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Abstract 

Aggregation of amyloid-β in Alzheimer’s disease (AD) is modulated in the presence of 

other amyloidogenic proteins including human cystatin C (hCC), which directly protects 

neuronal cells from Aβ-induced toxicity and inhibits fibril formation. Determination of 

the relevant conformations of the interacting Aβ and hCC is a key step to uncovering 

the molecular mechanism of hCC’s activity in AD.  

A system for the production of recombinant Aβ1-40 has been established and is described 

here. It is also shown that hCC readily produces stable oligomeric species upon 

incubation in aggregating conditions, a phenomenon that has not been observed for 

other members of the cystatin family. Novel structural differences between amyloid 

fibrils produced by hCC and cystatin B have also been identified using limited 

proteolysis, indicating that hCC does not retain a monomer-like fold within the fibril 

and that the N-terminal is disordered and not part of the fibril core.  

The work presented here shows that hCC inhibits fibril production by Aβ in a dose-

dependent manner, instead promoting the production of amorphous aggregates and 

small assemblies, with 2:1 molar ratios of hCC to Aβ being required for complete 

inhibition. It is unclear if the assemblies observed are toxic protofibrils or an alternative 

non-toxic species. A comparison of the inhibitory activity of the monomeric and 

dimeric forms of hCC was carried out, and indicated that the active region could be the 

hydrophobic loop involved in protease inhibition. Characterisation of binding by NMR 

HSQC experiments revealed that no observable complex was being formed between 

monomeric Aβ and folded monomeric hCC. Taken together these results suggest that 

hCC is selectively binding to an oligomeric species of Aβ and trapping the peptide in a 

non-toxic state.  
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Chapter One: Introduction 

The deposition of amyloid is linked to several major incurable diseases, such as 

Alzheimer’s disease (AD) (Selkoe and Schenk, 2003), Huntington’s disease (Perutz, 

1999), Parkinson’s disease (Lang and Lozano, 1998) and the prion diseases (Collinge, 

2001, Prusiner, 1998). Alzheimer’s disease is the most common cause of dementia, 

affecting 6% of people over the age of 65 in Western Europe (Burns and Iliffe, 2009), 

and costing the UK government alone £26 billion per annum (Alzheimer’s Society, UK, 

2014). As the world’s population ages and these late-onset diseases become more 

prevalent, an understanding of the underlying mechanisms of amyloidogenesis, the 

process by which amyloid fibrils form, becomes increasingly important. The last 15 

years have produced huge advances in the understanding of protein aggregation, have 

defined many of the structural properties of amyloid fibrils and explored how misfolded 

species can become deleterious to life.  

In order to establish novel ways of targeting the process of amyloid formation for 

therapeutic purposes, either through small molecules or other factors, it is essential to 

understand the methods for modulating this process that are already found in nature. An 

increasing number of studies are emerging in which different amyloidogenic proteins 

perturb the assembly of others under physiological conditions (Li and Buxbaum, 2011, 

Li at al., 2013, Kinghorn et al., 2006, Chiou et al., 2009, Sastre et al., 2004, Lauren et 

al., 2009). Genetic links, co-localisation and physiological responses in the form of 

changes in expression levels are further evidence for the multiple layers of in vivo 

regulation of these processes. As we search for a cure, the purpose of this thesis is to 

study the natural regulation of amyloid β aggregation by another amyloidogenic protein, 

cystatin C (hCC).  

1.1. Amyloid 

Amyloids are long unbranched fibrils with a diameter of 4-20 nm and a length 

stretching to several microns (Fandrich, 2012, Kodali and Wetzel, 2007). They are 

composed of a single protein type and, remarkably, have been shown to exhibit a 

common cross-β fold consisting of an organised core of β-strands that run perpendicular 

to the fibril axis (Figure 1.1) (Blake and Serpell, 1996, Sunde et al., 1997). Given the 

variety of different folds that amyloidogenic proteins exhibit in their native states (all α, 

all β, α/β and unstructured), the mechanism of the formation of amyloids is an 
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aggregation reaction according to the definition of Cleland et al. (1993), where 

unfolding of the protein chain is a pre-requisite to assembly: 

Self-association – a reversible process involving the interactions of two or more native 

protein molecules (with reversible precipitation of the protein as a possible 

consequence) 

Aggregation – interaction of two or more denatured protein molecules (which often 

leads to practically irreversible precipitation) 

Ohnishi and Takano (2004) highlight an additional level of complexity suggesting that 

the precise ordering of amyloids compared to amorphous aggregates calls for a separate 

definition that still recognises the possible cross-overs between pathways to amyloids 

and less ordered aggregates. 

 

Figure 1.1. Amyloid Fibril Structure 

Electron micrograph (A) of negatively stained Aβ1-42 amyloid fibrils. Model of the cross-β fibril structure 

(B) consisting of β-strands running perpendicular to the fibril axis, with inter-strand hydrogen bonds in 

the direction of the axis. Adapted by Prof. Peter Artymiuk from (Sunde et al., 1997) with permission from 

Elsevier. 
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1.1.1. The Importance of Protein Folding 

A greater understanding of the mechanism of fibril formation can be gained from an 

understanding of protein folding, since amyloid formation necessarily involves the 

unfolding then refolding of much of the protein chain en bloc. The most popular 

concept to describe protein folding is the free energy landscape (Figure 1.2) (Dill and 

Chan, 1997), where funnel-shaped energy profiles defined by kinetics and 

thermodynamics depict the folding properties of proteins (Ohnishi and Takano, 2004). 

The native state is normally situated at the lowest minimum of the funnel (Figure 1.2), 

thus suggesting this is the most stable configuration.  

 

Figure 1.2. Free Energy Surface for Protein Folding and Amyloid Formation 

Scheme depicting the funnel-shaped landscape that proteins explore as they move towards the native state 

(green) through the formation of intramolecular contacts. The uneven nature of this landscape leads to 

the accumulation of kinetically trapped conformations that need to overcome free energy barriers in 

order to reach a favourable downhill path. These steps are often assisted by chaperones in vivo. Several 

molecules folding simultaneously in the same compartment can lead to the free-energy surface of folding 

overlapping with that of intermolecular aggregation, resulting in the formation of amyloid fibrils, 

oligomers or amorphous aggregates (red). Image taken from (Hartl et al., 2011) with permission from 

Macmillan Publishers Ltd.   
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Proteins explore an uneven landscape as they move towards the native state, leading to 

the accumulation of kinetically trapped conformations that are required to overcome 

free energy barriers in order to reach a favourable downhill path (Hartl et al., 2011). In 

vivo this process is often assisted by chaperones. The folding of several molecules 

simultaneously in the same compartment can lead to the free-energy surface of folding 

overlapping with that of intermolecular aggregation, resulting in the formation of 

amyloid fibrils, oligomers or amorphous aggregates. Current work reveals that, whereas 

under physiological conditions proteins readily find their native state as the energy 

barrier separating the folded state from the unfolded state is easily overcome, the 

formation of amyloid is separated by a significant free energy barrier.  

The propensity of polypeptide chains to form fibrils appears to be a general property 

(Chiti and Dobson, 2009) and appears to be almost independent of amino acid sequence 

or composition (Tycko 2011). For proteins that fold, the aggregation reaction leading to 

fibrillar amyloids competes with functional folding and constitutes an alternative 

pathway of assembly. The observation that amyloid may be a universal feature of a 

protein’s energy landscape led to the suggestion that amyloid formation may be a 

fundamentally different process to protein folding, the first dictated by non-specific 

backbone interactions, the latter specific to the protein’s sequence (Fandrich and 

Dobson, 2002).  
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Figure 1.3. Thermodynamics of Folding  

Under physiological conditions proteins readily find their native state as ΔG‡, which governs the rate of 

conversion, is easily overcome and the folded state is more stable than the unfolded (ΔG dictates relative 

populations of folded and unfolded). In misfolding conditions, aggregated states may be energetically 

favoured over natively folded states. ΔG‡* defines the rate of conversion to aggregation-competent forms, 

while ΔG* determines relative populations; ΔG‡# dictates the rate of formation of oligomeric species and 

ΔG# indicates the relative populations; ΔG‡◊ is the rate of conversion to amyloid fibril, with ΔG◊ defining 

the amount of fibril formed. Figure adapted from (Cohen and Kelly, 2003) with permission from 

Macmillan Publishers Ltd. 

Structural work reveals that the general framework of the mature fibril is defined by 

main chain interactions; however, at the same time, interactions between the amino acid 

side chains are clearly responsible for stabilisation of the fibril and fibril variations (Ma 

and Nussinov, 2006, Makin et al., 2005, Zanuy et al., 2004, Tjernberg et al., 2002). It is 

likely therefore that the key mechanisms of amyloid formation bear some resemblance 

to those of protein folding, within a more restricted secondary structural space but 

expanded to include the possibility of extensive inter-chain bonding prior to the 

adoption of a stable tertiary fold.  The increased free energy barrier required to form 

amyloid relative to the folded state of the protein can be explained using concepts based 

on the nucleation polymerisation model proposed by Jarrett & Lansbury (1993). They 

state that initial assembly steps are energetically unfavourable and a critical nucleus size 
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needs to be established before elongation becomes a favourable process. Energetically 

the entropic cost of association is initially too great compared with any energy gains 

made from the formation of intermolecular bonds and so the nucleus is rarely populated 

(Chothia and Janin, 1975). Once the nucleus is large enough, there are more sites for 

monomer addition and the numerous contacts possible render the process energetically 

favourable. 

1.1.2. Conversion to an Amyloid-forming Competent State 

In order to understand the mechanism of amyloid formation, it is important to 

understand the mechanism of conformational conversion. It has been demonstrated that 

under destabilising conditions proteins not involved with amyloid diseases can form 

fibrils (Fandrich et al., 2001), leading to the hypothesis that proteins may share the 

potential for amyloid deposition and that this is not limited to a few disease-associated 

proteins (Guijarro et al., 1998). As mentioned earlier, the formation of amyloid fibrils is 

similar to amorphous aggregation and requires at least partial unfolding. Amorphous 

aggregation is thought to be driven by hydrophobic interactions between exposed 

protein interiors (Ohnishi and Takano, 2004) but, in addition, must be stabilised by 

more specific interactions which occur as a result of self-complementary sections of the 

polypeptide chains. The fully folded state of the protein is therefore not converted 

directly into amyloid fibrils. The absence or destabilisation of side chain interactions, 

for example through mutation or changes in the environment can lead to an increase in 

partially folded or unfolded proteins, and as a result increases exposure of hydrophobic 

residues and the normally buried main chain to the solvent (Dobson, 2003). A key 

driving force in amyloid formation is the favourable burial of exposed hydrophobic 

groups and the need for partially unfolded proteins to find an alternative low energy 

conformation that is kinetically accessible under a given set of conditions (Chiti and 

Dobson, 2006).  
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1.1.3. Mechanism of Fibril Formation 

Amyloidogenic proteins differ in both native fold and primary sequence, however this 

diverse group of proteins are thought to form amyloid through a similar mechanism 

(Glabe, 2006). Amyloid formation has been shown to have three stages with typical 

sigmoidal kinetics (Figure 1.4A). An initial lag phase is followed by an exponential 

elongation phase before the reaction reaches an equilibrium plateau. The protein species 

that are present during both the lag and elongation phases are not clearly defined, and 

these may vary in different systems (Figure 1.4B). Before the formation of amyloid 

fibrils, small soluble oligomeric structures are formed, which can differ in size, 

morphology and toxicity (Kayed et al., 2009). Coalescence of the oligomers is thought 

to form protofibrils, which are short beaded fibrils. Finally, either through a 

conformational change or through association of the protofibrils, mature fibrils are 

formed.  
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Figure 1.4. Fibrillisation Reaction and Pathway 

Characteristic kinetic profile of amyloid fibril formation (A), illustrating the lag phase, growth phase and 

thermodynamic equilibrium. At high protein concentrations, or in favourable conditions, nucleation is 

very rapid resulting in no observable lag phase (dashed line); this phenomenon is also seen when the 

reaction is seeded (Jarrett and Lansbury, 1993). Nucleation may occur but is no longer sigmoidal due to 

the presence of pre-formed nucleation sites. Fibril formation (B) is defined by the aggregation of 

monomeric species to form small amyloid seeds (lag phase), which then extend to form stable protofibrils 

(growth phase). Protofibrils then bundle together to form the mature fibril. Image taken from Giurleo et 

al. (2008) with permission.  
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1.1.3.1. Kinetic Models 

There are four prominent models of amyloid formation, the latest of which, nucleated 

conformational conversion, combines elements of the other three (Figure 1.5) (Kelly, 

2000, Serio et al., 2000). The first is described as templated assembly in which a pre-

assembled amyloidogenic (A-state) nucleus binds with a soluble amyloid-incompetent 

(S-state) peptide, causing a rate-determining conformational change in the latter and 

allowing addition of the peptide to the growing amyloid fibril (Griffith, 1967). This 

model predicts that the lag phase will be directly affected by the soluble protein 

concentration, but there will be no change in the rate of fibril elongation, and that 

addition of a seed should cause a reduction in lag phase. The second mechanism is 

monomer-directed conversion, where a monomeric peptide will undergo conversion 

into an amyloid-competent species (Prusiner, 1982). This species will propagate the 

conversion of further monomeric peptides which initiates polymerisation. This model 

will not be affected by the addition of a seed, as the rate-limiting step occurs with the 

conversion of the soluble protein. The third mechanism is nucleated polymerisation 

(Jarrett and Lansbury, 1993). In this case soluble amyloid-competent species associate 

to form a nucleus which will propagate fibril formation through addition of assembly 

competent monomers to the nucleus. These amyloid-competent species are in 

equilibrium with amyloid-incompetent protein, with the equilibrium heavily favouring 

the incompetent species. Therefore the rate-limiting step is the association of amyloid-

competent species to form a nucleus. This model predicts that the lag time should 

decrease, and the rate of fibril elongation increase, with an increase in soluble protein 

concentration. The addition of a seed will remove the lag time of the reaction. The 

nucleation model covers a number of well-defined processes, in addition to amyloid 

fibril formation, such as protein crystallisation, actin polymerisation and microtubule 

association (Jarrett and Lansbury, 1993). The final mechanism is nucleated 

conformational conversion (Serio et al., 2000) where it is proposed that structurally 

dynamic oligomers undergo conformational rearrangements to induce the formation of 

nuclei. These oligomers lack a defined quaternary structure, but it is suggested that they 

could have a micelle-like structure. Nuclei will then interact with a structurally flexible 

oligomer with a distribution of subunits, causing the addition of this subunit group onto 

the end of the fibril.  
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Figure 1.5. Models of Fibril Formation 

Proposed models for amyloidogenic peptide conversion into amyloid fibrils. Jagged circles represent 

soluble (S-state) protein, smooth circles represent amyloid-competent (A-state) protein which takes a 

similar structure to that adopted in amyloid fibrils and open circles represent potential conformational 

heterogeneity in A) templated assembly, B) monomer-directed conversion, C) nucleated polymerisation 

and D) nucleated conformational conversion. Figure taken from (Kelly, 2000) with permission from 

Macmillan Publishers Ltd. 

A new layer of complexity to the concentration dependence of fibril formation has been 

added with the discovery of secondary processes that can be involved in nuclei 

formation, making the nucleation process highly dependent on the aggregates formed 

during the assembly reaction (Buell et al., 2014). These secondary processes include 

fragmentation and secondary nucleation. Upon reaching a critical concentration, 

existing fibrillar aggregates act as a surface to catalyse nuclei formation, leading to 
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rapid proliferation of toxic oligomeric species and amyloid fibrils in a secondary 

nucleation event (Cohen et al., 2013). Fragmentation of amyloid fibrils increases the 

number of extension sites available for the attachment of soluble protein molecules, 

again leading to rapid proliferation of fibrils (Xue et al., 2009a, Xue and Radford, 

2013). In some cases this can lead to a negative concentration dependence on fibril 

assembly, as low concentrations will favour fragmentation and therefore increase the 

concentration of seed (Xue et al., 2009a, Bernacki and Murphy, 2009).  

It is difficult to find a consensus or a general model for the intrinsically complex and 

heterogeneous mechanism of assembly. Nucleation remains a key feature of most 

models and seeding is a defined property of most amyloids. However, only with the 

most complete data sets which include data, not only on monomer disappearance, but 

also fibril concentration and intermediate species quantification, will it be possible to 

clearly differentiate various mechanisms as discussed by Bernacki and Murphy (2009). 

1.1.4. High Molecular Weight Oligomers 

Soluble oligomeric intermediates form both on and off-pathway to amyloid fibril 

production and, using the Aβ peptide as an example, can range from dimers through 

small 3-10mers up to large macromolecular structures several mega-Daltons in size 

(Haas and Selkoe, 2007). These intermediates are often transient heterogeneous 

structures, making them incredibly difficult to study. It is proposed that soluble 

oligomeric species could be the pathogenic agents, making the study of these species 

highly relevant (Lansbury, 1999). Amyloid intermediates can be grouped into different 

classes including protofibrils, annular aggregates and oligomers (Fandrich, 2012). 

Within these classes there is thought to be a plethora of different states and subspecies, 

making classification of diverse intermediates complicated (Figure 1.6).  

Most structurally similar to the mature amyloid fibril, protofibrillar intermediates are 

thought to represent a late stage in the amyloid pathway. Whilst lacking the periodic 

symmetry and very high order of mature fibrils, protofibrils are shorter, thinner and 

often curved (Walsh et al., 1999, Goldsbury et al., 2000). Their interaction with the 

amyloid staining dyes Congo red and thioflavin T is weaker than for mature fibrils, 

however a signal can still be monitored. Aβ protofibrils stabilised using a protofibril 

specific antibody (B10AP) have been shown to have high levels of regular β-sheet 

structure, which were revealed by ssNMR to encompass two β-strands stretching from 

residues 16-22 and 30-36 (Scheidt et al., 2011). These regions are shorter than those 
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present in the mature fibrils but consistent with protofibrils representing a precursor to 

the fibrils.   

Annular aggregates have a donut-like shape enclosing a central channel, which is 

thought to be filled with water (Lashuel et al., 2002). Several amyloidogenic proteins, 

such as variants of -synuclein and Aβ, have been reported to form ring-like aggregates 

(Caughey and Lansbury, 2003, Lashuel et al., 2002). These samples are often highly 

heterogeneous, making it difficult to examine their detailed molecular structure; 

however their similarity to pore forming toxins has led to the proposal that these species 

can pierce the cell, disrupting the membrane integrity and causing cell death (Fandrich, 

2012, Caughey and Lansbury, 2003, Butterfield and Lashuel, 2010).  

 

  

Figure 1.6. Large Molecular Weight Oligomers 

Images representing A) the different forms of amyloid-β typically described as spherical oligomers, 

protofibrils and, for comparison, mature fibrils taken from (Fandrich, 2012) with permission from 

Elsevier. The scale-bar represents 200 nm. B) EM images of annular, water-filled aggregates of Aβ and 

α-synuclein, and C) the same structures and amylin (IAPP) seen by AFM. Images taken from (Lashuel 

and Lansbury, 2006).  



13 

 

Representing early kinetic intermediates in the amyloid formation pathway, oligomeric 

species occur as metastable states which undergo a conversion into conformations that 

are more thermodynamically favourable (Fandrich, 2012). The transient nature of these 

structures causes difficulty in obtaining detailed structural information, and makes it 

necessary to devise methods of trapping the intermediates, such as ligand binding or 

lyophilisation (Scheidt et al., 2011, Chimon et al., 2007). Although these trapped stable 

states may not play an actual role in the kinetic process of fibril assembly, they can still 

be considered intermediates in this process as they may represent transitional properties 

not seen in other conformers and could provide key information about other kinetic 

intermediates (Fandrich, 2012).   

It is well established that amyloid fibrils have a characteristic cross-β structure; however 

a similar generic conformation (a structural element common to all) has not yet been 

discovered for oligomers (Fandrich, 2012). As both β-sheet and random coil 

conformations have been identified in different oligomeric species, it is thought 

characteristic secondary structure can vary considerably (Sandberg et al., 2010, Habicht 

et al., 2007, Campioni et al., 2010). Nonetheless oligomer-specific antibodies such as 

A11 interact with oligomer preparations from different polypeptides (Kayed et al., 

2003) and these preparations produce similar effects in cell metabolic assays 

(Bucciantini et al., 2002), suggesting that key structural commonalities do exist. 

Oligomers are highly polymorphic, with differences in structure occurring within the 

same sample, or from different preparation protocols (Glabe, 2008).  Due to their 

dynamic, transient nature, oligomeric assemblies often aggregate further and progress to 

more mature species (Fandrich, 2012).  

1.1.5. Fibril Structure 

Despite there being very little structural and sequence similarity between amyloidogenic 

proteins involved in disease, the mature fibrils formed have a similar structure as well as 

similar toxicity mechanisms (Makin and Serpell, 2005). In order to understand better 

the implications of structural and mechanistic studies of amyloids, it is useful to review 

common biophysical methods for their characterisation.  

Amyloid fibrils are large, heterogeneous and insoluble, making it difficult to obtain 

structural information from conventional high-resolution experimental techniques such 

as solution NMR and X-ray crystallography (Serpell, 2000). However,  biophysical 

techniques such as solid-state NMR (ssNMR) and X-ray fibre diffraction can be used to 
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great effect, in conjunction with microscopy techniques (electron microscopy and 

atomic force microscopy), limited proteolysis, hydrogen-deuterium (H/D) exchange and 

electron paramagnetic resonance spectroscopy (EPR) to develop structural constraints 

leading to refinement of structural models. Although atomic resolution models for 

fibrils formed from natively unfolded peptides such as Aβ and the folded protein Het-s 

have been determined, there is still a way to go before it is possible to boast a similar 

understanding of other systems.  

1.1.5.1. Dye-binding Assays 

Identification of amyloid is aided through characteristic properties displayed upon 

binding to certain dyes, notably Congo red and thioflavin T (ThT). A key diagnostic 

tool, fibrils turn a characteristic pink-orange colour under a light microscope and will 

display green birefringence (double refraction) when viewed under cross-polarised light 

upon specific binding to Congo red (Sipe and Cohen, 2000). When Congo red binds 

amyloid fibrils, the associated birefringence is an indication of an ordered sub-

microscopic structure (Glenner et al., 1972). Amyloid fibrils also bind specifically to the 

benzothiazole dye ThT, leading to an enhanced fluorescence and a shift in emission 

from 445 nm to 482 nm. Monitoring this change in fluorescence allows aggregation to 

be followed in solution over long periods of time. It is suggested that these changes 

arise from molecular alignment of the dye molecules as they bind to a specific epitope 

displayed by the fibrils. It is thought that binding is specific and associative, either 

through extended β-sheet or intercalation (Wolfe et al., 2010).  

1.1.5.2. X-Ray Fibre Diffraction 

X-ray fibre diffraction is a technique that has provided many key findings about the 

structure of amyloid fibrils. A characteristic feature of fibrils is their X-ray fibre 

diffraction pattern (Figure 1.7) which indicates an ordered, repeating β-sheet 

conformation running perpendicular to the fibril axis, known as a cross-β structure 

(Blake and Serpell, 1996). The hydrogen bonding distance between β-strands 

perpendicular to the fibril axis is derived from the strong reflection at 4.7 Å which 

dominates the diffraction patterns in the meridian direction. 10 Å equatorial reflections 

are indicative of the distance between the β-sheets, allowing a crucial structural model 

to be established. Moreover, the helical twist of the β-sheets along the fibril axis is 

illustrated by higher order reflections in the meridian direction (Sunde et al., 1997). 

Similar high-resolution diffraction patterns confirmed that, regardless of the precursor 
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protein, amyloid fibrils share a common protofilament sub-structure. The simplicity of 

this pattern not only allows the proposal of simple structural models but can also be 

used powerfully to discount other more complex models which would imply the 

presence of further reflections (Jahn et al., 2010).  

 

Figure 1.7. Amyloid Fibril X-ray Diffraction Pattern and Corresponding Structure 

X-ray fibre diffraction pattern from amyloid fibrils (left), consistent with the characteristic cross-β 

structure. The strong 4.8 Å reflection in the meridional direction corresponds to the distance between β-

strands (right) and the weaker 10-11 Å reflection in the equatorial direction indicates the inter-sheet 

distance of ~ 10.7 Å. Figure taken from (Serpell, 2000) with permission from Elsevier. 

1.1.5.3. Microscopy Techniques 

Electron microscopy showed early on that fibrils are straight and unbranching, with a 

diameter of 70-120 Å (Shiraham and Cohen, 1967), and consist of several protofibrils 

arranged parallel to each other. Transmission electron microscopy (TEM) and atomic 

force microscopy (AFM) are crucial techniques for not only identifying amyloid fibrils, 

but also providing information on the morphology and dimensions of both the fibrils 

and their intermediates. The formation of both oligomeric and fibrous structures can be 

followed by these microscopic techniques, and the development of real-time AFM 

methods could provide some exciting insights into the mechanism of fibrillisation.   

Cryo-electron microscopy can be used to produce three-dimensional reconstructions of 

amyloid fibrils, by averaging multiple EM images of fibril cross-sections. Whilst this 

technique does not allow high-resolution structural detail to be determined, it is a useful 

tool to aid structural modelling as shown in Figure 1.8.  
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Figure 1.8. Electron Microscopy of Amyloid  

Model of insulin fibrils (A) based on cryo-electron microscopy images, taken from (Jimenez et al., 2002). 

Also shown are reconstructions (B) of prion-bound Aβ oligomers and an original micrograph (C) of the 

sample. Taken from (Nicoll et al., 2013). Peptides from the central region of the Aβ peptide (11-25) form 

fibrils where the secondary structure can be directly visualised by negative-stain TEM (D). A number of 

regions of these fibrils which were aligned then added together (E). Taken from Serpell & Smith (2000) 

with permission from Elsevier. 

Models determined this way include the SH3 domain (Jimenez et al., 1999), insulin 

(Jimenez et al., 2002) and β2-microglobulin (White et al., 2009). Cryo-EM analysis 

provides evidence for the cross-β model, as striations can be seen running across the 

fibril with a 4.7 Å repeat in fibrils formed from a central peptide fragment of Aβ (Aβ11-

25) (Serpell and Smith, 2000). This visualisation also indicates that the β-strands are in 

direct register and running perpendicular to the fibril axis. More recently, a model of 

prion-bound oligomeric Aβ structures termed “nanotubes” has been examined using 

negative stain electron microscopy and tomography techniques. This novel structure is 

triple helical in shape with a 7.8 nm repeat and a 10 nm diameter (Nicoll et al., 2013). 
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Microscopy is particularly useful when identifying common species within a mixture as 

the different structural families can be studied separately. 

In all structural reconstructions, mass per unit length (MPL) measurements are used as a 

complementary measurement to model different densities of protein molecules into the 

observed framework. These measurements are made using a specialised scanning 

transmission electron microscope (STEM), giving a relatively precise indication of the 

mass per unit length of the fibril. 

1.1.5.4. Solid-State Nuclear Magnetic Resonance 

Solid-state NMR (ssNMR) has become one of the leading techniques for amyloid 

structure determination (Tycko, 2011) providing high-resolution information which is 

not available using other techniques. Complex and sophisticated, a variety of ssNMR 

experiments have been used to determine experimental constraints and consequently, in 

conjunction with techniques such as EM, X-ray diffraction and computational methods, 

full molecular structural models. A range of techniques have been devised which mean 

that essentially very similar experiments to those run in solution can be run on solid 

samples. The limiting factor is that the resolution of the spectra obtained is generally 

very poor. In order to tackle this problem, labelling techniques have been developed to 

reduce the number of peaks seen in each spectrum. The addition of different forms of 

labelled glycerol to growth media results in different patterns of isotopic labelling (15N 

and 13C) according to residue type. This allows assignment followed by measurements 

of inter-residue distances, which provide information on secondary, tertiary and 

quaternary structures as well as dynamic data.  

1.1.5.5. Limited Proteolysis 

In a similar fashion to hydrogen/deuterium exchange, limited proteolysis provides 

information on accessible regions of the amyloid fibril (Hubbard 1998). Regions with 

regular secondary structure will be protected from proteolytic activity whereas areas 

with high chain mobility will be highly susceptible, allowing the protected fibril core to 

be determined. Structural information has been obtained for amyloid fibrils from several 

systems including lysozyme (Frare et al., 2006), Aβ (Kheterpal et al., 2001), HET-s 

(Balguerie et al., 2003), β2-microglobulin (Myers et al., 2006) and cystatin B (Davis, 

2013).  
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1.1.5.6. Hydrogen/Deuterium Exchange 

Quenched hydrogen/deuterium (H/D) exchange experiments can be used to determine 

protected regions of both single protein molecules and larger molecular weight 

structures such as amyloid fibrils. By observing the rate at which amide protons within 

the peptide backbone exchange with solvent deuterons (or vice versa) solvent accessible 

regions can be mapped, as the rate of exchange is dependent on the accessibility of the 

amide protons. Amides involved in stable hydrogen-bonding networks or incorporated 

in structured regions will be protected from the solvent, and therefore will have a slower 

rate of exchange than amides that are highly exposed which will exchange rapidly. 

Quenching the reaction after different exchange times by freezing, removal of the 

solvent by lyophilisation, then solubilisation in the non-exchanging solvent DMSO 

allows for the determination of protection patterns using NMR spectroscopy and/or 

mass spectrometry (Alexandrescu, 2001). Observation by NMR provides residue-

specific information making this the more desirable method of analysis (Hoshino et al., 

2002). However using mass spectrometry as a complementary approach can give useful 

information on the populations of partially and fully exchanged species and the 

homogeneity of the sample. H/D exchange has been used to provide dynamic 

information on the amyloid fibril, demonstrating that molecules can dissociate and re-

associate with the main fibril (Sanchez et al., 2011, Carulla et al., 2005). The SH3 study 

suggested recycling of half of the molecules from an average fibril of 100 nm would 

occur within days (between 2 and 20 days). 

1.1.5.7. Aβ Fibril Structure 

Despite the problems of hydrophobicity and insolubility, the structure of the Aβ peptide 

in solution has been extensively studied by NMR, CD and FTIR (Serpell, 2000). 

Differences in pH, concentration and incubation time all have significant effects on the 

structure. In organic solvents the peptide is often seen to form an -helical 

conformation, whereas in aqueous buffer the β-sheet is more prevalent (Shao et al., 

1999, Coles et al., 1998, Sticht et al., 1995). This propensity to be helical is thought to 

reflect physiological preferences as Aβ is produced at the membrane surface. Later, as 

the peptide diffuses away, a conformational switch is thought to be initiated by the N-

terminal, as deprotonation of certain key residues causes destabilisation of the -helix 

(Zagorski and Barrow, 1992). Alternatively, the α-helical form is postulated to associate 
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with others and form membrane penetrating pores leading to toxicity (Butterfield and 

Lashuel, 2010). 

Excitingly, a molecular structural model has recently been published of Aβ1-40 fibrils 

seeded from Alzheimer’s disease brain tissue (Figure 1.9), determined using data from 

ssNMR and EM (Lu et al., 2013). Unique structures were produced from two AD 

patients with different clinical histories, suggesting that structural variations could be 

responsible for variations within the disease. Samples taken from different areas of the 

brain produced similar structures in both cases; this observation is intriguing as 

polymorphism is an inherent property of formation of Aβ fibrils. This could signify that 

fibrils may spread from a single nucleation site throughout the brain, or that different 

clearance mechanisms within patients promote different nucleation events. Unique 

assignments were obtained of all 15N and 13C chemical shifts with strong sharp signals, 

indicating that the entire peptide sequence is part of the ordered, relatively rigid, 

molecular structure. In conjunction with MPL data, a structure with a 3-fold symmetry 

was determined, similar to fibrils formed in vitro which have a twisted morphology 

(Paravastu et al., 2008, Goldsbury et al., 2005). Other in vitro fibrils have exhibited 2-

fold symmetry, illustrating how different conditions can lead to different structures 

(Meinhardt et al., 2009, Bertini et al., 2011, Petkova et al., 2006, Zhang et al., 2009). 

Nearly all Aβ fibril structures have shown a parallel in-register intermolecular 

alignment, however in one instance, a mutated form of Aβ1-40 (D23N), which leads to 

a familial form of cerebral amyloid angiopathy (CAA), has been shown to adopt an anti-

parallel alignment with a radically different conformation (Tycko et al., 2009). It 

remains to be seen whether this is a hallmark of CAA. 
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Figure 1.9. Aβ Fibril Structure Model 

In A-D are different visualisations of the structure of an Aβ amyloid seeded from material taken from 

different regions of the brain of a patient with Alzheimer’s disease. Although the structure obtained is the 

same across the brain, these structures differ from structures obtained from fibrils grown in vitro. These 

latter structures are shown in E and F. Image taken from (Lu et al, 2013) with permission. 
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1.1.5.8. Aβ Fibril Formation 

There are numerous theories for what induces the structural transformation of the Aβ 

peptide into amyloid. Early literature suggested that the C-terminal region of the Aβ 

peptide could be crucial for in vivo fibril formation (Jarrett et al., 1993). This region of 

the peptide is part of the putative transmembrane region of APP, since the C-terminal 

sequence contains 14 consecutive hydrophobic residues, with a striking predominance 

of branched residues valine and isoleucine (Jarrett and Lansbury 1993). In a manner 

similar to that of silk protein sequences (which contain the consensus sequence 

(GAGS)n) there is a regular occurrence  of glycine at every fourth position. The 

conformational flexibility of this residue, which enables it to explore new regions of the 

Ramachandran plot, may promote more rapid, low energy switching. The identification 

of a precise sequence involved in a nucleation event is assumed to be a requirement in a 

process which is demonstrably sequence-specific (Jarrett and Lansbury 1993).  

Aβ forms amyloid fibrils in a concentration-dependent manner consistent with the 

nucleation polymerisation mechanism (Kelly, 2000, Jarrett and Lansbury, 1993). 

Factors such as temperature, solvent and pH have a significant effect on the structure of 

Aβ fibrils and the rate of Aβ fibril formation is highly pH dependent (Barrow and 

Zagorski, 1991). Normal blood pH is 7.3, however as this becomes more acidic the 

propensity of Aβ to form amyloid increases, with the maximum rate of fibril formation 

occurring at pH 5.5. This is close to that found in some intracellular organelles such as 

late endosomes or lysosomes, and there is evidence that Aβ species can accumulate in 

these organelles (Zhi et al., 2011, Koo & Squazzo, 1994, Haass et al., 1992).  

A further theory, which can be combined with the endosomal location of the peptide, is 

as follows. As expression levels of Aβ remain constant in sporadic AD, it is proposed 

that membrane interactions are responsible for increased Aβ aggregation (Yamamoto et 

al., 2004). In the presence of either detergent or ganglioside micelles soluble Aβ will 

spontaneously form fibrils. It is thought that initiation of fibril formation occurs at the 

interface between the micelle surface and the aqueous environment. The in vivo binding 

of the protein at the surface causes partial unfolding and allows fibril formation to 

commence. Gangliosides, such as GM1, are found in lipid rafts in neuron membranes 

within the brain (Matsuzaki, 2007), and it is suggested that GM1-Aβ may act as a seed 

for Aβ aggregation. Cholesterol strengthens the interaction between these two species, 

as well as increasing the formation of amyloidogenic Aβ peptides.  
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1.1.5.9. Aβ Oligomers 

As well as readily forming amyloid fibrils, Aβ peptides aggregate to form a diverse 

range of oligomeric species. It is thought that these intermediates are responsible for 

cytotoxicity in AD. Soluble Aβ oligomers, formed within specific intracellular vesicles 

and secreted from the cell, block hippocampal long-term potentiation at nanomolar 

concentrations (Walsh et al., 2002), as well as impairing rodent spatial memory (Lesne 

et al., 2006) and causing dendritic spine retraction from pyramidal cells (Shankar et al., 

2007). The number of different properties attributed to Aβ oligomers, and the lack of 

standard protocols for the preparation of these species, means that establishing common 

ground across different studies is hindered. A scheme is shown in Figure 1.10 which 

describes the range of species reported as presented in a review by Benilova et al. 

(2012).  

As discussed previously, Aβ oligomers as well as the fibrils, benefit from some of the 

more advanced structural studies carried out on amyloidogenic proteins. The secondary 

structure of Aβ protofibrils stabilised by a fibril-specific antibody (B10AP) was recently 

resolved by ssNMR by Scheidt et al. (2011). Assignment was complete and chemical 

shifts obtained were consistent with the presence of two β-strands, encompassing 

residues 16-22 and 30-36. The remaining N-terminal and central region remain 

structured but not in a regular β-sheet conformer. The predicted φ/ψ angles for the 

peptide bonds indicated a low twist sheet structure. The relevance of this work to the 

many different forms of Aβ oligomers documented will reveal itself in time. 
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Figure 1.10. Oligomeric Forms of Aβ Peptides 

A scheme illustrating the different methodologies used to prepare/observe oligomeric forms of the Aβ 

peptides with possible inter-conversions highlighted. Many of these species have deleterious and/or toxic 

effects and will also co-exist under a range of different conditions. Adapted from Benilova et al. (2012) 

with permission from Macmillan Publishers Ltd. 

1.1.6. Therapeutics 

The deposition of disease-causing amyloid is a serious problem and, unsurprisingly, 

significant effort has been made to try and develop therapeutics to prevent amyloid 

assembly. Although considerable progress has been made in order to understand the 

mechanisms of amyloid formation, there is still some controversy over the mechanism 

of cytotoxicity (Hard and Lendel, 2012), making drug development difficult. 

Nevertheless, several strategies for targeting amyloid formation have proved promising, 

and occasionally, as in the case of familial amyloid polyneuropathy, successful (Coelho 

et al., 2013, Citron, 2010). Although the complexity of the amyloid-forming process is 

great, it also offers a wide range of possible targets for intervention (Figure 1.11), and a 

number of compounds have been developed which interact with amyloidogenic proteins 

at different stages of assembly. The most promising of these approaches would be one 

where the resulting complex would lead to enhanced clearance of the damaging protein. 

Interestingly, some of the more powerful drugs identified stabilise oligomeric states of 
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the amyloid proteins and have beneficial effects on a range of amyloidogenic proteins. 

