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Abstract 

 

Nano-scale Iron-Oxide ferrofluids exhibit a special property, 

‘superparamagnetism’, that induces an attractive force toward an external magnetic 

field. The aim of this project is to investigate the use of ferrofluids for tissue 

retraction during Minimally Access Surgery (MAS). In the in-vivo porcine 

experiments, 0.3 ml of ferrofluid (200 mg/ml concentration) containing 10 nm 

particles is injected subserosally into the small bowel, respectively. A 0.6 T 

magnetic field is created using a combination of 10 mm and 20 mm diameter 

Neodymium Iron Boron magnets. The vertical retraction distance is measured up to 

80 mm and video-recorded. The results demonstrate the capacity of ferrofluid to 

facilitate the tissue manipulation and analysis of the migration of the particles within 

the tissue using micro computed tomography (CT). A theoretical model developed 

to validate the experimental results is also beneficial for predicting retraction force. 

In conclusion, this feasibility study provides a protocol for systematically using 

small volumes of ferrofluid, without the need to mechanically grasp the tissue. 
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Nomenclature 

Fg Grip force N 

Ft Pinch force N 

Fh A force is associated with the movement of the 
hand 

N 

FO A force exerted on tissue by the movement of 
the tip generates 

N 

Fpullh A pull force is generated when surgeons pull the 
handle away 

N 

FpullO Associated pull force on tissue N 

k Spring constant N∙m-1 

∆X Displacement m 

T Tesla Tesla 

R Resistor Ω 

p.d. Potential difference V 

μ� Permeability of air H∙m-1 

r Distance of any points in the free space to the 
centre of the magnet surface 

m 

�̂, �̂, �	, r�������������� Unit vectors  --- 

I Current A 

R Radius of magnet surface m 

∅ Angle of the projectile vector and radius degree 

H Magnetic field density T 

Hc Coercivity A∙m-1 

µr Relative magnetic permeability --- 

F Magnetic force kg ∙ m ∙ s�� or N 

∆X Difference of magnetic susceptibility Dimensionless 
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μ� Permeability of air Wb ∙ (A ∙ m)�� 

V� Total volume of particles m� 

B Magnetic field density Wb ∙ (��)�� or T 

∇·B Magnetic field density gradient Wb ∙ (��)�� or T ∙ m�� 

F Preload force N 

a Radius of the cylinder m 

E Young’s modulus kPa 

d Indentation depth m 
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Abbreviation 

 

MAS Minimal Access Surgery 

MIS Minimally Invasive Surgery 

LESS Laparo-Endoscopic Single-Site Surgery 

NOTES Natural Orifice Transluminal Endoscopic Surgery 

UK United Kingdom 

2D Two-Dimensional 

3D Three-Dimensional 

CT Computed Tomography 

CCD Charge-Coupled Device 

FF Ferrofluid 

MRI Magnetic Resonance Imaging 

FEM Finite Element Method 

MAGS Magnetic Anchoring and Guidance System 

EMR Endoscopic Mucosal Resection 

ESD Endoscopic Submucosal Dissection 

SFA Surface Force Apparatus 

AFM Atomic Force Microscope 

MT Magnetic Tweezers 

DNA Deoxyribonucleic Acid 

RNA Ribonucleic Acid 

MUSTTM Modular Universal Surface Tester 
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MagRAT Magnetic Retraction and Adhesion Tissue tester 

NeFeB Neodymium Iron Boron 

p.d. potential difference 

PBS Phosphate Buffered Saline 

TEM Transmission Electron Microscopy 

SEM Scanning Electron Microscopy 

S/N Signal-to-Noise 

FEMM Finite Element Method Magnetics 

CAD Computer-Aided Design 
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Chapter 1 Introduction 

This research studies the feasibility of using nano-particle ferrofluid to 

retract tissue, by taking advantage of magnetic attraction. The contributions made 

from an engineering perspective are as follows: first, a protocol for testing magnetic 

retraction using ferrofluids is established, secondly important parameters in the 

study are optimised, and thirdly, a mechanical design of magnetic configuration is 

developed. The scientific contributions made include a simple model to predict the 

magnetic retraction and a characterisation of particle migration within tissue using 

micro-Computed Tomography (CT). The outcome brought to the clinic is the 

feasibility of using nano-particle ferrofluid to provide the force required to retract 

tissue.  

This chapter introduces the background of Minimal Access Surgery (MAS). 

It is going to address the general procedure and equipment, and indicate the 

challenges due to such a confined working area and tissue manipulation is one of 

these issues. The importance of this topic is because tissue manipulation is always 

the first action done with tissue. Therefore, it is soon narrowed down the interest to a 

problem and aims to test a promising method to facilitate effective tissue 

manipulation. This chapter is organised as follows. Section 1 introduces the 

background of MAS. Section 2 illustrates the aims and objectives in this study. 

Section 3 briefly outlines every chapter. 

1.1 Background 

MAS is a promising surgical procedure and has been widely used in abdominal 

surgery. MAS has several significant advantages, such as less incisions size, rapid 
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patient recovery, reduction of medical care cost and blood loss. Moreover, MAS 

minimises the percutaneous trauma to the body resulting in less scars on the skin. 

Hence, MAS improves cosmetic results. The postoperative pain, wound, ileus, and 

badly abdominal adhesion formation are decreased. (Brown and Irving, 1995, 

Cuschieri, 1999, Cuschieri and Berci, 1990, Najmaldin and Guillou, 1998). 

In brief, open surgery is generally performed via a large incision which allows 

surgeons to directly access the abdominal cavity, as shown in Figure 1.1 (Right) 

(Trief and Olk, 2013). This method enables surgeons to manipulate tissue with their 

hands easily, but patients usually suffer from intense pain and face higher risks of 

infection after the operation. Recovery time are long and hence healthcare costs are 

large. MAS on the contrary reduces such pain and risks as it is performed via several 

short incisions on the belly (about 5 – 15 mm long) to approach tissue for different 

surgical procedures, as shown in Figure 1.1 (Left). Surgical instruments are inserted 

through these incisions using an extended shaft and controlled by surgeons outside 

the abdomen.  

 

Figure 1.1 Two schematic diagrams showing the differences between (a) the 
laparoscopic cholecystectomic surgery with three trocars and one 
laparoscope inserted into the body accessing through small incisions (b) the 
conventional cholecystectomic surgery with a large incision where organs 
and tissue are exposed clearly (Trief and Olk, 2013). 
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Often MAS is also referred to as “Minimally Invasive Surgery” (MIS), which 

reflects the benefit of the procedure, which lowers the level of invasion to human 

bodies with an aim to reach various organs and tissue still. Therefore, MAS becomes 

a popular surgical procedure and gradually replaces the use of open surgery. The 

history of MAS can be traced back to the civilization in Mesopotamia and ancient 

Greece (Brown and Irving, 1995). The initial idea was to deliver medicine using a 

tube and speculum. Afterwards, multi-disciplinary efforts have been invested to 

improve the efficiency and effect of the procedure and performance. For example, 

the fibrescope, also known as “cold light system”, was invented to replace previous 

light source using the concept of transmitting optical images from outside into the 

cavity by the effect of total internal reflection (Hopkins and Kapany, 1954). The 

optical fibre of the fibrescope keeps the flexibility of movement and feature of tube 

can be inserted to improve the light and combined with microscope to explore the 

abdominal cavity during the surgery (Brown and Irving, 1995, Najmaldin and 

Guillou, 1998, Aoyama et al., 1996).  

In addition to the improvement of operative procedure, CO2 insufflation was 

found to be used in the intraoperative endoscopy. It was discovered that CO2 is more 

soluble than room air in blood and tissue and can be absorbed to be released by the 

lungs (Bretthauer et al., 2005, Church and Delaney, 2003, Bretthauer et al., 2003, 

Bretthauer et al., 2007). This finding solves the problem that most patients feel 

discomfort while passing the air within the bowel (Ramaraj et al., 2011). Nowadays, 

the development of Laparo-Endoscopic Single-Site Surgery (LESS) aims to improve 

the cosmetic results by reducing the numbers of scars.  

Moreover, the feasibility of replacing any artificial incision to the natural 

orifice, called Natural Orifice Transluminal Endoscopic Surgery (NOTES), is under 
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the investigation (AUSTIN, 2009, Kalloo et al., 2004, McGee et al., 2006, 

Merrifield et al., 2006, Pai et al., 2006, Pearl and Ponsky, 2007, Shaikh and 

Thompson, 2010b, Sumiyama et al., 2006, Wagh et al., 2006, Galvao Neto et al., 

2009).  

Generally speaking, the procedure of the laparoscopic surgery starts with 

insufflation via an incision made on the abdomen. The insufflator would pump CO2 

into the abdominal cavity to lift up the abdomen in order to provide enough 

operating space. To create incisions, a long veress needle is stabbed at the abdomen 

for creating sufficient accessing ports. Immediately after the incisions, trocars are 

mounted to hold the ports to form accessing paths for the laparoscope and other 

instruments so that they can be inserted through them without slipping from the 

abdomen. The trocar therefore works as a sealed valve allowing surgical tools to 

enter the body.  

Various surgical tools are then inserted including a tube camera connecting to 

the visual system to show the vision inside the abdomen on screen (Cuschieri and 

Berci, 1990). During laparoscopic surgery, surgeons basically rely on this vision to 

conduct their operation (see Figure 1.2 (Left)). Other surgical tools used for 

operative functions, such as forceps, scissors, scalpel blades and retractors have all 

been re-developed from existing surgical devices used for the open surgery 

(Cuschieri, 1999). These modified instruments are attached to long and thin sticks in 

order to be inserted through accessing ports (5-15 mm long) so that surgeons can 

hold them from outside the abdomen. The shaft has been in place of surgeon’s hands 

(see Figure 1.2 (right)). In a nutshell, surgeons work on the laparoscopic procedure 

without directly looking at the tissue or touching them with bare hands. The 

information provided on the screen is indirect. 
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Figure 1.2 A laparoscopic surgical equipment (a) a surgeon holds a laparoscope 
with a camera inside the abdomen and monitors the screen during the 
operation. (b) The long, thin and rigid instruments are used for accessing the 
abdominal cavity (Galvao Neto et al., 2009). 

Over the last twenty years, MAS has been widely used for abdominal surgery. 

Laparoscopic surgery is the most well-known branch of MAS (Brown and Irving, 

1995, Cuschieri, 1999, Cuschieri and Berci, 1990, Najmaldin and Guillou, 1998). In 

addition to robotic surgery which has been under development (Rentschler et al., 

2007, Rentschler et al., 2006, Taylor and Jayne, 2007). MAS has gained rapid 

popularity as surgical area covers almost all the organs (Comarow, 2002). 

According to the National Bowel Cancer Audit Annual Report 2013 (p.27), the 

percentage of laparoscopic surgery used for bowel cancer treatment in the United 

Kingdom (UK) increased from 25% to 40% between 2008 and 2012 (Figure 1.3) 

(The Health and Social Care Information Centre, 2012, 2013). 

 

Figure 1.3 The statistics of the percentage of laparoscopic surgery for the bowel 
cancer treatment during 2008-2012 (The Health and Social Care Information 
Centre, 2012, 2013). 
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The number of laparoscopic surgery cases conducted is increased not only in 

the UK, but also globally. Between 1998 and 2009, the percentage of distal 

pancreatecomies performed by MAS approaches increased from 2.4% to 7.3% (Tran 

Cao et al., 2014). The percentage of laparoscopic surgery used for cholecystotomy 

in Taiwan was 60% in 2005 and increased to 63% in 2007 based on the investigation 

of the Bureau of National Health Insurance in Taiwan (Lien et al., 2013). Some 

other earlier reports also show a similar trend of  using laparoscopic surgery 

(Nguyen et al., 2005). This can be observed from the growth of the abdominal 

surgical instruments market - according to the market research report provided from 

the organisation “MarketsandMarkets” (Novel Instruments For Minimally Invasive 

Techniques, 2010), the number of MAS has grown at a 10% annual rate since 2010 

whilst the non-MAS only grew 3-5% annually. 

Several advantages have contributed to the growing popularity of MAS. For 

example, MAS minimises the percutaneous trauma to the body, decreases the 

amount of blood loss and leaves less scars on the skin. In addition to the 

improvement of the cosmetic results, MAS also relieves the postoperative pain, 

wound, ileus, and badly abdominal adhesion formation.  Since surgeons are not 

necessarily in direct contact with blood and body fluid, MAS also avoids infection 

of viral diseases and contamination. Moreover, the less damage done on the body, 

the quicker the patient would recover. As a result, medical care costs have been 

reduced (Cuschieri, 1999). 

MAS is beneficial to both patients and the medical care systems, therefore it 

gradually replaces the traditional abdominal surgery, such as cholecystectomy, 

sympathectomy, cardiomyotomy and antireflux surgery (Cuschieri, 1999). However, 

there are three major challenges associated with the development of this technique 
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(Caron, 2012, Philosophe, 2003, Lam et al., 2009). Firstly, the two-dimensional 

vision makes it difficult for judging the depth of the surgical area and adjusting the 

depth perception and spatial orientation (Horgan and Vanuno, 2004). Secondly, the 

lack of the direct haptic feedback whilst using conventional tissue manipulation 

tools is speculated to be the reason causes involuntary traumas on tissue (Taylor and 

Jayne, 2007, Culmer et al., 2012). Thirdly, the confined surgical space limits the 

range of movement of the long-shafted laparoscopic instruments used during a MAS 

procedure (Mintz et al., 2008). 

These challenges lead to the following pitfalls, including an unstable video 

platform and static two-dimensional (2D) images (Ballantyne, 2002). During the 

procedure, sometimes the camera would be rotated away from the horizon of the 

camera holder. The 2D video and the lack of the haptic feedback make it difficult to 

perceive the depth of the working area (Horgan and Vanuno, 2004). The bad visual 

information received means potential injury to the vessels and viscera during 

primary cannula insertion and diathermy burns.  

The absence of direct hand manipulation and tactile feedback may also cause 

damages by accidental tear during grasping tissue (de Visser, 2003a, Alaswad, 2013, 

Bishoff et al., 1999b, Deziel et al., 1993, Puangmali et al., 2008). De et al. (2007, 

2006) presented the consequences of different stresses applied by the multiple 

compressions during grasping, as shown in Figure 1.4. Such tissue damage has been 

highlighted as the most serious forms of lesions (Vonck, 2013a) which potentially 

causes morbidity and mortality in tissue sessions (van der Voort et al., 2004). 

Besides, the long and straight laparoscopic instruments are limited in their shapes 

and their motion is constrained by the fixatioin enforced by the abdominal wall 

trocars and the low level of freedom of the mechanism (Cuschieri, 1999). It is 
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necessary to avoid placing multiple instruments too close in the operative field as 

collision of different tools in the patient’s abdomen may incur due to the insufficient 

room for the movement of grasper or sissors jaws, as shown in Figure 1.5 

(Najmaldin and Guillou, 1998). 

 

Figure 1.4 The accidental damage caused by an inappropriate stress during grasping 
bowels (pointed out by the arrows). The graspings resulted from different of 
stress levels are presented (De et al., 2007). 

 

Figure 1.5 The management of the position when a second or multiple instruments 
are inserted in order to keep enough space for ensuring the flexibility of 
surgical work (Najmaldin and Guillou, 1998). 
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The challenge posed by the constrained space is much clearer in other MAS 

procedures such as single-site surgery. Single-site surgery has to accommodate 

multiple equipments all at the same time through the same accessing port so the 

procedure becomes much more complicated (McGee et al., 2006). The design of the 

instruments has to work around the constraints of the operating area during a normal 

operation (Galvao Neto et al., 2009). The dimension of the instruments has to be 

minimised and the functions are combined together, see Figure 1.6 (Shaikh and 

Thompson, 2010b). The same situation can be observed in robotic surgery, the need 

for reducing the sizes of surgical equipments presents a technical challenge (Taylor 

and Jayne, 2007). It is also economically challenging because the development and 

maintenance costs are expensive (Hashizume and Tsugawa, 2004). Therefore, there 

is an urgent need for finding out cheaper and more efficient ways of conducting 

MAS. And it is in this sense that this research project contributes to the field.  

  

Figure 1.6 The latest development of an articulating instrument for the single-port 
surgery (Shaikh and Thompson, 2010b). 

These challenges in carrying out MAS are currently being overcome by 

providing appropriate training to surgeons. The more skilled and experienced the 

surgeon, the better the performance they can have with the instruments (Vonck, 

2013b). However, not every surgeon is that skilled and experienced. This presents 

another disadvantage of a laparoscopic procedure, which requires a higher level 
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technical expertise and longer training in order to manoeuvre the MAS surgical 

instruments (Yamauchi et al., 2002).  

In order to shorten the training period and to assist surgeons to work 

confidently and easily, the instruments have been under rapid development from 

different aspects. For example, imaging techniques such as computed tomography 

(CT) and magnetic resonance imaging (MRI) systems, are important developments 

for surgeons to manoeuvre from outside the abdomen without any need of invasion 

(Cuschieri, 1999). Such X-Ray and MRI are well-established methods in diagnostics 

and biopsies using radioactivity and magnetic interaction to navigate the operative 

field and target organ (Kaiser et al., 2011). Besides, surgical robots are currently 

under the development to assist operations (Diodato Jr et al., 2004, Hashizume and 

Tsugawa, 2004). Robotic surgery can provide the real time images and manipulate 

tissue for biopsy (Rentschler et al., 2006). The systems are manipulated from outside 

the body and have the advantages of precision, miniaturisation and smaller incisions 

to decrease blood loss (Estey, 2009). However, there is often a challenge is that the 

robotic arm which often long and bulky in order to allow flexible range of motions 

and load multiple instruments. The articulating segment technology is currently 

being invented to manipulate tissue and also accommodated laparoscopic 

instruments with more flexibility in movements (Dhumane et al., 2011, Puangmali et 

al., 2008), as shown in Figure 1.6.  

Tissue manipulation has been considered an important part of MAS procedure 

as it is always the first thing to do after approaching intra abdomen. The 

conventional tools for tissue manipulation use grasping forceps, which applies a 

mechanical pinch force from a grip action onto the object. The shape of a grasp 
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forceps normally looks like a jaw attached onto the tip of a long shaft, as shown in 

Figure 1.7 (Najmaldin and Guillou, 1998).  

        

Figure 1.7 The conventional jaws of a grasping forceps (Najmaldin and Guillou, 
1998) which provides a mechanical force to lift up tissue when it clips on 
them. 

However, the contact of the pinch force provided by the jaws has been found 

to relate the accidental damages to tissue due to the lack of haptic feedback (de 

Visser, 2003a, Alaswad, 2013, Bishoff et al., 1999b, Deziel et al., 1993, De et al., 

2007, De et al., 2006). Recently, some alternative instruments have been developed 

in order to replace the conventional jaws by retraction, using novel methods such as 

vacuum pressure (Vonck, 2013b, Vonck et al., 2010, Vonck et al., 2011, Vonck et 

al., 2012) or magnetic retraction (Best et al., 2011, Best and Cadeddu, 2010, 

Cadeddu et al., 2009, Dominguez et al., 2009, Kume et al., 2008a, Kume et al., 

2008b, Cantillon et al., 2013, Park et al., 2007, Raman et al., 2009, Ryou and 

Thompson, 2009, Schlager et al., 2010, Scott et al., 2007, Shaikh and Thompson, 

2010a, Uematsu et al., 2010, Wang et al., 2010b, Wang et al., 2012, Wang et al., 

2009, Wang et al., 2008, Zeltser et al., 2007, Zeltser and Cadeddu, 2008, Tortora et 

al., 2013). These methods will be discussed in a great detail in the next chapter about 

how these instruments to manipulate tissue.  
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1.2 Aims and Objectives 

The aim of the work presented in this thesis is to investigate the feasibility of 

using nano-scale ferrofluids, a state-of-the-art magneto-rheological fluid in medical 

applications, to facilitate tissue manipulation. The literature review, in Chapter 2, 

introduces some alternative methods for tissue manipulation. These unconventional 

methods, different from the traditional pinch force, show the potential of magnet-

powered devices for tissue manipulation. However promising, such a method is still 

in its infancy stage and needs more research to explore how it can work with 

different materials and where it can be applied to.  

Overall, this study explores how ferrofluids interact with different physical 

properties and how they behave in different environments. A systematic procedure is 

established through the ex-vivo tests, in-vivo tests, particle characterisation and 

theoretical model. By the end, the database established from the quantitative study 

can become a protocol for this field.  

The objectives of this study are:  

• To conduct a parametric study of the ferrofluids in terms of the performance of 

retraction and adhesion force 

• To optimise the retraction and adhesion force and find an appropriate 

ferrofluid for surgical use 

• To identify the mobility of  ferrofluids within a tissue and the co-relationship 

of adhesion force 

• To demonstrate the feasibility of ferrofluids for tissue manipulation in the in-

vivo experiment 

• To analyse the interaction force from a theoretical perspective 
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• To suggest a specific surgical protocol that may use these fluids in 

laparoscopic surgery procedure 

1.3 Overview of the Thesis 

Chapter 1 

Chapter 1 introduces the background of MAS and outlines the motivation 

behind and aims and objectives of this research project, which experimented and 

tested the feasibility of using nano-scale particles suspended in a ferrofluid to retract 

tissue during the process of tissue manipulation, taking advantage of magnetic 

applications. It talks about why the entire project studies the feasibility of a general 

MAS procedure and medical equipment used, then identifies the challenges found in 

practice, such as a confined working area during a surgery and tissue manipulation.  

Chapter 2 

Chapter 2 reviews the current applications in the field of MAS in particular the 

methods used for tissue manipulation, including conventional graspers, articulating 

segment technology and magnetic retraction. This review helps to grasp the state of 

the art of all the relevant instruments and demonstrate the relevance of this research 

project to the cutting edge development.  

Chapter 3 

Chapter 3 reviews the literature of the experimental setup and the protocol to 

measure different types of adhesion. This chapter also introduces the method applied 

in this study. 
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Chapter 4 

Chapter 4 introduces the experimental setup in this study during both the ex-

vivo and in-vivo procedures. The experimental conditions are also introduced in 

terms of the parametric studies.  

Chapter 5 

Chapter 5 presents the results of the retraction and adhesion force 

measurements from the ex-vivo experiments. The parametric study can suggest the 

suitable condition of ferrofluids to manipulate tissue demonstrating ex-vivo and in-

vivo. 

Chapter 6 

Chapter 6 presents the characterisation of ferrofluids particles in terms of their 

abilities of displaying density distribution within an injected volume. The 

characterisation is conducted using the micro CT scanner.  

Chapter 7 

Chapter 7 presents a theoretical analysis from the magnetic interaction aspect. 

The magnetic interaction causes the primary retraction and adhesion force. The 

theoretical model in this study is based on magnetostatic equation and solved by 

Finite Element Method (FEM). This model not only verifies the experimental results 

but also can be used to predict the performance of FFs for tissue manipulation based 

on the studied parameters.   

Chapter 8 

Chapter 8 discusses the findings, the limitations of the study and the potential 

in tissue retraction. 
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Chapter 9 

In this concluding chapter, the entire study is reviewed as a protocol of using 

ferrofluids in manipulating tissue. It is also suggested some recommendations for the 

future work in this field. 
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Chapter 2 Literature Review of Techniques Used for Tissue 

Manipulation 

One of the principal challenges in MAS, as already addressed in Chapter 1, is 

operating surgical instruments in a confined environment during a complicated 

procedure. Several tasks are normally involved during a MAS operation; 

laparoscopic surgeons need to grasp, handle and manipulate soft tissue or organs by 

means of so called grasping forceps. The performance of surgeons using grasping 

forceps is called “safe grip” (de Visser, 2003b, Kemner, 1999), an action of which 

surgeons apply a sufficient force to manipulate tissue. During the action, surgeons 

need to prevent inadvertent damage caused by the act of grasping. A risk of 

instrument collision may occur when multiple instruments are applied 

simultaneously (Najmaldin and Guillou, 1998). In turn, training for surgeons who 

use MAS approaches becomes complicated and difficult (Yamauchi et al., 2002). 

