Information Model are derived automatically by a direct one-to-one mapping
rule. This can be stated as: For each object in every boundary in the Impact Model, there exists
an entity in the Information Model. This can be expressed in FOPL as:

165

CHAPTER 8. MT RULES IN BUILD 8.5. OUTLOOK ON THE CHAPTER

tr : ImpBoundary — InfEntity

YV b: ImpBoundary, ¥V obj : ImpObject,
ml : ImpactModel o ((obj €, b) A (b €n ml))
N
I e: InfEntity,m2 : InformationM odel
e ((e €m m2) A (0bj = tr(e)))

8.4.1.3 Information Attribute

Attributes in the Information Model are not derived automatically from the Impact Model.

8.4.1.4 Information Association

Association types are derived directly from pre-defined Flow types in the Impact Model. This
can be expressed in the following general FOPL law:

Vb: ImpBoundary, ¥V f: Flow, ml : ImpactModel
V (0bjl,0b52) : ImpObject o (Connect(f,objl,obj2)) A
((f,obj1,0bj2 €mb) A (b €m ml) A(objl # o0bj2))
—
3 a : Association, ¥ (el,e2) : InfEntity,
m2 : InformationModel o ((a,el,e2 €, m2)) A
(objl = tr(el)) A (obj2 = tr(e2)) A A
(a = tr(f)) Connect(a,el,e2))

8.5 Outlook on the Chapter

The chapter has presented, in-depth, the rules of transformations that are applied to source
models in each tranformation step, within the three development phases of BUILD. These rules
were formalised and expressed using First-Order Predicate Logic. For each rule, source elements
and the generated target ones are highlighted, including constraints that must be satisfied, in
the form of unary and n-ary predicates, in order to complete the execution of that rule.

166

Case Studies

“The best time to plan an experiment is after you've done it”

R. A. Fisher

9.1 Context

This chapter illustrates the results of the work presented in the previous chapters by introduc-
ing a real-world enterprise information system case study (University Administration System).
Three experiments are designed in which each involves a particular part of the system. The
construction of system models, expressed using the uML notation, at each development level
of BUILD is highlighted. Then, significant translation decisions, which are interesting, are
highlighted and discussed for each development phase.

It is also worth mentioning that each pML model is represented through BUILD as an
abstract syntaz tree (AST), written in Java node classes, that mimics the structure of that
model, allowing the creation of a variety of memory models representing different systems.

In technical detail, the current version of BUILD does not include a graphical editor to
enable the automatic shift from the graphical notation of models, sketched by business end-users,
into their corresponding underlying XML representations (AST). Therefore, in each experiment,
all ML requirements models are constructed directly in memory, using the builder-API supplied
by the metamodel classes. This is just for the purposes of conducting these experiments; in live
usage, the initial models would be supplied as XML files, to be unmarshalled by theJAST parser.

9.2 Overview of the University Administration System

The University Administration System is a common information system that might be developed
within academic institutions. From the domain user perspective, the system can be divided into
two major parts (sub-systems), namely, Module Management System and Student Enrolment
System. The following subsections introduce each part of the system separately, including its
evolution during the BUILD development stages.

167

CHAPTER 9. CASE STUDIES 9.3. OVERVIEW OF THE MODULE MANAGEMENT SUB-SYSTEM

9.3 Overview of the Module Management Sub-system

The Module Management System enables the users to perform real-world tasks, such as obtaining
the full description of a module, updating some details of a module, adding a new module to the
system, and removing an existing module. The system has two main types of actor, Staff and
Student, where each actor role has different tasks to perform. Staff are responsible for adding,
removing, and modifying modules in the system, one at a time, while Students are able to search
by a module code to retrieve the full description of that module only. Each business task here
is performed on a single module at a time; for example, staff can add one module to the system
during the execution of the Add Module task, and the rest is likewise.

9.3.1 Information System Representation at the Requirements Sketching
Phase

In this section, the uML requirements models that represent the Module Management Sys-
tem are demonstrated graphically. The modelling (construction) activities are then discussed,
highlighting critical concepts that are captured in each model. The complete underlying XML
representation of all models at this stage is listed in Appendix A.

The development process starts when a business-user expresses the structure of the Module
Management System using the pML Task Model. The functions of the system can be categorised
into two main jobs which are managing modules and displaying modules description. Thus, they
can be expressed as two main Tasks called Manage Module and See Description respectively.
The Manage Module consists of three independent business tasks namely, Add Module, Delete
Module and Modify Module. A white diamond is used to express the part of relationship that
has independent subtasks.

The human-computer interaction is represented via placing some Actors connected to busi-
ness tasks they are involved in. The Student interacts with the See Description task by supplying
it with a module code to get the full detail of the corresponding module, whereas, Staff might
interact with all business tasks within the Manage Module task. The following Task Model,
Figure 9.1 represents the structure of the Module Management System.

Manage Module See Description
Staff
Add Module Delete Module) (Modify Module

Figure 9.1: Task model. Module Management System

Student

With regard to the behaviour of the system, the puML Impact Model is used to capture the
internal interaction between the business tasks and the system objects. Each task, captured
in the Task Model, has a different kind of impact on the Module entity. The Add Module task
connects to the Module by a create flow, the Delete Module task connects to the object by a

168

CHAPTER 9. CASE STUDIES 9.3. OVERVIEW OF THE MODULE MANAGEMENT SUB-SYSTEM

delete flow, the Modify Module task connects to the object by a bi-directional update flow, and
finally, the Read Module task connects to the object by a read flow. The following figure, Figure
9.2 is the Impact Model of the Module Management System.

Delete Module
Add Module

See Description

Modify Module

Figure 9.2: Impact model. Module Management System

The third source model at this stage of development is the Information Model. The model
consists of an entity called Module that has four attributes, namely, code, title, desc and credit.
The following figure (Figure 9.3) illustrates this.

Module

code: Integer
title: String
credit: Integer
desc: String

Figure 9.3: Information model. Module Entity.

9.3.2 Running the Experiment on the BUILD Framework (1)

Purpose: Generate a JDBC Java Swing application with MySQL backend database.

Critical Feature: Adopting appropriate decisions for constructing a menu that handles the
optional functions of the system.

Input: Three uML models: Task, Impact and Information Model.

Output: Java classes (*.java) and a MySQL script file (*.sql).

Running Environment: Eclipse.

9.3.2.1 Construction of Requirements Models

The first requirements model considered by business-users in the development process is the Task
Model. As there is a custom AST representing Task Model in BUILD, the memory model of the
system Task Model is constructed out of the corresponding Java node classes. For example, the
Diagram node class is used to initialise a new model, and the Task node class is used to define
new all business tasks of that model. Listing 9.1 below illustrates a snapshot of the manual
creation of the Task Model of the Module Management System. The complete code is presented
in Appendix A.

169

CHAPTER 9. CASE STUDIES 9.3. OVERVIEW OF THE MODULE MANAGEMENT SUB-SYSTEM

Listing 9.1: Construction of the Task Model

1| Diagram taskModel = new Diagram() ;

2| Boundary boundary = new Boundary ("Module Management");
3

4| Task manage = new Task ("Manage Module");

5

6| Task add = new Task ("Add Module");

7

8| Actor actorl = new Actor ("Staff");

9

10| Composition comp = new Composition () ;
11| comp.addRole (new mde.task.model.Role ("manage", manage));

13| Participation linkl = new Participation();
14| linkl.addRole (new mde.task.model.Role ("staff",actorl));
15| linkl.addRole (new mde.task.model.Role ("add", add));

Similar to the creation of Task Model, business users design the Impact Model of the system
using node classes in the Impact Model Package. The ImpDiagram class is used to initialise a
new Impact Model in memory; ImpTask and ImpObject are used to define all business tasks and
actors for their system respectively, and the rest in likewise. Listing 9.2 below demonstrates
a snapshot of the construction of Impact Model, where the complete code is presented later in
Appendix A. It can be seen that names of boundaries and tasks are equivalent to previously
designed boundaries and tasks in the Task Model, Listing 9.1 above.

Listing 9.2: Construction of the Impact Model

ImpDiagram ImpactModel = new ImpDiagram();
ImpBoundary impboundary = new ImpBoundary ("Module Management");

ImpTask impManage = new ImpTask ("Manage Modules");
ImpTask impAdd = new mde.impact.model.ImpTask ("Add Module");

ImpObject impObjl = new ImpObject ("Module");

0O UL Wi+

9| ImpCreateFlow cf = new ImpCreateFlow();

10| ImpRole impcfl = new ImpRole ("module", impObjl);
11| ImpRole impcf2 = new ImpRole ("add", impAdd);

12| cf.addImpRole (impcf2);

13| cf.addImpRole (impcfl);

The final model at this stage, created manually by user, is the Information Model. The following
listing (Listing. 9.3) illustrates a snapshot of the related part of the Module Management System.
It is designed using the Information Model Package of the BUILD framework. The class Entity
is used to define the back-end entities of the system.

Listing 9.3: Construction of the Information Model

mde.information.model.Diagram informationModel =
new mde.information.model.Diagram() ;

Entity moduleEntity = new Entity ("Module");
Attribute attrl2 = new Attribute("code",

new Type ("Integer")) .setIdentifier (true);
Attribute attrl3 = new Attribute("title", new Type ("String"));
Attribute attrl4 = new Attribute("credit", new Type ("Integer"));
Attribute attrl5 = new Attribute ("desc", new Type ("String"));

© 00 O Uk WN =

170

CHAPTER 9. CASE STUDIES 9.3. OVERVIEW OF THE MODULE MANAGEMENT SUB-SYSTEM

Once the initial requirements models have been constructed in memory, the class ASTWriter,
the class AST Writer is used for marshalling each abstract syntax tree, built in memory to an
XML file. The method writeDocument is used to serialise each memory model into its related
XML file. The idea behind having all models stored into XML files is to apply a XML model
inspection as a strategy of evaluating the quality of produced artifacts, as well as verifying
and checking the correctness and completeness of translation results. This is discussed later in
Chapter 9.

9.3.2.2 Information System Representation at the Analysis Phase

The Requirement-to-Analysis model transformation step leads to creating a number of interme-
diate analysis models of the Module Management System. These models are: DataFlow, State
Model and Data Dependency Model. In this section, the ML analysis models that express the
Module Management System are demonstrated graphically, including some key automatic trans-
formation decisions made by the approach. The complete underlying XML representation of all
models at this stage is listed in Appendix A.

While the Module Management System deals with a single business entity, there is no
significant transformation decision, from Information to Data Dependency Model, in this case
study. The following figure (Figure 9.4) demonstrates the produced Data Dependency Model at
the Analysis Phase of BUILD.

Module

code: Integer
title: String
credit: Integer
desc: String

Figure 9.4: Data model. Module Entity

Furthermore, terminal tasks in both Task and Impact Model appear in the initial DataFlow
Model, as a result of the translation shift from the requirements phase to the analysis one.
These tasks are: See Descriptions, Add Module, Modify Module and Delete Module. Moreover,
business entities and system actors in both Impact and Task Model, respectively, also appear
in the DataFlow Model, in which each complete business transaction from an actor to object is
expressed in the model (Figure 9.5). These transactions can be listed as:

e The See Description task is connected to a Student actor by an input flow and to a Module
object by a read flow.

e The Add Module task is connected to a Staff actor by an input flow and to a Module object
by a create flow.

o The Modify Module task is connected to a Staff actor by an input flow and to a Module
object by an update flow.

e The Delete Module task is connected to a Staff actor by an input flow and to a Module
object by a delete flow.

171

CHAPTER 9. CASE STUDIES 9.3. OVERVIEW OF THE MODULE MANAGEMENT SUB-SYSTEM

From that, each generated task is either connected to an actor or an object, or to both.
There are no interconnections between tasks within the boundary and no data on flows. The
generated DataFlow Model can be visualised using uML notation, and interpreted by the user
using the clear distinction between its types of flows, as well as the life (cycle) history of an
object. One possible example is: a Staff inputs some data to the Add Module task, then the task
creates an object of the type Module and stores it in the Module datastore. The following figure
(Figure 9.5) demonstrates the initial DataFlow Model of the Module Management System.

Delete Module
7\ .
Module See Description

Add Module
Staff Modify Module Student

Figure 9.5: (initial) DFD model. Manage Module System

At this stage of the development, a manual engagement, provided by business-users, is required
for supplying the created DataFlow Model with data on flows. Then, the next translation step
is fired by the user in order to complete the development process. The following figure (Figure
9.8) illustrates an initial DataFlow with data on flows, supplied.

Delete Module

[@code = code?)

@code = code,
@title = title,
@credit = credit,
@desc = desc

code, title,
credit, desc

See Description

/\
Add Module Module

[@code = code3]
@title, @desc

Student
[@code = codel]
@credit = credit

Staff Modify Module

Figure 9.6: DFD model. Manage Module Sys. (with data on flows)

172

CHAPTER 9. CASE STUDIES 9.3. OVERVIEW OF THE MODULE MANAGEMENT SUB-SYSTEM

From the generated DataFlow Model, it can be seen that each task is connected by two flows,
which means each involves two atomic tasks. For instance, Add Module task receives the detail of
a new module from the user and then (creates) inserts a new module instance into the collection
of the modules in the system. Therefore, these tasks must be decomposed into their atomic
tasks by translating the initial DataFlow into the detailed DataFlow Model.

Deriving Detailed DataFlow Model

A further transformation step is carried out in order to derive a complete DataFlow Model
that contains atomic tasks. This transformation is known in BUILD as intitial DataFlow to
detailed DataFlow Model, in which each task in the initial model is broken down into its atomic
subtasks that are grouped into a logical boundary. The following figures: Figure 9.7, Figure 9.8,
Figure 9.9 and Figure 9.10 demonstrate the generated logical boundaries that form a detailed
DataFlow Model resulting from this transformation step.

Delete Module

[@code = code]

Delete Module Module

Input Code

7 N

Staff

Figure 9.7: DDFD model. Delete Module subtask.

Figure 9.7 above illustrates the internal data flow representation of the Delete Module task in
the initial DFD model. The task is expressed, in the detailed DFD representation, as a logical
boundary that consists of two atomic subtasks. The first one is a subtask to receive data from
a user (Input), whereas the second task is a task to delete the corresponding module from the
system. These subtasks are resulting from the decomposition step of the original Delete Module
task expressed in the source DataFlow Model.

An extra Read flow between these generated tasks is added after analysing their priority
scores. The source of the flow is the subtask that has a higher priority score. In this case, the
Input Code task that is connected to an input flow is higher priority than the Delete Module
task.

Figure 9.8 shows a logical detailed DFD Boundary that represents the initial DFD Add Module
task at this level of abstraction. It consists of two decomposed atomic subtasks, a subtask to
receive data from a user (Input) and another one to create a new module (insert it into the
system).

Similar to the Delete Module task, presented before in Figure 9.7, an additional read flow
between these subtasks is added to connect the subtask that has a higher priority score to the
one that has a lower score. In this case, it is the Input Code task that is connected to the Create
Module one.

173

CHAPTER 9. CASE STUDIES 9.3. OVERVIEW OF THE MODULE MANAGEMENT SUB-SYSTEM

Add Module

@code = code,
@title = title,

code, title, code, title, @credit = credit,
credit, desc credit, desc @desc = desc
Input Code Create Module Module

Figure 9.8: DDFD model. Manage Add Module subtask.

Read Module

code,
credit

Write Credit

Figure 9.9: DDFD model. Manage Modify Module subtask.

Staff

Modify Module

code, credit [@code = code]

@credit = credit

code,
credit

Input Code_Credit

Staff

Figure 9.9 illustrates the internal data flow representation of the Modify Module task. The task
is expressed, in the detailed DFD model, as a data flow boundary that contains three main
subtasks. The first task is introduced for receiving data from a user (Input), the second and
third task correspond to the broken down Update task, and the read and write subtask. The
read task is used to retrieve a module that required to be updated, while the write one is used
to update particular columns of the retrieved module.

There is a generated read flow between the decomposed Update Module subtasks (read and
write). It is assumed that this additional flow connects the Read Module task to the Write
Module task. On the other hand, another read flow is added that connects the Input Code task
to the Read Module task based on their priority scores.

Figure 9.10) shows the data flow representation within the See Description task. A data flow
boundary, with an equivalent name to the task name, is utilised at this level of abstraction to
present the internal behaviour of each business task, in terms of data flow. It consists of a
subtask to receive data from a user (Input), a task to read a new module and insert it into the
system, and a third subtask to display (output) the retrieved result to a user.

At the analysis phase, an independent mapping step is carried to derive the State Model from
the previously generated detailed DFD model. The Add Module DFD boundary, for instance, is
mapped directly to an Add Module boundary in the State Model, containing two states (input
and create) that are derived from the DataFlow Input and Create flow respectively. Moreover, a
new transition, with a particular action and/or condition(s), is added for each generated state

174

CHAPTER 9. CASE STUDIES 9.3. OVERVIEW OF THE MODULE MANAGEMENT SUB-SYSTEM

See Description

Student

Input Code Read Module

[@code = code]@desc

Module

Figure 9.10: DDFD model. See Module Description subtask.

input_code_title_credit_desc_ Waiting and Create_Module_Ready as a result of translating DFD

Tasks.

In addition to this, a separate in-place modification is applied to the constructed Add Module
boundary in order to generate an error handling (reporting) state for each State in the boundary.
In this case, the input_code_title_credit_desc_Waiting_Error and Create_Module_Ready_Error are

added to the Add Module boundary. Figure 9.11 below demonstrates the content of the Add
Module boundary in the State Model.

Add Module

initialise()

input() create()

Create_Module_
Ready

Input_Code_Waiting

exception() initialise()

exception()

Input_Code_Waiting__
Error

Create_Module_
Ready_Error

initialise() ‘

Figure 9.11: State model. Add Module subtask.

Similar to translation steps and decisions mentioned previously for constructing the Add Module
boundary, the content of the Delete Module and Modify Module are constructed likewise. The

following figures (Figure 9.12 and Figure 9.13) illustrate the content of the Delete Module and
Modify Module boundary respectively.

175

CHAPTER 9. CASE STUDIES 9.3. OVERVIEW OF THE MODULE MANAGEMENT SUB-SYSTEM

Delete Module

delete()

input()

Delete_Module_
Ready

initialise()

Input_Code_Waiting

exception() exception()

initialise()

Delete_Module_

Input_Code_Waiting__

Error Ready_Error

initialise()

Figure 9.12: State model. Delete Module subtask.

At this stage, the Data Dependency, DataFlow and State Model are completely derived to rep-
resent a detailed picture of the system. All business tasks have been broken down into their
atomic parts and relate to each other and other tasks in a particular control flow.

9.3.2.3 Information System Representation at the Design Phase

The intermediate artifacts that are generated from the analysis phase, namely, Data Dependency,
DataFlow and State Model are used as source models in this stage of development. The Design
phase in BUILD aims at producing two detailed models: Database and Query Model and GUI
Model. The following subsections represent both models at the design level of abstraction.

While the Module Management System deals with a single business entity, there is no
significant transformation decision, from Data to Database and Query Model, in this case study.
The following figure (Figure 9.14) demonstrates the produced DBQ model at the Analysis Phase
of BUILD. The Module entity expresses the structure of a relational database table in a platform-
independent way rather than specialised for a particular target environment.

In addition, the Graphical User Interface (GUI) Model is the last detailed design model at
this stage. Each state from the analysis State Model appears in the GUI Model as a window.
For example, the Input_regNumber_Waiting state is translated into a window that has the same
name. The generated GUI control elements (widgets) for each Window is based on the type
of the State, either waiting, ready or error. The number of controls is determined by the
number of local variables in each state. The following listing (Listing. 9.4) demonstrates a
snapshot of the GUI Model, including the specifications of three windows of the models, namely,
Input_regNumber_Waiting, Input_regNumber_Waiting_Error and Read_Code_Ready.

176

CHAPTER 9. CASE STUDIES 9.3. OVERVIEW OF THE MODULE MANAGEMENT SUB-SYSTEM

© 00~ O Ut WN

Modify Module

read()

Write_Credit_
Ready

Read_Module_Code_

Input_Code_Credit_
Credit_Ready

Waiting

initialise()

write()

exception() exception()

exception() initialise()

Write_Credit_
Ready_Error

Read_Module_Code_

Input_Code_Credit_
Credit_Ready_Error

Waiting_Error

initialise()

initialise()

Figure 9.13: State model. Modify Module subtask.

Module

code: Integer
title: String

credit: Integer
desc: String
createModule()
deleteModule()
writeModule()
readCode_Credit()
readDesc()

Figure 9.14: DBQ model. Module Entity

Listing 9.4: GUI Model

<gui:GuiBoundary id="1" name="Enrol">

</gui:GuiBoundary>

<gui:Window id="2" name="Input_regNumber_Waiting" order="4">
<gui:Textfield id="3" name="regNumber"/>
<gui:Button id="4" name="Exception" event="Exception" exit="false"/>
<gui:Button id="5" name="Input" event="Input" exit="false"/>
</gui :Window>
<gui:Window id="6" name="Input_regNumber Waiting_ Error" order="0" error="true">
<gui:Label id="7" name="input_regNumber_Waiting Error_warning"
text="Null value not accepted"/>
<gui:Button id="8" name="initialise" event="initialise" exit="false"/>
</gui:Window>
<gui:Window id="9" name="Read Code_Ready" order="3">
<gui:Label id="10" name="regNumber" text="regNumber"/>
<gui:Label id="11" name="code" text="code"/>
<gui:Button id="12" name="Read" event="Read" exit="false"/>
<gui:Button id="13" name="Exception" event="Exception" exit="false"/>

</gui:Window>

177

CHAPTER 9. CASE STUDIES 9.3. OVERVIEW OF THE MODULE MANAGEMENT SUB-SYSTEM

9.3.2.4 Executable Code from the Student Enrolment System

The framework of BUILD generates a number of Swing Java classes (*.java) files, and a single
MySQL dump file, (*.sql) file. A full representation of code is presented in Appendix B. The
following images demonstrate the running system screens under Eclipse, as well as the MySQL
Workbench 6.1 compiling report after executing the generated MySQL script file.

Action Output =
Time Action Response Duration [Fetch Time
S 1 14:29:26 DROP DATABASE sysDatabase 1 row(s) affected 0.081 sec
S 2 14:29:26 CREATE DATABASE sysDatabase 1 row(s) affected 0.000 sec
g 3 14:29:26 USE sysDatabase 0 row(s) affected 0.000 sec
[14:29:26 CREATE TABLE Module (code INT(10) NOT NULL, title VARCHAR... 0 row(s) affected 0.250 sec
S 5 14:29:26 CREATE PROCEDURE readCode_Credit(IN code INT(10), OUT credit... 0 row(s) affected 0.000 sec
S 6 14:29:26 CREATE PROCEDURE readDesc(IN code INT(10), OUT descl VARCH... 0 row(s) affected 0.000 sec
S 7 14:29:26 CREATE PROCEDURE createModule{IN code INT(10), IN title VARCH... 0 row(s) affected 0.000 sec
S 8 14:29:26 CREATE PROCEDURE deleteModule(IN code INT(10)) BEGIN DEL... O row(s) affected 0.000 sec
S 9 14:29:26 CREATE PROCEDURE writeModule(IN code INT(10), INOUT credit IN... 0 row(s) affectad 0.000 sec
8 00
8 00 Input_code_title_credit_desc_Waiting
Input your Data
Main Menu
code | COM6606|
Add Module title |Software Engineering
credit |20
| Delete Module |
desc |Software Development Lifecycle Methodologies ...
Modify Module ———
|fy—| | Input |
800 Create_Module_Ready 800 Create_Module_Ready_Errar

Are you sure to proceed Creating

Can not be Created. Please Try Again

178

CHAPTER 9. CASE STUDIES 9.4. OVERVIEW OF THE STUDENT ENROLMENT SUB-SYSTEM

9.4 Overview of the Student Enrolment Sub-system

The Student Enrolment System enables the users to complete the enrolment process in university.
The system has one main actor (Student). The actor is able to enrol in a module, using their
registration number and the module code (for simplicity). The task is performed (executed) on
a single enrolment at a time.

9.4.1 Information System Representation at the Requirements Sketching
Phase

In this section the uML requirements models that express the enrolment system is presented
graphically. The translation activities are then discussed with the highlighting of some key
transformation decisions made by the transformation approach. The complete underlying XML
representation of all models at this stage is listed in Appendix B.

The development process starts when a business-user expresses the structure of the system
using the uML Task Model, as seen in Figure 9.15 below. The system does one main job,
namely, enrolling a student in a module. This business process can be expressed as a single
main Task called Enrol. The human-computer interaction is represented via placing a Student
actor connected to the Enrol business task.

—>
—r D

Student

Figure 9.15: Task model. Enrol a Student sub-Sys.

Furthermore, the behaviour of the enrolment system is captured using the pML Impact Model.
The model consists of a task that is equivalent to a business task captured in the FEnrol a
Student in the Task Model. The task, in this model, interacts internally with one object namely,
Enrolment, in which the Enrol task is connected to the Enrolment entity by a create flow. The
following figure (Figure 9.16) is the Impact Model of the Enrol a Student sub-system.

@ Enrollment

Figure 9.16: Impact model. Enrol a Student sub-Sys.

179

CHAPTER 9. CASE STUDIES 9.4. OVERVIEW OF THE STUDENT ENROLMENT SUB-SYSTEM

The following figure (Figure 9.17) is the Information Model of the Enrol a Student:

Enrollment

reaNumber: Integer(10)
code: Integer(10)

Figure 9.17: Information model. Enrolment Entity

9.4.2 Running the Experiment on the BUILD Framework (2)

Purpose: Generate a Java Swing information system with MySQL backend database.
Critical Feature: Adopting appropriate decisions for handling multiple steps of inputing data
to the system.

Input: Three uML models: Task, Impact and Information Model.

Output: Java classes (*.java) and a MySQL script file (*.sql).

Running Environment: Eclipse.

9.4.2.1 Construction of Requirements Models

Similar to the previous example, a memory model of the system Task Model is constructed first
manually by business users. The Tusk class is used to initialise the Enrol business task in memory,
while the Actor and Paricipation are used to define the Student actor and its interactions to the
system respectively. Listing 9.5 below demonstrates the Java code for the construction of the
Task Model of the Student Enrolment System to be used in BUILD.

Listing 9.5: Construction of the Student Enrolment Task Model

Diagram taskModel = new Diagram();
Boundary boundary = new Boundary ("Enrol a Student");

Actor actorl = new Actor ("Student");
Task enrolStd = new Task ("Enrol");

Participation 1ink4 = new Participation();
link4.addRole (new mde.task.model.Role ("student",actorl));

9| link4.addRole (new mde.task.model.Role("enrol", enrolStd));

10| Participation 1ink3 = new Participation();

11| link3.addRole (new mde.task.model.Role ("student", actorl));

12| link3.addRole (new mde.task.model.Role ("enrol", enrolStd));

0O UL Wi+

In a similar way, the Impact Model of the system is created manually in memory, using node
classes in the Impact Model Package. The ImpTask class is used to initialise the Enrol (Impact)
task in memory, whereas the ImpCreateFlow and ImpQObject are used to define the create impact
and the Enrolment business object respectively. Listing 9.6 below demonstrates the construction
of the Impact Model. It can be seen that names of boundaries and tasks are equivalent to
previously designed boundaries and tasks in the Task Model, Listing 9.5 above.

180

CHAPTER 9. CASE STUDIES 9.4. OVERVIEW OF THE STUDENT ENROLMENT SUB-SYSTEM

Listing 9.6: Construction of the Student Enrolment Impact Model

1| ImpDiagram ImpactModel = new ImpDiagram();

2| ImpBoundary impboundary = new ImpBoundary ("Enrol a Student");
3

4| ImpTask impEnrolStd = new mde.impact.model.ImpTask ("Enrol");
5

6| ImpObject impObj3 = new ImpObject ("Enrollment");

7

8| ImpCreateFlow cf = new ImpCreateFlow();

9| ImpRole impcf2 = new ImpRole("enrol", impEnrolStd);

10| ImpRole impcfl = new ImpRole ("enrollment", impObj3);

11| cf.addImpRole (impcf2);

12| cf.addImpRole (impcfl);

Furthermore, the Information Model is the final model of this stage. The following listing
(Listing. 9.7) demonstrates a snapshot of the related part of the Student Enrolment System. It
is designed using the Information Model Package of the BUILD framework. The class Entity is
used to define the back-end entities of the system.

Listing 9.7: Construction of the Student Enrolment Information Model

mde.information.model.Diagram informationModel = new mde.information.model.Diagram ()

Entity enrolEntity = new Entity ("Enrollment");

Attribute attrl0 = new Attribute ("regNumber", new Type ("Integer"))

.setIdentifier (true);

Attribute attrll = new Attribute("code", new Type ("String")) .setIdentifier (true);
enrolEntity.addAttribute (attrl0);

enrolEntity.addAttribute (attrll);

informationModel.addEntity (enrolEntity);

© 00~ O U W

9.4.2.2 Information System Representation at the Analysis Phase

Similar to the experiment (1), the requirements models of the system (Task, Impact and In-
formation Model) are produced manually at the requirement stage. A series of translations at
this development layer aims at producing three analysis models, namely, the Data Dependency,
DataFlow and State Models. The following sections present the creation of these models.

As this sub-system interacts with only a single entity, the constructed Data Model consists
of one entity, Enrolment. There is no significant decision in this example. The following figure
(Figure 9.18) demonstrates the structure of Enrolment entity at the Data Dependency Model.

Enrollment

regNumber: Integer(10)

code: Integer(10)

Figure 9.18: Data model. Enrollment Entity

181

CHAPTER 9. CASE STUDIES 9.4. OVERVIEW OF THE STUDENT ENROLMENT SUB-SYSTEM

Besides this, as a result of merging Task and Impact Model, the initial DataFlow Model is
constructed, containing a single business transaction involving a task, Enrol, to receive users
inputs and for creating a new enrolment object. It can be noticed that there are two input flows
from the Student actor to the Enrol task. This expresses the multiple steps of entering data into
the system without any information about their order. The following figure (Figure 9.19) shows
the representation of the initial DFD.

O

—
o

Enrollment

Student

Figure 9.19: (initial) DFD model. Enrol a Student sub-Sys.

After the end-users engagement to supply the model with data on flows, the following figure
(Figure 9.20) represents the initial DFD after adding appropriate data on flows.

@regNumber = regNumber,

regNumber
% @code = code
code 5 Enrol >

Enrollment

Student

Figure 9.20: (initial) DFD model. Enrol a Student sub-Sys. with data of flows

From the generated DataFlow Model (Figure 9.20), it can be seen that the Enrol task is con-
nected by two input flows and one create flow. This requires a further decompositional step in
order to generate a number of atomic tasks that perform the original Enrol one.

Deriving Detailed DataFlow Model

The intital DataFlow to detailed DataFlow Model transformation step is applied in order to
derive a complete DataFlow Model that contains atomic tasks. The interesting transformation
decision, in this case, is made to construct a logical boundary to represent the Enrol task that
contains two Input tasks and one Create task. These three subtasks are connected to each other
by a number of read flows.

The direction of flows, between subtasks, is determined by the type of flow that is connected
to each task. For example, an extra read flow is generated from a task that is connected to
the input flow (e.g. Input Code) An extra read flow is generated to connect InputCode to
CreateEnrollment (the former handles the initial input flow and the latter handles the final
create flow; so these must communicate). However, the transformation step that is responsible
for generating flows between tasks has a default rule applied to the model when they have two
or more input flows. Tasks are ordered in the DataFlow Model, based on the order in which the
input flows were entered in the Task Model. In this case, the task Input RegNumber precedes

182

CHAPTER 9. CASE STUDIES 9.4. OVERVIEW OF THE STUDENT ENROLMENT SUB-SYSTEM

the task InputCode. The following figure (Figure 9.21) demonstrates the detailed DFD:

Enrol

Input Code

regNumber,

regNumber
code

regNumber

@regNumber = regNumber,
@code = code

Input reg_Number

Create Enrollment Enrollment

Student

Figure 9.21: (detailed) DFD model. Manage Module Sys.

Similar to the previous case study (section 9.3), the State Model is derived from the detailed
DFD model. The Enrol DFD boundary is mapped directly to an equivalent state boundary,
called Enrol, in boundary within the target model. It contains three states (two are waiting
states and one is ready) that are derived from the DataFlow Inputs and Create flow respectively.

Furthermore, a number of transitions, with appropriate actions and/or condition(s), are
added to the model, reflecting the right sequence of navigation of system screens to perform the
original task. Similar to a previous case study (section 9.3), a separate in-place modification
is applied to the constructed State Model to generate error handling (reporting) states for each

State in the boundary, see Figure 9.22 below.

Enrol

create()

initialise()

Input_RegNumber_
Waiting

Create_Enrollment_

Input_Code_Waiting Ready

exception() exception()

exception()

Input_Code_Waiting_
Error

Input_RegNumber_W
aiting_Error

Create_Enroliment_
Ready_Error

initialise()

Figure 9.22: State model. Manage Module Sys.

183

CHAPTER 9. CASE STUDIES 9.4. OVERVIEW OF THE STUDENT ENROLMENT SUB-SYSTEM

From the above transformations, the construction of all required analysis artifacts (Data, DataFlow
and State Model) is accomplished. These models are ready to be utilised as source models in
the next Design Phase of the framework.

9.4.3 Information System Representation at the Design Phase

The Design Phase in BUILD aims at producing the Database and Query and GUI Model from
the intermediate analysis models, constructed above. The following subsections represent both
models at the design level of abstraction.

While the system deals with a single business entity, there is no significant transformation
decision, from Data to Database and Query Model, in this case study. The following figure (Figure
9.23) demonstrates the produced DBQ model at the Analysis Phase of BUILD. The Enrolment

entity expresses the structure of a relational database table in a platform-independent way.

Enrollment

reaNumber: Integer(10)

code: Integer(10)

createEnrollment()

Figure 9.23: DBQ model. Enrollment Entity

In a similar way to the previous experiment, this model is constructed mainly from the anal-
ysis State Model. The following listing (Listing. 9.8) demonstrates a snapshot of the GUI
Model, including the specifications of two windows, namely, Create_Enrollment_Ready and C're-
ate_Enrollment_Ready_FError.

Listing 9.8: GUI Model

1| <gui:GuiBoundary id="1" name="Enrol">

2 <gui:Window id="16" name="Create Enrollment_Ready" order="2">

3 <gui:Label id="17" name="regNumber" text="regNumber"/>

4 <gui:Label id="18" name="code" text="code"/>

5 <gui:Button i1d="19" name="Create" event="Create" exit="false"/>

6 <gui:Button id="20" name="exit" event="exit" exit="true"/>

7 <gui:Button id="21" name="Exception" event="Exception" exit="false"/>
8 </gui:Window>

9 <gui:Window id="22" name="Create Enrollment_Ready_Error" order="0" error="true">
10 <gui:Label id="23" name="Create Enrollment_Ready_Error_warning"

11 text="Connection to the Data source is fail"/>

12 <gui:Button id="24" name="exit" event="exit" exit="false"/>

13 </gui:Window>

14 .

15| </gui:GuiBoundary>

184

CHAPTER 9. CASE STUDIES 9.5. OVERVIEW OF THE EXTENDED INFORMATION MODEL

9.4.3.1 Executable Code from the Student Enrolment System

The framework of BUILD generates a number of Swing Java classes, (*.java) files, and a single
MySQL dump file, (*.sql) file. A full representation of code is presented in Appendix B. The
following images demonstrate the running system screens under Eclipse, as well as the MySQL
Workbench 6.1 compiling report after executing the generated MySQL script file.

Action Output

Time Action Response Curation / Fetch Time
S 1 14:31:20 DROP DATABASE sysDatabase 1 row(s) affected 0.002 sec
o 2 14:31:20 CREATE DATABASE sysDatabase 1 row(s) affected 0.000 sec
S 3 14:31:20 USE sysDatabase 0 row(s) affected 0.000 sec
S 4 14:31:20 CREATE TABLE Enrollment { regNumber INT(10) NOT NULL, code... O row(s) affected 0.104 sec
[-1 14:31:20 CREATE PROCEDURE createEnroliment(IN regNumber INT(10), IN c... 0 row(s) affected 0.000 sec
800 main page 800 Input_code_Waiting
Input your Data Input your Data
regNumber code
11998 | COM6066
| Input | | Input |
Create_Enrollment_Ready
8 .00 Message
-

_1___77 The business task is completed successfully.

—:

9.5 Overview of the Extended Information Model of the Uni-
versity Administration System

This section presents a fairly complex conceptual data model for the University Administration
System case study adopted in this chapter. The model consists of a number of information enti-
ties and various types of associations, generalisations, and one kind of composition. In addition,
a range constraint is applied to an attribute in order to illustrate how the transformation may
react and makes alternative decisions compared to unrestricted attributes.

185

CHAPTER 9. CASE STUDIES 9.5. OVERVIEW OF THE EXTENDED INFORMATION MODEL

Two ways for constructing the Data Dependency and DB(Q Models are followed and the
results are compared. Starting from the uML Information Model is one possible way for starting
the transformation chain till the Data and DBQ Modelis achieved. The second way is by deriving
automatically the initial Information Model from the Impact Model that is provided manually
by business users. The following figure (Figure 9.24) illustrates the extended Information Model
of the University Administration System.

Person Module
name: String * -
age: String title: String
ender: Strin credit: Integer
= 9 desc: String

-]

~t
Staff Student Assessment
empNumber: Integer regNumber: Integer id: Integer
salary: Double username: String * title: String
password: String group: Boolean
0..*
0..*
1 \
Address -
1 Exam Project

postcode: String
street: String
city: String

date: Date value: Integer
deadline: Date

Figure 9.24: Information model. University Administration Sys.

9.5.1 Running the Experiment on the BUILD Framework (3a)

Purpose: Generate a MySQL database system.
Input: one pML model: Information Model.
Output: a MySQL script file (*.sql).

Running Environment: MySQL.

The Information Model of the University Administration System is used to demonstrate the
capability of the BUILD framework to generate a complete executable MySQL script from a
very abstracted information model. In order to achieve this, two steps of model-to-model trans-
lation are required, namely, Information to Data Dependency Model and Data Dependency to
Database and Query (DBQ) Model. Moreover, a further code generation step is also applied to
generate the final MySQL code from the uML DBQ schema.

9.5.1.1 Information Model Representation at the Requirements Sketching Phase

Similar to previous experiments, the Information model is constructed manually in BUILD as
an Abstract Syntax Tree (AST). A snapshot of the specification of the entities and attributes
are expressed in the Listing 9.9 below (Person entity only), which represents the Java code
used to create the model in memory (see Appendix A for the full code). The FEntity and
Attribute classes are used to construct the structure of the business entities and their properties,
whereas the Association, Generalisation and Composition classes are used to define a variety of
relationships between entities. The range constraint is specified using the setLowerbound() and
setUpperbound() methods of the Attribute object.

186

CHAPTER 9. CASE STUDIES 9.5. OVERVIEW OF THE EXTENDED INFORMATION MODEL

Listing 9.9: Construction of the Complex Information Model (Person Entity)

1| mde.information.model.Diagram informationModel = new

2 mde.information.model.Diagram() ;

3

4| Entity personEntity = new Entity ("Person");

5| Attribute attr2 = new Attribute ("name", new Type ("String"));

6| Attribute attr3 = new Attribute("age", new Type ("String"))

7 .setLowerbound (18) .setUpperbound(35) ;

8| Attribute attr4 = new Attribute ("gender", new Type ("String"));
9

10| personEntity.addAttribute (attr2);
11| personEntity.addAttribute (attr3);
12| personEntity.addAttribute (attrd);

14| informationModel.addEntity (personEntity);

9.5.1.2 Information Model Representation at the Analysis Phase

At the analysis phase of BUILD, the Data Model is constructed (Figure 9.25). It includes some
significant translation decisions made by the Information to Data Model translator. The many-
to-many association between Student and Module is promoted to an entity FEnrolment which
depend on its related entities. In addition to this, the many-to-one association between Student
and Address is resolved in the direction from the many side (Student) to the one side (Address)
in the Date Model.

Furthermore, the Generalisation relationship between Person, Staff and Student is resolved
by making Student and Staff (the specific entities) depends on the Person (the general entity).
On the other hand, the disjoint Generalisation between Assessment and Assessment_FExam is
resolved by merging the general entity (Assessment) into each specific one (Assessment_Ezam
and Assessment_Project). Moreover, the Total Composition relationship between Module and

Assessment is resolved by making the part entity (Assessment) dependant on the whole one
(Module).

9.5.1.3 Data Dependency Representation at the Design Phase

The evolution of the Data Dependency Model at the Design Phase in BUILD is the Database and
Query (DBQ) Model, visualised in Figure 9.26 below. The generated DBQ model is considered a
final detailed model that expresses a relational database schema in such a generic representation
in a higher level of abstraction. All Dependency relationships between entities are translated
into Foreign Keys (references).

There is a standard rule in the Data Model to DB(@) Schema that translate any range
constraint applied to a particular attribute into a Trigger associated to the table that holds that
attribute. This is expressed in the following DBQ schema (Figure 9.26) in the third partition of
the Person entity.

187

CHAPTER 9. CASE STUDIES

9.5. OVERVIEW OF THE EXTENDED INFORMATION MODEL

Person

identity: Integer(10) 1
name: String(30)

age: String(30)
gender: String(30)

* *

Staff Student

Assessment_Project

id: Integer(10)
title: String(30)
value: Integer(10)
deadline: Date(10)
group: Boolean(2)

code: Integer(10)

Enrollment

empNumber: Integer(10) regNumber: Integer(10) 1

salary: Double(5) Username: String(30)

. identity: Integer(1
password: String(30)

*

1

Module
code: Integer(10)

identity: Integer(10 * | regNumber: Integer(10)
Person.|dentity: Integer(10) code: Integer(10)

Address.|dentity: Integer(10)

0.%

1
Address

identity: Integer(10)
postcode: String(30)
street: String(30)
city: String(30)

title: String(30)
credit: Integer(10)
desc: String(30)

1

*

Assessment_Exam

id: Integer(10)
title: String(30)
group: Boolean(2)
date: Date(10)

code: Integer(10)

Figure 9.25: Data model. University Administration Sys.

9.5.1.4 Executable MySQL Code from the Database and Query (DBQ) Schema

Unlike previous experiments, the code in this example is only a single (*.sql) file. The current
version of BUILD has a domain-specific code generation framework (MySQL). The following
code presents a snapshot of the final database schema in MySQL, representing the structure of
the Person table and its associated Trigger. The complete schema is presented in Appendix C.

Listing 9.10: database_MySQL.sql

1| CREATE DATABASE sysDatabase;

2| USE sysDatabase;

3

4| -- Structure for table ’Person’

5

6| CREATE TABLE Person (

7 identity INT(10) NOT NULL,

8 name VARCHAR (30),

9 age VARCHAR (30),

10 gender VARCHAR (30),

11 PRIMARY KEY (identity));

12

13| —— Trigger: Applying Checking Constraints on table ’Person’
14

15| DELIMITER //

16

17| DROP TRIGGER IF EXISTS ’'personCheck’ //

18| CREATE TRIGGER ’'personCheck’ BEFORE INSERT ON Person
19 FOR EACH ROW
20 IF (NEW.age < 18 OR NEW.age > 35) THEN
21 SET msg = 'INVALID DATA IN age’;
22 SIGNAL SQLSTATE ’'45000’ SET MESSAGE_TEXT = msg;
23 END IF; //

188

CHAPTER 9. CASE STUDIES

9.5. OVERVIEW OF THE EXTENDED INFORMATION MODEL

Person

identity: Integer(10)
name: String(30)

age: String(30)
gender: String(30)

personCheck()

Student

Staff

empNumber: Integer(10)
salary: Double(5)

identity: Integer(10)

regNumber: Integer(10)
Username: String(30)
password: String(30)
Person.ldentity: Integer(10)
Address.|dentity: Integer(10)

Assessment_Project

id: Integer(10)
title: String(30)
value: Integer(10)
deadline: Date(10)
group: Boolean(2)

code: Integer(10

Enrollment

Identity: Integer(10
regNumber: Integer(10)
code: Integer(10)

Address

identity: Integer(10)
postcode: String(30)
street: String(30)
city: String(30)

Module

code: Integer(10)
title: String(30)
credit: Integer(10)
desc: String(30)

Assessment_Exam

id: Integer(10)
title: String(30)
group: Boolean(2)
date: Date(10)
code: Integer(10)

Figure 9.26: DBQ model. University Administration System

9.5.1.5 Running the Experiment on the BUILD Framework (3b)

Purpose: Generate a MySQL database system.
Input: one uML model: Impact Model.
Output: a MySQL script file (*.sql).

Running Environment: MySQL.

A possible Impact Model of the University Administration System is designed to be used for
deriving an initial Information and Data Model and then generating MySQL code. In or-
der to achieve this, a further model-to-model translating step is required, which is Impact-
to-Information Model.

9.5.1.6 Information Model Representation at the Requirements Sketching Phase

The Impact Model is provided manually, by users, in BUILD as an AST. The suggested model
consists of a number of tasks that interact with system entities. Appendix C contains the com-
plete Java code for creating the Impact Models using JAST[102].

Deriving the Initial Information Model

At the requirement gathering level, the initial Information Model might be derived from the
pre-defined Impact Model. The model consists of a number of information Entities and their
predicted relationships. This translation step is carried by an Impact-to-Information Model
translation agent (rule). The rules are discussed previously in Chapter 7. Figure 9.27 below
illustrates the generated initial Information Model.

189

CHAPTER 9. CASE STUDIES 9.5. OVERVIEW OF THE EXTENDED INFORMATION MODEL

0.x | | 1
Address General
1 | 1
Staff Student
1
Enrollment Exam Project
1 1
Module |~ *| Assessment |—

Figure 9.27: The Initial Information Model

According to the Impact-to-Information Model step, each object in the Impact Model is used
to generate a corresponding Entity in the Information Model, without any predicted details about
its attributes. Business users might supply this information later to the generated model in an
independent step, similar to the step of annotating the initial DFD model. Besides this, after
tracing the CRUD effect for each task in the Impact Model, the relationships with appropriate
multiplicities are predicted.

It is useful to compare the Information Model provided in experiment (3a) with the Infor-
mation Model provided in experiment (3b) to examine the similarities and differences between
them. All entities appearing in model (3a) are generated in the second one in (3b), except
the Enrolment entity in which the many-to-many Association between Student and Module is
captured as two many-to-one relationships from the Impact Model. This difference is in fact
the result of normalising the many-to-many relationship, which would happen in the next step
anyway. This shows that it is possible to derive normalised data models directly from the Impact
Model.

