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SUMMARY

Novel numerical procedures for limit analysis of structures – meshfree methods

and mathematical programming

Current research in the field of limit analysis is focussing on the development of

numerical tools which are sufficiently efficient and robust to be used in engineering

practice. This places demands on the numerical discretisation strategy adopted

as well as on the mathematical programming tools applied, which are the key

ingredients of a typical computational limit analysis procedure. In this research,

the Element-Free Galerkin (EFG) discretisation strategy is used to approximate

the displacement and moment fields in plate and slab problems, and second-order

cone programming (SOCP) is used to solve the resulting discretised formulations.

A numerical procedure using the EFG method and second-order cone program-

ming for the kinematic limit analysis problem was developed first. The moving

least squares technique was used in combination with a stabilised conforming nodal

integration scheme, both to keep the size of the optimisation problem small and to

provide stable and accurate solutions. The formulation was expressed as a prob-

lem of minimizing a sum of Euclidean norms, which was then transformed into a

form suitable for solution using SOCP.

To improve the accuracy of solutions and to speed-up the computational process,

an efficient h-adaptive EFG scheme was also developed. The naturally conforming

property of meshfree approximations (with no nodal connectivity required) facili-

tates the implementation of h-adaptivity. The error in the computed displacement

field was estimated accurately using the Taylor expansion technique. A stabilised

conforming nodal integration scheme was also extended to error estimators, lead-

ing to an efficient and truly meshfree adaptive method.

To obtain an indication of bounds on the solutions obtained, an equilibrium for-

mulation was also developed. Pure moment fields were approximated using a

moving least squares technique. The collocation method was used to enforce the

strong form of the equilibrium equations and a stabilised conforming nodal integra-

tion scheme was introduced to eliminate numerical instability problems. The von

Mises and Nielsen yield criteria were then enforced by introducing second-order

cone constraints.
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Chapter 1

Introduction

1.1 General

Limit state criteria have been used to design and asses the safety of many engineer-

ing components and structures, from simple metal forming problems to large-scale

engineering structures and nuclear power plants. A complete elasto-plastic analy-

sis is generally quite complicated due to the need to specify initial stress conditions

and to then carry out an analysis in an iterative manner. Difficulties in elasto-

plastic analysis and its applications have motivated the development of a simplified

direct method, limit analysis, which can be used to identify the collapse load (also

known as the limit load, or load carrying capacity, or maximum load intensity) of

a structural problem in a simple and more direct manner. By applying the funda-

mental theorems of plasticity, lower and upper bounds on the load multiplier at

the collapse state can be determined directly, without intermediate steps.

The numerical solution process for limit analysis problems generally involves two

steps. The first step is to discretise the problem fields by introducing a spatial dis-

cretisation strategy. One of the most robust and popular discretisation methods is

the finite element method (FEM), which decomposes the domain of a continuous

problem into a finite number of non-overlapping parts, called elements. Mathemat-

ical relations such as complex differential or partial differential governing equations

1



Chapter 1. Introduction 2

can be transformed into a set of algebraic equations for each element. Considering

the relationship between nodes, a system of algebraic equations that represent the

behaviour of the whole continuous domain can be obtained (Zienkiewicz & Taylor,

2000). In the framework of limit analysis, the equations involved may be static

equilibrium or kinematical compatibility conditions, together with associated re-

lations.

The second step is to formulate a suitable optimisation problem and to apply

mathematical programming techniques to obtain a solution. In fact, both static

and kinematic theorems can be expressed in the form of an optimisation problem,

in which a functional is maximised or minimised, subject to sets of equalities and

inequalities. In the kinematic approach, the unknowns in the problem relate to the

approximated displacement field, whereas the unknowns are stress parameters in

the static approach. Once the stress or displacement fields are approximated and

the bound theorems of plasticity theory applied, limit analysis becomes a problem

of optimisation involving either linear or nonlinear programming and can respec-

tively be solved using linear or non-linear programming techniques implemented

in commercial or in-house optimisation packages.

The two main numerical procedures for limit analysis problems are summarised

and shown in Figure 1.1

1.2 Research motivation

Current research in the field of limit analysis is focussing on the development of

numerical tools which are sufficiently efficient and robust to be of use to engi-

neers working in practice. These numerical procedures may use continuous, semi-

continuous (Krabbenhoft et al., 2005) or truly discontinuous (Smith & Gilbert,

2007) representations of the relevant field parameters; in the present work contin-

uous representations are of particular interest. However, when the FEM is applied

some of the well-known characteristics of mesh-based methods can lead to prob-

lems: the solutions are often highly sensitive to the geometry of the original mesh,
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Figure 1.1: Limit analysis: numerical procedures

particularly in the region of stress or displacement singularities. Although h-type

adaptive refinement schemes (Christiansen & Pedersen, 2001; Borges et al., 2001;

Franco et al., 2003; Lyamin & Sloan, 2003; Ciria et al., 2008) have been used in an

attempt to overcome such disadvantages, and show immense promise, the schemes

quickly become complex and a large number of elements are generally required to

obtain accurate solutions.

Moreover, in limit analysis procedures one must solve optimisation problems in-

volving either linear or non-linear programming. When a non-linear yield con-

dition is used, the resulting optimisation problem is non-linear, which presents

major difficulties in the solution process. A traditional way of addressing this

drawback is to linearise non-linear convex yield criteria, so that the resulting op-

timisation problem reduces to a linear program. Although this classical linear

program can be solved efficiently using Simplex (Anderheggen & Knopfel, 1972;

Christiansen, 1981) or interior-point (Andersen & Christiansen, 1995; Christiansen
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& Kortanek, 1991) algorithms, a large number of constraints generated in the lin-

earisation process would be needed in order to provide accurate solutions (espe-

cially for three-dimensional problems), thereby increasing the computational cost.

Attempts have also been made to solve problems involving exact convex yield func-

tions using non-linear programming packages. However, non-linear programming

problems are often computationally expensive to solve, with the consequence that

often only relatively small problems can be tackled.

The present research focusses both on the discretisation method and on ensuring

that the problem is posed in a way that is amenable to rapid solution using an

efficient optimisation algorithm. The first aim of the research is to apply so-called

‘meshless’ methods, which have been developed in recent years to provide a flex-

ible alternative approach to FEM, to the field of limit analysis. These methods

use sets of nodes distributed across the problem domain, and also along domain

boundaries. One of the first meshless methods developed is the Element-Free

Galerkin (EFG) method (Belytschko et al., 1994). The EFG method has been

applied successfully to a wide range of computational problems, proving popular

due to its rapid convergence characteristics and its ability to obtain highly accu-

rate solutions (Askes, 2000; Liu & Gu, 2005; Chen et al., 2006). Furthermore, the

naturally conforming property of meshfree approximations (with no nodal con-

nectivity required) facilitates the implementation of h-adaptivity. Nodes may be

moved, discarded or introduced without the need for complex manipulation of the

data structures involved. It therefore seems appropriate to investigate the perfor-

mance of the EFG method when applied to limit analysis problems. Furthermore,

in order to obtain efficient meshfree based numerical procedures, a stabilised con-

forming nodal integration proposed by Chen et al. (2001a) will also be applied

within the framework of limit analysis.

The second aim is to increase the efficiency of solving the underlying mathemat-

ical optimisation problem generated so that the solutions of large-scale problems

in practical engineering can be obtained efficiently. A difficulty present in upper-

bound limit analysis problems is that the objective function in the associated op-

timisation problem is convex, but not everywhere differentiable. One of the most
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efficient algorithms to overcome such a difficulty is the primal-dual interior-point

method presented in Andersen et al. (2003) and implemented in commercial codes

such as the Mosek software package (Mosek, 2008). Furthermore, the algorithm is

also suitable for solving lower-bound limit analysis problems since most yield con-

ditions can be described using conic constraints (Makrodimopoulos, 2009). The

limit analysis problem involving conic constraints can then be solved by this ef-

ficient algorithm (Makrodimopoulos & Martin, 2006b; Krabbenhoft et al., 2007;

Ciria et al., 2008; Munoz et al., 2009).

In order to achieve the overall aims, the following tasks will be undertaken:

• Formulate a kinematic limit analysis formulation based on the EFG dis-

cretisation strategy and construct a smoothing scheme using a stabilised

conforming nodal integration technique.

• Develop a complete solution procedure for the discretised kinematic problem

using second-order cone programming.

• Develop an a posteriori error estimator based on the stabilised conforming

nodal integration scheme. Implement an h-adaptive EFG method to increase

the efficiency of the proposed kinematic procedure.

• Develop an EFG based equilibrium limit analysis formulation for applica-

tion to rigid-perfectly plastic plates and slabs, and solve the resulting static

formulation using second-order cone programming.

1.3 Thesis outline

The thesis consists of eight core chapters. Three of these (chapters 4, 5 and 6) are

presented as self-contained manuscripts which have been published or submitted

for publication. As a result of using this ‘three-paper’ format, some minor over-

lap in the content may occur. The contents of each chapter will now be briefly

described.
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Chapter 2 consists of two main sections which provide a literature review of com-

putational limit analysis and mesh-free methods. The limit analysis section starts

with historical remarks and is followed by a brief description and discussion on

computational issues. Applications of numerical limit analysis are also outlined,

mainly considering application to plates, slabs and geomechanics problems. The

second section focusses mainly on mesh-free approximation techniques and nu-

merical implementation details. Applications of mesh-free methods to various

engineering problems are also considered.

In chapter 3, a brief description of plasticity relations and limit analysis theory is

first provided. Then, a comprehensive discussion of limit analysis formulations and

of the mathematical theory of duality is presented. The second part of this chapter

starts with a discussion on EFG shape functions and their derivatives. A stabilised

conforming nodal integration scheme and an a posteriori error estimation scheme

are also described. The chapter is closed by providing a brief description of the

general framework of conic programming.

Chapter 4 describes a complete numerical procedure to allow computation of ap-

proximate upper bounds on the limit load of plates. Three main ingredients are

presented: the EFG approximation, a curvature smoothing stabilisation scheme

and second-order cone programming. Various numerical examples are examined

to test the performance of the proposed procedure. The present solutions are

validated against benchmark results from the literature.

In chapter 5, after a brief description of the kinematic formulation which forms the

core theoretical part of chapter 4, an error estimator and h-adaptivity scheme for

upper bound limit analysis problems are presented. The efficiency of the adaptive

procedure is validated by comparing solutions with those obtained using uniform

refinement, and with results obtained previously.

In chapter 6, a novel EFG equilibrium model which uses a smoothed moment

derivatives stabilisation scheme is described in detail. A discussion of how bound-

ary conditions are enforced is also given. A numerical procedure for static limit

analysis problems is completed by introducing second-order cone constraints for
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both Nielsen and von Mises yield criteria. The new approach is tested by exam-

ining various reinforced concrete slab and metal plate examples. The solutions

obtained by the proposed procedure are validated against analytical solutions and

benchmark results from the literature.

In chapter 7, some of the broad issues which have come to light in the course of the

research are discussed. The convergence characteristics of the methods developed

are studied and various computational issues also are discussed.

Finally, key conclusions are drawn and recommendations for future work are pre-

sented in chapter 8.

1.4 Publications

Parts of this thesis have been published in or submitted to international journals

or presented in conferences. These papers are:

[1] C. V. Le, M. Gilbert and H. Askes. Limit analysis of plates using the EFG

method and second-order cone programming. International Journal for Nu-

merical Methods in Engineering, 78, 1532–1552, 2009.

[2] C. V. Le, H. Askes and M. Gilbert. A novel numerical procedure for limit

analysis of plates: adaptive EFG combined with SOCP. Proceeding of the 17th

UK National Conference on Computational Mechanics in Engineering, 291–

294, 2009.

[3] C. V. Le, H. Askes and M. Gilbert. An adaptive Element-Free Galerkin method

applied to limit analysis of plates, Computer Methods in Applied Mechanics

and Engineering, revising.

[4] C. V. Le, M. Gilbert and H. Askes. Limit analysis of plates and slabs us-

ing a meshless equilibrium formulation, International Journal for Numerical

Methods in Engineering, accepted, 2009.



Chapter 2

Literature review

2.1 Limit analysis

Plastic limit analysis is concerned with the final stage of the plastic response of

components and structures, i.e. plastic collapse. It allows the ultimate load-

carrying capacity of a solid or structure to be assessed without analysing the

entire history of the response, which is required in a conventional incremental

elasto-plastic analysis. A great amount of work has been done to develop limit

analysis theory and numerical tools for use by engineers working in practice. In

this section, both theoretical and computational aspects of limit analysis will be

reviewed.

2.1.1 Historical remarks

Based on a rigid-perfectly plastic model of material, the theory of limit analysis has

been developed since the early twentieth century. The first complete formulation

of the upper and lower bound theorems was introduced by Drucker et al. (1952).

Prager (1972) and Martin (1975) also made landmark contributions and since

then there has been a continuing interest in the development and application

of limit analysis. Significant contributions to the application of limit analysis in

8
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structural engineering were made by Hodge (1959, 1961, 1963). Shortly afterwards,

Massonnet & Save (1967) and Save & Massonnet (1972) made further significant

progress. Since then, a great deal of attention has been paid to extending both

theoretical aspects and its application to various practical engineering problems,

see e.g. Chakrabarty (1988); Chen & Han (1988); Lubliner (1990); Kamenjarzh

(1996); and more recently Jirasek & Bazant (2002).

2.1.2 Computational limit analysis

Limit analysis makes use of the fundamental theorems of plastic analysis to pro-

vide a powerful means of estimating the maximum load sustainable by a solid

or structure. However, exact analytical solutions have been determined for only

a limited class of problems, usually those with a regular geometry and simple

loading. An exact solution is rarely obtainable for most practical problems with

arbitrary geometry and boundary conditions, and numerical approximations must

therefore be developed.

The progress of numerical limit analysis strongly relies on the development of both

discretisation methods and mathematical programming techniques. Over the past

four decades, many numerical solution methods for limit analysis problems have

been developed, and in parallel significant progress has been made in developing

powerful numerical analysis and optimisation techniques. The first attempt to

solve two-dimensional plastic limit analysis of continua problems appears to have

been made by Koopman & Lance (1965). In their investigations a finite difference

method was employed to approximate the stress fields, and equilibrium equations

were enforced at all points in a grid. A well-known drawback of the finite differ-

ence method is that its formulation is not well-suited to problems with arbitrary

geometry and loading conditions. Consequently, discretisation by finite elements

has become an indispensable and universal alternative numerical analysis tool.

It can be noted from the literature that limit analysis problems can be tackled

using two different numerical approaches. The first method is based on incremen-

tal evaluations of the nonlinear stress-strain relations of flow theory, and may be
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performed either using the iterative Newton-Raphson method (e.g. Argyris (1967);

Marcal & King (1967); Zienkiewicz et al. (1969)) or using mathematical program-

ming (e.g. Maier (1968); Cohn & Maier (1979)). However, incremental methods

may be computationally expensive because of the need to perform an analysis in an

iterative manner. The second approach, based on the fundamental limit theorems

of plasticity, determines directly the limit load factor without intermediate steps

by combining mathematical programming and (usually) a finite element discreti-

sation. The method has become a powerful tool of solving problems of arbitrary

geometry thanks to dramatic developments in computer technology. The devel-

opment of the direct method has been the result of pioneering works by Brion &

Hodge (1967); Hodge & Belytschko (1968); Neal (1968); Maier (1970); Nguyen-

Dang (1976); Christiansen (1980); Casciaro & Cascini (1982), amongst others.

Key features of the direct limit analysis approach are:

• application of variational principles;

• spatial discretisation techniques;

• ways of enforcing the yield condition;

• choice of optimisation algorithm.

2.1.2.1 Variational principles

Markov (Markov, 1947) and Hill’s principles (Hill, 1950) are the two main vari-

ational principles used in engineering mechanics, expressed in terms of strains

and stresses respectively (see Section 3.1.2 for further details). The direct conse-

quences of these minimisation principles for the case of proportional loading are

respectively the fundamental upper and lower bound theorems of plastic limit anal-

ysis (Save & Massonnet, 1972), see Section 3.1.3 for further details. These one-field

principles provide the theoretical foundations to enable pure spatial discretisation

in the displacement or equilibrium models. In other words, if the displacement

field is approximated and the upper-bound theorem is applied, an upper-bound on



Chapter 2. Literature review 11

the actual collapse multiplier can be determined, while the lower-bound solution

can be obtained as a result of employing an equilibrium model and the lower-

bound theorem. On the other hand, an approximation of the collapse multiplier

can also be achieved with the use of two-field principles which gives rise to the

saddle-point problem (min-max) obtained by modifying Markov’s principle. Such

mixed-approaches provide the theoretical foundation for the use of mixed or hybrid

finite elements.

2.1.2.2 Spatial discretisation techniques

The finite element method is the most universal numerical analysis technique

applicable to problems involving complex geometries, boundary conditions and

material properties. It is, therefore, understandable that finite elements have been

the subject of numerous publications not only in the field of plastic limit analysis

but also in physical and engineering models in general. In the literature there

are three main types of finite element models, which use either displacement,

equilibrium and mixed formulations.

Numerical procedures for lower-bound limit analysis using equilibrium finite ele-

ments have been developed by several investigators (Hodge & Belytschko, 1968;

Nguyen-Dang, 1976; Bottero et al., 1980; Krabbenhoft & Damkilde, 2002; Lyamin

& Sloan, 2002a). In the equilibrium finite element formulation, the assumed stress

or moment fields within each element are expressed in terms of spatial coordi-

nates and parameters that are usually associated with nodal stress/moment val-

ues. These approximated fields are also required to satisfy a priori the boundary

equilibrium conditions (relations between the external load and internal stress

distribution) and equilibrium at interfaces between continuous finite elements.

Therefore, a set of linear conditions on the stress/moment parameters have to be

introduced in order to satisfy static admissibility. Due to these additional condi-

tions, construction of such fields is often more difficult than construction of the

dual fields - the displacement or velocity fields.
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In displacement finite elements, the velocity fields are represented by a continuous

function expressed in terms of spatial coordinates and nodal velocities. Compared

with equilibrium models, the displacement formulation is more popular as: (i)

the internal compatibility condition can be satisfied straightaway in the assembly

scheme, and (ii) boundary conditions can be enforced directly. Displacement finite

elements have been applied to limit analysis problems by workers such as Hodge &

Belytschko (1968); Anderheggen (1976); Capsoni & Corradi (1997) and Krabben-

hoft et al. (2005).

Mixed finite elements have been also developed for limit analysis problems (Chris-

tiansen, 1981, 1996; Capsoni, 1999; Yu & Tin-Loi, 2006). The attractive features

of the mixed formulation are that it allows both stresses and displacements to be

determined directly, and volumetric locking can be avoided. The only drawback

of such mixed approaches is the lack of information on the status of the solutions

obtained, that is, it is a priori unclear whether the solution will be an upper

bound or a lower bound. Another discretisation method, the Boundary Element

Method (BEM), has been also applied to limit analysis problems, see e.g. Maier

& Polizzotto (1983); Panzeca (1992); Liu et al. (2004) and Zhang et al. (2004).

However, a drawback of the BEM is that a fundamental solution/Green function

of the problem must be known.

2.1.2.3 Enforcement of the yield condition

In order to obtain a true lower-bound, it is vital to enforce the yield criterion

everywhere in the problem domain. Hodge & Belytschko (1968) introduced a

method to treat plate problems using quadratic moment fields. In their paper,

the constraints are imposed only at points where the yield condition is likely to be

most important, e.g relative maxima points. The location of these relative maxima

points is calculated within each step of the mathematical programming algorithm.

This process is time-consuming and complicated, and the relative maxima points

may not exist, or may be located outside an element.
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An alternative method is to fulfill the yield condition only at a number of selected

points in each element (Zavelani-Rossi, 1974). However, the optimal solution so

obtained cannot be considered as a true lower-bound. To address this, an a pos-

teriori check is performed on the solution, using a sufficiently large number of

points within elements. Constraints at points where the yield condition is violated

can then be added to the optimisation problem. The process is repeated until the

yield criterion is satisfied at all points evaluated, so as to obtain a truly statically

admissible field. Alternatively, if only linear shape functions are used, the yield

condition only needs to be checked at nodal points (e.g. Lysmer (1970); Lyamin

& Sloan (2002b) and Ciria et al. (2008)).

2.1.2.4 Mathematical programming

The efficiency of any numerical procedure for limit analysis problems usually relies

on the choice of mathematical programming algorithm used to enable a solution

to be obtained. From a mathematical point of view, Linear Programming (LP) is

very attractive, and has been widely applied to limit analysis problems, as in the

following references (Anderheggen & Knopfel, 1972; Cohn & Maier, 1979; Grierson,

1977; Nguyen-Dang, 1984; Sloan, 1988). Typically this involves a piecewise linear

approximation of non-linear yield surfaces, see e.g. Maier (1970); Laudiero (1972);

Tin-Loi (1990) and Christiansen (1996). Existing optimisation algorithms, such

as the simplex method or the more recently developed family of interior point

methods can then be applied.

By means of a Newton type scheme, von Mises or other nonlinear yield functions

can be used directly in nonlinear programming formulations. An important step

in most algorithms designed to solve non-linear problems is to eliminate linear or

non-linear constraints by introducing Lagrangian multipliers. The problem then

becomes an unconstrained functional, and several iterative methods have been

proposed to treat such problems, see for example Gaudrat (1991); Zouain et al.

(1993); Liu et al. (1995) and Andersen (1996).
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As a direct method for use with nonlinear programming solvers, the elastic com-

pensation method modifies the Young’s modulus of each element. The optimised

statically admissible stress field is obtained in each iteration of a linear-elastic fi-

nite element solution scheme. The development and application of the method in

practical computation has been addressed by Mackenzie & Boyle (1992); Ponter

& Carter (1997); Ponter et al. (2000); Chen & Ponter (2001); Maier et al. (2003);

Boulbibane & Ponter (2005) and Boulbibane & Ponter (2006).

2.1.3 Applications of numerical limit analysis

Applications of limit analysis can be found in various engineering sectors. For ex-

ample, limit analysis can be applied to problems involving metal forming, plates

and shells, masonry structures and geotechnical materials. However, perhaps the

two most significant applications in civil engineering will be reviewed in the fol-

lowing sections.

Application to plates and slabs

The yield line method has been shown to provide an effective means of performing

plastic analysis of slabs and plates (Wood, 1961; Johansen, 1962). This well-

known method can predict accurate upper bounds on the actual collapse multi-

plier for many practical engineering problems. However, as it is fundamentally a

hand-based analysis method, difficulties are encountered when treating problems

of arbitrary geometry, especially when the problems involve columns or holes.

Consequently, various computational limit analysis procedures which use finite el-

ements and mathematical programming have been developed over the past few

decades. The first, ground-breaking, numerical procedure for rigid-plastic limit

analysis problems was developed by Hodge & Belytschko (1968). In their paper,

the problem field was approximated using finite elements and the Sequential Un-

constrained Minimisation Technique (SUMT) was employed to solve the resulting

optimisation problem. Surprisingly, their results remained for a long time the
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best available and were referred to as such in reviews compiled by Save & Mas-

sonnet (1972) and Save (1995), despite the fact that relatively coarse meshes and

incompatible finite elements were used.

Another method based on a class of mixed finite element discretisations was pro-

posed by Christiansen & Larsen (1983). A dual limit analysis formulation for

plate bending problems was described and mixed displacement and moment finite

elements were used. The mixed method provides simultaneous approximations of

the collapse multiplier, and both moment and displacement fields are determined

directly. The von Mises yield criterion for plate bending was linearised and the re-

sulting optimisation problem can be solved by using a general linear programming

package. However, a solution which involves linearisation of the yield surface is not

as accurate as when using the exact non-linear yield condition. Consequently, since

then attention has focussed on developing non-linear optimisation algorithms to

enable a solution to be obtained in an efficient way. Capsoni & Corradi (1997) pre-

sented a direct iterative algorithm for the kinematic formulation of plane strain

problems. The algorithm was then adopted to solve both thin and thick plate

problems (Capsoni & Corradi, 1999).

In parallel, limit analysis procedures for perfectly plastic slabs have been devel-

oped for use in design over a period of several decades. Chan (1972) was the

first to use finite elements and mathematical programming to calculate bounds on

the collapse load of a reinforced concrete slab. In the paper, both moment and

velocity fields were discretised using finite elements and the resulting nonlinear

optimisation problem was solved using the SUMT algorithm. At around the same

time, Anderheggen & Knopfel (1972) presented a numerical procedure based on

mixed finite elements and linear programming to determine the collapse loads of

plates. The model requires the assumption of parametric stress and displacement

fields, and linearisation of the yield condition. In Faccioli & Vitiello (1973), with

the use of linear moment distribution finite elements and linearised yield criteria,

lower bounds on the collapse load of thin plates were determined using linear pro-

gramming. A useful discussion of the various options for equilibrium triangular

plate elements to be used in a linear programming formulation of plate bending
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problems was described in Krenk et al. (1994). In order to avoid linearising the

yield criteria, Krabbenhoft & Damkilde (2002) proposed an optimisation algorithm

to solve a lower-bound limit analysis problem with non-linear criteria. Using the

analogy between the mathematical duality and the dual principle of limit analysis,

they also demonstrated that a collapse mechanism could be extracted from a lower

bound solution.

It is important to point out that for reinforced concrete slabs the yield condition

proposed by Nielsen (1964) and Wolfensberger (1964), which is commonly known

as Nielsen’s yield criterion, is often used. In fact, this yield criterion consists

of two intersecting cones, and this therefore results in difficulties in deriving the

expression of the dissipation function and the set of the plastically admissible

strains/curvatures for kinematic limit analysis problems. Consequently, the square

yield condition is usually used in upper-bound limit analysis of slabs. Chan (1972)

proposed a kinematic formulation based on discontinuous finite elements in which

potential hinge/yield lines were placed at the boundaries of triangular elements.