Nowadays, there is a converging trend of including different methods as a means of 

manipulating tissue to improve a MAS training procedure (Cuschieri and Berci, 

1990). 

This chapter reviews the techniques used for tissue manipulation, including 

conventional grasping forceps and cutting-edge tools currently under development 

for MAS, such as magnetics, vacuum pressure and a specific procedures of tissue 

retraction. It is organised as follows. Section 1 introduces the conventional graspers 

for open surgery and MAS. Section 2 introduces the developing tools used in tissue 

manipulation. Section 3 summarises all methods mentioned in Chapter 2. 



- 17 - 

2.1 Conventional Graspers for Open Surgery and MAS 

The history of grasping forceps development in MAS has been fairly recent. It 

is helpful to introduce the tool used in open surgery first before arriving at the more 

recent development of the MAS tools because many of these modern MAS tools are 

modified, improved and transformed from the concepts and designs of conventional 

tools normally used in open surgery.  

There are lots of different designs of grasping forceps. Not all can be 

introduced here. Figure 2.1 (Fine Science Tools GmbH, 2014) shows some classical 

conventional grasping forceps used in open surgery, including teeth forceps, smooth 

forceps, Allis forceps and a modified Hemostatic forceps called Kocher forceps. It 

can be seen in the figure that grasping forceps normally consist of two lines of tines 

to hold tissue or organs together. In addition, grasping forceps have either teeth or 

smoothly serrated on the tips to prevent tissue from slipping (Wéber et al., 2008). 

 

Figure 2.1 Figures of different classical conventional forceps, including enlarged 
pictures of tips (Wéber et al., 2008, Fine Science Tools GmbH, 2014). 
Grasping involves applying a pinch force on both sides of the tissue then 
combines a pull force in order to lift the tissue up (de Visser, 2003b).  
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Figure 2.2 shows an experimental set-up to evaluate the compression of tissue 

under different pinch forces (Heijnsdijk, 2004). This schematic force diagram also 

shows that a pinch force is applied by pressing the tines and a pull force is replaced 

by a spring effect. Forceps should be held like a pencil and they grip when 

compressed between thumb and index finger (Boros et al., 2006). The pinch force 

can be adjusted by pressing at different positions along the tines to transform the 

compression on the tip of the teeth.  

 

Figure 2.2 A schematic diagram showing pinch forces and pull forces for tissue 
manipulation in laparoscopic grasping forceps (Heijnsdijk, 2004). 

The difference between the grasping forceps for traditional open surgery and 

those for MAS is principally a modified handle with a long, thin and rigid shaft 
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which allows the forceps to be manoeuvred through incisions that are no more than 

5 mm large, as shown in Figure 2.3 (Lobe, 2003). The instrument comprises a 

handle and a shaft, which are both available with various tips and can be reusable or 

disposable.  

 

Figure 2.3 Figures of typical laparoscopic graspers which may be disassembled to 
handles, marked as A, and shafts with variable tips attached, marked as B 
(Lobe, 2003). 

Although the concepts of laparoscopic graspers being quite similar to the 

conventional graspers, to manoeuvre, the implementation for MAS is different and 

some more factors that might interfere or interrupt the procedure have to be 

considered. Figure 2.4 (Westebring-van der Putten, 2011) is a schematic graph of a 

laparoscopic grasper showing a force diagram. During the operation, several forces 
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are involved, including a grip force (Fg) occurred when surgeons control the handle 

to open and close the jaw, a pinch force (tip force) (Ft) generated at the contact point 

with tissue. A force is associated with the movement of the hand (Fh), and a force 

exerted on tissue by the movement of the tip generates (FO). A pull force is 

generated when surgeons pull the handle away (Fpullh) and an associated pull force 

on tissue (FpullO). 

These interference factors are supposed to oppose each other and should have 

the same magnitude. However, Westebring-Van der Putten (2011) noticed that these 

interference factors are not simply equal because pinch force is not equal to tip force 

due to the instruments mechanism. The pull forces are not equal as there is a friction 

force between the trocar and shaft. Two movement forces are not equal as there is a 

scaling factor and a resistance of the abdominal wall.  

 

Figure 2.4 A schematic figure of a laparoscopic grasper with its force diagram 

(Westebring-van der Putten, 2011). 
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Prior to this study, Gupta et al. (1996) investigated the relationships between 

grip forces, pinch forces found in using laparoscopic forceps and surgical forceps. 

They concluded that pinch forces in laparoscopic surgery were significantly smaller 

than grip forces provided by surgeons’ hands. In contrast, pinch forces were 

significantly greater than grip forces when surgeons controlled grasping forceps in 

an open surgery. 

As such, forces applied in laparoscopic surgery are dramatically different from 

those in open surgery. Without a three-dimensional (3D) constructive vision and 

haptic feedback, the difficulty of the operation is seen to increase while surgeons 

apply a grip force to manipulate grasping forceps (de Visser, 2003a). Surgeons have 

to rely on 2D visual clues showing the level of tissue deformation to tell how much 

force applied (Culmer Peter, 2012). This kind of indirect information causes clinical 

problems, such as tissue damage resulted from inappropriate force in the instrument-

tissue interaction (Rodrigues et al., 2012, Bishoff et al., 1999a). It has been reported 

that using grasping forceps or scissors is one of the common complications of such 

surgical injuries in laparoscopic surgery (van der Voort et al., 2004). The exampled 

figures (De et al., 2007, De et al., 2006) have been shown in Figure 1.4. 

An ideal grasping action is considered as an act of holding tissue securely 

without damaging it. To achieve this goal, it requires practice and skill of controlling 

the forces and the tools. Because the tips of graspers are so small that the pressure at 

the tips is magnified, too much pressure can lead to tissue damage and too little 

pressure can cause the tissue to slip out of grasp. A pull force would be associated 

with a slip force due to the action-reaction law (Kemner, 1999, de Visser, 2003a). If 

a pull force is much greater than a pinch force, slip effect would happen. On the 

other hand, if a pinch force is much greater than a pull force, tissue would be 
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damaged. The relationship of pull forces and pinch forces forms an area called “safe 

grip”, as shown in Figure 2.5 (de Visser, 2003a). 

 

Figure 2.5 A safe grip diagram showing how tissue would be damaged and slip (de 
Visser, 2003b). 

Although Figure 2.5 does not show a force value on axis, it has been suggested 

that safe grip standard would change according to different types of tissue or organs 

(de Visser, 2003b). Each tissue type was found to have its own individual range of 

acceptable maximum forces before visible tissue damages are observed (Rodrigues 

et al., 2012). For example, an average pinch force of approximately 2.5 N and 5 N 

maximal to the colon stretches the mesocolon sufficiently for dissection in a 

laparoscopic procedure (de Visser, 2003b). Tolendo et al. (1999) presented an 

average pinch force of 9 N but did not report the reaction of the tested organ.  

The new-generation grasping forceps and instruments are equipped with 

multiple articulations in order to have more freedoms in the orientation, as shown in 

Figure 2.6 (Diodato Jr et al., 2004). This type of articulated grasping forces is 
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designed in particular for robotic surgery and single site surgery as these procedures 

occupy even less accessible space (Dhumane et al., 2011).  

 

Figure 2.6 Figures of articular grasping jaws for the robotic surgery (Diodato Jr et 
al., 2004). 

The instruments are forced to minimise the dimensions and combine all 

functions together to reduce the numbers of instruments during the surgery, as 

shown in Figure 2.7. The concept of grasping forceps is the same as that of 

laparoscopic grasping forceps, but the dimension of grasping forceps is reduced so a 

challenge to the technique is whether pinch force is sufficient on the working site. 
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Figure 2.7 Two demonstrations of multiple functions of robotic articulating 
instruments show the surgical steps: i) using one gripper to hold and one pair 
of scissors for dissection, and ii) using one gripper and two needle holders 
for suturing (Shang et al., 2012).  

2.2 Alternative Methods for Tissue Manipulation in MAS 

It has been often speculated that clinical problems may occur when 

inappropriate grip forces are applied due to a lack of haptic feedback. Different 

types of tissue have their own acceptable maximum forces tolerance before visible 

tissue damage can be noticed. The core of the technical challenge here is if surgeons 

can grip with a constant force during the entire operative duration or not. An 

instrument has to enable surgeons to apply consistent grip force and control it easily. 

 This technical challenge has also made MAS training more complicated. To 

address the challenge, alternative methods have been explored for tissue 

manipulation with more comprehensible techniques and more consistent forces. 
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These methods include vacuum pressure and magnetic retraction, as shown in Figure 

2.8. 

 

Figure 2.8 The methods and associated force types for tissue manipulation. 

2.2.1 Vacuum Grasping 

Vonck (2010, 2011, 2013b, 2012) introduced a method for manipulating the 

bowel tissue by means of vacuum pressure. The bowel tissue is delicate and flexible 

with a natural lubricant on the tissue surface. Many cases if bowel injury in 

laparoscopic surgery are caused by grasping (Bishoff et al., 1999b, de Visser, 2003a, 

Deziel et al., 1993, Rodrigues et al., 2012, van der Voort et al., 2004). A device has 

been created with a desirable nozzle connected to an air tube so as to provide 

vacuum pressure to suck tissue up, as shown in Figure 2.9 (Vonck, 2013b). 

Figure 2.9 shows that the pressure applied on the area of tissue acts as an 

instant maximum pull force, which is expected by subtracting from the leakage 

effects, which occurs when tissue fails to close the inner wall of the nozzle. It has 
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been reported that a challenge in this application as the pull force is not constant due 

to the leakage effect and the result may lead to tissue slipping away (Vonck, 2013a). 

Therefore, the design of the nozzle shape becomes important in order to stabilise the 

pull force. 

 

Figure 2.9 Schematic representations and figures of vacuum nozzles showing pull 
forces and the leakage problem occurring when tissue slipping away (Vonck, 
2013b). 

Vonck (2013b) also conducted in-vivo tests executed in open surgery and the 

results showed a retraction height of 20 cm after sucking up the bowel tissue, as 

shown in Figure 2.10. The force applied caused few damages such as small and 

moderate haemorrhages. It has been reported that a pressure level of 20 and 60 kPa 

(the maximum pull force about 5 N) caused tissue damages with a visible 
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ecchymoses. The nozzle prints caused by the sucking pressure would disappear after 

10 minutes. In addition to the the leakage of the sucking pressure, potential tissue 

injury is another challenge of this application. 

 

Figure 2.10 Figures showing the vacuum pressure is provided by the nozzle held by 
hand. The ecchymoses and the vacuum print can be observed in the circular 
marks on the right-hand side (Vonck, 2013b). 

2.2.2 Magnetic Anchoring and Guidance System (MAGS) Grasping 

Apart from vacuum pressure, which is often used in the industry to retract 

objects, magnetic force has also been widely used to pull and attract things without a 

need of physical contact. The utilisation of magnetism in medical applications have 

been included diagnostic applications, therapeutic applications, tissue movement and 

removal of ferromagnetic materials (Driller and Frei, 1987).  

An example of the application of magnetism is “Magnetic Anchoring and 

Guidance System” (MAGS) for tissue manipulation (Best et al., 2011, Best and 

Cadeddu, 2010, Cadeddu et al., 2009, Dominguez et al., 2009, Kume et al., 2008a, 

Kume et al., 2008b, Park et al., 2007, Raman et al., 2009, Ryou and Thompson, 
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2009, Scott et al., 2007, Shaikh and Thompson, 2010a, Uematsu et al., 2010, Zeltser 

et al., 2007, Zeltser and Cadeddu, 2008). This method applies a magnetic force to 

pull soft tissue or organs. The magnetic force is generated by external and internal 

magnets where are placed outside and inside the abdomen, a configuration is shown 

in Figure 2.11. 

 

Figure 2.11 A schematic diagram showing the magnetic retraction of MAGS. The 
internal magnet can be attached to different positions of tissue or organs for 
tight or flexible retraction: a) the gall bladder is strained tightly by a pull 
force b) the gall bladder is remotely controlled by moving the external 
magnets  (Kume et al., 2008a). 

With an internal magnet attached on tissue, MAGS can be used to remotely 

control tissue manipulation by adjusting the position of the external magnets. The 

pull force remains consistent to hold tissue firmly when the retraction is being 

formed. In general, the way to attach tissue is to grip tissue. Although few studies 

have been focused on quantifying grip forces, the magnitude of pull force has been 

investigated as a function of distance between external and internal magnets (Best et 

al., 2011). Park et al. (2007) presented a force and distance curve showing that this 
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relationship is a reversed exponential curve. That said, the closer distance it gets, the 

stronger force will be, as shown in Figure 2.12.  

 

Figure 2.12 The retraction force-distance of the MAGS is measured against a 
separation of 5 mm at the arrows in the figure (Park et al., 2007). 

The results showed that the maximal pull force against 5 mm was 20 N in air 

without any shield and 15 N with a shield of bovine model. As such, there is a “safe 

range” to lift up 300 g from a distance of 25 mm inside the bovine model and a 

maximal pull force that can afford 1200 g. There have been a few ex-vivo and in-

vivo tests conducted based on the idea of manipulating tissue with a weight within 

the safe range by using the same configuration of magnets sets (Best et al., 2011, 

Best and Cadeddu, 2010, Cadeddu et al., 2009, Park et al., 2007, Zeltser et al., 2007, 

Zeltser and Cadeddu, 2008). However, the magnetic intensities of the magnets sets 

have not been extensively described. 

To prepare MAGS set-up, the internal magnets need to be inserted through an 

access port and be attached the tissue or organs in a traditional laparoscopic 

procedure (Raman et al., 2009). It has been suggested that multiple internal 
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magnetic sets can be inserted through the same access port. In this way, the numbers 

of access port can be reduced (Zeltser et al., 2007, Zeltser and Cadeddu, 2008).  

The in-vivo studies using MAGS as a means of tissue manipulation to conduct 

the listed procedures in MAS are summarised in Table 2.1. It can be seen that 

MAGS relies on permanent magnets. This is mainly because the dimensions of 

electro magnets need to be much larger than those of permanent magnets. Since this 

is opposite to the concept of minimising access ports, it is a challenge to work with 

electro magnets (Cantillon et al., 2013). 

Table 2.1 Summary of the in-vivo tests involving MAGS as a means for tissue 
manipulation. (The laparoscopic surgery is denoted as LS and the Natural 
Orifice Translumenal Endoscopic Surgery is denoted as NOTES). 

Author 
LS / 

NOTES 
Position Tester 

Permanent 

magnet 

Electric 

magnet 

Park et al. (USA) 2007  LS Abdomen Swine √ Х 

Scott et al. (USA) 2007  NOTES Cholecystectomy Swine √ Х 

Zeltser et al. (USA) 

2007  
LS Nephrectomy Swine √ Х 

Kume et al. (Japan) 

2008  
LS Cholecystectomy Swine √ Х 

Kume et al. (Japan) 

2008  
LS Peritoneal cavity Swine √ Х 

Cadeddu et al. (USA) 

2009  
LS Nephrectomy Human √ Х 

Dominguez et al. 

(Argentina) 2009  
LS Cholecystectomy Human √ Х 

Uematsu et al. (Japan) 

2010  
LS Cancer therapy Human √ Х 
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It has been argued that MAGS can successfully grip tissue and organs firmly to 

assist a resection (Kume et al., 2008a, Kume et al., 2008b, Dominguez et al., 2009, 

Uematsu et al., 2010), as shown in Figure 2.13.  

 

Figure 2.13 The images showing how the internal magnets are attached on tissue 
and organs to assist a surgical procedure (Kume et al., 2008a, Kume et al., 
2008b, Dominguez et al., 2009, Uematsu et al., 2010). 

The challenges in MAGS include magnet collision when multiple magnets are 

used. The strong attraction forces make it difficult to separate these magnets so 

magnets collision may occur. It has been suggested that to prevent the magnets from 

collision with a distance between each (Best et al., 2011). Besides, the existing 

method for internal magnets to be attached on tissue normally requires a grip force, 

shown as the arrows pointed in Figure 2.13, and a grip effect on tissue denotes a risk 

of tissue damage like those done by conventional graspers (Dominguez et al., 2009). 
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In addition to these involuntary injuries, the force controller has improved the MAS 

procedure and plays an important role in this method.  

2.2.3 Magnetic Fluid Grasping 

Not only the MAGS uses magnetic force as a means for tissue manipulation, 

but also the magnetic fluid can be used in this application. Magnetic fluid is 

composed of ferromagnetic particles stably suspended in a carrier liquid and can be 

easily magnetised in the presence of a magnetic field (Odenbach, 2004, Shinkai, 

2002, Silva et al., 2012, Vékás, 2008).  

Wang et al. (2008, 2009, 2010b, 2012) introduced a concept of generating a 

pull force when a magnetic fluid is exposed to an external magnetic field. As such, 

the particles inside the magnetic fluid would move toward the magnets and the 

movement can then pull the tissue if a magnetic fluid is attached to them. The 

material involved in their studies was stainless steel particles (MP-SS410), with an 

average particle size of 15µm, suspended onto a carrier fluid such as cyanoacrylate 

liquid  in order to avoid particles aggregations when placed in a homogeneous 

magnetic field (Wang et al., 2008). After the preparation, there are two ways for the 

magnetic fluid to be attached to the tissue: glue (Wang et al., 2008) and injection 

(Wang et al., 2010b, Wang et al., 2009), as shown in Figure 2.14.  

 
Figure 2.14 Images showing two implementations of magnetic fluid, one by gluing 

onto a tissue surface (Wang et al., 2008) and the other by injecting into a 
tissue layer (Wang et al., 2009) for manipulating tissue, respectively. 
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Gluing tissue may seem to be more reliable because it involves no direct 

interaction with tissue cells. However, it has been found that the adhesives can 

sometimes fail to attach to moist tissue surfaces (Wang et al., 2008). The injection 

method has less interference from the natural surface lubricant. In the studies Wang 

et al. conducted, permanent magnets (NdFeB) were used. 

In these operations, magnetic retraction force was seen as the pull force (Wang 

et al., 2010b, Wang et al., 2012, Wang et al., 2009, Wang et al., 2008). The 

magnitude varied due to several factors, including the distance between the 

implemented magnet and magnetic fluid, volume and concentration of the magnetic 

fluid and the strength of the magnetic field. The force and the distance graph shows 

a reverse exponential curve, as shown in Figure 2.15 (Wang et al., 2009). The result 

showed the closer the distance between the implemented magnets and the 

magnetised tissue, the stronger the retraction force. It has been reported that a1 

sufficient force up to 10 mm by a volume of 50 µl MP-SS410 fluid with a 

concentration of 2000 mg/ml would provide a maximum force of 3.45 N to pull a 

tested bowel tissue. 

 

Figure 2.15 This figure showing the intensity of retraction force at the distance of 
the implemented magnets to the magnetised tissue (Wang et al., 2009). 
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Magnetic fluid grasping although having shown potential in a number of 

publications still faces quite a few challenges, including how to implement 

biocompatible adhesives to glue tissue surfaces without the peeling off effect. Also 

leakage problems can occur when high concentrations and large volumes are 

injected. Particles can also aggregate in a homogeneous magnetic field. There is 

difficulty of manufacturing a magnetic fluid with higher concentration of particles 

(>750 mg/ml) (Wang et al., 2009, Wang et al., 2008).  

Moreover, using magnetic stainless steel materials such as SS-410 in tissue has 

a few concerns of biocompatibility and toxicity for a long-term effect (Bailey et al., 

2005). Even though stainless steel materials have already been widely used in the 

application of hip replacement, the implant materials are required restrictively to 

contain non-magnetic feature in order to prevent any interactions of ferro- or ferri-

magnetic behaviour from a magnetic field (Jindal, 2012). Although it was suggested 

that holding tissue has less interaction with tissue and the particles could be removed 

when sweeping later by magnets (Wang et al., 2009).  

2.2.4 Specific Procedures for Tissue Manipulation 

In addition to physical forces for tissue manipulation, two specific procedures 

have been introduced to manipulate tissue: Endoscopic Mucosal Resection (EMR) 

and Endoscopic Submucosal Dissection (ESD) (Kantsevoy SV et al., 2008, Hyun et 

al., 2006, Jung and Park, 2013, Lenz et al., 2010). The concepts of EMR and ESD 

are to inject an alkaline solution into mucosal or submucosal tissue layers on the 

stomach or oesophagus in order to raise the lesion for dissection (Kantsevoy SV et 

al., 2008). It is separated from the deep muscle layer, as shown in Figure 2.16 

(Olympus, 2014). This is a specific procedure to raise the lesion to a sufficient 

height for removal without a serious damage. 
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The procedures do not involve new implements to grasp tissue, neither do they 

apply physical force to tissue. It is only recommended for a specific purpose at an 

early stage of tumour resection. The advantages of adopting these procedures are 

quicker recovery (hence no overnight stay in the hospital) and smaller wounds.  

 

Figure 2.16 A schematic figure showing the procedure of EMR, which starts a 
procedure of injection at the cancer site in order to create a tissue 
deformation and then uses the snare to reset the mucosa or submucosa. 
(Soetikno et al., 2003). 

2.3 Conclusions 

In summary, the clinical challenges introduced in this chapter relate to 

involuntary tissue injury which often occurs in laparoscopic surgery due to a lack of 

haptic feedback during a surgery. Grip forces can be executive when using 

conventional grasping forceps. In addition, every tissue has a different reference to 

the maximal grip force before tissue damage occurs. Inconsistent grip force can lead 

to tissue slippage. Although skills and experiences of surgeons can prevent 

inadvertent damage, risks still exist when these procedures are conducted. 

Technological advancement therefore should mitigate some of these issues.  

To overcome the challenges of inconsistent grip forces, a concept has been 

proposed to provide a comprehensive pull force to replace conventional pinch force. 
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The existing methods include vacuum grasping, MAGS grasping, magnetic fluid 

grasping and other specific procedure. Although all of these demonstrate promising 

performance in grasping tissue, there exist limitations for each implementation, as 

summarised in Table 2.2. The specific procedures of EMR and ESD can be applied 

to raise the lesion for dissection, which causes a minor wound on tissue layers. 

However, their challenges are providing not sufficient height and avoiding liquid 

dispersion during the operation. 

Table 2.2 A list of current limitations in existing grasping methods. 

Implements Limitations 

Vacuum grasping • Tissue damage as small and moderate 
haemorrhages 
• Air leakage causes tissue to slip 
• No adaptable technical support yet 

MAGS grasping • Magnets collision when applying multiple 
magnets 
• Difficulty in separating the strong attraction forces 
• Tissue damage when implementing internal 
magnets on tissue 
• No force controller during retraction 
• Inadvertent tear may occur when a strong 
attraction force is applied 
• No adaptable technical support yet 

Magnetic fluid grasping • Difficulty in implementing biocompatible 
adhesives  
• Leakage problem may occur when high 
concentration and large volumes of the fluid are 
injected 
• Particles aggregation may occur in a homogeneous 
magnetic field 
• Synthesis of magnetic fluids are with higher 
concentration (>750 mg/ml)  
• Biocompatible and toxic concern for a long-term 
effect using magnetic Stainless Steel materials 
• No adaptable technical support yet 
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MAGS was firstly introduced to use magnetic force in tissue manipulation 

remotely. However, the strong attraction force leads to a difficulty in separation 

when magnetic collision occurs. Magnetic fluid has shown an ability to provide 

sufficient force in tissue manipulation, but there exists little investigation into its 

effects in existing literature. This implementation requires advanced technical 

supports to resolve existing challenges in pull force analysis, materials selection, 

experimental repeatability, system design, practical and in-vivo studies etc.  