Furthermore, a possible Generalisation relationship is predicted between the Student and
Staff object, in the Impact Model. Consequently, a general entity is manufactured and a num-
ber of many-to-one associations between the specific entities (many sides) and the general one
(one side) are generated directly between them. As before, the Total Composition relation-
ship between the Model and its parts Exam and Project entity are also predicted as a number of
many-to-one Associations, where the parts are connected on the many-side of these associations.

9.5.1.7 Information Model Representation at the Analysis Phase

At the Analysis stage, the typical translation rules are applied by the Information-to-Data Model
agent to produce the Data Dependency Model, (Figure 9.28) below. To avoid the repetition, the
generated DBQ) Model and MySQL script are described in Appendix C containing the represen-
tation of the (3b) DBQ Model and its generated MySQL database schema.

190

CHAPTER 9. CASE STUDIES 9.5. OVERVIEW OF THE EXTENDED INFORMATION MODEL

Address General

—

Staff Student
Enrollment Exam Project
Module Assessment

Figure 9.28: The derived Data Dependency Model

After compiling the generated MySQL script file into the MySQL Workbench 6.1 server, the
following result is obtained:

Action Output %

Time Action Response Curation / Fetch Time
g1 21:46:34 DROP DATABASE sysDatabase 7 row(s) affected 0.053 sec
S 2 21:46:34 CREATE DATABASE sysDatabase 1 row(s) affected 0.000 sec
o 3 21:46:34 USE sysDatabase 0 row(s) affected 0.000 sec
S 4 21:46:34 CREATE TABLE Module (code INT(10) NOT NULL, title VARCHAR... 0 row(s) affected 0.074 sec
S 5 21:46:34 CREATE TABLE Address (identity INT{10) NOT MULL, postcode... 0 row(s) affected 0.198 sec
S 6 21:46:34 CREATE TABLE Person_Student (identity INT(10) NOT NULL, na... 0 row(s)affected 0.145 sec
S 7 21:46:34 CREATE TABLE Person_Staff (identity INT(10) NOT NULL, name... 0 row(s)affected 0.135 sec
o B 21:46:34 CREATE TABLE Assessment_Exam (identity INT{10} NOT NULL,. .. 0 row(s) affected 0.158 sec
o 9 21:46:34 CREATE TABLE Assessment_Project (id VARCHAR(30) NOT NULL,... 0 row(s) affected 0.155 sec
S 10 21:46:34 CREATE TABLE Enrollment { identity INT(10) NOT NULL, code IN... 0 row(s) affected 0.168 sec
M 11 21:46:35 DROP TRIGGER IF EXISTS person_studentCheck 0 row(s) affected, 1 warning(s): 1360 Trigger does n... 0.000 sec
g 12 21:46:35 CREATE TRIGGER person_studentCheck BEFORE INSERT ON Person... 0 row(s) affected 0.329 sec
Mo 13 21:46:35 DROP TRIGGER IF EXISTS person_staffCheck 0 row(s) affected, 1 warning(s): 1360 Trigger does n... 0.000 sec
o 14 21:46:35 CREATE TRIGGER person_staffCheck BEFORE INSERT ON Person_St... 0 row(s) affected 0.278 sec

Using the reverse engineering facility in the MySQL Workbench 6.1 server, we can reconstruct
the database schema of the generated and executed database system we run. From that, the fol-
lowing diagrams demonstrate the reverse engineered data model derived from the Impact model
and the user-defined information model respectively.

| General v
identity INT(10]

< Student_identity INT{10)

<> Staff_identity INT{10)

. Address_identity INT(10)

»
.
| |
Hicdesiiseis
Q Q
_| Staff v | Address ¥
|+ identity INT(10) | |+ identity INT(10) |
> >

] Student

identity INT(10)
T | < Enrollment_identity INT(10) [.

_| Module v
identity INT{10)
“» Enrgliment_identity INT{10)
w» Assessment_identity INT{10)
| 4

v
| Enroliment ¥
— Ok 7 idenity INT(10) 40— — —— —

>
T

|

|

¢

| Assessment ¥
| identity INT(10)
>

191

CHAPTER 9. CASE STUDIES 9.5. OVERVIEW OF THE EXTENDED INFORMATION MODEL

Enroliment ¥
] Person_Student L m
identity INT(10) 'de:tr::;“;rs 9
name VARCHAR(30) ::g:umbir I]NT{1D] ~ Module v
%08 VARCHAR(30) & Madule_cods INT{10) code INT{10)
gender VARCHAR|30) K————< . Studant,denfy INT{10) BT T T T titla VARCHAR(30)
2rson udent_iden
regNumbar INT{10] = credit INT(10)
usernama VARCHAR(30) PRIMARY I desci VARCHAR{30)
password VARCHAR(30) | v
. . Module code |
.+ Address_identity INT{10) Parson_Student_identity | PRIMARY
¥ >——; |
PRIMARY I 1 ¢'
fk_Person_Student_Addressi_idx | j Address v j e A e Jl_
sessmen m v
bl I identity INT{10) = A
identity INT{10
| BEF INSERT person_studentChack | ——0k & postoods VARCHAR(30) identity INT{10) "] Assessment_Project ¥
id VARCHAR(30, i
straet VARCHAR(30) (30 id VARCHAR(30)
title VARCHAR(30)
) person v T city VARCHAR(30) 30) fitlo VARCHAR(30)
— [groupd TINYINT(1)
- . v groupd TINYINT(1)
idantity INT(10) | date DATE
| | PRIMARY value INT{10)
name VARCHAR(30] | & Module_code INT(10) deadiine DATE
age VARCHAR(30) | v
 Module_code INT{10
gender VARCHAR(30) I PRIMARY - 1o -
emphumber INT{10) | Module_code
PRIMARY
salary DOUBLE B ——| itodite. oo
[ooule_code
“» Address_identity INT(10}
v
PRIMARY
Address_identity

v
| BEF INSERT person_staffCheck |

Business User Made Information Model v.s Generated (initial) Information Model

When considering the user-defined Information Model (Figure 9.24) and the derived one,
from the Impact Model (Figure 9.27), we can notice that the generated model contains all entities
appearing in the manually constructed one. However, unlike the first Information Model, entities
in the second model (derived) have no detail about their attributes. This occurs because there is
insufficient information in the Impact Model to enable translation agents to translate or predict
and then manufacture appropriate attributes for each entity. An additional entity appears in the
generated Information Model, from the Impact one, as a result of capturing the many-to-many
association via two impacts on the Module and Student object, in the Impact Model. Each one
represents a single many-to-one association. In addition to this, the parts Fram and Project are
not expressed in the Impact Model, see Appendix C.

Furthermore, aggregation relationships are predicted as many-to-one associations between
the whole entity and its associated parts. Besides this, it can be seen that generalisation re-
lationships are also captured via the existence of the Conjunction concept in the model and
directly resolved into many-to-one associations between the entities involved.

After completing the whole development process that produces the final MySQL schema,
the number of tables in the user-defined model is fewer than the number of tables in the derived
model, due to the accuracy of resolving the disjoint generalisation relationship, in which the
general and specific table will be merged.

192

CHAPTER 9. CASE STUDIES 9.6. OUTLOOK ON THE CHAPTER

9.6 Outlook on the Chapter

A real-world enterprise information system case study (University Administration System) was
presented in this chapter. Three experiments were designed, each involving a particular part of
the system. Requirements models, namely, Task, Impact and Information Models were expressed,
manually, using the graphical notation of pML.

For each case study, the chapter represents the development stages of each model from the
requirements sketching level to the code generation one. All significant transformation decisions
are highlighted, showing how the approach generates an independent menu screen in the first
experiment, whereas it manufactures a sequence of input forms (screen) for allowing a user to
insert inputs step by step.

Throughout the demonstrated results, it can be seen that the designed chain of transfor-
mations is able to generate complete basic information systems that are connected to backend
relational databases. The generated system is platform-specific and is tested within Eclipse.
The produced information system is implemented in Java and the related database is generated
in MySQL. The generated Java code includes a JDBC connection statement for establishing
the required connection to the backend database. Full listings of these experiments are given in
Appendices A, B and C.

193

10

Evaluation and Testing

“Discovering the unexpected is more important than confirming the known”

George Box (1919- 2013)

10.1 Context

The main theme of this thesis is to introduce a simple and semantically cleaned modelling
language (uML), and a MDE framework, which is suitable for end-users, to ease and accelerate
the capability of developing small/medium scale information systems. In order to achieve this
ambition, the proposed language must be able to express, in a simple and clear way for business
end-users, all critical concepts in the information systems domain. In addition to this, the
transformation approach must be able to lead the development of information systems from
requirements to the final executable code. As a result, uML and BUILD are introduced in the
previous chapters of this thesis.

This chapter tries to emphasise the completeness and correctness of the output results
from BUILD. To make sure uML is capable of modelling the most common enterprise system
concepts we have chosen to evaluate it against the generated objects and chunks of code that
appear in the final results. Model translation and code generation for producing JDBC Java
Swing Applications with a MySQL backend database, in the BUILD Framework, are used to
verify and inspect the evolving of models from the requirement phase to the final one that
generates the executable code.

Furthermore, the time efficiency of transformation algorithms is evaluated to measure the
quality and scalability of the proposed framework. The Big-O notation technique is adopted,
in this chapter, for articulating how long an algorithm takes to run, and to examine whether
or not there exist some factors or limits on inputs that affect the growth rate of time in some
transformation steps. Apart from that, the suitability of the proposed puML is also evaluated by
conducting an experiment with selected university students from different disciplines. It aims at
evaluating ML in terms of its simplicity and ease to adopt by end-users as a modelling language
for expressing basic specifications of information systems.

194

CHAPTER 10. EVALUATION AND TESTING 10.2. CRITERION ONE

10.2 Evaluating The Generated Results from BUILD

10.2.1 Assuring the Determinism of the Transformation Rules

This criterion emphasises the capability of the framework to restrict transformations to the
appropriate type of input element, and to produce one specific type of result. There are two
types of transformation rules provided in BUILD, namely, one-to-one (forward) rule and two-to-
one (merge) mapping rule. When a particular concept appears in a model, it will be accepted
only by one or more approved rules to produce a particular target concept(s). This means that
the mapping is controlled by a precondition(s) that must be met before executing any translation
rule, via the (accept()) method (see Chapter 7).

This strategy also ensures the right treatment of concepts (based on their types and se-
mantics), in which it is impossible to misinterpret any concept chosen by a business user, and
produce an unexpected target element. However, it leads to increasing the number of translation
agents, as there is an agent for each concept to ensure that a correct decision is made.

For example, handling composed business tasks, in the Task Model, is different from the
atomic ones, in which each task type is determined by checking whether it is attached to the
head of any kind of Composition relationship or not. The composed task is normally ignored at
the first translation step (constructing the initial DFD model), whereas atomic tasks are merged
with the equivalent tasks that appear in the Impact Model, and converted into DataFlow tasks,
and then to State Model transitions. Table 10.1 shows translation rules that are applicable for
each Task Model concept.

Task Model Concept Translator Agents
Diagram DiagramToDfDiagram
Boundary BoundaryToDfBoundary
Role RoleToDfRole

Task (atomic) MergeTask ToDfTask

Actor ActorToDfActor

Input Participation ParticipationToDfInputFlow
Output Participation ParticipationToDfOutputFlow
Composition - -

Table 10.1: Task Model concepts and Related Agents

In the Impact Model, for example, each type of impact is translated differently into its
corresponding type of flows in the DataFlow Model. For example, Create Impact is converted
into a DfCreateFlow that has more specific features (e.g. assignment) than the DfReadFlow,
for instance, which has filters. Table 10.2 shows translation rules that are applicable for each
Impact Model concept.

195

CHAPTER 10. EVALUATION AND TESTING 10.2. CRITERION ONE

Impact Model Concept Translator Agents
ImpDiagram DiagramToDfDiagram
ImpBoundary BoundaryToDfBoundary
ImpRole ImpRoleToDfRole

ImpTask MergeTaskToDfTask

Create Impact CreateFlowToDfCreateFlow
Read Impact ReadFlowToDfReadFlow
Update Impact UpdateFlowToDfUpdateFlow
Delete Impact DeleteFlowToDfDeleteFlow

Table 10.2: Impact Model concepts and Related Agents

When considering the translation of the Association concept in Information Model, for instance,
it can be noticed that it might be treated in three different ways based on its specific meaning
(m-to-1, m-to-n, or 1-to-1). The m-to-1 Association is translated into a Dependency relationship
in Data Model. Whereas m-to-n and I1-to-1 Associations are converted into Linker and Merged
Entity respectively. Generalisation and Compostion are treated likewise. Table 10.3 shows
translation rules that are applicable for each Information Model concept.

Information Model Concept Translator Agents
InfDiagram InfDiagramToDDiagram
Entity InfEntity ToDEntity
Association (m-to-1) InfAssocToDDependency
Association (1-to-1) InfAssocToMerged Table
Association (m-to-n) InfAssocToLinkerTable
Generalisation (overlapping) InfGenToDDependency
Generalisation (disjoint) InfGenToMergedTable
Composition (total) InfComToMerged Table
Composition InfCompToDDependency

Table 10.3: Information Model concepts and Related Agents

These Dependency relationships are resolved in the next translation step into a number of Foreign
Keys in the Database and Query (DBQ) Model. The generated FKs represents the relationship
between the business entity at the Design phase for generating a relational database system.
Therefore, the only meaning of Foreign keys is to represent a relationship between the entity
that holds the key and the one it refers to. Table 10.4 shows translation rules that are applicable
for each Data Dependency Model concept.

196

CHAPTER 10. EVALUATION AND TESTING 10.2. CRITERION O

NE

Data Model Concept Translator Agents

DDiagram DDiagramToSchema2

DEntity DEntityToTable, DEntityToPrimaryKey
DAttribute DAttributeToColumn

Dependency DependToReferTable

DRole DRoleToForeignKey

Table 10.4: Data Dependency Model concepts and Related Agents

Regarding the construction of Procedure concept in the DBQ Model, it can be seen how the
importance of the type of corresponding Flows in the detailed DFD model. For example, any
DFED create flow is translated into a DBQ representation of a Procedure that performs insert
database operation. There is no other way to produce insert (create) DBQ procedure. Table
10.5 shows translation rules that are applicable for each DataFlow Model concept.

DataFlow Model Concept Translator Agents

DfdDiagram DfDiagramToDfDiagram, DfDiagramToStDiagram

DfdBoundary DfdBoundaryToStBoundary?2

Flow ArcToArc, ArcToArcs, ArcToDfActor, ArcToDfObject, Arc-
ToDfTask, ArcToDfTasks, ArcToStReadyState, ArcToStWait-
ingState, CreateFlowToStoredProcedure, ReadFlowToStored-
Procedure, UpdateFlowToStoredProcedure, DeleteFlowTo-
StoredProcedure

DfTask DfTaskToDfBoundary, DfTaskToTransistion

Table 10.5: DataFlow Model concepts and Related Agents

In addition to this, concepts in the State Model are treated in a direct way, in which the
internal architecture of its relevant translation agent is simple. Based on the type of State, Ready
or Waiting, the decision of firing either the SvariableToLabel or SvariableToTextfield is made to

translate the variables of this state into suitable GUI controls.

rules that are applicable for each State Model concept.

Table 10.6 shows translation

State Model Concept

Translator Agents

StDiagram StDiagramToGuiDiagram

StBoundary StBoundaryToStBoundary, StBoundaryToGuiBoundary
State StateToWindow

Transition TransitionToButton

State Variable

SvariableToLabel, SvariableToTextfield

Table 10.6: State Model concepts and Related Agents

197

CHAPTER 10. EVALUATION AND TESTING 10.2. CRITERION ONE

In regard to the GUI Model that is used at the Code Generation phase, each type of widget
element is translated into the corresponding Swing Java control for that element, by a particular
code generator agent. For example, the specification of Java Labels are generated from GUI
Label elements in the GUI Model by the JavaLabelGenerator, using approved specifications by
the transformation approach (e.g. font type, size, colour, and text), and the rest is likewise.

Furthermore, as each generated system screen, there is a main button that performs that
main task associated with that screen. The Java code of the button is generated via the JavaBut-
tonGenerator, in which the agent fills the body of the actionPerformed method of that screen
by boilerplate code. This is approved by the generator agent, to establish a suitable JDBC
connection, invoke the related stored procedure that performs a particular database operation,
or presents user interactions by passing their inputs to the system. This strategy is applicable
for all types of screens that might be generated using BUILD.

Additionally, the boilerplate code for error handling is also considered as a part of the
actionPerformed method, using the try-catch expression and a number of appropriate Fxceptions
to avoid unexpected behaviour of the generated system. Table 10.7 shows generation rules that
are applicable for each GUI Model concept.

GUI Model Concept Generator Agents
GuiBoundary JavaCodeFileGenerator
Window JavaClassGenerator
Textfield JavaTextFieldGenerator
Label JavaLabelGenerator
Button JavaButtonGenerator

Table 10.7: GUI Model concepts and Related Agents

Besides generating JDBC Swing Java code, the Code Generation framework also generates
suitable MySQL scripts from the DBQ model in BUILD. Each concept appearing in the DBQ
model has a particular generator agent that is responsible for generating a specific portion of the
MySQL Data Definition Language (DDL) or Data Manipulation Language (pre-defined queries).
Table 10.8 below illustrates this.

Stored Procedures in MySQL can be generated from either a DBQ Create, Update, Delete or
Query concept. The difference between the procedure derived from the DBQ create and the one
generated from the DBQ Query for instance, is in the MySQL statement (command). Therefore,
stored procedures that bind the MySQL INSERT statement are generated only from the DBQ
procedures that have a create concept, in contrast to the ones that bind MySQL SELECT query
that are derived from the DB(Q procedures that have a Query element. The rest are likewise.

198

CHAPTER 10. EVALUATION AND TESTING 10.2. CRITERION TWO

DBQ Model Concept Generator Agents

Schema MySQLDumpFileGenerator, MySQLSchemaGenerator

Table MySQLTableGenerator

Column MySQLFieldGenerator

PrimaryKey MySQLPKGenerator

ForeignKey MySQLFKGenerator

Procedure MySQLStoredProcGenerator

Range constraint MySQLTriggerGenerator

Filter MySQLQueryGenerator, MySQLUpdateGenerator &
MySQLDeleteGenerator

Project JavaButtonGenerator

Query MySQLQueryGenerator

Create MySQLCreateGenerator

Update MySQLUpdateGenerator

Delete MySQLDeleteGenerator

Table 10.8: DBQ Model concepts and Related Agents

10.2.2 Was it Possible to trace the Development of Models during the De-
velopment Stages?

This criterion demonstrates the capability to trace each intermediate artifact and its evolution
after completing every translation and/or transformation step. One of the main claims of the
uML is its suitability for business users, in which it is designed to enable them, with their limited
technical knowledge, to express their system functionalities in a very generic and abstracted way.
These semantically cleaned ML models are serialised into XML files, during each development
stage in BUILD, resulting in a number of platform-independent views of the system. This This
supports a validation strategy by Model Inspection (or Code Inspection) to identify defects in
each produced artifact. Any unexpected defect might be determined by tracing the evolution of
each requirement-level concept throughout the development stages, and comparing it with what
concept we expect to see at the final code.

The first column in tables 10.9 and 10.10 demonstrate each visualised concept that appears
in uML requirement models, before commencing any translating step. The rest of the columns
show the evolution of each concept throughout the development stages with regard to what
concept we expect to see at each level of detail till reaching the final code. The Code Generation
Framework in BUILD produces two types of domain-specific code, namely, JDBC/Swing Java
code and MySQL scripts. Table 10.9 considers the main requirements model concepts and traces
its development till generating the final JDBC Swing Java code. On the other hand, Table 10.10
considers the development of the concepts till generating the executable database schema script
in MySQL.

199

CHAPTER 10. EVALUATION AND TESTING 10.2. CRITERION TWO

For instance, the create impact, in the Impact Model is developed to be a Ready State, at the
end of the Analysis phase. This state, next, is represented as a system Window, at the Design
stage. Then, each developed screen is converted into an equivalent Swing Java class, (Table
10.9). At the same time, the create impact is also developed to be a create flow, in the DataFlow
Model supplied with some data on it, at the end of the Analysis stage. This flow is converted
into a DBQ Procedure concept and then into a MySQL Stored Procedure at the Design and final
MySQL script respectively (Table 10.10).

In addition to this, it is worth mentioning that for each item of data on each flow in the
DataFlow, we expect to see a state variable equivalent to this datum. At the Design phase, this
variable is converted into an argument in such a DBQ Procedure and in a local GUI control
widget of the system screen. At the end, it becomes an argument in a constructor of a related
Swing Java class, as well as an argument in a relevant MySQL Stored Procedure.

Initial Concept

Analysis Phase

Design Phase

Java Code

Business Task,
Impact Task

Boundary

Boundary

Package or actionPer
formed Method in the
Swing Java Class

Subtask Atomic Task(DFD), Button with Action actionPerformed Method
Transition in the Swing Java Class,

JDBC connection and call
procedure

Input Input flow (DFD), Window (GUTI) Swing Java Class

Participation State

Output Output flow Window (GUI) Swing Java Class

Participation (DFD), State

Impact Create

Create flow (DFD),
State

Window (GUI)

Swing Java Class

Impact Read

Read flow (DFD),
State

Window (GUI)

Swing Java Class

Impact Update

Update flow (DFD),
Read/Write flows
(DDFD), 2 States

Window (GUI)

Swing Java Class

Impact Delete

Delete flow (DFD),
State

Window (GUI)

Swing Java Class

White
Diamond
Composition

Boundary and main

menu Window (GUT)

Swing Java Class

Datum on flow
(DFD)

GUI Wedget in
Window (GUI)

parameter of Swing Java
Classs constructor

Table 10.9: Evolution of Requirement concepts to Java

Furthermore, there is a step to ensure that each DBQ Table has a Primary Key in the DBQ
model. This step is taken by the DEntityToTable translation rule (table 10.9). If there is no

identifier for such a DEntity, there will be a manufactured Primary Key attached to the target
DBQ Table.

200

CHAPTER 10. EVALUATION AND TESTING 10.2. CRITERION TWO

Evolution of Range constraints is another example that shows an interesting transformation
decision. It can be evaluated by detecting the generated MySQL schema file looking for an
equivalent Trigger associated with the table that holds the ranged attributes. This decision is
relied on by the domain-specific code generator, in this case MySQL Code Generator because it
is known that range constraints might be handled differently by another relational data vendor,
such as Oracle. In the Oracle version of SQL, this constraint is handled by the CHECK command
as part of a column declaration. Therefore, the evaluation of this concept might be distinct based
on the target environment of each code generator.

Initial Concept Analysis Phase Design Phase MySQL Script

Business Actor Actor (DFD), Entity Table (DBQ) MySQL Table

(Data)
Impact Object Object (DFD), Entity Table (DBQ) MySQL Table
(Data)
Identifier Identifier (Data) Primary Key MySQL Primary Key
(DBQ)
Attribute Attribute (Data) Attribute(DBQ) MySQL Column

Range constraint range constraint

(Data)

MySQL Trigger
BEFORE INSERT

MySQL Trigger

range constraint

(DBQ)

Upper and Lower
Bounds (DBQ)

Table (DBQ)

Upper and Lower
Bounds

Upper and Lower
Bounds (Data)

Entity (Data)

Association (1-to-

1),
(m-to-n)

MySQL Table

Association (m- Dependency (Data) Foreign Key (DBQ) MySQL Foreign Key

to-1)
Generalisation, Dependency or Entity Foreign Key or MySQL Foreign Key or
Composition (Data) Table (DBQ) Table

Impact Create

Create flow (DFD)

Create Procedure

(DBQ)

MySQL Stored
Procedure

Impact Read

Read flow (DFD)

Query Procedure

(DBQ)

MySQL SP, MySQL
Stored Procedure

Impact Update

Update flow (DFD),
Read/Write flows
(DDFD)

Update Procedure
(DBQ)

MySQL SP, MySQL
Stored Procedure

Impact Delete

Delete flow (DFD)

Delete Procedure

(DBQ)

MySQL Stored
Procedure

Datum on flow (DFD)

Argument of
Procedure (DBQ)

Argument MySQL
Stored Procedure

Table 10.10: Evolution of Requirement concepts to MySQL

201

CHAPTER 10. EVALUATION AND TESTING 10.2. CRITERION THREE

10.2.3 Was the Generated Code Complete with Respect to Initial Inputs at
the Requirement Sketching Phase?

This criterion examines some quality dimensions of the models employed within BUILD during
the whole development. This includes the completeness, consistency and clarity of the content
of each model. This helps to know whether the transformation approach takes correct mapping
decisions and produces complete outputs with an acceptable level of quality. All models used
within BUILD must satisfy the proposed evaluation criteria in this section. It is represented, in
table 10.11, as a number of goals that must be met.

According to the criteria provided, table 10.11, it can be seen that both the State and GUI
Model have not satisfied the goal: Name of elements look professional. This occurs because of
the strategy we follow to form names of States, in which some names might be long. This leads
to having long names for both the generated Windows, and Java classes. A proper naming
convention has to be considered at this level of transformation.

= T
- e
2 S| B Al gl 2| gl o S

G 1 % s I - <
o I EEE|[2]8] 48|z
= o 3
= O
Each model is represented via a well-formed XML VI V| VI V| V| V]V VY

document.

Every element has an appropriate namespace. VIV V| V|V V| Vv

<
<
<
<
<
<
<

Every element has a unique name and id. v

Inter-refering relationships appear between elements VA VAN BV VA IRV VS BV VA BV
belong to the same model.

&
-
-
-
<
<
<
-
-

Elements that are instances of a model belong to the
associated metamodel of that it or the core pML.

The structure of the model is logically correct.

Each descendant of Arc has a source and a target.

Each typed element has a recognised datatype.

Each Named element has a meaningful name.

Name of elements look professional.

SNIENI RN ENIENIEN
SNIENI RN ENIENIEN
NIENENIENIENIEN
SNIENI RN ENIENIEN
NI RN ENIENIEN
NI S RN RN ENIEN
SNIENI RN ENIENIEN
SNIENI AN RN ENIEN
NIENENIENIENIEN

Appropriate Naming convention is applied to each
elements (e.g. camelCase).

<
<
<
<
<
<
<
<
<

No dublicated concepts in models

\
-
-
-
«
-
-
-
-

No null elements in models

Table 10.11: uML Evaluation Criteria

202

CHAPTER 10. EVALUATION AND TESTING 10.2. CRITERION FOUR

10.2.4 Could We Generate All That We Want?

In this section, a broader picture of the generated enterprise systems is considered, as well as
some of its detailed component specifications. System windows, navigation, type of widgets,
business logics and database schema are examples of main components that must be produced
completely and correctly from the transformation approach. Any good (valid) system must have
these components to be able to perform real-world business processes.

The BUILD framework is able to produce consistent screens with business tasks described
at the Requirement Phase. This means that for each atomic task, there will be a screen (Swing
Java class), that extends the JFrame class to perform this task and a screen to handle (report) its
failure scenario. For instance, according to the Student Enrolment System case study presented
previously in Chapter 9, three system screens are generated in correspondence to the subtasks
of the system, as well as another three error reporting ones. Table 10.12 below describes this.

Atomic Task System Screen

Input Code Input_code_Waiting, Input_code_Waiting_Error

Input reg Number Input_regNumber_Waiting, Input_regNumber_Waiting_Error
Create Enrollment Create_Enrollment_Ready, Create_Enrollment_Ready_Error

Table 10.12: Atomic Business Tasks and their Corresponding Windows

According to the introduced priority scoring strategy, which is based on the impact of each
task on system entities and the participation of actors on each task, the order of executing
these subtasks is determined to form the internal sequence of the main business process. As
a consequence, the navigation between system windows is established, reflecting the order of
subtasks execution, calculated by the transformation approach. Table 10.13 and 10.14 below
demonstrate the generated sequences in both presented case studies.

Flow Type Engaged Task Priority Score Screen Order
Input Input Code 4 2
Input Input reg Number 4 1 (default rule)
Create Create Enrollment 2 3

Table 10.13: Order of Windows (Student Enrolment)

Flow Type Engaged Task Priority Score Screen Order
Input Input code_credit 4 1
Input Read Module Code_Credit 3 2
Update Write Module 2 3

Table 10.14: Order of Windows (Module Management - Modify Module)

203

CHAPTER 10. EVALUATION AND TESTING 10.2. CRITERION FOUR

Furthermore, the framework is also able to generate a system with a number of business tasks
that might be executed optionally in an independent way. It generates an appropriate menu
screen to enable the end-user to select which process is required to be performed. For instance,
in the Module Management System case study, chapter 9, Manage_Module_Main_Menu_Waiting
is a root menu for the system that allows the selection between a number of atomic business
tasks, such as Add Module, Modify Module and more.

The current version of BUILD is able to generate limited navigations (links between screens).
This limitation is discussed in detail in the following section (10.8). The following table (10.15)
summarises the number of completely generated links between windows in both case studies
presented previously in chapter 9.

Case Study Number of Windows Number of Links
Module Management System 19 30
Student Enrolment System 6 9

Table 10.15: Atomic Business Tasks and their Corresponding Windows

In addition to this, establishing a proper JDBC connection between the presentation layer and
the data layeris critical. This part of the generated code is regarded boilerplate, which is present
in every Java class that requires preparing MyS@)L database connectivity statements. Besides
this, the part of the code for catching internal errors, such as passing invalid (null) inputs to the
system, is also considered boilerplate, in which all screens involved in the successful business
scenario must have this exception handling chunk of code to report any error to the user.

According to the structure of system windows, this version of the framework is able to
generate four types of Swing Java GUI controls (widgets), namely, JTextField, JButton and
JLabel, all placed within the JPanel container. The JButton and JLabel controls are common
for each type of screen, in which each window has a label to display its title and a button to
perform its specific action. However, the JTextField widget appears only when passing external
user inputs to the system.

Control properties, such as size, text and data type are extracted from both the DBQ@ and
GUI Model. From that, it is possible to generate very basic GUI controls that enable a simple
business process to be completed. It is worth mentioning that additional controls might be
generated from the DBQ Model, but it is not supported yet in this version of BUILD. See next
section (10.8) for further details.

With regard to the generated relational database connected to the system, it is essential to
use a normalised database in order to provide an information system that works at an acceptable
level of performance (Table 10.16). By using BUILD, it can be assured that the final MySQL
database schema satisfies the requirements of the third-normal form. This degree of normalisa-
tion is achieved according to the translation chain started from the Information Model, which
contains unnormalised relationships (e.g. generalisations, compositions, and many-to-many as-
sociations), and ending up with the normalised Database and Query Model, which contains
resolved relationships.

204

CHAPTER 10. EVALUATION AND TESTING 10.2. CRITERION FIVE

Relationship Engaged Entities Rule Applied Final Table(s)
Association Student, Address Generate FKs Student, Address
(m-to-1)

Association Student, Module Generate Linker Student, Module,
(m-to-n) table and FKs Enrollment
Generalisation Assessment, Merge Assessment_Exam
(disjoint) Assessment_Exam

Generalisation Person, Student, Generate FKs Person, Student,
(overlapping) Staff Staff
Composition Module, Assessment Generate FKs Module,

(total) Assessment_Exam

Table 10.16: Data Model Normalisation

10.2.5 Are Transformations Adequate to Fill the Gap in Implementation?

On some occasions, during the chain of model transformations, new concepts are inferred due to
applying particular mapping decisions. For instance, a unique Identity in the Data Dependency
Model or an automatic Primary Keyin the Database and Query Model is manufactured according
to the translation agent decision when such an entity in the source model has no information
about its Identity. Furthermore, the size of some attributes, that have no size detail given in
the source model, is also manufactured based on the data type.

In addition to this, generating a menu screen that holds alternative functions of the system
is another example of the design decision, taken by the transformation/code generation rules,
to fill the implementation gap. The Module Management case study is an example of this.
Moreover, the Code Generation approach is able to fill the implementation gap by filling the
generated classes by boilerplate code for arranging the database connectivity and embedding
commands that are used for executing and calling SQL stored procedures.

10.2.6 Can We Execute the Generated Code?

This criterion aims at examining the generated code/database from BUILD after running them
under the related environments. This helps to answer some code evaluation questions to know
whether the generated code has compiled, executed and done its desired job successfully without
mistakes. As the current Code Generation Framework of BUILD produces only Java code
and MySQL script, a decision was made to compile the generated Java files using the Eclipse
Framework, and execute the final MySQL dump file using MySQL Server 6.1.

The following Table (10.17) demonstrates the criteria for evaluating the generated system
and its related database. It can be seen that the generated Java code has not satisfied the
goal: The generated system is able to receive multiple selected record from the database. This
occurs because the code generators in BUILD are currently designed as a proof of concept, in
a way that supports only passing back a single record, or part of a record. This issue might
be overcome by considering retrieving multiple records in a later version of the code generation
framework.

205

CHAPTER 10. EVALUATION AND TESTING 10.2. CRITERION SIX

Indeed, this goal is related to another one that the generated MySQ@L schema has not
satisfied, which is: Query stored procedures are able to pass multiple selected records to the
system. This happens because the stored procedures are designed, as a simple proof of concept,
in a way that they bind a single SQL statement that is stored in a single-value out parameter to
be passed back to the code. This issue might be also overcome by considering retrieving multiple
records in a later version of the code generation framework.

Goal Java | MySQL
The generated system (Java classes) is compiled. v -
The generated system (Java classes) is executed. v -
Each window is displayed correctly. v -
Each window consists of correct GUI controls. v -
Each window contains consistent GUI controls. v -
The generated system passes local variables, between screens, correctly. v
Windows are connected correctly to the database with all access permissions v -
required.

Each button fires an action according to click even. v -
The generated system/database represents real-world business. v v
The generated system invokes a correct stored procedure. v

The generated system passes correct arguments (input parameters) to the in- v

voked procedure.

The generated system is able to receive multiple selected records from the X -
database.

The generated system is able to receive a single selected record from the v -
database.

null exception is handled correctly. v

Failure of the database conncetion is handled correctly. v v
The generated database schema (*.sql file) is executed without errors. - v
The generated database schema (*.sql file) consists of complete database tables - v
structure (specified attributes).

The generated schema (*.sql file) consists of correct foreign keys in tables. - v
Every table in generated schema (*.sql file) has a primary key (original or - v
manufactured).

The generated database schema (*.sq¢l file) consists of all required triggers (BE- - v
FORE INSERT) to enforce check constraints.

The generated database schema (*.sql file) consists of all required stored pro- - v
cedures to represent the business logics.

Every generated stored procedure has one SQL statement to perform a single - v
database operation

Each update stored procedure updates a database record successfully. - v
Each create stored procedure inserts a new database record successfully. - v

206

CHAPTER 10. EVALUATION AND TESTING 10.2. CRITERION SIX

The delete stored procedure removes an existing database record successfully. -

The query stored procedure selects and projects a database record successfully. -

Query stored procedures are able to retrieve multiple selected records. -

LI RIENIEN

Query stored procedures are able to pass multiple selected records to the sys- -
tem.

There is a Trigger BEFORE INSERT for each table that has a field with a -
range constraint.

\

Table 10.17: Criteria for Evaluating the Generated Information System

10.2.7 Things Were Wrong or Missing and Suggested Repairs

Expanding the generated type of widgets, to cover more GUI controls, is a main issue that has
to be considered in later versions of BUILD, as the type of widget is based on the type of screen,
whether it is for inputting or displaying information. The current translation rules provide two
types of GUI control to handle this, namely, JLabel and JTextField. 1t is possible to improve the
current version of BUILD by filling the implementation gap with more accurate widgets than
the current one. For example, a JComboBox control might be used to restrict the input data to
a particular field. This can be done by allowing only one (or many) selected value(s) to be valid
inputs, from selection constraints on some attributes in the Data or DBQ Model.

In addition to this, adding the ability to display a collection of results (items) in such
a JTable control is essential. The current version of the BUILD Code Generator is able to
generate executable code for retrieving and displaying a single result only. In the case that the
query procedure returns a collection of records, the code will present the first record only to
be the retrieved result. In order to solve this issue, we must expand our ML notation at the
requirement level to be able to express a collection of objects.

Furthermore, in the case of generating a system with multiple input steps, the current
version of BUILD produces a window for each step. These windows form a chain to perform
the whole input process. Adding an extra design choice to allow merging these windows into
a compound one, which holds a longer entry form to receive all user inputs at once, offers an
optimal system with a fewer number of screens. This can be achieved by enhancing the (in-place)
transformation agent that optimises the generated State Model from the detailed DataFlow one.

Moreover, there is an issue (limitation) in the developed algorithm for translating the de-
tailed DFD into State Model, in which the current version is allowed to translate a short sequence
of atomic tasks that must start (be activated) by a user input only. We are aware that some
business tasks might be fired automatically, before any user interaction, when the system starts
(pre-processing).

The pattern for extracting this from the detailed Data Flow Model is not yet supported.
In order to overcome this dilemma, the algorithm must be improved to be capable to cover all
missing patterns.

207

CHAPTER 10. EVALUATION AND TESTING 10.3. ANALYSIS OF TIME COMPLEXITY

Besides this, there are a variety of business patterns (control flows) that might be covered in
later versions of the proposed uML and related BUILD translator agents. To solve this problem
without expanding the graphical constructs of the modeling language (keeping ML lightweight),
we suggest adding the multiplicity annotation to the Task Model, particularly to the Composite
relationship and improve the extraction (prediction) of its possible interpretations. Then, the
relevant translator agent generates a possible control-flow construct, similar to the way we follow
for dealing with the optionality of subtasks (see the related case study in chapter 9).

10.3 Analysis of Time Complexity

Analysing the time efficiency of transformation algorithms is considered to measure the quality
and scalability of the proposed framework, including its architecture and implementation. This
section aims at evaluating the performance of the model transformation approach within BUILD.
The Big-O notation technique is adopted, here, for articulating how long an algorithm takes to
run, and to examine whether or not there exist some factors or limits on inputs that affect the
growth rate of time in some transformation steps. This section discusses the time efficiency
of the framework from three perspectives: rule complexity, transformation step complezity and
overall complezity. The section also describes how the complexity in such a translation step may
be reduced by caching the results of repeated transformations in the Context.

10.3.1 Big-O Analysis of Rules

As previously presented in the thesis, the current version of BUILD consists of two types of
transformation rule, namely, one-to-one translation and two-to-one merging (folding) rules. The
following subsections discuss the complexity of these types. The time complexity varies from
one rule to another even within a transformation step. The worst case scenario is considered
for each rule, and later for each step (Section 10.3.2). This decision assures that any possible
alternative scenario has less complexity than the worst case one.

For all transformation rule classes in the framework, the main computation of each rule
is performed by the doTranslate method that belongs to that rule. This method runs once for
each distinct execution of the rule on distinct arguments. Each rule is constructed once inside
the dominant rule that calls it. The graph of all applicable rules is constructed prior to rule
execution, so does not contribute to the time complexity of execution. Construction time is
negligible, the linear in the number of rules constructed.

The body of the doTranslate method in all rules contains one or more conditions for checking
any precondition of that rule, implemented using if or if..else statements. This chunk of code
(construct) is executed once at each run of the doTranslate method. From that, the time
complexity of this construct is O(1). On some occasions, calling other methods, e.g. translate,
is required, the time complexity of this call or any further method invocation is also O(1).

In non-terminal rules, when translating further properties of a target element, or invoking
some subrules for translating its descendants, a kind of iteration is required to complete the
whole translation step. The time complexity of this part of the code is O(N), where N is a
number of properties that are ready for translation. Even if the loop has some if or if..else
statements, object creation and method invocations, the worst case is still O(N) based on the
number of properties/descendants of the target element.

208

CHAPTER 10. EVALUATION AND TESTING 10.3. ANALYSIS OF TIME COMPLEXITY

Complexity Number of one-to-one Rules Number of two-to-one Rules
o(1) 31 2
O(N) 17 1
O(N = M) 0 2
O(N x M?) 1 0
O(N x« M x K) 3 5
ON«M+xK*xPx@Q) | 1 0
O(N?) 0 3

Table 10.18: Different Complexity Types in the Transformation Approach

When nested iterations occur within doTranslate method, the computation time is increased to
be O(N x M), where N represents the number of target elements and M represents the number
of a particular type of properties/descendants for each target element. For each type of rule
in the framework, Table 1 demonstrates all possible worst case complexities and the number of
rules that represents each one.

10.3.1.1 One-to-One Rule Complexity Analysis

The one-to-one rule complexity analysis is applicable for analysing time efficiency for all con-
crete rules that extend Translation class in the top-level framework. This includes one-to-one
translation, transformation and in-place modification. It is worth emphasising that the time
complexity of most terminal rules is O(1), as the body of their doTranslate methods consists of
two main parts: checking preconditions (O(1)) and performing the mapping (O(1)).

However, there are a few terminal rules that have a loop to handle a collection of properties
within that same rule. The time complexity of these rules is O(NN), where N is number of
properties/descendants of the source element. According to the implementation, one or more
foreach constructs are used in some rules to perform this job. The majority of rules, in the

framework, have at most one loop. As seen in Table 1, the time complexity of those rules can
be either O(1) or O(N).

Apart from this, the usual complexity of a rule reduces to O(1) if the same rule is invoked
again on the same argument(s). This will happen if multiple higher-level rules depend on the
same lower-level rule, which is executed multiple times. The time saving is achieved by caching
the result of every rule execution in a Context, so that it need not be recomputed. However, the
overall reduction in complexity depends on the degree of overlap and depth of nesting in how
the rules are designed, so it cannot be systematically quantified in general.

209

CHAPTER 10. EVALUATION AND TESTING 10.3. ANALYSIS OF TIME COMPLEXITY

10.3.1.2 Two-to-One Rule Complexity Analysis

The two-to-one rule complexity analysis is applicable for analysing time efficiency for all concrete
rules that extend the MergeTranslation class in the top-level framework. The majority of rules
have some iterations. These loops are mostly used to traverse elements in the second source
model for checking or collecting further information required for generating a target element.

The complexity of these rules depends on how deeply the iteration is nested. It is found in
the designed rules that the number of nested loops are either three or two. The time complexity
of these constructs are either O(N * M), O(N x M % K) or O(N?). It is worth mentioning that
a few rules have at most one loop. The time complexity of these rules can be either O(1) or
O(N) (see Table 10.18.).

Figure 1(a) summarises the remarkable changes in growth rates of time complexity in four
possible worst case scenarios: O(N), O(N*M),O(N+MxK),O(N+M?), O(N*M* K+ P+Q) and
O(N 2). The z axis represents the number of N, while the y axis represents the computation time.
It is assumed that all calculations are based on a single run. It can be seen how the scalability
becomes poorer in the cases that have a larger number of nested and linear iterations.

10.3.2 Big-O Analysis of Translation Step

As previously presented in the thesis, the current version of BUILD consists of a number of
model transformation steps, implemented independently in a number of Java Packages. These
packages contain several rules (Java classes) to perform such a complete mapping step. This
part of time efficiency analysis focuses on the complexity of the transformation step itself, by
considering the Big-O notation of the worst case scenario of all included rules in each step.
For each transformation, the total number of rules that have similar complexity are grouped
together and are represented in Table 10.19.

o
— *
—_ B " A
[a\]
— ~ = S * ¥ o
Transformation N \Z./ * * 2 * \Z./
°© o z |z |z = S
o) o - x
© =
S
Information to Data 7 5 0 0 0 0 0
Data Model to DBQ 2 6 0 1 0 0 0
Task & Impact to 12 0 0 0 0 0 2
DFD
DFD to detailed DFD 7 0 0 0 0 1 0
DFD to DBQ 0 0 0 0 4 0 0
DFD to State 1 2 2 0 0 0 1

210

CHAPTER 10. EVALUATION AND TESTING 10.4. EVALUATION EXPERIMENT OF uML NOTATION

Task to State 0 1 0 0 0 0 0
State to GUI 2 3 0 0 1 0 0
Impact to Information 2 1 0 1 2 0 0

Table 10.19: Complexity of Each Transformation Step

Table 10.19 summarises the total number of each type of rule involved in each translation step. In
the step of translating the detailed DataFlow Model into the DBQ Model, for instance, there are
four rules that have O(N * M x K) time complexity. For each flow in the DFD, N is the number
of flows, M is the number of data variables on that flow and K is the number of attributes in
the target end-role of that flow. The complexity of each translation step is calculated as the
worst-case complexity of any rule group involved in that step. From that, the time complexity
of Information to Datais O(N), Data to DBQ is O(N x M?), Task & Impact to DBQ is O(N?),
DFD to DDFDis O(N * M K« PxQ), DFD to DBQ is O(N * M x K), DFD to State is O(N?),
Task to State is O(N), State to GUI and Impact to Information is O(N = M * K) time.

10.3.3 The Overall Time Complexity Analysis of BUILD

This sections aims at calculating the exact time performance of BUILD, rather than the big-O
estimate. As the BUILD transformation strategy is designed in a linear way, in which each
step runs only once. Transformation rules within each step are designed in a way that a rule
calls another rule one or more than one time (e.g. to translate an entity and its corresponding
attributes). The time complexity for each transformation step is calculated in the previous
section (Section 10.3.2) and summerised in Table 10.19. The highest time complexity of each
step is considered the worst case (Big-O notation) of that step.

In order to calculate the overall time complexity, we need to multiply the time complexity
by the number of transformation rules that has this complexity. For instance, according to Table
10.19, the time complexity of the DFD to DBQ step is O(N x M * K), in which there are four
rules that have this complexity. From that, the exact time performance of this transformation
step is NV x M * K x 4. The overall complexities of the rest of steps are calculated likewise.

10.4 Evaluation Experiment of ML Notation

In order to evaluate the suitability of uML, an experiment has been conducted with selected
university students from different faculties and departments such as, Electrical and Communi-
cation Engineering, Information Management, Chemistry and Medicine. The main objective
of this experiment is to evaluate ML in terms of its simplicity and ease of adoption by end-
users as a modelling language for expressing basic functional requirements and specifications
of a real-world and commonly used information systems. It is worth noting that none of the
participants were Computer Scientists, who might have been exposed to UML notations. This
was important, in order to get the responses of non-specialist business users.

Students are interviewed and the general overall idea about the task and the modelling
language is explained to them before commencing the task. After that, an incomplete solved

211

CHAPTER 10. EVALUATION AND TESTING 10.4. EVALUATION EXPERIMENT OF uML NOTATION

business case study is given to them, showing what exactly is expected from them. Then,
students were given a task to draw several yML diagrams of given business scenarios, taken
from the same case study. The time taken to draw each diagram was measured manually by the
students.