A popular benchmark is epigallocatechin gallate (EGCG).  

 

Figure 1.11. Possible Drug Targets for Amyloid Disease 

The amyloid assembly reaction is shown in black. A pink (diamond-shaped) drug molecule is shown to be 

interacting with a number of possible targets labelled (a) through (e). Alternative mechanisms would be 

to enhance clearance (g) or correct refolding (f) of the amyloidogenic protein. Image adapted from (Hard 

and Lendl, 2012) with permission from Elsevier. 

1.1.7. Natural regulation of amyloid formation in vivo  

Amyloid is predominantly associated with pathological conditions, however there are 

several inherent mechanisms present to prevent its formation.  Proteins have the 

fundamental ability to form amyloid due to the simple backbone interactions present in 

β-sheets; however in most cases nature prevents this by shielding the amyloid-prone 

regions. Self-complementary sections are rarely found on the protein surface, suggesting 

that such segments are prevented from interacting with each other through evolved 

chaperoning effects (Goldschmidt et al., 2010). Proteins are designed to prevent β-

sheets from propagating by protecting their free edge strands through formation of β-

barrels or by covering the strand with structural loops (Richardson and Richardson, 

2002). In other cases the edge strand will be short or irregular, again making it 

unsuitable for further propagation. This is an example of negative design, where the 

overall structure is not improved by these additions but rather they are present to 

prevent an undesirable alternative.  
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Yet amyloid is not always damaging. Amyloid fibrils have several unique physical and 

mechanical properties which have been harnessed by lower organisms for structural 

purposes (Fowler et al., 2007). Extracellular amyloid (curli) and chaplins modulate 

development of aerial structures and biofilm formation in bacteria, and curli are also 

involved in host invasion and pathogenesis (Barnhart and Chapman, 2006, Chapman et 

al., 2002). Prions such as HET-s, URE2p and Sup35p have regulatory roles in fungi 

(Uptain and Lindquist, 2002), and the hydrophobins are involved in fungal coat and 

aerial structure formation (Butko et al., 2001), whereas chorion proteins are a major 

component in insect and fish eggshells (Iconomidou et al., 2000). Perhaps most 

interesting is the discovery that amyloid has a functional role in mammals, including 

humans. Amyloid formed from the glycoprotein Pmel17 is involved in facilitating and 

regulating the biosynthesis of melanin in melanosomes by acting as a multivalent 

receptor that templates small molecule precursor polymerisation (Fowler et al., 2006). It 

is also hypothesised that amyloid could play a regulatory role in coagulation and blood 

clot clearance mechanisms (Kranenburg et al., 2002).  

Due to the potential pathogenicity of amyloid formation, and the many diseases 

associated with amyloid deposition, the regulation of these functional processes are 

crucial. The properties that make amyloid appealing as a system, such as protease 

resistance, could also be the features that are most dangerous should these processes go 

wrong. Yeast use a system of chaperones to control prion propagation, function and 

degradation and prevent toxicity (Uptain and Lindquist, 2002). In humans, Pmel17 

aggregation is highly regulated through two mechanisms. The full-length protein will 

not form amyloid, and this can only occur after proteolytic cleavage in the melanosome, 

protecting upstream organelles. The fibrillisation process is thought to proceed via an 

energetically favourable downhill polymerisation mechanism. This rapid progression 

prevents the generation of toxic oligomeric assemblies, therefore bypassing one of the 

fundamental problems of amyloidogenesis (Fowler et al., 2006). A greater 

understanding of these regulatory mechanisms could lead to development of a novel 

therapeutic for amyloid disease.    

The subject of this thesis, which is to understand better how different amyloidogenic 

proteins may regulate each other’s ability to fibrillise in vivo, will be explored in further 

sections. It is worth noting here the hypothesis that a mammalian disaggregation activity 

exists. It was first shown in Caernorhabditis elegans that post-nuclear supernatant 
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(PNS) will disaggregate Aβ1-40 amyloid fibrils (Cohen et al., 2006, Bieschke et al., 

2009). It is possible to uncouple proteolysis and disaggregation activities either by 

heating the nematode homogenate to 80°C or by protease inhibition. Both of these 

methods eradicate proteolysis but retain disaggregation, thereby indicating that C. 

elegans disaggregation activity is not reliant on proteolysis. A similar mechanism was 

discovered in homogenates from both mouse and human cells, as both Aβ1-40 and 

gelsolin fragment fibrils were disaggregated in vitro (Murray et al., 2010). Again, the 

proteolytic and disaggregation activities could be uncoupled by the addition of protease 

inhibitors; although unlike the C. elegans system disaggregation activity could be 

inactivated through proteinase K digestion, highlighting that this activity is protein 

based. It is of great interest to identify the molecular mechanism of this disaggregation 

system, and the molecular machinery involved. 

1.2. Amyloidogenic Disease 

Amyloidogenic diseases are defined by the abnormal extracellular deposition of 

insoluble amyloid fibrils into plaques (Caughey and Lansbury, 2003). In these diseases, 

a specific protein or peptide either does not fold into, or does not remain in, its native 

conformational state and consequently loses its normal function (Chiti and Dobson, 

2006). In some cases the formation of amyloid causes a toxic gain of function. Table 

1.1. gives a summary of some of these diseases and the associated amyloidogenic 

protein (Sipe et al., 2010, Hard and Lendel, 2012). Currently 27 proteins have been 

identified as forming extracellular amyloid plaques, and several more give rise to 

disease-associated intracellular amyloid-like deposits (Sipe et al., 2010). Three broad 

groups can be used to describe amyloidogenic diseases: non-neuropathic systemic 

amyloidosis where aggregation occurs in multiple tissues, non-neuropathic localised 

amyloidosis where the deposition is confined to a single type of tissue, and 

neurodegenerative conditions where the amyloid plaques form solely in the brain (Chiti 

and Dobson, 2006). Familial amyloidogenic diseases can arise from specific hereditary 

mutations (10%), however most are sporadic (85%). The spongiform encephalopathies 

can be transmissible in other mammals as well as humans (5%). Additional species such 

as heparin, collagen, ApoE, glycosaminoglycans and metal ions (Hirschfield and 

Hawkins, 2003, Alexandrescu, 2005) are found associated with the amyloid deposits. 

However, in vitro self-assembly will occur in the absence of these components, 

indicating that other factors are not essential for amyloid formation (Dobson, 2004).   
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Protein Native Structure Disease Location of Amyloid 

Aβ  Unfolded Alzheimer’s  

Cerebrovascular amyloidosis 

Down’s syndrome 

Brain 

-Synuclein Unfolded Parkinson’s 

Dementia with Lewy bodies 

Brain 

β2-Microglobulin β-sheet Haemodialysis-related amyloidosis Musculoskeletal system 

Gastrointestinal & urogenital 

tracts 

Cystatin C /β Hereditary cystatin C amyloid angiopathy  Brain 

Huntingtin (polyQ) -helical/unfolded Huntingdon’s Brain 

Insulin -helical  Injection-localised amyloidosis Site of injection 

IAPP (amylin) Unfolded Type II diabetes Pancreas 

Lysozyme /β Hereditary systemic amyloidosis A number of visceral organs 

& tissues 

PrP (prion) Unfolded/-helical Spongiform encephalopathies Brain 

Tau Unfolded Alzheimer’s 

Frontotemporal dementia 

Brain 

Transthyretin β-sheet Familial amyloid polyneuropathy type I 

Senile systemic amyloidosis 

Virtually all tissues & 

organs 

Table 1.1. Summary of Human Proteins Linked with Amyloid Disease. 

1.2.1. Cytotoxicity 

The relationship between amyloid fibrils and cytotoxicity is unclear and often 

controversial. The formation of fibrils is pathogenic, as demonstrated by the correlation 

between disease and amyloid deposition (Rochet and Lansbury, 2000), and injection of 

amyloid fibrils into mouse brains causes AD (Meyer-Luehmann et al., 2006, Stoehr et 

al., 2014, Watts et al., 2014). The difficulties come when trying to determine the 

specific pathogenic agent: is it the fibrils themselves or some other intermediate species 

that causes toxicity? Substantial amounts of aggregated protein, up to kilograms, are 

often found in systemic amyloid diseases, and are thought to be the major cause of 

clinical symptoms (Pepys, 1996). However there is no clear correlation between the 

amount of amyloid deposited and the severity of the pathology; a severe case may show 

little or no amyloid plaques during post-mortem (Näslund et al., 2000, Lue et al., 2000, 

McLean et al., 1999, Wang et al., 1999). In neurodegenerative diseases there is 
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significant evidence to show that it is the soluble oligomeric species and short fibrils 

that are toxic rather than the insoluble mature fibrils (Caughey and Lansbury, 2003, 

Kayed et al., 2003), and that cytotoxicity may be directly linked to the interaction of 

aggregates with the components of the cell surface (Lorenzo and Yankner, 1994, 

Thomas et al., 1996). Neurotoxicity has been seen from a protofibril-only fraction and it 

has been suggested that amyloid formation could be a protective measure, as early 

prefibrillar aggregates can be highly damaging to the cell in comparison to the mature 

fibril (Caughey and Lansbury, 2003). Experiments using non-disease-associated 

proteins under amyloid forming conditions demonstrated that early species in the 

aggregation pathway were inherently cytotoxic (Bucciantini et al., 2002). This could 

suggest a common mechanism of pathogenicity in protein misfolding diseases, relating 

to the structure of early aggregates. Both fibrils and oligomers display a wide variety of 

morphologies, and these polymorphs could explain the lack of correlation between fibril 

load and the severity of symptoms observed due to differences in physicochemical 

properties on the fibril surface in different polymorphs (Colletier et al., 2011, Paravastu 

et al., 2008, Petkova et al., 2005, Paravastu et al., 2009, Yoshiike et al., 2007).  

Samples containing fibrils of human β2-microglobulin have been shown to disrupt 

model liposome membranes and reduce cell viability, whereas prefibrillar oligomeric 

species of the same protein show no membrane disruption (Xue et al., 2009b). By 

reducing the length of the fibril an increase in cytotoxicity was observed, suggesting 

that the cytotoxic potential of the fibrils is modulated by their physical dimensions. It 

could be that cellular toxic responses are enhanced by fibril breakage; consequently 

fragmentation of fibrils not only enhances amyloid cytotoxicity but also provides a 

mechanism to rapidly increase fibril load.  

Although it is undeniable that oligomeric fractions of amyloidogenic proteins are 

capable of disrupting biological membranes, it is also clear that the process of 

cytotoxicity is likely to involve a number of further complexities and a number of 

different protein receptors have been proposed to mediate the different 

pathophysiological effects of these species (Figure 1.12). In AD, this includes the prion 

protein but also receptor tyrosine kinases such as EphB2 that are believed to affect Ca2+ 

influx via the NMDA receptor. Neuroimmune receptors FcγRIIb and LilrB2 are other 

candidates who mediate an inflammatory response. Genetic manipulation of these 
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receptors by either up- or down-regulating their expression produces results consistent 

with an active role in Aβ-mediated cytotoxicity (Benilova and De Strooper, 2013). 

 

Figure 1.12. Postulated Cell-Surface Receptors for Aβ with Different Roles in Cytotoxicity 

There are currently a number of different receptors postulated for Aβ at the cell surface which could 

either alone or synergistically lead to the observed pathology. They include the prion protein and the 

EphB2 receptor which mediate their toxicity via Ca2+ influx from the NMDA receptor and more recently 

identified neuro-immune receptors FcγRIIb and PirB/LilrB2 who mediate their activity directly via 

inflammatory cascades. Orange arrows indicate possible binding sites for Aβ. Figure taken from 

(Benilova and De Strooper, 2013) with permission from AAAS. 

1.2.2. Alzheimer’s Disease  

Alzheimer’s disease (AD) is the most common cause of dementia, with 37 million 

people affected worldwide (Rushworth and Hooper, 2010) and 6% of people over the 

age of 65 affected (Burns and Iliffe, 2009). The incidence of the disease increases with 

age, affecting almost 50% of the population over 85 (Irvine et al., 2008). Although there 

are specific criteria used to diagnose AD, at the moment the only accurate method of 

diagnosis is post-mortem autopsy. Advances in the use of magnetic resonance imaging 

(MRI) and/or single photon emission computed tomography (SPECT) imaging will 

improve diagnosis and allow the identification of pre-symptomatic patients.  

AD is characterised by the presence of extracellular amyloid plaques and intracellular 

neurofibrillary tangles (NFT) in the brain (Annaert and De Strooper, 2002). The former 

consist of fibrils mainly formed from the Aβ peptide, whereas the latter are composed of 
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hyper-phosphorylated tau protein. In addition to the plaques and tangles, there is a 

progressive loss of cognitive function due to an overall loss of grey matter, particularly 

in cortical layers III and V (Caughey and Lansbury, 2003, Deng et al., 2001). A 

hallmark of the AD brain is Aβ amyloid plaques in neurophil and cerebral vessel walls 

(Caughey and Lansbury, 2003, Serpell, 2000). The molecular link between Aβ peptide 

and neurotoxicity is poorly understood (Annaert and De Strooper, 2002). Aβ is thought 

to be involved in several toxic processes such as apoptosis, activation of complement, 

generation of radicals, disrupted calcium homeostasis and the generation of pores in the 

cell membrane (Small et al., 2001), Benilova et al., 2012) and the prominent hypothesis 

is that the oligomeric forms of Aβ are the toxic species responsible for degeneration. 

Late-onset AD, or sporadic AD, is the most common form of the disease, accounting for 

over 90% of cases, however insight into the root causes of this disease can be gained 

from studying familial cases. Familial AD is early-onset, and usually involves a 

mutation that either increases the amount of Aβ1-42 or its propensity to form fibrils 

(Caughey and Lansbury, 2003). The most common of these genetic polymorphisms are 

missense mutations in the presenilin-1 gene (PS1) which encodes one of the enzymes 

responsible for the cleavage of the Aβ peptide from its precursor protein (-secretase), 

causing an increase in both extracellular and brain concentrations of Aβ1-42 (Scheuner et 

al., 1996). Mutations are also found in the presenilin-2 (PS2) encoding a further 

processing enzyme for Aβ and the amyloid precursor protein (APP) gene itself which 

causes increased concentrations of both Aβ1-40 and Aβ1-42 or alter the spectrum of Aβ 

peptides produced (Ancolio et al., 1999, Kumar-Singh et al., 2000). These 

polymorphisms can also be associated with late-onset AD and cerebral amyloid 

angiopathy (CAA) (Yamada, 2000, Yamada et al., 1997).  

The amyloid cascade hypothesis (Hardy, 1997, Hardy and Selkoe, 1999, Sisodia et al., 

2001, Annaert and De Strooper, 2002) was proposed as a result of these discoveries and 

stated that the amyloid β peptide, and more specifically, its aggregation into amyloid-

like fibrils was responsible for all the pathophysiology of Alzheimer’s disease, 

including the characteristic hyper-phosphorylation of tau proteins and the ensuing 

formation of intracellular tangles (Figure 1.13). 
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Figure 1.13. Initial Events in the Amyloid Cascade Hypothesis 

Evidence that the levels of Aβ peptide measured in the CSF are directly causative to Alzheimer’s disease 

come from a combination of direct measurements, studies of genetic penetrance and injection of β-

amyloid directly into the brains of mice. The C-100 fragment is the C-terminal fragment of APP 

generated from cleavage by BACE, starting at Met261. p3 is generated from α-secretase cleavage of APP 

and is non-pathogenic. Adapted from (Hardy, 1997) with permission from Elsevier. 

1.2.3. Cerebral Amyloid Angiopathies  

More than 80% of patients with Alzheimer’s disease also suffer from vascular 

deposition of amyloid, a condition known as cerebral amyloid angiopathy (CAA). 

CAAs are caused by the deposition of amyloid in the central nervous system (CNS) 

(Revesz et al., 2003). These plaques cause thickening of the blood vessels, leading to 

dementia and cerebral haemorrhage. The majority of CAA cases are sporadic with 46% 

of individuals over seventy years old having some degree of CAA. CAA is found 

associated with Alzheimer’s disease (Yamada, 2000), but also with Downs syndrome, 

cerebral infarction and intracranial haemorrhage (Maruyama et al., 1990).  The overlap 

with AD is such that it is believed that the CAA not only contributes to, but in some 

cases actually causes cognitive decline and therefore dementia, possibly by preventing 

drainage of Aβ from the brain (Weller and Nicoll, 2003). It is of note that whereas most 

amyloidoses are linked to the misfolding of a single protein, CAA shows that these 

pathological conditions are not obligatory single protein diseases. Around half a dozen 

proteins are known to form cerebrovascular amyloid as well as Aβ and include the prion 
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protein, hCC, transthyretin and gelsolin (Yamada, 2000). Severe CAA is often 

associated with mutations in these proteins, and polymorphisms in several risk factors 

are also linked to an increased risk of CAA or CAA-related haemorrhage (Yamada, 

2000, Revesz et al., 2003).  

1.2.4. Amyloid-β 

Amyloid-β (Aβ) is a short peptide formed through cleavage of the amyloid precursor 

protein (APP). The Aβ fragments vary in length from 38-43 amino acids (Benilova et 

al., 2012), however the most common are Aβ1-40 and Aβ1-42 (Jarrett et al., 1993). Studies 

have suggested that while Aβ1-40 is the predominant form, Aβ1-42 is the more toxic form 

of the protein (Storey and Cappai, 1999). Although it has been proposed that these 

different alloforms of Aβ peptide oligomerise through different assembly pathways, 

there is much evidence to support that similar intermediates are populated by both 

peptides, albeit at different concentrations of the peptide (Bitan et al., 2003).  

1.2.4.1. Processing of APP 

Proteolytic cleavage of the amyloid precursor protein (APP) by transmembrane aspartyl 

proteases (Irvine et al., 2008) leads to the production of Aβ peptides. APP is a type I 

integral membrane protein (Kang et al., 1987) found in lipid rafts, and is composed of a 

cytoplasmic domain and an extracellular domain in addition to the membrane-spanning 

domain. APP is expressed in most tissues, including the brain; however its function is 

unknown. It is suggested that APP could be involved in cell survival, cell adhesion, 

synaptogenesis and regulation of neurite outgrowth (Vetrivel and Thinakaran, 2010). It 

is proposed that there are two different pathways for APP cleavage; it is either 

internalised and degraded via the lysosome or cleaved within the Aβ region (either at 

the plasma membrane or in endosomal vesicles) causing the ectodomain to be secreted 

(Figure 1.14) (Lamb et al., 1993). 

Amyloidogenic cleavage of APP requires the activity of two enzymes; β-secretase and 

γ-secretase (De Strooper and Annaert, 2000). The initial cleavage by β-site APP-

cleaving enzyme 1 (BACE1) produces a soluble ectodomain, leaving the C-terminal 

portion of the protein (containing Aβ) in the membrane. Cleavage of the C-terminal 

transmembrane section by the γ-secretase complex produces the Aβ peptide. The multi-

enzyme γ-secretase complex consists of PEN2, nicastrin, APH1 and either presenilin 1 

or 2, and has heterogeneous site preference, thereby producing fragments of different 
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lengths. Cleavage in this manner exposes hydrophobic residues from the C terminal of 

the peptide; these residues are normally buried in the cell membrane and when exposed 

have a propensity to aggregate.  

Initial cleavage of APP can also occur by -secretase activity. This is non-

amyloidogenic, as the -secretase enzyme cleaves downstream of BACE1. 

Consequently the C-terminal fragment is truncated, and the p3 β-peptide produced by γ-

secretase cleavage is shortened. The fragment produced by α-secretase cleavage, 

sAPPα, could protect neurons from Aβ-induced damage (Goodman and Mattson, 1994, 

Thornton et al., 2006). Although Aβ is associated with the disease state, APP cleavage 

occurs in normal healthy subjects, and Aβ is found to be naturally present in the brain 

and CSF (Haass et al., 1992, Vigopelfrey et al., 1993). Consequently it is not the 

presence of Aβ that causes toxicity, but rather the formation of amyloid fibrils and 

prefibrillar oligomers occurring at increased concentrations (Hardy and Selkoe, 2002). 

 

Figure 1.14. Processing of APP 

Step 1 - APP (black bars) matures through the secretory pathway where it reaches the cell surface. Step 2 

– the protein is internalised. Step 3 – trafficking through the endocytic pathway brings APP back to the 

cell surface. Some APP is degraded in the lysosome. Non-amyloidogenic cleavage by -secretases occurs 

at the cell surface, whereas amyloidogenic cleavage and the production of Aβ occurs in the endocytic 

organelles. Image taken from (Thinakaran and Koo, 2008) with permission from Elsevier. 
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1.3. Cystatins 

The cystatins are non-covalent reversible competitive inhibitors of papain-like cysteine 

proteases, which function through tight-binding to their target protease in an equimolar 

manner to form an inactive complex. Dissociation constants for these complexes are 

typically in the sub-nanomolar to nanomolar range (Barrett et al., 1984). 

Physiologically, the role of cystatins is to regulate endogenous protease activity  and 

protect tissues from inappropriate proteolysis caused by the release of lysosomal 

enzymes following cell damage (Turk and Bode, 1991). Cystatins may also play a 

defensive role against microbial invasion (North et al., 1990).  

There are three different families of cystatin, all retaining the common ‘hot-dog’ fold 

(Turk and Bode, 1991). Low molecular weight type I cystatins or “stefins” are single 

chain non-glycosylated intracellular proteins such as cystatin A and cystatin B (Grzonka 

et al., 2001). Members of the cystatin family (type II) have an average molecular weight 

of 13 kDa, and again generally lack glycosylation (with the exception of rat cystatin 

which is often N-glycosylated). These are extracellular inhibitors, and contain four 

cysteine residues that are involved in the formation of two characteristic disulphide 

bonds. Examples of type II cystatins include cystatins C, D, E, S, SN and SA (Rawlings 

and Barrett, 1990, Abrahamson et al., 2003). The third family of cystatins are the 

kininogens. These intravascular inhibitors consist of three cystatin-like domains, 

containing the characteristic type II cystatin disulphide bonds as well as others. Highly 

glycosylated, the kininogens are located only in the blood plasma and synovial fluid.   
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Figure 1.15. Schematic of Cystatin Primary Structure 

Line representation of three main cystatin families. Disulphide bonds represented by loops and sites of 

glycosylation represented by diamonds. The targeting sequence for secretion is shown in type II cystatins 

(O) with the cleavage site in red.  Type III cystatins consist of several type-II-cystatin-like domains. H-

kininogens have a longer C-terminal extension than is depicted here. Figure adapted from (Barrett, 1987) 

with permission from Elsevier. 

1.3.1. Cystatin C 

Human cystatin C (hCC) is a cysteine protease inhibitor formerly known as γ-trace, 

which binds with high affinity to enzymes of the human C1 family of proteases such as 

cathepsins B, H and L (Janowski et al., 2001). Immunohistochemical analysis originally 

localised hCC to the neuroendocrine system (Grubb and Lofberg, 1982). However, 

expression and secretion of hCC is not tissue specific, all nucleated cells synthesise the 

protein (Mussap and Plebani, 2004). hCC is found ubiquitously in human biological 

fluids at relatively high concentrations as shown in Table 1.2 (Grubb and Lofberg, 

1985); in cerebrospinal fluid, hCC is the dominating cysteine protease inhibitor, with a 

concentration of ~7 μg/ml (Abrahamson et al., 1986) which is 0.52 µM. The protein is 

expressed as a 146 amino acid product containing a hydrophobic signal peptide, which 

is then cleaved to produce the mature protein consisting of 120 amino acids. A typical 

type II cystatin, hCC is not glycosylated and contains two disulphide bonds at the C-

terminal end. hCC retains 50% sequence identity with three other human family 2 

cystatins, cystatins S, SA and SN.  
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Biological Fluid Concentration (nM) 

Plasma 105 ± 30 

Cerebrospinal fluid 545 ± 180 

Urine 7.5 ± 0.5 

Saliva 135 ± 70 

Seminal plasma 3810 ± 600 

Table 1.2. Physiological Concentrations of hCC. Adapted from (Grubb and Lofberg, 1985). 

1.3.2. Biological role of hCC 

hCC is a highly effective inhibitor of papain-like cysteine proteases such as cathepsin B, 

H, K, L and S, along with papain, dipeptidyl peptidase and ficin (Barrett et al., 1984), 

and consequently plays a critical role in the regulation of extracellular protein 

degradation. In almost all bodily fluids, including CSF, milk and seminal plasma, hCC 

is the controlling inhibitor for cathepsin B (Abrahamson et al., 1986), which has many 

roles including Aβ clearance (Mueller-Steiner et al., 2006, Sun et al., 2008). Based on 

the dissociation constant, hCC is predicted to contribute to the physiological inhibition 

of any extracellular cysteine protease passing from the lysosomal system (Barrett et al., 

1984). Moreover, hCC is also thought to play an important role in the endocytic 

pathway (D'Adamio, 2010), and is active in endosomes and lysosomes.  

1.3.2.1. C13 cysteine protease inhibitory activity 

In addition to the C1 protease binding site commonly found in cystatins, hCC is unusual 

in that it also has an inhibitory site for legumain. This member of the C13 cysteine 

protease family (originally identified in plants) is a more recently discovered 

mammalian lysosomal endopeptidase, which shows restricted hydrolysis of asparaginyl 

bonds (Dando et al., 1999). hCC dimerisation prevents papain (C1) inhibition, however 

this is not the case for legumain as the inhibitor is still active as a dimer (Alvarez-

Fernandez et al., 1999).  The binding site is thought to be the -helix in conjunction 

with the loop around Asn39 (Alvarez-Fernandez et al., 1999), a region that is not altered 

by dimerisation (Janowski et al., 2001).  

1.3.2.2. Inflammation 

At sites of inflammation, increased levels of protease and protease inhibitors have been 

observed, indicating that cystatins could play an important role in the inflammatory 
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response (Bobek and Levine, 1992). Monocyte and macrophage secretion of hCC is 

down-regulated by pro-inflammatory lipopolysaccharide and interferon-γ (Warfel et al., 

1987). Phagocytosis and superoxide anion release in human neutrophils are thought to 

be inhibited by the N-terminal tetrapeptide of hCC (Leung-Tack et al., 1990b) (Leung-

Tack et al., 1990a), and hCC was found to have an effect on granulocyte locomotion 

(important for initiation and maintenance of inflammation) (Leung-Tack et al., 1990b). 

This activity is believed to be independent of its activity as a proteinase inhibitor. 

1.3.3. Inhibition Mechanism 

The mechanism of inhibition is similar for hCC and the more widely studied chicken 

cystatin (cC). Three regions have been identified as being involved in the interaction 

with target proteases and it is thought that hydrophobic interactions are involved, as all 

three identified regions contain many hydrophobic residues.  The N-terminal 11 amino 

acid residues were shown early on to be important for high-affinity binding to papain 

(Abrahamson et al., 1987). Glycine 11 is evolutionarily conserved (Gly-9 in cC), and 

removal of the N-terminal region either before or after this residue through proteolytic 

cleavage leads to a reduction in binding affinity for both hCC and cC (Abrahamson et 

al., 1987, Bode et al., 1988, Lindahl et al., 1992). The NMR and X-ray structure of cC 

shows the flexibility of the N-terminal region, and removal of this region does not 

seriously alter the overall three-dimensional structure. It is therefore suggested that the 

reduction in activity upon truncation is due to loss of interactions involving the N-

terminal, as opposed to a perturbation of the remainder of the binding surface. The other 

two identified regions are the two hairpin loop sections (Ekiel et al., 1997). Within the 

first loop is a highly conserved sequence among cystatins, which is QIVAG in hCC 

(Figure 1.16A). It is the constrained, energetically unfavourable geometry of the loop 

structure, where branched chain amino acids (valine) are enclosed within the very tight 

loop, which renders the chain resistant to cleavage by the protease while binding in the 

active site (Engh et al., 1993). It follows then that it is the relaxation of this constrained 

loop that provides the driving force for dimerisation (Staniforth et al., 2001). 

1.3.4. Structure of hCC 

Recently two crystal structures of monomeric hCC variants have been published; these 

are the first structures of hCC monomer to be solved. The first is of a stabilised mutant, 

which has two point mutations that allow the formation of an extra disulphide bond, 

stabilising the monomer (Kolodziejczyk et al., 2010). The second structure utilises a 
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mutation of V57 to asparagine in the hairpin loop L1 (Orlikowska et al., 2011), which is 

involved in providing the epitope that recognises target enzymes. It is thought that the 

first eleven residues of the N-terminal region are flexible, as no electron density was 

observed for this region. Both of these studies show a similar structure, indicating that 

the monomer has a typical cystatin fold consisting of (N)-β1--β2-L1-β3-AS-β4-L2-β5-

(C) (Kolodziejczyk et al., 2010). This produces a five-stranded antiparallel β-sheet that 

wraps around the -helix (Orlikowska et al., 2011). Two disulphide bonds are located in 

the C-terminal sub-domain, between C73 and C83, and C97 and C117.  

One of the characteristics of the cystatin superfamily is the formation of domain 

swapped dimers. As demonstrated by Ekiel & Abrahamson (1996), dimerisation of hCC 

can be induced by de-stabilising the protein using high temperature (> 65 °C), low pH 

(pH 3.0 - 4.0) or chemical denaturants (0.3 – 1.2 GuHCl). The optimal range of 

conditions is where the folded state still dominates but where the unfolded state of the 

protein is significantly more populated, equating to “pre-transitional” conditions in 

equilibrium unfolding curves. The dimer was first to be crystallised and the structure 

reveals a tight two-fold symmetry (Figure 1.16), retaining the secondary structure of the 

monomeric form.  

Formation of the hCC dimer results from exchange of sub-domains between two 

monomers (Janowski et al., 2001). One of the molecules contributes a single β-strand 

and -helix, whereas the rest of the structure is provided by the other molecule. As this 

α/β interface retains the structure of the monomer it is termed a closed interface. An 

open interface is formed through the new βL-βL sheet that is created. It is thought that 

3D domain swapped dimers only form where there is a high local hCC concentration. 

Native hCC exists as a monomer, and it is in this state that it is functional; dimerisation 

causes a complete loss of inhibitory activity (Ekiel and Abrahamson, 1996). 

Considerable levels of extracellular hCC dimer are only found under pathological 

conditions (Abrahamson and Grubb, 1994) and wild-type hCC has not been found to 

form fibrils in vivo (Ekiel and Abrahamson, 1996). It is suggested that dimer is an 

essential intermediate in fibril formation (Wahlbom et al., 2007), as stabilised mutants, 

with an extra disulphide bond to prevent dimerisation, will not form amyloid fibrils. 

More convincingly, kinetic studies of cC in solution showed that assembly of this 

cystatin into tetramers and higher molecular weight species went through an obligatory 

dimerisation step (Sanders et al., 2004).  
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Figure 1.16. Structure of hCC 

Primary and secondary structure of hCC (A) with regions involved in protease inhibition underlined in 

green and purple. The L68Q mutation is shown in pink throughout. Tertiary structure of monomeric form 

of variant hCC V57N (B) illustrating hot-dog fold with α-helix enclosed in 5 β-strands (PDB: 3NX0). An 

example of cysteine protease inhibition (C) showing cystatin B (blue)  in complex with papain (grey) with 

the highly conserved primary binding site loop QVVAG (turquoise), secondary binding loop (green) and 

N-terminal residues weakly involved in binding (purple) (PDB: 1STF). The domain swapped dimer of 

hCC (D) highlights the closed interface formed between the swapped domains where an extended β-

strand is formed encompassing the original strands 2 and 3 and the intervening loop βL.  
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1.3.5. L68Q Variant of hCC 

The disease hereditary cystatin C amyloid angiopathy (HCCAA) is caused by the hCC 

L68Q variant (Ghiso et al., 1986). A point mutation changes the codon for residue 68 

from CTG to CAG, substituting glutamine for leucine (Levy et al., 1989). Leu68 is 

positioned in strand β3 of the β-sheet and so is part of the hydrophobic core of the 

protein (Janowski et al., 2001). Whilst not directly participating in amyloid-forming 

interactions, the mutation causes destabilisation of the monomer at the molecular α/β 

interface, making the protein more prone to dimerisation. Both WT and L68Q hCC 

effectively inhibit cathepsin B with similar equilibrium constants for dissociation (Kd), 

indicating that the variant is capable of folding into the correct conformation; the 

difference comes in their tendency to dimerise and form aggregates (Abrahamson and 

Grubb, 1994). Destabilisation in the hydrophobic core causes the variant to form dimers 

at temperatures ~25°C lower than for the wild-type protein (Abrahamson and Grubb, 

1994). At 37°C, dimerisation of L68Q hCC progresses to a significant extent as 

evidenced by the detection of dimers in vivo, and this is coupled with an aggregation 

process which leads to the formation of large insoluble cystatin aggregates. Levels of 

both WT and L68Q hCC are reduced in the cerebrospinal fluid in patients (to around 

one third of the normal level) (Palsdottir et al., 2006); this is likely due to a combination 

of the formation of aggregates and an impaired secretion of L68Q-hCC (Abrahamson 

and Grubb, 1994). The blood plasma of patients with the disease contains hCC dimers 

as well as monomers, whereas only monomeric hCC is found in healthy individuals 

(Palsdottir et al., 2006). A reduction in the total cysteine protease inhibition capacity of 

the CSF, caused by the existence of inactive dimers, could contribute to cerebral 

haemorrhages in HCCAA (Olafsson et al., 1990). As well as the L68Q mutation 

discussed previously, the variant found in amyloid deposits in HCCAA also has an N-

terminal truncation of 10 residues when compared to normal hCC (Ghiso et al., 1986, 

Grubb and Lofberg, 1985). It is suggested that this truncation could be due to cleavage 

by leucocyte elastase (Abrahamson et al., 1991). 

1.3.6. Cystatins and Disease 

1.3.6.1. Hereditary Cystatin C Amyloid Angiopathy  

hCC was identified as the amyloid forming protein in the dominantly inherited disorder 

hereditary cystatin C amyloid angiopathy (HCCAA) by protein sequencing over 30 

years ago (Cohen et al., 1983). This disease is systemic, as immunohistochemical 
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studies have indicated that hCC amyloid deposits are present in several tissues as well 

as the brain, for example salivary glands, the spleen and the skin (Abrahamson and 

Grubb, 1994). hCC is ubiquitous in body fluids, so it is perhaps not surprising to find 

that amyloid is deposited systemically. However, the highest plaque load is in the 

arterioles and arteries of the brain, causing the vessel walls to thicken and leading to 

brain haemorrhage (Palsdottir et al., 2006). This disease is found in Icelandic 

individuals, normally aged in their 20s or 30s.   

1.3.6.2. Kidney Function 

Increased serum levels of hCC are an important biomarker in the detection of kidney 

failure. Measuring the glomerular filtration rate (GFR) is seen as the most effective 

measure of kidney function, with a reduced GFR corresponding to impaired kidney 

function (Stevens et al., 2006). As the GFR decreases the disease state will progress to 

kidney failure, eventually leading to premature death caused by cardiovascular disease. 

GFR is measured as the urinary or plasma clearance of a filtration marker, a process that 

is complex, expensive and difficult to do in routine clinical practice with exogenous 

markers. Serum levels of endogenous markers can be used to estimate the GFR without 

the need for a urine sample, as timed urinary collections have been found to be 

cumbersome and susceptible to error. As a non-glycosylated protein with a low 

molecular mass, hCC is freely filtered by the glomerulus before being reabsorbed and 

catabolised by the tubular epithelial cells. It is suggested that hCC may be a better 

filtration marker than the historical creatinine, with less variation between patients.   

1.3.6.3. Alzheimer’s Disease 

As will be discussed in greater detail later in the chapter, there is an increasing amount 

of evidence that there is a significant link between hCC and Alzheimer’s disease. The 

co-localisation of hCC and Aβ amyloid plaques has been identified in the brains of AD 

patients, as well as those with hereditary cerebral haemorrhage with amyloidosis – 

Dutch type (HCHWA-D) and sporadic cerebral amyloid angiopathy (CAA) (Haan and 

Roos, 1992, Levy et al., 2001, Deng et al., 2001, Vinters et al., 1990).  

1.4. Interactions with Aβ 

Aβ is the major component of amyloid plaques in AD, with amyloid fibrils interspersed 

with non-fibrillar species (De Strooper and Annaert, 2000). These plaques also contain 

degenerating axons and dendrites, and are invaded and surrounded by microglia and 
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reactive astrocytes, indicating there is an inflammatory component in the process of 

neurodegeneration. There is significant evidence to show that aggregation of the peptide 

is modulated through interactions with various factors, some of which will also become 

incorporated into the plaques. These associated factors can be protein, lipid, metal ions 

or other molecules. Factors can be classed as inhibitory, either by solubilising the 

peptide, inhibiting fibril formation or dissolving already existing amyloid fibrils, or 

alternatively as enhancing where the associated molecule may initiate or exacerbate 

fibril formation and deposition (De Strooper and Annaert, 2000). Some of the 

associated proteins may play a role in the pathological pathways leading to amyloid 

deposition, and others may bind to the neuritic plaques in a secondary process after 

deposition (Sastre et al., 2004). The presence of protease inhibitors may reflect a role in 

the regulation of proteolytic degradation of plaque components. It is of great interest to 

identify the driving forces behind the interaction of these different factors, and any 

structural motifs necessary (McLaurin et al., 2000), in addition to determining the roles 

they play in the formation and deposition of amyloid (Wilhelmus et al., 2007), thereby 

providing information of potential sites that may be targeted in the development of a 

novel therapeutic.  

Recent genome-wide susceptibility studies (GWAS) (Sleegers et al., 2010) and staged 

association studies (GERAD+) (Hollingworth et al., 2011) have suggested several novel 

susceptibility loci for Alzheimer’s disease. The proteins identified, including an ATP 

binding cassette (ABC) transporter, clusterin and CD33 (a member of the sialic acid 

binding immunoglobulin-like lectins) have functions in the immune system, lipid 

processing and processes at the cell membrane such as endocytosis. Chaperones, 

including heat shock proteins, were also identified and are likely to play an important 

part in preventing Aβ misfolding and facilitating protein refolding. Although significant 

advances have been made in this area with the creation of a website for “susceptibility” 

genes in AD, a clear genetic link between genes other than those encoding APP, the 

presenilins and ApoE is still difficult to establish. 

