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Summary 
 

Synechocystis sp. PCC6803 is a cyanobacterium used as a model organism to study 

photosynthesis. Thylakoid membranes are specialised invaginated areas of 

membrane that are enriched in the light harvesting antenna complexes and reaction 

centres.  Energy is directed towards PSI and PSII by the phycobilisome complexes to 

drive charge separation. The native organisation of the photosynthetic complexes in 

cyanobacterial thylakoid membranes is still relatively unclear. 

 

Procedures were developed to isolate and treat thylakoid membranes from 

Synechocystis to make them suitable for AFM imaging. Methods to remove 

contaminating material from thylakoid membranes were trialled and assessed by EM 

and AFM.  Different approaches were used to induce the fragmentation of thylakoid 

membranes to produce flat, single layered lipid bilayers that were ideal for AFM 

imaging. 

 

To determine the supramolecular organisation of photosynthetic protein complexes 

in cyanobacterial thylakoid membranes; AFM was used to image the membrane 

fragments produced by the methods that have been developed in this study. It was 

possible to identify protein complexes present in thylakoid membrane fragments 

initially from Synechocystis and subsequently from Thermosynechococcus elongatus.  

In membrane fragments from both cyanobacteria it was possible to identify PSII 

complexes in addition to complexes with lower topology than PSII that had 

dimensions consistent with the cytochrome b6f complex. In membrane fragments 

from T.elongatus it was possible to image PSI; which was found in densely packed, 

highly ordered arrays which have not previously been reported. Membrane 

fragments from T.elongatus were also imaged which contained PSI in a more 

disordered organisation. 

 

In light of recent advances in lithographic techniques; it is now possible to produce 

nanopatterns of immobilised photoactive protein complexes. Such nanopatterns can 

be used to investigate the functionality and the energy transfer properties of 
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immobilised protein complexes. When Synechocystis is grown in low iron conditions 

the PSI trimer forms a complex with 18 copies of the IsiA protein called the IsiA-PSI 

supercomplex. Methods for producing a highly purified preparation of this complex 

for the purposes of nanopatterning were developed and the purified IsiA-PSI 

supercomplex was analysed by EM and AFM. Purified IsiA-PSI supercomplexes from 

Synechocystis and PSII complexes from Thermosynechococcus elongatus were 

immobilised on nanopatterns produced using reverse nanoimprint lithography. The 

binding specificity of protein complexes to the nanopatterns was determined using 

AFM. The dimensions of the nanopatterns were assessed with fluorescence 

microscopy and the spectroscopic properties of the immobilised complexes were 

investigated using fluorescence emission spectroscopy and fluorescence lifetime 

imaging. The fluorescence emission spectrum and the measured fluorescence lifetime 

of immobilised PSII complexes was comparable to that of active PSII complexes in 

solution. The fluorescence emission spectrum of immobilised IsiA-PSI supercomplexes 

was consistent with that of IsiA-PSI supercomplexes in solution. The measured 

fluorescence lifetime of the immobilised supercomplex was however significantly 

longer than that of supercomplexes in solution. 
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Introduction 

 

1.1 Photosynthesis 

 

Photosynthesis is the biochemical mechanism through which light energy is harvested 

and converted into biochemical energy. Photosynthetic organisms such as plants, 

algae and certain bacteria contain pigment-protein complexes that facilitate 

photosynthesis and act as the primary energy source for the vast majority of life on 

Earth (Nelson and Ben-Shem, 2004). All photosynthetic organisms use the energy 

captured by these pigment-protein complexes to drive a variety of electron transport 

chains that are coupled to the translocation of protons through cellular membranes. 

The resultant proton gradient is then utilised for the synthesis of ATP which is in turn 

used drive further chemical reactions required to sustain downstream metabolism 

(Nelson and Ben-Shem, 2004).  

 

Although the protein assemblies that facilitate photosynthesis in different types of 

organism vary significantly, photosynthesis is a redox reaction that can be described 

by equation 1. H2A can be any compound that donates electrons and hydrogen ions 

for the reduction of CO2 into CH2O (carbohydrate). In plants, algae and cyanobacteria 

H2O is used to reduce CO2 which results in the generation of O2 as the oxidation 

product. Oxygenic photosynthesis is essential for maintaining the level of oxygen in 

the atmosphere required for aerobic respiration (Nelson and Ben-Shem, 2004). 

 
 

 

Photosynthetic prokaryotes are able to use a variety of different compounds such as 

H2S, H2, acetate as well as many others as electron donors in place of H2O for the 

reduction of CO2. 
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1.2 Synechocystis sp. PCC6803 

 

Synechocystis sp. PCC6803 is the subject of extensive research and is the primary 

focus of this thesis. This unicellular, Gram-negative cyanobacterium performs 

oxygenic photosynthesis using H2O to reduce CO2 and is able to grow 

phototrophically when exposed to light and heterotrophically when supplied with a 

carbon source such as glucose (Anderson and McIntosh, 1991).  

 

There are many aspects of Synechocystis that make it a useful model organism for 

photosynthesis. One of the most significant factors is the similarities between the 

photosynthetic mechanism of Synechocystis and that of plants and algae with a high 

level of homology between many of the photosynthetic protein complexes. 

Synechocystis was the first photosynthetic organism to have its genome fully 

sequenced (Kaneko and Tabata, 1997) and there are many established mutants of 

this bacterium that are already in existence. Furthermore it is naturally competent, 

allowing for the uptake and incorporation of foreign DNA into its genome by 

homologous recombination (Grigorieva and Shestakov, 1982). This, combined the 

ability to grow photoheterotrophically makes genetic manipulation of essential 

photosynthetic protein complexes from this organism relatively simple in comparison 

to its eukaryotic counterparts. 

 

 

1.3 Pigments in photosynthesis 

 

1.3.1 Function of pigments 

 

There are many different types of pigment cofactors in light harvesting proteins 

which play a variety of different roles in photosynthesis. The most important function 

of pigments is to absorb light energy and transfer it to neighbouring pigments via 

excitation transfer in order to deliver the energy to a reaction centre where it drives 

charge separation. The light harvesting complexes in Synechocystis contain three 

different types of pigment; chlorophylls, carotenoids and bilins. 
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1.3.2 Chlorophylls  

 

There are six types chlorophyll that are currently known to exist, named sequentially 

from chlorophyll a to chlorophyll f (Chen et al., 2010). Synechocystis exclusively 

contains chlorophyll a whereas plants contain both chlorophyll a and chlorophyll b. 

Chlorophyll is essential for photosynthesis and whilst there are several different types 

of chlorophyll they share a number of common traits. Chlorophylls are planar 

molecules that are roughly square in shape and have a width of approximately 10 Å. 

They are modified cyclic tetrapyrroles in which a magnesium atom is co-ordinated to 

the nitrogen atoms at the centre of the macrocycle (see Figure 1.1). Chlorophyll 

molecules also contain a 5th ring in one corner of the macrocycle with each of the 5 

rings designated A-E. Another feature common to all chlorophyll molecules is the 

presence of a C20 hydrocarbon chain covalently bound to ring D of the tetrapyrrole. 

This hydrophobic phytol tail is important for the assembly and stability of light 

harvesting protein complexes (Bollivar et al., 1994; Addlesee and Hunter, 1999). 

 

The π bonds in the chlorophylls 5-membered ring structure form an extensive 

delocalised electron system over the majority of the molecule. The function of this 

system is to allow for the delocalisation of energy when it is transferred to the 

molecule either by absorption of light or excitation transfer. Chlorophylls absorb light 

in two different parts of the visible spectrum; the blue region (Soret band) and the 

red region (Qy transition) (Figure 1.2). These absorption bands arise from excitation of 

the delocalised π-electrons; the maxima of the absorption peaks change according to 

the chemical groups that are attached to the macrocycle. This leads to different types 

of chlorophyll molecules having different absorption spectra. 

 

Different cyanobacterial species utilise different combinations of pigments, allowing 

them to absorb the varying wavelengths of light available in different ecological 

niches. Acaryochloris marina contains chlorophyll d as the main pigment in its light 

harvesting complexes which facilitates the absorption of far-red light that is 

unavailable to organisms that exclusively contain chlorophyll a (Miyashita et al., 

2003). Prochlorococcus is a genus of cyanobacteria that contains chlorophyll b in 
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addition to chlorophyll a which allows for absorption of a greater range of 

wavelengths to drive photosynthesis (Partensky et al., 1999). 

 

 

 

 

Figure 1.1 Chemical structures of chlorophyll a, b and d. Chlorophyll a is the only type of 

chlorophyll present in Synechocystis. The other forms of chlorophyll have slightly different 

chemical structures and thus have different absorption spectra; the chemical groups that 

differ from chlorophyll a are highlighted in pink in the chlorophyll b and chlorophyll d 

structures. 
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Figure 1.2. Absorption spectrum of some of the pigments present in cyanobacteria. 

Different pigments have absorption maxima in different regions of the spectrum; chlorophyll 

pigments absorb light in the blue and red regions of the spectrum whereas phycoerythrin and 

phycocyanin absorb light in the green and yellow regions. By utilising multiple pigments 

cyanobacteria are able to harvest a greater range of wavelengths to drive photosynthesis. 

(http://www.ledflowergrowlights.eu/illuminate.html). 

 

 

1.3.3 Chlorophyll a biosynthesis 

 

Chlorophyll biosynthesis is a complicated metabolic pathway that consists of 17 

enzyme catalysed reactions (see Figure 1.3) the first of which is the production of 

5-aminolevulinic acid (ALA), considered to be the first committed step in the synthesis 

of tetrapyrroles (Rieble and Beale, 1991). In Synechocystis ALA is synthesised via the 

C5 pathway from glutamic acid (Rieble and Beale, 1991), then two ALA molecules are 

utilised for a condensation reaction catalysed by porphobilinogen synthase to 
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produce porphobilinogen (PGB) (Jordan, 1991). The next step in chlorophyll 

biosynthesis requires 4 molecules of PGB which are converted into the linear 

tetrapyrrole hydroxymethylbilane (HMB) by a series of 4 deamination reactions 

catalysed by porphobilinogen deaminase (Battersby et al., 1983). HMB is 

subsequently converted into uroporphyrinogen III by uroporphyrinogen III synthase 

(Crockett et al., 1991). Uroporphyrinogen III is the first cyclic tetrapyrrole in the 

chlorophyll biosynthesis pathway and through the action of HemE, HemF and HemG 

uroporphyrinogen III is converted to protoporphyrin IX (Luo and Lim, 1993; Smith et 

al., 1993; Kato et al., 2010). The synthesis of protoporphyrin IX is a branch point in 

the tetrapyrole biosynthesis pathway as either Fe2+ or Mg2+ can be inserted into the 

centre of the macrocycle, committing the pathway to the biogenesis of haem or 

chlorophyll, respectively. Magnesium chelatase inserts Mg2+ into protoporphyrin IX to 

produce magnesium protoporphyrin IX (Reid and Hunter, 2004), which then 

undergoes 11 more enzyme catalysed reactions, with the penultimate and ultimate 

steps being the addition of a geranylgeranyl tail and its subsequent reduction to 

phytol to produce chlorophyll a (Blankenship, 2002). 
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Figure 1.3 Chlorophyll a biosynthesis. This schematic outlines the 17 reactions for the 

production of chlorophyll a. From Blankenship, (2002) 
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1.3.4 Bilins 

 

Bilins are linear tetrapyrroles that absorb between 550-650 nm and are found in 

phycobiliproteins where they are covalently bound to cysteine residues in the protein 

through either one or two thioester bonds (Brown et al., 1990; Beale, 1993) . 

Phycobiliproteins are assembled into phycobilisomes (see 1.4.2) which sit on the 

surface of the cyanobacterial thylakoid membranes where their main function is to 

harvest light energy and channel it toward the reaction centres (Arteni et al., 2009). 

The two most common bilins are phycocyanobilin and phycoerythrobilin both of 

which contain extended conjugated double bonds systems that enable them to 

absorb light (Figure 1.4). 

 

 

 

 

Figure 1.4. Chemical structures of phycocyanobilin and phycoerythrobilin. The chemical 

structures of the two bilin pigments in Synechocystis are very similar; the chemical groups 

that differ between the two structures are highlighted in green. 
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1.3.5 Bilin biosynthesis 

 

Bilins are synthesised from protohaem which is converted to biliverdin IXα in a multi-

step reaction driven by the catalytic action of haem oxygenase (Beale, 1993). 

Phycocyanobilin is synthesised from biliverdin IXα through two consecutive reduction 

reactions, both of which are catalysed by phycocyanobilin:ferredoxin oxidoreductase 

(PcyA) (Figure 1.5). Each reduction reaction requires two electrons which are donated 

by ferredoxin (Hagiwara et al., 2006). Phycoerythrobilin is also synthesised from 

biliverdin IXα in a two step reaction process; the first reaction is catalysed by 

15,16-dihydrobiliverdin:ferredoxin oxidoreductase (PebA) which reduces the 

15, 16 -double bond in biliverdin IXα to produce 15, 16-dihydrobiliverdin (DHBV). The 

second step is catalysed by phycoerythrobilin:ferredoxin oxidoreductase (PebB) 

which reduces DHBV to produce phycoerythrobilin. In both steps ferredoxin provides 

the electrons required to reduce the substrate (Dammeyer and Frankenberg-Dinkel, 

2006). 
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Figure 1.5. Schematic showing the synthesis of phycocyanin and phycoerythrobilin from 

biliverdin IXα. Phycocyanobilin is synthesised from biliverdin IXα in a two step process 

catalysed by phycocyanobilin:ferredoxin oxidoreductase (PcyA). Phycoerythrobilin is 

synthesised from biliverdin IXα by the action of 15,16-dihydrobiliverdin:ferredoxin 

oxidoreductase (PebA) and phycoerythrobilin:ferredoxin oxidoreductase (PebB). Adapted 

from Dammeyer and Frankenberg-Dinkel, (2006) 
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1.3.6 Carotenoids 

 

Carotenoids are present in many light harvesting complexes and there is great 

chemical and structural variability in this class of pigments, so only the carotenoids 

relevant to Synechocystis will be discussed here. The major carotenoids commonly 

found in cyanobacteria are β-carotene, echinenone, myxoxanthophyll and zeaxanthin 

(Figure 1.6). These pigments are structurally similar and all contain extended 

conjugated double bond systems that facilitate the delocalisation of electrons and 

consequently allow for the absorption of light energy (Armstrong, 1994; Armstrong, 

1997). These pigment molecules are relatively hydrophobic and are incorporated into 

the light harvesting pigment-protein complexes in cyanobacterial thylakoid 

membranes. Carotenoids also contribute to the structural stability of the protein 

complexes in which they reside (Armstrong, 1994; Armstrong, 1997). 

 

Carotenoids serve multiple functions in cyanobacteria one of which is to act as 

accessory light harvesting pigments; they absorb light energy in the 450-570 nm 

region of the spectrum and transfer it to neighbouring chlorophyll molecules (Cogdell 

and Frank, 1987). Chlorophylls have very low absorption within this wavelength 

range, therefore carotenoids increase the proportion of the spectrum that can be 

utilised to drive photosynthesis in organisms that use chlorophyll as their primary 

photosynthetic pigment. Another function of carotenoids is to prevent photo-

oxidative damage; under high light conditions excited chlorophyll molecules are 

unable to pass on their excitation energy as their neighbouring chlorophyll pigments 

are already in an excited state. When this happens chlorophyll can enter a long lived 

triplet state (3Chl*) and in this state chlorophyll can react with oxygen to produce 

singlet oxygen (1O2*) which is a highly reactive and potentially damaging species. 

Carotenoids prevent photo-oxidative damage by rapidly quenching both (3Chl*) 

(Cogdell and Frank, 1987) and (1O2*) (Foote, 1976) then releasing the energy as heat 

through internal conversion.  
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1.3.7 Carotenoids biosynthesis 

 

The synthesis of β-carotene, echinenone, myxoxanthophyll and zeaxanthin begins 

with successive condensation reactions of the 5-carbon isoprene units which 

ultimately produces the 40-carbon phytoene (Armstrong, 1997). The next steps 

involve multiple desaturation reactions that introduce double bonds into the 

hydrocarbon chain; the end product from these desaturation reactions is lycopene 

which has an extensive conjugated double bond system (Armstrong, 1997). Through 

cyclisation of lycopene and subsequent modifications to ends of the hydrocarbon 

chain all four of the major carotenoids can be derived as shown in Figure 1.6, 

although the precise details of these biosynthetic pathways are not fully understood 

(Armstrong, 1997). 

 

 

Figure 1.6. Final stages of carotenoid biosynthesis. Lycopene is a precursor for the four 

major carotenoids in cyanobacteria; β-carotene, zeaxanthin, myxoxanthophyll and 

echinenon. Chemical modifications are shown in pink. 
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1.4 Cyanobacterial lipids 

 

There are four major types of lipid found in cyanobacterial thylakoid membranes 

(figure 1.7); monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), 

sulfoquinovosyldiacylglycerol (SQDG) and phosphatidylglycerol (PG); the abundance 

of MGDM, DGDG, SQDG and PG has been measured in Synechocystis at 37 %, 20 %, 

29 % and 14 % respectively (Wada and Murata, 2007). The lipid composition is similar 

to that of eukaryotic plants and different to that of most bacteria, as bacteria mainly 

contain phospholipids as opposed to glycolipids (Stanier and Bazine, 1977). The 

crystal structure of PSII (Umena et al., 2011) has revealed the presence of 20 lipid 

molecules associated with the PSII complex; six molecules of MGDG, five molecules of 

DGDG, 4 molecules of SQDG and five molecules of PG. The majority of these lipids are 

found close to the D1/D2 reaction centre and are believed to facilitate the removal of 

damaged D1 during PSII repair (Umena et al., 2011). With the exception of one 

molecule of MGDG, all of the MGDG and DGDG molecules were located on the 

lumenal face of the complex whereas all of the SQDG and PG molecules were 

associated with the stromal face of the membrane (Umena et al., 2011). It has been 

suggested that the hydrophilic head groups of SQDG and PG are unable to traverse 

the lipid bilayer, explaining their presence on the stromal face of the membrane. It is 

also believed that the relatively hydrophobic glycolipids MGDG and DGDG are able to 

cross the membrane to occupy its lumenal face (Umena et al., 2011).  The crystal 

structure of PSI (Jordan et al., 2001) has shown there to be one molecule of MGDG 

and three molecules of PG present on the stromal side of the membrane. Lipids have 

also been found to associate with cytochrome b6f; one molecule of SQDG and two 

molecules of MGDG were found to crystallise with cytochrome b6f by Stroebel et al 

(2003) and two molecules of PG were found in the cytochrome b6f complex by Kurisu 

et al (2003). 

 

In Synechocystis the fatty acid groups in the lipids tend to be C16 and C18 carbon 

chains, where the level of desaturation is partially dependent on the temperature at 

which the cyanobacteria are grown at (Wada and Murata, 2007). The major fatty acid 

is palmitic acid (16:0) (Wada and Murata, 1990) which accounts for roughly half of the 
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fatty acid content regardless of growth temperature and does not undergo 

desaturation in response to lower temperature growth conditions. The other major 

fatty acids in Synechocystis are; 18:1, 18:2 and γ-18:3 which account for 30-40 % of 

the fatty acid content of the cell (Wada and Murata, 1990). The amount of γ-18:3 acid 

is seen to increase and the levels of 18:1 and 18:2 acids are seen to decrease as the 

growth temperature decreases, indicating that the latter fatty acids are undergoing 

desaturation in response to the decreased temperature (Wada and Murata, 1990). 

This increase in the level of tri-unsaturated fatty acids is presumably to counteract 

the effects of decreased lipid fluidity at lower temperatures. Interestingly the α-18:3 

fatty acid, which could not be detected at higher growth temperatures of 38 °C and 

34 °C, was found to account for 10 % of lipid content in Synechocystis when the 

growth temperature was 22 °C.  

 

The fatty acid composition of thermophilic cyanobacteria is similar to that of 

Synechocystis in that the major fatty acid is palmitic acid (16:0) however 

polyunsaturated fatty acids tend to be present at a significantly lower level or are 

often completely absent (Maslova et al., 2004).  In response to lower temperatures 

the levels of 18:3 acids are not seen to increase as they do in Synechocystis; instead 

the levels of the 18:1 acid are increased and the levels of 16:0 are decreased (Maslova 

et al., 2004). The increased ratio of unsaturated fatty acids to saturated fatty acids is 

believed to counter the effects of the decreased membrane fluidity induced by lower 

temperatures. 
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Figure 1.7. Lipids in cyanobacteria. The four major lipids in cyanobacteria are 

monogalactosyldiacylglycerol, digalactosyldiacylglycerol, sulfoquinovosyldiacylglycerol and 

phosphatidylglycerol. The fatty acids chains attached to the glycerol molecule in these lipids 

vary between species of cyanobacteria. Adapted from 

http://5e.plantphys.net/article.php?ch=t&id=20 
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1.5 Light-harvesting complexes in Synechocystis  

 

1.5.1 Photosynthetic unit 

 

Three types of pigment-containing protein complexes are responsible for the 

absorption and transfer of light energy in Synechocystis, two of which also utilise the 

energy for the purposes of driving charge separation. Phycobilisomes are large 

assemblies of bilin-containing proteins (phycobiliproteins) that are attached to the 

cytoplasmic surface of the thylakoid membrane (Mullineaux, 2008) (Figure 1.8); they 

are responsible for absorbing light energy and transferring it to the photosystem I 

(PSI) and photosystem II (PSII) complexes (Mullineaux, 2008). The phycobiliproteins 

that are present in phycobilisomes are; allophycocyanin, phycocyanin and 

phycoerythrin which contain; 2, 3 and 5 bilin pigments respectively (MacColl, 1998). 

Phycobilisomes do not have a fixed size and can be composed of hundreds of 

phycobiliproteins (MacColl, 1998) and hence they can contain hundreds of bilin 

pigments. PSI is a membrane bound chlorophyll-containing protein complex that 

typically exists in a trimeric configuration (Jordan et al., 2001). Trimeric PSI contains 

288 molecules of chlorophyll a which allows for the absorption of light energy to 

drive charge separation in its special pair of chlorophyll molecules (P700) (Jordan et 

al., 2001). PSII is a membrane-bound chlorophyll-containing protein complex that 

typically exists in a dimeric state and absorbs light energy to drive charge separation; 

dimeric PSII contains 70 molecules of chlorophyll a  (Umena et al., 2011). By using 

H2O as an electron donor, O2 is liberated as a result of the redox photochemistry of 

PSII (Popelkova and Yocum, 2011). This is of obvious importance as the global output 

of PSII is responsible for maintaining atmospheric levels of O2 that allow aerobic life 

to survive. The cytochrome b6f complex is the other protein complex in the 

photosynthetic unit; it typically exists in a dimeric state and links electron transport 

between PSII and PSI at the same time as mediating the transport of H+ ions across 

the thylakoid membrane (Kurisu et al., 2003). The electron transport chain of the 

photosynthetic unit is summarised in Figure 1.9. 
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Figure 1.8. Proteins of the photosynthetic unit. Phycobilisomes are antenna complexes that 

channel light energy into the reaction centres; mainly to PSII. PSII accepts electrons from H2O 

and reduces plastoquinone which diffuses through the internal structure of the membrane 

bilayer to donate electrons to the cytochrome b6f complex. The cytochrome b6f complex in 

turn reduces plastocyanin or cytochrome C6 which diffuses through the thylakoid lumen to 

donate electrons to PSI. PSI then reduces ferredoxin which goes on to interact with 

ferredoxin-NADP+ reductase (FNR) which uses ferredoxin to reduce NADP+ to NADPH. The 

electron transport chain is coupled to the translocation of H+ ions from the cytoplasm into 

the thylakoid lumen to produce a proton gradient; this proton gradient is then utilised to 

drive ATP synthesis. (http://www.chm.bris.ac.uk/motm/oec/images/phyco.gif) 
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Figure 1.9. Z-scheme. This schematic shows the electron transport pathway from the initial 

electron donor, H2O, to the final electron acceptor, NADP+. The various electron transport 

cofactors associated with PSII are highlighted in green and the cofactors associated with PSI 

are highlighted in blue. Red arrows indicate electron transport. The values for reduction 

potential are approximate. 

 

 

1.5.2 Phycobilisomes 

 

Phycobilisomes are large pigment-protein assemblies that are associated with the 

cytoplasmic face of the thylakoid membrane and act as an antenna for the reaction 

centres (Mullineaux, 2008). The pigment-containing proteins that make up the 

phycobilisome are phycoerythrin, phycocyanin and allophycocyanin which are 

heterodimers of α and β subunits (Arteni et al., 2009). These proteins are termed 

biliproteins as they have bilin pigments covalently attached to them and absorb light 

in the 500-650 nm range (Liu et al., 2005). Negative stain TEM of phycobilisome 

complexes has been used for single particle reconstruction to show the structure of 

the phycobilisome (Figure 1.10) (Arteni et al., 2009). They reveal an allophycocyanin 

core with six rod-like structures composed of phycoerythrin and phycocyanin. 

Phycoerythrin is situated at the ends of the rods with phycocyanin situated at the 

“start” of the rods where it is attached to the allophycocyanin core. The core is made 

up of three cylinders, each comprising a stack of four allophycocyanin trimeric discs 
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(Arteni et al., 2009). In addition the core also contains the ApcC and ApcE proteins 

which are believed to be involved with attaching the phycobilisome to the membrane 

and PSII (Liu et al., 2005). Phycoerythrin contains the phycoerythrobilin pigment 

whereas phycocyanin and allophycocyanin contain phycocyanobilin. Phycoerythrin 

absorbs light at the shortest wavelengths with phycocyanin then allophycocyanin 

absorbing light at longer wavelengths. This allows energy to be funnelled from the 

periphery of the phycobilisome to its core before transfer to PSI and PSII (see Figure 

1.11). 

 

 
 

Figure 1.10. Single particle averaging of the phycobilisome complex and subcomplexes. The 

structure of the phycobilisome has been resolved through single particle analysis of negative 

stain TEM images. (a) The allophycocyanin core, (b) six phycocyanin subunits attached to the 

allophycocyanin core, (c) whole phycobilisome complex with six phycocyanin/phycoerythrin 

rods attached to the allophycocyanin core. Adapted from Arteni et al., (2009). 
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Figure 1.11. Schematic of phycobilisomes structure. This schematic shows the structure of 

the phycobilisome and the flow of energy inside the complex. (a) The phycobilisome has an 

allophycocyanin core to which phycocyanin is attached. There are 6 tubes of phycoerythrin 

that attach to the phycocyanin subunits. Light energy is absorbed at the periphery of the 

phycobilisome and funnelled to the core before being transferred to PSII. (b) The wavelength 

at which the phycobilisome subunits absorb light energy increases the closer they are to the 

centre of the complex enabling light energy to be funnelled to the centre of the complex. 

(adhttp://www.frontiersin.org/files/Articles/11696/fpls-02-00028-HTML/image_m/fpls-02-

00028-g002.jpg) 

 

 

 

 

 

 

 

 

 

 



 

21 
 

1.5.3 Photosystem II (PSII) structure and function 

 

The 3D crystal structure has been solved for the PSII complex from 

Thermosynechococcus elongatus initially at 3.8 Å and then 3.0 Å (Zouni et al., 2001; 

Loll et al., 2005); the highest resolution structure to date is of the PSII complex from 

Thermosynechococcus vulcanus at 1.9 Å (Umena et al., 2011). PSII has 20 constituent 

polypeptides, representing 35 transmembrane helices and it forms a homodimer 

(Figure 1.12). There is however evidence that suggests the presence of additional 

polypeptides in the native structure that cannot be seen in the crystal structures 

(Roose et al., 2007). Not all of the constituent proteins have a clear function as it is 

possible to remove several of them and still retain primary photochemical activity. 

There are several cofactors bound to this complex that are necessary to harvest light, 

drive charge separation, reduce a plastoquinone acceptor and to oxidise H2O to 

molecular oxygen (Umena et al., 2011); the overall reaction carried out by PSII can be 

seen in equation 2. The core of PSII is formed by the D1 (PsbA) and D2 (PsbD) 

proteins which contain the following cofactors; six chlorophyll a molecules, two 

pheophytin molecules, two plastoquinones (designated Qa and Qb) and a MnCaO5 

cluster (Umena et al., 2011). The redox chemistry of these cofactors is essential for 

the oxidation of H2O. CP43 (PsbC) and CP47 (PsbB) bind 13 and 16 molecules of 

chlorophyll a respectively, these two subunits sit either side of the D1/D2 reaction 

centre where their chlorophyll molecules pass energy to the P680 special pair via 

excitation transfer (Renger and Schlodder, 2011). The PsbE and PsbF proteins form 

cytochrome b559 which binds a molecule of haem and is located next to the D1/D2 

reaction centre where it is important for the assembly of the reaction centre and the 

stability of the mature PSII complex (Umena et al., 2011). It has been shown that this 

haem not needed for PSII mediated oxygen evolution and instead appears to play a 

role in photoprotection of the complex (Morais et al., 2001).The PsbO, PsbU and PsbV 

proteins bound to the lumenal face of cyanobacterial PSII are important for stabilising 

the oxygen evolving complex. PsbU and PsbV are not found in PSII from plants, and 

are replaced by the PsbP and PsbQ proteins; interestingly PsbQ has been detected in 

cyanobacterial PSII despite its absence in the crystal structure (Roose et al., 2007). 

The rest of the subunits are small polypeptides many of which consist of a single 
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transmembrane helix; most of them are involved in stability and also play a role in the 

assembly of mature PSII. 

 

 

Figure 1.12. Crystal structure of PSII from Thermosynechococcus vulcanus at 1.9 Å. (a) 

Ribbon diagram of the protein backbone of the PSII dimer side-by-side with its associated 

cofactors viewed through the plane of the membrane bilayer. (b) The PSII complex side-by-

side with its associated cofactors viewed from the lumenal side of the membrane bilayer. 

One of the PSII monomers and its associated cofactors are coloured green and the other 

monomer and cofactors are coloured blue. The dimeric PSII complex contains 70 

chlorophyll a molecules and 22 β-carotene molecules (Umena et al., 2011). 

 

 

 

 

 

The location of the initial charge separation event in PSII is still somewhat unclear; 

there is evidence to suggest it can take place in both the PD1 chlorophyll in the P680 

special pair (Acharya et al., 2012) and also the adjacent ChlD1 chlorophyll 
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(Cardona et al., 2012). Regardless of which cofactor acts the primary electron donor, 

once charge separation has taken place, an electron is donated from ChlD1 to a 

neighbouring pheophytin molecule. Pheophytin has two H+ ions in place of the 

Mg2+; when this molecule is reduced it is in turn able to reduce a strongly bound 

plastoquinone molecule at the QA site. The reduced QA plastoquinone then transfers 

an electron to the more loosely bound plastoquinone at the QB site. Following a 

second excitation of PSII and after receiving 2 electrons from QA and 2 H+ from the 

cytoplasm, the fully reduced QB plastoquinone (PQBH2) is released from PSII, then it 

diffuses through the membrane to the cytochrome b6f complex (Figure 1.13).   

 

After the P680 special pair has donated an electron to ChlD1 it is left with a positive 

charge (P680+), which is a very strong oxidant with a redox potential +1.2 V  (Cardona 

et al., 2012). The OEC contains a Mn4CaO5 cluster which utilises the oxidising power 

of P680+ to split H2O providing the electrons required to reduce P680+
 (Figure 1.13). 

Three manganese atoms, four oxygen atoms and one calcium atom are in a 

cubane-like configuration with oxo bridges between the metal atoms (Umena et 

al., 2011). The exact mechanism of how the OEC oxidises H2O to produce O2 is still not 

fully understood despite the 1.9 Å structure however the overall reaction can be seen 

in equation 3. The reaction requires 4 charge separation events to produce 1 

molecule of O2 and release 4 H+ ions into the lumen. 
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Figure 1.13. Electron transport cofactors and charge separation in PSII. A schematic showing 

the electron transport cofactors in a PSII monomer; red arrows indicate the transport of an 

electron between cofactors. The Mn4 containing oxygen evolving complex oxidises water and 

then transports electrons, one at a time to the P680 special pair via the TyrZ tyrosine residue. 

Either by direct absorption of light energy or by excitation transfer, charge separation takes 

place resulting in one electron being transferred to a molecule of pheophytin in the D1 

subunit. The electron is then transferred via the QA plastoquinone to the QB plastoquinone 

which results in one H+ ion being taken up from the cytoplasm and the production of a 

semiquinone. The process is repeated and the QB plastoquinone gets fully reduced before 

being released into the quinone pool. Adapted from Cardona et al, (2012) 
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1.5.4 PSII Assembly 

 

As stated previously PSII is made up of 20 individual protein subunits and numerous 

cofactors which appear to be assembled in a modular fashion with the formation of 

PSII precomplexes which in turn are sequentially combined to form mature PSII 

(Figure 1.14). One PSII precomplex is formed by the association of unprocessed D1 

protein (pD1) and PsbI (Dobáková et al., 2007) (Komenda et al., 2004) and another is 

comprised of cyt b559 and D2 (Müller and Eichacker, 1999); these two precomplexes 

combine to form the reaction centre (RC) precomplex. CP43 and CP47 also form 

precomplexes prior to their insertion into PSII; CP47 binds associates with PsbH, PsbL 

and PsbT (Boehm et al., 2011). This CP47 precomplex combines with the RC 

precomplex to form the RC47 complex (Komenda et al., 2004). The CP43 precomplex 

is made up of CP43, PsbK, PsbZ and Psb30 (Boehm et al., 2011) and then combines 

with RC47 (Komenda et al., 2004). The Mn4CaO5 is then assembled on the D1 subunit 

and the PsbO, PsbU and PsbV proteins are attached to the lumenal face of the 

complex producing mature monomeric PSII which then undergoes dimerisation to 

create mature dimeric PSII. 

