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Summary 
The potential for exercise to maintain or enhance bone strength during ageing is of 

increasing interest.  Preliminary evidence suggests that whole body vibration (WBV) 

can enhance muscle strength and maintain bone density in postmenopausal women, 

and may provide low impact anabolic exercise suitable for use in patients with 

weakened skeletons. 

The main aim of this thesis is to evaluate the impact of WBV on the adult human 

skeleton, putting the impact of WBV in the context of other habitual locomotor 

activities in order to analyse which WBV settings may hold most osteogenic potential. 

The potential for a unilateral model of WBV using the Galileo 900 was also assessed. 

To investigate these aims, transmission of WBV delivered by the Galileo 900, 

Powerplate Pro 5 and Juvent 1000 platforms was assessed using a motion capture 

system. Strain at the tibia was recorded using a bone surface bonded strain gauge.  

The results presented here suggest that WBV is transmitted to the hip and spine on all 

platforms, however attenuation of the WBV stimulus is observed above the anterior 

superior iliac spine. The greatest attenuation is observed with the Galileo 900 which 

has a side alternating motion as opposed to the vertical motion of the Powerplate Pro 

5 and Juvent 1000. The greatest accelerations transmitted to the hip and spine are 

generated by the Powerplate Pro 5, with the Galileo 900 delivering lower accelerations 

for similar input frequency and amplitudes and the Juvent 1000 delivering 10 fold 

lower accelerations.  

The unilateral loading model of WBV appears to be possible as, when a single leg is 

placed on the platform, transmission of WBV to the contralateral leg is far less than to 

the leg on the platform. This is also reflected in the strain and strain rates observed 

when the strain gauged leg is placed on the platform as opposed to off the platform 

during WBV.  

Strains and strain rates generated during WBV on the Powerplate Pro 5 and Juvent 

1000 are comparable to those generated whilst walking, however on the Galileo 900, 

strains equivalent to those generated whilst performing high impact activities such as 

jumping are observed. Strain rates of much greater magnitude than those observed 

during habitual locomotor activities are also generated on the Galileo 900.  
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1.1 Bone Structure and architecture 
The human skeleton is composed of bones with a multitude of functions, from 

supporting the body to stand and protecting internal organs, to enabling the sense of 

hearing. Successfully delivering such a diverse range of functions is achieved through 

the inhomogeneous, anisotropic structure of bone.  

At a microscopic level, bone is primarily composed of collagen, mineralised by Calcium 

phosphate, along with other less well defined non-collagenous proteins (NCPs), water 

and multiple cell types[2]. The specific composition of different bone types gives them 

their unique characteristics, for instance bones of the inner ear are highly mineralised, 

producing the stiff structure required for the sensitive transmission of sound waves [3, 

4]. If such a stiff bone was found in the spine, vertebral fracture incidence would be 

extremely high, however this is a perfect example of the adaptable nature of bone to 

function as, in vertebra, the bone is much more porous, allowing the strains 

experienced at the spine to be dissipated leaving little damage and protecting the 

spinal cord. 

At the macroscopic level, bone is composed of two types, cortical bone on the outside 

and trabecular (or cancellous) bone on the inside (Figure 1).  

Cortical bone is made up of osteons, structures composed of concentric rings of 

cartilaginous lamellae[5, 6]. At the centre of the osteon is the haversian canal which 

contains blood vessels and nerves innervating the bone. 

Trabecular bone is found within the medullary cavity and is surrounded by bone 

marrow[5]. In contrast to the tightly packed and organised structure of cortical bone, 

trabecular bone is composed of irregular lamellae forming strut like trabeculae, 

resulting in a much more porous structure. Whilst appearing to be in random 

alignment, the direction in which the trabecular rods form reflects the strength 

characteristics of bone, with trabeculae aligning not in random but along the direction 

of frequent loading of the bone [5]. 
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 Along the length of a long bone, bone composition varies. At the epiphysis there is a 

great volume of trabecular bone whereas in the diaphysis the predominant bone type 

is cortical [7] (Figure 1). Cortical thickness and, to a lesser extent, spacing and thickness 

of trabeculae effect bone strength [8]. By varying these parameters, again the bone 

can adapt to function, forming a strong structure in the direction of frequent loading 

[9, 10]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Figure 1: The macroscopic structure of the long bone. 
This figure shows the macroscopic structure of a long bone. Around the outside of the bone 
is solid cortical bone, in the centre of the bone is the struts of trabecular bone. The 
epiphysis is the end section of the bone that forms joints with other bones and is rich in 
trabecular bone. The diaphysis is the mid section of the bone which is mainly composed of 
cortical bone. The metaphysis is the slightly wider midesction of the bone which undergoes 
growth during childhood. The growth plate is responsible for the lengthening of the bone 
during growth. Once growth ends, both the metaphysis and growth plate become ossified, 
forming solid bone and the epiphyseal line. 
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1.2 Adaptions in bone geometry and composition 
Bone is a metabolically active tissue composed of mature osteocytes as well as 

osteoblasts and osteoclasts which are employed in the growth and maintenance of the 

skeleton. Osteoclasts are responsible for resorption of bone, and osteoblasts for bone 

formation (Figure 2). Resorption and formation are the processes underlying bone 

modelling and remodelling, the two main mechanisms which allow the adaption of 

bone architecture and structure to create bones of suitable strength to meet 

mechanical demand.  

Bone modelling results in the selective activation of osteoclasts or osteoblasts (but 

never both together) and subsequent bone resorption or formation at the endosteal or 

periosteal surface of bone. This results in a net gain or loss of bone material, allowing 

adaption of bone size and shape during growth[11]. 

 In a long bone, growth occurs in the metaphysis with apposition at the endosteal 

surface resulting in an increase in bone length and apposition at the periosteal surface 

resulting in an increase in bone width [12]. 

Alongside modelling, bone remodelling repairs and renews bone tissue, ensuring the 

skeleton remains strong and fit for function. Whilst modelling is minimal after bone 

growth ceases, bone remodelling continues throughout life.  

Unlike bone modelling, bone remodelling relies on a coupling of bone resorption to 

bone formation such that bone is resorbed and then replaced in succession (Figure 2) 

[11].  To achieve this, the multitude of cells involved in bone remodelling move along 

the bone together in a specific order as a  ‘basic multicellular unit’(BMU). The leading 

edge of the BMU contains osteoclasts which resorb the bone. Following in behind the 

osteoclasts are mononuclear cells which fill the resorption cavity during the transition 

from the resorption to formation stage of remodelling (Figure 2). Finally osteoblasts 

follow these two cell types, depositing osteoid into the resorption cavity before 

maturing into osteoclasts as the osteoid is mineralised, restoring the bone to a 

quiescent state (Figure 2) [11]. 
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Tight control of the bone remodelling cycle results in equal amounts of bone 

resorption and formation in the healthy skeleton. This level of control is achieved 

through cross-talk between the cells in the BMU, through release of factors from 

within the bone matrix, cell-cell contact and secreted molecules. 

The most well characterised interaction between the cells of the BMU is that which 

controls osteoclastogenesis in osteoclast precursor cells. 

 

Bone is constantly undergoing remodelling. This occurs in four steps; firstly resorption is 
triggered by signals from osteocytes. The lining cells retract and the underlying membrane 
is removed. Osteoclasts are recruited to this area of exposed bone where they are 
activated and digest the underlying bone. Next is a transition stage where the maximum 
depth of digested bone is reached, osteoclasts are removed from the gap they have 
formed and the osteoblasts are recruited to fill this gap. Finally there is the formation 
stage where the osteoblasts mature into osteocytes ready for the cycle to begin again. 
Normally there is a balance maintained through feedback resulting in the amount of 
resorption being equal to that of formation, however in conditions such as osteoporosis 
osteocytes are activated more than osteoblasts, the balance is lost and resorption occurs 
to a greater extent than formation. 

 

Figure 2: Bone Remodelling Cycle.  
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The initiation of BMU activity requires differentiation of osteoclasts from osteoclast 

precursor cells, a process that is reliant upon expression of macrophage colony 

stimulating factor (M-CSF) and the membrane bound receptor activator of nuclear 

factor кB ligand (RANK-L) [13-15]. Whilst M-CSF expression is constitutive, RANK-L requires 

up-regulation in order to induce the further differentiation of osteoclast precursors.  

Through the RANK signalling pathway, NF- кB is released from Iк-B and translocates to 

the nucleus of the pre-osteoclast resulting in phospholipase C ϒ (PLC-ϒ) signalling being 

up-regulated through the co-stimulation of immunoglobulin like receptors on the cells 

surface[11]. Together, these two signalling cascades result in the transcription of genes 

essential to osteoclastogenesis. 

It has been proposed that targeted bone remodelling due to micro damage to the 

skeleton is triggered by osteocyte apoptosis which in turn triggers osteoclastogenesis 

through the release of M-CSF and RANK-L [16, 17]. 

In addition to mechanical damage, osteoblasts and bone marrow stromal cells respond 

to factors which promote bone resorption such as Vitamin D3 (1α, 25-dihydrocyvitamin 

D3), by up-regulating RANK-L expression, providing the stimulus for osteoclast 

differentiation and up-regulation of bone resorption [18].  

Conversely, through the stimulation of the canonical wnt-signalling pathway, RANK-L is 

down-regulated and osteoprotegerin (OPG), a decoy RANK-L receptor, is up-regulated.  

OPG binds to RANK-L, preventing the binding of RANK to RANK-L and subsequently 

preventing osteoclast differentiation, down-regulating bone resorption [19].  

Communication between osteoblasts and osteoclasts is proposed to be a two way 

mechanism, with osteoclasts having been shown to influence osteoblast 

differentiation and bone formation both positively and negatively. Sphingosine 1-

phosphate (S1P) is secreted by osteoclasts and positively regulates osteoblast survival 

and migration, Ephrin signalling by direct cell-cell contact also enhances osteoblast 

differentiation whilst simultaneously inhibiting osteoclast differentiation and bone 

morphogenetic proteins (BMPs), insulin like growth factors (IGFs) and transforming 

growth factor beta (TGFβ) released from the resorbed bone matrix may also play a role 

in promoting bone formation[11]. On the other hand, osteoclasts can inhibit 
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osteoblast differentiation through the action of Semaphorin 4D which leads to 

suppression of IGF-1. 

Whilst osteoblasts have an established critical role in osteoclastogenesis, osteoclasts 

can only influence bone formation, being non-essential in the differentiation of 

osteoblasts and resulting bone formation[11]. 

The major control of osteoblast differentiation comes via the canonical wnt-signalling 

cascade, predominantly under the control of sclerostin which is secreted by osteocytes 

[20]. Sclerostin is an antagonist of the wnt-signalling pathway and as such inhibits 

osteoblast differentiation, however in the presence of bone formation promoting 

factors sclerostin down-regulation allows osteoblast differentiation and bone 

formation[21, 22]. 

This complex network of signalling provides an example of the cross talk between cells 

in the BMU, however the full details of the signalling underlying coupled remodelling 

are still under investigation.  

Whilst under normal conditions, bone remodelling is a balanced process with net bone 

resorption equal to new bone formation, in conditions such as osteoporosis this 

balance is lost. Bone resorption outweighs bone formation and as a result, bone 

material is lost. 

1.3 The effect of Hormones on the Remodelling Cycle 
Differing sex hormones in the man and woman result in different skeletal development 

through their action on bone. 

At different times in life the remodelling rate of bone differs. During adolescence bone 

turnover rate is at its highest with around 26% of peak bone mass being laid down 

during this time [23]. However, after peak bone mass is achieved in the thirties, bone 

mass reduces for the remainder of life.  

In women, oestrogen causes fluctuations in bone remodelling, with 33% of a females 

peak bone mass being obtained in the first 4 years after menarche and the 

introduction of oestrogen secretion. At menarche there is a dramatic decrease in bone 
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turnover which does not occur in men, thus in men, peak bone mass is obtained later 

and is higher than that in women [24]. 

Menstrual dysfunction at this time, as is prevalent in young athletes, can significantly 

affect the bone mass, resulting in a lower peak bone mass being achieved [25].  

Throughout the adult life of a woman, oestrogen protects the skeleton from loss of 

mass by down-regulating bone turnover. One mechanism by which oestrogen achieves 

this is by inhibiting osteoclast function, preventing osteoclastogenesis whilst 

simultaneously enhancing osteoclast apoptosis [26-28]. 

After peak bone mass is reached at around the age of 35, bone loss is steady with a 

reported rate of 0.3% per year in both men and women.  

The menopause is accompanied by a sudden increase in bone turnover in response to 

the loss of oestrogen signalling [29, 30]. Given the osteoclastic inhibition by oestrogen, 

this bone turnover is imbalanced, favouring resorption and resulting in an increase in 

the rate of bone loss [31].  

1.4 Osteoporosis 
 The rapid rate of bone loss immediately after the menopause makes postmenopausal 

women particularly susceptible to developing osteopenia or osteoporosis, conditions 

which result in increased risk of ‘low energy fracture’, especially in the hip or vertebra, 

as well as increased mortality and morbidity [32].  

 

The gold standard in osteoporosis diagnosis and fracture risk assessment is 

measurement of bone mineral density (BMD) by dual energy xray absorptiometry 

(DXA). Diagnosis of osteoporosis is made based on T-Score, a measure of how many 

standard deviations below the mean BMD for a young adult a patient’s BMD is. 

Fracture risk has been shown to almost double for every 1 standard deviation decrease 

in BMD below the young adult mean, making BMD by DXA a strong tool in identifying 

those at risk of future fracture[33]. However, short term changes in BMD measured by 

DXA are small and not dramatically different to the measurement error for DXA, 

making it less useful in the immediate monitoring of treatment outcomes and 

assessment of new therapeutics [34]. 
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1.5 Measuring Bone Turnover 
As osteoporosis is a disease with an imbalance in bone remodelling, it follows that 

measuring bone turnover presents an alternative option for the monitoring of patients 

with osteoporosis. 

Markers of bone turnover allow the process of remodelling to be measured and the 

resorption/formation balance to be assessed. This has proven invaluable in the 

development of therapeutics for osteoporosis and other bone disease. Whereas 

expected changes of only a few percent in BMD measured by DXA result in low signal 

to noise ratio, markers of bone turnover show dramatic changes within the first few 

months of treatment [34]. This provides a good signal to noise ratio and an early 

indicator of changes in the skeleton in response to interventions. 

Molecules released during bone resorption or formation as well as those mediating the 

remodelling process have been identified and validated as bone resorption and 

formation markers.  

1.5.1 Markers of Bone Resorption 
The most well used markers of bone resorption are by-products of the bone 

degradation process. As bone is broken down by osteoclasts, collagen degradation 

results in the release of C- terminal telopeptides (CTX) and N-terminal telopeptides 

(NTX). As such, measurement of serum and urinary CTX and NTX reflect the resorption 

rate of bone[34]. 

Alongside collagenous bone resorption markers, mediators of osteoclastogenesis and 

osteoclast number are also indicative of resorption, however the validation of their use 

in clinical study is still in development. These markers may give additional information 

on top of the measure of resorption activity measured with CTX and NTX, for instance 

markers of osteoclastogenesis such as RANK-L and OPG may be useful in characterising 

the mechanism of action of a drug [34].  

1.5.2 Markers of Bone Formation 
Three different stages of bone formation can be assessed using bone formation 

markers. Firstly, pro-collagen N & C terminal pro-peptides (P1NP/P1CP) are cleaved 

from pro-collagen as it forms collagen and act as a marker of collegen synthesis during 
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the proliferative phase of bone formation. After the proliferative phase of formation, 

matrix maturation ensues, preparing the newly laid bone for mineralisation. During 

this period, bone specific alkaline phosphatase (BASP) is expressed in osteoblasts and 

is thought to mark competence for cell mineralisation. Therefore BASP provides a 

measure relating to bone matrix synthesis. Finally, osteocalcin which stimulates the 

absorption of hydroxyapatite into the bone matrix, is a measure of bone 

mineralisation[34].   

1.6 Current Pharmaceutical Therapeutics for Osteoporosis 
Pharmaceutical therapies for osteoporosis aim to redress the imbalance between bone 

resorption and formation that is characteristic of the condition. They achieve this in 

one of two ways, anti-catabolic therapies act by preventing bone resorption, whereas 

anabolic therapy acts by promoting bone formation. 

1.1.1. Anti-Catabolic Therapy 
The current treatment for osteoporosis is pharmaceutically based, with the most 

common prescription being bisphosphonates, an anti-catabolic class of drugs. From 

the analysis of bone turnover markers, bisphosphonates have been shown to reduce 

both bone resorption and formation markers, reflecting reduced bone turnover. With 

Alendronate therapy, the reduction in the bone resorption marker NTX is greater than 

the reduction in bone formation markers, indicative of the increase in bone density 

observed with bisphosphonate therapy in osteoporosis sufferers, which leads to 

reduced mortality and improved quality of life [35-37]. However this is not without its 

drawbacks as bone turnover serves a purpose in maintaining good quality bone. Long 

term use of catabolic therapies, whilst reducing the risk of osteoporotic fracture, has 

been suggested to increase risk of atypical sub trochanteric fracture due to build-up of 

micro damage causing a stress like fracture [38, 39]. Another perspective suggests that 

these fractures are osteoporotic fractures which would have occurred irrespective of 

bisphosphonate therapy. This reflects the presentation of the fractures which mirror 

those seen as typical osteoporotic fracture in all but location. Therefore the real risk 

for fracture may be the osteoporosis rather than the bisphosphonate used to treat the 

osteoporosis[40]. 
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Even if bisphosphonate use does not increase of atypical fracture, there is still room 

for improvement in the 48% reduction in vertebral and 21% reduction in non-vertebral 

fracture risk in osteoporotic women on bisphosphonate treatment [41]. 

The ideal therapy would increase BMD due to an increase in bone formation, leaving a 

natural level of bone turnover and repair to micro damage in place.  

1.1.2. Anabolic Therapy 
This ideal is coming closer to being realised, with a more recent development in the 

treatment of osteoporosis being the use of parathyroid hormone (1-34) (PTH (1-34)), 

which increases BMD by increasing bone formation. Whereas bone turnover is 

suppressed with bisphosphonate use, bone turnover with a heavy weighting towards 

formation has been shown with teriparatide use. 

A study into the effects of different doses of recombinant PTH (1-34) found the 

optimal dose to be 20µg once a day, though the study was cut short due to concerns 

about increased risk of osteosarcoma found in rats treated with the same form of PTH 

(1-34)[42]. Given that human trials of PTH(1-34) have showed no link between PTH(1-

34) administration and osteosarcoma, it has been licensed for use under the name 

Teriparatide, with constraints in place to ensure the duration of treatment does not 

influence osteosarcoma risk [42]. 

Teriparatide acts in an anabolic manner, increasing bone turnover with a weighting 

towards increased bone formation for at least the first six months of use, resulting in 

an initial increase in bone density[43]. Whereas bone turnover markers reflect 

suppression in turnover with bisphosphonate use, bone formation markers show a 

dramatic increase, with a concurrent small increase in bone resorption markers with 

teriparatide therapy, confirming the opposing mechanisms of the two types of drug 

[44]. 

By cyclically administering Teriparatide, the initial formation response is capitalised 

upon, making Teriparatide a useful therapy for osteoporosis. Continuing investigation 

into the optimal mode of delivery, consequence of treatment duration and the effect 

of Teriparatide on patients with secondary osteoporosis is still required. It has been 

reported that prior exposure to bisphosphonates (as is the case in most osteoporotic 
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patients) may reduce the potency of Teriparatide and as such, the development of new 

therapeutics still holds potential for greater efficacy than current drug treatments for 

osteoporosis [45, 46]. 

1.6.1 Drug Development 
Alongside Bisphosphonates and Teriparatide therapy, understanding of the 

components of the remodelling cycle has led to the identification of potential new 

therapeutic targets. Odanacatib inhibits cathepsin K, a proteinase that plays a key role 

in the degradation of collagen during bone resorption. Denosumab is a monoclonal 

antibody that inhibits the action of RANK-L and in turn osteoclastogenesis.   As such, 

both Odanacatib and Denosumab exploit different aspects of bone resorption with the 

end result of inhibition of bone resorption. Both compounds are currently being 

investigated in clinical trials, however until more is known about potential side effects, 

the effect of these anti-resorptive therapies on bone formation and their influence on 

fracture risk they are not implemented in clinical practice. As it stands, bisphosphonate 

therapy is still the most widely used osteoporosis treatment, with Teriparatide 

reserved for use in patients who cannot take bisphosphonates or have additional 

fractures whilst on bisphosphonate treatment [47]. The need for drug holidays when 

using bisphosphonates, the reduced response to Teriparatide after or with 

bisphosphonate use and the regulations on duration of use of Teriparatide means 

treating osteoporosis using pharmaceuticals is not simple and alternatives or additions 

to pharmaceuticals are being considered. 

1.2. The Mechanostat 
Along with oestrogen, the other major influence on bone remodelling and structure is 

mechanical load. Harold Frost was first to propose the theory of the mechanostat, a 

hypothesis that describes mechanically induced bone adaption in term of 

thresholds[48]. The upper strain threshold of the mechanostat lies above a level of 

strain exerted by a typical mechanical load. If a strain exceeds this threshold then bone 

modelling ensues, altering the bone surface shape and resulting in strengthening of 

bone. The lower strain threshold lies below that of a typical mechanical load and if 

strain does not exceed this threshold, for instance during disuse with bed rest, then 

bone remodelling by BMUs is activated. This results in conservation or removal of 
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bone, with removal resulting in more porous, less strong bones reflecting the load 

experienced during disuse [48-50]. 

In order to achieve this level of control a stimulus must be detected and transduced to 

an effector which delivers the response to it. 

The mechanical stimulus responsible for changes in bone architecture has been heavily 

debated since Frost’s initial hypothesis. It has become apparent that, whilst the 

magnitude of the strain experienced is important, it is far from the only aspect of a 

mechanical load that has the potential to stimulate changes in bone architecture. The 

frequency of mechanical load (and thus strain rate), number of cycles of loading, 

duration of loading and rest between cycles of loading have all been suggested to 

effect the osteogenic potential of a particular mechanical load [51-56]. This led to the 

coining of  the term ‘Customary Strain Stimulus’ (CSS) to incorporate all of the above 

variables[57]. To account for the factors which influence the CSS (genetics, 

pharmaceuticals, biochemicals, age, sex and site), Skerry suggests that the 

mechanostat should be thought of as an integration of all of the relevant factors, 

which explain the response of an individual section of bone to a CSS in a particular 

person[57]. The impact of each individual aspect of the CSS on bone architecture is still 

under investigation and the optimum osteogenic mechanical stimulus is yet to be 

defined.  

At the other end of the process, the effector mechanism is very well defined. This is 

the action of osteoclasts and osteoblasts in the processes of bone modelling and 

remodelling, as already described (Figure 2).  

 

Finally there is the sensory detection and transduction of the stimulus which, although 

not thoroughly understood, is indicated to be driven by the action of osteocytes. 

Osteocytes are formed when osteoblasts mature into mineralised bone tissue and 

reside in the lacunae of osteons before ultimately undergoing apoptosis[58]. In 

contrast to the apoptosis of osteocytes in response to bone micro damage [16, 17], 

when the bone experiences strain above the mechanostat threshold for bone 

formation, the number of osteocytes is enhanced through the active suppression of 

osteocyte apoptosis [59-61]. Influx of ca2+
 into the osteocyte and mobilisation of 
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intracellular calcium stores in response to mechanical loading triggers multiple 

signalling cascades resulting in the release of adenosine triphosphate (ATP),  Nitric 

Oxide (NO) and Prostaglandins (PGs) [62, 63].  Together, these transduction molecules 

act to decrease bone resorption and increase bone formation. ATP has been shown to 

be necessary for the release of Prostaglandin E2 (PGE2) [64] which, along with NO, 

results in the inhibition of osteoclast activity at the bone surface[65-67]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mechanical stimulation is also directly linked to anabolic activity. Osteocyte secretion 

of sclerostin is reduced in response to mechanical loading which, through the action of 

the Wnt/ β-Catenin signalling pathway, results in up regulation of osteoblast activity 

Figure 3: Sclerostin in the Wnt Signalling Pathway.  

 This figure shows the mechanism by which sclerostin effects bone modelling via the 
canonical Wnt signalling pathway. In the presence of sclerostin (A) LRP5 is prevented from 
binding to frizzled to form the Wnt receptor. In the absence of Wnt signalling a 
destruction complex is formed by GSK-3β, CK1α, Axin and APC which binds to β-catenin. 
This causes phosphorylation and ubiquitination of β-catenin, leading to its degradation. In 
the absence of sclerostin (B), LRP5 or LRP6 binds to Frizzled forming the receptor for wnt. 
Wnt binding to its receptor activated Dishevelled (Dsh) which inhibits the destruction 
complex. Β-catenin is released from the complex and is free to move into the nucleus 
where it binds to transcriptions factors and up regulates transcription of genes associated 
with osteoblast differentiation. 
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[68]. In the presence of sclerostin, the wnt co-receptor LRP5/6 is unable to bind the 

wnt receptor frizzled [69] (Figure 3). This results in no signal transduction by the Wnt/ 

β-Catenin pathway, β-Catenin remains bound to the glycogen synthase kinase 3β (GSK-

3β) complex, does not enter the nucleus and therefore does not cause gene 

transcription and up-regulation of osteoblast differentiation. On the other hand, when 

sclerostin is inhibited, wnt binds to its receptor complex, allowing signal transduction 

resulting in β-Catenin entering the nucleus and transcription of genes involved in the 

up-regulating osteoblast differentiation (Figure 3)[69]. The greater number of 

osteoblasts ultimately leads to increased levels of bone formation. 

The opposite is observed if the lower mechanostat strain threshold is not reached, 

with an increase in Osteocyte apoptosis level resulting in a loss of the factors secreted 

by osteocytes and the up-regulation of osteoclast activity [59]. The complete 

mechanism of osteoclast up-regulation by osteocytes is not yet clear, however it is 

more than likely to include the lifting of inhibited sclerostin secretion experienced 

during mechanical loading and perhaps even up-regulation of sclerostin[70]. 

The missing link between transduction of the stimulus and effector action of modelling 

is the detection of the stimulus.  One hypothesis for the sensory action of the 

osteocyte involves interstitial fluid flow through the lacunae and canaliculi. It is 

thought that this fluid flow imparts strain on the osteocyte which, in response, 

releases the factors described above that transduce the strain stimulus in order for 

effector activation[71, 72]. Given that the mechanical influence on bone not only relies 

on strain magnitude, but also strain rate, fluid flow may provide a good explanation of 

the sensory mechanism employed by osteocytes. Changes in strain rate would easily 

translate into changes in the rate of fluid flow, thus providing a change in stimulus to 

the osteocyte.  

The theory of fluid flow as a sensory pathway also supports another hypothesis, that in 

the absence of mechanical loading and therefore fluid flow, sufficient nutrients cannot 

be delivered to osteocytes through the interstitial fluid resulting in the observed 

osteocyte apoptosis with disuse[23]. 
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In addition to fluid flow, direct deformation of the osteocyte and the surrounding 

extracellular matrix may also play a role in mechanosensation, with strain 

measurements at the cellular level equating to approximately 3.95 times that detected 

at the macroscopic level and thus potentially providing a greater gradient of cellular 

deformation and initiation of micro damage at the cellular level[73]. Whether the 

proposed micro damage acts to induce osteocyte apoptosis or to relieve local strain, 

signalling for bone remodelling, is still a point of contention. 

1.6.2 The Mechanostat in action – Tennis as a unilateral loading model 
Despite an incomplete understanding of the process of mechotransduction, evidence 

for the action of the mechanostat is well documented. 

Tennis players provide a good self-controlled model of the effect of unilateral loading 

on bone density and studies on players support the theory that the CSS (rather than 

purely strain magnitude) is responsible for adaption of bone geometry, as a complex 

skeletal response is observed in the dominant arm of tennis players. The unilateral 

nature of tennis removes environmental and genetic confounders, allowing the sole 

analysis of the influence of mechanical loading on bone strength.   

Studies using DXA as a means of evaluating BMD in the playing arm of male 

professional tennis players revealed that, as proposed by the CSS, the increased 

magnitude of stain as well as the duration and number of playing sessions had an 

influence on BMD (Table 1). Compared to the non – dominant arm, the dominant 

playing arm of professional tennis players had a significantly greater BMD (P<0.05) 

[74]. This was also observed in young tennis players and a dependency on hours of 

tennis practice was observed in young male tennis players [75, 76]. Those that 

practiced 3.1 hrs /wk on average had a lower inter-arm asymmetry in BMD than those 

practicing in excess of 10hrs/wk [76].  

In young female tennis players, the described inter-arm asymmetry in BMD is apparent 

from tanner stage III, the period of rapid growth and bone accrual prior to menarche 

[75, 77]. Two mechanisms of response have been observed during this period. Prior to 

puberty, bone responds to loading through periosteal apposition, conferring an 
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increased resistance to bending, whereas after puberty, loading results in endosteal 

contraction which has far less bearing on bone strength [78, 79]. 

An increase of BMD in response to mechanical loading is suggestive of an increase in 

skeletal strength; therefore the above is promising evidence that exercise has potential 

as an effective therapy for people with osteopenia or osteoporosis. However, as the 

mechanostat depends upon hormone levels for its responsiveness, it is not surprising 

to find that the time of life when the mechanical loading occurs is another important 

factor influencing the potency of the effect of loading upon bone. 

Adaption to mechanical stimulus continues up to peak bone mass, however in 

recreational postmenopausal tennis players who started playing tennis after peak 

bone mass was achieved, no significant difference in BMD was observed between the 

dominant playing arm and the non-dominant arm (Table 1) [80]. This is not to say that 

the mechanostat was inactive in these players as bone mineral content (BMC) was 

significantly greater in the dominant arm of the players, suggesting adaption of 

geometry to some degree (Table 1) [80]. 

This greater BMC in the dominant arm was also present in the professional tennis 

players and young male tennis players, again appearing dependent on training hours in 

the latter (Table 1) [74, 76]. As BMC increased to a greater degree than BMD in the 

dominant arms, this suggests that bone adaption occurred via alterations in bone 

geometry, as with increased bone size, a greater bone mineral content would not 

necessarily result in a change in BMD. 
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The calculation of bone geometries using DXA scans, although possible, result in 

estimations[81]. However other technologies, such as magnetic resonance imaging 

(MRI) and peripheral quantitative computed tomography (pQCT), allow the 

simultaneous assessment of volumetric BMD (vBMD), BMC and bone geometry. Using 

pQCT it is also possible to discriminate between the type of bone (cortical or 

trabecular) and assess the influence of mechanical loading on each [9].  

A combined study of MRI and DXA data from both male and female tennis players 

allowed the calculation of vBMD in the arms of tennis players at the end of 

adolescence (Table 2)[82]. As expected if the changes described previously are due to 

changes in geometry, vBMD showed no significant difference between the dominant 

playing arm and non-dominant arm. However BMC was still significantly greater in the 

dominant arm and correlated with the observed asymmetry in bone geometry from 

the MRI scan. 75% of the BMC asymmetry can be accounted for by asymmetry in total 

bone volume, confirming that the bone responds to mechanical loading by altering its 

geometry, not by increasing BMD [82]. 

Table 1: A comparison of studies defining the influence of tennis playing on bone 
parameter as a unilateral model of mechanical loading.  

 All bone parameters (BMC, BMD, Arm Mass, and Lean Mass) have been determined using 
DXA and data is presented using percentage increase/decrease in the dominant vs. non 
dominant arm. Whilst significant increases in bone parameters were observed in younger 
tennis player, postmenopausal players (mean age 59.7)  show little benefit is to be gained 
from playing recreational tennis at this age.  (*-P<0.05, ** - P<0.01, *** - P<0.001). 
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The adaption of bone size in response to mechanical loading is further supported by 

pQCT studies which show an increased BMC but no increase in vBMD in the dominant 

arm of young tennis players (Table 2) [7, 9]. The cross sectional area of the humerus 

and radius is larger in the dominant arm of tennis players than the non-dominant arm, 

however the type of bone affected by the mechanical loading appeared to be site 

specific. At the humeral shaft and distal humerus the cortical area and cortical wall 

thickness have been shown to be greater in the dominant arm than the non-dominant 

arm. In the proximal humerus and radial shaft the total bone area, cortical bone area 

and marrow cavity sizes are significantly greater in the dominant arm, however the 

change in cortical wall thickness is little if anything [7, 9]. This ties in with the idea of 

multiple mechanostats, each regulating a specific site of bone, dependent upon the 

type of strain typically experienced at each site [57]. 

 

 

 

 

 

Table 2: A comparison of studies defining the influence of tennis playing on bone parameters 
as a unilateral model of mechanical loading.  

