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Abstract

This thesis studies the role of Finsler geometry in quantum time optimal control

of systems with constrained control field power and other constraints. The systems

considered are all finite dimensional systems with pure states. A Finsler metric is

constructed such that its geodesics are the time optimal trajectories for the quantum

time evolution operator on the special unitary group. This metric is shown to be right

invariant. The geodesic equation, in the form of an Euler-Poincaré equation is found.

It is also shown that the geodesic lengths of this same metric equal the optimal times

for implementing any desired quantum gate. In a special case, where all are control

fields are equally constrained, the desired geodesics are found in closed form. The

results obtained are discussed in the general context of natural computation.
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Chapter 1

Introduction

1.1 Contribution

The central contribution of this thesis is to explicitly construct a right invariant Randers

metric on the special unitary group (of arbitrary dimension):

FÛ(ÂÛ) =

√
h(Â, Â)

λ
+
h(Â, iĤ0)2

λ2
+
h(Â, iĤ0)

λ
= F (Â) (1.1)

for which the time optimal trajectories (of the time evolution operator Ût) for imple-

menting a quantum gate, using a limited amount of a resource to implement the control

fields, are the geodesics. This result applies to all systems with Hamiltonian:

Ĥt = Ĥ0 + Ĥc(t) (1.2)

with Ĥ0 time independent and, it a partuclar sence, smaller than Ĥ0.

Furthermore it is shown how sub-Randers metrics are in one-to-one correspondence

with a broad range of quantum control problems encountered in practice. These results

are independent of the number of qubits to which they apply.

The geodesics in the cases that the limited resourse constraint is κTr
(
Ĥc(t)

2
)

= 1

are found explicitly and so are the control Hamiltonians driving the system along such

geodesics. The geodesics are shown to each be of the form of the product of two one

parameter subgroups:

Ût = exp
(
−itĤ0

)
exp

(
itD̂
)

(1.3)

for some iD̂ ∈ su(n). A formula is also found the choice of D̂ which causes the system

to impliment the gate Ô:

D̂ =
1

T
log
(

exp
(
iT Ĥ0

)
Ô
)

(1.4)

where T is the time required to do so. It is shown that T satisfies a complex implicit

equation. This equation is sovled numerically for some simple examples. The optimal

control Hamiltonian driving the system along a geodesic is shown to be:

Ĥc(t) =
i

T
exp

(
−itĤ0

)
log
(

exp
(
iT Ĥ0

)
Ô
)

exp
(
itĤ0

)
(1.5)
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The technique of Euler-Poincare reduction is applied to the metric above for arbi-

trary constraints. This results on a first order differential equation, albeit a complicated

one, for the optimal Hamiltonian driving the system along a geodesic.

This geometric method is applied to several few qubit systems and they are analysed

numbericaly. It is also shown how this method has an advantage over the method

presented in [4, 5] as it can prove optimal times for arbitrary trajectories, not just

geodesics.

State control problems are also discussed alongside the problem of time optimally

implementing quantum gates. It is argued that these two problems possess a strong

correspondence and that the former can always be cast as an example of the latter. It

is further argued that this method has the potential for broader application in physics

based models of computation, the limitations of this are also discussed.

1.2 Project Statement

The task of understanding the physical basis of computation was really first posed

by Richard Feynman in his seminal lectures on computation [6] and ‘There’s Plenty

of Room at the Bottom’ [7]. This lecture posed several questions about the capacity

and limitations of molecular scale machines. Following this, the goal of this thesis is

broadly ‘to better understand the physical limitations of computation’. However, this

is an extremely broad question. Physics based models of computation are numerous

[8, 9, 10, 11] and various in nature, thus a representative example model must be chosen

before proceeding if we are to avoid attempting a task which is impractically general.

Quantum mechanics is a vitally important part of modern physics and any phys-

ically meaningful theory of computation must take it into account [12]. Quantum

mechanics also has a clear, well establish and rigorous mathematical basis which is

highly amenable to applications of geometric control theory, a well establish and pow-

erful tool for determining optimal times in controlled systems of the type typically

applied in quantum computing [13]. Geometric control theory is, unfortunately, not

well adapted for easily understanding optimal control of relativistic systems or even in-

finite dimensional ones. Typically, the assumptions of geometric control theory include

that:

• time is an independent parameter

• the state space of the system under control is a finite dimensional smooth manifold

There are alternative ways to study the control of systems not meeting these premises.

There have been some investigation into geometric control theory for infinite dimen-

sional controlled systems [14, 15]. These are however, highly mathematically involved.

There have also been a few investigations into the time optimal control of relativistic

systems [16, 17, 18] but these ideas are far from as developed as the non-relativistic

cases. As such there is not such a standardised methodology for such problems. Before
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one can assess the limitations of relativistic computing devices, first a canonical theory

of computation embodied in such systems is required. Investigations into relativis-

tic quantum computation have been recently initiated [19, 20] along with many other

papers from the same group and others based in Nottingham, Vienna, Warsaw and

others. However, thus far the most currently practically plausible and testable theory

of physics based computation is non-relativistic quantum computation.

In this thesis the specific issue of finding the optimal physical times for imple-

menting quantum gates in finite dimensional, non relativistic quantum systems using

bounded resources is addressed. The purpose of this choice is multi-faceted. One is

that it is an interesting an important theoretical and practical question for quantum

computing. However, more is sought. A geometric methodology for assessing the phys-

ical limitations of computation in terms of time optimal control is the true target. It is

the hope that the novel methods described in this thesis could form part of the basis for

such work and that, mutatis mutandis, they could be applied to physics based theories

of computation along side non-relativistic quantum computation. This possibility is

discussed in 12.

1.3 Assumed Knowledge

A good deal of mathematical background is assumed as is a large amount of computer

science background. The assumed knowledge includes much of basic linear algebra,

group theory, Lie theory, and some elementary differential equations. The basics of

differential geometry, Riemannian geometry, metric spaces and topology are also as-

sumed.

All the specialist concepts are developed in the text. The relevant aspects of Finsler

geometry and Zermelo Navigation are clearly outlined in a self contained manner. Some

of the basics of theoretical computer science are also assumed knowledge. Familiarity

with the introductory concepts of algorithms and time complexity is essential.
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Literature Review and Critique
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Chapter 2

Mathematics of Zermelo Navigation

In this chapter, Zermelo’s navigation problem is specified with a little historical detail.

Shen’s inspired solution to the problem using Finsler geometry is also described. Some

of the required mathematics of Finsler geometry and, more specifically, Randers geom-

etry is also presented. Riemannian geometry is not discussed in detail as there are so

many standard references which give a far more through presentation than would be

possible in this thesis.

The purpose of reviewing this material is to set up the application of Shen’s theorem

to quantum time optimal quantum control.

2.1 Metric Structures

In the following we use the notation TpM to refer to the tangent space at the point p

on a manifold M , and TM to refer to the entire tangent bundle of a manifold, that

is, all tangent spaces considered together. For example TÛSU(n) is the tangent space

to SU(n) at the point Û ∈ SU(n). We use the notation Γ (TM) to refer to the set of

all smooth sections of the tangent bundle TM , that is, effectively to say, all smooth

vector fields on M . For good references using this notation for both general manifolds

and Lie groups, see [21, 22].

2.1.1 Minkowski Norms

A Minkowski norm F : V → R on a finite dimensional, real vector space V ∼= Rn is a

slight generalisation of a norm is the usual sense. A Minkowski norm F : V → R must

satisfy ([23], ch 1):

• F (v) > 0 ∀v ∈ V \ {0} and (F (v) = 0 ⇔ v = 0). Positivity.

• F (λv) = λF (v) ∀λ ∈ R+. Positivity Homogeneity, N.B. this is different to a

norm.

• F (u+ v) ≤ F (u) + F (v). Triangle inequality.
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Note that F (v) 6= F (−v) in general. This property is known as reversibility of a

Minkowski norm. One can show that a reversible Minkowski norm is always a norm in

the regular sense.

2.1.2 Finsler Metrics

A Finsler metric is a generalisation of a Riemannian metric on a manifold. A Finsler

metric on a manifold M can be defined as a function Fp : TpM → R which is smooth

on the slit tangent bundle TM \ {0} and is a Minkowski norm on each tangent space

TpM .

Riemannian Examples

All Riemannian metrics g on a manifold M are examples of Finsler metrics. This can

be seen by setting:

Fp(v) =
√
gp (v, v) (2.1)

for all v ∈ TpM .

Non-Riemannian Example

An example of a Finsler metric on the plane Fp : TpR2 → R is the l-q norm on each

tangent space, with q given by a not necessarily constant smooth function of p.

Fp(v) = q

√
(v0)q + (v1)q (2.2)

2.1.3 Randers Metrics

Prominent examples of Finlser metrics are the Randers metrics. These were originally

introduced by Randers in the context of the motion of particles in an electromagnetic

field in general relativity [23, 24], but since they have found many applications in

diverse fields [25, 26]. It was in fact [27] who first realised that the metric inroduced

by Randers was in fact a Finsler metric, this article also was the first to name them

Randers metrics.

To define a Randers metric, first one needs to define a Randers norm.

Definition 2.1.1. A Randers norm on a vector space V ∼= RN is a Minkowski norm

on F : V → R which takes the form:

F (v) =
√
α(v, v) + β(v) (2.3)

where α is an inner product and β is a one form. To ensure the positivity of the metric

F it is also required that β be ‘small’ according to α in the sense that α(β], β]) < 1.

15



The ] here is intended to indicate the musical isomorphism V ∗ → V induced by

α. For the definition of [, ] see any good textbook on Riemannian geometry which

discusses the ‘musical isomorphism’ including ([28] §2.66). In coordinates this can also

be expressed as αijβ
iβj < 1.

Definition 2.1.2 (Randers Metric). A Randers metric on a manifold M is a Finsler

metric which is a Randers norm on each tangent space TpM .

2.2 Zermelo’s Navigation Problem

Zermelo’s navigation problem is the problem of finding time optimal trajectories on

a manifold M under certain restrictions. The first restriction is that the navigator

has some constraint on the speed they can travel at ‘under their own steam’ alone.

The second restriction is that there is a vector field W (for ‘wind’) on M pushing the

navigator around. The original motivation for the problem was that of time optimally

navigating a ship on a windy sea or a zeppelin in the wind.

2.2.1 Formal Statement of Problem

An exact statement of the general problem can be found in [29]. For a historical

reference see [30].

To specify a navigation problem one needs:

• A smooth manifold M

• A Finsler metric G on M

• A smooth ‘wind’ or ‘drift’ vector field W ∈ Γ (TM) such that Gp (Wp) < 1 ∀p ∈
M

Definition 2.2.1. Together (G,W ) are known as the Navigation data for a Zermelo

navigation problem on M .

The interpretation of G is that the navigator is constrained to have speed 1 accord-

ing to G. That is to say, neglecting the effects of the ‘wind’ W on the navigators speed,

all admissible trajectories γ(t) satisfy G
(
dγ
dt

)
= 1 ∀t. This represents the limitation of

the navigator’s ‘engine power’ in the case of a ship on the sea type scenario.

The wind is interpreted as ‘blowing’ the navigator around as they attempt to navi-

gate. This deforms the optimal trajectories. In the absence of wind it is clear that the

optimal trajectories are be the geodesics of G with desired end-points. The wind affects

the navigator in the sense that the allowed set of tangent vectors to a trajectory passing

through the point p ∈M has the form dγ
dt

= Wγ(t) + v(t) where Gγ(t)(v(t)) = 1 ∀t.
The condition that Gγ(t)(v(t)) = 1 and Gv(t) < 1 ensures that the navigator can

always overcome the wind and progress can be made in every direction in TpM at every

point p on M .
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2.2.2 General Solution Method

The Zermelo navigation problem has an elegant solution method which can be found in

section (3) of [29] and many other places. This solution method involves finding another

Finsler metric F on M for which the geodesics are the time optimal trajectories.

The equation that F must solve (point wise) is:

Gp

(
v

Fp(v)
−Wp

)
= 1 ∀v ∈ TpM (2.4)

One can show that the solution F is unique and always Finsler metric. Unfortunately,

for most values of G, this equation cannot be solved in closed form.

2.2.3 Shen’s Theorem

Initially Zermelo solved the navigation problem in the plane with time dependent wind.

A full, slightly simpler, presentation of this solution can be found in [31]. The solution

presented here, Shen’s theorem, only applies to the time independent case but on a

general manifold.

There is one case for which 2.4 can be solved for F in closed form. This is the

case that G is, point wise, the norm induced by a Riemannian metric. That is to say

Gp(v) =
√
hp(v, v) for some Riemannian metric h. A necessary and sufficient condition

for this is that Gp satisfies the ‘parallelogram identity’ at each point p. This guarantees

that a suitable h could be constructed by the standard procedure of the polarisation

of a form on a vector space [32]. In this case the metric F can be obtained in closed

form in terms of the navigation data (h,W ). This was first achieved in remark (3.3)

in [29] and is known as Shen’s theorem.

The following derivation is after [29] and is known as Shen’s theorem. In the

following proof all point indicies p are dropped to reduce clutter. All equations are

understood to hold point wise on M . In the Riemannian case, 2.4 reads:√
h

(
v

F (v)
−W, v

F (v)
−W

)
= 1 (2.5)

The following derivation of a quadratic equation satisfied by F can now be made:

1

F 2(v)
h (v, v)− 2

F (v)
h (v,W ) + h (w,w) = 1 ⇒ (2.6)

F 2(v)(h (w,w)− 1)− 2F (v)h (v,W ) + h (v, v) = 0 ⇒

F 2(v) +
2F (v)h (v,W )

1− h (w,w)
− h (v, v)

1− h (w,w)
= 0 ⇒

F 2(v) +
2F (v)h (v,W )

λ
− h (v, v)

λ
= 0

where λ := 1− h(w,w) is a scalar function on M .
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This equation can be solved using the standard quadratic formula to yield the

following formulae defining F :

Fp(v) =− hp(v,Wp)

1− hp(Wp,Wp)
±

√
hp(v,Wp)

2 +
(

1− hp(Wp,Wp)
)
hp(v, v)

1− hp(Wp,Wp)

wherein the ± is chosen to ensure positivity of F . This can be rearranged into the

following illuminating form:

Fp(v) =
√
αp(v, v) + βp(v) (2.7)

αp(u, v) =
λphp(u, v) + βp(u)βp(v)

λ2p

βp(v) = −hp(v,Wp)

λp

λp = 1− hp(Wp,Wp)

α as given above in 2.7 is a new Riemannian metric on M and β ∈ Γ(T ∗pM) is a

differential one form. One now concludes that Randers metrics solve the Zermelo

navigation problem for Riemannian manifolds. A good review of Zermelo navigation

on Riemannian manifolds can be found in [33].

2.3 Formulas in Coordinates

In coordinates the Riemannian metric α and the one form β appearing in the solution

to Shen’s theorem reads:

αij =
hij
λ

+
WiWj

λ2
(2.8)

βj =
−Wi

λ

where the lowering of the index on the vector field W has been done using the musical

isomorphism of h i.e. Wi = hijW
j. In coordinates λ reads:

λ = 1− hijW iW j (2.9)

2.3.1 Inverting Shen’s Solution

It is further possible to ‘invert’ Shen’s solution 2.7:

hij = λ (αij − βiβj) (2.10)

W k = −β
k

λ

This establishes that every Randers metric can be expressed as the solution to a Zermelo

navigation problem on a Riemannian manifold. In this sense the study of Randers

metrics is sufficient for the study of Zermelo navigation on Riemannian manifolds. For

the details of this any many other relevant facts about Randers metrics see chapters 1

and 2 of [23].
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Chapter 3

Geometric Quantum Mechanics

Geometric quantum mechanics (GQM henceforth) is a reformulation of the standard

theory of quantum mechanics in terms of differential geometry. Differential geometry

enters the theory of QM in at least two ways, both the space of states and the space of

time evolutions are differential manifolds. An excellent review of geometric quantum

mechanics can be found here: [34].

Geometric quantum mechanics is being reviewed here in order to set up questions

about the quantum speed limit in terms a Zermelo navigation problem.

3.1 Quantum Time Evolution, SU(n) and su(n)

3.1.1 Quantum Time Evolution

In quantum mechanics the state of an isolated quantum system is typically described

as a vector in
(
CN , 〈·|·〉

)
(standard inner product) or an infinite dimensional Hilbert

space.

The typical notation for quantum mechanics is the so called ‘bra-ket’ notation, any

good quantum mechanics textbook covers this material [35, 36]. This is the choice of

notation best adapted for present purposes and it is employed throughout this work.

In order to define quantum time evolution one first needs the following definition:

Definition 3.1.1 (Unitary Map/Operator). A map Û : CN → CN is said to be Unitary

if Û−1 = Û †.

This property of an operator is exactly the condition for an operator to preserve

the length of all vectors in CN . This is because Û |ψ〉 has the property
(
Û |ψ〉

)†
Û |ψ〉 =

〈ψ|Û †Û |ψ〉 = 〈ψ|Û−1Û |ψ〉 = 〈ψ|ψ〉 for all |ψ〉.
The time evolution operator Ût is a unitary linear map from CN → CN . The map

Ût represents the time evolution of every pure state |ψ〉 via:

|ψt〉 = Ût|ψ0〉 (3.1)
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The standard formulation of QM time evolution, for closed systems with pure states,

is the Schrödinger equation for Ût:

dÛt
dt

= −iĤtÛt (3.2)

As after no time, no change in any state can occur one sets: Û0 := Î. One readily

checks that |ψt〉 defined as in 3.1 satisfies the Schrödinger equation for the state:

d|ψt〉
dt

= −iĤt|ψt〉 (3.3)

when Ût satisfies 3.2.

3.1.2 The Role of SU(n)

The set of all possible time evolution operators is the unitary group, which is a Lie

group.

Definition 3.1.2. A Lie group is a smooth manifold which is also a group for which

the group multiplication is a smooth function.

For a full discussion of Lie groups see [37, 21]. Formally, the unitary group U(n) is

the group of linear operators mapping from Cn to Cn which preserve the standard L2

inner product.

The group U(n) can be understood as a subgroup of GL(n), the group of all non

singluar square complex matrices. This subgroup can be defined as:

U(n) = {Û ∈ GL(n) s.t Û † = Û−1} (3.4)

= {Û ∈ GL(n) s.t
∣∣∣det(Û)∣∣∣ = 1}

The special unitary group, SU(n) is a subgroup of U(n). This is defined by:

SU(n) = {Û ∈ U(n) s.t det
(
Û
)

= 1} (3.5)

Both U(n) and SU(n) are linear algebraic groups. That is to say they are subsets

of GL(n) defined as the solutions to a set of polynomial equations. For the details of

linear algebraic groups, see [38]. Both groups are compact and connected [39]. The

dimensions of these two groups are:

dim (U(n)) = n2 (3.6)

dim (SU(n)) = n2 − 1

Changes in global phases of a quantum state is not physically meaningful or mea-

surable quantities even in principle. This is to say the transformation:

|ψ〉 7→ eiθ|ψ〉 (3.7)
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represents no physical change in a system in state |ψ〉. This can be readily checked,

at least in the context of the standard POVM (positive-operator valued measure [40])

formalism for quantum measurements, by substituting the re-phased state into the for-

mula for the probability of each possible measurement outcome and observing that the

probability formula remains unchanged. For the details of POVMs and measurement

theory see [41]. In the simplest description of a measurement, a Von Neumann mea-

surement, this can be most easily confirmed. The probability of observing measurement

outcome On, in state |ψ〉 when measuring some observable Ô is:

Pn = |〈On|ψ〉|2 (3.8)

where |On〉 is the eigenstate of Ô associated to the eigenvalue On. Thus under the

re-phasing transformation of the state:

Pn = |〈On|ψ〉|2 7→ |〈On|eiθ|ψ〉|2 = |eiθ|2|〈On|ψ〉|2 = |〈On|ψ〉|2 = Pn (3.9)

In light of this observation and after comparison to 3.1 one sees that the overall phase

of Ût is also not physically relevant. This is to say:

Ût 7→ eiθ(t)Ût (3.10)

represents no change in the physical time evolution being represented. As such, we can

choose θ(t) at our convenience. The choice made throughout this thesis is the value of

θ(t) which renders Ût special unitary. This is:

Ût 7→
(

det(Ût)
)−M

Ût (3.11)

where M is the dimension of the Hilbert space on which Ût acts. It is noteworthy that

this construction only makes sense in the case of finite dimension systems. One now

has:

det
(
Ût

)
7→ det

((
det(Ût)

)−M
Ût

)
(3.12)

=

((
det(Ût)

)− 1
M

)M
det
(
Ût

)
= det

(
Ût

)−1
det
(
Ût

)
= 1

It is thus possible to only consider quantum time evolutions Ût ∈ SU(n) without any

loss of physical content to the theory of quantum mechanics.