This research aims to investigate the feasibility of a new material, nano-

particles magnetic fluid (ferrofluids) and its performance in tissue manipulation. The 

outcome will improve our understanding of force spatial map from an engineering 

perspective and an empirical experiment based on ex-vivo test of grasping tissue.  
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Chapter 3 Literature Review on Approaches for Adhesion Force 

Measurement 

This research aims to investigate the feasibility of using ferrofluids as a means 

for tissue manipulation. Ferrofluids are used to magnetise tissue locally to allow a 

pull force to replace the pinch force produced by conventional graspers to grip 

tissues. As discussed in the literature review in Chapter 2, it is important to have a 

good understanding of the forces involved during tissue manipulation in 

laparoscopic surgery. In order to illustrate the force enabled by ferrofluids, this 

chapter will survey the existing literature on methods and apparatus used to measure 

the extent of different types of adhesion from an engineering perspective, e.g. wet 

adhesion, magnetic adhesion for retraction. This chapter is organised as follows. 

Section 1 will introduce an existing physical model of tissue retraction and the 

objective add-in after the entire study. Section 2 will review the existing methods 

and apparatus in adhesion measurement. Section 3 will review the mechanism of 

retraction methods. Section 4 will identify the magnetic adhesion and associated 

applications. Section 5 will give a summary of the literature review for the 

experimental design. 

3.1 Adhesion Principle Involved in Tissue Manipulation 

The model developed by Wang et al. that analysed pull force generated from 

magnetic fluids, as shown in Figure 3.1. This physical model presented an external 

magnetic field generated by a magnetic probe (permanent magnet) to induce a 

magnetic interaction force to manipulate the magnetised tissue. In contrast to the 

conventional grasping forceps, there were no grip forces or pinch forces involved in 
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this process. The principle of retraction was using magnetic interaction force to pull 

a certain loading of tissue during tissue manipulation. 

 

Figure 3.1 Schematic graph explaining force involved in magnetic fluid grasping 
(Wang et al., 2010b). 

This model is useful for understanding the mechanism of using ferrofluids as a 

means of tissue manipulation. Furthermore, the mechanism observed in the study 

has made the model expanded a little bit with regard to tissue surface adhesion 

involved in tissue manipulation. When testing a plain tissue without magnetising 

tissue, an intensity observed from tissue surface is so called tissue surface adhesion.  

In addition to the process of the tissue retraction, an interaction force is 

observed when the magnetised tissue is retracted by the magnetic probe before 

getting in contact. From the retraction to detachment, the measured intensity of 

detachment is larger than the retraction. Therefore, the physical model is expanded 

with tissue surface adhesion including interactions exerted between soft tissue and 

flat plane surface. The measured intensity is also defined as magnetic retraction and 

magnetic adhesion. This research contributes to this by including tissue adhesion 

and magnetic adhesion in a modified model as shown in Figure 3.2.  
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Figure 3.2 A modified model presenting a force diagram involved in tissue 
manipulation using ferrofluids. The investigations in this study are based on 
this model to clarify the measurement from an engineering approach. 

3.2 Adhesion Measurement from an Engineering Perspective  

The use of retraction is through the adhesion by a contact between the retractor 

and object. In this section, a range of methods and apparatus are reviewed from an 

engineering perspective for adhesion of surface contact. Several methods have been 

used to measure adhesion force when two surfaces make contact (Pocius, 2002, 

Pizzi and Mittal, 2003, Lacombe, 2006). For example, Lacombe (2006) introduces 

pull-off tests, indentation tests, self-loading tests, tensile tests, scratch tests and peel 

tests.  

Adhesion forces occur in both normal and lateral directions before the contact 

is fully ruptured. Methods such as pull-off tests, indentation tests, tensile tests (Shao 

et al., 2009, Shao and Stewart, 2010) and self-loading tests measure the normal 

adhesion which is perpendicular to the contact surface. The mechanism of pull-off 

tests and indentation tests requires a probe to be placed upon the substrate 

(Lacombe, 2006). The procedure is to apply a contact at the substrate and pull the 



- 41 - 

substrate off opposite to the direction of the applied force. In this way, the adhesion 

force can be captured while a backward motion pulls the substrate away. There are 

some examples shown in session 3.3 and 3.4. 

Based on this approach of pull-off and indentation, the literature shows that 

some factors can affect adhesion force, e.g. surface roughness (Gay, 2002), preload 

forces for a contact (Autumn and Peattie, 2002, Greiner et al., 2007, Liang et al., 

2000, Long and Hui, 2009, Roshan et al., 2011), surface orientation (Rabenorosoa et 

al., 2009). Due to different textures of surfaces which are composed of different 

materials, some rough, some smooth, the magnitude of adhesion force varies as well. 

The existing literature suggests that soft substrates usually give higher adhesion 

force than hard substrates when making contact with a rigid material. This is due to 

its feature of highly deformable surface (Gay, 2002), as shown in Figure 3.3. One 

can see that the surface pressure increases when the contact area is enlarged. 

 

Figure 3.3 Different levels of surface deformation show different types of adhesion 
between the hard and soft substrates during an indentation (Gay, 2002). 

After experimenting various contact angles between the substrate and the 

indenter, Rabenorosoa et al. (Rabenorosoa et al., 2009) found that a maximal 

adhesion force can occur when the contact angle is zero. This means the indent 

surface is perpendicular to the substrate. The results also showed that whilst the 

contact angle has a significant influence on the pull-off force, the preload force did 
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not. Therefore, the effect of preload force on the adhesion force is fairly consistent 

in the research (Autumn and Peattie, 2002, Greiner et al., 2007, Liang et al., 2000, 

Long and Hui, 2009, Roshan et al., 2011). 

The mechanism of tensile tests and self-loading tests is set up with one end 

fixed and the other end attached with a load to the substrate. The load generates a 

pull force in order to stretch the substrate. The substrate may be deformed or 

displaced during loading, and an adhesion force is obtained until the contact is taken 

off.  

Apart from normal adhesion, shear adhesion is another category that has been 

investigated, such as through peel tests and scratch tests (Lacombe, 2006). Shear 

adhesion is different from the perpendicular direction of its orientation as parallel to 

a lateral movement towards the substrate, as shown in Figure 3.4. In general, the 

mechanism of scratch tests is to ensure a contact is attached to a substrate using a 

probe (Lacombe, 2006). While moving the probe laterally to the substrate surface, a 

shear adhesion force occurs. This method is often used on hard substrates (Lacombe, 

2006) because plastic deformation is often extruded and makes it technically 

difficult to measure when a soft material is scratched and deformed, as shown in 

Figure 3.4. Achanta (2008) studied a ball-on-flat contact by reciprocating sliding 

using the Modular Universal Surface Tester (MUST) rig. The motion of a 

reciprocating sliding caused a shear adhesion effect and the magnitude of the shear 

adhesion was investigated over a range from micro- up to milliNewtons. 
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Figure 3.4 A comparison between conducting a scratch test on a hard and a soft 
substrate. The deformation of the soft material increases the difficulty of 
using this method (Lacombe, 2006). 

Except scratch tests, peeling mechanism is also used to investigate shear 

adhesion force (Lacombe, 2006). The apparatus requires a thread attached on one 

end of the substrate and pulled while the substrate is slid via a connected thread to 

ensure both slide and pull motions travelling with the same speed, as shown in 

Figure 3.5.  

 

Figure 3.5 A schematic diagram showing a peel tester with a load cell for measuring 
the variation of force. This apparatus has a feature that both slide and pull 
motion travel with the same speed (Lacombe, 2006). 
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3.3 Review of Adhesion for Retraction 

While a surface contact generates an adhesion force on tissue, several natural 

matters have been attracted huge attentions of their adhering and pulling powers. For 

example, insects and animals like geckos (Autumn and Peattie, 2002, Huber et al., 

2005, Lee et al., 2007, Liang et al., 2000, Sangbae et al., 2008, Stark et al., 2013, 

Geim et al., 2003), tree frogs (Federle et al., 2006, Roshan et al., 2011) beetles 

(Eisner and Aneshansley, 2000, Cheung et al., 2005) all have the abilities to attach 

themselves to dry or wet surfaces. That means that a sufficient adhesion force can 

withdraw the pulling from the gravitational force generated by the weight. The 

adhesion force is generated by the texture of the foot toes that has nano or micro-

structured pillars, as shown in Figure 3.6. 

 

Figure 3.6 A collection of morphology of gecko, tree frog and beetle foot toes 
showing the micro-structured surfaces with pillared fibres (Eisner and 
Aneshansley, 2000, Roshan et al., 2011, Huber et al., 2005, Stark et al., 
2013).  
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This kind of pillared fibre can also be seen in other biomaterials (Schliemann 

and Goodman, 2011). The mechanism of an adhesion force was considered to be 

generated by the combination of capillary and van der Waals forces (Taylor et al., 

2010, Menon et al., 2007). The adhesion feature is currently applied in many 

biomimetic materials for the development of climbing robots (Menon et al., 2007, 

Cheung et al., 2005, Filippov et al., 2011, Gebeshuber et al., 2005, Murphy et al., 

2006, Sangbae et al., 2008, Style et al., 2013). 

The performance of adhesion against the pulling from gravity is often 

investigated from an engineering perspective using microrheology apparatuses, 

which have been developed to measure the small scale of contact as a function of 

micro-nanoNewtons, such as Surface Force Apparatus (SFA) and Atomic Force 

Microscope (AFM) (Lin and Valentine, 2012a, Lin and Valentine, 2012b, Gavara 

and Chadwick, 2010). The procedure is to use a cantilever which carries a tip to 

work as an indenter under either a single contact or semi-contact (frequent contact), 

and to probe onto the substrate (Gavara and Chadwick, 2010). The results from the 

microrheology tools are used not only to study the topography of the surface but also 

to obtain the stress and strain curve, similar to the pull-off and indentation tests. The 

tips are normally selected to form a contact as cylinder-cylinder or sphere-planar for 

a point or line contact, resulting in no requirement of a precisely relative angular 

position for calibrations. Otherwise, the adhesion force on the rough surfaces is 

strongly reduced compared to that on the flat one (Lorenz et al., 2013). AFM is 

normally used for measuring micro-scale matter as the resolution of AFM is 

normally as high as nano- to micrometres. However, the width of the scanning area 

is usually less than 100 µm, and this makes it difficult to characterise a large area 

surface. The advantage of using AFM is to detect the atomic force such as molecular 
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repulsive forces, Van der Waal’s forces and capillary forces for the scale like 

biomimetic materials, as shown in Table 3.1.  

Table 3.1 Adhesion tests of biomimetic materials, for example gecko pads, frog tree 
pillars and beetle fibres using apparatus of AFM. 

Material Method of 
measurement 

Description 

Gecko pads versus a needle tip 
(Huber et al., 2005, Geim et 
al., 2003) 

Microrheology 
indentation 
method (AFM) 

Using AFM to provide a contact 
of indentation using the needle 
tip. The measurement was 
conducted using a single spatula 
during perpendicular pull. 

Biomimetic adhesive of hybrid 
gecko and mussel versus a 
needle tip (Lee et al., 2007) 

Microrheology 
indentation 
method (AFM) 

Using AFM to provide a contact 
of indentation using the needle 
tip. The measurement was 
conducted on a single pillar area.   

Gecko adhesion in shear 
direction versus wet and dry 
surface (Stark et al., 2013) 

Microrheology 
indentation 
method (AFM) 

Testing adhesion force between 
the gecko hair-like surface and a 
flat surface in shear direction 
under different wettability. 

Beetle bristles versus flat 
surface (Eisner and 
Aneshansley, 2000, Cheung et 
al., 2005) 

Pull-off 
method 

The apparatus consists of a 
platform to contact with the 
beetle bristles and measures the 
adhesion force while increasing 
the load to pull off the contact.  

Biomimetic adhesive pad like 
tree frog with pillars versus 
wet and dry surface (Roshan et 
al., 2011) 

Indentation 
method 
(MUST rig) 

Testing adhesion force between 
the tree frog pillar-like surface 
and a peritoneal tissue surface in 
normal direction. 

 

Adhesion force has been studied using pull-off tests and indentation tests. 

However, few literature is directly related to the adhesion force between a flat 

surface like magnet and soft tissue. Soft tissue is normally covered with body 

lubricant and considered as wet surface. The wet adhesion is normally investigated 

using a dome shape indenter during pull-off tests so as to avoid the disturbance from 

the influence of the surface texture and the orientation (Derks et al., 2003, Lindner et 
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al., 2005, Nase et al., 2008, Poivet and et al., 2003, Poivet et al., 2004, Banks and 

Mill, 1953, Francis and Horn, 2001). The wet surface forms a liquid bridge, which 

provides an attractive effect. This phenomenon is shown clearly in Roshan et al.’s 

study about the pillar-like adhesive pad probed on the rat peritoneum (Roshan et al., 

2011). Before the indenter was brought into contact with the substrate (see Figure 

3.7), the liquid adhesion was observed to speed up the indenter in contact with the 

wet surface, behaving as if what is called the “snap-in” effect (Taylor et al., 2010, 

Taylor et al., 2009).  

 

Figure 3.7 A figure showing the force-distance curve with a clear wet adhesion 
force which speeded up the contact as the snap-in effect is in action. It also 
shows that the maximal adhesion force is significantly larger than the wet 
adhesion force (Roshan et al., 2011). 

When the interface was compressed and then detached, there was an adhesion 

force observed. The wet adhesion force was broken when the interface was squeezed 

and an inverse force occurred. The magnitude of wet adhesion was investigated over 

the range within 10 mN. 
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3.4 Magnetic Adhesion 

Unlike the capillary and van der Waals forces which always exist when objects 

interplay with one another, magnetic adhesion only occurs when a ferromagnetic 

substrate is exposed to a magnetic field where a magnetic force is generated (Menon 

et al., 2007). In contrast to van der Waals forces, that require the contact of two 

surfaces, magnetic forces do not require any contact of media as they can be 

remotely applied without a physical contact. The magnetic force is able to retract 

ferromagnetic substrate, for example, and it has been used in MAGS, magnetic 

tweezers (MT).  

Although magnetic adhesion has the ability to attract substrates remotely, the 

power is not infinite and relies on the distribution of magnetic field. MAGS is the 

application of magnetic adhesion for tissue manipulation in MAS. It uses the 

external permanent magnets to attract the internal magnets which are attached to 

tissue or soft organs. The performance is often investigated using the pull-off 

method to measure the maximal retraction force versus distance from the magnetic 

resources (Best et al., 2011). The measurement is conducted while the opposite polar 

surfaces of magnets move towards each other and induce an adhesion force, as 

shown in Figure 3.8.  

 

Figure 3.8 Adhesion measurement of retraction force between the external and 
internal magnets (Best et al., 2011). 
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The result shows that the decrease of distance will lead to the increase of 

adhesion force (Park et al., 2007, Best et al., 2011). In addition to afore mentioned, 

the components in the apparatus have to be non-magnetic otherwise there will be a 

significant effect in the accuracy. 

When the internal magnet is replaced by a single metallic bead, the magnetic 

adhesion force can pull the metallic bead. An application called MT is incorporated 

into the optical microscope or fast camera to visualise samples. An active AFM with 

magnetic assembly is an example of this technique used to separate the 

Deoxyribonucleic acid (DNA) and Ribonucleic acid (RNA) while the magnetic bead 

is attached to tissue cells (Neuman and Nagy, 2008). A necessary force as pico- to 

nanoNewtons is required to pull the magnetic bead in order to separate the contact 

with tissue cells (Lipfert et al., 2009), as shown in Figure 3.9. There is a negative co-

relation between the magnetic force and the distance between the magnetic field 

source and the substrate. The shorter the distance, the stronger adhesion force will 

be. (Lin and Valentine, 2012a, Lin and Valentine, 2012b).  

 

Figure 3.9 A MT apparatus which includes a CCD camera for visualising the real 
time separation showing the magnetic retraction occurs at the bead and 
substrates by the pull of magnetic adhesion (Lipfert et al., 2009). 
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The resource of magnetic field is either generated from electromagnets or 

permanent magnets and has often been used for pulling purposes (Wang et al., 

2010b, Wang et al., 2009, Wang et al., 2008). There are the pros and cons with the 

electromagnets and permanent magnets. The main advantage of using 

electromagnetic configuration is its ability to provide various magnetic field patterns 

(Lira and Miranda, 2009a, Lira and Miranda, 2009b, Mahle et al., 2008, Muller et al., 

2006, Miranda and Oliveira, 2004). However, the field strengths generated from 

electromagnets are much lower than those generated by permanent magnets under 

the condition of the same size. The electromagnet is also easier to apply torque due 

to its low field strength. To pursue a stronger magnetic field strength, Lin and 

Valentine demonstrate that strength can be increased as a combination of permanent 

magnets stack being added up (Lin and Valentine, 2012a, Lin and Valentine, 2012b).  

Another magnetic adhesion applied in tissue manipulation using magnetic fluid 

has been investigated using the tensiometer (Wang et al., 2010b, Wang et al., 2012, 

Wang et al., 2009, Wang et al., 2008). The tensiometer is employed in the tensile 

methods to measure the relationship of load and displacement, as shown in Figure 

3.10.  

 

Figure 3.10 The experimental measurement of adhesion between a magnetic probe 
and magnetised tissue using a tensiometer. The load-extension curve 
indicated the rupture point of the adhesion (Wang et al., 2008). 
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The procedure was first to magnetise tissue via injecting or gluing magnetic 

fluids to tissue. The magnetic adhesion has been found increasing when the 

magnetic field strength increases as well as when the distance between the magnetic 

resource and the substrate decreases. The magnetic adhesion of Wang’s studies was 

investigated over a range from 1 to 5 Newton. 

3.5 Conclusions 

In summary, the literature survey in this chapter can be summarised to a 

diagram of force range with regard to tissue adhesion. The comparison in Figure 

3.11 shows the force range of different adhesions: for example surface adhesion is 

about 10 – 80 mN, wet adhesion is about 6 – 60 mN, magnetic adhesion in MAGS 

for solid magnets is about 250 – 50000 mN, magnetic adhesion for magnetic tweezer 

is about 300 pN – 1 µN and magnetic adhesion for magnetic fluid is about 1 – 5 N. 

 

Figure 3.11 A comparison graph showing the force range for different types of 
adhesions. 
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It is found that few literature is directly linked to tissue adhering with 

ferrofluids. Hence, an experimental protocol is organised by the expanded physical 

model in order to study the feasibility of ferrofluids to facilitate effective tissue 

manipulation.  

In the literature review, experimental methods are often using pull-off tests and 

indentation tests for the normal direction adhesion. In addition to a specific testing 

environment of the magnetic adhesion, the components on this apparatus have to be 

non-magnetic. So the AFM and the MUSTTM rig are not used but a self-developed 

testing rig of a combined approach of pull-off tests and indentation tests is 

developed.  

The specification of this self-developed testing rig is according to the 

discussion in this chapter with regard to the force range. 
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Chapter 4 Methodology for Tissue Manipulation Measurement 

This thesis has employed both ex-vivo and in-vivo methods to model the 

process of manipulation in order to investigate the feasibility of using magnetic 

adhesion force to replace the conventional mechanical clipping method as a means 

of retraction in the Minimal Access Surgery (MAS). The methodology of the 

investigation is illustrated in this chapter.  

This chapter is organised as follows. Section 1 presents the experimental setup 

of the existing apparatus – MUSTTM tester for ex-vivo adhesion measurements in 

tissue retraction. Section 2 presents the instrumentation of a developed experimental 

tester MagRAT tester to overcome the challenges occurred in the MUSTTM tester 

during the magnetic measurements in retraction. Section 3 presents the information 

of those experimental materials used in magnetic tissue tests, including ferrofluids 

and animal tissue. Section 4 presents a study of the particle size suspended in the 

ferrofluids by using the dynamic light scatter (DLS )Nanosizer. Section 5 presents a 

study of the particle density distributions in the magnetised tissue test by using the 

micro CT scanner. Section 6 presents an experimental design to analyse the 

parametric results for optimisation by using the Taguchi method. Section 7 presents 

the experimental arrangement of the in-vivo experiments in tissue retraction.  

4.1 Instrumental Adhesion Measurements – MUST
TM
 Tester 

The adhesion measurements are conducted using two different apparatuses. 

The first apparatus is an existing tester, the Modular Universal Surface Tester 
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(MUSTTM), manufactured by Falex Tribology N.V. (FALEX TRIBOLOGY, 2014), 

which has allowed Taylor (2009) and Roshan (2011) to measure the molecular 

adhesion interaction between a pillar surface and rat peritoneum. This device equips 

a two-dimension motion module at the bottom and a sensor system on top of the 

module, as shown in Figure 4.1. 

 

Figure 4.1 The appearance of MUSTTM tester (FALEX TRIBOLOGY, 2014) 
showing the device with a plastic door to prevent vibration and light 
emission. This device has its own operation system and a data acquisition of 
10 N. There is a 2 axis motion basement and a vertical motion carrying an 
indenter and sensors. 

4.1.1 A Sensoring System (Optical Fibre and Cantilever) 

MUSTTM tester has a sensor system to detect the displacement and force. The 

sensor system is equipped with an optical-fibre to sense a reflection light from a 
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mirror which is attached to a cantilever, another component of the sensor system. 

The intensity of the reflected light can be converted into an electric signal by 

optoelectronic transducers. When there is a deformation of the cantilever due to an 

applied force, this electric signal obtained can be calculated based on the resultant 

displacement. The sensitive resolution of this optical sensor is 20 nm. The 

calibration of the intensity of the optical sensor is a function of distance, as shown in 

Figure 4.2. 

 

Figure 4.2 A schematic diagram showing the optical fibre sensor opposite to a 
mirror attached to one side of the cantilevers. There is a gap between the 
sensor and the mirror. The intensity of the reflected light varies depending on 
the distance. And, the relationship between the intensity of lights and the 
distance shows a peak value as a critical distance, used for the calibration. 

The intensity increases with the decrease of the distance between the sensor 

and the mirror until a critical distance is reached. If the distance is shorter than the 

critical distance, the intensity will decrease. As such, to identify the critical position 

of the optical fibre which separates the measurement ranges as MB1 and MB2 (see 

Figure 4.2) called “peak finding”. The peak finding is conducted on site where the 

MUST tester shows a reading of a signal on screen. The result showed that varying 

the distance between the optical fibre sensor and the mirror would deliver different 

outcomes, and an appropriate value was selected between 4500 and 5000.  
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Calibration of the optical fibre sensor is important for the start of every 

experiment because systematic errors may occur due to deformation exerted on the 

setup of the cantilever and vibration. 

On the other hand, the sensor system enables the mechanism to measure the 

deflection of contact using a pair of steel cantilevers which work as a spring. A 

schematic graph is shown in Figure 4.3 where the probe in contact with the surface 

makes the cantilever deflect. This deflection ∆d is recorded by the optical-fibre. The 

deflection is over a range of micrometres and the force is over a range of 

milliNewtons.  

 

Figure 4.3 The sensor system including a pair of cantilevers to show the level of 
deflection, which is captured by the optical-fibre sensor. A probe is attached 
on the cantilever and operated towards substrates (FALEX TRIBOLOGY, 
2014). 

To investigate the relationship of the force and deformation of the cantilever, 

we need to understand the stiffness of the cantilever. When the cantilever is 

considered as a spring, the stiffness coefficient can be obtained according to the 

Hooke’s law. The following equation represents the relationship between the 

deformation and force exerted with spring constant k being the coefficient of 

stiffness. 

 Tension =k·∆X 
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The calibration of the cantilevers is conducted directly on the MUSTTM tester 

when the peak finding for optical fibre sensor was already completed in advance. 

The experimental procedure started with adding loads on one side of cantilevers. If a 

false value of the stiffness coefficient (k) is set at 1 mN/µm, the results of the 

displacement (∆X) should be the same as a tension applied.  

The graph below shows a positive coefficient linear relationship between the 

applied load and the deflection. The gradient fitted represents the stiffness 

coefficient, see Figure 4.4. The stiffness coefficient used in the study is 0.4 mN/µm 

and a desired force range of the cantilevers is up to 1 N. 

 

Figure 4.4 A positive coefficient linear relationship of the applied load and the 
deflection of the cantilever. The linear line represents the stiffness of the 
cantilever. 

