
Schedulability Analysis for the

Abort-and-Restart Model

Hing Choi Wong

Doctor of Philosophy

University of York

Computer Science

December 2014

Abstract

In real-time systems, a schedulable task-set guarantees that all tasks com-

plete before their deadlines. In functional programming, atomic execution

provides the correctness of the program. Priority-based functional reactive

programming (P-FRP) allows the usage of functional programming in the

real-time system environment. The abort-and-restart (AR) is a scheme to

implement P-FRP but an appropriate scheduling approach does not exist at

the moment. Hence, efficient analysis is needed for the AR model.

In this thesis, the schedulability analysis for the AR model is introduced

and it shows that finding the critical instant for the AR model with pe-

riodic and sporadic tasks is intractable, and a new formulation is derived.

Afterwards, a new priority assignment scheme is developed that has the per-

formance close to the exhaustive search method, which is intractable for large

systems. The technique of deferred preemption is employed and a new model,

deferred abort (DA), provides better schedulability and dominates the non-

preemptive model. Lastly, a tighter analysis is introduced and the technique

of the multi-set approach from the analysis of cache related preemption delay

is employed to introduce a new approach, multi-bag. The multi-bag approach

can apply to both the AR model and the DA model. In the experiments, the

schedulability of the AR model is improved at each stage of the research in

this thesis.

2

Contents

Abstract 2

Contents 3

List of Figures 6

List of Tables 10

List of Algorithms 12

Acknowledgements 13

Declaration 14

1 Introduction 15

1.1 Real-Time Systems . 15

1.2 Priority-based Functional Reactive Programming 16

1.3 Abort-and-Restart Model . 17

1.3.1 Copy-and-Restore Operation 17

1.4 Motivation . 18

1.5 Thesis Proposition and Contributions 19

1.6 Thesis Structure . 20

2 Related work 22

2.1 System Model . 22

2.2 Real-Time System Scheduling 22

2.2.1 Characteristics of Tasks 23

3

2.2.2 Critical Instant . 25

2.2.3 Priority Assignment 27

2.2.4 Schedulability Analysis 30

2.2.5 Shared Resources Problem 34

2.3 Abort-and-Restart Model . 37

2.3.1 Critical Instant in P-FRP 38

2.3.2 Response Time Analysis for P-FRP 40

2.3.3 Exact Response Time for P-FRP 43

2.3.4 Priority Assignment in P-FRP 49

2.3.5 Case Study for the AR model 53

2.3.6 Methods to Reduce Aborts in P-FRP 58

2.4 Summary . 67

3 Schedulability Analysis for the AR Model 70

3.1 Critical Instant for the AR Model 70

3.2 New Formulation for Schedulability Tests 72

3.3 Summary . 76

4 Improved Priority Assignment for the AR Model 77

4.1 Priority Assignment Schemes 77

4.2 New Algorithm . 78

4.3 Time Complexity . 81

4.4 Experimental Evaluation . 83

4.5 Summary . 88

5 Deferred Abort Model 90

5.1 Non-preemptive Model . 90

5.2 Deferred Preemption . 93

5.3 Analysis for the DA Model . 97

5.3.1 AR or Non-preemptive Region Assignment 105

5.3.2 Priority Assignment Schemes 107

5.4 Experimental Evaluation . 110

5.5 Summary . 114

4

6 A Tighter Analysis for the AR Model 117

6.1 Cache Related Preemption Delay Analysis 118

6.2 A New Approach for the AR Model 119

6.3 Experimental Evaluation . 124

6.4 Summary . 130

7 Multi-bag approach for the DA Model 133

7.1 Implementation . 134

7.2 Example . 136

7.3 Experimental Evaluation . 140

7.4 Summary . 145

8 Conclusions and Future Work 147

8.1 Summary and Conclusions . 147

8.2 Future Work . 151

Glossary of Terms 153

Notations 155

Bibliography 157

5

List of Figures

1.1 Copy-and-Restore Operation. 18

2.1 A diagram for preemption and non-preemption 25

2.2 All tasks release together. 26

2.3 All three tasks have 2 ticks for their WCET. 28

2.4 It tries to fit a task into the lowest priority. 30

2.5 The time chart for execution. 35

2.6 The time chart for execution with non-preemptive protocol. . 36

2.7 The time chart for execution with Priority Inheritance Protocol. 36

2.8 The time chart for execution with Priority Ceiling Protocol. . 37

2.9 The time chart for execution with AR. 37

2.10 An example task-set. 38

2.11 All tasks release together. 39

2.12 τ1 and τ2 release at 2 and 4. 40

2.13 The response time for τ3 is 11. 42

2.14 The response time for τ3 is 12. 43

2.15 It shows the gap for τ3. 45

2.16 It shows the gaps for τ2. 45

2.17 It shows the gaps for τ1. 46

2.18 RB-tree for Gap-Search Function. (Cited from the paper [9]) . 47

2.19 An empty game board. 48

2.20 Jobs of τ3 are fitted. 48

2.21 Jobs of τ2 are fitted. 48

2.22 Jobs of τ1 are fitted. 49

2.23 It is not schedulable under RM scheduling. 50

6

2.24 It is schedulable after changing their priorities. 50

2.25 It is the worst case under RM. 51

2.26 It is the worst case under non-RM. 51

2.27 Task-set C in worst case under RM. 52

2.28 Task-set C in worst case under non-RM. 53

2.29 Heavy resource usage (long critical sections). (Cited from the

paper [69]) . 55

2.30 Light resource usage (short critical sections). (Cited from the

paper [69]) . 56

2.31 Number of tasks. (Cited from the paper [69]) 57

2.32 System load. (Cited from the paper [69]) 58

2.33 The task-set is not schedulable under the AR model. 60

2.34 The time chart after priority reassignment for individual jobs. 62

2.35 The task-set is not schedulable. 63

2.36 The task-set is now schedulable after removing the offset. . . . 64

2.37 The time chart for the task-set. 65

2.38 The differences between offline and online. 66

2.39 There is a deferred preemption occurring at 3. (using the

task-set in Table 2.18) . 67

3.1 A time chart. 72

4.1 An Euler diagram for UM, EM and ES. 79

4.2 An Euler diagram for EUM. 82

4.3 EUM compares with others for 5-tasks task-set. 84

4.4 EUM compares with others for 10-tasks task-set. 85

4.5 EUM compares with others for 15-tasks task-set. 85

4.6 EUM compares with others for 20-tasks task-set. 86

4.7 EUM compares with ES for 8-tasks task-set. 86

4.8 The number of tasks is 20 with D = T * 80%. 88

4.9 The number of tasks is 20 with D = T * 50%. 89

5.1 This is the non-preemptive model. 91

5.2 Types of deferred preemptive tasks. 94

7

5.3 It is not schedulable under fully non-preemptive. 96

5.4 It is now schedulable with final non-preemptive regions. 97

5.5 Types of deferred abort tasks. 98

5.6 Two cases of DA tasks. 99

5.7 Procedures of using binary search for a DA task. 105

5.8 Procedures of using binary search for a DA task. (continued) . 106

5.9 The concept of the MAXAR algorithm. 109

5.10 5-tasks task-sets under the DA model. 111

5.11 10-tasks task-sets under the DA model. 112

5.12 15-tasks task-sets under the DA model. 113

5.13 The relationship between different numbers of tasks. 113

5.14 The number of tasks is 5. 114

5.15 The number of tasks is 10. 115

5.16 The number of tasks is 15. 115

6.1 The second job of τ1 aborts τ3 which has a smaller C. 118

6.2 The task-set cannot pass with the C̃i
j approach. 121

6.3 The response time analysis for τ1. 122

6.4 The response time analysis for τ2. 123

6.5 The response time analysis for τ3. 123

6.6 Comparison of C̃i
j and multi-bag approaches with n = 5. . . . 125

6.7 Comparison of C̃i
j and multi-bag approaches with n = 10. . . . 126

6.8 Comparison of C̃i
j and multi-bag approaches with n = 15. . . . 127

6.9 Comparison of C̃i
j and multi-bag approaches with n = 20. . . . 127

6.10 Comparison of EUM and ES with the multi-bag approach and

n = 8. 128

6.11 Compare average response time of 5-tasks task-sets. 129

6.12 Compare average response time of 10-tasks task-sets. 130

6.13 Compare average response time of 15-tasks task-sets. 131

6.14 Compare average response time of 20-tasks task-sets. 131

7.1 The DA model using multi-bag approach. 134

7.2 The DA model using multi-bag approach with n = 5. 141

7.3 The DA model using multi-bag approach with n = 10. 142

8

7.4 The DA model using multi-bag approach with n = 15. 142

7.5 The DA model using multi-bag approach with n = 20. 143

7.6 DA with multi-bag against average response time with n = 5. 144

7.7 DA with multi-bag against average response time with n = 10. 144

7.8 DA with multi-bag against average response time with n = 15. 145

7.9 DA with multi-bag against average response time with n = 20. 146

8.1 Compare overall improvement with n = 5. 150

8.2 Compare overall improvement with n = 10. 150

8.3 Compare overall improvement with n = 15. 151

9

List of Tables

2.1 A task-set with constrained deadlines 26

2.2 A task-set without priorities. 28

2.3 A task-set with priorities. (The highest priority is 1) 29

2.4 A task-set with constrained deadlines. (The highest priority

is 1) . 29

2.5 A table for utilisation bounds. 31

2.6 The highest priority task is τ1 34

2.7 An example task-set. 34

2.8 An example task-set. (τ1 has the highest priority) 37

2.9 The highest priority task is τ1. 39

2.10 A task-set given from the paper [9]. 41

2.11 The highest priority task is τ1 42

2.12 Task-set A. 49

2.13 Task-set B. 50

2.14 task-set C. 52

2.15 This is U-RM priority assignment. (The highest priority is 1) . 53

2.16 An example task-set. τa has the highest priority 60

2.17 The new task-set after priority reassignment for individual jobs. 61

2.18 A task-set from the paper [32]. 63

3.1 A task-set with a sporadic task. 71

3.2 An example with new WCETs for 4-tasks task-set. 74

3.3 C̃3
j values for τ3 . 75

4.1 The response time of τ4 is 23. 78

4.2 The response time of τ4 is 24. 78

10

4.3 An example task-set fails in EM ordering. 81

4.4 The task-set is scheduled by EUM algorithm. 81

4.5 A task-set deemed not schedulable by EUM algorithm. 87

4.6 The task-set is schedulable by ES algorithm. 87

5.1 The NP model cannot schedule the task-set. 91

5.2 The AR model can schedule the task-set. 92

5.3 The AR model cannot schedule the task-set. 93

5.4 The NP model can schedule the task-set. 93

5.5 A 3-tasks task-set with constrained deadlines. 96

5.6 This is a 3-tasks task-set. 101

5.7 The values of C̃DA
2,j . 101

5.8 The values of C̃DA
3,j . 102

6.1 An example task-set. 121

7.1 An example task-set. 136

7.2 An example task-set with C̃DA
3,j 137

11

List of Algorithms

1 A pseudo-code of the new algorithm. 80

12

Acknowledgements

Foremost, I would like to express my sincere gratitude to my supervisor

Professor Alan Burns for his patience, motivation, enthusiasm, and immense

knowledge. His guidance helped me in all the time of research and writing

of this thesis.

I am extremely grateful to my family who have given me encouragement

and love; they have also offered me financial support.

I would like to express my thanks to Dr Robert Davis for his insightful

comments and discussions.

Last, I would also like to thank all my friends in York; they have given

me a wonderful time and encouragement.

13

Declaration

I declare that the research work presented in this thesis is an independent

and original contribution, except where explicitly cited. This work has not

previously been presented for an award at this, or any other, University. The

chapters of the thesis are based on the following publications.

Chapters 3 and 4 are based on a conference paper, a workshop paper and

a technical report.

H.C. Wong and A. Burns. Schedulability Analysis for the Abort-and-

Restart (AR) Model. In Proceedings RTNS. ACM, 2014

H.C. Wong and A. Burns. Improved Priority Assignment for the Abort-

and-Restart (AR) Model. Technical Report YCS-2013-481, University

of York, Department of Computer Science, 2013

H.C. Wong and A. Burns. Improved Priority Assignment for the Abort-

and-Restart (AR) Model. In Proceedings JRWRTC (RTNS), 2013

Chapter 6 is partially based on a conference paper.

H.C. Wong and A. Burns. Schedulability Analysis for the Abort-and-

Restart (AR) Model. In Proceedings RTNS. ACM, 2014

14

Chapter 1

Introduction

In this chapter, the definition of real-time systems, priority-based functional

reactive programming and abort-and-restart model are introduced. Motiva-

tion, thesis proposition, contributions and thesis structure are given. The

focus of the work is on single processor systems.

1.1 Real-Time Systems

Many definitions of real-time systems are given by different authors. In Burns

and Wellings’ book [18] and the paper given by Stankovic [77], they define

that a real-time system has to respond to an environment according to the

received information within a certain time. Both the logical result and the

delivery time are important. A failure to respond before the deadline is as

bad as an incorrect response.

In Krishna’s book [51], the author finds it difficult to provide a precise and

cogent statement, but he implies that any system where a timely response

by the computer to external stimuli is vital is a real-time system.

Lastly, the other definition found in the paper given by Joseph and

Pandya [47] is that a number of devices are linked to a real-time system.

The system runs a real-time program to read inputs frequently from devices,

processes these inputs immediately, and then finally responds to the devices.

It is a typical real-time system but not all devices operate in this way.

15

To summarise, a real-time system is a timely response system which re-

ceives inputs and then responds to the devices. Most devices produce inputs

frequently; some devices have minimum and maximum times between their

inputs, and others generate inputs at unknown times. The system should

respond to all inputs before deadlines, otherwise it is a system failure.

1.2 Priority-based Functional Reactive Pro-

gramming

Priority-based functional reactive programming (P-FRP) has been intro-

duced as a new functional programming scheme [7] for real-time systems. It

is an extension of functional reactive programming (FRP), which is a declar-

ative programming paradigm [40, 81] that has two properties, behaviours

and events. Behaviours are time-varying reactive values and events are dis-

cretely time-ordered. An FRP program [48] consists of repeated behaviours

and event definitions. FRP has been used for setting up various reactive

systems in the field of computer animation [34, 35, 72], computer vision [71],

graphical user interface design [25] and robotics [65, 66].

Before P-FRP, the event-driven FRP (E-FRP) [82] was developed for

real-time systems. Any E-FRP program needs to reply to every event by the

operation of its handler, finish the operation of each handler, and operate

in limited space and time. The problem is that each handler must finish

the current execution before another event comes up. Even when a more

urgent event occurs, it still needs to wait until the job of the current handler

is completed. In the paper given by Kaiabachev et al. [48], an improved

compilation strategy for E-FRP was developed and they named it P-FRP,

which gives programmers more control over the execution strategy of events.

Therefore P-FRP aims to improve the programming of reactive real-time

systems. It has the properties of lock-free shared resources and the priority

policy. Lock-free shared resources means that each handler executes atomi-

cally and no resource is blocked by another handler. Programmers are able

to assign higher priorities for urgent events. According to the characteristic

16

of P-FRP, a new implementation scheme is required to solve this problem.

1.3 Abort-and-Restart Model

Abort-and-restart (AR) is a scheme [48] to support P-FRP. To achieve the

properties of P-FRP, higher priority tasks can preempt lower priority tasks,

and the lower priority tasks are aborted and restarted after the higher priority

tasks have finished execution. In the classical preemptive model, the lower

priority tasks continue their execution but it is different for P-FRP; the lower

priority tasks restart as new. AR is the key operation for P-FRP so we call

it the AR model in this thesis.

In the AR model, tasks cannot access resources directly. Rather, tasks

make copies of the resource at the beginning of their execution. The updated

data is then copied back into the system once the tasks have completed their

execution. In some situations, higher priority tasks preempt lower priority

tasks. Once the higher priority tasks have completed execution, the lower

priority tasks are aborted and restarted. The operation of AR is to delete

the old copy of the resource, and take a new copy from the system.

The classical preemptive model must deal with the problem of resource

sharing. These problems can bring serious consequences. They may lead to

inaccurate data, missed deadlines or deadlock. To cater for these problems

various forms of priority inheritance and priority ceiling protocols have been

developed [49, 50, 68, 75, 79]. One advantage of the AR model is that it

does not face these problems because tasks do not access resources directly

or concurrently. The disadvantage is that aborted tasks delete the old copy

of the resource and restart as new, hence the time spent before preemption

is wasted. In this thesis, we call this wasted time the abort cost.

1.3.1 Copy-and-Restore Operation

The AR model deals with resources by the Copy-and-Restore operation [7,

9, 10, 11], which occurs when tasks begin or restart execution, and they get

a copy of the current state from the system. We call the copy scratch state,

17

which is actually a set of data which will be used during the execution of

the task. Tasks only change their copy so no tasks lock the data resource. If

higher priority tasks arrive, the lower priority task discards its copy. Once

the higher priority tasks have completed execution, the lower priority tasks

are aborted and restarted. When a task has finished, the copy is restored

into the system as an atomic action; this is illustrated in Figure 1.1 where τ1

starts at time 0 and copies a set of data from the system. After six ticks, its

job is done and then it restores the updated data into the system.

Figure 1.1: Copy-and-Restore Operation.

1.4 Motivation

Nowadays, computers have more power of execution than before. In con-

current programming, sometimes programmers consider how to enhance the

correctness of programs rather than reduce the overhead. For a real-time

system, it is more complicated because of timing constraints and priorities.

A concurrency control mechanism for a system is important because it affects

correctness and schedulability.

The AR model provides strong correctness guarantees in dealing with

shared resources. And it also supports FRP which has been used for the do-

mains of computer animation, computer vision, robotics and control systems

[48]. Original FRP cannot be used for real-time systems but P-FRP has

18

rectified this. Hence the AR model allows P-FRP to be used for real-time

systems.

A real-time database system can be simply defined as a database system

with timing constraints [64]. The system receives a high demand of requests

and the responses are required to be sent out before their deadlines. A

transactional memory can handle shared resource in a convenient way, and

the AR scheme can be applied to it. For example, all transactions must

be consistent and up to date for the stock market. The AR model has

the properties of atomic execution and preemption. A transaction will not

conflict with another transaction, and an urgent transaction can be executed

immediately.

Real-time Java is designed to allow programmers to develop a real-time

application using the Java language. The paper given by Manson et al [62]

introduced the example of Preemptible Atomic Regions (PAR) for real-time

Java. It is a new concurrency control abstraction for real-time systems. The

basic notions of the AR model and the PAR model are similar but PAR

makes a log of shared resource and then the state of resource will be rolled

back if the task is preempted.

1.5 Thesis Proposition and Contributions

The central proposition of this thesis is:

While the abort-and-restart (AR) model can deal effectively

with P-FRP in terms of the problems of resource usage, applicable

schedulability analysis has not been demonstrated for this model.

This thesis contends that it is possible to derive an appropriate

scheduling approach for the model.

The research contributions of this thesis are:

Critical Instant — Demonstrating the critical instant for the AR model

with periodic and sporadic tasks is intractable.

New formulation for scheduling — This is introduced and can be ap-

plied to the standard response time analysis for the AR model.

19

New priority assignment schemes — New priority assignment schemes

are developed for both the AR and deferred abort (DA) models, and

they have good performance and are tractable for large systems.

Deferred Abort (DA) model — This model provides better schedulabil-

ity and dominates both the AR and non-preemptive models.

Multi-bag approach — This approach offers a tighter analysis on schedul-

ing task-sets under both AR and DA models.

1.6 Thesis Structure

This thesis consists of eight chapters. In this chapter, a general introduction

and overview of the area of research is given. The motivation, thesis proposi-

tion and contribution were discussed above. The structure of each remaining

chapter is as follows:

Chapter 2 introduces the system model and reviews the related work of the

AR model.

Chapter 3 analyses the schedulability for the AR model. The results show

how critical instants occur in AR scheduling systems. A new formula-

tion is developed for the AR schedulability test.

Chapter 4 improves the priority assignment for the AR model. A new

algorithm is introduced and the time complexity is discussed to show

the improvement. Lastly, an experimental evaluation is undertaken.

Chapter 5 presents a new idea, deferred abort, to reduce the number of

aborts. The approach of DA is analysed and an experimental evaluation

shows it is effective.

Chapter 6 provides a tighter analysis for the AR model, and presents a new

approach, multi-bag. Again, an experimental evaluation is reported.

Chapter 7 applies the multi-bag approach to the DA model. Again, an

experimental evaluation is reported.

20

Chapter 8 concludes the entire thesis and discusses future work.

21

Chapter 2

Related work

In this chapter, some literature related to the work of this thesis is introduced.

Firstly, the system model used in this thesis is described. Secondly, the real-

time scheduling is introduced. Lastly, the existing techniques and analysis

of the abort-and-restart (AR) model are reviewed.

2.1 System Model

The system model is built on the fixed priority scheduling of a set of sporadic

tasks on a single processor. Each task consists of a potentially unbounded

sequence of jobs.

In general we allow constrained deadlines, although previous work and

many of the examples in this thesis have implicit deadlines. We restrict

implementation to single processor systems.

2.2 Real-Time System Scheduling

Firstly, we review the basic concept of real-time system scheduling, which

is organised into five subsections: 1) Characteristics of tasks, which intro-

duces worst-case execution time, deadline, release offsets, preemption, non-

preemption, blocking, deferred preemption and preemption costs. 2) Critical

instant, which is important when doing exact analysis. 3) A review of prior-

22

ity assignments, which consists of rate monotonic, deadline monotonic and

Audsley’s algorithm. 4) Schedulability analysis, which introduces utilisation

based analysis and response time analysis. 5) The solutions of the shared

resources problem, which are non-preemptive protocol, priority inheritance

protocol, priority ceiling protocol and AR.

2.2.1 Characteristics of Tasks

A real-time system is connected to a number of devices which generate inputs

to the real-time program. When scheduling a real-time system, we have

terms such as task-sets, tasks and jobs. A task-set has a number of tasks.

A task has period, deadline, worst-case execution time, etc. A job is some

computation of a task. We know that tasks may operate in different ways so

there are different types: periodic, aperiodic and sporadic.

A periodic task [12, 30, 43, 58] arrives into the system with a constant

inter-arrival time, and has a relative deadline. An aperiodic task [22, 36,

38, 42, 43, 56, 57] has non periodic arrival time and a relative deadline. A

sporadic task [41, 43, 45, 76] can arrive into the system at any time within

defined minimum inter-arrival times between two consecutive releases. We

mostly consider only periodic tasks in this thesis.

Worst-Case Execution Time

Each task has an execution time which depends on the task design and

the hardware environment. When scheduling a real-time system, we need to

analyse the execution times of tasks. According to the actual execution time,

which may vary on each release, calculating the WCET [67] is required to

ensure that tasks meet deadlines. We have to be concerned with a WCET

that is either optimistic or excessively pessimistic when doing the time es-

timation. There is considerable literature on WCET analysis, but it is not

reviewed in this thesis.

23

Deadline

In real-time systems, we always consider deadlines because a deadline miss

may cause a critical system failure. A hard deadline [21, 51, 80, 87] is such

that a task must meet the deadline otherwise the system is deemed to have

failed. A soft deadline [56] is such that a task may miss the deadline some-

times but it causes no harm. We are concerned with hard deadlines in this

thesis.

Release offsets

To improve the flexibility, tasks can be assigned offsets for their first releases.

In Section 2.3.6, there is an example for release offsets shown in Table 2.18

and Figure 2.37.