The method was also adopted by Munro & Fonseca (1978). With the use of

finite elements and linear programming, the method can be used to identify the

most critical arrangement of yield-lines, and can potentially be applied to practical

engineering problems. However, the success of the method depends on how well

the critical yield line pattern can be approximated using the given mesh; in other

words the solution is sensitive to the layout of the mesh. Attempts have been made

by Johnson (1995, 2001) and Thavalingam et al. (1998) and others to overcome

such difficulties, but further developments are required to make this approach

practicable.

Application in geomechanics

Computational limit analysis has become a powerful tool for analysing the sta-

bility of problems in soil mechanics, and a huge amount of work has been done

in the field over last few decades. Lysmer (1970) originally proposed a numerical

procedure using finite elements and linear programming to compute lower bound

limit loads in soil mechanics. In the paper, the soil mass was discretised into a

number of 3-noded triangular elements, the nodal stresses being the unknowns,
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and in contrast to standard finite element formulation each node was unique to

a particular element. This meant that more than one node could share the same

coordinate, a key feature of discontinuous finite element methods.

Together with the development of finite element technology and mathematical

programming algorithms, limit analysis techniques for geotechnical problems have

been developed by many researchers over the last two decades. Significant work

in the field has been carried out by Sloan and his collaborators, i.e. Sloan (1988,

1989); Yu & Sloan (1994); Lyamin & Sloan (2002a) and Zhao et al. (2007). In Sloan

(1989), an upper bound analysis was carried out using constant strain triangles and

the finite meshes were arranged in a specific manner to avoid volumetric locking

problems. Yu et al. (1994) used linear strain triangles with straight edges. In this

paper, the shearing direction between elements was specified in advance in order

to avoid locking problems. More recently, Makrodimopoulos & Martin (2006b)

developed simplex strain elements for use in combination with second-order cone

programming algorithms to apply to upper bound limit analysis problems. Two

and three dimensional bearing capacity of footings in sand problem have recently

been investigated by Lyamin et al. (2007).

As an alternative, a truly discontinuous model called Discontinuity Layout Opti-

misation (DLO) was proposed by Smith & Gilbert (2007). In fact, a successful

discontinuous limit analysis procedure is able to identify the critical arrangement

of discontinuities in a problem from a wide, preferably near infinite, number of pos-

sibilities. The problem is thus similar to the problem of identifying the optimum

layout of gridlike structures. Figure 2.1 illustrates the analogy between a truss

layout optimisation and a strip footing bearing capacity problem in geomechanics.

The DLO procedure can overcome both the volumetric locking and stress/veloc-

ity singularity limitations of finite element limit analysis. The method has now

been developed into a commercial software application for geomechanics problems.

Apart from application in geomechanics problems, the DLO numerical analysis

procedure is potentially applicable to various engineering problems, such as the
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Figure 2.1: Analogy between truss and discontinuity layout optimisation
(Smith and Gilbert 2007). (a) Truss layout problem: loading and supports,
ground structure and locations of pre-existing bars, (b) optimal layout of truss
bars for problem (a), (c) discontinuity layout problem: imposed displacement

conditions and optimal layout of slip-lines, i.e. as (b)

determination of critical yield line patterns in concrete slabs, and identification of

critical slip-line patterns in metal forming problems.

2.1.4 Computational mechanics aspects

Various aspects of computational limit analysis have been investigated in order

to provide more robust and efficient numerical tools to enable solutions to prac-

tical engineering problems to be obtained. Two well-known issues involving finite

element discretisation will be discussed below.
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Volumetric locking

Nagtegaal et al. (1974) were the first to point out the isochoric or volumetric

locking problem which can occur in plane strain and 3D elastic perfectly-plastic

analyses. It is emphasised that this sort of locking problem is purely due to an

inability of the approximations to describe exact velocity modes (Askes et al.,

1999). When lower-order elements are used, the kinematic constraint (sometimes

called the divergence-free or incompressibility condition) leads to a reduction of

the available number of degrees of freedom, and therefore the exact velocities

cannot be described. To illustrate this volumetric locking behaviour, the plain

strain problem in Figure 2.2 is modelled with one quadrilateral finite element and

four nodes. Let u̇x and u̇y be the components of the imposed velocity u̇, so that

the strain rate vector reads









ǫ̇xx

ǫ̇yy

ǫ̇zz

γ̇xy









=




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

yu̇x
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0

xu̇x + yu̇y





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

(2.1)
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Figure 2.2: Patch-problem statement
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The incompressibility condition in terms of the volumetric strain rate ǫ̇v reads

ǫ̇v = ǫ̇xx + ǫ̇yy + ǫ̇zz

= yu̇x + xu̇y

= y
1

2

√
2u̇− x

1

2

√
2u̇

= (y − x)
1

2

√
2u̇ = 0 (2.2)

which can only be satisfied for arbitrary x and y if u̇ = 0. Due to the characteristics

of the bi-linear shape functions of this element, the imposed velocities of Figure 2.2

cannot be described.

In the context of limit analysis, for the cases where an unbounded yield criterion

is used, an infinite number of linear constraints on nodal velocities must be intro-

duced in the kinematic formulation (Andersen et al., 1998; Tin-Loi & Ngo, 2003).

Consequently, the collapse mechanism cannot be described and no limit load can

be found, leading to so-called volumetric locking.

Various solutions have been proposed in the literature to overcome this problem.

These include the use of special element patches (Nagtegaal et al., 1974); reduced

or selective integration (Zienkiewicz et al., 1971; Hughes, 1980); augmenting the

strain field (Simo & Rifai, 1990). The most robust and effective method is probably

the application of higher-order displacement-based elements (de Borst, 1982; Sloan

& Randolph, 1982). More recently, Tin-Loi & Ngo (2003) used the p-version finite

element method to overcome the well-known locking behaviour in limit analysis

problems. However, there are drawbacks to using higher-order elements: mesh

generation requires complex algorithms and computational costs increase. As an

alternative to higher-order elements, the Element-Free Galerkin (EFG) method

can be used (Belytschko et al., 1994). Due to the high-order shape functions used

in the EFG method the volumetric locking problem can be suppressed (Dolbow

& Belytschko, 1999; Askes et al., 1999), though not entirely removed (Huerta &

Fernandez-Mendez, 2001).
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Error estimation and adaptivity

The objective of using error estimation and adaptivity is to improve the accuracy

of the solution, to speed-up the computational process, or both. It is well-known

that the accuracy of the finite element solution depends on how the problem is

discretised. Automatic refinement strategies based on a posteriori error estimators

are often used. The a posteriori error estimators can be categorised into two main

classes: recovery-type (Zienkiewicz & Zhu, 1987, 1992) and residual-type (Babuska

& Rheinboldt, 1978; Zhu & Zhang, 1999). The recovery-type error estimators

measure the smoothness of stresses between adjacent elements without solving the

error equations. They are simple and preferable in many practical engineering

problems. Borges et al. (2001) adopted a recovery scheme to estimate the interpo-

lation error for limit analysis problems. With the use of a Taylor expansion, the

local error for each element could be estimated by

‖uh(x) − u(x)‖L2(Ω) ≃ C‖H (uh(x)) · (x − x0)
2‖L2(Ω) (2.3)

where C is a constant and H (uh(x)) is the recovered Hessian matrix obtained

from the finite element solution uh.

Original mesh 

Mesh enrichment

(p-adaptivity)

Mesh refinement

(h-adaptivity)

Mesh relocation 

(r-adaptivity)

Figure 2.3: Remeshing strategies

Once the error information is obtained, the mesh can be adapted. The mesh should

be improved in regions where the local error is large. There are several techniques



Chapter 2. Literature review 22

for remeshing, for instance, mesh refinement (h-adaptivity), mesh enrichment (p-

adaptivity), mesh relocation (r-adaptivity) or combinations of any two of these

(Askes, 2000; Pannachet, 2006), Figure 2.3. From an intuitive point of view, the

simplest strategy is probably h-adaptivity. Consequently, h-adaptivity has been

applied to a wide range of problems in engineering practice, particularly for plastic

limit analysis problems. Borges et al. (2001) and Lyamin et al. (2005) performed

h-adaptivity based on the advancing front technique, which is able to capture

discontinuities arising from localised plastic deformations during plastic collapse.

In Ciria et al. (2008) and Munoz et al. (2009), a novel method for h-adaptivity

meshing based on the gap between upper and lower bounds was introduced.

2.2 Mesh-free methods: state of the art

2.2.1 Introduction

Numerical methods are indispensable for the successful simulation of physical and

engineering problems usually described by underlying partial differential equations.

Current research in computational mechanics is focussing on the development of

numerical tools which are sufficiently efficient and robust to enable solutions of

practical problems to be obtained. However, there are many problems of indus-

trial and academic interest which cannot be treated efficiently using conventional

numerical methods such as finite elements, finite volumes or finite differences. For

instance, consider simulation of manufacturing processes where there is a need to

deal with extremely large deformations of the mesh, or simulation of failure where

simulation of propagating cracks with arbitrary and complex paths is needed, or

simulation of strain localisation problems. These problems are not well suited to

classical mesh-based methods. Consequently, so-called meshless or meshfree meth-

ods (MMs) have been developed to eliminate at least part of this mesh dependence

by constructing the approximation entirely in terms of nodes (often called particles

in mesh-free methods, Huerta et al. (2004)).



Chapter 2. Literature review 23

(a) Finite element method (b) Mesh-free methods

Figure 2.4: Discretisation strategies

Mesh-free methods use sets of nodes scattered within the problem domain as well

as on the boundaries to represent the domain and its boundaries, Figure 2.4.

There is no need for a mesh or elements; instead the relation between nodes is

handled via so-called domains of influence. The naturally conforming property of

the mesh-free methods results in many computational advantages which may be

summarised as follows:

• The absence of a mesh is the most attractive and important feature of the

MMs. The connectivity of the nodes can be generated at run-time and may

change with time, and therefore the MMs facilitates the implementation of

h-adaptivity. In MMs there is no mesh-alignment sensitivity problem, a well-

known drawback of mesh-based methods (Li & Liu, 2002). Furthermore, for

problems with large deformations or moving discontinuities, MMs show great

advantages since no remeshing is necessary.

• The shape functions of MMs can easily be constructed to have any desired or-

der of continuity (Fries & Matthies, 2003), thus no post-processing is needed

to obtain smooth stress distributions etc.

• The convergence characteristics of MMs are often considerably better than

those obtained when using mesh-based shape functions (Li & Liu, 1996; Liu,

2003). Moreover, the accuracy of MMs solutions can be controlled more

easily (Li & Liu, 2002), and this may result in efficiencies of error estimation

and adaptivity.
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In general, MMs can be classified based on two main criteria: approximation/in-

terpolation techniques(Fries & Matthies, 2003; Liu & Gu, 2005; Nguyen et al.,

2008), and computational formulation (Li & Liu, 2002; Liu & Gu, 2005). System-

atic classification of MMs can be found in these papers. However, some important

aspects of MMs such as approximation techniques, numerical implementation and

applications will be emphasised in the following sections.

2.2.2 Approximation techniques

The method of function approximation/interpolation based on a set of arbitrary

nodes is a key issue in MMs; various methods have been developed. Before in-

troducing some popular approximation functions, it is appropriate to mention the

essential conditions required for convergence, namely: consistency, completeness

or reproducing capacity, and the concept of partition of unity.

Consistency and completeness

For any numerical method to converge, it must be consistent and stable. The

consistency of an approximation is defined by its ability to represent a differ-

ential equation (Fries & Matthies, 2003), or in a mathematical sense, a scheme

Lhu = f is consistent of order p > 0 with the differential equation Lu = f

if ‖Lu − Lhu‖ = O(hp), where h is a parameter that reflects the refinement of

grid/mesh. It is obvious that the approximation error ‖Lu − Lhu‖ goes to zero

when h→ 0. The consistency term is usually applied to finite difference and collo-

cation methods which discretise the strong form of a partial differential equation

(PDE) (Belytschko et al., 1998). When the PDE is transformed into its associated

weak form and is solved by a Galerkin method, the completeness and reproducing

terms are used in the study of convergence. A set of functions ΦI(x) is complete

to order s if any polynomial up to degree s is exactly reproduced as

∑

I

xpΦI(x) = xp for 0 ≤ p ≤ s (2.4)
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or
∑

I

p(xI)ΦI(x) = p(x) ∀x ∈ Ω (2.5)

where p(x) contains the basis functions.

The terms completeness and reproducing ability are very closely related to con-

sistency, and it has been shown in Belytschko et al. (1998) that in the analysis

for convergence the role of completeness (i.e. reproducing conditions) in Galerkin

methods parallels the role of consistency in finite difference methods.

Partition of Unity (PU)

A partition of unity is a paradigm in which a domain Ω is covered by overlapping

patches, or subdomains ΩI , each of which is associated with a function ΦI(x)

which is nonzero only in ΩI , Figure 2.5, and has the property

∑

I

ΦI(x) = 1 in ΩI (2.6)

If the set of ΦI(x) satisfy the equation (2.4), it is called a partition of unity of

order s (Fries & Matthies, 2003).

0

1

Figure 2.5: Illustration of interpolants that form a Partition of Unity
(Wikipedia)

2.2.2.1 Smooth Particle Hydrodynamics method

The idea of meshless methods was originally developped by Lucy (1977) and Gin-

gold & Monaghan (1977). The so-called Smooth Particle Hydrodynamics (SPH)

method was used for modelling astrophysical phenomena without boundaries such
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as exploding stars and dust clouds. Monaghan (1988) proposed a more rational ba-

sis with a kernel approximation, and the SPH approximation for a single function

u(x) in a domain Ω is given by

uh(x) =

∫

Ω

w(x − x′, h)u(x′) dΩx
′ (2.7)

where uh(x) is the approximation, w(x−x′, h) is a kernel or weight function, and

h is the measure of the size of support.

For the purposes of numerical evaluations, the discrete form of (2.7) is needed and

can be obtained by numerical quadrature of the right-hand side:

uh(x) =
∑

I

w(x − xI , h)uI∆VI =
∑

I

ΦI(x)uI (2.8)

where ∆VI is some measure of the domain surrounding of node I, and ΦI(x) =

w(x − x′, h)∆VI are the SPH shape functions of the approximation.

It has been shown by Belytschko et al. (1996a) that the linear consistency condi-

tions do not hold for either uniform or non-uniform nodal distributions in SPH.

Nevertheless SPH methods have provided good solutions to second-order PDEs.

2.2.2.2 Reproducing Kernel Particle Method

The Reproducing Kernel Particle Method (RKPM) is an improved version of the

continuous SPH approximation. In order to ensure a certain order of consistency

of the SPH approximation, a correction function C(x,x′) is added to the approx-

imation as (Liu et al., 1995a)

uh(x) =

∫

Ω

C(x,x′)w(x − x′, h)u(x′) dΩx
′ (2.9)

where C(x,x′) is obtained by imposing the reproducing conditions.
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By performing numerical integration, the discrete version of (2.9) can be expressed

as

uh(x) =
∑

I

C(x,xI)w(x− xI , h)uI∆VI =
∑

I

ΦI(x)uI (2.10)

It is interesting to note that if ∆VI is chosen to be unity, the RKPM is identical to

the Moving Least Squares approximation which will be presented in the following

section.

2.2.2.3 Moving Least Squares Approximation

The Moving Least Squares (MLS) approximation, originated by mathematicians

for data fitting and surface construction, can be categorised as a method of finite

series representation of functions. An excellent description of MLS is given by

Lancaster & Salkauskas (1981). Nayroles et al. (1992) were the first to use a MLS

approximation to construct shape function for their diffuse element method for

mechanics problems. The approximation technique was further developed by Be-

lytschko et al. (1994), who named it the Element-Free Galerkin (EFG) method. In

MLS, the function of the field variable u(x) in the domain Ω can be approximated

at point x as

uh(x) =
m∑

i=1

pi(x)ai(x) ≡ pT (x)a(x) (2.11)

where m is the number of terms in the basis, pi(x) are monomial basis functions,

and ai(x) are their coefficients, which are functions of the spatial coordinates x.

The complete polynomial basis of degree s is given by

pT (x) =







pT (x) = (1, x, x2, . . . , xs) in 1D

pT (x, y) = (1, x, y, xy, x2, y2, . . . , xs, ys) in 2D

pT (x, y, z) = (1, x, y, z, xy, yz, zx, x2, y2, z2, . . . , xs, ys, zs) in 3D

(2.12)

which can be build using the Pascal pyramid as shown in Figure 2.6.
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Figure 2.6: Pascal pyramid of monomials

A local approximation is defined by Lancaster & Salkauskas (1981) as

uh(x,xI) =
m∑

i=1

pi(xI)ai(x) = pT (xI)a(x) (2.13)

The coefficients ai(x) are obtained at any point x by carrying out a weighted

least squares fit for the local approximation, which is achieved by minimizing the

difference between the local approximation and the function, Figure 2.7. This
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u
h (xI) u

h (x)

xI

u

x0

uI

Figure 2.7: The approximation function uh(x) and the nodal parameters uI

in the MLS approximation

yields the quadratic form as follows

J =

n∑

I

w(x − xI)
(
uh(x,xI) − u(xI)

)2

=

n∑

I

w(x − xI)
[
pT (xI)a(x) − uI

]2
(2.14)

where w(x − xI) is a weighting function with compact support, uI is the nodal

parameter of the field variable at node I and n is the number of points in the

neighbourhood of x. The minimisation condition requires

∂J

∂a
= 0 (2.15)

which leads to the following system of linear equations

A(x)a(x) = B(x)u (2.16)

where A and B are given by

A(x) =
n∑

I

w(x− xI)p(xI)p
T (xI) (2.17)

B(x) = [w(x − x1)p(x1), w(x − x2)p(x2), . . . , w(x − xn)p(xn)] (2.18)
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Solving the equation (2.16) for a(x), we obtain

a(x) = A−1(x)B(x)u (2.19)

The approximation uh(x) can then be expressed as

uh(x) =

n∑

I

ΦI(x)uI (2.20)

where the shape functions ΦI(x) are given by

ΦI(x) = pT (x)A−1(x)BI(x) (2.21)

The consistency of order s of the MLS approximations can be achieved if the basis

is complete in the polynomials of order s. In fact, any function which appears in

the basis can be reproduced exactly by a MLS approximation. If p(x) = 1, the

resulting MLS shape functions is given by

Φ0
I(x) =

w(x − xI)
n∑

I

w(x − xI)

(2.22)

which is known as the Shepard function, the lowest order form of MLS shape

functions.

Other important properties of MLS approximation can be seen:

• The dashed line in Figure 2.8 shows that the sum of the shape functions
∑

I ΦI(x) equals 1 in the whole domain Ω = [−5, 5], thus ΦI(x) forms

a PU, and the first derivatives of the MLS-PU build Partition of Nullities

(PNs),
∑

I ΦI,x(x) = 0 as shown in Figure 2.9.

• The MLS technique can provide high-order shape functions, and therefore

in general can result in better convergence rates compared to mesh-based

FEM approximations with an equivalent basis. However, this property may
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cause problems in evaluating the integral expressions of the weak form since

a large number of integration points are required to ensure that accurate

solutions are obtained.

• The MLS shape functions do not possess the Kronecker delta property. This

non-interpolant character makes imposition of essential boundary conditions

difficult.
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Figure 2.8: Partition of Unity functions with MLS technique
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Figure 2.9: Partition of Nullity (PN) functions with MLS technique
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2.2.2.4 Partition of Unity Methods

Melenk & Babuska (1996) and Duarte & Oden (1996) have shown that mesh-free

methods can also be based on partitions of unity. This viewpoint has led to sev-

eral approximations for mesh-free methods. Melenk & Babuska (1996) introduced

approximations of the form

uh(x) =
∑

I

Φ0
I(x)(a0I + a1Ix+ · · ·+ asIx

s + b1I sinh nx+ b2I coshnx)

=
∑

I

Φ0
I(x)

(
∑

i

pi(x)βiI

)

=
∑

I

Φ0
I(x)βiIp(x) (2.23)

with

βiI = [a0I , a1I , . . . , asI , b1I , b2I ] (2.24)

pT (x) = [1, x, . . . , xs, sinhnx, coshnx] (2.25)

where Φ0
I(x) is the Shepard function. The coefficients βiI are the unknowns of the

approximation and can be determined by a Galerkin or collocation procedure. The

intrinsic basis function pT (x) consists of special enhancement functions, usually

a known feature of the sought solution. The order of consistency of the approxi-

mation depends on the number of terms xs.

Duarte & Oden (1996) used the PU concept in a more general manner by con-

structing it from an MLS shape function of order s, and their approximation is

uh(x) =
∑

I

Φs
I(x)

(

uI +

m∑

i

biIqi(x)

)

(2.26)

with qi(x) can be a monomial basis of any order greater than s and can be ei-

ther high-order monomial or are enhancement/enrichment functions, called this

the extrinsic basis. In this approximation, special properties such as discontinu-

ities, singularities, boundary layers, or other relevant features of a solution can be

introduced via enhancement/enrichment functions.
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Based on the PU concept, Belytschko & Black (1999) presented a method where

discontinuous enrichment functions are added to the finite element approxima-

tion so that crack problems can be solved with minimal remeshing. The method

was then improved by Moes et al. (1999) and called the eXtended Finite Ele-

ment Method (XFEM). The method is well-suited to problems involving discon-

tinuities or singularities because it allows for the entire crack to be represented

independently of the mesh, and enrichment functions can be added locally to the

approximations in the interaction of the crack geometry with the mesh.

2.2.3 Numerical implementation details

All approximation/interpolation functions presented in section (2.2.2) can be em-

ployed in the resolution of a PDE boundary value problem. Usually SPH methods

are used in combination with a collocation technique, while approximations based

on a MLS development are often combined with a Galerkin formulation. Con-

sidering a partial differential equation on a domain Ω with essential boundary Γu

defined by

Lu(x) = f(x) in Ω (2.27)

u = u on Γu (2.28)

where L is the differential operator and u may contain both displacement and

rotation degrees of freedom. In the following sections, implementation aspects of

the collocation techniques and weak-form procedures to solve this problem are

described.

2.2.3.1 Collocation methods

Consider an approximation of a set of nN nodes in the form

uh(x) =

nN∑

I=1

ΦI(x)uI (2.29)
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where ΦI(x) is the shape function obtained by any approximation techniques de-

scribed in section (2.2.2), and uI are nodal values to be determined.

In collocation methods, the PDE (2.27) is fulfilled at nodes within the domain Ω

and equation (2.28) is imposed at nodes on the essential boundary. The discrete

equations can be written as

Luh(xJ) = f(xJ) ∀ J ∈ Ω (2.30)

uh(xK) = uK ∀ K ∈ Γu and J +K = nN (2.31)

The above is a set of nN equations with nN unknown uI .

The presented collocation procedure is applicable to any mesh-free method based

on partition of unity. Two major advantages of the method are: (i) the final system

of equations can be obtained efficiently since no integration is required, and (ii)

shape functions are only evaluated at nodes rather than at integration points as in

other methods based on weak-form of the PDE. However, the stability of solutions

is not guaranteed.

2.2.3.2 Galerkin method

The Galerkin method can be viewed as a particular weighted residual method

which is general and provides a powerful means of obtaining approximate solutions

for ordinary differential equations (ODE) or PDE. Before describing the important

features of the Galerkin method, it is necessary to recall some basic concepts of

the weighted residual method. If the PDE is discretised numerically, the unknown

field u is approximated by a so-called trial function uh(x), and the residual error

R is determined by

R = Luh(x) − f(x) (2.32)

The weak form of equation (2.27) is

∫

Ω

ϕR dΩ ≡
∫

Ω

ϕ
(
Luh(x) − f(x)

)
dΩ = 0 (2.33)
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where an arbitrary function ϕ is called the test function or weight function (which

is a different meaning from the weight function used in MMs).

In general, the order of smoothness required for the trial function depends on the

order of a PDE (L), i.e. if nL is the order derivatives occur in L, then the trial must

be CnL−1 (nL − 1 continuous derivatives). Usually, integration by parts is applied

to (2.33) in order to reduce the order of the differential operator L, and therefore

the requirement on continuity of the trial space is weakened, and the requirement

on continuity of the test space is made severe. If L contains even-order derivatives,

integration by parts can be applied such that the same continuity requirements

hold for test and trial spaces. The resulting formulation is called the weak-form

associated with the strong-form given by (2.27).

Note that the fundamental difference between methods based on the weighted

residual approach rests on the choice of the test function. If the test function ϕ is

chosen to be the Dirac delta δ(x − xI), the equation (2.33) reduces to the strong

form (2.30) in the collocation method.

In many cases, the Galerkin method results in the same formulations obtained by

variational principles, and therefore it has some physical foundations. In addition,

the method can provide stable solutions and its system matrix is symmetric, for

finite element formulations with symmetric differential operator L. Consequently,

the Galerkin method is regarded so far as the most effective version of the weighted

residual method, and is widely used in numerical procedures.

Mesh-free methods based on the Galerkin formulation have been reported by sev-

eral authors, e.g. Belytschko et al. (1994); Duarte & Oden (1996); Melenk &

Babuska (1996) and Liu et al. (1995a). An important aspect of these methods

is the evaluation of integrals in the weak form equations. Gauss integration is one

of the most commonly used techniques. However, a background mesh must be

employed in this quadrature scheme, and therefore this is not really a truly mesh-

free method. Furthermore, a large number of integration points would be needed

in order to obtain accurate solutions because high-order shape functions are used.

As a result, the computational cost of mesh-free methods using Gauss integration
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is relatively high. The direct nodal integration method, wherein the integrals of

the weak form are evaluated at the nodes only, can be used to overcome these

difficulties. There is no need for cell structures or background meshes in this ap-

proach. It is therefore a truly mesh-free method and it is also faster. However, it

results in spatial instabilities due to vanishing derivatives of mesh-free shape func-

tions at the nodes. Beissel & Belytschko (1996) proposed a scheme to modify the

potential energy functional by adding to it the square of the residual of the equi-

librium equation, so that singular modes are eliminated. Another scheme called

stabilised conforming nodal integration was proposed by Chen et al. (2001a). In

this scheme, nodal strains are computed by a divergence counterpart of a spatial

averaging of strains. The derivatives of shape functions are evaluated at vertices

of a representative nodal domain, not at the nodes, and therefore spurious modes

are eliminated. It has been shown that the scheme can be applied to a wide range

of problems (Sze et al., 2004; Wang & Chen, 2004). The method is also applied

to FEM and is called the smoothed finite element method (SFEM), i.e. Liu et al.