All bone parameters (BMC, vBMD) were determined using pQCT or pQCT and MRI and are 
presented as % inter-arm difference. Significant improvements in BMC are observed at all 
sites measured apart from the distal radius (predominantly trabecular bone) in mature 
players. BMD is significantly influenced at very few sites, in contrast to the data recorded by 
DXA. (*P<0.05, **P<0.01, ***P<0.001.) 
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The site specific mechanostat theory is also well supported when we consider the mid-

radius, an area rich in cortical bone. Mechanical loading results in increased cortical 

thickness and cortical drift, as endosteal bone resorption occurs and new periosteal 

bone is laid down [7]. This results in the cortical bone at the mid-radius being further 

from the neutral axis, which results in a bone section resistant to bending without a 

dramatic increase in BMD.  

 

Although DXA is the gold standard in osteoporosis diagnosis, the data presented here 

suggests that the two dimensional areal BMD is not a sufficient measure when 

studying the effects of mechanical loading on bone. The fact that the bone grows in 

size in response to mechanical loading skews the BMD measurement, the greater BMD 

observed in the dominant arm is due to the greater BMC, not greater vBMD [7, 9]. 

One thing that is consistent irrespective of scan type is that the response of bone to 

mechanical loading is dependent on age. At all sites studied the general trend is that 

during growth, the BMC of the dominant arm increases in response to playing tennis 

and the bone geometry changes as shown above[7, 9, 74, 76, 80, 82]. In contrast, after 

peak bone mass is achieved the increase in BMC is no longer observed and at certain 

sites in the dominant arm there is even a decrease in BMC compared to the non-

dominant arm[83]. This shows the adaptive response in bone size due to mechanical 

loading is attenuated with age.   

This is not to say that exercise does not affect mature bone, in contrast to the changes 

in skeletal architecture seen in young growing bone, mechanical loading in mature 

bone results in site specific increased trabecular bone density at the distal radius, an 

area made primarily of trabecular bone, and increased cross sectional area in the 

diaphysis (Table 2)[83, 84]. It is possible that the increase in trabecular vBMD improves 

bone strength in the absence of the geometric changes seen in younger bones. With 

the decrease in BMC observed at the mid-radius it has been proposed that a type of 

bone mass shift occurs as part of the adaptive mechanism of mature bone, with bone 

mass from areas experiencing lower strains shifting to areas experiencing the highest 

strain[85].  
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It has also been observed that, after peak bone mass is achieved; endosteal bone loss 

outpaces new periosteal bone apposition, resulting in an absence of cortical drift and 

thinner cortical bone. In the dominant arm, these changes were not observed 

therefore it is possible that mechanical loading helps prevent age-related changes in 

skeletal architecture through endocortical apposition or retention [83, 84]. 

In female tennis players who started playing after the age of 30, BMC at the distal 

radius was greater (although not significantly so) in the dominant arm and combined 

with the greater trabecular vBMD in this area this suggests bone still adapts to 

strengthen itself in the areas under the highest mechanical load, albeit via a different 

mechanism to that observed in the growing skeleton[83]. 

Whilst loading is clearly beneficial to bone, accelerated bone loss after stopping 

participation in sport removes any benefits in BMD experienced whilst regularly 

exercising [86, 87]. This is well documented in a young population [86, 88], however, 

fragility fracture risk appears to be reduced in ex-athletes, especially if a small amount 

of exercise is maintained [88]. It is possible that the skeletal geometry adaption caused 

by exercise during bone growth is maintained throughout life and results in fewer 

fragility fractures later in life, making exercise a useful preventative measure for 

osteoporosis.  

In summary, the current observations suggest that prior to reaching peak bone mass, 

bone responds to mechanical loading by adapting its geometry via directed modelling, 

resulting in a skeleton with good strength to weight ratio. With age, this response 

appears to become attenuated and a new adaptive mechanism which leads to the 

apposition of trabecular bone in response to mechanical loading is observed. 

Mechanical loading may also contribute to a resistance to age related cortical thinning 

at specific loaded sites. 

Although physical activity appears to be a promising method of maintaining strong 

bones and reducing fracture risk in elderly people, finding a safe way of delivering the 

exercise to a population susceptible to fragility fracture is a challenge. Even walking, a 

low intensity exercise with peak strains only reaching -544 µε (compression) and +437 
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µε (tension) in the tibia[89], has been shown to result in fragility fractures at the hip if 

the ‘prescribed dose’ is too great [90]. 

1.6.3 The Mechanostat in action -Unloading the skeleton 
In contrast to the effects of loading the skeleton observed in tennis players, unloading 

the skeleton results in marked bone loss and disuse osteoporosis[91]. During space 

flight, loading of weight bearing regions of the skeleton is reduced due to the loss of 

the effect of the earth’s gravity. This results in an uncoupling of bone resorption and 

formation, increased bone resorption and ultimately a decrease in BMD in astronauts 

[92-94] 

1.6.3.1 Bed Rest as a model of unloading 
In trying to tackle the bone loss experienced by astronauts, a method for simulating 

the effects of space travel on earth has been developed. 

Changes in BMD and bone turnover markers during head-down tilt bed rest have been 

shown to be similar to those observed in space flight[95]. This makes bed rest an 

affordable, controllable model to examine the effects of different interventions on 

disuse osteoporosis, whether the osteoporosis is caused by space travel or other 

situations in which normal weight bearing activities are attenuated.  

1.7 Vibration Therapy as a form of anabolic exercise  
 Rubin and colleagues showed whole body vibration (WBV) to have a positive influence 

on bone formation rates in the proximal tibia of rats and to be more successful than 

normal weight bearing in preventing the bone loss associated with disuse of the limb 

[96]. It was also shown that the magnitude of the strain induced by the vibration did 

not have to be as large as suggested by studies of physical activities. During physical 

activity strains in the tibia are generally three figures or more, with peaks as high as 

2000 µε [89]. It has been suggested that the magnitude of the strain engendered by an 

activity is a key determinant of the response of the skeleton to that activity. For 

instance, running is more osteogenic than walking, reflecting the larger strains 

generated by running. However walking is of more benefit to bone than cycling which, 

due to the non-impact nature of the sport, produces lower strain on the skeleton [97]. 

Male masters cyclists have been shown to have lower BMD than their more sedentary 

counterparts, who conversely do more hours of weight bearing exercise per week. This 
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provides additional evidence to support the notion that higher magnitude strains have 

a greater influence over bone remodelling than low magnitude strains [98].  

However, if WBV has a protective or anabolic effect on bone, there must be an 

alternative stimulus to the magnitude of the strain involved, as strain magnitudes in 

single figures have been reported to be of benefit to the skeleton when delivered via 

WBV.  Twenty minutes of exposure to WBV at 30Hz frequency and 0.3g acceleration, 

five times per week produced significant benefit to bone in terms of both the number 

and size of trabeculae in the tibia of sheep [99]. Strain gauges attached to the tibia of 

the sheep recorded strains of less than 5µε in response to this vibrational loading, far 

smaller than those found in high impact, osteogenic physical activities.  

Given the small strains required with WBV to generate positive effects on bone, this 

type of skeletal loading has been considered as a potential intervention for both disuse 

and postmenopausal osteoporosis. 

1.7.1 Preventing disuse osteoporosis 
Using head down tilt bed rest as a model to generate disuse osteoporosis in otherwise 

healthy volunteers, the ability of whole body vibration to protect bone from the loss 

observed due to unloading has been investigated. Whilst the effects of short duration 

(14 days) unloading on the musculoskeletal system were not counteracted by WBV 

intervention, WBV has been shown to have a protective effect on bone during bed rest 

of 56 and 60 days [49, 100-104]. 

The discrepancy in findings between the short duration and longer duration bed-rest 

studies could in part be due to the small sample size of the short duration study. Given 

the short duration of the study, imaging could not be implemented as a measure of 

changes in bone structure and composition, as has been in the longer duration studies. 

Therefore a comparison between studies is reliant on early changes in biochemical 

markers of bone turnover being indicative of the changes seen using imaging in the 

longer duration studies. Additionally, the WBV intervention delivered in the short 

duration study required participants on both the control and intervention arm to 

weight bear for brief periods of time, making WBV not the sole mechanical stimulus 

delivered to the body during the intervention. This could lead to greater bone 
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retention and associated changes in biochemical markers of bone turnover in the 

control arm of the study, perhaps rendering potential differences between control and 

intervention arms of the study smaller and less likely to be significant[49, 101, 102].  

In contrast, the larger, longer duration studies delivered WBV interventions whilst 

participants remained supine [49, 102-104]. The intervention differed to the short 

duration study in that WBV was combined with resistive exercises. It could therefore 

be argued that the resistive exercises were the determining factor in the protective 

effect of the WBV intervention. However, whilst at distal sites there is little difference 

in the protective effect of resistive exercises or resistive exercises in combination with 

WBV, at the tibial diaphysis and proximal femur, resistive exercise with WBV was 

shown to have benefits above that of resistive exercise alone[104]. This suggests that 

WBV plays its own part in protecting the skeleton from disuse osteoporosis. 

1.7.2 Preventing postmenopausal osteoporosis 
WBV has also been investigated as a preventative measure or potential therapy for 

postmenopausal osteoporosis. 

Low magnitude, high frequency stimuli have been studied in humans, both young and 

old, with BMD measurements tending to concentrate on the hip and spine, skeletal 

locations most susceptible to fragility fracture. The greatest influence of low 

magnitude WBV appeared to be in subjects with low BMD when the stimulus was 

consistent, low magnitude and high frequency, in contrast to studies of other physical 

activity (Table 3) [1, 105, 106]. Having said that, a study using higher magnitude 

vibration, yet a similar frequency to the aforementioned studies, also indicated an 

improvement in bone characteristics at the hip and lumbar spine[107] and there are 

indications that higher magnitude vibration prevents postmenopausal bone loss [108]. 

Varying the direction of the applied stimuli appeared to reduce the impact of WBV 

[109, 110], although studies that took this approach were not always in populations 

with low BMD, making it difficult to make comparisons and a definitive conclusion as 

to the cause of the lesser response. It is possible that activities other than standing 

result in less transmission of the stimulus to the hip and lumber spine and therefore a 

less marked response, as in one study which used knee extensor exercises there was 
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an observed significant influence on hip BMD, however no influence at the lumbar 

spine[110]. 

The direction of vibration is an important aspect of research as it may be possible to 

specifically optimize WBV to target specific regions of the body. The use of side 

alternating vibration resulted in maintenance of cortical bone in postmenopausal 

women and, even at low frequencies, positively influenced hip BMD[108, 111]. 

Accelerations delivered to the lumbar spine (L3) using a side alternating platform have 

been shown to be greater in the lateral (side to side) direction than the vertical 

direction [111]. If also true at the hip, this could contribute to the observed 

enhancement in BMD increase at the femoral neck which is orientated in the lateral 

direction. The response of the femoral neck to side alternating vibration was greater 

than that of vertical vibration in postmenopausal women without osteoporosis (Table 

3) and therefore this type of WBV may prove more effective for treatment of 

osteoporosis at the hip. 

1.8 Vibration Therapy – Development as a Treatment for 
Osteoporosis 

The current evidence shows the potential for WBV to provide a form of low impact 

physical activity that improves the bone quality in osteoporosis sufferers. The effect of 

WBV on BMD is also potentially greater than that currently observed (Table 3), as these 

are the values obtained from intent to treat analysis. If compliance is analysed, the 

response in the highest quartile of compliance is much greater than that reported in 

intent to treat analysis [1, 105]. By improving compliance, WBV could prove a very 

useful tool in the treatment of osteoporosis. With the increasing evidence that WBV is 

of benefit to osteoporosis sufferers the compliance rate may increase, especially if 

research into tolerability of the different frequency and amplitudes is conducted. 

Improving the experience of WBV treatment using audio-visual entertainment or an 

exercise class setting may also improve compliance. 

Before WBV can be developed as a treatment for osteoporosis, there is still a lot to be 

understood in order to determine the optimum ‘dose’ of WBV. Currently there are few 

papers on the subject, each using different parameters and each with varying success 

(Table 3). It appears that almost unnoticeable displacement of the vibrating platform at 
37 

 



high frequency is beneficial in preventing postmenopausal bone loss [1, 105], yet so is 

higher magnitude vibration [107, 108], suggesting frequency of vibration, and 

therefore the strain rate, is a key variable in determining skeletal response to this type 

of activity. The frequency of vibration within studies has not been varied greatly and 

comparison of different directions of vibration, i.e. vertical or side alternating has not 

been extensively researched in low BMD populations.  

Whilst reducing fracture risk at the hip and lumbar spine is of great benefit, non-

vertebral fracture risk, at sites other than the hip, is least benefitted by current 

treatment. Investigation of the effects of WBV on non-vertebral fracture should also be 

undertaken. 
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Table 3: A comparison of WBV studies using both DXA and pQCT.  

 Data is reported as percentage difference between WBV groups and controls. Whether a 
study reports WBV to be beneficial to bone depends upon many variables shown within this 
table. People with low BMD before treatment appear to benefit from WBV [[1]] whereas 
subjects with normal BMD show little response [108]. 
The type of WBV also influences the response of bone to this type of mechanical loading with 
side alternating WBV having a greater influence at the hip than the lumbar spine. By altering 
the frequency and amplitude of the WBV the response of bone is altered dramatically, with 
low amplitude high frequency stimuli appearing to be most osteogenic. Compliance with this 
type of exercise regimen varies greatly and at 85% compliance much greater benefit of WBV 
is observed [103,104] (*P<0.05, **P<0.01, ***P<0.001, ◊ - Response increases with 
compliance, Δ-Compliance has no influence, PM – Postmenopausal, WO-With Osteoporosis, 
NSD-No significant difference, AL – with alendronate). 
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2 Chapter Two: Aims and Objectives 
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2.1 Rational for the Methodology 

To date, studies into the impact of Whole Body Vibration (WBV) on the skeleton have 

used an array of stimuli of differing frequency, amplitude, mode (vertical or side 

alternating), duration and repetition. Whilst this approach has formed a case for the 

potential use of WBV as an intervention for osteoporosis patients, currently there are 

many small amounts of research into a large number of different WBV stimuli.  

If WBV is to be implemented as an osteoporosis treatment, an optimal ‘dose’ of WBV 

needs to be determined. In order for this to be developed, more needs to be known 

about the impact of the differing settings and modes of vibration used in the current 

research. 

Given the apparent association between strain magnitude and the osteogenic 

potential of an activity, measurement of the strain induced during WBV is a feasible 

way to assess the impact of different WBV stimuli [89, 97, 112]. Previous work 

quantifying the strain induced by different physical activities has focused on the strain 

at the tibia, an area of bone with relatively easy access making application of strain 

gauges to the bones surface minimally invasive.  

Whilst strain measurements will be made at the tibia, in keeping with previous reports 

of in vivo strain, the sites of interest in terms of osteoporotic fracture are the hip and 

lumbar spine [32]. Therefore a means of assessing the impact of the different WBV 

stimuli at these sites is also required. As applying strain gauges at these locations 

would greatly increase the invasiveness of the surgery performed, motion capture 

markers are used to gain a measure of the WBV stimuli at these locations.  The motion 

capture markers are skin mounted and so, whilst there is potential for skin movement 

to introduce error into the measurements, this approach allows a comprehensive 

assessment of the WBV stimulus throughout the body [113]. Previous use of motion 

capture during whole body vibration has produced clear waves of movement 

corresponding to the input whole body vibration signal [114] and whilst the absolute 

displacement value may be subject dependent [113], normalised transmission data 

may serve as a more informative comparison measure. Alternative techniques for the 
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assessment of the WBV stimuli such as strain gauge measurements or bone pin 

mounted motion capture markers are more invasive and so, whilst these techniques 

avoid the assumptions associated with data collection from skin makers, compromises 

in the number of data collection sites must be made. With the planned techniques, the 

data recorded at the tibia both at the bone surface and on the skin may be used to 

assess the influence of soft tissue artefact at the tibia during whole body vibration.    

2.2 Aims and Objectives 

The overall aim of this study is to better characterise the impact of WBV on the human 

skeleton and to put WBV stimuli into the context of other habitual locomotor activities 

which are known to be osteogenic or non-osteogenic. With knowledge on the 

similarities and difference between WBV and other habitual locomotor activities, it is 

hoped this work will form a basis for informed choice of WBV stimuli in future 

investigations into WBV as an intervention for osteoporosis.  

In order to achieve this objective, we aim to: 

• Investigate the transmission of an array of WBV stimuli to locations throughout 

the body and assess the influence of the frequency and amplitude of the input 

stimulus on the transmission 

• Assess the transmission of differing WBV stimuli to the hip and lumbar spine 

• Determine whether a unilateral loading model of WBV can be established  

• Compare the strain and strain rate induced at the tibia by the different WBV 

stimuli and during osteogenic and non-osteogenic activities  
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3 Chapter Three: Materials and 
Methods 
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3.1 Study Population 
Six participants aged between 18 and 51 years at the consent visit, were recruited to 

the study. Participants were ambulatory, generally healthy (as assessed by medical 

history and physical examination) and were physically willing and able to undergo all 

study procedures. All participants had a BMI less than 30 and a BMD measured by DXA 

between +/- 2.5 SD of the young normal range. The characteristics of the six 

participants included in the study are detailed in Table 4. 

 

 

 

 

 

 

Participants were excluded from the study if they met any of the exclusion criteria 
(Table 5). 

3.2 Measuring Human Movement 
 

In a clinical setting, qualitative observational assessment of movements by trained 

practitioners is sometimes sufficient for diagnosis and treatment of movement 

disorders; however this depends on subjectivity and the human eye is not always 

capable of identifying subtle differences in gait associated with disorders [115]. To 

overcome this shortcoming, advances in technology have allowed quantitative 

measures of human movement to be developed.  

 

Spine Hip
1 22 1.87 76 21.7 -1.3 -0.4
2 22 1.73 72.1 24.2 -0.9 0.6
3 51 1.83 96.8 28.9 -0.3 0.3
4 28 1.77 69.2 22.1 -1.3 -0.3
5 18 1.83 71.2 21.4 -1.2 -0.5
6 33 1.84 76.1 22.5 -0.2 0.5

T-Score
Participant Age Height (m) Weight (kg) BMI (kg/m^2)

Table 4: Summary of Participant Characteristics. 
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Inclusion Criteria Exclusion Criteria
Aged 18-50 years Previous diagnosis of osteoporosis

Generally Healthy History of fracture of the spine, hip, leg or foot

Ambulatory

History of bone or joint disorders affecting the shoulders, 
spine, pelvis, legs or feet

BMD ( by DXA) at the lumbar 
spine and hip within ± 2 SD 
of the young normal range

Use of the following medications within the last 2 years: 
Bisphosphonates, Fluoride (execpt use for oral hygeine), 
Strontium, Terparatide, Other bone agents), Steroids

BMI < 30
Ongoing conditions or diseases known to cause secondary 
osteoporosis

Malabsorption syndromes

Known disorders of calcium metabolism

Known history of thyroid disease

Osteomalacia
Paget's disease
Diabetes
History of cancer within the previous 5 years

Epilepsy

Ongoing conditions or use of medications that may impair 
vision or balance

Alcohol abuse or illicit drug use
Pegnancy or currently trying to conceive (women only)

Inability to give informed consent

Known hypersensitivity to penicillin or cephalosporins

Known hypersensitivity to the local anaesthetic lignocaine

Table 5: Inclusion and Exclusion criteria 
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3.2.1 Techniques for Motion Analysis 
 Quantitative techniques, which aim to accurately measure aspects of motion without 

impeding normal human movement, have the potential to help diagnose 

neuromuscular and skeletal disorders, as well as shaping and monitoring 

treatment[115]. 

The complete assessment of movement includes two different types of measure. 

Kinematic measures define the position, orientation, velocity and acceleration of 

movement whilst kinetic measures define the forces causing a movement and 

generated as a reaction to movement [116]. By combining kinematic and kinetic data, 

detailed analysis of human movement is attainable. 

The measurement of kinematics over extended periods of time has been achieved 

using accelerometers, devices designed to measure the acceleration of a body as a 

result of a change in force placed upon it. Different activities have specific patterns of 

kinematics allowing data from accelerometers to provide detailed information on the 

type and amount of physical activity undertaken [117]. Given the small size and 

relatively low power required for function, accelerometers have been useful for 

analysing typical activity levels of individuals over multiple days, weeks and months 

[118]. 

Accelerometers, positioned at specific landmarks throughout the body or attached to a 

bite bar, have also been used to investigate the transmission of vibration experienced 

when driving a vehicle and using a wheel chair [119-122].This technique has also been 

applied to assess the transmission of whole body vibration delivered by specially 

designed vibration platforms [123-125]. 

Accelerometers are limited to measuring kinematic data and without additional 

recordings to determine the forces causing the resultant acceleration, kinetic 

information is not obtained rendering analysis of the movement incomplete. In 

previous studies, occupational whole body vibration transmission was analysed at set 

hip flexion angles, monitored using light emitting diodes [119]. However, whilst 

standing on whole body vibration platforms, the ankle, the knee and hip joint are all 

influenced by the vibration. Given the higher frequency vibrations delivered by WBV 
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platforms, predefining a set joint angle to maintain at multiple joints would be difficult 

for the participants and could potentially lead to conclusions based on unnatural 

positions which would bear little relevance to whole body vibration in a clinical setting.  

Thus, in this instance it is of more use to measure changing joint angles throughout a 

period of whole body vibration. To achieve this, the most widely used quantitative 

approach is motion capture, a technique based on video recording and reconstruction 

of reflective markers positioned on the skin. Infra-red light reflected from markers 

positioned at anatomical landmarks is detected by cameras and mathematical 

algorithms allow reconstruction and assessment of kinematic data at these positions, a 

procedure which unlike accelerometry requires no wire attachments which may 

impede motion. 

3.2.2  The Principle of Motion Capture 
The Vicon motion capture system is designed to reconstruct 3-dimensional images 

from videos recorded on specialised cameras. MX-F40 cameras are positioned around 

the gait laboratory such that their field of views overlap, creating a 3-dimensional 

capture volume in which at least two cameras can record images in any distinct area. 

Reflective markers positioned on the object to be reconstructed readily reflect the 

infra-red light emitted by the MX-F40 cameras, back onto the camera’s detector.  

Reconstruction of the original object in 3-dimensions relies on similar principles to 

those used by the eyes and brain to see the world in 3-dimensions.   

If a single camera is used to detect the reflected light, the image can only be 

reproduced in 2-dimensions. The 2-dimensional reconstruction relies on the colinearity 

condition being met. The colinearity condition relates the object of study to its 

corresponding image and requires any point on an image to be linked, via a straight 

line, which passes through the camera’s focal point, to the corresponding point on the 

original object (Figure 4) [126]. 
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This allows detection of a marker in a certain direction; however the distance from the 

detection plate to the marker is still unknown. 

To resolve this distance a second camera must also detect a reflection from the same 

marker at the same time. The marker can then be 3-dimensionally reconstructed 

according to the coplanarity condition. The coplanarity condition allows multiple 

images to be related to each other and requires that the point on the object, the focal 

points of the cameras and the corresponding points on an image all lie in the same 

plane(Figure 5) [126]. 

 

Figure 4: The colinearity condition.  

Light rays that are reflected off the marker placed at the ankle pass through the camera lens 
and are projected onto the image sensor. For the majority of the light rays hitting the lens, 
diffraction causes the bending of the wave of light towards the image sensor. However, for 
any rays passing through the perspective centre, diffraction does not occur and the projection 
of the light ray onto the image sensor forms a straight line between the image sensor, lens 
and reflective marker. 
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Assuming the two cameras share a common plane and the reflected light obeys the 

colinearity condition, the two beams of reflected light will intersect at the markers 

position. By projecting the reflected light back to the intersection, the distance 

between the object and image projected on to the cameras image sensor can be 

resolved and a 3-dimensional image reconstructed.  

3.2.3 Calibration of the Motion Capture System 
Before the capture of any 3-dimensional images, the cameras need to know their exact 

position relative to a given ‘origin’ (external orientation) and their orientation (pose) 

relative to each other (internal orientation). In Vicon Nexus, this is achieved by a two 

stage calibration procedure called Dynacal. The result of the Dynacal process is 

calibration of the internal and external orientations of the cameras within the system. 

Calibration of the internal orientation of the cameras allows correction for distortion 

and determination of the distance between image and object during 3-dimensional 

reconstruction. The external orientation establishes where in the capture volume a 

given camera is relative to the defined origin.  

3.2.3.1 Dynamic Calibration 
The initial step in the Dynacal calibration procedure determines the relative pose of 

the cameras. A wand with reflective markers of specific separation is waved whilst 

Figure 5: The coplanarity condition.  

 Light reflected from the ankle marker passes through the perspective centre and is 
projected onto the image sensor of two cameras (fulfilling the colinearity condition). If the 
projected images and perspective centres of both cameras, along with the reflective 
marker, lie in the same plane then the coplanarity condition is fulfilled. This enables the 
three dimensional position of the reflective marker to be calculated based on the 
intersection point of the two rays of reflected light.  
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being carried throughout the capture volume until each camera has captured 

thousands of images of the wand[127]. The 3-dimensional position of the reflective 

markers is stored as pairs of 2-dimensional images across multiple cameras. The 

cameras with the best distribution of overlapping marker recordings are chosen as a 

‘seed’ for calibration and their relative pose is determined. The calibration procedure 

continues by including uncalibrated cameras with recordings that overlap with the 

calibrated cameras. Once the relative pose of all of the cameras in the set-up is 

established, the 3-dimensional co-ordinates of the wand markers are determined and 

the length of the wand calculated. The calculated length of the wand is compared to 

the true length of the wand (a value stored in the user-set.cro file within Vicon Nexus). 

The dynamic camera calibration is adjusted until the length of the wand is correct, 

ensuring accuracy of the internal orientation of the cameras. 

3.2.3.2 Static Calibration 
The second step in the Dynacal calibration determines the origin and direction of the 

axes within the capture volume. An L-shaped object with reflective markers is placed 

within the capture volume and a brief recording made.  

The L-shaped calibration object has four reflective markers attached, three form a 

straight line and one is offset. Two of the three markers forming the straight line are 

significantly closer together, making all four markers uniquely identifiable from the 

specified spacing in the user-set.cro file[127]. 

The recording of the calibration object is reconstructed using the camera parameters 

established in the dynamic phase of calibration. A line of best fit is plotted through the 

three markers forming a straight line, defining the first of the three axes. A second line 

perpendicular to the first and passing through the fourth marker defines the second 

axis and the third axis is defined as that which is in the same plane as, but 

perpendicular to the second axis.  

3.2.3.3 Knee Alignment Device Calibration 
Once the cameras within the Vicon Nexus system can accurately determine the 3D 

position of the reflective markers with reference to a capture volume origin, 

recordings of human movement can be performed. However, an additional calibration 
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procedure to define the plane of flexion of the knee can be performed using a knee 

alignment device (KAD) [128, 129]. Static KAD calibration creates a virtual marker at 

the knee joint centre from which the axis of flexion is determined. By comparing the 

transverse alignment of this axis with the transverse alignment of the thigh and tibia 

markers, thigh and shank rotations correcting for misalignment of thigh and tibia 

markers are calculated and applied to all recordings made for the subject. This means 

that application of thigh and tibia markers, a difficult procedure to achieve accurately, 

can be corrected using the calculated rotations. This ensures accurate alignment of the 

knee and ankle flexion axes during motion capture recordings.  

During the KAD calibration it is assumed that the ankle and knee flexion axes are 

parallel, however, if this is not the case, values for tibial torsion can be entered 

manually to the Vicon nexus system to correct the alignment of the axes [129].  

3.2.4  Considerations for a clean reconstruction 

Assuming that a good calibration procedure has been performed, as outlined in section 

3.2.3, marker reconstruction from the motion capture data recorded should result in 

very few missing bits of data. However, in some cases, for instance as the arm of the 

participant obscures a motion capture marker such that fewer than two cameras can 

see it at a given moment, data is incomplete resulting in gaps in the data.  

3.2.5 Gap Filling  
During post processing of the motion capture data these gaps can be filled using two 

different approaches depending upon the length of the gap. In clinical gait analysis 

within Sheffield Teaching Hospitals, gaps of up to 10 frames are filled using a spline fill, 

gaps of 10-40 frames are filled using pattern fill and great consideration is given to 

filling gaps of more than 40 frames [130] (Chapter 10.2.1). 

As data is collected with a sampling rate of 100Hz, this equates to gaps of 0.1seconds 

being filled using spline fill, gaps of 0.1-0.4s being filled using pattern fill and gaps 

greater than 0.4s generally being considered as unacceptable for filling, with 

subsequent system recalibration required. The same time periods will be applied with 

respect to gap filling technique in this study, however the sampling rate of recordings 

will be 300Hz, therefore this will equate to gaps up to 30 frames being filled using 
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spline fill, 30-120 being filled using pattern fill and anything above 120 frames being 

excluded from analysis. 

Filling gaps using spline fill results in a trajectory interpolation based on the marker 

positions for the marker with the missing data recorded at either end of the gap. Using 

pattern fill results in a trajectory copied from another marker and therefore makes the 

assumption that the second marker follows follow a similar trajectory to the trajectory 

of the marker with the missing bit of data. 

3.2.6 Motion Capture - Study Protocol 
The Vicon motion capture system used for this study comprised 8 MX-F40 cameras 

positioned around the gait laboratory at the Northern General Hospital covering a 

capture volume of 77m3
 (Chapter 10.3.1). Calibration of the system required 3000 data 

points to be captured by each camera during dynamic calibration. Data acquisition was 

made using Vicon Nexus software recording at a rate of 300Hz with a minimum of 

three cameras required to start a trajectory and two to continue a trajectory. 

Reflective markers were positioned on 21 anatomical landmarks throughout the body 

(Figure 6).  

In the analyses markers are referred to as either in the lower limb (Anterior superior 

iliac spine, thigh, knee, tibia, ankle, heel, and toe) or in the torso (Sacrum, T10, T2, 

manubrium, acromion, and Forehead). 
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Figure 6: Reflective marker locations.  

 
Positions of the 21 reflective motion capture markers placed 
at anatomical landmarks throughout the body. ASIS = 
Anterior Superior Iliac Spine. T2 and T10 refer to the second 
and tenth thoracic vertebrae respectively. 

53 

 



 

3.3 Strain Measurements 

3.3.1  Stress and Strain 
Strain (ε) is defined as the change in length of a material in response to a stress (σ) 

experienced by the material. Stress is defined as the force per unit area experienced by 

a material.  

The stiffness of a material can be characterised as a material’s resistance to 

deformation, and is defined mathematically in Equation 1, which brings the 

stress/strain relationship together, introducing the stiffness (Young’s Modulus, E) of a 

material [131].  

Multiple characteristics of bone tissue, from the composition of the collagen and 

relative quantity of minerals within the bone to the geometrical shape of the bone, 

collectively determine its strength and stiffness [132]. 

 The stiffness of a material influences the stress / strain relationship and therefore how 

much deformation will occur when a stress is applied. 

Equation 1: Stress, Strain and Young’s Modulus 

𝜀𝜀 = Δ𝐿𝐿
𝐿𝐿

    𝜎𝜎 =  𝐹𝐹
𝐴𝐴

   𝐸𝐸 =  𝜎𝜎
𝜀𝜀
 

(L=length, F=Force, A=Area, E=Young’s Modulus, σ=Stress, ε=Strain) 

The strain at a point in a section of material can be compressive, tensile or shear. A 

Tensile strain describes a strain whereby a materials length has increased due to 

tensile forces being applied to it. Conversely a compressive strain describes a strain 

whereby the materials length has shortened due to the compressive forces placed 

upon it. Shear strain describes the deformation of a material resulting in a change in 

angle between two planes which were previously perpendicular [131].  
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Equation 2: Compressive and Tensile Strain 

𝜀𝜀𝐶𝐶 =
𝐿𝐿 − 𝐿𝐿𝑜𝑜
𝐿𝐿𝑜𝑜

= −  
Δ𝐿𝐿
𝐿𝐿

 

𝜀𝜀𝑇𝑇 =
𝐿𝐿 − 𝐿𝐿𝑜𝑜
𝐿𝐿𝑜𝑜

=  
Δ𝐿𝐿
𝐿𝐿

 

(ԑc = compressive strain, ԑT= tensile strain, L=final length, Lo = original length) 

 

 

 

 

 

 

 

 

 

 

 

The strain measured at a particular point on a material is dependent on the direction 

in which it is measured relative to the forces acting at that point. The principal strains 

are the strains normal to the forces acting on the point of measurement when the 

shear forces acting at this point are equal to zero [131]. They represent the maximum 

compressive and tensile strains acting on that point due to a given force. 