Preemption and non-preemption

A preemption [27, 62, 73, 74] in real-time systems means that a lower priority

task is paused by the arrival of a higher priority task. The lower priority task

only continues to execute if the higher priority task is completed and no other

higher priority task is waiting. In Figure 2.1, the diagram shows that the

high priority task has two ticks to execute and the low priority task has

four ticks. The low priority task is stopped after two ticks because the high

priority task arrives. After the high priority task completes its two ticks of

work, the low priority task does the rest of its execution. The advantage

is that if the task is urgent, it can be assigned a higher priority. But there

are further issues [44, 49, 50]; e.g. overheads for context switching [53, 54],

blocking and interference.

The non-preemptive model [23, 37, 39, 46] is such that once a task begins

its execution, it will not be paused by any tasks. To illustrate the idea, the

diagram also shows in Figure 2.1, that the high priority task is postponed

in its execution because the system is used by the low priority task. The

advantage of non-preemption is that shared resources do not need to be

locked [1, 33, 88].

24

Figure 2.1: A diagram for preemption and non-preemption

Blocking

A blocking [14] can occur when a non-preemptive task τj with lower priority

is released before a high priority task τi, or a lower priority task τj locks the

resource which is also needed by another higher priority task τi.

Deferred preemption

Fixed priority scheduling with deferred preemption (FPDS) [15] allows that

a lower priority task turns to non-preemptive when it is almost completed.

A threshold for each task is set to prevent preemption from other higher

priority tasks.

Preemption costs

In the analysis of cache related preemption delays (CRPD) [2], there are

different amounts of overheads for preemptions because the time spent on

context switching depends on the complexity of the task. It is similar to the

abort cost.

2.2.2 Critical Instant

A critical instant for a task means the time at which a release of that task

will lead to the greatest response time. The motivation of critical instant is

that when scheduling a task-set, we need to find out the worst-case response

25

time to check if the task-set is schedulable in the system. In fixed priority

scheduling with the classical preemptive model, Liu and Layland [59] proved

that a task is at its critical instant when the task is released with releases for

all higher priority tasks at the same time.

Task Period WCET Priority
τ1 5 1 1
τ2 10 2 2
τ3 12 3 3

Table 2.1: A task-set with constrained deadlines

In Table 2.1, the task-set has three tasks: τ1, τ2 and τ3. The highest

priority task is τ1 because of the smallest number for its priority. τ2 is a

medium priority task and τ3 is the lowest priority task.

Figure 2.2: All tasks release together.

To illustrate the idea of critical instant, Figure 2.2 shows all tasks released

together. The lowest priority task, τ3, is ineffectively preempted by τ1 and

τ2 so τ3 starts at 3. The second job of τ1 is arrived at 5 then τ3 is preempted

again. As we know [59] that a synchronous release leads to a critical instant,

the worst-case response time for τ3 is 7.

26

Least Common Multiple

In real-time systems, the response times of periodic task-sets can be predicted

by using the Least common multiple (LCM) approach. There is an example

in Table 2.16 and Figure 2.33. The periods for each task in the task-set are

4, 5 and 10, therefore the LCM is 20. If all tasks meet their deadlines within

this period, the task-set is schedulable. There are difficulties in using or even

computing LCM if there are a large number of tasks, or periods are unknown

and arrival of tasks is unpredictable.

2.2.3 Priority Assignment

In a task-set, tasks are assigned with either static or dynamic priorities to

deal with the ordering of execution in the real-time system. A bigger integer

number is usually represented as a higher priority in programming. For most

academic papers, a smaller integer number is represented as a higher priority

so this thesis follows this style for all examples. If more than one task is

released at the same time, a higher priority task executes first. In a classical

preemptive real-time system, a higher priority task can execute immediately,

even if a lower priority task is being executed. In Figure 2.3, the WCET of

all tasks is 2 ticks. The high priority task executes first. The second is the

medium priority task. The last is the low priority task.

Rate Monotonic Priority Assignment

Rate monotonic (RM) priority assignment [55] is such that priorities are

assigned to tasks according to their periods; a shorter period task has a

higher priority, as shown in Equation (2.1). In fixed priority scheduling with

the classical preemptive model, RM priority assignment is optimal1 [59] when

the task-set has implicit deadlines. Ties are broken arbitrarily.

Ti < Tj ⇒ Pi > Pj, forD = T (2.1)

1The definition of optimal is that if any other static priority assignment algorithm can
meet all the deadlines then RM scheduling can also.

27

Figure 2.3: All three tasks have 2 ticks for their WCET.

To illustrate, we consider the task-set in Table 2.2 which has five tasks

without priorities.

Task Period WCET
τ1 40 2
τ2 25 2
τ3 10 3
τ4 12 2
τ5 16 3

Table 2.2: A task-set without priorities.

In Table 2.3 priorities are added after RM priority assignment. τ3 is

the highest priority task because of the smallest period and τ1 is the lowest

priority task because it has the largest period.

Deadline Monotonic Priority Assignment

Deadline monotonic (DM) [18] is similar to RM but it is based on relative

deadlines rather than periods. In fixed priority scheduling with the classical

preemptive model, it is an optimal priority assignment when deadlines of

28

Task Period WCET Priority
τ1 40 2 5
τ2 25 2 4
τ3 10 3 1
τ4 12 2 2
τ5 16 3 3

Table 2.3: A task-set with priorities. (The highest priority is 1)

tasks are less than or equal to (constrained deadlines) periods of tasks. In an

actual task-set table, there should be a column, deadline, but the column of

deadline is removed in many of our examples because we assume that period

is equal to deadline. In Table 2.4, deadlines of tasks are less than periods of

tasks. τ3 is assigned the highest priority although τ4 has a smaller period.

Task Period Deadline WCET Priority
τ1 50 40 2 5
τ2 60 25 2 4
τ3 30 15 3 1
τ4 20 16 2 2
τ5 25 20 3 3

Table 2.4: A task-set with constrained deadlines. (The highest priority is 1)

For arbitrary deadline task-sets with potentially some tasks having D > T

neither the RM nor the DM scheme can be used; instead Audsley’s algorithm

must be applied.

Audsley’s algorithm

Audsley’s algorithm furnishes an optimal priority assignment if an optimal

schedulability test exists for that model; i.e. the algorithm can find a schedu-

lable priority ordering if such an ordering exists [5, 6]. In Figure 2.4, there

is a 5-tasks task-set and the algorithm starts with fitting the lowest priority

slot. Assume τ1 is assigned the lowest priority and other tasks are assigned

higher priorities. If τ1 is schedulable, τ1 stays at that slot. Otherwise another

29

task is assigned the lowest priority until a schedulable task is found, or the

task-set is deemed unschedulable. After a schedulable task for each slot is

found, the task-set is schedulable.

Figure 2.4: It tries to fit a task into the lowest priority.

To apply Audsley’s algorithm requires the task model to satisfy a set of

prerequisites [17, 28, 29].

• The schedulability of a task must be a function of the set of higher

priority tasks, but not their specific priority ordering.

• The schedulability of a task may depend on the set of lower priority

tasks, but not on their specific priorities.

• A schedulable task that has its priority raised cannot become unschedu-

lable, and conversely an unschedulable task that has its priority lowered

cannot become schedulable.

2.2.4 Schedulability Analysis

In this subsection, we discuss fixed priority scheduling for real-time systems.

A real-time system has a number of tasks to execute. Each task has priorities

for the system to execute in order. To ensure the system meets all deadlines in

the real world, a schedulability test is required for the task-set. In Burns and

Wellings’ book [18], four characteristics are defined for scheduling testing:

Sufficient, Necessary, Exact and Sustainable. A list of the descriptions is

shown below.

30

Sufficient If a task-set passes the test, it will meet all deadlines.

Necessary If a task-set fails the test, it will miss at least one deadline.

Exact Both characteristics of sufficient and necessary.

Sustainable Keep schedulable if the conditions for scheduling have im-

proved (for example, by reducing the utilisation of a task).

Utilisation Based Analysis

Utilisation Based Analysis [18] is a scheduling test which uses the utilisation

of tasks but it is only for task-sets which have the characteristic of implicit

deadline. This is a simple sufficient schedulability test but not necessary.

The utilisation of a task-set, consisting of N tasks, can be calculated via

Equation (2.2). If the result is less than or equal to the utilisation bound

(N
(
21/N − 1

)
), it means the task-set will meet all deadlines. The task-set is

surely schedulable.

U ≡
N∑
i=1

Ci

Ti
≤ N

(
21/N − 1

)
(2.2)

Table 2.5 shows that the number of tasks will directly affect the utilisation

bound. Obviously, if the number of tasks is 1, the utilisation bound is 100%.

When the number of tasks is very large, the utilisation bound will approach

.693 asymptotically.

Number of task Utilisation bound
1 100.0%
2 82.8%
3 78.0%
4 75.7%
5 74.3%
10 71.8%
∞ 69.3%

Table 2.5: A table for utilisation bounds.

31

When some tasks are in families in the task-set, the utilisation bound is

different. The definition of family [18] for tasks is that the period of a task is

an integer multiple of a common value. We can take these tasks as a group

and adjust the utilisation bound.

An alternative sufficient schedulability test is shown in Equation (2.3)

[18].

N∏
i=1

(
Ci

Ti
+ 1

)
≤ 2 (2.3)

To conclude, all utilisation based tests are not exact for general task sets

because they are sufficient but not necessary. They can only confirm a task-

set is schedulable if the task-set passes the test. And also this test is not

general because it can only be applied for implicit deadline. The advantage

of these tests is simplicity because they are O(N).

Response Time Analysis

Response time analysis (RTA) [47] is an “exact” schedulability test to cal-

culate the worst-case response time of a task which includes the time of

interference from other higher priority tasks and blocking from lower priority

tasks (due to shared resources or non preemptive scheduling). RTA is not

exact unless blocking is exact — which it is usually not. If the worst-case

response time of a task is bigger than its deadline, it means the task will not

meet its deadline. The opposite situation is that if the worst-case response

time of the task is less than or equal to its deadline, the task will meet its

deadline. The analysis can be applied for arbitrary deadline.

Before calculating the worst-case response time, the number of releases

from other higher priority tasks is needed to be known because a lower prior-

ity task will be interfered with by the releases of other higher priority tasks.

Equation (2.4) is used to calculate the number of releases (assuming a critical

instant) and we take the value of the ceiling function.

NumberofReleases =

⌈
Ri

Tj

⌉
(2.4)

32

After understanding the number of releases, we apply it into Equation

(2.5). The response time Ri for τi is calculated by its computation time plus

the sum of the time of interference from all higher priority tasks. The time of

interference is that the number of releases multiplies its computation time.

There is a problem that the number of releases is the ceiling functions of Ri

divided by Tj and the result of Equation (2.5) is Ri. Equation (2.5) is solved

by forming a recurrence relationship. Please note the blocking Bi is assumed

to be 0 for most examples in this thesis as we are concerned with preemptive

system with no explicit shared resources.

Ri = Bi + Ci +
∑

j∈hp(i)

⌈
Ri

Tj

⌉
Cj (2.5)

W n+1
i = Bi + Ci +

∑
j∈hp(i)

⌈
W n

i

Tj

⌉
Cj (2.6)

We start the first value from the computation time of τi. The recursion

will continue until W n = W n+1 or the result is greater than the deadline.

The final result will be the worst-case response time or showing the task will

miss its deadline.

To illustrate, a task-set has three tasks, as shown in Table 2.6. We com-

pute the response time for τ3. It suffers interferences from τ1 and τ2. Initially,

the response time is 4 and the second recursion is 9. The result of the third

recursion is 11 and the fourth recursion is the same so the worst-case response

time for τ3 is 11.

33

Task Period WCET Priority
τ1 8 2 1
τ2 13 3 2
τ3 30 4 3

Table 2.6: The highest priority task is τ1

1. R0
3 = 4

2. R1
3 = 4 + (

⌈
4
8

⌉
· 2 +

⌈
4
13

⌉
· 3) = 9

3. R2
3 = 4 + (

⌈
9
8

⌉
· 2 +

⌈
9
13

⌉
· 3) = 11

4. R2
3 = 4 + (

⌈
11
8

⌉
· 2 +

⌈
11
13

⌉
· 3) = 11

2.2.5 Shared Resources Problem

In a real-time system, there are many tasks and many resources. Some tasks

are attempting to execute at the same time and also resources may be used by

more than one task. This is called shared resources. The problem of priority

inversion [4, 31, 69, 75] appears when a higher priority task is blocked because

of a lower priority task using the same resource. At the same time, the lower

priority task is preempted by a medium priority task. In this case, the higher

priority task effectively executes at the level of the lower priority task.

Task Priority Execution blocks Release time
τ1 1 XXXABX 5
τ2 2 XBBBX 3
τ3 3 XXX 3
τ4 4 XXAAAXXX 0

Table 2.7: An example task-set.

To illustrate an example of the priority inversion problem, we create an

example similar to the one from the book [18]. Consider there are four

periodic tasks as shown in Table 2.7.

34

Figure 2.5: The time chart for execution.

The highest priority is 1. In the column of execution blocks, the letter

X represents execution without resource; the letters A and B are different

resources. Each block is one time unit.

In Figure 2.5, the lowest priority τ4 releases first, then τ2 and τ3 at 3 after

the resource A is held by τ4. τ2 executes in preference to τ3 because of its

lower priority. τ1 arrives after the resource B is held by τ2. After τ1 executed

3 time units, it cannot access the resource A being held by τ4, then τ1 is

blocked and τ2 executes again. After τ3 has completed, τ4 executes 2 time

units. Finally, the resource A is released at 16 then τ1 is able to finish the

rest. This example shows that τ1 finished its job after τ2 and τ3 although it

has highest priority.

Non-preemptive protocol

Non-preemptive protocol [68, 75] is such that when a task enters the crit-

ical section then the task will be assigned the highest priority temporarily

to achieve the effect of non-preemption. The advantage of this protocol is

simplicity but the problem is that other higher priority tasks do not use the

critical section may also be blocked. In Figure 2.6 the response time of τ1 is

shorter although the response time of τ4 is the same.

Priority Inheritance Protocol

Priority Inheritance Protocol (PIP) [68, 75] increases the priority of a task to

the highest priority when the task locks one or more shared resources which

35

Figure 2.6: The time chart for execution with non-preemptive protocol.

are also needed by other higher priority tasks. It eliminates priority inversion

problems. See Figure 2.7.

Figure 2.7: The time chart for execution with Priority Inheritance Protocol.

Priority Ceiling Protocol

Priority Ceiling Protocol (PCP) [68, 75] additionally assigns a priority ceil-

ing2 to each resource so tasks can only be blocked once. Both priority inver-

sion problems and deadlock problem can be solved. See Figure 2.8.

Abort-and-Restart

For completeness we illustrate what would occur if AR is employed with this

example. In Figure 2.9 the response time for τ4 is long, but for τ1 it is at its

minimum as it suffers no preemption and can be release immediately.

2When a task enters a critical section, the priority of the task is assigned to the value
of the priority ceiling. The priority will be changed back once the task has left the critical
section.

36

Figure 2.8: The time chart for execution with Priority Ceiling Protocol.

Figure 2.9: The time chart for execution with AR.

2.3 Abort-and-Restart Model

The AR model [70, 69] is an implementation scheme for P-FRP. The classical

preemptive model does not fit with P-FRP although it is similar to the AR

model except for the operation of AR. In the classical preemptive model,

preempted tasks continue their job once higher priority tasks have completed

execution. The key concept of the AR model is that lower priority tasks are

preempted and aborted by releases of higher priority tasks. Once the higher

priority tasks have completed, the lower priority task are restarted as new.

Consider Table 2.8: there is a 2-tasks task-set. τ1 is the highest priority

task and has 3 ticks for WCET. Task τ2 has 4 ticks for WCET.

Task Period WCET release offset Priority
τ1 12 3 3 1
τ2 15 4 0 2

Table 2.8: An example task-set. (τ1 has the highest priority)

37

In Figure 2.10, τ2 is released at 0 and executes until time 3; because of

the arrival of τ1, τ2 is aborted at 3. τ1 finishes its job at 6 and τ2 is restarted

as a new job so the spent time between 0 and 3 is wasted.

Figure 2.10: An example task-set.

In fixed priority (FP) scheduling, all tasks are statically assigned fixed

priorities when developing a real-time system. The ordering of execution

of jobs is decided by what priority assignment algorithm is used. Once the

priorities are assigned, the system strictly executes tasks based on their prior-

ities. In this thesis, we are concerned with the AR model under fixed priority

in uniprocessor systems.

This section contains six subsections which are critical instant, response

time analysis, exact response time, priority assignment, case study and aborts

reduction.

2.3.1 Critical Instant in P-FRP

The paper given by Ras and Cheng [69] states that the critical instant argu-

ment from Liu and Layland [59] may not apply fully to the AR model. In

another paper from Belwal and Cheng [9], the authors also realised that a

synchronous release of tasks does not lead to the worst-case response time.

The simple example in Table 2.8 and Figure 2.10 illustrate this: if τ1 and τ2

are released together then R2 = 6. Figure 2.10 shows clearly R2 ≥ 10.

A synchronous release implies a critical instant in fixed priority scheduling

under the classical preemptive model [59], but the AR model has a different

property in that an aborted job will be restarted as a new job. The time

38

spent on a job is wasted and then the total executed time is longer. We

consider that P-FRP may have a different nature for its critical instant. An

example is given to show that a synchronous release of tasks leads to a shorter

response time than an asynchronous release of tasks. To further illustrate

the idea, a similar example is given below,

Task Period WCET Priority
τ1 8 2 1
τ2 10 2 2
τ3 12 3 3

Table 2.9: The highest priority task is τ1.

Consider the task-set in Table 2.9 and the response time for τ3. If all

tasks are released together, the response time of τ3 is 7, shown in Figure

2.11. Please note that there is no abort. When τ1 and τ2 are released at 2

and 4, Figure 2.12 shows that the response time of τ3 is 9, which is a longer

time. An abort happened at 2 and the job is restarted at 6. Unfortunately,

2 ticks are wasted by the abort.

Figure 2.11: All tasks release together.

The example shows that a synchronous release of tasks cannot lead to

the worst-case response time in this case and we observe that aborts make

39

Figure 2.12: τ1 and τ2 release at 2 and 4.

the response time of a task longer. When all tasks are released together, a

lower priority task has not executed yet and higher priority tasks execute

first, so a lower priority task will not be aborted by the first job of any

higher priority tasks. The second job of higher priority tasks will only abort

the lower priority task when the lower priority task is not finished before

the release of the second job for higher priority tasks. We realised that a

synchronous release of tasks avoids the aborts that occur with the first job

of higher priority tasks.

Currently, there is no previous work that identifies how the critical instant

for the AR task model can be found.

2.3.2 Response Time Analysis for P-FRP

The paper given by Ras and Cheng [69] states that standard response time

analysis is not applicable for the AR model, and asserts that the abort cost

can be computed by the following equation:

αi =
N∑

j=i+1

⌈
Ri

Tj

⌉
· j−1
max
k=i

Ck (2.7)

αi is the maximum abort cost for τi because the worst case is when a

higher priority task aborts the lower priority task which has the biggest

WCET. Equation (2.7) uses the number of releases for a task, which has a

higher priority than τi, then multiplies this by the value of Ck which is the

maximum WCET between τi and highest priority task.

40

The central idea of their analysis is that the response time for the AR

model can be computed by the combination of standard response time anal-

ysis and Equation (2.7). The new equation is as follows:

Ri = Ci +
∑
∀j∈hpi

⌈
Ri

Tj

⌉
· Cj + αi (2.8)

Ri = Ci +Bi +
∑
∀j∈hpi

⌈
Ri

Tj

⌉
· Cj +

∑
∀j∈hpi

⌈
Ri

Tj

⌉
· j−1
max
k=i

Ck (2.9)

Task Period WCET
τ1 40 3
τ2 12 4
τ3 9 3

Table 2.10: A task-set given from the paper [9].

Table 2.10 is a task-set given from the paper [9]. τ3 is the highest priority

task and τ1 is the lowest priority task. They applied Equation (2.8) to the

task-set and the calculation looks as below for τ3:

1. R1
1 = 3 + (

⌈
3
9

⌉
· 3 +

⌈
3
12

⌉
· 4) +

⌈
3
9

⌉
· 3 +

⌈
3
12

⌉
· 4 = 17

2. R2
1 = 3 + (

⌈
17
9

⌉
· 3 +

⌈
17
12

⌉
· 4) +

⌈
17
9

⌉
· 3 +

⌈
17
12

⌉
· 4 = 31

3. R3
1 = 3 + (

⌈
31
9

⌉
· 3 +

⌈
31
12

⌉
· 4) +

⌈
31
9

⌉
· 3 +

⌈
31
12

⌉
· 4 = 51

The task-set is deemed unschedulable.

To further illustrate Equation (2.7), there are two examples shown in

Figures 2.13 and 2.14. The examples assume that the task-set in Table 2.11

is schedulable and all aborted jobs are aborted just before they finish. The

result of α1 is 0 because the highest priority task does not suffer any abort.

α2 is 2 because of one abort by τ1. α3 is 6 because of aborts from τ1 and τ2.

In Figure 2.13 this case is to show that all tasks, except the highest

priority task, have one abort. In this case, the response time of τ3 is 11.

The next case in Figure 2.14 is again to find out the response time for τ3.

It is also using the same task-set from Figure 2.13. Following the equation

41

Task Period WCET Priority
τ1 7 1 1
τ2 9 2 2
τ3 12 3 3

Table 2.11: The highest priority task is τ1

Figure 2.13: The response time for τ3 is 11.

of AR cost, τ3 suffers two aborts from τ1 and τ2 to maximise the AR cost

because the computation time of τ3 is larger than the computation time of

τ2. As Figure 2.14 shows, the response time for τ3 is 12.

To compare the results of response time for τ3, the case in Figure 2.14 is

the worst case and also it fulfils the equation of AR cost.

Equation (2.7) from Ras and Cheng [69] is used to compute the cost for

AR. The cost is the WCET that can be wasted because of arrivals of other

higher priority tasks. If Figure 2.14 is the worst case, the critical instant

for τ3 should be when τ2 releases at 3 and τ3 releases at 8. It also again

proves that a critical instant for a task is not when all higher priority tasks

are released with the release of the task.

The calculation of AR costs was derived by Ras and Cheng [69]. They

tried to apply the equation to the standard response time analysis for utilising

the AR model. The idea from the paper of Ras and Cheng [69] is that

(assuming a critical instant) the AR cost is computed by their Equation

42

Figure 2.14: The response time for τ3 is 12.

(2.10), where wm+1
i is the worst-case response time calculated by the standard

response time analysis. After the values of AR cost and worst-case response

time are found, the final worst case response time for the AR model is the

sum of those values. The mathematical expression is shown as follows:

Ri = wm+1
i + αi (2.10)

The concept of Equation (2.10) is potentially very pessimistic. The re-

sponse time analysis for the classic model is exact, which means sufficient

and necessary. If the task-set passes the RTA test, all tasks will meet their

deadlines. If the task-set fails the RTA test, a task will miss its deadline

at run-time (if WCETs are accurate). The result of this analysis is that

standard response time analysis with AR cost is sufficient but not necessary.

This approach of calculation of the worst-case response time for AR model

is degraded from exact to sufficient only.

2.3.3 Exact Response Time for P-FRP

After the sufficient test is introduced, some methods to compute the ex-

act response time for P-FRP are given by Belwal and Cheng [9]. They are

Time-Accurate Simulation (TAS), Gap-Enumeration Method and Idle-period

Game Board Algorithm. A synchronous release is assumed as a critical in-

43

stant for all the methods.

Time-Accurate Simulation

Time-Accurate Simulation (TAS), Belwal and Cheng [9] believe, is a simple

way to calculate the response time in P-FRP. The approach is to execute a

simulation through each time unit and run tasks under the P-FRP execution

model. They state that the upper-bound time complexity is O((Tj − Cj) ·
(n − j)2 · T 2

k). We are not concerned with the accuracy but we take this

as a reference for the worst case. It is an inefficient method for response

time analysis in P-FRP. So the contributions of this algorithm are the cor-

rect response time calculation and the worst performance of response time

algorithm in P-FRP. When we design or analyse an algorithm for response

time in P-FRP, the time-accurate algorithm can be a reference.