1.4.1. Albumin 

One of the known risk factors in AD is a reduction in serum albumin with age and in 

association with inflammation. Human serum albumin (HSA) binds 90-95% of Aβ in 

blood plasma (Biere et al., 1996, Kuo et al., 2000) with a Kd  of 5-10 µM at a 1:1 

stoichiometry (Kuo et al., 2000). It is proposed that the reduced concentration of HSA 
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in the CSF during AD, reducing the availability for albumin binding to Aβ, could 

explain why Aβ plaques are only observed in the extracellular space of the brain, rather 

than the peripheral tissue (Stanyon and Viles, 2012).  

It is not yet known whether HSA binds to Aβ monomer or oligomers: evidence exists to 

suggest both possibilities. As HSA is not found within amyloid plaques in brains from 

AD patients, it is thought that it does not interact or become incorporated with the fibril. 

However, it is known that HSA will significantly inhibit Aβ fibril formation in a 

concentration-dependent manner (Stanyon and Viles, 2012). Through binding to 

albumin, Aβ molecules are trapped in a non-fibrillar form and therefore are not 

available for fibril formation. It is proposed that HSA prevents formation of the 

nucleation seed, however has little effect on fibril elongation. An albumin plasma 

exchange schedule is currently showing promise in phase II clinical trials at reducing 

Aβ levels in blood plasma (Boada et al., 2009), which in turn will reduce the levels of 

Aβ in the CSF due to the ability of the peptide to cross the blood-brain barrier (Mackic 

et al., 1998).   

1.4.2. Amyloidogenic Proteins 

Interestingly, a group of amyloidogenic proteins are known to associate with Aβ. These 

proteins form amyloid fibrils in vivo and often cause amyloidogenic diseases themselves 

through destabilising mutations or intracellular processing. This group of proteins 

includes hCC, neuroserpin and transthyretin, prion protein, gelsolin and Bri2 (Li and 

Buxbaum, 2011). 

1.4.2.1. hCC and Aβ 

One of the amyloidogenic proteins found to co-localise with Aβ in several different 

disease states is hCC. In AD, human immunohistochemical studies show that hCC is 

mostly observed in amyloid deposits surrounding blood vessels but is also seen in some 

parenchymal deposits (Deng et al., 2001, Sastre et al., 2004). Cell culture work reveals 

intracellular localisation of hCC and β-APP in both human embryonic kidney HEK293 

cells and mouse neuroblastoma N2a cells. Co-localisation of hCC with Aβ has also been 

observed in the brains of transgenic mice over-expressing human APP (Tizon et al., 

2010). 

The co-localisation of hCC and Aβ is not limited to AD. Cerebral amyloid angiopathy 

(CAA) is the deposition of amyloid in the blood vessel walls of the central nervous 
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system.  As the protein deposited is often Aβ, patients with AD have a higher propensity 

to CAA than age-related controls, with amyloid deposition in CAA leading to 

haemorrhage, stroke and eventual death. A third of patients with sporadic Aβ CAA co-

stained for hCC (Haan and Roos, 1992). In patients with HCHWA-D (hereditary 

cerebral haemorrhage with amyloidosis – Dutch type), the majority co-stained for hCC 

in Aβ-staining blood vessels. Interestingly, when hCC is the key amyloidogenic protein, 

such as in HCCAA, there is no evidence for co-deposition with Aβ despite probing with 

several anti-Aβ antibodies (Haan and Roos, 1992, Vinters et al., 1990).  

In humans, elevated levels of hCC are observed in susceptible parts of the brain (Deng 

et al., 2001), and in animal models there is evidence for a physiological response to the 

disease state whereby expression of hCC is increased (Steinhoff et al., 2001). Studies of 

transgenic mice overexpressing hCC to twice the normal levels shows inhibition of 

amyloid β deposition in transgenic mice expressing the Swedish mutant APP (Kaeser et 

al., 2007, Mi et al., 2007). It seems therefore, that co-localisation may be more than a 

simple consequence of circulatory proteins binding to a “sticky” surface. In addition to 

co-localisation with Aβ and stimulation in AD, induction of TTR amyloidosis in the 

heart in mouse models is seen to lead to increased transcription of the hCC gene and 

other amyloidogenic proteins in the liver (Buxbaum, J. N., personal communication). 

This then leads to an increase in levels of circulatory hCC, which is shown to have 

benefits in reducing amyloid load. This physiological response adds up to a chaperone-

like physiological role for these proteins in a range of amyloid diseases.  

Genetic association studies have shown further that polymorphisms in the hCC gene, 

CST3, are linked with late onset AD (Beyer et al., 2001) and have led some to name 

CST3 as a strong candidate susceptibility gene for AD. The mutation of alanine to 

threonine at position –2 causes less efficient cleavage of the signal peptide, and 

consequently a reduction in secretion of the full length protein (Tizon et al., 2010), 

increasing the risk of AD for those homozygous for those with this polymorphism 

(Selenica et al., 2007). Other polymorphisms including the CST3 +73 G/A mutation 

(Crawford et al., 2000) or the CST3 –157 G/C polymorphism (Finckh et al., 2000) are 

also associated with late onset AD. As with many such studies, significant difficulties 

arise in reproducing these findings, presumably due to the variety of different risk 

factors for AD and also the difficulties in selecting suitable control groups. However 

these studies, in association with evidence for physiological and biochemical effects in 
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animal, cell and test tube models of AD, strengthen the proposal of a protective role for 

hCC in Alzheimer’s disease. 

In order to explain the observed effects, a number of possible hypotheses exist. One 

initial working model for hCC neuro-protection was that hCC is endocytosed by 

damaged neurons and targeted to the lysosome. At this stage, the neurons would have 

begun to accumulate lysosomal proteases, and hCC could act to inhibit some of these in 

order to protect the cell from excessive lysosomal dysfunction. If the damage is too 

great, or too persistent, the neurons may degenerate due to accumulation of 

neurofibrillary changes  (Deng et al., 2001). In support of this theory is the observation 

that secreted cathepsin B from microglia can induce neuronal apoptosis (Kingham and 

Pocock, 2001). Investigations in vitro however favour a more direct salutary effect of 

hCC on Aβ. 

One of the first investigations of the interaction between hCC and Aβ was investigated 

using an ELISA assay (Sastre et al., 2004). This indicated that the two proteins were 

binding with high affinity at physiological pH and temperature, with a dissociation 

constant (Kd) in the nanomolar range. Addition of a monoclonal antibody 6E10 at 

concentrations of 5 nM was enough to block the binding of hCC to Aβ. This antibody 

binds to the N-terminal end of the peptide (residues 1-17), suggesting that hCC also 

binds in this region. This study also suggested that the binding of hCC to Aβ is highly 

concentration dependent.  

The investigation by Sastre et al. (2004) demonstrated that hCC inhibited Aβ fibril 

formation in vivo in a concentration-dependent manner through analysis by electron 

microscopy. It was suggested that the speed of aggregation of Aβ is reduced by hCC 

through direct binding in a sub-stoichiometrical manner. hCC has since been reported to 

prevent the formation of protofibrils and oligomers of Aβ, including toxic ADDLs, in 

vitro (Selenica et al., 2007). Since Aβ oligomers are potentially causative in AD, this 

observation has important implications. The association of Aβ with hCC was 

investigated using size-exclusion chromatography (SEC) and immunoprecipitation, 

which the authors suggest form a one-to-one equimolar complex. The result is 

somewhat ambiguous as the chromatography used is unable to resolve the species 

concerned. However, a mechanism was proposed in which hCC and Aβ react rapidly to 

form high affinity one to one molar complexes, with the N-terminal region of Aβ 

involved in the binding (Selenica et al., 2007). Upon prolonged incubation, these initial 
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complexes have less propensity than the monomeric Aβ to produce higher species such 

as ADDLs, protofibrils or even fibrils. Instead larger, amorphous aggregates are 

produced without the structural characteristics of the aforementioned species and 

precipitate from solution.  

There may therefore be as many as three separate ways in which hCC can carry out is 

protective role in AD. hCC has been shown to directly protect N2a neuroblastoma cells 

and rat hippocampal neurons from Aβ-induced toxicity (Tizon et al., 2010). hCC could 

play an important neuroprotective role in AD (D'Adamio, 2010), consistent with hCC 

being a paracrine/autocrine factor involved in neurogenesis (Taupin et al., 2000). In 

addition, by increasing levels of hCC in the disease state, cathepsin activity could be 

inhibited both intracellularly in the cytosol and vesicles, and extracellularly, potentially 

leading to the rescue of neurons (Kaur et al., 2010).  Thirdly, it has been proposed that 

in bodily fluids hCC acts as a carrier of soluble Aβ, thereby preventing Aβ aggregation 

and the formation of amyloid plaques (Tizon et al., 2010).  

However, although it has been demonstrated that hCC can prevent Aβ amyloid 

formation, a separate study by Sun et al. (2008) has suggested that hCC actually 

increases aggregation of Aβ. In the early stages of AD there is an increase in levels of 

cathepsins, due to an increase in activity in the endocytic pathway. However, at the 

same time, hCC acts as an inhibitor for the cysteine protease cathepsin B, which, 

crucially, is involved in the degradation of Aβ (Sun et al., 2008). Silencing the CST3 

gene was shown to lower the levels of soluble Aβ, as well as lowering the plaque load 

and relative abundance of Aβ1-42 in hAPP-J20 mice. These beneficial effects were not 

seen when the gene encoding cathepsin B (CatB) was also knocked out, indicating that 

inhibition of cathepsin B by hCC is used to regulate Aβ degradation, and consequently 

levels of soluble Aβ. 

It is suggested that the disparity between these results, with both overexpression of hCC 

and silencing of the CST3 gene being able to reduce Aβ plaque load is due to two 

separate mechanisms by which hCC regulates levels of soluble and insoluble Aβ (Sun et 

al., 2008). Levels of soluble Aβ could be regulated through degradation by cathepsin B, 

whereas levels of insoluble Aβ could be regulated through direct binding of hCC to Aβ. 
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1.4.2.2. Transthyretin and Aβ 

Transthyretin (TTR), otherwise known as pre-albumin, is a transporter of thyroid 

hormones from blood plasma into the CSF, of which it is the major component, as well 

as transport of retinol binding proteins in plasma (Hamilton and Benson, 2001). TTR is 

active as a homotetramer. There are several disease related mutations of TTR which 

lead to amyloidogenic diseases such as familial amyloid polyneuropathy and senile 

systemic amyloidosis. Most of these variants form normal tetrameric structures 

(Hornberg et al., 2000), and have normal function. It is therefore the increased 

propensity of the mutant proteins to dissociate and their ability to misfold that results in 

disease, not their inability to fold and function (Babbes et al., 2008, Du and Murphy, 

2010) . Although details of the disease mechanism remain unclear, it is thought to be 

associated with TTR aggregation causing toxic gain of function (Hammarstrom et al., 

2001, Reixach et al., 2004, Sousa et al., 2001). TTR is secreted into the blood by the 

liver, whereas the choroid plexus secretes the protein into the CSF, suggesting different 

sources for amyloidogenic TTR (Babbes et al., 2008).  

There is significant evidence to show that there is a functional interaction with Aβ, and 

it is proposed that TTR could sequester Aβ thereby inhibiting its aggregation and neuro-

toxicity (Schwarzman et al., 1994). Neuronal TTR transcription is increased in AD as 

well as Tg2576 transgenic mice which express the Swedish mutation of APP, and the 

increased levels of TTR in these mice is linked to neuroprotection (Stein et al., 2004, 

Stein and Johnson, 2002). Co-expression of TTR and Aβ in C. elegans resulted in a 

significant reduction in amyloid deposits, and reversed the abnormal mobility seen in 

Aβ-expressing worms (Link, 1995). In APP23 mouse models, over-expression of TTR 

suppressed both the behavioural and neuropathological abnormalities normally seen in 

these mice, whereas silencing the ttr gene accelerated the appearance of Aβ-associated 

neuropathology (Choi et al., 2007, Buxbaum et al., 2008). In addition to these studies, 

TTR-Aβ complexes have been isolated from both transgenic mouse and AD patient 

brains (Li et al., 2011). In vitro studies have demonstrated the inhibition of both Aβ1-40 

and Aβ1-42 cytotoxicity through pre-incubation with TTR using a range of techniques 

(Mazurkolecka et al., 1995, Giunta et al., 2005, Costa et al., 2008, Li et al., 2011) and 

TTR has been shown to inhibit Aβ fibrillisation at sub-stoichiometric ratios (Liu and 

Murphy, 2006). A reduced number of short aggregates with a similar linear morphology 
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to mature fibrils were formed, suggesting TTR suppresses aggregate growth but not the 

initial assembly.   

Although it is clear that there is an interaction between WT TTR and Aβ, there is 

conflicting evidence over which species of the respective proteins are interacting. 

Surface plasmon resonance (SPR) experiments have indicated that immobilised Aβ 

monomers and fibrils will bind to both TTR monomer and tetramer; however, ELISA 

assays have suggested that binding is monomer specific (Buxbaum et al., 2008, Du and 

Murphy, 2010). Solution NMR, in conjunction with both liquid- and solid-phase assays 

have determined the binding of both Aβ monomer and oligomers to variants of TTR 

with varying degrees of stability (Li et al., 2013). It is proposed that the Aβ binding site 

involves amino acids in and around the T4 thyroxine binding site within the TTR 

tetramer; when this site is occupied by small molecules Aβ binding is less effective. 

This corresponds to the binding region identified by Du et al. (2012) through site-

directed mutagenesis and peptide array. Binding of the Aβ monomer to TTR tetramer 

prevents Aβ seed formation at sub-stoichiometric concentrations. Previous studies have 

suggested that in order for the Aβ to bind, the TTR tetramer needs to dissociate to 

monomer, and that the binding of Aβ actually causes this dissociation (Yang et al., 

2013). A more recent analysis suggests that at physiological levels of monomer and 

tetramer, tetramer binding will dominate although binding constants for tetramer 

association are several orders of magnitude lower than that for monomers (Li et al., 

2013). It is possible that this balance may change on the cell surface as the disease 

progresses as it is notable that TTR monomers interact with oligomeric Aβ whereas 

tetrameric TTR interacts with monomeric Aβ. As with hCC, tight binding was only 

observed when Aβ was immobilised on either an ELISA plate or a chromatography 

column. 

1.4.2.3. Neuroserpin and Aβ 

Another protein component of extracellular Aβ amyloid plaques is the extracellular 

serine protease inhibitor neuroserpin (Kinghorn et al., 2006). As indicated by its name, 

neuroserpin is neuron-specific, therefore ideally placed to interact with Aβ.  Mutated 

versions of the inhibitor cause an inclusion body dementia known as familial 

encephalopathy with neuroserpin inclusion bodies (Davis et al., 1999). A specific binary 

complex is formed between Aβ1-42 and neuroserpin with a 1:1 stoichiometry (Kinghorn 

et al., 2006) . The target serine protease of neuroserpin is tissue plasminogen activator; 
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inhibitory activity against the protease is irreversibly inactivated through neuroserpin 

binding to Aβ. A distinctive characteristic of the serpin super-family is loop-sheet 

polymerisation, where homopolymers are formed at high temperatures; this is also 

inhibited through interaction with Aβ. It is therefore proposed that this region is 

involved in the interaction i.e.  β-strand A. The binding area in Aβ is likely to be in the 

N-terminal or middle region, however this is difficult to determine due to the 

promiscuity of serpin interactions. Aβ fibril formation is inhibited through interaction 

with neuroserpin, and there is a reduction in cytotoxicity in both cell culture and in vivo 

Drosophila models (Kinghorn et al., 2006), suggesting neuroserpin could play a neuro-

protective role in AD. Aggregation of Aβ is accelerated with the addition of 

neuroserpin, however the species formed have a distinctly different appearance to 

mature fibrils (small amorphous aggregates) and so it is proposed these are off-pathway 

non-toxic oligomers.  

1.4.3.4. Prion and Aβ 

In contrast to the other systems discussed here, the direct high affinity interaction 

between Aβ and cellular prion protein (PrPC) is thought to mediate Aβ toxicity (Lauren 

et al., 2009, Gimbel et al., 2010). Although Aβ amyloid plaques can form in PrP 

knockout mice, neurotoxicity and AD pathology do not develop. PrPC is GPI-anchored 

to the cell membrane and acts as a receptor for Aβ oligomers, facilitating synaptic 

dysfunction, however PrPC is not the only cell surface molecule that binds Aβ oligomers 

(Lauren et al., 2009). Amyloid plaques from AD patient brains have been found to 

contain both Aβ and PrPC (Zou et al., 2011, Ferrer et al., 2001). PrPC is thought to bind 

selectively to Aβ oligomers with nanomolar affinity (Lauren et al., 2009), inhibiting 

fibril formation by trapping the Aβ in a β-sheet rich toxic oligomeric form (Younan et 

al., 2013). PrPC has three domains that are associated with different activities. The N-

terminal domain contributes to extracellular copper binding (Viles et al., 1999), whilst 

the unstructured central domain has been associated with maintaining the structural 

integrity of myelin via binding to an unknown receptor (Baumann et al., 2007). The 

globular C-terminal domain is GPI-anchored to the plasma membrane. The Aβ-binding 

site on PrPC has been mapped to the natively unstructured N-terminal by solution NMR 

(Younan et al., 2013) which corresponds to regions previously identified by site-

directed spin labelling and SPR (Chen et al., 2010).  
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1.5. Overview of Thesis 

The overall aim of this project was to characterise the interaction between Aβ and hCC. 

A role for hCC in the pathology of AD has been suggested by the genetic linkage of the 

hCC gene with late onset AD and the observation of co-localisation of hCC and Aβ in 

amyloid deposits in AD brain. It has been suggested that hCC plays a neuro-protective 

role in AD due to direct inhibition of Aβ oligomer and fibril formation. Uncovering the 

details of this association, and comparing the mechanism of inhibition with other 

systems could lead to the development of a novel therapeutic intervention.  

Previous work has identified that the interaction between hCC and Aβ may not be a 

simple monomer-monomer interaction as had been proposed in the literature. An 

alternative hypothesis that the amyloidogenic propensity of inhibitory proteins might 

not be coincidence by looking not only at hCC monomers but also the different species 

populated during fibrillisation. This required a more in-depth study of the fibrillisation 

pathway which is described in Chapter 4 along with an initial characterisation of the 

fibrils formed by this protein by limited proteolysis.  

The initial stages of this project were devoted to the development of a protocol to 

produce recombinant Aβ1-40 using a ubiquitin tag, which is described in detail in 

Chapter 3. Chapter 5 then investigates the interaction of Aβ with hCC and begins with 

an analysis of the kinetics of fibrillisation of Aβ in the presence of its inhibitor. The 

reactions are monitored using fluorescence assays, EM and analytical size exclusion 

chromatography experiments. Finally the interaction of the two species is examined 

using NMR 15N-HSQC spectroscopy.  
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Chapter Two: Materials and Methods 

This chapter includes details of common experimental procedures throughout the work 

presented in this thesis. Further details of the materials and methods that are relevant to 

specific experiments are found in each chapter.  

2.1. Buffers and Reagents 

All reagents were purchased from Fisher, Melford or Sigma-Aldrich, unless stated 

otherwise. Deionised water (18.2Ω) from an Elga Purelab 611 Classic UVF was used 

throughout all experiments and buffers were prepared as described in Sambrook et al. 

(1989) and filtered through a 0.2 μm filter. 1 mM sodium azide (NaN3) was added to all 

buffers, except those used for bacterial growth or cell assays.  

2.2. DNA Manipulation 

2.2.1. Expression Vectors 

2.2.1.1. Wild type and L68Q hCC 

Wild type hCC cloned into the pIN-III-ompA periplasmic expression system was 

provided by Dr Adham Elshawaidhe. Expression was carried out in E. coli BL21 strain 

for which an efficient purification had been established (Elshawaihde, 2012). Previous 

work had removed the rare codons found in genes for human proteins to allow 

expression in this strain. Site-directed mutagenesis was carried out on the wild type 

plasmid to produce the L68Q variant. 

2.2.1.2. His6Ub-Aβ1-40 and GST-YUH1 

GST-tagged YUH1 cloned into pGEX-6p-1 and His6Ub-Aβ1-40 cloned into pET28a 

were provided by Dr Maho Yagi-Utsumi (Okazaki Institute for Integrative Bioscience). 

Expression of both constructs was carried out in E. coli Rosetta (DE3) pLysS. 

2.2.2. Plasmid Extraction 

Plasmid DNA was extracted from 5 ml overnight growths using a QIAprep Spin 

Miniprep kit (Qiagen) according to the manufacturer’s protocol. The plasmid was eluted 

using sterilised H2O, quantified and stored at -20°C.  

2.2.3. Primer Sequences 

The primer sequences used for sequencing purposes and for the production of the L68Q 

mutation in hCC are shown in Table 2.1.  
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Table 2.1 Primer Sequences 

2.2.4. Quantification of DNA 

DNA concentration was calculated by measuring the absorbance at 260 nm using a 

Varian Cary 50-Bio UV-Visible spectrophotometer. An absorbance reading of 1 was 

taken as being equivalent to a nucleotide concentration of 50 μg/ml. Protein 

contamination was calculated using the ratio A260 /A280. If this was greater than 1.7 then 

DNA samples were taken as being free from contamination. 

2.2.5. Competent Cells 

2.2.5.1. Preparation of Competent Cells 

The E. coli strain XL10 Blue was routinely used for plasmid production and 

mutagenesis experiments. The strain BL21 was used for expression of hCC (both wild-

type and L68Q mutant). The strain Rosetta (DE3) pLysS was used for expression of 

GST-YUH1 and His6Ub-Aβ1-40.  

An LB agar streak plate was produced using non-competent cells from glycerol cell 

stocks and incubated overnight at 37°C. A single colony was used to inoculate 5ml of 

LB and incubated overnight at 37°C with shaking at 200 r.p.m. 10 ml of LB was 

inoculated with 200 μl of  the overnight culture and grown at 37°C with shaking until 

OD600 = 0.6 and then incubated on ice for 5 minutes. After centrifugation at 1,663 x g at 

4°C for 10 minutes, the pellet was re-suspended in 3.3 ml of RF1 buffer and incubated 

on ice for 30 minutes. After further centrifugation at 1,663 x g at 4°C for 10 minutes, 

the pellet was re-suspended in 1 ml RF2 buffer and incubated on ice for 30 minutes. The 

sample was frozen at -80°C in 200 μl aliquots. 

RF1 Buffer pH 5.8 30 mM KCH3CO2, 100 mM RbCl, 10 mM CaCl2, 50 mM MnCl4, 

15% glycerol 

RF2 Buffer pH 6.5 10 mM MOPS, 10 mM RbCl, 75 mM CaCl2, 15% glycerol 

Primer Sequence Tm (˚C) Notes 

hCC-F GCTAGAGAGGCTTTACAC 51.2 Forward sequencing primer 

hCC-R CCTGAACGTCGGAACGCATTG 71.8 Reverse sequencing primer 

L68Q-F TGGACGTGGAGCAGGGCCGAACCAC 71.2 Forward mutagenesis primer 

L68Q-R GTGGTTCGGCCCTGCTCCACGTCCA 71.2 Reverse mutagenesis primer 
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2.2.5. Site-Directed Mutagenesis 

Site-directed mutagenesis was performed using a Quikchange Mutagenesis Kit (Qiagen) 

to the manufacturer’s instructions.  

2.2.6. Transformations 

1.5 μl of plasmid DNA was added to 200 μl of competent cells in a 14 ml polypropylene 

Falcon tube on ice and incubated for 30 minutes. The cells were heat shocked at 42°C 

for 90 seconds and then incubated on ice for 2 minutes. 800 μl of non-selective LB was 

added and incubated at 37°C with shaking for 90 minutes.  Aliquots of 100 μl, 10 μl and 

1 μl (diluted in fresh LB) were plated out on selective plates and grown overnight at 

37°C.  

2.2.7. DNA Sequencing 

Sequencing was carried out by the Core Genomic Centre, Medical School, University of 

Sheffield, Sheffield, UK. 

2.3. Growth Media and Solutions 

2.3.1. Luria-Bertani Media 

Per litre of deionised water: 

tryptone   10 g 

yeast extract   5 g 

NaCl    10 g 

The solution was adjusted to pH 7.0, made up to 1 litre with deionised water and 

sterilised by autoclaving. Antibiotic was added after cooling. If LB-agar was required, 

28 g Nutrient Agar (Oxoid Ltd, UK) was made up to 1 litre with deionised water and 

autoclaved. 

2.3.2. M9 Minimal Media 

Per litre of deionised water: 

Na2HPO4   6 g 

KH2PO4    3 g 

NaCl    0.5 g 
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The solution was adjusted to pH 7.4 and the volume made up to 1 litre before 

sterilisation by autoclaving.  

The following were added to the media immediately before use (per litre): 

trace elements  650 μl  (autoclaved) 

glucose   2g 

10 mg/ml thiamine  0.1 ml 

0.5 mg/ml (NH4)2SO4 2 ml  (Cambridge Isotope Laboratories) 

1 M MgSO4   1 ml  (autoclaved) 

1 M CaCl2   0.1 ml  (autoclaved and added last) 

All solutions were 0.2 μm filter-sterilised before use except where autoclaved as 

indicated. The flask was swirled immediately to disperse precipitate; if precipitate did 

not disperse then the preparation was abandoned. 

2.3.2.1. Trace Elements  

Per 100 ml deionised water:  

CaCl2.2H2O   550 mg 

MnSO4.H2O   140 mg 

CuSO4.5H2O   40 mg 

ZnSO4.H2O   220 mg  

CoCl2.6H2O   45 mg  

Na2MoO4.2H2O  26 mg  

H3Bo4    40 mg 

KI    26 mg  

The above were added to 70 ml of deionised water and the pH adjusted to 8.0 before 

adding: 

EDTA     500 mg 

The pH was again adjusted to 8.0 before adding: 

FeSO4.7H2O   375 mg 

The solution was made up to 100 ml with deionised water before autoclaving. 
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2.3.3. Antibiotic Solutions 

2.3.3.1. Ampicillin 

100 mg/ml ampicillin sodium salt was dissolved in water to produce a 1000 x stock 

solution, and 0.2 μm filter-sterilised. Aliquots were stored at –20°C, then gently thawed 

and added to growth media to a final concentration of 100 μg/ml as required. 

2.3.3.2. Kanamycin 

15 mg/ml kanamycin was dissolved in water to produce a 1000 x stock solution and 0.2 

µm filter-sterilised. Aliquots were stored at -20°C, then gently thawed and added to 

growth media to a final concentration of 15 µg/ml as required. 

2.3.3.3. Chloramphenicol 

25 mg/ml chloramphenicol was dissolved in ethanol to produce a 1000 x stock solution. 

Aliquots were stored at -20°C, then gently thawed and added to growth media to a final 

concentration of 25 μg/ml as required. 

2.3.4. Isopropyl-β-D-galactosidase (IPTG) 

120 mg/ml isopropyl-β-D-galactosidase was dissolved in water to produce a 1 M stock 

solution, and 0.2 μm filter-sterilised. Fresh solution was added to growth media as 

required to induce protein over-expression. 
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2.4. Protein Expression and Purification 

2.4.1. Protein Characteristics 

Predicted extinction coefficients (calculated from the primary sequence of the protein 

using ProtParam on the ExPASy Proteomics Server (Gasteiger et al., 2005)) and 

molecular weights obtained from mass spectrometry are shown in Table 2.2.  

Protein Extinction Coefficient  

at 280 nm (M-1 cm-1) 

Molecular Weight (Da) 

hCC 11 050 13,344 

hCC L68Q 11 050 13,362 

GST-YUH1 62 700 52,313.8 

His6Ub-Aβ1-40 2 600 16,364.5 

Aβ1-42 1 490 4,514.6 

Aβ1-40 1 490 4,329.8 

Table 2.2. Predicted Protein Characteristics 

2.4.2. Cystatin C 

2.4.2.1. Over-expression 

Single colonies of E. coli BL21 were used to inoculate 10 ml of LB broth. Cultures 

were grown overnight aerobically at 37°C. 10 ml of each starter culture was used to 

inoculate 600 ml of M9 minimal media. The total growth was 4.8 litres. Cultures were 

grown at 37°C with shaking at 200 r.p.m. Cell growth was monitored by measuring the 

OD600, and expression cultures were induced with 75 μM IPTG when OD600 = 0.4 – 0.6 

and grown for 5 hours.  

2.4.2.2. Periplasmic Extraction 

Cells were harvested by centrifugation at 18,592 g (4°C) for 10 minutes and the pellets 

re-suspended in 14 ml 20% sucrose, 0.2 M Tris pH 8.0. The suspension was centrifuged 

at 48,384 x g (20 °C) for 15 minutes and pellets re-suspended in 28 ml of cold 2 mM 

EDTA pH 8.0. Phenylmethylsulphonyl fluoride (PMSF) was added immediately to give 

a final concentration of 1 mM. After re-suspension, the sample was centrifuged at 

48,384 x g at 4 °C for 15 minutes. The supernatant was recovered and protease 

inhibitors (EDTA-free, 1 tablet per 50ml), 0.1 mg/ml DNase and 20 mM MgCl2 were 
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added. The sample was dialysed into cold 10 mM sodium phosphate buffer pH 7.0 to 

remove small molecules.  

2.4.2.3. Cation Exchange Chromatography 

Cold periplasmic extract was loaded onto a 100 ml SP-Sepharose (Pharmacia) cation 

exchange column, which had been equilibrated with cold 10 mM sodium phosphate 

buffer pH 7.0, at a rate of 2 ml/min. The column was washed with 10 mM sodium 

phosphate pH 7.0 until A280 of the eluent reached the baseline. 10 mM sodium 

phosphate buffer pH 7.0, 0.2 M NaCl was used to elute hCC, and 5 ml fractions 

collected. Any remaining bound protein was eluted with sodium phosphate buffer pH 

7.0, 1 M NaCl. Fractions were analysed by SDS-PAGE and those containing hCC were 

pooled and stored at -20°C.  

2.4.2.4. Size-Exclusion Chromatography 

The pooled sample was concentrated to a volume of 10 ml using an Amicon ultra-

filtration stirred-cell device in conjunction with a Millipore regenerated cellulose 

membrane with a molecular weight cut-off of 10,000 Da and filtered using a 0.2 μm 

filter. The sample was loaded onto a 400 ml preparative Superdex 75 gel filtration 

column (GE Healthcare), which had been equilibrated with 10 mM sodium phosphate 

buffer pH 6.0, 0.1 M NaCl. Buffer was run through the column at a rate of 3 ml/min and 

6 ml fractions collected. The fractions were analysed using SDS-PAGE and any 

containing hCC were pooled. The average yield of hCC was 1-2 mg per litre of cell 

growth.   
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Figure 2.1. Purification of hCC 

Elution profile (A) of hCC from SP-sepharose ion exchange chromatography. SDS-PAGE (B) of ion 

exchange fractions 1-1. Elution profile (C) of size exclusion chromatography and SDS-PAGE (D) 

analysis for fractions 1-11. SEC-HPLC trace (E) showing purity and oligomeric state of purified hCC. 
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2.5. Protein Procedures 

2.5.1. SDS Polyacrylamide Gel Electrophoresis 

All electrophoresis was carried out using a Bio-Rad Mini Protean II apparatus.  

2.5.1.1. SDS-PAGE Buffers 

4x Upper Buffer  0.5 M Tris HCl pH 6.8, 0.4% (w/v) SDS 

4x Lower Buffer  1.5 M Tris HCl pH 8.8, 0.4% (w/v) SDS 

Running Buffer 25 mM Tris HCl pH 8.3, 190 mM glycine,  

0.1% (w/v) SDS 

2x Loading Buffer  100 mM Tris HCl pH 6.8, 200 mM DTT, 4% (w/v) SDS,  

0.2% (w/v) bromophenol blue, 30% (v/v) glycerol.  

200µl aliquots were frozen at -20°C and defrosted as 

required. 

Stain 45% (v/v) methanol, 10% (v/v) acetic acid,  

0.25% (w/v) Coomassie Brilliant Blue R250 

De-Stain   45% (v/v) methanol, 10% (v/v) acetic acid 

2.5.1.2. Gel Preparation 

4% stacking gels were cast above 16% resolving gels as described below: 

16% Resolving gel (per gel): 

 2.5 ml 4x Lower Buffer 

 4 ml 40% acrylamide (acrylamide: bisacrylamide ratio 37.5:1) (Bio-Rad) 

Make up to 10 ml and shake before adding: 

 100 µl 10% (w/v) ammonium persulphate (APS) 

 10 µl N, N, N’, N’-tetramethylethylenediamine (TEMED) (Bio-Rad) 

4% Stacking gel (per gel): 

 2.5 ml 4x upper buffer 

 1.1 ml 40% acrylamide (acrylamide: bisacryamide ratio 37.5:1) (Bio-Rad) 

Make up to 10 ml and shake before adding: 

 100 µl 10% (w/v) ammonium persulphate (APS) 

 10 µl N, N, N’, N’-tetramethylethylenediamine (TEMED) (Bio-Rad) 

Samples were typically prepared with a 1:1 ratio of 2x loading buffer to protein 

solution, and 5 – 20 µl were loaded depending on the sample concentration. Samples 
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were not heated prior to loading, as this has been observed to promote oligomerisation 

of cystatins (Dr Rosie Staniforth, personal communication). Aβ1-40 is also prone to 

aggregation, therefore Aβ samples were not heated either. Gels were run with 1x 

running buffer at 180 V for 55 minutes. Gels were then stained on a rotating platform 

for 1 hour, and de-stained until clear bands could be seen.  

2.5.1.3. SDS-PAGE Molecular Weight Marker 

Bio-Rad pre-stained Precision Plus Protein Dual Xtra Standards were used, with typical 

mass values as below: 

 

Figure 2.2. Precision Plus Protein Dual Xtra Standards (Bio-

Rad) 

2.5.2. Tricine SDS Polyacrylamide Gel Electrophoresis 

2.5.2.1. Tricine SDS-PAGE Buffers 

Gel Buffer   3 M Tris HCl pH 8.45 0.3% (w/v) SDS 

Anode Buffer   0.2 M Tris HCl pH 8.9 

Cathode Buffer  0.1 M Tris HCl pH 8.25, 0.1 M tricine, 0.1% (w/v) SDS 

2x Loading Buffer  100 mM Tris/HCl pH 6.8, 200 mM DTT, 4% (w/v) SDS,  

0.2 % (w/v) bromophenol blue, 30 % (v/v) glycerol.  

200µl aliquots were frozen at -20°C and defrosted as 

required. 

Stain 45% (v/v) methanol, 10% (v/v) acetic acid, 0.25% (w/v) 

Coomassie Brilliant Blue R250 

De-Stain   45% (v/v) methanol, 10% (v/v) acetic acid 
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2.5.2.2. Gel Preparation 

A 4% stacking gel was cast above a 10% spacer gel and a 16.5% separating gel as 

described below: 

16.5% Separating gel (per gel): 

 1.3 g glycerol 

 3.3 ml gel buffer  

 4.1 ml 40% acrylamide (acrylamide: bisacrylamide ratio 19:1) (Bio-Rad) 

 800 μl 2% bisacrylamide 

Make up to 10 ml and shake before adding: 

 100 µl 10% (w/v) ammonium persulphate (APS) 

 10 µl N, N, N’, N’-tetramethylethylenediamine (TEMED) (Bio-Rad) 

10% Spacer gel (per gel): 

 1.65 ml gel buffer  

 493 μl 40% acrylamide (acrylamide: bisacrylamide ratio 37.5:1) (Bio-Rad) 

 43.5 μl 2% bisacrylamide 

Make up to 5 ml and shake before adding: 

 55 µl 10% (w/v) ammonium persulphate (APS) 

 5.5 µl N, N, N’, N’-tetramethylethylenediamine (TEMED) (Bio-Rad) 

4% Stacking gel (per gel): 

 1.25 ml gel buffer  

 4.1 ml 40% acrylamide (acrylamide: bisacrylamide ratio 37.5:1) (Bio-Rad) 

 110 μl 2% bisacrylamide 

Make up to 10 ml and shake before adding: 

 50 µl 10% (w/v) ammonium persulphate (APS) 

 5 µl N, N, N’, N’-tetramethylethylenediamine (TEMED) (Bio-Rad) 

Samples were typically prepared with a 1:1 ratio of 2x loading buffer to protein 

solution, and 5 – 20 µl were loaded depending on the sample concentration. Anode 

buffer was added to the outer chamber (positive electrode) and cathode buffer was 

added to the inner chamber (negative electrode) of the gel apparatus. Gels were run at 

180 V for 55 minutes. The gels were then stained on a rotating platform for 1 hour, and 

de-stained until clear bands could be seen.  
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2.5.3. Determination of Protein Concentration 

The concentration of protein was determined by measuring the UV absorption spectra at 

280 nm using a Varian Cary 50-Bio UV-Visible spectrophotometer. Protein 

concentration was calculated using the Beer-Lambert law: 

A = ε l c 

where A is the absorbance, c is the concentration (M), ε is the molar extinction 

coefficient (M-1 cm-1) and l is the pathlength (cm). 

2.5.4. Protein Concentration and Buffer Exchange 

An Amicon ultra-filtration stirred-cell was used in conjunction with the appropriate 

molecular weight cut-off (MWCO) filter to concentrate large volumes (greater than 15 

ml). For smaller volumes a Vivaspin centrifugal concentrator (Generon) was used for 

both concentration and buffer exchange. The MWCO was normally 10 kDa, however 

for purification of hCC oligomers 100,000 Da and 1,000,000 Da MWCO Vivaspin 

centrifugal concentrators with a volume of 0.5 ml were used. Buffer exchange was 

achieved either through dialysis using Spectra/Por dialysis tubing with a 6 – 8 kDa 

MWCO or with repeated rounds of concentration and dilution into the required buffer. 