 

There are also several proteins that are involved in the assembly of PSII that are not 

present in the mature complex. Psb27 has been observed to interact with CP43 and is 

believed to play a role in stabilising the complex as mutants in which this protein is 

not present have increased levels of degraded CP43 (Komenda et al., 2012a). Another 

protein involved in PSII assembly is YFC48 which is known to bind to pD1 and has 

been shown to assist in the formation of the RC precomplex (Komenda et al., 2008). 

The pD1 protein is also associated with the PratA assembly factor which is involved in 

processing pD1 into mature D1. Interestingly a membrane fraction has been purified 

that contains pD1 bound PratA that is not part of the thylakoid membrane or the 

plasma membrane (Schottkowski et al., 2009). This membrane fraction has been 

termed the PratA-defined membrane (PDM) and might be synonymous with thylakoid 

biogenesis centres (Nickelsen et al., 2011). Mutants in which this protein is absent 

have increased levels of pD1 in these PDM fractions which suggests these areas of 

membrane could be the location of early PSII assembly (Nickelsen et al., 2011). 
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Figure 1.14. Schematic for PSII assembly. In this model of PSII assembly 4 precomplexes are 

formed and sequentially combined to yield monomeric PSII. The 4 precomplexes are; the 

cytochrome b559/D2 precomplex, the pD1/PsbI precomplex, the CP47/PsbH/PsbL/PsbT 

precomplex and the CP43/PsbZ/PsbK/Psb30 precomplex. The first precomplexes to be 

combined are the cytochrome b559/D2 precomplex and the pD1/PsbI precomplex which form 

the reaction centre (RC). The CP47/PsbH/PsbL/PsbT precomplex then docks with the RC to 

form the RC47 complex; the RC47 complex is then combined with the CP43/PsbZ/PsbK/Psb30 

precomplex. Finally the Mn4CaO5 cluster, PsbO, PsbU and PsbV of the oxygen evolving 

complex are assembled on the lumenal face of the complex (not shown) to yield monomeric 

PSII. Adapted from Komenda et al., (2012b) 

 

 

 

1.5.5 Photosystem I structure and function  

 

PSI is the other reaction centre in cyanobacteria and the crystal structure of PSI from 

Thermosynechococcus elongatus has been solved at 2.5 Å (Jordan et al., 2001). PSI 

consists of 11 subunits and typically exists as a homotrimer in cyanobacteria 

(Figure 1.15). The PSI complex contains 96 chlorophyll a molecules and 22 β-carotene 

molecules as well as a number of other cofactors that form an electron transport 

chain. The core complex of PSI consists of a heterodimer of the PsaA and PsaB 

proteins that contains most of the chlorophyll molecules including the P700 special 

pair, located close to the lumenal side of this complex (Jordan et al., 2001). Both PsaA 

and PsaB bind the electron transport cofactors, forming two symmetrical branches 

that each consist of; two chlorophyll a molecules and a phylloquinone (A1) (Jordan et 
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al., 2001). These cofactors act as donors to a Fe4S4 cluster (FX) which is located close 

to the stromal side of the complex. The PsaC protein is attached to the cytoplasmic 

face of the PsaA/PsaB heterodimer and contains two Fe4S4 clusters that are 

designated FA and FB. PsaD and PsaE are located either side of PsaC on the 

cytoplasmic side of the complex and in combination with PsaC they provide the 

binding site for ferredoxin (Sétif et al., 2002). PsaD is also involved in the assembly of 

PSI and is necessary for the insertion of PsaC, PsaE and PsaL into the complex (Xu et 

al., 2001). The PsaL protein is important for the formation of the PSI trimer and is 

located in the centre of the homotrimer where it interacts with the PsaL proteins in 

the other two PSI complexes in the trimeric complex (Chitnis and Chitnis, 1993) 

(Karapetyan et al., 1999). The PsaF protein is located on the opposite side of the PSI 

monomer to PsaL; the lumenal face of this protein is involved in binding plastocyanin 

and cytochrome c6 (Farah et al., 1995). The rest of the subunits; PsaI, PsaJ, PsaK and 

PsaM, are small polypeptides that are believed to be involved with stabilising the PSI; 

however, the loss of any one of these proteins does not significantly reduce the 

functionality of the protein (Schluchter et al., 1996), (Xu et al., 1994), (Naithani et al., 

2000),  
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Figure 1.15. Crystal structure of trimeric PSI from Thermosynechococcus elongatus. (a) 

Shows the stromal face of the crystal structure of the PSI trimer with the individual 

monomers coloured blue, green and yellow. (b) The protein backbone of the PSI monomer is 

shown side-by-side with its associated cofactors as viewed through the plane of the 

membrane bilayer. The trimeric PSI complex contains 288 chlorophyll a molecules and 66 

β-carotene molecules (Jordan et al., 2001). The monomeric ribbon diagram is coloured by 

subunit.  
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Following excitation transfer from one of the antenna chlorophylls in the complex, 

once in its excited state charge separation in the P700 special pair occurs and an 

electron is transferred to a neighbouring chlorophyll molecule in either the PsaA or 

PsaB protein (Nelson and Ben-Shem, 2004). The electron is then transferred via a 

chlorophyll molecule (A0) and a phylloquinone molecule (A1) to the FX iron-sulphur 

cluster which is situated between the PsaA and PsaB subunits, close to the 

cytoplasmic side of the membrane (Nelson and Ben-Shem, 2004). The FA iron sulphur 

cluster is then reduced by the Fx iron-sulphur cluster before passing the electron on 

to the FB iron sulphur cluster. FB can then donate an electron to ferredoxin, a soluble 

protein which is bound to the cytoplasmic side of PSI (Figure 1.16) (Nelson and Ben-

Shem, 2004). After accepting an electron ferredoxin is released from PSI; the 

subsequent interactions of ferredoxin are discussed in 1.4.8. The oxidised P700+ that 

is produced as a result of charge separation is able to accept an electron from 

reduced plastocyanin which can dock to the lumenal side of PSI in order to donate an 

electron to the special pair (Nelson and Ben-Shem, 2004). 
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Figure 1.16. Schematic for electron transport in PSI and the relevant cofactors. After the 

excitation of P700, the special pair donates an electron to the iron sulphur cluster FeX through 

an electron transport chain consisting of two chlorophyll molecules (Chl and A0) and a 

phylloquinone molecule (A0). There are two such electron transport chains in the PSI 

monomer and either can be used to transport the electron from P700 to FeX. FeX 

subsequently donates an electron to ferredoxin through the FeA and FeB iron sulphur clusters. 

Black arrows represent electron transport. Plastocyanin and ferredoxin are not to scale. 
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Another important aspect of the PSI complex is its incorporation into the IsiA-PSI 

supercomplex, comprising a PSI trimer surrounded by an 18-membered ring of the 

chlorophyll-containing IsiA protein (Figure 1.17). The IsiA-PSI supercomplex is 

synthesised by Synechocystis in response to low levels of iron in the environment 

(Bibby et al., 2001; Boekema et al., 2001; Melkozernov et al., 2006). The function of 

the IsiA protein is still unclear although it is believed to be involved in 

photoprotection of PSI under low iron conditions in addition to increasing the number 

of pigments in the antenna system of PSI (Melkozernov et al., 2003). The IsiA protein 

is believed to contain 16-17 molecules of chlorophyll a (Andrizhiyevskaya et al., 2002) 

although the exact number is not known and there is currently no crystal structure 

available. The IsiA protein is also believed to contain; 2 β-carotene molecules, 1 

echinenone molecule and 1 zeaxanthin molecule (Ihalainen et al., 2005). Assuming 

the IsiA protein contains 16 chlorophyll a molecules; an IsiA-PSI supercomplex 

consisting of a PSI trimer and an 18 membered IsiA ring would contain 576 

chlorophyll a molecules, 102 β-carotene molecules, 18 echinenone molecules and 18 

zeaxanthin molecules. As a large proportion of the global cyanobacteria population is 

found in the ocean where the concentration of biologically available iron is very low 

this protein complex is extensively utilised. 
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Figure 1.17. Single particle reconstruction of the IsiA-PSI supercomplex. TEM of IsiA-PSI 

supercomplexes has been used for single particle analysis to show its structure. 

(a) Reconstruction of IsiA-PSI supercomplex showing a trimeric PSI core with a ring of 18 IsiA 

proteins surrounding it. (b) Reconstruction of IsiA-PSI supercomplex with PSI and IsiA 

structures fitted to it. Scale bar 5 nm (Boekema et al., 2001)  
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1.5.6 Photosystem I assembly 

 

PSI assembly is less well characterised than PSII, however monomeric PSI complexes 

have been identified lacking PsaK (PSI*) and both PsaK and PsaL (PSI**) which are 

believed to represent the final stages of PSI assembly (Dühring et al., 2007). A number 

of proteins have been identified such Ycf3, Ycf4 and Ycf37 which are suggested to 

play a role in the later stages of PSI assembly. In a ycf4 knockout mutant fully 

assembled PSI complexes were present however at much lower levels relative to the 

wild type (WT) (Wilde et al., 1995). The Ycf37 protein has been found to associate 

with the PSI monomer and the PSI* monomer but not with the PSI trimer. A knockout 

mutant of the ycf37 gene contains roughly 70% of PSI content seen in the WT and 

appears to completely lack the PSI* complex. This suggests that the Ycf37 protein 

plays a role in forming the PSI trimer and also functions to preserve the PSI* complex, 

however the mechanism through which Ycf37 functions is still unknown (Dühring et 

al., 2006). 

 

 

1.5.7 Cytochrome b6f 

 

Cytochrome b6f is a multi-subunit protein complex that is found as a homodimer in 

cyanobacterial thylakoid membranes and is responsible for linking electron transport 

between PSII and PSI; the crystal structure of cytochrome b6f from Mastigocladus 

laminosus has been solved at 3.0 Å (Kurisu et al., 2003) (Figure 1.18). The electron 

transport chain is made up of two b-type haems (bp and bn) that are associated with 

cytochrome-b6, an iron-sulphur cluster bound to the Rieske protein and a c-type 

haem covalently attached to cytochrome-f.  
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Figure 1.18. Crystal structure of cytochrome b6f from Mastigocladus laminosus. (a) The 

protein backbone of the cytochrome b6f complex with the individual monomers coloured in 

blue and green. (b) The cofactors associated with the cytochrome b6f complex are coloured 

according to the monomer they belong to. (Kurisu et al., 2003) 

 

When a reduced plastoquinone molecule (from PSII) binds near the lumenal face of 

the cytochrome b6 subunit it donates one electron to the iron-sulphur cluster on the 

Rieske protein and another to haem bp on the cytochrome b6 subunit (Nelson and 

Ben-Shem, 2004) (Figure 1.19). This redox reaction also releases two protons from 

plastoquinone into the lumen of the thylakoid membrane. The electron that reduces 

the iron sulphur cluster in the Rieske protein is transferred to an oxidised 

plastocyanin protein via a c-type haem in the cytochrome f subunit (Nelson and Ben-

Shem, 2004). The electron that reduces haem bp is transferred to haem bn and then 

goes on to reduce a bound oxidised plastoquinone leaving it in a semiquinone state 

(Nelson and Ben-Shem, 2004). A second reduced plastoquinone binds in the same 

place as the first and again releases two H+ ions into the lumen whilst donating an 

electron to the iron sulphur cluster and haem bp. The electron donated to the iron-

sulphur cluster goes on to reduce a second plastocyanin protein. The electron which 

is transferred to haem bp goes on to reduce the bound semiquinone producing fully 
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reduced plastoquinone, this results in 2 H+ ions being taken up from the cytoplasm to 

make the PQH2 species (Nelson and Ben-Shem, 2004). The fully reduced 

plastoquinone is then released into the quinone pool and another fully oxidised 

plastoquinone molecule takes its place. The reduced plastocyanin protein goes on to 

interact with PSI where it reduces P700+ providing the source of electrons for PSI. For 

every two reduced plastoquinone molecules that donate electrons to cytochrome b6f 

four H+ ions are released into the thylakoid lumen and two H+ ions are taken up from 

the cytoplasm which generates the proton motive force used to drive ATP synthesis 

(Nelson and Ben-Shem, 2004). 
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Figure 1.19. Schematic showing electron transport in cytochrome b6f and the relevant 

cofactors. A molecule of reduced plastoquinone PQH2 donates one electron to haem bp and 

one electron to the iron sulphur cluster (2Fe-2S); the oxidiation of the reduced plastoquinone 

molecule results in two H+ ion being released into the thylakoid lumen. The iron sulphur 

cluster then donates an electron to haem f which in turn donates an electron to plastocyanin 

which dissociates from the cytochrome b6f complex. Haem bp donates an electron to haem bn 

which in turn reduces a bound oxidised plastoquinone molecule (PQ) to a semiquinone which 

results in one H+ ion being taken up from the stroma. A second reduced plastoquinone 

molecule donates one electron to the iron sulphur complex which is again used to reduce 

plastocyanin. The electron that is donated to haem bp goes on to reduce the bound 

semiquinone to a fully reduced plastoquinone molecule through the uptake of one H+ ion 

from the stromal. The reduced plastoquinone is then released into the lipid bilayer and 

replaced by a molecule of oxidised plastoquinone. Black arrows indicate electron transfer. 

The location of PQH2 is approximate. Plastocyanin is not to scale. 
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1.5.8 The terminal electron acceptor and ATP synthesis 

 

The reduced ferredoxin that is released from PSI goes on to interact with the 

membrane associated ferredoxin-NADP+ reductase (FNR). The reaction that is carried 

out by FNR can be seen in Equation 4 where a molecule of NADP+ accepts two 

electrons from two molecules of reduced ferredoxin and one H+ ion to produce 

NADPH. This means that NADP+ is the terminal electron acceptor in the 

photosynthetic electron transport chain and is used by cyanobacteria for CO2 fixation 

(Hermoso et al., 2002). 

 

 
 

The proton motive force that has been generated by oxidation of water and 

subsequent electron transport steps is utilised to the drive the synthesis of ATP by the 

FoF1 ATP synthase. The reaction that is carried out by the FoF1 ATP synthase requires 

ADP and inorganic phosphate to synthesise ATP. ATP is used as a source of chemical 

energy to drive many of the metabolic processes in the bacterium. The Fo complex is 

a membrane protein that mediates the translocation of H+ ions across the membrane 

and the F1 complex is the site of ATP synthesis (Nelson and Ben-Shem, 2004). 
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1.6 Ultrastructure of thylakoid membranes. 

 

TEM of thin sections from Synechocystis cells in addition to electron tomography have 

made it possible to visualise thylakoid membranes. Thylakoid membranes exist as 

parallel invaginations of the plasma membrane known as cortical arrays that branch 

out from a common point of origin (Figure 1.20). In Synechocystis each invagination 

encloses a lumenal space that is discontinuous with the periplasmic space (van de 

Meene et al., 2006). These cortical arrays can consist of anywhere from one to 

approximately ten parallel invaginations of the thylakoid membrane where an 

individual thylakoid membrane can have a length of up to a couple of microns (van de 

Meene et al., 2006). The arrays also tend to be located at the periphery of the cell in 

close proximity to the plasma membrane with the centre of the bacterium relatively 

free of thylakoids. The point of origin of the thylakoid membrane is believed to be a 

specialised area of the plasma membrane designated the thylakoid centre (Nickelsen 

et al., 2011) however thylakoid biogenesis is still poorly understood. 

 

 

Figure 1.20. TEM of thin sections from Synechocystis. White arrowheads indicate thylakoid 

membranes, black arrowheads indicate carboxysomes, black asterisks indicate thylakoid 

convergence points. Scale bar is 200 nm. From van de Meene et al., (2006) 
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Electron tomography of sectioned cells has been used to generate 3D reconstructions 

of the ultrastructure of Synechocystis (Figure 1.21 and 1.22) (van de Meene et al., 

2006). These tomographs show that each thylakoid invagination has an internal 

lumen with a width of 5-8 nm; the distance between adjacent thylakoid invaginations 

is roughly 30-50 nm. Electron tomographs also reveal the presence of large lipid 

bodies that adhere to the surface of the thylakoid and plasma membrane which are 

not observed in the cytoplasm, on average there were 20 of these bodies per cell. The 

appearance of the lipid bodies changes with the imaging angle indicating that they 

are made up of heterogeneous material. The location of these lipid bodies suggests 

they play a role in maintenance of thylakoid membranes however their exact function 

is unknown. The distribution of ribosomes in cyanobacterial cells can also be seen by 

electron tomography (van de Meene et al., 2006). On average 70 % of ribosomes are 

present in the cytoplasm of the cell, 20 % are positioned between the plasma 

membrane the thylakoid membrane and 10 % are located between thylakoid 

membranes. The low levels of ribosomes between the thylakoid membranes suggests 

that proteins are likely to be synthesised in the plasma membrane or thylakoid 

centres before migrating to the thylakoid membrane. At some of the points where 

thylakoid membranes converge at the plasma membrane a cylindrical region of 

membrane can be seen that makes contact the sheets of thylakoid membrane (Figure 

1.22b) (van de Meene et al., 2006). This membrane cylinder is the thylakoid centre 

which has a diameter of 40-50 nm and can be up to 1000 nm in length; in many cases 

it appears to be continuous with the plasma membrane and periplasmic space. These 

thylakoid centres are believed to be required for biogenesis of thylakoid membranes 

in addition to maintaining the organisation of proteins and lipids in the thylakoid 

membranes (van de Meene et al., 2006). At some points of thylakoid membrane 

convergence there is no thylakoid centre and the thylakoid membranes make contact 

with the plasma membrane (Figure 1.22a) (van de Meene et al., 2006). In some cases 

the thylakoid membrane appears to be continuous with the plasma membrane and 

therefore the thylakoid lumen is continuous with the periplasmic space. The possible 

function of these connection points could be to allow the transport of proteins and 

lipids from the plasma membrane into the thylakoid membranes (van de Meene et 

al., 2006).  
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Figure 1.21. Tomographic model of thin sections from Synechocystis. The reconstruction 

shows the ultrastructure of Synechocystis in which many features can be observed; thylakoid 

membranes (green), plasma membrane (orange), thylakoid centres (purple), ribosomes 

(white), lipid bodies (pink) and a carboxysome (yellow). From van de Meene et al., (2006) 
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Figure 1.22. Tomographic models of thylakoid convergence points. (a)  A reconstruction 

using tomography data showing a side on view of the parallel arrays of thylakoid membranes 

at a convergence point close to the plasma membrane. Scale bar is 50 nm. (b)  A 

reconstruction using tomography data showing a thylakoid centre at high magnification. Scale 

bar is 50 nm. From van de Meene et al., (2006) 

 

The VIPP1 protein has been strongly implicated to have a role in thylakoid biogenesis 

as vipp1 mutants are unable to produce mature thylakoids (Westphal et al., 2001). 

VIPP1 was first identified in pea, then in Arabidopsis thaliana, where it is found is 

both in the chloroplast inner envelope and thylakoid membranes (Li et al., 1994; Kroll 

et al., 2001). Mutants in which hcf155 (the gene that encodes VIPP1) was disrupted 

showed high levels of chlorophyll fluorescence which is indicative of a reduced 

capacity for photosynthesis. Ultrathin sections of this mutant revealed a thylakoid 

system remarkably different from WT with a complete absence of parallel thylakoid 

invaginations in addition to a complete absence of vesicles (Kroll et al., 2001). In 

Synechocystis VIPP1 appears to be located exclusively in the plasma membrane 

(Westphal et al., 2001). Disruption of the sll0617 gene that encodes VIPP1 induces 

radical changes to internal cell structure in comparison to WT Synechocystis with a 

greatly elevated number of high-density carboxysomes and the complete loss of 

parallel thylakoid arrays at the cell periphery (Figure 1.23) (Westphal et al., 2001). In 

the mutant, structures resembling membranes are distributed throughout the cell 

however these do not run parallel to each other and their organisation appears to be 

somewhat random. In addition, light-dependent oxygen evolution could not be 

detected in this mutant (Westphal et al., 2001). While the precise function of VIPP1 is 

still unknown it is clearly plays an important role in thylakoid membrane biogenesis. 
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Figure 1.23. TEM of thin sections from wild type and VIPP1 knockout mutant. A comparison 

between WT Synechocystis and a mutant lacking the VIPP1 gene shows a remarkable 

difference in the ultrastructure of the two cyanobacteria. In the WT thylakoid membranes 

can be seen in parallel arrays around the periphery of the cell. The VIPP1 knockout mutant 

lacks these parallel arrays with only a few thylakoid membranes scattered throughout the 

cytoplasm. The VIPP1 knockout cell is also filled with carboxysomes giving it the bright white 

appearance. Scale bar is 100 nm. From Westphal et al., (2001) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

43 
 

1.7 Electron microscopy of protein complexes in cyanobacterial 

thylakoid membranes 

 

1.7.1 Freeze-fracture EM 

 

Freeze-fracture EM has been used to image protein complexes in cyanobacterial 

thylakoid membranes and several studies have been able to identify PSII complexes 

which have been observed to form parallel rows with a regular spacing under certain 

conditions. The formation of PSII rows has been linked to state change; the rows are 

observed with a higher frequency in cells that are in state 1, whereas in state 2 PSII 

was observed in a more random distribution (Olive et al., 1986; Vernotte et al., 1990) 

(see Figure 1.24). The spacing and packing density of the PSII rows has been observed 

to change in phycobilisome mutants (see Figure 1.24); however the frequency with 

which rows are observed is not affected by the absence of phycobilisome complexes 

(Olive et al., 1997). It has been suggested that the formation of PSII rows reduces the 

number of contacts between PSI and PSII and thus minimising the spill-over of 

excitation energy from PSII to PSI (Mullineaux, 1999). When PSII is in a more random 

distribution the number of contacts with PSI is greater thus increasing the spill-over 

of excitation energy from PSII to PSI (Mullineaux, 1999). By regulating the 

organisation of PSII, the bacterium is able to change the distribution of absorbed light 

energy between the two photosystems in response to changes in the redox state of 

the quinone pool (McConnell et al., 2002).  

 

The organisation of PSI and the cytochrome b6f complex in cyanobacterial thylakoid 

membranes is still poorly characterised and there are no studies where 

freeze-fracture EM has been used to identify PSI or cytochrome b6f particles in 

cyanobacterial thylakoid membranes. 
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Figure 1.24 Freeze-fracture electron micrographs of cyanobacterial thylakoid membranes. 

(a) Rows of PSII can be seen in thylakoid membranes from WT Synechocystis cells in state 1. 

(b) PSII has a more random distribution in thylakoid membranes from Synechocystis cells in 

state 2. (c and d) When Synechocystis mutants that lack phycobilisomes are grown under 

conditions to induce state 1, PSII forms into rows that are closer together than in the WT. 

Adapted from Vernotte et al., (1990) and Olive et al., (1997). 
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1.7.2 Negative stain EM 

 

Negative stain EM has been used to resolve PSII complexes in membrane fragments 

from detergent treated membranes; domains that exclusively contained PSII could be 

observed (see Figure 1.25) (Folea et al., 2008a). These domains consisted of several 

adjacent rows of PSII and are an example of strict photosystem segregation in 

cyanobacterial thylakoid membranes (Folea et al., 2008a). By image processing of 

membrane fragments it was possible to produce an average projection map to which 

the PSII crystal structure can be fitted to (see Figure 1.25) (Folea et al., 2008a). 

Interestingly these PSII domains are similar to the PSII rows observed in Synechocystis 

mutants lacking phycobilisomes; however these negative stain EM images in 

Figure 1.25 are of membrane fragments purified from WT Synechocystis. This implies 

that the more densely packed organisation of PSII rows seen in phycobilisome 

mutants can still occur in WT Synechocystis and that this arrangement is less easily 

degraded by the action of the detergent. Alternatively, it is possible that these arrays 

of PSII could in fact be an artefact of the detergent treatment or the dehydration that 

is required to image membrane samples by negative stain EM. 
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Figure 1.25 Negative stain EM of PSII in membrane fragments. (a and b) Membrane 

fragments from digitonin solubilised cyanobacterial thylakoid membranes which contain rows 

of PSII complexes. (c) 2D projection map of the averaged crystalline membrane fragments; 

the blue box shows lateral and vertical spacing of 16.7 and 12.2 nm respectively between the 

PSII dimers. (d) The PSII crystal structure was fitted to the reconstructed projection map; the 

red asterisks highlight unassigned electron density. Adapted from Folea et al., (2008a). 
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1.8 Atomic force microscopy 

 

Atomic force microscopy (AFM) is a form of scanning-probe microscopy in which the 

basic principle is to raster scan a probe that has an apex on the order of nanometres 

across the surface of a substrate and build a topological map of that surface. This 

instrument enables topological analysis of a wide variety of biological samples 

including whole cells, isolated membrane fragments and single proteins. This imaging 

method has several advantages over negative stain and freeze-fracture EM which 

have so far been the most successful techniques for imaging membrane proteins in 

cyanobacterial thylakoid membranes. 

 

In freeze-fracture EM, membrane samples are rapidly frozen in the presence of a 

cryoprotectant before being broken using a microtome. This procedure splits cell 

membranes along the axis of the lipid bilayer and exposes the lipid faces of the 

lumenal and cytoplasmic layers of the membrane. Integral membrane proteins such 

as PSI and PSII remain embedded in the membrane layers after the membrane is spilt. 

The surface of the membranes is then coated in an ultrathin layer of a heavy metal 

such as gold or platinum followed by a layer of carbon to stabilise the ultrathin heavy 

metal layer. The replica coats are formed by vapour deposition under vacuum 

meaning the frozen sample is exposed to vacuum during the procedure. The ultrathin 

layer of metal accurately reflects the shape of the membrane and areas 

corresponding to integral membrane proteins can be seen in the replica coat when it 

is imaged by TEM (see Figure 1.24). Negative stain EM sample preparation generally 

takes place at room temperature and requires the sample to be incubated with a 

heavy metal stain such as uranyl acetate before it is washed and then dehydrated. 

The stain adsorbs to the sample and can be visualised through TEM; areas of the 

sample that are heavily stained appear darker whereas areas in which there is only 

limited staining appear lighter (see Figure 1.25). As TEM is performed under vacuum 

the sample is exposed to vacuum during the imaging procedure.  

 

One of the major advantages of AFM over freeze-fracture and negative stain EM is 

that the sample can be imaged under atmospheric conditions and at no point is the 
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sample exposed to vacuum during either the sample preparation or during the 

imaging procedure. In the case of thylakoid membranes, the vacuum could induce 

changes in the structure of the membrane or the organisation of the photosynthetic 

protein complexes. When investigating the native organisation of the photosynthetic 

apparatus it is an obvious benefit when using AFM that the sample is not exposed to 

harsh conditions that may alter its structure. 

 

In the case of freeze-fracture EM there is the potential for disruption of the protein 

organisation when sample is frozen and when the membrane is split by the 

microtome. In AFM neither of these procedures is required; sample preparation takes 

place between 4-30 oC and mechanical breakage of membranes is generally not 

performed. The dehydration of samples that are negatively stained also a factor that 

could potentially alter the native organisation of protein complexes in the membrane. 

AFM imaging of biological samples is usually conducted under liquid in buffer 

conditions that are similar to the samples native environment and therefore avoids 

any of the potential problems that arise from dehydrating the sample. For these 

reasons it is clear that AFM has a number of advantages of EM based techniques for 

determining the native organisation of protein complexes in membranes. AFM is not 

without its own drawbacks; when looking at membrane samples it is often necessary 

to use detergents in order to produce flat membrane patches that are amenable to 

AFM. Such detergent treatments have to the potential to alter the structure of the 

membrane and the native protein organisation. AFM and EM should therefore be 

viewed as complementary techniques, rather than one being superior to the other, 

with both imaging techniques able to provide useful information on the organisation 

of proteins in membranes. 
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1.8.1 Instrumentation 

 

An AFM probe consists of a small rectangular chip with a flexible cantilever 

protruding from one end which has a tip with a “point” that is roughly 1-10 nm in 

diameter. When the tip makes contact with a surface it is then raster-scanned across 

that surface and when it comes in contact with a topological feature the cantilever is 

deflected as the probe tracks over the feature. A laser is reflected of the “top” side of 

the cantilever into a position sensitive photo-diode that monitors the movement of 

the cantilever and allows the software to build up a topograph of the substrate as the 

probe scans over it line by line (see Figure 1.26). 
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Figure 1.26. Schematic for AFM. This schematic shows how the components of the AFM 

relate to each other. The laser is focused onto the end of a gold coated cantilever which 

reflects the beam onto a quadrant detector. As the cantilever scans across the surface of the 

sample it is deflected which changes the position of the laser on the quadrant detector. The 

quadrant detector relays this information to the controller which manipulates the 

piezoelectric scanner to adjust the position of the sample relative the AFM probe to maintain 

the interaction with the sample. The user is able to change various imaging parameters 

through a computer which interfaces with the controller. 
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Mica often used as a substrate for adsorbing biological samples because it is 

atomically flat and therefore shows no significant topography when imaged by AFM. 

This means when biological samples are adsorbed to the mica all of the topological 

features that are seen can be confidently assigned to the sample and not the mica 

surface. The mica surface is mounted onto the top of a piezoelectric scanning stage to 

allow for precise movement of the sample in the x, y and z axes. Piezoelectric 

materials can be manipulated by applying an electric current to them causing them to 

expand or contract. The computer controller applies specific voltages to the 

piezoelectric scanner which is designed to allow for nanometre precision when 

moving through the x, y and z axes. The scanner moves the sample through x and y to 

allow the probe to scan the surface. The movement through the z-axis is regulated by 

a computer-controlled feedback system which ensures the probe maintains contact 

with the sample to provide accurate tracking across its surface. 

 

 

1.8.2 Imaging modes 

 

AFM can be used for analysis of samples that have either been dried to the mica and 

imaged in air using an air cell or to analyse samples that are under liquid using a fluid 

cell. For the majority of biological samples it is preferable to image under liquid as 

buffer conditions that are similar to the native environment of the sample can be 

used. 

 

The AFM can be run in two different modes; contact mode and tapping mode. In 

contact mode the probe is kept in constant contact with the sample when scanning 

its surface and the deflection of the cantilever can be measured. When the probe 

scans over a feature it causes further deflection of the cantilever; the feedback 

system then adjusts the height of the sample to return the deflection of the cantilever 

to its original position. From movement of the sample due to the feedback system the 

software is able to build a height profile for each scan-line over the sample. Contact 

mode applies a substantial amount of force to the sample which can result in the 

removal of structures that protrude from its surface; it can even cause the entire 
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sample to be swept away if it is not strongly adhered to the mica surface (Zhong et 

al., 1993).  

 

In tapping mode the cantilever is oscillated in the plane perpendicular to the sample 

so that it transiently interacts with the sample, this greatly reduces the forces applied 

to the sample, which is desirable when looking at biological membranes (Möller et al., 

1999). Different cantilevers have different resonant frequencies and the AFM can be 

tuned to oscillate the cantilever at the appropriate frequency. 

 

In the case of tapping mode it is the amplitude of the resonance of the tip that is 

measured, and when the tip comes in contact with the sample the amplitude of the 

probe is reduced. The AFM feedback system will then move the sample away from 

the tip to return the amplitude to the defined value. The software can then build up a 

height profile of the sample based on its movement by the feedback system as the 

probe scans over it line by line 

 

A specialised type of tapping mode is “Peak Force Tapping” (PFT) (trademark, Bruker 

Nano Surfaces Business) in which a force curve is measured every time the probe 

comes in contact with the surface of the sample. As the probe moves towards the 

sample it is deflected away from the surface owing to long range repulsive forces, as 

the probe moves closer to the sample the cantilever is pulled towards the sample 

owing to the short-range attractive forces. The movement of the laser that is 

reflected off the top of the cantilever is measured by the photo-diode. This records 

the magnitude of the deflection and the software is able to calculate the forces acting 

on the cantilever as it approaches the surface allowing it to generate the force curve 

(a force curve is also generated as the probe retracts from the surface of the sample). 

In order for these measurements to be taken the probe is oscillated a much lower 

frequency than in traditional tapping mode, typically 2 Hz. At this frequency the AFM 

is able to measure a force curve every time the probe comes in contact with the 

sample. By analysing the force curve it is also possible to measure a number of 

different properties of the sample such as the adhesion between the probe and the 

sample and the deformation of the sample caused by the probe. This mode therefore 
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gives a lot more information about the sample in addition to the height data that is 

not provided in standard tapping mode. 

 

Contact mode AFM (CM-AFM) is generally accepted to have the potential for higher 

resolution than tapping mode AFM (TM-AFM) however the forces applied to the 

sample can be high enough to damage it or remove smaller pieces of membrane from 

the surface of the mica. It has been shown that high resolution TM-AFM can be 

performed on biological membranes and that individual protein complexes can be 

observed in these membranes (Bahatyrova et al., 2004; Olsen et al., 2008; Adams and 

Hunter, 2012). PFT allows the user to control the force that is being applied to the 

sample by the AFM probe with a high degree of precision. For these reasons the PFT 

system was the preferred mode for imaging biological samples. 