10.4.1 Design of the Experiment

The experiment involves an Online Hospital Booking System (OHBS) case study, exemplifying
how a registered patient books an appointment to see a registered doctor in the hospital. A
Task, Impact and Information Model to this part of the system is given to students showing
how the notation of each model looks like. Then, students will be asked three questions to draw
Task, Impact and Information Models for some business activities within OHBS and record the
time they needed for each question (see Appendix D). In order to analyze the results of the
experiment, criteria are designed, including the following points:

e The average time for drawing diagrams is less than 5 mins, between 5 mins and 8 mins or
greater than 8 mins.

e Business entities is captured with correct names and notation.

e Business activities (tasks) are captured with correct names and notation.

e Business structure of task are drawn with correct notation.

e HCIs between stakeholders and business activities are captured with correct notation.

e Impacts between entities and business activities are drawn with correct notation and di-
rection.

10.4.2 Analysis of the Results

As mentioned before, three questions are provided to draw three types of pML requirement
models, namely, Task, Impact and Information Model. The following subsections analyse the
results for each task provided.

10.4.2.1 Results Analysis for the Task Model

The expected answer has 9 elements: 6 tasks, 2 compositions and 1 actor. Figure 10.1 below
demonstrates a sample of the correct solution, sketched by a student. The assumed time for
completing this question is three and a half minutes.

It was observed, from student answers, that all students were able to identify the stakeholder
of the system. They also used the correct notation (ellipse) for expressing business activities.
60% of the students selected the correct (composition) type for representing the right whole/part
relationship between business tasks, whereas 20% had not completed the model and 20% failed
in using the accurate notation for representing a sequence of subtasks, which is one (whole) task
and some (parts) subtasks that are connected to the whole one by a Composition relationship,
but instead they used a chain of Composition relationships from the whole task to the last part

212

CHAPTER 10. EVALUATION AND TESTING 10.4. EVALUATION EXPERIMENT OF uML NOTATION

subtask. This gives a specific order of subtasks’ execution that is not a part of the givn scenario.
The average duration time of all students to complete this task was 4.6 minutes.

7 Adding

Q‘m Dockor

i

ﬂd[ﬂnﬂ
Rygoral Delil

Login Dekail

Figure 10.1: Student attempt at drawing a Task Model

Table 10.20 illustrates (summarised) all answers provided by the participants for the first ques-
tion.

Item Std 1 Std 2 Std 3 Std 4 Std 5
Number of Element 9 9 6 10 9
Drawing Time (mins) | 5 4 5 4 5

Table 10.20: Summary of All Student Answers (Question 1)

10.4.2.2 Results Analysis for the Information Model

The expected answer has 3 elements only: 2 objects (entities) and 1 association. Figure 10.2
illustrates an example of a complete solution, drawn by a student. The assumed time for the
completion of this question is just one minute.

It was observed, from the provided answers, that all students were able to identify the
correct business objects (entities) of the system. 100% of the students succeeded in drawing
the correct notation (rectangle) for expressing business entities. Furthermore, all of them were
able to extract the relationship between these entities. It is worth mentioning that determining
multiplicities is out of the scope of this task.

However, 20% of the students sketched duplicate entities (e.g. New Doctor and Existing
Doctor), and added extra entities out of the scope of the given case study. The average duration
time of all students to complete this task was 3.8 minutes.

L_zvg AL

Figure 10.2: Student attempt at drawing an Information Model

Doclz:r

213

CHAPTER 10. EVALUATION AND TESTING 10.4. EVALUATION EXPERIMENT OF uML NOTATION

Table 10.21 demonstrates all answers provided by the participants for the first question.

Item Std 1 Std 2 Std 3 Std 4 Std 5
Number of Element 3 3 3 7 3
Drawing Time (mins) | 5 2 5 4 3

Table 10.21: Summary of All Student Answers (Question 2)

10.4.2.3 Results Analysis for the Impact Model

The assumed answer has 12 elements: 4 tasks and 4 objects and 4 impacts. Figure 10.3 below
exemplifies a partial solution, answered by a student. The expected time for completing this
question is 6 minutes.

One of the main observations was that 80% of the students were able to distinguish the
notation used for capturing tasks from the one that is used for capturing entities and draw it
correctly without any confusion. Only one sample (20% of the whole number of participants)
used a wrong notation (ellipse) for drawing entities and (rectangle) for drawing tasks and did
not complete the model.

In addition to this, 60% of the participants used correct impacts for representing internal
interactions between tasks and entities, but 40% of them have at most either one wrong impact
direction or wrong impact type.

Doctor

@ ’WL//W ,
Doclker L

Figure 10.3: Student attempt at drawing an Impact Model

Table 10.22 summarised all answers provided by the participants for the first question.

Item Std 1 Std 2 Std 3 Std 4 Std 5
Number of Element 11 12 6 12 12
Drawing Time (mins) | 5 6 5 7 7

Table 10.22: Summary of All Student Answers (Question 3)

214

CHAPTER 10. EVALUATION AND TESTING 10.5. OUTLOOK ON THE CHAPTER

10.4.2.4 Overall Conclusion

After analysing the experiment results, it can be noticed that about 67% of the drawn models
are complete and answers are correct. Non-specialist students were able to differentiate one
concept from another. Reasons for failure could include that they did not learn the notation
well enough; or they failed to understand the business scenario. Better-trained users might
improve this statistic; and domain-experts might understand how to express their business
more effectively. This is because they are domain experts who clearly understand all business
activities. From that, our strategy in constructing small models that have clean semantics and
simple notation is worthwhile to be adopted by non professional developers.

10.5 Outlook on the Chapter

The overall work presented in this chapter can be divided into three main evaluation dimensions,
namely, evaluating the completeness and correctness of the rules, time efficiency analysis and
suitability of uML concepts and notations. In the first dimension, criteria are introduced for
evaluating whether or not the generated code is complete with respect to initial specifications
expressed at the Requirements Sketching phase. Furthermore, the ability to execute the gener-
ated system (code) and its backend database without errors is also evaluated. It shows how the
transformations approach fills the gap in implementation by taking critical design decisions and
introducing appropriate chunks of boilerplate code.

In addition to this, the Big-O notation technique is utilised for evaluating the time efficiency
of the model transformation algorithms in BUILD. For each type of transformation, the worst
case complexity is calculated and explained within the chapter. At the end an experiment is
conducted for evaluating the suitability of uML in terms of its simplicity and ease of adoption
by end-users as a modelling language. The majority of results shows positive feedback from
participants.

215

11

Conclusion and Future Work

“If you don’t work on important problems, it’s not that you’ll do important work.”

Richard Hamming

11.1 Context

This chapter summarises the overall contributions conducted by the research into the Model-
Driven Engineering for enterprise information system development with respect to the following
aspects:

(1) Business users engagement contributions related to how the thesis expands the end-users
role in the development lifecycle by enabling them to act as designers and lead the development
processes, using less technical knowledge to construct their desired system.

(2) Modelling language contributions related to achieving a lightweight language that is able
to capture end-users logical thinking about their information system using less technical knowl-
edge, with a higher level of abstraction than other existing UML and other DSL approaches.

(3) Development approach contributions relate to the proposed MDE method that adopts a
forward model transformation strategy and employs the proposed lightweight modelling lan-
guage, to produce an executable information system derived from its initial requirements.

11.2 In Support of the Thesis

By observing the current state of art in Model-Driven approaches for web applications and
information systems development in Chapter 2, we noticed, on the one hand, that most of
the approaches target developers who have the ability to construct rich detailed models with
technical specifications, such as UML-based approaches. On the other hand, in DSL-based
approaches, such as WebML[124], that aim at raising the abstraction level further, we noticed
that developers must fill those models with a lot of detail in order to generate a complete code at

216

CHAPTER 11. CONCLUSION AND FUTURE WORK 11.2. IN SUPPORT OF THE THESIS

the end. For instance, the components of each screen must be specified, as well as the navigation
links between pages.

From the above, it can be concluded that both approaches rely on modelling technical
concepts at a particular level of abstraction. Based on this given knowledge, the transformation
rules directly map the concepts, which appear in source models, to those equivalent concepts in
the target. This section highlights the contributions of this thesis that improve the development
process of information systems from the perspective of business end-users.

With respect to the current analysis of the state of art, Chapter 3 introduced a novel
Model-Driven Engineering approach (BUILD) that includes a more intelligent forward model
transformation strategy than current approaches. It allows rules of transformation to predict and
provide new knowledge at each translation step carried on within the proposed method. Unlike
the existing approaches, mentioned in the survey, the BUILD method starts with simple and
semantically cleaned models (uML); the transformation mechanism then evolves these models
and introduces new and more detailed concepts.

Besides this, the literature review revealed how little attention is paid to having an appro-
priate modelling language that supports End-User MDE for information systems development.
To address this, a lightweight modelling language (ML) was introduced to enable the end-user
to specify desired systems using their conceptual and business knowledge about the domain. The
proposed language achieved an acceptable degree of clarity from the perspective of end-users.

The same notation was employed in different ML models, giving different meanings in
respect to the context of that model. Chapter 4, 5 and 6 discuss in depth the notation and
semantics of each model with regard to the development stage, in BUILD, which it belongs to.
A formal flavour, using First Order Predicate Logic FOPL with some extentions, mentioned
previously in Chapter 3, has been added to the definition of each concept.

Chapter 7, reflected the three-phase linear composition of model translations, within BUILD,
that shifts the requirement models from the Requirements Sketching phase to the Analysis phase,
and from the intermediate analysis models, used in the Analysis phase to the Design phase, and
lastly from design models, used in the Design phase, to the code generation stage. This illus-
trates the advantages of the intermediate layers, in which new knowledge, supplied by business
users or by the transformation rules, are allowed at each layer. As a result, some of the final
outcomes are more heavily influenced by useful, generated intermediate concepts, than by the
initial user input, illustrating the usefulness of a multilayered approach.

In addition, Chapter 7 also discussed the efficiency of the proposed overall architecture of the
transformation approach in BUILD. It demonstrates how the structure successfully orchestrates
the hybrid transformation rules that are implemented using Java, and which are styled as a
number of Java translation agents (class). In the main rule for each translation step, As a result,
control over the execution order is achieved, by natural interpretation of the rule dependency
structure. Rules are also idempotent, in that a duplicate application maps to the same result.

Chapter 9 discussed, in depth, how the evolution of models is achieved. A full list of
the detailed transformation rules was described for each translation step in the framework,
showing how each rule (translation agent) produces a target concept from the source, infers new
knowledge that is inserted in the translated elements, and makes a critical design decision to the
structure or the behaviour of the system. It is worth saying that the designed rules are formalised
using FOPL in terms (Forall (V), Exists (3)) to ensure that all rules are deterministic with a
known type of target.

217

CHAPTER 11. CONCLUSION AND FUTURE WORK 11.3. DISCUSSION OF RESEARCH QUESTIONS

At the end a number of translation, transformation, and in-place modification steps are
assembled together, forming a complete chain of model transformations that start from the
requirements and end with the final code.

11.3 Discussion of Research Questions

Question 1 What is the required interaction mechanism between the end-user and the transfor-
mation approach to capture their desired system specifications?

The interaction is achieved via the manual creation (sketching) of the requirements models
using the proposed pML notation that is able to capture functional requirements, using end-
users logical thinking and less technical knowledge, via three system views (Chapter 3 and 4).

Question 2 What kind of abstract system views do we need to capture in order to have com-
prehensive knowledge and behaviour of a system?

Domain experts have conceptual knowledge about their business from three perspectives. The
structure of business processes and how system actors might interact with each process, the
structure of business entities and how these entities might relate to each other, and finally, it is
required to express how to supply /retrieve external data into/from the system. In other words,
the interaction between system actor(s) and each process must be considered. Furthermore, the
types of interactions (effects) between business processes and entities must be modelled (Chap-
ter 3 and 4).

Question 3 What transformation rules are required to fold and optimise high-level views and
introduce extra detailed design information into a system?

Merging the rule of concepts that appear in the Task Model with the equivalent ones that
appear in the Impact Model is a significant step to producing the core DataFlow Model. It is
designed in BUILD via the Task-Impact-to-DataFlow agent. Furthermore, inferring an initial
Information Model from a pre-defined Impact Model is a mapping step that predicts new details
regarding the relationships between business entities in the Information Model (Chapter 7 and 8).

Question 4 What transformation rules are required to refine high-level models and introduce
richer design information into a system?

At the Analysis phase, the step of deriving the detailed DataFlow Model from the initial one
is one refinement step. Task decomposition approaches are applied to tasks appearing in the
initial DFD to produce atomic tasks that perform a single CRUD operation. Furthermore, the
in-place model modification step on the generated State Model to generate appropriate error
states for handling possible failure cases of business processes is another example of this kind of
transformation.

In addition to this, the translation step from Information Model to the normalised Data
Dependency Model is a step that performs data normalisation on the source model. It might add
a manufactured identity for each entity that has no user-defined identifier. Not only this, This
step also derives the detailed Database and Query Model by merging concepts from both the
Data and DataFlow Model, which consists of a complete database schema that holds business

218

CHAPTER 11. CONCLUSION AND FUTURE WORK 11.4. SUMMARY OF FINDINGS

logic as well as table definitions.

Besides this, a direct one-to-one mapping between the Information Model and the interme-
diate Data Dependency Model is another translation step that analyses the types of relationships
(e.g. generalisations and compositions), as well as multiplicities on associations to produce the
dependency relationships between Data Model entities (Chapter 7 and 8).

Question 5 At which level of development is end-user engagement required to supply new knowl-
edge to be considered by model translators at the next translation step?

Users manual engagement is performed by annotating the generated (initial) DataFlow Model
with data on each flow. This occurs during the Analysis phase as a critical step in order to
generate the detailed DataFlow Model (Chapter 3 and 4).

Question 6 To what extent are end-users able to generate a complete system for their de-
mand?

As a proof-of-concept, the current version of BUILD is able to generate executable informa-
tion systems that are JDBC Java Swing applications running in an Eclipse environment, that
connect via JDBC' to a MySQL backend database (Chapter 9 and 10).

Question 7 With respect to code gemeration, to what extent are we able to construct and link
the IS layers from generic and less technical specifications?

As the current version of BUILD successfully produces two-tier information systems, its database
connection is prepared and established as a boilarplate code generated by the relevant code gener-
ator within the framework. This strategy links the generated classes (screens) at the presentation
layer to the back-end database. As a result, a complete connection is achieved.

11.4 Summary of Findings

11.4.1 Semi-Automated Way For Producing a Rich Detail Data Dependency
Model

According to the BUILD method, the Data Dependency Model is only derived from the pre-
designed Information Model. The Information Model can be constructed manually by business
users who sketch all model contents from scratch, including entities, attributes and relation-
ships. The other way is by a particular translation agent that derives automatically an initial
Information Model from scratch, using the knowledge provided previously in the Impact Model
to predict entities and resolved relationships only.

An interesting exploration is concluded from the similarity between both generated Data
Dependency Models resulting from experiment 3a and 3b, Chapter 9. The default transforma-
tion rules within the Impact-to-Information Model translator successfully produced a number
of many-to-one associations that lead to derive identical dependencies between entities in the
generated Data Model, from the user-defined Information Model. Under few circumstances, the
translator agent cannot do more due to the lack of knowledge in expressing whether the pre-
dicted generalisation is overlapping or disjoint. Therefore, a default rule that ignores this issue

219

CHAPTER 11. CONCLUSION AND FUTURE WORK 11.5. FUTURE WORK

treats any possible generalisation as an overlapping one.

This finding raises a clear idea for introducing an alternative approach for constructing a
rich detailed data model that combines benefits from both development ways mentioned above.
It aims to achieve new generated Data Dependency Models from an Information Model that
contains both the manually specified entities and their attributes, and automatically inferred
and resolved relationships between entities, from an Impact Model.

This approach is beneficial because it narrows and defines the manual engagement carried
out by end-users for constructing Information Models. This significant idea reduces possible
manual errors, performed by business users, in designing relationships between entities. This
current work can be continued to provide extra support to information system development
approaches, led by end-users. This is described later in the future work section 11.5.

11.4.2 Alternative Strategy For Modelling Rich Information Models at the
Requirement Phase

After the successful generation of MySQL set constraints and the PRIMARY KFEY from require-
ment level concepts, we discovered that handling constraints from that level of abstraction is
possible in a straightforward way. It does not require vast end-users technical knowledge, and
substantial computation by the related translators. Unlike the manufactured and generated
constraints, such as FOREIGN KEY, UNIQUE, and NOT NULL that requires checking other
intermediate elements in the source and/or target models, during the creation of the Database
and Query Model, these trivial constraints are directly passed from the source to the target till
the development approach generates an equivalent script at the code generation stage.

Given the above, if emphasis is laid more on supplying trivial attribute constraints in an
initial Information Model, this will lead to producing trivial attribute constraints at this level,
which enriches the Information Model, alongside predicting associations automatically, with
less end-user engagement, leads to producing a more sophisticated data model. The detailed
description of entities and attributes, including structure and constraints may be extracted from
the Information Model, whereas the knowledge about relationships between business entities
may be predicted from the Impact Model. This strategy avoids the repetition of concepts or
information in both the Impact and Information Model.

11.5 Future Work

It can be said that the introduced Micro-Modelling Language (¢ML) and the proposed Model-
Driven Engineering approach (BUILD) improve the information systems development process
from the perspective of business end-users. But there are a number of ways in which the current
work can be extended.

220

CHAPTER 11. CONCLUSION AND FUTURE WORK 11.5. FUTURE WORK

11.5.1 Designing Additional Types of Generic Transformation Rules At the
Top-Level Architecture

The current version of BUILD has two types of model transformation rules at its top-level
framework. Other model transformations such as, in-place model modification and one-to-two
forward translation must be added to the family of generic translation rules designed in BUILD.
Currently, the in-place modification is treated as a one-to-one model transformation, in which
the source and target have the same type, whereas the one-to-two translation is implemented
via two one-to-one transformation rules.

11.5.2 Developing a Merging Translation Agent for Data Dependency Model
Construction

This piece of future work is related to the findings discussed in section 11.4; it aims at en-
hancing the approach for developing the Data Model by enabling the BUILD method to avoid
possible accidental end-user mistakes during designing relationships between entities or during
annotating (assigning) their multiplicities. It is assumed that defining the structure of entities is
considered a straightforward task for domain experts. In contrast, constructing accurate types
of relationships, with correct multiplicities might be error-prone from the perspective of naive
business users, which requires a further treatment.

This issue can be tackled by minimising the usage, and possibly notation, of the Information
Model to cover only business entities and their structure (attributes and some constraints on
them), and letting the relationships between these entities be predicted from the Impact Model.
A slightly alternative approach might be adopted here, by including all partial relationships,
about which the designer (end-user)has total confidence, in the initial information model.

In both suggested solutions, the knowledge in an (initial) Information Model is accumulated
together with the predicted one from the Impact Model in an independent merging step. From
that, designing the Information-Impact-To-Data Model translation agent is a sensible solution
to be in charge of carrying out this translation step.

11.5.3 Enrich the Information Model by Supporting More Types of Con-
straints

In data modelling, various types of constraints are applied to fields in order to enforce particular
input, restrict values, prevent empty values, and more. Some of these constraints are naturally
known by domain experts without the demand to have additional technical data modelling skills.
From their prespective, it is assumed that not null, unique, set constraint, range constraint, and
default value are examples of trivial constraints that might be determined by business users at
the requirement level.

Set constraint, for instance, is a type of constraint that applies to values of attributes within
an entity/table. It occurs when acceptable values of a particular field are restricted by a limited
known set of values. This constraint is expressed in MySQL using an Enumerator, appearing as
an enum field within the generated table, which rejects any attempt to input any invalid data.
As we successfully generated an equivalent MySQL code for our early work in ReMoDeL[101]
DBQ model and Database Generation Framework, introduced in[108] and[109].

221

CHAPTER 11. CONCLUSION AND FUTURE WORK 11.5. FUTURE WORK

As we have not paid adequate attention to these concepts during the design of the Infor-
mation Model, adding extra concepts that are able to express these constraints on attributes is,
therefore, worth considering. In real-world business, this information is regarded as trivial from
the perspective of domain experts (end-users). The evolution strategy of these concepts must
be determined to enable passing these specifications throughout development stages of BUILD.

11.5.4 Covering More Business Workflow Patterns

The current version of BUILD is able to extract knowledge from various pML models to con-
struct two types of business workflow patterns, namely, Sequence and Fxclusive Choice. These
supported patterns were demonstrated previously throughout Chapter 9 case studies. Cover-
ing additional workflow patterns is an interesting future research question raised by this thesis.
It includes expanding the concepts and notation of some puML models, and designing extra
translation agents to deal with these new concepts.

One possible suggestion is expanding the Task Model concepts to allow the expression of
multiplicities in Composition relationships between tasks. This indicates the number of execu-
tions for each subtask involved in a Composition. As a result of this, an iteration control flow
pattern might be detected from this concept. Besides this, adding conditions (filters) on the
branches of a Composition allows for the possible detection of sophisticated conditional branch-
ing of business tasks. For both suggestions, an appropriate translation chain has to be defined
in order to get the benefits of these patterns later in the design and code generation phases.

11.5.5 Optimising the DataFlow-to-State-Model Translation Algorithm

As mentioned in the limitation of the work in Chapter 10, section 10.8, the current version
of the DataFlow-to-State-Model agent only supports the translation of a particular business
process pattern that is expressed in the detailed DFD model into the associated State Model. It
is desirable to enhance the current algorithm in order to construct more complex business tasks
(such as a task that consists of a collection of input and output subtasks along with one or more
subtasks that performs a single CRUD operation).

To achieve different pattern coverage, a further consideration might be required in the
proposed priority scoring algorithm, in order to enable having more detailed scores to cover any
possible repetition of task type. For example, in the current version, the score of read is 3 and
the score of input is 4. On some occasions, when having a system that requires more than one
input step, the scoring algorithm gives both (input) steps 4, and a default rule is applied to
consider the first input task appearing in the model to be the first one in the sequence of input
and the rest is likewise. An additional step for analysing the data on flow together with the
flow-type is needed to extract complex (longer) sequences.

11.5.6 Constructing a Separated Business Logic Layer

The current version of BUILD is able to construct only a 2-tier information systems design,
which consists of a presentation and data storage (database) tier. The specifications of these
tiers are expressed via a number of ygML models. In the generated systems from BUILD, the
business logic is embedded in the data storage tier, and invoked from Uls, the presentation tier.

222

CHAPTER 11. CONCLUSION AND FUTURE WORK 11.6. FINAL REMARKS

The logic is implemented via a number of stored procedures, each of which performs a specific
CRUD operation on the database. This would not be applicable for computational business
tasks that perform different jobs rather than CRUD operations.

From that, on some occasions, having a separate business logic tier brings benefits to the
design, in which it enables dealing with some types of computational business tasks. As a
consequence, the proposed method (BUILD) might be used on a large scale, dealing with systems
that require a further security and performance of the overall information system design.

Constructing a 3-tier architecture might be achieved by modelling business logic in a sep-
arate model apart from the DBQ model that represents pure OO code. The uML Code Model
serves this purpose. Chapter 6 introduces the notation and semantics of some of its core con-
cepts and the rules-structure and definition of the translation step for deriving the Code Model
from the DataFlow and DBQ model.

In order to continue the work in this direction, the notation of the Task Model must be
extended to support new types of business activities, e.g. arithmetic in addition to the existing
types of tasks. Choosing the right level of abstraction is important; for example, high-level
tasks representing predefined accounting operations may be preferable to low-level arithmetic.
Moreover, appropriate transformation rules must be designed to derive the equivalent code from
related models.

11.5.7 Integrating BUILD with Eclipse Graphical Modeling Framework (GMF)

In order to improve the interoperability of the BUILD framework, designing a graphical editor
tool is an essential improvement of the work. Eclipse, via the Graphical Modeling Project[37]
offered a set of generative components and runtime infrastructures for creating graphical editors
based on the Eclipse EMF[36] artefact and the GEF[35] framework. Using the technology
provided by GEF[35] on the top of our approach, to invent rich graphical editors, would allow
end-users to sketch their system models in a convenient way. In the literature survey (Chapter 2),
many model transformation approached and development methodologies support their work with
an Eclipse-based CASE tool, such as, ATL[33], Epsilon[34] and WebML[124] via its WebRation[4]
CASE tool.

11.6 Final Remarks

In summary, the thesis introduced a user-friendly modelling language, called Micro-Modelling
Language (uML), aimed at supporting end-user model-driven engineering by raising the level of
abstraction rather than using other UML approaches, which requires more technical knowledge.
The main purpose of uML is to tackle some issues regarding the ambiguity of UML semantics
and the complexity of its models. This is because the Models in UML are too complex and
eclectic to be given a single, clear interpretation, while paradoxically not covering all of the
views that are needed to completely specify a software system.

Designing this lightweight language (ML) that has a simpler notation with cleaner seman-
tics enabled capturing the functional requirements of systems in a generic way, using familiar
concepts to a business domain. This was demonstrated via examples and case studies through-
out the thesis. The individual gML model is smaller and more restricted; but more types of

223

CHAPTER 11. CONCLUSION AND FUTURE WORK 11.6. FINAL REMARKS

models were used together to cover the different interlinking aspects (views) of an information
system.

In addition, possible total and partial forward transformations, between different kinds of
model, were identified. The rules of transformation are designed in a hybrid style, gathering
benefits from the known declarative and imperative approaches. Each rule is implemented as
a Java class (agent), forming a layered forward model transformation strategy to generate an
executable 2-tier information system from requirements models.

From that, a novel model-driven engineering approach (BUILD) was established. The
BUILD method introduced a development methodology that contributes in the area of model-
driven information systems engineering. The method introduces a development technique that
allows domain experts to lead the development process, and participate more at various devel-
opment stages, by constructing initial MDE artifacts, and annotating some of the intermediate
models at a later phase.

The engagement of business users is achieved via the proposed pML. Through BUILD, the
development lifecycle starts with models, which hold business knowledge, defined manually by
end-users. More views of the desired system are constructed automatically during the develop-
ment process, in which the transformation rules evolve the captured requirements to predict,
and produce, more detailed concepts, at the design and code generation phases.

224

List of References

1]

Abstract Solutions: Complexity Simplified. Xuml :: Action specification languages. http:
//www.kc.com/XUML/asl.php, 2014.

Abstract Solutions: Complexity Simplified. Xuml :: Executable uml. http://www.kc.
com/XUML/executableumldescription.php, 2014.

Acceleo. Planet acceleo. http://www.acceleo.org/pages/planet—-acceleo,
February 2010.

Roberto Acerbis, Aldo Bongio, Marco Brambilla, and Stefano Butti. Webratio 5: An
eclipse-based case tool for engineering web applications. In Luciano Baresi, Piero Frater-
nali, and Geert-Jan Houben, editors, Web Engineering, volume 4607 of Lecture Notes in
Computer Science, pages 501-505. Springer Berlin Heidelberg, 2007.

David H Akehurst, Behzad Bordbar, Michael J Evans, J Howells, W Gareth, and Klaus D
McDonald-Maier. Sitra: Simple transformations in java. In Model Driven Engineering
Languages and Systems, pages 351-364. Springer, 2006.

Joao Paulo Almeida, Remco Dijkman, Marten Van Sinderen, and Luis Ferreira Pires. On
the notion of abstract platform in MDA development. In Enterprise Distributed Object
Computing Conference, 2004. EDOC 2004. Proceedings. Eighth IEEE International, pages
253-263. IEEE, 2004.

Zaid Altahat, Tzilla Elrad, and Didier Vojtisek. Using aspect oriented modeling to localize
implementation of executable models. In Models and Aspects workshop, at ECOOP 2007,
2007.

AndroMDA. Generate components quickly with andromda. http://www.andromda.
org/docs/index.html, January 2011.

Bordbar B. Sitra: Simple transformer. http://www.cs.bham.as.uk/~bxb/Sitra/
index.html, 2014.

Dave Bacon. An introduction to digital design: Moore and mealy machines. University of
Washington, Lecture. https://courses.cs.washington.edu/courses/cse370/
06sp/pdfs/lecturel8.pdf, 2006.

Elisa L. A. Baniassad and Siobhén Clarke. Theme: An approach for aspect-oriented
analysis and design. In 26th International Conference on Software Engineering (ICSE
2004), 23-28 May 2004, Edinburgh, United Kingdom, pages 158-167, 2004.

225

LIST OF REFERENCES LIST OF REFERENCES

[12]

[13]

Luciano Baresi and Reiko Heckel. Tutorial introduction to graph transformation: A soft-
ware engineering perspective. In Graph Transformation, pages 402-429. Springer, 2002.

Leandro Buss Becker, Carlos Eduardo Pereira, Octavio Pascoa Dias, JP Teixeira, and
IM Teixeira. Mosys: a methodology for automatic object identification from system spec-
ification. In Object-Oriented Real-Time Distributed Computing, 2000.(ISORC 2000) Pro-
ceedings. Third IEEE International Symposium on, pages 198-201. IEEE, 2000.

Daniela Berardi, Diego Calvanese, and Giuseppe De Giacomo. Reasoning on uml class
diagrams. Artif. Intell., 168(1):70-118, October 2005.

Matthias Biehl. Literature study on model transformations. Royal Institute of Technology,
Tech. Rep. ISRN/KTH/MMK, 2010.

Marco Brambilla, Piero Fraternali, and Massimo Tisi. A metamodel transformation frame-
work for the migration of webml models to mda. In MDWE, CEUR Workshop Proceedings,
volume 389, pages 91-105. Citeseer, 2008.

Peter Buneman, Mary Fernandez, and Dan Suciu. Unql: a query language and algebra for
semistructured data based on structural recursion. The VLDB JournalThe International
Journal on Very Large Data Bases, 9(1):76-110, 2000.

Andrew Carton, Cormac Driver, Andrew Jackson, and Siobhan Clarke. Model-driven
theme/uml. T. Aspect-Oriented Software Development VI, 6:238-266, 2009.

Case-Tools. Optimalj case tool: Leading mda/uml tool generates j2ee/ejb code from uml
models, reads xmi. http://www.case-tools.org/tools/optimalj.html, August
2010.

Grant Wing Fai Chan. Model-based generation of java code. Master’s thesis, 2003.

Karina Chong, Maria Verénica Macias Mendoza, and Monique Snoeck. Experiences with
the use of MERODE in the development of a web based application. In VII Jornadas
Iberoamericanas de Ingenieria de Software e Ingenieria del Conocimiento 2008, Guayaquil,
Ecuador, January 30 - February 1, 2008. Proceedings, pages 421-426, 2008.

Tony Clark, Andy Evans, Paul Sammut, and James Willans. Transformation language
design: A metamodelling foundation. In Hartmut Ehrig, Gregor Engels, Francesco Parisi-
Presicce, and Grzegorz Rozenberg, editors, Graph Transformations, volume 3256 of Lecture
Notes in Computer Science, pages 13-21. Springer Berlin Heidelberg, 2004.

Tony Clark, Paul Sammut, and James Willans. Applied metamodelling: a foundation for
language driven development. 2008.

Krzysztof Czarnecki. Overview of generative software development. In Unconventional
Programming Paradigms, pages 326-341. Springer, 2005.

Krzysztof Czarnecki and Simon Helsen. Classification of model transformation approaches.
In Proceedings of the 2nd OOPSLA Workshop on Generative Techniques in the Context
of the Model Driven Architecture, volume 45, pages 1-17. Citeseer, 2003.

Krzysztof Czarnecki and Simon Helsen. Feature-based survey of model transformation
approaches. IBM Systems Journal, 45(3):621-645, 2006.

226

LIST OF REFERENCES LIST OF REFERENCES

[27]

[29]

[30]

[38]

[39]

[40]

[41]

[42]

Sofia Larissa da Costa, VV Graciano Neto, Luiz Fernando Batista Loja, and Juliano Lopes
de Oliveira. A metamodel for automatic generation of enterprise information systems. In
Anais do I Congresso Brasileiro de Software: Teoria e Prdtica-1 Workshop Brasileiro de
Desenvolvimento de Software Dirigido por Modelos, volume 8, pages 45-52, 2010.

Alexandre Claudio de Almeida, Glauber Boff, and Juliano Lopes de Oliveira. A framework
for modeling, building and maintaining enterprise information systems software. In Soft-
ware Engineering, 2009. SBES’09. XXIII Brazilian Symposium on, pages 115-125. IEEE,
20009.

Buddhima De Silva and Athula Ginige. Meta-model to support end-user development of
web based business information systems. In Web Engineering, pages 248-253. Springer,
2007.

Buddhima De Silva and Athula Ginige. Meta-model to support end-user development
of web based business information systems. In Luciano Baresi, Piero Fraternali, and
Geert-Jan Houben, editors, Web Engineering, volume 4607 of Lecture Notes in Computer
Science, pages 248-253. Springer Berlin Heidelberg, 2007.

Dov Dori and Edward F. Crawley. Object-Process Methodology: A Holistic Systems
Paradigm. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.

Eclipse. Viatra2: Project overview. http://www.eclipse.org/gmt/VIATRAZ, 2010.

Eclipse. Atl: A model transformation technology. http://www.eclipse.org/atl/,
2011.

Eclipse. Epsilon framework. http://www.eclipse.org/gmt/epsilon, May 2011.
Eclipse. Gef (graphical editing framework). http://www.eclipse.org/gef/, 2012.

Eclipse. Eclipse modeling framework project (emf). http://www.eclipse.org/
modeling/emf, 2013.

Eclipse. Graphical modeling project. http://www.eclipse.org/modeling/gmp,
2013.

Joao M Fernandes, Johan Lilius, and Dragos Truscan. Integration of dfds into a uml-based
model-driven engineering approach. Software & Systems Modeling, 5(4):403-428, 2006.

Robert Filman, Tzilla Elrad, Siobhan Clarke, and Mehmet Aksit. Aspect-oriented Software
Development. Addison-Wesley Professional, first edition, 2004.

Frédéric Fondement and Raul Silaghi. Defining model driven engineering processes. In
Third International Workshop in Software Model Engineering (WiSME), held at the 7Tth
International Conference on the Unified Modeling Language (UML). Citeseer, 2004.

Juan Pedro Silva Gallino. Composing models with six different tools: a comparative
study. 1st International Workshop on Model Transformation with ATL, Nantes, France,
July 2009.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: El-
ements of Reusable Object-oriented Software. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1995.

227

LIST OF REFERENCES LIST OF REFERENCES

[43]

[44]

Chris Gane and Trish Sarson. Structured Systems Analysis: Tools and Techniques. Mc-
Donnell Douglas Systems Integration Company, 1977.

Miguel Garcia. Formalization of gqvt-relations: Ocl-based static semantics and alloy-based
validation. In Proceedings of the Second Workshop on MDSD Today, pages 21-30, 2008.

Athula Ginige and Buddhima De Silva. Cbeads: A framework to support meta-design
paradigm. In Constantine Stephanidis, editor, Universal Acess in Human Computer In-
teraction. Coping with Diversity, volume 4554 of Lecture Notes in Computer Science, pages
107-116. Springer Berlin Heidelberg, 2007.

Arda Goknil, N Yasemin Topaloglu, and KG Van Den Berg. Operation composition
in model transformations with complex source patterns. Technical report, Centre for
Telematics and Information Technology, University of Twente, 2008.

Jack Greenfield and Keith Short. Software factories: assembling applications with pat-
terns, models, frameworks and tools. In Companion of the 18th annual ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and applications, pages
16-27. ACM, 2003.

Distributed System Group. Aspect-oriented architectures. http://www.dsg.cs.tcd.
ie/aspects/themeUML, 2009.

David Harel. Statecharts: A visual formalism for complex systems. Sci. Comput. Program.,
8(3):231-274, June 1987.

Soichiro Hidaka, Zhenjiang Hu, Hiroyuki Kato, and Keisuke Nakano. Towards a composi-
tional approach to model transformation for software development. In Proceedings of the
2009 ACM symposium on Applied Computing, pages 468-475. ACM, 2009.

IBM. Rational rhapsody family. http://www—-03.1ibm.com/software/products/
en/ratirhapfami, 2011.

IRISA. Kermeta: Breathe life into your metamodels. http://www.kermeta.org, 2010.

ISIS. Great: Gaph rewriting and transformation. http://www.isis.vanderbilt.
edu/tools/GReAT, May 2010.

ISIS. Model integrated computing. http://www.isis.vanderbilt.edu/MIC/, 2011.

Andrew Jackson, Jacques Klein, Benoit Baudry, Siobhdan Clarke, et al. Executable aspect
oriented models for improved model testing. In ECMDA workshop on Integration of Model
Driven Development and Model Driven Testing., 2006.

X Jai. zoom. http://www.se.cs.depaul.edu/ise/zoom/zoom.html/, 2011.

Jean-Marc Jézéquel, Olivier Barais, and Franck Fleurey. Model driven language engineer-
ing with kermeta. In Generative and Transformational Techniques in Software Engineering
111, pages 201-221. Springer, 2011.

Tao Jiang and WenYun Zheng. Research on formalization of domain-specific metamodeling
language based on first-order logic. In Computer Science and Automation Engineering
(CSAE), 2011 IEEE International Conference on, volume 4, pages 170-174, June 2011.

228

LIST OF REFERENCES LIST OF REFERENCES

[59]

[60]

[64]

[65]

[70]
[71]

[72]

Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. Atl: A model transfor-
mation tool. Science of computer programming, 72(1):31-39, 2008.

Judith Kabeli and Peretz Shoval. Comprehension and quality of analysis specifications:
a comparison of foom and opm methodologies. Information and Software Technology,
47(4):271-290, 2005.

Gabor Karsai, Janos Sztipanovits, Akos Ledeczi, and Ted Bapty. Model-integrated devel-
opment of embedded software. Proceedings of the IEEE, 91(1):145-164, 2003.

Steven Kelly and Juha-Pekka Tolvanen. Domain-specific modeling: enabling full code
generation. John Wiley & Sons, 2008.

E. Kindler and R. Wagner. Triple graph grammars: Concepts, extensions, implementa-
tions, and application scenarios. Technical report, Technical Report tr-ri-07-284, Univer-
sity of Paderborn, 2007.

Dimitrios S. Kolovos, Richard F. Paige, and Fiona A. C. Polack. The epsilon object
language (eol. In In: Proceedings FEuropean Conference in Model Driven Architecture
(EC-MDA) 2006, pages 128-142. Springer, 2006.

Dimitrios S Kolovos, Richard F Paige, and Fiona AC Polack. The epsilon object lan-
guage (eol). In Model Driven Architecture—Foundations and Applications, pages 128—142.
Springer, 2006.

Dimitrios S. Kolovos, Richard F. Paige, and Fiona A.C. Polack. The epsilon transformation
language. In Antonio Vallecillo, Jeff Gray, and Alfonso Pierantonio, editors, Theory and
Practice of Model Transformations, volume 5063 of Lecture Notes in Computer Science,
pages 46—60. Springer Berlin Heidelberg, 2008.

Dimitrios S Kolovos, Richard F Paige, and Fiona AC Polack. The epsilon transformation
language. In Theory and practice of model transformations, pages 46—60. Springer, 2008.

Andreas Kraus, Alexander Knapp, and Nora Koch. Model-driven generation of web ap-
plications in uwe. MDWE, 261, 2007.

Ivan Kurtev, Klaas Van Den Berg, and Frédéric Jouault. Evaluation of rule-based mod-
ularization in model transformation languages illustrated with atl. In Proceedings of the
2006 ACM symposium on Applied computing, pages 1202-1209. ACM, 2006.

Unified Modelling Language. Uml resource page. http://www.uml.org, 2011.

Kevin Lano. The UML-RSDS manual. Technical report, Department of Informatics,
King’s College London, 2014.

Kevin Lano and Shekoufeh Kolahdouz-Rahimi. Specification and verification of model
transformations using uml-rsds. In Dominique Mry and Stephan Merz, editors, Inte-
grated Formal Methods, volume 6396 of Lecture Notes in Computer Science, pages 199-214.
Springer Berlin Heidelberg, 2010.

Michael Lawley and Jim Steel. Practical declarative model transformation with tefkat. In
Satellite Events at the MoDELS 2005 Conference, pages 139-150. Springer, 2006.

KU Leuven. Jmermaid: Merode modeling aid. http://merode.econ.kuleuven.ac.
be/mermaid.aspx, 2011.

229

LIST OF REFERENCES LIST OF REFERENCES

[75]

[76]

[77]

(78]

KU Leuven. Merode: Is merode something for you? http://merode.econ.
kuleuven.ac.be/merodefaq.aspx, 2011.

Hongming Liu, Xiaoping Jia, et al. Model transformation using a simplified metamodel.
Journal of Software Engineering and Applications, 3(07):653, 2010.

Vincent Lussenburg, Tijs Van Der Storm, Jurgen Vinju, and Jos Warmer. Mod4j: a
qualitative case study of model-driven software development. In Model Driven Engineering
Languages and Systems, pages 346-360. Springer, 2010.

William E. McUmber and Betty H. C. Cheng. A general framework for formalizing uml
with formal languages. In Proceedings of the 23rd International Conference on Software
Engineering, ICSE 01, pages 433-442, Washington, DC, USA, 2001. IEEE Computer
Society.

Tom Mens. Model transformation: A survey of the state of the art. Model-Driven En-
gineering for Distributed Real-Time Systems: MARTE Modeling, Model Transformations
and their Usages, pages 1-19, 2010.

Tom Mens, Krzysztof Czarnecki, and Pieter Van Gorp. 04101 discussion - a taxonomy of
model transformations. In Language Engineering for Model-Driven Software Development,
2004.

Tom Mens and Pieter Van Gorp. A taxonomy of model transformation. Electronic Notes
in Theoretical Computer Science, 152:125-142, 2006.

Shui ming Ho and Kung kiu Lau. Catalysis framework in first-order logic. In Proc. of
FME03 Workshop on Formal Aspects of Component Software, 2003.

Nathalie Moreno, Piero Fraternali, and Antonio Vallecillo. Webml modelling in uml. IET
software, 1(3):67-80, 2007.

Pierre-Alain Muller, Franck Fleurey, Didier Vojtisek, Zoé Drey, Damien Pollet, Frédéric
Fondement, Philippe Studer, Jean-Marc Jézéquel, et al. On executable meta-languages
applied to model transformations. In Model Transformations In Practice Workshop, 2005.

OMG. Object constraint language. http://www.omg.org/spec/0OCL/2.2/.
OMG. Object management group (omg). http://www.omg.org/, 1997.

OMG. Meta object facility (mof) core specification version 2.0. http://www.omg.org/
spec/MOF/2.0/HTML/, 2006.

OMG. Query/view/transformation specification version 1.1. http://www.omg.org/
spec/QVT/1.1/PDF/, 2011.

OMG. Model driven architecture (mda). http://www.omg.org/mda/, 2014.
OPCAT. Rapid conceptual design for complex systems. http://www.opcat .com, 2005.

F. Perez, P. Valderas, and J. Fons. Allowing end-users to participate within model-driven
development approaches. In Visual Languages and Human-Centric Computing (VL/HCC),
2011 IEEE Symposium on, pages 187-190, Sept 2011.

230

LIST OF REFERENCES LIST OF REFERENCES

[92]

[100]

[101]

[102]

[103]

[104]

[105]
[106]

Jakob Pinggera, Stefan Zugal, Barbara Weber, Dirk Fahland, Matthias Weidlich, Jan
Mendling, and Hajo A. Reijers. How the structuring of domain knowledge helps casual
process modelers. In Proceedings of the 29th International Conference on Conceptual
Modeling, ER’10, pages 445-451, Berlin, Heidelberg, 2010. Springer-Verlag.

John D Poole. Model-driven architecture: Vision, standards and emerging technologies.
In Workshop on Metamodeling and Adaptive Object Models, ECOOP, volume 2001, 2001.

Roger Pressman. Software Engineering: A Practitioner’s Approach. McGraw-Hill, Inc.,
New York, NY, USA, 7 edition, 2010.

Sreedhar Reddy, R Venkatesh, and Zahid Ansari. A relational approach to model trans-
formation using qvt relations. Tata Research Development and Design Centre, Pune,
India.—2006./Internet: hitp://www. iist. unu. edu/” vs/wiki-files/QVT-TRDCC. pdf.

Iris Reinhartz-Berger and Dov Dori. Object-process methodology (opm) vs. uml-a code
generation perspective. In CAiSE Workshops (1), pages 275-286. Citeseer, 2004.

Jochen Rode, Mary Beth Rosson, and Manuel A. Pérez-Quiniones. End-users’ mental
models of concepts critical to web application development. In 2004 IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC 2004), 26-29 September
2004, Rome, Italy, pages 215-222, 2004.

Sergio Segura, David Benavides, Antonio Ruiz-Cortés, and Pablo Trinidad. Automated
merging of feature models using graph transformations. In Generative and Transforma-
tional Techniques in Software Engineering II, pages 489-505. Springer, 2008.

Lijun Shan and Hong Zhu. Semantics of metamodels in uml. In Proceedings of the 2009
Third IEEE International Symposium on Theoretical Aspects of Software Engineering,
TASE ’09, pages 5562, Washington, DC, USA, 2009. IEEE Computer Society.

Juan Pedro Silva, Miguel de Miguel, Javier F' Briones, and Alejandro Alonso. Composing
models with six different tools: a comparative study. CEUR-WS MtATL, pages 103-118,
20009.

Anthony J.H. Simons. Remodel: Reusable model design languages: Generating software
systems by model transformation and adaptation. http://staffwww.dcs.shef.ac.
uk/people/A.Simons/remodel/, 2011.

Anthony J.H. Simons. Jast: Java abstract syntax trees. http://staffwww.dcs.shef.
ac.uk/people/A.Simons/jast/, 2012.

Monique Snoeck. Object-Oriented Enterprise Modelling with Merode. Leuven University
Press, 1999.

Monique Snoeck, Raf Haesen, Herman Buelens, Manu De Backer, and Geert Monsieur.
Computer aided modelling exercises. Informatics in education, 6(1):231-248, 2007.

SourceForge. The jamda project. http://www. jamda.sourceforge.net, 2003.

Michael Spahn, Christian Dorner, and Volker Wulf. End user development: approaches
towards a flexible software design. Presented in ECIS 2008, 9th 11th June 2008, Galway,
Ireland, June 2008.

231

LIST OF REFERENCES LIST OF REFERENCES

107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117)

[118]

[119]

[120]

[121]

[122]

Michael Spahn and Volker Wulf. End-user development of enterprise widgets. In Proceed-
ings of the 2nd International Symposium on End-User Development, IS-EUD ’09, pages
106-125, Berlin, Heidelberg, 2009. Springer-Verlag.

Ahmad F. Subahi. ReMoDeL Database Generator. Master’s thesis, University of Sheflield,
Department of Computer Science, Sheffield, United Kingdom, 2010.

Ahmad F. Subahi and Anthony J.H. Simons. A multi-level transformation from concep-
tual data models to database scripts using java agents. In Proc. in the Workshop on
Composition and Fvaluation of Model Transformations, 2011.

