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Abstract  

 

This thesis aims to investigate the macroscopic influence of micromechanical parameters in short 

fibre thermoplastic reinforced composites (SFTRC). A numerical simulation using the finite element 

method has been carried out under the concept of Representative Volume Element (RVE). For the 

short fibre composite material under investigation, all the properties were studied on the linear 

elastic response. 

 The microstructure was created by implementing an algorithm to solve the packing problem and 

create periodic microstructures. Various microstructures were developed in order to study the 

influence of the dominant parameters. The developed algorithm is able to create microstructures 

which can be separated into two main categories. The first one regards microstructures consisting of 

uniform fibre length while the second one regards microstructures made of non-uniform fibre 

length. The uniform length developed microstructures were studied with respect to the following 

parameters: Fibre Orientation Distribution (FOD), three cases of orientation were considered: 

Aligned, misaligned and random orientation, three cases of fibre Aspect Ratio (AR): AR=1, AR=5, 

AR=10, and three cases of UC size. The non-uniform length microstructures were studied with 

respect to: Fibre Orientation Distribution (FOD), three cases of orientation were considered: Aligned, 

misaligned and random orientation, and two cases of UC size. 

The developed algorithm was programmed in order to create periodic microstructures considering a 

number of parameters introduced by the user. The role of the algorithm was focused on creating 

elliptical shapes and assigned them with various constant and random parameters. Ellipses were 

representing short fibres placed in a stochastic manner in space (random coordinates) for the cases 

of randomly oriented fibres, mis-oriented fibres and aligned fibres and for three cases of aspect 

ratio: AR=1, AR=5, AR=10. The cases of random orientation and length distribution were seeded 

from a pseudo-random number generator by following a uniform distribution. The case of 

misaligned fibres was achieved by seeding fibre’s orientation with the same pseudo-random 

generator but restricting the maximum achievable fibre angle to achieve a negative exponential 

distribution.  

A statistical test was implemented in order to quantify the influence of the stochastic parameters in 

the macroscopic response and derive the representative results which must be independent from 

any stochastic parameter. A Chi-square test was used for 97% accuracy and for two degrees of 

freedom. The test was applied on the results (for all the properties under investigation) of the five 

realisations and it  consisted of a comparison between the observed value, defined through the 

analysis, and the expected value defined as the average quantity of the observed values. 

 The developed models were subjected to three kinds of periodic boundary conditions; kinematic 

boundary conditions for the effective transverse and longitudinal stiffness and shear stiffness 

(𝐸1, 𝐸2, 𝐺), thermal boundary conditions for deriving the effective thermal conductivity (𝐾1, 𝐾2) and 

thermo-mechanical boundary conditions for the case of Coefficient of Thermal Expansion (CTE) 

(𝛼1, 𝛼2). In the investigation of the thermal and thermo-mechanical properties, results were 

obtained for the steady state case. 
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 A study on the effect of RVE size was carried out, and in the case of uniform fibre length results 

show that representativeness of the size is a parameter strongly dependant on the combination of 

AR and FOD. Chi-square results show a small dependency between the macroscopic response and 

the size with regard to the uniform fibre length. In the case of fibre length distribution, chi-square 

results show a very strong dependency of the effective properties with the developed realisations. 

Conclusions about the representative size can be made once parameters as FOD, FLD, AR and 𝐶𝐼𝑛ℎ 

are considered. Once results from representative sizes of UCs were obtained a further comparison of 

all the properties (mechanical, thermal and thermo-mechanical) with analytical predictions took 

place.  
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1 Introduction 
 

Composite materials are known as new generation, lightweight and very strong-stiff materials, yet 

this kind of material has existed in nature for thousands of years now. Materials like wood, bamboo, 

bones amongst many others are a few examples of composite materials existing long before the 

modern engineering community thought of developing the first composite material. The beginning 

of composite materials starts in the third decade of the 20th century; however composite structures 

can be found as far back in time as 1500 BC when ancient Egyptians and Mesopotamians mixed mud 

and straw in order to create a strong and durable structural material for buildings. Later on, around 

1200 AD the Mongolian army of Genghis Khan used a bow made out of composite material 

consisting of wood, bone and animal glue, all of which were wrapped together with birch bark. 

These signs indicate that humans understood the advantages of a composite system of materials, in 

structures, centuries ago. Nowadays with the existing manufacturing technologies and the 

significant improvements in theoretical knowledge, composite materials are the sharp edge of 

materials technology. 

In general a composite material is a material made from two or more distinct materials with 

significantly different physical or chemical properties, which produce a material with properties 

different from the individual components. The second phase of composite material is called “matrix” 

and its main purpose is to keep the reinforcing agent together and also to transfer the load to the 

reinforcing agent. The main matrix materials are polymers, metals and ceramics. Polymeric materials 

are the result of the polymerisation process of monomers and they exist in two types, natural 

polymers and synthetic polymers. Natural polymers exist in nature in the form of natural silk or 

natural wool or proteins. The second type of polymeric structures is the synthetic polymers. 

Examples of synthetic polymeric structures, amongst others, include nylon, polyethylene, polyester, 

and epoxy. Scientists developed the first synthetic polymers at the beginning of the 20th century. 

Plastics like vinyl, phenolic, polyester and polystyrene were developed in the early 1900s and were 

the first synthetic polymers. In the case of synthetic polymers two big categories can be found - 

thermoplastic and thermoset polymers. The primary physical difference is that thermoplastics can 

be re-melted back into a liquid form, whereas thermoset plastics will always remain in a permanent 

solid state. However in order to create a strong-stiff material, further that a polymeric matrix, 

reinforcement is needed. Historically the first fibre reinforcement appears in 1935 from Owens 

Corning by introducing the first glass fibre. Since then a period of developing composite materials 

began and extreme growth occurred during World War II. By 1970 the sector of composite materials 

was well established, new types of resins with better properties were developed and new types of 

fibre reinforcement like carbon and aramid were introduced into the market. Reinforcing agents can 

be fibres (continuous, long or short), particles, nanotubes or nanoparticles. A relation between mass 

and Young’s modulus for various reinforcing materials can be seen in Figure 1.1. 
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The composite material to be further discussed will be polymeric thermoplastic matrix reinforced 

with short glass fibre composite. Short fibre reinforced composites (SFRC) are materials with many 

advantages. Amongst others, SFRC are not expensive composite materials, they have a relatively low 

cost and easy process of manufacturing and they exhibit superior mechanical properties over the 

parent polymers. These are the main reasons for the extent of development and usage of SFRC. 

Large scale production of SFRC is possible by using extrusion compounding and injection moulding 

processes. These conventional fabrication techniques are the main reason for making the 

manufacture of SFRC efficient and inexpensive in comparison with the manufacture of continuous 

fibre composite.  

 The following chapter provides a background for the mechanical, thermal and thermo-mechanical 

characterisation of short fibre composite materials. Prediction of effective mechanical, thermal and 

thermo-mechanical properties of short fibre reinforced composites (SFRC) has been a field of study 

for various researchers and it consists the main influence for the following chapters.  Through this 

chapter different approaches that have been developed by numerous researchers through the years 

will be presented. The chapter begins by discussing the main aspects of the manufacturing process 

of short fibre composite, which is a process which introduces major factors affecting the behaviour 

of the material, and continues by addressing the major fundamental theoretical approaches on 

micromechanical analytical modelling. 

 The chapter is separated in three main sections. During the first section a review of various 

analytical approaches on the field will be presented, followed by numerical approach and 

Figure 1.1 Stiffness of various materials with respect to their 
density. Adapted by D. Hull 
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experimental work. Finally the chapter concludes with a review of the homogenisation approach.  All 

of the sections presented in this chapter are of important interest for material characterisation.   

 

1.1 General aspects 
 

Short fibre composite materials have been attractive to the industry since their invention. SFRC 

received much attention as a material due to its mechanical and physical properties, with those 

properties being strongly influenced by the morphology and the type of the reinforcement, as well 

as by the bonding efficiency between the fibres and the matrix. Various manufacturing processes 

have been developed throughout the years. Mainly SFRC manufactured using the injection moulding 

process exhibit properties that strongly depend on the aspect ratio (AR), fibre’s orientation (FO), 

fibre’s content, fibre’s length and the interfacial strength. Considering its superior mechanical 

properties in combination with the low manufacturing cost, it makes it easier to understand why this 

family of materials were used and studied so widely. In any case of different combinations of matrix 

and reinforcement materials, or in any case of different AR or FO, the macroscopic behaviour of the 

composite material will be different. For this purpose a wide range of investigations have been done 

in order to clarify the limitation and the potential of such materials in any loading or environmental 

conditions. 

 Earlier theoretical micromechanical models were able to predict the macroscopic effective 

properties of SFRC by using the micromechanical parameters of the material. Simple and relatively 

complex theoretical models have been developed in order to satisfy this purpose. Analytical models 

are based on the accurate mathematical modelling of the physical phenomenon-mechanism that 

takes place on a system of materials as a composite material.  Through the revolutionary 

development of computational power and the improvement of numerical methods, a more 

comprehensive computational approach was made possible and a new era of computational 

mechanics began. There are five main factors dominating the physical and mechanical behaviour of 

SFRC: 

 Properties of the individual constituents 

 Fibre volume fraction 

 Fibre orientation distribution (FOD) 

 Fibre length distribution (FLD) 

 Fibre-matrix interface strength. 
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1.1.1 Manufacturing processes 

 

Theoretical models predicting stiffness, strength and fracture among other properties strongly 

depend on the aforementioned five factors-parameters. FOD and FLD in particular, are properties 

strongly dependant on the manufacturing process. As mentioned in the introduction, manufacturing 

processes such as extrusion compounding and injection moulding are most often used to 

manufacture short fibre reinforced thermoplastic composite (SFRTC) . The process of extrusion 

compounding shown in Figure 1.2 involves a screw (single or double) as a transport media due to its 

ability to perform all the necessary steps of the process: feeding, pumping, melting and mixing.  Its 

advantage to include a relatively large quantity of compound material, including screw technology 

for the extrusion compounding offers a good homogeneity of the melt and an accurate temperature 

control. A good degree of homogeneity is always an aim for short fibre manufacturing processes. As 

reported by many authors, screw technology for extrusion compounding SFRTC products leads to a 

dramatic reduction of the fibre length distribution. 

 

 

 

 

 

 

 

 

 

 

 

As it has been reported by (Ramani, 1995) there is an effect on the final fibre length with the 

geometry of the screw. Figure 1.3 demonstrates that the average fibre length is dramatically 

reduced in relation to the actual geometric design of the screw and the numbers of flights. During 

the process of compressing and mixing the polymer with the short fibres and especially during the 

process of melting, extremely high shear stresses take place in the melted material.  

 

Figure 1.2 Extrusion compounding process. 
Adapted by B.T. Astrom 
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As a result, the fibres which appear between the screw and the walls of the extruder break due to 

the high shear stresses. Also, as reported by (Fu, et al., 2009)the major causes of fibre damage can 

be: 

 Fibres interacting with a fibre-stress concentration due to abrasion of fibres surface, 

 Fibres overlapping can cause high bending stresses, which will result in fibre breakage, and 

 High viscous forces introduced into the system by the matrix melt may cause fibre fracture. 

For high Volume Fraction (𝑉𝑓), or densely populated flow of fibres there is a high possibility of fibre 

to fibre interaction. As a result, (Milewski, 1974) presented a relation between fibre aspect ratio and 

the maximum achievable volume fraction, shown in Figure 1.4, showing that high volume fraction 

for randomly oriented SFRC is only possible for low aspect ratio. In other words, the higher the 

aspect ratio, the lower the maximum achievable volume fraction.   

 

 

 

 

 

 

 

 

Figure 1.3 The number average of fibre length in respect 
with flight number towards the screw for glass SPS with 

weight fraction of 40%. (Ramani, 1995)  

Figure 1.4 Maximum fibre volume fraction as a function of 

average fibre aspect ratio. Adapted from (Milewski, 

1974). 
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It has also been reported by (Fu, et al., 2009) that the process of extrusion compounding for fibre 

filled polymer manufacturing has a practical processing limit on the maximum fibre content of 40-

45% weight fraction. 

As reported by (Rosato, 2000), injection moulding (IM) is principally a mass production method and 

has the advantage of cost-effective economy, vast quantity and no post-moulding operations, and 

that is predominantly why IM is used to produce at least 50% (by weight) of SFRC. The IM process 

involves three basic mechanical units: 

 

 Melting and injection unit, 

 Mould, and 

 Clamping cylinder. 

 

First, the composite compound is introduced into a heater chamber and then the injection process 

follows under pressure into a mould cavity. After that the part solidifies. The final step involves the 

ejection of the product from the mould. In terms of fibre orientation for the IM manufacturing 

process, the high speed flow of the melt helps to achieve a higher degree of alignment. A 

combination of high speed flow with a narrow gate or a thin and confined wall helps fibres to be 

oriented towards the flow direction. This phenomenon occurs mainly due to the most probable 

interaction of fibres with the walls of a narrow passage. This interaction lead to high shear stresses 

which results in a higher degree of alignment for the fibres. The best known model to describe this 

situation is called the “skin-core-skin” model, in which two skin layers surround the core layer. Due 

to the interaction of the melt with the mould surface, fibres are prone to a higher degree of 

alignment in contrast with the core layer, located in the middle of the mould (without any contact 

with the cold mould surface) and the fibres tend to be more randomly oriented.  

This case of orientation causes the material to display a more anisotropic behaviour. In terms of the 

aspect ratio, as in the case of the extrusion compound, there is a significant reduction of the fibre 

length during the process of IM. As reported by (Kamal, 1986), a significant reduction of fibre length 

was observed from 0.71mm to 0.27mm. According to (Vu-Khanh, 1991), the IM manufacturing 

process can be controlled by six variables:  

 peak cavity pressure,  

 holding pressure,  

 back pressure, 

  screw speed, 

  melt temperature and 

  barrel temperature profile.  

Generally, fibre attrition is strongly influenced by these variables.  

 

As reported by (Thomason, 1996) during the last decades the rapid increase in the use of structural 

composites led to the need to develop high performance SFRC. High performance of SFRC can be 
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achieved if the composite contains fibres with high AR, high volume fraction and aligned orientation; 

all of the aforementioned properties are strongly dependant on the manufacturing process of SFRC. 

On the other hand, the market demand for mass production of SFRC is in contrast with the quality of 

the manufacturing processes needed to achieve high AR and aligned FO. This led to the development 

of manufacturing techniques able to satisfy the needs of the market. Despite parameters like fibre 

content being relatively easy to control, other parameters such as AR and FO are still not easily 

controllable.  

Regarding the manufacturing methods of short fibre composite with thermoset resins a wide range 

of methods are currently used in industry. The following paragraphs aim to describe the main 

manufacturing methods as: 

 Hot press moulding 

 Cold press moulding 

 Hand lay-up 

 Spray lay-up 

During the hot press moulding, a matched metal tool is placed between the platens of a hydraulic 

press and heated to between 130°C and 170°C. The prepreg or reinforcement material is placed in 

the tool, which has a cavity in the shape of the component required. The tool is rapidly closed and 

the cure is completed within 2-3 minutes. The tool is opened and the component removed. In order 

to aid removal of the component from the tool, release agents are either incorporated into the resin 

mix or applied to the surface of the tool. 

This method uses various compounds including SMC (Sheet Moulding Compound), DMC (Dough 

Moulding Compound) and BMC (Bulk Moulding Compound). The compounds use polyester resin, 

filler, catalyst, pigment and other additives. The fibre preforms are typically a sprayed chopped 

fibre and binder or thermally deformed Chopped strand mat containing a thermoplastic binder. This 

method does allow for a high production rate and is preferred by the automotive industry. 

Some of the characteristics of the method are: 

Table 1-1 Characteristics of hot press mould method.  

key points  

Resin Polyester, Epoxy 

Fibre Type Chopped strand mat 

Cost Press 30K-350K 

Tool 3K-70K 

Application Car body panel 

 

 

In the case of cold press moulding, fibres in the form of mats are placed on the mould and overlap at 

the pinch-off area of the mould. The resin used consists of two batches mixed together, one batch 

contains the catalyst and the other contains the accelerator. The resin is poured into the mould, the 

press is lowered and the mould closed. The resin is forced to the edges of the mould but cannot 

escape due to the overlap of fibre at the pinch-off area. Over this area the fibre is compressed more 

http://www.vircon-composites.com/3_2_1.asp
http://www.vircon-composites.com/2_1_2.asp
http://www.vircon-composites.com/2_1_2.asp
http://www.vircon-composites.com/3_1_1_6.asp
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than over the rest of the mould. The effect is that the resin is contained in the mould but air can 

escape, hence creating a back pressure that ensures the resin flows into all parts of the mould. A 

cold cure process is used (although some increase in temperature is common) with an accelerator in 

place to achieve cure within a reasonable timescale (approximately 15 minutes). The curing process 

is exothermic so that care must be taken not to degrade either the mould or the product. 

As the manufacturing pressures and temperatures are low, the tooling is relatively light duty and 

hence low cost. This method also allows for moderate production rates and can be considered for 

high volume production. 

Some of the characteristics of the method are: 

Table 1-2 Characteristics of the cold press method. 

key points  

Resin Polyester, Epoxy, Phenolic  

Fibre Type Glass or carbon filament mat, woven, 
roving and mulita-axial reinforcement 

Cost Press 5K-30K 

Application High volume productions 

 

For hand wet lay-up method, the fibre is positioned in or on the mould by hand. If the mould is a 

complex shape, small pieces of mat are cut to fit and then more layers are applied to achieve the 

required thickness. The liquid resin is poured over the fibre and rolled to ensure complete wetting of 

the fibre and removal of air bubbles. In general the resin cures at room temperature with the use of 

an accelerator and a catalyst. If a hot cure is used then there is no need to use an accelerator. Post 

curing of cold cured laminates is recommended. 

Prior to application of the fibre and resin, the mould is prepared with either polyvinyl alcohol or non-

silicon wax to aid release of the component. Release of the component is achieved by either tapping 

wedges between the mould and the component, or by the use of compressed air to gently force the 

pieces apart. 

Chopped strand mat is the most commonly used fibre although woven roving is used when a 

stronger and stiffer laminate is required. A gel coat is applied to the mould surface to produce a 

resin rich smooth surface for appearance and protection purposes. For improved surface finish 

and corrosion resistance a surface veil is used which is applied with an embedded fabric for 

reinforcement or mixed with resin for smooth surface. 

The advantage of this method is that it is simple and hence is widely used. There is low cost of 

capital equipment and no requirement for highly skilled labour. It is also possible to achieve 

relatively high fibre contents in the laminate. The disadvantages are that it is not suited for strength 

or weight critical primary structure as the fibre orientation and local resin content cannot be well 

controlled. The nature of the wet lay-up also has health and safety issues because low molecular 

weight resins can be harmful. The fumes from the curing process, especially with polyester 

resin, require appropriate extraction systems, especially to comply with emission levels for styrene. 

Some of the characteristics of the method are: 

http://www.vircon-composites.com/3_1_1_6.asp
http://www.vircon-composites.com/3_1_1_6.asp
http://www.vircon-composites.com/3_3_5.asp
http://www.vircon-composites.com/3_3_6.asp
http://www.vircon-composites.com/6_1_4.asp
http://www.vircon-composites.com/3_2_1.asp
http://www.vircon-composites.com/3_2_1.asp
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Table 1-3 Characteristics of the hand wet lay-up method. 

key points  

Resin Polyester, Vinyl ester, Phenolic 

Fibre Type Chopped strand mat, Woven roving 

Cost <500 

Application Boats, Ducts, Wind turbine blades, 
Chemical tanks 

 

 

The method of spray lay-up implies that glass fibre (Roving) is fed into a chopper on the spray gun 

and the resulting strands are blown into a stream of liquid resin. The spray is directed at a mould and 

the resulting composite has a random array of glass fibres. The resin must be liquid at room 

temperature to achieve adequate handling, wet out and fibre impregnation. In addition to this the 

gel time of the resin must be sufficient to allow complete lay-up of the part before solidification 

occurs. The laminate is rolled to conform the laminate to the mould surface and remove any air 

bubbles. There are two cure systems used, twin-pot and catalyst injection. Both systems begin the 

reaction process at the gun, which means fast curing resin systems may be used. 

 

Prior to application of the fibre and resin, the mould is prepared with either polyvinyl alcohol or non-

silicon wax to aid the release of the component. Release of the component is achieved by either 

tapping wedges between the mould and the component or by the use of compressed air to gently 

force the pieces apart. 

Glass fibre is particularly suitable for this method as it is easily chopped into strands, has low static 

and fast wet through. Resins such as vinyl ester or polyester are commonly used owing to their high 

reactivity. 

The spray method has the advantage on being a fast application method. It achieves better wetting 

of the fibre with fewer voids than with hand lay-up. This results in parts having better physical 

properties. However, it produces parts that are less uniform, particularly in thickness than hand lay-

up. The laminates tend to be resin rich and hence heavier. This method requires a low molecular 

weight resin and the styrene emissions can be high, requiring tight health and safety controls. 

Some of the characteristics of the method are: 

Table 1-4 Characteristics of the spray lay-up method. 

key points  

Resin Polyester, Vinyl ester, Phenolic, Epoxy 

Fibre Type Glass 

Cost Machine 5K-10K 

Mould 150-15K 

Application Caravan bodies, Bathtubs, Shower 
trays 

 

http://www.vircon-composites.com/3_1_1.asp
http://www.vircon-composites.com/3_2_2.asp
http://www.vircon-composites.com/3_2_1.asp
http://www.vircon-composites.com/6_1_4.asp
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1.2 Analytical-Theoretical approach 
 

The mechanical characterisation of a short fibre composite was first approached analytically by the 

implementation of micromechanical models. An innovative work was released in 1889 by Voigt and 

in 1929 by Reuss. Both Voigt and Reuss models were reference models since the earlier developed 

models were mainly based on the Voigt model, known later as the Rule of Mixtures (RoM) while 

Reuss model became known as the Inverse Rule of Mixtures (IRoM). 

 A pioneering work was released in 1952 by (Cox, 1952) on stress distribution along the fibre, using 

the shear lag model. Prediction of the effective elastic modulus was enabled by calculating the fibre 

length factor and adding a modifying factor to the rule of mixtures (RoM).The shear lag model uses 

microstructural parameters such as fibre length and fibre to fibre distance in order to calculate 

macroscopic effective properties. A major contribution of the shear lag model is that by using few 

necessary assumptions it can accurately predict the normal and shear stresses distribution on the 

fibre and also can predict the saturation effect of fibre length.  

 (Hill, 1963) presented a general theoretical approach on the problem of two isotropic phases for any 

concentration by implementing the concept of the phase concentration tensor of stress and strain. 

Hill also mentions that the calculation of macroscopic elastic properties involves calculating the 

dependency of the macroscopic moduli on the relative concentrations, on the inclusion geometry, 

inclusion arrangement, inclusion distribution etc. A self-consistent method was introduced by (Hill, 

1965)as a method that takes account of the inhomogeneity of stress and strain in a similar way to 

the crystalline aggregates theory. The model is able to predict the effective stiffness of a two phase 

composite material. Inclusions are assumed to be aligned ellipses and to have the same elastic 

properties as that of short fibres. The method is based on the solution of the auxiliary elastic 

problem involving a uniformly loaded infinite mass containing an ellipsoidal inhomogeneity. 

 In 1957, a revolutionary work was presented in the proceedings of the royal society by a British 

engineer named Sir Douglas Eshelby (Eshelby, 1957,). The method was promising solution of the 

stress and strain field in a composite by analysing an ellipsoidal inclusion embedded in an infinite 

matrix. Eshelby used the superposition method of linear elasticity, and by assuming four steps of a 

virtual experiment, he proved that the stress and strain field inside the inclusion are uniform, for an 

ellipsoidal inclusion in a homogeneous infinite matrix. Sir Douglas Eshelby’s work consist a head 

cornerstone on the field of micromechanics. 

 Another work on the prediction of short fibre composite came from Halpin and Kardos (Halpin, 

1976,) once they released a paper on the review of the Halpin Tsai equations. It should be 

mentioned that Halpin and Tsai established more useful expressions of Hill’s self-consistent method, 

with approximations to make the model compatible for short fibre composites. As it will be 

discussed later, the limitation of the Halpin-Tsai model, for a very stiff or very complained material, 

led to variations of the RoM. The Halpin and Tsai model has been widely considered to be a reliable 

model, relatively easy to use, with closed analytical solutions. The model uses the degree of 

inhomogeneity and the geometry parameters of a short aligned fibre to predict its macroscopic 

behaviour. 
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 A more complicated scheme was presented by (Mori, 1973) which aimed to discuss a new method 

of calculating the average internal stresses of a matrix in a material containing inclusions with 

transformation strain. The original work of Mori and Tanaka does not refer to composite materials, 

but to the plastic deformation that occurs in a material with transformation strain. In the paper the 

concept of average stress throughout the matrix is discussed, and also an expression of the average 

elastic energy by considering the effect of interaction between the inclusion and the free boundary. 

Benveniste’s work in 1987, (Benveniste, 1987) suggested a new approach on the Mori Tanaka 

scheme for calculating the effective properties of composite materials.  A direct approach on the 

applications of the theory is presented in the paper, through a method named EIAS (Equivalent 

Inclusion Average Stress). The method combines the concept of the equivalent inclusion method 

(EIM), introduced by (Eshelby, 1957,), and the concept of average stress and strain, introduced by 

(Mori, 1973), considering the interaction between the inclusions. A detailed discussion ofthe 

aforementioned models, regarding the concept of average stresses, eigen-strain or the equivalent 

inclusion concept, can be found in the book of (Mura, 1987).  Sufficient definitions of inclusions, 

inhomogeneities and the inhomogeneous inclusions are given based on the concept of eigen-strain. 

 All the previews of the aforementioned models are micromechanical models. They may have 

different approaches but all of them consider information derived from the microstructure of the 

material in order to calculate macroscopic effective or apparent properties. A different analytical 

approach came mainly from the work of (Halpin, 1976,) and co-workers, which is derived from a 

micromechanical (self-consistent) model, but this is more a semi-empirical approach.  

The Laminate Analogy Approach (LAA) has been used by various researchers as a model able to 

estimate the effective mechanical properties of SFRC. The model uses a macroscopic approach on a 

composite material using the Classical Laminate Theory (CLT) and simulates the short fibre material 

as a stacking sequence of differently oriented laminates. The model indirectly uses results from the 

shear lag model, the Voigt model and the Halpin Tsai model in order to calculate micromechanical 

properties. Under this consideration information of the microstructure of the material are introduce 

into the model and treated with a macroscopic approach through CLT. Fibre orientation and fibre 

length are involved within the model in the same manner as in CLT. 

The effect of fibre length and fibre orientation was deeply discussed by (Fu, 2000). In an analytical 

manner they presented a model of calculating the probability density distribution for the fibre length 

and fibre orientation. They proposed a fibre efficiency factor, which is a product of the fibre length 

efficiency factor and the fibre orientation efficiency factor. The article concludes with a tensile 

strength model which considers the main micromechanical parameters affecting the composite.  

A more recent work from (Jules, 2004) presents a hybrid way of calculating effective properties. In 

this article a software is developed and presented, which calculates the effective properties using 

the Mori Tanaka scheme, by implementing numerical methods in order to assign random values in 

micromechanical parameters. The developed software has the ability to consider fibre orientation in 

three dimensional space and fibre length.  

The preview paragraphs refers to analytical models, a theoretical approach based on the 

mathematical modelling of the mechanism that takes place in a two phase composite material 

behaviour on a micro scale. The fact that recently published works are still contributing to the field 

of analytical modelling is an indication that a more simple and holistic approach is possible.  The 
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common base of the presented theoretical work in micromechanical aspects of SFC is the 

idealisation of the material’s morphology. Assumptions like the equal distances between fibres, or 

the uniform length and orientation, the assumption of a single inclusion embedded in an infinite 

matrix, are ideal situations of the stochastic morphology of a short fibre composite. A closer 

examination of the material’s morphology can be achieved by implementing a computational 

approach, a topic which will be discussed in the next paragraphs. 

 

1.3 Numerical-computational approach 
 

 Since 1970, there has been a race to develop numerical methods that will be able to solve 

differential linear or non-linear equations, which describe the behaviour of materials under various 

loading conditions. The Finite Element Method is a well-established method and is one among 

others methods (Boundary Element Method, Finite Volume Method) used for computational 

structural analysis. Therefore, a more realistic approach on the microstructure of the composite is 

enabled and various geometric parameters can be evaluated through a computational approach. 

Through literature, one is able to find numerous papers which discuss computational mechanics for 

traditional engineering materials, as well as for more advanced materials such as composite 

materials. The following paragraphs will focus on scientific work dealing only with numerical models 

for short fibre composites and more specifically the literature considering microstructures or 

micromechanical properties of a short fibre composite material. 

 A relatively recent paper was released by (Hine, 2002) for the prediction of elastic and thermo-

elastic properties of the aligned short fibre composites. Throughout the paper, a numerical approach 

is presented based on the Finite Element Method (FEM) and the thermo-elastic properties of the 

model are calculated using an iterative method, by minimising the strain energy using a conjugate 

gradient approach. Through the developed three dimensional model of the aligned short fibre 

composite, the author investigates the replacement of the length distribution in the morphology of 

the composite with a mono-disperse (uniform) fibre length which will show the same longitudinal 

modulus. The distribution of longitudinal and transverse Young modulus, as well as the shear 

modulus Poisson ratio and the coefficient of thermal expansion are presented as functions of 

volume fraction. Volume fraction was increased until 30%. For the case of 𝑉𝑓 = 15% results for 

longitudinal Young modulus and CTE are presented as a function of AR. The work concludes that a 

replacement of the fibre length distribution can be done with the number average length of the 

fibres in a composite material. Predictions of the developed numerical model are compared with 

theoretical predictions of the Halpin-Tsai model and (Tandon, 1984) model.  

In a later work, the author (Lusti, 2002) focuses on the second important microstructure variable, 

the fibre orientation. Elastic and thermo-elastic properties of three dimensional misaligned 

structures were calculated numerically and compared with experimental and analytical results. The 

stochastic parameter of orientation was seeded by sampling the measured distribution using the 

Monte Carlo method (MCM). In both papers the author uses three dimensional representations of 

the microstructure of a short fibre composite, experiencing geometric periodicity. 
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(Pan, 2008) also studied the effect of random fibre orientation on the macroscopic effective stiffness 

properties of a randomly oriented fibrous composite. Through the paper, the author underlines the 

difficulty of creating models that represent the geometry at micro-level for high volume fraction. A 

method of generating three dimensional, random fibrous realisations is presented which is based on 

the Random Sequential Absorption (RSA) algorithm. A modified RSA was used in order to overcome 

the “jamming problem”. The jamming problem can be described as the difference between the 

analytical predictions on 𝑉𝑓 and the achievable 𝑉𝑓 from the developed algorithm. Analytical 

predictions on the maximum achievable 𝑉𝑓 were proposed by (Evans, 1986,) by implementing a 

linear function of AR. A modified version of RSA algorithms was used in order to overcome the 

jamming limit. The modification regards the ability of the algorithm to count for fibre kinks or fibre 

local bending. By implementing this technique (Pan, 2008) were able to achieve 𝑉𝑓 up to 35.1% 

using inclusions with AR=20. Fibres were simulated as sphere-cylinders, which are cylinders with a 

hemisphere attached to both ends. By using this shape, stress singularities in the model were 

minimized. The developed RVE consisted of two kinds of sub-layers, the fibre reach sub-layer and 

the matrix reach sub-layer. Both layers are repeated six times and seven times respectively through 

thickness in order to build the RVE.  The developed microstructure can be approached as 

macroscopically transversely isotropic behaviour due to the in-plane random orientation. Fibre 

length was assumed constant and fibre cross section or bundle cross section was approached as a 

dodecagonal shape. The size of the RVE was chosen based on a literature approach of scales as 

𝐿
𝑙⁄ = 2, where 𝐿 represents the length of the RVE and 𝑙 represents the length of the fibres. Effective 

stiffness properties were calculated using a homogenisation procedure based on six independent 

loading conditions. Results from the developed numerical model were compared with analytical 

approximations from the Halpin-Tsai equation.  

In a subsequent paper the author (Pan, 2008) investigates the effect of interaction between fibres by 

considering two cases of models consisting of overcrossing fibres. The first model contains two 

overcrossing fibres or a single interaction pair and the second model contains twelve fibres or 

twenty interaction points. The interaction was measured in terms of stress concentration and the 

stress concentration was defined as the ratio of local stress over the average stress. The 

phenomenon of fibre overcrossing was studied as a function of two variables. The first was the 

distance between the fibres, and the second was orientation between them by changing the in-

plane and out of plane angle. The effect of those two variables and the general effect of crossover 

fibres in the stiffness of the composite are evaluated for the through thickness direction 𝐶33.  The 

study concludes that the stress concentration factor for the case of a single interaction pair increases 

with decreasing the distance between the fibres, and also   𝐶33 slightly increases by decreasing the 

fibre’s distance. In the case of twenty interaction pairs, stress concentration was generally higher 

compared with the single interaction pair and shows the same dependency with fibre distance, 𝐶33 

also increased while the distance was decreasing. 

A similar approach was performed by (Iorga, 2008). An RSA-based periodic microstructure was 

analysed through FEA. Results for effective stiffness were compared with a windowing approach 

method named Laminate Random Strand method (LRSM) and analytical predictions of the Halpin-

Tsai model. Two random angles (in plane Θ and out of plane Φ  ) and a random point in space were 

seeded to the RSA in order to produce a non-overlapping periodic microstructure of random short 

fibre composite. Two different cases of the same material were studied. A random fibre composite 
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with 𝑉𝑓 = 15.13%, AR=10 and Φ  restricted in the range of ±10°. The second case was the same 

material but now 𝑉𝑓 = 20% , AR=20 and Φ  restricted in the range of ±5°. For both cases the in 

plane angle has no restrictions, so it was free to vary in the interval [0° − 360°]. The effective 

stiffness tensor was calculated based on a volume average scheme, of stresses and strains field as a 

result of the loading conditions.  Numerical models were subjected to uniform kinematic boundary 

conditions for six static problems which corresponded to the six independent loading cases. Results 

from the random microstructure were compared with orientation averaged results, from aligned 

fibres and a relative error between the two different methods was calculated.  

LRSM is a method proposed by (Ionita, 2006) and is a windowing approach able to rapidly evaluate a 

large number of fibre arrangements for in-plane orientation. Calculations of effective properties are 

based on the classical laminate theory. The method is able to consider the effect of fibre kinks but 

not any out of plane orientation of the fibres. The method has the ability to measure the statistical 

inhomogeneity in the material by information derived from local region. A comparison between the 

LRS method and the direct finite element approach was performed and also results for the statistical 

homogeneity are presented as a function of the window size. 

 (Berger, 2007) investigate the elastic constants of short fibre composite materials using a three 

dimensional RVE. Fibres were simulated as cylinders for the case of random orientation and aligned 

fibres. The periodic microstructure was created using the RSA method with some modifications in 

order to avoid local areas with low quality mesh or element shape. These constraints lead to higher 

quality mesh, less distorted elements, and as a consequence more accurate results.  The author 

discusses the limitation of 𝑉𝑓 by using the RSA method for fibres with constant length (𝑉𝑓 = 25%) 

and fibres with different lengths. Results are presented as a function of 𝑉𝑓 from 10% up to 40% with 

a step of 10%. For every case of 𝑉𝑓 five different samples of RVE were generated and the average 

mean of the effective property was calculated. By applying six particular loading cases, the nine 

material constants [𝐸11, 𝐸22, 𝐸33, 𝐺12, 𝐺13, 𝐺23, 𝜈12, 𝜈13, 𝜈23] were calculated. In the case of random 

orientation, the material is assumed to be statistically isotropic and the mean value for 𝐸, 𝐺 and 𝜈  

was calculated. Results from the numerical models were compared with various micromechanical 

schemes. The macroscopic isotropic behaviour of the randomly oriented composite is evaluated by a 

direct comparison of the Young modulus in every main direction as a function of 𝑉𝑓. The effect of 

fibre orientation is also investigated by comparing the Young modulus in the three main directions 

for aligned and randomly oriented fibres. 

(Gitman, 2007) studied the existence and the size effect of RVE for a three phase composite 

material. The composite under investigation consists of circular inclusions with random diameter 

(between 2.5mm - 5.0mm). The third phase is an Inter-phasial Transition Zone (ITZ) which surrounds 

the circular inclusion and is attached to the matrix. The developed RVEs experienced no wall-effect 

and geometric periodicity. The term wall-effect is understood as the ability of the inclusions to 

penetrate through the borders of the RVE. Four different RVE sizes were considered in order to 

study the size effect. For all the cases three different 𝑉𝑓 were developed, 𝑉𝑓 = [30%, 45%, 60%] 

and for the combination of different size and different 𝑉𝑓, five different realisations were generated. 

Realisations refer to different samples which consist of the same 𝑉𝑓 and RVE size but different 

stochastic parameters - like the inclusion’s position and size. The purpose of developing five 

realisations is to evaluate the influence of stochastic parameters at the macroscopic response.  
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A gradient damage model was used to describe the damage initiation in the material and elastic 

properties degradation during the test. The crack initiation occurs in the inter-phasial zone, because 

ITZ has the lowest crack initiation strain compared with matrix and inclusions. Periodic boundary 

conditions were implemented by using a penalty method for the uniaxial tension test. Results of the 

material behaviour are presented in the form of stress-strain curve for the elastic, the hardening and 

the softening region of the material. The elastic region is understood as the linear part of the stress-

strain curve. The hardening region is the non-linear region before the peak of the curve and the 

softening region is the region after the peak, across which the material exhibits a softening 

behaviour. The existence of RVE is discussed through two different perspectivesthe statistical and 

the deterministic approach. According to the statistical approach, an RVE exists if the mathematical 

expectation and the standard deviation of an up-scale property (such as stiffness) must converge to 

a specific value while RVE size is increasing. The deterministic approach involves the value of 

dissipated energy plotted for increasing values of RVE size. Dissipated energy is measured as the 

area under the stress-strain curve. Regarding the existence of RVE in the three different regions the 

author underlines the lack of RVE existence on the softening region. The author investigates the 

deviation of a single tested sample from the mean of its class of realisations, by implementing a chi-

square test-criterion. The criterion calculates the effect of deviation for accuracy of 95% with two 

Degrees of Freedom (DoF). It was reported that for the hardening region a larger size of RVE was 

required when compared with the linear elastic region of the stress-strain curve where smaller size 

of RVE can be used.    

As it was explained by (Kari, 2007) the main advantage of analysing SFRC using numerical models is 

the ability of computational models to approach, to a satisfactory degree, the real micro-structure of 

the material. The author suggests a method of overcoming the jamming problem and evaluates the 

effective mechanical properties of a Randomly Distributed Short Fibre Composite (RDSFC), for 

relatively high 𝑉𝑓. Two different types of composite were created in respect of the orientation: 

Randomly Distributed Short Fibres (RDSF) and Transversely Random Distributed Fibres (TRDF). TDRF 

models consist of aligned fibres - all the fibres are oriented towards one direction. Both micro-

structures were created using a modified RSA algorithm. Modification regards the distance between 

the cylinders and the distance between the surface of the cylinder and the surface of the RVE. The 

second modification protects the model from errors introduced through bad mesh quality. A final 

modification is the deposit of fibres in a descend manner in order to achieve higher 𝑉𝑓.  

The author points out the limitation of the developed algorithm to reach higher 𝑉𝑓 with . identical 

size of inclusions. The suggested solution comes through a modification of the RSA algorithm, in 

order to deposit first high AR fibres, and once it reaches the jamming limit, to reduce the AR and to 

continue with the process. By using this technique the algorithm was able to generate 3D RVE with a 

𝑉𝑓 of 40%. For the two different types of composite, various models were created in order to 

evaluate the influence of 𝑉𝑓 .  

The influence of the RVE size on the macroscopic response of the Young modulus is presented for all 

major directions, with the relative error measured as the standard deviation. Results for 

𝐸1,𝐸2,𝐸3,𝐺, 𝜈 regarding the RDSF composite are presented for various 𝑉𝑓 from 10%-40% and are 

compared with predictions from analytical micromechanical models. A comparison between 

𝐸1,𝐸2,𝐸3 is used as a measure of the isotropic behaviour of the RDSF composite, with variations less 

than 1.5%.  Finally, a comparison between the RDSF and TRDSF is performed, indicating the 
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influence of fibre orientation. The author concludes that for RDSF there is no significant influence by 

the AR, in contrast with the TRDSF material in which effective properties improved considerably with 

respect to AR increase. This is also reported for the randomly distributed case, 𝑉𝑓 . Orientation 

appears to be a more dominant parameter when compared with AR. 

(Wang, 2011) studied mechanical properties and developed a damage model for random composite 

materials. Mechanical properties and fracture properties were studied by performing computational 

experiments under the concept of RVE. For that purpose a 2D RVE was developed.  

The packing problem of randomly distributed inclusions was solved by developing an algorithm able 

to approach the solution in two distinct steps. Through the first step named “criss-crossing”, the 

algorithm begins by placing circular inclusions in a periodic manner with constant distance between 

them in both 𝑋 and  𝑌 coordinates. While the algorithm is still working on the first step, inclusions 

that belong to every even row or every odd column experience a move on 𝑋 and 𝑌 axes respectively. 

During the second step, a zoom in approach is performed. The algorithm considers the 

neighbourhood of fibres close to each other. A concentric circle is then calculated for every fibre in 

the neighbourhood. The points where the concentric circle of an inclusion meets the concentric 

circle of another inclusion in the neighbourhood define the space were the inclusion can randomly 

move or rotate. The second step in the algorithm is essential in order to obtain randomly distributed 

inclusions. 

 That both materials matrix and inclusions are linear, transversely isotropic and perfect bonding was 

assumed between matrix and inclusions. Damage initiation and propagation was studied based on 

the maximum principal stress theory. Stresses were measured in every integration point and 

compared with a stress value calculated by the maximum principal stress theory. If the measured 

value exceeds the specific maximum principal stress, material stiffness is reduced locally in order to 

simulate damage initiation. Once the damage is detected, the elastic modulus is degraded by a 

factor of 10−5 in order to simulate the reduction of stiffness due to crack existence. Measurements 

of stress on the integration points took place by implementing a user-subroutine GETVRM and the 

damage criterion was implemented through the USDFLD subroutine. Results indicate a linear 

relation of load in respect to displacement. Agreement between computational predictions and 

experimental data of ultimate load was observed. 
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1.3.1 Thermal and thermo-mechanical properties 

 

Apart from the mechanical properties of a composite material, of which a proper calculation is 

necessary for a complete engineering design, thermal and thermo-mechanical properties are equally 

very crucial parameters once an engineer designs a new material or extends the usage of an existing 

material. Especially in the case of polymeric composite materials, special care is needed once the 

polymer is thermoplastic, with mechanical properties strongly depending on the current 

temperature situation and also on the previews of thermal load.  

An extensive article written by (Schapery, 1968) in 1968 studied different approximations of 

analytically calculating the coefficient of thermal expansion for a composite material in various 

cases. A further discussion on the manner of answering the volumetric and the linear coefficient of 

thermal expansion problem is presented. Through the paper, a new method for calculating upper 

and lower bounds on thermal expansion coefficients of isotropic and anisotropic composites can be 

found.  The developed method is a combination of the complimentary and potential energy 

principles, with a procedure of minimizing the difference between upper and lower bounds. The 

author approaches solutions analytically, between the upper and lower bounds for the CTE, based 

on the expression of Gibb’s free energy, implementing the elastic constants of the constituents of 

the composite, such as bulk modulus, compliance tensor and stiffness tensor. Through the study, the 

author discriminates a few cases in which a more exact approach, instead of upper and lower bound, 

is possible. For those cases the bounds coincide or are very close to each other. 

 In the case of a composite material in which the bulk modulus is equal to the lower bound, it 

represents a case of uniform stress distribution, in which an exact solution is possible through the 

“Rule of Mixture” (RoM). In the case in which strain in the composite is practically uniform, so the 

bulk modulus is close with the upper bound, the  Turner prediction can be used to derive an exact 

solution. The case of a composite material consisting of different phases with the same Poisson ratio 

is another one case in which exact solution can be found.  

(Hatta, 1985) published an article presenting a new analytical approach to study the problem of 

thermal conductivity for SFRP, for steady state heat conduction problems. The roots of the proposed 

approach are derived from the Equivalent Inclusion Method which is an analogous approach to the 

Eshelby EIM for the elasticity frame. Through the proposed method, a closed form solution can be 

achieved, with the formulation being based on a simple algebraic operation. By considering two 

types of fibre orientation distributions (uniform distribution and cosine type distribution), the author 

compares results of effective thermal conductivity using different analytical models as a function of 

AR, 𝑉𝑓 and orientation angle. Results show that thermal conductivity increases in relation to 𝑉𝑓 and 

decreases in relation to the orientation angle. Results of thermal conductivity as a function of AR 

show that there is a significant dependency between conductivity and AR for 𝐴𝑅 ≤ 50. 

(Chen, 1996)published an article in which they studied the thermal conductivity of a composite 

material consisting of mis-oriented short fibres of carbon or glass, dispersed in a poly-(pheylene 

sulfide) matrix. They made use of Kacir’s single parameter exponential function in order to 

characterize the orientation distribution function of mis-oriented fibres.  
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Authors investigate in an analytical manner the thermal conductivity response of the composite 

material for the steady state condition. The analytical formulation is based on the mean field 

approach of Mori and Tanaka in conjunction with Eshelby’s Equivalent Inclusion method. They 

studied thermal conductivity as a function of AR, 𝑉𝑓 and fibre orientation. Throughout the analytical 

calculations, the interaction of fibres is considered by implementing the mean stress concept of Mori 

and Tanaka. The authors based their calculations on Taya and Mura’s work by making use of the 

analogous thermal micro-parameters as those used by Eshelby’s equivalent inclusion method. Terms 

like perturbed heat flux are introduced into the calculation to represent the analogous perturbed 

strain for the mechanical loading problem. In addition, the concept of inhomogeneities, the 

equivalent transformation temperature and the perturbed temperature gradient, with which they 

connect the Eshelby tensor were used.  

By implementing a spherical coordinate system, the authors were able to create second order 

transformation tensors in order to consider fibres mis-orientation. The nature of the orientation 

distribution in the composite is mainly a result of the material forming, but also of the mould cavity, 

the melt behaviour of the polymer with the fibres or the geometry of the fibres. The orientation 

density function, for the fibre’s orientation, is an exponential expression proposed by Kacir et al 

using a single parameter which takes values depending on the degree of fibre orientation.  

The conductivity of the material is strongly dependant on the degree of inhomogeneity between 

fibres and matrix, on the conductivity of the constituents, on the AR, the 𝑉𝑓, and on the degree of 

orientation. Results from the analytical model are compared with experiments from a former 

publication of the author and results are found to have an acceptable agreement with less than 20% 

deviation. The author considers the skin core effect, in which during the process of forming the 

composite, all the fibres that are close to the mould walls experience a shear stress which forces 

them to have a higher degree of orientation when compared with the fibres in the middle of the 

composite, which do not experience the shear stress of the mould’s wall and as a result end up with 

very low degree of orientation.  

Results show an enhancement of the conductivity of the polymeric matrix, especially in the case of 

carbon fibres. Longitudinal thermal conductivity seems to have a strong dependency on AR, (AR<40), 

in contrast with the transverse thermal conductivity, which seems to be unaffected in respect of AR. 

The same behaviour was observed in the skin and in the core of the material. For short carbon fibre 

reinforced composites, the range of AR=15-20 shows a significant increase for the longitudinal 

conductivity. For both longitudinal and transverse directions of thermal conductivity, the 

dependency of the property with AR becomes saturated for AR=50.  

Dependency of thermal conductivity with 𝑉𝑓 was also studied for the range of 𝑉𝑓 = 0.1, 02, 0.3, 0.4 

as a function of the orientation parameter 𝜆. Longitudinal conductivity increases with the increase of 

𝑉𝑓 and also increases for 𝜆 ≤ 10. The opposite behaviour was observed for the transverse 

conductivity in respect of the orientation parameter 𝜆. As long as 𝜆 increased, transverse 

conductivity also decreased. The effect became saturated above 𝜆 = 10. Considering that the author 

emphasized the importance of choosing the most appropriate process technique. The article 

concludes by underlining the strong enhancement on thermal conductivity caused by the two 

manufacturing dependant  parameters such as AR and fibre orientation. 
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 (Hua, 2013) study the thermo-mechanical behaviour of a metal matrix composite. Specifically, they 

investigate properties such as effective stiffness, the Poisson ratio and the Coefficient of Thermal 

Expansion for aluminium 2080 reinforced with SiC particles. The thermo-mechanical properties were 

investigated as a function of the constituent’s stiffness, volume fraction, aspect ratio and 

orientation. 

 Analysis of the material and results were obtained by the Mori-Tanaka model and FE simulations. 

Both cases were compared with experimental results. The FE model was built under the concept of a 

representative volume element, by using an RSA to solve the packing problem and randomly 

disperse thirty inclusions of a sphero-cylinder shape in a square, without any intersection, and by 

sharing the same probability of orientation angle. The stress and strain field was obtained by 

applying periodic boundary conditions, through a uniform strain distribution of 2%. For the 

calculation of CTE, a temperature rise of 100 °𝐶 is implied. Results show a very good agreement 

between the MT model predictions and FE calculations, but both deviate from experimental results. 

This may be a result of the numerical simplification as the constant aspect ratio, the idealized 

orientation, or the perfect interface between fibre and matrix.  

Based on the very good agreement between results from MT and FE, the authors compare the 

computational time needed for both cases and emphasise that the MT scheme is, without a 

comparison, a much faster method. In order to investigate the influence of particle stiffness, the 

author compares the effective properties with respect to volume fraction, for the stiffness of various 

particles. Results show that there is higher sensitivity for 𝑉𝑓 > 10%  with the maximum increase on 

growth rate existing at 𝑉𝑓 = 30% and being equal to 36.8%. 