The advantage of this is that, as mentioned above, the dimension of the manifold

underlying SU(n) is lower than that of U(n). The is also a further advantage, SU(n)

is a simple Lie group, unlike U(n) where the intended definition is:

Definition 3.1.3. A Simple Lie group is a connected non-abelian Lie group which

does not have nontrivial connected normal subgroups

Being simple is required to make the Killing form the unique, upto a constant

multiple, invariant 2-form [21] on su(n), a fact which will be used later.
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3.2 CPN As a Quantum State Space

In geometric quantum mechanics, the space of physically distinct states is described by

CPN a manifold. Each point of this manifold corresponds to a truly physically distinct

state.

This material is being reviewed in order to later set up the problem of time optimal

state transfer in geometric terms. The explanations in this section mostly closely

follows [1].

3.2.1 Definition of CPN

Imposing Normalisation

The first step in realising CPN as the space of physically distinct states is treating

the normalisation condition. Define an equivalence relation ∼1 ⊆ CN+1 × CN+1 by:

|ψ〉 ∼1 λ|ψ〉 ∀λ ∈ R/{0}. This yields a sphere S2N+1 as a set of equivalence classes of

points in CN+1. Each equivalence class consists of a (real) line through the origin in

CN+1 ∼= R2(N+1). This construction can also be clarified by writing an arbitrary state:

|ψ〉 =
∑
k

αk|Ak〉 (3.13)

where {|Ak〉} is any orthonormal basis of CN+1. The condition that the state has norm

one becomes:

〈ψ|ψ〉 =
∑
k

|αk|2 =
∑
k

<(αk)
2 + =(αk)

2 = 1 (3.14)

which is the formula defining a sphere of radius 1 as a subset of R2(N+1).

Phase

The next step is to identify states which differ only by a global phase eiθ. This boils

down to taking a quotient of S2N+1 into equivalence classes, where the equivalence

relation ∼2 ⊆ S2N+1 × S2N+1 is defined by [|ψ〉]∼1 ∼2 e
iθ[ |ψ〉 ]∼1 ∀θ ∈ R. The new

space is:

S2N+1/U(1) ∼= CPN (3.15)

This quotienting process can be represented by:

CN+1 S2N+1 CPNφ1

γ:=φ2◦φ1

φ2

where:

φ1 : |ψ〉 7→ [|ψ〉]∼1 (3.16)

φ2 : [|ψ〉]∼1 7→ [[|ψ〉]∼1 ]∼2 (3.17)
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Here γ : CN+1 → CPN and realises the quotient by the equivalence relation ∼ ⊆
CN+1 × CN+1 defined by |ψ〉 ∼ λeiθ|ψ〉 ∀λ ∈ R/{0}, θ ∈ R. The purpose of breaking

the quotienting process into two steps is to illustrate the mathematical realisation of

the two physical principles: that states are normalised and that global phases are

unphysical. This equivalence is the same as |ψ〉 ∼ Z|ψ〉 Z ∈ C/{0}. Thus one sees

that each equivalence class is a complex line.

Henceforth where the ‘equivalence class [|ψ〉] of a state |ψ〉’ is referred to, this is

taken to mean the corresponding single point in CP n given by γ (|ψ〉).

3.2.2 A Common Misunderstanding

It is often misstated in physics literature that U(n) ∼= SU(n)× U(1). This statement

requires clarification. It is true if the correct meaning of the × symbol is understood.

The statement holds true as stated in terms of the topological and smooth structures

of U(n), SU(n) and U(1). This is to say that U(n) is the manifold product (for details

see [42]) of SU(n) and U(1).

However, the same statement interpreted with × referring to the direct product of

groups, is false. This can be directly shown to be false by applying the well known first

isomorphism theorem for groups to the homomorphism φ : SU(N) × U(1) → U(N)

given by φ(Û , eiθ) = eiθÛ . The kernel of the homomorphism φ is the set {eiθÛ s.t eiθ ∈
C is an N th root of unity}, which as a multiplicative group is ZN , the integers mod N .

The correct statement is instead that U(N) can be written as a semi-direct product

of SU(N) and a U(1) subgroup of U(N). The object which behaves as U(N) with

operators identified up to a global phase is the projective unitary group PSU(N). It

is defined by the quotient U(N)
/
Z(U(N)) where Z(U(N)) is the centre of U(N), well

know to be the ‘scalar matrices’ {eiθÎ
∣∣θ ∈ [0, 2π)}. It is true, in the sense of the product

of groups, that U(N) ∼= (SU(N)× U(1))
/
ZN , which is the conclusion of applying the

first isomorphism theorem to the homomorphism φ.

The Lie algebras of PSU(N) and SU(N) are identical, working with SU(N) rather

than PSU(N) does not affect anything that follows in this thesis. As such, it is SU(n)

which is used as the group of quantum time evolutions in the remainder of this thesis.

3.2.3 CP n As a Homogeneous Space

A homogeneous space is a manifold M with the smooth, transitive action φ : G×M →
M of a Lie group G defined on it [43]. In such a scenario one can show the existence

of the following isomorphism:

M ∼= G/Stab(p) (3.18)

for any p ∈M . Here the stabiliser subgroup of p is defined as:

Stab(p) = {p ∈M s.t. φ(p) = p} (3.19)
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It is easily checked that, if G and M are compact then so is stab(p) ∀p ∈M .

As SU(n + 1) acts transitively on CP n, the mathematical relationship between

the group of all time evolutions SU(n) and the space of states CP n possess a special

geometrical relationship:

CPN ∼= SU(N + 1)/U(N) (3.20)

Care must be taken with this definition as, as it currently stands, it is ambiguous. In

order to see this, firstly, the definition of SU(N+1)/U(N) must be given. The quotient

appearing in 3.20 is similar to a quotient group in the sense that SU(N + 1)/U(N)

represents the set of right cosets of SU(N + 1)/U(N):

SU(N + 1)/U(N) =
{
ÛU(N) s.t. Û ∈ SU(n+ 1)

}
(3.21)

It must be noted that this quotient does not define a new group as U(n) is not a normal

subgroup of SU(n+1) which is required to define an unambiguous rule for multiplying

cosets.

Any U(n) subgroup constructed as the stabiliser subgroup of some point Û ∈ SU(n)

of SU(n) can be used, the resulting construction is isomorphic (diffeomorphic). A

particularly simple choice is to take the point for which U(n) is the stabiliser to be the

equivalence class of the vector:

|ψ0〉 =


1

0
...

0

 (3.22)

One can readily check that the group of special unitary matrices which preserve the

equivalence class of this vector is:

stab ([|ψ0〉]) =




det(V̂ )−1 0 · · · 0
0

V̂
...
0

 s.t. V̂ ∈ U(N)

 ∼= U(N) (3.23)

On a very technical note, this resulting space has a unique smooth structure com-

patible with the quotient map π : SU(n+ 1)→ SU(n+ 1)/U(n). This map is defined

by π(Û) = ÛU(n) and the unique smooth structure is the determined by insisting that

this map is smooth. For the details of this see [43].

It is important to notice what has and has has not been achieved by this con-

struction. This is an equivalence of the spaces CP n and SU(n + 1)/U(n) as smooth

manifolds. No equivalence of algebraic structures is implied despite the fact that the

group operations of SU(n + 1) and U(n) have been refereed to in the construction.

There is no group structure on CP n.
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Chapter 4

Speed Limits In Driven Quantum

Systems

There has been much recent interest in driven quantum systems. Recent work on

time optimal quantum gates implemented in a variety of quantum systems includes

[44, 45, 46, 22, 47, 4]:

• [44] discusses time optimal implementation of a number of two qubit gates and

also discuss experimental implementations of such gates.

• Work on open-dissipative systems for implementing quantum gates can be found

in [45].

• Some works on this topic based on geometric methods include [46, 22].

• [46] discusses the use of sub-Riemannian metrics on the unitary group with ap-

plication to two and three qubit systems, special focus on NMR experiments is

given.

• [22] analyses the use of metric structure (in the sense of metric spaces, not dif-

ferential geometry) to determining the quantum speed limit (QSL hensforth) for

implementing quantum gates.

• [47] connects the QSL for orthogonality times and the QSL for implementing

quantum gates.

• [4] produces a result based on a variational principle for a Lagrangian on U(N),

this work also shows how optimal control schemes can be obtained via differential

geometry.

4.1 Driven Quantum Systems

In quantum optimal control, a certain type of system is ubiquitous. These are driven

systems with a ‘drift term’. Such systems are also ubiquitous within control theory
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more generally [48]. In this thesis, only systems with finite dimensional Hilbert spaces

and pure states are discussed unless explicitly stated. The term ‘drift’ is chosen as

this term represents the system’s dynamics in the absence of any control. An example

of a ‘drift’ in control theory include, the dynamics of a boat on a windy sea when

the motors are all off and this is the origin of the term. Such systems take a specific

mathematical form.

The Schrödinger equation for Ût, the time evolution operator [49], standardly reads:

dÛt
dt

= −iĤtÛt (4.1)

A common scenario is: Ĥt = Ĥ0 + Ĥc(t) which yields:

dÛt
dt

= −i(Ĥ0 + Ĥc(t))Ût (4.2)

for the equation governing the dynamics of Ût. Ĥc(t) is known as the control Hamilto-

nian, it represents the effects of external control fields on the system. The interpretation

is typically that the ‘drift’ term Ĥ0 is constant in time and outside the control of ex-

perimenters, at least during the time evolution of Ût. This term typically represents

the properties of a system, the state of which is being controlled. Systems of the form

4.2 are known as affine control systems. All the systems in this thesis have Hermitian

(Ĥ† = Ĥ) Hamiltonians. Other systems, in PT symmetric quantum mechanics, have

been considered in the context of the QSL [50].

The group in the case of quantum dynamics of finite dimensional systems is typically

taken to be U(N), the unitary group. However, we specialise throughout to SU(N).

This is easily achieved mathematically (by considering only traceless Hamiltonians)

and is without effect on any of the physical predictions of the theory.

The general solution to the Schrödinger equation 4.1 for Ût can be expressed using

a variety of series expansions. Notable among these are the Dyson Series [51], the

Magnus Expansion [52] and the Fer infinite product expansion [53]. While the Magnus

expansion has favorable mathematical properties at every order of approximation to

the solution (all orders are unitary), the Dyson series is arguably easier to work with.

The Dyson series reads:

Ût = T exp

(
−i
∫ t

0

Ĥt′dt
′
)

(4.3)

Where the T indicates time ordering the terms in the Taylor expansion of the matrix

exponential. For an initial segment of the series see [51] or any good text on quantum

field theory as this series is commonly applied in that context.

One now readily checks that the transformation f : u(n) → su(n) which removes

the trace of the Hamiltonian:

f : iĤt 7→ iĤt −
Tr(iĤ)

n
Î (4.4)
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results:

Ût = T exp

(
−i
∫ t

0

Ĥt′dt
′
)
7→ T exp

(
−i
∫ t

0

Ĥt′ −
Tr(Ĥt)

n
Îdt

′

)
(4.5)

= T exp

(
−i
∫ t

0

Ĥt′dt
′
)

exp

(
− i
n

∫ t

0

Tr(Ĥt′ )dt
′
)

= exp

(
− i
n

∫ t

0

Tr(Ĥt′ )dt
′
)
Ût

As exp
(
− i
n

∫ t
0

Tr(Ĥt′ )dt
′
)

is simply a unit complex number, all that has happened is

that Ût has acquired a phase factor. This clearly does not affect any physical predictions

as is standard and well known.

In light of this we always restrict to Ût ∈ SU(n) by imposing that Tr(Ĥt) = 0 for all

systems under consideration; as we have seen, this is entirely without loss of physical

generality.

4.1.1 Affine Control Systems on SU(n)

The system 4.2 commonly takes a particular form in quantum control problems.

dÛt
dt

= −i

(
Ĥ0 +

K∑
k=0

fk(t)Ĥk

)
Ût (4.6)

Where K is a, typically small, integer. In such a scenario, the fk are referred to as

the control fields. Each Ĥk represents the effect of the kth control field on the system

evolution.

4.2 Work of Carlini Et Al

This section reviews two recent papers: [5] and [4].

• Firstly, [5] studies the question: how can a given initial state |ψ0〉 be transformed

into a given terminal state |ψ1〉 in a time optimal way.

• Secondly, [4] studies the question: how can Ĥt be chosen, subject to constraints,

so that a given gate Ô ∈ SU(n) is implemented in a time optimal way.

Throughout this thesis, these two questions are referred to as the first and second

fundamental problems respectively.

4.2.1 ‘The Quantum Brachistochrone’

The paper [5] is concerned with time optimally transforming the initial pure state

|ψ0〉 of a finite dimensional quantum system into a desired terminal state |ψ1〉 in the

least time possible in the presence of constraints. The classical brachistochrone is not

reviewed in this thesis as it has been described excellently in many places [54].
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In this thesis the problem of time optimal quantum evolution is posed for systems

with finite dimensional states space Cn+1 and pure states. The, time dependent, overall

(in contrast to the work in 6 where only the control is constrained) Hamiltonian Ĥt is

constrained such that Tr(H̃2) = 2ω2. Here H̃ is the traceless part of the Hamiltonian,

H̃ = Ĥ− Tr(Ĥ)
N

Î. This can be mathematically understood as expressed earlier 4.4. The

time optimal trajectories of |ψt〉 are determined by a variational method for an action

defined on CP n.

Later in the paper a more general set of constraints is considered. A set of M

functions {fk : 1
i
su(n) → R|k = 0 . . .M} is given and the constraint that fk(Ĥt) = ck

(where each ck is a constant) is imposed for all time during an evolution. Here only

the more general methodology is reviewed.

The action considered in the variational principle is defined as:

S
[
|ψt〉, Ĥt, |φt〉, λt

]
=

∫ T

0

√
〈δψt|

(
Î − Pt

)
|δψt〉

∆Et
+ (4.7)(

i〈δφt|ψt〉 − i〈φt|δψt〉+ 2〈φt|Ĥt|ψt〉
)
dt+

M∑
k=0

λkfk(Ĥt)

where:

• |ψt〉 is the system’s state

• Ĥt is the system’s Hamiltonian

• 〈φt| is a vector Lagrange multiplier in Cn+1∗, the dual of the state space

• λk are scalar Lagrange multipliers, which can be taken to be constants by the

argument given in the original paper which is not reproduced here

• Pt := |ψt〉〈ψt|, this is mathematically a projection operator onto |ψt〉. Physically

it is the density matrix of |ψt〉.

Within the paper it is argued that the time optimal trajectories are the minimising

curves for this action. The variations considered are of |ψt〉, Ĥt and variation by all

the Lagrange multipliers.

The paper goes on to define an operator F by:

F̂ :=
∑
k

λk
δfk

δĤ
−
〈
δfk

δĤ

〉
P̂t (4.8)

wherein the expectation brackets
〈
δfk
δĤ

〉
indicate the expectation of the operator δfk

δĤ
in

the state |ψt〉, i.e. 〈ψt| δfkδĤ |ψt〉. It is then shown that the traceless part of the optimal

Hamiltonian,
˜̂
H, satisfies: (

˙̂
F + i

[
˜̂
H, F̂

])
|ψt〉 = 0 (4.9)

This equation is solved in closed form for two simple cases for a single spin.
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Spatially Isotropic Constraint

The constraint treated is:

• f(Ĥt) = 1
2

Tr
(

˜̂
H2
t

)
− ω2 = 0 for some real number ω for all time

The optimal trajectories for the state are shown to be the Fubini-Study geodesics on

CPN . The optimal Hamiltonian (taken to be traceless) driving from |ψi〉 to |ψf〉 are

shown to be:

Ĥ = iω (|ψf〉〈ψi| − |ψi〉〈ψf|) (4.10)

which does not depend on time.

It is also shown the the optimal time for this transition with the given constraint

is:

T ∗ =
1

|ω|
arccos (|〈ψi|ψf〉|) (4.11)

Spatially Anisotropic Constraint

The constraints treated are:

• f1(Ĥt) = 1
2

Tr
(

˜̂
H2
t

)
− ω2 = 0 for some real number ω for all time

• f2(Ĥt) = Tr(
˜̂
Ht σz) = 0 for all time

This imposes that Tr
(

˜̂
H2
)

= 2ω for all time. In this case 4.9, which is eqn. (16) in

the original work, can be solved to find:

Ût = exp (itΩσz) exp
(
−it

(
˜̂
H(0) + Ωσz

))
(4.12)

˜̂
Ht = exp(itΩσz)

˜̂
H(0) exp(−itΩσz)

wherein Ω can be expressed as the ratio of the two Lagrange multipliers appearing in

the Lagrangian. These are eqns (22) and (23) in the original work.

4.2.2 ‘Time Optimal Unitary Operators’

The paper [5] treats the question of obtaining time optimal Hamiltonians, subject to

constraints, for implementing a quantum gate Ô. This question is posed by asking

which trajectory (consistent with the constraints) the time evolution operator Ût must

follow in order to connect the identity Î to the desired gate Ô in the least time.

A variational principle on the unitary group U(N) is introduced using the following
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action functional:

L[Ût, Ĥt, Λ̂t, λt] =

∫ T

0

√√√√√
〈
dÛt
dt
,
(
Î − PÛt

)(
dÛt
dt

)〉
〈
ĤtÛt,

(
Î − PÛt

)(
ĤtÛt

)〉+ (4.13)

〈
Λ̂t, i

dÛt
dt
Û †t − Ĥt

〉
dt

M∑
k=0

λkfk(Ĥt)

where:

• Ût ∈ U(N) is the time evolution operator, which is not a required to be special

unitary a priori

• Ĥt is the Hamiltonian, which is taken to be Hermitian but not required to be

traceless

• Λ̂t is a Hermitian matrix, 〈Λ̂t, ·〉 (an element of the dual space to the vector space

of all Hermitian matrices) is a Lagrange multiplier

• PV̂ is, for each V̂ ∈ U(N), a map from complex matrices to complex matrices.

This map is defined by PV̂ (Â) = 1
N

Tr(ÂÛ)V̂

• 〈·, ·〉 is the Hilbert Schmidt inner product defined by 〈Â, B̂〉 = Tr(Â†B̂)

• λk are scalar Lagrange multipliers, which can be taken to be constant (by a

similar argument to that in [4]) which is not reproduced here

The paper goes on to define:

F̂ =
∂L̂c

∂Ĥt

(4.14)

and to show that the optimal overall Hamiltonian must satisfy:

i
dF̂

dt
= [Ĥt, F̂ ] (4.15)

by applying a variational argument to the Lagrangian 4.13. Some simple cases are

solved in closed form. Specifically, the cases of two qubit gates for a system with

anisotropic Heisenberg coupling are both solved. The optimal Hamiltonians are deter-

mined in the case of the swap and entangler gates.

4.2.3 Comments On The Work Of Carlini Et Al.

The work of Carlini Et Al. [4, 5] is highly effective and interesting. However, the

method is limited in a specific practically relevant way.
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The method yields an equation satisfied by the optimal Hamiltonian (eqn. (16)

in [5]) driving the time evolution operator Ût along a stationary curve of the action

functional 4.13. This work has provided a method of determining the time optimal

trajectories for a quantum system with constraints. However, it does not provide a

method for calculating the optimal time for Ût to traverse a given curve on SU(N). This

is a physically relevant requirement for practical use in quantum control applications

as not all trajectories can be always be physically realised given only a restricted set

of admissible control fields. This is the case even when a system is controllable.

The work [55] also studies the possibility of applying numerical methods to solve

the eqn (16) in [4] with a good deal of success in the two qubit case. However, the

required calculations are extremely involved. If a simpler way could be found then this

would be favourable.
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Chapter 5

The Physical Limits To

Computation: Quantum Mechanics

and Further Afield

Within this section, the context of the broader study of natural and non-standard

computation are outlined in order to provide motivation for the later chapters.

This section is included in order to briefly cover related notions of the speed limit

to computation. Not all the limits discussed are directly related to the in this thesis

research and are included for completeness of context.

5.1 Natural Computation

5.1.1 Grand Challenge

In 2002, the UK Computing Research Committee (UKCRC) issued a series of grand

challenges for computing research [56, 57]. The GC7 Challenge has been formally

stated as:

‘to produce a fully mature science of all forms of computation, that unifies

the classical and non-classical paradigm’

This sets the challenge of putting the theory of computation on solid physical grounds

and assessing the physical limitations to computation. It also sets the challenge of

establishing these limits in a way comparable to the known classical limits in terms of

Turing machine and computational complexity.