 

 

1.8.3 Advantages and limitations of AFM 

 

Using AFM as an imaging technique has several advantages over traditional imaging 

techniques such as transmission electron microscopy (TEM). One such advantage is 

the facility to image samples at atmospheric pressure and under liquid in near-native 

buffer conditions, so the imaging procedure should have a minimal effect on the 

sample. By contrast TEM has to be conducted under vacuum using a heavy metal 

stain to visualise the sample. This procedure could be very damaging to the sample 

particularly in the case of cell membranes as it could disrupt the supramolecular 

organisation of protein complexes. AFM can also be used for very high resolution 

imaging with a potential lateral resolution of 0.1 nm and a potential vertical 

resolution of 0.01 nm. The vertical precision is of particular importance as much of 

the work in this study is performed on identifying integral membrane proteins from 

their membrane protrusions. By comparing the extremely accurate height data from 

the AFM with protein crystal structures it is possible to classify complexes and 

identify their organisation within the membrane. AFM also has a high signal to noise 

ratio allowing for direct imaging of single proteins in membrane patches without the 

need for any computational averaging or filtering that is required by other imaging 

methods. The topograph that is generated by imaging a sample is also a 3D model as 
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opposed to a 2D projection which yields more accurate information about the overall 

dimensions of the sample. 

 

Whilst there are many benefits to using AFM there are also a number of drawbacks. 

The major factor in determining the lateral resolution is the “sharpness” of the AFM 

probe that is used. The process for manufacturing the AFM probes does not routinely 

produce probes that are sharp enough to distinguish individual proteins in a 

membrane patch. There can also be defects in the probes such as the presence of a 

second apex (known as a “double tip”) which can result in the AFM recording the 

same feature twice. This can require the user to test multiple probes before finding 

one of sufficient quality to provide high resolution images. The sample itself can also 

provide some challenges for the AFM as it has to be absorbed quite firmly to the 

surface of the mica or else the AFM probe can remove it. In addition a sample that 

has a lot of curvature can be problematic as the side of the probe can potentially 

interact with it before the apex does. This greatly diminishes the resolution of the 

AFM and that is why one of the main aims of the sample preparation is to make the 

sample as flat as possible when it is absorbed to the mica surface. 

 

 

1.8.4 Use of AFM to image membrane proteins in 2D crystals 

 

AFM has been used to image many types of biological samples; one of the first 

samples to be imaged at high resolution were 2D protein crystals as they have several 

properties that make them ideal for AFM analysis. 2D crystals are large flat arrays of 

highly ordered proteins that therefore adsorb easily and firmly to the mica surface. 

The “flatness” of the 2D crystal also allows for the AFM probe to freely scan over the 

sample and accurately track the protein structures that protrude from the crystal, 

these properties have enabled high resolution imaging of many membrane proteins 

that have been incorporated into 2D crystals (Schabert et al., 1995; Seelert et al., 

2000; Scheuring et al., 2002; Pogoryelov et al., 2005). One example of a 

photosynthetic membrane protein being incorporated into a 2D crystal and imaged 

by AFM is that of RC-LH1 core complex from the purple bacterium 

Rhodospirillum. rubrum (Fotiadis et al., 2004). The AFM data shows the H-subunit of 
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the RC complex surrounded by an LH1 ring, both of with protrude from the surface of 

the lipid bilayer of the 2D crystal (see Figure 1.27). These topographs demonstrate 

how AFM can be used identify proteins when they are imaged to high enough 

resolution and can be compared to their crystal structures. It also demonstrates how 

AFM can reveal any large-scale order in biological assemblies. 

 

 

 

Figure 1.27. AFM topographs showing 2D crystals of RC-LH1 from R. rubrum. (a) High 

resolution AFM shows rows of RC-LH1 complexes in 2D crystals alternating in the up (bright 

rows) and down position (dark rows). The dotted circle (1) and eclipse (2) highlight RC-LH1 

complexes that are missing the H-subunit of the reaction centre. Asterisks show the 

cytoplasmic face of LH1 rings missing the RC complex entirely; the empty arrowhead show 

the periplasmic face of an LH1 complex lacking the RC complex. The solid circle highlights the 

lipid region of the 2D crystal. Scale bar is 40 nm. Adapted from Fotiadis et al., 2004. 
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1.8.5 Use of AFM to image membrane proteins in native membranes 

 

The potential of AFM to image the native protein architecture of cellular membranes 

is of particular interest for studies of photosynthetic membranes as one of the main 

functions of these membranes is to channel energy to reaction centres so charge 

separation can take place (Şener et al., 2007). The organisation of the proteins in the 

membrane is integral to this process and as many of the crystal structures of 

chlorophyll and bacteriochlorophyll containing membrane proteins have been solved 

they can be identified from their membrane protrusions by AFM. Generally speaking 

membranes are not as easy to image with AFM as 2D crystals, as membranes tend to 

have some degree of curvature which can prevent high resolution imaging. In 

addition membranes have to be purified from cell lysates and contamination of the 

samples can interfere with the interaction between the probe and the sample. 

Despite these difficulties there have been several significant studies of photosynthetic 

membranes using AFM. 

 

The photosynthetic membranes from many species of purple bacteria have been 

imaged using AFM; Figure 1.28 shows photosynthetic membranes from several 

purple bacteria (Scheuring, 2006). The light absorbing proteins in these organisms 

assemble into ring structures in the membrane which can be resolved by AFM. 

Membranes can be imaged to high enough resolution for individual subunits of the 

ring structures to be seen. 
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Figure 1.28. AFM of photosynthetic membranes from different purple bacteria (a) An AFM 

topograph of Blc. viridis membranes showing (1) an RC-LH1 complex, (2) an RC-LH1 complex 

lacking the tetrahaem cytochrome subunit and (3) an LH1 ring completely lacking the RC 

complex. (b) AFM topographs of (i) Rsp. photometricum and (ii) Rsp. photometricum 

membranes showing RC-LH1 complexes surrounded by LH2 antenna complexes. (c) An AFM 

topograph of Rps. palustris membranes showing RC complexes surrounded by an ellipsis of 15 

LH1 subunits (white arrows). (d) An AFM topograph of Rb. blasticus membranes showing 

dimeric RC-LH1 complexes surrounded by LH1 subunits in an “S-shape” configuration. 

Adapted from (Scheuring, 2006). 

 

 

Grana membranes from spinach have also been imaged via AFM (Sznee et al., 2011; 

Johnson et al., 2014), which is of particular interest as many of the proteins in 

cyanobacterial thylakoid membranes have homologues in plants. In grana stacks PSI 

and PSII are spatially segregated with PSI only present in the ends of the grana stack 

and PSII present within the grana stack. In Sznee et al., (2011) grana stacks were 

treated to produce “inside-out” grana membrane fragments which have their 

lumenal surface exposed; these patches were then purified and imaged via AFM. 

Areas of membrane that were densely packed with PSII could be identified though 
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AFM analysis as the oxygen evolving complex (OEC) of PSII protrudes by 5 nm from 

the surface of the lumenal face of the membrane. By comparing the dimensions of 

the crystal structure with the dimensions of the membrane protrusions (Figure 1.29) 

it was possible to identify PSII. When membranes were imaged at room temperature 

the areas containing PSII had a relatively disordered configuration. However when the 

membrane fragments were incubated overnight at 4 °C there was a rearrangement of 

the PSII enriched domains which were seen to form numerous linear rows of PSII. As 

there are no reports of high resolution AFM of cyanobacterial thylakoid membranes it 

will be of great interest to see if the supramolecular organisation of PSII is similar to 

that of plants. 

 

The cytochrome b6f complex has also been identified in “inside-out” grana membrane 

fragments where it found in nanodomains with PSII (Johnson et al., 2014). By imaging 

the membrane fragments with an AFM probe that was functionalised with 

plastocyanin it was possible to measure the interaction between the cytochrome b6f 

complex and plastocyanin that was immobilised on the AFM probe. As plastocyanin 

does not specifically interact with PSII, this allowed for the identification of the 

cytochrome b6f complex which was previously been impossible owing to the similarity 

in lumenal topology of the cytochrome b6f complex and PSII (Figure 1.30). Repeating 

this experiment in cyanobacteria would also be of great interest to determine if the 

same organisation of PSII and the cytochrome b6f complex was present. 
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Figure 1.29. AFM topographs of grana membranes from spinach. (a) A lower resolution AFM 

topograph showing PSII complexes forming ordered arrays within the granal membrane. (b) A 

higher resolution AFM topograph in which individual PSII complexes can be identified from 

their protruding subunits. From Sznee et al., (2011). 

 

 

 

Figure 1.30. AFM topographs of grana membranes showing the location of cytochrome b6f 

complex and PSII. Through the use of AFM probes functionalised with plastocyanin it is 

possible to locate the cytochrome b6f complex (pink) and PSII (green). (a) The topology map 

of protein complexes in an inside-out grana membrane fragment. (b) Protein complexes in 

the topology image have been assigned on the basis of their interaction with the plastocyanin 

functionalised AFM probe. Scale bar is 50 nm. From Johnson et al., (2014). 

 



 

60 
 

1.9 Nano-lithography and nanopatterns 

 

Photosynthetic complexes are able to absorb and transfer energy with very high 

efficiency; this property has made the fabrication of bio-inspired photovoltaic devices 

a major goal in the area of photosynthetic research. A fundamental step in producing 

such devices is assembling nanoscale arrays of light harvesting complexes in which 

the distribution of reaction centres and antenna complexes can be controlled. It is 

also necessary for the light harvesting-complexes to retain their biological activity 

when attached to a surface. Lithographic techniques such as photolithography and 

nanoimprint lithography have been used to fabricate nanopatterns of self-assembled 

monolayers (SAM) (Falconnet et al., 2004; Reynolds et al., 2007). Through the 

combination of SAMs that are resistant to protein adhesion and SAMs that proteins 

can absorb to it is possible to direct the attachment of proteins to a surface.  

 

LH2 is a light-harvesting complex from Rhodobacter sphaeroides which has been 

patterned using photolithographic techniques (Reynolds et al., 2007). The LH2 

complexes in these nanopatterns were shown to retain their native spectroscopic 

properties after immobilisation (Reynolds et al., 2007). Through nanopatterning of 

LH2 complexes it has also been possible to measure energy transfer in these 

complexes over greater distances than are seen in vivo. Excitation of LH2 nano-lines 

showed that excitation energy could be transferred in excess of 2 µm; significantly 

further than is required in biological membrane antenna assemblies (Escalante et al., 

2008). This example shows how nanopatterning of protein complexes can be used to 

study the energy transfer processes of these light harvesting proteins that cannot be 

observed in native photosynthetic membranes. 

 

Recently it has been shown that immobilised LCHII complexes are able to switch 

between a highly fluorescent state and a weakly fluorescent state (Vasilev et al., 

2014); this feature of LHCII allows for the amount of energy that reaches the RCs to 

be controlled. It has been found that by modifying the detergent of concentration of 

the sample, the fluorescent state of the LHCII complexes can be controlled (Ilioaia et 

al., 2008). In the case of immobilised LHCII complexes, a threefold drop in the level of 
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fluorescence intensity was observed upon the removal of detergent. When the 

detergent level was then returned to the original level; the measured fluorescence 

intensity also returned to the original level (Vasilev et al., 2014). The average 

fluorescence lifetime was also measured in these LHCII complexes; with and without 

detergent. The average fluorescence lifetime in the presence of detergent was 

2.24 ns which decreased to 0.4 ns when the detergent was removed. The change in 

the fluorescence lifetime was reversible and returned to 2.24 ns when the detergent 

concentration was returned to its original level (Vasilev et al., 2014). This change from 

a highly fluorescent state with a longer lifetime to a weakly fluorescent state with a 

shorter lifetime is due to conformational changes in the LHCII complex (Ilioaia et al., 

2008). Vasilev et al., (2014) have shown that LHCII complexes retain their function 

after immobilisation and are able to alter their conformation to switch between 

fluorescent states. Whilst there has been some work on adhering complexes from 

Synechocystis to surfaces (Vittadello et al., 2010); there have been relatively few 

studies on nanopatterning of these complexes. 

 

In this thesis Nanoimprint lithography (NIL) is used to construct of linear arrays of 

immobilised protein complexes. A polystyrene mask which has raised and lowered 

regions on the scale on nanometres (Figure 1.31) is utilised to construct parallel linear 

SAMs of functional organosilanes on glass surfaces. One SAM can be cross linked to 

protein complexes whereas the other SAM will prevent the absorption of protein 

complexes. In photosynthetic membranes such as cyanobacterial thylakoids energy 

transduction takes place over distances of up to 500 nm. Linear nanoarrays produced 

by NIL have a width of 150-400 nm, which provides an artificial system that 

approximates the dimensions of native photosynthetic membranes. Nanoarrays that 

are fabricated using NIL can be used to investigate whether light-harvesting 

complexes from Synechocystis retain their native spectroscopic properties when 

incorporated into nanopatterns that are on a similar scale to their native 

environment. 
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Figure 1.31. Schematic for production of protein nanopatterns using NIL. The mask (Dark 

grey) has raised areas which have a width of 100-400 nm and the lower areas have a width of 

100-4000 nm depending on the spacing that is desired. The mask is then absorbed to a 

surface (light grey) which can be made of gold, silicon or glass depending on the type of self 

assembled monolayer that is required. The surface is then exposed to a compound (blue 

circles) in the gas phase that forms linear self assembled monolayers (SAM) where the 

surface is not in contact with the mask (blue cuboids). The compound that is used must form 

an SAM that resists protein adherence (for example an organosilane that has a terminal 

polyethylene glycol tail). The mask is then removed and the surface is exposed to a second 

compound (purple circles) that forms linear SAMs in the areas that were previously in contact 

with mask (purple cuboids). This time the compound must form an SAM to which the protein 

can either absorb to or be cross-linked to (for example (3-mercaptopropyl)-trimethoxysilane). 

If required a cross-linker is attached to the surface (not shown) before the protein (green 

cubes) is incubated on the surface. Using this method it is possible to fabricate parallel linear 

arrays of protein complexes where the width and spacing is defined by the dimensions of the 

mask that is used. 
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2. Materials and methods 
 

2.1 Materials 

 

All chemicals used were of analytical grade purify and purchased from Sigma 

Chemical Co unless otherwise stated. 

 

 

2.2 Standard buffers, reagents and media 

 

BG-11 medium was made up according to Rippka et al., (1979) unless stated 

otherwise. Distilled water purified via the Milli-Q system was used to make up all 

media and solutions which were subsequently sterilised by either autoclaving or 

filtration using filters with a pore size of 0.2 µm. Medium additives were added once 

the media had cooled to below 45oC as some additives were heat sensitive. All 

sucrose solutions were made up w/w in thylakoid buffer (25 mM potassium 

phosphate pH 7.4, 100 mM NaCl and 10 mM MgCl2) unless otherwise stated. 

 

 

2.3 Cyanobacteria strains and growth conditions 

 

The strains of cyanobacteria used were: 

 

Synechocystis sp. PCC6803, grown in BG-11 supplemented with 5mM glucose and 

10 mM TES pH 8.2. This strain is also known as the Nixon wild type 

 

All strains were grown from DMSO stocks that had been stored at -80 oC. Initially the 

cyanobacteria were grown on agar plates which were made from the appropriate 

medium supplemented with 1.5 g/100 ml of bactoagar. Colonies from plates were 

then used to inoculate 100 ml starters of appropriate medium and incubated in a 

rotary shaker at 30 oC in 50 µmol m-2 s-1 of light to allow for photosynthetic growth; 
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the shaker was run at 150 rpm. For low iron growth conditions 80 ml cultures of 

BG-11 medium were inoculated with a loop of cells and grown to an OD750 of 

approximately 1.0. A 720 ml culture of BG-11, in which no iron-containing compounds 

were present, was inoculated with the entire 80 ml culture giving a 1 in 10 dilution of 

the iron-containing compounds in the BG-11 medium of the original culture. The 

800 ml culture was allowed to grow to an OD750 of approximately 1.0 before it was 

used to inoculate a flask containing 7.2 litres of iron-free BG-11. The culture was then 

left for three days before it was harvested. 

 

 

2.4 Measuring sucrose concentration 

 

All sucrose concentrations were measured using a refractometer 

 

 

2.5 Absorbance spectroscopy 

Absorbance spectra were taken of whole cells and membrane suspensions at room 

temperature using a Cary 50 spectrophotometer between the wavelengths of 250 nm 

and 800 nm. The Cary WinUV software package was used to display and analyse 

spectra that were taken of all cyanobacterial strains. 

 

 

2.6 Fluorescence emission spectroscopy 

 

Room temperature emission spectra were recorded using a SPEX FluoroLog 

spectrofluorometer (SPEX Industries Inc.). A tungsten light source was used for 

excitation of the samples. Samples were excited at 435 nm and slit widths of 5 nm 

were used. All emission spectra were an average of 10 individual scans. 
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2.7 Calculation of chlorophyll concentration 

 

The chlorophyll concentration of samples was measured by methanol extraction. 5 µl 

of sample was incubated with 995 µl of methanol and the absorbance was measured 

at 663 nm. The chlorophyll concentration was calculated using the extinction 

coefficient of 82 mM-1 cm-1  

 

 

2.8 Standard membrane preparation 

 

Cells were harvested by centrifugation at 8000 rpm in a J-liteTM JLA-10.5 rotor for 25 

minutes at 4 oC, the supernatant was discarded and the pellet was resuspended in 

thylakoid buffer (25 mM potassium phosphate pH 7.4, 100 mM NaCl and 10 mM 

MgCl2) to give a concentration of 1.5-2.0 mg/ml of chlorophyll. Resuspended cells 

were broken via use of the Mini-beadbeater (Biospec products). 3.5 ml of 

concentrated cell suspension, 3.5 ml of zirconium beads and 10 mg of α-amylase 

were added to a 7 ml vessel which underwent 6 cycles of bead beating for 20 seconds 

with the vessels put on ice for 2 minutes for the interim period between cycles. The 

liquid fraction of the vessel was pipetted off the top of the solid bead fraction and 

centrifuged in a microcentrifuge for 1 minute at 3000 rpm in order to pellet any 

beads that were in solution. 

 

1.5 ml of cell lysate was then loaded onto a continuous sucrose gradient which was 

made from solutions of 30 % w/w and 40 % w/w sucrose on top of 2 ml of 50 % w/w 

sucrose. The gradient was made in a SW41 centrifuge tube and once the membrane 

was loaded onto the top of the gradient it was centrifuged at 40000 rpm in an SW41 

rotor for 2 hours at 4oC. The membrane band was then harvested using a peristaltic 

pump. 

 

Much research went into finding the best procedure to isolate clean membrane 

patches and the “standard membrane preparation” underwent much development 
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before the procedure described here was developed; the development will be 

discussed in the chapter 3. 

 

2.9 Detergent treatments 

 

2.9.1 β-DDM treatment 

 

For the β-DDM treatment, membranes were prepared as in 2.8 and were loaded onto 

secondary sucrose gradients that contained β-DDM. Five 20-50 % w/w continuous 

sucrose gradients were prepared which contained 0.000 %, 0.001 %, 0.005 %, 0.01 % 

and 0.05 % β-DDM respectively. Each gradient was loaded with 1.5 ml of thylakoid 

membrane sample at a concentration of 0.2 mg/ml of chlorophyll. Gradients were 

centrifuged at 40,000 rpm in an SW41 rotor at 4 °C for 2 hours and the green 

thylakoid membrane containing bands were harvested. 

 

 

2.9.2 Tween 20 treatment 

 

Membranes were prepared as in 2.8 and loaded onto secondary sucrose gradients 

which contained Tween 20. Five 20-50 % w/w continuous sucrose gradients were 

prepared which contained 0.000 %, 0.001 %, 0.005 %, 0.01 % and 0.05 % Tween 20 

respectively. Each gradient was loaded with 1.5 ml of thylakoid membrane sample at 

a concentration of 0.2 mg/ml of chlorophyll. Gradients were centrifuged at 

40,000 rpm in an SW41 rotor at 4 °C for 2 hours and the green thylakoid membrane 

containing bands were harvested. 

 

 

2.9.3 Triton X-100 treatment 

 

Membranes were prepared as in 2.8 before being loaded onto secondary sucrose 

gradients that contained triton X-100. Five 20-50 % w/w continuous sucrose gradients 

were prepared which contained 0.000 %, 0.001 %, 0.005 %, 0.01 % and 0.05 % 
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triton X-100 respectively. Each gradient was loaded with 1.5 ml of thylakoid 

membrane sample at a concentration of 0.2 mg/ml of chlorophyll. Gradients were 

centrifuged at 40,000 rpm in an SW41 rotor at 4 °C for 2 hours and the green 

thylakoid membrane containing bands were harvested. 

 

 

2.9.4 Digitonin treatment 

 

Membranes prepared as in 2.8 were loaded onto secondary continuous gradient 

made up from solutions of 20 % w/w and 50 % w/w sucrose which contained 

digitonin. Three 20-50 % w/w continuous sucrose gradients were prepared that 

contained 0.00 %, 0.01 % and 0.1 % digitonin respectively. The gradients were made 

in a SW41 centrifuge tube which was centrifuged at 40,000 rpm in an SW41 rotor for 

2 hours at 4oC. The membrane bands were then harvested via the use of a peristaltic 

pump. 

 

 

2.10 Atomic Force Microscopy 

 

2.10.1 Instrumentation 

 

A Multimode VIII AFM with Nanoscope 8.0 controller (Bruker Nano Surfaces Business) 

was used to image biological samples. 

 

 

2.10.2 Sample preparation 

 

Typically 5 µl of a sample that was at a suitable concentration was pipetted onto 

freshly cleaved mica followed by 45 µl of standard adsorption buffer (10 mM HEPES 

pH 7.5, 150 mM KCl and 25 mm MgCl2) and incubated for 1-2 hours. Prior to imaging, 

the buffer was changed to standard imaging buffer (10 mM HEPES pH 7.5 and 

100 mM KCl). The absorption buffer was pipetted off and discarded, then the mica 
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was washed four times with 50 µl of imaging buffer with the final 50 µl left on the 

surface for the sample to imaged in. The sample was then mounted onto the 

piezoelectric scanner. 

 

 

 

2.10.3 Sample imaging 

 

Samples were imaged in Peak Force Quantitative Nanomechanical MappingTM mode 

(PF-QNM mode) under liquid with a Peak Force frequency of 2 kHz unless otherwise 

stated.  When imaging under liquid the standard fluid cell was used to house the AFM 

probe and control it. Once the probe has been inserted into the fluid cell, the 

reservoirs were filled with standard imaging buffer and mounted on top of the 

sample where the laser was aligned with the probe. The Peak Force amplitude used 

during imaging was 10 nm and images were taken at 256 x 256 or 512 x 512 pixel 

arrays. The Peak Force set point was varied between 50-1000 pN and the scan rate 

was selected to be between 0.5-1.2 Hz. The probes used during imaging were SNL 

probes (Bruker) and all image processing was done in NanoScope Analysis v1.40r1 

 

 

2.11 Electron Microscopy 

 

Membrane solutions were diluted to an appropriate concentration and 5 µl was 

applied to glow discharged carbon grids for 2 minutes. The sample was then 

negatively stained with 0.75 % w/v uranyl formate and viewed in a Philips CM100 

microscope that was outfitted with a Gatan Ultrascan 667 CCD camera. Images were 

taken between x 1,000 and x 52,000 magnification with image processing performed 

in Digital Micrograph (Gatan. Inc.). 
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2.12 Single particle analysis of IsiA-PSI supercomplex 

 

52 particles were selected from field of IsiA-PSI supercomplexes imaged by negative 

stain TEM. Image processing was performed using the IMAGIC-5 image processing 

system. 

 

 

2.13 Protein manipulation  

 

2.13.1 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

 

15 μl of protein sample was incubated with 5 μl of 4 x protein loading dye and placed 

in a heating block set to 100 °C for 10 minutes before being centrifuged for 2 minutes 

at 13,000 rpm in a microfuge. 15 μl of protein sample was loaded onto a pre-cast 

12 % Bis-Tris polyacrylamide gel (Invitrogen, NuPAGETM system). 5 μl of Precision Plus 

ProteinTM Dual Color Standards (Bio-Rad) was loaded into each gel to estimate the 

mass of the proteins in the sample. Gels were run at 180 V for 50-70 minutes using 

the buffer system from Laemmli, (1970) and stained for 15 minutes with Coomassie 

Brilliant Blue R250. Gels were destained by 4 x 5 minutes of boiling in MilliQ water 

with 3 minute intervals. 

 

 

2.13.2 Silver staining of gels 

 

After Coomassie stained gels had been destained they were fixed for 20 minutes in 

50 ml of 50 % methanol, 10 % acetic acid and 10 % fixative enhancer (Bio-Rad) made 

up in MiliQ water. Gels were then washed twice for 20 minutes in 50 ml MilliQ. The 

development solution contained 5 % silver complex solution (Bio-Rad), 5 % reduction 

modulation solution (Bio-Rad), 5 % image development (Bio-Rad) and 

50 % development accelerator solution (Bio-Rad) made up in MilliQ water. The 

second MilliQ wash was removed and the gel was incubated in 50 ml of development 
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solution for between 15-30 minutes. Once the gel had been stained to a sufficient 

degree the reaction was stopped by addition of 25 ml of 5 % acetic acid. 

 

2.13.3 Clear native polyacrylamide gel electrophoresis (CN-PAGE) 

 

CN-PAGE was conducted using a 4-16 % gradient gel according to the protocol 

described in Wittig et al., (2007). Gels were poured using 16 x 20 cm plates separated 

with 1 mm spacers. Typically 100 µl of sample was loaded per lane with a 

concentration of 0.1-0.2 mg/ml of chlorophyll. The temperature was maintained at 

4 °C whilst the gel was running. 

 

2.13.4 Electroelution of protein complexes from polyacrylamide gels 

 

Bands containing protein complexes were cut out of the gel before being sectioned 

into pieces with the approximate dimensions of 2 x 2 mm. The gel pieces were then 

placed the electro-eluter (Bio-Rad model 422 Electro-Eluter) which was run at a 

constant current of 10 mA. The elution buffer contained 500 mM Tricine, 150 mM Bis-

Tris/HCl, pH 7.0, 0.5 % (w/v) DOC and 0.02 % (w/v) β-DDM. 

 

 

2.14 Purification of thylakoid membranes from Synechocystis 6803 for 

protein purification 

 

An 8 L culture of  Synechocystis in the logarithmic phase of growth (OD750 0.6) were 

pelleted by centrifugation at 8,000 rpm in a J-liteTM JLA-10.5 rotor for 10 minutes at 

4 °C and resuspended in 50 ml of thylakoid buffer. Cells were then lysed by 

8 x 1 minutes of bead beating with 5 minute intervals during which cells were left on 

ice. The cell lysate was then removed from the beads with a pipette and the beads 

were washed four times with thylakoid buffer with all the washes being pooled with 

the initial cell lysate to ensure high a high yield of thylakoid membranes. The 

thylakoid membranes were then pelleted by centrifugation at 23,500 rpm in a 

Beckman Coulter JA-25.5 rotor for 30 minutes at 4 °C. The supernatant was discarded 
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and the thylakoid membranes resuspended in thylakoid buffer to give a final 

concentration of ≈ 1 mg/ml chlorophyll a. 

 

 

2.15 Purification of the IsiA-PSI supercomplex from Synechocystis 6803 

thylakoid membrane 

 

2.15.1 Solubilisation 

 

10 % n-dodecyl-β-D-maltoside (β-DDM) was pipetted drop-wise into a solution of 

resuspended thylakoids with a chlorophyll concentration of ≈ 1 mg/ml (typically 20-30 

ml of resuspended thylakoids were used) to give a final concentration of 1.5 % 

β-DDM. Solubilisation was carried out at 4 °C in the dark for 2 hours after which the 

suspension was centrifuged at 23,500 rpm in a Beckman Coulter JA-25.5 rotor for 30 

minutes at 4 °C to pellet any unsolubilised material. The supernatant was decanted 

from the centrifuge tube and the pellet was discarded. 

 

 

2.15.2 Sucrose gradients 

 

Sucrose gradients were prepared using buffer containing 50 mM MES-NaOH pH 6.0, 

0.5 M glycine betaine, 0.5 M sucrose, 20 mM CaCl2, 5 mM MgCl2 and 0.04 % β-DDM 

(gradient buffer). SW32 or SW41 centrifuged tubes were filled to 85 % capacity with 

gradient buffer and then left at -18 °C until frozen. Gradients were then thawed at 

4 °C which induced the formation of a continuous sucrose gradient. Gradients were 

then filled to their full capacity with solubilised thylakoids and then centrifuged at 

100,000 x g for 16 hours at 4 °C. IsiA-PSI supercomplexes were present in the lowest 

green band on the sucrose gradient and were harvested using a peristaltic pump; 

gradients were kept on ice and in the dark to prevent damage to the sample. If 

samples were not immediately used for further purification they were flash frozen in 

liquid nitrogen and stored at -80°C. 
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2.15.3 Anion exchange 

 

A self-packed anion exchange column was prepared using DEAE Sepharose in 

standard purification buffer (50 mM MES-NaOH pH 6.0, 0.5 M glycine betaine, 20 mM 

CaCl2, 5 mM MgCl2 and 0.04 % β-DDM). IsiA-PSI complexes harvested from 

continuous sucrose gradients were concentrated using a concentrator with a 

100000 MW cut off point (Sartorius Stedim Biotech) until they reached a volume of 

5 ml. The concentrated suspension of IsiA-PSI complexes was applied to the anion 

exchange column and washed through with purification buffer. The IsiA-PSI complex 

was eluted by running an NaCl gradient from 0 mM to 600 mM. Fractions of IsiA-PSI 

complexes were assessed for purity using a spectrometer before being pooled and 

concentrated. If samples were not immediately used for further purification they 

were flash frozen in liquid nitrogen and stored at -80°C. All anion exchange was 

performed on an Akta FPLC (GE Healthcare) 

 

 

2.15.4 Gel filtration 

 

IsiA-PSI complexes were further purified by gel filtration using an Agilent 1200 HPLC 

with a BioSeph-Sec-s3000 column (Phenomenex). 80 µl of concentrated anion 

exchange eluate was loaded onto the column which was run at 0.5 ml m-1 with 

standard purification buffer. Elution of IsiA-PSI complexes was detected by 

monitoring the absorption at 674 nm. 1 ml fractions were collected with those 

containing IsiA-PSI complexes being concentrated, flash frozen in liquid nitrogen and 

stored at -80°C. 
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2.16 Production of protein nanolines 

 

2.16.1 Master pattern template 

 

The R100 template has a period of 4 μm and line width of 150 nm. The templates 

were made by electron beam lithography on silicon wafers. 

 

 

2.16.2 Spin coating of master patterns with polystyrene 

 

Silicon master patterns were placed in a spin coater that was set to 2000 rpm and 1-2 

drops of 50-60 mg/ml polystyrene in toluene was pipetted onto the master pattern. 

The toluene typically evaporated within 5-10 seconds leaving a polystyrene film over 

the pattern with a thickness of 150-200 nm.  

 

 

2.16.3 Preparation of protein nanolines with 150 nm line width 

 

R100 master patterns were spin-coated with polystyrene as described in 2.15.2. 

MilliQ water was passed through a filter with pore size of 0.2 μm and used to float 

the polystyrene mask off the master pattern and onto a small piece of 

piranha-cleaned silicon (dimensions of roughly 10 mm by 10 mm) which was left to 

dry in a desiccator under vacuum for 2 hours. Once dry, the silicon was removed from 

the desiccator and split along its axis so as to cleave the polystyrene mask adhered to 

its surface. The split was made in the direction perpendicular to the channels in the 

polystyrene mask; this ensured the channels were open at their ends to allow access 

for the chemicals used to make the monolayer. 

 

The split polystyrene mask was floated of the surface of the silicon and onto a 

piranha-cleaned glass cover slip which was placed in a desiccator and left under high 

vacuum overnight to dry. Once dry, the vacuum was deteriorated and 25 μl of 

(3-mercaptopropyl)trimethoxysilane (MPTMS) was pipetted into the lid of an 
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Eppendorf tube which was placed in the desiccator. The desiccator was flushed 

nitrogen gas for 5 minutes before being returned to vacuum and left overnight. 

 

The glass cover slip was removed from the desiccator and the polystyrene mask was 

floated off its surface in the same way as previously described. The cover slip was 

then thoroughly dried under a constant stream of nitrogen and then placed in a 

solution of 15 mM 2-[methoxy(polyethyleneoxy)propyl]trimethoxysilane (PEG-silane) 

(ABCR GmbH & CO.) in toluene for 90 minutes. 

 

 

2.16.3 Immobilisation of protein complexes on nanopatterns 

 

The glass cover slip was then removed from solution and washed with acetone. A 

solution of 10 mM Succinimidyl-4-(n-maleimidomethyl)cyclohexane-1-carboxylate 

(SMCC) in Dimethyl sulfoxide (DMSO) was made and 300 μl was pipetted onto the 

cover slip which was left for 30 minutes. The cover slip was washed with MilliQ water 

then incubated with 300 μl of the a solution of appropriate protein (either PSII or the 

IsiA-PSI supercomplex) for 10 minutes before being washed with thylakoid buffer and 

stored in the under buffer in the dark at 4°C. The solutions of protein complexes were 

used at a concentration of 5 µg/ml of chlorophyll.  

 

2.17 In situ fluorescence microscopy and spectroscopy 

 

Fluorescence microscopy and spectroscopy was performed on a home-built 

microscope system outfitted with an EMCCD camera (ProEM 512, Princeton 

Instruments) and a spectrometer (Acton 150, Princeton Instruments). Samples were 

excited by a collimated LED light source (M470L2, Thorlabs) and the subsequent 

fluorescence was detected by the EMCCD camera through the spectrometer. 

Fluorescence images and spectra were taken using a 470/40 nm band pass excitation 

filter with a 605 nm dichroic mirror and a 593 nm long pass emission filter. Spectra 

were taken with an 800 µm slit width and a 150 line mm-1 grating at a central 

wavelength of 680 nm. To increase the signal to noise ratio, 15 individual frames were 



 

75 
 

captured and averaged to produce the spectra and fluorescent images; each frame 

was taken with a 150 ms exposure time and an electron multiplication gain of 90. 

