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Abstract

Quantum key distribution (QKD) is one of the most promising tech-

niques for the secure exchange of cryptographic keys between two

users. Its unique property of relying on the laws of physics makes it

an appealing tool for secure communications. While QKD has been

implemented over distances on the order of a few hundreds of kilome-

ters, the transmission rate of the key severely drops, when we go to

further distances. An easy solution to this could rely on a network

of trusted nodes. This solution, however, is far from ideal. In this

thesis, we focus on obtaining long-distance secure communications

by using trust-free intermediate nodes between two users. Quantum

repeaters will then be at the core of our work and we analytically

study different systems under realistic scenarios. We cover a range of

repeater setups incorporating quantum memories (QMs), in terms of

their short-term and long-term feasibility and in terms of ease of access

for end users. We consider the main imperfections of the employed

devices. In particular, we consider ensemble-based QMs, which offer

a feasible route toward the implementation of probabilistic quantum

repeaters. We study the effects of multiple excitations in such QMs

and its effects on the key rate in a memory-assisted measurement-

device-independent QKD (MDI-QKD) system. We then analytically

compare the performance of two probabilistic quantum repeater pro-

tocols by calculating their secure key rates. We identify under which

regimes of operation one system outperforms the other. Source and

memory imperfections are considered in our analysis. Finally, we com-

bine a quantum repeater scheme with the MDI-QKD protocol and we

derive the largest distances that is possible to reach under practical



assumptions. Overall we obtain a realistic account of what can be

done with existing technologies in order to improve the reach and the

rate of QKD systems within a larger quantum network.
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Chapter 1

Introduction

Sharing information has become a daily operation, which involves millions of users

around the world. People, separated by large distances, need to communicate

in a secure and confidential way for buying and selling goods, or simply for

having a private conversation. Therefore, it is very important to develop methods

and techniques to secure data storage and data transmission. This is the main

objective of cryptography. Throughout history, different cryptographic systems

have been developed aiming at providing security against potential eavesdroppers

who attempt to hack them. These systems often relied on the complexity of

encryption algorithms in order to make it more challenging for an eavesdropper

to decrypt the message. An alternative approach to ensuring security is offered

by quantum cryptography, whose security relies on the laws of nature. In fact, in

a quantum cryptographic protocol, any attempt by an eavesdropper to intercept

the secret key can, in principle, be detected by the users. On the one hand,

the quantum nature of such systems provides unconditional security but, on the

other, it makes such systems quite fragile. This thesis is focused around one of

the key applications of quantum cryptography knows as quantum key distribution

(QKD). Here, I study how we can implement reliable QKD systems over long

distances despite of imperfections in our employed devices. Before explaining the

work done in this thesis, in the following, I will present a historical background,

which will help me introduce the main topics studied in this thesis.

1



1.1 Cryptography

1.1 Cryptography

The word cryptography etymologically comes from the Greek word κρνπτ óς, hid-

den or secret, and γραφη, writing, and it might be defined as the science that

deals with encrypting and decrypting messages in order to ensure their authen-

ticity, integrity and security.

In the 20th century, many cryptographic systems have been developed, pushed

especially by the urge of secure communication during the two world wars. One

particular important cryptosystem was proposed in 1917 by G. Vernam, hence

called the Vernam cipher or the one-time pad. This was a substitution cipher,

where each letter was advanced by a random number of positions in the alphabet.

In this way, by knowing the number series, i.e., the key, it was possible to recon-

struct the original message. Although this kind of cipher was quite secure against

enemies with low computational power, it faced the problem of how to distribute

the key in a secure way. Later on, we will see the importance of such a cipher

in the recent developments of cryptography and how QKD can help us with this

problem. A machine that had a big relevance in the cryptographic world and was

used massively during the second world war was the so called Enigma machine,

invented by Arthur Schrebious. It consisted of a set of rotating wired wheels,

which could perform a very sophisticated substitution cipher. Further improve-

ments brought the Enigma machine to produce 159× 1018 possible combinations

(cryptoraphic keys), which made it the hardest cryptographic machine to break in

those times. Today, a Pentium-based computer can decipher an Enigma-crypted

message in a few minutes [3]. We need therefore a cryptographic system whose

security can hardly be jeopardized by the most advanced computers.

In the world of cryptography there are two main branches that have been

developed throughout the years: public-key cryptography and secret key cryp-

tography. In the following subsections I briefly describe the main features of

them.

1.1.1 Public-key cryptography

Public-key cryptography, also known as asymmetric cryptography, was invented

in 1976 by Whitfield Diffie and Martin E. Hellman [4] and is perhaps the key

2



1.1 Cryptography

enabling technique in providing security in the today’s Internet. It is used for

authentication and to share initial seed keys, which will be used for various cryp-

tographic protocols, between two users. I will explain in this section how it

works. A user (Alice) creates two keys. One is the public key, which is available

to everyone, and the other one is a secret key, which is stored in a secure place.

Anyone who wants to communicate with Alice uses the public key to encrypt

his/her message and then sends it to Alice, who can decrypt it using her private

key. In practice, public keys are normally distributed through trusted authorities.

The public and the secret keys are mathematically interconnected, so that it is

theoretically possible to find out the secret key if someone has access to strong

computational power.

Today the most widely used public cryptographic system is the RSA cryp-

tosystem, whose name is the acronym of the inventors, Rivest, Shamir and Adle-

man [5]. It exploits the difficulty of factoring large numbers. In particular,

Alice picks two large prime numbers, p and q, and makes their product public.

Then, she chooses two large numbers e and d such that (de − 1) is divisible by

(p − 1)(q − 1). The public key consists of the product N = pq together with

the number e; N and d make the private key. With e, anyone can encrypt a

message M by calculating S = M e modN , where S is the encrypted text, and

M e modN is the remainder of the Euclidean division of M e by N . To decipher

the encrypted message Alice uses her private key and calculates M = Sd modN.

This example shows that, in order to break the RSA system, one has to find the

prime factors of N , which is currently a challenging computational problem for

classical computers.

In last decades there have been several attempts to break an RSA system [6, 7].

In one of the most recent attack a 768 bit key was cracked by a network of classical

computers [8]. In the future, when quantum computers will be available, it will

be possible to decrypt an RSA system in polynomial time [9]. As a consequence,

RSA may become obsolete. Hence, let us consider another type of cryptography

to find out whether it offers more security.
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1.1.2 Secret-key cryptography

The other branch of cryptography is called secret-key cryptography, also known

as symmetric cryptography. In this case, the two users will use the same key to

encrypt and decrypt a message. Therefore, sharing the key in a secure way such

that any eavesdropping attempt can be detected is fundamental. One example

of a classical cryptographic system is the aforementioned Verner cipher. The

principle of this cipher is to add a random key to the message in order to es-

tablish secure communication between the two legitimate users. The encryption

algorithm E can be written as [3]

EK (M) = (M1 +K1,M2 +K2, ...Mn +Kn) mod 2, (1.1)

where M = (M1,M2, ...Mn) is the message in bits and K = (K1, K2, ...Kn) is

the secret key, generally consisting of random bits. To decipher the encrypted

message it is sufficient to apply the same procedure as in (1.1), on EK (M).

Applying the mod-2 operation twice is equivalent to the identity, hence

M = EK (EK(M)) = (M1 +K1 +K1,M2 +K2 +K2, ...Mn +Kn +Kn) mod 2.

(1.2)

In order to guarantee the security, this system must fulfill three requirements:

(1) the length of the key must be the same as the length of the message; (2)

the key must be purely random; and (3) it must be used only once (that is why

it is also called one-time pad). But even if all the three requirements hold, the

secret key has to be shared between the users who, in most cases, are located far

apart from each other. The current practice for sharing secret keys involves using

public-key cryptography whose security, as mentioned in Sec 1.1.1, is at risk. In

the next section, I will show how quantum cryptography can help us with the

key distribution problem by making it impossible for an eavesdropper to remain

undetected if he/she acquires an unacceptable amount of information about the

key.
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1.2 Quantum cryptography

Quantum cryptography is the discipline that applies the principles of quantum

mechanics to cryptography. The major aim of quantum cryptography is to de-

vise protocols that are information-theoretically secure by exchanging quantum

states. That means that the security is guaranteed by the laws of nature, as

we understand them today, even if the adversary has unlimited computational

power. The fundamental principle that makes quantum cryptography so special

is the fact that, as stated by the measurement principle, any measurement in

quantum mechanics may modify the state of the system. Therefore, if a potential

eavesdropper tries to interfere with the quantum protocol, he/she would introduce

errors in the system and would be eventually detected. Note that, quantum cryp-

tography does not prevent the leakage of information during the communication

but it enables us (in theory) to detect the presence of malicious parties.

The best known application in quantum cryptography is quantum key distri-

bution (QKD), on which this thesis is focused. We will describe QKD in more

detail in Sec. 1.2.1. However, quantum cryptography is not limited to QKD.

In fact, it covers topics such as Bit commitment (BC), which is a cryptographic

technique involving two parties, Alice and Bob, wherein Alice chooses an encoded

bit of information and commits to it until a certain time at which she reveals it

to Bob, without being able to change it [10]; Quantum fingerprint, which is a

way to distinguish with high probability between two long strings of bit by com-

paring an exponentially shorter string associated with the long ones. This has

found an application in a public-key digital signature scheme [11]; and Quantum

data hiding, which aims at storing quantum or classical information in a bipartite

quantum state shared by Alice and Bob, which can successively be recovered with

high fidelity [12]. Other examples are the authentication of quantum messages

[13], the encryption of quantum states [14], and the calculation of one-way func-

tions useful for quantum computers [15]. Next, We describe QKD as the main

application of interest in this thesis.
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1.2.1 Quantum key distribution (QKD)

Quantum key distribution (QKD) is one of the main applications in quantum

cryptography that makes use of laws of quantum physics to guarantee secure

communications. It enables two users, usually named Alice and Bob, to produce

a shared secret random bit string, which can be used as a key in cryptographic

applications. QKD relies on the use of non-orthogonal quantum states. Its secu-

rity follows from the Heisenberg uncertainty principle, which does not allow us

to discriminate non-orthogonal states with certainty and without disturbing the

measured system. In classical physics, it is possible to remain undetected as an

eavesdropper, because information encoded into a certain property of a classical

object may be obtained without altering the state of the object. In quantum

cryptosystems, instead, the inviolability of the channel is tested by the use of

non-orthogonal quantum states as information carriers.

It should be emphasized that quantum mechanics does not prevent possible

eavesdropping; it only enables us to detect the presence of an eavesdropper, usu-

ally named Eve. If Eve attempts to listen in, that would unavoidably introduce

discrepancies between Alice’s and Bob’s keys. Using post-processing techniques,

these discrepancies can be found, and, if necessary, the key can be discarded and

the users repeat the procedure to generate a new key.

There are several types of QKD protocols. One group relies on prepare-and

measure schemes, such as BB84 [16] and B92 [17]. As the denomination of these

protocols suggests, Alice sends a single photon encoded in a specific polarization,

which corresponds to bit 1 or 0, and Bob measures it according to a determined

orientation. They repeat this procedure several times until they share a suffi-

ciently long string of bits. Then, Bob publicly announces the basis chosen for the

measurement (sifting). They keep the bits if the bases chosen by Alice and Bob

are identical. They discard it otherwise. If Eve attempts to intercept the photon

sent by Alice, she will inevitably introduce some errors, which can be detected by

estimating the discrepancy rate of sifted keys. Another class of protocols use a

specific property of quantum mechanics, which does not exist in classical physics:

entanglement. Entanglement is a non-classical property of physical systems. Two
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systems are said to be entangled when their joint quantum state cannot be ex-

pressed by a linear combination of a tensor product states; see Sec. 2.4. The

main examples of entanglement-based QKD are Ekert91 [18] and BBM92 [19]

protocols. The goal of these protocols is to create correlated bits through certain

measurements on entangled pairs shared by Alice and Bob. The security of an

entanglement-based protocol relies on Bell’s inequality [20], which concerns mea-

surements made by observers on pairs of particles that have interacted and then

separated. In particular, generalizing Bell’s original inequality, John Clauser,

Michael Horne, Abner Shimony and Richard A. Holt, introduced the CHSH in-

equality, [21] which puts classical limits on the sum of four correlations in Alice

and Bob’s experiment

−2 ≤ S ≤ 2 (1.3)

where

S = E(a, b)− E(a
′
, b)− E(a, b

′
) + E(a

′
, b
′
) (1.4)

where a and a
′

are detector settings on Alice side, b and b
′

on Bob side, and

the four combinations being tested in separate experiments. The terms E(a, b)

etc. are the quantum correlations of the particle pairs, where the quantum cor-

relation is defined to be the expectation value of the product of the ”outcomes”

of the experiment. The mathematical formalism of quantum mechanics predicts

a maximum value for S of 2
√

2, which is greater than 2, and CHSH violations

are therefore predicted by the theory of quantum mechanics. Therefore, if an

eavesdropper interferes with the entangled pairs shared by Alice and Bob, he will

inevitably destroy the quantum correlation between the particles, leading to a

non-violation of Bell’s inequality.

In the original BB84 QKD protocol, one needs sources that emit only a single

photon, which, today, are very hard to build. In the past few years several

solutions have been suggested to overcome this limitation. It is now possible to

use weak laser pulses that emit coherent-states instead of ideal single photons.

The latter contain vacuum components and multi-photon components, which

can be detrimental for the performance of a QKD protocol. Moreover, if the

source emits more than one photon, the security of some QKD protocols can be

compromised by the so called photon number splitting (PNS) attack [22], where
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Eve can obtain information on the key without introducing any detectable error.

However, it is still possible to share a secure key even with the possibility of a PNS

attack, as shown in the GLLP security proof [23], although the secret key rate is

significantly reduced (with PNS the rate scales as η2
ch as compared to ηch for a

single photon source, where ηch is the transmittance of the quantum channel).

There are several solutions to the PNS attack. The most obvious is to use

perfect single photon sources, but, as already mentioned, the current technology

prevents us from such possibility. Another solution has been proposed in [24],

where the BB84 protocol has been modified and in which the key rate scales as

η
3/2
ch . One of the most promising solutions comes from using decoy state protocols

[25–27], in which Alice send arbitrarily two different kinds of pulses: one used for

extracting the key and the other one to detect the presence of an eavesdropper

(decoy states). The latter can be used to prevent the PNS attack, since Eve

cannot distinguish between the signal pulses and decoy pulses. I will explain

more precisely how this protocol works in Ch. 2.

Along with the PNS attack, there is another group of attacks, which operate

on the measurement devices located at users’ sites [28–30]. Eve may be able to

change the characteristics of the detectors by exploiting their flaws. Therefore,

in addition to being costly, measurement devices can lead to compromising the

security of a QKD protocol. A solution for this issue has been proposed recently

in [1, 31]. Here, the authors suggest a QKD protocol, called measurement-device

independent QKD (MDI-QKD), which delegates the measurement process to an

untrusted party located in between Alice and Bob. In this way, the users do not

need to know the characteristics of the measurement devices used. Moreover, it

is possible to apply the decoy-state technique to this protocol, making it more

resilient to malicious attacks. The users send BB84 decoy states to an untrusted

party (Charlie), located, generally, in the middle. Charlie performs a Bell-state

measurement (BSM), which creates a correlation between Alice and Bob’s states.

Later, he will announce the results of the measurements to Alice and Bob, who

can deduce each others’ bits. This protocol enables them to share the costs

of measurement devices and can be considered as a prototype for a network

system where many users can exchange secure keys through the BSMs located
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in intermediate nodes. The security of this protocol is guaranteed by the reverse

EPR protocol [31, 32].

As already mentioned, flaws in photodetectors can cause a range of attacks.

The can also be detrimental for the performance of the protocol itself. In fact, a

real implementation of a QKD protocol has to face some issues coming from the

inefficiencies of the protocol’s components, such as the detection efficiency, dark

counts in photodetectors, imperfect sources and channel loss. All these inefficien-

cies limit the performance of a QKD protocol, which is commonly measured by

considering the rate at which two users can share a secret key, called the secret

key generation rate. In particular, the secret key generation rate between two

distant sites will decrease exponentially with the length of the channel, due to

noises and loss. Due to the no-cloning theorem [33], which forbids the creation of

identical copies of an arbitrary unknown quantum state, we cannot duplicate the

states, and, therefore, it would be challenging to implement QKD over arbitrarily

long distances. In order to overcome this difficulty, quantum repeaters can be

used as explained in the next Section.

1.3 Quantum repeaters

The principle of quantum repeaters relies on entanglement swapping operations,

which consist of teleporting an entangled state from one location to another.

The basic idea is to divide the transmission channel into many segments. First,

entanglement is generated and, possibly, purified for each segment, and it is

stored in quantum memories (QMs). Once entanglement is established over these

elementary links, it is extended to a greater length by connecting two adjacent

segments using entanglement swapping [34], which are performed by BSMs.

Depending on the nature of the entanglement swapping operations, we can

distinguish between deterministic and probabilistic quantum repeaters. The

first proposed quantum repeater protocol [35] belongs to the deterministic group,

which performs BSMs through quantum gates in a deterministic way. Such de-

vices are very demanding to implement, making this kind of protocol hard to

implement. A perhaps more feasible approach, in the short term, was proposed

by Duan and co-workers and called the DLCZ protocol [36], which is the first
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probabilistic quantum repeater protocol. In such a protocol, the BSMs are per-

formed simply by using a 50:50 beam splitter and photodetectors. This approach

may be suitable for implementing quantum repeaters over up to around 1000 km.

In [36], authors, in order to store qubits, use ensemble-based quantum mem-

ories (QMs), which can be easier to implement than some other memory candi-

dates. However, ensemble based QMs are strongly affected by multiple excita-

tions, which can lead to the presence of more than one photon in the quantum

channel, hence increasing the error rate. A quantum repeater protocol that ad-

dresses this issue is the single-photon source (SPS) protocol [37]. In this scheme,

the QMs are loaded by the single photons sent by the users. Therefore, the prob-

lem of multiple-excitations in QMs is shifted to the one of having perfect single

photon sources, which, at the present day, is still hard to solve.

1.4 Highlights and Outline

In this thesis, I will provide several examples of how we can use the quantum

repeater idea to reach longer distances. I start with the analysis of the simplest

of such systems, known as memory-assisted MDI-QKD [2], which is believed

to require milder constraints on memory devices, and then proceed to consider

several probabilistic quantum repeaters, in which the entanglement swapping part

is achieved by partial BSMs performed at intermediate nodes. However, in real

implementations there are several setup inefficiencies, which may affect strongly

the performance of the protocol itself, such as the channel loss, detector efficiency,

dark counts and multiple-excitations and decoherence in quantum memories. I

will look at the performance of some quantum repeater setups by calculating

analytically the secret key generation rate as the main figure of merit. I will

include the effects of those inefficiencies and I will find the secret key rate as a

function of several system’s parameters, in order to estimate how they affect the

system under examination.

The thesis is structured as follows:

• In Chapter 2, I will review the physical background and the relevant QKD

protocols.
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• In Chapter 3, I will discuss the effects of multiple excitations on a memory-

assisted MDI-QKD protocol. I will show that the performance of the

memory-assisted MDI-QKD protocol is adversely affected by such errors.

• In Chapter 4, I will study the effects of an imperfect SPS on the SPS

protocol. By considering many sources of inefficiencies, I will determine the

longest distance reachable for such a protocol in a quantum repeater setup

up to three nesting levels. Then I will compare such a protocol with the

DLCZ protocol.

• In Chapter 5, I will extend my analysis by considering an MDI-QKD setup

combined with a quantum repeater scheme. This new quantum repeater

scheme has the advantage of delegating the measurement process to an un-

trusted party; instead the end users are only equipped with encoder mod-

ules.

• In Chapter 6, I will draw the conclusions and present some topics for future

research.
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Chapter 2

Background

2.1 Introduction

This Chapter explains and summarizes the background required to understand

the technical contribution of this thesis. I will review several QKD protocols that

are relevant to the topics discussed in this thesis. I will describe the BB84 proto-

col [16] and the Ekert protocol [18], which are the first prepare-and-measure and

entanglement-based protocols for exchanging secret keys, respectively. I will also

introduce the decoy-state technique, which enables us to use weak laser pulses,

rather than ideal single photons, in QKD. Next, I address long-distance quantum

communications by describing deterministic [35] and probabilistic quantum re-

peaters [36]. The multiple-memory configuration, used to enhance the key rate,

will be presented and I will model the main inefficiencies a QKD setup may have

in real implementations.

2.2 BB84 protocol

QKD is best known by the protocol proposed by Charles Bennet and Gilles

Brassard in 1984, coined as BB84, for exchanging secret information using non-

orthogonal states. The security of BB84 protocol is guaranteed by quantum

mechanics principles and it relies on the no-cloning theorem [33, 38] and the im-

possibility of perfectly distinguishing between non-orthogonal states, such that
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2.2 BB84 protocol

Alice key bits 0 0 0 1 0 1 1

Alice’s basis × + + × × + +

Alice photon sent ↗ → → ↖ ↗ ↑ ↑
Bob’s measurement basis × × + + × + ×

Photon polarization ↗ random → random ↗ ↑ random

measured by Bob

public discussion

secret key 0 0 0 1

Table 2.1: An example of the BB84 protocol

any attempt to intercept the signal will disturb the system. In BB84, Alice first

generates a random key. In order to send her key bits to Bob, she randomly

encodes single photons into two different bases. In the polarization encoding,

she uses the rectilinear basis (+), represented by horizontal (→), and vertical

(↑) polarizations or the diagonal basis (×), represented by 45◦(↗) and 135◦(↖)

polarizations to encode her bits. An example of the BB84 operation is sketched

in Table 2.1 and it works in the following way:

• Raw key exchange:

– Alice randomly chooses a bit and encodes it in one of the two bases.

– She sends the corresponding polarized photon to Bob.

– Bob randomly chooses to measure the incoming photon in one of the

two bases.

– They repeat this procedure a sufficiently large number of times.

• Sifting:

– They publicly declare which basis they have used.

– They keep the bits when they have chosen the same basis (sifted key),

and discard the others.

• Postprocessing:
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2.3 Decoy-state method

– They apply error correction and privacy amplification techniques to

remove all discrepancies in their keys and to remove any information

that might be have leaked to Eve during the procedure. The resulting

key will be their final key.

To check the presence of an eavesdropper (Eve), Alice and Bob estimate the

discrepancy rate, known as quantum bit error rate (QBER), between their sifted

keys. If Eve attempts to intercept the key, she introduces some errors, therefore

some of the Bob’s sifted bits will differ from those of Alice even if the chosen

bases coincide. If QBER is greater than a certain threshold value, Alice and

Bob abort the protocol. The threshold depends on the employed post-processing

technique and it ranges between 11% [39] and nearly 20% [40]. In principle,

privacy amplification eliminates any partial Eve’s information about Alice and

Bob’s key.

One of the main requirement of this protocol is that Alice has to send single-

photons to Bob. Today, it is still hard to have a source that emits exactly one

photon. More often, the available single-photon sources also produces multi-

photon components, which can be used by Eve to perform certain attacks. In

particular, in the photon-number splitting (PNS) attack, if, for instance, two

photons are present in the channel, Eve can store one photon in a QM and let

the other pass by. Then, during the sifting procedure, she can measure it in the

same basis chosen by Bob. In this way she will gain some information on the

secret key and the security of the protocol will be compromised. In the following

section, I will describe a method that is resilient to the PNS attack even if we

use weak laser pulses to simulate the required single photons in QKD.