(2007a) and Liu et al. (2007b). More recently, Fries & Belytschko (2008) and

Duan & Belytschko (2009) proposed a stabilised stress-point integration scheme

to improve convergence and stability properties.

2.2.3.3 Enforcement of essential boundary conditions

In general, most mesh-free approximations do not satisfy the Kronecker delta

property (i.e. ΦI(xJ) 6= δIJ), or in other words, do not pass through the nodal

parameter values. This leads to difficulties in imposing the boundary conditions.

Some possibilities to overcome such difficulties are: (1) Lagrangian multiplier ap-

proaches (Belytschko et al., 1994; Duarte & Oden, 1996; Melenk & Babuska, 1996;

Liu et al., 1995a); (2) Modified variational principles (Lu et al., 1994); (3) Penalty

methods (Zhu & Atluri, 1998; Atluri & Zhu, 2000); (4) Point collocation meth-

ods (Zhu & Atluri, 1998); (5) Coupling to finite elements (Belytschko et al., 1996a;

Huerta & Fernandez-Mendez, 2000); or (6) use of specially modified shape func-

tions (Wagner & Liu, 2000), among others.
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Among the above-mentioned methods, the Lagrangian multiplier method is viewed

as the most accurate one for enforcing essential boundary conditions. However,

one possible disadvantage of the method is that the discrete equations for a lin-

ear self-adjoint PDE are no longer positive definite nor banded (Belytschko et al.,

1996a). The approach based on the modified variational principle results in banded

equations, but with lesser accuracy in the boundary conditions. Compared with

the Lagrangian multiplier method, the Penalty method can yield a banded, sym-

metric and positive definite system matrix, which is a significant advantage in

practical applications. However, the success of the Penalty method relies on the

use of large absolute values of the penalty parameter. Note that the penalty pa-

rameter may be a positive or negative number (Askes & Pannachet, 2005). The

system stiffness matrix may become ill-conditioned when increasing the absolute

value of the penalty parameter. Based on the Kronecker delta property of FEM

shape functions, boundary conditions may be imposed easily when coupling to

the finite element method. The disadvantage is that the coupling method leads

to a somewhat complicated code structure due to the need to generate transi-

tion regions. Alteratively the boundary collocation method allows enforcement

of boundary conditions efficiently. Although boundary conditions are enforced

exactly only at a finite number of boundary points, the collocation method is a

straightforward generalisation of the imposition of essential boundary conditions

in the finite element method. Moreover, the method results in a set of equality

constraints which can be treated efficiently in the framework of limit analysis.

Therefore, this method will be used throughout this research.

2.2.4 Applications

One of the early objectives of developing mesh-free methods was to allow simu-

lation of crack problems without meshes or remeshing. As noted in the previous

sections, in mesh-free approximations the connectivity of nodes is generated at

run-time and can vary with time and space. This flexible mesh-free feature consid-

erably simplifies the simulation of fracture, free surfaces and crack propagation. In

these problems, mesh-free methods have significant advantages when dealing with



Chapter 2. Literature review 38

evolving moving discontinuities compared with mesh-based methods. Belytschko

and his co-workers have systematically applied the EFG method to simulate crack

growth/propagation problems (Lu et al., 1995; Belytschko et al., 1996; Belytschko

& Tabbara, 1996), where a constant crack-tip velocity was assumed. An exten-

sion to allow application to process zone models with mixed-mode dynamic crack

propagation in concrete was proposed by Belytschko et al. (2000).

Large deformation analysis is another main application area for mesh-free meth-

ods, where the methods have a clear edge over the finite element computations.

Mesh-free methods require no explicit mesh in the computation process, and there-

fore avoid mesh distortion difficulties in large deformation analysis. Chen and his

co-workers proposed a Lagrangian formulation in combination with RKPM to sim-

ulate several large deformation problems, such as metal forming, extrusion (Chen

et al., 1998), large deformation of rubber materials (Chen et al., 1997), soil me-

chanics problems (Chen et al., 2001). In Jun et al. (1998) and Li & Liu (2000),

an explicit RKPM has been also developed for large deformation problems. It has

been reported in these simulations that the main advantages of using mesh-free

methods in large deformation analysis are (i) no need for remeshing; (ii) absence

of volumetric locking for suitable choice of support size of shape function; and (iii)

no complicated mixed formulations.

Mesh-free methods based on MLS approximations are very attractive for plate

and shell structures because the C1 continuity requirement can easily be achieved

by its approximation. Krysl and Belytschko were the first to apply the EFG

method to the analysis of thin plates and shells with C1 approximations (Krysl

& Belytschko, 1995, 1996). In their simulations, background quadrature cells

were used for numerical integration and the essential boundary conditions were

enforced by Lagrangian multipliers. It was demonstrated that the performance

of the method is efficient and insensitive to irregular nodal distributions. It was

also found that membrane locking can be removed completely with the use of a

quadratic polynomial basis. Donning & Liu (1998) developed a mesh-free method

to analyse moderately thick and thin structures using Mindlin-Reissner theory. It

was proved that shear and membrane locking are completely eliminated at the
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point-wise approximation level using cardinal splines. Leitao (2001) presented a

mesh-free method based on the use of radial basis functions to build an approx-

imation of the general solution of the partial differential equations governing the

Kirchhoff plate bending problem. Linear and non-linear analysis of laminate plates

using the EFG method has also been reported by Belinha & Dinis (2006) and Be-

linha & Dinis (2007). Instead of using thin-shell theory, Li et al. (2000) presented

an approach to perform a large deformation analysis of thin-shell structures using

a mesh-free approximation of a 3D problem. Due to the smoothness of mesh-free

approximations, one can accurately capture the gradient in the thickness direction,

and avoid both shear locking as well as volumetric locking.

Multiple scale computations using mesh-free methods can be rewarding as well.

Liu and his co-workers were the first to use mesh-free approximation in multi-scale

computations (Liu et al., 1996a,b; Liu & Jun, 1998). In mesh-free approximation

functions, dilation parameters or weight/kernel functions can be chosen differently,

therefore the approximations may be viewed as filters with different length scales,

and one can formulate multi-scale formulations. Multi-scale RKPM have been

applied in many applications including those involving wave propagation (Liu &

Chen, 1995), fluid dynamics (Liu et al., 1997a), large deformation (Liu & Jun,

1998), strain localisation (Li & Liu, 1999) and damage (Liu et al., 1999). Zhang

et al. (2000) used the EFG method to model rock structures.
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Fundamentals

In this chapter, theoretical foundations which are necessary for the developments

described in subsequent chapters are presented. The chapter starts with a brief de-

scription of plasticity relations and limit analysis theory, and is followed by a brief

description and discussion of the computational issues associated with meshfree

methods.

3.1 Plasticity relations and limit analysis theory

Plasticity theory is long-established and has been applied to various problems in

engineering practice. Foundations and applications of plastic theory are described

in Save & Massonnet (1972); Lubliner (1990); Kamenjarzh (1996) and Jirasek &

Bazant (2002). In this section, some of the main ingredients, including considera-

tion of the material model and variational principles, are presented. Details of the

limit analysis theorems and the mathematical theory of duality are also provided.

40
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3.1.1 Material model

The mechanical behaviour of rate-independent plastic and non-hardening solids

or structures can be idealised by an elastic-perfectly plastic model, Figure 3.1.

In this model, the material behaves elastically if the stress intensity is below the

yield stress; otherwise plastic deformation appears if the yield stress is reached.

In fact the elastic strains are significantly smaller than the plastic ones, and it

can be shown that, in a state of the so-called unrestricted plastic flow, the elastic

characteristics may be ignored. Consequently, limit analysis solutions of rigid-

perfectly plastic bodies are theoretically also valid for elastic-plastic bodies.

σ

ε

0σ

ε

σ

0σ

Figure 3.1: Material models: elastic-perfectly plastic (left) and rigid-perfectly
plastic (right)

In the framework of a limit analysis problem, only plastic strain rates are consid-

ered and are assumed to obey an associated flow law

ǫ̇ = µ̇
∂ψ

∂σ
(3.1)

where the plastic multiplier µ̇ is non-negative and ψ(σ) is the yield function that

represents the time-independent yield surface such that

• ψ(σ) < 0 corresponds to elastic behaviour

• ψ(σ) = 0 corresponds to the appearance of plastic deformations

• ψ(σ) > 0 corresponds to the inaccessible region

The material model must also obey two important laws of plasticity, namely,

Drucker’s stability postulate and its important consequences, namely convexity

and the normality rule.
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Drucker’s stability postulate

For a rigid-perfectly plastic model, the material is stable in Drucker’s sense during

a complete cycle of loading and unloading: “Over the cycle of application and

removal of the set of forces, the new work performed by the external agency on the

changes in the displacements it produces is non-negative” Martin (1975).

0

0

0

(a)

0

0

0

(b)

0

0

0

(c)

Figure 3.2: Stable (a) and unstable (b, c) materials

The postulate is illustrated graphically in Figure 3.2. The mathematical expression

of the postulate is as follows

∮

(σ − σ
0)dǫ ≥ 0 (3.2)

where
∮

is the integral taken over a cycle of applying and removing the added

stress set, σ is the stress tensor on the yield surface satisfying the yield condition

ψ(σ) = 0 , and σ
0 is plastically admissible stress tensor such that ψ(σ0) < 0.

Drucker’s postulate has the following important consequences (Lubliner, 1990):

Principle of maximum plastic dissipation

Drucker’s stability postulate may be expressed as

(σ − σ
0)ǫ̇ ≥ 0 (3.3)

which is sometimes known simply as Drucker’s inequality, and is valid for both

hardening and perfectly plastic materials.
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Normality rule

At any point on the smooth yield surface ψ(σ) = 0, plastic strain rates are normal

to the yield yield surface or, in other words, proportional to the gradient of ψ in

stress space , ∂ψ/∂σ. If the yield surface is not everywhere smooth but has one

or more singular points (corners) at which the normal direction is not unique, the

plastic strain rates lie between adjacent normals at the corners, Figure 3.3. When

n differentiable surfaces intersect at a singular point, the relation (3.1) is replaced

by

ǫ̇p =

n∑

i=1

µ̇i
∂ψi

∂σ
(3.4)

p

p

Yield surface

0)(

0)(

0

0-

Figure 3.3: Normality rule

Convexity of yield surface

It can be seen from Figure 3.3 that if there are any σ
0 lying on the outward

side of the tangent, inequality (3.3) is violated. In other words, the entire elastic

region must lie to one side of the tangent, and consequently the yield surface is

convex. It has been recognised that this is one of the most important consequences

in plasticity theory (Lubliner, 1990). It permits the use of convex programming

tools for limit and shakedown analysis problems.
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Yield criteria

The yield condition defines the elastic limits of a material under a complex stress

state. For isotropic materials, this condition may be expressed as a symmetric

function of the principal stresses

ψ(σ1,σ2,σ3) = k (3.5)

where k is a material constant and is connected with the yield limit.

Since the yield function is symmetric in its arguments, the stress components can

be replaced by their invariants, and the yield criterion can be written in the form

ψ(I1, J2, J3) = k (3.6)

where I1 is the first invariant of the stress tensor, whilst J2 and J3 are the second

and the third invariants of the deviatoric stress tensor.

In many problems, the influence of hydrostatic stress is negligible, and therefore

the yield criterion is independent of I1. The von Mises yield criterion is one of the

most commonly used yield criteria which is independent of hydrostatic pressure.

The von Mises yield criterion states that yielding will begin when the octahedral

shearing stress reaches the critical value kv such that

J2 − kv = 0 (3.7)

where kv = σ0√
3
, and σ0 is the yield stress obtained from a uniaxial tension test.

3.1.2 Variational principles

This section presents a general overview of the fundamental variational principles

which govern limit analysis theory. Let Ω denote the domain of an elastic-perfectly

plastic or rigid-perfectly plastic body, and Γ its boundary, which consists of a

Dirichlet portion Γu where displacement boundary conditions are prescribed and
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u

t

f

g

Figure 3.4: Structural model

a Neumann portion Γt where stress boundary conditions are assumed, so that

Γ = Γu ∪Γt and Γu ∩Γt = ⊘, as shown in Figure 3.4. These variational principles

can be stated in terms of a statically admissible field and a kinematically admissible

field, which are defined as follows

The stress field σ is

• statically admissible if it satisfies the equilibrium equation and stress bound-

ary conditions

−LT · σ = f in Ω

n · σ = g on Γt

(3.8)

where L denotes the differential operator

LT =












∂

∂x
0 0

∂

∂y
0

∂

∂z

0
∂

∂y
0

∂

∂x

∂

∂z
0

0 0
∂

∂z
0

∂

∂y

∂

∂x












(3.9)

n is the matrix containing the components of the outward normal vector to

Ω

n =







nx 0 0 ny 0 nz

0 ny 0 nx nz 0

0 0 nz 0 ny nx







(3.10)
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f is the volume force and g is the surface load acting on Γt.

• plastically admissible if nowhere violates the yield condition, ψ(σ) ≤ 0.

The strain rate field ǫ̇ is

• kinematically admissible if it satisfies the compatibility and kinematical bound-

ary conditions

ǫ̇ = Lu̇ in Ω

u̇ = 0 on Γu

(3.11)

• plastically admissible if the strain rate vectors belong to the set of normals

to the yield surface and the external power of the load is positive

∫

Ω

f · u̇ dΩ +

∫

Γt

g · u̇ dΓ ≥ 0 (3.12)

Markov’s principle:

Among all kinematically and plastically admissible strain rate fields, the actual

field makes the following functional an absolute minimum

Ψ(u̇) =

∫

Ω

Dp(ǫ̇)dΩ

︸ ︷︷ ︸

Wint

−
(∫

Ω

f · u̇ dΩ +

∫

Γt

g · u̇ dΓ

)

︸ ︷︷ ︸

Wext

(3.13)

where Dp(ǫ̇) is the plastic dissipation function defined by

Dp(ǫ̇) = max
σ

σ · ǫ̇ subject to ψ(σ) ≤ 0 (3.14)

or

Dp(ǫ̇) = σ(ǫ) · ǫ̇ (3.15)

where σ(ǫ), is the value of σ solving the problem (3.14), that is a stress state

associated to ǫ̇ through the normality rule. The plastic dissipation function is a

uniquely defined function of strain rates; however explicit expressions for Dp(ǫ̇)
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are not available in general terms and must be constructed on the basis of the

specific form of yield function used.

Hill’s principle:

Among all statically and plastically admissible stress fields, the actual field makes

the following functional an absolute minimum

Π(σ) = −
∫

Γu

(n · σ) · u̇ dΓ (3.16)

It is important to note that direct consequences of the Markov and Hill’s principles,

applied to the particular case of proportional loading, are theorems providing

upper and lower bounds on the actual collapse load.

3.1.3 Limit analysis theorems and their duality

Let us consider a rigid-perfectly plastic body subjected to external loading (f , g)

which is assumed to be governed by a proportional load multiplier λ and can be

written as (λf0, λg0). If the value of λ is sufficiently small, the body behaves elas-

tically, i.e. no plastic deformation is observed. When λ increases and reaches a

significant value, yielding occurs at some points in the body, but is not sufficient

to cause collapse. Further increasing λ, the plastic regions will grow until finally

a collapse mechanism forms. The corresponding value of λ is called the plastic

collapse multiplier. The aim of limit analysis is to determine this collapse multi-

plier. A limit analysis problem can be formulated using either the static theorem

or kinematical theorem.
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Static theorem (lower-bound limit analysis)

A statically and plastically admissible stress state is described by a stress field σ

and a load multiplier λ− such that

−LT · σ = λ−f in Ω

n · σ = λ−g on Γt

ψ(σ) ≤ 0 in Ω

(3.17)

For convenience, let us denote the set of all plastically admissible stress fields by

B = {σ |ψ(σ(x)) ≤ 0 ∀ x ∈ Ω} (3.18)

The lower-bound theorem of limit analysis can be stated as

The exact collapse load multiplier λ is the largest one among all possible static

solutions λ− corresponding to the set of all statically and plastically admissible

stress fields σ, that is

λ− ≤ λ (3.19)

The demonstration of this theorem involves application of the principle of virtual

work and the property of convexity of the yield surface, see Hodge (1963); Save &

Massonnet (1972) and Lubliner (1990). The static limit analysis problem can be

formulated in the form of a mathematical programming problem as

λ = max λ−

s.t







−LT · σ = λ−f in Ω

n · σ = λ−g on Γt

σ ∈ B
(3.20)
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Kinematic theorem (upper-bound limit analysis)

A kinematically and plastically admissible velocity state is described by a displace-

ment rate field u̇ and a plastic strain rate field ǫ̇ such that

ǫ̇ = Lu̇ in Ω

u̇ = 0 on Γu

Wext > 0

(3.21)

From the equation of virtual work (or strictly speaking, work rate) which states

that the internal work rate and the external work rate must be equal, the corre-

sponding kinematically admissible multiplier λ+ can be evaluated as

λ+ =
Wint

Wext
(3.22)

The upper-bound theorem of limit analysis can be stated as

The exact collapse load multiplier λ is the smallest one among all possible kine-

matic solutions λ+ corresponding to the set of all kinematically and plastically

admissible velocity fields u̇, that is

λ ≤ λ+ (3.23)

The upper-bound on the actual collapse load multiplier can be obtained by solving

the following optimisation problem (in normalised form)

λ = min Wint

s.t







ǫ̇ = Lu̇ in Ω

u̇ = 0 on Γu

Wext = 1

(3.24)
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Mathematical framework of duality formulations

In this part, a mathematical description of the duality problem of limit analysis

is presented briefly; more details can be found in Christiansen (1996). Let X

denote an appropriate space of a statically admissible stress state, whereas Y is

an appropriate space of a kinematically admissible velocity state. For smooth

fields σ and u̇, the classical form of the equilibrium equation (3.8) can always be

transformed to a more precise variational form as

a(σ, u̇) = Wext(u̇), ∀ u̇ ∈ Y (3.25)

where the internal work rate a is rewritten as a function of σ and u̇

a(σ, u̇) = −
∫

Ω

(LT · σ) · u̇ dΩ +

∫

Γt

(n · σ) · u̇ dΓ (3.26)

and the external work rate Wext is

Wext(u̇) =

∫

Ω

f · u̇ dΩ +

∫

Γt

g · u̇ dΓ (3.27)

The static principle of limit analysis (3.20) can be now expressed as

λ = max λ−

s.t

{

a(σ, u̇) = λ−Wext(u̇), ∀ u̇ ∈ Y

∃σ ∈ B, B = {σ ∈ X |ψ(σ(x)) ≤ 0 ∀ x ∈ Ω}
(3.28)

Due to the fact that both a and Wext are linear functions of u̇, the equation (3.28)

can be cast as (Christiansen, 1996)

λ = max
σ∈B

min
u̇∈C

a(σ, u̇) (3.29)

where the set C is defined by C = {u̇ ∈ Y |Wext(u̇) = 1}

If expressing the plastic dissipation rate in terms of σ and u̇ as

Wint(u̇) = max
σ∈B

a(σ, u̇), (3.30)
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the kinematic principle of limit analysis (3.24) can be written

λ = min
u̇∈C

Wint(u̇)

= min
u̇∈C

max
σ∈B

a(σ, u̇) (3.31)

It is clear from equation (3.29) and (3.31) that strong duality holds as

max
σ∈B

min
u̇∈C

a(σ, u̇) = min
u̇∈C

max
σ∈B

a(σ, u̇) (3.32)

In summary, the exact collapse load multiplier can be obtained by solving one of

the following optimisation problems

λ = max {λ− | ∃σ ∈ B : a(σ, u̇) = λ−Wext(u̇), ∀ u̇ ∈ Y } (3.33)

= max
σ∈B

min
u̇∈C

a(σ, u̇) (3.34)

= min
u̇∈C

max
σ∈B

a(σ, u̇) (3.35)

= min
u̇∈C

Wint(u̇) (3.36)

In any numerical procedure for limit analysis problems, the problem spaces must be

discretised by numerical methods. For the static approach (3.33) or the kinematic

formulation (3.36), only one field need be discretised; that is the stress or displace-

ment field, respectively. On the other hand, the mixed formulations (3.34, 3.35)

require the approximation of both stress and displacement fields, and therefore

mixed finite elements can be used (Anderheggen & Knopfel, 1972; Christiansen,

1981; Casciaro & Cascini, 1982; Christiansen, 1996).

3.1.4 Formulation for plates

Next, the general plasticity formulations of Section 3.1.3 are applied to thin plates

in particular.
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Basic relations

x

zy

dx
dy 

t

q

middle plane 

Figure 3.5: Kirchhoff plate subjected to transverse load

Consider a rigid-perfectly plastic plate of uniform thickness t, which is bounded by

a curve enclosing a plane area Ω with kinematical boundary Γu and static boundary

Γm, and subjected to a transverse load q, Figure 3.5. The plastic behaviour of

thin plates may be analysed under Kirchhoff’s assumption that the normals to the

middle plane of the plate remain straight and normal to the deformed middle plane.

If u̇ denotes the transverse displacement rate, the strain rates can be expressed by

relations

ǫ̇ = zκ̇ (3.37)

with the vectors of strain and curvature rates defined by

ǫ̇ =







ǫ̇xx

ǫ̇yy

γ̇xy







; κ̇ = −







κ̇xx

κ̇yy

κ̇xy







= −












∂2

∂x2

∂2

∂y2

2
∂2

∂x∂y












u̇ = −∇2u̇ (3.38)
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Let m denote a vector consisting of the bending and twisting moments per unit

width of the plate, and is defined as

m =







mxx

myy

mxy







=

t/2∫

−t/2







σxx

σyy

σxy






z dz =

t/2∫

−t/2

σz dz, (3.39)

where stress sign conventions are shown in Figure 3.6.

dy 
dx

y

xx

yy

x

y
xyyx

x

dx 
dy

Figure 3.6: Kirchhoff stresses: sign conventions

The differential equation of equilibrium can be written as

(∇2)Tm + q = 0 (3.40)

Because we actually consider each layer of thickness dz to be in a state of plane

stress, the yield condition is

ψ (σ) ≤ 0 (3.41)

The stresses σ are of constant magnitude in a fully plastic cross section, and can

be expressed in terms of the bending and twisting moments as (Save et al., 1997,

section 5.4)

σ =
4

t2
m, (3.42)
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hence the corresponding yield criterion for the plate is

ψ

(
4

t2
m

)

≤ 0 (3.43)

The von Mises failure criterion for plane stress problems is given as

ψ(σ) ≡
√

σ
T P σ − σ0 ≤ 0 (3.44)

where σ0 is the yield stress and

P =
1

2







2 −1 0

−1 2 0

0 0 6







(3.45)

Combining equations (3.42) and (3.44), the criterion takes the form

ψ(m) ≡
√

mT P m −mp ≤ 0 (3.46)

where mp = σ0t
2/4 is the plastic moment of resistance per unit width of the plate.

The relations between the curvature rates and the moments are determined from

the normality rule as

κ̇ = µ̇
∂ψ

∂m
≡ µ̇

Pm

mp
(3.47)

Because the matrix P is invertible, the moments m can be expressed in terms of

the curvature rates as

m =
mp

µ̇
P−1

κ̇ (3.48)

Substituting (3.48) into (3.46), the plastic multiplier µ̇ is calculated by

µ̇ =

√

κ̇
TQ κ̇ (3.49)
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where

Q = P−1 =
1

3







4 2 0

2 4 0

0 0 1







(3.50)

In the plastic limit state, only plastic strain rates are considered, and therefore

the dissipation rate per unit area of plate can be calculated by

Dp =

t/2∫

−t/2

σǫ̇ dz = mκ̇ (3.51)

Applying the normal rule and taking relation (3.49) into account, equation (3.51)

becomes

Dp = µ̇m
∂ψ

∂m
= mpµ̇ = mp

√

κ̇
TQ κ̇ (3.52)

Hence, the internal dissipation power of the two-dimensional plate domain Ω can

be written as

Ẇint(κ̇) =

∫

Ω

Dp dΩ = mp

∫

Ω

√

κ̇
TQ κ̇ dΩ (3.53)

Finally, bound theorems for plate and slab problems are summarised below.

Static approach (lower bound)

λ = max λ−

s.t

{

(∇2)Tm + λ−q = 0 in Ω

ψ(m) ≤ 0
(3.54)

Kinematic approach (upper bound)

λ = min mp

√

κ̇
TQ κ̇

s.t

{

κ̇ = −∇2u̇ in Ω

Wext = 1
(3.55)
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3.2 Mesh-free method

In this section, a brief description and discussion of computational issues asso-

ciated with meshfree methods, including computation of EFG shape functions,

domain of influence, stabilised conforming nodal integration and a posteriori error

estimation, are presented.

3.2.1 Computation of shape functions and its derivatives

The moving least square (MLS) approximation presented in the previous chapter

is utilised to construct an approximation function uh(x) that fits a discrete set of

data so that

uh(x) =

n∑

I=1

ΦI(x)uI (3.56)

ΦI(x) = pT (x)A−1(x)BI(x) (3.57)

A(x) =

n∑

I=1

wI(x)p(xI)p
T (xI) (3.58)

BI(x) = wI(x)p(xI) (3.59)

where p(x) is a set of basis functions and wI(x) is a weight function associated

with node I.

For fourth-order problems, the polynomial basis function p(x) must at least be

quadratic (Krysl & Belytschko, 1995). In this work, the quadratic basis for 1D

and 2D bending problems is defined by

pT (x) =

{

pT (x) = (1, x, x2) for beams

pT (x, y) = (1, x, y, xy, x2, y2) for plates
(3.60)

The weight function wI(x) plays an important rule in the performance of mesh-

free methods. If the weight function and its derivatives are continuous, then the

shape function and its derivatives will be continuous, and if the weight function
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is chosen to be piecewise constant over each sub-domain or element the standard

FEM shape functions will be obtained. To provide adequate local character to the

MLS approximation and sparse system equations, the weight function should be

chosen to be positive over each sub-domain and be zero outside. One of the most

common weight functions, used in the conventional EFG method, is the isotropic

quartic spline function given as

wI(x) =

{

1 − 6s2
I + 8s3

I − 3s4
I if sI ≤ 1

0 if sI > 1
(3.61)

with sI = ‖x−xI‖
RI

, RI is the support radius of node I.