The accuracy of another algorithm can be checked by using the value

generated from TAS, for example, with an algorithm A and a task-set T. If the

algorithm A can schedule the task-set T as TAS can, it means the algorithm

A is correct. But we should consider that an algorithm may produce correct

results in only some cases. The best way is to create a large number of

task-sets so that the algorithm can be tested in many cases. It is not a

full-covered test but it increases the reliability. And also, the performance

of another algorithm can be compared to the time complexity of TAS. If an

algorithm has a higher time complexity than TAS, it means the design of this

algorithm is worse than TAS. The authors ran TAS with the task-set shown

in Table 2.10 and the result for the computational steps is 145, but no result

of response time is given in their paper. The TAS approach is exact if the

task-set has a critical instant, but if the critical instant for an AR task-set

cannot be found then this approach is not usable.

Gap-Enumeration Method

The Gap-Enumeration Method was developed by Belwal and Cheng [9]; enu-

meration of k-gaps is used for reducing the time complexity for a calculation

of response time analysis in P-FRP. The idea is that there is a time slot

44

which is first allocated with the highest priority task and second with the

next higher priority task and so on. When a task is fitted, the response time

for the task is found. If the task τi cannot find a gap, it means it misses

the deadline. The paper by Belwal and Cheng illustrates their idea with an

example using the same task-set shown in Table 2.10. In their paper, there

are two mistakes regarding the example for the Gap-Enumeration Method:

that 1-Gap should be shown in the last diagram but they wrongly labelled

it 3-Gap, and the final calculation of the response time for τi should be

R1 = 21 + 3 = 24 but they incorrectly presented R1 = 21 + 4 = 24. However,

the result of the example is correct and the performance is better than TAS.

Figure 2.15: It shows the gap for τ3.

The example is to calculate the response time for τ1. We know that task

τ3 is the highest priority task shown in Table 2.10. As Figure 2.15 shows,

the deadline and period of τ1 is 40 and we do not consider the time after

the deadline so the gap-set is between 0 and 40. Obviously, the gap-set is all

available because we have not yet tried to fit the highest priority task.

Figure 2.16: It shows the gaps for τ2.

Figure 2.16 shows task τ3 fitted into the gap-set. The available gaps

between 0 and 40 are 3–9, 12–18, 21–27, 30–36 and 39–40. Task τ2 is now

45

fitted into the gap-set. Figure 2.17 shows that τ2 is aborted at 27 but the

deadline is still met. And the gaps become narrow but we have to put τ1

into a suitable gap, otherwise the task-set is not schedulable. At this stage,

the gap-set has 7–9, 16–18, 21–24 and 34–36. Fortunately, τ1 is fitted with

the gap between 21 and 24. The response time for τ1 is 21 + 3 = 24.

Figure 2.17: It shows the gaps for τ1.

The gap-search function can be simply explained in that it searches the

first k-gap which is fitted with the size of Pk. Figure 2.18 shows that the

authors use a red-black tree (RB-tree) [24]. A RB-tree is a binary tree where

the colour of nodes can be either red of black. The properties of an RB-tree

are directly cited from the paper [9] listed as below:

• The root node is black

• All leaf nodes are black

• Children of every red node are black

• Path from leaf to root contains the same number of black nodes

Figure 2.18 shows a sample of an RB-tree which contains a gap-set:

σk(T |3200) = {[10, 40), [50, 80), [90, 100), [120, 140), [170, 190), [230, 260),

[300, 320)}. The RB-tree is started from the left side so the order for the

node index is 10, 50, 90, 120, 170, 230, 260 and 300.

46

Figure 2.18: RB-tree for Gap-Search Function. (Cited from the paper [9])

The authors ran the algorithm with the task-set shown in Table 2.10 and

showed that the number of computational steps is 33. To compare this result

to the result of TAS, it is much faster in the task-set with only three tasks.

After the Gap-Enumeration Method was discussed, we noted that the

concept of k-gap is similar to the concept of idle period, and the examples

in the paper [9] are not completed tests because the length of the time chart

is not the LCM for the task-set. The LCM for the task-set shown in Table

2.10 is 360. In P-FRP, the first job of τi meets the deadline but that does

not mean other jobs of τi will meet deadlines because a synchronous release

may not lead to a critical instant. It remains an open question as to whether

the Gap-Enumeration Method is sufficient if there is no critical instant.

Idle-period Game Board Algorithm

Belwal and Cheng [10] think that Gap-Enumeration Method is hard to pro-

gram because an RB-tree is not available as a native function in programming

languages. Another technique using a game board is an easier way because

the method can be implemented by using a simple array. Moreover, they

47

changed the term Gap-Enumeration to idle-period. Idle-period game board

algorithm is also the same as the Gap-Enumeration Method. In Figures

2.15, 2.16 and 2.17, the term Gap is changed to idle period. To illustrate,

the task-set in Table 2.10 is used again.

Figure 2.19: An empty game board.

In Figure 2.19, there is an empty game board. The LCM of the task-set

in Table 2.10 is 360 but the length of the game board is 40. The reason is

that the deadline of τ1 is 40. If a job of τ1 cannot be fitted in, it means the

task-set is not schedulable.

Figure 2.20: Jobs of τ3 are fitted.

In Figure 2.20, jobs of τ3 are fitted into the game board and the blank

slots are idle periods.

Figure 2.21: Jobs of τ2 are fitted.

In Figure 2.21, the method next puts jobs of τ2 into the game board.

There is an abort at 27 and then the job is restarted at 30.

The idea of the Idle-period game board algorithm is the same as the Gap-

Enumeration Method except for the implementation so they share the same

issues. Lastly, we finish the example as shown in Figure 2.22.

48

Figure 2.22: Jobs of τ1 are fitted.

2.3.4 Priority Assignment in P-FRP

Rate monotonic priority assignment and Utilisation-and-Rate Monotonic pri-

ority assignment are reviewed for the AR model using Equation (2.8).

Rate Monotonic Priority Assignment

Rate monotonic priority assignment is not optimal in the AR model [7]. To

prove this, we can give an example to show that a task-set is not schedulable

with a rate monotonic priority assignment but is schedulable by using other

fixed priority scheduling. In the paper by Belwal and Cheng [7], an example

was given to prove the above statement.

Task Priority WCET Period Utilisation
τ1 2 7 15 0.46
τ2 1 3 12 0.25

Table 2.12: Task-set A.

The task-set A in Table 2.12 shows that τ2 has the highest priority because

of the rate monotonic priority assignment with the task having the shortest

period. According to priorities assigned in Table 2.12, Figure 2.23 shows τ1

will miss its deadline at 45 because τ1 is aborted at 36, which is also the

release for τ2. After the job of τ2 is done at 39, τ1 is restarted immediately.

Unfortunately, there are only 6 time units left but τ1 needs 7 time units for

its job.

But Belwal and Cheng [7] said that if τ1 and τ2 swap their priorities, as

given below:

then the task-set B will be schedulable, as shown in Figure 2.24. In Table

2.13, after switching their priorities, τ1 has the highest priority and has no

49

Figure 2.23: It is not schedulable under RM scheduling.

Task Priority C Period Utilisation
τ1 1 7 15 0.46
τ2 2 3 12 0.25

Table 2.13: Task-set B.

abort by τ2. τ2 has delayed its releases at 36 and 48, but they still meet all

their deadlines.

Figure 2.24: It is schedulable after changing their priorities.

The example apparently proves that rate monotonic priority assignment

with the AR model is not optimal, but the worst case must be considered

when doing a schedulability test. In the section on critical instant, we showed

that the AR model and classical preemptive model have different character-

istics of critical instant. As Figures 2.23 and 2.24 show, τ1 and τ2 are released

at the same time and that means the example is not the worst case.

In Figure 2.25 Task τ1 is released 7 time units earlier than task τ2 releases,

then τ1 is aborted at 7. According to another paper[69] by Ras and Cheng,

the equation of AR cost for fixed priority was proposed to calculate the

50

Figure 2.25: It is the worst case under RM.

maximum value. In their paper, they used the WCET of a task as the

maximum time that can be wasted as AR cost so we assume that task τ2

arrives before task τ1 almost finishes, then we take the WCET of task τ1 as

the worst case. The task-set A in Table 2.12 is not schedulable whether in

the worst case or not, as shown in Figure 2.25.

Figure 2.26: It is the worst case under non-RM.

We must conclude that the task-sets A and B fail to prove their assertion

that RM is not optimal. We consider the task-set B in Table 2.13 may not

be schedulable in the worst case. Figure 2.26 shows that τ2 is aborted by

arrival of τ1 at 3 then τ2 misses its deadline at 12. It means that the task-set

B in Table 2.13 is also not schedulable although their priorities changed.

As the above worst-case example cannot prove that the rate monotonic

priority assignment is not optimal in the AR model, a modified example is

51

Task WCET Period Utilisation
τ1 6 14 0.43
τ2 3 12 0.25

Table 2.14: task-set C.

created in Table 2.14. The WCET and period of τ1 are changed to 6 and 14.

Firstly, the rate monotonic priority assignment for the task-set in Table

2.14 means that τ2 has the highest priority. In Figure 2.27 τ1 is aborted

by the arrival of τ2 at 6 and it restarts at 9 but misses its deadline at 14.

This example shows the task-set in Table 2.14 is not schedulable with rate

monotonic priority assignment.

Figure 2.27: Task-set C in worst case under RM.

Secondly, we assign the highest priority to τ1 to test another fixed priority

scheduling rather than RM priority assignment. In Figure 2.28, τ2 is aborted

at 3 when τ1 arrives. τ2 restarts at 9 and finishes its job at 12 which meets

its deadline. With this priority assignment, the task-set C in Table 2.14 is

schedulable. This is clear evidence to prove that RM priority assignment

with the AR model is not optimal in the worst case.

To sum up this section, we discussed the fact that the rate monotonic

priority assignment with the AR model is not optimal. The worst case for

a task-set needs to be considered when comparing priority assignments. We

also provided a worst-case example as stronger evidence.

52

Figure 2.28: Task-set C in worst case under non-RM.

Utilisation-and-Rate Monotonic

Utilisation-and-Rate Monotonic (U-RM) priority assignment is mentioned

in the paper given by Belwal and Cheng [7]. The idea of U-RM priority

assignment is that a task is assigned with a higher priority if it has a smaller

arrival rate and bigger utilisation. To illustrate, consider the task-set shown

in Figure 2.15. The task-set contains five tasks. The highest priority task,

τ1, has the smallest period and the biggest utilisation.

Task WCET Period Utilisation Priority
τ1 3 10 0.30 1
τ2 2 12 0.16 2
τ3 2 20 0.10 3
τ4 1 25 0.04 4
τ5 1 40 0.02 5

Table 2.15: This is U-RM priority assignment. (The highest priority is 1)

Clearly, this priority assignment algorithm is only applicable to task-sets

that have U-RM property. In general this will not be the case.

2.3.5 Case Study for the AR model

There are two cases [69] which are implementations in both software and

hardware. The case study for software that the authors used is the Generic

53

Avionics Platform (GAP) task-set to evaluate the AR model under RM

and Earliest Deadline First (EDF) scheduling and then compare the result

with other models such as non-preemptive, PCP and Stack Resource Policy

(SRP). The other case is for hardware; the Analog Devices’ ADuC814 micro-

controller is used for running the P-FRP compiled code with RM and EDF

scheduling. The result of this case study is the number of tasks against the

average number of aborts and the average number of aborts against system

load.

There are two diagrams of the case study for software shown in Figures

2.29 and 2.30. Figures 2.31 and 2.32 are the result of the case study for the

hardware. We directly cited all diagrams from the paper by Ras and Cheng

[69].

Software — Generic Avionics Platform

The case study for software is the GAP [52, 60], is used in the simulation.

GAP models the functionality of an aircraft computer system and data han-

dling that was created by Locke et al [61]. In the paper by Ras and Cheng

[69], the authors list some of the avionics timing constraints, as below:

1. Navigation: The frequency of navigation is 20 Hz, which is based on

the requirements of accuracy.

2. Display: The period is between 65 ms and 100 ms.

3. Ballistics Computation: The vehicle trajectory, altitude and attitude

require 5 ms in period.

4. Sensor Control: The frequency of radar antenna search is 10 Hz. 1KHz

or more is for electromagnetic surveillance equipment.

Ras and Cheng [69] used the theory of the GAP task-set which has sixteen

periodic tasks and one sporadic. In the experiment, the authors assume that

all tasks are periodic and have no release jitter. The motivation is to observe

how much penalty is introduced by the AR model because they know that

PCP and SRP are apparently more efficient. RM priority assignment is used

54

with the heavy and lighter resources usage that produces the two results

shown in Figures 2.29 and 2.30. They also state that the performance of RM

is based on the arrival pattern and synchronous release is the worst case for

RM.

Figure 2.29: Heavy resource usage (long critical sections). (Cited from the
paper [69])

Figure 2.29 shows the results of different policies (AR, SRP, PCP and non-

preemptive) with RM priority ordering under heavy resource usage. The AR

model has the worst performance, PCP and SRP perform well and the non-

preemptive model is just better than the AR model. This diagram shows the

result under heavy resource usage which means the system has long critical

sections.

The next diagram, in Figure 2.30, is about the lighter resource usage in

which the system has shorter critical sections. In this test, SRP is better in

performance. PCP, AR and non-preemptive have the same performance as

the test with heavy resource usage. In the paper [69], there are also two tests

based on EDF scheduling which is a dynamic priority scheduling; we do not

55

discuss this approach in detail in this review.

According to the observation of the experiments, Ras and Cheng did not

realise that the critical instant for P-FRP may not occur when all tasks are

released at the same time. The result of the AR model could get worse

because it is not based on the worst case. From our observation, the per-

formance of the AR model has a lot of room for improvement because RM

priority assignment is not optimal for the AR model.

Figure 2.30: Light resource usage (short critical sections). (Cited from the
paper [69])

Hardware — Analog Devices’ ADuC814

Ras and Cheng also present an experiment with hardware implementation

in their paper [69]. They run P-FRP compiled code on the hardware board

which uses an Analog Devices’ ADuC814 micro-controller. The results are

shown in Figures 2.31 and 2.32. This time we discuss both fixed and dynamic

priority scheduling.

56

Figure 2.31: Number of tasks. (Cited from the paper [69])

In Figure 2.31, there is a diagram of the average number of aborts against

the number of tasks with RM and EDF scheduling, and the utilisation is fixed.

The average number of aborts for RM scheduling is always higher than EDF

scheduling. When the number of tasks gets higher, the average number of

aborts decreases. The authors believe the reason is that the higher number

of tasks makes the worst-case computation time get smaller for each task. It

makes the possibility of aborts occurring lower.

Figure 2.32 shows the average number of aborts against the CPU load,

and the utilisation is fixed. In this result, Ras and Cheng have less discussion

about it. But we can see from the diagram that the average number of aborts

for the RM is increasing when the CPU load is getting higher. On the other

hand, the average number of aborts for EDF is decreasing after the CPU

load is 0.85.

Based on our observation, EDF scheduling is much more efficient than

fixed priority assignment with RM priority assignment for the AR model.

RM is not optimal for P-FRP but the number of aborts is an important

57

Figure 2.32: System load. (Cited from the paper [69])

property for schedulability analysis in P-FRP.

2.3.6 Methods to Reduce Aborts in P-FRP

In P-FRP, aborts are overheads as time spent on a task is wasted if a higher

priority task arrives before the task completes. Therefore, the number of

aborts is crucial for the performance of the system. From the hardware case

study, we noted that the number of aborts is very high for the AR model.

To improve the schedulability of systems, we consider any method to reduce

the number of aborts. The paper given by Belwal and Cheng [8] presents

two methods to reduce the number of preemptions in the classic task model.

The authors [8] discuss the modifications in task attributes to reduce the

number of preemptions. There are three methods: priority reassignment for

individual jobs, release offset of tasks and release times of individual jobs.

And also the modifications can be in the level of scheduler: preemption

threshold and deferred preemptions.

58

Modifications in Task Attributes

We firstly discuss the modifications in task attributes. In general, task at-

tributes are release times, release offsets, priorities, WCET, periods and dead-

lines. We are concerned only with release times, release offsets and priorities

because those properties are flexible for amending. If the number of preemp-

tions can be reduced, it can also reduce the number of aborts.

Job-level Fixed Priority

As we concerns fixed priority in this thesis, job-level scheduling can reduced

the number of aborts. A synchronous release is assumed as a critical instant.

Priority reassignment for individual jobs of a task can be assigned with in-

dividual priorities to avoid preemptions occurring between two consecutive

jobs. A classical task-set only contains priorities for tasks; all jobs of a task

strictly execute based on the priority of the task in the system. This approach

is not efficient because it usually increases the number of preemptions. Do-

brin and Fohler [32] found that priority reassignment for individual jobs is

one of the methods to reduce the number of preemptions. The method is

that the authors expand a classical task-set to a new task-set which has indi-

vidual jobs with independent priorities. For example, if the period of task τi

is 10 and the LCM for the task-set is 50, then there are five jobs for the task

τi which are τ 0i , τ 1i , τ 2i , τ 3i and τ 4i . The jobs between τ 0i and τ 4i are input into

a new table as tasks. All tasks are assigned with the LCM as periods. The

release offsets of tasks are assigned by using the position of the job multiplied

by its original period, starting from 0. So the new offset for τ 0i is still 0, τ 1i

is 10, τ 2i is 20 and so on. When the system starts, all tasks release together

but they execute based on their priorities and release offsets.

In this section, we consider how the number of aborts in P-FRP can be

reduced. Unfortunately, the paper by Dobrin and Fohler [32] focuses on the

classical preemptive model and the paper by Belwal and Cheng [8] has no

example for this approach. We create an example with two tables and two

figures to illustrate this method using the AR model. Tables 2.16 and 2.17

show that a general task-set extends to the priority reassignment for individ-

59

ual jobs. Figure 2.33 illustrates that the task-set is not schedulable. After the

priority reassignment for individual jobs, the task-set becomes schedulable,

as shown in Figure 2.34.

Task Period WCET Priority
τa 4 1 1
τb 5 2 2
τc 10 2 3

Table 2.16: An example task-set. τa has the highest priority

We begin the example with Table 2.16, which has four columns (Task,

Period, WCET and Priority) as task attributes. The LCM for this task-set is

20 and hence the diagrams are only presented between 0 and 20. Looking at

Figure 2.33, the task τa executes its jobs well because of its highest priority.

Task τb has an abort at 16 but it still meets the deadline. Task τc completely

fails because no job can be done before the deadlines. And there are three

aborts occurring at 4, 8 and 15. The task-set is not schedulable under the

AR model.

Figure 2.33: The task-set is not schedulable under the AR model.

Now, we modify the task-set using the priority reassignment for individual

60

jobs [32]. In Table 2.17, it is a slightly different form from Table 2.16; a

column for release offset is added and periods for all task are assigned with

the LCM, 20. The number of tasks are expanded from 3 to 11. The task τa

has 5 tasks expanded, from 1 to 5, because its period is 4 and the LCM is

20 then 5 jobs are executed in this interval. The task τb has 4 expansions

and the task τc has 2. The values of release offsets are assigned by following

the rule of the number of position for the original task times the old value of

the period. So the new value for τ 0a is 0, τ 1a is 4, τ 2a is 8 and so on. Looking

at the column of priority, each individual task can be assigned with different

priorities. We note that the expansion for the table is related to the LCM

and the number of tasks. The size of a table is also a factor for overheads

in real-time systems. Each time a task arrives, the preemptive system will

check the table and this action is an overhead. We note also that the method

applies only to periodic tasks.

Task Period WCET Release offset Priority
τ 0a 20 1 0 4
τ 1a 20 1 4 2
τ 2a 20 1 8 1
τ 3a 20 1 12 3
τ 4a 20 1 16 2
τ 0b 20 2 0 3
τ 1b 20 2 5 1
τ 2b 20 2 10 4
τ 3b 20 2 15 1
τ 0c 20 2 0 2
τ 1c 20 2 10 2

Table 2.17: The new task-set after priority reassignment for individual jobs.

As Figure 2.34 shows, all tasks release at 0 and τ 0a executes first with its

highest priority and 0 release offset. τ 0b executes as second at 1 and finishes

at 3. τ 0c executes until it finishes whatever τ 1a releases at 4 and τ 1b releases at

5. After τ 0c is completed, τ 1a executes before τ 1b because τ 1a has higher priority.

τ 2a arrives at 8 but it has to wait until τ 1b finishes because of lower priority.

At 10, both τ 2b and τ 1c release, τ 2b executes first and finishes at 12. In the

61

meantime, τ 3a , higher priority, releases so τ 1c executes at 13. τ 3b releases at 15

but τ 1c is still executing. Although τ 1c is completed at 16, τ 3b cannot execute.

The reason is that τ 4a is just released at that time. The last task τ 3b is finished

at 19. All tasks meet their deadlines and the task-set is schedulable using

this method under the AR model.

Figure 2.34: The time chart after priority reassignment for individual jobs.

As illustrated in the example presented above, priority reassignment for

individual jobs provides a solution so that the number of aborts is reduced,

even to zero abort, and the schedulability for the AR model is improved.

But we realise that the expansion of the size of table can be a potential issue

because it increases the overheads on arrival tasks. On the other hand, the

concept of this method is similar to the dynamic priority scheduling. The

priority of a task can be changeable by separating all jobs of the task into

tasks so that the task is able to have different priorities at different stages.

The difference is that this method, in effect, is offline analysis but dynamic

62

priority is online. And also, some restrictions are applied to this method such

as periodic tasks only. The main advantage is that with this algorithm there

is no requirement to modify the basic fixed priority scheduling mechanism

[32].

Release Offset

If the release offsets [8] of higher priority tasks are changed then preemptions

can be avoided [63], but it can potentially bring other additional preemptions.

In the paper by Belwal and Cheng [8], the authors illustrate the idea by an

example. In Table 2.18, the task-set has two tasks and contains five columns:

task, period, WCET, release offset and priority.

Task Period WCET Release offset Priority
τa 8 4 0 2
τb 12 3 3 1

Table 2.18: A task-set from the paper [32].

Firstly, the authors note that the task-set is not schedulable, as shown in

Figure 2.35. Both τa and τb release together but τb has 3 release offset then

τa executes first. τa is aborted at 3 because τb begins its job and finishes at

6. τa is restarted as new then it misses the deadline.

Figure 2.35: The task-set is not schedulable.

63

In Figure 2.36, the authors changed the release offset of τb to 0 so now τb

executes first and finishes at 3. τa starts at 3 and ends at 7. The second job

of τa arrives and executes at 8 then it is completed at 12. In the meantime,

τb arrives and finishes at 15. The last job of τa arrives at 16 and is done at

20. The task-set with this modification is now schedulable.

Figure 2.36: The task-set is now schedulable after removing the offset.

The objective of this example is that the authors illustrate the concept of

release offset of tasks. They provide an unschedulable task-set because of 3

release offset and then make it schedulable by changing the release offset to

0. In other words, they removed the release offset from τb. This example is

far-fetched although it is correct. We believe that a good example for release

offset of tasks should switch a task-set from unschedulable to schedulable by

adding release offsets rather than removing release offsets.

Afterwards, the authors [8] presented another example that if the priori-

ties of τa and τb are reversed, the task-set also becomes schedulable, as shown

in Figure 2.37. The example is about changing the priority of tasks, which

is not related to the three conditions. There is also no clear explanation for

the example. We believe that this example adds little to the paper[8].