 The coefficient of thermal expansion and the Poisson ratio decrease with respect to the volume 

fraction and particle stiffness. The influence of AR was also investigated from AR=5-20 with a step of 

5.  Results show saturation on the AR dependency for 𝐴𝑅 > 10. The effect is known as the “classical 

shear lag” behaviour which describes the load transfer efficiency between phases as a function of 

the degree of inhomogeneity. The effect of particles orientation was studied through the Mori-

Tanaka scheme. Results show that the effective modulus in the longitudinal direction was strongly 

dependent on the particle orientation, in contrast with the weak dependency of the transverse 

direction and particle orientation. Effective Poisson ratio and CTE decrease with respect to 𝑉𝑓. 

(Annapragada, 2007) study the thermo-mechanical properties of an energetic composite material 

consisting of particles with various diameters. The author investigates the elastic properties of the 

energetic material using the FE method and the thermal properties using the finite volume method 

(FVM) under the concept of RVE. Effective properties such as the Young modulus heat conductivity 

and specific heat were examined for 2D RVE and 3D RVE. The author underlines the computational 

cost of a 3D simulation in comparison with the 2D. 

 For the 2D simulations, two different methods were used. The first method implies the analysis of a 

2D RVE with a constant 𝑉𝑓. The second method uses slides of a 3D structure, along a different cross 

section. Effective properties are obtained by arithmetic averaging over results for all the sliced 2D 

RVEs. Effective mechanical properties, Young modulus and Poisson ratio were obtained by applying 

kinematic uniform boundary conditions, in a way that boundary nodes displacement paralleled to 

the boundary faces where couple and kinematic degrees of freedom were restricted.  
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A homogenization process of calculating the average stress and strain leads to the calculation of the 

effective Young modulus. Thermal conductivity was calculated by imposing a temperature difference 

on the boundaries of RVE and by measuring the total heat flux of the material. The constitutive 

equation of a steady state thermal conductivity was used in order to calculate the thermal 

conductivity. Effective specific heat was obtained through a two-step procedure. First, a heat flux is 

applied on the left side of RVE for a specific time Δ𝑡 while the remaining sides are insulated. During 

the second step, adiabatic boundary conditions are applied to all walls and the system is allowed to 

reach an equilibrium temperature and the specific heat is calculated.  

The composite material consists of estane matrix and glass particles in a weight fraction of 21% and 

59%. The matrix was modelled as an isotropic material with temperature and strain rate dependant 

properties. Glass particles were also isotropic without any dependency on temperature or strain 

rate. The author also studied the effect of RVE’s size. Five different RVE sizes were developed and 

convergence was obtained if a requirement of deviation was satisfied. Results show that thermal 

conductivity converges faster in comparison with specific heat, or in other words, specific heat 

shows higher dependency on the size of RVE when compared with thermal conductivity. A 

comparison between 2D and 3D models shows that results follow the same trend without significant 

deviation; however, the computational cost for 3D simulation is much higher. 

(Berger, 2007) investigate the thermo-mechanical properties of unidirectional fibrous composite 

material and consider the existence of an interphase between matrix and fibres. A periodic unit cell 

of a three phase composite was developed with cylindrical fibres in a square packing array and 

coated with an interphase material. The bonding on the interphase between fibre and matrix was 

assumed to be perfect and all the constituents behaved isotropic and linear elastic.  

Results are obtained by applying periodic boundary conditions on the surface of the unit cell and by 

coupling the kinematic degrees of freedom for all the nodal pairs opposite each other. For each 

virtual experiment, boundary conditions were imposed in such a way that only one macroscopic 

strain was not equal to zero each time, and as a result, the corresponding coefficients of effective 

stiffness were calculated. Volume average stresses and strains were calculated using a summation 

for the local values of stress, strain and volume.  

By obtaining the coefficients of effective stiffness, a calculation of the coefficient of thermal 

expansion is possible. In order to calculate CTE the boundary conditions imply a kinematic restriction 

on the boundaries of the unit cell and a temperature difference between the two sides. Due to the 

temperature differences and the kinematic restriction on the boundary on the unit cell, a stress field 

will be induced into the system. With average stress, elastic stiffness and temperature difference 

known, the calculation of CTE can be performed. Results show that CTE decrease linearly with 

respect to 𝑉𝑓, and that the FEM has a perfect agreement with the asymptotic homogenisation 

method.   

(Annapragada, 2006) study the effective thermal conductivity of particulate composite through 

numerical experiments. For the specific study, the material used for inclusions has higher thermal 

conductivity, and is used in order to improve the thermal conductivity of the composite material. 

Calculations of the effective thermal conductivity are based on the concept of RVE.  
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A random packing algorithm was developed for 2D and 3D simulations. The algorithm was able to 

ensure geometric periodicity and a random distribution of non-intersected circular or spherical 

inclusions. A temperature difference between two opposite faces while the rest of the faces of the 

RVE are insulated. The method of finite volume was used and the total heat flux was calculated. 

Results for the effective thermal conductivity were obtained through a method able to capture the 

effect of particle concentration, the degree of inhomogeneity and the particle population in the RVE.  

Results for the 2D case are presented for low 𝑉𝑓 and the effective thermal conductivity of the 

particulate composite. A linear relation with 𝑉𝑓 and a relatively good agreement with the predictions 

of the Maxwell model were observed. For higher 𝑉𝑓 ≤ 50% results show a larger deviation from  the 

predictions of the Maxwell model and are closer to the harmonic mean calculation. The same linear 

relation between effective thermal conductivity and 𝑉𝑓 was detected.  As reported in the paper, the 

distribution of effective thermal conductivity for values of 𝑉𝑓 = 0 − 40% over the degree of 

inhomogeneity shows a saturation on the contribution of inclusions for values  𝐾𝑖𝑛ℎ ≥ 20. In 

contrast, by increasing the volume fraction of the composite, effective thermal conductivity always 

increases, with the major variation occurring between 𝑉𝑓 = 20 − 40%. 

 

1.4 Experimental approach 
 

Apart from the analytical and numerical approach on the characterization of a composite material, 

the most reliable way to obtain data most of the time is an experiment. Even if the cost of 

performing a virtual and a real experiment is not comparable, the need for experimental results is 

more than obvious, at least during the initial stage of numerical model development.  

An extended study on mechanical and thermal properties of short fibre composite materials has 

been completed by (Thomason, 1996). In the first publication of this series, the author investigates 

the influence of fibre length and volume fraction of a composite consisting of short glass fibres 

embedded in a polypropylene matrix.  Results are presented for the cases of different melt-flow 

index, molecular weight of the matrix and fibre-sizing.  

Tensile properties were determined using an Instron 1195 according to ISO/R527-1996(E) and 

according to ISO/178-1975(E) for the flexural modulus. Experiments for tensile and flexural modulus 

were executed for a range of fibre lengths, sized fibres and a matrix with two different MFI and 𝑀𝑛.  

Results show that stiffness increases almost linearly with respect to fibre concentration 𝑊𝑓 ≤ 60%. 

A similar dependency between fibre length and stiffness was observed, with th exception of very 

fine inclusions. Samples with a concentration of 60% also show a lower stiffness than the general 

trend. This may occur due to fibre packing considerations, and relatively long fibres, due to the high 

concentration, tend to orient out of plane.  It was also observed that samples containing sized-fibres 

show no significant improvement in stiffness. However, the effect of sizing was clearly observed for 

the ultimate properties.  

The molecular weight and MFI of polypropylene were also examined. Results show no sensitivity of 

stiffness on molecular weight and MFI changes for the specific laminates. The shear lag model 

developed by Cox is used for theoretical comparison. A good agreement between theoretical and 
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experimental results was observed, for fibre length 𝑓𝑙 ≥ 0.5𝑚𝑚 and 𝑊𝑓 = 40%. The author reports 

that deviation from the theoretical predictions may occur due to several factors affecting the 

behaviour of the material such as: the out of plane orientation, an increase in cross-over points 

between fibres, and also an increase of void content. All the aforementioned factors are related to 

the problem of packing a high volume fraction of inclusions with a high aspect ratio. 

Experimental measurements of the void content show a significant increase for high fibre content 

𝑊𝑓 = 60% . A recalculation of stiffness using the RoM, including the appropriate correction on the 

volume fraction, due to void content, for high volume fraction samples, shows a good agreement 

with experimental results. The author concludes by underling the linear increase of stiffness as a 

function of weight fraction for 𝑊𝑓 ≤ 40%. Above that value, various mechanisms caused by the 

packing arrangement are activated, and the increase of stiffness is less. It was also observed that 

there is an independency of stiffness with fibre length for 𝑓𝑙 > 0.5𝑚𝑚, however it must be 

emphasised that fibre length is directly related with the packing problem. 

In a subsequent work (Thomason, 1996) investigate the thermal properties of short fibre glass 

polypropylene composite. A heat deflection temperature test and DMA test were performed in 

order to obtain the storage and loss modulus and also the heat deflection temperature. Results for 

HDT are plotted as a function of fibre content for 𝑊𝑓 ≤ 40% for various fibre lengths. According to 

the results, if a composite contains high levels of fibres with high AR, a plateau level of HDT close to 

the melding point of the matrix is possible, even for low fibre content. The author underlines this as 

evidence of improvement on the creep resistance due to long fibres or high AR.  

The DMA test was also performed in order to study the ability of a material to retain stiffness at an 

elevated temperature, specifically for high value of HDT. Flexural storage modulus was obtained 

through the DMA test and is presented as a function of temperature for various fibre concentrations 

for a fixed fibre length. Reduction of stiffness is clear and can be separated in two steps: reduction at 

the glass transition temperature and further reduction at the melting temperature of polypropylene. 

Results also claimed that for high temperature, elevated stiffness can be obtained with high fibre 

content. 

 A comparison of DMA results with flexural test show a deviation of stiffness for temperatures of 

23℃ and  100℃ and an agreement with results obtained from DMA at 23℃. Results of the flexural 

storage modulus as a function of temperature for various fibres’ length show a significant increase of 

the modulus with respect to fibre’s length and indicate the important role of long fibres on 

applications which involve elevated ambient temperature. Fibre’s length was examined in the 

interval of 0.09-12mm.  

The glass transition temperature 𝑇𝑔 increases with respect to the fibre length and a comparison of 

experimental data with theoretical predictions of the Cox model shows good agreement. It was also 

observed during the DMA tests that samples experience the so-called lofting phenomenon for 

temperature above the polypropylene melting temperature. The phenomenon occurs because 

during the manufacturing process, the out of plain fibres are compressed and held together by the 

polymer. Once the temperature is close to the melting temperature, fibres may straighten out and 

they may return to their original thickness. The phenomenon was studied in more detail and the 

TMA test shows a steep increase in thickness once the temperature is close or above the 
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polypropylene melting temperature. The dependency of loft with weight fraction and fibre length 

was also examined. Results indicate that the phenomenon is more obvious for weight fraction 

slightly above 20%. Below that value, loft seems to be independent of fibre length, for values 

𝑓𝐿 = 3 − 12𝑚𝑚. However, for higher fibre content, the phenomenon is dominant and shows a 

strong dependency on fibre length.  

Through the TMA test, the in-plane and out-of-plane linear coefficient of thermal expansion were 

calculated. Results show that both LCTE were relatively insensitive with respect to fibre length, but 

in contrast, a strong dependency was observed in respect to fibre concentration. The test was 

performed for temperatures between −20℃ 𝑡𝑜 100℃. For the whole range of temperatures, in-

plane LCTE decrease in relation to the fibre concentration. A closer look at the experimental data 

shows that LCTE can be approached as a constant for fibre content between 10%-40%. Fibre 

contents below or above this interval exhibit a strong dependency on temperature.  Out-of-plane 

LCTE exhibits a complex behaviour with a peak between fibre content of 20%-30%.  

A comparison of experimental data with theoretical predictions shows an excellent match for the in-

plane LCTE. Out of plane LCTE was compared with the Schapery model and with an improved model 

proposed by the author. Results show a deviation from Schapery’s model and a good agreement 

with the proposed model. Concluding, the author underlines the effect of void content on the 

deviation of theoretical models and emphasises that good correlation of experimental data and 

theoretical predictions occurs only when the effect of void is considered in the calculations. 

In the third part of the studies, regarding the influence of fibre length and concentration on 

properties of glass fibre and polypropylene composite, (Thomason, 1996) investigate the strength 

and strain at failure of short fibre composites. Two series of samples were prepared with variation 

on fibre content, fibre length, MFI and molecular weight. Tensile and flexural strain at failure were 

examined in respect to fibre content for fibre length values between 0.1-12mm. 

 It is clear from the experimental data that increasing the fibre content results in lowering strain at 

failure. This behaviour may result from the increase of local stress concentration points at the 

boundaries of a fibre. High stresses at the end of a fibre may lead to the matrix cracking if the 

surrounding material cannot support the load. By increasing fibre content, the number of 

concentration points increase and the material fails within lower strains. A contribution to this 

phenomenon is due to the fact that longer fibres have the ability to transfer-bear higher stresses. In 

that case, stress concentration will be higher and failure may occur within a lower strain rate. 

Evidence of a dependency between fibre length and failure strain was not clear. 

According to the flexural test, results seem to converge for high fibre length, to a specific value of 

failure strain, almost for every fibre’s content. Ultimate strength for the tensile and flexural tests 

was plotted as a function of fibre concentration and fibre length. Results for tensile strength with 

respect to fibre content exhibit a linear behaviour. Tensile strength increases linearly with respect to 

fibre concentration for 𝑊𝑓 ≤ 60%. It was also observed that sized fibres show a higher level of 

tensile strength. A similar trend was observed for the flexural test.  A linear increase of flexural 

strength was observed for fibre content up to 30%. For higher values of fibre content, flexural 

strength exhibits a plateau. When tensile and flexural strength is plotted over fibre length, it can be 

observed that for very short fibres, the strength of the composite tends towards the matrix strength. 

As fibre length increase, strength increases, and they experience saturation for lengths above 3mm.  
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Samples with higher molecular weight matrix were tested and compared with the previous 

experiments. The comparison shows that there is no sensitivity of the tensile strength to matrix 

molecular weight. It was also observed that for tensile strength, increasing the fibre content for 

small fibre length leads to a lower tensile strength. A comparison of tensile strength with theoretical 

predictions of the Kelly-Tyson model indicated a deviation on the predictions of elastic critical fibre 

length. According to the theoretical predictions, a much greater value of critical length is needed in 

order to obtain 90% of the maximum attainable strength. A comparison of tensile strength 

predictions of the Kelly-Tyson model with experimental results shows a large scatter. This deviation 

may be a result of the simplifications of the theoretical model, such as: fibre orientation, voids and 

distribution of fibre length. The author introduces a correction factor in the equation to consider the 

orientation effect and a modification of the ineffective fibre length. After the introduction of the 

correction factor, results from the modified Kelly-Tyson model show an excellent agreement with 

experimental data. Concluding, the author emphasises that the tensile strength of short fibre 

composites is mainly dominated by the fibres with the same orientation as the loading direction. A 

failure of those fibres will lead to material failure. 

With their subsequent work, (Thomason, 2002)studied the influence of fibre length and  

concentration for injection moulded long and short glass fibres embedded in a polypropylene matrix. 

The author aims to explain the structure-processing performance relationship of various forms of 

glass fibre polypropylene composites. Long discontinuous fibre composites are regularly 

manufactured through the pultrusion process using continuous glass fibres. On the other hand, short 

glass fibre composites are mainly produced through the extrusion compounding of chopped glass 

fibres. For the specific experiments, the diameters of long and short fibres didn’t vary. Long fibres 

were between 16 − 20𝜇𝑚 and short fibres between 14 − 17𝜇𝑚.  

Two other variables of the manufacturing process of the two materials involved in this study were 

viscosity and temperature. Long fibres polypropylene composites require low viscosity resin, 

achieved by high MFI and elevated processing temperatures. Short fibre polypropylene was 

manufactured with lower MFI and lower processing temperatures. A coupling agent was added in 

the composite in order to improve the adhesive conditions between fibres and matrix. 

 Experiments were performed in ambient temperature of 23℃ with 50% relative humidity, and for 

three different parameters combined: LF19, SF19 and SF14 which stand for long fibres with a 

diameter of 19μm and short fibres with a diameter of 19 and 14μm. Results were obtained for 

flexural tests, the Izod and modified Charpy impact test, and also the multi-axial impact test. Fibre 

length distribution and fibre diameter were measured by an image process analysis and optical 

microscopy.  The dependency of fibre length reduction with respect to the manufacturing process 

and the initial fibre length was studied.  

Results of fibre length are presented with respect to fibre content. Results show a general reduction 

of the fibre length in respect to weight fraction. It was also observed that long fibre composite 

seems to be less sensitive to the fibre’s length reduction, in comparison with short fibre composite. 

This may be due to the different compound processes of the long fibres and short fibres. Results 

from the tensile test indicate a linear relation between Young’s modulus and weight fraction. Results 

show no significant improvement for long fibres and no important changes for smaller diameter of 

fibres (increasing the aspect ratio). Again, it has been clear that Young’s modulus is firstly affected by 
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the elastic properties of the constituents and then by the orientation properties of fibres, and that it 

is less sensitive to fibre length. A reason that the effect of fibre length does not contribute to the 

increase of Young’s modulus may be that it is directly related to the orientation of fibres. Longer 

fibers give slightly lower orientation and the effects cancel each other out.  

A similar trend was observed for flexural modulus. Results for tensile strength also show an increase 

with fibre content. Long fibre composite has the higher tensile strength. It can be expressed as a 

linear function of weight fraction with a threshold between 40-50%. Regarding short fibre samples, 

SF14 with a smaller diameter shows higher tensile strength. Results for flexural strength show higher 

absolute values when compared with tensile strength, but generally the same behaviour was 

observed. Tensile elongation decreases with respect to the fibre content, indicating a more brittle 

response in higher weight fractions. A steep drop was observed with the addition of fibres and then 

a linear decrease of up to 50% weight fraction. Long fibres show a higher tensile performance in 

general, however regarding short fibres, samples with smaller diameter, show higher tensile 

performance.  

Notched Izod and notched Charpy impact test were performed. Results are plotted over fibre 

content and have a similar trend for both tests. The comparison between long and short fibres 

indicates higher performance by long fibres. Results for short fibres portray that fibres with higher 

AR perform better.   An impact test for lower temperature was performed and compared with 

impact test results at an ambient temperature. Results show a very brittle behaviour at −40℃ for 

short fibre samples, indicating less energy absorption capabilities when compared with the ambient 

temperature. 

 Long fibre samples seem to be unaffected by the temperature. Stress levels of the three materials 

were compared for strain values of 1% and 2%. Results indicate that there is an increasing difference 

in relative modulus as the applied strain increases. In general, long fibre composites and higher 

aspect ratio samples show higher stress levels. A comparison with previous experimental work by 

Thomason and Vlug is presented for various properties as a function of fibre length. Tensile 

modulus, tensile strength and impact normalized properties are compared for fibres with lengths up 

to 100mm. Results show that the effect of saturation exists for different fibre lengths in each 

property. A direct comparison of fibre length, needed to reach 90% of its property performance, 

shows that for tensile modulus it is 1mm, for tensile strength it is 7mm and for the impact test it is 

16mm.  

In a later work (Thomason, 2002) study micromechanical parameters from macro-mechanical 

measurements on glass fibre reinforced polypropylene. A series of E-Glass specimens with 

𝑊𝑓 = 0, 10, 20, 30, 40% were prepared and exposed to tensile and flexural load. Data for fibre 

length and fibre orientation were extracted by applying a high temperature ashing procedure on the 

specimens and a direct measurement of the fibre length. Orientation distribution was obtained by 

taking systematically optical micrographs across the thickness. The elliptical profile of a fibre on a 

cross section can provide useful information for the fibre’s orientation. An average value of 

orientation was approximated, and based on that approximation, an orientation factor was 

calculated.  

Two different composites are compared with and without a coupling agent. Results for tensile 

modulus show a linear dependency with fibre content. Increasing the volume fraction leads to a 
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linear increase of tensile stiffness. Results for tensile strength also indicate an increase with respect 

to volume fraction, but in this case the relation is not linear. It is also very clear from the plot that 

the coupling agent is a major contributor to the increase of tensile strength. 

 A similar trend was observed for the flexural strength test in which a non-linear dependency of 

volume fraction with flexural strength was detected and a clear enhancement effect for the 

specimens with a coupling agent in comparison with the specimens without a coupling agent. Tensile 

elongation at failure was also calculated. Results show high sensitivity for the initial addition of 

fibres. For values 𝑉𝑓 ≥ 10% ,a linear decrease with respect to volume fraction was observed. 

Samples containing the coupling agent exhibit higher elongation at break. 

Fibre length after the injection moulding process was also examined through a range of volume 

fraction. Results show that fibre length decreases linearly with respect to fibre content. It must be 

noted that an increase in melt viscosity leads to higher bending forces on fibres during compounding 

or moulding. This decrease in fibre length with respect to volume fraction may be a reason for the 

strength properties reduction, showed with respect to volume fraction. The author also proposes a 

macro approach for determining the micromechanical parameters and dominating short fibre 

composite strength. It is clear through the process of calculating micromechanical parameters that 

the method is simple, inexpensive and also appears as an ideal tool for industrial product 

developers. By using this macro-approach and by deriving relations from a stress-strain curve of the 

material, values for the interphase shear strength can be obtained for the two types of composite. 

Results indicate the improvement of the material’s IFSS with the addition of the coupling agent, and 

also a degradation on IFSS with respect to fibre content. The improved stress transfer from matrix to 

the fibre as a result of the coupling agent has been reported by many authors. Finally, a comparison 

between experimental results and predictions of the macro-approach indicate a very good 

agreement and a serious reduction of tensile elongation in respect of the fibre content. The author 

concludes by underlining the significant effect of residual interfacial radial compressive stresses on 

the interface shear strength. 

1.5 Homogenisation 
 

An investigation of various homogenization models and of multi-phase elastic composites was 

carried out by (Klusemann, 2010). Six homogenization models were compared regarding the degree 

of inhomogeneity as a function of volume fraction. The authors introduce two new approaches, the 

Effective self consistent scheme (ESCS) approach and the interaction direct derivative (IDD) 

approach.  

The authors summarize the common process of homogenization methods in two steps. Firstly, a 

local problem of a single inclusion has to be solved in order to obtain the local response and 

secondly a process of averaging the local behaviour to obtain the global response takes place. 

Predictions of the homogenisation approaches of Voigt, Reuss, the self-consistent scheme, the  Mori 

Tanaka method, the Hashin and Shtrikman bounds and the Lielens method were calculated for 

𝑉𝑓 = 0 − 1 and for the degree of inhomogeneity ∁𝑖𝑛ℎ= 0 − 20.  
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Results show that there is a bigger deviation between the predictions of various homogenization 

methods, as long as ∁𝑖𝑛ℎ is increasing. More specifically, the author underlines the disadvantage of 

the MT scheme to predict accurate results for𝑉𝑓 > 50%. This is caused by the fact that the MT 

method treats the matrix material as the one to have the higher concentration in the composite. For 

relatively small 𝑉𝑓, predictions for the MT scheme, the self-consistent method and the Lielens 

scheme coincide with each other. Results show a strong dependency between predictions of various 

homogenization schemes with the degree of inhomogeneity, especially for high 𝑉𝑓.  

Results from the aforementioned homogenization schemes were compared with results from FEM 

simulations. FEM simulations were developed for a cubic 3D micro-structure consisting of spherical 

inclusions. Linear kinematic boundary conditions were applied and the effective Young modulus was 

calculated. A comparison with the homogenization schemes for   ∁𝑖𝑛ℎ= 10 and 𝑉𝑓 = 0 − 0.35 shows 

an increase of the effective Young’s modulus with respect to 𝑉𝑓 and an agreement with SCS, the 

Lielens model and lower H-S bound. For constant 𝑉𝑓 = 0.3 and ∁𝑖𝑛ℎ= 1 − 20 , the effective Young’s 

modulus experiences a linear increase with respect to the degree of inhomogeneity, but a  saturated 

behaviour can be observed for ∁𝑖𝑛ℎ≥ 10.  

Porosity of the same material was also calculated for 𝑉𝑓 = 0 − 1 , the homogenization schemes, and 

𝑉𝑓 = 0 − 0.35 for the numerical approach. Results show a significant reduction of the effective 

Young’s modulus with respect to voids content. Predictions of the homogenization schemes show 

higher deviation for higher 𝑉𝑓. Concluding, the author emphasizes that the homogenization method 

should be checked for its behaviour in the case of a high degree of inhomogeneity.   

1.6 Conclusions 
 

Through the aforementioned presented work on the field of characterising the effective properties 

of short fibre reinforced composite materials, the section of dominant manufacturing parameters 

which affect the response of short fibre composite was initially covered. The main theoretical 

models developed through the years followed, and computational research on composite material 

characterisation was then reviewed. Finally the literature review concludes with a review of the 

experimental research and some homogenisation aspects.  

Even if the field is well covered from all the reported aspects, lots of effort needs to be made in 

order to be fully and optimally covered. Regarding the manufacturing processes, a lot of 

optimisation need to take place in order to constrain all the dominant parameters of the 

manufacturing process because, as it was presented, those parameters exert a high level of 

influence on the macroscopic response of the material. 

 Analytical and semi-analytical models developed through the years provide a useful tool for 

material characterisation. It is a cost ineffective process which can lead to very useful conclusions 

about the material behaviour. The main drawback regarding implementation of analytical models for 

material characterisation is that simple to use models may include assumptions that deviate from 

the real nature of material but play a crucial role in materials behaviour. On the other hand, very 

complicated models may overcome this barrier of assumptions but they require the implementation 

of high level mathematical calculations. In any case, a good analytical model must be characterised 
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by its ability to predict the macroscopic behaviour of a material in a broad range of parameters, to 

have a clear physical meaning (including all the physical mechanisms that take place during the 

material’s reaction), and to be as simple as possible to use. 

The field of numerical-computational simulations was the last one developed when compared with 

the analytical modelling and the experimental characterisation of materials. This is mainly due to the 

delay in developing and optimising numerical methods in relation to software, and also the 

development and optimisation of high performance computers in order to accurately simulate 

materials or structures behaviour. The main barrier to numerical simulations is the computational 

cost needed for an appropriate numerical model and also the accurate development of the 

microstructure in order to capture all the phenomenon happening at a lower scale. 

Experimentation is a necessary process in order to obtain the real reaction of the material without 

considering assumptions of the analytical models or errors and uncertainties introduced by a 

numerical simulation. The main drawback of experiments is the fact that some parameters cannot 

be fully controlled during the manufacturing processes and  cannot be accurately measured during 

the experiment. 

 

 

 

1.7 Aim and scope of this study 
 

Taking all the aforementioned into consideration the objective of this thesis is to offer a new 

approach to the numerical modelling and characterisation of short fibre composite. The following 

work is based on computational modelling of short fibre composite through a Representative 

Volume Element for a variety of parameters that play an important role in the mechanical, thermal 

and thermo-mechanical effective properties of SFRC. 

Of particular interest for this study is the commercially attractive composite consisting of 

thermoplastic polymer and chopped glass fibres. In order to approach the problem of material 

characterisation, an in depth knowledge of composite material micro-structure and composite 

material responses is needed. Considering a computational approach for material characterisation, 

the finite element method was used in order to derive the response of the material for various 

loading cases. 

 

The direct aim of the project is to:  

 Create representative microstructures of SFRC consisting of 30% fibres by volume. The 

developed microstructures will be used as a tool to study the macro-mechanical, thermal 

and thermo-mechanical effective properties.  

 Fully characterise the SFRC regarding thermal mechanical and thermo-mechanical properties 
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 Study the influence of 

o FOD 

o FLD 

o AR 

                      on the effective properties. 

 Study the representative size of SFRC micro-structures with high degree of 

inhomogeneity  𝐶𝐼𝑛ℎ = 60. 

 Study the influence of FOD, FLD and AR on the size of RVE. 

By meeting the previous targets it will be able to create  mapping between the effective properties 

and the optimum micromechanical parameters. This map will be a tool for designing with SFRC 

which will consider changes in FOD, FLD and AR in order to approach an optimum combination for 

the designer.  It will be also possible to create a parameters/properties-size mapping regarding the 

influence of the aforementioned parameters (FOD, FLD, AR) and properties under study 

(𝐶11, 𝐶22, 𝐶66, 𝐾11, 𝐾22, , 𝛼11, 𝛼22) with the representative size.   

 

In order to fulfil these objectives the following actions are considered: 

 Understanding the limitation and disadvantages of short fibre composite on the 

manufacturing process.  

 Understanding how the dominant micromechanical parameters influence the performance 

of the material and also ways to implement those parameters into the numerical model. 

 Development of microstructure able to mimic the actual packing behaviour of fibrous 

composite materials. The development of microstructure for numerical models plays the 

same role as the manufacturing process for the experimental approach. Development of the 

microstructure includes all the parameters under investigation. 

 Creation of an algorithm able to reproduce random micro-structures, and  able to consider 

FOD and FLD. 

 In line with the previous action for uniform fibre length a study on the influence of aspect 

ratio on the effective properties needs to take place. 

 Expose the RVE to various loading conditions. Through the following chapters mechanical, 

thermal and thermo-mechanical effective properties will be analysed theoretically and 

numerically. 

 In order to consider a statistical study on the results of every UC, a set of realisations need to 

be created for each combination of parameters and each loading case. 

 Finally a comparison of numerical results with well-developed theoretical models is used as 

an evaluation of the accuracy of the models.  

 

 

The generic question of the study is the ability of the short fibre thermoplastic material to fulfil 

several structural or semi-structural applications. The individual questions of the study can be  

summarised as: 
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 What are the effective 

o Mechanical properties  (𝐶11, 𝐶22, 𝐶66) 

o Thermal properties  (𝐾11, 𝐾22, ) 

o Thermo-mechanical properties  (𝛼11, 𝛼22, ) 

                                                             of the developed material? 

 What is the representative size of SFRC microstructures? 

 How do the microstructure parameters influence the representative size of the RVE, 

regarding: 

o Fibre orientation distribution 

o Fibre aspect ratio 

o Fibre length distribution 

 How the aforementioned parameters influence the effective properties? 

 

1.8 Outline 
 

Chapter 1 provides a background for the mechanical, thermal and thermo-mechanical 

characterisation of short fibre composite materials. The prediction of effective mechanical, thermal 

and thermo-mechanical properties of short fibre reinforced composites (SFRC) has been a field of 

study for various researchers and consists the main influence for the following chapters.  

Throughout this chapter different approaches that have been developed by numerous researchers 

through the years will be presented. The chapter begins by discussing the main aspects of the 

manufacturing processes of short fibre composite, which is a process introduce major factors 

effective the behaviour of the material. The chapter continues by addressing the major fundamental 

theoretical approaches on micromechanical analytical modelling. The chapter is separated into three 

main sections. During the first section a review of various analytical approaches in the field was 

presented followed by a numerical approach and experimental work. Finally, the chapter concludes 

with a review of the homogenisation approach.   

 

Throughout chapter 2, various aspects of mechanical and thermal characterization of materials are 

discussed. The concept of eigen-strains is presented and very basic definitions of homogeneous and 

inhomogeneous media are given. The micromechanical definitions of inclusion and inhomogeneity 

are presented, as well as the assumption that follows each degree of homogeneity. The general 

formulation of Hooke’s law is further discussed and the influence of the material’s symmetry on the 

material’s stiffness tensor is presented. An additional analysis of the parameter’s influence on the 

macroscopic behaviour of short fibre composite follows. The following section presents analyses of 

various modelling strategies. The advantages and disadvantages of various computational 

micromechanical approaches are discussed in a subsequent section. The chapter concludes with an 

analysis and discussion about various micromechanical analytical models. The main assumptions of 

micromechanical models are presented and compared.  In addition, a discussion of the 

micromechanical parameters that each model considers was performed and the influence of those 
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parameters are further discussed. A comparison between the analytical micromechanical predictions 

as a function of AR takes place for all the properties under investigation.     

 

Throughout chapter 3 the development of the numerical models is presented. Firstly the 

development of a packing algorithm is discussed. The main challenges of packing algorithm 

development are presented while at the same time solutions to overcome those problems are 

suggested. The main thinking behind the algorithm structure is explained, while the limitations, the 

advantages and the modifications of the algorithm in order to cover various cases of FO and AR 

follow. The main assumptions of the developed models are given, with a discussion on the potential 

inaccuracy these will cause. A detailed discussion of the concept of RVE takes place with various 

definitions and a report on the length scale assumptions and on the existence of RVE. The chapter 

offers a detailed description of the geometric periodicity of the UC and the inclusion’s shape on a 

two dimensional space. The topics of fibre orientation distribution and fibre length distribution are 

also discussed, while the time efficiency of the packing algorithm is presented as a function of fibre 

orientation and fibre aspect ratio. Finally, the chapter concludes with a report on the mechanical, 

thermal and thermo-mechanical applied boundary conditions. 

 

Chapter 4 consists of a report on computational homogenisation processes. Throughout the chapter 

a definition of homogenisation approaches is given while the main homogenisation methods are 

presented. An extended discussion on the formulation and on the main assumptions of each 

homogenisation method took place. Advantages and limitations of each method are also discussed. 

The requirements of using a homogenisation method are presented, while various schematic 

representations of the method are given. A report on the macro-homogeneity condition is given 

while the properties under investigation are further discussed. For all the presented homogenisation 

approaches the one which will be used is further explained by addressing in detail the formulation of 

the method in each step. Finally, the chapter concludes with a report on the representative element 

approach and on the implementation of the chi-square test.  

Throughout chapter 5 results from the developed numerical models are presented. The chapter is 

separated into two sections, which refer to uniform fibre length and fibre length distribution. For 

both sections results are presented as a function of the parameters under investigation. Results from 

the chi-square test are presented first in order to clarify the representative sizes, and as a 

consequence, the valid results. The fifth chapter concludes with a direct comparison of the 

representative results with various theoretical models as a function of the aspect ratio. 

Chapter 6 includes all the conclusion remarks. This chapter discusses all the results of chapter five in 

a qualitative and quantitative manner.  Useful conclusions can be made regarding the representative 

size of such a material and how it is influenced by different parameters. Also the combinations of 

parameters that influence the representativeness of the material are under investigation. The 

quality of the effective property values is discussed and the importance of combining the 

information included in the results with the information included in the chi-square test was 

addressed. Finally, the chapter concludes with a discussion of the comparison of numerical results 

and theoretical predictions and the main reasons for any deviations. 
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2 Mechanical and thermal properties – characterisation of a SFRT 

composite 
 

 

Throughout the following chapter, various aspects of mechanical and thermal characterization of 

materials are discussed. The concept of eigen-strains is presented and very basic definitions of 

homogeneous and inhomogeneous media are given. The micromechanical definitions of inclusion 

and inhomogeneity are presented, as well as the assumption that follows each degree of 

homogeneity. The general formulation of Hooke’s law is further discussed and the influence of the 

material’s symmetry on the material’s stiffness tensor is presented. A further analysis of the 

parameters’ influence on the macroscopic behaviour of short fibre composite follows. The following 

section presents analyses of various modelling strategies, and the advantages and disadvantages of 

various computational micromechanical approaches are discussed. The chapter concludes with an 

analysis and discussion about various micromechanical analytical models. The main assumptions of 

micromechanical models are presented and compared.  In addition, a discussion on the 

micromechanical parameters that each model considers was performed and the influence of those 

parameters is further discussed.    

 

2.1 Material homogeneity  
 

Throughout the introduction and the literature review, at various instances, the reinforcing agent 

was referred to as inclusions. The term inclusion has a specific meaning once the scale of 

observation or the description of the mechanism is with respect to the micro scale. In order to 

accurately distinguish the differences of an inclusion with an inhomogeneity, it is crucial first to 

present definitions of eigen-strain and homogeneous, inhomogeneous material. 

 A homogenous material is anything made of matter that is uniform in composition. More 

specifically, a material is said to be homogeneous if the material’s elastic properties are the same at 

all points of the body. An inhomogeneous material is any material which has elastic properties which 

are not the same for every point in the material.  

 

 

2.1.1 Inclusion – inhomogeneity 

 

The term eigen-strain is relatively new and is a generic name first reported in the literature by a 

German engineer, H. Reissner, in 1931 in a study regarding residual stresses. The concept of using 

the eigen-strains method for further micromechanical analyses has become more popular since 

1957, when Sir Douglas Eshelby presented his work referring to an analytical solution of the stress 

and strain field for an ellipsoidal domain.  
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This work inspired a great number of scientists to apply a different approach to developing 

micromechanical models for material characterisation. Throughout his original work, Eshelby 

referred to eigen-strains as stress free transformation strains. This definition is a result of a process 

within the material, observed to have stress-free transformation strains. Such a process may be a 

phase transformation on austenitic alloy, which will lead to a strain field. However, those strains do 

not result through a stress field applied on the material, but are a result of phase transformation.  

In a slightly different context, however with the same basic idea, Kroner introduces the term of 

“elastic polarisation” in order to refer to eigen-strains of a non-homogeneous poly-crystal 

deformation. A similar term for the use of residual stresses was 2.8 from engineers in order to 

describe the self-equilibrated internal stresses when they remain in materials after the 

manufacturing process.  

In general, eigen-strain is a name for non-elastic strains which may exist due to misfit strains, initial 

strains, phase transformation, plastic strain or thermal expansion. The self-equilibrated internal 

stresses, caused by the aforementioned eigen-strains, on a body free from external force or surface 

constrains, are called eigenstresses. The incompatibility of eigen-strains is the reason behind the 

existence of eigenstresses. Generally, any type of strain which exists in a material in the absence of 

an applied stress field can be treated as eigen-strain. An inclusion is defined as a sub-domain where 

non-vanishing eigen-strains dominate, while in the rest of the domain eigen-strains are zero. The 

surrounding domain is called matrix. It must be emphasised that the inclusion is defined only when 

the elastic moduli of the subdomain/inclusion are the same with the surrounding domain/matrix. 

Figure 2.1 shows a bounded sub-region K of a homogeneous region L.  

 

 

 

 

Figure 2.1 A bounded inclusion and an inhomogeneity 

 

The subdomain is called inhomogeneity when its elastic moduli differ from the elastic moduli of the 

surrounding domain. As reported by (Mura, 1987), for an inhomogeneous sub-domain a uniform 

applied stress at infinity is not uniform at the neighbourhood of the subdomain. However, this stress 

disturbance due to the inhomogeneous sub-domain can be approached by an eigen-stress field 

caused by an inclusion, with the proper selection of eigen-strain. Further discussion takes place in 

the following paragraphs. 

2.2 Material symmetry 
For designing purposes, or during the manufacturing process, composite materials are keen to 

exhibit an anisotropic behaviour. It then becomes crucial to discuss the general expression of 

Hooke’s law. According to the structure of the material under investigation, the degree of anisotropy 

of the material changes and that has a reflection on Hooke’s equation. According to the theory of 
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elasticity, the constitutive equation relating stress and strain, under the condition of infinitesimal 

small strain, is stated by Hooke’s law. Equation 2.1 expresses Hooke’s law in a tensor form. Hooke’s 

law is a linear equation which relates stresses to strains by a constant tensor.  

 

 𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙 Equation 2.1 

 

For the above equation, stress and strain are second order symmetric tensors. Strain tensor is 

defined through differentiation of the displacement field, while the displacement field can be seen in 

Figure 2.2 and expressed through Equation 2.2. 

 

 

 

 

 

 

 

 𝑢(𝑥) = 𝜑 −Φ Equation 2.2 

 

 𝜀𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) Equation 2.3 

 

 [

𝜀𝑥𝑥 2𝜀𝑥𝑦 2𝜀𝑥𝑧
2𝜀𝑥𝑦 𝜀𝑦𝑦 2𝜀𝑦𝑧
2𝜀𝑥𝑧 2𝜀𝑦𝑧 𝜀𝑧𝑧

] =

[
 
 
 
 
 
 

𝜕𝑢1
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(
𝜕𝑢1
𝜕𝑥2
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) (
𝜕𝑢1
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+
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)
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+
𝜕𝑢2
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𝜕𝑢2
𝜕𝑥3

+
𝜕𝑢3
𝜕𝑥2

)
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𝜕𝑢1
𝜕𝑥3

+
𝜕𝑢3
𝜕𝑥1
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𝜕𝑢2
𝜕𝑥3

+
𝜕𝑢3
𝜕𝑥2

)
𝜕𝑢3
𝜕𝑥3 ]

 
 
 
 
 
 

= [

𝜀1 𝛾6 𝛾5
𝛾6 𝜀2 𝛾4
𝛾5 𝛾4 𝜀3

] Equation 
2.4 

 

 

Under the concept of continuum mechanics, stresses can be expressed as the internal forces 

reacting for an infinitesimal volume of the material, when it is subjected to an external force. Stress 

has a physical meaning of force over the cross section area and is fully defined by a second order 

symmetric tensor as proposed by Cauchy as expressed in Equation 2.5. 

Figure 2.2 Displacement vector define 
between 𝝓 and 𝝋 
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 𝜎𝑖𝑗 = [

𝜎𝑥𝑥 𝜎𝑥𝑦 𝜎𝑥𝑧
𝜎𝑥𝑦 𝜎𝑦𝑦 𝜎𝑦𝑧
𝜎𝑥𝑧 𝜎𝑦𝑧 𝜎𝑧𝑧

] = [

𝜎𝑥𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧
𝜏𝑥𝑦 𝜎𝑦𝑦 𝜏𝑦𝑧
𝜏𝑥𝑧 𝜏𝑦𝑧 𝜎𝑧𝑧

] Equation 2.5 

 

 The tensor relating linear elastic strain with stresses is known as the elastic stiffness tensor and 

since stress and strain are symmetric second order tensors, by definition the fourth order stiffness 

tensor experiences minor symmetry, Equation 2.6.  

 

 𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑗𝑖𝑘𝑙 = 𝐶𝑖𝑗𝑙𝑘 = 𝐶𝑗𝑖𝑙𝑘 Equation 2.6 

 

For the elastic medium under discussion, a potential function is assumed which satisfied Equation 

2.7. Combining Equation 2.1 and Equation 2.7, the fourth order elastic stiffness tensor can be 

expressed as shown in Equation 2.8. 

 𝜎𝑖𝑗 =
𝜕𝑊

𝜕𝜀𝑖𝑗
 Equation 2.7 

 

 𝐶𝑖𝑗𝑘𝑙 =
𝜕2𝑊

𝜕𝜀𝑖𝑗𝜕𝜀𝑘𝑙
 Equation 2.8 

 

 

  Since the order of differentiation is irrelevant, the existence of Equation 2.9 can be proven. What 

Equation 2.9 stated is called major symmetry on the elastic stiffness tensor. Due to that property of 

the potential function, it can be shown that the fourth order elastic tensor has a major symmetry 

and that the inverse tensor exists and is also symmetric.  

 

 𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑗𝑘𝑙𝑖 = 𝐶𝑘𝑖𝑙𝑗 = 𝐶𝑙𝑖𝑗𝑘 Equation 2.9 

 

The inverse tensor is known as the compliance tensor, Equation 2.10.  

 𝑆𝑖𝑗𝑘𝑙 = 𝐶𝑖𝑗𝑘𝑙
−1  Equation 2.10 
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In general, a fourth order tensor consists of 81 constants, however, for a fully anisotropic material, 

only 21 out of the 81 are independent. The remaining 60 components of an anisotropic stiffness 

tensor can be expressed as a function of the 21 independent constants.  Due to the major symmetry 

of the elastic stiffness tensor, as expressed in Equation 2.9, the total number of elastic constants is 

reduced to 36. A fully populated elastic stiffness tensor is shown in expression 2.11 while  2.12 

defines the same equation in a contracted notation form.  

 

 

1111 1122 1133 1112 1123 1131 1121 1132 1131

2211 2222 2233 2212 2223 2231 2221 2232 2231

3311 3322 3333 3312 3323 3331 3321 3332 3331

1211 1222 1233 1212 1223 1231

2311 2322 2333 2312

3111 3122 3133

C C C C C C C C C

C C C C C C C C C

C C C C C C C C C

C C C C C C

C C C C

C C C

1221 1232 1231

2332 2331 2321 2332 2331

3112 3132 3131 3121 3132 3131

2111 2122 2133 2112 2132 2131 2121 2132 2131

3211 3222 3233 3212 3232 3231 3221 3232 3231

3111 3122 3133 3112 3132 3131 3121 3132

C C C

C C C C C

C C C C C C

C C C C C C C C C

C C C C C C C C C

C C C C C C C C 3131C

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  2.11 

 

Contracted notation is also known as Voigt notation and it is a way of representing a symmetric 

tensor by reducing its order. There are a few variants on the process of contracting indices, coming 

from different researchers, however the approach differs only on the certain weights attached to 

the selected element of the tensor. 

 

11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

41 42 43 44 45 46

51 52 53 54 55 56

61 62 63 64 65 66

C C C C C C

C C C C C C

C C C C C C

C C C C C C

C C C C C C

C C C C C C

 
 
 
 
 
 
 
 
  

  2.12 

 

During the following paragraph, an explanation of material symmetry will take place with a further 

report on the reflection of material symmetry on the elastic stiffness tensor. We assume that an 

elastic medium is reported with respect to two coordinate systems (𝑥1, 𝑥2, 𝑥3) and a second 

coordinate system (𝑥1
′ , 𝑥2

′ , 𝑥3
′ ), Figure 2.3. Symmetry of the two coordinate systems must be 

reflected on the symmetry of the material structure. Directions towards the principal axes of the two 

coordinate systems must have the same elastic properties; as a result, Hooke’s law will be the same 

for the two coordinate systems.  
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Anisotropic elastic materials exhibit a degree of symmetry within their structure, which is reflected 

on the symmetry of elastic properties. Due to that symmetry, many of the elements of elastic 

stiffness vanish or are simply related to others. Beginning with the higher degree of anisotropy, a 

triclinic material, as shown in Equation 2.13, has a fully populated elastic stiffness tensor with 36 

constants of which 21 are independent. A solution to such a problem is not trivial and is needed for 

mono-crystal triclinic systems. Such a material has properties that change drastically with the 

orientation. 
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 
  

 Equation 2.13 

 

 A step higher in elastic symmetry is the monoclinic material. A monoclinic material has a plane of 

symmetry, and every direction in the media which is symmetric with respect to the symmetry plane, 

has the same properties. For a monoclinic material the elastic stiffness tensor is partially populated 

with 20 constants from of which 13 are independent Equation 2.14. 

Figure 2.3 structure and material 
coordinate systems. 
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 Equation 2.14 

 

 A material which has two vertical planes of symmetry which impose the existence of a third vertical 

plane is called orthotropic. It can be shown that if two orthogonal planes of symmetry exist, there is 

always a third orthogonal plane of symmetry. Single ply composite materials show an orthotropic 

behaviour. The elastic constants of the stiffness tensor are reduced to 12, of which 9 are 

independent, Equation 2.15.  
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 Equation 2.15 

 

An elastic media with an axis of elastic symmetry is called transversely isotropic material, Equation 

2.16. An axis of elastic symmetry is the one with the entire vertical direction, elastic equal and every 

vertical on the elastic axis plane has isotropic properties. It is obvious that the transversely isotropic 

material experiences a higher degree of symmetry and that is reflected in the elastic stiffness tensor 

as 12 constants with 5 of them independent.  
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 Equation 2.16 

 

The highest degree of symmetry exists in isotropic materials. Elastic media in which all the directions 

are elastically equal is called isotropic, Equation 2.17. Isotropic material has an infinite number of 
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planes of symmetry, meaning that the properties are independent of the orientation. For an 

isotropic material the elastic stiffness tensor has 12 elements with 2 independent constants.  
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 Equation 2.17 

 

Throughout the previous subsection, the concept of material symmetry was discussed. The 

reflection of material symmetry on the elastic stiffness tensor was presented for the cases of 

triclinic, monoclinic, orthotropic, transversely isotropic and isotropic materials.  

As reported by (Nye, 1949), this symmetry can be summarised as: for a material element and for its 

physical properties, every material symmetry transformation of the material element is a physical 

symmetry transformation of the physical property. Also, the definition of inclusion and 

inhomogeneity was given as defined in micromechanics. The definition of inclusions and 

inhomogeneity was defined through the concept of eigen-strain and eigenstresses. Clarification of 

the aforementioned definitions and concepts was found necessary due to the following analysis of 

micromechanical models and due to the assumptions on material symmetry for the numerical 

models. 

 

2.3 Dominant parameters affecting the macro-mechanical behaviour of 

SFRC 
 

The mechanical and thermal performance of a short fibre composite is strongly influenced by various 

parameters mainly originating from the properties of the constituents and the manufacturing 

processes. Throughout the following sub-chapter those major factors are described and analysed. 

Also, what influences those factors is discussed and useful conclusions about high performance of 

SFRC are presented. A general discussion and details on the physical and mechanical properties 

which are influenced by these major factors will take place during the following chapter. 

 A strong disadvantage of pure polymer structures is their low strength and stiffness in comparison 

with traditional engineering materials. On the other hand, pure polymeric structures have numerous 

advantages that render their implementation in structure applications necessary. In order to 
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overcome this difficulty and make use of the strong advantages of polymeric structures, the 

introduction of reinforcing inclusions is needed.  

The rapid engagement of reinforcing inclusions in the polymeric structures is a result of the 

manufacturing process. Without huge difficulties, injection moulding methods and extrusion 

compounding methods were able to manufacture reinforced polymeric structures, and also the 

manufacturing time is much shorter compared with manufacturing continuous composite materials. 

High performance short fibre composite materials can be obtained if the major factors affecting 

their performance are satisfied. The major factors that play a critical role in determining high 

performance short fibre composite materials are: 

 Physical and mechanical properties of fibres and matrix. 

 Characteristics of fibres and matrix interface. 

 Fibre length distribution or aspect ratio. 

 Fibre orientation distribution and 

 Volume fraction. 