 

 
2.18 Fluorescence-lifetime imaging microscopy 

 

Fluorescence decay lifetimes for these complexes were recorded via illumination with 

a continuous spectrum laser (SC 480-10 Fianium) with a 470/40 nm band pass 

excitation filter pulsed at 80 MHz. The output was recorded with a photomultiplier 

tube synched with the laser via a Becker and Hickl TCSPC card. A single exponential 

decay function was fitted to the data in SigmaPlot. 

 

 

2.19 Low temperature fluorescence emission spectroscopy 

 

Low temperature emission spectra were taken in a cryo-stable buffer containing 

25 mM potassium phosphate, 100 mM NaCl, 10 mM MgCl2 and 70 % glycerol (v/v). 

The samples were cooled to 77 K using an Optistat DN-V optical cryostat (Oxford 

Instruments). A SPEX FluoroLog spectrofluorometer (SPEX Industries Inc.) was used to 

record emission spectra. A tungsten light source was used for excitation of the 

samples. Samples were excited at 435 nm and slit widths of 5 nm were used. All 

emission spectra were an average of 10 individual scans. 
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Chapter 3:  Development of procedures for the 

production of large, flat photosynthetic membrane 

patches for the purposes of AFM analysis 

 

3.1 Summary 

 

This chapter details the procedures that were developed to produce thylakoid 

membrane patches from Synechocystis that could be imaged by AFM for the purposes 

of investigating the organisation of the photosynthetic apparatus. Thylakoid 

membranes in Synechocystis exist as extensive invaginations of the inner cell 

membrane which contain an enclosed lumen. The ideal substrate for AFM is a flat, 

single membrane bilayer; to this end various protocols for membrane purification and 

treatment were explored. 

 

The method of cell breakage found to be the most suitable was mild bead beating 

which produced large thylakoid membrane patches that could be easily purified by 

from the cell lysate through centrifugation of sucrose gradients. Centrifugation of a 

cell extract through a continuous 30-40 % w/w sucrose gradient on a 50 % sucrose 

step was routinely used to prepare large quantities of membrane; this type of 

gradient was also useful in removing most of the phycobilisomes from the stromal 

surface of the membrane. Initial EM analysis of purified membranes revealed the 

presence of a large number of small objects attached to the stromal face of the 

membrane which were ultimately identified to be glycogen granules. Several 

strategies were trialled to either remove or prevent the formation of these granules, 

the most successful of which was incubation of the membranes with amylase prior to 

purification on the primary sucrose gradient. It was found that a second purification 

step on a 20-50 % continuous sucrose gradient was required to remove the majority 

of contaminating material still present in the sample after the initial sucrose gradient. 

Initial AFM data revealed that the thylakoid membranes have a vesicular structure 

with an enclosed lumen when imaged under liquid. Numerous approaches were 
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trialled to produce flattened membrane patches for high resolution AFM and two 

protocols were established. One required membranes to be dried to a mica surface in 

order to burst the vesicular membranes, which were then rehydrated prior to 

imaging. The second protocol required the use of secondary gradients that contained 

low concentrations of digitonin to purify single layered membrane patches which 

were then adsorbed to a mica substrate for imaging 

 

 

3.2 Introduction 

 

Atomic force microscopy had been used to investigate the native membrane 

architectures of photosynthetic bacteria (Bahatyrova et al., 2004; Scheuring, 2006) 

and plants (Sznee et al., 2011; Johnson et al., 2014), however there are no reports of 

high resolution AFM imaging of Synechocystis thylakoid membranes. As no protocol 

currently exists for preparing cyanobacterial thylakoid membranes for AFM, a new 

protocol had to be developed. AFM uses a probe with an apex that has a diameter of 

the order of nanometres which allows for highly accurate measurement of 

membranes. One of the drawbacks to this imaging technique is the possibility that 

nano-scale debris such as soluble proteins and lipid bodies could adhere to the probe, 

preventing AFM imaging at high resolution. In the case of Synechocystis it is of 

particular concern that the thylakoid membranes have a large number of 

phycobilisome complexes attached to their surface which have the potential to 

adhere to the probe. It is therefore an important consideration when trying to 

produce membranes that are suitable for AFM analysis to use a purification 

procedure that keeps such contamination to a minimum. The ideal sample for AFM is 

a flat membrane that is absorbed onto a mica surface; this allows the probe to track 

across its surface and record the protrusions of the proteins embedded in the 

membrane. As cyanobacterial thylakoid membranes are flattened vesicles with an 

enclosed lumen it was necessary to disrupt these structures to allow for single 

layered membrane patches to bind to the mica surface. 
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Current protocols used for preparing bacterial membranes for AFM involve the use of 

two sucrose gradient centrifugation steps (Cartron et al., 2014). The first causes the 

dissociation of many smaller cellular bodies that are bound to the membrane in 

addition to pelleting the larger components of the cell lysate such as the cell wall. 

Once the membranes have been harvested from the first gradient they are loaded 

onto a secondary sucrose gradient that contains a low concentration of detergent. 

The primary purpose of the second gradient step is to “open out” vesicular 

membranes so they lie flat when applied to a mica surface; the gradient also provides 

a secondary purification step to remove contaminating material. Whilst this method 

could potentially be useful there is the risk of solubilising the membranes; therefore 

the development of a detergent-free protocol must also be considered. 

 

As AFM is a very time consuming technique, the purity and AFM suitability of 

membrane preparations has to be investigated in combination with other methods. 

Negative stain TEM is very useful for assessing the effects that different treatments 

have on the thylakoid membranes as it is a relatively quick imaging technique with a 

resolution sufficient to visualise the shape and size of membrane patches. After 

membranes have been purified and treated, it is more efficient to image them initially 

using negative stain TEM to assess their suitability for AFM rather than to use AFM 

directly on every membrane sample. 

 

The cell breakage procedure currently used in the Hunter lab for Synechocystis 

requires cells to be pelleted and resuspended in a small volume of buffer before they 

undergo bead beating. Although this technique is very efficient for breaking cells 

there is the possibility that it may be violent enough to damage the thylakoid 

membranes. It is not known what effect other breakage techniques such as French 

press and sonication will have on intact cells, however the potential for using a 

gentler breakage protocol must be investigated. 
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3.3 Results 

 

3.3.1 Initial trials for cell breakage and membrane purification 

 

Three different methods for cell breakage were trialled; bead beating, French press 

and sonication.  The standard bead beating procedure uses resuspended cells at a 

concentration of 1.5 mg/ml of chlorophyll; the cell suspension underwent 6 cycles of 

beating for 1 minute with the sample left on ice for 5 minutes between cycles. A 

gentler regime of bead beating was also trialled; this gentler method used 6 rounds of 

bead beating for 20 seconds with the sample left on ice for 5 minutes between cycles. 

The French press method of cell breakage required 10 ml of cell suspension at a 

concentration of 1.5 mg/ml of chlorophyll which was passed though the French press 

twice at a pressure of 18,000 psi. The sonication procedure requires 5 ml of cells at 

the concentration of 1.5 mg/ml of chlorophyll. The sample was sonicated for 30 

seconds then left on ice for 30 seconds; this cycle was repeated for 10 minutes. For 

membrane purification 1.5 ml of cell lysate from each breakage procedure was 

loaded onto a 10-55% continuous sucrose gradient. The sucrose gradients were 

centrifuged at 40,000 rpm in an SW41 rotor at 4 °C for 2 hours; the gradients were 

photographed after centrifugation (Figure 3.1). A blue band can be seen at the top of 

every gradient; the blue colour comes from phycobilisome complexes which suggests 

that this band also contains water soluble components of the cells cytoplasm. The 

presence of this band indicates that all of these cell breakage techniques lyse cells 

effectively. The sucrose gradients on which cell lysate from the bead beater were 

loaded show a green band roughly two thirds of the way down the sucrose gradient 

that is not present in the other gradients. Cells that had undergone 6 x 1 minute of 

bead beating produced a stronger band in the sucrose gradient than cells that had 

undergone 6 x 20 seconds of bead beating. This indicated that cell breakage was 

more efficient under these conditions and allowed for the purification of greater 

quantities of thylakoid membrane. The green bands were harvested and the sucrose 

concentration of the membrane samples was measured to be 42 %. The sucrose 

concentration of the blue region of the gradient was measured at its lowest point and 

found to be 28 %.  



 

80 
 

 

 

Figure 3.1. Initial sucrose gradients. Fractionation of cell lysates from different breakage 

procedures on 10-55 % continuous sucrose gradients. From left to right the breakage 

procedures were; sonication, French press, 6 x 20 seconds bead beating and 6 x 1 minute 

bead beating. The blue fraction (top) contains phycobilisomes; the light green fraction 

(second from top) contains thylakoid membranes; the yellow fraction (third from top) is 

believed to contain plasma membranes and the dark green fraction (bottom) contains 

unbroken cells and large debris such as the cell wall. 

 

 

 

EM analysis of purified membranes revealed that 6 x 1 minute of bead beating 

produced significantly smaller membrane fragments than 6 x 20 seconds (Figure 3.2). 

Membrane patches from both breakage conditions were measured in their long axis 

and the data can be seen in Figure 3.3. It was found that the majority of membrane 

patches from cells that had undergone more extensive bead beating had a length of 

less than 400 nm. Cells that had undergone mild bead beating produced membrane 

patches that were far larger than those purified from the more extensive bead 

beating cell breakage procedure. When imaging with AFM it is desirable to have large 

membrane patches to ensure the probe tracks over the sample accurately and using a 

more gentle breakage procedure will also cause less damage to the sample. For these 

reasons it was decided that 6 x 20 seconds of bead beating was the optimum 

breakage procedure and was used in all subsequent experiments. 
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Figure 3.2. EM of cell lysates from beat beating. Negative stain TEM of thylakoid membrane 

containing bands from the initial sucrose gradients. (a) Membranes from 6 x 20 seconds bead 

beating. (b) Membranes from 6 x 1 minute bead beating. 

 

 

 

Figure 3.3. Lengths of membranes patches from bead beating cell lysates. Membranes from 

the two bead beating cell lysates were measured along their long axis; 6 x 20 seconds (green) 

and 6 x 1 minute (blue). 50 membrane patches were measured from each cell lysate. 
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3.3.2 Optimisation of the primary purification step 

 

Whilst the gradients seen in Figure 3.1 were successful in purifying thylakoid 

membranes, there was not much separation between the thylakoid membranes and 

the other bands in the gradient. To try and minimise contamination of the thylakoid 

membranes with other cellular components, the primary sucrose gradient protocol 

was altered. The cell lysate was centrifuged at 3000 x g to remove any unbroken cells 

and then diluted to a concentration of 0.2 mg/ml chlorophyll before 1.5 ml was 

loaded onto the gradient. The gradient itself was changed to a 30-40 % continuous 

sucrose gradient sitting on a 50 % sucrose step. The new sucrose gradient was used to 

increase the separation between the thylakoid membranes and the phycobilisomes in 

addition to concentrating the membranes against the 50 % sucrose step. As before 

the gradient was centrifuged at 40,000 rpm in an SW41 rotor at 4 °C for 2 hours; the 

resulting gradient was photographed (Figure 3.4). 

 

 

 

 

 

Figure 3.4. Optimised primary gradient. 

The revised sucrose gradients consisted 

of a 30-40 % continuous gradient on a 

50 % step. Blue phycobilisome fraction 

has been separated from the green 

fraction that contains thylakoid 

membranes. 
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3.3.3 EM of thylakoid membranes from primary sucrose gradients: 

 

To assess how effective the new primary sucrose gradient was at purifying “clean” 

membranes the green band was harvested from the gradient and imaged using EM 

(Figure 3.5). The membranes harvested from the new primary gradient appear much 

cleaner than those purified by the 10-55 % sucrose gradient; however there was still a 

significant amount of contaminating material. There are small particles in the 

background of the image and adhered to the surface of the membrane that have an 

oval shape and a length of approximately 20-100 nm. These bodies have been 

previously identified as glycogen granules (Sherman and Sherman, 1983). 

 

 

 

 

 

Figure 3.5. Negative stain TEM of thylakoid membranes from the revised primary gradient. 

(a) Negative stain TEM showing a thylakoid membrane and background glycogen granule 

contamination. (b) Negative stain TEM showing a thylakoid membrane coated in glycogen 

granules. 
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3.3.4 Initial AFM 

 

Despite the presence of a significant amount of contaminating material, most notably 

in the form of glycogen granules, attempts were made to image the membranes by 

AFM. As expected there was significant contamination of the AFM probe; it was only 

possible to complete a few scans of the membrane patches without contamination 

preventing the imaging process altogether. Membrane patches were identified in the 

initial AFM (Figure 3.6) by their size and shape; however contamination of the probe 

led to large artefacts in the images such as those on the left hand side of Figure 3.6. It 

was clear that in order to image thylakoid membranes to the resolution of protein 

complexes samples would have to free of the contaminating bodies that can be seen 

in the EM images. 

 

 

Figure 3.6. Initial AFM of thylakoid membranes. AFM of membranes harvested from revised 

primary sucrose gradients; the large feature on the left of the image is an image artefact 

caused by tip contamination. The smaller feature in the bottom right hand corner is believed 

to be a thylakoid membrane. 
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3.3.5 Additional purification of thylakoid membranes 

 

To try and “clean up” the thylakoid membranes, samples harvested from the primary 

sucrose gradients were further purified on a secondary 20-50 % continuous sucrose 

gradient centrifuged at 40,000 rpm in an SW41 rotor at 4 °C for 2 hours; 1.5 ml of 

sample at a concentration of 0.2 mg/ml of chlorophyll were loaded. The resulting 

gradients (Figure 3.7) contained a diffuse green band towards the bottom of the 

centrifuge tube and a very pale blue band at the top. This indicated that the 

secondary gradients had removed phycobilisome complexes that the primary 

gradient had failed to separate from membranes. To see the extent to which the 

secondary sucrose gradient had removed contaminating cellular debris from the 

membrane fragments, the green band was harvested and imaged with EM 

(Figure 3.8). Much of the background contamination present in the primary gradients 

(Figure 3.8a) was absent in samples harvested from the secondary gradient 

(Figure 3.8c). However significant levels of contamination were still present on the 

surface of the membrane patches in the form of glycogen granules, indicating no 

improvement in this aspect of the purification (Figure 3.8b and 3.8d). 

 

 

 

 

Figure 3.7. Secondary sucrose 

gradient. Membranes from primary 

gradients were further purified on a 

20-50 % continuous gradient. A very 

pale blue fraction can be seen at the 

top of the gradient. A green fraction 

that contains thylakoid membranes 

is present close to the bottom of the 

gradient. 
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Figure 3.8. Comparison of thylakoid membranes from primary and secondary gradients. (a) 

Negative stain TEM of sample harvested from a primary gradient showing a thylakoid 

membrane and background glycogen granule contamination. (b) Negative stain TEM of 

sample harvested from a primary gradient showing a thylakoid membrane coated in glycogen 

granules. (c) Negative stain TEM of sample harvested from a secondary gradient showing a 

thylakoid membrane and reduced levels of glycogen granules in the background of the image. 

(d) Negative stain TEM of sample harvested from a secondary gradient showing a thylakoid 

membrane coated with a comparable number of glycogen granules to membranes harvested 

from primary gradients. 
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3.3.6 High salt secondary sucrose gradients for removal of glycogen granules 

 

It was believed that purifying membranes on secondary sucrose gradients that 

contained a high concentration of NaCl would destabilise the interaction between the 

membrane and the glycogen granules. Three 20-50% continuous sucrose gradients 

were trialled that were made with buffer containing 300 mM, 600 mM and 1200mM 

NaCl respectively. Gradients were centrifuged at 40,000 rpm in an SW41 rotor at 4 °C 

for 2 hours; 1.5 ml of sample at a concentration of 0.2 mg/ml of chlorophyll was 

loaded. The post-centrifugation gradients can be seen in Figure 3.9. 

 

 

 

 

 

 

 

 

 

Figure 3.9. Secondary gradients from 

high salt trials. NaCl concentration 

from left to right; 100 mM (NaCl 

concentration of standard thylakoid 

buffer), 300 mM, 600 mM, 1200 mM. 

The green thylakoid membrane 

containing fraction travels less 

distance through the gradient as the 

NaCl concentration increases. All of 

the green bands were harvested for 

EM analysis to find out what effect 

the increased NaCl concentration had 

on the granules that were adhered to 

the surface of the membranes. 
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The most noticeable effect of the increased concentration of salt is that the 

membranes travel a shorter distance through the gradient. In the 300 mM and 

600 mM gradients there is still a clear separation between the membrane band and 

the phycobilisome band. In the 1200 mM gradient the membrane and phycobilisome 

bands have started to merge which could possibly cause contamination. Another 

difference in the high salt gradients is the presence of a much more visible 

phycobilisome band, indicating that the high salt treatment is disrupting the 

interaction between the membrane and the phycobilisomes. To determine whether 

the increased NaCl concentration has removed glycogen granules from the surface of 

the thylakoid membranes, the green band was harvested from the gradients and 

imaged via EM. 

 

 

3.3.7 EM of membranes purified on high salt secondary gradients 

 

The EM of the membranes harvested from high salt gradients revealed that the 

increased salt concentration of the sucrose buffer was partially successful in removing 

glycogen granules from the surface of the membrane (Figure 3.10). Membranes 

harvested from the 300 mM and 600 mM gradients (Figure 3.10b and 3.10c 

respectively)  have a number of glycogen granules attached to their surface similar to 

those of membranes purified using standard secondary gradients that contain 

100 mM NaCl (Figure 3.10a). The levels of background glycogen granules in the 

300 mM and 600 mM samples were also similar to those of standard secondary 

gradients. EM of membranes harvested from the secondary gradients containing 

1200 mM NaCl (Figure 3.10d) show a significant reduction in glycogen granule 

contamination with few granules attached to the surface of the membrane. There is 

however a small number of granules in the background of the EM; so whilst this 

treatment seems fairly effective at removing the majority of the glycogen granules a 

different method had to be used to completely remove them. 
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Figure 3.10. Comparison of membranes from high salt trials. (a)  Negative stain TEM of 

membranes from 100 mM NaCl secondary gradients. (b) Negative stain TEM of membranes 

from 300 mM NaCl secondary gradients. (c) Negative stain TEM of membranes from 600 mM 

NaCl secondary gradients. (d) Negative stain TEM of membranes from 1200 mM NaCl 

secondary gradients. The number of glycogen granules on the surface of the membranes is 

seen to decrease with increasing concentrations of NaCl 

 

 

 

 



 

90 
 

3.3.8 DCMU treatment of cells 

 

Another approach that was taken was to try and prevent glycogen synthesis in 

Synechocystis; 3-3,4-dichlorophenyl-1,1-dimethylurea (DCMU) is a PSII inhibitor which 

also has the effect of preventing glycogen synthesis in cyanobacteria (Lehmann and 

Wöber, 1976). 100 ml cultures were grown to an OD750
 of 0.2 (early log phase) before 

being transferred into 1 litre of BG-11 medium supplemented with 10 µM DCMU. The 

cells were grown under standard conditions to an OD750 of approximately 1.0 before 

being harvested. Cells were then lysed under standard conditions and membranes 

purified by standard primary and secondary gradients; the membranes were then 

imaged via EM (Figure 3.11). 

 

 

 

 

Figure 3.11. Negative stain TEM of membranes from cells grown in DCMU supplemented 

medium. (a) Sample harvested from primary gradients, (b) Sample harvested from secondary 

gradients. In both images the levels of glycogen granules are significantly reduced relative to 

membranes purified from cells grown in medium without DCMU. 
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The EMs of membranes harvested from the primary gradients (Figure 3.11a) show 

large membrane patches that are almost completely free of glycogen granules 

attached to the membrane. There is however a significant amount of cell debris in the 

background of this image, although granules are largely absent. In the EMs of the 

membranes purified on a secondary gradient (Figure 3.11b) most of the cell debris 

seen in the background of membranes from primary gradients (Figure 3.11a) is 

absent. These EM images show that growing Synechocystis in medium supplemented 

with 10 µM DCMU is very effective for preventing the synthesis of glycogen granules.  

 

 

3.3.9 Amylase treated membranes 

 

Glycogen contains many α,1-4-glycosidic bonds which can be broken by α-amylase; 

treating thylakoid membranes with α-amylase should break down the glycogen 

granules attached to the surface of the membrane. Cells were broken using the 

standard cell breakage technique before incubation with 5 µg/ml of α-amylase 

(purified from Aspergillus oryzae, Sigma) for 1 hour. The cell lysate was then loaded 

onto a standard primary sucrose gradient to purify the thylakoid membranes. 

Membranes from this gradient were harvested and further purified on a standard 

secondary sucrose gradient; membranes from both gradients were imaged by EM 

(Figure 3.12). 
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Figure 3.12: Negative stain TEM of membranes treated with α-amylase. (a) Sample 

harvested from primary gradients, (b) sample harvested from secondary gradients. These EM 

images show α-amylase treatment is very effective at removing granules. 

 

From the EM images it can be seen that amylase treatment is able to remove close to 

100% of glycogen granules from the surface of the thylakoid membranes and the 

background. In Figure 3.12b the combination of the amylase treatment and two 

sucrose gradient purification steps has been successful in producing membrane 

samples that are virtually free of any contaminating material. This method was the 

most effective in producing clean membrane patches of all those that were trialled. 

Therefore, in all subsequent membrane purifications cell lysates were treated with 

5 µg/ml amylase. 
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3.3.10 AFM of amylase treated membranes 

 

Samples prepared as described in 3.3.9 were imaged by AFM and membranes could 

be imaged without any problems arising from tip contamination (Figure 3.13). The 

sizes of the membrane patches were consistent with those observed in the EM data 

and the measured heights were between 50-200 nm, consistent with vesicular 

structures with a fluid filled lumen, and making them readily deformable when they 

come in contact with the AFM probe. This presents a significant challenge as the ideal 

sample for AFM is one that is flat and non-deformable, and it would be difficult to 

image the membrane fragments in their current state to a resolution high enough to 

observe single protein complexes. A procedure therefore had to be developed to 

alter the purified membrane fragments to make them more suitable for AFM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

94 
 

 
 

Figure 3.13. AFM analysis of amylase treated membranes from secondary gradients. (a) 

AFM scan showing several thylakoid membranes, (b) height profiles for selected membrane 

patches. 

 

 



 

95 
 

3.3.11 Imaging membranes under air 

 

If the membranes were dried it was believed that its vesicular structure would 

collapse leaving two layers of appressed membrane which, when imaged under air 

would provide a flat, non-deformable sample that would be more suitable for AFM 

analysis. Membranes were harvested from standard secondary gradients and diluted 

to a concentration of 0.005 mg/ml of chlorophyll; 5 µl of this sample was pipetted 

onto fleshly cleaved mica followed by 45 µl of absorption buffer. The membrane were 

then left to bind to the mica surface for 1 hour before being washed 10 times with 

100 µl of MilliQ water to remove any buffer salts before being dried under a constant 

stream of nitrogen; samples were then imaged in air by AFM (Figure 3.14). The AFM 

data show that the membrane sack does collapse when the sample is dried leaving a 

double layer of membrane with several perforations in the upper layer. In 

Figure 3.14b a cross-section of the membrane shows that the height of the upper 

layer is 10-12 nm and the lower layer is 5-6 nm. The absence of a liquid buffer leads 

to “crinkling” of the membrane which induces curvature on a nano-scale that can 

obscure the membrane topology of the integral protein complexes. High resolution 

imaging was difficult and protein complexes could not be observed in either the 

upper or the lower layer of membrane. 
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Figure 3.14. Thylakoid membranes imaged by AFM in air. (a) AFM scan showing a flattened 

thylakoid membrane, (b) height profile of the membrane patch; the upper layer of the 

membrane has a height of 10-12 nm and the lower membrane layer has a height of 5-6 nm. 
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3.3.12 Rehydration of dried membrane samples 

 

In an attempt to try and address the issue of membrane shrinkage, samples were 

prepared in the same way as 3.3.11 however once the sample had been dried it was 

rehydrated with 50 µl of standard imaging buffer and left for 1 hour. Due to the large 

perforations seen in many of the membrane fragments it was believed that upon 

rehydration the membranes would be unable to return to their original swollen 

vesicular conformation. Instead the two layers of the stacked membrane would 

remain flattened and in the presence of liquid buffer would “uncrinkle” to allow for 

AFM imaging of protein complexes. Figure 3.15 shows a rehydrated membrane patch 

where a large area of the lower membrane layer is exposed. The cross-section shows 

a lower membrane layer with a height of 7-12 nm and an upper membrane layer with 

a height of 18-22 nm (Figure 3.15b); this would indicate that the membrane has 

expanded under liquid. In Figure 3.16 the membrane patch from Figure 3.15 has been 

imaged with a smaller scan size and does not appear to have the “crinkled” 

appearance seen in membrane patches imaged under air. Small protrusions in the 

lumenal face of the lower membrane layer in Figure 3.16a have been circled in green; 

these protrusions are on the scale of single membrane complexes and are possibly 

from PSII or cytochrome b6f.  In Figure 3.16b small protrusions on the stromal face of 

the upper membrane layer are circled in blue and could be from PSI; however the 

quality of the images is not high enough for assignment of protein complexes to the 

topology map. In Figure 3.15 there are a number of smaller structures surrounding 

the membrane patch; these bodies are believed to be the contents of the thylakoid 

lumen and smaller fragments of membrane that have broken away from the main 

patch during the drying procedure. Unfortunately these smaller bodies appear to be 

causing contamination of the probe which made imaging difficult. 
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Figure 3.15. Rehydrated thylakoid membranes imaged by AFM under liquid. (a) AFM scan 

showing a rehydrated thylakoid membrane, (b) height profile of the membrane patch (left to 

right); the lower membrane layer has a height of 7-12 nm and the upper membrane layer has 

a height of 18-22 nm. 
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Figure 3.16. AFM of a rehydrated membrane patch using a  smaller scan size. (a) AFM scan 

with potential proteins on the lumenal face of the lower membrane layer circled in green. (b) 

AFM scan with potential proteins on the stromal face of the upper membrane layer circled in 

blue. 
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3.3.13 β-DDM treatment of membranes 

 

Previous protocols for producing flat membrane patches used very low 

concentrations of detergent to “open out” curved or vesicular membranes so that 

they would form flat layers that could be readily imaged via AFM. To try and replicate 

this effect, membranes harvested from a standard primary gradient were loaded onto 

a standard secondary sucrose gradient that contained n-Dodecyl-beta-D-Maltoside 

(β-DDM). Gradients containing 0.001%, 0.005%, 0.01% and 0.05% β-DDM in addition 

to a detergent-free control gradient were loaded with 1.5 ml of sample at a 

concentration of 0.2 mg/ml of chlorophyll. Gradients were centrifuged at 40,000 rpm 

in an SW41 rotor at 4 °C for 2 hours; the gradients were then photographed 

(Figure 3.17). The banding pattern seen in the detergent-containing secondary 

gradients shows a significant difference from the detergent-free control gradient. The 

green membrane containing band in the 0.001%, 0.005%, 0.01% and 0.05% gradients 

is significantly further up the gradient compared to the detergent-free gradient. This 

would indicate that the detergent in these gradients has broken the larger thylakoid 

membranes into smaller fragments that cannot travel as far through the gradient 

during centrifugation. With increased detergent concentration the green band 

travelled less distance through the gradient. 

 

 

 

Figure 3.17. Secondary sucrose 

gradients from β-DDM trial. The 

concentrations of β-DDM in the 

gradients from left to right were; 

0.000 % (control gradient), 0.001 %, 

0.005 %, 0.01 % and 0.05 %. The 

green fraction travels less distance 

through the gradient as the detergent 

concentration increases indicating the 

size of the membrane fragments is 

decreasing  
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3.3.14 AFM of β-DDM treated membrane fragments 

 

The membrane bands from all the detergent-containing secondary gradients were 

harvested and absorbed to the mica under standard conditions before being imaged 

via AFM under liquid. It is generally possible to determine what type of structure the 

membrane has based on its height and topology; Figure 3.18 details the different 

types of membrane structure including their respective heights and topologies.  

 

 

 

 

Figure 3.18. Schematic showing how membrane structures can be identified from their 

height and topology. (a) Membranes composed entirely of phospholipids have a height of 

4.5-6 nm; when imaged with AFM they appear to have very with little surface topology. (b) 

Membranes that contain proteins have a height of 8.5-11 nm; the surface of the membrane 

usually has significant topology. (c) Vesicular membranes have a curved topology and usually 

have a height greater than 14 nm, often significantly more. 
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AFM of the sample from the 0.05 % β-DDM gradient revealed only very small 

membrane patches which appeared to consist of lipid only. The samples from the 

0.001, 0.005 and 0.01 % β-DDM gradients all contained membrane patches of similar 

shapes and sizes; Figure 3.19 shows a field of membrane patches from the gradient 

containing 0.005 % β-DDM. There appeared to be three different types of membrane 

patch that could be imaged; vesicular patches, protein-containing single layered 

membrane patches and lipid-only single layered membrane patches. It was possible 

to image single protein complexes in some of the protein-containing single layered 

membrane patches (Figure 3.20) however this was rarely possible as these patches 

were observed at a low frequency and were relatively small.  
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Figure 3.19. AFM of β-DDM treated membranes. (a) AFM scan of membranes harvested 

from a secondary gradient containing 0.005 % β-DDM. (b) Height profiles of vesicular (blue), 

protein-containing (green) and lipid-only (pink) membrane patches. 
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Figure 3.20. AFM of protein-containing membrane patches from β-DDM method of 

preparation. AFM scan of protein-containing membrane patches harvested from a secondary 

gradient containing 0.005 % β-DDM. Putative protein complexes have been circled in blue; 

the lower membrane patch appears to have a more ordered arrangement of protein 

complexes than the upper membrane patch. 
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As gradients containing β-DDM were not very efficient at producing 

protein-containing membranes patches, detergent trials were run to produce 

protein-containing membrane patches on a reproducible basis. Three different 

detergents were trialled; Tween 20, triton X-100 and digitonin (Figure 3.21). All of 

these detergents are non-ionic detergents which have non-charged hydrophilic head 

groups. These detergents typically do not denature protein complexes as is the case 

with some of the harsher ionic detergents such as SDS. All of these detergents have 

been used extensively to purify membrane proteins and it was believed that by using 

relatively low concentrations of these detergents it would be possible to produce 

protein-containing membrane patches that were amenable to AFM. In the case of 

digitonin, this detergent has previously been used to isolate PSII enriched domains 

from cyanobacterial thylakoid membranes (Folea et al., 2008a) and chloroplast grana 

(Johnson et al., 2014). It was hoped that this effect could be replicated to allow for 

such membrane patches to be imaged through AFM. Triton X-100 and Tween 20 are 

similar to β-DDM as both contain carbon chains which constitute the hydrophobic 

region of the detergent. Digitonin is different from the previously mentioned 

detergents as it contains a modified sterol ring as the hydrophobic region of the 

molecule. The critical micelle concentration (CMC) of β-DDM and triton X-100 is 

similar at around 0.2 mM at room temperature; the CMC of Tween 20 is lower at 

around 0.08 mM. It is unclear what the exact CMC of digitonin is, but it is believed to 

be below 0.4 mM.  
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Figure 3.21. Structures and CMCs of detergents that were trialled to produce flat 

membrane patches. (a) The structure of β-DDM; (b) the structure of Tween 20; (c) the 

structure of triton X-100; (d) the structure of digitonin. 
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3.3.15 Tween 20 treatment of membranes 

 

1.5 ml of membranes harvested from standard primary sucrose gradients at a 

concentration of 0.2 mg/ml chlorophyll were loaded onto standard secondary 

gradients that contained Tween 20, in addition to a detergent-free control gradient. 

The concentrations of Tween 20 used were 0.001 %, 0.005 %, 0.01 % and 0.05 %; the 

gradients were centrifuged at 40,000 rpm in an SW41 rotor at 4 °C for 2 hours and 

subsequently photographed (Figure 3.22). As with previous detergent-containing 

sucrose gradients the green membrane band did not travel as far through the 

gradient due to the reduced size of the membrane fragments. Interestingly the 

gradient containing 0.001 % Tween 20 is almost identical in appearance to the 

detergent-free gradient which suggests at this concentration the membranes had not 

been partially degraded. In the gradients containing 0.005 %, 0.01 % and 0.05 % 

Tween 20 the green band is at roughly the same place.  

 

 

 

 

 

 

 

Figure 3.22. Secondary sucrose 

gradients from Tween 20 trial. The 

concentrations of Tween 20 in the 

gradients from left to right were; 

0.000 % (control gradient), 0.001 %, 

0.005 %, 0.01 % and 0.05 %. 

Increasing the detergent 

concentration reduces the distance 

travelled by the membranes 

through the gradient. 

 



 

108 
 

3.3.16 AFM of Tween 20 treated membrane fragments 

 

Samples harvested from gradients containing Tween 20 were imaged by AFM; as 

expected the samples from the 0.001 % gradient looked similar to membranes from 

detergent-free gradients with no visible signs of membrane fragmentation. 