We will need the expression of the first and second partial derivatives of the shape

function with respect to x. The first order derivative is given by

ΦI,j(x) = pT
,jA

−1BI + pTA−1
,j BI + pTA−1BI,j (3.62)

with A−1
,j computed by

A−1
,j = −A−1A,jA

−1 (3.63)

It is important to note that the second term in equation (3.62) is expensive to

calculate due to the term A−1
,j . Therefore, the main disadvantage of the standard

EFG method appears to be the additional computation time associated with the

construction of shape functions and their derivatives. Moreover, when a quadratic

basis function is used, the matrix A rapidly becomes poorly conditioned (Be-

lytschko et al., 1996a), as shown in Figure 3.7. This may provide inaccurate

solutions because of the use of matrix inversion.

In practice, it is seldom necessary to form the explicit inverse of a matrix. A

better way, both from an execution time and a numerical accuracy standpoint, is

to use LU factorisation associated with Gaussian elimination. Here, an efficient

approach to compute the shape functions and their derivatives is presented. The
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Figure 3.7: Condition of the matrix A vs the number of nodes (R = 3× 10
(n−1))

for a 1D domain of length 10 units with uniform spacing of nodes

shape function in equation (3.57) can be written as

ΦI(x) = pT (x)A−1(x)BI(x) = γT (x)BI(x) (3.64)

This leads to the relationship

A(x)γ(x) = p(x) (3.65)

The coefficients γ(x) can be determined using LU decomposition of the matrix A

and back-substitution.

The first and second derivatives of γ(x) are achieved by taking the derivatives of

equation (3.65) and rearranging the terms which are known to the right-hand side

Aγ,j = p,j − A,jγ (3.66)

Aγ,jk = p,jk − (A,jγ,k + A,kγ,j + A,jkγ) (3.67)
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The equations (3.65), (3.66), (3.67) can be solved for γ, γ,j, γ,jk and the shape

functions and their derivatives are then given by

ΦI = γTBI (3.68)

ΦI,j = γT
,jBI + γTBI,j (3.69)

ΦI,jk = γT
,jkBI + γT

,jBI,k + γT
,kBI,j + γTBI,jk (3.70)

The above technique for constructing the shape function and their derivatives is

approximately two and a half times as fast as using the standard EFG method

due to the fact that using LU decomposition instead of inversion to solve a linear

system of equation is two to three times as fast (irrespective of the platform).

In addition, the LU decomposition technique produces residuals of the order of

machine accuracy, relative to the magnitude of the data. A sample shape function

and its derivatives is shown in Figure 3.8. In Section 3.2.3, a technique will be

presented that allows the required order of differentiation to be reduced by one.

Note that another technique to avoid loss of accuracy due to roundoff error in

EFG is to shift the origin to the evaluation point. The argument x should be

replaced by a simple linear transformation x̄ = x − xorig. Terms in the equations

from (3.65) to (3.70) are determined as

A(x) =
n∑

I=1

wI(x)pT (xI − xorig)p(xI − xorig) (3.71)

BI(x) = wI(x)p(xI − xorig) (3.72)

p(x) = p(0); p,j(x) = p,j(0); p,jk(x) = p,jk(0) (3.73)

3.2.2 Domain of influence

Each node is assigned a so-called domain of influence which can have an arbitrary

shape, though circular domains are most commonly used. The concept of the
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Figure 3.8: Sample shape function and derivatives (β = 6)
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R

Figure 3.9: Domain of influence for finite element shape functions (left) and
for mesh-free shape functions (right)

domain of influence for finite element and mesh-free shape functions is illustrated

in Figure 3.9.

The support, or the domain of influence, of the weight function associated with

node I is chosen to satisfy the following requirements (Chen et al., 2006)

• The support, as set by the radius RI , should be large enough to ensure that

the matrix A can be inverted, in other words, to provide a sufficient number

of nodes inside the domain of influence (which is greater than the number

of terms in p).

• The support should not be too large to ensure there is adequate local char-

acter to the approximation and for the sake of computational cost (building

shape functions).

The size of the compact support of the weight function at node I is determined

by

RI = β · hI (3.74)

where β is the dimensionless size of influence domain and hI is the nodal spacing

when nodes were distributed regularly, or the maximum distance to neighbouring

nodes when nodes are distributed irregularly. For the irregular nodal layout case,

the size of the influence domain needs to be locally determined. Based on Voronoi
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cell information (see 3.2.3), the neighbouring nodes of node I can be identified

and grouped as

NI = {PJ : V (PJ) ∩ V (PI) 6= ⊘}
= {p1, p2, p3, p4, p5, p6, p7} (3.75)

where V (PI) is the Voronoi cell of node PI .

The maximum distance is then determined by

hI = max{dJ : dJ = PIPJ , ∀PJ ∈ NI} (3.76)
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Figure 3.10: MLS shape functions and its derivatives with pT = [1, x] (left
column) and pT = [1, x, x2] (right column)

Together with the basis function p and the weight function w, the size of the

domain of influence determines the character of the MLS shape functions. In
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Figure 3.10 one-dimensional MLS shape functions are plotted for different values

of β, using Equation (3.61) and with the complete linear and quadratic basis

vector p. It can be observed from the figure that when relatively small values of

β are used, the MLS shape functions and their derivatives behave in a manner

similar to finite element shape functions. For large values of β the MLS shape

functions behave more like higher-degree polynomials, and are smoother. The

question which arises is how large should the value β be? Usually in practice,

the optimal value of β is chosen by carrying out numerical experiments, i.e. for

elasticity problems, β = 2 → 3 leads to good results (Liu, 2003; You et al., 2003).

3.2.3 Stabilised conforming nodal integration

The stabilised conforming nodal integration (SCNI) scheme proposed by Chen

et al. (2001a) is one of the most efficient integration techniques for mesh-free

methods. The SCNI scheme allows evaluation of (smoothed values of) integrals at

nodes; therefore it is cheap and fast, and can provide stable solutions. In the SCNI

scheme, there is a need to generate representative domains associated with a set

of regular/irregular nodes. Voronoi diagrams are amongst the most fundamental

and useful constructs to define an irregular set of nodes. In this section, we first

present a brief description of Voronoi diagrams before describing the context of

the smoothing technique.

Voronoi diagram

Consider a set of distinct nodes Nv = {n1, n2, . . . , nv} in two-dimensional Eu-

clidean space R
2. The Voronoi diagram of the set Nv is a subdivision of the plane

into cells Ω which are either closed and convex or unbounded. Each Voronoi cell

Ω is associated with node nI , such that any point in Ω is closer to nI than any

other node nJ ∈ Nv, I 6= J . The mathematical definition of the Voronoi polygon

Ω is expressed as (de Berg et al., 2008)

Ω = {x ∈ R
2 | d(x,xI) < d(x,xJ), I 6= J} (3.77)
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where d(x,xI) is the distance between the point x and the node nI . An example

of a Voronoi diagram and its dual, a Delaunay triangulation, for a set of eight

nodes is shown in Figure 3.11. It can be seen from the figure that for all nodes

inside the convex hull1 the Voronoi cells are closed and bounded and for all nodes

on the boundary of the convex hull the cells are unbounded

(a) Voronoi diagram (b) Delaunay triangulation

Figure 3.11: Geometric structures for a set of eight nodes

Several algorithms have been developed to generate Delaunay triangulations or

Voronoi diagrams (Fortune, 1995). In this work, the function voronoi in Matlab

is used in a two-dimensional framework.

Strain smoothing stabilisation

A strain smoothing method was firstly presented in Chen et al. (2000) for regu-

larisation of material instabilities. The strain smoothing stabilisation method was

then modified for use in nodal integration schemes by (Chen et al., 2001a)

ǫ̃
h
ij(xJ ) =

∫

ΩJ

ǫ
h
ij(x)ϕ(x,x − xJ) dΩ (3.78)

1The smallest convex domain containing the set of nodes Nv



Chapter 3. Fundamentals 65

where ǫ̃
h
ij is the smoothed value of strains ǫ

h
ij at node J , and ϕ is a distribution

(or smoothing) function that has to satisfy the following properties (Chen et al.,

2000; Yoo et al., 2004)

ϕ ≥ 0 and

∫

ΩJ

ϕ dΩ = 1 (3.79)

For simplicity, the smoothing function ϕ is assumed to be a piecewise constant

function and is given by

ϕ(x,x − xJ ) =

{

1/aJ , x ∈ ΩJ

0, x /∈ ΩJ

(3.80)

where aJ is the area of the representative domain of node J .

Substituting equation (3.80) into the equation (3.78), and applying the divergence

theorem, gives the following equation

ǫ̃
h
ij(xJ) =

1

aJ

∫

ΩJ

1

2
(uh

i,j + uh
j,i) dΩ

=
1

2aJ

∮

ΓJ

(
uh

i nj + uh
jni

)
dΩ (3.81)

where ΓJ is the boundary of the representative domain ΩJ .

Now introducing a moving least squares approximation of the displacement fields,

the smooth version of the strains can be expressed as

ǫ̃
h(xJ) =







ǫ̃
h
xx(xJ)

ǫ̃
h
yy(xJ)

2ǫ̃h
xy(xJ)







= B̃d (3.82)
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where

dT = [u1, u2, . . . , un, v1, v2, . . . , vn] (3.83)

B̃ =







Φ̃1,x Φ̃2,x . . . Φ̃n,x 0 0 . . . 0

0 0 . . . 0 Φ̃1,y Φ̃2,y . . . Φ̃n,y

Φ̃1,y Φ̃2,y . . . Φ̃n,y Φ̃1,x Φ̃2,x . . . Φ̃n,x







(3.84)

with

Φ̃I,α(xJ ) =
1

aJ

∮

ΓJ

ΦI(xJ)nα(x)dΓ

=
1

2aJ

ns∑

k=1

(
nk

α l
k + nk+1

α lk+1
)
ΦI(x

k+1
J ) (3.85)

where Φ̃ is the smoothed version of Φ; ns is the number of segments of a Voronoi

nodal domain ΩJ as shown in the Figure 3.12; xk
J and xk+1

J are the coordinates

of the two end points of boundary segment Γk
J which has length lk and outward

surface normal nk.

J

J

J

J

J

J

J

Figure 3.12: Geometry definition of a representative nodal domain
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3.2.4 A posteriori error estimation

An important ingredient of any adaptive analysis procedure is how to assess ac-

curately the approximation error in numerical solutions. This error information

is normally used as a guide to enhance the quality of the discrete model so as

to increase the accuracy of solutions, as well as to reduce computational cost. A

posteriori error estimations which approximate the actual error at the end of each

computation step have become an essential part of many numerical procedures.

In a typical computational situation, the approximation error is defined as

e := u− uh (3.86)

where u is the exact solution to the mathematical model and uh is the numerical

approximation of u.

The error e in Equation (3.86) cannot be calculated directly since the exact solution

u is, in general, unknown. However, as a more refined/enriched discretisation can

provide a better approximation to the actual solution, the actual value of e can be

estimated by using a very fine discretisation. Another approach to approximate

the error is to replace the exact solution by a recovered one based on the super-

convergence property of some sample points in the problem domain (Zienkiewicz

& Zhu, 1992). The solution obtained from a recovered scheme, or from a very

fine discretisation, is called the reference solution which can be used instead of the

exact solution. In Chung & Belytschko (1998) the reference stresses (or derivatives)

were obtained by using a MLS approximation with a domain of influence which

is significantly smaller than the one used when constructing the shape functions.

This method is simple and fast, but has to date not yet been applied to a wide

variety of problems.

An a posteriori error estimator based on approximation error estimation, which

has been applied successfully to various linear and non-linear problems (Liu et al.,

1997; Krongauz & Belytschko, 1997; Haussler-Combe & Korn, 1998; Rabczuk &

Belytschko, 2005), will be described briefly in the remainder of this section. For
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simplicity, the approximation error for linearly complete polynomials in two di-

mensions is presented. Let u(x) be a function that can be developed into a Taylor

series expansion. Then the nodal values can be written in terms of the (unknown)

exact solution and its derivatives as

uI = u(xI) = u(x) + u,x(x)(xI − x) + u,y(x)(yI − y) +
1

2
u,xx(x)(xI − x)2

+ u,xy(x)(xI − x)(yI − y) +
1

2
u,yy(x)(yI − y)2 +O(h3) (3.87)

Ignoring higher order terms, the approximation error can be written as

uh(x) − u(x) =
∑

I

ΦI(x)uI − u(x)

= u(x) ·
(
∑

I

ΦI(x) − 1

)

+ u,x(x) ·
∑

I

ΦI(x)(xI − x) (3.88)

+ u,y(x) ·
∑

I

ΦI(x)(yI − y) +
1

2
u,xx(x) ·

∑

I

ΦI(x)(xI − x)2

+ u,xy(x) ·
∑

I

ΦI(x)(xI − x)(yI − y) +
1

2
u,yy(x) ·

∑

I

ΦI(x)(yI − y)2

For linearly complete shape functions, consistency conditions are

∑

I

ΦI(x) = 1

∑

I

ΦI(x) · xI = x (3.89)

∑

I

ΦI(x) · yI = y

Applying Equations (3.89) to Equation (3.88), one can obtain

uh(x) − u(x) =
1

2
u,xx(x) ·

∑

I

ΦI(x)(xI − x)2

+ u,xy(x) ·
∑

I

ΦI(x)(xI − x)(yI − y)

+
1

2
u,yy(x) ·

∑

I

ΦI(x)(yI − y)2 (3.90)
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Since all shape functions are bounded, that is |ΦI(x)| ≤ c where c is a constant,

and have compact support (|xI − x| ≤ RI , |yI − y| ≤ RI), taking the L2-norm of

Equation (3.90) the error estimate is

‖uh(x) − u(x)‖L2(Ω) ≤ cR2
I

∣
∣
∣
∣

∣
∣
∣
∣

1

2
u,xx(x) + u,xy(x) +

1

2
u,yy(x)

∣
∣
∣
∣

∣
∣
∣
∣
L2(Ω)

(3.91)

Similarly, the approximation error associated with the derivatives can be esti-

mated. The error in the first derivative is expressed as

‖uh
,x(x) − u,x(x)‖L2(Ω) ≤ cRI

∣
∣
∣
∣

∣
∣
∣
∣

1

2
u,xx(x) + u,xy(x) +

1

2
u,yy(x)

∣
∣
∣
∣

∣
∣
∣
∣
L2(Ω)

(3.92)

3.3 Conic programming

A set K is called a cone if ∀x ∈ K and η ≥ 0, ηx ∈ K . The cone K is pointed

if it includes the origin, and is nonempty and closed under the following condition:

x, x′ ∈ K ⇒ x + x′ ∈ K . The most relevant cones having these properties

are (Ben-Tal & Nemirovski, 2001; Ciria et al., 2008)

• The nonnegative orthant:

K ≡ R
n
+ = {x ∈ R

n | xi ≥ 0, ∀ i = 1 → n} (3.93)

• The Lorentz (or second-order, or ice-cream) cone:

K ≡ L
n
q =






x ∈ R

n | x1 ≥

√
√
√
√

n∑

i=2

x2
i = ‖x2→n‖L2






(3.94)

• The rotated quadratic cone:

K ≡ L
n
r =

{

x ∈ R
n | x1x2 ≥

n∑

i=3

x2
i = ‖x3→n‖2

L2, x1, x2 ≥ 0

}

(3.95)
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• The semi-definite cone:

K ≡ Sn
+ =

{
X ∈ R

n×n |X � 0, X = XT
}

(3.96)

where the symbol ’�’ denotes that the matrix is positive semi-definite. For

instance, a matrix X ∈ R
3×3 belongs to S3

+, X ∈ S3
+, meaning that

X =







x1 x4 x6

x4 x2 x5

x6 x5 x3






� 0 or zTXz ≥ 0, z ∈ R

3 (3.97)

Let K ∗ denote the dual cone of K , and K ∗ is defined as

xTy ≥ 0, ∀x ∈ K ⇔ y ∈ K
∗ (3.98)

Figure 3.13 illustrates the primal cone K and its dual cone K
∗.

Figure 3.13: Primal and dual cones

A conic programming problem is an optimisation problem with linear objective

function and conic constraints (Ben-Tal & Nemirovski, 2001). The mathematical

formulation of a standard conic optimisation problem can be expressed as

min cTx

s.t

{

Ax = b

x ∈ K = K1 × K2 × · · · × KN

(3.99)
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where x ∈ R
n are the optimisation variables, and the problem coefficients are

c ∈ R
n, A ∈ R

m×n, b ∈ R
m. The dual formulation corresponding to (3.99) is

max bTy

s.t

{

ATy + s = c

s ∈ K ∗ = K ∗
1 × K ∗

2 × · · · × K ∗
N

(3.100)

with s ∈ R
n is a vector of slack variables and y ∈ R

n.

Subclasses of conic programming methods include linear programming (LP) when

K ≡ R
n
+, second-order cone programming (SOCP) when K ≡ L n

q or K ≡ L n
r

as defined in Equations (3.94) and (3.95), and semi-definite programming (SDP)

when K ≡ Sn
+ as defined in Equation (3.96). Note that LP is a particular case of

SOCP, and both can always be cast in the form of a SDP.



Chapter 4

Limit analysis of plates using the

EFG method and second-order

cone programming1

The meshless Element-Free Galerkin (EFG) method is extended to allow com-

putation of the limit load of plates. A kinematic formulation which involves ap-

proximating the displacement field using the moving least squares technique is

developed. Only one displacement variable is required for each EFG node, en-

suring that the total number of variables in the resulting optimisation problem is

kept to a minimum, with far fewer variables being required compared with finite

element formulations using compatible elements. A stabilised conforming nodal

integration scheme is extended to plastic plate bending problems. The evaluation

of integrals at nodal points using curvature smoothing stabilisation both keeps

the size of the optimisation problem small and also results in stable and accurate

solutions. Difficulties imposing essential boundary conditions are overcome by en-

forcing displacements at the nodes directly. The formulation can be expressed as

1based on C.V. Le, M. Gilbert and H. Askes, Limit analysis of plates using the EFG method
and second-order cone programming, International Journal for Numerical Methods in Engineer-
ing, 78, 1532–1552, 2009.

72
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the problem of minimizing a sum of Euclidean norms subject to a set of equal-

ity constraints. This non-smooth minimiation problem can be transformed into

a form suitable for solution using second-order cone programming (SOCP). The

procedure is applied to several benchmark beam and plate problems and is found

in practice to generate good upper bound solutions for benchmark problems.

4.1 Introduction

Limit state criteria are applied to the safety assessment and design of many engi-

neering structures. Considering the ultimate limit state, a traditional and popular

approach is to perform a complete elastoplastic analysis. However, an elastoplastic

analysis procedure tends to be quite complex due to the need carry this out in

an iterative and incremental manner. Alternatively, by applying the fundamental

theorems of plasticity, limit analysis can be used to directly identify upper and

lower bounds on the load multiplier at collapse, without intermediate steps. There

has been a resurgence in interest in computational limit analysis procedures in re-

cent years, principally thanks to the availability of highly efficient optimisation

algorithms, which have been developing rapidly.

Computational limit analysis generally involves two steps: (i) numerical discreti-

sation; and (ii) mathematical programming to enable a solution to be obtained.

Computational limit analysis approaches based on the finite element method (FEM)

are particularly well established; significant contributions include Hodge & Be-

lytschko (1968); Nguyen-Dang (1976); Capsoni & Corradi (1997) and Christiansen

& Andersen (1999). Once the stress or displacement fields are approximated and

the bound theorems applied, limit analysis becomes a problem of optimisation

involving either linear or nonlinear programming. (Note that, for convenience,

the term ‘displacement’ is here used as shorthand for ‘displacement rate’.) Prob-

lems involving piecewise linear yield functions or nonlinear yield functions can,

respectively, be solved using linear or non-linear programming techniques (Gau-

drat, 1991; Christiansen & Kortanek, 1991; Zouain et al., 1993; Liu et al., 1995;

Andersen, 1996; Andersen et al., 1998; Vicente da Silva & Antao, 2007).
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Current research is focussing on the development of limit analysis tools which are

sufficiently efficient and robust to be of use to engineers working in practice, and

a diverse range of numerical procedures are being investigated. These procedures

may use continuous, semi-continuous (Krabbenhoft et al., 2005) or truly discon-

tinuous (Smith & Gilbert, 2007) representations of the relevant field parameters;

in the present work continuous representations are of particular interest. However,

when FEM is applied some of the well-known characteristics of mesh-based meth-

ods can lead to problems: the solutions are often highly sensitive to the geometry

of the original mesh, particularly in the region of stress or displacement singu-

larities. Although h-type adaptive refinement schemes (Christiansen & Pedersen,

2001; Borges et al., 2001; Franco et al., 2003; Lyamin & Sloan, 2003; Ciria et al.,

2008) have been used to try to overcome such disadvantages, and show immense

promise, the schemes quickly become complex and a large number of elements are

generally required to obtain accurate solutions. On the other hand, the objective

function in the associated optimisation problem is convex, but not everywhere dif-

ferentiable. One of the most efficient algorithms to overcome this difficulty is the

primal-dual interior-point method presented in Andersen et al. (2003) and imple-

mented in commercial codes such as the Mosek software package (Mosek, 2008).

The limit analysis problem involving conic constraints can then be solved by this

efficient algorithm (Makrodimopoulos & Martin, 2006b; Krabbenhoft et al., 2007;

Ciria et al., 2008).

In recent years so-called ‘meshless’ methods have been developed to provide a flexi-

ble alternative approach to FEM. The methods use sets of nodes distributed across

the problem domain, and also along domain boundaries. One of the first meshless

methods developed is the Element-Free Galerkin (EFG) method (Belytschko et al.,

1994). The EFG method has been applied successfully to a wide range of com-

putational problems, proving popular due to its rapid convergence characteristics

and its ability to obtain highly accurate solutions. It therefore seems appropriate

to investigate the performance of the EFG method when applied to limit analysis

problems. Recently, a numerical procedure for lower-bound limit analysis was pre-

sented by Chen et al. (2008). In the paper, a self-equilibrium stress basis vector at

each Gaussian point is computed using the EFG method. Although this does not
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guarantee a strict lower-bound, a reliable estimate of the limit load factor can be

obtained when the discretisation is sufficiently fine. It is shown that the solutions

obtained for a number of 2D problems are in good agreement with other solutions

in the literature.

In this paper a numerical procedure based on the EFG method for upper-bound

limit analysis of rigid-perfectly plastic plates governed by the von Mises criterion

is proposed. Nodal collocation is used to impose essential boundary conditions.

A stabilised conforming nodal integration (SCNI) scheme is used to evaluate the

integral of both internal dissipation power and work rate of external load. This

results in a truly meshless method and reduces computational effort. Attention is

also focussed on formulating the plate limit analysis problem as one of minimizing

a sum of Euclidean vector norms, which can be solved efficiently by a primal-dual

interior-point method (Andersen et al., 2003), such as second-order cone program-

ming (SOCP). To illustrate the method it is then applied to a series of bending

problems, including those for which solutions already exist in the literature.

4.2 Limit analysis of plates - kinematic formula-

tion

Consider a rigid-perfectly plastic plate subjected to a distributed load λ+q and with

a constrained boundary Γu. According to Kirchhoff’s hypothesis, if uh denotes the

transverse displacement, the strain rates can be expressed by relations

ǫ̇ = zκ̇ (4.1)

with the vectors of strains and curvatures

ǫ̇ =
[

ǫ̇xx ǫ̇yy γ̇xy

]T

(4.2)

κ̇ = −∇2u̇h = −
[
∂2u̇h

∂x2

∂2u̇h

∂y2
2
∂2u̇h

∂x∂y

]T

(4.3)
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In the framework of a limit analysis problem, only plastic strains are considered

and are assumed to obey the normality rule

ǫ̇ = µ̇
∂ψ

∂σ
(4.4)

where the plastic multiplier µ̇ is non-negative and the yield function ψ(σ) is convex.

In this study, the von Mises failure criterion is used

ψ(σ) =
√

σ
T P σ − σ0 ≤ 0 (4.5)

where σ0 is the yield stress and

σ =
[

σxx σyy τxy

]T

(4.6)

P =
1

2







2 −1 0

−1 2 0

0 0 6







(4.7)

The plastic dissipation is expressed by

Dp = max(σ∗
ǫ) ≡ σǫ ǫ (4.8)

where σ
∗ represents the admissible stresses contained within the convex yield sur-

face and σǫ represents the stresses on the yield surface associated to any strain

rates ǫ̇ through the plasticity condition. Since the stress space described in Equa-

tion (4.5) is bounded in all directions, any strain rate is normal to its boundary and

no constraints are introduced. Then the power of dissipation can be formulated

as a function of strain rates as

Ḋp(σǫ,ǫ) = σ0

√

ǫ̇
TQǫ̇ (4.9)
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where

Q = P−1 =
1

3







4 2 0

2 4 0

0 0 1







(4.10)

The internal dissipation power of the two-dimensional plate domain Ω can be

written as

Ẇint(κ̇) =

∫

Ω

∫ t/2

−t/2

Ḋp(σǫ,ǫ) dz dΩ = mp

∫

Ω

√

κ̇
TQ κ̇ dΩ (4.11)

where mp = σ0t
2/4 is the plastic moment of resistance per unit width of a plate

of thickness t.

The upper bound limit analysis problem for plates can be expressed as

λ+ = min Ẇint(κ̇) (4.12)

subject to

κ̇ = ∇2u̇h (4.13)

Ẇext =

∫

Ω

qu̇h dΩ = 1 (4.14)

where λ+ is the load factor, q is the pressure load and where Equation (4.14)

prescribes unitary external work and is accompanied by appropriate boundary

conditions.