2.5.5. Analytical Size Exclusion Chromatography 

Protein samples were tested for purity by size exclusion high-pressure liquid 

chromatography (SEC-HPLC). 20 μl samples were analysed using a Shodex KW803 

column and KW-G guard column (Shodex, Japan) with a Perkin Elmer Series 200 

HPLC system equipped with a UV-visible absorbance detector. Specific HPLC 

experiments are discussed further in the appropriate chapters.  

2.6. Spectroscopic Techniques 

2.6.1. Fluorescence Spectroscopy 

Thioflavin T (ThT) fluorescence measurements were taken on either a Cary Eclipse 

fluorimeter (Varian, UK) or a Fluostar Omega plate-reader (BMG Labtech, UK). In the 

fluorimeter, spectra were recorded at time-points with an excitation wavelength of 442 

nm. Emission spectra were recorded from 400-600 nm and emission values at 482 nm 

were plotted as a function of time to follow the rate of fibril formation. On the plate-

reader single readings were taken rather than the whole spectrum, with an excitation 
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wavelength of 442 nm and an emission wavelength of 482 nm. Further details on 

specific fluorescence experiments are provided in the relevant chapters.  

2.6.2. Nuclear Magnetic Resonance (NMR) 

NMR spectra were recorded on a Bruker DRX spectrometer operating at 600 MHz 

controlled using XWinNMR (Bruker) and NMR data was processed using Felix 

(Accelrys). Experiments are discussed in further detail in the appropriate chapter.  

2.6.3. Transmission Electron Microscopy (TEM) 

Carbon-coated copper grids (Agar Scientific) were glow-discharged with 3x 15 second 

pulses using a Cressington 208 glow-discharge unit. Samples were adsorbed on a 

freshly glow-discharged grid for 1 minute and blotted. Grid was washed shortly in two 

drops of water and two drops of 0.75% uranyl formate and blotted between each wash; 

grid was held in the final drop of 0.75% uranyl formate for 20 seconds and dried with 

gentle vacuum suction after blotting. A Philips CM-100 electron microscope, operating 

at 100 kV and equipped with a 1024 x 1024 pixel Gatan CCD camera, was used to 

record micrographs.   
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Chapter Three: Purification of Aβ1-40 Using a Ubiquitin Tag  

3.1. Introduction 

Aβ is a difficult protein to produce and work with due to its hydrophobicity, low 

solubility and propensity to aggregate; it has been rightly described as the ‘peptide from 

hell’ (Zagorski et al., 1999).  Synthetic methods of peptide production often lead to high 

degrees of variability within different preparations causing discrepancies between 

results due to the presence of minor impurities. These can include salts, metals, 

truncated products and partial racemisation. Finder et al. (2010) demonstrated that 

synthetic Aβ1-42 is less toxic in vivo and to cultured rat primary cortical neurons than 

recombinant Aβ1-42, in addition to lengthening fibrillogenesis in vitro. It is therefore 

highly desirable to produce large quantities of the peptide recombinantly, to allow us to 

model physiological conditions as accurately as possible. Moreover a recombinant 

system allows easy isotopic labelling for NMR purposes, greatly reducing the cost of 

these experiments as such peptides are expensive to purchase. The quality of the 

expression and purification methods still affect the process significantly, with some 

authors reporting large variations between samples while others claim high 

reproducibility, with Aβ1-40 and Aβ1-42 alike (Hortschansky et al., 2005, Hellstrand et al., 

2009). 

There are a number of expression systems for both Aβ1-42 and Aβ1-40 reported in the 

literature, some of which are listed in Table 3.1. Most of these use a protein tag to 

increase the solubility of the Aβ and allow expression of high levels of protein in E. 

coli. This fusion tag is then cleaved at a specific protease site that has been incorporated 

into the construct, producing Aβ peptide. In most instances the peptide is separated from 

the cleavage mixture by reverse-phase HPLC. The purity of the resulting peptide is 

established by a variety of methods including MALDI-TOF MS, SDS-PAGE and NMR.  

The system used in this thesis was first described in Lee et al. (2005) for the purification 

of Aβ1-42, and since then has been shown to also be successful for the purification of 

Aβ1-40 (Utsumi et al., 2009). The peptide is expressed with an ubiquitin tag, increasing 

the solubility and stability of the Aβ1-40 and allowing high levels of protein to be 

expressed and purified. The addition of this larger protein also makes the peptide less 

susceptible to hydrolysis by proteolytic enzymes. As bacteria do not contain ubiquitin, 

and therefore do not contain de-ubiquitinating enzymes, this is an ideal system for 
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protein expression and purification. Ubiquitin has also been used as a tag for Aβ 

purification in conjunction with GroES and trigger factor (Shahnawaz et al., 2007, 

Thapa et al., 2008), however in these instances ubiquitin is used to allow specific 

cleavage of the Aβ from the fusion protein rather than to aid expression.  

Reference Yield 

(mg/l 

growth) 

Fusion Construct Final Purification 

Step 

Analysis 

Finder et al. 

(2010) 

22 His6-(NANP)19-TEV 

protease recognition 

site-Aβ 

RP-HPLC MALDI-TOF MS, 

RP-HPLC, protein 

sequencing 

Hortschansky et 

al. (2005) 

0.7-0.8 

mg/g cells 

His6-MBP-TEV 

protease recognition 

site-Aβ 

RP-chromatography SDS-PAGE, RP-

HPLC, MS, protein 

sequencing 

Shahnawaz et al. 

(2007) 

15 His6-GroES-ubiquitin-

Aβ 

RP-HPLC SDS-PAGE, 

MALDI-TOF MS 

Thapa et al. 

(2008) 

8 His6-trigger factor-

ubiquitin-Aβ 

RP-HPLC PAGE, MALDI-TOF 

MS 

Nagata-Uchiyama 

et al. (2007) 

- Lysozyme-linker-

enterokinase cleavage 

site-Aβ 

RP-HPLC MALDI-TOF MS 

Macao et al. 

(2008) 

4 No tag; co-expressed 

with His6-tagged 

affibody ligand ZAβ3; 

exogenous initiating M 

SEC NMR, SDS-PAGE, 

SEC, MS 

Walsh et al. 

(2009) 

14 No tag; exogenous 

initiating M 

Anion-exchange 

chromatography; 

SEC 

SDS-PAGE, RP-

HPLC, LC-MS, 

MALDI-TOF MS, 

protein sequencing 

Utsumi et al. 

(2009) 

4 His6-ubiquitin-Aβ RP-HPLC SDS-PAGE, RP-

HPLC, N-terminal 

sequencing, NMR 

Garai et al. 

(2009) 

4 His6-IFABP-linker-

Factor Xa cleavage 

site-Aβ 

RP-HPLC SDS-PAGE, ESI-MS 

Table 3.1. Production Strategies for Aβ1-40. Adapted from Finder et al. (2010). 
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In the initial protocol the cleavage products were separated using reverse-phase HPLC 

to produce pure Aβ1-40, however attempts to reproduce this proved unsuccessful. Several 

different purification methods were tried with mixed success before an effective system 

was established. This chapter describes the development of this system, with the final 

protocol for the production of Aβ1-40 shown in section 3.3.5. 

3.2. Materials and Methods 

3.2.1. His6Ub-Aβ1-40 Construct 

The plasmid pET28a containing the His6Ub-Aβ1-40 construct was kindly provided by Dr 

Maho Yagi-Utsumi (Okazaki Institute for Integrative Bioscience). The construct 

consists of the gene encoding Aβ1-40 with the ubiquitin gene positioned at the 5’-end. 

This means that the Aβ1-40 is expressed with His6Ub at the N-terminal. The six 

histidines allow easy purification of the fusion protein by Ni2+ affinity chromatography, 

and the ubiquitin tag increases the solubility and stability of the Aβ1-40 peptide. The tag 

is cleaved using the yeast hydrolase YUH1, which cuts specifically at the C-terminal 

end of the ubiquitin. The pGEX-6p-1 plasmid for GST-YUH1 was also provided by Dr 

Maho Yagi-Utsumi. The enzyme is expressed with a GST tag to aid purification by 

glutathione affinity chromatography.  

3.2.2. Expression and Purification of GST-YUH1 

3.2.2.1. Buffers 

Binding Buffer  50 mM Tris-HCl pH 8.0, 1 mM EDTA, 1 mM DTT 

Glutathione Elution Buffer 50 mM Tris-HCl pH 8.0, 1 mM EDTA, 1 mM DTT,  

20 mM reduced glutathione 

Dialysis Buffer  50 mM Tris-HCl pH 8.0, 0.2 mM DTT 

3.2.2.2. Expression 

Single colonies of E. coli Rosetta were used to inoculate 5 ml of LB broth and the 

cultures were grown overnight aerobically at 37°C. Each starter culture was used to 

inoculate 1 litre of LB containing 50 µg/ml ampicillin and 25 μg/ml chloramphenicol. 

The cultures were grown at 37°C with shaking at 200 r.p.m. Cell growth was monitored 

by measuring the OD600, and expression cultures were induced with 0.5 mM IPTG when 

OD600 = 0.7 – 0.9 and grown for 3 hours before harvesting.  
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3.2.2.3. Preparation of Cell Extract 

The cells were harvested by centrifugation at 18,592 x g (4°C) for 10 minutes and the 

pellets re-suspended in binding buffer (40 ml per 1 litre of cell culture). The suspension 

was ruptured by sonication on ice for 5 x 2 minutes and the insoluble pellet isolated by 

centrifugation at 26,000 x g for 30 minutes at 4°C. The supernatant was recovered and 

pooled. 

3.2.2.4. Glutathione Affinity Chromatography 

Cold cell extract was loaded onto a 100 ml glutathione column (GE Healthcare) 

equilibrated with cold binding buffer at a flow rate of 2 ml/min. To ensure maximal 

binding, the flow-through was loaded onto the same column 3-4 times and then washed 

with binding buffer to prevent non-specific binding until the A280 reached the baseline. 

GST-YUH1 was eluted using elution buffer at a flow rate of 1 ml/min and 2 ml 

fractions collected. The fractions were analysed by SDS-PAGE and those containing 

GST-YUH1 were pooled, dialysed into dialysis buffer and stored at -20°C as 1 ml 

aliquots.  

3.2.3. Expression and Purification of His6Ub-Aβ1-40 

3.2.3.1. Buffers 

Binding Buffer 50 mM Tris-HCl pH 8.0, 150 mM NaCl 

Wash Buffer  50 mM Tris-HCl pH 8.0, 150 mM NaCl, 50 mM imidazole 

Elution Buffer  50 mM Tris-HCl pH 8.0, 150 mM NaCl, 500 mM imidazole 

Urea Buffer  50 mM Tris-HCl pH 8.0, 150 mM NaCl, 8 M urea 

Dialysis Buffer 10 mM Tris-HCl pH 8.0, 1 mM EDTA 

3.2.3.2. Expression 

The pET28a plasmid was transformed into E. coli Rosetta (DE3) pLysS and single 

colonies were grown overnight in 5 ml LB broth containing 15 µg/ml kanamycin and 25 

µg/ml chloramphenicol at 37°C with shaking at 200 r.p.m. Each overnight culture was 

used to inoculate 1 litre of LB broth containing 15 µg/ml kanamycin and 25 µg/ml 

chloramphenicol and cultures were grown at 37°C with shaking at 200 r.p.m. until an 

OD600 of 0.6 was reached. Expression of His6Ub-Aβ1-40 was induced by the addition of 

0.5 mM IPTG, and cells were incubated for a further 3 hours before harvesting. 
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3.2.3.3. Preparation of Cell Extract 

Cells were harvested by centrifugation at 18,592 x g (4°C) for 10 minutes and the 

pellets re-suspended in binding buffer (40 ml per 1 litre of cell culture) containing 1 

mM PMSF. The suspension was ruptured by sonication on ice for 5 x 2 minutes and the 

insoluble pellet isolated by centrifugation at 26,000 x g for 30 minutes at 4°C. The 

supernatant was recovered and pooled. His6Ub-Aβ1-40 was purified from both the 

supernatant and the insoluble pellet. 

3.2.3.4. Ni2+- NTA Affinity Chromatography (Supernatant) 

The cold cell extract was loaded onto a 20 ml Ni2+-NTA super-flow column (Qiagen) 

equilibrated with cold binding buffer at a rate of 2 ml/min. The column was washed 

with binding buffer until A280 of the eluent reached the baseline, and then washed with 

wash buffer, again until the baseline was reached. His6Ub-Aβ1-40 was eluted with 

elution buffer and collected in 2 ml fractions. Fractions were analysed by SDS-PAGE 

and those containing His6Ub-Aβ1-40 were pooled and dialysed into dialysis buffer before 

storage at 4°C.   

3.2.3.5. Ni2+-NTA Affinity Chromatography (Pellet) 

The cell pellet was washed twice with binding buffer by centrifugation at 26,000 x g for 

15 minutes at 4°C, and then re-suspended in urea buffer at room temperature (40 ml per 

1 litre of culture). The suspension was centrifuged at 26,000 x g for 30 minutes at 4°C 

to remove the insoluble pellet, and the supernatant was immediately loaded onto a 20 ml 

Ni2+-NTA super-flow column (Qiagen) equilibrated with urea buffer at a rate of 2 

ml/min. The column was washed with binding buffer until A280 of the eluent reached the 

baseline, and then washed with wash buffer, again until the baseline was reached. 

His6Ub-Aβ1-40 was eluted with elution buffer at a flow rate of 1 ml/min and collected in 

2 ml fractions. Fractions were analysed by SDS-PAGE and those containing His6Ub-

Aβ1-40 were pooled and dialysed against dialysis buffer before storage at 4°C. 

3.2.4. Hydrolysis of His6Ub-Aβ1-40  

3.2.4.1. Original Method 

His6Ub-Aβ1-40 and GST-YUH1 were incubated in 10 mM Tris-HCl pH 8.0, 1 mM 

EDTA, 2 mM DTT at 37°C for 1-2 hours. The molar ratio of His6Ub-Aβ1-40 and GST-

YUH1 was 100:1.  
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3.2.4.2. Final Adapted Method  

In this method, both the ratio of fusion protein and hydrolase, and the volume of the 

reaction, is crucial due to the size of the column used. 5 ml of His6Ub-Aβ1-40 (154 μM) 

was incubated with 40 μl of GST-YUH1 (35 μM) in 10 mM Tris-HCl pH 8.0, 1 mM 

EDTA, 2 mM DTT for 1-2 hours at 37°C.  

3.2.5. Separation of Aβ1-40 from the Ubiquitin tag  

3.2.5.1. Method 1: by Reverse-Phase Chromatography 

The reaction mixture was acidified with 0.1% (v/v) TFA to a pH of 2-4 and passed 

through a 0.2 µm filter. The solution was loaded onto a Grace Vydac Everest C18 

column which had been equilibrated in 0.1 % (v/v) TFA, 2% (v/v) acetonitrile. Bound 

polypeptides were eluted with a linear acetonitrile gradient up to 80% over 40 minutes, 

and fractions were collected and lyophilised. After re-suspension in 10 mM HCl pH 2.0, 

the fractions were analysed by tricine SDS-PAGE.   

3.2.5.2. Method 2: by Size-Exclusion Chromatography 

Native Conditions (analytical) 

20 µL samples were loaded onto a Shodex KW803 column (Shodex, Japan) equilibrated 

in 10 mM sodium phosphate buffer pH 6.0, 100 mM NaCl and eluted over 20 minutes 

at a flow rate of 1 ml/min.  

Denaturing Conditions (analytical) 

After acidification, 20 µl samples were loaded onto an analytical BioSep SEC-S3000 

column (Phenomenex) equilibrated in varying concentrations (0-50% (v/v)) of 

acetonitrile in 0.1% (v/v) TFA and eluted over 20 minutes at a flow-rate of 1 ml/min. A 

preparative column (Biosep SEC-S3000) was also employed with a loading volume of 

100 μl and eluted over 40 minutes with a flow-rate of 3.7 ml/min.  

Denaturing Conditions (scale-up)  

The His6Ub-Aβ1-40 solution was concentrated to 1.5 ml (510 μM) before the hydrolysis 

reaction. After incubation with 5.10 μM GST-YUH1 at 37°C for 2 hours, 1 ml of 40% 

(v/v) acetonitrile in 0.1% (v/v) TFA was added and the pH was checked (should be 

between 2 and 4). After centrifugation at 13,000 x g at 4°C for 15 minutes to remove 

any precipitate, the sample was loaded onto a 100 ml Superdex 75 gel filtration column 

(GE Healthcare) which had been equilibrated in 40% (v/v) acetonitrile in 0.1% (v/v) 
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TFA. The peptide was eluted at a flow rate of 1 ml/min and 2 ml fractions were 

collected and lyophilised. The fractions were analysed by tricine SDS-PAGE to identify 

those containing Aβ1-40.  

3.2.5.1. Method 3: Purification by Ni2+-NTA Affinity Chromatography 

The cleavage reaction was immediately loaded onto a 20 ml Ni2+-NTA super-flow 

column (Qiagen) which had been equilibrated with wash buffer diluted 50x in water 

(i.e. 1 mM Tris-HCl pH 8.0, 3 mM NaCl, 1 mM imidazole). The mixture was manually 

poured on top of the Ni2+ column and allowed to drip through with the upper lid open 

and no buffer flow. When the sample level reached 1-2 mm from the top of the column, 

buffer flow was started at 1 ml/min. Fractions were collected in eppendorf tubes 

according to elution profile. GST-YUH1 elutes immediately, followed very closely by 

Aβ. His6Ub-Aβ1-40 was eluted using elution buffer. Fractions were analysed by SDS-

PAGE and those containing Aβ1-40 were pooled and lyophilised.  

3.2.6. Preparation of Monomeric Aβ1-40 

The lyophilised peptide film was re-suspended in HFIP to a concentration of 1 mg/ml 

and any salt was removed by centrifugation at 13,000 x g for 30 minutes at 4°C. The 

supernatant was removed and aliquoted in 200 μl aliquots. HFIP was removed by 

evaporation under N2 and samples were lyophilised again to remove any trace HFIP, 

and stored at -20°C.   
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3.3. Results 

Both GST-YUH1 and His6Ub-Aβ1-40 were purified successfully with yields of 29 mg 

per 1 litre of cell culture and 8 mg per 1 litre of cell culture (supernatant only) 

respectively.   

3.3.1. Cleavage of His6Ub-Aβ1-40 

GST-YUH1 activity was analysed by tricine SDS-PAGE of the products of the 

hydrolysis reaction. Figure 3.1 shows the expected molecular weights of the various 

proteins which had been previously established by mass spectrometry (Dr Maho Yagi-

Utsumi, personal communication). The tricine SDS-PAGE gel indicated the successful 

cleavage of His6Ub-Aβ1-40 to produce His6Ub and Aβ1-40. The shift of the largest band in 

lane 1 at ~ 15 kDa to ~12 kDa in lane 3 shows the cleavage of His6Ub-Aβ1-40 to produce 

His6Ub with no uncleaved His6Ub-Aβ1-40 remaining. The Aβ1-40 produced by this 

reaction can be clearly seen with a band at ~7 kDa. Tricine SDS-PAGE also 

demonstrated that the cleavage efficiency was the same whether incubated for 1 or 2 

hours at 37°C (data not shown), with no uncleaved protein remaining in the sample. 

 

Figure 3.1. Hydrolysis Reaction  

Table of relevant protein molecular weights (A) obtained by mass spectrometry (provided by Dr Maho 

Yagi-Utsumi (Okazaki Institute for Integrative Bioscience)). Tricine SDS-PAGE (B) showing purified 

His6Ub-Aβ1-40 (lane 1; band at ~ 15 kDa) and purified GST-YUH1 (lane 2; band at ~ 50 kDa). Lane 3 

shows the hydrolysis reaction after incubation at 37°C for 2 hours. The Aβ1-40 band can be clearly seen at 

~ 7 kDa (arrow) with a band at ~12 kDa corresponding to His6Ub after removal of the Aβ1-40 peptide.  

3.3.2. Separation of Aβ1-40 Peptide from Ubiquitin 

3.3.2.1. Method 1: Reverse Phase – HPLC 

Reverse-phase HPLC is commonly used in the literature for the purification of Aβ; 

using acetonitrile as the mobile phase reduces association with the column and the 
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formation of aggregates, problems which are often encountered when using aqueous 

buffer. After hydrolysis at 37°C for 2 hours, the cleavage reaction was run down an 

analytical Vydac C18 column (Grace) in a 2-80% acetonitrile gradient. Pure samples of 

GST-YUH1, His6Ub-Aβ1-40 and commercial recombinant Aβ1-40 (rPeptide, Georgia 

USA) were used for comparison (Figure 3.2). The peak for commercial Aβ1-40 (~37 

min) showed considerable peak tailing indicating that the peptide could be associating 

weakly with the column under the conditions used. The trace for the cleavage products 

shows several small peaks, none of which are easily identifiable, suggesting a lack of 

separation.  

 

Figure 3.2. Separation of Hydrolysis Products by Reverse-Phase HPLC 

Analytical RP-HPLC elution profiles of commercial Aβ1-40 (pink), His6Ub-Aβ1-40 (blue), GST-YUH1 

(green) and the hydrolysis reaction (purple) in a 0-80% acetonitrile gradient in 0.1% TFA. The arrow 

indicates the commercial Aβ1-40 peak at ~36 min, however there is no corresponding peak in the 

hydrolysis sample. 

A similar column on a preparative scale showed better separation of peaks (data not 

shown). However, attempts to analyse the peaks by tricine SDS-PAGE failed indicating 

that the eluted sample was too dilute. In order to continue down the reverse-phase route, 

it would be necessary to concentrate the injected sample further and increase its volume. 

It was evaluated that within soluble limits, the eluted samples would be too dilute for 

further work-up. A different method would be desirable for the amounts of peptide 

required. 
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3.3.2.2. Method 2: Size Exclusion Chromatography 

HPLC 

As shown in Figure 3.3, running the cleavage products on SEC-HPLC in 10 mM 

sodium phosphate pH 6, 150 mM NaCl greatly reduced the number of peaks and 

allowed different species to be identified upon comparison with the standards. As Aβ is 

essentially unfolded, the increase in hydration leads to a higher radius of gyration (Rg) 

which can be predicted to be as much as 3 times that of a folded protein (Semisotnov et 

al., 1996). This means that the Aβ1-40 runs with an apparent molecular weight higher 

than would be expected, and so the retention time is similar to that of the His-ubiquitin, 

even though the latter is 12 kDa compared to Aβ1-40 at 4 kDa.  

 

Figure 3.3. Separation of Hydrolysis Products by Size-Exclusion HPLC 

Analytical SEC-HPLC elution profiles of commercial Aβ1-40 (pink), His6Ub-Aβ1-40 (blue), GST-YUH1 

(green) and the hydrolysis reaction (purple) in 10 mM sodium phosphate pH 6.0, 100mM NaCl. The 

arrow indicates the Aβ1-40 at ~11.5 min. 

It was therefore decided to try running the size-exclusion column in acetonitrile, an 

unusual system. By unfolding all of the other proteins in the sample, it was hoped that 

the proteins would run in accordance to their molecular weight, therefore allowing the 

Aβ to be purified. Analytical tests indicated that the best separation was achieved at 

40% acetonitrile where proteins eluted with the sharpest peaks (Figure 3.4), so all 

further experiments were performed at this concentration. 
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3.4. SEC-HPLC of His6Ub-Aβ1-40 in Varying Concentrations of Acetonitrile 

Analytical SEC-HPLC elution profiles of His6Ub-Aβ1-40 in 0%, 30%, 40% and 50% (v/v) acetonitrile in 

0.1% TFA. 

As illustrated in Figure 3.5, separation of the hydrolysis products and production of pure 

Aβ1-40 was achieved by SEC-HPLC on both an analytical and a semi-preparative scale. 

However, even the semi-preparative column available had an injection limit of 100 µl of 

sample, meaning that in order to obtain a large enough yield of peptide (>10 mg), too 

many elution runs would be necessary for an efficient protein production. Further 

methods were investigated. 
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Figure 3.5. Separation of Hydrolysis Products by SEC-HPLC in 40% Acetonitrile 

Analytical (A) and semi-preparative (B) SEC-HPLC elution profiles of commercial Aβ1-40 (pink), His6Ub-

Aβ1-40 (blue), GST-YUH1 (green) and the hydrolysis reaction (purple) in 40% acetonitrile in 0.1% TFA. 

The black arrow indicates the Aβ1-40 peak at ~9.5 min (A) and ~15 min (B), however it is also thought 

that the peak immediately to the right of this in the analytical profile (grey arrow) could also be Aβ1-40. 

Low Pressure Size-Exclusion Chromatography 

In an attempt to scale-up the SEC-HPLC experiment and obtain a greater yield of 

peptide, a more standard liquid chromatography system was used to carry out the size-

exclusion chromatography. The hydrolysis products were loaded onto a 100 ml 

Superdex 75 column (GE Healthcare) in 40% acetonitrile:water (v/v) and 0.1% TFA 

then 4 ml fractions were collected. As shown in Figure 3.6, SDS-PAGE indicated that 
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partial separation was achieved, with most of the His6Ub being removed from the 

sample. In order to achieve complete separation, it would be necessary to use a column 

of double the length (or two columns in tandem). Although this method had only limited 

success in isolating Aβ1-40 from the hydrolysis mixture, it has proved to be successful 

both in purifying Aβ from mixtures where the contaminating protein has a higher 

molecular weight, and in buffer-exchanging the peptide into 40% acetonitrile to remove 

salt and other contaminants and allow easy lyophilisation.  

 

Figure 3.6. Size-Exclusion Chromatography and SDS-PAGE Analysis 

Elution profile (A) of size-exclusion chromatography of hydrolysis products in 40% acetonitrile in 0.1% 

TFA using a Superdex 75 column (GE Healthcare). 4 ml fractions were collected and fractions 1-8 were 

analysed by SDS-PAGE (B). Fractions 3 and 4 show the presence of Aβ1-40 (band at ~ 7 kDa) but the 

band at ~ 13 kDa indicates that His6Ub is still present. 

3.3.2.3. Method 2b: Separation by Aggregation of Aβ1-40  

Due to mixed success with chromatography, a completely different method for 

separating out the Aβ was trialled. By incubating the cleavage mixture in conditions in 

which Aβ is known to fibrillise, it was hoped that the Aβ would form fibrils which 

could then be harvested by centrifugation, re-dissolved using hexafluoroisopropanol 

(HFIP) eventually producing a pure sample of Aβ1-40. Aβ is known to form fibrils at 

either low pH or neutral pH with the addition of salt. Taking the peptide through the pH 

region 4.0 to 6.0 is undesirable, as this causes the Aβ to precipitate (Zagorski et al., 

1999). Initially low pH conditions were chosen in which neither salt nor buffer were 

present, allowing easy lyophilisation of the dissociated peptide. Evidence from the 

literature suggests that at a peptide concentration of 100 μM significant amounts of 

fibril will have formed after 24 hours at 37°C (Stine et al., 2003). After incomplete 

separation by SEC in 40% acetonitrile, fractions containing Aβ1-40 were pooled and 
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lyophilised before re-suspension in 10 mM HCl pH 2.0.  Incubation of the cleavage 

products in these conditions for 9 days produced small protofibrils, as shown  by TEM 

in Figure 3.7, however further incubation did not lead to mature fibrils. Centrifugation 

at 13,000 x g for 30 minutes caused pelleting of the protofibrils, allowing analysis by 

SDS-PAGE after dissolution in HFIP. This indicated that the Aβ had been effectively 

isolated in the insoluble fraction, however attempts to repeat this were unsuccessful. 

 

Figure 3.7. Isolation of Aβ1-40 by Fibrillisation at pH 2.0 

Electron micrograph of Aβ1-40 protofibrils (A) formed by incubation of hydrolysis products at pH 2.0. 

Fibrils were separated from soluble species by centrifugation at 13,000 x g for 30 minutes. Samples were 

analysed by SDS-PAGE (B); lanes 1 and 2 indicate that the fibril pellet contained only Aβ1-40 (band at ~ 7 

kDa indicated by arrow) whereas the His6Ub remained in the soluble fraction (lane 3; band at ~ 13 kDa). 

Some soluble Aβ1-40 was still present. 

A purification technique described by Garai et al. (2009) involved the addition of 

100µM ZnCl2 to Aβ1-40 incubated in Tris pH 7.4, 100mM NaCl at room temperature 

with agitation, resulting in the formation of fibrils overnight. Utilisation of this method 

would allow the production of fibrils over a short time period. Fibrils were produced 

after 24 hours as confirmed by TEM. After harvesting by repeated cycles of 

centrifugation and washing with EDTA to remove the ZnCl2, the fibrils were dissolved 

with HFIP and lyophilised. Analysis by SDS-PAGE showed a pure sample of Aβ1-40 

(Figure 3.8). The process was then performed on a large scale, however in this case the 

SDS-PAGE showed that the sample was not pure as larger bands corresponding to 

His6Ub and GST-YUH1 were present (data not shown). Ensuring removal of all the 

zinc from the sample is a major problem with this purification method, as even residual 

amounts of the metal will affect the fibrillisation kinetics.  

Further development of this method should include testing these conditions without the 

addition of the zinc, as Aβ1-40 readily forms fibrils at pH 7.4 without the addition of the 
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metal. This will eradicate the necessity of removing the zinc. Methods trialled in 

parallel were successful first and were more readily adaptable to purifying the more 

challenging Aβ1-42, therefore aggregation methods were not pursued further. 

 

Figure 3.8. Isolation of Aβ1-40 by Fibrillisation at pH 7.4 with 100 µM ZnCl2 

Electron micrograph (A) of Aβ1-40 fibrils and large molecular weight species formed by incubation of 

hydrolysis products at pH 7.4 with the addition of 100 µM ZnCl2. Fibrils were separated from soluble 

species by centrifugation at 13,000 x g for 30 minutes and analysed by tricine SDS-PAGE (B). 

3.3.2.4. Method 3: Ni2+-NTA Affinity Chromatography 

The addition of a histidine tag allows efficient purification of the fusion protein by Ni2+-

NTA affinity chromatography in a one-step process. This histidine tag can also be 

exploited in the purification of the Aβ1-40 peptide from the cleavage mixture; by running 

the sample down the Ni2+-NTA column again, the His6-ubiquitin will bind to the 

column, allowing the Aβ1-40 to flow through the column. The small amount of GST-

YUH1 that remains can either be removed by running the sample through a GST 

affinity column, or a size-exclusion chromatography column. Initial trials indicated that 

in aqueous buffer the Aβ1-40 would adhere to the column beads and be lost; running the 

column in 40% acetonitrile proved moderately successful but had difficulties with the 

solvent stripping the nickel from the column when trying to reproduce the experiment.  

Finally my colleague Dr Fernando Macedo Jr. attempted a further modification of this 

method and was successful in purifying Aβ1-40 using the Ni2+-NTA column. While the 

Aβ1-40 will stick to the column when run in buffer, the addition of low concentrations (1 

mM) of imidazole to the running buffer prevents non-specific binding of the Aβ. The 

peptide is still slightly retarded by the column, meaning that the GST-YUH1 elutes first 

and removing the need for separate purification for the hydrolase. The His6Ub will bind 
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to the Ni2+ and only be removed by the addition of higher concentrations of imidazole 

(100 mM). Analysis of the fractions by SDS-PAGE showed the presence of pure Aβ1-40. 

Fractions were pooled, lyophilised and re-suspended in HFIP. Centrifugation at 13,000 

x g removed any salt that would not dissolve in the solvent, and the HFIP was 

evaporated under a stream of nitrogen gas before lyophilisation to remove any residual 

traces of solvent. 

 

Figure 3.9. Ni2+-NTA Chromatography of Hydrolysis Reaction 

Elution profile (A) from Ni2+-NTA chromatography of hydrolysis products in 1 mM imidazole. Fractions 

were collected until the elution trace reached the baseline. Bound His6Ub-Aβ1-40 was then eluted using 

100 mM imidazole. Tricine SDS-PAGE of fractions 1-9 (B) indicated that uncleaved His6Ub-Aβ1-40 was 

still present in the initial hydrolysis reaction (band at ~16 kDa). Pure Aβ1-40 was seen in fractions 5-8. 

After purification by Ni2+-NTA affinity chromatography, SDS-PAGE indicated that a 

pure sample of Aβ1-40 had been produced. However analysis of the sample by SEC-

HPLC (Figure 3.10) revealed that, although the peptide was pure, there was a large peak 

at 49 minutes thought to correspond to contaminating buffer salts such as imidazole. As 

imidazole absorbs strongly at 280 nm this makes it impossible to quantify the yield of 

protein through measuring the absorbance of the sample at 280 nm. It is also not known 

what effect the imidazole will have on fibrillisation and peptide interaction with hCC, 

making it necessary to remove the imidazole, and any other contaminating buffer salts, 

from the sample. The method chosen for this was size-exclusion chromatography in 

40% (v/v) acetonitrile in 0.1% TFA, as this had been shown to be successful in 

purification of Aβ in the previous section.  
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Figure 3.10. Analytical SEC of Purified Aβ1-40 

Elution profile of purified Aβ1-40 analysed by size-exclusion chromatography in 50 mM sodium phosphate 

pH 7.4, 150 mM NaCl with the absorbance measured at 280 nm. The arrow indicates the Aβ1-40 peak at ~ 

33 minutes. The large peak at 49 minutes is thought to correspond to contaminating imidazole that has 

not been removed from the sample by the purification process. 

3.3.3. Characterisation of the Purified Peptide after SEC 

After purification using a preparative Superdex 75 gel filtration column (GE 

Healthcare) carried out in 40% acetonitrile, the peptide was characterised by SEC-

HPLC and mass spectrometry. Fibril formation by the purified Aβ1-40 was then 

compared to a commercial preparation from rPeptide (Georgia, US). The lyophilised 

peptide was re-suspended in 10 mM NaOH before being diluted 1:1 with 100 mM 

sodium phosphate pH 7.4, 300 mM NaCl. The pH was adjusted with HCl to give a final 

1 ml sample in 50 mM sodium phosphate pH 7.4, 150 mM NaCl.  

3.3.3.1. SEC-HPLC 

Initially the sample of purified Aβ1-40 was analysed using analytical SEC in 50 mM 

sodium phosphate pH 7.4, 150 mM NaCl with the absorbance read at 280 nm, as shown 

in Figure 3.11A. Comparison with a commercial sample identified the Aβ1-40 peak as 

being at 33 minutes, however there were several other peaks present after this one. In 

both the commercial and the purified sample a small peak was observed at ~13 minutes, 

potentially corresponding to a small amount of oligomeric Aβ being present in the 

sample.  

To try and identify whether the extra peaks in the purified sample were truncated forms 

of Aβ, or buffer components that had not been removed by the purification process, the 
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same samples were analysed by SEC in an identical manner, except reading the 

absorbance at 224 nm. Measuring the absorbance at this wavelength identifies the 

peptide bond, rather than the aromatic residues that absorb at 280 nm, of which Aβ has 

very few. Again this identified the Aβ peak in the same position at 33 minutes, with a 

reduction in the number of extra peaks with only one remaining. This could indicate that 

the majority of extra peaks are from buffer components. The height of the Aβ peak in 

the purified sample was comparable to that of the commercial sample, indicating that 

they were at a similar concentration of 0.1 mg/ml, and allowing quantification of the 

purified peptide.  
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Figure 3.11. SEC-HPLC Analysis of Purified Aβ1-40 

Elution profiles of SEC-HPLC commercial and purified Aβ1-40 monitoring the absorbance at 280 nm (A) 

and at 224 nm (B) with the arrow indicating the Aβ1-40 peak. 
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3.3.3.2. Mass Spectrometry 

Figure 3.12 shows analysis by ESI-MS, which indicated that Aβ1-40 had been produced 

with a mass of 4329.1 Da which compares well with the predicted mass of 4329.8 Da, 

given the accuracy of the instrument is low (± 1 Da). This also confirmed that there had 

been no oxidation of methionine 35, which is a common problem with preparation of 

Aβ.  

There were two extra masses in the MS data, both of which could be attributed to 

truncated forms of the peptide. Loss of the N-terminal aspartic acid gives rise to a 

peptide with a mass of 4212 Da which could be attributed to inefficient cleavage by the 

GST-YUH1. The second truncated peptide has lost the last 6 residues. The peak of 

2177.6 did not correspond to any fragment masses within the Aβ peptide sequence. 

Although the peaks for the two identified truncates are a lot smaller than that of the full 

length peptide, this cannot be used for quantification purposes as peak heights are 

dependent on how well the ions fly, not how much of each species is present. It is 

possible that these peptide fragments correspond to the extra peak observed in the SEC 

(Figure 3.11), in which case they would constitute a significant proportion of the 

sample, however this is very unlikely as the analytical Superdex 200 column does not 

have the resolving power to distinguish between peptides with only 6 residues 

difference. MS analysis of a sample of commercial Aβ1-40 also indicated the presence of 

small truncated peptides, demonstrating that the purified peptide had a similar purity to 

the commercial product.   
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Figure 3.12. Mass Spectrometry Analysis of Purified Aβ1-40 

ESI-MS analysis of a sample of purified (A) and commercial (B) Aβ1-40 showing identification of peptide 

masses. The table shows a comparison between the experimental masses and the calculated mass for the 

identified peptides. Truncated peptides are indicated on the Aβ1-40 primary structure. 
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3.3.4. Fibrillisation 

Having produced a pure sample of Aβ1-40, as confirmed by HPLC and mass 

spectrometry, it was then desirable to compare the fibrillisation of the peptide with a 

commercial preparation. The lyophilised peptides were resuspended in 10 mM NaOH 

before being diluted 1:1 with 100 mM sodium phosphate pH 7.4, 300 mM NaCl. The 

pH was adjusted with HCl to give a final 1 ml sample in 50 mM sodium phosphate pH 

7.4, 150 mM NaCl and the fibrillisation time-course at 37°C was followed by ThT 

fluorescence. This amyloid-specific dye shows an increase in fluorescence upon binding 

to amyloid fibrils, allowing the fibril formation to be followed over a period of time. 