5.1.2 When Does a Physical System Implement a Computa-

tion?

There has been a great deal of discussion on the topic of when a physical system

implements a specific computation from within different areas of science [58], computer

science [59], mathematics [60] and philosophy [61] to name but only a few papers. The
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issue is far from settled. Although many varied proposals have been made for resolving

this issue, one must be chosen if any progress is to be made.

Ultimately, an implicit operational assumption is routinely in use in quantum com-

putation. This is that a system (with time evolution operator ÛT at time T ) implements

a computation when ÛT = Ô. Here Ô is a desired quantum ‘gate’.

In the case of many other physical systems which can implement computations,

this mapping from elementary computational operations to possible physical time evo-

lutions implementing them is far less canonical. Interestingly the classical case is less

developed than the quantum one.

5.2 Non-Relativistic Quantum Speed Limits

5.2.1 Lieb-Robinson Bound

The Lieb-Robinson bound (LRB) is a bound on the rate of information transfer in

non-relativistic quantum systems with a lattice structure [62]. For a full bibliography

and history of this concept see [63]. The bound is expressed in terms of the maximum

speed a wave can propagate in a lattice of spins in order to carry information.

This bound is mentioned for completeness and is not discussed further.

5.2.2 Margolis Levitin Theorem and Mandelshtam-Tamm in-

equality

The Margolis-Levitin bound [64] (ML bound) is a well known speed limit to QIP.

The Margolis-Levitin Theorem provides a bound on the rate of dynamical evolution

of a (non-relativistic) quantum system in terms of its total energy [64]. In order

to understand the motivation for interpreting the time taken to transition between

orthogonal states of a quantum system as rate of computation one must first discuss

the nature of distinguishable states.

Which States Can Be Distinguished with Certainty By a Single Measure-

ment?

Consider a quantum system that is known with certainty to reside in one of two (nor-

malised) quantum states |ψ〉 or |ψ〉. Consider the observable formed as the outer

product Ô := |ψ〉〈ψ|, i.e. a projection operator (as it is clearly idempotent) on to the

state |ψ〉. The eigenstates and eigenvalues of this operator (which will be interpreted, as

usual for a projective measurement, as measurement outcomes and post-measurement

states respectively) are simple to find and can be obtained in the following standard

manner:

Ô|ψ〉 = (|ψ〉〈ψ|) |ψ〉 = |ψ〉〈ψ|ψ〉 = 1|ψ〉 (5.1)

Ô|φ〉 = (|ψ〉〈ψ|) |φ〉 = |φ〉〈φ|ψ〉 = 0|φ〉
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This shows that both |ψ〉 and |φ〉 are eigenstates of Ô with eigenvalues 1 and 0 re-

spectively. One can now conclude the contents of the following table 5.2.2 of outcome

probabilities:

State Before Measurement

Outcome |ψ〉 |φ〉
0 0 1

1 1 0

This shows that in fact these two states can in principle distinguished with cer-

tainty by measuring the observable Ô. Orthogonality is both necessary and sufficient

for the existence of an observable which can be used to distinguish two states with

certainty. For fuller detail about quantum measurement and metrology (specifically in

the interesting context of control) see [65].

The speed of a classical computer can be considered to be the maximum number of

states the computer can pass through during a computation per unit of time [64, 66].

The interpretation of the inequality given in [64] as a lower bound for the running

time of a computation depends on the interpretation of distinguishable (orthogonal)

quantum states as the appropriate corresponding concept. While this is not the only

way to quantify the speed of a computer, it is one way which has attracted significant

interest and follow-up [67, 68, 69, 70].

ML Bound

Consider a quantum system with Hamiltonian H (taken to be Hermitian as usual)

and also consider its energy eigenstates (the energy basis) and energy eigenvalues. For

simplicity [64] considers only Hamiltonians with discrete spectra. I denote Ĥ|φi〉 =

Ei|φi〉 where i ∈ (N ∪ 0) for the energy eigenstates and eigenvalues; this numbering of

states is taken to be such that the eigenvalues are non-decreasing in i. Following [64],

the ground state |φ0〉 (which is assumed to exist) is taken to have energy 0. This is

always possible as potential energies are only defined up to an additive constant. As

per the previous discussion of orthogonal states one may want to ask what the shortest

possible time for any given |ψ0〉 to evolve (under the time evolution of a given H) in

to a state orthogonal to |ψ0〉. The central result of [64] is that a bound can be placed

on the orthogonality time τ⊥ in terms of the average energy of the state |ψ0〉.
The novel bound given in [64] is:

τ⊥ ≥
π~
2E

(5.2)

where E is the average energy of |ψ0〉 (with E0 = 0).

Assumptions Underlying the Margolis Levitin Theorem

The Margolis Levitin theorem has many physical and computational assumptions un-

derlying it. Some of these include:
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• It is a statement about non-relativistic systems only, a similar statement has been

proposed for relativistic systems [70].

• The only measure of computation speed to which it applies is the orthogonality

time. If certainty is not required, i.e. a probabilistic result to a computation

is acceptable, then only considering distinguishable states may not be the best

measure of computation speed.

• It says nothing about the number of distinct orthogonal states states a system

can evolve into in a time interval.

• It makes no distinction concerning which operations a computer can perform,

just how many operations it can perform (in terms of the minimal orthogonality

time).

• It only applies to time independent Hamiltonians. Another similar bound which

applies to to independent Hamiltonians does exist and can be found it [67].

• It only bounds the orthogonality time in terms of the expectation of the energy

and ignores other physical properties of the system. This is both a strength, as

it brings general applicability, and a weakness as some other physical property of

the system may be the true limiting factor. For example, as the energy increases

a system may become unstable and no longer remain spatially bounded.

Proof Technique

The following is directly after [64]. Here one notes that, by well known properties

of separable Hilbert spaces and Hermitian operators on such spaces, any state |ψ0〉
can now be written |ψ0〉 =

∑i=∞
i=0 ci|φi〉 for some complex coefficients {ci}. One also

notes that the time evolution, the the systems to which the bound applies have time

independent Hamiltonians, of |ψ0〉 is given by |ψt〉 = e
−itH

~ |ψ0〉. This can be expanded

in terms of the expansion |ψ0〉 =
∑i=∞

i=0 ci|φi〉 and the expansion for the exponential of

an operator e
−itH

~ =
∑∞

k=0
1
k!

(−itH
~

)k
as follows:

|ψt〉 = e
−itH

~ |ψ0〉 =
∞∑
i=0

e
−itEi

~ ci|φi〉 (5.3)

From this one obtains:

S(t) := 〈ψ0|ψt〉 =

(
∞∑
i=0

ci〈φi|

)(
∞∑
j=0

e
−itEj

~ cj|φj〉

)
=
∞∑
i=0

∞∑
j=0

cicje
−itEj

~ 〈φi|φj〉 (5.4)

=
∞∑
i=0

|ci|2e
−itEi

~
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where the final step has used the fact that 〈φi|φj〉 = δij which follows from the fact

that |φi〉 are eigenstates of a Hermitian operator. One seeks to determine the minimal

t such that S(t) = 0. The solutions is obtained as follows:

<(S(t)) =
∞∑
i=0

|ci|2<
(
e
−itEi

~

)
=
∞∑
i=0

|ci|2 cos

(
tEi
~

)
(5.5)

= 1− 2t

π~

(
∞∑
i=0

|ci|2Ei

)
+ =(S(t)) (5.6)

= 1− 2t

π~
〈H〉ψ0

+ =(S(t))

= 1− 2t

π~
E + =(S(t))

If S(t) = 0 then <(S(t)) = 0 and =(S(t)) = 0. Noting that:

∀x ∈ R, x ≥ 0⇒ cos(x) ≥ 1− 2

π
(x+ sin(x)) (5.7)

it follows that:

S(t) = 0⇒ (5.8)

0 ≤ 1− 2(τ⊥)

π~
E ⇒

τ⊥ ≥
π~
2E

Mandelshtam-Tamm inequality

The ML bound contrasts with a previously known bound in terms of the uncertainty

of the energy, ∆E := ∆Ĥ [71]. The Mandelstam-Tamm inequality is also a bound

on the speed of computation [64], see [71] for an extensive review. Here ∆Ô for any

Hermitian operator Ô acting on the states of a system in state |ψ〉 is defined as ∆Ô :=√
〈ψ|O2|ψ〉+ 〈ψ|O|ψ〉2. It is also known that, with the same meaning for τ⊥:

τ⊥ ≥
π~

2∆E
(5.9)

This statement has undergone a lot of analysis [71], a lot of misunderstanding [72] and

many different derivations [71]. There is also a closely analogous statement concerning

quantum field theory. It is worst noting that the is ongoing conflicting terminology in

use in both the physics and mathematics community about which statment exactly is

the ’time-energy uncertainty relation’.

Mandelshtam-Tamm inequality and Fubini-Study Geodesics

There is a unique Riemannian metric, up to a constant multiple, on CP n (for all n)

that is invariant under the natural choice of action of the unitary group on CP n. That

is to say it has the property that U(n) consists only of isometries [34]. This metric

is the Fubini-Study metric; there is more than one way to represent its metric tensor.

36



One such way, well adapted for use in quantum mechanics, is to write it as a function

on the tangent spaces to Cn+1 that is constant on equivalence classes of the equivalence

relation that allows CP n to be constructed from Cn+1 as described earlier. The formula

is:

ds2 =
〈δψ|δψ〉
〈ψ|ψ〉

− 〈δψ|ψ〉〈ψ|δψ〉
〈ψ|ψ〉2

(5.10)

This metric can readily be used to prove the Mandelshtam-Tamm inequality by

knowing that the geodesic distance between orthogonal states in Hilbert space is π
2
.

This can be observed by noting that the finite form of this metric is [73]:

γ(|ψ〉, |φ〉) = arccos

√
|〈ψ|φ〉|2

〈ψ|ψ〉2〈φ|φ〉2
(5.11)

The metric clearly has the same unitary invariance properties as its infinitesimal form,

5.10.

The following relationship between the Mandelshtam-Tamm inequality and the

Fubini-Study metric is well known; we re-derive it to illustrate the usefulness of geo-

metric constructions in proving quantum speed limit theorems. In the case that |ψt〉
solves the Schrödinger equation for a time-independent Hamiltonian Ĥ we have:

|δψt〉 =
d

dt
|ψt〉 =

d

dt
exp

(
−itĤ

)
|ψ0〉 = −iĤ exp(−itĤ)|ψ0〉 = −iĤ|ψt〉 (5.12)

Substituting this into the definition of arc length corresponding to the metric at hand,

we find:

L[|ψt〉] =

∫ t=τ

t=0

√
〈δψt|δψt〉 − 〈δψt|ψt〉〈ψt|δψt〉dt (5.13)

=

∫ t=τ

t=0

√
〈ψt|Ĥ2|ψt〉 − 〈ψt|Ĥ|ψt〉2dt

=

∫ t=τ

t=0

∆E|ψt〉dt =

∫ t=τ

t=0

∆E|ψ0〉dt = τ∆E|ψ0〉 ≥
π

2

∆E|ψt〉dt can be replaced by ∆E|ψ0〉 in the last line, since here the Hamiltonian is time-

independent, which implies that the energy uncertainty is also. From this follows the

Mandelstam-Tamm inequality:

τ ≥ π

2∆E|ψ0〉
(5.14)

Compare this derivation to that in [74] (their eqns. 22-25; note that the ‘Wootters

distance’ is simply the finite form of the Fubini-Study metric applied to normalized

states). There the finite form of the metric is differentiated and then also requires

many further lines of derivation to produce the result; here we use the differential form

of the metric immediately.

Invariance under unitary transformations follows directly from the definition of a

unitary operator as an operator the leaves all inner products of states in 〈Cn+1, 〈·|·〉〉
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invariant. The fact that this metric is the unique (upto a constant multiple) metric

invariant under all the action of all unitary operators is less simple. The uniqueness

argument is based on the fact that U(n + 1) acts transitively on TCP n, for a full

explanation see [75].

The FS metric is the projective counterpart to the standard inner product on Cn+1;

that is, it is compatible with the quotient into rays of 〈CN+1, 〈·|·〉〉. Every curve |ψt〉
on Cn+1 descends to a curve on CP n. Because of the invariance property of the FS

metric, the length any curve in |ψt〉 is unchanged by the transformation |ψt〉 7→ Zt|ψt〉.
The tangent vector to |ψt〉, under this transformation, transforms as:

|δψt〉 7→ Żt|ψt〉+ Zt|δψt〉 (5.15)

The metric transforms as:

ds2 7→

(
˙̄Z〈ψt|+ Z̄〈δψt|

)(
Ż|ψt〉+ Z|δψt〉

)
|Z|2〈ψt|ψt〉

(5.16)

−

(
˙̄Z〈ψt|+ Z̄〈δψt|

)
Z|ψt〉〈ψt|Z̄

(
Żt|ψt〉+ Zt|δψt〉

)
〈ψt|ψt〉2

(5.17)

=
|Ż|2〈ψt|ψt〉+ ˙̄ZZ〈ψt|δψt〉+ Z̄Ż〈δψt|ψt〉+ |Z|2〈δψt|δψt〉

|Z|2〈ψt|ψt〉

− |Ż|〈ψt|ψt〉
2 + ˙̄ZZ〈ψt|ψt〉〈ψt|δψt〉+ Z̄Ż〈δψt|ψt〉〈ψt|ψt〉+ |Z|2〈δψt|ψ〉〈ψ|δψt〉

|Z|4〈ψt|ψt〉2

= ds2 +
|Ż|2〈ψt|ψt〉+ ˙̄ZZ〈ψt|δψt〉+ Z̄Ż〈δψt|ψt〉

|Z|2〈ψt|ψt〉

− |Ż|〈ψt|ψt〉
2 + ˙̄ZZ〈ψt|ψt〉〈ψt|δψt〉+ Z̄Ż〈δψt|ψt〉〈ψt|ψt〉

|Z|4〈ψt|ψt〉2

= ds2 + 0 = ds2

and is thus unchanged.

A similar approach is possible to prove Fleming’s bound [76]:

t⊥ ≥
π~

2∆Ĥ
(5.18)

using the geodesics of the Killing-Form on SU(n) and an almost identical proof (as the

geodesics are the one parameter sub-groups due to bi-invariance).

5.2.3 Proof Techniques For Quantum Speed Limits

This proof of the ML bound is somewhat ad-hoc and I know of no other applications of

the inequality applied. While not in and of itself a shortcoming, it would be favourable

to seek a general principle by which this statement could be proven and generalised.

Furthermore, the proof of the Mandelshtam-Tamm inequality presented above uses a

conceptually different approach based on geodesics.
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The desired generalisation could be a solution to the question: “Given X amount of

a resource Y , what is the least time a quantum system can transition to an orthogonal

state”. More precisely, by analogy with the two aforementioned bounds, one might

endeavour to seek a bound for the form:

T⊥ ≥
π~

2f(X, Y )
(5.19)

where f is a function that remains to be determined. One might also hope for a unifying

principle/proof technique for proving such bounds.

5.2.4 More Existing Work On Orthogonality Times

More recent work on bounds on orthogonality times include [64, 68, 69, 77, 74, 78, 79,

80, 81, 50]. Specifically [77, 74, 78] include a role for differential geometry in analysing

this aspect of the QSL.

• [79] produces an interesting result generalising the Margolus-Levitin bound to

systems to systems with non-unitary dynamics.

• [80] analyses the case of an open driven system and obtains a bound also compa-

rable to the Margolus Levitin bound for non unitary dynamics, a specific model,

the damped Jayes-Cummings model is analysed.

• [81] illustrates an application of the Pontryagin minimum principle to the optimal

control of SU(2) operators; closed form solutions are obtained as are interesting

diagrammatic representations of the optimal trajectories.

• [82] illustrates the absence of a speed limit for quantum systems described by non-

Hermitian, PT-symmetric Hamiltonians in a situation where Hermitian quantum

mechanics is subject to a finite speed limit.

• [50] discusses the Margolus-Levitin bound in non-Hermitian quantum systems.

• A good discussion of a geometric derivation of the Mandelshtam-Tamm inequality

can be found in [77].

• Numerical methods in quantum optimal control are considered in [83] and the

Margolus-Levitin bound is shown to be achievable using the Krotov method for

deriving control schemes.

5.3 Relativistic And Thermodynamic Limits

Here two relativistic limits to information storage and processing are described. These

are included for completeness of context of the physical limits to computation.
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5.3.1 Bekenstein Bound

The Bekenstein Bound is a bound on the quantity of information which can be stored in

a volume of space, contained within a sphere of radius R, using only a certain amount

of energy E. It is briefly reviewed here, for a full discussion see [84, 85, 86]. The

bound is given in terms of the entropy of the system within the sphere, this bounds

the amount of information storage by limiting the number of distinct states the system

within the sphere can possess. The bound is typically stated as:

S ≤ 2πkRE

~c
(5.20)

Here k is Boltzman’s constant, ~ is Planck’s constant and c is the speed of light. E is

the total mass-energy of the system.

Uncharged, non-rotating Schwarzschild black holes have Bekenstein Hawking en-

tropy which saturate this bound. The entropy of such a black hole is:

SBH =
kA

4
(5.21)

where A is the area of the hole’s horizon. In this formula A is expressed in terms of

the Plank area ~G
c3

.

5.3.2 Landauer’s Principle

Landauer’s Principle [87] states that erasing one bit of information always comes with

an unavoidable loss of energy of:

δE = kT log(2) (5.22)

Here E is energy, k is the Boltzman constant and T is the temperature. The original

statement, given by Bennet was:

‘any logically irreversible manipulation of information, such as the era-

sure of a bit or the merging of two computation paths, must be accompanied

by a corresponding entropy increase in non-information bearing degrees of

freedom of the information processing apparatus or its environment’

5.4 Comments on Lloyd’s ‘Ultimate Laptop’

An interesting recent paper [66] sets out to study the following hypothetical object:

let us calculate the ultimate computational capacity of a computer with

a mass of one kilogram occupying a volume of one litre, roughly the size of

a conventional laptop. Such a computer, operating at the limits of speed

and memory space allowed by physics, will be called the ultimate laptop
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Several calculations are made. Lloyd considers the Margolis Levitin bound to rep-

resent the minimum time to complete one ‘operation’ within the computer. He further

calculates that E = mc2 = 8.9874× 1016 joules and then applies the Margolis Levitin

bound to determine that 5.4258× 1050 operations per second are in principle possible

in such a machine.

This analysis is however flawed as it is assumed that all the mass energy of the

machine is is contributing to the speed of dynamical evolution. This would only be

possible for a machine which was itself massless! While no physical principle known

to the author explicitly excludes this, it seems highly implausible that such a machine

would remain within one litre of space as it operated. Lloyd refers to this problem as

“packaging issues”. Also, the Margolis Levitin theorem only limits the time taken to

reach an orthogonal state, not to implement specific information processing operations

more complex than this elementary one.

Furthermore, the Margolis Levitin theorem is a statement about non-relativistic

systems. In this work, the bound is combined in an ad-hoc way with a relativistic

calculation of the total energy of the machine. It is not immediately clear that such

a calculation is valid, perhaps the relativistic Margolis Levitin bound could be used

[88, 89].

The maximum information storage of such a machine is also analysed by appealing

to the Bekenstein bound. This is a general relativistic calculation and applies many

results from this area. It is estimated that I = S/kB ln 2 = 2.13 × 1031 bits can be

stored in such a machine which results in 1019 ops per bit per second. It is again

unclear that such a calculation is compatible with the premises of the Margolis Levitin

theorem. The system used to store such a number of bits would, as described in the

original work, be an uncharged, non-rotating Schwarzschild black holes (in order to

saturate the Bekenstein bound). No explanation is offered as to how the processed

information would be retrieved from such a system.

Finally, real quantum computers are unlikely to be time independent systems but

rather controlled systems.

One step towards producing physically meaningful results about the limitations of

computers is to develop methods for calculating the optimal times for implementing

specific quantum gates with limited resources. Contributing to this analysis is the main

motivation for the work in this thesis.
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Part II

Novel Work
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Chapter 6

Zermello Navigation On the Special

Unitary Group

This chapter discusses the case of Zermelo navigation on SU(n) in order to analyse

quantum time optimal control. The problem of driving Ût, the time evolution operator,

from Û0 = Î to a desired gate Ô is considered. In the absence of constraints on

the Hamiltonian Ĥ, there would be no lower limit to the time in which this could

be achieved. The constraint that h(iĤc(t), iĤc(t)) = 1 for some inner product h :

su(n)× su(n)→ R, and a generalisation of this, are studied in this chapter.