Eugene Syriani and Hans Vangheluwe. Matters of model transformation. Relatorio Técnico
SOCS-TR-2009.2, School of Computer Science, McGill University, 2009.

Janos Sztipanovits and Gabor Karsai. Generative programming for embedded systems.
In Generative Programming and Component Engineering, pages 32—49. Springer, 2002.

Gabriele Taentzer. Agg: A graph transformation environment for modeling and validation
of software. In Applications of Graph Transformations with Industrial Relevance, pages
446-453. Springer, 2004.

Hee Beng Kuan Tan, Yong Yang, and Lei Bian. Systematic transformation of functional
analysis model into oo design and implementation. Software Engineering, IEEE Transac-
tions on, 32(2):111-135, 2006.

F.T.S.D Team. Fujaba tool suite. http://www.fujaba.de/no_cache/home.html,
2011.

Laurence Tratt. Model transformations and tool integration. Software € Systems Model-
ing, 4(2):112-122, 2005.

uml diagrams.org. State machine diagrams. http://www.uml-diagrams.org/
state-machine-diagrams.html, 2014.

UWE. Uml-based web engineering. http://uwe.pst.ifi.lmu.de/aboutUwe.html,
2011.

Francisco Valverde, Ignacio Panach, and Oscar Pastor. An abstract interaction model for a
mda software production method. In Tutorials, posters, panels and industrial contributions
at the 26th international conference on Conceptual modeling- Volume 83, pages 109-114.
Australian Computer Society, Inc., 2007.

Bert Vanhooff, Dhouha Ayed, Stefan Van Baelen, Wouter Joosen, and Yolande Berbers.
Uniti: A unified transformation infrastructure. In Model Driven Engineering Languages
and Systems, pages 31-45. Springer, 2007.

Juan M Vara, Maria Valeria De Castro, Marcos Didonet Del Fabro, and Esperanza Marcos.
Using weaving models to automate model-driven web engineering proposals. International
Journal of Computer Applications in Technology, 39(4):245-252, 2010.

Gergely Varré. Towards incremental graph transformation in fujaba. In Proc. of the 2nd
International Fujaba Days, pages 3—6, Darmstadt, Germany, September 2004.

W3C. Extensible markup language (xml). http://www.w3.0rg/XML/, 2014.

232

LIST OF REFERENCES LIST OF REFERENCES

[123] Dennis Wagelaar. Composition techniques for rule-based model transformation languages.
In Theory and Practice of Model Transformations, pages 152—-167. Springer, 2008.

[124] WebML.org. The web modelling language. http://www.webml.org/webml/pagel.
do, 2004.

[125] Hong Zhu, Lijun Shan, Ian Bayley, and Richard Amphlett. Formal Descriptive Semantics
of UML and Its Applications, pages 95-123. John Wiley & Sons, Inc., 2009.

233

Appendices

234

Appendix: Models and Executable
Code of Experiment (1)

A.1 Complete Models and Full results of Experiment (1)

This Appendix presents the XML representations of all uML models of the Module Management
System case study, and the completed Java and MySQL code generated from these models via
BUILD. The experiment presented previously in chapter 10.

Experiment (1): Requirement Models Construction

Listing A.1: CaseStudy.java

package mde.example;

import java.io.File;

import java.io.IOException;

import mde. data.model.DDiagram;

import mde.database.gen.DumpFileGenerator;
import mde. mysql. gen. MySQLDumpFileGenerator;
import mde. database.gen.TreeException;

import mde. dataflow .model . DfDiagram;

10 import mde.dbs.model.Schema;

11 import mde.dfd2ddfd . rule.DfDiagramToDfDiagram;
12 import mde. dfd2state.rule.DfdDiagramToStDiagram;
13 import mde.dm2schem. rule . DDiagramToSchema2 ;

14| import mde.dm_dfd_state2code. rule.DDiagramToCDiagram2x;
15| import mde. gui.gen.CodeFileGenerator;

16 | import mde. gui.model. GuiBoundary ;

17| import mde. gui.model.GuiDiagram;

18| import mde.impact.model.ImpBoundary;

19| import mde.impact.model.ImpDeleteFlow;

20| import mde.impact.model.ImpDiagram;

21 import mde.impact.model.ImpCreateFlow;

22 import mde.impact.model . ImpObject;

23 import mde.impact.model.ImpReadFlow;

24 import mde.impact.model.ImpRole;

25 import mde.impact.model.ImpTask;

26 import mde.impact.model.ImpUpdateFlow;

27 import mde.inf2dm . rule .InfDiagramToDDiagram ;
28 import mde. information.model. Association;

29 import mde. information.model. Entity;

30| import mde.information.model. Attribute;

31 import mde. information.model.Role;

32 import mde. javagui.gen.JavaCodeFileGenerator;
33 import mde. model.Type;

34 import mde. state.model.StDiagram;

35| import mde.state2win . rule.StDiagramToGuiDiagram;
36 | import mde. task.model.Actor;

37| import mde. task.model.Boundary;

© WU A WN -

235

APPENDIX A. MODELS AND RESULTS OF EXPERIMENT (1) APPENDIX A
38 import mde. task.model. Composition;

39 import mde. task.model.Diagram;

40 import mde. task.model. Participation;

41 import mde. task.model.Task;

42 import mde. taskimpact2dataflow . rule.DiagramToDfDiagram ;

43 import org.jast.ast.ASTWriter;

44

45| public class CaseStudy {

46

47 public static void main(String[] args) throws IOException,

48 TreeException, mde. gui.gen.TreeException {

49 // TODO Auto—generated method stub

50

51 //Construct the Task Model

52 Diagram taskModel = new Diagram();

53 Boundary boundary = new Boundary(” Module Management”);

54

55 Task manage = new Task(”Manage Module”);

56 Task add = new Task(”Add Module”);

57 Task delete = new Task(” Delete Module”);

58 Task modify = new Task(” Modify Module”);

59 Task see = new Task(”See Description”);

60 Actor actorl = new Actor(” Staff”);

61 Actor actor2 = new Actor(”Student”);

62

63 Composition comp = new Composition ();

64 comp.addRole (new mde. task . model. Role(” manage” , manage));
65 comp.addRole (new mde. task . model.Role(”add” , add));

66 comp.addRole (new mde. task . model.Role(” delete”, delete));
67 comp.addRole (new mde. task . model.Role(” modify” , modify));
68

69 Participation linkl = new Participation();

70 linkl.addRole(new mde. task.model. Role(” staff” ,actorl));
71 link1l .addRole (new mde. task.model.Role(”add” , add));

72 Participation link2 = new Participation();

73 link2 .addRole (new mde. task.model.Role(” staff” ,actorl));
74 link2 .addRole (new mde. task.model.Role(” modify” , modify));
75 Participation 1link3 = new Participation ();

76 link3 .addRole (new mde. task.model. Role(” staff” ,actorl));
7 link3 .addRole (new mde. task.model. Role(” delete” , delete));
78 Participation link4 = new Participation();

79 link4 .addRole (new mde. task .model.Role(” student” ,actor2));
80 link4 .addRole (new mde. task . model.Role(”see” , see));

81 Participation link5 = new Participation();

82 link5 .addRole (new mde. task.model.Role(”see” , see));

83 link5 .addRole (new mde. task . model. Role(” student” ,actor2));
84

85 boundary .addActor (actorl);

86 boundary .addActor (actor2);

87 boundary .addTask (manage);

88 boundary .addTask (add);

89 boundary .addTask(delete);

90 boundary .addTask (modify);

91 boundary .addTask(see);

92

93 boundary.addParticipation (link1);

94 boundary.addParticipation (link2);

95 boundary.addParticipation (link3);

96 boundary.addParticipation(link4);

97 boundary.addParticipation (link5);

98 boundary .addComposition (comp);

99

100 taskModel . addBoundary (boundary);

101

102 ASTWriter writer = new

103 ASTWriter (new File(” Manage-Module_taskModel.xml”));
104 writer .usePackage (”mde. task . model” , ”"xmlns:task”);

105 writer . writeDocument (taskModel);

106 writer.close ();

107

108 System.out.println (” (1) Task Model is Created by user.”);
109 //

110

111 // Construct the Impact Model

112 ImpDiagram ImpactModel = new ImpDiagram();

113 ImpBoundary impboundary = new ImpBoundary(” Module Management”);
114 ImpTask impManage = new ImpTask(” Manage Modules”);

115 ImpTask impAdd = new mde.impact.model.ImpTask(”Add Module”);
116 ImpTask impDelete = new mde.impact.model.ImpTask(” Delete Module”);
117 ImpTask impModify = new mde.impact.model.ImpTask(” Modify Module”);
118 ImpTask impSee = new mde.impact.model . ImpTask(” See Description”);
119

120 ImpObject impObjl = new ImpObject(” Module”);

121

122 ImpCreateFlow cf = new ImpCreateFlow ();

123 ImpRole impcfl = new ImpRole(” module” , impObjl);

124 ImpRole impcf2 = new ImpRole(”add” , impAdd);

125 cf.addImpRole(impcf2);

126 cf.addImpRole(impcfl);

127

128 ImpDeleteFlow df = new ImpDeleteFlow ();

129 ImpRole impdfl = new ImpRole(”module”, impObjl);

130 ImpRole impdf2 = new ImpRole(” delete” , impDelete);

131 df.addImpRole (impdf2);

236

APPENDIX A. MODELS AND RESULTS OF EXPERIMENT (1)

Al

APPENDIX A

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

df.addImpRole (impdfl);

ImpUpdateFlow uf = new ImpUpdateFlow ();

ImpRole impufl = new ImpRole(”module”, impObjl);
ImpRole impuf2 = new ImpRole(” modify” , impModify);
uf.addImpRole (impuf2);

uf.addImpRole (impufl);

ImpReadFlow rf = new ImpReadFlow ();

ImpRole imprfl = new ImpRole(”module”, impObjl);
ImpRole imprf2 = new ImpRole(”see”, impSee);
rf.addImpRole(imprfl);

rf.addImpRole(imprf2);

impboundary . addImpTask (impManage) ;

impboundary . addImpTask (impAdd) ;

impboundary .addImpTask (impDelete);

impboundary . addImpTask (impModify);

impboundary .addImpTask (impSee);

impboundary . addImpObject (impObjl);

impboundary .addImpCreateFlow (cf);

impboundary .addImpDeleteFlow (df);

impboundary .addImpUpdateFlow (uf);

impboundary .addImpReadFlow (rf);

ImpactModel.addImpBoundary (impboundary);

ASTWriter writerl = new

ASTWriter (new File (” Manage_-Module_.impactModel.xml”));
writerl .usePackage (”"mde.impact.model” , ”xmlns:imp”);
writerl .writeDocument (ImpactModel);
writerl.close ();

System.out. println(” (2) Impact Model is Created by user.”);

// //
// Construct the Information Model
mde. information . model . Diagram informationModel = new

mde. information . model.Diagram () ;

Entity moduleEntity = new Entity (”Module”);

Attribute attrl2 = new Attribute(”code”, new Type(” Integer”))
.setldentifier (true);

Attribute attrl3 = new Attribute(” title”, new Type(” String”));

Attribute attrl4 new Attribute(”credit”, new Type(” Integer”));

Attribute attrl5 new Attribute(”desc”, new Type(” String”));

moduleEntity . addAttribute (attr12)
moduleEntity . addAttribute (attrl13)
moduleEntity . addAttribute (attrl4)
moduleEntity . addAttribute (attrl5)

5
5
5
5

informationModel.addEntity (moduleEntity);

informationModel.addAssociation (new Association ()

.addRole (new Role(”module” , informationModel
.getEntity (”Module”)).setMultiple (true))
.addRole (new Role(”student” , informationModel

.getEntity (”Student”)).setMultiple (true)));

ASTWriter writer2 = new

ASTWriter (new File(” Manage_Module_informationModel.xml”));
writer2.usePackage (”mde. information.model”, "xmlns:inf”);
writer2 . writeDocument (informationModel);
writer2.close ();

System.out.println(”(3) Information Model is Created by user.”);

//Generate DataFlow Model
DiagramToDfDiagram topRule = new DiagramToDfDiagram ();
DfDiagram dataflowModel = topRule. translate (taskModel, ImpactModel);

ASTWriter writer3 = new

ASTWriter (new File (” Manage_Module_DataFlowModel.xml”));
writer3.usePackage (”"mde. dataflow.model” , ”"xmlns:dfd”);
writer3 .writeDocument (dataflowModel);
writer3.close ();

System.out.println (” (4) DataFlow Model is Created”+
? (Task + Impact —> DataFlow).”);
// //

//Adding some data on flows in dataflow model.

// input to add

dataflowModel. getDfBoundaries (). get (0).getDfInputFlows ()
.get (0).addDataonflow (”code”);

dataflowModel . getDfBoundaries (). get (0).getDfInputFlows ()
.get (0).addDataonflow (” title”);

dataflowModel . getDfBoundaries ().get (0).getDfInputFlows ()
.get (0).addDataonflow (” credit”);

dataflowModel. getDfBoundaries (). get (0).getDfInputFlows ()
.get (0).addDataonflow (”desc”);

// input to update credit

dataflowModel.getDfBoundaries (). get (0). getDfInputFlows ()
.get (1).addDataonflow (”code”);

237

APPENDIX A. MODELS AND RESULTS OF EXPERIMENT (1)

Al

APPENDIX A

226 dataflowModel . getDfBoundaries (). get (0).getDfInputFlows ()
227 .get (1).addDataonflow (” credit”);

228 // input to delete

229 dataflowModel.getDfBoundaries (). get (0). getDfInputFlows ()
230 .get (2).addDataonflow (”code”);

231 // input to see

232 dataflowModel. getDfBoundaries (). get (0).getDfInputFlows ()
233 .get (3).addDataonflow (”code”);

234 // create assignment

235 dataflowModel. getDfBoundaries (). get (0). getDfCreateFlows ()
236 .get (0).addAssignment (” @Qcode = code”);

237 dataflowModel. getDfBoundaries (). get (0).getDfCreateFlows ()
238 .get (0).addAssignment (” Qtitle = title”);

239 dataflowModel. getDfBoundaries (). get (0). getDfCreateFlows ()
240 .get (0).addAssignment (” @Qcredit = credit”);

241 dataflowModel. getDfBoundaries (). get (0). getDfCreateFlows ()
242 .get (0).addAssignment (” @desc = desc”);

243 // create

244 dataflowModel . getDfBoundaries (). get (0).getDfCreateFlows ()
245 .get (0).addDataonflow (”code”);

246 dataflowModel.getDfBoundaries (). get (0).getDfCreateFlows ()
247 .get (0).addDataonflow (” title”);

248 dataflowModel.getDfBoundaries (). get (0).getDfCreateFlows ()
249 .get (0).addDataonflow (” credit”);

250 dataflowModel. getDfBoundaries (). get (0).getDfCreateFlows ()
251 .get (0).addDataonflow (" desc”);

252 // delete filter

253 dataflowModel . getDfBoundaries (). get (0). getDfDeleteFlows ()
254 .get (0).setFilter (” [@Qcode = code] @code”);

255 // delete

256 dataflowModel. getDfBoundaries (). get (0). getDfDeleteFlows ()
257 .get (0).addDataonflow (”code”);

258 // read filter

259 dataflowModel . getDfBoundaries (). get (0).getDfReadFlows ()
260 .get (0).setFilter (” [@Qcode = code] @desc”);

261 // Tead

262 dataflowModel. getDfBoundaries (). get (0).getDfReadFlows ()
263 .get (0).addDataonflow (”desc”);

264 // update filter

265 dataflowModel.getDfBoundaries (). get (0).getDfUpdateFlows ()
266 .get (0).setFilter (” [@Qcode = code] @code, @credit”);
267 // update assignment

268 dataflowModel. getDfBoundaries (). get (0).getDfUpdateFlows ()
269 .get (0).addAssignment (” @credit = credit”);

270 // update

271 dataflowModel. getDfBoundaries (). get (0).getDfUpdateFlows ()
272 .get (0).addDataonflow (”code”);

273 dataflowModel. getDfBoundaries (). get (0).getDfUpdateFlows ()
274 .get (0).addDataonflow (” credit”);

275

276 System.out.println (” (4) Data on flows are added in the DataFlow model.”);
277 /7 //

278

279 // Generate Detailed DatFlow Model

280 DfDiagramToDfDiagram topRule6 = new DfDiagramToDfDiagram ();
281 DfDiagram detailed_dataflowModel = topRule6.translate (dataflowModel);
282

283 ASTWriter writer6 = new ASTWriter(new

284 File (" Manage_Module_Detailed_DataFlowModel .xml”));
285 writer6 . usePackage (”"mde. dataflow .model” , ”"xmlns:dfd”);
286 writer6 . writeDocument (detailed_-dataflowModel);

287 writer6 .close ();

288

289 System .out. println(” (5) Detailed DataFlow Model is Created”+
290 ? (DataFlow Model —> DataFlow Model).”);

291 7/ //

292

293 //Generate Data Model

294 InfDiagramToDDiagram topRule4 = new InfDiagramToDDiagram ();
295 DDiagram dataModel = topRule4.translate (informationModel);
296

297 ASTWriter writer4 = new ASTWriter(new

298 File (" Manage_Module_DataModel.xml”));

299 writer4 .usePackage (”"mde. data.model” , ”xmlns:data”);

300 writer4 .usePackage (”"mde. model” , ”"xmlns:mod”);

301 writer4 . writeDocument (dataModel);

302 writerd .close ();

303

304 System.out. println (” (5) Data Model is Created”+

305 ?(Information Model —> Data Model).”);

306 7/ //
307

308 //Generate State Model for Screens Navigation

309 //(DataFlow Model ——> State Model)

310 DfdDiagramToStDiagram topRule7 = new DfdDiagramToStDiagram ();
311 StDiagram stateModel=topRule7.translate (detailed_dataflowModel , dataModel);
312

313 ASTWriter writer7 = new

314 ASTWriter (new File (” Manage_-Module_StateModel.xml”));
315 writer7.usePackage (”"mde. state.model” , "xmlns:state”);

316 writer7.writeDocument (stateModel);

317 writer7.close ();

318

319 System.out.println(”(6) State Model is Created”+

238

APPENDIX A. MODELS AND RESULTS OF EXPERIMENT (1)

Al

APPENDIX A

320 ?(Detailed DataFlow Model —> State Model).”);

321 // //

322

323 //Generate Gui Description Model

324 //(State Model ——> Gui Specification Model)

325 StDiagramToGuiDiagram topRule9 = new StDiagramToGuiDiagram ();
326 GuiDiagram GuiModel = topRule9.translate (stateModel);

327

328 ASTWriter writer9 = new

329 ASTWriter (new File (” Manage_-Module_GuiModel.xml”));

330 writer9 .usePackage (”"mde. gui.model” , ”"xmlns:gui”);

331 writer9 .writeDocument (GuiModel);

332 writer9.close ();

333

334 System .out. println(” (7) Gui Specification Model is Created”+
335 ”?(State Model —> Gui Model).”);

336 // //

337

338 //generate Database Schema Model

339 //(Detailed_DFD + Data Model ——> Schema)

340 DDiagramToSchema2 topRule5 = new DDiagramToSchema2 () ;

341 Schema schemaModel = topRule5.translate (detailed_-dataflowModel ,
342

343 System.out. println (schemaModel.getName ());

344

345 ASTWriter writer5 = new

346 ASTWriter (new File (” Manage_-Module_SchemaModel.xml”));

347 writer5 . usePackage (”"mde.dbs.model” , ”"xmlns:dbs”);

348 writer5 . usePackage (”"mde. model” , ”xmlns:mod”);

349 writer5 . writeDocument (schemaModel);

350 writer5.close ();

351

352 System .out. println(” (9) Database Schema Model is Created”+
353 ? (DataFlow + Data Model —> Database Schema Model).”);
354 // //

355

356 //Generate Code Model

357 //(Database Schema + DataFlow Model ——> Code Model)

358 DDiagramToCDiagram2x topRule8 = new DDiagramToCDiagram2x () ;
359 mde. code . model . Diagram codeModel = topRule8

360 .translate (schemaModel, detailed_dataflowModel);

361

362 ASTWriter writer8 = new ASTWriter(new File (” CodeModel.xml”));
363 writer8 .usePackage (”mde.code.model” , ”xmlns:code”);

364 writer8 .usePackage (”"mde. model” , ”xmlns:mod”);

365 writer8 . writeDocument (codeModel);

366 writer8.close ();

367

368 System.out. println(” (10) Code Model is Created”+

369 ”? (Database Scehma Model —> Code Model).”);

370 System.out. println (”\nModel Transformation System is Completed
371

372 // Code generation

373 DumpFileGenerator MySQLGenerator = new

374 MySQLDumpFileGenerator (schemaModel) ;

375 System.out.println(” calling generate in mysql package generator”);
376 MySQLGenerator. generate ();

377 System.out.println (” Finished generating MySQL Schema OK”);
378

379 for (GuiBoundary bound : GuiModel. getGuiBoundaries ())

380 {

381 CodeFileGenerator JavaGenerator = new JavaCodeFileGenerator (bound)
382 System.out.println(”calling generate in java code file generator”);
383 JavaGenerator. generate ();

384 System.out. println (”Finished generating Java Gui code”);
385 1

386 1

387 }

dataModel);

Task model: Module Management System

Listing A.2: Manage_Module_taskModel.xml

<task:Diagram xmlns:task="mde. task.model” id="0">
<task:Boundary id="1” name="Module Management”>
<task:Task id="2" name="Manage Module” />
<task:Task id="3” name="Add Module” />
<task:Task id="4” name=" Delete Module” />
<task:Task id="5" name="Modify Module” />
<task:Task id="6" name="See Description” />
<task:Actor id="7” name=" Staff” />
<task:Actor id="8” name=" Student” />
<task:Participation id="9">
<task:Role id="10” name="staff”>
<task:Actor ref="7"/>
</task:Role>
<task:Role id="11" name="add”>
15 <task:Task ref="3"/>

=
O OO0 ~TOU B WN -

o
W N =

239

APPENDIX A. MODELS AND RESULTS OF EXPERIMENT (1) A.1. APPENDIX A

16 </task:Role>

17 </task:Participation>

18 <task:Participation id="12">

19 <task:Role id="13"” name="staff”>
20 <task:Actor ref="7"/>

21 </task:Role>

22 <task:Role id=”14” name=" modify”>
23 <task:Task ref="5"/>

24 </task:Role>

25 </task:Participation>

26 <task:Participation id="15">

27 <task:Role id="16" name="staff”>
28 <task:Actor ref="7"/>

29 </task:Role>

30 <task:Role id="17” name="delete”>
31 <task:Task ref="4"/>

32 </task:Role>

33 </task:Participation>

34 <task:Participation id="18">

35 <task:Role id="19” name="student”>
36 <task:Actor ref="8"/>

37 </task:Role>

38 <task:Role id="20” name="see”>

39 <task:Task ref="6"/>

40 </task:Role>

41 </task:Participation>

42 <task:Participation id="21">

43 <task:Role id="22” name="see”>
44 <task:Task ref="6"/>

45 </task:Role>

46 <task:Role id="23” name="student”>
47 <task:Actor ref="8"/>

48 </task:Role>

49 </task:Participation>

50 <task:Composition id="24">

51 <task:Role id="25" name="manage”>
52 <task:Task ref="2”/>

53 </task:Role>

54 <task:Role id="26" name="add”>
55 <task:Task ref=73"/>

56 </task:Role>

57 <task:Role id="27” name="delete”>
58 <task:Task ref="4"/>

59 </task:Role>

60 <task:Role id="28” name="modify”>
61 <task:Task ref="5"/>

62 </task:Role>

63 </task:Composition>

64 </task:Boundary>

65| </task:Diagram>

Impact model: Module Management System

Listing A.3: Manage_Module_impact M odel.xml

1| <imp:ImpDiagram xmlns:imp="mde.impact.model” id="0">
2 <imp:ImpBoundary id="1” name="Module Management”>
3 <imp:ImpTask id=”2" name="Manage Modules” />
4 <imp:ImpTask id="3" >Add Module” />
5 <imp:ImpTask id="4" "Delete Module” />
6 <imp:ImpTask id="5” name="Modify Module” />
7 <imp:ImpTask id="6” name="See Description” />
8 <imp:ImpObject id="7" name="Module” />
9 <imp:ImpReadFlow id="8">

10 <imp:ImpRole id="9” name="module”>

11 <imp:ImpObject ref="7"/>

12 </imp:ImpRole>

13 <imp:ImpRole id="10" name="see”>

14 <imp:ImpTask ref="6"/>

15 </imp:ImpRole>

16 </imp:ImpReadFlow>

17 <imp:ImpCreateFlow id="11">

18 <imp:ImpRole id="12” name="add”>

19 <imp:ImpTask ref="3"/>

20 </imp:ImpRole>

21 <imp:ImpRole id="13” name="module”>

22 <imp:ImpObject ref="7"/>

23 </imp:ImpRole>

24 </imp:ImpCreateFlow>

25 <imp:ImpDeleteFlow id="14">

26 <imp:ImpRole id="15" name="delete”>

27 <imp:ImpTask ref="4"/>

28 </imp:ImpRole>

29 <imp:ImpRole id="16" name="module”>

30 <imp:ImpObject ref="7"/>

31 </imp:ImpRole>

32 </imp:ImpDeleteFlow>

33 <imp:ImpUpdateFlow id="17">

240

APPENDIX A. MODELS AND RESULTS OF EXPERIMENT (1) A.1. APPENDIX A

34 <imp:ImpRole id="18" name="modify”>
35 <imp:ImpTask ref="5"/>

36 </imp:ImpRole>

37 <imp:ImpRole id="19” name="module”>
38 <imp:ImpObject ref="7"/>

39 </imp:ImpRole>

40 </imp:ImpUpdateFlow>

41 </imp:ImpBoundary>

42| </imp:ImpDiagram>

Inofrmation model: Module Management System

Listing A.4: Manage_M odule_in formationM odel.xml

1| <?xml version="1.0" encoding="UTF-8” 7>

2| <inf:Diagram xmlns:inf="mde.information.model” id="0">
3 <inf:Entity id="1" name="Module”>

4 <inf:Attribute id="2” name="code” identifier="true” size="0">
5 <Type id="3” name="Integer” />

6 </inf:Attribute>

7 <inf:Attribute id="4" name="title” size="0">

8 <Type id="5" name="String” />

9 </inf:Attribute>

10 <inf:Attribute id="6” name="credit” size="0">

11 <Type id="7" name="Integer” />

12 </inf:Attribute>

13 <inf:Attribute id="8" name="desc” size="0">

14 <Type id="9” name=" String” />

15 </inf:Attribute>

16 </inf:Entity>

17| </inf:Diagram>

DataFlow model (initial): Module Management System

Listing A.5: Manage_Module_DataFlowM odel.xml

1 <dfd:DfDiagram xmlns:dfd="mde.dataflow .model” id="0">
2 <dfd:DfBoundary id="1” name="Module Management”>
3 <dfd:DfTask id="2” name="Add Module” />

4 <dfd:DfTask id="3" name="Delete Module” />

5 <dfd:DfTask id="4" name="Modify Module” />

6 <dfd:DfTask id="5" name="See Description” />

7 <dfd:DfActor id="6” name=" Staff” />

8 <dfd:DfActor id="7” name=" Student” />

9 <dfd:DfObject id="8" name="Module” />

10 <dfd:DfOutputFlow id="9">

11 <dfd:DfRole id="10" name="see”>

12 <dfd:DfTask id="11" name="See Description” />
13 </dfd:DfRole>

14 <dfd:DfRole id="12” name="student”>

15 <dfd:DfTask id="13" name="Student” />

16 </dfd:DfRole>

17 </dfd:DfOutputFlow>

18 <dfd:DfInputFlow id="14">

19 <dfd:DfRole id="15" name="staff”>

20 <dfd:DfTask id="16" name=" Staff” />

21 </dfd:DfRole>

22 <dfd:DfRole id="17” name="add”>

23 <dfd:DfTask id="18” name="Add Module” />

24 </dfd:DfRole>

25 </dfd:DfInputFlow>

26 <dfd:DfInputFlow id="19">

27 <dfd:DfRole id="20" name="staff”>

28 <dfd:DfTask ref="16"/>

29 </dfd:DfRole>

30 <dfd:DfRole id="21" name="modify”>

31 <dfd:DfTask id="22" name=" Modify Module” />
32 </dfd:DfRole>

33 </dfd:DfInputFlow>

34 <dfd:DfInputFlow id="23">

35 <dfd:DfRole id=”24" name="staff”>

36 <dfd:DfTask ref="16"/>

37 </dfd:DfRole>

38 <dfd:DfRole id="25" name="delete”>

39 <dfd:DfTask id="26" name=" Delete Module” />
40 </dfd:DfRole>

41 </dfd:DfInputFlow>

42 <dfd:DfInputFlow id="27">

43 <dfd:DfRole id="28" name="student”>

44 <dfd:DfTask ref="13"/>

45 </dfd:DfRole>

241

APPENDIX A. MODELS AND RESULTS OF EXPERIMENT (1)

Al

APPENDIX A

46 <dfd:DfRole id="29” name="see”>

47 <dfd:DfTask ref="11"/>

48 </dfd:DfRole>

49 </dfd:DfInputFlow>

50 <dfd:DfReadFlow id="30">

51 <dfd:DfRole id="31” name="module”>

52 <dfd:DfTask id="32” name="Module” />

53 </dfd:DfRole>

54 <dfd:DfRole id="33” name="see”>

55 <dfd:DfTask id="34” name="See Description” />
56 </dfd:DfRole>

57 </dfd:DfReadFlow>

58 <dfd:DfCreateFlow id="357">

59 <dfd:DfRole id="36" name="add”>

60 <dfd:DfTask id="37” name="Add Module” />
61 </dfd:DfRole>

62 <dfd:DfRole id="38” name="module”>

63 <dfd:DfTask ref="32"/>

64 </dfd:DfRole>

65 </dfd:DfCreateFlow>

66 <dfd:DfUpdateFlow id="39">

67 <dfd:DfRole id="40” name="modify”>

68 <dfd:DfTask id="41" name=" Modify Module” />
69 </dfd:DfRole>

70 <dfd:DfRole id="42” name="module”>

71 <dfd:DfTask ref="32"/>

72 </dfd:DfRole>

73 </dfd:DfUpdateFlow>

74 <dfd:DfDeleteFlow id="43">

75 <dfd:DfRole id="44” name="delete”>

76 <dfd:DfTask id="45" name=" Delete Module” />
77 </dfd:DfRole>

78 <dfd:DfRole id="46" name="module”>

79 <dfd:DfTask ref="32"/>

80 </dfd:DfRole>

81 </dfd:DfDeleteFlow>

82 </dfd:DfBoundary>

83| </dfd:DfDiagram>

DataFlow model (detailed): Module Management System

Listing A.6: ManageyrodulepetailedpataFlowM odel.xml

1 <dfd:DfDiagram xmlns:dfd="mde.dataflow .model” id="0">
2 <dfd:DfBoundary id="1" name="Add Module”>

3 <dfd:DfTask id="2" name="Input Code and more” />
4 <dfd:DfTask id="3" name=" Create Module” />

5 <dfd:DfActor id="4” name=" Staff” />

6 <dfd:DfObject id="5" name="Module” />

7 <dfd:DfInputFlow id="6">

8 <dfd:DfRole id="7” name="input_actor”>

9 <dfd:DfActor ref="4"/>

10 </dfd:DfRole>

11 <dfd:DfRole id="8" name="input_task”>

12 <dfd:DfTask ref="2"/>

13 </dfd:DfRole>

14 </dfd:DfInputFlow>

15 <dfd:DfReadFlow id="9">

16 <dfd:DfRole id="10” name="input_-task”>

17 <dfd:DfTask ref="2"/>

18 </dfd:DfRole>

19 <dfd:DfRole id="11" name="create_task”>

20 <dfd:DfTask ref="3"/>

21 </dfd:DfRole>

22 </dfd:DfReadFlow>

23 <dfd:DfCreateFlow id="127">

24 <dfd:DfRole id="13" name="create_task0”>
25 <dfd:DfTask ref="3”"/>

26 </dfd:DfRole>

27 <dfd:DfRole id="14” name="create_object0”>
28 <dfd:DfObject ref="5"/>

29 </dfd:DfRole>

30 </dfd:DfCreateFlow>

31 </dfd:DfBoundary>

32 <dfd:DfBoundary id=”15” name="Modify Module”>
33 <dfd:DfTask id="16" name="Input Code_Credit” />
34 <dfd:DfTask id="17” name="Read Module Code_Credit” />
35 <dfd:DfTask id="18" name=" Write Module” />

36 <dfd:DfActor id="19” name=" Staff” />

37 <dfd:DfObject id="20" name="Module” />

38 <dfd:DfInputFlow id="21">

39 <dfd:DfRole id="22” name="input_-actor”>
40 <dfd:DfActor ref="19"/>

41 </dfd:DfRole>

42 <dfd:DfRole id="23” name="input-task”>

43 <dfd:DfTask ref="16"/>

44 </dfd:DfRole>

45 </dfd:DfInputFlow>

242

APPENDIX A. MODELS AND RESULTS OF EXPERIMENT (1) A.1. APPENDIX A

46 <dfd:DfReadFlow id="24" filter="[@code = code] @code, @credit” update="true”>
47 <dfd:DfRole id="25” name="update_object”>
48 <dfd:DfObject ref="20"/>

49 </dfd:DfRole>

50 <dfd:DfRole id="26” name="readu_-task”>

51 <dfd:DfTask ref="17"/>

52 </dfd:DfRole>

53 </dfd:DfReadFlow>

54 <dfd:DfReadFlow id="27">

55 <dfd:DfRole id="28” name="read_task”>

56 <dfd:DfTask ref="16"/>

57 </dfd:DfRole>

58 <dfd:DfRole id="29” name="readu-task”>

59 <dfd:DfTask ref="17"/>

60 </dfd:DfRole>

61 </dfd:DfReadFlow>

62 <dfd:DfReadFlow id=”"30" update="true” update="true”>
63 <dfd:DfRole id="31" name="readu_task”>
64 <dfd:DfTask ref="17"/>

65 </dfd:DfRole>

66 <dfd:DfRole id="32” name=" write_task”>
67 <dfd:DfTask ref="18"/>

68 </dfd:DfRole>

69 </dfd:DfReadFlow>

70 <dfd:DfWriteFlow id="33" filter="[@code = code] Qcode, @credit”>
71 <dfd:DfRole id="34” name=" write_task”>

72 <dfd:DfTask ref="18"/>

73 </dfd:DfRole>

74 <dfd:DfRole id="35” name="update_object”>
75 <dfd:DfObject ref="20"/>

76 </dfd:DfRole>

77 </dfd:DfWriteFlow>

78 </dfd:DfBoundary>

79 <dfd:DfBoundary id="36" name="Delete Module”>
80 <dfd:DfTask id="37” name="Input Code” />

81 <dfd:DfTask id=”38" name="Delete Module” />
82 <dfd:DfActor id="39” name=" Staff” />

83 <dfd:DfObject id="40" name="Module” />

84 <dfd:DfInputFlow id="41">

85 <dfd:DfRole id="42” name="input_actor”>
86 <dfd:DfActor ref="39"/>

87 </dfd:DfRole>

88 <dfd:DfRole id="43” name="input_-task”>

89 <dfd:DfTask ref="37"/>

90 </dfd:DfRole>

91 </dfd:DfInputFlow>

92 <dfd:DfReadFlow id="44">

93 <dfd:DfRole id="45" name="input-task”>

94 <dfd:DfTask ref="37"/>

95 </dfd:DfRole>

96 <dfd:DfRole id="46" name="delete_task”>
97 <dfd:DfTask ref="38"/>

98 </dfd:DfRole>

99 </dfd:DfReadFlow>

100 <dfd:DfDeleteFlow id="47" filter="[@Qcode = code] @code”>
101 <dfd:DfRole id="48” name="delete_task”>
102 <dfd:DfTask ref="38"/>

103 </dfd:DfRole>

104 <dfd:DfRole id="49” name="delete_object”>
105 <dfd:DfObject ref="40"/>

106 </dfd:DfRole>

107 </dfd:DfDeleteFlow>

108 </dfd:DfBoundary>

109 <dfd:DfBoundary id="50” name="See Description”>
110 <dfd:DfTask id="51" name="Input Code” />

111 <dfd:DfTask id="52” name="Read Desc” />

112 <dfd:DfActor id="53" name=" Student” />

113 <dfd:DfObject id="54" name="Module” />

114 <dfd:DfInputFlow id="55">

115 <dfd:DfRole id="56" name="input_actor”>
116 <dfd:DfActor ref="53”/>

117 </dfd:DfRole>

118 <dfd:DfRole id="57” name="input_task”>
119 <dfd:DfTask ref="51"/>

120 </dfd:DfRole>

121 </dfd:DfInputFlow>

122 <dfd:DfReadFlow id="58" filter="[@code = code] @desc”’>
123 <dfd:DfRole id="59” name="read_-object”>
124 <dfd:DfObject ref="54"/>

125 </dfd:DfRole>

126 <dfd:DfRole id="60”" name="read_task”>

127 <dfd:DfTask ref="52"/>

128 </dfd:DfRole>

129 </dfd:DfReadFlow>

130 <dfd:DfReadFlow id="61">

131 <dfd:DfRole id="62” name="input_task”>
132 <dfd:DfTask ref="51"/>

133 </dfd:DfRole>

134 <dfd:DfRole id="63"” name="read_task”>

135 <dfd:DfTask ref="52"/>

136 </dfd:DfRole>

137 </dfd:DfReadFlow>

138 </dfd:DfBoundary>

139 | </dfd:DfDiagram>

243

APPENDIX A. MODELS AND RESULTS OF EXPERIMENT (1)

Al

APPENDIX A

Data Dependency model: Module

Management System

Listing A.7: Manage_Module_DataM odel.xml

1| <?xml version="1.0" encoding="UTF-8” 7>

2| <data:DDiagram xmlns:data="mde.data.model” id="0">

3 <data:DEntity id="1” name=" Module”>

4 <data:DAttribute id="2” name="code” identifier="true” size="10">
5 <mod:Type xmlns:mod="mde. model” id="3” name="Integer” />
6 </data:DAttribute>

7 <data:DAttribute id="4” name="title” size="30">

8 <mod:Type id="5” name=" String” />

9 </data:DAttribute>

10 <data:DAttribute id="6" name="credit” size="10">

11 <mod:Type id="7” name="Integer” />

12 </data:DAttribute>

13 <data:DAttribute id="8" name="desc” size="30">

14 <mod:Type id="9” name=" String” />

15 </data:DAttribute>

16 </data:DEntity>

17| </data:DDiagram>

Screen State model: Module Management System

Listing A.8: Manage_Module_State M odel.xml

input_code_title_credit_desc_Waiting_Error”

id="0">

priority="2"/>
priority="0"/>
initialise”>

action="Exception”>

»

initialise”>

action="Create”>

exit="false”

()” exit="false” action="Input’>

input_code_title_credit_desc_Waiting”>

action="exit”>

action="Exception”>

1| <state:StDiagram xmlns:state="mde.state.model”

2 <state:StBoundary id="1" name="Add Module”>

3 <state:State id="2” name="Start” priority="5"/>
4 <state:State id="3" name="End” priority="0"/>
5 <state:State id="4” name="input-code_title_credit-desc_-Waiting”
6 <state:State id="5” name="

7 <state:State id="6” name=" Create_Module_Ready”
8 <state:State id="7” name=" Create_Module_Ready_Error”
9 <state:Transition id="8" exit="false” action="
10 <state:StRole id="9” name="start”>

11 <state:State ref="2"/>

12 </state:StRole>

13 <state:StRole id="10" name="start_task”>

14 <state:State ref="4"/>

15 </state:StRole>

16 </state:Transition>

17 <state:Transition id="11" exit="false”

18 <state:StRole id="12" name="state”>

19 <state:State ref="4"/>

20 </state:StRole>

21 <state:StRole id="13” name="error”>

22 <state:State ref="5"/>

23 </state:StRole>

24 </state:Transition>

25 <state:Transition id="14” exit="false” action=
26 <state:StRole id="15” name="error”>

27 <state:State ref="5"/>

28 </state:StRole>

29 <state:StRole id="16" name="state”>

30 <state:State ref="4"/>

31 </state:StRole>

32 </state:Transition>

33 <state:Transition id="17” label="create()”

34 <state:StRole id="18” name=" Create_-Module_Ready”>
35 <state:State ref="6"/>

36 </state:StRole>

37 <state:StRole id="19” name="End”>

38 <state:State ref="3"/>

39 </state:StRole>

40 </state:Transition>

41 <state:Transition id="20" label="input

42 <state:StRole id="21" name="

43 <state:State ref="4"/>

44 </state:StRole>

45 <state:StRole id="22” name=" Create_Module_Ready”>
46 <state:State ref="6"/>

47 </state:StRole>

48 </state:Transition>

49 <state:Transition id="23" exit="true”

50 <state:StRole id="24”" name="end_task”>

51 <state:State ref="6"/>

52 </state:StRole>

53 <state:StRole id="25” name="end”>

54 <state:State ref="3"/>

55 </state:StRole>

56 </state:Transition>

57 <state:Transition id="26" exit="false”

58 <state:StRole id="27" name="state”>

59 <state:State ref="6"/>

60 </state:StRole>

priority="4”/>
priority="0"/>

244

APPENDIX A. MODELS AND RESULTS OF EXPERIMENT (1)

Al

APPENDIX A

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
s
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

<state:StRole id="28” name="error”’>
<state:State ref="7"/>
</state:StRole>
</state:Transition>
<state:Transition id="29" exit="false” action="exit”>
<state:StRole id="30” name="error”>
<state:State ref="7"/>
</state:StRole>
<state:StRole id="31" name="state”>
<state:State ref="6"/>
</state:StRole>
</state:Transition>
</state:StBoundary>
<state:StBoundary id="32” name="Modify Module”>
<state:State id="33" name=" Start” priority="5"/>
<state:State id="34" name="End” priority="0"/>
<state:State id="35" name="input_code_credit_-Waiting” priority="4"/>
<state:State id="36" name="input_code_credit-Waiting_Error” priority="0"7/>
<state:State id="37" name="Read_-Module_.Code_Credit_-Ready” priority="3"/>
<state:State id="38” name="Read_-Module_Code_Credit_-Ready_Error” priority="0"/>
<state:State id="39” name=" Write_Module_Ready” priority="2"/>
<state:State id="40" name=" Write_Module_Ready_Error” priority="0"/>
<state:Transition id="41”" exit="false” action="initialise”>
<state:StRole id="42” name="start”>
<state:State ref="33"/>
</state:StRole>
<state:StRole id="43" name="start_task”>
<state:State ref="35"/>
</state:StRole>
</state:Transition>
<state:Transition id="44" exit="false” action="Exception”>
<state:StRole id="45" name="state”>
<state:State ref="35"/>
</state:StRole>
<state:StRole id="46” name="error”>
<state:State ref="36"/>
</state:StRole>
</state:Transition>
<state:Transition id="47" exit="false
<state:StRole id="48” name="error”>
<state:State ref="36"/>
</state:StRole>
<state:StRole id="49” name="state”>
<state:State ref="35"/>
</state:StRole>
</state:Transition>
<state:Transition id="50" label="input()” exit="false” action="Input”>
<state:StRole id="51" name="input-code-credit-Waiting”>
<state:State ref="35"/>
</state:StRole>
<state:StRole id="52" name="Read_Module_Code_Credit_-Ready”>
<state:State ref="37"/>
</state:StRole>
</state:Transition>
<state:Transition id="53" label="read()” exit="false” action="Read”>
<state:StRole id=”54” name=" Read_Module_Code_Credit_Ready”>
<state:State ref="37"/>
</state:StRole>
<state:StRole id="55" name=" Write_Module_Ready”>
<state:State ref="39"/>
</state:StRole>
</state:Transition>
<state:Transition id="56" exit="false” action="Exception”>
<state:StRole id="57” name="state”>
<state:State ref="37"/>
</state:StRole>
<state:StRole id="58" name="error”>
<state:State ref="38"/>
</state:StRole>
</state:Transition>
<state:Transition id="59" exit="false” action="exit”>
<state:StRole id="60” name="error”>
<state:State ref="38"/>
</state:StRole>
<state:StRole id="61" name="state”>
<state:State ref="37"/>
</state:StRole>
</state:Transition>
<state:Transition id="62” label="update()” exit="false” action="Write”>
<state:StRole id="63" name="Write_Module_-Ready”>
<state:State ref="39"/>
</state:StRole>
<state:StRole id="64” name="End”>
<state:State ref="34"/>
</state:StRole>
</state:Transition>
<state:Transition ref="53"/>
<state:Transition id="65" exit="true” action="exit”>
<state:StRole id="66” name="end_task”>
<state:State ref="39”"/>
</state:StRole>
<state:StRole id="67” name="end”>
<state:State ref="34"/>
</state:StRole>

” action="initialise”>

245

APPENDIX A. MODELS AND RESULTS OF EXPERIMENT (1)

Al

APPENDIX A

155 </state:Transition>

156 <state:Transition id="68" exit="false” action="Exception”>
157 <state:StRole id="69” name="state”>

158 <state:State ref="39"/>

159 </state:StRole>

160 <state:StRole id="70” name="error”>

161 <state:State ref="40"/>

162 </state:StRole>

163 </state:Transition>

164 <state:Transition id="71" exit="false” action="exit”>

165 <state:StRole id="72” name="error”>

166 <state:State ref="40"/>

167 </state:StRole>

168 <state:StRole id="73” name="state”>

169 <state:State ref="39"/>

170 </state:StRole>

171 </state:Transition>

172 </state:StBoundary>

173 <state:StBoundary id="74” name=" Delete Module”>

174 <state:State id="75" name=" Start” priority="5"/>

175 <state:State id="76" name="End” priority="0"/>

176 <state:State id="77” name="input_code_-Waiting” priority="4"/>
177 <state:State id="78” name="input_code_-Waiting_Error” priority="0"/>
178 <state:State id="79” name="Delete_Module_Ready” priority="27/>
179 <state:State id="80" name="Delete_Module_Ready_-Error” priority="0"/>
180 <state:Transition id="81" exit="false” action="initialise”>
181 <state:StRole id="82" name="start”>

182 <state:State ref="75"/>

183 </state:StRole>

184 <state:StRole id="83” name="start_task”>

185 <state:State ref="77"/>

186 </state:StRole>

187 </state:Transition>

188 <state:Transition id="84” exit="false” action="Exception”>
189 <state:StRole id="85” name="state”>

190 <state:State ref="77"/>

191 </state:StRole>

192 <state:StRole id="86” name="error”>

193 <state:State ref="78"/>

194 </state:StRole>

195 </state:Transition>

196 <state:Transition id="87” exit="false” action="initialise”>
197 <state:StRole id="88” name="error”>