It is then crucial for any micromechanical analytical model to include information about those 

factors. However, not all the parameters have the same influence for every property under 

investigation. It is important then to clarify the influence of every factor for the properties under 

investigation.  

 

 

 

2.3.1 Physical and mechanical properties of fibres and matrix 

 

Throughout the following paragraphs some of the main properties of fibres and matrix materials will 

be analysed. Physical properties as dimensions of a filament or a tow are presented among with 

mechanical or elastic properties of fibres and matrices. The sub-chapter is divided into two sections. 

The first section refers to properties of fibres and the second refers to the properties of matrix 

materials. 

 

2.3.1.1 Fibres  

 

Fibres comprise the main reinforcing agent for advanced composite materials. Production of fibres 

for commercial purposes started in 1931 with glass fibres, but the advanced fibres for structural 

applications were developed in the late 1950s for boron fibres and the 1960s for carbon fibres. 

Advanced fibres have the characteristic of high specific mechanical properties. The term specific 

mechanical property refers to the ratio between the property (Young’s modulus, Shear modulus, 

strength etc.) over density. Some of the most common fibre materials and their filament size can be 

seen in Table 2-1.  
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Table 2-1 Common fibre material and their filament size. 

Fibre type Filament size (𝜇𝑚) Filament per tow 

Glass fibre S-2 6-14 2000 

Kevlar 12 1000 

Carbon AS4 8 12000 

Carbon IM8 5 12000 

Ceramic Nicalon (SiC) 15 500 

SCS-6 (SiC) 20 1 

 

As can be seen in Table 2-1 fibres exist in tows comprised of filaments which vary in diameter. The 

micro size of filaments and the population of them in a tow result in a very flexible fibre. The main 

type of fibres will be presented with emphasis on glass fibres as the material under consideration. 

Figure 2.4 shows a map of materials placed in a position indicating their specific stiffness and specific 

strength. Materials placed in the lower left corner are characterised by low specific stiffness and 

strength. On the contrary materials placed towards the top right corner are characterised by high 

specific properties. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Specific stiffness and specific strength for various 
engineering materials. Adapted by D. Hull 
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2.3.1.1.1 Carbon fibres 

 

  Carbon fibres are widely used in advanced lightweight structures. These are mainly produced by a 

chemical decomposition,  heat –controlled pyrolysis of a precursor material. The precursor material 

can be Polyacrylonitrile, rayon or petroleum pitch. The manufacturing process involves heat 

treatment of the precursor material to a temperature range between 1000 𝑎𝑛𝑑 3000 ℃. For the 

first two cases of precursor material the start point of the manufacturing process is textile fibres.  A 

schematic representation of manufacturing carbon fibres can be seen in Figure 2.5. Filaments of 

carbon have a diameter that ranges from 4 − 10𝜇𝑚 and tows consist of between 3000 𝑎𝑛𝑑 300000 

filaments. A tow is what is known as a carbon fibre. Carbon fibres are flexible with elevated stiffness 

and strength properties. 

 

2.3.1.1.1.1 Manufacturing carbon fibres 

 

The process of manufacturing carbon fibres starts from drawing and oxidizing the fibres at a 

temperature below 400℃. The purpose of that step is to ensure that the material will not melt in 

the subsequent steps of the process. During the first step drawing and oxidizing may occur 

consequently. Fibres then undergo heat treatment at temperatures above 800℃ in the absence of 

oxygen (a process known as pyrolysis) in order to remove non-carbon elements. Generally common 

carbon fibres consist of 80 − 95% of carbon while graphite fibres, which are also carbon fibres, 

consist of 99% carbon. The following steps involve carbonization and graphitization of fibres at 

temperatures above 1000℃. During the process of carbonization and graphitization further drawing 

may occur in order to reach a higher degree of orientation for the fibres. The last steps involve 

surface treatment and sizing of the fibres. The properties of fibres mainly depend on the carbon-

carbon bonds between the graphene layers and the orientation of these layers.  

Figure 2.5  Schematic representation of manufacturing process of carbon fibres. Adapted by 
B.T. Astrom. 
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2.3.1.1.2 Boron fibres 

 

Boron fibres are produced by chemical vapour deposition (CVD) of boron on a tungsten core. The 

diameter of boron fibres ranges between 33 − 400𝜇𝑚 with an average diameter of 140𝜇𝑚. Boron 

fibres are characterised by a brittle behaviour with low flexibility. Boron fibres consist of two 

different materials and can be seen as a composite system. As a result of the two materials existence 

during the fabrication cool-down process, residual stresses raise due to the mismatch of coefficient 

of thermal expansion. Boron fibres are characterised by elevated strength and stiffness properties. 

Usually they are not used in combination with polymer matrices but they are usually combined with 

metal matrices. 

 

2.3.1.1.3 Aramid fibres 

 

Kevlar-Aramid fibres are organics fibres produced by melt-spun of a liquid polymer solution.  Kevlar 

fibres are available in four grades. Kevlar 29, which is a special type of Kevlar exhibiting high 

toughness properties, Kevlar 49 and Kevlar 149 which are Kevlar fibres with high and ultra-high 

modulus. Kevlar fibres were first introduced in the early 1970s as a reinforcement in automobile 

tyres. Aramid filaments have relatively low diameter  (𝑑 ≈ 12𝜇𝑚) due to which they have a very 

flexible behaviour. They consist of radially arranged crystalline sheets and as a consequence they 

behave highly anisotropically. Aramid fibres have high strength properties on tension but low 

performance on compressive strength and Young’s modulus. It is a well-known material for its 

ballistic properties - the ability to absorb energy. 

2.3.1.1.3.1 Manufacturing of aramid fibres 

 

  The raw material for producing aramid fibres is polyamide which is a liquid crystal polymer (LCP). 

The solution spinning process for producing aramid fibres starts by dissolving polymer powder in 

sulphuric acid and extruding the product through small holes at 80℃ at a speed rate of 0.1 − 6 𝑚/𝑠. 

Fibres then pass through a water bath of 1℃ in order to solidify. Most of the time aramid fibres do 

not need any surface treatment due to their ductile behaviour.  Figure 2.6 shows the repeating unit 

of a Kevlar material.   

 

 

 

 

Figure 2.6 The repeating unit of 
Aramid fibres. Adapted from H.H. 

Yang 
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The advantages of Kevlar fibres are their improved toughness properties and damage tolerance, very 

good mechanical properties and relatively high temperature tolerance, good corrosion resistance 

and good electrical properties. Major disadvantages of aramid fibres are that it is an expensive 

material, relatively sensitive to moisture and also due to is extensive toughness properties it is very 

difficult to do any machining process with it. 

 

 

2.3.1.1.4 Glass fibres 

 

Glass fibres have the highest percentage of use for discontinuous fibre composite materials. Due to 

their inexpensive process of production, the good physical and mechanical properties they exhibit- 

such as high strength, high stiffness, low specific weight, good chemical resistance and good 

insulation properties- glass fibres comprise over 90% of the fibres used in short fibre composite 

polymers. They were first commercially released in 1931 from a company in Illinois but the first glass 

fibre was produced back in 1893. 

Nowadays different types  of glass fibres exist in the marketfor use for different purposes. Despite 

that the majority of glass fibres are silica based structures (𝑆𝑖𝑂2), which exists as a polymer, with 

additives such as oxides of boron, sodium, calcium, aluminium and iron. Glass generally exists in an 

amorphous structure or with a small degree of crystallinity after a post-manufacturing process.  The 

atomic structure of glass is what defines the elastic properties and strength of the material. Figure 

2.7 shows a typical example of a tetrahedral bond of silica with oxygen at the corners.  

 

 

 

 

 

 

 

 

 

 

 Si 

 O 

 O 

 O  O 

Figure 2.7  A typical example of a tetrahedral 
bond of silica with oxygen 
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Tetrahedral structures are connected together by sharing the oxygen at the corners. In such a way a 

3D network structure is developed. The existence of elements like 𝐶𝑎 𝑜𝑟 𝑁𝑎 on the corners of the 

tetrahedral structure tends to improve the formability of glass but they have a negative contribution 

on the stiffness and strength of the material because they tend to break up the network by forming 

ionic bonds with oxygen atoms. 

  

 

The main types of glass fibres are: 

 E-glass: This is the most common type of glass. “E” stands for “Electrical” since this type of 

material has elevated electrical and weathering properties. It also exhibits good strength and 

stiffness. It consists of alumino-borosilicate glass with less than 1% (Weight fraction) of alkali 

oxide. 

 

 C-glass:  This is the type of glass used when demanding corrosion properties are needed. “C” 

stands for corrosion and compared with E-glass it has better corrosion resistance but lower 

strength. It consists of alkali-lime glass with a high boron-oxide content. 

 

 

 S-glass: This is the most expensive type of glass. “S” stands for strength since S-glass fibres 

have higher strength, temperature resistance and Young’s modulus when compared with E-

glass and S-glass fibres. It consists of alumina silicate glass with a high 𝑀𝑔𝑂 content. 

 

2.3.1.1.4.1 Manufacture of glass fibres 

 

Glass fibres are produced by extruding a melt of silica mixed with other oxides, through holes in a 

platinum-alloy plate. Holes have a diameter between 0.8 − 3.2 𝑚𝑚 and are usually extruded in the 

thousands. Fibres are drawn at a linear velocity of 60 𝑚/𝑠 and the final diameter of the fibres 

depends on the size of the hole, the viscosity and temperature of the melt, the cooling rate and the 

drawing velocity. Figure 2.8 shows the basic concept of the glass fibre manufacturing process. 
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2.3.1.2 Matrix 

materials 

 

Matrix is the constituent used in composite materials which manages to hold the reinforcing agents 

(fibres) together and also transfers the load through shear stresses on the interface to fibres, and 

last but not least, it protects the reinforcing agents from adverse environmental effects. More than 

that matrix is the constituent of a composite which is responsible for preventing any buckling of 

fibres in compression and also for transferring the load to surrounding fibres in the case of individual 

fibre fracture. The dominant materials used as matrices are: 

 Polymers 

 Metals 

 Ceramics 

Thoughout the following sub-section the three main types of matrix materials will be presented with 

emphasis on the polymer matrices. 

 

2.3.1.2.1 Polymers 

 

For composite materials, the matrix is usually a polymer, however, different materials are used 

depending on the application. The term polymer comes from the Greek language and means  

“many-building blocks”, and refers to the repeating units-monomers of a macromolecule or a long 

chain. A polymer is the result of a process called polymerisation. Polymerisation is a process 

whereby monomer molecules react together in a chemical reaction to form a long chain of a 

network molecule. Polymers are highly molecular weight compounds consisting mainly of carbon 

and hydrogen atoms connected together by primarily or covalent bonds. Figure 2.9 shows a 

configuration of polypropylene while Figure 2.10 shows a conformation of polyethylene. 

 

Figure 2.8  Glass fibres manufacturing process. Adapted 
from Michelman 
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Polymers macroscopic behaviour is strongly influenced by the configuration and conformation of the 

molecular structure. This dependency can be ascribed to the relative mobility of molecules which 

can be on the intramer structure, on the intramolecular structure or on the intermolecular structure 

of the chain. In the first case the polymer’s properties are strongly influenced by the type of 

elements presented and the kind of bond between them. In the second case macroscopic properties 

are influenced by the location of the functional groups in the polymer chain.  

Most polymers have an amorphous structure but sometimes a degree of crystallinity may occur with 

an amorphous phase. In the case of gradual heating the amorphous phase of the polymer will always 

melt before the crystalline region. This happens mainly because crystal structures consume more 

energy in order to dislodge the molecules. This process is endothermic. The ability to change phases 

from solid to liquid and back to solid happens because mainly only secondary bonds (van der Walls 

bonds) act between the molecules. A polymer exhibiting such behaviour is called thermoplastic. 

In general there are two main families  of polymer- thermoplastic and thermosets. Thermoplastics 

are polymers consisting of long molecular chains held together by secondary bonds, which is the 

reason that they can meld and solidify theoretically infinite times. Thermoplastic polymers usually 

have an amorphous structure, especially in the case of irregular and stiff molecules structure. On the 

contrary, in the case of regular and flexible molecular structures, thermoplastic polymers tend to be 

partially crystalline. The degree of crystallinity can be controlled through the cooling rate during the 

manufacturing process. Table 2-2 shows some of the main thermoplastics used in structural or semi-

structural applications.   

 

 

                                           Table 2-2 Main commodity thermoplastics for structural applications 

Material Density  

(𝑀𝑔/𝑚3) 

Young’s 

Modulus 

Figure 2.9  A configuration of polypropylene 
structure.  

Figure 2.10  A conformation of 
polyethylene structure.  
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(GPa) 

Nylon 6.6 1.1-1.4 1.4-2.8 

Polypropylene 0.9 1.0-1.4 

PEEK 1.26-1.32 3.6 

 

 

Behaviour of thermoplastics with respect to the temperature depends on the degree of crystallinity 

and the molecular weight of the polymer. Amorphous thermoplastics tend to experience the glass 

transition at lower temperatures when compared with semi-crystalline thermoplastics, since 

crystallinity works as a barrier to the polymer melting. In the same way thermoplastics with high 

molecular weight tend to need higher temperatures in order to lose their secondary bonds.  

 Glass transition temperature is defined as the temperature at which a region of rapid loosening of 

the secondary bonds take place and relatively large segments of the molecules gain extra kinematic 

degrees of freedom. Between the glass transition temperature and melt temperature amorphous 

thermoplastics seems to experience what is known as rubber plateau. Rubber plateau is a behaviour 

of amorphous thermoplastics in which the material does not experience any stiffness degradation 

but deformation occurs as a result of molecules sliding past one another.  

As a generic note it must be emphasised that amorphous thermoplastics tend to shrink much less 

than semi-crystalline thermoplastics. This happens mainly because there is no crystallisation during 

the solidification stage and so molecules do not change their structure dramatically. In the case of 

amorphous thermoplastics, molecules keep a random position. This has as a result a very good 

surface finish for thermoplastic structures. On the other hand, the existence of crystallinity in a 

polymer improves the resistance to solvents, mainly because regions with crystalline structures 

prevent dissolution. Also, crystallinity improves creep resistance and stiffness, whilst at the same 

time reducing properties such as toughness and ductility. As reported by (Astrom, 1997) an optimum 

percentage of crystallinity in thermoplastics is about 20 − 35%. 

In the case of thermosets polymers, initially they consist of long molecules connected only with 

secondary bonds, although the presence of carbon-carbon double covalent bond results in 

solidification of the polymer resin. As long as these intermolecular bonds cannot be broken without 

breaking the intramolecular covalent bond, thermoset polymers cannot melt. In general thermosets 

polymers consist of amorphous structures.  

  Initially thermoset resins are in a liquid form. By initiating a chemical reaction crosslink bonds are 

created between neighbouring molecules. At the end of this process an enormous three dimensional 

network is created between cross-linked molecules. The process of crosslinking neighbouring 

molecules is an exothermic process, mainly because it leads to lower energy state into the system 

comparing with the random structure of molecules in the initial liquid form.  On the contrary with 

thermoplastics, thermosets exhibit a different behaviour with respect to temperature. Due to their 

amorphous structure thermosets have an extended rubber plateau and never melt once covalent 
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bonds hold the three dimensional chain together. Further application of heat on a thermoset will 

lead to a charred carbon structure. The main thermoset resins used for composite structures can be 

seen in Table 2-3. 

 

 

                     Table 2-3 Main thermoset resins used for composite structures 

Material Density  

(𝑀𝑔/𝑚3) 

Young’s Modulus  

(GPa) 

Epoxy Resins 1.1-1.4 3-6 

Polyesters 1.2-1.5 2.0-4.5 

 

 

 

2.3.2 Characteristics of fibres and matrix interface 

 

As reported while analysing the contribution of fibres in the previous sub-chapter, fibres are also a 

source of crystallization for the matrix. The region defined between the fibre and matrix is called the 

interface. The general definition of an interface, as reported by (Fu, et al., 2009), is a boundary 

demarcating distinct phases such as fibre and matrix.  

An interphase may be a diffusion zone, a chemical reaction zone, or the bounds between two 

polymers in a polymer blend. The role of the interface or interphase is very crucial for properties 

such as strength or toughness. It does not affect properties such as the elastic modulus because the 

modulus is calculated under the assumption of infinitesimal strains, resulting in a perfect interfacial 

bonding which can be assumed without losing any accuracy in the calculations. In contrast, once the 

material is loaded over the elastic region, elevated stresses in the matrix must transfer to the fibres, 

otherwise the composite will fail from high stresses in the matrix. If the interface is not strong 

enough to transfer stresses to the fibre, the composite will show lower strength and probably a 

matrix failure, or a de-bonding mode of failure. 

 Interface can be improved by adding any coupling agent in the composite. This will positively affect 

the interfacial shear stress and will result in a higher stress transfer degree. The interfacial shear 

strength, and as a consequence, interfacial bonding, are directly related to what is known as critical 

fibre length through the shear lag model. Definitions and further details about critical length will be 

given in the next paragraph. 
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2.3.3 Fibre length distribution or aspect ratio distribution. 

 

Through the following chapter two very important micromechanical parameters for short fibre 

composites will be analysed. The influence of fibre length and fibre orientation on the macroscopic 

elastic behaviour of discontinuous fibre composites will be examined. The length of a short fibre 

composite is a result of the manufacturing method. During the two main methods of manufacturing 

short fibre composite, Injection moulding and extrusion compounding, certain length degradation on 

fibre takes place due to the elevated temperature and the high shear stresses developed through 

the melding and compounding process. Figure 1.3 shows the degradation of fibre length as a 

function of flight number for three different screw designs. 

 Another reason for fibre breakage during manufacturing is the high viscous resins. When a high 

viscous polymer is injected with fibres into a mould, there is a high possibility that fibres will break 

due to the high shear stresses developed from the viscous polymer. As observed from Figure 1.3 at 

the end of this manufacturing process, fibre length undergoes a serious degradation. The final length 

distribution of a short fibre composite is a parameter dependant on various manufacturing factors.  

As reported by Fu et al. and by Thomason et al. these factors mainly include the fibre content, the 

processing condition, matrix viscosity characteristics and the nature of fibres. During the 

manufacturing process the most common reasons for a fibre breakage are fibre-fibre interaction, 

fibre-matrix interaction and fibre in contact with the surface of the manufacturing equipment. It was 

observed by Fu et al. that with the increase of fibre content, fibre-fibre interaction increases and 

causes more damage to the fibre and leads to lower mean fibre length. Mean fibre length is 

inversely proportional to the fibre content. Reduction of fibre length with fibre content can be seen 

in Figure 2.11 as it was reported by (Thomason, 2002). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11 Reduction of average fibre length as fibre’s content increase. 
Adapted from Thomason et al. 
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The literature reports that a direct relation between fibre length and mechanical-physical properties 

exists. In order to accurately study the influence of fibre length in the elastic properties, the strength 

and the fracture toughness of a short fibre composite- an accurate measurement of the fibre length 

need to take place. The most common experimental way of fibre length measurement is direct 

measurement through resin burnout. Fibres are collected after burning the resin and dispersed in a 

solution whereby a direct measurement can take place, usually through an image analysis method. It 

is crucial to use the appropriate tools in order to define a probability density function which 

describes the length distribution of short fibres.  

Various characteristics of the fibre length distribution can be defined for a probability density 

function 𝑓(𝑙), between fibre length 𝑙 𝑎𝑛𝑑 𝑑𝑙 and a cumulative distribution function 𝐹(𝑙)  for the 

probability that the fibre length is equal or less than a specific length 𝑙. (Fu, 1996) propose a 

relationship between probability density function and cumulative distribution function as shown in 

Equation 2.18 and Equation 2.19.  

 𝐹(𝑙) = ∫𝑓(𝑥)𝑑𝑥

𝑙

0

 Equation 2.18 

 

 ∫ 𝑓(𝑥)𝑑𝑥

𝑙𝑚𝑎𝑥

𝑙𝑚𝑖𝑛

= 1 Equation 2.19 

 

 

Short fibre length distribution can be described by a two parameter Weibull distribution function, as 

shown in Equation 2.20. In Equation 2.20 𝑚 𝑎𝑛𝑑 𝑛 are shape parameters and 𝐿 is the fibre length. It 

was reported within the literature that the distribution describes accurately the experimental 

observations of glass-polypropylene short fibre composites. 

 

 𝑓(𝐿) = (𝑚/𝑛)(𝐿/𝑛)𝑚−1𝑒−(𝐿/𝑛)
𝑚
, 𝑓𝑜𝑟 𝐿 > 0 Equation 2.20 

 

 A different form of Weibull distribution is Tung distribution, Equation 2.21. For the above equation 

𝑎 𝑎𝑛𝑑 𝑏 are scale and shape parameters respectively.  The two equations are related through the 

shape parameters. 

 𝑓(𝐿) = 𝑎𝑏𝐿𝑏−1𝑒−𝑎𝐿
𝑏
, 𝑓𝑜𝑟 𝐿 > 0 Equation 2.21 

 

 The cumulative distribution function can be expressed in terms of 𝑎 𝑎𝑛𝑑 𝑏 as shown Equation 2.22. 

The mean fibre length and the most probable length (mode length) are shown in Equation 2.23 and 
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Equation 2.24. The most probable length can be obtained by differentiating the probability density 

distribution and allowing the resultant equation to equal zero. The solution of 𝑙 in that case will 

indicate the peak on the probability density distribution plot.  

 𝐹(𝐿) = 1 − 𝑒−𝑎𝐿
𝑏
, 𝑓𝑜𝑟 𝐿 > 0 Equation 2.22 

 

 𝐿𝑚𝑒𝑎𝑛 = ∫ 𝐿𝑓(𝐿)𝑑𝐿

∞

0

= 𝑎−1/𝑏 Γ (
1

𝑏
+ 1) Equation 2.23 

 

 𝐿𝑚𝑜𝑑 = [
1

𝑎
− 1/(𝑎𝑏)]

1/𝑏

 Equation 2.24 

 

 

For a specific length 𝑙1 𝑎𝑛𝑑 𝑙2 the cumulative fibre length distribution is known by Equation 2.22. 

Then, a solution for the shape parameters is possible. Equation 2.25 and Equation 2.26 show the 

solution of 𝑎 𝑎𝑛𝑑 𝑏 shape parameters. 

 𝑏 =
ln{ln[1 − 𝐹(𝑙1)]/ ln[1 − 𝐹(𝑙2)]}

ln(𝑙1/𝑙2)
 Equation 2.25 

 

 𝑎 =
ln[1 − 𝐹(𝑙1)]

𝑙1
𝑏  Equation 2.26 

 

Two different approaches for the probability distribution function were proposed by (Chin, 1988). 

The probability density distribution and the mean length are presented in Equation 2.27 and 

Equation 2.28. For the density function 𝑏 𝑎𝑛𝑑 𝑐 represent shape parameters and for the mean 

length, Γ is the gamma function.  

 𝑓(𝑙) =
𝑐

𝑏
(
𝑙

𝑏
)
𝑐−1

𝑒−(𝑙/𝑏)
𝑐
 Equation 2.27 

 

 𝐿𝑚𝑒𝑎𝑛 = 𝑏Γ(
1

𝑐
+ 1) Equation 2.28 
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The second approach by (Chin, 1988) is a logarithmic-normal distribution expressed in Equation 2.29, 

where 𝑠 𝑎𝑛𝑑 𝜇 are model parameters and 𝑙 is the fibre length.  

 𝑓(𝑙) =
1

√2𝜋𝑠𝑙
𝑒[−(ln 𝑙−𝜇)

2/2𝑠] Equation 2.29 

 

Mean fibre length and the most probable length are presented in Equation 2.30 and Equation 2.31, 

where an expression of the model parameters as a function of mean and most probable length, is 

shown in Equation 2.32 and Equation 2.33. 

 𝑙𝑚𝑒𝑎𝑛 = 𝑒
[𝜇+

𝑠2

2
]
 Equation 2.30 

 

 𝑙𝑚𝑜𝑑 = 𝑒
[𝜇−𝑠2] Equation 2.31 

 

 𝑠 = √
2

3
(ln 𝑙𝑚𝑒𝑎𝑛 − ln 𝑙𝑚𝑜𝑑)   Equation 2.32 

 

 𝜇 =
2ln 𝑙𝑚𝑒𝑎𝑛 + ln 𝑙𝑚𝑜𝑑

3
 Equation 2.33 

 

As reported by various authors, (Cox, 1952), (Thomason, 2002), effective properties of a short fibre 

composite are strongly influenced by fibre length distribution, up to a certain fibre length or AR. It 

has been shown analytically and experimentally that there is saturation on the reinforcing 

phenomenon for fibre length, and the threshold is defined by the critical fibre length. A unique 

answer for the critical fibre length cannot be given because as it was shown experimentally by 

(Thomason, 1996), the critical length varies depending on the property under investigation. 

Properties such as strength or impact resistance show a more sensitive response to fibre length and 

larger fibres are needed to reach the critical threshold.  

 

2.3.4 Fibre orientation distribution 

 

The second parameter with a strong influence on the mechanical and thermal properties of short 

fibre composite is fibre orientation. As with the previous parameter, fibre orientation is strongly 

influenced by the manufacturing process. 

 It is reported by (Thomason, 1996) that parameters of fibre length and fibre orientation are costly 

effective for the manufacturing process but they also strongly influence the mechanical and physical 
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properties of a short fibre composite. For a short fibre composite, orientation will always have a 

random nature. Even with a manufacturing process aimed at orienting fibres towards the flow 

direction, fibres will never be fully aligned, nonetheless a certain degree of alignment can be 

achieved.  

The symmetry of the material, as reported in the previous sub-chapter, is strongly influenced by the 

fibre orientation. The higher degree of symmetry for short fibre composite is transversely isotropic, 

and it can be achieved with random in plane orientation. A short fibre composite, with a degree of 

orientation, tends to have an orthotropic behaviour. It has been reported in literature that injection 

moulded samples exhibit a skin-core-skin behaviour with respect to the fibre orientation. The skin-

core-skin structure is a result of the manufacturing process, as a consequence of which  fibres at the 

boundaries of the specimen become more aligned towards the flow direction, in comparison with 

the fibres in the middle of the specimen, which were found to have a more random distribution.  

Fibre orientation can be measured through image process analysis. Image analysis requires that 

slices of the specimen are taken transversely to the Ζ  axis and to undergo a polish process. Images 

of the slices are then taken. Fibres are projected as ellipses, as shown in Figure 2.12, for any possible 

orientation and as circles for all the fully aligned fibres. The orientation of each fibre can be 

characterised in 3D space by two Euler angles (𝜃 𝑎𝑛𝑑 𝜙). The in plane angle 𝜃 can be defined as in 

Equation 2.34.  

 

 

 

 

 

 

 

 𝜃 = cos−1(𝑏/𝑎) Equation 2.34 

 

Where 𝑎 𝑎𝑛𝑑 𝑏 represet the major and the minor semi-axis of the elliptical cross-sections 

respectively. It has been reported by (Fu, et al., 2009) that for composites with a high degree of 

alignment, calculation of circular projections can introduce an error of 8% for angle. This uncertainty 

can be minimized to 0.5% if the cross-section is taken at an angle with respect to the  Ζ axis. As in 

the case of fibre length, fibre orientation distribution can be defined as shown in Equation 2.35, in 

which 𝜃 is the in plane orientation.       

 

Figure 2.12 Slice of specimen along 
𝒁 axis. Fibres are projected as 

ellipses. 
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 𝑔(𝜃) =
sin𝜃2𝑝−1 cos 𝜃2𝑞−1

∫ sin𝜃2𝑝−1 cos 𝜃2𝑞−1 𝑑𝜃
𝜃𝑚𝑎𝑥
𝜃𝑚𝑖𝑛

   𝑓𝑜𝑟   0 ≤ 𝜃𝑚𝑖𝑛 ≤ 𝜃 ≤ 𝜃𝑚𝑎𝑥 ≤
𝜋
2⁄  Equation 2.35 

 

 

𝑝 𝑎𝑛𝑑 𝑞 are shape parameters, which are used to determine the shape of the distribution. The 

combination of 𝑝 𝑎𝑛𝑑 𝑞 can indicate high alignment to any direction or a random orientation as can 

be seen in Figure 2.13. The plot indicates that the combination of 𝑝 𝑎𝑛𝑑 𝑞 parameters determines 

the degree of fibre alignment in the composite. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The fibre orientation coefficient factor can be defined according to (Fu, 1996) through an integration 

of Equation 2.35 which leads to Equation 2.36. A schematic representation of the equation can be 

seen in Figure 2.14 where value of 𝑓𝜃 = 1 denotes a perfect alignment of fibres towards the first-

principal direction, while 𝑓𝜃 = 0 defines the 2D random orientation distribution. 

 

 

Figure 2.13 Fibre orientation distribution function for various 
cases of shape functions. 
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 𝑓𝜃 = 2 ∫ 𝑔(𝜃) cos2 𝜃𝑑𝜃 − 1

𝜃𝑚𝑎𝑥

𝜃𝑚𝑖𝑛

 
Equation 2.36 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The mean fibre orientation angle can be calculated as shown in Equation 2.37.  The most probable 

angle as defined in Equation 2.38 is the result of differentiating  𝑔(𝜃) and allowing it to equal to 

zero.  

 

 𝜃𝑚𝑒𝑎𝑛 = ∫ 𝜃𝑔(𝜃)

𝜃𝑚𝑎𝑥

𝜃𝑚𝑖𝑛

𝑑𝜃 Equation 2.37 

 

 𝜃𝑚𝑜𝑑 = 𝑎𝑟𝑐𝑡𝑎𝑛{[(2𝑝 − 1)/(2𝑔 − 1)]
1/2} Equation 2.38 

 

Figure 2.14 Distribution of fibre orientation coefficient 
for various combinations of shape functions. 
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(Chin, 1988) presented a modified (Kacir, 1975) single parameter exponential function to describe 

fibre orientation distribution. According to (Kacir, 1975) probability density function is given as in 

Equation 2.39.  

 

 𝜌(𝜃) = 𝜆𝑒−𝜆𝜃 Equation 2.39 

 

 

where 𝜆 is a shape parameter, which has a low value for random orientations and a large value for a 

major preferential alignment. It has been reported in literature that the distribution function is 

suitable for large values of 𝜆. The density distribution function for various values of 𝜆 is given in 

Figure 

2.15. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 A normalised version of Kacir’s model has been proposed by (Chin, 1988). As shown in Equation 

2.40, Kacir’s model has been normalised with (1 − 𝜆𝑒−
𝜋

2
𝜆) . It can be observed from the cumulative 

distribution function, Equation 2.40, that for values of  𝜃 = 𝜋 2⁄  , 𝐹(𝜃) = 1 which indicates that the 

possibility of an angle being between (0 − 𝜋 2) ⁄  is 100%.    

 

Figure 2.15  Orientation distribution for various values of 𝝀. 
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 𝑔(𝜃) =
𝜆𝑒−𝜆𝜃

1 − 𝜆𝑒−
𝜋
2
𝜆

 Equation 2.40 

 

 

 

 

2.3.5 Volume fraction 

 

The last parameter under discussion for short fibre composites is the volume fraction. Volume 

fraction is defined as the volume of fibres over the total volume of the composite, Equation 2.41. 

 

 𝑉𝑓 =
𝑉𝑓𝑖𝑏𝑟𝑒𝑠

𝑉𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒
 Equation 2.41 

 

The volume fraction of a matrix can be defined in the same way as fibre volume fraction, Equation 

2.42 or it can be expressed as a function of fibre volume fraction. Industrial applications of short 

fibre composites usually require a volume fraction of up to 35%.   

 𝑉𝑚 =
𝑉𝑚𝑎𝑡𝑟𝑖𝑥
𝑉𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒

= 1 − 𝑉𝑓 Equation 2.42 

 

Usually, during the preparation of short fibre composites, weight fraction is measured. Equation 2.43 

expresses the density of the composite as a function of the density and weight of the constituents.  

Subscript 𝑓 indicates fibres while subscript 𝑚 indicates matrix. 𝑊𝑓 𝑎𝑛𝑑 𝜌𝑚   indicate the fibres’ 

weight fraction and matrix density respectively.  

 𝜌𝑐 =
𝑊𝑓𝜌𝑓𝜌𝑚

𝑊𝑓𝜌𝑚 +𝑊𝑚𝜌𝑓
 Equation 2.43 

 

 By employing the same approach, the density of the composite can be calculated using Equation 

2.43. This theoretical calculation of density deviates from experimental measurements for various 

reasons. A dominant parameter affecting this deviation is the porosity of the material or the void 

content. Furthermore, during the curing of the composite material, fibres act as a source of 

crystallisation for the matrix, and as a result, the density of the matrix changes.  

The maximum achievable volume fraction is strongly dependant on the packing arrangement. 

Regular packing arrangements as square or hexagonal can be expressed by Equation 2.44 and 
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Equation 2.45. For those arrangements, volume fraction is a function of fibre ratios 𝑟 and fibre to 

fibre distance 𝑅.  

 

 𝑉𝑓
𝑆𝑞𝑟

=
𝜋

2√3
(
𝑟

𝑅
)
2

 ≈ 0.785 Equation 2.44 

 

 𝑉𝑓
𝐻𝑒𝑥 =

𝜋

4
(
𝑟

𝑅
)
2

  ≈ 0.907 Equation 2.45 

 

A random packing arrangement can be approached by Equation 2.46 which is a modified version of 

the Evans and Gibson model. Maximum achievable volume fraction is a function of fibre diameter 

and fibre length. 

 

 𝑉𝑓,𝑚𝑎𝑥 =
4𝑑

𝑙
(

1

1 + 𝑑/𝑙
) Equation 2.46 

 

For the short fibre composite manufacturing process, volume fraction is also a limitation. It has been 

reported that it has a negative contribution on the final fibre length and on the void content. The 

effect of volume fraction on the effective elastic properties will be further analysed through 

analytical models. 

 

2.4 Modelling strategies 
 

Throughout the following subchapter, various micromechanical modelling approaches will be 

presented. The following modelling methods are used for material properties characterization 

through simple uniaxial loading conditions. Micromechanical constitutive equations have a strong 

advantage when compared with semi-empirical models due to their ability to implement 

information from a local phase and also to have a clear physical basis. Localization can be defined as 

the estimation of the local response, for any phase or constituent, as well as for a known far field 

applied load. The modelling approaches throughout the following chapter can be divided into two 

groups. The first group regards methods which consider interactions between distinct 

reinforcements or different phases, while the second group considers approximations which aim to 

thoroughly reflect interactions between micro-geometries.      

2.4.1 Mean field approach 
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Mean field methods use the phase-average in order to calculate the microfield response.  The phase 

average field is expressed in terms of uniform stresses and strains. Information of the 

microstructure’s geometry is introduced into the calculations in terms of volume fraction, aspect 

ratio or phase topology. Representative models for the mean field approach are the Mori-Tanaka 

type models, although almost all mean field descriptions in continuous micromechanics are based 

on the results of Eshelby. Eshelby offers a theory considering a description of the microfield, by 

relating stress free strains to far field applied strains with what is known as Eshelby’s tensor. A 

modified version of the theory, known as the equivalent inclusion method, makes it compatible for 

calculating stress and strain field inside an inhomogeneity. Eshelby’s model will be further analysed 

in the next chapter. Considering Eshelby’s model assumption, mean field approaches were originally 

compatible only for a dilute matrix inclusion composite. By the term ‘dilute’, a composite that 

satisfied Equation 2.47 is described. 

 

 𝑉𝑓 ≪ 10% Equation 2.47 

 

The case of dilute concentrations has the same unique characteristics that do not affect the analysis 

or the results. Any expression of the concentration tensor becomes independent of volume fraction. 

Distances between inhomogeneity are considered to be relatively far, due to the dilute 

concentration, and as a consequence there is no interaction between them.  

The assumption of non-interaction between inhomogeneities is considered to be correct with 

respect to the fibre concentration. However, for short fibre composites, usually their industrial 

application demands higher volume fraction. As reported in the literature, fluctuations of the stress 

and strain field due to interaction between inhomogenieties are not calculated by mean field 

approaches, which can be referred to as the “non-interactive” method. However, the mean field 

approach can be modified in order to be able to count for fibres’ interaction.  Image stresses, 

background stresses or perturbed stresses, are defined as the stresses acting on the inhomogeneity 

due to the interaction with neighbouring inhomogeneity. Introduction of those stresses in the main 

calculation enables the model to count for that interaction. Perturbed stresses can be superimposed 

on the far field stresses through a proper modification of the average matrix stress.  

Mean field theories can be implemented successfully for material characterization. They can be 

solved by computer programs using explicit algorithms of linear algebra, once expressions of 

Eshalby’s tensor exist. Despite all the aforementioned limitations and disadvantages of the 

approach, mean field schemes are a very useful tool for material characterization of aligned 

inhomogeneous composite.  

A different mean field approach for estimating the effective thermo-mechanical properties of a 

composite material rests on the effective medium theories. According to the effective medium 

theory, the inhomogeneity is embedded in an infinite medium which has unknown mechanical 

properties. The system can provide a solution for the effective medium using an iterative scheme 

approach.   
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There are two effective medium approaches which are used often,the classical self-consistent 

method and the generalised self-consistent method. Predictions using the classical self-consistent 

scheme show good agreement with lower Hashin-Shtrikman bound for low volume fraction, and for 

a higher volume fraction results tend to agree with the upper bound of Hashin-Shtrikman. Even if it 

is not considered to be the best choice of modelling for composite materials, CSCS offers acceptable 

results and very accurate predictions for functionally grated materials.  From a computational point 

of view, CSCS is by definition an implicit problem and the computational time and power needed for 

a solution are higher when compared with the Mori-Tanaka scheme.  

 Another mean field approach is the differential scheme. The differential scheme can be described as 

a procedure for adding an infinitesimal concentration of inhomogeneity by repeated circles, and for 

every circle to apply a homogenization process.  Solutions for thermo-elastic properties from 

deferential schemes can be obtained through numerical integration executed by standard numerical 

algorithms. Due to their mathematical complexity, differential schemes experience a non-broad use 

in the field of composite material characterization.  

The Hashin-Shtrikman approach is based on a comparison between the inhomogeneous and a 

reference homogeneous material.  Using the polarization tensor as defined in Equation 2.48, various 

forms of concentration tensors can be defined. Where 𝐶𝑃 corresponds to the polarization tensor,  

𝐶𝑟𝑒𝑓 is the elastic properties of the reference homogeneous media and 𝐶  represents the elastic 

properties of the inhomogeneous material. As reported in literature, Equation 2.48 ‘is a starting 

point for deriving mean field concentration tensors.’  Calculation of thermo-mechanical properties 

according to the Hashin-Shtrikman approach involve the use of Eshelby’s tensor and Hill’s influence 

tensor.  

 

 𝐶𝑃(𝑥) = (𝐶(𝑥) − 𝐶𝑟𝑒𝑓)𝜀(𝑥) Equation 2.48 

 

In contrast with mean field methods, bounding methods do not have the ability of zooming in the 

material and offer a local description. Bounding methods are restricted to homogenization 

procedures. Classical bounds methods involve expressions of the minimum potential energy. Some 

of the representative models of this approach are: Hill bounds which consist of the Voigt and Reuss 

bounds, and the Hashin-Shtrikman bounds. Both models will be further analysed in the following 

chapter. The aforementioned modelling approaches belong to the mean field approach.  The Mori-

Tanaka- type estimations, the classical self-consistent method, the differential scheme method and 

the Hashin-Strikman estimations have been presented, while the basic bounding methods of Hill and 

Hashin-Strikman were discussed. Generally, mean field approaches are usually expressed as phase 

concentration tensors which can be calculated with a relatively low computational cost and have 

been reported to successfully describe the thermo-mechanical behaviour of composite materials. 

 

2.4.2 Periodic micro-field approach 
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A different approach from the mean field, which aims to fully describe the interaction between 

phases, is the periodic micro-field approach, or unit cell method. A material with periodic geometry 

and with the ability for infinite extension is implemented by the method in order to approximate the 

micro field of an inhomogeneous material. A material with periodic geometry is understood as a 

material with a repeated microstructure throughout the whole volume. Results can be obtained 

through numerical analysis. The periodic micro field approaches are considered to be accurate 

methods of material characterization for a linear thermo-elastic response, but they are also used for 

the non-linear range. A strong advantage of the method is that it can describe highly complex phase 

arrangements and also offers a high resolution of the micro field. Due to the high resolution and the 

detailed information of the local field, periodic micro field approaches tend to be computationally 

demanding.   

The embedding approach is a different configuration in which an effective medium surrounds a 

composite material consisting of discrete phases. Properties of the surrounding material are not 

known in advance and are calculated through an interactive scheme such as the self-consistent 

approach. Far field loads are applied in the surrounding region. Embedded cell approaches are 

widely used for material characterization but much like the previous methods, they are 

computationally very expensive.  

 The last approach from the second group is the windowing approach. According to this method, 

randomly chosen squares are selected from a given phase arrangement and subjected to specific 

boundary conditions. It has been reported that through the method, the apparent macroscopic 

properties are defined instead of effective properties. Approaches such as the aforementioned are 

appropriate methods for material characterization which are also able to count for the interaction 

effect. With the exception of the windowing approach, the previous two approaches offer useful 

information on the microstructure. Those methods are generally characterized by a high 

computational demand. 

 

2.5 Micromechanical models 
 

The micromechanics of materials are considered to be the analysis of heterogeneous materials on 

the level of the individual constituents. Composite materials exhibit an inherent inhomogeneous 

nature. A closer inspection of any kind of material will indicate that a degree of heterogeneity exists. 

The deviation from the homogeneous state exists due to various reasons such as particles, cracks, 

voids, regions of different phase or grain boundaries. Within the literature, they are referred to as 

defects in a generalized sense.  

One of the main aims of micromechanics is to evaluate the contribution of those defects to the 

macroscopic behaviour of the material and to link mechanical relations on different length scales. As 

a consequence of that inhomogeneous nature, on the present of a far field load on the boundaries 

of the composite material, non-uniform distribution of stresses developed throughout the 

composite media. Evaluation of this distribution, for the aim of material characterization, has always 

been a challenge for engineers.  
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The microstructure of a short fibre composite material is mainly created during the manufacturing 

process. Engineers have a limited ability to control the formation of the microstructure during the 

manufacturing process, mainly because this geometrical arrangement on the second phase material 

is a consequence of a complex interacting micromechanical process which takes place during the 

manufacture of the material. The nature and geometrical properties of the microstructure strongly 

influence the macroscopic properties of short fibre composites. This fact results in some deviation 

from the ideal microstructure considered for numerical or analytical models.  

By considering a fine length scale, on the micro level, defects on the microstructure can be related to 

a material point on the macro level. In such a way micromechanical problems can be approached 

under the framework of continuum mechanics. Micromechanical problems of defect can be 

separated in two different approaches regarding the point of interest. The problem can be 

formulated in order to approach the behaviour of the defect and characterization of the properties 

on that scale, micro-scale, or the problem can be formulated in order to describe the influence of 

multiple defects on a higher scale. In the case of formulation of microstructure for properties on the 

macro-scale, the microstructure’s behaviour is taken as a situation of a material point on the macro-

scale. The resulting properties are known as effective material properties.   

The following section will focus on theoretical approximations for the effective mechanical 

properties and various analytical approaches will be discussed for macroscopic behaviour 

considering the influence of the microstructures. Various researchers proposed solutions for the 

micro-field variables. The very early studies of the topic include publications from JC Maxwell (1831-

1879), Lord Raleigh (1842-1919) and A. Einstein (1879-1955). However, those studies were not 

under the topic of solid mechanics. Regarding the solid mechanics field, early studies include the 

theoretical contribution of Voigt (1850-1919) and Reuss (1900-1968), in their study of the elastic 

properties of a single crystal, as well as the contribution of R. Hill. 

 In the following paragraph, the emphasis will be on defining the mechanical and thermal behaviour 

of an inhomogeneous composite material, implementing continuous mechanics approaches. 

Regarding continuous mechanics, an essential parameter is the degree of inhomogeneity. The 

degree of inhomogeneity can be defined as in Equation 2.49 and it describes the elastic properties 

phase contrast. 

 

 𝐸𝐼𝑛ℎ =
𝐸(𝑖)

𝐸(𝑚)
 Equation 2.49 

 

 𝐸(𝑖) represents the Young modulus of inhomogeneities and 𝐸(𝑚) denotes the Young modulus for 

the matrix. It has been reported throughout the literature by (Thomason, 1996)through 

experimental studies and comparison with analytical models that, the higher the degree of 

inhomogeneity is, the higher the deviation from analytical predictions. 

 As will be discussed in detail throughout the next chapter, a hidden assumption for most 

micromechanical models is that length scales for an inhomogeneous material are well separated. 

This results in variables introduced into the system being able to be divided into two categories.  
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 Fast variables are considered to be the contribution to the micro-field which influence the 

response of the material on a larger scale, and 

  Slow variables such as gradient of the field, which have no important contribution to the 

micro-field because the reflection on the local field is considered to be constant and can be 

replaced by a uniform applied field.  

As a consequence, the total field which corresponds to an inhomogeneous material can be defined 

as the contribution of fast variables and slow variables. Equation 2.50 and Equation 2.51 states the 

aforementioned sentence. Where 〈𝜀〉̅  corresponds to a macroscopic-far field strain, slow variable 

and  𝜀̇(𝑥)   corresponds to local fluctuation- fast variables. Respectively 〈𝜎〉 and 𝜎̇(𝑥) stand for 

macroscopic far field stress and stress fluctuation. 𝜎(𝑥) and 𝜀(𝑥) correspond to local values of stress 

and strain respectively. 

 

 𝜀(𝑥) = 〈𝜀〉 + 𝜀̇(𝑥) Equation 2.50 

 

 𝜎(𝑥) = 〈𝜎〉 + 𝜎̇(𝑥) Equation 2.51 

 

 The contribution of fast variables can be expressed in the macroscopic behaviour of the material 

through their volume average. Equation 2.52 and Equation 2.53 show what are known as average 

strain and average stress theorems.   

 

 〈𝜀〉 =
1

Ω𝑒
∫ 𝜀(𝑥)𝑑Ω

Ω

 Equation 2.52 

 

 〈𝜎〉 =
1

Ω𝑒
∫ 𝜎(𝑥)𝑑Ω

Ω

 Equation 2.53 

 

2.5.1 Strain and stress concentration tensors 

 

Direct relation of the microscopic field variable and the macroscopic slow variables can be expressed 

through Equation 2.54.  These equations are generally known as strain and stress concentration 

tensors, first introduced by Hill (1963) as influence tensors. Equation 2.54 and Equation 2.55 can be 

considered to express a localization relation. 
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 𝜀(𝑥) = 𝒜(𝑥)〈𝜀〉  𝑜𝑟  𝜀𝑖𝑗(𝑥) = 𝒜𝑖𝑗𝑘𝑙(𝑥)〈𝜀𝑘𝑙〉  𝑓𝑜𝑟  𝑢𝑖 = 𝜀𝑖𝑗𝑥𝑗 Equation 2.54 

 

 𝜎(𝑥) = ℬ(𝑥)〈𝜎〉   𝑜𝑟  𝜎𝑖𝑗(𝑥) = ℬ𝑖𝑗𝑘𝑙(𝑥)〈𝜎𝑘𝑙〉  𝑓𝑜𝑟  𝑡𝑖 = 𝜎𝑖𝑗𝑛𝑗 Equation 2.55 

 

𝑢𝑖 = 𝜀𝑖𝑗𝑥𝑗 defines kinematic linear-Dirichlet boundary conditions, while  𝑡𝑖 = 𝜎𝑖𝑗𝑛𝑗  defines uniform 

traction-Neumann boundary conditions. A direct interpretation of Equation 2.54 and Equation 2.55 

can lead to the conclusion that strain and stress concentration tensors are defined as the ratio 

between the local variable over the average value of stress and strain.  

As reported by Hill, concentration tensors depend on the concentrations and phase modulus, while 

generally they exhibit a degree of asymmetry. The complete solution of the boundary value problem 

can be obtained through the fourth-order influence-concentration tensor, by considering 

information of the microstructure for the entire volume. In the case of Dirichlet, the boundary 

conditions of effective stiffness can be expressed as a function of the concentration tensor, in 

symbolic notation, as stated in Equation 2.56, while for Neumann boundary conditions, the 

expression can be observed in Equation 2.57.  

 𝐶𝑒𝑓𝑓 = 〈𝐶:𝒜〉 Equation 2.56 

 

 𝐶𝑒𝑓𝑓 = 〈𝐶−1: ℬ〉−1 Equation 2.57 

 

Expression in an explicit representation of the influence tensor 𝒜𝑖𝑗𝑘𝑙 , ℬ𝑖𝑗𝑘𝑙  has always been a crucial 

and not trivial problem in the field of micromechanics. Due mainly to the random nature of the 

microstructure of short fibre composites and because of the high complexity of phase arrangement, 

exact explicit expressions cannot be given for strain or stress concentration tensors or the strain and 

stress micro-field.  

Due to this reason, approximations of concentration tensors or micro-field variables can be 

approached through various assumptions. Those assumptions must not disturb the satisfaction of 

boundary conditions and in most cases are based on what is known as the “ergotic hypothesis”, 

which claims that for sufficiently large area-volumes, stochastically selected from a sample under 

study, exhibit a statistically equal phase arrangement and give raise to the averaged material 

properties.  

It can be understood from Equation 2.56 and Equation 2.57 that calculation of effective stiffness 

properties can be seen as a weighted average approach on the microscopic elastic properties 𝐶(𝑥), 

in which the concentration tensor plays a role of weight average function. However, for real 

microstructures, the exact expression of microscopic elastic properties is not known and the 

corresponding influence tensor is neither known a priori. As a result, proper approximations have to 

be made with respect to information about the microstructure and the concentration tensor. 
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  Through the following micromechanical models, presented in this chapter, various approaches to 

the determination of concentration tensors will be discussed. Considering a microstructure with 

discrete phases and exhibiting elastic properties, Equation 2.56 and Equation 2.57 may be expressed 

as summations shown in Equation 2.58 and Equation 2.59. Through the following formulation of 

effective stiffness, the subscript indicated the boundary conditions applied. 𝐷 denotes Dirichled 

boundary conditions while 𝑁 denotes Neumann boundary conditions. 𝑓𝑘 represents the volume of 

phase 𝑘. 𝒜𝑘 and 𝐵𝑘  are constant influence tensors which may be interpreted as the expression of 

the dependence of the average stress/strain field on the prescribed macroscopic analogues.  