A solution in the case of a specific class of constraints on the permitted external

control fields is given. This work was first presented in [2, 3].

6.1 Zermelo Navigation On SU(n)

6.1.1 Right Invariance of h In QM Applications

In order to connect the terminology of quantum dynamics and that of the Zermelo

navigation problem we must identify a vector field on SU(n) to play the role of the wind.

This can be done by examining the Schrödinger equation 4.1 for a controlled system.

The Schrödinger equation for a controlled system 4.6 indicates what the tangent vector

to a trajectory of Ût is on SU(n), and further that it is comprised of two parts. The first

part −iĤ0Û represents the system’s dynamics in the absence of control, this will play

the role of the wind and the associated vector field on SU(n) is ŴÛ = −iĤ0Û . The

second part represents the effect of the control fields, the associated (time dependent)

vector field on SU(n) is −iĤc(t)Û .

Both these vector fields are right invariant by construction as they are the right

translation of some tangent vector at the identity, namely: −iĤ0 and−iĤc respectively.

Technically, the notion of right translation applied here is not the simplest which acts

on group elements, not tangent vectors. The notion applied here is technically the

‘canonical lift’ of right translation to the tangent bundle TSU(n). That is to say, given
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the right translation map RV̂ : SU(n)→ SU(n) defined on SU(n) by:

RV̂

(
Ŵ
)

= Ŵ V̂ (6.1)

one can now define the right translation of any tangent vector ÂŶ ∈ TŶ SU(n) by the

map dRV̂

∣∣
Ŷ

: TŶ SU(n)→ TŶ V̂ SU(n) which is given by by:

dRV̂

∣∣
Ŷ

(
ÂŶ
)

= ÂŴ V̂ (6.2)

The fact that every tangent vector in TŶ SU(n) can be expressed as ÂŶ is a consequence

of the fact that all Lie groups are parallelisable (cor. 8.39 [42]). This means that

they have ‘trivial’ tangent bundles. For any Lie group G, TG can be expressed as

TG ∼= g × G where g is the Lie algebra associated to G. In the present case this

amounts to TSU(n) ∼= su(n) × SU(n) where the ∼= symbol refers to a vector bundle

isomorphism.

A Riemannian metric h on SU(n) is also needed to set up a navigation problem.

This metric represents a limit to the speed of the navigator in the absence of wind.

Constraints on the control Hamiltonian alone are the only type for which new methods

are developed in this thesis. That is to say, some allowed set of control Hamiltonians

is prescribed and the control Hamiltonian is restricted to be in this set during any

evolution of the controlled system of interest. Mathematically, this is the statement

that the constraint does not depend on Ût during an evolution, I.e. that the constraint

is right invariant.

We now set up the problem of Zermelo navigation on SU(n) and show how it can be

applied to quantum mechanics. Suppose that h : su(n)×su(n)→ R is an inner product

on su(n). Suppose that a controlled quantum system of the form 4.2 is constrained

such that its control Hamiltonian Ĥc(t) satisfies h(iĤc(t), iĤc(t)) = 1, ∀t. That is,

the constraint is time independent and satisfied for all time. It is clear that the right

invariance of the Riemannian metric hÛ (formed by right extending h) corresponds to a

constraint only on Ĥt, not any constraint depending on Ût explicitly. This is essentially

by the same argumentation for right invariance of a metric representing a constraint

in a control problem as that presented in [90].

Suppose further that a drift Hamiltonian Ĥ0 is given and that h(iĤ0, iĤ0) < 1. The

time evolution operator for our quantum system now satisfies a Schrödinger equation

of the form 4.6. The tangent vector dÛt
dt

to the curve Ût has two terms: −iĤc(t)Ût and

−iĤ0Ût. In order to fix terminology closer to the original formulation of the Zermelo

navigation problem, we define the “wind” vector field on SU(n) by ŴÛ = −iĤ0Û .

In such a setup, there is enough information to construct the “navigation data” for

a Zermelo navigation problem as we now possess a Riemanian metric h according to

which the navigator (Ût) has speed 1 in the absence of wind and a wind vector field

which has h length less less than 1.
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6.1.2 The Navigation Randers Metric On SU(n)

From these ingredients one can construct a Finsler metric (which is in fact a Randers

metric) that has the property that its geodesics are the time optimal trajectories for Ût

to be driven between given endpoints, by applying Shen’s theorem, 2.2.3. This Randers

metric is FÛ(Â) =
√
αÛ(Â, Â) + βÛ(Â). In terms of the navigation data (h, Ŵ ) on

SU(n), the α and β are found to be:

αÛ(ÂÛ , ÂÛ) =
λhÛ(ÂÛ , ÂÛ) + hÛ(ÂÛ , ŴÛ)2

λ2
(6.3)

=
hÛ(ÂÛ , ÂÛ)

λ
+
hÛ(ÂÛ ,−iĤ0Û)2

λ2

=
h(Â, Â)

λ
+
h(Â, iĤ0)

2

λ2

βÛ(ÂÛ) =
hÛ(ÂÛ ,−iĤ0Û)

1− hÛ(−iĤ0Û ,−iĤ0Û)
=

h(Â,−iĤ0)

1− h(iĤ0, iĤ0)
=
h(Â,−iĤ0)

λ
(6.4)

Thus F is, in full, given by:

FÛ(ÂÛ) =

√
h(Â, Â)

λ
+
h(Â, iĤ0)2

λ2
+
h(Â, iĤ0)

λ
= F (Â) (6.5)

As stated above, the right invariance of this quantity is clear. Note that λ is a scalar

quantity because it is right invariant, and that all right invariant scalar quantities are

constant. This is a simplifying factor compared to the case when h and W are right

invariant compared to the general case.

6.2 The Case of General h

6.2.1 Euler Poincaré Equations For Optimal Hamiltonians

One could apply the standard Euler-Lagrange (EL) equations to find the geodesics of

a Randers metric F on any manifold. The desired geodesics are the stationary curves

of the length functional associated to the Lagrangian 1
2
F 2. This would yield, assuming

the EL equations for 1
2
F 2 (F 2 rather than F is taken to obtain unit speed geodesics

of F ) could be solved, the solution for trajectory of Ût time optimally connecting Î to

a desired gate Ô. The optimal overall Hamiltonian Ĥt could then be found from the

Schrödinger equation: Ĥt = idÛt
dt
Û †t . However, another method is now possible due to

the right invariance of the metric.

The length functional L[Ût] for a curve Ût : [0, T ]→ SU(n), for a Finlser metric F

on SU(n) can be written as follows:

L[Ût] =

∫ T

t=0

FÛt

(
dÛt
dt

)
dt (6.6)

45



In the case that F is is right invariant one finds:

L[Ût] =

∫ T

t=0

F

(
dÛt
dt
Û−1t

)
dt

In the case that Ût solves the Schrödinger equation one finds:

L[Ût] =

∫ T

t=0

FÛt

(
dÛt
dt

)
dt =

∫ T

t=0

FÛt

(
−iĤ(t)Ût

)
(6.7)

=

∫ T

t=0

F
(
−iĤ(t)

)
dt =

∫ T

t=0

F
(
−iĤ0 − iĤc(t)

)
dt

The length L[Ût] depends only on quantities in su(n) rather than on the group in

general, as all dependence on Ût itself has disappeared. In light of this one might

expect that it is possible to formulate the geodesic equation for such a Finsler metric

as an ODE in su(n). This is in fact the case.

In a coordinate-free language (where ξ ∈ su(n)) the EP equation reads [91, 92]:

d

dt

∂`

∂ξ
= −ad∗ξ

(
∂`

∂ξ

)
(6.8)

where ` : su(n) → R is the restriction of an arbitrary right invariant Lagrangian

L : TSU(n)→ R to su(n), and ad∗ is the co-adjoint representation of su(n) [93].

In order to define the adjoint/co-adjoint representation of both SU(n) and su(n),

first one must introduce a map Ψ : SU(n)→ Aut (SU(n)) (wherein Aut (SU(n)) means

the group of all Lie group automorphisms of SU(n)). This map is defined by:

Ψ : Û 7→ ΨÛ (6.9)

ΨÛ : V̂ → Û V̂ Û−1, ∀V̂ ∈ SU(N)

and for each Û , ΨÛ is a Lie group homomorphism. As such, the derivative at the

identity d (ΨÛ)
∣∣
Î

is a Lie algebra homomorphism.

The adjoint representation of SU(n), Ad : SU(n)→ Aut (su(n)) (wherein Aut (su(n))

means the group of all Lie algebra automorphisms of su(n)) is, as it is for any Lie group,

defined by:

Ad : Û 7→ AdÛ := d (ΨÛ)
∣∣
Î

(6.10)

AdÛ : Â 7→ ÛÂÛ−1, ∀Â ∈ su(n)

The adjoint representation ad : su(n) → Der (su(n)) of the Lie algebra su(n) is the

derivatives of all elements in the image Ad at the identity. Here Der (su(n)) is the Lie

algebra of Aut (SU(n)). Der (su(n)) in fact consists of all ‘derivations’ on su(n). To

be more explicit a derivation is a map D : su(n)→ su(n) such that:

D
([
Â, B̂

])
=
[
Â,D

(
B̂
)]

+
[
D
(
Â
)
, B̂
]
, ∀Â, B̂ ∈ su(n) (6.11)
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Now one can define ad by:

ad = d(Ad)
∣∣
Î

(6.12)

This results in the formula:

adÂ : B̂ 7→
[
Â, B̂

]
, ∀B̂ ∈ su(n) (6.13)

One can readily check that adÂ is a derivation for any Â ∈ su(n).

Ad and ad are representations (In both cases the representation space is the Lie

algebra su(n)) of the Lie group SU(n) and Lie algebra su(n) respectively as one can

readily check that both the following hold:

AdÛ ◦ AdV̂ = AdÛ V̂ , ∀Û , V̂ ∈ SU(n) (6.14)

ad[Â,B̂] = [adÂ, adB̂] = adÂ ◦ adB̂ − adB̂ ◦ adÂ, ∀Â, B̂ ∈ su(n)

The co-adjoint representation of su(n) can now be defined in terms of the adjoint

representation. The group SU(n) possess a co-adjoint representation also, however this

will not be discussed in detail. See [94] for details of the coadjoint representation of a

Lie group and Lie Algebra. We use the standard notation for the ‘canonical pairing’

〈·, ·〉 : su(n)× su(n)∗ → R (R as su(n) is a real Lie algebra). This pairing is defined by

〈Â, f〉 := f(Â). Furthermore, every element of the dual space su(n)∗ can be represented

as f(·) = Tr
(
B̂†·
)

for some B̂ ∈ su(n). As such, this pairing can be thought of as〈
Â, T r

(
B̂†·
)〉

= Tr
(
B̂†Â

)
.

The co-adjoint representation ad∗ (for which the representation space is su(n)∗) is

defined implicitly via: 〈
Ĉ, adÂ

(
B̂
)〉

= −
〈
ad∗

Â

(
Ĉ
)
, B̂
〉

(6.15)

For clarity, each ad∗
Â

: su(n)∗ → su(n)∗, for each Â ∈ su(n). Note the minus sign in 6.8:

this is due the the metric being right invariant rather than left as is more commonly

studied in pure mathematics contexts. There are some additional conditions on L for

the EP equations to apply; these can be readily found in any mathematical description

of the theory of Lagrangian reduction [95, 91]. It is clear that all Finsler metrics meet

the required conditions. For example, it is clear that the regularity condition is met,

as it is present in the definition of a Finsler metric.

This equation may also been seen with a δ (signifying a functional derivative)

in place of the d above; this is the form of the equation which applies to infinite

dimensional problems rather than the finite dimensional ones studied here.

On fixing a basis {B̂k} for su(n) and expressing an arbitrary element −iĤt as ξkB̂k,

the EP equation takes the form [91, 92]:

d

dt

∂`

∂ξd
= −Cb

ad

∂`

∂ξb
ξa (6.16)

47



where Cd
ab are the structure constants of su(n). See [39] for details of structure constants

in general, and [96] for su(n) specifically, where the structure constants of su(2) and

su(4) are given explicitly. The tensor C possesses many symmetries, including Ca
bd =

−Ca
db for example; this follows directly from the antisymmetry of the Lie bracket. As of

yet, the author has not found a way to exploit these symmetries as a tool for simplifying

the EP equations in the case of su(n).

Henceforth the subscripts indicating a point on SU(n) are dropped from α and β,

and they are understood to be restricted to the tangent space of SU(n) at the identity,

i.e. su(n). However, coordinate indicies still appear.

This procedure can be applied to finding the geodesics of a right invariant Randers

metrics on SU(n). The variable ξ, in the present case, takes the form ξ = dÛt
dt
Û †t =

−iĤt. Thus, the EP equation for a Randers metric 1
2
F 2 on SU(n) is satisfied by the

overall Hamiltonian driving Ût along a geodesic of F , i.e. a time optimal trajectory.

Setting ` to be the square, to obtain unit speed geodesics, of a Randers norm

`(Â) = 1
2
(F
∣∣
Î
(Â))2 = 1

2

(√
α(Â, Â) + β(Â)

)2

, i.e. the restriction of a Randers metric

F on SU(n) to su(n), we can derive the EP equation associated to the geodesics of F .

Substituting into the EP equation one finds:

∂`

∂ξd
=

1

2

(
(αijξ

iξj)1/2 + βkξ
k
) (
||ξ||−1α αndξ

n + βd
)

(6.17)

then differentiating one finds:

d

dt

(
∂`

∂ξd

)
=

d

dt

(
||ξ||α + βkξ

k
) (
||ξ||−1α αndξ

n + βd
)

(6.18)

=
(
||ξ||−1α 〈ξ̇, ξ〉α + βj ξ̇

j
) (
||ξ||−1α αmdξ

m + βd
)
−(

||ξ||α + βkξ
k
) (
||ξ||−3α 〈ξ, ξ̇〉ααhdξh − ||ξ||−1α αkdξ̇

k
)

These yield the EP equation of a geodesic:(
||ξ||−1α 〈ξ̇, ξ〉α + βj ξ̇

j
) (
||ξ||−1α αmdξ

m + βd
)
− (6.19)(

||ξ||α + βkξ
k
) (
||ξ||−3α 〈ξ, ξ̇〉ααhdξh − ||ξ||−1α αkdξ̇

k
)

=

−Ca
bd

(
(||ξ||α + βkξ

k)
(
||ξ||−1α αnaξ

n + βa
))
ξb

where we take the following meanings: ||ξ||α :=
√
αijξiξj and 〈µ, ν〉α := αijµ

iνj.

We are interested in the geodesics associated to a navigation problem specified

in terms of its navigation data. Such an equation can, in principle, be obtained by

substituting in the definitions of α and β in terms of h and W from Shen’s solution

to the navigation problem described in 2.3. As of yet the author has not been able to

obtain a tractable form for this equation.
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6.3 Using Robles Theorem To Determine Geodesics

6.3.1 The Navigation Metric In the Bi-Invariant Case

The case studied in this section is that in which h is bi-invariant, i.e. h(iÂ, iB̂) =

κTr(ÂB̂). This is the unique bi-invariant metric (up to a choice of positive κ ∈ R)

defined by the right (or left) translation of the Killing form from the identity. This

case was treated in the work [2]. For a clear review of Killing forms and bi-invariant

metric on Lie groups see ([97], §14.2).

The navigation Randers metric F 6.5 evaluates, after some elementary algebra, to:

F (iÂÛ) =
1

ρ− 1

Tr(ÂĤ0)

Tr(Ĥ2
0 )

(
1±

√
1 + (ρ− 1)

Tr(Ĥ2
0 ) Tr(Â2)

(Tr(ÂĤ0))2

)
(6.20)

where iÂÛ ∈ TÛSU(N) and:

ρ :=
Tr(Ĥ2

c (t))

Tr(Ĥ2
0 )

> 1 (6.21)

This metric is obtained by substituting h(iÂ, iB̂) = κTr
(
ÂB̂
)

into 6.5. κ does not

appear directly in F as it has been absorbed into the value of ρ.

6.3.2 Geodesics and Optimal Hamiltonians In the Bi-Invariant

Case

Here I note that the centeral result of this section also obtained my Brody and Meier

[98] concurrently with this work by a different method.

The geodesics of 6.20 can be determined by an application of a special case of Robles

theorem [99, thm.2]. We use σ = 0 in that theorem, as the special case of a Killing

field (see [100] for definitions) in place of the infinitesimal homothety. The definition

of a Killing field is given here for clarity:

Definition 6.3.1. A smooth vector field X ∈ Γ(TM) on a Riemanian manifold (M, g)

is Killing field of g iff:

£Xg = 0 (6.22)

where £ is the Lie derivative. This is equivalent, in terms of the Levi-Civita connection

of g, to:

g(∇x, Z) + g(Y,∇XZ) = 0 (6.23)

for all vectors X, Y, Z ∈ TpM for each p ∈ M . In local coordinates this condition is

equivalent to Killing’s equation:

∇µXν +∇νXµ = 0 (6.24)
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We specialise to SU(n), rather than a general manifold, as this is the case relevant to

quantum mechanics. In fact, there are no infinitesimal homotheties that are not Killing

fields for the bi-invariant metric on SU(n), so no real restriction has been incurred on

which metrics can have their geodesics determined using the following theorem. The

theorem states:

Theorem 6.3.1 (adapted from [99, thm.2]). Given:

• A Riemannian manifold (M,h)

• A smooth vector field Ŵ ∈ Γ(TSU(n)) on SU(n) such that £Ŵ (h) = 0 (that is,

the Lie derivative of the metric is 0, or equivalently Ŵ is a Killing vector field).

Given that F is the Randers metric solving the Zermelo navigation problem on M for

navigation data h and Ŵ , then the unit F speed geodesics of F are given by V̂t = φt(Ŝt),

where:

• φt is the flow associated to Ŵ

• Ŝ is a unit speed geodesic of h

Furthermore, any geodesic of F obtained this way is a global length minimiser if and

only the associated Riemannian geodesic of h is a length minimiser of h [99].

In the case that h is the bi-invariant metric, the unit speed geodesics Ŝt are the one

parameter subgroups of SU(n), parametrised to have unit h speed. These can all be

expressed as Ŝt = exp(itD̂) for some D̂ ∈ su(n) that is a unit vector for the same h.

The flow on SU(n) associated to the vector field ŴÛ = −iĤ0Û is:

φt(Û) = exp(−itĤ0)Û (6.25)

This follows from the observation that the equation defining the flow:

dφt(Û)

dt
= −iĤ0φt(Û) (6.26)

is exactly the Schrödinger equation with Hamiltonian Ĥ0. We thus conclude that the

time optimal trajectories are given by:

Ût = φt(Ŝt) = φt

(
exp(itD̂)

)
(6.27)

= exp(−itĤ0) exp(itD̂)

This is to be compared with [4, eqn.51] which exhibits a similar product of exponentials

structure.

We determine the optimal Hamiltonian by assuming Ût, a geodesic, solves the

Schrödinger equation for an as yet unknown Hamiltonian Ĥt:

dÛt
dt

= −iĤtÛt (6.28)
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which implies that:

Ĥt = i
dÛt
dt
Û †t (6.29)

= i
(

(−iĤ0)V̂t + V̂t(iD̂)
)
V̂ †

= i
(

(−iĤ0) + V̂t(iD̂)V̂ †
)

= Ĥ0 − V̂t(D̂)V̂ †

= Ĥ0 − exp(−itĤ0)(D̂) exp(itĤ0)

= Ĥ0 + iAdexp(−itĤ0)
(iD̂)

Finally, in order to conclude that the curves in 6.27 are the geodesics and that their

associated Hamiltonians are given by 6.29, we check that the given ŴÛ is a Killing

field for the metric h. This is achieved by checking £Ŵ (h) = 0 thus:

d

dt
hφt(V̂ )

(
dφt
∣∣
V̂

(ÂV̂ ), dφt
∣∣
V̂

(ÂV̂ )
) ∣∣∣∣

t=0

(6.30)

=
d

dt
hexp(−itĤ0)V̂

(
exp(−itĤ0)ÂV̂ , exp(−itĤ0)ÂV̂

) ∣∣∣∣
t=0

=
d

dt
hexp(−itĤ0)

(
exp(−itĤ0)Â, exp(−itĤ0)Â

) ∣∣∣∣
t=0

=
d

dt
hÎ(Â, Â)

∣∣∣∣
t=0

= 0

where V̂ is an arbitrary group element and ÂV̂ is an arbitrary element of TV̂ SU(n).