2.3 Decoy-state method

The decoy state method was first proposed in [25] to minimize the effects of

multi-photon components, which can be used by Eve to perform the PNS attack

in the BB84 protocol. This method allows Alice to use a laser to send pulses

to Bob, making the protocol more feasible for a practical implementation. The

main feature of the decoy state idea is that Alice uses two different sets of signals:
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the standard BB84 states, which are used for key generation only; and the decoy

states, which are used to detect the presence of an eavesdropper. Let us see

more precisely how the combination of the BB84 protocol and the decoy-state

technique works. In the BB84 plus decoy-state protocol, Alice tunes her laser

source intensity, and sends to Bob extra signals (decoy states) with different

intensities (expected photon number), µ. The key point of this technique is that

Eve cannot distinguish between states used for extracting the key and the decoy

states. In fact, we have that

Yi (decoy) = Yi (signal)
ei (decoy) = ei (signal)

(2.1)

where Yi is the yield, i.e., the conditional probability of a detection on Bob’s side,

given that Alice sends i photons; and ei is the QBER, i.e., the ratio between the

probability of an erroneous bit assignment and the probability of successful bit

transmission, when Alice sends i photons.

In order to reduce the amount of necessary privacy amplification, and, there-

fore, to increase the secure communication distance, Alice and Bob need to es-

timate Y1 and e1. This can be achieved in the infinite decoy protocol [26] for

example, by sending an infinite number of decoy states. For each intensity µ, we

obtain

Qµ =
∞∑
i=0

Qi

EµQµ =
∞∑
i=0

eiYi
µi

i!
e−µ

(2.2)

where Qµ is the overall gain, i.e., the sum of gain parameters of i photon states

Qi, given by:

Qi = Yi
µi

i!
e−µ (2.3)

and Eµ is the overall QBER for all pulses with intensity µ. If we use infinitely

many intesities we can in principle estimate Q1 and e1, accurately. However, it

can be shown that one or two decoy states are sufficient for practical purposes

[27].

The procedure for the decoy-state QKD is as follows [41]:
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• Alice sends decoy and signal states to Bob, who measures them in the two

conjugate bases.

• Alice announces the pulses used for decoy states and they determine all the

gains of signals and of decoy states.

• They compare all bases used for the decoy states to determine the QBER.

• They perform error correction and privacy amplification to find the final

secret key.

In [26] authors derive the key rate formula when the decoy-state method is applied

to the BB84 scheme. In the limit of infinitely many decoy states and infinitely

long keys, the key rate is lower bounded by:

R ≥ q {Q1 [1− h (e1)]−Qµfh (Eµ)} , (2.4)

where q is the basis reconciliation factor, f is the error correction inefficiency,

and h is the binary entropy, h(x) = −x log2 x− (1− x) log2(1− x). In the BB84

protocol q = 1/2 because half of the time Alice and Bob disagree on the basis

chosen. If one uses the efficient BB84 protocol [42] we can approximate q by 1.

Moreover, they show that it is possible to reach much longer distances (about 140

km) by applying this technique than what one could do at the time without using

decoy states [26]. We will use (2.4) to evaluate the secret key rate in Chapters 3

and 5.

As shown in this section, it is possible to apply the decoy-state method when

signals are under the control of the users. In the next section we will present a

new type of protocol to exchange secret keys, where the source is placed between

Alice and Bob and, therefore, it is not possible to apply the decoy-state method.

Nevertheless, the following QKD protocol has had a big importance since its ap-

pearance and, as the BB84 protocol, it represents a milestone for many protocols

that came after.
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2.4 Ekert protocol

2.4 Ekert protocol

In 1991 Ekert proposed a different type of protocol based on entangled states [18].

Entanglement represents a correlation between two or more properties (such as

spin, polarization, etc) of two physical systems in such a way that is impossible

to express the entangled state as a tensor product, which is a characteristic of

separable states. In particular, letH1 andH2 be finite-dimensional Hilbert spaces,

a density matrix ρ acting on H1 ⊗H2 is separable if there exist pi ≥ 0 and two

sets of mixed states of the respective subsystems {ρi1} and {ρi2}, such that

ρ =
∑
i

piρ
i
1 ⊗ ρi2, (2.5)

where
∑

i pi = 1. When it is not possible to express ρ as in Eq. (2.5) then ρ is

an entangled state.

In the following I will briefly describe how this protocol works. In the Ekert

protocol, a source of entangled photon pairs is located between Alice and Bob

and it emits polarized photons in the singlet states:

|ϕ 〉 =
1√
2

(| ↑↓ 〉+ | ↓↑ 〉) . (2.6)

Alice and Bob will pick one of the three coplanar axes to do a polarization

measurement. The orientations of the analyzers of Alice and Bob, which represent

a basis, are given respectively by:

ϕA = 0◦, 45◦, 90◦

ϕB = 45◦, 90◦, 135◦.
(2.7)

Whenever the bases of Alice and Bob are the same, they will share an an-

ticorrelated state, meaning Alice will measure horizontal polarization and Bob

vertical polarization or vice versa. If the bases chosen are different the outcomes

will be random.

This procedure is repeated many times until they share a string of bits. Then,

as in the BB84 protocol, they publicly announce which basis they have used, and

divide the measurements into two groups depending on which orientation they

have chosen. If they have used the same orientation (first group), then the results

of these measurement will be used to extract the key. They will use the results
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of the second group to test the Bell inequality [20]. Any classical system satisfies

the Bell inequality, while, it is violated by entangled states. If Eve intercepts

entangled states, she demolishes the quantum correlation between the two sub-

systems and the Bell inequality holds. In this case Alice and Bob can detect the

presence of Eve and the protocol is aborted.

The Ekert protocol launched a new type of QKD protocols, which rely on

using entangled photons, called entanglement-based QKD protocols. One of

them is the BBM92 protocol [19], which has been proposed by Bennett, Bras-

sard and Mermin shortly after the Ekert protocol and can be regarded as an

entanglement-based version of the BB84 protocol. The same idea was behind

alternative QKD protocols such as the time-reversed EPR scheme [31, 32], and

the device-independent QKD protocol [43]. An experimental implementation of

a modified version of the BB84 scheme that uses entangled photons has been

made in [44]. However, both prepare-and-measure and entanglement-based pro-

tocols are affected by a range of attacks performed on the measurement devices

[45, 46], which might compromise the security of the protocol itself. In the next

section, I will present a protocol, called measurement-device-independent QKD

(MDI-QKD), which is not affected by such attacks. In such a protocol, the

measurement process is delegated to an untrusted party, by using entanglement

swapping and the time-reverse EPR protocol. It has also the practical advantage

of using the decoy-state technique. In the next section, I will describe the main

features of such a protocol.

2.5 MDI-QKD protocol

MDI-QKD [1] is a clever protocol that combines BB84 source states with the

time-reversed EPR protocol [47] in order to remove all side-channel attacks on

the measurement modules. In this protocol practical weak coherent pulses can

be used as sources, and the decoy state technique, which was described in section

2.3, is applied; see Fig. 2.1. This allows us to reach further distances as compared

to the decoy-state BB84 scheme [1].

The MDI-QKD protocol works as follows: Alice and Bob both prepare their

states in one of the four BB84 states by choosing a rectilinear or diagonal basis.
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Figure 2.1: MDI-QKD scheme with polarization encoding [1].

They send their state to a middle site where a partial BSM is performed, pro-

jecting the states to one of the Bell states by an untrusted party, called Charlie.

Charlie announces which detectors click. Alice and Bob repeat this procedure

several times. Later, over a public channel, they compare the bases chosen, and

they keep the cases when the bases chosen are the same, otherwise they dis-

card them. The security of such a protocol follows that of the time-reversed EPR

QKD protocol in [31, 32, 48]. Because of relying on the reverse-EPR protocol [47],

Charlie does not need to be trusted. The main achievements of the MDI-QKD

protocol can be summarized as follows:

• it enables the two users to use laser sources for generating quantum states,

hence low-complexity modules are needed for the end users.

• it creates correlated pairs of the pulses sent through a BSM performed by an

untrusted party. The BSM operation effectively produces an entanglement

swapping operation, similar to that of quantum repeaters.

• it removes all side-channel attacks on detector modules.

We will see how the above features will make this protocol a natural candidate

for the access part of a quantum communication networks as will be discussed in

Ch. 5.

19



2.6 Memory-assisted MDI-QKD

Figure 2.2: Memory-assisted MDI-QKD with heralding memories.

In the following we describe an MDI-QKD protocol embedded with quantum

memories. This can be considered as an intermediate step towards the implemen-

tation of quantum repeaters.

2.6 Memory-assisted MDI-QKD

An improved version of the MDI-QKD scheme has been presented in [2]. With

such a scheme, authors aim at improving the rate-versus-distance performance

by introducing QMs just before the BSM performed in an MDI-QKD setup.

Figure 2.2 shows how this scheme works. Alice and Bob send BB84 encoded

states to a middle site where there are QMs. At each round, each QM tries to

store the incoming pulse. Once both memories are loaded, the QM’s states are

retrieved and a BSM on the resulting photons is performed. They follow the

same steps to share a key as in the MDI-QKD protocol. The main advantage

of this scheme relies on the fact that the requirements for the QMs are less

demanding than the ones used for a probabilistic quantum repeater protocol, by

relaxing the condition of having long coherence times for QMs. Therefore, this

may represent a valid middle-step toward the future implementation of quantum

repeaters. Moreover, in [2], authors show that if fast memories with large storage-

bandwidth products are used, it is possible to beat the conventional MDI-QKD

systems with no memories. We can meet this requirement by using ensemble-

based QMs. Writing times as short as 300 ps and bandwidths on the order of

GHz have been reported for such memories [49, 50]. We will see in Ch. 3 how

an MDI-QKD system with ensemble-based QMs will perform. Ultimately, the

way to reach further distances is given by using quantum repeater protocols, as

explained in the next section.
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Figure 2.3: Entanglement swapping.

2.7 The principles of quantum repeaters-operation

Entanglement purification and connection of entangled pairs through entangle-

ment swapping [51] are the main tools required for a quantum repeater. We will

not discuss entanglement purification in here. What is important to know is that

one can generate entangled pairs with a certain fidelity, starting from pairs with a

lower initial fidelity via reasonably few purification steps. The other ingredient of

a quantum repeater is the entanglement swapping procedure [51], which is shown

in Fig. 2.3. Alice (A) and Bob (B) are separated by a distance L. They aim

at sharing an entangled pair over such a distance. First, the quantum channel is

split into smaller segments and entanglement is generated over each elementary

link, such that A − A
′
, A

′′ − A
′′′

, B
′′′ − B

′′
, and B

′ − B will have entangled

pairs. Then, BSMs, labeled with the red circles in Fig. 2.3, are performed at

the intermediate nodes. We end up with two new entangled pairs, i.e., A − A′′′

and B
′′′ − B. Once more, we perform a BSM on the intermediate link and we,

finally, obtain a long-distance entangled pair between A and B. We can use this

entangled pair to perform a measurement for sharing a key, as explained in Sec.

2.4.

Quantum memories are the fundamental building block of a quantum repeater.

The reason for that comes from the probabilistic nature of entanglement distri-

bution as it often relies on the transmission of single photons. In Fig. 2.3, we

cannot perform entanglement swapping over A
′ − A′′ unless we have established
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2.7 The principles of quantum repeaters-operation

entanglement over both A − A
′

and A
′′ − A

′′′
. Without having memories, we

cannot guarantee the existence of entangled states over both links. With memo-

ries, however, we can successively attempt to create entanglement over each link

independently. Whenever our attempt succeeds, we store the entangled state in

QMs and wait for the other side to succeed as well.

The original quantum repeater protocol proposed in [35] is a deterministic

quantum repeater, i.e., the BSM is performed in a deterministic way through

quantum gates. This protocol contains “entanglement purification” steps that

allow one to purify, in principle, the effects of imperfect operations. However,

the implementation of such protocols is very demanding (for example the depo-

larization probabilities have to be very low [35]) and the use of a quantum gate

makes it infeasible in the imminent future. Note that in the most recent proposals

for quantum repeaters, the need of QMs as storage devices has been eliminated

[52, 53].

As an alternative, one can use probabilistic quantum repeaters, which rely

on post-selection techniques to alleviate some of these requirements. They are

probabilistic because the BSM is performed in a probabilistic way by using only

linear optics elements and photodetectors. The main example of the latter is the

scheme proposed by Duan, Lukin, Cirac, and Zoller [36], which we refer to by

DLCZ throughout this thesis and we will describe in more detail in Sec. 2.9.

The key advantage of the DLCZ protocol is an inherent self-purification scheme,

which, in practice, makes it suitable for QKD applications. That is, we may be

able to implement such systems over moderately long distances in a nearer future.

This is one of the key topics studied in this thesis by looking carefully at how

different imperfections in the systems can change the overall system performance.

Different schemes for probabilistic quantum repeaters have been proposed

over the past few years, which rely on the DLCZ idea and try to improve its

performance. In [54], authors describe a protocol where entanglement swapping

is based on two-photon detections, which leads to a constant vacuum component

in the created state. Then, in [55] an improvement has been reported regarding

enhanced robustness against phase fluctuations in the channel [56]. A modifi-

cation of the DLCZ protocol based on photon pairs and multimode memories is
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2.8 Multiple-memory configuration

reported in [57]. A protocol based on single-photon sources (SPS), which leads

to an enhanced rate compared to the DLCZ protocol is also reported in [37].

In this thesis, we will provide a comparative analysis of the above schemes

when used for QKD. In particular, we evaluate one important parameter for QKD,

i.e., its secure key generation rate. This parameter will measure the performance

of the setups we are analyzing. There might be different lower bounds for the key

rate, depending on which security proof we are considering. For example, when

the decoy-state method is used, the key rate is given by Eq. (2.4). Moreover, in

a quantum repeater setup we can have a faster key rate if more QMs are used at

each link. We will describe in more detail how it is possible to reach faster rates

in the next section.

Recently, two deterministic quantum repeater protocols have been proposed.

In [52], authors describe a quantum repeater protocol that directly transmits

qubits over optical fibers using error correction schemes. This protocol is similar

to how we communicate classical data and it offers high exchange rate of quantum

data. However, it requires highly demanding quantum processing, which makes

its implementation very challenging. Moreover, it requires very efficient interface

between light and matter. Another protocol with no QMs has been proposed

in [53]. Here, authors consider an all photonic quantum repeater protocol based

on flying qubits, in which QMs in the repeater nodes are substituted by cluster

states. The performance of this protocol is very high but it requires large cluster

states and very efficient single photon sources. This thesis is mostly focused

though on probabilistic repeaters, which have a better chance to be implemented

in the near future.

2.8 Multiple-memory configuration

In the previous section we described the principles of a quantum repeater setup

and, in particular, of a probabilistic quantum repeater protocol. We highlighted

that in such a setup we need QMs to store an entangled pair for a sufficiently

long time in order to perform a BSM with an adjacent entangled pair. In order to

increase the chances of having such entangled pairs ready to be used, we can add

more memories at each memory site. This will increase the rate we can share a
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2.8 Multiple-memory configuration

Figure 2.4: (a) A quantum repeater with multiple quantum memories per node. At each

round, we employ entanglement distribution protocol to entangle any unentangled memory

pairs over shortest links. At any such cycle, we also match up entangled pairs at different

stations to perform Bell-state measurements (BSMs). (b) A quantum repeater with multimode

memories. In each round, we apply our entanglement distribution scheme on all M modes, until

one of them becomes entangled. BSM will be followed as soon as entanglement is established

on both sides.

secret key. We consider the multiple-memory configuration shown in Fig. 2.4(a)

along with the cyclic protocol described in [58]. In this protocol, in every cycle

of duration L0/c, where L0 is the length of the shortest segment in a quantum

repeater, and c is the speed of light in the channel, we try to entangle any unentan-

gled pairs of memories at distance L0. We assume our entanglement-distribution

protocol succeeds with probability PS (L0). At each cycle, we also perform as

many BSMs as possible at the intermediate nodes. The main requirement for

such a protocol is that, at the stations that we perform BSMs, we must be aware

of establishment of entanglement over links of length l/2 before extending it to l

(informed BSMs). We use the results of [58] to calculate the generation rate of

entangled states per memory in the limit of infinitely many memories.

Suppose that at the initial time 0 there is no entanglement in the scheme.

Then, at time T0, we establish, on average, NPS entangled pairs over the elemen-

tary length L0, where N is the number of memories used in each bank. After

this stage, we perform the BSMs of the first nesting level, which succeeds with

probability P
(1)
M and we produce NPSP

(1)
M entangled pairs over a length 2L0. By
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2.8 Multiple-memory configuration

following this procedure, for a setup with n nesting levels, at time L/c we will

have on average Nent = NPSP
(1)
M ...P

(n)
M , where P

(i)
M is the BSM success probability

for nesting level i, over the total distance L. Now, for N →∞, we have that the

average number of entangled states generated per cycle over distance L, in the

steady state, is upper bounded by Nent. This is due to the fact that the protocol

repeats the same procedure at times T0, 2T0 and so on, to the pairs which are

not yet entangled. This implies that at time L/c + T0 we can overestimate the

number of entangled pairs by Nent, assuming that the number of free memories at

time T0 is N . If we want to find a rate that takes into account the cost, specified

by the number of memories used, we can simply divide that upper bound by the

total number of memories per unit of time. This normalized rate is given by [58]:

Rent = Nent

N2n+1T0

= PS(L/2n)P
(1)
M P

(2)
M ...P

(n)
M /(2L/c).

(2.8)

We use the following procedure, in the forthcoming Chapters, to find the secret

key generation rate of the setup in Fig. 2.4(a). For each entanglement distribution

scheme, we find PS (L0) and relevant PM probabilities to derive Rent (L) . We then

find the sifted key generation rate by multiplying Rent (L) by the probability,

Qclick, that an acceptable click pattern occurs upon QKD measurements. Finally,

the ratio between the number of secure bits and the sifted key bits is calculated

using the Shor-Preskill lower bound [39]. In the limit of an infinitely long key,

the secret key generation rate per logical memory is lower bounded by

RQKD (L) = max(Rent (L)Qclick [1− 2h (EQ)] , 0), (2.9)

where EQ denotes the QBER, and h(x) = −x log2 x − (1 − x) log2(1 − x), for

0 ≤ x ≤ 1.

2.8.1 Multimode configuration

Another way to speed up the entanglement generation rate is via using multi-

mode memories [59]. As can be seen in Fig. 2.4(b), in this setup, we only use one

physical memory per node but each memory is capable of storing multiple modes.

In each round, we attempt to entangle memories at distance L0 by entangling,
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2.9 Quantum repeater protocols

at least, one of the existing M modes. Once this occurs, we stop entanglement

generation on that leg and wait until a BSM can be performed. For readout, all

modes must be retrieved in order to perform BSMs or QKD measurements on

particular modes of interest. In effect, this scheme is similar to that of Fig. 2.4(a),

except that entanglement distribution is not sequentially applied to unentangled

modes. The success probability for entanglement distribution between the two

memories is, however, M times that of Fig. 2.4(a). One can show that, the gen-

eration rate of entangled states per mode is approximately given by
(

2
3

)n
Rent (L)

[60].

We can apply the multiple-memory configuration to the quantum repeater

protocols we have mentioned in the previous sections. The first probabilistic

quantum repeater protocol based on ensemble QMs is the aforementioned DLCZ

protocol. In the following section, we will describe how it works and the physics

behind it.

2.9 Quantum repeater protocols

In this section I will review two probabilistic schemes for quantum repeaters that

we use in this thesis.

The first scheme is the original DLCZ scheme [36], which will be used as

a reference in my thesis. We consider this protocol because this scheme relies

on devices that are within the reach of current experimental technology. This

makes it a very good candidate for a possible implementation in the near future.

The main drawback of such a protocol stems from the use of ensemble-based

QMs. In fact, they are strongly affected by multiple-excitations, which can cause

errors as we explain in the following sections. The second protocol we consider is

the single-photon scheme proposed in [37], which I refer to by the SPS scheme.

Here, the main idea is to use single-photon sources to overcome errors caused

by multiple-excitations. However, it is very common that such sources produce

more than one photon. Therefore, the problem has been shifted from multiple-

excitations in QMs to multiple-photon components in sources that are supposed

to emit single photons. First, let us describe in more detail these two protocols.
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Then, we will examine under which conditions, the SPS protocol outperforms the

DLCZ protocol in Ch. 4.

2.9.1 DLCZ entanglement-distribution scheme

The DLCZ entanglement distribution scheme works as follows; see Fig. 2.5(a).

Ensemble memories A and B, at distance L, are made of atoms with Λ-level

configurations. They are all initially in their ground states. By coherently pump-

ing these atoms, some of them may undergo off-resonant Raman transitions that

produce Stokes photons [36]. The resulting photons are sent toward a 50:50

beam splitter located at L/2 between A and B. If, ideally, only one photon has

been produced at one of the ensembles (for which we have to limit the excita-

tion probability, pc, to very small values), one and, at most, only one, of D1

and D2 clicks. According to the DLCZ protocol, if one of the two detectors

in Fig. 2.5(a), clicks, A and B are heralded to be ideally in one of the Bell

states |ψ
〉
AB = (|10 〉±|01 〉 ) /

√
2, where |0 〉J is the ensemble ground state and

|1 〉J = S†J |0 〉J is the symmetric collective excited state of ensemble J = A, B,

with S†J being the corresponding creation operator [36]; see next subsection for

more detail. This entanglement can further be extended to long distances using

entanglement swapping [36, 57].

An important feature of such collective excitations is that they can be read

out easily by converting their states into photonic states as explained in the next

subsection. These states will be used in the entanglement swapping operation,

which works in the following way. Let us assume we want to share an entangled

pair over a distance L. We first split the channel into two parts and we establish

entanglement over each elementary link of length L/2. We now retrieve the states

of the middle-site QMs by driving them with a laser pulse to, followed by a BSM

measurement on the released photons. A click on one photodetector will project

the final state to a maximally entangled state of the QMs separated by a distance

L. This protocol has also the property of some built-in entanglement purification

against dark-count noises and that there has been recently experimental progress

to implement such systems [37]. This property relies on the fact that, in the

presence of noise, the state we produce will be not a pure entangled state, but
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Figure 2.5: Schematic diagram for entanglement distribution between quantum memories

(QMs) A and B for (a) the DLCZ protocol and (b) the SPS protocol. In both cases, we assume

QMs can store multiple excitations. Sources, memories and detectors are represented by circles,

squares and half-circles, respectively. Vertical bars denote beam splitters. In both protocols

the detection of a single photon ideally projects the two memories onto an entangled state.

it will be a mixture state with a vacuum component. This vacuum component

introduces some errors that affect the key rate. However, each time we swap

entanglement, we require a detector click, which is mainly because of the presence

of a photon. This removes, to some good extent, the added vacuum noise. This

built-in entanglement purification is an essential tool of this setup.

The fundamental source of error in the DLCZ scheme is the multiple-excitation

effect, in which more than one Stokes photon are produced [61]. This effect can be

attenuated, to some extent, by using photon-number resolving detectors (PNRDs)

rather than non-resolvig photodetectors (NRPDs) [61]. When we have one click

at a PNRD, it means that exactly one photon is observed, whereas one click at

an NRPD implies that at least one photon has been detected. In Chapter 4, we

consider both types of detectors and compare the system performance in various

scenarios.