  

Figure 7: Examples of strain conditions.  

Solid line indicates the initial state, dashed line indicates final state, 
F= Force. A) Compression – the length of the material is reduced due 
to the force acting upon it. B) Tension – the length of the material is 
increased due to the force acting upon it. C) Shear – the angle 
between the two planes is changed from perpendicular.  

 

55 

 



 

3.3.2 Strain Transformation 
To determine strains in directions that are not normal to the forces experienced at the 

point of measurement, a strain transformation is required. This relates the measured 

strain to the principal strain (Figure 8). For instance, if the forces acting on the point of 

measurement were normal to the direction of measurement then the principal 

compressive and tensile strains would be measured (Figure 8: A). However, if the same 

forces were acting n a point of measurement at 45 degrees from the direction of 

measurement, then the measured strain would be shear (Figure 8: B). The strain 

transformation is not limited to normal and 45 degree strains, but relates strain 

measured in any direction relative to the principal strains acting at the point of 

measurement. 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 8: Strain Transformation.  

When the strain is measured normal to the direction of the forces acting on the 
point of measurement, compressive and tensile forces are measured (A). As there 
is no component of shear strain and these strains are normal to the forces at the 
point of measurement, they are defined as principal strains. However, if forces 
acting in the same direction were applied to the material orientated 45 degrees 
from normal then the measured strains would be shear (B). The strain 
transformation relates the strain recorded in any direction at a point on a material 
to the principal strains at that point. 
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3.3.3  Mohr’s Circle 
The strain transformation can be represented in Mohr’s circle, a visual representation 

of all the possible strain measurements at a given point on a material (Figure 9). The 

horizontal axis on which the circle is plotted represents compressive and tensile strain 

whilst the vertical axis represents positive and negative shear strain. 

The principal strains are represented by the extremes of Mohr’s circle along the 

horizontal axis (Figure 9: ԑ1 & ԑ2). The maximum shear strain is represented as the 

radius of Mohr’s circle at point A (Figure 9: A). For an arbitrary measurement angle θ 

between 0 and 45 degrees from normal, the strain can be determined from a point on 

the circumference of the circle. By measuring twice the angle of measurement from 

normal around the circle (Figure 9: 2θ) the strain can be read from the circumference 

of the circle.   

The principal strains can be determined from strain measurements made using rosette 

strain gauges, which measure strain in three different directions (Chapter 3.3.4). 

Mohr’s circle can be plotted using these measurements. Starting with a horizontal axis, 

three lines are drawn intercepting the axis at the magnitude of the measured 

compressive or tensile strains at each strain gauge element (Figure 9: ԑa, ԑb, ԑc). A point 

along the line in the middle of the three is defined to represent the origin of the 

rosette strain gauge (Figure 9: O). The configuration of the strain gauge is drawn 

around this point, with the vertical axis acting as a starting point for measurement of 

the angles between the element of the rosette strain gauge which recorded ԑc and the 

other two elements (Figure 9: α, β). Two lines at these angles and extended to 

intercept the lines ԑa and ԑb (Figure 9: C, D). By drawing a circle incorporating the origin 

(O) of the strain gauge and the two intercepts (C & D), Mohr’s circle is established and 

the principal strains can be determined.   
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The association between the strain gauge measurements and the principal strains can 

also be represented mathematically allowing computation of the principal strains 

directly from strain gauge recordings (Equation 3). 

 

Equation 3: Principal Strain Equation 

𝛆𝛆𝟏𝟏, 𝛆𝛆𝟐𝟐 = 𝛆𝛆𝐚𝐚+𝛆𝛆𝐜𝐜 
𝟐𝟐

± 𝟏𝟏
√𝟐𝟐
�(𝛆𝛆𝐚𝐚 − 𝛆𝛆𝒃𝒃)𝟐𝟐 + (𝛆𝛆𝒃𝒃 − 𝛆𝛆𝐜𝐜)𝟐𝟐ε1,ԑ2 = Principal Strains,  εa, ԑb, ԑc = Strains 

recorded using a rosette strain gauge 

 

Figure 9: Mohr’s Circle.  
Principal strains are found at the extremes of the horizontal axis of the circle (ԑ1, ԑ2). The 
maximum shear strain can be found at the extremes of the vertical axis of the circle (A, B). The 
strain in direction θ degrees from normal can be found from the circumference of the circle 2θ 
from the horizontal axis. Mohr’s circle can be drawn based on strains recorded using a rosette 
strain gauge (ԑa, ԑb, ԑc). Based on the angle between the three elements within the strain gauge 
(α, β), Mohr’s circle can be defined. Mohr’s circle is drawn with a circumference that 
intercepts a defined origin (O) and the points at which lines extending from the origin at the 
angles between the elements intercepts the lines representing the strain at the other two 
elements (C,D). 
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3.3.4 The Strain Gauge 
In order to determine the Principal strains acting on a structure the strain must be 

recorded on the surface of the structure. The most commonly used instrument for 

making strain recordings is a strain gauge, a device which relays a change in length as a 

change in resistance and thus allows calculation of strain. 

3.3.4.1  Single Element Gauge 
Each element of a strain gauge is comprised of a basic unit made of 

wire formed into a grid (Figure 10). The gridded section of the strain 

gauge is bonded directly onto the surface of the material of interest 

and therefore, any deformation of the material surface to which it is 

bonded are transmitted into deformations of the wire.  

A strain gauge is an electrical device and therefore Ohm’s 

Law applies to the strain gauge wire. Ohm’s Law states that 

the voltage travelling down a wire is dependent upon the 

current in the wire and resistance of the wire (Equation 4). 

Equation 4: Ohm’s Law  

V=IR 

V=Voltage, I=Current, R=resistance 

As the surface of the material and subsequently the strain gauge wire is deformed due 

to stress placed upon it, the length and cross sectional area of the strain gauge wire is 

changed. Under tension the wire becomes elongated and the cross sectional area is 

reduced whilst under compression the opposite is true. As the cross sectional area and 

length of the wire is altered, so is the resistance of the wire (Equation 5), resulting in a 

change of output voltage from the strain gauge. 

Equation 5: Resistance 

 𝐑𝐑 = 𝛒𝛒. 𝐥𝐥
𝐀𝐀

 

R= resistance, ρ= resistivity, l=length, A=cross sectional area 

 

Figure 10: A single strain 
gauge element comprised 
of wire formed into a grid. 
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3.3.4.2 Rosette Strain Gauge 
The rosette strain gauge is made up of 3 strain gauge elements (Figure 10), each of 

which detects strain.  

Orientation of the individual strain gauge elements with respect to each other can 

vary, with planar gauge elements on the same plane or stacked gauge elements 

stacked one on top of the other. Delta strain gauge elements record strain in directions 

separated by 60 degrees, however the elements in the rectangular rosette strain gauge 

used in this study are aligned 45 degrees from each other (Figure 11), delivering 

information on the strain experienced in 3 different planes of a material[133]. 

  

 

 

 

 

 

 

 

From the three planes of strain, principal strain can be calculated (Equation 3).  

3.3.5  Strain Gauge Attachment 
In order to achieve good strain measurements in vivo and calculate principal strain, the 

rosette strain gauge needs to be attached securely and directly to the bone. This has 

been approached in two different ways in previous in vivo strain recordings, each with 

their limitations.  The initial in vivo recordings in both animals and humans used glue 

to bond the strain gauge directly to the surface of the bone, requiring the periosteum 

to be retracted to expose the cortex [89, 134-136]. The validity of recordings was 

established in animal studies, however concerns were raised over the integrity of the 

Figure 11: The Rectangular Rosette Strain.  

 
This strain gauge is made up of three elements, Ea, Eb and Ec, each of which records 
strain in a plane 45 degree to the previous element. The element Ea will be aligned with 
the long axis of the tibia in this study. 
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bond between the gauge and the bone[135, 137]. If the bond was weakened then 

underestimation of the strain at the bones surface may occur. 

To overcome the concerns over the integrity of the strain gauge bonding using glue, 

strain gauged bone staples were developed. Standard bone staples were adapted to 

have strain gauges applied to the surface and were then implanted into the cortex of 

the bone [97, 138-145]. Whilst removing the problems associated with bonding in vivo, 

more reports of strain gauge failure were made using this technique[138]. When a 

strain gauge failed, one or more wires snapped, resulting in strain in less than three 

directions being recorded. This made interpreting the data impossible as the principal 

strain could not be calculated and each individual strain gauge element only reflected 

the strain in a single direction, with no reference as to how this related to the principal 

strain. In addition, although bone staples are less invasive (not requiring retraction of 

the periosteum), punctures into the cortex of the bone are made, potentially 

introducing weaknesses into the bone under study.   

Exposing study volunteers to any level of risk must be weighed up against the potential 

population benefit of the research conducted. Both methods for strain gauge 

attachment involve invasive procedures, however in this study, the original method of 

directly bonding the strain gauge to the surface of the bone was used. This technique 

was chosen as the potential risk to participants was lower given the less invasive 

nature of the procedure. The potential for complete data collection was also suggested 

to be higher given fewer previous reports of strain gauge failure using this technique.  

3.3.6 Strain Measurement - Study Protocol 

3.3.6.1 Strain Gauges 

Strain was measured using an FRA 2-11 stacked rectangular rosette strain gauge (TML, 

Tokyo Sokki Kenkyujo Co., Ltd.) (or in the case of participant 6, a C2A-06-062LR-120 

planar rectangular rosette strain gauge (Vishay – precision group, Basingstoke, UK). 

The gauge was bonded directly to the anteromedial aspect of the tibia, at the midpoint 

between the medial aspect of the tibial plateau and the lower border of the medial 

malleolus.  
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3.3.6.2 Strain Gauge Application 

The strain gauges were applied in the theatre of Professor Mark Wilkinson, within the 

Sheffield Teaching Hospitals NHS Foundation Trust.  

The chance of infection was reduced by administration of a 750mg dose of the 

antibiotic cefuroxime to the participant prior to surgery. The skin surrounding the 

application site was cleansed and sterilised using iodine or chlorhexidine. Local 

anaesthetic (marcaine with adrenaline) was administered to the skin and soft tissues 

surrounding the site of application.  

Two small incisions, approximately 1-1.5cm long, were made through the skin. The first 

incision was directly over the site of attachment of the strain gauge and extended 

down to the periosteal surface. The second incision was approximately 2-3cm 

superolateral to the first. Through the first incision, a small area of the periosteum 

(~1cm2) was incised and reflected using a scalpel. Surgical alcohol and surgical 

hydrogen peroxide were used to ‘degrease’ the site of application.  

 

The strain gauge was passed through the second incision so that the strain gauge wires 

tunnelled through from one incision to the other at the site of application. This 

ensured good fixation of the device and minimised the risk of detachment due to pull 

on the wires.  

The back of the strain gauge was flooded with cyanoacrylate adhesive (surgical 

superglue) and was applied to the bone surface using firm pressure from a finger. The 

adhesive can also bond surgical gloves, and for this reason a finger from a sterile glove 

was placed between the gauge and the gloved finger that applied the pressure, to 

ensure that the pressure could be removed without detaching the gauge from the 

bone surface.  

After carefully removing the pressure, the gauge was inspected to ensure that all 

edges were secured to the bone. If the edges were not secure, the gauge was removed 

and the process repeated with a new gauge. Before the wound was closed, the gauge 

function was checked by measuring its resistance using an ohm meter and ensuring 

that the resistance didn’t deviate from the manufacturer’s specifications. 
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A thin coat of cyanoacrylate adhesive was applied to the whole upper surface of the 

strain gauge to provide protection against body fluid.  

The wound was temporarily close and covered using an opsite dressing to minimise 

infection risk. At the end of the experiment, the gauge was removed from the bone 

surface by sharp dissection using a scalpel or adhesive removal reagent. The wound 

was closed using sutures. The patient was reviewed approximately 2 weeks post 

operatively for a wound inspection and removal of sutures. 

 

3.3.6.3 Data Collection 
The Strain gauge was attached, via a Wheatstone bridge, to a DLK 900 DataLINK 

system (Biometrics Ltd, Oxford, UK). Strain data was recorded using DataLog software 

(Biometrics Ltd., Oxford, UK).  

3.4 Statistical and Analytical Techniques 

3.4.1 Fourier Transform 

Data recorded in the time domain can be represented in the frequency domain by 

performing a Fourier transformation (Equation 6). The Fourier transform (f(ω)) 

represents a signal in terms of its constituent sine and cosine waves, allowing analysis 

of the relative contribution of different frequency components to the overall signal. 

Equation 6: Fourier Transform Function: 

𝒂𝒂) 𝒇𝒇(𝝎𝝎) = � 𝒇𝒇(𝒕𝒕)𝒆𝒆−𝒊𝒊𝒊𝒊𝒊𝒊
∞

−∞

 

𝒃𝒃)𝒇𝒇(𝝎𝝎) = ∫ 𝒇𝒇(𝒕𝒕)𝒄𝒄𝒄𝒄𝒄𝒄(𝝎𝝎𝝎𝝎)𝜹𝜹∞
−∞ 𝒕𝒕+∫ 𝒇𝒇(𝒕𝒕)𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊(𝝎𝝎𝝎𝝎)𝜹𝜹∞

−∞ 𝒕𝒕  

ω=Angular frequency, f=Frequency, t=Time, δt=Change in time 

The frequency components that can be analysed are limited by the Nyquist theorem 

which states that the maximum frequency that can be analysed is equal to half the 

sampling frequency (Fs/2). If frequencies greater than Fs/2 are analysed then aliasing 

can occur, where high frequency components are erroneously represented as low 

frequency components of a signal. 

For each frequency analysed, the signal in the time domain (f(t)) is multiplied by both a 

cosine and a sine wave at that frequency. In Figure 12, the blue line represents a signal 
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comprised of a sine wave with frequency 6Hz and amplitude of 0.7mm and a cosine 

wave of frequency 4Hz and amplitude of 0.4mm. The FFT calculates the frequency of 

the signal's components and their amplitudes.  

 

 

 

 

 

In this case the signal has a frequency component at 6Hz and another frequency 

component at 4Hz. The shaded areas in Figure 12 represents part of the Fourier 

transform function solved for A) a 6Hz sine wave, B) a 6Hz cosine wave, C) a 4Hz sine 

wave and D) a 4Hz cosine wave.  

 When the Fourier transform function is solved for the components of the signal A & D, 

the sum of the shaded area is positive. This is because these are frequencies that are 

constituent parts of a signal. The sum of the shaded area is zero for B and C, as they 

are not components of the original signal. The sum of the shaded area for other 

frequencies (i.e. 2Hz, 3Hz, 5Hz etc.) is also zero, as they are not components of the 

original signal (not shown). 

Figure 12: The workings of a Fourier transform.  

The blue line represents a signal comprised of a sine wave with frequency 6Hz and 
amplitude of 0.7mm and a cosine wave of frequency 4Hz and amplitude of 0.4mm. The 
shaded area represents the signal multiplied by A) a 6Hz sine wave, B) a 6Hz cosine wave, 
C) a 4Hz sine wave and D) a 4Hz cosine wave. The sum of the shaded area in A and D, the 
signal multiplied by its constituent sine and cosine waves, is a positive value. The sum of 
the shaded area in B and C, the signal multiplied by non-constituent sine and cosine waves, 
is equal to zero. 

Time (s) 

64 

 



The Fourier transform can be a lengthy process for large data sets as the number of 

mathematical operations involved in the transform is proportional to the length of the 

data (N) squared[146]. To avoid such long calculations, Cooley and Turkey developed 

an algorithm which they called the fast Fourier transform (FFT) [147]. The FFT is an 

algorithm used to perform a discrete Fourier transform (DFT) in fewer mathematical 

operations than directly  evaluating the DFT. For N of length equal to a factor of two 

(e.g 2048), the number of mathematical operations in a fast Fourier transform is 

approximately Nlog2N. For length 2048, which is relatively short by some digital signal 

standards, this would result in 22528 fast Fourier transform operations as opposed to 

4,194,304 direct Fourier transform operations, reducing the number of operations by 2 

orders of magnitude. 

3.4.1.1 Spectral Leakage 
The FFT relies on the assumption that there are a complete number of repeated cycles 

within the signal. If the signal starts or ends part way through the cycle of a sine wave, 

that part of the signal does not fit exactly to one of the frequency lines on the 

spectrum, introducing error into the FFT spectrum.  The result is a flatter and broader 

frequency peak around the frequency of the incomplete cycle which could ultimately 

obscure adjacent frequency components [148].  

3.4.1.2 Windowing 
All time domain data can be said to have had a square or uniform windowing function 

applied to it such that the signal is unaltered. By applying a windowing function which 

tapers at the extremes, the problem of spectral leakage can be reduced. When applied 

to the time domain data, the windowing function reduces the magnitude of the signal 

at the start and end of the time series[149]. This subsequently reduces the input of the 

partial cycles to the frequency spectrum compared to the full cycle frequency 

components as the partial cycles occur at the extremes of the time data. By applying 

the windowing function in sections which move along the time series data, the 

frequency spectrum incorporating all of the full cycles can be established with minimal 

influence of the partial cycles.  
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3.4.2 Fourier Transform – Study Protocol 
A fast Fourier transform with a Hanning window was performed in Matlab R2007b 

using an in house program (Chapter 10.1.1).  The sampling frequency used was 300Hz 

and the number of points in each FFT was 1024, giving a resolution of 0.3Hz which is 

ample for the detection of frequencies separated by 5Hz. 

3.4.3 Statistical Analysis 
Statistical analysis was performed using IBM SPSS 20. Details of the statistical tests 

performed are within the methods sections of the individual results sections. Results 

were considered significant if P<0.05.  
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4 Chapter Four: Method Development 
and Validation 
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4.1 Motion Capture 
Motion capture is typically used in the assessment of habitual locomotor activities, 

aiding in the choice and monitoring of treatment for neural and musculoskeletal 

disorders[150]. Whilst accurate measures of marker displacement are required for gait 

analysis, the assessment of pathological gait using motion capture systems involves 

the identification of relatively large stages of gait such as ‘stance phase’ and ‘swing 

phase’, and their relative contribution to the gait cycle of an individual[151].  

Additional gait analysis measures are based on kinematic calculations which rely not 

only on the accuracy of recorded marker movement, but also on marker positioning 

and computational assumptions within the kinematic calculations[150]. 

Marker placement is important for the accurate calculation of kinematics. It is difficult 

to replicate marker placement precisely, with small variations possible. Given the size 

of movements assessed in clinical gait analysis and variation in marker placement 

which could feasibly exceed the limit of movement detection, the ability of current 

technology to detect movement in the range of 0.1mm, is ample for accurate clinical 

gait assessments [152]. 

In the current study, marker movements as a result of whole body vibration 

transmission are a direct outcome measure.  Peak to peak (P2P) displacements of less 

than 1mm are expected and therefore the ability of the specific Vicon motion capture 

system used to detect movements in the range of 1mm and below needs to be 

assessed.  

4.1.1 Background 
Along with the resolution of the cameras within a motion capture system, the ability of 

a motion capture system to accurately determine small movements is dictated by two 

sources of error.  

4.1.1.1 Instrumental Systematic Error 
Instrumental systematic error (ISE) is associated with poor camera calibration and 

inadequate calibration models. It can cause marker reconstruction errors which 

ultimately affect the determined pose of body segments[153]. As the pose of body 

segments is critical in the calculation of kinematics from motion capture data it is the 

kinematic data that is predominantly effected by ISE.  
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The Vicon camera calibration in this study was performed by a clinical scientist with a 

speciality in gait analysis, using the method specified by Vicon.  

Even with sufficient camera calibration, the accuracy of the system at a given point 

depends on the position of that point with respect to the camera and the focus of the 

calibration[153]. To reduce the effect of ISE further, all recordings using the vibration 

platforms were performed as close to the central focus point of the calibrated area as 

possible. 

Having taken the above steps, the ISE within the system should be minimal. 

4.1.1.2 Instrumental Random Error 
The second source of error in motion capture systems is instrumental random error 

(IRE). This type of error can be caused by a variety of things including electrical noise 

within the system, partially obscured markers and phantom signals[153]. The result of 

much of the IRE is gaps within recorded data which require filling using interpolative 

methods (Chapter 3.2.5). This in itself is another potential source of error as the 

greater the use of interpolation, the less the directly recorded data has a bearing on 

the outcome measures.  

4.1.1.3  Assessment of the accuracy of displacements 
 

In this analysis I aim to assess the impact of the ISE and IRE within the Vicon Nexus 

system used in this study on the ability of the system to accurately detect small 

displacements of the skin mounted markers. I aim to determine the threshold of 

accurate movement detection using the Vicon Nexus system used for this study.    

In order to achieve this, I will establish the change in distance between two markers 

for which there should be no change in distance. Any difference in the distance 

between the two markers will be assumed to be due to errors within the system and 

any measurements of movement smaller than this value will be deemed undetectable 

using the current system.   
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  Figure 13: Graphs showing movements recorded using the Vicon nexus system.  

Movements were recorded at the left toe (LTOE), left knee (LKNE), sacrum (SACR), left 
acromion process (LACR) and forehead (FOHE). Recordings were made at 5Hz frequency 
and 0mm amplitude (left) and 5Hz frequency  5mm amplitude (right) whole body 
vibration on the Galileo 900. At both 5Hz 0mm and 5Hz 5mm a signal is visible at each 
marker, however at the sacrum and forehead the signal is more clearly sinusoidal in the 
5Hz5mm recording. The amount of movement detected due to noise within the Vicon 
nexus system needs to be determined in order to set a threshold below which detected 
movements are more likely due to instrumental random error than caused by propagation 
of the whole body vibration. 
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4.1.2 Methods 
Motion Capture data was collected using 8 MX-F40 cameras positioned around the gait 

laboratory at the Northern General Hospital covering a capture volume of 77m3. Data 

acquisition was made using Vicon Nexus software recording at 300Hz with a minimum 

of three cameras required to start a trajectory and two to continue a trajectory. 

Reflective markers were placed on the Galileo 900 whole body vibration platform at 

positions resulting in 1, 2, 4 and 5mm amplitudes on both the left and right side of the 

platform (Figure 14).  

 

 

 

 

 

 

 

 

 

 

Recordings were made at 5, 10, 15, 20, 25 and 30Hz. Recordings were repeated five 

times for each frequency except 20Hz for which four recordings were made. 

Equation 7: Calculation of the distance between two markers.  

 𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃 𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛 𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦 =  �(𝐱𝐱𝐱𝐱 − 𝐱𝐱𝐱𝐱)𝟐𝟐 + (𝐲𝐲𝐲𝐲 − 𝐲𝐲𝐲𝐲)𝟐𝟐 + (𝐳𝐳𝐳𝐳 − 𝐳𝐳𝐳𝐳)𝟐𝟐 

(X, Y and Z refer to positional coordinates of a marker in the X, Y and Z plane with 1 and 2 

referring to two different markers, marker 1 and marker 2.) 

 
 

  
   

  
 

 
 
  

 
 

  
 

 
 

  
  

 
  

 
  

 
  

 
 

 
  

  
  
   

  
  

  
  
  

 
 

 
  

  
 

 
   

 
 

 
  

 
 

  
 

 
 

   
  

  
 

   
 

   
  

 
 
 

 
 

  
   

Figure 14: Foot positions on the Galileo 900 platform.  
The lines on the footplate represent foot positions of which result in movement of the 

platform of different amplitudes. 1L/R=1mm amplitude left/right foot position, 2L/R=2mm 

amplitude left/right foot position, 3L/R= 3mm amplitude left/right foot position, 4L/R= 4mm 

amplitude left/right foot position, 5L/R = 5mm amplitude left/right foot position. Reflective 

markers from which measurements were made were placed on 1L/R, 2L/R, 4L/R and 5L/R. 
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The distance between two markers when the platform was stationary and when the 

platform was moving at 5, 10, 15, 20, 25 and 30Hz was calculated using Equation 7. 

The distance between markers on corresponding amplitude positions on the left and 

right were calculated (Table 6). 

 

 

 

 

The maximum change in the distance between markers was determined (Figure 15) for 

each recording and the average of this across the five recordings for each frequency 

was reported. Standard deviation and the greatest change in the distance between 

markers for each marker set was also reported.  

 

 

 

 

 

 

 

  

Marker Pair Markers in Pair 

1 1mm left and right markers 

2 2mm left and right markers 

3 4mm left and right markers 

4 5mm left and right markers 

Table 6: Marker Pairings.  

 
Table defining the marker pairings used in the analysis of the change in distance between 
markers. 

Figure 15: Variation in the distance between two markers placed on the 

Galileo 900 platform.  

 
Measurement of the maximum change in distance between the markers was 
taken as the difference between the two bold horizontal lines indicated on 
the graph. 
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 Measurement of the maximum change in distance between the markers was taken as 

the difference between the two bold horizontal lines indicated in Figure 15. 

4.1.3 Results 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Table 8: The change in distance between markers during Galileo 900 movement.  

Marker pair 1: markers on 1mm left and right positions. Marker pair 2: markers on 
2mm left and right positions. Marker pair 3: markers on 4mm left and right 
positions. Marker pair 4: markers on 5mm left and right positions. Recordings of 
each pairing were made at 5, 10, 15, 20, 25 and 30Hz. The average greatest change 
in distance between the markers, standard deviation of the average greatest 
change and maximum change in distance between the markers across all 
recordings are reported here. 

Marker Pair 1 Marker Pair 2 Marker Pair 3 Marker Pair 4

Average Distance 
between Markers 
(mm)

0.07 0.07 0.07 0.07

Maximum Distance 
Between Markers 
(mm)

0.10 0.09 0.09 0.10

Standard Deviation 0.01 0.01 0.01 0.01

      
      

      
     
       

      
   

Table 7: The change in distance between markers when the Galileo 900 is stationary. 

 
Marker pair 1: markers on 1mm left and right positions. Marker pair 2: markers on 
2mm left and right positions. Marker pair 3: markers on 4mm left and right 
positions. Marker pair 4: markers on 5mm left and right positions. The average 
greatest change in distance between the markers, standard deviation of the average 
greatest change and maximum change in distance between the markers across all 
recordings are reported here. 
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When the Galileo 900 was in motion, the average of the greatest change in distance 

between two markers ranged between 0.45mm and 0.53mm with standard deviations 

for each pair of markers not exceeding 0.05mm (Table 8). Of this change in distance 

between markers, 0.07mm is was also present when the platform was stationary. The 

maximum change in distance between markers ranged from 0.5mm to 0.6mm (of 

which 0.09-0.1mm was also observed when the platform was stationary). The 

threshold used for accurate marker movement detection using this system is 

movements greater than 0.6mm. 

When a fast Fourier transform (FFT) of the change in distance between markers was 

run, the average FFT peak at the input frequency ranged from 0.036mm to 0.062mm 

with a maximum standard deviation of 0.02mm (Table 9). The maximum value of a FFT 

peak had a range from 0.055mm to 0.094mm. The threshold used for FFT peaks as a 

result of sinusoidal whole body vibration (WBV) transmission is 0.09mm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 9: Fast Fourier transforms (FFT) of the change in distance between pairs of 

markers.  

Marker pair 1: markers on 1mm left and right positions. Marker pair 2: markers 
on 2mm left and right positions. Marker pair 3: markers on 4mm left and right 
positions. Marker pair 4: markers on 5mm left and right positions. Recordings 
of each pairing were made at 5, 10, 15, 20, 25 and 30Hz and a fast Fourier 
transform of the change in distance between the markers was run. The average 
FFT peak at the input frequency, standard deviation and the maximum FFT peak 
are reported here. 
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4.1.4 Discussion 
The change in distance between markers observed when the Galileo 900 is stationary 

suggests that there is inherent electrical noise in the system, translating to a 

measurable level of movement between markers when none would be expected. 

When the platform is in motion, this change in distance between markers is around 5 

times greater and shows a repeatable trajectory, suggesting either that the motion 

capture markers move relative to each other in a repetitive pattern (i.e at one or more 

resonances). The thresholds determined in this analysis are based on the maximum 

change in distance observed between markers, which is during motion, as this 

accounts for the worst case of signal to noise ratio. Above this threshold, the signal of 

interest should be greater than the random noise within the motion capture system, 

making it possible to confidently report peak to peak displacements and FFT peaks as a 

result of the transmission of WBV through the body.  

Previous methods used to assess the ability of motion capture systems to detect small 

movements have used similar principles. Part of the movement analysis laboratory 

(MAL) test [154] involves determining the coordinates of fixed markers during 

movement of a metal rod within the capture volume and Ehara et al based their 

assessment of marker displacement accuracy on the variation in distance between two 

fixed markers [155, 156].  

In this analysis of marker movement, the Galileo 900 whole body vibration plate was 

used in place of a metal bar. Markers were positioned at fixed points and movements 

were relevant to those being recorded both in position within the capture volume and 

in speed. The markers should not have moved relative to each other during the 

recordings and therefore using the change in distance between markers of differing 

separation provided a thorough assessment of the error within the system. Whilst the 

differences observed could be due to movement of the head of the marker with 

respect to the base, this in itself would be an undesirable measurement of movement 

and therefore may indicate not only the limit of detectable movement, but the 

magnitude of an overestimation of movements recorded during whole body vibration. 

In previously reported transmission of whole body vibration measured using a motion 

capture system, peak to peak displacements reported ranged from 0.2-3.68mm[114, 
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157]. The majority of reported peak to peak displacements were above the threshold 

determined here [157], suggesting our system is capable of detecting the majority of 

transmitted WBV signals throughout the body. The use of a higher sampling frequency 

is a possible reason for the increased sensitivity of the system used to report the peak 

to peak displacements below the threshold established in this study. The capture 

volume used for the recordings may also have been smaller with distance from the 

camera to the markers also reduced, which would allow for increased sensitivity to 

small movements[158]. 

 Therefore, it is still possible that at markers where sinusoidal movement was not 

detected using our system, there is transmission that is indistinguishable from noise in 

context of peak to peak displacement. 

Using a FFT may allow us to discriminate between WBV signal and noise in the 

recordings to a greater degree than through measurement of peak to peak 

displacement. The FFT relies on the detection of sinusoidal wave forms (Chapter3.4.1) 

as demonstrated by the threshold of FFT peak (Table 9) being much smaller than that 

of the peak to peak displacement (Table 8). This suggests there is only a very small 

sinusoidal component within this signal and reaffirms the assumption that changes in 

distance between markers is primarily random. 

The FFT may allow us to determine whether transmission of a sinusoidal signal has 

reached a given marker whose peak to peak displacement is below the threshold. 

However the exact peak to peak displacement or amplitude of the transmitted signal 

cannot be determined from the FFT as its magnitude is specific to an individual 

frequency. In the time domain, signal components at several frequencies may 

converge resulting in an amplitude that differs from the FFT magnitude.  

4.2  Strain Gauge Recordings 

4.2.1 Background 
Tibial strain measurements using rosette strain gauges bonded directly onto the 

surface of the tibia have been made previously in the analysis of human locomotion 

[89, 134, 135]. Absolute values of strain have been reported in all instances, with 

principal compressive strains of 30-1300µԑ and principal tensile strains of 30-750µԑ 
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reported [89, 134, 135]. The absolute strain values recorded are dependent upon the 

defined zero of the strain gauge. At the human tibia, muscles involved in flexion of the 

toes, plantar and dorsi flexion at the ankle,  knee stabilisation, flexion and extension 

and hip extension all insert upon on the tibia, exerting forces on the bone during these 

movements[159]. Defining a leg position that represents true zero, whereby no force is 

exerted upon the tibia through muscle contraction or weight, is therefore impossible 

to achieve. In previous work, zero has been determined using non weight bearing 

during which there is minimal contraction of the major muscles inserting on the tibia. 

In two instances participants were required to lift the leg with the strain gauge off the 

floor and hold it in a static position whilst the strain gauge was zeroed [89, 135].In the 

third study, participants were required to sit on the edge of a seat with their legs 

hanging freely and not touching the floor[134]. Although the strains recorded in each 

of the studies were similar in magnitude [89, 134, 135], the variation in zero technique 

may have influenced the absolute values of strain recorded. Thus, in this analysis I aim 

to describe any differences in strain magnitude achieved using the two different zero 

techniques previously reported as well as two additional techniques. I will also assess 

the reproducibility of zero positions and the maintenance of the zero point over time. 

4.2.2 Methods 
The strain gauge setup used for these tests consisted of an FRA-2-11 rosette strain 

gauge attached to the DataLINK DLK900 amplifier with data recorded using DataLog 

software (Biometrics Ltd, Oxford UK). Recordings were made at a sampling frequency 

of 500Hz and strain output was exported to excel files in engineering units from which 

principal strains were calculated (Equation 8). 