198 <state:State ref="78"/>

199 </state:StRole>

200 <state:StRole id="89” name="state”>

201 <state:State ref="77"/>

202 </state:StRole>

203 </state:Transition>

204 <state:Transition id="90” label="input()” exit="false” action="Input”>
205 <state:StRole id="91” name="input_-code_-Waiting”>

206 <state:State ref="77"/>

207 </state:StRole>

208 <state:StRole id="92” name=" Delete_Module_Ready”>

209 <state:State ref="79"/>

210 </state:StRole>

211 </state:Transition>

212 <state:Transition id="93” label="delete ()” exit="false” action="Delete”>
213 <state:StRole id="94" name=" Delete_Module_-Ready”>

214 <state:State ref="79"/>

215 </state:StRole>

216 <state:StRole id="95” name="End”>

217 <state:State ref="76"/>

218 </state:StRole>

219 </state:Transition>

220 <state:Transition id="96" exit="true” action="exit”>

221 <state:StRole id="97” name="end_task”>

222 <state:State ref="79"/>

223 </state:StRole>

224 <state:StRole id="98” name="end”>

225 <state:State ref="76"/>

226 </state:StRole>

227 </state:Transition>

228 <state:Transition id="99” exit="false” action="Exception”>
229 <state:StRole id="100" name="state”>

230 <state:State ref="79"/>

231 </state:StRole>

232 <state:StRole id="101" name="error”>

233 <state:State ref="80"/>

234 </state:StRole>

235 </state:Transition>

236 <state:Transition id="102" exit="false” action="exit”>
237 <state:StRole id=”103" name="error”>

238 <state:State ref="80"/>

239 </state:StRole>

240 <state:StRole id="104" name="state”>

241 <state:State ref="79"/>

242 </state:StRole>

243 </state:Transition>

244 </state:StBoundary>

245 <state:StBoundary id=”105" name="See Description”>

246 <state:State id="106" name="Start” priority="5"/>

247 <state:State id="107" name="End” priority="0"/>

248 <state:State id="108" name="input_code_-Waiting” priority="4"/>

246

APPENDIX A. MODELS AND RESULTS OF EXPERIMENT (1)

Al

APPENDIX A

249 <state:State id="109” name="input_code_-Waiting_Error” priority="0"/>
250 <state:State id="110" name="Read_Desc_Ready” priority="3"/>
251 <state:State id="111" name="Read_Desc_Ready_Error” priority="0"/>
252 <state:Transition id="112” exit="false” action="initialise”>
253 <state:StRole id="113" name="start”>

254 <state:State ref="106"/>

255 </state:StRole>

256 <state:StRole id="114" name="start_task”>

257 <state:State ref="108"/>

258 </state:StRole>

259 </state:Transition>

260 <state:Transition id="115" exit="false” action="Exception”>
261 <state:StRole id="116" name="state”>

262 <state:State ref="108"/>

263 </state:StRole>

264 <state:StRole id="117” name="error”>

265 <state:State ref="109"/>

266 </state:StRole>

267 </state:Transition>

268 <state:Transition id="118" exit="false” action="initialise”>
269 <state:StRole id="119” name="error”>

270 <state:State ref=7109"/>

271 </state:StRole>

272 <state:StRole id="120" name="state”>

273 <state:State ref="108"/>

274 </state:StRole>

275 </state:Transition>

276 <state:Transition id="121" label="input()” exit="false” action="Input”’>
277 <state:StRole id="122" name="input-code_-Waiting”>

278 <state:State ref="108"/>

279 </state:StRole>

280 <state:StRole id="123" name="Read_Desc_Ready”>

281 <state:State ref="110"/>

282 </state:StRole>

283 </state:Transition>

284 <state:Transition id="124" label="read ()” exit="false” action="Read”>
285 <state:StRole id="125" name="Read_Desc_Ready”>

286 <state:State ref="110"/>

287 </state:StRole>

288 <state:StRole id="126" name="End”>

289 <state:State ref="107"/>

290 </state:StRole>

291 </state:Transition>

292 <state:Transition id="127" exit="true” action="exit”>

293 <state:StRole id="128" name="end_task”>

294 <state:State ref="110"/>

295 </state:StRole>

296 <state:StRole id="129” name="end”>

297 <state:State ref="107"/>

298 </state:StRole>

299 </state:Transition>

300 <state:Transition id="130”7 exit="false” action="Exception”>
301 <state:StRole id="131” name="state”>

302 <state:State ref="110"/>

303 </state:StRole>

304 <state:StRole id="132” name="error”>

305 <state:State ref="111"/>

306 </state:StRole>

307 </state:Transition>

308 <state:Transition id="133" exit="false” action="exit”>

309 <state:StRole id="134" name="error”>

310 <state:State ref="111"/>

311 </state:StRole>

312 <state:StRole id="135" name="state”>

313 <state:State ref="110"/>

314 </state:StRole>

315 </state:Transition>

316 </state:StBoundary>

317 <state:StBoundary id="136" name="Manage Module_Menu”>

318 <state:State id="137” name="Start” priority="5"/>

319 <state:State id="138" name="End” priority="0"/>

320 <state:State id="139” name="Manage_-Module_Main_Menu_-Waiting” priority="5"/>
321 <state:Transition id="140" exit="false” action="initialise”
322 boundary="Add Module”>

323 <state:StRole id="141” name="Manage_-Module_-Main_Menu_-Waiting”>
324 <state:State ref=7139"/>

325 </state:StRole>

326 <state:StRole id="142” name="main_task_-Add Module”>

327 <state:State ref="4"/>

328 </state:StRole>

329 </state:Transition>

330 <state:Transition id="143" exit="false” action="initialise”
331 boundary="Delete Module”>

332 <state:StRole id=”144” name=" Manage_-Module_Main_Menu_-Waiting”>
333 <state:State ref="139”/>

334 </state:StRole>

335 <state:StRole id="145” name="main_task_Delete Module”>

336 <state:State ref="77"/>

337 </state:StRole>

338 </state:Transition>

339 <state:Transition id="146" exit="false” action="initialise”
340 boundary="Modify Module”>

341 <state:StRole id="147” name=" Manage_Module_Main_Menu_-Waiting”>
342 <state:State ref="139"/>

247

APPENDIX A. MODELS AND RESULTS OF EXPERIMENT (1) A.1. APPENDIX A

343 </state:StRole>

344 <state:StRole id="148” name="main_task_Modify Module”>
345 <state:State ref="35"/>

346 </state:StRole>

347 </state:Transition>

348 </state:StBoundary>

349 | </state:StDiagram>

GUI model: Module Management System

Listing A.9: Manage_M odule_GuiM odel.xml

1| <gui:GuiDiagram xmlns:gui="mde. gui.model” id="0">

2 <gui:GuiBoundary id="1” name="Add Module”>

3 <gui:Window id="2” name="Input-code_title_credit-desc_-Waiting” order="4">
4 <gui:Textfield id="3” name="code” />

5 <gui:Textfield id="4” name="title” />

6 <gui:Textfield id="5” name="credit” />

7 <gui:Textfield id="6” name="desc” />

8 <gui:Button id="7” name=" Exception” event="Exception” exit="false” />

9 <gui:Button id="8” name="Input” event="Input” exit="false” />

10 </gui:Window>

11 <gui:Window id="9” name="Input_code_title_credit_desc_-Waiting_Error” order="0" error="true”>
12 <gui:Label id="10"” name="input_-code_title_credit_-desc_Waiting_Error_warning”
13 text="Null value not accepted” />

14 <gui:Button id="11" name="initialise” event="initialise” exit="false” />
15 </gui:Window>

16 <gui:Window id="12”" name=" Create_Module_Ready” order="2">

17 <gui:Label id="13" name="code” text="code” />

18 <gui:Label id="14" name="title” text="title” />

19 <gui:Label id="15" name="credit” text="credit” />

20 <gui:Label id="16" name="desc” text="desc” />

21 <gui:Button id="17” name=" Create” event="Create” exit="false” />

22 <gui:Button id="18” name="exit” event="exit” exit="true” />

23 <gui:Button id="19” name=" Exception” event="Exception” exit="false” />
24 </gui:Window>

25 <gui:Window id="20” name=”" Create_Module_Ready_Error” order="0" error="true”>
26 <gui:Label id="21" name=" Create_Module_Ready_Error_warning”

27 text="Connection to the Data source is fail” />

28 <gui:Button id=”22” name="exit” event="exit” exit="false” />

29 </gui:Window>

30 </gui:GuiBoundary>

31 <gui:GuiBoundary id="23"” name="Modify Module”>

32 <gui:Window id="24” name="Input_code_credit_-Waiting” order="4">

33 <gui:Textfield id="25" name="code” />

34 <gui:Textfield id="26" name="credit” />

35 <gui:Button id="27” name=" Exception” event="Exception” exit="false” />
36 <gui:Button id="28” name="Input” event="Input” exit="false” />

37 </gui:Window>

38 <gui:Window id="29” name="Input-code_credit-Waiting_-Error” order="0" error="true”>
39 <gui:Label id="30" name="input_code_credit_Waiting_Error_warning?”

40 text="Null value not accepted”/>

41 <gui:Button id="31” name="initialise” event="initialise” exit="false” />
42 </gui:Window>

43 <gui:Window id="32” name=" Read_Module_Code_Credit_-Ready” order="3">

44 <gui:Label ref="13”/>

45 <gui:Label ref="15”/>

46 <gui:Button id=”33” name="Read” event="Read” exit="false” />

47 <gui:Button id=”34" name=" Exception” event="Exception” exit="false” />
48 </gui:Window>

49 <gui:Window id=”35” name="Read_-Module_.Code_Credit-Ready_Error” order="0” error="true”>
50 <gui:Label id="36"” name="Read_-Module_-Code_Credit-Ready_Error_warning”
51 text="Connection to the Data source is fail”/>

52 <gui:Button id="37” name="exit” event="exit” exit="false” />

53 </gui:Window>

54 <gui:Window id="38” name=" Write-Module_-Ready” order="2">

55 <gui:Label ref="13"/>

56 <gui:Label ref="15"/>

57 <gui:Button id="39” name=" Write” event="Write” exit="false” />

58 <gui:Button id="40" name="exit” event="exit” exit="true” />

59 <gui:Button id="41” name=" Exception” event="Exception” exit="false” />
60 </gui:Window>

61 <gui:Window id="42” name=" Write_Module_Ready_Error” order="0” error="true”>
62 <gui:Label id=”43” name=" Write_Module_Ready_Error_warning”

63 text="Connection to the Data source is fail” />

64 <gui:Button id="44” name="exit” event="exit” exit="false” />

65 </gui:Window>

66 </gui:GuiBoundary>

67 <gui:GuiBoundary id="45” name=" Delete Module”>

68 <gui:Window id="46" name="Input-code_-Waiting” order="4">

69 <gui:Textfield id="47" name="code” />

70 <gui:Button id="48” name="Exception” event="Exception” exit="false” />
71 <gui:Button id="49” name="Input” event="Input” exit="false” />

72 </gui:Window>

73 <gui:Window id="50" name="Input-code-Waiting_-Error” order="0” error="true”>
74 <gui:Label id="51" name="input_code_Waiting_Error_warning”

75 text="Null value not accepted”/>

76 <gui:Button id="52” name="initialise” event="initialise” exit="false” />

248

APPENDIX A. MODELS AND RESULTS OF EXPERIMENT (1) Al

APPENDIX A

7 </gui:Window>

78 <gui:Window id="53” name="Delete_Module_Ready” order="2">

79 <gui:Label ref="13"/>

80 <gui:Button id="54” name=" Delete” event="Delete” exit="false” />

81 <gui:Button id="55”" name="exit” event="exit” exit="true” />

82 <gui:Button id="56" name=" Exception” event="Exception” exit="false” />

83 </gui:Window>

84 <gui:Window id="57” name="Delete_Module_Ready_Error” order="0” error="true”>
85 <gui:Label id="58” name="Delete_Module_.Ready_Error_warning”

86 text="Connection to the Data source is fail”/>

87 <gui:Button id="59” name="exit” event="exit” exit="false” />

88 </gui:Window>

89 </gui:GuiBoundary>

90 <gui:GuiBoundary id="60" name="See Description”>

91 <gui:Window id="61" name="Input_.code_Waiting” order="4">

92 <gui:Textfield id="62" name="code” />

93 <gui:Button id="63” name=" Exception” event="Exception” exit="false” />

94 <gui:Button id="64” name="Input” event="Input” exit="false” />

95 </gui:Window>

96 <gui:Window id="65" name="Input_code_-Waiting_Error” order="0” error="true”>
97 <gui:Label id="66" name="input_code_-Waiting_Error_warning”

98 text="Null value not accepted” />

99 <gui:Button id="67” name="initialise” event="initialise” exit="false” />
100 </gui:Window>

101 <gui:Window id="”68” name=" Read_Desc_Ready” order="3">

102 <gui:Label ref="13”"/>

103 <gui:Button id="69” name="Read” event="Read” exit="false” />

104 <gui:Button id="70” name="exit” event="exit” exit="true” />

105 <gui:Button id="71”" name=" Exception” event="Exception” exit="false” />

106 </gui:Window>

107 <gui:Window id="72” name="Read_-Desc_-Ready-Error” order="0" error="true”>
108 <gui:Label id="73"” name=" Read_Desc_Ready_Error_warning”

109 text="Connection to the Data source is fail” />

110 <gui:Button id="74” name="exit” event="exit” exit="false” />

111 </gui:Window>

112 </gui:GuiBoundary>

113 <gui:GuiBoundary id=”75” name="Manage Module_Menu”>

114 <gui:Window id="76" name=" Manage_Module_Main_Menu_-Waiting” order="5” menu="true”>
115 <gui:Label id="77” name="Main Menu” text="Main Menu” />

116 <gui:Button id="78" name="Add Module” event="initialise” exit="false” />
117 <gui:Button id="79” name="Delete Module” event="initialise” exit="false” />
118 <gui:Button id="80”" name="Modify Module” event="initialise” exit="false” />
119 </gui:Window>

120 </gui:GuiBoundary>

121 | </gui:GuiDiagram>

Database and Query model: Module Management System

Listing A.10: Manage_M odule_SchemaM odel.xml

1| <?xml version="1.0" encoding="UTF-8” 7>
2| <dbs:Schema xmlns:dbs="mde.dbs.model” id="0" name="database”>
3 <dbs:Table id="1” name=" Module”>
4 <dbs:Column id="2” name="code” size="10">
5 <mod:Type xmlns:mod="mde.model” id="3” name="INTEGER” />
6 </dbs:Column>
7 <dbs:Column id="4" name="title” size="30">
8 <mod:Type id="5" name="VARCHAR” />
9 </dbs:Column>
10 <dbs:Column id="6” name="credit” size="10">
11 <mod:Type id="7” name="INTEGER” />
12 </dbs:Column>
13 <dbs:Column id="8" name="desc” size="30">
14 <mod:Type id="9” name="VARCHAR” />
15 </dbs:Column>
16 <dbs:PrimaryKey id="10">
17 <dbs:Column ref="2"/>
18 </dbs:PrimaryKey>
19 </dbs:Table>
20 <dbs:Procedure id="11" name="readCode_Credit” table="Module”>
21 <dbs:Argument id="12" type="Integer” name="code” in="true” />
22 <dbs:Argument id="13" type="Integer” name="credit” out="true” />
23 <dbs:Query id="14” name="SELECT_Code, _-Credit”>
24 <dbs:Project id="15" name="proj”’>
25 <dbs:Column id="16" name="credit” size="10" prefix="Module”>
26 <mod:Type id="17” name="Integer” />
27 </dbs:Column>
28 </dbs:Project>
29 <dbs:Relation id="18” name="Module”>
30 <dbs:Filter id="19” name="filterl”>
31 <dbs:Relation id="20" name="Module” />
32 <dbs:Operator id="21" type="boolean” symbol="equals”>
33 <dbs:Column id="22” name="code” size="10">
34 <mod:Type id="23" name="INTEGER” />
35 </dbs:Column>
36 <dbs:Variable id="24" type="INTEGER” name="code” />
37 </dbs:Operator>
38 </dbs:Filter>

249

APPENDIX A. MODELS AND RESULTS OF EXPERIMENT (1)

APPENDIX A

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

</dbs:Relation>
</dbs:Query>
</dbs:Procedure>

<dbs:Procedure id="25”

name="readDesc” table="Module”>

<dbs:Argument id="26" type="String” name="desc” out="true” />
<dbs:Argument id="27" type="Integer” name="code” in="true” />

<dbs:Query id="28"

name="SELECT_Desc”>

<dbs:Project id="29” name="proj”>
<dbs:Column id="30" name="desc” size="30" prefix="Module”>
<mod:Type id="31" name=”" String” />

</dbs:Column>
</dbs:Project>

<dbs:Relation id=”32" name="Module”>
<dbs:Filter id="33” name="filterl”>

<dbs:Relation
<dbs:Operator
<dbs:Column
<mod:Type

id="34” name="Module” />

id="35” type="boolean” symbol="equals”>
id="36”" name="code” size="10">

ref="23" />

</dbs:Column>
<dbs:Variable id="37" type="INTEGER” name="code” />
</dbs:Operator>

</dbs:Filter>
</dbs:Relation>
</dbs:Query>
</dbs:Procedure>

<dbs:Procedure id="38"

name="createModule” table="Module”>

<dbs:Argument id="39” type="Integer” name="code” in="true” />
<dbs:Argument id="40" type="String” name="title” in="true” />
<dbs:Argument id="41" type="Integer” name="credit” in="true” />
<dbs:Argument id="42" type="String” name="desc” in="true” />

<dbs:Create id="43”

name="INSERT_Module” >

<dbs:Operator id="44" type="boolean” symbol="Assign”>
<dbs:Column id="45” name="code” size="10">
<mod:Type id="46" name="INTEGER” />

</dbs:Column>

<dbs:Variable id="47" type="INTEGER” name="code” />

</dbs:Operator>

<dbs:Operator id="48” type="boolean” symbol="Assign”>
<dbs:Column id="49” name="title” size="30">
<mod:Type id="50" name="VARCHAR” />

</dbs:Column>

<dbs:Variable id="51" type="VARCHAR” name="title” />

</dbs:Operator>

<dbs:Operator id="52" type="boolean” symbol="Assign”>
<dbs:Column id="53” name="credit” size="10">
<mod:Type id="54" name="INTEGER” />

</dbs:Column>

<dbs:Variable id="55" type="INTEGER” name="credit” />

</dbs:Operator>

<dbs:Operator id="56" type="boolean” symbol="Assign”>

<dbs:Column id="57” name:

desc” size="30">

<mod:Type id="58” name="VARCHAR” />

</dbs:Column>

<dbs:Variable id

</dbs:Operator>
</dbs:Create>
</dbs:Procedure>

<dbs:Procedure id="60"

=759” type="VARCHAR” name="desc” />

name="deleteModule” table="Module”>

<dbs:Argument id="61" type="Integer” name="code” in="true” />

<dbs:Delete id="62”

name="DELETE_Code” >

<dbs:Relation id="63" name=" Delete Module”>
<dbs:Filter id="64">

<dbs:Relation
<dbs:Operator
<dbs:Column
<mod:Type

id="65" name="Module” />

id="66" type="boolean” symbol="equals”>
id="67” name="code” size="10">

id="68” name="INTEGER” />

</dbs:Column>
<dbs:Variable id="69" type="INTEGER” name="code” />
</dbs:Operator>

</dbs:Filter>
</dbs:Relation>
</dbs:Delete>
</dbs:Procedure>

<dbs:Procedure id="70"

name="writeModule” table="Module”>

<dbs:Argument id="71" type="INTEGER” name="code” in="true” />
<dbs:Argument id="72" type="INTEGER” name="credit” inout="true” />

<dbs:Query id="73"

name="SELECT_Code, _.Credit”>

<dbs:Project id="74">
<dbs:Column id="75" name="credit” size="10" prefix="Module”>
<mod:Type id="76" name="INTEGER” />

</dbs:Column>

<dbs:Relation id="77" name="Module” />

</dbs:Project>

<dbs:Relation id="78” name=" Module”>
<dbs:Filter id="79">

<dbs:Relation
<dbs:Operator
<dbs:Column
<mod:Type

id="80”" name="Module” />

id="81” type="boolean” symbol="equals”>
id="82” name="code” size="10">

id=”83" name="INTEGER” />

</dbs:Column>
<dbs:Variable id="84" type="INTEGER” name="code” />
</dbs:Operator>

</dbs:Filter>
</dbs:Relation>

250

APPENDIX A. MODELS AND RESULTS OF EXPERIMENT (1)

Al

APPENDIX A

133 </dbs:Query>

134 <dbs:Update id="85">

135 <dbs:Operator id="86" type="boolean” symbol="assign”>
136 <dbs:Column id="87" name="credit” size="10">

137 <mod:Type id="88”" name="INTEGER” />

138 </dbs:Column>

139 <dbs:Variable id="89" type="INTEGER” name="credit” />
140 </dbs:Operator>

141 </dbs:Update>

142 </dbs:Procedure>

143 | </dbs:Schema>

OOP Code model: Module Management System

Listing A.11: Manage_Module_Code M odel.xml

1| <?xml version="1.0" encoding="UTF-8” 7>

2| <code:Diagram xmlns:code="mde.code.model” id="0">

3 <code:Clazz id="1" name="Module” visible="public”>

4 <code:Attribute id="2” name="code” visible="private”>

5 <mod:Type xmlns:mod="mde.model” id="3” name="int” />

6 </code:Attribute>

7 <code:Attribute id="4” name="title” visible="private”>

8 <mod:Type id="5” name=" String” />

9 </code:Attribute>

10 <code:Attribute id="6" name="credit” visible="private”>

11 <mod:Type id="7” name="int” />

12 </code:Attribute>

13 <code:Attribute id="8” name="desc” visible="private”>

14 <mod:Type id="9” name=" String” />

15 </code:Attribute>

16 <code:Method id="10" name="readCode_-Credit” visible="public”>
17 <mod:Type id="11" name="void” />

18 <code:Argument id="12" type="int” name="code” />

19 <code:Call id="13” name="readCode_Credit” />

20 </code:Method>

21 <code:Method id="14"” name="readDesc” visible="public”>

22 <mod:Type id="15" name="void” />

23 <code:Argument id="16" type="int” name="code” />

24 <code:Call id="17” name="readDesc” />

25 </code:Method>

26 <code:Method id="18" name="createModule” visible="public”>
27 <mod:Type id="19" name="void” />

28 <code:Argument id="20" type="int” name="code” />

29 <code:Argument id="21" type="String” name="title” />

30 <code:Argument id="22” type="int” name="credit” />

31 <code:Argument id="23” type="String” name="desc” />

32 <code:Call id="24” name="createModule” />

33 </code:Method>

34 <code:Method id=”25" name="deleteModule” visible="public”’>
35 <mod:Type id="26" name="void” />

36 <code:Argument id="27” type="int” name="code” />

37 <code:Call id="28" name="deleteModule” />

38 </code:Method>

39 <code:Method id="29” name=" writeModule” visible="public”>
40 <mod:Type id="30” name="void” />

41 <code:Argument id="31" name="code” />

42 <code:Call id="32” name="writeModule” />

43 </code:Method>

44 <code:Constructor id="33” name="Module” visible="public”>
45 <code:Operator id="34" type="boolean” symbol="assign”>
46 <code:Identifier id="35" type="int” name="code” scope="Object” />
47 <code:Identifier id="36" type="int” name="cod” />

48 </code:Operator>

49 <code:Operator id="37” type="boolean” symbol="assign”>
50 <code:Identifier id="38” type="String” name="title” scope="Object” />
51 <code:Identifier id="39” type="String” name="tit” />
52 </code:Operator>

53 <code:Operator id="40” type="boolean” symbol="assign”>
54 <code:Identifier id="41" type="int” name="credit” scope="Object” />
55 <code:Identifier id="42” type="int” name="cred” />

56 </code:Operator>

57 <code:Operator id="43” type="boolean” symbol="assign”>
58 <code:Identifier id="44” type="String” name="desc” scope="Object” />
59 <code:Identifier id="45" type="String” name="des” />
60 </code:Operator>

61 </code:Constructor>

62 </code:Clazz>

63 <code:Clazz id="46" name="Add Module” visible="public”>

64 <code:Attribute id="47” name="Module” visible="private”>
65 <mod:Type id="48" name="Module” />

66 </code:Attribute>

67 <code:Attribute id="49” name=" Staff” visible="private”>
68 <mod:Type id="50" name=" Staff” />

69 </code:Attribute>

70 <code:Method id="51" name="Run” visible="public” staticm="true”>
71 <mod:Type id="52" name="void” />

72 </code:Method>

251

APPENDIX A. MODELS AND RESULTS OF EXPERIMENT (1) A.1. APPENDIX A

73 <code:Constructor id="53” name="Add Module” />

74 </code:Clazz>

75 <code:Clazz id="54" name="Modify Module” visible="public”>
76 <code:Attribute id="55” name="Module” visible="private”>
7 <mod:Type id="56" name=" Module” />

78 </code:Attribute>

79 <code:Attribute id="57" name=" Staff” visible="private”>

80 <mod:Type id="58" name=" Staff” />

81 </code:Attribute>

82 <code:Method id="59” name="Run” visible="public” staticm="true”>
83 <mod:Type id="60" name="void” />

84 </code:Method>

85 <code:Constructor id="61" name="Modify Module” />

86 </code:Clazz>

87 <code:Clazz id="62" name="Delete Module” visible="public”>
88 <code:Attribute id="63” name="Module” visible="private”>
89 <mod:Type id="64" name="Module” />

90 </code:Attribute>

91 <code:Attribute id="65" name=" Staff” visible="private”>

92 <mod:Type id="66" name=" Staff” />

93 </code:Attribute>

94 <code:Method id="67"” name="Run” visible="public” staticm="true”>
95 <mod:Type id="68”" name="void” />

96 </code:Method>

97 <code:Constructor id="69” name="Delete Module” />

98 </code:Clazz>

99 <code:Clazz id="70" name="See Description” visible="public”>
100 <code:Attribute id="71” name="Module” visible="private”>
101 <mod:Type id="72" name="Module” />

102 </code:Attribute>

103 <code:Attribute id="73” name="Student” visible="private”>
104 <mod:Type id="74" name=" Student” />

105 </code:Attribute>

106 <code:Method id="75" name="Run” visible="public” staticm="true”>
107 <mod:Type id="76" name="void” />

108 </code:Method>

109 <code:Constructor id="77” name="See Description” />

110 </code:Clazz>

111 | </code:Diagram>

MySQL Script: Module Management System

Listing A.12: database_MySQL.sql

1| — Database Creation

2

3| CREATE DATABASE sysDatabase;

4| USE sysDatabase;

5

6| — Structure for table ’'Module’

7

8| CREATE TABLE Module (

9 code INT(10) NOT NULL,

10 title VARCHAR(30) ,

11 credit INT(10),

12 desc VARCHAR(30) ,

13 PRIMARY KEY(code));

14

15| —— Structure of Procedure ’'readCode_Credit’
16

17| DELIMITER //

18

19 | CREATE PROCEDURE readCode_Credit (IN code INT(10), OUT credit INT(10))
20 BEGIN

21 SELECT Module. credit INTO credit FROM Module
22 ‘WHERE

23 Module.code = code;

24 END //

25

26 | DELIMITER //

27

28| —— Structure of Procedure ’‘readDesc’

29

30| DELIMITER //

31

32 | CREATE PROCEDURE readDesc (IN code INT(10), OUT desc VARCHAR(30))
33 BEGIN

34 SELECT Module.desc INTO desc FROM Module
35 ‘WHERE

36 Module.code = code;

37 END //

38

39| DELIMITER //

40

41| —— Structure of Procedure ’‘createModule’
42

43 | DELIMITER //

44

252

APPENDIX A. MODELS AND RESULTS OF EXPERIMENT (1) A.1. APPENDIX A

45| CREATE PROCEDURE createModule (IN code INT(10), IN title VARCHAR(30), IN credit INT(10),
46 BEGIN

47 INSERT INTO Module VALUES (code, title , credit, desc);
48 END //

49

50 | DELIMITER //

51

52| —— Structure of Procedure ’deleteModule ’

53

54 | DELIMITER //

55

56 | CREATE PROCEDURE deleteModule (IN code INT(10))
57 BEGIN

58 DELETE FROM Module

59 ‘WHERE

60 code = code;

61 END //

62

63| DELIMITER //

64

65| — Structure of Procedure ’‘writeModule ’

66

67 | DELIMITER //

68

69 | CREATE PROCEDURE writeModule (IN code INT(10), INOUT credit INT(10))
70 BEGIN

71 UPDATE Module

72 SET

73 Module. credit = credit

74 ‘WHERE

75 Module.code = code;

76 END //

7

78 | DELIMITER //

IN desc VARCHAR(30))

Java Swing Source Code: Module Management System
Class: Manage Module Main Menu_Waiting

Listing A.13: Manage_Module_Main_Menu_W aiting.java

1 import java.awt.GridLayout;

2 import java.awt.event.ActionEvent;

3 import java.awt.event.ActionListener;

4| import javax.swing.x;

5| import java.sql.CallableStatement;

6| import java.sql.Connection;

7| import java.sql.DriverManager;

8| import java.sql.ResultSet;

9| import java.sql.SQLException;

10 import java.sql.Statement;

11 import java.sql.Types;

12

13 public class Manage_-Module_Main_-Menu_-Waiting extends JFrame {
14 public Manage_-Module_-Main_Menu_-Waiting (String winTitle) {
15

16 super (winTitle);

17

18 // Create Swing Components

19 JPanel main_menu_panel = new JPanel();

20 final JLabel main_menuLab = new JLabel();

21 main_menu_panel.add (main_menuLab);

22 JPanel message_panel = new JPanel();

23 final JLabel messageLab = new JLabel(”Main Menu”);
24 message_panel.add(messageLab);
25 JPanel add-module_panel = new JPanel();
26 JButton add_-module = new JButton(”Add Module”);
27 add_module_panel.add(add_-module);
28
29 // Add Action to the button
30 add_module.addActionListener (new ActionListener () {
31 public void actionPerformed (ActionEvent e) {
32 Input_code_title_credit_-desc_-Waiting nextWindow = new
33 Input_code_title_credit_desc_-Waiting (”Input_code_title_
34 credit_-desc_-Waiting”);
35 nextWindow . setSize (400, 300);
36 nextWindow .setDefaultCloseOperation (JFrame. EXIT_-ON_CLOSE);
37 nextWindow . setLocationRelativeTo (null);
38 nextWindow . setVisible (true);
39 dispose ();
40
41 s
42
43 JPanel delete_module_panel = new JPanel();
44 JButton delete_module = new JButton(” Delete Module”);
45 delete_module_panel.add(delete_module);

253

APPENDIX A. MODELS AND RESULTS OF EXPERIMENT (1) A.1. APPENDIX A

46

47 // Add Action to the button

48 delete_module.addActionListener (new ActionListener () {
49 public void actionPerformed (ActionEvent e) {

50 Input_code_-Waiting nextWindow = new

51 Input_-code_-Waiting (" Input_code_-Waiting”);
52 nextWindow . setSize (400, 300);

53 nextWindow .setDefaultCloseOperation (JFrame. EXIT_-ON_CLOSE);
54 nextWindow . setLocationRelativeTo (null);

55 nextWindow . setVisible (true);

56 dispose ();

57

58 s

59

60 JPanel modify_module_panel = new JPanel();

61 JButton modify_module = new JButton(” Modify Module”);
62 modify_module_panel.add(modify_module);

63

64 // Add Action to the button

65 modify_module.addActionListener (new ActionListener () {
66 public void actionPerformed (ActionEvent e) {

67 Input_code_credit-Waiting nextWindow = new
68 Input_code_credit-Waiting (" Input_-code_
69 credit-Waiting”);

70 nextWindow . setSize (400, 300);

71 nextWindow . setDefaultCloseOperation (JFrame. EXIT_.ON_CLOSE) ;
72 nextWindow . setLocationRelativeTo (null);

73 nextWindow . setVisible (true);

74 dispose ();

75

76 1)

T // Set Layout Manager

78 setLayout (new GridLayout(5, 0));

79

80 // Add Panels to the Window

81 this.add(main_menu_panel);

82 this.add (message_panel);

83 this.add(add_-module_panel);

84 this.add(delete_module_panel);

85 this.add (modify_-module_panel);

86 1

87 } // END OF CLASS

Input_code_title_credit_desc_Waiting

Listing A.14: Input_code_title_credit_desc_W aiting.java

1 import java.awt.GridLayout;

2| import java.awt.event.ActionEvent;

3| import java.awt.event.ActionListener;

4 import javax.swing.x*;

5| import java.sql.CallableStatement;

6 import java.sql.Connection;

7 import java.sql.DriverManager;

8 import java.sql.ResultSet;

9 import java.sql.SQLException;

10 import java.sql.Statement;

11 import java.sql.Types;

12

13 public class Input_code_title_credit_desc_.Waiting extends JFrame {
14 public Input_code_title_credit_-desc_-Waiting (String winTitle) {
15

16 super (winTitle);

17

18 // Create Swing Components

19 JPanel message_panel = new JPanel ();

20 final JLabel messageLab = new JLabel(”Input your Data”);
21 message_panel.add(messageLab);

22 JPanel code_panel = new JPanel();

23 JLabel code_label = new JLabel(”code”);

24 final JTextField codeTxt = new JTextField (30);
25 code_panel.add(code_label);

26 code_panel.add(codeTxt);

27 JPanel title_panel = new JPanel();

28 JLabel title_label = new JLabel(” title”);

29 final JTextField titleTxt = new JTextField (30);
30 title_panel .add(title_label);

31 title_panel .add(titleTxt);

32 JPanel credit_-panel = new JPanel();

33 JLabel credit_-label = new JLabel(” credit”);

34 final JTextField creditTxt = new JTextField (30);
35 credit_-panel.add(credit_label);

36 credit-panel.add(creditTxt);

37 JPanel desc_-panel = new JPanel();

38 JLabel desc-label = new JLabel(”desc”);

39 final JTextField descTxt = new JTextField (30);
40 desc_panel.add(desc_label);

41 desc_panel.add(descTxt);

254

APPENDIX A. MODELS AND RESULTS OF EXPERIMENT (1) A.1. APPENDIX A

42 JPanel input_panel = new JPanel();

43 JButton input = new JButton(”Input”);

44 input_panel.add(input);

45

46 // Add Action to the button

47 input.addActionListener (new ActionListener () {

48 public void actionPerformed (ActionEvent e) {

49 String code = codeTxt.getText ();

50 String title = titleTxt.getText ();

51 String credit = creditTxt.getText ();

52 String desc = descTxt.getText ();

53

54 if ((codeTxt.getText ().isEmpty()) || (titleTxt.getText ().isEmpty())
55 || (creditTxt.getText ().isEmpty()) || (descTxt.getText ().isEmpty())) {
56 Input_code_title_credit_desc_Waiting_Error nextErrWindow = new
57 Input_code_title_credit_-desc_-Waiting_Error (”Input_code_
58 title_credit_desc_-Waiting_Error 7,

59 ?Invalid Input. Please Try Again”);

60 nextErrWindow . setSize (400, 300);

61 nextErrWindow . setDefaultCloseOperation (JFrame. EXIT_ ON_CLOSE) ;
62 nextErrWindow .setLocationRelativeTo (null);

63 nextErrWindow . setVisible (true);

64 dispose ();

65

66

67 else {

68 Create_-Module_Ready nextWindow = new

69 Create_Module_Ready (” Create_Module_Ready” , code, title ,
70 credit , desc);

71 nextWindow . setSize (400, 300);

72 nextWindow . setDefaultCloseOperation (JFrame. EXIT_-ON_CLOSE) ;
73 nextWindow .setLocationRelativeTo (null);

74 nextWindow . setVisible (true);

75 dispose ();

76

s

78 1)

79

80 // Set Layout Manager

81 setLayout (new GridLayout(6, 0));

82

83 // Add Panels to the Window

84 this.add(message_panel);

85 this.add(code_panel);

86 this.add(title_panel);

87 this.add(credit_-panel);

88 this.add(desc_-panel);

89 this.add(input-panel);

90 1

91 Y // END OF CLASS

Input_code_title_credit_desc_Waiting _Error

Listing A.15: Input_code_title_credit_desc_W aiting_FError.java

1 import java.awt.GridLayout;

2 import java.awt.event.ActionEvent;

3 import java.awt.event.ActionListener;

4 import javax.swing.x;

5| import java.sql.CallableStatement;

6| import java.sql.Connection;

7 import java.sql.DriverManager;

8 import java.sql.ResultSet;

9 import java.sql.SQLException;

10| import java.sql.Statement;

11 import java.sql.Types;

12

13 public class Input-code_title_credit-desc_-Waiting_-Error extends JFrame {
14 public Input_code_title_credit_-desc_Waiting_Error (String winTitle, String err) {
15

16 super (winTitle);

17

18 // Create Swing Components

19 JPanel input_code_title_credit_desc_waiting_error_

20 warning_panel = new JPanel();

21 final JLabel input_code_title_credit_desc_waiting_error._
22 warningLab = new JLabel();

23 input_code_title_credit_desc_waiting_error_warning_panel
24 .add(input_-code_title_credit_desc_waiting_error_warningLab);
25

26 JPanel message_panel = new JPanel ();

27 final JLabel messageLab = new JLabel(err);

28 message_panel.add(messageLab);

29 JPanel initialise_panel = new JPanel();

30 JButton initialise = new JButton(” initialise”);

31 initialise_panel.add(initialise);

32

33 // Add Action to the button

255

APPENDIX A. MODELS AND RESULTS OF EXPERIMENT (1)

Al

APPENDIX A

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

initialise.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent e)
Input_code_title_credit_desc_Waiting backWindow = new
Input_code_title_credit_desc_
Waiting (" Input_-code_title_credit-desc_-Waiting”);
backWindow . setSize (400, 300);
backWindow . setDefaultCloseOperation (JFrame. EXIT_ON_CLOSE) ;
backWindow .setLocationRelativeTo (null);
backWindow . setVisible (true);
dispose ();

s

// Set Layout Manager
setLayout (new GridLayout(3, 0));

// Add Panels to the Window
this.add(input_-code_title_credit_-desc_waiting_error_warning_panel);
this.add (message_panel);

this.add(initialise_panel);

}
} // END OF CLASS

Input_code_credit_Waiting

©oTDU A WN -

Listing A.16: Input_code_credit W aiting.java

import java.awt.GridLayout;

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import javax.swing.x;

import java.sql.CallableStatement;
import java.sql.Connection;

import java.sql.DriverManager;
import java.sql.ResultSet;

import java.sql.SQLException;
import java.sql.Statement;

import java.sql.Types;

public class Input_code_credit-Waiting extends JFrame {
public Input_code_credit_-Waiting (String winTitle) {

super (winTitle);

// Create Swing Components

JPanel message_panel = new JPanel();

final JLabel messageLab = new JLabel(”Input your Data”);
message_panel.add(messageLab);

JPanel code_panel = new JPanel();

JLabel code_label = new JLabel(”code”);

final JTextField codeTxt = new JTextField (30);
code_panel.add(code_label);
code_panel.add(codeTxt);

JPanel credit_panel = new JPanel();

JLabel credit_-label = new JLabel(” credit”);
final JTextField creditTxt = new JTextField (30);
credit_panel.add(credit_label);
credit_panel.add(creditTxt);

JPanel input_-panel = new JPanel();

JButton input = new JButton(”Input”);
input_panel.add(input);

// Add Action to the button
input.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent e) {
String code = codeTxt.getText ();

String credit = creditTxt.getText ();

if ((codeTxt.getText ().isEmpty()) || (creditTxt
.getText ().isEmpty ())) {
Input_code_credit_-Waiting_Error nextErrWindow = new

Input-code_credit-Waiting_Error(”Input_code_credit_
Waiting_Error ”, ”Invalid Input. Please Try Again”);
nextErrWindow . setSize (400, 300);
nextErrWindow.setDefaultCloseOperation (JFrame. EXIT_-ON_CLOSE) ;
nextErrWindow .setLocationRelativeTo (null);
nextErrWindow . setVisible (true);
dispose ();

else {

Read_-Module_-Code_Credit_-Ready nextWindow = new
Read_-Module_Code_-Credit-Ready (” Read_-Module_-Code_
Credit-Ready”, code, credit);

nextWindow . setSize (400, 300);

nextWindow . setDefaultCloseOperation (JFrame. EXIT_ON_CLOSE) ;

nextWindow . setLocationRelativeTo (null);

nextWindow . setVisible (true);

256

APPENDIX A. MODELS AND RESULTS OF EXPERIMENT (1)

Al

APPENDIX A

62 dispose ();

63 }

64

65 1)

66

67 // Set Layout Manager

68 setLayout (new GridLayout(4, 0));
69

70 // Add Panels to the Window
71 this.add(message_panel);

72 this.add(code_panel);

73 this.add(credit-panel);

74 this.add(input_-panel);

75 1

76 Y // END OF CLASS

Input_code_credit_Waiting_Error

Listing A.17: Input_code_credit_W aiting_Error.java

1 import java.awt.GridLayout;

2 import java.awt.event.ActionEvent;

3 import java.awt.event.ActionListener;

4 import javax.swing.x*;

5 import java.sql.CallableStatement;

6 import java.sql.Connection;

7 import java.sql.DriverManager;

8 import java.sql.ResultSet;

9| import java.sql.SQLException;

10| import java.sql.Statement;

11 import java.sql.Types;

12

13 public class Input_-code_credit-Waiting_Error extends JFrame {

14 public Input_code_credit-Waiting_Error (String winTitle, String err) {
15

16 super (winTitle);

17

18 // Create Swing Components

19 JPanel input_code_credit_-waiting_error_warning_panel = new JPanel();
20 final JLabel input_code_credit_-waiting_error_warningLab = new JLabel();
21 input_code_credit_waiting_error_warning_panel

22 .add(input_code_credit_waiting_error_warningLab);

23 JPanel message_panel = new JPanel();

24 final JLabel messageLab = new JLabel(err);

25 message_panel.add (messageLab);

26 JPanel initialise_panel = new JPanel();

27 JButton initialise = new JButton(” initialise”);

28 initialise_panel.add(initialise);

29

30 // Add Action to the button

31 initialise.addActionListener (new ActionListener () {

32 public void actionPerformed (ActionEvent e) {

33 Input-code_credit-Waiting backWindow = new
34 Input_-code_credit-Waiting (”Input_-code_credit-Waiting”);
35 backWindow . setSize (400, 300);

36 backWindow . setDefaultCloseOperation (JFrame. EXIT_ON_CLOSE) ;
37 backWindow.setLocationRelativeTo (null);

38 backWindow.setVisible (true);

39 dispose ();

40

41 1)

42

43 // Set Layout Manager

44 setLayout (new GridLayout(3, 0));

45

46 // Add Panels to the Window

47 this.add(input_-code_credit_waiting_error_warning_panel);
48 this.add(message_panel);

49 this.add(initialise_panel);

50 }

51 } // END OF CLASS

Input_code_Waiting

Listing A.18: Input_code W aiting.java

import java.awt.GridLayout;

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import javax.swing.x*;

import java.sql.CallableStatement;

T W N =

257

APPENDIX A. MODELS AND RESULTS OF EXPERIMENT (1) A.1. APPENDIX A

6 import java.sql.Connection;

7 import java.sql.DriverManager;

8 import java.sql.ResultSet;

9 import java.sql.SQLException;

10 import java.sql.Statement;

11 import java.sql.Types;

12

13 public class Input_-code_-Waiting extends JFrame {

14 public Input_code_-Waiting (String winTitle) {

15

16 super (winTitle);

17

18 // Create Swing Components

19 JPanel message_-panel = new JPanel();

20 final JLabel messageLab = new JLabel(”Input your Data”);
21 message_panel.add(messageLab);

22 JPanel code_panel = new JPanel();

23 JLabel code_label = new JLabel(”code”);

24 final JTextField codeTxt = new JTextField (30);

25 code_panel.add(code_label);

26 code_panel.add(codeTxt);

27 JPanel input_panel = new JPanel();

28 JButton input = new JButton(”Input”);

29 input_panel.add(input);

30

31 // Add Action to the button

32 input.addActionListener (new ActionListener () {

33 public void actionPerformed (ActionEvent e) {

34 String code = codeTxt.getText ();

35

36 if ((codeTxt.getText ().isEmpty ())) {

37 Input_code_Waiting_Error nextErrWindow = new
38 Input_-code_-Waiting_Error (”Input_code_-Waiting_Error 7,
39 ?Invalid Input. Please Try Again”);
40 nextErrWindow .setSize (400, 300);

41 nextErrWindow .setDefaultCloseOperation (JFrame. EXIT_ON_CLOSE) ;
42 nextErrWindow .setLocationRelativeTo (null);
43 nextErrWindow . setVisible (true);

44 dispose ();

45

46

47 else {

48 Read_Desc_Ready nextWindow = new Read_Desc_Ready(” Read_Desc_
49 Ready” , code);

50 nextWindow . setSize (400, 300);

51 nextWindow . setDefaultCloseOperation (JFrame. EXIT_-ON_CLOSE) ;
52 nextWindow .setLocationRelativeTo (null);

53 nextWindow . setVisible (true);

54 dispose ();

55)

56

57 s

58

59 // Set Layout Manager

60 setLayout (new GridLayout(3, 0));

61

62 // Add Panels to the Window

63 this.add (message_panel);

64 this.add(code_panel);

65 this.add(input_panel);

66 1

67 } // END OF CLASS

Input_code_Waiting Error

Listing A.19: Input_code W aiting_Error.java

import java.awt.GridLayout;

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import javax.swing.x*;

import java.sql.CallableStatement;
import java.sql.Connection;

import java.sql.DriverManager;
import java.sql.ResultSet;

import java.sql.SQLException;

10| import java.sql.Statement;

11 import java.sql.Types;

©OWTDU A WN -

12

13 public class Input_code_-Waiting_Error extends JFrame {

14 public Input_-code-Waiting_Error (String winTitle, String err) {

15 super (winTitle);

16

17 // Create Swing Components

18 JPanel input-code_-waiting_error-warning_-panel = new JPanel();

19 final JLabel input_code_waiting_error_warningLab = new JLabel();
20 input_code_waiting_error_warning_panel

21 .add(input_-code_waiting_error_warningLab);

258

APPENDIX A. MODELS AND RESULTS OF EXPERIMENT (1) A.1. APPENDIX A

22 JPanel message_panel = new JPanel();

23 final JLabel messageLab = new JLabel(err);

24 message_panel.add(messageLab);

25 JPanel initialise_panel = new JPanel();

26 JButton initialise = new JButton(” initialise”);

27 initialise_panel.add(initialise);

28

29 // Add Action to the button

30 initialise.addActionListener (new ActionListener () {
31 public void actionPerformed (ActionEvent e) {

32 Input_code-Waiting backWindow = new

33 Input-code_-Waiting (" Input_-code_-Waiting”);
34 backWindow . setSize (400, 300);

35 backWindow . setDefaultCloseOperation (JFrame. EXIT_-ON_CLOSE) ;
36 backWindow . setLocationRelativeTo (null);
37 backWindow . setVisible (true);

38 dispose ();

39

40 1)

41

42 // Set Layout Manager

43 setLayout (new GridLayout(3, 0));

44

45 // Add Panels to the Window

46 this.add(input_code_waiting_error_warning_panel);

47 this.add(message_panel);

48 this.add(initialise_panel);

49 1

50 Y // END OF CLASS

Create_Module_Ready

Listing A.20: Create_Module_Ready.java

1 import java.awt.GridLayout;

2 import java.awt.event.ActionEvent;

3 import java.awt.event.ActionListener;

4 import javax.swing.x*;

5 import java.sql.CallableStatement;

6 import java.sql.Connection;

7 import java.sql.DriverManager;

8| import java.sql.ResultSet;

9| import java.sql.SQLException;

10 import java.sql.Statement;

11 import java.sql.Types;

12

13| public class Create_Module_Ready extends JFrame {

14 public Create_-Module_Ready (String winTitle, final String code,
15 final String title , final String credit, final String desc) {
16 super (winTitle);

17

18 // Create Swing Components

19 JPanel code_panel = new JPanel();

20 final JLabel codeLab = new JLabel();

21 code_panel.add(codeLab);

22 JPanel title_panel = new JPanel();

23 final JLabel titleLab = new JLabel();

24 title_panel.add(titleLab);

25 JPanel credit_panel = new JPanel();

26 final JLabel creditLab = new JLabel();

27 credit_panel.add(creditLab);

28 JPanel desc_panel = new JPanel();

29 final JLabel descLab = new JLabel();

30 desc_panel.add(descLab);

31 JPanel message_panel = new JPanel();

32 final JLabel messageLab = new

33 JLabel (” Are you sure to proceed Creating ”);
34 message_panel.add(messageLab);

35 JPanel create_panel = new JPanel();

36 JButton create = new JButton(” Create”);

37 create_panel.add(create);

38

39 // Add Action to the button

40 create.addActionListener (new ActionListener () {
41 public void actionPerformed (ActionEvent e) {
42 boolean recordInserted = false;

43

44 // Declare Connection properties

45 Connection conn = null;

46 Statement stmt = null;

47 int recAffected = 0;

48

49 // Declare Connection properties

50 try {

51 Class . forName(”com.mysql.jdbc.Driver”). newlnstance ();
52 String connectionUrl = ”jdbc:mysql://localhost:3306/testdbl”;
53 String connectionUser = ”"root”;

54 String connectionPassword = "7

259

APPENDIX A. MODELS AND RESULTS OF EXPERIMENT (1) Al

APPENDIX A

55 conn = DriverManager. getConnection (connectionUrl,
56 connectionUser , connectionPassword);

57 stmt = conn.createStatement ();

58

59 // Ezecute a query statement or a stored procedure
60 CallableStatement procnone =

61 conn.prepareCall(”{call createModule(?, 7, 7, ?)}”);
62

63 // Sets the input parameter

64 procnone.setString (2, title);

65 procnone.setString (4, desc);

66 procnone.setlnt (1, Integer.parselnt(code));

67 procnone.setlnt (3, Integer.parselnt(credit));

68

69 // Registers the out parameters

70 recAffected = procnone.executeUpdate ();

71

72 // Check if there is an wupdated record

73 if (recAffected > 0)

74 recordInserted = true;

75 else

76 recordInserted = false;

7

78 } catch (Exception el)

79 el.printStackTrace ();

80 } finally {

81 try { if (stmt != null) stmt.close(); } catch (SQLException el)
82 { el.printStackTrace ();

83 try { if (conn != null) conn.close(); } catch (SQLException el)
84 { el.printStackTrace ();

85 !