4.1.2 Motion Modules (Instrumental Module and Movable Module) 

The MUSTTM tester consists of two motion modules, which are the 

instrumental module for vertical travel and the motional module for horizontal travel, 

y=0.40489x+0.34378 

R2=0.99987 
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as shown in Figure 4.1. The instrumental module affords the sensor system to be 

configured during an experiment for the purpose of measurement. The movable 

module is a reciprocating device which has a stroke length of 20 mm. When an 

experiment starts, the movable module drives the sample platform to contact the 

sensor system. Figure 4.5 shows the configuration of the sensor system and the 

movable module for adhesion measurement, during which the movable module 

brings the tissue sample to make contact with the indenter, and then pulls away. 

 

Figure 4.5 A schematic diagram of operating MUSTTM during a test. 

4.1.3 Configurations 

The configuration of the MUSTTM tester is to hang the indenter onto the 

cantilever either horizontally or vertically downwards to the sample. However, the 

configuration cannot be placed as in the setup of laparoscopic surgery. In addition to 

the setup, there is a clear bending effect, which influences the accuracy of the 

cantilever significantly due to the heavy indenter, as shown in Figure 4.6. Besides, 

the MUSTTM tester is not a proper device for measurement in a magnetic field 

because some components are prone to being magnetised (e.g., steel screws and 
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slide table). In order to present a more accurate result of magnetic retraction, an 

advanced setup called MagRAT tester was assembled. 

 

Figure 4.6 This photo shows the general setup of a MUSTTM tester with an indenter 
attached to the cantilevers. It clearly illustrates a bending effect when a 
heavy indenter renders an initial deformation and a torque. 

4.2 Instrumental Adhesion Measurement – The MagRAT Tester 

4.2.1 Configurations 

A customised tissue tester, Magnetic Retraction and Adhesion Tester 

(MagRAT), was designed to simulate the entire procedure of tissue manipulation 

from conducting the injection to retraction. The tester is more flexible to overcome 

the magnification issue. It also costs less compared to other available modular 

testers currently on the market. Therefore, MagRAT was assembled with non-

magnetic materials most of which were manufactured of aluminium in house at our 

workshop.  
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A preliminary adhesion measurement to test the feasibility of retraction was 

conducted using ferrofluids and a force module with a rolling mechanism. The 

rolling mechanism turned a torque into a linear motion so that it could manoeuvre a 

probing test onto the magnetised tissue manually, as shown in Figure 4.7. A flexible 

scale ruler was attached to the stroke to show the distance between the magnetised 

tissue and the magnetic probe. 

 

Figure 4.7 A schematic graph of an earlier version of MagRAT, which turned 
torque into a linear motion to control the magnetic retraction manually. The 
retraction experiment was conducted using a load cell to measure the force 
variation of the interaction. 

4.2.2 A Force Sensor  

The force sensor for the retraction experiment is a beam-shape load cell 

LCAE-600G, provide by Omega Engineering Inc.® (2013-2014), The load cell is 

connected to a power supply and a data acquisition system, NI-USB 6008 (National 

Instruments®, 2014), to record the dynamic force measurement. Its specification can 

measure up to 0.6 kgf with a resolution of ±10% of full scale output. The material 

was made of aluminium.  
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The adhesion result is expected to be less than 1 N within the specification (0-

6 N). However, to reduce the number of errors of a scale difference from the 

equipment, the accuracy and background information about the sensor performance 

have to be altered during the calibration through several mathematical translations 

(Al Khaburi, 2010). The signal captured is controlled within ±1 Volt. The 

calibration procedure is a series of loading tests and is repeated for 5 times in order 

to get an overall error of the nonlinearity of 2.2 %, and the calibration diagram is 

shown in Figure 4.8. The potential difference has been rescaled and zeroed. 

 

Figure 4.8 A load cell calibration diagram showing the calibrated range between 0 
and 1.1 N. 

4.2.3 Motion Modules 

An advanced version of the MagRAT tester improves the functionality of 

automatic control from an earlier device with a motional module, as shown in Figure 

4.9. The motional module includes two linear slides of T-LSR075B, provided by 

Zaber Technologies Inc.® (2014) to control the majority of the motions of tissue 

indentation. Each linear slide is driven by a step motor with a resolution of 0.49 µm, 

accuracy of 15 µm and a backlash less than 7 µm. The dimension of each is about 
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200 mm height and 65 mm width with a travel distance of 75mm. There is a 

maximum travelling speed could reach 20 mm/s, but in this study the travelling 

speed is set at 1 mm/s to allow the clearance of the magnetic effect on force 

measurement.  

 

Figure 4.9 A schematic graph of an improved version of the MagRAT tester. There 
are two vertical linear slides which provide two parallel movements to 
conduct the indentation and pull-off tests. 

The configuration shown in Figure 4.9 is for the normal indentation test, where 

one linear slide carries a tissue clamping plate for tissue to be magnetised and the 

other one carries the force sensor mentioned in session 4.2.2. Both linear slides in 

this configuration move vertically. The tissue clamping plate is placed in the middle 

of the injection system and the magnet on the force sensor. When one linear slide 

moves to conduct the injection or indentation procedure, the other stands by. 
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Figure 4.10 shows a different configuration of MagRAT tester which aims to 

test the shear adhesion. One vertically standing linear slide carries a force sensor and 

a magnet to provide an external magnetic field. The other is placed horizontally with 

a tissue clamping plate to conduct a lateral movement. 

 

Figure 4.10 A schematic graph of different modes of MagRAT tester for shear 
adhesion measurement. Instead of two parallel movements, a tissue clamping 
plate that moves horizontally is set up to scan across the magnetic probe. 

4.2.4 Magnetic Inducers 

There are three different magnetic inducers made of Neodymium iron boron 

magnets (NeFeB). They are used to provide an external magnetic field for the 

retraction. All of them are in cylindrical shape and the geometries are listed: (MA) 10 

mm height and 20 mm diameter width, (MB) 10 mm height and 10 mm diameter 

width and MC is a combination of MA and MB.  



- 64 - 

The magnetic inducer is attached to the force sensor. The centre of the 

magnetic inducer is placed right under the tissue sample and aligned with the square 

hole of the clamping plate for a physical contact of indentation so as to retract tissue. 

4.2.5 HIRST Gaussmeter 

The magnetic flux is generated from the entire contact area of the magnetic 

inducers (MA)(MC) 78.5 mm2 and (MB) 314 mm2. The magnetic field strengths are 

measured by using a portable hall-effect Gaussmeter GM08, provided by HIRST 

Magnetic Instruments Ltd.® (2004) with an accuracy of ±1%. The device is mounted 

on the side of MagRAT and the sensor is placed perpendicularly next to the 

magnetic inducer. When the adhesion measurement is ongoing, the magnetic inducer 

would move towards the sensor and the dynamic magnetic field strength would be 

recorded in terms of the function in light of the distance between the magnetic 

inducer and magnetised tissue, shown in Figure 4.11.  

 

Figure 4.11 The GM8 Gaussmeter is attached to a transverse probe and the tip of 
the probe has a sensor detecting the magnetic field strength.  

4.2.6 Instrumental an Injection Module 

In order to make a customised tester to simulate the entire tissue manipulation 

procedure, MagRAT is used to improve the injection module, which allows tissue to 

be magnetised automatically and accurately. The injection module involves two 

steps: inserting the needle into tissue sample, and injecting ferrofluid through a 

Transverse probe 
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syringe. In the beginning of the injection procedure, a  ferrofluid was filled with 

syringe and tissue samples (porcine liver, in this case) was cut into a 3 cm by 3 cm 

square and placed on a tissue clamping plate, which is clamped sandwiched between 

the upper and underneath plates, as shown in Figure 4.12. There is a square hole in 

the middle of each of the upper and underneath plates for injecting the ferrofluid and 

performing indentation tests, respectively.  

 

Figure 4.12 The photo and explosion graphs of clamping plates with a tissue sample 
in the square hole for injection and indentation. The top graph represents the 
difficulty of using the injection module due to tissue deformation. Hence, the 
support plate shown in the other graphs solves the issue of deformation.  
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Tissue deformation during the injection procedure in ex-vivo tests used to be 

an issue due to the pressure exerted on surface which would lead to an uncertainly 

depth of injection. The injected position of the injection is therefore one of the 

experimental parameters. In order to achieve an accurate injection, a solution is 

designed so as to attach another small flat plate to support tissue. This support plate 

is removed right after the injection.  

A L12 linear actuator, provided by Firgelli Technologies Inc.® (2011) works 

as a syringe pump to push the syringe and lead an injection of ferrofluids. It has a 50 

mm long stroke with a constant actuated speed of 1 mm/s. Tissue is pierced by a 

needle with a constant speed of 1 mm/s.  

4.2.7 Sensor of the Injection Module  

The injection module includes a sensor to detect the contact of the needle and 

the tissue surface. This is essential for providing a reference to the injected depth. 

The concept of the sensor is based on an electrical conductivity method to detect an 

electric circuit from the tissue. The electric current is supplied by a power supplier 

through the electrodes. As Figure 4.13 shows, a 1 kΩ external resistor (R1) is 

connected to the tissue, considered as an internal resistance of tissue (R2). There are 

two electrodes are attached to the tissue surface and the needle, respectively and 

wired to the data acquisition system. The configuration of the experimental 

arrangement is a series-circuit.  

The contact of the tissue surface and the needle is like a switch (S1). When the 

surface is in contact, it forms a close circuit. The injection module is programmed to 

detect a 5 Volts potential difference (p.d.) to control the injection process. During 
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the process, the movement of the piercing needle starts when the p.d. is detected by 

the data acquisition system. The injection depth is defined from the contact.   

 
Figure 4.13 The electric conductivity method for the injection module works as a 

sensor to control the injection procedure. There are two resistances in the 
series circuits to make tissue contact work as a switch. 

4.2.8  Procedures of Adhesion Measurement  

The tissue manipulation procedure which utilises the MagRAT tester for 

experimental simulation involves two main processes: 1) an injection of FFs and 2) 

indentation for force measurement. The motions for the processes are programmed 

using LabVIEW® program with a user interface, which can be configured to execute 

a specific procedure, as shown in Figure 4.14. The main program includes different 

modularised sub programs for injection and force measurement to differentiate 

individual procedures. 

Regarding the experimental procedure of injection, the ferrofluid under test is 

filled into a syringe on the injection module and a tissue sample is prepared and 

placed on the clamping plates. The clamping plates are fixed onto one linear slide, 

which would move toward to the needle. To initiate the injection module, a 

command would need to be given from the computer program.  
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Figure 4.14 A flow chart of the design of the MagRAT tester which includes two 
main procedures and one calibration for a force sensor. 
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The steps of the entire injection procedure are shown in the flow chart (see 

Figure 4.15) and described below. Firstly, the linear slide drives the clamping plate 

to touch the tissue, and then the tissue is pierced by the needle for a given depth 

when the electrical conductivity method detects the contact of the clamping plate 

and the tissue (see section 4.2.7). Secondly, the syringe pump is actuated to 

complete the injection at the desired depth. The last step of the injection procedure is 

to bring the tissue platform back to the initial position for the force measurement. 

 

 

Figure 4.15 A flow chart of the programmed injection procedure which begins with 
preparing an experiment and ends when the injection is completed. The 
entire procedure is controlled by the computer program automatically with 
some given parameters, e.g. depth and speed. 

The program for the force measurement is divided into two different modes for 

different adhesion measurement, normal adhesion and shear adhesion, as shown in 

Figure 4.16.  
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Figure 4.16 A flow chart of force measurement for two different adhesion modes: 
normal and shear. 

Normal adhesion can be defined by measuring the pull-off force from a contact 

between the magnetic probe and the magnetised tissue. The procedure is a 

combination of pull-off tests and indention tests. It starts from probing tissue 

perpendicularly, as shown in Figure 4.9. In the force measurement, the magnetic 
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probe is commanded to move towards to the tissue first. The forward movement 

brings the device to contact the tissue surface until the force reaches a pre-decided 

value of 20 mN, as the preload. The movement stops immediately at the preload, 

and stays at that position for a given time. During this period, the magnetic probe is 

in contact with the tissue. Therefore, it is named “the time of the magnet”. 

Afterwards, the magnetic probe is detached from the tissue and moves back to 

its original position. The normal adhesion measurement can be repeated for 100 

cycles in each configuration. Shear adhesion happens when an adjusted scratch test 

is performed. The procedure is to move the magnetic probe for a distance of 1 mm 

height from the magnetised tissue, and stays at that position.  

In the shear experiment, the slide, carrying the tissue clamping plate, moves in 

with reciprocating motion underneath the magnetic probe, as shown in Figure 4.10. 

The slide moves back to initial position to complete one cycle of the track. The shear 

adhesion measurement can be repeated for 100 cycles at each track. 

4.2.9 Procedures of Tissue Retraction Examination  

In order to examine the retraction of tissue manipulation using ferrofluids, the 

optimised testing environments are selected from the ex-vivo force measurement. 

The procedure is as the same as the preparation of force measurement and the test is 

conducted using the MagRAT tester. Testing samples are three sections of the 

porcine colon. The content of colon is cleaned in advance and then is prepared into 

three sections with the weights of 120, 90 and 30 g. The experiment only presents 

the ability of retraction. The retracted distance is measured using a vernier-caliper. 

The results evidence how much load the tested environment could achieve.  
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4.3 Sample Specification 

In the ex-vivo tests, tissue samples, e.g. rat peritoneum, porcine liver and colon, 

have been tried at different stages. At the preliminary stage, rat peritoneal tissue is 

harvested through the dissection procedure at the Central Biomedical Services at the 

University of Leeds, as shown in Figure 4.17. The dimensions of the peritoneal 

tissue are trimmed to a size around 25-30 mm height and 15-20 mm width. The 

thickness is very thin, only 1-2mm. The rats used for the experiments are easy to 

feed and grow up quickly. Tissue is immersed in Phosphate Buffered Saline (PBS) 

solution prior to the experiments so that a consistent pH value of 7.4 can be 

maintained. The osmotic concentration and ion concentrations of PBS buffer 

solution work on most of the tissue (isotonic). The tissue is glued to a glass slide in 

the force measurement.  

 

Figure 4.17 Procedures of preparing the tissue samples of rat peritoneum and 
porcine liver, all the samples were prepared in-situ and cut using the scalpel. 
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However, it is difficult to study the injection position without a precise depth 

control. Therefore, instead of using rat peritoneum as tissue samples, porcine liver is 

used because it is more rigid and thicker which makes the injection easier. Liver 

sample is delivered from the abattoir and is cut from the surface into square pieces 

of 30 mm by 30 mm, as shown in Figure 4.17.  Then the liver sample is fastened 

using some screws onto the clamping plate for the force measurement. 

To demonstrate the ability of retraction in the ex-vivo experiment, porcine 

colon is used for the tissue manipulation. The colon sample is chopped into several 

pieces, each of which weight about 300 g, 450 g, 600 g and 1 kg. During the 

demonstration, the colon sample is placed on a flat table and indented by the 

magnetic probe in order to present the feasibility for retraction. 

Ferrofluids are already widely used in mechanical and medical applications 

due to their unique fluidity and magnetism. They are composed of magnetite 

particles (Fe3O4), suspended with a carrier fluid. The sizes of their particles are 

within the nano-scale to ensure the particles are stable in the fluids and are 

superparamagnetic in nature. The importance of this magnetism is that 

superparamagnetic particles can only be magnetised in a magnetic field. In other 

words, they do not present magnetism in the absence of magnetic fields.  

The ferrofluids used in this work are selected from the existing biomedical 

applications (Odenbach, 2004, Shinkai, 2002, Silva et al., 2012). The particles are 

normally covered with hydrophilic polymers which protect them from aggregation 

by foreign ions (Lin et al., 2005). Furthermore, the particles are coated with different 

surfactants which allow them to interact with specific molecules. Table 4.1 shows 

the ferrofluids chosen to study different properties, e.g. concentration, particle sizes 

and coated surfactants of the particles.  
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The effect of particle sizes of the available range from 10, 50, 100, 200 to 1000 

nm are investigated to understand their effects. A home-made magnetic fluid with an 

average size of 45 µm is used to verify the difference of force performance. The size 

of a particle is defined by an average size provided by the companies without taking 

the thickness of surfactant layer into account. However, the particle size varies and 

the basis might aggregate. The size distribution is characterised in session 4.4.  

Table 4.1 Specifications of ferrofluid chosen in this study, 1 denotes the sample 
provided by ChemicellTM (2010); 2 denotes the sample provided by 
micromod© (2014); 3 denotes the sample provided by Liquids Research Ltd 
(2014). 

Denotation 
Functional 
coating 

Particle size 
(nm) 

Concentration 
(mg/ml) 

Application 

UCC- 1 None 50, 100, 200 25, 100, 200 
Absorption of 
biomolecules 
(Cationic charged) 

NP-IO- 2 None 200 200  

AMINE- 1 Amine silane 50 25 
Coupling of 
biomolecules 

DXS- 1 Chitosan 50 25 
Linear, 
biodegradable 
polymer 

DEAE- 1 Starch 50 25 
Binds cells, 
bacteria, viruses 

SIMAG- 1 Polymer 1000 25  

UCC- 3 None 10 25, 100, 200  

UCC-
isoparaffin 3 

None 10 25, 100, 200  

4.4 Particle Sizing Measurement 

A dynamic light scattering (DLS) instrument – Zeta NanoSizer, provided by 

Malvern® (2014), is used to characterise the average nano-particle sizes and the 

numbers of the size distribution of the testing ferrofluids. DLS is the technique 
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currently used for measuring particle sizes ranging from nano-meters to microns. 

The equipment is equipped with a laser to the cuvette contained with the sample. A 

detector is placed at a certain angle to record the scattered light intensities over a 

time series, as shown in Figure 4.18 (Chicea et al., 2012). The measurements are 

done at room temperature 20°C and the following parameters are used for size 

estimation: refractive index of Fe3O4 and water are 2.42 and 1.33, respectively. The 

absorption coefficient of Fe3O4 is 0.01. All the tested ferrofluids are diluted into a 

series of concentration of 1, 0.5 and 0.1 wt%, respectively. 

 

Figure 4.18 This schematic graph representing the configuration of the particle 
sizing measurement using the Malvern DLS nanosizer. The scattered laser 
lights of the particles are collected by the detector (Malvern®, 2014). 

4.5 Particle Density Distributing Measurement 

To study the influence of the retraction from the migration of particles, a micro 

CT scanner is used to characterise the particles density distribution of a magnetised 

tissue after the magnetic retraction in the ex-vivo tests. There are several 

microscopic methods available to characterise the particles, e.g. Transmission 

Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). However, a 
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significant issue associated with the injection is that the transparent lights have 

caused difficulty in penetrating a depth over 100 µm. CT is equipped with a rotating 

X-ray tube, which can ionise the atoms and molecules of the materials and allow the 

radiation to pass through to generate images from different directions, as shown in 

Figure 4.19. Different materials can be distinguished because they have different 

attenuation coefficients.  

 

Figure 4.19 (A) The principle of Computed Tomography (micro CT) (Wang et al., 
2010a). (B) The configuration of the object tissue samples in a container 
filled with wool fibre. (C) The object is scanned and represented as a series 
of segment showing the density of metallic particles. 

The experimental setup is shown in Figure 4.19, where the magnetised tissue is 

placed in separate Petri dishes. The reason for putting them in different containers in 

series carefully is to avoid dis-alignment. Wool fibres are used to fill up the empty 

space in the container to fix the position of the tissue.  
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The finest resolution of the voxel in the experiment is 6.2 µm, which is still 

much larger than all the other particles in the tested ferrofluids in nano-scale. 

However, each segment still reveals the information of the density of the particles 

distribution through image analysis, conducted by a Matlab® program to convert the 

segments into grey scale so as to identify the contrast between bright and dark. The 

results will be presented in Chapter 6. 

4.6 Taguchi Method for Parametric Analysis 

In order to optimise the testing conditions from the ex-vivo results and apply 

the magnetic retraction on the in-vivo tests, the parametric study is evaluated by an 

experimental design using Taguchi Method. The Taguchi method is widely used to 

compare the effects of multiple parameters during their interactions (Grieve et al., 

1998) from a combination of the statistics and engineering perspectives.  

Traditional experimental design for comparing four independent parameters at 

three different levels requires a large number of individual experiments (81 

experiments) and the numbers can be expanded to 405 if each experimental setup is 

repeated 5 times. Normally, the traditional experimental design is time-consuming, 

requires a long process of tissue processing and costs expensive to carry out.  

Therefore, the Taguchi method is introduced as an alternative approach to 

experimental design to determine parameters affecting the performance of retraction. 

Besides, the statistical analysis of Taguchi method can also evaluate the significant 

levels of each parameter to convenient for optimisation of the experimental 

configurations.  
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Taguchi (1993) defined those experimental parameters which could be 

designed in the experiment as internal parameters, and those unable to be designed 

in the experiment as external parameters. In this study, the particle size, 

concentration and volume of the ferrofluids as well as the magnetic field strength are 

the internal parameters. The external parameters include the mechanical properties 

of soft tissue, e.g. stiffness, weight and the duration of operations. 

The Taguchi method then uses an orthogonal array to distribute the internal 

parameters used in the study, as shown in Table 4.2. The distribution of the 

parameters has to be arranged in a balanced manner. The reason for balancing is to 

have an equal number of levels within each column (Morsi et al., 2004).  

Each orthogonal array is identified by the form LA(BC). A represents the 

number of experiments conducted using this design. B denotes the number of 

investigated levels within each column. C identifies the number of columns 

available representing parameters used in the experiment.  

For example, as shown in Table 4.2, the orthogonal array L9(3
4) requires 9 

experiments to investigate 4 different parameters, each of which is set at 3 

predetermined levels. The design of the array enables the effect of each parameter to 

be separated from one another so as to ensure the statistical independence. The size 

of the comparable experiments is reduced from a hundred to nine and the effects of 

the interactions between the parameters are examined. 
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Table 4.2 L9(3
4) Taguchi matrix with four parameters and three levels. 

Experiment Parameter 1 Parameter 2 Parameter 3 Parameter 4 S/N 

1 1 1 1 1 S/N1 

2 1 2 2 2 S/N2 

3 1 3 3 3 S/N3 

4 2 1 2 3 S/N4 

5 2 2 3 1 S/N5 

6 2 3 1 2 S/N6 

7 3 1 3 2 S/N7 

8 3 2 1 3 S/N8 

9 3 3 2 1 S/N9 

 

In the analysis of the Taguchi method, the means, variances and signal-to-

noise (S/N) ratio are calculated from the experimental results to determine the 

influence of the parameters on the performance. The S/N ratio, defined as the 

standard deviation of the performance parameters for each experiment divided by 

the total number of experiments, provides a measure of the impact of noise factors 

on performance. Therefore, an optimised testing environment is found and then 

applied in in-vivo experiments. 

S
N

=-10log10V 

In which the variance, V, is given by  

V=
1

N
(Y1

2+Y2
2+Y3

2+…+YN
2) 

Where N is the number of noise factors and Yi is the result from each test. 
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4.7 In-vivo Experimental Arrangement 

Six white pigs weighing 25-30 kg are brought in from the Leeds University 

Farm seven days before the procedure. They are starved for 14 to 16 hours prior to 

the sedation. For the sedation procedure, an intramuscular injection of Stresnil 

(Azaperone, Janssen Animal Health, UK) of 40 mg/ml at a dose of 2.25 mg/kg and 

an intramuscular injection of Hypnovel (Midazolam, Roche, UK) 5 mg/ml at a dose 

of 0.32 mg/kg are used. The animals then are left in a quiet, dark area for twenty 

minutes before being transported to the induction room. 

The induction procedure involved inserting a 22G intravenous cannula into a 

marginal ear vein that is secured by an adhesive tape. The induction agent is 

Rapinovet (Propofol, Schering-Plough Animal Health, UK) 10 mg/ml at a dose of 4 

mg/kg. After the animal is induced, it is intubated and applied with general 

anaesthesia using inhaled Isoflurane at 2-4% in oxygen. The animal is placed on its 

back so that its abdomen is prepared with cleansing solution and draped. 