 

 𝐶𝐷
𝑒𝑓𝑓

=∑𝑓𝑘𝐶𝑘:𝒜𝑘

𝑛

𝑘=1

 Equation 2.58 

 

 𝐶𝑁
𝑒𝑓𝑓

= (∑𝑓𝑘𝐶𝑘
−1: 𝐵𝑘

𝑛

𝑘=1

)

−1

 Equation 2.59 

 

The above summation for the case of a two phase material can be expressed as in Equation 2.60 and 

Equation 2.61. Subscript 𝐼 and 𝑀 indicate properties for inhomogeneity and matrix respectively for 

the two distinct phases in the material. 

 𝐶𝐷
𝑒𝑓𝑓

= 𝐶𝑀 + 𝑉𝐼(𝐶𝐼 − 𝐶𝑀):𝒜𝐼 Equation 2.60 

 

 𝐶𝑁
𝑒𝑓𝑓

= (𝐶𝑀
−1 + 𝑉𝐼(𝐶𝐼

−1 − 𝐶𝑀
−1):ℬ𝐼)

−1 Equation 2.61 

 

 

2.5.2 Voigt approximation 

 

The Voigt approximation (1889) is a very basic approximation and in general defines the upper limit 

of the reinforcing phenomenon for a given combination of materials. The Voigt model represents an 

expression of the minimum potential energy of a uniform strain field. The basic assumption for the 

Voigt model is expressed through Equation 2.62 and it states that both phases in the media 

experience the same strain. According to Equation 2.62, the uniform strain assumption leads to a 

unit concentration tensor, Equation 2.63. Effective stiffness according to the Voigt model is 

predicted as shown in Equation 2.64.  
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 𝜀(𝑥) = 〈𝜀〉 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 Equation 2.62 

 

 𝒜𝑖𝑗𝑘𝑙 =  𝑰 Equation 2.63 

 

 𝐶𝑉𝑜𝑖𝑔𝑡
𝑒𝑓𝑓

=∑𝑉𝑖𝐶𝑖

1

𝑖

= 𝑉𝑓𝐶𝑓 + 𝑉𝑚𝐶𝑚 = 𝐶𝑚 + 𝑉𝑓(𝐶𝐼 − 𝐶𝑚):𝒜𝑓 𝑓𝑜𝑟 𝒜𝑓 = 𝐼 Equation 2.64 

 

Predictions of the Voigt model may deviate from experimental results for a short fibre composite, 

mainly because of the non-uniform strain field developed in the material due to the existence of 

inhomogeneity and also from the simplicity of the model which does not consider short fibres or any 

fibre’s orientation.  

2.5.3 Reuss approximation 

 

Similarly to the Voigt approximation, for the Reuss approximation a uniform stress field is assumed, 

Equation 2.65.  

 

 𝜎(𝑥) = 〈𝜎〉 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 Equation 2.65 

 

The uniform stress assumption leads to the conclusion that the stress concentration tensor must be 

unit, Equation 2.66. The Reuss model indicates the lower possible elastic properties between two 

constituents. Effective stiffness according to the Reuss model is shown in Equation 2.67.  

 

 ℬ𝑖𝑗𝑘𝑙 =  𝑰 Equation 2.66 

 

 

 
1

𝐶𝑅𝑒𝑢𝑠𝑠
𝑒𝑓𝑓

=∑(𝑉𝑖𝐶𝑖
−1)

−1
1

𝑖

= (𝐶𝑚
−1 + 𝑉𝑓(𝐶𝑓

−1 − 𝐶𝑚
−1):ℬ𝐼)

−1
 𝑓𝑜𝑟 ℬ𝑓 = 𝐼 Equation 2.67 

 

 

As in the previous case of the Voigt model, in reality, for heterogeneous material the stress field is 

not uniform and this is the main reason for the underestimated elastic properties of the model. For 
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both approximations, the Voigt and Reuss predictions regard homogeneous effective stiffness. For 

unidirectional arrangements of short, long and continuous fibres, the Reuss model can be used to 

estimate transverse effective stiffness. In that case, predictions will be closer to reality compared 

with the longitudinal estimations due to the fact that the more compliant phase will carry the load. A 

schematic representation of the Voigt and Reuss model can be seen in Figure 2.16. As indicated in 

the Figure 2.16, both models consider a material with two distinct phases and no information about 

the microstructure or inhomogeneity apart from the volume fraction. 

 

 

 

 

 

 

 

 

A combination of both models indicates the broad bounds of a material. As shown in Equation 2.68, 

the Voigt approximation is the upper bound while the Reuss approximation is the lower bound.  

 ∑(𝑉𝑖𝐶𝑖
−1)

−1
1

𝑖

≤ 𝐶𝑒𝑓𝑓 ≤∑𝑉𝑖𝐶𝑖

1

𝑖

 Equation 2.68 

Even if Voigt and Reuss bounds are very simple to use and offer a clear range for design, they have 

the major disadvantage that they don’t include any information about the microstructure of the 

composite material, except for the volume content of each phase.  

2.5.4 Shear lag model 

The Shear lag model was a pioneering approach on micromechanics elasticity developed by Cox in 

1951 and released in an article on the elasticity and strength of paper and other fibrous materials.  

The main assumption of the model is that the normal stress field developed in the fibre occurs due 

to shear stresses, transferred to fibres through the interphase region from matrix and fibre. A 

schematic illustration of the shear lag model can be seen in Figure 2.17.  

 

 

 

 

 

Figure 2.16 Schematic representation of the 
Voigt and Reuss models 

Figure 2.17 Schematic representation of the Shear-
Lag model. Adapted from D. Hull 
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The main assumption of the shear lag model implies that shear stresses at any distance 𝑟 in the 

matrix must be equal to the shear stress at the fibre surface in a distance 𝑟𝑓 and that the shear 

stresses at the fibre surface 𝜏𝑓 must be equal to the normal stresses 𝜎𝑓 in the fibre. Equality of shear 

stresses between the matrix and fibre surface can be expressed through Equation 2.69 and Equation 

2.70 while equality between normal stresses in the fibre and shear stresses on the fibre’s surface can 

be shown in Equation 2.71. 

 

 2𝜋𝑟𝜏𝑚 = 2𝜋𝑟𝑓𝜏𝑓 Equation 2.69 

 

 
𝜏𝑚
𝜏𝑓
=
𝑟𝑓

𝑟
 Equation 2.70 

 

 
𝑑𝜎𝑥
𝑑𝑥

=
−2𝜏𝑓

𝑟𝑓
 Equation 2.71 

 

 For any two given phases, material shear strain can be expressed as shown in Equation 2.72. 

 

 𝛾 =
𝜏𝑚
𝐺𝑚

=
𝑑𝑢𝑟
𝑑𝑟

 Equation 2.72 

 

 While be rearranging the terms we can conclude at Equation 2.73. Combining both expressions for 

shear stresses and integrating with general limits in the region between 𝑟 and 𝑅  Equation 2.74, an 

expression of the interphase shear stress can be derived, Equation 2.75 . 

 𝛾 =
𝜏𝑚
𝐺𝑚

=
𝜏𝑓𝑟𝑓

𝐺𝑚𝑟
=
𝑑𝑢𝑟
𝑑𝑟

⇒
𝜏𝑓𝑟𝑓𝑑𝑟

𝐺𝑚𝑟
= 𝑑𝑢𝑟 Equation 2.73 

 

 ∫ 𝑑𝑢𝑟

𝑢𝑅

𝑢𝑟𝑓

=
𝜏𝑓𝑟𝑓

𝐺𝑚
∫
𝑑𝑟

𝑟

𝑅

𝑟𝑓

⇒ [𝑢𝑅 − 𝑢𝑟𝑓] =
𝜏𝑓𝑟𝑓

𝐺𝑚
ln (

𝑅

𝑟𝑓
) Equation 2.74 
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 𝜏𝑓 =
(𝑢𝑅 − 𝑢𝑟𝑓)𝐺𝑚

𝑟𝑓 ln (
𝑅
𝑟𝑓
)

 Equation 2.75 

 

On the above equation 𝑅 represents the mean distance from centre to centre of fibres and depends 

on the fibres’ package arrangement. As a concequence, distance 𝑅 can be defined as a function of 

volume fraction for a given spatial arrangement in a composite. The combination of equations leads 

to Equation 2.76, from which the ratio between 𝑟𝑓 and 𝑅 can be replaced with a volume fraction 

expression. The value of 1 𝑉𝑓 ⁄ corresponds to a hexagonal arrangement of fibres.  

 

 
𝑑𝜎𝑓

𝑑𝑥
=
−2(𝑢𝑅 − 𝑢𝑟𝑓)𝐺𝑚

𝑟𝑓
2 1
2
ln (

1
𝑉𝑓
)

 Equation 2.76 

 

From the above equation, values for the displacement 𝑢𝑅 𝑎𝑛𝑑 𝑢𝑟𝑓 are not known, but expressions of 

their derivatives can be defined. The deferential expression of 𝑢𝑟𝑓, as shown in Equation 2.77 , is 

equal to the normal strain in the fibre domain, while the differentiation of 𝑢𝑅 expressed in Equation 

2.78, defines the far field normal strain. 

 

 
𝑑𝑢𝑟𝑓
𝑑𝑥

= 𝜀𝑓 =
𝜎𝑓

𝐶𝑓
 Equation 2.77 

 

 

 
𝑑𝑢𝑅
𝑑𝑥

= 𝜀𝑐  Equation 2.78 

 

With respect to the continuity of displacement at the interphase between fibre and matrix, and the 

assumption that displacement at the interphase and mean displacement in the fibre are equal, a 

differentiation of Equation 2.76 may be expressed as in Equation 2.79. 

 

 
𝑑2𝜎𝑓(𝑥)

𝑑𝑥2
= −

2𝐺𝑚

𝑟𝑓
2 ln (𝑅 𝑟𝑓⁄ )

[𝜀𝑐 −
𝜎𝑓(𝑥)

𝐶𝑓
] Equation 2.79 
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The above equation consists of a second order linear differential equation. Solution of the 

differential equation can be obtained by implying the proper boundary conditions. An expression of 

the normal and shear stress distribution along the fibre is shown in Equation 2.80.  𝐵 𝑎𝑛𝑑 𝐷 are 

constants which can be evaluated from the boundary conditions. 

 𝜎𝑓(𝑥) = 𝐶𝑓𝜀𝑐 + 𝐵 sinh(𝜂𝑥) + 𝐷 cosh(𝜂𝑥) Equation 2.80 

 

Parameter 𝜂 is a characteristic parameter of the shear lag model and can be defined through 

Equation 2.81. According to the solution, the distribution of normal stresses in a fibre is equal to 

zero at both ends and has a maximum at the centre of the fibre. The opposite trend is predicted for 

the distribution of shear stresses. Shear stresses have maximum values at the ends of the fibre while 

they are equal to zero for the centre of the fibre. Effective stiffness properties can be described 

according to the shear lag model for a unidirectional short fibre composite as a modification of the 

Voigt model. Equation 2.82 shows predictions for the shear lag model.  

 

 𝜂 = √
2𝐺𝑚

𝑟𝑓
2𝐶𝑓 ln (

𝑅
𝑟𝑓⁄ )

 Equation 2.81 

 

 𝐶𝑆𝐿
𝑒𝑓𝑓

= 𝜆𝑉𝑓𝐶𝑓 + 𝑉𝑚𝐶𝑚 Equation 2.82 

 

Parameter 𝜆 is the parameter which considers all the necessary information derived from the 

aforementioned micromechanical analysis. As   observed through Equation 2.83 𝜆 is a function of the 

parameter 𝜂 and the fibre length, while according to Equation 2.81, the 𝜂 parameter includes 

information about the microstructure arrangement and elastic properties of the constituents.  

 𝜆 = 1 −
tanh(𝜂𝑙/2)

𝜂𝑙/2
 Equation 2.83 

 

The Shear lag model is able to give relatively accurate predictions for the effective elastic properties 

of a heterogeneous media, but further than that, it can be used to evaluate the contribution of fibre 

length or spatial arrangement on the elastic properties or strength of composite materials. A further 

modification of the shear lag model was developed from Krenchel (1964), by adding an extra factor 

in order to account for the fibre’s orientation. 
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2.5.5 Eshelby inclusion approximation 

 

Sir Douglas Eshelby (1916-1981) was a British engineer with vital work and publications in the field of 

micromechanics. Eshelby’s work is extensively used in various formulations of micro-mechanical 

problems. He published the main core of his work in 1957 on the proceeding of a conference from 

the Royal Aeronautical Society under the generic title: the determination of elastic field of an 

ellipsoidal inclusion and related problems. With this publication Sir Eshelby approaches the 

transformed inclusion problem, in order to derive a solution for the stress, strain and displacement 

fields for the inclusion and the matrix.  

Originally, Eshelby’s approach had nothing to do with composite materials. It was broadly used for 

phase-transformed metal alloys. The problem that Eshelby attempted to solve can be stated as the 

calculation of the stress, strain and displacement field of an inclusion with volume 𝑉𝐼 and surface 𝑆𝐼 

,embedded in a linear elastic body with volume 𝑉𝐵 and surface 𝑆𝐵 when 𝑉𝐼 undergoes a permanent 

deformation Figure 2.18.  

Eshelby shows in a very elegant manner that this problem can be solved in four discrete virtual 

steps, by the superposition principle of linear elasticity and using the Green function. Eshelby’s 

solution is valid for an unbounded domain which contains an inclusion with an elliptical shape. A 

description of the virtual four step experiment follows with an explanation on the equilibrium 

conditions for each step. Let us assume an inclusion with volume  𝑉𝐼 , as shown in Figure 2.18,which 

is surrounded by a matrix material.  

 

 

 

 

 

 

 

 

 

 

 

The whole body experiences no far field boundary conditions. The first step of the virtual experiment 

implies the removal of the inclusion from the surrounding domain, as shown in Figure 2.19. The 

stress and strain field in the inclusion and matrix are stated in Table 2-4.  

Figure 2.18 A single elliptical inclusion 
embedded in a matrix domain. 
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Once the inclusion is not surrounded by the matrix phase, it can expand due to the new degree of 

freedom which it experiences. The second step involves the application of a surface traction on the 

boundaries of the inclusion with the purpose of forcing the inclusion to return to its original shape as 

can be seen in Figure 2.20. The state of stress and strain fields for the inclusion and the matrix during 

the second step is stated through Table 2-4.  

 

 

 

 

 

 

The third step of the virtual experiment regards the return of the inclusion into its original position 

within the matrix as can be seen in Figure 2.21. The inclusion can fit into the matrix again because 

during the second step the applied traction forces on the inclusion force it to return to its original 

shape. The strain and stress fields through the third step can be seen in Table 2-4. 

 

 

 

 

 

 

  

Figure 2.19 The first step involves the 
removal of the inclusion from the 

surrounding domain. 

Figure 2.20 The second step involves the application of 
a surface traction on the boundaries of the inclusion 

Figure 2.21 The third step of the virtual 
experiment regards the return of the 

inclusion into its original position within 
the matrix 
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The final step of the process, as shown in Figure 2.22, involves the removal of the applied traction 

and the application of an opposite and equivalent force acting on the surface of the inclusion. The 

stress and strain fields as a result of the last step can be seen in Table 2-4.  

 

 

 

 

 

 

 

 

 

 

 

Table 2-4. Stress, strain and displacement fields for the inclusion and the matrix according to 
Eshelby’s approach. 

 Matrix Inclusion 

Step 1   

Strain 𝜀𝑖𝑗 = 0 𝜀𝑖𝑗 = 𝜀𝑖𝑗
∗  

Stress 𝜎𝑖𝑗 = 0 𝜎𝑖𝑗 = 0 

Displacement 𝑢𝑖 = 0 𝑢𝑖 = 𝜀𝑖𝑗
∗ 𝑥𝑗 

Step 2 

Strain 𝜀𝑖𝑗 = 0 𝜀𝑖𝑗 = 𝜀𝑖𝑗
𝑒 + 𝜀𝑖𝑗

∗ = 0 

Stress 𝜎𝑖𝑗 = 0 𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙 𝜀𝑖𝑗
𝑒 = −𝐶𝑖𝑗𝑘𝑙 𝜀𝑖𝑗

∗  

Displacement 𝑢𝑖 = 0 𝑢𝑖 = 0 

Step 3 

Strain 𝜀𝑖𝑗 = 0 𝜀𝑖𝑗 = 𝜀𝑖𝑗
𝑒 + 𝜀𝑖𝑗

∗ = 0 

Figure 2.22  The final step of the process 
involves the removal of the applied traction and 

the application of an opposite and equivalent 
force acting on the surface of the inclusion. 
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Stress 𝜎𝑖𝑗 = 0 𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙 𝜀𝑖𝑗
𝑒 = −𝐶𝑖𝑗𝑘𝑙 𝜀𝑖𝑗

∗  

Displacement 𝑢𝑖 = 0 𝑢𝑖 = 0 

Step 4 

Strain 𝜀𝑖𝑗 = 𝜀𝑖𝑗
𝑐  𝜀𝑖𝑗 = 𝜀𝑖𝑗

𝑐  

Stress 𝜎𝑖𝑗 = 𝜎𝑖𝑗
𝑐  𝜎𝑖𝑗 = 𝜎𝑖𝑗

𝑐 = 𝐶𝑖𝑗𝑘𝑙 (𝜀𝑘𝑙
𝑐 − 𝜀𝑘𝑙

∗ ) 

Displacement 𝑢𝑖 = 𝑢𝑖
𝑐 𝑢𝑖 = 𝑢𝑖

𝑐 

 

 

The above Table 2-4 properties denoted with the superscript "𝑐" denote the constrained field caused 

by the presence of inhomogeneity and properties denoted with the superscript "𝑒" denote the 

elastic strains of the inclusion which should cancel the eigen-strain. The displacement field on the 

existence of body force 𝐹 on surface 𝑆𝐵 can be expressed through the following integral, Equation 

2.84 

 𝑢𝑖
𝑐(𝑥) = ∫ 𝐹𝑗(𝑥́)𝐺𝑖𝑗(𝑥, 𝑥́)𝑑𝑆(𝑥́)

𝑆0

 Equation 2.84 

 

 where 𝐺𝑖𝑗  represents Green’s function. By making use of the divergence theorem, the integral may 

be expressed as in Equation 2.85 

 𝑢𝑖
𝑐(𝑥) = ∫ 𝜎𝑗𝑘𝑛𝑘(𝑥́)𝐺𝑖𝑗(𝑥, 𝑥́)𝑑𝑆(𝑥́)

𝑆0

 Equation 2.85 

 

 

The gradient of the displacement field can be expressed as the derivative of the above expression for 

displacement, shown in Equation 2.86.  

 𝑢𝑖,𝑗
𝑐 (𝑥) = ∫ 𝜎𝑙𝑘𝑛𝑘(𝑥́)𝐺𝑖𝑙,𝑗(𝑥, 𝑥́)𝑑𝑆(𝑥́)

𝑆0

 Equation 2.86 
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Respectively, expressions for strain and stress are presented in Equation 2.87 and Equation 2.88 and 

state: 

 𝜀𝑖𝑗
𝑐 (𝑥) =

1

2
(𝑢𝑖,𝑗 + 𝑢𝑖,𝑗) =

1

2
∫ 𝜎𝑙𝑘𝑛𝑘(𝑥́)[𝐺𝑖𝑙,𝑗(𝑥, 𝑥́) + 𝐺𝑗𝑙,𝑖(𝑥, 𝑥́)]𝑑𝑆(𝑥́)

𝑆0

 Equation 2.87 

 

 𝜎𝑖𝑗
𝑐 (𝑥) = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙

𝑐 (𝑥) Equation 2.88 

 

 𝜀𝑖𝑗
𝑐 = 𝕊𝑖𝑗𝑘𝑙𝜀𝑘𝑙

∗  
Equation 2.89 

 

 

 

Constrained strain within the inclusion can be expressed as a function of eigen-strains through a 

fourth order tensor as stated in Equation 2.89. This fourth order tensor is known as the Eshelby 

tensor, Equation 2.89. The Eshelby tensor exhibits what is known as minor symmetry which can be 

expressed as shown in Equation 2.90, but no major symmetry. An explicit expression of the Eshelby 

tensor is not achievable for all the cases of inclusions or inhomogeneity. Only for the case of 

isotropic material, Eshelby’s tensor has a close form representation and can be expressed as a 

function of elliptic integrals. 

 𝕊𝑖𝑗𝑘𝑙 = 𝕊𝑗𝑖𝑘𝑙 = 𝕊𝑗𝑖𝑙𝑘 Equation 2.90 

 

 𝕊𝑗𝑖𝑘𝑙 ≠ 𝕊𝑘𝑙𝑖𝑗 Equation 2.91 

 

The conclusion of Eshelby’s work is that for an inclusion with an elliptical shape which is surrounded 

by an infinite homogeneous matrix, Eshelby’s tensor has constant elements, as a consequence of the 

stress and strain field within the inclusion domain, considered as being uniform or constant. This is 

the most valuable result from Eshelby’s model.  

An ellipsoidal domain is defined as the domain where 𝛼, 𝛽, 𝛾 satisfy Equation 2.92. 

 (
𝑥

𝛼
)
2

+ (
𝑦

𝛽
)
2

+ (
𝑧

𝛾
)
2

≤ 1 Equation 2.92 

 

where, 𝛼, 𝛽, 𝛾 are the three axes of the ellipses. For an isotropic medium closed analytical form of 

Eshelby’s tensor for an elliptical inclusion can be calculated through elliptical integrals. For the 
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general case of spherical inclusion (𝛼 = 𝛽 = 𝛾) Eshelby’s tensor takes the following form Equation 

2.93: 

 𝕊𝑖𝑗𝑘𝑙 =
5𝜈 − 1

15(1 − 𝜈)
𝛿𝑖𝑗𝛿𝑘𝑙 +

4 − 5𝜈

15(1 − 𝜈)
(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘) Equation 2.93 

 

where 𝛿𝑖𝑗  is Kronecker delta which obeys the behaviour stated in Equation 2.94. 𝜈 represents the 

Poisson ratio of the matrix.  

 𝛿𝑖𝑗 = {
0  𝑖 ≠ 𝑗
1  𝑖 = 𝑗

 Equation 2.94 

 

General expressions of Eshelby’s tensor for elliptical inclusions are given in Appendix 𝐼. In the 

general case of elliptical inclusions where (𝛼 > 𝛽 > 𝛾) Eshelby’s tensor takes the following values, 

Equation 2.95. Solution for the 𝐼 elliptical integrals can be found in Appendix  . 

 

 𝕊1111 =
3

8𝜋(1 − 𝜈)
𝛼2𝐼11 +

1 − 2𝜈

8𝜋(1 − 𝜈)
𝐼1 Equation 2.95 

 

 
𝕊1122 =

1

8𝜋(1 − 𝜈)
𝛽2𝐼12 +

1 − 2𝜈

8𝜋(1 − 𝜈)
𝐼1  

 𝕊1133 =
1

8𝜋(1 − 𝜈)
𝛾2𝐼13 +

1 − 2𝜈

8𝜋(1 − 𝜈)
𝐼1  

 𝕊1212 =
𝛼2 + 𝛽2

16𝜋(1 − 𝜈)
𝐼12 +

1 − 2𝜈

16𝜋(1 − 𝜈)
(𝐼1 + 𝐼2)  

 𝕊1112 = 𝕊1223 = 𝕊1232 = 0  

 

2.5.6 Eshelby’s approach to inhomogeneity 

 

The previous calculation regards the situation of an inclusion embedded in an infinite matrix. 

Inclusion is defined as a domain in the matrix with the same elastic properties as the matrix. In the 

case of inhomogeneity the elastic properties are different from the matrix. Effective elastic 

properties for inhomogeneity can be approached through a technique called the Equivalent 

Inclusion Method. EIM implies that the inhomogeneity which has different elastic properties from 

the matrix and no eigenstrains will be replaced by a homogeneous inclusion which carries the 

appropriate equivalent eigenstrains in order to represent the inhomogeneity. The value of the 

equivalent eigenstrain must ensure that both inhomogeneous inclusion and the equivalent 

homogeneous inclusion experience the same stress field and constrained strain.  As stated by 
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Eshelby (1957), the stress disturbance in an applied stress due to the presence of an inhomogeneity 

can be simulated by an eigenstress caused by an inclusion when the eigenstrain is chosen properly. 

Figure 2.23 shows a schematic representation of the equivalent inclusion method.  

 

 

 

 

 

The stress field in the inhomogeneous inclusion can be expressed as in Equation 2.96 

 𝜎𝐼 = 𝐶𝐼(𝜀𝑐 − 𝜀𝑡) Equation 2.96 

 

while the total amount of strain fields inside the inhomogeneity can be expressed as Equation 2.97: 

 𝜀𝐼 = 𝜀𝑐 − 𝜀𝑡 Equation 2.97 

 

The analogous stress field and total strain for the equivalent inclusion can be expressed as Equation 

2.98 and Equation 2.99: 

 𝜎𝑚 = 𝐶𝑚(𝜀𝑐 − 𝜀𝜏) Equation 2.98 

 

 𝜀𝑚 = 𝜀𝑐 − 𝜀𝜏 Equation 2.99 

 

As mentioned, the stress field in both cases inside the inclusion must be the same. This can be 

expressed through Equation 2.100 in which the stress field is presented through stiffness and strain 

fields. By implementing Eshelby’s tensor (Equation 2.89) Equation 2.100 takes the following form. 

 𝜎𝐼 = 𝐶𝐼[𝕊𝜀𝜏 − 𝜀𝑡] = 𝐶𝑚[𝕊 − 𝑰]𝜀𝜏 Equation 2.100 

𝐶𝐼(𝜀𝑐 − 𝜀𝑡) = 𝐶𝑚(𝜀𝑐 − 𝜀𝜏) 

Under an applied far field strain 𝜀𝑎  strain in the inhomogeneity can be expressed as in Equation 

2.101 

 𝜀𝑖 = 𝜀𝑎 + 𝜀𝑐 = [𝑰 + 𝕊𝐶𝑚
−1(𝐶𝐼 − 𝐶𝑚)]

−1𝜀𝑎 Equation 2.101 

 

Figure 2.23 A schematic representation of the EIM 
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From the previous expression it can be observed that the strain concentration tensor for the dilute 

case as a function of Eshelby’s tensor can be given as in Equation 2.102. Similarly, the stress 

concentration tensor for the dilute case is defined as in Equation 2.103. 

 𝒜𝑑𝑖𝑙 = [𝐼 + 𝕊𝐶𝑚
−1(𝐶𝐼 − 𝐶𝑚)]

−1 Equation 2.102 

 

 ℬ𝑑𝑖𝑙 = [𝐼 + 𝐶𝑚(𝐼 − 𝕊)(𝐶𝐼 − 𝐶𝑚)]
−1 Equation 2.103 

 

 

Effective stiffness for the dilute concentration tensor can be calculated according to Equation 2.104 

 𝐶𝑑𝑖𝑙
𝑒𝑓𝑓

= 𝐶𝑚 + 𝑉𝐼(𝐶𝐼 − 𝐶𝑚):𝒜𝑑𝑖𝑙  Equation 2.104 

 

 

 

 

   

2.5.7 Self-consistent scheme 

 

The self-consistent method was developed by Hill (1965) and implies the concept of an 

inhomogeneity embedded in the effective medium. The problem can be summarised as the 

calculation of effective properties considering a single inhomogeneity embedded in an unbounded 

domain. The self-consistent model is an implicit problem which needs an iterative numerical 

procedure in order to be solved. Schematic representation of the model can be seen in Figure 2.24. 

 

 

 

 

 

 

 

 

Figure 2.24 Schematic representation 
of the SCS 
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 Effective property predictions of the self-consistent method are based on Equation 2.105 with a 

modification of the strain concentration tensor. According to the dilute model, strain concentration 

tensor can be expressed as in Equation 2.105. 

 𝒜𝑑𝑖𝑙 = [𝐼 + 𝕊𝑆𝑚(𝐶𝑓 − 𝐶𝑚)]
−1

 Equation 2.105 

 

 𝒜𝑆𝐶 = [𝐼 + 𝕊𝑆𝑚(𝐶𝑓 − 𝐶𝑆𝐶)]
−1
, 𝕊 = 𝑓(𝐶𝑆𝐶) Equation 2.106 

 

The modification for the self-consistent method regards all the parameters in the strain 

concentration tensor which represent the matrix. For the self-consistent scheme, those parameters 

represent the effective medium and are unknowns. Equation 2.106 shows the modification of the 

strain concentration tensor for the self-consistent approach. A flow chart of the iterative procedure 

needed to derive the effective material properties can be seen in Figure 2.25.  

 

 

 

 

 

 

 

 

 

 

 

 

 

2.5.8 Mori Tanaka scheme 

 

Regarding the aforementioned models the assumption of a dilute model was used. The 

approximation of the dilute model implies that in the close vicinity of each inhomogeneity, the far 

field stresses or strains are dominant. As reported in the chapter for modelling strategies, the Mori-

Tanaka scheme consists of an effective field approximation. The major contribution of the Mori-

Figure 2.25 Flow chart of the SCS 
solver 
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Tanaka scheme is the ability of the model to account for interaction between inhomogeneities by 

superimposing an appropriate average matrix stress on the far field stress. Calculation of the 

average matrix stress is based on stresses acting on an inhomogeneity developed due to the 

presence of other inhomogeneities.  

According to the M-T model, each inhomogeneity faces a loading condition which depends on the 

existence of other inhomogeneities introduced into the calculations via the average matrix stress. 

Calculations of the effective properties of a single inhomogeneity embedded in an infinite matrix, 

according to the M-T model, coincide with predictions from the dilute model. The strain 

concentration tensor for the M-T scheme is presented in Equation 2.107 and effective properties can 

be calculated with Equation 2.108. 

  𝒜𝑀𝑇 = [𝐼 + 𝑉𝑚𝕊𝑆𝑚(𝐶𝑓 − 𝐶𝑆𝐶)]
−1

 Equation 2.107 

 

 

 𝐶𝑀𝑇
𝑒𝑓𝑓

= 𝐶𝑚 + 𝑉𝐼(𝐶𝐼 − 𝐶𝑚):𝒜𝑀𝑇 Equation 2.108 

 

 

2.5.9 Halpin-Tsai model 

 

The Halpin-Tsai model consists of a semi-empirical approach derived from a reduced Hermans 

solution. The HT model is widely used mainly due to its simple algebraic calculations and the ability 

to provide reliable predictions. HT equations in their original form have the ability to predict 

effective properties of a unidirectional short fibre composite. Originally, the foundation of the model 

began from Herman and Hill based on a generalised self-consistent model. Equation 2.109 shows the 

basic form of the Halpin-Tsai model.  

 
𝑃

𝑃𝑚
=
1 + 𝜁𝜂𝑉𝑓

1 − 𝜂𝑉𝑓
 Equation 2.109 

 

where 𝜂 is a characteristic model’s parameter which depends on the degree of inhomogeneity and 

the shape of the reinforcing agent. Parameter 𝜂 is defined in Equation 2.110 while 𝜁 is a parameter 

which considers the shape efficiency of the second phase and has a different value depending on the 

effective property under consideration. 
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 𝜂 =

(
𝑃𝑓
𝑃𝑚
⁄ )− 1

(
𝑃𝑓
𝑃𝑚
⁄ )+ 𝜁

 Equation 2.110 

 

Where 𝑃𝑓 𝑎𝑛𝑑 𝑃𝑚 represent properties for the fibres and the matrix respectively as presented in 

Table 2-5. 

 

Table 2-5. Parameters of the Halpin-Tsai model. 

P 𝑃𝑓 𝑃𝑚 𝜁 Property 

𝐸11 𝐸𝑓 𝐸𝑚 2(ℒ/𝒹) Longitudinal modulus 

𝐸22 𝐸𝑓 𝐸𝑚 2 Transverse modulus 

𝐺12 𝐺𝑓 𝐺𝑚 1 Longitudinal shear modulus 

 

 Halpin and Kardor provided an in-depth analysis of HT equations, indicating that for extreme values 

of the 𝜁 parameter, the HT model asymptotically approaches the Voight or Reuss models depending 

on if the value of 𝜁 is very high or extremely low. Equation 2.111 and Equation 2.112 show the HT 

model for the case of 𝜁 → ∞ and for the case of 𝜁 → 0. 

 

 
𝜁 → 0,

𝑃

𝑃𝑚
=

1

1 − 𝜂𝑉𝑓
=

1

𝑃𝑚 (
𝑉𝑓
𝑃𝑓
+
1 − 𝑉𝑓
𝑃𝑚

)

⇒ 
1

𝑃
=
𝑉𝑓

𝑃𝑓
+
1 − 𝑉𝑓

𝑃𝑚
 

Equation 2.111 

 

 
𝜁 → ∞,

𝑃

𝑃𝑚
=
𝑀𝑅 + 𝜁 + 𝜁(𝑀𝑅 − 1)𝑉𝑓

𝑀𝑅 + 𝜁 − (𝑀𝑅 − 1)𝑉𝑓
=
∞

∞
=
lim
𝜁→∞

𝑑(𝑀𝑅 + 𝜁 + 𝜁(𝑀𝑅 − 1)𝑉𝑓)
𝑑𝜁

lim
𝜁→∞

𝑑(𝑀𝑅 + 𝜁 − (𝑀𝑅 − 1)𝑉𝑓)
𝑑𝜁

= 𝑃𝑓𝑉𝑓 + 𝑃𝑚(1 − 𝑉𝑓) 

Equation 
2.112 
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2.5.10 Analytical models comparison-Elastic properties 

 

All the micromechanical models presented are able to predict effective mechanical properties and 

are often used for material characterisation. The accuracy of each model is strongly dependant on 

the initial assumption of each model. Semi-empirical models such as the Halpin-Tsai equations seem 

to be widely used in literature due to their simplicity and the clear physical meaning they exhibit. 

Mean field approaches such as the Eshelby-based model, are considered to be models able to reflect 

the presence of inhomogeneity in the media through average quantities. The following Figure 2.26 

shows a comparison of predictions of longitudinal and transverse stiffness for aligned fibre 

orientation, while Figure 2.27 shows the prediction of effective stiffness in the case of randomly 

oriented fibres. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.26  A comparison of predictions of longitudinal and transverse stiffness for 
aligned fibres orientation. 

Figure 2.27  Prediction of effective 
stiffness in the case of randomly 

oriented fibres. 
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2.6 Thermal Conductivity  
 

In an analogous approach,the mechanical properties calculation of thermal conductivity can be 

achieved through analytical micromechanical modelling.  Thermal conductivity is a bulk property of a 

material analogous to elastic properties. It is one of the very weak properties of polymers and this is 

the main reason why polymers are widely used as thermal insulators. For that reason in the majority 

of polymer applications a reinforcing agent is used in order to increase or further decrease the 

thermal conductivity of the polymer.  

As in the case of mechanical properties, thermal properties are also affected by various 

micromechanical parameters of a composite structure as fibre orientation distribution or fibre 

length distribution. In order to evaluate the contribution of each one of those parameters in the 

thermal macroscopic response of a short fibre composite, first the simpler case of aligned fibres 

must be study.  

 

2.6.1 Halpin’s Model 

 

A widely used model for the prediction of longitudinal and transverse effective thermal conductivity 

is the Halpin’s model. The model is used in a similar way to calculating the effective stiffness. 

Equation 2.113 and Equation 2.114 show the two main equations for calculating longitudinal and 

transverse thermal conductivity with Halpin’s model. 

 𝐾1 =
1 + 2(𝐿/𝑑)𝜇1𝑉𝑓

1 − 𝜇1𝑉𝑓
𝐾𝑚 Equation 2.113 

 

 𝐾2 =
1 + 2𝜇2𝑉𝑓

1 − 𝜇2𝑉𝑓
𝐾𝑚 

Equation 2.114 

 

 

 

Micromechanical parameters such as the length and diameter of fibres or the degree of 

inhomogeneity are introduced into the main equations by parameters 𝜇1 and 𝜇2. Solutions for 𝜇1 

and 𝜇2 can be achieved through Equation 2.115 and Equation 2.116. 

 

 𝜇1 =
𝐾𝑓1 𝐾𝑚⁄ − 1

𝐾𝑓1 𝐾𝑚⁄ + 2𝐿/𝑑
 

Equation 2.115 
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 𝜇2 =
𝐾𝑓2 𝐾𝑚⁄ − 1

𝐾𝑓2 𝐾𝑚⁄ + 2
 

Equation 2.116 

 

 

 

 

2.6.2 Choy’s model 

 

(Choy, 1992) uses results from Halpin’s equations, for longitudinal and transverse thermal 

conductivity in order to calculate the thermal conductivity of a composite material in a given angle. 

Equation 2.117 and Equation 2.118 shows the calculation of effective thermal conductivity for a 

given orientation.  

 𝐾1
∙ = 𝐾1 cos 𝜃

2 + 𝐾2 sin 𝜃
2 

Equation 2.117 

 

 

 𝐾2
∙ = 𝐾1 sin𝜃

2 + 𝐾2 cos 𝜃
2 

Equation 2.118 

 

 

Considering all the possible orientation angles in a composite the final thermal conductivity can be 
defined through  

Equation 2.119 and Equation 2.120. 

 𝐾1
𝑐 =

1

2
(𝐾1 + 𝐾2) +

1

2
𝑉(𝐾1 − 𝐾2) 

 

Equation 2.119 

 

 

 𝐾2
𝑐 =

1

2
(𝐾1 + 𝐾2) +

1

2
𝑉(𝐾1 − 𝐾2) 

Equation 2.120 

 

 

where 𝑉 is the parameter which includes information about the orientation distribution and is given 

through Equation 2.121. 

 

 𝑉 =
𝜆2(1 + 𝑒−𝜆𝜋 2⁄ )

(𝜆2 + 4)(1 − 𝑒−𝜆𝜋 2⁄ )
 

Equation 2.121 
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2.6.3 Nielsen’s model 

 

Nielsen’s model is a similar approach to Halpin’s equations, however Nielsen’s model includes a 

parameter which accounts for the packing arrangement through the maximum axhivableacheivable 

volume fraction. Longitudinal and transverse thermal conductivity of aligned composite can be 

predicted according to Nielsen’s model through Equation 2.122 and Equation 2.123 respectively. 

 

 𝐾1 =
1 + 2(𝐿/𝑑)𝜉1𝑉𝑓

1 − 𝜉1𝜓𝑉𝑓
𝐾𝑚 

Equation 2.122 

 

 

 

 𝐾2 =
1 + 0.5𝜉2𝑉𝑓

1 − 𝜉2𝜓𝑉𝑓
𝐾𝑚 

Equation 2.123 

 

 

For the above equations parameters 𝜉1 ,𝜉2 and 𝜓 take values resulting from Equation 2.124, 

Equation 2.125 and Equation 2.126. 

 𝜉1 =
𝐾𝑓1 𝐾𝑚 − 1⁄

𝐾𝑓1 𝐾𝑚 + 2𝐿/𝑑⁄
 

Equation 2.124 

 

 

 

 𝜉2 =
𝐾𝑓2 𝐾𝑚 − 1⁄

𝐾𝑓2 𝐾𝑚 + 0.5⁄
 

Equation 2.125 

 

 

 

 𝜓 = 1 + (
1 − 𝑉𝑓(𝑚𝑎𝑥)

𝑉𝑓(𝑚𝑎𝑥)
2 )𝑉𝑓 

 

Equation 2.126 

 

The value of the parameter 𝜓 is strongly dependant on the maximum achievable volume fraction 

which is strongly affected by the dispersion state and the shape of the fillers. Nielsen’s model and 

Halpin’s equations give very similar results on the predictions of longitudinal thermal conductivity 

and a small difference on the transverse thermal conductivity. 
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Figure 2.28 shows a comparison of the predictions of longitudinal and transverse thermal 

conductivity for aligned fibres and a prediction on thermal conductivity for randomly oriented and 

misaligned fibres of the aforementioned analytical models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.7 Linear Coefficient of Thermal Expansion 
 

The coefficient of thermal expansion is defined as the linear change in the dimensions of the body 

per unit of temperature. This change of the original dimension of the body is a result of temperature 

change in the body. Throughout the following section various theoretical models for CTE predictions 

will be discussed.  

 

2.7.1 Schapery’s model 

 

A model of calculating longitudinal and transverse CTE is Schapery’s model. Schapery based his 

approach on an iso-strain behaviour of fibres and matrix. Equation 2.127 and Equation 2.128 show 

the calculation of longitudinal and transverse CTE according to Schapery’s model. 

 

Figure 2.28 Comparison of analytical models predictions for 
Thermal conductivity 
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 𝛼1 =
𝐸𝑓𝛼𝑓𝑉𝑓 + 𝐸𝑚𝛼𝑚𝜈𝑚

𝐸𝑓𝑉𝑓 + 𝐸𝑚𝜈𝑚
 

Equation 2.127 

 

 

 

 𝛼2 = (1 + 𝜈𝑓)𝛼𝑓𝑉𝑓 + (1 + 𝜈𝑚)𝛼𝑚𝜈𝑚 − 𝛼1(𝜈𝑓𝑉𝑓 + 𝜈𝑚𝑉𝑚) 
Equation 2.128 

 

 

where in the above equation 𝜈𝑓 𝑎𝑛𝑑 𝜈𝑚 represents the Poisson ratio for fibres and matrix 

respectively, while 𝛼1 stands for the longitudinal CTE for the composite using Equation 2.127.  

 

2.7.2 Shear Lag model 

 

The second model for predictions of coefficient of thermal expansion has also a mechanics of 

materials approach and uses the efficiency coefficient as the shear Lag model in order to evaluate 

the effect of short fibre composites. According to Cox the calculation of efficiency factors is based on 

Equation 2.81 and Equation 2.83, while the longitudinal coefficient of thermal expansion can be 

calculated through Equation 2.129. 

 

 𝛼1 =
𝜆𝐸𝑓𝛼𝑓𝑉𝑓 + 𝐸𝑚𝛼𝑚𝑉𝑚

𝜆𝐸𝑓𝑉𝑓 + 𝐸𝑚𝑉𝑚
 

 

Equation 2.129 

 

 

 

 

2.7.3 Halpin and Pagano’s model 

 

For the case of randomly oriented short fibre composite, Halpin and Pangano propose a model to 

calculate the overall coefficient of thermal expansion by considering the calculations of longitudinal 

and transverse thermal expansion from Schapery’s model. In the case of two dimensional spaces 

Halpin and Pagano’s model takes the form shown in Equation 2.130. 

 

 𝛼𝑐 =
𝛼1 + 𝛼2
2

+
(𝐸11 − 𝐸22)(𝛼1 − 𝛼2)

2[𝐸11 + (1 + 2𝜈12)𝐸22]
 

 

Equation 2.130 
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where 𝐸11 and 𝐸22 represents the elastic modulus of the composite predicted for aligned fibres 

Figure 2.29 shows a comparison of the predictions of longitudinal and transverse coefficient of 

thermal expansion for aligned fibres and a prediction of CTE for randomly oriented and misaligned 

fibres of the aforementioned analytical models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.8 Conclusions 
 

Throughout chapter 2, various aspects of the field of linear continuum solid mechanics were 

presented with emphasis on the micromechanical analytical modelling and the major parameters 

affecting the performance of SFRC. The concept of inclusion and inhomogeneity was presented and 

the major differences were pointed out, while definitions for homogeneous and inhomogeneous 

media were given with the assumption that follows each definition. The symmetry of materials was 

discussed and various degrees of anisotropy were presented. The effect of material symmetry on the 

fourth order stiffness tensor was shown and the necessary independent elastic constant for each 

degree of anisotropy was reported. The concept of a high performance short fibre composite 

material was discussed through the analysis of the major factors affecting the mechanical behaviour 

of SFRC. Emphasis was given to the role of the physical properties of the constituents, the 

characteristics of the new system of materials, the contribution of FOD, FLD and volume fraction and 

the characteristics of the interface between fibre and matrix. Those parameters were presented in 

Figure 2.29  Comparison of analytical predictions for the Coefficient of 
Thermal Expansion. 
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detail, and various theoretical approaches for calculating their influence on the overall effective 

properties through performance factors were shown. A general report of various modelling 

strategies followed by pointing out the differences between different modelling approaches, and 

reporting their advantages and disadvantages. The presented approaches consist of the mean field 

approach and the periodic micro-field approach. The chapter concludes with a study of various 

micromechanical models for mechanical, thermal and thermo-mechanical property characterisation. 

The chapter considers the very generic bounds of Voigt and Reuss, which are used as a generic 

guide, the shear lag approximation, Eshelby’s inclusion approach, the self-consistent scheme, the 

Mori-Tanaka scheme and the Halpin-Tsai equations. Each micromechanical model consists of a 

different approximation of the effective material properties. Assumption and calculation aspects 

were further discussed. Finally a comparison between the predictions of each model is presented. 

Analytical micromechanical models offer a direct answer to crucial initial design questions and 

material behaviour.  Limitation of the analytical approach lies in the assumptions of each model. 

Whether this is expressed as limitations on the reinforced shapes, or loading transfer assumptions 

between matrix and fibre, or limitations in the volume fraction or the degree of inhomogeneity, 

there is a gap between the behaviour of the microstructure under various loading conditions and the 

mathematical model describing this condition. Numerical modelling aims to fill this gap and describe 

the behaviour of the microstructure under various loading conditions by its ability to locally simulate 

the microstructure of the material and consider any mechanism of loading transfer between matrix 

and fibres. This study aims to contribute to the field of material characterisation through numerical 

study by providing solutions to the material’s physical properties based on computational models 

and compare them with analytical predictions. 
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3 Numerical modelling 
 

Compared with the previously reported analytical micromechanical models, numerical models use a 

more direct approach regarding the calculation of effective material properties. General numerical 

approaches for material characterisation have been reported in Chapter 2 under the title of 

modelling strategies. This specific modelling approach requires high computational performance and 

the implementation of a numerical method in order to simulate the material’s behaviour.  

The most commonly used and continually developed numerical method for characterisation of 

materials properties is the finite element analysis (FEA). The method was developed in 1960 and 

since then, it has followed the exponential growth of computational performance. Nowadays the 

method is commercially coded and offered to users through various FEA packages. Engineering 

characterisation through numerical modelling can be obtained once the representative structure of 

the material is created and subjected to loading or boundary conditions. Effective material 

properties can be obtained through a homogenisation process on the resultant stress and strain 

fields after the numerical analysis.   

The strong advantage offered by the numerical approach is that numerical modelling accounts for 

the contribution of each inhomogeneity on the macroscopic behaviour of the media, and 

calculations are based on a more realistic assumption regarding the microstructure. Furthermore, 

micromechanical parameters such as fibre length and fibre orientation are assumed to be a part of 

the microstructure and the interaction between those parameters is reflected in the calculated 

effective properties.  One of the most crucial problems in simulating the behaviour of a short fibre 

composite is the actual representation of the microstructure of the composite. For periodic 

structures like unidirectional continued fibre composites, representation of the microstructure is a 

more trivial problem due to the periodicity of the microstructure. For random short fibre 

composites, the structure does not follow any periodic arrangement. In contrast, the arrangement of 

the microstructure has a random nature mainly due to the manufacturing processes. In that case, 

representation of the microstructure becomes more challenging and the actual size of the 

representative structure is one of the major parameters within the numerical investigation. 

 

3.1 Packing problem 
 

  The problem that arises can be simply addressed as an arrangement of specific shape sub-domains 

in a bigger domain-container. The problem is known as the packing problem and it is a mathematical 

optimisation problem of packing objects in a container. The packing problem can be found in our 

daily lives especially within the merchant sector where everything needs to be packed into a closed 

volume. The question of an optimum packing arrangement or the maximum number of objects able 

to fill a closed volume is usually a part of each similar study.  

The packing problem is directly related to the problem of short fibre composite modelling because 

fibres have to be packed in an optimum way on a volume element, otherwise it will be very difficult 

to reach the desired volume fraction. In order to overcome this problem engineers and 
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programmers developed algorithms to obtain an optimum solution for the packing problem of 

placing a second phase material in a matrix domain. The framework under which a solution can be 

obtained will be discussed in the next sub-section, while the challenges of a packing algorithm and 

the main assumptions will be presented in the next paragraphs. 

Packing algorithms for short fibre composites were developed by various researchers. Approaches 

can be categorised as two dimensional and three dimensional representations. In general, three 

dimensional representations are more computationally expensive, however they represent the 

microstructure more accurately. For short fibre composites, fibres are represented as cylinders or 

ellipses for 3D and 2D respectively. The packing problem of SFRC is defined through placing cylinders 

or ellipses in a cubic or square domain by satisfying various criteria. Those criteria or restrictions 

ensure a closer representation of the macrostructure to the real structure of the material. 

 A basic criterion is the non-intersection between fibres, in addition to an optimum distance 

between fibres. In order to satisfy this criterion, the packing algorithm needs to calculate the 

distance between existing fibres and each new added fibre, and to reject fibres that do not satisfy 

the criterion. Each packing algorithm can be modified in order to fulfil the requirements of the 

developer. Various restrictions can be applied to control fibres orientation or fibre length or fibre 

behaviour in the bounds of the container. As a consequence, the more constrained parameters are 

introduced into the system, the higher the computational cost of the solution; however, this 

problem can be overcome by using high performance computers, or by implementing the 

appropriate assumptions in order to simplify the problem. Three dimensional ellipses and two 

dimensional elliptical shape representing fibres can be seen in Figure 3.1.   