We have dφt
∣∣
V̂

(ÂV̂ ) = exp(−itĤ0)ÂV̂ trivially, as it is the differential of a linear map.

Here, both the left and the right invariance of the metric h have been appealed to; this

proof would need to be modified, or simply does not hold, in the case that h is not the

unique bi-invariant metric. In such a scenario one would have to solve 6.19 directly to

obtain the optimal Hamiltonian.

6.3.3 Optimal Gate Times From Geodesic Lengths

What remains to determine is the formula for a geodesic with desired endpoints (con-

necting the identity Î to a desired operator Ô ∈ SU(n)) and the corresponding Hamil-

tonian driving Ût along the geodesic. This boils down to determining the D̂ corre-

sponding to a given Ô ∈ SU(n). In the bi-invariant case, to determine which D̂ yields

the geodesic with endpoints Î and Ô such that the system traverses the geodesic in

time T , we need to solve:

ÛT = exp(−iT Ĥ0) exp(iT D̂) = Ô (6.31)

Rearranging and taking matrix logs:

exp(iT D̂) = exp(iT Ĥ0)Ô (6.32)

iD̂ =
1

T
log
(

exp(iT Ĥ0)Ô
)
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which yields the desired geodesic and corresponding control Hamiltonian:

Ût = exp(−itĤ0) exp

(
t

T
log
(

exp(iT Ĥ0)Ô
))

(6.33)

= exp(−itĤ0)
(

exp(iT Ĥ0)Ô
)t/T

Ĥc(t) =
i

T
exp(−itĤ0) log

(
exp(iT Ĥ0)Ô

)
exp(itĤ0) (6.34)

=
i

T
log
(

exp(−itĤ0) exp(iT Ĥ0)Ô exp(itĤ0)
)

=
i

T
log
(

exp
(
i(T − t)Ĥ0

)
Ô exp(itĤ0)

)
We can take the exp(±itĤ0) factors inside the logarithm, because the matrix logarithm

is analytic [101, Ch.7], which follows from the fact that any matrix function f which

is defined by a power series obeys f(V̂ −1ÂV̂ ) = V̂ −1f(Â)V̂ for all matrices Â and all

non singular V̂ .

In order to determine the optimal time Topt to implement a gate Ô in systems

constrained such that h(iĤc(t), iĤc(t)) = 1 one must find the F (solving the navigation

problem) length of the F geodesic connecting Î to Ô. Insisting that the left hand side

of 6.32 has norm 1 according to h, that h(iD̂, iD̂) = 1, in accordance with the premise

that it is the unit speed geodesics of h that are needed, we determine that:

1 = h(iD̂, iD̂) = h

(
1

T
log
(

exp(iT Ĥ0)Ô
)
,

1

T
log
(

exp(iT Ĥ0)Ô
))

(6.35)

which yields the following equation to be solved for T :

− κ

T 2
Tr

(
log
(

exp(iT Ĥ0)Ô
)2)

= 1 (6.36)

The smallest positive solution is the optimal time; we refer to this as Topt. At the time

of writing, we have found no method for solving this analytically in general; it appears

prohibitively difficult by standard means known to the authors. However, once Ĥ0 and

Ô are given, it can easily be solved numerically; some simple cases are illustrated in 7.

Once Topt is known, either analytically or numerically, then the true geodesics and

corresponding optimal control Hamiltonian are:

Ût = exp(−itĤ0)
(

exp(iToptĤ0)Ô
)t/Topt

(6.37)

Ĥc(t) =
i

Topt
log
(

exp
(
i(Topt − t)Ĥ0

)
Ô exp(itĤ0)

)
Obtaining an Approximate Formula For D̂

We can use the well-known BCH formula [39, §3] to evaluate approximations to iD̂

as it provides a series type representation for the solution to exp(z) = exp(x) exp(y).

Given a certain x, y in a Lie algebra the solution for z is given by:

z = x+ y +
1

2
[x, y] +

1

12
[x, [x, y]]− 1

12
[y, [x, y]]− 1

24
[y, [x, [x, y]]] + · · · (6.38)
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We apply this to 6.32 to solve exp(iT D̂) = exp(iT Ĥ0) exp(log(Ô)), to obtain:

iD̂ = iĤ0 +
1

T
log Ô +

1

2
[iĤ0, log(Ô)] +

T

12
[iĤ0, [iĤ0, log(Ô)]] (6.39)

− 1

12
[log Ô, [iĤ0, log Ô]]− T

24
[log(Ô), [iĤ0, [iĤ0, log(Ô)]]] + · · ·

A Simplifying Case That Can Be Solved In Closed Form

One special case that can be solved analytically is where Ô and Ĥ0 commute. Expand-

ing the matrix logarithm using log(ÂB̂) = log(Â) + log(B̂), rearranging and applying

the standard quadratic formula gives:

Topt =
iκTr(Ĥ0 log(Ô))

kTr(Ĥ2
0 )− 1

± 1

2

√
κTr((log(Ô))2)

κTr(Ĥ2
0 )− 1

− κ2 Tr(Ĥ0 log(Ô))2

(κTr(Ĥ2
0 )− 1)2

(6.40)

where, as in [2], the ± is chosen to ensure a positive time.

6.4 Generalising To a Non-Riemanian Bi-Invariant

Finsler Metric F̌ In Place of h

A generalisation of Robel’s theorem holds for general bi-invariant Finsler Metric F̌

[100]. In this section this generalisation is applied to generalise the results of previous

sections 6.33.

It is worth noting what is not achieved by studying Zermelo navigation on only Rie-

mannian manifolds rather than more general Finsler manifolds. The only constraints

on quantum systems that can be studied this way are those which restrict the control

Hamiltonian iĤc to be restricted to the unit sphere of a norm induced by a given inner

product h on su(n). This is because such inner-products are in one-to-one correspon-

dence with right invariant metrics on SU(n) (by right translation). This allows only

quadratic constraints to be studied.

However, not all physically meaningful constants are of this form. An interesting

constraint not included in this class is the restriction that the energy expectation (in

some specific state |ψ〉) associated to the control Hamiltonian alone is equal to a fixed

constant for all time:

κ〈ψ|Ĥc(t)−
1

D
E0(t)Î|ψ〉 = 1 (6.41)

Choosing |ψ〉 to be the uniform superposition state (as described in [2]) this constraint

evaluates to:

κTr

(
Ĥc(t)−

1

D
E0(t)Î

)
= −κE0(t) = 1 (6.42)

where E0(t) is the lowest eigenvalue of Ĥc(t) and D is the dimension of the vector space

on which Ĥc acts.
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The main result of [100] is particularly relevant as it generalises [99] and allows one

to replace the role of h with a general Finsler metric that has iĤ0Û as a Killing field.

One class of Finsler metrics with this property is the bi-invariant ones, of which there

are many. The proof of bi-invariance is similar to the bi-invariant Riemannian cases

already presented, and so is omitted. Examples of such constraints are found in the

Finsler metrics formed from the right translation of the Shatten p-Norms on su(n).

These correspond the constraint that:

F (p)(Ĥc(t)) := κ

(∑
n

|En|p
)1/p

= 1 ∀t (6.43)

thus generalising the case of the bi-invariant Riemannian metric studied above, wherein

p = 2 (the only value of p yielding a Riemannian metric on SU(n)). Solving the

navigation problem in general, to obtain a closed form for the navigation metric, has

not been achieved by the mathematics community, as far as the authors are aware.

However, there are other cases besides the Riemannian case that have been solved; the

Kropina metric case [102] is notable. In the absence of a solution to the navigation

problem analogous to the role of Randers metrics in the Riemannian case, alternative

methods must been sought. The central result of [100] allows one to determine the

geodesics of the Finsler metric solving the navigation problem on SU(n) for which

Ĥc(t) is constrained such that F (p)(Ĥc(t)) = 1. The geodesics of the (unknown) metric

solving the navigation problem in such a generalised case are:

V̂t = exp(−itĤ0) exp(itD̂) (6.44)

where F (p)(iD̂) = 1.

One can also find the time optimal Hamiltonian for implementing gate Ô to be the

same as the Riemannian (p = 2) case:

Ĥc(t) =
i

T
exp(−itĤ0) log

(
exp(iT Ĥ0)Ô

)
exp(itĤ0) (6.45)

except with Topt taking a different value. The requirement is now that Topt is the

smallest value of T that solves:

F (p)
(

log(exp(iT Ĥ0)Ô)
)

= T (6.46)

As in the Riemannian case, the authors do not know of a method for solving this in

closed form and a numerical method mus be used.

6.5 Advantages of Method

The method in [4, 5] can produce the optimal trajectory and even the optimal (over

all trajectories) time to implement a gate. However, a primary advantage (over the

work of Carlini et. al [4, 5]) of the method presented in this chapter is that one can

determine the optimal time for Ût to traverse an arbitrary curve on SU(n). Previous
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methods cannot achieve this. This can be achieved as the optimal time for a system

(meeting the required premises) to traverse a given curve on SU(n) is the length of

that curve according to the metric solving the navigation problem as described above.

6.5.1 Time Independent Trajectories

As an example of finding the time required to implement a gate using trajectories only

of a prescribed type can be restricting to constant control fields. In such a situation a

closed form, explicit, formula (unlike eqn. 6.36 which is implicit) for the time required

to implement an arbitrary gate can be found.

In order to determine the time required to implement a gate Ô ∈ SU(n) in such a

system one must first find the curve connecting the identity Î to Ô. The assumption

that the controls are constant results in the the overall Hamiltonian being constant:

Ĥ = Ĥ0 + Ĥc (6.47)

where Ĥc is a constant. In such a scenario the system is described by the standard

Schrödinger equation with time independent Hamiltonian:

dÛt
dt

= −iĤÛt (6.48)

This equation is solved by a matrix exponential:

Ût = e−itĤ (6.49)

as can be readily confirmed. Another method for obtaining the form of the time

evolution operator is to apply Stone’s theorem [103]. These trajectories are the one-

parameter subgroups of SU(n).

One can find the Hamiltonian driving Ût along a one-parameter subgroup and

reaching Ô in time T by setting:

e−iT Ĥ = Ô (6.50)

and the taking the matrix log of both sides, for a full discussion of the definition and

ambiguity of the matrix logarithm see 6.5.1. Here, the principal logarithm is chosen.

This results in:

log
(
e−iT Ĥ

)
= log

(
Ô
)

(6.51)

From which one can conclude:

−iT Ĥ = log
(
Ô
)

(6.52)

and thus:

Ĥ =
i

T
log
(
Ô
)

(6.53)
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Before the result 6.5 of this chapter can be applied to such a system, a constraint on

the ‘size’ of Ĥc must also be imposed. We assume that h
(
iĤc, iĤc

)
= 1 for some inner

product h on su(n). We further assume that h
(
iĥ0, iĤ0

)
< 1. These assumptions

assure that the premises of 6.5 are met and that, subsequently, the desired time is the

F length of the curve:

Ût = e
t
T
log(Ô) (6.54)

according to the right invariant Randers metric:

FV̂ (ÂV̂ ) =

√√√√√√ h(Â, Â)

1− h(iĤ0, iĤ0)
+

(
h(Â, iĤ0)

)2
(

1− h(iĤ0, iĤ0)
)2 +

h(Â, iĤ0)

1− h(iĤ0, iĤ0)
(6.55)

The required quantity (as F is right invariant) is:

Topt = L[Ût] =

∫ T

0

F

(
dÛt
dt
Û †t

)
dt (6.56)

=

∫ T

0

F

(
1

T
log
(
Ô
))

dt

= F
(

log
(
Ô
))

Ambiguity of the Matrix Logarithm

For a clear discussion of this material in a more general context see [104]. The matrix

logarithm, unlike the matrix exponential, is not in general unique. The log of a square

complex matrix Â is defined as the multivalued inverse of the matrix exponential. This

is to say: any matrix B̂ such that:

exp(B̂) = Â (6.57)

is called a logarithm of Â and one has exp(log(Â)) = Â. Within the general linear group

GL(n,C) (GL(n) henceforth where no confusion is possible) of non-singular complex

matrices the issue of existence of a logarithm is particularly simple. All non-singular

complex matrices have at least one logarithm in gl(n), the Lie algebra of GL(n) which

consists of all complex square n by n square matrices. Note that, in contrast to the

log of positive real numbers, this is not equivalent to log(exp(Â))) = Â which does not

hold for all logarithms of Â.

As unitary matrices are all invertible, they each have at least a single logarithm.

One of these logarithms is singled out, the principal logarithm. This is the unique

logarithm such that it’s eigenvalues all lie on the strip in the complex plane:

{Z ∈ C s.t.− π < =(Z) < π} (6.58)

Where no specific matrix logarithm is mentioned, in this thesis the principal log is

intended. In the case of a unitary matrix, the situation is particularly simple [104] as
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the logarithm will always have purely imaginary eigenvalues as it is skew Hermitian.

In every optimal time examined in this thesis in which a matrix logarithm appears,

the principle log appears to give to least time. However, firmly establishing this will

require further work.
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Chapter 7

Example Calculations Of Optimal

Times

In this chapter, example calculations of optimal times for implimenting quantum gates

are given. This work was first published in [3].

7.1 Example: A Spin In a Magnetic Field With

Constant Control Fields

In order to exemplify the concept of finding the time to traverse a specific trajectory

the example of a single spin (i.e. a spin 1
2

particle or nucleus) is studied.

The drift Hamiltonian is taken to be:

Ĥ0 = Bxσx +Byσy (7.1)

The physical interpretation of this is that the field ~B =
(
Bx
By
0

)
represents the effect of a

constant (in time) magnetic field outside the control of the experimenter. The notation

B2 = ~B · ~B = (Bx)2 + (By)2 will be employed as will similar notation for other vectors.

We further assume that there is another magnetic field under the control of the

experimenter, D =
(Dx
Dy
Dz

)
. The control Hamiltonian is given by: Ĥc = Dxσx +Dyσy +

Dzσz. We do, however, assume that the experimenter can only implement fields of

limited ‘strength’. The notion of strength that we choose here is a very physically

reasonable one, we choose to restrict κTr(Ĥ2
c ) = 1 for some κ ∈ R+.

The requirement that κTr(Ĥ2
c ) = 1 can be evaluated by applying the Clifford

algebra (of R3 with the standard euclidean metric) property of the Pauli matrices σk

[105]. This is: (Dkσ
k)2 = ( ~D · ~D)Î. This implies:

Tr(H2
c ) = Tr

(
(Dkσ

k)2
)

(7.2)

= Tr(( ~D · ~D)Î) = 2 ~D · ~D

= 2(D2
x +D2

y +D2
z) =

1

κ
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From this we conclude that, in terms of the physical quantities directly, the constraint

reads: D2 = 1/2κ.

Similarly, the requirement that κTr(Ĥ0
2) < 1 can be evaluated:

Tr(H2
0 ) = Tr((Bxσ

x +Byσ
y)2) = 2B2 <

1

κ
(7.3)

where B2 := B2
x+B2

y . Equations 7.2 and 7.3 give B2 < D2; the control field overcomes

the drift field.

In the specific case of h one can now conclude, after some simple algebraic manip-

ulation of 6.55 and 6.56, that:

Topt =
1

ρ− 1

iTr(Ĥ0 log(Ô))

Tr(Ĥ2
0 )

1±

√√√√√1 + (ρ− 1)
Tr(Ĥ2

0 ) Tr((log(Ô))2)(
Tr(Ĥ0 log(Ô))

)2
 (7.4)

Tr(Ĥ0 log(Ô)) is always purely imaginary, and thus the expression evaluates to a real

result, despite the presence of i. The choice of ± is made to ensure positivity. Within

the formula 7.4 we have defined:

ρ :=
Tr(Ĥ2

c (t))

Tr(Ĥ2
0 )

> 1 (7.5)

for convenience.

As an example, some particular operation Ô is chosen. We can then calculate its

optimal implementation time. Setting Ô =

(
0 −1

1 0

)
= −iσy gives a gate that sends

each of the two computational basis states to an orthogonal state. We then find the

optimal implementation time thus:

1. ρ = D2/B2

2. log(Ô) = log

(
0 −1

1 0

)
=

(
0 −π

2
π
2

0

)
= −iπ

2
σy

3. Tr
(

log(Ô)Ĥ0

)
= −πiBy

4. Tr
(

(log(Ô))2
)

= −π2/2

Substituting into 7.4, one can find the time for this gate: Combining these terms and

substituting into 7.4 yields:

Topt =
π

2

By

(D2 −B2)

(
1±

√
1 +

D2 −B2

B2
y

)
(7.6)
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7.2 A Two Level System: Constant vs Non-Constant

Controls

In order to exemplify a direct comparison between the speed limits for two different

types of trajectory, a specific example of the same system 7.1 is considered but with

non-constant controls permitted.

The ‘size’ constraint on the control Hamiltonian is again κTr
(
Ĥc(t)

2
)

= 1. How-

ever, now this constraint is imposed for all times and the control Hamiltonian κĤc(t) is

permitted to be time dependent. The drift Hamiltonian is as before: Ĥ0 = Bxσx+Byσy

and is further such that κTr
(
Ĥ2

0

)
≤ 1. By applying formula 6.36 one finds:

− κ

T 2
Tr
(
log(µ(T ))2

)
= 1 (7.7)

where the matrix µ is defined as:

µ(T ) :=

sin(TB)(By + iBx)
B − cos(TB)

cos(TB)
sin(TB)(By − iBx)

B

 (7.8)

for convenience.

The 7.7 for the optimal time can be numerically solved in order to obtain the least

positive root Topt which is equal to the desired optimal time. The trace appearing

in 7.7 (due to the cyclic property of the matrix trace) depends on the eigenvalues

of the quantity within the trace. Thus one should diagonalise before attempting to

numerically solve 6.36. It greatly simplifies the process and can be easily achieved with

any good algebra package. The two eigenvalues of the matrix µ are:

λ±(T ) = By sin(TB)± 1√
2

(√
((Bx)2 + 1) cos(2TB)− (Bx)2 + 1

)
(7.9)

and thus the required time Topt is the least root to the equation:

T 2 − κ
(
log(λ+(T ))2 + log(λ−(T ))2

)
= 0 (7.10)

Here the fact that the trace of a normal matrix is the sum of its eigenvalue has been

used. The roots of this equation, and thus the desired optimal times, can be found

numerically by using a standard root finding algorithm. The optimal times obtained

from this equation warrant direct comparison to 7.10.

For a concrete example we fix κ = 1
2
, i.e. D = 1. The optimal times for the complete

range of values of B which meet the premise that Tr
(
Ĥ2

0

)
≤ 2 i.e. − 1√

2
≤ B ≤ − 1√

2

are shown in figure 7.2. These times were obtained by using a Newton-Raphson root

finding method with starting point T = 1. We found that the computation time for

these optimal times 7.2 were negligible on a standard desktop computer using only a

single core.

In the time independent case, the times can be obtained by substituting into 7.6:

Then the time in the time independent case is:

Topt =
π

2

B

(1− 2B2)

(
1±
√

1−B2

B

)
(7.11)
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This function is also plotted in figure 7.2 for comparison to the optimal times in the

time dependent case.
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Figure 7.1: Times for time dependent (solid) and independent (dashed) controls.

7.2.1 Geodesics and Optimal Hamiltonian

By applying the first part of 6.33 one can obtain the time optimal trajectories for Ût:

Ût = exp(−itĤ0) exp

(
t

Topt
log
(

exp(iToptĤ0)Ô
))

(7.12)

= exp(−it (Bxσx +Byσy)) exp

(
t

Topt
log
(

exp(iTopt (Bxσx +Byσy))Ô
))

(7.13)

= exp(−it (Bxσx +Byσy)) exp

(
t

Topt
log (µ(Topt))

)
By applying the second part of 6.33 one can further obtain the optimal Hamiltonian

driving Ût along such a geodesic: The optimal control Hamiltonian in closed form is:

Ĥc(t) =
i

Topt
exp(−it (Bxσx +Byσy)) log(µ(Topt)) exp(it (Bxσx +Byσy))

In both of these formulae one has:

exp(−itĤ0) = (7.14)

exp(−it (Bxσx +Byσy)) =

 cos(tB)
− sin(tB)(By + iBx)

B
sin(tB)(By − iBx)

B cos(tB)


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Unfortunately, further expanding the the other matrix exponentials and logarithms

appearing seems not to lead to tractable expression.

7.2.2 Example of Extracting the Optimal Control Fields

The optimal control fields can also be determined for arbitrary positive value of κ ∈ R.