4.3 The EFG method

The moving least square technique is utilised to construct an approximation func-

tion uh(x) that fits a discrete set of data (Belytschko et al., 1994), so that

uh(x) =

n∑

I=1

ΦI(x)uI (4.15)
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ΦI(x) = pT (x)A−1(x)BI(x) (4.16)

A(x) =
n∑

I=1

wI(x)p(xI)p
T (xI) (4.17)

BI(x) = wI(x)p(xI) (4.18)

where n is the number of nodes; p(x) is a set of basis functions; wI(x) is a weight

function associated with node I. For the purpose of consistency of fourth-order

problems, the polynomial basis function p(x) must be at least quadratic (Krysl &

Belytschko, 1995). In this work, the quadratic polynomial for 2D bending problems

is used, which is given by

pT (x) =
(
1, x, y, xy, x2, y2

)
(4.19)

Furthermore, for the weight functions an isotropic quartic spline function is used,

i.e.

wI(x) =

{

1 − 6s2
I + 8s3

I − 3s4
I if sI ≤ 1

0 if sI > 1
(4.20)

with sI = ‖x−xI‖
RI

, where RI is the support radius of node I. We will need first and

second partial derivatives of the shape function with respect to x, as described in

Chapter 3. To avoid the loss of accuracy due to roundoff error the origin is shifted

to the evaluation point (Belytschko et al., 1996a).

4.4 Stabilised conforming nodal integration

The integrals in Equations (4.11) and (4.14) are commonly evaluated by Gauss

integration which requires the use of background integration cells. It is normal to

use rectangular and triangle cells and high order quadratures. As an alternative,

nodal integration which uses nodes as integration points is employed. This re-

sults in a truly meshless method due to the absence of integration cells. However,

direct nodal integration is unstable because of under-integration and vanishing
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derivatives of shape functions at the nodes (Beissel & Belytschko, 1996). A sta-

bilised conforming nodal integration (SCNI) is proposed in Chen et al. (2001a) to

eliminate spatial instability problems and to improve accuracy and convergence

properties. The main idea of the method is that nodal strains are determined by

spatially averaging strains using the divergence theorem. We will extend this idea

here to plastic plate bending.

With the use of nodal integration and strain smoothing stabilisation, Equation (4.11)

yields

Ẇint = mp

n∑

J=1

aJ

√

κ̇
T (xJ)Q κ̇(xJ) (4.21)

in which κ̇(xJ) follows from curvature smoothing at nodal point xJ (Sze et al.,

2004; Wang & Chen, 2004)

κ̇
T (xJ) = −

∫

ΩJ

[
u̇h

,xx, u̇h
,yy, 2u̇h

,xy

]
dΩ

= −
∮

ΓJ

[
u̇h

,x nx, u̇h
,y ny, (u̇h

,x ny + u̇h
,y nx)

]
dΓ (4.22)

where ΩJ is the nodal representative domain that can be a Voronoi diagram; aJ

and ΓJ are its area and boundary, respectively.

Introducing a moving least square approximation of the transverse displacement

rate u̇h(x), the smoothed curvature κ̇(xJ) is expressed as

κ̇(xJ) = −G v (4.23)

vT = [u̇1, u̇2, . . . , u̇n] (4.24)

G =







Φ̃1,xx(xJ) Φ̃2,xx(xJ) . . . Φ̃n,xx(xJ)

Φ̃1,yy(xJ) Φ̃2,yy(xJ) . . . Φ̃n,yy(xJ)

2Φ̃1,xy(xJ) 2Φ̃2,xy(xJ) . . . 2Φ̃n,xy(xJ)







(4.25)
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with

Φ̃I,αβ(xj) =
1

2aj

∫

Γj

(ΦI,α(xj)nβ(x) + ΦI,β(xj)nα(x)) dΓ

=
1

4aj

ns∑

k=1

(
nk

β l
k + nk+1

β lk+1
)
ΦI,α(xk+1

j )

+
1

4aj

ns∑

k=1

(
nk

α l
k + nk+1

α lk+1
)
ΦI,β(xk+1

j ) (4.26)

where Φ̃ is the smoothed version of Φ, ns is the number of segments of a Voronoi

nodal domain, as shown in Figure 4.1, and xk and xk+1 are coordinates the two end

points of boundary segment k which has length lk and outward surface normal nk.

Note that the Voronoi node numbers k are defined recursively, i.e. k = ns + 1 →
k = 1.

J

J

J

J

J

J

J

Figure 4.1: Geometry definition of a representative nodal domain

Similarly, the external energy can be determined using a nodal integration scheme

and moving least square approximation of the transverse displacement rate u̇h(x)

as

Ẇext =

∫

Ω

qu̇h dΩ =

n∑

J=1

aJqu̇
h(xJ)

=

n∑

J=1

n∑

I=1

aJqΦI(xJ)u̇I (4.27)
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Hence the upper bound limit analysis problem for plates can be formulated as

λ+ = min mp

n∑

J=1

aJ

√

κ̇
T (xJ)Q κ̇(xJ)

Subject to

n∑

J=1

n∑

I=1

aJqΦI(xJ)u̇I = 1 (4.28)

Considering boundary conditions, it is important to note that enforcement of

u̇I = ˙̄uI is not appropriate since the moving least squares approximation does not

satisfy the Kronecker delta property and therefore u̇I is not the velocity at node

I. To overcome this difficulty, collocation at nodes (Zhu & Atluri, 1998) is used

to enforce essential boundary conditions: u̇h(xb) = ˙̄uI(xb), where xb are nodes on

essential boundaries. Since essential boundaries are fixed, the boundary conditions

are given as

u̇h(xb) =

n∑

I=1

ΦI(xb)u̇I = 0 (4.29)

θ̇x = u̇h
,x(xb) =

n∑

I=1

ΦI,x(xb)u̇I = 0 (4.30)

θ̇y = u̇h
,y(xb) =

n∑

I=1

ΦI,y(xb)u̇I = 0 (4.31)

Where Equations (4.29), (4.30) and (4.31) enforce the vertical displacement and

x and y axis rotations respectively. Then the Equation (4.28) and boundary

conditions can be written as a standard linear equality constraint

Aeqv = beq (4.32)
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where the matrix Aeq and vector beq of Equation (4.32) are given by

Aeq =



























n∑

J=1

aJΦ1(xJ)
n∑

J=1

aJΦ2(xJ) . . .
n∑

J=1

aJΦn(xJ)

Φ1(x
b
1) Φ2(x

b
1) . . . Φn(xb

1)
...

...
. . .

...

Φ1(x
b
d) Φ2(x

b
d) . . . Φn(xb

d)

Φ1,x(x
b
1) Φ2,x(x

b
1) . . . Φn,x(x

b
1)

...
...

. . .
...

Φ1,x(x
b
rx) Φ2,x(x

b
rx) . . . Φn,x(x

b
rx)

Φ1,y(x
b
1) Φ2,y(x

b
1) . . . Φn,y(x

b
1)

...
...

. . .
...

Φ1,y(x
b
ry) Φ2,y(x

b
ry) . . . Φn,y(x

b
ry)



























(4.33)

bT
eq =

[

1

d
︷ ︸︸ ︷

0 0 . . . 0

rx
︷ ︸︸ ︷

0 0 . . . 0

ry
︷ ︸︸ ︷

0 0 . . . 0

]

(4.34)

d is the number of boundary nodes having displacement conditions, while rx and

ry are the number of boundary nodes having rotation conditions about x and y,

respectively.

4.5 Second-order cone programming

The above limit analysis problem is a non-linear optimisation problem with equal-

ity constraints and it can be solved using a general non-linear optimisation solver,

such as a sequential quadratic programming (SQP) algorithm (which is general-

isation of Newton’s method for unconstrained optimisation) or a direct iterative

algorithm (Capsoni & Corradi, 1999). However, in Andersen et al. (1998) it is

shown that the problem can be reduced to the problem of minimizing a sum of

norms. In fact a problem of this sort can be cast as a SOCP problem, for which

highly efficient solvers exist. Further details of SOCP and its applications can be

found in Lobo et al. (1998); the general form of a SOCP problem with Ns sets of
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constraints is as follows

min fTx

Subject to ‖Hix + vi‖ ≤ yT
i x + zi, i = 1, 2, . . . , Ns (4.35)

where x ∈ R
n are the optimisation variables, and the problem coefficients are

f ∈ R
n, Hi ∈ R

m×n, vi ∈ R
m, yi ∈ R

n, and zi ∈ R. For optimisation problems

in 2D or 3D Euclidean space, m = 2 or m = 3. When m = 1 the SOCP problem

reduces to a linear programming problem.

Since Q in Equation (4.21) is a positive definite matrix, this can be rewritten in

a form involving a sum of norms as

Ẇint = mp

n∑

J=1

aJ‖CT
κ̇(xJ)‖ = mp

n∑

J=1

aJ‖CTGv‖ (4.36)

where C is the so-called Cholesky factor of Q

C =
1√
3







2 0 0

1
√

3 0

0 0 1







(4.37)

Note that C depends only on the yield condition; for one-dimensional problems

C = 1.

The upper bound limit analysis of plates problem can be now written as one of

minimizing a sum of norms subject to linear equality constraints

λ+ = min mp

n∑

J=1

aJ‖CTGv‖

Subject to Aeqv = beq (4.38)

This is a convex programming problem in which the objective function is not

differentiable at any point in the rigid domain where plastic strains do not develop

(CTGv = 0). Of the several methods that have been developed to treat such

a singularity, the primal-dual interior-point method proposed by Andersen et al.



Chapter 4. Limit analysis of plates 84

(2003) has been found to be especially efficient. The traditional way of replacing

a singular function by a differentiable one is to add a square of a fixed positive

number µ0 to the root, so that the function becomes
√

‖CTGv‖2 + µ2
0. However,

this may lead to slow convergence as µ0 → 0. In Andersen et al. (2003), the

quantity µ0 is treated as an additional variable and can be determined by a duality

estimate. With the use of this method, the optimisation problem is solved rapidly

and accurately even if there are a large number of variables and/or zero terms in

the objective function. Since the method is implemented in generally available

second order cone programming software (e.g. Mosek (2008)), the limit analysis

problem can be efficiently solved using such software.

Thus the present optimisation problem is cast as a standard SOCP problem by

introducing auxiliary variables t1, t2, . . . , tn

λ+ = min mp

n∑

j=1

ajtj

Subject to Aeqv = beq; CTGv = ri (4.39)

‖ ri ‖≤ ti, i = 1, 2, . . . , n (4.40)

in which Equation (4.40) expresses quadratic cones and ri ∈ Rn are additional

variables defined by Equation (4.39), where every ri is a 3 × 1 vector.

4.6 Numerical examples

To test the performance of the new numerical procedure it is appropriate to apply

it to a number of two-dimensional examples of interest in engineering practice,

e.g. plate problems. However, for most geometries analytical solutions do not

exist for plate problems, which makes objective validation difficult. Therefore

the procedure is first applied to a number of beam examples for which analytical

solutions are available, thereby enabling objective validation.
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Figure 4.2: Sizes of influence domain

The radius of influence domain RI at node I is determined by

RI = β · hI (4.41)

where β is the dimensionless size of influence domain and hI is the nodal spacing

when nodes were distributed regularly, or the maximum distance to neighbouring

nodes when nodes were distributed irregularly (Figure 4.2). For the irregular nodal

layout case, the size of the influence domain needs to be locally determined. Based

on Voronoi cell information, the neighbouring nodes of node I can be identified

and grouped as NI as shown in Figure 4.2b.

NI = {PJ : V (PJ) ∩ V (PI) 6= ⊘}
= {p1, p2, p3, p4, p5, p6, p7} (4.42)

where V (PI) is the Voronoi cell of node PI . The maximum distance is then deter-

mined by

hI = max{dJ : dJ = PIPJ , ∀PJ ∈ NI} (4.43)
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4.6.1 Beam examples

Since the Euler beam is the one dimensional degeneration of the Kirchhoff plate,

limit analysis of beams in bending can be considered to examine the effectiveness

of the proposed method in a lower dimension. Beams of rectangular cross section

(b × h) are subjected to a uniform load and various boundary conditions at the

ends, as shown in Figure 4.3. Analytical limit load factors for beams are given as

λ+ =
mp

qL2







16.000 beam clamped at ends

11.657 clamped-simply supported beam

8.000 beam simply supported at ends

(4.44)

where mp = σ0bh
2/4 is the plastic moment of beams.

L

q

Figure 4.3: Clamped beam subjected to uniform load

The kinematic formulation of the beam problem is the reduced form of the kine-

matic plate limit analysis problem, in which the curvature component is κ̇x =

−u̇,xx only and C = 1. The smoothed curvature at node jth on beam can be

calculated as

κ̇(xj) =
1

∆xj

(ΦI,x(xjR) − Φ,x(xjL)) (4.45)

where ∆xj = xjR − xjL is the length of representative length Ωj , as shown in

Figure 4.4.

}|{ jRjLj xxxx

jx

jLx jx
jRx

Figure 4.4: Degeneration of Voronoi diagram to one-dimension
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The limit analysis of beams problem is one which can be solved by linear program-

ming, or alternatively using a SOCP algorithm. Therefore, most of the techniques

used in plate problems can be applied here for beams.

Half symmetry was used when possible, with 81 and 161 nodes used to discretise

the simply supported and clamped beams respectively. The beam clamped at one

end and simply supported at the other was modelled in full, using a total of 321

nodes.
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8

10

12

14

16
Clamped beam

Simply supported beam

Clamped−simply supported beam

λ
+
(
m
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q
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2
)

β

 

 

SCNI
Gauss integration
Analytical solution

Figure 4.5: Comparison of Gauss integration (5 × 1) and SCNI for 1-D prob-
lems

As can be seen from Figure 4.5, taking β = 3.5hi appears to give the best results.

Limit load factors are reported in Table 4.1 and it can be seen that the numerical

results are in good agreement with analytical solutions. This demonstrates the

efficiency and high accuracy of proposed numerical procedure when applied to

one-dimensional problems.

The convergence rates are plotted in Figure 4.6. They range between the the-

oretically expected value of 1 : 1 for the clamped beam to 1 : 2 for the simply

supported beam; see Figure 4.6.
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Table 4.1: Collapse limit load of beams in comparison with analytical solutions

Present method Analytical solution error (%)
Clamped 16.051 16.000 0.31
Simply supported (s.s) 8.001 8.000 ∼ 0.00
1 clamped, 1 s.s 11.666 11.657 0.08
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Figure 4.6: Rate of convergence for beam problems

4.6.2 Plate examples

A number of plate examples are then considered in the remainder of this section,

with the main focus being on benchmark problems for which upper and lower

bound solutions have previously been reported in the literature. For all the ex-

amples considered the following was assumed: length L = 10 m; plate thickness

t = 0.1 m; yield stress σ0 = 250 MPa. Quarter symmetry was assumed when

appropriate (see Figure 4.7).

The example comprises a square plate with clamped supports and subjected to

uniform out-of-plane pressure loading. A uniform discretisation n = 15 × 15

nodes and various sizes of influence domain β = 3 ∼ 6.5 were used. Matlab

optimisation toolbox 3.0 and Mosek version 5.0 optimisation solvers were used to

obtain solutions (using a 2.8 GHz Pentium 4 PC running Microsoft XP).
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Figure 4.7: Square plate clamped along edges and loaded by a uniform pres-
sure

Firstly, potential integration schemes were considered. In the formulation pre-

sented a quadratic basis function and an isotropic quartic spline weight function

were used with a moving least squares approximation, which results in a high order

of the approximated displacement field. Therefore, in order to evaluate accurately

the integrals in the limit analysis problem, very large numbers of Gauss points

would be needed. Here results are reported for the plate problem with 5×5 Gauss

points per cell. It can be seen in Figure 4.8 that the solutions obtained using SCNI

are lower, and hence likely to be more accurate, than when using 5×5 Gauss points

(except for the extreme case of β = 3), i.e. SCNI appears to increase the accuracy

of solutions as long as the radius of the influence domain is sufficiently large. If

nonlinear programming is employed both SCNI and Gauss integration schemes

give rise to problems with an identical number of variables (equal to the number

of discretisation nodes, n = 225 in this case). However, less CPU time is required

to evaluate integrals when using the SCNI scheme. The difference in CPU time

is even more marked when either linear programming or SOCP are used to solve

the underlying optimisation problem. This is because 5 times as many additional
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variables need to be added for each spatial dimension when Gauss integration is

used, compared with when SCNI is used. In summary, SCNI appears to offer a

good combination of accuracy and computational efficiency, not only for elastic

analysis problems (Chen et al., 2001a) but now also for plastic analysis problems.
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Figure 4.8: Limit load factor for various influence domain sizes

Next, the efficacy of various optimisation algorithms was considered (using SCNI).

Figure 4.9 shows that SQP and SOCP algorithms produced very similar solutions

for the square plate problem. However, the SOCP algorithm produced solutions

very much more quickly, even though the number of variables involved was much

greater (5n cf. n when using SQP). The SOCP algorithm typically took only

2 ∼ 5 seconds to compute a solution, compared with 300 ∼ 600 seconds when

using SQP. Moreover, the SOCP algorithm can be guaranteed to identify globally

optimal solutions, whereas SQP cannot.

It is advantageous to choose a size of influence domain that meets both accuracy

and computation cost requirements. With this in mind, the radius of influence

domain was set to be equal to 6hi for all plate problems considered hereafter (even

though use of a higher radius value may sometimes lead to a better upper-bound

solution).
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Figure 4.9: Comparison between SQP and SOCP using SCNI

Table 4.2 compares solutions obtained using the present method with previously

obtained solutions obtained using FEM simulations. Considering previously ob-

tained upper bound solutions, the present method provides lower solutions than

in Lubliner (1990), Hodge & Belytschko (1968) and Capsoni & Corradi (1999),

by 13.34%, 8.49% and 0.49% respectively. If a comparison is made in terms of

the number of variables in the optimisation problem, the present method using

EFG has a significantly smaller number than mesh-based approaches; in the EFG

method there is only one variable at each node while in the FE method at least 3

nodal degrees of freedom (displacement and 2 rotation components) are required

to accommodate the C1 continuity needed to discretise the problem according to

thin plate theory (Capsoni & Corradi, 1999). The only obvious drawback is that

the high order shape functions used in EFG make a priori proof of the strict upper

bound status of the solutions difficult (though this can potentially be checked a

posteriori).

Further illustration of the method can be made by examining the same square

plate with different boundary conditions. Table 4.3 provides solutions in the case

of a uniformly loaded square plate with simply supported edges. The limit load

factor obtained by the proposed method is the lowest. Figure 4.10 shows the

associated collapse mechanisms for both clamped and simply supported plates.
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Table 4.2: Limit load factor of clamped plate in comparison with other solu-
tions

Authors upper bound lower bound
Present method 45.07+ –
Hodge & Belytschko (1968) 49.25 42.86
Lubliner (1990) 52.01 –
Capsoni & Corradi (1999) 45.29 –
Andersen et al. (1998) (mixed element) 44.13

+Approximate rather than rigorous upper bound due to the high order EFG shape functions
used

(a) Clamped (b) Simply supported

Figure 4.10: Iso-displacement contours at collapse for uniformly loaded plates

Table 4.3: Limit load factor of simply supported plate in comparison with
other solutions

Authors upper bound lower bound
Present method 25.01+ –
Hodge & Belytschko (1968) 26.54 24.86
Lubliner (1990) 27.71 23.81
Capsoni & Corradi (1999) 25.02 –
Andersen et al. (1998) (mixed element) 25.00

+Approximate rather than rigorous upper bound due to the high order EFG shape functions
used

Rectangular plates (dimensions a × b) with different boundary conditions under

uniform pressure were also considered. Collapse mechanisms and limit loads are

shown in Figure 4.11 and Table 4.4, with a ÷ b = 2. The plate with 3 clamped
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and 1 free edge was solved using 60× 15 nodes using half symmetry whilst in the

remaining cases quarter symmetry was used with 30×15 nodes. It is evident from

Table 4.4 that the present solution for the simply supported case is in excellent

agreement to the solution obtained in Capsoni & Corradi (1999). It should also be

noted that plates having simply supported boundaries converge faster than those

with clamped boundaries (see Figure 4.12).

Table 4.4: Collapse limit load of rectangular plates with various boundary
conditions

Models clamped supported 3 clamped, 1 free 2 clamped, 2 free

Present results 54.61 29.88 43.86 9.49

Capsoni & Corradi (1999) – 29.88 – –

(a) (b)

(c) (d)

Figure 4.11: Iso-displacement contours at collapse for uniformly loaded rect-
angular plates: (a) clamped plate (b) simply supported (c) 3 clamped edges, 1

free (d) 2 clamped, 2 free edges

The advantages of the proposed method can be further demonstrated by consid-

ering a clamped circular plate with central concentrated load P . This problem

exhibits a logarithmic singularity in the displacement field near the point load

and has a known exact solution (Hopkins & Wang, 1954), λ = 4πmp√
3P

= 7.255 mp

P
.

Here a numerical solution was obtained by using an irregular layout of nodes com-

prising 225 nodes laid out over a quarter of the slab, Figure 4.13. The optimal
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Figure 4.12: Collapse multipliers for rectangular plates

size of the domain of influence β was found to be equal to 4.5 and a computed

collapse multiplier of 7.385 was obtained, which is just 1.8% higher than the exact

solution. The corresponding collapse mechanism is shown in Figure 4.14. When a

concentrated load is applied the collapse multiplier does not depend on the shape

of the plate (Capsoni & Corradi, 1999; Christiansen & Pedersen, 2001), so the

present result can also be compared with previously obtained numerical solutions

for square plates. It can be observed that the present solution is much lower than

solutions given by Hodge & Belytschko (1968), and Capsoni & Corradi (1999)

(7.831 and 9.122, respectively).

Finally, an L-shape plate subject to a uniform load was considered. The plate

geometry is shown in Figure 4.15. Collapse load factors for various numbers of

nodes are reported in Table 4.5 and the collapse mechanism when 3816 nodes were

used is plotted in Figure 4.16.

Table 4.5: Collapse limit load of L-shape plate λ+

number of nodes 341 645 1045 1825 2640 3008 3400 3816
CPU time (s)∗ 6 38 92 171 340 381 460 789
Computed values 6.79 6.58 6.47 6.38 6.33 6.31 6.30 6.298

∗Time taken to solve on a 2.8GHz Pentium 4 PC
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Figure 4.13: Irregular nodal layout and Voronoi diagram

Figure 4.14: Clamped circular plate with central point load: collapse mecha-
nism

4.7 Conclusions

The implementation of a numerical limit analysis procedure which uses the Element-

Free Galerkin (EFG) method and mathematical programming has been investi-

gated. The numerical procedure demonstrates that the EFG method can be ap-

plied successfully not only to lower-bound limit analysis problems (Chen et al.,

2008) but also to upper-bound limit analysis problems. The solutions obtained

show good agreement with results available in the literature. Advantages of apply-

ing EFG to limit analysis problems are that problem size is reduced, and accurate



Chapter 4. Limit analysis of plates 96

si
m

p
ly

 s
u
p

p
o
rt

ed
 

0u
y

u

L / 2L / 2

L / 2

L / 2

q

x

y

free edge 

Figure 4.15: L-shaped geometry

Figure 4.16: Iso-displacement contours at collapse for uniformly loaded L-
shaped plate

solutions can be obtained using a relatively small number of nodes. The combina-

tion of the stabilised conforming nodal integration technique (SCNI) and second

order cone programming (SOCP) optimisation algorithm leads to an efficient and

robust method. The main features of the method can be summarised as:

1. Since the displacement field is approximated using the moving least squares

technique, the problem field and its derivatives are smooth across the whole

domain. Due to the use of only one nodal parameter (displacement only
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rather than displacement and two rotations) the number of variables in the

optimisation problem is small compared with the number required in finite

element method formulations.

2. The SCNI scheme has been applied successfully to the kinematic limit anal-

ysis of plates problem. The SCNI scheme results in a truly meshless method

and stable solutions. This nodal integration scheme produces more accurate

results than when Gauss integration is used. Furthermore, the size of op-

timisation problem reduces significantly when this smoothing technique is

used in conjunction with the Element-Free Galerkin method.

3. A primal-dual interior-point SOCP algorithm can efficiently solve problems

involving linear or conic constraints. This algorithm is of particular interest

in the field of limit analysis since most plasticity problems can be formulated

as conic programming problems (Krabbenhoft et al., 2007).

Finally, although a kinematic limit analysis formulation for plates is presented

here, the numerical procedure can be extended to tackle more complex structural

configurations, subject to a variety of loading regimes. It would for example be

interesting to extend the proposed method to treat plane strain problems, 3D

problems and also problems involving shakedown.



Chapter 5

Adaptive Element-Free Galerkin

method applied to the limit

analysis of plates1

The implementation of an h-adaptive Element-Free Galerkin (EFG) method in

the framework of limit analysis is described. The naturally conforming property

of meshfree approximations (with no nodal connectivity required) facilitates the

implementation of h-adaptivity. Nodes may be moved, discarded or introduced

without the need for complex manipulation of the data structures involved. With

the use of the Taylor expansion technique, the error in the computed displacement

field and its derivatives can be estimated throughout the problem domain with

high accuracy. A stabilised conforming nodal integration scheme is extended to

error estimators and results in an efficient and truly meshfree adaptive method. To

demonstrate its effectiveness the procedure is then applied to plates with various

boundary conditions.

1based on C.V. Le, H. Askes and M. Gilbert, Adaptive Element-Free Galerkin method ap-
plied to the limit analysis of plates, Computer Methods in Applied Mechanics and Engineering,
revising, 2009.