Equation 8: Principal Strain Calculation. ԑ P,Q = compressive and tensile principal strain, 
ԑ1=strain recorded from strain gauge channel 1, ԑ2=strain recorded from strain gauge channel 
2, ԑ3=strain recorded from strain gauge channel 3: 

𝜀𝜀𝑃𝑃,𝑄𝑄 =
𝜀𝜀1 + 𝜀𝜀3

2
±

1
√2

�(𝜀𝜀1 − 𝜀𝜀2) + (𝜀𝜀2 − 𝜀𝜀3) 

Prior to use, the strain gauge setup was tested for accuracy using a fixed resistor test. 

The test was undertaken using a Vishay strain indicator and the resistance detected by 
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the strain gauge setup was compared to a known input resistance. The resistance used 

was equivalent to a strain of 4080µԑ. 

The Penko LCS-3 load cell simulator was used to test the accuracy of the strain gauge 

setup by assessing the ability of the system to measure a load of known quantity.  

After the initial setup tests, a single FRA-2-11 rosette strain gauge was bonded directly 

to the anteromedial surface of the right tibia at the midpoint between the medial 

aspect of the tibial plateau and the lower border of the medial malleolus of a healthy 

male adult.  

Strain data was collected for a single participant whilst the system was zeroed in four 

different ways. The system was zeroed whilst the participant: 1) stood with the right 

leg flexed at the knee, 2) stood with the right leg flexed at the hip and the thigh 

supported, 3) lay supine with the leg supported by the bed, 4) sat on the edge of a 

chair with legs hanging freely. Recordings of the strain gauge being zeroed, the 

participant rising onto their tip toes, going into squat position and returning to the 

original zero position were made for zero whilst knee flexed (1) and hip flexed (2). The 

strain in the tip toes and squat position were recorded after zero whilst supine (3) and 

tip toes, squat and original zero position recorded after zeroing whilst sitting (4).   
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4.2.3 Results 
Test (vs 4080µԑ) Measured strain (µԑ) 
1 4060 
2 4030 
3 4030 

Table 10: Results from a fixed resister test.  

 

The strain gauge setup recorded strain within 50µԑ of that expected from the resister 

used during the fixed resister test (Table 10) and load cell simulation showed 

agreement to be better than 1% between the load cell input and the strain gauge 

system output. 

 

  

Figure 16: The influence of zero technique on the principal strain recorded at the tibia.  

The fixed resistance used simulated a strain of 4080µԑ. Measured strain varied between 
4030µԑ and 4060µԑ. 

 

Principal compressive strains recorded at the anteromedial aspect of the tibia whilst 1)strain 
gauge zeroed with knee in flexion, raising onto tip toes, going into squat position, returning to 
zero position 2) strain gauge zeroed with hip in flexion, raising onto tip toes, going into squat 
position, returning to zero position 3) raising onto tip toes and going into squat position after 
strain gauge zeroed whilst supine 4) raising onto tip toes, going into squat position and 
returning to zero position after strain gauge zeroed whilst sitting. 
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The time point at which the strain gauge is zeroed with  1)the knee in flexion and 2) 

the hip in flexion can be clearly seen as the principal compressive strain magnitude 

reaches zero (Figure 16 – zero). Small fluctuations in the zeroed strain value can be 

observed.   

When the participant rises onto their tip toes, the maximum principal compressive 

strain reached lies between approximately -160µԑ and -180µԑ in all cases except that 

when the strain gauge was zeroed with the participant supine (Figure 16– 1), 2), 4) – tip 

toes). In this instance, the maximum principal compressive strain obtained when the 

participant went onto their tip toes was approximately -100µԑ (Figure 16 – 3) – tip 

toes). A similar trend was seen when the participant adopted a squat position with 

peak compressive principal strains between approximately -100µԑ and -120µԑ (Figure 

16 -1), 2), 4) – Squat) in all cases except zero when supine in which a peak of 

approximately -60µԑ was observed (Figure 16 – 3) – Squat). 

When the initial zero position was adopted post movement, the compressive principal 

strain magnitude returned to value close to zero, with a little fluctuation in the exact 

value achieved (Figure 16 – zero position). 

Although data presented here is for compressive principal strain, a similar trend was 

seen in tensile principal strain. 

4.2.4 Discussion 
The strain gauge setup used in this project was in good agreement with a load cell 

simulator and could accurately and reproducibly measure a fixed resistance (Table 10). 

This indicated that the setup is capable of accurately and reproducibly recording strain. 

When measuring strain at the tibia whilst the strain gauge is zeroed, fluctuations 

around zero are apparent (Figure 16). These fluctuations lie below the level of 

variability in the fixed resister test and therefore could be due to variation within the 

recording system. The fluctuation in strain lies well below the magnitude of the strain 

induced by the movements measured in this study (Figure 16) and in previous work [89, 

134, 135]. This makes it possible to identify the strain due to a given movement 

although, as previously stated by Lanyon et al [135] care should be taken when 

interpreting principal strains around zero. 
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Achieving a zero point using any of the zero techniques in this analysis rendered similar 

strain magnitudes when the participant went onto their tip toes or into a squat 

position (Figure 16). In the case of zero with knee flexion (Figure 16 – (1)), hip 

flexion(Figure 16– (2)) or whilst sitting (Figure 16-(4)), variations in the strain magnitudes 

observed during movement could be due to variation in the height achieved when on 

tip toes or the depth of the squat. When zero was defined as in a supine position with 

the lower leg supported on a bed (Figure 16 – (3)), the strain magnitudes tended to be 

lower than those observed with the other three techniques. A possible explanation for 

this could be the force exerted on the lower leg by the bed. This force would exert a 

strain on the tibia and as such, zero may be obtained under a higher state of load. This 

would result in a lower strain magnitude as the initial baseline strain defined as zero 

would be higher than in the other cases.  

This analysis suggests that the strain gauge set up is capable of recording accurate 

measurements and that defining zero in any position where the lower limb is non 

weight bearing and unsupported will render similar outcomes. This makes comparison 

to previously reported absolute strain magnitudes possible. Any differences between 

the strain magnitudes observed across individuals will be likely to be due to variations 

in bone geometry[160] or the exact positioning of the strain gauge on the tibia. 

4.3 Butterworth Filter Design 

4.3.1 Background 
Elements of unwanted background noise can have substantial bearing on the 

interpretation of recorded digital signals. To discriminate between background noise 

and characteristics of the true signal is not always clean cut, however if something is 

known about the frequency band within which a signal is expected to lie, filtering can 

result in removal of noise from the recorded signal.  

Moving average filters have previously been used in a de-trending algorithm to remove 

movements due to postural sway from motion capture data recorded during WBV 

[157, 161] (Chapter 10.2.2). When applied to a signal, the moving average filter 

produces a good smoothing result, removing random noise from the signal.  In the de-

81 

 



trending algorithm, this smoothed signal is subtracted from the original signal leaving 

the ‘random noise’, in this case the WBV signal.  

Whilst previously used, subtraction of the moving average from the current data set 

after applying a low pass filter with 100Hz cut-off did not remove the noise within the 

data set sufficiently for use with the in house program use to detect peak to peak 

displacements accurately. 

Whilst moving average filters produce good time domain results, they are not 

frequency specific, leaving components of high frequency displacement in the signal 

and making use of the in house program (Chapter 10.1.2) reliant on manual input, 

whilst potentially filtering out elements of the desired signal [162].  

A more direct approach is the application of a band pass filter about the input 

frequency [163]. Whilst potentially omitting a greater range of frequencies, the 

omitted and retained frequencies are defined with this technique.  

The starting point for most filter designs is a low pass filter, in which elements of the 

signal below a defined frequency are retained, whilst elements of the signal above the 

defined frequency are filtered out[162]. A high pass filter has the opposite effect on 

the signal, with frequency components above a defined frequency being retained. The 

low and high pass filters each work around a single defined cut-off frequency, whereas 

by cascading a low and high pass filter, a band pass filter can be attained with two cut-

off frequencies. This allows unwanted noise at both low and high frequencies to be 

filtered out, leaving a specific band of frequency components in the remaining signal.  

 The ideal band pass filter would filter out all of the frequency components of a signal 

outside of the pass band (Figure 17: A). However, this ideal band pass filter cannot be 

realised, the step from stop to pass band will not occur instantaneously, ripple may be 

introduced in the pass band and the stop band attenuation will be finite(Figure 17: B) 

[164].  

Practically, choice of filter is often a trade-off between the performance of the filter in 

the time domain and the frequency domain. As we aim to measure peak to peak 

displacement in the time domain for a signal composed of specific frequencies, a filter 

82 

 



which has minimal effect on the amplitude of the signal yet is capable of being specific 

to certain frequencies is desirable.   

The Chebyshev response of a filter describes the ability of a filter to increase the roll 

off rate at the cut off frequency at the expense of additional ripple in the pass band. 

The Butterworth filter describes a filter which provides the best compromise between 

attenuation in the time domain and phase shift in the frequency domain[164]. It is 

maximally flat (no ripple in the pass or stop band) therefore, as the intention is to take 

measurements of peak to peak displacement, the Butterworth filter presents the best 

option of filter to maintain accurate peak to peak displacements whilst removing 

unwanted frequency components and minimally altering the phase of the frequency 

component of the signal.  

By defining the cut-off frequencies to incorporate the input frequency of the WBV 

signal and the first harmonic above the input frequency, the aim of this analysis is 

design suitable filters for the motion capture data collected. The ideal filter would cut 

off perfectly at a specified frequency. The filters will be made up of cascading 4th order 

sections.  The greater the number of sections, the greater the order and roll off and 

the closer the filter is to having an ideal cut off. However, by increasing the order and 

the steepness of the cut off, greater ripple is seen in the pass band, potentially greatly 

altering the input signal. Therefore, a compromise will be met with filters that have the 

greatest roll off possible whilst keeping pass band ripple maximally flat.  
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4.3.2 Methods 
Motion Capture data was collected for a single participant using 8 MX-F40 cameras 

positioned around the gait laboratory at the Northern General Hospital. Data 

acquisition was made using Vicon Nexus software recording at 300Hz with a minimum 

of three cameras required to start a trajectory and two to continue a trajectory.  

Figure 17: Designing a bandpass filter. 

 
A: the ideal filter response. B: an attainable frequency response. F1= Low frequency cut 
off. F2 = high frequency cut off. Trade-offs are made between the frequency domain in 
terms of the steepness of the step response at the cut of frequencies and the time 
domain in terms of ripple in the pass band and poor stop band attenuation. 
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Reflective markers were placed at 21 anatomical landmarks throughout the body 

(Chapter 3.2.6). 

Motion capture data was recorded whilst the participant stood on the Galileo 900 

WBV platform. Their feet were positioned so that the input signal had amplitudes of 0, 

1, 3 and 5mm and the frequency was increased from 5Hz to 30Hz in 5Hz increments 

resulting in 24 measurements. 

Fast Fourier transforms (FFTs) of unfiltered motion capture data were performed using 

the in house Matlab program (Chapter 10.1.1) for each of the 24 trials. The magnitude 

of the FFT peak at the input frequency was determined and that at the first, second 

and third harmonics if present was also recorded.  

 

Band pass Butterworth filters were designed (Table 11) with the specification that all 

frequencies with a FFT magnitude within 10 fold of that at the input frequency were 

not attenuated.   

 

 

 

 

 

 

Individual filters were designed for each input frequency and applied to a chirp,(Figure 

18), a signal which increases in frequency relative to the time along the x-axis such that 

at 1 second the frequency is 1Hz, at 2 seconds the frequency is 2Hz etc. This was 

achieved using an in house Matlab program (Chapter 10.1.3).  

The filtered chirp was used to determine the frequency response of the individual 

filters and establish that the design specifications were met. Any attenuation of the 

Table 11: Specifications of the Butterworth filters for each input frequency.  
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amplitude of the chirp was a result of the filter and corresponded to a frequency 

dependent upon what time the attenuation occurred.  

 

  

Figure 18: Example of an unfiltered Chirp.  

 
For every second along the x axis, the frequency of the sine wave increases by one Hz. This 
results in a sine wave of peak to peak displacement of 1mm and frequency of 1Hz at 
1seconds, 2Hz at 2seconds, 3Hz and 3seconds etc. 
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4.3.3 Results 
 

  

Figure 19: The contribution of the first three harmonics to the overall signal. 

Blue represents the input frequency, red represents the first harmonic, green the 

second harmonic and purple the third harmonic. By the second harmonic, the 

contribution to the overall signal is tenfold lower than that of the input frequency 

for all frequencies and amplitudes. Given the small contribution of the second 

harmonic and above to the overall signal, filters were designed to include the 

input frequency and first harmonic. 
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The FFT magnitude at the frequency of the input signal is much greater than that at 

any other frequency (Figure 19). There is a component of the signal at the frequency of 

the first harmonic and in some cases, second and third harmonics however by the 

second harmonic, the magnitude of the FFT peak is at least ten fold lower than that at 

the input frequency.  

The Butterworth filters to be applied to the motion capture data at each different 

frequency have cut offs below and above the input frequency (Table 11). 

When each filter is applied to a chirp (Figure 20) the input frequency and first harmonic 

are not attenuated. The amplitude of the signal is attenuated to 50% by the cut off 

frequencies. Frequency cut off one has a greater roll off than frequency cut off two, 

with roll off beginning approximately 2Hz above frequency cut off one and 10-25Hz 

below frequency cut off two. There is no substantial pass band ripple in any of the 

filters. 
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Figure 20: Filtered Chirps.  

Chirp signals filtered with the Butterworth filters specified in Table 9. Attenuation of the 
amplitude of the signals indicates the frequency response of each filter. The left column 
shows the frequency response between 0 and 100Hz. The right column shows the 
frequency response at the input frequency and first harmonic in more detail.  For each 
filter, the amplitude at the input frequency and first harmonic are not attenuated. 
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4.3.4 Discussion 
Motion capture data contains inherent errors stemming from high frequency noise 

within the motion capture system [153]. In some instances, the noise within the 

system is large enough to obscure true signals within recordings, making 

measurements of small movements difficult. In this particular project, the frequency of 

the signal of interest is known due to the input stimulus being a vibration at a 

predefined frequency. This allows specific digital filters to be designed in order to 

overcome this problem by removing signals at frequencies other than the input 

frequency.  

When specifying the cut offs of the digital filters to be used, it is important to take into 

account the possibility of the transmission of vibration at harmonic frequencies. From 

the FFT of a subset of the raw data, transmission of the WBV can be seen at the input 

frequency and first harmonic in all instances (Figure 19). By the second harmonic, the 

magnitude of the FFT is ten-fold lower than that at the input frequency (Figure 19).  

Designing filters is a balancing act between omitting enough of the undesired noise 

and not removing significant portions of the signal of interest. Given the ten-fold or 

greater decrease in the FFT magnitude by the second harmonic, the signal at these 

frequencies and above is unlikely to greatly influence outcome measures of peak to 

peak displacement or root mean squared acceleration. Therefore, filters were 

designed with cut offs that maintained the frequency components at the input 

frequency and first harmonic, but decreased the magnitude of the signal components 

below and above these frequencies. Each filter was centred on the input frequency, as 

in previous whole body vibration study [163] 

The filter design used implements the filters in a number of cascading sections. By 

increasing the number of sections, the filter order is increased and therefore the roll 

off of the filter is increased allowing a more tightly banded filter to be designed [164]. 

However, by increasing the order of the filter, the ripple in the pass band is increased 

and above a certain point results in great augmentation of the signal around the lower 

cut off frequency. Therefore, the filters designed all have two sections as this proved a 

good compromise with a reasonable roll off rate but no significant ripple in the pass 

band. 
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Analysis of the performance of each filter using chirps demonstrated the ability of each 

filter to successfully remove unwanted high and low frequency noise whilst leaving 

signal components at the input frequency and first harmonic unaffected (Figure 20). 

Therefore it can be concluded that the use of the proposed filters will allow accurate 

measurements to be made without the loss or augmentation of significant portions of 

the signal.   
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5 Chapter Five: Transmission of 
Whole Body Vibration in Healthy 

Adults 
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5.1 Whole body vibration: impact on the skeleton  

Multiple studies into the effect of whole body vibration (WBV) on the skeleton have 

shown maintenance or increases in bone density after WBV interventions [1, 105-111]. 

The skeletal areas of most interest when considering WBV as an intervention for 

osteopenia or osteoporosis are the femoral neck and lumbar spine.  These are 

common sites of osteoporotic fracture and associated morbidity [32] and reported 

outcomes of WBV studies have generally focused on changes in areal bone mineral 

density (aBMD) at these sites. 

5.1.1 Whole Body Vibration: a mechanical stimulus 
The effects of mechanical stimuli on bone are local, as demonstrated by the 

differences in geometry and density between the dominant and non-dominant playing 

arms of tennis players[9, 74-77].  In order for whole body vibration (WBV) to cause a 

change in bone mineral density (BMD) at a specific site, a mechanical stimulus as a 

result of the WBV input must reach the site. 

Occupational studies of whole body vibration have demonstrated transmission of 

whole body vibration to the head when participants are in a seated position. The 

frequency and magnitude of the WBV as well as the posture of the participants have all 

been shown to influence the transmission of vibration in an occupational setting [119, 

165]. 

In this study, we aimed to determine the vertical transmission of WBV of different 

frequencies and amplitudes, delivered by fitness and medical WBV platforms, 

throughout the human body when in an standing position. We measured the 

magnitude of stimulus, if any, that reached the level of the hip (as inferred by 

recordings made at the anterior superior iliac spine) and spine (recordings at Sacrum, 

T2 and T10). We also aimed to examine how the transmission was influenced by the 

frequency and the amplitude of the input WBV in this setting. 
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5.2 Methods 

5.2.1 Participant Population  
Data was collected from six healthy volunteers who met the inclusion and exclusion 

criteria of the study (Chapter 3.1). The participants were aged between 18 and 51 

years at the consent visit, were ambulatory, generally healthy (as assessed by medical 

history and physical examination) and were physically willing and able to undergo all 

study procedures. All participants had a BMI less than 30 and a BMD measured by DXA 

between +/- 2.5 SD of the young normal range. The characteristics of the six 

participants included in the study are detailed in Chapter 3.1, Table 4. 

5.2.2 Measurement of Transmission 
Motion capture data was recorded using a Vicon Nexus system with reflective markers 

positioned on 21 anatomical landmarks (Chapter 3.2.6: Figure 6) as described in 

Chapter 3.2.6.  

5.2.3 Whole Body Vibration 
Transmission of WBV delivered by three different platforms was analysed. The Galileo 

900 platform delivered reciprocal WBV at amplitudes of 0-5mm in 5mm increments 

and frequencies of 5-30Hz at increments of 5Hz. To achieve the different amplitudes 

the participant changed the spacing of their feet on the platform (Chapter 4.1.2: Figure 

14). 

The Powerplate Pro 5 platform delivered vertical WBV at amplitudes defined by the 

manufacturer as ‘Low’ and ‘High’ and frequencies of 25Hz and 30Hz. Both the 

amplitude and frequency were changed using the electronic platform settings. 

The Juvent 1000 platform delivered vertical WBV at amplitudes 10 fold lower than 

either the Galileo 900 or Powerplate Pro 5 at a frequency between 32Hz and 37Hz. The 

outcome was an acceleration of 0.3g.  

All participants underwent WBV on the Galileo, Powerplate and Juvent platforms as 

described above (for the order, see appendix S 1). For each frequency and amplitude, a 

single one minute period of WBV was delivered to each participant, during which a 20 

second recording was made.  A rest of up to three minutes between WBV settings was 

given. This gave a total WBV testing time of up to 3 hours for each participant.  
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Recordings were made with participants maintaining a bilateral stance with knees 

slightly bent. Knee angle was at the discretion of the participant and the stance 

adopted was directed to be ‘comfortable’ for the participant. 

5.2.4 Data processing 

5.2.4.1 Peak to Peak Displacement 
 

Raw trajectories were exported to an excel spreadsheet (Microsoft 2010). Data for 

each marker was then filtered in MATLAB 2007b using a bandpass filter, with cut-offs 

dependent upon frequency (Chapter 4.3:Table 11) as defined in chapter 4.3.  

Filtered data was cropped to encompass only a period of recording at which the WBV 

was at a consistent frequency and amplitude. 

The cropped data files were imported into Matlab 2007b and the maximum and 

minimum points of each vibration cycle were determined using the Tibial_Marker 

Matlab program (Chapter 10.1.2).  

Peak to peak displacements for each vibration cycle were determined using the 

minimum and maximum points (Equation 9). 

Equation 9: The Peak to Peak Displacement of a given vibration cycle: 

𝑃𝑃2𝑃𝑃 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 −𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

5.2.4.2 Acceleration 
Accelerations were calculated as the second derivative of the marker position data 

(Equation 10). 

Equation 10: Calculating Acceleration 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣,𝑚𝑚/𝑠𝑠) =
𝛥𝛥𝛥𝛥
𝑡𝑡

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑚𝑚/𝑠𝑠2) =
𝛥𝛥𝛥𝛥
𝑡𝑡

  

(t=time in seconds, d=distance moved by the marker between data capture points, v=velocity) 

Root-mean-square (RMS) acceleration was calculated as the square root of the mean 

of the squared acceleration values in g. 
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Expected RMS acceleration was calculated from the expected frequency and amplitude 

of input using Equation 11 and Equation 12. 

Equation 11: Acceleration from Displacement and Frequency 

𝐴𝐴 = 𝑋𝑋(2𝜋𝜋𝜋𝜋)2 

(A=acceleration, X=displacement, f=frequency) 

Equation 12: RMS Acceleration from Peak Acceleration  

𝑅𝑅𝑅𝑅𝑅𝑅 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

√2
 

 

5.2.4.3 Transmission 
 

To determine the transmission of the WBV, the input signal was defined from the toe 

markers as these were in closest contact with the platform.  For the Galileo 900 

platform, the input signal was taken as the mean of the peak to peak (P2P) 

displacements recorded at the right and left toe. P2P displacement was used in this 

case as a clear sinusoidal signal was observed and displacement was the primary 

output of the motion capture system from the trajectories of each marker. For the 

Powerplate Pro 5 and Juvent 1000 platforms, the input signal had a lower signal to 

noise ratio, making the technique for determining P2P displacement more reliant on 

manual adjustments. To reduce the influence of the individual observer interpretation, 

the input was taken as the mean of the Fast Fourier Transform (FFT)  peak at the right 

and left toe as the FFT peak could be determined without manual adjustment. To 

validate this approach, transmission for the Galileo 900 was reported firstly using P2P 

displacement and then using the FFT peak. Correlation between the two trends was 

assessed to determine consistency between the techniques. 

Transmission was calculated as the percentage of the input signal recorded at a given 

landmark (Equation 13). To ensure the transmission percentage calculated using both 

P2P displacement and FFT peak were comparable, the two different measurements 

were compared using the data for the Galileo 900 platform.  
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Equation 13: Calculation of the transmission of whole body vibration to a given landmark 

Transmission Percentage = �
P2P Displacement or FFT peak (landmark x)

Input
� x100 

(P2P=Peak to Peak, FFT= Fast Fourier Transform) 

5.2.5 Statistical Analysis 
Comparison of the transmission percentage calculated using the P2P displacement and 

and the FFT peak was conducted using a Pearson correlation. Contralateral differences 

in peak to peak displacement and transmission of WBV were analysed using an 

independent T-Test. The influence of amplitude and frequency on the transmission of 

WBV was assessed using a two-way ANOVA with a Dunnett’s T3 post hoc test. 

Significance was assumed at P< 0.05 or below.  

All statistical tests were performed in IBM SPSS version 20.   
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5.3 Results 

5.3.1 Manufacturer Specified Whole Body Vibration Settings 

 

 

 

 

 

 

Table 12: Manufacturer specified (expected) settings vs recorded measures at the toe.   
The Juvent 1000 frequency is within the specified range of 32-37Hz. The amplitude is 10-
fold lower than those of the Powerplate Pro 5 or Galileo 900 and the RMS acceleration is 
0.34g. The Powerplate frequency is within 1Hz at 30Hz however is 2.5Hz greater than 
the specified 25Hz. ‘Low’ yields amplitude of ~ 0.5mm and ‘High’ amplitude of ~1.1mm. 
Expected accelerations for Galileo 900 platform were calculated from the specified 
frequency and amplitude. All Galileo 900 frequencies are within 1Hz of expected. 
Amplitudes are 0.18mm to 1.3mm greater than expected for 0mm, 1mm and 3mm 
expected amplitudes and 0.42mm to 0.97mm lower than the 5mm expected amplitude. 
Expected accelerations are greater than those calculated due to the differences in 
recorded vs expected amplitudes and frequencies. 
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The Juvent 1000 platform delivers synchronous whole body vibration (WBV) at a 

frequency of 34.6Hz and amplitude of 0.02mm resulting in root mean square (RMS) 

accelerations of 0.34g, comparable to the expected frequency range of 32-37Hz and 

peak acceleration of 0.3g stated by the manufacturer (Table 12). 

The measured frequencies of the Powerplate Pro 5 platform are closer in magnitude 

than expected from the manufacturer’s designated 25 and 30Hz.  Regardless of the 

amplitude (Low or High), the 25Hz setting delivered a frequency in the range of 27.2-

27.5Hz while the 30Hz setting delivers synchronous WBV at frequencies of 29.1-29.5Hz 

(Table 12).  At both 25Hz and 30Hz slightly higher frequencies are observed at ‘Low’ 

amplitude than ‘High’ amplitude.  

The amplitude of the synchronous WBV Powerplate Pro 5 is specified as ‘Low’ or ‘High’ 

by the manufacturer. ‘Low’ produced an amplitude of 0.54mm at 27.5Hz and 0.53mm 

at 29.5Hz. ‘High’ produced an amplitude of 1.05mm at 27.2Hz and 1.12mm at 29.1Hz 

(Table 12).  The Powerplate therefore produced RMS accelerations of 1.64g at 25Hz 

‘Low’ setting, 2.03g at 30Hz ‘Low’ setting, 3.12g at 25Hz ‘High’ setting and 3.39g at 

30Hz ‘High’ setting (Table 12). 

The Galileo 900 platform delivers side alternating WBV with manufacturer specified 

settings of 5Hz-30Hz and amplitudes of 0mm-5mm.  All recorded frequencies are 

within approximately 1Hz of the expected value and this was independent of the 

amplitude measured (Table 12).  

Differences between expected and recorded amplitude are observed for the Galileo 

900 platform.  The recorded amplitude increases with frequency from 5-25Hz for 

expected amplitude 0mm and 1mm and from 5-20Hz at expected amplitudes of 3mm 

and 5mm. Recorded amplitudes are greater than expected at expected amplitudes of 

0-3mm, however are lower than expected for an expected amplitude of 5mm. In all 

cases, the discrepancy between expected and recorded amplitude for the Galileo 900 

platform is less at 5Hz-15Hz expected frequency than at 20Hz-30Hz expected 

frequency (Table 12). 
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As expected, the RMS accelerations recorded for the Galileo 900 platform increase 

with both increasing input frequency and amplitude (Table 12). The recorded RMS 

accelerations are different to those expected due to the discrepancies in expected and 

recorded frequencies and amplitudes.  Recorded amplitudes are greater than expected 

at 0mm and 1mm settings but less than expected at the 5mm setting, whilst recorded 

frequencies are lower than expected in all cases. As the accelerations at 0mm and 

1mm expected amplitudes are greater than expected and at 5mm expected amplitude 

are lower than expected, the discrepancy in the acceleration between recorded and 

expected is primarily influenced by the discrepancy in amplitude (Table 12).  

The Galileo 900 platform delivers a range of accelerations from low magnitude 

accelerations (e.g. 0.12g at 5Hz 1mm input) to high magnitude accelerations (e.g 

10.59g at 30Hz 5mm input) (Table 12). 

 

 

 

 

        
      

      
     
       

      
   

Figure 21: Effect of weight on the motion at the surface of the Galileo 900.  
The difference in the peak to peak displacements recorded at the surface of 
the Galileo 900 platform were compared between participants of differing 
weight using a two way annova with Dunnett’s T3 post hoc test. Peak to peak 
displacement is presented as the mean with 95% confidence interval. There 
was no clear relationship between weight and the peak to peak displacement 
at the surface of the platform. However  a significant difference between the 
peak to peak displacement at the surface of the platform for the participant 
weighing 72.1kg and all other participants was observed. Significance level  is 
***P<0.001. 100 

 



When assessing the manufacturer specified settings, there was no participant stood on 

any of the platforms. When loaded with different weights, the platforms may have 

performed differently dependent upon the load. To determine whether the weight of 

the participants resulted in differences in input vibration, the input stimulus was 

compared between participants of differing weight (Figure 21). For the Galileo 900, 

peak to peak displacement was used as a measure of the input stimulus. No 

relationship between weight and the peak to peak displacement was observed. 

However for the participant weighing 72.1kg, the peak to peak displacement at the 

surface of the platform was significantly lower than that recorded for all other 

participants. In the case of the Powerplate Pro 5, no significant difference between the 

FFT peak at the platform was seen between participants of different weights (Figure 

22). 

 

  

Figure 22: Effect of weight on the motion at the surface of the Powerplate Pro 5. 

The difference in the FFT Peaks recorded at the surface of the Powerplate Pro 5 
platform were compared between participants of differing weight using a two way 
annova with Dunnett’s T3 post hoc test. FFT peak is presented as the mean with 
95% confidence interval. There was no significant difference between the FFT 
Peaks at the surface of the platform for any of the participants 
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5.3.2 Accelerations at Anatomical Landmarks Generated by Whole Body Vibration 
of Different Frequencies and Amplitudes 

  
Figure 23: Accelerations delivered by the Galileo 900 platform at frequencies between 5Hz 
and 30Hz and amplitudes between 0mm and 5mm.  

Accelerations were calculated from displacements of the markers recorded using the Vicon 
Nexus motion capture system. The magnitude of the acceleration increases from the heel 
to the ankle before decreasing up to the forehead. Maximum root mean squared (RMS) 
acceleration ranges from 0.1g at the heel and ankle 5Hz0mm to 12.87g at the ankle 
30Hz5mm.The smallest acceleration detected is 0.03g in the torso at 5Hz0mm. ASIS= 
Anterior Superior Iliac Spine, T10=10th Thoracic Vertebrae, T2= 2nd Thoracic Vertebrae, L&R 
Acromion= Left and Right Acromion Process respectively. Error bars:  95% confidence 
intervals.  
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As expected the RMS acceleration increases with increasing amplitude and/or 

frequency (Figure 26).  As input amplitude increases, so does the RMS acceleration for a 

given frequency (Figure 26, Figure 23).  As input frequency increases, the RMS 

acceleration for a given input amplitude also increases (Figure 26, Figure 23). In all cases, 

the greatest RMS acceleration observed for a given frequency is at the ankle at an 

input amplitude of 5mm (Figure 23 Amplitude: 5mm). The relationship between 

amplitude, frequency and acceleration is described further in terms of transmission 

(Chapter 0). 

In the lower limb, RMS accelerations delivered by the Galileo 900 platform increase 

from the heel to the ankle before decreasing from the ankle to the ASIS at most 

frequencies and amplitudes (Figure 23).   

For the lowest frequency (5Hz), the greatest RMS is 0.32g, observed at the right heel at 

5Hz 5mm (Figure 23 Amplitude: 5mm). This acceleration is not dissimilar to the input 

RMS acceleration of 0.3g (Table 12) and the difference between the heel and ankle 

that is observed at higher frequencies is not observed at 5Hz 5mm, with a RMS 

acceleration of 0.3g being observed at the ankle (Figure 23 Amplitude:5mm).  

The greatest RMS acceleration for a given amplitude increases from 5Hz to 30Hz, with 

the greatest RMS acceleration of 12.87g observed at the right ankle at 30Hz5mm 

(Figure 23 Amplitude: 5mm). This is slightly greater than the RMS acceleration of 

10.59g at input (Table 12). 

In the torso, great attenuation of the WBV signal is observed. For the 5Hz 5mm input, 

the input RMS acceleration of 0.3g decreases to values between 0.07g and 0.11g in the 

torso (Figure 23 Amplitude:5mm). The smallest RMS acceleration observed at 5Hz is 

0.03g in the torso at 5Hz 0mm (Figure 23 Amplitude: 0mm). 

 At higher frequencies, greater RMS accelerations are observed in the torso. The 

smallest RMS acceleration observed at 30Hz is 0.38g at the forehead at 30Hz1mm, 

similar to that of the input at 5Hz0mm (Figure 23 Amplitude:0mm, Figure 23 

Amplitude: 1mm).   
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At the anterior superior iliac spine (ASIS) and spine (Sacrum, T10,T2), the greatest RMS 

accelerations generated are at 30Hz5mm, where 1.17g and 1.07g were recorded at the 

left and right ASIS respectively, 0.57g was recorded at the sacrum and 0.81g was 

recorded at the 10th thoracic vertebrae (T10) (Figure 23 Amplitude: 5mm). The smallest 

RMS accelerations delivered to the ASIS and spine are at 5Hz0mm where RMS 

accelerations equal to or less than 0.08g are observed at the ASIS, sacrum, T10 and T2 

(Figure 23 Amplitude: 0mm).  