The in-vivo experiment is performed through a midline laparotomy. 

Ferrofluids, selected from the optimisation study, are injected into the mucosa layer 

of the colon wall manually by surgeons. The volume of injections are 0.1, 0.2, 0.3 

ml respectively on each single location. The surgeons hold several different 

magnetic probes to induce the magnetised location. The performances of different 

configurations are examined if the retraction is successful. Every experimental 

configuration is repeated three times in both vertically and horizontally movements. 

The retraction height is measured using a scale ruler. 
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Chapter 5 Results from the Tissue Retraction Experiments 

The ex-vivo and in-vivo experiments are conducted to explore the feasibility of 

using ferrofluids to manipulate tissues. The measurement focuses on two aspects: 1) 

the capability of adhesion and retraction forces of ferrofluids, 2) the requirement of 

experimental environment to retract tissues. This chapter presents the results of ex-

vivo and in-vivo tissue retraction experiments. It is structured as follows. Section 1 

presents the results of adhesion measurement obtained from the ex-vivo experiments 

based on various variables of ferrofluids, e.g. with and without coating surfactant, 

particle size, concentration, volume, preload, magnetic field strength, duration of 

time of magnetisation and shear effect. Section 2 presents the characterisation of the 

sizes of those particles suspended in ferrofluids. Section 3 presents the study of 

optimisation of the experimental environment and the influence of each parameter. 

Section 4 presents an in-vivo study of the tissues retraction in the pig model. The 

optimised parameters are applied to the ex-vivo and in-vivo tissue tests in order to 

demonstrate the capability of manipulating tissues using magnetic retraction. Section 

5 gives a summary of the measurement done in this chapter.  

5.1 Ex-vivo Experiments 

5.1.1 Adhesion Force Profile 

The typical force-time profile from the adhesion measurement is shown in 

Figure 5.1, where the Y axis represents the retraction and adhesion force and the X 

axis represents time elapsed. Time is recorded when the force measurement started. 
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Therefore, the entire motion of a single cycle during the retraction simulation can be 

explained by the profile in sequence.  

 

Figure 5.1 A typical force-time profile of a full cycle of tissue manipulation. 

Point A is the beginning of every force measurement, starting right after the 

injection. Period AB records the response while the magnetic probe moves towards 

the magnetised tissue. Point B shows a maximum retraction force occurring when 

the probe is in contact with the tissue. Period between the point B and C shows that 

the probe continues to squeeze the tissue until the interaction force reaches a pre-

defined load, which is the point where C shows a maximum preload applied on the 

interface. The probe is allowed to be in contact with the tissue during period CD, 

defined as “time of magnetisation”. After this period, the magnet is moved backward 

to measure the adhesion force (period DE). At point E, the probe is completely 
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detached from the tissue and the maximum adhesion force will be recorded. Lastly 

the probe is moved back to the initial position after the period EF. 

5.1.2 A Test of Plain Tissues 

Figure 5.2 shows the adhesion measurement of the plain porcine liver tissue. 

The graph only shows two peaks representative of the values of the preload and 

maximum adhesion force, respectively. There is no retraction shown in the graph 

before the contact of the probe with tissue. The force response goes up directly to a 

preload level without any magnetic retraction.  

Refering to the figure that the maximum adhesion force occurs when the tissue 

is fully detached from the contact of the probe. This can be considered as a part of 

the retraction at point X marked on the figure, which matches the physical model in 

section 3.1. 

 

Figure 5.2 Initial force-time response for a plain tissue indentation with a preload 
force of 15 mN and a maximum adhesion force of 30 mN.  
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5.1.3 Tests of Various Ferrofluids and Magnetised Tissues 

The tested ferrofluids have been described in section 4.3. In the following 

results, the ferrofluids are denoted by the coating with the particle size, as shown in 

Table 4.1.  

The tested ferrofluids can be separated into the suspensions with coated and 

non-coated particles. To distinguish the original performance in retraction of the 

coated and non-coated ferrofluids, the experiments were conducted using the 

samples applied onto tissue as well as samples without tissue in order to reflect the 

reality of retraction effect. The tests of the ferrofluid tested in the containers are 

called “pure ferrofluids tests”. Those “magnetised tissue tests” are with the 

ferrofluids injected into tissues. 

The magnitude of the maximum adhesion force for each 0.1 ml coated 

ferrofluids exposed to a 0.6 T magnetic field is shown in Figure 5.3. The tested 

concentration is 25 mg/ml. Compared to the magnetised tissue tests, the adhesion 

force in the pure ferrofluids tests is significantly greater. In the pure ferrofluid tests, 

the case of ferrofluid with particles coated with aminosilane (AMINE) shows a very 

similar value in the different particle size of 50 and 100 nm as 21.72±2.6 mN and 

20±2.88 mN.  

When the particle size is as the same (50 nm) with different coating materials, 

dextransulfate (DXS) and diethylamine ethyl starch (DEAE), the results show 

12.93±1.55 mN and 15.95±0.8 mN in retraction. The largest particle size of 1 µm 

coated with silica presents a maximum adhesion force of 23.39±0.92 mN. The 

magnetised tissue tests show very little retraction effect which only occurs between 

0 to 4 mN, less than 1 gram force.  
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Figure 5.3 Performance of coated FFs in retraction. The coated materials include 
aminosilane (AMINE), diethylamine ethyl starch (DEAE), dextransulfate 
(DXS), silica (SIMAG). The notations are labelled with its particle size (nm). 
The tests of the ferrofluid tested in the containers are called “pure ferrofluids 
tests”. Those “magnetised tissue tests” are with the ferrofluids injected into 
tissues. The testing environment is a volume of 0.1 ml ferrofluids with a 
concentration of 25 mg/ml exposes to a 0.6 T magnetic field. 

On the other hand, Figure 5.4 shows the magnitude of the maximum adhesion 

force of 0.1 ml non-coated ferrofluids in an experimental environment of a 0.6 T 

magnetic field with dfferent particle sizes, 10, 50, 200 nm. The experimental 

concentration is increased to 200 mg/ml. The results from the pure ferrofluid tests 

with a particle size of 200 nm are very similar to 135.36±1.92 and 135.4±1.7 mN. 

It can be concluded that ferrofluids from two different providers with the same 

particle size have a similar capability of attraction. The adhesion force increases 

with the decrease of particle sizes. The ferrofluid with a particle size of 10 nm 



- 86 - 

within a carrier fluid of iso-paraffin shows the highest adhesion force of 

356.79±4.63 mN.  

Compared to the pure ferrofluid tests, the results from the magnetised tissue 

tests decrease but the maximum adhesion force is consistently observed to be higher 

given the smaller particle sizes. The two ferrofluids with the finest particle size of 

10nm in this study show 114.61±30.6 and 149.49±22.52 mN in retraction, which fall 

into a range of 11 to 15 gram force. 

 

Figure 5.4 Performance of non-coated ferrofluids with various particle sizes of 10, 
50, 200 nm. The testing environment is that a volume of 0.1 ml ferrofluid 
with a concentration of 200 mg/ml exposes to a 0.6 T magnetic field. The 
tests of the ferrofluid tested in the containers are called “pure ferrofluids 
tests”. Those “magnetised tissue tests” are with the ferrofluids injected into 
tissues. 

It is compared between Figure 5.4 and Figure 5.5. When these non-coated 

ferrofluids are diluted from a concentration of 200 mg/ml to 25 mg/ml using the 

distilled water, the adhesion force is reduced proportionally nearly 0.125 times, as 
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shown in Figure 5.5. The adhesion force in the magnetised tissue test of non-coated 

ferrofluids is between 5 to 20 mN. The results are more significant compared to the 

coated ferrofluids of 0 to 4 mN. 

 

Figure 5.5 Performance of non-coated ferrofluids with various particle size of 10, 
50, 200 nm. The testing configuration is that a volume of 0.1 ml ferrofluid 
with a concentration of 25 mg/ml exposed to a 0.6 T magnetic field. The 
tests of the ferrofluid tested in the containers are called “pure ferrofluids 
tests”. Those “magnetised tissue tests” are with the ferrofluids injected into 
tissues. 

A further study of an increased injection quantity of 0.3 ml, the largest 

available quantity of the injection without the issue of leaking from the magnetised 

tissue is shown in Figure 5.6 about the performance in retraction with a 

concentration of 200 mg/ml exposed to a 0.6 T magnetic field. The results show that 

the greater adhesion force consistently occurs in the case of smaller particles. And, 

the adhesion force in the pure ferrofluid tests is always greater than that in 

magnetised tissue tests as expected.  
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Figure 5.6 Performance of non-coated ferrofluids with various particle sizes of 10, 
50, 200 nm. The testing configuration is an increased quantity of 0.3 ml 
ferrofluid with an increased concentration of 200 mg/ml exposed to a 0.6 
magnetic field. The tests of the ferrofluid tested in the containers are called 
“pure ferrofluids tests”. Those “magnetised tissue tests” are with the 
ferrofluids injected into tissues. 

In addition to the comparison between the magnetised tissue tests and pure 

tests, a force difference between ferrofluid injected in the tissue and ferrofluid stored 

in a container can be observed. There is a consistent difference around 50 mN to a 

maximum 100 mN. This conclusion can potentially assist any future tests with tissue 

by simply doing pure tests.  

Figure 5.7 shows a summary of maximum adhesion force with regard to the 

non-coated ferrofluids in order to investigate the effect of injection volume of 

ferrofluid on the performance in retraction. It can be seen in the figure that the 

higher injection volume leads to a higher adhesion force in retraction. The best 

adhesion force obtained in this study is 518 mN which occurs in the configuration of 
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a volume of 0.3 ml ferrofluid with a carrier fluid of iso-paraffin with 10nm particle 

size and a concentration of 200 mg/ml exposed to a 0.6 T magnetic field. The 

outcome is almost double the force provided by a 0.2 ml ferrofluid. However, the 

maximum force of 0.2 ml ferrofluid is just 1.37 times greater than the case in 0.1 ml 

ferrofluid. This figure shows a positive correlation between the maximum adhesion 

force and injection volume. 

 

Figure 5.7 Performance of non-coated ferrofluids with various injection quantities 
of 0.1, 0.2, 0.3 ml. The testing configuration is the ferrofluids with a 
concentration of 200 mg/ml exposed to a 0.6 T magnetic field. This diagram 
showing the positive correlation between the injection volume and maximum 
adhesion force. 

5.1.4 Effect of Operation - Preload 

Preload force is the intensity of the force as the the rigid magnetic probe is 

brought into intimate contact with magnetised tissue. The investigation of the effect 

of preload force in retraction was taken in the magnetised tissue test with a 
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configuration of a 0.1ml non-coated ferrofluid (UCC) with the concentration of 200 

mg/ml and the particle size of 200 nm. The tested values are 100, 125 and 225 mN. 

Figure 5.8 shows that the adhesion force remained the same value, which does not 

change with the increase of preload.  

 

Figure 5.8 Initial force-time profile for the investigation of preload force, showing 
three different preload forces of 100, 125 and 225 mN. The trends of 
retraction and adhesion force are almost overlapped for the preload.  

5.1.5 Effect of Magnetic Field Strength 

Three magnetic inducers are used in this study to provide different magnetic 

field strengths. Their geometries are shown in Figure 5.9. The magnetic field 

strength is measured in terms of the gap distance from the surface, as described in 

section 4.2.4. 
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Figure 5.9 Geometry of three magnetic configurations. 

Figure 5.10 shows the magnetic response measured from the central position 

of the diameter and the maximum magnetic field strengths of three magnetic 

inducers are around 0.4, 0.5 and 0.6 Tesla, respectively. 

 

Figure 5.10 Initial magnetic field strengths of three magnetic inducers versus gap 
distance. 

The effect of the magnetic field strength in retraction is investigated in the 

magnetised tissue test, which the tested environment is 0.3 ml ferrofluid with 200 

mg/ml concentration. The initial adhesion force responses are shown in Figure 5.11, 
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Figure 5.12, Figure 5.13 and Figure 5.14 in terms of different non-coated ferrofluids. 

It is clear that there is a positive correlation between the magnetic field strength and 

the adhesion force.  

 

Figure 5.11 Initial force-time profile for the investigation of magnetic field strength, 
showing three different magnetic inducers of 0.4, 0.5 and 0.6 T. The tested 
non-coated ferrofluid is with the particle size of 200 nm. 

 
Figure 5.12 Initial force-time profile for the investigation of magnetic field strength, 

showing three different magnetic inducers of 0.4, 0.5 and 0.6 T. The tested 
non-coated ferrofluid is with the particle size of 50 nm. 
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Figure 5.13 Initial force-time profile for the investigation of magnetic field strength, 
showing three different magnetic inducers of 0.4, 0.5 and 0.6 T. The tested 
non-coated ferrofluid is with the particle size of 10 nm. 

 

Figure 5.14 Initial force-time profile for the investigation of magnetic field strength, 
showing three different magnetic inducers of 0.4, 0.5 and 0.6 T. The tested 
non-coated ferrofluid is with the particle size of 10 nm in a carrier fluid of 
iso-paraffin. 
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5.1.6 Effect of Duration of Magnet Contact 

The act of tissue manipulation is normally considered as the first direct contact 

with the tissue. The length of contact time varies from operation to operation, some 

as short as a few minutes and others may take hours. In this study, the investigation 

of time of magnetisation in retraction is conducted by different contact time of 20, 

60, 120 and 600 seconds. The experiments of the magnetised tissue tests are with an 

experimental environment of a 0.1ml non-coated ferrofluid (UCC) with the 

concentration of 200 mg/ml and the particle size of 200 nm, as shown in Figure 5.15. 

The initial retraction force keeps the same in all experimental environments of 52 

mN, which represents the same response in retraction before the contact. However, 

the maximum adhesion force is gradually increased with time after the first contact 

with the magnet.  

 

Figure 5.15 Initial force-time profile for the investigation of effect of time of 
magnetisation, showing four different durations, 20, 60, 120, 600 seconds. 
The testing configuration is the magnetised tissue test of 200 nm particle size 
with a concentration of 50 mg/ml exposed to a 0.6 T magnetic field.  
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5.1.7 The Operation – Indentation Cycles 

Multiple manipulations may occur in a single operation. Although the 

significance of the first cycle of tissue-based diagnosis is usually considered to 

contains the most direct information of tissue, e.g. elasticity and viscoelasticity etc. 

However, the robustness of the retraction performance is a topic during the multiple 

manipulations. 

The effect is evaluated by repeating each testing configuration for one hundred 

times. The experimental environment uses 0.3 ml ferrofluid with 200 mg/ml 

concentration exposed to a 0.3 T magnetic field and a time of magnet of 20 seconds. 

The result is shown in Figure 5.16. The adhesion force increases gradually with the 

cycles and one can clearly observe an ascending trend in the case of non-coated 

ferrofluid with 10 nm particle size in the carrier fluid of iso-paraffin. The results are 

the same as the conclusion in section 5.1.6 that the more the exposure to the 

magnetic field, the better the adhesion force. 

 

Figure 5.16 Multiple indentation tests in the tests of non-coated ferrofluids with 
different particle sizes. The performance of retraction is very robust without 
dropping as the cycles continue. Each experimental configuration repeats for 
100 times. 
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5.1.8 Shear Adhesion 

The drag ability in this magnetic retraction method is investigated in the shear 

adhesion. Referring to the experimental setup for shear adhesion measurement in 

Figure 4.10, the shear adhesion is investigated by a scratch test in the magnetised 

tissue tests using non-coated ferrofluids to understand the roadmap of retraction. 

The experiment investigate 5 trajectories to present the force distribution 

surrounding the magnetised tissue. 

Figure 5.17, Figure 5.18 and Figure 5.19 show the spatial maps which combine 

the shear adhesion in the lateral direction and the maximum adhesion in a normal 

adhesion. The area of scan tracks is within a 20 mm range of the magnetised tissue. 

This spatial map provides an information of the force responded to the magnetic 

field surrounding the magnetised tissue. 

 
 

 

Figure 5.17 Initial force-time profile for the investigation of shear adhesions, 
showing five different scan tracks separated by the interval of 10 mm. The 
testing configuration includes a magnetised tissue test of a volume of 0.1 ml 
with 200 nm particle size and a concentration of 200 mg/ml exposed to a 0.6 
T magnetic field. 
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Figure 5.18 Initial force-time profile for the investigation of shear adhesions, 
showing five different scan tracks separated by the interval of 10 mm. The 
testing configuration includes a magnetised tissue test of a volume of 0.1 ml 
with 10 nm particle size and a concentration of 200 mg/ml exposed to a 0.6 T 
magnetic field. 

 

Figure 5.19 Initial force-time profile for the investigation of shear adhesions, 
showing five different scan tracks separated by the interval of 10 mm. The 
testing configuration includes a magnetised tissue test of a volume of 0.1 ml 
non-coated ferrofluid in the carrier fluid of iso-paraffin with 10 nm particle 
size and a concentration of 200 mg/ml exposed to a 0.6 T magnetic field. 

The testing environment features an injected volume of 0.1 ml with the 

concentration of 200 mg/ml and exposes to the magnetic field strength of 0.6 T and 

is carried out on different particle sizes of 10 nm and 200 nm.  
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It can be seen in the spatial maps, the normal adhesion is always significantly 

stronger than the shear adhesion. Also, the greater normal adhesion is, the higher 

shear adhesion will be. The stronger shear adhesion occurs near the injection site. 

The force responded area is about 20 mm x 20 mm. 

However, the maximum shear adhesion obtained in this study is 40 mN. It can 

be concluded that the retraction can be broken if the lateral force is over the 

maximum shear adhesion. The shear adhesion is relevant to the drag motion in 

retraction. 

5.1.9 Retraction Effect 

In terms of the adhesion measurement, the best performance of adhesion 

amongst all the magnetised tissue tests in this study is the non-coated ferrofluid with 

the particle size of 10 nm in the carrier fluid of iso-paraffin and the concentration of 

200 mg/ml exposed to the 0.6 T magnetic field. The evaluations of performance in 

retraction of the tested environments are summarised in Table 5.1.  

The tissue retraction is then examined by three different injection volumes of 

0.1, 0.2 and 0.3 ml. Table 5.1 shows the result when the tissue can be retracted in the 

case of 0.2 and 0.3 ml. The retracted distance from the magnetised site stays the 

same at 20 mm and 25 mm when the weight of the tissue is over 33 g, as shown in 

Figure 5.20.  
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Table 5.1 An examination of ex-vivo tests in tissue retraction of the porcine colon. 

Non-coated Ferrofluid UCC 

Testing environment 

FF particle size (nm) 10 

FF concentration (mg/ml) 200 

FF quantity (ml) 0.1 0.2 0.3 

Magnetic field intensity (T) 0.6 

Ex-vivo results from force measurement (Ex-vivo) 

Maximum adhesion force (mN) 150 330 520 

Tissue retraction examination (In situ, real tissue) 

Weight of colon section (g) 124 124 124 

Result of retraction No Yes Yes 

Retraction distance (mm)  20 25 

Weight of colon section (g) 90.81 90.81 90.81 

Result of retraction No Yes Yes 

Retraction distance (mm)  20 25 

Weight of colon section (g) 33.03 33.03 33.03 

Result of retraction No Yes Yes 

Retraction distance (mm)  Lift up Lift up 

 

 
Figure 5.20 (a) The retraction occurs while the magnetised tissue is exposed to the 

external magnetic field at a distance before the contact. (b) Demonstration of 
a magnetised tissue adhered to the magnet and the retraction distance, as 
shown from the tissue surface to the magnetic probe. 
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The figures evidence that the upper layer of porcine colon is lifted up from the 

magnetised site, however, the tissue is dropped immediately once the maximum 

adhesion force can no longer afford to hold the over weights of 120 and 90 g. If the 

weight is lower than the allowance adhesion force, a process can be completed, as 

shown in Figure 5.21 where the retraction of the entire section of porcine colon with 

a weight of 33 g is captured. The retraction lasts for at least 10 minutes from the 

beginning to the end of the experiment.  

 

 

Figure 5.21 Demonstration of retracting a section of a magnetised porcine colon. 

5.2 Results of Particle Sizing 

This section investigates the particle sizes of the tested ferrofluids with the 

specified particle sizes. This investigations provides a size distribution of particles 

suspended in ferrofluids, also characterises if particles are aggregated. 

The size of those particles in the suspensions is approached through the 

particle sizing experiments by averaging three different diluted concentrations from 

the tested ferrofluids. The results are summarised in Table 5.2 showing the 
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inequality between the averaged particle size in the experiments and the initial 

particle size in the specifications. The captured particle size ranges up to 1000 nm 

but the majority of the intensity locates at between 50 and 120 nm, which can be 

seen in the initial particle size and intensity profile in Figure 5.22 and Figure 5.24. 

Figure 5.23 shows the test of an initial particle size of 10 nm (cf. Figure 5.22). 

Table 5.2 Table of an averaged particle size of the tested ferrofluids with coated and 
non-coated particles. 

Sample 
coating 

Specification 
concentration 

(mg/ml) 

Diluted 
concentration 

 (mg/ml) 

Specified 
particle 

size 

(nm) 

Experimental 
size  

(nm) 

Averaged 
size  

(nm) 

Non 200 
10 

10 
40.68 

43.75 5 40.25 
1 50.34 

Non 
(iso-

paraffin) 
200 

10 
10 

86.53 
66.88 5 57.82 

1 56.3 

Non 25 
10 

50 
55.69 

57.35 5 57.01 
1 59.35 

Starch 25 
10 

50 
84.35 

80.67 5 80.67 
1 77 

Amine 
silane 

25 
10 

50 
83.12 

80.59 5 80.65 
1 78.01 

Chitosan 25 
10 

100 
92.17 

93.35 5 95.76 
1 92.14 

Non 200 
10 

200 
110 

105.1 5 101.5 
1 103.8 

Non 100 
10 

200 
121 

119.23 5 119.6 
1 117.1 

Non 25 
10 

200 
125.1 

120.3 5 120.3 
1 115.5 
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Figure 5.22 Initial particle size and intensity profile of the ferrofluid UCC-10-Iso-
paraffin. The specified particle size is 10 nm, but the majority of the intensity 
is around 50 nm. 

 

Figure 5.23 Initial particle size and intensity profile of the ferrofluid UCC-10. The 
specified particle size is 10 nm, but the majority of the intensity is around 48 
nm. 
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Figure 5.24 Initial particle size and intensity profile of the ferrofluid UCC-10-Iso-
paraffin. The specified particle size is 200 nm, but the majority of the 
intensity is around 120 nm. 

The investigation into sizing particle experiments illustrates that the averaged 

particle size is not the same as what is specified originally. The majority of the 

particles sizes within the range of between 80 and 120 nm. Hence a specification of 

100 nm is very close to the experimental result.  

The specification of 50 nm is also very close to the experimental result but the 

sizes of the coated particles are larger than the specified ones. The specification of 

lager and smaller size of 200 nm and 10 nm are either more or less than the 

experimental results. Table 5.2 also shows that the particles of the same sample size 

in the specification of 200 nm with different concentrations have a similar size.  

It can be seen in Figure 5.24 that there are two peaks in the concentration of 10 

mg/ml. Normally the distribution is a single peak, but this pheonomenon observed 

seems the particle agglomeration in the higher concentration. 
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5.3 Taguchi Method for Parametric Study 

The effect of several different parameters on the performance of adhesion 

measurements in retraction have been examined by using the orthogonal array 

experimental design proposed by Taguchi. The parametric study with four main 

internal parameters and three associated levels have been investigated with a L9(3
4) 

experimental matrix. Referring to the introduction in section 4.6, the parameters and 

levels are filled into the array with the predefined order. Then the results of 

maximum retraction force and maximum adhesion force are obtained from the ex-

vivo adhesion measurements given the experimental environments. These results 

collected are shown in Table 5.3. 

Furthermore, the means, variances and S/N ratios are calculated in Table 5.3. 