98
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5.1 Introduction

Limit analysis makes use of the fundamental theorems of plastic analysis to pro-

vide a powerful means of estimating the maximum load sustainable by a solid or

structure. Mathematical programming techniques can often be applied to permit

the collapse load to be determined directly. However, the accuracy of numerical

limit analysis solutions is highly affected by local singularities arising from localised

plastic deformations (Borges et al., 2001). In order to achieve accurate solutions

automatic h-refinement is often performed, so that the resolution of the spatial

discretisation is refined in plastic zones. Automatic finite element mesh refinement

based on both stress and strain fields has been previously proposed (Christiansen

& Pedersen, 2001), where elements are candidates for refinement if the strain ten-

sor is non-zero. Alternatively, adaptive procedures based on a posteriori error

estimates to measure the local and global errors associated with the interpolation

have been developed for limit analysis problems. A directional error estimate us-

ing recovery gradients and/or the Hessian of mixed finite element solutions was

proposed in Borges et al. (2001). The scheme was then adapted to lower bound

limit analysis by using quasi-velocities and plastic multipliers from the dual solu-

tion (Lyamin et al., 2005). Using solutions of the lower and upper bound problem

in combination, another effective error estimate was proposed in Ciria et al. (2008)

and Munoz et al. (2009). These techniques have been used successfully for various

2D problems.

Meshfree methods are very attractive computational techniques due to their flex-

ibility, e.g. no nodal connectivity is required. The naturally conforming property

of meshfree approximations offers considerable advantages in adaptive analysis.

Nodes can easily be added and removed without the need for complex manipu-

lation of the data structures involved. Since error estimates for finite elements

are not always directly transferable to meshfree methods, various approaches have

been proposed (Chung & Belytschko, 1998; Liu & Tu, 2002; Haussler-Combe &

Korn, 1998; Rabczuk & Belytschko, 2005; You et al., 2003; Yvonnet et al., 2006).

Effective approaches to estimate the interpolation/approximation error were pro-

posed in Liu et al. (1997); Krongauz & Belytschko (1997); Haussler-Combe & Korn
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(1998) and Rabczuk & Belytschko (2005). The approximation error in the com-

puted displacement field and its derivatives can be evaluated with high accuracy

using a Taylor expansion of the relevant field variable. It is also shown in Rabczuk

& Belytschko (2005) that this estimate is generally suitable for problems with high

stress and strain gradients and singularities. While these approaches have been

developed for structured meshfree particle methods using Gauss integration, it is

also desirable to develop an efficient method for general irregular nodal layouts.

In this paper the error density in a representative nodal cell can be determined

using smoothed values of the displacement derivatives. This not only results in a

truly meshfree method but also reduces the effort required to calculate displace-

ment derivatives in the error estimate. Furthermore, since the Voronoi diagram

for a set of nodes is unique, properties of Voronoi cells can be conveniently used

as a reference for refinement strategies and for determining locally the size of the

domain of influence.

The objective of this paper is to develop a meshfree h-adaptivity procedure for

limit analysis problems. The layout of the paper is as follows: Section 5.2 briefly

describes a kinematic upper bound limit analysis formulation for plates using the

Element-Free Galerkin (EFG) method and stabilised conforming nodal integration

(SCNI). A cell-based error estimate for the displacement field and its derivatives

is presented in Section 5.3. Based on the error estimate discussed in Section 5.3,

error indicators and refinement strategies are introduced in Section 5.4. Numerical

examples are provided in Section 5.5 to illustrate the performance of the proposed

procedure.

5.2 Limit analysis of plates - discrete kinematic

formulation

In this section the kinematic formulation for the plate limit analysis problem is

outlined, together with details of the EFG method and the second-order cone
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programming (SOCP) problem formulation. More details can be found in Le

et al. (2009).

Consider a rigid-perfectly plastic plate governed by the von Mises yield criterion,

subjected to a distributed load λ+q and with a constrained boundary Γu. The

upper bound limit analysis problem for plates can be written as

λ+ = min

∫

Ω

mp ‖CT
κ̇‖L2(Ω) dΩ (5.1a)

s.t

κ̇ = −
{

∂2u̇h

∂x2

∂2u̇h

∂y2
2
∂2u̇h

∂x∂y

}T

(5.1b)

∫

Ω

quh dΩ = 1 (5.1c)

accompanied by appropriate boundary conditions, where q is unit load per area,

λ+ is a scalar collapse load multiplier, mp = σ0t
2/4 is the plastic moment of

resistance per unit width of a plate of thickness t and C is a matrix that depends

on the yield criterion involved. For the von Mises criterion,

C =
1√
3







2 0 0

1
√

3 0

0 0 1







(5.2)

The approximated transverse displacement uh(x) is computed using a Moving

Least Squares (MLS) technique and is expressed as

uh(x) =

n∑

I=1

ΦI(x)uI (5.3)

The MLS shape functions ΦI(x) are given as (Belytschko et al., 1994)

ΦI(x) = pT (x)A−1(x)BI(x) (5.4)

with

A(x) =
n∑

I=1

wI(x)p(xI)p
T (xI) (5.5)
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BI(x) = wI(x)p(xI) (5.6)

where n is the number of nodes; p(x) = [1, x, y, xy, x2, y2]
T

is a quadratic basis

function and wI(x) is an isotropic quartic spline weight function associated with

node I.

Introducing stabilised conforming nodal integration (Chen et al., 2001a), smoothed

curvature rates κ̇(xJ) at nodal point xJ are written as

κ̇(xJ) = −G v (5.7)

where

vT = [u̇1, u̇2, . . . , u̇n] (5.8)

G =







Φ̃1,xx(xJ) Φ̃2,xx(xJ) . . . Φ̃n,xx(xJ)

Φ̃1,yy(xJ) Φ̃2,yy(xJ) . . . Φ̃n,yy(xJ)

2Φ̃1,xy(xJ) 2Φ̃2,xy(xJ) . . . 2Φ̃n,xy(xJ)







(5.9)

with

Φ̃I,αβ(xj) =
1

2aj

∫

Γj

(ΦI,α(xj)nβ(x) + ΦI,β(xj)nα(x)) dΓ

=
1

4aj

ns∑

k=1

(
nk

β l
k + nk+1

β lk+1
)
ΦI,α(xk+1

j )

+
1

4aj

ns∑

k=1

(
nk

α l
k + nk+1

α lk+1
)
ΦI,β(xk+1

j ) (5.10)

where Φ̃ is the smoothed version of Φ; aJ , ΓJ and ns are respectively the area,

boundary and the number of segments of a Voronoi nodal domain ΩJ as shown in

the Figure 5.1; xk
J and xk+1

J are the coordinates of the two end points of boundary

segment Γk
J which has length lk and outward surface normal nk.
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Figure 5.1: Geometry of a representative nodal domain

The kinematic limit analysis problem for plates can now be written in the form of

a SOCP problem as follows:

λ+ = min mp

n∑

j=1

ajtj (5.11a)

s.t

Aeqv = beq (5.11b)

CTGv = ri (5.11c)

‖ ri ‖≤ ti, i = 1, 2, . . . , n (5.11d)

in which Equation (5.11d) expresses quadratic cones and ri ∈ R
3 are additional

variables defined by Equation (5.11c), where every ri is a 3 × 1 vector. Matrix

Aeq and vector beq are obtained from unitary external work Equation (5.1c) and
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boundary conditions, and they are given by

Aeq =



























n∑

J=1

aJΦ1(xJ)
n∑

J=1

aJΦ2(xJ) . . .
n∑

J=1

aJΦn(xJ)

Φ1(x
b
1) Φ2(x

b
1) . . . Φn(xb

1)
...

...
. . .

...

Φ1(x
b
d) Φ2(x

b
d) . . . Φn(xb

d)

Φ1,x(x
b
1) Φ2,x(x

b
1) . . . Φn,x(x

b
1)

...
...

. . .
...

Φ1,x(x
b
rx) Φ2,x(x

b
rx) . . . Φn,x(x

b
rx)

Φ1,y(x
b
1) Φ2,y(x

b
1) . . . Φn,y(x

b
1)

...
...

. . .
...

Φ1,y(x
b
ry) Φ2,y(x

b
ry) . . . Φn,y(x

b
ry)



























(5.12)

bT
eq =

[

1

d
︷ ︸︸ ︷

0 0 . . . 0

rx
︷ ︸︸ ︷

0 0 . . . 0

ry
︷ ︸︸ ︷

0 0 . . . 0

]

(5.13)

Here d is the number of boundary nodes having displacement conditions and rx

and ry are the number of boundary nodes having rotation conditions about x and

y, respectively. It is noted that tangential rotations along the boundary are also

enforced as this has been found to increase the accuracy of the solutions.

5.3 Estimation of approximation errors

A key ingredient of any adaptive analysis procedure is the formulation of an error

estimate which determines which parts of the domain are most in need of refine-

ment. Here we will use the error estimate approach given in Liu et al. (1997);

Krongauz & Belytschko (1997); Haussler-Combe & Korn (1998) and Rabczuk &

Belytschko (2005). The estimated error for general approximations of sth order

completeness is presented first, from which the error for linear and quadratic cases

in 2D can be retrieved. An approximation is complete to order s if any polynomial
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up to order s is exactly reproduced as

n∑

I=1

xpΦI(x) = xp for 0 ≤ p ≤ s (5.14)

The error can be written as

uh(x) − u(x) =

n∑

I=1

ΦI(x)uI − u(x) (5.15)

Expanding u(x) by a Taylor series, the nodal values of the exact solution are

indicated as u(xI) and can be expressed as

u(xI) =
s∑

m=0

1

m!

(

(xI − x)
∂

∂x
+ (yI − y)

∂

∂y
+ (zI − z)

∂

∂z

)m

u(x)+Rs+1+O(hs+2)

(5.16)

with

Rs+1 =
1

(s+ 1)!

(

(xI − x)
∂

∂x
+ (yI − y)

∂

∂y
+ (zI − z)

∂

∂z

)s+1

u(x) (5.17)

Combining the conditions of an approximation of sth order completeness with

Equations (5.15, 5.16) and ignoring higher order terms, the approximation error

reads

uh(x)−u(x) =
1

(s+ 1)!

(

(xI − x)
∂

∂x
+ (yI − y)

∂

∂y
+ (zI − z)

∂

∂z

)s+1

u(x) (5.18)

The shape functions are bounded, that is |Φ(x)| ≤ c where c is a bounded constant,

and have compact support (|xI − x| ≤ RI , |yI − y| ≤ RI and |zI − z| ≤ RI , RI is

the radius of the domain of influence). Defining

D =

(
∂

∂x
+

∂

∂y
+

∂

∂z

)

(5.19)
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and taking the L2-norm of the error estimate, Equation (5.18) becomes

‖uh(x) − u(x)‖L2(Ω) = cRs+1
I

∣
∣
∣
∣

∣
∣
∣
∣

1

(s+ 1)!
Ds+1u

∣
∣
∣
∣

∣
∣
∣
∣
L2(Ω)

(5.20)

Similarly, the approximation error associated with the derivatives can be esti-

mated. The error in the first derivative is expressed as

∣
∣
∣
∣

∣
∣
∣
∣

∂uh(x)

∂x
− ∂u(x)

∂x

∣
∣
∣
∣

∣
∣
∣
∣
L2(Ω)

= cRs
I

∣
∣
∣
∣

∣
∣
∣
∣

1

(s+ 1)!
Ds+1u

∣
∣
∣
∣

∣
∣
∣
∣
L2(Ω)

(5.21)

For 2D problems, the approximation error of the first derivative is

∣
∣
∣
∣

∣
∣
∣
∣

∂uh(x)

∂x
− ∂u(x)

∂x

∣
∣
∣
∣

∣
∣
∣
∣
L2(Ω)

= cRI

∣
∣
∣
∣

∣
∣
∣
∣

1

2
(u,xx + u,yy + 2u,xy)

∣
∣
∣
∣

∣
∣
∣
∣
L2(Ω)

(5.22)

for a linear basis function, and it is

∣
∣
∣
∣

∣
∣
∣
∣

∂uh(x)

∂x
− ∂u(x)

∂x

∣
∣
∣
∣

∣
∣
∣
∣
L2(Ω)

= cR2
I

∣
∣
∣
∣

∣
∣
∣
∣

1

6
(u,xxx + u,yyy + 3 (u,xxy + u,yyx))

∣
∣
∣
∣

∣
∣
∣
∣
L2(Ω)

(5.23)

for a quadratic basis function.

5.4 Adaptive procedure

5.4.1 Updating the shape functions

In meshfree adaptive analysis, new nodes are added in those parts of the domain

where the error exceeds a predefined tolerance. These new nodes locally impact

on the shape functions of neighbouring nodes. In order to reduce computational

cost and to ensure consistency of the MLS approximation, matrix A in the shape
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functions of existing nodes are reconstructed locally as (You et al., 2003):

A(x) =

nold∑

I=1

wI(x)p(xI)p
T (xI) +

nnew∑

I=1

wI(x)p(xI)p
T (xI)

= Aold(x) +

nnew∑

I=1

wI(x)p(xI)p
T (xI) (5.24)

This is illustrated with a one-dimensional example in Figure 5.2, where an added

node 12 can be seen to affect the shape functions of nodes 6 and 7.
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Figure 5.2: Nodal refinement strategies based on Voronoi cells

Note that in an adaptive refinement procedure nodes will often be distributed

irregularly. Therefore the size of the domain of influence needs to be determined

locally. The Voronoi diagram for a set of nodes is unique, and from the Voronoi

cell information, the neighbours of node I can be identified and grouped as NI , as

shown in Figure 5.3

NI = {PJ : V (PJ) ∩ V (PI) 6= ⊘}
= {p1, p2, p3, p4, p5, p6, p7} (5.25)

where V (PI) is the Voronoi cell of particle PI .
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Figure 5.3: Determination of shape function support size

The size of the domain of influence of node I is then determined as

RI = β · hI = β · max{dJ : dJ = PIPJ , ∀PJ ∈ NI} (5.26)

5.4.2 Refinement criteria

Based on the error estimate discussed in Section 5.3, the local error is computed

for each integration cell from the displacement fields obtained by solving the op-

timisation problem. This local error is controlled as follows

Rs
I

∣
∣
∣
∣

∣
∣
∣
∣

1

(s+ 1)!
Ds+1u

∣
∣
∣
∣

∣
∣
∣
∣
L2(Ω)

≤ δ (5.27)

where δ is a dimensionless user-defined error tolerance value which will be discussed

in more detail in Section 5.5.

It is important to note that it is often computationally expensive to calculate the

terms Ds+1u in Equation (5.27), especially for problems using second, or higher,

order basis functions. Furthermore, in order to evaluate accurately the LHS term

in Equation (5.27) a large number of Gauss points would be needed (Rabczuk &

Belytschko, 2005). The smoothing technique proposed in Chen et al. (2001a) can
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be extended to overcome this difficulty. Introducing smoothing of Ds+1u(x) at a

representative nodal domain Ωj , we have

Ds+1ũ(xj) =
1

aj

∫

Ωj

Ds+1u(x)dΩ (5.28)

Introducing now the MLS approximation of the displacement field, we obtain

Ds+1ũ(xj) =

n∑

I=1

Ds+1Φ̃I(xj)uI (5.29)

where

Ds+1Φ̃I(xj) =
1

aj

∫

Ωj

Ds+1ΦI(x)dΩ (5.30)

With the use of this smoothing technique, the cell-based error tolerance can be

rewritten as

ajR
s
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L2(Ωj)

≤ δ (5.31)

The global error estimator is the sum of the local errors of all cells and is given by

||e||L2(Ω) =





n∑
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(5.32)

For plate problems, quadratic basis functions must be used (Krysl & Belytschko,

1995). The local cell-based error estimator then reads

ajR
2
j

∣
∣
∣
∣

∣
∣
∣
∣

ũ,xxx(xj) + ũ,yyy(xj) + 3 (ũ,xxy(xj) + ũ,yyx(xj))

6

∣
∣
∣
∣

∣
∣
∣
∣
L2(Ωj)

≤ δ (5.33)

in which

ũ,ααβ(xj) =
n∑

I=1

Φ̃I,ααβ(xj)uI (5.34)

Φ̃I,ααβ(xj) =
1

2aj

∮

Γj

(ΦI,αα(xj)nβ(x) + ΦI,αβ(xj)nα(x)) dΓ (5.35)

The technique used to determine the boundary integral in Equation (5.10) can be

applied here to evaluate the term on the RHS of Equation (5.35).
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5.4.3 Refinement strategy

The problem domain is subdivided into nodes and an associated Voronoi diagram

is constructed. If the local error in a Voronoi cell exceeds the predefined value

δ, new nodes are added as shown in Figure 5.4 (You et al., 2003; Yvonnet et al.,

2006). It can be seen from the figure that the cells in the Voronoi diagram resulting

from strategy (I) are more uniformly sized than those resulting from strategy (II),

and also that the number of nodes added in the two cases is identical.

added node

existing node

(a) Strategy I: adding nodes on vertices of
Voronoi cell

(b) Voronoi cells associated with (a)

added node

existing node

(c) Strategy II: adding midpoint nodes on
edges of Voronoi cell

(d) Voronoi cells associated with (c)

Figure 5.4: Nodal refinement strategies based on Voronoi cells

The efficiency of these refinement strategies will be discussed in the next section.

The adaptive procedure can be summarised as follows:
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1. Construct Voronoi diagram from an initial set of nodes.
2. Construct shape functions, derivatives and smoothed values.
3. Build matrices and vectors for the optimisation problem.
4. Solve the optimisation problem to obtain a collapse load multiplier
and displacement field data.
5. Calculate the local error for each Voronoi cell or node.
6. Calculate the global error (= sum of local errors).
7. If all local errors are smaller than the user-defined error tolerance δ
then terminate as no further refinement is necessary.
8. Otherwise refine cells with a large local error and add new nodes.
9. Repeat from step 1.

5.5 Numerical examples

The efficacy of the proposed adaptive meshfree procedure for limit analysis prob-

lems will now be demonstrated by applying it to plate problems of various ge-

ometries and loaded by either a uniform pressure or concentrated forces. For all

the examples considered the following parameters were assumed: plate thickness

t = 0.1 m; yield stress σ0 = 250 MPa and the parameter β in Equation (5.26) was

taken to be 3.0 (Rabczuk & Belytschko, 2005). Quarter symmetry was assumed

where appropriate. The commercial interior point solver (Mosek, 2008), which

is capable of rapidly solving large-scale mathematical optimisation problems, was

used to solve all optimisation problems. Note that the high order shape functions

used in the EFG method make a priori proof of the strict upper bound status

of the solutions difficult. However, as the discretisation is progressively refined

using the adaptive procedure, increasingly close approximations of the true plastic

collapse load multiplier can be expected to be obtained.

5.5.1 Rectangular plate

The first example considered comprises a rectangular plate, simply supported at

two opposite edges and subjected to uniform out-of-plane pressure loading, as

shown on Figure 5.5. The plate dimensions were set as a = b/2 = 5 m. In all cases
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Figure 5.5: Rectangular plate simply supported along 2 edges and subject
to uniform pressure: geometry and initial nodal discretisation (50 nodes over

quarter of plate)

a total of 10 × 5 nodes were initially used to discretise a quarter of the plate, as

shown in Figure 5.5.

Firstly the threshold error tolerance δ was taken as 0.001 and the efficacy of the

two refinement strategies illustrated in Figure 5.4 was investigated. Figure 5.6

shows the improvement in the computed collapse load as the problem is refined.

It can be seen that adaptive strategy (I), which adds vertex nodes in Voronoi

cells, results in a much better computed collapse load multiplier than strategy

(II). This can be explained by the fact that the Voronoi cells are more regular

with strategy (I) than with strategy (II); strategy (I) was therefore used in all

subsequent computations described herein. The best solution found was 4.52 with

480 nodes, compared with 4.55 obtained using 648 nodes when using a uniform

layout of nodes.

The progress of the adaptive refinement procedure using strategy (I) is also shown

graphically in Figure 5.7. What is clear is that the majority of nodes must be

positioned in zones of plastic yielding in order to ensure that an accurate collapse

load multiplier is obtained.

Secondly the influence of the local error tolerance, in the range 0.0002 ≤ δ ≤ 0.001,

was investigated. Numerical collapse load multipliers and global error estimator

values for various error tolerance values δ are shown in Figure 5.8 (where strategy
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Figure 5.6: Influence of adaptive strategy (I) and (II) on the computed load
multiplier

(a) Step 2, ‖e‖ = 0.0109 (b) Step 4, ‖e‖ = 0.0097 (c) Step 5, ‖e‖ = 0.0044

Figure 5.7: Adaptive refinement using strategy (I) and δ = 0.001 (rectangular
plate)
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Figure 5.8: Influence of the error tolerance value δ (rectangular plate)

(∗) - MOSEK solution status reported as either Near-optimal or Unknown
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(I) was used in all cases). It can be seen that the use of smaller tolerance values δ

results in a higher computational cost, but does not always provide an improved

computed collapse load multiplier.

5.5.2 L-shaped plate

The next example comprises an L-shape plate subjected to a uniform load and

with geometry and kinematic boundary conditions as shown in Figure 5.9. In all

computations L was taken as 10 m and a total of 133 nodes were initially used to

discretise the plate.
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Figure 5.9: L-shaped plate geometry and initial nodal discretisation

This problem was found to exhibit a singularity at the re-entrant corner, with

a predicted yield line passing parallel to the supports from the re-entrant corner

to the uppermost free edge. Computed collapse load multipliers and global error

estimators for various different error tolerance values δ are plotted in Figure 5.10.

It is evident from the two examples that a good estimate of the load multiplier

could be obtained even when δ was taken as 0.001, despite the fact that the

maximum number of nodes was in this case much smaller than when δ was taken

as a lower value. This may be explained by the fact that in plastic regions error

tolerance values greater than 0.001 are encountered, and nodes should be added in

these zones. When δ is set to be smaller, a more uniform refinement is favoured,
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which affects efficiency. It is also shown in Haussler-Combe & Korn (1998) that

in some cases when δ is set close or equal to zero the global error estimator is

surprisingly greater than when δ = 0.001. The progress of the refinement is shown

graphically in Figure 5.11. It is evident that errors are large in the zones near the

re-entrant corner and emerging yield line, and consequently these areas are refined

in each step of the adaptive scheme. The best upper-bound load multiplier was

found to be 6.15 when a total of 453 nodes were present, which is considerably

lower than the value of 6.298 obtained previously (Le et al., 2009), when using up

to 3816 nodes distributed uniformly across the plate.
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Figure 5.10: Influence of the error tolerance value δ (L-shape plate)

(∗) - MOSEK solution status reported as Near-optimal

(a) Step 2 ‖e‖ = 0.0156 (b) Step 3 ‖e‖ = 0.0058 (c) Step 5 ‖e‖ = 0.0047

Figure 5.11: Adaptive refinement with δ = 0.001 (L-shape plate)
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5.5.3 Clamped circular plate

The third example involves a clamped circular plate with central concentrated

load P . This problem exhibits a logarithmic singularity in the displacement field

near the point load and has a known exact solution (Hopkins & Wang, 1954),

λ+ = 4πmp√
3P

= 7.255 mp

P
. The effectiveness of the proposed adaptive EFG method

is demonstrated by comparing errors in the computed collapse load multiplier

with and without nodal refinement; see Figure 5.12. In the adaptive analysis, δ

was taken as 0.001 and strategy (I) was once again used. The best computed

kinematic collapse load multiplier obtained was 7.27, which is just 0.2% higher

than the exact solution. In the adaptive scheme the majority of the nodes were

found to be concentrated in the zone around the singular point, as shown on

Figure 5.13.
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Figure 5.12: Performance of uniform vs adaptive refinement schemes (circular
plate)

5.5.4 Rectangular plate with eccentric square cutout

The last example involves a rectangular plate with an eccentric square cutout, of

the same geometry as examined previously using an elasto-plastic model (Askes

et al., 1999a). All external and internal edges are simply supported and the dimen-

sions are shown in Figure 5.14. Figure 5.15b shows a plot of the plastic dissipation

for this problem. The implied yield line pattern shows good qualitative agreement
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(a) Step 2 (b) Step 4 (c) Step 5

Figure 5.13: Adaptive refinement (clamped circular plate)

with the result in Askes et al. (1999a). Due to the dominance of the yield lines

in the left part of the plate, most nodes were added in this area, as shown on

Figure 5.15a. The best estimate of the collapse load multiplier was found to be

51.45 mp

ab
.
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(a) Geometry and boundary conditions (b) Initial nodal discretisation

Figure 5.14: Details of rectangular plate with eccentric square cutout

5.6 Conclusions

An efficient adaptive meshless limit analysis procedure for plates has been de-

scribed. h-refinement is used and the smoothing technique used for nodal inte-

gration has been extended to allow error estimation at representative nodal cells,
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(a) Step 4: 1459 nodes (b) Plastic dissipation distribution

Figure 5.15: Adaptive refinement (rectangular plate with eccentric square
cutout)

resulting in an efficient adaptive EFG method. Due to the naturally conform-

ing properties of the meshfree approximation, the proposed adaptive scheme is

conveniently performed without the need for complex manipulation of the data

structures involved. Since properties of Voronoi cells are used as a reference for

nodal addition strategies, irregular nodal layouts can be treated efficiently by the

method. The adaptive scheme is able to capture yield line patterns arising from

localised plastic deformations for problems of arbitrary geometry. It is found that

the majority of nodes are concentrated in these plastic zones and that accurate

estimates of the collapse load multiplier can be obtained using a relatively small

number of nodes.



Chapter 6

Limit analysis of plates and slabs

using a meshless equilibrium

formulation1

A meshless Element-Free Galerkin (EFG) equilibrium formulation is proposed to

compute the limit loads which can be sustained by plates and slabs. In the for-

mulation pure moment fields are approximated using a moving least squares tech-

nique, which means that the resulting fields are smooth over the entire problem

domain. There is therefore no need to enforce continuity conditions at interfaces

within the problem domain, which would be a key part of a comparable finite

element formulation. The collocation method is used to enforce the strong form

of the equilibrium equations and a stabilised conforming nodal integration scheme

is introduced to eliminate numerical instability problems. The combination of

the collocation method and the smoothing technique means that equilibrium only

needs to be enforced at the nodes, and stable and accurate solutions can be ob-

tained with minimal computational effort. The von Mises and Nielsen yield criteria

1based on C.V. Le, M. Gilbert and H. Askes, Limit analysis of plates and slabs using a
meshless equilibrium formulation, International Journal for Numerical Methods in Engineering,
accepted subject to minor revisions, 2009.
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which are used in the analysis of plates and slabs respectively are enforced by in-

troducing second-order cone constraints, ensuring that the resulting optimisation

problem can be solved using efficient interior-point solvers. Finally, the efficacy

of the procedure is demonstrated by applying it to various benchmark plate and

slab problems.