As with the Galileo 900 platform, the Powerplate Pro 5 platform generates greater 

RMS accelerations for a given frequency as input amplitude increases and also for a 

given amplitude as input frequency increases (Figure 24).   

Again, the greatest RMS accelerations generated by the Powerplate Pro 5 are observed 

at the ankle, with values exceeding the accelerations at the heel. In the case of 25Hz 

and 30Hz ‘High’, the RMS accelerations of 4.07g and 6.38g respectively at the ankle are 

slightly higher than those seen during WBV on the Galileo 900 at similar input 

frequencies and amplitudes (Table 12 Galileo 900: 25Hz0mm & 30Hz0mm), for which 

3.61g at 25Hz0mm and 5.72g at 30Hz0mm are generated at the ankle (Figure 23 

Amplitude:0mm).  

At the level of the ASIS the RMS accelerations are attenuated compared to those at the 

ankle, however in the case of 25Hz and 30Hz High, are still greater than those 

delivered by the Galileo 900 at similar amplitude and frequency.  

For the ‘Low’ amplitude inputs, accelerations at the ASIS and spine are lower than 

those at the ‘High’ amplitude inputs and, with the exception of T2, the RMS 

accelerations observed at 25Hz ‘High’ are the greatest generated at these sites by the 

Powerplate Pro 5. 

Whilst RMS accelerations are attenuated in the torso, the attenuation occurs to a 

lesser extent than that observed for the Galileo 900.  
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Figure 24: Accelerations delivered by the Powerplate Pro 5 platform at frequencies of 
25Hz and 30Hz and amplitude settings of ‘Low’ and ‘High’.  

Accelerations were calculated from displacements of the markers recorded using the Vicon 
Nexus motion capture system. The accelerations are reported as means with error bars 
showing the 95% confidence interval. The magnitude of the acceleration increases from 
the heel to the ankle before decreasing up to the forehead with a slight discrepancy 
between the markers on the left and right leg. Maximum root mean squared (rms) 
acceleration ranges from 2.9g at the ankle at 25Hz ‘Low’   to 6.4g at the ankle at 30Hz 
‘High’.The smallest acceleration detected is 0.5g in the torso at 25Hz ‘High’ and the ASIS at 
25Hz ‘Low’. ASIS= Anterior Superior Iliac Spine, T10=10th Thoracic Vertebrae, T2= 2nd 
Thoracic Vertebrae, L&R Acroimion= Left and Right Acromion Process respectively. Error 
bars:  95% confidence intervals. 
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During calibration, the Juvent 1000 generates RMS accelerations comparable to those 

generated by the platform after calibration (Figure 25). The greatest difference in RMS 

acceleration observed between the calibration period of the Juvent 1000 and the 

period after calibration is seen at the left ankle where, during calibration, a RMS 

acceleration 1.25g greater than after calibration is generated (Figure 25). At the left 

Figure 25: Juvent 1000 during and after calibration.  

 Root mean square (RMS) accelerations delivered by the Juvent 1000 platform at 
frequencies between 32-37Hz and acceleration in the order of 0.3g, during and after 
calibration of the platform. Accelerations were calculated from displacements of the 
markers recorded using the Vicon Nexus motion capture system. The trend of RMS 
accelerations generated by the Juvent 1000 platform differs only slightly between the 
period during and the period after calibration of the platform. The greatest difference is 
at the left ankle, where the RMS acceleration during calibration is greater. At the left 
knee and sacrum, there is a RMS acceleration during calibration but not after calibration. 
ASIS= Anterior Superior Iliac Spine, T10=10th Thoracic Vertebrae, T2= 2nd Thoracic 
Vertebrae, L&R Acroimion= Left and Right Acromion Process respectively. 
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knee and the sacrum, RMS acceleration generated by the Juvent 1000 is seen during 

but not after calibration (Figure 25). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 26: Accelerations delivered by the Juvent 1000 platform at frequencies 
between 32-37Hz and acceleration in the order of 0.3g.  

 

 

A) Root-Mean-Square (RMS) accelerations with 95% confidence intervals. B) RMS 
accelerations. Accelerations were calculated from displacements of the markers 
recorded using the Vicon Nexus motion capture system. The magnitude of 
accelerations increase from the heel to the ankle and the tibia to the knee, before 
decreasing to the ASIS. Greater accelerations are seen at the sacrum compared to the 
ASIS and there is a decrease in accelerations from the sacrum to the forehead. 
Accelerations range from 0.08g at the thigh to 0.72g at the sacrum. ASIS= Anterior 
Superior Iliac Spine, T10=10th Thoracic Vertebrae, T2= 2nd Thoracic Vertebrae, L&R 
Acromion= Left and Right Acromion Process respectively. Error bars:  95% confidence 
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The confidence intervals associated with the RMS acceleration generated at the right 

heel, right knee, thighs, left ASIS, sacrum, T2 and forehead by the Juvent 1000 all cross 

zero. At the right heel, right knee, sacrum and T2 the confidence intervals are also 

large (Figure 26: A).  

The greatest RMS acceleration generated by the Juvent 1000 platform is observed at 

the ankle, with magnitudes of 0.68g and 0.49g at the left and right ankle respectively 

(Figure 26: B). This is greater than the input acceleration of 0.34g (Table 12: Juvent 

1000). In the lower leg, the RMS acceleration is greater at the ankle and knee than the 

heel, tibia and thigh, with a smaller RMS acceleration at the thigh than at the tibia and 

smaller RMS acceleration at the tibia than at the heel (Figure 26). At the sacrum, the 

RMS acceleration is greater than that at the ASIS with a magnitude of 0.61g, similar to 

that at the ankle (Figure 26: B).  

The 0.1g RMS acceleration at the ASIS is lower than at input, however at the sacrum, 

T10 and T2, the RMS accelerations of 0.61g, 0.54g and 0.47g respectively are greater 

than at input and similar to those observed at the ankle and knee (Figure 26: B).   

Compared to the Powerplate Pro 5, the RMS accelerations at the ASIS and spine 

generated by the Juvent 1000 are much smaller, with values around half of those 

generated by the Powerplate Pro 5 (Figure 24, Figure 26 B). Compared with the Galileo 

900 at input frequencies of 5Hz and 10Hz at all input amplitudes and 15Hz when the 

input amplitude is 0mm, 1mm or 3mm, the RMS acceleration generated at the ASIS 

and spine by the Juvent 1000 is greater by up to a factor of 10.  At Galileo 900 input 

settings of 15Hz5mm and above, RMS accelerations generated at the ASIS and spine by 

the Juvent 1000 are similar in magnitude (Figure 23, Figure 26 B). For the Galileo 900 

settings which result in RMS accelerations at the ASIS and spine of similar magnitude 

to the Juvent 1000, the RMS accelerations at input, the heel and the ankle are much 

greater than those generated at the same location by the Juvent 1000 (Figure 23, Figure 

26 B). Galileo 900 settings of 5Hz 5mm and 10Hz 0mm produce RMS accelerations 

comparable to those generated by the Juvent 1000 at input, the heel and the ankle. 

For these settings, the RMS accelerations at the ASIS are greater that those generated 

by the Juvent 1000, with magnitudes at 5Hz5mm of 0.29g and 0.2g and at 10Hz0mm of 
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0.41g and 0.23g at the left and right ASIS respectively (Figure 23, Figure 26 B). Above the 

ASIS, accelerations generated by the Galileo 900 at 5Hz5mm and 10Hz0mm are smaller 

than those generated by the Juvent 1000, with RMS acceleration ranging between 

0.07g and 0.13g (Figure 23, Figure 26 B). 

5.3.3 Contralateral Differences in Whole Body Vibration Transmission 

 

  Figure 27: Contralateral differences in peak to peak (P2P) displacements generated by the 
Galileo 900 platform.  

There are small but significant differences between the P2P displacements observed on 
the right and left sides of the body at 5Hz5mm, 30Hz1mm and 30Hz5mm.  ASIS = Anterior 
Superior Iliac Spine. Side to side differences were assessed using an independent T-test, 
*P<0.05, ** P<0.01, ***P<0.001. 
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 The peak to peak (P2P) displacement  delivered to the left and right leg of participants 

when stood on the Galileo 900 platform was significantly different at several sites at 

30Hz frequency  1mm amplitude, 5Hz frequency 5mm amplitude and 30Hz frequency  

5mm amplitude WBV settings (Figure 27).  The P2P displacement at the left and right 

knee is significantly different in all three cases, as is the P2P displacement at the left 

and right ankle at a frequency of 30Hz (Figure 27).   

  Figure 28: Contralateral differences in peak to peak (P2P) displacements generated by the 
Galileo 900 platform.  

Transmission percentage is the P2P displacement taken as a percentage of the input. Mean 
transmission percentage with 95% confidence intervals are presented. There are small but 
significant differences between the transmission percentage observed on the right and left 
sides of the body at 5Hz5mm, 30Hz1mm and 30Hz5mm.  ASIS = Anterior Superior Iliac 
Spine. Side to side differences were assessed using an independent T-test, * P<0.05, ** 
P<0.01, ***P<0.001. 
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When the P2P displacement generated by the Galileo 900 platform was represented as 

a percentage of the input stimulus (taken as the mean P2P displacement at the toe), 

the contralateral differences with a significant difference between the left and right 

heel, knee and anterior superior iliac spine at all WBV settings. The toe markers no 

longer showed a difference at any WBV setting’ with: ‘remained at the sites seen when 

P2P displacement was plotted (Figure 28). 

Percentage transmission, calculated from FFT magnitude as a percentage of the input, 

show fewer significant side to side differences for the Powerplate Pro 5 recordings, 

with a significant difference observed at the tibia at 25Hz ‘Low’ and ‘High’, the knee at 

25Hz ‘High’ and the ASIS at 30Hz ‘Low’ (Figure 29). No significant side to side 

differences in percentage transmission were observed for the Juvent 1000 platform 

(Figure 30). 

 

  A fast Fourier transform of displacements measured using a Vicon motion capture 
system was performed and the magnitude at each marker represented as a percentage 
of that at input. Mean transmission percentage with 95% confidence intervals are 
presented. Markers were positioned bilaterally at anatomical landmark, ASIS = Anterior 
Superior Iliac Spine Side to side differences were assessed using an independent T-test, 
* P<0.05, ** P<0.01, ***P<0.001. Side to side differences were observed at the Tibia at 
25Hz Low and 25Hz High, the knee at 25Hz High and the ASIS at 30Hz Low. 

 

Figure 29: Contralateral differences in whole body vibration transmission on the 
Powerplate Pro 5 platform.  

111 

 



  

Figure 30: Contralateral differences in whole body vibration 
transmission on the Juvent 1000 platform.  

A fast Fourier transform (FFT) of the displacements measured 
using a Vicon motion capture system was performed and the 
magnitude at each marker represented as a percentage of that 
at input. Mean transmission percentage with 95% confidence 
intervals are presented. Markers were positioned bilaterally at 
anatomical landmarks. ASIS = Anterior Superior Iliac Spine. 
Side to side differences were assessed using an independent 
T-test, no significant difference was found. 

Transmission of WBV to Contralateral Anatomical Landmarks Using 
the Juvent 1000: FFT Magnitude as Percentage of Input 
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5.3.4 Transmission of Whole Body Vibration: Galileo 900 Platform 

5.3.4.1 Transmission of Whole Body Vibration at Anatomical Landmarks 
Compared to Input 

 

 

  

Figure 31: The effect of frequency on the transmission of whole body vibration (WBV) 
delivered by the Galileo 900 platform compared to input.  
The Galileo delivered side alternating WBV at frequencies of 5-30Hz and amplitudes of 0-
5mm. Percentage of WBV transmitted to anatomical landmarks was calculated from 
peak to peak displacements measured using a Vicon motion capture system.  Mean 
transmission percentage with 95% confidence intervals are presented. Transmission 
decreases from input to forehead, with deviations in this trend at the ankle and thigh. 
The exact trend of the transmission of vibration from input to forehead appears to show 
amplitude dependence. L & R refer to the left and right respectively. ASIS = anterior 
superior iliac spine.  Differences between vibration transmission at input and at each 
anatomical landmark were assessed using a one-way ANOVA with Dunnett’s T3 post-hoc 
test. All outcomes significant at p<0.001 unless indicated. NS=Not Significant, *p<0.05, ** 
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The transmission of WBV delivered using the Galileo 900 platform is significantly 

attenuated above the anterior superior iliac spine (ASIS) at all frequencies and 

amplitudes investigated (Figure 31 &Figure 32).  

In the lower limb, transmission increases from the heel to the ankle, before generally 

decreasing from the ankle to the ASIS, with a significant decrease compared to input at 

most anatomical landmarks studied. At the ankle, there is greater transmission than at 

the heel or tibia and the transmission at the ankle is also significantly different to the 

input at frequencies above 15Hz at all amplitudes (P<0.001 with the exception of the 

left ankle at 20Hz0mm and at 20,25 and 30Hz 5mm which show no significant 

difference (Figure 31)). At the higher frequencies of 20-30Hz, there is a significant 

increase in transmission compared to input; whereas at lower frequencies there is 

either no significant difference compared to input or the observed difference in is a 

decrease..  

At the thigh, there is greater transmission than at the knee or ASIS and the 

transmission is significantly different to the input at the majority of amplitudes and 

frequencies studied (P<0.001 with the exception of the left thigh at 10&15Hz 0mm, 

15Hz 1mm, 5&15Hz 3mm, 5Hz 5mm and the right thigh at 10&15Hz0mm, 15Hz1mm, 

15Hz3mm and 15Hz5mm where there is no significant difference (Figure 31)). In this 

instance, the transmission is significantly greater than at input for the lower 

frequencies between 5-15Hz, whereas at higher frequencies the transmission is 

significantly lower than at input. 

The amplitude of the input appears to have less bearing on the attenuation pattern of 

the WBV signal (Figure 32)). At frequencies up to 20Hz, attenuation shows a similar 

pattern for all amplitude inputs. At 25 and 30Hz, 0mm and 1mm amplitude inputs 

show greater transmission at the ankle than 3mm and 5mm amplitude inputs, 

however all amplitudes can be show to result in greater transmission at the ankle than 

at input (Figure 32). 
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Figure 32: The effect of amplitude on the transmission of whole body vibration (WBV) 
delivered by the Galileo 900 platform compared to input.  
The Galileo delivered WBV at frequencies of 5-30Hz and amplitudes of 0-5mm. 
Percentage of WBV transmitted to anatomical landmarks was calculated from peak to 
peak displacements measured using a Vicon motion capture system. Mean 
transmission percentage with 95% confidence intervals are presented. Transmission 
decreases from input to forehead, with deviations in this trend at the ankle and thigh. 
The exact trend of the transmission of vibration from input to forehead appears to 
show frequency dependence. L & R refer to the left and right respectively. ASIS = 
anterior superior iliac spine.  Differences between vibration transmission at input and 
at each anatomical landmark were assessed using a one-way ANOVA with Dunnett’s T3 
post-hoc test. All outcomes significant at p<0.001 unless indicated. NS=Not Significant, 
*p<0.05, ** p<0.01. 
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5.3.5 Using the Fast Fourier Transform to Determine the Transmission of 
Whole Body Vibration 

  Figure 33: Transmission of whole body vibration (WBV) delivered by the Galileo 900 
platform at frequencies of 5-30Hz and amplitudes of 0-5mm.  

A fast Fourier transform (FFT) of the displacements measured using a Vicon motion 
capture system was performed and the magnitude at the input frequency was 
recorded for each marker. Mean transmission percentage with 95% confidence 
intervals are presented. The transmission based on FFT magnitude closely is strongly 
positively correlated with the transmission based on peak to peak displacement. 
Pearson’s correlation to compare transmission based on FFT magnitude and 
transmission based on peak to peak displacement was performed. There were 
significant R values between 0.989 and 1.000 in all cases (P<0.001). L & R refer to the 
left and right respectively. ASIS = anterior superior iliac spine. 
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The trend observed when transmission is assessed using the FFT magnitude at the 

input frequency (Figure 33) closely matches the trend seen when transmission is 

assessed based on peak to peak displacements (Figure 31, Figure 32, Figure 33). The two 

trends are significantly positively correlated with R values ranging between 0.989 and 

1.000 (P<0.001) in all cases (Figure 33). 

5.3.5.1 Frequency Dependency of Whole Body Vibration Transmission 
When observing the trend of WBV transmission with the inputs grouped by frequency, 

it appears that the transmission percentage at a given marker is dependent on the 

input frequency. At the ankle, transmission percentage increases as frequency 

increases whereas at markers above the ankle an inverse relationship between 

frequency and transmission percentage is observed (Figure 34). 

At a 0mm input amplitude, the transmission of the vibration to the knee, thigh and 

ASIS shows clear frequency dependence, with an increase in transmission from 5Hz to 

15Hz input frequency (5Hz-10Hz at the ASIS) and a decrease from 15Hz to 30Hz input 

frequency (10Hz-30Hz at the ASIS) (P< 0.001 as shown in Figure 34 with the right knee 

showing no significant trend) (Figure 34 Amplitude: 0mm). 

At 1mm, 3mm and 5mm input amplitudes, the trend is generally the same, however 

the initial increase in transmission is only between input frequencies of 5Hz and 10Hz 

and there is a significant decrease in transmission from 10Hz to 30Hz (Figure 34 

Amplitude: 1mm, 3mm, 5mm). 
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At the Ankle, transmission of vibration shows a clear frequency dependency at 0mm 

and 1mm amplitudes however this is lost at higher amplitudes. 

At input amplitudes of 0mm and 1mm, a greater percentage of the input is transmitted 

to the ankle at higher frequencies (Figure 34). This difference in the amount of vibration 

transmitted to the ankle at an input amplitude of 0mm shows significant increase with 

frequency (P<0.001) interrupted by a plateau in the percent transmitted to the ankle 

Figure 34: The effect of frequency on the transmission of whole body vibration (WBV) at 
delivered by the Galileo 900 platform.  
Percentage of WBV transmitted to anatomical landmarks was calculated from peak to peak 
displacements measured using a Vicon motion capture system. Transmission of WBV was 
found to be dependent on the input frequency at most marker positions, with the exact 
relationship also dependent on the input amplitude. L & R refer to the left and right 
respectively. ASIS = anterior superior iliac spine.  Differences in transmission between 5Hz, 
10Hz, 15Hz, 20Hz, 25Hz and 30Hz stimuli were analysed for a given amplitude (0mm, 1mm, 
3mm and 5mm) of WBV using a one-way ANOVA with Dunnett’s T3 post-hoc test. All outcomes 
significant at p<0.001 unless indicated. NS=Not Significant, *p<0.05, ** p<0.01. 
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between 10Hz and 15Hz and by a decrease in transmission from 15Hz to 20Hz (Figure 

34, Amplitude: 0mm). 

A similar significant (P<0.001) trend is shown at 1mm input amplitude, with a decrease 

or plateau in the percent of the input transmitted to ankle between 10Hz and 15Hz for 

the left and right ankles respectively. This results in no significant difference in the 

vibration transmitted to the left ankle at 5Hz compared to 15Hz and the right ankle at 

10Hz compared to both 5Hz and 15Hz (Figure 34, Amplitude: 1mm). At 3mm and 5mm 

amplitudes this frequency dependence is lost at the ankle. 

5.3.5.2 Amplitude Dependency of Whole Body Vibration Transmission 

When observing the trend of WBV transmission with the inputs grouped by amplitude 

it also appears that the input amplitude has a bearing on the transmission percentage 

at a given marker, however the trend is less clear than for frequency.  

In the lower limb, at 5Hz and 10Hz input frequency, the trend associated with input 

amplitude is an increase with increased input amplitude. At 20Hz, 25Hz and 30Hz, the 

effect of amplitude on transmission is less marked as a clear trend is seen at fewer 

markers as the input frequency increases.  

At 5Hz input frequency, the trend associated with the input amplitude is clearly 

defined at each marker. In general, the transmission of WBV increases with input 

amplitude from 0mm to 3mm at the markers from the ankle up to the ASIS (P<0.001 

with the exception of left ankle 0mm - 1mm, right knee 0mm - 1mm and left and right 

ASIS 0mm - 1mm NS)  (Figure 35 Frequency: 5Hz). As the frequency of input is 

increased, this relationship is observed at fewer markers, with an increase of WBV 

transmission with increased input amplitude from 0mm to 5mm at the ankle to the 

thigh at 10Hz input frequency (P<0.001 with the exception of  left ankle, right knee and 

right thigh 3mm - 5mm P<0.01, left knee 3mm - 5mm and left thigh 3mm- 5mm NS)  

and the ankle to the knee at 15Hz input frequency (P<0.001 with the exception of right 

ankle, left knee 3mm - 5mm and right knee 0mm -1mm NS (Figure 35 Frequency: 10Hz, 

Figure 35 Frequency: 15Hz). At 20Hz and 25Hz the only increase of transmission with 

increased input amplitude is between 0mm and 1mm at the left ankle (P<0.001) and 

0mm to 3mm and 1mm to 5mm at the right knee respectively (P<0.001) whilst at 30Hz  
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the only increase in WBV transmission with input amplitude was between 0mm and 

1mm at the left ankle (P<0.001) (Figure 35: Frequency: 20Hz, Figure 35 Frequency: 25Hz, 

Figure 35 Frequency: 30Hz). However at 20-30Hz, the transmission to the ankle shows 

a decrease with increased input amplitude, in contrast to the increase seen at 5Hz and 

10Hz. Above the ankle, a clear relationship appears harder to define at 20-30Hz (Figure 

31). 

 

 

 

 

Figure 35: The effect of amplitude on the transmission of whole body vibration at 
different frequencies delivered by the Galileo 900 platform.  
Percentage of WBV transmitted to anatomical landmarks was calculated from peak to 
peak displacements measured using a Vicon motion capture system. Mean transmission 
percentage with 95% confidence intervals are presented. Transmission of WBV was 
found to be dependent on the input amplitude at most marker positions, with the exact 
relationship also dependent on the input frequency. L & R refer to the left and right 
respectively. ASIS = anterior superior iliac spine.  Differences in transmission between 
5Hz, 10Hz, 15Hz, 20Hz, 25Hz and 30Hz stimuli were analysed for a given frequency (5Hz, 
10Hz, 15Hz, 20Hz, 25Hz, 30Hz) of WBV using a one-way ANOVA with Dunnett’s T3 post-
hoc test. All outcomes significant at p<0.001 unless indicated. NS=Not Significant, 
*p<0.05, ** p<0.01. 
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Whilst at 5Hz to 15Hz input frequencies the trend is for an increase in WBV 

transmission with increased input amplitude, at 20Hz to 30Hz this trend shifts to a 

decrease in WBV transmission with increased input amplitude (Figure 35). 

5.3.5.3 Transmission of Whole Body Vibration: Powerplate Pro 5 

 

 

  

Figure 36: Transmission of whole body vibration (WBV) delivered by the Powerplate Pro 5 
platform at frequencies of 25Hz and 30Hz and amplitude settings of ‘Low’ and ‘High’. 

 
A fast Fourier transform (FFT) of the displacements measured using a Vicon motion capture 
system was performed and the magnitude at the input frequency was recorded for each 
marker. Transmission was calculated as the FFT magnitude at a marker as a percentage of 
the FFT magnitude of the input. Mean transmission percentage with 95% confidence 
intervals are presented. Transmission shows a decreasing trend from the heel to the 
forehead, with slightly different transmission in the left and right leg. The percent of the 
input FFT magnitude transmitted to a given landmark does not appear to vary greatly with 
frequency or amplitude. L & R refer to the left and right respectively. ASIS = anterior 
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The Powerplate Pro 5 shows a similar trend in the transmission of vibration to that 

observed using the Galileo 900 platform at the same frequency input (Galileo 900: 

25Hz 0mm & 30Hz 0mm similar to Powerplate Pro 5: 25Hz ‘High’ and 30Hz ‘High’ 

respectively). The greatest transmission percentage is observed at the ankle, above 

which transmission percentage decreases in a gradient from the tibia through to the 

forehead (Figure 36). In contrast to the Galileo 900, frequency and amplitude of input 

do not seem to have much bearing on the transmission of the whole body vibration. 

The transmission percentage for a given amplitude is slightly greater at 25Hz than at 

30Hz, the relationship between frequency and transmission is less  clear  than that 

seen with the Galileo (Figure 36, Figure 32 Frequency:25Hz & Frequency: 30Hz).  

At 25Hz Powerplate Pro 5 input frequency, there is a greater transmission percentage 

at all markers above the ankle at ‘Low’ compared to ‘High’ input amplitude (Figure 36). 

At 30Hz Powerplate Pro 5 input frequency, with the exception of the left knee there is 

also greater transmission percentage at all markers above the ankle at ‘Low’ compared 

to ‘High’ input amplitude (Figure 36). This is the same trend as is seen in the left leg 

data from the Galileo 900 at 0mm input amplitude, where an increase from 25Hz to 

30Hz results in a significant decrease in transmission  at markers above the ankle 

(Figure 34 Amplitude: 0mm).  

As reflected by the RMS accelerations recorded at the ankle, the transmission 

percentage on the Powerplate Pro 5 at 25Hz ‘High’ and 30Hz ‘High’ is similar but 

slightly higher than that seen on the Galileo 900 at 25Hz0mm and 30Hz0mm 

respectively ( Figure 36, Figure 31 Amplitude: 0mm & Amplitude:1mm, Figure 33, 

Frequency: 25 & Frequency: 30Hz). At the ASIS and spine, transmission of between 

11.2% and 21% is observed on the Galileo 900 platform at 25Hz0mm and 30Hz0mm 

(Figure 33). On the Powerplate Pro 5 at 25Hz ‘High’ and 30Hz ‘High’, the transmission at 

the ASIS and spine ranges between 12.3% and 40.8% (Figure 36).  

At the forehead, the greatest transmission percentage observed on the Galileo is 

18.7% at 10Hz0mm input (actual input 9.7Hz 1.01mm, Table 12), whereas on the 

Powerplate Pro 5, the smallest transmission percentage observed is 26.3% at 30Hz 

‘High’ (actual input 29.1Hz 1.12mm, Table 12) and the greatest is 40.0% at 25Hz ‘Low’ 
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(actual input 27.5Hz 0.54mm, Table 12)(Figure 33, Figure 36). At 25Hz0mm and 

30Hz0mm, the Galileo 900 transmits 14.1% and 12% of the input vibration to the 

forehead respectively (Figure 33). 

Given the input amplitudes of the platforms that generate the greatest transmission to 

the forehead, the Powerplate Pro 5 and Galileo 900 platforms result in vibrations with 

a theoretical amplitude of 0.21mm and 0.18mm respectively at the forehead 

(calculated from the values in Table 12). However, the frequency of the input signal 

resulting in these comparable amplitudes at the forehead differ, resulting in greater 

RMS accelerations being transmitted to the forehead with the Powerplate Pro 5 (1.0g) 

(Figure 23)  than with the Galileo 900 (0.07g) (Figure 24).  Based on the measured 

input amplitude and frequency (Table 12) the theoretical RMS acceleration 

transmitted to the forehead at the above settings by the Powerplate Pro 5 is 1.8g and 

the Galileo 900 is 0.3g, both slightly greater than the measured values. For comparable 

inputs, the transmission by the Galileo 900 at 25Hz0mm and 30Hz0mm results in RMS 

accelerations of 0.34g and 0.41g at the forehead respectively, whereas the 

transmission of WBV by the Powerplate Pro 5 at 25Hz ‘High’ and 30Hz ‘High’ results in 

RMS accelerations of 1.0g and 0.9g at the forehead respectively (Figure 23). Thus the 

transmission of WBV by the Powerplate Pro 5 translates to greater RMS accelerations 

to the forehead.  

5.3.5.4 Transmission of Whole Body Vibration: Juvent 1000 
On the Juvent 1000 platform, transmission percentage increases from the heel to the 

ankle before decreasing to the sacrum (Figure 37). Above the sacrum, the transmission 

percentage increases to the forehead, however no transmission is observed at the 

right ASIS, the manubrium or the acromion processes (Figure 37). The transmission 

percentage at the right ankle is greater on the Juvent 1000 than on the Powerplate Pro 

5 or the Galileo 900 at 30Hz input frequencies (Figure 33, Figure 36 and Figure 37). 

At the left ankle, the Juvent 1000 has a lower transmission percentage than that seen 

on the Powerplate Pro 5 and Galileo 900 at 30Hz, with the exception of the Galileo 900 

at 30Hz3mm and 30Hz5mm (Figure 33, Figure 36 and Figure 37). Through the use of the 

FFT to establish the transmission percentage for the Juvent 1000, the amplitude (which 

is below the detection level of the motion capture system) equating to a given 
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transmission percentage can be estimated based on the input amplitude. Whilst the 

difference in transmission percentage between the left and right leg appears most 

pronounced on the Juvent 1000 platform, when considering the amplitude this 

represents based on the input amplitudes and the transmission percentage, the 

calculated difference in amplitude between the left and right leg is smaller on the 

Juvent 1000 platform (0.017mm) than on the Galileo 900 30Hz0mm & 30Hz1mm 

(0.11mm and 0.66m respectively) or Powerplate Pro 5 at 30Hz ‘Low’ and ‘High’ 

(0.03mm and 0.50mm respectively) (Table 12). 

Again, at the ASIS and spine with the exception of the right ASIS, transmission 

percentage is greater on the Juvent 1000 than the Galileo 900 or Powerplate Pro 5 

(Figure 33, Figure 36 and Figure 37). However, considering the differing input 

amplitudes of the three platforms, RMS accelerations at the ASIS and spine as a result 

of the transmitted WBV on the Juvent 1000 (01.g-0.7g) are less than those transmitted 

by the Powerplate Pro 5 (0.82g-1.77g) and Galileo 900 (0.4g-1.17g) at the same input 

frequency. Based on the input amplitude and percent transmission, the estimated 

amplitude of the vibration delivered to the ASIS and spine is less on the Juvent 1000 

than on the Galileo 900 or Powerplate Pro 5 at 30Hz input frequency, with a calculated 

range of 0.009mm to 0.012mm at the ASIS and spine on the Juvent 1000, 0.10mm to 

0.42mm on the Galileo 900 at 30Hz and 0.14mm to 0.37mm on the Powerplate Pro 5 

at 30Hz. 
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Figure 37: Transmission of whole body vibration (WBV) delivered by the Juvent 1000 
platform at a frequency between 32-37Hz and input acceleration in the order of 0.3g.  

A fast Fourier transform (FFT) of the displacements measured using a Vicon motion 
capture system was performed and the magnitude at the input frequency was recorded 
for each marker. Transmission was calculated by taking the FFT magnitude at a marker 
as a percentage of the FFT magnitude of the input. Mean transmission percentage with 
95% confidence intervals are presented. Transmission increases from the heel to the 
ankle before decreasing to the forehead with a discrepancy between the percent 
transmitted in the left and right leg. L & R refer to the left and right respectively. ASIS = 
anterior superior iliac spine. 125 

 



5.4 Discussion 
Data from six participants was analysed in the current study. This was due to the 

simultaneous recording of motion capture and strain data limiting the sample size as 

the strain data required an invasive procedure. As such, the observations presented 

here should be interpreted tentatively. Further work in a larger cohort is needed to 

fully establish the conclusions suggested by this data set, however the data provides 

an preliminary insight into the transmission of WBV in healthy adults.  

5.4.1 Input frequency, amplitude and acceleration 
Three different whole body vibration platforms were used in this study, two vertical 

vibration platforms (Powerplate Pro 5 and Juvent 1000) and one side alternating 

platform (Galileo 900). Each platform had different manufacturer specified input 

frequencies, amplitudes and accelerations and each showed a different degree of 

accuracy when comparing recorded variables with the expected manufacturer 

specified variables.  

5.4.1.1 The Juvent 1000 
When considering the Juvent 1000 platform, the RMS acceleration calculated in this 

study (Table 12) is greater than that reported by Kiiski et al, who reported a 

accelerations lower than expected for the Juvent 1000 (Table 12), using a platform 

which delivered WBV at 0.05mm amplitude and 30Hz or 35Hz [123]. Additionally, Muir 

et al also found peak to peak accelerations on a Marodyne Liv MD, an alternative ‘low 

magnitude’ WBV platform, to be close to the expected peak acceleration value, 

rendering peak acceleration much lower than expected and approximately half of the 

RMS acceleration reported here for the Juvent 1000 [163]. 