Figure 3.13 shows the data obtained from both samples which followed a sigmoidal 

curve, thought to correspond to an initial lag phase and an exponential elongation phase 

which eventually reaches an equilibrium plateau.  

 

Figure 3.13. Fibrillisation of Aβ1-40 

ThT fluorescence curves (5 replicates) showing fibrillisation of purified (A) and commercial (B) Aβ1-40 

incubated in 50 mM sodium phosphate pH 7.4, 150 mM NaCl at 37°C.  

The purified sample had a lag phase of ~ 60 hours, compared to the average lag time of 

~30 hours that was obtained for the commercial sample. There is a considerable 

difference in the final ThT intensity for the two samples, with the commercial sample 

having approximately three times the fluorescence of the purified Aβ. This could 

indicate that less fibrils are being produced from the latter peptide, or that one of the 

contaminants observed in the SEC is quenching the ThT fluorescence. Each experiment 

consisted of 5 replicates. In the commercial sample there was a large variation between 

the replicates, however the curves obtained from the purified sample are a lot more 

reproducible.  
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3.3.5. Overview of Final Purification 

Figure 3.14 illustrates the final protocol used for the purification of Aβ1-40. After 

purification of the ubiquitin tagged peptide using Ni2+-NTA affinity chromatography, 

the tag is removed using the specific ubiquitin hydrolase for 1-2 hours. Separation of the 

Aβ1-40 peptide is achieved using the Ni2+-NTA column and the Aβ1-40 is then denatured 

and monomerised in HFIP. Removal of any residual buffer components and 

contaminants is then achieved by gel filtration (Superdex 75) under denaturing 

conditions, in 40% acetonitrile:water and 0.1% TFA. The purified peptide is then 

lyophilised, treated with HFIP and further lyophilised before storing at -20°C. 

3.4. Conclusions 

The properties that make Aβ so significant in neurodegenerative diseases, and therefore 

so interesting to study, are the very same properties that make this peptide so difficult to 

work with. Recombinant production of Aβ is no exception. Problems start with 

expression in E. coli, low solubility and propensity to degrade makes the addition of a 

tag appear necessary. This does lead to high expression levels, and a good yield of 

fusion protein, however then comes the issue of removing this tag and purifying out the 

peptide without it precipitating, aggregating or sticking to any surface it comes into 

contact with. The purification detailed here allows the production of a pure sample of 

Aβ1-40 in high enough yields to be used for NMR purposes, however this was not 

achieved in time to be used for the interaction studies with hCC (Chapter 5).  
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Figure 3.14. Outline of the optimised protocol for Aβ1-40 purification 
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Chapter Four: Structural Studies of Cystatin C 

4.1. Introduction 

Although the L68Q variant of hCC will readily aggregate in vivo (Abrahamson and 

Grubb, 1994), as will type I family member cystatin B (Zerovnik et al., 2002), wild-type 

hCC requires drastic conditions for fibril assembly demonstrating high stability (Ekiel 

and Abrahamson, 1996, Nilson et al., 2004). The fibrillisation mechanism of cystatin B 

has been extensively studied, however there is minimal information available on the 

assembly pathway of hCC. 

The current structural model for hCC amyloid formation is that this protein 

oligomerises via a mechanism known as runaway domain swapping (Figure 4.1).  

Stabilised mutants containing disulphide bridges across the domain swapping interface, 

and thereby unable to domain swap, have a drastically reduced ability to produce both 

dimers and amyloid fibrils under fibrillising conditions (Nilsson et al., 2004). Although 

the prevention of amyloid formation in this manner has been suggested to mean that 

dimerisation is an obligatory intermediate in the fibrillisation pathway, the behaviour 

observed could also be attributed to a general stabilisation of the protein through the 

insertion of new disulphide bonds, rather than the specific inhibition of domain 

swapping. In addition to amyloid fibrils, hCC will also form donut-shaped oligomers 

which are thought to be on-pathway intermediates. Again, mutants stabilised against 

domain swapping will not form these oligomeric structures (Wahlbom et al., 2007).  

Limited proteolysis has recently been used to develop a structural model for cystatin B 

fibrils (Davis, 2013) through probing with three different proteases elastase, proteinase 

K and endoproteinase Lys-C. Rapid hydrolysis of the N-terminal α-helix, in conjunction 

with previously observed hydrogen-deuterium exchange data (Morgan et al., 2008) 

suggests that the native-like helix is not present in the fibril structure and that unfolding 

of this α-helix is essential for fibril formation. Limited proteolysis identified a protease-

resistant fragment extending from residues 27 to 80, suggesting that the fibril core is 

composed of native-like β-strands 2, 3 and 4 and leading to the proposal of a new non-

native structural model with the cystatin B forming a β-strand arc (Figure 4.1).  A 

comparison with the proteolytic pattern of hCC fibrils could be used to determine 

structural similarities between these family members, and establish whether the 
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extensive structural work that has already been carried out on cystatin B can be related 

to the amyloidogenic disease-causing hCC.  

  

Figure 4.1. Current models of Cystatin Fibril Structures 

The suggested working models for hCC (left) and cystatin B (right) amyloid fibril structures. hCC is 

assumed to polymerise via a runaway domain swapping model (Wahlbom et al., 2007). Cystatin B is 

modelled here to account for hydrogen-exchange protection data and proteolysis protection, fitting both 

EM and AFM size restrictions. This model allows access to β-strand 5, which has been shown to be 

susceptible to proteolysis, without major remodelling of the fibril structure required upon its removal. 

The N-terminal is disordered and not included in the fibril core. Images taken from (Wahlbom et al., 

2007) and (Davis, 2013). 

This chapter describes ThT assays and electron microscopy exploring the formation of 

amyloid fibrils and oligomeric intermediates by hCC. Different methods of separating 

these species will be discussed, in addition to their stability in different conditions, in 

the attempt to produce samples of both species for structural characterisation by limited 

proteolysis. Finally a preliminary limited proteolysis experiment of hCC fibrils is 

described, providing some insights into the structure of these fibrils and the validity of 

using the established models to describe hCC fibrils.  

4.2. Materials and Methods 

4.2.1. hCC Fibril Formation 

hCC was buffer-exchanged into either 10 mM glycine pH 2.0 or 50 mM sodium acetate 

pH 4.0, 100 mM NaCl. The sample was incubated at either 225 μM or 22.5 μM at 48°C 

with constant stirring with a micro-stirrer (at approx. 100 r.p.m.).  
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4.2.2. ThT Fluorescence 

10 μM ThT was added to hCC fibrillisation samples, which were incubated in a Cary 

Eclipse fluorimeter (Varian, UK). Emission scans were taken from 400 – 500 nm every 

15 minutes with an excitation wavelength of 442 nm at a PMT voltage of 800 V. The 

emission at 482 nm was plotted using GraphPad Prism 6.04. 

4.2.3. SEC-HPLC 

Samples were analysed using an analytical Superdex 200 column (GE Healthcare) run 

in fibrillisation buffer conditions at 0.5 ml/min for 60 minutes. Absorbance was 

measured at 280 nm. 

4.2.4. Purification of Oligomeric Species 

The protocol used for purification of hCC oligomers was adapted from that established 

in Wahlbom et al. (2007). After incubation at 48°C for the appropriate amount of time, 

hCC oligomer samples were inserted into a 0.5 ml Vivaspin filter device (Sartorius, 

UK) with a 1,000 kDa molecular weight cut off (MWCO) and centrifuged at 6,442 x g 

for 15 minutes to remove any fibrillar material or large amorphous aggregates from the 

sample. The flow-through was then loaded onto a 0.5 ml Vivaspin with a 100 kDa 

MWCO and centrifuged at 6,442 x g for 15 minutes. The sample retained at the top of 

the Vivaspin was diluted to the original volume with buffer and centrifuged again. This 

cycle was repeated three times to remove any monomeric hCC or lower molecular 

weight species from the solution and the volume of the retentate adjusted to the initial 

volume with buffer at the end. This method was also used for buffer-exchanging 

oligomers. All centrifugation steps were carried out at 4 °C.  

4.2.5. Purification of Fibrils 

hCC fibril samples were centrifuged at 13,000 x g for 30 minutes at 4°C. The 

supernatant was removed and the fibrils re-suspended in the original volume of buffer. 

This cycle was repeated three times to remove any monomeric and oligomeric hCC 

present in the sample. 

4.2.5.1. Incubation of Fibrils in Different Conditions 

5 μl samples of hCC fibrils at 225 μM protein concentration were incubated in a range 

of conditions as shown in Table 4.1. Conditions were altered through the addition of 

stock solutions to the samples in 50 mM sodium acetate pH 4.0, 100 mM NaCl.  
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Condition hCC Fibril Sample Solution Added Incubation Time (min) 

pH 1.0 4 μl 1 μl 1 M HCl 15  

pH 7.0 4 μl 1 μl 150 mM NaOH 15  

pH 14.0 4 μl 1 μl 5 M NaOH 15  

20% TFE 4 μl 1 μl TFE 15  

Sonication 5 μl - 10  

85 °C 10 μl - 10  

1.2 M GuHCl 4 μl 1 μl 6M GuHCl 15  

6 M GuHCl 15 μl 5.7 mg GuHCl 10  

0.4 M NaCl 3 μl 2 μl 1M NaCl 15  

1 M NaCl 10 μl 0.5 mg NaCl 10  

Table 4.1. Buffer Conditions for Fibril Stability Tests  

4.2.6. Limited Proteolysis 

This technique uses very low concentrations of protease to hydrolyse peptide bonds in 

unprotected regions. Limited proteolysis rarely occurs within regular secondary 

structure, with proteinases requiring sites with high chain mobility for proteolytic 

activity. Regions in the fibril core can be identified as they will be shielded from 

proteolytic activity.  

4.2.6.1. Sample Preparation 

hCC fibrils were produced by incubation of the monomeric protein at 225 μM in 50 mM 

sodium acetate pH 4.0, 150 mM NaCl for 4 weeks and purified as described above. 

During the purification process fibrils were buffer-exchanged into 10 mM Tris-HCl pH 

8.0 and diluted to a protein concentration of 75 μM.  

4.2.6.2. Limited Proteolysis Reaction 

The protocol for the limited proteolysis experiment was taken from Davis (2013) and an 

overview is depicted in Figure 4.2. Elastase from porcine pancreas was used for 

proteolysis reactions at a 1:1000 protease to cystatin ratio (by mass). Elastase digestion 
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was carried out in 10 mM Tris-HCl pH 8.0 at 25 °C and quenched using a final 

concentration of 100 μM PMSF. Protease and inhibitor were purchased from Sigma 

Aldrich and stored frozen at -20 °C. Fresh aliquots from the same preparation were used 

for each digestion to maintain activity and reproducibility. Samples were taken at 5 

time-points over 24 hours, and analysed by tricine SDS-PAGE and in-line C18 RP-

HPLC ESI-TOF-mass spectrometry.  

The reaction sample was equilibrated at 25 °C for 5 minutes before addition of the 

protease. An initial time-point sample was immediately removed and quenched with 

PMSF. An aliquot of 20 μl was removed and added to 20 μl loading buffer for SDS-

PAGE analysis and the remaining sample was centrifuged at 13,000 x g for 15 minutes 

to pellet the digested fibrils. The supernatant (containing soluble peptide fragments) was 

retained and the insoluble fibril pellet washed by centrifugation with fresh reaction 

buffer. The final pellet was re-suspended in an equal volume of 6 M guanidine 

hydrochloride to dissolve the fibrils and allow the fragments to be analysed. The 

aliquots were frozen in liquid nitrogen as soon as possible after processing, with storage 

on ice up until this point, and then stored at -20 °C. Each time-point was treated in an 

identical manner and a soluble protein digest, again treated the same, was used as a 

control. Elastase and elastase with PMSF controls are described in Davis (2013) so 

these were not repeated.   
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Figure 4.2. Limited Proteolysis Sample Preparation 

A flow chart depicting method of sample preparation for limited proteolysis. The SDS-PAGE sample is 

suggested to be optional as its use was limited in fragment analysis. Adapted from (Davis, 2013). 
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4.2.6.3. Elastase 

Elastase is a serine proteinase that hydrolyses small hydrophobic amino acids with 

straight side chains such as alanine, valine, leucine, glycine and serine, unless preceded 

immediately by proline (Atlas 1970, Thompson and Blout 1973, Gold and Shalitin 

1975). Isoleucine and threonine were also included according to (Rietschel et al., 2009) 

resulting in forty-eight specific cleavage sites throughout the soluble hCC structure 

from the primary sequence alone, as illustrated in Figure 4.3.   

 

Figure 4.3. Topology Map of hCC with Predicted Elastase Cut Sites 

Predicted elastase hydrolysis sites (blue triangles) based on the primary sequence of hCC.  

Elastase was chosen for its wide coverage of the protein primary sequence, its activity 

under physiological conditions and the ease of quenching. In addition, and perhaps most 

importantly, these experiments have demonstrated that porcine elastase does not cleave 

the soluble protein readily suggesting that hCC monomer is also a potent inhibitor of 

serine proteinases (under most conditions) as well as its natural target the cysteine 

proteinases. In this way, fragments resulting from the proteolysis reactions can be traced 

to only fibrils or other oligomers of hCC. The observation of proteolysis also validates 
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the hypothesis that the population of active soluble hCC monomers is negligible in the 

hydrolysis reactions. 

hCC is a natural substrate of leukocyte elastase in vivo, leading to a truncation between 

residues 10 and 11, however the activity of the porcine pancreatic elastase that was used 

is thought to be different to that of leukocyte elastase (Bode et al., 1989), as confirmed 

by the absence of this truncation from both monomer and fibril digests. 

4.2.6.4. Reverse Phase HPLC-ESI-MS and Mass Fragment Identification 

Samples from the hydrolysis reaction were loaded onto a Grace Vydac Everest C18 

reverse-phase column equilibrated with 5% acetonitrile, 0.1% formic acid and eluted 

using a linear acetonitrile gradient up to 50% over 40 minutes, then a 50-95% 

acetonitrile gradient over 5 minutes at 0.2 ml/min. Masses were detected by a 

Micromass LCT electrospray-ionisation time-of-flight instrument (Waters Corporation, 

Manchester) in positive ion mode. Masslynx 3.5 software was used to identify masses 

present and FindPept (ExPASy) (Artimo et al., 2012) was used to determine protein 

fragment identities by matching the predicted and actual masses. The analysis 

methodology is shown in Figure 4.4.  
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Figure 4.4. Limited Proteolysis Fragment Analysis 

Flow-chart illustrating analysis of limited proteolysis fragments by mass spectrometry and identification 

using FindPept (Artimo et al., 2012). Mass entropy peaks that were considered to be within the noise of 

the experiment were not used for identification purposes. Adapted from (Davis, 2013). 

 



97 

 

4.3. Results and Discussion 

4.3.1. Fibrillisation of hCC 

Incubation of hCC in 10 mM glycine pH 2.0 or 50 mM sodium acetate pH 4.0, 100 mM 

NaCl at a concentration of 225 μM resulted in the formation of amyloid fibrils as 

monitored by an increase in ThT fluorescence. The kinetic profiles of these reactions 

followed the classic sigmoidal curve that is characteristic of amyloid formation, and is 

consistent with the nucleation polymerisation model of fibril assembly.  

4.3.1.1. Incubation at pH 4.0 

Figure 4.5 shows that when incubated at pH 4.0, hCC forms fibrils within 20 hours. 

Fluorescence intensity begins to increase after 3 hours, with a small peak forming 

before a significant increase is observed after 8 hours. This is a distinctly shorter lag 

phase than is reported in the literature, where an exponential increase in fluorescence 

was not detected until 3 weeks of incubation (Wahlbom et al., 2007). Intriguingly, a 

small peak in fluorescence intensity was also observed before the elongation phase in a 

similar sample with a lower protein concentration of 22.5 μM. The latter experiment 

was performed at a different time to the initial experiment, suggesting that this peak 

could correspond to the formation of ThT-positive species prior to fibril elongation. 

Other studies also observe an initial small increase in fluorescence intensity before the 

exponential phase of the reaction (Wahlbom et al., 2007), suggesting that this is not just 

an artefact of this specific experiment.  

The reactions underwent agitation by constant stirring to induce fibrillogenesis. 

Although the samples in the Wahlbom study were also subject to constant agitation, the 

method of agitation is not described. A change in motion could lead to faster formation 

of nucleating species or increased fragmentation of existing fibrils, consequently 

causing fibril assembly to be quicker. Fragmentation of fibrils leads to an increase in the 

number of extension sites that are available for elongation, therefore increasing the rate 

of fibril assembly. In such a case the lag phase is often defined by the length of time it 

takes for the initial filaments to multiply and fragment, thereby allowing detection, 

rather than the formation of the initial nucleating species.  

Another difference in these two experiments is that the study described here monitors 

ThT fluorescence in a continuous assay, where the dye is added at the start of the 

experiment and the whole sample is incubated and monitored. In a discontinuous assay, 
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the ThT is not present in the aggregating sample. Instead an aliquot is removed at 

specific time-points and added to a solution of ThT before analysis. Most of the 

published fluorescence studies of hCC fibrillisation have use the discontinuous method 

of analysis. It is therefore possible that the presence of ThT in the sample is enhancing 

fibril formation, although the opposite is usually observed. 

 

Figure 4.5.  Fibrillisation of hCC at pH 4.0 

hCC fibril formation monitored by ThT fluorescence intensity incubated in 50 mM sodium acetate pH 4.0, 

100 mM NaCl at 48°C with agitation at protein concentrations of 225 μM and 22.5 μM 

4.3.1.2. Incubation at pH 2.0 

At pH 2.0, fibril formation occurred after approximately 200 hours, with an initial lag 

phase of 30 hours (Figure 4.6). As this sample was incubated at 48 °C for an extended 

period of time, low levels of evaporation were noted, especially towards the end of the 

experiment (> 200 hours), potentially leading to increases in ThT fluorescence that are 

unrelated to amyloid formation. The noise in this data could be attributed to the reduced 

fluorescence intensity of ThT at low pH.  

In a similar fashion to the pH 4.0 experiments, the lag phase is decreased in comparison 

to previous work. A study by Nilsson et al. (2004) reports that significant amounts of 

fibril were produced after 7 days, with the exponential increase in fluorescence being 

observed after 4 days, and a plateau reached after 21 days. Previous experiments within 

the Staniforth lab following an agitated reaction by ThT fluorescence and TEM show a 
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lag phase of 12 days, with significant amounts of fibril observed after 2 weeks 

(Elshawaihde, 2012). Again, a small increase in intensity was observed early in the 

time-course in both these studies, which could indicate the formation of small ThT-

positive species before the formation of mature amyloid (Nilsson et al., 2004, 

Elshawaihde, 2012).  

 

Figure 4.6.  Fibrillisation of hCC at pH 2.0 

hCC fibril formation monitored by ThT fluorescence intensity incubated in 10 mM glycine pH 2.0 at 48°C 

with agitation at protein concentrations of 225 μM and 22.5 μM. 

4.3.1.3. Concentration Dependence  

hCC fibril formation was also investigated at lower protein concentrations.  Difficulties 

in producing large amounts of the protein meant that carrying out experiments at the 

established concentration of 225 μM considerably limited experimental progress. 

Therefore establishing fibrillisation conditions at lower protein concentrations was very 

desirable, and has already shown to be successful in the cystatin B system where fibrils 

readily form at protein concentrations of 30 μM.  

Figure 4.5 shows the fibrillisation of hCC at 22.5 μM at pH 4.0. Reducing the 

concentration 10-fold increases the lag time to 65 hours, still considerably quicker than 

the reported time of 15 days at the higher concentration. There is a very small increase 

in ThT intensity from 30 hours, suggesting that low levels of amyloid fibrils could be 
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being formed from this time onwards. Alternatively, on-pathway pre-fibrillar 

intermediates are forming that bind ThT and cause a small increase in fluorescence.  

Samples produced at 225 μM are often very cloudy, with large clumps of fibrils 

observed in the TEM. Comparison of the samples at the two different concentrations 

indicated that large masses of fibrils were present in the 225 μM reaction, while the 

fibrils in the 22.5 μM were more disperse. Fibrillisation at the lower concentration gives 

a higher fluorescence amplitude, almost double that of the 225 μM sample. It seems 

unlikely that the amount of fibril produced was greater in the dilute sample, rather that 

there is an alternative explanation for the increase in ThT intensity. It was noted that 

many of the fibrils had oligomers associated with the surface of the fibril, potentially 

preventing the ThT molecules from binding to the fibril. Differences in fibril 

morphology could also lead to differences in ThT intensity.  

At pH 2, lowering the concentration 10-fold again causes an increase in lag phase from 

30 hours to 100 hours, as can be seen in Figure 4.6. In contrast to the pH 4.0 sample, the 

more dilute sample does not show a greater amplitude, suggesting that fewer fibrils are 

being formed.  

The increase in the lag phase at lower concentrations of hCC indicates that the creation 

of nuclei is a concentration-dependent process, unlike other cystatins reported in the 

literature (Sanders et al., 2004, Skerget et al., 2009).  The nucleation polymerisation 

model of fibril assembly indicates that this should be the case, consistent with the 

hypothesis that this is the mechanism by which hCC forms amyloid fibrils. However the 

fact that the rate increase is not obviously proportional to the change in concentration, 

with a 10-fold increase in hCC concentration leading to only a 3-fold change in lag 

time, suggests that secondary nucleation events are important. Fragmentation is likely to 

be a key effect given the dependence on agitation discussed above and the fact that this 

phenomenon would explain why the process may occur faster than expected at low 

concentrations of protein. Although it was not possible to fit a curve to the data to 

determine kinetic parameters unambiguously, the elongation rate at pH 4.0 appears 

superficially to be maintained at the lower concentrations. This is not consistent with 

the nucleation polymerisation model, which predicts that the rate of fibril elongation 

will increase with increased protein concentrations. However, without further 

replication of these data, and curve-fitting to establish kinetic parameters, subtle 

differences in elongation rate cannot be established from the experiments shown here. 
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The low levels of fibril that were produced at pH 2.0 when the protein concentration 

was 22.5 μM makes these conditions unlikely to be viable for further experimentation. 

However, incubation at the lower concentration at pH 4.0 was promising, with less 

clumping of fibrils and fewer oligomeric species present. 

4.3.1.4. pH Dependence  

It has been established that hCC will form amyloid fibrils in two different pH 

conditions. Although there were difficulties with obtaining a curve fit in order to 

establish the kinetic parameters of fibril assembly, from Figure 4.7 it is clear to see that 

fibril formation occurs faster at pH 4.0, with a lag phase of approximately 8 hours 

compared to 30 hours at pH 2.0 at 225 μM protein concentration. There also appears to 

be a difference in elongation rate, as the pH 4.0 sample has a much steeper curve than 

the pH 2 sample. This suggests that both nucleus formation and fibril elongation are pH 

dependent. A similar pattern is seen at the lower protein concentration of 22.5 μM, 

where again the lag phase is increased in the pH 2 sample. It also appears as though the 

rate of elongation is reduced at the lower pH, again consistent with what is observed at 

225 μM.  

The kinetics of fibril formation and the effect of pH are likely to reflect the changes in 

the stability of key intermediates or transition states on route to fibril formation, as well 

as potential for self-association. hCC has a predicted pI of 8.75 (Keeley, 2008), 

therefore will carry a net positive charge at pHs below this. At low pH the high positive 

charge, caused by protonation of aspartates and glutamates, leads to destabilisation of 

the protein by electrostatic repulsion and can induce unfolding. At the slightly higher 

pH 4.0, the charge will be slightly more neutral due to deprotonation of these acidic 

amino acid side-chains. This will therefore favour self-association due to a reduction in 

the repulsive forces present at pH 2.0 between highly positively charged protein 

molecules, creating a faster lag phase and increase in the rate of fibrillisation as 

observed.  

At pH 2.0 it is thought ~50% of the hCC molecules will be in an intermediate state 

which is extensively unfolded, as demonstrated by an 80% loss in CD signal (Keeley, 

2008). This means that the formation of amyloid-competent structure may be too slow 

to favour fibrillisation, leading to an extended lag phase and slower rate of fibril 

formation in these conditions. At pH 4.0, it is expected that the folded state of the 

protein will still dominate, yet the stability of the molecule will be sufficiently 
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compromised to allow structural conversions via the unfolded state on a measurable 

timescale. As with other cystatins, conditions which are “pre-denaturing” seem to be 

favoured, however neither the unfolding rates nor stabilities (ΔG) of cystatin C have 

been determined under different pH conditions. 

 

Figure 4.7. pH Dependence of hCC Fibril Formation  

Comparison of hCC fibril formation at pH 2.0 and pH 4.0 monitored by ThT fluorescence intensity at 

protein concentrations of (A) 225 μM and (B) 22.5 μM. 

4.3.1.5. Electron Microscopy 

Transmission electron microscopy was used to confirm the formation of amyloid fibrils 

in the aggregation conditions described above, in addition to providing information 

about the differences in species morphology. Incubation of 225 μM hCC at pH 4.0 led 
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to the production of long unbranched amyloid fibrils as shown in Figure 4.8. These 

often bundle together to form large heavily stained masses of fibrils through lateral 

association (data not shown). There appear to be two different populations of amyloid 

fibril, as many of the fibrils have associated circular oligomeric species along the length 

of the fibril. An alternative population of fibrils shows no association with these 

oligomers. This implies a difference in morphology between the two populations in 

which, although not observable by TEM, an alternative surface has been exposed. This 

could lead to an interaction with oligomers, potentially through exposed hydrophobic 

residues. The observation of two different populations in the same sample indicates two 

different nucleation events. Still at pH 4.0, but with a lower protein concentration of 

22.5 μM, hCC again forms long unbranched amyloid fibrils. Although there is some 

lateral association between small groups of fibrils, the large clumps are absent from this 

preparation. There are also fewer oligomers present in the sample, and they do not 

appear to coat the fibrils in the same manner as is seen in the 225 μM sample. At the 

lower concentration the fibrils have an almost ‘wavy’ appearance. There is also 

evidence of twisted fibrils, which appear to be composed of two (or more) amyloid 

fibrils wrapped around each other. The formation of amyloid fibrils does not appear to 

be concentration dependent, as mature fibrils are observed in both of the preparations. 

Oligomers are produced at both concentrations, indicating that this is not a process that 

depends on high concentrations of hCC. 

Figure 4.9A shows that hCC has also formed amyloid fibrils at pH 2.0 at both protein 

concentrations. These fibrils are much straighter than those formed at pH 4.0, with a 

considerable reduction in the amount of fibrils produced at 22.5 μM. Again there is 

evidence of twisted fibrils. The samples produced in the ThT assays appear to consist 

entirely of amyloid, there are very few oligomers present and there is no coating of the 

fibrils. However in previous preparations at pH 2.0 oligomers are formed and can be 

observed along the length of the fibrils, as well as free in solution (Figure 4.9B). The 

majority of these preparations were in the absence of ThT. This could indicate that ThT 

has an effect on the process of oligomer formation at pH 2.0, preventing their 

production by favouring the formation of species which then go on to produce fibrils.    
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Figure 4.8. Electron Microscopy of hCC Fibrils at pH 4.0 

Electron micrographs of hCC fibrils formed at protein concentrations of 225 μM and 22.5 μM at the end 

of the ThT time-course. Images were taken at 21,000 magnification. 
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Figure 4.9. Electron Microscopy of hCC Fibrils at pH 2.0 

Electron micrographs of ThT end-points at pH 2 (A) at protein concentrations of 225 μM and 22.5 μM. 

A different preparation formed at 225 μM is also shown (B), indicating the production of oligomeric 

species. This sample was taken after 3 weeks of incubation at 48°C with stirring, in the absence of 

ThT. The two images were taken from different parts of the EM grid.  All images were taken at 21,000 

x magnification. 

4.3.1.6. Fibril Measurements 

hCC fibrils formed at both pH 2.0 and pH 4.0 were measured to determine the width of 

the fibril and establish whether there were any major differences in morphology. Figure 

4.10 shows histograms of these measurements and the calculated average fibril widths. 

In both of these conditions certain preparations show extensive lateral association of the 

fibrils, often into dense tangled clumps that prevent accurate width estimates; such 

fibrils were excluded from this study. Fibrils produced at pH 2.0 from different 
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preparations had an average width of 9.5 nm (± 2.0 nm SD, n = 315) with a minimum 

and maximum of 4.8 nm and 17.9 nm respectively. Fibrils produced at pH 4.0 from 

different preparations had an average width of 10.3 nm (± 1.4 nm SD, n = 309) with a 

minimum and maximum of 7.5 and 14.3 respectively. At both pHs, no single 

preparation showed obvious deviation in width or morphology. There is a large 

distribution of fibril widths from the samples produced at pH 2.0, with the largest width 

measured (17.9 nm) being almost 4 times greater than the smallest (4.8 nm). Cystatin B 

fibrils have an average width of 8.6 nm (± 1.4 nm SD, n = 237).  

 

Figure 4.10. Fibril Width Measurements 

Electron micrographs of different fibril preparations were measured using Digital Micrograph 3 software 

(Gatan, UK). Each fibril was measured 3 times at different points. The histograms show the distribution 

of width measurements at pH 2.0 and pH 4.0 and average width measurements are shown with the 

standard deviation. 

4.3.1.7. L68Q Variant 

The increased propensity of L68Q to aggregate caused expression and purification of 

this mutant to be challenging. Expression of the protein at 30°C, a temperature which 

normally produces lower yields of wild-type protein anyway, produced 1.5 mg of L68Q 

from 4.8 L of E. coli. Expression of L68Q at 37°C produced undetectable amounts of 

protein, suggesting that the expressed OmpA-protein is not soluble and has gone into 

inclusion bodies rather than being exported to the periplasm.  
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Incubation of L68Q in the purification buffer (10 mM sodium phosphate pH 6, 100 mM 

NaCl) at 4°C, which are the standard storage conditions, led to the formation of amyloid 

fibrils over ~2 weeks. This highlights the increased aggregation-propensity of this 

mutant, as wild-type hCC is stable in these conditions for extended periods of time, 

even years. The L68Q sample was viewed by TEM, which indicated that amyloid fibrils 

had formed as shown in Figure 4.11. These appear to have a slightly different 

morphology to those of the wild-type protein, with a highly twisted appearance and are 

substantially associated in a lateral manner to form large bundles. Small amounts of 

oligomer were also present, with a similar morphology to those produced by wild-type 

hCC at pH 2.0. The oligomers appeared highly stable as they remained in solution for 

an extended period of time, which could have important physiological implications. 

Analysis by SEC-HPLC indicated that monomeric and dimeric protein was still present, 

indicated that not all the protein had been converted to amyloid. That L68Q can form 

fibrils at relatively low concentrations (40 μM), at pH 6 and in the fridge (reasonably 

mild conditions) whilst WT must be incubated at low pH and 48°C demonstrates the 

amyloidogenic potential of the L68Q variant as well as highlighting the experimental 

difficulties in working with this mutant compared to other cystatin family members.    

 

Figure 4.11. TEM of L68Q Fibrils  

Electron micrographs of L68Q fibrils formed at pH 6.0. Images taken at 21,000 x magnification. 
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4.3.2. Oligomeric Intermediates 

As previously mentioned, hCC forms oligomeric species as part of the aggregation 

process at both pH 2 and pH 4.0. As it is hypothesised that intermediates could be the 

toxic species in amyloidogenic diseases, these are important structures to study.  

4.3.2.1. Formation of Oligomers at pH 4.0 

TEM of fibrillisation samples formed from 225 μM at pH 4.0 indicates that, as well as 

amyloid fibrils, there are also large amounts of non-fibrillar, oligomeric species present.  

These species are circular, or spherical often with a ring-like morphology. It is proposed 

that oligomers are transient on-pathway intermediates, assembling before protofibrils 

and subsequent amyloid formation. Intriguingly the hCC oligomers are present in 

solution after the formation of amyloid fibrils, indicating that they may not be on-

pathway intermediates (and are definitely not transient) but rather that these structures 

could denote a secondary end-point to hCC aggregation.  

hCC amyloid fibrils produced at pH 4.0 fall into two distinct populations, those with 

associated oligomers and those without. The prevalence of these coated fibrils, and their 

presence in different preparations of hCC amyloid, makes it unlikely that they are an 

artefact from grid preparation for electron microscopy whereby oligomers may just 

happen to fall on the surface of the fibril. As well as associating with the fibrils there are 

also many oligomers present in solution, indicating that their stability is not dependent 

on the association with the amyloid fibril. TEM of the sample produced at a lower 

concentration of the protein showed that very few oligomers were present, and not many 

were associated with the fibrils. This could indicate that oligomer formation is 

concentration-dependent, and the formation of fibril is favoured over that of oligomer at 

low concentrations.  

It is possible that in the hCC system, amyloid fibrils are exerting a surface effect to 

catalyse the formation of stable oligomeric species in a secondary nucleation 

mechanism and that once formed these species are remaining associated with the fibril 

structure. If this were the case then following the reaction over time would show the 

production of fibrils before oligomers. Alternatively, instead of catalysing oligomer 

formation, the fibril surface could be acting to stabilise the oligomers once formed, 

preventing their further aggregation into mature fibrils. This would require the 

formation of fibrils and oligomers simultaneously for the fibrils to act as a surface. It 
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would also mean that the rate of oligomer and fibril formation is different, again 

suggesting that the oligomers are not on-pathway to amyloid formation. 

To gain further insight into oligomer formation, the fibrillisation reaction of hCC at pH 

4.0 was followed by transmission electron microscopy as shown in Figure 4.12. 

Unfortunately the TEM time-course was undertaken before the ThT time-course, hence 

the lack of time-points during the elongation phase. Although it has been suggested in 

the literature that oligomers can be seen as early as after 1 hour of incubation (Wahlbom 

et al., 2007), early time-points indicated that oligomers were not present for the first 2 

hours; many had formed by 24 hours. A few fibrils were present after 24 hours, 

however it was not until 48 hours that larger amounts were seen. In addition to being 

free in solution, the oligomers appear to interact with the amyloid fibrils, as they can be 

observed associated along the length of the fibril. After 1 week, many annular oligomers 

are still present, however there are also some spherical species that lack the donut-like 

appearance. After 3 weeks, although there are fewer oligomers free in solution, they are 

still present in the large clumps of associated fibrils. In these conditions, the fibrils 

appear very ‘sticky’ and there is a lot of lateral association, with smaller aggregates 

coating the fibrils and causing large clumps to form. These large clumps make it 

difficult to resolve distinct structures under EM, except at the very edges.  
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Figure 4.12. TEM Time-Course of hCC Fibrillisation at pH 4.0 

TEM time-course of the fibrillisation of 225 μM hCC at pH 4.0 and 48°C over 3 weeks. A graph 

showing the change in ThT fluorescence in these conditions is used to indicate the points at which EM 

was performed (pink arrows). Images were taken at 21,000 x magnification. 
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4.3.2.2. Formation of Oligomers at pH 2.0 

hCC also forms non-fibrillar oligomers when incubated at pH 2.0. These species are 

also circular, or spherical, but they are lacking the annular appearance, and therefore 

potentially the central water-filled pore, that is seen at pH 4.0. Either the change in pH 

causes the formation of structures with a different morphology, or these are similar 

structure which have associated differently with the EM grid. The spherical species 

produced have a very homogenous morphology, although there is a wide range of sizes. 

Again these structures appear to associate with the amyloid fibrils that are present in the 

sample. Although these oligomers have been previously observed in preparations within 

the Staniforth group (Elshawaihde, 2012), no description of them has been found in the 

literature. 

Figure 4.13 shows a TEM time-course of hCC incubated at pH 2.0. This indicates the 

formation of small aggregates after 1 week, some of which have an annular appearance. 

However, although the sample was analysed for several weeks, very few amyloid fibrils 

were observed, even after an extended period of time, and the appearance of amorphous 

aggregate after 1.5 months suggests that the protein has aggregated but not formed 

amyloid fibrils. Oligomeric aggregates are still observed after 2 months, highlighting 

the stability of these structures and suggesting that they do not assemble further to form 

larger aggregates. Intriguingly these species have lost their annular appearance.  

The formation of amyloid by hCC appears to be quite variable, as occasional 

preparations were incubated that did not lead to the formation of fibrils. This is 

highlighted in this time-course, where all of the time-points were taken after ThT assays 

indicate that amyloid fibrils should have formed. The production of amorphous 

aggregates in these preparations indicates that there is a fine balance between the 

formation of amyloid and non-fibrillar aggregates in this system. Amorphous aggregates 

were not observed when hCC was incubated at 22.5 μM at pH 2.0, however this 

experiment has not been repeated so it is impossible to categorically say that amorphous 

aggregation could not occur in these conditions.   
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Figure 4.13. TEM Time-course of hCC Fibrillisation at pH 2.0 

TEM time-course of hCC fibrillisation at pH 2.0 and 48°C over 2 months. Images were taken 21,000 x 

magnification. 
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4.3.2.3. Association of Oligomers and Fibrils  

There appears to be a high degree of association between the oligomers and fibrils, with 

the oligomers coating the fibrils in both pH conditions. In the ThT time-course at pH 4.0 

there appear to be two distinct populations of fibril grouped together, with some having 

no associated oligomers and some being completely covered.  In order to try and 

determine the nature of the interaction between the two species, samples were incubated 

under different conditions (Table 4.2) and observed by TEM (Figures 4.14 – 4.17), 

whilst also demonstrating the stability of the two species in these conditions. The 

conditions were chosen to investigate extremes of pH, high salt environments and the 

presence of denaturants, as well as mechanical perturbations such as sonication and high 

temperatures. 

Condition Fibrils Free Oligomers Associated Fibrils 

pH 1.0 *** * ** 

pH 7.0 ** - * 

pH 14.0 * * ** 

20% TFE ** - ** 

Sonication *** - ** 

85°C - - *** 

1.2 M GuHCl ** * ** 

6 M GuHCl ** ** * 

0.5 M NaCl *** - ** 

1 M NaCl - - *** 

Table 4.2. Incubation of hCC Fibrils in Different Conditions 

Amyloid fibrils and oligomers were observed in all of the preparations described above, 

highlighting the stability of both of these structures in extreme environments. In very 

few of the samples were free oligomers observed, only at pH 1.0 and pH 14.0 and in the 

presence of 6 M GuHCl, demonstrating that there is a strong association with the 

amyloid fibrils which is not easily broken by alterations in environment. Figure 4.14 

shows electron micrographs of the samples incubated with different concentrations of 

salt (0.5 M and 1 M NaCl). When incubated with 0.5 M NaCl short straight fibrils are 

observed, in addition to long fibrils coated with oligomers. With the increase in salt 
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concentration to 1 M, the fibrils remain highly associated with the oligomers, with very 

few plain fibrils observed. This reinforces the idea that the interaction between the 

oligomers and the fibrils may be hydrophobic in nature. 