 

 

 

 

 

 

 

 

 

Developed packing algorithms for short fibre composites include parameters which are seeded from 

random generators. Such parameters can be the space position for the centre of a fibre or the in-

plane orientation and the length of each fibre. Parameters like distance between fibres can be 

restricted but they still have a random nature because they are strongly dependant on the space 

coordinate distribution. Efficiency of the packing algorithm is affected by various factors. The most 

dominant is the actual structure of the algorithm provided by the designer, however in any case 

parameters like fibre content and fibre length strongly influence the efficiency of the packing 

Figure 3.1 Three dimensional ellipses and two 
dimensional elliptical shape representing fibres. 
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algorithm and denote limitations. The very basic structure of a packing algorithm can be seen in 

Figure 3.2.  

 

 

 

 

 

 

 

 

 

 

 

 

As observed in the basic flow chart of Figure 3.2, a packing algorithm needs to be seeded with some 

constant parameters and some random parameters. The combination of those parameters reflects 

the actual position of the inclusion, which then passes through an intersection criterion. Accepted 

data will be stored while data which is not accepted will be rejected. The microstructure of a short 

fibre composite in reality has a random nature due to the manufacturing processes. This can be seen 

in Figure 3.3, showing an SEM picture of short fibre composite exhibiting the random nature of fibre 

orientation for short fibre composite. 

 

 

 

 

 

 

 

 

 

Figure 3.2 A very basic structure of 
a packing algorithm 

Figure 3.3  SEM picture of short fibre composite 
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Fibre length is reduced through the manufacturing process and fibre orientation (in-plane and out of 

plane) deviates from the flow direction due to the shear stresses developed in the material during 

the manufacturing process. For an accurate representation those characteristics of the 

microstructure must be introduced into the calculations through the packing arrangement obtained 

by the packing algorithm. This will slightly modify the flow chart in Figure 3.2 by adding a few 

branches to cover fibre length control, fibre orientation control and more random parameters. This 

will also increase the computational cost for obtaining a solution. 

 In the case of a 2D representation of the microstructure, the effect of fibre length can be fully 

covered, while with regards to the fibre orientation, the out of plane orientation of fibres is not 

covered. As a consequence, effective properties seem to be slightly overestimated for the two 

dimensional representation. Taking into consideration that measurements of the out of plane angle 

for short fibre composites show small deviation (±15°) from the flow direction, the assumption of a 

2D plane stress or plane strain situation can be accepted as a less computationally expensive 

approach with accurate results.  

One of the major challenges of building a representative structure for SFRC through a packing 

algorithm is the ability to obtain this microstructure, in a reasonable time for high volume fraction 

samples. Various solutions have been proposed in the literature to overcome this problem. A 

method to overcome the problem of high volume fractions is to place fibres into the square in a 

hierarchical manner. Fibres with high AR or higher length than the average value are always placed 

in the container first. It will be more difficult if we try to place them in the remaining space once 

short fibres have already been placed and the desirable volume fraction will probably not be 

achieved. A different approach is to obtain a solution without modifying the placing manner, 

however once a solution is achieved for volume fraction less than the desired, a further shrinkage of 

the container domain is possible and has as a result the increase of the volume fraction due to the 

decrease of the denominator as volume fraction is defined in Equation 2.41. In the case of three 

dimensional simulations, the maximum achievable volume fraction is less compared to the two 

dimensional simulations. The maximum achievable volume fraction for three dimensional 

simulations can go up to 35% by making use of the fibre local bending technique in order to take 

advantage of the intersected fibres and increase the volume fraction. Again, it must be mentioned 

that from the numerical point of view, the maximum achievable volume fraction is not an absolute 

number because it is strongly dependant on parameters such as fibre length, fibre orientation and 

whether it is in a 2D or 3D representation. 

 

3.2 Representative Volume Element (RVE) 
 

Computational micromechanics for material characterisation can be implemented under the 

framework of Representative Volume Element (RVE). An RVE is a way of connecting or bridging meso 

to macro scale. RVE is considered to be an element volume that is representative of the whole 

material structure. RVE can be seen as a small virtual specimen large enough to be representative of 

the macroscopic structure. The existence of RVE for the elastic response of various materials has 
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been proofed for various cases, however for cases of brittle or quasi-brittle material, the existence of 

RVE for the elastic, hardening or softening region of composite material is the field of current 

research. 

3.2.1 Definition  

 

Definitions of RVE vary depending on the approaching perspective of the author, however most of 

the definitions converge in a common base which states that RVE must be large enough to contain 

the necessary information of the microstructure and must also have the smallest possible size. 

According to (Hill, 1963) an RVE can be defined if it satisfied two criteria. First, it must be structurally 

entirely typical of the whole mixture on average and second, a sufficient number of inclusions are 

necessary in order to ensure independency of the effective properties with the surface values of 

traction and displacement. With respect to the (Drugan, 1996) definition, an RVE is considered as 

valid if it is chosen to be sufficiently large in comparison with the microstructural size.  According to 

(Hashin, 1983), RVE can be representative if it is chosen to be large enough in order to include 

sufficient information about the microstructure; however it must be much smaller than the 

macroscopic body. Concluding the definition approaches for an RVE, the differences of an RVE with a 

unit cell (UC) must be addressed. A UC is defined as a realisation of the microstructure of a material. 

It may not be a representative of the material structure however it needs to include the information 

on the micro-structure of the material. On the other hand RVE is always a UC (in the sense that is a 

mimic of the micro-structure of the material) however an RVE is always a representative part of the 

material. The UC approach is more common for composite structures with periodic arrangements of 

fibres. 

 

3.2.2 Length scales  

 

 In the present study we consider the lowest length scale to be the micro-scale, while the larger scale 

is considered a macro-scale and also commonly related to ‘bulk’ engineering materials. Between the 

micro and macro scales, the meso-scale can be defined. For the RVE definition (Ostoja-Starzewski, 

1998) pointed out that statistical homogeneity and ergodicity of the material are necessary in order 

to determine an RVE and also that some scale 𝜆 of the material domain- sufficiently large in relation 

to the micro-scale 𝑑 in order to ensure the independence of boundary conditions. Figure 3.4 is a 

schematic representation of the aforementioned. 

 Most micromechanical models are based on the assumption that length scales are well defined and 

separated. This can be understood as the contribution of the micro-structure which is reflected in 

the macro-scale through volume averages.  More specifically, (Ostoja-Starzewski, 1998) reported 

that an RVE is clearly defined as a unit cell in a periodic microstructure, or in the case of random 

arrangements, as a volume with statistical homogeneity and ergodic properties which contains a 

very large number of inclusions.  

The ergodic hypothesis implies that the heterogeneous material is assumed to be statistically 

homogeneous. Statistical homogeneity is the property of the material which ensures that results 
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have to be independent of the point of observation on the macro-scale. Figure 3.4 shows three 

different lengths involved in a multi-scale approach. 𝜆 represents the length on the structure scale 

while 𝑑 represents the dimension of the defects and 𝜅 represents the characteristic length scale of 

the micro-structure. The meaning stated in the Ostaja-Starzewski definition can be partially 

expressed through Equation 3.1 that is also a condition that needs to be satisfied from the 

characteristic length scale in order for the material to be suitable for homogenisation.  

 

 𝜅 ≪ 𝑑 ≪ 𝜆 Equation 3.1 

 

 

 

   

 

 

 

 

 

 

3.2.3 On the existence of RVE 

 

By definition, once the RVE is validated for a specific combination of materials, this implies that the 

appropriate size of the volume can be found and that volume is able to represent a whole structure 

made out of the same material. Typical values for the size of RVE vary depending on the elastic 

properties of the constituents of the fibre content and on the aspect ratio of the reinforcing agent. 

Representative size of the developed UCs will be further discussed in the chapter 5.2.1. In the 

literature, various attempts were made in order to define an optimum size of the RVE. According to 

(Lemaitre, 1999,), for three dimensional RVE, size must be roughly 0.1mm for metallic structures, 

around 1mm for polymers, 10mm for wood and 100mm for concrete. Considering the Lemaitre 

proposition it is clear that as long as more anisotropic materials are considered, the volume element 

needs higher sizes in order to be considered representative.  

A different approach was proposed from (Van Mier, 2003). For concrete material they suggested 

that RVE size must be 3 to 5 or 7 to 8 times larger than the largest inclusion size. On the other hand, 

(Bazant, 2000) proposed a normalised equation for calculating the optimum size.  They propose 

Equation 3.2 to represent the size of the RVE.  

Figure 3.4  Three different lengths involved in a multi-scale 
approach. Adapted from Dietmar Gross 
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 𝑉 = 𝑙𝑛𝑑 
Equation 3.2 

 

 

where 𝑛𝑑 represents the number of spatial dimension, while 𝑙 represents the characteristic length of 

the material which is defined as 2.7-3.0 times the maximum inclusion size. It is a common method to 

connect the length of the inclusion with the total size of the RVE. 

The length of inclusions is a characteristic size of the micromechanical scale that can be connected 

with the characteristic size of the larger scale. However, as reported at the beginning of the 

paragraph, RVE size is not only dependant on the characteristic length of the microstructure, but 

also on the volume fraction and on the degree of inhomogeneity. A more accurate prediction of RVE 

size must include information about those parameters. A different approach for determining the 

existence of RVE is based on the numerical and statistical analysis of the resulting data. This process 

requires creating multiple realisations of the microstructure, at least five (this number is still under 

active research), and to subject them to far field loading conditions while recording the effective 

properties from the reaction of the loaded volume.  

The next step involves the calculation of mean values and variance of the calculated effective 

property for the developed realisations. The last step in defining the appropriate RVE size requires 

setting a desired precision for the estimation of effective properties. That precision will work as a 

criterion for choosing the appropriate size of the RVE. Scatter from the average value of the five 

samples under investigation is a measurement of the representativeness of the volume element. 

Further details for the criterion will be given in the next section. Apart from the combination of 

numerical and statistical analysis, in order to determine the existence and the size of RVE, an 

analytical approach can be also used.  

 The analytical approach implies the solution of an explicit non-local constitutive equation.  

Calculations include the average strain field which varies with the position.  The answer to the 

appropriate RVE size comes from the wave-length that has to be chosen in a way that the non-local 

term of the constitutive equation produces non-neglected corrections. It has to be mentioned that 

apart from numerical and analytical approaches in the validation and size determination of RVE, an 

experimental approach was also developed in order to answer the arising questions. Experimental 

approaches for validation and size determination is considered to be out of the scope of the current 

thesis and won’t be further discussed. 

 

3.3 Modelling SFRC 
 

As reported, in order to numerically simulate a short fibre composite, an accurate representation of 

the microstructure must be created. Also, in a way, the RVE must ensure the continuity of the 

material and the continuity of local fluctuations, or in other words,  ensure that the same response 

of the RVE can be found in any place of the material. This continuity condition is satisfied through 

the geometrical periodicity of the RVE. The term ‘geometric periodicity’ is used to describe how the 
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volume element is experiencing no wall effect. The wall effect is said to be the inability of inclusions 

to penetrate the boards of the square. A simple way of explaining the term geometric periodicity will 

be the ability of each inclusion once it exits the unit cell border to re-appear on exactly the opposite 

side. Realisations with geometric periodicity and realisations experiencing the wall effect can be 

seen in Figure 3.5.  

 

 

 

 

 

 

 

 

 

 

Geometric periodicity ensures that repetition of the same volume element in both directions will 

cause a continued structure which consists of the same volume element. Creation of the 

microstructure can be obtained through a solution of the packing problem. For this purpose, a 

packing algorithm was developed in order to create two dimensional arrangements for ellipsoidal 

objects packed in a square domain experiencing geometric periodicity. 

 

 

 

 

3.3.1 Implemented Algorithm 

 

 The first approach to developing the packing algorithm was based on the simple idea presented in 

Figure 3.6 through the flow chart.  

 

 

 

Figure 3.5 Unit cells structures of randomly distributed circular 
inclusions. The left unit cell has a defined wall effect while the unit 

cell on the right contains periodic boundaries.  
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The first developed algorithm for the purpose of this study was able to place circular objects on a 

square by controlling the distance from centre to centre. As observed in Figure 3.6, every new 

circular inclusion which entered the square was checked with all the existing inclusions in the square 

for intersection. The check was done with respect to the centre to centre distance. As in Figure 3.7, 

distance calculation was simplified as the application of Pythagoras’s theorem between two points.  

 

 

 

 

 

 

 

 

 

 

 

Longitudinal and transverse distances between two points were calculated and the hypotenuse was 

used as a distance criterion. The flow chart of the specific algorithm can be seen in Figure 3.8. 

Figure 3.6  Simple 
structure of a packing 

algorithm. 

Figure 3.7  Calculation of distance between 
inclusions was based on centre to centre distance 

calculation.  
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Geometric periodicity was applied not to every circular inclusion in the square, but only to those 

inclusions exiting the boundaries of the container-square. 

 

 

 

 

 

 This requires an extra control loop in order to manipulate only inclusions at the walls of the square. 

The algorithm was used only as an initial starting point and has the major disadvantage of only being 

efficient for circular inclusions, or for inclusions with very low aspect ratio 𝐴𝑅 ≤ 2.  Another 

disadvantage of the algorithm is that it can reach high volume fractions only for circular inclusions, 

derived mainly from the criteria used for intersection.  

It was shown that fibre simulation required an algorithm able to create and control the position of 

higher aspect ratio inclusions in a more efficient way. Further study on the packing problem led to 

the second developed algorithm for the microstructure of short fibre composite material. The flow 

chart of the second developed algorithm can be seen in Figure 3.9.  

 

 

Figure 3.8  Flow chart of the initial algorithm able 
to produce a microstructure that consists of 

circular inclusions. 
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The main differences between the latter and the former algorithm are the intersection criteria, the 

ability to solve problems with much higher AR, the different approach on the geometric periodicity 

and an extension loop for improving the potential for higher volume fractions. Also, the ability to 

create three different orientation cases (aligned, misaligned and randomly oriented fibres). The 

perimeter of each ellipsis is now approached by a polygon. The accuracy and the resolution of the 

polygon (number of vertices which comprise the polygon) is a choice of the user.  Higher resolution 

polygons lead to a more geometrically accurate perimeter and a more realistic representation, but at 

the same time, the matrix which stores points of the perimeter becomes enormous as long as the 

user considers higher resolution polygons. In the case of the first algorithm, accuracy of the 

geometrical perimeter was approached by separating the angles to small intervals between 0 − 2𝜋. 

The resolution of the polygon also affected the accuracy of the intersection criterion and the time 

needed for the algorithm to respond. In general the number of vertices for a polygon was adjusted 

depending on the AR, where in most of the cases the resolution was set to 210.  

 

The intersection criterion is no longer related to the centre of the inclusion, and it points at the 

perimeter of the inclusion. Points are compared using the equation of an ellipsis as it can be seen in 

Equation 3.3, and the intersection between fibres can be defined. Where 𝑑𝑥 represents the 

difference for the 𝑥 coordinate between points on the perimeter of two ellipses. Similarly 𝑑𝑦 defines 

the difference for y coordinates on the perimeter between two ellipses. 𝑚𝑓𝑑 represents the 

minimum fibre distance controlled by the algorithm user.  

 (
𝑑𝑥

𝛼
)
2

+ (
𝑑𝑦

𝛽
)
2

≥ 1 +𝑚𝑓𝑑 
Equation 3.3 

 

No 

No 

Yes 

Yes 

Figure 3.9  Flow chart of the algorithm used to develop various cases 
of SFRC microstructure. 
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As a consequence, ellipses with high aspect ratio have a larger perimeter and a rough surface so a 

higher polygon resolution is needed for that case. If a higher polygon resolution is not provided for a 

high AR microstructure, this may disturb the accuracy of the intersection criterion because it is 

based on the points of the perimeter. Another difference regarding the second algorithm in 

comparison with the first one, is the different way of implementing geometrical periodicity. Figure 

3.10 shows how the second algorithm implements the concept of geometrical periodicity.  

 

 

 

 

 

 

 

 

 

 

The global coordinate system is placed on the left bottom edge of the square in the middle, square 

number 5. For every inclusion placed in the central square, eight inclusions were created 

immediately and occupied the analogous position on the eight squares surrounding the central one. 

In this way, it was ensured that every inclusion exiting the bounds of the square will appear on the 

opposite side, satisfying in this way the condition of geometrical periodicity. Square number five will 

be used as the periodic structure and the remaining eight squares will not participate any further in 

the analysis.  

The additional section of the algorithm uses a bisection method in order to gather more fibres 

towards the centre and to increase the achievable volume fraction. The bisection method was 

developed as a root-finding method that repeatedly bisects an interval and selects a subinterval in 

which a root must lie. The bisection method is considered as being simple and robust but as a slow 

method for root–finding. Here the bisection method is implemented in order to optimise the 

maximum achievable volume fraction by rearranging the position of an accepted fibre towards the 

centre in order to make sure that space is used in the most efficient way. 

 A disadvantage of the second algorithm when compared with the first one is that the first one is 

able to control the total number of iterations by a volume fraction criterion. The algorithm keeps 

repeating its loops while the volume fraction is less than the desired one. The second algorithm does 

not use the volume fraction to define the iteration number of loops, but instead, a direct number of 

iterations is used as an input from the user. This implies a relation between the AR, the volume 

Figure 3.10 Implementation of geometrical 
periodicity. 
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fraction and the number of iterations in order to adjust those control parameters before running the 

algorithm to get the desired microstructure. 

 Studies comparing analyses of periodic microstructures in comparison with non-periodic 

microstructures show good agreement on tensile tests but a large deviation regarding shear tests. It 

was reported that non-periodic structures require higher sizes of RVE in order to predict accurate 

results. The concept of representative size is always strongly affected by the degree of accuracy that 

is needed. Additionally, there have been reports of the demand for high accuracy on non-periodic 

arrangements leading to extremely large RVE sizes.  

3.3.2 Inclusion shape 

 

Even if the appropriate projection of a three dimensional cylinder in two dimensions is a rectangle, 

the use of elliptical shape inclusions was preferred instead. The choice of elliptical domain ensures 

the minimisation of stress concentration points at the edge of the rectangle. The elliptical shape 

ensures a smooth slope from the middle of the ellipses to the edge, which confirms that no stress 

concentration will occur in the fibres’ perimeter due to the shape of the inclusion. On the other 

hand, the sudden change of the geometry in a rectangle will cause serious problems for the UC to 

fulfil the ergodic hypothesis. The aspect ratio of a fibre is defined as the ratio between the length of 

the fibre over the diameter. In the case of elliptical shape inclusions the diameter is not constant and 

an average diameter or the maximum diameter may be used for AR calculations. Figure 3.11 shows 

the definition of aspect ratio for elliptical inclusions. 

 

 

 

 

 

 

Through literature it was observed that other variations of shapes are used in order to simulate 

cylindrical fibres in two dimensions. Regarding the very early simulations of microstructures 

rectangles were used. Implementation of rectangles in order to mimic 2D projection of cylindrical 

fibres introduces problems into the simulation as stress singularities. A solution for the stress 

singularities was proposed through the shape of sphere-cylinders. Sphere-cylinder consists of a 

rectangular body with two semi-circles at the edges. 

 

 

 

Figure 3.11 Aspect Ratio is defined as the ratio between 
fibre’s length over the diameter. 

Figure 3.12 Sphere-cylinder 
shape for 2D simulation of 

cylindrical fibres 
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3.3.3 In plane orientation distribution 

 

The first step of the developed algorithm is the step which involves the declaration of constant 

parameters and random variables. Throughout this study, three random variables were considered. 

The first random variable is the coordinate of the centre of the ellipses. The second random variable 

is the fibre orientation and the third is the fibre length or aspect ratio.  For all the models presented 

in this study, inclusions have random coordinates and the case of unidirectional fibres was first 

implemented. The second random variable implemented was the fibre’s in-plane orientation. Three 

different variations of angle distribution will be presented through this study: unidirectional 

composite, randomly oriented composite and mis-oriented composite. 

For randomly oriented composites the in-plane angle was able to take values in the closed interval 

between 0 − 𝜋 (𝑟𝑎𝑑), and defined by a uniform distribution. The term ‘closed interval’ means that 

the interval includes its endpoints values. Figure 3.13 shows the in-plane angle distribution for a 

randomly oriented composite.   

 

 

 

 

 

 

 

 

 

 

 

 

It was observed that fibre orientation strongly influences the maximum achievable volume fraction 

and also the time that the algorithm needs in order to respond. Random values were seeded from a 

random number generator provided from Matlab by the command "𝑟𝑎𝑛𝑑"  which creates uniformly 

distributed pseudorandom numbers on the open interval between 0 − 1. The sequence of numbers 

produced by the aforementioned command is determined by the internal state of the uniform 

pseudorandom number generator that underlies the rand command. 

 

Figure 3.13  Orientation distribution for in-plane randomly 
oriented fibres. 



119 
 

 

In the case of mis-oriented fibres, the same command was used but restrictions on the angles were 

applied. In the plane angle for mis-oriented fibres it was restricted to take values on the close 

interval of 0 − 0.872 (𝑟𝑎𝑑). By implementing this concept, the random nature of the in-plane angle 

was kept and simulation of mis-oriented microstructure was enabled. In-plane angle distribution for 

mis-oriented fibres can be seen in Figure 3.14.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.4 Fibre length distribution 

 

The third and last random variable is the fibre AR or fibre length. The variable was seeded from the 

same pseudorandom generator however restrictions were applied because fibre length could not be 

larger than the UC size. In order to overcome this difficulty, a function was implemented to modify 

results from the pseudorandom generator. The function considered the size of UC and the random 

parameter and can be expressed through Equation 3.4, where 𝑎 𝑎𝑛𝑑 𝑏 denote the closed interval 

under investigation.  

 𝑟 = 𝑎 + (𝑏 − 𝑎) ∗ 𝑟𝑎𝑛𝑑 
Equation 3.4 

 

Figure 3.14  Distribution of fibres orientation for misaligned 
fibres. 
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Distribution of fibre length can be seen in Figure 3.15. The combination of random in-plane angle 

and random aspect ratio has a drastic influence on the achievable volume fraction and response 

time of the algorithm, hence in numerical simulations of short fibre composite, the random nature 

of fibres length must be considered.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Through the response of the aforementioned cases, the limitations and difficulties of the algorithm 

were raised. One of the major disadvantages is the response time in the case of high AR, or random 

in-plane orientation, or any combination of those two parameters; this topic will be further 

discussed in the next section. Also, the algorithm was not able to control the sequence of fibre 

length in a hierarchical way. Optimum solutions for the packing problem are an open research field 

which engineers and programmers are currently studying.    

 

3.3.5 Algorithm time response 

 

One of the main criteria for the efficiency of an algorithm is the time it needs to solve the problem. 

In the specific case of a packing problem, even for a given algorithm, there is no single answer 

because the response time depends on various parameters. The main parameters affecting the 

response time of the developed algorithm are: 

Figure 3.15  Distribution of fibre  length-AR 
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 Aspect Ratio. The bigger the aspect ratio, the more difficult it is for the algorithm to place 

fillers in the container without any intersection. This mainly occurs because the higher the 

AR, the higher the possibility of intersection points, and the higher the possibility of 

rejection of a candidate fibre. 

 Volume Fraction. Clearly there is a limitation on the maximum achievable volume fraction, 

which strongly depends on the fibre orientation and AR. However in general the higher the 

demand of 𝑉𝑓 from the user, the more time the algorithm needs to solve the problem. 

 Orientation. Orientation of fibres is also a parameter that strongly influences the time 

response of the algorithm. In general random orientations tend to need more time in order 

to be solved, mainly because the algorithm denotes numerous intersections and rejects 

numerous candidate fillers. 

 UC size. As long as the size of a candidate RVE increases, the more fibres need to be included 

in the UC in order to reach the desirable 𝑉𝑓. As long as the number of fibres increases, the 

possibility of intersection between a new fibre and the existing fibres also increases. As a 

consequence the algorithm rejects higher number of fibres and needs more time to solve 

the problem for a desirable 𝑉𝑓. 

In order to evaluate the efficiency of the developed algorithm, a built-in function was used at the 

beginning and at the end of the algorithm in order to count the time of response. In order to 

measure the actual time of results only, the time of creating the model of the microstructure was 

excluded from the measurement. Figure 3.16 shows the time response in minutes for cases of 

different orientation, different aspect ratio and different size. Bars are separated according to aspect 

ratio and orientation while each colour represents a different UC size. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16  Time response of the developed algorithm for various 
values of AR and orientation. 
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3.4 Numerical models formation 
 

The packing algorithm was developed in a Matlab programming environment and the developed 

microstructure was transferred to Abaqus FE commercial code through python scripting. Fibres were 

created through a process of partitioning a continuous media. The generated microstructure in 

Matlab was re-coded by python scripting language and introduced as a sketch which partitioned a 

two dimensional domain-container in order to create a two phase composite UC. Abaqus kernel can 

read-understand python scripts and turn them into geometrical configurations. A script is a text file 

containing scripting interface commands which can be interpreted directly by the kernel. Scripting in 

Abaqus has some major advantages. For example, by scripting, the whole process can be generated 

automatically, or a relatively minor change in the model can be done by changing a command 

instead of re-building the whole model.  

Through the aforementioned advantages, a parametric study is also easier to execute.  A 

characteristic python script of the microstructure is reported in Appendix 𝐼𝐼. The partitioning 

process separates a main domain into various subdomains in respect of the loaded part. By 

implementing the participation approach the discontinuity was introduced into the material as 

elliptical sub-domains with different elastic and thermal properties. By partitioning the two 

dimensional domain, the interface between fibres and matrix is assumed to be perfect. For the 

purposes of the current study, only linear properties will be investigated and further modelling of 

the interface is outside the scope of this study.  The elastic and thermal properties of glass fibres and 

polypropylene can be seen in Table 3-1.    

 

Table 3-1. Elastic and thermal properties of glass fibres and polypropylene. 

Property Glass fibres Polypropylene 

Young’s Modulus (GPa) 73 1.2 

Thermal Conductivity (𝑊/𝑚𝐾) 0.05 0.15 

Coefficient of Thermal 

Expansion (𝑚/𝑚𝐾) 

4.3 ∗ 10−6 86.4 ∗ 10−6 

 

Models were meshed by using the environment of Abaqus 6.10 with two dimensional plane stress 

triangular elements. Those elements can be found in the Abaqus element library under the 

name 𝐶𝑃𝑆3. Figure 3.17 shows a typical example of a CPS3 element. 
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 𝐶𝑃𝑆3 are plane stress first order, linear triangular elements with three nodes and three faces. Each 

node has two kinematic degrees of freedom and a degree of rotation. Some characteristics of 𝐶𝑃𝑆3 

are their less than excellent convergence rate, their requirement of fine mesh to produce accurate 

results and a volumetric locking behaviour for incompressible materials.  

It is known through finite element theory that quadrilateral elements produce more accurate results 

compared with triangular elements. In the specific study, the use of triangular elements was 

preferred due to the nature of the microstructure. The partitioning process of elliptical sub-domains 

of the two dimensional continued media, produces small areas which are extremely difficult to mesh 

with quadratic elements. The attempt to implement a quadratic element failed and an accurate 

meshing result was produced by only using triangular elements. 𝐶𝑃𝑆3 offer a good meshing quality 

in a reasonable time and a low computational cost. The low computational cost is a result of the 

linear behaviour of the element and because it contains the minimum number of possible nodes. 

This was the main reason to develop a very fine mesh so that more accurate results can be obtained. 

In most cases for the developed models, the matrix domain was the one with areas that were very 

difficult to mesh. For this reason, and also to capture the developed stresses in the elliptical sub-

domains, fibres and matrix were meshed with a different size. Element size for the fibres was chosen 

to be smaller compared with the element size of the matrix. A typical example of a meshed volume 

element can be seen in Figure 3.18.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17 Plane 
stress element CPS3. 

Figure 3.18  Typical mesh sample 
of randomly oriented UC. 
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Due to the difficulty of meshing the microstructure, in some cases high aspect ratio triangular 

elements were used to cover very demanding areas. For triangular finite elements, aspect ratio has 

the meaning of equal distance on the edge of the element with respect to a point on the centre of 

the element. This characteristic of the geometry of the elements can produce distorted elements 

during the analysis which shows locally stiffer behaviour due to this distortion. For every developed 

model, the actual number and the percentage of distorted elements was always calculated at the 

end of the analysis and models with distorted elements up to a certain limit were rejected for a lack 

of statistical homogeneity or for the local dominant behaviour. 𝐶𝑃𝑆3 has an integration point placed 

in the middle of the triangle and standard linear shape functions are used to interpolate the edge 

displacement. Interpolation takes place according to the following Equation 3.5 and Equation 3.6 for 

"𝑥" and "𝑦" directions. 

 

 𝑢 = 𝑁1𝑥1 +𝑁2𝑥2 +𝑁3𝑥3 
Equation 3.5 

 

 

 𝑣 = 𝑁1𝑦1 +𝑁2𝑦2 +𝑁3𝑦3 
Equation 3.6 

 

 

3.4.1 Boundary conditions 

 

A key parameter of the effective properties derived from a multi-scale approach, such as the 

representative volume element framework, is the applied boundary conditions. Considering that the 

effective properties are calculated based on the developed stress and strain field in the RVE, which is 

a result of the applied boundary conditions, it can be understood that the selection of the 

appropriate boundary condition is a crucial step for numerical homogenisation methods.  

There are mainly four different approaches on the concept of boundary conditions regarding 

simulating the RVE’s response: Dirichlet boundary conditions, Neumann boundary conditions, the 

mixed boundary conditions and the periodic boundary conditions. Dirichled boundary conditions are 

named after German mathematician Johann Peter Gustav Lejeune Dirichlet and are uniform 

kinematic boundary conditions, also known as the first type boundary conditions or the essential 

boundary conditions. As observed in Figure 3.19, uniform displacement is applied at the boundaries 

of a surface Γ𝐷.  

 

 

 

 

Figure 3.19  Dirichlet boundary conditions. 
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The second most commonly used boundary condition is the Neumann boundary condition. 

Neumann boundary conditions were named after German mathematician Carl Gottfried Neumann 

and are prescribed as uniform traction boundary conditions applied at the surface  Γ𝑁 , as can be 

seen in Figure 3.20. As reported by Hill, an RVE is considered to be well defined if results from those 

two different boundary conditions coincide. 

 

 

 

 

 

 

 

 

 In the case of mixed boundary conditions, both cases of uniform displacement field and uniform 

traction field are applied simultaneously on a boundary surface Γ𝑀. For mixed boundary conditions, 

on a part of the boundary, uniform displacement is applied, while on a different part uniform 

traction boundary conditions are applied. 

 Periodic boundary conditions are widely used for multi-scale approaches. They are usually used in 

order to describe the conditions on the boundary of a small part located far away from the edge of a 

large system, which is the concept applied for representative volume simulations. Periodic boundary 

conditions are understood as the conditions which ensure compatibility by restricting nodes on the 

boundaries which are opposite each other to identically repeat their position before and after the 

deformation.  Deformed bodies after implying periodic boundary conditions can be seen in Figure 

3.21 

 

 

 

 

 

Figure 3.20  Neumann boundary conditions. 

Figure 3.21  Periodic boundary conditions. 
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According to the periodicity assumption, the deformation of every boundary pair is equal and 

opposite in sign. For the thermal testing, boundary conditions were applied as temperature 

difference on the bounds of RVE. This temperature difference was able to create a heat flux field in 

the material which was then measured and values for the effective thermal conductivity were 

calculated. Figure 3.22 shows a typical example of RVE thermal loading for calculating longitudinal 

and transverse thermal conductivity.  

 

 

 

 

 

 

. 

For calculating the Linear Coefficient of Thermal Expansion (LCTE) the applied boundary conditions 

can be seen in Figure 3.23. As can be seen in Figure 3.23 the kinematic degrees of freedom on the 

surface-boards of the UC were fully constrained and a temperature difference was applied between 

left and right sides for longitudinal CTE and top and bottom for transverse CTE. As a result of the 

temperature difference thermal stresses were developed in the material while the macroscopic 

strains were equal to zero due to the kinematic constraints at the surface of the UC. 

 

 

 

 

 

 

 

 

Figure 3.22  Boundary conditions for 
calculating longitudinal thermal 

conductivity. 

   
𝑇𝐻  𝑇𝐿  

Figure 3.23  Boundary conditions for calculating 
Coefficient of Thermal Expansion. 
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Every developed RVE was examined for a mechanical, thermal and thermo-mechanical response in a 

concept of parametric study in which various parameters were changing for each case. A detailed 

report on the parametric study will take place in chapter 5. In order to derive the mechanical 

effective properties of a two phase short fibre composite, three mechanical virtual tests were 

performed for longitudinal tension, transverse tension and pure shear. Loading conditions for the 

cases of calculating the mechanical properties can be seen in Figure 3.24. Symbolic representation of 

the results from the applied loading conditions as seen in Figure 3.24, can be seen in Figure 3.25 for 

mechanical response and in Figure 3.26 for thermal response.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.24  Loading conditions for effective longitudinal, transverse stiffness 
and effective shear stiffness. 

Figure 3.25 Symbolic representation of the developed stress field for 
longitudinal stiffness on the left and transverse stiffness on the right. 

Figure 3.26 Figure 3.27 Symbolic representation of the developed stress field for 
longitudinal thermal conductivity on the left and transverse thermal conductivity 

on the right. 
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An output file from Abaqus was obtained after each analysis, which includes local values for stress, 

strain and volume of each element. Those files were then introduced into Matlab in which a 

developed script was able to further analyse data in order to obtain the average effective properties. 

A typical script for average effective properties can be seen in Appendix 𝐼𝐼𝐼.  

 

 

3.5 Conclusions 
 

In Chapter 3, various issues relating to the numerical modelling of short fibre composites were 

presented. The very basic problem of packing was first addressed and the major difficulties involved 

in finding a solution were presented, followed by further analysis o the proposed solution to the 

packing problem, through a developed packing algorithm. The main difficulties during the 

development of the algorithm were reported, followed by the limitations and the efficiency of the 

algorithm. The time response of the programme was discussed and the influence of various 

parameters on the time response of the algorithm were evaluated. The main assumptions of the 

modelling approach were presented and a discussion on the influence of those assumptions took 

place. Representation of fibres as elliptical domains was further discussed considering the 

advantages and disadvantages of this simplification. The concept of periodic and non-periodic 

microstructures was discussed and the way of implementing this periodicity was presented in detail. 

Definitions of the representative volume element were given and the common points on the 

different approaches from different researchers were reported. The differences between an RVE and 

a UC were also noted. The existence of RVE as a function of  size was discussed and the 

implementation of length scales on the RVE concept was presented. A specific approach to the 

assumptions of modelling short fibre reinforced composite took place by analysing the simplification 

of the modelling microstructure with the properties of a real microstructure. The development of 

the packing algorithm using the Matlab programming package and the way of transferring the 

microstructure into the commercial FE software Abaqus through python scripting were presented. 

Finally, the various cases of boundary conditions used for RVE of microstructural units were 

addressed and advantages and disadvantages for each case were discussed.  
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4 Homogenisation approach 
 

Homogenisation methods are widely used for material characterisation. The process of 

homogenisation involves the bridging of length scales. The purpose of the homogenisation methods 

is to obtain overall effective properties considering the response of the micro-structure. In a very 

general description, homogenisation can be seen as the characterisation of a material at lower scale 

where inhomogeneity exists, and its upscale to a fictitious energetically equivalent material. The 

concept of relating the microstructure with the overall composite response through a 

homogenisation process is taken into account by a representative volume element. 

 The opposite process of homogenisation is known as localisation process and is used for the local 

response of the material. The localisation process involves a “zooming in” on a smaller scale in the 

material. Localisation methods are generally more demanding than homogenisation due to the 

dependency of the local field with the micro-geometry of the constituents. For both cases, 

homogenisation and localisation, the main base of calculations is the geometry of the 

microstructure.   

In the early years of development of homogenisation methods no computational power was 

available and as a result, various analytical homogenisation approaches have been developed. A few 

of those analytical homogenisation approaches were presented in chapter 2. Analytical 

homogenisation approaches can be described in two steps. The first step involves approximations of 

a local problem for a single inclusion embedded in an infinite matrix, and the second step consists of 

averaging the response of the local field. Under these considerations, as reported by (Klusemann, 

2010) a homogenisation process requires:  

a) A simple structure which can be solved explicitly, such that a physical interpretation for the 

behaviour of all the components involved is possible. 

b)  A valid structure for multiphase composites with various inclusion geometries, isotropy and 

anisotropies. 

c) An accurate model for the influence of various inclusion distributions and interactions 

between inclusions and their immediate surrounding matrix. 

 Even if the aforementioned analytical homogenisation approaches are widely used, none of them is 

accurately able to fulfil the previous requirements. The main drawback of the analytical processes 

lies in the assumption of the inclusion’s distribution and the considered material properties of the 

surrounding matrix. Homogenisation methods allow the calculation of effective material properties 

if the microstructure topology of the composite is known. The concept of homogenisation can be 

seen in Figure 4.1.  
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The homogenisation method aims to define an equivalent homogeneous media, able to replace the 

composite media with a homogeneous one in order to solve the problem of material 

characterisation using a global approach. The strong advantages of the method are that it needs only 

the information of the microstructure and that any kind of microstructure can be implemented. 

Apart from material characterisation of elastic properties, homogenisation methods can be 

accurately used for different fields, such as flow in porous media, heat transfer problems, 

viscoelastic related problems or coupling fields problems such as piezoelectric material analysis.  

Throughout the following chapter, the topic of computational homogenisation will be discussed and 

the implemented homogenisation approach for this study will be further analysed. Through the 

second sub-section, Hill’s condition for equivalent homogeneous media will be presented. Through 

the computational homogenisation approach the concept of representative volume element will be 

analysed and also the statistical analysis on RVE results will be explained. The fourth chapter 

concludes with a discussion on the properties under investigation and how those properties are 

affecting the accuracy of the RVE. A further discussion takes place about the effect of 

micromechanical parameters (aspect ratio, orientation and fibre length) on the results of the 

statistical analysis and also the size dependency of the RVE will be discussed. 

 

4.1 Computational homogenisation 
 

Computational homogenisation methods are implemented and treated in a similar way to analytical 

homogenisation methods. The aim of the process is to derive homogeneous properties of a material 

exhibiting a heterogeneous structure on a smaller scale. The main advantage of the numerical 

approach as compared with the analytical one is the ability of numerical homogenisation methods to 

account for multiple heterogeneities in the material, while the majority of analytical models are 

built- in with the basic assumption of analysing a heterogeneity embedded in an infinite matrix. This 

advantage provides the ability for the development of a more complex stress-strain field in the 

representative volume due to the interaction between heterogeneities.  

A multi-scale approach from the computational point of view can be divided in three steps:  

 during the first step the material is considered on a larger scale (macro-level),  

Figure 4.1 An illustration of the concept of 
homogenisation and length scales. 
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 a further zooming in into the material is considered during the second step, where 

information of the micro or meso levels are derived.  

 The third and final step involves the process of transferring information from the smaller 

scale to the macro-scale where the effective properties are calculated.  

 

The aforementioned steps can be summarised as the process during which macro-level strains 

are introduced as boundary conditions into the lower scale, at which scale the material is 

considered as heterogeneous. A homogenisation process then takes place and effective 

properties can be calculated.  The process of a multi-scale approach can be seen in the 

schematic in Figure 4.2. 

 

 

 

 

 

 

 

 

 

 

 The multi-scale approach from a macro scale to a smaller scale can be seen as that the macro-

strains are translated through boundary conditions into the displacement field on a lower scale. 

Equation 4.1 shows a typical form of periodic boundary conditions where macro-strains and 

local displacement are connected. 

 

 𝑢𝑖
𝑡 − 𝑢𝑖

𝑏 = 𝜀𝑖(𝑥𝑖
𝑡 − 𝑥𝑖

𝑏) 
Equation 4.1 

 

 

On the other hand, connection of a meso or micro scale to a larger scale implies that information of 

the smaller scale must be used in order to upscale effective material properties. This process is 

called homogenisation and will be further analysed in the following chapter. The main 

computational homogenisation approaches that will be presented in this chapter are the Asymptotic 

Homogenisation Method, the Volume Average Homogenisation and the Reaction Force Approach. 

All of the aforementioned methods have been used widely in literature. 

Figure 4.2  Schematic representation of the multi-
scale approach. Adapted from Helmut J. Bohm.  

Macro Meso Micro 
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4.1.1 Asymptotic homogenisation approach. 

 

A general definition of the asymptotic homogenisation approach is that of a method used to solve 

partial differential equations. The asymptotic homogenisation approach is a very good method for 

modelling physical procedures on a periodic structure taking place in a heterogeneous material. The 

physical procedure can be heat transfer, electric conductivity or mechanical loading. The main 

advantages of the AHM are the fact that it allows a significant reduction in the degrees of freedom 

involved in the problem and that it has the capability of calculating stress and strain fields on the 

micro-structure  associated with the given macro-structural field. However, the method AHM has a 

restriction in that it can only be used with periodic arrangements.  

The concept behind the asymptotic homogenisation scheme is that on a material volume ℋ as 

defined in Figure 4.3, consist of a heterogeneous microstructure define in a region ℱ , which exhibits 

geometrical periodicity. On the periodic representation of the microstructure  ℱ, a coefficient 𝜓 can 

be defined as the connection between micro- and macro scales, or can be seen as the connection 

between the characteristic dimension between the two length scales.  

 

 

 

 

 

 

 

 

 

 

Once such a periodic structure is exposed to traction or kinematic boundary conditions, a periodic 

oscillation on the resulting stress and strain field will occur.  The aforementioned oscillations are 

results of the periodicity of the microstructure and can be expressed as a function of the dimension 

coefficient 𝜓. Under the previous considerations, a clear separation of scales must occur. Let’s 

clearly define the two different scales as 𝒙 associated to the macro-scale and 𝒚 associated to the 

microscale. As a result, it appears that variables associated to the referred fields depend on both 𝒙 

and 𝒚 systems through Equation 4.2. 

 

Composite components Microstructure Unit Cell 

Figure 4.3 Asymptotic Homogenisation approach. Adapted from Helmut J. Bohm. 
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 𝑦 = 𝜓/𝑥 Equation 4.2 

 

Function 𝜓 exhibits a periodic behaviour in ℱ which is usually called ℱ-periodicity. As a consequence 

of the periodicity of function 𝜓 in domain ℱ, the elasticity tensor in domain ℱ appears to exhibit the 

same periodicity. Therefore, material elastic properties are dependant on the response of the 

microstructure or of the domain ℱ. The last sentence can be expressed through Equation 4.3. 

 

 𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑖𝑗𝑘𝑙(ℱ) Equation 4.3 

 

In the macro-scale system where the 𝒙 dimension parameter is involved, heterogeneities of the 

microstructure appear in a periodic way of inversely proportionality of the parameter 𝜓. This can be 

expressed through Equation 4.4.  

 

 𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑖𝑗𝑘𝑙(𝜓) 
Equation 4.4 

 

 

With the assumption of infinitesimally small strains, the equilibrium condition on linear elasticity, 

the definition of stains and the constitutive equation for a linear elastic response can be seen 

through Equation 4.5, Equation 4.6 and Equation 4.7. 

 

 
𝜕𝜎𝑖𝑗

𝜓

𝜕𝑥𝑖𝑗
𝜓
+ 𝑓𝑖 = 0 

Equation 4.5 

 

 

 𝜀𝑖𝑗
𝜓
=
1

2
(𝑢𝑖,𝑗

𝜓
+ 𝑢𝑗,𝑖

𝜓
) 

Equation 4.6 

 

 

 𝜎𝑖𝑗
𝜓
= 𝐶𝑖𝑗𝑘𝑙

𝜓
𝜀𝑘𝑙
𝜓

 Equation 4.7 

 

In the previous equations 𝜎𝑖𝑗
𝜓
 𝑎𝑛𝑑 𝜀𝑖𝑗

𝜓
 represent Cauchy tensors for stresses and strains, the 

superscript 𝜓 stands for the 𝜓, ℱ −periodicity of the given variable on the macro-coordinate system. 

Through the previous considerations the problem then can be summarised as the solution of the 

displacement field on the variation problem expressed through Equation 4.8. 
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 ∫ 𝐶𝑖𝑗𝑘𝑙
𝜓

ℋ

𝜕𝑢𝑘
𝜓

𝜕𝑥𝑙
𝜓

𝜕𝑢𝑖
𝜓

𝜕𝑥𝑗
𝜓
𝑑Ω Equation 4.8 

 

Considering the existence of two well separated scales which connect material properties of the 

micro-scale domain 𝜓 and the macro-scale domain ℋ , the displacement field can be asymptotically 

approached as in Equation 4.9.  

 

 𝑢𝑖
𝜓(𝒙) = 𝑢𝑖

(0)
(𝒙, 𝒚) + 𝜓𝑢𝑖

(1)
(𝒙, 𝒚) + 𝜓2𝑢𝑖

(2)
(𝒙, 𝒚) +⋯ Equation 4.9 

 

In the previous equation the terms 𝑢𝑖
(𝑝)
(𝒙, 𝒚) are called correctors of order 𝑝 or ℱ-periodic functions 

of the displacement field. Considering Equation 4.6 and the chain rule of function differentiation, the 

strain field can be asymptotically approximated as in Equation 4.10.  

 

 𝜀𝑖𝑗
𝜓
= 𝜓−1𝜀𝑖𝑗

(0)
(𝒙, 𝒚) + 𝜓0𝜀𝑖𝑗

(1)
+ 𝜓1𝜀𝑖𝑗

(2)
+⋯ 

Equation 4.10 

 

 

Where in the previous equation 𝜀𝑖𝑗
𝑝

 is defined as in Equation 4.11. 

 

 𝜀𝑖𝑗
𝑝
=
1

2
(
𝜕𝑢𝑖

(𝑝−1)

𝜕𝑥𝑗
+
𝜕𝑢𝑗

(𝑝−1)

𝜕𝑥𝑖
+
𝜕𝑢𝑖

(𝑝)

𝜕𝑦𝑗
+
𝜕𝑢𝑗

(𝑝)

𝜕𝑦𝑖
) Equation 4.11 

 

Combining the previous equation with Equation 2.1 and making use of Equation 4.3, the stress field 

may be expressed in an asymptotic approach as can be seen in Equation 4.12. 

 

 𝜀𝑖𝑗
𝜓
= 𝜓−1𝜀𝑖𝑗

(0)(𝒙, 𝒚) + 𝜓0𝜀𝑖𝑗
(1)
+ 𝜓1𝜀𝑖𝑗

(2)
+⋯ Equation 4.12 

 

By implementing Equation 4.5 and considering the previous equation, a set of deferential equations 

can be defined as a function of the parameter 𝜓.  The solution of the set of deferential equations, 

can be calculated recursively  with respect to Dirichlet’s and Neumann’s boundary conditions. Each 

time a variable of 𝑝 − 1 order is obtained, the calculation of the variable in 𝑝 order is enabled. The 

method is widely used in the literature by numerous researchers for the purpose of material 
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characterisation. Despite the computational cost, the method has been reported as accurate enough 

for material characterisation. 

 

4.1.2 Volume average method 

 

A very direct way of obtaining the overall homogenised properties of a heterogeneous material is by 

calculating the volume average properties of the media. This can be implemented through the 

average stress and average strain theorems. The method is used on the resultant stress and strain 

field, on the representative volume. Local properties of the constituents and the geometric shape of 

the inclusions are strongly influence the developed microscopic stress and strain field. A volume 

average can be performed on the developed micro-stress and micro-strain field. 

 Through this process information of the local response of the structure are introduced into the 

calculations by the volume average. With respect to homogeneous stress boundary conditions 

(Neumann boundary conditions), traction is given as in Equation 4.13 and is supposed to be 

prescribed on the boundaries.  

 Τ = Σ ∙ n Equation 4.13 

 

here 𝑇 denotes the surface traction while Σ denotes the known macroscopic stress tensor and 

𝑛 denotes the unit vector outward normal at the boundary.  From the previous equation it can be 

proven that Σ is equal to the volume average stresses in the RVE. It can be shown that for every 

equilibrated stress field that obeys the scales separation assumption expressed through Equation 

3.1, the macroscopic volume average stresses can be calculated through the average stress theorem. 

Equation 4.14 shows the process of calculating volume average stress. 

 

 𝜎̅𝑖𝑗 = ∫ 𝜎𝑖𝑗𝑑𝑉

𝑉

 Equation 4.14 

 

In a similar way, homogeneous strain boundary conditions (Dirichlet boundary conditions) are 

expressed through prescribed displacement at the boundary of the RVE which can be expressed 

through Equation 4.15 

 

 u = Ε ∙ x Equation 4.15 
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Wherein the previous equation 𝑢 expresses displacement on the boundaries of RVE, Ε represents 

the macroscopic strain tensor. The aforementioned approximation is valid as long as Equation 3.1 is 

satisfied. Equality of the macroscopic applied strain with the average strain in the RVE can be 

satisfied from every compatible strain field obeying Equation 4.15. The average strain can be 

expressed through Equation 4.16. 

 

 𝜀𝑖̅𝑗 = ∫ 𝜀𝑖𝑗𝑑𝑉

𝑉

 Equation 4.16 

 

For the implementation of the average stress and average strain theorems, in order to calculate the 

volume average stress and the volume average strain, integrals were approached as summations as 

expressed in Equation 4.17 and Equation 4.18. 

 

 𝜎̅𝑖𝑗 = ∑𝜎𝑖𝑗
𝑘𝑉𝑘

𝑁𝑜𝐸

𝑘=1

 Equation 4.17 

 

 𝜀𝑖̅𝑗 = ∑ 𝜀𝑖𝑗
𝑘𝑉𝑘

𝑁𝑜𝐸

𝑘=1

 Equation 4.18 

 

where the superscript 𝑘 refers to the 𝑘𝑡ℎ element and 𝜎𝑖𝑗 𝑎𝑛𝑑 𝜀𝑖𝑗 are local quantities of stress and 

strain respectively measured from the integration point of every element. Figure 4.4 shows a 

triangular 𝐶𝑃𝑆3 element and the position of the integration point.  