86 if (recordInserted) {

87 JOptionPane.showMessageDialog (null ,

88 ”The business task is completed successfully.”);
89 System . exit (0);

90

91 else {

92 Create_Module_Ready_Error nextErrWindow = new

93 Create_Module_Ready_Error (” Create_Module_Ready_Error 7,
94 ”Can not be Created. Please Try Again”);

95 nextErrWindow . setSize (400, 300);

96 nextErrWindow . setDefaultCloseOperation (JFrame. EXIT_ON_CLOSE) ;
97 nextErrWindow .setLocationRelativeTo (null);

98 nextErrWindow . setVisible (true);

99 dispose ();

100

101

102 3K

103

104 // Set Layout Manager

105 setLayout (new GridLayout(6, 0));

106

107 // Add Panels to the Window

108 this.add(code_panel);

109 this.add(title_panel);

110 this.add(credit_-panel);

111 this.add(desc_panel);

112 this.add (message_panel);

113 this.add(create_panel);

114 h

115 } // END OF CLASS

Create_Module Ready _Error

Listing A.21: Create_M odule_Ready_Error.java

import java.awt.GridLayout;

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import javax.swing.x*;

import java.sql.CallableStatement;
import java.sql.Connection;

import java.sql.DriverManager;
import java.sql.ResultSet;

import java.sql.SQLException;

10| import java.sql.Statement;

11 import java.sql.Types;

OO UE WN =

12

13 public class Create_Module_Ready_Error extends JFrame {

14 public Create_-Module_Ready_Error (String winTitle, String err) {
15 super (winTitle);

16

17 // Create Swing Components

18 JPanel create-module_ready_error_warning_panel = new JPanel();
19 final JLabel create-module_ready-error-warningLab = new JLabel();
20 create_module_ready_error_warning_panel

21 .add(create_module_ready_error_warningLab);

22 JPanel message_panel = new JPanel();

260

APPENDIX A. MODELS AND RESULTS OF EXPERIMENT (1) A.1. APPENDIX A

23 final JLabel messageLab = new JLabel(err);

24 message_panel.add (messageLab);

25 JPanel exit_panel = new JPanel();

26 JButton exit = new JButton(”exit”);

27 exit_panel.add(exit);

28

29 // Add Action to the button

30 exit.addActionListener(new ActionListener () {

31 public void actionPerformed (ActionEvent e) {

32 Input_-code_title_credit_-desc_-Waiting backWindow = new
33 Input_-code_title_credit_-desc_-Waiting ("Input_code_title_credit_-desc_-Waiting/]
34 backWindow . setSize (400, 300);

35 backWindow . setDefaultCloseOperation (JFrame. EXIT_-ON_CLOSE) ;
36 backWindow.setLocationRelativeTo (null);

37 backWindow . setVisible (true);

38 dispose ();

39

40 1)

41

42 // Set Layout Manager

43 setLayout (new GridLayout(3, 0));

44

45 // Add Panels to the Window

46 this.add(create_module_ready_error_warning_panel);

47 this.add(message_panel);

48 this.add(exit_panel);

49 1

50 Y // END OF CLASS

Delete_Module_Ready

Listing A.22: Delete_Module_Ready.java

1 import java.awt.GridLayout;

2 import java.awt.event.ActionEvent;

3 import java.awt.event.ActionListener;

4 import javax.swing.x*;

5 import java.sql.CallableStatement;

6 import java.sql.Connection;

7 import java.sql.DriverManager;

8 import java.sql.ResultSet;

9| import java.sql.SQLException;

10| import java.sql.Statement;

11 import java.sql.Types;

12

13| public class Delete_Module_Ready extends JFrame {

14 public Delete_Module_Ready (String winTitle, final String code) {
15 super (winTitle);

16

17 // Create Swing Components

18 JPanel code_panel = new JPanel();

19 final JLabel codeLab = new JLabel();

20 code_panel.add(codeLab);

21 JPanel message_panel = new JPanel();

22 final JLabel messageLab = new JLabel(” Are you sure to proceed Deleting 7);
23 message_panel.add (messageLab);

24 JPanel delete_panel = new JPanel();

25 JButton delete = new JButton(” Delete”);

26 delete_panel.add(delete);

27

28 // Add Action to the button

29 delete.addActionListener (new ActionListener () {

30 public void actionPerformed (ActionEvent e) {

31 boolean recordDeleted = false;

32

33 // Declare Connection properties

34 Connection conn = null;

35 Statement stmt = null;

36 int recAffected = 0;

37

38 // Declare Connection properties

39 try {

40 Class . forName (”com.mysql.jdbc.Driver”). newlnstance ();
41 String connectionUrl = ”jdbc:mysql://localhost:3306/testdbl1”;
42 String connectionUser = ”"root”;

43 String connectionPassword = "7

44 conn = DriverManager. getConnection (connectionUrl, connectionUser ,
45 connectionPassword);

46 stmt = conn.createStatement ();

47

48 // Ezecute a query statement or a stored procedure
49 CallableStatement procnone =

50 conn.prepareCall (”{call deleteModule(?)}”);
51

52 // Sets the input parameter

53 procnone.setInt (1, Integer.parselnt(code));

54

55 recAffected = procnone.executeUpdate ();

261

APPENDIX A. MODELS AND RESULTS OF EXPERIMENT (1) Al

APPENDIX A

56

57 // Check if there is an updated record

58 if (recAffected > 0)

59 recordDeleted = true;

60 else

61 recordDeleted = false;

62

63 } catch (Exception el) {

64 el.printStackTrace ();

65 } finally {

66 try { if (stmt != null) stmt.close(); } catch (SQLException el)
67 { el.printStackTrace ();

68 try { if (conn != null) conn.close(); } catch (SQLException el)
69 { el.printStackTrace ();

70 !

71 if (recordDeleted) {

72 JOptionPane.showMessageDialog (null,

73 ”The business task is completed successfully.”);
74 System . exit (0);

75

76 else {

7 Delete_Module_Ready_Error nextErrWindow = new

78 Delete_Module_Ready_-Error (” Delete_Module_Ready_-Error 7,
79 ”Can not be Deleted. Please Try Again”);

80 nextErrWindow . setSize (400, 300);

81 nextErrWindow . setDefaultCloseOperation (JFrame. EXIT_ON_CLOSE);
82 nextErrWindow .setLocationRelativeTo (null);

83 nextErrWindow . setVisible (true);

84 dispose ();

85

86

87 s

88

89 // Set Layout Manager

90 setLayout (new GridLayout(3, 0));

91

92 // Add Panels to the Window

93 this.add(code_panel);

94 this.add (message_panel);

95 this.add(delete_panel);

96 1

97 } // END OF CLASS

Delete_Module Ready_Error

Listing A.23: Delete_Module_Ready_Error.java

1 import java.awt.GridLayout;

2| import java.awt.event.ActionEvent;

3| import java.awt.event.ActionListener;

4 import javax.swing.x*;

5| import java.sql.CallableStatement;

6 import java.sql.Connection;

7 import java.sql.DriverManager;

8 import java.sql.ResultSet;

9 import java.sql.SQLException;

10 import java.sql.Statement;

11 import java.sql.Types;

12

13| public class Delete_Module_Ready_Error extends JFrame {

14 public Delete_Module_Ready_Error (String winTitle, String err) {
15 super (winTitle);

16

17 // Create Swing Components

18 JPanel delete_module_ready_error_warning_panel = new JPanel();
19 final JLabel delete_module_-ready_error_-warningLab = new JLabel();
20 delete-module_ready-error_-warning_-panel

21 .add(delete_module_ready-error_-warningLab);

22 JPanel message_panel = new JPanel();

23 final JLabel messageLab = new JLabel(err);

24 message_panel.add(messageLab);

25 JPanel exit_panel = new JPanel();

26 JButton exit = new JButton(” exit”);

27 exit_panel.add(exit);

28

29 // Add Action to the button

30 exit.addActionListener(new ActionListener () {

31 public void actionPerformed (ActionEvent e) {

32 Input_code_-Waiting backWindow = new

33 Input_-code_-Waiting (" Input_code_-Waiting”);
34 backWindow . setSize (400, 300);

35 backWindow . setDefaultCloseOperation (JFrame. EXIT_-ON_CLOSE) ;
36 backWindow . setLocationRelativeTo (null);

37 backWindow . setVisible (true);

38 dispose ();

39 1

40 s

41

262

APPENDIX A. MODELS AND RESULTS OF EXPERIMENT (1) A.1. APPENDIX A

42 // Set Layout Manager

43 setLayout (new GridLayout(3, 0));

44

45 // Add Panels to the Window

46 this.add(delete_module_ready_error_warning_panel);
47 this.add (message_panel);

48 this.add(exit-panel);

49 }

50 } // END OF CLASS

Read_Desc_Ready

Listing A.24: Read_Desc_Ready.java

1 import java.awt.GridLayout;

2 import java.awt.event.ActionEvent;

3 import java.awt.event.ActionListener;

4 import javax.swing.x*;

5 import java.sql.CallableStatement;

6 import java.sql.Connection;

7 import java.sql.DriverManager;

8 import java.sql.ResultSet;

9 import java.sql.SQLException;

10 import java.sql.Statement;

11 import java.sql.Types;

12

13| public class Read_Desc_Ready extends JFrame {

14 public Read_Desc_Ready (String winTitle, final String code) {

15 super (winTitle);

16

17 // Create Swing Components

18 JPanel code_panel = new JPanel();

19 final JLabel codeLab = new JLabel();

20 code_panel.add(codeLab);

21 JPanel message_panel = new JPanel();

22 final JLabel messagelLab = new JLabel(” Are you sure to proceed Reading 7);
23 message_panel.add(messageLab);

24 JPanel read_panel = new JPanel();

25 JButton read = new JButton(”Read”);

26 read_panel.add(read);

27

28 // Add Action to the button

29 read .addActionListener (new ActionListener () {

30 public void actionPerformed (ActionEvent e) {

31 boolean recordReturned = false;

32

33 // Declare Connection properties

34 Connection conn = null;

35 Statement stmt = null;

36 ResultSet rs = null;

37

38 // Declare Connection properties

39 try {

40 Class . forName (”com.mysql. jdbc.Driver”). newlnstance ();
41 String connectionUrl = ”jdbc:mysql://localhost:3306/testdbl”;
42 String connectionUser = ”"root”;

43 String connectionPassword = "7

44 conn = DriverManager.getConnection (connectionUrl, connectionUser ,
45 connectionPassword);

46 stmt = conn.createStatement ();

47

48 // Ezecute a query statement or a stored procedure
49 CallableStatement procnone =

50 conn.prepareCall(”{call readDesc(?, ?)}”);
51

52 // Sets the input parameter

53 procnone.setlnt (1, Integer.parselnt(code));

54

55 // Registers the out parameters

56 procnone.registerOutParameter (2, Types.VARCHAR);
57

58 procnone . executeUpdate ();

59

60 // Declare wvariable(s) to stored the result(s) of the query
61 String descVar = procnone.getString (2);

62 System.out.println (descVar 47 7);

63

64 // Check if there is a returned record

65 if (descVar != null)

66 recordReturned = true;

67 else

68 recordReturned = false;

69

70 } catch (Exception el) {

71 el.printStackTrace ();

72 } finally {

73 try { if (rs != null) rs.close(); } catch (SQLException el)
74 { el.printStackTrace ();

263

APPENDIX A. MODELS AND RESULTS OF EXPERIMENT (1) Al

APPENDIX A

75 try { if (stmt != null) stmt.close(); } catch (SQLException el)
76 { el.printStackTrace ();

7 try { if (conn != null) conn.close(); } catch (SQLException el)
78 { el.printStackTrace ();

79 }

80 if (recordReturned) {

81 JOptionPane.showMessageDialog (null ,

82 ”The business task is completed successfully.”);

83 System . exit (0);

84 !

85 else {

86 Read_-Desc_-Ready-Error nextErrWindow = new

87 Read_Desc_-Ready-Error (” Read_Desc_-Ready-

88 Error ”, ”Can not be retrieved. Please Try Again”);
89 nextErrWindow . setSize (400, 300);

90 nextErrWindow . setDefaultCloseOperation (JFrame. EXIT_ON_CLOSE);
91 nextErrWindow .setLocationRelativeTo (null);

92 nextErrWindow.setVisible (true);

93 dispose ();

94

95

96 1)

97

98 // Set Layout Manager

99 setLayout (new GridLayout(3, 0));

100

101 // Add Panels to the Window

102 this.add(code_panel);

103 this.add(message_panel);

104 this.add(read-panel);

105 1

106 Y // END OF CLASS

Read_Desc_Ready_Error

Listing A.25: Read_Desc_Ready_Error.java

1 import java.awt.GridLayout;

2 import java.awt.event.ActionEvent;

3 import java.awt.event.ActionListener;

4 import javax.swing.x*;

5 import java.sql.CallableStatement;

6 import java.sql.Connection;

7| import java.sql.DriverManager;

8| import java.sql.ResultSet;

9| import java.sql.SQLException;

10 import java.sql.Statement;

11 import java.sql.Types;

12

13 public class Read_Desc_-Ready_Error extends JFrame {

14 public Read_Desc_Ready-Error (String winTitle, String err) {
15 super (winTitle);

16

17 // Create Swing Components

18 JPanel read_desc_ready_error_warning_panel = new JPanel();
19 final JLabel read_desc_ready_error_warningLab = new JLabel();
20 read_desc_.ready_error_warning_panel.add(read_-desc_ready_error_warningLab);
21

22 JPanel message_panel = new JPanel();

23 final JLabel messageLab = new JLabel(err);

24 message_panel.add (messageLab);

25

26 JPanel exit_panel = new JPanel();

27 JButton exit = new JButton(”exit”);

28 exit_panel.add(exit);

29

30 // Add Action to the button

31 exit.addActionListener(new ActionListener () {

32 public void actionPerformed (ActionEvent e) {

33 Input_-code-Waiting backWindow = new

34 Input_code_Waiting (" Input_code_Waiting”);
35 backWindow . setSize (400, 300);

36 backWindow . setDefaultCloseOperation (JFrame. EXIT_ ON_CLOSE) ;
37 backWindow . setLocationRelativeTo (null);

38 backWindow . setVisible (true);

39 dispose ();

40

41 })s

42

43 // Set Layout Manager

44 setLayout (new GridLayout(3, 0));

45

46 // Add Panels to the Window

47 this.add(read_desc_-ready_error_warning_-panel);

48 this.add(message_panel);

49 this.add(exit-panel);

50 }

51 } // END OF CLASS

264

APPENDIX A. MODELS AND RESULTS OF EXPERIMENT (1)

Al

APPENDIX A

Read Module_Code_Credit_Ready

Listing A.26: Read_Module_Code_Credit_Ready.java

import java.awt.GridLayout;

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import javax.swing.x*;

import java.sql.CallableStatement;
import java.sql.Connection;

import java.sql.DriverManager;
import java.sql.ResultSet;

import java.sql.SQLException;

10 import java.sql.Statement;

11 import java.sql.Types;

©OTDU B WN -

13| public class Read-Module_Code_Credit-Ready extends JFrame {

14 public Read_-Module_.Code_Credit-Ready (String winTitle, final String code,

15 final String credit) {

16 super (winTitle);

17

18 // Create Swing Components

19 JPanel code_panel = new JPanel();

20 final JLabel codeLab = new JLabel();

21 code_panel.add(codeLab);

22 JPanel credit_panel = new JPanel();

23 final JLabel creditLab = new JLabel();

24 credit_panel.add(creditLab);

25 JPanel message_panel = new JPanel();

26 final JLabel messageLab = new JLabel(” Are you sure to proceed Reading ”);
27 message_-panel.add (messageLab);

28 JPanel read_panel = new JPanel();

29 JButton read = new JButton(”Read”);

30 read_panel.add(read);

31

32 // Add Action to the button

33 read.addActionListener (new ActionListener () {

34 public void actionPerformed (ActionEvent e) {

35 boolean recordReturned = false;

36

37 // Declare Connection properties

38 Connection conn = null;

39 Statement stmt = null;

40 ResultSet rs = null;

41

42 // Declare Connection properties

43 try {

44 Class . forName (”com.mysql.jdbc.Driver”). newlnstance ();

45 String connectionUrl = ”jdbc:mysql://localhost:3306/testdbl”;
46 String connectionUser = ”"root”;

47 String connectionPassword = 77

48 conn = DriverManager.getConnection (connectionUrl, connectionUser ,
49 connectionPassword);

50 stmt = conn.createStatement ();

51

52 // Ezecute a query statement or a stored procedure

53 CallableStatement procnone =

54 conn.prepareCall (”{call readCode_Credit (?, ?)}”);

55

56 // Sets the input parameter

57 procnone.setInt (1, Integer.parselnt(code));

58

59 // Registers the out parameters

60 procnone.registerOutParameter (2, Types.INTEGER);

61

62 procnone.executeUpdate ();

63

64 // Declare wvariable(s) to stored the result(s) of the query
65 int creditVar = procnone.getlnt (2);

66 System.out.println (creditVar +7 7);

67

68 // Check if there is a returned record

69 if (creditVar != 0)

70 recordReturned = true;

71 else

72 recordReturned = false;

73

74 } catch (Exception el) {

75 el.printStackTrace ();

76 } finally {

s try { if (rs != null) rs.close(); } catch (SQLException el)
78 { el.printStackTrace ();

79 try { if (stmt != null) stmt.close(); } catch (SQLException el)
80 { el.printStackTrace ();

81 try { if (conn != null) conn.close(); } catch (SQLException el)
82 { el.printStackTrace (); }

83 !

84

85 if (recordReturned) {

86 Write_Module_Ready nextWindow = new

87 Write_Module_Ready (” Write_Module_Ready” , codeLab.getText (),
88 creditLab.getText ());

89 nextWindow . setSize (400, 300);

265

APPENDIX A. MODELS AND RESULTS OF EXPERIMENT (1) Al

APPENDIX A

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

113
114
115
116
117
118
119

nextWindow . setDefaultCloseOperation (JFrame. EXIT_ ON_CLOSE) ;
nextWindow . setLocationRelativeTo (null);

nextWindow . setVisible (true);

dispose ();

else {
Read_Module_Code_Credit-Ready_-Error nextErrWindow = new
Read_-Module_Code_Credit_-Ready_Error (” Read_Module_Code_
Credit-Ready-Error 7,

”Can not be retrieved. Please Try Again”);
nextErrWindow.setSize (400, 300);
nextErrWindow . setDefaultCloseOperation (JFrame. EXIT_ON_CLOSE) ;
nextErrWindow .setLocationRelativeTo (null);
nextErrWindow . setVisible (true);
dispose ();

1)

// Set Layout Manager
setLayout (new GridLayout(4, 0));

// Add Panels to the Window
this.add(code_panel);
this.add(credit_panel);
this.add(message_panel);
this.add(read_-panel);

} //}E‘ND OF CLASS

Read Module_Code_Credit_Ready_Error

©ooTDU A WN -

Listing A.27: Read_Module_Code_Credit_Ready_Error.java

import
import
import
import
import
import
import
import
import
import
import

public

java.awt.GridLayout;
java.awt.event .ActionEvent;
java.awt.event.ActionListener;
javax .swing . x;
java.sql.CallableStatement;
java.sql.Connection;
java.sql.DriverManager;
java.sql.ResultSet;
java.sql.SQLException;
java.sql.Statement;
java.sql.Types;

class Read_Module_Code_Credit_-Ready_Error extends JFrame {

public Read_Module_.Code_Credit_Ready_Error (String winTitle, String err) {

super (winTitle);

// Create Swing Components

JPanel read_-module_code_credit_-ready_error_warning_panel = new JPanel();

final JLabel read_-module_code_credit_-ready_error_warningLab = new JLabel();

read-module_code_credit_-ready_-error_-warning_panel
.add(read-module_code_credit_-ready_error_warningLab);

JPanel message_panel = new JPanel();

final JLabel messageLab = new JLabel(err);

message_panel.add(messageLab);

JPanel input_panel = new JPanel();

JButton input = new JButton(”Input”);

input_panel.add(input);

// Add Action to the button
input.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent e) {
Input_code_credit-Waiting backWindow = new
Input_code_credit_-Waiting (”Input_code_credit_-Waiting”);
backWindow . setSize (400, 300);
backWindow.setDefaultCloseOperation (JFrame. EXIT_-ON_CLOSE);
backWindow . setLocationRelativeTo (null);
backWindow . setVisible (true);
dispose ();

1)
// Set Layout Manager
setLayout (new GridLayout(3, 0));

// Add Panels to the Window
this.add(read_-module_code_credit_-ready_error_warning_panel);
this.add (message_panel);

this.add(input_panel);

}
} // END OF CLASS

266

APPENDIX A. MODELS AND RESULTS OF EXPERIMENT (1) Al

APPENDIX A

Write_Module Ready

Listing A.28: Write_M odule_Ready.java

1 import java.awt.GridLayout;

2 import java.awt.event.ActionEvent;

3 import java.awt.event.ActionListener;

4 import javax.swing.x*;

5 import java.sql.CallableStatement;

6 import java.sql.Connection;

7 import java.sql.DriverManager;

8| import java.sql.ResultSet;

9| import java.sql.SQLException;

10 import java.sql.Statement;

11 import java.sql.Types;

12

13| public class Write_Module_Ready extends JFrame {

14 public Write_Module_Ready (String winTitle, final String code,

15 final String credit) {

16 super (winTitle);

17

18 // Create Swing Components

19 JPanel code_panel = new JPanel();

20 final JLabel codeLab = new JLabel();

21 code_panel.add(codeLab);

22 JPanel credit_panel = new JPanel();

23 final JLabel creditLab = new JLabel();

24 credit_panel.add(creditLab);

25 JPanel message_panel = new JPanel();

26 final JLabel messageLab = new JLabel(” Are you sure to proceed Updating ”);
27 message_-panel.add (messageLab);

28 JPanel write_panel = new JPanel();

29 JButton write = new JButton(” Write”);

30 write_panel.add(write);

31

32 // Add Action to the button

33 write.addActionListener (new ActionListener () {

34 public void actionPerformed (ActionEvent e) {

35 boolean recordUpdated = false;

36

37 // Declare Connection properties

38 Connection conn = null;

39 Statement stmt = null;

40 int recAffected = 0;

41

42 // Declare Connection properties

43 try {

44 Class . forName (”com.mysql.jdbc.Driver”). newlnstance ();
45 String connectionUrl = ”jdbc:mysql://localhost:3306/testdbl”;
46 String connectionUser = ”"root”;

47 String connectionPassword = 77

48 conn = DriverManager.getConnection (connectionUrl,
49 connectionUser , connectionPassword);

50 stmt = conn.createStatement ();

51

52 // Ezecute a query statement or a stored procedure
53 CallableStatement procnone =

54 conn.prepareCall (”{call writeModule(?, ?)}”);
55

56 // Sets the input parameter

57 procnone.setInt (1, Integer.parselnt(code));

58 procnone.setInt (3, Integer.parselnt(credit));

59

60 // Registers the out parameters

61 procnone.registerOutParameter (3, Types.INTEGER);
62

63 recAffected = procnone.executeUpdate ();

64

65 // Check if there is an updated record

66 if (recAffected > 0)

67 recordUpdated = true;

68 else

69 recordUpdated = false;

70

71 } catch (Exception el) {

72 el.printStackTrace ();

73 } finally {

74 try { if (stmt != null) stmt.close(); } catch (SQLException el)
75 { el.printStackTrace (); }

76 try { if (conn != null) conn.close (); } catch (SQLException el)
7 { el.printStackTrace ();

78 }

79 if (recordUpdated) {

80 System.out.println (” YES YES YES YES YES YES”);

81 JOptionPane.showMessageDialog (null ,

82 ”The business task is completed successfully.”);
83 System . exit (0);

84 !

85 else {

86 System.out.println (” NO NO NO NO NO NO NO NO”);

87 Write_Module_Ready_Error nextErrWindow = new

88 Write_Module_Ready_Error (” Write_Module_Ready_Error 7,
89 ”Can not be Updated. Please Try Again”);

267

APPENDIX A. MODELS AND RESULTS OF EXPERIMENT (1) A.1. APPENDIX A
90 nextErrWindow . setSize (400, 300);

91 nextErrWindow . setDefaultCloseOperation (JFrame. EXIT_ ON_CLOSE) ;
92 nextErrWindow .setLocationRelativeTo (null);

93 nextErrWindow . setVisible (true);

94 dispose ();

95

96

97 1)

98

99 // Set Layout Manager

100 setLayout (new GridLayout(4, 0));

101

102 // Add Panels to the Window

103 this.add(code_panel);

104 this.add(credit_panel);

105 this.add (message_panel);

106 this.add(write_panel);

107 1

108 } // END OF CLASS

Write_Module_Ready

Listing A.29: Write_M odule_Ready.java

1 import java.awt.GridLayout;

2 import java.awt.event.ActionEvent;

3 import java.awt.event.ActionListener;

4 import javax.swing.x*;

5 import java.sql.CallableStatement;

6 import java.sql.Connection;

7 import java.sql.DriverManager;

8 import java.sql.ResultSet;

9| import java.sql.SQLException;

10 import java.sql.Statement;

11 import java.sql.Types;

12

13| public class Write_Module_Ready_Error extends JFrame {

14 public Write_Module_Ready_Error (String winTitle, String err) {
15 super (winTitle);

16

17 // Create Swing Components

18 JPanel write_module_ready_error_warning_panel = new JPanel();
19 final JLabel write_module_ready_error_-warningLab = new JLabel();
20 write_module_ready_error_warning_panel

21 .add(write_module_ready_error_warningLab);

22 JPanel message_panel = new JPanel();

23 final JLabel messageLab = new JLabel(err);

24 message_panel.add(messageLab);

25 JPanel exit_panel = new JPanel();

26 JButton exit = new JButton(”exit”);

27 exit_panel.add(exit);

28

29 // Add Action to the button

30 exit.addActionListener(new ActionListener () {

31 public void actionPerformed (ActionEvent e) {

32 Input-code_credit-Waiting backWindow = new
33 Input_-code_credit-Waiting (”Input_code_credit-Waiting”);
34 backWindow . setSize (400, 300);

35 backWindow . setDefaultCloseOperation (JFrame. EXIT_ON_CLOSE) ;
36 backWindow . setLocationRelativeTo (null);

37 backWindow.setVisible (true);

38 dispose ();

39

40 1)

41

42 // Set Layout Manager

43 setLayout (new GridLayout(3, 0));

44

45 // Add Panels to the Window

46 this.add(write_module_ready_error_warning_panel);

47 this.add(message_panel);

48 this.add(exit_-panel);

49 }

50 } // END OF CLASS

268

Appendix: Models and Java Code of
Experiment (2)

B.1 Complete Models and Full results of Experiment (2)

This Appendix presents the XML representations of all uML models of the Student Enrollment
Sub-system case study, and the completed Java and MySQL code generated from these models
via BUILD. The experiment presented previously in chapter 10.

Experiment (2): Requirement Models Construction

Listing B.1: CaseStudy2.java

package mde.example;

import java.io.File;

import java.io.IOException;

import mde. data.model.DDiagram;

import mde.database.gen.DumpFileGenerator;
import mde. mysql. gen. MySQLDumpFileGenerator;
import mde. database.gen.TreeException;

import mde. dataflow .model . DfDiagram;

10 import mde.dbs.model.Schema;

11 import mde.dfd2ddfd . rule.DfDiagramToDfDiagram;
12 import mde. dfd2state.rule.DfdDiagramToStDiagram;
13 import mde.dm2schem. rule . DDiagramToSchema2 ;

14| import mde.dm_dfd_state2code. rule.DDiagramToCDiagram2x;
15| import mde. gui.gen.CodeFileGenerator;

16 | import mde. gui.model. GuiBoundary ;

17| import mde. gui.model.GuiDiagram;

18| import mde.impact.model.ImpBoundary;

19| import mde.impact.model.ImpDiagram;

20| import mde.impact.model.ImpCreateFlow;

21 import mde.impact.model . ImpObject;

22 import mde.impact.model.ImpRole;

23 import mde.impact.model.ImpTask;

24 import mde.inf2dm . rule .InfDiagramToDDiagram;
25 import mde.information.model. Association;

26 import mde. information.model. Entity;

27 import mde.information.model. Attribute;

28 import mde. information.model.Role;

29 import mde. javagui.gen.JavaCodeFileGenerator;
30 import mde. model.Type;

31 import mde.state.model.StDiagram;

32| import mde.state2win . rule.StDiagramToGuiDiagram;
33 import mde. task.model. Actor;

34 import mde. task.model.Boundary;

35| import mde. task.model.Diagram;

36 | import mde. task.model.Participation;

37| import mde. task.model.Task;

© WU A WN -

269

APPENDIX B. MODELS AND RESULTS OF EXPERIMENT (2) B.1. APPENDIX B

38 import mde. taskimpact2dataflow . rule .DiagramToDfDiagram;

39 import org.jast.ast.ASTWriter;

40

41| public class CaseStudy2 {

42 public static void main(String[] args) throws IOException,

43 TreeException, mde. gui.gen.TreeException {

44 // TODO Auto—generated method stub

45

46 //Construct the Task Model

47 Diagram taskModel = new Diagram();

48 Boundary boundary = new Boundary(” Enrol a Student”);

49 Actor actorl = new Actor(” Student”);

50 Task enrolStd = new Task(” Enrol”);

51 Participation link4 = new Participation();

52 link4 . addRole (new mde. task.model.Role(” student” ,actorl));

53 link4 . addRole (new mde. task . model. Role(” enrol”, enrolStd));

54 Participation link3 = new Participation();

55 link3 .addRole (new mde. task.model.Role(”student” ,actorl));

56 link3 .addRole (new mde. task.model.Role(” enrol”, enrolStd));

57 boundary .addActor (actorl);

58 boundary.addParticipation (link4);

59 boundary.addParticipation (link3);

60 taskModel . addBoundary (boundary) ;

61

62 ASTWriter writer = new ASTWriter(new File(”Stud_Enrol_taskModel.xml”));
63 writer .usePackage (”mde. task.model”, ”"xmlns:task”);

64 writer . writeDocument (taskModel);

65 writer.close ();

66

67 System.out. println(” (1) Task Model is Created by user.”);

68 7/ //

69

70 // Construct the Impact Model

71 ImpDiagram ImpactModel = new ImpDiagram ();

72 ImpBoundary impboundary = new ImpBoundary(” Enrol a Student”);
73 ImpTask impEnrolStd = new mde.impact.model.ImpTask(” Enrol”);
74 ImpObject impObj3 = new ImpObject(” Enrollment”);

75 ImpCreateFlow cf = new ImpCreateFlow ();

76 ImpRole impcf2 = new ImpRole(” enrol”, impEnrolStd);

7 ImpRole impcfl = new ImpRole(” enrollment”, impObj3);

78 cf.addImpRole(impcf2);

79 cf.addImpRole(impcfl);

80 impboundary .addImpObject (impObj3);

81 impboundary .addImpCreateFlow (cf);

82 ImpactModel.addImpBoundary (impboundary);

83

84 ASTWriter writerl = new ASTWriter(new File(” Stud_-Enrol_.impactModel.xml”));
85 writerl .usePackage (”"mde.impact.model” , ”xmlns:imp”);

86 writerl.writeDocument (ImpactModel);

87 writerl.close ();

88

89 System.out. println(” (2) Impact Model is Created by user.”);
90 //

91

92 // Construct the Information Model

93 mde. information . model.Diagram informationModel =

94 new mde. information.model.Diagram ();

95 Entity studentEntity = new Entity (” Account”);

96 Attribute attr5 = new Attribute(”regNumber”, new Type(”’Integer”)).setldentifier (true);
97 Attribute attr2 = new Attribute(”name”, new Type(” String”));
98 Attribute attr3 = new Attribute(”age”, new Type(” String”));

99 Attribute attr4d = new Attribute(”gender”, new Type(” String”));
100 Attribute attr7 = new Attribute(”username”, new Type(” String”));
101 Attribute attr8 = new Attribute(” password”, new Type(” String”));
102 studentEntity . addAttribute (attr5);

103 studentEntity . addAttribute (attr2);

104 studentEntity . addAttribute (attr3);

105 studentEntity . addAttribute (attr4);

106 studentEntity .addAttribute (attr7);

107 studentEntity .addAttribute (attr8);

108

109 Entity enrolEntity = new Entity(” Enrollment”);

110 Attribute attrl0 = new Attribute(”regNumber” , new Type(”’ Integer”)).setldentifier (true);
111 Attribute attrll = new Attribute(”code”, new Type(” String”)).setldentifier (true);
112 enrolEntity .addAttribute (attr10);

113 enrolEntity .addAttribute (attrll);

114

115 Entity moduleEntity = new Entity (”Module”);

116 Attribute attrl2 = new Attribute(”code”, new Type(” Integer”)).setldentifier (true);
117 Attribute attrl3 = new Attribute(” title”, new Type(” String”));
118 Attribute attrl4 = new Attribute(”credit”, new Type(” Integer”));
119 Attribute attrl5 = new Attribute(”desc”, new Type(” String”));
120 moduleEntity . addAttribute (attrl2);

121 moduleEntity . addAttribute (attrl3);

122 moduleEntity . addAttribute (attrl4);

123 moduleEntity .addAttribute (attrl5);

124

125 informationModel.addEntity (studentEntity);

126 informationModel.addEntity (moduleEntity);

127 informationModel.addEntity (enrolEntity);

128 informationModel.addAssociation (new Association ()

129 .addRole (new Role(”module” , informationModel

130 .getEntity (”Module”)).setMultiple (false))

131 .addRole (new Role(”enrol”, informationModel

270

APPENDIX B. MODELS AND RESULTS OF EXPERIMENT (2) B.1. APPENDIX B

132 .getEntity (” Enrollment”)).setMultiple (true)));

133 informationModel.addAssociation (new Association ()

134 .addRole (new Role(”student” , informationModel

135 .getEntity (” Account”)).setMultiple (false))

136 .addRole (new Role(”enrol”, informationModel

137 .getEntity (" Enrollment”)).setMultiple (true)));

138

139 ASTWriter writer2 = new ASTWriter(new File(” Stud_Enrol_informationModel.xml”));
140 writer2 .usePackage (”"mde. information.model”, "xmlns:inf”);

141 writer2 . writeDocument (informationModel);

142 writer2.close ();

143

144 System .out. println(”(3) Inf. Model is Created by user.”);

145

146

147 //Generate DataFlow Model

148 DiagramToDfDiagram topRule = new DiagramToDfDiagram ();

149 DfDiagram dataflowModel = topRule.translate (taskModel, ImpactModel);
150

151 ASTWriter writer3 = new ASTWriter(new File(”Stud_Enrol_DataFlowModel.xml”));
152 writer3.usePackage (”"mde. dataflow .model” , ”"xmlns:dfd”);

153 writer3 .writeDocument (dataflowModel);

154 writer3.close ();

155

156 System.out.println (” (4) DataFlow Model is Created”+

157 ? (Task 4+ Impact Model —> DataFlow Model).”);

158 /)

159

160 //Adding some data on flows in dataflow model.

161 // input to login task

162 dataflowModel. getDfBoundaries (). get (0).getDfInputFlows ()

163 .get (0).addDataonflow (”regNumber”);

164 dataflowModel. getDfBoundaries (). get (0).getDfInputFlows ()

165 .get (1).addDataonflow (” code”);

166 // create assignment

167 dataflowModel . getDfBoundaries (). get (0).getDfCreateFlows ()

168 .get (0).addAssignment (” @QregNumber = regNumber”);

169 dataflowModel. getDfBoundaries (). get (0).getDfCreateFlows ()

170 .get (0).addAssignment (” @Qcode = code”);

171 // create

172 dataflowModel. getDfBoundaries (). get (0).getDfCreateFlows ()

173 .get (0).addDataonflow (”regNumber”);

174 dataflowModel. getDfBoundaries (). get (0).getDfCreateFlows ()

175 .get (0).addDataonflow (”code”);

176

177 System .out.println(” (4) Data on flows are added”+

178 ” by user in the DataFlow model.”);

179 // //

180

181 // Generate Detailed DatFlow Model

182 DfDiagramToDfDiagram topRule6 = new DfDiagramToDfDiagram ();
183 DfDiagram detailed_dataflowModel = topRule6.translate (dataflowModel);
184

185 ASTWriter writer6 = new ASTWriter(new File(” Stud_Enrol_Detailed_DataFlowModel.xml”));
186 writer6 .usePackage (”"mde. dataflow .model” , ”"xmlns:dfd”);

187 writer6 .writeDocument (detailed_dataflowModel);

188 writer6.close ();

189

190 System.out.println(”(5) Detailed DataFlow Model is Created”+
191 ” (DataFlow Model —> DataFlow Model).”);

192 7/ //

193

194 //Generate Data Model

195 InfDiagramToDDiagram topRule4 = new InfDiagramToDDiagram ();
196 DDijagram dataModel = topRule4.translate (informationModel);
197

198 ASTWriter writer4 = new ASTWriter(new File(” Stud_Enrol_DataModel.xml”));
199 writer4 .usePackage ("mde. data.model” , ”xmlns:data”);

200 writer4 .usePackage (”mde. model” , ”xmlns:mod”);

201 writer4 . writeDocument (dataModel);

202 writerd . close ();

203

204 System .out.println (” (5) Data Model is Created”+

205 ”(Information Model ——> Data Model).”);

206 // //

207

208 //Generate State Model for Screens Nawvigation

209 // (DataFlow Model ——> State Model)

210 DfdDiagramToStDiagram topRule7 = new DfdDiagramToStDiagram ();
211 StDiagram stateModel = topRule7.translate(detailed_-dataflowModel , dataModel);
212

213 ASTWriter writer7 = new ASTWriter(new File(” Stud_Enrol_StateModel.xml”));
214 writer7 .usePackage (”"mde. state.model” , "xmlns:state”);

215 writer7 .writeDocument (stateModel);

216 writer7.close ();

217

218 System.out.println (” (6) State Model is Created (Detailed DataFlow Model —> State Model).”
219 // //

220

221 //Generate Gui Description Model

222 //(State Model ——> Gui Specification Model)

223 StDiagramToGuiDiagram topRule9 = new StDiagramToGuiDiagram ();
224 GuiDiagram GuiModel = topRule9.translate (stateModel);

225

271

APPENDIX B. MODELS AND RESULTS OF EXPERIMENT (2) B.1. APPENDIX B

226 ASTWriter writer9 = new ASTWriter(new File(” Stud_Enrol_GuiModel.xml”));
227 writer9.usePackage (”"mde. gui.model”, ”xmlns:gui”);

228 writer9 .writeDocument (GuiModel);

229 writer9.close ();

230

231 System.out.println(”(7) Gui Specification Model is Created (State Model —> Gui
232 7/ //

233

234 //generate Database Schema Model

235 // (Detailed_.DFD + Data Model ——> Schema)

236 DDiagramToSchema2 topRule5 = new DDiagramToSchema2 ();

237 Schema schemaModel = topRuleb.translate (detailed_-dataflowModel , dataModel);
238

239 System.out. println (schemaModel.getName ());

240

241 ASTWriter writer5 = new ASTWriter(new File(” Stud_Enrol_-SchemaModel.xml”));
242 writer5 .usePackage (”mde.dbs.model” , ”xmlns:dbs”);

243 writer5 .usePackage (”mde. model” , ”xmlns:mod”);

244 writer5 . writeDocument (schemaModel) ;

245 writer5.close ();

246

247 System.out.println(” (9) Database Schema Model is Created”+

248 ” (DataFlow + Data Model —> Database Schema Model).”);

249 // //

250

251 //Generate Code Model

252 // (Database Schema + DataFlow Model ——> Code Model)

253 DDiagramToCDiagram2x topRule8 = new DDiagramToCDiagram2x () ;

254 mde. code . model . Diagram codeModel = topRule8

255 .translate (schemaModel, detailed_-dataflowModel);

256

257 ASTWriter writer8 = new ASTWriter(new File (” CodeModel.xml”));

258 writer8 . usePackage ("mde. code.model” , ”xmlns:code”);

259 writer8.usePackage (”mde. model” , ”xmlns:mod”);

260 writer8 . writeDocument (codeModel);

261 writer8.close ();

262

263 System.out.println (” (10) Code Model is Created”+

264 ” (Database Scehma Model —> Code Model).”);

265 System.out.println (”\nModel Transformation System is Completed ...7);
266

267 // Code Generation

268 DumpFileGenerator MySQLGenerator = new MySQLDumpFileGenerator(schemaModel);
269 System .out.println(”calling generate in mysql package generator”);

270 MySQLGenerator. generate ();

271 System.out.println (”Finished generating MySQL Schema OK”);

272

273 for (GuiBoundary bound : GuiModel.getGuiBoundaries ())

274

275 CodeFileGenerator JavaGenerator = new JavaCodeFileGenerator(bound);
276 System.out. println(” calling generate in java code file generator”);
277 JavaGenerator.generate ();

278 System.out. println (”Finished generating Java Gui code”);

279 }

280 3

281 }

Model).”);

Task model: Student Registration System (Enrol a Student)

Listing B.2: Stud_Enrol_taskModel.xml

1| <?xml version="1.0" encoding="UTF-8” 7>
2| <task:Diagram xmlns:task="mde.task.model” id="0">
3 <task:Boundary id="1” name="Enrol a Student”>
4 <task:Actor id="2” name="Student” />
5 <task:Participation id="3">

6 <task:Role id="4” name="student”>
7 <task:Actor ref="2"/>

8 </task:Role>

9 <task:Role id="5" name="enrol”>

10 <task:Task id="6" name="Enrol” />
11 </task:Role>

12 </task:Participation>

13 <task:Participation id="7">

14 <task:Role id="8" name="student”>
15 <task:Actor ref="2"/>

16 </task:Role>

17 <task:Role id="9” name="enrol”>

18 <task:Task ref="6"/>

19 </task:Role>

20 </task:Participation>

21 </task:Boundary>

22| </task:Diagram>

272

APPENDIX B. MODELS AND RESULTS OF EXPERIMENT (2) B.1. APPENDIX B

Impact model: Student Registration System (Enrol a Student)

Listing B.3: Stud_Enrol_impactModel.xml

1| <imp:ImpDiagram xmlns:imp="mde.impact.model” id="0">
2 <imp:ImpBoundary id="1” name="Enrol a Student”>
3 <imp:ImpObject id="2” name="Enrollment” />
4 <imp:ImpCreateFlow id="3">
5 <imp:ImpRole id="4" name="enrol”>
6 <imp:ImpTask id="5” name=" Enrol” />
7 </imp:ImpRole>
8 <imp:ImpRole id="6” name="enrollment”>
9 <imp:ImpObject ref="2”/>
10 </imp:ImpRole>
11 </imp:ImpCreateFlow>
12 </imp:ImpBoundary>
13| </imp:ImpDiagram>

Inofrmation model: Student Registration System (Enrol a Student)

Listing B.4: Stud_Enrol_InformationM odel.xml

1| <inf:Diagram xmlns:inf="mde. information.model” id="0">

2 <inf:Entity id="23” name="Enrollment”>

3 <inf:Attribute id="24" name="regNumber” identifier="true” size="0">
4 <Type id="25” name="Integer” />

5 </inf:Attribute>

6 <inf:Attribute id=726" name="code” identifier="true” size="0">

7 <Type id="27” name=" String” />

8 </inf:Attribute>

9 </inf:Entity>

10| </inf:Diagram>

DataFlow model (initial): Student Registration System (Enrol a Student)

Listing B.5: Stud_Enrol_DataFlowM odel.xzml

1| <dfd:DfDiagram xmlns:dfd="mde.dataflow.model” id="0">
2 <dfd:DfBoundary id="1” name="Enrol a Student”>
3 <dfd:DfActor id="2” name=" Student” />

4 <dfd:DfObject id="3” name="Enrollment” />

5 <dfd:DfInputFlow id="4">

6 <dfd:DfRole id="5"” name="student”>

7 <dfd:DfActor ref="2"/>

8 </dfd:DfRole>

9 <dfd:DfRole id="6” name="enrol”>

10 <dfd:DfTask id="7” name="Enrol” />

11 </dfd:DfRole>

12 </dfd:DfInputFlow>

13 <dfd:DfInputFlow id="8">

14 <dfd:DfRole id="9” name="student”>

15 <dfd:DfActor ref="2"/>

16 </dfd:DfRole>

17 <dfd:DfRole id="10" name="enrol”>

18 <dfd:DfTask ref="7"/>

19 </dfd:DfRole>

20 </dfd:DfInputFlow>

21 <dfd:DfCreateFlow id="11">

22 <dfd:DfRole id="12" name="enrol”>

23 <dfd:DfTask id="13" name="Enrol” />

24 </dfd:DfRole>

25 <dfd:DfRole id="14"” name="enrollment”>
26 <dfd:DfTask id="15" name="Enrollment” />
27 </dfd:DfRole>

28 </dfd:DfCreateFlow>

29 </dfd:DfBoundary>

30| </dfd:DfDiagram>

DataFlow model (detailed): Student Registration System (Enrol a Student)

273

APPENDIX B. MODELS AND RESULTS OF EXPERIMENT (2)

B.1. APPENDIX B

Listing B.6: Stud_Enrol_Detailed_DataFlowM odel.xml

1| <dfd:DfDiagram xmlns:dfd="mde. dataflow.model” id="0">
2| <dfd:DfBoundary id=”1” name="Enrol”>

3 <dfd:DfTask id="2" name="Input RegNumber” />
4 <dfd:DfTask id=”3" name=" Create Enrollment” />
5 <dfd:DfTask id="4" name="Input Code” />

6 <dfd:DfActor id="5" name="Student” />

7 <dfd:DfObject id="6" name="Enrollment” />
8 <dfd:DfInputFlow id="7">

9 <dfd:DfRole id="8” name="input-actor”>
10 <dfd:DfActor id="9” name=" Student” />
11 </dfd:DfRole>

12 <dfd:DfRole id="10” name="input_task”>
13 <dfd:DfTask ref="2”"/>

14 </dfd:DfRole>

15 </dfd:DfInputFlow>

16 <dfd:DfInputFlow id="11">

17 <dfd:DfRole id="12” name="input_actor”>
18 <dfd:DfActor ref="5"/>

19 </dfd:DfRole>

20 <dfd:DfRole id="13”" name="input_task”>
21 <dfd:DfTask ref="4"/>

22 </dfd:DfRole>

23 </dfd:DfInputFlow>

24 <dfd:DfReadFlow id="14">

25 <dfd:DfRole id="15” name="input_-task”>
26 <dfd:DfTask ref="2"/>

27 </dfd:DfRole>

28 <dfd:DfRole id="16" name="Input Code”>
29 <dfd:DfTask ref="4"/>

30 </dfd:DfRole>

31 </dfd:DfReadFlow>

32 <dfd:DfReadFlow id="17">

33 <dfd:DfRole id="18" name="input_task”>
34 <dfd:DfTask ref="4"/>

35 </dfd:DfRole>

36 <dfd:DfRole id="19” name="create_task”>
37 <dfd:DfTask ref="3"/>

38 </dfd:DfRole>

39 </dfd:DfReadFlow>

40 <dfd:DfCreateFlow id="20">

41 <dfd:DfRole id="21" name="create_task0”>
42 <dfd:DfTask ref="3”"/>

43 </dfd:DfRole>

44 <dfd:DfRole id="22” name="create_-object0”>
45 <dfd:DfObject ref="6"/>

46 </dfd:DfRole>

47 </dfd:DfCreateFlow>

48 <dfd:DfCreateFlow ref="20"/>

49 </dfd:DfBoundary>

50 | </dfd:DfDiagram>

Data Dependency model: Student Registration System (Enrol a Student)

Listing B.7: Stud_Enrol_DataM odel.xml

<data:DEntity id="23”
<data:DAttribute id
<mod:Type id="25"
</data:DAttribute>
<data:DAttribute id
<mod:Type id="27"
</data:DAttribute>
</data:DEntity>
</data:DDiagram>

QOO WN

[

<data:DDiagram xmlns:data="mde. data.model”

—ro4n

—7 9"

id="0">
name="Enrollment”>
name="regNumber”
name="Integer” />

identifier="true” size="10">

name="code” identifier="true” size="30">

name=" String” />

Screen State model:

Student Registration System (Enrol a Student)

Listing B.8: Stud_Enrol_StateModel.xml

1| <state:StDiagram xmlns:
2 <state:StBoundary id=
3 <state:State id="2"
4 <state:State id="3”"
5 <state:State id="4"
6 <state:State id="5"
7 <state:State id="6"
8 <state:State id="7”
9 <state:State id="8”

state="mde. state . model”
”?1” name="Enrol”>
name=" Start” priority="5"/>

name="End” priority="0"/>
name="input_-regNumber_Waiting” priority="4"/>
name="input-regNumber_Waiting_Error” priority="0"/>
name="input_code_Waiting” priority="4"/>
name="input_code_-Waiting_Error” priority="0"/>
name=" Create Enrollment_Ready” priority="2"/>

id="0">

274

APPENDIX B. MODELS AND RESULTS OF EXPERIMENT (2)

B.1.