Membranes from the 0.005 %, 0.01 % and 0.05 % gradients had fragmented, as a 

consequence of the action of the detergent. AFM of membranes from the 0.005 % 

gradient (Figure 3.23) revealed vesicular membrane patches as well as lipid-only and 

protein-contaning single layered membranes; however the latter was only present at 

a low frequency. Some of the protein-containing membrane patches were imaged at 

higher resolution (Figure 3.24); however, it was difficult to reproducibly image single 

protein complexes in membrane patches from samples prepared with Tween 20. 
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Figure 3.23. AFM of Tween 20 treated membranes. (a) Membranes harvested from a 

secondary gradient containing 0.005 % Tween 20 imaged by AFM. (b) Height profiles of 

vesicular (blue), protein-containing (green) and lipid-only (pink) membrane patches 
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Figure 3.24. AFM of protein-containing membrane patches from Tween 20 treated 

membranes. AFM scan of protein-containing membrane patches harvested from a secondary 

gradient containing 0.005 % Tween 20. Putative protein complexes have been circled in blue. 
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3.3.17 Triton X-100 treatment of membranes 

 

Thylakoid membranes purified on standard primary sucrose gradients were loaded 

onto standard secondary sucrose gradients containing 0.001%, 0.005%, 0.01% and 

0.05% Triton X-100. 1.5 ml of membrane solution with a concentration of 0.2 mg/ml 

of chlorophyll was loaded onto each gradient and also loaded onto a detergent-free 

control gradient. The samples were then centrifuged at 40,000 rpm in an SW41 rotor 

at 4 °C for 2 hours and can be seen in Figure 3.25. In comparison to the 

detergent-free gradient, the green band in the Triton X-100 gradients had travelled 

less distance indicating the detergent had successfully fragmented the thylakoid 

membranes. The band in the gradient containing 0.01% Triton X-100 travels further 

through the gradient than in the gradient containing 0.005% Triton X-100. This was 

unexpected in the light of previous detergent trials. In the gradient containing 0.001% 

Triton X-100 the membrane band has travelled further with respect to the equivalent 

β-DDM gradient. The membrane band has also travelled further in the gradient 

containing 0.05% Triton X-100 with respect to the equivalent β-DDM gradient. Both 

these observations suggest that Triton X-100 is not solubilising the membrane to the 

same degree as β-DDM. 

 

 

 

Figure 3.25. Secondary sucrose gradients 

from Triton X-100 trial. The 

concentrations of Triton X100 in the 

gradients from left to right were; 0.000 % 

(control gradient), 0.001 %, 0.005 %, 

0.01 % and 0.05 %. 
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3.3.18 AFM of Triton X-100 treated membrane fragments 

 

AFM of membranes from the 0.001 % gradient (Figure 3.26) showed that the majority 

of the membrane fragments had a vesicular structure with a smaller number of 

lipid-only single layered fragments. Very occasionally protein-containing single 

layered membrane patches could be found however they were virtually absent in 

samples from Triton X-100 gradients. When protein-containing patches were imaged 

at high resolution no single protein complexes could be imaged; whether this was due 

to the “sharpness” of the AFM tip or if it was an effect of the detergent was unclear. 
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Figure 3.26. AFM of Triton X-100 treated membranes. (a) AFM scan of membranes harvested 

from a secondary gradient containing 0.001% Triton X-100. (b) Height profiles of vesicular 

(blue), protein-containing (green) and lipid-only (pink) membrane patches. 
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3.3.19 Digitonin treatment of membranes 

 

Secondary sucrose gradients were poured that contained 0.1 % and 1.0 % digitonin in 

addition to a detergent-free control gradient. Digitonin was used at a higher 

concentration than previous detergents because it has a weaker effect on 

membranes than the other detergents (personal communication Dr. J. D. Olsen). 

1.5 ml of membrane solution at a concentration of 0.2 mg/ml of chlorophyll was 

loaded onto each gradient. Gradients were centrifuged at 40,000 rpm in an SW41 

rotor at 4 °C for 2 hours and were subsequently photographed (Figure 3.27). The 

gradients appear to show that digitonin is “weaker” than previously trialled 

detergents as a small proportion of membranes in the 1.0 % gradient have travelled 

almost as far as membranes in the detergent-free gradient. This suggests that at high 

concentrations of digitonin there are still membranes that are similar in size and 

shape to membranes in the detergent free gradient. The membranes in the digitonin 

gradients do not form distinct bands like those seen in Figures 3.17, 3.22 and 3.25, so 

the gradients were therefore fractionated. The 0.1 % gradient was fractionated into 3 

parts; U1, M1 and L1 from which approximately 500 µl was harvested. The 1.0 % 

gradient was sectioned into 4 parts; U2, UM2, LM2 and L2 with approximately 500 µl 

being harvested from each. 
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Figure 3.27. Secondary sucrose gradients from digitonin trial. The concentration of digitonin 

in the gradients from left to right: 0.0 % (control gradient), 0.1 % and 1.0 %. 

 

 

3.3.20 AFM of Digitonin treated membrane fragments 

 

AFM of the L1 and L2 fractions revealed mostly intact membranes although there 

were small numbers of lipid-only and protein-containing single membrane patches. 

The M1 and LM2 fractions contained large numbers of protein-containing single 

membrane patches in addition to vesicular membranes and lipid-only membrane 

patches. Figure 3.28 is an AFM scan of membrane patches from the M1 fraction 

where single protein complexes can be observed in dozens of patches. The largest of 

the patches has a length and width of approximately 200 and 120 nm respectively 

and contains 60 protrusions on the scale of single protein complexes. Protein 

containing-membrane patches were also found in the U1, U2 and UM2 fraction, 

however these patches were relatively small with a maximum length of 
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approximately 100 nm. Figure 3.29 shows an AFM topograph of a membrane patch 

from the U1 fraction in which the protein complexes appear to be dimers with a 

lateral spacing of between 11-14 nm and a height between 8-9 nm. The identification 

of these protein complexes is discussed in Chapter 4. 

 

 

 

 

 

 

Figure 3.28. AFM of protein-containing membrane patches from digitonin treated 

membranes. AFM scan of a field of protein-containing membrane patches harvested from a 

secondary gradient containing 0.1 % digitonin. Individual protein complexes can be observed 

in several patches; the largest of these has been circled in blue. 
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Figure 3.29. High resolution AFM of protein complexes in digitonin treated membranes. (a) 

AFM of a small membrane patch with clearly visible protein complexes. (b) Height profile 

showing the height and separation of the protein complexes in the membrane 
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3.4 Discussion 

 

AFM has been used to investigate the organisation of light-harvesting complexes in 

membranes of several photosynthetic organisms; however there are no published 

data on high resolution AFM of cyanobacterial thylakoid membranes. In order to 

achieve an understanding of the native organisation of photosystems in 

cyanobacteria, it is essential to develop a method for producing thylakoid membranes 

that are amenable to AFM. 

 

 

3.4.1 Initial trials for purification of thylakoid membranes 

 

Breakage trials found that mild bead beating was the most effective method for 

producing large thylakoid membranes that could be purified on sucrose gradients. 

Whilst French press and sonication were able to lyse Synechocystis cells there was no 

clear membrane-containing band in the sucrose gradients, so these cell breakage 

protocols were discounted. Using 6 x 1 minute and 6 x 20 seconds of bead beating 

both produced membrane-containing bands in the sucrose gradient with the former 

producing a much thicker band than the latter. EM analysis of samples from both 

gradients showed the increased length of time produced much smaller membranes. 

Despite the reduced quantity of thylakoid membranes produced by 6 x 20 seconds of 

bead beating, the increased size of the membrane patches was desirable and this 

procedure was used as the standard cell breakage method. 

 

The initial primary sucrose gradients that were trialled did not provide very good 

separation between thylakoid membranes and the other cellular components and 

had to be altered to improve the purification of membrane samples. The sucrose 

concentration of the membrane sample harvested from the initial gradients was 42 % 

whereas the sucrose concentration of the blue fraction of the gradient was 28 % at its 

lowest point in the gradient. In order to separate these two fractions the revised 

primary sucrose gradient consisted of a 9 ml 30-40 % continuous gradient poured on 

top of 2 ml of 50 % sucrose. The reasoning for this gradient was that the membranes 
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would be able to enter the continuous gradient and the majority of the 

phycobilisomes would not. As the membranes travel through the continuous gradient 

larger contaminants should be removed and once the membranes reach the end of 

the gradient they will be concentrated against the 50 % sucrose step. Any large 

material such as the cell wall and unbroken cells should pass through the 50 % step 

and pellet at the bottom of the tube. Owing to the presence of a significant amount 

of material at the bottom of the initial primary gradients, the samples were 

centrifuged to remove the majority of unbroken cells and beads from the samples 

prior to loading. The gradient was successful in separating the phycobilisome and 

membrane fractions and there was a small pellet at the bottom of the centrifuge 

tube. The gradient was also successful in concentrating the membranes against the 

50 % step as the green band is much stronger in Figure 3.4 than in Figure 3.1 which 

increased the quantity of thylakoid membranes that could be harvested. EM of these 

membranes from the revised primary gradients shows there was significant 

contamination in the samples. One particular problem with contamination was the 

presence of a large number of glycogen granules that appeared to coat the surface of 

the membranes. Initial attempts at imaging membranes from these samples with 

AFM proved to be very difficult. It is estimated that only 1 in 5 scans could be 

completed at a pixel density of 256 x 256 before contamination of the probes made 

imaging impossible. When imaging was not impeded by contamination membrane 

patches could be identified; however it was clear that further purification of the 

membranes was necessary to image single protein complexes. 

 

 

3.4.2 Removing contaminating material from membranes 

 

There were two types of contaminating material in the membrane samples; material 

that was in solution and material that adhered to the surface of the membrane. It 

was believed that the 50 % step in the primary gradient may be concentrating soluble 

contaminating material which is able to pass though the 30-40 % continuous gradient 

but not capable of entering the 50 % step. It was reasoned that if samples harvested 

from primary gradients were run on a second continuous sucrose gradient the 

contaminating material in solution would be able to separate from the membranes. It 
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was also hoped that a second sucrose gradient might help to dissociate the 

contaminating material from the surface of the membranes. 

 

Imaging samples from secondary gradients by EM confirmed that the gradients were 

successful in removing much of the soluble contamination, although the majority of 

membranes still had a significant number of glycogen granules adhered to their 

surface. It became clear that a method for the targeted removal of glycogen granules 

or a change in growth conditions to prevent their synthesis had to be explored. 

 

The first method that was investigated for the removal of glycogen granules was to 

increase the NaCl concentration of the secondary gradients. The approach had limited 

success as the number of glycogen granules associated with membrane patches was 

seen to decrease as the salt concentration increased; only at the maximum 

concentration of 1.2 M NaCl were the majority of the glycogen granules removed. It 

was thought that using even higher concentrations of salt in the buffer or running the 

samples on multiple high salt gradients could further reduce the levels of glycogen 

granule contamination. This line of investigation was not pursued as the effect of 

such high concentrations of salt on the membranes was unknown and could be 

potentially damaging to the photosynthetic protein complexes. 

 

The PSII inhibitor DMCU has been shown to prevent glycogen synthesis in 

Anacystis nidulans when it is present at low concentrations in the growth medium 

(Lehmann and Wöber, 1976); DCMU binds to the Qb site on PSII and blocks electron 

transport in the protein complex (Lavergne, 1982). The exact mechanism of how PSII 

inhibition blocks glycogen synthesis is unclear, although glycogen synthesis is believed 

to occur only when cells are in a state of “energy excess” (Preiss, 1984) which is not 

the case when PSII function is inhibited. The presence of DCMU in the medium was 

highly successful at preventing the formation of glycogen granules on thylakoid 

membranes. EM confirmed that there were fewer glycogen granules on the surface of 

the membranes compared to the high salt trials. Although the levels of glycogen 

granules were very low in samples from the primary gradients, a significant amount 

of soluble contamination could still be observed. EM of samples harvested from 

secondary gradients shows significantly reduced levels of soluble contamination. 



 

121 
 

These EM images demonstrate the extent to which secondary sucrose gradients 

remove contaminating material and why they are useful for producing “clean” 

samples for AFM. The drawback to using these growth conditions is that the 

inhibition of PSII function could alter the native organisation of the photosynthetic 

proteins in the membrane. So whilst this is a very effective method of preventing the 

formation of glycogen granules it would be preferable not to interfere with the 

function of the proteins in the photosynthetic apparatus. 

 

Glycogen is a polysaccharide composed of glucose monomers linked by α-1, 4 

glycosidic bonds and branched with α-1, 6 glycosidic bonds; α-amylase can cleave the 

α-1, 4 glycosidic bonds allowing it to break down glycogen. The treatment of 

membrane samples with α-amylase prior to purification on sucrose gradients was the 

most successful of all the procedures that were trialled to prevent glycogen granule 

contamination with close to 100 % removal of granules. There were no obvious 

drawbacks to treating membranes with amylase and the cell lysates for all further 

membrane purifications were incubated with amylase prior to purification. 

 

 

3.4.3 AFM of membrane patches 

 

Whilst an effective method for purifying “clean” samples had been developed, the 

membranes themselves did not have a conformation that was amenable to high 

resolution AFM. For the AFM probe to track across the surface of the membrane the 

sample must be flat and not deform under the pressure from the probe; membranes 

purified on sucrose gradients had curved vesicular structures with a liquid-containing 

lumen. Dehydrating the sample and imaging the membranes in air was an effective 

method of flattening the membrane patches. The appearance of large holes in the 

membrane was useful as it allowed for the lumenal face of the lower membrane layer 

to be imaged at the same time as the stromal face of the upper membrane. This 

feature could be advantageous as PSII and cytochrome b6f have significant topology 

on the lumenal face of the membrane whereas PSI and the ATP synthase have 

significant topology on the stromal face (Jordan et al., 2001; Kurisu et al., 2003; 

Umena et al., 2011; Yoshida et al., 2001). Unfortunately the absence of buffer caused 
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the membrane to shrink which created creases in the membrane making it impossible 

to distinguish individual protein complexes. Another drawback is that one of the main 

advantages of AFM over other imaging techniques is its capacity to image membranes 

under buffer conditions similar to those in the native environment; imaging in air 

negates this advantage. For these reasons imaging membranes in air was discounted 

as an imaging technique. The presence of large holes in the membrane proved useful 

as membrane samples could be rehydrated with buffer and maintain their flat, 

double layered structure. Imaging rehydrated samples showed that membranes 

would uncrease when exposed to a liquid environment. Small protrusions on the 

scale of single protein complexes could be seen in both the lumenal face of the lower 

membrane and the stromal face of the upper membrane.  

 

Several studies have used low concentrations of β-DDM to produce flat membrane 

patches from vesicular membranes (Bahatyrova et al., 2004; Olsen et al., 2008; 

Adams and Hunter, 2012) and It was believed that this effect could be replicated with 

vesicular thylakoid membranes. Secondary gradients made with buffer containing low 

concentrations β-DDM were used to simultaneously purify and cause the 

fragmentation of membranes. Samples harvested from these gradients contained 

single layered protein-containing membrane patches and it was occasionally possible 

to image protein complexes in some of the membrane patches. The membrane 

patches produced by this treatment were relatively small with an observed maximum 

length of approximately 100 nm. The frequency of protein-containing membrane 

patches in the sample was low and most membrane patches were either vesicular or 

single layered. For these reasons further detergent trials were performed to find a 

detergent that could produce large single layered protein-containing membrane 

patches on a reproducible basis. 

 

Secondary gradients containing three detergents were trialled; Tween 20, 

Triton X-100 and digitonin. The AFM analysis of samples from gradients containing 

either Tween 20 or Triton X-100 was similar to samples from β-DDM gradients as they 

contained a low frequency of protein-containing single layered membrane patches. 

Samples from digitonin gradients were able to consistently produce 

protein-containing single layered membrane patches that were of greater size than 
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those produced in any of the other detergent treated samples. Several membrane 

patches were imaged to high enough resolution to clearly identify single protein 

complexes. Secondary sucrose gradients were useful in separating membrane 

patches by size as larger patches were found further down the gradient. Digitonin 

treatment of thylakoid membranes was extensively used in this study and the 

identification of protein complexes in these membrane fragments is discussed in 

Chapter 4. 

 

Whilst it is not clear why the digitonin treatment is more successful at producing 

single layered protein-containing membrane patches it should be noted that one of 

the major differences between digitonin and the other detergents that were trialled 

is the absence of a hydrocarbon tail. Digitonin contains a modified sterol which 

constitutes the hydrophobic region of the molecule. It is possible that this relatively 

large hydrophobic group does not insert as easily into the membrane as the smaller 

hydrocarbon tails in the other detergents due to steric hindrance; especially in the 

areas of membrane that are densely packed with protein. Digitonin also has a 

relatively large hydrophilic head group which may mean the number of digitonin 

molecules that are able insert into the membrane is lower relative to detergents like 

triton X-100 and β-DDM which have smaller head groups. These factors could limit 

the degree to which digitonin is able to solubilise the thylakoid membrane which 

could in turn lead to the production of single layered protein-containing membrane 

patches. 

 

 

 

 

 

 

 

 

 

 



 

124 
 

3.5 Conclusions 

 

A standard method was developed for producing cyanobacterial thylakoid membrane 

patches in which protein complexes can be imaged by AFM. Mild bead beating is the 

most effective cell breakage method for producing bulk amounts of large thylakoid 

membranes that can be purified on sucrose gradients. Treating the cell lysate with 

α-amylase reduced the number of glycogen granules in the membrane sample to 

almost zero; eliminating one of the major sources of contamination. Purifying 

thylakoid membranes on two consecutive sucrose gradients yields clean membranes 

that can be imaged by AFM without significant contamination of the AFM probe. Two 

procedures were developed to produce flat thylakoid membranes for AFM imaging; 

the first procedure was to dehydrate membranes that were adhered to the mica then 

rehydrate the sample prior to imaging. The second procedure was to purify 

membranes on secondary sucrose gradients that contained low concentrations of 

digitonin. Both of these procedures produced flat membrane patches in which single 

protein complexes could be imaged with AFM. 
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Chapter 4: EM and AFM analysis of protein complexes 

in cyanobacterial thylakoid membranes 
 

4.1 Summary 

 

Cyanobacteria are some of the most important and widely studied photosynthetic 

organisms. Despite the existence of crystal structures for the photosynthetic protein 

complexes of cyanobacteria there is still much to learn about the native organisation 

of these complexes in thylakoid membranes. EM and AFM are useful tools for 

investigating the protein organisation in biological membranes and towards this end 

these techniques were used to analyse highly purified thylakoid membranes. 

 

EM of membranes from detergent-free primary gradients revealed the presence of 

large arrays of protein complexes which appeared to be parallel rows of PSII. These 

arrays were rarely observed and it was more common to find membrane patches in 

which no large scale organisation could be seen.  

 

Membrane fragments from Synechocystis were purified on digitonin-containing 

secondary gradients and AFM was used to image the lumenal face of the membrane 

fragments to the level of single protein complexes. Two populations of protein 

complex could be identified from the height data; the complexes with high topology 

were identified as monomeric and dimeric PSII. The distances between these protein 

complexes that appeared to be in a dimeric configuration were measured and the 

heights of these complexes were comparable to the crystal structure of PSII. The 

complexes that protruded from the membrane to a lesser extent were tentatively 

assigned as cytochrome b6f and partially disassembled PSII; however further analysis 

of the membrane fragments will be required to confirm the identity of these 

topological features 
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The organisation of protein complexes in the membrane agreed with the EM data as 

complexes were generally observed to be in a disordered state.  In some membrane 

patches parallel linear rows of PSII dimers could be imaged in areas that had a 

predominantly random distribution of complexes. It was also possible to image 

membrane fragments in which all of the protein complexes had formed into linear, 

parallel or close to parallel rows. 

 

The density of identifiable protein complexes varied, with some membrane patches 

appearing to exclusively contain lumenally protruding complexes (PSII and 

cytochrome b6f); other membrane patches contained small domains of these 

complexes interspersed throughout otherwise featureless areas of flat membrane. 

The height of some areas of featureless membrane was consistent with the height of 

PSI although it was not possible to identify individual complexes, as PSI has minimal 

lumenal topology.  

 

Membrane fragments from Thermosynechococcus elongatus were purified on 

digitonin-containing gradients and subsequently imaged by AFM. Membrane 

fragments that were very similar to those purified from Synechocystis could be 

imaged to the level of single protein complexes. The heights of the protein complexes 

were consistent with those measured for protein complexes in Synechocystis 

membrane patches. It was possible to identify monomeric and dimeric PSII complexes 

in addition to assigning potential cytochrome b6f complexes. The major difference 

between membrane patches from Synechocystis and T. elongatus was a lower density 

of identifiable complexes in the latter. It was also possible to image PSI trimers in 

membrane patches from T.elongatus which were found to form larger ordered 

arrays; this organisation has not previously been reported and represents a strict 

segregation of PSI from all of the other protein complexes in the photosynthetic unit. 

Membrane patches from T.elongatus were also imaged that contained PSI which was 

not in large ordered arrays, but distributed randomly throughout the membrane 

fragment. 
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4.2 Introduction 

 

PSI and PSII absorb light to drive photosynthesis and whilst the structure and function 

of these protein complexes has been extensively characterised in cyanobacteria 

(Jordan et al., 2001; Umena et al., 2011), the native organisation of photosystems in 

cyanobacterial thylakoid membranes is less well understood. Green plants contain 

homologues of the cyanobacterial photosystems; however the light harvesting 

antenna complexes in the two types of organism are very different. Green plants 

contain membrane bound complexes from the LHCII family (Horton et al., 1996); 

whereas cyanobacteria utilise water soluble phycobilisome complexes that are 

attached to the cytoplasmic face of the thylakoid membrane (MacColl, 1998). The 

ultrastructure of chloroplasts also differs from that of cyanobacteria as it contains 

granal stacks of thylakoids that are connected by stromal lamellae (Albertsson, 2001). 

Cyanobacterial thylakoid membranes are not stacked due to the large phycobilisome 

complexes situated between thylakoid membranes. In chloroplasts PSI and PSII are 

segregated, with the latter located in the grana and the former situated in the outer 

most membranes of the grana stack and in the unstacked stromal lamellae 

(Albertsson, 2001).  

 

Owing to the differences in membrane ultrastructure, cyanobacterial photosystems 

cannot be segregated in the same way as chloroplasts, although there is evidence to 

suggest some degree of spatial heterogeneity in cyanobacterial thylakoids. 

Hyperspectral fluorescence imaging of Synechocystis cells has shown the majority PSI 

fluorescence comes from thylakoid membranes in the centre of the cell; whereas the 

greatest levels of PSII fluorescence is detected in thylakoid membranes closer to the 

plasma membrane (Vermaas et al., 2008). This indicates that linear electron transport 

between the two photosystems occurs primarily in the periphery of the cell and cyclic 

electron transport, which exclusively involves PSI, takes place in a more central 

location in the cell. Spatial heterogeneity in thylakoid membranes has also been 

observed in another species of cyanobacteria; immunogold labelled membranes from 

Synechococcus sp. PCC7942 were analysed by TEM which detected “radical 

asymmetry” in the distribution of the protein complexes from the photosynthetic 

apparatus (Sherman et al., 1994). PSI and ATP synthase were primarily located in the 
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outermost thylakoid membranes that were closest to the plasma membrane whereas 

PSII and cytochrome b6f were found to be evenly distributed through the thylakoid 

membrane system. The consensus appears to be that in Synechocystis and 

Synechococcus PSI and PSII are spatially segregated in the thylakoid membrane to 

some degree. 

 

Freeze fracture and negative stain EM have been used extensively to image protein 

complexes in thylakoid membranes. Most EM studies have focused on the 

identification of PSII complexes in the membrane. It has been found that PSII 

complexes can form into large ordered arrays consisting of parallel rows of PSII or 

have a more disordered, seemingly random, distribution depending on the growth 

conditions of the bacteria (discussed fully in 1.7) 

 

All of the techniques previously used to investigate the organisation of protein 

complexes in cyanobacterial thylakoid membranes have their merits and drawbacks. 

One advantage of hyperspectral fluorescent imaging is that it can be used on live cells 

allowing the native architecture of the thylakoid membrane to be investigated on the 

scale of whole cells. The resolution however is limited to approximately 200 nm 

which is not sufficient to image single protein complexes. Freeze fracture EM and 

negative stain EM have sufficient resolution to image single protein complexes; 

however the sample preparation and imaging procedures have the potential to 

disrupt the native structure of the thylakoid membrane. AFM has some advantages as 

it can be used to image single protein complexes in membranes that are in 

near-native buffer conditions causing minimal disruption to the membrane.  

 

PSI, PSII, cytochrome b6f and ATP synthase span the membrane and have protrusions 

that extend past the surface of the membrane (Jordan et al., 2001; Kurisu et al., 2003; 

Umena et al., 2011; Yoshida et al., 2001). The extrinsic parts of PSI and ATP synthase 

protrude to the greatest degree from the cytoplasmic surface of the membrane, 

whereas PSII and cytochrome b6f protrude from the lumenal surface of the 

membrane by 5 nm and 4 nm respectively. These features can be exploited by AFM as 

it has sub-nanometer resolution in the vertical axis allowing protein complexes to be 

identified from their height. Other distinguishing features include the trimeric 
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configuration of PSI and the dimers of PSII and cytochrome b6f. Thus, it is possible to 

identify individual protein complexes in oligomeric membrane assemblies, as long as 

the AFM analysis is performed with a sufficiently sharp AFM probe and a “clean” 

membrane patch is available 
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4.3 Results 

 

4.3.1 EM of thylakoid membranes from Synechocystis 

 

Through EM analysis of membranes harvested from primary sucrose gradients 

described in 3.3.2 it was sometimes possible to visualise single protein complexes 

(Figure 4.1). Typically proteins were disordered in the membrane (Figure 4.1a), 

although it was occasionally possible to see proteins adopt a more ordered 

configuration. In Figures 4.1b, c and d parallel rows of protein complexes can be seen 

in the membrane; similar domains have previously been purified from detergent 

treated membranes and imaged by negative stain EM. Through the use of single 

particle reconstruction the crystal structure of PSII was fitted to the EM projections 

(Folea et al., 2008a). We have shown that these PSII domains are present in 

membranes that have not undergone any form of detergent treatment. Negative 

stain EM of membranes has the drawback that it takes place under vacuum and it 

cannot be ruled out that these ordered PSII arrays are artefacts of dehydration or the 

negative staining procedure. It is therefore still necessary to image thylakoid 

membranes by AFM, which is carried out at atmospheric pressure under liquid, to 

confirm if these arrays are present in the native structure of the thylakoid membrane. 

 

 

 

 

 

 

 

 

 

 

 

 



 

131 
 

 

Figure 4.1. Negative stain EM of thylakoid membranes from primary sucrose gradients. (a)  

Occasionally the staining of thylakoid membranes was of high enough quality to visualise 

individual protein complexes which typically had a random organisation. (b, c and d) PSII 

complexes could sometimes be seen to organise into parallel linear arrays (outlined in white 

in b, c and d).  
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4.3.2 AFM of digitonin treated membranes 

 

Membrane fragments from Synechocystis were purified on digitonin-containing 

sucrose gradients as described in 3.3.19 and were imaged by AFM. Owing to the 

difficulties associated with AFM imaging many membrane samples had to be 

prepared and imaged. In Figure 4.2 there are several examples of membrane 

fragments in which single protein complexes have been imaged. With measured 

heights of approximately 8-14 nm it was possible to determine that these membrane 

fragments were single layered and contained protein complexes (Figure 4.3). The 

protein complexes appeared to be of similar size and shape in all membrane 

fragments and on initial inspection there appeared to be both monomeric and 

dimeric complexes present. The distribution of protein complexes appears to be 

random but there are areas in the membrane patches, most notably in Figure 4.2a, 

where protein complexes are organised into rows that are approximately parallel and 

reminiscent of those seen in freeze fracture EM (Vernotte et al., 1990). The density of 

protein complexes in these patches varied; the lowest measured packing density was 

2438.5 complexes per µm2 and the highest was 3431 complexes per µm2 (see 

Table 1). To determine the identity of the protein complexes that were present in the 

membrane fragments the vertical dimensions of the complexes were measured in the 

membrane patches seen in Figures 4.2 c, d and e. These membrane patches were 

chosen as the areas containing protein complexes were relatively flat. The cross 

sections of these membrane patches (Figure 4.3 c, d and e) show that the lipid 

bilayers had a relatively constant height with protein complexes protruding by a 

couple of nanometres. The heights of protein complexes in the membrane patches in 

Figures 4.2 a, b and f were not measured as the membrane patches themselves were 

not flat. Cross sections of these patches (Figure 4.3 a, b and f) shows the height of the 

lipid bilayer varies by a few nanometres due to membrane curvature. This curvature 

would obscure the height of the protein complexes as measured from the surface of 

the mica; therefore the height measurements of complexes in these patches were 

not taken. The lateral dimensions of a number of complexes in the membrane 

patches shown in Figure 4.2b and c were also measured to see if they were 

consistent with crystal structure of protein complexes in the photosynthetic 

apparatus.  
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Figure 4.2. AFM of digitonin treated membrane patches from Synechocystis. Membrane 

patches purified from digitonin containing gradients were imaged at a resolution high enough 

to visualise single protein complexes. In Figures a-f the lumenal protrusions of PSII and 

cytochrome b6f complexes can be seen in the membrane fragments. The sections through the 

membranes can be seen in Figure 4.3. All scale bars are 100 nm. 
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Figure 4.3. Sections of membrane patches produced by digitonin treatment. Sections in a-f 

correspond to sections of membrane patches shown in Figure 4.2 a-f respectively and are 

coloured accordingly. The heights shown in these sections of between approximately 8-14 nm 

would suggest the membrane patches in 4.2 a-f are single layered protein-containing 

membrane patches. Figures c, d and e show membrane patches that are very flat with 

protein complexes protruding from a lipid bilayer. Figures a, b and f show membrane patches 

that are not flat due to membrane curvature although protein complexes can still be seen 

protruding from the lipid bilayer. 
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Table 4.1. Measurements made on the membrane patches in Figure 4.2. The features with 

topology are interpreted as arising from the major protein complexes which are PSI, PSII and 

the cytochrome b6f complex. A paired group of topological features is counted as two 

complexes for the purpose of this analysis. 

 

 

 

4.3.3 Height measurements of protein complexes in membrane patches from 

Synechocystis 

 

The height of protein complexes in patches from Figures 4.2c, d and e were 

measured and can be seen in Figure 4.4. The heights of complexes in patches from 

Figures 4.2a, b and f were not measured as there was slight membrane curvature 

throughout the patches which would have interfered with the measurements of 

protein topology; membranes need to be flat on the surface of the mica without any 

curvature for the heights of the protein complexes to be measured accurately. The 

best fit Gaussian distribution of the height data from each membrane patch showed 

two separate peaks that are likely to represent two complexes with different heights 

(Figures 4.4b, d and f). 

 

The average height of the protein complexes with greater topology was measured to 

be 10.5 nm, 10.4 nm and 10.5 nm in Figures 4.4a, c and e respectively. These heights 

are consistent with the crystal structure of PSII (Figure 4.5a) which has a height of 

10.5 nm and protrudes from the lumenal side of the membrane by approximately 

5 nm. The protein complexes with height of above 10 nm were assigned as either 
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dimeric or monomeric PSII and are numbered in yellow and red in 

Figures 4.4a, c and e. The AFM data agrees with the dimensions of the lumenal 

protrusions of PSII which indicates that it is the lumenal face of the membrane that is 

being imaged. The “high-topology” complexes were the most common feature in all 

of the membrane fragments however the ratio of “high-topology” complexes to “low-

topology” complexes varies between patches (see Table 4.1). 