The idea of release times of individual jobs [8] is that if the system has two

tasks, Γ2 = τi, τj and Pi > Pj, and the finish time of the lower priority task

is later than the release time of the higher priority task, then a preemption

(abort) will occur. In the paper by Dobrin and Fohler [32], they can eliminate

64

Figure 2.37: The time chart for the task-set.

the preemption by changing the release time of the higher priority task.

Belwal and Cheng [8] state that a preemption will occur when the condition

of the Equation (2.11) is true.

finish(τj,p) > Ri,q (2.11)

The notation of finish(τj,p) means the finish time of τj for the p-th job.

Also, they cited Equation (2.12) from the paper by Dobrin and Fohler [32]

to show that a preemption can be removed by changing the release time of

the higher priority task.

Ri,q = finish(τj,p)− Ci (2.12)

The authors [32] explain that if a higher priority task, τmi , arrives at the

time between start(τnj) and finish(τnj), τnj will suffer a preemption from τmi .

The period between start(τnj) and finish(τnj) is termed as p block(τnj). To

remove the preemption, τmi is moved to the last part of p block(τnj). The

task τnj will finish earlier with no interrupt from τmi .

So far the discussion is about offline analysis and assumption for WCET.

Dobrin and Fohler [32] mentioned that the actual computation times of tasks

are usually less than WCET at runtime so additional preemptions can occur.

There is a diagram shown in Figure 2.38. As the diagram shows, the system

65

runs perfectly at the stage of offline analysis, but there is an abort for the

low priority task at runtime because the finish time of the high priority task

is shorter.

Figure 2.38: The differences between offline and online.

Although the task-set is still schedulable, the number of aborts is in-

creased. When doing a software or hardware simulation for the AR model,

we should consider the computation times as well. The priorities of tasks are

also important for reducing the number of aborts.

Modifications in the scheduler

After discussing the modifications in task attributes which keep the basic

FPS mechanism, we now look at the modifications in the scheduler: that

if the preemption policy of the scheduler is amended, preemptions can be

removed as well [8]. Preemption Threshold and Deferred Preemptions (DP)

are discussed in the paper by Belwal and Cheng [8].

Preemption Threshold means that tasks execute in a non-preemption

policy if the system is assigned with a preemption threshold and the priorities

of those tasks are equal to or higher than the threshold. Wang and Saksena

[83] have already found the response time analysis for tasks with a preemption

threshold. Belwal and Cheng [32] believe that the schedulability of a task-set

66

can be affected by a preemption threshold so the threshold number should

be decided carefully.

Figure 2.39: There is a deferred preemption occurring at 3. (using the task-
set in Table 2.18)

DPs are similar in that if a lower priority task has already executed for

a predefined time unit, the system will defer the preemption when a higher

priority task arrives. So the higher priority starts after the lower priority

is completed. There is an example from the paper [32] presented in Figure

2.39. In the diagram, task τb has higher priority but it cannot start at 3

because the system uses the DP policy. By the advantage of DPs, task τa

did not waste the time spent on the execution before τb arrived, but τb still

met its deadline. We will consider the application of DP in the AR model in

Chapter 5.

2.4 Summary

To summarise, a synchronous release of tasks does not lead to a critical

instant in P-FRP. All researchers from the reviewed papers used synchronous

releases of tasks for their examples. The output of their examples is either

inaccurate or over-pessimistic.

For the review of response time analysis for P-FRP: the AR cost is too

pessimistic so the quality of schedulability analysis for the AR cost equation

67

is very low. Time-Accurate simulation is a simple way to compute the actual

response time but the efficiency is low. Gap-Enumeration Method is an im-

proved implementation but an RB-tree is hard to program. Idle-Period Game

Board Algorithm is a modified version of the Gap-Enumeration Method to

simplify in programming. All are inefficient critical instant. RM priority

assignment is not optimal in P-FRP. U-RM priority assignment is optimal

in some cases but that is only with a synchronous release of tasks.

In the case studies for the AR model, the software case study provides

the result that the current technique of P-FRP performs worse than other

methods which also deal with the priority inversion problem. And dynamic

priority scheduling seems to be better than static priority scheduling. The

hardware case study shows that the number of aborts reduces the schedula-

bility for P-FRP because each abort results in overheads in the system.

The review outcome of the methods to reduce aborts in P-FRP is that

we are concerned about that number of aborts because it is a factor of over-

heads and also decreases the schedulability for the AR model. The material

reviewed is from two papers, with the paper by Belwal and Cheng [8] focusing

on P-FRP, and the paper by Dobrin and Fohler [32] on the classical preemp-

tive model.The findings from the paper [8] are that the reduction of aborts

can be implemented by two methods: modifications in the task attributes

and the scheduler.

For modifications in task attributes, the priority reassignment for indi-

vidual jobs expands a task-set by breaking jobs of tasks into individual tasks,

and those tasks are assigned with suitable priorities to avoid aborts. We re-

alise that the size of table is expanded, which is also a potential issue, and the

method is similar to the way of dynamic priority scheduling but restricted

to periodic tasks only [32]. The advantage is that the basic FPS mechanism

can be kept. Release offset of tasks is to remove preemptions by changing the

release offset of tasks. The idea of release times of individual jobs is that the

higher priority task is postponed in its release if it arrives at a time during

the busy period of a lower priority task. And also, we note the differences

between offline analysis and online execution.

For modifications in the scheduler, the preemption threshold is to set a

68

border for tasks which can be executed in a non-preemptive way. Other tasks

need to suffer preemptions. The last approach is DP that a lower priority

task can keep executing if it is close to completion. This latter approach

seems the most effective and is referred to in Chapter 5.

69

Chapter 3

Schedulability Analysis for the

AR Model

In this chapter we analyse the schedulability of the AR model, which consists

of finding the critical instant and developing schedulability tests. Finding the

critical instant for the AR model is analysed in the first section. Afterwards

a new sufficient test for the AR model is derived. The analysis and findings

in this chapter have been published as a technical report [85] and a workshop

paper [84].

3.1 Critical Instant for the AR Model

First we consider periodic tasks and then sporadic tasks. In the AR model, a

critical instant occurs when a higher priority task aborts a lower priority task

which is almost completed, because the abort cost is added to the response

time. For 2-tasks task-sets, there is only one case where the highest priority

task aborts the lowest priority task.

This was illustrated in an earlier example (in Table 2.8 and Figure 2.10).

For 3-tasks task-sets, there are two cases as the highest priority task can

abort either of the two lower priority tasks. To generalise:

Lemma 3.1.1. A task-set with N periodic tasks under the AR model has at

least (N-1)! abort combinations.

70

Proof. Consider a pure periodic task-set ΓN = {τ1, τ2, ..., τn} and all tasks

only release once. The highest priority task is τ1 and the lowest priority task

is τn. Task τ1 has N - 1 choices of lower priority tasks to abort in each of their

cases; τ2 has N - 2 choices of lower priority tasks to abort. This continues until

τn−1 which has only one choice to abort. Finally, τn has zero choices because

there is no lower priority task. When higher priority tasks are released more

than once, the number of choices for those tasks is increased. The number

of abort combinations is therefore at least (N − 1) ∗ (N − 2) ∗ ... ∗ 1, which

is (N-1)!.

There is no information within the task-set that would indicate which

set of abort combinations could give rise to the worst-case response times.

Hence they all need to be checked for exact analysis.

For sporadic tasks, there is a further issue to consider.

Lemma 3.1.2. A sporadic task with an arbitrary release may bring a longer

response time.

Proof. In general, a sporadic task with its maximum arrival rate delivers the

worst-case response time. Lemma 3.1.2 can be proved by showing a counter

example. In Table 3.1, there is a 3-tasks task-set. Task τ1 is a sporadic task

and has the highest priority. It has a minimum inter-arrival time, 8. Other

tasks are periodic tasks.

Table 3.1: A task-set with a sporadic task.

Task Period WCET Priority
τ1 8 1 1
τ2 20 2 2
τ3 40 4 3

In Figure 3.1, the response time of τ3 is 16 when the second job of τ1 is

released with the minimum inter-arrival time, 8.

If, however, the second job of τ1 is released 1 tick later, the response time

of τ3 will be 17. In this condition, a sporadic task with a later release may

bring a longer response time.

71

Figure 3.1: A time chart.

For a set of sporadic tasks exact analysis would require all possible release

times to be checked.

Theorem 3.1.3. Finding the critical instant for the AR model with periodic

and sporadic tasks is intractable.

Informal Proof. Lemma 3.1.1 shows that there is at least (N − 1)! abort

combinations for N periodic tasks, all of which must be checked for the

worst case to be found. For sporadic tasks all possible release times over a

series of releases must be checked to determine the worst-case impact of the

sporadic task. These two properties in isolation and together show that this

is an intractable number of release conditions to check in order to define the

critical instant.

In real-time scheduling, a tractable schedulability test cannot be exact

(sufficient and necessary) if the critical instant cannot be found in polynomial

time.

3.2 New Formulation for Schedulability Tests

As an exact analysis for the AR model is intractable, a sufficient test is

derived in this section. The sufficiency is traded with tractability, and this

new test is more intuitive than those previously published.

72

Given a priority assignment, the worst-case response time of task τi (pri-

ority Pi) will depend only on the behaviour of tasks of priority greater than

Pi. Consider the interference caused by a single release of task τj (Pj > Pi).

In the worst case τj will abort (just before it completes) a task with a lower

priority than τj but with the maximum execution time of all lower priority

tasks. Let the aborted task be τk, so Pj > Pk ≥ Pi and Ck = max
∀k∈hepi

⋂
lpj
Ck.

The impact of τj on τi will therefore be, in the worst case, Cj at priority

Pj and Ck at priority Pk. As Pk ≥ Pi this is equivalent (for τi) to τj having

an execution time of Cj +Ck at priority Pj. Let C̃i
j = Cj +Ck. The original

task-set with computation times Cj is transposed into a task-set with C̃i
j.

This is now a conventional task-set, so the critical instant is when there is

a synchronous release. (The maximum interference on τi must occur when

all higher priority tasks arrive at their maximum rate, initially at the same

time, and all have their maximum impact.)

The worst case for the AR model is that any higher priority task aborts

a lower priority task which has the biggest possible WCET, and that this

abort occurs just before the aborted task would actually complete. By this

process, a new value C̃i
j for τj is obtained by combining Cj and Ck:

C̃i
j = Cj + max

∀k∈hepi
⋂

lpj
Ck (3.1)

where C̃i
j is the new value for the WCET of τj, Cj is the original WCET of

τj and Ck is the biggest execution time of a task with priority between τi and

τj but τj is not included. The response time analysis applies to τi. Note that

in general the C̃i
j values will depend on the task under investigation.

In Table 3.2, there is an example task-set. Deadline is equal to period

and the time unit is a tick. The highest priority is 1. The response time of

task τ4 is being computed.

The C̃4
j values are computed by Equation (3.1). In this example we

consider the response time for τ4 so i = 4. For C̃4
1 , j is 1 and Ck is higher

than or equal to τ4 but lower than τ1. The calculation is C̃4
1 = C1 + C4, so

the result of C̃4
1 is 2 + 5 = 7.

For C̃4
4 , i and j are 4. Ck is higher than or equal to τ4 but lower than τ4

73

Table 3.2: An example with new WCETs for 4-tasks task-set.

Task Period C C̃4
j Priority

τ1 28 2 7(2+5) 1
τ2 120 3 8(3+5) 2
τ3 140 4 9(4+5) 3
τ4 200 5 5(5+0) 4

so no task is matched, so the result of C̃4
4 is 5+0 = 5. After all the C̃4

j values

had been calculated, we used those values instead of C for the response time

analysis; that is:

R4 = C̃4
4 +

∑
∀j∈hp4

⌈
R4

Tj

⌉
· C̃4

j (3.2)

This is solved in the usual way by forming a recurrence relationship. The

calculations are as follows:

1. R1
4 = 5 + (

⌈
5
28

⌉
· 7 +

⌈
5

120

⌉
· 8 +

⌈
5

140

⌉
· 9) = 29

2. R2
4 = 5 + (

⌈
29
28

⌉
· 7 +

⌈
29
120

⌉
· 8 +

⌈
29
140

⌉
· 9) = 36

3. R3
4 = 5 + (

⌈
36
28

⌉
· 7 +

⌈
36
120

⌉
· 8 +

⌈
36
140

⌉
· 9) = 36

To compare the result with the equation of Ras and Cheng [69] (given in

Section 2.3), their calculation would be:

1. R1
4 = 5+(

⌈
5
28

⌉
·2+

⌈
5

120

⌉
·3+

⌈
5

140

⌉
·4)+

⌈
5
28

⌉
·5+

⌈
5

120

⌉
·5+

⌈
5

140

⌉
·5 = 29

2. R2
4 = 5+(

⌈
29
28

⌉
·2+

⌈
29
120

⌉
·3+

⌈
29
140

⌉
·4)+

⌈
29
28

⌉
·5+

⌈
29
120

⌉
·5+

⌈
29
140

⌉
·5 = 36

3. R3
4 = 5+(

⌈
36
28

⌉
·2+

⌈
36
120

⌉
·3+

⌈
36
140

⌉
·4)+

⌈
36
28

⌉
·5+

⌈
36
120

⌉
·5+

⌈
36
140

⌉
·5 = 36

The results are the same but Equation (3.2) clearly involves less compu-

tation.

To compute the worst-case response time for τ3 requires the C̃3
j values to

be recomputed (as show in Table 3.3).

The test derived above is more efficiently solved is nevertheless equivalent

to that previous published.

74

Table 3.3: C̃3
j values for τ3

Task Period C C̃3
j Priority

τ1 28 2 6(2+4) 1
τ2 120 3 7(3+4) 2
τ3 140 4 4(4+0) 3

Theorem 3.2.1. Equations (2.8) and (3.2) are equivalent.

Proof. We rephrase Equation (2.8) as below:

Ri = Ci +
∑
∀j∈hpi

⌈
Ri

Tj

⌉
· Cj +

∑
∀j∈hpi

⌈
Ri

Tj

⌉
· j−1
max
k=i

Ck (3.3)

and simplify:

Ri = Ci +
∑
∀j∈hpi

⌈
Ri

Tj

⌉
· Cj +

j−1
max
k=i

Ck (3.4)

both
j−1

max
k=i

Ck and max
∀k∈hepi

⋂
lpj
Ck are to pick a bigger WCET task when priority

is higher or equal to τi and lower than τj, so we rephrase it again.

Ri = Ci +
∑
∀j∈hpi

⌈
Ri

Tj

⌉
· Cj + max

∀k∈hepi
⋂

lpj
Ck (3.5)

Equation (3.1) changes into Equation (3.5) as below:

Ri = Ci +
∑
∀j∈hpi

⌈
Ri

Tj

⌉
· C̃i

j (3.6)

Finally, C̃i
j replaces Ci using Equation (3.1).

As Equation (2.8) was previously proved to be sufficient for the AR model

[69] it follows that Equation (3.2) is similarly sufficient.

Although the equations are equivalent, Equation (3.2) is in the standard

form for response time analysis and is therefore amenable to the many ways

that have been found to efficiently solve this form of analysis [78]. It is also

in a form that allows the issue of priority assignment to be addressed (see

next chapter).

75

3.3 Summary

To summarise, the AR model has a different property of critical instant from

the classical preemptive model. A task-set with N periodic tasks under the

AR model has at least (N-1)! abort combinations. A sporadic task with

an arbitrary release may bring a longer response time. Finding the critical

instant for the AR model is intractable as it cannot be found in polynomial

time. To deal with this situation, a sufficient test is derived by trading the

sufficiency with tractability. A new formulation, C̃i
j, is developed for the

standard response time analysis as a new sufficient test for the AR model.

76

Chapter 4

Improved Priority Assignment

for the AR Model

This chapter introduces a new algorithm which offers better priority assign-

ment for the AR model. Firstly, some priority assignment schemes are ad-

dressed, as they are needed for the new algorithm and the experiments.

The new algorithm with pseudo-code is given, and the time complexity is

discussed. Lastly, the new algorithm and other addressed algorithms are

compared and evaluated in an experiment. The material in this chapter has

been published as a technical report [85] and a workshop paper [84].

4.1 Priority Assignment Schemes

Rate Monotonic (RM) and Utilisation Monotonic (UM) have been introduced

as possible priority assignment schemes for the AR model. Here, we intro-

duce another priority assignment called Execution-time Monotonic (EM),

which assigns a higher priority to a task which has a bigger WCET1. An in-

spection of Equation (3.1) shows that the minimum execution times (the C̃i
j

values) are obtained when priority is ordered by execution time. Although

this does not necessarily minimise utilisation, it may furnish an effective pri-

1Tasks with the same execution time are ordered by deadline (higher priority to shorter
deadline). If they also have the same deadline then the shortest period is used to break
the tie.

77

ority assignment scheme. For example, if the biggest WCET task is assigned

to the lowest priority then all higher priority tasks will abort that task. The

consequence is the total abort cost gets much bigger.

For many scheduling problems, Audsley’s algorithm furnishes an optimal

priority assignment; i.e. the algorithm can find a schedulable priority order-

ing if such an ordering exists [5, 6]. Unfortunately one of the prerequisites

for Audsley’s algorithm does not hold (see Section 2.2.3). Specifically, the

response time of a task depends not only on the set of higher priority tasks

but also on their relative order (which is not permitted).

Table 4.1: The response time of τ4 is 23.

Task Period WCET C̃4
j Priority

τ1 100 5 9(5+4) 1
τ2 120 4 7(4+3) 2
τ3 140 3 5(3+2) 3
τ4 200 2 2(2+0) 4

In Table 4.1 τ4 is the lowest priority task and its response time is 23.

After τ2 and τ3 (higher priority) swapped their priorities, the response time

for τ4 is changed to 24 as shown in Table 4.2.

Table 4.2: The response time of τ4 is 24.

Task Period C C̃4
j Priority

τ1 100 5 9(5+4) 1
τ3 140 3 7(3+4) 2
τ2 120 4 6(4+2) 3
τ4 200 2 2(2+0) 4

4.2 New Algorithm

The Exhaustive Search (ES) algorithm is optimal for any model but the com-

plexity is the factorial of the number of tasks. Therefore, it is not applicable

in general but it can validate other algorithms for small values of N. By com-

parison with ES, both UM and EM are not optimal. Sometimes, there is

78

more than one schedulable ordering for a task-set. Some tasks are scheduled

by EM but not UM, and vice versa. Their relationship is shown in Figure

4.1.

Figure 4.1: An Euler diagram for UM, EM and ES.

These circles represent task-sets that are scheduled by the labelled algo-

rithms. White space is task-sets that are unscheduled by any algorithm. ES

covers both UM and EM because it is optimal. UM and EM are overlapped

because some task-sets are scheduled by both of them. In a later section,

the experiments show that UM and EM have similar results. If an algorithm

dominates both UM and EM, it will offer a better schedulability rate.

We derive a new algorithm that starts with EM ordering and tests the

tasks in priority order, starting with the highest priority task. If any task

cannot be scheduled then we try to find a higher priority task which has less

utilisation. The ordering begins from the failed task to the top. If a task is

found then shift down the higher priority task below the lower priority task.

If no task is found, the task-set is deemed to be not schedulable. Pseudo-code

of the new algorithm is given in Algorithm 1.

The explanations of functions are listed below:

79

sortByEM(taskset);
for i in 2 .. N do

if st(i) = true then
continue;

else
for j in i-1 .. 1 do

if u(j) < u(i)||(u(j) = u(i)&d(j) > d(i)) then
found = true;
move(j,i);
i=j-1;

else
found = false;

end
if not found then

return fail;
end

end

end

end
return pass;

Algorithm 1: A pseudo-code of the new algorithm.

• sortByEM(ts) = do an EM priority assignment for task-set ts

• st(i) = Schedulability Test for task i

• u(i) = get utilisation of task i

• d(i) = get deadline of task i

• move(x, y) = move task x below task y (top is higher priority).

An example of the use of the algorithm is given in Table 4.3. Again

deadline is equal to period; R is response time. Note only C values are given

in the table; the necessary C̃i
j values are dependent on which task is actually

been tested, and they must be recomputed for each task.

The task-set is initially ordered by the EM algorithm. The schedulability

test begins from the top. τ1, τ2 and τ3 meet their deadlines. A missed

deadline occurs at τ4 so the algorithm searches for a less utilisation task from

80

Table 4.3: An example task-set fails in EM ordering.

Task Period C U Priority R
τ1 60 6 0.1 1 6
τ2 50 5 0.1 2 16
τ3 32 4 0.125 3 24
τ4 25 3 0.12 4 30 (X)
τ5 100 2 0.02 5

τ3 to τ1. The utilisation of τ2 is 0.1 which is less than τ4, and τ2 shifts down

below τ4. The priority of τ3 shifts up to 2. The priority of τ4 shifts up to 3.

The priority of τ2 changes to 4.

Table 4.4: The task-set is scheduled by EUM algorithm.

Task Period C U Priority R
τ1 60 6 0.1 1 6
τ3 32 4 0.125 2 14
τ4 25 3 0.12 3 20
τ2 50 5 0.1 4 50
τ5 100 2 0.02 5 88

In Table 4.4, the task-set has had its priorities changed and is schedulable

after the shifting. By the nature of shifting down the less utilisation tasks to

the bottom, UM ordering is the worst case. The algorithm performs a set of

transformations starting at EM and moving towards UM. It dominates both

EM and UM. We name it the Execution-time-toward-Utilisation Monotonic

(EUM) priority assignment scheme.

Figure 4.2 is an Euler diagram for EUM where the circle of EUM covers

all circles of EM and UM.

4.3 Time Complexity

To analyse the complexity of the EUM policy, we count each single task

schedulability test required (each test is itself of pseudo-polynomial com-

plexity). In the worst case, an N-task task-set starts with EM ordering and

81

Figure 4.2: An Euler diagram for EUM.

the task-set is only scheduled by UM ordering, which is the completely op-

posite to EM. It is easy to see that in this case, 2N − 1 schedulability tests

are required before the task that starts out at priority N is placed at priority

1, and that a further 2(N −1)−1 tests are needed before the next task (that

started at priority N − 1) is placed at priority 2. Overall, the number of

single task schedulability tests required to transform EM ordering into UM

ordering is given by:
N−1∑
k=1

(2k − 1) ≤ N2 (4.1)

So the complexity of EUM priority assignment is O(N2) single task

schedulability tests. EUM dominates EM and UM because the EUM al-

gorithm starts with EM ordering and ends at UM ordering in the worst case;

however, unlike ES it is a tractable priority assignment policy.

82

4.4 Experimental Evaluation

The experiments undertaken are separated into two parts. First, the EUM

algorithm is compared with the non-optimal group (RM, UM and EM). Sec-

ondly, the EUM algorithm is compared with ES, the optimal algorithm for

the largest feasible value for N (8). All experiments used the same parameters

but different priority assignments. The parameters are:

• Deadline is equal to period.

• All tasks are periodic (or sporadic arriving at their maximum rate).

• A set of N utilisation values Ui was generated by the UUniFast Algo-

rithm [13].

• Task periods were generated between 500 and 5000 according to a log-

uniform distribution2. And the computed value Ti is assigned to τi.

• Task execution times are: Ci = Ui · Ti

• Utilisation for task-sets are ranged between 10% and 70%.

• Each utilisation rate generates 10000 different task-sets, i.e. U = 10%

generates 10000 task-sets, U = 11% generates another 10000 task-sets,

and so on.

• The numbers of tasks for the non-optimal group are 5, 10, 15 and 20.

A maximum of 8 tasks is all that can be accomplished by ES. The final

experiment is therefore restricted to just 8 tasks.

For all diagrams, the X-axis is Utilisation rate and the Y-axis is the

Schedulability rate, i.e. the percentage of task-sets that were deemed schedu-

lable.