Furthermore, even if the two ensembles emit at most one photon each, there

is a probability p2
c that two photons will be emitted in total. If this happens

and if one photon is lost during its transmission through the fiber or because
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Figure 2.6: Level scheme for the creation of collective atomic excitations in atomic ensem-

bles via spontaneous Raman emission (write process) and for their readout (read process), as

proposed in the DLCZ protocol.

of the failure of the detector, the detection of a single photon in one of the two

detectors generates the state |11 〉AB, which means that the two memories are

full [37]. This state is not the desired entangled state and introduces errors and

gives a low fidelity of the created entanglement. Therefore, one has to pump

memories with low emission probability pc � 1. In this way the probability to

get simultaneous emissions at A and B is sufficiently small, but this limits the

achievable distribution rate of entangled states [61]. We will see how the SPS

protocol deals with |11 〉AB term in Sec. 2.9.3. Before that, let us review the

underlying physics that characterizes ensemble-based memories.

2.9.2 Ensemble-based memories: underlying physics

In this Subsection I briefly describe the underlying physics that explains the

operation of ensemble-based memories. Let us consider an ensemble of N three-

level systems with two quasi-stable states |g1 〉 and |g2 〉 , with the energy of |g2 〉
slightly higher than that of |g1 〉 , and an excited state |e 〉 , where all N atoms

are initially in the state |g1 〉 . An off-resonant laser pulse on the |g1 〉 − |e 〉
transition (write pulse) leads to the spontaneous emission of a Raman photon

on the |e 〉 − |g2 〉 transition. I refer to this photon as the Stokes photon. As

a result of the detection of the Stokes photon, since no information is revealed

about which atom it comes from, we have an atomic state that is in a coherent

superposition of all the possible terms with N−1 atoms in the |g1 〉 and one atom
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in |g2 〉 , i.e.,

1√
N

N∑
k=1

ei(kw−kS )·xk |g1 〉1|g1 〉2 . . . |g2 〉k . . . |g1 〉N , (2.10)

where kw is the wave vector of the write laser, kS is the wave vector of the

detected Stokes photon, and xk is the position of the kth atom. In practice the

amplitudes of the terms can differ, depending on the laser profile and the shape

of the atomic ensemble [37].

A remarkable feature of such collective excitations is that they can be read

out efficiently by converting them into single photons that propagate in a well-

defined direction, thanks to collective interference [37]. Resonant laser excitation

of such a state on the g2 − e transition (the read pulse) leads to a similar state

with N − 1 atoms in g1 and one excitation in e, but with an additional phase

terms eikrx
′
k , where kr is the wave vector of the read laser and x

′

k is the position

of the kth atom at the time of readout (which can be different from its initial

position xk if the atoms are moving).

All the terms in this state can decay to the initial state |g1

〉⊗N while emitting

a photon on the e−g1 transition, i.e. the anti-Stokes photon. The total amplitude

for this process is then proportional to

N∑
k=1

ei(kw−kS )·xk ei(kr−kAS )·x′k , (2.11)

where kAS is the wave vector of the anti-Stokes photon [37].

The conditions for constructive interference of the N terms in this sum depend

on whether the atoms are moving during the storage. If they are at rest (xk = x
′

k

for all k), then there is constructive interference whenever the phase matching

condition kS + kAS = kw + kr holds, leading to a large probability amplitude for

the emission of the anti-Stokes photon in the direction given by kw + kr − kS [37].

For atomic ensembles that contain many atoms, emission in this one direction can

totally dominate all the other directions [37]. If the atoms are moving, there can

still be constructive interference, with the following conditions: kS = kw and

kAS = kr , which basically removes the dependence on xk. Note that, as regards

the emission of the Stokes photon, there is no preferred direction of emission.
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This is due to the fact that the emission of a photon by different atoms leads

to orthogonal final states and, therefore, the total emission probability for the

Stokes photon is given by the sum of the emission probability of each single atom,

without leading to a preferred direction of emission [37]. This would naturally

result in low excitation probabilities in specific direction of interest.

2.9.3 SPS entanglement-distribution scheme

The SPS protocol, proposed in [37], aims at reducing multi-photon errors and,

in particular, terms of the form |11 〉AB by using single-photon sources. The

architecture of this scheme is presented in Fig. 2.5(b). The two remote par-

ties each have one single-photon source and one memory. In the ideal scenario,

each source produces exactly one photon on demand, and these photons are sent

through identical beam splitters with transmission coefficients η. It can be shown

that the state shared by the QMs after a single click on one of the detectors in

Fig. 2.5(b) is given by [37]

η2|0 〉ABAB〈 0|+ (1− η)2 |ψ± 〉ABAB 〈ψ±| (2.12)

which has our desired entangled state plus a vacuum component. The latter,

at the price of reducing the rate, can be selected out once the above state is

measured at later stages (self purification) [36, 61].

In the following two sections I will describe the main analytical tools I use to

analyze the SPS protocol and the quantum repeater setups.

2.10 Butterfly module

As pointed out in the previous sections, QKD repeater setups are affected by

different sources of inefficiency, which are modeled by fictitious beam splitters.

Consequently, there are certain structures that appear here and again in our

analysis of different systems. One of those common structures is our so-called

butterfly module shown in Fig. 2.7. The butterfly module is a two-input two-

output building block consisting of five beam splitters with generic transmission

coefficients η0, η1, η2, η3 and η4. What we are commonly interested in is to
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Figure 2.7: A generic butterfly module, represented by Bx1x2
η0η1η2η3η4 , where η0, η1, η2, η3, η4

are transmittivities and x1 and x2 are the input modes shown in the figure

Figure 2.8: Three generic butterfly modules we use in this thesis.

find the input-output relationship from the source to before photodetector units.

With input modes labeled by x1 and x2, a generic butterfly module is denoted

by the operator Bx1x2
η0η1η2η3η4

.

Figure 2.8 shows three different configurations of the butterfly module that

we will use throughout this thesis. In Fig. 2.8(a), η0 and η3 can assume generic

numerical values. In Figs. 2.8(b) and 2.8(c), η0 = 1/2 representing a 50:50 beam

splitter. The butterfly module of Fig. 2.8(b) represents a symmetric setup where

η1 = η2, η3 = η4 and ηx = η1η4. Instead the butterfly module in Fig. 2.8(c)

represents an asymmetric setup, where η3 = η4 but η1 6= η2. We use well-known

models for beam splitters [62] to find output density matrices for relevant input

states to a generic butterfly module. In Appendices A and B, we find the relevant

input-output relationships for the states of interest. We use Maple 15 to simplify

some of our analytical results.
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2.11 Measurement operators

In our analysis of QKD setups and quantum repeaters, we often have to do mea-

surements by photodetectors. This process can be modeled by applying proper

measurement operators considering whether photon number resolving detectors

(PNRDs) or non-resolving photodetectors (NRPDs) are used. For example, for

a ”click” on detector D1, and no click on a detector D2, each with a dark count

rate of dc, the explicit form of the measurement operator is given by

MR
D1D2

= (1− dc)[|1 〉D1D1 〈1| ⊗ |0 〉D2D2 〈0| + dc|0 〉D1D1 〈0| ⊗ |0 〉D2D2 〈0|] ,
(2.13)

if we use PNRDs and we are interested in detecting exactly one photon, and

MNR
D1D2

= (1−dc)[(ID1−|0 〉D1D1 〈0|) ⊗|0 〉D2D2 〈0| +dc|0 〉D1D1 〈0| ⊗ |0 〉D2D2 〈0|] ,
(2.14)

if we use an NRPD, where we cannot distinguish between one or more photons.

Here, ID1 denotes the identity operator for the mode entering the detector D1,

and dc is the dark-count rate per gate width per detector. The expression of

the measurement operator of eqs (2.13) and (2.14) derives from the conditional

probability of two independent events:

P (A ∪B) = P (A) + P (B) , (2.15)

where A and B in Eq. (2.15) correspond to the case of one click in detector D1 and

no click in detector D2, respectively. Note that a click can be produced either by a

real photon or by a dark count event. The operators in Eqs. (2.13) and (2.14) take

into account both sources of click. When applied to a density matrix, the operator

of Eq. (2.13) projects the density matrix to the subspace of modes D1 having one

photon and D2 having no photon (|1 〉D1D1 〈1| ⊗ |0 〉D2D2 〈0| ) joined with the sub-

space of modes D1 and D2 having both no photons (|0 〉D1D1 〈0| ⊗ |0 〉D2D2 〈0|] ).

In Ch. 4 we use both operators. In all other cases we use only the operator of

Eq. (2.14), which is of more practical relevance.
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2.12 List of parameters used

Memory writing efficiency, ηw

Path loss, ηch

Detection efficiency, ηD

Memory retrieval efficiency, ηr

Dark count per pulse, dc

Attenuation length, Latt

Speed of light, c

Decay (dephasing) time constants, T1 (T2)

Double-photon probability, p

Error correction inefficiency, f

Table 2.2: List of common parameters used in this thesis

2.12 List of parameters used

In Table 2.2 the main parameters of interests used in this thesis are listed. The

inefficiencies considered for QMs are the writing efficiency, ηw, the reading or

retrieval efficiency, ηr, the amplitude decay time, T1 and the dephasing time T2.

Regarding the measurement devices we consider the detection efficiency, ηD, and

the dark count, dc. The path loss for a channel with length l is given by

ηch(l) = exp (−l/Latt), (2.16)

with Latt = 25 km for an optical fiber channel. We also consider an imperfect

SPS which emits two photons with probability p.

2.13 The contribution of this thesis

In Ch. 1, we described the main features of QKD and the challenges it faces

in order to be implemented in real life. In this thesis, we look at the following

challenges and try to come up with solutions that improve system performance.

These problems and our take on them are summarized below:

Problem: Although QKD promises unconditional security relying only on

the laws of physics, the real implementation of certain QKD systems suffers from
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possible attacks performed on various parts of the system, especially the mea-

surement devices used by the users. MDI-QKD seems a promising scheme to

overcome such a drawback. However, the following questions arise (1) How does

it perform in realistic scenarios? and (2) Is it possible to use quantum memories

in an MDI-QKD setup in order to extend the distance between Alice and Bob?

Our contribution: We provide a full analysis of an MDI-QKD system in an

asymmetric setup once imperfect sources are used. We also provide a full analysis

of a memory-assisted QKD protocol, by analytically computing the secret key rate

when imperfect quantum memories with multiple-excitation issues are used. The

results are striking and clearly eliminate the possibility of using such memories

in certain setups.

Problem: Because of the no-cloning theorem it is challenging to reach long

distances due to the exponential decay of the secret key rate in optical fibers.

Probabilistic quantum repeaters are used to extend the distance. A real-life

implementation of such devices is still not feasible due to various imperfections,

which limit the performance of the setups. For example, the DLCZ protocol

suffers from multiple excitations in quantum memories. How can we mitigate

this problem and outperform the DLCZ protocol?

Our contribution: we compare analytically an alternative protocol to the

DLCZ, in terms of their secret key generation rates once used for QKD applica-

tions. Our analytical approach will allow us to identify the regimes of operation

where one setup outperforms the other and sheds light into the proper design of

repeater systems.

Problem: In common probabilistic quantum repeater systems, users are pro-

vided with quantum memories and measurement devices. How can we simplify

the equipment but at the same time retain the ability to exchange a key over long

distances without trusting many other nodes to create a quantum network?

Our contribution: we combine the MDI-QKD protocol with a quantum

repeater setup by considering all kind of imperfections both in the entanglement

swapping generation operations as well as in the measurement process. We find

the longest distance achievable using several nesting levels in a multiple-memory

scheme with a finite number of memories. That would shed light on how quantum

networks can be designed in the future.
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Chapter 3

Measurement-device-independent

quantum key distribution with

ensemble-based memories

3.1 Introduction

The MDI-QKD protocol is born from the urge of finding a QKD scheme which was

not affected by a set of attacks performed on the measurement devices. Several

hacking strategies have been developed to exploit small imperfections in pho-

todetectors, such as the efficiency mismatch attack [63], and the time-shift attack

[64]. One possible way to prevent such attacks is to use the device-independent

QKD (DIQKD) schemes [43, 65, 66]. The main assumption for such schemes is

that there must be no leakage of information from users’ measurement apparatus.

DIQKD, remarkably, removes all side-channel attacks. However, its main draw-

back is that it requires a loophole-free Bell test, which has not been performed

so far. Moreover, its implementation would be too challenging due to the low

tolerable error rate, which is 7.1%, and to high values for the minimun required

transmittance (92.4%) [66]. The MDI-QKD protocol relaxes such contraints,

leading to a more feasible implementation.

Certainly, in a real scenario there are several sources of error, due to setup

imperfections, that can reduce its performance. Such imperfections might reduce

the improvements this protocol offers. That is the reason why we analyze in
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the following sections the performance of such a protocol in a realistic scenario

by considering several sources of imperfection. Some of these imperfections, for

instance the dark count, affect the reach of the protocol. However, even with

ideally perfect devices the rate would drop because of the channel loss. For long

distances, we then need to use the quantum repeater idea in one way or another.

While progress toward building repeater systems is underway, one can think of

intermediary steps that can be implemented in a nearer future. On the one hand,

they ease the way for future generations of quantum networks [52, 67], and, on the

other, they offer services over a range of distances not currently available by con-

ventional direct QKD links. Memory-assisted measurement-device-independent

QKD (MDI-QKD) has recently been proposed with the above objectives in mind

[2, 68]. Such systems will resemble a single-node quantum repeater link with

quantum memories (QMs) in the middle node; see Fig. 3.1. There is, how-

ever, no QMs at the users’ ends and they are only equipped with encoder/source

modules. Instead of distributing entanglement over elementary links, users send

BB84-encoded states toward the memories, and once both memories are loaded

with relevant states, an entanglement swapping operation is performed on the

memories. In a recent work [2], it has been shown that if one uses fast memo-

ries with large storage-bandwidth products, it would be possible to beat existing

no-memory QKD systems in a practical range of interest using memories mostly

attainable with current technologies. Among different developing technologies

for QMs, ensemble-based memories have a good chance to satisfy both required

conditions. Writing times as short as 300 ps and bandwidths on the order of

GHz have been reported for such memories [49, 50]. They are however inflicted

by multiple-excitation effects, which may cause errors in QKD setups relying on

such QMs. Here, we show how sensitive the performance of memory-assisted

MDI-QKD can be to this type of errors and propose a modified setup resilient to

multiple-excitation effects.

MDI-QKD offers a key exchange approach resilient to detector attacks [1]. In

this system, Alice and Bob send their encoded signals to a middle station, at which

a Bell-state measurement (BSM) is performed. This BSM effectively performs

an entanglement swapping operation, similar to that of quantum repeaters, on

the incoming photons, based on whose result Alice and Bob can infer certain
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3.1 Introduction

Figure 3.1: Different setups for memory-assisted MDI-QKD. (a) MDI-QKD with directly

heralding quantum memories [2]. (b) MDI-QKD with indirectly heralding quantum memories

[2]. At each round, an entangling process is applied to each QM, generating a photon entangled

with the QM. These photons interfere at the side BSM modules next to the QMs with incoming

pulses from the encoders.

correlations between their transmitted bits. Because of relying on the reverse-

EPR protocol [31, 32], the middle party does not need to be trusted, nor does

he need to perform a perfect BSM. In the memory-assisted MDI-QKD, we add

two QMs before the middle BSM module. The objective is to obtain a better

rate-versus-distance behavior as now the two photons sent by Alice and Bob do

not need to arrive at the BSM module in the same round. This way, we expect

to get the same improvement as in single-node quantum repeaters.

The required specifications for the QMs in Fig. 3.1 can be milder than that

of a quantum repeater [2]. In a single-node quantum repeater, with two legs of

length L0 and one BSM module in the middle, we have to distribute entanglement

between memories in each leg before being able to perform the BSM. For single-

mode memories, the entanglement distribution scheme can only be applied once

every T0 = L0/c, where c is the speed of light in the channel [58]. The required

coherence time for the QMs is then proportional to T0 as well. In the memory-

assisted MDI-QKD of Fig. 3.1(a), the repetition rate is dictated by the writing

time into QMs. If, therefore, a heralding mechanism is available, and if the QMs

have short access times, we can run the MDI-QKD protocol faster than that of a

quantum repeater, and, correspondingly, the required coherence time could also

be lower [2].

The required heralding mechanism, by which we can tell if the QMs have been
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loaded with the corresponding state to that sent by the users, can be implemented

in several ways. In Fig. 3.1(a), we rely on a direct heralding mechanism in

which we attempt to store the transmitted photons into the memories and non-

destructively verify whether the writing procedure has been successful. This

mechanism is only applicable to a limited number of QMs, such as trapped single

atoms/ions, and it is often very slow [69]. In [2], the authors have analyzed an

indirect heralding mechanism as in Fig. 3.1(b) in the single-excitation regime, that

is, when QMs can only store a qubit. In this scheme, a photon is first entangled

with the QM, and then immediately a side BSM is performed on this photon and

the signal sent by the user. A successful side BSM, declared by two detector clicks,

ideally teleports the user’s state onto the QM and heralds a successful loading

event. In order to outperform no-QM QKD systems, the setup of Fig. 3.1(b)

must be equipped with memories with large storage-bandwidth products as well

as short access and entangling times. It turns out that the state of the art for

single-qubit memories, e.g., single atoms [70] or ions [69], is not yet sufficiently

advanced to meet the requirements of practical memory-assisted protocols. In

particular, we need faster memories for the practical ranges of interest.

In this Chapter we extend the analysis in [2] to the case of ensemble-based

memories, which often offer very large bandwidths, or, equivalently, very short

access times, suitable for the memory-assisted scheme. Such memories, how-

ever, suffer from multiple-excitation effects, which we carefully look into in this

Chapter. In fact, when multiple-excitations are present, a seemingly successful

side BSM may have been resulted from two photons originating from the QM

in Fig. 3.1(b), in which case the final measurement results have no correlation

with the transmitted signal by the user. Our results show that such effects can

be so detrimental that we cannot beat no-memory QKD systems within practical

ranges of interest.

This Chapter is organized as follows: Section 3.2 summarizes the contribution

of this chapter. Sections 3.3, 3.4, 3.5, and 3.6 studies and analyses MDI-QKD

with imperfect SPSs. Section 3.7 then covers MDI-QKD with ensemble-based

memories. We conclude in Sec. 3.8.
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3.2 This chapter’s contribution

• We analyze an MDI-QKD protocol in a realistic scenario by considering

two different types of sources. First, we assume that both users have an

imperfect SPS that emits two photons with a probability p. We refer to this

scenario by case A. In the second case (B), we assume that one of the users

uses weak laser pulses while the other uses an imperfect SPS. We compare

the two cases by calculating the secret key generation rate versus p, the

dark count and the distance.

• In case A, we consider an asymmetric setup, where one of the users is located

at the measurement site, and we compare this setup with the symmetric

setup by calculating the secret key generation rate versus p. The asym-

metric setup appears in our analysis of the memory-assisted MDI-QKD in

Fig. 3.1(b).

• We compare the memory-assisted MDI-QKD protocol in Fig. 3.1(b) with

imperfect ensemble-based QMs, i.e., affected by multiple excitations, with

the conventional no memory setups. We plot the secret key rate versus the

distance for these two schemes. It turned out that no matter how small

these multiple excitations are, we cannot beat the no-memory systems in

practical regimes of interest.

• Finally, we analyze the impact of finite coherence times (T1) of the QMs,

by calculating the secret key rate versus the distance for different values of

T1.

3.3 MDI-QKD with imperfect sources: Motiva-

tion

Regardless of the type of the material used, an ensemble-based memory can be

modeled as a non-interacting ensemble of quantum systems. Here, for simplicity,

but without loss of generality, we assume our QM is an ensemble of neutral atoms

with the Λ-level configuration shown in Fig. 2.6. One possible way to entangle a
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3.3 MDI-QKD with imperfect sources: Motivation

photon with such a QM is to pump all the atoms in the ensemble to be initially

in their ground states |g〉; we then excite the ensemble by a short pulse in such

a way that the probability, p, of driving an off-resonant Raman transition in the

ensemble is kept well below one. In that case, the joint state of the released

Raman optical field and the ensemble follows that of a two-mode squeezed state

given by [71]

|ψ〉AP =

#atoms∑
n=0

√
(1− p)pn|n〉A|n〉P , (3.1)

where |n〉P is the Fock state for n photons and |n〉A is the symmetric collective

state to have n atoms in their |s〉 states. Assuming p � 1, we can truncate the

above state at n = 2 without losing much accuracy. Furthermore, assuming that

there is a post-selection mechanism by which the state |0〉A|0〉P is selected out,

the effective state for the photonic system P is given by

ρP (p) = (1− p)|1〉P P 〈1|+ p|2〉P P 〈2|, (3.2)

which resembles an imperfect single-photon source with a nonzero probability p

for emitting two photons. This is the type of state that one would get for the

photons entangled with the QMs in Fig. 3.1(b). That is, each leg of the system,

can be modeled as an asymmetric MDI-QKD link, where the source on one side

generates photons in the form of (3.2). The source on the user’s end could be

the same, or one may use decoy coherent states for practical purposes. This case

will be investigated in the following sections. Note that the type of states as in

(3.1) do not represent maximally entangled states. One can, however, combine

two such states and obtain an effective entangled states after post-selection [72].

In this section, we study an MDI-QKD link with imperfect sources as in (3.2).

Although we digress a bit from the memory-assisted problem, it gives us some

insight into the analysis of the setup in Fig. 3.1(b), and, more generally, when

MDI-QKD links are connected to quantum repeater setups as considered in Ch.

5. The type of ensemble memory considered here best fits into phase-encoded

QKD setups as we will describe next [73].
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Figure 3.2: Diagram for MDI-QKD protocol, where PBS stands for polarizing beam splitter

and PM stands for phase modulator.

3.4 Phase-encoded MDI-QKD

Figure 3.2 shows the setup for the phase-encoded MDI-QKD system we consider

here. For the sake of convenience, we analyze the dual-rail setup of Fig. 3.2,

but, for practical purposes, it is possible to implement the same scheme via time

multiplexing, by using only one physical channel [73]. Here, states sent by Alice

and Bob are encoded either in the z or the x basis. Encoding the states in

the z basis is achieved by sending horizontally or vertically polarized pulses to

a polarizing beam splitter (PBS) to, respectively, generate a signal in the r or

in the s mode (corresponding to bits 0 or 1) in Fig. 3.2. To implement the x-

basis encoding, +45-polarized pulses are prepared at the source and two relative

phases, {0, π} corresponding to bits {0, 1}, are used at the phase modulator. In

this case, the PBS splits the signal into r and s modes, and photons will be in a

superposition of these modes.

The procedure to establish a secret key is as follows. Alice and Bob, who are

separated by a distance L = LA+LB, choose randomly a basis from {x, z} and a

bit from {0, 1} and send a pulse to a middle site, where a BSM is performed by an

untrusted party, Charlie. We make photons indistinguishable through the filters

represented by empty boxes in Fig. 3.2. A click in exactly one of the r detectors,

in Fig. 3.2, and exactly one of the s detectors will correspond to a successful

BSM. When the users both choose the z basis, a successful BSM corresponds to

complementary bits on the two ends. When they both choose the x basis, instead,
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3.4 Phase-encoded MDI-QKD

a different bit assignment will follow. If they pick the same phase then the state

will be correlated and r0 and s0 or r1 and s1 will ideally click. We will refer to

this detection event as type I. If they pick different phase values then the state

will be anti-correlated and r0 and s1 or r1 and s0 will ideally click. The latter

pattern of clicks is referred to as type II. In either case, Charlie announces her

BSM results to Alice and Bob. Alice and Bob will compare the bases used for

all transmissions. They keep the results if they have chosen the same basis and

discard the rest.