 

 

 

 

 

 

 

Where 𝜎̅𝑖𝑗 and 𝜀𝑖̅𝑗  represent the volume average quantities of stresses and strains respectively, while 

𝜎𝑖𝑗 and 𝜀𝑖𝑗  represents the micro-stress and micro-strain field respectively, 𝑉 represents the volume 

 

Figure 4.4  Plane stress triangular 
element with a single integration 

point 
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of the RVE. The homogenisation process through volume average quantities is a process which 

needs information from the micro-scale. This information can be measured through the finite 

element analysis. Implementation of boundary conditions leads to a micro-stress and micro-strain 

field on the RVE. For every element, local quantities of stresses and strains are measured. Micro-

stresses and micro-strains are then implemented into Equation 4.17 and Equation 4.18 and the 

volume average quantities are calculated. Further implementation of Equation 2.1 leads to the 

homogenised stiffness tensor. A detailed discussion will take place in chapter 4.3. 

 

4.1.3 Reaction force homogenisation approach 

 

 A simpler and computationally less expensive approach when compared with the previous two 

homogenisation approaches is the reaction force homogenisation approach. The principal concept 

of the reaction force homogenisation approach comes from the classical definition of mechanical 

stress which is the division of the applied force with the cross section area as expressed through 

Equation 4.19.  

 

 𝜎̅𝑖𝑗 = 𝐹𝑖
𝑗
𝐴−1 Equation 4.19 

 

where for the above equation  𝐹𝑖
𝑗
 represents the reaction force on the 𝑖 direction for the 𝑗 loading 

case on the boundary face of the area 𝐴.  As reported from (Pan, 2008), even if the reaction force 

method is a very simple approach of calculating homogeneous stresses, comparing the time of 

response, the computational effort and the simplicity of use, results from the method show a 

comparable accuracy with the previous two homogenisation methods. For some cases of 

computational homogenisation, time response and computational cost are dominant parameters. 

For those cases the reaction force homogenisation approach is the ideal case.  

 

4.2 Macro-homogeneity condition 
 

Scale transition processes such as the homogenisation or localisation processes must satisfy the 

macro-homogeneity condition also known as the Hill-Mandel condition.  Through the macro-

homogeneity condition, the equivalence of the strain energy between the heterogeneous material 

and the equivalent homogeneous one is ensured. The Hill-Mandel condition can be expressed 

through Equation 4.20. 

 

 
1

2𝑉
∫ 𝜎𝑖𝑗𝜀𝑖𝑗𝑑𝑉

𝑉

=
1

2
𝜎̅𝑖𝑗𝜀𝑖̅𝑗  

Equation 4.20 
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For Equation 4.20 the consequence of the macro-homogeneity condition is that the fluctuation fields 

on the boundary of the RVE can be replaced by a homogeneous field.  

 

4.3 Effective properties under investigation 
 

For the purposes of this research, mechanical, thermal and thermo-mechanical properties were 

investigated. The appropriate boundary conditions were applied in order to cause the response of 

the effective stiffness in the longitudinal and transverse direction, as well as the response of the 

effective shear modulus.  For the thermal properties, thermal conductivity of various cases of 

orientation for a two phase composite was calculated regarding the longitudinal and transverse 

directions. The thermo-mechanical property under investigation is the linear coefficient of thermal 

expansion. A solution for the linear coefficient of thermal expansion implies the application of 

thermal and kinematic boundary conditions, and from a numerical point of view, a coupling thermo-

mechanical problem must be solved. Table 4-1 shows all the properties under investigation. 

 All the aforementioned properties were investigated with respect to fibre orientation, fibre aspect 

ratio, fibre length distribution and RVE size. Those were the main parameters of the study for the 

mechanical, thermal and thermo-mechanical behaviour of short fibre composite. For every case of 

loading conditions, the appropriate micro-quantity was measured on the integration point of every 

element. For the case of mechanical effective properties, longitudinal and transverse effective 

stiffness were calculated once measurement of micro-stresses, micro-strains and volume took place 

from every integration point in an element.  

For calculating the longitudinal effective stiffness, stress 𝜎11 and strain 𝜀11 must be measured for 

every element with the value of the volume of the element. For the case of transverse effective 

stiffness, the analogous stress 𝜎22 and strain 𝜀22 must be measured along with the volume of the 

corresponding element. Stress and strain quantities represent the reaction of the heterogeneous 

material and are used through the average stress and average strain theorems as they were 

presented in the previous section. 

 

Table 4-1 Properties under investigation 

Symbol Property Orientation Aspect Ratio RVE size Fibre length 

distribution 

𝐸1 Longitudinal 

Stiffness 

    

𝐸2 Transverse 

Stiffness 
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𝐺12 Shear 

modulus 

    

𝐾1 Longitudinal 

thermal 

conductivity 

I. Aligned 

fibres 

II. Mis-

aligned 

fibres 

III. Rando

mly 

oriente

d fibres 

 

I. AR=1 

II. AR=5 

III. AR=10 

 

I. RVE 

size=2.5 

II. RVE 

size=3.75 

III. RVE 

size=5.0 

 

I. Constant 

fibre 

length 

II. Random 

fibre 

length 

𝐾2 Transverse 

thermal 

conductivity 

    

𝑎1 Longitudinal 

coefficient of 

thermal 

expansion 

    

𝑎2 Transverse 

coefficient of 

thermal 

expansion 

    

 

 

4.3.1 Elastic properties 

 

The effective mechanical properties are calculated as elements of the effective stiffness tensor for 

the case of two dimensional plane stress conditions. Boundary conditions were applied in such a way 

as for every virtual experiment-loading condition- samples were loaded macroscopically towards a 

single direction. As a consequence for every loading condition, just a single element of the strain 

tensor is active while all the remaining elements are zero. This can be seen in Equation 4.21 which 

shows the generalised expression for the one-dimension loading condition of Hooke’s law for the 

two dimensional plane stress condition for calculating the longitudinal stiffness. 
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 {

𝜎11
𝜎22
𝜎12

} = [

𝐶11 𝐶12 𝐶16
𝐶21 𝐶22 𝐶26
𝐶16 𝐶26 𝐶66

] {
𝜀11
0
0
} Equation 4.21 

 

Expansion of the previous system of equations leads to a single equation with a single unknown as 

can be observed in Equation 4.22 , which has a trivial solution. 

 

 𝜎11 = 𝐶11𝜀11 + 𝐶120 + 𝐶160 Equation 4.22 

 

For the case of calculating the transverse effective stiffness, the applied boundary conditions must 

ensure what is stated in Equation 4.23. For transverse effective stiffness the only element of 

macroscopic strain which is not zero must be the one which refers to the transverse direction’s 

strains. 

 

 {

𝜎11
𝜎22
𝜎12

} = [

𝐶11 𝐶12 𝐶16
𝐶21 𝐶22 𝐶26
𝐶16 𝐶26 𝐶66

] {
0
𝜀22
0
} Equation 4.23 

 

Expansion of the previous system of equations as in the case of longitudinal stiffness leads to the 

expression in Equation 4.24 with a single unknown as long as the remaining elements of the strain 

tensor are zero.  

 𝜎22 = 𝐶210 + 𝐶22𝜀22 + 𝐶160 Equation 4.24 

 

In the case of effective shear modulus, only the last element of the strain tensor is active as can be 

seen in Equation 4.25  

 

 {

𝜎11
𝜎22
𝜎12

} = [

𝐶11 𝐶12 𝐶16
𝐶21 𝐶22 𝐶26
𝐶16 𝐶26 𝐶66

] {
0
0
𝜀12

} Equation 4.25 

 

As a consequence, the system of equations is reduced, as in the previous two cases, to a single 

equation with a single unknown as stated in Equation 4.26.  

 

 𝜎12 = 𝐶610 + 𝐶620 + 𝐶66𝜀12 Equation 4.26 
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4.3.2 Thermal properties 

 

For calculating the thermal effective properties, a similar procedure took place, with the main 

difference being the actual loading conditions applied on the bounds of RVE. In order to calculate 

the effective thermal conductivity, first the overall heat flux of the RVE must be calculated and 

results must be applied on Fourier’s law for thermal conductivity. The time dependent form of 

Fourier’s law can be seen in Equation 4.27.  

 

 ∇ ∙ (𝐾∇𝑇) = 𝜌𝐶𝑝
𝜕𝑇

𝜕𝑡
 Equation 4.27 

 

Where in the above equation 𝜌 represents density of the material while 𝐶𝑝 represents the specific 

heat.  For the purpose of this research, thermal conductivity will be investigated for the steady-state 

condition. The steady-state condition describes the response of the material in terms of thermal 

conductivity, once every dynamic phenomenon that takes place through the heat transfer process is 

constant and does not cause any time-dependent changes on the spatial distribution of thermal 

conductivity.  

A material, after a specific amount of time known as equilibration time, will reach a point in which 

there will be no time dependency. As a consequence of Equation 4.27 (Fourier’s full version of heat 

transfer) all the partial derivatives of temperature with respect to time variables will vanish. The 

steady-state version of Fourier’s thermal conductivity law can be seen in Equation 4.28. 

 

 𝑞𝑖 = 𝐾𝑖
𝜕𝑇

𝜕𝑖
 Equation 4.28 

 

Effective homogenised thermal conductivity is calculated through a similar process, as described for 

effective mechanical properties. First, it must be noted that for thermal properties the UC was 

meshed with different element type. Elements with a code name 𝐷𝐶2𝐷3 were used. 𝐷𝐶2𝐷3 

element is a diffusive 3-node linear heat transfer triangle and it has three integration points. Values 

for local heat flux were measured from every integration point of every element. Firstly an average 

quantity between the three integration points was considered and the total heat flux was calculated 

through a summation expressed in Equation 4.29.  

 

 𝑄𝑥 = ∑ 𝑞𝑖𝐴𝑖

𝑁𝑜𝐸

𝑖=1

 Equation 4.29 
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where for the above equation 𝑞𝑖 represents the local heat flux measured from the 𝑖𝑡ℎ element, 

while 𝐴𝑖  represents the area of the 𝑖𝑡ℎ element. The heat flux of every element was measured as the 

arithmetic average between the three integration points. In order to calculate the total average heat 

flux on the UC, the total area must be first calculated. The total area of the RVE is calculated through 

the summation expressed in Equation 4.30. 

 

 𝐴𝑥 = ∑𝐴𝑖

𝑁𝑜𝐸

𝑖=1

 Equation 4.30 

 

In the above equation 𝐴𝑖  represents the area of the 𝑖𝑡ℎ element. Once the total heat flux is 

calculated and the total area is known, the average heat flux of the RVE can be calculated through 

Equation 4.31.  

 

 𝑞𝑖 = 𝑄𝑖/𝐴 Equation 4.31 

 

where for the above equation 𝑞𝑖 represents the average heat flux on the 𝑖𝑡ℎ direction. The system of 

equations which needs to be solved in order to calculate the average heat flux can be seen in 

Equation 4.32.  

 

 {

𝑞𝑥
𝑞𝑦
𝑞𝑧
} = [

𝐾𝑥𝑥 𝐾𝑥𝑦 𝐾𝑥𝑧
𝐾𝑦𝑥 𝐾𝑦𝑦 𝐾𝑦𝑧
𝐾𝑧𝑥 𝐾𝑧𝑦 𝐾𝑧𝑧

]

{
 
 

 
 
𝜕𝑇

𝜕𝑥⁄

𝜕𝑇
𝜕𝑦⁄

𝜕𝑇
𝜕𝑧⁄ }
 
 

 
 

 Equation 4.32 

 

Again, as in the mechanical boundary conditions for each loading condition, only one of the 

temperatures gradients is not zero, the rest of them have no value! In this way the calculation of a 

single element of the effective thermal conductivity matrix was possible for every single loading 

condition. 

 

 

4.3.3 Thermo-mechanical properties 

 

For the case of thermo-mechanical loading conditions, in order to calculate the effective linear 

coefficient of thermal expansion, a combination of kinematic and thermal boundary conditions must 
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be applied on the borders of RVE. Figure 4.5 shows the applied boundary conditions for calculating 

the effective linear coefficient of thermal expansion.  

 

As can be seen in Figure 4.5, the RVE is kinematically restricted all around the boundaries and a 

temperature difference is applied between the left and the right sides for longitudinal thermal 

expansion and from bottom to the top for transverse thermal expansion.  

 

 

 

 

 

 

 

 

 

 

The thermal difference on the bounds of the UC will cause a heat flux through the media and strains 

due to the different constituent’s thermal expansion of the constituents will be developed. At the 

same time, the kinematic restrictions on the boundaries of the UC in combination with the 

developed strains will cause the rise of thermal stresses. In order to simulate this process, 𝐶𝑃𝐸3𝑇 

elements from Abaqus library were used. 𝐶𝑃𝐸3𝑇 is a couples displacement-temperature linear 

triangular element. 

Both developed stresses and strains in the UC are measured and the volume average quantities are 

calculated through the average stress and average strain theorems as they were presented in 

Equation 4.14 and Equation 4.16. Calculation of the effective linear coefficient of thermal expansion 

can be completed once the system of equations provided by Equation 4.33 is solved. 

 

 {

𝜎11
𝜎22
𝜎12

} = [

𝐶11 𝐶12 𝐶16
𝐶21 𝐶22 𝐶26
𝐶16 𝐶26 𝐶66

] {

𝜀11 + 𝑎11∆𝑇
𝜀22 + 𝑎22∆𝑇
𝛾12 + 𝑎33∆𝑇

} Equation 4.33 

 

From the above equations the macro-strains denoted as  𝜀11, 𝜀22 𝑎𝑛𝑑 𝜀33 are equal to zero as a 

consequence of the overall kinematic restrictions on the boundaries of the RVE. Stresses are 

calculated through the average stress theorem. The effective stiffness tensor is evaluated from the 

   
𝑇𝐻  𝑇𝐿  

Figure 4.5 Applied boundary conditions for calculation of 
the CTE 
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pure mechanical homogenisation process and the same values were used for solving the thermo-

mechanical problem.  

 

4.4 RVE approach 
 

All the aforementioned calculations were executed under the framework of a representative volume 

element. The real question that we are going to examine in this section is what is considered as 

representative and what process must take place in order to justify the representativeness of the 

unit cell. Also, the influence of various micromechanical parameters on the representativeness of 

the UC will be under discussion. The answer to this question comes from further statistical analysis 

of the results of the homogenisation process. For that purpose five realisations were developed for 

every combination possible.  

In the following sub-section the concept of statistical analysis of the response of the composite 

material will be presented. A further explanation on the statistical test which was used will take 

place. An investigation of the influence of different parameters on the results of the statistical 

analysis will be carried out.  That means that if we consider  

 three different cases of orientation,  

 three different cases of RVE’s size, 

  three different cases of aspect ratio and also  

 investigation of seven different mechanical, thermal and thermo-mechanical properties  

 for five developed “samples”  

the number of differently solved models rises to more than 945.  

4.4.1 Chi-square test 

 

Having results for the five different realisations from every possible combination of the parameters 

under investigation, the next step is to normalise all the results with respect to the higher value of 

the five realisations.  The normalisation process takes place in order to restrict all the values or 

different properties between the open interval of  0 − 1. As a consequence all the properties under 

investigation will have values on the same order of magnitude and a direct comparison can take 

place.   

The statistical test which was used is the chi-square test. The chi-square test properties were 

investigated by a British mathematician named Karl Pearson at the beginning of the 20th century. 

The Chi-square test can be seen in Equation 4.34.   

 

 𝑥2 = ∑
(𝑂𝑖 − 𝐸𝑖)

2

𝐸𝑖

𝑁𝑜𝑅

𝑖=1

 Equation 4.34 
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where for the above equation 𝑂𝑖 represents the observed value for the 𝑖𝑡ℎ realisation, while 

𝐸𝑖  represents the expected value. The test actually calculates the deviation of the observed 

frequency with the expected frequency for a set of values and in combination with the statistical 

degrees of freedom of the problem, the test provides table values from which a decision about 

accepting or rejecting the results can be made.  The test also provides a comparison between the 

observed values of a set which has properties of chi-square distribution and the expected value of 

the set. Table values for the chi-square test, for any degree of freedom and any level of accuracy, 

can be found in Appendix 𝐼𝑉. Implementation of the Equation 4.34  and comparison of the equation 

results with the table values for a specific degrees of freedom and specific accuracy, will be the 

process by which we will examine whether the volume element is representative or not.  

Throughout this study we observed that the results of the chi-square test are influenced by all the 

parameters that are introduced into the system as modifications of the microstructure. The main 

parameter that dramatically changes the results of the chi-square test is the UC size. This was 

expected from the beginning because as has been reported in literature the larger the size of UC, the 

more information it includes about the micro-structure, and as a consequence, the more 

representative it is. On the contrary, a very large UC is a computationally expensive problem to 

solve. 

The real question about size has turned out to be “Which is the smallest representative size?” and 

also what parameters and to what degree they influence the representativeness of a UC. The 

smallest size is needed in order to save computational time and power. It was also observed that the 

results of the chi square test were also influenced from the property under investigation, the 

orientation of the inclusions, the aspect ratio and also the distribution of the fibre length. 

Throughout the following section, the influence of all the aforementioned parameters will be 

discussed and results from the chi square test will be provided.  

 

4.4.2 Chi-square test and inclusion’s orientation 

 

It has been reported in the literature that periodic arrangements of micro-structure need a smaller 

RVE size in order to be representative and this is due to the repeated periodic micro-structure of the 

material. As a consequence, every parameter that enters the system and has a stochastic nature will 

influence the size of RVE, however it is under investigation if that influence is positive (leading to a 

smaller UC size) or negative (leading to a larger UC size).  The first case under investigation is fibre 

spatial arrangements. The stochastic parameter in this case is the random position of the fibres. As 

observed in Figure 4.6, all the inclusions have the same aspect ratio, same orientation distribution 

and uniform length but they differ regarding the actual position of each inclusion in space, or the 

orientation of each individual inclusion. By examining the difference in the response of those five 

realisations, one will be in a position to understand if any movement of the inclusion in any other 

position in space will influence the effective properties of the UC. For representative sizes, the RVE is 

considered to be large enough so that derived effective properties are not influenced by the 

different fibre’s position or any other parameter. Once the five realisations seen in Figure 4.6 have 

results that deviate from each other, that is a clear indication that the size of the UC is not big 
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enough to include all the necessary information for the response of the material and because each 

sample responds differently, under the same loading conditions, depending on its microstructure. 

 

Through the following paragraphs, the influence of inclusion orientation on the value of the Chi-

square test will be examined. Figure 4.7 shows the distribution of Chi-squares values  with respect to 

the UC size for the three different cases of orientation distribution. 

 

 

 

 

 

 

 

  

 

 

 

For the above figure, values of the chi-square test for the longitudinal effective stiffness with 𝐴𝑅 =

10 are presented. As can be observed in Figure 4.7, the chi-square test does not follow any linear 

pattern with respect to the inclusion’s orientation. There is no linear relation between the number 

of stochastic parameters entering the system and the actual value of the chi-square test. This can be 

observed because aligned fibres have a higher chi-square value than randomly oriented fibres and 

the lowest chi-square value is for mis-aligned fibres, while for a linear relation one must expect the 

series to be aligned fibres, mis-aligned fibres and then randomly oriented fibres. This is a clear sign 

that the effective property, and as a consequence the chi-square value, are affected by multiple 

 

Figure 4.7 Chi-square values for longitudinal stiffness for realisations 
with AR=10 and three cases of orientations. 

Figure 4.6  Five realisations of a UC consisting of the same 𝑽𝒇, the same AR, the same orientation 

distribution and the same UC size. 



147 
 

parameters simultaneously and that the final result is a combination of those parameters and is 

dictated by the most dominant of those parameters.  

In terms of stochastic parameters in the system, the case of randomly oriented fibres is the one with 

the most random parameters (position and orientation) that change for the five realisations. 

However, it seems that the number of stochastic parameters in the system is not the dominant 

variable that controls the chi-square behaviour of the material. A different trend can be seen in the 

case of the transverse effective stiffness for the same realisations. Chi square distribution for 

transverse stiffness as a function of fibre orientation can be observed in Figure 4.8. As was expected, 

the case of randomly oriented fibres shows the higher chi square value. This was expected once the 

random orientation reinforced the transverse direction due to the percentage of fibres oriented 

towards that direction, and also from the fact that random realisations have more stochastic 

parameters when compared with aligned fibres and mis-aligned fibres, and as a consequence the 

number of fibres reinforcing towards the transverse direction varies and this is reflected in the chi-

square value. 

 

 

 

 

 

 

 

 

 

 

 

 

4.4.3 Chi square and aspect ratio 

 

The second parameter under investigation for the values of the chi square test is the aspect ratio of 

the inclusions. For the purposes of this research, three different aspect ratio cases were examined in 

the case of uniform distribution length composite. Values of the chi-square will be compared for 

𝐴𝑅 = 1, 5, 10.  Results of the chi-square test for the same orientation and the same property but 

different aspect ratio can be seen in Figure 4.9.  

 

Figure 4.8  Chi-square values for transverse stiffness for 
realisations with AR=10 and three cases of orientations. 
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For the above plot, the horizontal axis shows the three different UC sizes while the vertical axis 

shows the chi-square value. Figure 4.9 shows the influence of aspect ratio on Chi-square values for 

the longitudinal effective stiffness of aligned fibres composite. As can be observed, the aspect ratio 

has strongly influenced the chi-square value. Again, as in the previous case, the trend is not clear as 

aspect ratio is not the only parameter that influences the chi-square value. However, it is clear for 

longitudinal stiffness that the larger the aspect ratio is, the higher the chi-square value will be. This is 

related to the fact that by increasing the AR for aligned fibres, the property which is most affected is 

the longitudinal stiffness. In addition, aspect ratio is a parameter that is indirectly related to the size 

of RVE, which is the main reason why the chi-square values of the same aspect ratio decrease as the 

size of the RVE becomes larger. 

The exact opposite trend on chi-square distribution was observed for the transverse effective 

stiffness of the same realisations as in the previous case. Figure 4.10 shows chi-square values for the 

transverse effective stiffness of aligned fibres composite. 

Figure 4.9 Chi-square value for longitudinal effective stiffness of 
aligned fibres as a function of AR. 
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As can be observed in Figure 4.10, for the case of the transverse effective stiffness, circular 

inclusions exhibit the highest deviation from the arithmetic average value. This is related to the most 

reinforced parameter but is a topic which will be discussed in the next paragraph because the 

phenomenon becomes clearer once the comparison of chi-square value is based on the effective 

properties. 

 

4.4.4 Chi square and effective properties 

 

In the following paragraph the influence of the chi-square test value with respect to effective 

properties will be examined. As shown in the previous sub-section, the same realisations show 

totally different trends for longitudinal effective stiffness and for transverse effective stiffness. This 

can be observed clearly in Figure 4.11 where the distribution of chi-square was plotted with respect 

to the UC size for three different effective mechanical properties. 

Figure 4.10 Chi-square value for transverse effective stiffness of 
aligned fibres as a function of AR. 
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Figure 4.11  shows the distribution of chi-square values for aligned fibres orientation with AR=10. As 

observed, the higher chi-square value belongs to the longitudinal effective stiffness. Up to this point, 

in order to appropriately interpret this behaviour one has to consider that fibres are oriented 

towards the longitudinal direction which is a parameter enhancing the longitudinal stiffness, and 

also that fibres have large aspect ratio (AR=10) which is also a second parameter enhancing the 

effective longitudinal stiffness. It then becomes clear that the parameter of the most reinforced 

property is a dominant parameter on the chi-square test. It was generally observed through the chi-

square tests that if the orientation of fibres or the aspect ratio specifically reinforces any of the 

effective mechanical properties, then this property becomes the dominant parameter for the chi-

square distribution. For the specific case shown in Figure 4.11, of the effective properties under 

investigation, longitudinal stiffness is the one which is more reinforced due to the fibre orientation 

and the fibre aspect ratio.  

 

4.5 Conclusions 
 

Throughout the previous chapter, the concept of computational homogenisation was discussed. The 

definition of the homogenisation process was given and the significance of the method on material 

characterisation was addressed. Various computational homogenisation approaches were presented 

and a discussion of the accuracy and the difficulty of implementation of each approach took place. 

The major homogenisation approaches, the asymptotic homogenisation method, the volume 

average and the reaction force methods, were further analysed. The macro-homogeneity condition 

Figure 4.11 Chi square values for different mechanical 
properties for aligned fibres with AR=10. 
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was presented and the concept of equivalent homogeneous media was discussed. A report on the 

effective properties under investigation follows. Longitudinal effective stiffness, transverse effective 

stiffness and effective shear modulus for the mechanical properties, while for the thermal properties 

the effective thermal conductivity was the property under investigation and for the thermo-

mechanical simulations the effective linear coefficient of thermal expansion was the property under 

investigation. A detailed discussion on the implementation of boundary conditions and calculation of 

effective properties was presented. Finally, the chapter ends with a report on the statistical test. The 

question of the representative size has been answered through a statistical test. The chapter does 

not provide results from the chi-square test but a quality discussion on the importance of the test 

and the major factors affecting the test. Further investigation for the influence of various 

parameters on the chi-square value took place and the influence of the fibre orientation, aspect 

ratio, effective property and RVE size were discussed. 
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5 Results and discussion 
 

Through the following chapter results from the developed numerical models are presented. The 

chapter is separated in two sections. Section 5.1 refer to mono-dispersed and section 5.2 for the non 

mono-dispersed fibre length. For both sections results are presented as a function of the parameters 

under investigation. Results from the chi-square test are presented first in order to clarify the 

representative sizes of a sample under consideration, and as a consequence the accurate results. 

The chapter concludes with a direct comparison of the representative results with various 

theoretical models as a function of the aspect ratio. 

 

5.1 Mono-dispersed fibre length 
 

As was discussed in chapter 2, fibre length is a parameter of the material mainly affected by the 

manufacturing process?  Viscosities of the matrix polymer, volume fraction, and complexity of the 

mould are a few parameters of the manufacturing process which affect fibre length.  Short fibre 

composite with mono-dispersed fibre length is not a common case. In the majority of short fibre 

composite products fibre length follows a distribution. The following analysis of the mono-dispersed 

fibre length aims to study the ideal case of fibre length for comparison with the more realistic case 

of fibre length distribution. 

 

5.1.1 Chi-square results 

 

The following plots show the chi-square distribution of the samples under investigation. The chi-

square value was calculated as shown in Equation 4.34, by considering the five different realisations 

of each case. The five different realisations consist of the same fibre orientation, same UC size, same 

fibre aspect ratio and same volume fraction. The difference between them relies on the actual 

positionof inclusions. Realisations represent a square region of the material taken in a random 

position. Any differences between the five realisations are a direct indication of non-uniformity in 

the response of the same material, or that the material is observed in a very local scale in which 

singularities are dominating the response of the material. An example of five realisations can be 

seen in Figure 5.1.  
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As has been reported in chapter 4, the Chi-square test can test the hypothesis of the 

representativeness of a UC’s size. If the observed values of the effective property under investigation 

exhibit a major fluctuation with the expected value of the five realisations, it means that the size 

under study will show a relatively high chi-square value. As is been reported, chi-square test is a 

hypothesis test so the chi-square value resulting from a specific size analysis must be compared with 

a table value from the chi-square distribution. Combining the statistical degrees of freedom of the 

problem and the desired degree of accuracy, one is able to read a hypothesis test value from the chi-

square distribution table (Appendix 𝐼𝑉) and compare it with the resultant chi-square value. Any 

resultant chi-square value below the table distribution value can be considered as positively passing 

the hypothesis, any value above the chi-square table value is considered to fail the hypothesis test. 

Following the results of the hypothesis test results about the representativeness of the size can be 

made. 

5.1.1.1 Chi-square Results-Mechanical properties 

 The first family of plots shown in  

 

 

 

 

 

 

Figure 5.1  From every case of parameter combination, five realisations were developed in order to statistically 
study the results. 
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Figure 5.2 show the chi-square distribution regarding the mechanical properties of uniform length 

aligned short fibre composite for the cases of aspect ratio 1, 5 and 10. The horizontal axis of the 

plots shows the normalised UC size while the vertical axis indicates the resultant chi-square value for 

each size. Chi-square plots are categorized with respect to the orientation aspect ratio and property 

under investigation. By categorizing the plots in such a way gives the ability to investigate the 

contribution of each parameter on the chi square value. 

Chi square plots for a uniform length distribution with respect to mechanical properties under 

investigation for perfectly oriented-aligned fibres, misaligned fibres and randomly oriented fibres are 

presented. The following  
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Figure 5.2 shows the chi-square value for mechanical properties of aligned fibres with respect to the 

normalised UC’s value on the left side, and on the right side shows a picture of the realisation 

indicating the aspect ratio and the orientation. 

5.1.1.1.1 Align fibres 
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Figure 5.2 Chi-square results for uniform length aligned fibres. 

 

 

 

Through  
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Figure 5.2 the chi-square value of aligned fibres is shown. It can be observed that: 

1. for each individual plot the value of chi-square is decreasing as long as the UC size increases. 

This is a general trend which will be observed in all cases of chi-square test. This  results 

from the fact that larger UC sizes include more fibres and as a consequence more 

information about the microstructure. This is something beneficial for the average 

properties of the UC. Larger UC sizes lead to fewer singularities due to the specific structure 

of each realisation. It must be emphasised that chi-square test is a criterion comparing the 

observed value of each realisation with the expected value calculated from the five different 

realisations. 

2. Generally, as will be shown in this chapter, the AR in combination with fibre orientation, are 

parameters affecting the effective properties. In the specific case of aligned fibres an 

increase of AR leads to higher longitudinal effective stiffness. This can be seen by increasing 

the AR; the chi-square value of longitudinal stiffness increases and this is also why 

longitudinal stiffness has the highest chi-square value. This behaviour is not only reflected in 

the general trend of chi-square results but also in the actual values of the chi-square test. 

3. Effective transverse stiffness and effective shear stiffness have lower chi-square values 

compared with longitudinal stiffness. This is also a phenomenon which can be explained by 
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the fact that transverse stiffness and shear stiffness do not experience strong enhancement 

from the increase of AR in the case of fully oriented-aligned fibres 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.1.1.1.2 Misaligned fibres 
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Figure 5.3 Chi-square results for uniform length misaligned fibres. 

 

 

Figure 5.3 shows results of chi-square test for mechanical properties of misaligned fibres for 

𝐴𝑅 = 5 𝑎𝑛𝑑 𝐴𝑅 = 10. In the case of misaligned fibres an extra stochastic parameter is introduced 

into the system. However the stochastic behaviour of this parameter (fibre orientation) was 

restricted in order to get the misaligned orientation. The case of 𝐴𝑅 = 1 was omitted for all 

orientation cases except fully aligned fibres.  

1. The first point under discussion is that the general trend of decrease of the chi-square value 

while AR increases is also observed for misaligned fibres.  

2. For the case of 𝐴𝑅 = 5 it can be observed that chi-square values for effective longitudinal 

stiffness and effective shear stiffness are close to each other while the effective transverse 

stiffness has a lower value. This is a behaviour resulting from the contribution of orientation. 

As can be seen misaligned fibre UCs will exhibit lower longitudinal stiffness compared with 

aligned fibres and also higher effective transverse stiffness and effective shear stiffness. This 
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is the main reason why the absolute value of the chi-square test is lower for longitudinal 

effective stiffness. 

3. For the case of 𝐴𝑅 = 10 the absolute value of the chi-square test is higher compared with 

the case of  𝐴𝑅 = 5, and this is again an indication of the contribution of AR in the case of 

the same orientation. The increase of AR seems to cause a deviation between the five values 

mainly relating to longitudinal effective stiffness. 

For 𝐴𝑅 = 10 and for the cases of longitudinal and transverse stiffness it can be seen through Figure 

5.3 that as the UC increases in some cases, the chi-square value increases. This behaviour arises 

from the fact that a combination of stochastic parameters in the system in some cases causes 

deviation between the observed and the expected value. However, this can be acceptable only for a 

few cases (not as a regular trend) and the way to overcome this barrier is to increase the number of 

realisations under study.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.1.1.1.3 Randomly oriented fibres 
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Figure 5.4 Chi-square results for uniform length randomly oriented fibres. 

 

Figure 5.4 shows the chi-square test results for randomly oriented fibres. Again the case of 𝐴𝑅 = 1 

has no meaning with random orientation. In the case of randomly oriented fibres the number of 

stochastic parameters in the system is the same as in the case of misaligned fibres, but in this case 

there is no restriction on the potential angle of each fibre. Fibre angles can take value on the closed 

interval between  0 − 𝜋.  

The following observation can be made: 

1. The first comment about chi-square results of randomly oriented realisations is that the 

general trend of decrease of chi-square as UC size increases is also observed in this case.  

 

2. The second comment regards the actual values of the test. Almost all effective properties 

have increased chi-square value and this is mainly caused by the stochastic parameters 

introduced into the system 
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3. It can be also observed that chi-square value for the effective transverse stiffness is the most 

dominant value of the chi-square test. This is mainly caused by the orientation and also by 

the AR. Analysing first the case of orientation, the case of randomly oriented fibres increases 

the actual number of fibres oriented towards the transverse direction. This causes a 

reinforcement of the effective transverse stiffness and at the same time, depending on the 

number of fibres oriented towards transverse direction, different realisations have different 

effective transverse stiffness. This points to a deviation of the observed values, and as a 

consequence a higher chi-square value. 

 

4. It is also clear from the plots in Figure 5.4 that an increase in the AR increases the value of 

chi-square for all properties. This is something which was expected due to the reinforcing 

effect of randomly oriented fibres. In the case of randomly oriented fibres, the composite is 

enhanced in both directions and the effective shear stiffness is reinforced. As a consequence 

higher chi-square values were expected.  

 

The following Table 5-1 includes all the results of the previous figures in a more integrated way. The 

table shows all the chi-square values for the mechanical properties of the samples under 

investigation. Results of the chi-square test regarding the table are categorized with respect to the 

orientation, the UC size and the aspect ratio. 

 

Table 5-1 Chi-square results for mechanical properties. 

Orientation Normalised 

UC size 

Property 

under 

investigation 

Chi-square value 

AR=1 AR=5 AR=10 

Aligned 2.5 𝐶11 0.0426 0.0397 0.1415 

 3.75 𝐶11 0.0054 0.0142 0.0117 

5.0 𝐶11 0.0011 0.0130 0.0123 

2.5 𝐶22 0.0169 0.0044 0.0052 

3.75 𝐶22 0.0034 0.0003 0.0014 

5.0 𝐶22 0.0020 0.0008 0.0013 

2.5 𝐺12 0.0057 0.0061 0.0050 

3.75 𝐺12 0.0008 0.0005 0.0019 

5.0 𝐺12 0.0016 0.0013 0.0017 

Mis-aligned 2.5 𝐶11 0.0426 0.0114 0.0353 
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 3.75 𝐶11 0.0054 0.0061 0.0026 

5.0 𝐶11 0.0011 0.0031 0.0148 

2.5 𝐶22 0.0169 0.0039 0.0007 

3.75 𝐶22 0.0034 0.0006 0.012 

5.0 𝐶22 0.0020 0.0004 0.0002 

2.5 𝐺12 0.0057 0.0093 0.0064 

3.75 𝐺12 0.0008 0.0054 0.0032 

5.0 𝐺12 0.0016 0.0015 0.0031 

Randomly 

oriented 

2.5 𝐶11 0.0426 0.0306 0.0878 

 3.75 𝐶11 0.0054 0.0157 0.0441 

5.0 𝐶11 0.0011 0.0072 0.0164 

2.5 𝐶22 0.0169 0.0593 0.15 

3.75 𝐶22 0.0034 0.0228 0.0308 

5.0 𝐶22 0.0020 0.0109 0.009 

2.5 𝐺12 0.0057 0.0038 0.025 

3.75 𝐺12 0.0008 00116 0.011 

5.0 𝐺12 0.0016 0.0006 0.0013 

 

 

 

 

 

 

5.1.1.2 Chi-square Results-Thermal properties-Thermal Conductivity 

 

The following family of plots relates to the chi-square results for thermal properties and more 

specifically to the longitudinal effective thermal conductivity and the transverse effective thermal 
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conductivity regarding all the cases of orientation and AR under investigation. The plots are 

separated for different aspect ratios. 

5.1.1.2.1 Aligned fibres 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 shows the longitudinal and transverse effective thermal conductivity for aligned fibres of 

𝐴𝑅 = 5 𝑎𝑛𝑑 𝐴𝑅 = 10. It can be observed that: 

1. Comparing the chi-square value of thermal properties with chi-square value of mechanical 

properties, thermal properties seem to experience much less deviation between the 

observed and the expected value. It must be emphasised that expected and observed 

values entering the chi-square test are normalised and as a consequence for all the 

properties under investigation, all the values entering the test lie between the open interval 

of  0 − 1. This enables a direct comparison between the chi-square behaviour of each 

property. 

2. For the case of aligned fibres as shown in Figure 5.5, AR does not seem to affect the 

deviation between expected and observed value. Chi-square results are close to each other 

Figure 5.5 Chi-square results regarding the thermal conductivity for aligned uniform 
length fibres. 
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in the case 𝐴𝑅 = 5 𝑎𝑛𝑑 𝐴𝑅 = 10 and also values lay close to each other for the longitudinal 

effective conductivity and for the transverse effective conductivity. 

3. The general trend of decrease of the chi-square value as the UC size increases was also 

observed for the longitudinal and transverse effective thermal conductivity of aligned fibres.  

 

5.1.1.2.2 Misaligned fibres 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 shows results for the chi-square test for longitudinal and transverse effective thermal 

conductivity of misaligned fibres realisations. In a comparison of misaligned orientation with aligned 

fibres on Figure 5.5, it seems that: 

1. He introduction of a new random parameter (fibre orientation) did not affect the chi-square 

value drastically. The general trend of chi-square value decrease with respect to UC size 

decrease is also observed. 

Figure 5.6 Chi-square results regarding the thermal conductivity for misaligned 
uniform length fibres. 
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2. In the case of 𝐴𝑅 = 5 longitudinal effective thermal conductivity seems to have an 

increased value of chi-square test when compared with 𝐴𝑅 = 5 𝑎𝑛𝑑 𝐴𝑅 = 10 of aligned 

fibres.  

3. On the contrary, the case of 𝐴𝑅 = 10 seems to have expected and observed values which 

are closer to each other. In the case of misaligned fibres 𝐴𝑅 = 10 seems to exhibit more 

uniform chi-square results. This is something which was observed for mechanical properties 

as well. 

5.1.1.2.3 Randomly oriented fibres 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 shows the chi-square results of longitudinal and transverse effective thermal conductivity 

for randomly oriented fibre realisations.  

1. As in every case under investigation the general behaviour of decrease of the chi-square 

value was also observed in this case. 

Comparing chi-square results in Figure 5.5, Figure 5.6 and Figure 5.7 it can be seen that:  

Figure 5.7  Chi-square results regarding the thermal conductivity for randomly 
oriented, uniform length fibres. 
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2. in the case of randomly oriented fibres (Figure 5.7) the chi-square values are higher for both 

sets of parameters. Higher values were obtained as orientation changed from aligned to 

misaligned and randomly oriented, but also as the aspect ratio increased.  

3. It must be noted that the case of randomly oriented fibres was the only case where the chi-

square value of effective transverse thermal conductivity increased. 

 

 

The following Table 5-2 includes all the information shown in the previous plots relating to the chi-

square distribution with respect to the RVE size for the effective thermal conductivity, both 

longitudinal and transverse. Results for the chi-square distribution are shown with respect to the 

sample size, the orientation of fibres, the effective property and the aspect ratio. 

 

Table 5-2 Chi-square results for thermal properties. 

Orientation Normalised 

UC size 

Parameters 

under 

investigation 

Chi-square values 

AR=1 AR=5 AR=10 

Aligned 2.5 𝐾11 0.002 0.0013 0.0015 

 3.75 𝐾11 0.0004 0.0001 0.0005 

5.0 𝐾11 0.0001 0.0003 0.0004 

2.5 𝐾22 0.0021 0.0024 0.0038 

3.75 𝐾22 0.0003 0.0001 0.0010 

5.0 𝐾22 0.0001 0.0007 0.0006 

Mis-aligned 2.5 𝐾11  0.0092 0.00007 

 3.75 𝐾11  0.0002 0.000031 

5.0 𝐾11  0.0001 0.000035 

2.5 𝐾22  0.000244 0.000677 

3.75 𝐾22  0.0001781 0.000035 

5.0 𝐾22  0.0000917 0.0001186 

Randomly 

oriented 

2.5 𝐾11  0.0042 0.0053 

 3.75 𝐾11  0.0026 0.0013 
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5.0 𝐾11  0.0005 0.0004 

2.5 𝐾22  0.0016 0.002 

3.75 𝐾22  0.0007 0.0021 

5.0 𝐾22  0.0005 0.0008 

 

5.1.1.3 Chi-square Results-Thermal properties-Coefficient of Thermal Expansion 

 

The following family of plots show the chi-square distribution for the linear coefficient of thermal 

expansion, for aligned fibres, misaligned fibres and randomly oriented fibres for all the cases of 

orientation under investigation, and also for three different UC sizes and for longitudinal and 

transverse coefficient of thermal expansion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.1.1.3.1 Aligned fibres 
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Figure 5.8 shows the results of the chi-square test on the effective longitudinal and transverse linear 

coefficient of thermal expansion for aligned fibres.  As can be observed: 

Figure 5.8 Chi-square results regarding the coefficient of thermal expansion for 
uniformly oriented-aligned fibres. 
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1. The general trend of chi-square value reduction with respect to UC size increase also takes 

place for CTE.  

2. Regarding the increase of aspect ratio and the influence it has on effective longitudinal and 

transverse thermal conductivity, it can be seen that for 𝐴𝑅 = 1 values of the chi-square 

tests are almost the same, while as long as the AR increases the difference between 

longitudinal and transverse CTE increases. 

3.   It can also be observed that as long as the AR increases the actual value of the chi-square 

test decreases. In that case it can be said that the increase of AR has the opposite results 

comparing with chi-square results for mechanical and thermal properties. 

5.1.1.3.2 Misaligned fibres 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9 shows the results of the chi-square test for the effective longitudinal and transverse linear 

coefficient of thermal expansion for misaligned fibres.  As can be observed: 

1. The general trend of chi-square value reduction with respect to UC’s size increase also take 

place for CTE.  

Figure 5.9 Chi-square results regarding the coefficient of thermal expansion for 
misaligned fibres. 
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2. A direct comparison with aligned fibres in Figure 5.8 is that chi-square results for misaligned 

fibres are closer to each other than for longitudinal and transverse effective CTE. This 

behaviour arises from the different orientation. 

3.  It can be seen that effective transverse CTE has elevated chi-square values comparing when 

compared with aligned fibres. This can be observed in the effective properties as well. 

4. AR seems to have a direct influence on the chi-square value. Misaligned fibres with 𝐴𝑅 = 10 

have generally higher chi-square values when compared with 𝐴𝑅 = 10. This indicates that 

there is a strong influence on the CTE from AR which causes a deviation between the 

expected and the observed values. 

5.1.1.3.3 Randomly oriented fibres 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10 shows results of the chi-square for longitudinal and transverse coefficient of thermal 

expansion of randomly oriented fibre realisations.   

1. As in all the previous cases, as long as the UC size increases the chi-square value decreases.  

Figure 5.10  Chi-square results regarding the coefficient of thermal expansion for 
randomly oriented fibres. 
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2. In the case of randomly oriented fibres, chi square values are higher comparingcompared 

with misaligned and aligned fibres. This is an indication that the accuracy of the results is 

strongly dependant on size when the property under investigation is CTE. 

3. The influence of AR is also clear through Figure 5.4. Results from the observed and the 

expected values seem to deviate more as the AR increases. Again, this phenomenon is 

connected to the reinforcement of the property under investigation with respect to the AR 

and the orientation, however this is something which will be discussed in detail in the next 

section.  

 

 

The following Table 5-3 includes all the information shown in the previous plots about the chi-square 

distribution with respect to the UC size for the longitudinal and transverse effective coefficient of 

thermal expansion. Results for the chi-square distribution are shown with respect to the sample size, 

the orientation of fibres, the effective property and the aspect ratio. 

 

 

Table 5-3 Chi-square results for thermo-mechanical properties. 

Orientation RVE size Chi-square AR=1 AR=5 AR=10 

Aligned 2.5 𝐶𝑇𝐸11 0.2315 0.0535 0.0521 

 3.75 𝐶𝑇𝐸11 0.0759 0.0297 0.0297 

5.0 𝐶𝑇𝐸11 0.0347 0.0043 0.0078 

2.5 𝐶𝑇𝐸22 0.2129 0.0067 0.0262 

3.75 𝐶𝑇𝐸22 0.0842 0.001 0.0048 

5.0 𝐶𝑇𝐸22 0.0348 0.0031 0.0037 

Mis-aligned 2.5 𝐶𝑇𝐸11  0.0355 0.1012 

 3.75 𝐶𝑇𝐸11  0.0168 0.0335 

5.0 𝐶𝑇𝐸11  0.0119 0.02 

2.5 𝐶𝑇𝐸22  0.0172 0.062 

3.75 𝐶𝑇𝐸22  0.0048 0.059 

 5.0 𝐶𝑇𝐸22  0.0076 0.0415 

Randomly 2.5 𝐶𝑇𝐸11  0.0668 0.109 
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oriented 

 3.75 𝐶𝑇𝐸11  0.04 0.0683 

5.0 𝐶𝑇𝐸11  0.0131 0.0117 

2.5 𝐶𝑇𝐸22  0.119 0.1833 

3.75 𝐶𝑇𝐸22  0.1 0.0461 

5.0 𝐶𝑇𝐸22  0.0212 0.0215 

 

 

5.1.2 Effective properties results 

 

Effective mechanical, thermal and thermo-mechanical properties were studied with respect to 

various micromechanical parameters. The parameters which varied throughout this study were fibre 

aspect ratio, fibre orientation distribution, UC size and fibre length distribution. Aspect ratio was 

found to be a dominant parameter in the response of a short fibre composite, a fact which is also 

supported by theoretical-analytical models such as the shear lag model or Halpin-Tsai equations. 

Orientation was the second most influential parameter on the effective properties of the short fibre 

composite. The influence of the UC size can be clearly seen through the chi-square results, and it 

seems that higher UC sizes exhibit a more convergent behaviour compared with smaller UC sizes. 

The final parameter to be analysed is the fibre length distribution, which shows that if the 

appropriate condition between maximum fibre length and UC size is not satisfied, it can be a source 

of inaccuracy for the model. 

 

 

 

 

 

5.1.2.1 Effective mechanical properties 

 

 The following family of plots show the distribution of the mechanical thermal and thermo-

mechanical effective properties with respect to UC size as a function of fibre orientation with respect 

to AR. Each plot refers to a different UC size. 
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Figure 5.11 shows the response of UC. On the left side of Figure 5.1 are results for the effective 

longitudinal stiffness and on the right side results for the effective transverse stiffness. Every row 

refers to a different UC size.  The vertical axis on the plots refers to the effective property under 

investigation, while the horizontal axis refers to the value of aspect ratio. 

Figure 5.11 Effective mechanical properties results for uniform length fibres. Results are 
presented with respect to AR for all the cases of orientation under investigation. 
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As can be seen: 

1. AR is a very crucial parameter for reinforcement. Analysing the left part of Figure 5.1, refers 

to effective longitudinal stiffness, as was expected for aligned fibres, UC seems to 

experience the most the reinforcement due to the increase in AR. Misaligned fibres follow 

with less reinforced property, while the least reinforced case of orientation, from the AR, 

are the randomly oriented realisations. The explanation for this behaviour is the 

combination of increased AR with orientation. For aligned fibres it was expected that an 

increase in AR will lead to a direct increase in the longitudinal stiffness. On the contrary for 

misaligned fibres and randomly oriented fibres, the percentage of fibres oriented towards 

the longitudinal direction is not enough to increase the longitudinal stiffness at the same 

rate as aligned fibres.   

2. In the case of transverse effective stiffness, plotted on the right side of the Figure 5.11, the 

opposite trend can be observed. Higher transverse effective stiffness was observed for the 

case of randomly oriented fibres, while misaligned fibres exhibit lower effective transverse 

stiffness and finally aligned fibres shows the least effective transverse stiffness. 

3.  It is also interesting to report the behaviour of the effective transverse stiffness for each 

case of orientation with respect to AR.  Randomly oriented UCs increase the effective 

transverse stiffness almost linearly with respect to AR increase. This is not the case for 

aligned and misaligned orientation. Aligned and misaligned realisations seems to be almost 

unaffected by the changes in AR. This mainly happens due to the lack of reinforcement on 

the specific direction of loading. As a result matrix is the main constituent that carries the 

load. This phenomenon can be predicted with analytical models. 
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Figure 5.12 Effective shear properties results 
for uniform length fibres. Results are 

presented with respect to AR for all the cases 
of orientation under investigation. 
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Figure 5.12 show results for the effective shear stiffness. Each plot refers to a different UC size.  

Results follow the same trend as the effective transverse stiffness but in the case of shear stiffness 

this is a consequence of the orientation.  

1. The orientation with the higher effective shear stiffness is the random orientation. This is 

due to the fact that randomly oriented fibres resist the shear deformation in a more efficient 

way compared with aligned and misaligned orientation.  

2. Misaligned fibres seem to experience less shear stiffness compared with randomly oriented 

fibres, but higher stiffness compared with aligned fibres. 

3. AR seems to have a strong effect on the random orientation, slightly increasing the effective 

shear stiffness for misaligned fibres and almost a negative contribution for aligned fibres. 

 

The following Table 5-4 includes all the information shown in the previous plots about the effective 

mechanical properties under investigation with respect to the AR for the three cases of orientation 

and the three cases of UC size. Results for the effective mechanical properties are presented in the 

following table with respect to the sample size, the orientation of fibres, the effective property and 

the aspect ratio. 