In Figure 4.3 the number of tasks is 5. We observe that RM has the

worst schedulability, and UM and EM are quite similar before U = 27%.

2The log-uniform distribution of a variable x is such that ln(x) has a uniform distribu-
tion.

83

Figure 4.3: EUM compares with others for 5-tasks task-set.

After that, UM is better than EM. EUM is of course always better than the

others and is significantly so. The maximum improvement is between 30%

and 40% in utilisation.

In Figure 4.4 the number of tasks is 10; RM is still the worst and EM is

better than UM.

In Figures 4.5 and 4.6 the numbers of tasks is 15 and 20. Again RM is

the worst; EM is better than UM and EUM is the best. The two diagrams

have a similar pattern. Results for the larger value of N are similar (but not

included).

For the final comparing experiment of EUM and ES, ES is the factorial

of the number of tasks so we picked the number of tasks to be as large as

possible. In Figure 4.7 the number of tasks is 8 because the test has already

taken more than a week to run. The diagram shows the result that EUM

is very close to ES. Indeed it is impossible to distinguish between them in

the diagram. Nevertheless EUM is not optimal; the figure contains in total

410,000 task-sets of which ES deemed 137,366 schedulable and EUM 136,712,

a difference of 654 (i.e. schedulable by ES but not by EUM). Tables 4.5 and

84

Figure 4.4: EUM compares with others for 10-tasks task-set.

Figure 4.5: EUM compares with others for 15-tasks task-set.

85

Figure 4.6: EUM compares with others for 20-tasks task-set.

Figure 4.7: EUM compares with ES for 8-tasks task-set.

86

Table 4.5: A task-set deemed not schedulable by EUM algorithm.

Task Period C U Priority R
τ3 1430 179 0.125 1 179
τ6 1035 90 0.087 2 359
τ2 656 49 0.075 3 457
τ5 1269 27 0.021 4 511
τ7 1925 131 0.068 5 X
τ4 2579 31 0.012 6 X
τ1 2688 8 0.003 7 X
τ8 1042 7 0.007 8 X

Table 4.6: The task-set is schedulable by ES algorithm.

Task Period C U Priority R
τ7 1925 131 0.068 1 131
τ3 1430 179 0.125 2 489
τ2 656 49 0.075 3 587
τ6 1035 90 0.087 4 947
τ8 1042 7 0.007 5 961
τ5 1269 27 0.021 6 1035
τ4 2579 31 0.012 7 1264
τ1 2688 8 0.003 8 1746

87

Figure 4.8: The number of tasks is 20 with D = T * 80%.

4.6 show an example task-set which is schedulable by ES but not by EUM.

Although not exact, the performance of EUM for N = 8 leads to a reasonable

conclusion that EUM is an effective and near optimal priority ordering for

the AR model.

For a further analysis, Figures 4.8 and 4.9 show two examples when dead-

line is less than period. In Figure 4.8, the number of tasks is 20 and deadline

is 80% of period. The schedulability of using the UM ordering is getting

worse at 18% utilisation rate. In Figure 4.9, the number of tasks is also 20

but deadline is 50% of period. It shows that DM is much better than both

UM and EM. EUM is still far better than the other priority assignments.

4.5 Summary

To sum up, optimal priority ordering is problematic with the AR model.

Deadline (or Rate) monotonic ordering is demonstrably not optimal. Also the

optimal Audsley’s algorithm is not applicable. We have however developed a

heuristic (called EUM) that performs well and has only N2 complexity (for

88

Figure 4.9: The number of tasks is 20 with D = T * 50%.

N tasks). On small sized systems (N = 8) EUM performs almost identically

to an optimal scheme (using exhaustive search). For larger numbers of N

(where exhaustive search is unfeasible) it performs much better than previous

published approaches.

89

Chapter 5

Deferred Abort Model

This chapter introduces an alternative scheme to improve the schedulability

of the AR model. Higher priority tasks sometimes do not need an immediate

abort to meet their deadlines. For example, a higher priority job is released

and an executing lower priority task is almost completed; the higher priority

task has enough time to wait until the lower priority task finishes.

To implement this approach, the technique of DP noted in Chapter 2

is employed. One of the implementations of DP is that a task is assigned

two regions; the first region is preemptive and the second region is non-

preemptive. To apply this technique, a task is also set two regions; first

region is AR and the second region is non-preemptive and non-abortable. In

this thesis, we call this scheme the deferred abort (DA).

Before the DA model, the non-preemptive model is introduced and com-

pared to the AR model. Afterwards, the technique of deferred preemption

is discussed and used to develop response time analysis of the DA model.

Lastly, experimental evaluation and conclusions are given.

5.1 Non-preemptive Model

To support P-FRP, atomic execution is required; hence the AR model is an

implementation scheme but the Non-Preemptive (NP) model can be used as

well. Below, the NP model will be introduced and compared with the AR

90

model.

In the NP model, once a task, whatever its priority, is executing, no task

can interrupt it. Figure 5.1 shows that if a higher priority task is released

when a lower priority task is executing then the higher priority task has to

wait until the lower priority task finishes.

Figure 5.1: This is the non-preemptive model.

This figure shows the lower priority task executed atomically so the NP

model can also be used for P-FRP. Now, we consider if the AR model can

be replaced by the NP model completely. In Table 5.1, there is a 3-tasks

task-set with constrained deadlines. The response time analysis in Equation

(5.4), given later in this chapter, is used to analyse the task-set.

Task T D C Priority
τ1 30 3 3 1(H)
τ2 50 50 5 2
τ3 70 70 7 3

Table 5.1: The NP model cannot schedule the task-set.

In this task-set, the execution time of τ1 is equal to its deadline. τ1 cannot

91

suffer any blocking time or interference so the NP model cannot schedule this

task-set.

To apply the AR model, the C̃i
j approach in Equation (3.1) and the

response time analysis in Equation (3.6) are used. As the AR model does

not have blocking time, the worst-case response time of τ1 is 3. The worst-

case response time of τ2 is 13. Table 5.2 is the task-set with C̃ values for τ3.

The worst-case response time of τ3 is 29. The task-set can be scheduled by

the AR model.

Task T D C C̃3
j Priority

τ1 30 3 3 10(3+7) 1(H)
τ2 50 50 5 12(5+7) 2
τ3 70 70 7 7(7+0) 3

Table 5.2: The AR model can schedule the task-set.

The calculations are as follows:

1. R1
1 = 3

2. R1
2 = 5 + (

⌈
3
30

⌉
· 8) = 13, see footnote1.

3. R2
2 = 5 + (

⌈
13
30

⌉
· 8) = 13

4. R1
3 = 7 + (

⌈
7
30

⌉
· 10 +

⌈
7
50

⌉
· 12) = 29

5. R2
3 = 7 + (

⌈
29
30

⌉
· 10 +

⌈
29
50

⌉
· 12) = 29

The above example shows that the NP model does not dominate the

AR model. On the other hand, The AR model does not dominate the AR

model. To illustrate, Table 5.3 shows that the AR model cannot schedule

the task-set.

For the NP model, Table 5.4 shows the task-set can be scheduled.

The above examples show that the NP and AR models do not dominate

each other. In the later section of experimental evaluation, the result shows

1C̃2
1 = 8(3 + 5)

92

Task T D C C̃3
j Priority

τ1 30 30 10 20(10+10) 1(H)
τ2 30 30 10 20(10+10) 2
τ3 30 30 10 10(10+0) 3

Table 5.3: The AR model cannot schedule the task-set.

Task T D C B Priority
τ1 30 30 10 10 1(H)
τ2 30 30 10 10 2
τ3 30 30 10 0 3

Table 5.4: The NP model can schedule the task-set.

that the NP model has better schedulability than the AR model. Intuitively,

the combination of them is possible to offer better performance as there is an

existing model called deferred preemption which combines the techniques of

preemptive and non-preemptive. In the following section, deferred preemp-

tion will be introduced and discussed.

5.2 Deferred Preemption

The motivation is to reduce the number of preemptions by deferring some

unnecessary preemptions. The definition of unnecessary preemption is that a

higher priority task can wait until a lower priority task finishes and the higher

priority task also meets its deadline. As DP is designed for non-atomic-

execution systems, it cannot directly apply to P-FRP. Before adapting this

technique for the AR model, DP is introduced and analysed.

To implement DP, there are a number of approaches. In this thesis, the

approach from Davis and Bertogna’s paper [26] is used. In this paper, a task

can set the length of the final non-preemptive region. Symbol F is used to

represent the length of the final non-preemptive region. The range of Fi for

τi is from 1 to Ci. If Fi = 1, τi is fully preemptive2. If Fi = Ci, τi is fully

2The discrete time granularity ∆ is 1 time unit so the last 1 time unit is deemed to be

93

non-preemptive. If Fi = (Ci/2), the first half of τi is preemptive and the last

half is non-preemptive.

Figure 5.2: Types of deferred preemptive tasks.

To illustrate, Figure 5.2 shows 3 tasks: τ1, τ2 and τ3. The white boxes

represent preemptive regions and the grey boxes represent non-preemptive

regions. τ1 with a fully white box is fully preemptive and F points at the

end. τ2 with a fully grey box is fully non-preemptive and F is the entire box.

τ3 with a half white and half grey box is deferred preemptive and F points

at the middle.

Now, we introduce some equations below to analyse the DP model. In

Davis and Bertogna’s paper [26], the authors studied the work of Bril et al.

[16], and the results are rephrased according to the notation adopted in But-

tazzo et al’s paper [20] to deal with the discrete time domain. The concepts

of priority level-i active period, and ∆-critical instant are introduced.

The definition of priority level-i active period [26] is a continuous period

of time [t1, t2) during which tasks, of priority i or higher, are executing.

The definition of ∆-critical instant for τi is that τi is released simulta-

neously with all higher priority tasks, and a lower priority task τk with the

biggest blocking time is released a bit earlier to enter its final non-preemptive

non-preemptive.

94

region. The discrete time granularity ∆ is 1 time unit in the paper.

Bril et al [16] showed that the worst-case response time occurs within the

priority level-i active period starting at a ∆-critical instant. To calculate the

period, the below equation can be used.

Ai = Bi +
∑

∀j∈hep(i)

⌈
Ai

Tj

⌉
Cj (5.1)

The result of Ai is the length of priority level-i active period. Bi is the

biggest blocking time from a lower priority task. The blocking time can be

calculated by the below equation.

Bi = max
∀l∈lp(i)

(Fl − 1) (5.2)

Bi is calculated by picking up the value of the final non-preemptive region

and minus one. In this thesis, we do not consider the shared resources so the

part of shared resource for this equation is eliminated.

In the priority level-i active period, there can be more than one job for

a task τi so we need to calculate the number of jobs Gi. The calculation is

given by:

Gi =

⌈
Ai

Ti

⌉
(5.3)

Due to more than one job for a task, the calculations of response time of

each job for a task are needed. The calculation is given by:

WNP
i,g = Bi + (g + 1)Ci − Fi +

∑
∀j∈hp(i)

(⌊
Wi,g

Tj

⌋
+ 1

)
Cj (5.4)

The result of Wi,g is the start time of the final non-preemptive region of

job g (where g = 0 is the first job) for τi. Here, we can use the technique of

iteration to solve this equation. The worst-case response time of task τi is

given by:

Ri = max∀g=0,1,2...Gi
(WNP

i,g + Fi − gTi) (5.5)

95

The result of Ri is the worst-case response time of τi, calculated by picking

the maximum value from a set of results retrieved by Equation (5.4). Task

τi is schedulable if Ri ≤ Di.

To illustrate, there is an example from Davis and Bertogna’s paper [26].

Table 5.5 shows a 3-tasks task-set and deadline is less than period. The

priority level-3 active period for this task-set is 700 using Equation (5.1).

Task T D C
τ1 250 175 100
τ2 400 300 100
τ3 350 325 100

Table 5.5: A 3-tasks task-set with constrained deadlines.

First, Figure 5.3 shows what happens if the tasks are fully non-preemptive

and the priority order is (τ1, τ2, τ3). The top task τ1 with the highest priority

executes first but the second job is blocked by τ3. Task τ3 misses its deadline

for the second job.

Figure 5.3: It is not schedulable under fully non-preemptive.

Now, Figure 5.4 shows what happens if the priority order changes to

(τ1, τ3, τ2) and final non-preemptive region lengths are F1 = 1, F3 = 1 and

F2 = 51. All tasks are released at 0 and τ1 executes first. τ2 starts to execute

96

at 200, and it enters the final non-preemptive region at 249. Although τ1

releases at 250, τ2 continues its job. This task-set is schedulable with this

setting.

Figure 5.4: It is now schedulable with final non-preemptive regions.

This example shows the DP model can schedule a task-set which cannot

be scheduled under the NP model. Figure 5.2 shows as the DP model can

be fully non-preemptive or fully preemptive for tasks then the DP model

dominates both the preemptive model and the NP model. Unfortunately, the

DP model combines the technique of non-preemptive and preemptive, and

the technique of preemptive does not support atomic execution. Therefore

the DP model cannot apply directly to P-FRP. The following section will

adapt the DP model for the technique of AR. We call it the Deferred Abort

(DA) model in this thesis.

5.3 Analysis for the DA Model

The DA model refers to the DP model but combines abort regions and non-

preemptive regions in tasks. The allocation of regions for a task must be

abort regions first and then non-preemptive regions.The motivation of the

DA model is to eliminate unnecessary aborts, reduce the abort costs and deal

with the trade-off of blocking time. The definition of unnecessary aborts is

97

that if a higher priority task does not abort a lower priority task, the system

can still be schedulable. To reduce the abort cost, a smaller or zero abort

region can be assigned to a task. Sometimes a higher priority task cannot

suffer the blocking time from a lower priority task so there is a trade-off to

decide the size of non-preemptive regions; reducing the size of non-preemptive

regions means increasing the size of abort regions.

To illustrate, Figure 5.5 shows that there are three types of DA tasks.

The white boxes represent AR regions and the grey boxes represent non-

preemptive regions. τ1 with a fully white box is fully AR and F points at

the end. τ2 with a fully grey box is fully non-preemptive and F is the entire

box. τ3 with a half white and half grey box is a DA task and F is a half of

the box.

Figure 5.5: Types of deferred abort tasks.

The benefit of using the C̃i
j approach (as described in Chapter 3) for

the AR model is that the response time analysis can directly use the new

execution time, regardless of the abort costs. The response time of the first

job for a task is required to check if the task is schedulable or not. Intuitively,

the preemptive model and the AR model using the C̃i
j approach are equivalent

in term of a schedulability analysis, although the test for the AR model is

sufficient. By this intuition, the implementation of the DP model can be

98

employed for the DA model by adapting the C̃i
j approach.

Figure 5.6: Two cases of DA tasks.

Figure 5.6 shows there are two cases for DA tasks. The first case is that

the lower priority task τ2 executes first and the higher priority task τ1 is

released within the final non-preemptive region of τ2. τ1 needs to wait until

τ2 completes. This case explains that when a lower priority task is about to

complete, it enters the non-preemptive regions to avoid any interference. The

second case is that a lower priority task τ2 executes first and a higher priority

task τ1 is released soon. As τ2 has not executed much, it has not entered the

non-preemptive region yet so it is aborted by τ1. After τ1 is completed, τ2

restarts.

To adapt the C̃i
j approach for the DA model, the equation is given by:

C̃DA
i,j = Cj + max

∀k∈hepi
⋂

lpj
(Ck − Fk) (5.6)

The symbol is rephrased by C̃DA
i,j . The symbol of DA indicates the value

is for the DA model. The C̃ of analysing τi for a task τj is the sum of the

original execution time of τj and the maximum value of a task τk between

priority level i and j, which is after the execution time of τk minus its non-

preemptive region.

To introduce the equations for the DA model, the structure of the expla-

nation for the DP model above is employed. Firstly, the priority level-i active

99

period is discussed and then the blocking time. Afterwards, the number of

jobs required to check within the active period. Lastly, the equations for the

response time analysis are derived.

Referring to the priority level-i active period in Equation (5.1), C̃i
j can be

replaced by C̃DA
i,j directly. The equation for the DA model is given by:

Ai = Bi +
∑

∀j∈hep(i)

⌈
Ai

Tj

⌉
C̃DA

i,j (5.7)

For the calculations of blocking time Bi and the number of jobs Gi ,

Equation (5.2) and (5.3) can still be used as the execution time C is not

involved.

Bi = max
∀l∈lp(i)

(Fl − 1) (5.8)

Gi =

⌈
Ai

Ti

⌉
(5.9)

Now, the equation for the response time is given by:

Wi,g = Bi + (g + 1)Ci − Fi +
∑
∀j∈hp(i)

(⌊
Wi,g

Tj

⌋
+ 1

)
C̃DA

i,j (5.10)

The above equation is similar to Equation (5.4). C̃DA
i,j is used and the

result of Wi,g is the start time of the final non-preemptive region of gth job

for τi. The number of jobs is required to check that it is based on the value

of the priority level-i active period. After a set of response times for a task

within the priority level-i active period is calculated, Equation (5.5) still

works without any change for finding out the worst-case response time.

Ri = max∀g=0,1,2...Gi
(WNP

i,g + Fi − gTi) (5.11)

To illustrate the test, there is a 3-tasks task-set which will be scheduled by

the models of NP, AR and DA. Deadline is less than period and the priority

ordering is τ1, τ2 and τ3.

100

Task T D C
τ1 300 80 5
τ2 400 90 10
τ3 500 110 80

Table 5.6: This is a 3-tasks task-set.

For the NP model, τ1 cannot suffer any blocking time or interference

which is bigger than 75 as its deadline is 80 and the execution time is 5.

As the execution time of τ3 is 80, τ1 will miss its deadline wherever τ3 is

placed. Immediately, this task-set is deemed to be unschedulable under the

NP model.

For the AR model, τ1 cannot assign to the lowest priority because it

cannot suffer the interference from τ3. τ2 cannot assign to the lowest priority

too because it cannot suffer the interferences from τ1 and τ3. After applying

the C̃i
j approach, τ3 will suffer a big interference which is obviously bigger

than its deadline. The task-set is apparently not schedulable under the AR

model.

Lastly, the DA model is applied with τ1 and τ2 fully non-preemptive. For

τ3, the AR region is 5 and the non-preemptive region is 75. The priority

ordering is the same; τ1 has the highest priority, τ2 is at the middle and τ3

has the lowest priority. The response time of τ1 is 80 as it has no interference

from higher priority tasks and blocking time is 75 from τ3. τ1 is schedulable

at the highest priority.

For τ2, Table 5.7 shows the values of C̃DA
2,j where τ1 is 5 and τ2 is 10. The

response time of τ2 is 90 as it suffers 5 time unit interference from τ1 and 75

blocking time from τ3 so τ2 meets its deadline.

Task T D C AR F C̃DA
2,j

τ1 300 80 5 0 5 5
τ2 400 90 10 0 10 10
τ3 500 110 80 4 76 -

Table 5.7: The values of C̃DA
2,j .

101

For τ3, it suffers no blocking time as it is the lowest priority task. By

using the values of C̃DA
3,j , the interferences for τ3 are 9 from τ1 and 14 from

τ2 so the response time is 103 (see calculation below). The DA model can

schedule this task-set.

Task T D C AR F C̃DA
3,j

τ1 300 80 5 0 5 9
τ2 400 90 10 0 10 14
τ3 500 110 80 4 76 80

Table 5.8: The values of C̃DA
3,j .

This example shows the DA model can schedule a task-set but the NP

model and the AR model cannot. As tasks can be fully AR or fully non-

preemptive, the DA model dominates both NP and AR models.

To apply the equations for the task-set, the calculations are given by:

1. B1 = max
∀l∈lp(1)

(Fl − 1)

2. B1 = 75

3. A1 = B1 +
∑

∀j∈hep(1)

⌈
A1

Tj

⌉
C̃DA

1,j

4. A0
1 = 5

5. A1
1 = 75 +

⌈
5

300

⌉
5 = 80

6. A2
1 = 75 +

⌈
80
300

⌉
5 = 80

7. G1 =
⌈
A1

T1

⌉
8. G1 =

⌈
80
300

⌉
= 1

9. W1,g = B1 + (g + 1)C1 − F1 +
∑

∀j∈hp(1)

(⌊
W1,g

Tj

⌋
+ 1
)
C̃DA

1,j

10. W 0
1,0 = 5

11. W 1
1,0 = 75 + (0 + 1)5− 5 + 0 = 75

102

12. R1 = max∀g=0,1,2...G1(W1,g + F1 − gT1)

13. R1 = max∀g=0(75 + 5− (0 · 300)) = 80

The above calculation is for the response time of τ1. Firstly, B1 is 75 and

the active period is 80 so the number of jobs is 1. The start time of the final

non-preemptive region is 75 and finally the worst-cast response time is 80.

1. B2 = max
∀l∈lp(2)

(Fl − 1)

2. B2 = 75

3. A2 = B2 +
∑

∀j∈hep(2)

⌈
A2

Tj

⌉
C̃DA

2,j

4. A0
2 = 10

5. A1
2 = 75 +

⌈
10
300

⌉
5 +

⌈
10
400

⌉
10 = 90

6. A2
2 = 75 +

⌈
90
300

⌉
5 +

⌈
90
400

⌉
10 = 90

7. G2 =
⌈
A2

T2

⌉
8. G2 =

⌈
90
400

⌉
= 1

9. W2,g = B2 + (g + 1)C2 − F2 +
∑

∀j∈hp(2)

(⌊
W2,g

Tj

⌋
+ 1
)
C̃DA

2,j

10. W 0
2,0 = 10

11. W 1
2,0 = 75 + (0 + 1)10− 10 +

(⌊
10
300

⌋
+ 1
)

5 = 80

12. W 2
2,0 = 75 + (0 + 1)10− 10 +

(⌊
80
300

⌋
+ 1
)

5 = 80

13. R2 = max∀g=0,1,2...G2(W2,g + F1 − gT2)

14. R2 = max∀g=0(80 + 10− (0 · 400)) = 90

Now, the calculation for τ2 is that B2 is 75 and the active period is 90 so

the number of jobs is 1. The start time of the final non-preemptive region is

80 and then the worst-case response time is 90.

103

1. B3 = max
∀l∈lp(3)

(Fl − 1)

2. B3 = 0

3. A3 = B3 +
∑

∀j∈hep(3)

⌈
A3

Tj

⌉
C̃DA

3,j

4. A0
3 = 80

5. A1
3 = 0 +

⌈
80
300

⌉
5 +

⌈
80
400

⌉
10 +

⌈
80
500

⌉
80 = 95

6. A1
3 = 0 +

⌈
95
300

⌉
5 +

⌈
95
400

⌉
10 +

⌈
95
500

⌉
80 = 95

7. G3 =
⌈
A3

T3

⌉
8. G3 =

⌈
95
500

⌉
= 1

9. W3,g = B3 + (g + 1)C3 − F3 +
∑

∀j∈hp(3)

(⌊
W3,g

Tj

⌋
+ 1
)
C̃DA

3,j

10. W 0
3,0 = 80

11. W 1
3,0 = 0 + (0 + 1)80− 76 +

(⌊
80
300

⌋
+ 1
)

9 +
(⌊

80
400

⌋
+ 1
)

14 = 27

12. W 2
3,0 = 0 + (0 + 1)80− 76 +

(⌊
27
300

⌋
+ 1
)

9 +
(⌊

27
400

⌋
+ 1
)

14 = 27

13. R3 = max∀g=0,1,2...G3(W3,g + F3 − gT3)

14. R3 = max∀g=0(27 + 76− (0 · 500)) = 103

Lastly, B3 is 0 and the active period is 95 then the number of job is 1.

The start time of the non-preemptive region is 80 and the worst-case response

time is 103. From the calculations using Equations (5.6), (5.7) and (5.10), it

mathematically shows the task-set can be scheduled by the DA model using

the above approach.