In order to show how the protocol works, let us consider the ideal scenario

when perfect SPSs are used. We label the modes corresponding to the Alice’s

side with ar and as, where r and s refer to the upper and lower branches of Fig.

3.2, respectively. The corresponding modes on the Bob’s side are br and bs. If

the phases chosen by Alice and Bob’s are θa and θb respectively, the state in the

Fock basis shared by Alice and Bob after the two PBSs in Fig. 3.2, is given by

(|1 〉ar |0
〉
as + eiθa|0 〉ar |1 〉as )⊗ (|1 〉br |0

〉
bs + eiθa |0 〉br |1 〉bs ), (3.3)

where we are neglecting the normalization factors for now. The relevant terms in

Eq. (3.3), conditioned on a successful BSM outcome, are given by

|1 〉ar |0 〉as|0 〉br |1 〉bs + ei(θa−θb)|0 〉ar |1 〉as|1 〉br |0 〉bs . (3.4)

After the above state goes through two 50:50 beam splitters (one of each branch)

in the BSM module, the resulting state is:

(|1 〉r0 |0 〉r1 + |0 〉r0 |1 〉r1)⊗ (|1 〉s0 |0 〉s1 − |0 〉s0 |1 〉s1) +
ei(θa−θb)(|1 〉r0 |0 〉r1 − |0 〉r0 |1 〉r1)⊗ (|1 〉s0 |0 〉s1 + |0 〉s0 |1 〉s1) =
|1010 〉r0r1s0s1 − |1001 〉r0r1s0s1 + |0110 〉r0r1s0s1 − |0101 〉r0r1s0s1

ei(θa−θb)(|1010 〉r0r1s0s1 + |1001 〉r0r1s0s1 − |0110 〉r0r1s0s1 − |0101 〉r0r1s0s1 )

(3.5)

where r0, r1, s0, and s1 are the input modes to the corresponding detectors in

Fig. 3.2. If θa − θa = 0, then the state of Eq. (3.5) is

|1010 〉r0r1s0s1 − |0101 〉r0r1s0s1 , (3.6)

i.e., either detectors r0 and s0 click or r1 and s1 click. Instead, if θa − θb = ±π,
the state in Eq. (3.5) will be

|0110 〉r0r1s0s1 − |1001 〉r0r1s0s1 , (3.7)
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3.5 Key rate analysis of MDI-QKD versus setup inefficiencies

which corresponds to a click in detectors r1 and s0, or a click in detectors r0 and

s1. In the end, Alice and Bob will share a correlated or anticorrelated pairs of

bits, determined by the click patterns for each basis.

The above is an ideal description of how to determine a shared key string be-

tween Alice and Bob. In a real scenario, we have to consider setup’s inefficiencies

as well. As a consequence, they can reduce the performance of the system, by

introducing some spurious terms in the density matrix, which have not been con-

sidered in the above scenario. In order to analyze the performance of such a setup,

we analytically calculate the secret key generation rate in different scenarios, as

described in the next section.

3.5 Key rate analysis of MDI-QKD versus setup

inefficiencies

In [73], the key secret key rate has been calculated when users either both send

single photons or laser pulses. In this section, the secret key generation rate for

the MDI-QKD scheme of Fig. 3.2 is calculated when imperfect SPSs are used. As

already mentioned, we consider two cases. In the first one (A), we assume that

Alice and Bob have an imperfect SPS which can emit two photons. In the second

(B), one of the party uses coherent states with the decoy-state protocol and the

other one uses imperfect SPSs. For both types of sources used, we estimate the

yield Y z
11 of having a successful click pattern in the z basis, and the phase error

rate ex11 in the x basis, provided that Alice and Bob both are sending a single

photon. In the following sections we describe the other terms of the key rate in

the cases of interest. We point out that this analysis constitutes a preliminary

step for the study of the MDI-QKD setup embedded with memories, as we discuss

in Sec. 3.7, or a quantum repeater protocol, as described in Ch. 5.

3.5.1 Imperfect single photon source (case A)

With the current technology, it is still challenging to generate single photon states

and SPSs often suffer from the possibility of multiple-photon emissions. To ad-

dress this issue, in this section, we consider non-ideal single photon sources with
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3.5 Key rate analysis of MDI-QKD versus setup inefficiencies

nonzero probabilities for two-photon emissions, p. In Fig. 3.2, if our sources emit

one photon with probability 1 − p and two photons with probability p, then we

have the following input density matrix for the initial state shared by Alice and

Bob

ρ
(in)
C = [ρrA(p)⊗ ρsB(p) + ρsA(p)⊗ ρrB(p)]/2, (3.8)

if they are sending complementary bits and

ρ
(in)
E = [ρrA(p)⊗ ρrB(p) + ρsA(p)⊗ ρsB(p)]/2 (3.9)

if they are sending the same bits, where

ρ(in)
xj

= (1− p) |1
〉
xjxj

〈
1|+ p |2

〉
xjxj

〈
2|, x = s, r; j = A.B (3.10)

In a practical regime of operation, p � 1; hence, in our following analysis, we

neglect O (p2) terms corresponding to the simultaneous emission of two photons

by both sources. We assume the value of p can be randomly changed according to

the decoy-state protocol. We assume Alice and Bob are located at, respectively,

distances LA and LB from the BSM module, and the total path loss for a channel

with length l is given in Eq. (2.16). Initially, we assume LA = LB. We treat

the asymmetric case in Sec. 3.6.4. Here, we model our setup with fictitious beam

splitters representing the setup’s inefficiencies as explained in Sec. 2.12 and we

consider NRPDs, represented by the measurement operator of Eq. (2.14).

To calculate the key rate, we, then, have to take into account the probability

of a successful click pattern in the z basis when the input is given by (3.10), Qz
pp,

as well as the corresponding quantum bit error rate, Ez
pp in the z basis. The key

rate will be given by

Rss ≥ Qz
11 (1−H (ex11))−Qz

ppf H
(
Ez
pp

)
(3.11)

where Qz
11 is (1 − p)2Y z

11, and Y z
11 is the probability of a successful click pattern

when Alice and Bob send exactly one photon each. The term Qz
ppf H

(
Ez
pp

)
in

Eq. (3.11) is the cost of error correction, Iec. In Eq. (3.11), Y z
11 and ex11 have

already been calculated in [73], hence, here we will derive the other terms. To

find the relevant probabilities in (3.11), we apply the butterfly operation shown
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3.5 Key rate analysis of MDI-QKD versus setup inefficiencies

in Fig. 2.8(b), whose input-output relationships are shown in Table B.2, to Eq.

(3.8). The output density matrix will be given by

ρ
(out)
AB = B0.5,ηs

(
ρ

(in)
AB

)
, (3.12)

where ηs = ηchηD, and B0.5.ηs = Bas,bs
0.5.ηs,ηs,1,1⊗B

ar,br
0.5,ηs,ηs,1,1 as explained in Sec. 2.10.

A successful click pattern is given by one click in one of the upper photode-

tectors (r0, r1), and one of the lower photodetectors (s0,s1) of Fig. 3.2. The

measurement operators, which includes dark count, on the modes entering the

photodetectos of Fig. 3.2, depending on which detector clicks, are given by

Mx0 = MNR
x0x1

, x = r, s
Mx1 = MNR

x1x0
, x = r, s

(3.13)

which refer to Eq. (2.14).

The probability to get a click on ri and sj detectors will be then

Prisj = Tr(ρ
(out)
AB MriMsj), i, j = 0, 1. (3.14)

The probability that an acceptable click pattern occurs in the z basis, Qz
pp is

defined as:

Qz
pp = Qz

C +Qz
E, (3.15)

where Qz
C is the probability that a correct click pattern occurs, which corresponds

to the case when Alice and Bob send complementary bits, and it is given by

Qz
C = 1/2 (Pr0s0 + Pr1s1 + Pr0s1 + Pr1s0) (3.16)

and Qz
E is the probability that an error occurs, which, in the z basis, corresponds

to the case when Alice and Bob send the same bit. Finally, Ez
pp is given by

Ez
pp =

Qz
EE

Qz
pp

(3.17)

where Qz
EE = edQ

z
C + (1 − ed)Qz

E, and ed is the misalignment parameter, which

will be discussed in Sec. 3.5.3.
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3.5.2 One coherent source and an imperfect single photon

source (case B)

We now substitute one of the two imperfect single photon sources in Fig. 3.2 with

a coherent source with mean photon number |α|2, in order to use a decoy-state

version of the scheme, which has been described in Sec. 2.3. In this case, the

initial density matrices in (3.8) are

ρ
(in)
A = |α 〉〈α|

ρ
(in)
B = (1− p) |1 〉〈 1|+ p |2 〉〈 2|

. (3.18)

We phase randomize |α 〉 , and average over, in the end. To calculate the key

rate, we have to take into account the probability of a successful click pattern in

the z basis, Qz
αp, when the input is given by Eq. (3.18), and the corresponding

quantum bit error rate Ez
αp in the z basis. The key rate will be lower bounded by

Rcs ≥ Qz
11 (1−H (ex11))−Qz

αpf H
(
Ez
αp

)
, (3.19)

where now Qz
11 = (1− p)α2e−α

2
Y z

11. The procedure to find the relevant terms of

the key rate of Eq. (3.19) follows the same steps described in Sec. 3.5.1. However,

in this case, we use the input-output relationships listed in Table C.1 to find the

relevant states of interest.

3.5.3 Misalignment

In this section we describe where the parameter ed in the expression for Y z
errorpp

comes from. We have assumed so far that the photons impinging the measurement

apparatus are indistinguishable. This goal can be reached by putting filters before

the measurement scheme itself as shown in Fig. 3.2. Variations of the central

frequency of the pulses as well as a not perfect stability of the sources can lead

to a failure of this condition, and, therefore, the photons will be distinguishable,

resulting in a statistical misalignment probability. This could compromise the

security of our protocol, and a leakage of the key to an untrusted party. Depending

on the way the key bits are encoded, phase stabilizers or polarization maintenance

is required. To address this issue we have introduced another source of error, ed,

which takes into account the effects of misalignment and mismatch.
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3.6 Numerical Results

ηD 0.93

ηr0 0.87

dc 10−9

Latt 25 km

p 10−4

ed 10−3

Table 3.1: Nominal values used in our numerical results

3.6 Numerical Results

In this section, we present the numerical results for the secret key generation rate

of the MDI-QKD protocol, in the two aforementioned cases, and we compare

them versus different system parameters. We have used Maple 15 to analytically

derive expressions for Eqs. (3.11) and (3.19).

Unless explicitly stated, we have used the parameter values listed in Table

3.1. The near-optimal nominal values for quantum efficiency and dark count

have been achieved in [74] and for the reading efficiency in [75].

3.6.1 Rate versus |α|2

Figure 3.3 shows the secret key generation rate versus the mean photon number

for (a) different values of dc and (b) different values of ed at L = 100 km. It

can be seen in Fig. 3.3(a) that there exist optimal values of |α|2, around 1,

that maximize the key rate. For higher values of dc and ed, this optimal source

parameter slightly decreases. Dark count and misalignment represent the main

sources of error in the QBER of the term Ez
αp, hence, when dc and ed increase,

the cut-off point for the maximum allowed value of |α|2 reduces. This leads to a

slightly shifted curve, hence lower values for the optimal values of |α|2. On the

contrary, Ez
αp, is not significantly affected by the double photon probability p and

there is little difference when p increases. This has been explained in Sec. 3.6.2.

We use 1 as the optimal value for |α|2 in all the subsequent results.
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Figure 3.3: Rate versus the mean photon number |α|2 for different values of (a) dark count

rates and (b) misalignment. Here, L = 100 km the other values
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p = 10−4 and p = 10−1. Here, L = 100 km.
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3.6.2 Rate versus p and dc

Figure 3.4 shows the secret key generation rate at the optimal value of |α|2, versus

(a) the double photon probability, p, and (b) dark count rate, dc. From Fig. 3.4(a),

it is clear that for low values of the double photon probability, the performance of

the setup remains almost invariant. The main reason for this behavior is the fact

that the only error term in Eqs. (3.11) and (3.19) that depends on p is Ez
pp. An

error in the z basis arises from the cases where Alice and Bob are both sending

the same bits, for instance both send a signal in their respective r modes, but one

r detector and one s detector clicks in Fig. 3.2. The click on the s detectors comes

from dark counts and is not affected by the double photon states in the r modes.

However, double photons slightly change the rate, as we disregard double-click

cases, and that is the reason for lower key rates once p increases. In order to

appreciate a more visible dependence on p, we should relinquish the condition

p� 1.

Furthermore, Fig. 3.5(b) shows that tolerable dark count rates are lower in

case B. By increasing p, we expect a lesser difference between the two cases. In

fact, Figure 3.4 shows that there is only a little difference for the dark count

cut-off at p = 0.1, which is roughly the same probability as for a coherent state

with |α|2 = 1 to have two photons (∼ 0.18) .

3.6.3 Rate versus L

Figure 3.5 shows the secret key generation rate at the optimal value of α, versus

the distance between Alice and Bob, L, for (a) two values of dark count and

(b) two values of misalignment. As shown in the figure, low dark count rates

can considerably change the cutoff distance. In particular, it is possible to share

a secret key rate over 500 km although the rate is very low. On the contrary,

for high values of the dark count the distance is reduced. The same effects are

observed for misalignment.
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ed.

3.6.4 Key rate of the asymmetric setup

In this section, we compare an asymmetric setup with LA = L and LB = 0 with

the symmetric setups, versus p at ed = 0. Figure 3.6 shows that in both the

asymmetric and symmetric setup there seems to be little effect on the key rate as

a result of introducing double photons. The reason for this behavior has already

been explained in Sec. 3.6.2.

We have so far analyzed the effects of the main inefficiencies in a real imple-

mentation of the MDI-QKD protocol based on phase encoding. We have found

the longest distance we can reach by considering fundamental sources of error,

such as misalignment and dark counts. We have shown that an imperfect SPS

does not introduce substantial degradation in performance.

As already stated, the memory assisted version of the MDI-QKD protocol im-

proves the rate-versus-distance compared to the no-memory setup and uses QMs

with lower requirements than probabilistic quantum repeater protocols. How-

ever, if we use ensemble-based QMs, we end up with situations like an MDI-QKD

setup with double-photon sources. In the next section, we use the results we

have obtained in the above sections to investigate how an imperfect QM, that
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Figure 3.6: Secret key generation rate per transmitted pulse versus the double-photon

probability, p. In all curves L = 400 km and all other parameters are taken from Table 3.1. In

the symmetric case, LA = LB , whereas in the asymmetric case, LA = L and LB = 0.

emits two photons with a probability p, affects the memory assisted MDI-QKD

protocol.

3.7 MDI-QKD with ensemble-based memories

In this section, we analyze the effect of multiple excitations in (3.1) on the key

rate of the memory-assisted MDI-QKD link of Fig. 3.1(b) by using the phase-

encoding scheme described in Sec. 3.4 and combine it with four ensemble-based

memories as described below. In contrast to the previous section, where double-

photon terms had little effect on system performance, it turns out that, within

the setup of Fig. 3.1(b), multiple excitations in memories would harshly affect

the achievable key rate.

3.7.1 Setup description

Figure 3.7 shows the phase-encoding variant of the memory-assisted MDI-QKD

system. Here, in order to focus on the memory effects, we assume Alice and Bob

are using perfect single-photon sources. For each photon encoded and sent by

the users, we pump the corresponding memories A1, A2, B1, and B2 in order to

generate a joint photonic-atomic state. The state sent by the user is indirectly

loaded to the memories by the side-BSM modules in Fig. 3.7. For instance, on
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3.7 MDI-QKD with ensemble-based memories

Figure 3.7: Schematic diagram for the MDI-QKD setup with ensemble-based memories,

represented by A1, A2, B1, B2.

Basis Alice BSM Bob BSM Middle BSM Bit assignment

z type I/II type I/II type I/II Bob flips his bit

x type I (II) type I (II) type I Bob keeps his bit

x type I (II) type I (II) type II Bob flips his bit

x type I (II) type II (I) type I Bob flips his bit

x type I (II) type II (I) type II Bob keeps his bit

Table 3.2: Bit assignment protocol depending on the results of the three BSMs in Fig. 3.7.

the Alice side, we perform a BSM on the single-photon state sent by Alice and

P1 and P2 states using the same BSM module as that of Fig. 3.2. A successful

side BSM, that is when detectors click on each branch, would ideally load the

memories with a state corresponding to what the users have sent. For instance,

if Alice uses the z basis, and sends a signal in the r mode, a successful BSM on

her side, would imply that the memories A1-A2 are ideally in the |01〉A1A2 state.

Of course, considering the dark current and double-photon terms, we will deviate

from this ideal case, and that is what we are going to study in this Section.

Alice and Bob attempt repeatedly to load their memories until they succeed, at

which point they wait for the other party to complete this task. Once both sets

of memories are loaded, we read out all four memories and proceed with the

middle BSM. Once the results of all three BSMs as well as the bases used are

being communicated to users, Alice and Bob can come up with a sifted key bit.

Table 3.2 shows what bits Alice and Bob assign to their sifted keys depending on

the results of the three BSM operations.

53



3.7 MDI-QKD with ensemble-based memories

3.7.2 Key rate analysis

In this section, the key rate for the setup of Fig. 3.7 is obtained under the normal

operation condition when no eavesdropper is present. We assume users have

perfect SPSs. Using the efficient QKD protocol, where the z basis is used more

often than the x basis, the secret key rate per transmitted pulse is lower bounded

by

RQM ≥ Y QM
11

[
1− h

(
eQM

11;x

)
− h

(
eQM

11;z

)]
, (3.20)

where eQM
11;x and eQM

11;z, respectively, represent the QBER between Alice and Bob

in the x and z basis, when single photons are sent, and Y QM
11 represents the

probability that, in the z basis, both sets of memories A and B are loaded and

the middle BSM is successful. In Appendix A.2, we derive all above terms as-

suming that memories may undergo amplitude decay according to an exponen-

tial law. That is, if the recall/reading efficiency, right after a successful writing

procedure, is denoted by ηr0, the reading efficiency after a time t is given by

ηr(t) = ηr0 exp(−t/T1), where T1 is the amplitude decay time constant.

In the absence of dark counts, memory decay, and source imperfections, the

major source of noise in the setup of Fig. 3.7 is the multiple-excitation terms

originated from the ensemble-based QM. Even if the users send exactly one pho-

ton, the state loaded to the QMs may contain more than one excitation overall.

These additional excited atoms will cause errors in the middle BSM setup. The

errors in the latter stage are partly similar to what we studied in the previous

section, when we considered imperfect single-photon sources. These cases cor-

respond to loading states like |20〉A1A2 into A1-A2 memories, or similar states

for B1-B2. There are, however, other terms that must be considered, such as

|11〉A1A2 , and they turn out to have even more contribution to the noise terms in

Eq. (3.20). Our analysis in this section, considers up to two excitations in each

memory module.

Figure 3.8 shows the effect of multiple excitations in the scheme of Fig. 3.7

and compares it with a symmetric no-memory setup as in Fig. 3.2. Assuming no

decay or misalignment in the setup and with a negligible amount of dark count as

in Table 3.1, Fig. 3.8 shows that the memory-assisted system of Fig. 3.7 cannot

outperform the no-memory system within a reasonable range of rates and/or
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LA = LB and p = 0.

distances. Here, we have considered different values of p. As we decrease the

value of p, the chance of entangling a photon with the memories become lower,

and that is why the initial key generation rate drops. However, lower values of

p will make the generation of multiple-excitation states less likely and that is

why the cut-off security distance becomes longer. We nevertheless never cross

the no-QM rate curve.

In order to understand the above behavior, we need to look more closely at

the dynamics of different terms in Eq. (3.20). The term Y QM
11 is proportional to

the loading probability, i.e., the success probability in each of the side BSMs of

Fig. 3.7. In order to have a successful BSM we need to get two clicks, one on the

upper arm, and one in the lower one. For short distances, the two clicks are typi-

cally caused by the photon sent by the user and a photon entangled with the two

memories on each side. The loading probability, in this limit, is then on the order

of p exp[−(L/2)/Latt], where p is the probability that one of the two ensembles

on each side has one excitation, and exp[−(L/2)/Latt] is the channel efficiency

for the transmitted photon by the user. The initial slope of the curves in Fig. 3.8

corresponds to the above scaling with distance, similar to that of quantum re-
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Figure 3.9: Rate versus the distance for assisted-memory MDI-QKD scheme with imperfect

QMS for different values of the decoherence time T1 at p = 10−4.

peaters. As the distance becomes longer and longer, the chance of receiving the

photon sent by the user becomes slimmer and slimmer. In this limit, a successful

BSM is often caused by photons originating from memories, in particular, terms

like |11〉A1A2|11〉P1P2 . Such successful BSMs do not imply any correlations be-

tween the states of memories and that of Alice or Bob, and will simply result in

random errors and the eventual decline of the key rate to zero. Given that the

probability of generating a two-photon state is on the order of p2, the transition

from the first region to the cut-off region roughly occurs at a distance Lc, where

p exp[−(Lc/2)/Latt] ≈ p2, or equivalently, when exp[−(Lc/2)/Latt] ≈ p. This im-

plies that the total rate would then scale as p exp[−(Lc/2)/Latt] ≈ exp[−Lc/Latt],

which is similar to a no-QM system. This is evident in Fig. 3.8 by the envelop

(dashed line) of QM-assisted curves, which is parallel to the no-QM curve. Con-

sidering the additional inefficiencies in the memory-assisted system as compared

to the no-QM one, for the range of values used in our calculations, it becomes

practically impossible to beat the no-QM system if we use ensemble-based mem-

ories in the setup of Fig. 3.7. Note that the performance would further degrade

if memory decay effects are also included, as shown in Fig. 3.9
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3.8 Conclusion

In this Chapter, we analyzed the MDI-QKD protocol with phase encoding pro-

posed in [73] in terms of the secret key generation rate with two different types of

sources and with and without memories. We compared an imperfect single pho-

ton source, having a probability p of emitting two photons, with a more affordable

source, such as a laser, which emit coherent states with the decoy-state protocol,

under practical assumptions. We considered various sources of imperfections in

our analysis, such as path loss, quantum efficiency and dark counts, and obtained

the optimal regime of operation as a function of system parameters. We first es-

timated the optimal value of the mean number of photons of the coherent source

(laser). With this value, we compared the key rate of the two cases versus dif-

ferent setup parameters, such as double-photon probability and dark count. The

highest distance at which it is possible to share a secret key is over 500 km at

p = 10−4, ed = 10−3 and for negligible values of dc for both cases. By increasing

the dark count and the misalignment this limit is reduced. In particular, for

dc = 10−4, the largest distance lies between 200 and 300 km. We can estimate

the highest tolerable misalignment, emaxd . For the imperfect source emaxd = 8 ·10−2

and for the coherent case emaxd = 4 · 10−2. It turns out that, although using two

imperfect single photon states allow us to have higher tolerable values for dark

counts, the performance of the protocol is almost equivalent when one source is

substituted with a laser which emit coherent states.