These discrepancies can be potentially be explained by the slight differences in input 

frequencies and amplitudes of the different platforms used across the studies. The 

amplitude and frequency reported by Kiiski et al would result in an expected RMS 

acceleration lower than the expected RMS for the Juvent 1000. However, for the 

recorded frequency and amplitude, the expected RMS acceleration is 5 fold lower than 

that recorded. 

For the first five participants in the study, 10 seconds of recording was made. During 

this time the Juvent 1000 performed a four second self-test and a calibration 
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procedure to determine the frequency and amplitude that delivered the optimum 

resonance for each individual[166] (Chapter 10.2.3). This resulted in input frequencies 

varying by up to 5Hz across participants making determination of the input frequency 

and amplitude from a Fast Fourier Transform (FFT) (Table 12) and taken as an average 

across participants, susceptible to error. As a result, the RMS acceleration, calculated 

for the Juvent 1000 from the displacement data, is around three times the theoretical 

peak acceleration for the input frequency and amplitude taken from the FFT (Table 12).  

For the sixth participant, recording continued into the ‘treatment’ period of the 

Juvent’s vibration, allowing comparison between pre and post calibration periods. 

Whilst a difference in the primary frequency and amplitude is observed between the 

periods during and post calibration, the RMS acceleration does not differ greatly 

between these periods (Figure 25). This suggests that, whilst each participant is likely to 

have different RMS accelerations, the period during calibration can give useful 

information on the transmission of whole body vibration through the body.  

During calibration, the platform does a frequency and amplitude sweep which would 

be expected to generate a signal with multiple frequency components each of differing 

amplitude [166] (Chapter 10.2.3). The FFT reveals a peak which is greater than other 

frequency components of the signal; however the peaks tend to be rounded, spread 

over consecutive frequencies and in three cases smaller frequency components are 

visible.  In this instance, the amplitude may be a sum of the fast Fourier transform 

magnitudes of different frequency components and may vary with time, resulting in an 

underestimation of the amplitude if taken as the magnitude of a single frequency 

component. This could, at least in part, account for the discrepancy between the 

determined input frequency and amplitude and the calculated RMS acceleration.  

As there is little difference between the RMS acceleration during and post calibration 

this suggests that the signal during the ‘treatment’ period is also an amalgamation of 

multiple frequency inputs. 

Another source of error in the determined input characteristics could be the method 

of determining acceleration. In previous studies, accelerometers have been used to 

directly measure accelerations (Kiiski, Muir), however in this study a calculation of the 
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second derivative of the displacement data was used. If there was any noise within the 

signal, this would be amplified by the differentiation and could cause short but large 

magnitude accelerations to effect the calculated RMS acceleration. Inspection of the 

fast Fourier transform of the acceleration data supports this as a source of error in five 

out of the six participants.  

Whilst the limitations mentioned influence the interpretation of the Juvent 1000 data, 

the 95% confidence intervals of the data below the thigh do not span zero or one and 

therefore it is likely the RMS acceleration is below 1g. In addition, by taking the FFT 

peak as a percentage of the input peak at the toe for each individual, normalisation of 

the data can be achieved, making it possible to analyse the transmission of vibration 

through the body. 

5.4.1.2 The Powerplate Pro 5 
The Powerplate Pro 5 has specified input frequencies of 25Hz and 30Hz and input 

amplitudes of ‘Low’ and ‘High’.  In previous studies amplitudes of 0.85mm [163] and 

0.6mm [167] have been reported for the ‘Low’ setting and 1.65mm [163] and 1.1mm 

[167] for the ‘High’ setting. Whilst the 0.6mm and 1.1mm reported by Pel et al are in 

line with the findings of this study, the 0.85mm and 1.65mm reported by Muir et al are 

both higher than those in this study. One explanation for the discrepancy in amplitudes 

could be the trend whereby amplitude appears to increase slightly with higher input 

frequency (Table 12). Both the amplitudes reported in this study and those reported by 

Pel et al were at input frequencies of 25Hz and 30Hz whereas Muir et al used a higher 

input frequency of 34Hz [163, 167].  

At 30Hz ‘Low’ and ‘High’, the RMS accelerations reported in this study would equate to 

peak to peak accelerations of 5.72g and 9.56g respectively [165]. These values are 

lower than the 8.16g and 15.09g peak to peak accelerations reported by Muir et al; 

however given the higher input frequency and reported amplitude this is expected. At 

an input frequency of 25Hz and at 30Hz ‘Low’, the RMS accelerations reported by Pel 

et al are 0.42- 0.62g smaller than those found in this study, whereas at 30Hz ‘High’ the 

RMS accelerations are in agreement. This could be due to the actual frequency being 

delivered by the platform. At 25Hz, the fast Fourier transform determined an actual 

frequency of 27.2-27.5Hz dependent upon amplitude. This is greater than that 
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reported by Pel et al by 1.2-2.5Hz which would be expected to result in greater RMS 

accelerations. 

At 30Hz, the fast Fourier transform determined an actual frequency of 29.1-29.5Hz 

dependent on amplitude. This is lower than the 31Hz reported by Pel et al; therefore 

RMS accelerations would be expected to be smaller (as for 30Hz ‘High’).  

This still leaves the case of 30Hz ‘Low’ being greater than in the study by Pel et al. In 

addition to the differences in recorded frequency, calculating the expected RMS 

acceleration from the input frequency and amplitude (Equation 11, Equation 12) results 

in values smaller than those reported in Table 12. This discrepancy could be due to 

similar assumptions to those made when defining the input variables of the Juvent, 

however in general the stated frequency of the input for a given setting does not vary 

more than 0.3Hz (with the exception of 0.6Hz at 30Hz High) between participants 

suggesting better accuracy when taking a mean value for input frequency than with 

the Juvent. The signal appeared to have a single dominant peak many fold greater than 

anything else on the FFT plot suggesting that taking the magnitude from FFT is a valid 

method of estimating the amplitude. In agreement with this, a previous study showed 

accelerometer output from the surface of a Powerplate to fit a sinusoidal pattern with 

error of less than 0.5% [167].  However, it is still possible that other frequency 

components could have resulted in a non-sinusoidal waveform, as seen with the 

Juvent and previously seen for vertical whole body vibration with an amplitude greater 

than 0.5mm [123]. Whilst this may not have appeared obvious on the fast fourier 

transform of the recorded displacements, once the second derivative of these values is 

determined in order to define the RMS acceleration, any other frequency components 

may be amplified to such an extent to cause spurious large peak accelerations to be 

detected. As with the Juvent 1000 platform, this would result in greater RMS 

accelerations than those predicted from the input frequency and amplitude.  

This could account for the RMS accelerations calculated in this study being 25-54% 

greater than the theoretical RMS accelerations. The 95% confidence intervals in the 

lower limb are generally small, with the exception of the ankle where the range of 

possible movement is greater than at locations away from the joints. This suggests 
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little variation in the calculated RMS accelerations. The 95% confidence intervals are 

also improved once the data is normalised as a percentage of the input at the toe.   

5.4.1.3 The Galileo 900 
The input frequency recorded for the Galileo 900 platform is within 0.5Hz of that 

stated by the manufacturer for frequencies between 5Hz and 20Hz (Table 12) (with the 

exception of the 14.4Hz recorded at 15Hz 3mm). At 25Hz and 30Hz input frequencies, 

the recorded value is between 0.7Hz and 1Hz lower than expected (Table 12).  

In a previous study using a Galileo-Fitness platform, Pel et al recorded frequencies 

which matched those specified by the manufacturer between 5Hz and 30Hz, however, 

at 35Hz and 40Hz, the recorded frequency was 1Hz and 2Hz lower than specified 

respectively [167]. Given the use of a different platform, it is feasible to suggest that at 

frequencies towards the higher end of the range delivered by the Galileo 900, the 

platform delivers WBV at a frequency below that specified by the manufacturer.  

At input amplitudes of 0mm, 1mm and 3mm, the recorded amplitude is greater than 

that specified by the manufacturer, whereas for input amplitudes of 5mm, the 

recorded amplitude is lower than expected (Table 12). 

For a given toe position, the amplitudes reported in this study show an increase of 

between 13% and 43% between 5Hz input frequency and 20Hz or 25Hz input 

frequency. At 0mm and 1mm amplitude and 30Hz frequency, the recorded amplitude 

decreases by around 15% from that at 25Hz (Table 12). At 3mm and 5mm amplitude 

and 30Hz frequency, the recorded amplitude decreases by 3% and 7% respectively 

from that at 20Hz (Table 12).  

As the amplitude of the platform is determined by the distance of the foot from the 

centre of the platform, it is possible that the deviation from the manufacturer 

specified amplitude is due to the feet of the participant being placed imprecisely along 

the platform. In addition, it is likely that the exact position of the foot was not the 

same for all recordings and at higher frequencies it is likely to have been harder to 

keep the feet in a given spot during recording. Therefore it is probable that the 

deviation from the expected and the variation in recordings is due to foot movement. 
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The calculated RMS accelerations for the Galileo 900 platform are in general 

agreement with what would be expected for an input frequency and amplitude as 

recorded (Figure 23). The calculated values are slightly higher than expected, but in the 

majority of cases (16/24), the discrepancy is no more than 15% greater than the 

expected RMS acceleration. In 5 cases, the discrepancy is in excess of 20% greater than 

expected (5Hz0mm, 15Hz0mm, 30Hz0mm, 15Hz1mm, 5Hz3mm). Most of these cases 

are at 0mm input amplitudes, for which the feet were placed together in the centre of 

the platform. In this position balance is most difficult; therefore it is possible that the 

participants inadvertently adjusted their foot position to keep balance. It is also 

difficult to keep foot contact with the platform in this position therefore the feet may 

also have been occasionally lifting off the platform. Either of these movements may 

have resulted in a sharp acceleration which affected the peak and RMS accelerations 

determined.  

5.4.2 The Effect of Weight on the Input Signal 

It was determined that the weight of a participant standing on the Galileo 900 or 

Powerplate Pro 5 platform did not significantly influence the vibration delivered by the 

platform. In the case of the Galileo 900, the stimulus at input was shown to have a 

significantly lower peak to peak displacement than for the other participants. This 

could be due to a number of things. Firstly, it could be due to the weight of the 

participant; however, given that no other significant trend or relationship between 

weight and input was determined, this is unlikely. Secondly, it could reflect a 

difference in the calibration of the motion capture system used to record the data. If 

this was the case, the same would be expected when considering the Powerplate Pro 5 

vibration input, however no significant difference between participants was seen in 

this case, suggesting the calibration procedure was robust across study visits. Finally, 

this discrepancy could be due to the positioning of the marker on the platform. As the 

magnitude of the difference is less than 1mm, this is the most likely cause as this 

magnitude of difference could easily be caused by a variation in the marker positioning 

between participants.  

Whilst no significant difference between the input for a given weight was seen on the 

Powerplate Pro 5, the confidence intervals around the mean FFT peaks were much 
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greater than those around the Peak to Peak (P2P) displacements of the Galileo. This is 

most likely due to the number of observations. For the Galileo 900, hundreds of peak 

to peak displacements across recordings at 5Hz, 10Hz, 15Hz, 20Hz, 25Hz and 30Hz 

made up the data set for each participant. This was due to assessment of the data in 

the time domain and measurement of peak to peak displacement over at least five 

seconds of recording. However, given a lower signal to noise ratio for the data 

collected on the Powerplate Pro 5, the P2P displacement could not be used as a 

measure and FFT peak was used instead.  The FFT peak determined for each of the 

Powerplate Pro 5 settings was a single value, resulting in 4 values being recorded for 

each participant. The smaller sample size used to determine the mean for each weight 

would be expected to result in a greater confidence interval, explaining the difference 

between the data in Figure 21 and Figure 22. 

The calibration of the Juvent 1000 (Chapter 5.4.3) suggests that the input will be 

dependent upon the body composition of the participant. As only a single recording 

per participant was made on the Juvent 1000, the effect of weight on the input 

stimulus could not be statistically assessed.  

5.4.3 Calibration of the Juvent 1000 Platform 

During the first 12 seconds of use, the Juvent 1000 platform performs a calibration to 

establish the optimum resonant frequency for a given user. This is achieved using a 

frequency sweep; therefore the input stimulus delivered by the platform during this 

time is not constant.  

For the first five participants, recordings were made for twenty seconds, therefore a 

large proportion of the recordings were made during calibration and were not 

necessarily relevant to the stimulus delivered by the Juvent 1000 once a frequency was 

chosen and acceleration of 0.3g delivered.  

However, when a period of WBV delivered by the Juvent 1000 platform after 

calibration was compared to that during calibration, very little difference was observed 

(Figure 25). This suggests that the data obtained for the first five participants will be 

informative about the transmission and accelerations of the whole body vibration 

delivered by the Juvent 1000 once calibrated. 
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5.4.4 Normalisation of the Data 

In order to account for between participant variation in the input amplitudes and, in 

the case of the Juvent 1000, input frequency (Table 12), the transmission was analysed 

as a transmission percentage. Given the amplitude of the Galileo 900 is determined by 

the foot distance from centre line, it is susceptible to variations due to differences in 

foot position between recordings. Taking the transmission as a percentage of the 

amplitude at the toe was deemed to be more accurate than assuming foot position to 

be precise; resulting in the exact manufacturer specified input amplitude.  

5.4.4.1 Contralateral Variation in Amplitude at the Toe 
For a  representative subset of Galileo 900 input settings, the mean P2P displacement 

delivered to markers on the left and right sides of the body were analysed (Figure 27). 

At several markers, small but significant differences were observed between the 

landmarks on the left and right limb. When transmission for markers on the left leg 

was taken as a percentage of the mean P2P displacement at the left toe and 

transmission for markers on the right leg was taken as a percentage of the mean P2P 

displacement at the right toe, the same small but significant differences were observed 

(Figure 28). This suggests that the normalisation allowed for between participant 

comparison without affecting the overall trend of the data. The observed contralateral 

differences are most likely due to side to side differences in weight distribution and 

associated subtle biomechanical differences in response to the WBV stimuli. This is 

reflected in the trend of the transmission as, when a greater P2P displacement or 

transmission percentage is seen for a given side of the body at the ankle, subsequent 

values at the tibia and knee tend to then be lower for that side of the body. This 

reflects the greater absorption of the stimulus at the level of the ankle (Figure 29 30Hz 

1mm).  

This approach is different to that used in previous studies, where either unilateral 

recordings were made [168] or left and right markers were pooled to determine 

transmission [157]. In the case of pooled left and right data, a synchronous vibration 

platform was used and therefore differences between the WBV delivered to the left 

and right side would not be expected.  
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For continuity, the same approach to normalisation was applied to the Powerplate Pro 

5 and Juvent 1000 data. 

In the case of the Powerplate Pro 5, far fewer significant contralateral differences are 

observed (Figure 30). The majority of the significant differences are at the tibia, where 

markers were placed at different levels along the tibia and therefore differences might 

be expected, however makers on the thigh were also at different locations and no 

significant differences were observed. In addition, differences at the knee and ASIS are 

observed but unexpected, therefore the differences are likely not due to positioning of 

the markers. Again, these differences are more likely due to small differences in weight 

distribution between the legs and the biomechanical response to the WBV stimulus.  

In the case of the Juvent 1000, no significant contralateral differences were observed 

(Figure 29). 

5.4.5 Use of the FFT in the measurement of Whole Body Vibration 
Transmission 

When measuring the transmission of WBV, previous work has used directly measured 

acceleration or displacement to quantify transmission. The displacements measured 

using the Vicon motion capture system used in this study were clearly cyclical and 

easily measurable using our in house computer program (Chapter 10.1.2) for 

measurements made on the Galileo 900 side alternating platform. However, the 

displacements generated by the vertical motion of the Powerplate Pro 5 and Juvent 

1000 were less clearly cyclical and had far worse signal to noise ratio than the 

recordings made for the Galileo 900. This made automatic definition of peak to peak 

displacement using the in house Tibial Marker program (10.1.2) impossible and 

required manual definition of peak to peak displacement which was open to user 

interpretation in order to quantify peak to peak displacement. 

In order to prevent the influence of user interpretation from affecting the calculated 

transmission, an alternative approach to measuring WBV transmission was developed 

using the magnitude of the FFT at the input frequency (Table 12). For the Galileo 900, 

correlation was observed between the transmission established using the P2P 

displacement and that established using the magnitude of the FFT (Figure 33). This 
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suggest that, although the magnitude of the FFT is not necessarily the exact amplitude 

of the signal given that multiple frequency components may contribute to the 

amplitude at any one time, it does compare sufficiently to examine the transmission of 

WBV. The limitation of this method is that the amplitudes or P2P displacements 

inferred from a FFT may be underestimations; however, normalising them to the 

magnitude of the FFT at input clearly makes for a comparable measure of transmission 

to that established using the directly measured P2P displacement. 

This provides a method by which transmission at a given frequency can be determined 

in signals with poor signal to noise ratio, without the need for heavy filtering of the 

data prior to assessment of the data. 

5.4.6 Transmission of Whole Body Vibration 
Whole body vibration was transmitted to landmarks throughout the body, with 

detection of movements as far up as the forehead for all platforms. This is in line with 

previous observations of the transmission of whole body vibration through the body in 

children [114, 157]. Whilst movement is observed throughout the body, by the time 

the WBV reaches the torso, the WBV stimulus is greatly attenuated in all instances. 

Attenuation of the stimulus is greater on the side alternating Galileo 900 than the 

vertical Powerplate Pro 5 and Juvent 1000, delivering the greatest stimulus to the 

lower limb whilst minimising WBV being delivered to areas surrounding vital organs in 

the torso. 

The transmission of the WBV stimulus is dependent upon the biomechanics of the 

participants. Body composition, changes in posture and different muscle activation 

patterns in response to the whole body vibration all influence the transmissibility of a 

WBV stimulus [125, 169-173]. The biomechanical response of participants to the WBV 

stimulus delivered by side alternating and vertical vibration differ resulting in the 

differences in transmission. It is also possible that there is variation in the 

biomechanical response between participants to a given WBV stimulus. The 

confidence intervals surrounding the transmission of WBV delivered by the Galileo 900 

suggest that the pattern of transmission is similar between participants (Figure 31, 

Figure 32, Figure 33) however biomechanical response to vertical vibration appears 

more variable (Figure 36, Figure 37). Wide confidence intervals surrounding 
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transmission at the ankle on the Powerplate Pro 5 at both frequencies and the second 

thoracic vertebrae at 30Hz, as well as those at the thigh, second thoracic vertebrae and 

forehead on the Juvent 1000 are indicative in differences in biomechanical response to 

the WBV stimuli. The confidence interval at each of these sites exceeds 100% 

transmissibility suggesting a resonance in some participants.  

5.4.6.1 Attenuation of Whole Body Vibration 

The attenuation of the WBV is dependent both upon the amplitude and the frequency 

of the input. At lower frequencies, the amplitude of the input has greater bearing on 

the attenuation than at higher frequencies, where the input frequency appears to be 

the primary determinant of signal attenuation.  

Where amplitude influences attenuation, the greater the amplitude, the less 

attenuation of the signal is observed (Figure 35). In contrast, greater attenuation is 

observed at higher input frequencies (Figure 34).  

The above observations could be explained by the biomechanical response of the 

participant to the WBV stimulus delivered by the platform. At lower frequencies (5Hz 

10Hz & 15Hz), a greater degree of transmission is observed at the thigh and ASIS 

markers than at surrounding markers. However, at higher frequencies (20Hz, 25Hz & 

30Hz), a greater degree of transmission is seen at the ankle compared with 

surrounding markers and the thigh and ASIS do not show greater transmission than at 

surrounding markers. 

This suggests that up to 15Hz, the majority of the WBV stimulus attenuation occurs in 

the thigh and around the ASIS, whereas at higher frequencies, more absorption of the 

WBV occurs through ankle joint movement. The greater ankle joint movement would 

be indicative of a greater flexion angle being achieved which, as at the knee, would be 

expected to result in greater attenuation at the ankle[168].  

5.4.6.2 Relative Accelerations generated by Whole Body Vibration 

Whilst the greatest transmission of vibration occurs at lower frequencies, the relative 

RMS accelerations associated with the transmitted WBV stimulus tend to be greater at 

greater frequencies. Due to the attenuation of the Galileo 900 WBV stimulus in the 
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torso, the accelerations delivered to the ASIS and the spine by the Galileo 900 are 

comparable to those delivered by the Juvent 1000. This observation may go some way 

to explaining why previous studies investigating the effects of WBV on hip and lumbar 

spine BMD in postmenopausal women have shown similar magnitude changes 

irrespective of the platform used [105, 107, 111]. Having said this, accelerations twice 

as great as those delivered by the Juvent 1000 and Galileo 900 are observed at the 

ASIS and spine when using the Powerplate Pro 5. This suggests that if the magnitude of 

the acceleration is the key determinant of the osteogenic response to WBV, the 

Powerplate pro 5 may have the greatest osteogenic potential at the level of the ASIS 

and spine. 

When analysing the RMS accelerations delivered by the different platforms, it must be 

noted that whilst the confidence intervals surrounding the RMS accelerations at most 

markers are not large, some do appear to be wide. For instance, the T2 marker on the 

Juvent 1000 shows a much wider confidence interval than those at the other 

landmarks, suggesting variation in the RMS accelerations at this level between 

participants. With the small number of participants in this study, large confidence 

intervals may be expected as there is a high likelihood of differences between the 

biomechanical response of six people. The movement at T2 is linked to movements of 

the head. Whilst a period of time of when the platform was up to speed was selected 

for analysis from the toe marker displacements, the movement at the head may not 

have been consistent throughout this period. Participants were asked to remain 

looking straight ahead, however this was not maintained throughout the recordings. 

Quick head movements that are unrelated to the input WBV could translate into quick 

movements at T2 and thus large accelerations. This in turn could account for the 

variability and wide confidence intervals around the RMS accelerations at T2. Also, as 

already established when discussing the transmission of WBV, the signal to noise ratio 

on the Juvent did not allow the P2P displacement to be identified. Noise within the 

signal could be reflected as a quick movement, influencing the RMS acceleration 

calculated. This makes interpretation of the transmission data based on the fast fourier 

transform more reliable than the accelerations calculated for the Juvent 1000 and 

Powerplate Pro 5 platforms.  

137 

 



The data presented here takes into account the WBV transmitted in the vertical 

direction only. As the Juvent 1000 and Powerplate Pro 5 deliver vertical vibration it is 

expected that the greatest accelerations generated by the platforms will be in the 

vertical plane, however, the Galileo 900 has a reciprocal motion which may also result 

in substantial accelerations about the hips in a lateral plane perpendicular to the 

vertical accelerations reported here. Previously, it has been shown that the primary 

direction of the WBV stimulus delivered by the Galileo 900 is vertical[167], however at 

the level of the spine, the accelerations in the lateral direction are greater than those 

in the vertical direction[111]. To fully assess the impact of the Galileo 900, further 

analysis of the accelerations in the lateral plane is required.  
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6 Chapter Six: Unilateral Whole Body 
Vibration 
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6.1 Background 
 

Investigations in to the effect of whole body vibration (WBV) on the human skeleton 

have used a variety of control groups, making comparison between studies difficult. 

Control groups in WBV studies have included participants doing no activity, following a 

program of resistance exercises and using placebo platforms [1, 105-111, 174].  

Control groups doing no activity, whilst potentially providing the biggest difference 

between WBV and control, do not account for any differences between the group due 

to the participant in the intervention group knowing they are receiving an intervention 

and the control knowing they are not. The control group doing resistive exercises 

provides comparison between two interventions, however does not allow the full 

extent of changes in bone parameters due to WBV to be assessed, as changes in bone 

parameters would also be expected with resistive exercises [175, 176].  

The use of a placebo platform as a control overcomes the shortfalls in the other types 

of control, however has been restricted to studies investigating low magnitude WBV 

such as that delivered by the Juvent 1000 platform. Low magnitude vibrations produce 

such small movements that it is possible to blind subjects to a placebo or active 

platform using audible sounds [105]. 

In the case of high magnitude vibrations such as those delivered by the Galileo 900 and 

Powerplate Pro 5 platforms, the movements generated by the platform are much 

larger making true blinding to an active or placebo platform impractical.  

Another approach when considering control groups is a self-control. The unilateral 

loading of the dominant arm of tennis players has provided a self-controlled model for 

observing the localised effects of mechanical load on the skeleton. Within each 

participant, side to side differences between the dominant and non-dominant arm of 

tennis players have revealed geometrical changes in bone due to loading, reflected by 

greater bone mineral content (BMC) in the dominant arm[74, 76, 80, 82, 84].  

The aim of this investigation is to assess the potential for a unilateral loading model 

(placing only one foot on the Galileo 900 platform) of WBV for use as self-control in 

future studies.  
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6.2 Methods 

6.2.1 Participant Population  
 

Six healthy volunteers aged between 18 and 50 who were physically able and willing to 

undertake the study procedures were recruited from Sheffield (South Yorkshire,UK) . 

Participants had a bone mineral density (measured by dual x-ray absorptiometry 

(DXA)) within +/- 2 SD of the young normal at the lumbar spine and hip and a body 

mass index (BMI) <30. The characteristics of the six participants included in the study 

are detailed in Chapter 3.1, Table 4. 

6.2.2 Measurement of Transmission 
 

Reflective markers, positioned on 21 anatomical landmarks, were used to analyse the 

movements experienced throughout the human body during WBV.  The motion 

capture system used comprised 8 MX-F40 cameras positioned around the gait 

laboratory at the Northern General Hospital. Data acquisition was made using Vicon 

Nexus software recording at a rate of 300Hz with a minimum of three cameras 

required to start a trajectory and two to continue a trajectory. 

 

6.2.3 Whole Body Vibration 
Each participant stood on the Galileo 900 platform with their feet spaced such that the 

input reciprocal vibration had an amplitude of 3mm. Recordings were made with the 

frequency of the input vibration set to 5Hz, 10Hz, 15Hz, 20Hz, 25Hz and 30Hz.  

Recordings were made with a bilateral stance and two unilateral stances, the first with 

only the left foot on the platform, the second with only the right foot on the platform 

at the 3mm amplitude position. When unilateral stances were adopted, the foot not 

on the platform was placed on a fixed platform of the same height as the Galileo 900. 
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6.2.4 Data processing 
 

Raw trajectories were exported to an excel spreadsheet (Microsoft 2010). Data for 

each marker was then filtered in MATLAB 2007b using a band-pass filter, with cut-offs 

dependent upon frequency (Table 11) as defined in Chapter 4.3.2.  

Filtered data was cropped to encompass only a period of recording at which the WBV 

was at a consistent frequency and amplitude. 

The cropped data files were imported into Matlab 2007b and the maximum and 

minimum points of each vibration cycle were determined using the Tibial_Marker 

Matlab program (Chapter 10.1.2).  

Peak to peak displacements for each vibration cycle were determined using the 

minimum and maximum points (Equation 14). 

Equation 14: The Peak to Peak Displacement of a given vibration cycle: 

𝑃𝑃2𝑃𝑃 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

The input signal was defined from the toe markers as these were in closest contact 

with the platform. For bilateral recordings, the input signal was taken as the mean of 

the peak to peak displacements recorded at both the right and left toe. For unilateral 

recordings, the input signal was taken as the mean of peak to peak displacements at 

the toe that was placed on the Galileo 900 platform. 

Transmission was calculated as the percentage of the input signal recorded at a given 

landmark (Equation 15).  

Equation 15: Calculation of the transmission of whole body vibration to a given 
landmark 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = �
𝑃𝑃2𝑃𝑃 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑥𝑥)

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
� 𝑥𝑥100 
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6.2.5 Statistical Analysis 
Differences in the transmission delivered to each of the 21 anatomical landmarks when 

adopting a bilateral, unilateral (left leg) or unilateral (right leg) stance were analysed 

using a One-Way ANOVA. Post-hoc comparisons were made using a Dunnett’s T3 test. 

Side to side differences in transmission to the landmarks on the left and right leg for a 

given input and stance were assessed using an independent T-test. Significance was 

assumed at a level of 0.05 or below.  

All statistical tests were performed in IBM SPSS version 20.   
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6.3 Results  

6.3.1 Transmission of whole body vibration with both feet, left foot or right 
foot on the Galileo 900 platform  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Irrespective of stance, percent of WBV input transmitted to a given landmark shows a 

decreasing trend from input to the forehead. At 5Hz (Figure 38), this trend begins from 

input, at 10Hz and 15Hz transmission peaks around the tibia (Figure 39) and above this 

frequency transmission peaks at the ankle before decreasing to the forehead (Figure 

40) (Chapter 10.3.2).  

Figure 38: Transmission of 5Hz whole body vibration (WBV) with unilateral 
and bilateral stance.  

 
WBV was delivered using the Galileo 900 platform at a frequency of 5Hz and amplitude of 
3mm.In both unilateral and bilateral stances, transmission decreases from input to the 
forehead, however to different degrees dependent on whether there is one or both feet on 
the platform. Transmission in the torso is significantly greater in the unilateral stance than 
bilateral stance. Percentage of WBV transmitted to anatomical landmarks was calculated 
from peak to peak displacements measured using a Vicon motion capture system. Differences 
between vibration transmitted when both feet, the left foot and the right foot were on the 
platform were assessed using a one-way ANOVA with Dunnett’s T3 post-hoc test.  All 
outcomes are significant at p<0.001 unless indicated. NS=Not Significant, *p<0.05, ** p<0.01. 
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Within this trend, a unilateral stance tends to result in greater transmission than a 

bilateral stance. When the left foot is on the platform, transmission at the heel, ankle, 

tibia, knee, thigh and ASIS on the left hand side is greater than when both feet are on 

the platform (Figure 38, Figure 39, Figure 40). The same is true for the right hand side 

when the right foot is on the platform. This difference in the vibration transmitted to 

landmarks in the lower limb, is greatest at 15Hz where transmission is 20-50% greater 

at the tibia and knee in a unilateral stance compared to a bilateral stance (Figure 39). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 39: Transmission of 15Hz whole body vibration (WBV) with unilateral and bilateral 
stance.  

 
WBV was delivered using the Galileo 900 platform at a frequency of 15Hz and amplitude of 
3mm. In both unilateral and bilateral stances, transmission decreases from input to the 
forehead. The differences in transmission between unilateral and bilateral stances are 
greater than those seen at 5Hz input. Transmission in the torso is significantly greater in the 
unilateral stance than bilateral stance. Percentage of WBV transmitted to anatomical 
landmarks was calculated from peak to peak displacements measured using a Vicon motion 
capture system. Differences between vibration transmitted when both feet, the left foot and 
the right foot were on the platform were assessed using a one-way ANOVA with Dunnett’s T3 
post-hoc test.  All outcomes are significant at p<0.001 unless indicated. NS=Not Significant, 
*p<0.05, ** p<0.01. 
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Similar differences are seen at 10Hz and 20Hz, however lower and higher input 

frequencies result in differences of <20% between bilateral and unilateral stances (on 

the side of input) (Chapter 10.3.2). There is no significant between stance differences 

in transmission to landmarks at the proximal end of the leg such as the left anterior 

superior iliac spine (ASIS) and left knee at 30Hz and both thighs at 5Hz (Figure 38, 

Figure 40). 

In the Torso, again, transmission is greater when a unilateral rather than bilateral 

stance is adopted (Figure 38, Figure 39, Figure 40). At 5Hz, this difference is greatest 

with more than twice as much of the WBV signal transmitted to a given landmark in 

the torso with a unilateral stance compared to a bilateral stance (Figure 38). 

Transmission is observed at all landmarks in the torso up to a frequency of 15Hz, 

however above this frequency the whole body vibration signal is transmitted to few 

landmarks in the torso and at a frequency of 30Hz, a WBV signal is only observed at 

the forehead when the left foot is on the platform (Figure 40)(Chapter 10.3.2). 
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Figure 40: Transmission of 30Hz whole body vibration (WBV) with unilateral and 
bilateral stance.  