104

5.3.1 AR or Non-preemptive Region Assignment

This subsection discusses the assignment of the final non-preemptive region

for the DA model. Previously, the equations for the response time analysis

were introduced but the values of the final non-preemptive region were pre-

defined. Now, we consider how to find out the best values of F for each task.

Intuitively, tasks are initially assigned with fully non-preemptive as the NP

model has high schedulability mostly. Once a task is not schedulable with

fully non-preemptive, reducing the non-preemptive region is required.

Regardless of the priority assignment, a binary search algorithm is a sim-

ple method to deal with the problem of the final non-preemptive region as-

signment. To illustrate, Figures 5.7 and 5.8 show how the binary search

algorithm applies to a DA task.

Figure 5.7: Procedures of using binary search for a DA task.

Step 1 When a task-set is not schedulable with fully non-preemptive, max

is equal to C and min is equal to 1.

105

Step 2 Mid is equal to (max + min)/2. If the task is schedulable with

F = mid then go to Step 3.1 otherwise go to Step 3.2.

Step 3.1 update the value min = mid.

Step 3.2 update the value max = mid.

Step 4.1 Again, mid is equal to (max + min)/2. The task is schedulable

with F = mid then go to Step 5.1.

Step 4.2 Again, mid is equal to (max+min)/2. The task is not schedulable

with F = mid then go to Step 5.2.

Step 5.1 update the value min = mid.

Step 5.2 update the value max = mid.

Figure 5.8: Procedures of using binary search for a DA task. (continued)

Step 6.1 Again, mid is equal to (max+min)/2. The task is not schedulable

with F = mid then go to Step 7.1.

106

Step 6.2 Again, mid is equal to (max + min)/2. The task is schedulable

with F = mid then go to Step 7.2.

Step 7.1 update the value max = mid but this time max moves to mid.

Step 7.2 update the value min = mid but this time min moves to mid.

Step n.1 Finally, the final non-preemptive region is found when mid is

pointed at max or min.

Step n.2 Finally, the final non-preemptive region is found when mid is

pointed at max or min.

The motivation of using binary search for the DA model is to find out

the length of the final non-preemptive region as maximum as possible. Now,

the assignment for the final non-preemptive region is introduced and then

priority assignment schemes will be discussed in the following subsection.

5.3.2 Priority Assignment Schemes

This subsection introduces priority assignment schemes for the DA model,

which is complicated because DA tasks can be fully AR, fully non-preemptive

or combined with both AR and NP. For fully AR tasks, the EUM priority

assignment can be used. For fully non-preemptive tasks, Audsley’s algorithm

can be used [26]. In the previous chapter, the EUM priority assignment, as

close to optimal, was introduced. To apply the EUM priority assignment, the

original C̃i
j in Equation (3.1) is required to change to C̃DA

i,j in Equation (5.6)

as a part of execution time can be non-preemptive. And then it can apply to

Algorithm 1. Intuitively, the EUM priority assignment does not offer good

performance for non-preemptive tasks. Now, we consider a new algorithm to

deal with the combination of AR and NP.

For a task-set consisting of AR, NP and DA tasks, we have to consider

the blocking times from low priority tasks and the interferences from high

priority tasks. Mostly, non-preemptive tasks have better schedulability than

AR tasks but an NP task cannot always be used due to long blocking time

and its influence on short deadline high priority tasks. For AR tasks using

107

the C̃i
j approach, the priority ordering needs to be considered as the ordering

of higher priority tasks is changed and that can affect the schedulability of

lower priority tasks. Intuitively, the approaches to design a new algorithm

should maximise NP regions and avoid backtracking.

There are many possible priority assignment for the DA model but a

heuristic algorithm is initially given by the following. Consider a task-set

ΓN = {τ1, τ2, ..., τn} and all tasks are set to fully non-preemptive. The as-

signment starts with the lowest priority, Pn. Each task is considered at Pn,

with other tasks having a higher priority. Afterwards, the binary search for

the DA model is used to calculate the final non-preemptive region and it is

schedulable under the response time analysis using Equation (5.10). A set of

values for Pn is calculated and a schedulable task with the bigger AR region

is picked. This task is given priority Pn. The next assignment then occurs

at Pn − 1 considering only those tasks that have not had their priority per-

manently assigned, and so on. The task-set is deemed to be unschedulable

if there is no schedulable task in the set. Backtracking is not needed as the

tasks with a bigger AR region are assigned to lower priorities. Although it is

not an optimal scheme, it is guaranteed to avoid backtracking. In this thesis,

we call this heuristic algorithm the MAXAR algorithm.

To illustrate, Figure 5.9 shows five tasks, τ1, τ2, τ3, τ4 and τ5, regardless of

the parameters of the tasks. The symbol X means the task is not schedulable

at that level. The example starts in Figure 5.9a. The assignment starts with

the lowest priority and the next column is a set of values for each task.

Those values are calculated based on the lowest priority level. τ3 and τ4

are not schedulable with the lowest priority. τ5 with AR = 10 is picked and

permanently assigned the lowest priority. The size of the final non-preemptive

region is irrelevant as a biggest AR region is considered to avoid backtracking.

After the lowest priority level is assigned, the example continues to Figure

5.9b; it shows a set of values for the second lowest priority level. This time τ1

is 1. In Figure 5.9c, τ2 is picked; in Figure 5.9d: τ4 is picked. Finally, τ3 has

the highest priority. Hence, the final priority assignment is {τ3, τ4, τ2, τ1, τ5}.
The comparison of the EUM algorithm and the MAXAR algorithm will be

shown in the section of experimental evaluation.

108

Figure 5.9: The concept of the MAXAR algorithm.

109

5.4 Experimental Evaluation

This section shows the results from the experiments on the comparison of

EUM and MAXAR algorithms under the DA model. DA tasks can be fully

AR, fully non-preemptive or DA, so there are four different tests which are 1)

fully AR with EUM assignment, 2) fully non-preemptive with EUM assign-

ment, 3) DA with EUM assignment and 4) DA with MAXAR assignment.

The schedulability test is using the equations developed in this chapter. It

includes the response time analysis for the DA model, the C̃DA
i,j approach

and the binary search for the final non-preemptive region assignment. The

parameters of the experiments are:

• Deadline is equal to period.

• All tasks are periodic.

• A set of N utilisation values Ui was generated by the UUniFast Algo-

rithm [13].

• Task periods were generated between 500 and 5000 according to a log-

uniform distribution3. And the computed value Ti is assigned to τi.

• Task execution times are: Ci = Ui · Ti

• Utilisation for task-sets are ranged between 30% and 60% because some

results reach 0% schedulability.

• Each utilisation rate generates 10000 different task-sets, i.e. U = 30%

generates 10000 task-sets, U = 31% generates another 10000 task-sets,

and so on.

• The numbers of tasks are 5, 10 and 15.

For all diagrams, the X-axis is Utilisation rate and the Y-axis is the

Schedulability rate, i.e. the percentage of task-sets that were deemed schedu-

lable.
3The log-uniform distribution of a variable x is such that ln(x) has a uniform distribu-

tion.

110

Figure 5.10: 5-tasks task-sets under the DA model.

In Figure 5.10, the number of tasks is 5, which is small, and the schedu-

lability is expected to be higher. The line of AR-EUM is the result of the

schedulability rate for fully AR with the EUM algorithm. It is similar to

the result from Section 4.4, and it has poor performance compared to others.

The line of NP-EUM is the result of fully non-preemptive with the EUM

algorithm. Although EUM is not an optimal priority assignment for the NP

model, it is still better than AR-EUM. The line of DA-EUM is the result

of DA with the EUM algorithm. It is far better than both AR-EUM and

NP-EUM. Indeed, DA dominates fully AR and fully non-preemptive. Lastly,

the line of DA-MAXAR has the best performance. Although the MAXAR

algorithm is a heuristic, the result shows a big improvement at 60% utilisa-

tion.

In Figure 5.11, the number of tasks is 10. The line of AR-EUM is dropped

as expected, and it reaches 0% schedulability at 50% utilisation. The line of

NP-EUM is degraded too but it has not reached 0% schedulability before 60%

utilisation. The line of DA-EUM has less schedulability than before. Now

the line of DA-MAXAR has better schedulability than the result from 5-tasks

111

Figure 5.11: 10-tasks task-sets under the DA model.

task-sets. The result is not expected, so further analysis and discussion will

follow.

In Figure 5.12, the number of tasks is 15 which is bigger. The line of

AR-EUM has very poor performance which also reaches 0% schedulability

at 40% utilisation. The line of NP-EUM finally reaches 0% schedulability at

60% utilisation. The line of DA-EUM has dropped a bit than before. The

line of DA-MAXAR is again improved.

The results of DA-MAXAR from above are not expected. When the num-

ber of tasks is increased, the schedulability also increases. In the meantime,

the execution times of tasks will be smaller relatively. The NP model gets the

benefit of small execution times because the blocking times will be smaller.

To illustrate, Figure 5.13 shows three cases of different numbers of tasks.

The utilisation of the system is set to 60%. When the number of tasks is 3,

each task has five boxes for its execution time. When the number of tasks

is 5, the execution time of each task is three boxes. When the number of

tasks is 15, only one box represent the execution time for each task. By this

example, the blocking time is very small in the task-set with N = 15. To

112

Figure 5.12: 15-tasks task-sets under the DA model.

Figure 5.13: The relationship between different numbers of tasks.

113

show this is correct, a further experiment is done and it is given below.

The experiment below is to show that the NP model has an advantage

with a bigger number of tasks. The test of fully non-preemptive with Auds-

ley’s algorithmm is added. The schedulability is the same as above.

Figure 5.14: The number of tasks is 5.

In Figure 5.14 for 5 tasks, the line of NP-AA is better than the line of DA-

EUM because of the optimal priority assignment for fully non-preemptive.

The line of DA-MAXAR is still the best.

In Figure 5.15, the number of tasks is 10. Both lines of NP-AA and

DA-MAXAR are increased for their schedulability.

Lastly, Figure 5.16 shows the result for the 15-tasks task-set. The lines of

NP-AA and DA-MAXAR indeed show get better improvement with a bigger

number task.

5.5 Summary

To summarise, this chapter has introduced an alternative scheme, deferred

abort, to improve the schedulability of the AR model. The DA model com-

114

Figure 5.15: The number of tasks is 10.

Figure 5.16: The number of tasks is 15.

115

bines the techniques of non-preemptive and AR. To implement the DA model,

new equations are introduced, and an experiment evaluation is provided.

During the discussion of the results from the experiments, the advantage of

a bigger number task for the NP model is observed. A heuristic is developed

for priority assignment. It performs well; however, it is not optimal and it is

possible that an improvement to the heuristic is possible.

116

Chapter 6

A Tighter Analysis for the AR

Model

This chapter introduces a tighter analysis of schedulability tests for the AR

model. Chapter 3 has introduced a simple approach, C̃i
j, to deal with the

response time analysis for the AR model, and it simplified the calculations on

the analysis used with EUM priority assignment. In reality, higher priority

tasks does not always abort the lower priority task with the biggest execution

time on every release; therefore the higher priority task aborts the lower

priority task with the second biggest execution time.

To illustrate, Figure 6.1 shows the case that the second job of τ1 aborts

τ3 which has a smaller C. The task-set has three tasks, τ1, τ2 and τ3. The

top task, τ1, has the highest priority. The pale grey box means abort cost.

The dark grey box means fully executed. The upward arrow means a point

of release. The downward arrow means a point of abort. For τ1, the lower

priority task with the biggest execution time is τ2. For τ2, the lower priority

task with the biggest execution time is τ3. The first job of τ1 aborts τ2.

Before the second job of τ1 releases, τ2 is done. Therefore, τ1 cannot abort

τ2 a second time and has to choose τ3 to abort.

The above example shows that the current response time analysis for the

AR model can be less pessimistic if the analysis of choosing an abort task is

done on each release. Now we consider an approach to deal with the analysis

117

Figure 6.1: The second job of τ1 aborts τ3 which has a smaller C.
.

of each release. The following section introduces an analysis on cache related

preemption delay which will be adapted in Section 6.2 to the AR model.

6.1 Cache Related Preemption Delay Analy-

sis

This section briefly introduces an analysis on Cache Related Preemption

Delay (CRPD), where each preemption follows a cache delay and the cost

of the preemption is related to the preempted tasks. Different tasks have

different preemption costs. To assume that all preemptions have the worst-

case cost is pessimistic. To deal with the analysis of preemption costs, the

multi-set approach [2, 3] has been introduced.

The response time with the preemption costs can be calculated [19] by

the following equation.

Ri = Ci +
∑
∀j∈hp(i)

(⌈
Ri + Jj
Tj

⌉
Cj + γi,j

)
(6.1)

118

γi,j represents the total preemption cost of τj when scheduling τi. The

preemption cost may be different on each release so the equation cannot sim-

ply apply the sum of Cj and the first preemption cost. In this equation, the

release jitter Jj for τj is considered. The computation of γi,j depends on the

approach used. For the AR model, a new approach is required. In the paper

written by Altmeyer et al. [3], the authors used a multi-set M to contain

all the possible costs. As this approach is used for cache related preemption

delay analysis and cannot apply to the AR model, the explanations of the

above equations are not given in detail. In the following section, we adapt

this approach to the AR model.

6.2 A New Approach for the AR Model

This section introduces how to adapt the multi-set approach to the AR model.

When scheduling a task τi, a higher priority task τj can abort any task

τk ∈ hep(i)
⋂
lp(j) up to Ej(Ri) times, where Ej(Ri) is the number of release

of τj within the response time of τi. Here, a term multi-bag is used instead

of multi-set. A bag Mi,j contains a series of abort costs which comes from

available tasks k ∈ hep(i)
⋂
lp(j) within the response time Ri. To calculate

the total abort cost, τj sums up Ej(Ri) largest values from Mi,j. A task-set

has a number of bags for each task. Therefore, we call this approach the

multi-bag, in this thesis.

To implement the multi-bag approach, the equations from the section of

CRPD analysis are adapted as below.

Ri = Ci +
∑
∀j∈hp(i)

(⌈
Ri

Tj

⌉
Cj + γi,j

)
(6.2)

The response time analysis with abort cost for the AR model can be

computed by the above equation. γi,j is the abort cost of τj. The jitter Jj is

removed from this equation as it is not considered in this thesis.

In the C̃i
j approach, the interference cost from τj is the sum of its original

execution time, Cj, and the maximum abort cost of τj. The equation is

shown below.

119

⌈
Ri

Tj

⌉
C̃i

j ⇒
⌈
Ri

Tj

⌉
Cj +

⌈
Ri

Tj

⌉
max

∀k∈hepi
⋂

lpj
Ck (6.3)

For the multi-bag approach, all possible abort costs are considered and

are needed to be contained in a bag. The equation of the maximum abort

cost, to the left, is required to change to the equation of all possible abort

costs, to the right.

⌈
Ri

Tj

⌉
max

∀k∈hepi
⋂

lpj
Ck ⇒

⌈
Ri

Tj

⌉ ⋃
Ej(Rk)Ek(Ri)

Ck

 (6.4)

Now the equation for finding out possible abort costs is shown below.

cost =

 ⋃
Ej(Rk)Ek(Ri)

Ck

 (6.5)

To apply Equation (6.5) to the multi-bag approach, a new equations is

given by:

Mi,j =
⋃

k∈hep(i)
⋂

lp(j)

 ⋃
Ej(Rk)Ek(Ri)

Ck

 (6.6)

In this equation, Mi,j is a bag for τj when scheduling τi. It contains a

series of abort costs which comes from available tasks k ∈ hep(i)
⋂
lp(j) within

the response time Ri. τj represents aborting task τk Ej(Rk)Ek(Ri) times for

each task τk ∈ hep(i)
⋂
lp(j), and those abort costs Ck are added to Mi,j.

γi,j =

Ej(Ri)∑
l=1

M l
i,j (6.7)

γi,j is then given by the Ej(Ri) largest values in Mi,j, where M l
i,j is the

l − th largest value in Mi,j. To illustrate, a task-set is given in Table 6.1.

The task-set has three tasks, τ1, τ2 and τ3. The priority ordering is

P1 > P2 > P3. Firstly, the approach of C̃i
j and the standard response time

analysis in Equation (2.5) are used, but the task-set cannot be schedulable.

The values for C̃3
1 , C̃

3
2 , C̃

3
3 are 13, 13 and 3. The calculation is shown below.

120

Task T=D C
τ1 25 3
τ2 35 10
τ3 45 3

Table 6.1: An example task-set.

1. R0
3 = 3

2. R1
3 = 3 + (

⌈
3
25

⌉
· 13 +

⌈
3
35

⌉
· 13) = 29

3. R2
3 = 3 + (

⌈
29
25

⌉
· 13 +

⌈
29
35

⌉
· 13) = 42

4. R3
3 = 3 + (

⌈
42
25

⌉
· 13 +

⌈
42
35

⌉
· 13) = 55

.

It ends here because the response time is bigger than the deadline.

Figure 6.2: The task-set cannot pass with the C̃i
j approach.

Figure 6.2 shows the three tasks: the white box is τ1, the grey box is τ2

and the black box is τ3. One box represents 1 time unit. On the time line of

τ1, the execution boxes combine 3 white boxes and 10 grey boxes because C̃3
1

is 3 + 10. The figure only depicts the analysis of the standard response time.

On the time line of τ2, there are 10 grey boxes and 3 black boxes. On the

lowest time line, τ3 missed its deadline after a few iterations. The task-set is

deemed to be not schedulable using the C̃i
j approach.

Now the multi-bag approach is used and the procedures are shown in

detail. Firstly, τ1 is analysed and the calculation is given by:

121

1. R0
1 = 3

Obviously, the response time for the highest priority task is its execution

time C1 but the value R1 = 3 is needed for the next calculation.

Figure 6.3: The response time analysis for τ1.

Figure 6.3 shows the response time R1 of τ1 is 3. This simple diagram is

only a reference. Below, τ2 is analysed and R0
2 starts with 10. After two more

iterations, the response time is computed then R2 is 23. The calculation is

given by:

1. R0
2 = 10

2. R1
2 = 10 + (

⌈
10
25

⌉
· 3 + γl=1

2,1 {10}) = 23

3. R2
2 = 10 + (

⌈
23
25

⌉
· 3 + γl=1

2,1 {10}) = 23

Figure 6.4 shows the analysis of the response time for τ2. On the time line

of τ1, the execution time combines 3 white boxes and 10 grey boxes because

the abort cost for τ1 is γl=1
2,1 {M l

2,1} and the bag M2,1 only contains 10 within

the response time R2 = 23.

After the response time R2 is found, the response time for τ3 can be

computed as below.

1. R0
3 = 3

2. R1
3 = 3 + (

⌈
3
25

⌉
· 3 + γl=1

3,1 {10, 3}) + (
⌈

3
35

⌉
· 10 + γl=1

3,2 {3}) = 29

122

Figure 6.4: The response time analysis for τ2.

3. R2
3 = 3 + (

⌈
29
25

⌉
· 3 + γl=1,2

3,1 {10, 3, 3}) + (
⌈
29
35

⌉
· 10 + γl=1

3,2 {3}) = 35

4. R3
3 = 3 + (

⌈
35
25

⌉
· 3 + γl=1,2

3,1 {10, 3, 3}) + (
⌈
35
35

⌉
· 10 + γl=1

3,2 {3}) = 35.

R0
3 starts with 3 and the first iteration shows the R3 is 29. R3 is bigger

than T1 so there is another release for τ1. On the second iteration, R3 is now

35 and the calculation stops after the third iteration as there is no another

release. The response time for τ3 is 35 and the task-set is deemed to be

schedulable with the multi-bag approach.

Figure 6.5: The response time analysis for τ3.

Figure 6.5 shows the analysis of the response time for τ3. On the time line

of τ1, the execution time of the first job combines 3 white boxes and 10 grey

boxes because the abort cost for τ1 is γl=1
3,1 {M l

3,1} and the bag M3,1 contains

10 and 3. On the time line of τ2, the execution time of the first job combines

10 grey boxes and 3 black boxes because the abort cost for τ1 is γl=1
3,2 {M l

3,2}
and the bag M3,2 only contains a value, 3.

123

On the time line of τ1, the execution time of the second job combines 3

white boxes and 3 black boxes this time because R2 is 23 (see Figure 6.4) and

T2 is 35 and that means no task can abort τ2 between 23 and 35. The abort

cost for the second job of τ1 is 3 as γl=2
3,1 {M l

3,1} and the bag M3,1 contains 10,

3 and 3. τ3 just meets the deadline at 35. Please note that the figure only

depicts the analysis and it does not mean non-preemptive is used.

As the above example shows, the multi-bag approach can improve the

schedulability for the AR model. The following section shows the experiments

on comparison of the C̃i
j and the multi-bag approaches. The new approach

clearly dominates the original, as the original is equal to a bag with maximum

values.

6.3 Experimental Evaluation

This section shows the results from the experiments of the comparison of the

C̃i
j and the multi-bag approaches with DM and EUM priority assignment.

To be consistent, the structure of the experiment is similar to the previous

experiments. The parameters of the experiments are:

• Deadline is equal to period.

• All tasks are periodic.

• A set of N utilisation values Ui was generated by the UUniFast Algo-

rithm [13].

• Task periods were generated between 5000 and 50000 according to a

log-uniform distribution1. And the computed value Ti is assigned to τi.

• Task execution times are: Ci = Ui · Ti

• Utilisation for task-sets are ranged between 10% and 60%.

1The log-uniform distribution of a variable x is such that ln(x) has a uniform distribu-
tion.

124

• Each utilisation rate generates 10000 different task-sets, i.e. U = 30%

generates 10000 task-sets, U = 31% generates another 10000 task-sets,

and so on.

• The numbers of tasks are 5, 10, 15 and 20. An additional 8-tasks

task-set for an exhaustive search is included at the end.

For all diagrams, the X-axis is Utilisation rate and the Y-axis is the

Schedulability rate, i.e. the percentage of task-sets that were deemed schedu-

lable.

Figure 6.6: Comparison of C̃i
j and multi-bag approaches with n = 5.

Firstly, Figure 6.6 shows the result of the 5-tasks task-set. The line of

DM represents the result of the C̃i
j approach with DM ordering; it has the

worst performance. The line of DM-MB represents the result of the multi-bag

approach with DM ordering; there is an improvement compared to the line

of DM. The line of EUM is the result of the C̃i
j approach with EUM ordering;

it has much better performance than both results of DM and DM-MB. The

line of EUM-MB has slight improvement. Although the figure does not show

125

it clearly, the difference can be found from the exact result of the data of this

experiment.

Figure 6.7: Comparison of C̃i
j and multi-bag approaches with n = 10.

Secondly, Figure 6.7 shows the result of the 10-tasks task-set. As ex-

pected, the schedulability of all lines is reduced. The pattern of the result

is similar to the previous result. The difference between the lines of DM

and DM-EUM is apparently shown on the diagram. The lines of EUM and

EUM-MB are still stuck together but the improvement still exists from the

exact data.

Figure 6.8 shows the result of 15-tasks task-set. The schedulability is just

scaled down from the previous result as the number of tasks is increased. A

gap between the lines of DM and DM-EUM still shows on the diagram. The

lines of EUM and EUM-MB are still stuck together but the improvement

still exists from the exact data.

Lastly, Figure 6.9 shows the result of the 20-tasks task-set. The gap

between the lines of DM and DM-EUM becomes narrow. By this trend,

the multi-bag approach offers less improvement when the number of tasks

increases. At this level of number of tasks, EUM-MB still has improvement

126

Figure 6.8: Comparison of C̃i
j and multi-bag approaches with n = 15.