6.1 Introduction

The fundamental theorems of limit analysis can be used to provide upper and lower

bound estimates of the load required to cause collapse of a body or structure. If

a suitable approximation for the displacement field is used, and the kinematic

theorem is applied, an upper bound on the exact limit load can be obtained.

Alternatively, if a suitable approximation for the stress field is used, and the static

theorem is applied, a lower bound can be obtained. Applying these theorems and

using a finite element discretisation, numerical procedures have been developed

to perform the limit analysis of perfectly plastic plates and slabs, e.g. Hodge

& Belytschko (1968); Chan (1972); Anderheggen & Knopfel (1972); Faccioli &

Vitiello (1973); Munro & Fonseca (1978); Lubliner (1990) and Capsoni & Corradi

(1999). These procedures can provide good bounds on the exact collapse load

(or ‘load multiplier’), with the results in Hodge & Belytschko (1968) remarkably

providing the best lower-bounds available for plate problems for many years (Save

et al., 1997). However, solutions obtained from nite element based computational

limit analysis procedures can be very sensitive to mesh geometry, particularly for

problems which contain strong singularities in the stress and/or displacement elds.

It is therefore worthwhile to explore a range of alternative methods. Recently Le

et al. (2009) proposed a numerical kinematic formulation using the Element-Free

Galerkin (EFG) method and second-order cone programming (SOCP) to furnish

good (approximate) upper-bound solutions for Kirchhoff plate problems governed

by the von Mises failure criterion. It has also been demonstrated (Chen et al., 2008;

Le et al., 2009) that the EFG method is in general well suited for limit analysis

problems, allowing accurate solutions to be obtained with relatively few nodes.
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Following this line of research, the main objective of this paper is to develop an

equilibrium formulation which combines the EFG method with SOCP to obtain

accurate solutions for both plate and slab problems.

In a static equilibrium formulation, the stress/moment fields are generally chosen

so that the equilibrium equations, boundary conditions and continuity require-

ments are met for all feasible values of the problem variables. In Chen et al. (2008),

a self-equilibrium stress basis vector at each Gaussian point is calculated by solv-

ing the equivalent weak form of the equilibrium equations. The self-equilibrium

stress field is then obtained by a linear combination of several self-equilibrium

stress basis vectors which are generated by considering the differences between

intermediate stresses during the elasto-plastic equilibrium iteration. However, the

stress field obtained is not guaranteed to be statically admissible as it is derived

from an approximated virtual displacement field by solving the weak form of the

equilibrium equation. In contrast, in this paper the stress/moment fields will be

constructed by using a moving least squares approximation. It is well-known that

the field obtained when using this technique is smooth over the entire problem

domain. There is therefore no need to enforce continuity conditions at interfaces

within the problem domain (which would be a key part of a comparable finite

element formulation).

In the framework of meshfree methods, it is advantageous if the problem un-

der consideration can be solved be evaluating quantities at the nodes only. For

problems involving integration, a stabilised conforming nodal integration (SCNI)

scheme proposed in Chen et al. (2001a) is an effective option. The main idea of

the scheme is that nodal values are determined by spatially averaging field values

using the divergence theorem. The scheme has been applied successfully to vari-

ous analysis problems (Sze et al., 2004; Wang & Chen, 2004; Yoo et al., 2004; Le

et al., 2009). It is shown that, when the SCNI scheme is applied, the solutions

obtained are accurate and stable, and the computational cost is much lower than

when using Gauss integration. Due to these advantages the scheme will be used

here to stabilise the moment derivatives. Using smoothed second derivatives of the

moment field at nodes, the equilibrium equations only need to be fulfilled at the
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nodes. Furthermore, properties of Voronoi cells (which are representative nodal

domains used in the smoothing scheme) can be used as a reference when enforcing

the yield criteria.

The aim of this paper is to present an EFG based equilibrium limit analysis for-

mulation for application to rigid-perfectly plastic plates and slabs, governed by the

von Mises and Nielsen yield criteria respectively. The Kirchhoff moment field is

approximated by using the moving least squares technique and nodal collocation

is used to impose boundary conditions. The yield criteria are cast in terms of

conic constraints, allowing the limit analysis problem to be posed as a standard

second-order cone programming problem which can be solved using highly efficient

solvers (Mosek, 2008). Finally, in order to test the performance of the method,

several benchmark plate and slab examples from the literature are investigated.

6.2 Limit analysis of plates - equilibrium formu-

lation

A lower-bound solution to the problem involving a rigid-perfectly plastic plate or

slab can be obtained by using the static theorem of plasticity, which states that a

moment field is statically and plastically admissible if (i) equilibrium and boundary

conditions are fully satisfied, and (ii) the yield condition is not violated anywhere.

The exact plastic collapse load multiplier, λp, is the largest value among a set

of lower bound multipliers, λ−, corresponding to any statically and plastically

admissible moment distribution (Hodge & Belytschko, 1968; Chan, 1972). The

moment field is denoted as m = [mxx myy mxy]
T and is constrained to belong to

the domain

B = {m |ψ(m) ≤ 0} , (6.1)

in which the so-called yield function ψ(m) is convex.
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In this study, the yield criterion proposed by Nielsen (1964); Wolfensberger (1964)

and Nielsen (1998) is used for the analysis of reinforced concrete slabs. The crite-

rion is expressed as

(m+
px −mxx)(m

+
py −myy) ≥ m2

xy

(m−
px +mxx)(m

−
py +myy) ≥ m2

xy

−m−
px ≤ mxx ≤ m+

px

−m−
py ≤ myy ≤ m+

py

(6.2)

where m−
px and m−

py are the negative yield moments in the x and y directions,

respectively, and similarly m+
px and m+

py are the positive yield moments in the two

directions. The constraints in (6.2) represent a bi-conical yield surface, as shown

in Figure 6.1.

mxy

myy

mxx

Figure 6.1: Yield criterion for reinforced concrete slabs (Nielsen (1964);
Wolfensberger (1964) and Nielsen (1998))

For steel plates, the von Mises failure criterion is often used, and can be expressed

as

ψ(m) =
√

mT P m −mp (6.3)
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where mp = σ0t
2/4 is the plastic moment of resistance per unit width of a plate

of thickness t and yield stress σ0, and where

P =
1

2







2 −1 0

−1 2 0

0 0 6







(6.4)
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Figure 6.2: Plate sign conventions

Following the sign convention given in Figure 6.2, the lower-bound limit analysis of

plate/slab problems can be expressed in the form of a mathematical programming

problem, as

λ− = max λ (6.5a)

s.t ∇2m + λq = 0 (6.5b)

m ∈ B (6.5c)

where λ− is the numerically computed load multiplier, q is the pressure load,

∇2 =
{

∂2

∂x2

∂2

∂y2 2 ∂2

∂x∂y

}

, and the moment field m must also satisfy appropriate

boundary conditions.
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6.3 The EFG equilibrium model

6.3.1 Moving least squares approximation

Whereas in the kinematic formulation the displacement field is approximated,

here the moment field needs to be approximated. By using the moving least

squares technique (Belytschko et al., 1994), which is the most frequently used

approximation in meshless methods, approximations of these moment fields can

be expressed as

mh(x) =







mh
xx

mh
yy

mh
xy







=
n∑

I=1

ΦI(x)







mxxI

myyI

mxyI







(6.6)

in which

ΦI(x) = pT (x)A−1(x)BI(x) (6.7)

A(x) =
n∑

I=1

wI(x)p(xI)p
T (xI) (6.8)

BI(x) = wI(x)p(xI) (6.9)

where n is the number of nodes; p(x) is a set of basis functions; wI(x) is a weight

function associated with node I. In this work, an isotropic quartic spline function

is used, which is given by

wI(x) =

{

1 − 6s2
I + 8s3

I − 3s4
I if sI ≤ 1

0 if sI > 1
(6.10)

with sI = ‖x−xI‖
RI

, where RI is the support radius of node I and determined by

RI = β · hI (6.11)

where β is the dimensionless size of influence domain and hI is the nodal spacing

when nodes were distributed regularly, or the maximum distance to neighbour-

ing nodes when nodes were distributed irregularly (Figure 6.3). The maximum
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Figure 6.3: Sizes of influence domain

distance is determined by

hI = max{dJ : dJ = PIPJ , ∀PJ ∈ NI} (6.12)

where

NI = {PJ : V (PJ) ∩ V (PI) 6= ⊘}
= {p1, p2, p3, p4, p5, p6, p7} (6.13)

in which V (PI) is the Voronoi cell of particle PI .

6.3.2 Stabilised equilibrium equation

The equilibrium equations are frequently treated in one of two ways in numerical

procedures: (i) equilibrium is enforced at nodes in the problem domain and also at

boundaries (using the ‘collocation’ method), or (ii) the equilibrium equations are

transformed into the equivalent weak-form (involving integrals), using the so-called

‘weighted residual method’ (Zienkiewicz & Taylor, 2000; Liu & Gu, 2005). The

former method is simple and fast, but it has been reported to suffer from numerical

stability problems (Liu & Gu, 2005; Chen et al., 2006). In contrast, formulations
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which use the weak-form can usually produce a stable set of discretised system

equations, in turn leading to accurate solutions. Finite element based formulations

have been developed by several authors (Fraeijs de Veubeke & Zienkiewicz, 1967;

Fraeijs de Veubeke, 2001). Considering meshless methods, an equilibrium model

for elastostatic problems was first introduced in Duflot & Nguyen-Dang (2002),

where stress fields were expressed by means of an Airy stress function, approxi-

mated using the moving least squares method. Alternatively the self-equilibrium

stress field can be calculated by using an assumed displacement field and solving

the weak form of the equilibrium equations (Chen et al., 2008). However, here an

alternative EFG equilibrium formulation in which the collocation method is used

in combination with a smoothing technique is proposed.

A strain smoothing method was firstly presented in Chen et al. (2000) for the

regularisation of material instabilities. The strain smoothing method was then

modified to allow stabilisation in nodal integration schemes, leading to the so-called

stabilised conforming nodal integration (SCNI) scheme Chen et al. (2001a). The

SCNI scheme was then successfully applied to both elastic analysis (Sze et al., 2004;

Wang & Chen, 2004) and plastic analysis (Le et al., 2009) problems. It has been

shown that the SCNI scheme results in an efficient and truly mesh-free method,

and also to numerically stable solutions. This smoothing technique will now be

adapted in order to stabilise problems involving bending moment derivatives as

follows

m̃h
αβ,αβ(xJ ) =

∫

ΩJ

mh
αβ,αβ(x)ϕ(x,x − xJ) dΩ (6.14)

where m̃h
αβ,αβ is the smoothed value of the second-derivative of moment mh

αβ,αβ at

node J , and ϕ is a distribution (or ‘smoothing’) function that has to satisfy the

following properties (Chen et al., 2000; Yoo et al., 2004)

ϕ ≥ 0 and

∫

ΩJ

ϕ dΩ = 1 (6.15)
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For simplicity, the function ϕ is assumed to be a piecewise constant function and

is given by

ϕ(x,x − xJ ) =

{

1/aJ , x ∈ ΩJ

0, x /∈ ΩJ

(6.16)

where aJ is the area of the representative domain of node J , as shown in Figure 6.4.

J

J

J

J

J

J

J

Figure 6.4: Geometry of a representative nodal domain

Substituting Equation (6.16) into Equation (6.14), and applying the divergence

theorem, the following expressions can be derived

m̃h
αβ,αβ(xJ) =

1

aJ

∫

ΩJ

mh
αβ,αβ(x) dΩ

=
1

2aJ

∫

ΓJ

(
mh

αβ,α(x)nβ(x) +mh
αβ,β(x)nα(x)

)
dΓ (6.17)

where ΓJ is the boundary of the representative domain ΩJ .

Now introducing a moving least squares approximation of the moment fields, the

smooth version of the moment second-derivative can be expressed as

m̃h
αβ,αβ(xJ) =

n∑

I=1

Φ̃I,αβ(xJ)mαβI (6.18)
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with

Φ̃I,αβ(xj) =
1

2aj

∫

Γj

(ΦI,α(xj)nβ(x) + ΦI,β(xj)nα(x)) dΓ

=
1

4aj

ns∑

k=1

(
nk

β l
k + nk+1

β lk+1
)
ΦI,α(xk+1

j )

+
1

4aj

ns∑

k=1

(
nk

α l
k + nk+1

α lk+1
)
ΦI,β(xk+1

j ) (6.19)

where Φ̃ is the smoothed version of Φ; ns is the number of segments of a Voronoi

nodal domain ΩJ as shown in the Figure 6.4; xk
J and xk+1

J are the coordinates

of the two end points of boundary segment Γk
J which has length lk and outward

surface normal nk.

With the use of the smoothed value m̃h
αβ,αβ the equilibrium equation can be en-

forced at n nodes, and Equation (6.5b) can be rewritten as

A1m1 + A2m2 + A3m3 + λqI = 0 (6.20)

where

IT =
[

1 1 . . . 1
]

1×n
(6.21)

A1 =







. . . . . . . . . . . .

Φ̃1,xx(xJ) Φ̃2,xx(xJ) . . . Φ̃n,xx(xJ)

. . . . . . . . . . . .







n×n

(6.22)

A2 =







. . . . . . . . . . . .

Φ̃1,yy(xJ ) Φ̃2,yy(xJ ) . . . Φ̃n,yy(xJ)

. . . . . . . . . . . .







n×n

(6.23)

A3 =







. . . . . . . . . . . .

2Φ̃1,xy(xJ) 2Φ̃2,xy(xJ) . . . 2Φ̃n,xy(xJ)

. . . . . . . . . . . .







n×n

(6.24)
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m1 =
[

mxx1 . . . mxxn

]T

(6.25)

m2 =
[

myy1 . . . myyn

]T

(6.26)

m3 =
[

mxy1 . . . mxyn

]T

(6.27)

It is important to note that when the smoothing technique is used, the equilib-

rium equation is fulfilled at nodes only (unlike in Chen et al. (2008) where the

equilibrium is transformed into the equivalent weak form and enforced at Gauss

points).

6.3.3 Enforcement of boundary conditions

It should be borne in mind that the quantities mxxI , myyI and mxyI in Equa-

tion (6.6) are fictitious nodal values, rather than actual moments acting at the

nodes. This unfortunately complicates matters when seeking to enforce boundary

conditions. One way of addressing this is to use the collocation method proposed

in Zhu & Atluri (1998). Let Mn, Mnt and Qn denote the normal bending moment,

twisting moment and transverse shear force at node xb on a free unloaded edge,

where its normal vector n forms an angle αa with the x-axis. Conditions for this

boundary can be expressed as

Mn ≡ mh
xxc

2
αa

+mh
yys

2
αa

+ 2mh
xycαa

sαa
= 0

Mnt ≡ (mh
yy −mh

xx)cαa
sαa

+ 2mh
xy(c

2
αa

− s2
αa

) = 0 (6.28)

Qn ≡ Qxcαa
+Qysαa

= 0

where cαa
= cosαa and sαa

= sinαa. It is important to note that smoothed

moment derivatives are used in the equilibrium equation (6.20). Consequently,

the shear forces Qx and Qy must also be calculated from these smoothed moment
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derivatives as follows

Qx =
∂m̃xx

∂x
+
∂m̃xy

∂y
(6.29)

Qy =
∂m̃xy

∂x
+
∂m̃yy

∂y
(6.30)

Introducing a moving least squares approximation of the moment field, Equa-

tion (6.28) can be rewritten as

B1m1 + B2m2 + B3m3 = 0 (6.31)

where

B1 =

















. . . . . . . . . . . .

c2αa
Φ1(xi) c2αa

Φ2(xi) . . . c2αa
Φn(xi)

. . . . . . . . . . . .

−cαa
sαa

Φ1(xi) −cαa
sαa

Φ2(xi) . . . −cαa
sαa

Φn(xi)

. . . . . . . . . . . .

cαa
Φ̃1,x(xi) cαa

Φ̃2,x(xi) . . . cαa
Φ̃n,x(xi)

. . . . . . . . . . . .

















(6.32)

B2 =

















. . . . . . . . . . . .

s2
αa

Φ1(xi) s2
αa

Φ2(xi) . . . s2
αa

Φn(xi)

. . . . . . . . . . . .

cαa
sαa

Φ1(xi) cαa
sαa

Φ2(xi) . . . cαa
sαa

Φn(xi)

. . . . . . . . . . . .

sαa
Φ̃1,y(xi) sαa

Φ̃2,y(xi) . . . sαa
Φ̃n,y(xi)

. . . . . . . . . . . .

















(6.33)
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B3 =

















. . . . . . . . . . . .

2cαa
sαa

Φ1(xi) 2cαa
sαa

Φ2(xi) . . . 2cαa
sαa

Φn(xi)

. . . . . . . . . . . .

2(c2αa
− s2

αa
)Φ1(xi) 2(c2αa

− s2
αa

)Φ2(xi) . . . 2(c2αa
− s2

αa
)Φn(xi)

. . . . . . . . . . . .

|sαa
Φ̃1,x + cαa

Φ̃1,y|xi
|sαa

Φ̃1,x + cαa
Φ̃2,y|xi

. . . |sαa
Φ̃1,x + cαa

Φ̃n,y|xi

. . . . . . . . . . . .

















(6.34)

where i = 1, 2, . . . , nb, and where nb is the number of nodes with boundary condi-

tions.

6.4 Second-order cone programming (SOCP)

It was recognised in Krabbenhoft et al. (2007) that most commonly used yield

criteria can be cast in the form of conic constraints, and optimisation problems in-

volving such constraints can be solved using highly efficient solvers (Mosek, 2008).

Consequently, several numerical limit analysis procedures which involve the use of

cone programming techniques have been reported recently (Makrodimopoulos &

Martin, 2006b; Ciria et al., 2008; Le et al., 2009). This paper continues this trend

by combining SOCP with the presented EFG equilibrium model.

There are two types of second-order cone (also known as ‘Lorentz’ or ‘ice cream’

cones) in general use. The first is the standard quadratic cone, defined as

Lq =






x ∈ R

m | x1 ≥

√
√
√
√

m∑

j=2

x2
j = ‖x2→m‖L2






(6.35)

and the second is the rotated quadratic cone, defined as

Lr =

{

x ∈ R
m+2 | x1x2 ≥

m+2∑

j=3

x2
j = ‖x3→m+2‖2

L2 , x1, x2 ≥ 0

}

(6.36)
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In the following sections, the Nielsen and von Mises yield criteria will be formulated

using rotated and standard quadratic cones respectively.

6.4.1 The Nielsen yield criterion

Introducing additional problem variables as follows

ρ+ =








ρ+
1

ρ+
2

ρ+
3








=








m+
px −mh

xx

m+
py −mh

yy
√

2mh
xy








= D+m + d+ (6.37)

ρ− =








ρ−1

ρ−2

ρ−3








=








m−
px +mh

xx

m−
py +mh

yy
√

2mh
xy








= D−m + d− (6.38)

where

D+ =








−1 0 0

0 −1 0

0 0
√

2








; d+ =








m+
px

m+
py

0








; D− =








1 0 0

0 1 0

0 0
√

2








; d− =








m−
px

m−
py

0








(6.39)

the relations in Equation (6.2) are the intersection of two rotated cones and are

expressed as

ρ+ ∈ L
+
r , L

+
r =

{
ρ+ ∈ R

3 | 2ρ+
1 ρ

+
2 ≥ (ρ+

3 )2, ρ+
1 , ρ

+
2 ≥ 0

}
(6.40)

ρ− ∈ L
−
r , L

−
r =

{
ρ− ∈ R

3 | 2ρ−1 ρ
−
2 ≥ (ρ−3 )2, ρ−1 , ρ

−
2 ≥ 0

}
(6.41)
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6.4.2 The von Mises yield criterion

In order to represent the von Mises criterion as a second-order cone constraint,

Equation (6.3) is first rewritten in terms of the L2 norm as

ψ(m) = ‖JT m‖L2 −mp (6.42)

where J is the so-called Cholesky factor of P

J =
1

2







2 0 0

−1
√

3 0

0 0 2
√

3







(6.43)

By applying the following transformation of the moment variables m

ρ2→4 =







ρ2

ρ3

ρ4







= JT m =










mh
xx −

1

2
mh

yy
√

3

2
mh

yy

√
3mh

xy










(6.44)

and defining ρ1 = mp, constraint (6.1) can be cast in terms of a second-order cone

constraint as follows

B ≡ Lq =

{

ρ ∈ R
4 | ρ1 ≥ ‖ρ2→4‖L2 =

√

ρ2
2 + ρ2

3 + ρ2
4, ρ1 = mp

}

(6.45)

where Lq is the four-dimensional quadratic cone and ρT = {ρ1 ρ2 ρ3 ρ4}.

Using a moving least squares approximation of the moment fields, the vector ρ2→4

is evaluated at point xk and expressed as

ρk
2→4 = CkM (6.46)
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where M = [ m1 m2 m3 ]T and

Ck =










CT
1k −1

2
CT

2k 0

0

√
3

2
CT

2k 0

0 0
√

3CT
3k










(6.47)

with

CT
1k =

[

Φ1,xx(xk) Φ2,xx(xk) . . . Φn,xx(xk)
]

CT
2k =

[

Φ1,yy(xk) Φ2,yy(xk) . . . Φn,yy(xk)
]

CT
3k =

[

Φ1,xy(xk) Φ2,xy(xk) . . . Φn,xy(xk)
]

(6.48)

Consequently, the quadratic cone at point xk is

L
k
q =

{
ρk ∈ R

4 | ρ1 ≥ ‖ρk
2→4‖L2 , ρ1 = mp

}
(6.49)

6.4.3 Limit analysis formulation

The limit analysis formulation can now be expressed in the form of a standard

second-order cone programming problem as

λ− = max λ

s.t







A1m1 + A2m2 + A3m3 + λqI = 0

B1m1 + B2m2 + B3m3 = 0

ρk ∈ L k, k = 1, 2, . . . , np

(6.50)

where np is the number of yield points and ρ is defined by Equations 6.37, 6.38

or 6.46 (depends on the use of yield criteria). Using the existing Voronoi cell

geometry, the yield condition can conveniently be enforced at vertex points within

Voronoi cells, as well as at nodes, as indicated in Figure 6.5.
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extra yield points

nodal yield points

Figure 6.5: Locations of yield points (at nodes and elsewhere within Voronoi
cells)

It should be emphasised that the collapse multiplier λ− determined using the

described procedure is not guaranteed to represent a strict lower-bound on the

exact value. This is because the smoothed moment derivative field may not fully

satisfy equilibrium conditions everywhere in the domain, and because the yield

condition is only enforced at a limited number of points. However, as the numerical

discretisation becomes increasingly fine one can expect to achieve an increasingly

reliable approximation of the actual collapse load multiplier.

6.5 Numerical examples

The performance of the limit analysis procedure described will now be tested by

examining a number of benchmark plate and slab problems for which upper and/or

lower bound solutions have previously been reported in the literature. For all the

examples considered uniform out-of-plane pressure loading was applied and the

reference length L was taken as 10 m in the numerical simulations. Problems were

setup using MATLAB and the Mosek version 5.0 optimisation solver was used to

obtain all solutions. Note that for convenience in each case the whole plate or

slab problem has been solved, obviating the need to consider symmetry boundary

conditions.
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6.5.1 Reinforced concrete slab examples

N Nx

L

L

q

x

y

t

Figure 6.6: Clamped square slab subject to a uniform pressure load

The first example comprises a clamped square slab, as shown in Figure 6.6, which

has been investigated numerically by Chan (1972), Krenk et al. (1994); Krabben-

hoft & Damkilde (2002) and Krabbenhoft & Damkilde (2003). It is assumed that

the slab is isotropic with positive and negative yield moments mp in both directions

(constant reinforcement). For this case, the yield criterion (6.2) may be represented

as a square yield locus in the plane of the principal moments (Krabbenhoft et al.,

2007; Braestrup, 2008), and the exact solution has been identified by Fox (1974)

as

λp = 42.851
mp

qL2
(6.51)

The problem has been solved using a N × N nodes uniformly distributed across

the whole slab. The solutions obtained with the size of the domain of influence,

β, taken as 3 for various values of N are shown in Table 6.1.

Table 6.1: Clamped square slab: variation of collapse load multiplier with
level of nodal refinement, N

N ×N 10 × 10 15 × 15 20 × 20 30 × 30 40 × 40

Collapse multiplier λ−
(

mp

qL2

)

42.33 42.67 42.73 42.80 42.83

Errors (%) 1.22 0.42 0.28 0.12 0.05
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It can be observed from Table 6.1 that close estimates of the exact solution can

be obtained even when only a moderate number of nodes are used. For the finest

nodal discretisation used (40×40 nodes), the solution obtained is very close (within

0.05%) of the exact solution. Furthermore, although it has been pointed out that

the procedure cannot be guaranteed to provide strict lower bound solutions, it is

clear that all the solutions obtained are below the exact value.

The relationship between the computed collapse load multiplier and the size of

the influence domain, governed by the parameter β, are illustrated in Figure 6.7.

It can be observed that, when β is taken to be larger than 3, a higher (i.e. im-

proved) computed load multiplier can sometimes be obtained. However, since the

computational cost increases with the size of the influence domain, a reasonable

compromise between accuracy and computational cost can be achieved when β is

taken as 3, as will be the case for all problems considered henceforth.

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2
42.2

42.4

42.6

42.8

43

42.6
42.64

42.76

42.77

42.83

42.82

42.831

42.833

42.832

42.83

λ
−

β

40 × 40 nodes

Figure 6.7: Clamped square slab: normalised collapse load multiplier vs size of
the influence domain, β (dotted line represents exact solution of Equation (6.51))

Compared to results obtained by previous workers, the best solution obtained

using the present procedure is significantly higher than that obtained in Krenk

et al. (1994) and Chan (1972) (41.78 and 42.32 respectively), and slightly higher

than the solution obtained in Krabbenhoft & Damkilde (2003) (42.82), despite the

fact that the number of nodes used here is significant smaller than in Krabbenhoft
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(a) mxx/mp (b) myy/mp (c) mxy/mp

Figure 6.8: Clamped square slab: moment distributions

& Damkilde (2003) (40×40 nodes compared to 101×101 nodes for the whole slab).