 

 

WBV was delivered using the Galileo 900 platform at a frequency of 30Hz and 
amplitude of 3mm.In both unilateral and bilateral stances, transmission decreases 
from input to the forehead. The differences in transmission between unilateral 
and bilateral stances are greater than those seen at 5Hz but not as great as those 
at 15Hz input. Transmission in the torso is limited to the forehead. Percentage of 
WBV transmitted to anatomical landmarks was calculated from peak to peak 
displacements measured using a Vicon motion capture system. Differences 
between vibration transmitted when both feet, the left foot and the right foot 
were on the platform were assessed using a one-way ANOVA with Dunnett’s T3 
post-hoc test.  All outcomes are significant at p<0.001 unless indicated. NS=Not 
Significant, *p<0.05, ** p<0.01.  
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6.3.2 Contralateral differences in the transmission of whole body vibration 
with both feet, left foot or right foot on the Galileo 900 platform 

 

 

 

  

Figure 41: Contralateral difference in the transmission of whole body vibration (WBV) 
through the body when both feet are placed on the Galileo 900 Platform. 
Recordings were made at frequencies between 5-30Hz and at 3mm amplitude. Greater 
transmission is seen at lower frequencies. Significant contralateral differences were seen at all 
frequencies. Percentage of WBV transmitted to anatomical landmarks was calculated from peak 
to peak displacements measured using a Vicon motion capture system. Differences between the 
transmission at the equivalent left and right maker were assessed using an independent 
students t-test, *p<0.05, **p<0.01, ***p<0.001. 
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With both bilateral and unilateral stances, contralateral differences in the transmission 

of WBV through the lower limb are present (Figure 40). With both feet on the 

platform, slightly more of the input signal is transmitted to the left hand side than the 

right at 5Hz and 10Hz (Figure 40: 5Hz & 10Hz). Above 10Hz, contralateral differences 

are still present however there is no clear dominance of a single side of the body 

(Figure 40: 15Hz, 20Hz, 25Hz, 30Hz). At all frequencies, contralateral differences in 

transmission lie between 0% and 25% of the greater value of transmission for a given 

landmark. 

With only one foot on the platform, contralateral differences are much greater than 

when both feet were placed on the platform (Figure 41, Figure 42, Figure 43). When the 

left foot is on the platform, transmission to the right hand side landmarks between the 

heel and the thigh did not exceed 30% of that at the equivalent left hand marker 

(Figure 42). At most input frequencies, transmission to the right hand side did not 

exceed 15% of the equivalent left hand side transmission and at 20Hz and 25Hz, there 

was no transmission of the WBV to several right hand landmarks (Figure 42). The 

greatest contralateral differences are seen at 10Hz and 15Hz (Figure 42). The smallest 

contralateral differences are observed at 30Hz, with contralateral differences similar to 

those seen when both feet are on the platform (Figure 41, Figure 42).  In the case of the 

ASIS, contralateral differences tend to be smaller, with transmission to the right hand 

landmark exceeding 50% of that at the left hand landmark in most cases.   

 The same trends are seen when the right foot is on the platform, but with the greater 

transmission to the right hand side as opposed to the left. In contrast to when the left 

foot is on the platform, at 20Hz, 25Hz and 30Hz, no transmission of WBV was observed 

to any of the left hand markers with the exception of the left ASIS at 20Hz (Figure 43). 
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Figure 42: Contralateral differences in the transmission of whole body vibration (WBV) 
through the body when the left foot was placed on the Galileo 900 platform. 
Recordings were made at frequencies between 5-30Hz and at 3mm amplitude. Greater 
transmission is seen at lower frequencies. Significant contralateral differences were seen at all 
frequencies with the greatest side to side differences at 10Hz & 15Hz input frequencies. 
Percentage of WBV transmitted to anatomical landmarks was calculated from peak to peak 
displacements measured using a Vicon motion capture system. Differences between the 
transmission at the equivalent left and right marker were assessed using an independent 
students t-test, *p<0.05, **p<0.01, ***p<0.001. 
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  Figure 43: Contralateral differences in the transmission of whole body vibration through the 
body when the right foot was placed on the Galileo 900 platform.  
Recordings were made at frequencies between 5-30Hz and at 3mm amplitude. Greater 
transmission is seen at lower frequencies. Significant contralateral differences were seen at 
all frequencies with the greatest side to side differences at 10&15Hz input frequencies. 
Percentage of WBV transmitted to anatomical landmarks was calculated from peak to peak 
displacements measured using a Vicon motion capture system. Differences between the 
transmission at the equivalent left and right marker were assessed using an independent 
students t-test, *p<0.05, ** p<0.01, ***p<0.001. 
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6.4 Discussion 
With both a bilateral and unilateral stance, transmission of WBV through the body 

shows similar patterns in terms of peak transmission and decreasing trends from input 

to forehead (Figure 38, Figure 39, Figure 40). However, the magnitude of the 

transmission at a given landmark is greater with a unilateral stance than a bilateral 

stance in both the lower limb and torso (Figure 38, Figure 39, Figure 40). 

This could be explained by the change in input stimulus from a side alternating mode 

of vibration to a mode more closely resembling vertical vibration. With the single foot 

on the platform, the loaded side of the body moves vertically whilst the non-loaded 

side of the body remains stationary as opposed to moving vertically in the opposite 

direction (as would occur with a bilateral stance).  

As this generates a more vertical mode of vibration, transmission would be expected 

to be greater, especially to the torso, as this is seen when the Galileo 900 side 

alternating platform is compared to the Powerplate Pro 5 vertical vibration platform 

(Chapter 5). This means that a unilateral self-control at a given frequency would result 

in a greater stimulus at a given landmark than would be delivered in a bilateral stance. 

This should be taken into account when interpreting findings and advising on optimal 

WBV settings to be delivered through a bilateral stance aimed at enhancing bone 

parameters. 

Contralateral differences in WBV transmission are seen in both bilateral and unilateral 

stances. In the case of the bilateral stance, there does not appear to be a clear 

dominance of one leg over the other, suggesting these differences could be due to 

spontaneous adjustment of foot positions on the platform, joint angles and weight 

distributions between the two legs in response to the WBV input. Given the 

inconsistency of which side shows greatest transmission and the small size of the 

contralateral differences generated with a bilateral stance (Figure 41), these differences 

are unlikely to be informative as a self-control for whole body vibration. 

When a unilateral stance is adopted however, transmission is always greatest on the 

side of the body which has the foot on the WBV platform. The magnitude of the 
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contralateral differences is also larger than that seen with the bilateral stance and 

together these characteristics show potential for a unilateral WBV self-control.  

If the unilateral stance is to be used as a self-control in future studies, the conditions 

under which the greatest contralateral differences are observed could be suggested as 

the best candidate to generate significant differences in bone parameters due to WBV. 

In this instance, 10Hz or 15Hz input frequency should be used in future studies. 

In addition, side to side differences are greatest at the distal end of the leg, with small 

or no significant difference in transmission to the ASIS at 15Hz. This could potentially 

mean traditional measures of aBMD at the hip and spine by DXA may not detect side 

to side differences due to unilateral WBV. A more suitable measure could be Xtreme 

computer tomography (CT), which measures vBMD at the distal end of the leg. Xtreme 

CT would also measure volumetric as opposed to areal BMD, allowing assessment of 

geometrical changes that would not be observed with aBMD. 

Whilst the greatest contralateral differences were observed at these frequencies, a 

WBV stimulus is still detected on the side of the body which does not have the foot 

placed on the Galileo 900 platform. The amplitude of this stimulus is in the order of 

magnitude delivered by the Juvent 1000 platform, which has been shown to maintain 

bone mineral density (BMD) in postmenopausal women [105]. 

This may suggest that changes in aBMD would be expected in both legs, irrespective of 

the contralateral differences in the WBV transmission. 

At 20Hz and 25Hz with the right leg on the platform, no transmission was observed at 

markers on the left hand side between the left heel and left thigh. Whilst contralateral 

differences are slightly less at these frequencies, the absence of transmission to the 

left hand side of the body may make a more complete control, with one leg 

experiencing no WBV stimulus. This may be advantageous if the small amount of WBV 

transmitted to the opposite ‘unloaded’ leg at 10Hz and 15Hz is considered to effect 

bone parameters.  
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Having said this, at 20Hz and 25Hz with the left foot on the platform there is still a 

small amount of transmission to the right leg (comparable to that seen at 10Hz and 

15Hz).  

Biomechanical differences between the left and right leg could be the cause of the 

differences in transmission of WBV to the contralateral leg when using a unilateral 

stance. A dominance of the right leg may result in this leg having stronger muscles 

which can withstand the WBV signal without need for support from the left leg. The 

‘non-dominant’ left leg however may need support from the right leg in order to keep 

the body balanced when WBV is introduced.  

The two legs certainly have different mechanisms for responding to the unbalancing 

WBV stimulus, when the left foot is placed on the platform (and a small amount of 

transmission to the right leg is observed), transmission values at the ankle and tibia are 

greater than when the right foot is placed on the platform. However, vibration is 

transmitted to a lesser extent at the knee and thigh when the left foot is on the 

platform as opposed to the right. The greater movement in the left lower leg may 

cause a greater unbalancing effect requiring a shift in weight to the right and 

transmission to the contralateral side of the body.  

Whether this observation reflects the dominance of one leg will require further 

investigation, however another possible explanation for the discrepancies observed is 

that the right lower leg had undergone surgery during which local anaesthetic was 

administered around the site on the tibia that the strain gauge was attached.  This may 

have caused an unusual biomechanical response to the WBV, potentially resulting in 

the smaller movements seen below the knee and a lack of transmission to the 

contralateral leg. To determine whether the differences observed are likely to be due 

to the dominance of one leg or due to the effects of the anaesthetic, similar recordings 

should be made in participants who have not undergone sugary.  

Having said this, postural control in a unilateral stance and single leg squat strength 

have been shown not to differ between the dominant and non-dominant leg, 

suggesting the observations to be due to the anaesthetic rather than a lack of balance 

or strength [177, 178] 
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In this case, small amounts of transmission to the contralateral side of the body, as 

seen when the left leg is on the platform (Figure 42), must be expected in future 

studies using a unilateral loading model of WBV and as such, a 10-15Hz input 

frequency will generate the greatest side to side difference in WBV transmission.  

Whilst both low and high magnitude WBV have been suggested to influence bone 

mineral density (BMD), the degree to which they maintain or increase BMD differs. In a 

postmenopausal population, a significant difference in hip bone mineral density (BMD) 

was observed compared to control when high magnitude WBV was delivered using a 

Powerplate platform [110] whereas only a reduction in bone loss at the hip was 

observed with a low magnitude WBV stimulus[105]. This suggests that even if the small 

amount of WBV transmitted to the contralateral side of the body is equivalent to the 

stimulus delivered by the Juvent 1000, side to side differences in BMD change from 

baseline should still be apparent and measurable.  

In conclusion, there is potential for a self-controlled study of WBV using the Galileo 

900 platform, however measurements of bone parameters at the distal end of the leg 

should be used as the side to side difference in WBV stimulus diminishes by the 

anterior superior iliac spine. This would make volumetric BMD (vBMD) by Xtreme CT a 

potential measurement tool, whereas standard DXA measurements of areal BMD 

(aBMD) at the hip and spine would be expected to show little if any side to side 

difference based on the data in this study. For the greatest difference between loaded 

and non-loaded leg, this data suggests that 10Hz or 15Hz input frequency should be 

used and the potential effects of the small amount of vibration transmitted to the 

contralateral leg should be acknowledged. The conclusions drawn here, whilst 

apparently based on clear trends, are from a small sample size, therefore further work 

in a larger cohort may expand on these observations.  
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7 Chapter Seven: Strain at the Tibia 
during Whole Body Vibration and 

Habitual Locomotor Activities 
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7.1 Background 
Strain recorded at the tibia has been used to assess the impact of different activities on 

the skeleton. Previous studies documented strains generated during activities of daily 

living as well as during high impact activities thought to contribute to stress fracture 

development in army recruits[89, 97, 135, 138, 139, 143-145, 179].   

Strain magnitude has been shown to increase with increasing impact of physical 

activity [89, 97, 138, 179]. However the strain magnitude alone does not full account 

for the osteogenic potential of an activity. Strain rate has also been shown to have a 

key role in determining the skeletal response to a given activity [180]. 

Strain is recorded at the tibia using strain gauges which can either be bonded directly 

to the tibial shaft or can be applied using pre prepared bone staples. When directly 

bonding the strain gauges to the surface of the bone, the cortex of the bone remains 

unaffected by the procedure, however de-bonding of the strain gauges is a potential 

problem [89]. The alternative bone staples result in small holes in the cortex caused by 

the insertion of the bone staples. Whilst de-bonding has not been reported as a 

problem using this technique, strain gauge failure was more common[138]. As neither 

process was without its limitations, in this study surface mounted strain gauges were 

used in order to avoid damage to the cortex of the bone.  

The aim of this study is to compare tibial strain and associated strain rates during habitual 

locomotor activities and during whole body vibration (WBV).  
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7.2 Methods 

7.2.1 Participant Population  
Six healthy volunteers aged between 18 and 50 who were physically able and willing to 

undertake the study procedures were recruited from Sheffield (South Yorkshire, UK). 

Participants had a bone mineral density (measured by dual x-ray absorptiometry 

(DXA)) within +/- 2 SD of the young normal at the lumbar spine and hip and a body 

mass index (BMI) <30. Data reported here is for participant 3 and participant 4 as these 

are the only participants for which recordings from all three strain gauge elements are 

available. The characteristics of the six participants included in the study are detailed 

in Chapter 3.1, Table 4. 

7.2.2 Strain Measurement 
Strain was recorded directly from the anteromedial surface of the tibia at the midpoint 

between the medial aspect of the tibial plateau and the lower border of the medial malleolus 

using an FRA 2-11 rosette strain gauge (Vishay precision group, Basingstoke, UK). 

Details of the preparation and application of the gauge can be found in chapter 3.3.6. 

Data was recorded using a DLK 900 DataLINK system and DataLog software from 

Biometrics Ltd. 

7.2.2.1 Calculating Principal Strain 

Principal strain was calculated from the strain recordings made from the three 

individual strain gauge elements, each of which was spaced 45 degrees from the next. 

Calculations were made using the principal strain equation (Chapter 3.3.3, Equation 3). 

7.2.2.2 Calculating Strain Rate 
Strain rate was calculated from the principal strain using Equation 16. 

Equation 16: Strain Rate Calculation 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  
ԑ𝑛𝑛−ԑ𝑛𝑛−1
0.002

 

ԑn= strain n, ԑn-1= strain recorded previous to ԑn, 0.002 = number of seconds between 

recordings 
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7.2.3 Habitual Locomotor Activities 
Strain recordings were made whilst the participants performed habitual locomotor 

activities of 1) Standing, 2) Walking, 3) Walking whilst carrying 15Kg weight in a 

rucksack 4)Hopping, 5) Jumping. These activities reflected those previously studied 

during in vivo strain gauge studies. The data presented here is for participant 4 only as 

one or more strain gauge elements had failed prior to these recordings for participant 

3. 

7.2.4 Whole Body Vibration 
Strain recordings were made whilst participants stood on the Galileo 900, Powerplate 

Pro5 and Juvent 1000 whole body vibration platforms.  

The Galileo 900 platform delivered reciprocal WBV at amplitudes of 0-5mm in 1mm 

increments and frequencies of 5-30Hz at increments of 5Hz. To achieve the different 

amplitudes the participant changed the spacing of their feet on the platform (Chapter 

4.1.2: Figure 14). 

The Powerplate Pro 5 platform delivered vertical WBV at amplitudes defined by the 

manufacturer as ‘Low’ and ‘High’ and frequencies of 25Hz and 30Hz. Both the 

amplitude and frequency were changed using the electronic platform settings. 

The Juvent 1000 platform delivered vertical WBV at amplitudes 10 fold lower than 

either the Galileo 900 or Powerplate Pro 5 at a frequency between 32Hz and 37Hz. The 

outcome was an acceleration of 0.3g.  

All recordings were made with participants maintaining a bilateral stance with knees 

slightly bent. Knee angle was at the discretion of the participant and the stance 

adopted was directed to be ‘comfortable’ for the participant. 

7.2.4.1 Unilateral Whole Body Vibration 
In addition to the bilateral stance, each participant stood in a unilateral stance on the 

Galileo 900 platform with their feet spaced such that the input reciprocal vibration had 

an amplitude of 3mm. Recordings were made with the frequency of the input vibration 

set to 5Hz, 10Hz, 15Hz, 20Hz, 25Hz and 30Hz.  
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Recordings were made with two unilateral stances, the first with only the left foot on 

the platform, the second with only the right foot on the platform at the 3mm 

amplitude position. When unilateral stances were adopted, the foot not on the 

platform was placed on a fixed platform of the same height as the Galileo 900. 
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7.3 Results 

7.3.1 Strain and Strain Rate during Habitual Locomotor Activities 
  

Strain was recorded from the anteromedial surface of the tibia at the 
midpoint between the medial aspect of the tibial plateau and the lower 
border of the medial malleolus using an FRA-211 rosette strain gauge. 
Principal strain was calculated from the strain recorded at three strain 
gauge elements in a rectangular formation. Both maximum tensile and 
compressive principal strains increase with the increasing impact of the 
activity. Lowest strain is observed whilst standing whilst Jumping engenders 
the greatest tibial strains. 

Figure 44: Principal Strain at the Tibia during Habitual Locomotor Activities. 
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Strain was recorded from the anteromedial surface of the tibia at the midpoint 
between the medial aspect of the tibial plateau and the lower border of the medial 
malleolus using an FRA-211 rosette strain gauge. Strain rate was calculated through 
differentiation of the principal strain. Tensile strain rate appears greatest whilst 
standing, however compressive strain rate is greater as the impact of activity increases, 
from smallest whilst standing to greatest whilst hopping. The compressive strain rate 
whilst jumping is greater than whilst walking however smaller than whilst hopping. 

Figure 45: Strain Rate at the Tibia during Habitual Locomotor Activities. 
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Principal strain at the tibia was greater with greater impact of the habitual locomotor 

activity studied, with standing engendering the smallest (~150µԑ) and jumping the 

greatest (~550µԑ) tensile and compressive principal strains (Figure 44). The strain rate 

followed a similar trend, with the exception of the tensile strain rate whilst standing 

which was much larger than the other strain rates observed (Figure 45). The greatest 

tensile strain rate other than during standing was observed whilst jumping and the 

greatest compressive strain rate was observed whilst hopping. Both were in the order 

of 45,000-50,000µԑ/s (Figure 45). 

7.3.2 Strain and Strain Rate during Whole Body Vibration on the Galileo 900 
Platform 

On the Galileo 900 platform, principal strain generally increases with both input 

amplitude and frequency. With an input amplitude of 0mm, 1mm and 3mm, principal 

strain increases slightly with increasing input frequency (Figure 46, Figure 47). At 3mm 

input frequency, an increase is seen with increasing input frequency from 5-15Hz for 

participant 3 (P3) (Figure 46, Figure 47). At 5mm input amplitude, principal strain 

magnitude increases with input frequency up to 15Hz above which strain is similar or 

decreases with increasing input frequency (Figure 46, Figure 47). The greatest principal 

strains generated at the tibia during whole body vibration (WBV) on the Galileo 900 

platform occur at 15Hz 5mm. The greatest tensile strains are in the order of 300µԑ (P3) 

and 600µԑ (P4) and the greatest compressive strains are in the order of -250µԑ (P3) 

and -400µԑ (P4) (Figure 46, Figure 47). 

The strain rates generated at the tibia during WBV on the Galileo 900 increase both 

with increased input amplitude and frequency (Figure 48, Figure 49). In the case of 

participant 4, 0mm and 1mm amplitude inputs engender strain rates approximately 

one third of those at 3mm and 5mm input amplitudes. The maximum strain rates 

observed for participant 3 are in the order of 25,000µԑ, whereas those observed for 

participant 4 are in the order of 130,000µԑ, approximately 3 times greater than those 

generated during habitual locomotor activities (Figure 45, Figure 48, Figure 49).  
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Figure 46: Tensile Principal Strain at the Tibia during Whole Body Vibration: Galileo 900. 
Strain was recorded from the anteromedial surface of the tibia at the midpoint 
between the medial aspect of the tibial plateau and the lower border of the medial 
malleolus using an FRA-211 rosette strain gauge. Principal strain was calculated from 
the strain recorded at three strain gauge elements in a rectangular formation. Tensile 
principal strain increases slightly with increased input frequency in participant 3 (P3). 
For Participant 4 (P4), tensile principal strain increases with input frequency and 
amplitude. At 5mm amplitude, the maximum tensile strain is observed at 15Hz above 
which the tensile strain decreases from 15-30Hz. 164 

 



 

 

  

Figure 47: Compressive Principal Strain at the tibia during Whole Body Vibration: Galileo 900. 

 
Strain was recorded from the anteromedial surface of the tibia at the midpoint between 
the medial aspect of the tibial plateau and the lower border of the medial malleolus 
using an FRA-211 rosette strain gauge. Principal strain was calculated from the strain 
recorded at three strain gauge elements in a rectangular formation. Compressive 
principal strain increases slightly with increased input frequency in participant 3 (P3). For 
Participant 4 (P4), compressive principal strain increases with input frequency and 
amplitude. At 5mm amplitude, the maximum compressive strain is observed at 15Hz 
above which the tensile strain decreases from 15-30Hz. 
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Strain was recorded from the anteromedial surface of the tibia at the midpoint between 
the medial aspect of the tibial plateau and the lower border of the medial malleolus 
using an FRA-211 rosette strain gauge. Strain rate was calculated through differentiation 
of the principal strain. Tensile strain rate generally increases with frequency and 
amplitude of input. This pattern is more clear for participant 4 (P4) than participant 3 
(P3). For participant 4, at 5mm amplitude, there is a break in the trend, with greater 
tensile strain rate at 15Hz than at 20Hz. 

Figure 48: Tensile Strain Rate at the Tibia during Whole Body Vibration: Galileo 900 
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Strain was recorded from the anteromedial surface of the tibia at the midpoint between 
the medial aspect of the tibial plateau and the lower border of the medial malleolus 
using an FRA-211 rosette strain gauge. Strain rate was calculated through differentiation 
of the principal strain. Compressive strain rate generally increases with frequency and 
amplitude of input. This pattern is more clear for participant 4 (P4) than participant 3 
(P3). For participant 4, at 5mm amplitude, there is a break in the trend, with greater 
tensile strain rate at 15Hz than at 20Hz. 

Figure 49: Compressive Strain Rate at the Tibia during Whole Body Vibration: Galileo 900 
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7.3.3 Strain and Strain Rate during Whole Body Vibration on the Powerplate Pro 5 
Principal strains generated at the tibia when participants were stood on the 

Powerplate Pro 5 increase with increasing input amplitude (from Low to High), 

however show little change with increasing input frequency (Figure 50). The greatest 

tensile and compressive strains are observed at 30Hz High and are in the order of (+/-) 

150µԑ for participant 3 and (+/-) 300µԑ for participant 4 (Figure 50), approximately half 

of the greatest principal strains observed using the Galileo 900. 

The strain rates generated using the Powerplate Pro 5 show little dependency on input 

amplitude or frequency for participant 3, however show a slight increase with 

increasing input amplitude and frequency in participant 4 (Figure 51). The greatest 

strain rates generated using the Powerplate Pro 5 occur at 30Hz High and are in the 

order of 10,000µԑ/s for participant 3 and 25,000-30,000µԑ/s for participant 4 (Figure 

51). 

7.3.4 Strain and Strain Rate during Whole Body Vibration on the Juvent 1000 
Maximum tensile principal strains generated at the tibia when participants stood on 

the Juvent 1000 are in the order of 100-150µԑ and maximum compressive principal 

strains are in the order of -70µԑ (Figure 52). These are lower magnitude strains than 

those observed on the Galileo 900 (Figure 46, Figure 47) and Powerplate Pro 5 (Figure 

50) and are comparable to those recorded whilst participants were standing (Figure 

44). 

The tensile strain rate generated at the tibia whilst participants were standing on the 

Juvent 1000 was in the order of 10,000µԑ/s and the compressive strain rate in the 

order of 5,500µԑ/s (Figure 53). Again, these values are lower than those generated by 

the Galileo 900 (Figure 48, Figure 49) and Powerplate Pro 5 (Figure 51) and are similar to 

those recorded whilst the participants were standing (Figure 45). 
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Figure 50: Strain at the Tibia during Whole Body Vibration: Powerplate Pro 5 
Strain was recorded from the anteromedial surface of the tibia at the midpoint 
between the medial aspect of the tibial plateau and the lower border of the medial 
malleolus using an FRA-211 rosette strain gauge. Principal strain was calculated 
from the strain recorded at three strain gauge elements in a rectangular 
formation. Both tensile and compressive principal strain increased with greater 
amplitude. At Low amplitude, strain was similar across input frequencies, however 
at high amplitude, strain was slightly greater at  30Hz than 25Hz input frequency. 

A 

B 
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Figure 51: Strain Rate during Whole Body Vibration: Powerplate Pro 5 

Strain was recorded from the anteromedial surface of the tibia at the midpoint between 
the medial aspect of the tibial plateau and the lower border of the medial malleolus 
using an FRA-211 rosette strain gauge. Strain rate was calculated through differentiation 
of the principal strain. Strain rate increases with input frequency. This is more apparent 
for participant 4 than participant 3. 
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Strain was recorded from the anteromedial surface of the tibia at the midpoint 
between the medial aspect of the tibial plateau and the lower border of the medial 
malleolus using an FRA-211 rosette strain gauge. Principal strain was calculated from 
the strain recorded at three strain gauge elements in a rectangular formation. 
Tensile strains in the order of 150µԑ and compressive strains in the order of -60µԑ 
were observed. 

Figure 52: Strain at the Tibia during Whole Body Vibration: Juvent 1000 

Strain was recorded from the anteromedial surface of the tibia at the 
midpoint between the medial aspect of the tibial plateau and the lower 
border of the medial malleolus using an FRA-211 rosette strain gauge. Strain 
rate was calculated through differentiation of the principal strain. Tensile 
strain rates of up to 10000µԑ/s and compressive strain rates of up to 
5500µԑ/s are observed. 

Figure 53: Strain Rate at the Tibia during Whole Body Vibration: Juvent 1000 
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7.3.5 Strain and Strain Rate during Unilateral Whole Body Vibration on the Galileo 
900 

The principal strain generated at the tibia is greater when the right leg (with the strain 

gauge attached) is on the Galileo 900 as opposed to off the platform on a stationary 

platform of the same height as the vibration platform (Figure 54, Figure 55). When the 

right leg is on the platform, tensile principal strains in the order of 200µԑ (P3) and 

400µԑ (P4) (Figure 54) are observed and show a trend of increasing magnitude with 

increasing input frequency, as when both feet are on the Galileo 900 (Figure 46). The 

same is true for compressive principal strains, with magnitudes in the order of -100µԑ 

and -400µԑ observed (Figure 55). The magnitude of the principal strains at the tibia 

when only one foot is placed on the platform is comparable to that recorded when 

both feet are on the platform. When the right leg is placed at the same height as but 

not on the platform, tensile principal strains in the order of 100-150µԑ and 

compressive strains less than 100µԑ are generated for both participant 3 and 

participant 4. These strains are similar in magnitude to those generated when 

participants are standing (Figure 44). This results in greater tibial strain being generated 

when the right leg is on the platform as opposed to off the platform, with the 

difference being more marked in participant 4 than participant 3 (Figure 54, Figure 55).  

Strain rate is also greater when the right leg is on the platform at frequencies between 

20-30Hz for participant 3 and at frequencies between 10-30Hz for participant 4 (Figure 

56, Figure 57). Strain rates generated when the right leg is on the platform are in the 

order of (+/-) 15,000µԑ/s for participant 3 and (+/-)100,000µԑ/s for participant 4 (Figure 

56, Figure 57), similar to the magnitude of the strain rate generated when both feet are 

on the platform (Figure 48, Figure 49).  Strain rates when the right leg is not on the 

platform are in the order of 10,000-15,000, again showing a difference (particularly 

clear in participant 4) between having the right leg on and off the platform at 

frequencies between 20-30Hz for participant 3 and 10-30Hz for participant 4 (Figure 56, 

Figure 57).  

The greatest difference in principal strain and strain rate between having the right leg 

on or off the Galileo 900 is observed at an input frequency of 20Hz, with the exception 

of compressive strain rate for which the greatest difference is observed at 30Hz input 

frequency. 
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Figure 54: Tensile Strain at the Tibia during Unilateral Whole Body Vibration: Galileo 900 

Strain was recorded from the anteromedial surface of the tibia at the midpoint between the 
medial aspect of the tibial plateau and the lower border of the medial malleolus using an 
FRA-211 rosette strain gauge. Principal strain was calculated from the strain recorded at 
three strain gauge elements in a rectangular formation. Tensile strain is greater when the 
strain gauges leg is on the Galileo 900 platform as opposed to off it. There is a clearer 
difference in participant 4 (P4) than participant 3 (P3), where tensile strains roughly double 
those of P3 are observed. 

Strain was recorded from the anteromedial surface of the tibia at the midpoint between 
the medial aspect of the tibial plateau and the lower border of the medial malleolus 
using an FRA-211 rosette strain gauge. Principal strain was calculated from the strain 
recorded at three strain gauge elements in a rectangular formation. Compressive Strain 
is greater when the strain gauges leg is on the Galileo 900 platform as opposed to off it. 
There is a clearer difference in participant 4 (P4) than participant 3 (P3), where 
compressive strains roughly double those of P3 are observed. 

Figure 55: Compressive Strain at the Tibia during Unilateral Whole Body Vibration: Galileo 900 
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  Strain was recorded from the anteromedial surface of the tibia at the midpoint between 
the medial aspect of the tibial plateau and the lower border of the medial malleolus 
using an FRA-211 rosette strain gauge. Strain rate was calculated through differentiation 
of the principal strain. Tensile strain rate was greater when the strain gauged right leg 
was on the platform as opposed to off the platform at 20Hz, 25Hz and 30Hz in 
participant 3 and at input frequencies of 10Hz-30Hz in participant 4. 

Figure 56: Tensile Strain Rate at the Tibia during Unilateral Whole Body Vibration: 
Galileo 900 

Strain was recorded from the anteromedial surface of the tibia at the midpoint 
between the medial aspect of the tibial plateau and the lower border of the medial 
malleolus using an FRA-211 rosette strain gauge. Strain rate was calculated through 
differentiation of the principal strain. Compressive strain rate was greater when the 
strain gauged right leg was on the platform as opposed to off the platform at 20Hz, 
25Hz and 30Hz in participant 3 and at input frequencies of 10Hz-30Hz in participant 4. 

Figure 57: Compressive Strain Rate at the Tibia during Unilateral Whole Body Vibration: 
Galileo 900 
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7.4 Discussion 
The greatest strains generated at the tibia were observed during jumping (Figure 44) 

and are matched by the strains generated during WBV on the Galileo 900 platform at 

15Hz 5mm (Figure 46, Figure 47).  

Jumping has been shown to be sufficient activity to be protective with respect to bone 

loss [181, 182], therefore if we assume the magnitude of the strain to be the primary 

determinant of the osteogenic potential of an activity, then WBV on the Galileo 900 at 

15Hz5mm would be the only WBV stimulus expected to be useful in preventing 

postmenopausal bone loss. However, previous studies have suggested that reciprocal 

WBV at settings other than 15Hz5mm and vertical vibration similar to that generated 

by the Powerplate Pro5 and the Juvent 1000 can be of benefit to the skeleton [105, 

107, 108, 110, 111]. Therefore the strain rate associated with the WBV is potentially of 

greater importance than the magnitude of the strain generated in determining the 

skeletal response to WBV, as previously documented [180, 183]. 

When considering participant 4 (as this is the participant for which habitual locomotor 

activity data is available), whilst the strains during jumping and WBV on the Galileo 900 

at 15Hz 5mm are comparable, the strain rates during jumping are approximately one 

third of those generated during WBV on the Galileo 900 at 15Hz5mm (Figure 45, Figure 

48, Figure 49). At 3mm or 5mm amplitudes, strain rates comparable or greater than 

those generated during jumping are observed at all frequencies from 15Hz-30Hz. The 

Galileo 900 therefore presents the opportunity to match or exceed both the strain and 

strain rate generated during high impact skeletally protective activity, in a controlled 

setting.  

 The tibial strains and strain rates generated by the Powerplate pro 5 and Juvent 1000 

are much lower than those generated by the Galileo 900 at 15Hz5mm, not exceeding 

the strains generated during walking. Whilst walking is a much lower impact activity, 

the benefits of walking for a postmenopausal population have been noted [184]. 

However, in this population the risks of fracture is increased by strenuous walking 

activity [90]. WBV on the Powerplate Pro 5 and Juvent 1000 may be expected to be of 

benefit in preventing bone loss in a postmenopausal osteoporotic population to a 
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similar degree to walking activities, however with the ability for the activity to be 

delivered in lower impact, measured and controlled manner, potentially reducing the 

risk of fracture associated with this activity.  