Figure 6.9: Comparison of C̃i
j and multi-bag approaches with n = 20.

127

as shown by the exact experiment data.

Figure 6.10: Comparison of EUM and ES with the multi-bag approach and
n = 8.

This is an additional experiment where the number of tasks is 8 and the

tests are DM-MB, EUM-MB and ES-MB (exhaustive search, i.e. optimal).

This experiment aims at the performance of the multi-bag approach with

different priority assignments. As the computation of exhaustive search is

huge, the number of tests for each utilisation is reduced to 1000 times. The

line of DM-MB has the worst performance, as expected. The line of EUM-

MB is close to the line of ES-MB. As the previous chapter shows, EUM is

close to optimal; the result from this experiment is further evidence that

EUM is close to optimal with even the multi-bag approach.

To evaluate the results, the multi-bag approach offers an obvious im-

provement if the priority assignment is far from optimal. For better priority

assignment, the schedulability is slightly better. The reason is that the goal of

the multi-bag approach provides a tighter analysis on the decision of aborts.

In other words, a mid-level priority task with the biggest execution time

and a bigger period cannot be aborted by higher priority tasks between its

128

completion time and the next release time. This experiment only generated

unbiased task-sets, and this did not put emphasis on the improvement of

using the multi-bag approach.

As the task-set generator is general, it does not create particular task-

sets to show the performance of using the multi-bag approach. We created

another set of diagrams using the same data from the above experiment.

For the below diagrams, the X-axis is Utilisation rate and the Y-axis is the

Average response time.

Figure 6.11: Compare average response time of 5-tasks task-sets.

Figure 6.11 with 5-tasks task-sets shows the results that EUM and EUM-

MB have shorter response times. A short response time means a higher

possibility of meeting the deadline. The difference between DM and DM-

MB is obvious as DM priority assignment is worst for the AR model in

most cases. The multi-bag approach shows its advantage clearly. The lines

DM and DM-MB become jaggy after 40% utilisation because the number of

schedulable task-sets is reduced rapidly for the DM priority assignment.

Figure 6.12 with 10-tasks task-sets shows a similar pattern to the results

of the 5-tasks task-sets, but this time all lines become jaggy at the end. The

129

Figure 6.12: Compare average response time of 10-tasks task-sets.

results of DM and DM-MB reach fully unschedulable at 46%, and the results

of EUM and EUM-MB at 58%.

Figure 6.13 with 15-tasks task-sets has a similar pattern to the results

of the 10-tasks task-sets. Now the difference between with and without the

multi-bag approach becomes clear.

Lastly, Figure 6.14 with 20-tasks task-sets is shown as expected. The

result is scaled down from the result of the 15-tasks task-sets. The figures

have a better presentation than before although the same data is used.

6.4 Summary

This chapter introduced a tighter analysis on schedulability tests for the AR

model. A new approach, multi-bag, is introduced to give a tighter analysis

on the decision of each abort. Firstly, the previous analysis is pessimistic

in that higher priority tasks cannot always abort the lower priority task

with the biggest execution time. Figure 6.1 shows a case which is improved.

Afterwards, the analysis of CRPD was studied to adapt its equations for the

130

Figure 6.13: Compare average response time of 15-tasks task-sets.

Figure 6.14: Compare average response time of 20-tasks task-sets.

131

AR model. Finally, the multi-set approach from CRPD was adapted to the

AR model and we called it the multi-bag approach. Some calculations and

some figures are presented. The section of experimental evaluation consists of

five results. The C̃i
j approach with DM and EUM orderings and the multi-bag

approach with DM and EUM orderings are compared with each other. Lastly,

an additional experiment is to compare with the exhaustive search priority

assignment. In the beginning of this thesis, the simple C̃i
j approach was

introduced to be heuristic for the AR model. Now the multi-bag approach

deals with a tighter analysis on the decision of each abort. Although the

evaluations show that the multi-bag approach shows an improvement in terms

of schedulability, for randomly generated task-sets it is not major. The next

chapter will apply the multi-bag approach to the DA model.

132

Chapter 7

Multi-bag approach for the DA

Model

This chapter considers how to apply the multi-bag approach to the DA model.

As Chapter 6 showed, the AR model with the multi-bag approach has an

improvement on the response time analysis; the DA model should benefit

from this advantage as well. The multi-bag approach can be used to deal

with the abort cost for the AR model. Intuitively, the DA model can also use

the multi-bag approach to deal with the abort cost if AR regions are adapted

to the multi-bag approach.

To illustrate, Figure 7.1 is an example to show how the multi-bag ap-

proach applies to the DA model. The grey box is the abort cost. The white

box is the AR region and the black box is the non-preemptive region. The

upward arrow is a release and the downward arrow is an abort. There are

three tasks: τ1, τ2 and τ3 with the priority levels, P1 > P2 > P3. τ1 is a

fully non-preemptive task. Both τ2 and τ3 have 50% of execution time as

AR region and 50% of execution time as non-preemptive region. Firstly,

the first job of τ2 aborts τ3 before it enters the final non-preemptive region.

Afterwards, the first job of τ1 aborts the first job of τ2 before it enters the

final non-preemptive region and then the first job of τ2 is finished before the

second job of τ1 releases. For this reason, the second job of τ1 can only abort

τ3, not τ2 for a second time.

133

Figure 7.1: The DA model using multi-bag approach.

The above example shows that a higher priority task can only abort a

lower priority task before the final non-preemptive region of the lower priority

task. By using the multi-bag approach, a higher priority job only aborts a

lower priority job which is still waiting for execution. Now we consider new

equations to apply the multi-bag approach to the DA model. The following

section is the implementation of using the multi-bag approach for the DA

model.

7.1 Implementation

This section introduces new equations for the multi-bag approach and the DA

model. The equations for the multi-bag approach in Chapter 6 do not con-

sider the AR and the non-preemptive regions, and the equations for the DA

model in Chapter 5 are adapted to the C̃i
j approach. Firstly, the equations

of the multi-bag approach for the DA model are introduced below.

The equation to calculate the abort cost can be directly reused but the

134

symbol γDA
i,j is used to indicate this equation is for the DA model. γDA

i,j is the

abort cost of τj when scheduling τi.

γDA
i,j =

Ej(Ri)∑
l=1

M l
i,j (7.1)

where M l
i,j is the l− th largest value in Mi,j. To compute a bag, Mi,j, the

equation is given by:

Mi,j =
⋃

k∈hep(i)
⋂

lp(j)

 ⋃
Ej(Rk)Ek(Ri)

(Ck − Fk)

 (7.2)

As the abort cost may not be the entire execution time in the DA model,

the abort cost can be calculated by Ck − Fk. Ck is the entire execution time

and Fk is the final non-preemptive region. The result of Ck − Fk is actually

the AR region of τk. Now all the equations for the multi-bag approach are

introduced.

For the equations of the DA model using the multi-bag approach, we

firstly start with the equation of the priority level-i active period. The equa-

tion (in Chapter 5) can be reused.

Ai = Bi +
∑

∀j∈hep(i)

⌈
Ai

Tj

⌉
C̃DA

i,j (7.3)

We note that Equations (7.1) and (7.2) require the value of Ri, and the

priority level-i active period cannot compute the response time so the value

of C̃DA
i,j is still used here. A bigger priority level-i active period does not

affect the schedulability.

For computing the blocking time, the equation does not require any

change. The equation is given by:

Bi = max
∀l∈lp(i)

(Fl − 1) (7.4)

For the calculation of the number of jobs, the equation does not relate to

any execution time and abort cost so the same equation can be used.

135

Gi =

⌈
Ai

Ti

⌉
(7.5)

The equation of starting time of the final non-preemptive region is given

by:

WDA
i,g = Bi + (g + 1)Ci − Fi +

∑
∀j∈hp(i)

(⌊
Wi,g

Tj

⌋
+ 1

)
Cj + γDA

i,j (7.6)

The symbol of DA is the indication of the DA model. WDA
i,g is the starting

time of g-th job of τi. The equation uses the value γDA
i,j as the total abort

cost.

Finally, the worst-case response time can be computed by the below equa-

tion.

Ri = max∀g=0,1,2...Gi
(WDA

i,g + Fi − gTi) (7.7)

The following section will give an example to illustrate the application of

these equations.

7.2 Example

This section illustrates how the above equations apply to a task-set and show

that the multi-bag approach can schedule the task-set but the C̃DA
i,j approach

cannot.

Task T=D C AR F
τ1 90 6 0 6
τ2 240 120 36 84
τ3 300 4 0 4

Table 7.1: An example task-set.

In Table 7.1, there are three tasks and the top task has the highest priority.

The values of the final non-preemptive regions are assigned. The values of

136

AR regions are included to make the calculation clear.

Task T=D C AR F C̃DA
3,j

τ1 90 6 0 6 42
τ2 240 120 36 84 120
τ3 300 4 0 4 4

Table 7.2: An example task-set with C̃DA
3,j .

Firstly, the C̃DA
i,j approach is applied to this task-set. Table 7.2 is the

task-set with the values of C̃DA
3,j . For computing the DA task-set with the

C̃DA
i,j , the calculation for τ3 is shown as below.

1. B3 = max
∀l∈lp(3)

(Fl − 1)

2. B3 = 0

3. W3,g = B3 + (g + 1)C3 − F3 +
∑

∀j∈hp(3)

(⌊
W3,g

Tj

⌋
+ 1
)
C̃DA

3,j

4. W 0
3,0 = B3 + (g + 1)C3 − F3 = 0 + (0 + 1)4− 4 = 0

5. W 1
3,0 = 0 + (0 + 1)4− 4 +

(⌊
0
90

⌋
+ 1
)

42 +
(⌊

0
240

⌋
+ 1
)

120 = 162

6. W 2
3,0 = 0 + (0 + 1)4− 4 +

(⌊
162
90

⌋
+ 1
)

42 +
(⌊

162
240

⌋
+ 1
)

120 = 204

7. W 3
3,0 = 0 + (0 + 1)4− 4 +

(⌊
204
90

⌋
+ 1
)

42 +
(⌊

204
240

⌋
+ 1
)

120 = 246

8. W 4
3,0 = 0 + (0 + 1)4− 4 +

(⌊
246
90

⌋
+ 1
)

42 +
(⌊

246
240

⌋
+ 1
)

120 = 366

The above calculation shows that the blocking time B3 is 0. Only the first

job of τ3 is considered so the value of g is 0 and it then computes the starting

time of the non-preemptive region for τ3. The initial value of the W 0
3,0 is 0 as

the task is fully non-preemptive. The calculation ends at the fourth iteration

where the value is 366. It is already bigger than the deadline. The task-set

is deemed to be not schedulable using the C̃DA
i,j approach.

Now the multi-bag approach is applied to this task-set. As the approach

uses the multi-bag to deal with the abort costs, the values of C̃DA
3,j are not

necessary. The calculations are given below.

137

1. B1 = max
∀l∈lp(1)

(Fl − 1)

2. B1 = 84− 1 = 83

3. W1,g = B1 + (g + 1)C1 − F1 +
∑

∀j∈hp(1)

(⌊
W1,g

Tj

⌋
+ 1
)
Cj + γ1,j

4. W 0
1,0 = B1 + (g + 1)C1 − F1 = 83 + (0 + 1)6− 6 = 83

5. W 1
1,0 = 83 + (0 + 1)6− 6 = 83

6. R1 = max∀g=0,1,2...G3(W1,g + F1 − gT1)

7. R1 = max∀g=0(83 + 6− (0 · 90)) = 89

The computation starts with τ1 that the blocking time is 83, and the

starting time is 83. The response time R1 is 89 and it meets the deadline.

1. B2 = max
∀l∈lp(2)

(Fl − 1)

2. B2 = 4− 1 = 3

3. W2,g = B2 + (g + 1)C2 − F2 +
∑

∀j∈hp(2)

(⌊
W2,g

Tj

⌋
+ 1
)
Cj + γ2,j

4. W 0
2,0 = B2 + (g + 1)C2 − Fl = 3 + (0 + 1)120− 84 = 39

5. W 1
2,0 = 39 +

(⌊
39
90

⌋
+ 1
)

6 + γl=1
2,1 {36} = 81, see footnote 1

6. W 2
2,0 = 39 +

(⌊
81
90

⌋
+ 1
)

6 + γl=1
2,1 {36} = 81

7. R2 = max∀g=0,1,2...G3(W1,g + F1 − gT1)

8. R2 = max∀g=0(81 + 84− (0 · 240)) = 165

The above steps are the calculation of τ2. The blocking time is 3 and the

starting time of the final non-preemptive region is 81. The value of γl=1
2,1 {36}

contains one value, 36, which is the abort from τ1 to τ2. After, there is no

other release from τ1. The calculation has stopped at the value 81. The

response time of τ2 is 165.

1where γ2,1 = M2,1{AR2}, AR2 = C2 − F2 = 36.

138

1. B3 = max
∀l∈lp(3)

(Fl − 1)

2. B3 = 0

3. W3,g = B3 + (g + 1)C3 − F3 +
∑

∀j∈hp(3)

(⌊
W3,g

Tj

⌋
+ 1
)
Cj + γ3,j

4. W 0
3,0 = B3 + (g + 1)C3 − F3 = 0 + (0 + 1)4− 4 = 0

5. W 1
3,0 = 0+

(⌊
0
90

⌋
+ 1
)

6+γl=1
3,1 {36, 0}+

(⌊
0

240

⌋
+ 1
)

120+γl=1
3,2 {0} = 162,

see footnote 2

6. W 2
3,0 = 0+

(⌊
162
90

⌋
+ 1
)

6+γ
l={1,2}
3,1 {36, 0, 0}+

(⌊
162
240

⌋
+ 1
)

120+γl=1
3,2 {0} =

168, see footnote 3

7. W 3
3,0 = 0+

(⌊
168
90

⌋
+ 1
)

6+γ
l={1,2}
3,1 {36, 0, 0}+

(⌊
168
240

⌋
+ 1
)

120+γl=1
3,2 {0} =

168

8. R3 = max∀g=0,1,2...G3(W3,g + F1 − gT3)

9. R3 = max∀g=0(168 + 4− (0 · 300)) = 172

Lastly, the blocking time of τ3 is 0 and the starting time of the non-

preemptive region is 168. At the first iteration, γ3,1 consists of 36 and 0, and

γ3,2 consists of 0. τ1 can abort τ2 and τ3 so the values of AR2 and AR3 are

stored into a bag, M3,1. τ2 can only abort τ3 but τ3 is fully non-preemptive

and then the bag M3,2 consists of one value, 0. At the second iteration,

there is another release for τ1 at 90 but τ2 has already entered its final non-

preemptive region. At that point, the values of γ3,1 contained are 36, 0 and

0. The final value of the starting time is 168 and the worst-case response

time is 172.

The above calculations show that the multi-bag approach can schedule

the example task-set but the C̃DA
i,j approach cannot. The following section

will give some experiments based on this analysis.

2where γ3,1 = M3,1{AR2, AR3}, AR2 = C2 − F2 = 36 and AR3 = 0.
3where l = {1, 2} because there are two releases and τ1 can abort two jobs. γ3,1 =

M3,1{AR2, AR3, AR3}. τ1 cannot abort τ2 twice because the second job of τ1 is released
at 90 and τ2 has entered its final non-preemptive region.R2 − F2 = 165− 84 = 81.

139

7.3 Experimental Evaluation

This section shows the results from the experiments of the comparison of the

C̃DA
i,j and the multi-bag approaches with EUM and MAXAR priority assign-

ment for the DA model. To be consistent, the structure of the experiment is

similar to the previous experiments. The parameters of the experiments are:

• Deadline is equal to period.

• All tasks are periodic.

• A set of N utilisation values Ui was generated by the UUniFast Algo-

rithm [13].

• Task periods were generated between 5000 and 50000 according to a

log-uniform distribution4. And the computed value Ti is assigned to τi.

• Task execution times are: Ci = Ui · Ti

• Utilisation for task-sets are ranged between 30% and 60%.

• Each utilisation rate generates 1000 different task-sets, i.e. U = 30%

generates 1000 task-sets, U = 31% generates another 1000 task-sets,

and so on.

• The numbers of tasks are 5, 10, 15 and 20.

For each diagram, the X-axis is Utilisation rate and the Y-axis is the

Schedulability rate, i.e. the percentage of task-sets that were deemed schedu-

lable.

In Figure 7.2, there are 4 lines: MAXAR-MB, MAXAR, EUM-MB and

EUM. The line of MAXAR-MB means the test used the multi-bag approach

with the MAXAR priority assignment for the DA model. The line of MAXAR

is the test using the C̃DA
i,j approach with the same MAXAR priority assign-

ment. The line of EUM-MB represents the test using the multi-bag approach

4The log-uniform distribution of a variable x is such that ln(x) has a uniform distribu-
tion.

140

Figure 7.2: The DA model using multi-bag approach with n = 5.

with the EUM-MB priority assignment. The line of EUM presents the test

using the C̃DA
i,j approach with the EUM priority assignment. A higher schedu-

lability rate means better performance in the experiment. The number of

tasks is 5, and the result of MAXAR-MB is slightly better than MAXAR

and then EUM-MB is better than EUM.

In Figure 7.3, the number of tasks is 10. The results of MAXAR-MB

and MAXAR are much better than the results of EUM-MB and EUM. The

difference between MAXAR-MB and MAXAR is less. For the results of

EUM-MB and EUM, the difference is still obvious.

Figure 7.4 is the test with 15-tasks task-sets, and the results of MAXAR-

MB and MAXAR are better than the results with 10-tasks task-set because

increasing the number of tasks improves the schedulability for the DA model

with the MAXAR priority assignment (see Chapter 5). The difference be-

tween EUM-MB and EUM is less now.

Lastly, Figure 7.5 is the result of 20-tasks task-sets. The results of

MAXAR-MB and MAXAR are almost 100% at 50%. The difference between

EUM-MB and EUM is decreased.

141

Figure 7.3: The DA model using multi-bag approach with n = 10.

Figure 7.4: The DA model using multi-bag approach with n = 15.

142

Figure 7.5: The DA model using multi-bag approach with n = 20.

As the task-set generator is general, it does not create particular task-sets

to show the performance of using the multi-bag approach. As we did in the

last chapter, we created another set of diagrams using the same data from

the above experiment. For the below diagrams, the X-axis is Utilisation rate

and the Y-axis is the Average response time.

In Figure 7.6, there are 4 lines: MAXAR-MB, MAXAR, EUM-MB and

EUM. The line of MAXAR-MB means the test using the multi-bag approach

with the MAXAR priority assignment for the DA model. The line of MAXAR

is the test using the C̃DA
i,j approach with the MAXAR priority assignment.

The line of EUM-MB represents the test using the multi-bag approach with

the EUM-MB priority assignment. The line of EUM presents the test used

the C̃DA
i,j approach with the EUM priority assignment. A smaller average

response time has better performance; the best result is MAXAR-MB; the

second is MAXAR; the third is EUM; the worst is EUM. Now the difference

is much more obvious.

In Figure 7.7, the number of tasks is 10. The ordering of the performance

is the same as above, but the difference between EUM and EUM-MB is

143

Figure 7.6: DA with multi-bag against average response time with n = 5.

Figure 7.7: DA with multi-bag against average response time with n = 10.

144

bigger.

Figure 7.8: DA with multi-bag against average response time with n = 15.

Figure 7.8 is the result of the 15-tasks task-set and there is a big gap be-

tween EUM and EUM-MB. Overall response times are higher at 60% utilisa-

tion. The improvement of MAXAR with the multi-bag approach is obvious.

Lastly, Figure 7.9 shows the result of the 20-tasks task-set. EUM is better

than MAXAR after 55% utilisation that is a tolerance as the number of tests

for each utilisation is reduced to 1000 times.

To evaluate the results, the multi-bag approach provides visibly better

results for the DA model. Although the diagrams with the schedulability

rate against utilisation rate do not illustrate this strongly, the latter diagrams

show that there are improvements in the response time. For task-sets with a

deadline less than period this reduction in response time could be significant.

7.4 Summary

This chapter has completed the research by applying the multi-bag approach

to the DA model. Now two techniques have been applied and tested against

145

Figure 7.9: DA with multi-bag against average response time with n = 20.

each other, and the experiment has shown a better solution for P-FRP. The

DA model with multi-bag approach and the MAXAR priority assignment

have the best performance regardless of the time complexity of those algo-

rithms.

146

Chapter 8

Conclusions and Future Work

In this thesis, we have considered the problem that while the AR model

can deal effectively with P-FRP in terms of the problems of resource usage,

applicable schedulability analysis has not been demonstrated for this model.

This thesis contends that it is possible to derive an appropriate scheduling

approach for the model.

8.1 Summary and Conclusions

Chapter 1 introduced real-time systems, priority-based functional reactive

programming, the AR model and the motivation for this research. It ad-

dressed the problem of the AR model mentioned above.

Chapter 2 was the related work of this research. The system model was

introduced, and real-time system scheduling and the AR model have been

studied. According to the related work, the AR model could not be scheduled

effectively for P-FRP.

Chapter 3 analysed the schedulability of the AR model, which consists

of finding the critical instant and developing schedulability tests. For the

critical instant, the thesis has shown that finding the critical instant for the

AR model with periodic and sporadic tasks is intractable. For schedulability

tests, a new formulation was introduced and we called it the C̃i
j approach. It

reduced the complexity for the further analysis.

147

Chapter 4 introduced an improved priority assignment for the AR model.

We called the priority assignment Execution-time-towards-Utilisation-time

(EUM). The analysis took the benefit of the C̃i
j approach that EUM requires

less computation time and provides the priority assignment close to the ex-

haustive search algorithm which is optimal but intractable.

Chapter 5 introduced an alternative scheme to improve the schedulabil-

ity for the AR model, and we called it the deferred abort (DA) model. The

NP model can be used for P-FRP but it does not dominate the AR model.

By adapting the technique of deferred preemption, the combination of AR

regions and non-preemptive regions has defined the DA model. For the pri-

ority assignment, a heuristic algorithm was introduced and we called it the

MAXAR algorithm. Lastly, the experimental evaluation showed that the DA

model has a big improvement in reducing the number of aborts.

Chapter 6 introduced a tighter analysis on schedulability tests for the

AR model as the C̃i
j approach was too pessimistic sometimes. The technique

of CRPD analysis was studied as the multi-set approach could be applied

to the AR model. The technique of the multi-set approach was adapted

to a new approach; we called it the multi-bag approach. This approach can

analyse each abort of individual jobs of higher priority tasks. In experimental

evaluation, the results showed the multi-bag approach could improve the

response time analysis.

Chapter 7 applied the multi-bag approach to the DA model. New equa-

tions were introduced for the combination of both techniques. An example

task-set showed the multi-bag approach dominated the C̃DA
i,j approach in the

DA model. In experimental evaluation, the results showed an improvement

after using the multi-bag approach for both schedulability rate and worst-case

response time. Contributions are summarised as follows.

Critical Instant — Finding the critical instant for the AR model with pe-

riodic and sporadic tasks is intractable.

New formulation for scheduling — This is introduced and can be ap-

plied to the standard response time analysis for the AR model.

148

New priority assignment schemes — New priority assignment schemes

are developed for both the AR and DA models, and they have good

performance and are tractable for large systems.

Deferred Abort (DA) model — This model provides better schedulabil-

ity and dominates the non-preemptive model.

Multi-bag approach — This approach offers a tighter analysis on schedul-

ing task-sets under both AR and DA models.

These contributions combine to demonstrate the correctness of the thesis

hypothesis.