The moment distributions at collapse are shown in Figure 6.8.

A simply supported isotropic square slab will be considered next. For this case

the exact collapse load multiplier was given in Save et al. (1997) as λp = 24 mp

qL2 .

When 20×20 nodes were used to model the slab, the corresponding normalised

collapse multiplier was found to be 23.996, which is clearly in excellent agreement

with the exact solution.

The method will next be applied to a clamped isotropic circular slab subjected to

a uniform pressure loading. The exact collapse multiplier was given in Save et al.

(1997) as λp = 12 mp

qR2 , where R is the slab radius. The problem was solved using

49 nodes laid out radially across the slab, as shown on Figure 6.9. A normalised

solution of 11.89 was obtained, which is just 0.9% lower than the exact collapse

multiplier.

6.5.2 Metal plate examples

Square steel plates with either clamped or simply supports on all edges will now be

considered; these have also been investigated by Hodge & Belytschko (1968), An-

dersen et al. (1998), Capsoni & Corradi (1999), and more recently by Le et al.

(2009). The problems were solved using N×N nodes uniformly distributed across

the whole plate and in all numerical simulations the plate thickness was taken as
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Figure 6.9: Clamped circular slab: nodal discretisation and Voronoi cells

t = 0.1 m. The solutions and CPU times are shown in Table 6.2 for various levels

of nodal refinement.

Table 6.2: Clamped & simply supported square plates: results for different
level of nodal refinement, N

clamped simply supported
N ×N λ−( mp

qL2 ) CPU time (s)† λ−( mp

qL2 ) CPU time (s)†

14 × 14 43.2467 30 24.8554 42
18 × 18 43.5364 107 24.9175 97
22 × 22 43.6961 304 24.9462 226
30 × 30 43.8562 952 24.9766 882

†Time taken to solve on a 2.8GHz Pentium 4 PC running Microsoft XP (Mosek time only)

Table 6.3 compares normalised solutions obtained using the present method with

upper and lower bound solutions that have previously been reported in the litera-

ture. It can be observed that the solutions obtained using the present method are

in good agreement with previous results. For both clamped and simply supported

plate problems, the solutions obtained here are higher than the best lower-bounds

obtained in Hodge & Belytschko (1968) (2.33% in the case of the clamped plate

and 0.48% in the case of the simply supported plate). Together with Le et al.

(2009), this indicates that numerical limit analysis procedures which use the EFG

method are capable of producing good results. Note that in the case of the simply
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supported square plate, the mean value of the lower-bound obtained here and the

upper-bound obtained in Le et al. (2009) is 24.995, which is evidently in excel-

lent agreement with the solution obtained by Andersen et al. (1998). Moment

distributions at collapse for these plates are shown in Figures 6.10 and 6.11.

Table 6.3: Clamped & simply supported square plates: comparison with lit-
erature results

clamped simply supported

Authors lower-bound upper-bound lower-bound upper-bound

(LB) (UB) (LB) (UB)

Present method 43.86∗ – 24.98∗ –
Le et al. (2009) (EFGM) – 45.07∗ – 25.01∗

Hodge & Belytschko (1968) 42.86 49.25 24.86 26.54
Lubliner (1990) – 52.01 23.81 27.71
Capsoni & Corradi (1999) – 45.29 – 25.02
Andersen et al. (1998) 44.13‡ 25.00‡

∗ methods produce approximate rather than rigorous lower or upper bound solutions
‡ mixed elements were used

(a) mxx/mp (b) myy/mp
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Figure 6.10: Clamped square plate: moment distributions

Rectangular plates (dimensions a× b) with different boundary conditions will now

be considered. All problems here were solved using 60×30 nodes with a = 2b = 10

m. In case of the plate with 3 clamped boundaries and 1 free edge, note that the

free edge has length b. Collapse load multipliers are shown in Table 6.4. It can be

observed from the table that the gaps between the (approximate) lower-bounds
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Figure 6.11: Simply supported square plate: moment distributions

found in this paper and (approximate) upper-bounds in Le et al. (2009) are narrow,

particularly for the case of a rectangular plate with simply supported boundaries.

Table 6.4: Rectangular plates: collapse loads multipliers with various bound-
ary conditions (

mp

qab )

Models clamped simply supported 3 clamped, 1 free

Present results 53.43 29.85 43.11
Le et al. (2009) (UB) 54.61 29.88 43.86
Capsoni & Corradi (1999) – 29.88 –

Moment distributions at collapse are shown in Figure 6.12. In plates containing

free boundaries it can be observed that the moments oscillate slightly close to a free

edge, as shown in Figure 6.12c. This may be explained by the fact that average

values of the shear forces were used to enforce the shear boundary condition.

However, if the shear forces are computed using the actual values of the moment

derivatives (rather than the smoothed values given in Equations (6.29) and (6.30)),

larger oscillations result.
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Figure 6.12: Rectangular plates: moment distributions

6.6 Conclusions

An Element-Free Galerkin (EFG) based equilibrium limit analysis formulation

has been proposed. This uses a moving least squares approximation of the mo-

ment field, which means that the resulting field is smooth over the entire problem

domain. The collocation method is used in combination with the stabilised con-

forming nodal integration (SCNI) scheme to ensure that equilibrium needs only

to be enforced at nodes. The Nielsen and von Mises yield criteria are formulated

as second-order cones so that the underlying limit analysis problem becomes a

standard second-order cone programming problem, which can be solved efficiently

using primal-dual interior point solvers. Although the procedure cannot be guar-

anteed to produce strict lower bound solutions, for the plate and slab problems

investigated solutions were in practice always lower than known exact solutions,

and higher than (improved cf.) existing lower bound numerical solutions in the

literature.



Chapter 7

Discussion

In chapters 4, 5 and 6, details of novel numerical procedures developed were pre-

sented. In this chapter, a number of key issues which have arisen during the

course of the work will be discussed. In the course of the discussion results from

a convergence study will be presented, and the status of the solutions obtained

will be considered in the context of the formal plasticity theorems. Additionally

collapse mechanisms will be presented and advantages and disadvantages of the

EFG method compared with the finite element (FE) method will be discussed in

the context of limit analysis.

7.1 Convergence study

Numerical procedures based on the EFG formulation and second-order cone pro-

gramming for upper and lower limit analysis problems have been presented in the

previous chapters (4, 5 and 6). Theoretically, when increasing the number of nodes

the numerical solution must converge to the exact solution. While lower bound

solutions converge to the actual collapse multiplier from below, upper bound solu-

tions converge from above. For most commonly encountered practical engineering

problems, the analytical solution will not be available; however a reliable esti-

mation of the exact solution can be obtained numerically using upper and lower

144
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bound limit analysis (dual model limit analysis). Note that dual model limit anal-

ysis means that solutions are obtained independently by using either displacement

or equilibrium models, not by using the dual form of the optimisation problem as

discussed in Section 3.1.3, which provides quasi-upper or quasi-lower bounds, as

illustrated in Figure 7.1. In this section, a convergence analysis of solutions ob-

tained using both displacement and equilibrium models is shown, and the actual

collapse load multiplier of problems investigated in previous chapters can then be

estimated.

Lower bound using equilibrium model 

(present work) 

Upper bound using displacement model 

(present work) 

Quasi-lower bound from the dual form of 

displacement formulation 

Quasi-upper bound from the dual form of 

equilibrium formulation 

Exact solution 

Number of nodes 

Figure 7.1: Illustration of limit analysis solutions

Convergence analysis for the simply supported square plate is shown in Figure 7.2.

It can be observed that for the discretisations using 22 × 22 and 30 × 30 nodes,

the mean value of the lower-bound obtained using the EFG equilibrium model

and the upper-bound obtained using the EFG displacement model is 24.99, which

is evidently in excellent agreement with the solution obtained by Andersen et al.

(1998) and also by Owen & Hinton (1980). This value can be considered as the

actual collapse load multiplier for practical engineering purposes.

For the clamped square plate, the gap between the upper bound and lower bound is

larger than in the simply supported case, see Figure 7.3. Considering the solution

of 44.13 obtained by Andersen et al. (1998), where mixed finite elements and up

to 801×801 nodes were used, as the reference value, it can be seen from Figure 7.3

that the EFG equilibrium model has a smaller error than the EFG displacement
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Figure 7.2: Convergence analysis for simply supported square plate under
uniform pressure

model. This is quantified further in Figure 7.4 where the rates of convergence of

the two methods are shown. This can be explained by the fact that the singularities

in the form of so-called hinges along the boundary may affect convergence of the

upper bound solution.
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Figure 7.3: Convergence analysis for clamped square plate under uniform
pressure
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Figure 7.4: Convergence rates of the EFG models

In order to obtain a more accurate upper bound solution, a discretisation with

50 × 50 nodes (N = 50) was used, and the solution found was 44.80. The mean

value of this upper bound result and the best lower bound obtained using the EFG

equilibrium model is 44.33, which is slightly higher than the solution obtained

by Andersen et al. (1998), by 0.5 %. Therefore, the value of 44.33 ± 0.5 % can be

recommended for use in engineering practice.

Table 7.1: Rectangular plates: suggestion of the actual collapse load multipli-
ers (

mp

qab )

Models clamped simply supported 3 clamped, 1 free

EFG displacement 54.61 29.88 43.86
EFG equilibrium 53.43 29.85 43.11
Mean values 54.02 29.865 43.485

For rectangular plates (dimensions a× b) with different boundary conditions, the

inferred actual collapse load multipliers are shown in Table 7.1.
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7.2 Solution status

An upper bound which is always higher than the exact solution is a strict upper

bound solution, whereas a strict lower bound solution is one which is always lower

than the exact solution. In this section, we will discuss the status of the solutions

obtained using the presented numerical procedures.

7.2.1 Upper bound solutions

In order to obtain a strict upper bound solution, the flow rule constraint in the

associated kinematic formulation is required to hold throughout the problem do-

main. This results in a difficulty in the kinematic numerical procedure because the

condition can only be enforced at a finite number of points. The obvious solution is

to use constant strain elements where the condition only needs to be fulfilled at one

point in the element. However standard linear displacement finite elements exhibit

volumetric locking phenomena in the kinematic formulations associated with the

von Mises or Tresca yield criteria (Tin-Loi & Ngo, 2003; Vicente da Silva & Antao,

2007). In the context of limit analysis, the most commonly used approach which

both overcomes volumetric locking and guarantees true upper bound solutions for

plane problems is to combine constant strain elements with discontinuities in the

displacement field (Bottero et al., 1980; Sloan & Kleeman, 1995; Lyamin & Sloan,

2002b). For Kirchhoff plate and slab problems, if second-order shape functions

are used (Hodge & Belytschko, 1968), the resulting curvatures are constant over

an element. Therefore, the flow rule can be satisfied everywhere provided it is

enforced at a given point in the element. However, this model does not satisfy

the C1 continuity condition, which requires at least 3 nodal degrees of freedom

(displacement and 2 rotation components). Consequently, cubic shape functions

(linear curvature elements) are frequently used in numerical limit analysis proce-

dures for plate and slab problems. If the element sides are straight such that the

curvature field varies as a simplex, the flow rule can be guaranteed to be satisfied

everywhere in the element by enforcing it at the three vertices (Makrodimopoulos

& Martin, 2006b). Nevertheless, this method of enforcing the yield condition has
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not been applied to plate limit analysis problems and therefore no strict upper

bounds obtained using continuous approximation methods have been reported in

the literature, according to the author’s knowledge.

In the present kinematic procedure, a quadratic basis function and an isotropic

quartic spline weight function were used with a moving least-squares approxima-

tion, which results in a high-order of the approximated displacement field. This

makes a proof of the strict bound status of the solutions difficult and challeng-

ing. Fortunately, when a stabilised conforming nodal integration is applied, the

smoothed curvatures obtained are constant over a Voronoi cell. Therefore, the

flow rule only needs to be enforced at a point in each smoothing cell, and it is

guaranteed to be satisfied everywhere in the problem domain. Although the as-

sumed curvatures using the strain smoothing technique relax the compatibility

constraints somewhat, the computed collapse load obtained using the proposed

method can still reasonably be considered as an upper bound on the actual value,

albeit not a strict one.

7.2.2 Lower bound solutions

In the static formulation, the yield condition is required to be satisfied every-

where in the problem domain to ensure that a strict lower bound can be obtained.

This requirement can be easily satisfied using constant or linear stress/moment

equilibrium elements (Makrodimopoulos & Martin, 2006a). Various equilibrium

triangular elements of this sort have been developed and applied to plate limit

analysis problems by Krenk et al. (1994) and Krabbenhoft & Damkilde (2002).

However, when a uniform pressure is applied to plates, these models do not exactly

enforce the equilibrium relation. This is because the equation ∇2m+ λq = 0 does

not hold with the use of the constant or linear moment fields. Therefore quadratic

moment fields must be employed to ensure equilibrium is fully enforced. In fact,

a strict solution can be obtained with the use of quadratic equilibrium elements,

see Hodge & Belytschko (1968). However, the scheme proposed in their paper is
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time-consuming and complicated, and the relative maxima points may not exist

or may be located outside the element.

In the present static procedure, it seems impossible to satisfy the yield condition

throughout the problem domain since high-order EFG shape functions were used.

It is, therefore, no longer possible to guarantee that the solution obtained will

represent a strict lower bound on the collapse multiplier of the original, continuous

problem. However, the proposed static formulation has two major advantages.

First, the moment fields obtained when using a moving least squares technique

are smooth over the entire problem domain. There is therefore no need to enforce

continuity conditions at interfaces within the problem domain (which would be a

key part of a comparable finite element formulation), and also there is no need to

perform post-processing to obtain smooth fields. Second, using smoothed second

derivatives of the moment field at nodes, the equilibrium equations only need

to be fulfilled at the nodes. As shown in the numerical section of chapter 6,

solutions obtained using the presented static procedure were always lower than

known exact solutions, and higher than existing lower bound numerical solutions

in the literature.

7.3 Collapse mechanism

Since the collapse mechanism is not unique, limit analysis problems can be solved

using continuous (Capsoni & Corradi, 1997; Andersen et al., 1998; Vicente da Silva

& Antao, 2007), semi-continuous (Sloan & Kleeman, 1995) or truly discontinu-

ous (Chan, 1972; Munro & Fonseca, 1978; Smith & Gilbert, 2007) representations

of the velocity field. The present method does not involve discontinuities, similar

to the methods used in Capsoni & Corradi (1997) and Andersen et al. (1998).

The collapse mechanism for the simply supported square plate under a uniform

pressure is shown in Figure 7.5. As shown in chapter 5, the proposed adaptive

scheme is capable of capturing yield line patterns arising from localised plastic

deformations with improved accuracy, see Figure 7.6.
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Figure 7.5: Simply supported square plate: collapse mechanism with 41 × 41
nodes obtained using the present method

Yield line 

Plastic region 

captured by the 

adaptive scheme 

Figure 7.6: L-shape plate: yield line capturing

Note that the well-known yield line method can provide a mechanism in which

discontinuities in the form of yield lines are clearly identified (Johansen, 1962;

Wood, 1961). However, this hand-based analysis method encounters difficulties in

problems of arbitrary geometry, especially in problems involving columns or holes.

As has been mentioned in chapter 2, the Discontinuity Layout Optimisation (DLO)

procedure is another promising method for undertaking limit analysis of reinforced
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concrete slabs. One of the advantages of DLO is that the method is capable of

clearly displaying the collapse mechanism. Figures 7.7 and 7.8 illustrate yield line

patterns of slabs with arbitrary geometries under uniform pressure obtained using

DLO.

L

L

(a) Simply supported slab: λ+ = 24.00

L

L

(b) Clamped slab: λ+ = 42.89

Figure 7.7: Yield-line patterns obtained using DLO for square slabs supported
on all edges

Figure 7.8: Yield-line patterns obtained using DLO for L-shaped slab simply-
supported on three sides with one column (hogging yield lines in blue and sag-

ging yield lines in red)

Although the DLO method can display clear collapse mechanisms, there is a need

to subsequently identify rigid regions which lie between yield-lines in order to
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show the deformed shape. On the other hand, the presented procedures can treat

various problems governed by different yield criteria, such as the von Mises and

Nielsen criteria. Furthermore, the present method can provide accurate solutions

for problems of arbitrary geometries using a small number of nodes.

7.4 Advantages and disadvantages of the EFG

method compared with the FE method

The fundamental difference between the EFG method and the FE method is the

way in which shape functions are constructed. In the FE method, the shape func-

tions are defined for each element as polynomials that satisfy the Kronecker delta

property. This means that the shape function of a node follows a polynomial func-

tion inside all elements that are attached to that node. On the other hand, the

EFG shape functions are constructed in a more flexible way, with no nodal connec-

tivity required. This key difference leads to the advantages and disadvantages of

the methods. FE shape functions are robust and computationally inexpensive, but

in general have a low order of continuity which can result in locking problems. On

the other hand, EFG shape functions require more computational time than the

FE shape functions to construct, and do not satisfy the Kronecker delta property.

Therefore, care must be taken when enforcing boundary conditions in the EFG

method. However, EFG shape functions can easily be constructed to have any de-

sired order of continuity. These high-order shape functions, in general, can result

in better convergence rates compared to mesh-based FEM approximations with

an equivalent basis. Moreover, the EFG method facilitates the implementation

of h-adaptivity as no nodal connectivity is required in the moving least squares

approximation.

In the upper bound plate limit analysis problem, if the FE method is used to

approximate the displacement field, at least 3 nodal degrees of freedom (displace-

ment and 2 rotation components) are required to fulfill the C1 continuity condition

needed to discretise the problem according to thin plate theory. Therefore, the FE
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method has a significantly larger number of variables in the resulting optimisation

problem than the EFG method, which requires only one variable for each node.

The advantages of the EFG method are even more marked in the lower bound limit

analysis procedure. For Kirchhoff’s plates, at least second-order moment fields are

required to ensure equilibrium is fully enforced, as discussed previously. This re-

quirement makes the performance of continuity conditions at element interfaces

difficult. To the author’s knowledge, no plate elements which satisfy these condi-

tions (second-order field and interface continuity) have been proposed. However,

when using the EFG method the moment fields are high-order and smooth over

the entire problem domain, and there is therefore no need to enforce continuity

conditions.

In summary, the EFG method is in general well suited for limit analysis problems,

allowing accurate solutions to be obtained with relatively few nodes. The only

obvious drawback is that the high order shape functions used in the EFG method

make a priori proof of the strict bound status of the solutions difficult, as discussed

previously.

7.5 A truly meshfree method

In the standard EFG method, a background mesh must be employed in the quadra-

ture scheme, and therefore this partly loses the meshless character of the method.

Direct nodal integration, wherein the integrals of the weak form are evaluated at

the nodes only, can result in a truly meshless method. However, it is shown that

direct nodal integration suffers from spurious singular/zero-energy modes (also

known as hourglass modes in the context of finite element analysis). Beissel &

Belytschko (1996) proposed a scheme to modify the potential energy functional by

adding to it the square of the residual of the equilibrium equation, so that singular

modes are eliminated. A similar but somewhat simplified technique was adopted

in the SPH method by Bonet & Kulasegaram (2000). Since limit analysis does

not involve solving linear equilibrium equations, these methods cannot be applied.
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Another effective nodal integration method was proposed by Chen et al. (2001a),

referred to as the stabilised conforming nodal integration (SCNI) scheme. In the

SCNI scheme, nodal (smoothed) strains are computed by a divergence counterpart

of a spatial averaging of strains.

In this research, the SCNI scheme was extended to (i) plastic limit analysis prob-

lems (ii) error estimation and (iii) stabilised equilibrium equations in the static

formulation. In chapters 4, 5 and 6, it has been shown that the SCNI scheme both

results in stable and accurate solutions and also keeps the size of the optimisation

problem small. It can been seen from optimisation problem (4.38) that the number

of terms in the objective function is equal to the number of integration points, n.

When Gauss integration is used, a large number of integration points would be

needed in order to obtain accurate solutions. This results in an increased number

of additional variables tj and cones ‖ri‖ ≤ ti; see Equation (4.40). Furthermore,

in the static formulation Gauss integration also results in a larger number of equi-

librium equations than the SCNI scheme; see Section 6.3.2. In short, the Gauss

integration method increases optimisation cost.

In chapter 5, the SCNI scheme was extended to error estimators and results in

an efficient and truly meshfree adaptive method. The smoothing stabilisation

allows reduction of the required order of differentiation by one. This means that

the SCNI scheme requires less computational time than Gauss integration which

requires the calculation of higher order derivatives. Moreover, in the SCNI scheme

Voronoi diagrams can help determine the sizes of the local domains of influence,

whereas special measures must be taken to create a smoothed transition of the

size of the domain of influence in Gauss integration schemes. This is because a

poor moving least squares approximation may occur as a result of abrupt changes

in the support size (Rabczuk & Belytschko, 2005).



Chapter 8

Conclusions and future work

In this chapter, firstly, the key contributions of this thesis are summarised, and

secondly, directions for future research are recommended.

8.1 Conclusions

The primary aim of the thesis, which is to develop novel numerical limit analysis

tools which are sufficiently efficient and robust to be of use to engineers working

in practice, has been achieved through the development of a number of procedures

presented in the thesis. The key ingredients of these procedures are: (i) the

EFG discretisation strategy and (ii) use of the primal-dual interior-point SOCP

optimisation algorithm. Specific and detailed conclusions on the performance of

these novel numerical procedures were drawn at the end of chapters 4, 5 and 6.

The most prominent points are outlined below.

• The EFG method was extended to allow computation of the limit load of

plates and slabs. The problem fields were approximated using a moving least

squares technique, which results in a high-order of the approximated field.

In the kinematic formulation, only one displacement variable is required for

each EFG node, ensuring that the total number of variables in the resulting

156
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optimisation problem is kept to a minimum, with far fewer variables being

required compared to finite element formulations. Moreover, the moment

fields obtained by using this technique are smooth over the entire problem

domain, and therefore there is no need to enforce continuity conditions at

interfaces within the problem domain. Numerical results show that the EFG

based procedures allow accurate solutions to be obtained using a relatively

small number of nodes.

• Since the accuracy of numerical limit analysis solutions is highly affected by

local singularities arising from localised plastic deformations, an efficient h-

adaptive EFG scheme was developed to increase the accuracy of the solutions

and to speed-up the computational process. Due to the naturally conforming

properties of the meshfree approximation, the proposed adaptive scheme is

conveniently performed without the need for complex manipulation of the

data structures involved. Various numerical examples were presented to

show that the adaptive scheme is able to capture yield line patterns arising

from localised plastic deformations for problems of arbitrary geometry, and

that the adaptive scheme does indeed produce better solutions than can be

obtained using uniform refinement, despite the fact that a relatively small

number of nodes were used.

• A stabilised conforming nodal integration (SCNI) scheme was extended to (i)

plastic limit analysis problems, allowing integrals to be evaluated at nodes

only, (ii) error estimation, allowing errors to be estimated at representative

nodal cells, and (iii) stabilised equilibrium equations in the static formula-

tion, allowing equilibrium to be enforced at nodes only. It was shown in

several numerical examples that, when the SCNI scheme is applied, the so-

lutions obtained are accurate and stable, and the SCNI scheme also results

in an efficient and truly mesh-free method since the computational cost asso-

ciated with using the SCNI scheme is much lower than that associated with

using Gauss integration.
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• The discretised formulations were cast in the form of a standard second-order

cone programming problem, ensuring that the resulting optimisation prob-

lem could be solved using highly efficient primal-dual interior-point solvers.

It is well-known that the objective function in the kinematic formulation

is not differentiable at any point in the rigid domain where plastic strains

do not develop. With the use of the primal-dual interior-point algorithm,

such singularities can be treated efficiently. Moreover, the von Mises and

Nielsen yield criteria which are used in the static plate and slab limit analy-

sis problem respectively were also enforced by introducing second-order cone

constraints. Numerical examples show that when an optimisation problem

was formulated as a second-order cone programming problem, the proposed

solution procedure can solve real-world problems in engineering practice,

which require up to hundreds of thousands variables or more.

In short, the combination of the EFG method, stabilised conforming nodal in-

tegration and second-order cone programming results in an efficient and robust

numerical limit analysis tool for practical engineering problems.

8.2 Suggestions for future work

Although the original aim has been largely met, there are still a number of aspects

of this work which require further investigation, and there are also some other

methods which can potentially be applied to limit analysis problems. The following

tasks may be recommended as possible avenues for future research.

• The proposed numerical procedures (kinematic formulation, static formu-

lation and adaptivity) can be extended to tackle more complex structural

configurations, subject to a variety of loading regimes. It would for example

be interesting to extend the proposed method to treat plane strain problems,

3D problems which exhibit volumetric locking, and also problems involving

shakedown.
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• Investigate the performance of a posteriori schemes to check the status of

the solutions.

• The strain smoothing technique was recently extended to the standard finite

element method by Liu et al. (2007a), who named it the smoothed finite

element method (SFEM). It was shown that the SFEM retains most prop-

erties of the strain smoothing technique and also advantages of the FEM,

and hence yields solutions that are accurate, free from locking and compu-

tationally inexpensive (Liu et al., 2007b; Nguyen-Xuan et al., 2008). It is,

therefore, relevant to investigate the performance of SFEM in combination

with second-order cone programming for kinematic limit analysis problems.

• The standard finite element method does not allow discontinuities within ele-

ments. As a result, in most finite element based semi-continuous procedures,

discontinuities are located at the edges of elements of fixed topology (Sloan &

Kleeman, 1995; Lyamin & Sloan, 2002b; Makrodimopoulos & Martin, 2008).

Recently, Belytschko & Black (1999) and Moes et al. (1999) proposed the so-

called the eXtended Finite Element Method (XFEM), which was originally

used to treat crack problems. In this method, discontinuities are permitted

to cross elements, and are often realised by the level-set method. Therefore,

it may also be appropriate to apply the XFEM to limit analysis problems.
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