In the presence of 1.2 M GuHCl (Figure 4.15), both types of fibril (with and without 

associated oligomers) were present, however at the higher concentration of 6 M 

guanidine there were many oligomers free in solution and not associated with the fibrils. 

Many short fibrils were also observed, potentially indicating the start of the dissociation 

of the long fibrils in the presence of the denaturant. Amyloid fibrils are not generally 

resistant to 6 M guanidine, a property that is exploited later in the limited proteolysis 

experiment. It is likely that here as well substantial amounts of protein are solubilised, 

but the species persisting the longest reveal something about the nature of the 

interactions between the oligomers and the fibrils. An aged sample could also infer 

some resistance to the denaturing effect through the formation of cross-links between 

tyrosine side chains within the fibril as has been observed for Aβ and α-synuclein 

(Souza et al., 2000, Yoburn et al., 2003). Both the fibrils and oligomers are much more 

stable than hCC dimer and monomer in guanidine, as the latter species unfolds at a 

concentration of 1.3 M and does not retain its structure (Keeley, 2007).  

The addition of 20% 2,2,2-trifluoroethanol made little alteration to the morphology and 

abundance of the species observed (Figure 4.16), as did sonication for 10 minutes and 

heating to 85°C for 10 minutes. Sonication is regularly used to fragment fibrils for 

seeding experiments in many different systems, and leads to the formation of very short 

fibrils which are not observed here. The sonication applied to this sample could be less 

harsh therefore than typically used. Altering the pH of the fibril sample (Figure 4.17) to 

extremely acidic (pH 1.0) and extremely basic (pH 14.0), as well as neutral (pH 7.0) 

demonstrated that both species, the fibrils and oligomers, were stable in all of these 

conditions. Incubation at pH 1.0 shows some dissociation of oligomers from the fibril 

surface, potentially leading to the uncoiling of these oligomeric structures. The stability 

of the fibrils in these different conditions could have useful implications for future 

experiments, but unfortunately, did not highlight conditions for the separation of 

oligomers and fibrils of hCC.  
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Figure 4.14. Incubation of hCC Fibrils at Different Ionic Strengths 

Electron micrographs of amyloids fibrils formed at pH 4.0 in different concentrations of salt. Images 

were taken at 21,000 x magnification. 

 



117 

 

 

Figure. 4.15. Incubation of hCC Fibrils in Denaturant 

Electron micrographs of hCC fibrils formed at pH 4.0 in different concentrations of denaturant. Images 

were taken at 21,000 x magnification. 
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Figure 4.16. Incubation of hCC Fibrils – Mechanical Perturbations 

Electron micrographs of hCC fibrils formed at pH 4.0 in different conditions: 20% trifluoroethanol, 

after sonication for 10 minutes and after incubation at 85°C for 10 minutes. Images were taken at 

21,000 x magnification. 
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Figure 4.17. Incubation of hCC Fibrils at Different pH 

Electron micrographs of hCC fibrils formed at pH 4.0 in acidic, neutral and basic pH. Images were 

taken at 21,000 x magnification. 
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4.3.2.4. Purification of Oligomers 

As most oligomer preparations contained fibrous species as well as potentially 

monomeric hCC it was important to establish a protocol for the separation of these 

species. Initial trials using centrifugation to pellet the fibrils, thereby leaving a pure 

sample of oligomers, proved unsuccessful as supernatant still contained fibrils even 

after several rounds of centrifugation. There were also a lot of oligomers left in the 

pellet, both associated with the fibril and free in solution. However, ultrafiltration, the 

method of oligomer purification used by Wahlbom et al. (2007), proved successful and 

by using two centrifugal filtration devices with PES membrane filters with different 

molecular weight cut-offs, pure samples of oligomer were produced. This suggests that 

the oligomers being purified have a molecular weight of between 100 and 1,000 kDa, 

which corresponds to species containing approximately 7-70 hCC molecules, however 

this can only ever be a rough estimate of size and will also be selecting for species 

within this range. The disadvantage of this protocol is that it does not allow the 

purification of fibrils as they got caught in the filtration membrane and attempts to re-

suspend these proved unsuccessful.  

4.3.2.5. Oligomer Morphology by TEM  

TEM analysis of purified oligomer preparations from hCC incubations at pH 2.0 and pH 

4.0 are shown in Figure 4.18. These demonstrated that there was a difference in 

structural morphology depending on the pH of the sample. Those formed at pH 4.0 have 

an annular appearance which could be due to a bi-concave disc or hollow sphere 

morphology. Alternatively this could correspond to a hollow pore with a hole in the 

centre. Also present in the TEM images were small protofibrillar-like threads which are 

potentially curling up (or uncurling) to produce the oligomeric structures. At pH 2.0, 

although the structures do not have a donut-like morphology they are still circular in 

appearance. In both the samples, the majority of the oligomers observed have a uniform 

morphology, however there is a large variation in size.  
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Figure 4.18. Oligomer Measurements  

Electron micrographs (A) of purified hCC oligomers produced at pH 2.0 and pH 4.0. Images were 

taken at 28,500 x magnification and close-ups of oligomers were scaled by a factor of 4.  Histograms 

(B) displaying the distribution of diameters of the oligomers measured using Digital Micrograph. Each 

particle was measured three times and the average diameter is shown with the standard deviation. 
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The diameter of oligomers produced at both pH 2.0 and pH 4.0 was measured from 

electron micrographs of different preparations in these conditions. Oligomers formed at 

pH 2.0 have an average diameter of 14.3 nm (SD +/- 3.8 nm, n = 300). There is a very 

large distribution of sizes, ranging from 7.91 nm to 26 nm. This distribution will be 

skewed as small species do not have the resolution to allow accurate measurements to 

be taken. Interestingly, the oligomers formed at pH 4.0 had a very similar average 

diameter of 14.7 nm (SD +/- 2.3 nm, n = 300). This is consistent with the oligomer 

diameter measured by  Wahlbom et al. (2007) of 13.4 nm (SD +/- 1.9 nm, n = 916).  

It is possible that the species being formed at the different pHs are the same and that the 

differences in appearance are a by-product of the process of preparing the samples for 

TEM. A difference in charge could cause a different surface of the structure to adhere to 

the grid, and cause an alternative morphology to be observed. Observing samples by 

TEM will not necessarily give an indication of all of the species present in that sample, 

as some molecules will not bind to the grid. The drying process can also introduce 

artefacts into the sample, as the appearance of a dried structure on a surface may be 

quite different to that same species in solution.  

4.3.2.6. Characterisation of Oligomers by PAGE and SEC 

Characterisation of these oligomers has proved challenging, partly due to the difficulties 

of producing large quantities of hCC. Attempts to analyse oligomeric samples and 

determine whether monomeric hCC was present by native-PAGE proved unsuccessful, 

with large amounts of smearing occurring on the gel and no distinct bands. Analysis by 

SDS-PAGE was equally ineffective, again with no distinct bands forming and just a 

large smear of protein observed on the gel. Characterisation by SEC was also 

unsuccessful. 

4.3.2.7. Stability of Oligomers 

One of the properties of oligomeric intermediates is their transient nature and ability to 

form larger structures, which causes great problems for studying these species. It was 

therefore desirable to establish the stability of these species under physiological 

conditions. An advantage of purifying the oligomers by ultrafiltration is that it allows 

easy buffer exchange and concentration within the ultrafiltration device. The oligomers 

were buffer exchanged into water and viewed by TEM. The oligomers produced at pH 

4.0 retained their structure after this process, although amorphous aggregate was 



123 

 

observed in the sample. However, in this experiment the oligomers at pH 2.0 did not 

remain and only amorphous aggregate was produced, potentially indicating that these 

species are less stable than those produced at pH 4.0. A previous experiment in which a 

combination of fibrils and oligomers produced at pH 2.0 had been incubated in H2O had 

indicated that both of these species were stable in water for several days.  

The oligomers produced by hCC are different to many that have been described in the 

literature as they appear to be stable for extended periods of time (several months) and 

do not immediately go on to form fibrils, a property that could be exploited for 

structural studies by hydrogen-deuterium exchange and limited proteolysis. If these 

species are related to the toxic species found in vivo and responsible for the disease 

state, then this high stability could be a crucial property in extended toxicity. Oligomers 

do not appear to form amyloid fibrils, as both species are observed in solution for 

several weeks. The presence of fibrils coated with oligomers could indicate a 

stabilisation, or segregation, of these species by the fibrils. Alternatively the oligomers 

could be a stable off-pathway intermediate, or species that have a much slower rate of 

fibril formation.  

4.3.3. Limited Proteolysis of hCC Fibrils with Elastase 

4.3.3.1. Sample Preparation 

After incubation in pH 4.0 fibrillisation conditions for several weeks, hCC fibrils were 

centrifuged and re-suspended in 10 mM Tris-HCl pH 8.0. This process was repeated 

several times in an attempt to disrupt the large clumps of fibril that had been produced, 

and to try and remove any oligomers that remained in solution. The sample was 

incubated for several days at pH 8.0 and viewed by EM to check that the fibrils 

remained stable in these conditions (Figure 4.19). TEM of the sample after proteolysis 

was also performed which showed that the fibrils had remained intact through the 

experiment and retained their structural morphology. This project has been hindered due 

to problems with producing a pure sample of hCC fibrils without oligomers present. 
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Figure 4.19. TEM of Limited Proteolysis 

Electron micrographs showing hCC fibril sample after incubation in 10 mM Tris-HCl pH 8.0 for 48 

hours and the same sample after limited proteolysis with elastase. 

4.3.3.2. hCC Monomer Digest 

Mass spectrometry analysis of the proteolysis of monomeric hCC indicated that there 

was no digestion of the monomer at 0.5, 1 and 4 hours. After 24 hours a small amount 

of proteolytic activity was detected; it is possible that some digestion is occurring at the 

earlier times, but that the concentration of protein fragments generated were not enough 

to be detected by mass spectrometry. These digested fragments constituted only a minor 

part of the sample, shown by a small peak in the reverse-phase HPLC used to separate 

the fragments before mass spectrometry. None of the fragments produced involved 

hydrolysis at any of the predicted elastase cut sites, a limitation that was used in order to 

analyse the data from the fibril digest. This reveals that, as with cystatin B, inhibitors of 

cysteine proteinases are efficient inhibitors of serine proteinases such as elastase when 

folded and soluble. Consequently any fragments identified from the fibril digests with 

elastase cannot come from soluble hCC, particularly at time-points prior to 24 hours. 

4.3.3.3. hCC Fibril Digest: Analysis 

The fibrils used for this experiment were shown to be highly associated into large 

clumps by electron microscopy, potentially making it difficult for the protease to access 

all regions of the structure. This high level of association makes it difficult to determine 

the morphology of the fibrils tested, and also if there are any oligomeric structures 
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present in the clumps of amyloid. Replication of the results presented here would be 

necessary for any definitive conclusions to be drawn, however the data produced could 

still provide novel insights into the structure of hCC amyloid fibrils.  

A further complication with this system is the presence of two disulphide bonds in the 

hCC molecule. These extend from C73 to C83 in the AS loop, and from C97 to C117 

between strands four and five. Analysis of the limited proteolysis experiment by mass 

spectrometry was carried out without the addition of DTT, which acts as a reducing 

agent to break the disulphide bonds. This meant that the fragment masses obtained 

relate to peptides with the disulphides retained, leading to some difficulties with 

identification of these peptides. The experimental conditions will not inherently break 

these disulphide bonds, as indicated by the observed mass of the full length protein 

(13,344 Da) in comparison to the predicted mass (13,347 Da). The difference of 3 Da 

can be attributed to the loss of the four hydrogen atoms required to make the disulphide 

bonds (to within the 1 Da accuracy of the MS machine) thereby suggesting that these 

bonds have remained intact throughout the process. Peptide fragments were therefore 

identified with the assumption that the disulphides had not been broken; any suggested 

fragments that would have required the breaking of these bonds were discarded. The 

initial analysis was conducted making the assumption that elastase would only cut at its 

preferred hydrolysis sites predicted from the primary sequence. 

It was important to establish a protocol for identifying separated individual fragments 

which are held together only by the disulphide linkage and do not follow on from each 

other in sequence. However, it was difficult to find software designed to take into 

account disulphide bridges satisfactorily when assigning mass data to specific protein 

fragments. The closest program identified was ProteinProspector MS-Bridge 

(University of California, San Francisco, US). This program uses the predicted elastase 

cut sites to link together fragments and determine if any correspond to the experimental 

mass. It is possible to define the type of linkage required, in this case a disulphide bond, 

however it is not possible to define which residues the linkage occurs between. The 

program also assumes that two identical fragments can be linked, as if all disulphides 

had been reduced and then allowed to reform.  

A separate program created by Dr Jeremy Craven (University of Sheffield) was used to 

calculate the molecular weight of all possible fragments within the protein sequence. All 

those that could potentially be linked through the two disulphide bonds were combined 
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to create a database of all the fragments that could possibly be generated through 

proteolysis of hCC. A search for a specific mass with a limit of two peptides linked 

resulted in identification of ~100 pairs of fragments. Extending the search to allow three 

peptides to be linked led to ~1000 possibilities for each specific mass searched for. It is 

therefore essential to be able to narrow down the search in order to identify these linked 

fragments.  

If the assumption is made that elastase can only work at its predicted cut sites, the 

amount of fragment matches generated is significantly reduced. The second disulphide 

bond (C97 to C117) is thought to be the more stable, and most likely to be retained 

within the molecule. This bond was kept intact and all the potential fragments based on 

the predicted hydrolysis sites within strands 4 and 5 were calculated. Subtraction of 

each of these from the generated peptide masses from the MS data gave the mass of the 

fragment that would have to be attached through the disulphide bond to produce the 

experimental mass. These were then analysed using FindPept (via ExPASY website, 

Artimo et al., 2012) to produce many linked pairs of fragments used here for analysis. 

Re-analysing the samples by MS after incubation in reducing conditions to break the 

disulphides and then comparing the obtained masses with the linked fragments 

identified would then allow confirmation that these linked fragments are indeed present. 

4.3.3.4. hCC Fibril Digest: Pattern of Resistance 

Table 4.3 shows the experimental masses obtained from the digest at each of the five 

time-points and the identified fragment for each of them. These fragments were then 

combined to produce a digestion map as shown in Figure 4.20. The predicted sites of 

elastase hydrolysis are indicated in conjunction with the amino acid sequence and the 

secondary sequences for both the monomer and the dimer. 
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Digest Time (h) Fragment Mass (Da) Fragment Identity 

0 11796 17-120 (0.7) 

 10383 23-101 + 109-120 (1.2) 

 9319 39-112 + 114-120 (0.4) 

 6702 12-71 (1.5) 

0.5 11796 17-120 (0.7) 

 10383 23-101 + 109-120 (1.2) 

 9983 24-103 + 114-120 (1.2) 

 9319 39-112 + 114-120 (0.4) 

 8086 48-109 + 112-120 (0.8); 47-109 + 113-120 (0.8) 

 6702 12-71 (1.5) 

 6469 1-60 (0.7) 

 6197 38-91 (0.0) 

 5898  61-103 + 113-120 (0.4) 

1 12129 11-113 + 116-120 (1.3) 

 11796 17-120 (0.7) 

 10383 23-101 + 109-120 (1.2) 

 8086 48-109 + 112-120 (0.8); 47-109 + 113-120 (0.8) 

 7132 2-66 (1.1) 

 6469 1-60 (0.7) 

 5898  61-103 + 113-120 (0.4) 

4 11796 17-120 (0.7) 

 10551 24-108 + 114-120 (0.0) 

 10383 23-101 + 109-120 (1.2) 

 7132 2-66 (1.1) 

 6469 1-60 (0.7) 

 5898  61-103 + 113-120 (0.4) 

 5660 70-111 + 114-120 (0.4) 

24 11868 16-120 (1.6) 

 11396 19-109 + 112-120 (0.2) 

 10367 31-101 + 110-120 (0.8); 27-108 + 112-120 (0.7) 

 9808 31-108 + 113-120 (0.1) 

 6742 51-101 + 113-120 (0.7) 

 5934 59-101 + 112-120 (1.3) 

 5186 24-68 (1.1) 

 4290 23-60 (0.1) 

 2679  1-26 (0.0) 

 2590 2-26 (1.9); 47-69 (2.0) 

Table 4.3. Fragments Observed from Elastase Digest of hCC Fibril 

The bracketed figure in the fragment identity column is the mass unit variance between the experimental 

and predicted fragment mass. 
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Figure 4.21. hCC Topology Identifying Positions of Hydrolysis 

Cleavage positions observed at the first 4 time-points of 0, 0.5, 1 and 4 hours are identified (top) as 

well as additional sites observed after 24 hours (bottom). Blue triangles indicate cut sites from 

analysis of the full length protein and purple triangles indicate linked fragments where two separate 

peptides are joined through a disulphide bond, with lightened triangles of each colour indicating 

ambiguous cut sites. Hydrogen bonding is shown using dashed arrows. 
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Very similar fragments were observed at the 0.5, 1 and 4 hour time-points, however 

after 24 hours further proteolysis at different sites was observed. Figure 4.21 shows 

topology maps of the monomeric hCC structure at 4 and 24 hours with the identified cut 

sites indicated. The blue triangles indicate cut sites from analysis of the full length 

protein, whereas the purple triangles indicate linked fragments where two separate 

peptides are joined through a disulphide bond. 

Many peptide fragments were obtained from the limited proteolysis of hCC fibrils with 

elastase, more than had been previously observed for the digestion of cystatin B fibrils 

with the same enzyme, indicating that hCC fibrils are more susceptible to proteolysis by 

elastase than its type I family member. The previous work led to the generation of a 

defined cystatin B fibril core from residues 24-80, which is resistant to proteolysis by 

both elastase and proteinase K. With the hCC data it is impossible to define a resistant 

core in this manner, as proteolysis is observed over the majority of the protein structure. 

Importantly, as the analysed samples result solely from the pelleted species that had 

been washed repeatedly, fragments identified are an integral part of a fibril structure or 

tightly associated with it. This suggests that, although the local structure may be less 

stable, the “nicked” structure may be more resistant to dissociation and solubilisation.  

Alternatively, and especially considering the heterogeneity of the sample, digestion 

patterns could be being observed from several different fibril morphologies with 

different protected regions. If the association of oligomers to amyloid fibrils in hCC 

samples is due to differences in morphology, and which part of the molecule is exposed 

to the surface as discussed previously, then this indicates that different morphologies do 

occur with these fibril samples and are quite likely to lead to different digestion 

patterns.  

A further possibility is that the hCC fibrils are less stable in these conditions than those 

formed by cystatin B, either leading to faster remodelling of the fibril or the recycling of 

molecules within the population. In this case the molecules being recycled would have 

to be oligomeric species or unfolded/misfolded protein, due to the inhibitory activity of 

folded hCC monomer. For this hypothesis to be correct, the cleaved species must then 

be able to precipitate and resist solubilisation during washes. Several small polypeptides 

were observed in the hCC fibril digest after 24 hours; it is possible that these fragments 

were unable to diffuse away and have remained associated with the large clumps of 

amyloid that were observed by TEM, therefore not constituting part of the fibril core. 
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This is not seen extensively with cystatin B where it was noted that the proteases used 

rapidly cleaved soluble protein fragments, as indicated by large amounts of small 

polypeptides being detected in the soluble fraction of the cystatin B fibril digests 

(Davis, 2013).  

4.3.3.5. hCC Fibril Digest: Position of Loop 1 in the Fibrils 

A series of fragments involve hydrolysis between V60 and N61, an observation that is 

strengthened due to identification of peptides from either side of this cleavage position 

(i.e. both halves of the molecule). It is possible that although hydrolysis has occurred 

and the peptides are no longer joined, the two fragments remain incorporated in the 

fibril and are unable to diffuse away. Proteolysis at this position is intriguing as loop 1 

forms the main component of the inhibitory activity of hCC, meaning it is unlikely that 

the molecule has remained monomer-like as this would cause inhibition of the elastase 

and not lead to hydrolysis at this position. Therefore this could suggest that the 

molecule includes an extension of the loop between β-strands 2 and 3 as is seen in the 

domain swapped dimer. This proposal is central to existing models of cystatin amyloids, 

but in the cystatin B models (Figure 4.22 A&B) this region of the protein is at the core 

of the structure and is highly protected from both H/D exchange and proteolysis 

(Morgan et al., 2008, Davis, 2013). 
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Figure 4.22. Models of Cystatin Fibril Structure. In A & B, models of cystatin B amyloid where 

regions which are protected from hydrogen-exchange in the fibrils are modelled as β-strands and 

incorporated into simple models that take into account the dimensions of the fibrils measured using TEM, 

AFM and mass-per-unit-length. In A, the dimer-like strands are arranged as flattened dimers stacked on 

top of each other, with a second “stack” or sheet sandwiched on the first to shield hydrophobic residues, 

uncovered by removal of the helix, from the solvent. In B, the model is further modified to incorporate the 

observation that fibrils are intact after removal of the C-terminal 20 residues. A parallel in-register β-arc 

is proposed.  Image taken from (Davis, 2013). In C., the runaway domain swapping model proposed for 

hCC amyloid fibrils. Cystatin molecules swap from one fold to another using an extended loop between 

strand 2 & 3. The length of this loop is in reality a lot shorter than described here by the authors and 

would require local unfolding and complex 3D packing to achieve a stable structure. Image taken from 

(Wahlbom et al., 2007). 
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One of the current models of the formation of hCC fibrils is through propagated or 

‘runaway’ three-dimensional domain swapping as shown in Figure 4.22C.  In this 

model the loop between strands 2 and 3 is extended, forming a long β-strand which 

associates with strands 3, 4 and 5 from another hCC molecule. This molecule then 

domain swaps in a similar manner with yet another hCC molecule, resulting in an open-

ended chain of intertwined identical protein subunits. Compared with the dimer 

structure, the central region does not have the same degree of hydrogen bonding that is 

normally observed in a β-strand and is thought to be more flexible. Indeed, given the 

very restricted length of the original loop, it is likely that considerable unzipping of the 

strand-strand interactions may have to occur in order to adopt a runaway domain 

swapping structure. This local unfolding may therefore be the source of the weakness or 

protease sensitivity exhibited by this region of the protein. This proteolysis pattern also 

indicates a slightly different fibril structure compared with cystatin B, as proteolysis 

was not seen at all around this region. 

4.3.3.6. hCC Fibril Digest: Loop 2 in the Fibril 

Several linked fragments were observed, with hydrolysis occurring at a range of 

positions between Y102 and K114. This suggests that strand 5 and the end of strand 4 

are vulnerable to proteolysis, and therefore are unlikely to be protected within the fibril. 

If the position of β-strands is conserved in the fibril, as is suggested by H/D exchange 

studies of its intracellular counterpart cystatin B, then this loop may protrude from the 

surface of a flattened β-sheet structure and become susceptible to proteolysis (Figure 

4.23). Compared with cystatin B however, this cystatin is vulnerable to proteolysis in a 

similar way across the structure whereas cystatin B showed some resistance at the C-

terminal at early time points, consistent with H/D protection data (Davis, 2013). 

 

Figure 4.23. Loop Protrusion. 

Model showing the protrusion of 

the loop between strands 4 and 5 

in the cystatin B domain swapped 

dimer viewed from the top, with 

blue and red indicating the two 

molecules. 
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4.3.3.7. hCC Fibril Digest: the N-Terminal 

At the early time-points proteolytic activity is observed at the N-terminal, which 

increases after 24 hours. Localised unfolding is often required for the polypeptide chain 

to enter the active site of the protease, making it difficult for proteinases to cleave in 

structured regions. This observation therefore supports the hypothesis that although the 

N-terminal is α-helical in the monomer it is unstructured in the fibril. It is thought that 

the N-terminal is not incorporated into the amyloid fibril structure and therefore would 

be readily available for proteolytic activity. The C-terminal also appears vulnerable to 

protease activity from the start of the experiment, which is not observed for cystatin B. 

In the latter system digestion of C-terminal is not observed until 4 hours at a ratio of 

1:1000 protease to cystatin B, with extensive proteolysis of both termini after 24 hours.  

4.3.3.8. hCC Fibril Digest: Alternative Analysis 

The analysis described above made the assumption that elastase has only cut at 

preferred sites predicted from the primary sequence of hCC and the known activity of 

the enzyme. However it is probable that hydrolysis also occurred at alternative sites as 

has been shown in other limited proteolysis studies. Fragments identified without the 

aforementioned constraint produced a digestion map as shown in Figure 4.24, which 

again highlights regions that are more sensitive to proteolysis. However this means that 

fragments from the C-terminal cannot be considered here due to the presence of the 

disulphide bond. This analysis also does not include potential linked fragments, as the 

number of matches generated was excessive as discussed earlier. Several fragments 

were identified, which together with Figure 4.20, underline similar regions across the 

molecule that are sensitive to proteolysis. The only area which is novel here is a clearly 

defined a cut site after D87 which reoccurs under several conditions. Unlike the 

different fragments identified in Figure 4.20 no matching “partner” fragments from the 

C-terminal were observed, where it becomes credible that a nicked protein molecule 

remains stable within the fibril structure. It seems unlikely that the whole of strands 4 

and 5 have been lost, as these fragments would suggest, and is more likely that the 

nicked fragments identified earlier in the C-terminal region are present.   

4.3.3.9. hCC Fibril Digest: Conclusions 

The regions of hCC that have been identified as being susceptible to proteolysis in the 

amyloid fibril show some similarities with the model of cystatin B fibril structure, such 
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as the exclusion of the N-terminal and the disorder of this region. However, other 

identified regions are strikingly different, such as region between strands 2 and 3, 

indicating that there are differences between the fibril structures of the two proteins, and 

that the cystatin B model would need further adaptation before it could be directly 

applied to hCC. 
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Chapter Five: Interaction of Cystatin C and Aβ1-42 

5.1. Introduction 

It is well established that Alzheimer’s disease is characterised by the aggregation of Aβ 

peptide into extracellular amyloid plaques and that it is either this, or the formation of 

toxic soluble oligomeric intermediates, that leads to major neurodegeneration and the 

consequent pathology. As previously discussed, the aggregation of Aβ can be 

modulated by many different factors including the amyloidogenic proteins transthyretin, 

neuroserpin and hCC. In addition to these, several small molecules such as 

epigallocatechin gallate have been also been identified that work to prevent Aβ toxicity. 

Although these factors often have a similar effect by reducing the toxicity of Aβ, there 

appear to be several different mechanisms by which they do this, as illustrated in Figure 

5.1. Perhaps it is unsurprising that nature has developed alternative methods of 

inhibiting fibrillogenesis at different stages. A greater understanding of these 

mechanisms, and how to control them, could lead to development of a therapeutic 

strategy against AD.  

Binding to Aβ monomer in a 1:1 complex prevents formation of nucleating species thus 

inhibiting fibril formation at the earliest possible juncture. As nucleus formation is the 

rate-limiting step, and is a highly concentration dependent process, a slight decrease in 

the amount of protein present can lead to a significant reduction in the rate of amyloid 

assembly (Jarrett and Lansbury, 1993). Stabilisation of the nucleus, or inhibition of 

monomer addition may also prevent fibril formation. Other factors cause dissolution of 

mature fibrils into smaller aggregates which are not resistant to proteolysis and therefore 

can be cleared by the body. Binding to on-pathway oligomeric intermediates often 

induces a remodelling event, thereby forming non-toxic oligomers. In some cases the 

interacting molecule acts as a catalyst, inducing the production of non-toxic species 

without itself being incorporated into the final product.  
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Figure 5.1. The Aggregation of Aβ1-42 and Different Methods of Modulation 

Schematic illustrating the assembly pathway of Aβ1-42 into amyloid fibrils, from the formation of a nucleus 

through the production of oligomeric species before the assembly of protofibrils and finally mature 

fibrils, demonstrating the presence of both fibrils and oligomers in advanced AD. Mechanisms of 

reducing Aβ1-42 toxicity at different points in the aggregation process are highlighted such as the 

formation of a 1:1 complex (green), binding to oligomers (yellow), catalytic conversion (orange) and 

dissociation of amyloid (purple). 

5.1.1. hCC and Aβ 

The discovery that cystatins co-deposited with Aβ within parenchymal and vascular 

amyloid deposits in the brains of AD patients led to the hypothesis that this family of 

proteins could play an important role in preventing neurodegeneration in AD. In recent 

years, a collection of studies using cell assays, mouse models and in vitro assays have 

been used to investigate this hypothesis and have led to the proposal that hCC in 

particular plays a neuroprotective role in AD. It is thought that hCC exerts this 

neuroprotective effect on Aβ through several routes including the inhibition of cysteine 

proteases, induction of autophagy and direct inhibition of amyloid fibril formation 

(section 1.4.1). It is upon the latter mechanism that this chapter will focus.  
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Historically it has been suggested that hCC is working as a chaperone and stabilising 

monomeric Aβ. Analysis by ELISA demonstrated a specific, saturable and high affinity 

binding of hCC to both Aβ1-40 and Aβ1-42, as the authors were able to fit the obtained 

data to a binding curve with a rectangular hyperbola as shown in Figure 5.2A (Sastre et 

al., 2004). This experiment also indicated a nanomolar dissociation constant for both 

peptides. The study demonstrated that fibril formation by both Aβ1-40 and Aβ1-42 is 

inhibited in vitro by the presence of hCC, causing the production of amorphous 

aggregates rather than mature fibrils. This effect is dose dependent and TEM estimated 

that substoichiometric amounts of hCC will prevent Aβ1-40 fibril formation, as when 22 

µM Aβ1-40 was incubated with 3.75 µM hCC no fibrils were observed. However ratios 

close to 1:1 hCC to Aβ were required to completely inhibit the formation of Aβ1-42 

amyloid fibrils (15 µM hCC for 22 µM Aβ1-42) in a 10 µl volume. Co-

immunoprecipitation experiments with deletion mutants of APP and in vitro binding 

assays with GST-Aβ mapped the binding site of hCC to the extracellular N-terminal 

region of Aβ.  

Selenica et al. (2007) used western blotting and gel filtration to probe the effect of 

adding hCC to preparations of Aβ1-42 ADDLs and protofibrils. The authors propose that 

hCC is decreasing the formation of both small and large Aβ1-42 oligomers, as supported 

by a reduction in the amount of Aβ trimers, tetramers and high molecular weight 

oligomers (38-98 kDa) observed by SDS-PAGE when Aβ1-42 was incubated in the 

presence of equimolar hCC (Figure 5.2B). They also report an increase in the amount of 

precipitate formed in the presence of hCC; TEM showed that this precipitate was 

composed of large protein aggregates with very few oligomers or amyloid fibrils 

present. SEC-HPLC was used to demonstrate a decrease in the formation of Aβ1-42 

protofibrils when both equimolar and 2 x concentrations of hCC was added to the 

incubation mixture. Radio-labelled 125I-hCC was used in conjunction with a Sephadex 

G-50 gel filtration column (Amersham) to detect the hCC-Aβ1-40 complex that forms 

after incubation of the two proteins for 35 minutes. A shift in the radioactive peak was 

observed as seen in Figure 5.2C and was thought to correspond to a complex with a 

molecular weight of 17 kDa, leading to the proposal that hCC (13 kDa)  and Aβ1-40 (4 

kDa) form a 1:1 molar complex. These data are difficult to interpret, given the lack of 

resolution of Sephadex G-50 and the non-standard behaviour of oligomeric species 

upon gel filtration. The nature of any complex formed in solution is still open to debate. 
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Figure 5.2. The Interaction between hCC and Aβ in the Literature 

The binding of hCC to Aβ was studied by ELISA (A) with the image taken from Sastre et al. (2004) with 

permission from Elsevier. Different concentrations of wild-type (solid line, solid circles), L68Q variant 

(dashed line, open squares) and urinary hCC (dotted line, solid triangles) were incubated for 3 h at 37°C 

with Aβ1-40 or Aβ1-42 coated wells. Anti-hCC antibody was used to detect bound hCC, and the means and 

standard deviations were calculated from three independent experiments. A western blot of Aβ1-42 

oligomers with and without hCC (B) was taken from Selenica et al. (2007) with permission. SDS-PAGE of 

the oligomeric preparations was analysed using the anti-Aβ monoclonal antibody 6E10. Lanes 1-6 show 

different volumes of the supernatants of mixtures in the absence (lanes 1-3) and presence (lanes 4-6) of 

equimolar hCC after 24 h incubation. Lanes 8-10 represent different volumes of the supernatants of 

mixtures with preformed Aβ-oligomers to which 100 μM has been added and incubated for a further 24 h. 

Lane 7 (veh.) is a control of the incubation solution with no proteins present. The elution profile (C) of 

gel filtration of  0.6 nM 125-I-labelled hCC (solid circles) and a solution of 0.6 nM 125I-labelled hCC in the 

presence of a slight molar excess of Aβ1-40 (open squares) was also taken from Selenica et al. (2007). The 

shift in the peak of radioactivity to a volume thought to correspond to a molecular mass of ~17 kDa is 

explained as the formation of an equimolar complex between 125I-labelled hCC (13 kDa) and Aβ1-40 (4 

kDa).  
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Although the interaction between hCC and Aβ has been studied through several 

different methods, there is very little information available about the structural details of 

this association. NMR spectroscopy enables residue-specific information about protein 

structure, stability and interactions to be easily obtained. The use of NMR has proven 

successful in both the transthyretin and the PrP systems in determining a binding site 

upon the formation of a complex with Aβ. hCC is an ideal candidate for NMR studies as 

it is small, with a molecular weight of ~13.5 kDa, and the majority of the backbone 

residues have already been successfully assigned (Ekiel et al., 1997). 

As described above, it has been proposed that there is a single binding site in this 

interaction, with a dissociation constant in the nanomolar range. The binding of hCC 

prevents further aggregation of Aβ into amyloid fibrils, and rather diverts the assembly 

pathway to the formation of amorphous aggregates. However, preceding NMR studies 

have failed to identify formation of this 1:1 complex (Keeley, 2007, Elshawaihde, 

2012), suggesting that this is not a simple monomer-monomer interaction as was 

previously thought.  

Establishing the molecular mechanism of how this process works would then allow a 

comparison of this with other Aβ-modulating systems to discover if there is a general 

mechanism for in vivo protection which could potentially lead to the identification of a 

therapeutic peptide. This chapter describes the biophysical characterisation of the 

interaction between hCC and Aβ using fluorescence assays, electron microscopy and 

size-exclusion chromatography. An NMR HSQC titration and time-course of hCC with 

Aβ1-42 to monitor complex formation is also described. 
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5.2. Materials and Methods 

5.2.1. Preparation of Monomeric Aβ1-42 

1 mg aliquots of HFIP-treated Aβ1-42 were purchased from rPeptide (Georgia, USA) and 

stored at -20°C. Before dissolution each vial was allowed to equilibrate at room 

temperature for 10 minutes to prevent condensation on opening. The lyophilised peptide 

was re-suspended in 1 ml of cold HFIP to produce a 1 mg/ml solution and sonicated for 

10 minutes in a DECON Ultrasonics sonicator bath (Sussex, UK) to ensure complete 

dissolution. The clear solution was transferred into sterile micro-centrifuge tubes to 

produce 0.1 mg aliquots. HFIP was removed by evaporation under N2 and any 

remaining traces removed by lyophilisation. The peptide was stored as a thin clear film 

at -20°C. 

5.2.2. Aβ1-42 Fibril Formation  

5.2.2.1. Fluorimeter 

Each 0.1 mg aliquot of HFIP-treated Aβ1-42 was allowed to equilibrate to room 

temperature before the addition of 20 μl DMSO (peptide concentration 10 mM). The 

sample was sonicated for 10 minutes before the addition of 1 ml of 50 mM sodium 

phosphate pH 7.4, 150 mM NaCl to bring the final peptide concentration to 22 μM (0.1 

mg/ml) with the addition of 10 μM ThT, and a final DMSO concentration of 2% (v/v). 

The sample was split between 4 fluorescence cuvettes (250 μl in each) and placed in a 

Cary Eclipse (Varian, UK) fluorimeter pre-heated to the required temperature. The 

excitation wavelength was 442 nm and emission was monitored at 482 nm. Samples 

were incubated both with and without stirring.  

5.2.2.2. Plate Reader 

Each 0.1 mg aliquot of HFIP-treated Aβ1-42 was allowed to equilibrate to room 

temperature before the addition of 20 μl DMSO (peptide concentration 10 mM). The 

sample was sonicated for 10 minutes before being further aliquoted depending on the 

number of experiments being performed. Buffer and hCC solutions were produced at 

the correct concentration and pre-incubated at 30°C, so they could be added directly to 

the Aβ1-42, preventing the peptide from forming low molecular weight species before the 

addition of hCC. After the addition of 10 μM ThT, 100 μl samples were added to 96 



142 

 

half-well plates (Corning) and incubated in a Fluostar Omega (BMG Labtech, UK) at 

30°C with continual shaking at 300 r.p.m. Each experiment consisted of 5 replicates in 

each condition and each experimental series was performed 3 times with a different 

peptide stock. The excitation wavelength was 440 nm and fluorescence emission was 

measured at 485 nm. For the experiments investigating the addition of hCC at different 

times throughout the reaction, 10 µl aliquots of 100 µM hCC were added to 90 µl of 11 

µM Aβ1-42 at each of the time-points to produce a 100 µl sample of 10 µM hCC and 10 

µM Aβ1-42. 