 

The “low-topology" complexes had respective average heights of 9.6 nm, 9.1 nm and 

9.7 nm in Figures 4.4a, c and e. Cytochrome b6f has a height of 9.6 nm and protrudes 

by 4 nm from the lumenal face of the membrane (Figure 4.5b), consistent with the 

average heights measured in Figures 4.4a and e; however the average height 

measured in Figure 4.4c is smaller than that expected for cytochrome b6f. One 

possible explanation for this discrepancy might be the presence of partially 

disassembled PSII. Damage to the D1 subunit necessitates its removal and 

replacement at a relatively high rate which requires the partial disassembly of PSII 

(Nixon et al., 2010). Removal of PSII subunits would reduce the height of the PSII 

complex so it closely resembled the cytochrome b6f complex. The height of PSII 

without the PsbO, PsbU and PsbV subunits, which are believed to be removed during 

PSII repair (Nixon et al., 2010), is 9.2 nm (Figure 4.5c). This is only 0.4 nm less than the 

cytochrome b6f complex which would make it difficult to differentiate between the 

two complexes. It was therefore not possible to confidently assign individual 

cytochrome b6f complexes; however the height data do support the presence of 

some of these complexes in PSII-enriched domains. 
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Figure 4.4.Height measurements of protein complexes in flat membrane patches from 

Synechocystis. The heights of protein complexes in flat membrane patches (a, c and e) were 

measured and fitted with a Gaussian distribution (b, d and f) which revealed the presence of 

two potential complexes. The “high-topology” complex was identified as PSII and the 

“low-topology” complex is believed to be either cytochrome b6f or partially disassembled 

PSII. Complexes were coloured according to their height; blue (< 9 nm), green (9-10 nm), 

yellow (10-11 nm) and red (> 11 nm). All scale bars are 100 nm. 
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Figure 4.5. Crystal structures of PSII, cytochrome b6f and PSI. (a) PSII has a height of 10.5 nm; 

(b) the cytochrome b6f complex has a height of 9.6 nm; (c) PSII lacking the PsbO, PsbU and 

PsbV subunits has a height of 9.2 nm and (d) PSI had a height of 9.0 nm. PSII and the 

cytochrome b6f complex form dimers; the distance between the centres of the protruding 

subunits is 10.1 nm in the PSII dimer, 6.9 nm in the cytochrome b6f complex and 8.0 nm in the 

PSII complex lacking the PsbO, PsbU and PsbV subunits. 
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4.3.4 Lateral measurements of protein complexes 

 

Some of the protein complexes appeared to be in a dimeric configuration; this was 

expected as PSII exists as a dimer in the membrane (Komenda et al., 2012). The 

distance between the lumenal apices of the constituent PSII monomers was 

measured from the crystal structure to be 10.1 nm (Figure 4.5a). The lateral 

resolution of the AFM is not generally as accurate as the vertical resolution due to 

limitation by the “sharpness” of the probe; it was however possible to measure 

lateral distances in several putative dimeric PSII complexes (Figure 4.6). Some of the 

more distinct dimers were selected from a flat membrane patch (Figure 4.6a) and a 

membrane patch that had slight membrane curvature (Figure 4.6b). In both cases the 

distances between the constituent PSII monomers are consistent with the crystal 

structure of PSII.  
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Figure 4.6. Lateral measurements of putative PSII dimers. The distances between complexes 

that appeared to be in a dimeric configuration were measured in (a) a flat membrane patch 

and (b) a membrane patch that had a small degree of curvature. In both cases the distances 

measured were consistent with PSII. All x-axes are the lateral distance in nm and all y-axes 

are the height in nm. All scale bars are 100 nm 
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4.3.5 The organisation of protein complexes in membrane patches from 

Synechocystis 

 

The organisation of protein complexes in the membrane appeared to be random in 

most cases although there were areas of the membrane in which complexes had 

formed into approximately parallel linear arrays (Figures 4.7a and b). These arrays are 

relatively small consisting of between 3 to 5 complexes with the majority of the 

complexes in these patches in an apparently random distribution. The membrane 

patches in Figures 4.7c and d could not be imaged to as high a resolution as 

Figures 4.7a and b; however there does appear to be large scale organisation of 

protein complexes in these membrane fragments. In Figure 4.7c several linear and 

approximately parallel structures can be observed in the membrane patch. These 

structures have similar dimensions to the rows of individual protein complexes seen 

in Figures 4.7a and b and are believed to be equivalent structures imaged to a lower 

resolution. Figure 4.7d is of slightly higher resolution and individual protein 

complexes can be observed in several membrane patches. These arrays have a similar 

appearance to the PSII domains seen in Figure 4.1 and in Folea et al., (2008a) with 

PSII being very tightly packed, as opposed to the appearance of less densely packed 

PSII rows seen in freeze fracture studies (Giddings et al., 1983; Mörschel and Schatz, 

1987; Olive et al., 1986; Vernotte et al., 1990; Olive et al., 1997) and the majority of 

the AFM data in this study. It is important to note that all of the protein complexes in 

Figures 4.7c and d appear to form linear arrays as opposed to Figures 4.7a and b 

where the majority of protein complexes are in a random arrangement. The different 

organisation of protein complexes is possibly as result of the state transition. Freeze-

fracture studies have reported PSII being organised into parallel rows in 

cyanobacteria that are in state 1; whereas an apparently random distribution of PSII 

was more common in cyanobacteria in state 2 (Olive et al., 1986; Vernotte et al., 

1990). Although efforts were made to ensure consistent cell growth conditions it is 

possible that the membrane patches in Figures 4.7a and b were purified from 

bacteria that were in state 2 and the membrane patches in Figures 4.7c and d were 

purified from bacteria in state 1.  



 

142 
 

 

 

Figure 4.7. Organisation of PSII complexes into linear arrays. (a and b) High resolution AFM 

showing examples of linear arrays of PSII (circled in blue) in membranes where most of the 

complexes are in a seemingly random distribution. (c and d) Lower resolution AFM showing 

membrane patches in which all of the protein complexes appear to be in linear arrays. All 

scale bars are 100 nm. 
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4.3.6 Possible topological features that correspond to PSI complexes in membrane 

patches from Synechocystis 

 

Protein protrusions can be seen over most of the surface of the membrane patches 

but there are areas that appear to be relatively flat, which could house PSI, as this 

complex has minimal topology on lumenal face of the membrane and would appear 

flat when imaged by AFM. Although it would be impossible to accurately assign PSI 

complexes in these regions the heights of these areas were measured to determine 

whether the dimensions of the membrane patch were compatible with the height of 

PSI, measured from the crystal structure to be 9.0 nm (figure 4.9). As with the heights 

of individual protein complexes, only membrane patches that did not have significant 

curvature were measured. Figure 4.8 shows membrane patches with the flat areas 

outlined according to their height above the mica; areas less than 8 nm are 

highlighted in blue, areas that are between 8 nm and 10 nm are highlighted in green 

and areas with a height of greater than 10 nm are highlighted in red. The membrane 

patches in Figures 4.8b and c are densely packed with protein complexes and only 

have small areas that are compatible with the height of PSI. The membrane fragment 

in Figure 4.8a is less densely packed with protein complexes and there are several flat 

areas with heights between 8 and 10 nm. There are areas of membrane in Figure 4.8a 

have a height that is lower than 8 nm or greater than 10 nm but for the most part the 

heights of the flat areas of membrane are compatible with the height of PSI.  
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Figure 4.8. PSI compatibility of membrane patches from Synechocystis. Areas of the 

membrane in which protein complexes cannot be visualised have been outlined according to 

their height; blue (< 8 nm), green (8-10 nm) and red (> 10 nm). PSI has a height of 9.0 nm; 

therefore the areas of membrane outlined in green are compatible with PSI. All scale bars are 

100 nm 

Figure 4.9. Crystal structure of PSI. The crystal structure of PSI showing a height of 9.0 nm 

(chlorophyll a molecules and electron transport co-factors are not shown). 
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4.3.7 AFM of membrane patches from Thermosynechococcus elongatus  

 

To see if membrane fragments could be purified from other cyanobacteria, thylakoid 

membranes from the cyanobacterium Thermosynechococcus elongatus were 

subjected to the digitonin treatment that was developed in 3.3.19. T.elongatus was 

chosen for AFM analysis as it is a different cyanobacterial model that has been 

extensively characterised and there are crystal structures for both PSI and PSII. This 

would mean that the topology of the any protein complexes that could be imaged in 

the membrane could be directly compared to the current crystal structures of 

cyanobacterial PSI and PSII. It would also be interesting to see if there any differences 

in membrane architecture between two cyanobacterial systems which have different 

levels of PSI, PSII and cytochrome b6f. Intact thylakoid membranes from T. elongatus 

were kindly provided by Dr. Karim Maghlaoui. Gradients produced a banding pattern 

similar to that seen in the centrifugation of Synechocystis membranes on 

digitonin-containing gradients, with a green smear spreading throughout the 

gradient. Membranes were harvested from the middle of the green smear and 

imaged by AFM. 

 

Two flat protein-containing single layered membrane patches could be imaged to 

resolution of single protein complexes (Figure 4.10). These patches appeared to be 

similar to those from Synechocystis being of a comparable size to the membrane 

patches in Figures 4.2a, b and e. The topology of these membrane fragments is also 

similar to that of Synechocystis membrane patches with protein complexes clearly 

present and often appearing to be in a dimeric configuration. The major difference 

between the Synechocystis and T. elongatus membrane patches was the presence of 

large areas of featureless membrane in the latter. The Synechocystis membrane 

patches were dominated by protein complexes with protrusions that could be clearly 

identified however these complexes appear to be present at a lower density in 

membrane patches from T. elongatus. To identify the protein complexes in these 

membrane patches the height above the mica for each complex was measured; this 

was possible as neither patch had significant membrane curvature. 
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Figure 4.10. AFM of digitonin treated membrane fragments from T.elongatus. Membrane 

fragments from digitonin-containing gradients imaged at high resolution by AFM. Single 

protein complexes of high topology can be visualised in the membrane patches that have an 

appearance very similar to the membrane patches from Synechocystis. All scale bars are 

100 nm. 

 

 

 

Table 4.2. The table shows measurements made on the membrane patches in figure 4.10 
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4.3.8 Height measurements from T. elongatus membrane patches 

 

As with Synechocystis membrane patches the heights of the protein complexes were 

measured and compared with crystal structures of PSII and cytochrome b6f. The 

height analysis (Figure 4.11) revealed two populations of complex in the membrane 

patches; the “high-topology” complex had average heights of 10.5 nm and 10.4 nm 

and the “low-topology” complex had average heights of 9.5 nm and 9.8 nm. These 

heights are consistent with those measured for complexes in Synechocystis 

membrane patches and as such the “high-topology” complexes were identified as PSII 

whereas the “low-topology” complexes are believed to be a mixture of cytochrome 

b6f and partially disassembled PSII. It is notable that there is no indication of PSII 

complexes forming parallel rows; however as this was a rare occurrence in 

Synechocystis membrane patches the existence of these PSII domains in T.elongatus 

should not be ruled out. 

 

As previously mentioned large areas of membrane in which no complexes could be 

visualised were present in membrane patches from T. elongatus; the heights of these 

membrane patches were measured to see if they were compatible with the height of 

PSI. The areas of the membrane in which there are no identifiable complexes are 

highlighted according to their height in Figure 4.12 using the same colour scale as for 

Figure 4.8. It can be clearly seen that the majority of the membrane patch is 

compatible with the height of PSI with smaller areas containing empty lipid and few 

regions that are taller than the rest of the membrane due to membrane curvature. 

The density of lumenally exposed complexes in these membrane patches is 

1697 complexes per µm2 and 1542 complexes per µm2. This is significantly lower than 

in membrane patches from Synechocystis; it is unknown if this is typical for 

T.elongatus or if these membrane patches are of particularly low density. A greater 

number of membrane patches will have to be imaged to get a more complete picture 

of the general density of PSII and cytochrome b6f in T.elongatus membranes. 
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Figure 4.11. Height measurements of protein complexes in flat membrane patches from 

T.elongatus. The heights of protein complexes in flat membrane patches (a and c) were 

measured and fitted with a Gaussian distribution (b and d). This revealed the presence of two 

potential complexes; the “high-topology” complex was identified as PSII and the 

“low-topology” complex is believed to be either cytochrome b6f or partially disassembled 

PSII. Complexes were coloured according to their height; blue (< 9 nm), green (9-10 nm), 

yellow (10-11 nm) and red (> 11 nm). All scale bars are 100 nm. 
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Figure 4.12. PSI compatibility of membrane patches from T.elongatus. Membrane regions 

where there are no visible protein complexes have been outlined according to their height; 

blue (< 8 nm), green (8-10 nm) red (> 10 nm). Areas of the membrane that are outlined in 

green are compatible with the height of PSI. All scale bars are 100 nm. 
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4.3.9 AFM of trimeric complexes in T. elongatus membrane patches 

 

One of the digitonin treated membrane patches from T.elongatus showed remarkably 

ordered arrays of a trimeric complex (Figure 4.13). As PSI can be purified from 

cyanobacterial thylakoid membranes as a trimer (Jordan et al., 2001); the heights of 

the trimeric protein complexes above the mica were measured to see if they were 

consistent with the height of 9.1 nm from the crystal structure. The average height of 

individual protrusions was measured at 9.3 ± 0.36 nm which fitted very well with the 

crystal structure of PSI (Figure 4.13). The distances between the protrusions in a 

number of the trimeric complexes were measured and found to be between 8-11 nm 

which also fits well with the distances between stromal protrusions of the trimeric PSI 

complex. 

A second patch containing what appeared to be trimeric complexes was also imaged 

from digitonin treated thylakoid membranes in which trimeric complexes could be 

observed that were not in ordered arrays; but had a seemingly random distribution 

throughout the membrane patch (Figure 4.14). There were also areas in the 

membrane patch with minimal topology and no clear protein complexes could be 

identified. The heights of the protein complexes were measured and the average 

height was 11.5 ± 0.7 nm which was much higher than expected for PSI. For this 

reason the seemingly flat areas surrounding the trimeric complexes were measured 

to see if they were consistent with the height of lipids surrounding protein 

complexes. The flat areas were seen to measure between 9.0 and 10.5 nm (Figure 

4.14d) which is higher than the expected height for lipid surrounding protein 

complexes; which is around 5-7 nm. This height is however consistent with the height 

of the PSII complex and cytochrome b6f complex; it is our belief that these areas 

represent the stromal face of the PSII complex and the cytochrome b6f complex which 

have minimal topology. This would mean that the lumenal projections of the PSII and 

the cytochrome b6f complexes would be in contact with the mica. The lumenal 

protrusions of PSI and the cytochrome b6f complex extend by 3-5 nm from the 

surface of the lipid bilayer; it is therefore believed that these protrusions are 

responsible for the increase in the measured height of the trimeric complexes above 

the mica, which are believed to be PSI. 
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Finding PSI in linear arrays was a surprising discovery as such arrays have never 

before been reported in the literature and in previous models PSI was believed to be 

in a more random distribution (Folea et al., 2008a). There are no reports of PSI 

segregation in T.elongatus of any kind whether in an ordered of disordered state; 

Figure 4.13 therefore constitutes first evidence of PSI segregation in T.elongatus. 

Figure 4.14 shows a membrane patch in which PSI does not appear to be segregated 

from other protein complexes but appears to be distributed somewhat randomly 

amongst other protein complexes; believed to be PSII and the cytochrome b6f 

complex. This organisation of PSI fits with what has previously been proposed, 

however this data suggests that both organisational states are present in native 

membranes. 
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Figure 4.13. AFM imaging and height analysis of a digitonin treated membrane patch from 

T.elongatus that contains trimeric complexes in ordered arrays. Trimeric complexes 

believed to PSI are seen to form parallel arrays in a membrane patch. The heights of the 

protein complexes were measured and had an average height of 9.3 ± 0.36 nm which is 

consistent with the height of PSI measured from the crystal structure. Scale bar is 100 nm 
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Figure 4.14. AFM imaging and height analysis of a digitonin treated membrane patch from 

T.elongatus that contains trimeric complexes in a disordered arrangement. (a) Trimeric 

complexes, believed to be PSI complexes, are seen in an apparently random distribution in 

the membrane. (b) The height measurement gives an average height of 11.5 ± 0.7 nm which 

is significantly higher than expected for PSI. (c) Section were taken across the membrane 

patch and (d) revealed the areas of minimal topology had a height of 9.0-10.5 nm; a height 

consistent with the crystal structure of PSII and the cytochrome b6f complex. 
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4.3.10 Room temperature absorption spectroscopy of digitonin treated thylakoid 

membranes from Synechocystis and T.elongatus  

 

Room temperature absorption spectra were taken of thylakoid membranes from 

Synechocystis and T.elongatus before and after purification on standard sucrose 

gradients containing 0.1 % digitonin. A peak was present at 680 nm in the absorption 

spectrum of Synechocystis thylakoid membranes prior to detergent treatment (Figure 

4.15 a); this peak was seen to shift slightly after detergent treatment to 678 nm 

(Figure 4.15 b). The absorption spectrum of thylakoid membranes from T.elongatus 

also had a peak at 680 nm (Figure 4.15 c) which was not seen to shift after digitonin 

treatment, remaining at 680 nm (Figure 4.15 d). The presence of the blue shifted 

peak in the absorption spectrum of thylakoid membranes from Synechocystis could 

be indicative of a greater abundance of PSII in the gradient fraction used for AFM 

analysis. The absorption spectrum of PSII has a maximum at 673 nm; therefore a 

greater abundance of PSII in the sample could be responsible for the 2 nm shift. The 

concentration of PSI and PSII was therefore investigated to determine the levels the 

two photosystems in the membrane patches produced by the digitonin treatment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

155 
 

 

Figure 4.15. Absorption spectra of thylakoid membranes from Synechocystis and 

T.elongatus. Absorption spectrum of Synechocystis thylakoid membranes purified from; (a) 

digitonin-free sucrose gradients and (b) sucrose gradients containing 0.1 % digitonin. 

Absorption spectrum of T.elongatus thylakoid membranes purified from; (c) digitonin-free 

sucrose gradients and (d) sucrose gradients containing 0.1 % digitonin. 
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4.3.11 Molar ratios of PSI and PSII in digitonin treated thylakoid membranes from 

Synechocystis 

 

To determine the effect of digitonin on the PSI and PSII content of membrane patches 

from Synechocystis, it was decided to analyse membrane fractions by clear native 

(CN) PAGE. Typically, approximately 100 µl of sample at a concentration of around 

0.2 mg/ml of chlorophyll is loaded per lane on a CN-PAGE. The concentration of 

chlorophyll in samples harvested from standard digitonin containing sucrose 

gradients is roughly 0.02-0.04 mg/ml. In order to produce a sample which was 

concentrated enough to load onto CN-PAGE gels 2 ml of lysed cells (broken according 

to 2.8) were loaded onto 20-50 % continuous sucrose gradients that contained 0.01, 

0.1, 0.5, 1.0 and 2.0 % digitonin in addition to a control gradient that contained no 

digitonin. The gradients can be seen in Figure 4.16 after centrifugation at 40,000 rpm 

in an SW41 rotor for 2 hours. The upper band (outlined in blue in Figure 4.16) is the 

part of the gradient that is typically harvested for AFM analysis as it contains the 

greatest abundance of single layered protein-containing membrane patches in 

standard digitonin containing sucrose gradients. The upper band was harvested from 

the 0.1, 0.5, 1.0 and 2.0 % sucrose gradients in addition the lower band (outlined in 

red in Figure 4.16) from the control gradient for analysis by CN-PAGE. 
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Figure 4.16. Digitonin containing sucrose gradients. Concentrated samples of Synechocystis 

thylakoid membranes were run on gradients containing different concentrations of digitonin. 

Samples were taken from the gradients for analysis by CN-PAGE. 

 

 

The samples harvested from the sucrose gradients were solubilised in 2 % β-DDM 

before 100 µl of the sample was loaded onto a clear native polyacrylamide gel. 

CN-PAGE of the samples showed clear separation between PSI trimers and PSII 

dimers (Figure 4.17 a); the more intense green band at the top of the gel contains PSI 

trimers and the less intense green band towards the bottom of the gel contained PSII 

dimers (Kopečná et al., 2012). The bands were cut out of the gel and absorption 

spectra were taken of the gel slices (Figure 4.17 b and c). A peak could be observed in 

the absorption spectra of the PSI band at 679 nm (Figure 4.17 b); in the PSII band the 

peak was observed at 673 nm (Figure 4.17 c). These spectra were consistent with the 

spectra for PSI and PSII confirming the presence of the complexes in the respective 

bands. In order to determine the PSI:PSII ratio of the samples, the photosystems were 

recovered from the gel slices via electroelution and the chlorophyll content was 

determined by methanol extraction. Based on PSI containing 96 bound chlorophyll a 

cofactors and PSII containing 35 bound chlorophyll a cofactors the PSI and PSII 

content was calculated (Table 4.3). The PSI:PSII ratio was higher in the lower band 

from the digitonin-free control gradient than in the upper bands from all the digitonin 

containing gradients. The general trend was for the PSI:PSII ratio to decrease as the 
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concentration of digitonin increases. This suggests that digitonin is preferentially 

producing membrane patches containing PSII that travel less distance through the 

sucrose gradient. It would also suggest that PSI is still present in the intact vesicular 

structures that are present in the lower band in the sucrose gradient. 

 

 

 

 

Figure 4.17. CN-PAGE of solubilised Synechocystis thylakoid membranes from digitonin 

gradients. (a) CN-PAGE of membrane samples taken from sucrose gradients used to prepare 

membranes for AFM analysis. In each gel lane two green bands can be observed; the intense 

green band at the top of the gel contains PSI trimers and the less intense green band towards 

the bottom of the gel contains PSII dimers. (b) Absorption spectrum of the upper band; the 

spectrum is typical for PSI with a peak at 679 nm. (c) Absorption spectrum of the lower band; 

the spectrum consistent with PSII with a peak at 673 nm. 
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Table 4.3. PSI:PSII ratios for samples harvested from gradients in Figure 4.16.  

 

 

 

 

 

4.3.12 Molar ratios of PSI and PSII in digitonin treated thylakoid membranes from 

T.elongatus 

 

The PSI and PSII content of thylakoid membranes from T.elongatus was determined in 

the same way as for thylakoid membranes from Synechocystis. As only a limited 

quantity of thylakoid membranes from T.elongatus had been supplied, it was only 

possible to run one digitonin-containing gradient and a digitonin-free control 

gradient. 2 ml of sample containing thylakoid membranes at a concentration of 

1 mg/ml of chlorophyll was loaded onto a 20-50 continuous sucrose gradient that 

contained 1.0 % digitonin and an identical sucrose gradient that contained no 

digitonin. The gradients produced a banding pattern very similar to the gradients in 

Figure 4.16 with a single band in the digitonin-free gradient and an upper band 

appearing in the 1.0 % digitonin gradient. The lower band from the digitonin-free 

gradient and the upper band from the 1 % digitonin gradient were harvested and 

analysed by CN-PAGE (Figure 4.18 a). A relatively intense PSI containing band and a 

barely visible PSII containing band could be identified in the clear native gel. The 

identity of the photosystem in each band was confirmed by taking absorption spectra 

of the bands after they were cut out from the gel (Figure 4.18 b and c). To determine 

the PSI:PSII ratio in the samples the complexes were recovered from the gel slices by 

electroelution and the chlorophyll content was measured by methanol extraction. 
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Based on PSI containing 96 chlorophyll a cofactors and PSII containing 35 

chlorophyll a cofactors the PSI:PSII ratio was determined by the amount of 

chlorophyll recovered from each band (Table 4.4). The PSI:PSII ratio is relatively 

similar between the lower band from the digitonin-free gradient and the upper band 

from the 1.0 % digitonin gradient at approximately 4:1. This is higher than the PSI:PSII 

ratio in Synechocystis evidencing that PSI is present at a greater abundance in 

T.elongatus than in Synechocystis. In addition the fact that the PSI:PSII ratio is 

comparable between digitonin treated and untreated T.elongatus thylakoid 

membranes suggests that the digitonin is not preferentially producing membrane 

patches containing one type of photosystem; as is the case with Synechocystis. 
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Figure 4.18. CN-PAGE of solubilised T.elongatus thylakoid membranes from digitonin 

gradients. (a) CN-PAGE of T.elongatus thylakoid membranes from a digitonin-containing and 

a digitonin-free sucrose gradient shows an intense green band containing PSI trimers and a 

barely visible green band containing PSII dimers. (b) An absorption spectrum confirms that 

the upper band contains PSI trimers. (c) The absorption band from the lower band confirms 

the presence of PSII. 

 

 

Table 4.3. PSI:PSII ratios for T.elongatus samples harvested from 0.0 % and 1.0 % digitonin 

sucrose gradients.  
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4.3.13 Low temperature emission spectroscopy of thylakoid membranes from 

Synechocystis and T.elongatus 

 

To further characterise the thylakoid membranes low temperature emission spectra 

were taken of thylakoid membranes from Synechocystis and T.elongatus prior to the 

digitonin treatment (Figure 4.19). The emission spectrum of Synechocystis thylakoid 

membranes had peaks at 685 and 695 nm (Andrizhiyevskaya et al., 2005) from PSII 

fluorescence and a peak at 719 nm due to PSI fluorescence (Brecht et al., 2009). The 

emission spectrum of T.elongatus thylakoid membranes had the 685 and 695 peaks 

from PSII fluorescence but the peak from PSI is red shifted from that of Synechocystis 

at 727 nm (Brecht et al., 2009). The amplitudes of the PSII associated peaks relative to 

the PSI associated peak were greater in Synechocystis than in T.elongatus which is 

indicative of a smaller PSI:PSII ratio. This measurement agrees with the PSI:PSII ratios 

that were determined by CN-PAGE. 

 

 

 

 

Figure 4.19. Low temperature emission spectra of thylakoid membranes from Synechocystis 

and T.elongatus. The emission spectrum from Synechocystis (green) has peaks at 685 nm and 

695 nm from PSII and a peak at 719 nm from PSI. The emission spectrum from T.elongatus 

(blue) has peaks at 685 nm and 695 nm from PSII and a peak at 727 nm from PSI. The 

amplitudes of the PSII associated peaks are smaller relative to the PSI associated peak in the 

spectrum of T.elongatus membranes in comparison to the spectrum of Synechocystis 

membranes which is indicative of a higher PSI:PSII ratio. Spectra are normalised to the PSI 

associated peak. 
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4.4 Discussion 

 

To get a better understanding of the light harvesting and electron transport processes 

of photosynthesis in cyanobacteria a more complete model of the native 

supramolecular organisation of photosynthetic protein complexes in thylakoid 

membranes has to be established. EM and AFM of photosynthetic membrane 

fragments from cyanobacteria has allowed the identification of photosynthetic 

complexes and in the latter case their supramolecular organisation under near-native 

buffer conditions.  

 

4.4.1 EM of Synechocystis membranes 

 

Domains in which PSII forms parallel linear arrays were identified in extracts of 

partially solubilised membranes by Folea et al., (2008a). The identification of similar 

domains (4.3.1) in thylakoid membranes that have not been treated with high levels 

of detergent shows that this arrangement of PSII is likely to exist in the intact 

cyanobacterial thylakoid system. These domains are completely devoid of PSI and 

cytochrome b6f and are likely to play a role in the distribution of energy between the 

two photosystems as the reduced number of contacts with PSI would likely reduce 

the spill-over of excitation energy from PSII to PSI. It is also believed that PSII in this 

configuration would reduce the transfer of energy between the phycobilisomes and 

PSI as the phycobilisomes that are bound to PSII could only interact with PSI at the 

periphery of such domains (McConnell et al., 2002). Nanodomains containing PSII and 

cytochrome b6f have been identified in granal thylakoid membranes from spinach 

which ensures rapid transport of quinone molecules between the two complexes 

(Johnson et al., 2014). The transport of quinone molecules between cytochrome b6f 

and PSII in the large PSII enriched domains identified in 4.3.1 would require quinone 

molecules to migrate over greater distances. It would therefore be of great interest to 

investigate the relationship between cytochrome b6f and these densely packed PSII 

domains. 
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4.4.2 Identification of complexes on the lumenal face of the membrane 

 

The most reliable measurement recorded by AFM is the height data which is typically 

accurate to 0.1 nm and is not dependent on the “sharpness” of the AFM probe. 

Therefore the first aspect of the AFM data that underwent analysis was the height 

measurements of individual protein complexes in the membrane. The existence of 

two populations of height measurement was unexpected as previous studies have 

reported membrane domains that were enriched in PSII with no indication of the 

presence of other protein complexes (Folea et al., 2008a; Giddings et al., 1983; 

Mörschel and Schatz, 1987; Olive et al., 1986). EM of immunogold labelled 

Synechococcus cells showed that PSII and cytochrome b6f had similar distributions in 

the thylakoid membranes (Sherman et al., 1994) so it would follow that domains 

containing both PSII and cytochrome b6f could be isolated and imaged. The measured 

heights of the “high-topology” complexes were relatively consistent between 

membrane patches with the average height ranging from 10.3 nm to 10.5 nm which 

fits well with the height of PSII. The distances between complexes that appear to 

form a dimer also fit well with the crystal structure of PSII. The fact that these 

complexes were occasionally seen to organise into linear arrays was also consistent 

with observations of PSII organisation made from freeze fracture and negative stain 

EM (Folea et al., 2008a; Giddings et al., 1983; Mörschel and Schatz, 1987; Olive et al., 

1986).  

 

The crossover point between the Gaussian distributions for the height measurements 

from the two populations of complex in Figures 4.4b, 4.4d, 4.4f, 4.11b and 4.11d was 

close to 10 nm. From this measurement, complexes that had a height of greater than 

10 nm could be assigned as PSII complexes with a high degree of certainty. Some of 

the PSII complexes have been measured with a height of greater than 11 nm. The 

presence of PsbQ and PsbP might explain why a small number of PSII complexes are 

have a measured height of greater than 11 nm. These subunits are believed to bind to 

the OEC but are not present in the crystal structure and have been shown to readily 

dissociate from the PSII complex. If a small number of PSII complexes still had PsbP 

and PsbQ bound, it could account for why occasionally the height of PSII complexes is 

measured to be greater than 11 nm 
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It is tempting to assign the “low-topology” complex as cytochrome b6f owing to the 

height data agreeing somewhat with the crystal structure of the complex. In addition, 

PSII and cytochrome b6f both protrude from the lumenal surface of the membrane 

and it would be expected that areas of topology could be assigned to cytochrome b6f. 

However during PSII repair there is partial disassembly of the PSII complex to allow 

the replacement of the D1 subunit (Nixon et al., 2010). The removal of PSII subunits 

would cause a reduction in the height of the protein complex; if partially 

disassembled PSII complexes were present in the membrane fragments they could 

have heights that were similar to cytochrome b6f. Additionally the PsbO, PsbU and 

PsbV subunits can dissociate from PSII when they are exposed to an aqueous 

environment (Papageorgiou and Murata, 1995) which would leave the PSII complex 

with a height of 9.2 nm. This complex would look very similar to cytochrome b6f in the 

AFM data and as there is only 0.4 nm difference in the height of these two complexes 

it may not be possible to distinguish them on the basis of height alone. The peaks 

corresponding to cytochrome b6f complexes in Figures 4.4b, 4.4d, 4.4f, 4.11b and 

4.11d were quite variable, being sharp in some membrane patches and very broad in 

others. The average height of the “low-topology” complexes was also relatively 

variable ranging from 9.1 nm to 9.8 nm. If there were a variable number of PSII 

complexes that lacked the oxygen evolving complex or were in a state or partial 

disassembly in the different membrane fragments that were imaged, it might explain 

why the height measurements of the “low-topology” complexes varied significantly 

between membrane patches.  

 

The ratio of PSII complexes to cytochrome b6f complexes in cyanobacteria has 

previously been measured to be between 1.08-1.38 depending on growth conditions 

(Fujita and Murakami, 1987). The ratio of “high-topology” complexes to 

“low-topology” complexes in the T. elongatus was measured at 1.37 and 1.09 in the 

membrane patches in Figures 4.10a and 4.10b respectively.  The ratio of 

“high-topology” complexes to “low-topology” complexes in Synechocystis was 

somewhat higher measured at; 1.73, 1.25 and 1.94 in the membrane patches in 

Figures 4.2c, 4.2d and 4.2e respectively. These values are relatively consistent with 

the expected PSII to cytochrome b6f ratio, supporting the hypothesis that the identity 
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of the complexes with lower topology is cytochrome b6f however they cannot be 

assigned on this basis alone. 

 

One solution for distinguishing cytochrome b6f complexes from the surrounding PSII 

complexes would be to use peak-force quantitative nanomechanical mapping (PF-

QNM). This type of AFM measures the force between a functionalised AFM probe and 

the membrane sample allowing membrane topology to be correlated to specific 

probe-sample interactions. One study has used AFM probes that were functionalised 

with oxidised plastocyanin to identify cytochrome b6f complexes in preparations of 

spinach thylakoid membranes (Johnson et al., 2014). As the functionalised AFM probe 

scanned over the membrane patch, the oxidised plastocyanin that was conjugated to 

the apex of the AFM probe transiently interacted with the reduced cytochrome b6f 

complexes that it encountered. The force of this interaction was measured by the 

AFM and allowed for accurate identification cytochrome b6f (Johnson et al., 2014). In 

principle the same method could be applied to membrane fragments from 

cyanobacterial thylakoids to identify which of the “low-topology” complexes are 

cytochrome b6f. 

  

In all the membrane fragments, domains that contained primarily PSII and potentially 

cytochrome b6f could be identified. In some membrane patches the PSII containing 

domains were interspersed with large areas of membrane that are relatively flat and 

featureless. This was seen most prominently in membrane fragments from 

T.elongatus which had the lowest abundance of lumenally protruding complexes. The 

heights of these areas of flat membrane were too great for the areas to be empty 

lipid and must have some protein components. The obvious candidate for these areas 

of protein-containing membrane is PSI; however owing to the lack of lumenal 

projections in the PSI structure it is not possible to image individual complexes. 

Despite this, the height data from these flat areas of membrane is compatible with 

the PSI crystal structure. Interestingly it may be possible to identify PSI using the 

same type of PF-QNM as was used to locate cytochrome b6f complexes in Johnson et 

al., (2014). Reduced plastocyanin interacts with the lumenal face of PSI; therefore all 

that would be required is a change in buffer and illumination conditions to reduce 

plastocyanin enabling it to interact with photo-oxidised PSI.  
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4.4.3 Identification of trimeric complexes in membrane patches from T.elongatus 

 

The appearance of trimeric complexes in some of the membrane fragments from 

T.elongatus was unexpected as no obviously trimeric complexes had ever been 

imaged in membrane samples from Synechocystis. PSI was seen as the most likely 

candidate for the trimeric complex as it is known to form a trimer in cyanobacteria 

and is highly enriched in thylakoid membranes (Jordan et al., 2001). The height 

measurement of the protein complexes again was primarily used for determining the 

identity of the complex as it is the most accurate measurement taken by the AFM. 

The average height of the protein complexes in Figure 4.13 was 9.3 ± 0.4 which is 

agreement with the 9.1 nm measured from the crystal structure of the PSI complex. 

The lateral distances between complexes in a trimeric configuration were measured 

to be between 8-11 nm which was within the expected range for PSI. From these 

measurements and the fact the protein complexes have a trimeric structure; we have 

assigned each trimeric complex as trimeric PSI. The organisation of PSI into parallel 

linear arrays was very surprising as no such structure has ever been imaged before 

despite extensive analysis of cyanobacterial thylakoid membranes by freeze-fracture 

and negative stain EM. This could be an example of how the preparation and imaging 

conditions required for AFM, which are generally less damaging to biological 

structures than those required for EM, have been able to preserve the native 

structure of the thylakoid membrane.  