 

Table 5-4 Results for mechanical effective properties. 

Orientation Normalised 

UC size 

Property 

under 

investigation 

Effective property results 

AR=1 AR=5 AR=10 

Aligned 2.5 𝐶11 2.1597 4.8793 6.5723 

 3.75 𝐶11 2.2163 4.5404 6.0217 

5.0 𝐶11 2.3518 4.2229 5.6344 

2.5 𝐶22 2.0943 2.0284 1.9849 

3.75 𝐶22 2.2045 1.9939 1.9849 

5.0 𝐶22 2.3408 1.9369 1.9897 

2.5 𝐺12 0.6721 0.7169 0.6799 

3.75 𝐺12 0.7071 0.7057 0.6784 

5.0 𝐺12 0.7668 0.6802 0.6751 

Mis-aligned 2.5 𝐶11 2.1597 3.3310 5.1845 



178 
 

 3.75 𝐶11 2.2163 3.4584 5.1309 

5.0 𝐶11 2.3518 3.3387 4.7780 

2.5 𝐶22 2.0943 2.1436 2.0799 

3.75 𝐶22 2.2045 2.0479 2.1628 

5.0 𝐶22 2.3408 2.0845 2.0568 

2.5 𝐺12 0.6721 0.7935 0.8292 

3.75 𝐺12 0.7071 0.7676 0.8325 

5.0 𝐺12 0.7668 0.7953 0.8478 

Randomly 

oriented 

2.5 𝐶11 2.1597 2.6342 2.9177 

 3.75 𝐶11 2.2163 2.6343 3.1292 

5.0 𝐶11 2.3518 2.5745 3.1904 

2.5 𝐶22 2.0943 2.7805 3.4560 

3.75 𝐶22 2.2045 2.7939 3.1832 

5.0 𝐶22 2.3408 2.6738 3.0561 

2.5 𝐺12 0.6721 0.8536 0.9925 

3.75 𝐺12 0.7071 0.8697 0.9857 

5.0 𝐺12 0.7668 0.8585 1.0263 

 

5.1.2.2 Effective thermo-mechanical properties 

 

Through the following paragraphs the effective properties of longitudinal and transverse thermal 

conductivity will be presented with respect to various parameters such as orientation, aspect ratio 

and UC size. In the second part of the sub-chapter the thermo-mechanical effective results are 

presented again with respect to various parameters such as orientation, aspect ratio and UC size. 
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5.1.2.2.1 Effective thermal conductivity 
 

 

Figure 5.13 Effective thermal conductivity results for uniform length fibres. Results are presented 
with respect to AR for all the cases of orientation under investigation. 
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Figure 5.13 shows results for the effective thermal conductivity. Plots on the left side refer to 

longitudinal effective thermal conductivity while the plots on the right side of Figure 5.13 refer to 

the effective transverse thermal conductivity. Each row refers to a different UC size. 

Analysing firstly the results on the left side of Figure 5.13, longitudinal effective thermal 

conductivity, it must be noticed that orientation is affecting the effective property.  

1. Aligned fibres seem to be more conductive when compared with misaligned and randomly 

oriented. The lowest value of longitudinal thermal conductivity is in the case of randomly 

oriented fibres.  

2. AR seems to make a small contribution to the property under investigation and only when it 

is combined with the appropriate orientation. For example, the same increase in the AR has 

a significant effect on randomly oriented fibres and almost no effect on aligned fibres. 

3. In the case of transverse effective thermal conductivity, the exact opposite trend can be 

observed for both parameters (orientation and AR). 

4.  On the contrary to longitudinal effective stiffness, randomly oriented fibres seems to be 

more thermally conductive for the transverse direction, misaligned fibres less conductive 

and the orientation with the lowest transverse conductivity is the aligned fibres.  

5. Regarding the AR, transverse effective thermal conductivity remains almost unaffected for 

the randomly oriented fibres as long as the AR increases, while misaligned and aligned fibres 

seems to slightly decrease as the AR increases. 

 

The following Table 5-5 includes all the information shown in the previous plots regarding the 

effective thermal properties under investigation with respect to the AR for the three cases of 

orientation and the three cases of UC size. Results for the effective thermal conductivity for the 

longitudinal and transverse direction are presented in the following table with respect to the sample 

size, the orientation of fibres, the effective property and the aspect ratio. 

 

Table 5-5 Results for effective thermal properties. 

Orientation Normalised 

UC size 

Property 

under 

investigation 

Effective property results 

AR=1 AR=5 AR=10 

Aligned 2.5 𝐾11 0.1168 0.1163 0.1180 

 3.75 𝐾11 0.1136 0.1173 0.1181 

5.0 𝐾11 0.1097 0.1191 0.1176 

2.5 𝐾22 0.1160 0.0966 0.0970 

3.75 𝐾22 0.1136 0.0977 0.0964 
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 5.0 𝐾22 0.1096 0.0999 0.0969 

Mis-aligned 2.5 𝐾11 0.1168 0.1124 0.1159 

 3.75 𝐾11 0.1136 0.1161 0.1169 

5.0 𝐾11 0.1097 0.1152 0.1163 

2.5 𝐾22 0.1160 0.1032 0.0995 

3.75 𝐾22 0.1136 0.1022 0.0993 

5.0 𝐾22 0.1096 0.1026 0.0999 

Randomly 

oriented 

2.5 𝐾11 0.1168 0.0956 0.1053 

 3.75 𝐾11 0.1136 0.1066 0.1076 

5.0 𝐾11 0.1097 0.1074 0.1077 

2.5 𝐾22 0.1160 0.0971 0.1090 

3.75 𝐾22 0.1136 0.1085 0.1071 

5.0 𝐾22 0.1096 0.1086 0.1065 
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5.1.2.2.2 Effective coefficient of thermal expansion 

 

Figure 5.14 Effective CTE results for uniform length fibres. Results are presented with 

respect to AR for all the cases of orientation under investigation and units are 
𝟏𝟎−𝟓

𝑲
. 
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Figure 5.14 shows the effective longitudinal and transverse coefficient of thermal expansion. The left 

side of Figure 5.14 refers to effective CTE for the longitudinal direction while the right side of Figure 

5.14 refers to the effective CTE for the transverse direction. 

As can be observed: 

1. The longitudinal effective CTE randomly oriented fibres seems to have a higher CTE in 

comparison with misaligned fibres and randomly oriented fibres.  

2. AR is also contributing in a negative way to longitudinal effective CTE. As can be observed, as 

the AR increases the effective longitudinal CTE decreases. 

3. The opposite trend can be noticed for the effective transverse CTE with the exception of 

randomly oriented fibres. Firstly, in terms of orientation for effective transverse CTE, aligned 

fibres seems to have the higher CTE, while misaligned fibres have lower CTE and randomly 

oriented fibres have the lowest CTE.  

4. Regarding the AR, CTE for realisations with aligned and misaligned fibres seems to increase 

as the AR increases (the opposite behaviour compared with longitudinal CTE) but in the case 

of randomly oriented realisations, CTE decreases as was observed for the longitudinal 

effective CTE.   

 

The following Table 5-6 includes all the information shown in the previous plots about the effective 

thermo-mechanical properties under investigation with respect to the AR for the three cases of 

orientation and the three cases of UC size. Results for the effective coefficient of thermal expansion 

for the longitudinal and transverse direction are presented in the following table with respect to the 

sample size, the orientation of fibres, the effective property and the aspect ratio. 

Table 5-6 Results for thermo-mechanical effective properties.  

Orientation RVE size Property AR=1 AR=5 AR=10 

Aligned 2.5 𝐶𝑇𝐸11 0.6035∗ 10−5 0.2130∗ 10−5 0.0774∗ 10−5 

 3.75 𝐶𝑇𝐸11 0.5175∗ 10−5 0.2311∗ 10−5 0.0855∗ 10−5 

5.0 𝐶𝑇𝐸11 0.4887∗ 10−5 0.2472∗ 10−5 0.0953∗ 10−5 

2.5 𝐶𝑇𝐸22 0.5713∗ 10−5 0.6735∗ 10−5 0.6500∗ 10−5 

3.75 𝐶𝑇𝐸22 0.5040∗ 10−5 0.6735∗ 10−5 0.700∗ 10−5 

5.0 𝐶𝑇𝐸22 0.5028∗ 10−5 0.7064∗ 10−5 0.7500∗ 10−5 

Mis-aligned 2.5 𝐶𝑇𝐸11 0.6035∗ 10−5 0.3156∗ 10−5 0.2063∗ 10−5 

 3.75 𝐶𝑇𝐸11 0.5175∗ 10−5 0.2915∗ 10−5 0.2913∗ 10−5 
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5.0 𝐶𝑇𝐸11 0.4887∗ 10−5 0.3241∗ 10−5 0.2166∗ 10−5 

 2.5 𝐶𝑇𝐸22 0.5713∗ 10−5 0.6106∗ 10−5 0.6518∗ 10−5 

3.75 𝐶𝑇𝐸22 0.5040∗ 10−5 0.6488∗ 10−5 0.6489∗ 10−5 

5.0 𝐶𝑇𝐸22 0.5028∗ 10−5 0.6177∗ 10−5 0.7116∗ 10−5 

Randomly 

oriented 

2.5 𝐶𝑇𝐸11 0.6035∗ 10−5 0.4290∗ 10−5 0.4348∗ 10−5 

 3.75 𝐶𝑇𝐸11 0.5175∗ 10−5 0.5562∗ 10−5 0.3995∗ 10−5 

5.0 𝐶𝑇𝐸11 0.4887∗ 10−5 0.4649∗ 10−5 0.3824∗ 10−5 

2.5 𝐶𝑇𝐸22 0.5713∗ 10−5 0.4281∗ 10−5 0.3533∗ 10−5 

3.75 𝐶𝑇𝐸22 0.5040∗ 10−5 0.3856∗ 10−5 0.3762∗ 10−5 

5.0 𝐶𝑇𝐸22 0.5028∗ 10−5 0.4389∗ 10−5 0.3980∗ 10−5 

 

 

 

 

 

 

5.2 Non mono-dispersed fibre length 
Through the following sub-chapter chi-square results and effective properties results are presented 

for the elastic and the thermo-elastic responses of the material.  The following paragraphs refer to 

the case of non-uniform fibre length. For the particular case being studied, fibre length distribution 

was seeded by a pseudorandom number generator as was presented in chapter 2.3.3. 

 

5.2.1 Chi-square results 

 

The following family of plots regards the chi square distribution and the effective mechanical, 

thermal and thermo-mechanical properties of realisations consisting of a randomly seeded fibre 

length. The distribution of fibre length can be characterised as uniform. Figure 5.15 shows the chi-

square distribution for mechanical properties for aligned, misaligned and randomly oriented fibres. 

The horizontal axis indicates the size of the UC while the vertical axis defines the chi-square value of 

each property. Each plot refers to a different orientation. Chi square results for thermal properties 
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follow and the last chi square plots show the distribution of the test for thermo-mechanical 

properties. 

 

 

5.2.1.1 Mechanical properties 

 
Figure 5.15 Chi-square results regarding the mechanical properties for non mono-

disperse fibre length distribution, for three cases of orientation. 
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As can be seen in Figure 5.15 the general trend of the chi square values is to decrease as UC size 

increases. It can also be observed that: 

1. Chi square values are higher in total compared with the chi-square values of mechanical 

properties of uniform fibres length realisations. This was expected since a new stochastic 

parameter has entered the system. As a consequence of increasing the uncertainty in the 

system, the deviation between the expected and the observed values of the five 

realisations’ responses will increase.  

2. As was observed for the mechanical properties of uniform length composite, for aligned 

fibres, the property with the higher chi-square value, so the greatest fluctuation in results is 

in the effective longitudinal stiffness. As was explained, this is due to the reinforcing 

contribution of oriented fibres. The main difference in that case is that the length of fibres is 

a random parameter for each realisation. As a result, the response of the material for five 

different realisations consisting of the same 𝑉𝑓 and orientation varies depending on the 

stochastic fibre length. UC sizes that have chi-square values below the red discontinuous 

line on the plots do not experience any dependency of their response with the stochastic 

fibre length. 

3. Comparing the chi-square values of the same mechanical property for a different case of 

orientation, it can be observed that randomly oriented fibre composite has the higher value 

for longitudinal, transverse stiffness an also for the effective shear stiffness. In the case of 

misaligned fibres results seems to have less deviation. This is reflected from the low high 

square values on the mechanical properties.  

4. However compared with aligned fibres, transverse stiffness and shear stiffness have higher 

chi-square values.  

5. Finally, for aligned fibres a large deviation was observed only for the case of longitudinal 

stiffness. 

The following Table 5-7 includes all the information shown in the previous plots regarding the results 

of the chi-square test for the effective mechanical properties under investigation with respect to the 

three cases of orientation and the two cases of UC size. Results for the chi-square test for the 

longitudinal and transverse effective stiffness and for the effective shear stiffness are presented in 

the following Table 5-7 with respect to the sample size and the orientation of fibres. 
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Table 5-7 Chi-square results for mechanical properties of RLD. 

Orientation UC size Property 

under 

investigation 

Chi-square 

value 

Aligned 2.5 𝐶11 Not-

investigated 

 3.75 𝐶11 0.9182 

5.0 𝐶11 0.0941 

2.5 𝐶22 Not-

investigated 

3.75 𝐶22 0.0057 

5.0 𝐶22 0.0005 

2.5 𝐺12 Not-

investigated 

3.75 𝐺12 0.0078 

5.0 𝐺12 0.0004 

Mis-aligned 2.5 𝐶11 Not-

investigated 

 3.75 𝐶11 0.2480 

5.0 𝐶11 0.23 

2.5 𝐶22 Not-

investigated 

3.75 𝐶22 0.0011 

5.0 𝐶22 0.0017 

2.5 𝐺12 Not-

investigated 

3.75 𝐺12 0.0122 

5.0 𝐺12 0.0113 

Randomly 

oriented 

2.5 𝐶11 Not-

investigated 
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 3.75 𝐶11 1.3356 

5.0 𝐶11 0.0085 

2.5 𝐶22 Not-

investigated 

3.75 𝐶22 1.262 

5.0 𝐶22 0.1505 

2.5 𝐺12 Not-

investigated 

3.75 𝐺12 0.0136 

5.0 𝐺12 0.0221 

 

 

 

5.2.1.2 Thermal properties  

 

The following family of plots regards the chi-square results for thermal properties and more 

specifically for the longitudinal effective thermal conductivity and the transverse effective thermal 

conductivity regarding all the cases of orientation and non mono-disperse fibre length. The plots are 

separated with respect to the fibres’ orientation. The vertical axis indicates the chi-square value of 

each property while the horizontal axis indicates the UC size. 
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As it can be seen in Figure 5.16 chi-square test results for the effective thermal conductivity have a 

very low value. A similar trend was observed for uniform fibre length. Results for the effective 

thermal conductivity seem to have very little deviation between the five realisations. It also seems 

not to be affected by the orientation. Only in the case of randomly oriented fibres a small increase in 

the chi-square value was observed, but this was still well below the criterion table value. 

 

The following   Table 5-8 includes all the information shown in the previous plots about the results of 

the chi-square test for the effective thermal properties under investigation with respect to the three 

cases of orientation and the two cases of UC size. Results for the chi-square test for the longitudinal 

and transverse effective thermal conductivity are presented in the following table with respect to 

the sample size and the orientation of fibres. 

Figure 5.16 Chi-square results regarding the thermal conductivity for non mono-
disperse fibre length distribution, for three cases of orientation. 
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  Table 5-8 Chi-square results for thermal properties of RLD. 

Orientation Normalised 

UC size 

Property 

under 

investigation 

Chi-square 

value 

Aligned 2.5 𝐾11 0.1982 ∗ 10−3 

 3.75 𝐾11 0.1077 ∗ 10−3 

2.5 𝐾22 0.3075 ∗ 10−3 

3.75 𝐾22 0.6402 ∗ 10−3 

Mis-aligned 2.5 𝐾11 0.1534 ∗ 10−3 

 3.75 𝐾11 0.0947 ∗ 10−3 

2.5 𝐾22 0.3826 ∗ 10−3 

3.75 𝐾22 0.0654 ∗ 10−3 

Randomly 

oriented 

2.5 𝐾11 0.0034 

 3.75 𝐾11 0.0003 

2.5 𝐾22 0.0063 

3.75 𝐾22 0.0003 

 

 

5.2.1.3 Coefficient of thermal expansion 

 

The following family of plots shows the chi-square distribution for the linear coefficient of thermal 

expansion, for non-uniform length, aligned fibres, misaligned fibres and randomly oriented fibres for 

all the cases of orientation under investigation and for two different UC sizes and for longitudinal 

and transverse coefficient of thermal expansion. 
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As can be seen in Figure 5.17 chi-square values for the effective CTE for longitudinal and transverse 

direction are reduced as UC size increases. This trend was observed since the beginning of 

presenting the chi-square test and is also a general indication that the approach of a representative 

structure is pointing in the correct direction. 

As can be observed the chi-square value differs depending on the property and on the orientation. 

As a general note it must be underlined that the first size under investigation is not representative in 

almost any case of random AR realisations. In some cases even the second-biggest size is not 

representative and larger UC realisations are needed. The higher chi-square value for longitudinal 

Figure 5.17 Chi-square results regarding the coefficient of thermal expansion for non 
mono-disperse fibre length distribution, for three cases of orientation. 



192 
 

CTE was in the case of aligned fibres, as was expected. For randomly oriented fibres both 

longitudinal and transverse CTE show very similar chi-square values, which means similar deviation 

between the observed and the expected value. This trend was observed in almost all cases of 

randomly oriented fibres and is a result of the isotropic response of randomly oriented short fibre 

composites. The case of misaligned fibres shows smaller value of chi-square test compared with the 

other two cases of orientation but the highest value on the second-larger UC size.  

The following Table 5-9 includes all the information shown in the previous plots about the chi-square 

distribution with respect to the UC size for the longitudinal and transverse effective coefficient of 

thermal expansion. Results for the chi-square distribution are shown with respect to the UC size, the 

orientation of fibres and the effective property. 

 

Table 5-9 Chi-square results for thermos-mechanical properties of RLD. 

Orientation Normalised 

UC size 

Property 

under 

investigation 

Random AR 

Chi-square 

value 

Aligned 2.5 𝐶𝑇𝐸11 2.3212 

 3.75 𝐶𝑇𝐸11 0.034 

2.5 𝐶𝑇𝐸22 0.6548 

3.75 𝐶𝑇𝐸22 0.0111 

Mis-aligned 2.5 𝐶𝑇𝐸11 0.4111 

 3.75 𝐶𝑇𝐸11 0.184 

2.5 𝐶𝑇𝐸22 0.0053 

3.75 𝐶𝑇𝐸22 0.0016 

Randomly 

oriented 

2.5 𝐶𝑇𝐸11 0.3867 

 3.75 𝐶𝑇𝐸11 0.0177 

2.5 𝐶𝑇𝐸22 0.353 

3.75 𝐶𝑇𝐸22 0.0637 
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5.2.2 Effective mechanical properties 

 

The following plots are referring to effective properties. The first plots refer to mechanical 

properties, then thermal properties and thermo-mechanical properties. Figures are separated 

according to fibre orientation. 

As in the case of uniform fibre length, effective mechanical, thermal and thermo-mechanical 

properties were studied with respect to various micromechanical parameters. The parameters that 

vary through the following results are fibre orientation distribution, UC size and fibre length 

distribution.  

 The following family of plots show the distribution of the mechanical thermal and thermo-

mechanical effective properties with respect to UC size as a function of fibre orientation with respect 

to UC size. Each plot refers to a different fibre orientation. 
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5.2.2.1 Effective stiffness properties 

 

 

 
Figure 5.18 Mechanical effective properties for non mono-disperse fibre length for 

the three cases of orientation. 
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As it can be seen in Figure 5.18 each row represents different fibre orientation, and for each plot 

components of longitudinal, transverse and shear stiffness are presented. 

1. As was observed for non-uniform length fibres the most reinforced parameter is the 

longitudinal stiffness.  

2. Comparing results with the uniform fibre length it can be noted that non-uniform length 

shows higher effective mechanical properties. 

3.  However it is crucial to emphasise that results for the first UC size cannot be accepted as 

representative and also that  uniform fibre lengths generally show much lower chi-square 

values, which is an indication of more accurate results.  

4. Apart from the representativeness of results, the elevated stiffness is mainly caused by the 

percentage of fibres with anAR higher than 10. Fibres with  𝐴𝑅 > 10 offer the composite a 

higher degree of reinforcement.  

5. As expected, higher longitudinal effective stiffness was observed for aligned fibres than 

misaligned fibres and the lower value of longitudinal effective stiffness is for randomly 

oriented fibres.  

6. On the contrary, transverse effective stiffness has the higher value for randomly oriented 

fibres, while in the case of misaligned and aligned fibres very closed values were observed.  

7. The same trend as transverse stiffness was observed for effective shear stiffness. The 

highest value was observed for randomly oriented fibres, while similar results were 

observed for misaligned and aligned fibres. 

The following Table 5-10 includes all the information shown in the previous plots about the effective 

mechanical properties under investigation with respect to UC size for the three cases of orientation 

and the two cases of UC’s size. Results for the effective mechanical properties are presented in the 

following table with respect to the sample size, the orientation of fibres and the effective property. 

 

 

Table 5-10 Results of effective mechanical properties of RLD. 

Orientation Normalised 

UC size 

Property 

under 

investigation 

Random AR 

Aligned 2.5 𝐶11  

 3.75 𝐶11 10.6836 

5.0 𝐶11 11.8822 

2.5 𝐶22  
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3.75 𝐶22 1.9512 

5.0 𝐶22 1.9509 

2.5 𝐺12  

3.75 𝐺12 0.6837 

5.0 𝐺12 0.6587 

Mis-aligned 2.5 𝐶11  

 3.75 𝐶11 6.567 

5.0 𝐶11 8.1329 

2.5 𝐶22  

3.75 𝐶22 2.0599 

5.0 𝐶22 2.0380 

2.5 𝐺12  

3.75 𝐺12 0.8716 

5.0 𝐺12 0.8341 

Randomly 

oriented 

2.5 𝐶11  

 3.75 𝐶11 3.2719 

5.0 𝐶11 2.9958 

2.5 𝐶22  

3.75 𝐶22 3.579 

5.0 𝐶22 3.1664 

2.5 𝐺12  

3.75 𝐺12 0.9786 

5.0 𝐺12 1.0645 
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5.2.3 Effective thermal conductivity 

The following sub-chapter discusses effective property results for thermal conductivity. Results 

relate to the case of non mono-dispersed fibre length, the three cases of orientation (aligned, mis-

oriented and random) and two UC sizes. 

5.2.3.1 Effective thermal conductivity 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.19 shows results for the effective longitudinal and transverse thermal conductivity with 

respect to the UC size. The first row refers to longitudinal thermal conductivity while the second one 

refers to the thermal conductivity on the transverse direction. For each plot different colour refers 

to different orientations. 

 As can be seen in the plots of Figure 5.19  

1. Results of the effective thermal conductivity differs with respect to the case of orientation 

but they slightly change with respect to the UC size. This is something which is also reflected 

in the chi-square plots by the very low value on the test. 

Figure 5.19 Thermal conductivity effective properties for non mono-disperse fibre 
length for the three cases of orientation. 
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2. Regarding the orientation, the response of realisation on thermal loading shows the 

opposite trend in terms of the direction of the property. 

3.  In the case of longitudinal effective stiffness, higher conductivity was observed for aligned 

fibres, misaligned fibres are less conductive and random fibres exhibit the less conductivity. 

4.  For thermal conductivity on the transverse direction the opposite trend was observed. 

Randomly oriented fibres show the higher conductivity, misaligned fibres show less 

conductivity while the lower conductivity value was observed for the case of aligned fibres. 

The following Table 5-11 includes all the information shown in the previous plots about the effective 

thermal properties under investigation with respect to UC size for the three cases of orientation and 

the two cases of UC size. Results for the effective mechanical properties are presented in the 

following table with respect to the sample size, the orientation of fibres and the effective property. 

 

 

Table 5-11 Results of effective thermal properties of FLD. 

Orientation Normalised 

UC size 

Property 

under 

investigation 

Effective 

property value 

Aligned 2.5 𝐾11 0.1180 

 3.75 𝐾11 0.1189 

2.5 𝐾22 0.0958 

3.75 𝐾22 0.0962 

Mis-aligned 2.5 𝐾11 0.1166 

 3.75 𝐾11 0.1166 

2.5 𝐾22 0.0998 

3.75 𝐾22 0.0980 

Randomly 

oriented 

2.5 𝐾11 0.1070 

 3.75 𝐾11 0.102 

2.5 𝐾22 0.1084 

3.75 𝐾22 0.1083 
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5.2.3.2 Effective coefficient of thermal expansion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.20 shows the effective longitudinal and transverse CTE. The first row refers to the 

longitudinal CTE while the second one refers to the transverse CTE. For each plot a different colour 

indicates a different fibre orientation, while the vertical axis shows effective property results and the 

horizontal axis shows the UC size.  

As can be seen: 

1. The behaviour of the effective CTE with respect to UC size is constant except in the case of 

aligned fibres. 

2.  On the contrary a big difference can be observed for the case of different orientations.  For 

longitudinal effective CTE randomly oriented fibres show the highest CTE, while aligned 

fibres follow and finally the lower value of CTE was observed for misaligned fibres.  

3. Transverse effective CTE shows very closed values for aligned and misaligned orientations, 

while the smaller CTE value was observed for randomly oriented fibres.  

Figure 5.20 Coefficient of thermal expansion for non mono-disperse fibre length for 
the three cases of orientation. 
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Up to this point it must be emphasised that results have meaning only if the analogous chi-square 

results lay below the red discontinuous line so they can be considered as representative. 

The following Table 5-12 includes all the information shown in the previous plots about the effective 

thermo-mechanical properties under investigation with respect to UC size for the three cases of 

orientation and the two cases of UC size. Results for the effective thermo-mechanical properties are 

presented in the following table with respect to the sample size, the orientation of fibres and the 

effective property. 

 

 

Table 5-12 Results of the effective thermo-mechanical properties of FLD. 

Orientation Normalised 

UC size 

Property 

under 

investigation 

Effective 

property value 

Aligned 2.5 𝐶𝑇𝐸11 0.0863 ∗ 10−5 

 3.75 𝐶𝑇𝐸11 0.2231 ∗ 10−5 

2.5 𝐶𝑇𝐸22 0.6598 ∗ 10−5 

3.75 𝐶𝑇𝐸22 0.577 ∗ 10−5 

Mis-aligned 2.5 𝐶𝑇𝐸11 0.7212 ∗ 10−6 

 3.75 𝐶𝑇𝐸11 0.605 ∗ 10−6 

2.5 𝐶𝑇𝐸22 0.6258 ∗ 10−5 

3.75 𝐶𝑇𝐸22 0.6398 ∗ 10−5 

Randomly 

oriented 

2.5 𝐶𝑇𝐸11 0.3405 ∗ 10−5 

 3.75 𝐶𝑇𝐸11 0.3263 ∗ 10−5 

2.5 𝐶𝑇𝐸22 0.312 ∗ 10−5 

3.75 𝐶𝑇𝐸22 0.3045 ∗ 10−5 
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5.3 Comparison with analytical models 
 

Considering the mechanical, thermal and thermo-mechanical effective properties calculated from 

the numerical analysis a direct comparison with various analytical models will take place in the 

following section. The micromechanical analytical models which will be compared with numerical 

results were presented in chapter 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.21 Comparison of FEA results with various analytical models for longitudinal 
transverse and shear stiffness 
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Comparison will take place as a function of AR and the majority of the following micromechanical 

models are able to consider any changes in the AR. The comparison is separated in terms of the 

property and the orientation.  

Figure 5.21 shows effective properties calculated from numerical models in comparison with various 

analytical models. Results from numerical models were derived for normalised RVE size equal to 

3.75. Each row on Figure 5.21 refers to a different property.  

1. The first plot shows results for longitudinal stiffness of aligned fibres. As can be seen 

numerical results lay between Halpin-Tsai predictions, Mori-Tanaka and Eshelby predictions. 

With the red line the broad bounds of longitudinal and transverse direction are indicated. 

The numerical model is able to quite accurately simulate the reinforcement phenomenon of 

higher AR as the analytical models 

2. The second plot refers to transverse stiffness of aligned fibres. As can be observed numerical 

models predictions lay below the Halpin-Tsai predictions, the Mori-Tanaka and Eshelby’s 

predictions, and slightly above Hashin Strinkman’s lower bound. 

3. The third plot shows predictions for shear stiffness. Numerical predictions of shear stiffness 

seem to slightly underestimate the property compared with the predictions of analytical 

models. Finite element models lay below the predictions of Eshelby’s model, Halpin-Tsai’s 

model and Mori-Tanaka’s model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.22 Comparison of FEA results with various analytical models for the case of 
randomly oriented and misaligned fibres 
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Figure 5.22 shows a prediction of the longitudinal and transverse stiffness of randomly oriented and 

misaligned fibres. For comparison with numerical models a modified version of the RoM was used 

based on the orientation distribution of the developed models. The factor modifying the RoM in 

order to account for misaligned and randomly oriented fibres was calculated based on the fibre 

orientation of the compared numerical model. Results show that numerical predictions for 

misaligned fibres and for randomly oriented fibres lay between the predictions of the analytical 

models. 

 

 

 

Figure 5.23 shows a comparison between the predictions of various analytical models with the 

predictions of numerical models regarding the effective thermal conductivity. The plot on the left 

shows predictions of thermal conductivity on the longitudinal and transverse direction.  As can be 

seen predictions of the numerical models lay between the general bounds of the RoM and the IRoM. 

Longitudinal effective conductivity follows the predictions of the Halpin-Tsai model while transverse 

thermal conductivity tends to asymptotically follow the lower bound. 

The plot on the right side is a comparison between analytical and numerical models for misaligned 

and randomly oriented fibres. In the case of random orientation there is no longitudinal and 

transverse thermal conductivity because the general trend is an isotropic behaviour of the material 

due to the nature of reinforcement. As a result a single value of thermal conductivity was calculated, 

able to describe the thermal behaviour of the material in both directions. As can be seen predictions 

of the numerical models for misaligned and randomly oriented fibres are close to the predictions of 

Figure 5.23 Comparison of FEA results with various analytical models for thermal 
conductivity for aligned and misaligned fibres. 
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the modified Nielsen model and generally lay between the general bounds indicated with the red 

discontinuous line. 

 

 

Figure 5.24 shows a comparison between numerical models and analytical models for the 

predictions of effective coefficient of thermal expansion. The plot on the left side shows the 

prediction of longitudinal and transverse CTE for the case of fully aligned fibres. As can be seen finite 

element predictions for longitudinal CTE coincide with predictions from the Schapery model for 

longitudinal CTE while numerical calculations for the transverse CTE seems to deviate from the 

analytical predictions. 

The plot on the right side of Figure 5.24 shows predictions of numerical and analytical models for the 

case of misaligned and randomly oriented fibres. Results seem to have a good agreement with 

predictions of the modified Schapery model, and to be well below the Halpin-Pangano model’s 

predictions. 

 

 

 

 

 

 

 

Figure 5.24 Comparison between FEA results and analytical models for coefficient of 
thermal expansion for aligned, misaligned and randomly oriented fibres. 
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5.4 Conclusions 
 

Throughout chapter 5 results from the numerical analysis were presented. The first section of the 

chapter deals with composite UCs consisting of uniform length fibres while the second section refers 

to non-uniform fibre length distribution. For each case of fibre length distribution (uniform or not) 

chi-square results are presented first and effective properties follow.  Chi-square results are 

presented at the beginning of the chapter in order to emphasise their role. The effective properties 

results have no meaning if they are not interpreted in combination with the chi-square results. 

 The first section is divided in sub-sections with respect to the physical meaning of the properties 

under investigation. First the mechanical properties were presented, the thermal properties follow, 

while the thermo-mechanical properties are presented at the end.  

Chi square results for mechanical properties show that in order to ensure that the UC is 

representative of the material, a size 3.75 times larger than the inclusion’s larger dimension must be 

considered. The 3.75 normalised UC size satisfies the criterion for thermal and thermo-mechanical 

properties as well. 

 A strong dependency between the chi-square value  and the fibre orientation, the AR and the 

property under investigation was observed. The last two parameters are not independent from each 

other. An increase in the AR leads to reinforcement of a specific property. Properties which are 

reinforced due to AR increase shows higher chi-square values. This is due to the fact that more 

reinforced properties tend to have a stronger dependency on the realisations. However this is not 

something independent of the fibre orientation. Increasing the AR will cause a direct increase in 

longitudinal stiffness for aligned fibres and an increase in the chi-square value of the specific 

orientation and property. However increasing the AR for randomly oriented fibres will not cause the 

same increase in the effective property and obviously not in the chi-square value. As a consequence 

the representativeness of the size is a property depending on the combination of AR and fibre 

orientation.  

On the contrary, a common behaviour for all the properties under investigation and all the cases of 

AR and fibre orientation is the decrease of chi-square value with the increase in the UC size. This 

behaviour was observed for almost all the chi-square plots and as was mentioned previously, this is 

caused by the fact that larger UC sizes include more information about the structure and as a result 

the responses of the five realisations are closer to each other. Observed and expected values do not 

deviate. 

 As a consequence a conclusion regarding the first section of the chapter is that a UC is considered as 

representative of the material once it satisfies the chi-square criterion. Parameters such as AR and 

FO, and the combination of the two, strongly influence the representativeness of a UC’s size. For the 

specific composite material under investigation (specific degree of inhomogeneity) and for the 

specific range of AR, the Representative Volume Element can be defined once the size of the UC is 

larger than 3.75 times the larger dimension of the inclusions.     

The second sub-section of the chapter includes results for the effective properties under 

investigation. As in the first section of the chapter, results for mechanical properties are presented 
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first, while results for thermal and thermo-mechanical analysis follow. Through the analysis of the 

response of the material, the contribution of parameters such as AR or FO on the macroscopic 

effective properties was evaluated. AR seems to be a very dominant parameter for the mechanical 

properties of a composite material. It was clear from the results that higher AR leads to higher 

effective properties once it is combined with the proper orientation regarding the property of 

interest. Direct comparison of the effective properties with the same orientation but with different 

AR gives a clear picture of the enhancement of the mechanical properties with the increase of AR. 

However the enhancement does not take place for every property. In order to reinforce specific 

properties of the material, the increase in AR must be combined with the appropriate orientation for 

the specific property.  

On the other hand a direct comparison with UC consisting of the same AR but different fibre 

orientation shows the importance of the appropriate orientation in order to get elevated mechanical 

properties.  Nevertheless reinforcement of the same property due to different orientation is less in 

comparison with the degree of reinforcement on the same property when orientation is the same 

but AR changes. 

A general orthotropic behaviour was observed in the case of aligned discontinuous fibres while the 

misaligned fibres showed a behaviour close to the special orthotropic. Randomly oriented fibres 

exhibit an almost isotropic behaviour. As a consequence of the symmetry of the material, aligned 

fibres lead to higher longitudinal effective stiffness while randomly oriented fibres lead to higher 

transverse effective stiffness and higher effective shear stiffness. It must be emphasised that 

reinforcement of each property is a combination of the AR and the orientation. 

The influence on the mechanical properties from AR is strongly dependant on the property and on 

the orientation of fibres. For aligned fibres AR has a strong influence on the longitudinal stiffness 

while transverse stiffness and shear stiffness seem to be almost unaffected by the changes in AR. For 

misaligned fibres the case was slightly different. Longitudinal stiffness was again increased but at a 

lower rate compared with aligned fibres; also shear stiffness increased with respect to AR increase. 

For randomly oriented fibres longitudinal and transverse stiffness have almost the same value and 

the same influence once the AR increases. The case of shear stiffness for randomly oriented fibres is 

the only one in which the influence of AR on the shear stiffness is high. Shear stiffness seems to 

increase linearly with respect to AR. This is a phenomenon for effective shear stiffness which was 

observed only for the case of randomly oriented fibres.  

 Analysing the thermal and thermo-mechanical properties, chi square analysis indicates that chi-

square value for thermal conductivity is very slightly influenced by the AR or fibre orientation. The 

Chi-square value for thermal conductivity is very low and well below the critical value. This is 

something which indicates that results from the five realisations concerning thermal conductivity 

converge to a specific value relatively easily. On the contrary, chi-square results for the effective CTE 

show a strong dependency on the chi-square results for AR and fibre orientation. More specifically, 

as can be seen in chi-square analysis, the first size under investigation turned out not to be 

representative. As a result representative volumes for that specific range of AR and the cases of 

orientation under study must be 3.75 times larger than the larger dimension of the inclusions. 

Effective thermal conductivity shows similar trends as the chi-square values for thermal conductivity. 

A very small influence of the AR on the actual effective property was observed. Also the opposite 
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trend was observed regarding the direction of the property (longitudinal or transverse thermal 

conductivity) and the orientation of the fibres. In general the trend was for longitudinal thermal 

conductivity aligned fibres to show a more conductive response, while for the transverse effective 

thermal conductivity randomly oriented fibres show a more conductive response. The misaligned 

oriented fibres lay between aligned and randomly oriented fibres. 

Regarding the effective coefficient of thermal expansion, a strong influence from both parameters 

(AR and orientation) was observed. More specifically for the longitudinal effective CTE as long as the 

AR increases the effective property decreases. This opposite trend was observed in the case of 

effective transverse CTE. The effective property increases as AR increases. 

Effective thermal conductivity also shows a strong dependency on the fibre orientation. For 

transversely effective CTE aligned fibres have the higher effective property, while misaligned fibres 

exhibit lower CTE and randomly oriented fibres exhibit the lowest CTE. For transverse effective CTE 

the opposite trend was observed.  Randomly oriented fibres exhibit the higher CTE with misaligned 

orientation following a similar trend. Aligned fibres exhibit much lower CTE compared with the other 

two cases of orientation. 

Chi-square analysis of random length realisations for mechanical properties shows that there is a 

strong dependency of the results with the UC size. By far the 3.75 normalised UC size cannot be 

considered as representative. In some cases (misaligned fibres for longitudinal stiffness and random 

orientation for transverse stiffness) even the 5.0 normalised size is not representative.   

Effective mechanical properties of stochastic length realisations exhibit higher stiffness for all the 

properties compared with uniform length realisations. However results from stochastic length 

realisations must be treated with care because chi square results show that at least the small size of 

the UC is not representative. The main reason for the elevated stiffness in comparison with uniform 

AR is the fact that stochastic length realisations include fibres with AR larger than 10 which 

enhanced the stiffness. 

Chi-square plots for non-mono-dispersed realisations regarding effective thermal conductivity show 

similar results to the case of mono-dispersed fibres length. Deviation between the observed and the 

expected values of the material response seems to be very small and that is reflected as a very small 

chi-square value. 

Effective thermal properties show no noticeable change with respect to the UC size. Between the 

longitudinal effective thermal conductivity and the transverse effective thermal conductivity the 

opposite trend was observed regarding the orientation of fibres. In the case of longitudinal thermal 

conductivity, aligned fibres exhibit the higher value with the misaligned fibres very close, howing an 

almost similar response. Randomly oriented fibres exhibit the lower longitudinal thermal 

conductivity. In the case of transverse effective thermal conductivity randomly oriented fibres show 

the more conductive behaviour while misaligned and aligned oriented fibres exhibit lower thermal 

conductivity with very close results. Aligned fibres show the lowest transverse thermal conductivity. 

Chi-square results for the coefficient of thermal expansion seem to have a very similar response to 

the chi-square results of the mechanical properties. Results for the normalised size of 3.75 cannot be 
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considered as representative for both longitudinal and transverse directions with an the exception of 

misaligned fibres and transverse CTE.  

Regarding the effective thermo-mechanical properties, results show a strong dependency between 

the property and the size of the UC. This was clear from the chi-square analysis, however it is also 

obvious for the longitudinal effective CTE on the effective properties plots. Concerning the 

longitudinal effective CTE, randomly oriented fibres exhibit the higher CTE while misaligned fibres 

shows the lower CTE value. Both orientations shows gradual changes with respect to the size, while 

aligned fibres lay between the aforementioned orientation cases and change dramatically with the 

size. In general, for more accurate results regarding the case of stochastic fibre length, a larger UC 

size must be considered. As a consequence results can be under discussion, but is not the correct 

approach to derive conclusions about the response of the material. 

The chapter concludes with a direct comparison of the numerical results with various analytical 

models and approaches. The analytical models under comparison have been discussed and 

presented in chapter 2. In general the comparison shows an acceptable agreement between the 

numerical method and the analytical models. Overall properties always lay between the general 

bounds of the constituents. More specifically, regarding the longitudinal stiffness of aligned fibres, 

numerical results show an excellent agreement with analytical predictions of theoretical and semi-

empirical models. Transverse stiffness numerical results lay slightly below the theoretical models’ 

predictions but above the general bounds. In the case of transverse stiffness it seems that the 

numerical model is able to capture a small reduction of the property as AR increases, a phenomenon 

that can’t be captured with most analytical models. Effective shear stiffness is slightly 

underestimated compared with analytical predictions. Results for misaligned and randomly oriented 

numerical models were compared with modified analytical models. Analytical models were modified 

in order to be able to account for the fibre orientation. Results show good agreement for aligned 

fibres but also for randomly oriented fibres. 

Thermal and thermo-mechanical results from numerical models were also compared with analytical 

models’ predictions.  Regarding the comparison of the effective thermal conductivity results for both 

cases of longitudinal and transverse thermal conductivity lay between the general bounds. Results 

for the longitudinal thermal conductivity seem to have an excellent agreement with predictions of 

analytical models, while results for the transverse thermal conductivity shows a dependency-

reduction as AR increases, a behaviour which was not observed from the analytical models. 

Comparison of numerical results for thermal conductivity of randomly oriented fibres also shows a 

very good agreement with the modified versions of analytical models. 

Regarding the comparison of numerical results of CTE with analytical predictions, the cases of 

aligned fibres, randomly oriented and misaligned fibres were examined. The comparison for aligned 

fibres shows a very good agreement regarding the longitudinal effective CTE, while the transverse 

CTE deviates from the analytical models’ predictions. In the case of randomly oriented and 

misaligned fibres, results lay within the general bounds and show a good agreement with analytical 

predictions.   

 It must be emphasised that deviation of predictions from all the models is a parameter strongly 

dependant on the degree of inhomogeneity of the material. For this specific study the composite 

under investigation has a high degree of inhomogeneity. 
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6 Summary and conclusions 
 

Composite material is without any doubt the material of the future. The lack of natural resources, 

the high demands of engineering materials, the elevated properties of composite structures and the 

new manufacturing processes for composite materials are a few of the driving forces towards the 

engineering material changes. Considering the aforementioned statement, a range of topics from 

the accurate simulation of the material’s response to the after service life of the material, are 

arising. When designing and manufacturing composite material the impact of the material on the 

environment must always be considered. Thermoplastic composite material is a promising solution 

to the problem of after-service-life of composite materials. Through this thesis a computational 

approach to material characterisation was presented and the potential of using thermoplastic 

recycled material was examined. Through the following section the general conclusions for each 

chapter will be presented. 

Chapter 1 

Throughout chapter 1 several aspects regarding short fibre composites were covered. The main 

manufacturing processes were presented and the influence of each process on several parameters 

of the material was discussed. 

The dominant factors affecting the macro-mechanical performance of SFRC were addressed and 

further discussion on the influence of those factors took place. The chapter covers through literature 

three aspects of material characterisation. Initially various theoretical approaches on the field of 

mechanical characterisation of material are presented. The second aspect is covered by the 

computational approach of material characterisation and the third aspect regards the experimental 

characterisation of materials.  The fields of thermal and thermo-mechanical characterisation of 

materials, as reported in literature, are also covered while a general report on homogenisation 

approaches is also addressed. 

Chapter 2 

In chapter 2, various aspects of the field of linear continuous solid mechanics were presented with 

emphasis on the micromechanical analytical modelling of the major parameters affecting the 

performance of SFRC. The concept of inclusion and inhomogeneity was presented and the major 

differences were pointed out, while definitions for homogeneous and inhomogeneous media were 

given with the assumption that follows each definition. The symmetry of materials was discussed 

and various degrees of anisotropy were presented. The effect of material symmetry on the fourth 

order stiffness tensor was shown and the necessary independent elastic constants for each degree 

of anisotropy were reported. The concept of a high performance short fibre composite material was 

discussed through the analysis of the major factors affecting the mechanical behaviour of SFRC. 

Parameters such as fibre orientation, fibre length distribution, volume fraction and elastic properties 

of the constituent materials were covered. Those parameters were presented in detail with various 

theoretical approaches for calculating their influence on the overall effective properties through 

performance factors. A general report of various modelling strategies follows by pointing out the 

differences between different modelling approaches and reporting their advantages and 

disadvantages. The chapter concludes with a study of various micromechanical models for 
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mechanical, thermal and thermo-mechanical property characterisation. Each micromechanical 

model consists of a different approximation of the effective material properties. Assumption and 

calculation aspects were further discussed. Finally a comparison between the predictions of each 

analytical model is presented.   

 

Chapter 3 

Throughout chapter 3, various issues relating to the numerical modelling of short fibre composites 

were presented. The very basic problem of packing was first addressed and the major difficulties in 

finding a solution were presented. A further analysis of the proposed solution to the packing 

problem, through a developed packing algorithm follows. The main difficulties during the 

development of the algorithm were reported, followed by the limitations and the efficiency of the 

algorithm. The time response of the programme was discussed and the influence of various 

parameters on the time response of the algorithm were evaluated. The main assumptions of the 

modelling approach were presented and a discussion of the influence of those assumptions took 

place. Representation of fibres as elliptical domains was further discussed considering the 

advantages and disadvantages of this simplification. The concept of periodic and non-periodic 

microstructures was discussed and the way of implementing this periodicity was presented in detail. 

Definitions of the representative volume element were given and the common points in the 

different approaches of different researchers were reported. The differences between an RVE and a 

UC were also noticed. The existence of RVE as a function of size was discussed and the 

implementation of length scales on the RVE concept was presented. A specific approach to the 

assumptions of modelling short fibre reinforced composite took place by analysing the simplification 

of the modelling microstructure with the properties of a real microstructure. The chapter concludes 

by presenting the numerical model set-up. The development of the packing algorithm using the 

Matlab programming language and the way of transferring the microstructure to the commercial FE 

software Abaqus through python scripting were shown. Finally, the various cases of boundary 

conditions used for this type of problems were addressed and advantages and disadvantages for 

each case were discussed.  

 

Chapter 4 

In chapter 4, the concept of computational homogenisation was discussed. The definition of the 

homogenisation process was given and the significance of the method on material characterisation 

was addressed. Various computational homogenisation approaches were presented and a discussion 

around the accuracy and the difficulty of implementation of each approach took place. The major 

homogenisation approaches,the asymptotic homogenisation method, the volume average and the 

reaction force methods were further analysed. The macro-homogeneity condition was presented 

and the concept of equivalent homogeneous media was discussed. A report on the effective 

properties under investigation follows. Longitudinal effective stiffness, transverse effective stiffness 

and effective shear modulus for the mechanical properties, while for the thermal properties the 

effective thermal conductivity was the property under investigation and for the thermo-mechanical 

simulations the effective linear coefficient of thermal expansion was the property under 
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investigation. A detailed discussion on the implementation of boundary conditions and the 

calculation of effective properties was presented. Finally, the chapter ends with a report on the 

statistical test. The question of the representative size has been answered through a statistical test. 

The chapter does not provide results from the chi-square test but a quality discussion on the 

importance of the test and the major factors affecting the test. Further investigation for the 

influence of various parameters on the chi-square value took place and the influence of the fibre 

orientation, aspect ratio, effective property and RVE size were discussed. 

Chapter 5 

Throughout chapter 5 results from the numerical analysis were presented. The first section of the 

chapter deals with composite UCs consisting of uniform length fibres while the second section refers 

to non-uniform fibre length distribution. For each case of fibre length distribution (uniform or not) 

chi-square results are presented first and effective properties follow.  Chi-square results are 

presented at the beginning of the chapter in order to emphasise their role. There is no meaning to 

the effective properties results if they are not interpreted in combination with the chi-square results. 

A detailed discussion of the results takes place for each family of plots throughout the chapter and 

useful information can be derived. Evaluation of the contribution of each micromechanical 

parameter under study took place for chi-square tests and for the actual effective properties. In 

general the analysis shows that the method of combined numerical and statistical methods can 

estimate accurately enough the effective properties of a composite material. Results show that 

reinforcement of the material through an increase of AR or fibre orientation towards the direction of 

the property under study causes an increase in the chi-square value, and as a consequence, an 

increase in the UC size, in order to be representative. Further than that through the specific research 

the assumption of a two dimensional approach was implemented in order to overcome 

computational power difficulties. Comparison with analytical models took place at the end of the 

chapter and was a verification that the two dimensional RVE were able to predict the mechanical, 

thermal and thermo-mechanical effective properties of a composite system. The major question 

regarding the representative size was answered through chi-square test. As was shown through the 

tests there is no clear contribution of a single parameter, but a combination of micromechanical 

parameters have to be considered in order to conclude about the influence on the representative 

size. For mono-dispersed fibre length chi-square results show that representative size exists for 

specific materials exhibiting a high degree of inhomogeneity, in all the cases of orientation and AR 

for square sizes 3.75 times larger than the larger dimension of the fibres. In the case of non mono-

dispersed fibre length, the chi square test shows that larger sizes need to be considered in order to 

define the representative volume element.   

Through this work a study of the numerical characterisation of short fibre reinforced thermoplastic 

took place. The study considers a solution to the packing problem of fibres, an analytical 

characterisation of short fibre materials, the development of numerical models, the parametric 

study of the mechanical, thermal and thermo-mechanical properties and statistical analysis on the 

effect of the representative size.  