To conclude all the results, we created three more figures to show how the

research improved the schedulability at each stage. The best result from each

chapter is extracted. There are five lines: 1) DA-MB represents the result

of the DA model using the multi-bag approach and the MAXAR priority

assignment. 2) DA-MAXAR represents the result of the DA model using the

C̃DA
i,j approach and the MAXAR priority assignment. 3) AR-MB represents

the result of the AR model using the multi-bag approach and the EUM

priority assignment. 4) AR-EUM represents the result of the AR model using

the C̃i
j approach and the EUM priority assignment. 5) AR-RM represents

the result of the AR model using the C̃i
j approach and the RM priority

assignment.

Figures 8.1, 8.2 and 8.3 show the results of 5-tasks, 10-tasks and 15-tasks

task-sets. The lines of DA-MB and DA-MAXAR are always at the top. The

lines of AR-MB and AR-EUM are at the middle and the line of AR-RM is

at the bottom. The result of AR-RM is from Chapter 2 and represents the

state-of-the-art when this research commenced. The schedulability is very

low even in the 5-tasks task-set. In Chapter 4, a better priority assignment

was introduced so the result of AR-EUM is improved. The result of AR-MB is

from Chapter 6 and it is difficult to show the improvement from this diagram.

Chapter 5 introduced the technique of DA and then the schedulability had

a big improvement, as shown on the line of DA-MAXAR. Finally, Chapter

7 applies the multi-bag approach to the DA model. The result of DA-MB

149

Figure 8.1: Compare overall improvement with n = 5.

Figure 8.2: Compare overall improvement with n = 10.

150

Figure 8.3: Compare overall improvement with n = 15.

is the best. Again, the results of this thesis combine to demonstrate the

correctness of the thesis hypothesis.

8.2 Future Work

This section lists the possible future work items for this thesis. This re-

search is based on the fixed priority scheduling on one processor systems

with non-shared resources. The technique of AR can apply to other schedul-

ing, such as Earliest Deadline First (EDF) and First-in First-out (FIFO).

For shared resources systems, there are many solutions for the classical sys-

tem but it causes bigger response times. The technique of AR does not face

this problem. It can provide better schedulability if better scheduling meth-

ods are found. To employ P-FRP, the technique of AR is a scheme because

the preemptive model cannot be used. The preemptive model is designed for

non-atomic required programming. If the objective is reversed, the technique

of AR can apply to both types of programming.

151

EDF scheduling

Earliest Deadline First (EDF) is dynamic scheduling where the priorities of

tasks are according to their absolute deadlines. A task with a short absolute

deadline executes first. Theoretically, EDF can reach 100% utilisation in

a uniprocessor system. If the AR model uses EDF scheduling, it should

improve the schedulability.

FIFO scheduling

First-in First-out (FIFO) scheduling executes tasks in the order they arrive,

and other tasks have to wait (non-preemptive). In general, there is no priority

in FIFO scheduling. For improving the schedulability for the AR model, fixed

priority FIFO (FP/FIFO) scheduling can be used. Sometimes two tasks

cannot suffer abort costs from each other. In this case, FP/FIFO scheduling

can remove the problem by assigning the same priority to both tasks.

Multiprocessor

This thesis has only considered single processor systems. For multiprocessor

systems, the standard AR model aborts all current executing tasks (in differ-

ent processors) when a higher priority task (in one of processors) is release. A

new model for multiprocessor systems is required to consider task allocations

for different processors, then other processors do not interfere with an abort

from a processor.

152

Glossary of Terms

Abort cost In the AR model, a higher priority task aborts a lower priority

task and if the lower priority has already executed for some time, the

time is wasted and is termed as an abort cost.

Abort-and-restart A lower priority task is aborted by a higher priority

task. When the higher priority task is completed, the lower priority

task restarts the execution from the beginning.

Arbitrary deadline The deadline of a task can be less than, equal to or

larger than its period.

Blocking time The length of time a higher priority task is delayed by a

lower priority task.

Constrained deadline The deadline of a task is no larger than its period.

Deferred abort If a higher priority task is released after the lower priority

task has entered its final non-preemptive non-abort region, the higher

priority task cannot abort.

Deferred preemption If a higher priority task is released after the lower

priority task has entered its final non-preemptive region, the higher

priority task cannot preempt.

Utilisation Monotonic (UM) Assigns a higher priority to a task which

has a higher utilisation rate.

Execution-time Monotonic (EM) Assigns a higher priority to a task

which has a bigger worst-case execution time.

153

Execution-time-toward-Utilisation Monotonic (EUM) Starts with EM

ordering and moves towards to UM.

Multi-bag A series of bags where a bag contains a series of values.

Final non-preemptive region A task is assigned a region where it is non-

preemptive.

Implicit deadline The deadline of a task is equal to its period.

154

Notations

τi an arbitrary task, 25

Ci the worst-case execution time for τi (also referred to as WCET), 31

Pi priority for τi,27

Bi blocking time for τi, 33

N the number of tasks, 31

Ui the utilisation of τi, 31

Ri response time for τi, 32

hp(i) any task has higher priority than τi, 33

W n
i the n-th step of iterations for τi. 33

αi the total abort cost for τi, 40

j−1
max
k=i

Ck the biggest execution time task τk, 40

ΓN a task-set with N tasks, 71

hep(i) any task has priority higher than or equal to τi, 73

lp(i) any task has priority lower than τi, 73

C̃i
j the new value for the WCET of τj, the biggest abort cost is picked between

τj and τi, 73

Ai the priority level-i active period, 95

155

Fi the length of the final non-preemptive region for τi, 95

Gi the number of jobs for τi, 95

Wi,g the starting time of the final non-preemptive region of g-th job for τi,

95

WNP
i,g the starting time of the final non-preemptive region of g-th job for τi

for the non-preemptive model, 95

C̃DA
i,j the new value for the WCET of τj, the biggest abort cost is picked

between τj and τi, for the deferred abort model, 99

Ji the jitter for τi, 118

γi,j the total abort cost of τj when scheduling τi, 118

Mi,j a bag contains a series of abort costs for τj when scheduling τi, 120

Ej(Ri) the number of release for τj within the response time Ri, 120

γDA
i,j the total abort cost of τj when scheduling τi for the DA model, 135

WDA
i,g the starting time of the final non-preemptive region of g-th job for τi

for the DA model, 136

156

Bibliography

[1] L. Almeida and J.A. Fonseca. Analysis of a Simple Model for Non-

Preemptive Blocking-Free Scheduling. In Proceedings ECRTS, Wash-

ington, DC, USA, 2001. IEEE Computer Society.

[2] S. Altmeyer, R.I. Davis, and C. Maiza. Cache related pre-emption delay

aware response time analysis for fixed priority pre-emptive systems. In

Proceedings RTSS, pages 261–271, Nov 2011.

[3] S. Altmeyer, R.I. Davis, and C. Maiza. Improved cache related pre-

emption delay aware response time analysis for fixed priority pre-emptive

systems. Real-Time Systems, 48(5):499–526, 2012.

[4] J.H. Anderson, S. Ramamurthy, and K. Jeffay. Real-time computing

with lock-free shared objects. In Proceedings RTSS, pages 28–37, De-

cember 1995.

[5] N. Audsley. Optimal priority assignment and feasibility of static priority

tasks with arbitrary start times. Technical report, University of York,

1991.

[6] N.C. Audsley. On Priority Assignment in Fixed Priority Scheduling.

Information Processing Letters, 79(1):39–44, 2001.

[7] C. Belwal and A.M.K. Cheng. On Priority Assignment in P-FRP. In

Proceedings RTAS (WIP), pages 45–48, 2010.

[8] C. Belwal and A.M.K Cheng. Reducing the Number of Preemptions in

P-FRP. In Proceedings RTSS (WIP), 2010.

157

[9] C. Belwal and A.M.K. Cheng. Determining Actual Response Time in P-

FRP. In Ricardo Rocha and John Launchbury, editors, Practical Aspects

of Declarative Languages, volume 6539 of Lecture Notes in Computer

Science, pages 250–264. Springer Berlin / Heidelberg, 2011.

[10] C. Belwal and A.M.K. Cheng. Determining Actual Response Time in

P-FRP Using Idle-Period Game Board. In Proceedings Object-Oriented

Real-Time Distributed Computing, pages 136–143, Los Alamitos, CA,

USA, 2011. IEEE Computer Society.

[11] C. Belwal and A.M.K. Cheng. Feasibility Interval for the Transactional

Event Handlers of P-FRP. In Proceedings Trust, Security and Privacy in

Computing and Communications (TrustCom), pages 966–973, Novem-

ber 2011.

[12] A.A. Bertossi and M.A. Bonuccelli. Preemptive Scheduling of Periodic

Jobs in Uniform Multiprocessor Systems. Information Processing Let-

ters, 16(1):3–6, January 1983.

[13] E. Bini and G. Buttazzo. Measuring the Performance of Schedulability

Tests. Real-Time Systems, 30:129–154, 2005.

[14] K. Bletsas and N. Audsley. Optimal priority assignment in the presence

of blocking. Inf. Process. Lett. 99, 3:83–86, Aug 2006.

[15] R.J. Bril, J.J. Lukkien, and W.F.J. Verhaegh. Worst-case response time

analysis of real-time tasks under fixed-priority scheduling with deferred

preemption revisited. In Proceedings ECRTS, pages 269–279, Washing-

ton, DC, USA, 2007. IEEE Computer Society.

[16] R.J. Bril, J.J. Lukkien, and W.F.J. Verhaegh. Worst-case response time

analysis of real-time tasks under fixed-priority scheduling with deferred

preemption. Real-Time Systems, 42(1-3):63–119, August 2009.

[17] A. Burns. Is Audsley’s Scheme the Most Expressive Optimal Priority

Assignment Algorithm? In Proceedings RTSOPS (ECRTS), pages 8–11,

2013.

158

[18] A. Burns and A.J. Wellings. Real-time systems and programming lan-

guages. Pearson Education, 4th edition, 2009.

[19] J.V. Busquets-Mataix, J.J. Serrano, R. Ors, P. Gil, and A.J. Wellings.

Adding instruction cache effect to schedulability analysis of preemptive

real-time systems. In Proceedings Real-Time Technology and Applica-

tions Symposium, pages 204–212, June 1996.

[20] G.C. Buttazzo, M. Bertogna, and Gang Yao. Limited preemptive

scheduling for real-time systems. a survey. IEEE Transactions on In-

dustrial Informatics, 9(1):3–15, Feb 2013.

[21] J. Byun, A. Burns, and A.J. Wellings. A Worst-Case Behavior Analysis

for Hard Realtime transactions. pages 144–149, 1996.

[22] M. Caccamo and L. Sha. Aperiodic Servers with Resource Constraints.

In Proceedings RTSS, page 161, Los Alamitos, CA, USA, 2001. IEEE

Computer Society.

[23] P. Chen and W. Wonham. Real-Time Supervisory Control of a Processor

for Non-Preemptive Execution of Periodic Tasks. Real-Time Systems,

23:183–208, Mar 2002.

[24] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction

to Algorithms, chapter Red-Black Trees, pages 273–301. MIT Press and

McGraw-Hill, second edition, 2001.

[25] A. Courtney. Frappé: Functional reactive programming in Java. In

Proceedings PADL, March 2001.

[26] R.I. Davis and M. Bertogna. Optimal fixed priority scheduling with

deferred pre-emption. In Proceedings RTSS, pages 39–50, December

2012.

[27] R.I. Davis and A. Burns. Priority Assignment for Global Fixed Prior-

ity Pre-Emptive Scheduling in Multiprocessor Real-Time Systems. In

Proceedings RTSS, pages 398–409, 2009.

159

[28] R.I. Davis and A. Burns. Priority assignment for global fixed priority

pre-emptive scheduling in multiprocessor real-time systems. In Proceed-

ings RTSS, pages 398–409, December 2009.

[29] R.I. Davis and A. Burns. Improved priority assignment for global

fixed priority pre-emptive scheduling in multiprocessor real-time sys-

tems. Real-Time Systems, pages 1–40, 2010.

[30] R.I. Davis, K.W. Tindell, and A. Burns. Scheduling Slack Time in

Fixed Priority Pre-emptive Systems. In Proceedings RTSS, pages 222–

231, December 1993.

[31] D. de Niz, L. Abeni, S. Saewong, and R.R. Rajkumar. Resource sharing

in reservation-based systems. In Proceedings RTSS, Washington, DC,

USA, 2001. IEEE Computer Society.

[32] R. Dobrin and G. Fohler. Reducing the Number of Preemptions in Fixed

Priority Scheduling. In Proceedings ECRTS, pages 144–152, Washing-

ton, DC, USA, 2004. IEEE Computer Society.

[33] C. Ekelin. Clairvoyant Non-Preemptive EDF Scheduling. In Proceedings

ECRTS, pages 23–32, Washington, DC, USA, 2006. IEEE Computer

Society.

[34] C. Elliott. Modeling interactive 3d and multimedia animation with

an embedded language. In Proceedings of the Conference on Domain-

Specific Languages on Conference on Domain-Specific Languages (DSL),

page 22. USENIX Association, 1997.

[35] C. Elliott and P. Hudak. Functional reactive animation. In Proceedings

of the Second ACM SIGPLAN International Conference on Functional

Programming, pages 263–273. ACM, 1997.

[36] G. Fohler. Joint scheduling of distributed complex periodic and hard

aperiodic tasks in statically scheduled systems. In Proceedings RTSS,

pages 152–161, December 1995.

160

[37] L. Georges, P. Mühletahler, and N. Rivierre. A Few Results on Non-

Preemptive Real-Time Scheduling. Research Report RR-3926, INRIA,

2000.

[38] T.M. Ghazalie and T.P. Baker. Aperiodic Servers in a Deadline Schedul-

ing Environment. Real-Time Systems, 9(1):31–67, July 1995.

[39] R. R. Howell and M. K. Venkatrao. On Non-Preemptive Scheduling of

Recurring Tasks Using Inserted Idle Times. Information and Computa-

tion, 117(1):50–62, Feb 1995.

[40] P. Hudak. The Haskell School of Expression – Learning Functional Pro-

gramming through Multimedia. Cambridge University Press, New York,

2000.

[41] D. Isovic and G. Fohler. Handling sporadic tasks in off-line scheduled

distributed hard real-time systems. In Proceedings ECRTS, pages 60–67,

1999.

[42] D. Isovic and G. Fohler. Online handling of hard aperiodic tasks in time

triggered systems. In Proceedings ECRTS, June 1999.

[43] D. Isovic and G. Fohler. Efficient scheduling of sporadic, aperiodic, and

periodic tasks with complex constraints. In Proceedings RTSS, pages

207–216, Washington, DC, USA, 2000. IEEE Computer Society.

[44] K. Jeffay. Analysis of a Synchronization and Scheduling Discipline for

Real-Time Tasks with Preemption Constraints. In Real Time Systems

Symposium, 1989., Proceedings., pages 295–305, December 1989.

[45] K. Jeffay. Scheduling sporadic tasks with shared resources in hard real-

time systems. In Proceedings RTSS, pages 89–99, December 1992.

[46] K. Jeffay, D.F. Stanat, and C.U. Martel. On Non-Preemptive Scheduling

of Periodic and Sporadic Tasks. In Proceedings RTSS, pages 129–139,

December 1991.

161

[47] M. Joseph and P. Pandya. Finding Response Times in a Real-Time

System. BCS Computer Journal, 29(5):390–395, 1986.

[48] R. Kaiabachev, W. Taha, and A. Yun Zhu. E-frp with priorities. In

Proceedings of the 7th ACM &Amp; IEEE International Conference on

Embedded Software, pages 221–230. ACM, 2007.

[49] S. Kim, S. Hong, and T.H. Kim. Integrating real-time synchronization

schemes into preemption threshold scheduling. In Proceedings Object-

Oriented Real-Time Distributed Computing, pages 145–152, 2002.

[50] S. Kim, S. Hong, and T.H. Kim. Perfecting preemption threshold

scheduling for object-oriented real-time system design: From the per-

spective of real-time synchronization. In Proceedings of the Joint Con-

ference on Languages, Compilers and Tools for Embedded Systems: Soft-

ware and Compilers for Embedded Systems, pages 223–232. ACM, 2002.

[51] C.M. Krishna. Real-Time Systems. McGraw-Hill Higher Education, 1st

edition, 1996.

[52] T. Kuo, W. Yang, and K. Lin. EGPS: A Class of Real-Time Schedul-

ing Algorithms Based on Processor Sharing. In Proceedings ECRTS,

volume 0, page 27, Los Alamitos, CA, USA, 1998. IEEE Computer So-

ciety.

[53] C.G. Lee, J. Hahn, Y.M. Seo, S.L. Min, R. Ha, S. Hong, C.Y. Park,

M. Lee, and C.S. Kim. Analysis of cache-related preemption delay in

fixed-priority preemtive scheduling. IEEE Transactions on Computers,

47(6):700–713, June 1998.

[54] C.G. Lee, K. Lee, J. Hahn, Y.M. Seo, S.L. Min, R. Ha, S. Hong, C.Y.

Park, M. Lee, and C.S. Kim. Bounding cache-related preemption delay

for real-time systems. Software Engineering, 27(9):805–826, Sep 2001.

[55] J. Lehoczky, L. Sha, and Y. Ding. The Rate-Monotonic Scheduling

Algorithm: Exact Characterization and Average Case Behaviour. In

Proceedings RTSS, pages 166–171, December 1989.

162

[56] J.P. Lehoczky and S. Ramos-Thuel. An Optimal Algorithm for Schedul-

ing Soft-Aperiodic Tasks in Fixed-Priority Preemptive Systems. Proceed-

ings Real-Time System Symposium, pages 110–123, December 1992.

[57] J.P. Lehoczky, L. Sha, and J.K. Strosnider. Enhanced Aperiodic Respon-

siveness in Hard Real-Time Environments. Proceedings IEEE Real-Time

System Symposium, pages 261–270, 1987.

[58] J.Y.T. Leung and M.L. Merrill. A Note on Preemptive Scheduling of

Periodic, real-time tasks. Information Processing Letters, 11(3):115–118,

November 1980.

[59] C.L. Liu and J.W. Layland. Scheduling Algorithms for Multiprogram-

ming in a Hard Real-Time Environment. JACM, 20(1):46–61, 1973.

[60] C.D. Locke, T.J. Mesler, and D.R. Vogel. Replacing passive tasks with

Ada9X protected records. Ada Lett., XIII:91–96, March 1993.

[61] C.D. Locke, D.R. Vogel, and T.J. Mesher. Building a Predictable Avion-

ics Platform in Ada: A Case Study. In Proceedings RTSS, pages 181–189,

December 1991.

[62] J. Manson, J. Baker, A. Cunei, S. Jagannathan, M. Prochazka, B. Xin,

and J. Vitek. Preemptible atomic regions for real-time Java. In Pro-

ceedings RTSS, pages 10–71, 2005.

[63] M. Marouf and Y. Sorel. Scheduling non-preemptive hard real-time

tasks with strict periods. In Emerging Technologies Factory Automation

(ETFA), 2011 IEEE 16th Conference on, pages 1–8, Sept 2011.

[64] O. Ulusoy and G. Belford. Real-time transaction scheduling in database

systems. Information Systems, 18(8):559–580, 1993.

[65] J. Peterson, G.D. Hager, and P. Hudak. A language for declarative

robotic programming. In Proceedings 1999 IEEE International Confer-

ence on Robotics and Automation, volume 2, pages 1144–1151, 1999.

163

[66] J. Peterson, P. Hudak, and C. Elliott. Lambda in motion: Controlling

robots with haskell. In Proceedings PADL (workshop), pages 91–105.

Springer-Verlag, 1998.

[67] P. Puschner and C. Koza. Calculating the maximum execution time of

real-time programs. Journal of Real-Time Systems, 1(2):159–176, Sep

1989.

[68] J. Ras and A.M.K. Cheng. An evaluation of the dynamic and static

multiprocessor priority ceiling protocol and the multiprocessor stack re-

source policy in an smp system. In Real-Time and Embedded Technology

and Applications Symposium, pages 13–22, April 2009.

[69] J. Ras and A.M.K. Cheng. Response Time Analysis for the Abort-

and-Restart Task Handlers of the Priority-Based Functional Reactive

Programming (P-FRP) Paradigm. In IEEE International Conference on

Embedded and Real-Time Computing Systems and Applications, pages

305–314, August 2009.

[70] J. Ras and A.M.K. Cheng. Response Time Analysis of the Abort-and-

Restart Model under Symmetric Multiprocessing. In Proceedings CIT,

pages 1954–1961, 2010.

[71] A. Reid, J. Peterson, P. Hudak, and G.D. Hager. Prototyping Real-Time

Vision Systems: An Experiment in DSL Design. In Proceedings ICSE,

May 1999.

[72] M. Sage. FranTk — a Declarative GUI Language for Haskell. In Pro-

ceedings of the Fifth ACM SIGPLAN International Conference on Func-

tional Programming, pages 106–117. ACM, 2000.

[73] J. Schneider. Cache and pipeline sensitive fixed priority scheduling for

preemptive real-time systems. In Proceedings RTSS, pages 195–204,

2000.

164

[74] L. Sha, J.P. Lehoczky, and R. Rajkumar. Solutions for some Practical

Problems in Prioritised Preemptive Scheduling. In Proceedings RTSS,

pages 181–191, 1986.

[75] L. Sha, R. Rajkumar, and J.P. Lehoczky. Priority inheritance proto-

cols: an approach to real-time synchronization. IEEE Transactions on

Computers, 39(9):1175–1185, September 1990.

[76] L. Sha, B. Sprunt, and J.P. Lehoczky. Aperiodic Task Scheduling for

Hard Real-Time Systems. Real-Time Systems, 1:27–69, 1989.

[77] J.A. Stankovic. Misconceptions about real-time computing: a serious

problem for next-generation systems. Computer, 21(10):10–19, October

1988.

[78] J.K. Strosnider, J.P. Lehoczky, and L. Sha. The deferrable server algo-

rithm for enhanced aperiodic responsiveness in hard real-time environ-

ments. IEEE Transactions on Computers, 44(1), January 1995.

[79] H. Takada and K. Sakamura. Real-time synchronization protocols with

abortable critical sections. In Proceedings of International Workshop on

Real-time Computing Systems and Application, pages 48–52, 1994.

[80] K. Tindell, A. Burns, and A.J. Wellings. An Extendible Approach for

Analyzing Fixed Priority Hard Real-Time Tasks. Real-Time Systems,

6(2):133–151, March 1994.

[81] Z. Wan and P. Hudak. Functional reactive programming from first prin-

ciples. In Proceedings of the ACM SIGPLAN 2000 Conference on Pro-

gramming Language Design and Implementation, pages 242–252. ACM,

2000.

[82] Z. Wan, W. Taha, and P. Hudak. Event-driven FRP. In Proceedings

PADL, January 2002.

[83] Y. Wang and M. Saksena. Scheduling fixed priority tasks with preemp-

tion threshold. IEEE International Conference on Real-Time Computing

Systems and Applications, pages 328–335, December 1999.

165

[84] H.C. Wong and A. Burns. Improved Priority Assignment for the Abort-

and-Restart (AR) Model. Technical Report YCS-2013-481, University

of York, Department of Computer Science, 2013.

[85] H.C. Wong and A. Burns. Improved Priority Assignment for the Abort-

and-Restart (AR) Model. In Proceedings JRWRTC (RTNS), 2013.

[86] H.C. Wong and A. Burns. Schedulability Analysis for the Abort-and-

Restart (AR) Model. In Proceedings RTNS. ACM, 2014.

[87] W. Zhao, K. Ramamritham, and J.A. Stankovic. Scheduling Tasks with

Resource Requirements in a Hard Real-Time System. IEEE Transac-

tions on Software Engineering, 13(5):564–577, May 1987.

[88] K.M. Zuberi and K.G. Shin. Non-Preemptive Scheduling of Messages

on Controller Area Network for Real-Time Control Applications. In

Proceedings Real-Time Technology and Applications Symposium, pages

240–249, May 1995.

166