Once the S/N ratios are analysed for each parameters and levels, the results are used 

to find the impact for each parameter. Tests in three different levels of each 

parameter are averaged by the number of the tests, as shown in Table 5.4. The S/N 

ratio indicates that the smallest ratio has the best performance. In this study, a lower 

level of particle sizes leads to better performance in retraction, in addition to the 

studies of other parameters of concentration, volume, magnetic field strength, a 

higher level of each shows that better performance in retraction can be found. 

The importance of each parameter is evaluated by the difference of main effect. 

The main effect, defined as the high level S/N subtract the low level S/N, shows the 

variation of the performance. Generally, that the larger the main effect of the 

parameter, the more influence is has on the result.  

main effect = |S/N:maximum - S/N:minimum| 
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Table 5.3 Results of L9(3
4) Taguchi study of the ex-vivo adhesion measurements. 

(The colour of background showing the value from different source, 
predefined value, experimental result and calculation, respectively).  

9 8 7 6 5 4 3 2 1 

E
xperim
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200 

200 
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50 

50 
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10 

10 
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Table 5.4 A table showing the main effects of the S/N with regard to different 
parameters and levels. 

Level 
Particle size 

(nm) 

Concentration 

(mg/ml) 

Volume 

(ml) 

Magnetic field 

strength (T) 

1 (Minimum) -32.61 -19.23 -26.27 -21.18 

2 -30.41 -30.98 -29.92 -32.02 

3 (Maximum) -26.97 -39.78 -33.64 -36.78 

Main effect 5.64 20.55 7.37 15.59 

 

A comparison of four parameters tested is presented in Figure 5.25. It can be 

seen that these four parameters all affect the retraction performance. However, 

compared to the particle size and volume, the parameters of concentration and 

magnetic field strength are much more significant ones in the retraction performance 

in this study. 

 

Figure 5.25 A diagram showing the influence of different parameters on the 
performance in retraction. 
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It can be seen in Table 5.3 that Experiment no.3 gave the lowest S/N ratio and 

the highest retraction and adhesion forces. The testing environment includes the 

smallest particle size, the highest concentration, the highest volume and the 

strongest magnetic field strength. The factors chosen satisfy the best values 

suggested by the main effects shown in Figure 5.25. Therefore, this is the optimised 

testing environment in this study. 

5.4 In-vivo Experiment 

The optimised tested environment is then applied to the in-vivo tests on alive 

animals. Figure 5.26 shows the preliminary result of the experiment of retracting 

magnetised tissues of the peritoneum, conducted by the laparoscopic procedure with 

a magnet attached to the tool. The result shows a little retraction from the 

magnetised site. The tested ferrofluid is the non-coated sample with the particle size 

of 200 nm with the concentration of 200 mg/ml exposed to the magnetic field 

strength of 0.5 T. 

 

Figure 5.26 The in-vivo experiment of tissue retraction by a laparoscopic procedure 
showing a peritoneal tissue being pulled up by a magnet on the screen. 
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A second in-vivo experiment is conducted using the optimised testing 

environment from the ex-vivo experimental database. The optimised environment 

refers to the non-coated particles with higher volume, higher concentration and 

smaller particle sizes exposed to the magnetic field with stronger strength. The in-

vivo tests are based on such optimised parameters of a magnetic field strength of 0.6 

T conducted in the pig model. The evaluation of the successful retraction is recorded 

shown in Table 5.5.  

Table 5.5 The evaluation sheet of the in-vivo experiments of retracting porcine 
bowel using the optimised ferrofluids from the ex-vivo tests. (√ denotes 
successful retraction; X denotes failed retraction) 

Evaluation sheet 

Target Porcine bowel 

Magnetic field 
strength (T) 

0.6 

Injection site Single spot Two spots 

Volume (ml) 0.1 0.2 0.3 0.1 0.2 0.3 

UCC - 10nm  
iso-paraffin 

X X √ X √ √ 

UCC - 10nm  X X X X X X 

UCC - 50nm  X X X X X X 

UCC - 200nm X X X X X X 

 

The ferrolfuid is injected into the bowel layer at a single spot in the beginning 

of the test, as shown in Figure 5.27. During the injection, it has been observed that 

the ferrofluid came off from the injected site if the injection is closer to the injected 

position. This issue of sucking off is avoided when the length of needle is changed 

from a short to a longer. Therefore, it is important in the protocol to use a long 
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needle to perform the injection in order to keep the ferrofluid away from the injected 

site. In so doing, it can also avoid leaks from the injected site when the injected 

quantity increases. 

The evaluation sheet shows that the successful retraction only occurs when the 

sample is with a particle size of 10 nm in the carrier fluid of iso-paraffin and injected 

quantity of 0.3 ml. A slight response to the injected quantity of 0.2 ml ferrofluids 

can be observed, as shown in Figure 5.28. The complete retraction of the bowel 

section is demonstrated in the environment of injected quantity of 0.3 ml, as shown 

in Figure 5.29.  

 
Figure 5.27 A ferrofluid is being injected via a laparotomy procedure to the mucosa 

layer of a pig bowel. (the in-vivo tests were conducted by Professor David 
Jayne and Adrian Hood, I was in charge of deliverying the kits) 

 
Figure 5.28 A magnetised tissue with an injected quantity of 0.2 ml is responding to 

the magnets, but the section remains difficult to be pulled up. 
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Figure 5.29 The magnetised tissue is retracted by the magnet when the injected 
quantity is increased to 0.3 ml. It can be seen that the magnetised site is 
adhered to the magnet firmly. 

Figure 5.30 and Figure 5.31 show the retraction of the bowel section with two 

magnetised sites. The retraction was firmly attached to both magnetised sites and the 

maximum retracted distance is measured at 80 mm height. 

 
Figure 5.30 Two magnetised sites, one with 0.3 ml and the other 0.2 ml ferrofluids. 

The section of the bowel is being retracted. 
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Figure 5.31 A section of the bowel being retracted by two magnetised sites both 
with an injection quantity of 0.3 ml. 

The retraction has been video recorded so the manipulation can be investigated 

closely by repeatedly watching the videos and slowing down the procedure. Figure 

5.32 shows the captured images (a two-second clip) of the magnetised tissues being 

dragged to the screen in the direction of right then back to left until it is being 

dropped. 
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Figure 5.32 The continuing recording of the tissue manipulation by the magnet on a 
single magnetised site. 

It can also be observed that the ferrofluid is being concentrated while the 

magnetised site is exposed to the magnetic field. When the magnet is removed, the 

ferrofluid soon disperses, as shown in Figure 5.33. This result represents the 

mobility of the injection. 

 

Figure 5.33 The continuing recording shows that ferrofluid is concentrated under 
the magnetic effect and disperses without the magnetic field. 
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5.5 Summary 

In summary, this chapter has presented the ex-vivo and in-vivo experiments 

with regard to the tissue retraction. The capability of tissue retraction is 

quantitatively measured by two devices, the MUSTTM rig and a self-developed tissue 

tester. Several parameters have been investigated, including the particles with 

coating or without coating, size of particles, volume and concentration of ferrofluids 

as well as the magnetic field strength and operation duration and cycles.  

The tissue tester studied three different force quantities: 1) Tissue surface 

adhesion, 2) Magnetic tissue retraction 3) Magnetic shear adhesion. Tissue surface 

adhesion is tested from the intensity to detach from the tissue surface. 

Regarding the magnetic tissue retraction, the results show the adhesion 

measured is positive correlative to the volume, concentration of the ferrofluids and 

magnetic field strength. The non-coating ferrofluids shows better adhesion than the 

coating ferrofluids in the same volume and concentration. The tests in duration and 

operation cycles show that the robustness of the magnetic retraction.  

In addition to the capability in dragging tissue, a spatial map of adhesion force 

is integrated with the magnetic shear adhesion measured. The spatial map shows that 

the adhesion decreases dramatically in the lateral movement.  

Excluding the force measurement, some other characterisations are also 

presented in this chapter. The magnetic field strength of three different magnetic 

configurations are presented and the accumulated configuration provides the 

strongest magnetic field strength. The particle size of testing ferrofluids is also 

obtained by using Nanosizer. The results show the difference between the specified 

particle size and the characterised particle size.  



- 114 - 

The parametric study is further investigated using the Taguchi method. The 

result shows that the volume of ferrofluid plays the most important roles. The 

second significant parameter is the magnetic field strength. 

The optimised testing environments are then applied in the ex-vivo 

demonstration and in-vivo tests. The feasibility with regard to manipulating tissue is 

evidenced that the magnetic retraction using ferrofluids can retract the bowel to a 

height of 8 cm for laparoscopic surgery. The ex-vivo demonstration has also shown 

that the testing colon section is lifted, which equals to the gram-force.   
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Chapter 6 Characterisation of Particle Distribution in Tissue 

The ex-vivo and in-vivo experiments introduced in the previous chapter have 

demonstrated the capability of ferrofluids to facilitate effective tissue manipulation. 

While the quantitative adhesion tests have demonstrated that retraction is feasible, 

the results do not provide any information about what is happening beneath the 

tissue. Microscopy methods offer only very limited penetration through tissue for 

particle characterisation. Depths beyond 100 µm are not possible. In order to better 

understand particle migration within the tissue, an alternative method using micro-

CT has been applied to study the distribution of particles. More information on 

particle distribution is yielded through a quantitative analysis of micro-CT images. 

The experimental setup is explained in section 4.5. Samples for the migration 

tests are prepared just after the ex-vivo tests and sent into micro-CT scanner. The 

preparation time is normally less than 10 minutes. This chapter presents the 

characterisation of the particle density of a distance of 2 mm between the tissue 

surface and the injection position. This chapter is organised as follows. Section 1 

illustrates the idea of image processing of the original images and trimmed images 

gathered from the micro-CT scanner. Section 2 presents the results of density 

distribution in relation to different parameters. Section 3 further analyses the 

proportion of the normalised particle density between each single segment and the 

entire segments in order to present how the parametric effects affect the particles in 

migration. Section 4 summarises the study of particle density characterisation. 
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6.1 Imaging Processing 

As introduced in section 4.6, a self-developed image processing has been 

programmed by Matlab® program. The procedure begins with reading a micro-CT 

image on a computer, as shown in Figure 6.1. The region of characterisation is fixed 

to a 1.2 cm by 1.2 cm square. The image is rendered as an RGB image showing 

three colour components in the array. The RGB image is further converted to GREY 

scale that contains elements with values between 0 and 255 in the array, which 

identifies 0 as the black and 255 as the white. In so doing, the particles can be 

determined by a contrast of black and white pixels.  

 

Figure 6.1 An initial micro-CT image showing a segment of the magnetised tissue 
with ferrofluids surrounding the hole inside tissue. The trimmed area is a 
fixed area used to study the distribution of particle density. 

An indicator called particle density can be identified by the ratio of bright 

pixels and overall pixels. Once all the images are studied, the distribution of particle 

density can be displayed. A flow chart representing the entire process is shown in 
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Figure 6.2. On the right-hand side of Figure 6.2 is a schematic diagram of the 

original image and the trimmed image. 

 

Figure 6.2 A flow chart of the image processing of micro-CT images. 

A stack of micro-CT images, especially those with low resolution, requires a 

lot of memory and capacity of computing power for the analysis and storage. 
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Therefore it is very difficult to process all the images of the entire tissue. The 

thickness of the entire tissue is usually fixed as 10 mm, but the characterised 

thickness in this study is fixed at 2 mm only so as to ensure the tissue responds well 

to the magnetic field. Each segment has been trimmed to a square shape. All the 

segments can be reconstructed to a 3-D image, which allows a display of how 

particles distribute within the tissue, as shown in Figure 6.3. Nonetheless, high 

reconstruction causes the process very long time for a single scan. 

 

Figure 6.3 A 3D reconstructed image showing the particles distribution within a 
magnetised tissue sample. It can be seen that the segments normally provided 
by the horizontal profile, however, an interesting finding can be seen in the 
profile at an oblique angle. 

All the images used in the investigation of density distribution are profiled by 

the vertical line as shown in Figure 6.3. If the profile is taken at an oblique angle, the 

score of needle made by the injection and ferrofluid surrounding the hole can be 

seen in the image, as shown in Figure 6.4.  
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Figure 6.4 GREY-scale and RGB images from a micro-CT scanner showing the 
needle score by the injection and the ferrofluid surrounding the hole. 

6.2 Distribution of Particle Density 

Particle density can be obtained by analysing the contrast of particles and 

tissue of each segment, as shown in the following equation. It is a non-dimensional 

unit as it represents the ratio of the specific pixels to the entire pixels in the region. 

The distribution presents the particle density within a depth of 2 mm from the 

surface of the magnetised tissue, when the particle migration tests were conducted 

just after the ex-vivo tests. The investigation of density distribution is then applied to 

study the parametric effects which affect the retraction. Four internal parameters are 

compared in this study: (i) concentration, (ii) volume, (iii) magnetic field strength 

and (iv) particle size. 

Particle density = 
Pixels of particles

Total pixels
 

Firstly, Figure 6.5 shows a comparison in terms of density distribution of three 

different concentrations under the testing environment of 50 nm particle size, a 

magnetic field strength of 0.6 T and an injection volume of 0.1 ml. The horizontal 

axis indicates depth from the tissue surface. It can be seen that the higher the 

concentration, the denser the particles are near the magnetised tissue surface.  
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The injection has been controlled at a distance of 1 mm height from the 

magnetised tissue surface. The case of 25 mg/ml concentration delivers the majority 

of particles at the area at between 1 and 2 mm. The case of 100 mg/ml concentration 

also has the majority of particles at the area between 1 and 2 mm, but there is also a 

small portion of particles at the area near 0.5 mm. The case of 200 mg/ml 

concentration has a contrasting result as the majority gathers between 0 and 1.5 mm, 

closer to the tissue surface. The results can be explained as particles migrate from 

the injection site during tissue manipulation. The higher concentration has more 

particles attracted by the magnetic field. 

According to the parametric study in the ex-vivo adhesion measurements, the 

higher concentration has the higher adhesion force. When the higher concentration 

of ferrofluid is within the tissue, the more particles migrate near the tissue surface. 

 
Figure 6.5 A diagram showing the effect of three different concentrations, 25, 100, 

200 mg/ml in the characterisation of particle migration. The X axis is the 
segments within 2 mm and Y axis is the distribution of particle density. 

Tissue surface starts from 
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Secondly, Figure 6.6 shows a comparison in terms of density distribution of 

three injection volumes, 0.1, 0.2, 0.3 ml under the testing condition of the particle 

size of 200 nm, the same concentration of 200 mg/ml and a magnetic field strength 

of 0.6 T. 

Even if the particle density is a relative value, it is fair to say that a higher 

volume has a higher particle density. The highest intensity in this study is in the case 

of a volume of 0.3 ml. The distribution of particle density has two peaks of that in 

the case of 0.2 ml injection volume. The particle densities distribute denser near the 

surface (less than 1 mm) as well as deeper than 1 mm.  

 

Figure 6.6 A diagram of distribution of particle density showing the effect of three 
different injection volume, of 0.1, 0.2, 0.3 ml in the characterisation of 
particle migration within 2 mm. 

Thirdly, Figure 6.7 shows a comparison in terms of density distribution of 

three different magnetic field strengths used in the retraction measurements, 0.4, 0.5, 

0.6 T under the testing condition of the particle size of 200 nm, the same 

concentration of 200 mg/ml and an injection volume of 0.1 ml.  

Tissue surface starts from 
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It can be seen that a larger intensity occurs at the depth between 200 and 1250 

µm from the magnetised tissue surface in the case of magnetic field strength of 0.6 T. 

In the case of magnetic field strength of 0.5 T, there is a smaller intensity at the 

depth of 500 µm. However, the majority of cases with regard to intensity distributes 

beneath a depth of 1500 µm. In the case of the magnetic field strength of 0.4 T, most 

particles only gather beneath a depth of 1500 µm.  

 
Figure 6.7 A diagram of distribution of particle density showing the effect of three 

different magnetic field strengths used in the retraction measurements of 0.4, 
0.5, 0.6 T in the characterisation of particle migration within 2 mm. 

Lastly, Figure 6.8 shows a comparison of density distribution in terms of 

different particle sizes of 10, 50, 100 and 200 nm under the testing environment of 

the concentration of 200 mg/ml, an injection volume of 0.1ml and a magnetic field 

strength of 0.6T. 

The distribution of particle density in the case of particle size of 10 nm clearly 

shows contrasting denser near the magnetised tissue surface and the injection site. 

Tissue surface starts from 
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However the distributions in other cases show quite uniform, the particles are 

slightly more surrounding the injection site. 

 

Figure 6.8 A diagram of distribution of particle density showing the effect of 
different particle sizes of the tested ferrofluids, 10, 50, 100, 200 nm in the 
characterisation of particle migration within 2 mm. 

6.3 Proportion of Particle Density  

Section 2 has presented the initial results of particle distribution using a 

relative density of bright pixels of particles to the total pixels (representing tissue 

and particles) obtained in every segment.  

Section 3 presents a normalised distribution of particle density. Since the 

characterisation area has been fixed within a depth of 2 mm, particle density can be 

normalised by the overall density, identify as density proportion, as shown in the 

following equation. The trend of the proportion aims to show the variation of 

particle distribution due to the particles migration.   

Tissue surface starts from 
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Particle density proportion = 
Particle density of a specific segment

Sum of the particle density 
 × 100% 

The distribution of particle density in Figure 6.5 is analysed and shown in 

Figure 6.9. The distribution clearly shows that the majority of the particles distribute 

in the deeper location in the case of concentration of 25 mg/ml. With the increase of 

the concentration, particles distribution becomes denser and particles gradually 

move closer to the magnetised tissue surface in the case of concentration of 100 and 

200 mg/ml. This distribution satisfies the discussion in the section 6.2 which 

suggests the particles seem to migrate to the surface after the retraction. 

 

Figure 6.9 A diagram of distribution of particle density proportion showing the 
effect of three different concentrations, 25, 100, 200 mg/ml in the 
characterisation of particle migration within 2 mm. 

The initial result shown in Figure 6.6 indicates that higher density is captured 

when a higher volume of ferrofluid is injected as expected. In addition to the 

distribution, Figure 6.10 clearly shows that in both the cases of a volume of 0.2 and 

0.3 ml, the peaks have been observed near the magnetised tissue and the injection 

Tissue surface starts from 
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site. On the other hand, the distribution of volume of 0.1 ml appears to be very 

stable at the injection position but the portion near the magnetised tissue surface 

appears to be few. The proportion distribution seems to be proportionate and 

satisfies the discussion in section 6.2, which has explained the valley found in the 

middle of the curves due to the particles migrating to the surface after the retraction. 

The particles are retracted closer to the magnetised tissue surface.  

 

Figure 6.10 A diagram particle density proportion distribution showing the effect of 
three different injected volumes, 0.1, 0.2, 0.3 ml in the characterisation of 
particle migration within 2 mm. 

Thirdly, Figure 6.11 shows a comparison of the distribution of the density 

proportions with respect to different magnetic field strengths under the testing 

condition of the particle size of 200 nm, the same concentration of 200 mg/ml and 

an injection volume of 0.1 ml. It can be seen that a lower magnetic field strength has 

resulted in denser particles at the depth of 2 mm. With the increasing the magnetic 

field strength, the portion moves slightly closer to the magnetised tissue surface. 

Tissue surface starts from 
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Hence, the distribution of the proportion satisfies the discussion in section 6.2 which 

has stated that the particles seem to migrate to the surface due to stronger magnetic 

attraction.   

 

Figure 6.11 A diagram showing the effect of three different magnetic field strengths 
used in the retraction measurements, 0.4, 0.5, 0.6 T in the characterisation of 
particle migration within 2 mm. 

Lastly, Figure 6.12 shows a comparison of distribution of the proportion with 

respect to different particle sizes. As described in section 6.2, the distribution of 

density proportion of the particle size of 10 nm also clearly shows that more 

particles gather near the injection and magnetised tissue surface. The variation may 

be not very significant in the tests of particle sizes, however, it can still be seen that 

the density proportion particles gradually move towards the magnetised tissue 

surface when their sizes reduce. This result satisfies the parametric study in the ex-

vivo experiments where ferrofluid with smaller particle sizes has stronger adhesion 

force.  

Tissue surface starts from 
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Figure 6.12 A diagram particle density distribution showing the effect of different 
particle sizes of the tested ferrofluids, 10, 50, 100, 200 nm in the 
characterisation of particle migration within 2 mm. 

In the investigation in Figure 6.12, the particle size of 10 nm has the majority 

of particle density near the tissue surface. On the contrary, the tests of other particle 

sizes, such as 50 nm, 100 nm and 200 nm have the uniform distributions. There 

seems to have a size critia for particles migration. Therefore, the hypothesis of that 

the smaller particles are more available to migration by the magnetic retraction is 

discussed. 

In terms of the smaller size of particles, the literature evidenced that the more 

number of particles can be stably suspended in the carrier fluid during the 

manufacture process (Vékás, 2008, Lin et al., 2005). And the number of particles 

directly affects the volume of magnetic material. Regarding the next chapter of the 

theoretical study of force prediction (see section 7.3.1), magnetic retraction force has 

a positive correlation with the volume of magnetic material. The volumes of the 

Tissue surface starts from 
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magnetic material given the different particle sizes of ferrofluids in the same 

concentration and injection volume are summarised in Table 6.1. It can be seen that 

the ferrofluid with smaller size of particle has the largest amount of volume. The 

largest volume of ferrofluid provides the strongest retraction force as expected. 

Table 6.1 A table showing the total volume of magnetic particles given different 
sizes of particles in ferrofluids. 

Specified 
particle size 

(nm) 

Averaged 
particle size 

(nm) 

Concentration 
(mg/ml) 

Injection 
volume (ml) 

Volume of 
magnetic 

material (m3) 

10 40.25 25 0.1 5.43e-09 

50 59.35 25 0.1 2.00e-09 

200 121 25 0.1 2.87e-10 

 

6.4 Summary 

In summary, this chapter has focused on how the particles distribute using the 

micro-CT scanner. Previous literature has indicated that difficulty in 

characterisations of particles within tissue. This chapter has presented that particle 

distribution being successfully captured after the retraction. 

Although the resolution of the voxel of the micro-CT scanner is 6.2 µm, which 

is much larger than the size of particles in nano-scale, the characterisations can show 

the contrast of ferrofluid particles and tissue in every segment. After processing 

these images, the results are then visually presented in diagrams with a relative 

density showing the locations where the particles gather. 

Therefore, a self-developed image processing program has been introduced 

how the segments are transformed from RGB into Grey scale images. However, one 
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of the disadvantages of this characterisation method is the long duration time during 

the scanning. Besides, the data requires large the storage space in computer. 

A few suggestions from this study to accelerate the scanning and to reduce the 

data size: 1) Control the characterisation zone, e.g. fix within a respond area of 2 

mm depth, 2) Conduct the resolution study, e.g. voxel resolution of 6, 10, 20, 30 µm, 

3) Fill the empty using fibres to fix the tissue during the scanning, the rotation 

during the scanning has affected the results. 

The results of the particle distribution have presented that higher density near 

the tissue surface when the testing environment in high concentration, high volume 

and strong magnetic field. There are two diagrams showing the particle distribution: 

1) particle density, 2) normalised density proportion. 

In addition to the correlation between the particle distribution and interaction 

force, the conclusions are compared according to the results of ex-vivo adhesion 

measurements, as summarised in Table 6.2. It can be therefore concluded that the 

more particles distribute near the tissue surface, the stronger interaction force 

generates.  

Lastly, the variation of particle distribution between different concentrations 

has been observed the most prominent, and variation between different magnetic 

field strengths is the second most significant. The variations between volumes and 

particle sizes are less significant in the observation of distribution of particle density. 

The conclusion of the significant effect from these experiments is fairly same as the 

conclusion by the Taguchi study in section 5.3. 

The outcome in this chapter has not only overcomed the challenge to capture 

the particle migration within tissue but also highlighted the information linking with 

how to deploy the approach. The particle position data is extremely significant for 
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informing the clinical design, for example: the injection behaviour, ferrofluids 

concentration, particle size, dispersion level, needle depth and time perspective etc. 