APPENDIX B

10
11
12

14
15

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
s
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

Enrollment_Ready_Error”

priority="0"/>

Pinitialise”>

action=

<state:State id="9” name=" Create
<state:Transition id="10" exit="false”
<state:StRole id="11" name="start”>
<state:State ref="2"/>
</state:StRole>
<state:StRole id="12" name="start_task”>

<state:State
</state:StRole>
</state:Transition>

ref="4"/>

<state:Transition id="13" exit="false”
<state:StRole id="14" name="state”>
<state:State ref="4"/>
</state:StRole>
<state:StRole id="15" name="error”>

<state:State
</state:StRole>
</state:Transition>

ref="5" />

<state:Transition id="16" exit="false”
<state:StRole id="17” name="error”>
<state:State ref="5"/>
</state:StRole>
<state:StRole id="18" name="state”>

<state:State
</state:StRole>
</state:Transition>
<state:Transition id="19”
<state:StRole id="20"
<state:State ref="4"/>
</state:StRole>
<state:StRole id="21"
<state:State ref="6"/>
</state:StRole>
</state:Transition>

ref="4"/>

<state:Transition id="22” exit="false”
<state:StRole id="23” name="state”>
<state:State ref="6"/>
</state:StRole>
<state:StRole id="24" name="error”>

<state:State
</state:StRole>
</state:Transition>
<state:Transition id="25" exit="false”
<state:StRole id="26" name="error”>

ref="7"/>

<state:State ref="7"/>
</state:StRole>
<state:StRole id="27" name="state”>

<state:State
</state:StRole>
</state:Transition>
<state:Transition id="28"
<state:StRole
<state:State
</state:StRole>
<state:StRole id="30"
<state:State ref="8"/>
</state:StRole>
</state:Transition>

ref="6" />

ref="6"/>

<state:Transition id="31” label="create()”
<state:StRole id="32"
<state:State ref="8"/>
</state:StRole>
<state:StRole id="33" name="End”>

<state:State
</state:StRole>
</state:Transition>
<state:Transition id="34”
<state:StRole id="35"

ref="3"/>

exit="true”

<state:State ref="8"/>
</state:StRole>
<state:StRole id="36" name="end”>

<state:State
</state:StRole>
</state:Transition>

ref="3"/>

<state:Transition id="37" exit="false”
<state:StRole id="38” name="state”>
<state:State ref="8"/>
</state:StRole>
<state:StRole id="39” name="error”>
<state:State ref="9"/>

</state:StRole>
</state:Transition>

<state:Transition id="40”" exit="false”
<state:StRole id="41" name="error”>
<state:State ref="9"/>
</state:StRole>
<state:StRole id="42" name="state”>
<state:State ref="8"/>

</state:StRole>
</state:Transition>
</state:StBoundary>
</state:StDiagram>

label="input ()”
name="input_-regNumber_Waiting”>

label="input ()”
id="29” name="input_code_Waiting”>

action="Exception”>
p

action="initialise”>

exit="false” action="Input”>

name="input-code-Waiting”>

action="Exception”>

action="Input”>

exit="false” action="Input”>

name=" Create Enrollment_Ready”>

exit="false” action="Create”>

name="Create Enrollment_Ready”>

action="exit”>
name="end_task”>

action="Exception”>

action="exit”>

275

APPENDIX B. MODELS AND RESULTS OF EXPERIMENT (2) B.1. APPENDIX B

GUI model: Student Enrollment System (Enrol a Student)

Listing B.9: Stud_Enrol_GuiM odel.xml

1| <gui:GuiDiagram xmlns:gui="mde. gui.model” id="0">

2 <gui:GuiBoundary id="1” name="Enrol”>

3 <gui:Window id="2” name="Input-regNumber_Waiting” order="47">

4 <gui:Textfield id="3” name="regNumber” />

5 <gui:Button id="4" name=" Exception” event="Exception” exit="false” />

6 <gui:Button id="5” name="Input” event="Input” exit="false” />

7 </gui:Window>

8 <gui:Window id="6” name="Input-regNumber_-Waiting_-Error” order="0" error="true”>
9 <gui:Label id="7" name="input_.regNumber_Waiting_Error_warning”

10 text="Null value not accepted”/>

11 <gui:Button id="8” name="initialise” event="initialise” exit="false” />
12 </gui:Window>

13 <gui:Window id="9” name="Input_code_Waiting” order="4">

14 <gui:Textfield id="10" name="code” />

15 <gui:Button 11”7 name=" Exception” event="Exception” exit="false” />

16 <gui:Button ’12” name="Input” event="Input” exit="false” />

17 </gui:Window>

18 <gui:Window id="13” name="Input_-code_-Waiting_Error” order="0” error="true”>
19 <gui:Label id="14” name="input_code_-Waiting_Error_warning” text="Null value not accepted”/>
20 <gui:Button id="15" name="Input” event="Input” exit="false” />

21 </gui:Window>

22 <gui:Window id="16" name="Create Enrollment_-Ready” order="2">

23 <gui:Label id="17” name="regNumber” text="regNumber” />

24 <gui:Label id="18” name="code” text="code” />

25 <gui:Button id="19” name=" Create” event="Create” exit="false” />

26 <gui:Button id="20” name="exit” event="exit” exit="true” />

27 <gui:Button id="21" name=" Exception” event="Exception” exit="false” />

28 </gui:Window>

29 <gui:Window id="22” name=”" Create Enrollment_Ready_Error” order="0" error="true”>
30 <gui:Label id="23"” name=" Create Enrollment_Ready_Error_warning”

31 text="Connection to the Data source is fail” />

32 <gui:Button id=”24” name="exit” event="exit” exit="false” />

33 </gui:Window>

34 </gui:GuiBoundary>

35| </gui:GuiDiagram>

Database and Query model: Student Enrollment System (Enrol a Student)

Listing B.10: Manage_M odule_SchemaM odel.xml

1| <?xml version="1.0" encoding="UTF-8” 7>
2| <dbs:Schema xmlns:dbs="mde.dbs.model” id="0"” name="database”>
3 <dbs:Table id="1” name=" Enrollment”>
4 <dbs:Column id="2” name="regNumber” size="10">
5 <mod:Type xmlns:mod="mde. model” id="3” name="INTEGER” />
6 </dbs:Column>
7 <dbs:Column id="4” name="code” size="30">
8 <mod:Type id="5" name="VARCHAR” />
9 </dbs:Column>
10 <dbs:PrimaryKey id="6">
11 <dbs:Column ref="2"/>
12 <dbs:Column ref="4"/>
13 </dbs:PrimaryKey>
14 </dbs:Table>
15 <dbs:Procedure id="7" name="createEnrollment” table="Enrollment”>
16 <dbs:Argument id="8" type="Integer” name="regNumber” in="true” />
17 <dbs:Argument id="9” type="String” name="code” in="true” />
18 <dbs:Create id="10” name="INSERT_Enrollment”>
19 <dbs:Operator id="11" type="boolean” symbol="Assign”>
20 <dbs:Column id="12” name="regNumber” size="10">
21 <mod:Type id="13” name="INTEGER” />
22 </dbs:Column>
23 <dbs:Variable id="14" type="INTEGER” name="regNumber” />
24 </dbs:Operator>
25 <dbs:Operator id="15” type="boolean” symbol=" Assign”>
26 <dbs:Column id="16” name="code” size="30">
27 <mod:Type id="17" name="VARCHAR” />
28 </dbs:Column>
29 <dbs:Variable id="18" type="VARCHAR” name="code” />
30 </dbs:Operator>
31 </dbs:Create>
32 </dbs:Procedure>
33| </dbs:Schema>

OOP Code model: Student Enrollment System (Enrol a Student)

276

APPENDIX B. MODELS AND RESULTS OF EXPERIMENT (2) B.1.

APPENDIX B

© oo~ DU s WN -

Listing B.11: Stud_Enrol_CodeM odel.xml

<?xml version="1.0" encoding="UTF-8" 7>
<code:Diagram xmlns:code="mde.code.model” id="0">
<code:Clazz id="1” name=" Enrollment” visible="public”>
<code:Attribute id="2” name="regNumber” visible="private”>
<mod:Type xmlns:mod="mde.model” id="3” name="int” />
</code:Attribute>
<code:Attribute id="4” name="code” visible="private”>
<mod:Type id="5" name=" String” />
</code:Attribute>
<code:Method id="6” name="createEnrollment” visible="public”>
<mod:Type id="7" name="void” />
<code:Argument id="8” type="int” name="regNumber” />
<code:Argument id="9” type="String” name="code” />
<code:Call id="10" name="createEnrollment” />
</code:Method>
<code:Constructor id="11” name=" Enrollment” visible="public”>
<code:Operator id="12” type="boolean” symbol="assign”>
<code:Identifier id="13" type="int” name="regNumber” scope="Object” />
<code:Identifier id="14” type="int” name="regNu” />
</code:Operator>
<code:Operator id="15” type="boolean” symbol="assign”>
<code:Identifier id="16" type="String” name="code” scope="Object” />
<code:Identifier id="17" type="String” name="cod” />
</code:Operator>
</code:Constructor>
</code:Clazz>
<code:Clazz id="18" name="Enrol” visible="public”>
<code:Attribute id="19” name=”" Enrollment” visible="private”>
<mod:Type id="20" name="Enrollment” />
</code:Attribute>
<code:Attribute id="21" name=" Student” visible="private”>
<mod:Type id="22” name=" Student” />
</code:Attribute>
<code:Method id="23"” name="Run” visible="public” staticm="true”>
<mod:Type id="24”" name="void” />
</code:Method>
<code:Constructor id="25” name="Enrol” />
</code:Clazz>
</code:Diagram>

MySQL Script: Student Registration System (Enrol a Student)

© 00D U ks WN =

Listing B.12: database_MySQL.sql

—— Database Creation

CREATE DATABASE sysDatabase;
USE sysDatabase;

—— Structure for table ’'Enrollment’
CREATE TABLE Enrollment (
regNumber INT(10) NOT NULL,
code VARCHAR(30) NOT NULL,
PRIMARY KEY(regNumber, code));
—— Structure of Procedure ’createEnrollment’
DELIMITER //
CREATE PROCEDURE createEnrollment (IN regNumber INT(10), IN code VARCHAR(30))
BEGIN
INSERT INTO Enrollment VALUES (regNumber, code);

DELIMITER //

Java Swing Source Code: Student Enrollment System

Input_code_Waiting

W N -

Listing B.13: Input_code_ W aiting.java

import java.awt.GridLayout;

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import javax.swing.x*;

277

APPENDIX B. MODELS AND RESULTS OF EXPERIMENT (2) B.1. APPENDIX B

5 import java.sql.CallableStatement;

6 import java.sql.Connection;

7 import java.sql.DriverManager;

8 import java.sql.ResultSet;

9 import java.sql.SQLException;

10| import java.sql.Statement;

11 import java.sql.Types;

12

13 public class Input_-code_-Waiting extends JFrame {

14 public Input_code_-Waiting (String winTitle, final String regNumber) {
15 super (winTitle);

16

17 // Create Swing Components

18 JPanel message_-panel = new JPanel();

19 final JLabel messageLab = new JLabel(”Input your Data”);
20 message_panel.add(messageLab);

21 JPanel code_panel = new JPanel();

22 JLabel code_label = new JLabel(”code”);

23 final JTextField codeTxt = new JTextField (30);

24 code_panel.add(code_label);

25 code_panel.add(codeTxt);

26 JPanel input_panel = new JPanel();

27 JButton input = new JButton(”Input”);

28 input_panel.add(input);

29

30 // Add Action to the button

31 input.addActionListener (new ActionListener () {

32 public void actionPerformed (ActionEvent e) {

33 String code = codeTxt.getText ();

34

35 if ((codeTxt.getText ().isEmpty ())) {

36 Input_code_Waiting_Error nextErrWindow = new
37 Input_code_-Waiting_Error (”Input_-code_Waiting_Error 7,
38 ”Invalid Input. Please Try Again”);
39 nextErrWindow . setSize (400, 300);

40 nextErrWindow .setDefaultCloseOperation (JFrame. EXIT_ON_CLOSE) ;
41 nextErrWindow .setLocationRelativeTo (null);

42 nextErrWindow . setVisible (true);

43 dispose ();

44

45 else {

46 Create_Enrollment_Ready nextWindow = new

47 Create_Enrollment_Ready (” Create_Enrollment_Ready” , regNumber, code);
48 nextWindow . setSize (400, 300);

49 nextWindow . setDefaultCloseOperation (JFrame. EXIT_-ON_CLOSE) ;
50 nextWindow .setLocationRelativeTo (null);

51 nextWindow . setVisible (true);

52 dispose ();

53

54 1

55 1)

56 // Set Layout Manager

57 setLayout (new GridLayout(3, 0));

58

59 // Add Panels to the Window

60 this.add (message_panel);

61 this.add(code_panel);

62 this.add(input_panel);

63 3

64 } // END OF CLASS

Input_code_Waiting_Error

Listing B.14: Input.ode W aiting_Error.java

import java.awt.GridLayout;

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import javax.swing.x*;

import java.sql.CallableStatement;
import java.sql.Connection;

import java.sql.DriverManager;
import java.sql.ResultSet;

import java.sql.SQLException;

10 import java.sql.Statement;

11 import java.sql.Types;

© WU A WN -

12

13 public class Input_code_-Waiting_Error extends JFrame {

14 public Input_code_-Waiting_Error (String winTitle, String err) {
15 super (winTitle);

16

17 // Create Swing Components

18 JPanel input_code_waiting_error_-warning_panel = new JPanel();
19 final JLabel input-code_waiting_error_warningLab = new JLabel();
20 input-code_-waiting_-error_-warning_-panel

21 .add(input_code_waiting_error_warningLab);

22 JPanel message_panel = new JPanel();

23 final JLabel messageLab = new JLabel(err);

278

APPENDIX B. MODELS AND RESULTS OF EXPERIMENT (2) B.1. APPENDIX B

24 message_panel.add (messageLab);

25 JPanel input_panel = new JPanel();

26 JButton input = new JButton(”Input”);

27 input_panel.add(input);

28

29 // Add Action to the button

30 input.addActionListener(new ActionListener () {

31 public void actionPerformed (ActionEvent e) {

32 Input_-regNumber_Waiting backWindow = new
33 Input_-regNumber_Waiting (" Input_-regNumber_Waiting”);
34 backWindow . setSize (400, 300);

35 backWindow . setDefaultCloseOperation (JFrame. EXIT_-ON_CLOSE) ;
36 backWindow . setLocationRelativeTo (null);
37 backWindow . setVisible (true);

38 dispose ();

39

40 1)

41 // Set Layout Manager

42 setLayout (new GridLayout(3, 0));

43

44 // Add Panels to the Window

45 this.add(input_-code_waiting_error_warning_panel);

46 this.add (message_panel);

47 this.add(input_panel);

48 }

49 } // END OF CLASS

Input_regNumber_Waiting

Listing B.15: Input_regNumber_W aiting.java

1 import java.awt.GridLayout;

2| import java.awt.event.ActionEvent;

3 import java.awt.event.ActionListener;

4 import javax.swing.x*;

5| import java.sql.CallableStatement;

6 import java.sql.Connection;

7 import java.sql.DriverManager;

8 import java.sql.ResultSet;

9 import java.sql.SQLException;

10 import java.sql.Statement;

11 import java.sql.Types;

12

13 public class Input_-regNumber_Waiting extends JFrame {

14 public Input_-regNumber_Waiting (String winTitle) {

15 super (winTitle);

16

17 // Create Swing Components

18 JPanel message_panel = new JPanel();

19 final JLabel messageLab = new JLabel(”Input your Data”);
20 message_panel.add(messageLab);

21 JPanel regNumber_panel = new JPanel();

22 JLabel regNumber_label = new JLabel(”regNumber”);

23 final JTextField regNumberTxt = new JTextField (30);

24 regNumber_panel.add(regNumber_label);

25 regNumber_panel.add (regNumberTxt);

26 JPanel input_panel = new JPanel();

27 JButton input = new JButton(”Input”);

28 input_-panel.add(input);

29

30 // Add Action to the button

31 input.addActionListener (new ActionListener () {

32 public void actionPerformed (ActionEvent e) {

33

34 String regNumber = regNumberTxt.getText ();
35

36 if ((regNumberTxt.getText ().isEmpty ())) {

37 Input_-regNumber_Waiting_Error nextErrWindow = new
38 Input_-regNumber_Waiting_Error (" Input_-regNumber_Waiting_Error 7,
39 ”Invalid Input. Please Try Again”);
40 nextErrWindow .setSize (400, 300);

41 nextErrWindow . setDefaultCloseOperation (JFrame. EXIT_ON_CLOSE) ;
42 nextErrWindow .setLocationRelativeTo (null);
43 nextErrWindow . setVisible (true);

44 dispose ();

45

46 else {

47 Input_code_-Waiting nextWindow = new

48 Input_-code_-Waiting (" Input_code_-Waiting” , regNumber);
49 nextWindow . setSize (400, 300);

50 nextWindow . setDefaultCloseOperation (JFrame. EXIT_-ON_CLOSE) ;
51 nextWindow .setLocationRelativeTo (null);

52 nextWindow . setVisible (true);

53 dispose ();

54

55 1

56 1)

57 // Set Layout Manager

279

APPENDIX B. MODELS AND RESULTS OF EXPERIMENT (2)

B.1. APPENDIX B

58 setLayout (new GridLayout(3, 0));
59

60 // Add Panels to the Window

61 this.add (message_panel);

62 this.add(regnumber_panel);

63 this.add(input_panel);

64 }

65 } // END OF CLASS

Input_regNumber_Waiting Error

Listing B.16: Input_regNumber W aiting_Error.java

1 import java.awt.GridLayout;

2 import java.awt.event.ActionEvent;

3 import java.awt.event.ActionListener;

4| import javax.swing.x;

5| import java.sql.CallableStatement;

6| import java.sql.Connection;

7| import java.sql.DriverManager;

8| import java.sql.ResultSet;

9| import java.sql.SQLException;

10 import java.sql.Statement;

11 import java.sql.Types;

12

13 public class Input-regNumber_Waiting_Error extends JFrame {

14 public Input_-regNumber_Waiting_Error (String winTitle, String err) {
15 super (winTitle);

16

17 // Create Swing Components

18 JPanel input_-regnumber_waiting_error_warning_panel = new JPanel();
19 final JLabel input_-regnumber_waiting_error_warningLab = new JLabel();
20 input-regnumber_waiting_-error_warning_panel

21 .add(input_-regnumber_waiting_error_warningLab);

22 JPanel message_panel = new JPanel ();

23 final JLabel messageLab = new JLabel(err);

24 message_panel.add(messageLab);

25 JPanel initialise_panel = new JPanel();

26 JButton initialise = new JButton(” initialise”);

27 initialise_panel.add(initialise);

28

29 // Add Action to the button

30 initialise.addActionListener (new ActionListener () {

31 public void actionPerformed (ActionEvent e)

32 Input_regNumber_Waiting backWindow = new

33 Input_-regNumber_Waiting (?Input_-regNumber_Waiting”);
34 backWindow . setSize (400, 300);

35 backWindow . setDefaultCloseOperation (JFrame. EXIT_ON_CLOSE) ;
36 backWindow . setLocationRelativeTo (null);

37 backWindow . setVisible (true);

38 dispose ();

39

40 s

41

42 // Set Layout Manager

43 setLayout (new GridLayout(3, 0));

44

45 // Add Panels to the Window

46 this.add(input-regnumber_waiting_error_warning_panel);

47 this.add (message_panel);

48 this.add(initialise_panel);

49 }

50 } // END OF CLASS

Create_Enrollment_Ready

Listing B.17: Create_Enrollment_Ready.java

import
import
import
import
import
import
import
import
import
10| import
11 import

©oo~DU s WN =

13 public

java.awt.GridLayout;
java.awt.event.ActionEvent;
java.awt.event . ActionListener;
javax.swing . x;
java.sql.CallableStatement;
java.sql.Connection;
java.sql.DriverManager;
java.sql.ResultSet;
java.sql.SQLException;
java.sql.Statement;
java.sql.Types;

class Create_Enrollment_Ready extends JFrame {

280

APPENDIX B. MODELS AND RESULTS OF EXPERIMENT (2) B.1. APPENDIX B

14 public Create_Enrollment_-Ready (String winTitle, final String regNumber,
15 final String code)

16 super (winTitle);

17

18 // Create Swing Components

19 JPanel regnumber_panel = new JPanel ();

20 final JLabel regnumberLab = new JLabel();

21 regnumber_panel.add (regnumberLab);

22 JPanel code_panel = new JPanel();

23 final JLabel codeLab = new JLabel ();

24 code_panel.add(codeLab);

25 JPanel message_panel = new JPanel();

26 final JLabel messageLab = new JLabel(” Are you sure to”+

27 ” proceed Creating ”7);

28 message_panel.add(messageLab);

29 JPanel create_panel = new JPanel();

30 JButton create = new JButton(” Create”);

31 create_panel.add(create);

32

33 // Add Action to the button

34 create.addActionListener (new ActionListener () {

35 public void actionPerformed (ActionEvent e) {

36 boolean recordInserted = false;

37

38 // Declare Connection properties

39 Connection conn = null;

40 Statement stmt = null;

41 int recAffected = 0;

42

43 // Declare Connection properties

44 try {

45 Class . forName(”com.mysql. jdbc.Driver”). newlnstance ();
46 String connectionUrl = ”jdbc:mysql://localhost:3306/testdbl”;
47 String connectionUser = "root”;

48 String connectionPassword = 77

49 conn = DriverManager. getConnection (connectionUrl,
50 connectionUser , connectionPassword);

51 stmt = conn.createStatement ();

52

53 // Ezecute a query statement or a stored procedure
54 CallableStatement procnone = conn.prepareCall(”{call createEnrollment (?, ?)}”);
55

56 // Sets the input parameter

57 procnone.setInt (1, Integer.parselnt (regNumber));
58 procnone.setString (2, code);

59

60 // Registers the out parameters

61 recAffected = procnone.executeUpdate ();

62

63 // Check if there is an updated record

64 if (recAffected > 0)

65 recordInserted = true;

66 else

67 recordInserted = false;

68

69 } catch (Exception el) {

70 el.printStackTrace ();

71 } finally {

72 try { if (stmt != null) stmt.close(); } catch (SQLException el)
73 { el.printStackTrace ();

74 try { if (conn != null) conn.close(); } catch (SQLException el)
75 { el.printStackTrace ();

76 !

77

78 if (recordInserted) {

79 JOptionPane.showMessageDialog(null, ”"The business task”+
80 ” is completed successfully.”);

81 System . exit (0);

82 }

83 else {

84 Create_Enrollment_Ready_Error nextErrWindow = new
85 Create_Enrollment_Ready_Error (” Create_Enrollment_Ready_Error 7,
86 ”Can not be Created. Please Try Again”);
87 nextErrWindow . setSize (400, 300);

88 nextErrWindow . setDefaultCloseOperation (JFrame. EXIT_ON_CLOSE);
89 nextErrWindow .setLocationRelativeTo (null);

90 nextErrWindow . setVisible (true);

91 dispose ();

92 !

93

94 1)

95 // Set Layout Manager

96 setLayout (new GridLayout(4, 0));

97

98 // Add Panels to the Window

99 this.add(regnumber_panel);

100 this.add(code_panel);

101 this.add (message_panel);

102 this.add(create_panel);

103 ¥

104 } // END OF CLASS

281

APPENDIX B. MODELS AND RESULTS OF EXPERIMENT (2)

B.1. APPENDIX B

Create_Enrollment Ready_Error

© OO U s WN

Listing B.18: Create_Enrollment_Ready_Error.java

import
import
import
import
import
import
import
import
import
import
import

public

java.awt.GridLayout;
java.awt.event.ActionEvent;
java.awt.event.ActionListener;
javax .swing . x;
java.sql.CallableStatement;
java.sql.Connection;
java.sql.DriverManager;
java.sql.ResultSet;
java.sql.SQLException;
java.sql.Statement;
java.sql.Types;

class Create_Enrollment_Ready_Error extends JFrame {

public Create_Enrollment_-Ready_Error (String winTitle, String err) {

super (winTitle);

// Create Swing Components

JPanel create_enrollment_ready_error_warning_panel = new JPanel();

final JLabel create_enrollment_ready_error_warningLab = new JLabel();

create_enrollment_ready_error_warning_panel
.add(create_enrollment_ready_error_warningLab);

JPanel message_panel = new JPanel();

final JLabel messageLab = new JLabel(err);

message_panel.add(messageLab);

JPanel exit-panel = new JPanel();

JButton exit = new JButton(”exit”);

exit_panel.add(exit);

// Add Action to the button
exit.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent e) {
Input_regNumber_Waiting backWindow = new
Input_-regNumber_Waiting (?Input_-regNumber_Waiting”);

backWindow . setSize (400, 300);
backWindow . setDefaultCloseOperation (JFrame. EXIT_ON_CLOSE) ;
backWindow .setLocationRelativeTo (null);
backWindow . setVisible (true);
dispose ();

1)
// Set Layout Manager
setLayout (new GridLayout(3, 0));

// Add Panels to the Window
this.add(create_enrollment_ready_error_warning_panel);
this.add (message_panel);

this.add(exit_panel);

}
Y // END OF CLASS

282

Appendix: Models and MySQL
Scripts of Experiment (3)

C.1 Complete Models and Full results of Experiment (3)

This Appendix presents the XML representations of all uML models In The University Admin-
istration System case study, discussed previously in chapter 10.

Experiment (3a): Information Model Construction

Listing C.1: CaseStudy3.java

package mde.example;

import java.io.File;

import java.io.IOException;

import mde.data.model . DDiagram;

import mde.database.gen.DumpFileGenerator;
import mde. mysql. gen. MySQLDumpFileGenerator;
import mde.database.gen.TreeException;
import mde.dbs.model.Schema;

10| import mde.dm2schem.rule.DDiagramToSchemaOnly;
11 import mde.inf2dm . rule .InfDiagramToDDiagram;
12| import mde.information.model. Association;

13| import mde.information.model.Composition;

14 import mde.information.model.Entity;

15 import mde.information.model. Attribute;

16 import mde.information.model. Generalisation ;
17 import mde. information.model.Role;

18 import mde. model.Type;

19 import org.jast.ast.ASTWriter;

©OoO~DU s WN -

20

21 public class CaseStudy4 {

22

23 public static void main(String[] args) throws IOException, TreeException,
24 mde. gui.gen. TreeException

25 // TODO Auto—generated method stub

26

27 // Construct the Information Model

28 mde. information . model.Diagram informationModel = new

29 mde. information . model.Diagram () ;

30

31 Entity personEntity = new Entity(” Person”);

32 Attribute attr2 = new Attribute(”name”, new Type(” String”));
33 Attribute attr3 = new Attribute(”age”, new Type(” String”))

34 .setLowerbound (18).setUpperbound (35);

35 Attribute attr4d = new Attribute(” gender”, new Type(” String”));
36 personEntity .addAttribute (attr2);

37 personEntity .addAttribute(attr3);

38 personEntity .addAttribute(attr4);

39 Entity studentEntity = new Entity (” Student”);

283

APPENDIX C. MODELS AND RESULTS OF EXPERIMENT (3) C.1. APPENDIX C

40 Attribute attr5 = new Attribute(”regNumber”, new Type(” Integer”)).setldentifier (true);
41 Attribute attr7 = new Attribute(” username”, new Type(” String”));

42 Attribute attr8 = new Attribute(” password”, new Type(” String”));

43 studentEntity . addAttribute (attr5);

44 studentEntity .addAttribute (attr7);

45 studentEntity .addAttribute (attr8);

46 Entity staffEntity = new Entity (” Staff”);

47 Attribute attrl6 = new Attribute(”empNumber”, new Type(” Integer”)).setldentifier (true);
48 Attribute attrl7 = new Attribute(”salary”, new Type(” Double”));

49 staffEntity .addAttribute(attrl6);

50 staffEntity .addAttribute (attrl?7);

51 Entity addressEntity = new Entity (” Address”);

52 Attribute attrl8 = new Attribute(” postcode”, new Type(” String”));

53 Attribute attrl9 = new Attribute(”’street”, new Type(” String”));

54 Attribute attr20 = new Attribute(” city”, new Type(” String”));

55 addressEntity .addAttribute(attrl8);

56 addressEntity .addAttribute (attr19);

57 addressEntity .addAttribute (attr20);

58 Entity moduleEntity = new Entity (” Module”);

59 Attribute attrl2 = new Attribute(”code”, new Type(” Integer”)).setldentifier (true);
60 Attribute attrl3 = new Attribute(” title”, new Type(” String”));

61 Attribute attrl4 = new Attribute(”credit”, new Type(”Integer”));

62 Attribute attrl5 = new Attribute(”desc”, new Type(” String”));

63 moduleEntity .addAttribute (attrl2);

64 moduleEntity .addAttribute (attrl3);

65 moduleEntity .addAttribute (attrl4);

66 moduleEntity . addAttribute (attrl5);

67 Entity examEntity = new Entity (”Exam”);

68 Attribute attr22 = new Attribute(”id”, new Type(” String”)).setldentifier (true);
69 Attribute attr27 = new Attribute(” practical”, new Type(” Boolean”));

70 Attribute attr24 = new Attribute(”value”, new Type(” Integer”));

71 Attribute attr25 = new Attribute(”date”, new Type(” Date”));

72 examEntity . addAttribute (attr22);

73 examEntity .addAttribute (attr27);

74 examEntity .addAttribute (attr24);

75 examEntity . addAttribute (attr25);

76 Entity projectEntity = new Entity (” Project”);

7 Attribute attr31 = new Attribute(”id”, new Type(” String”)).setldentifier (true);
78 Attribute attr23 = new Attribute(” title”, new Type(” String”));

79 Attribute attr28 = new Attribute(” group”, new Type(” Boolean”));

80 Attribute attr29 = new Attribute(”value”, new Type(” Integer”));

81 Attribute attr30 = new Attribute(”deadline” , new Type(” Date”));

82 projectEntity .addAttribute (attr31);

83 projectEntity .addAttribute (attr23);

84 projectEntity .addAttribute (attr28);

85 projectEntity .addAttribute (attr29);

86 projectEntity .addAttribute (attr30);

87

88 informationModel.addEntity (studentEntity);

89 informationModel.addEntity (staffEntity);

90 informationModel.addEntity (personEntity);

91 informationModel.addEntity (moduleEntity);

92 informationModel.addEntity (examEntity);

93 informationModel.addEntity (addressEntity);

94 informationModel.addEntity (projectEntity);

95

96 informationModel. addAssociation (new Association ().addName(” Enrollment”)
97 .addRole (new Role(”module” , informationModel

98 .getEntity (”Module”)).setMultiple (true))

99 .addRole (new Role(”student” , informationModel

100 .getEntity (”Student”)).setMultiple (true)));

101 informationModel. addAssociation (new Association ()

102 .addRole (new Role(” address” , informationModel

103 .getEntity (” Address”)).setMultiple (true))

104 .addRole (new Role(”student” , informationModel

105 .getEntity (”Student”)).setMultiple (false)));

106 informationModel. addGeneralisation (new Generalisation ().setDisjoint (false)
107 .addRole (new Role(” person”, informationModel

108 .getEntity (” Person”)).setGeneral (true))

109 .addRole (new Role(”student”, informationModel

110 .getEntity (” Student”)).setGeneral (false)));

111 informationModel.addGeneralisation (new Generalisation ().setDisjoint (false)
112 .addRole (new Role(” person”, informationModel

113 .getEntity ("Person”)).setGeneral (true))

114 .addRole(new Role(”staff”, informationModel

115 .getEntity (" Staff”)).setGeneral (false)));

116 informationModel.addComposition ((new Composition ()

117 .setTotal (false).addRole(new Role(” module” ,

118 informationModel. getEntity (?”Module”)).setWhole(true))

119 .addRole (new Role(”exam” , informationModel.getEntity ("Exam”)).setWhole(false))));
120 informationModel.addComposition ((new Composition ()

121 .setTotal (true).addRole (new Role(” module” ,

122 informationModel. getEntity (”Module”)).setWhole (true))

123 .addRole (new Role(” project”, informationModel

124 .getEntity (" Project”)).setWhole(false))));

125

126 ASTWriter writer2 = new ASTWriter(new File(” Uni_informationModel.xml”));
127 writer2 .usePackage ("mde. information.model”, "xmlns:inf”);

128 writer2 . writeDocument (informationModel);

129 writer2.close ();

130

131 System.out.println(”(3) Information Model is Created by user.”);

132 // //

133

284

APPENDIX C. MODELS AND RESULTS OF EXPERIMENT (3)

C.1.

APPENDIX C

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

//Generate Data Model
InfDiagramToDDiagram topRule4 = new InfDiagramToDDiagram ();
DDiagram dataModel = topRule4.translate (informationModel);

ASTWriter writer4d = new ASTWriter(new File (” Uni_DataModel.xml”
writer4 .usePackage (”"mde. data.model” , "xmlns:data”);

writer4 .usePackage (”"mde. model” , ”xmlns:mod”);

writer4 . writeDocument (dataModel);

writerd .close ();

System .out. println(” (5) Data Model is Created (Information”+
”Model —> Data Model).”);

// //
//generate Database Schema Model (Detailed_ DFD”+
” 4+ Data Model ——> Schema)
DDiagramToSchemaOnly topRule5 = new DDiagramToSchemaOnly ();
Schema schemaModel = topRule5.translate (null, dataModel);

System .out. println (schemaModel.getName ());

))s

ASTWriter writer5 = new ASTWriter(new File (” Uni_SchemaModel.xml”));

writer5.usePackage (”"mde.dbs.model”, ”xmlns:dbs”);
writer5 . usePackage (”"mde. model” , ”xmlns:mod”);
writer5 . writeDocument (schemaModel);

writer5.close ();

System.out.println(” (9) Database Schema Model is Created”+
? (DataFlow + Data Model —> Database Schema Model).”);

// code generation

DumpFileGenerator MySQLGenerator = new
MySQLDumpFileGenerator (schemaModel) ;

System.out. println(”calling generate in mysql”+
” package generator”);

MySQLGenerator. generate ();

System.out.println (”Finished generating MySQL Schema OK”);

Information Model Representation (3a)

QCooTOU A WN -

Listing C.2: Uni_informationM odel.xml

<?xml version="1.0" encoding="UTF-8"7>
<inf:Diagram xmlns:inf="mde. information.model” id="0">
<inf:Entity id="1” name=" Student”>
<inf:Attribute id="2" name="regNumber” identifier="true” size="0">
<Type id="3" name="Integer” />
</inf:Attribute>
<inf:Attribute id="4" name="username” size="0">
<Type id="5" name=" String” />
</inf:Attribute>
<inf:Attribute id="6" name="password” size="0">
<Type id="7" name="String” />
</inf:Attribute>
</inf:Entity>
<inf:Entity id="8" name=" Staff”>
<inf:Attribute id="9” name="empNumber” identifier="true” size="0">
<Type id="10" name="Integer” />
</inf:Attribute>
<inf:Attribute id="11" name="salary” size="0">
<Type id="12" name="Double” />
</inf:Attribute>
</inf:Entity>
<inf:Entity id="13"” name="Person”>
<inf:Attribute id="14” name="name” size="0">
<Type id="15” name=" String” />
</inf:Attribute>
<inf:Attribute id="16" name="age” upperbound="35" lowerbound="18"
<Type id="17” name=" String” />
</inf:Attribute>
<inf:Attribute id=”18" name="gender” size="0">
<Type id=719” name="String” />
</inf:Attribute>
</inf:Entity>
<inf:Entity id="20" name="Module”>
<inf:Attribute id="21"” name="code” identifier="true” size="0">
<Type id="22" name="Integer” />
</inf:Attribute>
<inf:Attribute id="23” name="title” size="0">
<Type id="24" name="String” />
</inf:Attribute>
<inf:Attribute id="25" name="credit” size="0">
<Type id="26” name="Integer” />
</inf:Attribute>
<inf:Attribute id=”27" name="desc” size="0">
<Type id="28” name=" String” />

size="0">

285

APPENDIX C. MODELS AND RESULTS OF EXPERIMENT (3) C.1.

APPENDIX C

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

</inf:Attribute>
</inf:Entity>
<inf:Entity id="29” name=" Assessment”>
<inf:Attribute id="30” name="id”
<Type id="31" name="String” />
</inf:Attribute>
<inf:Attribute id="32"” name="title” size="0">
<Type id=”33” name="String” />
</inf:Attribute>
<inf:Attribute id="34" name="group” size="0">
<Type id="35" name="Boolean” />
</inf:Attribute>
</inf:Entity>
<inf:Entity id="36" name="Exam”>
<inf:Attribute id=”37" name="date”
<Type id=”38” name="Date” />
</inf:Attribute>
<inf:Attribute id="39" name="1id”
<Type id="40" name="String” />
</inf:Attribute>
</inf:Entity>
<inf:Entity id="41”

size="0">

name=" Address”>

<inf:Attribute id="42” name=" postcode” size="0">
<Type id="43” name="String” />
</inf:Attribute>
<inf:Attribute id="44" name="street” size="0">
<Type id="45” name=" String” />
</inf:Attribute>
<inf:Attribute id="46" name="city” size="0">
<Type id="47” name=" String” />
</inf: Attribute>
</inf:Entity>
<inf:Entity id="48" name="Project”>
<inf:Attribute id=749” name="value” size="0">
<Type id="50" name="Integer” />
</inf:Attribute>
<inf:Attribute id="51" name="deadline” size="0">

<Type id="52"
</inf:Attribute>
</inf:Entity>
<inf:Generalisation id="53">
<inf:Role id=”54” name=" person”
<inf:Entity ref="13"/>
</inf:Role>
<inf:Role id="55” name="student”
<inf:Entity ref="1"/>
</inf:Role>
</inf:Generalisation>
<inf:Generalisation id="56">
<inf:Role id="57” name="person”
<inf:Entity ref="13"/>
</inf:Role>
<inf:Role id="58" name="staff”
<inf:Entity ref="8”/>
</inf:Role>
</inf:Generalisation>
<inf:Generalisation id="59">
<inf:Role id="60” name=" assessment”
<inf:Entity ref=729"/>
</inf:Role>
<inf:Role id="61" name="exam”
<inf:Entity ref="36"/>
</inf:Role>
</inf:Generalisation>
<inf:Generalisation id="62">
<inf:Role id="63” name=" assessment”
<inf:Entity ref="29"/>
</inf:Role>
<inf:Role id="64” name="project”
<inf:Entity ref="48"/>
</inf:Role>
</inf:Generalisation>
<inf:Composition id="65">
<inf:Role id="66" name="module”
<inf:Entity ref="20"/>
</inf:Role>
<inf:Role id="67” name="assessment”
<inf:Entity ref="29"/>
</inf:Role>
</inf:Composition>

name="Date” />

multiple="false?”

multiple="false”>

multiple="false”

multiple=" false”>

multiple="false?”

multiple=" false”>

multiple=" false”

multiple=" false”>

multiple="false?”

<inf:Association id="68">
<inf:Role id="69” name="module” multiple="true”>
<inf:Entity ref="20"/>
</inf:Role>
<inf:Role id="70" name="student” multiple="true”>

<inf:Entity
</inf:Role>
</inf:Association>
<inf:Association id="71">
<inf:Role id="72" name=
<inf:Entity ref="41"/>
</inf:Role>
<inf:Role id=”73” name=" person”
<inf:Entity ref=713"/>

ref="1" />

»

address” multiple="true”>

multiple="false”>

multiple="false”>

identifier="true” size="0">

identifier="true” size="0">

general="true”>

general="true”>

general="true”>

general="true”>

whole="true”>

286

APPENDIX C. MODELS AND RESULTS OF EXPERIMENT (3)

C.1.