We analyzed the effects of double-photon emission in MDI-QKD system and

in the memory-assisted MDI-QKD system. We showed that in the no memory

case an imperfect single photon source emitting two photons does not affect much

the performance of the protocol, whereas a memory-assisted MDI-QKD system

is strongly affected by multiple excitations in QMs. In [2], authors showed that

memory-assisted MDI-QKD beats the conventional no-memory system if qubit-

based QMs are fast and have sufficiently long coherence times. In this Chapter, we

showed that multiple excitations in QMs deteriorate the performance of ensemble-

based memory-assisted MDI-QKD systems to the extent that they can no longer

beat their no-memory counterparts. Ultimately, in order to go to arbitrarily long

distances quantum repeaters are needed as we will study in the next Chapters.
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Chapter 4

SPS versus DLCZ quantum

repeater

4.1 Introduction

Despite all practical progress with QKD [76, 77], its implementation over long

distances remains to be a daunting task. In conventional QKD protocols such as

BB84 [16], channel loss and detector noises set an upper bound on the achievable

security distance [78]. In addition, the path loss results in an exponential decay of

the secret key generation rate with distance. Both these issues can, in principle,

be overcome if one implements entanglement-based QKD protocols [18, 19] over

quantum repeater systems [35, 36, 61, 79]. However, as already mentioned in

Chapter 2, this approach, is not without its own challenges. Quantum repeaters

require QM units that can interact with light and can store their states for suf-

ficiently long times. Moreover, highly efficient quantum gates might be needed

to perform two-qubit operations on these QMs [35]. The latter issue has been

alleviated, to some extent, by introducing the DLCZ protocol [36] introduced

in the second Chapter, in which initial entanglement distribution and swapping,

thereafter, rely on probabilistic linear-optic operations. Since its introduction,

the DLCZ idea has been extended and a number of new proposals have emerged

[37, 54, 57, 80]. Such probabilistic schemes for quantum repeaters particularly

find applications in QKD systems of mid-to-long distances, which makes them

worthy of analytical scrutiny. In this Chapter, we compare DLCZ with one of its
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favorite successors, the SPS protocol [37], which relies on single photon sources.

Using a general system-level approach, which encompasses many relevant physi-

cal sources of imperfection in both systems, we provide a realistic account of their

performance in terms of their secret key generation rates per logical memory used.

This measure not only quantifies performance, but it also accounts for possible

costs of implementation.

The SPS protocol attempts to resolve one of the key drawbacks in the original

DLCZ protocol: multi-photon emissions. DLCZ uses atomic ensembles as QMs,

which lend themselves to multi-photon emissions. This leads to obtaining not-

fully-entangled states, hence resulting in lower key rates when used for QKD.

To tackle this issue, in the SPS protocol, entanglement is distributed by ideally

generating single photons, which will either be stored in QMs, or directed toward

a measurement site. Whereas, in principle, the SPS protocol should not deal

with the multi-photon problem, in practice, it is challenging to build on-demand

single photon sources that do not produce any multi-photon components. A fair

comparison between the two systems is only possible when one considers different

sources of non-idealities in both cases, as we will pursue in this Chapter.

The SPS protocol is one of the many proposed schemes for probabilistic quan-

tum repeaters. In [81], authors provide a review of all such schemes and compare

them in terms of the average time that it takes to generate entangled states, of

a certain fidelity, between two remote memories. Their conclusion is that in the

limit of highly efficient memories and detectors, the top three protocols are the

SPS protocol and two others that rely on entangled/two photon sources [54, 82].

In more practical regimes, however, the SPS protocol seems to have the best

performance per memory/mode used. In this Chapter, we therefore focus on

the SPS protocol, and will investigate, under practical assumptions, whether the

above conclusion remains valid in the context of QKD systems.

This Chapter is structured as follows. In Sec. 4.2, we outline the contributions

of this Chapter. In Sec. 4.3, we review the SPS protocol and we describe the

entanglement swapping operation and how it is possible to share a secret key

with a QKD measurement. We also describe how we model the memory decay

and dephasing. In Sec. 4.4, we describe how we analytically calculate the secret

key rate for the setups under study in the repeater and no-repeater cases. In Sec.
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4.5, we present the numerical results of the key rate versus setup’s parameters

and we compare the performance of the SPS protocol with the DLCZ protocol.

Finally, in Sec. 4.6, we draw our conclusions.

4.2 This chapter’s contribution

The work presented in this Chapter is distinct from previous related work in its

focusing on the performance of “QKD” systems over quantum repeaters. In [56],

authors have adopted the general measure of fidelity to find the average time

of entanglement generation. Whereas their approach provides us with a general

insight into some aspects of quantum repeater systems, it cannot be directly

applied to the case of QKD. In the latter, the performance is not only a function

of the entanglement generation rate, but also the quantum bit error rate caused

by using non-ideal entangled states. To include both these issues, here, we adopt

the secret-key generation rate per memory as the main figure of merit, by which

we can specify the optimal setting of the system and its performance in different

regimes of operation.

Another key feature of our work is to use a normalized figure of merit to

compare the DLCZ and SPS protocols. In practice, to obtain a sufficiently large

key rate in such probabilistic systems, one must use multiple memories and/or

modes in parallel (see Sec. 2.8). In order to account for the cost of the system,

in our analysis, we provide a normalized key rate per memory and/or mode. We

calculate the dependence of the secret key generation rate on different system

parameters when resolving or non-resolving detectors are used. In particular,

we find the optimal values for relevant system parameters if loss, double-photon

emissions and dark counts are considered. Moreover, we account for the dephasing

and the decay of memories in our analysis, which, we believe, is unprecedented.

In our setups, we assume ensemble-based QMs are in use.

4.3 SPS protocol for quantum repeaters

In this section, we review the SPS protocol for quantum repeaters and model

relevant system components. The entanglement swapping and the QKD mea-

60



4.3 SPS protocol for quantum repeaters

Figure 4.1: A schematic model for the SPS scheme. In (a) the memories’ writing efficiencies,

the path loss and the detectors’ efficiencies are represented by fictitious beam splitters with

transmission coefficients ηw; ηch and ηD, respectively. In (b), an equivalent model is represented,

where we have grouped beam splitters in the form of butterfly modules; see Fig. 2.8. Here,

ηchηD =ηwηd.

surement are described for such a setup.

4.3.1 SPS setup

In Section 2.9.3 we described how the SPS protocol works. As shown in Fig.

2.5(b) Alice and Bob, separated by a distance L, are provided each with an ideal

SPS and a QM. They both send a photon to a beam splitter of transmissivity

η, which can deflect the photon to a QM or will let the photon go through. A

BSM is then performed on the travelling fields and a click on one of the two

photodetectors will project the state shared in the QMs into a Bell state plus

a spurious vacuum state, which will be ruled out in the post-selection process.

Alice and Bob can use two such entangled states, in a QKD measurement, to

extract a secure key bit.

For a proper analysis of the system, it is important to account for setup ineffi-

ciencies, which are present in real implementations. In Fig. 4.1(a), we model the

memory writing efficiency, the channel transmissivity, and the detectors quantum

efficiency by introducing fictitious beam splitters with, respectively, transmissiv-

ities ηw, ηch, and ηD. In our analysis, we use an equivalent setup, as shown in
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4.3 SPS protocol for quantum repeaters

Figure 4.2: (a) Entanglement connection between two entangled links A − A′ and B′ − B.

The memories A′ and B′ are read out and the resulting photons are combined on a 50:50

beam splitter. A click on one of the detectors projects A and B into an entangled state. The

retrieval efficiencies and quantum efficiencies are represented by fictitious beam splitters with

transmission coefficient ηr and ηD, respectively. (b) The equivalent butterfly transformation to

the measurement module, where ηs = ηrηD.

Fig. 4.1(b), where beam splitters have been rearranged such that ηchηD =ηwηd,

provided that ηchηD
ηw

< 1. We can then recognize similar building blocks, which

we referred to as butterfly modules, in Section 2.10. Each of the two butterfly

operators at the bottom will be labeled by Bη,ηw = Ba,b
η,ηw,ηw,1,1 and the butterfly

operator in the upper part will be labeled by B0.5,ηd = Ba,b
0.5,ηd,ηd,1,1

. In Appendix

B, we derive the input-output relationships of each butterfly operator. After

we establish entanglement either we perform directly a QKD measurement to

obtain a raw key bit or we use a quantum repeater setup followed by QKD mea-

surements. In the following section we will describe the entanglement swapping

operation and how it is possible to extract a key for such a setup.

4.3.2 Entanglement swapping and QKD measurement

Figure 4.2(a) shows the entanglement swapping setup for the DLCZ and the SPS

protocols. Entanglement is established between QM pairs A−A′ and B′−B using

either of protocols. A partial Bell-state measurement (BSM) on photons retrieved

from the middle QMs A′ and B′ is then followed, which upon success, leaves A

and B entangled. The BSM is effectively performed by a 50:50 beam splitter

and single-photon detectors. To include the effects of the atomic-to-photonic
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4.3 SPS protocol for quantum repeaters

Figure 4.3: QKD measurements on two entangled pairs. Two pairs of memories, A-B and C-D,

each share an entangled state. Memories are read out and the resulting photons are combined at

a beam splitter and then detected. Different QKD measurements can be performed by choosing

different phase shift values, ϕ, of 0 and π/2.

conversion efficiency and the photodetectors’ quantum efficiency, we introduce

two fictitious beam splitters with transmission coefficients ηr and ηD, respectively.

All photodetctors in Fig. 4.2 will then have unity quantum efficiencies. Note

that the parameter ηr also includes the memory decay during the storage time.

The 50:50 beam splitter and the two fictitious beam splitters in Fig. 4.2(a)

constitutes again a butterfly module, which can be simplified as in Fig. 4.2(b),

with ηs = ηrηD.

Alice and Bob use two butterfly operations to generate a raw key bit, as shown

in Fig. 4.3. After generating entangled pairs over a distance L, Alice and Bob

retrieve the states of memories and perform a QKD measurement on the resulting

photons. They apply a random relative phase shift, ϕ, of either 0 or π/2, between

their two fields. They will later, at the sifting stage, only keep data points where

the same phase value is used by both parties. They then turn their sifted keys into

a secure key by using privacy amplification and error reconciliation techniques.

Eavesdroppers can be detected by following the BBM92 [17] or the Ekert protocol

[18].

As mentioned in Sec. 4.1, previous analyses only provide the fidelity or the

time required for a successful creation of an entangled state [37]. Instead, in

Sec. 4.4, we will calculate the secret key generation rate for the SPS scheme and

compare it with that of the DLCZ protocol reported in [61].

In our forthcoming analysis, we consider the multiple-memory configuration

of Fig. 2.4(a), but our results are extensible to the case of Fig. 2.4(b) by ac-

counting for the relevant prefactor. We use atomic-ensemble QMs, and we allow

for memory decay and dephasing as explained next.
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4.3.3 Memory decay and dephasing

Quantum memories are expected to decay and dephase while storing quantum

states. In this Chapter, we model these two processes independently. The decay

process, with a time constant T1, can be absorbed in the retrieval efficiency of

memories. If the retrieval efficiency immediately after writing into the memory

is given by η0, after a storage time T , the retrieval efficiency is given by ηr =

η0 exp(−T/T1). Different memories in the multiple-memory setup of Fig. 2.4(a)

undergo different decay times. In our analysis, we consider the worst case scenario

where all memories have decayed for T = L/c, which is only applicable to the

far-end memories. Under this assumption, ηr can be treated as a constant at all

stages of entanglement swapping.

We model the memory dephasing via a dephasing channel, by which the prob-

ability of dephasing after a period T is given by ed = [1 − exp(−T/T2)]/2. In

the context of the QKD protocol in Fig. 4.3, this phase error is equivalent to the

misalignment error in a conventional polarization-based BB84 protocol and has

mostly the same effect. In our analysis, we neglect the effect of dephasing at the

middle stages, and only consider its effect on the far-end memories used for the

QKD protocol. Again, for the multiple-memory setup of Fig. 2.4(a), the relevant

storage time is given by T = L/c [58].

In the following section, we highlight the steps needed to find the secret key

rate of the SPS protocol in the no-repeater and repeater cases.

4.4 Key rate analysis

In this section, the secure key generation rate for the SPS scheme proposed in

[37] is calculated. In the case of no repeater nodes, using (2.9), the key rate will

be bound by:

R1 = max

[
(1− 2h(EQ))

PS (L)

2L/c
Qclick/2, 0

]
, (4.1)

where Qclick is the probability of creating a sifted key bit by using two entangled

pairs, EQ is the QBER, and PS(L) is the probability of a successful entanglement

generation over a length L. Here, we assume a biased basis choice to avoid an
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extra factor of two reduction in the rate [42]. The full derivation of Qclick is given

in Appendix B and is outlined below. The QBER,

EQ =
QEE

Qclick

, (4.2)

where QEE is the probability that Alice and Bob assign different bits to their

sifted keys, is given in Appendix B as well.

From Eq. (2.9), the key rate in the one-node repeater case is lower bounded

by

R2 = max

[
(1− 2h(EQ))

PS (L/2)

2L/c
PM Qclick/2, 0

]
, (4.3)

where PM is the probability of a successful BSM in an entanglement swapping

operation.

As was shown in Sec. 4.3, the SPS scheme relies on simultaneous generation of

single photons in two remote sites. Most practical schemes for the generation of

single photons, however, suffer from the possibility of multiple-photon emissions.

To address this issue, in this section, we consider non-ideal photon sources with

nonzero probabilities for two-photon emissions, and find the secret key generation

rates of Eqs. (4.1) and (4.3).

Suppose our photon sources emit one photon with probability 1− p and two

photons with probability p. We, therefore, have the following input density matrix

for the initial state of l and r sources in Fig. 4.1(a)

ρ
(in)
lr = ρ

(in)
l ⊗ ρ(in)

r , (4.4)

where

ρ
(in)
j ≡ (1− p) |1 〉jj 〈1|+ p|2 〉jj 〈2| , j = l, r. (4.5)

In a practical regime of operation, p � 1; hence, in our following analysis, we

neglect O (p2) terms corresponding to the simultaneous emission of two photons

by both sources.

4.4.1 No-repeater case

In this section, we describe how we obtain parameters PS, Qclick, and RQKD for

the setup in Fig. 4.1(a) and QKD measurements as in Fig. 4.3. The initial
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density matrix in (4.4) goes through several butterfly modules, which has been

described in Sec. 4.3. We can then find, ρALBR, the joint state of the memories

A and B and the optical modes entering detectors L and R in Fig. 4.1(b) by

applying the butterfly operation three times, as follows

ρALBR = B0.5,ηd

(
Bη,ηw

(
ρ

(in)
l

)
⊗Bη,ηw

(
ρ(in)
r

))
. (4.6)

According to the SPS protocol, a click on exactly one of the detectors L or

R, in Fig. 4.1(b), would herald the success of entanglement distribution. This

process can be modeled by applying proper measurement operators considering

whether PNRDs or NRPDs are used. In this Chapter, we will use both kind of

detectors, and label the corresponding measurement operator by MLR in both

cases. In the case of PNRDs, MLR = MR
LR, as in Eq. (2.13), and for NRPDs,

MLR = MNR
LR , as given by Eq. (2.14).

After the measurement, the resulting joint state, ρAB, of quantum memories

is given by:

ρAB =
trL,R (ρALBRMLR)

P
, (4.7)

where

P = tr (ρALBRMLR) =
PS (L)

2
(4.8)

is the probability that the conditioning event MLR occurs. The last equality is

due to the symmetry assumption.

For QKD measurements, we assume two pairs of memories, A-B and C-D,

are given in an initial state similar to that of Eq. (4.7). We use the scheme

described in Fig. 4.3 to perform QKD measurements. For simplicity, we as-

sume both users use zero phase shifts; other cases can be similarly worked out

in our symmetric setup. In Fig. 4.3, the retrieval efficiency and the quantum

detectors efficiency are represented by fictitious beam splitters with, respectively,

transmission coefficient ηr and ηD. It is again possible to remodel the setup in

Fig. 4.3 as shown in Fig. 4.2(b), and use the butterfly operation B0.5,ηs , where

ηs = ηrηD. The density matrix right before photodetection in Fig. 4.3 is then

given by B0.5,ηs (B0.5,ηs (ρAB ⊗ ρCD)) , where one of the B-operators is applied to

modes A and C, and the other one to modes B and D. Using this state, we find

Qclick and EQ as outlined in Appendix B. We have now all the ingredients to find

the secret key rate of Eq. (4.1)
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4.4.2 Repeater case

First, we consider the repeater setup with nesting level one in Fig. 4.2(a). We use

the structure of Fig. 4.1(a) to distribute entanglement between A-A′ and B′-B

memories. The initial joint state of the system, ρAA′BB′ = ρAA′ ⊗ ρBB′ , can then

be found, using Eq. (4.7), as described in the previous section. We then apply a

BSM by reading memories A′ and B′ and interfering the resulting optical modes

at a 50:50 beam splitter. Success is declared if exactly one of the detectors in

Fig. 4.2(a) clicks. This can be modeled by applying measurement operators in

Eqs. (2.13) and (2.14) , which results in

ρAB =
trLR (MLRρ

′
ALBR)

PL
, (4.9)

where ρ′ALBR = B0.5,ηs (ρAA′BB′), where L and R represent the input modes to the

photodetectors. Note that, in Fig. 4.2, the detectors have ideal unity quantum

efficiencies. Moreover,

PL = tr (MLRρ
′
ALBR) = PM/2 (4.10)

is the probability that only the left detector clicks in the BSM module of Fig. 4.2.

A click on the right detector has the same probability by symmetry.

In order to find the secret key generation rate, we will follow similar steps to

the no-repeater case. That is, we apply the butterfly operation to find relevant

density matrices, from which Qclick and EQ can be obtained. Now we can find

the secret key rate given in Eq. (4.3). Using the same approach, and by using

Eq. (4.3), we find the secret key generation rate for higher nesting levels. The

details of which, have, however, been omitted.

4.5 Numerical results

In this section, we present numerical results for the secret key generation rate

of the SPS protocol, versus different system parameters, in the no-repeater and

repeater cases, and we compare them with that of the DLCZ protocol. Unless

otherwise noted, we use the nominal values summarized in Table 4.1 for all the

results presented in this Chapter.
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ηw 0.5

ηD 0.3

η0 0.7

dc 10−6 per pulse

Latt 25 km

c 2 · 105 km/s

T1 (T2) ∞

Table 4.1: Nominal values used in this Chapter.

4.5.1 SPS key rate versus system parameters

Source transmission coefficient

Figure 4.4 shows the secret key generation rate per memory, RQKD, versus the

source transmission coefficient η of the setup of Fig. 4.1(a), at p = 0.001 and

L = 250 km. It can be seen that there exist optimal values of η for both repeater

and no-repeater systems. Table 4.2 summarizes these optimum values for different

nesting levels. The optimal value of η for the no-repeater system is higher than

the repeater ones, and that is because of the additional entanglement swapping

steps in the latter systems. Another remarkable feature in Fig. 4.4 is that the

penalty of using NRPDs, versus PNRDs, seems to be little at p = 10−3. PNRDs

better show their advantage at higher values of p when double-photon terms

become more evident.

The existence of an optimal value for η arises from a competition between

the probability of entanglement distribution PS, which grows with η, and Pclick,

which decreases with η. This has been demonstrated in the inset of Fig. 4.4. The

latter issue is mainly because of the vacuum component in Eq. (2.12). In the case

of the repeater system, PM also decreases with η for the same reason, and that

is why the optimal value of η is lower for repeater systems.

The optimum values of η in Fig. 4.4 are interestingly almost identical to the

value of η that minimizes the total time for a successful creation of an entangled

state, as prescribed in [37]. It is because, at a fixed distance, the QBER term in

Eqs. (4.1) and (4.3) is mainly a function of the double-photon probability and the

dark count rate, and it does not considerably vary with η. More generally, the
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Figure 4.4: RQKD versus the source transmission coefficient η for the PNRDs and NRPDs

in the no-repeater and one-node repeater cases. Here, p = 0.001, L = 250 km, and n = 1 for

the repeater system; other parameters are listed in Table 4.1.

nesting level PNRD NRPD

0 0.35 0.34

1 0.28 0.27

2 0.21 0.20*

3 0.12 0.11*

Table 4.2: Optimal values of η, at p = 0.001 and L = 250 km, for repeater and no-repeater

systems, when PNRDs or NRPDs are used. The figures with an asterisk are approximate values.
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Figure 4.5: Key rate versus distance for up to three nesting levels at two different dark count

rates at p = 10−4. All other values are listed in Tables 4.1 and 4.2.

optimum values of η remain constant as in Table 4.2 so long as the error terms

are well below the cut-off threshold in QKD.

Nesting levels and crossover distance

Figure 4.5 depicts the normalized secret key generation rate versus distance for

different nesting levels. At dc = 0, the slope advantage, proportional to PS(L/2n),

for higher nesting levels is clear in the figure. Because of additional entanglement

swapping stages, the no-path-loss rate at L = 0 is, however, lower for higher

nesting levels. That would result in crossover distances—at which one system

outperforms another—once we move from one nesting level to its subsequent one.

The crossover distance has architectural importance and will specify the optimum

distance between repeater nodes.

The crossover distance is a function of various system parameters. As shown

in the inset of Fig. 4.5, positive dark count rates can considerably change the

crossover distance. By including dark counts in our analysis, there will be a

cutoff security distance for each nesting level. By increasing the dark count rate,

70



4.5 Numerical results

Figure 4.6: The crossover distance, at which a repeater system with nesting level n outper-

forms a system with nesting level n− 1, as a function of measurement efficiency ηs = ηrηD, at

p = 10−4. All other parameters are taken from Tables 4.1 and 4.2 except for the dark count,

which is 10−7.

these cutoff distances will decrease and become closer to each other. That would

effectively reduce the crossover distance. At dark count rates as high as dc = 10−6,

the superiority of 3 over 2 nesting levels at long distances would almost diminish

as they both have almost the same cutoff distances.

The crossover distance will decrease if component efficiencies go up. This has

been shown in Fig. 4.6 when the crossover distance is depicted versus measure-

ment efficiency. The latter directly impacts the BSM success probability, PM , and

that is why the larger its value the lower the crossover distance. Larger values of

ηw also reduce the vacuum component, thus enhancing the chance of success at

the entanglement swapping stage.

It can be noted in Fig. 4.6 that, even for highly efficient devices, the optimum

distance between repeater nodes would tend to lie at around 150-200 km. For

instance at L = 1000 km, and with the nominal values used in this Chapter, the

optimum nesting level is 2, which implies that the distance between two nodes

of the repeater is 250 km. This could be a long distance for practical purposes,

such as for phase stabilization, and that might require us to work at a suboptimal

distancing. The latter would further reduce the secret key generation rate. Our

result is somehow different from what is reported in [81, 83], albeit one should

bear in mind the different set of assumptions and measures used therein.
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Figure 4.7: (a) Key rate versus double-photon probability, p, using PNRDs and NRPDs in

the no-repeater and one-node repeater cases. (b) Cutoff double-photon probability, at which

the key rate becomes zero, versus the dark count rate dc. The higher the dark count rate, the

less room for multi-photon errors. All graphs are at L = 250 km.

Double-photon probability

Figures 4.7 show the secret key generation rate for the SPS protocol, at the

optimal values of η listed in Table 4.2, versus the double-photon probability p in

the no-repeater and repeater cases. It can be seen that, in both cases, there exists

a cutoff probability at which RQKD becomes zero. This point corresponds to the

threshold QBER of 11% from the Shor-Preskill security proof. In the case of QMs

with sufficiently long coherence times, as is the case in Fig. 4.7, the QBER in our

system stems from two factors: dark count and double-photon probability. The

former is proportional to dc/ηd and it comes into effect only when the path loss is

significant. The latter, however, affects the QBER at all distances. To better see

this issue, in Fig. 4.7(b), the cutoff probability is depicted versus the dark count

rate. It can be seen that the cutoff probability linearly goes down with dc, which

confirms the additive contribution of dark counts and two-photon emissions to

the QBER.