Consider that the control Hamiltonian can be expressed as iĤc(t) = Dk
t iσk. One can

now extract the individual control fields Dk from the following, as iσk are an orthogonal

basis (according to h(iÂ, iB̂) = κTr(ÂB̂)) for su(n):

Dk
t = h

(
iĤc(t),

iσk
2

)
=
κ

2
Tr(Ĥc(t)σk) (7.15)

Here the 1
2

is included to ensure that 1
2
iσk is an h unit vector.

As a concrete example of obtaining control fields, we set Bx = By = 1
4
. We solved

the specific instance of 6.36 using the same root finding algorithm. The smallest, real,

positive root is Topt ≈ 3.2043 . . .. (The actual physical time in seconds can be obtained

by reintroducing the physical constants that have been lost after non-dimensionalisation

throughout. Specifically, ~ has been set to 1 throughout.) In this instance the optimal

control Hamiltonian is given by:

Ĥc(t) = (7.16)

i

Topt
exp

(
−it
4

(σx + σy)

)
log

1+i√
2

sin
(
Topt√

8

)
− cos

(
Topt√

8

)
cos
(
Topt√

8

)
1−i√

2
sin
(
Topt√

8

) exp

(
it

4
(σx + σy)

)
by 6.33. Evaluating the logarithm exactly in closed form is possible, but the result is

cumbersome and does not provide any physical insight, so it is omitted.

The optimal control fields are obtained from this result. The kth field is obtained

by evaluating 7.15 1
2

Tr(Ĥc(t)σk) numerically, as shown in 7.2. As a check, it has been

numerically confirmed that the control fields have the property that the sum of their

squares is 1/2 (∀t), which the constraint on Tr(Ĥc(t)
2) mandates.

Figure 7.2: Optimal control fields Dx (dashed), Dy (dot-dashed), Dz (solid) for Pauli

y gate, as a function of time, in the B = 1/4 case.
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It is pleasing to observe that the fields driving the system along a geodesics are not

too rapidly oscillating or degenerate (informally) in any other way. This indicates that

it is plausible that such fields could be implemented in a practical laboratory context

which validates the potential technological applications of the present work.

7.3 Two Coupled Spins: Constant vs Non-Constant

Controls

For another, larger example, one can consider two coupled spins with Heisenberg cou-

pling. The drift Hamiltonian for a two spin chain with (arbitrary spin coupling con-

stants Jk) is [106]:

Ĥ0 = Jxσx ⊗ σx + Jyσy ⊗ σy + Jzσz ⊗ σz (7.17)

Again, we take h to be a multiple of the Killing form so that we can apply 6.3.1 to

obtain the geodesics in closed form. By 6.33, the geodesic which connects Î to Ô of

the relevant Randers metric on SU(4) are given by 6.37. One can exploit the block

diagonal form of Ĥ0 in order to simplify the equation that needs to be solved.

By 6.33, the optimal Hamiltonian is:

Ĥc(t) =
i

Topt
exp (−it (Jxσx ⊗ σx + Jyσy ⊗ σy + Jzσz ⊗ σz)) (7.18)

× log
(

exp (iTopt (Jxσx ⊗ σx + Jyσy ⊗ σy + Jzσz ⊗ σz)) Ô
)

× exp(it ((Jxσx ⊗ σx + Jyσy ⊗ σy + Jzσz ⊗ σz)))

The actual control fields can be extracted, similarly to before, via:

fmn(t) =
κ

4
Tr
(
Ĥc(t)σm ⊗ σn

)
(7.19)

This is the expansion of Ĥc(t) in a basis for su(4). This basis is:

{iσn ⊗ σm‖n,m = 0, x, y, z but not both n = 0 and m = 0} (7.20)

Here σ0 is taken to be the 2×2 identity matrix whereas the other σs are all the standard

Pauli matrices. One readily checks that this basis is orthogonal w.r.t. the Killing form,

which is the key property applied when extracting the control fields in 7.19. The origin

of the 4 in this formula is the trace of the 4 × 4 identity matrix. Explicitly, we are

representing Ĥc(t) as:

Ĥc(t) =
∑

fmn(t)σm ⊗ σn (7.21)

where ths sum is over the basis vectors appearing in 7.20.
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7.3.1 Explicit Calculation: The XXX-Chain

In order to again illustrate the way in which out method allows us to determine which

systems are best suited to quickly implementing a QIP task, we study the case of the

Isotropic Heisenberg spin chain, the Jx = Jy = Jz = J case of 7.17. This leaves only

one parameter J to consider, yielding a simple pedagogic example for the method. We

set κ = 1 for the sake of example and thus consider the time for implementing the

(special unitary) swap gate:

Ô = eiπ/4


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 (7.22)

Using 6.33, the optimal Hamiltonian is:

Ĥc(t) =
i

4Topt


2e−itJ 0 0 0

0 e−itJ + e3itJ e−itJ − e3itJ 0

0 e−itJ − e3itJ e−itJ + e3itJ 0

0 0 0 2e−itJ

 (7.23)

× log

1

2
e
iπ
4


2eiToptJ 0 0 0

0 eiJTopt − e−3iJTopt eiJTopt + e−3iJTopt 0

0 eiJTopt + e−3iJTopt eiJTopt − e−3iJTopt 0

0 0 0 2eiJTopt




×


2eitJ 0 0 0

0 eitJ + e−3iJt eitJ − e−3itJ 0

0 eitJ − e−3iJt eitJ + e−3itJ 0

0 0 0 2eitJ


We can determine the optimal time Topt as before, by numerically solving 6.36. Sub-

stituting the specifics of the current problem into this equation yields:

− 1

T 2
Tr

log

1

2
e
iπ
4


2eiTJ 0 0 0

0 eiJT − e−3iJT eiJT + e−3iJT 0

0 eiJT + e−3iJT eiJT − e−3iJT 0

0 0 0 2eiJT




2 = 1

Using the same numerical procedure as in the previous example, we obtain the optimal

execution times. These are shown in 7.3.

The dashed line in 7.3 plots the function, adapted from [2] to this specific scenario,

giving the optimal time obtainable using only time independent control fields:

Topt =
π

2

( √
3

2
√

3J ± 1

)
(7.24)

where the ± is again chosen to make the time positive.
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Figure 7.3: Times for time dependent (solid) and time independent (dashed) controls

in an XXX Spin Chain.

7.4 Analysis of Results

7.4.1 Homogeneous Geodesics

A homogeneous geodesic (through the identity) on a Lie group with a Finsler metric

F is a one-parameter subgroup which is also a geodesic [107, 108]. Here, it is a curve

of the form Ût = exp(−itÂ) for some iÂ ∈ su(n), which is also a geodesic of F . The

−iÂ ∈ su(n) is a called a geodesic vector. These are exactly the curves that can be

trajectories of a controlled quantum systems (of the type discussed throughout) for

which only constant controls are permitted, as discussed in [2].

Theorem 3.1 in [108] presents a condition, which needs to be mildly adapted to apply

to the scenario of Zermelo navigation on SU(n). Adapted to the present example of

SU(n) (rather than a general homogeneous space as in the original work), the condition

for X̂ to be a geodesic vector is:

gX̂(X̂, [X̂, Ẑ]) = 0, ∀Ẑ ∈ su(n) (7.25)

where g is the fundamental tensor of F restricted to su(n). Here the fundamental

tensor of a Finsler metric F on SU(n) is the Hessian of the same metric point-wise

(within a single tangent space):

gÂ(B̂, Ĉ) =
1

2

∂2

∂s∂t

{
F 2
(
Â+ sB̂ + tĈ

)}
(7.26)
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In the specific case of F a Randers metric, the fundamental tensor is given by formula

(1.5) in [23].

Many of the results about homogeneous geodesics of Finsler metrics on Lie groups

are applicable to left invariant metrics. However, these results can be easily adapted to

the right invariant case, which arises naturally in quantum mechanics. The construction

of an “opposite group” allows one to adapt results without difficulty; typically only

sign changes are incurred.

7.4.2 A Conjecture

Theorem 3.7 in [108] can be applied to establish that any right invariant Randers metric

on SU(n) (n ≥ 2) will have infinitely many homogeneous geodesics. The theorem

establishes that a right invariant Finsler metric on a compact Lie group will have

infinitely many geodesic vectors. This can be easily seen by direct application of the

theorem and by the observation that the rank of SU(n) is n− 1, and thus the theorem

applies to any qubit system of more than one qubit. The theorem requires that the

Lie group rank is ≥ 2, thus in all cases except SU(2) (the single qubit case for which

the rank is 1), there exist infinitely many homogeneous geodesics. This establishes

the importance of determining all homogeneous geodesics of right invariant Randers

metrics on SU(n). Furthermore, in the case of a Randers metrics (as is our case)

theorem (4.2) in [108] establishes a practically simplifying condition on homogeneous

geodesics.

The author conjectures that this theorem is the underlying explanation for the two

curves in figure (7.3) being equal for a continuous region of J values is that, in this

region, the time independent trajectories are homogeneous geodesics of the Randers

metric F . Confirming this conjecture will require further work.
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Chapter 8

Additional Constraints and

Sub-Finsler Metrics On SU(n)

This chapter covers methods for handling additional constraints on Ĥc in the first

problem of quantum control. This work was first published in [3].

8.1 The Physical Need For Additional Constraints

The constraints studied thus far are, alone, insufficient for many physical applications.

The assumption thus far as been only that the control Hamiltonian is constrained to

be such that h(iĤc(t), iĤc(t)) = 1. In comparison to [4], only the roles of the LT and

LS parts of the Lagrangian have been treated here. The LT part is analogous to our

application of the result of [29] on Zermelo navigation in the case of a right invariant

Riemannian metric. The LS part has no analogue as our work expresses the problem

in a geometrically intrinsic way. We consider this to be an advantage of our method

as it allows a more mathematical view of the problem; intrinsic geometry has been

proven many times to be superior for mathematical analysis of geometric problems

over methods based on many constraints or specific coordinate systems. This allows

us to formulate the problem as a first order system of ODE from the outset by using

the EP equation, rather than needing to compute any first variations or use the EL

equations. So we can obtain a first order equation for the optimal Hamiltonian, without

the need to actually determine any geodesics a priori.

There is also a disadvantage of the methods presented in this thesis compared with

[4]: they can handle fewer types of constraints. Our method thus far can handle only

the cases where the ‘size’ type constraint [4] is representable by an inner product.

8.1.1 Motivating Example: Heisenberg Spin Chains

To motivate the need for further constraints, we again consider the drift Hamiltonian

for a two spin “chain” (with anisotropic couplings J) [106]:

Ĥ0 = Jxσ
x ⊗ σx + Jyσ

y ⊗ σy + Jzσ
z ⊗ σz (8.1)
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Simply constraining the control Hamiltonian to be such that h(iĤc(t), iĤc(t)) = 1 for

some inner product h is insufficient for practical applications where the producible set

of control Hamiltonians does not include every direction within su(n). For example, a

common model of a controlled spin chain is one in which the control Hamiltonian takes

the form:

Ĥc(t) = f1(t)σz ⊗ Î + f2(t)Î ⊗ σz (8.2)

That is, there is one local control field in the z direction only for each site in the chain.

In such a situation no terms like σx ⊗ σx (or multiples there of) could appear in the

control Hamiltonian, as these represent the couplings between sites in the chain, and

are not the effect of any possible external field. In this case (choosing h to be κ times

the Killing form), the constraint h(iĤc(t), iĤc(t)) = 1 evaluates to κTr(Ĥc(t)
2) = 1,

which only constrains the sum of the squares of the control fields. An extra constraint

must be added to exclude those terms from the control Hamiltonian that cannot be

physically implemented.

8.1.2 Implementing Constraints Using Lagrange Multipliers

Additional constraints can be implemented by including Lagrange multipliers to create

a new functional:

Λ

(
Ût,

dÛt
dt
, ωk(t)

)
=

1

2
FÛt

(
dÛt
dt

)2

+
∑
k

ωk(t)

(
fk,Ût

(
dÛt
dt

)
− ck

)
(8.3)

where F is the Randers metric solving the relevant navigation problem, fk represent

the additional constraints, and ωk are the Lagrange multipliers. The values ck represent

the value of f to which the trajectory is constrained.

We consider only the case where f is right invariant; this results in Λ also being

right invariant. This corresponds to situations where the additional constraints depend

only on the Hamiltonian, rather than the on location of Ût on SU(n).

In this situation Λ can be expressed as:

Λ

(
dÛt
dt
Û †t , ωk(t)

)
=

1

2
F

(
dÛt
dt
Û †t

)2

+
∑
k

ωk(t)

(
fk

(
dÛt
dt
Û †t

)
− ck

)
(8.4)

=
1

2
F
(
−iĤ(t)

)2
+
∑
k

ωk(t)
(
fk

(
−iĤ(t)

)
− ck

)
(8.5)

where Ĥt is the Hamiltonian such that Ût solves the corresponding Schrödinger equa-

tion.

8.1.3 ‘Forbidden Directions’

One specific set of fk and ck with practical relevance is:

fk

(
dÛt
dt
Û †t

)
= Tr

((
dÛt
dt
Û †t + iĤ0

)
iF̂k

)
. (8.6)
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with ck = 0.

This corresponds to the F̂k spanning a set of “forbidden” terms for the control

Hamiltonian. One can check this interpretation of the constraint by noticing that if Ût

solves the Schrödinger equation with a Hamiltonian of the form of 4.6, then variation

of 8.4 by ωk yields:

Tr

((
dÛt
dt
Û †t + iĤ0

)
iF̂k

)
(8.7)

which implies:

Tr
(
Ĥc(t)F̂k

)
= 0

and thus the desired “forbidden” directions are trace-orthogonal to the control Hamil-

tonian, and the control Hamiltonian has no component in any forbidden direction.

These are essentially identical to the “linear homogeneous” constraints in [4]. There

is a subtle difference however: here the forbidden direction applies only to the con-

trol Hamiltonian and not the overall Hamiltonian. This constraint is equivalent to an

affine constraint on the overall Hamiltonian. Adding too many additional constraints

may render the system in question uncontrollable. Existence/uniqueness of optimal

trajectories is an issue not addressed in [4].

In order to find the equation satisfied by the optimal Hamiltonian that takes into

account some additional constraints, we must modify 6.19. In the remainder of this

paper we consider only the “forbidden direction” type of additional constraint. The

equations satisfied by the optimal Hamiltonian (if any exist) can be found (in a basis

for su(n)) by variation of each dependent variable on which Λ depends. Variation by
dÛt
dt
Û †t yields the Euler-Poincaré equation for Λ:

d

dt

∂Λ

∂ξd
= −Ca

bd

∂Λ

∂ξa
ξb (8.8)

Variation by ωk yields:

Tr

((
dÛt
dt
Û †t + iĤ0

)
iF̂k

)
= 0 (8.9)

Equations 8.8 and 8.9 need to be solved simultaneously in order to obtain the optimal

Hamiltonian.

Obtaining closed form solutions for these equations and further numerical solution

techniques in specific cases of physical interest requires further work. We would need

to perform a complete analysis of common two qubit gates implemented in spin chain

systems and other laser driven models. We would then hope to obtain an exact formula

for the initial conditions required (for the system 8.8 and 8.9) in order for numerical

solution of the system of ODEs to yield a geodesic connecting Î to an arbitrary desired

gate Ô. A method for achieving a very similar goal has be found in a very different

context [109]; only the Riemannian case is addressed, but it seems that the technique

is easily adaptable.
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The Role of Sub-Finsler Geometry

Mathematically, the optimal trajectories can be understood as sub-Finsler geodesics, or

more specifically, what could be appropriately called sub-Randers geodesics. Many of

the relevant definitions in this section can for found here [110] where they are discussed

in great detail. One can find information about sub-Riemannian geometry in optimal

control in [111]. For an application of sub-Finsler geometry in optimal control see [112].

For a specific application in quantum control see [113].

Definition 8.1.1. A Distribution on a manifoldM is a smooth assignment of subspaces

Vp ⊂ TpM of fixed dimension (dim(Vp) = k ≤ dim(M)). Such an assignment can be

specified by choosing k linearly independent (point wise) vector fields V
(k)
p .

Definition 8.1.2. A distribution
{
V

(k)
p

}
on M is called Bracket Generating iff every

smooth vector field X ∈ Γ[TM ] can be expressed in as a linear combination of iterated

commutators of the vector fields
{
V

(k)
p

}
.

The now well known “Hormander’s condition” [114] for the controllability of an

affine control system on a Lie group of the type studied in this work, that is systems

of the form of 4.2, indicates which sets of forbidden direction results in the system no

longer being controllable. In the quantum case the vector fields spanning the distri-

bution are all right invariant and the bracket generating condition corresponds to a

condition that holds at a single point on the group SU(n). These vector fields in the

case of a controlled quantum system of the form 4.6 are:

S =
{
−iĤ0,−iĤ1, . . . ,−iĤN

}
(8.10)

where Ĥ0 is the drift Hamiltonian and the others are a basis for the possible con-

trol Hamiltonians. The condition for controlability in the quantum case is that the

Lie algebra Lie(S) bracket generated by the set S satisfies Lie(S) = su(n). If this

condition fails then this would mean that there were unitary gates that could not be

implemented using a system constrained in such a way. It is however worth noting that

this condition makes no reference to the control fields having restricted size. This adds

additional restrictions to those studied in Hormander’s condition and may still result in

uncontrollability despite Hormander’s condition being met. In short, in the presence of

a constraint on the size of the control fields, Hormander’s condition is merely necessary

for controlability but is not sufficient.

In order to fully describe the geometry of quantum systems where there is an

uncontrollable drift Hamiltonian a definition is needed:

Definition 8.1.3. An Affine Distribution on a manifold M is a smooth assignment

of affine subspaces Vp ⊂ TpM of fixed dimension (dim(Vp) = k ≤ dim(M)). Such

an assignment can be specified by choosing k linearly independent (point wise) vector

fields V
(k)
p and another vector field Up. The points of the distribution as a subset Dp

of TpM are given by:

Dp = Up + Span
{
V (k)
p

}
(8.11)
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The method for handling the constraint h(iĤc(t), iĤc(t)) = 1, alongside additional

constraints, shows that the optimal trajectories for Ût are geodesics of Randers metric

parallel to an affine distribution, say D, on SU(n). D is the distribution consisting of

vectors in TSU(n) of the form:

DÛ = −iĤ0Û + Span{iĤkÛ
∣∣k = 0, . . . , N} (8.12)

Here {iĤk

∣∣k = 0, . . . , N} ⊂ su(n) span the subset of su(n) that is h-orthogonal to the

span of the subset of su(n) spanning the “forbidden directions”. This distribution is

right invariant in the sense that: DÛ = DÛ . That is, the optimal trajectories are the

length minimising curves that connect given endpoints (Î to Ô) according a Randers

metric F (solving the navigation problem in our case), and which are parallel to the

distribution D.

Definition 8.1.4. A curve V̂t is called parallel to a (potentially affine) distribution D
iff dV̂t

dt
∈ DV̂t ∀t.

One can see that the condition that a curve on SU(n) satisfies the EP equation with

additional constrains described in this chapter is exactly the condition to be a geodesic

of a Randers metric parallel to an affine distribution. 8.8 imposes that a curve is an,

at least local, extremal curve of the length functional. 8.9 can then be understood as

imposing the curve is parallel according to D as defined in 8.12. The system formed

by 8.8 and 8.9 are solved by such curves.

Such curves are definitively sub-Randers geodesics. Thus it has been shown that the

problem of quantum time optimal control for systems meeting the premises described

in this chapters can be mathematically stated as the problem of finding sub-Randers

geodesics for a right invariant sub-Randers metric. The right invariance follows from

the right invariance of the navigation metric and the distribution D̂Û .
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Chapter 9

Example Calculations With

Additional Constraints

This chapter covers example calculations for handling additional constraints on Ĥc in

the first problem of quantum control. This work was first published in [3].

9.1 Single Spin With One Forbidden Direction

Here it is illustrated how a forbidden direction can be treated in the example of a

single spin. For simplicity, we consider the case that there is no drift. This makes the

navigation metric F Riemannian, which makes ` a quadratic function. This allows us

to solve for the time derivative of ξ explicitly in the EP equations, and then integrate

the equation in closed form by hand. The case with drift is conceptually identical,

except it may not always be possible to solve for ξ̇, so the resulting system is more

difficult to solve analytically and would require a numerical solution.

A system with control Hamiltonian constrained such that:

1

2
Tr(Ĥc(t)

2) = 1 (9.1)

is considered. Writing iĤc(t) = ξk(t)iσk one sees that this condition is ξx2+ξy2+ξz2 =

1. Suppose further that one restricts to ξz = c for ∀t. This is different from the examples

worked out in [5], as this is an affine constraint rather than a linear homogeneous

constraint. In a situation with a drift term, it is simple to see that a linear constraint

on the control Hamiltonian corresponds to an equivalent affine constraint on the overall

Hamiltonian.