 

 

4.4.4 PSI and PSII content in membrane patches from Synechocystis and T.elongatus 

 

For an accurate analysis of the PSI:PSII ratio in the membrane patches produced by 

the digitonin treatment; the membrane preparation had to be altered slightly. A more 

concentrated membrane sample had to be used so that the sample harvested from 

the sucrose gradient was of a high enough concentration to visualise the PSI and PSII 

bands on a clear native polyacrylamide gel. Using a higher concentration of 

membrane sample would however alter the lipid:detergent ratio in the gradient 

which could affect the type of membrane patch that was produced. For 

Synechocystis, it was decided to run sucrose gradients with a range of digitonin 
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concentrations and measure the PSI:PSII ratios of the membrane patches produced 

by each gradient. In the case of T.elongatus it was not possible to use a range of 

digitonin concentrations; as we had been supplied with a limited amount of material. 

It was therefore decided to use a sucrose gradient with a concentration of 1.0 (w/v) 

digitonin as this would give a lipid:detergent ratio that was similar to that of the 

standard sucrose gradient used throughout this study. The upper band (Figure 4.16) 

that was seen to appear in the digitonin-containing gradients was harvested for 

comparison with the lower band (Figure 4.16) in the control gradient. It was shown in 

3.3.19 that the upper band in the sucrose gradient consists primarily of single layered 

protein-containing membrane patches. Using this fraction of the sucrose gradient 

allowed for a comparison of the PSI:PSII ratio between untreated membranes from 

the control gradient and the membrane patches that were imaged by AFM. 

 

CN-PAGE of membranes that had not undergone any form of digitonin treatment 

revealed that there were significantly more PSI complexes present in the thylakoid 

membranes from both Synechocystis and T.elongatus than there were PSII 

complexes. The PSI:PSII ratio was 2.73 and 3.94 in Synechocystis and T.elongatus 

respectively. These numbers were consistent with low temperature fluorescence 

emission spectra taken of untreated thylakoid membranes. The PSII fluorescence was 

greater relative to the PSI fluorescence in Synechocystis than in T.elongatus; 

indicative of a lower PSI:PSII ratio in the former. CN-PAGE of membrane patches 

purified on sucrose gradients from T.elongatus showed that the PSI:PSII ratio was 

relatively similar to that of membranes that had not undergone digitonin treatment. 

This would suggest that the membrane patches have a similar protein architecture to 

the untreated membranes. The AFM data agrees with this somewhat in that large 

membrane patches that exclusively contain PSI can be imaged (Figure 4.13). 

Membrane patches containing relatively low levels of what are believed to be PSII 

and cytochrome b6f complexes can also be imaged (Figure 4.10). 

 

In the case of Synechocystis membrane patches purified by digitonin-containing 

sucrose gradients; CN-PAGE revealed that the PSI:PSII ratio was significantly reduced 

in comparison to untreated membranes. In the membrane patches harvested from 

the sucrose gradient with a concentration of 0.1 % digitonin; the PSI:PSII ratio was 
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1.38, which was seen to decrease to 1.06 in membrane patches purified from the 

sucrose gradient containing 2 % digitonin. This would suggest that the digitonin 

containing sucrose gradients are preferentially producing membrane patches that are 

enriched in PSII; agreeing with the absorption spectrum taken of digitonin treated 

membrane patches which shows a blue shifted peak at 678 nm. An increased level of 

PSII in the samples would account for the 2 nm shift from 680 nm to 678 nm as PSII 

has a peak at 673 nm in its absorption spectrum. When using AFM to image 

membrane patches purified on digitonin-containing sucrose gradients; it was only 

possible to image membrane patches that had a high abundance of complexes that 

were believed be PSII and cytochrome b6f complexes. The fact it was not possible to 

image PSI complexes in the membrane patches from Synechocystis in addition to the 

increased level of PSII present in the sample indicated that the digitonin-containing 

gradients are preferentially producing membrane patches that are enriched in PSII. 

 

There is still a significant amount of PSI in the sample that is used for AFM analysis 

and there are a number of reasons why it might not possible to image the complex in 

the membrane. Whilst the major membrane structures found in the digitonin treated 

sample are single layered protein-containing membrane patches; there is still a 

significant number of large vesicular membranes (as described in 3.3.14). It is possible 

that PSI is present in these structures which cannot be imaged to the level of single 

protein complexes due to their high degree of curvature. It is also a possibility that 

single layered protein-containing membrane patches that are enriched in PSI are not 

able to bind securely to the surface of the mica; although this seems unlikely as PSI 

enriched membrane patches from T.elongatus are capable of attachment to the mica. 

It is still however unclear why it is possible to image both PSI and PSII complexes in 

membrane patches from T.elongatus whereas it is only possible to image PSII 

complexes in membrane patches from Synechocystis. Both organisms have relatively 

similar protein and lipid contents so it would be expected that the digitonin 

treatment would produce similar types of membrane patch. 
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4.4.5 Supramolecular organisation of cyanobacterial thylakoid membranes 

 

PSII complexes apparently either form parallel linear arrays or adopt a seemingly 

random arrangement; a mixture of the two organisations is also observed with 

smaller linear arrays punctuating an otherwise disordered membrane system. It has 

been shown by freeze fracture EM that the organisation of PSII is dependent on state 

transition. In state 1 parallel rows of PSII are observed with increased frequency, 

whereas in state 2 the organisation of PSII is seen to randomise (Olive et al., 1986; 

Vernotte et al., 1990). It is also interesting to note that the spacing between parallel 

arrays of PSII was observed to vary significantly in freeze fracture studies (Olive et al., 

1997); such a high degree of variation is not seen in the AFM data with parallel rows 

having a maximal spacing of less than 15 nm. 

 

Whether in an ordered or disordered arrangement, PSII complexes in Synechocystis 

membrane patches typically clustered in relatively large densely packed domains. The 

height data from Figures 4.4 and 4.11 suggests that cytochrome b6f is also present 

throughout these PSII enriched domains. This would be consistent with Johnson et 

al., (2014) which found cytochrome b6f complexes throughout the PSII enriched 

regions of the granal lamellae. This co-localisation would allow for fast exchange of 

plastoquinone molecules between the two complexes enabling efficient electron 

transport from PSII to cytochrome b6f. 

 

Owing to the dense packing of these domains, PSI cannot be present due to steric 

hindrance. Segregation of PSI and PSII has been observed in chloroplasts so it is not 

surprising that there is spatial separation of photosystems in cyanobacterial thylakoid 

membranes. PSII is also seen in smaller domains that are surrounded by featureless 

areas of flat membrane that are compatible with the height of PSI (Figures 4.8a and 

4.12). These smaller PSII domains are more prominent in T.elongatus membrane 

patches and may suggest that PSII generally clusters into smaller domains in this 

cyanobacterium. These domains may represent areas where the supramolecular 

organisation favours the spill-over of excitation energy from PSII to PSI as the bacteria 

regulate the distribution of the absorbed light energy between the two 

photosystems. 
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No efforts were made to induce either state 1 or state 2 in bacteria during growth. It 

would be interesting to see the frequency with which the different organisations of 

PSII can be imaged in bacteria grown under conditions that induce either state. It 

would be expected that in state 1 the parallel linear arrays of PSII would be more 

prevalent whereas bacteria in state 2 would have a more disordered arrangement of 

PSII. 

 

A model of the membrane organisation of PSI, PSII, the cytochrome b6f complex and 

ATP synthase is suggested in Figure 4.20 based the AFM data from Synechocystis 

membrane patches. We suggest that there are areas of the membrane that are 

enriched in PSII and the cytochrome b6f complex. There are also areas that consist 

exclusively of PSII which is organised into parallel linear arrays. In this model PSI is 

present in a disordered arrangement between the areas that are enriched in PSII and 

the cytochrome b6f complex. It has been shown by CN-PAGE that PSI is much more 

abundant than PSII in Synechocystis thylakoid membranes and the PSI:PSII ratio in the 

membrane model (Figure 4.20) is representative of the PSI:PSII ratio that was 

measured. It should be made clear that due to a lack of AFM data of PSI complexes in 

membrane patches from Synechocystis; the organisation of PSI in this model is largely 

speculative. It is possible that PSI can form large ordered arrays like those seen in 

membrane patches from T.elongatus. Further research in the form of AFM or EM will 

be required to produce a more definitive model of PSI organisation in thylakoid 

membranes from Synechocystis. The organisation of the ATP synthase in 

cyanobacterial thylakoid membranes is still very unclear; there have not been any 

conclusive studies locating its position in relation to the protein complexes that make 

up the photosynthetic unit. It is included in this model as it is known to be relatively 

abundant in Synechocystis thylakoid membranes (Srivastava et al., 2005). We can 

conclude that ATP synthase is not present in the highly ordered arrays of PSII due to 

steric hindrance. However, as it was not possible to image the ATP synthase in any of 

the membrane patches that were analysed by AFM; its organisation in the membrane 

model is largely speculative.  
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Figure 4.20. Model for the organisation of PSI, PSII, the cytochrome b6f complex and ATP 

synthase in Synechocystis thylakoid membranes based on AFM data. PSI (green), PSII (blue), 

the cytochrome b6f complex (pink) and ATP synthase (red) are presented in a suggested 

model for the protein architecture of the Synechocystis thylakoid membrane. There are 

regions of the membrane that exclusively contain PSII and the cytochrome b6f complex in a 

disordered arrangement. There are also areas where PSII forms into parallel linear rows that 

exclude cytochrome b6f (outlined by the black quadrilateral). PSI is believed to be present in 

between the areas of that are enriched in PSII and the cytochrome b6f complex. The PSI:PSII 

ratio is 2.7 as shown by CN-PAGE of untreated thylakoid membranes; the 

PSII:cytochrome b6f complex ratio is 0.8 as shown by Fujita and Murakami., (1987). 
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The organisation of PSI in membrane patches from T.elongatus was similar to that of 

PSII in Synechocystis, in that PSI trimers can form highly ordered arrays (Figure 4.13) 

or have an apparently random distribution (Figure 4.14). One possible explanation for 

finding PSI in a highly ordered organisational state is that it allows the 

cyanobacterium to alter the activities of PSI and PSII depending on the redox state of 

the quinone pool. When PSI and PSII are in close proximity, excitation energy can 

“spill-over” from PSII to PSI meaning that PSI activity increases while PSII activity 

decreases; this leads to the quinone pool becoming more oxidised. Much in the same 

way PSII arrays are believed to reduce the spill-over of excitation energy; the 

formation of PSI arrays would reduce the number of contacts between PSI and PSII 

and allow for an increase in PSII activity in response to an oxidised quinone pool. By 

contrast the membrane patch in Figure 4.14 has a much more disordered 

arrangement of PSI with complexes spread throughout the membrane patch amongst 

other proteins believed to be PSII and the cytochrome b6f complex. It is not possible 

to positivity identify PSII and the cytochrome b6f complex in these areas of the 

membrane without using a form of PF-QNM similar to that discussed in 4.4.2 due to 

the minimal topology of the protein complexes. The height measurements taken of 

these areas agree with the heights of PSII and the cytochrome b6f complex and the 

presence of these complexes would explain the increase in the measured height of 

the PSI trimers in Figure 4.14. If these areas of the membrane do contain PSII and the 

cytochrome b6f complex, this constitutes a membrane organisation similar to that 

which has been previously been suggested, with PSI distributed throughout the 

membrane system (Folea et al., 2008a) and not in segregated domains seen in Figure 

4.13. This organisation of PSI and PSII has important implications for the spill-over of 

excitation of energy from PSII to PSI. In the disordered arrangement seen in Figure 

4.14 the number of contacts between PSI and PSII will increase; this will allow for 

increased levels of spill-over from PSII to PSI resulting in an increase in PSI function 

and a decrease in PSII function. The ability to segregate PSI complexes from PSII 

complexes by incorporating them into these large arrays provides an effective 

method for the T.elongatus to control the spill-over of excitation energy from PSII to 

PSI. This in turn allows T.elongatus to regulate the activity of its reaction centres in 

accordance to the redox state of the quinone pool. 
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Interestingly cytochrome b6f complexes are not present in these large PSI arrays 

which would mean that plastocyanin would have to diffuse greater distances to 

transport electrons from cytochrome b6f. When PSI is incorporated into these large 

arrays it would therefore appear to be in an organisation that would be inefficient for 

electron transport from cytochrome b6f. It should be noted however that if the 

reason for the formation of these ordered arrays of PSI is to increase PSII activity at 

the expense of PSI activity; the greater distance the plastocyanin molecules have to 

travel would be consistent with a reduced level of PSI activity. In the more disordered 

arrangement seen in Figure 4.14 there are areas in the membrane in which 

cytochrome b6f complex could occupy. In this organisational state plastocyanin would 

only have to diffuse over very short distances to reduce PSI. This would be important 

as it is believed that the excitation of PSI is favoured over PSII in this organisational 

state; requiring plastocyanin to be readily available to PSI in order to donate an 

electron to P700+.  

 

A model for the organisation of PSI, PSII, the cytochrome b6f complex and ATP 

synthase in T.elongatus is presented in Figure 4.21. In this model, PSI can exist as part 

of an ordered array which excludes both PSII and the cytochrome b6f complex or in a 

more disordered arrangement where it is amongst PSII and the cytochrome b6f 

complex. In this model PSII and the cytochrome b6f complex are distributed randomly 

in small clusters as this is how they appeared in the AFM data (Figure 4.9). The 

presence of ordered PSII arrays in T.elongatus cannot be disregarded despite the fact 

it was not possible to image such arrays. There is significant similarity in the 

structures of PSI, PSII and the cytochrome b6f complex between Synechocystis and 

T.elongatus. In addition, the need for cyanobacteria to alter the organisation of these 

protein complexes in response to the redox state of the quinone pool would suggest 

it is possible that the segregation of both PSI and PSII into ordered arrays can occur in 

both Synechocystis and T.elongatus. As was the case with Synechocystis membrane 

patches; it was not possible to directly image ATP synthase; although it is possible to 

discount its presence in the ordered arrays of PSI due to steric hindrance. It is 

included in this model as it has been shown to be a major protein component of 

T.elongatus thylakoid membranes (Folea et al., 2008b); although its suggested 

organisation is largely speculative. 
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Figure 4.21. Model for the organisation of PSI, PSII, the cytochrome b6f complex and ATP 

synthase in T.elongatus membranes based on AFM data. In this model, arrays that 

exclusively contain trimeric PSI (green) are present in the membrane (outlined by the black 

quadrilateral). Other areas of the membrane are disordered and contain PSI, PSII (blue), the 

cytochrome b6f complex (pink) and the ATP synthase. The PSI:PSII ratio is 4.0 as shown by CN-

PAGE of untreated thylakoid membranes; the PSII:cytochrome b6f complex ratio is 0.8 as 

shown by Fujita and Murakami., (1987). 
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Chapter 5: Purification and imaging of the IsiA-PSI 

supercomplex and nanopatterning of cyanobacterial 

photosystems 

 

5.1 Summary 

 

Synechocystis was grown under low iron conditions to promote the synthesis of the 

IsiA-PSI supercomplex. The cell lysate was applied to continuous sucrose gradients 

which were subsequently centrifuged to purify bulk amounts of the IsiA-PSI 

supercomplex. Samples harvested from sucrose gradients were not of high purity and 

were further purified by anion exchange and gel filtration. Samples containing the 

IsiA-PSI supercomplex were analysed by negative stain TEM and AFM in conjunction 

with SDS-PAGE to assess their purity. Samples harvested from sucrose gradients that 

had undergone gel filtration in addition to anion exchange were of high enough purity 

to be used for nanopatterning. 

 

Single particle reconstruction using TEM images of the purified IsiA-PSI supercomplex 

made it possible to resolve the PSI trimer and the 18 membered ring that surrounds 

it.  AFM analysis of the purified IsiA-PSI supercomplexes was used to measure the 

height the supercomplex. The average measured height was consistent with the 3D 

model proposed in (Nield et al., 2003)  

 

Reverse nanoimprint lithography (RNIL) was used to direct the formation of 

self-assembled monolayers (SAMs) to construct nanopatterns of cyanobacterial 

photosystem complexes. The nanopatterns consisted of a 

(3-mercaptopropyl)trimethoxysilane (MPTMS) monolayer for immobilising protein 

complexes and a 2-[methoxy(polyethyleneoxy)propyl]trimethoxysilane monolayer 

(referred to as PEG-silane throughout the text) that resisted protein adhesion. 

 

IsiA-PSI supercomplexes were immobilised on the MPTMS nano-lines and imaged 

with AFM, which resolved individual supercomplexes. The AFM data showed that 
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IsiA-PSI supercomplexes were highly enriched on the MPTMS nano-lines and had a 

minimal presence on the PEG-silane monolayer. Fluorescence microscopy was used 

to image large sections of the nanopatterns showing that the pattern extends over an 

area of the order of millimetres. The fluorescent properties of immobilised IsiA-PSI 

supercomplexes were measured to determine if the supercomplex was still 

functional. The room temperature fluorescent emission spectrum of immobilised 

supercomplexes was consistent with the room temperature emission spectrum for 

supercomplexes in solution. Fluorescence lifetime imaging was used to determine the 

fluorescence lifetime of the immobilised IsiA-PSI supercomplex which was found to 

be longer than the characteristic lifetime of IsiA-PSI complexes in solution. 

 

Purified PSII complexes were incorporated into nanopatterns; AFM revealed the 

presence of PSII complexes on the MPTMS nano-lines with minimal levels of the 

protein complex on PEG-silane monolayers. The width of the MPTMS nano-lines was 

larger than expected, however single particles could be imaged that had dimensions 

consistent with the PSII dimer. Fluorescence microscopy was used to image the PSII 

nanopatterns, which extended over a millimetre length scale, showing nano-lines that 

were highly enriched in PSII. Fluorescence microscopy also showed that the 

PEG-silane monolayer was relatively free of fluorescence indicating that PSII 

complexes were not present in significant numbers. The room temperature emission 

spectrum of immobilised PSII complexes agreed with the room temperature emission 

spectrum from PSII complexes in solution indicating the complexes had retained their 

fluorescence properties. The fluorescence lifetime of the PSII complexes was 

measured and found to be consistent with the characteristic lifetime of PSII 

complexes in solution. 
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5.2 Introduction 

 

Controlling the distribution of pigment-containing protein complexes is one the 

fundamental goals for creating bio-inspired devices that can utilise the extremely 

efficient energy transport properties of biological arrays of light harvesting protein 

complexes. Towards this end highly purified samples of pigment-containing protein 

complexes have to be produced that are stable and retain their spectroscopic 

properties. 

 

PSI is the photosystem found at the highest abundance in cyanobacterial thylakoid 

membranes and contains 96 molecules of chlorophyll a (Jordan et al., 2001). This is 

significantly more than PSII which has 35 (Umena et al., 2011); PSII is more closely 

associated with phycobilisome antenna complexes than PSI which utilises its own 

large chlorophyll antenna system to harvest light. PSI typically forms a trimer under 

normal growth conditions; however, when Synechocystis is grown under low iron 

conditions it synthesizes a supercomplex in which the PSI trimer is surrounded by an 

18 membered ring of the IsiA protein (Bibby et al., 2001a; Boekema et al., 2001). IsiA 

contains approximately 16-17 molecules of chlorophyll a (Andrizhiyevskaya et al., 

2002) which has been shown to efficiently channel energy to the PSI core of the 

supercomplex (Melkozernov et al., 2003). The chlorophylls present in the IsiA 

proteins increase the antenna size by 100 % relative to the PSI trimer 

(Andrizhiyevskaya et al., 2002). The transcription of PSII and phycobilisome genes is 

reduced under low iron growth conditions (Singh et al., 2003) and it is believed that 

the increased antenna size of PSI compensates for the reduced light harvesting 

capacity of cyanobacteria grown under low iron conditions. 

 

The IsiA-PSI supercomplex is an ideal protein complex for nanopatterning as it 

contains a reaction centre surrounded by an extensive antenna system which is 

relatively stable (Melkozernov et al., 2003). Its large size is also a useful property as it 

will allow for the supercomplex to be readily identified by TEM and AFM. In addition 

the line-widths of nanopatterns produced by NIL are approaching the size of the 
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diameter of the IsiA-PSI supercomplex which could allow for the production of linear 

arrays, one supercomplex wide. 

 

Photosynthetic chlorophyll-protein complexes are able to absorb and transfer energy 

with close to 100 % quantum efficiency to drive charge separation in reaction centres; 

the exploitation of this characteristic is a major goal in producing bio-inspired solar 

cells. Developing procedures for controlling the nanoscale distribution of reaction 

centres that remain functionally active is an important step towards this goal. 

 

In previous studies reaction centres have been immobilised on gold surfaces for the 

purposes of measuring the photocurrent produced when these complexes are 

exposed to light (Tan et al., 2012; Kamran et al., 2014). The cyanobacterial 

PSI complex has been a target for such studies and it has been shown that this 

complex generates a photocurrent in response to illumination (Frolov et al., 2005; 

Gerster et al., 2012). In the aforementioned studies monolayers of the respective 

proteins were assembled on gold substrates, but no efforts were made to influence 

their surface arrangement or distribution. With the recent advances in lithographic 

techniques such as nanoimprint lithography (Falconnet et al., 2004; Escalante et al., 

2008) and photolithography (Reynolds et al., 2007) it is possible to direct the 

distribution of protein complexes on the nanoscale. 

 

Most of the efforts in nanopatterning of photosynthetic protein complexes have 

focused on light harvesting antenna complexes such as LH2 and LHCII which have 

been incorporated into nanopatterns created with the previously mentioned 

techniques (Escalante et al., 2008; Reynolds et al., 2007; Vasilev et al., 2014). 

Relatively little work been performed on the nanopatterning of reaction centres; in 

particular there are no reports of using photosystems from cyanobacteria for 

nanopatterning, despite their attractive properties in terms of structural and 

functional characterisation, thermostability and amenability to protein engineering 

 

In standard NIL a thermoplastic polymer is spin coated onto the surface of a substrate 

such as silicon. A mould of the desired nanopattern (master pattern) is then pressed 
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into the polymer under pressure and heated to allow the polymer to mould to the 

contours to the master pattern. After cooling the mould is removed and the thinner 

areas where the nanopattern has pressed into the polymer are removed by an etch 

process such as reactive ion etching to allow access to the surface of the substrate. A 

SAM can then be formed on the areas of the substrate that are exposed. The 

remaining polymer can then be removed and a SAM can be formed on the newly 

exposed substrate. By selecting compounds that form SAMs suitable for immobilising 

protein complexes or compounds that are resistant to the adherence of protein 

complexes, it is possible to direct the distribution of proteins, photosynthetic reaction 

centres in this case, on the surface of the substrate. 

 

A variant of NIL is reverse nanoimprint lithography (RNIL) where a polymer such as 

polystyrene is spin coated directly onto the master pattern that has the required 

dimensions before being floated off the master pattern and adsorbed to a suitable 

substrate such as glass or silicon. The polystyrene film has a complementary shape to 

the master pattern and can be used to direct the formation of SAMs. The distribution 

of protein complexes can be directed by the selection of the correct compounds for 

the formation of SAMs in the same way as for standard NIL. This technique does not 

require the use of high temperatures and pressures or the additional etching process 

used in standard NIL; therefore RNIL was used for producing nanopatterns in this 

work. (See Figure 5.11 for a detailed description of RNIL) 

 

The functionality of immobilised photosynthetic protein complexes is typically 

determined by measuring their in situ fluorescent properties. Fluorescence-lifetime 

imaging is one method used to assess the functionality of photosynthetic protein 

complexes that have been immobilised on nanopatterns. In this technique a 

population of immobilised protein complexes is excited by light; decay of excited 

chlorophylls back to the ground state gives rise to the emission of photons which are 

detected and counted using a photomultiplier tube (PMT). The amount of time that 

has elapsed between the excitation of the protein complexes and the detection of the 

emitted photons is also measured (typically of the order of picoseconds to 

nanoseconds). Using a pulsed laser source, protein complexes can be excited millions 

of times per second with the time taken for the detection of the emitted photon 
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recorded after each pulse. The values for the elapsed time are grouped into bins of 

user defined size and the value for each bin is then plotted. The time data are 

subsequently fitted with an exponential decay function with the formula in 

Formula 5.1. The rate of decay in this function is dependent on the value of the τ 

term. The τ term is the value for the lifetime of the protein complex which 

corresponds to the average amount of time that elapses between the excitation of 

the protein complexes and the detection of the emitted photons. Often the decay 

curve that is fitted to the time data will have more than one exponential component, 

each with a separate lifetime value corresponding to a different route of fluorescence 

in the protein complex. Each fluorescent protein complex has a characteristic value 

for its average lifetime which is the amplitude averaged value of all the component 

lifetimes. If the measured value from the immobilised complex is consistent with the 

value of the protein complex in solution it can be inferred that immobilisation is not 

having a significant effect on the function of the protein complex. 

 

𝑁(𝑡) = 𝑁0𝑒−𝑡/𝛕 
 

Formula 5.1 this equation describes the decay curve of a population fluorophores after 

excitation by suitable wavelength of light. 

 

 

 

 

 

 

 

 

 

 

 

 



 

182 
 

5.3 Results 

 

5.3.1 Growth conditions 

 

Growth conditions had to be modified to induce the formation of the IsiA-PSI 

supercomplex in Synechocystis. 80 ml cultures of BG-11 medium were inoculated with 

a loop of cells and grown to an OD750 of approximately 1.0. A 720 ml culture of BG-11, 

in which no iron-containing compounds were present, was inoculated with the entire 

80 ml culture giving a 1 in 10 dilution of the iron-containing compounds in the BG-11 

medium of the original culture. The 800 ml culture was allowed to grow to an OD750 

of approximately 1.0 before it was used to inoculate a flask containing 7.2 litres of 

iron-free BG-11. The final concentration of ammonium ferric citrate (the iron 

containing compound in BG-11 medium) in the culture was 210 nM. Cultures were 

grown for a period of three days prior to harvesting; the OD750 of these cultures was 

relatively low with no cultures achieving an OD750 of greater than 0.6. This approach 

of diluting the iron concentration was found to be the most effective at producing 

large volumes of low iron adapted cells, as directly inoculating low iron medium with 

cells from a plate required extended growth periods and produced cultures of very 

low OD750. 

 

Room temperature absorption spectra of normal iron and low iron cell cultures 

(Figure 5.1) revealed that the PSI-associated peak was blue shifted. This indicated 

that the growth conditions were inducing the formation of the IsiA-PSI supercomplex 

which is known to cause a blue shift in the absorption properties of PSI. The peaks 

associated with pigments were still visible above the cell scatter although they were 

significantly less prominent than the peaks seen in the absorption spectra from 

cultures grown with normal iron levels. This indicated a reduced number of 

photosystems per cell which is consistent with the findings that transcription of 

certain PSI and PSII subunits is reduced in low iron adapted cells (Singh et al., 2003). 
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Figure 5.1. Room temperature absorption spectra. Synechocystis cells grown under normal 

iron conditions (red) had a PSI-associated peak at 685 nm. Cells grown under low iron 

conditions (blue) had a PSI-associated peak at 665 nm. The shift is due to the formation of the 

IsiA-PSI supercomplex in the low iron culture. Spectra are normalised 750 nm. 

 

 

5.3.2 Purification of the IsiA-PSI supercomplex on sucrose gradients 

 

Samples of the IsiA-PSI supercomplex have previously been prepared on sucrose 

gradients (Bibby et al., 2001a) and the same approach was repeated here for the 

preparation of bulk quantities of the supercomplex. Solubilised membranes from cells 

grown in low iron conditions and normal iron conditions were applied to continuous 

sucrose gradients (prepared as in 2.14) and centrifuged for 16 hours at 100,000 x g. 

The post centrifugation gradients (Figure 5.2a) contain several bands, with one 

present towards the bottom of the low iron gradient (outlined in blue) that is not 

present in the gradient for the normal iron sample. The lowest band in the normal 

iron gradient (outlined in red) is also absent in the low iron gradient. In the normal 
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iron gradient only the PSI trimer is present and as it is the largest 

chlorophyll-containing protein complex it migrates the furthest through the gradient. 

In the low iron gradient PSI has been incorporated into the IsiA-PSI supercomplex 

which increases its size from 900 kDa to 1,700 kDa and results in the complexes 

migrating further through the gradient, hence the absence of the PSI band from the 

low iron gradient and presence of the IsiA-PSI supercomplex towards the bottom of 

the gradient. The PSI containing bands were harvested from the low iron and normal 

iron gradients and room temperature absorption spectra were taken for the two 

samples. In the absorption spectra from the normal iron sample, the peak associated 

with PSI can be seen at 680 nm whereas in the low iron sample it is blue shifted to 

673 nm (Figure 5.2b). This observation confirmed the presence of the IsiA-PSI 

supercomplex which has previously been measured to be blue shifted relative to the 

PSI trimer by several nanometres (Bibby et al., 2001b). 

 

 

Figure 5.2. (a) Sucrose gradients and (b) room temperature absorption spectra. (a) The 

IsiA-PSI supercomplex can be purified from Synechocystis cells grown under low iron 

conditions; the supercomplex travels further through the sucrose gradient than the PSI 

trimer. (b) Room temperature spectra of the purified PSI trimer (red) shows a peak at 

680 nm; in the absorption spectra of the purified IsiA-PSI supercomplex (blue) the peak is 

shifted to 673 nm. Spectra are normalised at the PSI-associated peak. 

 



 

185 
 

5.3.3 Anion exchange of the IsiA-PSI supercomplex  

 

Sucrose gradients generally do not produce samples of protein complexes that are of 

high enough purity for nanopatterning; therefore the samples harvested from the 

gradients were further purified by anion exchange. Samples harvested from the 

continuous sucrose gradients were concentrated to a volume of 5 ml before being 

loaded onto an anion exchange column (prepared as in 2.14). An NaCl gradient from 

100 mM to 500mM was run over the course of 60 minutes. Absorbance at 280 nm 

was detected at a concentration of approximately 260 mM NaCl indicating that 

protein was starting to elute at this concentration of NaCl (Figure 5.3). Fractions of 1 

ml were collected throughout the entirety of the NaCl gradient. 

 

Room temperature spectra were taken of every 5th fraction starting with the 25th 

fraction as this was the first fraction for which a protein peak was detected. The room 

temperature spectra of fractions; 25, 30, 35, 40 and 45 (Figure 5.4, note: spectra for 

fractions 30 and 40 are not shown) were very similar, with the PSI-associated peak 

maxima at 673 nm indicating the presence of the IsiA-PSI supercomplex; in addition 

the OD673:OD280 ratio was similar in these fractions (Table 5.1). The absorption 

spectrum of fraction 50 (Figure 5.4d) was noticeably different from the previous 

spectra. Whilst the PSI-associated peak was still present at 673 nm, the 

OD673:OD280 ratio was significantly lower indicating the presence of other 

non-pigment containing proteins in the fraction (Table 5.1). Room temperature 

spectra were taken of the next two fractions which revealed that the PSI-associated 

peak was red shifted to 676 nm and 680 nm in fractions 51 and 52 respectively. This 

red shift indicated that the PSI trimer was still present in the sample harvested from 

the sucrose gradient and eluted from the anion exchange column at a higher 

concentration of NaCl. Fractions 25 to 45 were pooled and concentrated. 
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Figure 5.3. Anion exchange of IsiA-PSI supercomplex. A continuous NaCl gradient was run 

from 100 mM to 500 mM to elute protein from the anion exchange column with the eluate 

being collected in 1 ml fractions. Protein was detected eluting from the anion exchange 

column at a concentration of 260 mM NaCl and continued to elute until the end of the 

gradient. The time at which fractions; 25, 35, 45, 50, 51 and 52 were collected are shown. 

 

 

 

Table 5.1. Spectroscopic properties of anion exchange fractions. 
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Figure 5.4. Room temperature absorption spectra of anion exchange fractions. (a) Fraction 

25; (b), fraction 35; (c), fraction 45; (d), fraction 50; (e), fraction 51; (f), fraction 52; The 

PSI-associated peak shifts from 673 nm to 680 nm in the last few fractions of the anion 

exchange purification. This indicates that the IsiA-PSI supercomplex is eluting prior to any PSI 

that was still present in the sample after the sucrose gradient purification. Spectra are 

normalised at the PSI-associated peak. 
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5.3.4 Negative stain TEM and AFM of the anion exchange eluate 

 

Negative stain TEM and AFM were used to approximate the abundance of the IsiA-PSI 

supercomplex in the pooled fractions from the anion exchange purification and also 

to determine if there was a significant level of contamination. Both negative stain 

TEM (Figure 5.5a) and AFM (Figure 5.5b) were able to identify the IsiA-PSI 

supercomplex from its size and in both cases significant background contamination 

could be imaged. The observed diameter of supercomplexes in the negative stain 

TEM data varied between 30 nm and 40 nm which is consistent with the diameter of 

33.0 nm that was measured for the supercomplex in Bibby et al., (2001a). The 

diameter of complexes in the AFM data was larger than expected with most 

complexes measuring between 40 nm and 50 nm although this increase in size can be 

attributed to tip convolution from probes that were not particularly “sharp”. 