The cutoff probability at dc = 0 deserves a particular attention. As can

be seen in Fig. 4.7(b), for the no-repeater system, the maximum allowed value
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nesting level cutoff double-photon probability

0 2.5× 10−2

1 5.0× 10−3

2 1.8× 10−3

3 2.1× 10−4

Table 4.3: Cutoff double-photon probabilities when PNRDs are used for different nesting

levels. The parameter values used are listed in Tables 4.1 and 4.2 .

of p is about 0.028 for PNRDs and 0.026 for NRPDs. This implies that the

QBER in this case, at dc = 0, is roughly given by 4p. This can be verified by

finding the contributions from two- and single-photon components in Eq. (4.5).

We can then show that the QBER, at the optimal value of η in Table 4.2, is

roughly given by 3(1 + η)p ≈ 4p. Similarly, in the repeater case, one can show

that each BSM almost doubles the contribution of two-photon emissions to the

QBER. Considering that four pairs of entangled states is now needed, and that

the chance of making an error for an unentangled pair is typically 1/2, the QBER

is roughly given by 4 × 2 × 3(1 + η)p/2 ≈ 16p, which implies that, to the first-

order approximation, the maximum allowed value for p is about 0.11/16 = 0.0068.

Figure 4.7(a) confirms this result, where the cutoff probability is about 0.0056

for the PNRDs and 0.0054 for the NRPDs, corresponding to EQ ≈ 20p.

With a similar argument as above, one may roughly expect a factor of 4-to-5

increase in the QBER for each additional nesting level. This implies that for a

repeater system with nesting level 3, we should expect a QBER around 500p just

because of the double-photon emission. Table 4.3 confirms our approximation

by providing the actual cutoff figures for different nesting levels. We discuss the

practical implications of this finding later in this section.

Memory dephasing

Figure 4.8(a) shows the secret key generation rate per memory for the SPS pro-

tocol with NRPDs versus distance for two different values of the dephasing time,

T2, at p = 10−3. It is clear that, by reducing the coherence time, the security dis-

tance drops to shorter distances. Whereas, at T2 = 100 ms, the key rate remains
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Figure 4.8: (a) The secret key generation rate versus distance for two values of decoherence

time, T2 = 10 ms and 100 ms. In (b) the secret key rate is plotted as a function of T2 at

L = 250 km. In both graphs, p = 10−3.

the same as that of Fig. 4.5(b), at T2 = 10 ms, both repeater and non-repeater

systems would fall short of supporting distances over 360 km.

Figure 4.8(b) shows the secret key generation rate per memory versus T2 at

L = 250 km. There is a minimum required coherence time of around 5 ms

below which we cannot exchange a secure key. This point corresponds to the

11% QBER mainly caused by the dephasing process. In fact, at this point, we

have EQ ≈ ed = (1− exp[−L/(cT2)])/2 = 0.11, which implies that the maximum

distance supported by our protocol is about cT2/4. To be operating on the flat

region in the curves shown in Fig. 4.8(b), one even requires a higher coherence

time. In other words, the minimum required coherence time to support a link of

length L is on the order of 10L/c. This is in line with findings in [58]. Although

not explicitly shown here, the same requirements are expected to be as well

applicable to other QKD systems that rely on quantum repeaters.

4.5.2 SPS versus DLCZ

Figure 4.9 compares the secret key generation rate for the SPS protocol, found

in this Chapter, with that of the DLCZ protocol as obtained in [61]. In both

systems, we have assumed dc = 0. All other parameters are as in Table 4.1. In

both systems, we use the optimal setting in the PNRD case. The conclusion
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Figure 4.9: Comparison between the DLCZ and SPS protocols using PNRDs. For both

systems, the better of repeater or non-repeater system is used. Both systems operate at their

optimal setting: For the SPS protocol, the optimum value of η is used; for the DLCZ protocol,

the optimum value of pc is used. By varying the double-photon probability, p, in the SPS

protocol, we find that the maximum p at which SPS outperforms DLCZ is around p = 0.004.

In all curves, dc = 0. All other parameters are taken from Tables 4.1 and 4.2.
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would be similar if one uses NRPDs, as seen in all numerical results presented

in this Chapter. For the SPS protocol, the optimal setting corresponds to the

values of η in Table 4.2. In the DLCZ protocol, the adjustable parameter is

the excitation probability pc. Note that, whereas in the SPS protocol, the rate

decreases monotonically with p, in the DLCZ protocol, it peaks at a certain value

of pc. That is because, in the SPS protocol, we use an on-demand source of

photons, whereas in the DLCZ protocol, the heralding probability is proportional

to pc so is the ratio between double-photon and single-photon probabilities. The

optimum value for the excitation probability is given by pc = 0.0243 in the no-

repeater case and pc = 0.0060 in the one-node repeater case [61]. Note that the

analysis in [61] accounts for all multi-excitation components in the initial state of

the system. In all curves in Fig. 4.9, we have used the better of the repeater and

no repeater systems at each distance. Our results show that the SPS protocol

offers a higher key rate per memory than the DLCZ for on-demand single-photon

sources with double-photon probabilities of 0.004 or lower. The advantage is

however below one order of magnitude in most cases.

A key assumption in the results obtained above is the use of on-demand

sources in the SPS protocol. The less-than one-order-of-magnitude difference be-

tween the two protocols can then be easily washed away if one uses single-photon

sources with less than roughly 50% efficiencies. This means that the conventional

methods for generating single photons, such as parametric downconversion or

quantum dots, may not yet be useful in the SPS protocol. The partial memory-

readout technique could, still, be a viable solution. In this scheme, we drive a

Raman transition, as in the DLCZ protocol, in an atomic ensemble, such that

with some probability p a Stokes photon is released. If we detect such a photon,

then we are left with an ensemble, which can be partially read out with proba-

bility η to resemble the first part of the SPS protocol. One should, however, note

that with limitations on the cutoff probability to be on the order of 10−4–10−5, it

may take quite a long time to prepare such a source-memory pair. For instance,

if the required p is 10−4, and the efficiency of the collection and detection setup

is 0.1, even if we run the driving pulse at a 1 GHz rate, it takes on average 0.1 ms

to prepare the initial state. This time is comparable to the time that it takes for

light to travel 100 km, which is on the same order of magnitude that we run our
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cyclic protocol in Fig. 2.4(a). Considering a particular setup parameters, it is not

then an obvious call to which of the DLCZ or SPS protocols performs better, and

that underlines the importance of our theoretical analysis.

4.6 Conclusions

In this Chapter, we analyzed the SPS protocol proposed in [37] in terms of the

secret key generation rate that it could offer in a QKD-over-repeater setup. This

protocol belongs to a family of probabilistic quantum repeaters, and perhaps one

of their best, inspired by the DLCZ proposal [72]. Our aim was to compare

the SPS protocol, for QKD applications, with the original DLCZ protocol, as

reported in [61], in a realistic scenario. To this end, we considered various sources

of imperfections in our analysis and obtained the optimal regime of operation as

a function of system parameters. We accounted for double-photon probabilities

at the source and realized that, under Shor-Preskill’s security-proof assumptions,

its value should not exceed 0.11/4, in a direct-link scenario, and 0.11/20 in a

one-node repeater case. We would expect the same scaling, if not worse, at

higher nesting levels, which implied that for a repeater setup of nesting level

3, the double-photon probability must be on the order of 10−4 or lower. That

would be a challenging requirement for on-demand single-photon sources needed

in the SPS protocol. Under above circumstances, the advantage of the SPS

protocol over the DLCZ would be marginal and would not exceed one order of

magnitude of key rate in bit/s per memory. In our analysis, we also accounted

for memory dephasing and dark counts. Our results showed that the minimum

required coherence time for a link of length L is roughly given by 4L/c, where c is

the speed of light in the channel. The crossover distance at which we have to move

up the nesting-level ladder varies for different system parameters. The optimum

distancing between repeater nodes can nevertheless be typically as high as 150 km

to 200 km depending on the measurement efficiency among other parameters. We

noticed that, within practical regimes of operation, there would only be a minor

advantage in using resolving photodetectors over more conventional threshold

detectors. We emphasized that, because of using a normalized figure of merit
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in our analysis, our results would be applicable to multi-memory and/or -mode

scenarios.

The SPS quantum repeater protocol, while it enables us to reach large dis-

tances, requires the end users to have quantum memories in order to exchange

a secret key. In order to simplify the equipment at the user’s and to be able to

exchange a key over long distances, we can use an MDI-QKD protocol combined

with a quantum repeater setup. We will present this new scheme in the next

Chapter.
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Chapter 5

Long-Distance Trust-Free

Quantum Key Distribution

5.1 Introduction

Future quantum communications networks will enable secure key exchange among

remote users. They ideally rely on user friendly access protocols in conjunction

with a reliable network of core nodes [84–86]. For economic reasons, they need to

share infrastructure with existing and developing classical optical communication

networks, such as passive optical networks (PONs) that enable fiber-to-the-home

services [77, 87]. The first generation of quantum key distribution (QKD) net-

works are anticipated to rely on a trusted set of core nodes [88, 89]. This ap-

proach, although the only feasible one at the moment, may suffer from security

breaches over the long run. In the future generations of quantum networks, this

trust requirement can be removed by relying on entanglement in QKD protocols

[31, 32, 90]. This can be facilitated via using the recently proposed measurement-

device-independent QKD (MDI-QKD) [1, 73, 91, 92] at the access nodes of a PON

[93] and quantum repeaters at the backbone of the network, as we consider in

this Chapter. The former enables easy access to the network via low-cost opti-

cal sources and encoders, whereas the latter may rely on high-end technologies

for quantum memories and gates. Both systems, however, rely on entanglement

swapping, which makes them naturally merge together. More importantly, in
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neither systems would we need to trust the intermediary nodes that perform

Bell-state measurements (BSMs).

In this Chapter, we study the feasibility of such a trust-free hybrid scheme

by finding the relationship between the achievable secret key generation rate as

a function of various system parameters. We remark that this setup does not

provide full device-independence but it removes the trust requirement from the

intermediary network nodes that perform measurement operations. Our work

provides insights into the feasibility of such systems in the future. Our scheme

relies on conventional quantum repeaters, where quantum memories are entangled

over large distances via successive entanglement swapping operations. Moreover,

users can use imperfect single-photon sources or lasers.

MDI-QKD is an attractive candidate for the access part of quantum networks.

First, it provides a means to secure key exchange without trusting measurement

devices. This is a huge practical advantage considering the range of attacks on

the measurement tools of QKD users [94–97]. Moreover, at the users’ ends, it

only requires optical encoders driven by weak laser pulses. That not only makes

the required technology for the end users much simpler, but it also implies that

the costly parts of the network, including detectors and quantum memories, are

now shared between all networks users, and are maintained by service providers.

One final advantage of MDI-QKD is its reliance on entanglement swapping, which

makes its merging with quantum repeaters, also relying on the same technique,

straightforward. This will help us develop quantum networks in several genera-

tions, where the compatibility of older, e.g. trusted-node, and newer, e.g., our

trust-free, networks can be easily achieved.

In this Chapter, we focus on the probabilistic setups for quantum repeaters,

and, among all possible options, we use the SPS protocol we studied in Ch. 4

[37]. In the previous Chapter, we compared the performance of the SPS protocol

in the context of QKD, with several other alternatives, once imperfections in the

SPSs are accounted for. We found that under realistic assumptions, this protocol

is capable of providing the best (normalized) key rate versus distance behavior as

compared to other protocols. The particular setup that we are going to consider

in this Chapter is then a phase-encoded MDI-QKD setup, whose reach and rate
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are improved by incorporating a repeater setup, as above, in between the two

users.

We assume the multiple-memory configuration for the repeater system. It

is worth noting that the easiest way to improve rate-vs-distance behavior is to

add two quantum memories in the MDI-QKD setup as we discussed in Ch. 3

[2, 68, 98]. For the right setup and sets of devices, this approach will almost

double the distance one can exchange secret keys without trusting middle nodes,

but it is not scalable the same way that quantum repeaters are. It, nevertheless,

provides a practical route toward building scalable quantum-repeater-based links.

This Chapter is structured as follows. In Sec. 5.2, we outline the contributions

of this Chapter. In Sec. 5.3, we describe the trust-free QKD link setup. In Sec.

5.4, we describe how we analytically calculate the secret key rate for the setup

under study when users are provided with imperfect SPSs and with coherent

sources. In Sec. 5.5, we present the numerical results of the key rate versus the

distance in two regimes of operation. Finally, in Sec. 5.6, we draw our conclusions.

5.2 This chapter’s contribution

In this Chapter, we analytically determine the secret key rate of the phase-

encoded MDI-QKD setup with quantum repeaters when users are provided with

lasers, which emit coherent states, SPSs. For both sources, depending on the

number of memories in use, we consider two regimes of operation: repeater-

limited regime, if the number of memories is large, and source-limited regime,

when the number of memories is small. We will give more details about these

two regimes in the next section. Finally, we determine the crossover distance ver-

sus the memory reading efficiency, which takes into account the amplitude decay

in the memories.

5.3 Setup description

In this section we first introduce the general idea behind our trust-free architec-

ture and, then, explain the particular MDI-QKD and quantum-repeater protocols
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BB84

Encoder
BSM BSM

LrepLs Ls

Memories entangled by a quantum repeater

BB84

Encoder

Core networkAlice Bob

Figure 5.1: A general scheme for trust-free QKD links. Entangled states are created between

internal nodes of the core network using quantum repeaters. The two BSMs will then enable

an end-to-end MDI-QKD protocol.

considered for its implementation. Let us first consider the ideal scenario con-

sidered in Fig. 5.1. In this scheme, by using quantum repeaters, we distribute

(polarization) entanglement between two memories apart by a distance Lrep. This

operation is part of the core network and is facilitated by the service provider.

On the users’ end, each user is equipped with a BB84 encoder, which sends

polarization-encoded single photons to a BSM module at a short distance Ls

from its respective source. This resembles the access part of the network, where

the BSM module is located at the nearest service point to the user. For each

transmitted photon by the users, we need an entangled pair of memories to be

read, i.e., their states need to be transferred into single photons. These photons

will then interact with the users’ photons at the two BSMs in Fig. 5.1.

The setup of Fig. 5.1 effectively enables an enlarged MDI-QKD scheme. In

MDI-QKD, the two photons sent by Alice and Bob are directly interacting at a

BSM module [1]. Here, by the use of entangled memories, it is as if the Alice’s

photon is being teleported to the other side, and will interact with the Bob’s

photon at the second BSM. The overall effect is, nevertheless, the same, and once

Alice and Bob consider the possible rotations in the memory states corresponding

to the obtained BSM results, they can come up with correlated or anti-correlated

bits for their sifted keys. Post processing is then performed to convert these sifted

keys to secret keys.

The same idea as in Fig. 5.1 can be implemented via phase-encoding tech-

niques as shown in Fig. 5.2. Here, for simplicity, we have considered the dual-rail

setup. The equivalent, and more practical, single-rail setup can also be achieved

by time multiplexing as shown in [73]. In Fig. 5.2, the quantum repeater ideally

leaves memories Ai-Bi, for i = 1, 2, in the state |ψent〉AiBi = |0〉Ai |1〉Bi+|1〉Ai |0〉Bi ,
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Figure 5.2: Schematic diagram for a trust-free QKD link based on phase encoding. Memories

are entangled using the SPS repeater protocol. Here, PBS stands for polarizing beam splitter

and PM stands for phase modulator.

where we have neglected normalization factors, and |n〉K represents n excitations

in memory K. The implicit assumption is that the memory is of ensemble type so

that it can store multiple excitations [71]. The phase encoding that matches this

type of entangled states is as follows. Alice and Bob encode their states either in

the z or in the x basis. Alice encodes her bits in the z basis by sending, ideally, a

photon in the r or in the s mode. This can be achieved by sending horizontally or

vertically polarized pulses to the polarizing beam splitter (PBS) at the encoder.

The same holds for Bob and his u and v modes. As for the x basis, we can send

a +45◦-polarized signal through the PBS to generate a superposition of r (u) and

s (v) modes for Alice (Bob) state. Alice (Bob) encodes her (his) bits by choosing

the phase value of the phase modulator (PM), φA (φB), to be either 0 or π.

The BSMs used in the scheme of Fig. 5.2 are probabilistic ones. They will

be successful if exactly two detectors, one from the top branch, and one from

the bottom one, click. We recognize two types of detection. For the Alice’s side

(and, similarly, for the Bob’s side), type I refers to getting a click on r0-s0 or on

r1-s1. Type II refers to the case when r0-s1 or r1-s0 click. In order to get one bit

of sifted key, Alice and Bob must use the same basis and both BSMs in Fig. 5.2

must be successful. Depending on the results of these BSMs and the chosen basis

by the two parties, Alice and Bob may end up with correlated or anti-correlated

bits, where in the latter case, Bob will flip his bit. Table 5.1 summarizes the bit

assignment procedure for our scheme. Note that these BSMs can be performed

by untrusted parties.
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Basis Alice BSM Bob BSM Bit assignment

z type I/II type I/II Bob flips his bit

x type I (II) type I (II) Bob keeps his bit

x type I (II) type II (I) Bob flips his bit

Table 5.1: Bit assignment protocol depending on the results of the two BSMs.

The repetition rate for our scheme is a function of several factors. In order to

do a proper BSM, for each photon sent by the users, there must be two entangled

pairs of memories ready to be read. In principle, the fastest that we can repeat

our scheme is the minimum of the maximum source repetition rate, RS, and

half the entanglement generation rate of the quantum repeater, Rrep/2. In the

multiple-memory configuration of Fig. 2.4(a) and in the limit of NRent(L)/c� 1,

Rrep is given by

Rrep(L) = NQMRent(L), (5.1)

where NQM = 2n+1N is the total number of logical memories in Fig. 2.4(a).

We therefore consider two regimes of operation. If RS > Rrep/2, we then run

our encoders at a rate equivalent to Rrep/2 and will look at the achievable key rate

per QM used. We refer to this as the repeater-limited regime. If RS < Rrep/2,

i.e., when for every photon sent, there will be more than two entangled pairs

ready, then we run our scheme at the rate RS and will look at the key rate per

transmitted pulse as a figure of merit. We refer to this scenario by source-limited

regime.

In the following, we describe the quantum repeater protocol used in our scheme

as well as different types of (imperfect) sources that users may use. Later, we

look at the achievable key rates once certain imperfections are considered in our

setup.

5.3.1 Source imperfections

In our work, we consider two types of sources for the end users. The first type,

which we will use as a point of reference for comparison purposes, is an imperfect
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SPS, with the following output state

ρj = (1− p) |1 〉jj〈 1|+ p |2 〉jj〈 2|, j = A, B, (5.2)

where p is the probability to emit two, rather than one, photons. In practical

regimes of operation, p� 1, hence, in our analysis, we neglect the simultaneous

emission of two photons by both sources. The second type of source considered

is a phase-randomized coherent source. In both cases, we use the decoy-state

technique by either varying p or the intensity. In the case of the coherent sources,

Alice (Bob) will send µ = |α|2 (ν = |β|2) photons on average for her (his) main

signal states. Other values will be used for decoy pulses. Our analysis here only

considers the case when there are infinitely many decoy states in use, although in

practice we expect to achieve the same performance by using just a small number

of decoy states [91].

5.3.2 Quantum repeater setup

We use the SPS repeater protocol, which was analyzed in Chapter 4. We consider

the SPS protocol with imperfect SPSs as in Fig. 5.2 for establishing entanglement

on each elementary link. Then, using entanglement swapping operations, we ex-

tend the entanglement distance up to two nesting levels in a multiple-memory

configuration. By considering writing and reading efficiencies for the QMs in use,

respectively, denoted by ηw and ηr, we use the results of the previous Chapter

to find the relevant density matrices, ρAiBi for i = 1, 2, for memories entan-

gled by the SPS protocol for different values of p and for different nesting levels

n. The amplitude decay of QMs can then be modeled with ηr. Other sources

of imperfections considered throughout the Chapter are the path loss given by

ηch(l) = exp(−l/Latt), photodetectors’ quantum efficiency, ηD, and photodetec-

tors’ dark count per pulse given by dc.

We describe in the following section the procedure we use to find the secret

key rate for such a hybrid scheme.
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Figure 5.3: BSM module with generic transmission coefficient represented by fictitious beam

splitters. In our setup, ηa is the path loss; ηb is the reading efficiency and ηD is the detection

efficiency.

5.4 Secret key generation rate

In this section, we find the secret key generation rate, RQKD, per logical mem-

ory used, for the scheme of Fig. 5.2 under the normal mode of operation when

no eavesdropper is present. We consider two types of sources as discussed in

Sec. 5.3.1.

5.4.1 Imperfect SPSs

Here, Alice and Bob each use an SPS with the output state as given by Eq. (5.2) in

their encoder. In the limit of an infinitely long key and a sufficiently large number

of QMs, their normalized secret key generation rate per employed memory is lower

bounded by

RQKD = min(RS ,Rrep/2)

NQM

×max
{
Qz

11 (1− h (ex11))−Qz
ppf h

(
Ez
pp

)
, 0
} (5.3)

Appendix C provides us with the full derivation of the relevant terms in

Eq. (5.3). Our general approach to find these terms is as follows. For any basis

Φ = x, z and any possible encoded state ρΦ
enc = ρrs ⊗ ρuv by Alice and Bob, the

initial state of the system including entangled memories A1-B1 and A2-B2 is given

by

ρΦ
in = ρΦ

enc ⊗ ρA1B1 ⊗ ρA2B2 (5.4)

where ρAiBi has been obtained in Ch. 4. Once memories are read, their states

will be transferred to photonic states, which we denote by the same label as their

original memories. In that case, optical fields corresponding to modes r and A1,

as well as the other three pairs of modes in Fig. 5.2, would undergo through the
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setup shown in Fig. 5.3, where ηa = ηrηD and ηb = ηch(Ls)ηD. The equivalent

sub-module in Fig. 5.3 is what we refer to as an asymmetric butterfly module (see

Fig. 2.7(c)), whose operation is denoted by Bab
ηaηb

= Ba,b
0.5,ηa,ηb,1,1

when it acts on

two incoming modes a and b. In Appendix A, we have derived the output states

of a butterfly module for relevant number states at its input. Using those results,

we can then find the pre-measurement state right before the photodetection at

the BSM modules by

ρΦ
out = BrA1

ηaηb
⊗BsA2

ηaηb
⊗BuB1

ηaηb
⊗BvB2

ηaηb
(ρΦ

in). (5.5)

Note that we have already accounted for the quantum efficiency of photodetectors

in our butterfly modules. The probability for a particular pattern of clicks on

detectors ri, sj, uk, and vl, for i, j, k, l = 0, 1, is given by

Prisjukvl(ρ
Φ
enc) = tr

(
ρΦ

outMri Msj Muk
Mvl

)
, (5.6)

where for x = r, s, u, v

Mx0 ≡MNR
x0x1

(5.7)

is the measurement operator to get a click on detector x0 but not on x1 as

explained in Eq. (2.14). One can define a similar operator Mx1 ≡ MNR
x1x0

, when

x1 clicks, but no x0. The relevant terms in Eq. (5.3) can now be calculated by

using Eq. (5.6) as shown in Appendix C.