In the present case the overall Lagrangian is:

Λ(Ĥt, ω(t)) =
1

2

(
ξx2 + ξy2 + ξz2

)
+ ω(t) (ξz − c) (9.2)

The EP equations are:  ξ̇x

ξ̇y

ξ̇z + ω̇

 =

−ωξyωξx

0

 (9.3)
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and ξz(t) = c, ξ̇z = 0. which implies:(
ξ̇x

ξ̇y

)
=

(
−ωξy

ωξx

)
(9.4)

and that ω is a constant. The general solution (after imposing the unit speed condition)

is:

ξx(t) = A cos(ωt)−
√

1− c2 − A2 sin(ωt) (9.5)

ξy(t) = A sin(ωt) +
√

1− c2 − A2 cos(ωt)

ξz(t) = c

wherein A is an arbitrary constant parameter and ω is the Lagrange multiplier. The

trajectories in su(n) are circles in su(2) centred at:0

0

c

 (9.6)

The unit speed condition imposed is ensure that the parameter in Ĥt is physical time

as it appears in the Schrödinger equation.

Both A and ω parametrise possible endpoints of Ût after the trajectory on the group

is reconstructed via the Schrödinger equation. The optimal Hamiltonians are:

Ĥt = (A cos(ωt)−B sin(ωt))σx + (A sin(ωt) +B cos(ωt))σy + cσz (9.7)

where B = ±
√

1− c2 − A2.

9.2 Single Spin With One Forbidden Direction and

Drift

In order to illustrate the effect of adding a drift Hamiltonian on the navigation metric,

set:

iĤ0 =
1

2
iσx (9.8)

for some constant vector χ. As before: iĤc(t) = ξk(t)iσk and the same constraint is

imposed.

Λ(Ĥt, ω(t)) =
1

2
F
(
ξkiσk

)2
+ ω(t)

(
1

2
Tr
(
ξkσkσx

)
− c
)

(9.9)

=
1

2

(√
2

3

(
ξy2 + ξz2

)
+

10

9

(
ξx2
)
−
(

2

3
ξx2
))2

+ ω(t) (ξx − x)

= −2

3
ξz2
√

10

9
ξx2 +

2

3

(
ξy2 + ξz2

)
+

5

9
ξx2 +

1

3
ξy2 +

2

9
ξz4 +

1

3
ξz2 + ω(t) (ξx − x)

73



9.3 Obstacles to Solving the General Case

The metric 6.5 has been obtained in two physically practical cases. The EP equation

has been obtained for the drift free case.

It is possible to obtain the EP equation for the Lagrangian 9.9. However, as far as

the author knows, it is not possible to solve these equations for ξ̇k. This is a consequence

of the persistence of the square root term after expanding out the power of two in 9.9.

The author feels that, at this point, one must resort to numerical methods.

This appears to be the generic case as the persistence of the square root term in

the Lagrangian is a feature of the EP equation associated to any Randers norm and is

not unique to the case 9.9. By considering the most general Randers norm on su(n):

F (Â) =

√
α
(
Â, Â

)
+ β

(
Â
)

(9.10)

one finds:

`(Â) =
1

2

(√
α
(
Â, Â

)
+ β

(
Â
))2

(9.11)

=
1

2

(
α
(
Â, Â

)
+ 2

√
α
(
Â, Â

)
β
(
Â
)

+ β
(
Â
)2)

(9.12)

=
1

2

(
αijξ

iξj + 2
√
αijξiξjβkξ

k + (βkξ
k)2
)

wherein Â = ξkĜk and {Ĝk} are a basis for su(n). This leads to the EP equation 6.19

for this Lagrangian.

As of yet, the author does not know a method for solving this equation. As the EP

equation associated to any non-Riemannian right invariant Randers metric on su(n) is

an implicit (in ξ̇k) differtial equation, it is probably very difficult if not impossible to

solve the general case in closed form.
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Chapter 10

Time Optimality Equations

This section presents the most general form of the equations for time optimality im-

plimenting a quantum gate in a constrained system. These equations are shown to be

the geodesic equations for a sub-Finsler metric on SU(N).

10.1 a Broad Generalisation

The method for handling forbidden directions can be generalised to include a much

larger class of constraints replacing the constraint that h(iĤc(t).iĤc(t)) = 1. One can

replace the role of h representing the constraint of the size of iĤc(t) with an arbitrary

right invariant Finsler metric, which we denote by F̌Û , i.e. we now, more generally than

before, impose F̌ (iĤc(t)) = 1 holds at the identity on SU(n). As right invariant Finsler

metrics on SU(n) are in one-to-one correspondence with Minkowski norms on su(n),

this new class of constraints is much larger that the class of right invariant Riemannian

metrics employed before.

In this chapter Shen’s [29] Lemma 3.1 adapted to the case of SU(n) with a right

invariant F̌ . In addition to the exact solution for the Riemannian case given by Shen’s

theorem, this gives an equation for a Finlser metric F the geodesics of which are time

optimal the the presence of the constraint F̌ (iĤc(t)) = 1.

F̌

(
Â

F (Â)
+ iĤ0

)
= 1 ∀Â ∈ su(n)/{0} (10.1)

Note that the roles of F and F̌ are reversed here compared with the original presen-

tation. One can easily check that the solution for F will be a Randers metric exactly

when F̌ is Riemannian; this is exactly the case solved by Shen’s theorem.

The premise that the ‘wind’/drift Hamiltonian can be overcome by the control is

now F̌ (iĤ0) ≤ 1. This guarantees that the desired time optimal trajectories are the

geodesics of the Finsler metric F solving (10.1). The solution F is right invariant if

both F̌ and the drift vector field are, as is the case for quantum control problems.

This follows directly from substituting right invariant F̌ and drift vector field into the

equation defining F and then right translating to the identity.
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Now we give the set of equation that define the optimal trajectories in such a

scenario. Time optimality yields:

d

dt

∂Λ

∂ξd
= −Ca

bd

∂Λ

∂ξa
ξb (10.2)

Variation by ωk to impose the forbidden direction constraints, as before, yields:

Tr
(
Ĥc(t)F̂k

)
= 0 (10.3)

Here Λ is as before, except the F is no longer necessarily a Randers metric, but is now

the solution to (10.1). This solution is guaranteed to also be a Finsler metric [29].

10.2 The General Time Optimality Equation

Together this all yields the system for the time optimal Hamiltonian Ĥt = Ĥ0+Ĥc(t) =

ξkĜk: 

F̌

(
Â

F (Â)
+ iĤ0

)
= 1 ∀Â ∈ su(n)/{0}

d

dt

∂Λ

∂ξd
= −Ca

bd

∂Λ

∂ξa
ξb

Tr
(
Ĥc(t)F̂k

)
= 0 ∀k, ∀t ≥ 0

ÛT = T exp

(∫ T

0

−iĤtdt

)
= Ô

(10.4)

These we refer to as the time optimality equations for the gate Ô, the drift Hamiltonian

Ĥ0 and the constraint that F̌ (Ĥc(t)) = 1 ∀t ≥ 0. Here, Ĝk are a basis for su(n). These

equations determine the optimal Hamiltonian.

As in [5], the author has not yet found a way to impose the boundary condition

ÛT = Ô (for some T ) without solving the other time optimality equations explicitly.

It is, however, known which variations at the algebra level correspond to variations of

Ût that leave the end points of a curve on SU(n) fixed [92]. In quantum mechanical

terms these are exactly variations of −iĤt of the form: δiĤt = idK̂t
dt

+ [iĤt, iK̂t]. Here

K̂t is any smooth curve in su(n) which is 0 at both end points. A method for imposing

similar boundary conditions is presented in [109] in a different context. We hope to

analyse that method and adapt it to quantum control scenarios, so that end point

conditions on Ût can be imposed at the algebra level and thus the EP equations can

still be applied.
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Chapter 11

Speed Limits For State Control

Problems

In this chapter state control problems are studied, where a given initial state |ψI〉 is

driven to a given to a |ψF 〉 in the least possible time. This task is compared to the

problem studied in previous chapters of time optimally controlling the time evolution

operator. The mathematical structure of quantum theory allows one to exploit the

isomorphism described in 3.2.3 to translate between these two control problems.

The work of Brody and Meier on the quantum speed limit, which in part follows

up to [2, 3], is also discussed. This work [115, 116] on the quantum speed limit for the

navigation problem for quantum states was published during the writing of this thesis

and some results were obtained at similar times independently and this interesting

work is fully acknowledged.

Thus far, the issue of time optimally controlling Ût has been addressed exclusively.

However, the work in [5] and many other papers address the issue of time optimally

control a quantum state.

In this chapter, controlling the state of systems with a drift Hamiltonian Ĥ0 and

limited size control fields are considered. The relationship between this problem and

the problem of time optimally controlling Ût is elucidated.

11.1 Why Work With CP n Rather Than Cn+1 Di-

rectly

The state of a quantum system is typically described as a vector in a complex vector

space. However, as described in 3.2, this description contains some redundancy.

This redundancy yields a reason to appeal to geometric descriptions of the quantum

state as a point in a projective space in order to apply geometric control theory. In

order to apply the formalism of Zermelo navigation to obtain optimal times one needs

a manifold, a Riemanian metric and a drift field. Cn+1 is both a vector space and a

(real) manifold as its manifold structure is isomorphic to R2n+2. As such, one could

consider Zermelo navigation on this manifold. However, there are obstacles to this
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approach which render CP n a far superior setting for a navigation problem.

We will not work with the complex manifold structure of Cn+1 or CP n in this thesis,

in fact CP n is even a Kähler manifold when the Fubini Study metric is used. For a

review of complex manifolds see [73], for interesting work on Zermelo navigation on

complex manifolds see [117].

Two vectors |ψ〉, Z|ψ〉 ∈ Cn+1 represent the same physical state, where Z ∈ C/{0}.
Any curve |ψt〉 ∈ Cn+1 descends to a curve on CP n given by γ (|ψt〉) = [|ψt〉]. Any

new curve Zt|ψt〉 ∈ Cn+1, where Zt ∈ C/{0}, descends to the same curve. In order

to unambiguously define a metric structure on CP n in terms of a function on TCn+1

one requires that: given a curve |ψt〉, all curves Zt|ψt〉 ∈ Cn+1 are assigned the same

length as they all descend to the same curve on CP n. This property is manifest in the

definition of the Fubini-Study metric as a function on TCP n+1 given in 5.2.2. . This

required invariance property of a function on TCn+1 means that it can never itself be

a metric as it is degenerate, a property not possessed by either Riemanian or Finsler

metrics. To illustrate this, consider the a given fixed normalised state |ψ̄〉 ∈ Cn+1

and a curve |ψt〉 = Zt|ψ̄〉. This curve as zero length according to the Fubini-Study

metric, considered as a function on TCn+1. The tangent vector to the curve is simply:

|δψ〉 = Ż|ψ̄〉. This gives the length to be:

L[|ψt〉] =

∫ T

0

√
〈δψ|δψ〉
〈ψ|ψ〉

− 〈δψ|ψ〉〈ψ|δψ〉
〈ψ|ψ〉2

dt (11.1)

=

∫ T

0

√
|Żt|2〈ψ̄|ψ̄〉
|Zt|2〈ψ̄|ψ̄〉

− |Żt|
2|Zt|2〈ψ̄|ψ̄〉2
|Zt|4〈ψ̄|ψ̄〉2

dt

=

∫ T

0

√
|Żt|2
|Zt|2

− |Żt|
2

|Zt|2
dt =

∫ T

0

0 dt = 0

This is not possible for any Finsler metric structure on Cn+1 as the non-degeneracy

condition for such a metric means that every (non-zero) tangent vector has non-zero,

positive length. As such, any Finsler metric on Cn+1 will assign a non-zero length to this

curve, despite the curve representing a physical state remaining constant. Supposing

that, as for any Finsler metric, F|ψ〉 (|δψ〉) > 0 ∀|ψ〉 ∈ Cn+1, ∀|δψ〉 ∈ T|ψ〉/{0} one

finds:

L[|ψt〉] =

∫ T

0

F|ψ〉 (|δψ〉) dt > 0 (11.2)

In the Zermelo navigation formalism, the length of any curve (according to the naviga-

tion metri 6.5 gives the optimal time for traversing that curve. This analysis indicates

that no Finlser metric structure on Cn+1 can produce the physically correct answer,

zero, for such optimal times as it cannot assign length 0 to the curve Zt|ψ̄〉. Physically

speaking, un-physical changes in the phase (and length) of the quantum state vector

are contributing to the length of the curve.
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11.2 Zermelo Navigation On CP n

11.2.1 Setting Up the Navigation Problem

In order to set up a Zermelo navigation problem and again apply Shen’s theorem, one

requires a manifold, a Riemanian metric representing the a constraint on the control

and a ‘drift’ vector field which is small according to the same metric. As described in

3.2, the state space in geometric quantum mechanics is a manifold CP n and it is this

manifold on which a navigation problem will be set up.

The Schrödinger equation of the time evolution of a quantum state is:

d

dt
|ψt〉 = −iĤt|ψt〉 (11.3)

in the case of a driven system with drift Hamiltonian Ĥ0 this equation becomes:

d

dt
|ψt〉 = −i

(
Ĥ0 + Ĥc

)
|ψt〉 (11.4)

Following a similar procedure to the case of Zermelo navigation on SU(n), one can

separate the right hand side of 11.4 in to two vector fields: −iĤ0|ψ〉 and −iĤc|ψ〉. The

first of these −iĤ0|ψ〉 is the drift field as it is time independent. Now a manifold and

drift field are identified, what remains is to identify a Riemanian metric on CP n in

order to complete the ingredients for a Zermelo navigation problem.

11.2.2 Pull-Back Metrics On SU(n+ 1)

The next object required to set up a Zermelo navigation problem for the control of a

quantum state is a metric on CPN . As expressed in 3.20, CP n ∼= SU(n+ 1)/U(n). As

such we can obtain the required metric from a metric on SU(n+1)/U(n). Furthermore,

we can obtain a metric on SU(n + 1)/U(n) from a metric on SU(n + 1) as long as

the appropriate invariance properties are satisfied. This sections develops these con-

cepts specialised to the case of quantum mechanics, for a more general mathematically

oriented expostulation of these concepts see [118].

The map φ : SU(n+ 1)→ CP n which achieves the difeomorphism in 3.20 is:

φ(Û) = Û ◦ [|ψ0〉] = [Û |ψ0〉] (11.5)

where |ψ0〉 is, as in 3.20, any state and U(n) is the stabiliser of the equivalence class

of this state. One readily checks that this map is ‘constant on U(n) cosets’ in the

following sense:

φ
(
ÛU(n)

)
=
(
ÛU(n)

)
◦ [|ψ0〉] = Û ◦ (U(n) ◦ [|ψ0〉]) = Û ◦ [|ψ0〉] = φ

(
Û
)

(11.6)

where the penultimate step has applied the fact that U(n) is the stabiliser of [|ψ0〉].
As such it is possible to unambiguously define a map χ : SU(n + 1)/U(n) →

CP n by χ
(
ÛU(n)

)
= φ(Û). The differential of the map dφ

∣∣
[|ψ〉] : TÛSU(n + 1) →
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T[Û |ψ0〉]CP
n. The relationship between the three manifolds can be represented by the

following commutative diagram. If we define the quotient map π : Cn+1 → CP n by

π(|ψ〉) = [|ψ〉] then the following diagram commutes:

SU(n+ 1) SU(n+ 1)/U(n)

CP n

π

φ χ

The natural choice of group action, ? : SU(n+ 1)× CP n → CP n, of of SU(n+ 1)

on CP n is V̂ ◦ [|ψ〉] := [V̂ |ψ〉]. The sense in which this is the ‘natural’ choice of action

is as follows.

SU(n+ 1)× Cn+1 Cn+1

SU(n+ 1)× CP n CP n

�

id×γ γ

?

where γ is defined as in 3.2. This action allows one to consider quantum time evolution

as happening on CP n rather than in Cn+1.

A Finlser metric F on SU(n+ 1) which is right invariant, i.e. FÛ

(
ÂÛ
)

= FÎ

(
Â
)

,

is manifestly constant on U(n) cosets. A metric which is constant on U(n) cosets

can be pushed forward unambiguous through the projection map π : SU (n+ 1) →
SU (n+ 1) /U (n). Similarly, a metric R on CP n pulls back to a metric on SU(n+ 1)

which is constant on U(n) cosets. This metric is defined by:

F (ÂÛ) := Rφ(Û)(dφ|Û(ÂÛ)) (11.7)

This discussion demonstrates that Finsler metrics on CP n, the space of quantum

states, can always be pulled back to Finsler metrics SU(n) which are constant on U(n)

cosets. In light of this Zermelo navigation problems on CP n can always be converted

into Zermelo navigation problems on SU(n + 1) for which the navigation metric is

constant on U(n) cosets. As the navigation metric, as shown in section, is always right

invariant in the quantum context this is simply a special case of the problem already

studied in previous chapters. Thus the optimal Hamiltonian achieving a state transfer

problem can also be obtained by solving an Euler Poincaré equation in su(n + 1) as

before.

11.2.3 Tangent Bundle of CP n

This section is included for clarity. In order to set up a Zermelo navigation problem on

CP n a drift vector field is required. Technically, −iĤ0|ψ〉 is a tangent vector on Cn+1.

The relationship between tangent vectors on Cn+1 and CP n is clarified here.

It is possible to express a tangent vector on CP n in terms of a set of tangent vectors

on Cn+1. This can be achieved be differentiating Zt|ψt〉 (with |ψt〉 normalized) in order
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to deduce which points in TCn+1 correspond to a single point in TCP n+1.

d

dt
Zt|ψt〉 = Żt|ψt〉+ Zt|δψ〉 (11.8)

as such one sees that any points in TCn+1:

(|ψ〉, |δψ〉) (11.9)

(Z|ψ〉, Y |ψ〉+ Z|δψ〉)

∀Z ∈ C/{0} and Y ∈ C correspond to a single point in TCP n. This indicates how

TCP n can be expressed as a quotient of TCn+1 in order to obtain a vector field on

CP n to use as the drift field.

11.3 Application To Orthogonality Times

The physical meaning of the connection between Zermelo navigation on SU(n+1) and

CP n is that the optimal time to enact the transition from [|φI〉] ∈ CP n to [|φF 〉] ∈ CP n

is equal to the minimal time to drive Ût from the identity to an operator Ô achieving

Ô ◦ [|ψI〉] = [Ô|ψI〉] = [|ψF 〉].
Many bounds have been recently obtained for the minimum time for a system to

transition between to orthogonal state, see 5.2.2 for a discussion of these. These bound

predominantly apply to situations where the Hamiltonian is time independent and

there is no uncontrollable drift field. First a theorem will be needed:

Theorem 11.3.1. Given any special unitary operator T̂ on CN such that the following

holds:

• ∃|ψ0〉, |ψ1〉 ∈ CN such that T̂ |ψ0〉 = |ψ1〉 and T̂ |ψ1〉 = |ψ0〉

• 〈ψ1|ψ0〉 = 0

• ∀|ψ〉 ∈ {|ψ0〉, |ψ1〉}⊥, T̂ |ψ〉 = |ψ〉 (where ⊥ indicates the orthogonal complement)

Then T̂ has the form

T̂ = V̂ ÔV̂ † (11.10)

where

Ô =

((
0 ie−iθ

ieiθ 0

)
⊕ ÎN−2

)
(11.11)

for some special unitary V̂ .

That is, given any T̂ that sends a specific pair of orthogonal states to each other, and

leaves all other orthogonal states unchanged, then T̂ can be expressed in a simplified

form, of some unitary conjugation of the specific Ô given in the theorem. The operator

T̂ = V̂ ÔV̂ † maps V̂ |0〉 to V̂ |1〉.
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Proof Sketch. Choose V̂ to be a change of basis matrix (all unitary matrices are change

of basis matrices between orthonormal bases of CN). More specifically, take V̂ to be a

change from an orthonormal basis that includes |ψ0〉 and |ψ1〉 to a basis that includes

|0〉 and |1〉. Choose a V̂ that also satisfies V̂ |ψ0〉 = |0〉 and V̂ |ψ1〉 = |1〉. The theorem

follows from this choice.

Such a gate T̂ will be referred to as an Orthogonalising gate.

11.3.1 A Two-Level Scenario

Consider a two level system without drift for which, as in section, the control Hamil-

tonian is constrained to be such that κTr(Ĥ2
c ) = 1. I.e. the constraint is represented

by the bi-invariant metric. The optimal time to implement an orthogonalising gate T̂

in a two level system is obtained.