 

The contamination was believed to be protein as contaminating lipid structures such 

as membrane patches and micelles tend to have a diameter of greater than 50 nm 

and no such structures could be identified in TEM or AFM. It was clear that further 

purification of the IsiA-PSI supercomplex was required. As the IsiA-PSI supercomplex 

was by far the largest structure that could be identified, gel filtration was selected as 

the next purification step. 
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Figure 5.5. AFM and negative stain TEM of IsiA-PSI complexes after anion exchange. (a) 

IsiA-PSI supercomplexes (red arrows) can be visualised by TEM after purification by anion 

exchange. (b) Supercomplexes were also imaged by AFM (blue arrows) after anion exchange; 

a significant amount of contamination by what are believed to be smaller proteins can be 

observed in both images.  
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5.3.5 Gel filtration of the IsiA-PSI supercomplex  

 

The IsiA-PSI supercomplex has a diameter of 33.0 nm (Bibby et al., 2001a) which is 

very large for a protein complex and larger than any of the contamination that was 

observed in the TEM and AFM data. The eluate from the anion exchange column was 

further purified by gel filtration through the use of a BioSep SEC-s3000 column; this 

column was selected as it has a pore size of 29.0 nm. It was believed that the IsiA-PSI 

supercomplex would not be able to enter the beads in the column and instead it 

would pass straight through the column. The smaller contaminating protein would 

enter the gel filtration beads and its passage through the column would be retarded; 

this process should provide good separation between the IsiA-PSI supercomplex and 

the contaminating protein. 

 

The concentrated anion exchange eluate was run on the gel filtration column which 

was set up as in 2.14.4 and 1 ml fractions were collected from 0 minutes to 30 

minutes. The absorbance at 280 nm was measured and a large peak was detected 

eluting from the column after 10 minutes (Figure 5.6a) followed by three much 

smaller protein peaks (Figure 5.6b). The first peak was believed to represent the 

IsiA-PSI supercomplex which was confirmed by room temperature absorption 

spectra. The three later peaks had significantly lower absorbance at 280 nm than the 

first peak indicating that there was much less protein is these eluting from the 

column at this time. This could indicate that the gel filtration had not been very 

successful at purifying the IsiA-PSI supercomplex and that the majority of the 

contaminating protein had co-eluted with the IsiA-PSI supercomplex. 
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Figure 5.6. Gel filtration of the IsiA-PSI supercomplex. (a) Proteins with high molecular 

weight were seen to elute after 10 minutes which were believed to be the IsiA-PSI 

supercomplex. (b) By reducing the scale of the y-axis three much smaller peaks can be seen 

which were believed to represent the protein contamination seen in Figure 5.5a and b. 

 

 

5.3.6 Negative stain TEM and AFM of the gel filtration eluate 

 

Negative stain TEM and AFM were used to image the gel filtration eluate to 

determine the level to which gel filtration had removed the contaminating protein 

that was present after anion exchange. Negative stain TEM (Figure 5.7) showed a 

large reduction in the level of background contamination and the IsiA-PSI 

supercomplex can be seen clearly in Figures 5.7a. The staining of IsiA-PSI 

supercomplexes was of high quality and the trimeric PSI core can be observed in 

several particles in Figure 5.7b. In some cases individual IsiA proteins can be 

visualised in the ring surrounding the PSI core (Figure 5.7c). Particles were selected 

from the TEM images for single particle analysis to visualise the individual subunits of 

the IsiA-PSI supercomplex. In the averaged structure (Figure 5.7d) the trimeric PSI 

core is clearly visible; the 18 membered IsiA-PSI ring can also be seen in this image 

surrounding the PSI core. 

 

The AFM data agreed with the TEM data showing a large reduction in the levels of 

background contamination (Figure 5.8a). The cross section of one of the particles 

(Figure 5.8b) gives a height of 9.4 nm which agrees with the predicted height for the 

IsiA-PSI supercomplex (Bibby et al., 2001b). These data show that using gel filtration 
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as a purification step produces samples that are highly enriched in the IsiA-PSI 

supercomplex with minimal contamination. The heights of 50 particles were recorded 

and the average height of the supercomplex was found to be 9.3 ± 0.6 nm; this value 

is consistent with the 3D cryo-EM map of the IsiA-PSI supercomplex described in 

Nield et al., (2003) 
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Figure 5.7. Negative stain TEM of IsiA-PSI complexes after gel filtration. (a) A field 

containing IsiA-PSI supercomplexes which have been purified by gel filtration is shown; the 

level of background contamination is greatly reduced relative to Figure 5.5a. (b) The trimeric 

PSI core can be clearly seen in some particles, (c) the IsiA proteins can be seen the ring 

surrounding the PSI core. (d) Single particle averaged image of the IsiA-PSI supercomplex; 52 

particles were used for the image processing. 
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Figure 5.8. AFM of IsiA-PSI complexes after gel filtration. (a) IsiA-PSI supercomplexes 

purified by gel filtration imaged by AFM; the background contamination is significantly 

reduced relative to Figure 5.5b. (b) The measured height of 9.4 nm is consistent with the 

current structural model of the IsiA-PSI supercomplex (Nield et al., 2003) . 
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5.3.7 SDS-PAGE of IsiA-PSI samples 

 

SDS-PAGE of samples from every step of the purification show how the IsiA-PSI 

supercomplex is purified for at each stage. The bands corresponding to the IsiA 

protein and the PsaA and PsaB subunits of PSI can be seen to become clearer after 

each purification step (Figure 5.9). The number of bands corresponding to 

contaminating protein is seen to decrease with each purification step (Figure 5.9) 

which validates their use. 

 

 

 

 

 

Figure 5.9. (a) Coomassie stained and (b) silver stained SDS-PAGE of samples from all 

purification steps. Lane 1, markers; lane 2, solubilised thylakoid membranes; lane 3, lower 

band from sucrose gradient; lane 4, pooled anion exchange eluate; lane 5, gel filtration 

eluate. The PsaA/PsaB band and the IsiA band become stronger with each purification step. 

15 µl of 1.0 OD 280 of each sample were loaded per lane. 
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5.3.8 Production of functionalised surfaces using RNIL 

 

Master patterns with a line width of 150 nm and a period of 4 µm (see Figure 5.10) 

were spin coated with a solution of polystyrene in toluene to produce masks that had 

a complementary shape to the master pattern. The mask was then floated off the 

surface of the master pattern and transferred to a piranha cleaned silicon wafer 

before being dried in a desiccator under vacuum. The polystyrene mask was split in 

the axis perpendicular to the direction of channels; this left the ends of the channels 

open in order to allow access to the compounds used to make the SAM. The split 

polystyrene mask was then transferred from the silicon wafer to a piranha cleaned 

glass substrate and dried in a desiccator overnight to allow the polystyrene mask to 

adhere to the surface of the glass. The channels in the mask left areas of the glass 

substrate exposed; this allowed the formation of a SAM in these areas of the 

substrate for the attachment of protein complexes by cross linking. The mask and 

glass substrate were then placed into a desiccator with 25 μl of MPTMS and left 

under vacuum overnight to allow for the formation of a SAM of MPTMS through 

chemical vapour deposition. The polystyrene mask was then floated of the glass 

substrate which was then dried under a stream of nitrogen and placed into a solution 

of 15 mg/ml PEG-silane in toluene for 90 minutes. This allowed the formation of a 

SAM of PEG-silane between the MPTMS monolayers in order to minimise the 

adherence of protein complexes to these areas of the glass substrate (see Figure 

5.11). 

 

Glass was used as the substrate to produce nano-lines because photosystems were 

analysed using optical techniques (discussed later in this chapter); using opaque 

substrates, for example silicon, would make such analysis difficult as it does not 

transmit light and can quench the native fluorescence of photosynthetic protein 

complexes. 
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5.3.9 Immobilisation of IsiA-PSI supercomplexes on MPTMS nano-lines 

 

The nanopatterns were treated with a solution of sulfosuccinimidyl 4-(N-

maleimidomethyl)cyclohexane-1-carboxylate (sulfo-SMCC) in dry DMSO. Sulfo-SMCC 

is a crosslinker which can covalently link the amine groups of lysine residues in the 

protein complexes to the sulfhydryl groups exposed on the MPTMS SAM. A solution 

of the IsiA-PSI complex was applied to the nanopattern to bind the supercomplex to 

the sulfo-SMCC crosslinker. There are lysine residues present at both the lumenal and 

stromal faces of the PSI complex meaning that the orientation of the IsiA-PSI 

supercomplex could not be controlled by this type of crosslinking. The nanopatterns 

of the IsiA-PSI supercomplex were then analysed by AFM. 

 

 

 

 

Figure 5.10. Dimensions of the master pattern. The master patterns were made by electron 

beam lithography on silicon substrates. The master pattern had a line width of 150 nm (red) 

and a period of 4000 nm (green). The nano-lines protruded from the silicon surface by 

120 nm (light blue). 
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Figure 5.11. Schematic for producing nano-lines of immobilised protein complexes using 

RNIL. (1) The master pattern (orange and yellow) is spin-coated with a thin layer (≈ 300 nm 

thick) of polystyrene (grey) to make a polystyrene mask; (2) the polystyrene mask is then 

floated off the surface of the master pattern. (3) The polystyrene mask is then adsorbed to a 

glass substrate (dark blue) and dried under vacuum. (4) Once dry the mask and glass 

substrate are placed in a desiccator with MPTMS (light blue) which is left under vacuum over 

night allowing the formation of an MTPMS SAM. (5) The polystyrene mask is then floated off 

the surface of the glass substrate. (6) The glass substrate is then placed in a solution of 

PEG-silane (purple) in toluene to allow for a SAM of PEG-silane to form in the areas of the 

glass which were previously in contact with the polystyrene mask. The glass substrate is then 

incubated with a solution of sulfo-SMCC (not shown) which forms a covalent linkage with the 

MPTMS SAM before (7) being incubated with a solution of protein complexes (green) (8) 

which are immobilised to the MPTMS SAM via the sulfo-SMCC crosslinker. 
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5.3.10 AFM of IsiA-PSI nanopatterns 

 

IsiA-PSI supercomplexes were prepared as detailed in Chapter 5. Following 

immobilisation, AFM was used to image IsiA-PSI supercomplexes to assess the degree 

to which they had attached specifically to the MPTMS nano-lines and also to 

determine whether the supercomplex had adhered to the PEG-silane monolayers 

between the nano-lines. The biggest drawback to this form of imaging is that the 

maximum scan size for the instrument used is 15 x 15 µm allowing only small areas of 

the total nanopattern to be imaged. It was possible to image several nano-lines and 

to demonstrate that protein complexes were immobilised, shown by the height data 

in Figure 5.12b. It was also clear that significantly lower levels of protein complexes 

were present on the PEG-silane monolayers between the nano-lines (Figure 5.13). 

The width of the nano-lines was 120-180 nm, consistent with the dimensions of the 

master pattern which has a line width of 150 nm (see Figure 5.10). This indicated the 

structure of the polystyrene mask was not being significantly damaged or deformed 

during the production of the nano-lines. 

 

In some of the less densely packed areas of the nano-lines individual IsiA-PSI 

supercomplexes could be identified by their height above the MPTMS monolayer and 

the diameter of the particles (Figure 5.13). The heights of the supercomplexes in the 

nano-lines, measured by AFM, varied between 8.9 and 9.8 nm consistent with the 

previously measured height for the supercomplex in 5.3.6 which gave a height of 

between 9.0 and 10.5 nm (Table 5.2). The diameters of the supercomplexes in the 

nano-lines were measured to be between 35 and 45 nm (Table 5.2); these diameters 

are consistent with the diameters measured in 5.3.6 indicating that the IsiA-PSI 

supercomplexes were stable under imaging conditions. 
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Figure 5.12. AFM of IsiA-PSI nano-lines. (a) Nanopatterns of IsiA-PSI supercomplexes were 

imaged with AFM showing an enrichment of protein complexes on the MPTMS nano-lines 

and very low levels of protein complexes on the PEG-silane monolayer. (b) The cross section 

gives the heights of the IsiA-PSI nano-lines. 
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Figure 5.13. AFM of individual IsiA-PSI supercomplexes on MPTMS nano-lines.(a) AFM has 

been used to identify individual IsiA-PSI supercomplexes (numbered in pink); (b) the cross 

sections of complexes 4 (red), 7 (green) and 8 (blue) are shown.  

 

 

Table 5.2. Dimensions of IsiA-PSI supercomplexes. The heights and diameters of the IsiA-PSI 

supercomplexes identified by AFM are presented here. 
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5.3.11 Fluorescence imaging of IsiA-PSI nanopatterns 

 

The IsiA-PSI supercomplex has a requirement to absorb light energy to drive charge 

separation; it is therefore important to determine if the supercomplex retains its 

spectroscopic properties after it has been immobilised on the MPTMS nano-lines. A 

home-built fluorescence microscope was used to image the IsiA-PSI supercomplex 

nano-lines; in addition the microscope was used to record spectral and time-resolved 

fluorescence data. Fluorescence microscopy revealed patterns over a distance of 

millimetres with the length of individual nano-lines in excess of 1 mm. The MPTMS 

nano-lines were highly enriched in IsiA-PSI supercomplexes with the PEG-silane 

monolayers having relatively little complex adhered to the surface (Figure 5.14).  

 

Room temperature emission spectra of a solution of IsiA-PSI supercomplexes showed 

a peak at 680 nm (Figure 5.14b). To see if the IsiA-PSI supercomplexes had retained 

their fluorescent properties after immobilisation in situ room temperature emission 

spectra were recorded. Two regions on the nanopattern were selected; an IsiA-PSI 

nano-line and an area of PEG-silane monolayer (Figure 5.14a). The signal from the 

nano-line was significantly greater than that of the PEG-silane monolayer and there 

was a peak at 680 nm confirming the presence of the IsiA-PSI supercomplex and 

showing that it had retained its spectroscopic properties. The PEG-silane monolayer 

had no recognisable peak and a very low signal indicating that there were very low 

levels of IsiA-PSI supercomplexes present between the nano-lines. 

 

The IsiA-PSI supercomplex nanopatterns were analysed using fluorescence-lifetime 

imaging to assess the functionality of the immobilised supercomplexes. The 

fluorescence-lifetime data were fitted with a single exponential decay curve which 

has an amplitude averaged lifetime of 856 ± 123 ps (Figure 5.14c), significantly longer 

than the amplitude averaged lifetime of 40 ps for IsiA-PSI supercomplex in solution 

(Melkozernov et al., 2003). This difference in the lifetimes indicates that 

immobilisation of IsiA-PSI supercomplexes is affecting their functionality, although 

the noise in the data precludes any identification of a fast component in the decay 

curves. 
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Figure 5.14. Fluorescence microscopy, room temperature emission spectra and 

fluorescence lifetime imaging of IsiA-PSI nanopatterns. (a) Fluorescence microscopy of 

IsiA-PSI nanopatterns shows nano-lines of the immobilised complexes extending over a large 

area. (b) In situ emission spectra were taken in two areas of the nanopattern; in region of 

interest 1 (ROI1) (green rectangle in a) an emission spectrum was taken for IsiA-PSI 

supercomplexes immobilised on an MTPMS nano-line. The spectrum from ROI1 (green 

spectrum) was very similar to the room temperature emission spectrum taken of IsiA-PSI 

supercomplexes in solution (dotted red spectrum) both of which have a peak at 680 nm. As a 

control an emission spectrum was taken for ROI2 (blue rectangle in a) which was an area of 

PEG-silane monolayer between two nano-lines. The spectrum (blue spectrum) had a 

relatively low signal with no discernible peaks. (c) Fluorescence-lifetime data of the 

nano-lines in ROI1 were fitted with a single exponential decay curve that, giving amplitude 

averaged lifetime of 856 ± 123 ps. The excitation wavelength was selected with a 470/40 nm 

bandpass filter; the detection wavelength was selected with a monochromator centred at 

680 nm with exit slits set to 15 nm. 
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5.3.12 Immobilisation of PSII complexes on MPTMS nano-lines 

 

Samples of PSII complexes from Thermosynechococcus elongatus of the purity 

required to routinely produce 3D crystals for structure determination (Ferreira et al., 

2004) were kindly provided by Dr. Karim Maghlaoui. PSII complexes were purified 

from thylakoid membranes through hydrophobic interaction chromatography 

followed by anion exchange chromatography. Purified PSII complexes were analysed 

by SDS-PAGE to show the purity of the sample (Figure 5.15). Bands from several PSII 

subunits can be visualised in the gel with no clear bands present from contamination. 

PSII complexes were immobilised on nanopatterns made using the same method as in 

5.3.9, using sulfo-SMCC as a crosslinker between the lysine residues in the PSII 

complex and the sulfhydryl groups on the MPTMS SAM. Owing to the presence of 

lysine residues on both the stromal and lumenal faces of the PSII complex, their 

surface orientation cannot be controlled using this method of crosslinking.  

 

 

 

 

Figure 5.15. Coomassie stained SDS-PAGE of purified PSII complexes. Bands from several 

subunits of the PSII complex can be identified their comparison with the marker lane. 
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5.3.13 AFM of PSII nanopatterns 

 

As with the IsiA-PSI supercomplex nano-lines could be imaged using AFM showing PSII 

complexes immobilised on the MPTMS nano-lines and relatively low levels of protein 

complexes bound to the PEG-silane monolayer regions Figure 5.16. Interestingly the 

width of the nano-lines was significantly larger than expected, at 150 nm; the 

maximum and minimum widths measured were 500 nm and 450 nm respectively. The 

distance between the nano-lines was measured to be between 3.50 and 3.55 µM, less 

than the 3.85 µM period of the master pattern. These measurements indicated that 

the polystyrene mask did not accurately reflect the dimensions of the master pattern; 

however the mask did have channels that were of consistent width and spacing. The 

packing of complexes on the nano-lines is relatively dense but it is still possible to 

image individual protein complexes (Figure 5.17). Some structures had lateral and 

vertical dimensions similar to those of the PSII dimers; cross sections were taken of 3 

particles in Figure 5.18. The measured heights of the three particles above the 

surface of the MPTMS monolayer varied from 9.0 to 12.3 nm which was slightly 

different to the height of 10.5 nm expected from the crystal structure (Umena et al., 

2011). The glass substrate and the MPTMS monolayer are not atomically flat and 

protein complexes have to be measured from the area of the MPTMS monolayer that 

is directly adjacent to them. This area may not be of the same height as the area of 

the monolayer that the complexes are attached to. This variation in the height of the 

surface is believed to be responsible for the measured heights of the protein 

complexes not matching the crystal structure, rather than breakdown of the PSII 

protein complex. 

 

The dimeric PSII complex has lateral dimensions of 20.5 x 11 nm giving a length:width 

ratio of 1.86; the length and width measurements for the particles in Figure 5.18 can 

be seen in Table 5.3. The length:width ratio of the selected particles varies from 1.70 

to 1.84, which is consistent with the length:width ratio of PSII. Although the absolute 

values for the length and width are somewhat larger than expected for PSII, these 

increased values are believed to be the result of imaging the complexes with a 

relatively blunt AFM probe, and these particles are therefore assigned as PSII dimers. 
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Figure 5.16. AFM of PSII nano-lines. Several MPTMS nano-lines on which PSII complexes had 

been immobilised could be imaged with AFM. The nano-lines were highly enriched in PSII 

complexes with relatively little contamination of the PEG-silane monolayer. 
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Figure 5.17. AFM of a single PSII nano-line. (a) Higher resolution AFM revealed the presence 

of individual particles on the nano-lines; the nano-line itself was thicker than expected with a 

line width of 450-500 nm. (b) The cross section of the nano-line (shown in green in a) 

revealed the heights of the particles to be consistent with PSII complexes. The area 

highlighted in red is shown in Figure 5.18 at higher magnification. 



 

208 
 

 

Figure 5.18. AFM of potential PSII dimers immobilised on MPTMS nano-lines. (a) Individual 

particles could be imaged that had dimensions similar to that of the PSII dimer; a scaled 

version of the dimeric PSII crystal structure is shown next to the putative PSII complexes for 

reference. (b) Cross sections of three particles revealed the height of the particles to 

consistent with that of the PSII complex which is 10.5 nm.  

 

Table 5.3. Measurements of complexes in Figure 5.18. The lengths and widths of three 

particles from Figure 5.18 and their respective length:width ratio. 
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5.3.14 Fluorescence imaging of PSII nanopatterns 

 

Fluorescence microscopy of the PSII nanopatterns (Figure 5.19a) has shown that the 

nanopatterns extend over an area of millimetres and individual lines can have a 

length of over a millimetre. As with the IsiA-PSI supercomplex, PSII absorbs light to 

drive charge separation and it was therefore important to see if PSII complexes 

retained their spectral properties after immobilisation on the MPTMS monolayer. 

Room temperature emission spectra of the PSII complexes in solution revealed the 

presence of a peak at 681 nm (Figure 5.19b). An in situ room temperature emission 

spectrum was taken of a PSII nano-line to determine if the spectral properties of the 

complexes were unchanged; an emission spectrum was also recorded for an area of 

PEG-silane monolayer as a control (Figure 5.19b). In the emission spectrum from the 

PSII nano-line a peak was present at 681 nm, consistent with the emission spectrum 

taken of complexes in solution and indicates that PSII complexes had retained their 

spectroscopic characteristics after immobilisation. Additionally the emission spectrum 

of the PEG-silane monolayer had a relatively low signal with no discernible peaks 

indicating that there were very low levels of PSII in these areas of the nanopattern.  

 

The PSII nanopatterns were analysed via fluorescence-lifetime imaging to determine 

whether the lifetime of the immobilised complex was comparable to that of PSII 

complexes in solution (Figure 5.19c). Fluorescence-lifetime data of the PSII 

nanopatterns were fitted with a single exponential decay curve which gave an 

amplitude averaged lifetime of 199 ± 10 ps. This time is slighter longer than the 

amplitude averaged lifetime of PSII in solution which has been measured at 176 ps  

(Schatz et al., 1988) however it shows that the PSII complex has retained its 

spectroscopic properties after it has been immobilised.  
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Figure 5.19. Fluorescence microscopy, room temperature emission spectra and 

fluorescence lifetime imaging of PSII nanopatterns. (a) PSII nanopatterns imaged by 

fluorescence microscopy revealed a relatively large area where PSII complexes had been 

immobilised on MPTMS nano-lines with minimal contamination of the PEG-silane monolayer. 

(b) In situ emission spectra were taken in two areas in the nanopattern; in region of interest 1 

(ROI1) (red rectangle in a) an emission spectrum was taken for PSII complexes immobilised on 

an MTPMS nano-line (red spectrum). The spectrum from ROI1 was very similar to a room 

temperature emission spectrum taken of PSII complexes in solution (green dotted spectrum), 

both having a peak at 681 nm. As a control an emission spectrum was recorded for ROI2 

(yellow rectangle a) which was an area of PEG-silane monolayer between two nano-lines. The 

spectrum (yellow spectrum) had relatively low signal with no discernible peaks. (c) The 

fluorescence-lifetime data of PSII nano-lines in ROI1 were fitted with a single exponential 

decay curve, showing an amplitude averaged lifetime of 199 ± 10 ps. The excitation 

wavelength was selected with a 470/40 nm bandpass filter; the detection wavelength was 

selected with a monochromator centred at 680 nm with exit slits set to 15 nm. 
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5.4 Discussion  

 

Sucrose gradients were useful in producing large volumes of the IsiA-PSI 

supercomplex and as an initial purification step. SDS-PAGE of supercomplexes 

purified on sucrose gradients and the solubilised membrane loading material show 

significantly fewer protein bands in the former; however there was still significant 

contamination indicating that further purification was required.  

 

Purifying the sample harvested from the sucrose gradients on an anion exchange 

column appeared to allow for the removal of residual PSI trimers that the sucrose 

gradient had not removed. This was evidenced by the shift in the PSI-associated peak 

from 673.0 nm to 680.0 nm in the later fractions indicating that the PSI trimer eluted 

from the anion exchange column at a higher NaCl concentration than the IsiA-PSI 

supercomplex. The purity of the sample had also improved with the IsiA protein band 

being the strongest in the SDS-PAGE of the anion exchange eluate. The absence of 

many of the bands representing contaminating protein in the SDS-PAGE also 

evidenced the increased purity of the anion exchange eluate relative to the sample 

harvested from sucrose gradient. The TEM and AFM data (Figure 5.5) revealed the 

presence of what were believed to be small protein contaminants in the fractions of 

the anion exchange eluate that contained the IsiA-PSI supercomplex. The 

contamination was believed to be great enough to require a further purification step 

before IsiA-PSI supercomplexes could be used for the purposes of nanopatterning. 

 

The IsiA-PSI supercomplex was by far the largest structure that could be observed by 

either AFM or TEM; therefore using a purification technique that discriminated by 

size such as gel filtration was the next logical step for purifying the supercomplex. The 

elution of a large amount of protein about 10 minutes after the sample was loaded 

onto the gel filtration column was expected as the IsiA-PSI supercomplex should not 

enter the gel filtration beads and instead elute in the void volume. The presence of 

three peaks in the elution trace that were very small in relation to the initial peak was 

unexpected as the amount of contaminating protein seen in the TEM and AFM data 

appeared to similar to the level of the IsiA-PSI supercomplex. It would therefore 
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follow that if the gel filtration column was separating the smaller contaminating 

protein from the IsiA-PSI supercomplex the peaks corresponding to the 

contaminating protein would be of comparable size to the peak corresponding to the 

supercomplex. The absence of such peaks was initially believed to show that the gel 

filtration had been unsuccessful in removing the smaller contaminating proteins. TEM 

and AFM analysis of the gel filtration eluate revealed that the majority of the small 

contaminating protein had in fact been removed from the sample. SDS-PAGE of the 

gel filtration fractions containing the IsiA-PSI supercomplex agreed with the AFM and 

TEM data, showing a reduced number of bands corresponding to contaminating 

protein and an enrichment of the IsiA protein and PsaA/PsaB bands. One possible 

explanation for the lack of peaks representing contaminating protein in the gel 

filtration elution trace is that the smaller protein simply did not elute from the gel 

filtration column. After gel filtration the sample was believed to be pure enough for 

the purposes of nanopatterning the IsiA-PSI supercomplex. 

 

The staining of the IsiA-PSI supercomplexes purified by gel filtration was of high 

quality; through TEM imaging the PSI timer could be observed in many particles and 

occasionally individual IsiA subunits could be observed in the ring surrounding the PSI 

trimer. Through single particle reconstruction using selected particles from TEM 

images it was possible to resolve the PSI trimer and the 18 membered IsiA ring; the 

structure was consistent with that described in Bibby et al., (2001a) and Boekema et 

al., (2001). 

 

There are no reports of the IsiA-PSI supercomplex being imaged by AFM; previous 

studies have used single particle reconstruction of TEM and cryo-TEM data to resolve 

the structure of the IsiA-PSI supercomplex. The IsiA-PSI supercomplex has a tendency 

to adhere to the carbons grids used to mount samples in TEM analysis with the 

lumenal face of the supercomplex in contact with the grid and the stromal face 

exposed. This property makes it challenging to get accurate height data for the 

supercomplex using TEM. The height data is the most reliable measurement recorded 

by the AFM making it an ideal tool for assessing the height of the IsiA-PSI 

supercomplex. AFM imaging also has the advantage that the supercomplex is in 

buffer conditions close to that of its native environment and at room temperature. 
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The average height of 9.3 ± 0.6 nm is consistent with the 3D cryo-EM model described 

in Nield et al., (2003) and supports the accuracy of this model. These data also 

indicate that the low temperatures used for imaging the IsiA-PSI supercomplex in 

constructing the 3D model had a negligible effect on the height of the supercomplex. 

 

RNIL was very successful at producing nanopatterns of SAMs that could be used to 

direct the immobilisation of cyanobacterial photosystems. AFM of the 

IsiA-PSI supercomplex nanopatterns revealed nano-lines with dimensions consistent 

with those of the master patterns with a line width of approximately 150 nm and a 

period of 4 μm. The AFM data of PSII nanopatterns showed line widths of 

approximately 500 nm, much larger than the master pattern. One possible 

explanation for this is that the method used to produce the master patterns, electron 

beam lithography, does not always produce patterns that are consistent over their 

entire area. Some protrusions can be significantly thicker or thinner than the desired 

width which will correspond to variations in the thickness of nano-lines that are 

imaged. Another possible explanation for the difference in line width is that the 

master patterns are damaged during cleaning. Piranha solution was used to remove 

any contamination from the surface of the master patterns prior to spin coating with 

polystyrene. Whilst piranha solution has only a very slightly corrosive effect on silicon, 

repeated cleaning could have resulted in degradation and widening of the ridges in 

the master pattern. 

 

Using sulfo-SMCC as a crosslinker for covalently attaching protein complexes to the 

MPTMS monolayer proved to be very effective. The occupancy of the MPTMS 

nano-lines appeared to be very high in both the IsiA-PSI and the PSII nanopatterns 

when imaged by fluorescence microscopy. High resolution AFM revealed that areas in 

the IsiA-PSI nanopatterns were of low occupancy where individual complexes could 

be visualised. Imaging the PSII nanopatterns at high resolution with AFM showed they 

were not as highly occupied as might be assumed from the fluorescence data. Whilst 

there are a significant number of PSII complexes present on the nano-line there are 

also relatively large gaps between complexes where the MPTMS monolayer can be 

imaged. The use of PEG-silane as a protein resistant monolayer was sufficient to 
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prevent significant adherence of protein complexes to the areas between the 

nano-lines. AFM was the best tool for investigating the level of protein complexes 

adhered to the PEG-silane monolayer as any protein present on the surface was large 

enough for even a relatively “blunt” AFM probe to register a height profile. 

Topological features, presumably protein, could still be imaged In the PEG-silane areas 

of both the IsiA-PSI and PSII nanopatterns, but relative to the MPTMS nano-lines 

these regions of the pattern were effectively devoid of complexes. 

 

Fluorescence microscopy of the nanopatterns was consistent with the AFM data, 

showing nano-lines that had high fluorescence and the areas of PEG-silane monolayer 

that had a much lower fluorescence. This was seen over the majority of the 

nanopattern indicating that the AFM data was representative of the entire 

nanopattern with protein complexes being enriched on the MPTMS nano-lines and 

having relativity little presence on the PEG-silane monolayer. 

 

One of the main goals when patterning photosynthetic protein complexes is to ensure 

they retain their spectroscopic activity. The room temperature fluorescence emission 

spectrum of IsiA-PSI nano-lines was consistent with the fluorescence emission 

spectrum of IsiA-PSI supercomplexes in solution with a peak at 680 nm. 

Nanopatterned PSII complexes also had a similar room temperature emission 

spectrum to complexes in solution with a peak at 681 nm. This data was encouraging 

as it suggested that the two photosystems had not been damaged or inactivated by 

the cross linking reaction and were stable at room temperature. 

 

Previous studies of PSII complexes in solution have shown that their fluorescence 

decay is biexponential; the lifetimes of the two decay curves are 80 ± 20 ps and 

520 ± 120 ps (Schatz et al., 1987) indicating that there is more than one route for 

absorbed energy to be emitted as fluorescence. The amplitude averaged fluorescence 

lifetime of PSII complexes in solution has been measured to be 177 ps (Schatz et al., 

1988). Whilst the data in the present study were not of sufficient quality to resolve 

the two exponential components of the decay curve, the amplitude averaged 

fluorescence lifetime was measured at 199 ± 10 ps. The slight difference in the value 

of the lifetime measurement is not significant and could reflect different methods of 
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preparation, or conformational changes in the structure of the PSII complex induced 

by its immobilisation on the MTPMS monolayer. Taken together, the time-resolved 

and fluorescence emission data show that the immobilised PSII complexes retain their 

spectroscopic properties following surface immobilisation. 

 

In the case of the IsiA-PSI supercomplex nano-lines, the measured value of the 

fluorescence lifetime of 856 ± 123 ps was much larger than anticipated. Previous work 

on IsiA-PSI complexes from Synechocystis has shown the fluorescence decay has a 

number of exponential components (Melkozernov et al., 2003), with a dominant 

43 ± 4 ps component having a relative amplitude of 94-96 %; this decay is attributed 

to the overall loss of excitation in the antenna chlorophylls of the IsiA-PSI 

supercomplex due to charge separation. One possible reason for the measured value 

of the lifetime being significantly higher than expected is that the complex is unable 

to perform charge separation. This seems unlikely as the PSI trimer has been shown to 

generate photocurrent after immobilisation (Frolov et al., 2005; Gerster et al., 2012). 

A more likely explanation would be that the level of uncoupled pigment is greater in 

the immobilised supercomplex than when in solution. It has been shown that the 

exponential components that correspond to uncoupled pigments in the PSI trimer and 

the IsiA-PSI supercomplex have relatively long lifetimes, typically in the region of 

3-5 ns (Turconi et al., 1996; Melkozernov et al., 2003). For complexes in solution the 

amplitudes of these components are relatively low (typically less than 5 %) and thus 

do not have a much of an effect on the amplitude averaged lifetime of the IsiA-PSI 

supercomplex (Melkozernov et al., 2003). A small increase in the number of 

uncoupled pigment molecules would cause a large increase in the amplitude averaged 

lifetime which would explain why the lifetime measured for immobilised IsiA-PSI 

supercomplexes is larger than expected. Better quality data will have to be obtained 

before any conclusions can be drawn regarding amplitudes and lifetimes. 

 

To confirm the immobilised IsiA-PSI supercomplexes are functionally active, the 

capacity for nanopatterned supercomplexes to generate photocurrent in response to 

illumination could be investigated using a method such as conductive AFM. As 

individual IsiA-PSI supercomplexes could be imaged by AFM in the nanopatterns it 

would be possible to measure the photocurrent produced by a single supercomplex. It 
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would also be interesting to see if PSII could generate photocurrent in response to 

light using the same technique. 

 

Another possible direction for this work would be to co-pattern antenna complexes 

such as phycobilisomes with the reaction centres using a similar method as (Vasilev et 

al., 2014) to see if it is possible to transfer energy between the two immobilised 

complexes. This would be particularly interesting in the case of PSII as it relies on 

phycobilisomes to provide to the majority of the energy to drive charge separation 

in vivo. By using master patterns with different dimensions it would be possible to 

alter the ratio of immobilised reaction centres to antenna complexes and see what 

effect this has on energy transfer between the two complexes and whether it affects 

the production of photocurrent. 
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