5.2.2.3. Curve Fitting 

In order to compare the effect of different doses of hCC on Aβ1-42 fibril assembly, 

kinetic parameters such as tlag, t50 and kapp were extracted through fitting to a sigmoidal 

growth curve (Nielsen et al., 2001) with the equation 

𝑌 = 𝑦𝑖 +  𝑚𝑖𝑥 +  
𝑦𝑓 +  𝑚𝑓𝑥

1 +  𝑒−[
𝑥−𝑥0

𝜏
]
 

where Y is the fluorescence intensity, x is the time, and xo is the time of 50% the 

maximal fluorescence (t50). The lag time of the reaction is given by xo - 2τ and the 

apparent rate constant (kapp) can be calculated by 1/τ. Each replicate curve was fitted 

using GraphPad Prism 6.04 and the values extracted from each were averaged to give a 

final value for each of the parameters. The fit for each replicate curve is shown in 

Figure 5.3. 

One-way ANOVA and Tukey’s test for mean comparison were used to determine 

significant differences between the calculated kinetic parameters in the presence of 

different concentrations of hCC. 
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Figure 5.3. Curve Fitting 

Each replicate data set from a series of ThT fluorescence time-courses of Aβ1-42 fibrillisation in the 

presence of different molar concentrations of hCC was fitted to a sigmoidal curve and parameters 

were extracted. The y-scale or amplitudes vary from graph to graph but are shown to report on the 

variability of this parameter within individual sets of time- courses. 
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5.2.3. Preparation of hCC Species 

5.2.3.1. Domain Swapped Dimer 

75 µM hCC in 10 mM sodium phosphate pH 6.0, 100 mM NaCl was incubated for 30 

minutes at 68 °C before loading onto a preparative Superdex 75 gel filtration column 

(GE Healthcare) equilibrated in 50 mM sodium phosphate pH 7.4, 150 mM NaCl. 6 ml 

fractions were collected and those containing dimeric hCC were pooled and quantified 

by measuring the absorbance at 280 nm, before immediate use in ThT assays. 

5.2.3.2. Oligomer 

hCC was incubated in 15 mM sodium acetate pH 4, 100 mM NaCl at 48°C with 

agitation for 48 hours. Oligomers were purified by repeated rounds of ultrafiltration. 50 

– 200 µL samples were added to a 1,000 kDa Vivaspin and centrifuged for 10 minutes 

at 9.8 k x g at 4°C to remove any fibrils and amorphous aggregates from the solution. 

The flow-through was removed and added to a 100 kDa Vivaspin and centrifuged for 10 

minutes at 9,800 x g at 4 °C to remove any monomeric hCC from the sample. This final 

step was repeated 3 times with the retentate volume being made up to the original 

volume with 50 mM sodium phosphate pH 7.4, 150 mM NaCl each time. After the final 

spin the retentate volume was adjusted to the original volume with buffer, removed and 

placed in a clean eppendorf. Preparations were examined by electron microscopy to 

determine the morphology of the oligomers produced and check that there were no 

fibrils present.  

5.2.4. Analytical Size Exclusion Chromatography (SEC) 

20 μl samples of Aβ1-42 incubated in the absence or presence of equimolar hCC were 

analysed using either a Shodex KW-803 (Shodex, Japan) or a Superdex 200 (GE 

Healthcare) gel filtration column respectively. The columns were equilibrated in 50 mM 

sodium phosphate pH 7.4, 150 mM NaCl. The Shodex column has a protein exclusion 

limit of 700 kDa and is made of a silica hydrophilic polymer. The Superdex column has 

a protein exclusion limit of 1,300 kDa, with a separation range between 10 and 600 

kDa, and a matrix of cross-linked agarose and dextran. 
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5.2.5. Nuclear Magnetic Resonance Spectroscopy 

15N-labelled hCC was expressed and purified as described in section 2.4.2. Before the 

NMR experiments, the purity and monomeric state of the protein was established 

through analysis by mass spectrometry and SEC-HPLC. 

5.2.5.1. Preparation of Aβ1-42 

Lyophilised HFIP-treated Aβ1-42 was purchased from rPeptide. 1 mg Aβ1-42 was 

dissolved in 1 ml HFIP and sonicated for 10 minutes in a DECON Ultrasonics sonicator 

bath (Sussex, UK). The solution was split into 0.1 mg aliquots and HFIP was 

evaporated under a stream of N2. Samples were lyophilised to remove any residual 

HFIP and stored at -20 °C.  

Monomeric Aβ1-42 for subsequent experiments was prepared by dissolving 0.22 mg of 

HFIP-treated Aβ in 450 µl of cold 20 mM Tris, with sonication for 10 minutes, before 

the addition of 60 µl of cold deuterium oxide (D2O). The pH was adjusted to pH 7.5 

with the addition of TFA (~ 45 µl 1% TFA) and the final volume brought to 600 µl with 

cold 2 mM azide to produce 15 mM Tris-TFA pH 7.5, 10% D2O. The concentration of 

Aβ was quantified by measuring the absorbance at 280 nm, and where necessary 

adjusted to 50 µM by the addition of 15 mM Tris-TFA pH 7.5, 10% D2O. A 1D 1H 

spectrum was recorded at 278 K.  

5.2.5.2. NMR Spectroscopy 

In solution, proteins do not have a fixed, rigid structure. Instead they are dynamic 

molecules that can adopt a number of different conformations. The probability of a 

particular structural state being populated is dependent on the stability of that 

conformation. NMR can give an indication of the state of this population as data is 

recorded on a vast number of molecules. NMR can also provide valuable information 

on the exchange rate between a free and ligand-bound form of a protein, as the amides 

involved in the binding process will experience variations in chemical shift due to 

changes in their local environment. If the rate of chemical exchange between two states 

is fast then a single peak will be observed at a position reflecting an average of the two 

conformations and their relative populations. Alternatively, if the two states are in slow 

exchange, then two discrete peaks will be observed as the binding and release is slower 

than the acquisition time. A new peak will form at a different resonance frequency in 

line with the chemical shift of the bound form, while the peak for the unbound form will 
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remain in the original position. As the titration continues, the peak of the unbound form 

should decrease in height as the peak of the bound form increases. Finally, if the two 

states exchange at an intermediate rate, with the binding and release occurring on a 

similar time-scale to the chemical shift time-scale, then the peaks will generally broaden 

or disappear as the line-widths broaden. 

All NMR spectra described in this chapter were recorded on a Bruker DRX 

spectrometer operating at 600 mHz with a cryogenically cooled probe, and controlled 

using XWinNMR (Bruker). Spectra were processed and analysed using Felix 2004 

(Accelrys) with in-house macros. All heteronuclear single quantum coherence (HSQC) 

experiments were acquired using 1024 increments in the proton dimension and 512 

increments in the nitrogen dimension. The spectral widths of the proton and nitrogen 

dimensions were 7507.5 Hz and 2128.6 Hz respectively.  

5.2.5.3. 1H-15N HSQC Spectrum of hCC 

An HSQC experiment measures the chemical shifts of the proton and nitrogen nuclei of 

every bonded 15N-H pair by modulating each proton signal with the signal of the 

attached nitrogen. After processing to deconvolute the two frequencies, a two-

dimensional plot is generated with a peak for every amide at the intersection of the 

proton and nitrogen chemical shifts. Factors that alter the chemical environment of an 

amide can be detected by changes in the HSQC spectrum, as the chemical shift of each 

nucleus is directly related to its chemical environment. As each amino acid contains a 

backbone amide, each peak in the HSQC spectrum will correspond to a specific residue 

within the protein structure. It is important to know which amide, and therefore residue, 

corresponds to which peak in the spectrum to allow changes in chemical environment to 

be mapped onto the protein structure. This is achieved through a process known as 

resonance assignment. A backbone assignment for hCC has previously been determined 

at the required experimental conditions of 15 mM Tris-TFA pH 7.5, 278 K (Keeley, 

2007). This assignment was based on a published assignment for 200 μM hCC in 50 μM 

sodium phosphate pH 6.0, which was recorded at 303 K (Ekiel et al., 1997).  

In order to establish that the movement of an amide peak is relevant and due to changes 

in chemical environment, rather than the slight drift that is generally associated with 

HSQC titrations, a minimal chemical shift change is required which can be calculated 

by computing an average line width at 50% height for 4-5 peaks. Any peak that moves 

by at least 2 times this average line width is considered to have a significant chemical 
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shift change.  The value used here was 0.11 ppm for proton and 0.41 ppm for nitrogen 

chemical shift. Weighted average chemical shift differences were calculated using the 

formula 

    Δavg (HN) = [(ΔH)2 + (ΔN/10)2]1/2 

where ΔH and ΔN are chemical shift differences for 1H and 15N respectively and 10 is 

the estimated ratio of chemical shift changes for the two nuclei (Elshawaihde, 2012). 

5.2.5.4. Titration of Monomeric Aβ1-42 into 15N-labelled hCC 

A 500 µl sample of 50 µM 15N-labelled monomeric hCC in 15 mM Tris-TFA pH 7.5, 

10% D2O was placed in an NMR tube and initial 1D and 2D spectra were obtained at 

278 K to use as a reference. At each stage of the titration either 100 µl or 200 µl of 

monomeric Aβ, produced as described above, was added to the hCC sample. The 

solution was gently inverted and spun to produce a homogenous sample. At each 

titration interval, two 1D spectra were recorded either side of a 2D HSQC spectrum. 

Four titration points were used to give molar ratios of 1:0.4, 1:0.8, 1:1 and 1:1.2 hCC to 

Aβ.  

5.2.5.5. Time-course of Aβ1-42 with 15N-labelled hCC 

15N-labelled hCC was buffer exchanged into 2 mM azide to produce a 50 μM solution 

in 500 μl and lyophilised. 500 µl of 50 µM monomeric Aβ1-42 was produced as 

described above and added to the lyophilised hCC before sonication for 10 minutes. 

This produced a sample of 50 µM hCC and 50 µM Aβ1-42 in 15 mM Tris-TFA pH 7.5, 

10% D2O. The sample was incubated at 303 K for 24 hours and 1D and 2D HSQC 

spectra were obtained.  
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3. Results 

5.3.1. Aβ1-42 Fibrillisation  

Aβ1-42 fibril formation was monitored using ThT fluorescence. The changes in ThT 

fluorescence upon Aβ fibrillisation followed a characteristic sigmoidal curve consistent 

with the nucleation-dependent elongation model of amyloid assembly. 

Conditions for the formation of Aβ1-42 fibrillisation were established that were 

reproducible, both between experiments and between the replicates within each 

experiment, to allow comparison of data from different systems. Initially experiments 

were performed in a Cary Eclipse fluorimeter (Varian, UK); later experiments were 

carried out in a Biotech Omega fluorescence plate-reader (BMG Labtech, UK). 

Different protein concentrations were investigated, as shown in Figure 5.4. There is a 

greater variation between the individual replicate curves obtained from the cuvette 

method than from the plate-reader. The mean of these replicates was plotted, and 

normalisation of these curves allowed a comparison between the different data sets. 

This demonstrated that data obtained from the plate-reader experiments showed similar 

curves to those obtained with the fluorimeter, with a lag phase of 20-30 minutes and 

reaching an equilibrium plateau at 3 hours. It could be suggested that halving the 

peptide concentration from 22 μM to 11 μM should lead to a variation in the lag phase 

and elongation rate of the reaction, consistent with the nucleation-dependent model. 

However, this was not observed. In a similar fashion, Hasegawa et al. (1999) comment 

that although they observe a concentration-dependent increase in final equilibrium 

levels, the time taken to proceed to this equilibrium level was unchanged at comparable 

concentrations of Aβ1-42.  

Transmission electron microscopy was also carried out in order to analyse the 

morphology of Aβ1-42 fibrils produced in different systems and at different peptide 

concentrations. Figure 5.5 shows examples of electron micrographs of these different 

preparations after 24 hours. TEM confirmed that mature fibrils had formed in all of the 

samples. The fibrils are long, straight and unbranched, with an average fibril width of 

9.4 ± 1.3 nm (n = 105). There appeared to be very little structural variation between 

preparations in addition to the similarities in kinetics therefore data from both 

experimental set-ups (fluorimeter and plate-reader) are shown throughout this chapter. 
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Figure 5.4. Fibrillisation of Aβ1-42 using Different Systems 

ThT fluorescence curves (A) showing Aβ1-42 fibrillisation reactions in different systems. Aβ1-42 was 

incubated at either 22 μM or 11 μM in 50 mM sodium phosphate pH 7.4, 150 mM NaCl in a Varian 

Cary fluorimeter at 25°C or an Omega plate-reader at 30 °C with agitation. The increase in 

fluorescence intensity at 482 nm was monitored over several hours. The mean of 4 or 5 replicates from 

each experiment was plotted and curves were normalised to allow comparison between the different 

systems (B), indicating a similar lag time and elongation rate.  
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Figure 5.5. TEM of Aβ1-42 Fibrillisation using Different Systems 

Aβ fibrils produced in different systems and at different protein concentrations in 50 mM sodium 

phosphate pH 7.4, 150 mM NaCl show a similar structural morphology after 24 hours.  All images 

were taken at 21, 000 x magnification.  
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5.3.2. Addition of hCC to Aβ1-42 Fibrillisation 

5.3.2.1. ThT Time-course 

It has previously been proposed that ratios of 1:1 hCC to Aβ1-42 are required to 

completely inhibit the formation of amyloid fibrils by Aβ1-42 (Sastre et al., 2004). 

However, substoichiometric amounts of hCC (0.3 μM) have been shown to protect both 

N2a neuroblastoma cells and rat primary hippocampal neurons from Aβ-induced cell 

death when incubated with 30 μM Aβ1-42. The kinetics of Aβ1-42 fibrillisation were 

measured in the presence of different molar ratios of hCC in the standard conditions 

described earlier, with an Aβ1-42 concentration of 11 µM, as shown in Figure 5.6. Each 

curve is the average of 5 replicates with error bars displaying the standard error of the 

mean (SEM) to give an indication of the spread of the data. Different concentrations of 

hCC were tested ranging from 22 µM (twice the concentration of Aβ1-42) to 0.11 µM 

(100 times less than the concentration of Aβ1-42). Equimolar concentrations of hCC 

caused a large reduction in ThT fluorescence, suggesting that the amount of fibril being 

produced was significantly less in the presence of hCC. The intensity of the hCC + Aβ 

curve is about 25% of the Aβ curve in the absence of hCC, suggesting a reduction in 

fibril production of about 75%. hCC concentrations of 8.75 µM and 5.5 µM caused a 

reduction in ThT fluorescence of 62% and 25% respectively. In all cases however there 

is still a small amount of fibril being formed; a molar ratio of 1:2 Aβ to hCC will inhibit 

Aβ fibril formation completely. Smaller ratios of hCC do not appear to have an effect 

on Aβ aggregation with the curves showing similar lag time, elongation rate and 

amplitude.  When incubated alone in these conditions, hCC did not form fibrils and 

there was no increase in ThT fluorescence.  

The calculated lag time for Aβ fibrillisation was 0.4 hours (or 24 minutes), with a t50 of 

1.3 hours and an apparent rate constant of 2.5 h-1 (7 x 10-4 s-1). As seen in Figure 5.7, 

one-way ANOVA and Tukey’s test indicated that there are no significant differences 

between either the lag time, the t50 or the kapp when hCC is added to Aβ1-42 fibrillisation 

in a 1:1 ratio. However small changes in kapp were observed in the presence of 2.25 µM, 

5.5 µM and 8.75 µM hCC with values of 4.13 h-1, 3.75 h-1 and 4.21 h-1 respectively 

(11.4 x10-4 s-1, 10.4 x 10-4 s-1 and 11.7 x 10-4 s-1).  

Fibril elongation is limited in a dose dependent manner, with both 8.75 μM and 11 μM 

hCC (1:0.75 and 1:1 molar ratios of Aβ to hCC respectively) having a significant 

inhibitory effect on aggregation and majorly reducing the fibril load. These are not 



152 

 

saturating conditions, where each cystatin molecule is binding to an Aβ molecule or 

complex, as this would work at very low concentrations of hCC. If the mechanism 

involves native, folded hCC monomer binding to monomeric Aβ1-42 as described by the 

literature, then this would imply a high dissociation constant.   

 

Figure 5.6. Incubation of Aβ1-42 in the Presence of hCC 

ThT fluorescence time-courses (A) of Aβ1-42 fibrillisation at 11 µM with the addition of different molar 

ratios of hCC. Each curve is the average of 5 replicates, with error bars indicating the standard error of 

the mean (SEM). Different experimental series performed at different times and with different protein 

stocks are shown for comparison. Curve amplitudes were normalised to 1 (B) to allow initial comparison 

of lag phase and elongation rate.  
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Figure 5.7. Calculated Kinetic Parameters 

Box-plots displaying kinetic parameters t50, tlag and kapp, as well as the increase in fluorescence intensity, 

for Aβ1-42 fibrillisation reactions in the presence of different molar concentrations of hCC. Each value is 

the average of 5 replicates. Significant differences were calculated using one-way ANOVA and Tukey’s 

test and those with α ≤ 0.05 (*), α ≤ 0.01 (**) and α ≤ 0.0001 (****) are indicated. 
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5.3.2.2. Electron Microscopy 

Although changes in ThT fluorescence suggested that hCC was inhibiting Aβ1-42 fibril 

production, this reduction in intensity could be attributed to other factors such as 

changes in morphology or the production of alternative species which also bind ThT. 

TEM was used to study the structural morphology of the structures produced at the end 

of the incubation of Aβ1-42 in the presence of an equimolar concentration of hCC. Figure 

5.8 shows electron micrographs of different preparations of Aβ1-42 and hCC in the same 

conditions after at least 24 hours of incubation. In the absence of hCC, Aβ1-42 produces 

long straight unbranched fibrils with an average width of 9.4 ± 1.3 nm (n=105) (Figure 

5.5). Very few oligomeric species were present, and a large amount of amorphous 

aggregate was not observed. The fibril morphology was maintained in different 

preparations, with samples consistently forming amyloid fibrils.  

When Aβ1-42 was incubated in the presence of equimolar hCC several species were 

observed with very different morphologies. Short curly protofibril-like structures 

appeared in several preparations, in some cases highly associated and clumped together. 

These were often thinner and more fragile-looking than the mature fibrils, however in 

some cases these structures appeared to be a similar width to the fibrils produced in the 

absence of hCC. The curved structures and highly associative nature of these species 

made it difficult to extract measurements from the electron micrographs, especially the 

smaller structures which often lacked the contrast required. A small number of annular 

oligomers were also occasionally observed. A large amount of amorphous aggregate 

was often observed, suggesting that the short protofibrillar species could be further 

associating to form large unstructured aggregates under these experimental conditions. 

As would be expected from the small increase in ThT fluorescence, the presence of a 

small amount of mature fibril was regularly noted. If this reaction is followed over an 

extended period of time (months) the formation of high quantities of mature fibrils was 

still not observed. Instead a large amount of amorphous aggregate is present. It is 

tempting to speculate that these protofibrillar species accumulate further to produce 

large aggregates, especially considering the presence of large clumps in the sample after 

only 24 hours. The lack of fibrils suggests these species are no longer 

thermodynamically favoured, and that the protofibrillar species formed are in a 

kinetically trapped state.  
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Figure 5.8. TEM of Incubation of Aβ1-42 in the Presence of hCC  

Electron micrographs of examples of different preparations of Aβ1-42 and hCC in a 1:1 equivalence 

after at least 24 hours.  Images taken at 21,000 x magnification. 
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5.3.3. Time-course of Aβ1-42 and hCC 

A time-course of the aggregation reaction of Aβ1-42 was monitored by TEM and SEC in 

the presence and absence of equimolar concentrations of hCC.  

5.3.3.1. Electron Microscopy 

As seen in Figure 5.9, TEM indicated that small oligomeric species were forming in the 

Aβ sample very early on, within the time that was taken for the sample to be put on an 

EM grid. A repeat of this experiment by my colleague Sirwan Al-Jaf indicated that if 

the sample is put on the grid immediately after buffer is added to the Aβ-DMSO 

mixture then no oligomers are present, however small oligomeric species had formed 

within 20 minutes. A small population of amyloid fibrils were observed as early as 20 

minutes, with more appearing at 40 minutes. This supports the ThT data, where fibril 

elongation begins after approximately 30 minutes. After 2 hours there are large amounts 

of mature fibril present in the sample with very few oligomers observed.  

In the presence of hCC, small protofibrillar species appear very early on in the time-

course. These structures are larger and more elongated than those seen in the Aβ 

sample, and remain throughout the reaction. By the end of the time-course large 

quantities of the protofibrillar species are present and are associating to form large 

clumps. A few amyloid fibrils begin to appear after 40 minutes, as was seen in the Aβ 

sample, again at the point at which an increase in intensity is seen in the ThT reaction. 

However, large amounts of mature fibril are not observed in the presence of hCC. This 

suggests that the hCC is preventing the formation of fibrils, rather than the formation of 

oligomeric intermediates. The structures that have assembled, and are maintained over 

the time-course, look quite different from those observed in the Aβ sample, suggesting 

that the cystatin is not stabilising an intermediate on-pathway to fibril formation, but 

rather diverting the Aβ down a different assembly pathway.   
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Figure 5.9. Electron Microscopy Time-Course  

TEM images following the aggregation of Aβ1-42 in the presence and absence of equimolar hCC over 

24 hours. All images were taken at 21,000 x magnification. 
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5.3.3.2. Size Exclusion Chromatography 

The aggregation of Aβ1-42 was monitored in both the absence and presence of hCC by 

performing SEC in fibrillisation conditions. Following the Aβ fibrillisation reaction 

alone showed a decrease in monomer peak height corresponding to the formation of 

large oligomers and mature fibrils, as more monomeric protein became incorporated 

(Figure 5.10). Monomeric Aβ was still present in the solution after 2 hours, and there 

was still a very small peak present even after 24 hours, however the majority of the 

protein has been converted into aggregated structures. The equilibrium of this reaction 

means that a small amount of monomeric Aβ1-42 is often observed in such experiments, 

as has previously been reported by (Walsh et al., 1997). From previous experiments 

using Aβ1-40, which is more stable and less prone to aggregation, 22 μM Aβ1-42 should 

give a peak height of 0.047 mAU; the peak height observed in the time-course, also of 

22 μM Aβ1-42, is 0.035 mAU which is 75% of the predicted height. This suggests that 

25% of the Aβ in the solution has already been converted into other species. The 

broadening of this peak is thought to be due to the formation of higher molecular weight 

species.  

Although SEC can provide valuable insight into the formation of large molecular 

weight species in the fibrillogenesis of Aβ, its usefulness in the identification of low 

molecular weight species can be limited. The amphipathic nature of the Aβ peptide 

means that it can form both hydrophobic and/or electrostatic interactions with the 

column matrix under non-denaturing conditions.   
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Figure 5.10. SEC Time-course of Fibrillisation of Aβ1-42 

SEC elution profiles of Aβ1-42 fibrillisation over 24 hours. The monomer peak is shown at 12 minutes 

(black arrow) and the broadening of this peak is highlighted (grey arrow). 
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Figure 5.11 shows elution traces obtained by monitoring the fibrillisation of Aβ1-42 in 

the presence of equimolar hCC by SEC. Surprisingly, a significant reduction in hCC 

concentration is not observed when monitoring the reaction over 24 hours, implying that 

the cystatin is not being incorporated into the species that are assembling. However, the 

height of the hCC peak at the start of the reaction is reduced by 25% compared to a hCC 

sample in the absence of Aβ (Figure 5.12), indicating that this proportion of hCC could 

already be bound to the Aβ before the start of the HPLC time-course. This calculation 

takes into account the small amount of hCC dimer that is present in the time-course 

sample. This could mean that the Aβ is binding to a minority species in the cystatin 

sample, therefore the majority of the molecules will be unaffected by the presence of the 

Aβ and there will not be any major changes in apparent hCC concentration over the 

time-course. Alternatively, if the cystatin is working as a catalyst and converting Aβ 

oligomeric intermediates into alternative, non-toxic conformations, then again there 

would be no change in the apparent ‘free hCC’ concentration.  

Analysis of the time-course by SEC also shows the appearance of two small peaks near 

the exclusion volume of the column. Initially only a single peak is observed with an 

elution time of 13 minutes which increases in intensity as time progresses over the first 

40 minutes. This peak remains at a constant height over the next two hours but is very 

much reduced after 24 hours. After 40 minutes a second peak appears at 11 minutes, 

which remains for the next two time-points (1 and 2 hours) but then is no longer present 

by 24 hours. It is likely that both of these peaks correspond to the formation of different 

populations of oligomeric species through the aggregation process. In the final time-

point these peaks are greatly reduced or not present, which could indicate that these 

species have been incorporated into the aggregates observed by TEM.  
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Figure 5.11. SEC Time-course of Aβ1-42 Fibrillisation in the Presence of hCC 

SEC elution profiles of Aβ1-42 fibrillisation in the presence of equimolar hCC over 24 hours. The arrow 

indicates the hCC monomer peak, and the formation of high molecular weight oligomers is followed in 

the inset graphs. 
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Figure 5.12 shows the height of a selection of the peaks observed throughout the two 

time-courses. Following the time-course of Aβ1-42 and hCC in this way highlights that 

the concentration of hCC, both monomer and dimer, that is in solution (peaks at 30 and 

33.5 minutes) is remaining constant. The formation of oligomeric species (peaks at 11 

and 13 minutes) increases over the 40 minutes of the reaction, which is before a large 

increase in ThT fluorescence is observed. The concentration of these species remains 

constant until 2 hours, however they are no longer present after 24 hours, suggesting 

their incorporation into larger aggregates.  

In the Aβ1-42 time-course the broadening of the monomer peak, monitored by measuring 

the peak height at an elution time of 12.6 minutes increases over the first hour before 

plateauing, in a similar fashion to the oligomer peaks observed in the Aβ and hCC time-

course. Although a small decrease in the height of the Aβ monomer peak (12 minutes) 

is observed over the first hour, a large reduction is not seen until 24 hours incubation. 

This is consistent with variations in the lag time of individual time-courses shown in 

Figure 5.6 where not all samples show plateauing of the ThT signal after 2 hours. 

Expanding the time-course to include more time-points between 2 and 24 hours would 

establish a greater understanding of the changes in Aβ monomer levels throughout this 

reaction. 
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Figure 5.12. Peak Heights from SEC-HPLC Time-course  

A comparison of the elution profiles (A) of 22 μM hCC in the presence (solid line) and absence 

(dashed line) of equimolar Aβ1-42 showing a reduction in peak height at 12 minutes of 25%. The height 

of specific peaks from the time-course elution profiles in Figures 5.10 and 5.11 were measured and 

plotted against the reaction time-point (B). The Aβ1-42 monomer peak at 12 minutes (pink) and the 

broadening of this peak at 12.6 minutes (blue) were plotted for the Aβ1-42 time-course as a percentage 

of the largest peak height to show the height of the peaks in comparison to each other. The two 

oligomer peaks at 11 minutes (pink) and 13 minutes (blue) were plotted for the Aβ1-42 and hCC time-

course, in addition to the hCC dimer peak at 30.5 minutes (green) and the hCC monomer peak at 33.5 

minutes (purple). Again the peak heights were plotted as a percentage of the largest peak heights. 
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5.3.4. Comparison of Different Species  

The species that are formed through the interaction of Aβ1-42 and hCC are short, thin 

and curved with a different structural morphology to that of mature fibrils. There are 

many examples of different soluble species produced by Aβ1-42 described in other 

studies; at least 10 are described in Benilova et al. (2012). Images from the experiments 

described here were compared to electron micrographs of protofibrils and ADDLs from 

the literature to establish any similarities in morphology as shown in Figure 5.13. It is 

difficult to compare species using only TEM, as alternative structures and conditions 

can associate differently with the copper grids used to mount the samples. Some species 

will stick well to the surface and be easily observed, whereas others will not bind. This 

means that the observations are skewed in favour of certain species.  

 

Figure 5.13. Comparison of Different Species by TEM 

Electron micrographs of Aβ1-42 incubated in the absence (A) and presence (B and C) of equimolar hCC. 

The image of Aβ1-42 protofibrils purified by SEC (D) was taken from (Walsh et al., 1997) with a scale bar 

of 100 nm and the image of ADDLs produced by incubating Aβ1-42 in 50 mM sodium phosphate pH 7.4, 

150 mM NaCl at 4°C for 24 hours was kindly provided by Sirwan Al-Jaf. Images A, B and C were taken 

at 21,000 x magnification.  
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Aβ protofibrils have been previously described as unbranched, rod-like structures that 

are less than 200 nm in length, with a diameter of 4-8 nm (Walsh et al., 1997, Walsh et 

al., 1999). This is a similar width to the species under investigation, however the 

protofibrils are less curly and associated. It is thought that Aβ aggregates through a 

series of transient intermediates to then form protofibrils, which act as a core for fibril 

elongation. Walsh et al. (1997) report that protofibril levels are at their peak after 8 

hours, as measured by SEC, and that these levels are greatly reduced by 24 hours. 

Although the structures produced from the incubation of Aβ1-42 in the presence of hCC 

have a protofibrillar appearance, they remain in solution and their levels are not greatly 

reduced after 24 hours, as observed by TEM. 

Under specific conditions it is known that Aβ1-42 forms a population of structures known 

as Aβ-derived diffusible ligands (ADDLs). These species are thought to be responsible 

for cytotoxicity in AD and have been well characterised. A preparation of ADDLs was 

produced by my colleague Sirwan Al-Jaf by incubating 100 µM Aβ1-42 in 50 mM 

sodium phosphate pH 7.4, 150 mM NaCl at 4°C for 24 hours. These structures were 

characterised by SDS-PAGE and TEM, and were also used for comparison purposes 

with the species formed after the incubation of Aβ1-42 with hCC. These latter species 

have a very different morphology to the ADDLS, which are a lot smaller and less 

elongated. The spherical species observed in the ADDL preparation are absent from the 

Aβ1-42 and hCC sample.  

Although it was attempted to probe the structure of the different morphologies using the 

antibodies A11 and OC, this was unsuccessful. These antibodies recognise different 

structural motifs often observed in aggregated structures. The A11 antibody recognises 

a common structural epitope in prefibrillar oligomers, whereas the OC antibody 

recognises fibrils and fibrillar oligomers (Kayed et al., 2007). None of the samples 

tested showed any binding to A11 which was unexpected as ADDLs have been shown 

previously to bind to this antibody (Benilova et al., 2012). However this sample did 

show a positive result for the OC antibody, indicating that the species that had been 

produced were fibrous. It is therefore likely that the reaction had proceeded too far and 

mature fibrils had formed. The Aβ monomer sample also showed binding to the OC 

antibody, again suggesting that fibrous structures had formed. Although there was a 

reduction in binding of OC to the Aβ species that had been produced in the presence of 

Aβ compared to the Aβ alone sample, without successful controls further conclusions 
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could not be drawn. It has been reported that the species formed upon the incubation of 

100 µM Aβ1-42 in the presence of 34 µM hCC showed a significant reduction in binding 

to the A11 antibody compared to oligomers produced from the incubation of Aβ alone 

(Tizon et al., 2010). The species formed in the presence of hCC were added to rat 

primary hippocampal neurons and a significantly lower toxicity was observed than for 

oligomers formed by Aβ in the absence of hCC. This demonstrates that the species 

produced by the incubation of Aβ in the presence of hCC causes a reduction in toxicity 

of the Aβ.   

5.3.5. Addition at Different Time-Points 

In order to establish the species in the aggregation reaction to which the hCC was 

binding, equimolar hCC was added at different points throughout Aβ fibrillisation and 

the reaction monitored by ThT fluorescence. These points were chosen to be at the start 

of the elongation phase, at the mid-point of the elongation phase, and at the plateau.  

The addition of hCC after both 20 minutes and 1 hour showed a 20% and 55% 

reduction respectively in ThT fluorescence intensity when compared to the control 

reaction. This is less than the reduction of 75% observed when equimolar hCC is added 

at the start of the reaction, however demonstrates that hCC still has an effect on Aβ 

fibrillisation at these time-points and suggests that the hCC-binding species are still 

present. The addition of hCC after 2 hours shows no difference in ThT fluorescence 

compared to the control. This suggests that hCC needs to be present early on in the 

reaction to have an effect, and that after 2 hours the reaction is too advanced for the 

hCC to have an effect. This could also suggest that hCC does not dissolve pre-formed 

mature Aβ fibrils, but rather has an effect on their formation. Analysis of the latter 

sample by SEC after 24 hours incubation and after 1 week shows a reduction in hCC 

concentration. It was thought that this could correspond to the hCC associating with the 

fibrils after their formation, or that the hCC itself is aggregating. Surprisingly, TEM at 

both of these time-points did not show large amounts of mature amyloid fibrils, but 

rather amorphous aggregates. This could mean that there is a slow dissociation of the 

amyloid fibrils by the hCC over an extended time period, or that the species being 

produced are ThT-positive. Further study would be required to validate these results. 
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Figure 5.14. Addition of hCC at Different Points 

Equimolar hCC was added to Aβ1-42 at time points of 20 minutes, 1 hour and 2 hours during the 

fibrillisation reaction as indicated by the arrows. Each curve is the average of 5 replicate reactions 

with error bars displaying the standard error of the mean. 
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5.3.6. Addition of Different Species 

Different species of hCC such as dimer and stable high-molecular-weight oligomers 

were produced and characterised and their ability to modulate Aβ fibrillisation was 

examined using ThT fluorescence. An investigation into the effect of cystatin B on Aβ 

fibril formation has indicated that tetramers of the wild-type cystatin will completely 

inhibit fibrillisation by Aβ, as demonstrated by ThT and TEM, whereas the monomer, 

dimer and higher oligomeric species do not have an inhibitory effect (Skerget et al., 

2010). Similarly, non-native species of transthyretin and neuroserpin are believed to be 

more effective inhibitors, presumably as this favours exposure of the active binding site 

(Du and Murphy, 2010, Chiou et al., 2009).   

5.3.6.1. Dimer 

Figure 5.15 shows the change in ThT fluorescence when the hCC dimer preparation was 

incubated with 11 µM Aβ1-42 at two different dimer concentrations, 11 µM and 5.5 µM. 

The addition of the dimer has a dramatic effect on the lag time of the reaction. At a 

molar ratio of 1:1 hCC (subunit) to Aβ, there is a 33% reduction in fluorescence 

intensity, however this effect is not seen at the lower concentration of dimer. This 

indicates that the addition of hCC dimer to Aβ has a different effect on the assembly 

pathway than was observed for the hCC monomer and is more reminiscent of other 

proteins such as transthyretin. In the monomer experiments the lag phase, and 

consequently the nucleation process, was not affected by the presence of the hCC. With 

the dimer experiments the increase in the lag phase suggests that dimeric hCC is 

affecting the formation of nucleating species and delaying the formation of amyloid 

fibrils. This implies that this form of hCC is binding differently and because its 

modulation of the process is kinetic rather than thermodynamic, is probably not 

becoming incorporated into the aggregated species. TEM indicated the formation of 

protofibrillar species and amorphous aggregate when Aβ1-42 and hCC dimer were 

incubated at a 1:1 molar ratio, similar to the sample in which hCC oligomers/fibrils 

were incubated with Aβ1-42 (Figure 5.16). The lack of fibrillar species despite the high 

ThT signal may be due to precipitation of these species or adsorbance to the plate. Cell 

studies and in vivo work do show the localisation of the two proteins to surfaces so it is 

reasonable to imagine this may happen on the microplates used. 
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Figure 5.15. Addition of hCC Dimer 

ThT fluorescence time-courses (A) of Aβ1-42 fibrillisation at 11 µM with the addition of different molar 

ratios of hCC dimer. Each curve is the average of 4 or 5 replicate reactions with the standard error of the 

mean indicated by the error bars. The structure of hCC is also shown (B) indicating the position of 

chemical shift changes upon dimerisation. Changes are graded with red being the biggest change, then 

orange then yellow. Figure taken from (Ekiel et al., 1997). 
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5.3.6.2. Implications for the Structural Nature of the Interaction 

The remarkable difference between the monomer and dimer interaction with Aβ 

suggests strongly that differences in the surfaces of these molecules must be 

responsible. The surface of the dimer and the monomer are essentially identical in all 

regions of the molecule except for the loops involved in protease binding, as exhibited 

by small changes in chemical shift (Ekiel et al., 1997) (Figure 5.15). It is thus highly 

likely that a similar interface must be involved in binding Aβ. Given the discussion 

above, where hydrophobic surfaces buried within a molecule may need to become 

exposed to allow binding, it is likely that local unfolding of this region is necessary to 

promote efficient inhibition of Aβ fibrillisation. The hydrophobic nature of this region 

of the protein, which is necessary for binding proteases, makes it an ideal surface for 

interactions with the Aβ peptide. 

5.3.6.3. Oligomers 

hCC oligomers were produced as discussed in Chapter 4; unfortunately significant 

amounts of amyloid fibrils remained in the sample, even after centrifugation. The 

method of purification should ensure that monomeric hCC is not present in the solution, 

however there were still a significant amount of oligomeric species associated with the 

fibrils. Although the hCC sample has a high ThT signal by itself, this remains stable 

through the experiment time, therefore it was assumed that any increase in fluorescence 

was due to the aggregation of Aβ1-42.  

Despite the absence of small molecular weight species, this oligomer sample still has an 

effect on Aβ1-42 fibrillisation as can be seen in Figure 5.17. When incubated with the 

hCC sample, there was a 54% reduction in ThT fluorescence at a molar ratio of 5:1 hCC 

to Aβ, and a reduction of 38% at equimolar concentrations. The significance of this is 

difficult to ascertain given the difference in behaviour between monomers and dimers. 

The appearance of the time-courses are closer to the monomer suggesting the 

stabilisation of an alternative species which is not ThT-positive. It is likely that the 

structure of oligomers is relatively flexible and able to bind readily to Aβ, in a non-

specific albumin-like manner. All hCC concentrations were calculated as monomer-

equivalent (i.e. using the extinction coefficient and molecular weight of the monomer). 