APPENDIX C

139
140
141

</inf:Role>
</inf:Association>
</inf:Diagram>

Data Dependency Model Representation (3a)

© OO U s WN

Listing C.3: Uni_DataM odel.xml

<?xml version="1.0" encoding="UTF-8"7>
<data:DDiagram xmlns:data="mde.data.model”
<data:DEntity id="1"
<data:DAttribute id="2”
<mod:Type xmlns:mod="mde. model”
</data:DAttribute>
<data:DAttribute id="4"
<mod:Type id="5"
</data:DAttribute>
<data:DAttribute id="6" name="gender”
<mod:Type id="7” name=" String” />
</data:DAttribute>
<data:DAttribute id="8" name="regNumber”
<mod:Type id="9” name="Integer” />
</data:DAttribute>
<data:DAttribute id="10" name="username”
<mod:Type id="11” name=” String” />
</data:DAttribute>
<data:DAttribute id="12” name=" password”
<mod:Type id="13" name=" String” />
</data:DAttribute>
</data:DEntity>
<data:DEntity id="14" name="Person_Staff”>
<data:DAttribute id="15" name="name”
<mod:Type ref="3"/>
</data:DAttribute>
<data:DAttribute id="16” name="age”
<mod:Type ref="5”/>
</data:DAttribute>
<data:DAttribute id="17"
<mod:Type ref="77/>
</data:DAttribute>
<data:DAttribute id="18"
<mod:Type id="19”
</data:DAttribute>
<data:DAttribute id="20”
<mod:Type id="21"
</data:DAttribute>
</data:DEntity>
<data:DEntity id="22"
<data:DAttribute id="23" name="id”
<mod:Type id="24" name=" String” />
</data:DAttribute>
<data:DAttribute id="25"
<mod:Type id="26" name=" String” />
</data:DAttribute>
<data:DAttribute id="27"
<mod:Type id="28” name="Boolean” />
</data:DAttribute>
<data:DAttribute id="29” name="date”
<mod:Type id="30" name="Date” />
</data:DAttribute>
</data:DEntity>
<data:DEntity id="31"
<data:DAttribute id="32” name="id”
<mod:Type id="33" name=" String” />
</data:DAttribute>

name="name”
id="3”

name="age”
name="String” />

name="gender”

name="Integer” />

name="salary”
name="Double” />

upperbound="35"

upperbound="35"

name="empNumber”

unique="true”

unique="true”

id="0">
name="Person_Student”>

size="30">
name="String” />

lowerbound="18" size="30">

size="30">

unique="true” size="10">

unique="true” size="30">

unique="true” size="30">

size="30">

lowerbound="18" size="30">

size="30">

unique="true” size="10">

size="1">

name="Assessment_Exam”>
unique="true”

size="30">

name="title” size="30">

name="group” size="1">

size="1">

name=" Assessment_Project”>
identifier="true”

size="30">

<data:DAttribute id="34" name="title” size="30">
<mod:Type ref="26"/>

</data:DAttribute>

<data:DAttribute id="35" name="group” size="1">
<mod:Type ref="28"/>

</data:DAttribute>
<data:DAttribute id="36" name="value”
<mod:Type id="37” name="Integer” />
</data:DAttribute>
<data:DAttribute id="38” name="deadline”
<mod:Type id="39” name="Date” />
</data:DAttribute>
</data:DEntity>
<data:DEntity id="40” name="Enrollment”>
<data:DAttribute id="41” name="code”
<mod:Type id="42" name="Integer” />
</data:DAttribute>
<data:DAttribute id="43"
<mod:Type ref="9"/>
</data:DAttribute>
</data:DEntity>
<data:DEntity id="44"
<data:DAttribute

name=" Module”>
id="45" name="code”

unique="true”

unique="true”

name="regNumber”

identifier="true”

size="10">

unique="true” size="1">

size="107">

unique="true” size="10">

size="10">

287

APPENDIX C. MODELS AND RESULTS OF EXPERIMENT (3)

C.1. APPENDIX C

81 <mod:Type ref="42”/>

82 </data:DAttribute>

83 <data:DAttribute id="46" name="title” size="30">
84 <mod:Type id="47” name=” String” />

85 </data:DAttribute>

86 <data:DAttribute id="48” name="credit” size="10">
87 <mod:Type id="49” name="Integer” />

88 </data:DAttribute>

89 <data:DAttribute id="50" name="desc” size="30">
90 <mod:Type id="51" name=" String” />

91 </data:DAttribute>

92 </data:DEntity>

93 <data:DEntity id="52" name=" Address”>

94 <data:DAttribute id="53" name=" postcode” size="30">
95 <mod:Type id="54" name=" String” />

96 </data:DAttribute>

97 <data:DAttribute id="55" name="identity” identifier="true” unique="true”
98 <mod:Type id="56” name="Integer” />

99 </data:DAttribute>

100 <data:DAttribute id="57” name="street” size="30">
101 <mod:Type id="58” name=” String” />

102 </data:DAttribute>

103 <data:DAttribute id="59” name="city” size="30">
104 <mod:Type id="60" name=”" String” />

105 </data:DAttribute>

106 </data:DEntity>

107 <data:DDependency id="64">

108 <data:DRole id="65" name=" assessment_project” multiple="true”>
109 <data:DEntity ref="31"/>

110 </data:DRole>

111 <data:DRole id=”"66" name="module”>

112 <data:DEntity ref="44”/>

113 </data:DRole>

114 </data:DDependency>

115 <data:DDependency id="67">

116 <data:DRole id="68” name="enrollment” multiple="true”>
117 <data:DEntity ref="40"/>

118 </data:DRole>

119 <data:DRole id="69” name="module”>

120 <data:DEntity ref="44"/>

121 </data:DRole>

122 </data:DDependency>

123 <data:DDependency id="67">

124 <data:DRole id="68” name="enrollment” multiple="true”>
125 <data:DEntity ref="40"/>

126 </data:DRole>

127 <data:DRole id="69” name="module”>

128 <data:DEntity ref="44"/>

129 </data:DRole>

130 </data:DDependency>

131 <data:DDependency id="70">

132 <data:DRole id="71” name="enrollment” multiple="true”>
133 <data:DEntity ref="40"/>

134 </data:DRole>

135 <data:DRole id=”72" name="student”>

136 <data:DEntity ref="1"/>

137 </data:DRole>

138 </data:DDependency>

139 <data:DDependency id="73">

140 <data:DRole id="74” name="address”>

141 <data:DEntity ref="52"/>

142 </data:DRole>

143 <data:DRole id="75” name="person”>

144 <data:DEntity ref="14"/>

145 </data:DRole>

146 </data:DDependency>

147 | </data:DDiagram>

size="10">

Database and Query (DBQ) Model Representation (3a)

Listing C.4: Uni_SchemaM odel.xml

1| <?xml version="1.0" encoding="UTF-8" 7>
2| <dbs:Schema xmlns:dbs="mde.dbs.model” id="0" name="database”>
3 <dbs:Table id="1" name=" Person_Student”>
4 <dbs:Column id="2” name="identity” automatic="true” size="10">
5 <mod:Type xmlns:mod="mde. model” id="3” name="INTEGER” />
6 </dbs:Column>
7 <dbs:Column id="4” name="name” size="30">
8 <mod:Type id="5" name="VARCHAR” />
9 </dbs:Column>
10 <dbs:Column id="6” name="age” upperbound="35" lowerbound="18" size="30">
11 <mod:Type id="7" name="VARCHAR” />
12 </dbs:Column>
13 <dbs:Column id="8”
14 <mod:Type id="9"
15 </dbs:Column>
16 <dbs:Column id="10” name="regNumber” size="10">

288

APPENDIX C. MODELS AND RESULTS OF EXPERIMENT (3)

C.1.

APPENDIX C

17
18
19

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

<mod:Type id="11"
</dbs:Column>
<dbs:Column id="12"

<mod:Type id="13"
</dbs:Column>

name="INTEGER” />

name="username” size="30">

name="VARCHAR” />

<dbs:Column id="14” name="password” size="30">
<mod:Type id="15" name="VARCHAR” />
</dbs:Column>
<dbs:PrimaryKey id="16">
<dbs:Column ref="2"/>

</dbs:PrimaryKey>
</dbs:Table>
<dbs:Table id="17"
<dbs:Column id="18"
<mod:Type id="19"
</dbs:Column>
<dbs:Column id="20"

name="Person_Staff”>

name="identity”

name="INTEGER” />

automatic="true” size="10">

name="name”

size="307">

<mod:Type ref="5"/>

</dbs:Column>
<dbs:Column id="21"
<mod:Type
</dbs:Column>
<dbs:Column id="22"
<mod:Type
</dbs:Column>
<dbs:Column id="23"
<mod:Type id="24”
</dbs:Column>
<dbs:Column id="25"”
<mod:Type id="26"
</dbs:Column>
<dbs:Column id="27"
<mod:Type id="28"
</dbs:Column>

name="age” upperbound="35" lowerbound="18" size="30">

ref="77/>

name="gender” size="30">

ref="9”/>

name="empNumber” size="10">

name="INTEGER” />

name="salary” size="5">
name="DOUBLE” />

name=" Address. identity” size="10">
name="INTEGER” />

<dbs:ForeignKey id="29">
<dbs:Column ref="27"/>
<dbs:Table id="30" name=" Address”>

<dbs:Column
<mod:Type
</dbs:Column>
<dbs:Column
<mod:Type
</dbs:Column>
<dbs:Column
<mod:Type
</dbs:Column>
<dbs:Column
<mod:Type
</dbs:Column>

<dbs:PrimaryKey
ref="31" />

<dbs:Column

id="31"
ref="28" />

id="32"
id="33"

d—7 347
id="35"

id="36” name="city”
id="37"

»

name="identity” size="10">

name="postcode” size="30">

name="VARCHAR” />

name="street” size="30">
name="VARCHAR” />

size="307">
name="VARCHAR” />

id="38">

</dbs:PrimaryKey>

</dbs:Table>
</dbs:ForeignKey>
<dbs:PrimaryKey
<dbs:Column
</dbs:PrimaryKey>
</dbs:Table>
<dbs:Table id="40"
<dbs:Column id="41"
<mod:Type id="42"
</dbs:Column>
<dbs:Column id="43"
<mod:Type id="44”
</dbs:Column>
<dbs:Column id="45"
<mod:Type id="46"
</dbs:Column>
<dbs:Column id="47"
<mod:Type id="48"
</dbs:Column>
<dbs:Column id="49”
<mod:Type id="50"
</dbs:Column>
<dbs:Column id="51"
<mod:Type id="52"
</dbs:Column>

id="397">
ref="18" />

name=" Assessment_Exam”>

name="identity”

name="INTEGER” />

automatic="true” size="10">

name="1d” size="30">
name="VARCHAR” />

name="title” size="30">
name="VARCHAR” />

name="group” size="5">
name="BOOLEAN” />

name="date” size="5">
name="DATE” />
name="Module.code” size="10">
name="INTEGER” />

<dbs:ForeignKey id="53">
<dbs:Column ref="51" />
<dbs:Table id="54” name=" Module”>

<dbs:Column

id="55"

name="code” size="10">

<mod:Type ref="52"/>

</dbs:Column>
<dbs:Column

<mod:Type
</dbs:Column>
<dbs:Column

<mod:Type
</dbs:Column>
<dbs:Column

<mod:Type
</dbs:Column>

<dbs:PrimaryKey
ref="55” />

<dbs:Column

id="56"
id="57"

id="58"
id="59"

id="60"
id="61"

name="title” size="30">
name="VARCHAR” />

name="credit” size="10">
name="INTEGER” />

name="desc” size="30">

name="VARCHAR” />

id="62">

289

APPENDIX C. MODELS AND RESULTS OF EXPERIMENT (3) C.1.

APPENDIX C

111 </dbs:PrimaryKey>

112 </dbs:Table>

113 </dbs:ForeignKey>

114 <dbs:PrimaryKey id="63">

115 <dbs:Column ref="41"/>

116 </dbs:PrimaryKey>

117 </dbs:Table>

118 <dbs:Table id="64"” name=" Assessment_Project”>
119 <dbs:Column id="65” name="id” size="30">

120 <mod:Type id="66" name="VARCHAR” />

121 </dbs:Column>

122 <dbs:Column id="67” name="title” size="30">
123 <mod:Type ref="46" />

124 </dbs:Column>

125 <dbs:Column id=”68” name="group” size="5">
126 <mod:Type ref="48" />

127 </dbs:Column>

128 <dbs:Column id="69” name="value” size="10">
129 <mod:Type id="70" name="INTEGER” />

130 </dbs:Column>

131 <dbs:Column id="71" name="deadline” size="5">
132 <mod:Type id="72” name="DATE” />

133 </dbs:Column>

134 <dbs:Column id="73” name=" Module.code” size="10">
135 <mod:Type ref="52"/>

136 </dbs:Column>

137 <dbs:ForeignKey id="74">

138 <dbs:Column ref="73" />

139 <dbs:Table ref="54”/>

140 </dbs:ForeignKey>

141 <dbs:PrimaryKey id="75">

142 <dbs:Column ref="65" />

143 </dbs:PrimaryKey>

144 </dbs:Table>

145 <dbs:Table id="76" name=" Enrollment”>

146 <dbs:Column id="77” name="identity” automatic="true” size="10">
147 <mod:Type id="78” name="INTEGER” />

148 </dbs:Column>

149 <dbs:Column id="79” name="code” size="10">
150 <mod:Type ref="527/>

151 </dbs:Column>

152 <dbs:Column id=”80”" name="regNumber” size="10">
153 <mod:Type ref="11"/>

154 </dbs:Column>

155 <dbs:Column id="81” name="Module.code” size="10">
156 <mod:Type ref="52"/>

157 </dbs:Column>

158 <dbs:Column id=”82” name="Person_-Student.identity” size="10">
159 <mod:Type ref="3"/>

160 </dbs:Column>

161 <dbs:ForeignKey id="83">

162 <dbs:Column ref="81" />

163 <dbs:Table ref="54"/>

164 </dbs:ForeignKey>

165 <dbs:ForeignKey id="84">

166 <dbs:Column ref="82"/>

167 <dbs:Table ref="1"/>

168 </dbs:ForeignKey>

169 <dbs:PrimaryKey id="85">

170 <dbs:Column ref="77"/>

171 </dbs:PrimaryKey>

172 </dbs:Table>

173 <dbs:Table ref="54"/>

174 <dbs:Table ref="30"/>

175| </dbs:Schema>

Executable MySQL Code (3a)

Listing C.5: database_-MySQL.sql

1| — Database Creation

2

3| CREATE DATABASE sysDatabase;

4| USE sysDatabase;

5

6| — Structure for table ’Person_Student’
7

8| CREATE TABLE Person-Student (

9 identity INT(10) NOT NULL,

10 name VARCHAR(30) ,

11 age VARCHAR(30) ,

12 gender VARCHAR(30) ,

13 regNumber INT(10),

14 username VARCHAR(30) ,

15 password VARCHAR(30),

16 PRIMARY KEY (identity));

17

18| — Structure for table ’Person_Staff’

290

APPENDIX C. MODELS AND RESULTS OF EXPERIMENT (3) C.1. APPENDIX C
19

20 | CREATE TABLE Person_Staff (

21 identity INT(10) NOT NULL,

22 name VARCHAR(30) ,

23 age VARCHAR(30) ,

24 gender VARCHAR(30) ,

25 empNumber INT(10),

26 salary DOUBLE(5),

27 Address.identity INT(10) NOT NULL,

28 PRIMARY KEY(identity),

29 FOREIGN KEY(Address.identity) REFERENCES Address(identity));
30

31| — Structure for table ’'Assessment_-Ezxam ’

32

33| CREATE TABLE Assessment_Exam (

34 identity INT(10) NOT NULL,

35 id VARCHAR(30),

36 title VARCHAR(30),

37 group BOOLEAN(5) ,

38 date DATE(5) ,

39 Module.code INT(10),

40 PRIMARY KEY(identity),

41 FOREIGN KEY(Module. code) REFERENCES Module (code));
42

43| —— Structure for table ’Assessment_-Project’

44

45| CREATE TABLE Assessment_Project (

46 id VARCHAR(30) NOT NULL,

47 title VARCHAR(30),

48 group BOOLEAN(5) ,

49 value INT(10),

50 deadline DATE(5),

51 Module.code INT(10),

52 PRIMARY KEY(id),

53 FOREIGN KEY(Module.code) REFERENCES Module (code));
54

55| —— Structure for table ’'Enrollment’

56

57| CREATE TABLE Enrollment (

58 identity INT(10) NOT NULL,

59 code INT(10),

60 regNumber INT(10),

61 Module.code INT(10),

62 Person_Student .identity INT(10) NOT NULL,

63 PRIMARY KEY(identity),

64 FOREIGN KEY(Module.code) REFERENCES Module(code),
65 FOREIGN KEY(Person_Student.identity) REFERENCES Person_Student (identity));
66

67| —— Structure for table ’'Module’

68

69 | CREATE TABLE Module (

70 code INT(10) NOT NULL,

71 title VARCHAR(30),

72 credit INT(10),

73 desc VARCHAR(30) ,

74 PRIMARY KEY(code));

75

76| —— Structure for table ’Address’

77

78 | CREATE TABLE Address (

79 identity INT(10) NOT NULL,

80 postcode VARCHAR(30),

81 street VARCHAR(30),

82 city VARCHAR(30),

83 PRIMARY KEY(identity));

84

85| — Trigger: Applying Checking Constraints on table ’'Person_Student’
86

87| DELIMITER //

88

89| DROP TRIGGER IF EXISTS ’person._studentCheck’ //

90 | CREATE TRIGGER ’person_studentCheck’ BEFORE INSERT ON Person_Student
91 FOR EACH ROW

92 IF (NEW.age < 18 OR NEW.age > 35) THEN

93 SET msg = ’'INVALID DATA IN age’;

94 SIGNAL SQLSTATE ’45000°’ SET MESSAGE.TEXT = msg;
95 END IF;

96| //

97

98| —— Trigger: Applying Checking Constraints on table ’Person-Staff’
99

100 | DELIMITER //

101

102 | DROP TRIGGER IF EXISTS ’person_staffCheck’ //

103 | CREATE TRIGGER ’person_staffCheck’ BEFORE INSERT ON Person_Staff
104 FOR EACH ROW

105 IF (NEW.age < 18 OR NEW.age > 35) THEN

106 SET msg = ’INVALID DATA IN age’;

107 SIGNAL SQLSTATE ’'45000° SET MESSAGE.TEXT = msg;
108 END IF;

09| //

291

APPENDIX C. MODELS AND RESULTS OF EXPERIMENT (3) C.1.

APPENDIX C

Experiment (3b): Impact Model Consturction

©OTDU B WN -

Listing C.6: CaseStudy12.java

package mde.example;

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

public

java.io.File;

java.io.IOException;

mde. data . model . DDiagram;

mde. database . gen. DumpFileGenerator;
mde. database . gen.TreeException;

mde. dbs.model.Schema;

mde.dm2schem . rule . DDiagramToSchemaOnly ;
mde.impact.model .ImpBoundary;
mde.impact . model.ImpConjunction;
mde.impact.model.ImpCreateFlow ;
mde.impact . model .ImpDiagram;
mde.impact. model . ImpObject;
mde.impact . model .ImpReadFlow ;
mde.impact.model . ImpRole;
mde.impact.model . ImpTask;
mde.impact.model . ImpUpdateFlow ;

mde. impact2information .ImpDiagramToDiagram;
mde. inf2dm . rule . InfDiagramToDDiagram
mde. information . model . Diagram;

mde. mysql. gen . MySQLDumpFileGenerator;
org.jast .ast.ASTWriter;

class Full_examplel2 {

public static void main(String[] args) throws IOException, TreeException,

mde. gui.gen.TreeException {
// TODO Auto—generated method stub

// Construct the Impact Model

ImpDiagram ImpactModel = new ImpDiagram ();

ImpBoundary impboundary = new ImpBoundary(” Enrol_-Boundary”);
ImpBoundary impboundary2 = new ImpBoundary(” Set_-Address_Boundary”);
ImpBoundary impboundary3 = new ImpBoundary(” Manage_-Assessment_-Boundary”);
ImpTask impTaskl = new ImpTask(” Enrol”);

ImpTask impTask2 new ImpTask(” Set Address”);

ImpTask impTask3 new ImpTask(” Set Assessment”);

ImpTask impTask4 new ImpTask(” Modify Value”);

ImpConjunction conj = new ImpConjunction(” Set Address”);

ImpObject impObjl new ImpObject(” Student”);

ImpObject impObj2 new ImpObject(” Staff”);

ImpObject impObj3 new ImpObject(” Enrollment”);

ImpObject impObj4 new ImpObject(” Address”);

ImpObject impObjb new ImpObject(” Module”);

ImpObject impObj6 new ImpObject(” Assessment”);

// enrol boundary contents

ImpReadFlow rfl = new ImpReadFlow ();

ImpRole imprfl = new ImpRole(” enrol”, impTaskl);
ImpRole imprf2 = new ImpRole(” student”, impObjl);
rfl.addImpRole(imprf2);

rfl.addImpRole(imprfl);

ImpReadFlow rf2 = new ImpReadFlow ();

ImpRole imprf3 = new ImpRole(” enrol”, impTaskl);
ImpRole imprf4 = new ImpRole(”module” , impObj5);
rf2 .addImpRole(imprfd);

rf2 . addImpRole(imprf3);

ImpCreateFlow cf = new ImpCreateFlow ();
ImpRole imprf5 = new ImpRole(” enrol”, impTaskl);
ImpRole imprf6 = new ImpRole(” enrollment”, impObj3);

cf.addImpRole(imprf5);

cf.addImpRole(imprf6);

ImpReadFlow rf3 = new ImpReadFlow ();

ImpRole imprf7 = new ImpRole(” withdraw” , impTask2);
ImpRole imprf8 = new ImpRole(” student”, impObjl);
imprf8.setMultiple (true);

rf3 .addImpRole(imprf8);

rf3 .addImpRole (imprf7);

impboundary .addImpTask (impTaskl);
impboundary . addImpObject (impObjl);
impboundary . addImpObject (impObj5);
impboundary . addImpObject (impObj3);
impboundary .addIlmpReadFlow (rfl);
impboundary .addImpReadFlow (rf2);
impboundary .addImpCreateFlow (cf);

// set address boundary contents

ImpReadFlow rfll = new ImpReadFlow ();

ImpRole imprfll = new ImpRole(” set_address_conj”, conj);

ImpRole imprf21 = new ImpRole(”student” , impObjl).setMultiple (false);
rfl1l.addImpRole(imprf21);

rfl1l.addImpRole(imprfll);

ImpReadFlow rf21 = new ImpReadFlow ();

ImpRole imprf3l = new ImpRole(” set_address_conj”, conj);

ImpRole imprf4l = new ImpRole(” staff”, impObj2).setMultiple (false);
rf21.addImpRole(imprf4l);

rf21.addImpRole(imprf31);

292

APPENDIX C. MODELS AND RESULTS OF EXPERIMENT (3) C.1. APPENDIX C

90 ImpReadFlow rf31 = new ImpReadFlow ();

91 ImpRole imprf81 = new ImpRole(”set_address_conj”, conj);

92 ImpRole imprf71 = new ImpRole(”set_address”, impTask2);

93 rf31.addImpRole(imprf81);

94 rf31.addImpRole(imprf71);

95 ImpCreateFlow cfl = new ImpCreateFlow ();

96 ImpRole imprf51 = new ImpRole(”set_address”, impTask2);

97 ImpRole imprf61 = new ImpRole(” address” , impObj4);

98 cfl.addImpRole(imprf51);

99 cfl.addImpRole(imprf61);

100

101 impboundary2.addImpTask (impTask2);

102 impboundary2.addImpObject (impObjl);

103 impboundary2.addImpObject (impObj2);

104 impboundary2.addImpObject (impObj4);

105 impboundary2.addImpConjunction(conj);

106 impboundary2.addImpReadFlow (rfll);

107 impboundary2.addImpReadFlow (rf21);

108 impboundary?2.addImpReadFlow (rf31);

109 impboundary2.addImpCreateFlow (cfl);

110

111 // set assessment boundary contents

112

113 ImpReadFlow rf22 = new ImpReadFlow ();

114 ImpRole imprf32 = new ImpRole(” set_assess”, impTask3);

115 ImpRole imprf42 = new ImpRole(” module” , impObj5);

116 rf22 . addImpRole(imprf42);

117 rf22 . addImpRole (imprf32);

118 ImpReadFlow rf32 = new ImpReadFlow ();

119 ImpRole imprf52 = new ImpRole(” modify_value”, impTask4);
120 ImpRole imprf62 = new ImpRole(” module” , impObj5);

121 rf32.addImpRole(imprf52);

122 rf32.addImpRole(imprf62);

123 ImpCreateFlow cfll = new ImpCreateFlow ();

124 ImpRole imprf53 = new ImpRole(” set_assess”, impTask3);

125 ImpRole imprf63 = new ImpRole(” assessment” , impObj6);

126 cfll.addImpRole(imprf53);

127 cfll.addImpRole(imprf63);

128 ImpUpdateFlow uf = new ImpUpdateFlow ();

129 ImpRole imprf54 = new ImpRole(” set_assess”, impTask3);

130 ImpRole imprf64 = new ImpRole(” assessment” , impODbj6);

131 uf.addImpRole (imprf54);

132 uf.addImpRole (imprf64);

133

134 impboundary3.addImpTask (impTask3);

135 impboundary3.addImpTask (impTask4);

136 impboundary3.addImpObject (impObj5);

137 impboundary3.addImpObject (impObj6);

138 impboundary3.addImpReadFlow (rf22);

139 impboundary3.addImpReadFlow (rf32);

140 impboundary3.addImpCreateFlow (cfl11);

141 impboundary3.addImpUpdateFlow (uf);

142

143 ImpactModel.addImpBoundary (impboundary);

144 ImpactModel . addImpBoundary (impboundary2);

145 ImpactModel . addImpBoundary (impboundary3);

146

147 ASTWriter writerl = new ASTWriter(new File (”impactModel.xml”));
148 writerl .usePackage (”"mde.impact.model” , ”xmlns:imp”);

149 writerl .writeDocument (ImpactModel);

150 writerl.close ();

151

152 System.out.println(” (2) Impact Model is Created by user.”);
153

154 // Generate Information Model

155 ImpDiagramToDiagram topRule = new ImpDiagramToDiagram ();
156 Diagram initial_-dataModel = topRule.translate (ImpactModel);
157

158 ASTWriter writer2 = new ASTWriter(new File(”initial_-InfoModel.xml”));
159 writer2 . usePackage ("mde. information.model”, "xmlns:inf”);
160 writer2 . writeDocument (initial_dataModel);

161 writer2.close ();

162

163 System.out.println(”(2) Initial Information Model is Created by rules.”);
164 //

165

166 //Generate Data Model

167 InfDiagramToDDiagram topRule4 = new InfDiagramToDDiagram ();
168 DDiagram dataModel = topRule4.translate (initial_-dataModel);
169

170 ASTWriter writer4 = new ASTWriter(new File (” Uni-DataModel.xml”));
171 writer4 . usePackage (”"mde. data.model” , ”xmlns:data”);

172 writer4 . usePackage (”"mde. model” , ”xmlns:mod”);

173 writer4 . writeDocument (dataModel);

174 writerd.close ();

175

176 System.out. println(” (5) Data Model is Created” (Information Model —> Data Model).”);
177 // //

178

179 //generate Database Schema Model (Detailed_.DFD+Data Model ——> Schema)
180 DDiagramToSchemaOnly topRule5 = new DDiagramToSchemaOnly ();
181 Schema schemaModel = topRule5.translate (null, dataModel);
182

183 System .out. println (schemaModel.getName ());

293

APPENDIX C. MODELS AND RESULTS OF EXPERIMENT (3)

C.1.

APPENDIX C

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

ASTWriter writer5 = new
writer5 . usePackage (" mde.
writer5.usePackage (" mde.

ASTWriter (new File (”Uni_-SchemaModel.xml”));
dbs.model” , ”xmlns:dbs”);
model” , ”xmlns:mod”);

writer5 . writeDocument (schemaModel);

writer5.close ();

System.out.println (7 (9)

? (DataFlow + Data Model —> Database Schema Model).

//

Database Schema Model is Created”+

7Y
H

DumpFileGenerato

MySQLDumpF
System.out.print
MySQLGenerator. g
System .out.print

//

r MySQLGenerator = new

ileGenerator (schemaModel) ;

In(”calling generate in mysql package generator”);
enerate ();

In (”Finished generating MySQL Schema OK”);

Impact Model Representation (3b)

© o~ DU s WN =

Listing C.7: Uni_impactM odel.xml

<?xml version="1.0"

<imp:ImpBoundary id="1” name="

<imp :ImpTask id="2”

<imp:ImpObject id="3” name="
<imp:ImpObject id="4” name="
<imp:ImpObject id="5" name="
<imp :ImpReadFlow id="6">
<imp:ImpRole id="7” name="
<imp:ImpObject ref="3"/>

</imp : ImpRole>
<imp:ImpRole id="8" name="
<imp:ImpTask ref="2"/>
</imp : ImpRole>
</imp : ImpReadFlow>
<imp :ImpReadFlow id="9">
<imp:ImpRole id="10" name=

<imp:ImpObject ref="47"/>
</imp :ImpRole>
<imp:ImpRole id="11”" name=

<imp:ImpTask ref="2"/>
</imp : ImpRole>
</imp : ImpReadFlow>
<imp :ImpCreateFlow id="12">
<imp:ImpRole id="13" name=
<imp:ImpTask ref="2"/>
</imp : ImpRole>

<imp:ImpRole id="14"” name=
<imp:ImpObject ref="5"/>
</imp : ImpRole>
</imp : ImpCreateFlow>
</imp : ImpBoundary>
<imp :ImpBoundary id=”15” name=
<imp:ImpTask id="16" name="S

<imp:ImpObject ref="3"/>
<imp :ImpObject id="17” name=
<imp:ImpObject id="18” name=

<imp :ImpReadFlow id="19">
<imp:ImpRole id="20" name=

<imp:ImpObject ref="3"/>
</imp : ImpRole>
<imp:ImpRole id="21" name=

encoding="UTF-8" 7>
<imp :ImpDiagram xmlns:imp="mde.impact.model”

id="0">
Enrol_Boundary”>

name="Enrol” />

Student” />
Module” />
Enrollment” />

student” multiple=" false”>

enrol” multiple="false”>

”module” multiple="false”>
7 enrol” multiple="false”>
”enrol” multiple="false”>

”enrollment” multiple=”false”>

”Set_Address_Boundary”>
et Address” />

" Staff” />
” Address” />
”student” multiple=" false”>

»

set_address_conj” multiple="false”>

<imp:ImpConjunction id="22” name="Set Address”/>
</imp : ImpRole>
</imp : ImpReadFlow>
<imp :ImpReadFlow id="23">
<imp:ImpRole id=”24" name="staff” multiple="false”>
<imp:ImpObject ref="17"/>
</imp : ImpRole>
<imp:ImpRole id="25” name="set_address_conj” multiple="false”>
<imp:ImpConjunction ref="227/>
</imp : ImpRole>
</imp : ImpReadFlow>
<imp :ImpReadFlow id="26">
<imp:ImpRole id="27” name="set_address_conj” multiple="false”>
<imp:ImpConjunction ref="22"/>
</imp : ImpRole>
<imp:ImpRole id="28” name="set_address” multiple="false”>

<imp:ImpTask ref="16"/>
</imp : ImpRole>
</imp : ImpReadFlow>
<imp:ImpCreateFlow id="297">
<imp:ImpRole id="30" name=
<imp:ImpTask ref="16"/>
</imp : ImpRole>

”set_address” multiple="false”>

294

APPENDIX C. MODELS AND RESULTS OF EXPERIMENT (3) C.1.

APPENDIX C

66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

<imp:ImpRole id="31” name="address” multiple="false”>
<imp:ImpObject ref="18"/>
</imp : ImpRole>
</imp : ImpCreateFlow>
<imp:ImpConjunction ref="227/>
</imp : ImpBoundary>
<imp:ImpBoundary id=”32” name="Manage_Assessment_Boundary”>
<imp:ImpTask id="33"” name="Set Assessment”/>
<imp:ImpTask id="34" name="Modify Value”/>
<imp:ImpObject ref="4"/>
<imp:ImpObject id="35" name=" Assessment”/>
<imp:ImpReadFlow id="36">
<imp:ImpRole id="37" name="module” multiple="false”>
<imp:ImpObject ref="4"/>
</imp : ImpRole>
<imp:ImpRole id="38" name="set_assess” multiple="false”>
<imp:ImpTask ref="33"/>
</imp : ImpRole>
</imp : ImpReadFlow>
<imp :ImpReadFlow id="397>
<imp:ImpRole id="40” name="modify_value” multiple="false”>
<imp:ImpTask ref="34"/>
</imp : ImpRole>
<imp:ImpRole id="41” name="module” multiple="false”>
<imp :ImpObject ref="47/>
</imp : ImpRole>
</imp : ImpReadFlow>
<imp :ImpCreateFlow id="42">
<imp:ImpRole id="43" name="set_assess” multiple="false”>
<imp:ImpTask ref="33"/>
</imp : ImpRole>
<imp:ImpRole id="44" name="assessment” multiple="false”>
<imp:ImpObject ref="35"/>
</imp : ImpRole>
</imp : ImpCreateFlow>
<imp :ImpUpdateFlow id="45">
<imp:ImpRole id="46” name="set_assess” multiple="false”>
<imp:ImpTask ref="337/>
</imp : ImpRole>
<imp:ImpRole id="47” name=" assessment” multiple="false”>
<imp:ImpObject ref="35"/>
</imp:ImpRole>
</imp : ImpUpdateFlow>
</imp : ImpBoundary>

</imp : ImpDiagram>

Generated Information Model Representation (3b)

©UWTDU A WN -

Listing C.8: initial_in foM odel.xml

<?xml version="1.0" encoding="UTF-8"7>
<inf:Diagram xmlns:inf="mde.information.model” id="0">

<inf:Entity id="1” name=" General” />
<inf:Entity id="2” name=" Student”/>
<inf:Entity id="3” name="Module” />
<inf:Entity id="4” name=" Enrollment” />
<inf:Entity id="5” name=" Staff”/>
<inf:Entity id="6” name=" Address” />
<inf:Entity id="7” name=" Assessment” />
<inf:Association id="87">
<inf:Role id="9"” name="student” multiple="true”>
<inf:Entity ref="2"/>
</inf:Role>
<inf:Role id="10" name="general” multiple="false”>
<inf:Entity id="11" name=" General”/>
</inf:Role>
</inf: Association>
<inf:Association id="12">
<inf:Role id="13” name="staff” multiple="true”>
<inf:Entity ref="5"/>
</inf:Role>
<inf:Role id="14" name="general” multiple="false”>
<inf:Entity ref="11"/>
</inf :Role>
</inf: Association>
<inf:Association id="15">
<inf:Role id=”16” name=" address” multiple="true”>
<inf:Entity ref="6"/>
</inf:Role>
<inf:Role id="17” name="general” multiple="false”>
<inf:Entity ref="11"/>
</inf:Role>
</inf: Association>
<inf:Association id="18">
<inf:Role id="19” name="enrollment” multiple="true”>
<inf:Entity ref="4"/>
</inf:Role>
<inf:Role id="20" name="student” multiple="false”>

295

APPENDIX C. MODELS AND RESULTS OF EXPERIMENT (3)

C.1.

APPENDIX C

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

<inf:Entity ref="27/>
</inf:Role>
</inf: Association>
<inf:Association id="21">
<inf:Role ref="19”"/>
<inf:Role id="22” name="module” multiple="false”>
<inf:Entity ref="3"/>
</inf:Role>
</inf: Association>
<inf:Association id="237">
<inf:Role id="24” name=" assessment” multiple="true”>
<inf:Entity ref="7"/>
</inf:Role>
<inf:Role id="25" name="module” multiple="false”>
<inf:Entity ref="3"/>
</inf:Role>
</inf: Association>
<inf:Association id="26">
<inf:Role id="27” name="assessment” multiple="true”>

<inf:Entity
</inf:Role>
<inf:Role

</inf : Diagram>

ref="7"/>

ref="257/>
</inf: Association>

Generated Data Model Representation (3b)

QOO U A WN -

Listing C.9: DataM odel.xml

<?xml version="1.0"

<data:DDiagram xmlns:data="mde.data.model”

encoding="UTF—8” 7>
id="0">

<data:DEntity id="1" name=" General” />
<data:DEntity id="2” Student” />
<data:DEntity id="3" ” Module” />
<data:DEntity id="4" name="Enrollment” />
<data:DEntity id="5" name=" Staff” />
<data:DEntity id="6" name=" Address” />
<data:DEntity id="7" name=" Assessment” />
<data:DDependency id="8">

<data:DRole id="9” name="student”>

<data:DEntity ref="2"/>
</data:DRole>
<data:DRole id="10” name="general”>

<data:DEntity
</data:DRole>

id="11” name=" General” />

</data:DDependency>

<data:DDependency id="12">
<data:DRole id="13” name="staff”>
<data:DEntity ref="5"/>
</data:DRole>
<data:DRole id=”14” name="general”>

<data:DEntity
</data:DRole>

ref="11" />

</data:DDependency>

<data:DDependency id="15">
<data:DRole id="16” name="address”>
<data:DEntity ref="6"/>
</data:DRole>
<data:DRole id="17” name=" general”>

<data:DEntity
</data:DRole>

ref="11" />

</data:DDependency>

<data:DDependency id="18">
<data:DRole id="19” name="enrollment”>
<data:DEntity ref="4”/>
</data:DRole>
<data:DRole id=”20” name="student”>

<data:DEntity
</data:DRole>

ref="2"/>

</data:DDependency>

<data:DDependency

id="217">

<data:DRole ref="19"/>

<data:DRole
<data:DEntity
</data:DRole>

id="22"

name="module”>
ref="37/>

</data:DDependency>

<data:DDependency id="23">
<data:DRole id="24” name=" assessment”>
<data:DEntity ref="7"/>
</data:DRole>
<data:DRole id="25” name="module”>

<data:DEntity
</data:DRole>

ref="3"/>

</data:DDependency>

<data:DDependency id="26">
<data:DRole id="27” name=" assessment”>
<data:DEntity ref="7"/>

</data:DRole>

296

APPENDIX C. MODELS AND RESULTS OF EXPERIMENT (3) C.1.

APPENDIX C

60 <data:DRole ref="25"/>
61 </data:DDependency>
62| </data:DDiagram>

Generated Database and Query Model Representation (3b)

Listing C.10: SchemaM odel.xml

1 <?xml version="1.0" encoding="UTF-8"7>
2| <dbs:Schema xmlns:dbs="mde.dbs.model” id="0" name="database”>
3 <dbs:Table id="1" name=" General”>
4 <dbs:Column id="2” name="identity” automatic="true” size="10">
5 <mod:Type xmlns:mod="mde.model” id="3” name="INTEGER” />
6 </dbs:Column>
7 <dbs:Column id="4” name="Student.identity” size="10">
8 <mod:Type id="5" name="INTEGER” />
9 </dbs:Column>
10 <dbs:Column id="6” name=" Staff.identity” size="10">
11 <mod:Type id="7" name="INTEGER” />
12 </dbs:Column>
13 <dbs:Column id="8” name=" Address.identity” size="10">
14 <mod:Type id="9” name="INTEGER” />
15 </dbs:Column>
16 <dbs:ForeignKey id="10">
17 <dbs:Column ref="4” />
18 <dbs:Table id="11” name=”Student”>
19 <dbs:Column id="12” name="identity” automatic="true” size="10">
20 <mod:Type ref="5"/>
21 </dbs:Column>
22 <dbs:Column id="13” name="Enrollment.identity” size="10">
23 <mod:Type id="14" name="INTEGER” />
24 </dbs:Column>
25 <dbs:ForeignKey id="15">
26 <dbs:Column ref="13" />
27 <dbs:Table id="16" name="Enrollment”>
28 <dbs:Column id="17" name="identity” automatic="true” size="10">
29 <mod:Type ref="14" />
30 </dbs:Column>
31 <dbs:PrimaryKey id="18">
32 <dbs:Column ref="17"/>
33 </dbs:PrimaryKey>
34 </dbs:Table>
35 </dbs:ForeignKey>
36 <dbs:PrimaryKey id="19">
37 <dbs:Column ref="12"/>
38 </dbs:PrimaryKey>
39 </dbs:Table>
40 </dbs:ForeignKey>
41 <dbs:ForeignKey id="20">
42 <dbs:Column ref="6" />
43 <dbs:Table id="21" name=" Staff”>
44 <dbs:Column id="22” name="identity” automatic="true” size="10">
45 <mod:Type ref="7"/>
46 </dbs:Column>
47 <dbs:PrimaryKey id="23">
48 <dbs:Column ref="22"/>
49 </dbs:PrimaryKey>
50 </dbs:Table>
51 </dbs:ForeignKey>
52 <dbs:ForeignKey id="24">
53 <dbs:Column ref="8”/>
54 <dbs:Table id="25” name=" Address”>
55 <dbs:Column id="26" name="identity” automatic="true” size="10">
56 <mod:Type ref="9"/>
57 </dbs:Column>
58 <dbs:PrimaryKey id="27">
59 <dbs:Column ref="26" />
60 </dbs:PrimaryKey>
61 </dbs:Table>
62 </dbs:ForeignKey>
63 <dbs:PrimaryKey id="28">
64 <dbs:Column ref="2” />
65 </dbs:PrimaryKey>
66 </dbs:Table>
67 <dbs:Table ref="11"/>
68 <dbs:Table id="29” name="Module”>
69 <dbs:Column id="30" name="identity” automatic="true” size="10">
70 <mod:Type id="31" name="INTEGER” />
71 </dbs:Column>
72 <dbs:Column ref="13"/>
73 <dbs:Column id="32” name=" Assessment.identity” size="10">
74 <mod:Type id="33" name="INTEGER” />
75 </dbs:Column>
76 <dbs:ForeignKey ref="15"/>
77 <dbs:ForeignKey id="34">
78 <dbs:Column id="35” name=" Assessment.identity” size="10">
79 <mod:Type ref="33"/>
80 </dbs:Column>

297

APPENDIX C. MODELS AND RESULTS OF EXPERIMENT (3) C.1. APPENDIX C
81 <dbs:Table id="36" name=" Assessment”>
82 <dbs:Column id="37" name="identity” automatic="true” size="10">
83 <mod:Type ref="33"/>

84 </dbs:Column>

85 <dbs:PrimaryKey id="38">

86 <dbs:Column ref="37"/>

87 </dbs:PrimaryKey>

88 </dbs:Table>

89 </dbs:ForeignKey>

90 <dbs:ForeignKey id="39">

91 <dbs:Column ref="32" />

92 <dbs:Table ref="36"/>

93 </dbs:ForeignKey>

94 <dbs:PrimaryKey id="40">

95 <dbs:Column ref="30" />

96 </dbs:PrimaryKey>

97 </dbs:Table>

98 <dbs:Table ref="16" />

99 <dbs:Table ref="21"/>
100 <dbs:Table ref="25"/>
101 <dbs:Table ref="36"/>
102 | </dbs:Schema>

Executable MySQL Code (3b)

Listing C.11: database_MySQL.sql

1| — Database Creation

2

3| CREATE DATABASE sysDatabase;

4| USE sysDatabase;

5

6| — Structure for table ’'General’

7

8| CREATE TABLE General (

9 identity INT(10) NOT NULL,

10 Student .identity INT(10) NOT NULL,

11 Staff.identity INT(10) NOT NULL,

12 Address.identity INT(10) NOT NULL,

13 PRIMARY KEY(identity),

14 FOREIGN KEY(Student.identity) REFERENCES Student (identity),
15 FOREIGN KEY(Staff.identity) REFERENCES Staff(identity),

16 FOREIGN KEY(Address.identity) REFERENCES Address(identity));
17

18| —— Structure for table ’Student’

19

20 | CREATE TABLE Student (

21 identity INT(10) NOT NULL,

22 Enrollment .identity INT(10) NOT NULL,

23 PRIMARY KEY(identity),

24 FOREIGN KEY(Enrollment .identity) REFERENCES Enrollment (identity));
25

26| —— Structure for table ’'Module’

27

28 | CREATE TABLE Module (

29 identity INT(10) NOT NULL,

30 Enrollment .identity INT(10) NOT NULL,

31 Assessment .identity INT(10) NOT NULL,

32 PRIMARY KEY(identity),

33 FOREIGN KEY(Enrollment .identity) REFERENCES Enrollment (identity),
34 FOREIGN KEY(Assessment .identity) REFERENCES Assessment (identity),
35 FOREIGN KEY(Assessment .identity) REFERENCES Assessment (identity));
36

37| — Structure for table ’'Enrollment’

38

39 | CREATE TABLE Enrollment (

40 identity INT(10) NOT NULL,

41 PRIMARY KEY(identity));

42

43| — Structure for table ’Staff’

44

45| CREATE TABLE Staff (

46 identity INT(10) NOT NULL,

47 PRIMARY KEY(identity));

48

49| —— Structure for table ’'Address’

50

51 | CREATE TABLE Address (

52 identity INT(10) NOT NULL,

53 PRIMARY KEY(identity)):

54

55| —— Structure for table ’'Assessment’

56

57 | CREATE TABLE Assessment (

58 identity INT(10) NOT NULL,

59 PRIMARY KEY (identity));

298

End-User Evaluation Experiment of
ML Notation

D.1 End-User Evaluation Experiment

D.1.1 Description of the Online System

This section provides a description of business activity structure of an Online Hospital Booking
System (OHBS). An admin can manage doctors in the system by either: adding a new doctor,
updating a profile of an existing doctor, removing an existing doctor from the system. The
admin is able to add a new doctor by first adding the personal detail of a new doctor to the
system. Then, adding the login detail of the new doctor to the system.

e Draw an ellipse for each business activity (process) with a suitable name..

e Draw a white diamond and branches to represent options part processes (sub-processes)
of a whole business process.

e Draw a white diamond and branches to represent all parts processes (sub-processes) of a
whole business process.

Time now (before drawing):

Time now (After drawing):

299

APPENDIX D. END-USER EVALUATION EXPERIMENT OF ML NOTATION D.1. APPENDIX D

D.1.2 Description of Business Items (Entities)

This part describes information (business data) that is used within the online system to complete
business activities. The system needs information about each doctor to be stored in the system
by Adding personal detail of the new doctor process. There is a login information that has to
be stored for each new doctor in the system by adding login detail process.

In addition, the system modifies the information about doctor profile by Update doctor
profile process, and removes an existing doctor from the system by Remove doctor process.

e Draw a rectangle for each business entity and write a suitable name for it.

e Draw a line between each two entities that have a kind of relationship.

Time now (before drawing):

Time now (After drawing):

D.1.3 Description of How the System Data interact with system

(Samilar text as the previous section) This part describes the interaction between business
information (data) and business process within the online system. The system needs information
about each doctor to be stored in the system by Adding personal detail of the new doctor process.
There is a login detail that has to be stored for each new doctor in the system by adding login
detail process.

In addition, the system modifies doctor profile by Update doctor profile process, and remove
an existing doctor from the system by Removes doctor process.

e Draw an ellipse for each business activity (process) with a suitable name.
e Draw a rectangle for each business entity with a suitable name.

e Draw a suitable arrow between tasks and related entities (as explained).

Time now (before drawing):

Time now (After drawing):

300