5.4.2 Coherent sources

In this section we replace the SPSs with lasers sources and use the decoy-state

technique to exchange secret keys. This is a more user friendly approach as the

complexity of the required equipment for the end users would be minimized. In

the limit of infinitely many decoy states, infinitely long key, and sufficiently large

number of memories, the secret key generation rate per logical memory used is

lower bounded by

RQKD = min(RS ,Rrep/2)

NQM

×max
{
Qz

11 (1−H (ex11))−Qz
µνf H

(
Ez
µν

)
, 0
}
,

(5.8)
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where Qz
µν is the probability of a successful click pattern in the z basis when Alice

and Bob send phase-randomized coherent pulses, respectively, with mean photon

number µ = |α|2 and ν = |β|2 and Ez
µν is the QBER in the z basis in the same

scenario.

The procedure to find Qz
µν and Ez

µν is the same as what we outlined in

Eqs. (5.4)-(5.6). The only difference here is that in our butterfly modules, we

now need to know the output of the module to coherent states in one input port,

for the signal coming from the users, and number states in the other, representing

the state of QMs. Table C.1 in Appendix C provides us with the input-output

relations for a range of relevant input states. We can then find the relevant terms

of the key rate, as shown in Appendix C.

5.5 Numerical results

In this section, we present numerical results for the secret key generation rate

of our long-haul trust-free QKD link versus different system parameters. We

look at two regimes of operation; the source-limited regime when memories are

abundant and we are slowed down by source rates, i.e., 2RS < Rrep, versus the

repeater-limited regime when the rate limitations come from the quantum repeater

side, i.e., 2RS > Rrep. In the latter case, we should still satisfy the condition

NRent(L)L/c � 1 in order that Eq. (5.1) remains valid. We have used Maple

15 to analytically derive expressions for Eqs. (5.3) and (5.8). Unless otherwise

noted, we use the nominal values summarized in Table 3.1.

The first thing to obtain is the optimum intensity for our decoy-state coherent

state scheme. Let us assume that in the symmetric scenario, as considered in this

section, Alice and Bob both use the same intensity value µ = |α|2 = ν for their

coherent signal states. Figure 5.4 shows the secret key generation rate per pulse

versus |α| for (a) different values of dc and (b) different values of p of the quantum

repeater at Lrep = 100 km. We assume that 2RS < Rrep and the plotted curves

represent RQKDNQM/RS in Eq. (5.8). It can be seen in both figures that |α| = 1

almost gives us the maximum rate in most scenarios. The optimal value is to

some extent a function of dc as can be seen in Fig. 5.4(a). By increasing dc, the

optimal intensity slightly decreases. Dark count represents the main source of
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ηw 0.78

ηD 0.93

ηr 0.87

dc 10−9

Latt 25 km

c 2 · 105 km/s

T1 (T2) ∞
p 10−4

Distance between user and measurement apparatus, LS 5 km

f 1.16

Table 5.2: Nominal values used in our numerical results.

error in the z basis, therefore, when dc increases, the tolerance for the multiple-

photon terms in a coherent state decreases, hence the maximum allowed value

of |α| will go down as well. This leads to a slightly shifted curve and therefore

lower values for the optimal values of |α|. On the contrary, Ez
µν is not affected

much by the double-photon probability p and there is not much difference in the

optimal intensity when p increases as shown in Fig. 5.4(b). We also obtain the

same optimal values of |α| for nesting levels one and two in the repeater-limited

regime. Throughout this section, we then use |µ| = |ν| = 1 in our calculations.

5.5.1 Rate versus distance

Figures 5.5 and 5.6 show the secret key generation rate, at the optimal value

of intensity, versus the total distance, L = 2Ls + Lrep, between Alice and Bob.

In both figures, we assume Ls is a fixed short distance resembling the length of

the access network. We vary Lrep then to effectively increase the link distance.

Figure 5.5 shows the secret key generation rate per transmitted pulse in the

source-limited regime, whereas Fig. 5.6 represents the key rate per logical memory

used in the repeater-limited regime. In both cases we consider SPSs at p =

10−4 as well as coherent decoy states. The difference in the performance of the

systems relying on these sources, as expected, is low, and that again confirms

the possibility, and practicality, of using the decoy-state technique for end-user
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Figure 5.4: Secret key generation rate per pulse versus |α| = |β| for different values of (a)

the dark count and (b) the repeater’s double photon probability. Here, Lrep = 100 km and the

other values are as in Table 5.2.

devices. The cut-off security distance, i.e., the distance beyond which secure key

exchange is not possible, almost doubles every time we increase the nesting level

so long as memories decoherence rates are correspondingly low. This distance at

n = 0 is about 800 km, similar to the no-memory case for the parameter values

used and at n = 1 and n = 2, respectively, reaches around 1500 km and 2500 km.

Security distances are slightly higher for the single-photon than coherent-state

sources.

The slope of the curves in Fig. 5.5 is different than that of Fig. 5.6. In

Fig. 5.5 curves are almost flat until they reach their cut-off distances. That has

two reasons. First, in the source-limited regime, RQKD is proportional to the

constant RS, whereas, it scales with Rent, which exponentially decays with L0

[99], in the repeater-limited regime. Second, and this is common in both figures,

in the absence of the decoherence, the fidelity of the entangled states generated

by our probabilistic repeater effectively reaches a constant value once we increase

the distance [61]. That means that the double-photon-driven error terms in the

key rate are almost fixed until dark count becomes significant and the rate goes

down.

The implications on the achievable key rate is also different in the two figures.
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Figure 5.5: Secret key generation rate per transmitted pulse, in the source-limited regime,

versus distance when (a) imperfect SPSs and (b) decoy coherent states are used.
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Figure 5.6: RQKD, in the repeater-limited regime, versus distance when (a) imperfect SPSs

and (b) decoy coherent states are used.
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Largest distance (km) zero nesting level one nesting level two nesting levels

imperfect single photon source 800 1460 2640

coherent source 790 1355 2400

Table 5.3: Largest achievable distances for zero, one and two nesting levels when imperfect

single photon and coherent source are used for the inefficiencies values listed in Tab. 5.2.

In Fig. 5.5, at a nominal distance of L = 1000 km and a source rate of RS =

1 GHz, the key rate is in the region of Mb/s. The assumption 2RS < Rrep,

however, implies that we need something on the order of 1015 QMs in our core

network to work in the source-limited regime, which seems, at the moment, quite

impractical. In the repeater-limited regime, we still need many memories to

obtain a decent rate. For instance, at L = 1000 km, we would need around 1

billion QMs to get a key rate on the order of kb/s. This is still a huge number

of resources for the current technology of QMs. This is in fact the same number

of memories in use in our classical computers, which was perhaps inconceivable a

few decades ago. Progress in solid-state QMs is much needed to meet the above

requirements.

5.5.2 Crossover distance

The different slopes in Figs. 5.5 and 5.6 result in appreciably different values

for crossover distances, i.e., the distances where one nesting level outperforms its

previous one. In the source-limited regime, in Fig. 5.5, the curve for n = 1 outper-

forms that of n = 0 for L greater than around 750 km. The crossover distance to

nesting level 2 is then around 1400 km. These are quite large distances, which im-

ply that L0, the spacing between adjacent nodes in our quantum repeater, could

be as large as 700 km. This sparse location of memories in the system has some

advantages in the sense that resources are more or less centralized, rather than

distributed, but at the same time it imposes harder conditions on maintaining

phase and polarization stability over such long distances. In the repeater-limited

regime of Fig. 5.6, the nodes are much closer as now the crossover distance is

around/below 500 km. This implies that the optimum architecture of our core
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Figure 5.7: (a) Crossover distance versus QM’s recall efficiency in the repeater-limited regime.

(b) Optimum spacing L0 between adjacent nodes of a quantum repeater at ηr = 0.3.

network relies on, among other things, how many QMs are available at the time

of development.

The crossover distance is also a function of the efficiency of various system

parameters. In Fig. 5.7(a), we have looked at the crossover distance as a function

of the recall efficiency, ηr, in the repeater-limited regime. This is particularly

important, because ηr implicitly accounts for the amplitude decay in memories.

As expected, the crossover distance decreases with the recall efficiency as there

would be less of rate reduction because of the BSM operation. Figure 5.7(b)

shows this effect on the optimal value of L0. It can be seen that at ηr = 0.3

the optimal spacing is much wider than what can be obtained from Fig. 5.6 at

ηr = 0.87. It can be seen that the curve for optimal L0 is non-continuous as we

have limited our study to the case when the number of segments in a repeater

setup is a power of 2. By developing new repeater protocols for arbitrarily number

of segments, one can get a smoother curve for optimal L0. At ηr = 0.3, L0 is on

average around 250 km for the set of parameters as in Table 5.2.

93



5.6 Conclusions

5.6 Conclusions

In this Chapter we combined MDI-QKD with a quantum repeater setup in order

to obtain a long-distance key exchange scheme without the need to trust any

of the intermediate nodes or measurement tools. This trust-free network could

be used in future generations of quantum networks, where the easy cost-efficient

access to the network would be facilitated by laser-based encoders and the re-

peater technology, at the backbone, would be maintained by the service provider.

We considered a particular entanglement distribution scheme for our quantum

repeater, which relied on imperfect single-photon sources. We merged memo-

ries entangled by this probabilistic repeater setup with photons sent and phase

encoded by the two users via two BSM modules. We showed that it would be

possible to exchange secret keys up to over 2500 km using repeaters with two

nesting levels. It turned out that in order to get a key rate on the order of 1 kb/s,

one may need to employ and control billions of memories at the core network.

We also showed that the network architecture depends on the number of memo-

ries at stake. In the limit of infinitely many memories, the repeater nodes would

be sparsely located, although each node may contain a large number of memo-

ries. Our results showed how challenging it would be to build trust-free quantum

communication networks.
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Chapter 6

Conclusions

In this thesis we have addressed the impact of imperfect ensemble-based quantum

memories on the performance of several QKD and quantum repeater systems

through the analysis of the secret key rate. We have meticulously considered

major sources of non-idealities in real implementation of such systems.

We started with analyzing the effects of multiple excitations of QMs on the

memory-assisted MDI-QKD system, which is supposed to beat conventional no-

memory QKD links in rate and distance. We found that multiple excitations

deteriorate the performance of the memory-assisted MDI-QKD system to the

extent that they can no longer beat their no-memory counterparts.

Then, we considered a probabilistic quantum repeater setup, whose entangle-

ment distribution is performed by the single-photon source protocol (SPS pro-

tocol). Whereas the first probabilistic quantum repeater protocol (DLCZ) is

strongly affected by multiple excitations in QMs, the main limitation of the SPS

protocol comes from using not perfect single photon sources. Therefore, we com-

pared the two protocols in a practical scenario, and we determined the range

of values for the double photon probability for which the SPS protocol outper-

forms the DLCZ protocol. This advantage is conditional on having on-demand

single photon sources. However, we estimated the maximum distance achievable

in a quantum repeater setup for a few nesting levels and we also determined the

crossover distance for the system under consideration.

Finally, we combined MDI-QKD protocol with a quantum repeater setup.

This trust-free network has the advantage of not relying on the security of mea-
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surement devices and its architecture enables future generations of quantum net-

works to provide easy access to their users. We showed that it would be possible

to exchange secret keys up to over 2500 km using repeaters with two nesting lev-

els. It turned out that in order to get a key rate on the order of 1 kb/s, one may

need to employ and control billions of memories at the core network. Our results

showed how challenging it would be to build trust-free quantum communications

networks.

Future directions of research that I am planning to pursue include:

• considering quantum repeater setups that do not rely on quantum memo-

ries. In Sec. 2.7, I mentioned two deterministic quantum repeaters, which

can reach very high key rates. While the performance is very high, their re-

quirements are still to hard to meet. I will aim at relaxing some constraints

in order to have more feasible quantum repeater setups.

• comparing a probabilistic quantum repeater protocol with satellite QKD,

which is the other main approach to reach larger distances. In [100], authors

analyze the performance of low Earth orbit satellite quantum communica-

tion, by considering several sources of errors. Satellite QKD seems to be an

appealing option for long-distance quantum communications, although such

sources of errors may constitute an obstacle to a feasible implementation.

A comparison between quantum repeaters and satellite QKD can shed light

on which of the two approaches is more practicable in the imminent future.

• considering different source states (cat-states) in an MDI-QKD setup that

are less affected by channel loss. Channel loss is the main obstacle to reach

long distances. Cat states seem to be very resilient to channel loss. I will

investigate a quantum repeater setup when cat-states are used as sources

by calculating the key rate as the main figure of merit.
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Appendix A

A.1 MDI-QKD with imperfect sources: Key rate

parameters

In this Appendix we will derive the terms in Eq. (3.11) for the setup of Fig. 3.2,

considering path loss, quantum efficiency ηd, dark count rates dc, double-photon

probability p, and misalignment probability ed assuming that no eavesdropper

is present. This provides us with an estimate of how well the system performs

under normal conditions. In Eq. (3.11), Y z
11 and ex11 have already been calculated

in [73]. Here, we will derive the other two terms Qz
pp and Ez

pp. In the z basis, a

successful click event at the BSM module is corresponded to different key bits at

Alice’s and Bob’s ends. We can therefore separate the input states that result in

correct inference of bits versus those causing errors. The input states that result

in correct inference of bits are those that correspond to sending different bits by

Alice and Bob given by

ρ
(in)
C = [ρrA(p)⊗ ρsB(p) + ρsA(p)⊗ ρrB(p)]/2, (A.1)

whereas

ρ
(in)
E = [ρrA(p)⊗ ρrB(p) + ρsA(p)⊗ ρsB(p)]/2 (A.2)

results in erroneous decisions. In above equations, rA(B) and sA(B) subscripts,

respectively, refer to the r and s optical modes of Alice (Bob) in Fig. 3.2. Note

that terms corresponding to O (p2) are neglected in Eqs. (A.1) and (A.2). Each

of the above states undergoes a state transformation according to the butterfly
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A.1 MDI-QKD with imperfect sources: Key rate parameters

module in Fig. 2.8(c). The input-output relationships for this butterfly operation

are given in Table A.1 for a range of input states of interest. The output states,

for the input states as in Eqs. (A.1) and (A.2), are then given by

ρ
(out)
K = BrArB

ηa,ηb
⊗BsAsB

ηa,ηb
(ρ

(in)
K ), K = C,E (A.3)

where ηa = ηch(LA)ηD, ηb = ηch(LB)ηD, B
rArB
ηa,ηb

= BrArB
0.5,ηa,ηb,1,1

and BsAsB
ηa,ηb

=

BsAsB
0.5,ηa,ηb,1,1

, (see Fig. 2.7).

With the above output states in hand, one just needs to apply the relevant

measurement operators to find all probabilities of interest. In particular, by

denoting the probability that detectors ri and sj, i, j = 0, 1, click by

P (K)
risj

= tr(ρ
(out)
K MriMsj), K = C,E, (A.4)

the probability that an acceptable click pattern occurs in the z basis, Qz
pp, is given

by

Qz
pp = Qz

C +Qz
E (A.5)

where

Qz
K =

(
P (K)
r0s0

+ P (K)
r1s1

+ P (K)
r0s1

+ P (K)
r1s0

)
/2, K = C,E. (A.6)

Finally, Ez
pp is given by

Ez
pp =

Qz
EE

Qz
pp

(A.7)

where Qz
EE = edQ

z
C + (1 − ed)Q

z
E. More generally, for any input state ρ(in) =

ρrArBsAsB , and for total transmissivities ηA and ηB for, respectively, Alice’s and

Bob’s photons, we can define a gain parameter Qβ(ηA, ηB; ρrArBsAsB) to represent

the success probability, in basis β = x, z, for the BSM operation in Fig. 3.2. For

any such input state, the probabilities of getting a click on detectors ri and sj,

i, j = 0, 1, is given by

Prisj(ρ
(in)) = tr(ρ(out)MriMsj), (A.8)

where

ρ(out) = BrArB
ηA,ηB

⊗BsAsB
ηA,ηB

(ρ(in)). (A.9)
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A.1 MDI-QKD with imperfect sources: Key rate parameters

ρAB BABηa,ηb (ρAB)

|10 〉〈10| ηa
2 (|10 〉〈10| + |01 〉〈01| ) + (1− ηa) |00 〉〈 00|

|01 〉〈01| ηb
2 (|10 〉〈10| + |01 〉〈01| ) + (1− ηb) |00 〉〈 00|

|11 〉〈11| 1
2 (ηa + ηb − 2ηaηb) (|10 〉〈10| + |01 〉〈01| ) + (1− ηa) (1− ηb) |00 〉〈 00|

+ηaηb
2 (|20 〉〈20| + |02 〉〈02| )

|20 〉〈20| (1− ηa)
2 |00 〉〈 00|+ η2a

4 (|20 〉〈20| + |02 〉〈02| )
+ηa (1− ηa) (|10 〉〈10| + |01 〉〈01| )

|02 〉〈02| (1− ηb)2 |00 〉〈 00|+ η2b
4 (|20 〉〈20| + |02 〉〈02| )

+ηb (1− ηb) (|10 〉〈10| + |01 〉〈01| )
|21 〉〈21| (1− ηa)

[
ηa (1− ηb) + ηb

2 (1− ηa)
]

(|10 〉〈10| + |01 〉〈01| )
+ηa

[
ηa
4 (1− ηb) + ηb (1− ηa)

]
(|20 〉〈20| + |02 〉〈02| )

+ (1− ηa)
2

(1− ηb) |00 〉〈 00|+ 3
8η

2
aηb (|30 〉〈30| + |03 〉〈03| )

|12 〉〈12| (1− ηb)
[
ηb (1− ηa) + ηa

2 (1− ηb)
]

(|10 〉〈10| + |01 〉〈01| )
+ηb

[
ηb
4 (1− ηa) + ηa (1− ηb)

]
(|20 〉〈20| + |02 〉〈02| )

+ (1− ηb)2 (1− ηa) |00 〉〈 00|+ 3
8ηaη

2
b (|30 〉〈30| + |03 〉〈03| )

|10 〉〈01| 1
2

√
ηaηb (|10 〉〈10| − |01 〉〈01| )

|01 〉〈10| 1
2

√
ηaηb (|10 〉〈10| − |01 〉〈01| )

|11 〉〈20| (1− ηa)
√

ηaηb
2 (|10 〉〈10| − |01 〉〈01| ) +

ηa
√
ηaηb

2
√
2

(|20 〉〈20| − |02 〉〈02| )
|11 〉〈02| (1− ηaηc)

√
ηaηb
2 (|10 〉〈10| − |01 〉〈01| ) +

ηa
√
ηaηb

2
√
2

(|20 〉〈20| − |02 〉〈02| )
|20 〉〈11| (1− ηa)

√
ηaηb
2 (|10 〉〈10| − |01 〉〈01| ) +

ηa
√
ηaηb

2
√
2

(|20 〉〈20| − |02 〉〈02| )
|02 〉〈11| (1− ηa)

√
ηaηb
2 (|10 〉〈10| − |01 〉〈01| ) +

ηa
√
ηaηb

2
√
2

(|20 〉〈20| − |02 〉〈02| )
|20 〉〈02| ηaηb

4 (|20 〉〈20| + |02 〉〈02| )
|02 〉〈20| ηaηb

4 (|20 〉〈20| + |02 〉〈02| )
|21 〉〈12| + 3

8ηaηb
√
ηaηb (|30 〉〈30| − |03 〉〈03| )

+
√
ηaηb (1− ηa) (1− ηb) (|10 〉〈10| − |01 〉〈01| )

+
η2c
2

√
ηaηb [ηa (1− ηb) + ηb (1− ηa)] (|20 〉〈20| − |02 〉〈02| )

|12 〉〈21| + 3
8ηaηb

√
ηaηb (|30 〉〈30| − |03 〉〈03| )

+ηc
√
ηaηb (1− ηa) (1− ηb) (|10 〉〈10| − |01 〉〈01| )

+
η2c
2

√
ηaηb [ηa (1− ηb) + ηb (1− ηa)] (|20 〉〈20| − |02 〉〈02| )

(1− ηa)
2

(1− ηb)2 |00 〉〈 00|+ + 3
8η

2
aη

2
b (|40 〉〈40| + |04 〉〈04| )

+ (1− ηa) (1− ηb) [ηa (1− ηb) + ηb (1− ηa)] (|10 〉〈10| + |01 〉〈01| )
|22 〉〈22| + 3

4ηaηb [ηa (1− ηb) + ηb (1− ηa)] (|30 〉〈30| + |03 〉〈03| )
+ 1

4

[
η2a (1− ηb)2 + η2b (1− ηa)

2
]

(|20 〉〈20| + |02 〉〈02| ) |

Table A.1: The input-output relationship for the asymmetric butterfly module of Fig. 2.8(c).

For the sake of brevity, here, we have only included the terms that provide us with nonzero values

after applying the measurement operation. More specifically, we have removed all asymmetric

density matrix terms, such as |10 〉〈01| or |01 〉〈10| , for which the bra state is different from the

ket state, from the output state.
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A.2 MDI-QKD with imperfect memories: Key rate parameters

With the above notation, we obtain

Qβ(ηA, ηB; ρ(in)) = Pr0s0(ρ
(in)) + Pr1s1(ρ

(in))
+Pr0s1(ρ

(in)) + Pr1s0(ρ
(in)).

(A.10)

The total gain for the basis β = x, z is then given by

Qβ (ηA, ηB) =
∑

all input states ρ

Qβ (ηA, ηB; ρ) Pr (ρ) (A.11)

Similarly, we also define Qβ
C(ηA, ηB) to be the probability to get a successful BSM

and Alice and Bob end up with correct inference of their bits:

Qβ
C(ηA, ηB) =

∑
all input states ρ

∑
all correct detection

pairs (ri, sj) for input ρ

Prisj(ρ)Pr(ρ). (A.12)

Likewise, Qβ
E(ηA, ηB) = Qβ(ηA, ηB)−Qβ

C(ηA, ηB) denotes the probability to get a

successful BSM and Alice and Bob end up with incorrect inference of their bits.

Finally, error terms can be defined as eβQβ = Qβ
E calculated at the point (ηA, ηB).

We use the above relationships in the next section.

A.2 MDI-QKD with imperfect memories: Key

rate parameters

In this section we will derive the terms in Eq. (3.20) for the setup of Fig. 3.7,

considering path loss, quantum efficiency ηD, dark count rates dc, excitation

probability p of the memories, and memories’ amplitude decay assuming that

no eavesdropper is present. We will follow the same procedure as in Appendix

A.1 to separate the terms that result in error versus correct key bits. The general

idea is to find the post-measurement density matrix of memories for any relevant

input state upon a successful side-BSM event. Once both sets of memories are

loaded, we apply the middle BSM operation and find relevant probabilities of

interest.