Without Drift

In the scenario without drift the situation is simple as the navigation metric is sim-

ply the constraint metric h(iÂ, iÂ) = κTr((iÂ)†iÂ) = κTr(Â2). As this is the bi-

invariant metric on SU(2), the geodesics, and thus the time optimal trajectories, are

the one-parameter subgroups. These correspond to the trajectories of Ût obtained from

constant control fields.

What remains is to find the length the geodesic connecting Î to each T̂ and then

subsequently find the T̂ for which this curve is shortest. The geodesic connecting Î to

T̂ = V̂ ÔV̂ †, parametrised from t = 0 to t = 1, is:

Ût = exp
(
t log(T̂ )

)
= exp

(
t log(V̂ ÔV̂ †)

)
(11.12)

The generator of this one-parameter subgroup is:

log(V̂ ÔV̂ †) = V̂ log(Ô)V̂ † =
π

2
V̂

(
0 ie−iθ

ieiθ 0

)
V̂ † (11.13)

and thus the geodesics is:

Ût = exp

(
t
π

2
V̂

(
0 ie−iθ

ieiθ 0

)
V̂ †

)
(11.14)

= V̂ exp

(
tπ

2

(
0 ie−iθ

ieiθ 0

))
V̂ †

The length of this geodesics according to the navigation metric, which in the drift free
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case is simply the constraint metric is:

L[Ût] =
√
κ

∫ 1

0

Tr

{π
2
V̂

(
0 ie−iθ

ieiθ 0

)
V̂ †

}†{
π

2
V̂

(
0 ie−iθ

ieiθ 0

)
V̂ †

}1/2

dt

(11.15)

=
π
√
κ

2
Tr

( 0 ie−iθ

ieiθ 0

)†(
0 ie−iθ

ieiθ 0

) = π
√
κ

No optimisation is required here as V̂ has dropped out of the calculation due to the

bi-invariance of the metric.

With Drift

Consider a system with κ = 1 and drift Hamiltonian Ĥ0 = Bσx with B ≤ 1
2
. The

results of 6.3.2 show that the geodesics of the navigation metric associated to this

scenario connecting Î to V̂ ÔV̂ †:

Ût = exp(−itBσx) exp

(
t

T
log
(

exp(iTBσx)V̂ ÔV̂
†
))

(11.16)

and that the optimal time for implementing the gate is given by solving:

− κ

T 2
Tr

(
log
(

exp(iTBσx)V̂ ÔV̂
†
)2)

= 1 (11.17)

Obtaining the global minima (i.e. the smallest root for T ) over V̂ appears extremely

difficult in closed form and has no been achieved. In the case of even two qubits there

are 15 parameters to be optimised over.

11.3.2 Generalising the ML Bound

In this section the correspondence between the first and second fundamental problems

of quantum control, as described in this chapter, is used to obtain a generalisation of

the ML bound.

Given any right invariant Finsler metric FÛ on SU(n) defined by a Mincowki norm

F on su(n) one can define the corresponding length functional:

L[Ût] =

∫ T

0

FÛt

(
dÛt
dt

)
dt =

∫ T

0

F

(
dÛt
dt
Û †t

)
dt (11.18)

Identically, a right invariant action functional can be defined in terms of any positive

homogeneous function F : su(n)→ R:

L[Ût] =

∫ T

0

FÛt

(
dÛt
dt

)
dt =

∫ T

0

F

(
dÛt
dt
Û †t

)
dt (11.19)
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Theorem 11.3.2. For any system which satisfies the Schrödinger equation and is

constrained such that F
(
−iĤt

)
= 1 the length of any curve is equal to the time the

time evolution operator Ût of such a system takes to traverse the curve:

L[Ût] =

∫ T

0

FÛt

(
dÛt
dt

)
dt (11.20)

=

∫ T

0

F

(
dÛt
dt
Û †t

)
dt

=

∫ T

0

F
(
−iĤt

)
dt = T

In order to obtain generalisation of the Margolis-Levitin bound one can suppose a

gate Ô is implemented in a quantum system with time independent Hamiltonian K̂,

and that the gate takes time T to implement. That is:

ÛT = e−iT K̂ = Ô (11.21)

This implies (by taking logs and rearranging):

K̂ =
i

T
log(Ô) (11.22)

It is clear that setting the Hamiltonian K̂ = i
T

log(Ô) implements Ô at time t = T .

This is because Ût = e
t
T
log(Ô) which at time t = T comes to elog(Ô) = Ô. We can now

find the action of the curve Ût connecting Î to Ô along a time independent trajectory

as follows. Let F be a right invariant PH function on T SU(N). Then:

S[Ût] =

∫ T

0

Fe−itK̂

(
d

dt
e−itK̂

)
dt (11.23)

=

∫ T

0

F
(
−iK̂

)
dt

= TF

(
−i i
T

log(Ô)

)
= F

(
log(Ô)

)
In the final step the T s cancel due to the assumed homogeneity of F . As any such

action is invariant under reparameterisation of the one parameter subgroup connecting

Î to Ô, we have the following theorem:

Theorem 11.3.3. Given any PH function F : su(N), then any time independent,

finite dimensional quantum system with Hamiltonian Ĥ such that ÛT = Ô satisfies:

T =
F
(

log(Ô)
)

F
(
−iĤ

) (11.24)

Proof. Any two parameterisations of any curve must yield the same value for the action,

as F is a PH function. TF
(
−iĤ

)
and F

(
log(Ô)

)
are two different formulae for the

action for two parametrisation of the same curve, hence they must be equal.
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It should be noted that an implicit assumption about F has been made. It is as-

sumed that F is non-singular at log(Ô) and non-zero at log(−iĤ) so that the expression

for T is finite. Theorem 11.3.3 has a corollary.

Theorem 11.3.4. If the Hamiltonian is constrained such that F (−iĤ) = κ for some

κ ∈ R then:

T =
1

κ
F
(

log(Ô)
)

(11.25)

Motivation For Proof Technique

At this point we note that 11.25 could be obtained more simply by taking logs and

applying F to both sides of:

e−iT Ĥ = Ô (11.26)

however, as the result 11.3.2 applies to time dependent systems, seeking a proof using

a length functional puts both types of system on the same footing and provides and

example of assessing the time to traverse a specific trajectory. The fact that a simpler,

alternative method is available in the case of time independent trajectories would not

provide an example of how arbitrary trajectories could be assessed.

Obtaining the Bound

Now one seeks the time required to implement the orthogonalising gate T̂ in a system

constrained such that F
(
−iĤ

)
= κ. Only a two level system will be considered here

the proof in the n-level case is almost identical but slightly less clear. By 11.25 this

time is:

T =
1

κ
F
(

log(T̂ )
)

(11.27)

=
1

κ
F
(

log(V̂ OV̂ †)
)

=
1

κ
F
(
V̂ log(O)V̂ †

)
Let G(|ψ〉) : su(N)→ R be defined by:

G(|ψ〉)(−iĤ) =
〈ψ|Ĥ − E0Î|ψ〉

〈ψ|ψ〉
= E − E0 (11.28)

where E0 is the lowest eigenvalue of Ĥ. This function is a special case (p = 1) of a

more general Gp, p > 0:

G(|ψ〉)
p (−iĤ) =

(
〈ψ|(Ĥ − E0Î)p|ψ〉

)1/p
〈ψ|ψ〉

(11.29)
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G1 is the energy expectation and G2 is the energy uncertainty. We have that ∀p > 0,

∀λ > 0:

G(|ψ〉)
p (λ(−iĤ)) =

(〈ψ|(λĤ − λE0Î)p|ψ〉)1/p

〈ψ|ψ〉
(11.30)

=
(λp〈ψ|(Ĥ − E0Î)p|ψ〉)g1/p

〈ψ|ψ〉
= λG(|ψ〉)

p (−iĤ)

Hence all the Gp are positive homogeneous functions on su(N) for a fixed state and

value of p, so 11.3.3 can be applied. Furthermore, as Gp each depend only on the

spectrum of their argument, they are invariant under unitary conjugation. Applying

these facts to 11.20 yields the result:

T =
1

κ
G(|ψ〉)
p

(
V̂ log(Ô)V̂ †

)
(11.31)

=
1

κ
G(|ψ〉)
p

(
log(Ô)

)
One further finds:

log
(
Ô
)

=
π

2

(
0 ie−iθ

ieiθ 0

)
(11.32)

thus:

T =
1

κ
G(V̂ |0〉)
p

(
V̂ log(ÔV̂ †)

)
=

1

κ
G(V̂ |0〉)
p

(
π

2
V̂

(
0 ie−iθ

ieiθ 0

)
V̂ †

)

=
π

2κ
G(V̂ |0〉)
p

(
V̂

(
0 ie−iθ

ieiθ 0

)
V̂ †

)

=
π

2κ

(
〈0|V̂ †

(
iV̂

((
0 ie−iθ

ieiθ 0

))
V̂ † + Î

)p

V̂ |0〉

)1/p

=
π

2κ

(
〈0|

(
1 −e−iθ

−eiθ 1

)p

|0〉

)1/p

=
π

2κ

(10 · · · 0)

(
2p−1 −2p−1e−iθ

−2p−1eiθ 2p−1

)
1

0
...

0




1/p

=
π

κ21/p

which in the p = 1 case yields the ML bound:

T =
π

2(Ē − E0)
(11.33)

noting the ~ is only absent due to non-dimensionalisation. This formula is in general

equal to the bound given in both [68, 70]. One notes that this does not yield the

Mandelshtam-Tamm inequality relation in the p = 2 case.
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Mandelshtam-Tamm inequality

One can also define:

L(|ψ〉)
(
−iĤ

)
=

(〈ψ|(Ĥ − ĒÎ)2|ψ〉)1/2

〈ψ|ψ〉
(11.34)

where Ē = 〈ψ|Ĥ|ψ〉. One can confirm that this is a positive homogeneous function on

su(n) by an almost identical argument to the ML bound case which is omitted. This

function is equal to the energy uncertainty in the state |ψ〉.
Now the Mandelshtam-Tamm inequality can be proven in an almost identical fash-

ion to the ML bound above by applying 11.25:

T =
1

κ
LV̂ |0〉

(
V̂ log(Ô)V̂ †

)
(11.35)

=
1

κ
(〈0|(i log(Ô)− ĒÎ)2|0〉)1/2

=
1

κ
(〈0|(i log(Ô)− i〈0| log(Ô)|0〉Î)2|0〉)1/2

=
1

κ
(〈0|(i log(Ô))2|0〉)1/2

=
π

2κ

〈0|( 0 e−iθ

eiθ 0

)2

|0〉

1/2

=
π

2κ

(
〈0|Î|0〉

)1/2
=

π

2κ

=
π

2∆E

which proves the Mandelshtam-Tamm inequality.

The Operator Norm

The method can be used to obtain a large family of novel bounds. The operator norm

|| · ||op of a matrix is defined by

||Â||2op = max

{
〈ψ|Â†Â|ψ〉
〈ψ|ψ〉

,∀|ψ〉 ∈ CN

}
(11.36)

This is equal to the largest singular value of Â, often written σmax(Â). It is unitarily

invariant, that is ||V̂ AV̂ †||op = ||Â||op for any unitary V̂ which can be easily confirmed

as it depends only on the spectrum of its argument.
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By applying an identical argument to the type above in 11.3.2, 11.3.2 one finds:

T =
1

κ
Gop(log(ÔV̂ )) (11.37)

=
1

κ

∣∣∣∣∣∣π
2

(iV̂ ÔV̂ † + Î)
∣∣∣∣∣∣
op

=
1

κ

∣∣∣∣∣∣π
2

(iÔ + Î)
∣∣∣∣∣∣
op

=
π

2κ

∣∣∣∣∣∣iÔ + Î
∣∣∣∣∣∣
op

=
π

2κ
σmax(iÔ + Î) =

=
π

κ

=
π

Emax − E0

(11.38)

11.3.3 Pros and Cons of Method

This method for obtaining speed limits for reaching an orthogonal state sets many

existing known bounds on an equal footing by showing that they are all special cases

of a far more general statement. It further vindicates the intuition expressed in 5.19.

However, it is significantly more involved to apply, at lease conceptually, that the

existing proof of the Margolis Levitin theorem. Furthermore, it is unfortunately also

not possible, in the current formulation, to apply proof technique to infinite dimensional

systems where the existing ML bound applies unchanged.
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Chapter 12

Further Work, Outlook and

Conclusions

12.1 Efficacy of Zermelo Navigation Based Meth-

ods For Quantum Control and Analysis of the

QSL

In this thesis a method is presented for obtaining a differential equation, an EP equation

in su(n), satisfied by the optimal Hamiltonian implementing a desired quantum gate.

This equation has also been shown to be solvable in the isotropic case, when h is

a multiple of the Killing form. This case is of particular significance as this it is

physically plausible that all control fields will face equal restrictions. However, it was

already possible to obtain optimal Hamiltonians for quantum gates in Constrained

systems using the methods presented in the work of Carlini [4]. However, it might be

argued that the methods presented here are conceptually simpler and geometrical as

the optimal trajectories have been revealed to be sub-Finsler geodesics.

The result 6.20 determining the geodesics and optimal Hamiltonian in the case

where h is a multiple of the Killing form is not dependent on the dimension of the sys-

tem to which it applies. This feature is powerful as it allows for the analysis of systems

of arbitrary number of qubits to be performed. However, in order to obtain prac-

tical optimal Hamiltonians in systems with additional constraints one must include

a very large number of Lagrange multipliers. In the example of an n-spin Heisen-

berg spin chain with one control field per site, the number of Lagrange multipliers is

(dim (su(2n))− n) = (22n − 1− n) which clearly grows at order O(22n).

Studying methods for obtaining numerical solutions to the time optimality equa-

tions of Heisenberg spin chains will require further work. It is the hope of the author

that such an investigation will clarify the significance of the number of Lagrange mul-

tipliers and determine if the rate of there growth is significant obstacle.

One of the other main advantages of the methods in this work in the ability to

obtain the optimal time for Ût to traverse arbitrary trajectories on SU(n) in constrained
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quantum system. This contribution is an entirely new capacity in quantum control;

the author know of no other general method achieving this. Using the metric 6.5,

one can find the length of arbitrary curves on SU(n), and thus the optimal times

for Ût to traverse that curve. This is practically relevant as not all real quantum

systems can traverse all possible trajectories on SU(n), even though the system might

be controllable. Controllability is only a statement about which points on SU(n) can

be reached in some finite time, not about which trajectories can be traversed.

Fully exploring the application of Shen’s theorem and Zermelo navigation more

generally in scenarios in which not every trajectory can be achieved has not been

achieved in this work. The only example 6.5 has been the analysis is that of the

optimal times for traversing one parameter subgroups of SU(n) which corresponds to

the problem of finding optimal, time independent, controls culminating in 6.56. Further

work could analyse systems of the form:

dÛt
dt

= −i

(
Ĥ0 +

N∑
k=0

fk(~a, t)Ĥk

)
Ût (12.1)

where fk is a parametrised family of functions of times, parametrised by the components

of the vector ~a. For example, it is not possible to control exactly the output of a laser

in reality. It is only really possible to tune some aspects of the output, for example the

polarisation and amplitude; and even these cannot be varied arbitrarily quickly. The

effect of a laser on a single spin, or simple molecule can be very simplistically modelled

by the following term in the system’s Hamiltonian:

A sin(ωt)σz +B cos(ωt)σy (12.2)

and in such an example ~v =

AB
ω

. The overall Hamiltonian could, for example, be:

Ĥt = κσx + A sin(ωt)σz +B cos(ωt)σy (12.3)

Here only a finite (3 in this case) number of parameters require to be chosen. If a

condition can be found on ~v so that a desired gate is implemented, a method is still

required for finding the time optimal values for ~v. By applying the results of 6 one

easily sees that this condition is:

d

dvk

∫ T

0

1

2
F
(
−iĤt

)2
dt = 0 (12.4)

More precisely, this condition would produce stationary values of ~v, a second order

derivative condition would be needed to confirm that a specific stationary value of ~v

was globally optimal.
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12.2 Potential For Application In Natural Compu-

tation

This section is primarily a discussion of the potential applications of Zermelo navigation

in other areas of natural computation. The possibility of geometric control as a unifying

basis for some areas of Natural computation are discussed as are the limitations of this

concept.

One can consider more theories of computation than the classical Turing theory and

theories based on the non-relativistic, finite dimensional quantum mechanics of pure

states but on other aspects of physics. There is much interest in putting the theory

of computation on physical grounds [8, 9, 10, 11] and various perspectives have been

taken.

Many, but not all, systems which are studied in natural computing have a common

mathematical foundation. That common foundation is dynamical systems, see [119]

for a conceptual discussion of computations embedded in many types of dynamical

systems. See [120, 121, 122] for more specific details of computations embedded into

specific dynamical systems. One class of dynamical systems with particular relevance

in physics are those where time is continuous and the state space is a topological space

or manifold, examples abound. By no means the least important example is that of the

geometric quantum mechanics description of quantum systems studied in this thesis.

In the Turing theory of computation the ‘speed’ of a computation is typically

equated with computational time complexity. However in theories of computation

based on physical foundations, it is more appropriate to seek physical times in order

to quantify the speed of operation of a computer.

It has been shown that there are more examples of physical systems which are

considered as information processing systems to which geometric control can be applied.

Examples include:

• Classical mechanical systems with symplectic manifolds as their state spaces and

Hamiltonian time evolution

• Probabilistic systems such as finite state, continuous time Markov chains, for

which the state space is a probability simplex (which is a manifold) and the

Master equation as time evolution

However, these examples have not be expounded in detail.

While geometric control does not apply to many of the dynamical systems in use as

models of computation, it does apply to a broad range of them. It is the belief of the

author that the type of system to which it applies indicates that it could form the basis

of a fully developed theory of time complexity in physics based models of computation

if not non-standard/natural computation more broadly.
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In the quantum systems studied in this thesis a meaning is taken for the idea that a

system implements a computation. This prescription is that Ût = Ô where Ô is some

desired time evolution. However, it is not immediately clear how this concept should

be generalised to other types of system in natural computation in order to facilitate the

comparison of the speed and power of different physics based models of computation.

Such a prescription is required if one is to answer the question “what is the least time

a system can implement a computation” as one must first have a way to say that it

implements it at all.

12.2.1 Systems To Which Zermelo Navigation Does Not Ap-

ply

There are many systems in computing which are not amenable to analysis using Zermelo

navigation or even geometric control of any kind known to the author. These are the

systems which have discrete time evolution such as:

• Discrete time Markov chains [123]

• Quantum Cellular Automata [124]

and ones for which the state space (or both state and time) is discrete:

• Binary Cellular Automata [125]

• Finite State Automata [126]

12.2.2 Time Complexity and Computability In Physical Mod-

els of Computation

There is an analogy between controlability and computability and an analogy between

time optimal control and complexity.

In computer science, very broadly speaking, one speaks of the speed of classical

computers in terms of time complexity. One speaks of which overall time evolutions

a certain model of computation permits as computability. Furthermore, one broadly

calls computers which can implement every (in some context dependent sense) overall

time evolution as ‘universal’. The analogy with control theory is very clear:

Theory Of Computation Control Theory For NSC

Computability Reachable Set

Universality Controlability

Time Complexity Time Optimal Control
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12.3 Conclusion

Zermelo navigation is a powerful tool for quantum control and can produce novel speed

limit results for quantum computing and assess properties of quantum systems not

previously possible. Ultimately these contributions work towards a more satisfactory

answer to the question of the limits to computation posed in [66] and elsewhere.

Zermelo navigation methods only apply to affine control systems on a manifold.

This includes many physical systems, but not to all systems considered in unconven-

tional/natural computation. However, it does apply to many ‘physics like’ models

of computation as these are frequently dynamical systems with a smooth manifold of

states and continuous time evolution described by a differential equation. Such systems

include classical mechanical systems with symplectic manifolds as their phase spaces

and probabilistic systems (continuous time Markov chains with finitely many states)

for which probability simplexes are the state spaces.

Geometric control theory has a clear analogy with concepts of interest in classical

computer science. As such the author believes that it could play a foundational role in

assessing physics based models of computation beyond quantum mechanics. The two

mains obstacles to this program the author foresees are:

• In relativistic systems time is no longer an independent parameter as it is in the

Zermelo navigation problem so the problem would need adapting

• In quantum field theories realistic systems are necessarily infinite dimensional.

As such Zermelo navigation in infinite dimensional Lie groups would need to be

developed. This would incur significant mathematical complexity.
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