When considering a unilateral model of WBV, the strain and strain rate at the tibia are 

greater when the right leg (with the strain gauge attached) is placed on the platform as 

opposed to off the platform on a stationary platform of the same height. This is 

particularly evident for participant 4 at frequencies between 10Hz and 30Hz (Figure 54, 

Figure 55, Figure 56, Figure 57). A smaller difference is apparent for participant 3 at 

frequencies between 20Hz and 30Hz (Figure 54, Figure 55, Figure 56, Figure 57). The 

greatest difference is observed at 20Hz input frequency. At this setting, the strain and 

strain rate recorded when the right leg is not on the platform do not exceed those 

recorded during standing and therefore would not be expected to be osteogenic. 

Whereas when the right leg is on the platform, strains and strain rates comparable to 

those generated with both feet on the platform are observed (Figure 54, Figure 55, 

Figure 56, Figure 57). This suggests that unilateral WBV using the Galileo 900 at 20Hz 

3mm holds potential as a loading model that engenders substantially different 

mechanical stimuli in each leg with only one expected to be an osteogenic stimulus.  

The pattern of increasing strain magnitude and strain rate from standing to jumping 

has been previously reported. However, compared to previous studies investigating 

the strain generated at the tibia during habitual locomotor activities, the principal 

strains reported here are lower. In the case of walking, the principal strains reported 

are slightly lower than those reported previously, however the strain rates are 3-4 

times higher[89, 97, 134, 135, 138, 139, 144, 145, 179]. The greatest compressive 

strains reported during jumping are not dissimilar to those previously reported, 

however the tensile strain is approximately 1/3 of that previously reported[145]. 

Again, the strain rate reported here is far greater than that previously documented. 

There are several factors that may influence the recorded strain, most notably the 

positioning of the strain gauge. With such a small sample, the importance of this factor 

can be seen in the difference between the recordings made for participant 3 and 

participant 4. The strain gauge records strain at a very local site which experiences 
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strain dependent upon the biomechanical loading of the tibia. Differences in bone 

geometry and composition would result in differences in the strain exerted at a 

particular point on the tibia and application of the strain gauge in even slightly 

differing locations between participants would also be expected to result in differing 

strain recordings. As there is a similar pattern of strain increase for both participants 

(albeit at lower magnitudes and of smaller increments for participant) and the 

differences in the magnitude of the strains previously reported are generally small, 

differing locations of strain gauge application may explain the differences in strain 

magnitude seen both between participants and with previous work. 

Another consideration is the method of attaining strain measurements. Previously, 

both bone mounted and bone stapled strain gauges have been used to record strains 

at the tibia. The bone staples may result in greater strain magnitudes being 

documented, however, as strains previously recorded using bone mounted strain 

gauges are also higher than those we report, the method of gauge application is 

probably not a major determinant of the differences seen [89, 134].  

Between participants, recordings may have been different due to the integrity or 

thickness of the glue bonding the strain gauge to the surface of the tibia. At the end of 

the experiment the strain gauges were removed and no sign of de-bonding of the 

gauge was noted, a problem which had occurred in previous work [89], suggesting this 

was not a contributing factor in the differing strain magnitudes between participants. 

This does not rule out differences in the thickness of the glue layer between the gauge 

and the bone influencing the observed recordings.  

Finally, data for only two out of a possible six participants are reported due to strain 

gauge failure, similar to that previously reported for strain gauged bone staples [138]. 

Every effort was made to reduce the forces applied to the strain gauge wires due to 

their attachment through the skin and long output wires to try and prevent strain 

gauge damage or failure. As failure rate was so high, it is possible that the data 

reported here is from gauges that are not fully functioning, however the likelihood of 

this is small. When the gauges failed clear wire breaks were observed upon removal 

and during recording a clearly abnormal trace appeared for the failed strain gauge 
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element. For the recordings reported here, no abnormal element recordings were 

observed and clear cyclical strains relating to the activity or WBV were apparent. 

Whilst both gauges went on to fail at a later time point, the failure was obvious during 

the recording in which it happened and a clear wire break only for the element that 

had failed was apparent at removal. Non the less, the failure of the majority of the 

strain gauges rendered a sample size of two, therefore the data presented here should 

be interpreted with care.  

In terms of the large strain rates observed in this study, this is most likely a result of 

differing data processing. In previous studies, filters applied to the strain gauge data 

will have defined the limit of the strain rates it is possible to measure. Low pass filters 

with cut offs at 5Hz and 16Hz have previously been used to filter the strain gauge data 

prior to calculation of the principal strains and strain rates [89, 97, 138, 139, 144, 179]. 

In removing frequency components of the signal greater than 5Hz or 16Hz, the 

maximum possible detectable strain rate is limited. This can be demonstrated as the 

strain rates recorded when data is filtered at 5Hz are lower than those recorded when 

data is filtered at 16Hz [89, 97, 139, 144, 179] both of which are lower than the strain 

rates reported in this study where no filtering was applied to the data. 

On inspection of the recorded data, cyclical strain recordings corresponding to the 

repetitive activity or WBV frequency are apparent (Chapter10.3.3, Chapter 10.3.4). It 

can also be seen that the strain rate cycles at the same frequency as the strain, with 

peaks in strain rate at the expected point in time (maximum gradient of strain 

curve)(Chapter 10.3.5). This indicates that the strain rates shown in Figure 44 to Figure 

57 are due to real changes in recorded strain, rather than background noise.  

The exception to this is during standing, where an unexpectedly high strain rate is 

observed. On inspection of the recorded data, the strain during standing appears to be 

cyclical, as though recorded during a dynamic activity or WBV. However, the cycles in 

strain and strain rate are at 50Hz, the frequency of UK mains voltage, suggesting this is 

due to electrical interference in the recording (Chapter 10.3.5). No 50Hz interference is 

observed in other recordings; therefore this is an isolated problem. Both the strain and 
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strain rate during standing will have been influenced by this interference and as such, 

the data for standing should be discarded from analysis.  

In this study, no filtering was applied to the data prior to calculation of the principal 

strain and strain rates. This approach leaves the strain rate susceptible to system 

noise. 

In summary, in this small cohort, strains comparable to those generated by a high 

impact osteogenic activity were generated using the Galileo 900. Strain rates in excess 

of those generated during habitual locomotor activities were also observed using the 

Galileo 900, suggesting that this platform has potential to deliver mechanical stimuli 

that would be of benefit in a postmenopausal population. In comparison, the 

Powerplate Pro 5 and Juvent 1000 deliver lower strain and strain rates to the tibia, 

similar in magnitude to those generated during walking. Therefore these platforms 

appear to be of use in simulating walking load in a controlled environment. For future 

studies, this data suggests a unilateral loading model of WBV using the Galileo 900 at 

20Hz3mm may prove useful in providing a self-controlled method to assess the impact 

of WBV on bone at the distal tibia as well as at the hip and spine. Work in a larger 

sample, whether examining strain at the tibia or WBV as an intervention, will expand 

on the observations of this study.  
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8 Chapter Eight: Discussion 
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8.1 Summary and Conclusions 
In order to address the aims of this project, the accuracy of the system used to 

measure strain at the tibia has been validated and a suitable zeroing method 

established (Chapter 4.2). The feasibility of measuring movements due to whole body 

vibration (WBV) using motion capture has been assessed and the limits of this method 

established, along with the development of suitable filtering methods for data post 

processing (Chapter 4.14.2 & 4.3). 

This has led to a strong data set which allowed the analysis of transmission of WBV 

throughout the body, especially transmission to the hip (anterior superior iliac spine) 

and spine (Sacrum, T2, T10), investigation of a unilateral loading model of WBV and 

assessment of the strain and strain rates delivered by habitual locomotor activities and 

WBV (Chapter 2.2). 

There are several conclusions to be drawn from this project, however these should be 

treated tentatively given the small sample size within the study. With regards to the 

transmission of vibration through the body, greater transmission is seen at lower 

frequencies as opposed to higher frequencies. The transmission is greatly attenuated 

in the torso, particularly so with the Galileo 900 which shows less transmission to the 

torso than the Powerplate Pro 5 and Juvent 1000. Transmission to the hip and spine is 

greatest using the Powerplate Pro 5 and similar for the Galileo 900 and Juvent 1000. 

Whilst similar degrees of transmission are observed in the torso for the Galileo 900 

and Juvent 1000, the accelerations at input are greater for several of the Galileo 900 

settings therefore, within this small cohort, greater accelerations appear to be 

delivered to the torso using the Galileo 900. 

When considering the unilateral loading model of WBV, there is a appears to be a 

difference in the stimulus transmitted to the leg that is positioned on the platform as 

opposed to the one not on the platform (Chapter 6). This is reinforced by 

corresponding differences in tibial strain observed when the right leg is positioned on 

the platform or off the platform (Chapter 7.2.4.1). 

When examining the unilateral loading model in terms of transmission, the greatest 

difference in transmission is seen at 10Hz and 15Hz, whereas the greatest difference in 
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strain at the tibia is observed at 20Hz. At 10Hz, the difference in strain when the right 

leg is on or off the platform is negligible and at 15Hz is not great in participant 

3.Therefore, as the side to side difference in transmission at 20Hz is still significantly 

different and, in the case of placing the right foot on the platform there is zero 

transmission to the left leg in several instances, using a unilateral loading model at 

20Hz3mm is potentially the most robust option for use in future studies. However, if 

strain had successfully been recorded in more subjects, the case for this may be 

strengthened or weakened. With a greater sample of data, the side to side differences 

in transmission and strain may be found to be in better agreement, or conversely, a 

strong difference between the two measures may be found.  

The strains recorded in this study show an increase in magnitude with increasing 

impact of habitual locomotor activity and an increase with increasing frequency and 

amplitude of WBV on the Galileo 900. The strain and strain rates associated with the 

Powerplate Pro 5 and Juvent 1000 are similar to those generated during walking, 

whereas the Galileo 900 generates strains up to those comparable to high impact 

activities such as jumping whilst delivering much higher strain rates than those 

generated during habitual locomotor activities. Whilst the trend observed is in 

agreement with previous publications [89, 97, 179], the data presented in this study is 

for a single participant, therefore results should be interpreted with caution . From this 

case study of strain at the tibia, it could be suggested that in order to deliver the 

highest strains using the Galileo 900, a 15Hz 5mm setting should be used. However 

slightly higher strain rates may be achieved at 25Hz 5mm and 30Hz 5mm settings.   

8.2 Limitations 
There are several limitations to the work presented.  

1) The data was only collected for 6 participants and in the case of the strain 

recordings, only two participants worth of data is reportable. The small sample 

number is due to the invasive nature of the strain gauge recordings. Strain 

gauge failure due to wires breaking meant only two participants had strain data 

with three elements of the gauge working. Once the failures became apparent, 

measures to minimise the risk of breakages were taken. Firstly, participant 

activity prior to arriving at the gait lab was limited. The tension in the wires was 
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relieved both using stiches during surgery and taping of wires outside of the 

body during recordings. Finally the type of gauge used was changed from an 

FRA 2-11 stacked rectangular rosette strain gauge (TML, Tokyo Sokki Kenkyujo 

Co., Ltd.) to a C2A-06-062LR-120 planar rectangular rosette strain gauge 

(Vishay – precision group, Basingstoke, UK). However the strain gauge failures 

remained an inherent part of the work.  

2) We used skin mounted markers to assess the transmission of vibration to the 

underlying skeleton. Skin movement artefact is a well-documented problem 

associated with skin mounted motion capture markers and accelerometers 

which results in overestimation of movements or accelerations  [113]. Whilst 

the accelerations documented may therefore be greater than those 

experienced at the skeletal level, the same pattern associated with frequency 

and amplitude is seen both for acceleration and strain/strain rate. As frequency 

increases, the accelerations at the tibia increase, as do the strain and strain rate 

generated at the tibia. This suggests that conclusions over the relationship 

between frequency/amplitude and motion capture data are likely to be 

accurate. Also, in reporting transmission, the skin movement artefact is 

essentially normalised as a percentage is reported. Whilst this may be affected 

by more or less skin movement at different locations, all landmarks studied 

were bony prominences, with the exception of the thigh. This should minimise 

the skin movement artefact and however in the case of the thigh, greater skin 

movement may be expected. 

To avoid skin movement artefact, reflective markers could have been mounted 

on bone pins and directly inserted into the bone. However this would have 

been an invasive procedure on top of the strain gauge procedure, therefore 

fewer locations could have been assessed. As it stands, we have a large amount 

of information for locations throughout the body, giving a thorough overview 

of the transmission of the WBV. The possible overestimation of accelerations, 

especially at the thigh, should be considered when reviewing this data. 

3) Only the motion capture data recorded in the Z axis was analysed. The 

movements in the X and Y direction may show different relationships between 
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the frequency, amplitude and mode of vibration and the transmission achieved. 

This is perhaps particularly true for the Galileo 900 as this has a side alternating 

movement. Having said this, previous work has shown the primary direction of 

the whole body vibration delivered by the Galileo 900 to be in the vertical Z axis 

[167]. Whether there are differences in the movements generated between 

different platforms in the  X and Y direction is still to be determined.  

 

8.3 Future work 
To build on this work, the joint angles generated about the ankle, knee and anterior 

superior iliac spine during whole body vibration could be analysed in order to fully 

identify distinct modes of WBV attenuation. As already mentioned, the movements in 

the X and Y direction should also be analysed.  

During the study, a computer tomography (CT) scan was taken of the tibia of each 

participant. From this image, a finite element model can be developed and validated 

using the complete strain data recorded. This will provide an insight into the strain 

distribution across the entire surface of the tibia during habitual locomotor activities 

and WBV. It may also be possible to use the motion capture data to calculate the 

forces that would be acting on the tibia during the different activities and use the 

validated model to determine the direction of recorded strains or the strain that would 

be expected in the tibia for those recordings in which at least one strain gauge element 

had failed.  

Ultimately this work aimed to form the basis of future research into the use of WBV in 

the treatment of an osteopenic or osteoporotic population. The work has proven the 

concept that WBV can be delivered to areas of interest in the prevention of 

osteoporotic fracture. The data suggest that the unilateral loading model using the 

Galileo 900 at 20Hz 3mm could provide a good platform to assess the effects of WBV in 

a postmenopausal osteoporotic population. As previous work has shown positive but 

small effects of WBV on the skeleton of postmenopausal osteoporotic women, an 

interesting question to explore would be whether WBV has any impact as a 

combination therapy. By combining Teriparatide treatment with WBV it may be 
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possible to augment the response to either the Teriparatide or the WBV, ultimately 

reducing the need for high doses of expensive pharmaceuticals. By using the unilateral 

loading model and a combination of Xtreme CT and dual energy x-ray absorptiometry 

(DXA), the self-controlled and systemic effects of WBV in combination with 

Teriparatide can be assessed.  
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10.1 Computer Program Descriptions 

10.1.1 Order of WBV delivery 
  SG01 SG02 SG03 SG04 SG06 SG07

Galileo 900 
5Hz0mm 6 1 1 5 5 2
10Hz0mm 7 2 2 6 6 3
15Hz0mm 8 3 3 7 7 4
20Hz0mm 9 4 4 8 8 5
25Hz0mm 10 5 5 9 9 6
30Hz0mm 11 6 6 10 10 7
5Hz1mm 17 12 16 16 16 8
10Hz1mm 16 11 15 15 15 9
15Hz1mm 15 10 14 14 14 10
20Hz1mm 14 9 13 13 13 11
25Hz1mm 13 8 12 12 12 12
30Hz1mm 12 7 7 11 11 13
5Hz3mm 18 13 17 17 17 14
10Hz3mm 19 14 18 18 18 15
15Hz3mm 20 15 19 19 19 16
20Hz3mm 21 16 20 20 20 17
25Hz3mm 22 17 21 21 21 18
30Hz3mm 23 18 22 22 22 19
5Hz3mmLF 30 24 40 29 28 20
10Hz3mmLF 31 23 39 30 27 21
15Hz3mmLF 32 22 38 31 26 22
20Hz3mmLF 33 21 37 32 25 23
25Hz3mmLF 34 20 36 33 24 24
30Hz3mmLF 35 19 35 34 23 25
5Hz3mmRF 29 25 29 40 29 26
10Hz3mmRF 28 26 30 39 30 27
15Hz3mmRF 27 27 31 38 31 28
20Hz3mmRF 26 28 32 37 32 29
25Hz3mmRF 25 29 33 36 33 30
30Hz3mmRF 24 30 34 35 34 31
5Hz5mm 41 36 28 28 41 32
10Hz5mm 40 35 27 27 40 33
15Hz5mm 39 34 26 26 39 34
20Hz5mm 38 33 25 25 38 35
25Hz5mm 37 32 24 24 37 36
30Hz5mm 36 31 23 23 36 37
Powerplate Pro 5
25Hz Low 2 39 11 1 1 40
25Hz High 3 38 8 2 2 38
30Hz Low 1 40 10 4 3 41
30Hz High 4 41 9 3 4 39
Juvent 1000 5 37 41 41 35 1

S 1: The order of WBV delivery. The order in which the WBV on different 
platforms and of different frequencies and amplitudes were delivered to each 
participant. The first setting is indicated by 1 and the last by 41 with the order 
in between indicated by increasing values.  The ‘Hz’ value indicates the 
frequency and the ‘mm, ‘Low’ and ‘High’ values indicate the amplitude. LF and 
RF refer to only one (left and right foot respectively) foot on the platform.  
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10.1.2 Fast Fourier Transform 
 

Program used to run a windowed fast fourier transform using do_FFT function written 

by Prof Keith Wardon, Sheffield University. 

Fs = 300;            % Sampling frequency 

nfft = 1024;                     % FFT length 

 

l=input('lower limit') 

h=input('upper limit') 

FOHE=FOHE(l:h) 

RACR=RACR(l:h) 

LACR=LACR(l:h) 

T2=T2(l:h) 

MANU=MANU(l:h) 

T10=T10(l:h) 

SACR=SACR(l:h) 

RASI=RASI(l:h) 

LASI=LASI(l:h) 

RTHI=RTHI(l:h) 

LTHI=LTHI(l:h) 

RKNE=RKNE(l:h) 

LKNE=LKNE(l:h) 

RTIB=RTIB(l:h) 

LTIB=LTIB(l:h) 

RANK=RANK(l:h) 

LANK=LANK(l:h) 

RHEE=RHEE(l:h) 

LHEE=LHEE(l:h) 
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RTOE=RTOE(l:h) 

LTOE=LTOE(l:h) 

PLAT=PLAT(l:h) 

 

x=FOHE; 

[f,Gxy]=do_FFT(x,nfft,Fs) 

A=figure 

plot(f,squeeze(Gxy(1,1,:))) 

saveas(A,'FOHEfft') 

FOHEGxy=Gxy 

FOHEf=f 

FOHEpeak=max(Gxy) 

 

x=RACR; 

[f,Gxy]=do_FFT(x,nfft,Fs) 

A=figure 

plot(f,squeeze(Gxy(1,1,:))) 

saveas(A,'RACRfft') 

RACRGxy=Gxy 

RACRf=f 

RACRpeak=max(Gxy) 

 

x=LACR; 

[f,Gxy]=do_FFT(x,nfft,Fs) 

A=figure 

plot(f,squeeze(Gxy(1,1,:))) 

saveas(A,'LACRfft') 

198 

 



LACRGxy=Gxy 

LACRf=f 

LACRpeak=max(Gxy) 

 

x=T2; 

[f,Gxy]=do_FFT(x,nfft,Fs) 

A=figure 

plot(f,squeeze(Gxy(1,1,:))) 

saveas(A,'T2fft') 

T2Gxy=Gxy 

T2f=f 

T2peak=max(Gxy) 

 

x=MANU; 

[f,Gxy]=do_FFT(x,nfft,Fs) 

A=figure 

plot(f,squeeze(Gxy(1,1,:))) 

saveas(A,'MANUfft') 

MANUGxy=Gxy 

MANUf=f 

MANUpeak=max(Gxy) 

 

x=T10; 

[f,Gxy]=do_FFT(x,nfft,Fs) 

A=figure 

plot(f,squeeze(Gxy(1,1,:))) 

saveas(A,'T10fft') 
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T10Gxy=Gxy 

T10f=f 

T10peak=max(Gxy) 

 

 

x=SACR; 

[f,Gxy]=do_FFT(x,nfft,Fs) 

A=figure 

plot(f,squeeze(Gxy(1,1,:))) 

saveas(A,'SACRfft') 

SACRGxy=Gxy 

SACRf=f 

SACRpeak=max(Gxy) 

 

x=RASI; 

[f,Gxy]=do_FFT(x,nfft,Fs) 

A=figure 

plot(f,squeeze(Gxy(1,1,:))) 

saveas(A,'RASIfft') 

RASIGxy=Gxy 

RASIf=f 

RASIpeak=max(Gxy) 

 

x=LASI; 

[f,Gxy]=do_FFT(x,nfft,Fs) 

A=figure 

plot(f,squeeze(Gxy(1,1,:))) 
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saveas(A,'LASIfft') 

LASIGxy=Gxy 

LASIf=f 

LASIpeak=max(Gxy) 

 

x=RTHI; 

[f,Gxy]=do_FFT(x,nfft,Fs) 

A=figure 

plot(f,squeeze(Gxy(1,1,:))) 

saveas(A,'RTHIfft') 

RTHIGxy=Gxy 

RTHIf=f 

RTHIpeak=max(Gxy) 

 

x=LTHI; 

[f,Gxy]=do_FFT(x,nfft,Fs) 

A=figure 

plot(f,squeeze(Gxy(1,1,:))) 

saveas(A,'LTHIfft') 

LTHIGxy=Gxy 

LTHIf=f 

LTHIpeak=max(Gxy) 

 

x=RKNE; 

[f,Gxy]=do_FFT(x,nfft,Fs) 

A=figure 

plot(f,squeeze(Gxy(1,1,:))) 
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saveas(A,'RKNEfft') 

RKNEGxy=Gxy 

RKNEf=f 

RKNEpeak=max(Gxy) 

 

x=LKNE; 

[f,Gxy]=do_FFT(x,nfft,Fs) 

A=figure 

plot(f,squeeze(Gxy(1,1,:))) 

saveas(A,'LKNEfft') 

LKNEGxy=Gxy 

LKNEf=f 

LKNEpeak=max(Gxy) 

 

x=RTIB; 

[f,Gxy]=do_FFT(x,nfft,Fs) 

A=figure 

plot(f,squeeze(Gxy(1,1,:))) 

saveas(A,'RTIBfft') 

RTIBGxy=Gxy 

RTIBf=f 

RTIBpeak=max(Gxy) 

 

x=LTIB; 

[f,Gxy]=do_FFT(x,nfft,Fs) 

A=figure 

plot(f,squeeze(Gxy(1,1,:))) 
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saveas(A,'LTIBfft') 

LTIBGxy=Gxy 

LTIBf=f 

LTIBpeak=max(Gxy) 

 

x=RANK; 

[f,Gxy]=do_FFT(x,nfft,Fs) 

A=figure 

plot(f,squeeze(Gxy(1,1,:))) 

saveas(A,'RANKfft') 

RANKGxy=Gxy 

RANKf=f 

RANKpeak=max(Gxy) 

 

x=LANK; 

[f,Gxy]=do_FFT(x,nfft,Fs) 

A=figure 

plot(f,squeeze(Gxy(1,1,:))) 

saveas(A,'LANKfft') 

LANKGxy=Gxy 

LANKf=f 

LANKpeak=max(Gxy) 

 

x=RHEE; 

[f,Gxy]=do_FFT(x,nfft,Fs) 

A=figure 

plot(f,squeeze(Gxy(1,1,:))) 
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saveas(A,'RHEEfft') 

RHEEGxy=Gxy 

RHEEf=f 

RHEEpeak=max(Gxy) 

 

x=LHEE; 

[f,Gxy]=do_FFT(x,nfft,Fs) 

A=figure 

plot(f,squeeze(Gxy(1,1,:))) 

saveas(A,'LHEEfft') 

LHEEGxy=Gxy 

LHEEf=f 

LHEEpeak=max(Gxy) 

 

x=RTOE; 

[f,Gxy]=do_FFT(x,nfft,Fs) 

A=figure 

plot(f,squeeze(Gxy(1,1,:))) 

saveas(A,'RTOEfft') 

RTOEGxy=Gxy 

RTOEf=f 

RTOEpeak=max(Gxy) 

 

x=LTOE; 

[f,Gxy]=do_FFT(x,nfft,Fs) 

A=figure 

plot(f,squeeze(Gxy(1,1,:))) 
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saveas(A,'LTOEfft') 

LTOEGxy=Gxy 

LTOEf=f 

LTOEpeak=max(Gxy) 

 

x=PLAT; 

[f,Gxy]=do_FFT(x,nfft,Fs) 

A=figure 

plot(f,squeeze(Gxy(1,1,:))) 

saveas(A,'PLATfft') 

PLATGxy=Gxy 

PLATf=f 

PLATpeak=max(Gxy) 

 

close all 

 

outputGxy=[FOHEGxy RACRGxy LACRGxy T2Gxy MANUGxy T10Gxy SACRGxy RASIGxy LASIGxy 
RTHIGxy LTHIGxy RKNEGxy LKNEGxy RTIBGxy LTIBGxy RANKGxy LANKGxy RTOEGxy LTOEGxy 
RHEEGxy LHEEGxy PLATGxy] 

outputf=[FOHEf RACRf LACRf T2f MANUf T10f SACRf RASIf LASIf RTHIf LTHIf RKNEf LKNEf RTIBf 
LTIBf RANKf LANKf RTOEf LTOEf RHEEf LHEEf PLATf] 

outputpeak=[FOHEpeak RACRpeak LACRpeak T2peak MANUpeak T10peak SACRpeak RASIpeak 
LASIpeak RTHIpeak LTHIpeak RKNEpeak LKNEpeak RTIBpeak LTIBpeak RANKpeak LANKpeak 
RTOEpeak LTOEpeak RHEEpeak LHEEpeak PLATpeak] 

 

10.1.3 Peak to Peak Displacements 
Peak to peak displacements were determined using the Tibial_marker program written 

by Dr Lang Yang, University of Sheffield. 
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10.1.4 Filter Design and Implementation 
Butterworth bandpass filters were designed and implemented using filter_design and 

filter_apply matlab programs written by Prof Keith Wardon, University of Sheffield. 

10.2 Personal Communications 

10.2.1 Emma Pratt – Sheffield Teaching Hospitals 
26/10/11 

Hi Lucy,  

  

Clinicallly anything under 10 fill without looking! 10-40 have a good look at the pattern 

fill options to check happy with. Above this I wouldn't be happy filling. However, you 

could try changing some of your reconstruction parameters if you think they are not 

real obstructions, namely the ray intersection factor but there are a few more to have 

a play with. The speed may also need increasing, as movement is much faster than 

gait. HAve a play and see if it gets any better!  

  

Emma 

10.2.2 Gerald Smith – Colorado Mesa University 
06/02/12 

Hello Lucy,  

 

The detrending was to get rid of the small, low frequency shifts of position that occur 

with balance on the vibrating plate. It was accomplished by subtracting a moving 

average (over .04 s) from each position data point. This in effect removed the low 

frequency changes of position and left the high frequency vibration in place. See the 

attached figure to show how this worked over a one second time period. 

 

The accelerations were calculated directly from the detrended position data using a 

central difference formula for acceleration: 
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a(i)  =  [ X(i-1)  -  2*X(i)  +  X(i+1) ] / [( delta t)^2 ] 

 

where the i indices indicate the sample numbers and delta t is the time interval 

between samples. 

 

Good luck with your project, 

GS 

10.2.3 Peter Simonson – Juvent 
11/08/14 

Hello Lucy, 

 

I understand you needed a concise decryption of the Juvent’s ‘magic’ 

 

Pete 

The Juvent 1000N uses an accelerometer/micro-processor combined with patented 

algorithms to optimise  safe, effective, and convenient micro-impact for each user, 

each time. 

 

For the first 12 seconds, this patented algorithm running on the onboard 

microprocessor analyses the acceleration/force response from the user's body within a 

sweep (32Hz – 37Hz, at 0.3g.  It uses this data to calculates the user’s optimal resonant 

frequency; resulting in the the most efficient, safe, and effective frequency. 

 

In real-time throughout the session, the patented algorithm monitors data and makes 

real-time adjustments to the force output to maintain a .3g force/acceleration at the 

optimum frequency for that user. 

 

At the end, the system records the chosen frequency was during a 20 minute 

treatment.  
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10.3 Supporting Data and Documents 

10.3.1 Area of the Gait Laboratory 
Data and figures provided by Mark Reeves, Sheffield Teaching Hospitals. 

Area and Volume Estimations 
Area at 0.1m = 38m^2 

 Area at 2.0m = 32m^2 
 Average Area = 35m^2 
 If height = 2.2m  

  Volume = 35 x 2.2 = 77m^3  

 

 

S 2: Capture Volume of the Gait Lab at the Northern General Hospital, Sheffield. 
Marker coordinates of a single reflective marker at the boundaries of view were 
established at heights of 0.1m, 1.4m and 2.0m. The area of the gait lab was 
calculated from these boundaries. An average area of 35m2 was recorded which 
equates to a 3D volume of 77m3 as the capture volume has a height of 2.2m. 
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10.3.2 Transmission with One or Both Feet on the Galileo 900 
 

  

S 3: Transmission of 10Hz whole body vibration (WBV) with unilateral and bilateral stance. 

WBV was delivered using the Galileo 900 platform at a frequency of 10Hz and amplitude of 
3mm.In both unilateral and bilateral stances, transmission decreases from input to the 
forehead, however to different degrees dependent on whether there is one or both feet on 
the platform. Transmission in the torso is significantly greater in the unilateral stance than 
bilateral stance. Percentage of WBV transmitted to anatomical landmarks was calculated 
from peak to peak displacements measured using a Vicon motion capture system. 
Differences between vibration transmitted when both feet, the left foot and the right foot 
were on the platform were assessed using a one-way ANOVA with Dunnett’s T3 post-hoc 
test.  All outcomes are significant at p<0.001 unless indicated. NS=Not Significant, *p<0.05, 
** p<0.01. 
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S 4: Transmission of 20Hz whole body vibration (WBV) with unilateral and bilateral stance. 

 
WBV was delivered using the Galileo 900 platform at a frequency of 20Hz and amplitude of 
3mm.In both unilateral and bilateral stances, transmission decreases from input to the 
forehead, however to different degrees dependent on whether there is one or both feet on 
the platform. Transmission in the torso is significantly greater in the unilateral stance than 
bilateral stance. Percentage of WBV transmitted to anatomical landmarks was calculated 
from peak to peak displacements measured using a Vicon motion capture system. 
Differences between vibration transmitted when both feet, the left foot and the right foot 
were on the platform were assessed using a one-way ANOVA with Dunnett’s T3 post-hoc 
test.  All outcomes are significant at p<0.001 unless indicated. NS=Not Significant, *p<0.05, 
** p<0.01. 
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S 5: Transmission of 25Hz whole body vibration (WBV) with unilateral and bilateral stance. 
WBV was delivered using the Galileo 900 platform at a frequency of 25Hz and amplitude of 
3mm.In both unilateral and bilateral stances, transmission decreases from input to the 
forehead, however to different degrees dependent on whether there is one or both feet on 
the platform. Transmission in the torso is significantly greater in the unilateral stance than 
bilateral stance. Percentage of WBV transmitted to anatomical landmarks was calculated 
from peak to peak displacements measured using a Vicon motion capture system. 
Differences between vibration transmitted when both feet, the left foot and the right foot 
were on the platform were assessed using a one-way ANOVA with Dunnett’s T3 post-hoc 
test.  All outcomes are significant at p<0.001 unless indicated. NS=Not Significant, *p<0.05, 
** p<0.01. 
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10.3.3 Strain and Corresponding Strain Rate during Walking 
  

S 6: Strain and Strain Rate Recorded during Walking 

The principal tensile strain during a single gait cycle is shown. The tensile strain rate 
shows a corresponding pattern, with the highest strain rates observed at the periods of 
greatest change in strain. 
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10.3.4 Strain and Corresponding Strain Rate during Whole Body Vibration 
 

 

        
      

      
     
      

      
   

S 7: Strain and Strain Rate Recorded during Whole Body Vibration on the Galileo 900 
at 15Hz5mm. 
Principal tensile strain shows a cyclical pattern at 15Hz when participants are stood on 
the Galileo 900 at a frequency of 15Hz and amplitude of 5mm. The tensile strain rate 
shows a corresponding pattern, with the highest strain rates observed at the periods of 
greatest change in strain. 
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10.3.5 Electrical Interference During Strain Recordings during Standing 
 

 

 

 

S 8: Strain and Strain Rate Recorded during Standing 

Principal tensile strain and strain rate recorded during standing show a 50Hz cyclical 
pattern. This is unexpected during standing, however is the frequency of UK mains  
voltage, suggesting electrical interference during this recording. This interference does 
not appear to influence other strain recordings made during habitual locomotor 
activities or during whole body vibration. 
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