The further study of working protocol and particle effect upon tissue can be referred 

to the method and results of this characterisation.   

Table 6.2 The correlation summarised between particle distribution and interaction 
force with regard to the parametric study. 

Particle distribution Parameter study Interaction force 

High density occurs near 
tissue surface when high 
concentration 

Concentration 
Increases with the 
concentration increases 

High density occurs near 
tissue surface when high 
volume 

Volume 
Increases with the 
volume increases 

High density occurs near 
tissue surface when high 
magnetic field strength 

Magnetic field strength 
Increases with the 
magnetic field strength 
increases 

Only a contrasting result in 
the case of 10 nm, the other 
distributions are uniform  

Particle size 
Increases with the 
particle size decreases 
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Chapter 7 Theoretical Analysis of Retraction and Adhesion Force 

The capacity of ferrofluids to provide adhesion performance in tissue 

retraction has been studied by both ex-vivo and in-vivo experiments in Chapter 5. A 

spatial map of both the normal adhesion and shear adhesion in tissue retraction has 

also been established in the ex-vivo measurements. In the in-vivo study, the 

magnetic retraction has the potential for manipulating porcine bowel tissue.  

In order to develop a protocol of the full understanding in using ferrofluids to 

manipulate tissue, a theoretical model is developed to improve the experimental 

design. A theoretical method can also assist in the design of a magnetic probe.  

Besides, experimental measurements of a tiny amount of ferrofluids are costly. 

A theoretical model can improve the experimental design from an economic aspect. 

The testing environment can be simulated before manufacturing. 

The theoretical model is developed through two different methods; a 

combination of a theoretical equation of magnetic interaction and the finite element 

method (FEM) of a magnetic field. The simulated results are integrated by the force 

equation to obtain the magnetic retraction force. This chapter is organised as follows. 

Section 1 reviews similar studies of modelling magnetic responses. Section 2 

illustrates the simulation of modelling a magnetic field. Section 3 further shows the 

simulation of the adhesion which occurs both with and without contacting the 

magnetised tissue surface. Section 4 summarises this theoretical model. 
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7.1 Introduction 

As described in a modified physical model in section 3.1, the behaviour of 

tissue retraction using nano-particle ferrofluids is a complex interaction which is 

associated with a number of physical, mechanical phenomena such as magnetic 

interaction, particle interaction and tissue surface adhesion.  

According to section 3.5, the intensities of the magnetic response and tissue 

surface adhesion are within the range of a hundred to a thousand million-Newton 

forces, much stronger than the particles interaction of the van der Waals force. 

Given this, the theoretical model in this study is simplified to a combination of the 

magnetic interaction within tissue and the tissue surface adhesion.  

There are similar approaches to simulating magnetic forces of the magnetic 

applications. For example, Lin and Valentine (2012a, 2012b) modelled the magnetic 

field of a ring-shaped NdFeB magnet using a computer software, called Finite 

Element Method Magnetics (FEMM). Their theoretical model could predict an 

associated force in order to separate DNA/RNA form a particle and could design a 

magnetic tweezers with a stronger magnetic field strength. 

The theoretical method is particular useful in designing a complex magnetic 

configuration. For example, Hatch (2001) developed a theoretical model to simulate 

the complicated configuration of multiple permanent magnets before the 

configuration can be manufactured. Souza et al. (2010) observed that the geometry 

of tissue culture based on magnetic cell levitation would be similar to the geometry 

of human tumour xenografts. Based on this finding, they established a theoretical 

model using FEMM to study the magnetic field strength and the magnetic force on 

the path of nanoparticles in a mimic hydrogel.  
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Generally speaking, the models of bar, cylinder shaped magnet can be 

simplified as they have a symmetric feature. This is the advantage of a theoretical 

model for helping a design with a complicated configuration. In terms of the existing 

research in tissue retraction, Wang et al. (2009, 2010b) also established a theoretical 

model using a software package - COMSOL to simulate the magnetic interaction 

force of magnetic fluids in order to predict the adhesion force for tissue 

manipulation.  

As said earlier, it is thought that a theoretical model will benefit the future 

experimental design by providing more efficient and economical solutions to 

estimating the maximum force.  

Figure 7.1 shows how tissue retraction can be examined through a combination 

of experiments and simulations. Finite Element Method (FEM) is used to model the 

magnetic field generated by several accumulated cylinder shaped magnets in a 

spatial map.  

The simulated fields are validated with the experimental results in section 5.1.5. 

Then, the magnetic retraction force against different tested parameters is calculated. 

The simulated results are again validated through ex-vivo experiments. Finally, the 

simulation model is established based on the validated results. 
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Figure 7.1 A flow diagram showing the integration of theoretical and experimental 
procedures in this study. 



- 135 - 

7.2 Theoretical Model of Cylinder Shaped Magnets 

7.2.1 Theoretical Model of Magnetic field 

In the review of the engineering problems with permanent magnets, which 

were normally assumed as a magnetostatic problem because the magnetic field does 

not change with time (Petit et al., 2011, Shliomis, 2003).  

Besides, to simulate a cylinder shaped permanent magnet, the model is 

simplified as a circular current loop electromagnet, as shown in Figure 7.2. 

 

Figure 7.2 A schematic diagram showing a model of the cylinder permanent magnet. 
The external current is surrounded as the circular current loops and the 
internal current is cancelled out by its neighbour current due to an opposite 
direction. 

The magnetic field can be defined by the Biot-Savart law which is valid in a 

magnetostatic field with a steady current. This law proposes that the magnetic field 

strength relates to three parameters: (i) magnitude, (ii) direction and (iii) length of 

the electric current, which can be seen in Equation 7.1. In addition, the simulation is 

based on another two assumptions that magnetic field is uniform and the existing 

current only surrounds the surface therefore it is a circular current loop. The internal 

current can be cancelled out due to the opposite direction of the neighbour current.  
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dB=
µ0

4π

Ids� ×r̂

r2                     Equation 7.1 

Equation 7.1 is the Biot-Savart law, which can estimate the magnetic field 

strength at a position from the source. μ�  represents the permeability of air, a 

constant value of 4π ∗ 10�( H/m. I is the current and ds+ is a short length of the wire, 

r is a distance of any points in the free space to the centre of the magnet surface, and 

r� is the unit vector. 

In section 4.2.4, three magnetic configurations used in this study have been 

described and the associated magnetic field strengths are investigated between the 

magnet surface to a vertical distance of 50 mm, as shown in Figure 5.9.  

In order to simulate each magnetic field of the cylinder shaped magnetic 

configurations, a model of a circular current loop is sketched as shown in Figure 7.3, 

representing the surface of the magnetic configuration  

 

Figure 7.3 A magnetic field generated by a circular current loop which performs as 
the surface of a cylinder permanent magnet (Liao et al., 2004). 
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The magnetic field in the circular current loop can be referred to the textbook 

excerpted by Liao et al. (2004) and the magnetic field strength is expressed in the 

following expressions. 

In a 3D model, �̂, �̂, �	 , are the unit vectors of X, Y, Z axes, respectively. ∅ is the 

angle and R is the radius of the wire. 

In the X-Y plane, 

r�'=R,cos∅i-+sin∅j-.                     Equation 7.2 

A small current is assumed to flow through the wire changing with the angle 

and it is represented as, 

Ids+=I /dr'�+
d∅'0 d∅'=IRd∅'(-sin∅i-+cos∅j-)                 Equation 7.3 

If a particle is placed in a distance of z from the centre, the position vector of this 

particle can be represented as, 

rp���=zk	                    Equation 7.4 

The vector 1+ is combined by 1����+ and r�2, and the distance of r is obtained.  

r�=rp���-r�'=,-Rcos∅.i-+(-Rsin∅)j-+zk	                  Equation 7.5 

|r|�����=r=3,-Rcos∅.2
+(-Rsin∅)

2
+(z)2=4R2+z2             Equation 7.6 

In addition, the small current are expressed as, 

Ids+=I /dr'�+
d∅'0 d∅'=IRd∅',-sin∅i-+cos∅j-.                 Equation 7.7 

So that a cross product are expressed as, 

ds+×r+= 5 i- j- k	
-Rsin∅d∅' Rcos∅d∅' 0

-Rcos∅ -Rsin∅ z
5 

=(Rzcos∅d∅')i-+,R2sin2∅d∅'.k	+,R2cos2∅d∅'.k	+(Rzsin∅d∅')j- 
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=R(zcos∅d∅')i-+R(zsin∅d∅')j-+R2d∅'k	           Equation 7.8 

The unit vector of r̂=
r+
r
=

rp����-r�'6rp����-r�'6             Equation 7.9 

Hence, the Biot-Savart law is expressed as, 

dB=
µ0

4π

Ids+×r̂

r2 =
µ0

4π

Ids+×r+
r3 =

µ0I

4πr3 ,R(zcos∅d∅')i-+R(zsin∅d∅')j-+R2d∅'k	. 
=

µ0I

4π(R2+z2)
3
2

,R(zcos∅d∅')i-+R(zsin∅d∅')j-+R2d∅'k	.        Equation 7.10 

And the magnetic field strengths of each direction are integrated as, 

B8=9 µ0IR

4π,R2+z2.3
2

(zcos∅)d∅'=0
2π

0
 

B:=9 µ0IR

4π(R2+z2)
3
2

(zsin∅)d∅'=0
2π

0
 

B;=< µ0IR2

4π(R2+z2)
3
2

2π

0
d∅'=

2πµ0IR2

4π(R2+z2)
3
2

=
µ0IR2

2(R2+z2)
3
2

     Equation 7.11 

According to Equation 7.11, the magnetic field strength at a distance of z from 

the surface of magnet can be predicted. Figure 7.4 presents a normalised diagram of 

magnetic field strength between the distance of z to the surface, calculated using 

Matlab® software.  

The ratio of the magnetic field strength between the gap distances from the 

centre of the circular current loop is obtained based on the theoretical model. It can 

be seen that the magnetic field strength is strong near the magnet surface and the 

diagram is as the same as shown in Liao et al. (2004). However, this theoretical 

model found the magnetic field strength along the vertical direction z axis. 

Therefore, next Section 7.2.2 introduced another method to simulate the magnetic 

field strength by Finite Element Method software package – FEMM. 
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Figure 7.4 A normalised diagram showing the magnetic field strength from the 
centre of circular current loop to a distance of 20 mm height. 

7.2.2 2D FEMM Modelling of Magnetic Field 

This section introduces a method of using the Finite Element Method 

Magnetics (FEMM) to model the field magnitude at any spatial location of the three 

different configurations of cylinder shaped permanent magnets.  

FEMM is a free software to solve low frequency electromagnetic and 

magnetostatic problem particularly (Meeker, 2011). It contains three parts – a CAD 

interface to sketch the geometry of problem, a triangle mesh method to conduct 

finite element method and solvers for specific problems, such as magnetic, 

electrostatic, heat-flow and current flow problems. Briefly, FEMM formulates a 

physical problem in a 2D axisymmetric model with the electromagnetic relative 

equations and solves using finite element method. The equations include Maxwell’s 

formula and a constitutive relationship between magnetic field density (H) and 

magnetic flux density (B). The magnetic flux density is composed of the magnetic 

field lines, also known as magnetic field strength. 
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∇×H=J 

∇·B=0 

B=µ(H)             Equation 7.12 

 

In this study, the problem definition is identified as following features. 

• Magnetostatic problem 

• Axisymmetric 

• All units in millimetres 

• Zero frequency (Time independence) 

The NdFeB permanent magnets is identified by knowing two properties, 

coercivity (Hc) and relative magnetic permeability (µr), to establish similar 

magnetism and field.  

Hc is an intensity to demagnetise the magnetic field of a specific material to 

zero. Permanent magnets have high coercivity so that they are also known as 

magnetically hard material.  

This quantity was experimentally measured by a B-H analyser or 

magnetometer. According to the information provided in Table 7.1, the Hc of 

material N35, used in this study, was about 867000 A/m (eMagnetsUK, 2010). 
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Table 7.1 Magnetic properties of NdFeB materials (eMagnetsUK, 2010). 

 

Permeability indicates a level of the material ease with the magnetic field. It is 

often identified as the ratio of induction and conduction, as such, magnetic flux 

density (B) to the conducted magnetising field (H). Hence it is represented by the 

following equation. 

µ=
B

H
              Equation 7.13 

 

Likewise, the relative permeability (µr) is the ratio of the material’s 

permeability to the permeability in the air, 1.26*10-6 H/m, which can be written as 

the following equation.  

µr=
µmaterial

µair
             Equation 7.14 

In this study, the µr of a N35 magnet obtained is 1.05, higher than the 

permeability of air. The permeability of N35 material is 1.32*10-6 H/m. 

The geometries of the magnetic configurations used in this study have been 

mentioned in section 4.2.3. The model developed in FEMM is built up following the 

real dimensions of three different configurations: (MA) 10 mm height and 20 mm 
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diameter width, (MB) 10 mm height and 10mm diameter width, (MC) a combination 

of (MA) and (MB). 

In addition to the model, the cylinder shaped model is drawn in an 

axisymmetric system as a rectangular block, as shown in Figure 7.5(a). A cylinder 

can be therefore formed when the block rotates. Once the geometry is established, 

triangle mesh is generated to the model and the corners where supposed to have 

more magnetic field lines are particularly emphasised, as shown in Figure 7.5(b). 

(a)          (b)      

Figure 7.5 (a) A schematic diagram showing that the axisymmetric sketch can be 
simplified as a rectangular block (b) The meshed diagram showing a magnet 
in a surrounding air space. 

Figure 7.6 shows the gradient of magnetic field strengths of three different 

magnet configurations used in tissue retraction from the simulated results. The result 

is associated with magnetic lines. It can be seen that magnetic field strength is 

increased in the configuration of a combination of two magnets in terms of shapes 

accumulated. In addition, the magnetic field lines at the edge of magnet are clearly 

denser which indicated that strength is stronger there. The magnetic field strength at 

a very short distance from the surface is averaged to a magnitude of each 

represented configuration as 0.4, 0.5 and 0.6 T, respectively. 



- 143 - 

 

Figure 7.6 Simulated results of three magnetic configurations used in the 
experimental study showing the intensity distribution of magnetic field and 
associated lines. 

The gradients of magnetic field strengths along the vertical direction (BZ) 

upon the surface in three different magnet configurations are presented in Figure 7.7. 

The field strength is a function of distance and is in particular greater when the 

distance of z is short, as expected in the experimental measurement of magnetic 

fields. 

 

Figure 7.7 A diagram showing the strength distribution of three magnetic fields 
along the vertical direction Z axis. 

(MA) (MB) (MC) 
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The simulated strength gradients are verified by the experimental result in 

section 5.1.5 obtained by the Gaussmeter. Both the experimental and simulated 

result are presented in Figure 7.8. The comparison between the experimental and 

simulated result shows a very similar relationship of three different magnetic fields. 

The strongest magnetic field strength occurs in the configuration MC. Although the 

configuration MA has the weakest magnetic field strength, its magnetic response at 

far distance shows higher than the other configurations.  

Overall, this simulation models satisfy all the experimental results. The slight 

difference of magnitude is caused by the different selected location from the magnet 

surface. The simulation is obtained at the exactly central position of the magnet. 

However, the sensor of the Gaussmeter is 4 mm width, which differs from the exact 

location so that there is an error between the experiment and simulation. 

 

Figure 7.8 A comparison showing results between the simulation using FEMM and 
experiment of the three different magnet configurations. 
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7.3 Estimation of Magnetic Force 

7.3.1 Force Model 

Section 2 has shown the methods to simulate the magnetic field. This section 

continues the theoretical model to calculate the retraction forces following the 

simulated field strengths.  

As described in the physical model in section 3.1. The mechanism of tissue 

retraction should be divided into two magnitudes as the retraction force and 

adhesion force. When the magnetised tissue is exposed to the magnetic field, there is 

a retraction force, mainly caused by the magnetic interaction. On the other hand, 

when the magnetised tissue is in contact with the magnet, there is a combination of 

the magnetic interaction as well as tissue surface adhesion. The surface adhesion is 

obtained from the adhesion measurement of the plain tissue, as mentioned in section 

5.1.2.  

According to the survey of magnetic application (Pamme and Manz, 2004, 

Hatch and Stelter, 2001, Pamme, 2006), magnetic force (Fmag) is proportional to the 

magnetic field strength (B) and the gradient of the magnetic field strength (∇·B) of 

the external applied field. Besides, Fmag is also proportional to the volume of 

conducted material (V), and the difference of magnetic susceptibility between the 

particle and the fluid, ∆X. 

Fmag=
∆X·Vt

2X0
∇(B2)             Equation 7.15 

This equation is expressed as, 

Fmag=
∆X·Vt

µ0
(B��+·∇)B��+              Equation 7.16 

In addition to the coefficients, the magnetic susceptibility varies with different 

type of tissue and media. The magnitude can be referred to the study in the MRI 
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application. Vignaud et al. (2005) studied the magnetic susceptibility of tissue with 

blood and parenchyma roughly in the range from -8.8×10-6 to -9.1×10-6. In addition, 

the magnetic susceptibility of air is about +0.37×10-6. The magnetic susceptibility of 

magnetite (Fe3O4) is about 6000 × 10-3 (Grant and West, 1965). The overall 

difference of magnetic susceptibility can be estimated by a linear equation which 

includes the injected magnetic particles, similar to a series resistance. Therefore, the 

∆X of tissue is about  

∆X=Xair-(Xparticle+Xtissue)              Equation 7.17 

There are two ways to determine total volume of material (Vt) in this study. 

Firstly, volume of a single particle (Vp) times by the number of particles while the 

exact numbers are provided by the specimen sheet. Alternatively, total volume can 

be worked out by the basic relationship of concentration, injected quantity and 

density. For example the density of magnetite is 5.17 g/cm3. The total volume is a 

product of concentration and quantity then divided by the density. The number of 

particles can be found by dividing by the volume of a single particle.  

The shape of particles was assumed as a uniform sphere although each particle 

might be not always the same. The volume of a single particle (Vp) was estimated by 

the sphere volume equation, which with a radius of half particle size.  

Vp=
4

3
×π×r3                            Equation 7.18 

After the introduction of the magnetic force equation, a study of the agreement 

of all units used in the equation is derived as following. The units are summarised in 

Table 7.2. 
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Table 7.2 A unit table of the parameters used in force equation. 

Symbol Definition SI Unit 

F Force kg ∙ m ∙ s�� or N 

∆X Difference of magnetic susceptibility Dimensionless 

μ� Permeability of air Wb ∙ (A ∙ m)�� 

V� Total volume of particles m� 

B Magnetic field density Wb ∙ (��)�� or T 

∇ ∙ B Magnetic field density gradient Wb ∙ (��)�� or T ∙ m�� 
 

Fmag=
∆X·Vt

µ0

(B·∇)B 

⇒ kg·m

s2 =
1

Wb
A·m

·m3·
Wb

m2 ·
Wb

m3 =
A·Wb

m
                         Equation 7.19 

 Referring to the definition of Tesla (T), 

1T=1
N

A·m
 

⇒     1N=1T·A·m 

⇒      1
kg·m

s2 =1
Wb

m2 ·A·m=1
A·Wb

m
           Equation 7.20 

         The expressions above show that all the units in the equation in a balance state. 

The units of these parameters are all in SI units. The magnetic force is then 

estimated by solving the force equation using Matlab® program.  

Fmag(z)=
∆X·Vt

µ0
(B��+)·( ∂B

∂x
i-+ ∂B

∂y
j-+ ∂B

∂z
k	)           Equation 7.21 

The product of two vector terms, the gradient and the magnetic field, become 

the scalar terms representing a magnetic field strength at a location along the vertical 

direction (z axis). 
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7.3.2 Numerical Parametric Study 

The magnetic retraction force is predicted by the force model mentioned in 

section 7.3.1. The simulation is modified with a coefficient R in the force model as 

the following equation. Table 7.3 summaries the parameters used in the equation, 

including the density of the magnetite (Fe3O4), the difference of magnetic 

susceptibility between air, tissues and particles, and the magnetic permeability of air. 

Fmag(z)=R·
∆X·Vt

µ0
(B��+)·( ∂B

∂x
i-+ ∂B

∂y
j-+ ∂B

∂z
k	)           Equation 7.22 

Table 7.3 The parameters used in force equation. 

Parameter Magnitude 

Density of Fe3O4 (kg/m3) 5.17e+03 

Difference of magnetic susceptibility 6000e-03 

Permeability of air (Wb ∙ (A ∙ m)��) 4πe-07 

 
Table 7.4 presents the control variables in the parametric studies. The 

simulation includes three different particle sizes of 10, 50 and 200 nm, three 

different magnetic field strengths of 0.4, 0.5 and 0.6 T, three different volumes of 

0.1, 0.2 and 0.3 ml and three different concentration of 25, 100, 200 mg/ml.  

The predicted results are verified by the ex-vivo experiments. A validation is 

studied of the size applied in the theoretical model to represent particles suspended 

in ferrofluids. Referring to the particle size characterised in section 5.2, every 

ferrofluid has a specified size and an averaged size. These two particle sizes are 

applied in the numerical study to compare which size is suitable for the simulation, 

as shown in Figure 7.9. 
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Table 7.4 A table showing the parameters of different ferrofluids used in the 
numerical study. The estimated single volume and total volume of the 
particle(s) were marked by *.  

Ferrofluids specification size (nm) 10 50 200 

Numbers (/g) 1.13+017 1.3e+016 2.2e+014 

Size characterisation diameter (nm) 40.25 59.35 121 

Size characterisation radius (nm) 20.13 29.68 60.5 

1st Quantity (ml) 0.1 0.1 0.1 

Concentration (mg/ml) 200 200 200 

Numbers 2.34e+015 2.6e+014 4.4e+012 

Volume of single particle (cm3)* 3.42e-17 1.10e-16 9.28e-16 

Volume of total particles (cm3)* 7.72e-02 2.85e-02 4.1e-03 

2nd Quantity (ml) 0.2 0.2 0.2 

Concentration (mg/ml) 200 200 200 

Numbers 4.68e+015 5.2e+014 8.8e+012 

Volume of single particle (cm3)* 3.42e-17 1.10e-16 9.28e-16 

Volume of total particles (cm3)* 1.54e-01 5.69e-02 8.2e-03 

3rd Quantity (ml) 0.3 0.3 0.3 

Concentration (mg/ml) 200 200 200 

Numbers 7.02e+015 7.8e+014 1.32e+013 

Volume of single particle (cm3)* 3.42e-17 1.10e-16 9.28e-16 

Volume of total particles (cm3)* 2.31e-01 8.54e-02 1.22e-02 
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Figure 7.9 The validation of simulation results and experimental results. The 
simulation showing two different particle sizes: 1) the specified size and 2) 
the averaged size from the characterising experiment.  

It can be seen in the diagrams that the simulations using the specified size of 

200 nm are fairly larger than the experimental results. The simulated retraction force 

of the averaged size is very similar to the experimental results.   

Therefore, the averaged size from the characterisation is applied in the 

following simulation and the model is found to be very similar with the 
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experimental result, as shown in Figure 7.10. The retraction forces of ferrofluids 

with two different particle sizes of 10 and 50 nm are compared.  

Figure 7.10 The validation of simulation results and experimental results. The 
parameter is the different particle sizes in the configuration of different 
volume. 

In the most of comparisons, the magnetic retraction force of the experiments is 

less than the predicted results except the case of 10 nm with the volume of 0.2 ml. 

The variation could be due to the systematic errors during the experiments or the 

associated locations of the injections. Table 7.5 summarises the predicted retraction 

force of ferrofluids with three tested particle size, 10, 50 and 200 nm under the 

highest magnetic field strength of 0.6 T and the highest concentration of 200 mg/ml. 

The governing equation of force model indicates that magnet retraction force 

supposes to be linear proportional to the volume and concentration of ferrofluids. 

The magnetic retraction force increases when the concentration and volume of 

ferrofluids increases. In addition, the retraction force of single particle is predicted in 

terms of the associated particle size. A larger magnetic particle has a stronger 

retraction force.  