 

 



212 
 

6.1 Recommendation for future work 
 

The existing study can be an ideal base for further study on the field of computational 

characterisation. Any further future work must be oriented towards four main directions, namely 

packing algorithm further analysis on the 2D structures, implementation of 3D realisations and 

experimental study. 

Packing algorithm 

The packing algorithm implemented in a process as microstructure re-creations can always receive 

improvements. The current algorithm can be improved towards the following directions. Reach 

higher volume fraction using higher AR.  Implement 3D realisations. Include a variety of shapes for 

inclusions and last but not least to create realisations of microstructures in a reasonable amount of 

time. 

Extending the 2D analysis 

Further work can potentially study realisations of SFRC with higher AR. The current study, investigate 

the effect of AR up to 10. A future work can implement higher AR in order to conclude on the AR of 

saturation effect regarding the specific short fibre composite. This will be useful because will provide 

the larger size of the RVE as size strongly depends on the AR.  A further extension on the study of 2D 

structures can implement investigation of the interface between fibre and matrix. For the current 

study interface assumed to be perfect. Introduction of the interface region in simulations will 

provide a more realistic response of the material. Regarding the temperature properties, future 

work can be oriented in order to study conductivity and thermal expansion for temperature 

depending properties of the material and also study on the time depending thermal phenomenon.  

3D simulations 

Three dimensional simulations were not performed during this study. A three dimensional 

simulation will offer a more integrated view on the response of the material. Such an 

implementation will increase dramatically the computational cost but will provide a more realistic 

approach of the material. The three dimensional model can be integrated in order to include 

temperature and time depending properties. Up to this point a non-linear analysis can be performed 

by implementing experimental data from the non-linear region of the material or by performing a 

failure progress analysis. A study on the non-linear response of the material will provide information 

about the fracture mechanism of such a system of materials. 

Experimental study 

Experimental study will be useful in order to provide a direct comparison with computational models 

and also to provide information as the yield stress the ultimate stress or any viscoelastic response. 

All these information can be compared with computational results and also can be implemented on 

the computational models. In parallel with the mechanical or thermal testing is useful to perform 

some measurements on the samples as the mean fibre length, the mean fibre orientation, the fibre 

orientation distribution and the fibre length distribution. These measurements can potentially be the 

source of the random parameters introduced into the simulations. 



213 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



214 
 

7 Bibliography 
Annapragada S Ravi and Dhavaleswarapu, Hemanth K Prediction of Effective Thermal Conductivity 

of Particulate Composites [Conference]. - West Lafayette : Composites Proceedings of Project, 2006. 

Annapragada S Ravi and Sun, Dawei and Garimella, Suresh V Prediction of effective thermo-

mechanical properties of particulate composites [Journal] // Computational materials science. - 

2007. - Elsevier : Vol. 40. - pp. 255-266. 

Astrom B. T Manufacturing of polymer composites [Book]. - [s.l.] : CRC Press, 1997. 

Bazant Zdenek P and Novak, Drahomir Energetic-statistical size effect in quasibrittle failure at crack 

initiation ACI Materials Journal, ACI, 2000, 97 [Journal] // ACI Materials Journal. - 2000. - ACI : Vol. 

97. 

Benveniste Y A new approach to the application of Mori-Tanaka's theory in composite materials 

[Journal] // Mechanics of materials,. - 1987. - Elsevier, : Vols. 6,. - pp. 147-157. 

Berger H and Kurukuri, S and Kari, S and Gabbert, U and Rodriguez-Ramos, R and Bravo-Castillero, 

J and Guinovart-Diaz, R Numerical and analytical approaches for calculating the effective thermo-

mechanical properties of three-phase composites [Journal] // Journal of Thermal Stresses. - 2007. - 

Taylor & Francis : Vol. 30. - pp. 801-817. 

Chen Chao-Hsun and Wang, Yuh-Chung Effective thermal conductivity of misoriented short-fiber 

reinforced thermoplastics [Journal] // Mechanics of materials. - 1996. - Elsevier : Vol. 23. - pp. 217-

228. 

Chin Wei-Kuo and Liu, Hsin-Tzu and Lee, Yu-Der Effects of fiber length and orientation distribution 

on the elastic modulus of short fiber reinforced thermoplastics [Journal] // Polymer Composite. - 

1988. - Vol. 9. - pp. 27-35. 

Choy CL and Leung, WP and Kowk, KW and Lau, Felix P Elastic moduli and thermal conductivity of 

injection-molded short-fiber--reinforced thermoplastics [Journal] // Polymer composites. - 1992. - 

Vol. 13. - pp. 69-80. 

Cox HL The elasticity and strength of paper and other fibrous materials [Journal] // British journal of 

applied physics. - 1952. - IOP Publishing : Vol. 3. - p. 72. 

Drugan WJ and Willis, JR A micromechanics-based nonlocal constitutive equation and estimates of 

representative volume element size for elastic composites [Journal] // Journal of the Mechanics and 

Physics of Solids. - 1996. - Elsevier : Vol. 44. - pp. 497-524. 

Eshelby J. D The determination of the elastic field of an ellipsoidal inclusion, and related problems. 

[Journal] // Series A. Mathematical and Physical Sciences,Proceedings of the Royal Society of 

London. - 1957,. - The Royal Society, : Vols. 241,. - pp. 376-396. 

Evans KE and Gibson, AG Prediction of the maximum packing fraction achievable in randomly 

oriented short-fibre composites [Journal] // Composites science and technology. - 1986,. - Elsevier, : 

Vols. 25,. - pp. 149-162. 



215 
 

Fu S.-Y. and Lauke B. & Mai, Y.-W. Science and engineering of short fibre reinforced polymer 

composites [Book]. - [s.l.] : Elsevier, 2009. 

Fu Shao-Yun and Lauke, Bernd Effects of fiber length and fiber orientation distributions on the 

tensile strength of short-fiber-reinforced polymers [Journal] // Composites Science and 

Technology,. - 1996. - Elsevier : Vol. 56. - pp. 1179-1190. 

Fu S-Y and Lauke, B and Mader, E and Yue, C-Y and Hu, X Tensile properties of short-glass-fiber-and 

short-carbon-fiber-reinforced polypropylene composites Composites Part A: [Journal] // Applied 

Science and Manufacturing. - 2000. - Elsevier : Vol. 31. - pp. 1117-1125. 

Gitman IM and Askes, H and Sluys, LJ Representative volume: existence and size determination 

[Journal] // Engineering Fracture Mechanics. - 2007. - Elsevier : Vol. 74. - pp. 2518-2534. 

Halpin J. & Kardos, J. The Halpin-Tsai equations: a review [Journal] // Polymer Engineering & 

Science. - 1976,. - Wiley Online Library, : Vol. 16. - pp. 344-352. 

Hashin Z Analysis of composite materials—a survey [Journal] // Journal of Applied Mechanics. - 

1983. - American Society of Mechanical Engineers  : Vol. 50. - pp. 481-505. 

Hatta H. & Taya, M. Effective thermal conductivity of a misoriented short fiber composite 

[Journal] // Journal of Applied Physics. - 1985. - AIP Publishing : Vol. 58. - pp. 2478-2486. 

Hill R A self-consistent mechanics of composite materials [Journal] // Journal of the Mechanics and 

Physics of Solids. - 1965. - Elsevier : Vol. 13. - pp. 213-222. 

Hill R. Elastic properties of reinforced solids: some theoretical principles [Journal] // Journal of the 

Mechanics and Physics of Solids. - 1963. - Elsevier : Vol. 11. - pp. 357-372. 

Hine Peter J and Lusti, Hans Rudolf and Gusev, Andrei A Numerical simulation of the effects of 

volume fraction, aspect ratio and fibre length distribution on the elastic and thermoelastic 

properties of short fibre composites [Journal] // Composites science and technology. - 2002. - 

Elsevier : Vol. 62. - pp. 1445-1453. 

Hua Yi and Gu, Linxia Prediction of the thermomechanical behavior of particle-reinforced metal 

matrix composites Composites Part B: [Journal] // Engineering. - 2013. - Elsevier : Vol. 45. - pp. 1464-

1470. 

Ionita A and Weitsman, YJ On the mechanical response of randomly reinforced chopped-fibers 

composites: Data and model [Journal] // Composites science and technology. - 2006. - Elsevier : Vol. 

66. - pp. 2566-2579. 

Iorga Lucian and Pan, Yi and Pelegri, Assimina Numerical characterization of material elastic 

properties for random fiber composites [Journal] // J. Mech. Mater. Struct. - 2008. - Vol. 3. - pp. 

1279-1298. 

Jules E Jao and Tsujikami, T and Lomov, SV and Verpoest, I Effect of Fibres Length and Fibres 

Orientation on the Predicted Elastic Properties of Long Fibre [Journal] // Composites Macromol. 

Symp. - 2004. - Vol. 17. 



216 
 

Kacir L and Narkis, M and Ishai, O Oriented short glass-fiber composites. I. Preparation and 

statistical analysis of aligned fiber mats [Journal] // Polymer Engineering \& Science. - 1975. - Vol. 

15. - pp. 525-531. 

Kamal Musa R and Song, Li and Singh, Peter Measurement of fiber and matrix orientations in fiber 

reinforced composites [Journal] // Polymer composites. - 1986. - Wiley Online Library : Vol. 7. - pp. 

323-329. 

Kari S and Berger, H and Gabbert, U Numerical evaluation of effective material properties of 

randomly distributed short cylindrical fibre composites [Journal] // Computational materials 

science. - 2007. - Elsevier : Vol. 39. - pp. 198-204. 

Klusemann B and Svendsen, B Homogenization methods for multi-phase elastic composites: 

comparisons and benchmarks [Journal] // Technische Mechanik. - 2010. - Vol. 30. - pp. 374-386. 

Lemaitre J and Sermage, JP and Desmorat, R A two scale damage concept applied to fatigue 

[Journal] // International Journal of Fracture,. - 1999,. - Springer, : Vols. 97,. - pp. 67-81. 

Lusti Hans Rudolf and Hine, Peter J and Gusev, Andrei A Direct numerical predictions for the elastic 

and thermoelastic properties of short fibre composites [Journal] // Composites science and 

technology. - 2002. - Elsevier : Vol. 62. - pp. 1927-1934. 

Milewski John V A study of the packing of milled fiberglass and glass beads [Journal]. - 1974. - Taylor 

& Francis. 

Mori T and Tanaka, K Average stress in matrix and average elastic energy of materials with misfitting 

inclusions [Journal] // Acta metallurgica. - 1973. - Elsevier : Vol. 21. - pp. 571-574. 

Mura Toshio Micromechanics of defects in solids [Book]. - [s.l.] : Springer Science \& Business Media, 

1987. - 3. 

Nye JF Plastic Deformation of Silver Chloride. I. Internal Stresses and the Glide Mechanism 

[Journal] // Proc R Soc A. - 1949. - Vol. 198. - pp. 190-204. 

Ostoja-Starzewski M Random field models of heterogeneous materials International [Journal] // 

Journal of Solids and Structures. - 1998. - Elsevier : Vol. 35. - pp. 2429-2455. 

Pan Yi and Iorga, Lucian and Pelegri, Assimina A Analysis of 3D random chopped fiber reinforced 

composites using FEM and random sequential adsorption [Journal] // Computational Materials 

Science. - 2008. - Elsevier : Vol. 43. - pp. 450-461. 

Ramani Karthik and Bank, Dave and Kraemer, Nick Effect of screw design on fiber damage in 

extrusion compounding and composite properties [Journal] // Polymer composites. - 1995. - Wiley 

Online Library : Vol. 16. - pp. 258-266. 

Rosato Dominick V and Rosato, Donald V and Rosato, Marlene G Injection molding handbook 

[Book]. - [s.l.] : Springer Science \& Business Media, 2000. 



217 
 

Schapery Richard Allan Thermal expansion coefficients of composite materials based on energy 

principles [Journal] // Journal of Composite Materials. - 1968. - SAGE Publications : Vol. 2. - pp. 380-

404. 

Tandon GP and Weng, GJ The effect of aspect ratio of inclusions on the elastic properties of 

unidirectionally aligned composites [Journal] // Polymer composites. - 1984. - Wiley Online Library : 

Vol. 5. - pp. 327-333. 

Thomason JL and Groenewoud, WM The influence of fibre length and concentration on the 

properties of glass fibre reinforced polypropylene: 2. Thermal properties [Journal] // Composites 

Part A: Applied Science and Manufacturing. - 1996. - Elsevier : Vol. 27. - pp. 555-565. 

Thomason JL and Vlug, MA and Schipper, G and Krikor, HGLT Influence of fibre length and 

concentration on the properties of glass fibre-reinforced polypropylene: Part 3. Strength and strain 

at failure [Journal] // Composites Part A: Applied Science and Manufacturing. - 1996. - Elsevier : Vol. 

27. - pp. 1075-1084. 

Thomason JL and Vlug, MA Influence of fibre length and concentration on the properties of glass 

fibre-reinforced polypropylene: 1. Tensile and flexural modulus [Journal] // Composites Part A: 

Applied science and manufacturing. - 1996. - Elsevier : Vol. 27. - pp. 477-484. 

Thomason JL Micromechanical parameters from macromechanical measurements on glass 

reinforced polypropylene [Journal] // Composites science and technology. - 2002. - Vol. 62. - pp. 

1455-1468. 

Thomason JL The influence of fibre length and concentration on the properties of glass fibre 

reinforced polypropylene: 5. Injection moulded long and short fibre PP [Journal] // Composites Part 

A: Applied Science and Manufacturing. - 2002. - Elsevier : Vol. 33. - pp. 1641-1652. 

Van Mier JGM and Van Vliet, MRA Influence of microstructure of concrete on size/scale effects in 

tensile fracture [Journal] // Engineering fracture mechanics. - 2003. - Elsevier : Vol. 70. - pp. 2281-

2306. 

Vu-Khanh Toan and Denault, J and Habib, P and Low, A The effects of injection molding on the 

mechanical behavior of long-fiber reinforced PBT/PET blends [Journal] // Composites science and 

technology. - 1991. - Elsevier : Vol. 4. - pp. 423-435. 

Wang Zhenqing and Wang, Xiaoqiang and Zhang, Jifeng and Liang, Wenyan and Zhou, Limin 

Automatic generation of random distribution of fibers in long-fiber-reinforced composites and 

mesomechanical simulation [Journal] // Materials & Design,. - 2011. - Elsevier : Vol. 32. - pp. 885-

891. 

 

 

 

 



218 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



219 
 

Appendix 𝑰 

Solution for the 𝐼 elliptical integrals regarding the Eshelby’s model: 

 

𝐼1 =
4𝜋𝑎𝑏𝑐

(𝑎2 − 𝑏2)(𝑎2 − 𝑐2)0.5
[𝐹(𝜃, 𝐾) − 𝐸(𝜃, 𝐾)] 

 

𝐼3 =
4𝜋𝑎𝑏𝑐

(𝑏2 − 𝑐2)(𝑎2 − 𝑐2)0.5
[
𝑏(𝑎2 − 𝑐2)0.5

𝑎𝑐
− 𝐸(𝜃, 𝐾)] 

 

Where 

 

𝜃 = 𝑎𝑟𝑐𝑠𝑖𝑛√
𝑎2 − 𝑐2

𝑎2
 

 

𝑘 = √
𝑎2 − 𝑏2

𝑎2 − 𝑐2
 

And 

 

𝐼1 + 𝐼2 + 𝐼3 = 4𝜋 

 

3𝐼11 + 𝐼12 + 𝐼13 =
4𝜋

𝑎2
 

 

3𝑎2𝐼11 + 𝑏
2𝐼12 + 𝑐

2𝐼13 = 3𝐼1 

 

𝐼12 =
𝐼2 − 𝐼1
𝑎2 − 𝑏2
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Standard Elliptical integrals are defined as: 

 

𝐹(𝜃, 𝑘) = ∫
𝑑𝑤

(1 − 𝑘2 sin𝑤2)0.5

𝜃

0

 

 

𝐸(𝜃, 𝑘) = ∫(1 − 𝑘2 sin𝑤2)0.5𝑑𝑤

𝜃

0

 

 

For an ellipsis where the third axis approaches infinity (𝑐 → ∞) Eshelby’s tensor takes the following 

expression: 

 

𝑆1111 =
1

2(1 − 𝜈)
[
𝑏2 + 2𝑎𝑏

(𝑎 + 𝑏)2
+ (1 − 2𝜈)

𝑏

𝑎 + 𝑏
] 

 

𝑆2222 =
1

2(1 − 𝜈)
[
𝑎2 + 2𝑎𝑏

(𝑎 + 𝑏)2
+ (1 − 2𝜈)

𝑎

𝑎 + 𝑏
] 

 

𝑆3333 = 0 

 

𝑆1122 =
1

2(1 − 𝜈)
[

𝑏2

(𝑎 + 𝑏)2
− (1 − 2𝜈)

𝑏

𝑎 + 𝑏
] 

 

𝑆2233 =
1

2(1 − 𝜈)

2𝜈𝑎

𝑎 + 𝑏
 

 

𝑆2211 =
1

2(1 − 𝜈)
[

𝑎2

(𝑎 + 𝑏)2
− (1 − 2𝜈)

𝑎

𝑎 + 𝑏
] 

 

𝑆3311 = 𝑆3322 = 0 
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𝑆1212 =
1

2(1 − 𝜈)
[
𝑎2 + 𝑏2

2(𝑎 + 𝑏)2
+
(1 − 2𝜈)

2
] 

𝑆1133 =
1

2(1 − 𝜈)

2𝜈𝑏

𝑎 + 𝑏
 

 

𝑆2323 =
𝑎

2(𝑎 + 𝑏)
 

 

𝑆3131 =
𝑏

2(𝑎 + 𝑏)
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Appendix 𝑰𝑰 

Characteristic python script for microstructure development: 

 

from part import * 

from material import * 

from section import * 

from assembly import * 

from step import * 

from interaction import * 

from load import * 

from mesh import * 

from job import * 

from sketch import * 

from visualization import * 

from connectorBehavior import * 

mdb.models['Model-1'].ConstrainedSketch(name='__profile__', sheetSize=200.0) 

mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(0.0, 0.0),  

    point2=(30.0, 30.0)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(24.34,19.77), 

axisPoint2=(14.82,15.36), center=(15,15)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(54.34,49.77), 

axisPoint2=(44.82,45.36), center=(45,45)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(54.34,19.77), 

axisPoint2=(44.82,15.36), center=(45,15)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(24.34,49.77), 

axisPoint2=(14.82,45.36), center=(15,45)) 
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mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(26.23,20.91), 

axisPoint2=(17.71,18.72), center=(17.83,18.34)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(-3.77,-9.09), 

axisPoint2=(-12.29,-11.28), center=(-12.17,-11.66)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(-3.77,20.91), 

axisPoint2=(-12.29,18.72), center=(-12.17,18.34)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(26.23,-9.09), 

axisPoint2=(17.71,-11.28), center=(17.83,-11.66)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(30.21,25.06), 

axisPoint2=(22.61,22.13), center=(22.77,21.77)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(0.21,-4.94), 

axisPoint2=(-7.39,-7.87), center=(-7.23,-8.23)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(0.21,25.06), 

axisPoint2=(-7.39,22.13), center=(-7.23,21.77)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(30.21,-4.94), 

axisPoint2=(22.61,-7.87), center=(22.77,-8.23)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(26.58,19.4), 

axisPoint2=(19.5,16.53), center=(19.67,16.17)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(-3.42,-10.6), 

axisPoint2=(-10.5,-13.47), center=(-10.33,-13.83)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(-3.42,19.4), 

axisPoint2=(-10.5,16.53), center=(-10.33,16.17)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(26.58,-10.6), 

axisPoint2=(19.5,-13.47), center=(19.67,-13.83)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(37.32,9.81), 

axisPoint2=(22.89,9.86), center=(22.9,9.46)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(7.32,39.81), 

axisPoint2=(-7.11,39.86), center=(-7.1,39.46)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(37.32,39.81), 

axisPoint2=(22.89,39.86), center=(22.9,39.46)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(7.32,9.81), 

axisPoint2=(-7.11,9.86), center=(-7.1,9.46)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(18.49,20.75), 

axisPoint2=(17.25,20.73), center=(17.38,20.35)) 
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mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(-11.51,-9.25), 

axisPoint2=(-12.75,-9.27), center=(-12.62,-9.65)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(-11.51,20.75), 

axisPoint2=(-12.75,20.73), center=(-12.62,20.35)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(18.49,-9.25), 

axisPoint2=(17.25,-9.27), center=(17.38,-9.65)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(15.88,19.32), 

axisPoint2=(14.74,19.52), center=(14.81,19.12)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(45.88,-10.68), 

axisPoint2=(44.74,-10.48), center=(44.81,-10.88)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(45.88,19.32), 

axisPoint2=(44.74,19.52), center=(44.81,19.12)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(15.88,-10.68), 

axisPoint2=(14.74,-10.48), center=(14.81,-10.88)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(19.19,8.22), 

axisPoint2=(15.26,6.77), center=(15.43,6.41)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(-10.81,38.22), 

axisPoint2=(-14.74,36.77), center=(-14.57,36.41)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(19.19,38.22), 

axisPoint2=(15.26,36.77), center=(15.43,36.41)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(-10.81,8.22), 

axisPoint2=(-14.74,6.77), center=(-14.57,6.41)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(20.95,27.01), 

axisPoint2=(7.36,26.5), center=(7.39,26.1)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(50.95,-2.99), 

axisPoint2=(37.36,-3.5), center=(37.39,-3.9)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(50.95,27.01), 

axisPoint2=(37.36,26.5), center=(37.39,26.1)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(20.95,-2.99), 

axisPoint2=(7.36,-3.5), center=(7.39,-3.9)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(28.65,8.37), 

axisPoint2=(24.8,6.61), center=(25,6.26)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(-1.35,38.37), 

axisPoint2=(-5.2,36.61), center=(-5,36.26)) 
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mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(28.65,38.37), 

axisPoint2=(24.8,36.61), center=(25,36.26)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(-1.35,8.37), 

axisPoint2=(-5.2,6.61), center=(-5,6.26)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(29.04,26.72), 

axisPoint2=(25.02,26.42), center=(25.09,26.03)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(-0.96,-3.28), 

axisPoint2=(-4.98,-3.58), center=(-4.91,-3.97)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(-0.96,26.72), 

axisPoint2=(-4.98,26.42), center=(-4.91,26.03)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(29.04,-3.28), 

axisPoint2=(25.02,-3.58), center=(25.09,-3.97)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(25.09,28.22), 

axisPoint2=(20.02,28.2), center=(20.05,27.8)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(-4.91,-1.78), 

axisPoint2=(-9.98,-1.8), center=(-9.95,-2.2)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(-4.91,28.22), 

axisPoint2=(-9.98,28.2), center=(-9.95,27.8)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(25.09,-1.78), 

axisPoint2=(20.02,-1.8), center=(20.05,-2.2)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(14.65,8.1), 

axisPoint2=(5.66,6.54), center=(5.74,6.15)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(44.65,38.1), 

axisPoint2=(35.66,36.54), center=(35.74,36.15)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(44.65,8.1), 

axisPoint2=(35.66,6.54), center=(35.74,6.15)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(14.65,38.1), 

axisPoint2=(5.66,36.54), center=(5.74,36.15)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(18.18,4.22), 

axisPoint2=(13.19,4.45), center=(13.2,4.05)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(48.18,34.22), 

axisPoint2=(43.19,34.45), center=(43.2,34.05)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(48.18,4.22), 

axisPoint2=(43.19,4.45), center=(43.2,4.05)) 
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mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(18.18,34.22), 

axisPoint2=(13.19,34.45), center=(13.2,34.05)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(24,3.83), 

axisPoint2=(21.42,3.95), center=(21.46,3.55)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(-6,33.83), 

axisPoint2=(-8.58,33.95), center=(-8.54,33.55)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(24,33.83), 

axisPoint2=(21.42,33.95), center=(21.46,33.55)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(-6,3.83), 

axisPoint2=(-8.58,3.95), center=(-8.54,3.55)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(29,19.76), 

axisPoint2=(27.93,20.09), center=(27.96,19.69)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(-1,-10.24), 

axisPoint2=(-2.07,-9.91), center=(-2.04,-10.31)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(-1,19.76), 

axisPoint2=(-2.07,20.09), center=(-2.04,19.69)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(29,-10.24), 

axisPoint2=(27.93,-9.91), center=(27.96,-10.31)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(10.01,16.7), 

axisPoint2=(7.83,16.01), center=(8.01,15.65)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(40.01,-13.3), 

axisPoint2=(37.83,-13.99), center=(38.01,-14.35)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(40.01,16.7), 

axisPoint2=(37.83,16.01), center=(38.01,15.65)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(10.01,-13.3), 

axisPoint2=(7.83,-13.99), center=(8.01,-14.35)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(11.92,3.2), 

axisPoint2=(9.96,3.36), center=(10.01,2.97)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(41.92,33.2), 

axisPoint2=(39.96,33.36), center=(40.01,32.97)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(41.92,3.2), 

axisPoint2=(39.96,3.36), center=(40.01,2.97)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(11.92,33.2), 

axisPoint2=(9.96,33.36), center=(10.01,32.97)) 
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mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(29.74,30.58), 

axisPoint2=(18.58,29.2), center=(18.64,28.8)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(-0.26,0.58), 

axisPoint2=(-11.42,-0.8), center=(-11.36,-1.2)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(-0.26,30.58), 

axisPoint2=(-11.42,29.2), center=(-11.36,28.8)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(29.74,0.58), 

axisPoint2=(18.58,-0.8), center=(18.64,-1.2)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(16.75,16.92), 

axisPoint2=(9.4,14.85), center=(9.53,14.48)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(46.75,46.92), 

axisPoint2=(39.4,44.85), center=(39.53,44.48)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(46.75,16.92), 

axisPoint2=(39.4,14.85), center=(39.53,14.48)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(16.75,46.92), 

axisPoint2=(9.4,44.85), center=(9.53,44.48)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(17.73,21.4), 

axisPoint2=(7.89,17.8), center=(8.05,17.43)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(47.73,-8.6), 

axisPoint2=(37.89,-12.2), center=(38.05,-12.57)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(47.73,21.4), 

axisPoint2=(37.89,17.8), center=(38.05,17.43)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(17.73,-8.6), 

axisPoint2=(7.89,-12.2), center=(8.05,-12.57)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(20.99,25.78), 

axisPoint2=(13.91,23.27), center=(14.06,22.9)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(50.99,-4.22), 

axisPoint2=(43.91,-6.73), center=(44.06,-7.1)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(50.99,25.78), 

axisPoint2=(43.91,23.27), center=(44.06,22.9)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(20.99,-4.22), 

axisPoint2=(13.91,-6.73), center=(14.06,-7.1)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(6.34,21.63), 

axisPoint2=(2.37,18.34), center=(2.65,18.05)) 
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mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(36.34,-8.37), 

axisPoint2=(32.37,-11.66), center=(32.65,-11.95)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(36.34,21.63), 

axisPoint2=(32.37,18.34), center=(32.65,18.05)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(6.34,-8.37), 

axisPoint2=(2.37,-11.66), center=(2.65,-11.95)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(31.01,2.88), 

axisPoint2=(24.73,3.1), center=(24.74,2.7)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(1.01,32.88), 

axisPoint2=(-5.27,33.1), center=(-5.26,32.7)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(31.01,32.88), 

axisPoint2=(24.73,33.1), center=(24.74,32.7)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(1.01,2.88), 

axisPoint2=(-5.27,3.1), center=(-5.26,2.7)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(28,1.92), 

axisPoint2=(20.82,2), center=(20.83,1.61)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(-2,31.92), 

axisPoint2=(-9.18,32), center=(-9.17,31.61)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(28,31.92), 

axisPoint2=(20.82,32), center=(20.83,31.61)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(-2,1.92), 

axisPoint2=(-9.18,2), center=(-9.17,1.61)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(23.52,14.77), 

axisPoint2=(19.78,14.6), center=(19.84,14.2)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(-6.48,44.77), 

axisPoint2=(-10.22,44.6), center=(-10.16,44.2)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(23.52,44.77), 

axisPoint2=(19.78,44.6), center=(19.84,44.2)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(-6.48,14.77), 

axisPoint2=(-10.22,14.6), center=(-10.16,14.2)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(26.55,18), 

axisPoint2=(24.46,17.06), center=(24.69,16.73)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(-3.45,-12), 

axisPoint2=(-5.54,-12.94), center=(-5.31,-13.27)) 
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mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(-3.45,18), 

axisPoint2=(-5.54,17.06), center=(-5.31,16.73)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(26.55,-12), 

axisPoint2=(24.46,-12.94), center=(24.69,-13.27)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(18.87,22.13), 

axisPoint2=(17.73,22.39), center=(17.78,21.99)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(-11.13,-7.87), 

axisPoint2=(-12.27,-7.61), center=(-12.22,-8.01)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(-11.13,22.13), 

axisPoint2=(-12.27,22.39), center=(-12.22,21.99)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(18.87,-7.87), 

axisPoint2=(17.73,-7.61), center=(17.78,-8.01)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(24.93,14.83), 

axisPoint2=(22.4,13.97), center=(22.58,13.61)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(-5.07,44.83), 

axisPoint2=(-7.6,43.97), center=(-7.42,43.61)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(24.93,44.83), 

axisPoint2=(22.4,43.97), center=(22.58,43.61)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(-5.07,14.83), 

axisPoint2=(-7.6,13.97), center=(-7.42,13.61)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(6.92,22.22), 

axisPoint2=(3.15,21.99), center=(3.21,21.59)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(36.92,-7.78), 

axisPoint2=(33.15,-8.01), center=(33.21,-8.41)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(36.92,22.22), 

axisPoint2=(33.15,21.99), center=(33.21,21.59)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(6.92,-7.78), 

axisPoint2=(3.15,-8.01), center=(3.21,-8.41)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(5.16,22.98), 

axisPoint2=(4.19,23.14), center=(4.29,22.75)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(35.16,-7.02), 

axisPoint2=(34.19,-6.86), center=(34.29,-7.25)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(35.16,22.98), 

axisPoint2=(34.19,23.14), center=(34.29,22.75)) 
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mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(5.16,-7.02), 

axisPoint2=(4.19,-6.86), center=(4.29,-7.25)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(10.29,24.74), 

axisPoint2=(6.06,24.42), center=(6.13,24.02)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(40.29,-5.26), 

axisPoint2=(36.06,-5.58), center=(36.13,-5.98)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(40.29,24.74), 

axisPoint2=(36.06,24.42), center=(36.13,24.02)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(10.29,-5.26), 

axisPoint2=(6.06,-5.58), center=(6.13,-5.98)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(29.62,27.76), 

axisPoint2=(27.4,27.76), center=(27.47,27.37)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(-0.38,-2.24), 

axisPoint2=(-2.6,-2.24), center=(-2.53,-2.63)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(-0.38,27.76), 

axisPoint2=(-2.6,27.76), center=(-2.53,27.37)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(29.62,-2.24), 

axisPoint2=(27.4,-2.24), center=(27.47,-2.63)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(8.02,5.4), 

axisPoint2=(5.64,5.49), center=(5.69,5.09)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(38.02,35.4), 

axisPoint2=(35.64,35.49), center=(35.69,35.09)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(38.02,5.4), 

axisPoint2=(35.64,5.49), center=(35.69,5.09)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(8.02,35.4), 

axisPoint2=(5.64,35.49), center=(5.69,35.09)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(31.58,30.15), 

axisPoint2=(28.46,29.85), center=(28.55,29.46)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(1.58,0.15), 

axisPoint2=(-1.54,-0.15), center=(-1.45,-0.54)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(1.58,30.15), 

axisPoint2=(-1.54,29.85), center=(-1.45,29.46)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(31.58,0.15), 

axisPoint2=(28.46,-0.15), center=(28.55,-0.54)) 
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mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(12.58,12.34), 

axisPoint2=(11.83,12.67), center=(11.87,12.27)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(42.58,42.34), 

axisPoint2=(41.83,42.67), center=(41.87,42.27)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(42.58,12.34), 

axisPoint2=(41.83,12.67), center=(41.87,12.27)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(12.58,42.34), 

axisPoint2=(11.83,42.67), center=(11.87,42.27)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(28.04,17.14), 

axisPoint2=(26.81,17.24), center=(26.91,16.86)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(-1.96,-12.86), 

axisPoint2=(-3.19,-12.76), center=(-3.09,-13.14)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(-1.96,17.14), 

axisPoint2=(-3.19,17.24), center=(-3.09,16.86)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(28.04,-12.86), 

axisPoint2=(26.81,-12.76), center=(26.91,-13.14)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(14.58,3.17), 

axisPoint2=(13.43,3.49), center=(13.46,3.09)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(44.58,33.17), 

axisPoint2=(43.43,33.49), center=(43.46,33.09)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(44.58,3.17), 

axisPoint2=(43.43,3.49), center=(43.46,3.09)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(14.58,33.17), 

axisPoint2=(13.43,33.49), center=(13.46,33.09)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(11.94,20.39), 

axisPoint2=(10.66,20.04), center=(10.88,19.71)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(41.94,-9.61), 

axisPoint2=(40.66,-9.96), center=(40.88,-10.29)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(41.94,20.39), 

axisPoint2=(40.66,20.04), center=(40.88,19.71)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(11.94,-9.61), 

axisPoint2=(10.66,-9.96), center=(10.88,-10.29)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(5.05,24.64), 

axisPoint2=(3.01,24.95), center=(3.03,24.55)) 
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mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(35.05,-5.36), 

axisPoint2=(33.01,-5.05), center=(33.03,-5.45)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(35.05,24.64), 

axisPoint2=(33.01,24.95), center=(33.03,24.55)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(5.05,-5.36), 

axisPoint2=(3.01,-5.05), center=(3.03,-5.45)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(6.46,27.06), 

axisPoint2=(4.72,27.28), center=(4.76,26.89)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(36.46,-2.94), 

axisPoint2=(34.72,-2.72), center=(34.76,-3.11)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(36.46,27.06), 

axisPoint2=(34.72,27.28), center=(34.76,26.89)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(6.46,-2.94), 

axisPoint2=(4.72,-2.72), center=(4.76,-3.11)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(7.01,9.26), 

axisPoint2=(4.86,8.38), center=(5.07,8.04)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(37.01,39.26), 

axisPoint2=(34.86,38.38), center=(35.07,38.04)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(37.01,9.26), 

axisPoint2=(34.86,8.38), center=(35.07,8.04)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(7.01,39.26), 

axisPoint2=(4.86,38.38), center=(5.07,38.04)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(4.31,2.88), 

axisPoint2=(2.04,2.87), center=(2.11,2.48)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(34.31,32.88), 

axisPoint2=(32.04,32.87), center=(32.11,32.48)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(34.31,2.88), 

axisPoint2=(32.04,2.87), center=(32.11,2.48)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(4.31,32.88), 

axisPoint2=(2.04,32.87), center=(2.11,32.48)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(22.43,12.08), 

axisPoint2=(20.3,12.15), center=(20.36,11.76)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(-7.57,42.08), 

axisPoint2=(-9.7,42.15), center=(-9.64,41.76)) 
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mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(22.43,42.08), 

axisPoint2=(20.3,42.15), center=(20.36,41.76)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(-7.57,12.08), 

axisPoint2=(-9.7,12.15), center=(-9.64,11.76)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(10.67,28.34), 

axisPoint2=(10.1,28.69), center=(10.14,28.29)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(40.67,-1.66), 

axisPoint2=(40.1,-1.31), center=(40.14,-1.71)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(40.67,28.34), 

axisPoint2=(40.1,28.69), center=(40.14,28.29)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(10.67,-1.66), 

axisPoint2=(10.1,-1.31), center=(10.14,-1.71)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(10.89,22.42), 

axisPoint2=(9.78,22.6), center=(9.86,22.2)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(40.89,-7.58), 

axisPoint2=(39.78,-7.4), center=(39.86,-7.8)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(40.89,22.42), 

axisPoint2=(39.78,22.6), center=(39.86,22.2)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(10.89,-7.58), 

axisPoint2=(9.78,-7.4), center=(9.86,-7.8)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(12.35,2.33), 

axisPoint2=(9.64,2.32), center=(9.7,1.93)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(42.35,32.33), 

axisPoint2=(39.64,32.32), center=(39.7,31.93)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(42.35,2.33), 

axisPoint2=(39.64,2.32), center=(39.7,1.93)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(12.35,32.33), 

axisPoint2=(9.64,32.32), center=(9.7,31.93)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(27.24,21.87), 

axisPoint2=(26.1,21.95), center=(26.21,21.57)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(-2.76,-8.13), 

axisPoint2=(-3.9,-8.05), center=(-3.79,-8.43)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(-2.76,21.87), 

axisPoint2=(-3.9,21.95), center=(-3.79,21.57)) 
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mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(27.24,-8.13), 

axisPoint2=(26.1,-8.05), center=(26.21,-8.43)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(30.15,12.75), 

axisPoint2=(26.91,12.85), center=(26.95,12.45)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(0.15,42.75), 

axisPoint2=(-3.09,42.85), center=(-3.05,42.45)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(30.15,42.75), 

axisPoint2=(26.91,42.85), center=(26.95,42.45)) 

mdb.models['Model-1'].sketches['__profile__'].EllipseByCenterPerimeter(axisPoint1=(0.15,12.75), 

axisPoint2=(-3.09,12.85), center=(-3.05,12.45)) 

mdb.models['Model-1'].sketches.changeKey(fromName='__profile__', toName= 

    'skitso_1') 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



235 
 

 

 

 

 

Appendix 𝑰𝑰𝑰 

 

A typical script for calculating the average effective properties: 

clc 
clear all 

  
load Rnd_AR5_40_1_T1.txt 
load Rnd_AR5_40_2_T1.txt 
load Rnd_AR5_40_3_T1.txt 
load Rnd_AR5_40_4_T1.txt 
load Rnd_AR5_40_5_T1.txt 
load Rnd_AR5_40_1_T2.txt 
load Rnd_AR5_40_2_T2.txt 
load Rnd_AR5_40_3_T2.txt 
load Rnd_AR5_40_4_T2.txt 
load Rnd_AR5_40_5_T2.txt 

  
% len =length of the RVE 
len=60; 

  

  
HFL56=Rnd_AR5_40_1_T1(:,3); 
IVOL56=Rnd_AR5_40_1_T1(:,4); 
s56=length(HFL56); 

  
for i=1:3:s56 

     
    av_HFL56(i)=(HFL56(i)+HFL56(i+1)+HFL56(i+2))/3; 
    av_IVOL56(i)=(IVOL56(i)+IVOL56(i+1)+IVOL56(i+2))/3; 
end 

  
tav_HFL56=av_HFL56'; 
tav_IVOL56=av_IVOL56'; 

  

  
aHFL56=find(tav_HFL56); 
aIVOL56=find(tav_IVOL56); 
ss56=length(aHFL56); 

  

  
for j=1:ss56 
     Qx56(j)=tav_HFL56(aHFL56(j))*tav_IVOL56(aIVOL56(j)); 
end 
tQx56=Qx56; 
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totQx56=sum(tQx56); 
tAR56=sum(tav_IVOL56); 

  
qx56=(totQx56/tAR56); 

  
Kef56=(qx56*40)/90 

  

  
%%%%%%%%%%%%%%%% 

  
HFL57=Rnd_AR5_40_2_T1(:,3); 
IVOL57=Rnd_AR5_40_2_T1(:,4); 
s57=length(HFL57); 

  
for i=1:3:s57 

     
    av_HFL57(i)=(HFL57(i)+HFL57(i+1)+HFL57(i+2))/3; 
    av_IVOL57(i)=(IVOL57(i)+IVOL57(i+1)+IVOL57(i+2))/3; 
end 

  
tav_HFL57=av_HFL57'; 
tav_IVOL57=av_IVOL57'; 

  

  
aHFL57=find(tav_HFL57); 
aIVOL57=find(tav_IVOL57); 
ss57=length(aHFL57); 

  

  
for j=1:ss57 
     Qx57(j)=tav_HFL57(aHFL57(j))*tav_IVOL57(aIVOL57(j)); 
end 
tQx57=Qx57; 
totQx57=sum(tQx57); 
tAR57=sum(tav_IVOL57); 

  
qx57=(totQx57/tAR57); 

  
Kef57=(qx57*40)/90 

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
HFL58=Rnd_AR5_40_3_T1(:,3); 
IVOL58=Rnd_AR5_40_3_T1(:,4); 
s58=length(HFL58); 

  
for i=1:3:s58 

     
    av_HFL58(i)=(HFL58(i)+HFL58(i+1)+HFL58(i+2))/3; 
    av_IVOL58(i)=(IVOL58(i)+IVOL58(i+1)+IVOL58(i+2))/3; 
end 

  
tav_HFL58=av_HFL58'; 
tav_IVOL58=av_IVOL58'; 
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aHFL58=find(tav_HFL58); 
aIVOL58=find(tav_IVOL58); 
ss58=length(aHFL58); 

  

  
for j=1:ss58 
     Qx58(j)=tav_HFL58(aHFL58(j))*tav_IVOL58(aIVOL58(j)); 
end 
tQx58=Qx58; 
totQx58=sum(tQx58); 
tAR58=sum(tav_IVOL58); 

  
qx58=(totQx58/tAR58); 

  
Kef58=(qx58*40)/90 

  

  
%%%%%%%%%%%%%%%% 

  
HFL59=Rnd_AR5_40_4_T1(:,3); 
IVOL59=Rnd_AR5_40_4_T1(:,4); 
s59=length(HFL59); 

  
for i=1:3:s59 

     
    av_HFL59(i)=(HFL59(i)+HFL59(i+1)+HFL59(i+2))/3; 
    av_IVOL59(i)=(IVOL59(i)+IVOL59(i+1)+IVOL59(i+2))/3; 
end 

  
tav_HFL59=av_HFL59'; 
tav_IVOL59=av_IVOL59'; 

  

  
aHFL59=find(tav_HFL59); 
aIVOL59=find(tav_IVOL59); 
ss59=length(aHFL59); 

  

  
for j=1:ss59 
     Qx59(j)=tav_HFL59(aHFL59(j))*tav_IVOL59(aIVOL59(j)); 
end 
tQx59=Qx59; 
totQx59=sum(tQx59); 
tAR59=sum(tav_IVOL59); 

  
qx59=(totQx59/tAR59); 

  
Kef59=(qx59*40)/90 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  
HFL60=Rnd_AR5_40_5_T1(:,3); 
IVOL60=Rnd_AR5_40_5_T1(:,4); 
s60=length(HFL60); 

  
for i=1:3:s60 
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    av_HFL60(i)=(HFL60(i)+HFL60(i+1)+HFL60(i+2))/3; 
    av_IVOL60(i)=(IVOL60(i)+IVOL60(i+1)+IVOL60(i+2))/3; 
end 

  
tav_HFL60=av_HFL60'; 
tav_IVOL60=av_IVOL60'; 

  

  
aHFL60=find(tav_HFL60); 
aIVOL60=find(tav_IVOL60); 
ss60=length(aHFL60); 

  

  
for j=1:ss60 
     Qx60(j)=tav_HFL60(aHFL60(j))*tav_IVOL60(aIVOL60(j)); 
end 
tQx60=Qx60; 
totQx60=sum(tQx60); 
tAR60=sum(tav_IVOL60); 

  
qx60=(totQx60/tAR60); 

  
Kef60=(qx60*40)/90 

  

  
%%%%%%%%%%%%%%%% 

  
HFL56_2=Rnd_AR5_40_1_T2(:,3); 
IVOL56_2=Rnd_AR5_40_1_T2(:,4); 
s56_2=length(HFL56_2); 

  
for i=1:3:s56_2 

     
    av_HFL56_2(i)=(HFL56_2(i)+HFL56_2(i+1)+HFL56_2(i+2))/3; 
    av_IVOL56_2(i)=(IVOL56_2(i)+IVOL56_2(i+1)+IVOL56_2(i+2))/3; 
end 

  
tav_HFL56_2=av_HFL56_2'; 
tav_IVOL56_2=av_IVOL56_2'; 

  

  
aHFL56_2=find(tav_HFL56_2); 
aIVOL56_2=find(tav_IVOL56_2); 
ss56_2=length(aHFL56_2); 

  

  
for j=1:ss56_2 
     Qx56_2(j)=tav_HFL56_2(aHFL56_2(j))*tav_IVOL56_2(aIVOL56_2(j)); 
end 
tQx56_2=Qx56_2; 
totQx56_2=sum(tQx56_2); 
tAR56_2=sum(tav_IVOL56_2); 

  
qx56_2=(totQx56_2/tAR56_2); 

  
Kef56_2=(qx56_2*40)/90 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
HFL57_2=Rnd_AR5_40_2_T2(:,3); 
IVOL57_2=Rnd_AR5_40_2_T2(:,4); 
s57_2=length(HFL57_2); 

  
for i=1:3:s57_2 

     
    av_HFL57_2(i)=(HFL57_2(i)+HFL57_2(i+1)+HFL57_2(i+2))/3; 
    av_IVOL57_2(i)=(IVOL57_2(i)+IVOL57_2(i+1)+IVOL57_2(i+2))/3; 
end 

  
tav_HFL57_2=av_HFL57_2'; 
tav_IVOL57_2=av_IVOL57_2'; 

  

  
aHFL57_2=find(tav_HFL57_2); 
aIVOL57_2=find(tav_IVOL57_2); 
ss57_2=length(aHFL57_2); 

  

  
for j=1:ss57_2 
     Qx57_2(j)=tav_HFL57_2(aHFL57_2(j))*tav_IVOL57_2(aIVOL57_2(j)); 
end 
tQx57_2=Qx57_2; 
totQx57_2=sum(tQx57_2); 
tAR57_2=sum(tav_IVOL57_2); 

  
qx57_2=(totQx57_2/tAR57_2); 

  
Kef57_2=(qx57_2*40)/90 

  

  
%%%%%%%%%%%%%%%% 

  
HFL58_2=Rnd_AR5_40_3_T2(:,3); 
IVOL58_2=Rnd_AR5_40_3_T2(:,4); 
s58_2=length(HFL58_2); 

  
for i=1:3:s58_2 

     
    av_HFL58_2(i)=(HFL58_2(i)+HFL58_2(i+1)+HFL58_2(i+2))/3; 
    av_IVOL58_2(i)=(IVOL58_2(i)+IVOL58_2(i+1)+IVOL58_2(i+2))/3; 
end 

  
tav_HFL58_2=av_HFL58_2'; 
tav_IVOL58_2=av_IVOL58_2'; 

  

  
aHFL58_2=find(tav_HFL58_2); 
aIVOL58_2=find(tav_IVOL58_2); 
ss58_2=length(aHFL58_2); 

  

  
for j=1:ss58_2 
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     Qx58_2(j)=tav_HFL58_2(aHFL58_2(j))*tav_IVOL58_2(aIVOL58_2(j)); 
end 
tQx58_2=Qx58_2; 
totQx58_2=sum(tQx58_2); 
tAR58_2=sum(tav_IVOL58_2); 

  
qx58_2=(totQx58_2/tAR58_2); 

  
Kef58_2=(qx58_2*40)/90 

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  
HFL59_2=Rnd_AR5_40_4_T2(:,3); 
IVOL59_2=Rnd_AR5_40_4_T2(:,4); 
s59_2=length(HFL59_2); 

  
for i=1:3:s59_2 

     
    av_HFL59_2(i)=(HFL59_2(i)+HFL59_2(i+1)+HFL59_2(i+2))/3; 
    av_IVOL59_2(i)=(IVOL59_2(i)+IVOL59_2(i+1)+IVOL59_2(i+2))/3; 
end 

  
tav_HFL59_2=av_HFL59_2'; 
tav_IVOL59_2=av_IVOL59_2'; 

  

  
aHFL59_2=find(tav_HFL59_2); 
aIVOL59_2=find(tav_IVOL59_2); 
ss59_2=length(aHFL59_2); 

  

  
for j=1:ss59_2 
     Qx59_2(j)=tav_HFL59_2(aHFL59_2(j))*tav_IVOL59_2(aIVOL59_2(j)); 
end 
tQx59_2=Qx59_2; 
totQx59_2=sum(tQx59_2); 
tAR59_2=sum(tav_IVOL59_2); 

  
qx59_2=(totQx59_2/tAR59_2); 

  
Kef59_2=(qx59_2*40)/90 

  

  
%%%%%%%%%%%%%%%% 

  
HFL60_2=Rnd_AR5_40_5_T2(:,3); 
IVOL60_2=Rnd_AR5_40_5_T2(:,4); 
s60_2=length(HFL60_2); 

  
for i=1:3:s60_2 

     
    av_HFL60_2(i)=(HFL60_2(i)+HFL60_2(i+1)+HFL60_2(i+2))/3; 
    av_IVOL60_2(i)=(IVOL60_2(i)+IVOL60_2(i+1)+IVOL60_2(i+2))/3; 
end 
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tav_HFL60_2=av_HFL60_2'; 
tav_IVOL60_2=av_IVOL60_2'; 

  

  
aHFL60_2=find(tav_HFL60_2); 
aIVOL60_2=find(tav_IVOL60_2); 
ss60_2=length(aHFL60_2); 

  

  
for j=1:ss60_2 
     Qx60_2(j)=tav_HFL60_2(aHFL60_2(j))*tav_IVOL60_2(aIVOL60_2(j)); 
end 
tQx60_2=Qx60_2; 
totQx60_2=sum(tQx60_2); 
tAR60_2=sum(tav_IVOL60_2); 

  
qx60_2=(totQx60_2/tAR60_2); 

  
Kef60_2=(qx60_2*40)/90 

  

  

  

  

  
K_Eff_1=[Kef56 Kef57 Kef58 Kef59 Kef60] 
mean_1=sum(K_Eff_1)/5 

  
K_Eff_2=[Kef56_2 Kef57_2 Kef58_2 Kef59_2 Kef60_2] 
mean_2=sum(K_Eff_2)/5 
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Appendix 𝑰𝑽 

Percentiles of the chi-square distribution 
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