The setup of Fig. 3.7 can be thought of three asymmetric MDI-QKD setups,

where memories link them together. The first and second systems are those
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A.2 MDI-QKD with imperfect memories: Key rate parameters

that are involved with the loading process. They include the photons entangled

with memories, e.g. P1 and P2 on Alice side, with those sent by the users. The

third one is centered around the middle BSM and the photons retrieved from

the memories. Here we use the general notation introduced in Eqs. (A.8)-(A.12)

to calculate the relevant gain and error parameters. In order to do so, we need

to first find the input state for the final stage of BSM. For any input state ρ
(in)
A

sent by Alice, we can find the post-measurement state ρ
(pm)
A (ri, sj; ρ

(in)
A ) of the

memories A1 and A2 upon a click on detectors ri and sj, for i, j = 0, 1, as follows

ρ
(pm)
A (ri, sj; ρ

(in)
A ) =

trP1,P2,rA,sA(ρ
(out)
A MriMsj)

tr(ρ
(out)
A MriMsj)

, (A.13)

where

ρ
(out)
A = BrAP1

ηa,ηD
⊗BsAP2

ηa,ηD
(ρ

(in)
A ⊗ ρP1ρP2), (A.14)

where ηa = ηch(L/2)ηD and ρPi = trA1(|ψ〉A1P1〈ψ|), for i = 1, 2. Similarly,

one can find the post-measurement state for B1-B2 memories and denote it by

ρ
(pm)
B (rm, sn; ρ

(in)
B ) once detectors rm and sn, for m,n = 0, 1, click on the side

BSM of Bob. The final parameter we need from the loading stage is the loading

probability, i.e., the probability to get a successful side BSM which is given by

Pload = Qz(ηch(L/2)ηD, ηD; |10〉rAsA〈10| ⊗ ρP1ρP2). (A.15)

In order to apply the middle BSM on the post-measurement states ρ
(pm)
A and

ρ
(pm)
B , One must consider the random nature of the loading process. Given that

one set of the memories can be loaded earlier than the other, the former will

undergo some amplitude decay before being read for the final BSM. That would

result in an imbalanced middle BSM, where the reading efficiency for one memory

could be lower than that of the other. To fully capture this random storage time,

following the analysis and notations used in [2], let us consider two geometric

random variables NA and NB corresponding to the number of attempts until

Alice memories (A1, A2) and Bob memories (B1, B2) are, respectively, loaded.

Therefore, the number of rounds needed to load both sets of memories will be

given by max {NA, NB}. The effective reading efficiency for memories K = A,B
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A.2 MDI-QKD with imperfect memories: Key rate parameters

will then be given by

ηrK =

{
ηr0, if memory K is late

ηr (t = |NA −NB|T ) , if memory K is early
, (A.16)

where T is the repetition period for the protocol, determined by the writing time

into memories.

With all above considerations in mind, we obtain

Y QM
11 =

1

NL(Pload, Pload) +Nr

E {Qz (ηrAηd, ηrBηd)} (A.17)

where E {·} is the expectation value operator with respect to NA and NB; Qz is

the total gain in Eq. (A.11), where the input states ρ in the sum cover all possible

post-measurement states that can be obtained for different states sent by Alice

and Bob; and NL = E {max (NA,NB)} and Nr are obtained in [2].

Similarly, the QBER terms in Eq. (3.20) can be obtained from the following

eQM
11;βE

{
Qβ (ηrAηD, ηrBηD)

}
= E

{
Qβ
E (ηrAηD, ηrBηD)

}
, β = x, z, (A.18)

where, again, the sum in Eq. (A.12) are taken over all possible post-measurement

states obtained from Eq. (A.13).

Finally, to calculate the expected value terms in the above equations, one
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A.2 MDI-QKD with imperfect memories: Key rate parameters

needs to use the following relationships:

SA<B(δ) =
PAPB(1− PB)e−δ

[1− (1− PA)(1− PB)] [1− (1− PB)e−δ]

SB<A(δ) =
PAPB(1− PA)e−δ

[1− (1− PA)(1− PB)] [1− (1− PA)e−δ]

E {ηrA} = ηr0

(
PB

1− (1− PA)(1− PB)
+ SA<B(T/T1)

)
E {ηrB} = ηr0

(
PA

1− (1− PA)(1− PB)
+ SB<A(T/T1)

)
E {ηrAηrB} = η2

r0P0

(
1

1− (1− PA)e−T/T1
+

1

1− (1− PB)e−T/T1
− 1

)
E {η2

rA} = η2
r0

(
PB

1− (1− PA)(1− PB)
+ SA<B(2T/T1)

)
E {η2

rB} = ηr0

(
PA

1− (1− PA)(1− PB)
+ SB<A(2T/T1)

)
E {η2

rAηrB} = η3
r0 (P0 + SB<A(T/T1) + SA<B(2T/T1))

E {ηrAη2
rB} = η3

r0 (P0 + SA<B(T/T1) + SB<A(2T/T1))

E {η2
rAη

2
rB} = η4

r0P0

(
1

1− (1− PA)e−T/T1
+

1

1− (1− PB)e−T/T1
− 1

)
,

(A.19)

where PA = PB = Pload is the loading probability for Alice and Bob’s memories.
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Appendix B

In this Appendix, we find input-output relationships for the butterfly module in

Fig. 2.7(a) and 2.7(b). We do this in the number-state representation, only for

the relevant input states in Eq. (4.6).

Table B.1 provides the output state for the butterfly operation Bη,ηw =

Bη,ηw,etaw,1,1 when there is exactly one or two photons at one of the input ports.

These are the only relevant terms in the input states in Eqs. (4.4) and (4.5).

Using Table B.1, we find Bη,ηw(ρ
(in)
l )⊗Bη,ηw(ρ

(in)
r ), to be used in Eq. (4.6).

The last operation required in Eq. (4.6) is the symmetric butterfly operation

B0.5,ηd . Table B.2 lists the input-output relationships for all relevant input terms

in our system for the more general operation B0.5,ηx . Note that by choosing

ηx = ηs, we can use the same relationships for the measurement modules used in

entanglement swapping and QKD of Figs. 4.2 and 4.3, respectively. For the sake

of brevity, in Table B.2, we have only included the terms that provide us with

nonzero values after applying the measurement operation. More specifically, we

ρin Bη,ηw (ρin)

|10 〉〈10| ηηw|01 〉〈01| + ηw
√
η (1− η) (|10 〉〈01| + |01 〉〈10| )

+ηw (1− η) |10 〉〈10| + (1− ηw) |00 〉〈00|
(1− ηw)2|00 〉〈00| + 2ηηw(1− ηw)|01 〉〈01| + ηη2w(1− η)(|20 〉〈02| + |02 〉〈20|)

|20 〉〈20| +2ηw(1− ηw)
√
η(1− η)(|10

〉
〈01| + |01 〉〈10| ) + η2η2w|02 〉〈02|

+η2w(1− η)
√

2η(1− η)(|20 〉〈11| + |11 〉〈20| )
+2ηw(1− η)(1− ηw)|10 〉〈01| + η2m(1− η)2|20 〉〈20|

+ηη2w
√

2η(1− η)(|02 〉〈11| + |11 〉〈02| ) + 2ηη2w(1− η)|11 〉〈11|

Table B.1: The input-output relationship for the Bη,ηw butterfly of Fig.2.7(a).
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B.1 Derivation of key rate parameters for the SPS quantum repeater
protocol

have removed all asymmetric density matrix terms, such as |10 〉〈01| or |01 〉〈10| ,
for which the bra state is different from the ket state, in the output state.

B.1 Derivation of key rate parameters for the

SPS quantum repeater protocol

In this section, we find the gain and the QBER for the QKD scheme of Fig. 4.3.

Let us assume that the memory pairs AB and CD are already entangled via the

no-repeater or the one-node repeater scheme described in Sections 4.4.1 and 4.4.2.

In the case of SPS protocol, their state is, respectively, given by Eqs. (4.7) and

(4.9). The density matrix right before photodetection in Fig. 4.3 is then given by

ρABCD = B0.5,ηs (B0.5,ηs (ρAB ⊗ ρCD)) , where one of the B-operators is applied to

modes A and C, and the other one to modes B and D. Using Table B.2, we can

calculate the exact form of ρABCD.

The most general measurement on the modes entering the photodetectos of

Fig. 4.3, namely, A, B, C, and D, can be written in terms of the following

measurement operators:

Mabcd = |a 〉AA〈 a| ⊗ |b 〉BB〈 b| ⊗ |c 〉CC〈 c| ⊗ |d 〉DD〈 d| (B.1)

for PNRDs, where a, b, c, d = 0, 1 and |k 〉K represents a Fock state for the

optical mode K = A, B, C, D. In the case of NRPDs, we only need to replace

|1 〉KK 〈1| with (IK − |0 〉KK 〈0| ), where IK is the identity operator for mode K.

Similarly, we can define the corresponding probabilities to the above measure-

ment operators as follows

Pabcd = Tr (ρABCDMabcd) . (B.2)

The explicit forms for Qclick and EQ are then given by

Qclick = QC +QE (B.3)

and

QEE = edQC + (1− ed)QE, (B.4)
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B.1 Derivation of key rate parameters for the SPS quantum repeater
protocol

ρin B0.5,ηx (ρin)

|10 〉〈10| ηx
2 (|10 〉〈10| + |01 〉〈01| ) + (1− ηx) |00 〉〈 00|

|01 〉〈01| ηx
2 (|10 〉〈10| + |01 〉〈01| ) + (1− ηx) |00 〉〈 00|

|11 〉〈11| ηx (1− ηx) (|10 〉〈10| + |01 〉〈01| ) + (1− ηx)
2 |00 〉〈 00|+ η2x

2 (|20 〉〈20| + |02 〉〈02| )
|20 〉〈20| ηx (1− ηx) (|10 〉〈10| + |01 〉〈01| ) + (1− ηx)

2 |00 〉〈 00|+ η2x
2 |11 〉〈11|

+
η2x
4 (|20 〉〈20| + |02 〉〈02| )

|02 〉〈02| ηx (1− ηx) (|10 〉〈10| + |01 〉〈01| ) + (1− ηx)
2 |00 〉〈 00|+ η2

2 |11 〉〈11|
+
η2x
4 (|20 〉〈20| + |02 〉〈02| )

|21 〉〈21| 3
2ηx (1− ηx)

2
(|10 〉〈10| + |01 〉〈01| ) + (1− ηx)

3 |00 〉〈 00|
+ 5

4η
2
x (1− ηx) (|20 〉〈20| + |02 〉〈02| ) + 3

8η
3
x (|30 〉〈30| + |03 〉〈03| )

+ 1
8η

3
x (|21 〉〈21| + |12 〉〈12| ) +

η2x
2 (1− ηx) |11 〉〈11|

|21 〉〈21| 3
2ηx (1− ηx)

2
(|10 〉〈10| + |01 〉〈01| ) + (1− ηx)

3 |00 〉〈 00|
+ 5

4η
2
x (1− ηx) (|20 〉〈20| + |02 〉〈02| ) + 3

8η
3
x (|30 〉〈30| + |03 〉〈03| )

+ 1
8η

3
x (|21 〉〈21| + |12 〉〈12| ) +

η2x
2 (1− ηx) |11 〉〈11|

|10 〉〈01| 1
2ηx (|10 〉〈10| − |01 〉〈01| )

|01 〉〈10| 1
2ηx (|10 〉〈10| − |01 〉〈01| )

|11 〉〈20|
√
2
2 ηx (1− ηx) (|10 〉〈10| − |01 〉〈01| ) + 1

2
√
2
η2x (|20 〉〈20| − |02 〉〈02| )

|11 〉〈02|
√
2
2 ηx (1− ηx) (|10 〉〈10| − |01 〉〈01| ) + 1

2
√
2
η2x (|20 〉〈20| − |02 〉〈02| )

|20 〉〈11|
√
2
2 ηx (1− ηx) (|10 〉〈10| − |01 〉〈01| ) + 1

2
√
2
η2x (|20 〉〈20| − |02 〉〈02| )

|02 〉〈11|
√
2
2 ηx (1− ηx) (|10 〉〈10| − |01 〉〈01| ) + 1

2
√
2
η2x (|20 〉〈20| − |02 〉〈02| )

|21 〉〈12| ηx (1− ηx)
2

(|10 〉〈10| − |01 〉〈01| ) + η2x (1− ηx) (|20 〉〈20| − |02 〉〈02| )
+ 3

8η
3
x (|30 〉〈30| − |03 〉〈03| ) + 1

8η
3
x (|12 〉〈12| − |21 〉〈21| )

|12 〉〈21| ηx (1− ηx)
2

(|10 〉〈10| − |01 〉〈01| ) + η2x (1− ηx) (|20 〉〈20| − |02 〉〈02| )
+ 3

8η
3
x (|30 〉〈30| − |03 〉〈03| ) + 1

8η
3
x (|12 〉〈12| − |21 〉〈21| )

(1− ηx)
4 |00 〉〈 00|+ 2ηx (1− ηx)

3
(|10 〉〈10| + |01 〉〈01| ) + η2x (1− ηx)

2 |11 〉〈 11|
|22 〉〈22| + 3

2η
3
x (1− ηx) (|30 〉〈30| + |03 〉〈03| ) + 1

2η
3
x (1− ηx) (|21 〉〈21| + |12 〉〈12| )

5
2η

2
x (1− ηx)

2
(|20 〉〈20| + |02 〉〈02| ) + 3

8η
4
x (|40 〉〈40| + |04 〉〈04| ) + 1

4η
4
x|22 〉〈 22|

Table B.2: The input-output relationship for a symmetric butterfly module of Fig.2.7(b).

The notation used is similar to that of Table B.1.
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where ed is the dephasing (misalignment) error, and

QC =


(1− dc)2(P1100 + P0011 + dc(P1000 + P0100 + P0010 + P0001) + 2d2

cP0000), PNRD(
d2c
2
− dc + 1

)
(P1100 + P0011) + dc(1− dc

2
)(P1001 + P0110)

+dc
2

(2− dc)(P1000 + P0100 + P0010 + P0001) + d2c
2

(2− dc)2P0000

+1
2
(P1110 + P1101 + P0111 + P1011) + dc

2
(2− dc)(P1010 + P0101) + 1

2
P1111, NRPD

(B.5)

is the probability that Alice and Bob assign identical bits to their raw keys if

there is no misalignment, and

QE =


(1− dc)2(P1001 + P0110 + dc(P1000 + P0100 + P0010 + P0001) + 2d2

cP0000), PNRD(
d2c
2
− dc + 1

)
(P1001 + P0110) + dc

2
(2− dc)(P1000 + P0100 + P0010 + P0001)

+d2c
2

(2− dc)2P0000 + 1
2
(P1110 + P1101 + P0111 + P1011)

+dc
2

(2− dc)(P1100 + P1010 + P0011 + P0101) + 1
2
P1111, NRPD

(B.6)

is the probability that they make an erroneous bit assignment in the absence of

misalignment.
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Appendix C

C.1 Derivation of the key rate terms for MDI-

QKD and quantum repeater protocol

In this Appendix, we derive the key rate terms in Eqs. (5.3) and (5.8) under

the normal mode of operation when no eavesdropper is present. We use the

formulation developed in Eqs. (5.4)-(5.6) to obtain Γz11 = Y z
11, εx11 = ex11, Γzpp =

Qz
pp, ε

z
pp = Ez

pp, Γzµν = Qz
µν , and εzµν = Ez

µν , where new unifying notations Γ and ε

are used in this section.

Let ρΦ
enc(mn) denote the output state of Alice and Bob’s encoders for, respec-

tively, sending bits m and n, for m,n = 0, 1, in basis Φ. With the above notation,

the probability that an acceptable click pattern occurs in basis Φ, ΓΦ
γδ, is given

by

ΓΦ
γδ =

∑
i,j,k,l,m,n=0,1

Prisjukvl(ρ
Φ
enc(mn))/4, (C.1)

where γ = δ = 1 refers to the case when Alice and Bob are sending exactly one

photon each; when γ = δ = p, imperfect SPSs are used and when γ = µ and

δ = ν coherent states with mean photon number µ and ν, are, respectively, in use.

In above, some of the successful click patterns would result in errors in the end,

while the other in correct sifted key bits. By separating these two components,

we obtain

ΓΦ
γδ = ΓΦ

γδ;C + ΓΦ
γδ;E, (C.2)

where ΓΦ
γδ;C(E) represents the click terms that result in correct (erroneous) infer-
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ρAB tr
(
Mx0B

AB
ηaηb

(ρAB)
)

|α0 〉〈α0| (1− dc)
[
e−

ηa
2
µ
(
1− e− ηa2 µ

)
+ dce

−ηaµ
]

|α1 〉〈α1| (1− dc)
[
ηb
2
e−

ηa
2
µ
(
1 + ηa

2
µ
)

+ e−
ηa
2
µ (1− ηb)

(
1− e− ηa2 µ

)
+dc (1− ηb) (1− e−ηaµ)]

|α2 〉〈α2| (1− dc)
{
η2b
4
e−

ηa
2
µ
[
1 + η2a

4
µ2
(

1
2
− 8 e−

ηa
2
µ
)

+ ηaµ
]

+ηbe
− ηa

2
µ (1− ηb)

(
1 + ηa

2
µ
)

+ e−
ηa
2
µ (1− ηb)2 (1− e− ηa2 µ)

+dc

[
η2aη

2
b

2
e−ηaµµ2 + e−ηaµ (1− ηb)2

]}
|α1 〉〈α0| (1− dc)

(
1
2

√
ηaηbαe

− ηa
2
µ
)

|α0 〉〈α1| (1− dc)
(

1
2

√
ηaηbαe

− ηa
2
µ
)

|α1 〉〈α2| (1− dc)
(√

ηaηb
2
α
(
ηb
2
− ηaηb

8
− 1
))

|α2 〉〈α1| (1− dc)
(√

ηaηb
2
α
(
ηb
2
− ηaηb

8
− 1
))

Table C.1: The input-output relationship for a butterfly module with coherent states in one

input and number states in the other. The column on the right represents the probability that

the output state causes a click on detector x0, but not x1, where x = r, s, u, v in Fig. 5.2,

assuming that detector x0 measures the left output port and x1 the right one. The expression

tr
(
Mx1B

AB
ηa,ηb

(ρAB)
)

will give the same results as above for symmetrical input states; a minus

sign correction is needed for asymmetrical input states. Here, µ = |α|2.
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ence of bits by Alice and Bob. In the z basis,

Γzγδ;C =
∑

i,j,k,l,m,n=0,1;m+n=1

Prisjukvl(ρ
z
enc(mn))/4 (C.3)

and ΓΦ
γδ;E = ΓΦ

γδ − ΓΦ
γδ;C . In the x basis,

Γxγδ;C =
∑

i,k,m,n=0,1;m⊕n=0

(Prisiukvk(ρ
x
enc(mn))/4

+Prisi⊕1ukvk⊕1
(ρxenc(mn))/4

)
+

∑
i,k,m,n=0,1;m⊕n=1

(
Prisiukvk⊕1

(ρxenc(mn))/4

+Prisi⊕1ukvk(ρ
x
enc(mn))/4

)
,

(C.4)

where ⊕ denotes addition modulo two. Finally, all QBER terms can be obtained

from the following.

εΦγδ =
ΓΦ
γδ;E

ΓΦ
γδ

. (C.5)
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Appendix D

I explain in this Appendix the procedure to find the secret key rate in chapter 3

using Maple 17.

D.1 Finding the initial density matrices in the

no heralding memories of the memory-assisted

MDI-QKD protocol

In order to determine the coefficients of the density matrices in the quantum

memories for the setup of Fig. 3.7, we apply a butterfly module to the state sent

by the user and to a specific state read out of the memory. First, Maple accepts

as input the tensor product of two density matrices. One is the density matrix

corresponding to the state sent by Alice (or Bob) and the other one is the density

matrix corresponding to the mixed state produced by reading out the quantum

memory (see Eq. 3.1). The output will be a density matrix whose coefficients

are given by the results of the butterfly module applied to the incoming modes.

Now, we can apply the relevant measurement operators modules to this density

matrix to determine the contribution of dark counts as well. The measurement

operators pattern has been explained in Sec. 3.7.1. This output will be the initial

density matrix in the quantum memories.

Here, I make an example to better understand how the code works. For

instance, to find the coefficient of the density matrix corresponding to the state

|10 〉〈10| , we may multiply it for the incoming state sent by the user. We then

couple the corresponding modes going through the same BSM using the “op”
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D.2 Finding QE

function, which gives a state separated by commas by using the “seq” function.

We have to interject commas between kets and bras in order to be input of the

butterfly module. This module is a maple procedure which transforms a generic

input state into an output state following the relationships of Table B.2. After

we apply the butterfly module both in the upper and lower part of the scheme,

we generate two outputs which go directly to the measurement operators, which

is an NRPD. This operation is done by using the function “coeff” to a specific

combination of the two outputs corresponding to a successful BSM. For instance,

if only r0 and s0 of Fig. 3.7 click, we have

(1− dc)2 · {(
∑n

i=1 coeff (out1, |i0 〉〈i0| )) (
∑n

i=1 coeff (out2, |i0 〉〈i0| ))
+dc [

∑n
i=1 coeff (out1, |i0 〉〈i0| ) coeff (out2, |00 〉〈00| )

+
∑n

i=1 coeff (out2, |i0 〉〈i0| ) coeff (out1, |00 〉〈00| )]
d2
c · coeff (out1, |00 〉〈00| ) coeff (out2, |00 〉〈00| )

(D.1)

where out1 and out2 are the outputs after applying the butterfly module corre-

sponding to the upper and lower part of the scheme respectively; dc is the dark

count, and n is the number of photons.

We follow the same procedure to determine the coefficients of the other part

of the density matrix.

D.2 Finding QE

Once all memories are loaded, we retrieve the states from them and perform a

BSM on the resulting modes. Maple accepts as input the tensor product of the

density matrices that are in the quantum memories of each side of Fig. 3.7. The

output will be the result of the butterfly module applied to the incoming modes.

This output is the input for the relevant measurement operators, which follows

the click pattern described in Sec. 3.7.1. As output we find the probabilities for a

successful click pattern. In the following, I sketch how to find QE in the z basis.

The procedure to determine the other probabilities follows the same steps. We

start by defining two matrices with Maple. In the first matrix, pq[i, j] we store

the product of the coefficients of the density matrices of the QMs of Alice and

Bob’s side respectively. These coefficients have been calculated in the previous

section. In the second matrix, we store the product of the states corresponding
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D.2 Finding QE

to the stored coefficients. We use again the “op” and “seq” functions on this

second matrix so that we can apply the butterfly module. In this way, we find

two output matrices, out1[i, j] and out2[i, j], which correspond to the outputs of

the middle part of the upper and lower BSM of Fig. 3.7. Now, the probability of

obtaining a click on the detector labeled with “a” in Fig. 3.7 will be

P1a[i, j] :=
n∑
i=1

coeff (out1[i, j], |i0 〉〈i0|a1b1 ) (D.2)

as well as the probability of obtaining a click on the detector labeled with ”b” in

Fig. 3.7 will be

P1b[i, j] :=
n∑
i=1

coeff (out1[i, j], |0i 〉〈0i|a1b1 ) . (D.3)

and finally, the probability of no-click will be simply

P100[i, j] := coeff (out1[i, j], |00 〉〈00|a1b1 ) (D.4)

To find the lower probabilities, P2a, P2b and P200, we substitute out1[i, j]

with out2[i, j] We can now include the contributions coming from the dark count

and we find the total probability of a click in the detectors. For example, the

total probability of a click in the “a” detector will be

P1tot(a)[i, j] = (1− dc) (P1a[i, j] + dc · P100[i, j]) (D.5)

Similarly we find the total probability of a click in the “b” detector, P1tot(b)[i, j];

the total probability of a click in the “c” detector, P2tot(c)[i, j]; and the total

probability of a click in the ”d” detector, P2tot(d)[i, j].

Now, we can find the matrix of the probabilities of a correct click pattern in

the “z” basis by multiplying the pq[i, j] matrix with its corresponding probability

click pattern

P z
good[i, j] := 1

2
pg[i, j] · (P1tot(a)[i, j]P2tot(c)[i, j] + P1tot(b)[i, j]P2tot(d)[i, j]

+P1tot(b)[i, j]P2tot(c)[i, j] + P1tot(a)[i, j]P2tot(d)[i, j]) .
(D.6)
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Finally, to find the total probability of a correct click pattern we add each

single contribution of P z
good[i, j] using the “add” function. We can now calcu-

late the key rate by substituting the numerical values of the inefficiencies in the

probabilities found in this section.
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