 

10 nm 200 mg/ml 0.6 T 50 nm 200 mg/ml 0.6 T 
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Table 7.5 Numerical results of magnetic response force in terms of different particle 
size. 

Ferrofluids particle size 
(nm) 

10 50 200 

Concentration (mg/ml) 200 200 200 

Magnetic field strength (T) 0.6 0.6 0.6 

1st Quantity (ml) 0.1 0.1 0.1 

Predicted maximum 
magnetic retraction force 

(mN)* 
86.34 63.67 36.51 

Predicted maximum 
magnetic retraction force of 

single particle (mN)* 
3.82e-011 2.45-010 8.30e-009 

2nd Quantity (ml) 0.2 0.2 0.2 

Predicted maximum 
magnetic retraction force 

(mN)* 
172.68 127.35 73.01 

Predicted maximum 
magnetic retraction force of 

single particle (mN)* 
3.82e-011 2.45-010 8.30e-009 

3rd Quantity (ml) 0.3 0.3 0.3 

Predicted maximum 
magnetic retraction force 

(mN)* 
259.01 191.02 109.52 

Predicted maximum 
magnetic retraction force of 

single particle (mN)* 
3.82e-011 2.45-010 8.30e-009 

Coefficient R 0.023 0.047 0.188 

 

It can be seen that the coefficient R was increased with the increased particle 

size. This coefficient used in different particle size is not changed in terms of other 

parameters, such as concentration, volume and magnetic field strength. 

The last model is to simulate the ferrofluids with coated particles. To 

characterise the thickness of the coating layer on the particle is difficult, therefore, a 
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particle model is assumed to separate the particle size uniformly into three intervals 

so that the diameter of the core of magnetic particle became one-third of the size, as 

shown in Figure 7.11.  

 

Figure 7.11 An assumed model of the coated particle in the ferrofluid showing the 
sphere is divided into three intervals. The middle section representing the 
diameter of the core of a particle. 

The simulations of the ferrofluids with coated particles are presented in Figure 

7.12. Although the radius of the magnetic particles is not accurate number, it can be 

seen that the simulated results of retraction using ferrofluids with Amine and DEAE 

coating were similar to experiments. The properties of the coated particles are 

summarised in Table 7.6. 

  

Figure 7.12 The validation of simulation results and experimental results. The 
parameter is the different particle sizes in the configuration of different 
volume. 

0.1 ml DEAE_25 mg/ml_0.6 T 0.1 ml Amine_25 mg/ml_0.6 T 
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Table 7.6 A table of the properties of the ferrofluids with coated particles. 

Ferrofluids Amine DEAE 

Numbers (/g) 1.3+016 1.3e+016 

Size characterisation (nm) 80.59 80.67 

Core size (nm) 26.86 26.89 

Concentration (mg/ml) 25 25 

Magnetic field strength (T) 0.6 0.6 

Quantity (ml) 0.1 0.1 

Predicted maximum 
magnetic retraction force 

(mN)* 
23.6 11.84 

Predicted maximum 
magnetic retraction force of 

single particle (mN)* 
7.26e-010 3.64e-010 

 

7.4 Summary 

In summary, a numerical study has been established to validate the 

experimental results in this chapter. Two methods are introduced to simulate the 

magnetic field strength. The Biot-Savart Law can obtain the ratio of magnetic field 

strength along the z direction vertical to the magnet surface. The other method of 

using the FEMM software can obtain the magnetic field strength of a drawing 

magnet, which can be used in designing the complex magnetic configuration to get 

stronger field strength. Both of methods can be integrated by the force equation to 

the magnetic retraction force. 

In terms of the retraction force equation, the simulated results are validated by 

the experiments. Applying the averaged size from experimental characterisation in 
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the force equation has generated the retraction curve highly similar to the 

experimental result.  

The validation evidences that the force equations can be used to predict the 

magnetic retraction force. The theoretical model can assist the experimental design 

effectively and supports the protocol with a physical understanding. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



- 156 - 

 

Chapter 8 Discussions 

It has been mentioned in the Chapter 2 that there is a concern related to the 

adverse effects of grip forces applied by conventional graspers resulting in tissue 

damage during laparoscopic surgery. A sufficient grip force should reside in the 

range between the pinch force and slippage. However, implementation of 

conventional graspers is normally blind and often relies on surgeon’s experience. An 

understanding of the applied force and surgeon’s training processes are often 

discussed.  

Nowadays, there are also some alternative methods introduced to manipulate 

tissue during laparoscopic surgery, e.g. MAGS, Vacuum pressure, magnetic fluids 

and some specific procedure. Instead of using grip forces, these applications use the 

retraction force to manipulate tissue. In addition to magnetic fluids, the associated 

retraction has more flexibility and less issues of magnetic collision. This study 

investigates the feasibility and quantitative forces that are achieved for retraction 

performance using a nano-particle magnetic fluid, ferrofluid.  

Previous chapters have presented systematic investigations of the feasibility of 

using ferrofluids to manipulate tissue. However, these investigations also bring new 

questions. This chapter discusses the results, findings and the relevance to other 

published literature. It is structured as follows. Section 1 discusses how much 

loading is optimised to indent on tissue. Section 2 discusses how to improve the 

mechanical design by altering magnetic field strength. Section 3 discusses the 

required retraction force and a comparison with other developing methods in tissue 

manipulation. 
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8.1 Threshold of Loading 

The magnetic retraction has demonstrated that a physical contact is made after 

the retraction. Would the contact affect the performance in tissue retraction?  

In the literature review of flat-end indentation, preload has been studied in 

performance. For example, Roshan et al. (2011) studied the effect of preload on 

adhesion force of the microfiber pad attached on peritoneum tissue and concluded 

that the adhesion force reached a plateau after 10 mN. In addition, Greiner et al. 

(2007) reported that adhesion force was increased beyond hundred µN. However, 

the adhesion force reached a plateau when the value was more over the range than 1 

mN. Besides, Long and Hui (2009) mentioned that the adhesion force is independent 

of preload if the preload is over a criteria. In the section 5.1.4, preload is 

investigated that being independent from the magnetic retraction effects. 

However, how much loading on tissue is sufficient during the magnetic 

retraction? Since the greater the applied forces indent the tissue, the greater the 

damage are perform (Rodrigues et al., 2012). Therefore, a prediction of a sufficient 

depth of indentation is discussed as following. 

A formula of the relationship between the applied force and indentation depth 

from an indentation by a flat-end cylinder was developed by Sneddon (1965). A 

compression is made by the indentation, as shown in Figure 8.1.  

The formula shown below suggests that the depth of the compression is linear 

proportional to the applied force. F denotes the preload force, a denotes the radius of 

the cylinder, E denotes the Young’s modulus of the substrate and d denotes the 

indentation depth.  

F=2aEd 
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Figure 8.1 A model of the indentation by a flat-end cylinder (Sneddon, 1965). 

According to the Sneddon’s formula (1965), a desired threshold of loading is 

predicted with a suggested indentation depth. For example, the ferrofluid is injected 

at a distance of 1 mm from the tissue surface. A desired threshold of loading is 

investigated in order to make the indentation depth to 1 mm. 

The investigation is also validated with the results in section 5.1.4. When the 

experimental preload force as 20 and 225 mN, the indentation depths measured are 

0.9 and 10.56 mm and the predicted depths are 0.94 and 10.33 mm, respectively. 

The investigated preload and indentation depth are summarised in Table 8.1. The 

percentage error is calculated between the experimental and predicted results, and 

the averaged percentage error is 6.59 %. 

In conclusion, at least 20 mN of loading can give to indent on tissue so that the 

magnet can expose closer to the injection site.  
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Table 8.1 A summarised relationship between preload and indentation depth of 
experimental and predicted results. 

Preload (mN) 
Experimental 

indentation depth (mm) 
Predicted indentation 

depth (mm) 
Percentage error 

(%) 

20 0.9 0.94 4.44 

30 1.01 1.41 39.6 

50 2.15 2.35 9.30 

100 4.97 4.69 5.63 

220 10.56 10.33 2.17 

 

8.2 How to Improve the Mechanical Design? 

The concentration and injection volume are both the factors of the volume of 

the magnetic particles suspended in the ferrofluid. However, it is often reported in 

the literature on the difficulty to manufacture higher concentration due to the particle 

agglomiration by particles attraction and failure in stability (Lin et al., 2005, Vékás, 

2008).  

Besides, the leaking issue from the injection site while increasing injection 

volume has been observed in this study. Tackling the problem in increasing the 

ferrofluids density has been a big challenge. Therefore, the design of the magnetic 

probe plays an important role to improve the performance of retraction force from 

the mechanical engineering perspective. 

The restriction of the strength of magnetic field starting to be harmful to 

human has been regulated. According to Dill’s summary (Dill, 2008), the magnetic 

field strength used for the clinical purposes in the  Magnetic Resonance Imaging 
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(MRI) has been regulated between 0.2 and 3.0 T by the US Food and Drug 

Administration (FDA). Regarding the safety of human exposed to magnetic field 

strengths, the research has proved that the magnetic field strength up to 7.0 to 8.0 T 

is not harmful to the body (Health Protection Agency, 2008). However, the safety 

regulation is only for the general patients, excluding patients with cardiovascular 

devices (Levine et al., 2007).   

In the literature review of the applications of magnetic retraction, MAGS often 

used the solid magnet configuration from the size of 3 cm to 5 cm magnets to induce 

the magnetic retraction (Zeltser et al., 2007, Zeltser and Cadeddu, 2008). The 

coupling magnetic configurations were often applied but few literature conducted 

the field strength measurement and prediction of the design (Park et al., 2007, 

Dominguez et al., 2009, Kume et al., 2008a, Kume et al., 2008b), however, because 

MAGS used the external magnets to attract the internal magnets, the magnetic 

interaction between the permanent magnets was fairly strong so that there was not 

necessary to measure the strength. 

In Lin and Valentine’s work (2012a, 2012b), they designed a ring-shaped 

magnetic configuration using the permanent magnets to produce a maximum 

magnetic field strength of 1.32 T for the DNA separation application. Neuman and 

Nagy (2008) used a permanent magnet N45 and N50 which also produced a 

magnetic field strength of 1.3 T. Regarding the magnetic retraction using the 

magnetic fluid, Wang et al. (2010b) applied a magnetic field strength of 0.5 T 

produced by the cylinder shaped magnets. 

In this study, three configurations of magnets are investigated in the adhesion 

measurement and the results reveal that the accumulated magnet provides the 

highest magnetic field strength of 0.6 T.  
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The magnetic field strength has a lot of space to increase within a safety 

regulation. To enhance the magnetic field strength, the theoretical method of 

modelling the magnetic fields, which has been validated by the experimental 

measurements, can be used to design the magnetic probe in order to make the 

investigation efficiently. 

For example, two models using the accumulated configuration are investigated 

regarding the strength of magnetic field. The first model is assumed that a third 

magnet is accumulated on the previous configuration with a larger diameter of 40 

mm, as shown in Figure 8.2. And the second model is assumed that the third magnet 

is accumulated on the previous configuration with a smaller diameter of 5 mm, as 

shown in Figure 8.3. The associated magnetic fields are simulated using the FEMM 

software. 

 

Figure 8.2 The magnetic field of an accumulated configuration of magnetic probe is 
simulated by the FEMM software. 
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Figure 8.3 The magnetic field of another accumulated configuration of magnetic 
probe is simulated by the FEMM software 

The predicted magnetic field strength along the perpendicular direction to the 

magnet is presented in Figure 8.4. The simulated results show that the maximum 

magnetic field strength can be increased to 0.75 - 0.8 T while accumulating another 

magnet, and accumulating the bigger magnet can generate higher magnetic field 

strength.  

 

Figure 8.4 A comparison of simulated results of the accumulated magnets. 



- 163 - 

The simulation of magnetic field benefits on the design of the magnetic probe 

for the purpose enhancing the force in retraction. The mechanical design is listed on 

the future work for enhancing the performance in retraction. 

8.3 Required Force 

In order to establish a protocol of using ferrofluid as a means of tissue 

manipulation, this section discusses the required force in laparoscopic surgery. The 

required force for retracting mucosa tissue is reported by Wang et al. (2008) using a 

tensiometer to measure the applied force for conventional forceps to retract mucosa 

tissue up to 10 mm. The resultant force of retraction is 0.19±0.09 N and a required 

force of tissue manipulation for dissection using snares is 0.32±0.15 N. The required 

force is compared to the adhesion forces obtained in this study, as shown in Figure 

8.5. The comparison shows that the non-coated ferrofluid with the particle size of 10 

nm and an injection volume of 0.3 ml can be suitable for the application. 

 

Figure 8.5 A comparison showing the maximum adhesion force of the ferrofluids 
with the required force for dissecting or retracting tissue for a distance of 10 
mm.  
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Referring to the fluid application in section 2.2.4, Endoscopic Mucosal 

Resection (EMR) and Endoscopic Submucosal Dissection (ESD) are both the 

technique developed for lesions and tumours removal by assisting with endoscopic 

snare resection. The methods are performed with an injection with varies solution 

(Kantsevoy SV et al., 2008). The volume of injected fluid is from 5 to 50 ml 

depending on the size of the lesion. The fluid is filled into layers and used to lift up 

the lesion for resection. The desired solution lifts up the tissue long-lasting and to a 

sufficiently high elevation (Jung and Park, 2013). Hyun et al. (2006) reported that 

the height of the mucosal elevation for injecting 1 ml of each solution on a 4×4 cm2 

transverse colon was 6.52±0.26 mm for normal saline, 6.87±0.05 mm for mannitol, 

6.92±0.09 mm for sodium hyaluronate, 6.90±0.08 mm for hydroxypropyl 

methylcellulose and 6.90±0.08 mm for fibrinogen. The height decreases after a 

while depending on different duration of solutions (Lenz et al., 2010).  

Compared EMR and ESD (see section 2.2.4), ferrofluids can provide a 

sufficient elevation with less quantity. A comparison of distance per injected volume 

is shown in Figure 8.6. Besides, the duration of the retraction has been studied in 

session 5.1.6 showing very robust. Therefore, ferrofluids is promising for the 

purpose. 

 
Figure 8.6 A comparison showing an elevation height per volume from the 

available solutions for ESD, EMR and FF-WHJS. 
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Chapter 9 Conclusions and Future Work 

This project started off to establish a specific protocol of a promising method 

for tissue manipulation utilising magnetic retraction by nano-scale particles 

ferrofluids. The existing literature has studied the retraction between solid magnets 

for example MAGS, and the magnetic fluid with micro-scale stainless steel particles 

in an external magnetic field. However, few literature has examined ferrofluids as a 

means of tissue manipulation.  

This study has made some progress towards understanding of performance in 

magnetic retraction. The research achievements refers to the objectives in section 

1.2. 

• To conduct a parameteric study of the ferrofluids in terms of the 

performance of retraction and adhesion force 

Both ex-vivo and in-vivo measurements have been performed. The ex-vivo 

experiments have been conducted by using a self-developed tissue tester, as 

mentioned in Chapter 4. The experimental results have been presented in Chapter 5. 

• To optimise the retraction and adhesion force and find an appropriate 

ferrofluid for surgical use 

The multiple parameters have been evaluated by the Taguchi Method in order 

to optimise the testing environments and to distinguish the significance between 

parameters. 
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• To identify the mobility of ferrifluids within a tissue and the co-

relationship of adhesion force 

A characterisation in particle distribution between the tissue surface and the 

injection site has been observed by the micro-CT scanner, as described in chapter 6. 

The method has overcome the difficulty of light microscopy in penetrating an object. 

The result of each scan has shown a contrast between the particles and the liver 

tissue, which has been further calculated into an indicator particle density. The 

particle migration within tissue can be seen in the distribution of particles. 

• To demonstrate the feasibility of ferrofluids for tissue manipulation in the 

in-vivo experiment 

The in-vivo result has been presented in Chapter 5 which shows the sucessful 

retraction and a sufficient height of 80 mm to be applied in MAS procedure.  

• To analyse the interaction force from a theoretical perspective 

This study has also developed a theoretical model to theorise and validate with 

the experimental results, as discussed in Chapter 7. The theoretical equation link the 

applied work with physical theories. The theoretical model not only simulates the 

magnetic field of the magnetic configurations used in the experiments, but also 

sheds light on the future design of magnetic configurations. The simulated magnetic 

retraction force can be integrated into the tissue surface adhesion to become a 

magnetic adhesion force. 

This chapter soon presents the conclusions and future work. It is structured as 

follows. Section 1 summaries the entire study including methodology, results and 

discussions. Second 2 presents some recommendations for future work. 
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9.1    Concluding Remarks 

• This project has built a systematic protocol of magnetic tissue retraction. 

The protocol specifically investigates the retraction performance induced by 

ferrofluids with nano-scale particles. The evaluation procedure includes a self-

developed tissue tester (MagRAT), particles characterisation and a theoretical 

model. This procedure will need to be completed before the ferrofluids can be 

applied in in-vivo tests. 

 

Quantitative measurement 

•  The self-developed tissue tester is aimed to function in a strong magnetic 

field, and as a result of this every single component has been designed with the 

non-magnetic material. The tester composes of two modules: the injection 

module and the adhesion measurement module. The entire experimental 

procedure has been programmed automatically and systematically controlled 

with a user-friendly computer interface using LabVIEW®. As a result, the tissue 

tester can be further used by other project students or researchers. A systematic 

control also reduces the experimental errors made by operators.  

• The injection module innovates the approaches of clamping tissues to avoid 

tissue deformation during injection. The injection is made perpendicularly to the 

porcine liver surface. Nevertheless, the injection angle should be altered 

depending on different tissue or organs. This will be further discussed in the 

future work. 

• The electrical conductivity method developed in the injection module has 

been proved to work effectively because it controls the injection site with 
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precision. For example, the contact between the needle and the tissue surface is 

identified before the needle is pierced into the desired position. 

• The adhesion measurement module has illustrated two different concepts of 

adhesion: 1) the normal adhesion measurement and 2) the shear adhesion force. 

The methodology for the normal adhesion measurement is a combination of 

indentation and pull-off test. The shear adhesion is demonstrated by a scratch 

test using a magnetic probe. 

• In the ex-vivo experiments, the raw data have been filtered within ±1 V in 

order to reduce the systematic errors. 

• The parametric study has investigated the effects of different types of 

ferrofluids, sizes of particles suspended in ferrofluids, concentration of 

ferrofluids, injection volumes of ferrofluids and magnetic field strengths and 

operations. The best testing environment observed during this project is the non-

coated ferrofluids with small particle size, high concentration, high volume and 

a strong magnetic field. In this study, the best magnetic adhesion force observed 

is 512 mN which can retract around 50 g tissue. 

• The parameters have been evaluated by the Taguchi orthogonal matrix to 

distinguish their significances of tissue retraction. The result reveals that the 

concentration of ferrofluid is the most significant to the retraction force, and the 

magnetic field strength is the next. 

• The result from the parametric study also reveals that the particle size is the 

most insignificant to the retraction force. The reason of this is because the 

intensity of the magnetic retraction force depends on the volume of the 

magnetised matter. Therefore, the retraction force of each single particle has 

been discussed in Chapter 7. The theoretical model has supported this finding 

that the larger the size of a particle the more force it can induce. Nevertheless, 
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particle in smaller sizes spread around and have more numbers suspended in the 

ferrofluids. 

• In terms of the correlation between the coating surface and the volume of a 

particle, the volume of the magnetic core on a coated particle is smaller than a 

non-coated particle. Hence, the non-coated ferrofluids have shown better 

performance in retraction.  

• The spatial maps of the retraction force have been established in section 

5.1.8. The spatial map has shown the retraction force is being integrated into 

both the normal adhesion and the shear adhesion. It can be seen that the 

retraction force has been dramatically decreased when the magnetised tissue is 

dragged laterally. This interesting finding has been also observed in the in-vivo 

tests discussed in section 5.4. 

 

Characterisation of particle distribution 

• A successful characterisation of particles distribution within tissue is 

conducted using a micro-CT scanner. An image processing program has been 

developed using Matlab® program. 

• The image processing method developed for particle characterisation 

converts the scans to the grey images. The contrast between the intensity of the 

tissue and that of the particles can be clearly distinguished using this method. 

As such, the density of the particles within each segment of the sample is 

calculated and the distribution of the particles is formed. A high correlation 

between the particle density and the distribution can be observed in the 

following factors: concentration of ferrofluids, volume of ferrofluids and 

magnetic field strengths. The particles distribute and move towards the tissue 
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surface in the optimised environments. This interesting finding explains that 

particle migration is relevant to the magnetic retraction force.  

 

Theoretical model 

• The theoretical model developed based on the Biot-Savart law can simulate 

the magnetic field of a specific magnetic configuration. The simulateion results 

have been validated by the experimental results. With the support of the 

theoretical model, the magnetic configurations can be further designed in order 

to provide higher magnetic field strength, as described in section 8.2. 

• In terms of the parameters used in the simulation of magnetic retraction 

force, it has been found that the simulated force curve using an averaged 

particle size from the experiment in section 5.2 bears more similarities to the ex-

vivo experimental force curve than using the specified size. 

 

In-vivo demonstration in tissue retraction 

• The optimised testing environments in light of the Taguchi study have been 

applied in the in-vivo study, as shown in section 5.4. The result has shown that 

the porcine bowel is retracted to a height of 80 mm sufficient for the 

laparoscopic work. The result has demonstrated a robust pull force and less 

force when dragging the tissue. Besides, the entire bowel section is lifted up by 

two injection sites.  

• In conclusion, the feasibility of using nano-particle ferrofluids to 

manipulate tissue has been demonstrated in this study with the suggested 

protocol.  
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9.2    Suggestions for Future Work 

The implementation of ferrofluids as a means of tissue manipulation has not 

been applied via the laparoscopic procedure. A few suggestions are provided here 

for future research in these directions: 

• Injection device  

The injection has been made by a syringe pump. In order to use in a 

constricted working space, the syringe pump has to be integrated with other 

laparoscopic tool. The electric conductivity method can still be used to 

determine the precision of the injection. However, the needle system may need 

to consider the concept of the blood drawing robot or the procedures of EMR 

and ESD in order to achieve the injection. 

• Magnetic probe  

The magnetic field strength is the second most significant factors in the 

retraction performance. Therefore, it is important to design a magnetic probe to 

compatible with in the laparoscopic procedure, one that can be integrated into a 

laparoscopic tool. Future design can further develop the concepts drawing from 

Wang’s permanent magnet study (2012), Lin and Valentine’s work about the 

magnetic tweezers (2012a, 2012b) , Slough and Miller’s work about the 

electromagnet probe (2001). A preliminary design has been established in 

section 8.2 based on the simulation method provided in Chapter 7. 

• Tissue deformation model  

Tissue deformation can change the flexibility of tissue retraction. 

Therefore, in the future it can be expected to use mechanical properties of a 

specific tissue or organs to predict deformation. In this study, Young’s modulus 

regarding stretch could also be obtained in the pull-off tests or in another tensile 
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test, but the part was left out of this study due to limited time of study. To build 

a tissue simulator, the FEM model can be applied. 

• Toxicity of ferrofluids 

Toxicity is decisive if the procedure is to be applied clinically. Although 

the ferrofluids in this study are almost selected from the existing biomedical 

applications, the effect of applying them onto human tissue has not been 

understood completely. The current applications, for example for drug delivery 

and targeting cancer cells, are suggesting that the particles can be excreted with 

urine. A few of the particles left on tissue cells can be absorbed by cells uptake 

(Chomoucka et al., 2010, He et al., 2010). However, how many particles can a 

unit of tissue absorb to remain innocuous to living creatures has not been 

studied in the literature. This can be studied through histology (Tietze et al., 

2009, Nedosekin et al., 2010, Tietze et al., 2011) 

In the in-vivo tests, flexible movement has been observed with regard to 

the concentration of magnetic effect and dispersion in an absent magnetic field. 

The injected ferrofluids can be retrieved from the injection site. However, a 

database of toxicity and an understanding of the limitations of tissue uptake still 

need to be established. 
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