It was not possible to fit the data in the presence of hCC due to the shape of the curves 

exhibiting too many unresolvable phases.  
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When examining the end-point of the incubation with 1:1 Aβ1-42 to hCC oligomers by 

TEM, no amyloid fibrils were observed as seen in Figure 5.16. Instead a large amount 

of amorphous aggregate was seen, as well as small protofibrils. As suggested above for 

the dimer sample, it is likely that the fibrillar species giving rise to the ThT signal are 

precipitating or adhering to the micro-plate, and were therefore not in the sample added 

to the carbon grids. 

 

Figure 5.16. TEM of hCC Oligomer with Aβ1-42 

Electron micrographs showing the hCC oligomer sample (left) and the same sample 

after incubation with Aβ1-42 (right). Images were taken at 11,500 x magnification.   
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Figure 5.17. Addition of hCC Oligomer 

Molar ratios of 0.5:1 (purple), 1:1 (turquoise) and 5:1 (blue) hCC oligomer to Aβ1-42 were incubated 

and monitored by ThT fluorescence. Each curve is the average of 4 or 5 replicate reactions with the 

standard error of the mean indicated by the error bars.  
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5.3.7. NMR Spectroscopy 

The nature of the interaction between hCC and Aβ1-40 has been investigated by previous 

members of the lab through HSQC titration experiments (Keeley, 2007, Elshawaihde, 

2012). These studies have shown that there are no major chemical shift changes when 

Aβ1-40 is titrated into a sample of hCC up to 1:1.2 equivalences, suggesting there is no 

tight binding event between the two proteins in their monomeric state. This was 

unexpected, as it has been reported that hCC forms a tight complex with monomeric 

Aβ1-40 as established by ELISA (Sastre et al., 2004). Given probable structural changes 

on the ELISA plate, experiments were designed to stimulate complex formation in 

solution by incubation for longer time periods, altering the conditions and increasing the 

concentration of the proteins as far as possible. 

5.3.7.1. Aβ1-42 Monomer Titration 

An HSQC titration experiment has also been used previously to monitor the nature of 

the interaction between hCC and monomeric Aβ1-42 (Elshawaihde, 2012). hCC titration 

experiments with oligomeric Aβ1-42 and Aβ-GM1 (ganglioside) were also carried out. In 

all three of these experiments there were no major chemical shift changes, however 

minor changes in amide cross-peak intensity were observed which could be mapped to 

the N-terminal α-helix region of the protein.   

HSQC Spectrum of hCC 

The initial 1H spectrum of 50 µM hCC in 15 mM Tris-TFA pH 7.5 at 278 K shows a 

wide dispersion of amide proton resonances (6-10 ppm) and up-field aliphatic proton 

peaks (below 0 ppm) indicating that hCC is folded. This is reflected in the HSQC 

spectrum where the amide chemical shifts are also well dispersed (Figure 5.18). The 

distribution of amide peaks corresponds well with the established assignment in these 

conditions (Keeley, 2007). As even small changes in the chemical environment are 

reflected in the HSQC spectrum, this validates the reproducibility of the sample 

preparation. There is no evidence for the characteristic peak shifts that are associated 

with dimerisation in either the 1D or 2D spectra, indicating that the protein is in the 

required monomeric state. Out of 120 residues, 87 were successfully assigned; those 

that were excluded were either not present, very weak or significantly overlapped.  
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Figure 5.18. HSQC Spectrum of hCC at 278 K 

An HSQC spectrum of 50 μM hCC incubated in 15 mM Tris-TFA pH 7.5 at 278 K showing the amide 

assignment. D1 represents the 1H dimension and D2 represents the 15N dimension. 
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Titration with Monomeric Aβ1-42  

Figure 5.19 shows an overlay of a reference HSQC spectrum overlaid with the four 

spectra that were obtained over the course of the titration of unlabelled monomeric 15N-

labelled hCC with unlabelled monomeric Aβ1-42. As has been previously observed by  

Elshawaihde (2012) there are only very minor chemical shift changes. Figure 5.20 

illustrates the calculated average chemical shift differences and indicates that no 

residues have a significant chemical shift change. The lack of chemical shift changes, 

even at equivalences beyond 1:1, indicates that there is no change in the local chemical 

environments of any of the residues. 

 

Figure 5.19. Titration of hCC with Aβ1-42  

A reference spectrum of 15-N labelled 50 µM hCC in 15 mM Tris-TFA pH 7.5 at 278 K (blue) was 

overlaid with 4 spectra in which increasing amounts of Aβ1-42 have been added (shown in red, green, 

purple and blue). The four spectra correspond to additions of 200 µl, 400 µl, 500 µl and 600 µl of 50 µM 

Aβ1-42 respectively. F2 represents the 1H dimension and F1 represents the 15N dimension.  
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Figure 5.20. Amide Chemical Shifts  

The changes in chemical shift observed in the HSQC spectrum of  50 µM hCC in 15 mM Tris-TFA pH 7.5 

at 278 K with the titration of monomeric Aβ1-42, with each chart corresponding  to a new addition. The 

stoichiometry is indicated at the top of each chart, and the chemical shift change required to be 

significant is shown as a dotted line. 
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Figure 5.21 shows the intensity change of each hCC amide observed in the Aβ titration 

and in the control experiment. Significant increases in cross-peak intensity were 

observed at the N-terminal, particularly R8, I9 and G12. After 1 week there is also an 

increase in the intensity for S44. In the absence of Aβ, a number of amide peaks 

belonging to the N-terminal region of the protein are often broadened or not present and 

has been attributed previously to the ability of this region to exchange at an intermediate 

rate between two or more conformations (Keeley, 2007). Following the addition of Aβ1-

42, these peaks gradually appear and sharpen, causing an increase in intensity to be 

observed, which indicates that the Aβ1-42 has influenced the ability of the hCC to change 

between these conformations.  

The significance of this observation increases given very similar changes observed for 

these residues upon titration of hCC with the more soluble Aβ1-40 (Keeley, 2007). In this 

latter titration, an increase in amide peak intensity was also observed for residue A58 of 

loop 1 of the protease binding site, in addition to N-terminal residues. However the peak 

for A58 was not observed at all in the current experiment with Aβ1-42.  

The simplest scenario would be that in the absence of Aβ two conformations are 

populated in intermediate exchange causing the amide peaks for these residues to 

broaden or disappear. The titration of Aβ1-42, and presumably the subsequent interaction 

between the two molecules, favours one of these conformations, therefore removing the 

intermediate exchange effects observed through switching between the two and causing 

a sharpening of the relevant peaks, as was observed in the titration data. However, the 

chemical shift data shown in Figure 5.20 does not support such a simple model. A 

change in chemical shift should be observed as one of these conformations is favoured 

and becomes the predominant species, unless the chemical shift differences between the 

two conformations were unresolvable. This makes it necessary to adapt the simple 

model to introduce multiple conformations that can be populated, rather than the two 

originally suggested. The observed chemical shift represents an average of all of the 

chemical environments that an amide populates. If population of one of the 

conformations is prevented through interaction with Aβ, it is possible that preventing 

the exposure to one chemical environment out of many will have a minimal effect on 

the observed chemical shift.  
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A comparison of the final time-point after 1 week incubation at 4°C with the final point 

of the reference spectrum showed minor reductions in intensity for several of the 

residues. The change in intensity was plotted for each of the residues as shown in Figure 

5.22. However, it is difficult to distinguish whether these changes are significant or due 

to the noise of the experiment as the peaks for the reference spectrum appeared to 

undergo similar changes in intensity. This differs from the results observed previously, 

where a significant reduction in intensity was observed in 25 residues (Elshawaihde, 

2012). The residues displaying a significant intensity reduction were plotted onto the 

structure of the molecule, which indicated that the region most affected by binding 

events between Aβ and hCC was around the N-terminal α-helix.   
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Figure 5.21. Amide Peak Intensity  

The changes in intensity observed for hCC amides in the HSQC spectra of 50 µM hCC in 15 mM Tris-

TFA pH 7.5 at 278 K following the addition of buffer (pink) and Aβ1-42 (blue). The x-axis shows the ratio 

of buffer/Aβ to hCC extending from 0 to 1.2. The final point in the Aβ1-42 titration corresponds to the final 

titration point after incubation at 4°C for 1 week. The y-axis shows the relative intensity with a unit-less 

range from 0 to 2.5. All intensities have been scaled relative to the initial intensity of that residue (at 1). 

At each titration point spectra were scaled to account for the dilution factor in the titration and necessary 

changes in receiver gain throughout the experiment.  
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Figure 5.22. Changes in Amide Peak Intensity 

The relative intensity change for each peak over the titration has been plotted against the residue 

number. Changes in the control experiment are shown in black, and changes in the titration with Aβ1-42 

are shown in turquoise.  

5.3.7.2. Time-course of 15N-labelled hCC with Aβ1-42 

The experiment described above suggests that there is no tight-binding interaction 

between monomeric hCC and monomeric Aβ1-42. This is surprising as previous studies 

have indicated that a 1:1 complex forms between the two proteins (Sastre et al., 2004, 

Selenica et al., 2007). To establish whether hCC interacts with other species of Aβ, 

formed later in the aggregation process, a time-course was carried out of the two 

proteins incubated at 30°C. This procedure has been shown to be successful in 

monitoring the formation of a complex between Aβ1-40 and the cellular prion protein 

PrPC (Younan et al., 2013).  

HSQC Spectrum of hCC at 303 K 

The rate at which a protein tumbles in solution is proportional to the temperature of the 

sample. At low temperatures, the tumbling rate is slow due to the reduced energy 

available in the system, leading to a general broadening of the signal. Increasing the 

temperature to 30°C caused the majority of the peaks to sharpen. A wide dispersion of 

amide proton resonances (6-10 ppm) and upfield aliphatic proton peaks (below 0 ppm) 

in the initial 1H spectrum of 50 µM hCC in 15 mM Tris-TFA pH 7.5 at 303 K signified 
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that hCC was folded. This was reflected in the HSQC spectrum where the amide 

chemical shifts are also well dispersed (Figure 5.23). At 30°C, the peaks for a further 4 

residues have been lost from the 4°C spectrum, giving an assignment for 83 residues out 

of 120. Again, the excluded residues were either very weak, not present at all or 

overlapped. There was no evidence of the characteristic peak shifts that are associated 

with dimerisation in either the 1D or 2D spectra, indicating that the protein is in the 

required monomeric state. 
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Figure 5.23. HSQC Spectrum of hCC at 303 K 

An HSQC spectrum of 50 μM hCC incubated in 15 mM Tris-TFA pH 7.5 at 303 K showing the 

assignment of the amides. D1 represents the 1H dimension and D2 represents the 15N dimension. 
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Time-course with Aβ1-42 

HSQC spectra, 12 in total, were obtained over 24 hours, with each experiment lasting 2 

hours and 8 minutes. Figure 5.24 shows an overlay of the final spectrum with the 

reference spectrum which was obtained in the absence of Aβ1-42. As was noted 

previously for the titration experiment, only very minor chemical shift changes were 

observed during the time-course of Aβ1-42 with hCC at 30°C (Figure 5.25).  

 

Figure 5.24. Time-course of hCC in the Presence of Aβ1-42 

A reference spectrum of 15-N labelled 50 µM hCC in 15 mM Tris-TFA pH 7.5 at 303 K (blue) was 

overlaid with the spectrum of an identical hCC sample which had been incubated in the presence of 

equimolar Aβ1-42 for 24 hours (red). F2 represents the 1H dimension and F1 represents the 15N 

dimension.  
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Figure 5.25. Amide Chemical Shift Changes for hCC and Aβ1-42 Time-course 

The changes in chemical shift observed in the HSQC spectrum of  50 µM hCC in 15 mM Tris-TFA pH 7.5 

at 303 K after incubation with 50 μM  Aβ1-42 for 24 hours.  

Amide peak intensity changes are shown in Figure 5.26 for both the Aβ time-course and 

the control experiment. The hCC peak intensities in the presence of Aβ1-42 have been 

scaled to the reference spectrum (the first spectrum in the control experiment), which 

was given a value of 1. A small decrease in intensity was observed for many of the 

residues. However, the increase in intensity that was observed for R8 in the titration 

experiment was not seen in the time-course; the other two residues that demonstrated an 

increase in intensity, I9 and G12 were too weak to be detected in the latter experiment. 

The relative intensity change for each residue was plotted, as is illustrated in Figure 

5.27. A minor decrease in intensity was observed for many of residues across the whole 

molecule in the presence of Aβ compared to the control reaction. This indicates a 

change in chemical environment for these amides, presumably through interaction with 

Aβ.  
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Figure 5.26. Amide Peak Intensity 

The changes in intensity observed for hCC amides in the HSQC spectra of 50 µM hCC in 15 mM Tris-

TFA pH 7.5 at 303 K in the absence (pink) and presence (blue) of 50 µM Aβ1-42. The x-axis shows the 

time-point of each experiment, with each experiment taking 2 hours and 8 minutes. The y-axis shows 

the relative intensity with a unit-less range from 0.5 to 1.5. All intensities have been scaled relative to 

the initial intensity of that residue in the reference spectrum of hCC in the absence of Aβ1-42, which is 

given an intensity of 1.  
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Figure 5.27. Changes in Amide Peak Intensity 

The relative intensity change for each peak over the titration has been plotted against the residue 

number. Changes in the control experiment are shown in black, and changes in the titration with Aβ1-42 

are shown in turquoise. 

The amide cross-peaks that experienced the greatest attenuation during the time-course 

were plotted onto the structure of the hCC molecule, as depicted in Figure 5.28. This 

highlights the regions of hCC that are most affected by the interaction with Aβ1-42. For 

comparative purposes, a structure of hCC showing the residues which have previously 

been observed to display significant changes in intensity in a titration of Aβ1-42 at 4°C is 

also shown (Elshawaihde, 2012). These were thought to be mostly localised around the 

N-terminal α-helix, and that residues on the β-sheet in close proximity to this helix were 

also seeing an effect with the binding of Aβ1-42. A similar localisation of intensity 

change was not observed in the current experiment, with attenuation of a similar 

magnitude seen across the whole molecule, particularly in structured regions. 



188 

 

 

Figure 5.28. Intensity Change Mapped onto hCC Structure 

A structural depiction of hCC based on the domain swapped dimer of hCC (PDB code: 1G96) adapted 

from Janowski et al. (2001) highlighting the residues which exhibited the most significant decrease in 

amide peak intensity (A). A58 which is found in loop 1 between strands 2 and 3 is not included in this 

depiction due to its involvement in the formation of the domain swapped dimer. A similar diagram 

taken from Elshawaihde (2012) shows the residues which displayed significant intensity decrease (red) 

and insignificant intensity decrease (yellow). Proline residues are represented in black and residues 

that showed no intensity change in blue.  
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Figure 5.29 shows an electron micrograph of the protein sample at the end-point of the 

time-course NMR experiment prepared immediately after the experiment and after 7 

months in the fridge. An image of Aβ1-42 fibrils formed through incubation in 15 mM 

Tris-TFA pH 7.5 at 30°C in the absence of hCC is also shown for comparative 

purposes. Amyloid fibrils are not observed in the NMR sample, suggesting that 

although the formation of a complex between Aβ and hCC was not observed throughout 

the HSQC time-course, the hCC is having a dramatic effect on the assembly process of 

the Aβ. Even after 7 months, amyloid fibrils were not observed in this sample.  

 

Figure 5.29. TEM of NMR Time-course 

Electron micrographs of the NMR time-course experiment of 50 µM Aβ1-42 incubated in the presence of 

50 µM Aβ1-42 in 15 mM Tris-TFA pH 7.5 at 30°C after 24 hours and the same sample after 7 months. 

An image of a sample of Aβ1-42 incubated in the absence of hCC in the same conditions is also shown. 

All images were taken at 21,000 x magnification. 
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5.4. Discussion  

Time-courses for the fibrillisation of Aβ with and without hCC were carried out and 

presented for the first time in this thesis. It is demonstrated that hCC will inhibit the 

formation of amyloid fibrils by Aβ1-42 in a dose-dependent manner, requiring a 2:1 

molar ratio of hCC to Aβ to inhibit this reaction completely where no increase in ThT 

fluorescence intensity is observed. At equimolar concentrations, a considerable 

reduction in ThT fluorescence, but not a complete loss, demonstrates that a small 

amount of amyloid fibril is still present. This is not consistent with a model where hCC 

and Aβ form a tightly bound monomer-monomer complex. The lack of quantitative 

measurements in the literature so far when examining the same phenomenon had not 

identified the need for an excess of hCC, at least at these concentrations of Aβ peptide 

(e.g. Sastre et al. 2004). The effect of hCC is purely on the yield of amyloid fibrils and 

has no measurable effect on the fibrillisation kinetics of the Aβ peptides that escape 

inhibition. This suggests the formation of a complex between hCC and Aβ which is 2:1 

but the persistence of free monomeric hCC in solution would suggest otherwise. 

Observation of the sample by TEM indicated that instead of amyloid fibrils, 

protofibrillar species and granular aggregates had been produced. The species formed 

through the incubation of Aβ with hCC have a protofibrillar appearance, however do 

not appear to aggregate further to produce mature fibrils when observed after several 

months. It is possible that hCC is stabilising these states and preventing their further 

aggregation to produce mature fibrils. A large amount of amorphous aggregate is also 

often observed. Measuring the protofibrillar species was a challenge due to their curled 

up nature, as well as image resolution, preventing a detailed summary of their width. 

However those that could be measured had a similar width to the mature fibrils. 

Comparison of these species to well characterised species of Aβ such as protofibrils and 

ADDLs highlighted the protofibrillar appearance, although a greater degree of 

association was observed. Studies have reported a dramatic reduction in cytotoxicity 

when hCC is incubated with Aβ (Kaeser et al., 2007, Mi et al., 2007, Tizon et al., 2010), 

demonstrating that the species forming do not display the toxic activity that is observed 

with Aβ alone. Unfortunately attempts to perform cell assays and verify a reduction in 

cytotoxicity in the system described here were unsuccessful, however it could be 

assumed that the species being formed are similar to those found in the literature.   
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When incubated in the absence of hCC, Aβ forms oligomers with a similar appearance 

to ADDLs very early on in the reaction and after 2 hours, only mature fibrils are 

observed in the TEM. In the presence of equimolar concentrations of hCC, species with 

different morphologies are observed. The hCC appears to be preventing the formation 

of fibrils but not of earlier intermediates, as aggregated species are still seen in the 

presence of hCC. If this were not the case and aggregation was being inhibited entirely, 

such as through stabilisation of the monomer, then no material would be observed in the 

TEM.  

Size exclusion chromatography (SEC) demonstrated the formation of high molecular 

weight species by Aβ1-42 in the absence of hCC, however no distinct peaks were 

observed. SEC indicated that hCC binds very early on in the reaction, as a 25% 

reduction in the expected peak height of hCC was observed before the first point (15 

min) of the time-course. This corresponds with the observations from the TEM time-

course, in which aggregated species are observed at the first time-point. Surprisingly, as 

the reaction progressed no further decrease in peak height was seen, suggesting that 

further incorporation of the hCC is not occurring.  

As previously observed there is an inconsistency between the results presented here, in 

which complex formation between monomeric hCC and monomeric Aβ1-42 is not 

observed by NMR, and published data which suggested the formation of a high-affinity 

complex between these molecules as established by ELISA (Sastre et al., 2004). It is 

thought that the variation in these results could be attributed to the fact the ELISA 

experiment is carried out on a surface, whereas the NMR experiment is in solution. A 

similar variation has been observed in experiments with transthyretin, suggesting solid-

phase binding assays may not be entirely consistent with binding characteristics or 

inhibition of fibril formation observed in the liquid-phase (Li et al., 2013). 

In order to identify the nature of the Aβ species that interacts with hCC, the inhibitor 

was added after 20 minutes and 1 hour of initiating the Aβ fibrillisation time-course. 

This also led to inhibition of the reaction and a reduction in ThT fluorescence intensity, 

although addition at these points was not as effective as when the hCC was added at the 

start of the reaction. Addition of hCC after 2 hours showed no change in ThT 

fluorescence intensity compared to the control experiment. This highlights that hCC 

needs to be present early on in the reaction, presumably whilst the species of Aβ that it 

is interacting with are still present in sufficient number for the hCC to have an 
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inhibitory effect. This suggests the interacting Aβ species are unlikely to be the mature 

fibrils, however it is plausible that protofibrillar species present early on in the reaction 

can bind hCC.  

Different forms of hCC were also investigated in terms of their inhibitory activity. The 

addition of equimolar concentrations of hCC dimer at the beginning of the reaction also 

has an effect on the ThT fluorescence changes, but in a totally different way, showing 

an increase in lag phase, but not a decrease in fibril yield, compared to Aβ1-42 incubated 

in the absence of hCC. This indicates an alternative mechanism of inhibition by the 

dimer, where it is able to interfere with the progression of the reaction but not affect its 

outcome. A similar method of inhibition has been reported in the transthyretin system 

(Li et al., 2013) where TTR tetramer reduces Aβ aggregation through binding to Aβ 

monomer to inhibit Aβ seed formation, whereas TTR monomers interact preferentially 

with Aβ oligomers to slow large oligomer formation.  

The study of the time-courses for Aβ fibrillisation in the presence of inhibitors has 

highlighted at least two different mechanisms for the cystatins alone, perhaps 3 if the 

activity of cystatin B tetramers is also considered. The next step in this study was to 

identify the nature of the binding site and ideally purify a complex. The differential 

effects of the dimer and monomer, two proteins with remarkably similar properties, 

suggests binding must be localised to the protease binding site, which is unusually 

hydrophobic for the surface of a protein. The effect of Aβ addition on the NMR 15N-

HSQC spectrum of hCC was investigated to look for clues as to possible binding sites. 

Despite the inhibition of Aβ fibril formation, no shifted amide cross-peaks were 

observed in HSQC spectra of hCC incubated with Aβ, both in its monomeric form at 

4°C and at a higher temperature (30°C) which should induce the formation of 

oligomers. The experiment carried out at 4°C showed that Aβ disturbed the structural 

flexibility of the N-terminal of hCC, a region which is part of the protease binding site 

of the protein and changes upon dimerisation. The latter experiment showed minor 

decreases in amide peak intensity over time for many of the hCC residues. Mapping 

these residues onto the hCC structure demonstrated that the attenuated residues were 

spread across the whole molecule, with no localisation to any particular region. This 

confirmed the results of the chromatography, which was carried out at a higher ionic 

strength but where a percentage of the monomeric hCC was observed to disappear, 

presumably to go and form a large molecular weight complex with Aβ. In previous 
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work, a titration of 15N-labelled hCC with Aβ1-42 at 4°C had suggested some possible 

localisation of these attenuated residues (Elshawaihde, 2012), however this effect was 

small and not observed consistently in any experiment carried out subsequently.  

The data presented here indicate that folded monomeric hCC is not interacting with 

monomeric Aβ1-42, yet it effectively inhibits Aβ fibril formation. This strongly suggests 

that hCC binds a species of Aβ1-42 other than monomer, most likely some form of 

oligomer. The gradual decrease in amide peak height over the course of the experiment 

could indicate that the species of Aβ that interacts forms only slowly, or potentially 

causes a slow perturbation of hCC, with an alternative conformer of hCC interacting 

with an oligomeric species of Aβ. A number of scenarios need to be examined: 

Scenario number 1: hCC forms a very weak interaction with Aβ oligomers and so only 

10% is bound under the conditions of the experiment. The ratio of kon/koff will give the 

binding affinity of the reaction, however as the on-rate (kon)  will normally be diffusion-

controlled, the off-rate (koff) will to some extent dictate the kd. A weakly-bound 

complex will generally lead to fast dissociation of the protein, whereas the protein will 

dissociate slowly in a tightly-bound complex. Weak binding at the concentrations used 

(50µM) would suggest fast or intermediate exchange. Since only 10% is bound at any 

one time and the size of the complex may be large, differences in chemical shift and the 

movement of the peak towards the bound form may be unresolvable and so all that is 

observed is a small decrease in amide peak height. This is consistent with what is 

observed here. 

Scenario number 2: hCC forms a tight complex with Aβ oligomers but the species 

which is competent for binding is not the species that dominates in solution, but rather a 

sub-species of the folded ensemble, such as a specific proline(s) isomer. Again, only a 

small proportion of the hCC is bound (~10%), but this time the binding of species is in 

slow exchange. The appearance of a new peak corresponding to the bound form may 

then be hard to identify above the noise of the experiment, and line broadening caused 

by intermediate exchange or a large relaxation time (t2) may be hard to detect. This is 

also consistent with what is observed here. 

The presence of hCC in the Aβ fibrillisations does not appear to be having an effect on 

the lag time of the reaction, suggesting that the nucleation process is not being affected. 

The formation of a nucleus is highly concentration dependent, suggesting that hCC is 

not binding to monomeric Aβ and forming a stable complex, as this would mean that 
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the concentration of Aβ monomers in the solution available to form a nucleus would be 

reduced and so the lag time of the reaction would increase. hCC is also not affecting the 

rate of fibril extension; those Aβ molecules that are available to assemble and attach to 

the extension sites are doing so at the same rate as when hCC is not present. However, 

the amount of fibrils being produced is considerably less than in the absence of hCC, 

implying that the availability of assembly-competent Aβ present in the solution is 

reduced.  

A potential model for this system could be that the hCC is binding to an oligomeric 

species of Aβ and reducing the amount of assembly-competent Aβ that is present in 

solution to attach to the fibrils and elongate. By sequestering Aβ oligomers, hCC is 

diverting the assembly pathway and causing the formation of stable non-toxic 

aggregates, thus preventing the formation of amyloid fibrils. This proposal is consistent 

with previous studies, in which hCC is shown to inhibit fibril formation and cause the 

production of amorphous aggregates (Sastre et al., 2004). An illustration of this model 

is shown in Figure 5.30. hCC is not inhibiting Aβ fibril formation through prevention of 

the nucleation event, nor is it preventing the formation of oligomeric species and 

protofibrils. It is unknown whether the species that are forming are related to the species 

that form during the normal assembly of Aβ, however the conversion of these species 

into amyloid fibrils appears to be prevented. NMR has confirmed that folded 

monomeric hCC is not interacting with monomeric Aβ, as the formation of this complex 

was not observed. This suggests that hCC is interacting with an oligomeric form of Aβ. 

It is suggested that inhibition of Aβ fibrillisation by hCC is either through catalytic 

conversion, where the complex is weak and occurs only transiently (scenario 1) or 

through the binding of a minor species to Aβ (scenario 2).  

Figure 5.30 illustrates these two different mechanisms of action for hCC and compares 

the activity of the dimer which exerts its activity earlier by decreasing the effective 

concentration of Aβ and thus slowing down the observed fibrillisation reaction. Further 

analysis will be required to understand the nature of the interaction sites but it is 

suggested here that the proteinase binding site may be involved. 
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Figure 5.30. Proposed Modulation of Aβ1-42 by hCC 

 Schematic illustrating the assembly pathway of Aβ1-42 into amyloid fibrils, from the formation of a 

nucleus through the production of oligomeric species before the assembly of protofibrils and finally 

mature fibrils. The potential mechanisms by which hCC is reducing Aβ1-42 toxicity at different points in 

the aggregation process are highlighted.  
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Chapter Six: Final Conclusions and Future Work 

The current research project has focussed on exploring the nature of the interaction 

between hCC and Aβ peptide, and investigating the aggregation of hCC into amyloid 

fibrils and oligomers. The main limitation to the work described in this thesis has been 

the ability to produce sufficient quantities both of recombinant hCC and Aβ.  

Establishing a system to allow the production of recombinant Aβ was highly desirable, 

and initially it was hoped that the peptide produced would be used for the interaction 

study with hCC, in addition to further NMR experiments using isotopically labelled Aβ. 

The expression and purification protocol described in Chapter 3 was adapted from a 

protocol described by Utsumi et al. (2009), utilising a ubiquitin tag to increase the 

expression and solubility of the peptide. The ubiquitin is removed through hydrolysis by 

a specific yeast hydrolase GST-YUH1, and purification of the hydrolysis products had 

previously been described using reverse-phase chromatography. This proved 

unsuccessful, so further methods of purification were explored. These included size-

exclusion chromatography, Ni2+-NTA affinity chromatography and aggregation 

methods. Optimisation of the protocol led to the production of pure Aβ1-40 peptide using 

Ni2+-NTA chromatography, however low yields were still obtained and the amount of 

peptide produced was not comparable to the expected yield. Establishing a method of 

purifying the peptide by reverse-phase HPLC would reduce the number of purification 

steps required, thereby potentially increasing the yield. This process would also buffer 

exchange the peptide into acetonitrile, which can be readily removed through 

lyophilisation, in addition to removing any contaminating buffer salts.  

The difficulties in producing large quantities of hCC has hindered previous attempts to 

study the fibrillisation pathway of this protein (Keeley, 2007, Elshawaihde, 2012). 

Further complications have arisen with the observation that oligomeric species are 

formed in conjunction with the fibrils. The equilibrium between these assemblies and 

the high association which leads to the coating of the fibrils by the oligomers has meant 

that purification of either species has been a challenge.  

It has been demonstrated here that WT hCC will form amyloid fibrils under two 

different conditions, at pH 4.0 and at pH 2.0. Both of these are far from physiological, 

especially when combined with the high temperature and agitation required for fibril 

assembly. However, structural insights obtained in this system could be used as a model 
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for the pathogenic variant L68Q, a protein that readily aggregates under physiological 

conditions. Production of this mutant is extremely challenging due to its tendency to 

aggregate during expression, even at the low levels used here. It is also shown that hCC 

fibrils can be formed at lower protein concentrations than has previously been reported, 

with a ten-fold dilution from 225 μM to 22.5 μM still leading to the formation of 

significant amounts of amyloid at pH 4.0.  

hCC will form oligomeric species in both of the conditions described above. Although 

the production of hCC oligomers at pH 4.0 have been described previously (Wahlbom 

et al., 2007), hCC oligomers have not been reported to form at pH 2.0. Both of these 

oligomer populations are circular, or spherical, with a uniform morphology throughout 

the samples but a large variation in size. These could conceivably be the same species 

forming at both conditions but observed from different angles. Although hCC readily 

makes oligomers through in vitro incubation of the pure protein, other members of the 

cystatin family do not, although small amounts have been isolated from preparations of 

cystatin B directly after over-expression in E. coli (Davis, 2013).  

The current favoured hypothesis for amyloid neurotoxicity is that oligomeric 

intermediates are the toxic species in many neurodegenerative diseases. The species 

formed by hCC, particularly at pH 4 where the annular morphology is observed, have 

the properties of species associated with toxicity in a number of different systems. 

Indeed, Wahlbom et al. (2007) report that hCC oligomers produced at pH 4.0 bind to 

the oligomer-specific antibody A11 in a dot blot. Unfortunately, attempts to characterise 

further the toxicity of the hCC oligomer samples were unsuccessful due to inherent 

difficulties with the cell assays.   

The hCC species appear highly stable, and remain in solution after extended incubation 

periods. Interestingly in these samples, oligomers which have adhered to the fibril 

surface are observed. These oligomers coat the fibril and do not appear to dissociate in 

any of the conditions tested here except possibly for high concentrations of the 

denaturant guanidine hydrochloride. It has recently been proposed that amyloid fibrils 

can act as a surface to catalyse the formation of nuclei in a secondary nucleation 

mechanism, thereby increasing the rate of fibrillogenesis (Buell et al., 2014). In the hCC 

system it is possible that amyloid fibrils are exerting a surface effect to catalyse the 

formation of stable oligomeric species, and that once these species form they remain 

associated with the fibril structure. This may explain the stability of the complex if these 
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oligomers are essentially an integral part of the fibril. In this scenario, the kinetics of the 

process would be such that following the reaction over time would show the production 

of fibrils before oligomers, or at least an increase of oligomers as the fibrils are 

produced. This was not observed. Alternatively, instead of catalysing oligomer 

formation, the fibril surface could be acting either to stabilise the oligomers once they 

have formed, or to segregate them away from solution. In both these cases oligomers 

will be prevented from aggregating further. This would require the formation of fibrils 

and oligomers simultaneously and would suggest the processes are occurring in parallel, 

indicating that the oligomers are unlikely to be on-pathway to amyloid formation. 

Purification methods developed below were used to further verify that disturbing the 

ratio of fibrils to oligomers in solution did not lead to “re-equilibration” by inter-

conversion of one species into the other, but rather, to the persistence of these individual 

species in solution. This contrasts strongly with data reported by Wahlbom et al. (2007) 

where they observed the formation of fibrils from a solution of oligomers at a rate far 

exceeding fibrillisation of hCC monomers. 

Ultrafiltration proved to be successful in purifying the oligomers away from 

contaminating fibrils. This method is also thought to remove any contaminating 

monomer from the sample, however due to difficulties in analysing these samples by 

SEC and SDS-PAGE it is difficult to verify whether this is indeed the case. Producing a 

pure sample of hCC fibrils proved challenging, attempts were hindered by the variations 

in the products produced upon incubation of the protein in the different conditions 

combined with the problems of producing large amounts of protein. Optimising the 

conditions so that fibrils are produced in conditions at which very few oligomers form 

(such as 22.5 μM hCC at pH 4.0) should then enable a more efficient isolation of the 

fibrils through centrifugation. An alternative method for the production of pure fibrils 

could be through repeated rounds of seeding, but the requirement for large amounts of 

protein makes this route costly.   

A preliminary investigation into the hCC fibril structure was performed using elastase 

to probe unprotected regions. Although the limited proteolysis results presented here do 

not define a protected fibril core in the same way as has been described for cystatin B, 

novel insights into the structure of hCC fibrils have been established.  

The proteolysis reactions were carried out at pH 8.0 on fibrillar hCC then the resulting 

fibrillar pellets were washed then analysed after dissolution in guanidine hydrochloride. 



199 

 

Rapid hydrolysis was observed throughout many regions of the protein showing a lack 

of sensitive areas, or the ability of “nicked” hCC to remain incorporated within the fibril 

pellet. For example, where cleavage occurs in the central part of the molecule (between 

V60 and N61) a partner fragment can often also be identified, suggesting that the 

fibrillar hCC can indeed be nicked. This site is located between strands 2 and 3 of the 

original monomer structure. Peptides from both sides of this cut site were observed (i.e. 

both halves of the molecule) suggesting that this region of the molecule, unlike in its 

cystatin B counterpart fibrils, is vulnerable to hydrolysis. This also indicates that hCC 

does not retain a monomer-like fold within the fibril, as the loop where these residues 

are positioned is the region which is responsible for the inhibitory activity of hCC.  

Consistent with results obtained for its counterpart cystatin B, regions of hCC which are 

susceptible to proteolysis are the N-terminal of the molecule, in particular the region up 

to the end of the α-helix, and the area between strands 4 and 5.  This suggests that, as 

for cystatin B, the N-terminal region is disordered and is not part of the fibril core 

whereas  the susceptibility of the region between strands 4 and 5 could indicate that this 

region is protruding out of the structure. 

This study has highlighted additional complications in the identification of the peptide 

fragments produced by proteolysis due to the presence of the two disulphide bonds in 

the hCC molecule. A comparison of the digestion samples in both native and reducing 

conditions would confirm the identification of the linked peptides. N-terminal 

sequencing could be used in conjunction with MS to identify, or confirm the presence 

of, additional fragments particularly those with an ambiguous cut site. Limited 

proteolysis using alternative enzymes such as proteinase K or pepsin would verify the 

sensitivity of the regions described above. The determination of structural features from 

oligomeric species is highly desirable, and the stability of the species formed by hCC 

could make these an ideal model. Current limitations into structural studies with these 

oligomers is the low yields and difficulties with manipulation.  

The interaction between hCC and Aβ1-42 was explored by ThT fluorescence assays, 

TEM and NMR, which led to the proposal that monomeric hCC is inhibiting the 

formation of amyloid fibrils by Aβ through binding to an oligomeric form of the 

peptide. A comparison of the inhibition mechanism of hCC in Aβ fibril formation with 

methods of inhibition by transthyretin and neuroserpin highlights the differences 

between these mechanisms, indicating the alternative processes that have evolved to try 
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and prevent the aggregation of Aβ through targeting the reaction at different points. It is 

thought that TTR tetramer binds to Aβ monomer and reduces the formation of 

nucleating species (Li et al., 2013). Neuroserpin forms a specific binary complex with 

Aβ1-42 with a 1:1 stoichiometry (Kinghorn et al., 2006). Although the addition of 

neuroserpin accelerates the aggregation of Aβ, the species formed are small amorphous 

aggregates with a distinctly different appearance to mature fibrils. It is proposed that 

these are off pathway non-toxic oligomers. hCC is not binding to monomeric Aβ but 

instead appears to be binding to an oligomeric species causing the formation of non-

toxic assemblies. In a similar fashion PrPC selectively binds to oligomers (Lauren et al., 

2009), however in this system the resulting species are more toxic than those produced 

in the absence of PrPC.  

The nature of these interactions, and why they have such diverse effects, must be to do 

with differences in the binding and subsequent dissociation of the interacting proteins, 

and therefore must be related to their structure. It is therefore important to understand 

these interfaces, particularly considering one promotes the toxicity of Aβ whilst others 

show an inhibitory effect. The inhibitory and amyloid-promoting associations of 

different forms of β2m have been studied in Karamanos et al. (2014), which 

demonstrated that a similar head-to-head interaction was observed in both complexes. 

The interface for the inhibitory complex is stabilised by hydrophobic interactions, 

whereas the amyloid-promoting interface involves electrostatic interactions. 

Although the formation of the complex between Aβ and hCC was not observable using 

HSQC, it is possible that alternative NMR methods, for example relaxation 

experiments, could be performed to monitor this interaction. Mutagenesis of particular 

residues, such as in the hydrophobic protease binding region, could be used to monitor 

the effect of this region on Aβ fibril inhibition through ThT fluorescence assays. A 

study using short peptides of hCC could be exploited to examine which region of hCC 

is involved in binding Aβ, as has been successful in the transthyretin system (Du et al., 

2012). In addition to this, it may be interesting to examine the effect of mixtures of 

modulating proteins on Aβ fibril assembly. A further characterisation of the species 

produced through the incubation of hCC and Aβ would be required for a more detailed 

insight into the mechanism of inhibition. Events at a surface may be quite different to 

what is occurring in solution, or they might provide the ideal experimental system for 

observing a complex between hCC and Aβ.  
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